Original papers

1. Substrate-specific activation and long-range olefin migration catalysis at the Pd centers in a porous metal-macrocycle framework
 M. Han, S. Tashiro, T. Shiraogawa, M. Ehara, and M. Shionoya
 Bull. Chem. Soc. Jpn. 95, 1303–1307 (2022). (Selected paper, inside cover)

2. Highly selective acid-catalyzed olefin isomerization of limonene to terpinolene by kinetic suppression of overreactions in a confined space of porous metal-macrocycle frameworks
 W. He, S. Tashiro, and M. Shionoya
 Chem. Sci. 13, 8752–8758 (2022). (Inside front cover)

3. Orientational isomerisation of guest molecules in equilibrium in a tubular host crystal formed via halogen and hydrogen bonding
 Y. Yamashita, S. Tashiro, and M. Shionoya
 CrystEngComm 24, 1518–1522 (2022). (Back cover)

4. Shape-selective one-step synthesis of branched gold nanoparticles on the crystal surface of redox-active PdII-macrocycles
 Y. Yamashita, S. Tashiro, Y. Ishii, T. Uchihashi, N. Matsushita, R. Kubota, and M. Shionoya
 Dalton Trans. 51, 1318–1324 (2022). (Outside front cover, HOT article)

5. Site-selective binding of terpenoids within a confined space of metal–macrocycle framework: Substrate-specific promotion or inhibition of cyclization reactions
 S. Tashiro, W. He, R. Hayashi, Y. Lin, and M. Shionoya
 Org. Chem. Front. 8, 4071–4077 (2021). (Inside front cover)

6. Phase-Dependent Reactivity and Host-Guest Behaviors of a Metallo-Macrocycle in Liquid and Solid-State Photosensitized Oxygenation Reactions
 K. Omoto, S. Tashiro, and M. Shionoya
 J. Am. Chem. Soc. 143, 5406–5412 (2021). (Front cover)

7. Mechanistic Studies on Photoinduced Catalytic Olefin Migration Reactions at the Pd(II) Centers of a Porous Crystal, Metal-Macrocycle Framework
 H. Yonezawa, T. Shiraogawa, M. Han, S. Tashiro, M. Ehara, and M. Shionoya
 Chem. Asian J. 16, 202–206 (2021). (Front cover)

8. Face-selective adsorption of a prochiral compound on the chiral pore-surface of metal-macrocycle framework (MMF) directed towards stereoselective reactions
 S. Tashiro, T. Umeki, R. Kubota, and M. Shionoya
 Faraday Discuss. 225, 197–209 (2021).

9. Multipoint Hydrogen Bonding-based Molecular Recognition of Amino Acids and Peptide Derivatives in a Porous Metal-Macrocycle Framework: Residue-Specificity, Diastereoselectivity, and Conformational Control
 S. Tashiro, K. Nakata, R. Hayashi, and M. Shionoya
 Small 17, 2005803 (2021). (Frontispiece)

10. Protonation-induced self-assembly of bis-phenanthroline macrocycles into nanofibers arrayed with tetrachloroaurate, hexachloroplatinate or phosphomolybdate ions
 S. Tashiro, S. Shimizu, M. Kuritani, and M. Shionoya
 Dalton Trans. 49, 13948–13953 (2020). (Back cover)
11. Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites
S. Tashiro, and M. Shionoya
Acc. Chem. Res. 53, 632–643 (2020). (Supplementary Cover Art)

12. Core-shell metal-macrocycle framework (MMF): spatially selective dye inclusion through core-to-shell anisotropic transport along crystalline 1D-channels connected by epitaxial growth
S. Tashiro, S. Mitsui, D. W. Burke, R. Kubota, N. Matsushita, and M. Shionoya
CrystEngComm 22, 1306–1309 (2020). (Back cover)

13. Molecular recognition of planar and non-planar aromatic hydrocarbons through multipoint Ag–π bonding in a dinuclear metallo-macrocycle
K. Omoto, S. Tashiro, and M. Shionoya
Chem. Sci. 10, 7172–7176 (2019). (Inside back cover)

14. Formation and characterization of charge coupled structure of polyoxometalate particles and a GaAs-based nanowire for readout of molecular charge states
K. Sasaki, S. Okamoto, S. Tashiro, T. Asai, and S. Kasai
Jpn. J. Appl. Phys. 58, SDDE13 (2019).

15. Preferential Photoreaction in a Porous Crystal, Metal–Macrocycle Framework: PdII-Mediated Olefin Migration over [2+2] Cycloaddition
H. Yonezawa, S. Tashiro, T. Shiraoaga, M. Ebara, R. Shimada, T. Ozawa, and M. Shionoya
J. Am. Chem. Soc. 140, 16610–16614 (2018).

16. Rational Synthesis of Benzimidazole[3]arenes by CuII-catalyzed Post-macrocyclization Transformation
S. Tashiro, T. Umeki, R. Kubota, and M. Shionoya
Chem. Sci. 9, 7614–7619 (2018). (Back cover)

17. Multifunctional Octamethyltetrasila[2.2]cyclophanes: Conformational Variations, Circularly Polarized Luminescence, and Organic Electroluminescence
M. Shimada, Y. Yamanoi, T. Ohto, S.-T. Pham, R. Yamada, H. Tada, K. Omoto, S. Tashiro, M. Shionoya,
M. Hattori, K. Jimura, S. Hayashi, H. Koike, M. Iwamura, K. Nozaki, and H. Nishihara
J. Am. Chem. Soc. 139, 11214–11221 (2017).

18. Arrangement of Proteinogenic α-Amino Acids on a Cyclic Peptide comprising Alternate Biphenyl-Cored ζ-Amino Acids
S. Tashiro, M. Chiba, and M. Shionoya
Chem. Asian J. 12, 1087–1094 (2017). (Inside cover)

19. Non-Covalent Immobilisation of p-Toluenesulfonic Acid in a Porous Molecular Crystal for Size-Specific Acid-Catalysed Reactions
S. Tashiro, H. Yonezawa, R. Kubota, T. Umeki, and M. Shionoya
Chem. Commun. 52, 7657–7660 (2016). (Inside back cover)

20. Chiral Metal–Macrocycle Frameworks: Supramolecular Chirality Induction and Helicity Inversion of the Helical Macrocyclic Structures
R. Kubota, S. Tashiro, and M. Shionoya
Chem. Sci. 7, 2217–2221 (2016).

21. Host-Guest Interactions by Metal to Metal Dative Bonding: Recognition of Ruthenocene by a Metallo-Host
K. Omoto, S. Tashiro, and M. Shionoya
Z. Anorg. Allg. Chem. 641, 2056–2059 (2015).

22. Iridium-Catalyzed Reductive Carbon–Carbon Bond Cleavage Reaction on a Curved Pyridylcorannulene Skeleton
23. Multipoint Recognition of Ditopic Aromatic Guest Molecules via Ag–π Interactions within a Dimetal Macrocycle
K. Omoto, S. Tashiro, M. Kuritani, and M. Shionoya
J. Am. Chem. Soc. 136, 17946–17949 (2014).

24. *In Situ* X-ray Snapshot Analysis of Transient Molecular Adsorption in a Crystalline Channel
R. Kubota, S. Tashiro, M. Shiro, and M. Shionoya
Nat. Chem. 6, 913–918 (2014).

25. Simultaneous Arrangement of up to Three Different Molecules on the Pore Surface of a Metal–Macrocycle Framework: Cooperation and Competition
S. Tashiro, T. Umeki, R. Kubota, and M. Shionoya
Angew. Chem. Int. Ed. 53, 8310–8315 (2014). (Frontispiece)

26. Cavity-Assembled Porous Solids (CAPSs) for Nanospace-Specific Functions
S. Tashiro, and M. Shionoya
Bull. Chem. Soc. Jpn. 87, 643–654 (2014).

27. Palladium- or Proton-Induced Submicro Spherical Aggregation of Macrocyclic Amphiphiles in Aqueous Solution
S. Tashiro, R. Kubota, M. Kawagoe, and M. Shionoya
Dalton Trans. 42, 15915–15918 (2013).

28. Discrete and Polymeric, Mono- and Dinuclear Silver Complexes of a Macrocyclic Tetraoxime Ligand with AgI–AgI Interactions
S. Tashiro, J. Tanihira, M. Yamada, and M. Shionoya
Sensors 13, 5671–5685 (2013).

29. Stimuli-Responsive Synthetic Metallopeptides
S. Tashiro, and M. Shionoya
Chem. Lett. 42, 456–462 (2013). (Highlight Review)

30. Organic and Organometallic Nanofibers formed by Supramolecular Assembly of Diamond-Shaped Macrocyclic Ligands and PdII Complexes
M. Kuritani, S. Tashiro, and M. Shionoya
Chem. Asian J. 8, 1368–1371 (2013). (Cover Picture)

31. A Cyclopalladated Complex of Corannulene with a Pyridine Pendant and its Columnar Self-Assembly
M. Yamada, S. Tashiro, R. Miyake, and M. Shionoya
Dalton Trans. 42, 3300–3303 (2013).

32. Metallo-Foldamers with Backbone-Coordinative Oxime Peptides: Control of Secondary Structures
S. Tashiro, K. Matsuoka, A. Minoda, and M. Shionoya
Angew. Chem. Int. Ed. 51, 13123–13127 (2012).

33. Non-Covalent Surface Modification of Metal-Macrocycle Framework with Mono-Substituted Benzenes
R. Kubota, S. Tashiro, T. Umeki, and M. Shionoya
Supramol. Chem. 24, 867–877 (2012).

34. A Ternary Charge-Transfer Complex composed of Cyclotrivenylene (CTV) and a Polyoxometalate
(POM) with Quinone as an Electronic Modulator
S. Tashiro, S. Hashida, and M. Shionoya
Chem. Asian J. 7, 1180–1184 (2012).

35. Metal–Macrocycle Framework (MMF): Supramolecular Nano-Channel Surfaces with Shape Sorting Capability
S. Tashiro, R. Kubota, and M. Shionoya
J. Am. Chem. Soc. 134, 2461–2464 (2012).

36. Stacked Platinum Complexes of the Magnus’ Salt Type Inside a Coordination Cage
G. H. Clever, W. Kawamura, S. Tashiro, M. Shiro, and M. Shionoya
Angew. Chem. Int. Ed. 51, 2606–2609 (2012).

37. Heterodinuclear Metal Arrangement in a Flat Macrocycle with Two Chemically-Equivalent Metal Chelating Sites
M. Kuritani, S. Tashiro, and M. Shionoya
Inorg. Chem. 51, 1508–1515 (2012).

38. Chiral Recognition of α-Amino Acids by an Optically Active (2S,5S,8S,11S)-2,5,8,11-Tetraethyl Cyclen Cobalt(III) Complex
S. Tashiro, Y. Ogura, S. Tsuboyama, K. Tsuboyama, and M. Shionoya
Inorg. Chem. 50, 4–6 (2011).

39. Light-Triggered Crystallization of a Molecular Host–Guest Complex
G. H. Clever, S. Tashiro, and M. Shionoya
J. Am. Chem. Soc. 132, 9973–9975 (2010).

40. Inducing α-Helices in Short Oligopeptides through Binding by an Artificial Hydrophobic Cavity
C. Dolain, Y. Hatakeyama, T. Sawada, S. Tashiro, and M. Fujita
J. Am. Chem. Soc. 132, 5564–5565 (2010).

41. One-Pot, Template Syntheses of a New Class of Metallomacrocycles with a Tetraoxime Cyclic Skeleton
S. Tashiro, A. Minoda, M. Yamada, and M. Shionoya
Inorg. Chem. 48, 10093–10101 (2009).

42. Inclusion of Anionic Guests inside a Molecular Cage with Palladium(II) Centers as Electrostatic Anchors
G. H. Clever, S. Tashiro, and M. Shionoya
Angew. Chem. Int. Ed. 48, 7010–7012 (2009).

43. Soft Metal-Mediated Base Pairing with Novel Synthetic Nucleosides Possessing an O,S-Donor Ligand
Y. Takezawa, K. Tanaka, M. Yori, S. Tashiro, M. Shiro, and M. Shionoya
J. Org. Chem. 73, 6092–6098 (2008).

44. Ni(II)-Mediated Self-Assembly of Artificial β-Dipeptides Forming a Macroyclic Tetranuclear Complex with Interior Spaces for In-Line Molecular Arrangement
R. Miyake, S. Tashiro, M. Shiro, K. Tanaka, and M. Shionoya
J. Am. Chem. Soc. 130, 5646–5647 (2008).

45. Self-Assembly and Host–Guest Chemistry of a 3.5-nm Coordination Nanotube
T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, and M. Fujita
Chem. Asian J. 2, 468–476 (2007).

46. Folding of an Ala-Ala-Ala Tripeptide into a β-Turn via Hydrophobic Encapsulation
47. Peptide Recognition: Encapsulation and α-Helical Folding of a Nine-Residue Peptide within a Hydrophobic Dimeric Capsule of a Bowl-Shaped Host
S. Tashiro, M. Tominaga, Y. Yamaguchi, K. Kato, and M. Fujita
Chem. Eur. J. 12, 3211–3217 (2006).

48. Selective Recognition of Trp- and Tyr-Rich Oligopeptides by Self-Assembled Coordination Hosts
S. Tashiro, and M. Fujita
Bull. Chem. Soc. Jpn. 79, 833–837 (2006). *(BCSJ Award)*.

49. Folding a De Novo Designed Peptide into an α-Helix through Hydrophobic Binding by a Bowl-Shaped Host
S. Tashiro, M. Tominaga, Y. Yamaguchi, K. Kato, and M. Fujita
Angew. Chem. Int. Ed. 45, 241–244 (2006).

50. Sequence-Selective Recognition of Peptides within the Single Binding Pocket of a Self-Assembled Coordination Cage
S. Tashiro, M. Tominaga, M. Kawano, B. Therrien, T. Ozeki, and M. Fujita
J. Am. Chem. Soc. 127, 4546–4547 (2005).

51. A 3.5-nm Coordination Nanotube
T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, and M. Fujita
J. Am. Chem. Soc. 126, 10818–10819 (2004).

52. Pd II-Directed Dynamic Assembly of a Dodecapyridine Ligand into End-Capped and Open Tubes: The Importance of Kinetic Control in Self-Assembly
S. Tashiro, M. Tominaga, T. Kusukawa, M. Kawano, S. Sakamoto, K. Yamaguchi, and M. Fujita
Angew. Chem. Int. Ed. 42, 3267–3270 (2003).

53. Spectroscopic and Crystallographic Studies on the Stability of Self-Assembled Coordination Nanotubes
M. Aoyagi, S. Tashiro, M. Tominaga, K. Biradha, and M. Fujita
Chem. Commun. 2036–2037 (2002).

54. Dynamic Aspects in Host-Guest Complexation by Coordination Nanotubes
M. Tominaga, S. Tashiro, M. Aoyagi, and M. Fujita
Chem. Commun. 2038–2039 (2002).

総説・解説

1. 特異な分子認識・配列能を有する環状錯体集積型多孔性結晶 MMF 田代 省平
 日本結晶学会誌 64, 231–237 (2022).

2. 環状多核金属錯体の自己組織化による多孔性機能材料の創製
田代 省平
Bull. Jpn. Soc. Coord. Chem. 71, 39–48 (2018).

3. 環状化合物からなる多孔性物質
塩谷 光彦・田代 省平
 ナノ空間材料ハンドブック 株式会社エヌ・ティー・エス, pp207–216 (2016).

4. コラニュレン骨格がイリジウムで切れた！—錯体化学研究から誕生した新しい触媒反応
5. ナノ空間での分子吸着の瞬間を捉えた！—X 線回折測定を用いた分子吸着過程のスナップショット観察
県田 亮・田代 省平・塩谷 光彦
化学 70, No.3, 23–27 (2015).

6. 多孔性配位高分子における配位不飽和サイトの化学
田代 省平
Bull. Jpn. Soc. Coord. Chem. 60, 32–33 (2012).

7. 積み上げてつくる多孔性結晶 — 孤立空間と中空空間のインターフェースを制御する
田代 省平・窪田 亮・塩谷 光彦
化学 67, No.7, 64–65 (2012).

Patents
公開番号 2010-195715
環状多座配位子、環状多核金属錯体及びその会合体、並びにそれらの製造方法
国立大学法人東京大学
塩谷 光彦・田代 省平・窪田 亮
出願番号 2009-042699
出願日 平成 21 年 2 月 25 日

公開番号 2010-65019
オキシム型環状金属錯体
国立大学法人東京大学
塩谷 光彦・田代 省平・蓑田 愛
出願番号 2008-207190
出願日 平成 20 年 8 月 11 日

アミノ酸残基部分を内包する金属錯体及びアミノ酸残基の認識方法
藤田 誠・田代 省平・吉沢 道人・富永 昌英・河野 正規, 特願 2004-66643

競争的研究資金（研究代表者）
1. JST さきがけ（原子・分子の自在配列と特性・機能）（令和 4-7 年度）“結晶内分子配列に基づくバイオリファイナリー”

2. 学術変革領域研究(A)（2.5 次元物質科学）公募研究（令和 4-5 年度）“環状中空分子の二次元集積化に基づく 2.5 次元ナノ空間の創製と機能化”

3. 新学術領域研究（水圏機能材料）公募研究（令和 4-5 年度）“非対称水和ネットワーク構造を有する多孔性水圏材料の機能化”

4. 公益財団法人 藤森科学技術振興財団 2022 年度 研究助成（令和 4 年度）“超分子結晶触媒によるフラウン誘導体の精密分子認識と立体選択的変換反応の開発”

5. 公益財団法人 徳山科学技術振興財団 2022 年度 研究助成（令和 4 年度）“金属有機クラスターをノードとした非対称配位高分子の精密設計”

6. 公益財団法人 旭硝子財団 化学・生命分野・研究奨励（令和 3-4 年度）“プロトン共役多電子
移動とキラネじれ反転運動が同期する白金三核ナノマシン錯体の合成

7. 公益財団法人 池谷科学技術振興財団 単年度研究助成（令和 3 年度）“認識ボケットを備えた結晶ナノチャネルによる超高速結晶スポンジ法の開発”

8. 公益財団法人 クリタ水・環境科学振興財団 国内研究助成（令和 2 年 10 月 1 日より 1 年）“多孔性結晶を観察場とした水－エタノール溶液構造の可視化”

9. 挑戦的研究（萌芽）（令和元年－2 年度）“多孔性配位高分子を鋳型とした相互貫入ジェルジム型高分子の精密合成”

10. 田中貴金属記念財団 2018 年度貴金属に関わる研究助成金 奨励賞（平成 31 年度）“分子認識結晶 MMF とナノ"金"平糖の高効率複合化と応用化”

11. 新学術領域研究（ソフトクリスタル）公募研究（平成 30–31 年度）“分子配列能を備えた多孔性結晶細孔におけるソフトクリスタリゼーション法の開発”

12. 挑戦的萌芽研究（平成 28–29 年度）“多孔性分子結晶の面選択的接合を介した異方集積体ポラス材料の創製”

13. 新学術領域研究（分子アーキテクト）公募研究（平成 28–29 年度）“構造・物性を多状態制御できる超分子錯体ナノファイバーの創製”

14. 若手研究 A（平成 27–30 年度）“結晶細孔内での精密分子配列に基づく超分子酵素の開発”

15. 新学術領域研究（分子アーキテクト）公募研究（平成 26–27 年度）“柔らかな金属ナノ電線の精密合成と構造・機能制御”

16. 挑戦的萌芽研究（平成 23–24 年度）“配位結合駆動型メタロペプチドフォルダマーの創製”

17. 若手研究 B（平成 20–21 年度）“環境多核金属錯体による孤立した水クラスター「ナノ水滴」の構築と精密機能化”

受賞歴

1. 田中貴金属記念財団 2018 年度貴金属に関わる研究助成金 奨励賞 平成 31 年 3 月 28 日
“分子認識結晶 MMF とナノ"金"平糖の高効率複合化と応用化”

2. 平成 29 年度総合学芸学会研究奨励賞 平成 29 年 9 月 17 日
“環状多核金属錯体の自己組織化による多孔性機能材料の創製”

3. 日本化学会第 93 春季年会 優秀講演賞（学術） 平成 25 年 3 月
“人工オキシムペプチドを用いた金属配位駆動型メタロフォルダマーの構築と可逆な構造変換”

4. Bulletin of the Chemical Society of Japan 誌 BCSJ Award Article 平成 18 年 6 月
“Selective Recognition of Trp- and Tyr-Rich Oligopeptides by Self-Assembled Coordination Hosts”

5. 日本化学会第 85 春季年会 学生講演賞 平成 17 年 3 月
“自己集合性かご型錯体の内部空間におけるペプチドの配列認識と配座制御”
Gallery of cover arts

Chem. Asian J. 2013 (ST), Angew. Chem. Int. Ed. 2014 (ST), Chem. Commun. 2016 (ST), Chem. Asian J. 2017 (ST), Chem. Sci. 2018 (ST), Chem. Sci. 2019 (KO), CrystEngComm 2020 (ST), Acc. Chem. Res. 2020 (ST), Dalton Trans. 2020 (ST), Chem. Asian J. 2021 (ST), J. Am. Chem. Soc. 2021 (KO), Small 2021 (ST),
Org. Chem. Front. 2021 (ST), Dalton Trans. 2022 (YY), CrystEngComm 2022 (YY), Chem. Sci. 2022 (WH), Bull. Chem. Soc. Jpn. 2022 (ST).