TWIST PERIODIC ORBITS FOR CONTINUOUS MAPS OF THE EIGHT SPACE

Associate professor Iftichar Mudhar Talb Al-shraa
Iraq, Babylon University,
College of Education for Pure Science

Keywords: Twist map, Eight space, Rotation set, Periodic set.

Abstract. Let g be a continuous map from 8 to itself has a fixed point at $(0,0)$, we prove that g has a twist periodic orbit if there is a rational rotation number

1.1 Introduction:
In [1], Alseda,L. et.al introduced the definition of twist periodic orbit, they studied this type of periodic on continuous circle map of degree one which has a fixed point In.[4], Misurewicz,M studied the twist sets for circle maps. Let 8 be the one point union of two unit circles attached at $(0,0)$ and $g: 8 \rightarrow 8$ be a map has a fixed point at $(0,0)$, we say that $z \in 8$ is a periodic point of g if there exists a positive integer n such that $g^n(z) = z$. The period of z is the smallest integer satisfying this relation. Let $p(g)$ be the set of periods of g if $z \in 8$ is a periodic point of period n, then the orbit of z is the set

Throughout this work, we will use e as projection from s^1 onto 8. There exists many projections from s^1 into 8, but we define e as:

This projection is one to one. We can find a lift map f from s^1 to itself such that $eg = fe$. Let G be a lift to g and $e\pi(t) = e(cos2\pi t + isin2\pi t)$ a projection of $R \rightarrow 8$. It is clear π is many to one, G is not defined uniquely; that is if G_1 and G are two lifting of g then $G = G_1 + m$ with $m \in Z$. the degree of g is the number a which satisfy $G(t + 1) = G(t) + a, \forall t \in R$. In this work, we use $a=1$. If $z \in 8$ is a periodic point of g of period n and $e\pi(t) = z$ then $G^n(t) = t + k$; where $k \in Z$ this imply k/n is the rotation number of z we denoted it by $\rho(G,z)$. We denote by $L_G(g)$ the set of all rotation numbers of g so $L_G(g) = \{\rho(G,z); z \in 8; G: R \rightarrow R\}$ is called the rotation set of g. Since f is unique lift to g then the properties of rotation number and rotation set on the circle satisfy on the eight space. So the rotation set does not depend on the choice of t, but it depends on the periodic orbit. Also, if (a_i) is a convergent sequence of a and $a_i \in L_G(g)$ then $a \in L_G(g)$.

The another property $\rho(G,z) = \rho(G_1,z) + k$ if $G = G_1 + k$. If g has no periodic point the rotation number exist for all $t \in R$ and it is independent of t and is irrational number there are more properties on circle maps satisfy on 8 (see [2] and [3]). Let $z_1,z_2 \in 8$ we denote (z_1,z_2)(resp. $[z_1,z_2]$) the open (resp. closed) arc of 8 from z_1 counter clockwise to z_2. Let $\frac{d}{m}$ be a rational number, we assume $m>0$ and let T be a periodic orbit of period m and rotation number $\frac{d}{m}$ with $(d,m) = 1$. Let G be lift such that G is order preserving on the set $(en)^{-1}T$ then we say that T is a twist periodic orbit (for simplify we say TPO) of g period m and rotation number $\frac{d}{m}$. It is clear, every periodic orbit of period 1 is a TPO. If $\frac{d}{m} > 0$ then $(z_i,z_{i+1}) \cap T = \emptyset, \forall i = 1,2, ..., m-1$ and $(z_m,z_1) \cap T = \emptyset$, and if $\frac{d}{m} < 0$ then
Then notion of TPO of period m characterizes the simplest behavior of the graph a map which has the same rotation number.

1.2 Main Theorems

In this section, we prove two theorems which find the TPO, also we prove other properties of it.

Proposition 1.2.1: If \(\frac{k}{n} < c \); \(a, c \in L_0(g) \) and \(k, n \in \mathbb{Z} \) with \(n > 0 \) and \(\frac{k}{n} \in L_0(g) \) then \(n \in p(g) \).

Proof: Suppose \(\rho(G, z) = \frac{k}{n} \) and thus there exists \(z \in \mathbb{Z} \) such that there is \(t \in \mathbb{R} \) and \(e \pi(t) = z \) then by definition \(\rho(G, z) = \lim_{n \to \infty} \sup \frac{c_n(t) - t}{n} = \frac{k}{n} \) so there is \(\varepsilon > 0 \) such that \(-\varepsilon < \frac{c_n(t) - t}{n} < \frac{k}{n} < \varepsilon \) then \(\frac{k}{n} - \varepsilon < \frac{c_n(t) - t}{n} < \frac{k}{n} + \varepsilon \). Hence

\[
(k + t) - n\varepsilon < G^n(t) < (k + t) + n\varepsilon
\]

Since \(\varepsilon \) is an arbitrary and \(G^n(t) \in \mathbb{R} \) is any point then \(G^n(t) = t + k \) that is \(t \) is a periodic point of \(G \) of period \(n \) then by properties of the lift then \(G \) has periodic of period \(n \) then \(n \in p(g) \).

Corollary 1.2.2: \(L_0(g) \cap \mathbb{Z} \neq \emptyset \) if and only if \(z = 0 \) is the only fixed point of \(g \).

Proof: If \(z = 0 \) then there exists \(t \in \mathbb{Z} \) such that \(e \pi(t) = z = 0 \). Let \(L_0(g) \cap \mathbb{Z} \neq \emptyset \) so there is \(\frac{k}{n} \in L_0(g) \cap \mathbb{Z} \) hence there is \(z \in \mathbb{Z} \) such that \(\rho(G, z) = \frac{k}{n} \) so there is \(t \in \mathbb{Z} \), \(e \pi(t) = 0 \).

Corollary 1.2.3: \(L_0(g) \cap \mathbb{Z} \neq \emptyset \) if and only of \(g \) has a fixed point \(z = 0 \).

Proof: \(\Rightarrow \) Since \(L_0(g) \cap \mathbb{Z} \neq \emptyset \) then there is an integer number \(k \in L_0(g) \), so by proposition 1.2.1, \(1 \in p(g) \). In other word \(g \) has a fixed point \(\Leftarrow \) since \(1 \in p(g) \) then there \(z \in \mathbb{Z} \) such that \(g(z) = z \), so \(G(t) = t + k \); where \(k \in \mathbb{Z} \), thus \(\rho(G, z) = \frac{k}{1} \in L_0(g) \) then \(k \in L_0(g) \cap \mathbb{Z} \neq \emptyset \).

The proposition below gives a geometric interpretation of a TPO on the eight space:

Proposition 1.2.4: Let \(g: \mathbb{Z} \to \mathbb{Z} \) be a continuous map, \(T = \{z_1, z_2, ..., z_m\} \) be a TPO of period \(m \) and rotation number \(\frac{d}{m} \). Then \(\frac{d}{m} > 0 \) and \(\frac{d}{m} \) be the lifting of \(g \) for which \(\rho(G, z_i) = \frac{d}{m}(e \pi)^{-1} T = \{t_i; i \in \mathbb{Z}\} \) with \(\cdots < t_{-2} < t_{-1} < t_0 < t_1 < t_2 < \cdots \). Assume \(e \pi(t_1) = z_1 \). We claim \(t_{i+r} = t_i + r \), if \(t_i \in \mathbb{Z} \).

Since \(t_i \) is a periodic point of period \(m \) then \(e \pi(t_{i+r}) = e \pi(t_i) \). Thus \(\pi(t_{i+r}) = \pi(t_i) \); \(t_i \in \mathbb{Z} \), so \(t_{i+r} = t_i + r \). Also, we claim \(t_{i+r} = t_i + \frac{r}{2} \), if \(t_i \in \mathbb{Z} \). Then \((t_{i+r}) = e - \pi(t_i) \) so \(\pi(t_{i+r}) = -\pi(t_i) \). Then \(t_{i+r} = t_i + \frac{r}{2} \). Case 1: \(e \pi(t_{i+r}) = e \pi(t_i) \); \(t_i \) for \(k \in \mathbb{Z} \) and \(i = 1, 2, ..., m \), since \(F \) on \((e \pi)^{-1} T \) is one to one and by definition of TPO \((e \pi)^{-1} T \) order preserving then \(G(t_i) = t_i+1 \), for some \(j \in \mathbb{Z} \) and all \(i \), so \(G^2(t_i) = G(G(t_i)) = G(t_{i+1}) = t_{i+2} \) thus by induction we get \(G^m(t_i) = t_{i+m} \). Since \(t_i \) is a periodic
point of period m and $\rho(G,z) = \frac{d}{m}$ then $t_i + d = G^m(t_i)$

$= G^{m-1}(G(t_i)) = G^{m-1}(t_{i+j}) = \ldots = t_{i+mj} = t_i + j$

(by claim 1) then $d = j$ hence $g(z_i) = z_i + d (\mod m)$ \forall i = 1, 2, \ldots, m.

Since T is an orbit not a union of several orbits then $(d, m) = 1$

Case 2: If $t_i \in \frac{Z}{n}$, $e_{\pi}(t_i) = e\left(\frac{t_i + \frac{r}{2}}{2}\right) - e(\pi(t_i)) = -e\pi(t_i) = 0$. Since, F on $(e\pi)^{-1}T$ is one to one and by definition of TPO $(e\pi)^{-1}T$ order preserving then $G(t_i) = t_{i+j}$; for some $j \in \frac{Z}{2}$ in the same way $t_i + d = G^m(t_i) = G^{m-1}(t_{i+j}) = \ldots = t_{i+mj} = t_i + j$ (by claim 2) thus $d = j$; where $j \in \frac{Z}{2}$ this imply $g(z_j) = f(0) = 0$, so z_i is an eventually fixed point.

An A-graph of g with respect to A_m and B_m is an oriented graph with vertices $I_1, I_2, \ldots, I_{m+n-1}$ such that if $I_a \beta$ covers I_β k time but not $k+1$ times then there are k arrows from I_a to I_β. a sequence $I_{i_0} \rightarrow I_{i_1} \rightarrow \ldots \rightarrow I_{i_r}$ is an A-graph of g is called a path of length r and the path is called a loop if $I_{i_0} = I_r$ a loop is called simple if $I_{i_j} \neq I_{i_k}$ for $0 \leq j < k < r$.

The lemma below generalize lemma in [2] on circle map:

Lemma 1.2.5: Let $g: S \rightarrow S$ be a continuous map of degree one. If $I_0 \rightarrow I_1 \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_0$ is a loop in a A-graph of g then there exists a fixed point z of g^n such that $g^n(z) \in I_i$ for $i = 1, 2, \ldots, n-1$.

Lemma 1.2.6: Let g be an monotone map (not necessarily continuous) of a closed interval I into itself. Then g has a fixed point.

Proof: suppose g is increasing map Let $t = \sup\{y: g(y) > y\} \neq 0$ since g is increasing, if $t < g(t)$ then $\forall y \in (t, g(t))$ then $g(y) > g(t) > y$ but this contraction.

If $t > g(t)$ then $\forall y \in (t, g(t))$ then $g(y) < g(t) < y$ but this contraction. Thus $t = g(t)$ that is, t is a fixed point. If g is decreasing map then the proof is similar. □

Let $A = \{a_1, a_2, \ldots, a_n\}$ be an invariant set that is $g(A) \subset A$, let $t_1 < t_2 < \cdots < t_n < t_{n+1}$ be such that $e\pi(t_i) = a_i$ for $i = 1, 2, \ldots, n$. Let G be a lift of g, we denote by \tilde{G} the map such that:

1) $\tilde{G}(t_i + k) = G(t_i + k)$ for $i = 1, 2, \ldots, n$ and $k \in Z$.

2) \tilde{G} on $[t_i + k, t_{i+1} + k]$ is linear for $i = 1, 2, \ldots, n$ and $k \in Z$.

3) \tilde{G} on $[t_n + k, t_{n+1} + k]$ is linear for $k \in Z$.

We call \tilde{G} the A linearization of G. we denote by \bar{g} the map of 8 of degree one which has \tilde{G} as lift, also we say \tilde{G} the A linearization of g. If $\bar{g} = g$ that is $\tilde{G} = g$ then we say that G and g are linear.

Lemma 1.2.7: Let $g: S \rightarrow S$ be a continuous map and A be an invariant subset under g. let \tilde{G} be the A linearization of g and suppose that \tilde{G} has a TPO T of period s and $\rho(G, z) = \frac{r}{s}$ with $(r, s) = 1$; where \tilde{G} is the lift of G obtained by a linearization of G. If $T \not\subset A$ and \tilde{G} is increasing at every point of $(e\pi)^{-1}T$ then g has a TPO of period s and $\rho(G, z) = \frac{r}{s}$.

Proof: Let $t_1 < t_2 < \cdots < t_n < t_{n+1}$ such that $e\pi\{t_1, t_2, \ldots, t_n\} = A$ and $I_i = [t_i, t_{i+1}], i = 1, 2, \ldots, n-1$ and $I_n = [t_n, t_{n+1} + 1]$ be subsets of R. Let U be the partition of R given by the points of $(e\pi)^{-1}A$, since $T \not\subset A$; T is a periodic orbit and A is invariant set for \tilde{G} so $\tilde{G}(A) \subset A$ then T and A are disjoint that is $T \cap A = \emptyset$. We choose $z \in T$ this
imply there is unique \(i_1 \in \{1,2,\ldots,n\} \) such that there is
\[t \in I_{i_1} \text{ with } e\pi(t) = z \] hence there is unique \(i_1 \in \{1,2,\ldots,n\} \) and \(n_j \in \mathbb{Z} \) such that
\[\tilde{G}^{-1}(t) \in t_{i_j} + n_j = 1,2,\ldots,s + 1 \] since
\[(\tilde{G},z) = \frac{r}{s} : \tilde{G} \text{ has a TPO pf period } s. \text{ Then } \tilde{G}^s(t) = t + r \text{ thus } i_{s+1} = i_1 \text{ and } n_{s+1} = r \text{ In such a way we obtain the following path in the U-graph of } \tilde{G}^s :
\[\tilde{G} : I_{i_1} \to I_{i_2} + n_2 \to \cdots \to I_{i_s} + n_s \to I_{i_1} + r \]
We will define \(M_s : I_{i_1} + r \to I_{i_2} + n_2 \) and \(M_j : I_{i_j+1} + n_j \to I_{i_j} + n_j \) such that
\[M_j(t) = \inf \{ y \in I_{i_j} + n_j : G(y) = t \} \] Since \(\tilde{G} \) is increasing on every interval these maps \(M_j, M_s \) are increasing. Therefore \(M : I_{i_1} + r \to I_{i_1} + r \) such that
\[M_I = M_1 \circ M_2 \circ \cdots \circ M_s + r \] is clear \(M \) is increasing . By lemma 1.2.6, \(M \) has a fixed point \(p \in I_{i_1} + r \) let \(p_1 = p - r \in I_{i_1} \) thus
\[G^i(p_1) \in I_{i_{j+1}} + n_{j+1} \] for \(j = 0,1,\ldots,s - 1 \) and \(G^s(p_1) = p_1 + r \in I_{i_1} + r \) then the orbit
\[X = \{ e\pi(p_1), G(e\pi(p_1)), \ldots, G^{s-1}(e\pi(p_1)) \} \] is periodic of period \(s \) and
\[\rho(G, e\pi(p_1)) = \frac{r}{s} \] We claim \(X \) is a TPO, to show that : Since \(T = \{ z_1, z_2, \ldots, z_s \} \) periodic orbit on
\[(e\pi)^{-1}T \subset R \] that is
\[\{ G_j(p_1) : j = 0,1,\ldots,s - 1 \} \] is \(Z \subset R \) Now we will compare between
\[(e\pi)^{-1}T \] and \(X \). Let
\[g^i(e\pi(p_1)), g^j(e\pi(p_1)) \in X \] such that a set is to left and which to the right. The elements of the U-partition are :Case 1: If these intervals are different then
\[X = \{ g^i(e\pi(p_1)) : i = 0,1,\ldots,s - 1 \} \] are the end points of U-partition, therefore we get \(X \) is a TPO. Case 2: If they are the same , then one has to go along the orbits of these two points, since we only use increasing pieces of the maps \(G \) and \(\tilde{G} \) then
\[\{ G_j : j = 0,1,\ldots,s - 1 \} \] and \((e\pi)^{-1}T \) in the same order, since \(T \) is a TPO so \(X \) is a TPO. ■
We will define these maps as: let \(a, b \in R \) and \(G \) be a lift of \(g \)
\[G_r(a) = \sup \{ G(b) : b \leq a \} \] and
\[G_l(a) = \inf \{ G(b) : b \geq a \} \] We call \(g_r : 8 \to 8 \) such that \(G_r \) is a lift of \(g \) and \(g_l : 8 \to 8 \) such that
\(G_l \) is a lift of \(g_l \) this mean \(g_r, g_l \) are continuous maps of degree one.
Lemma 1.2.8: Let \(g : 8 \to 8 \) be a continuous map of degree one and \(W \) be a periodic orbit of \(g \) of period \(m \) and \(\rho(G, z) = \frac{d}{m} \) such that \(0 < \frac{d}{m} < 1 \) and \((d, m) = 1 \) . suppose that
\(W \) is not a TPO . then
\begin{enumerate}
\item \(i \)- \(g \) has a TPO \(R \) of period \(s \) and rotation number \(\frac{r}{s} \) with \((r, s) = 1 \) and \(\frac{d}{m} < \frac{r}{s} \).
\item \(ii \)- \(g \) has a TPO \(L \) of period \(n \) and rotation number \(\frac{j}{n} \) with \((j, n) = 1 \) and \(\frac{j}{n} < \frac{d}{m} \).
\end{enumerate}
Proof: Without loss of generality,If we assume \(g \) is linear on \(W \) and \(F \) is increasing on \((e\pi)^{-1}R \) then this don’t for generality. Then by lemma 1.2.7, let \(w \) be a periodic orbit of \(g \) of period \(m \) and
\[(G, z) = \frac{d}{m} \] let \(U \) be the partition of \(8 \) by elements of \(W \),since \(g \) is onto then for all
\[I \in U \exists j \in U \] Such that
\[g_r - covers I \] since the number of intervals of \(U \) is finite so we have a loop of length \(s \) in the U-graph of \(g_r \) with
\[1 \leq s \leq m \] Assume that the loop is the shortest one of the U-graph of \(g_r \) since \(W \) is not a TPO at least on interval
\[I \in U \] satisfy \((g_r, I) = \text{constant} \) then \(s < m \) By lemma 1.2.5, this loop gives us a periodic orbit \(R \) of
\(g_r \) of period \(s \) and rotation number \(\frac{r}{s} \) since \(s < m \) then \(R \neq W \) all intervals on which \(G_r \) is non – decreasing (constant or increasing) then \(R \) is a TPO for \(g_r \) this imply \(R \) is a TPO for \(f \). By proposition 1.2.4, we get \((r,s)=1 \). Now ,we need prove that
Theorem 1.2.9: Let \(g : \mathbb{S} \rightarrow \mathbb{S} \) be a continuous map of degree one. If \(\frac{d}{m} \in L(g) \) such that \(\frac{d}{m} \) is an end point of \(L(g) \) then all periodic orbits of \(g \) of period \(m \) and rotation number \(\frac{d}{m} \) are TPO.

Proof: Either \(\frac{d}{m} \in \mathbb{Z} \) such that \((d,m)=1 \) then \(m=1 \) then by proposition 1.2.4, \(g \) has a TPO. or \(\frac{d}{m} \in \mathbb{Z} \) let \(F \) be a lifting of \(g \) such that \(\frac{d}{m} \) is the right end point of \(L_F(f) = [a, \frac{d}{m}] \). Let \(G' = G - E\left(\frac{d}{m}\right) = \frac{d}{m} - E\left(\frac{d}{m}\right) \in L_G(g) \) then \((d,m)=1 \) and \(\frac{d}{m} \in (0,1) \) then by lemma 1.2.8, we get all the periodic orbits of period \(m \) and \(\rho(F',z) = \frac{d'}{m} \) are TPO.

\[\rho(G,z) = \rho(G',z) + E\left(\frac{d}{m}\right) = \frac{d}{m} + E\left(\frac{d}{m}\right) = \frac{d}{m} \]

so \(T \) is TPO of period \(m \) and \(\rho(G,z) = \frac{d}{m} \).

References:

[1] Alseda, L., Llibre, J., Misurwicz, M. and Simo, C. (1985) "Twist periodic orbit and topological entropy for continuous maps of circle of degree one which have a fixed point, Ergod. Th. & Dynam. Sys., 5,501-517.

[2] Block, L. Guckenheimer, J. Misurewicz, M. and Young, L.S. (1980): Periodic points and topological entropy of one dimensional maps. Springer Lect. Notes in Math., 819, 18-39.

[3] Misurewicz, M. (1982):Periodic points of maps of degree one of a circle ,Ergod. Th. & Dynam., 2, 221-227.

[4] Misurewicz, M. (1984):Twist sets for maps of the circle" Ergod. Th.& Dynam. Sys., 4, 391-404.