INTRODUCTION

As acknowledged in several international reports, cold housing increases the risk of respiratory disease associated with indoor dampness and mold, with strong evidence for asthma exacerbations and respiratory infections and limited evidence for asthma development. Breathing cold air is also a strong and direct trigger for wheezing amongst those with asthma, and we have previously shown that cold domestic environments are associated with small decrements in lung function in children with asthma. In contrast, at a population level, warmer climates are associated with a greater prevalence of asthma.

Cold indoor temperatures are a consequence of the interaction between cold outdoor temperatures and structural deficiencies of housing, such as air tightness, inadequate heating, and lack of insulation. Most homes in New Zealand are cold by international standards.
standards and do not meet the World Health Organization’s recommended minimum indoor temperature of 18°C. The housing stock is dominated by timber framed, detached houses with predominantly weatherboard, brick, or fiber cement cladding, built between 1950 and 2000. Before a 1977 amendment to the building code (NZS 421P), there was no requirement to insulate homes. The amendment only applied to new homes, so retrofitting insulation into existing homes remained at the discretion of the homeowner. In 2005, an estimated 60% of houses built before 1979 lacked any form of ceiling insulation, and 68% were without underfloor insulation.

Retrofitting insulation has been associated with significant improvements in respiratory health. For example, a community randomized controlled trial in 1350 households showed a reduction in wheezing, fewer GP visits, and fewer days off work and school.

In 2009, the New Zealand Energy Efficiency and Conservation Authority (EECA) launched a five-year insulation and heater subsidy programme for existing homes, Warm-up New Zealand: Heat Smart (WUNZ). The aim of WUNZ was to bring the thermal efficiency of older houses up to date—to the insulation thermal resistance standard (NZBC clause H1/AS1) set in 2007. Previous analyses of the effects of WUNZ on hospitalizations, involving 994317 residents of 204405 houses, found a relative reduction in acute hospitalizations of 11%; while hospitalizations for respiratory disease were 15% lower, and hospitalizations for asthma 20% lower.

In the current linkage study, prescriptions dispensed to treat respiratory disease were used to determine whether improving thermal efficiency is associated with fewer symptoms and reduced incidence of respiratory disease.

2 | METHOD

A quasi-experimental retrospective cohort study was conducted using data linkage. As previously described, the study cohort was determined by linking residents of houses insulated through the WUNZ subsidy program between July 2009 and June 2014 to primary health organization (PHO) records by their address. PHO records include everybody registered with a general practitioner and are updated every quarter. Person years contributed were calculated by the number of quarter years an individual lived in a WUNZ house (person-house pair). If a person moved from one WUNZ house to another, a new person-house pair was created. We also identified a 6-year continual-occupancy nested cohort made up of people who remained in the same WUNZ house for the duration of the study.

The area level deprivation and climate zone for each WUNZ house were identified using the matched address and added to the joined dataset.

Personal (age, sex, and ethnicity) and health (prescriptions dispensed, hospital discharges, and mortality) information were retrieved from New Zealand Ministry of Health datasets for residents we identified as having lived in a WUNZ house during the study period. These were matched to each person-house linked record using the resident’s national health index number.

Practical implications

- This study supports the use of subsidized home insulation as a means of improving respiratory health.
- This study suggests that subsidizing the cost of a clean, energy efficient heater can be used to further improve health outcomes.
- The study supports further investigation of the impact of improved thermal efficiency in preventing onset of chronic respiratory disease being undertaken.

A difference-in-difference approach was used to compare the before and after intervention change in pharmaceuticals dispensed to an intervention group with pharmaceuticals dispensed to a control group over the same period. The difference-in-difference approach was adapted from an earlier study and chosen as it allowed both differences between the intervention and control groups and changes over time within each group to be controlled for. The intervention group included residents of WUNZ houses that had their homes insulated between July 2009 and December 2011. They were followed for 3 years before and 3 years after the insulation intervention. To ensure that a control group is similar to an intervention group, it is recommended that they are selected from the same or similar population. The control group therefore included all residents of WUNZ houses insulated between January 1, 2012, and June 30, 2014, and were followed for 6 years prior to the insulation intervention.

The details of address matching, data linkage, and baseline and follow-up timeframes from the joined records have been previously described and are summarized in Figure 1.

2.1 | Exclusions

We excluded some records from further analysis where: participant’s age was less than or equal to zero years, greater than or equal to 90 years, or when key demographic information (sex, ethnicity, and deprivation decile) was missing. We also excluded records where there was a gap in residence of more than 6 months, as this brought into question whether the address listed was a permanent residence.

2.2 | Definition of medication to treat cold-associated respiratory disease

We compiled a list of medication commonly used to treat cold-associated respiratory disease in consultation with a Public Health physician, a Ministry of Health information analyst, a pharmacist, and a physician specializing in respiratory disease. A dataset of prescriptions dispensed for these pharmaceuticals was retrieved from
the Ministry of Health “Pharmaceutical Collections” and linked to the WUNZ cohort using an encrypted unique identifier. A second step compared the date dispensed to the start and end date for participation in the study.

Cold-associated respiratory disease medications fell into one of three broad groups; Table S1 lists formulations that were included in the analysis of each group.

1. Antibiotic medications such as penicillin and macrolides prescribed for infectious respiratory disease.
2. Mast-cell stabilizers, inhaled corticosteroids, and long-acting beta-adrenoceptor agonists (LABA) prescribed to prevent chronic respiratory disease symptoms.
3. Anticholinergics and short-acting beta-adrenoceptor agonists (SABA) prescribed to treat exacerbation of chronic respiratory disease symptoms (exacerbation sensitive medication). An oral corticosteroid, prednisone, was also included as a marker of severe asthma or COPD exacerbation.

2.3 | Determining incidence of respiratory disease

We defined chronic respiratory disease incidence as the number of people for whom prescription medication was dispensed for chronic respiratory disease at follow-up, and who had not had prescriptions dispensed at baseline. We made a direct comparison between the intervention and control group post-intervention to assess whether improving thermal efficiency reduced respiratory disease incidence. We only used the 6-year continual occupancy nested cohort for this analysis as a full baseline history was needed.

We calculated chronic respiratory disease incidence by the number of prescriptions per individual in the study population at baseline that was required to match the age-specific rates for chronic respiratory disease prevalence in New Zealand at the time of the study, see Table 1, similar to what had been done in earlier study.21 We used two measures of disease incidence:

1. Number of individuals with at least one prescription for medication to prevent symptoms (Table 1) at follow-up, who had not been prescribed the medication at baseline.
2. Number of individuals with at least three prescriptions (including repeat prescriptions) for exacerbation-sensitive medication (Table 1) at follow-up who had not had the medication prescribed at baseline.

2.4 | Data analysis

All data analyses were conducted using SAS 9.4.

We used Poisson regression analysis to calculate baseline and follow-up pharmaceutical dispensing rates (number of pharmaceuticals dispensed/number of person years), rate ratios for the intervention and control groups (pharmaceutical dispensing rate at follow-up/pharmaceutical dispensing rate at baseline), and a relative rate ratio comparing the intervention rate ratio with the control rate ratio. Socio-demographic and environmental factors—age, sex, ethnicity, area level deprivation climate zone, and intervention type—were included as co-variates to control for confounding using a generalized linear model.

Odds ratios for respiratory disease were calculated in the 6-year continual occupancy nested cohort using a logistic regression model as we were making a direct comparison between cases and controls post-intervention, rather than a change over time. Socio-demographic and environmental factors were included as co-variates to control for confounding in the general analysis. We also analyzed subgroups of the population defined by age, sex, ethnicity, area level deprivation, climate zone, and type of insulation installed to determine variations in outcome within these groups.

3 | RESULTS

The study cohort was made up of 1 004 795 people who had lived in one or more of 205 001 WUNZ houses, for all, or part of the six-year
study period. There were 157,338 people and 49,457 houses in the six-year continual occupancy nested cohort, making up 15.7% of the total study population and contributing approximately one third of total person years. A socio-demographic breakdown of the study cohort is given in Table 2.

The 6-year continual occupancy nested cohort had a different population structure to the total population, with fewer Māori (11.39% compared with 18.79%) and Pacific Peoples (5.48% compared with 7.44%), Table 2.

3.1 | Prescriptions dispensed by condition

At baseline and follow-up, the rate of prescriptions dispensed for both infectious disease and for chronic respiratory disease symptom prevention medication was higher in the intervention group compared with the control group. The rate of exacerbation sensitive medication prescriptions dispensed for chronic respiratory disease was greater in the intervention than the control group at baseline, but less at follow-up, Table 3.

3.2 | Influence of the intervention on cold-associated respiratory disease prescriptions

Overall, there was an increase in pharmaceutical prescriptions dispensed between baseline and follow-up for all categories of respiratory disease in both the intervention and control groups. However, there was a weak, but statistically significant, 2% relative reduction in medication prescribed for respiratory infection in the intervention group compared with the control group, with a relative rate ratio (RRR) of 0.98 (95% CI: 0.98–0.99) for the total population, and a RRR of 0.98 (95% CI: 0.97–0.99) for the six-year continual occupancy nested cohort, Table 4. There was no statistically significant relative difference between intervention and control groups in the ratio of symptom prevention medication prescriptions at follow-up compared with baseline, Table 4. There was also a statistically significant 3%–4% reduction in the relative rate of exacerbation sensitive medication for the intervention group: total population, RRR 0.96 (95% CI: 0.96–0.97); 6-year continual occupancy nested cohort, RRR 0.97 (95% CI: 0.96–0.98).

There was also a statistically significant reduction in the relative rate of exacerbation sensitive medication prescribed in most population subgroups. Greatest relative reductions were identified for Pacific Peoples RRR 0.90 (95% CI: 0.88–0.93) in the total population, RRR 0.86 (95% CI: 0.82–0.91) in the 6-year continual occupancy nested cohort; and “other” ethnicity RRR 0.92 (95% CI: 0.89–0.94) in the total population, 0.92 (95% CI: 0.88–0.96) in the 6-year continual occupancy nested cohort. Greater relative reductions were also noted where a low-emission, energy efficient heater was installed alongside insulation: RRR 0.93 (95% CI: 0.91–0.95) for the total population and RRR 0.93 (95% CI: 0.90–0.98) for the 6-year continual occupancy nested cohort. There was no statistically significant reduction in comparative rates of medication prescribed for Māori, or those living in the most deprived areas (deprivation quintile five).

3.3 | Chronic respiratory disease incidence

Chronic respiratory disease incidence was significantly lower in the intervention group at follow-up with an odds ratio (OR) of 0.90 (95% CI: 0.86–0.94) for measure two, exacerbation sensitive medication. The same trend was observed but softened when measure one, preventative medication, was considered. This trend remained evident when the population was disaggregated by demographic characteristics. The greatest differences were found, using measure two, for young people (<15 years), OR 0.85 (95% CI: 0.75–0.98); people of European ethnicity, OR 0.87 (95% CI: 0.82–0.92); people in deprivation quintile one (least deprived), OR 0.80 (95% CI: 0.70–0.90), four, OR 0.86 (95% CI: 0.77–0.95), and five most deprived OR 0.88 (95% CI: 0.80–0.97); and those who had underfloor insulation, OR 0.82 (95% CI: 0.72–0.94), and whole house insulation, OR 0.86 (95% CI: 0.80–0.91), Table 5.
TABLE 2 Demographic characteristics of the intervention and control groups

Characteristic	Total population		Six-year continual occupancy nested cohort					
			Intervention group					
			Number	Percent	Number	Percent	All	Percent
			Intervention group					
			Number	Percent	Number	Percent	All	Percent
			Control group					
			Number	Percent	Number	Percent	All	Percent
			All	Percent				
People		495864	508931	83482	73856			
Ethnicity								
Māori		85697	8017	9017	1080	1205	1139	
Pacific peoples		31024	3868	4749	643	548		
European		32131	62046	53054	713	7315		
Other		58012	8551	7154	969	998		
Sex								
Male		233801	36972	33462	4531			
Female		262063	46510	40394	5469			
Age at start of study								
0–4		66634	5308	1423	193			
11–14		66392	10201	9694	1313			
15–24		68947	4590	6350	86			
25–34		76106	5763	3771	511			
35–44		71114	11339	8493	115			
45–54		52237	12851	12333	167			
55–64		40911	14039	16829	2279			
65–74		31415	12820	7540	1021			
75–84		17756	5960	6335	858			
85+		4352	611	1088	147			
Houses		103087	26754	22703				
NZDep2013 quintile								
Quintile 1: (least deprived)		16129	4729	3976	1751			
Quintile 2:		19525	5274	4223	186			
Quintile 3:		21925	5699	4658	2052			
Quintile 4:		24302	6058	5208	2294			
Quintile 5: (most deprived)		21206	4994	4638	2043			
Climate zone								
CZ1: Far North, Auckland and Coromandel Peninsula	25486	28304	5639	5436	23.94	22.39		
CZ2: Rest of North Island (excluding Central Plateau)	51676	54895	13307	11862	52.25	50.89		
CZ3: South Island and Central Plateau	25925	18715	7808	5405	23.81	26.72		
Intervention								
Insulation and heater:		18932	4502	988	4.35			
Whole house insulation (ceiling and underfloor)	50588	57637	13069	12548	55.27	51.80		

(Continues)
Reductions in the use of exacerbation sensitive medication and hospitalizations, as shown in the current and a previous study, respectively, are more likely linked to the current indoor environment whilst reductions in the need for preventative medication also reflect prior exposure. This could explain why the effect of insulation on prescriptions dispensed for preventative medication was weaker than that found for exacerbation sensitive medication.

4 Discussion

There was a lower risk of incidence of chronic respiratory disease in the intervention group (when compared with the control group). The risk was reduced by 10% when the exacerbation sensitive medication was used (measure two) and 6% when preventative medication (measure one) was used. There was also a reduction in the intervention group, compared with the control group, in the rate of prescriptions for exacerbation sensitive medication dispensed following the intervention, with the effect size increasing when a low-emission, energy efficient heater was installed alongside insulation. No significant reduction in prescriptions for preventative medication was found, however, there was a small but statistically significant reduction in medicines dispensed for infectious respiratory disease in the intervention group, compared with the control group.

The prevention of chronic respiratory disease was something an earlier meta-analysis suggested was influenced by the length of prior exposure to cold and damp. This was supported in our study where the reduction in incidence risk (using the exacerbation sensitive medication measure) was 15% for children and decreased progressively with age, falling to 10% amongst older people. Results from prior studies have, however, been mixed. An analysis of housing improvements on a range of health outcomes in Glasgow, Scotland, identified improved management of symptoms but not prevention of, or recovery from, chronic illness.

Links between reduction in symptoms and improvements in self-reported health including reductions in wheeze and dry cough in children with asthma have also been reported in other studies. An economic evaluation of the first year of the WUNZ programme found a small, but highly statistically significant reduction in monthly pharmaceutical costs following the retrofitting of insulation.

The strongest relative reduction in rates of prescriptions dispensed following the intervention was for exacerbation sensitive medication. Results from an earlier analysis of hospitalizations in the WUNZ cohort identified reductions in relative rates of hospitalization following insulation being retrofitted, becoming stronger when more specific chronic respiratory conditions, such as COPD and asthma, were examined. Taken together, these findings support an assertion by the UK National Institute for Clinical Excellence (NICE) of home energy efficiency and heating improvements on asthma being a "sufficiently justified means of managing the condition."

4.1 Dampness and mold

Cold housing has been associated with dampness and mold and prior studies have found increased odds of new-onset wheeze amongst children living in houses with visible mold and mold odor. Dampness and mold may therefore have played a role in the observed associations between insulation and lower incidence of chronic respiratory disease and reduction in prescriptions for exacerbation sensitive medications dispensed amongst the intervention group. Indeed, a reduction of damp and mold following improvements in insulating and heating has been reported by residents in evaluations of interventions similar to WUNZ.

4.2 Socio-demographic differences

Reduction in incidence risk differed between subgroups depending on the outcome measure used. For example, the greatest reduction in incidence risk was found amongst adults when the prevention of symptoms medication measure was used, whilst young people (<15 years) demonstrated the greatest reduction in incidence risk when the exacerbation sensitive medications measure was used. There was also lower incidence risk observed for more marginalized groups—such as those in deprivation quintile four and five (most deprived)—when the exacerbation sensitive medications measure was used. These differences might have arisen from differences in prescribing patterns between high-income and low-income households. For example, where compliance in taking preventative medication regularly is assumed to be lower in low-income groups, there may be a tendency to only prescribe exacerbation sensitive medication.

Pacific Peoples benefited most from the intervention in terms of the management of chronic respiratory disease. This could have
been due to higher baseline prevalence of respiratory disease amongst Pacific Peoples in New Zealand as previous studies found that the greatest health benefits from an insulation intervention were observed in those with a pre-existing respiratory condition. However, despite Māori also having a higher prevalence of baseline respiratory disease, no reduced risks were observed in this group, which is of concern and requires further investigation. One reason why Māori may not have received the same benefits could be the structure of the WUNZ programme, which was directed at individual homeowners, whereas a community-based response might be more suited to the Māori collective custodianship model for land. An earlier observation showing significant improvements in self-reported health amongst Māori participating in a cluster randomized trial, involving a community-based rather than individual approach appears to support this.

The difference in incidence risk between socio-demographic groups may reflect the influence of other factors on disease onset in the non-European population, such as higher rates of household crowding or a greater level of prior exposure to cold, damp housing.

4.3 Differences between intervention types

A greater reduction in risk for chronic respiratory disease incidence was found where underfloor insulation was installed. This may be due to it acting as a barrier between the house and the sub-floor environment, thus preventing rising damp as well as improving the thermal envelope. The greater improvement in symptoms of chronic respiratory disease where a low-emission energy efficient heater was installed alongside insulation, was likely due to the heater increasing indoor temperature, whilst the insulation helped maintain heat within the house, something that has been shown in other studies that included an energy efficient heater as part of the intervention.

4.4 Limitations

The quasi-experimental design that we adopted has several limitations, including increased risk of bias due to non-randomization of the study population and an inability to match intervention and control houses. In addition to controlling for confounding factors, these risks were managed by using the difference-in-difference model.

We used a direct comparison between the intervention and control group to measure chronic respiratory disease incidence. In this case, unidentified differences between the two groups could have influenced results. However, this risk should have been reduced by sourcing the intervention and control populations from the same program and controlling for confounding factors.

Group size was reduced when the cohorts were disaggregated, for example, the large reduction in risk of chronic disease incidence

TABLE 3 Prescriptions dispensed by population, group, timeframe, and condition being treated. Rate per 100 person years, adjusted for: age, ethnicity, sex, NZDep2013 deprivation quintile, climate zone, and type of insulation installed.

Population	Group	Timeframe	Condition	Number	Adjusted rate
Total population	Intervention group	Baseline	Infectious respiratory disease medication	408,782	53.92
		Follow-up		467,940	58.00
	Control group	Baseline		389,355	56.60
		Follow-up		435,871	59.71
Six-year continual occupancy nested cohort	Intervention group	Baseline	Chronic respiratory disease: prevention medication	150,889	55.21
		Follow-up		156,361	59.00
	Control group	Baseline		121,917	53.37
		Follow-up		134,835	58.11
	Intervention group	Baseline	Chronic respiratory disease: exacerbation sensitive medication	130,401	37.65
		Follow-up		148,640	40.83
	Control group	Baseline		108,256	36.57
		Follow-up		123,530	58.11
	Intervention group	Baseline	Chronic respiratory disease: exacerbation sensitive medication	373,374	45.99
		Follow-up		378,606	47.53
	Control group	Baseline		346,047	45.41
		Follow-up		397,999	47.54

in deprivation quintile one (least deprived) using the exacerbation sensitive medication indicator may not be plausible and may instead have resulted from type 1 error inflation.

The use of pharmaceutical prescriptions did not allow for differentiation between some diseases. For example, some exacerbation-sensitive medications could have been used to address allergies as

Population groups	Total population	Six-year continual occupancy nested cohort		
Measures	**Rate ratios (follow up: baseline)**	**Relative rate ratio: 95% CI in brackets**	**Rate ratios (follow up: baseline)**	**Relative rate ratio: 95% CI in brackets**
Disease types and sub-groups				
Intervention group	0.98 (0.98–0.99)	1.97 (0.97–0.99)		
Control group	1.07 (1.08–0.99)	1.08 (1.07–0.99)		
Infectious disease	1.07	1.08	0.98 (0.98–0.99)	1.07 (1.07–0.99)
Prevention of symptoms	1.04	1.04	1.00 (0.99–1.00)	1.09 (1.09–1.02)
Exacerbation sensitive medication	1.01	1.05	0.96 (0.96–0.97)	1.11 (1.15–0.97)
Age category				
Young person: ≤15 years	1.02	1.04	0.98 (0.96–1.00)	0.96 (0.96–0.99)
Adult: 15–64 years	0.97	1.02	0.95 (0.94–0.96)	1.00 (1.07–0.96)
Old person: ≥65 years	1.04	1.08	0.97 (0.96–0.98)	1.23 (1.28–0.96)
Sex				
Female	1.00	1.04	0.97 (0.96–0.98)	1.11 (1.10–0.98)
Male	1.01	1.06	0.96 (0.95–0.97)	1.11 (1.13–0.95)
Ethnicity				
Māori	1.04	1.04	1.00 (0.99–1.02)	1.11 (1.12–0.98)
Pacific peoples	0.98	1.08	0.90 (0.88–0.93)	0.98 (1.07–0.91)
European	1.00	1.04	0.96 (0.96–0.97)	1.12 (1.15–0.97)
Other	0.99	1.08	0.92 (0.89–0.94)	1.05 (1.15–0.92)
NZDep2013 quintile				
Quintile 1 (least deprived)	0.97	1.03	0.94 (0.93–0.95)	1.05 (1.14–0.94)
Quintile 2	0.97	1.03	0.94 (0.93–0.95)	1.07 (1.08–0.99)
Quintile 3	0.98	1.07	0.92 (0.91–0.93)	1.11 (1.18–0.94)
Quintile 4	1.03	1.05	0.98 (0.97–0.99)	1.13 (1.17–0.97)
Quintile 5 (most deprived)	1.05	1.13	1.00 (0.99–1.01)	1.14 (1.15–0.98)
Climate zone				
CZ1 Far North, Auckland and Coromandel Peninsula	1.01	1.04	0.97 (0.96–0.98)	1.07 (1.11–0.97)
CZ2 Rest of North Island (excluding Central Plateau)	1.00	1.04	0.96 (0.95–0.97)	1.11 (1.14–0.97)
CZ3 South Island and Central Plateau	1.02	1.07	0.95 (0.94–0.97)	1.13 (1.21–0.94)
Intervention				
Insulation and heater:	1.02	1.10	0.93 (0.91–0.95)	1.13 (1.21–0.93)
Whole house insulation (ceiling and underfloor)	1.01	1.06	0.95 (0.94–0.96)	1.10 (1.14–0.96)
Ceiling insulation	1.01	1.04	0.97 (0.95–0.98)	1.01 (1.14–0.97)
Underfloor insulation	1.05	1.03	1.01 (0.96–1.07)	1.21 (1.31–0.92)
Insulation top-up	1.00	1.00	1.00 (0.98–1.01)	1.13 (1.15–0.98)

Note: Bold indicates $p \leq 0.05$.
well as asthma. Medications were selected as being primarily used in the treatment of respiratory disease in the opinion of the four health and data professionals consulted. Whilst this risked some prescriptions being misclassified, in principle any such misclassification would have been randomly distributed between the intervention and control groups.

The measures used to indicate disease incidence were not as reliable as a formal diagnosis. They assumed that the prevalence of respiratory disease within the study population at baseline was the same as the prevalence within the New Zealand population. However, the prevalence at baseline using these measures was similar across the study population, suggesting that any difference between the study population and the New Zealand population would have been consistent between the intervention and control groups.

TABLE 5	Odds ratio of chronic respiratory disease incidence post-intervention by population subgroup	
Incidence measure	1 Prevention of symptoms medication indicator (≥1 prescription)	2 Exacerbation sensitive medication indicator (≥3 prescriptions)
Population sub-groups	Odds ratio: 95% CI in brackets	Odds ratio: 95% CI in brackets
All (unadjusted)	0.94 (0.90–0.99)	0.90 (0.86–0.94)
All (adjusted)	0.94 (0.90–0.99)	0.90 (0.86–0.94)
Age category		
Young person: <15 years	0.99 (0.87–1.13)	0.85 (0.75–0.98)
Adult: 15–64 years	0.91 (0.85–0.98)	0.87 (0.81–0.93)
Old person: ≥65 years	0.92 (0.85–1.01)	0.90 (0.83–0.97)
Sex		
Female	0.90 (0.84–0.96)	0.88 (0.83–0.94)
Male	0.97 (0.90–1.05)	0.87 (0.81–0.94)
Ethnicity		
Māori	0.93 (0.81–1.07)	0.92 (0.82–1.06)
Pacific peoples		0.91 (0.74–1.11)
European	0.91 (0.86–0.97)	0.87 (0.82–0.92)
Other	0.95 (0.81–1.12)	0.88 (0.74–1.04)
NZDep2013 quintile		
Quintile 1: (least deprived)	0.85 (0.75–0.96)	0.80 (0.70–0.90)
Quintile 2:	1.06 (0.93–1.19)	0.89 (0.79–1.00)
Quintile 3:	0.91 (0.81–1.01)	0.96 (0.86–1.07)
Quintile 4:	0.93 (0.84–1.04)	0.86 (0.77–0.95)
Quintile 5: (most deprived)	0.91 (0.81–1.01)	0.88 (0.80–0.97)
Climate zone		
CZ1: Far North, Auckland and Coromandel Peninsula	0.96 (0.88–1.06)	0.86 (0.79–0.95)
CZ2: Rest of North Island (excluding Central Plateau)	0.87 (0.79–0.97)	0.87 (0.79–0.96)
CZ3: South Island and Central Plateau	0.94 (0.87–1.01)	0.89 (0.83–0.95)
Intervention		
Insulation and heating	1.07 (0.89–1.30)	0.97 (0.81–1.15)
Whole house insulation (ceiling and underfloor)	0.90 (0.84–0.96)	0.86 (0.80–0.91)
Ceiling insulation	0.97 (0.87–1.09)	0.93 (0.83–1.03)
Underfloor insulation	0.89 (0.78–1.02)	0.82 (0.72–0.94)
Ceiling insulation top-up		s

Note: Bold indicates statistical significance $p \leq 0.05$. “s” indicates outcome suppressed due to insufficient power.

5 | CONCLUSION

There was a statistically significant lower relative risk of chronic respiratory disease incidence for the intervention group. The relative rate ratio for exacerbation sensitive medication prescribed (for relief of chronic respiratory disease symptoms) was also lower in the intervention group. These findings add to an emerging body of evidence suggesting that new onset chronic respiratory disease, as well as exacerbation of pre-existing respiratory disease, could be, at least in part, prevented by retrofitting home insulation.

AUTHOR CONTRIBUTION

Dr Caroline Fyfe conducted the data analysis and wrote the original draft. Dr Lucy Telfar Barnard advised on the data analysis and edited
the paper. Professor Jeroen Douwes advised on the data analysis and edited the paper. Professor Philippa Howden-Chapman advised on data analysis and edited the paper. Professor Julian Crane advised on pharmaceuticals used to treat respiratory disease and edited the paper.

ACKNOWLEDGMENTS
The authors would like to thank the New Zealand Energy Efficiency and Conservation Authority (EECA) for supplying the Warm-Up New Zealand (WUNZ) insulation subsidy data on which this study is based. We would also like to thank the New Zealand Ministry of Health for supply the Public Health Organization and Pharmaceutical records used for data linkage. Open access publishing facilitated by University of Otago, as part of the Wiley - University of Otago agreement via the Council of Australian University Librarians.

CONFLICT OF INTEREST
No conflict of interest declared.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES
1. Clearing the air: asthma and indoor air exposures; Institute of Medicine; 2004.
2. WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization Regional Office for Europe; 2009.
3. Excess winter death and illness and health risks associated with cold homes. NICE Guidance. London; National Institute of Healthcare Excellence; 2015.
4. Maidment CD, Jones CR, Webb TL, Hatherway EA, Gilbertson JM. The impact of household energy efficiency measures on health: a meta analysis. Energy Policy. 2014;65:583-593.
5. Curl A, Kears A. Can housing improvements cur or prevent the onset of health conditions over time in deprived areas? BMC Public Health. 2015;15:1191-1205.
6. Fisk WJ, Lei-Gomez Q, Mendell MJ. Meta-analysis of the associations of respiratory health effects with dampness and mould in homes. Indoor Air. 2007;17(4):284-296.
7. Shorter C, Crane J, Pierce N, et al. Indoor visible mould and mould odour are associated with new onset wheeze in a dose dependent manner. Indoor Air. 2018;28:6-15.
8. Hales S, Lewis S, Slater T, Crane J, Pearce N. Prevalence of adult asthma symptoms in relation to climate in new Zealand. Environ Health Perspect. 1998;106(9):607-610.
9. Pierce N, Arnold R, Keall M, Howden-Chapman P, Crane J, Cunningham M. Modelling the effects of low temperatures on lung function in children with asthma. J Epidemiol Community Health. 2013;67:918-925. doi:10.1136/jech-2013-202632
10. Deal EC, McDadden Jnr ER, Ingram RH, Breslin FJ, Jaeger JJ. Airway responsiveness to cold air and hypernea in normal subjects and those with hayfever and asthma. Am Rev Respir Dis. 1980;121(4):621-628.
11. Weiland SK, Husing A, Strachan DP, Rzehak P, Pearce N. Climate and the prevalence of symptoms of asthma, allergic rhinitis and atopic eczema in children. Occup Environ Med. 2004;61(7):609-615.
12. WHO. Housing and health guidelines. World Health Organization; 2018.
13. Telfar Barnard L. Home Truths and Cool Admissions: New Zealand Housing Attributes and Excess Winter Hospitalisation. [Doctoral Dissertation]. University of Otago; 2010. http://hdl.handle.net/10523/591
14. Amiratano, L, Kirk N, Page I. Market Segmentation of New Zealand Housing Stock. Beacon Pathway Report No PR106; BRANZ; 2006.
15. Howden-Chapman P, Matheson A, Crane J, et al. Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ. 2007;334:460-469.
16. Preval N, Ombler J, Grimes A, Keall M, Howden-Chapman P. Government failure and success: a trans-Tasman comparison of two insulation subsidy programmes. Agenda. 2019;26(1):51-65. doi:10.22459/AG.26.01.2019/03
17. Fyfe C, Telfar Barnard L, Howden-Chapman P, Douwes J. Association between home insulation and hospital admission rates: retrospective cohort study using linked data from a national intervention programme. BMJ. 2020;371:m4571.
18. Telfar Barnard L, Preval N, Howden-Chapman P. The impact of retrofitting insulation and new heaters on health service utilisation and costs, pharmaceutical costs and mortality. Evaluation of Warm Up New Zealand: Heat Smart; He Kainga Oranga, University of Otago Wellington; 2011.
19. White H, Sabarwal S. Quasi-experimental design and methods. Methodological briefs: impact and evaluation 8; UNICEF Office of Research; 2014.
20. Handley MA, Lyles CR, McCulloch C, Cattamanchi A. Selecting and improving quasi-experimental designs in effectiveness and implementation research. Ann Rev Public Health. 2018;39:5-25. doi:10.1146/annurev-publhealth-040617-014128
21. Donovan G, Gatioliis D, Longley I, Douwes J. Vegetation diversity protects against childhood asthma: results from a large New Zealand birth cohort. Nat Plants. 2018;4(6):359-364. doi:10.1038/s41477-018-0151-8
22. Heyman B, Harrington BE, Merleau-Ponty N, Stokton H, Ritchie N, Allan TF. Keeping warm and staying well. Does home energy efficiency mediate the relationship between socio-economic status and risk of poorer health? Housing Studies. 2005;20(4):649-664.
23. Grey CN, Schmieder-Gaite T, Jiang S, Nascimento C, Poortinga W. Cold homes, fuel poverty and energy efficient homes: a longitudinal focus group approach. Indoor Built Environ. 2017;26(7):902-913.
24. Howden-Chapman P, Crane J, Chapman R, Fougere G. Improving health and energy efficiency through community based housing interventions. Int Public Health. 2011;56(6):583-588. doi:10.1007/s00038-011-0287-z
25. Pollard, A. Could damp homes be too cold/ underheated? BRANZ study report SR389; BRANZ Ltd; 2018.
26. Hamilton LG, O’Sullivan A, Huebner G, et al. Old and cold? Findings on the determinants of indoor temperatures in English dwellings during cold conditions. Energy Buildings. 2017;141:142-157.
27. Wang J, Pindus M, Janson C, et al. Dampness, mould, onset and remission of adult respiratory symptoms, asthma and rhinitis. Eur Respir J. 2019;53:1801921. doi:10.1183/13993003.01921-2018
28. Hagerhed-Engeland L, Sigsgaard T, Samuelson I, et al. Low home ventilation rate in combination with mouldy odour from building structure increases risk of allergic symptoms in children. Indoor Air. 2005;19(3):184-192.
29. Fyfe C, Grimes A, Minehan S, Taptiklis P; Warmer Kiwis Study: Interim Report. An impact evaluation of the Warmer Kiwi Homes programme; Motu Research; 2022.
30. Rau H, Moran P, Manton R, Groggins J. Changing energy cultures? Household energy use before and after a building energy efficiency retrofit. SCS. 2020;54:101983. doi:10.1016/j.scs.2019.101983
31. Pearce N, Foliaki S, Sporle A, Cunningham C. Genetics, race ethnicity and health. *BMJ*. 2004;328:1070-1072.
32. Telfar Barnard L, Zhang J; The impact of respiratory disease in New Zealand 2014 update; The Asthma Foundation; 2019.
33. Paul J, McArthur J, King J, Harris M, Fingenshow S. Transformative housing policy in Aotearoa New Zealand: A briefing note on addressing the housing crisis. 2020. Accessed April 21, 2020. https://www.policycommons.ac.nz/2020/10/06 transformative_housing_policy_for_aotearoa_new_zealand
34. Stats NZ. Housing in Aotearoa; Statistics New Zealand; 2019.
35. Oreszczyn T, Hong S, Ridley I, Wilkinson P. Determinants of winter indoor temperatures in low income households in England. *Energy Buildings*. 2006;38:245-252.
36. Howden-Chapman P, Pierse N, Nicholls S, et al. Effects of improved home heating on asthma in community dwelling children: randomised controlled trial. *BMJ*. 2008;337:a1411. doi:10.1136/bmj.a1411
37. Boreland L, Tseng Y-P, Wilkins R. *Experimental and quasi-experimental methods of microeconomic program and policy evaluation*. University of Melbourne; 2005.
38. Ministry of Health. A Portrait of Health: Key Results of the 2006/07 New Zealand Health Survey; Ministry of Health; 2008.
39. Shirtcliffe P, Weatherall M, Marsh S, et al. COPD prevalence in a random population survey: a matter of definition. *ERJ*. 2007;30:232-239.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Fyfe C, Barnard LT, Douwes J, Howden-Chapman P, Crane J. Retrofitting home insulation reduces incidence and severity of chronic respiratory disease. *Indoor Air*. 2022;32:e13101. doi: [10.1111/ina.13101](https://doi.org/10.1111/ina.13101)