The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

Ariel G. Sánchez,1⋆ Jan Niklas Grieb2,1, Salvador Salazar-Albornoz2,1, Shadab Alam3,4, Florian Beutler5,6, Ashley J. Ross7,5, Joel R. Brownstein8, Chia-Hsun Chuang9,10, Antonio J. Cuesta11, Daniel J. Eisenstein12, Francisco-Shu Kitaura10,6,13, Will J. Percival5, Francisco Prada8,14,15, Sergio Rodríguez-Torres8,14,16, Hee-Jong Seo17, Jeremy Tinker18, Rita Tojeiro19, Mariana Vargas-Magaña20,3,4, Jose A. Vazquez21 & Gong-Bo Zhao22,5

1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany
2 Universitäts-Sternwarte München, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, 81679 Munich, Germany
3 Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15217, USA
4 McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15217, USA
5 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
6 Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, UK
7 Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
8 Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA
9 Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
10 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
11 Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona, Spain
12 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
13 Departments of Physics and Astronomy, University of California, Berkeley, CA 94720, USA
14 Campus of International Excellence UAM+CSIC, Cantoblanco, E-28049 Madrid, Spain
15 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, E-18080 Granada, Spain
16 Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
17 Department of Physics and Astronomy, Ohio University, 251B Clippinger Labs, Athens, OH 45701, USA
18 Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA
19 School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
20 Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, México 07730, Mexico
21 Brookhaven National Laboratory, Bldg 510, Upton, New York 11973, USA
22 National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012, P.R.China

Submitted to MNRAS

ABSTRACT

The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations (BAO) and redshift-space distortions (RSD), based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The methodology presented here is used in Alam et al. (2016) to produce the final cosmological constraints from BOSS.

Key words: cosmological parameters, large scale structure of the universe

© 2016 The Authors
* E-mail: arielsan@mpe.mpg.de
1 INTRODUCTION

Over the past decades the size and quality of galaxy redshift surveys has increased dramatically. Thanks to these data sets, the information from the large-scale structure (LSS) of the Universe has played a central role in establishing the current cosmological paradigm, the ΛCDM model (e.g. Tegmark et al. 2004; Eisenstein et al. 2005; Cole et al. 2005; Anderson et al. 2012, 2014a,b).

Several methods can be used to extract the information encoded in the large-scale distribution of galaxies. The power spectrum, $P(k)$, and its Fourier transform, the two-point correlation function $\xi(s)$, have been the preferred tools for LSS analyses. The anisotropies in these measurements caused by redshift-space distortions (RSD) and the Alcock–Paczynski effect (Alcock & Paczynski 1979) can be studied by means of their Legendre multipoles (e.g. Padmanabhan & White 2008) or using the clustering wedges statistic (Kazin et al. 2012). Thanks to the combined information of baryon acoustic oscillations (BAO) and RSD, anisotropic clustering measurements can simultaneously constrain the expansion history of the Universe and the growth of density fluctuations, thus offering one of the most powerful cosmological probes.

The potential of LSS observations as cosmological probes has led to the construction of increasingly larger galaxy catalogues. Examples of these new surveys include the completed Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013), which is part of the Sloan Digital Sky Survey III (SDSS-III; Eisenstein et al. 2011), the on-going SDSS-IV extended Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson et al. 2016) and future surveys such as the Hobby Eberly Telescope Dark Energy Experiment (HETDEX; Hill et al. 2008), the Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013) and the ESA space mission Euclid (Laureijs et al. 2011).

As the construction of galaxy surveys requires a considerable amount of resources from the community, substantial efforts are put into maximizing the information extracted from the obtained data sets. This problem has often been posed as that of determining which statistic is the best to extract cosmological information (e.g. power spectrum vs. correlation function), often based on a simple metric or figure of merit. However, although the results obtained by applying different statistics to a given data set are highly correlated, as they are based on estimators and each measurement is analysed over a limited range of scales, they do not contain exactly the same information or are affected by noise in the same way. This means that, if the covariance between the different measurements is correctly taken into account, additional information could be obtained by combining the results inferred from different methods.

In most cases, the cosmological information contained in the clustering measurements can be condensed into a small number of parameters whose posterior distribution is well described by a multivariate Gaussian. In this case, the obtained constraints can be represented by the mean values of these parameters and their respective covariance matrices. The analyses of the final BOSS galaxy samples of our companion papers are examples of this situation (Beutler et al. 2016a,b; Grieb et al. 2016; Ross et al. 2016; Sánchez et al. 2016; Satpathy et al. 2016). The BAO and RSD information obtained in these analyses can be expressed as constraints on the ratio of the comoving angular diameter distance to the sound horizon at the drag redshift, $D_A(z)/r_d$, the product of the Hubble parameter and the sound horizon, $H(z)r_d$, and the growth-rate of cosmic structures, characterized by the combination $f\sigma_8(z)$, where f is the logarithmic growth rate and $\sigma_8(z)$ represents the linear rms mass fluctuation in spheres of radius $8\, h^{-1}\text{Mpc}$.

Here we present a general methodology to combine several Gaussian posterior distributions into a single set of consensus constraints representing their joint information, taking into account the full covariance between the different estimates. We illustrate this technique by applying it to the results inferred from the application of the same clustering analyses performed on the final BOSS galaxy samples to 996 MULTIDARK-PATCHY (MD-PATCHY) mock galaxy catalogues reproducing the properties of the survey (Kitaura et al. 2016). The obtained consensus distributions represent a gain in constraining power with respect to the results of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys. The methodology presented here is used in our companion paper Alam et al. (2016) to combine the cosmological information from the different analyses methods applied to the final BOSS galaxy samples (Beutler et al. 2016a,b; Grieb et al. 2016; Ross et al. 2016; Sánchez et al. 2016; Satpathy et al. 2016) into a final set of consensus constraints.

The structure of the paper is as follows, in Section 2 we present the general scheme for the combination of different Gaussian posterior distributions into a set of consensus constraints that encode the full information provided by these estimates. We consider the cases in which the posterior distributions cover the same parameter spaces and when they differ. In Section 3 we illustrate this procedure by applying it to the results obtained from different BAO and RSD measurements from a set of BOSS mock catalogues. Finally, Section 4 contains our main conclusions.

2 THE COMBINATION OF GAUSSIAN POSTERIOR DISTRIBUTIONS

In this section we describe the general formalism to combine the information from several posterior distributions into a set of consensus constraints that fully account for their covariance. We begin with the case in which all distributions contain the same parameters and later extend these results to the more general case in which the overlap can be partial.

2.1 The combination of posterior distributions on the same parameter space

Let us assume that m different statistical analyses have been performed on a given data set, each of them producing an estimate of the same set of p parameters. If the posterior distributions of these parameters are well described by a Gaussian, the results of any given method i can be represented by an array of p measurements D_i and their corresponding $p \times p$ covariance matrix C_i. Considering all m methods, the full set of measurements can be written in a single array of dimension $m \cdot p$ as

$$D_{tot} = (D_1, \ldots, D_m),$$

(1)
Combining Gaussian posterior distributions

with a total covariance matrix

\[
C_{\text{tot}} = \begin{pmatrix}
C_{11} & \cdots & C_{1m} \\
\vdots & \ddots & \vdots \\
C_{m1} & \cdots & C_{mm}
\end{pmatrix},
\]

where each block \(C_i\) represents the cross-covariance matrix between the results of methods \(i\) and \(j\).

A given model will predict values for these parameters, which we will represent by the array \(T\). Defining \(T_{\text{tot}} = (T, \cdots, T)\), that is, \(T\) repeated \(m\) times, and a total precision matrix as

\[
\Psi_{\text{tot}} \equiv C_{\text{tot}}^{-1}
\]

we can compute the \(\chi^2\) of a model taking into account the combined information of all measurements as

\[
\chi^2 = (D_{\text{tot}} - T_{\text{tot}})^T \Psi_{\text{tot}} (D_{\text{tot}} - T_{\text{tot}}).
\]

Our goal is to compress the combined information of all the measurements into a single set of \(p\) consensus values, \(D_c\), with its corresponding \(p \times p\) covariance matrix, \(C_c\), such that

\[
\chi^2_c = (D_c - T)^T \Psi_c (D_c - T),
\]

where

\[
\Psi_c = C_c^{-1},
\]

is equal to the \(\chi^2\) value of equation (5) up to an additive constant, which would only correspond to a re-normalization of the likelihood function. In order to do this we first write the full precision matrix, \(\Psi_{\text{tot}}\), in blocks of size \(p \times p\) as

\[
\Psi_{\text{tot}} = \begin{pmatrix}
\Psi_{11} & \cdots & \Psi_{1m} \\
\vdots & \ddots & \vdots \\
\Psi_{m1} & \cdots & \Psi_{mm}
\end{pmatrix}.
\]

Note that, in general, \(\Psi_{ij}\) is not the inverse of the corresponding block \(C_{ij}\) in \(C_{\text{tot}}\).

The solution for \(D_c\) and \(C_c\) can be found easily by expanding the expression for the total \(\chi^2\) of equation (5) as

\[
\chi^2 = D_{\text{tot}}^T \Psi_{\text{tot}} D_{\text{tot}} - 2 T_{\text{tot}}^T \Psi_{\text{tot}} D_{\text{tot}} + T_{\text{tot}}^T \Psi_{\text{tot}} T_{\text{tot}}.
\]

Equivalently, for the consensus values we have

\[
\chi^2_c = D_c^T \Psi_c D_c - 2 T^T \Psi_c D_c + T^T \Psi_c T.
\]

Equating the last terms of equations (9) and (10), we find a general expression for \(C_c\) as

\[
C_c \equiv \Psi_c^{-1} = \left(\sum_{i=1}^m \sum_{j=1}^m \Psi_{ij} \right)^{-1},
\]

while equating the second terms gives the solution for \(D_c\) as

\[
D_c = \Psi_c^{-1} \sum_{i=1}^m \left(\sum_{j=1}^m \Psi_{ji} \right) D_i.
\]

It is easy to see that in the case in which the different estimates are independent, these expressions reduce to the known formulae

\[
\Psi_c = \sum_{i=1}^m \Psi_{ii},
\]

and

\[
D_c = \Psi_c^{-1} \sum_{i=1}^m \Psi_{ii} D_i,
\]

where \(\Psi_{ii}\) corresponds to the precision matrix of measurement \(i\).

Another interesting particular case is when the goal is to obtain the consensus value of a single parameter (i.e. \(p = 1\)) given a set of \(m\) measurements \(D_i\). In this case, equations (11) and (12) show that the consensus mean and dispersion for this parameter will be given by

\[
D_c = \sigma_c^2 \sum_{i=1}^m \sum_{j=1}^m \psi_{ij} D_i,
\]

and

\[
\sigma_c^2 = \left(\sum_{i=1}^m \sum_{j=1}^m \psi_{ij} \right)^{-1},
\]

which correspond to the result found by Winkler (1981).

2.2 The combination of posterior distributions with different parameters

In certain cases, it might be necessary to combine two or more posterior distributions with different parameters. This situation is encountered, for example, when combining cosmological distance measurements obtained from BAO-only analyses with the information obtained from full-shape fits to anisotropic clustering measurements, which also constrain the growth-rate parameter combination \(f\sigma_8(z)\).

The recipe described in the previous section can also be applied in this case. As an example, let us consider the case in which the first data set gives constraints on the first \(p - 1\) parameters only, with an associated \((p - 1) \times (p - 1)\) covariance matrix \(C_{11}\). These results can be considered as including a constraint on the remaining parameter, but with an infinite uncertainty, that is

\[
C_{11} = \begin{pmatrix}
\tilde{C}_{11} & 0 \\
0 & \infty
\end{pmatrix}.
\]

In the remaining blocks of the total covariance matrix \(C_{\text{tot}}\) the rows and columns corresponding to the undetermined parameter will be zero. This structure will be inherited by the total precision matrix, where also the diagonal entry corresponding to this parameter will cancel. It is then possible to apply the solution of equations (11) and (12) to find the final consensus values that combine all measurements.

In a more general situation, given a set of measurements of different parameter spaces, it is possible to apply the general recipe described here to obtain consensus values on the parameter space defined by the union of those of the individual measurements.
3 APPLICATION TO BAO AND RSD MEASUREMENTS FROM BOSS

As an illustration of the procedure described in the previous section we have applied the procedure described in the previous section to assess the combination of the information obtained from a set of cosmological measurements made on mock catalogues designed to mimic the BOSS DR12 sample. The MD-Patchy mock galaxy catalogues (Kitaura et al. 2016), of which we use 996, are based on a cosmological model corresponding to the best fitting CDM cosmology to the Planck 2013 CMB measurements (Planck Collaboration XVI 2013). We followed Alam et al. (2016) and divided each mock catalogue into three overlapping redshift bins of roughly equal volume, defined by $0.2 < z < 0.5$, $0.4 < z < 0.6$ and $0.5 < z < 0.75$. We focus first on the combination of the results of the BAO-only and full-shape fits separately and then combine these constraints into a final set of consensus values.

3.1 Post-reconstruction BAO-only fits

For each MD-PATCHY mock catalogue we applied the methodologies of Ross et al. (2016) and Beutler et al. (2016a) to perform BAO-only fits to the Legendre multipoles of order $\ell = 0, 2$ of the two-point functions in configuration and Fourier space obtained in each of our three redshift bins after the application of the reconstruction technique (Eisenstein et al. 2007; Padmanabhan et al. 2012) as described in Cuesta et al. (2016).

The cosmological information encoded in the BAO signal can be expressed in terms of the geometric parameters $D_M(z)/r_d$ and $H(z) \times r_d$. Figure 1 shows the mean two-dimensional constraints on these parameters for each redshift bin, rescaled by the sound horizon at the drag redshift for our fiducial cosmology, $r_d = 147.78$ Mpc, to express them in units of Mpc and km s$^{-1}$ Mpc$^{-1}$. The results inferred from the two methods are completely consistent and in excellent agreement with the true underlying values of these parameters, which are shown by the dotted lines. This indicates that both methods are able to extract essentially the same information from the clustering measurements. However, the results obtained from each set of measurements on individual mock catalogues are affected by noise in different ways. This can be seen in Figure 2, which shows scatter plots of the two sets of constraints obtained from each mock catalogue for our intermediate redshift bin. Although they are highly correlated, the correlation coefficients between the results derived from the two methods are not exactly one, which means that additional information can be obtained by combining them.

The results obtained from the two methods on each individual mock catalogue can be used to construct the total covariance matrix C_{tot}. As an example, Figure 3 shows the normalized correlation matrix corresponding to the results of the intermediate redshift bin. The dashed lines divide the matrix into the blocks associated with C_{ij}. Due to the high correlation between the results of the power spectrum and correlation function fits, the structure of the off-diagonal block C_{12} is very similar to that of the auto-covariances. Inverting the matrix C_{tot} to obtain the total precision matrix Ψ_{tot} and using equations (11) and (12), the results of both methods can be combined into sets of consensus constraints for each redshift bin, which are shown by the black solid lines in Figure 1. As described in Section 2, these constraints contain the joint information of the two sets of results.

Anderson et al. (2012, 2014a, b) derived consensus anisotropic BAO constraints from the combination of the results inferred from the analysis of the Legendre multipoles of the correlation function and clustering wedges statistic (Kazin, Sánchez & Blanton 2012). These constraints were computed by averaging the logarithm of the posterior distributions obtained from each method. The dashed lines in Figure 1 show the result of applying this procedure to the constraints inferred from the Fourier and configuration-space fits to our mock catalogues. As the original distributions are similar, their average is also in agreement with the full consensus constraints, but results in a slightly larger al-
Combining Gaussian posterior distributions

3.2 Pre-reconstruction full-shape fits

In this Section we focus on the combination of the results inferred from full-shape fits (to which we refer as BAO+RSD analyses) to various pre-reconstruction anisotropic clustering measurements. We consider the analysis methods applied to the final BOSS data in our companion papers (Beutler et al. 2016b; Grieb et al. 2016; Sánchez et al. 2016; Saitpathy et al. 2016), to constrain the same geometric parameters as the BAO-only studies, \(D_M(z)/r_d \) and \(H(z) \times r_d \), and the growth rate of cosmic structure, characterized by the combination \(f \sigma_8(z) \), where

\[
f = \frac{d \ln D}{d \ln a}
\]

is the logarithmic derivative of the growth factor. Saitpathy et al. (2016) use a model based on convolution Lagrangian perturbation theory (CLPT; Carlson et al. 2013; Wang et al. 2014) and the Gaussian streaming model (Scoccimarro 2004; Reid & White 2011) to fit the full shape of the monopole and quadrupole of the two-point correlation function. Beutler et al. (2016b) apply a model based on Taruya et al. (2010) to the power spectrum multipoles \(P_\ell(k) \) for \(\ell = 0, 2, 4 \) (Grieb et al. 2016) and Sánchez et al. (2016) use a new model of the non-linear evolution of density fluctuations (gRPT; Crocce, Blas & Scoccimarro in prep.) and RSD to extract cosmological information from the full shape of three clustering wedges measured in Fourier and configuration space, \(P_{3w}(k) \) and \(\xi_{3w}(s) \), respectively. We performed the same analyses to each of our mock catalogues in the same way as they were applied to the real BOSS data.

Figure 4 shows the mean 68% and 95% C.L. constraints on the result inferred from each individual mock catalogue for our intermediate redshift bin. The filled contours correspond to the results obtained from the correlation function multipoles \(\xi_{0,2}(s) \) (magenta), the power spectrum multipoles \(P_{0,2,4}(k) \) (blue), the correlation function wedges \(\xi_{3w}(s) \) (orange) and the power spectrum wedges \(P_{3w}(k) \) (green). The results obtained from these measurements are completely consistent and in good agreement with the correct values for the cosmology of the mock catalogues, shown by the dotted lines. However, the different measurements and range of scales included in each analysis, as well as the models applied to these data, lead to results with larger differences than in the BAO-only case.

We used the methodology described in Section 2 to obtain...
the structure of the correlation matrix, which is more complicated than for the BAO-only case.

We used equations (11) and (12) to derive consensus constraints for each mock catalogue. The back solid contours in Figure 4 correspond to the mean consensus constraints. As the consensus results combine the information of all four measurements, they provide tighter constraints than each of them individually. This highlights the gain obtained from the combination of the methods, with respect to the individual analyses.

The grey dashed lines in the same figure correspond to the results obtained by averaging the logarithm of the posterior distributions recovered from the different methods. The difference between these constraints and the consensus values can be quantified by extending the definition of the FoM from equation (18) to the three-dimensional covariance matrices of the consensus and average constraints. In this case the FoM values of the consensus constraints are larger than those of the average profile by a factor \(\sim 2.5 \) in all redshift bins. This difference clearly shows that the average profile does not reproduce the full information of the different estimates.

3.3 Final consensus constraints

In this section we focus on the combination of the consensus BAO-only constraints derived in Section 3.1, which are only sensitive to the geometric quantities \(D_M(z)/r_d \) and \(H(z) \times r_d \), with those of the full-shape BAO+RSD measurements derived in Section 3.2, which also include \(f_{\sigma_8}(z) \). As these posterior distributions contain different parameters, we proceed as described in Section 2.2 and interpret the BAO-only results as providing an estimate of \(f_{\sigma_8}(z) \) with infinite uncertainty. The blue and green contours of Figure 6 show the consensus constraints on our intermediate redshift bin for the BAO-only and BAO+RSD cases, respectively. As can be seen in the left panel, the constraints in the \(D_M(z)/r_d - H(z) \times r_d \) plane follow different correla-
Figure 6. The mean 68% and 95% two-dimensional consensus constraints on the parameters $D_{\text{M}}(z)/(r_{\text{fid}}/r_d)$, $H(z)/(r_{\text{fid}}/r_d)$ and $f_{\sigma_8}(z)$ inferred from our mock BOSS catalogues for $0.4 < z < 0.6$. The blue and green contours correspond to the combination of the BAO-only and full-shape BAO+RSD fits, respectively. The dotted lines indicate the correct values of these parameters. The filled contours correspond to the combination of these results into a final set of consensus constraints, containing the joint information of the two sets of measurements. The dashed contours in the left panel correspond to the result obtained by averaging the logarithms of the two posterior distributions, which suggests that their combination could lead to a significant improvement of the constraints.

We used the BAO-only and BAO+RSD consensus values inferred from each mock catalogue in Sections 3.1 and 3.2 to obtain the covariance matrix \mathbf{C}_{tot} associated with these constraints. Figure 7 shows the associated correlation matrix, where the diagonal entry corresponding to the BAO-only estimate of $f_{\sigma_8}(z)$ is undetermined (shown in grey) and its corresponding row and column are set to zero. This structure is repeated in the total precision matrix Ψ_{tot}, but with the corresponding diagonal entry also set to zero. The application of equations (11) and (12) leads to a final set of consensus constraints, encoding the full information of the BAO-only and BAO+RSD analyses. The results corresponding to the intermediate redshift bin are shown by the filled contours in Figure 7, where the reduction in the allowed region of the parameter space with respect to the BAO and RSD results is clear.

Figure 8 shows the correlation matrix corresponding to the covariance of the full consensus constraints recovered from our BOSS mock catalogues in the three redshift bins. The 3 x 3 blocks along the diagonal correspond to the consensus covariance \mathbf{C}_i, at each redshift, which show a similar structure. As can be seen from the off-diagonal blocks, the consensus constraints of the low- and high-redshift bins are essentially independent, but both exhibit a strong correlation with the results of the intermediate one due to the large redshift overlap. Alam et al. (2016) use this covariance matrix as the basis of the cosmological implications of the consensus constraints combining the results of the same BAO-only and BAO+RSD methods studied here.

So far we have assumed that the posterior distributions being combined are not affected by systematic errors. If they are, these errors will be propagated into the consensus values and might lead to biased cosmological constraints. If the different methods are affected by uncorrelated systematic errors, their impact on the consensus results would be reduced. However, if these systematic errors shift the value of a given parameter from the correct result always in the same direction, this deviation will also be present in the combined constraints. The methodologies implemented here to extract cosmological information from BAO+RSD fits show a small deviation from the correct value of $f_{\sigma_8}(z)$ in the low and intermediate redshift bins. These shifts are inherited by the final consensus constraints, which show a deviation from the true value of 0.59σ, 0.42σ and 0.06σ for the low- intermediate- and high-redshift bins, respectively. Although these systematic shifts are smaller than the statistical uncertainties associated with the consensus constraints, they are taken into account in Alam et al. (2016), where they are used to construct a systematic error budget for the measurements obtained from the final BOSS galaxy samples.
4 CONCLUSIONS

We presented a general framework to combine the information of multiple Gaussian posterior distributions into a set of consensus constraints representing their joint information. This methodology can be applied to combine the cosmological information obtained from different clustering measurements based on the same galaxy sample, which can often be expressed as Gaussian constraints on a small number of parameters. The application of this technique requires the knowledge of the full cross-covariances of the different methods. For clustering measurements, this information can be obtained using a brute-force approach, applying the same methods being combined to a set of mock galaxy catalogues and measuring the correlations between the obtained results.

We illustrate our technique by applying it to combine the results obtained from different BAO-only and BAO+RSD measurements from an ensemble of mock catalogues of the final BOSS. The obtained consensus constraints represent a reduction in the allowed region of the parameter space with respect to the results of the individual methods. This shows the value of using the combination of the results of multiple clustering analyses as a strategy to maximise the constraining power of galaxy surveys.

In our companion paper Alam et al. (2016), the methodology described here is used to obtain a set of consensus constraints that encode the results obtained by applying the same methods studied here to the final BOSS galaxy samples. These results are then used to explore the cosmological implications of the data set in combination with the information from cosmic microwave background and Type Ia supernovae data.

We anticipate that the procedure detailed here can help to optimize the use of the cosmological information encoded in future clustering and lensing analyses.

ACKNOWLEDGEMENTS

AGS would like to thank Ximena Mazzalay for her invaluable help in the preparation of this manuscript. We would like to thank Riccardo Bolze, Daniel Farrow, Jianmin Hou, Martha Lippich and Francesco Montesano for useful discussions. AGS, JNG and SS-A acknowledge support from the Trans-regional Collaborative Research Centre TR33 ‘The Dark Universe’ of the German Research Foundation (DFG). CC acknowledges support as a MultiDark Fellow. CC acknowledges support from the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064, MINECO Centro de Excelencia Severo Ochoa Programme under grant SEV-2012-0249, and grant AYA2014-60641-C2-1-P.

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada.

REFERENCES

Alam S., et al., 2016, submitted to MNRAS
Alcock C., Paczynski B., 1979, Nature, 281, 358
Anderson L., et al., 2012, MNRAS, 427, 3455
Anderson L., et al., 2014a, MNRAS, 439, 83
Anderson L., et al., 2014b, MNRAS, 441, 24
Beutler F., et al., 2016a, submitted to MNRAS
Beutler F., et al., 2016b, submitted to MNRAS
Carlson J., Reid B., White M., 2013, MNRAS, 429, 1674
Cole S., et al., 2005, MNRAS, 362, 505
Cuesta A. J., et al., 2016, MNRAS, 457, 1770
Dawson K. S., et al., 2013, AJ, 145, 10
Dawson K. S., et al., 2016, AJ, 151, 44
Eisenstein D. J., et al., 2005, ApJ, 633, 560
Eisenstein D. J., Seo H.-J., Sirko E., Spergel D. N., 2007, ApJ, 664, 675
Eisenstein D. J., et al., 2011, AJ, 142, 72
Grieb J. N., et al., 2016, submitted to MNRAS
Hill G., Gebhardt K., Komatsu E., Drory N., MacQueen P., et al., 2008, ASP Conf.Ser., 399, 115

MNRAS 000, 1–?? (2016)
Combining Gaussian posterior distributions

Kazin E. A., Sánchez A. G., Blanton M. R., 2012, MNRAS, 419, 3223
Kitaura F.-S., et al., 2016, MNRAS, 456, 4156
Laureijs R., et al., 2011, preprint (arXiv:1110.3193)
Levi M., et al., 2013, preprint (arXiv:1308.0847)
Padmanabhan N., White M., 2008, Phys. Rev. D, 77, 123540
Padmanabhan N., Xu X., Eisenstein D. J., Scalzo R., Cuesta A. J., Mehta K. T., Kazin E., 2012, MNRAS, 427, 2132
Planck Collaboration XVI 2013, preprint, (arXiv:1303.5076)
Reid B. A., White M., 2011, MNRAS, 417, 1913
Ross A. J., et al., 2016, submitted to MNRAS
Sánchez A. G., et al., 2016, submitted to MNRAS
Satpathy S., et al., 2016, submitted to MNRAS
Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522
Tegmark M., et al., 2004, ApJ, 606, 702
Wang L., Reid B., White M., 2014, MNRAS, 437, 588
Winkler R. L., 1981, Management Science, 27, 479