Patterns with involutions

James Currie*
Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue
Winnipeg, Manitoba R3B 2E9 (Canada)
j.currie@uwinnipeg.ca

January 21, 2013

Abstract

We give the avoidance indices for all unary patterns with involution.

Keywords: words avoiding patterns, combinatorics on words, repetitions, Thue-Morse word

Consider a non-empty word p over $\Sigma = \{x, g(x)\}$. Here $g(x)$ is literally the string ‘$g(x)$’, so that if $p = xg(x)x$, we say that $|p| = 3$. Let T be a finite alphabet. We call $w \in T^*$ a morphic instance (resp., antimorphic instance) of p if there is a morphic (resp., antimorphic) involution g_T of T^* and a non-erasing morphism $\phi : \Sigma^* \rightarrow T^*$ such that $\phi(g(x)) = g_T(\phi(x))$. In the case that $p = xg(x)x$, a morphic (resp., antimorphic) instance of w would be a word $y g_T(y) y$ where $y \in T^+$ and g_T is a morphic (resp., antimorphic) involution of T^*. The morphic (resp., antimorphic) avoidance index of p is the size of the smallest alphabet T such that there exists an infinite word over T, no factor of which is a morphic (resp., antimorphic) instance of p. Denote the morphic (resp., antimorphic) avoidance index of p by $A_m(p)$ (resp., $A_a(p)$). If the symbol $g(x)$ doesn’t appear in p, then $A_m(p) = A_a(p)$ is just the usual avoidance index of p. As is pointed out in [1], interchanging

*The author is supported by an NSERC Discovery Grant.
x’s and g(x)’s in a pattern p does not change the morphic or antimorphic avoidance index. If \(p \in \Sigma^3 \), the avoidance index of \(p \) is given in [1]:

\[
A_m(p) = A_a(p) = \begin{cases}
2, & p \in \{xxx, g(x)g(x)g(x)\} \\
3 & \text{otherwise}
\end{cases}
\]

Although \(\Sigma \) has two elements, it is natural to call words over \(\Sigma \) unary patterns with involution. The next most complex patterns to consider would be over \(\{x, y, g(x), g(y)\} \), and we would consider them binary patterns with involution. We will give the avoidance indices for all unary patterns with involution.

The avoidance indices of words \(x^n \) are known, so we need only consider words \(p \) for which \(|p|_x, |p|_{g(x)} \geq 1 \). Clearly, \(A_m(xg(x)) = A_a(xg(x)) = \infty \). The avoidance indices for patterns of length 3 are known. We will show that whenever \(p \in \Sigma^4 \), \(A_m(p) = A_a(p) = 2 \). Since no word can have avoidance index 1, we see that

\[
A_m(p) = A_a(p) = \begin{cases}
3, & p \in \Sigma^3 - \{xxx, g(x)g(x)g(x)\} \\
\infty, & p \in \{x, g(x), xg(x), g(x)x\} \\
2 & \text{otherwise}
\end{cases}
\]

The avoidance indices are clearly 2 when \(xxx \) is a factor of \(p \). We consider words \(p \in \Sigma^4 \) where \(xxx \) is not a factor. Interchanging \(x \)'s and \(g(x) \)'s if necessary, assume that \(|p|_x \geq |p|_{g(x)} \). Since \(xxx \) is not to be a factor of \(p \), either \(|p|_{g(x)} = 1 \) or \(|p|_{g(x)} = 2 \). In the first case, our word \(p \) is \(x x g(x) x \) or \(x g(x) x x \). Since avoidance indices are preserved under reversal, we need only consider the case \(p = x x g(x) x \) here. If \(|p|_{g(x)} = 2 \), ignoring reversals, we consider \(x g(x) x g(x), g(x) x x g(x), x x g(x) g(x) \). For each of these \(p \in \Sigma^4 \) we will show that both avoidance indices are 2. Simplifying (or abusing, if you prefer) our notation, this amounts to constructing an infinite binary word with no factor \(x x g(x) x \) \((x g(x) x g(x), g(x) x x g(x), x x g(x) g(x)) \) where \(x \) is non-empty and \(g \) is a morphic \((g \) is an antimorphic) involution.

1 Morphic involutions

Let \(t \) be the Thue-Morse sequence \(h^\omega(0) \), where \(h(0) = 01, h(1) = 10 \). Write

\[t = \prod_{i=0}^{\infty} t_i, \quad t_i \in \{0, 1\}. \]

Let \(w \) be the infinite word

\[w = \prod_{j=0}^{\infty} 0^2 1^{t_i + 2}. \]
We see that w is concatenated from blocks of two 0’s alternated with blocks of either two or three 1’s.

Lemma 1. Word w has no factor of the form $xxg(x)x$ where x is a non-empty word and $g(x)$ is the image of x under a morphic involution of $\{0, 1\}^*$.

Proof: Suppose for the sake of getting a contradiction that $xxg(x)x$ is a factor of w where x is a non-empty word and $g(x)$ is a morphic involution of $\{0, 1\}^*$.

If $|x_0| = 0$, then $x = 1^m$ for some m. If g is the identity, this makes 1111 a factor of w, which is impossible. If g is the complement morphism, then $m \leq 2$, since $g(x) = 0^m$ is a factor of w. Then, however, $xxg(x)x = 1101$ or 11110011, neither of which is a factor of w. If $|x| = 0$, then $x = 0$ or $x = 00$. If g is the identity, this makes 0000 a factor of w, which is impossible. If g is the complement morphism, then 0010 or 00001100 is a factor of w neither of which is possible. We conclude that $|x_0|, |x_1| \geq 1$.

Suppose that g is the complement morphism. Word w has factors $g(x)x$ and xx, hence factors $0x, 1x$. This means that x cannot start 01, 10 or 00, since none of 101, 010 or 000 are factors of w. We deduce that x commences 11. Similarly, x ends 11. Now, however, xx has 1111 as a factor, which is impossible.

Suppose then that g is the identity morphism, so that $xxxx$ is a factor of w. Let $s \geq 0$ be maximal so that 0^s is a prefix of x. Let $t \geq 0$ be maximal such that 0^t is a suffix of x. Since $|x_1| \geq 1$, x has prefix 0^s1 and suffix 10^t, and $10^{s+t}1$ is a factor of xx, implying $t + s = 0$ or $t + s = 2$.

Case 1: Suppose $t + s = 0$. If $|x_0| = 2$, write $x = 1^r0^21^q$, $r, q \geq 1$. Then $xxxx = 1^r0^21^q+r^21^q+r^21^q0^21^q+r^21^q$ and t contains the overlap $(q + r - 2)(q + r - 2)$, which is impossible. Thus assume $|x_0| > 2$, and write $x = 1^r0^21^{t+r}0^2\cdots 1^t+20^t1^q$, $r, q \geq 1, i \leq j$. Then $xxxx$ is

$$1^r0^21^{t+r}2\cdots 1^{t_j+2}0^21^{t+r}0^21^{t+t_j+2}\cdots 1^{t_j+2}0^21^{t+r}0^21^{t+2}0^2\cdots 1^{t+2}0^21^q,$$

and t contains the overlap $(q + r - 2)t_i\cdots t_j(q + r - 2)t_i\cdots t_j(q + r - 2)$, which is again impossible.

Case 2: Suppose $t + s = 2$. If $|x_0| = 2$, write $x = 0^s1^{t_i+2}0^t$, some i. Then $xxxx = 0^s1^{t_i+2}0^21^{t+i+2}0^21^{t+i+2}0^2\cdots 1^t+20^t$, and t contains the overlap t_i t_i, which is impossible. Thus assume $|x_0| > 2$, and write $x = 0^s1^{t+i+2}2\cdots 1^{t_j+2}0^t$, $i \leq j$. Then $xxxx$ is

$$0^s1^{t+i+2}2\cdots 1^{t+i+2}0^21^{t+i+2}2\cdots 1^{t_j+2}0^21^{t+i+2}2\cdots 1^{t+2}0^t,$$

This means that $xxxx$ is a factor of w, which is impossible.
and t contains the overlap $t_i \cdots t_j t_i \cdots t_j t_i$, which is again impossible. □

Let v be the infinite word

$v = \Pi_{j=0}^{\infty} 01^{2t_i+1}$.

We see that v is concatenated from 0’s alternated with blocks of either one or three 1’s.

Lemma 2. Word v has no factor of the form $g(x)xxg(x)$ where x is a non-empty word and $g(x)$ is the image of x under a morphic involution of $\{0, 1\}^*$.

Proof: Suppose for the sake of getting a contradiction that $g(x)xxg(x)$ is a factor of v where x is a non-empty word and $g(x)$ is a morphic involution of $\{0, 1\}^*$.

Since 00 is not a factor of v but xx is a factor, $|x|_1 \geq 1$. If $|x|_0 = 0$, then $x = 1^m$ for some m. If g is the identity, this makes 1111 a factor of v, which is impossible. If g is the complement morphism, then $m = 1$, since $g(x) = 0^m$ is a factor of v. Then, however, $g(x)xxg(x) = 0110$, which is not a factor of v. We conclude that $|x|_0, |x|_1 \geq 1$.

Suppose that g is the complement morphism. If x begins and ends with different letters, then one of $g(x)x$ and $xg(x)$ has 00 as a factor, which is impossible. Therefore the first and last letters of x are the same. They must both be 1; otherwise xx would contain 00. Again 11 cannot be a factor of x; otherwise 00 would be a factor of $g(x)$. It follows that x begins with 10 and ends with 01. Now, however, xx has the factor 0110, which is impossible.

Suppose then that g is the identity, so that $xxxx$ is a factor of v. If $|x|_0 = 1$, write $x = 1^q01^r$, some $q, r \geq 0$. We must have $q + r \geq 1$, since $|x|_1 \geq 1$. Now $xxxx = 1^q01^{r+q}01^r+q01^r$. This implies the existence of an overlap $\frac{r+q-1}{2} + \frac{r-q}{2}$ in t, which is impossible.

Assume then that $|x|_0 \geq 2$. Write $x = 1^q01^{2t_i+1} \cdots 1^{2t_j+1}01^r$ for some $i \leq j$, some $q, r \geq 0$. Then $xxxx$ has the factor

$1^{r+q}01^{2t_i+1} \cdots 1^{2t_j+1}01^{r+q}01^{2t_i+1} \cdots 1^{2t_j+1}01^{r+q}$

and t contains the overlap

$r + q - 1 \quad t_i \cdots t_j \quad r + q - 1 \quad t_i \cdots t_j \quad r + q - 1$.

This is impossible. □
Let \(u \) be the infinite word

\[
 u = \Pi_{j=0}^{\infty} 01^{j+2}.
\]

We see that \(u \) is concatenated from 0’s alternated with blocks of either 3 or 2 1’s.

Lemma 3. Word \(u \) has no factor of the form \(xxg(x)g(x) \) or \(xg(x)xxg(x) \) where \(x \) is a non-empty word and \(g(x) \) is the image of \(x \) under a morphic involution of \(\{0,1\}^* \).

Proof: Suppose for the sake of getting a contradiction that \(xxg(x)g(x) \) or \(xg(x)xxg(x) \) is a factor of \(u \) where \(x \) is a non-empty word and \(g(x) \) is a morphic involution of \(\{0,1\}^* \).

First suppose that \(g \) is the complement morphism. Since \(u \) contains a factor \(g(x) \), but no factor 00, word \(x \) cannot contain 11 as a factor. Similarly, \(u \) doesn’t contain a factor 010, so that \(x \) cannot contain a factor 101. The only possibilities for \(x \) are then 0, 1, 01 and 10. The resulting values for \(xxg(x)g(x) \) (resp. \(xg(x)xxg(x) \)) would be 0011, 1100, 010101, 100101 (resp. 0101, 1010, 01100110, 10011001) which all contain either 00 or 010 and are thus impossible.

Suppose then that \(g \) is the identity morphism. Thus \(xxg(x)g(x) = xg(x)xxg(x) = xxxx \). Since 00 is not a factor of \(u \) but \(xx \) is a factor, \(|x|_1 \geq 1 \). If \(|x|_0 = 0 \), then \(x = 1^m \) for some \(m \), and 1111 is a factor of \(u \). This is impossible. It follows that \(|x|_0, |x|_1 \geq 1 \). If \(|x|_0 = 1 \), write \(x = 1^q01^r \), some \(q, r \geq 0 \). Then \(xxxx = 1^q01^{r+q}01^{r+q}01^r \). This implies the existence of an overlap \((r + q - 2)(r + q - 2)(r + q - 2)\) in \(t \), which is impossible.

Assume then that \(|x|_0 \geq 2 \). Write \(x = 1^q01^{t_i+2}...1^{t_j+2}01^r \) for some \(i \leq j \), some \(q, r \geq 0 \). Then \(xxxx \) has the factor

\[
 1^{r+q}01^{t_i+2}...1^{t_j+2}01^{r+q}01^{t_i+2}...1^{t_j+2}01^{r+q}
\]

and \(t \) contains the overlap

\[
 (r + q - 2)t_i \cdots t_j(r + q - 2)t_i \cdots t_j(r + q - 2).
\]

This is impossible. \(\square \)
2 Antimorphic involutions

Over \{0, 1\}, there are only two antimorphisms: the reversal \(x \rightarrow x^R \) generated by \(0^R = 0 \) and \(1^R = 1 \), and the reverse complement \(x \rightarrow \overline{x}^R \).

Lemma 4. Word \(w \) has no factor of the form \(xxg(x)x \) where \(x \) is a non-empty word and \(g(x) \) is the image of \(x \) under an antimorphic involution of \(\{0, 1\}^* \).

Proof: Suppose for the sake of getting a contradiction that \(xxg(x)x \) is a factor of \(w \) where \(x \) is a non-empty word and \(g(x) \) is an antimorphic involution of \(\{0, 1\}^* \).

By Lemma 1 we may assume that \(g(x) \neq x \), since we have shown that \(w \) has no factor \(xxxx \) with \(x \) non-empty. Similarly, we may assume that \(g(x) \neq \overline{x} \). These conditions together imply that \(x \) is not a palindrome, and that \(x^R \neq \overline{x} \). Suppose, for example, that \(x \) is a palindrome. If \(g \) is reversal, then \(g(x) = x \), which we have forbidden. If \(g \) is reverse complement, then \(g(x) = (x^R) = \overline{x} \), again forbidden. Similarly one checks that \(x^R \neq \overline{x} \). To continue with our proof, suppose that \(g \) is the reverse complement. Since \(w \) contains a factor \(g(x) \), but no factor \(000 \), word \(x \) cannot contain \(111 \) as a factor. Also, \(w \) does not contain \(010 \) or \(101 \) as a factor. It follows that \(x \) is a factor of \((0011)^\omega\). Since \(xg(x) \) and \(g(x)x \) are factors of \(w \), \(x \) cannot begin or end with \(01 \) or \(10 \). It therefore begins and ends with \(00 \) or \(11 \). The length 2 prefix and length 2 suffix of \(x \) must differ, since otherwise \(xx \) would have \(0000 \) or \(1111 \) as a factor. We conclude that \(x = (0011)^n \) or \(x = (1100)^n \) for some \(n \). But then \(x \) is the complement of its reverse, contradicting our previous assumption.

Suppose then that \(g \) is the reversal. Since \(xg(x) \) and \(xx \) are both factors of \(w \) but \(010, 101 \) are not, \(x \) cannot end in \(01 \) or \(10 \). Then \(x \) ends in \(00 \) or \(11 \), and \(xg(x) \) contains \(0000 \) or \(1111 \) as a factor. This is impossible. □

Lemma 5. Word \((0001)^\omega\) has no factor of the form \(xxg(x)g(x), xg(x)xxg(x) \) or \(g(x)xxg(x) \) where \(x \) is a non-empty word and \(g(x) \) is the image of \(x \) under an antimorphic involution of \(\{0, 1\}^* \).

Proof: Suppose for the sake of getting a contradiction that \(xxg(x)g(x) \), \(xg(x)xxg(x) \) or \(g(x)xxg(x) \) is a factor of \((0001)^\omega\) where \(x \) is a non-empty word and \(g(x) \) is an antimorphic involution of \(\{0, 1\}^* \).

If \(g \) is reversal, then \(x \) cannot end in \(01 \) or \(10 \); this would imply \(0110 \) or \(1001 \) as a factor of \(xg(x) \); however these are not factors of \((0001)^\omega\). It
follows that if $|x| > 1$ then x ends in 00, since 11 is not a factor of $(0001)\omega$. Then, however 0000 is a factor of $xg(x)$, which is impossible. We conclude that $|x| = 1$, and $xxg(x)g(x), xg(x)xg(x), g(x)xxg(x) \in \{1111, 0000\}$. This is impossible.

If g is reverse complement, 00 cannot be a factor of x; otherwise 11 is a factor of $g(x)$. However, x cannot end in 01 or 10, or $xg(x)$ would have 0101 or 1010 as a factor. We conclude that $|x| = 1$, and $xxg(x)g(x) = xg(x)xg(x) = g(x)xxg(x) \in \{0011, 0101, 1001\}$, which are impossible. □

References

[1] Bastian Bischoff and Dirk Nowotka, Avoidable Patterns with Involution, preprint.