KÜNNETH FORMULA IN RABINOWITZ FLOER HOMOLOGY

JUNGSOO KANG

Abstract. Rabinowitz Floer homology has been investigated on submanifolds of contact type. The contact condition, however, is quite restrictive. For example, a product of contact hypersurfaces is rarely of contact type. In this article, we study Rabinowitz Floer homology for product manifolds which are not necessarily of contact type. We show for a class of product manifolds that there are infinitely many leafwise intersection points by proving the Künneth formula for Rabinowitz Floer homology.

1. Introduction

Rabinowitz Floer homology has been extensively studied in recent years because of its interrelation with the leafwise intersection problem. However Rabinowitz Floer homology (to be honest, the perturbed Rabinowitz action functional) has worked principally on a contact submanifold and little research has been conducted on a non-contact case. Our primary objective in this paper is to find leafwise intersection points and define Rabinowitz Floer homology for this class of submanifolds which are not necessarily of contact type. In addition we show for the class that there are infinitely many leafwise intersection points by proving the Künneth formula for Rabinowitz Floer homology. For simplicity, throughout this paper, we use \(\mathbb{Z}/2 \)-coefficients for Rabinowitz Floer homology, but expect the Künneth formula continues to hold with \(\mathbb{Z} \)-coefficient.

We consider restricted contact hypersurfaces \((\Sigma_1, \lambda_1)\) resp. \((\Sigma_2, \lambda_2)\) in exact symplectic manifolds \((M_1, \omega_1 = d\lambda_1)\) resp. \((M_2, \omega_2 = d\lambda_2)\). Moreover we assume that \(\Sigma_1\) resp. \(\Sigma_2\) bounds a compact region in \(M_1\) resp. \(M_2\) and that those \(M_1\) and \(M_2\) are convex at infinity; that is, they are symplectomorphic to the symplectization of a compact contact manifold at infinity. Given \(F_1 \in (S^1 \times M_1), F_2 \in C^\infty(S^1 \times M_2)\), the operation

\[
(F_1 \oplus F_2)(t, x, y) = F_1(t, x) + F_2(t, y), \quad (t, x, y) \in S^1 \times M_1 \times M_2
\]

provides a time-dependent Hamiltonian function \(F_1 \oplus F_2 \in C^\infty(S^1 \times M_1 \times M_2)\). We also introduce projection maps \(\pi_1 : M_1 \times M_2 \to M_1\) and \(\pi_2 : M_1 \times M_2 \to M_2\); then \((M_1 \times M_2, \omega_1 \oplus \omega_2)\) admits the symplectic structure \(\omega_1 \oplus \omega_2 = \pi_1^* \omega_1 + \pi_2^* \omega_2\).

On \((\Sigma_1 \times \Sigma_2, M_1 \times M_2)\), we define the perturbed Rabinowitz action functional \(\mathcal{A}_{F_1}^{\tilde{H}_1, \tilde{H}_2}\) as in (2.1). Since \(\Sigma_1 \times \Sigma_2\) is a stable submanifold, we can define Floer homology of \(\mathcal{A}_{F_1}^{\tilde{H}_1, \tilde{H}_2}\) when \(F \equiv 0\) (refer to [24] for definitions and constructions). This Floer homology \(HF(\mathcal{A}_{F_1}^{\tilde{H}_1, \tilde{H}_2})\) is called Rabinowitz Floer homology and denoted by \(RFH(\Sigma_1 \times \Sigma_2, M_1 \times M_2)\), see Section 3. By the standard continuation method in Floer theory, \(HF(\mathcal{A}_{F_1}^{\tilde{H}_1, \tilde{H}_2})\) and \(RFH(\Sigma_1 \times \Sigma_2, M_1 \times M_2)\) are isomorphic whenever \(HF(\mathcal{A}_{F_1}^{\tilde{H}_1, \tilde{H}_2})\) is defined.

Key words and phrases. Künneth formula, Rabinowitz Floer homology, leafwise intersections.

2000 Mathematics Subject Classification. 53D40, 37J10, 58J05.
Theorem A. The Floer homologies RFH(\(\Sigma_1 \times \Sigma_2, M_1 \times M_2\)) and HF(\(A_{\tilde{H}_1, \tilde{H}_2}\)) are well-defined. Moreover, we have the following Künneth formula in Rabinowitz Floer homology:

\[
RFH_n(\Sigma_1 \times \Sigma_2, M_1 \times M_2) \cong \bigoplus_{p=0}^n RFH_p(\Sigma_1, M_1) \otimes RFH_{n-p}(\Sigma_2, M_2).
\]

Here, RFH_p(\(\Sigma_1, M_1\)) (resp. RFH_{n-p}(\(\Sigma_2, M_2\))) is the Rabinowitz Floer homology for the restricted contact hypersurface \(\Sigma_1\) in \(M_1\) (resp. \(\Sigma_2\) in \(M_2\)), see [1] or Section 3.

Remark 1.1. In this paper, we unfortunately establish compactness of gradient flow lines of the Rabinowitz action functional only for perturbations of the form \(F = F_1 \oplus F_2\). Thus we cannot study the existence problem of leafwise intersection points for an arbitrary perturbation. However, if \(\Sigma_1 \times \Sigma_2\) has contact type in the sense of Bolle [10, 11] (see Section 4), the Floer homology HF(\(A_{\tilde{H}_1, \tilde{H}_2}\)) is defined for all perturbations, see [24]. We note that, in general, \(\Sigma_1 \times \Sigma_2\) is not of contact type in the sense of Bolle. For example, \(S^3 \times S^3\) is not a contact submanifold in \(\mathbb{R}^8\), see Remark 4.2.

Question 1.2. What perturbations have a leafwise intersection point on \((\Sigma_1 \times \Sigma_2, M_1 \times M_2)\)?

Remark 1.3. Once one verifies compactness of gradient flow lines of the Rabinowitz action functional for a given perturbation \(F\), it guarantees the existence of leafwise intersection points for that \(F\) by using the stretching the neck argument in [1]. In this paper, we are able to compactify gradient flow lines of \(A_{\tilde{H}_1, \tilde{H}_2}\) and thus it guarantees the existence of leafwise intersection points of \(F_1 \oplus F_2\); but, this directly follows from the result in [1] that each \(F_1\) and \(F_2\) has a leafwise intersection point on \(\Sigma_1\) and \(\Sigma_2\) respectively.

Definition 1.4. The Hamiltonian vector field \(X_F\) on a symplectic manifold \((M, \omega)\) is defined explicitly by \(i_{X_F} \omega = dF\) for a Hamiltonian function \(F \in C^\infty(S^1 \times M)\), and we call its time one flow \(\phi_F\) the Hamiltonian diffeomorphism. We denote by Ham_\(c\)(\(M, \omega\)) the group of Hamiltonian diffeomorphisms generated by compactly supported Hamiltonian function. This group has a well-known norm introduced by Hofer (see Definition 2.2).

Definition 1.5. We denote by \(\varphi(\Sigma_1, \lambda_1) > 0\) the minimal period of closed Reeb orbits of \((\Sigma_1, \lambda_1)\) which are contractible in \(M_1\). If there is no contractible closed Reeb orbit we set \(\varphi(\Sigma_1, \lambda_1) = \infty\).

In Theorem B we do not consider \(\Sigma_2\), and \(M_2\) need to be closed.

Theorem B. Let \((M_2, \omega_2)\) be a closed and symplectically aspherical, i.e. \(\omega_2|_{\pi_2(M_2)} = 0\), symplectic manifold. Then, although \(\Sigma_1 \times M_2\) is not a contact hypersurface,

(B1) \(\Sigma_1 \times M_2\) has a leafwise intersection point for \(\phi \in \text{Ham}_c(M_1 \times M_2, \omega_1 \oplus \omega_2)\) with Hofer-norm \(||\phi|| < \varphi(\Sigma_1, \lambda_1)\) even if \(\Sigma_1\) does not bound a compact region in \(M_1\).

(B2) The Rabinowitz Floer homology RFH(\(\Sigma_1 \times M_2, M_1 \times M_2\)) can be defined when \(\Sigma_1\) bounds a compact region in \(M_1\). Moreover, we have the Künneth formula:

\[
RFH_n(\Sigma_1 \times M_2, M_1 \times M_2) \cong \bigoplus_{p=0}^n RFH_p(\Sigma_1, M_1) \otimes H_{n-p}(M_2).
\]

To prove Theorem B without any contact conditions, we need to show a special version of isoperimetric inequality, see Lemma (3.2).
Remark 1.6. It is worth emphasizing that $\Sigma_1 \times M_2$ is not necessarily of restricted contact type. For instance, if M_2 is not exact, then $\Sigma_1 \times M_2$ is never of restricted contact type. Nevertheless, interestingly enough, we can achieve compactness of gradient flow lines of Rabinowitz action functional for an arbitrary perturbation $F \in \text{Ham}_c(M_1 \times M_2, \omega_1 \oplus \omega_2)$; accordingly Floer homology of the Rabinowitz action functional with any perturbations is well-defined.

The Künneth formula enable us to compute the Rabinowitz Floer homology of a product manifold in terms of Rabinowitz Floer homology of each manifolds. As applications, in Section 4 we shall prove the following two corollaries.

Corollary A. Let N be a closed Riemannian manifold of dim $N \geq 2$ with dim $H_*(\Lambda N) = \infty$ where ΛN is the free loop space of N. Then there exists infinitely many leafwise intersection points for a generic $\phi \in \text{Ham}_c(T^*S^1 \times T^*N)$ on $(S^*S^1 \times S^*N, T^*S^1 \times T^*N)$.

Remark 1.7. Since $(S^*S^1 \times S^*N, T^*S^1 \times T^*N)$ is of restricted contact type in the sense of Bolle (Lemma 4.6), ϕ in Corollary A is not necessarily of product type. If ϕ has product type, then the above result is obvious by [1, 2]. Unlike Corollary A, the following Corollary B does not assume the contact condition since Theorem B does not need any contact conditions.

Corollary B. Let M be a closed and symplectically aspherical symplectic manifold and N be as above. Then a generic $\phi \in \text{Ham}_c(T^*N \times M)$ has infinitely many leafwise intersection points on $(S^*N \times M, T^*N \times M)$.

Remark 1.8. If $\pi_1(N)$ is finite then dim $H_*(\Lambda N) = \infty$ by [30]. If the number of conjugacy classes of $\pi_1(N)$ is infinite then dim $H_0(\Lambda N) = \infty$. Therefore, the only remaining case is if $\pi_1(N)$ is infinite but the number of conjugacy classes of $\pi_1(N)$ is finite.

1.1. **Leafwise intersections.** Let (M, ω) be a $2n$ dimensional symplectic manifold and Σ be a coisotropic submanifold of codimension $0 \leq k \leq n$. Then the symplectic structure ω determines a symplectic orthogonal bundle $T\Sigma^\omega \subset T\Sigma$ as follows:

$$T\Sigma^\omega := \{(x, \xi) \in T\Sigma | \omega_x(\xi, \zeta) = 0 \text{ for all } \zeta \in T_x\Sigma\}$$

Since ω is closed, $T\Sigma^\omega$ is integrable, thus Σ is foliated by the leaves of the characteristic foliation and we denote by L_x the isotropic leaf through x. We call $x \in \Sigma$ a leafwise intersection point of $\phi \in \text{Ham}(M, \omega)$ if $x \in L_x \cap \phi(L_x)$. In the extremal case $k = n$, Lagrangian submanifold consists of only one leaf. Thus a leafwise intersection point is nothing but a Lagrangian intersection point in the case $k = n$. In the other extremal case that $k = 0$, a leafwise intersection corresponds to a periodic orbit of ϕ.

The leafwise intersection problem was initiated by Moser [27] and pursued further in [9, 22, 17, 20, 16, 21, 1, 2, 3, 4, 31, 23, 24, 25, 6, 7]. We refer to [1, 24] for the history of the problem. In particular, Albers-Frauenfelder approached the problem by means of the perturbed Rabinowitz action functional and much relevant research has been conducted in [1, 2, 3, 4, 13, 14, 15, 8, 23, 24, 25, 7]. We refer to [5] for a brief survey on Rabinowitz Floer theory.

2. **Rabinowitz action functional on product manifolds**

Since Σ_1 and Σ_2 are contact hypersurfaces, there exist associated Liouville vector fields Y_1 resp. Y_2 on M_1 resp. M_2 such that $L_{Y_i}\omega_i = \omega_i$ and $Y_i \pitchfork \Sigma_i$ for $i = 1, 2$. We denote by $\phi_{Y_i}^t$ the flow of Y_i and fix $\delta > 0$ such that $\phi_{Y_i}^t|_\Sigma_i$ is defined for $|t| < \delta$. Since Σ_1 resp. Σ_2 bounds a
compact region in M_1 resp. M_2, we are able to define Hamiltonian functions $G_1 \in C^\infty(M_1)$ and $G_2 \in C^\infty(M_2)$ so that

1. $G_1^{-1}(0) = \Sigma_1$ and $G_2^{-1}(0) = \Sigma_2$ are regular level sets;
2. dG_1 and dG_2 have compact supports;
3. $G_i(\phi_i(x)) = t$ for all $x \in \Sigma_i$, $i = 1, 2$, and $|t| < \delta$;

We extend G_1, G_2 to be defined on the whole of $M_1 \times M_2$:

$$\tilde{G}_i : M_1 \times M_2 \to \mathbb{R} \quad i = 1, 2$$

$$\quad (x_1, x_2) \mapsto G_i(x_i).$$

Definition 2.1. Given time-dependent Hamiltonian functions $\tilde{H}_1, \tilde{H}_2, F \in C^\infty(S^1 \times M_1 \times M_2)$, a triple $(\tilde{H}_1, \tilde{H}_2, F)$ is called a *Moser triple* if it satisfies

1. their time supports are disjoint, i.e.
 $$\tilde{H}_1(t, \cdot) = \tilde{H}_2(t, \cdot) = 0 \quad \text{for } \forall t \in [0, \frac{1}{2}] \quad \text{and} \quad F(t, \cdot) = 0 \quad \text{for } \forall t \in [\frac{1}{2}, 1].$$
2. $F = F_1 \oplus F_2$ for some $F_1 \in C^c_\infty(S^1 \times M_1)$, $F_2 \in C^c_\infty(S^1 \times M_2)$.
3. \tilde{H}_1 and \tilde{H}_2 are weakly time-dependent Hamiltonian functions. That is, \tilde{H}_1 and \tilde{H}_2 are of the form $(\tilde{H}_1(t, x), \tilde{H}_2(t, x)) = \chi(t)(\tilde{G}_1(x), \tilde{G}_2(x))$ for $\chi : S^1 \to S^1$ with $\int_0^1 \chi dt = 1$ and $\text{Supp} \chi \subset (\frac{1}{2}, 1)$.

Next, we recall the definition of the Hofer norm.

Definition 2.2. Let $F \in C^\infty_c(S^1 \times M, \mathbb{R})$ be a compactly supported time-dependent Hamiltonian function on a symplectic manifold (M, ω). We set

$$||F||_+ := \int_0^1 \max_{x \in M} F(t, x) dt \quad ||F||_- := -\int_0^1 \min_{x \in M} F(t, x) dt = || -F||_+$$

and

$$||F|| = ||F||_+ + ||F||_-.$$

For $\phi \in \text{Ham}_c(M, \omega)$ the Hofer norm is

$$||\phi|| = \inf\{||F|| \mid F = \phi F, F \in C^\infty_c(S^1 \times M, \mathbb{R})\}.$$

Lemma 2.3. For all $\phi \in \text{Ham}_c(M, \omega)$

$$||\phi|| = |||\phi||| := \inf \{||F|| \mid \phi = \phi F, F(t, \cdot) = 0 \quad \forall t \in [\frac{1}{2}, 1]\}.$$

Proof. To prove $||\phi|| \geq |||\phi|||$, pick a smooth monotone increasing map $r : [0, 1] \to [0, 1]$ with $r(0) = 0$ and $r(1/2) = 1$. For F with $\phi F = \phi$ we set $F^r(t, x) := r'(t)F(r(t), x)$. Then a direct computation shows $\phi F^r = \phi F$, $||F^r|| = ||F||$, and $F^r(t, x) = 0$ for all $t \in [\frac{1}{2}, 1]$. The reverse inequality is obvious. \qed

We denote by $\mathcal{L} = \mathcal{L}_{M_1 \times M_2} \subset C^\infty(S^1, M_1 \times M_2)$ the component of contractible loops in $M_1 \times M_2$. With a Moser triple (H_1, H_2, F), the perturbed Rabinowitz action functional $A_{F}^{\tilde{H}_1, \tilde{H}_2}(v, \eta_1, \eta_2) : \mathcal{L} \times \mathbb{R}^2 \to \mathbb{R}$ is defined as follows:

$$A_{F}^{\tilde{H}_1, \tilde{H}_2}(v, \eta_1, \eta_2) = -\int_0^1 v^* \lambda_1 \oplus \lambda_2 - \eta_1 \int_0^1 \tilde{H}_1(t, v) dt - \eta_2 \int_0^1 \tilde{H}_2(t, v) dt - \int_0^1 F(t, v) dt \quad (2.1)$$
where \(\lambda_1 \oplus \lambda_2 = \pi_1^* \lambda_1 + \pi_2^* \lambda_2 \). The real numbers \(\eta_1 \) and \(\eta_2 \) can be thought of as Lagrange multipliers.

Critical points \((v, \eta_1, \eta_2) \in \text{Crit} \mathcal{A}_{F_1, F_2} \) satisfy

\[
\begin{aligned}
\partial_t v &= \eta_1 \chi_{H_1}(t, v) + \eta_2 \chi_{H_2}(t, v) + X_F(t, v), \\
\int_0^1 H_1(t, v) dt &= 0, \\
\int_0^1 H_2(t, v) dt &= 0.
\end{aligned}
\]

(2.2)

Albers-Frauenfelder [1] observed that a critical point of \(\mathcal{A}_{F_1, F_2} \) gives rise to a leafwise intersection point. (In fact, they proved the following proposition for the codimensional one case, yet their proof continues to hold in our case, see [24] also.)

Definition 2.4. A leafwise coisotropic intersection point \(x \in \Sigma_1 \times \Sigma_2 \) is called periodic if the leaf \(L_x \) contains neither a closed Reeb orbit in \(\Sigma_1 \) nor a closed Reeb orbit in \(\Sigma_2 \).

Proposition 2.5. [1] Let \((v, \eta_1, \eta_2) \in \text{Crit} \mathcal{A}_{F_1, F_2} \). Then \(x = v(1/2) \) satisfies \(\phi_F(x) \in L_x \). Thus, \(x \) is a leafwise intersection point. Moreover, the map

\[
\text{Crit} \mathcal{A}_{F_1, F_2} \longrightarrow \{ \text{leafwise intersections} \}
\]

is injective unless there exists a periodic leafwise intersection.

We choose a compatible almost complex structure \(J_1 \) on \(M_1 \) and define the metric on \((M_1, \omega_1)\) by \(g_1(\cdot, \cdot) = \omega_1(\cdot, J_1 \cdot) \). Analogously we also define the metric on \((M_2, \omega_2)\), \(g_2(\cdot, \cdot) = \omega_2(\cdot, J_2 \cdot) \). Then \(g = g_1 \oplus g_2 \) which is the metric on \((M_1 \times M_2, \omega_1 \oplus \omega_2)\) induces a metric \(m \) on the tangent space \(T_{(v, \eta_1, \eta_2)}(\mathcal{L} \times \mathbb{R}^2) \cong T_v \mathcal{L} \times \mathbb{R}^2 \) as follows:

\[
m_{(v, \eta_1, \eta_2)}((\tilde{v}^1, \tilde{\eta}_1^1, \tilde{\eta}_2^1), (\tilde{v}^2, \tilde{\eta}_1^2, \tilde{\eta}_2^2)) := \int_0^1 g_v(\tilde{v}^1, \tilde{\eta}_1^1) dt + \tilde{\eta}_1^1 \tilde{\eta}_1^2 + \tilde{\eta}_2^1 \tilde{\eta}_2^2 .
\]

Definition 2.6. A map \(w = (v, \eta_1, \eta_2) \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \) which solves

\[
\partial_s w(s) + \nabla_m \mathcal{A}_{F_1, F_2}(w(s)) = 0
\]

(2.3)

is called a gradient flow line of \(\mathcal{A}_{F_1, F_2} \) with respect to the metric \(m \).

According to Floer’s interpretation, the gradient flow equation (2.3) can be interpreted as maps \(v(s, t) : \mathbb{R} \times S^1 \rightarrow M_1 \times M_2 \) and \(\eta_1(s), \eta_2(s) : \mathbb{R} \rightarrow \mathbb{R} \) solving

\[
\begin{aligned}
\partial_s v + J(v)(\partial_t v - \eta_1 \chi_{H_1}(t, v) - \eta_2 \chi_{H_2}(t, v) - X_F(t, v)) &= 0, \\
\partial_s \eta_1 - \int_0^1 \phi_{H_1}(t, v) dt &= 0, \\
\partial_s \eta_2 - \int_0^1 \phi_{H_2}(t, v) dt &= 0.
\end{aligned}
\]

(2.4)
Definition 2.7. The energy of a map \(w \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \) is defined by
\[
E(w) := \int_{-\infty}^{\infty} ||\partial_s w||^2_{m} ds .
\]

Lemma 2.8. Let \(w \) be a gradient flow line of \(\tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2} \). Then
\[
E(w) = \tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w) - \tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w_{\pm}) .
\]
where \(w_{\pm} = \lim_{s \to \pm \infty} w(s) \).

Proof. It follows from the gradient flow equation (2.3).
\[
E(w) = \int_{-\infty}^{\infty} m(- \nabla_{m} \tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w(s)), \partial_{s} w(s)) ds
\]
\[
= - \int_{-\infty}^{\infty} d\tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w(s))(\partial_{s} w(s)) ds
\]
\[
= - \int_{-\infty}^{\infty} \frac{d}{ds}(\tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w(s))) ds
\]
\[
= \tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w_{-}) - \tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w_{+}) .
\]

2.1. Compactness of gradient flow lines. In order to define Rabinowitz Floer homology, we need compactness of gradient flow lines of the Rabinowitz action functional with fixed asymptotic data. More specifically we show the following theorem. In the rest of this section, our perturbation \(F \in C^\infty_c(S^1 \times M_1 \times M_2) \) is of the form \(F_1 \oplus F_2 \) for some \(F_1 \in C^\infty_c(S^1 \times M_1) \) and \(F_2 \in C^\infty_c(S^1 \times M_2) \).

Theorem 2.9. Let \(\{w_n\}_{n \in \mathbb{N}} \) be a sequence of gradient flow lines of \(\tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2} \) for which there exist \(a < b \) such that
\[
a \leq \tilde{A}_{F}^{\tilde{H}_1, \tilde{H}_2}(w_n(s)) \leq b, \quad \text{for all } s \in \mathbb{R}.
\]
Then for every reparametization sequence \(\sigma_n \in \mathbb{R} \), the sequence \(w_n(\cdot + \sigma_n) \) has a subsequence which is converges in \(C^\infty_{loc}(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \).

Proof. In order to prove the theorem, we need to verify the following three ingredients.

(1) a uniform \(L^\infty \)-bound on \(v_n \),
(2) a uniform \(L^\infty \)-bound on \(\eta_{1n}, \eta_{2n} \),
(3) a uniform \(L^\infty \)-bound the derivatives of \(v_n \).

for a sequence of gradient flow lines \(\{(v_n, \eta_{1n}, \eta_{2n})\}_{n \in \mathbb{N}} \). Once we establish (2), the others follow by standard arguments in Floer theory. At the end of this section, we prove Theorem 2.15 which proves (2) and thus completes the proof of Theorem 2.9. \(\square \)

First of all, we introduce two auxiliary action functionals \(\mathcal{A}_1, \mathcal{A}_2 : \mathcal{L}_{M_1 \times M_2} \times \mathbb{R}^2 \to \mathbb{R} \):
\[
\mathcal{A}_1(v, \eta_1, \eta_2) := \int_{0}^{1} v^* \pi_1 \lambda_1 - \eta_1 \int_{0}^{1} H_1(t, v) dt - \int_{0}^{1} F(t, v) dt,
\]
\[
\mathcal{A}_2(v, \eta_1, \eta_2) := \int_{0}^{1} v^* \pi_2 \lambda_2 - \eta_2 \int_{0}^{1} H_2(t, v) dt - \int_{0}^{1} F(t, v) dt.
\]
Lemma 2.10. Let $w = (v, \eta_1, \eta_2) \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2)$ be a gradient flow line of \mathcal{A}_{H_1, H_2} with asymptotic ends $w_- = (v_-, \eta_1, \eta_2)$ and $w_+ = (v_+, \eta_1, \eta_2)$. Then the action values of \mathcal{A}_1 and \mathcal{A}_2 are bounded along w in terms of the asymptotic data:

(i) $\mathcal{A}_1(w(s)) \leq 2|\mathcal{A}_1(w_-)| + |\mathcal{A}_1(w_+)| + 4||F_2||_+, \ \forall s \in \mathbb{R}$.

(ii) $\mathcal{A}_2(w(s)) \leq 2|\mathcal{A}_2(w_-)| + |\mathcal{A}_2(w_+)| + 4||F_1||_+, \ \forall s \in \mathbb{R}$.

Proof. We only show the first inequality, the later one is proved in a similar way. Since it holds that $\pi_1 X_F = X_{F_1}$, $\pi_2 X_F = X_{F_2}$, and $i_{X_{H_2}} \pi_1 \omega_1 = 0$, we compute

$$
\frac{d}{ds} \mathcal{A}_1(w(s)) = d\mathcal{A}_1(w(s)) |\partial_s w(s)|
$$

$$
= \int_0^1 \pi^*_1 \omega_1 (\partial_t v, \partial_s v) - \int_0^1 \omega_1 \oplus \omega_2 (\eta_1 X_{H_1}(t, v) + X_F(t, v), \partial_s v)
$$

$$
- \left(\int_0^1 \bar{H}_1(t, v) dt \right)^2
$$

$$
= \int_0^1 \pi^*_1 \omega_1 (\partial_t v - \eta_1 X_{H_1}(t, v) - X_F(t, v), \partial_s v) dt
$$

$$
- \int_0^1 \pi^*_2 \omega_2 (X_F(t, v), \partial_s v) dt - \left(\int_0^1 \bar{H}_1(t, v) dt \right)^2
$$

$$
= - \int_0^1 \pi^*_1 \omega_1 (\partial_s v, J \partial_s v) dt - \int_0^1 \frac{d}{ds} F_2(t, \pi_2 \circ v) dt - \left(\int_0^1 \bar{H}_1(t, v) dt \right)^2.
$$

Integrating the above equality from $-\infty$ to any $s_0 \in \mathbb{R}$, we have

$$
\mathcal{A}_1(w(s_0)) - \mathcal{A}_1(w_-) = \int_{-\infty}^{s_0} \frac{d}{ds} \mathcal{A}_1(w(s)) ds
$$

$$
= - \int_{-\infty}^{s_0} \int_0^1 \pi^*_1 \omega_1 (\partial_s v, J \partial_s v) dt ds
$$

$$
- \int_{-\infty}^{s_0} \int_0^1 \frac{d}{ds} F_2(t, \pi_2 \circ v) dt ds - \int_{-\infty}^{s_0} \left(\int_0^1 \bar{H}_1(t, v) dt \right)^2 ds
$$

$$
= - \int_{-\infty}^{s_0} \mathcal{B}(s) ds - \int_0^1 F_2(t, \pi_2 \circ v(s_0)) - F_2(t, \pi_2 \circ v_-) dt.
$$

where $\mathcal{B}(s)$ is defined as

$$
\mathcal{B}(s) := \int_0^1 \pi^*_1 \omega_1 (\partial_s v, J \partial_s v) dt + \left(\int_0^1 \bar{H}_1(t, v) dt \right)^2.
$$

Therefore the following estimate can be derived for any $s_0 \in \mathbb{R}$

$$
|\mathcal{A}_1(w(s_0))| \leq |\mathcal{A}_1(w_+)| + 2||F_2||_+ + \left| \int_{-\infty}^{s_0} \mathcal{B}(s) ds \right|,
$$

and it remains to find a bound for $\left| \int_{-\infty}^{s_0} \mathcal{B}(s) ds \right|$. Since $\mathcal{B}(s)$ is nonnegative, we are able to estimate as the following. By setting $s_0 = \infty$ in formula (2.6), we have

$$
\mathcal{A}_1(w_+) - \mathcal{A}_1(w_-) = - \int_{-\infty}^{s_0} \mathcal{B}(s) ds - \int_0^1 F_2(t, \pi_2 \circ v_+) - F_2(t, \pi_2 \circ v_-) dt
$$
Using the above formula, we obtain
\[\left| \int_{-\infty}^{s_0} B(s)ds \right| \leq \left| \int_{-\infty}^{\infty} B(s)ds \right| \]
\[\leq |A_1(w_+)| + |A_1(w_-)| + 2\|F_2\|_+. \]
Thus we finally deduce
\[|A_1(w(s_0))| \leq |A_1(w_+)| + 2|A_1(w_-)| + 4\|F_2\|_+, \quad \forall s_0 \in \mathbb{R}. \]

Once we have Lemma 2.10, the rest of the proof of Theorem 2.9 is quite similar as in [1].

Lemma 2.11. Given a gradient flow line \(w(s) = (v, \eta_1, \eta_2)(s) \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \) of \(\tilde{A}_F^H, \tilde{A}_H \), assume that \(v(t) \in U_\delta := \tilde{G}_1^{-1}(-\delta, \delta) \cap \tilde{G}_2^{-1}(-\delta, \delta) \) for all \(t \in (1/2, 1) \) with \(0 < 2\delta < \min\{1, \delta_0\} \). Then there exists \(C_i > 0 \) satisfying
\[|\eta_i| \leq C_i \left(|A_i(v, \eta)| + \|\nabla_m A_F^H, \tilde{A}_H\|_{m+1} \right), \quad i = 1, 2. \]

Proof. We estimate
\[|A_i(v, \eta_1, \eta_2)| = \left| \int_0^1 v^* \pi^*_i \lambda_i + \eta_i \int_0^1 \tilde{H}_i(t, v)dt + \int_0^1 F(t, v)dt \right| \]
\[\geq |\eta_i \int_0^1 \pi^*_i \lambda_i(v)(X_{\tilde{H}_i}(t, v))dt| - \left| \int_0^1 \pi^*_i \lambda_i(v)(X_{F}(t, v))dt \right| - |\eta_i \int_0^1 \tilde{H}_i(t, v)dt| \]
\[- \left| \int_0^1 F(t, v)dt \right| - \left| \int_0^1 \pi^*_i \lambda_i(v)(\partial_t v - \eta_1 X_{\tilde{H}_1}(t, v) - \eta_2 X_{\tilde{H}_2}(t, v) - X_F(t, v))dt \right| \]
\[\geq |\eta_i| - |\eta_i| - C_i,\delta ||\nabla_m A_F^H, \tilde{A}_H||_m \geq C_i,\delta \]
where \(C_i,\delta := ||\pi^*_i \lambda_i||_{L^\infty} \) and \(C_i,\delta, F := ||F||_{L^\infty} + C_i ||X_F||_{L^\infty} \). The second inequality holds since \(\pi_i \lambda_i(X_{\tilde{H}_i}) = 0 \) if \(i \neq j \). This estimate finishes the lemma with
\[C_i := \max \left\{ \frac{1}{1 - \delta}, \frac{C_i,\delta}{1 - \delta} \right\}, \quad i = 1, 2. \]

Lemma 2.12. Given a gradient flow line \(w(s) = (v, \eta_1, \eta_2)(s) \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \) of \(A_F^H, A_H \), if there exists \(t \in (1/2, 1) \) such that \(v(t) \notin U_\delta \) then \(\|\nabla_m A_F^H, A_H^2(v, \eta_1, \eta_2)\|_m > \epsilon \) for some \(\epsilon = \epsilon_\delta \).

Proof. Since \(v(t) \notin U_\delta \) for some \(t \in (1/2, 1) \), either \(v(t) \notin U_\delta^1 := \tilde{G}_1^{-1}(-\delta, \delta) \) or \(v(t) \notin U_\delta^2 := \tilde{G}_2^{-1}(-\delta, \delta) \) for that \(t \in (1/2, 1) \). For simplicity, suppose \(v(t) \notin U_\delta^1 \). If in addition \(v(t) \notin U_\delta^1 \), then we easily conclude that
\[\|\nabla_m A_F^H, A_H^2(v, \eta_1, \eta_2)\|_m \geq \left| \int_0^1 \tilde{H}_1(t, v(t))dt \right| \]
\[\geq \frac{\delta}{2}. \]
Otherwise there is \(t' \in (1/2, 1) \) such that \(v(t') \in U_\delta^1 \). Thus there exist \(t_0, t_1 \in (1/2, 1) \) satisfying one of the following two cases.
\[v(t_0) \in \partial U_\delta^1, \quad v(t_1) \in \partial U_\delta^1 \quad \text{and} \quad v(s) \in U_\delta^1 \cup U_\delta^2 \quad \text{for all} \quad s \in [t_0, t_1] \] (2.7)
or
\[v(t_1) \in \partial U^1_\delta, \quad v(t_0) \in \partial U^1_{\delta/2} \quad \text{and} \quad v(s) \in U^1_\delta - U^1_{\delta/2} \quad \text{for all} \ s \in [t_1, t_0]. \]

We only treat the first case (2.7) and the second case follows analogously. With
\[\kappa := \max_{x \in U_\delta} ||\nabla_g \tilde{G}_1(x)||_g \]
we estimate
\[
\kappa ||\nabla_m A_{F, \tilde{R}_1, \tilde{R}_2}(v, \eta_1, \eta_2)||_m \\
\geq \kappa ||\partial_t v - \eta_1 X_{\tilde{R}_1}(t, v) - \eta_2 X_{\tilde{R}_2}(t, v) - X_F(t, v)||_{L^2} \\
\geq \kappa ||\partial_t v - \eta_1 X_{\tilde{R}_1}(t, v) - \eta_2 X_{\tilde{R}_2}(t, v) - X_F(t, v)||_{L^1} \\
\geq \int_{t_0}^{t_1} ||\partial_t v - \eta_1 X_{\tilde{R}_1}(t, v) - \eta_2 X_{\tilde{R}_2}(t, v) - X_F(t, v)||_g \cdot ||\nabla \tilde{G}_1(x)||_g dt \\
\geq \int_{t_0}^{t_1} \langle \nabla \tilde{G}_1(v(t)), \partial_t v - \eta_1 X_{\tilde{R}_1}(t, v) - \eta_2 X_{\tilde{R}_2}(t, v) - X_F(t, v) \rangle dt \\
= \int_{t_0}^{t_1} d \tilde{G}_1(v(t)) \left(\partial_t v - \eta_1 X_{\tilde{R}_1}(t, v) - \eta_2 X_{\tilde{R}_2}(t, v) - X_F(t, v) \right) dt \\
= \int_{t_0}^{t_1} \frac{d}{dt} \tilde{G}_1(v(t)) dt - d \tilde{G}_1(v(t)) \left(\eta_1 X_{\tilde{R}_1}(t, v) - \eta_2 X_{\tilde{R}_2}(t, v) \right) \\
= \eta_1 \chi \omega(X_{\tilde{R}_1}, X_{\tilde{R}_2}) + \eta_2 \chi \omega(X_{\tilde{R}_1}, X_{\tilde{R}_2}) = 0 \\
\geq |\tilde{G}_1(v(t_1))| - |\tilde{G}_1(v(t_0))| \\
= \frac{\delta}{2}
\]

Hence, the lemma follows with \(\epsilon_\delta := \min\{\delta/2, \delta/(2\kappa)\} \).

\[\square \]

Combining Lemma 2.11 and Lemma 2.12, we deduce the following fundamental lemma.

Lemma 2.13. For a gradient flow line \(w(s) = (v, \eta_1, \eta_2)(s) \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \) of \(A_{F, \tilde{R}_1, \tilde{R}_2} \), the following assertion holds for \(i = 1, 2 \) with some \(C, \epsilon > 0 \).

\[|\eta_i| \leq C(|A_i(w_-)| + |A_i(w_+)| + 1) \quad \text{if} \quad ||\nabla_m A_{F, \tilde{R}_1, \tilde{R}_2}(v, \eta_1, \eta_2)||_m < \epsilon. \]

Proof. According to Lemma 2.12, \(v(t) \) lies in \(U_\delta \) for all \(t \in (\frac{1}{2}, 1) \) under the assumption that \(||\nabla_m A_{F, \tilde{R}_1, \tilde{R}_2}(v, \eta_1, \eta_2)||_m < \epsilon \). Thus we are able to apply Lemma 2.11 and the following computation concludes the proof of the lemma.

\[|\eta_i| \leq C_i(|A_i(v, \eta_1, \eta_2)| + ||\nabla_m A_{F, \tilde{R}_1, \tilde{R}_2}(v, \eta_1, \eta_2)||_m + 1) \\
\leq C_i(2|A_i(w_-)| + |A_i(w_+)| + 4||F_2||_+ + ||\nabla_m A_{F, \tilde{R}_1, \tilde{R}_2}(v, \eta_1, \eta_2)||_m + 1) \\
\leq C_i(2|A_i(w_-)| + |A_i(w_+)| + 4||F_2||_+ + 1 + \epsilon). \]

\[\square \]
Lemma 2.14. For given a gradient flow line w of $A^{	ilde{H}_1, \tilde{H}_2}$ and $\sigma \in \mathbb{R}$, we define

$$\tau(\sigma) := \inf \{ \tau \geq 0 \mid \| \nabla_m A^{	ilde{H}_1, \tilde{H}_2}(w(\sigma + \tau)) \|_m \leq \epsilon \},$$

Then we obtain a bound on $\tau(\sigma)$ as follows:

$$\tau(\sigma) \leq \frac{A^{	ilde{H}_1, \tilde{H}_2}(w_-) - A^{	ilde{H}_1, \tilde{H}_2}(w_+)}{\epsilon^2}.$$

Proof. Using Lemma 2.8, we compute

$$\epsilon^2 \tau(\sigma) \leq \int_{\sigma}^{\sigma + \tau(\sigma)} \| \nabla_m A^{	ilde{H}_1, \tilde{H}_2}(w) \|_m^2 ds \leq E(w) \leq A^{	ilde{H}_1, \tilde{H}_2}(w_-) - A^{	ilde{H}_1, \tilde{H}_2}(w_+).$$

Dividing both sides through by ϵ^2, the lemma follows.

\[\square \]

Theorem 2.15. Given two critical points w_- and w_+, there exists a constant $\Theta > 0$ depending only on w_- and w_+ such that every gradient flow line $w(s) = (v, \eta_1, \eta_2)(s)$ of $A^{	ilde{H}_1, \tilde{H}_2}$ with fixed asymptotic ends w_\pm satisfies

$$\| \eta_i \|_{L^\infty} \leq \Theta \quad \text{for } i = 1, 2.$$

Proof. Using Lemma 2.10 and Lemma 2.14, we estimate

$$|\eta_i(\sigma)| \leq |\eta_i(\sigma + \tau(\sigma))| + \int_{\sigma}^{\sigma + \tau(\sigma)} |\partial_s \eta_i(s)| ds \leq C(|A_i(w_-)| + |A_i(w_+)| + 1) + \tau(\sigma)\|\tilde{H}_i\|_{L^\infty} \leq C\left(|A_i(w_-)| + |A_i(w_+)| + 1 + \left(\frac{A^{	ilde{H}_1, \tilde{H}_2}(w_-) - A^{	ilde{H}_1, \tilde{H}_2}(w_+)}{\epsilon^2} \right) \|\tilde{H}_i\|_{L^\infty} \right).$$

As we mentioned before, Theorem 2.15 completes the proof of Theorem 2.9.

3. Künneth Formula in Rabinowitz Floer Homology

Thanks to the previous section, we are now able to define Rabinowitz Floer homology of $(\Sigma_1 \times \Sigma_2, M_1 \times M_2)$ for admissible perturbations of the form $F_1 \oplus F_2$ (or unperturbed). Whilst $A_{\tilde{H}_1, \tilde{H}_2}$ is generically Morse (Lemma 4.7), A^{H_1, H_2} is never Morse because there is a S^1-symmetry coming from time-shift on the critical point set. However $A_{\tilde{H}_1, \tilde{H}_2}$ is generically Morse-Bott, so we are able to compute its Floer homology by choosing an auxiliary Morse function on the critical manifold and counting gradient flow lines with cascades, see [18, 13].

Using the continuation method in Floer theory, we know that the Floer homology of $A_{\tilde{H}_1, \tilde{H}_2}$ is isomorphic to the Floer homology of $A_{\tilde{H}_1, \tilde{H}_2} = A_{0, \tilde{H}_2}$ whenever these Floer homologies are defined. Thus we only treat the unperturbed Rabinowitz action functional $A_{\tilde{H}_1, \tilde{H}_2}$ and its Floer homology. Furthermore, we derive the Künneth formula by making use of the fact that all critical points and gradient flow lines can be split. In the last subsection, we prove Theorem B using similar steps to those in the proof of Theorem A; but we need to prove a
special version of an isoperimetric inequality (Lemma 3.2) since unlike Theorem A, we have not insisted on any restrictions on perturbations in Theorem B.

3.1. Rabinowitz Floer homology

Firstly, we define a chain complex and a boundary operator for the Rabinowitz action functional. In order to define a chain complex we choose an additional Morse function f on the critical manifold $\text{Crit}\, A^{\tilde{H}_1, \tilde{H}_2}$. We define a $\mathbb{Z}/2$-Floer chain complex

$$\text{CF}_n(A^{\tilde{H}_1, \tilde{H}_2}, f) := \left\{ \xi = \sum_{(v, \eta_1, \eta_2)} \xi(v, \eta_1, \eta_2)(v, \eta_1, \eta_2) \bigg| (v, \eta_1, \eta_2) \in \text{Crit}_n f, \, \xi(v, \eta_1, \eta_2) \in \mathbb{Z}/2 \right\}$$

where $\xi(v, \eta_1, \eta_2)$ satisfy the finiteness condition:

$$\# \left\{ (v, \eta_1, \eta_2) \in \text{Crit}_n f \mid \xi(v, \eta_1, \eta_2) \neq 0, \, A^{\tilde{H}_1, \tilde{H}_2}(v, \eta_1, \eta_2) \geq \kappa \right\} < \infty, \quad \forall \kappa \in \mathbb{R}.$$

The grading for the chain complex, $\mu = \mu_{\text{RFH}}$, is described in the appendix of this paper.

To define the boundary operator, we roughly explain the notion of a gradient flow line with cascades. For rigorous and explicit constructions, we refer to [18]. Consider a gradient flow line with cascades interchanging $w_- \subset C^-$ and $w_+ \subset C^+$ where $w_\pm \subset \text{Crit} f$ and $C^\pm \subset \text{Crit} A^{\tilde{H}_1, \tilde{H}_2}$; it starts with a gradient flow line of f in C^- with the negative asymptotic end w_- and meets the negative asymptotic ends of a gradient flow line of $A^{\tilde{H}_1, \tilde{H}_2}$ (solving (2.4) with $F \equiv 0$). We refer to this gradient flow line as a cascade. Its positive asymptotic end encounters a gradient flow line of f in C^+ which converges to w_+. Several cascades and no cascades are also allowed. Now, we define a moduli space

$$\tilde{M}\{w_-, w_+\} := \left\{ w \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}^2) \mid w \text{ is a gradient flow line with cascades with } \lim_{s \to \pm \infty} w(s) = w_\pm \in \text{Crit} f \right\}$$

and divide out the \mathbb{R}-action from shifting the gradient flow lines in the s-variable. Then we obtain the moduli space of unparametrized gradient flow lines, denoted by

$$\mathcal{M} := \tilde{M}/\mathbb{R}.$$

The standard transversality theory shows that this moduli space is a smooth manifold for a generic choice of the almost complex structure and the metric, see [19, 12]. From the calculation (5.1) in the appendix, we also know that the dimension of \mathcal{M} is equal to $\mu_{\text{RFH}}(w_-) - \mu_{\text{RFH}}(w_+) - 1$. Therefore if $\mu_{\text{RFH}}(w_-) - \mu_{\text{RFH}}(w_+) = 1$, $\mathcal{M}(w_-, w_+)$ is a finite set because of Theorem 2.9. We let $\#_2\mathcal{M}(w_-, w_+)$ be the parity of this moduli space. We define the boundary maps $\{\partial^{\tilde{H}_1, \tilde{H}_2}_n\}_{n \in \mathbb{Z}}$ as follows:

$$\partial^{\tilde{H}_1, \tilde{H}_2}_{n+1} : \text{CF}_{n+1}(A^{\tilde{H}_1, \tilde{H}_2}) \to \text{CF}_n(A^{\tilde{H}_1, \tilde{H}_2})$$

$$w_- \longrightarrow \sum_{w_+ \in \text{Crit}_n f} \#_2\mathcal{M}(w_-, w_+)w_+.$$

Due to the Floer’s central theorem, we know that $\partial^{\tilde{H}_1, \tilde{H}_2}_n \circ \partial^{\tilde{H}_1, \tilde{H}_2}_{n+1} = 0$ so that $(\text{CF}_*, (A^{\tilde{H}_1, \tilde{H}_2}), \partial^{\tilde{H}_1, \tilde{H}_2}_*)$ is a chain complex. We define Rabinowitz Floer homology by

$$\text{RFH}_n(\Sigma_1 \times \Sigma_2, M_1 \times M_2) := \text{HF}_n(A^{\tilde{H}_1, \tilde{H}_2}) = H_n(\text{CF}_*, (A^{\tilde{H}_1, \tilde{H}_2}), \partial^{\tilde{H}_1, \tilde{H}_2}_*)$$.
Remark 3.1. Since in the previous section, we achieved the compactness result for $\mathcal{A}_{F_{1} \oplus F_{2}}$, the Floer homology $\text{HF}_{n}(\mathcal{A}_{F_{1} \oplus F_{2}})$ can be defined; besides, it is isomorphic to $\text{RFH}_{n}(\Sigma_{1} \times \Sigma_{2}, M_{1} \times M_{2})$ by the continuation homomorphism which counts gradient flow lines of $\mathcal{A}_{F_{s}}$, where F_{s} is a homotopy between $F_{1} \oplus F_{2}$ and $F \equiv 0$.

3.2. Proof of Theorem A. At first, we set

$$H_{1}(t, x_{1}) = \chi(t)G_{1}(x_{1}) \in C^{\infty}(S^{1} \times M_{1}), \quad H_{2}(t, x_{2}) = \chi(t)G_{2}(x_{2}) \in C^{\infty}(S^{1} \times M_{2})$$

where $\chi : S^{1} \rightarrow [0, \infty)$ with $\int_{0}^{1} \chi dt = 1$ and Supp$\chi \subset (\frac{1}{2}, 1)$; it is clear that

$$(\pi_{i}), X_{H_{i}}(x_{1}, x_{2}) = X_{H_{i}}(x_{i}), \quad i = 1, 2.$$

We consider the Rabinowitz action functionals $\mathcal{A}^{H_{1}} : \mathcal{L}_{M_{1}} \times \mathbb{R} \rightarrow \mathbb{R}$ and $\mathcal{A}^{H_{2}} : \mathcal{L}_{M_{2}} \times \mathbb{R} \rightarrow \mathbb{R}$:

- $\mathcal{A}^{H_{1}}(v_{1}, \eta_{1}) = -\int_{0}^{1} v_{1}^{*}\lambda_{1} - \eta_{1} \int_{0}^{1} H_{1}(t, v_{1}) dt,$
- $\mathcal{A}^{H_{2}}(v_{2}, \eta_{2}) = -\int_{0}^{1} v_{2}^{*}\lambda_{2} - \eta_{2} \int_{0}^{1} H_{2}(t, v_{2}) dt.$

In fact, we can accomplish compactness of gradient flow lines of each action functional with minor modifications of our case, or see [1]. We observe that $(v_{1}, \eta_{1}) \in \text{Crit}\mathcal{A}^{H_{1}}$ solves

$$\partial_{t}v_{1} = \eta_{1}X_{H_{1}}(t, v_{1}) \quad \& \quad \int_{0}^{1} H_{1}(t, v_{1}) dt = 0,$$

and $(v_{2}, \eta_{2}) \in \text{Crit}\mathcal{A}^{H_{2}}$ solves

$$\partial_{t}v_{2} = \eta_{2}X_{H_{2}}(t, v_{2}) \quad \& \quad \int_{0}^{1} H_{2}(t, v_{2}) dt = 0.$$

Moreover a gradient flow line $w_{1}(s, t) = (v_{1}(s, t), \eta_{1}(s)) : \mathbb{R} \times S^{1} \rightarrow M_{1} \times \mathbb{R}$ resp. $w_{2}(s, t) = (v_{2}(s, t), \eta_{2}(s)) : \mathbb{R} \times S^{1} \rightarrow M_{2} \times \mathbb{R}$ is characterized by

- $\partial_{s}v_{1} + J_{1}(v_{1})(\partial_{t}v_{1} - \eta_{1}X_{H_{1}}(t, v_{1})) = 0, \quad \partial_{s}\eta_{1} - \int_{0}^{1} H_{1}(t, v_{1}) dt = 0,$
- $\partial_{s}v_{2} + J_{2}(v_{2})(\partial_{t}v_{2} - \eta_{2}X_{H_{2}}(t, v_{2})) = 0, \quad \partial_{s}\eta_{2} - \int_{0}^{1} H_{2}(t, v_{2}) dt = 0.$

Then we define chain complexes $\text{CF}(\mathcal{A}^{H_{1}})$, $\text{CF}(\mathcal{A}^{H_{2}})$ and their boundary operators $\partial^{H_{1}}$, $\partial^{H_{2}}$ analogously as before, or see [1] and denote their Floer homologies by

$$\text{RFH}(\Sigma_{1}, M_{1}) = \text{H}(\text{CF}(\mathcal{A}^{H_{1}}), \partial^{H_{1}}), \quad \text{RFH}(\Sigma_{2}, M_{2}) = \text{H}(\text{CF}(\mathcal{A}^{H_{2}}), \partial^{H_{2}}).$$

Next, for the Küneth formula, we define the tensor product of chain complexes by

$$\left(\text{CF}_{*}(\mathcal{A}^{H_{1}}) \otimes \text{CF}_{*}(\mathcal{A}^{H_{2}})\right)_{n} = \bigoplus_{i=0}^{n} \text{CF}_{i}(\mathcal{A}^{H_{1}}) \otimes \text{CF}_{n-i}(\mathcal{A}^{H_{2}}),$$

together with the boundary operator $\partial^{H_{1}}_{n}$ given by

$$\partial^{H_{1}}_{n}((v_{1}, \eta_{1})_{i} \otimes (v_{2}, \eta_{2})_{n-i}) = \partial^{H_{1}}_{i}(v_{1}, \eta_{1})_{i} \otimes (v_{2}, \eta_{2})_{n-i} + (v_{1}, \eta_{1})_{i} \otimes \partial^{H_{2}}_{n-i}(v_{2}, \eta_{2})_{n-i}.$$

Analyzing the critical point equations (2.2) when $F \equiv 0$, (3.1), and (3.2), we easily notice that $((v_{1}, v_{2}), \eta_{1}, \eta_{2}) = (v, \eta_{1}, \eta_{2}) \in \text{Crit}\mathcal{A}^{H_{1}, H_{2}}$ if and only if $(v_{1}, \eta_{1}) \in \text{Crit}\mathcal{A}^{H_{1}}$ and $(v_{2}, \eta_{2}) \in \text{Crit}\mathcal{A}^{H_{2}}$.

To verify that

Moreover the index behaves additively (see (5.2)), thus we have

and we are able to define a chain homomorphism:

To verify that P_n is a chain homomorphism, we need to show that

For $w_1^- = (v_1^-, \eta_1^-) \in \operatorname{Crit}A^{H_1}$ and $w_2^- = (v_2^-, \eta_2^-) \in \operatorname{Crit}A^{H_2}$, we compute

where $\mathcal{M}\{w_1^- , w_1^+\}$ resp. $\mathcal{M}\{w_2^- , w_2^+\}$ is the moduli space which consists of gradient flow lines with cascades of A^{H_1} resp. A^{H_2}. The fourth equality follows by comparing (2.4) together with (3.3). Therefore we have an isomorphism

$$(P^\bullet)_* : H^\bullet(\operatorname{CF}(A^{H_1}) \otimes \operatorname{CF}(A^{H_2})) \xrightarrow{\cong} H^\bullet(\operatorname{CF}(A^{\tilde{H}_1, \tilde{H}_2})) = \operatorname{RFH}_\bullet(\Sigma_1 \times \Sigma_2, M_1 \times M_2).$$
Finally, the algebraic Künneth formula enable us to derive the desired (topological) Künneth formula in Rabinowitz Floer homology.

\[\mathrm{RFH}_n(\Sigma_1 \times \Sigma_2, M_1 \times M_2) \cong \bigoplus_{p=0}^{n} \mathrm{RFH}_p(\Sigma_1, M_1) \otimes \mathrm{RFH}_{n-p}(\Sigma_2, M_2). \]

3.3. Proof of Theorem B

In this subsection, we do not consider \(\Sigma_2 \) and let \((M_2, \omega_2) \) be closed and symplectically aspherical, i.e. \(\omega_2 \mid_{\Sigma_2} \). To prove Statement (B1) in Theorem B, we need compactness of gradient flow lines of the perturbed Rabinowitz action functional on \((\Sigma_1 \times M_2, M_1 \times M_2) \) for an arbitrary perturbation \(F \in C_c^\infty(S^1 \times M_1 \times M_2) \). For that reason, we analyze the Rabinowitz action functional again as in Section 4; once we obtain the fundamental lemma, then the remaining steps are exactly same as before. Moreover due to compactness of gradient flow lines, we can find a leafwise intersection point for Hofer-small Hamiltonian diffeomorphisms using the stretching the neck argument in [1]. We assume that \(\Sigma_1 \times M_2 \) bounds a compact region in \(M_1 \times M_2 \) for Statement (B2) in Theorem B throughout this subsection; but, when it comes to the existence of leafwise intersections, \(\Sigma_1 \times M_2 \) need not bound a compact region in \(M_1 \times M_2 \) using the techniques in [23, 24]. As before, we choose a defining Hamiltonian function \(G \in C^\infty(M_1) \) so that

1. \(G^{-1}(0) = \Sigma_1 \) is a regular level set and \(dG \) has a compact support.
2. \(G_t(\phi_{\Psi}(x)) = t \) for all \(x \in \Sigma_1 \), and \(|t| < \delta \).

where \(Y \) is the Liouville vector field for \(\Sigma_1 \subset M_1 \). We define \(\tilde{G} \in C^\infty(M_1 \times M_2) \) by \(\tilde{G}(x_1, x_2) = G(x_1) \). Thus \(\tilde{G} \) is a defining Hamiltonian function for \(\Sigma_1 \times M_2 \). We let \(\tilde{H}(t, x) = \chi(t)\tilde{G}(x) \in C^\infty(S^1 \times M_1 \times M_2) \). With a perturbation \(F \in C_c^\infty(S^1 \times M_1 \times M_2) \), the perturbed Rabinowitz action functional \(\tilde{A}_F^\hat{H} : \mathcal{L} \times \mathbb{R} \to \mathbb{R} \) is given by

\[\tilde{A}_F^\hat{H}(v, \eta) = -\int_{D^2} \hat{v}^* \omega_1 \otimes \omega_2 - \eta \int_0^1 \tilde{H}(t, v) dt - \int_0^1 F(t, v) dt \]

where \(\mathcal{L} = \mathcal{L}^{M_1 \times M_2} \subset C^\infty(S^1 \times M_1 \times M_2) \) is the component of contractible loops in \(M_1 \times M_2 \) and \(\hat{v} : D^2 \to M_1 \times M_2 \) is a filling disk of \(v \). The symplectic asphericity condition implies that the value of the above action functional is independent of the choice of filling disc.

Next, we prove the following lemma using an kind of isoperimetric inequality.

Lemma 3.2. Let \(w(s, t) = (v(s, t), \eta(s)) \in C^\infty(\mathbb{R} \times S^1, M_1 \times M_2) \times C^\infty(\mathbb{R}, \mathbb{R}) \) be a gradient flow line of \(\tilde{A}_F^\hat{H} \). We set \(\gamma(t) = w(s_0, t) \in C^\infty(S^1, M_1 \times M_2) \) for some fixed \(s_0 \in \mathbb{R} \). Then \(\int_{D^2} \hat{g}_2^* \pi_2^* \omega_2 \) is uniformly bounded provided \(\|\nabla_m \tilde{A}_F^\hat{H}(v(s_0, \cdot), \eta(s_0))\|_m < \epsilon \) for some \(\epsilon > 0 \):

\[
\left| \int_{D^2} \hat{g}_2^* \pi_2^* \omega_2 \right| \leq \max_{x \in \hat{M}_2} \left(\|\lambda_\pi M_2(x)\|_{\hat{g}_2} \right) d_{\hat{g}_2}(x, \hat{M}_*) < \epsilon + |X_F|_{L^\infty} \left(\epsilon + |X_F|_{L^\infty} \right).
\]

where \(\hat{M}_2 \) is the universal covering of \(M_2 \); \(\hat{g}_2 \) is the lifting of the metric \(g_2(\cdot, \cdot) = \omega_2(\cdot, \cdot) \) on \(M_2; \hat{M}_* \) is a fundamental domain in \(\hat{M}_2; d_{\hat{g}_2}(x, \hat{M}_*) \) is the distance between \(x \) and \(\hat{M}_* \); the value on the right hand side of (3.4) is finite since \(\hat{M}_* \cong M_2 \) is compact.

Proof. We write \(v(s, t) \) as \(v(s, t) = (v_1, v_2)(s, t) \) where \(v_1 : \mathbb{R} \times S^1 \to M_1 \) and \(v_2 : \mathbb{R} \times S^1 \to M_2 \). Let \(\gamma \in C^\infty(S^1, M_1 \times M_2) \) be defined by \(\gamma(t) = v(s_0, t) \) for some \(s_0 \in \mathbb{R} \). Since \(\gamma \) is contractible and \(M_2 \) is symplectically aspherical, the value of \(\int_{D^2} \hat{g}_2^* \pi_2^* \omega_2 \) is well-defined. Let \(\gamma_2 := \pi_2 \circ \gamma \). We also consider \((\hat{M}_2, \hat{\omega}_2) \) the universal cover of \(M_2 \) where \(\hat{\omega}_2 \) is the lift
of \(\omega_2 \) and we also lift the metric \(g_2 \) on \(M_2 \) which we write as \(\tilde{g}_2 \). Since we have assumed the symplectically asphericity of \((M_2, \omega_2) \), there exists a primitive one form \(\lambda_{\tilde{M}_2} \) of \(\tilde{\omega}_2 \). Let \(\tilde{M}_* (\cong M_2) \) be one of the fundamental domains in \(\tilde{M}_2 \) and \(\tilde{v}(s, t) : \mathbb{R} \times S^1 \to M_1 \times \tilde{M}_2 \) be the lift of \(v \) such that \(\tilde{v}(s_0, t) = \tilde{\gamma}(t) \) intersects \(M_1 \times \tilde{M}_* \). Now, we can show the following kind of isoperimetric inequality. This inequality concludes the proof.

\[
\left| \int_{D^2} \tilde{\gamma}^* \pi_2^* \omega_2 \right| = \left| \int_{D^2} (\tilde{\gamma}_2)^* \tilde{\omega}_2 \right| = \left| \int_0^1 \tilde{\gamma}_2^* \lambda_{\tilde{M}_2} \right|
\leq \| \lambda_{\tilde{M}_2} \|_{\gamma_2(S^1)} \| L^\infty \| \int_0^1 \| d \tilde{\gamma}_2 \|_{\tilde{g}_2} \, dt
\]

\[
= \| \lambda_{\tilde{M}_2} \|_{\gamma_2(S^1)} \| L^\infty \| \int_0^1 \| d \gamma_2 \|_{g_2} \, dt
\]

\[
= \| \lambda_{\tilde{M}_2} \|_{\gamma_2(S^1)} \| L^\infty \| \int_0^1 \| J \partial_s \tilde{\gamma}_2 + \pi_2^* X_F(t, \gamma_2) \|_{g_2} \, dt
\]

\[
\leq \lambda_{\text{Max}} \left(\| \nabla_m A^H_F (v(t, \cdot), \eta(s_0)) \|_m + \| X_F \|_{L^\infty} \right).
\]

where

\[
\lambda_{\text{Max}} := \max_{x \in \tilde{M}_2} \left\{ \| \lambda_{\tilde{M}_2}(x) \|_{\tilde{g}_2} \right\} \quad \text{provided that } \tilde{g}_2(x, \tilde{M}_*) < \int_0^1 \| d \gamma_2 \|_{\tilde{g}_2} \, dt
\]

\[
\leq \max_{x \in \tilde{M}_2} \left\{ \| \lambda_{\tilde{M}_2}(x) \|_{\tilde{g}_2} \right\} \quad \text{where } 0 < 2\delta < \min \{ 1, \delta_0 \}.
\]

The following two lemmas can be proved similarly to the corresponding lemmas in the previous section.

Lemma 3.3. We assume that for \((v, \eta) \in C^\infty(S^1, M_1 \times M_2) \times \mathbb{R} \), \(v(t) \in U_\delta := \tilde{G}^{-1}(\tilde{\gamma} \delta, \delta) \) for all \(t \in (\frac{1}{2}, 1) \) with \(0 < 2\delta < \min \{ 1, \delta_0 \} \). Then there exists \(C > 0 \) satisfying

\[
\| \eta \| \leq C \left(\| A^H_F (v, \eta) \| + \| \nabla_m A^H_F (v, \eta) \|_m + \left| \int_{D^2} \tilde{\gamma}^* \pi_2^* \omega_2 \right| + 1 \right).
\]

Lemma 3.4. For \((v, \eta) \in C^\infty(S^1, M_1 \times M_2) \times \mathbb{R} \) if there exists \(t \in [\frac{1}{2}, 1] \) such that \(v(t) \notin U_\delta \), then \(\| \nabla_m A^H_F (v, \eta) \|_m > \epsilon \) for some \(\epsilon = \epsilon_\delta \).

Due to the three previous lemmata, we deduce the fundamental lemma in the situation of Theorem B, and thus we obtain a uniform \(L^\infty \)-bound on the Lagrange multiplier \(\eta \) by the same argument as in the previous section.

Lemma 3.5. For a gradient flow line \(w(s) = (v, \eta)(s) \in C^\infty(\mathbb{R}, \mathcal{L} \times \mathbb{R}) \), the following assertions holds with some \(C, \epsilon > 0 \). If \(\| \nabla_m A^H_F (v, \eta) \|_m < \epsilon \),

\[
\| \eta \| \leq C \left(\| A^H_F (w_-) \| + \| A^H_F (w_+) \| + \epsilon + \Xi + 1 \right) \quad \text{provided that } \| \nabla_m A^H_F (v, \eta) \|_m < \epsilon
\]

where \(\Xi_\epsilon = \max \{ \| \lambda_{\tilde{M}_2}(x) \|_{\tilde{g}_2} \right\} \quad \text{provided that } \tilde{g}_2(x, \tilde{M}_*) < \int_0^1 \| d \gamma_2 \|_{\tilde{g}_2} \, dt
\]

\[
\leq \max \{ \| \lambda_{\tilde{M}_2}(x) \|_{\tilde{g}_2} \right\} \quad \text{where } 0 < 2\delta < \min \{ 1, \delta_0 \}.
\]

Proof. The proof is almost same as the proof of Lemma 2.13. Since \(\| \nabla_m A^H_F (v, \eta) \|_m < \epsilon \), \(v(t) \subset U_\delta \) for \(t \in (\frac{1}{2}, 1) \) by Lemma 3.4. Thus Lemma 3.2 and Lemma 3.3 prove the lemma. \(\Box \)
This fundamental lemma proves compactness of gradient flow lines as before. Let \(\phi \in \text{Ham}_c(M_1 \times M_2, \omega_1 \oplus \omega_2) \) be a Hamiltonian diffeomorphism with the Hofer norm less than \(\varphi(\Sigma_1, \lambda_1) \). We consider a moduli space of gradient flow lines of the Rabinowitz action functional perturbed by a special smooth family of Hamiltonian functions. Then in the boundary of this moduli space, there is a broken gradient flow line of which one asymptotic end gives rise to either a leafwise intersection point of \(\phi \) or a closed Reeb orbit with period less than \(||\phi|| \). But since \(||\phi|| < \varphi(\Sigma_1, \lambda_1) \), there is no such a closed Reeb orbit and hence we obtain a leafwise intersection point. This is so called the stretching the neck argument, see [1, 24]. Even further, there exists a leafwise intersection point even if \(\Sigma_1 \times M_2 \) does not bound a compact region in \(M_1 \times M_2 \) due to the arguments in [23, 24]. Next, we define the Rabinowitz Floer homology for \((\Sigma_1 \times M_2, M_1 \times M_2) \) in the same way as before and derive the Künneth formula in this situation. First of all, we consider another two action functionals \(\mathcal{A}^H : \mathcal{L}_{M_2} \to \mathbb{R} \) and \(\mathcal{A} : \mathcal{L}_{M_2} \to \mathbb{R} \) defined by

\[
\mathcal{A}^H(v_1, \eta) := -\int_0^1 v_1^* \lambda_1 - \eta \int_0^1 H(t, v)dt, \quad \mathcal{A}(v_2) := -\int_{D^2} \bar{v}_2^* \omega_2.
\]

where \(H(t, x) = \chi(t)G(x) \in C^\infty(S^1 \times M_1) \). We note that \(\mathcal{A}^\tilde{H} \) is defined on \(\mathcal{L}_{M_1 \times M_2} \times \mathbb{R} \).

As in the proof of Theorem A, we compare critical points of \(\mathcal{A}^\tilde{H} \) and \(\mathcal{A}^H \) as follows.

\[
\text{Crit}_n(\mathcal{A}^\tilde{H}) = \bigcup_{i+j=n} \text{Crit}_i(\mathcal{A}^H) \times \text{Crit}_j(\mathcal{A}).
\]

Since \(\text{Crit}_A \) consists of one component \(M_2 \), any gradient flow line with cascades of \(\mathcal{A} \) necessarily has zero cascades, and hence is simply a gradient flow line of an additional Morse function \(f \in C^\infty(M_2) \). Thus the chain group for the Morse-Bott homology of \(\mathcal{A} \) is given by \(\text{CF}(\mathcal{A}, f) = \text{CM}(f) \). Here \(\text{CM} \) stands for the Morse complex. The following map is a chain isomorphism, which can be verified using the methods of the previous subsection.

\[
P_n : (\text{CF}_*(\mathcal{A}^H) \otimes \text{CM}_*(f))_n \to \text{CF}_n(\mathcal{A}^\tilde{H}),
\]

\[
(v_1, \eta) \otimes v_2 \mapsto ((v_1, v_2), \eta).
\]

Therefore it induces an isomorphism on the homology level:

\[
(P_\bullet)_* : H_\bullet(\text{CF}(\mathcal{A}^H) \otimes \text{CM}(f)) \xrightarrow{\cong} H_\bullet(\text{CF}(\mathcal{A}^\tilde{H})) = \text{RFH}_\bullet(\Sigma_1 \times M_2, M_1 \times M_2).
\]

Finally, the Künneth formula for \((\Sigma_1 \times M_2, M_1 \times M_2) \) directly follows:

\[
\text{RFH}_n(\Sigma_1 \times M_2, M_1 \times M_2) \cong \bigoplus_{p=0}^n \text{RFH}_p(\Sigma_1, M_1) \otimes H_{n-p}(M_2).
\]

4. Applications

As we have mentioned in the introduction, we cannot achieve compactness of gradient flow lines of \(\mathcal{A}^H_{F_1, F_2} \) for an arbitrary perturbation \(F \). For that reason, the existence problem of leafwise intersection points for a product submanifold which is not of contact type is still open. On the other hand, the existence of leafwise intersection points for contact coisotropic submanifolds was already proved in [21, 24]. Furthermore, due to the Künneth formula, we can deduce the existence of infinitely many leafwise intersection points for some kind of product submanifolds of contact type. First, we recall the notion of contact condition on coisotropic submanifolds introduced by Bolle [10, 11].
Definition 4.1. A coisotropic submanifold \(\Sigma \) of codimension \(k \) in a symplectic manifold \((M, \omega) \) is called of restricted contact type if there exist global one forms \(\lambda_1, \ldots, \lambda_k \in \Omega^1(M) \) which satisfy

1. \(d\lambda_i = \omega \) for \(i = 1, \ldots, k; \)
2. \(\lambda_1 \wedge \cdots \wedge \lambda_k \wedge \omega^{n-k}|_\Sigma \neq 0. \)

Remark 4.2. \([11, 20]\) Let \(\Sigma \) be closed and have contact type in \(M \). Then a one form \(\lambda = a_1 \lambda_1 + \cdots + a_k \lambda_k \) with \(a_1 + \cdots + a_k = 0 \) is closed and hence defines an element of \(H^1_{dR}(\Sigma) \). In addition, \(\lambda \neq 0 \) is not exact; otherwise \(\lambda = df \) for some \(f \in C^\infty(\Sigma) \), and hence \(\lambda(x) = 0 \) at a critical point \(x \) of \(f \), but condition (ii) yields that \(\lambda_1, \ldots, \lambda_k \) are linearly independent on \(\Sigma \); thus \(\lambda_1(x) = \cdots = \lambda_k(x) = 0 \). As a result, \(\dim H^1_{dR}(\Sigma) \geq k - 1 \). It imposes restrictions on the contact condition; for instance, \(S^3 \times S^3 \) is not of contact type in \(\mathbb{R}^8 \).

We note that if the codimension of \(\Sigma \) is bigger than one, \(\Sigma \) never bounds a compact region in \(M \). In spite of such a dimension problem, the condition that global coordinates exist (roughly speaking, Poisson-commuting Hamiltonian functions whose common zero locus is only \(\Sigma \)) enable us to unfold the generalized Rabinowitz Floer homology theory \([24]\). It turns out that a product of contact hypersurfaces bounding respective ambient symplectic manifolds has global coordinates.

Theorem 4.3. \([24]\) If \(\Sigma \) is a contact coisotropic submanifold of \(M \) which admits global coordinates, then the Floer homology of the perturbed Rabinowitz action functional is well-defined.

Since the Rabinowitz action functional can be defined for each homotopy classes of loops, we can define the Rabinowitz Floer homology \(\text{RFH}(\Sigma, M, \gamma) \) for \(\gamma \in [S^1, M] \). We note that the \(\text{RFH}(\Sigma, M) \) considered so far, is equal to \(\text{RFH}(\Sigma, M, \text{pt}) \). Moreover we also define Rabinowitz Floer homology on the full loop space and denote it by \(\text{RFH}(\Sigma, M) \). Then we have

\[
\text{RFH}_*(\Sigma, M) = \bigoplus_{\gamma \in [S^1, M]} \text{RFH}_*(\Sigma, M, \gamma).
\]

We recall the computation of Rabinowitz Floer homology on the (unit) cotangent bundle \((S^*N, T^*N) \) for a closed Riemannian manifold \(N \).

Theorem 4.4. \([14, 8, 25]\)

\[
\text{RFH}_*(S^*N, T^*N) \cong \begin{cases} H_*(\Lambda N), & * > 1, \\
H^{-*+1}(\Lambda N), & * < 0.
\end{cases}
\]

Here \(\Lambda N \) stands for the free loop space of \(N \).

Since the Künneth formula obviously holds for \(\text{RFH} \) also, the following corollary directly follows.

Corollary 4.5. If \(\text{RFH}_*(\Sigma_1, M_1) \neq 0 \), and \(\dim H_*(\Lambda N) = \infty \) then

\[
\dim \text{RFH}_*(\Sigma_1 \times S^*N, M_1 \times T^*N) = \infty.
\]

Accordingly, if \(\Sigma_1 \times S^*N \) has contact type again, \(\Sigma_1 \times S^*N \) has infinitely many leafwise intersection points or a periodic leafwise intersections for a generic perturbation.
4.1. Proof of Corollary A and B. From now on, we investigate leafwise intersections on $(S^*S^1 \times S^*N, T^*S^1 \times T^*N)$.

Lemma 4.6. $S^*S^1 \times S^*N$ is a contact submanifold of codimension two in $T^*S^1 \times T^*N$.

Proof. $(T^*S^1, \omega_{S^1, \text{can}}) \cong (S^1 \times \mathbb{R}, d\theta \wedge dr)$ where θ is the angular coordinate on S^1 and r is the coordinate on \mathbb{R}. Then $d\theta \wedge dr$ has two global primitives $-rd\theta$ and $-d\theta + d\theta$. We can easily check that $S^*S^1 \times S^*N$ carries a contact structure with $-rd\theta \oplus \lambda_{\text{can}}$ and $(-rd\theta + d\theta) \oplus \lambda_{\text{can}}$ where λ_{can} is the canonical one form on T^*N.

To exclude periodic leafwise intersections, we consider the loop space Ω defined by

$$\Omega := \{ v = (v_1, v_2) \in C^\infty(S^1, T^*S^1 \times T^*N) \mid v_1 \text{ is contractible in } T^*S^1 \}. $$

Then we define the Rabinowitz action functional on this loop space, $A_{F}^{H_1, H_2} : \Omega \times \mathbb{R}^2 \to \mathbb{R}$, and construct the respective Rabinowitz Floer homology $\text{RFH}(S^*S^1 \times S^*N, T^*S^1 \times T^*N, \Omega)$ as before. Moreover the following type of the Künneth formula holds.

$$\text{RFH}_n(S^*S^1 \times S^*N, T^*S^1 \times T^*N, \Omega) \cong \bigoplus_{p=0}^n \text{RFH}_p(S^*S^1, T^*S^1) \otimes \text{RFH}_{n-p}(S^*N, T^*N).$$

Therefore $\text{RFH}(S^*S^1 \times S^*N, T^*S^1 \times T^*N, \Omega)$ is of infinite dimensional if $\dim H_*(\Lambda N) = \infty$ and Lemma 4.7 below yields that there are infinitely many leafwise intersection points for a generic perturbation whenever $\dim N \geq 2$. This proves Corollary A.

In order to prove that there is generically no periodic leafwise intersections, we review the argument in [2]. We denote by \mathcal{R} the set of closed Reeb orbits in T^*N which has dimension one. It is convenient to introduce the following sets:

$$\mathcal{F}^j = \{ F \in C^j_c(S^1 \times T^*S^1 \times T^*N) \mid F(t, \cdot) = 0, \forall t \in [\frac{1}{2}, 1] \}, \quad \mathcal{F} = \bigcap_{j=1}^\infty \mathcal{F}^j. $$

Lemma 4.7. If $\dim N \geq 2$, then the set

$$\mathcal{F}_{S^*S^1 \times S^*N} := \left\{ F \in \mathcal{F} \mid \begin{array}{l}
A_{F}^{H_1, H_2} \text{ is Morse} \& v(0) \cap (S^*S^1 \times R) = \emptyset \\
\text{for all } \forall (v, \eta_1, \eta_2) \in A_{F}^{H_1, H_2}, \quad R \in \mathcal{R}
\end{array} \right\}$$

is dense in the set \mathcal{F}.

Proof. In this proof, we denote by

$$\Omega_{1,2} := \{ v = (v_1, v_2) \in W^{1,2}(S^1, T^*S^1 \times T^*N) \mid v_1 \text{ is contractible in } T^*S^1 \}. $$

the loop space which is indeed a Hilbert manifold. Let \mathcal{E} be the L^2-bundle over $\Omega_{1,2}$ with $\mathcal{E}_v = L^2(S^1, v^*T(S^*S^1 \times S^*N))$. We consider the section

$$S : \Omega_{1,2} \times \mathbb{R}^2 \times \mathcal{F}^j \to \mathcal{E}_v^\vee \times \mathbb{R}^2 \text{ defined by } S(v, \eta_1, \eta_2, F) := dA_{F}^{H_1, H_2} (v, \eta_1, \eta_2).$$

Here the symbol \vee represents the dual space. At $(v, \eta_1, \eta_2, F) \in S^{-1}(0)$, the vertical differential

$$DS : T_{(v, \eta_1, \eta_2, F)} \Omega_{1,2} \times \mathbb{R}^2 \times \mathcal{F}^j \to \mathcal{E}_v^\vee \times \mathbb{R}^2$$

is given by the pairing

$$\langle DS_{(v, \eta_1, \eta_2, F)} (\tilde{v}^1, \tilde{\eta}_1^1, \tilde{\eta}_2^1, \tilde{F}), (\tilde{v}^2, \tilde{\eta}_1^2, \tilde{\eta}_2^2) \rangle = \mathcal{H}_{A_{F}^{H_1, H_2}} ([\tilde{v}^1, \tilde{\eta}_1^1, \tilde{\eta}_2^1], (\tilde{v}^2, \tilde{\eta}_1^2, \tilde{\eta}_2^2)) + \int_0^1 \tilde{F}(t, v) dt.$$
where $\mathcal{H}_{A_F^{H_1,H_2}}$ is the Hessian of $A_F^{H_1,H_2}$. Due to the arguments in [1] (in fact they proved the surjectivity for A_F^H, but their proof obviously can be extended to our situation, see also [24]), we know that for $(v,\eta_1,\eta_2,F) \in S^{-1}(0)$, $DS_{(v,\eta_1,\eta_2,F)}$ is surjective on the space
\[V := \{(\hat{v},\hat{\eta}_1,\hat{\eta}_2,\hat{F}) \in T_{(v,\eta_1,\eta_2,F)}(\Omega^{1,2} \times \mathbb{R}^2 \times \mathcal{F}^j) \mid \hat{v}(0) = 0 \}. \]

Next, we consider the evaluation map
\[
ev: \mathcal{M} \longrightarrow S^*S^1 \times S^*N, \quad (v,\eta_1,\eta_2,F) \longmapsto v(0).
\]

Since $DS_{(v,\eta_1,\eta_2,F)}|_V$ is surjective, Lemma 4.8 below implies that \ev is a submersion. Then $\mathcal{M}_R := \ev^{-1}(S^*S^1 \times \mathcal{R})$ is a submanifold in \mathcal{M} of
\[
\text{codim}(\mathcal{M}_R/\mathcal{M}) = \text{codim}(S^*S^1 \times \mathcal{R}/S^*S^1 \times S^*N).
\]

We consider the projections $\Pi: \mathcal{M} \longrightarrow \mathcal{F}^j$ and $\Pi_R := \Pi|_{\mathcal{M}_R}$. Then A_{F_1,F_2} is Morse if and only if F is a regular value of Π, which is a generic property by Sard-Smale theorem (for j large enough). The set $\Pi^{-1}(F)$ of leafwise intersection points for F is manifold of required dimension zero since it is a critical set of A_{F_1,F_2}. On the other hand, $\Pi^{-1}(F)$ is a manifold of dimension
\[
0 + \dim \mathcal{M}_R - \dim \mathcal{M} = -\text{codim}(\mathcal{M}_R/\mathcal{M}) < 0
\]
since we have assumed $\dim N \geq 2$. Therefore \ev does not intersect $S^*S^1 \times \mathcal{R}$, so the set
\[
\mathcal{F}^j_{S^*S^1 \times S^*N} := \mathcal{F}_{S^*S^1 \times S^*N} \cap \mathcal{F}^j
\]
is dense in \mathcal{F} for all $j \in \mathbb{N}$. Since $\mathcal{F}_{S^*S^1 \times S^*N}$ is the countable intersection of $\mathcal{F}^j_{S^*S^1 \times S^*N}$ for $j \in \mathbb{N}$, it is dense again in \mathcal{F} and the lemma is proved. \qed

Lemma 4.8. (Salamon) Let $\mathcal{E} \longrightarrow \mathcal{B}$ be a Banach bundle and $s: \mathcal{B} \longrightarrow \mathcal{E}$ a smooth section. Moreover, let $\phi: \mathcal{B} \longrightarrow N$ be a smooth map into the Banach manifold N. We fix a point $x \in s^{-1}(0) \subset \mathcal{B}$ and set $K := \ker d\phi(x) \subset T_x\mathcal{B}$ and assume the following two conditions.

1. The vertical differential $Ds|_K: K \longrightarrow \mathcal{E}_x$ is surjective.
2. $d\phi(x): T_x\mathcal{B} \longrightarrow T_{\phi(x)}N$ is surjective.

Then $d\phi(x)|_{\ker Ds(x)}: \ker Ds(x) \longrightarrow T_{\phi(x)}N$ is surjective.

Proof. Given $\xi \in T_{\phi(x)}N$, condition (ii) implies that there exists $\eta \in T_x\mathcal{B}$ satisfying $d\phi(x)\eta = \xi$. In addition, by condition (i), there exists $\zeta \in K \subset T_x\mathcal{B}$ satisfying $Ds(x)\zeta = Ds(x)\eta$. We set $\tau := \eta - \zeta$ and compute
\[
Ds(x)\tau = Ds(x)\eta - Ds(x)\zeta = 0
\]
thus, $\tau \in \ker Ds(x)$. Moreover,
\[
d\phi(x)\tau = d\phi(x)\eta - d\phi(x)\zeta = d\phi(x)\eta = \xi
\]
proves the lemma. \qed

In the case of Theorem B, we also redefine the Rabinowitz action functional $A_F^H: \Omega_{M_2} \times \mathbb{R} \rightarrow \mathbb{R}$ by
\[
A_F^H(v,\eta) = -\int_0^1 v_1^*\lambda_1 - \int_{D^2} \tilde{v}_2^*\omega_2 - \eta \int_0^1 H(t,v)dt - \int_0^1 F(t,v)dt
\]
where
\[\Omega_{M_2} : \{ v = (v_1, v_2) \in C^\infty(S^1, M_1 \times M_2) \mid v_2 \text{ is contractible in } M_2 \}. \]

We can also define the respective Rabinowitz Floer homology and derive an appropriate Künneth formula as before.

Corollary 4.9. Let \((M_2, \omega_2)\) be a closed, symplectically aspherical symplectic manifold. If a closed manifold \(N\) has \(\dim H_*(\Lambda N) = \infty\), then
\[\dim \text{RFH}_*(S^*N \times M_2, T^*N \times M_2, \Omega_{M_2}) = \infty. \]

Therefore, if \(\dim N \geq 2\), \(S^*N \times M_2\) has infinitely many leafwise intersection points for a generic perturbation.

The previous corollary proves Corollary B.

Remark 4.10. The corollaries still holds when we deal with a generic fiber-wise star shaped hypersurface \(\Sigma \subset T^*N\) instead of \(S^*N\), see [2].

5. **Appendix : Index for Rabinowitz Floer homology**

In fact, we are able to derive the Künneth formula and obtain applications without defining indices. Nevertheless, for the sake of completeness, we briefly recall the index for generators of the Rabinowitz Floer chain complex in this appendix (see [13] for the detailed arguments).

Let \(M\) be the moduli space of all finite energy gradient flow lines of \(A_H\) and \(w = (v, \eta) \in C^\infty(\mathbb{R} \times S^1, M) \times C^\infty(\mathbb{R}, \mathbb{R})\) be a gradient flow line of \(A_H\) with \(\lim_{s \to \pm \infty} w(s) = w_\pm = (v_\pm, \eta_\pm) \in \text{Crit} f\) and \(v_\pm \subset C_\pm\) where \(C_\pm \subset \text{Crit} A_H\) are connected components of the critical manifold and \(f\) is an additional Morse function on a critical manifold \(\text{Crit} A_H\). The linearization of the gradient flow equation along \((v, \eta)\) gives rise to an operator \(D^{A_H}_{(v, \eta)}\). For suitable weighted Sobolev spaces, \(D^{A_H}_{(v, \eta)}\) is a Fredholm operator. Then the local virtual dimension of \(M\) at \((v, \eta)\) is defined to be
\[\text{virdim}_{(v, \eta)} M := \text{ind} D^{A_H}_{(v, \eta)} + \dim C_- + \dim C_+. \]

Here \(\text{ind} D^{A_H}_{(v, \eta)}\) stands for the Fredholm index of \(D^{A_H}_{(v, \eta)}\). Cieliebak-Frauenfelder [13] investigated the spectral flow of the Hessian \(\text{Hess}_{A_H}\) and consequently proved the following index formula:
\[\text{virdim}_{(v, \eta)} M = \mu_{\text{CZ}}(v_+) - \mu_{\text{CZ}}(v_-) + \frac{\dim C_- + \dim C_+}{2}. \]

Here \(\mu_{\text{CZ}}\) is the *Conley-Zehnder index* defined below. Since a closed Reeb orbit \(v_+\) is contractible in \(M\), we have a filling disk \(\tilde{v}_+ : D^2 \to M\) such that \(\tilde{v}_+|_{\partial D^2} = v_+\). The filling disk \(\tilde{v}_+\) determines homotopy class of trivialization of the symplectic vector bundle \((\tilde{v}_+)^*TM\). The linearized flow of the Reeb vector field along \(v_+\) defines a path in \(Sp(2n, \mathbb{R})\) the group of
symplectic matrices. The Conley Zehnder index of v_+ is defined by the Maslov index of this path. This index is independent of choice of filling disk due to (H2) because the Conley Zehnder indices of different filling disks are differ by c_1. In the same way $\mu_{CZ}(v_-)$ is also defined. Now, we are in a position to define a grading μ_{RFH} on $\text{CF}(\mathcal{A}^H)$ by

$$\mu_{RFH}(v_\pm, \eta_\pm) := \mu_{CZ}(v_\pm) + \mu_{\sigma}(v_\pm).$$

where μ_{σ} is the signature index defined by

$$\mu_{\sigma}(v_\pm) = -\frac{1}{2} \text{sign}(\text{Hess}_f(v_\pm))$$

$$= -\frac{1}{2} \left(\# \left\{ \text{positive eigenvalues of the Hessian of } f \text{ at } v_\pm \right\} - \# \left\{ \text{negative eigenvalues of the Hessian of } f \text{ at } v_\pm \right\} \right).$$

We note that by definition,

$$\mu_{\sigma}(v_\pm) = \mu_{Morse}(v_\pm) - \frac{1}{2} \dim C_\pm.$$

Then we notice that the dimension of gradient flow lines of \mathcal{A}^H_f interchanging w_- and w_+ equals the index difference of the two critical points by the following computation.

$$\dim \text{M} \{ w_-, w_+ \} = \text{virdim}_{(v, \eta)} \mathcal{M} - \dim C_- - \dim C_+ + \dim W^s_f(v_-) + \dim W^u_f(v_+)$$

$$= \mu_{CZ}(v_-) - \mu_{CZ}(v_+) - \frac{\dim C_- + \dim C_+}{2} + \mu_{\sigma}(w_-) + \dim C^- - \mu_{\sigma}(w_+)$$

$$= \mu_{CZ}(v_-) - \mu_{CZ}(v_+) - \frac{\dim C_- + \dim C_+}{2} + \mu_{\sigma}(v_-) + \frac{1}{2} \dim C_- + \dim C_+$$

$$- (\mu_{\sigma}(v_+) + \frac{1}{2} \dim C_+)$$

$$= \mu_{CZ}(v_-) - \mu_{CZ}(v_+) + \mu_{\sigma}(v_-) - \mu_{\sigma}(v_+)$$

$$= \mu_{RFH}(v_-) - \mu_{RFH}(v_+)$$

(5.1)

where $W^s_f(v^+)(W^u_f(v^-))$ is the (un)stable manifold with respect to (f, v^\pm).

Furthermore, the RFH-index of $((v_1, v_2), (\eta_1, \eta_2)) \in \text{Crit} \mathcal{A} \tilde{H}_1, \tilde{H}_2$ (as used in Theorem A) splits into the indices of (v_1, η_1) and (v_2, η_2).

$$\mu_{RFH}((v_1, v_2), (\eta_1, \eta_2)) = \mu_{RFH}(v_1, \eta_1) + \mu_{RFH}(v_2, \eta_2)$$

(5.2)

since the Conley-Zehnder index (in fact, the Maslov index) and the Morse index behave additively under the direct sum operation.

Acknowledgments. I am deeply indebted to Urs Frauenfelder for numerous fruitful discussions. I also thanks the anonymous referee for careful reading and comments.

References

[1] Albers, P., Frauenfelder, U.: Leaf-wise intersections and Rabinowitz Floer homology. Journal of Topology and Analysis 1, 77–98 (2010).

[2] Albers, P., Frauenfelder, U.: Infinitely many leaf-wise intersection points on cotangent bundles. arXiv:0812.4426. (2008), to appear in Expositiones Mathematicae.

[3] Albers, P., Frauenfelder, U.: Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbation. Journal of Modern Dynamics (2010), 329–357.
[4] Albers, P., Frauenfelder, U.: A remark on a theorem by Ekeland-Hofer. Israel Journal of Mathematics (2012), 485–491.
[5] Albers, P., Frauenfelder, U.: Rabinowitz Floer homology: A survey. Global Differential Geometry, Springer Proceedings in Mathematics (2012), 437–461.
[6] Albers, P., McLean, M.: Non-displaceable contact embeddings and infinitely many leaf-wise intersections. Journal of Symplectic Geometry (2011), 271–284.
[7] Albers, P., Momin, A.: Cup-length estimates for leaf-wise intersections. Mathematical Proceedings of the Cambridge Philosophical Society (2010), 539–551.
[8] Abbondandolo, A., Schwarz, M.: Estimates and computations in Rabinowitz-Floer homology. Journal of Topology and Analysis 1, 307–405 (2010)
[9] Banyaga, A.: On fixed points of symplectic maps. Invent. Math. 50 no. 3, 215–229 (1980)
[10] Bolle, P.: Une condition de contact pour les sous-variétés coisotropes d’une variété symplectique. C. R. Acad. Sci. Paris, Série I 322, 83–86 (1996)
[11] Bolle, P.: A contact condition for p-dimensional submanifolds of a symplectic manifold (2 ≤ p ≤ n). Math. Z. 227, 211–230 (1998)
[12] Bourgeois, F., Oancea, A.: Fredholm theory and transversality for the parametrized and for the S^1-invariant symplectic action. J. Eur. Math. Soc. (2010), 1181–1229.
[13] Cieliebak, K., Frauenfelder, U.: A Floer homology for exact contact embeddings. Pacific J. Math. 239 no. 2, 251–316 (2009)
[14] Cieliebak, K., Frauenfelder, U., Oancea, A.: Rabinowitz Floer homology and symplectic homology. arXiv:0903.0768 (2009) to appear in Annales Scientifiques de L’ENS 43, fasc. 6 (2010): 957–1015
[15] Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mañé’s critical values. Geometry and Topology 14, no. 3 (2010): 1765–870.
[16] Dragnev, D. L.: Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems. Comm. Pure Appl. Math. 61, 346–370 (2008)
[17] Ekeland, I., Hofer, H.: Two symplectic fixed-point theorems with applications to Hamiltonian dynamics. J. Math. Pures Appl. 68 no. 4, 467–489 (1989)
[18] Frauenfelder, U.: The Arnold-Givental conjecture and moment Floer homology. Int Math Res Notices. 42, 2179–2269 (2004)
[19] Floer, A., Hofer, H., Salamon, D.: Transversality in elliptic Morse theory for the symplectic action. Duke Math. J. 80 No. 1 (1995), 251–292.
[20] Ginzburg, V.L.: Coisotropic intersections. Duke Math. J. 140 no. 1, 111–163 (2007)
[21] Gürel, B.: Leafwise coisotropic intersections. Int Math Res Notices No. 5, 914–931 (2009)
[22] Hofer, H.: On the topological properties of symplectic maps. Proc. Roy. Soc. Edinburgh Sect. A. 115 no. 1-2, 25–38 (1990)
[23] Kang, J.: Existence of leafwise intersection points in the unrestricted case. Israel Journal of Mathematics (2012) doi: 10.1007/s11856-011-0184-4.
[24] Kang, J.: Generalized Rabinowitz Floer homology and coisotropic intersections. Int Math Res Notices (2012) doi: 10.1093/imrn/rns113.
[25] Merry, W.: On the Rabinowitz Floer homology of twisted cotangent bundles. Calculus of Variations and Partial Differential Equations 42, no. 3-4 (2011): 355–404.
[26] Robbin, J.W., Salamon, D.A.: The Maslov index for paths. Topology 32, 827–844 (1993)
[27] Moser, J.: A fixed point theorem in symplectic geometry. Acta Math. 141 no. 1-2, 17–34 (1978)
[28] Oancea, A.: The Kühneth formula in Floer homology for manifolds with restricted contact type boundary. Math. Ann. 334, 51–96 (2006)
[29] Schwarz, M.: Morse homology, Birkhäuser, (1993)
[30] Vigué-Poirrier, M. and Sullivan, D.: The homology theory of the closed geodesic problem. J. Differential Geometry. 11 no. 4, 633–644 (1976)
[31] Ziltener, F.: Coisotropic Submanifolds, leafwise fixed points, and presymplectic embeddings. J. Symplectic Geom. 8 no. 1, 1–24 (2010)