Shorter Leukocyte Telomere Length Is Associated With Atrial Remodeling and Predicts Recurrence in Younger Patients With Paroxysmal Atrial Fibrillation After Radiofrequency Ablation

Kuo-Li Pan, MD; Ya-Wen Hsiao, PhD; Yenn-Jiang Lin, MD; Li-Wei Lo, MD; Yu-Feng Hu, MD; Fa-Po Chung, MD; Yung-Nan Tsai; Tze-Fan Chao, MD; Jo-Nan Liao, MD; Chin-Yu Lin, MD; Shih-Jie Jhuo, MD; Chung-Hsing Lin, MD; Allamsetty Suresh, MD; Rohit Walia, MD; Abigail Louise D. Te, MD; Shinya Yamada, MD; Yao-Ting Chang, MD; Shih-Lin Chang, MD; Shih-Ann Chen, MD

Background: Telomere length is a biologic aging marker. This study investigated leukocyte telomere length (LTL) as a new biomarker to predict recurrence after paroxysmal atrial fibrillation (PAF) ablation.

Methods and Results: A total of 131 participants (26 healthy individuals and 105 symptomatic PAF patients) were enrolled. PAF patients (54.1±10.8 years) who received catheter ablation therapy were divided into 2 groups: recurrent AF (n=25) and no recurrent AF after catheter ablation (n=80). Peripheral blood mononuclear cells were collected from all subjects to measure LTL. Under 50 years old, LTL in healthy individuals (n=17) was longer than in PAF patients (n=31; 7.34±0.58 kbp vs. 6.44±0.91 kbp, P=0.01). In PAF patients, LTL was positively correlated with left atrial bipolar voltage (R=0.497, P<0.001), and negatively correlated with biatrial scar area (R=-0.570, P<0.001) and left atrial diameter (R=-0.214, P=0.028). LTL was shorter in the patients with recurrent AF than in those without recurrent AF after catheter ablation (5.68±0.82 kbp vs. 6.66±0.71 kbp; P<0.001). On receiver operating characteristic curve analysis, LTL cut-off <6.14 kbp had a specificity of 0.68 and sensitivity of 0.79 to predict recurrent AF after catheter ablation.

Conclusions: Young PAF patients (<50 years) had shorter LTL. Shorter LTL was associated with a degenerative atrial substrate and recurrence after catheter ablation in younger PAF patients.

Key Words: Atrial fibrillation; Catheter ablation; Leukocyte telomere length

Atrial fibrillation (AF) is the most common cardiac arrhythmia leading to increased mortality, risk of stroke, heart failure and hospitalization. Approximately 70% of AF patients are between 65 and 85 years of age; the incidence of AF increases with age, and the median AF patient age is approximately 75 years. In recent years, radiofrequency (RF) catheter ablation of pulmonary veins (PV) has become a standard and effective therapy for sympomatic and drug-refractory paroxysmal AF (PAF). Clinically, patients with high CHADS: score old age (265 years), and presence of associated cardiovascular disease and poor left atrial (LA) substrate have a high incidence of recurrent AF after RF catheter ablation. Aging is also cor-
related with structural and electric remodeling, including dilated LA volume and increased areas of LA low voltage, which may be responsible for the raised propensity to AF and higher recurrence of AF after ablation. Some biomarkers are related to AF, such as inflammatory, oxidative stress markers. A biomarker that is causally associated with AF genesis and which predicts the outcome after RF catheter ablation, however, remains to be identified.

Telomeres are protein-nucleotide complexes containing thousands of repetitive DNA sequences (TTAGGG) located at both ends of each chromosome to protect the chromosomal DNA, reduce the risk of apoptosis and to stabilize the DNA complex. In each cell division, telomere repetitive sequences will become shorter, eventually reaching a critical threshold leading to cellular senescence and death. Therefore, telomere length is thought of as a biologic aging marker representing cellular age and is associated with aging-related disease. Shorter leukocyte telomere length (LTL) has been shown to be associated with hypertension, diabetes mellitus (DM), coronary artery disease and heart failure. Because aging has an impact on post-catheter ablation recurrent AF and LA remodeling, we hypothesize that LTL might be a biomarker for prediction of recurrent AF after ablation. This study therefore investigated the impact of LTL on atrial substrate remodeling and whether it can predict the occurrence of AF in a selected population as well as recurrence after ablation in patients with PAF.

Methods

Subjects and Study Design
To study the association between LTL and incident PAF, 131 participants consisting of 26 healthy individuals (male/female, 14/12; mean age, 43.42±10.23 years) and 105 symptomatic and drug-refractory PAF patients (male/female, 72/33; mean age, 54.07±10.8 years) who received catheter ablation were consecutively enrolled in this retrospective study between August 2014 and June 2016 at Taipei Veterans General Hospital (a tertiary center). Furthermore, PAF patients were divided into 2 groups: post-catheter ablation recurrent AF (n=25), and no recurrent AF after catheter ablation (n=106). Exclusion criteria consisted of left ventricular (LV) systolic dysfunction, moderate-severe valvular heart disease, congenital heart disease, or history of previous cardiac surgery. This study was approved by the Taipei Veterans General Hospital Institutional Review Board, and informed consent was obtained from all patients who participated in this study.

Baseline Data
Patient clinical baseline characteristics including age, sex, height, body weight, body mass index (BMI), body surface area (BSA), creatinine, serum triglyceride, serum cholesterol, echocardiography data and the absence or presence of hypertension, DM, and hypercholesterolemia were obtained from medical records before RF catheter ablation for PAF.

RF Catheter Ablation
The details have been described previously. In brief, all anti-arrhythmic drugs except for amiodarone were discontinued for at least 5 half-lives, and transesophageal echocardiography was also performed to exclude LA thrombus in each patient before electrophysiological study (EPS) and RF catheter ablation. All of the patients underwent EPS and RF catheter ablation in a fasting, non-sedated state. After the trans-septal access was created, heparin was used to avoid thrombus formation with a targeted activated clotting time 250–300 s. The 3-D geometry of the LA was then captured by moving a mapping catheter (Spiral SC, AF Division, St. Jude Medical, MN, USA) over the endocardial surface of the LA and 4 PV, using the NavX contact mapping system (St. Jude Medical). The ostia of the 4 PV were also identified on fluoroscopy and marked on the 3-D map of the LA. PV isolation was then carried out with circumferential ablation around the ostium of the PV using an irrigated-tip 4-mm ablation catheter (Cool Path™ Irrigated Ablation Catheter, St. Jude Medical). RF energy was applied continuously while repositioning the catheter tip every 40 s with a target temperature of 35–40°C and maximum power 20–25 W at the posterior LA wall, and 25–30 W at the anterior LA wall in the power control mode. After completion of the circumferential lesion set, the ipsilateral superior and inferior PV were mapped carefully on circular catheter recording during sinus rhythm (SR) or coronary sinus pacing. Supplementary ablation applications were applied along the circumferential lines close to the earliest ipsilateral PV spikes. Absence of any PV potential or presence of dissociated PV activity was the endpoint of PV isolation.

Right and Left Atrium Voltage Mapping
The details have been described previously. In brief, before PV isolation, the irrigated-tip 4-mm ablation catheter was used to collect the right atrial (RA) and LA bipolar local voltages while the catheter was in contact with the atrial wall as it was moved through the RA and LA during SR under the NavX contact mapping system. For the patients with the rhythm of AF before PV isolation, voltage mapping was performed after termination of AF by catheter ablation or cardioversion after PV isolation. The signal from the roving catheter was used to build a sequential map. After completion of the sequential map, the bipolar voltage mapping points were analyzed using offline software to determine the mean voltage, and to measure the areas of RA and LA scar zone. “Scar” was defined as an absence of any voltage or a bipolar voltage amplitude <0.05 mV. Scar area index was defined as scar surface area/total surface area of the atrium.

LTL Measurement
Blood was obtained before RF catheter ablation. Telomere length was assessed on TeloTAGGG Telomere Length Assay, which relies on the absence of certain restriction enzyme recognition sites in the telomeric 5'-TTAGGG-3' tandem repeat sequences. DNA was extracted from the peripheral blood mononuclear cells using a standard commercially available methodology. After digestion of the overall genomic DNA by an optimized mixture of frequently cutting restriction enzymes, which principally left telomeric sequences intact, the terminal restriction fragments (TRF) were separated on gel electrophoresis and transferred onto polyvinylidene difluoride membranes. Using chemiluminescence detection for TRF analysis, the membranes were then blocked for 30 min and hybridized with telomere-specific digoxigenin (DIG)-labeled hybridization probe, and then incubated with anti-DIG-alkaline phosphatase for 1 h. Finally, the membranes were exposed on X-ray film for 16 min. Mean TRF length was defined.
according to the following formula:

$$\text{TRF} = \frac{\sum (\text{OD}_i)}{\sum (\text{OD}_i/L_i)}$$

Where OD$_i$ is the chemiluminescent signal and L$_i$ is the length of the TRF at position i. The calculation takes into account the higher signal intensity from larger TRF due to multiple hybridizations of the telomere-specific hybridization probe.

Enzyme-Linked Immunosorbent Assay (ELISA)

Because the pro-inflammatory markers interleukin (IL)-1 and IL-6 were reported to be associated with senescence and LTL shortening, participant plasma was collected from peripheral blood, and IL-1 and IL-6 were measured on ELISA, following the manufacturer’s instructions (Sigma-Aldrich). All samples were measured in duplicate.

Post-Ablation Follow-up

Patients underwent follow-up (2 weeks after the catheter ablation, then every 3 months thereafter) at the cardiology clinic for 1 year. Anti-arrhythmic drugs were prescribed to control the recurrent atrial arrhythmias. Long-term efficacy was assessed in all patients on the basis of the clinical symptoms, resting surface 12-lead electrocardiogram (ECG), and 24-h Holter monitor, and/or 1-week cardiac event recordings.

Statistical Analysis

Statistical analysis was performed using SPSS 18.0 (SPSS, Chicago, IL, USA). Continuous data are presented as mean±SD and dichotomous data as absolute values with percentage. Comparison of continuous variables between groups was performed using Student’s t-test (2-tailed) for parametric data and Mann-Whitney U-test for non-parametric data. Categorical variables were compared using the chi-squared test. Univariate correlations were determined using Pearson’s coefficient for continuous variables and the point-biserial coefficient for dichotomous variables. Logistic regression analysis of the various clinical and electroanatomic variables was performed to determine the predictors of recurrent AF after catheter ablation. The variables used in multivariate analysis were those with P<0.1 in the univariate models. For predicting the occurrence of PAF in patients aged ≤50 years old and predicting post-RF catheter ablation recurrent AF, area under the receiver operating characteristic (ROC) curve (AUC) was calculated, to determine sensitivity and specificity. The ROC curve was used to calculate the best LTL threshold for predicting PAF in patients aged ≤50 years old and for predicting recurrent AF after RF catheter ablation. The optimal value was defined as that producing the highest sensitivity and specificity to distinguish between different patient groups. P<0.05 was considered statistically significant.

Results

LTL and PAF

Baseline characteristics of the healthy individuals and PAF patients are listed in in Table. A total of 105 PAF patients who underwent RF catheter ablation with a mean age of 54.1±10.8 years old were enrolled. Overall, the PAF patients had a shorter LTL than healthy individuals. There was no significant difference in
LTL between PAF patients and normal subjects at age >50 years old (6.42±0.82 kbp vs. 6.90±0.28 kbp, P=0.09). At <50 years old, however, healthy individuals (n=17) had a longer LTL than that in PAF patients (n=31; 7.34±0.58 kbp vs. 6.44±0.91 kbp, P=0.01). In the present study, 11.4% of PAF patients (12/105) had a non-PV origin, and there was no relationship between origin of AF and LTL in the younger patients, older patients, or the total patient group. In young PAF patients (age ≤50 years), the LTL had a positive correlation with LA voltage (R=0.57, P=0.001) and negative correlation with biatrial scar area (R=−0.67, P<0.001).

In the PAF group, there was no significant difference in LTL between patients <50 years old and >50 years old (6.44±0.91 kbp vs. 6.42±0.82 kbp, P=0.92). There was also no significant correlation between LTL and other clinical characteristics, such as gender, hypertension, DM, LA diameter or LV ejection fraction (LVEF) in all PAF patients, PAF patients <50 years old or >50 years old. On ROC curve analysis, LTL <7.12 kbp could discriminate PAF from normal subjects at age <50 years old with a sensitivity of 71%, specificity of 84%, and AUC 0.81.

Clinical Characteristics vs. Presence of Post-Catheter Ablation AF Recurrence

A total of 25 patients had recurrent AF after RF catheter ablation. The recurrence rate was 24% during 1-year follow-up. The clinical characteristics of patients with and without AF recurrence after RF catheter ablation are listed in Table. There were no significant differences between the patients with and without AF recurrence with regard to age, gender, BMI, BSA, serum creatinine and history of DM, hypertension, or hypercholesterolemia. To investigate the impact of gender on recurrence, we compared LTL between genders and found no significant difference in LTL between male and female patients (5.71±0.82 kbp vs. 5.63±0.87 kbp, respectively; P=0.82) in those with post-ablation recurrence of AF.
Factors Associated With Recurrent AF

The predictors of recurrent AF after RF catheter ablation on univariate logistic regression analysis consisted of shorter LTL, lower LA bipolar voltage, larger bi-atrial scar, larger LA diameter and high IL-1 and IL-6 (Table). All of these factors, however, were not independent predictors on multivariate logistic regression analysis. The ROC curves of LTL, LA bipolar voltage and bi-atrial scar area are given in Figure 3. The ROC curves of LTL indicated better power to predict recurrent AF after RF catheter ablation, and it identified patients with post-RF catheter ablation recurrent AF with a specificity of 0.88 and a sensitivity of 0.79, using a cut-off <6.14 kbp (AUC, 0.82; 95% CI: 0.815–0.899, P<0.001). Shorter LTL was significantly positively associated with LA bipolar voltage (R=0.497, P<0.001) and was significantly negatively associated with bi-atrial scar area (R=−0.570, P<0.001).

LTL Predicts AF Recurrence

In the present study, LTL was significantly positively associated with LA bipolar voltage, and it was significantly negatively associated with LA diameter and bi-atrial scar area. Shorter LTL was better than chronological age in predicting chronic inflammatory-related and age-related atrial electric remodeling in young patients with PAF.

Figure 3. Receiver operating characteristic (ROC) curve analysis for leukocyte telomere length (LTL), left atrial (LA) voltage and biatrial scar area index in the detection of recurrent atrial fibrillation (AF) after catheter ablation for paroxysmal AF.

Discussion

The major findings of this study are (1) PAF patients had a shorter LTL compared with normal subjects at age <50 years old; (2) shorter LTL was associated with a degenerative atrial substrate; and (3) shorter LTL was associated with recurrence of AF after catheter ablation in PAF patients at 1-year follow-up.

LTL and Risk of PAF

The prevalence of AF is related to age. No association has been found between LTL and incident AF, and there is no evidence of relative atrial cell telomere shortening in AF in individuals ≥65 years old. Chronological aging independent of LTL shortening is responsible for the risk of AF, but the impact of LTL on biological aging in younger age groups has not been studied. Even in the present study, PAF patients ≤50 years of age had significantly shorter LTL than healthy individuals (6.44±0.91 kbp vs. 7.34±0.58 kbp, P=0.01), but there was no significant difference between PAF patients >50 years of age and healthy subjects (6.42±0.82 kbp vs. 6.90±0.28, P=0.09). Further study is needed to clarify the role of LTL in the older AF population. For the first time, the present study has shown that PAF patients have a shorter LTL compared with normal subjects at age <50 years. LTL might play a more important role in the genesis of AF in subjects <50 years old due to the presence of fewer confounding factors such as cardiovascular disease, pulmonary disease and some degenerative diseases. Shorter LTL might have a potential to predict PAF in patients aged <50 years old, and this finding may be limited to young PAF patients (≤50 years), who comprise a small percentage (<10%) of all AF patients. Further study is needed to investigate the possible mechanism.

LTL and Atrial Remodeling

The aging process mediates LA remodeling, including decreased atrial conduction velocity, increased atrial dispersion and disturbed LA local potential characteristics, which may increase the incidence of AF. Telomeres have been implicated as potential mediators of the biological aging process, and reduced telomere length is associated with increased risk for many age-dependent cardiovascular disease.

Systemic inflammation is associated with AF and its pathogenesis. IL-1 and IL-6 are systolic inflammation markers. IL-6, in particular, has an effect on the initiation and progression of AF. The inflammation reaction could accelerate LTL shorting by promoting leukocyte turnover and replicative senescence. Cumulative inflammatory load, as indexed by high IL-6, is associated with shorter LTL. Shorter LTL can occur as a result of chronic inflammation reaction, which is correlated with cardiovascular disease.

In the present study, LTL was significantly positively associated with LA bipolar voltage, and was significantly negatively associated with LA diameter and bi-atrial scar area. Shorter LTL was better than chronological age in reflecting chronic inflammatory-related and age-related atrial electric remodeling in young patients with PAF.
catheter ablation ranges from 75% to 93%,29,31. In the present study, LA substrate remodeling with a progressive decrease in LA voltage has been shown in patients with recurrent AF after RF catheter ablation. In the present study, we also found a larger scar area and low LA voltage in patients with recurrent AF after RF catheter ablation compared with those without recurrent AF. The aging process is associated with the presence of atrial interstitial fibrosis in animal studies.22,32 In a human study, it was also shown that the aging process is associated with the development of excessive collagenous septa that separated small groups of fibers, to produce electrical LA remodeling.22

In our previous study, lower LA voltage was associated with higher recurrence after AF ablation in PAF patients aged >65 years.6 During the aging process, systemic inflammation reactions may cause AF by increasing the production of interstitial fibrosis tissue in the atrium.33,34 In the present study, there was no significant difference in chronological age between the patients with and without recurrent AF after RF catheter ablation. The post-catheter ablation recurrent AF patients had shorter LTL and higher IL-1 than those without recurrence. Progressive biological age-related LA electric remodeling including decreased LA voltage and increased bi-atrial scar area may be responsible for the post-RF catheter ablation recurrent AF. Shorter LTL might predict recurrent AF after catheter ablation at 1-year follow-up. Patients with non-recurrence, however, were followed for only 1 year, and therefore may still have recurrence of AF in the long-term follow-up period. Shorter LTL represents the complex aging process and the atrial remodeling process of LA electroanatomic remodeling, which are the confounding factors for post-ablation recurrence of AF. This may explain why LTL is not an independent predictor of recurrent AF after ablation. Nevertheless, on ROC curve analysis, LTL<6.14 kbp was associated with recurrent AF after catheter ablation.

Conclusion

PAF patients had a shorter LTL compared with normal subjects at age \leq 50 years old. Shorter LTL was associated with a degenerative atrial substrate and post-catheter ablation AF recurrence in patients with PAF.

References

1. Wolf PA, Mitchell JB, Baker CS, Kannel WB, D’Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. *Arch Intern Med* 1998; 158: 229 – 234.

2. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation: Analysis and implications. *Arch Intern Med* 1998; 155: 469 – 473.

3. Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, et al. Incidence of and risk factors for atrial fibrillation in older adults. *Circulation* 1997; 96: 2455 – 2461.

4. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: Electroanatomic and pulmonary vein wall remodeling. *Heart Rhythm* 2013; 10: 1155 – 1159.

5. Tuan TC, Chang SL, Tsao HM, Tai CT, Lin YJ, Hu YF, et al. The impact of age on the electroanatomical characteristics and outcome of catheter ablation in patients with atrial fibrillation. *J Cardiovasc Electrophysiol* 2010; 21: 966 – 972.

6. Chang SL, Tai CT, Lin YJ, Wongcharoen W, Lo LW, Lee KT, et al. Biatral substrate properties in patients with atrial fibrillation. *J Cardiovasc Electrophysiol* 2007; 18: 1134 – 1139.

7. Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. *J Am Coll Cardiol* 2004; 44: 109 – 116.

8. Issac TT, Dokainish H, Lakkis NM. Role of inflammation in initiation and perpetuation of atrial fibrillation: A systematic review of the published data. *J Am Coll Cardiol* 2007; 50: 2021 – 2028.

9. Zhu H, Belcher M, van der Harst P. Healthy aging and disease: Role for telomere biology? *Clin Sci (Lond)* 2011; 120: 427 – 436.

10. O’Sullivan RJ, Karlseeder J. Telomerases: Protecting chromosomes against genome instability. *Nat Rev Mol Cell Biol* 2010; 11: 171 – 181.

11. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford L, Shepherd J, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: A nested case-control study. *Lancet* 2007; 369: 107 – 114.

12. Samani NJ, Boulthry R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. *Lancet* 2001; 358: 472 – 473.

13. van der Harst P, van der Steege G, de Boer RA, Woors AA, Hall AS, Mulder MJ, et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. *J Am Coll Cardiol* 2007; 49: 1450 – 1454.

14. Vasan RS, Demisse S, Kimura M, Cupples LA, White C, Gardner JP, et al. Association of leukocyte telomere length with echocardiographic left ventricular mass: The Framingham heart study. *Circulation* 2009; 120: 1195 – 1202.

15. Chang SL, Tai CT, Lin YJ, Ong MG, Wongcharoen W, Lo LW, et al. The electromorphologic characteristics of the cavitricuspid isthmus: Implications for the catheter ablation of atrial flutter. *J Cardiovasc Electrophysiol* 2007; 18: 18 – 22.

16. Chang SL, Tai CT, Lin YJ, Wongcharoen W, Lo LW, Tuan TC, et al. The efficacy of inducibility and circumferential ablation with pulmonary vein isolation in patients with paroxysmal atrial fibrillation. *J Cardiovasc Electrophysiol* 2007; 18: 607 – 611.

17. O’Donovan A, Pantell MS, Puterman E, Dhabhar FS, Blackburn EH, Yaffe K, et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the Health, Aging and Body Composition Study. *PLoS One* 2011; 6: e16967.

18. Rehkopf DH, Needham BL, Lin J, Blackburn EH, Zota AR, Rehkopf DH,Needham BL, Lin J, Blackburn EH, Zota AR, Wojicki JM, et al. Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: A cross-sectional study of US adults. *PLoS Med* 2016; 13: e1002188.

19. Roberts JD, Dewland TA, Longoria J, Fitzpatrick AL, Ziv E, Hu D, et al. Telomere length and the risk of atrial fibrillation: Insights into the role of biological versus chronological aging. *Circ Arrhythm Electrophysiol* 2014; 7: 1026 – 1032.

20. Anyukhovsky EP, Sosunov EA, Chandra P, Rosen TS, Boyden SP, Danilo PJr, et al. Age-associated changes in electrophysiological remodeling: A potential contributor to initiation of atrial fibrillation. *Cardiovasc Res* 2005; 66: 353 – 363.

21. Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle for muscle uncoupling of side-to-side fiber connections with increasing age. *Circ Res* 1986;
LTL Predicts AF Recurrence

23. Wongcharoen W, Chen YC, Chen YJ, Lin CI, Chen SA. Effects of aging and ouabain on left atrial arrhythmogenicity. *J Cardiovasc Electrophysiol* 2007; 18: 526–531.

24. Blackburn EH. Switching and signaling at the telomere. *Cell* 2001; 106: 661–673.

25. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, et al. Inflammation as a risk factor for atrial fibrillation. *Circulation* 2003; 108: 3006–3010.

26. Cheng T, Wang XF, Hou YT, Zhang L. Correlation between atrial fibrillation, serum amyloid protein A and other inflammatory cytokines. *Mol Med Rep* 2012; 6: 581–584.

27. Aviv A. Telomeres and human aging: Facts and fibs. *Sci Aging Knowledge Environ* 2004; 2004: pe43.

28. Pappone C, Rosanio S, Oreto G, Tocchi M, Gugliotta F, Vicedomini G, et al. Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. *Circulation* 2000; 102: 2619–2628.

29. Jais P, Cauchemez B, Macle L, Daoud E, Khairy P, Subbiah R, et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: The A4 study. *Circulation* 2008; 118: 2498–2505.

30. Oral H, Chugh A, Good E, Sankaran S, Reich SS, Iigic P, et al. A tailored approach to catheter ablation of paroxysmal atrial fibrillation. *Circulation* 2006; 113: 1824–1831.

31. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. *Circ Arrhythm Electrophysiol* 2010; 3: 32–38.

32. Hayashi H, Wang C, Miyachi Y, Omichi C, Pak HN, Zhou S, et al. Aging-related increase to inducible atrial fibrillation in the rat model. *J Cardiovasc Electrophysiol* 2002; 13: 801–808.

33. Anyukhovsky EP, Sosunov EA, Plotnikov A, Gainullin RZ, Jhang JS, Marboe CC, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. *Cardiovasc Res* 2002; 54: 462–469.

34. Burstein B, Nattel S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. *J Am Coll Cardiol* 2008; 51: 802–809.

35. Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? *Eur Heart J* 2006; 27: 136–149.