Frequency and correlates of driving status among the oldest old: results from a large, representative sample

André Hajek1 · Hans-Helmut König1

Received: 22 July 2022 / Accepted: 7 September 2022 / Published online: 19 September 2022 © The Author(s) 2022

Abstract

Background/aims In the light of the restricted knowledge, our aim was to explore the frequency and correlates of driving status among the oldest old.

Methods Data came from the representative "Survey on quality of life and subjective well-being of the very old in North Rhine-Westphalia (NRW80+)" consisting of community-dwelling and institutionalized individuals ≥ 80 years residing in the most populous German state (North Rhine-Westphalia; n = 1,832 in the analytical sample, mean age: 86.5 years). The present driving status (no; yes, I drive myself; yes, as a passenger; yes, as driver and passenger) served as outcome measure.

Results Overall, 43.62% (95% CI 40.98–46.29%) of the individuals did not drive, whereas 30.12% (95% CI 27.75–32.59%) of the individuals drove by themselves, 20.97% (95% CI 18.91–23.20%) of the individuals drove as a passenger, and 5.29% (95% CI 4.16–6.71%) of the individuals drove both (by themselves and as a passenger) (95% CI 4.16–6.71%). Multinomial logistic regressions showed, e.g., that being male (RRR: 0.13, 95% CI 0.09–0.18), younger age (RRR: 0.88, 95% CI 0.84–0.91), being married and living together with spouse (RRR: 1.48, 95% CI 1.08–2.02), living in a private household (RRR: 0.04, 95% CI 0.01–0.35), better self-rated health (RRR: 1.26, 95% CI 1.02–1.56), and lower functional impairment (RRR: 19.82, 95% CI 12.83–30.62) were positively associated with ‘Yes, I drive myself’ (compared to not driving a car).

Discussion/conclusions A sizable proportion of the individuals aged 80 years and above still drove by themselves. Less than half of the oldest old individuals did not drive. Moreover, our current study identified some correlates of driving status among individuals in latest life.

Keywords Oldest old aged · 80 and over · Driving habits · Automobile driving · Car · Frequency · Driving status

Introduction

Changes in demographic composition, i.e., an increase in the number of individuals aged 80 years and over, are expected in the coming decades. In accordance with this growth, the number of older people with a driver's license will presumably rise [1]. A recent systematic review and meta-analysis showed that older drivers are at increased risk of fatal crash involvement [2]—which particularly relates to fragility [3] and sometimes inappropriate safety measures for older individuals [4]. On the other side, it can assist in, among other things, maintaining autonomy in late life. For all of these reasons, it is important to identify the frequency and the correlates of driving status among the oldest old.

While some studies (e.g., [5–7]) exist investigating the frequency and correlates of driving behavior in old age, there are only very few studies examining the frequency and correlates of driving behavior among the oldest old (i.e., aged 80 years and over) [8, 9]. For example, one study used data from the “1921–26 cohort of the Australian Longitudinal Study on Women’s Health” (wave 6 with n = 4025 women, mean age of 86.7 years, 85–90 years) [9]. The proportion of women who were still driving equaled 36.2% in this former study [9]. This recent study also identified several correlates of driving in regression analysis (namely: caring for others, living in rural areas of Australia, volunteering activities, living alone, having a higher educational level, and social interactions) [9]. Due to the very limited knowledge, our aim of this current study was to investigate the frequency and correlates of driving status among the oldest old.
Such knowledge is important, because driving status can contribute to health-related quality of life among the oldest old [10]. In addition, driving in advanced age can maintain mobility, autonomy, and social engagement. Driving a car may also be related to things like having access to goods and services, engaging in activities outside of the home, and preserving social connections, especially among individuals in this age bracket [11, 12]. To put it the other way around: transport poverty (i.e., “the social exclusion of marginalized individuals […] who do not have access to public or private transportation”, [13] p. 2) can have harmful consequences for the subjective well-being of individuals [14].

Methods

Sample

Data for this study were gathered from the “Survey on quality of life and subjective well-being of the very old in North Rhine-Westphalia (NRW80+)”. This study was conducted in North Rhine-Westphalia from August 2017 to February 2018 which is the most populous state in Germany. The NRW80+ study is representative of individuals living in North Rhine-Westphalia aged ≥ 80 years (men and individuals ≥ 85 years were oversampled; therefore, weights were applied). Various topics were covered such as socio-economic or health-related issues. The key inclusion criteria were: a registered principal residence in North Rhine-Westphalia. This includes individuals in institutionalized surroundings and individuals living in private homes. The response rate was 23.4%. Nevertheless, main sociodemographic factors, such as age bracket, sex, or living conditions, were not associated with the probability of non-response [15]. In total, 1,863 individuals took part. Our analytical sample (for regression analysis) equaled 1,832 individuals due to a few missing values in the independent variables.

Outcome measures: driving status

The present driving status served as outcome measure. It was distinguished between: no; yes, I drive myself; yes, as a passenger; yes, as driver and passenger. This is a common way to assess the driving status in large studies.

In a sensitivity analysis, we trichotomized the outcome (0 = no; 1 = yes, I drive myself or yes, as driver and passenger; 2 = yes, as a passenger).

Independent variables

In multinomial logistic regression analysis, sociodemographic variables were used as follows: sex, age, and family situation (married; other (married, living separated from spouse; divorced; single; widowed). Additionally, in regression analysis, these health-related factors were included: self-rated health (single item, from 1 = very bad to 4 = very good), functional impairment, and the number of chronic conditions. In sum, 19 chronic conditions were included (no = 0, yes = 1: in each case): myocardial infarction, heart failure, hypertension, stroke, mental illness, cancer, diabetes, respiratory or pulmonary disease, back pain, gastric or intestinal disease, kidney disease, liver disease, blood disease, joint or bone disease, bladder disease, sleep disorder, eye disease or visual disorder, ear disease or hearing impairment, and neurological disease. A count score was generated (higher number reflects thus a higher number of chronic conditions). Moreover, a modified Lawton and Brody IADL tool [16] was used to measure functional impairment (in each case: 0 = only possible with help to 2 = no help required). By averaging the seven items, a score was generated (ranging from 0 to 2, with higher values corresponding to lower functional impairment).

Statistical analysis

In a first step, sample characteristics for the analytical sample are depicted. Additionally, the frequency of driving status is displayed stratified by age group and sex. Thereafter, multiple multinomial logistic regressions are estimated to explore the correlates of driving status (with “no” as base outcome). The level of significance was set at α = 0.05. Statistical analysis was performed using Stata Release 16.1 (Stata Corp., College Station, Texas).

Results

Sample characteristics

Descriptive findings for our analytical sample are shown in Table 1. Average age was 86.5 years (SD: 4.5 years, 80–102 years). About 50.1% of the individuals were female. Additional details are provided in Table 1.

In sum, 43.62% (95% CI 40.98–46.29%) of the individuals did not drive, whereas 30.12% (95% CI 27.75–32.59%) of the individuals drove by themselves, 20.97% (95% CI 18.91–23.20%) of the individuals drove as a passenger, and 5.29% of the individuals drove both (by themselves and as a passenger) (95% CI 4.16–6.71%).

In Table 2, the driving status (by sex and age group) is displayed. The frequency of driving largely varied by age group and sex. For example, the proportion of male individuals aged 80 to 84 years driving by themselves equaled 59.1%, whereas the proportion was 28.7% among female individuals in the same age bracket. The proportion markedly dropped
to about 23.0% among male individuals aged 90 years and older (female individuals in this age bracket: 2.0%).

Regression analysis

Table 3 displays results of multinomial logit regression analyses with driving status (no; yes, I drive myself; yes, as a passenger; yes, as driver and passenger) as outcome measure, with no (i.e., not driving a car) as base outcome. Relative risk ratios were reported. Pseudo R^2 was 0.25.

Regressions showed that being male (RRR: 0.13, 95% CI 0.09–0.18), younger age (RRR: 0.88, 95% CI 0.84–0.91), being married and living together with spouse (RRR: 1.48, 95% CI 1.08–2.02), living in a private household (RRR: 0.04, 95% CI 0.01–0.35), better self-rated health (RRR: 1.26, 95% CI 1.02–1.56), and lower functional impairment (RRR: 19.82, 95% CI 12.83–30.62) were positively associated with ‘Yes, I drive myself’ (compared to not driving a car).

Moreover, being married and living together with spouse (RRR: 1.91, 95% CI 1.43–2.55), living in a private household (RRR: 0.36, 95% CI 0.21–0.60), better self-rated health (RRR: 1.32, 95% CI 1.10–1.57), and a higher number of chronic conditions (RRR: 1.07, 95% CI 1.01–1.13) were positively associated with ‘Yes, as a passenger’ (compared to not driving a car).

Additionally, being male (RRR: 0.24, 95% CI 0.14–0.42), younger age (RRR: 0.87, 95% CI 0.81–0.94), being married and living together with spouse (RRR: 3.31, 95% CI 1.89–5.77), better self-rated health (RRR: 1.75, 95% CI 1.20–2.56), lower functional impairment (RRR: 16.52, 95% CI 6.79–40.15), and a higher number of chronic conditions (IRR: 1.15, 95% CI 1.02–1.29) were positively associated with ‘Yes, as driver and passenger’ (compared to not driving a car).

We dichotomized the outcome (0 = no; 1 = yes, I drive myself or yes, as driver and passenger; 2 = yes, as a passenger) in a sensitivity analysis (Table 4). However, compared to our main regression analysis (presented...
Table 3 Correlates of driving status

Independent variables	Yes, I drive myself	Yes, as a passenger	Yes, as driver and passenger
Sex: women (ref.: men)	0.13***	1.10	0.24***
	(0.09–0.18)	(0.83–1.45)	(0.14–0.42)
Age	0.88***	0.98	0.87***
	(0.84–0.91)	(0.95–1.01)	(0.81–0.94)
Marital status: married (Ref.: Married, living separated from spouse; widowed; divorced; single)	1.48*	1.91***	3.31***
	(1.08–2.02)	(1.43–2.55)	(1.89–5.77)
Living situation: living in an institutionalized setting (Ref.: Living in a private household)	0.04**	0.36***	0.34
	(0.01–0.35)	(0.21–0.60)	(0.04–2.76)
Self-rated health (ranging from 1 = very bad to 4 = very good)	1.26*	1.32**	1.75**
	(1.02–1.56)	(1.10–1.57)	(1.20–2.56)
Functional impairment (IADL; ranging from 0 to 2, with higher values corresponding to lower functional impairment)	19.82***	0.99	16.52***
	(12.83–30.62)	(0.81–1.21)	(6.79–40.15)
Number of chronic conditions (ranging from 0 to 19)	1.06+	1.07*	1.15*
	(0.99–1.14)	(1.01–1.13)	(1.02–1.29)
Observations	1,832	1,832	1,832
Pseudo R^2	.25	.25	.25

Results of multinomial logistic regressions (base outcome: No) Relative risk ratios are reported, 95% confidence intervals in parentheses; ***$p < 0.001$, **$p < 0.01$, *$p < 0.05$, +$p < 0.10$

Table 4 Correlates of driving status

Independent variables	Yes, I drive myself/yes as driver and passenger	Yes, as a passenger
Sex: women (ref.: men)	0.14***	1.09
	(0.10–0.19)	(0.83–1.45)
Age	0.88***	0.98
	(0.84–0.91)	(0.95–1.01)
Marital status: married (Ref.: Married, living separated from spouse; widowed; divorced; single)	1.64**	1.90***
	(1.21–2.23)	(1.43–2.54)
Living situation: living in an institutionalized setting (Ref.: Living in a private household)	0.08**	0.36***
	(0.02–0.36)	(0.21–0.60)
Self-rated health (ranging from 1 = very bad to 4 = very good)	1.31*	1.31**
	(1.07–1.62)	(1.10–1.57)
Functional impairment (IADL; ranging from 0 to 2, with higher values corresponding to lower functional impairment)	19.32***	0.99
	(12.76–29.27)	(0.81–1.21)
Number of chronic conditions (ranging from 0 to 19)	1.07*	1.07*
	(1.00–1.15)	(1.01–1.13)
Observations	1,832	1,832
Pseudo R^2	.28	.28

Results of multinomial logistic regressions (base outcome: No) Relative risk ratios are reported; 95% confidence intervals in parentheses; ***$p < 0.001$, **$p < 0.01$, *$p < 0.05$, +$p < 0.10$
Discussion

Main findings

Our goal was to explore the frequency and correlates of driving status among the oldest old. Using data from a large, representative sample, our study showed that about 35% of the individuals aged 80 years and above still drove by themselves (i.e., including (i) individuals who drive by themselves as well as (ii) individuals who drive by themselves and as a passenger). Beyond that, approximately two out of ten individuals still drove as a passenger. Additionally, regressions particularly showed that driving by oneself was particularly related to sex, age, living situation, and functional impairment (with the expected signs).

Possible explanations and relation to previous studies

With regard to the frequencies, the proportion of older women still driving a car identified in our study was markedly lower compared to a former study focusing on Australian women aged 85–90 years (worth repeating about 36% in the former study) [9]. We assume that this difference is mainly driven by cultural factors between the countries and perhaps infrastructural factors which may, for example, reflect differences in the necessity of a car for activities of daily life (such as distance to doctors and grocery shops or distance to friends and relatives). Moreover, it may be worth noting that a former German study (mean age of 90.3 years, including GP patients aged 85 years and over) found that 16% still drove a car [8]. This is roughly comparable to our findings in the higher age brackets. More precisely, when we restrict our study to individuals aged 85 years, we found that about 19% of the individuals drove a car by themselves in our study (again, including individuals who drive by themselves as well as individuals who drive by themselves and as a passenger).

Expectedly, we found that being younger and being male were associated with a higher likelihood of driving by oneself (compared to not driving a car). One way to explain such gender-related result is that men more often may view driving a car as a necessity. In contrast, it has been shown that women sometimes avoid stress caused by traffic [17]. Moreover, one can assume that women in this age bracket had a higher likelihood of never driving a car—which would reflect a more classical distribution of roles and which would be in line with former research [18]. Furthermore, women and men differ in terms of risk attitudes of [19] and confidence in their driving skills [20].

In line with former research [21], we found an association between younger age and a higher likelihood of driving by oneself. Beyond the impact of age on the health-related factors which were included in regression analysis, higher age may also reflect an increased awareness of actual driving skills. Thus, oldest old individuals may cease to drive a car. Moreover, oldest old individuals may particularly fear the (perhaps more serious) health consequences of a traffic injury when they drive by themselves and may thus avoid to drive any longer.

Former research has been demonstrated that individuals living in institutionalized settings generally score lower in various health-related factors [22] and also in psychosocial factors [23] such as satisfaction with life. Thus, an association between living arrangement and driving status is very plausible.

Moreover, and in accordance with prior research [8], we found an association between lower functional impairment and a higher likelihood of driving a car by oneself. Such result may be explained by the fact that driving a car reflects a process which is quite complex covering executive functions and reaction [24] as well as visual skills [25] (which are in turn associated with functional impairment [26]).

Strengths and limitations

This is one of a few studies examining the frequency and correlates of driving status among the oldest old. Data were used from a large, representative sample of individuals residing in North Rhine-Westphalia (both, including community-dwelling and also institutionalized individuals). Established and valid tools were used to quantify the independent variables. This study has a cross-sectional design—which is worth keeping in mind when interpreting the results regarding directionality. Furthermore, the response rate was about 23%. Nevertheless, the NRW80 + is acknowledged as representative for the oldest old residing in North Rhine-Westphalia [15]. Additionally, it should be noted that North Rhine-Westphalia is by far the most densely populated of the “Flächenländer” (area states) in Germany. Consequently, future research among the oldest old individuals living in very rural areas is clearly required. Moreover, upcoming studies could explore further details (e.g., distance driven by own car per year, frequency of driving a car per week).

Conclusion

A sizable proportion of the individuals aged 80 years and above still drove by themselves. Less than half of the oldest old individuals did not drive. Moreover, our current study identified some correlates of driving status among
individuals in latest life. Upcoming research is needed to identify the factors that contribute to driving cessation among the oldest old.

Author contributions AH: conceptualization; data curation; methodology; project administration, visualization; roles/writing—original draft, writing—review and editing, and formal analysis. HHK: conceptualization; resources; writing—review and editing; supervision; visualization.

Funding Open Access funding enabled and organized by Projekt DEAL. None.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Ethics approval The NRW80+ was approved by the ethics committee of the Medical Faculty of the University of Cologne (No. 17–169). It is in accordance with the Helsinki declaration and its later amendments.

Informed consent Informed consent was obtained from all participants or their legal representatives.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Organisation for economic co-operation and development (2001) Ageing and transport: mobility needs and safety issues. Organisation for economic co-operation and development, Paris

2. Pitta LSR, Quintas JL, Trindade IOA et al (2021) Older drivers are at increased risk of fatal crash involvement: results of a systematic review and meta-analysis. Arch Gerontol Geriatr. https://doi.org/10.1016/j.archger.2021.104441

3. Li G, Braver ER, Chen L-H (2003) Fragility versus excessive crash involvement as determinants of high death rates per vehicle-mile of travel among older drivers. Accid Anal Prev 35:227–235

4. Augenstein J, Perdeck E, Diggès K et al (2007) Age appropriate restraints for the right front passenger. Annu Proc Assoc Adv Automot Med 51:381–94

5. Coxon K, Chevalier A, Lo S et al (2015) Behind the wheel: predictors of driving exposure in older drivers. J Am Geriatr Soc 63:1137–1145

6. Lenardt MH, Ceccinell C, Binotto MA et al (2017) Physical frailty and fitness of older driver. Colomb Med (Cali) 48:41–46

7. Sandlin D, McGwin G, Owsley C (2014) Association between vision impairment and driving exposure in older adults aged 70 years and over: a population-based examination. Acta Ophthalmol 92:3

8. Hajek A, Brettschneider C, Eisele M et al (2019) Prevalence and determinants of driving habits in the oldest old: results of the multicenter prospective AgeCoDe-AgeQualiDe study. Arch Gerontol Geriatr 82:245–250

9. Hambisa MT, Dolja-Gore X, Byles JE (2022) Determinants of driving among oldest-old Australian women. J Women Aging 34:351–371. https://doi.org/10.1080/08952841.2021.1937012

10. Hajek A, Brettschneider C, Lühmann D et al (2021) Driving status and health-related quality of life among the oldest old: a population-based examination using data from the AgeCoDe-AgeQualiDe prospective cohort study. Aging Clin Exp Res 33:3109–3115. https://doi.org/10.1007/s40520-020-01482-7

11. Hjorthol R (2013) Transport resources, mobility and unmet transport needs in old age. Ageing Soc 33:1190–1211

12. Marottioli RA, de Leon CFM, Glass TA et al (2000) Consequences of driving cessation: decreased out-of-home activity levels. J Gerontol B Psychol Sci Soc Sci 55:S334–S340

13. Ranchordas S (2020) Smart mobility, transport poverty and the legal framework of inclusive mobility. In: Finck M, Lamping M, Moscon V, Richter H (eds) Smart urban mobility. MPI studies on intellectual property and competition law, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61920-9_4

14. Churchill SA, Smyth R (2019) Transport poverty and subjective wellbeing. Transp Res Part A: Policy Pract 124:40–54

15. Wagner M, Rietz C, Kaspar R et al (2018) Quality of life of the very old. Z Gerontol Geriatr 51:193–199

16. Lawton M, Brody E, Medecin U (1969) Instrumental activities of daily living (IADL). Gerontologist 9:179–186

17. Hakamies-Blomqvist L, Wahlström B (1998) Why do older drivers give up driving? Accid Anal Prev 30:305–312

18. Freeman EE, Gange SJ, Muñoz B et al (2006) Driving status and risk of entry into long-term care in older adults. Am J Public Health 96:1254–1259

19. Charness G, Gneezy U (2012) Strong evidence for gender differences in risk taking. J Econ Behav Organ 83:50–58

20. D’Ambrosio LA, Donorito LKM, Coughlin JF et al (2008) Gender differences in self-regulation patterns and attitudes toward driving among older adults. J Women Aging 20:265–282. https://doi.org/10.1080/08952840801984758

21. Ragland DR, Satariano WA, MacLeod KE (2005) Driving cessation and increased depressive symptoms. J Gerontol A Biol Sci Med Sci 60:399–403

22. Hajek A, Lupp M, Brettschneider C et al (2021) Correlates of institutionalization among the oldest old-evidence from the multicenter AgeCoDe-AgeQualiDe study. Int J Geriatr Psychiatry 36:1095–1102. https://doi.org/10.1002/gps.5548

23. Arpacıoğlu S, Yalçın M, Türkmenoğlu F et al (2021) Mental health and factors related to life satisfaction in nursing home and community-dwelling oldest old adults during COVID-19 pandemic in Turkey. Psychogeriatrics 21:881–891

24. Kurzthaler I, Kemmler G, De Francesco M et al (2017) Executive dysfunctions predict self-restricted driving habits in elderly people with or without Alzheimer’s dementia. Pharmacopsychiatry 50:203–210

25. Wood JM (2002) Aging, driving and vision. Clin Exp Optom 85:214–220

26. Lahtinen A, Sainio P, Koskinen S et al (2007) The association between visual acuity and functional limitations: findings from a nationally representative population survey. Ophthalmic Epidemiol 14:333–342

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.