Neutrophil Extracellular Traps Go Viral

Günther Schönrich* and Martin J. Raftery

Institute of Medical Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Berlin, Germany

Neutrophils are the most numerous immune cells. Their importance as the first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell death, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand, disproportionate NET formation can cause local or systemic damage. Only recently, it was recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.

Keywords: neutrophil extracellular traps, immunopathogenesis, neutrophils, viruses, viral immune evasion

INTRODUCTION

As the first line of defense against invading pathogens, neutrophils have a broad arsenal of antimicrobial functions (1). For example, activated neutrophils release granules containing antimicrobial molecules and produce reactive oxygen species (ROS) by oxidative burst. An alternative antimicrobial function of neutrophils is based on a special type of programmed cell death called NETosis that is distinct from apoptosis and necrosis (2, 3). During NETosis, the nuclei of neutrophils lose their characteristic shape, and chromatin decondensation takes place (4). Subsequently, the membranes of the nucleus and the granules disintegrate, allowing the mixing of their content. Finally, neutrophils release neutrophil extracellular traps (NETs). NETs are net-like structures that are composed of chromatin and endowed with granule proteins. They bind to, entrap, and often kill certain pathogens. NETs are released particularly in response to large microbial structures that cannot be easily phagocytosed such as Candida albicans hyphae and Mycobacterium bovis aggregates (5).

Classical NETosis requires the generation of ROS by NADPH oxidase. However, mitochondrial ROS production in the absence of a functional NADPH oxidase is sufficient to trigger NETosis (6). Moreover, a very rapid and ROS-independent form of NETosis is triggered by Staphylococcus aureus (7). Thus, depending on the stimulus NADPH is not always required for NET formation (8). Similar to necrosis and apoptosis, there are different forms of NETosis (9, 10). For example, it has been observed that NET formation can occur without concomitant neutrophil death (7, 11–14). The physiological and pathological meanings of these different NETosis forms still have to be elucidated.
Only recently, it was recognized that NETs are also generated during viral infection (15–17). Evidence is accumulating that neutrophils play a role in antiviral immune responses (18). These virus-induced NETs can both control the virus and damage the host (19). In this review, we focus our attention on the physiological and pathological relevance of virus-induced NETosis.

VIRAL NET INDUCTION

Many viruses stimulate neutrophils in vitro directly to produce NETs at low levels (20). Some of these viruses can be detected inside neutrophils, but there is no direct evidence that they establish productive infection in this cell type (20–23). This suggests that pattern recognition receptors (PRRs) expressed on the surface or in endosomes of neutrophils play an essential role in NETosis (Figure 1). For example, neutrophils sense HIV-1 by endosomal PRRs that detect viral nucleic acids, i.e., toll-like receptor (TLR) 7 and TLR8, and subsequently undergo NETosis (17). The fusion protein of respiratory syncytial virus (RSV) induces NETosis through TLR4 (24). NET formation induced by hantaviruses is mediated by signaling through β2 integrins (20).

Influenza virus A can also stimulate neutrophils directly to release NETs; however, the molecules involved have not been defined (25). Surprisingly, influenza A virus-induced NETs do not protect against secondary bacterial infection (26). Thus, virus-induced NETs differ structurally and functionally from those generated during bacterial infection. In line with this view, the protein content of NETs depends on the type of NET-inducing stimulus (27).

In the context of viral infection, neutrophils can switch on antiviral effector programs other than NETosis, such as release of antiviral agents or phagocytosis, and can even become apoptotic (18). At the moment, it is unclear how neutrophils decide between these different responses. Possibly, not a single PRR but rather as-yet undefined combinations of neutrophilic PRRs determine the antiviral mode of action of neutrophils. Moreover, only a proportion of cells undergo NETosis, suggesting that only a special neutrophil subtype or maturation stage is susceptible to NETosis induction (4).

Viruses also induce NETosis indirectly without engaging PRRs expressed by neutrophils (Figure 1). The inflammatory milieu created by virus-infected endothelial and epithelial cells contains cytokines and chemokines such as interleukin-8 (IL-8) that trigger NETosis (3, 28, 29). In addition, type I interferon (IFN) is produced in large amounts during viral infections and primes neutrophils for NET formation (30). There is also evidence that platelets play an important role in antiviral defense (31). Platelet activation is frequently observed during viral infections. For example, single-stranded RNA viruses from the family Picornaviridae activate platelets through TLR7. This is important for reducing viral titers and increasing the survival of the host (32, 33). Activated platelets form aggregates with neutrophils and in this process stimulate NETosis (34) (Figure 1). On the molecular level, this NET-inducing aggregation has been attributed to surface molecules: CD41 on activated platelets interacts with CD11b, a β2 integrin, on neutrophils. Other infection models have also shown that platelet–neutrophil interactions through β2 integrins induce NET formation (11, 35, 36). Massive activation of the platelet/neutrophil axis and subsequent NET-based clearance mechanisms may represent an emergency strategy of the host in the face of systemically multiplying viruses. This reaction is followed by a drop in platelet counts, which is observed in many viral infections, e.g., viral hemorrhagic fever (VHF) caused by hantaviruses (37, 38). In fact, the degree of platelet loss correlates with the severity of virus-induced disease and determines the clinical outcome (39–41).

ANTIVIRAL ACTIVITY OF NETs

Although virus induction of NET formation is now well established, it is less clear how NETs contribute to antiviral immunity. In a mouse model of poxvirus infection, induction of NETs with LPS prior to infection strongly reduced the number of virus-infected liver cells and this protective effect was reversed by DNase treatment (34). There are direct mechanisms by which NETs develop antiviral activity (Figure 1). First of all, the web-like chromatin backbone of NETs can bind to and immobilize viral particles, in part by electrostatic attraction, thereby mechanically preventing virus spreading (17). Histones are enriched in positively charged amino acids and can attach to negatively...
charged viral envelope. For example, the core histones H3 and H4 induce aggregation of seasonal influenza A particles and may inactivate HIV-1 (17, 42). Intriguingly, extracellular histones also reduce HIV-1 transcription (43). Finally, histone H1 binds to noroviruses, the most common cause of viral gastroenteritis and prevents their attachment to intestinal cells (44). Second, attached to the chromatin backbone of NETs are antimicrobial molecules such as myeloperoxidase (MPO), cathelicidins, and α-defensins. They have a proven antiviral activity against both enveloped and non-enveloped viruses and can inactivate viral particles (45).

NETs components also indirectly contribute to antiviral immunity by stimulating antiviral effector mechanisms executed by other immune cells. For example, histones and high mobility group box-1 (HMGB1) proteins act as danger-associated molecular patterns (DAMPs) that trigger release of proinflammatory cytokines and chemokines by other immune cells (46). This process is self-limiting as under high neutrophil densities NETs build aggregates that in turn degrade cytokines and chemokines (47). NETs also activate plasmacytoid dendritic cells (pDCs) through TLRs (48–50). pDCs have a key function in antiviral immunity by releasing high amounts of type I IFN (51). In fact, NETs can be enriched in oxidized mitochondrial DNA which is very efficient in inducing a type I IFN response (52). Finally, NETs could increase antiviral adaptive immunity by reducing the activation threshold of T lymphocytes (53).

VIRAL NET EVASION

Viruses are known for their extraordinary capacity to evade immune control mechanisms. There are also viral mechanisms that counteract NET formation (Figure 1). For example, HIV-1 envelope glycoprotein stimulates DCs to produce cellular IL-10 through DC-SIGN (17). IL-10 is an immunosuppressive cytokine that also inhibits TLR-induced ROS production (54). It is quite often produced in the context of viral infections suggesting that more viruses exploit IL-10 as a means of NET evasion (55, 56). In the genome of several large DNA viruses IL-10, homologs have been found including ubiquitous human pathogens such as human cytomegalovirus (HCMV) and Epstein–Barr virus (EBV) (57, 58). As these virus-encoded IL-10 molecules shape the function and cell death of immune cells, they may also modulate NETosis similar to cellular IL-10 (59, 60). Dengue virus (DENV) serotype-2 can arrest NET formation at a ROS-independent late stage by interfering with glucose uptake (61, 62). Finally, latency-associated nuclear antigen 1 encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV) impairs expression of NET-stimulating cellular IL-8 (63).

Some bacteria, such as streptococci, express DNase to degrade NETs (64–66). Herpesviruses also encode proteins that have DNase activity. These viral molecules process and package the replicated viral genome into the capsid (67). If released from virus-infected cells, they could degrade NETs, thereby remobilizing NET-entrapped virions.

Taken together, virus-induced NETs help to control viral dissemination by several direct and indirect mechanisms, whereas at the same time viral evasion mechanisms target NET formation to minimize the antiviral NET effect and immunopathology.

ROLE OF NETs IN VIRAL PATHOGENESIS

As for all effective immune responses against pathogens, NETosis may also result in immunopathology. Unbalanced NET formation is associated with pathological conditions such as respiratory distress, autoimmunity disease, and thrombosis (68). NETs are directly cytotoxic to epithelial and endothelial cells (69, 70) as well as hepatocytes (71). They contain several components such as histones that are antimicrobial but at the same time can cause tissue damage and other pathological abnormalities including thrombosis (72). Moreover, NETs can occlude secretory ducts or small airways, thereby driving inflammation (73, 74). Other components of NETs such as HMGB1 may also play a detrimental role in virus-associated disease (75).

There is evidence supporting the concept that local NET deposits contribute to viral immunopathology. NETs have been detected in bronchoalveolar lavage fluid from children with severe RSV infection of the lower respiratory tract (76). Dense plugs occluding the small airways in RSV-infected calves contain NETs (76). Moreover, in a mouse model of influenza pneumonia, NET formation was observed in areas of alveolar-capillary damage in the lung (16). On the other hand, mice deficient in peptidylarginine deiminase 4 (PAD4) were as efficient in controlling influenza virus and showed similar survival as wild-type mice (77). This result suggests that NETs do not play an important role in individual antiviral immunity and virus-induced pathology because PAD4 deaminates histone H3 and H4 and is required for NET formation. The different outcomes of these studies may be due to different virus and mouse strains used. In line with this view, neutrophils from different mouse strains undergo NETosis with different efficiency (78). Furthermore, the influence of NETs on viral dissemination was not addressed in these studies. If virus-induced NET deposits represent an important pathogenic factor treatments that alleviate NET-induced pathological manifestations such as DNase should ease symptoms of virus-associated disease (79). Clinical or radiological improvement after DNase treatment of infants with virus-associated bronchiolitis was observed in some clinical trials (80, 81) but not in others (82). Thus, further studies have to elucidate the precise pathogenic role of virus-induced NET deposits in the lung and explore the efficiency of anti-NET treatment.

NETs start to circulate in detectable amounts in the serum if the NET degradation and clearance machinery of the host is overwhelmed. This systemic NET overflow has severe direct and indirect adverse effects. First, NETs can damage directly endothelial cells lining the interior face of the blood vessels cells (69, 70). Second, NET overflow drives autodestructive processes as components of NETs act as neo self-antigens and induce autoantibodies. In fact, a number of molecules that have been identified as components of NETs such as HMGB1 may also play a detrimental role in virus-associated disease (75).
subpopulation of SLE patients show decreased DNase I activity and NET degradation (85, 86). Another enzyme that could prevent systemic NET overflow is DNASE1L3. It is released by DCs and macrophages and digests microparticle-associated chromatin, thereby preventing SLE (87). In those individuals who are deficient in NET-degrading enzymes even viruses with a relatively weak NETs-stimulatory capacity could drive NET-associated systemic pathology (Figure 2). NET formation represents a plausible link between viruses and systemic autoimmune disease. Supporting this idea, viral infections are associated with transient autoantibody production and are known to mimic SLE, induce SLE onset, or trigger lupus flares (88–90).

Transient systemic NET overflow due to increased NET formation without noticeable deficiency in DNase activity can occur during infection with hantaviruses (20) (Figure 2). Neutrophils play an antiviral role during VHF caused by hantaviruses (92–94). These zoonotic pathogens belong to the family Bunyaviridae and infect humans after transmission via inhalation of aerosolized urine, saliva, and feces from chronically infected rodents, their natural hosts. In humans, they can induce severe pulmonary and renal dysfunction as well as intravascular coagulation and hemorrhagic shock (95). Hantaviruses replicate in endothelial cells, their main target cells, without causing programmed cell death in vitro. This suggests that immunopathological mechanisms such as those driven by NETs contribute to Hantavirus-associated pathogenesis (94, 96). In hantavirus-infected patients, high levels of circulating NETs are detected (20). In accordance, increased amounts of cell-free DNA (97) and histones (98) are found in the circulation of hantavirus-infected individuals. The cytotoxic effects of NETs may significantly contribute to hantavirus-associated pathology. In line with this view, histones have been shown to increase thrombin generation and intravascular coagulation (99, 100). They also upregulate the permeability of the endothelial barrier (101). Finally, NETs can induce the formation of autoantibodies that may contribute to the systemic pathology observed during hantavirus-associated disease (20).

Another form of VHF is caused by DENV. DENV is transmitted between humans by Aedes mosquitoes and poses a threat to roughly two billion people (102). There is no evidence as yet for a strong direct NET-stimulatory effect of DENV particles in vitro (61). Nevertheless, in vivo DENV-infected cells could stimulate NETosis indirectly by secreting the viral non-structural protein 1 (NS1). NS1 activates uninfected cells including endothelial cells via TLR4 (103, 104). Subsequently, activated endothelial cells could drive neutrophils into NETosis (69, 79). Moreover, NS1 could activate platelets via TLR4 which in turn stimulate neutrophils to undergo NETosis (105). Finally, IL-8 is produced by human endothelial cells in response to DENV (29) and is known to drive NETosis (3). In accordance, high levels of IL-8 and elastase, a key component of NETs, are found in DENV patients and correlate with disease severity (106).

These pathological effects explain why NET formation as part of an antiviral defense strategy is a double-edged sword. The host may benefit from NETs deposited precisely in the area of infection, thereby immobilizing or even neutralizing virus and killing virus-infected cells. This benefit may turn into disaster if NET formation is too widespread creating NET deposits in healthy tissue. As a consequence, too many uninfected host cells in the neighborhood of the infected area may come under “friendly fire” resulting in considerable collateral tissue damage. Local NET-associated pathology may become systemic, if the NET degradation machinery (DNase activity) is impaired, or if the viral NET-stimulatory capacity is too strong. Such an unbalanced NET formation results in NET overflow. Under this condition, autoimmune phenomena are triggered that could result in systemic pathology (Figure 2).
Both authors contributed to the conception, writing, and editing of this review.

REFERENCES

1. Bardoei BW, Kenny EJ, Sollberger G, Zychlinsky A. The balancing act of neutrophils. Cell Host Microbe (2014) 15:526–36. doi:10.1016/j.chom.2014.04.011
2. Takai H, Araki A, Watanabe H, Ichinose A, Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol (1996) 59:229–40.
3. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science (2004) 303:1532–5. doi:10.1126/science.1092385
4. Fuchs TA, Abea U, Goossman C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol (2007) 176:231–41. doi:10.1083/jcb.200605077
5. Banzik N, Lobojenskis A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol (2014) 15:1017–25. doi:10.1038/nri.2987
6. Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A (2015) 112:2817–22. doi:10.1073/pnas.14055112
7. Pilszcek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol (2010) 185:7413–25. doi:10.4049/jimmunol.1000675
8. Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol (2012) 92:841–9. doi:10.1189/jlb.1211601
9. Yipp BG, Kubis P. NETosis: how vital is it? Blood (2013) 122:2784–94. doi:10.1182/blood-2013-04-457671
10. Desai J, Mulay SR, Nakazawa D, Anders HJ. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci (2016) 73:2211–9. doi:10.1007/s00018-016-2195-0
11. Clark SR, Mc AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med (2007) 13:463–9. doi:10.1038/nm1565
12. Yousfi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ (2009) 16:1438–44. doi:10.1038/cdd.2009.96
13. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med (2012) 18:1386–93. doi:10.1038/nm.2847
14. Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol (2013) 190:4136–48. doi:10.4049/jimmunol.1200677
15. Wardini AB, Guimaraes-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C, et al. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol (2010) 91:259–64. doi:10.1099/vir.0.04163-0
16. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonia. Am J Pathol (2011) 179:199–209. doi:10.1016/j.ajpath.2011.03.013
17. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe (2012) 12:109–16. doi:10.1016/j.chom.2012.05.015
18. Galani IE, Andreakos E. Neutrophils in viral infections: current concepts and caveats. J Leukoc Biol (2015) 98:557–64. doi:10.1189/jlb.1VMR1114-555R
19. Jenne CN, Kubis P. Virus-induced NETs – critical component of host defense or pathogenic mediator? PLoS Pathog (2015) 11:e1004546. doi:10.1371/journal.ppat.1004546
20. Raftery MJ, Lalwani P, Kraukrämmer E, Peters T, Scharffetter-Kochanek K, Kruger R, et al. beta2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J Exp Med (2014) 211:1485–97. doi:10.1084/jem.20131199
21. Orenstein JM. In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue. J Infect Dis (2000) 182:338–42. doi:10.1086/315640
22. Gerna G, Baldanti F, Revello MG. Pathogenesis of human cytomegalovirus infection and cellular targets. Hum Immunol (2004) 65:381–6. doi:10.1016/j.jimmunol.2004.02.009
23. Halliche CP, Flanagan BF, Brearey SP, Hunt JA, Foncetta AM, McNamara PS, et al. Respiratory syncytial virus binds and undergoes transcription in neutrophils from the blood and airways of infants with severe bronchiolitis. J Infect Dis (2014) 204:48–58. doi:10.1093/infdis/jit280
24. Funchal GA, Jaeger N, Czepielewski RS, Machado MS, Stein RT, et al. Respiratory syncytial virus fusion protein promotes TLR-4 dependent neutrophil extracellular trap formation by human neutrophils. PLoS One (2015) 10:e0124082. doi:10.1371/journal.pone.0124082
25. Tripathi S, Verma A, Kim EJ, White MR, Hartshorn KL. LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol (2014) 96:931–8. doi:10.1189/jlb.A1113-604RR
26. Narayana Moorthy A, Narasaratju T, Rai P, Perumalsamy R, Tan KB, Wang S, et al. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol (2013) 4:56. doi:10.3389/fimmu.2013.00056
27. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski S, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med (2013) 5:178ra140. doi:10.1126/scitranslmed.3005580
28. Subauste MC, Jacoby DB, Richards SM, Proud D. Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest (1995) 96:549–57. doi:10.1172/JCI11867
29. Huang YH, Lei HY, Liu HS, Lin YS, Liu CY, Yeh TM. Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg (2000) 63:71–5.
30. Martineilli S, Urosevic M, Daryadel A, Oberholzer PA, Baumann C, Fey MF, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem (2004) 279:44123–32. doi:10.1074/jbc.M405883200
31. Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol (2014) 5:649. doi:10.3389/fimmu.2014.00649
32. Koupnovova M, Vitseva O, Mackay CR, Beaulieu LM, Benjamin EJ, Mick E, et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood (2014) 124:791–802. doi:10.1182/blood-2013-11-536003
33. Negrotto S, Mena HA, Ure AE, Mena HA, Monestier M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest (2012) 122:2661–71. doi:10.1172/JCI61303

FUNDING

This work was supported by Deutsche Forschungsgemeinschaft (Support code SCHO/9-1).
36. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe (2012) 12:324–33. doi:10.1016/j.chom.2012.06.011

37. Zapata JC, Cox D, Savaresi MS. The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLoS Negl Trop Dis (2014) 8:e2858. doi:10.1371/journal.pntd.0002858

38. Connolly-Anderson AM, Sundberg E, Ahlm C, Hultdin J, Baudin M, Larsson J, et al. Increased thrombopoiesis and platelet activation in hantavirus-infected patients. J Infect Dis (2012) 215:1061–9. doi:10.1093/infdis/jiv161

39. Rasche FM, Uhel B, Kruger DH, Karges W, Czoek D, Hampl W, et al. Thrombocytopenia and acute renal failure in Puumula hantavirus infections. Emerg Infect Dis (2004) 10:1420–5. doi:10.3201/eid1008.031069

40. Krautkramer E, Zeier M, Pfluegmaier A. Hantavirus infection: an emerging infectious disease causing acute renal failure. Kidney Int (2013) 83:237–7. doi:10.1016/j.kint.2012.360

41. Latus J, Schwab M, Tacconelli E, Pieper FM, Wegener D, Rettenmaier B, et al. Arginine-rich histones have strong antiviral activity for influenza A viruses. J Virol (2011) 85:8606–15. doi:10.1128/JVI.00733-11

42. Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD, et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. J Natl Acad Sci U S A (2005) 102:1679–84. doi:10.1073/pnas.040661102

43. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henrieques-Norman B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol (2006) 16:401–7. doi:10.1016/j.cub.2006.01.056

44. Walker MJ, Hollands M, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med (2007) 13:981–5. doi:10.1038/nm1612

45. Martinez R, Sarisky RT, Weber PC, Weller SK. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol (1996) 70:2075–85.

46. Okumura M, Tripathi S, White M, Qi L, Taubenberger J, Van Eijk M, et al. Kozlowski HN, Lai ET, Havugimana PC, White C, Emili A, Sakac D, et al. Kozlowski HN, Lai ET, Havugimana PC, White C, Emili A, Sakac D, et al. Arginine-rich histones have strong antiviral activity for influenza A viruses. J Virol (2011) 85:8606–15. doi:10.1128/JVI.00733-11

47. Kozlowski HN, Lai ET, Havugimana PC, White C, Emili A, Sakac D, et al. Kozlowski HN, Lai ET, Havugimana PC, White C, Emili A, Sakac D, et al. Arginine-rich histones have strong antiviral activity for influenza A viruses. J Virol (2011) 85:8606–15. doi:10.1128/JVI.00733-11

48. Janzen JS, Smyth DI. Neutrophil extracellular traps links innate and adaptive immune responses. J Immunol (2011) 187:538–52. doi:10.4049/jimmunol.1100450

49. Martinez R, Sarisky RT, Weber PC, Weller SK. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol (1996) 70:2075–85.

50. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Arch Virol (2003) 148:1659–70. doi:10.1007/s00705-003-0143-4

51. Gyorfy Findlay E, Currie SM, Davidson DJ. Cationic host defense peptides: potential as antiinflammatory therapeutics. BioDrugs (2013) 27:479–93. doi:10.1007/s40259-013-0039-0

52. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones molecules. Future Microbiol (2011) 6:103930.

53. Garcia-Romo GS, Caelli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netto is a major inducer of type I IFN production in pediatric systemic lupus erythematosis. Sci Transl Med (2011) 3:73ra20. doi:10.1126/scitranslmed.3001201

54. Lande R, Ganguy D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA peptide complexes in systemic lupus erythematosus. Sci Transl Med (2011) 3:73ra19. doi:10.1126/scitranslmed.3001180

55. Villanueva E, Yalavarthi S, Berthier CC, Hodgkin JB, Khanpur R, Lin AM, et al. Netto neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosis. J Immunol (2011) 187:538–52. doi:10.4049/jimmunol.1100450

56. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol (2015) 15:471–85. doi:10.1038/nri8635

57. Loood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med (2016) 22:146–53. doi:10.1038/nm.4027

58. Ng CT, Oldstone MB. IL-10: achieving balance during persistent viral infection. Curr Top Microbiol Immunol (2014) 380:129–44. doi:10.1007/978-3-662-43492-5_6

59. Sklenk P, Fillatreau S. Suppressive functions of B cells in infectious diseases. Int Immunol (2015) 27:513–9. doi:10.1093/intimm/dxv037

60. Chen P, Fillatreau S. Suppressive functions of B cells in infectious diseases. Int Immunol (2015) 27:513–9. doi:10.1093/intimm/dxv037

61. Hsu DH, De Waal Malefyt R, Fiorentino DF, Deng MN, Vieira P, De Vries J, et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science (1990) 250:830–2. doi:10.1126/science.2173142

52. Neuberger and Raftery

53. Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol (2015) 15:471–85. doi:10.1038/nri8635

54. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol (2015) 15:471–85. doi:10.1038/nri8635

55. Ng CT, Oldstone MB. IL-10: achieving balance during persistent viral infection. Curr Top Microbiol Immunol (2014) 380:129–44. doi:10.1007/978-3-662-43492-5_6

56. Chen P, Fillatreau S. Suppressive functions of B cells in infectious diseases. Int Immunol (2015) 27:513–9. doi:10.1093/intimm/dxv037

57. Hsu DH, De Waal Malefyt R, Fiorentino DF, Deng MN, Vieira P, De Vries J, et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science (1990) 250:830–2. doi:10.1126/science.2173142
89. Ramos-Casals M, Cuadrado MJ, Alba P, Sanna G, Brito-Zeron P, et al. Plasma cell-free DNA levels are elevated in acute Puumala hantavirus infection. *PLoS One* (2012) 7:e31455. doi:10.1371/journal.pone.0031455

90. Vaheri A, Strandin T, Jaaskelainen AJ, Vapalahti O, Jarvis H, Lokki ML, et al. Pathophysiology of a severe case of Puumala hantavirus infection successfully treated with bradycardin receptor antagonist icatibant. *Antiviral Res* (2014) 111:23–5. doi:10.1016/j.antiviral.2014.08.007

91. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, et al. Neutrophil depletion suppresses pulmonary vascular hyperpermeability and endothelial barrier: neutrophils are on the payroll. *J Immunol* (2015) 195:2606–17. doi:10.4049/jimmunol.1500222

92. Brinkmann V, et al. Neutrophil serine proteases. *Nat Rev Immunol* (2005) 5:555–65. doi:10.1038/nri1665

93. Kubes P, et al. Platelets in inflammation and infection. *Platelets* (2015) 26:286–92. doi:10.3109/09537104.2015.1010441

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.