Molecular characterization and immune functional analysis of IRF2 in common carp (Cyprinus carpio L.): different regulatory role in the IFN and NF-κB signalling pathway

Hua Li 1*, Xinping Chen 1†, Yaoyao Zhu 2, Rongrong Liu 1, Linlin Zheng 3, Shijuan Shan 1, Fumiao Zhang 1, Liguo An 1 and Guiwcn Yang 1*

Abstract

Background: Interferon regulatory factor 2 (IRF2) is an important transcription factor, which can regulate the IFN response and plays a role in antiviral innate immunity in teleost.

Results: In the present study, the full-length cDNA sequence of IRF2 (CcIRF2) was characterized in common carp (Cyprinus carpio L.), which encoded a protein containing a conserved DNA-binding domain (DBD) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF2 was most closely related with IRF2 of Ctenopharyngodon idella. CcIRF2 transcripts were detectable in all examined tissues, with higher expression in the gills, spleen and brain. CcIRF2 expression was upregulated in immune-related tissues of common carp upon polyinosinic:polycytidylic acid (poly (I:C)) and Aeromonas hydrophila stimulation and induced by poly (I:C), lipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in the peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKls). In addition, overexpression of CcIRF2 decreased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that CcIRF2 could increase the activation of NF-κB.

Conclusions: These results indicate that CcIRF2 participates in antiviral and antibacterial immune response and negatively regulates the IFN response, which provide a new insight into the regulation of IFN system in common carp, and are helpful for the prevention and control of infectious diseases in carp farming.

Keywords: Common carp (Cyprinus carpio L.), Interferon regulatory factor 2 (IRF2), Poly (I:C), Aeromonas hydrophila, IFN, NF-κB
2 (IRF2) has been characterized in rainbow trout (*Oncorhynchus mykiss*) [6], mandarin fish (*Siniperca chuatsi*) [7], snakehead (*Channa argus*) [8], zebrafish (*Danio rerio*) [9], stickleback (*Gasterosteus aculeatus*) [9], orange-spotted grouper (*Epinephelus coioides*) [10], Atlantic salmon (*Salmo salar*) [11], paddlefish (*Polyodon spathula*) [12], miyuki croaker (*Micthys miyui*) [13], grass carp (*Ctenopharyngodon idella*) [14], blunt snout bream (*Megalobrama amblycephala*) [15], Atlantic cod (*Gadus morhua*) [16] and golden pompano (*Trachinotus ovatus*) [5]. The expression of IRF2 can be upregulated by viral [5–8, 10, 12–14, 16] or bacterial [5, 10, 15] stimulation in different fish tissues, suggesting that IRF2 plays a role in host antiviral and antibacterial responses.

The IFN response is crucial to the antiviral innate immunity of teleost, which can be regulated by IRF2 in different ways. In zebrafish, the expression level of IFNa is increased by the knockdown of IRF2, which has been shown to negatively regulate IFNa signalling [17]. In Atlantic salmon, IRF2 acts as a negative regulatory factor for IFNa1 by competing with IRF-1 [11]. In grass carp, IRF2 can also bind the promoter of IFN via its DBD and downregulate the transcriptional activity of IFN [14]. However, IRF2 plays a positive role in regulating IFNa3 and IFNy expression in golden pompano [5, 18]. Interestingly, in large yellow croaker, IRF2 was found to induce IFNð and IFNh promoter activity but inhibit IFNc promoter activity [19].

Common carp (*Cyprinus carpio* L.) is a pivotal aquaculture fish species widely cultured in Asia and Europe. Several IRFs have been identified from common carp, including IRF1, IRF3, IRF5, IRF7, IRF9 and IRF10 [20–24]. *Aeromonas hydrophila* is a well-known fish pathogenic bacterium that can cause infection in a number of fish species [25], including common carp (*Cyprinus carpio*) [26], goldfish (*Carassius auratus auratus*) [27], yellow catfish (*Pelteobagrus fulvidraco*) [28] and channel catfish (*Ictalurus punctatus*) [29]. Furthermore, fish are becoming more and more susceptible to *A. hydrophila* because of the increasing intensive rearing methods used in the aquaculture [30]. The previous studies have reported that carp IRFs participated in the immune response against *A. hydrophila* [23]. Thus, in the present study, we identified the full-length cDNA sequence of IRF2 (*CcIRF2*) in common carp, and investigated its responsiveness to viral and bacterial immune stimulation both in vivo and in vitro. Meanwhile, we determined the roles of *CcIRF2* in regulating the IFN response and NF-κB signalling pathway. The present study will contribute to understand the innate immune system of fish, and is helpful for the prevention and control of infectious diseases in carp farming.

Methods

Fish feeding and experimental challenge

Common carp (about 200 g per fish) used in the study were purchased from a local fish farm in Jinan, China. After maintained in a fish feeding system (Qingdao Aiwen) at 20 °C for at least one week, 50 fish were anaesthetized by immersion in a 100 mg/l solution of MS222 (Sigma), and then evenly divided into two groups to injected intraperitoneally with 500 μl of 2.6 mg/ml poly (I:C) solution (Sigma) or 4.0 × 10⁵/ml *Aeromonas hydrophila*, which were inactivated with 0.5% formalin and suspended in PBS [23, 31, 32]. At 0, 3, 6, 12, 24, 48 and 72 h post-injection (hpi), three fish were anaesthetized and the liver, spleen, head kidney, skin, foregut and hindgut were collected.

Cloning and analysis of the *CcIRF2* cDNA

Total RNA was extracted from head kidney of common carp using TRIzol reagent (TIANGEN), and cDNA was synthesized using a FastQuant RT Kit (TIANGEN). A partial sequence of *CcIRF2* was amplified by PCR using the primers IRF2-F/IRF2-R (Table 1), which were designed based on the cDNA sequences of several known fish IRF2. Then, the full-length cDNA sequence was obtained by 3′- and 5′-Full RACE (rapid amplification of cDNA ends) method (TaKaRa). The domains of the *CcIRF2* protein were analysed using Simple Modular Architecture Research Tool (SMART, http://smart.embl-heidelberg.de), and multiple sequence alignment and phylogenetic analysis was performed using MEGA 6.0.

Preparation of PBLs and HKLs from common carp

Peripheral blood leucocytes (PBLs) and head kidney leucocytes (HKLs) of common carp were prepared according to previous studies [23, 33]. In brief, peripheral blood and head kidney cell suspensions were loaded onto freshly prepared 34%/51% Percoll (Sigma) density gradients and separated via centrifugation at 650 g for 30 min. The cells were resuspended and cultivated at 25 °C in Leibovitz’s L-15 medium with 10% foetal bovine serum (FBS), 100 UI/ml penicillin and 100 μg/ml streptomycin.

Overexpression of *CcIRF2* in EPC cells

The open reading frame (ORF) of *CcIRF2* was amplified by PCR using Phusion High-Fidelity DNA polymerase (PrimeSTAR), and purified fragments were ligated into the pCDNA3.1-EGFP vector and transformed into *E. coli* Top10 cells. The overexpression vector was extracted from positive clone using an endotoxin-free plasmid isolation kit (TIANGEN) and verified by sequencing. Epi-thelioma papulosum cyprini (EPC) cells were cultivated at 25 °C in M199 medium (HyClone) with 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin (Gibco).
Cells were transfected with pcDNA3.1-EGFP-CcIRF2 using X-tremeGENE HP DNA Transfection Reagent (Roche) at 2 μl/well following the manufacturer’s instructions.

Real-time PCR analysis

Real-time PCR was performed with TransStart Tip Green qPCR SuperMix (TransGen) in a Rotor-Gene Q PCR instrument (Qiagen) [23]. The expression levels of all genes were calculated relative to those of the 40S ribosomal protein S11 or the β-actin gene using the 2^(-ΔΔCt) method. The primers used are listed in Table 1.

Dual-luciferase reporter assays

The effects of CcIRF2 on the activation of NF-κB were performed using Dual-luciferase reporter assays. The 293T cells were cultivated at 37 °C in DMEM medium (HyClone) with 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin (Gibco), and transfected with reporter gene plasmids, pGL-NF-κB-luc and pGL-Renilla-luc, and the pcDNA3.1-EGFP-CcIRF2 vector using Lipofectamine 2000 (Invitrogen). 48 h after transfection, the Dual-Glo® Luciferase Reagent (Promega) was used to measure firefly and Renilla luciferase activity according to the manufacturer’s instructions.

Statistical analysis

Differences significance analysis were performed using one-way analysis of variance (ANOVA) or T-test in GraphPad Prism 6. All the data were homogeneous and normal, and P < 0.05 was considered as significative.

Results

Cloning and characterization of CcIRF2

The full-length cDNA of CcIRF2 (GenBank accession No. MW559072) consists of 1916 bp, including an ORF of 1005 bp that translates into a 334-amino acid putative peptide. The 5' and 3'-untranslated region (UTR) of the cDNA is 118 bp and 793 bp, respectively, and an mRNA instability motif (1861AATAA1865) is contained in the 3'-UTR. The predicted CcIRF2 protein contains a DBD (M1-S115) and an IAD (E211-F265) domain, with six tryptophan residues (Trp11, 26, 38, 46, 58 and 76) and a nuclear localization signal (NLS) in the DBD.

Multiple sequence alignment revealed that IRF2 amino acids sequences were conserved in all vertebrates, and significant homology was found in DBD (Fig. 1). The phylogenetic tree including IRF2 sequences from all known species was constructed using the neighbour-joining method, which was divided into multiple branches, and CcIRF2 was most closely related with IRF2 of C. idella (Fig. 2).

Table 1 Primers used in the present study

Name of primer	Sequence(5′-3′)	GenBank accession No.
CcIRF2-F	CAGATTCCGTGGATGCATG	
CcIRF2-R	GTCTTCTAGATGACCTGGT	
CcIRF2 RT-F	TGGACGACAGACGATACAGACAG	
CcIRF2 RT-R	GCAGTGCCATCTCACCTCTTGG	
CcIRF2 ORF-F	CAAAAGCTTTATGCCGAGGAATGCGT	
CcIRF2 ORF-R	TCCCCGGGGCAAGCTTGAGGATTTGG	
CsS11-F	CCGTGAGGTGACATCGTACA	AB012087
CsS11-R	TCAGGAACATTGCACTCTACTGCT	FN178457
EPC-IFN-F	CGCTAAGGTGGAGACAGGTTA	
EPC-IFN-R	TTAGGTTCAATGTGCTCAGTCA	
EPC-PKR-F	TGGAGACCTCGGCTCTGAGT	KM099176
EPC-PKR-R	TCCTGAGCTCGGCTCATGTA	KM099174
EPC-Viperin-F	AAAGACCTCTCGGACGCGCAAAGA	
EPC-Viperin-R	CCTCTCGGAAATCTCAAGAAGCG	
EPC-ISG15-F	ACCGATGCGAATCAACGAAAGCTC	KM099174
EPC-ISG15-R	CGTAACGCTTGGAGCTCAGTGAAT	
EPC-IRF3-F	CGTGCACACACCATGCTGAGG	KJ027520
EPC-IRF3-R	ATCCAGATCTCCACCACCTCTTGT	
EPC-β-actin-F	GCCGCTGACCTGACTGACTACCT	KF844250
EPC-β-actin-R	GCCACATAGCACGACTCCTCTTGG	
DBD (DNA binding domain)

Species	Sequence	Accession Numbers	Score
Cyprinus carpio	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		69
Ctenopharyngodon idella	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		69
Paralichthys olivaceus	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		70
Xenopus laevis	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		70
Gallus gallus	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		70
Mus musculus	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		70
Homo_sapiens	MVPERMRMPSP VLEQISECK IPGLIMNKE KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		70

Clustal_Consensus

Species	Sequence	Accession Numbers	Score
Cyprinus carpio	**** **.*.+:;:*******:;:******:*:;:***:*:*		80
Ctenopharyngodon idella	**** **.*.+:;:*******:;:******:*:;:***:*:*		134
Paralichthys olivaceus	**** **.*.+:;:*******:;:******:*:;:***:*:*		134
Xenopus laevis	**** **.*.+:;:*******:;:******:*:;:***:*:*		134
Gallus gallus	**** **.*.+:;:*******:;:******:*:;:***:*:*		134
Mus musculus	**** **.*.+:;:*******:;:******:*:;:***:*:*		134
Homo_sapiens	**** **.*.+:;:*******:;:******:*:;:***:*:*		134

IAD2 (IRF associated domain 2)

Species	Sequence	Accession Numbers	Score
Cyprinus carpio	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		228
Ctenopharyngodon idella	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		258
Paralichthys olivaceus	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		258
Xenopus laevis	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		258
Gallus gallus	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		258
Mus musculus	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		258
Homo_sapiens	EQVTSDLLY PLQISVSYY QEDTDSDAS EDS---**** KRIQIPPMH AARGHVEK DAPLPMWAH ITGYKQGID		258

Clustal_Consensus

Species	Sequence	Accession Numbers	Score
Cyprinus carpio	*, .: ;: *: :*: * :*: * :*: * :*: *		290
Ctenopharyngodon idella	*, .: ;: *: :*: * :*: * :*: * :*: *		328
Paralichthys olivaceus	*, .: ;: *: :*: * :*: * :*: * :*: *		328

Fig. 1 Multiple sequence alignment of IRF2 protein sequences from different species. Identical (*) and similar (: or .) residues are indicated. The DBD and IAD are indicated by black lines. Five tryptophan (W) residues are boxed in red. The GenBank accession numbers of the genes are listed in Table 2.
The expression pattern of CcIRF2

The expression of CcIRF2 in eleven tissues of healthy common carp was examined using Real-time PCR method, including the liver, spleen, head kidney, foregut, hindgut, gills, gonad, skin, muscle, buccal epithelium, and brain. The results showed that CcIRF2 was expressed in all examined tissues, with higher expression in the gills, spleen and brain (Fig. 3).

CcIRF2 expression in response to poly (I:C) and A. hydrophila stimulation in vivo

To determine the immune function of CcIRF2, CcIRF2 expression was examined in several immune-related tissues of common carp after viral or bacterial challenge. Upon poly (I:C) stimulation, the expression of CcIRF2 was increased and peaked at 3 hpi in the liver (21.5-fold), spleen (29.7-fold), head kidney (12.4-fold), foregut (26.3-fold) and hindgut (23.4-fold), and peaked at 6 hpi in the skin (34.2-fold) (Fig. 4). In the fish treated with formalin-killed A. hydrophila, CcIRF2 expression was upregulated in the head kidney (4.5-fold) and hindgut (6.5-fold) at 6 hpi and in the foregut (13.7-fold) at 24 hpi, while decreased in the spleen at 12 hpi (Fig. 5).

Expression of CcIRF2 upon poly (I:C), LPS and PGN stimulation in vitro

To determine the pathogen-associated molecular patterns (PAMPs) recognized by CcIRF2, the PBLs and HKLs of common carp were stimulated with poly (I:C), LPS, PGN or flagellin, and the expression of CcIRF2 was detected by Real-time PCR. The results showed that CcIRF2 expression in the PBLs was upregulated by poly (I:C) (4.7-fold), PGN (2.9-fold) and flagellin (1.6-fold) at 12 h but not changed by LPS (Fig. 6). In HKLs, CcIRF2

Table 2: Protein length and GenBank accession numbers of the IRF2 family members

Species	Protein length	GenBank accession No.
Cyprinus carpio	334	MW559072
Ctenopharyngodon idella	326	AFV99156
Danio rerio	314	NP_001307117
Scophthalmus maximus	330	AOV86412
Paralichthys olivaceus	330	ADZ96216
Salmo salar	343	AC133066
Xenopus laevis	347	NP_001088726
Gallus gallus	348	NP_990527
Mus musculus	349	AA10667
Homo sapiens	349	CAG3335
Pinctada maculata	350	AFZ76969
Branchiostoma belcheri tsingtauense	338	AJA02097
was induced by poly (I:C), LPS, PGN at 24 h (1.4-, 2.4-, and 2.6-fold) and flagellin at 12 h (1.2-fold) (Fig. 7).

Regulatory role of CcIRF2 in the IFN signalling
To investigate the role of CcIRF2 in the IFN signalling pathway, the gene expression of IFN, three ISGs (PKR, Viperin and ISG15) and IRF3 was detected after overexpression of CcIRF2 in EPC cells. The results showed that the expression level of these genes was significantly reduced, with 49, 54, 86, 66 and 15% of the level in control cells, respectively (Fig. 8).

Regulation of NF-κB by CcIRF2
To determine the role of CcIRF2 in the activation of NF-κB, dual-luciferase reporter assay was performed in 293 T cells. The results showed that MyD88 or TRIF could activate NF-κB, and CcIRF2 enhanced MyD88- or TRIF-induced NF-κB activity (Fig. 9).

Discussion
IRFs, which were originally described as transcription factors induced by IFN, play a variety of roles in immune response, immune system development and cell growth [4, 34–36]. With the development of the fishery economy, an increasing number of studies on IRFs in bony fish have been carried out. In the present study, the full-
Fig. 5 Expression analysis of CcIRF2 in response to A. hydrophila challenge in vivo. Total RNA was extracted from the spleen (a), head kidney (b), foregut (c) and hindgut (d) tissues at 0 (as a control), 3, 6, 12, 24, 48 and 72 hpi for real-time PCR. The expression was normalized using that of the 40S ribosomal protein S11 (n = 3, mean ± SD, *P < 0.05)

Fig. 6 Expression levels of CcIRF2 in PBLs upon different stimulation. Expression of CcIRF2 in the PBLs induced by poly (I:C) (a), LPS (b), PGN (c) or Flagellin (d). The expression levels were normalized using the 40S ribosomal protein S11 (mean ± SD, *P < 0.05)
Fig. 7 Expression levels of CcIRF2 in HKLs upon different stimulation. Expression of CcIRF2 in the HKLs induced by poly (I:C) (a), LPS (b), PGN (c) or Flagellin (d). The expression levels were normalized using the 40S ribosomal protein S11 (mean ± SD, *P < 0.05).

Fig. 8 Effect of CcIRF2 overexpression on expression of the IFN (a), PKR (b), Viperin (c), ISG15 (d) and IRF3 (e) genes in EPC cells. The expression levels were normalized to β-actin (mean ± SD, *P < 0.05).
length CcIRF2 cDNA was cloned from common carp, which encodes 334 amino acid residues. Notably, IRF2 encodes 349 amino acid residues in human and mouse, 348 in chicken and 347 in xenopus, but fewer than 345 in fish, reflecting the important role of IRF2 in the process of biological evolution and possible differences in protein function of IRF2 from different species.

Both mammalian and fish IRFs contain a DBD in the N-terminal region, which is responsible for binding the same ISRE/IRF-E sequences on target genes [37]. The CcIRF2 protein sequence was compared with that from pearl oyster, amphioxus, African clawed frog, chicken, mouse and human. The results showed that the DBD was relatively conserved, and the DBD in all species except amphioxus contained six tryptophan residues, suggesting that the function of the IRF2 molecule may be relatively evolutionarily conserved. There are two types of IRF C-termini: IAD1 was originally found in IRF8 and is present in all members of the IRF family except IRF1 and IRF2, while IAD2 exists in only IRF1 and IRF2 [38]. In the present study, the C-terminus of CcIRF2 contains the IAD2 domain.

The known IRF2 protein sequences from different species were used to construct an evolutionary tree using the neighbour-joining method. In the tree, IRF2s of teleosts, amphibia, bird and mammals are on a branch, while IRF2s of lamellibranchia and appendicularia are separate. The 11 members of the fish IRFs family are divided into four clades: the IRF1 subfamily, consisting of IRF1, IRF2 and IRF11; the IRF3 subfamily, consisting of IRF3 and IRF7; the IRF4 subfamily, consisting of IRF4, IRF8, IRF9 and IRF10; and the IRF5 subfamily, consisting of IRF5 and IRF6. CcIRF2 is closely related to grass carp in the branch containing fish species, which belongs to the IRF1 subfamily.

IRF2 is widely expressed in a variety of tissues in bony fish, such as E. coioides and O. mykiss [6, 10]. In the present study, the expression pattern of CcIRF2 in 11 tissues of healthy common carp was investigated, which was expressed in all tissues, with higher expression level in the gills, spleen and brain. Concordant with these results, the expression of IRF2 is highest in the gills or spleen of P. spatula, M. amblycephala, C. argus and C. idella [8, 12, 15]. In fish, the spleen and gills are important systemic and mucosal immune organs, respectively, and play a key defensive role against pathogen invasion, suggesting that CcIRF2 plays an important role in the immune system of fish. Unexpectedly, the expression level of IRF2 in the brain of common carp was also high, implying that IRF2 may be involved in regulating the nervous system of fish.

The previous studies in fish have shown that IRF2 can be induced by poly (I:C), including mandarin fish, paddlefish, rainbow trout and snakehead [6–8, 12], and the expression level of IRF2 in the liver, spleen and head kidney of half-smooth tongue sole was also significantly increased after viral stimulation [39]. In the present study, after poly (I:C) stimulation, the expression of CcIRF2 in all tissues increased and peaked at 3 h or 6 h, and the expression of CcIRF2 in the skin and spleen increased to the maximum level, suggesting that IRF2 may play an important role in the early immune response of common carp to viruses. After stimulation by A. hydrophila, the expression of CcIRF2 in the head kidney, foregut and hindgut was increased, but significantly decreased in the spleen. Similar to the results, after stimulation with A. hydrophila, the expression of IRF2 was increased in the spleen and head kidney but significantly decreased in the gills and intestines of blunt-nose bream. Therefore, the antibacterial immune process in which IRF2 is involved may be tissue-specific.

Similar to the in vivo results, poly (I:C) induced an increase in CcIRF2 expression in PBLs and HKLs. However, there was no significant change in CcIRF2 expression in PBLs after LPS stimulation. Studies in mammals have shown that LPS can induce the expression of IRF genes in B cells, T cells, macrophages and dendritic cells [40, 41]. However, fish can resist the toxic effects of LPS [42], and lack costimulatory molecules (such as MyD2 and CD14) produced by TLR4 during LPS-induced immune activation [43]. Therefore, the unchanged expression of CcIRF2 after LPS stimulation may be due to the different mechanism of LPS recognition between fish and mammals.

Mammalian IRF2 is unrelated to the production of IFN but is involved in the transcriptional regulation of
downstream genes such as histone H4, IL-7, IL-12, iNOS and MHC class I molecules [44–48]. The previous studies have shown that mammalian IRF2 plays a role in inhibiting transcriptional regulation due to its competition with IRF1 [49], and amphioxus IRF2 can compete with other IRFs for the ISRE-binding site in the nucleus, thus IRF2 is considered a negative regulator of the transcription process [50]. In this study, the overexpression of IRF2 in common carp inhibited the expression of IFN, PKR, Viperin, ISG15 and IRF3 in EPC cells, so CcIRF2 may also negatively regulate the expression of IFN and related factors. However, the dual-luciferase reporter assay showed that CcIRF2 activated the NF-κB signalling pathway and promoted both MyD88-mediated and TRIF-mediated NF-κB production. Mammalian IRF2 was reported to regulate NF-κB activity by regulating the subcellular localization of NF-κB [51], and IRF2 in pearl oyster can also activate the NF-κB signalling pathways [52]. Thus, IRF2 belongs to a class of multifunctional transcription factors whose specific roles in transcriptional inhibition or activation depend on cell type and inflammatory state [4, 53, 54].

Conclusions
In the present study, the full-length cDNA of the IRF2 gene was identified from common carp, and its effects on defence against pathogen invasion and regulation of the IFN response were investigated in vivo and in vitro. The results indicate that CcIRF2 participated in antiviral and antibacterial immunity and negatively regulated the IFN response, which provide a new insight into the regulation of IFN system in common carp, and are helpful for the prevention and control of infectious diseases in carp farming.

Abbreviations
IFN: interferon; IRF: interferon regulatory factor; ISG: IFN-stimulated gene; DBD: DNA-binding domain; NLS: nuclear localization signal; IAD: IRF associated domain; poly (I:C): polyinosinic-polycytidylic acid; LPS: lipopolysaccharide; EPC: epithelioma papulosum cyprinid; RACE: rapid amplification of the cDNA ends; SMART: simple modular architecture research tool; PBL: peripheral blood leukocyte; HKL: head kidney leukocyte; PGN: peptidoglycan; ORF: open reading frame; ANOVA: one-way analysis of variance; UTR: untranslated region; hpi: hour post injection; ISRE: IFN signalling pathway and promoter assay showed that

Acknowledgments
Not applicable.

Authors’ contributions
H.L. and G.Y. conceived and designed the experiments. X.C., Y.Z., R.L., L.Z. and F.Z. performed the experiments. S.S. and L.A. analyzed the data. H.L. and X.C. wrote the paper. All authors reviewed the manuscript.

Funding
This work was supported by the National Key R&D Program of China (2018YFD0900302–8), the National Natural Science Foundation of China (32002419, 31972828). The funders were not involved in the study design; collection, analysis and interpretation of the data; or in writing the manuscript.

Availability of data and materials
The dataset supporting the conclusions of this article is available in the GenBank (https://www.ncbi.nlm.nih.gov/nuccore/MW559072) and the accession number is MW559072.

Declarations
Ethics approval and consent to participate
The protocol was approved by the Animal Experimental Ethics Committee of Shandong Normal University, and all methods were performed in accordance with the relevant guidelines and regulations. The study was carried out in compliance with the ARRIVE guidelines.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China. 2College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China. 3Jinan Eco-environmental Monitoring Center of Shandong Province, No. 17199 Lvyu Road, Jinan 250101, China.

Received: 8 June 2021 Accepted: 2 September 2021
Published online: 09 September 2021

References
1. Mamane Y, Heybrock C, Genin P, Algarte M, Servant MU, LePage C, et al. Interferon regulatory factors: the next generation. Gene. 1999;237(1):1–14. https://doi.org/10.1016/S0378-1119(99)00262-0.
2. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev. 1997;8(4):293–312. https://doi.org/10.1016/S1359-6101(97)00019-1.
3. Balthige SD, Whang I, Umasuthan N, Lim BS, Park MA, Kim E, et al. Interferon regulatory factors 4 and 8 in rock bream, Oplegnathus fasciatus: structural and expression evidence for their antimicrobial role in teleosts. Fish Shellfish Immunol. 2012;33(4):857–71. https://doi.org/10.1016/j.fsi.2012.07.017.
4. Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol. 2008;26(1):535–84. https://doi.org/10.1146/annurev.immunol.26.021607.090400.
5. Zhu KC, Guo HY, Zhang N, Guo L, Liu BS, Jiang SG, et al. Functional characterization of interferon regulatory factor 2 and its role in the transcription of interferon a3 in golden pompano Trachinotus ovatus (Linnaeus 1758). Fish Shellfish Immunol. 2019;93:90–8. https://doi.org/10.1016/j.fsi.2019.07.045.
6. Collet B, Hovens GC, Mazzoni D, Hirono I, Aoki T, Secombes CJ. Cloning and expression analysis of rainbow trout Oncorhynchus mykiss interferon regulatory factor 1 and 2 (IRF-1 and IRF-2). Dev Comp Immunol. 2003;27(2):111–26. https://doi.org/10.1016/S0165-022X(02)00072-1.
7. Sun B, Chang M, Chen D, Nie P. Gene structure and transcription of irf-2 in the mandarin fish Siniperca chuatsi with the finding of alternative transcripts and microsatellite in the coding region. Immunogenetics. 2006; 58(9):774–84. https://doi.org/10.1007/s00251-006-0129-y.
8. Jia W, Guo Q. Gene structures and promoter characteristics of interferon regulatory factor 1 (IRF-1), IRF-2 and IRF-7 from snakehead Channa argus. Mol Immunol. 2008;45(8):2419–28. https://doi.org/10.1016/j.molimm.2007.11.011.
9. Huang B, Qi ZT, Xu Z, Nie P. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: glimpse of the diversification in evolution. BMC Immunol. 2010;11(1):22. https://doi.org/10.1186/1471-2172-11-22.
10. Shi Y, Zhao Z, Yin JK, Zhu XP, Chen KC, Pan DB, et al. Interferon regulatory factor-2 in orange-spotted grouper (Epinephelus coioides): gene, inducive expression pattern and subcellular localization. Comp Biochem Physiol B Biochem Mol Biol. 2010;155(2):110–7. https://doi.org/10.1016/j.cbpb.2009.10.008.
11. Bergan V, Kileeng O, Sun B, Robertsen B. Regulation and function of interferon regulatory factors of Atlantic salmon. Mol Immunol. 2010;47(11–12):2005–14. https://doi.org/10.1016/j.molimm.2010.04.015.

12. Xiaojun G, Zhuo C, Xu Zhen, Weng D, Qiang X, Xinren C. Molecular cloning and characterization of interferon regulatory factor 1 (IFR-1), IFR-2 and IFR-5 in the chondrostean paddlefish Polyodon spathula and their phylogenetic importance in the Ostichthyces. Dev Comp Immunol. 2012;36(1):74–84. https://doi.org/10.1016/j.dci.2011.06.003.

13. Shu C, Yin Y, Xu T. Molecular characterization of three IFR1 subfamily members reveals evolutionary significance of IFR11 in miury croaker. Dev Comp Immunol. 2015;53(2):385–91. https://doi.org/10.1016/j.dci.2015.07.009.

14. Gu M, Lin G, Lai Q, Zheng B, Liu Y, Mi Y, et al. Cholesterylcygondioidea idella IFR2 plays an antagonistic role to IFR1 in transcriptional regulation of IFN-3 and NG genes. Dev Comp Immunol. 2015;49(1):103–12. https://doi.org/10.1016/j.dci.2014.11.014.

15. Zhan FB, Liu H, Lai RF, Jakovic I, Wang WM. Expression and functional characterization of interferon regulatory factors (IFIR7 and IRF99) in the blunt snout bream (Megalobrama amblycephala). Dev Comp Immunol. 2017;67:239–48. https://doi.org/10.1016/j.devco.2016.09.009.

16. Inkpen SM, Solbakken MH, Trento S, Elsamooe K, Ris ML. Full characterization and transcript expression profiling of the interferon regulatory factor (IRF) gene family in Atlantic cod (Gadus morhua). Dev Comp Immunol. 2019;81:166–80. https://doi.org/10.1016/j.dci.2019.03.015.

17. Li Y, Esan V, Teng L, Xu J, Kwan W, Frost IM, et al. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell development. Genes Dev. 2014;28(23):2597–612. https://doi.org/10.1101/gad.253822.114.

18. Zhu KC, Liu BS, Zhang N, Guo HY, Guo L, Jiang SG, et al. Interferon regulatory factor 2 plays a positive role in interferon gamma expression in golden pompano, Trachinotus ovatus (Linnaeus 1758). Fish Shellfish Immunol. 2020;206:107–13. https://doi.org/10.1016/j.fsi.2020.12.006.

19. Chen X, Guan Y, Li K, Luo T, Mu Y, Chen X. IFR1 and IFR2 act as positive regulators in antiviral response of large yellow croaker (Larimichthys crocea) by induction of distinct subgroups of type I IFNs. Dev Comp Immunol. 2021;118:103996. https://doi.org/10.1016/j.dci.2021.103996.

20. Shan SJ, Liu DZ, Wang L, Zhu YY, Zhang FM, Li T, et al. Identification and expression analysis of irak1 gene in common carp Cyprinus carpio L: indications for a role of antibacterial and antiviral immunity. J Fish Biol. 2015;87(2):241–55. https://doi.org/10.1111/jfb.12714.

21. Shan S, Wang L, Zhang F, Zhu Y, An L, Yang G. Characterization and expression analysis of Toll-interacting protein in common carp, Cyprinus carpio L., responding to bacterial and viral challenge. SpringerPlus. 2016;5:639, 1. DOI: https://doi.org/10.1186/s40066-016-2293-3.

22. Zhu YY, Xing WX, Shan SJ, Zhang SQ, Li YQ, Li T, et al. Characterization and immune response expression of the rig-I-like receptor mad2 in common carp Cyprinus carpio. J Fish Biol. 2016;88(6):2188–202. https://doi.org/10.1111/jfb.12981.

23. Taniguchi T, Osakawa K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:1623–55. https://doi.org/10.1146/annurev.immunol.19.1.1623.

24. Barnes B, Lubovaya B, Pitha PM. On the role of IRF in host defense. J Interferon Cytokine Res. 2002;22(1):59–71. https://doi.org/10.1016/S0165-7997(02)00088-9.

25. Colonna M. TLR pathways and IFN-regulatory factors: to each its own. Eur J Immunol. 2007;37(2):306–9. https://doi.org/10.1002/eji.200637099.

26. Paun A, Pitha PM. The IRF family, revisited. Biochimie. 2007;89(6–7):744–53. https://doi.org/10.1016/j.biochi.2007.01.014.

27. Takaoka A, Tamura T, Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci. 2008;99(3):467–78. https://doi.org/10.1111/j.1349-7006.2007.00720.x.

28. Zhang J, Li YX, Hu HY. Molecular characterization and expression analysis of eleven interferon regulatory factors in half-smooth tongue sole, Cynoglossus semilaevis. Fish Shellfish Immunol. 2015;44(1):272–82. https://doi.org/10.1016/j.fsi.2015.02.033.

29. Gauzi MC, Purificato C, Conti L, Adorini L, Belardelli F, Gessani S. IRF-4 expression in the human myeloid lineage: up-regulation during dendritic cell differentiation and inhibition by 1alpha,25-dihydroxyvitamin D3. J Leukoc Biol. 2005;77(6):944–7. https://doi.org/10.1002/jlb.2005090.

30. Gautier G, Humbert M, Deauville F, Scullier M, Hiscott J, Bates EE, et al. A type I interferon autocrine-paracrine loop is involved in toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med. 2005;201(9):1435–46. https://doi.org/10.1088/jem.20041964.

31. Rodrihnum C, Hirono I, Stork M, Di Lorenzo M, Crosa JH, Aoki T. Putative virulence-related genes in vibrio anguillarum identified by random genome sequencing. J Fish Dis. 2006;29(3):157–66. https://doi.org/10.1111/j.1365-2265.2006.00692.x.

32. Sepulcra MP, Alcaraz-Perez F, Lopez-Munoz A, Roca FJ, Meseguer J, Cayuela ML, et al. Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. J Immunol. 2009;182(4):1836–45. https://doi.org/10.4049/jimmunol.0801755.

33. Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, et al. An interferon-gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc Natl Acad Sci U S A. 1990;87(10):3743–7. https://doi.org/10.1073/pnas.87.10.3743.

34. Oshima S, Nakamura T, Namiki S, Okada E, Tsushiya K, Okamoto R, et al. Interferon regulatory factor 1 (IFR-1) and IFR-2 distinctively up-regulate gene expression and production of interferon-7 in human intestinal epithelial cells. Mol Cell Biol. 2004;24(14):6298–310. https://doi.org/10.1128/MCB.24.14.6298-310.2004.

35. Salkowski CA, Barber SA, Detore GR, Vogel SN. Differential dysregulation of nitric oxide production in macrophages with targeted disruptions in IFN regulatory factors-1 and -2 genes. J Immunol. 1996;156(9):310–7.

36. Salkowski CA, KopydloWSKI K, Blanco J, Cody MJ, McNally R, Vogel SN. IL-12 is dysregulated in macrophages from IFR-1 and IFR-2 knockout mice. J Immunol. 1999;163(3):1529–36.

37. Vaughan PS, Aziz F, van Wijnen AJ, Wu S, Harada H, Taniguchi T, et al. Activation of a cell-cycle-regulated histone gene by the oncogenic transcription factor IFR-2. Nature. 1995;377(6547):362–5. https://doi.org/10.1038/377362a0.
49. Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A, et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell. 1989;58(4):729–39. https://doi.org/10.1016/0092-8674(89)90107-4.

50. Yuan S, Zheng T, Li P, Yang R, Ruan J, Huang S, et al. Characterization of Amphioxus IFN regulatory factor family reveals an archaic signaling framework for innate immune response. J Immunol. 2015;195(12):5657–66. https://doi.org/10.4049/jimmunol.1501927.

51. Chae M, Kim K, Park SM, Jang IS, Seo T, Kim DM, et al. IRF-2 regulates NF-kappaB activity by modulating the subcellular localization of NF-kappaB. Biochem Biophys Res Commun. 2008;370(3):519–24. https://doi.org/10.1016/j.bbrc.2008.03.136.

52. Huang XD, Liu WG, Wang Q, Zhao M, Wu SZ, Guan YY, et al. Molecular characterization of interferon regulatory factor 2 (IRF-2) homolog in pearl oyster Pinctada fucata. Fish Shellfish Immunol. 2013;34(5):1279–86. https://doi.org/10.1016/j.fsi.2013.02.003.

53. Tanaka N, Kawakami T, Taniguchi T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol Cell Biol. 1993;13(8):4531–8. https://doi.org/10.1128/mcb.13.8.4531-4538.1993.

54. Taniguchi T. IRF-1 and IRF-2 as regulators of the interferon system and cell growth. Indian J Biochem Biophys. 1995;32(5):235–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.