Regulatory T Cells in Asthma and Airway Hyperresponsiveness

Thomas W. Lowder* and Hawley E. Kunz
University of Houston, Houston, Texas, USA

Keywords: T_{reg}; Asthma; Aging; Gender

Introduction

Regulatory T cells, or T_{reg}, have been shown to play a major role in reducing Th2 cell proliferation, potentially reducing (often significantly) airway-associated inflammation seen in airway diseases, such as asthma. These cells are characterized as a sub-population of T_{reg} cells that maintain peripheral tolerance through a variety of biological mechanisms. Although T_{reg} make up only 5-10% of peripheral CD4⁺ T_{cells}, these cells are nonetheless very potent suppressors of the inflammation, airway hyperresponsiveness, and airway remodeling. This review will discuss the history of T_{reg}, the role of T_{reg} play in the reduction of asthma and lung inflammation, and age- and gender-associated differences in T_{reg}.

Regulatory T cells

In the late 1960s it was noted that certain CD4⁺ T cells in normal mice exhibited suppression against autoimmunity [1]. In 1971 Gershon and Kondo [2] noted that the transfer of splenocytes from tolerized but otherwise normal mice induced tolerance in athymic mice. The following year, these cells were termed “suppressor T cells” by Gershon et al. [3]. As the technology of that era did not allow for phenotypic analysis due to a lack of an identifiable marker for these then-term suppressor cells, these findings were not explored. Nearly a quarter of a century later Sakaguchi’s group noted that a distinct population of CD4⁺ T cells that expressed the alpha chain of the IL-2 receptor (CD25) also prevented autoimmunity [4]. Not long after, Sakaguchi’s lab and Shevach’s group independently demonstrated that CD4⁺CD25⁺ T_{cells} expressed anergy upon stimulation, were able to suppress IL-2 production as well as cellular proliferation of activated CD4⁺ T_{cells} in vitro [5-6] in a cell-to-cell contact-dependent manner. As a result, CD25 became a reliable and widely-used surface marker of these suppressor cells. In the ensuing decades these cells became known as regulatory T cells, or T_{reg}.

The high-affinity IL-2 receptor, CD25, has been widely used as a surface marker for the identification of T_{reg}. However, while T_{reg} express this surface marker, so do recently-activated T_{cells}. A more definitive marker for T_{reg} was needed to distinguish these cells from recently-activated T_{cells}. As early as 1982 immune dysregulation polyendocrinopathy enteropathy x-linked syndrome, or IPEX, was described in humans [7]. This disease, which manifests itself as a severe, multisystem autoimmune and inflammatory disease, generally arises during prenatal stages. A similar disease in mice, Scurfy, was described in 1991 [8]. Both conditions are due to a deficiency in the gene expression of a transcription factor, known as forkhead box protein 3, or Foxp3 [9-11]. In 2001 Schubert demonstrated that this transcription factor regulated T cell activation [12]. Two years later it was demonstrated that Foxp3 is required for the development and function of T_{reg} [13]. Indeed, forced expression of Foxp3 in conventional T cells imparts a T_{reg}-phenotype [14,15]. The nuclear protein Foxp3 soon emerged as the most reliable marker for T_{reg}. Although T_{reg} express anergy in vitro, these cells rapidly proliferate upon encountering a cognate ligand [16-19] or upon adoptive transfer into lymphopenic mice in vivo [16,20]; antigen-specific T_{reg} will certainly proliferate in vivo [18,21].

Since the re-discovery of these cells, a number of subpopulations of T_{reg} have been identified. Natural T_{reg} (or nT_{reg}) are CD4⁺Foxp3⁺ cells that originate in the thymus [22] during ontogeny and enter the periphery as fully-functional T_{reg}. In the thymus, the T_{reg} repertoire is thought to be shaped largely in the medulla, where the bulk of Foxp3⁺ cells are found (few Foxp3⁺ cells are found in the cortex [23]). However, it has been shown that in mice that express MHCIIR in the cortex exclusively are still able to develop T_{reg}, indicating that T_{reg} commitment can also take place in the cortex [24]. A second group of T_{reg} known as adaptive, or induced T_{reg} (iT_{reg}) acquire Foxp3 in the periphery [25]. In this case a naïve (CD4⁺CD25⁻) T cell acquires the transcription factor Foxp3 and differentiates into an iT_{reg}. Initially it was thought that iT_{reg} were functionally and phenotypically identical to nT_{reg}. However, it has recently been shown that while the transfer of nT_{reg} into Foxp3-deficient mice increases survival, iT_{reg} (generated in vitro) fail to do so [26], indicating functional differences between natural and peripherally-induced T_{reg}. These cells differ in other ways. While nT_{reg} are strongly biased towards autoreactive TCR-specifications, express Foxp3 constitutively [27,28], and require TNF-α signaling for in vivo function, inducible T_{reg} do not [29]. Other populations of T_{reg} have been identified in recent years, including CD8⁺ suppressor cells [30], IL-10-producing T_{reg} (known as ‘Tr1’ cells) [31], and transforming growth factor-β-producing (or ‘TGF-β-producing’) T_{reg} [32]. Although not classified as a “regulatory cell” there are other cell populations that can exhibit suppressive and/or regulatory functions, such as dendritic cells [33], gamma delta T cells [34], NK cells [35], and CD4⁺CD8⁺ T cells [36-40].

Regulatory T Cells and Asthma

Asthma is a chronic respiratory disease characterized by recurrent attacks of impaired breathing of differing intensities and results from an inappropriate response to otherwise normally harmless stimuli. Characterized by wheezing, chest tightness, and dyspnea, one of the hallmarks of asthma is reversible airway narrowing and/or airway hyperresponsiveness (AHR) to bronchoconstrictor stimuli [41,42]. Asthma presents itself in two separate stages. The first (acute stage, or early-phase) response occurs within seconds to minutes following exposure to an allergen. Histamine is released which leads to the degradation of mast cells followed by cytokine, leukotrienes, and prostaglandin production. The sequence of events leading to the development of immediate hypersensitivity involves the production...
of immunoglobulin E (IgE) antibodies in response to the allergen, followed by the production and binding of specific IgE antibodies [43] and high-affinity FcεRI receptors on pulmonary sub-mucosal mast cells [44]. Mast cell activation leads to a multitude of signaling pathways which in turn cause immediate hypersensitivity reactions. When degranulated, mast cells stimulate the release of inflammatory mediators (e.g. histamine) that increase mucus secretion and tissue permeability and an increased contraction of airway smooth muscle tissue [45]. Although antigen-specific IgE plays a major role in the early phase, particularly in bronchoconstriction, the main role of IgE is immediate hypersensitivity through IgE binding to high-affinity IgE (FceRI) or low-affinity (FceRII) receptors on a number of cells, including mast cells [46].

The second stage is termed the late-phase response and involves an inflammatory cascade of macrophages and leukocytes (T cells, lymphocytes, eosinophils, and neutrophils) following the release of the above inflammatory cascade (leukotrienes, prostaglandins, and cytokines as well as chemokines, eosinophil chemotactic factors, adhesion molecules, and matrix metalloproteinases). The cells produced typically contain a high proportion of lymphocytes, in particular eosinophils. While Th1 cells may be involved in the effector phase in allergic disease, they may also dampen allergic inflammation; in contrast Th2 cells, via the cytokines IL-4, -5, 9, and -13, recruit eosinophils and cause smooth muscle contraction and IgE synthesis via B cells [47]. Tregs are able to regulate B-cell antibody production [48] and have been shown to inhibit these Th2 responses [49]. It is thought that an increase in IgG4 isotype antibodies can block IgE-facilitated allergy[50] and that the generation of allergy-specific Treg along with IL-10 and TGFB-β [51], are very important early events during the allergic response. Due to the levels of IgE production and the accompanying eosinophilia evident following an attack, asthma is considered to be a Th2-mediated disease [52]. Several hours following the acute (early phase) response, leukocytes migrating to the bronchi lead to chronic allergic inflammation due to increased Th2 cells and cytokines (IL-4, IL-5). The end result is airway hyperresponsiveness (AHR) [53] which over time can lead to airway remodeling and negative and irreversible changes in lung function. During airway remodeling in asthma, the airway wall is characterized by increased thickness, and thus a reduction in the airway diameter and difficulty breathing [47].

Dendritic cells (DCs) play a major role in the development and persistence of allergic asthma. In addition to the cytokine environment and the type and concentration of allergen, DCs can direct host responses to an allergen. Lying below the surface of the epithelial layer, DCs extend their processes through epithelial cells where they survey the airway lumen. Dendritic cells identify and process antigens then migrate to the draining lymph node, where they act as potent antigen presenting cells. Here they present antigen to naïve T cells on major histocompatibility class II (MHCII) molecules. As is the case with airway epithelial cells, DCs are capable of recognizing pathogens and initiating innate responses. In individuals that have been previously sensitized to an allergen, FcεRI (the high-affinity IgE receptor) on DCs aid in processing the allergen bound by IgE. While DCs can drive Th1, Th2, Th17, and Treg responses, in the case of allergy DCs preferentially mobilize a Th2-type response [54]. It is the interaction between naïve T cells and DCs that drive the allergic response. Mature DCs and DCs from myeloid precursors preferentially drive Th2-type responses, and the presence of pro-Th2 cytokines also drives the Th2 response [55]. Airway mucosal DCs derived from myeloid precursors [56] capture and traffic antigen to the draining lymph nodes, where they stimulate naïve T cells [57], although plasmacytoid DCs are also more likely to promote tolerance than are myeloid DCs [58].

In addition to activation of Th2 cells during the allergic response, DCs can also activate Tregs, inducing a tolerogenic response rather than an inflammatory one [59], with low antigen doses more likely initiating a tolerogenic response than high-level doses [58]. Low DC activation levels and low levels of MHCII and co-stimulatory molecules on DC surfaces can also shift the response to a Treg-mediated response rather than Th2 response[45,58]. The presence of IL-10, which has been shown to be transiently produced by pulmonary DCs, can also stimulate regulatory cells [60]. Treg in turn have been shown to mitigate the allergic response by interfering with the function of DCs and preventing their activation of Th2 cells [59], thus potentially reducing inflammation.

Treg can effectively suppress inflammatory IgE as well as effector cells in the development of allergic Th2 responses [61] during allergic inflammation. Indeed, Treg are able to suppress airway inflammation in sensitized mice prior to an inhaled-allergen challenge [62]. An imbalance between Th2 and Treg cell responses may underlie the development and progression of asthma [61,63-65], as the CD4+CD25+Foxp3+ Treg population has been implicated in allergen-induced airway responses [8] and has been shown to suppress Th2 responses in vivo [66]. Indeed, Foxp3+ T cells accumulate in nasal mucosa of allergic patients after a challenge [67], and the transfer of Treg prior to an inhaled-allergen challenge reduces inflammation and hyperresponsiveness in the lungs and airways of mice [68,69]. This supports the hypothesis that Treg can reduce or prevent Th2-associated inflammation in the lung following allergen challenge. However, the mechanism(s) underlying Foxp3+ Treg suppression is not conclusive.

Treg are known to exert suppressive function in a number of ways, including direct contact with effector cells [70], release of perforin [71] and granzyme B [72,73], and possibly through the release of cytoplasmic cAMP [74]. Cell cycle arrest may occur when Treg, which exhibit a high level of CD25 (the IL-2α receptor), compete with effector T cells for IL-2 [73] and essentially “starve” effector cells metabolically. Galectin-1 may also play a role, as blocking this molecule which is abundant on Treg, suppressive function [73]. Treg may also kill responder cells in a granyme- and/or perforin- dependent manner via upregulation of intracellular cAMP (which leads to inhibition of T cell and/or IL-2 proliferation); by generation of pericellular adenosine (catalyzed by CD39 and CD73); or through interactions with B7 (CD80/86) expressed on responder T cells [75]. Activated Treg may inhibit the upregulation, or perhaps the down-modulation, of CD80/86 expression on antigen presenting cells (APCs), which may stimulate DCs to express the enzyme indoleamine 2,3-dioxygenase (IDO), which catabolizes the conversion of tryptophan to kynurenine; kynurenine is toxic to DCs through a mechanism dependent upon the expression of CTLA-4 (CD152) [75] which is abundant on Treg. Toll-like receptor 2 (TLR2) also plays a role in Treg function and expression, in that TLR2 signaling can temporarily abrogate Treg-mediated suppression and downregulate Foxp3 expression. Indeed, TLR2/- mice have decreased Treg numbers, as mice treated with TLR2 agonists induce Treg proliferation [76]. The co-stimulatory receptor ICOS has also been shown to play a role in Treg-mediated immunosuppression. While both ICOS+ and ICOS- Treg were both found to be anergic, ICOS+Foxp3+ cells were shown to use IL-10 to suppress dendritic cell function and TGF-β to suppress T cell
function, while ICOS-Foxp3+ cells were found to use only TGF-β [77]. It has been shown that IL-10 secretion by Treg plays a major role in Treg-mediated suppression [78,79]. IL-10, secreted in large amounts by Treg, counter-regulates antigen-specific IgE production as well as IgG4 antibody synthesis [51,80], while TGF-β plays a number of roles in Treg-mediated suppression and regulation.

TGF-β, first described in the mid-1980s [81,82], plays a number of major roles in Treg development and function, although how TGF-β promotes Foxp3 expression is not yet fully clear and the detailed pathway(s) in TGF-β/Treg signaling has yet to be determined [83]. TGF-β-induced Treg, which have been reported to lose Foxp3 expression upon in vitro stimulation [84] and following adoptive transfer into mice [85], appear to be similar both phenotypically and functionally as nTregs [86]. Mediation of TGF-β is greatly controlled by Smad proteins [87,88], as TGF-β fails to suppress IL-2 production in mice lacking the R-Smad3 gene [89]. TGF-β also inhibits CD122 upregulation [88], which in turn limits Th1 effector cell numbers. TGF-β not only regulates Treg differentiation, but also that of Th-17 [90]. In addition, TGF-β can inhibit differentiation of both Th1 and Th2 cells by inhibiting the transcription factors GATA-3 [91] and T-BET [92]; this inhibition of Th1 and Th2 polarization can then lead to the generation of Treg [93].

While TGF-β induces the expression of Foxp3+ in vivo, it is also required to induce ROR-γt, the essential transcription factor for Th17 cells [94]. Th-17, as well as IL-6, has further been shown to compete with regulatory T cells [95]. This could occur in a number of ways, including IL-6 inhibiting TGF-β from driving expressions of Foxp3 [96] or, in the absence of IL-6, TGF-β joining with IL-21 to induce Th17 cells [97]. TGF-β also induces expression of CD103; CD103+ DCs have been shown to induce adaptive Treg cells due to their ability to produce retinoic acid, which has been shown to be required to induce naïve T cells to differentiate into Foxp3+ Treg [98]. Aside from its role(s) in Treg expression, maintenance, development, and function, TGF-β alone can modulate IgE and FcεRI expression and acts as a class switch factor [99], which by itself can induce peripheral tolerance. In vivo studies indicate direct cell-to-cell contact via membrane-bound TGF-β rather than cytokine production is essential for Treg activity [100].

In vivo, McGee and Agrawal have demonstrated that adoptive transfer of either nTreg or iTreg reversed airway inflammation and airway hyperresponsiveness (AHR) in an in vivo asthma model (methacholine challenge) [101] and that this effect lasted for at least four weeks. Ostroukhova demonstrated that adoptive transfer of Foxp3+-expressing cells (cells which also expressed membrane-bound TGF-β) from mice that were repeatedly exposed to low-dose allergen prevented allergic sensitization [102]. Interestingly, a similar study that used a higher dose of inhaled allergen stimulated an IL-10-dominant Treg population [103], demonstrating that strength of stimulation affects the "type" of Treg response. Lowder et al. [104] showed that exercise-training during an ovalbumin-induced asthma challenge significantly increases both in vivo Foxp3+ Treg expression and in vitro Treg-mediated suppressive function in a TGF-β-independent manner. Interestingly, this study also showed that when Treg were co-cultured with CD4 effector T cells, in vitro production of both IL-17 and IL-6 (cytokines that compete with Treg) was significantly decreased.

In humans, it has been shown that generation of allergen-specific Threg are essential events that occur early on in asthma [75,49,51]. Adoptive transfer of antigen-specific Treg suppresses airway hyperreactivity and allergic inflammation in an IL-10-dependent manner [105] and prevents airway remodeling [106]. Depleting Treg prior to sensitization has the opposite effect, with enhanced inflammation and airway hyperresponsiveness seen in the lung of subsequently sensitized mice [107]. Both nTreg and iTreg induced in an antigen-specific manner can reduce asthma severity in an IL-10-dependent [108] or IL-10 and TGF-β-dependent [52] manner. To this list of cytokines that act either as suppressive on their own, or with Treg, we must include IL-35, as ectopic expression of this cytokine instilled a regulatory activity on naïve T cells via suppression of in vitro T cell proliferation [109].

Aging, Asthma, and Treg

Although asthma is often considered to be a disease more prevalent in younger individuals, asthma is not only prevalent in the elderly, but is thought to be under-diagnosed and under-treated. In spite of maintaining Treg numbers during the aging process, these cells seem to be lower in number in asthmatics compared to healthy elderly individuals [110]. While serum IgE decreases with age, individuals with high IgE levels relative to their age-matched counterparts are still at greater asthma risk [111,112]. Elderly individuals may in fact be more prone to asthma upon exposure to indoor allergens [112]. In one group of elderly individuals, it was found that three-quarters of asthmatics tested positive on a skin-prick test for at least one common indoor allergen [113]. This sensitization to environmental allergens has been found to be much greater in elderly asthmatics than in healthy elderly individuals [114]. This could be due in part to the normal course of aging as the regulation of inflammation appears to be compromised in elderly individuals [115]. While increases in tumor rates and infections (both of which are prevalent in the elderly) are an indication of decreased immunocompetence and a reduced acute inflammatory response [115,116], diseases associated with inflammation gain in prevalence in the aged population such as osteoarthritis, atherosclerosis, type II diabetes. An increased level C-reactive protein, as well as in increase in the inflammatory cytokines IL-6 and TNF-α, are often the result of chronic inflammation concomitant with aging [115,117].

Thymic involution occurs during the aging process, which is accompanied by a decrease in the number of naïve T cells [114]. As a result the immune profile changes during aging, with significantly more memory cells and fewer naïve cells. In humans, CD4+CD25+Foxp3+ Treg have a long survival in vivo in the elderly, are more resistant to apoptosis, and have suppressive activity on par with younger counterparts [118]. In spite of the lack of thymic development of nTreg in the elderly, both aged animal and human studies have been shown to have either equal or higher numbers of Treg when compared to their younger counterparts [112,119-122]. Why we see these differences in Treg expression is not known; it is possible that as the thymus involutes and fewer T cells enter the periphery, Treg accumulate and become long-lasting memory Treg as an increase in the number of CD4+CD25hiFoxp3+ T cells has been shown to accompany advanced aging, with an accumulation of CD45RO (memory) Treg accounting for much of this increase [123]. iTreg production (naïve CD4+ T cells that become Foxp3+ Treg in the periphery) accounts for a large portion of Treg in the elderly, as thymic involution restricts the number of naïve T cells, including nTreg, from entering the periphery from the thymus [115]. Mota-Pinto et al. determined that T cells with regulatory function(s) played a limited role in controlling chronic asthma in elderly patients aged > 65 [110]. Treg from this study group were found to be within normal ranges or reduced in asthmatic patients compared to normal (non-asthmatic) patients and 80% of asthmatics were classified as mild–moderate asthma as determined by forced expiratory volume while a significant increase in CD4+ T cells were seen in mild–moderate asthmatics.

While the majority of T cells in the elderly are of memory phenotype,
elderly asthmatics have been shown to have even lower numbers of naïve cells than do healthy elderly individuals [114], along with decreases in CD95 (an apoptosis marker, indicating a decreased ability to clear senescent or effete cells). Whether or not we see a decrease in T_{reg} in elderly asthmatics versus elderly non-asthmatics requires further investigation. While the number of nT_{reg} decreases, an increase in iT_{reg} generated in the periphery may be the reason for the overall increase in T_{reg} numbers in the elderly [121]. Nishioka et al. [120] identified a significant increase in the proportion of Foxp3+ cells in aged mice as compared to young mice. While the number of CD4+CD25high Foxp3+ cells remained constant across age groups, aged mice had a significantly higher proportion of CD4+CD25 Foxp3+ suppressive T cells.

Although the number of T_{reg} tends to increase concomitantly with age, there appears to be little or no difference in T_{reg} function between old and younger counterparts [112,122]. It has been proposed that T_{reg} function decreases with age [121], while others have shown no impairment due to aging [112,120,122]. Using a mouse model, Nishioka et al. demonstrated that the number of CD4+CD25high Foxp3+ T cells was similar and that these cells maintained the same level of suppressive function as the cells from younger mice [120]. Interestingly, another study demonstrated that T_{reg} from aged humans suppressed the production of IL-10 by CD4+CD25 effector cells better than did T_{reg} from younger counterparts [115]. This is of particular interest in asthma as IL-10-secreting Type 1 T_{reg}, which are allergen-specific, are found in lower numbers in individuals with allergic rhinitis [124]. The levels of some Th2-type cytokines, such as IL-10 and IL-4, have been shown to be elevated in the elderly compared to younger counterparts [125].

Gender Differences

Asthma, as with other inflammatory diseases, is more prevalent in females than in males [126-132]. Because of their role in maintaining immune homeostasis and regulating the immune system, gender differences in T_{reg} may contribute to this discrepancy between males and females due to the interplay between the sex hormones (e.g., estrogen, progesterone, and testosterone) and T_{reg}. The incidence of asthma is higher during the female’s reproductive years, when these hormones are at their highest levels of production, and then declines during menopause [126]. Indeed, the number of T_{reg} changes throughout the menstrual cycle as well as throughout pregnancy [127,133,134]. Multiple investigators have determined that estrogen helps to drive T_{reg} expansion and a reduction in or amelioration of various diseases [131,133,135,136]. Arravito found T_{reg} numbers to be highest during the late follicular phase (when estrogen levels are at their peak) and lowest during the luteal phase, while Wegienka’s group found a steady increase in T_{reg} during pregnancy [133]. Both Tai and Polanczyk found that estrogen treatment increased Foxp3 expression and the number of CD25+ cells; however, this effect was absent in mice deficient of the estrogen receptor, indicating the significant role that sex hormones play in maintaining immune homeostasis [131,134]. Female mice sensitized with ovalbumin (OVA) had lower initial numbers of T_{reg} in the lung [130] despite no differences in T_{reg} number or function after OVA challenge [129,130]. While sex hormones and their effect(s) on T_{reg} may be involved in the gender differences in asthma prevalence, they do not account for all of the differences in the differences seen between males and females [128]. Women tend to have higher B cell-mediated immunity and higher CD4:CD8 ratios than do males and these differences may also extend to T_{reg} numbers.

Exercise and Asthma

Therapeutic treatment of asthma is two-fold: that of reducing the risk for a severe attack and minimizing symptoms during an attack [137]. Asthma treatment has traditionally included inhaled corticosteroids, β2 adrenergic receptor agonists, and cholinergic antagonists. However, none of these prevent asthma, and not all asthmatics benefit from their use. As such, alternative means treating asthma are worth investigating. One approach to enhancing immune function in asthmatics is exercise. Exercise training has been shown to ameliorate many negative effects of asthma in both human [138-141] and murine [104,142-144] models. Pastva et al. investigated the effects of exercise in Balb/c mice, a strain susceptible to OVA-induced IgE responses [145,146] and demonstrated that aerobic exercise training reduces lung inflammatory responses (leukocyte infiltration, cytokine/chemokine production, adhesion molecule expression, structural airway remodeling) in OVA-sensitized mice [147,148], later demonstrating that these responses are at least in part due to an enhanced T_{reg} response [104]. Few studies have examined how exercise training affects T_{reg} in humans. Yeh et al. found increased TGF-β and IL-10 production following antigenic stimulation in healthy adults that performed 12wks of Tai Chi [149], significant as IL-10 can suppress airway inflammation [150-151]. Ramel et al. found that resistance training reduced peripheral T_{reg} suppressor cell numbers [152]. However, these values were recorded in healthy (non-asthmatic) individuals.

Summary and Future Directions

Since the discovery of suppressor T cells in the early 1970s, their re-emergence as CD4+CD25+ regulatory T cells, and finally the finding that the nuclear protein and transcription factor forkhead box P3 (Foxp3), research in the field of T_{reg} has exploded. Defects or absence of this highly-specialized sub-population of T cells has been implicated in numerous diseases in both humans and mice. It has been shown that TGF-β, IL-10, and IL-2 can be essential, required, non-essential, or not required for proper maintenance and function of T_{reg} depending on the system (in vivo versus in vitro), model (mouse, human, cell line), or even severity of disease (moderate versus severe asthma). Though we now know that an enhanced T_{reg} response may reduce asthma severity and airway hyperresponsiveness in both human and animal models, we do not have a means in which to directly enhance this response in individuals suffering from asthma.

Few studies have examined the relationship between asthma and T_{reg} in the elderly. The number of T_{reg} tends to increase with age, and these cells maintain their suppressive function; however, the regulation of the immune system seems to be compromised with age, and there is an indication for a reduced number of T_{reg} in asthmatic elderly individuals. Elderly asthmatics, in particular, have been shown to have even fewer naïve than healthy age-matched individuals. With a large population rapidly approaching senior status, and an increase in respiratory and lung diseases on the rise, it is critical to know what roles regulatory T cells play in the aging lung.

References

1. Claman HN, Chaperon EA, Triplett RF (1966) Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med 122: 1107-1117.
2. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21: 903-914.
Airway Inflammation and Hyperresponsiveness

3. Gershon RK, Cohen P, Hencin R, Liehaber SA (1972) Suppressor T cells. J Immunol 108: 586-590.

4. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151-1164.

5. Takahashi T, Kinuyasu Y, Toda M, Sakaguchi N, Itoh M et al. (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Nat Immunol 10: 1969-1980.

6. Thornton AM, Piccirillo CA, Shevach EM (2004) Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur J Immunol 34: 366-376.

7. Powell BR, Buist NR, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100: 731-737.

8. Goodfry VL, Wilkinson JE, Russell LB (1991) X-linked lymphoproliferative disease in the scurfy (sf) mutant mouse. Am J Pathol 138: 1379-1387.

9. Wiltin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL et al. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27: 18-20.

10. Brunkow ME, Jeffery EW, Herrtl KA, Paaper B, Clark LB et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfyn, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68-73.

11. Bennett CL, Christie J, Ramsdell F, Brunow ME, Ferguson PJ et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27: 20-21.

12. Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF (2001) Scurфин (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276: 37672-37679.

13. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330-336.

14. Khtait R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ regulatory T cells. Nat Immunol 4: 337-342.

15. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development in vivo. J Clin Invest 114: 1640-1649.

16. Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, et al. (2011) A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35: 109-122.

17. Hsieh CS, Liang Y, Tynzik AJ, Self SG, Liggitt D, et al. (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21: 267-277.

18. Romagnoli P, Hudrisier D, van Meewijk JP (2002) Preferential recognition of antigen selfs despite normal thymic deletion of CD44+CD25+ regulatory T cells. J Immunol 168: 1644-1648.

19. Housley WJ, Adams CO, Nichols FC, Puddington L, Lingenheld EG, et al. (2011) Natural but Not Inducible Regulatory T Cells Require TNF-alpha Signaling for In Vivo Function. J Immunol 186: 6779-6787.

20. Chang CC, Cubiertarui R, Manavalan JS, Yuan J, Colao V, et al. (2002) Tolerization of dendritic cells by T(1)S cells: the crucial role of inhibitory receptors CD3 and ILT4. Nat Immunol 3: 98-104.

21. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischkauer K, et al. (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immun Rev 212: 28-50.

22. Farria AM, Weiner HL (2005) Oral tolerance. Immun Rev 206: 232-259.

23. Ray P, Arora M, Poe SL, Ray A (2011) Lung myeloid-derived suppressor cells and regulation of inflammation. Immunol Rev 250: 8-23.

24. Li X, Kang N, Zhang X, Dong X, Wei W, et al. (2011) Generation of Human Regulatory gammadelta T Cells by TCRgammadelta Stimulation in the Presence of TGF-beta and Their Involvement in the Pathogenesis of Systemic Lupus Erythematosus. J Immunol 186: 6693-6700.

25. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23: 877-900.

26. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L (2000) Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6: 782-789.

27. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, et al. (2006) Foxp3+ CD4+ regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212: 8-27.

28. Endharti AT, Rifa MI, Shi Z, Fukushima Y, Nakahara Y, et al. (2005) Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD4+ T cells. J Immunol 175: 7093-7097.

29. Xystrakis E, Dejean AS, Bernard I, Druel P, Lilibar R, et al. (2004) Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 104: 3294-3301.

30. Menager-Maroc I, Pombie C, Romagnoli P, van Meewijk JP (2006) CD8++ regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology 131: 1775-1785.

31. O’Byrne PM (1996) Airway inflammation and asthma. Aliment Pharmacol Ther 10: 18-24.

32. Willis-Karp M (1999) Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol17: 255-281.

33. Holt PG, Batty JE, Turner KJ (1981) Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology 42: 497-419.

34. Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol 179: 2673-2679.

35. Cohn L, Elias JA, Chupp GL (2004) Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 22: 789-815.

36. Gilmartin L, Tarleton CA, Schuyler M, Wilson BS, Oliver JM (2008) A comparison of inflammatory mediators released by basophils of asthmatic and control subjects in response to high-affinity IgE receptor aggregation. Int Arch Allergy Immunol 145: 182-192.

37. Akdis M, Blaser K, Akdis CA (2005) T regulatory cells in allergy: novel concepts and paradigms. J Allergy Clin Immunol 116: 961-968.

38. Lin HW, Hillsamer P, Kim CH (2004) Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114: 1640-1649.
Airway Inflammation and Hyperresponsiveness

Citation: Lowder TW, Kunz HE (2011) Regulatory T Cells in Asthma and Airway Hyperresponsiveness. J Aller Ther S1:002. doi:10.4172/2155-6121.S1-002

J Aller Ther

72. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ (2005) Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174: 1783-1786.

73. Shevach EM (2009) Mechanisms of foxp3+ regulatory cell-mediated suppression. Immunity 30: 636-645.

74. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, et al. (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204: 1303-1310.

75. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T (2009) Regulatory T cells: how do they suppress immune responses? Nat Immunol 21: 1105-1111.

76. Belkaid Y, Tarbell K (2009) Regulatory T cells in the control of host-microorganism interactions (2). Annu Rev Immunol 27: 551-589.

77. Ito T, Hanabuchi S, Wang YH, et al. (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28: 870-880.

78. Belkaid Y (2007) Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7: 875-888.

79. Couper KN, Blount DG, Wilson MS, Hafalla JC, Belkaid Y et al. (2008) IL-10 from CD4+CD25Fox3+CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog. 4: e1000004.

80. Jeannin P, Leconnet S, Deënieste Y, Gauchat JF, Bonnefoy JY (1998) IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol 160: 3550-3561.

81. Kehr JH, Roberts AB, Wakefield LM, Jakowlew S, Sporn MB et al. (1986) Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol 137: 3855-3860.

82. Kehr JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, et al. (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163: 1037-1050.

83. Maruyama T, Konkel JE, Zammor BF, Chen W (2011) The molecular mechanisms of Foxp3 gene regulation. Semin Immunol.
117. Pilette C, Nouri-Aria KT, Jacobson MR, Wilcock LK, Detry B, et al. (2007) Grass pollen immunotherapy induces an allergen-specific IgE2 antibody response associated with mucosal TGF-beta expression. J Immunol 176: 4658-4666.

118. Romagnani S (2006) Regulation of the T cell response. Clin Exp Allergy 36: 1357-1366.

119. Dominguez AL, Lustgarten J (2008) Implications of aging and self-tolerance on the generation of immune and antitumor immune responses. Cancer Res 68: 5423-5431.

120. Nishikawa T, Shimizu J, Iida R, Yamaazaki S, Sakaguchi S (2006) CD4+CD25+Foxp3+ T cells and CD4+CD25 Foxp3+ T cells in aged mice. J Immunol 176: 6586-6593.

121. Dejaco C, Duftrner C, Schirmer M (2006) Are regulatory T-cells linked with aging? Exp Gerontol 41: 339-345.

122. Simone R, Zica A, Saverino D (2008) The frequency of regulatory CD3+CD8+CD28+CD25+ T lymphocytes in human peripheral blood increases with age. J Leukoc Biol 84: 1454-1461.

123. Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, et al. (2005) The number of human peripheral blood CD4+CD25high regulatory T cells increases with age. Clin Exp Immunol 140: 540-546.

124. Han D, Wang C, Lou W, Gu Y, Wang Y, et al. (2010) Allergen-specific IL-10-secreting T regulatory cells, but not CD4+CD25+Foxp3+ T cells, are decreased in peripheral blood of patients with persistent allergic rhinitis. Clin Immunol 136: 292-301.

125. Rink D, Cakman I, Kirchner H (1998) Altered cytokine production in the elderly. Mech Ageing Dev 102: 199-209.

126. Postma DS (2007) Gender differences in asthma development and progression. Gend Med Suppl B: S133-146.

127. Aruvalo L, Sanz M, Banham AH, Fairbairn L (2007) Expansion of CD4+CD25+Foxp3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol 178: 2572-2578.

128. Lapierre P, Bélain K, Martin C, Alvarez F Jr, Alvarez F (2010) Forkhead box p3+ regulatory T cell underlies male resistance to experimental type 2 autoimmune hepatitis. Hepatology 51: 1789-1798.

129. Melgert BN, Postma DS, Kuipers I, Geerlings M, Luinge MA, et al. (2005) Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy 35: 1496-1503.

130. Melgert BN, Oriss TB, Qi Z, Dixon-McCarthey B, Geerlings M, et al. (2010) Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol 42: 595-603.

131. Polanczyk MJ, Carlson BD, Subramanian S, Afentoulis M, Vandenberk AA, et al. (2004) Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol 173: 2227-2230.

132. Reddy J, Waldner H, Zhang X, Illes Z, Wucherpfennig KW, et al. (2005) Cutting edge: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J Immunol 175: 5591-5595.

133. Wegienka G, Havstad S, Robbitt KR, Woodcock KJ, Zoratti EM, et al. (2011) Within-woman change in regulatory T cells from pregnancy to the postpartum period. J Reprod Immunol 88: 58-65.

134. Tai P, Wang J, Jin H, Song X, Yan J, et al. (2008) Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 214: 456-464.

135. Bebo BF, Jr, Fye-Johnson A, Adlard K, Beam AG, Vandenbark AA, et al. (2001) Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol 166: 2080-2089.

136. Shoenfeld Y, Zandman-Goddard G, Stojanovich L, Cutolo M, Amital H, et al. (2008) The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases--2008. Isr Med Assoc J 10: 8-12.

137. Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, et al. (2008) A new perspective on concepts of asthma severity and control. Eur Respir J 32: 545-554.

138. Lucas SR, Platts-Mills TA (2005) Physical activity and exercise in asthma: relevance to etiology and treatment. J Allergy Clin Immunol 115: 926-934.

139. Basaran S, Guler-Uysal F, Ergen N, Seydaoglu G, Bingol-Karakoc G, et al. (2006) Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma. J Rehabil Med 38: 130-135.

140. Hallstrand TS, Bates PW, Schoene RB (2000) Aerobic conditioning in mild asthma decreases the hyperpnea of exercise and improves exercise and ventilatory capacity. Chest 118: 1460-1469.
141. Henriksen JM, Nielsen TT (1983) Effect of physical training on exercise-induced bronchoconstriction. Acta Paediatr Scand 72: 31-36.

142. Ceddia MA, Woods JA (1999) Exercise suppresses macrophage antigen presentation. J Appl Physiol 87: 2253-2258.

143. Lowder T, Padgett DA, Woods JA (2005) Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun 19: 377-380.

144. Lowder T, Padgett DA, Woods JA (2006) Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice. Exerc Immunol Rev. 12: 97-111.

145. Duguet A, Bitah K, Minshall E, Gomes R, Wang CG, et al. (2000) Bronchial responsiveness among inbred mouse strains. Role of airway smooth-muscle shortening velocity. Am J Respil Crit Care Med 161: 839-848.

146. Shinagawa K, Kojima M (2003) Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 168: 959-967.

147. A, Estell K, Schoeb TR, Atkinson TP, Schwiebert LM (2004) Aerobic exercise attenuates airway inflammatory responses in a mouse model of atopic asthma. J Immunol 172: 4520-4526.

148. Pastva A, Estell K, Schoeb TR, Schwiebert LM (2005) RU486 blocks the anti-inflammatory effects of exercise in a murine model of allergen-induced pulmonary inflammation. Brain Behav Immun 19: 413-422.

149. Yeh SH, Chuang H, Lin LW, Hsiao CY, Eng HL (2006) Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells. Br J Sports Med 40: 239-243.

150. Zuany-Amorim C, Hallé S, Leduc D, Dumarey C, Huerre M, et al. (1995) Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J Clin Invest 95: 2644-2651.

151. MR, Cwiartka M, Gajewska BU, Alvarez D, Ritz SA, et al. (1999) Interleukin-10 gene transfer to the airway regulates allergic mucosal sensitization in mice. Am J Respir Cell Mol Biol 21: 586-596.

152. Ramel A, Wagner KH, Elmadfa I (2003) Acute impact of submaximal resistance exercise on immunological and hormonal parameters in young men. J Sports Sci 21: 1001-1008.