Long-term stability of single neuron activity in the motor system

Kristopher T. Jensen1,2, Naama Kadmon Harpaz1, Ashesh K. Dhawale3,4, Steffen B. E. Wolff1,4 & Bence P. Ölveczky1

How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior. To arbitrate between these possibilities, we recorded single-unit activity in motor cortex and striatum continuously for several weeks as rats performed stereotyped motor behaviors—both learned and innate. We found long-term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant aspects of the behavior. These results suggest that long-term stable behaviors are generated by single neuron activity patterns that are themselves highly stable.

When we wake up in the morning, we usually brush our teeth. Some of us then cycle to work, where we log on to the computer by typing our password. After work, we might go for a game of tennis, gracefully hitting the serve in one fluid motion. These motor skills, and many others, are acquired through repeated practice and stored in our brains, where they are stably maintained and can be recalled and reliably executed even after months of no practice1–3. The neural circuits underlying such motor skills have been the subject of extensive study4–6, yet little is known about how these skills persist over time. Given the stability of the behaviors themselves, a possible solution is to dedicate a neural circuit to a given skill or behavior and then leave it unchanged. However, even adult brains exhibit continual circuit remodeling, including synaptic turnover7–11. This can lead to changes in neural activity patterns over time, both in the presence and absence of explicit learning12–16. While neural circuits in constant flux may facilitate learning of new behaviors and associations17, it seems antithetical to the stable storage of previously acquired behaviors.

Competing theories and predictions

Two main theories have been put forth to explain the apparent contradiction of stable memories in plastic circuits. In the commonly held view that motor control is governed by low-dimensional dynamics18–20, the paradox can be resolved by having a ‘degenerate subspace,’ in which neural activity can change without affecting behavior21 or task performance22. While this would do away with the requirement for stable activity at the level of single neurons (Fig. 1a)12, it requires any drift in population activity to occur exclusively in the degenerate subspace. Whether and how biological circuits can ensure this without continual practice is not known23.

A different way to maintain stable motor output is by constraining the changes in neural circuits such that they do not affect single neuron activity associated with already established behaviors24–26. In this case, the activity patterns of individual neurons locked to the behavior would remain constant or highly similar over time (Fig. 1a)24. This solution has been observed in the specialized zebra finch song circuit, where neural activity patterns associated with a stereotyped song remain stable.
for months25. However, zebra finches have a neural circuit dedicated exclusively to learning and generating their one song, with plasticity well-specified behaviors, either by means of electrophysiology21,27–31 by recording neural activity over time during the performance of Arbitrating between the hypotheses outlined above has been attempted Experimental challenges generalist circuits has yet to be determined.

Experimental challenges

Arbitrating between the hypotheses outlined above has been attempted by recording neural activity over time during the performance of well-specified behaviors, either by means of electrophysiology21,27–31 or calcium imaging13,25,32. These studies have come to discrepant conclusions, with some suggesting stable single neuron activity25,28,29,31,33,34, and others reporting changing activity for fixed behaviors25,33,34. It remains unclear whether these discrepancies reflect technical differences in recordings and analyses, or whether they reflect biological differences between behaviors, animals or circuits. Importantly, putative drift in neural activity could be caused by factors not directly related to the mapping between neural activity and motor output. These include unstable environmental conditions or fluctuations in the animal’s internal state that can affect attention, satiety and motivation34–36. Notably, many of these processes, driven by constrained or cyclic fluctuations in hormones or neuromodulators34,36, drift around a stable mean. As such, they can be distinguished from drift in neural circuits by recording for durations longer than the autocorrelation time of the various uncontrolled, or ‘latent’, processes.

High-quality, long-term recordings of the same neurons can be technically challenging. In lieu of this, a recent approach has considered the stability of low-dimensional latent neural dynamics over extended time periods37–39. While this work suggests that latent motor cortical dynamics underlying stable motor behaviors are stable over time, it does not address the source of this stability. In particular, it remains unclear whether such long-term stable latent dynamics result from drifting single neuron activity within a degenerate subspace that produces the same latent trajectories, or whether it is a consequence of neural activity patterns that are stable at the level of single units (Fig. 1a).

In this work, we first use a recurrent neural network (RNN) to demonstrate how long-term single-unit recordings during a stably executed behavior can distinguish between the two main models of how stable behaviors are maintained. We then perform recordings in rats producing stable behaviors, targeting two central nodes of the motor system: motor cortex (MC) and dorsolateral striatum (DLS)39–41. To probe the degree to which our findings generalize across different classes of behaviors, we examine both learned (Fig. 1b) and innate behaviors. Additionally, we record the animals’ behavior at high spatiotemporal resolution to account for any changes in task-related motor output (Fig. 1c)38,40. Our combined neural and behavioral recordings revealed that neural circuit dynamics are highly stable at the level of single neurons. The small amount of drift in task-related neural activity could be accounted for by a concomitant slow drift in the behavior over time. These results suggest that stable behaviors are stored and generated by stable single neuron activity.

Results

Network models of stable and unstable motor circuits

When analyzing the stability of task-associated neural activity, it is important to consider stability not only at the population level (for example, in the form of stable latent dynamics), but also at the level of task-associated single neurons. To highlight this distinction and motivate the use of longitudinal single-unit recordings to address the neural mechanisms of long-term behavioral stability, we first simulated a degenerate control network. Specifically, we trained an RNN using gradient descent42 to generate control signals for five virtual actuators, each with its own defined target output (Fig. 2a; Methods). After training, we simulated the noisy dynamics of the circuit for 100 trials (Methods) and generated spikes from a Poisson observation model to constitute a simulated experimental ‘session’ (Fig. 2b, c).

Due to the degeneracy of the circuit (250 units with 60,000 synaptic weights controlling a five-dimensional time-varying output), multiple distinct networks with different single-unit activity patterns can...
achieve the same target output. This allowed us to compare network dynamics of RNNs producing the same output with either identical or differing connectivity across separate simulated ‘sessions’. To intuit how activity patterns change over time in an unstable network, we performed a linear interpolation between the parameters of two independently trained RNNs and finetuned the networks to ensure robust performance (Methods). This yielded seven RNNs with increasingly dissimilar connectivity producing the same output—a phenomenological model of neural drift, where the position of a network within this interpolation series can be used as a proxy for time (Extended Data Fig. 1). We proceeded to investigate the degree to which single-unit activity changed as a function of this measure of time. We found that the firing patterns of individual units in the RNNs tended to change from session to session, with sessions close in time exhibiting more similar firing patterns (Fig. 2d). To quantify this, we computed the correlation between single-unit peri-event time histograms (PETHs) for all pairs of sessions, averaged across units. This PETH correlation systematically decreased as a function of time difference between sessions, despite a stable network output (Fig. 2e). In contrast, a negative control, where sessions were permuted across seven different sessions (y axis) for a network exhibiting either stable (left) or drifting (right) single-unit activity. e, Quantification of the similarity in the space of network output (left), PETHs (middle) and aligned latent trajectories (right) as a function of time difference (change in y value from d) for the stable (green) and the drifting (purple) RNN. Lines and shading indicate mean and standard deviation across ten networks.

Fig. 2 Analyzing neural stability in a recurrent network model. a, The network was trained to produce a fixed target output for each of its five actuators. Lines and shading indicate mean and standard deviation of the output from three example actuators over 100 simulated trials after training. Activity of three example units from the recurrent network after training (Methods), visualized as raster plots of spike times (left) and PETHs (right) across 100 simulated trials. e, PETHs for all units firing at least 100 spikes, sorted according to the PETH peak from a set of held-out trials and plotted as a heatmap with color indicating spike count from low (blue) to high (red). d, Example raster plots as in b across seven different sessions (y axis) for a network exhibiting either stable (left) or drifting (right) single-unit activity. e, Quantification of the similarity in the space of network output (left), PETHs (middle) and aligned latent trajectories (right) as a function of time difference (change in y value from d) for the stable (green) and the drifting (purple) RNN. Lines and shading indicate mean and standard deviation across ten networks.

Long-term recordings during a learned motor task
To investigate the stability of biological motor circuits experimentally, we trained rats (n = 6) to perform a timed lever-pressing task in which they received a water reward for pressing a lever twice with an interpress interval of 700 ms. Rats learned to solve the task by developing complex stereotyped movement patterns (Fig. 3a and Extended Data Fig. 2a)44. Since the task is kinematically unconstrained (meaning it has many ‘motor solutions’) and acquired through trial and error, each animal converged on its own idiosyncratic solution (Fig. 3b). However, once acquired, the individually distinct behaviors persisted over long periods of time (Fig. 3a).

To reduce day-to-day fluctuations in environmental conditions that could confound our assessment of neural stability, animals were trained in a fully automated home-cage training system with a highly regimented training protocol in a stable and well-controlled environment44. After reaching expert performance, animals were implanted with tetrode drives for neural recordings44 targeting Layer 5 of motor cortex (MC; n = 3) or dorsolateral striatum (DLS; n = 3)45 (Methods). While the stability of single units in cortical regions has been addressed previously, with inconsistent findings46,47, studies of neural stability in subcortical regions, and specifically the striatum, are scarce48,49. DLS is, in this case, particularly relevant as it is essential for the acquisition and control of the motor skills we study48.

Following recovery from surgery, animals were returned to their home-cage training boxes and resumed the task. Neural activity was recorded continuously over the course of the months-long experiments45. Importantly, our semiautomated and previously benchmarked spike-sorting routine45 allowed us to track the activity of the same neurons over days to weeks in both DLS and MC.
Fig. 3 | Experimental recordings of behavior and neural activity. a, Left forelimb trajectories in the horizontal and vertical dimension (cf. Fig. 1b for an example expert rat (see Extended Data Fig. 2a for data from the other five animals)). Color indicates forelimb position. Kinematics were linearly time-warped to align the two lever presses for all analyses (Methods; warping coefficient = 1.00 ± 0.07); black triangles indicate the times of the lever presses. The rat uses the same motor sequence to solve the task over many days with only minor variations. b, Mean trajectories across all trials of the left (top row, left side view) and right (bottom row, right side view) forelimbs for each rat (columns), illustrating the idiosyncratic movement patterns learned by different animals to solve the task. Circles indicate movement initiation; dark and light gray crosses indicate the times of the first and second lever press, respectively. c, Time of recording for each unit for two example rats with recordings from DLS (left) and MC (right). Units are sorted according to the time of first recording. d, Distribution of recording times pooled across units from all animals recording from DLS (left) or MC (right). Numbers above bars indicate the number of neurons in each bin. Note that the data used in this study have previously been analyzed by Dhawale et al.43,45.

The task-relevant movements of all animals were tracked at high-resolution46, and both behavior and neural activity were aligned to the two lever presses to account for minor variations in the interpress interval (Methods).

Single neurons in MC and DLS have stable activity patterns

The combination of controlled and regimented experimental conditions, stable behavior and continuous neural recordings provides a unique setting for quantifying the stability of an adaptable circuit driving a complex learned motor behavior47. Importantly, this experimental setup mirrors the scenario considered in our RNN model (Fig. 2) and thus facilitates analyses of neural stability at the level of single neurons. Considering the PETHs of all units combined across all trials, we found that units in both MC and DLS fired preferentially during particular phases of the learned behavior (Fig. 4a)48,49. Importantly, we found that the behaviorally locked activity profiles of individual units appeared highly stable over long periods of time (Fig. 4b), reminiscent of our ‘stable’ RNN model (Fig. 2d).

To quantitatively compare neural activity profiles across days, we constructed PETHs for each neuron by summing the spike counts across all trials on each day and convolving with a 15 ms Gaussian filter (Fig. 4b; Methods). We then computed the Pearson correlation ρ between pairs of PETHs constructed from neural activity on different days as a function of the time difference between days (Extended Data Fig. 3a). This is similar to our RNN analyses (Fig. 2) and previous studies in visual and motor circuits48,49. When considering neurons recorded for at least two weeks, the mean PETH similarity remained high in both DLS and MC (Fig. 4c; see Extended Data Fig. 4a for other recording thresholds). This is consistent with results from the stable RNN model (Fig. 2e) and suggests that learned motor behaviors are driven by single neuron activity patterns that do not change over the duration of our recordings, despite the structural and functional plasticity in these circuits48,49,50.

For comparison with a hypothetical circuit where population statistics are retained but individual neurons change their firing patterns, we also computed pairwise correlations between nonidentical neurons. These correlations were near zero in both MC and DLS, confirming that the high correlation over time for individual units is not due to a particular population structure of neural activity imposed by the task (Fig. 4c). These results demonstrate that single neuron activity associated with the learned motor skill is qualitatively stable over periods of several days to weeks (Fig. 4b,c). Our findings also suggest that the stable latent dynamics identified in previous work48 could be a result of such stable single neuron dynamics (cf. Fig. 2e), which is further supported by the fact that alignment of the neural dynamics using CCA did not increase stability (Extended Data Fig. 5a).

In contrast to our RNN model, the experimental data contained neurons that were recorded for different durations (Fig. 3d). This introduces additional variability and makes it difficult to assess stability across neurons without either discarding neurons recorded for short durations or losing information about neurons recorded for long durations. To combine information across more neurons, we considered the PETH similarity as a function of the time difference between PETHs for each neuron individually. An exponential model of the form $\rho = \beta e^{\alpha \delta t}$ was fitted to the Pearson correlation (ρ) between PETHs as a function of time difference δt for each neuron (Methods; see Extended Data Fig. 6a for example fits). $\alpha = -\tau^{-1}$ is denoted as the ‘stability index’, since it corresponds to the negative inverse time constant τ in an exponential decay model, and this stability index provides a single parameter summarizing the rate of drift for each neuron.

We then considered the distribution of stability indices across neurons recorded for at least 4 days. In a null model, where single
neuron activity remains constant, the PETH similarity should be independent of the time difference for all units (cf. Fig. 2e). The stability indices should thus be centered around zero corresponding to an infinitely slow exponential decay, with some spread due to trial-to-trial variability. The population-level distributions over a were indeed centered near zero (Fig. 4d). However, a permutation test across time differences revealed that all DLS recordings and two of the animals with recordings from MC did in fact exhibit slow but significant neural drift (P < 0.05). We saw this also when combining data for all neurons across animals within each experimental group (DLS; \(\alpha_{\text{median}} = -0.012, \tau_{\text{median}} = 87 \) days, \(P < 0.001 \); MC; \(\alpha_{\text{median}} = -0.035, \tau_{\text{median}} = 29 \) days, \(P < 0.001 \); permutation test).

Short recording durations underestimate stability

Our analyses of single neurons also included units recorded for relatively short duration. However, as noted above, recording over such short timespans could underestimate stability in the presence of latent processes that affect neural dynamics. Such processes may vary over timescales of hours or days, but be constrained over longer timescales by homeostatic mechanisms, biological rhythms or task constraints.

Even though such bounded physiological fluctuations will manifest as short-term drift in neural firing patterns, their contributions to estimates of neural stability will diminish as neural recording durations exceed characteristic timescales of the underlying processes.

Consistent with this hypothesis, we found that the stability index had a significant Pearson correlation with recording duration in both DLS (\(\rho = 0.19 \); bootstrapped 95% confidence interval (CI) (0.08, 0.29); Methods) and MC (\(\rho = 0.15 \); 95% CI (0.08, 0.22)).

To better estimate drift over longer timescales, we binned the stability indices of all neurons by their recording duration. This revealed an apparent stability ranging from \(\alpha \approx -0.05 \) for short recording durations to \(\alpha \approx -0.01 \) for long recording durations (Fig. 4e). To extrapolate to longer recording durations, we fitted an exponential model to the data of the form \(\alpha = -\alpha - be^{-ct} \) (Fig. 4e). The parameter \(\tau_c = a^{-1} \) provides an estimate of the asymptotic stability of the population and took values of \(\tau_c = 103 \) days for DLS and \(\tau_c = 75 \) days for motor cortex.
Neural drift is correlated with behavioral changes

In the previous section, we quantified the stability of motor circuits assuming a stable behavior and showed how such estimates can be affected by internal or external processes that shape neural activity. However, any residual drift in neural activity is still likely to be an underestimate of the true stability in the mapping from circuit activity to motor output. Indeed, even a perfectly stable neural system should have drifting neural activity patterns if the behavior itself is changing. This might be expected since humans and animals alike are known to exhibit small behavioral changes both in terms of trial-to-trial variability and systematic drifts in mean behavioral output. If such systematic behavioral drift is present in our lever-pressing task, it could explain some of the short-timescale drift and residual drift in neural activity over longer timescales (Fig. 4). This, in turn, would suggest a more stable circuit linking neural activity to behavior than revealed by analyses of neural data alone. To quantify the degree to which the neural drift we see can be accounted for by accompanying changes in task-related motor output, we analyzed the kinematics of the timed lever-pressing behavior and how they changed over time.

To probe minor behavioral changes in the motor output, we first visualized the z-scored forelimb velocities. This discarded the dominant mean component of the motor output and revealed a slow drift in the behavior (Fig. 5a and Extended Data Fig. 2b). To quantify this drift, we computed the mean correlation between the trial-averaged forelimb velocities on separate days as a function of the number of days separating the observations. This confirmed the presence of a small but consistent decrease in kinematic similarity as a function of time difference, despite stable task performance (Fig. 5b and Extended Data Fig. 9). If the physical environment remains unchanged, any long-term behavioral drift must ultimately arise from changes in neural activity. Additionally, DLS is known to be involved in driving the behavioral output during our lever-pressing task. These considerations suggest that the observed drift in neural activity could be in directions of state space that affect motor output and thus reflect these changes in behavior. To investigate this, we followed previous work and showed that the performance of a decoding model predicting behavior from neural activity and an encoding model predicting neural activity from behavior did not deteriorate over time (Extended Data Fig. 5). However, the decoding analysis only considered a small subset of our data, where a group of 16 neurons was recorded simultaneously (cf. Fig. 3c), and it has previously been shown that encoders and decoders can suffer from omitted variable bias. We therefore proceeded to investigate the relationship between neural and behavioral drift at a single neuron level without relying on such parametric model fits.

To do this, we computed both the similarity of neural PETHs and the similarity of forelimb velocity profiles for each pair of consecutive days. We then exploited the fact that the behavioral output changes to compute the correlation between neural and behavioral drift rates across all consecutive days for each neuron. This correlation should be positive if drift in neural activity is related to drift in motor output (Fig. 5c). The mean of the distribution of correlations over all neurons was $\rho = 0.30$ for DLS and $\rho = 0.25$ for MC. These values were significantly larger than null distributions generated by permuting the behavioral data to break any correlations with the neural drift (Fig. 5d; $P < 0.001$; permutation test). This finding confirms that the drift in neural activity is directly related to changes in behavior and suggests that neural drift could be even slower for behaviors with stronger kinematic constraints.

We proceeded to investigate how this experimental correlation compared with a hypothetical system with a stable mapping between single-unit activities and behavioral output. To do this, we fitted a linear–nonlinear Poisson generalized linear model (GLM) to predict neural activity from behavior using data from a single day of recording for each unit (Methods). This model was used to generate synthetic neural activity on each trial from the recorded behavior, allowing us to compute the correlation between the simulated neural drift and the experimentally observed behavioral drift. Here, we found an average correlation with behavior of $\rho = 0.38$ for DLS and $\rho = 0.22$ for MC. The correlation values found in the experimental data were more similar to this stable synthetic circuit than to the null distribution, with no relation between the drift in neural activity and behavior (Fig. 5e). These results suggest that the observed drift in neural activity is driven, in large part, by a concomitant drift in task-irrelevant aspects of the behavior.

Neural activity remains stable during an innate behavior

Most studies on neural stability have considered behaviors that are either learned or adapted to artificial settings, such as navigating a maze, reaching for points on a screen, controlling a brain–computer interface or singing a song. However, many of the behaviors we express are species-typical, or ‘innate’. For example, sneezing, crying and shivering require intricate patterns of sequential muscle activity but are not consciously controlled or learned. Although we know less about the neural circuits controlling such innate behaviors, we can probe the stability with which they are encoded and compare them with behaviors that explicitly require plasticity. We therefore considered an innate behavior in the rat known as the ‘wet dog shake’ (WDS), which is characterized by whole-body oscillations. Importantly, while we know that MC and DLS are necessary for learning and executing the stereotyped motor patterns required for mastering the lever-pressing task, the WDS is generated by circuits downstream of DLS and MC. If degenerate or redundant circuits exhibit a higher degree of drift for a given behavior, we might expect less neural stability for the WDSs compared with the learned lever-pressing task. Alternatively, if sensorimotor circuits maintain a stable mapping to behavior more generally, we should expect single neuron activity patterns in MC and DLS to be stable also in relation to the WDS behavior.

Given the stereotyped frequency of the WDS events, we could identify them using an accelerometer attached to the head of the animal (Methods). The animals performed on the order of 50 WDS per day, each lasting around 300 ms. Accelerometer readouts corresponding to WDS events were consistent across individual ‘trials’ (Fig. 6a), allowing us to identify units in DLS and MC whose activity was locked to the behavior. Consistent with the stable single neuron activity observed during the learned lever-pressing task, the neurons exhibited qualitatively similar firing patterns over time (Fig. 6b), though there was weaker task modulation overall (Extended Data Fig. 10). PETH correlations also remained stable throughout the period of recording (Fig. 6c and Extended Data Figs. 3b and 4b), although the baseline trial-to-trial similarity was lower than for the timed lever-pressing task. This is consistent with a lesser (or no) involvement of DLS and MC in the specification and control of WDS. The observed stability of single neuron activity patterns in MC and DLS during WDS is therefore likely to reflect the stability of the
sensorimotor system as a whole, including in the behaviorally locked activity of connected areas, which presumably process sensory feedback and motor efference. This is also consistent with our finding of stable motor cortical activity in the lever-pressing task, where motor cortex is only necessary for learning but not for executing the task.

To quantify the degree of stability for the population of recorded neurons during WDS, we computed stability indices for each neuron. Similar to our observations in the lever-pressing task, the stability indices were centered near zero, indicating largely stable circuits, but with a slow decay over time (DLS: $\tau_{\text{median}} = -0.01$, $\tau_{\text{median}} = 102$ days, $P < 0.001$, $n = 178$ neurons; MC: $\tau_{\text{median}} = -0.013$, $\tau_{\text{median}} = 75$ days, $P = 0.002$, $n = 93$ neurons; permutation tests). As shown for the lever-pressing task (Fig. 4e), we expected that this apparent drift would be, at least in part, the consequence of our finite recording durations. Consistent with this, stability indices increased with recording duration in DLS (Fig. 6d; Pearson $\rho = 0.15$; bootstrapped 95% CI (0.06, 0.24); Methods) although no effect could be confirmed in MC ($\rho = -0.019$; 95% CI (-0.14, 0.11)). These results suggest that the neural activity patterns associated with this innate behavior are stable over long timescales, similar to our observations for learned motor skills.

Based on our analyses of the lever-pressing task, we also wondered whether some of the residual neural drift could be accounted for by changes in the kinematics associated with the WDS. We found that the motor output during WDS exhibited a systematic drift over time for all animals (Extended Data Fig. 9). To query whether this behavioral drift could be linked to the drift in neural activity, we computed the mean correlation between neural and behavioral drift on consecutive days. The analysis confirmed the presence of a weak but significant effect of behavioral drift on neural drift in DLS ($\rho = 0.12$, $P = 0.002$; permutation test). In MC, we could not confirm a significant effect ($\rho = 0.01$, $P = 0.44$; permutation test). While these correlations are small, we found them to be consistent with the expectation from a synthetic dataset where neural drift is driven entirely by behavioral drift (Fig. 6f).

Discussion

We investigated whether stereotyped stable motor behaviors are driven by stable single neuron dynamics (Fig. 1) in two main nodes of the motor system involved in the acquisition of motor skills: MC and DLS. Using an RNN model, we first demonstrated the necessity of long-term single neuron recordings for answering this question (Fig. 2). We then performed such recordings in rats trained to generate highly stereotyped task-specific movement patterns (Fig. 3)\(^5\). Without our single neurons in the two main nodes of the motor system (MC and DLS), we could not confirm any effect of behavioral variability in studies of stability

Our results revealed how behavioral changes not fully constrained by the task can lead to the appearance of instabilities in the mapping

Figure 5 Long-term drift of task-specific movement patterns in the lever-pressing task. a. Forelimb velocities for the example animal from Fig. 3a, plotted as z scores with the column-wise mean subtracted (see Extended Data Fig. 2b for the other five animals). The mean-subtracted kinematics reveal slow behavioral drift in task-related movements across days and weeks. b. Mean- and standard deviation of behavioral similarity as a function of time difference, averaged across all pairs of days for the example animal in a (see Extended Data Fig. 9 for data across all animals). c. Similarity between PETHs on consecutive days plotted against the similarity in kinematic output across the corresponding days for an example unit. Each point corresponds to a single pair of consecutive days. d. Distribution of the correlation between neural similarity and behavioral similarity on consecutive days for neurons recorded in DLS (blue) and MC (red). Vertical lines indicate average correlations. e. Mean correlation between neural and behavioral similarity across neurons from d, recorded in either DLS (blue; left panel) or MC (red; right panel). Dark gray histograms indicate control distributions constructed by permuting the days in the behavioral data. Light gray histograms indicate the distributions of correlations in synthetic (Syn) datasets where neural activity is determined entirely by behavior via a GLM. Ctrl, control.
behaviorally potent dimensions to drive the necessary behavioral motor exploration, we might expect neural drift to be biased towards direction as a function of past performance and task uncertainty. If the performance22,51. Previous work has also suggested that motor variability random walk in a degenerate motor space that preserves task performance60. It is worth noting the contrast between our results and previous studies that found task-associated neural activity in sensory and motor circuits to drift over time16,21,27,32,42. Some of these differences could reflect physiological differences between species, circuits or cell types46. However, they could also reflect differences in experimental paradigm and methodology. For example, brain–computer interfaces25 circumvent the natural readout mechanism of the brain, which could affect the stability of learned representations. Additionally, using different statistical assessments of stability can lead to discrepancies in apparent neural stability13. Along these lines, we found that accounting for the bias arising from finite recording durations was necessary to reveal the true stability of sensorimotor circuits, and that unaccounted behavioral variability can confound analyses of representational drift in neural circuits. Furthermore, electrophysiology and calcium imaging can provide contrasting views on neural stability as discussed elsewhere10,15. For the behaviors we probed in this study, electrophysiological recordings were essential to resolve neural dynamics on timescales of tens to hundreds of milliseconds47.
The finding of stable neural correlates of motor output by us and others can also be contrasted with recent work suggesting that neural activity patterns in posterior parietal cortex change over a few days to weeks during a virtual navigation task with stable performance. This discrepancy could arise from differences in methodology, recording duration or limited behavioral constraints, as discussed above. It could also suggest that higher cortical regions are more sensitive to internal or external latent processes that lead to the appearance of drift due to an unconstrained environment. However, an alternative explanation is that higher-order brain regions, such as posterior parietal cortex or prefrontal cortex, accommodate drifting representations to allow fast learning processes or context-dependent gating of stable downstream dynamics. This is consistent with theoretical work on stable readouts from drifting neural codes, with our results supporting the hypothesis that stable representations can be found closer to the motor periphery. These ideas are also consistent with a recent hypothesis in the olfactory domain that piriform cortex implements a ‘fast’ learning process with drifting representations, which drives a ‘slow’ learning process of stable downstream representations.

Maintaining stability in the face of dynamic network changes
Our findings of long-term stability in both MC and DLS raise questions of how this is achieved mechanistically and whether there are active processes maintaining stability of network dynamics. Manipulation studies in both motor and sensory circuits suggest that such processes do exist in the case of large-scale perturbations. For example, it has been shown previously that motor circuits can recover their activity and function after invasive circuit manipulations by returning to a homeostatic set-point, even in the absence of further practice. At the single neuron level, there are also intrinsic mechanisms keeping the firing rates of neurons in a tight range. Indeed, an increase in the excitability of individual neurons has been observed following sensory deprivation in both barrel cortex and V1 (refs. 19,20). These observations suggest that the brain uses homeostatic mechanisms to overcome such direct perturbations. Of course, these perturbations are large and nonspecific compared with the changes that occur during natural motor learning, which instead consist of gradual synaptic turnover and plasticity. However, it is plausible that some of the same mechanisms that help reestablish networks following large-scale perturbations could also be involved in maintaining network stability under natural conditions.21,22

Taken together, our results resolve a long-standing question in neuroscience by showing that the single neuron dynamics associated with stereotyped and stable motor behaviors, both learned and innate, are themselves stable over long timescales. However, they raise another mechanistic question of how new behaviors are learned without interfering with existing dynamics, that is, how does the brain combine long-term single neuron stability with life-long flexibility and adaptability? This is an essential yet unanswered question for neuroscience, and future work in this area will likely require more elaborate experimental protocols combining interleaved learning of multiple tasks with long-term neural recordings and high-resolution behavioral tracking to elucidate the mechanistic underpinnings of network stability and flexibility.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41593-022-01194-3.

References
1. Krakauer, J. W. & Shadmehr, R. Consolidation of motor memory. Trends Neurosci. 29, 58–64 (2006).
2. Melnick, M. J. Effects of overlearning on the retention of a gross motor skill. Res. Q. Am. Assoc. Health, Phys. Educ. Recreat. 42, 60–69 (1971).
3. Park, S.-W. & Sterrned, R. Robust retention of individual sensorimotor skill after self-guided practice. J. Neurophysiol. 113, 2635–2645 (2015).
4. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 457, 51–56 (2012).
5. Haith, A. M. & Krakauer, J. W. in Progress in Motor Control, Vol. 782 (eds Richardson, M. J. et al.) 1–21 (Springer, 2013).
6. Kawai, R. et al. Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812 (2015).
7. Park, S.-W., Dijkstra, T. & Sterrned, D. Learning to never forget—time scales and specificity of long-term memory of a motor skill. Front. Comput. Neurosci. 7, 111 (2013).
8. Fu, M., Yu, X., Lu, J. & Zuo, Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483, 92–95 (2012).
9. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).
10. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).
11. Yang, G., Pan, F. & Gan, W.-B. Stably maintained dendritic spines are associated with lifelong memories. Nature 482, 920–924 (2009).
12. Cioppa, C., Bonhoeffer, T., Hübener, M. & Rose, T. Variance and invariance of neuronal long-term representations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160161 (2017).
13. Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017).
14. Kargo, W. J. & Nitz, D. A. Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J. Neurosci. 24, 5560–5569 (2004).
15. Peters, A. J., Lee, J., Hedrick, N. G., O’Neill, K. & Komiyanma, T. Reorganization of corticospinal output during motor learning. Nat. Neurosci. 20, 1133–1141 (2017).
16. Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Represenational drift in primary olfactory cortex. Nature 594, 541–546 (2021).
17. Rule, M. E., O’Leary, T. & Harvey, C. D. Causes and consequences of representational drift. Curr. Opin. Neurobiol. 58, 141–147 (2019).
18. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).
19. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).
20. Jensen, K., Stone, T.-C. & Hennequin, G. Scalable Bayesian GPFA with automatic relevance determination and discrete noise models. Adv. Neural Inf. Process. Syst. 34, 10613–10626 (2021).
21. Rokni, U., Richardson, A. G., Bizzi, E. & Seung, H. S. Motor learning with unstable neural representations. Neuron 54, 653–666 (2007).
22. Qin, S. et al. Coordinated drift of receptive fields during noisy representation learning. Preprint at bioRxiv https://doi.org/10.1016/j.neuroimage.2021.03.054820 (2021).
23. Duncker, L., Driscoll, L., Shenoy, K. V., Sahani, M. & Sussillo, D. In Proc. 34th Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 14387–14397 (NeurIPS, 2020).
24. Kao, T.-C., Jensen, K., van de Ven, G., Bernacchia, A. & Hennequin, G. Natural continual learning: success is a journey, not (just) a destination. Adv. Neural Inf. Process. Syst. 34, 28067–28079 (2021).
25. Katiowit, K. A., Picardo, M. A. & Long, M. A. Stable sequential activity underlying the maintenance of a precisely executed skilled behavior. Neuron 98, 1133–1140.e3 (2018).
26. Sizemore, M. & Perkel, D. J. Premotor synaptic plasticity limited to the critical period for song learning. Proc. Natl Acad. Sci. USA 108, 17492–17497 (2011).
27. Carmena, J. M., Lebedev, M. A., Henriquez, C. S. & Nicolelis, M. A. L. Stable ensemble performance with single-neuron variability during reaching movements in primates. J. Neurosci. 25, 10712–10716 (2005).
28. Chestek, C. A. et al. Single-neuron stability during repeated reaching in macaque premotor cortex. J. Neurosci. 27, 10742–10750 (2007).
29. Flint, R. D., Scheid, M. R., Wright, Z. A., Solla, S. A. & Slutzky, M. W. Long-term stability of motor cortical activity: implications for brain machine interfaces and optimal feedback control. J. Neurosci. 36, 3623–3632 (2016).
30. Fraser, G. W. & Schwartz, A. B. Recording from the same neurons chronically in motor cortex. J. Neurophysiol. 107, 1970–1978 (2012).
31. Ganguly, K. & Carmena, J. M. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153 (2009).
32. Liberti, W. A. et al. Unstable neurons underlie a stable learned behavior. Nat. Neurosci. 19, 1665–1671 (2016).
33. Stevenson, I. H. et al. Statistical assessment of the stability of neural movement representations. J. Neurophysiol. 106, 764–774 (2011).
34. Sadeh, S. & Clopath, C. Contribution of behavioural variability to representational drift. eLife 11, e77907 (2022).
35. Willett, J. A. et al. The estrous cycle modulates rat caudate–putamen medium spiny neuron physiology. Eur. J. Neurosci. 52, 2737–2755 (2020).
36. Miller, E. M., Shankar, M. U., Knutson, B. & McClure, S. M. Dissociating motivation from reward in human striatal activity. J. Cogn. Neurosci. 26, 1075–1084 (2014).
37. Sheppard, P. A. S., Choleris, E. & Galea, L. A. M. Structural plasticity of the hippocampus in response to estrogen in female rodents. Mol. Brain 12, 22 (2019).
38. Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).
39. Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5, e19103 (2016).
40. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).
41. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
42. Deichert, D., Rubin, A. & Ziv, Y. Representational drift in the mouse visual cortex. Curr. Biol. 31, 4327–4339.e6 (2021).
43. Dhawale, A. K., Wolff, S. B. E., Ko, R. & Ölveczky, B. P. The basal ganglia control the detailed kinetics of learned motor skills. Nat. Neurosci. 24, 1256–1269 (2021).
44. Poddar, R., Kawai, R. & Ölveczky, B. P. A fully automated high-throughput training system for rodents. PLoS One 8, e33171 (2013).
45. Dhawale, A. K. et al. Automated long-term recording and analysis of neural activity in behaving animals. eLife 6, e27702 (2017).
46. Kubota, Y. et al. Stable encoding of task structure coexists with flexible coding of task events in sensorimotor striatum. J. Neurophysiol. 102, 2142–2160 (2009).
47. Sheng, M., Lu, D., Shen, Z. & Poo, M. Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proc. Natl Acad. Sci. USA 116, 11038–11047 (2019).
48. Insafutdinov, E., Pischulin, L., Andres, B., Andriluka, M., Schiele, B. in Computer Vision – ECCV 2016, Vol. 9910 (eds Leibe, B. et al.) 34–50 (Springer, 2016).
49. Wolff, S. B. E., Ko, R. & Ölveczky, B. P. Distinct roles for motor cortical and thalamic inputs to striatum during motor learning and execution. Sci. Adv. 8, eabk0231 (2022).
50. Kanwal, J. K. et al. Internal state: dynamic, interconnected communication loops distributed across body, brain, and time. Integr. Comp. Biol. 61, 867–886 (2021).
51. Chaisangwanthum, K. S., Shen, H. H. & Sabes, P. N. Motor variability arises from a slow random walk in neural state. J. Neurosci. 34, 12071–12080 (2014).
52. Churchland, M. M. Using the precision of the primate to study the origins of movement variability. Neuroscience 296, 92–100 (2015).
53. Stevenson, I. H. Omitted variable bias in GLMs of neural spiking activity. Neuronal Comput. 30, 3227–3258 (2018).
54. Mehler, D. M. A. & Kording, K. P. The lure of misleading causal statements in functional connectivity research. Preprint at https://arxiv.org/abs/1812.03363 (2020).
55. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).
56. Fletcher, A. & Harding, V. An examination of the ‘wet dog’ shake behaviour in rats produced by acute administration of sodium n-dipropylacetate. J. Pharm. Pharmacol. 33, 811–813 (1981).
57. Marshall, J. D. et al. Continuous whole-body 3D kinematic recordings across the rodent behavioral repertoire. Neuron 109, 420–437.e11 (2021).
58. Bedard, P. & Pycock, C. J. ‘Wet-dog’ shake behaviour in the rat: a possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacology 16, 663–670 (1977).
59. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).
60. Zagha, E. et al. The importance of accounting for movement when relating neuronal activity to sensory and cognitive processes. J. Neurosci. 42, 1375–1382 (2022).
61. Srinivasan, M. & Ruina, A. Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–76 (2006).
62. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).
63. Dhawale, A. K., Miyamoto, Y. R., Smith, M. A. & Ölveczky, B. P. Adaptive regulation of motor variability. Curr. Biol. 29, 3551–3562.e7 (2019).
64. Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P. & Smith, M. A. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat. Neurosci. 17, 312–321 (2014).
65. Rule, M. E. & O’Leary, T. Self-healing codes: how stable neural processes. Neuron 53, 72–75 (2006).
66. Rule, M. E. & O’Leary, T. Self-healing codes: how stable neural processes. Neuron 53, 72–75 (2006).
67. Huang, L. et al. Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice. eLife 10, e51675 (2021).
68. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
69. Rule, M. E. et al. Stable task information from an unstable neural population. eLife 9, e51121 (2020).
70. Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).
71. Margolis, D. J. et al. Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat. Neurosci. 15, 1539–1546 (2012).
72. Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B. & Turrigiano, G. G. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80, 335–342 (2013).
73. Mrsic-Flogel, T. D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007).
74. Golowasch, J., Casey, M., Abbott, L. F. & Marder, E. Network stability from activity-dependent regulation of neuronal conductances. Neural Comput. 11, 1079–1096 (1999).
75. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).
76. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).
77. Kao, T.-C., Sadabadi, M. S. & Hennequin, G. Optimal anticipatory control as a theory of motor preparation: a thalamo-cortical circuit model. Neuron 109, 1567–1581.e12 (2021).
Methods
Data analysis
Animal training and data acquisition. The care and experimental manipulation of all animals were reviewed and approved by the Harvard Institutional Animal Care and Use Committee. Experimental subjects were female Long Evans rats (n = 6) that were 3–10 months old at the start of training. The animals were trained in an automated home-cage system on a lever-pressing task as described previously[4,43]. In short, animals were rewarded for pressing a lever twice with an interpress interval of 700 ms. Electrophysiological data was recorded from layer 5 of motor cortex (MC; n = 3) and from dorsolateral striatum (DLS; n = 3) and spike-sorted using the FAST algorithm described by Dhawale et al.45. Data from all animals have been used previously by Dhawale et al.44,45.

Behavioral tracking. Videos were recorded at 120 Hz during the lever-pressing task from two cameras positioned at the left and right side of the home cage relative to the lever. Automated behavioral tracking was carried out using DeepCut46. For 300 frames from each camera, the corresponding forelimb of the animal was labeled manually. This was used as a training dataset for DeepCut to generate full trajectories for all trials followed by interpolation with a cubic spline. Clustering of task trials based on behavioral readouts was carried out using forelimb positions tracked by DeepCut as well as accelerometer data from an accelerometer attached to the skull of each animal. These features were embedded in a t-SNE space and clustered using density-based clustering47. Only trials falling in the largest cluster for each animal (range of 37% to 93% of trials across animals) and with interpress intervals (IPIs) between 600 ms and 800 ms were included in the analyses to minimize behavioral variability.

Detection and classification of WDS. To identify WDS, accelerometer data were first passed through a 12–20 Hz filter and the magnitude of the response calculated as m = \sqrt{x^2 + y^2 + z^2}. A moving average of m was calculated with a window size of one-sixth of a second, and WDS events identified as periods with m > 0.03. Peaks were found in a window of 800 ms centered at the middle of each WDS event and identified as local maxima or minima with a prominence of at least 0.07 times the difference between the highest maximum and lowest minimum in each channel. WDS events were aligned to the first positive peak in the vertical (z) channel and time-warped according to the interpeak separation in this channel. Aligning to either horizontal channel gave similar results, and the vertical channel was preferred to avoid the degeneracy of the horizontal plane.

Statistics and reproducibility. Animals were randomly allocated to study groups and no statistical method was used to predetermine sample sizes. The investigators were not blinded to allocation during experiments and outcome assessment. To filter out putative spike-sorting errors, we further filtered out a small subset of sessions (1.4%), which were associated with an abrupt change in firing rate between sessions (P < 0.001 under a Gaussian approximation to the remaining firing rate changes) if it partitioned the data into a consistently high-firing and a consistently low-firing period. Omitting this step did not qualitatively affect any results.

Time-warping. For all analyses of experimental data, we time-warped neural activity and behavior using piecewise linear warping7 with parameters that aligned the two lever-presses across all trials (see Extended Data Fig. 7 for analyses without time-warping). We did this since neurons in DLS and MC have been shown previously to have activity patterns linked to these events44,45. Time-warping of spike data in the lever-pressing task was carried out by linearly scaling all spike times between the first and second presses by a factor \(\rho = \frac{\text{med}_2 - \text{med}_1}{\text{IPI}_{\text{trial}}} \), where \(\text{IPI}_{\text{med}} \) is the IPI in a given trial. All spike times after the second press were shifted by 700 ms – \(\text{IPI}_{\text{med}} \). Warping of behavioral data was carried out by fitting a cubic spline to the trajectories and extracting time points at a frequency of 120 Hz before the first press, \(\rho \times 120 \text{ Hz} \) between the two presses, and 120 Hz after the second press. The warping coefficient \(\rho \) had a mean of 1.00 and a standard deviation of 0.07 across all trials and animals.

Warping of spike data for the WDSs was carried out by linearly scaling all spike times between a quarter period before the first peak (\(t_1 \)) and a quarter period after the last peak (\(t_2 \)) by a factor \(\rho = \frac{t_{\text{med}} - \text{IPI}_{\text{trial}}}{\text{IPI}_{\text{med}}} \), where \(t_{\text{trial}} \) is the period of the oscillation in a given trial and \(t_{\text{med}} \) is the median period across all trials and sessions for a given animal. All spike times before \(t_1 \) were shifted by \(t_1 \times (\rho - 1) \) and all spike times after \(t_2 \) were shifted by \(t_2 \times (\rho - 1) \). Warping of behavioral data was carried out by fitting a cubic spline to the accelerometer data and extracting time points at a frequency of 300 Hz before \(t_1 \), \(\rho \times 300 \text{ Hz} \) between \(t_1 \) and \(t_2 \), and 300 Hz after \(t_2 \). The first detected positive peak was assigned a time of zero for each WDS. The warping coefficient \(\rho \) had a mean of 1.01 and a standard deviation of 0.07 across all trials and animals.

Data between 0.1 s before the first tap and 0.1 s after the second tap was used for all analyses of the lever-pressing task, and data between 0.2 s before and 0.5 s after the first accelerometer peak was used for all WDS analyses.

Similarity of neural activity. PETHs were calculated for each session by summing the spikes across all trials for each time within-trial. We convolved the resulting spike counts with a 15 ms Gaussian filter for the lever-pressing task, and with a 10 ms Gaussian filter for the WDS behavior. Pairwise PETH similarities between sessions were calculated as the Pearson correlation between u and v, where u and v are vectors containing the PETHs at 20 ms resolution. PETHs were normalized by z-scoring for visualization in Fig. 4a for each unit, and by total spike count on each day for the PETHs in Figs. 4b and 6b. Neural similarity as a function of time difference was calculated by computing the pairwise similarity of the PETHs for each unit across every pair of days in which the PETH contained at least ten spikes. The pairwise similarities for each time difference were averaged across units in Fig. 4c and 6c, after first averaging over all PETH pairs separated by the same time difference for each individual unit.

We restricted all analyses to neurons that were ‘task-modulated’. To define task modulation, we computed a PETH for odd and even trials separately for each recording day and considered the correlation between this pair of PETHs on each day. We then averaged the result across days for each neuron. A neuron was considered task-modulated if this measure of same-day similarity exceeded \(\rho_{0.15} = 0.15 \). This resulted in 221 of 361 neurons being task-modulated in DLS during the lever-pressing task, 456 of 787 in MC during the lever-pressing task, 317 of 1,005 in DLS during the WDS behavior, and 267 of 540 in MC during the WDS behavior.

Controls for stability as a function of time difference. In Figs. 4c and 6c, we include a positive and a negative control for the neural similarity as a function of time difference. Here, we provide a description of how these were computed. For the negative control, we computed the similarity between nonidentical pairs of neurons. This can be seen as the asymptotic similarity in the limit of complete neural turnover but with constant population statistics (that is, each neuron corresponds to a randomly sampled neuron from the population). This similarity was averaged across 1,000 pairs of randomly sampled neurons, with each pair being recorded in a single animal. For the positive control, we resampled the activity of each neuron on all trials in which it was recorded, with replacement, from the total distribution of recorded trials across days. We then computed the similarity as a function of time difference for all neurons as in the original data. The process of resampling and computing similarity was repeated 100 times, and the figures indicate mean and standard error across samples. This control thus corresponds to the hypothetical similarity in the case where all...
neurons have a fixed distribution over firing patterns (that is neural activity is stable), and where the global distribution of firing patterns is matched to the data.

Alignment of neural dynamics. Aligning neural dynamics using CCA requires simultaneous recording of many neurons. Since our recordings were asynchronous, this criterion was not generally met (cf. Fig. 3c). For this analysis, we therefore focused on a smaller subset of the data, where 16 neurons were recorded simultaneously for a week and fired at least ten spikes during the task on each day. This dataset corresponds to days 8–14 of the DLS animal indicated in Fig. 3c. We first computed the ‘single neuron similarity’ in this dataset by computing the average PETH correlation across all neurons for each pair of days. We then computed the mean and standard deviation of this measure across all pairs of days separated by the same time difference. This provided a measure of the similarity of neural dynamics in a constant coordinate system with the axes aligned to individual neurons. For comparison with this measure, we also computed the similarity of neural activity when aligning the neural dynamics using CCA for each pair of sessions. To do this, we followed the approach outlined by Gallego et al.38 to align the dynamics on day ‘b’ to the dynamics on day ‘a’ across all pairs of days. This alignment was carried out at the level of PETHs rather than single trials. For these analyses, we aligned the dynamics across all neurons and considered the average correlation across all the resulting dimensions (that is, the similarity was the average of all CCs). This addresses the question of whether stability increases if we allow for linear transformations of the coordinate system in which we characterize neural dynamics.

Exponential model fits and stability indices. To assess the stability of neural activity over time, we examined the Pearson correlation \(\rho \) between the computed PETHs as a function of the time difference \(\delta t \) between PETHs. We then fitted an exponential model \(\rho = \beta e^{\alpha \delta t} \) to these data for each neuron recorded for at least 4 days. This was done to better quantify the putative drift in neural activity across neurons by learning a parameter \(\alpha \) that encompasses the rate of drift for each neuron. Here, \(\beta \) is an intercept describing the expected similarity for two sets of trials recorded on the same day, and \(\alpha \) determines the rate of change of neural similarity. For this fit, we constrained \(\beta \) to be between –1 and +1 by passing it through a tanh transfer function, since Pearson correlations must fall in this interval. The parameters were optimized to minimize the squared error between the predicted \(\rho \) and observed \(\rho \) PETH correlations. This was done numerically, and the optimization was initialized from a linear fit to the data \(\rho = \beta + \alpha \). We denote the learned parameter \(\alpha \) with units of inverse time as a ‘stability index’. This is related to the time constant of an exponential decay model via \(\alpha = -\tau^{-1} \), with the fitting of \(\alpha \) being numerically more stable as it avoids \(\tau \) approaching infinite values for slow decays. All datapoints with a time difference of at least 1 day were used to fit the models. The mean error of the model fit was quantified for each neuron as \(\frac{1}{N} \sum_{i=1}^{N} |\rho_i - \hat{\rho}_i| \) where \(|\cdot| \) indicates the absolute value, and the sum runs over all \(N \) data points (Extended Data Fig. 6b). Significance of median stability indices being different from zero was calculated by shuffling the vector of time differences for each unit \(2,000 \) times, each time computing the median of the stability indices across all units and counting the fraction of shuffles where the median stability index was smaller than the experimentally observed median.

For comparison with this single-timescale model, we also considered a model that decayed to a learnable baseline \(\gamma \): \(\rho = \beta e^{\alpha \delta t} + \gamma \). We did this since the presence of constrained latent processes could lead to a decay in neural similarity to a nonzero asymptotic value at long time differences. Clearly, the single-timescale exponential decay arises as a special case of this model for \(\gamma = 0 \). However, it is also worth noting that a linear model, commonly used in the literature\(^6,21,32,38,42\), arises as \(y \rightarrow -\infty \). Intuitively, this is the case since any finite region of \(\rho \) is in the initial linear regime of an exponential that decays to \(-\infty\). This model with a baseline thus serves as a generalization of both the linear and exponential models. When fitted to the neuron-averaged data and evaluated using hold-one-out cross-validation, this model performed comparably with or better than the simple exponential decay model on all four datasets (recordings from DLS/MC across the two tasks). Additionally, using this same crossvalidated evaluation metric, the exponential model consistently outperformed a linear model, suggesting that this is a more appropriate single-timescale model.

Stability as a function of recording duration. To test for a significant correlation between stability indices and recording duration, we performed a bootstrap analysis. This involved resampling the set of neurons with replacement 10,000 times and computing the Pearson correlation \(\rho \) between recording duration and stability index for each sampled set. The reported CIs correspond to the 2.5th and 97.5th percentiles of the bootstrapped datasets. To extrapolate our stability indices to long recording durations across the population, we fitted a model to the stability index \(\alpha \) as a function of recording time \(T \) of the form \(\alpha = -a - b \exp(-cT) \). We fitted the model by minimizing the L1 error between the observations and model predictions, \(L = \sum_{i} |\alpha_i - \alpha| \), and restricted all parameters \([a,b,c] \) to be positive. In this model, the asymptotic stability is given by \(r_{max} = \lim_{\delta t \to \infty} \alpha = a \). To construct CIs for this analysis, we subsampled the neurons included in the analysis with replacement and repeated the model fitting procedure. Interquartile ranges are reported as the 25th and 75th percentile of the corresponding distribution over \(r \). While the model itself was fitted to the raw data, we denoised the data for the visualization in Fig. 4e by plotting the median stability index across neurons binned by recording duration. The bins were selected with partial overlap (each neuron occurred in two bins), and the \(\chi \) value indicated for each data point in the figure is the average recording duration across neurons in the corresponding bin.

To compute the stability as a function of subsampled recording duration in Fig. 4f, we used successive maximum time differences from \(\delta t_{max} = 3 \) to \(\delta t_{max} = 13 \) days. We then considered the average similarity as a function of time difference in Fig. 4c, using only data up to and including \(\delta t_{max} \). We computed stability indices for these subsets of data as described above and plotted the stability as a function of \(\delta t_{max} \).

Behavioral similarity. To compute behavioral similarity as a function of time difference, we first extracted instantaneous velocities of both forelimbs in the vertical and horizontal dimensions as the first derivative of the time-warped cubic spline fitted to position as a function of time. We computed the pairwise behavioral similarity between sessions as the Pearson correlation between the mean velocity profiles across all trials from the corresponding sessions. These correlations were averaged across both forelimbs and the vertical/horizontal dimensions.

To compute the correlation between neural and behavioral drift rates, we considered the behavioral similarity on pairs of consecutive days together with the neural similarity across the corresponding days, quantified using PETH correlations as described above. We then considered the distribution of neural and behavioral similarities across all pairs of consecutive days for each recorded unit and computed the correlation between these two quantities. Finally, we computed the mean of this correlation across the population of units recorded from either DLS or MC. As a control, we permuted the behavioral data across days to break any correlations between the neural and behavioral drift rates and repeated the analysis. In Figs. 5e and 6f, null distributions are provided across 5,000 such random permutations. For these analyses, we did not include the first day of recording for any unit since this data was used to fit the synthetic control data (see below). Furthermore, we only considered neurons with at least four pairs of consecutive data points (Extended Data Fig. 6b).
recording days (after discarding the first day of recording), such that all correlations were computed from at least four datapoints.

Stability of population decoding. To investigate the stability of a population decoder, we considered the same week-long subset of data as for the alignment of neural dynamics. We first square-root-transformed the neural data and convolved it with a 40 ms Gaussian filter, similar to previous work. We then trained a crossvalidated ridge regression model to predict the left and right forelimb trajectories from neural activity using data from each single day and tested the model on all other days. Finally, we computed the performance of this decoder as a function of time difference between testing and training. For all decoding, we offset behavior from neural activity by 100 ms to account for the fact that neural activity precedes kinematics, similar to previous work in primates. To test whether the decoder exhibited a significant decrease in performance as a function of time difference, we performed a bootstrap analysis by resampling with replacement the similarity as a function of time difference (that is, we resampled ‘pairs of days’) and computing the slope of a linear fit to the data.

For comparison with this decoding model, we also considered decoding performance in an aligned latent space. To do this, we again considered all pairs of days and matched the number of trials on each pair of days to facilitate alignment (that is, we discarded the later trials on the day with most trials). We then used principal component analysis to reduce the dimensionality of the data from 16 to 10 for each day and trained our crossvalidated ridge regression model to predict behavior from this latent neural activity on the training data. At test time, we aligned the principal components (PCs) on the test day to the PCs on the training day and predicted behavior from these aligned PCs. This follows the procedure described in previous work. Note that alignment was in this case done at the level of single trials rather than trial-averaged PETHs. Finally, we considered the decoding performance as a function of time difference for this aligned decoder.

GLM model fitting and analysis. To investigate the correlation between neural and behavioral Poisson drift rates in synthetic data, where neural drift is determined entirely by behavioral drift (Fig. S6), we first fitted a linear–nonlinear Poisson GLM to the first day of recording for each neuron. This model took the form \(y_{\text{PETH}} \sim \text{Poisson}(W_{\text{rec}}x_{\text{PETH}})) \) where \(y \) are the observed spike counts on day \(t \) across time bins (here a concatenation of trials and bins within each trial), \(x \) is a set of input features, and \(W \) is a weight matrix that is learned by maximizing the log likelihood of the data. As input features, we used the velocity of both forelimbs in the \(x \)-\(y \) plane for the lever-pressing task. For the WDS behavior, we used the accelerometer readout in three dimensions, concatenating both the signed acceleration and the unsigned ‘vigor’ as regressors. In both cases, we included a 200 ms window of kinematics surrounding each 20 ms bin of neural activity in the feature vector and added a constant offset.

After fitting the model to data from day 1, we proceeded to generate synthetic neural activity by drawing spikes from the model \(y_{\text{PETH}} \sim \text{Poisson}(W_{\text{rec}}x_{\text{PETH}})) \) for all subsequent days using the recorded behavior \(x \). We then constructed PETHs for each unit and session, as described for the experimental data, and repeated the analysis correlating behavioral similarity with neural similarity on consecutive days for this synthetic dataset. We repeated the sampling and analysis process 5,000 times to generate a distribution of neural–behavioral correlations from this synthetic model. When performing these analyses, we discarded the first day of recording in both the synthetic and experimental data since this was used to fit the GLM.

To test the stability of the encoding model (Extended Data Fig. S6), we computed predicted firing rates on all days not used for training. We then correlated the square root of the predicted firing rate with the square root of the observed spike count. Finally, we averaged this test correlation across all neurons that had a training correlation of at least 0.1 and were recorded for at least 7 days. As a positive control, we repeated this analysis using hold-one-out crossvalidation within the first day of recording, predicting neural activity on each trial from a model fitted to all other trials.

Recent network modeling.

Network architecture and training. All networks were trained using TensorFlow v.2.7 and Python v.3. The RNNs used in Fig. 2 consisted of 250 recurrently connected units and 5 readout units, which were simulated for 250 evenly spaced timesteps to generate five target outputs drawn from a Gaussian process with a squared exponential kernel that had a timescale of \(\tau = 0.004 \). The RNN dynamics were given by

\[
x_{t+1} = [x_t + r^{-1} \left(-x_t + W_{\text{rec}}x_t + e \right)]_+
\]

\[
\epsilon \sim N(0, 0.2I)
\]

\[
y_t = W_{\text{out}}x + b
\]

\[
W_{\text{rec}}, W_{\text{out}}, b \text{ and } x_0 \text{ were optimized using gradient descent with Adam to minimize the loss function}
\]

\[
\mathcal{L} = \sum_{ij} \left(y_{ij, \text{output}} - y_{ij, \text{target}} \right)^2 + 10^{-4} \left(\sum_y |W_{\text{rec},y}|^2 + \sum_y |W_{\text{out},y}|^2 \right)
\]

We used a learning rate of 0.0005 and batch size of 20 to train all networks.

Similarity measures. In total, 100 instances of each network were run to constitute a set of trials (‘a session’). Observation noise was added to all neural activities \(x \) by drawing spikes from a Poisson noise model \(x \sim \text{Poisson}(\lambda x) \), where \(\lambda \) is a constant scaling factor for each session used to scale the mean activity to 6.25 Hz. PETHs were constructed by averaging the activity of each unit across all trials for a given network. PETH similarity was computed as the Pearson correlation between PETHs as for the experimental data. Behavioral similarity was computed as the mean RNN output correlation across pairs of trials for each pair of sessions. Latent similarity was computed by first convolving the single-trial activity with a 30 ms Gaussian filter. The activities of nonoverlapping groups of 50 neurons were then concatenated into 50 \(\times \) \(T \) matrices for each session to simulate different simultaneously recorded populations of neurons. Here, \(T \) is the number of time bins per trial (250) times the number of trials per session (100). The 50 \(\times \) \(T \) matrices were reduced to 10 \(\times \) \(T \) matrices by PCA, and the resulting matrices were aligned by CCA across networks. The CCA similarity for a pair of networks and group of neurons was computed as the mean correlation of the top four CCs. This procedure was intended to mirror the analysis by Gallego et al.34.

Interpolating networks. To interpolate the networks in Fig. 2d,e, two networks were first trained independently to produce the target output, generating two sets of parameters,

\[
\theta_1 = \{W^1_{\text{rec}}, W^1_{\text{out}}, b^1, x^1_0\} \text{ and } \theta_2 = \{W^2_{\text{rec}}, W^2_{\text{out}}, b^2, x^2_0\}
\]

Seven new parameter sets \(\theta^\text{new} \) were then generated by linear interpolation between \(\theta_1 \) and \(\theta_2 \) (0.3\(\theta_1 + 0.7\theta_2 \)), or equivalently by considering seven networks spanning the first part of a linear interpolation between \(\theta_1 \) and \(\theta_2 \). We chose not to consider the full interpolation series since neural activity became uncorrelated before the parameters were fully uncorrelated (Fig. 2e), and we were interested in the range of parameters where neural activity drifted. For each interpolated parameter set, \(W_{\text{out}} \) was fixed and the remaining parameters were finetuned on the original loss to ensure robust performance. Note that this procedure is used merely to generate a phenomenological model of a motor circuit with drifting connectivity and stable output, and it should not be interpreted
as a mechanistic model. For the control network, the same interpolation and finetuning procedure was carried out but, in this case, interpolating between \(\theta_1 \) and \(\theta_1 \) (that is, itself), such that the only differences between networks were fluctuations around the original connectivity due to finetuning. The whole procedure of training two initial networks and interpolating was repeated ten times, and results in Fig. 2e are reported as the mean and standard deviation across these repetitions.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data have been used previously by Dhawale et al.43. See https://github.com/KrisJensen/stability_paper_code for instructions on how to download the subset of data used for this paper.

Code availability

The code used to train all models, perform all analyses, and generate all figures is available online: https://github.com/KrisJensen/stability_paper_code.

References

78. Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science **344**, 1492–1496 (2014).
79. Williams, A. H. et al. Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping. Neuron **105**, 246–259.e8 (2020).
80. Keshtkaran, M. R. et al. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Preprint at bioRxiv https://doi.org/10.1101/2021.01.13.426570 (2021).

Acknowledgements

We are grateful to K. Hardcastle, C. Pehlevan, T.-C. Kao, G. Hennequin and M. Schimel for their feedback on the manuscript. This work was supported by a Gates Cambridge scholarship and Nordea-fonden (K.T.J.); a Helen Hay Whitney Foundation Postdoctoral Fellowship, the Zuckerman STEM Leadership Program postdoctoral fellowship, and the Weizmann Institute of Science - National Postdoctoral Award for Advancing Women in Science (N.K.H.); a Life Sciences Research Foundation and Charles A. Kings Foundation postdoctoral fellowship (A.K.D.); an EMBO postdoctoral fellowship ALTF1561-2013 and an HFSP postdoctoral fellowship LT 000514/2014 (S.B.E.W.); and National Institutes of Health grants R01-NS093231 and R01-NS105349 (B.P.O.).

Author contributions

B.P.O., K.T.J., A.K.D. and N.K.H. conceived the study. A.K.D. and S.B.E.W. collected the data. K.T.J. and N.K.H. analyzed the data. K.T.J., N.K.H. and B.P.O. interpreted the data and wrote the manuscript. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41593-022-01194-3.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41593-022-01194-3.

Correspondence and requests for materials should be addressed to Bence P. Olveczky.

Peer review information Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | RNN parameter interpolation. (a) Mean correlation between the initial conditions (left), recurrent weight matrices (center), and readout weight matrices (right) of the simulated RNNs as a function of time difference for the stable and drifting networks. Shading indicates standard deviation across 10 repetitions of training and interpolation.
Extended Data Fig. 2 | Kinematics of all animals. (a) Heatmaps showing the forelimb trajectories of each animal on every trial across all days. X-axes indicate time within trial and y-axes indicate trial number from first (top) to last (bottom). Each column corresponds to a single animal (first three: DLS, last three: MC). The rows illustrate the trajectories of the right forelimb parallel and perpendicular to the floor, followed by the left forelimb parallel and perpendicular to the floor. The second animal from the left corresponds to the example used in Figs. 3a, 5a and b. (b) Heatmaps showing the z-scored velocity of each animal on every trial across all days for the animals in a. The rows illustrate the velocity of the right forelimb parallel and perpendicular to the floor followed by the left forelimb parallel and perpendicular to the floor.
Extended Data Fig. 3 | Similarity as a function of time difference for all neurons. We computed the PETH correlation as a function of time difference for all neurons, taking the average across all pairs of days separated by the same time difference for each neuron. This figure shows the average similarity as a function of time difference for neurons recorded in DLS (left) or MC (right) during the lever-pressing task (a) and the wet-dog shake behavior (b). Upper panels indicate all neurons recorded for at least 3 days, lower panels indicate neurons which were recorded for at least 14 (a) or 10 (b) days and therefore included in Fig. 4c or 6c. Neurons were sorted by recording duration.
Extended Data Fig. 4 | Stability as a function of time difference for different recording durations. (a) We performed analyses as in Fig. 4c, plotting the neural similarity as a function of time difference for neurons recorded for at least N days, with N ranging from 5 to 17 (c.f. N = 14 in Fig. 4c). Error bars indicate standard error across units, and dashed lines indicate controls as in Fig. 4c. (b) As in a, now for the wet-dog shake behavior instead of the lever-pressing task (c.f. Fig. 6c).
Extended Data Fig. 5 | Latent stability and neural decoding. It has previously been reported that stable neural activity can be identified in a common latent space even when there is a turnover of recorded neurons43. As we show in Fig. 2e, this can be consistent with either stable or drifting single unit activity. While we have already shown a high degree of similarity for single neurons, here we investigate whether ‘aligning’ the neural activity between sessions can identify a common subspace with even higher similarity. These analyses require simultaneous recording of a large population of neurons, which in general was not the case in our dataset (c.f. Fig. 3c). Instead, we considered a single week of recording in a single animal with recordings from DLS (day 8-14 in Fig. 3c), where we simultaneously recorded 16 neurons firing at least 10 spikes during the task on each day. (a) We first computed the similarity as a function of time difference as the correlation between single neuron PETHs, averaged across neurons (black line). We then proceeded to align the neural activity on each pair of days using CCA and computed the similarity in the resulting aligned space as the average correlation across all dimensions. This CCA-aligned similarity was generally lower than the similarity averaged over individual neurons, suggesting that the neuron-aligned coordinate system is more stable than the CCA-aligned alternative (note that CCA performs a greedy alignment rather than finding the optimal alignment, which would provide an upper bound on the single neuron similarity). Shadings indicate standard error across all pairs of days with a given time difference. (b) We proceeded to consider population decoding of behavior from neural activity, using the same data as in a. We fitted a linear model to predict the trajectories of the left and right forelimbs from neural activity on each day using crossvalidated ridge regression, and we tested the models on data from all other days. Here, we plot the performance as a function of time difference, averaged across the vertical and horizontal dimensions and both forelimbs. Line and shading indicate mean and standard error across pairs of days with a given time difference. (c) We proceeded to compute stability indices for the data in b to see whether there was a significant negative trend. We bootstrapped the individual datapoints (before taking the mean) 10,000 times and estimated stability indices from each surrogate dataset. The distribution over the resulting stability indices was not significantly smaller than 0 (one-sided $p = 0.48$). (d) While the analysis in a suggests that the single neurons provide a good coordinate system for stable representations, it does not address the question of whether an aligned low-dimensional manifold can provide better decoding43. We therefore proceeded to train a population decoding model as in b, but where the decoder was trained on the top 10 PCs from a single day and tested on the top 10 PCs from every other day after alignment via CCA43 (blue dashed line). We found that decoding performance from this aligned latent space was almost identical to the decoding performance from raw neural activity (black line). This provides further evidence that the stable aligned dynamics identified in previous work are the result of stable single unit tuning curves. Shading indicates standard error across pairs of days with a given time difference. (e) Finally, we considered how the relationship between kinematics and neural activity changed over time at a single neuron level. We used the GLM discussed in Fig. 5e to predict neural activity from behavior. This GLM was trained on the first day of recording for each neuron and tested on each subsequent day. The figure shows the correlation between the predicted firing rate and true spike count as a function of time difference, averaged across all neurons which were recorded for at least a week and had a training correlation of at least 0.1. Blue indicates neurons recorded from DLS ($n = 58$ units), red from MC ($n = 61$ units), and shadings indicate standard errors across neurons. Dashed lines indicate the average correlation across neurons from hold-one-out crossvalidation on all trials from the first day of recording.
Extended Data Fig. 6 | Exponential model fits and stability indices. (a) Plots of PETH similarity against time difference for four example units (colors) together with exponential fits illustrating a range of different decay rates, same-day similarities, and durations of recording. Note that one of these example units (cyan) exhibits an apparent increase in stability over time due to the noisy nature of the data. Indeed, in a perfectly stable model (such as the stable RNN in Fig. 2e), neurons will be as likely to exhibit such an increase as they are to exhibit a decrease in similarity over time, leading to a median stability index of 0. Such noise is mitigated by increasing recording durations. (b) Distribution of the mean error of each model fit across the population of neurons recorded from MC (red) or DLS (blue). Vertical dashed lines indicate quartiles of the distributions. (c) Stability indices for all neurons recorded from DLS (left; blue) or MC (right; red) during the lever-pressing task. Solid lines indicate exponential fits as in Fig. 4e. As the time difference increases, the variance decreases (due to the increase in data), and the median stability index gradually increases (c.f. solid lines). (d) As in c, for the WDS behavior.
Extended Data Fig. 7 | Results are not dependent on time-warping. In this figure, we reproduce some of the key analyses of the paper after aligning trials by 'trimming' to a fixed duration rather than the time-warping used in the main text. (a) Neural similarity as a function of time difference for neurons recorded for at least 14 days in the lever-pressing task in either DLS (blue) or motor cortex (red). Note the similarity with Fig. 4c using time-warping. Lines and shading indicate mean and standard error across units. (b) Kinematic similarity in the lever-pressing task as a function of time difference across all animals. Solid line and shading indicate mean and standard error across animals after trimming. Dashed line indicates the mean after time-warping. Note that time-warping better aligns kinematics, which is the primary motivation for its use in the main text. (c) Correlation between neural similarity and kinematic similarity on consecutive days (c.f. Fig. 5d). (d-f) As in a-c, now for the wet-dog shake behavior.
Extended Data Fig. 8 | Exponential fits for different subsampled recording durations. Black lines indicate the mean across units of the neural similarity as a function of time difference for units recorded for at least 14 days during the lever-pressing task (c.f. Fig. 4c). We fitted exponential models to the mean data, considering only data up to and including increasing time differences (legend). As the subsampled ‘recording duration’ increases, so does the stability index learned in the exponential model for both neurons recorded in DLS (a) and MC (b). If the observed increase in stability with recording duration is due to latent processes with autocorrelations on the order of days, we would expect the neural similarity to decrease to some saturating baseline value, \(\gamma \). We therefore also fitted a model to the average similarity across neurons as a function of time difference, which assumes a decay to such a baseline (\(\rho = B e^{\alpha \delta t} + \gamma \); red dashed lines). This model yielded an asymptotic correlation of \(\gamma = 0.71 \) for DLS and \(\gamma = 0.58 \) for MC, suggesting a high degree of neural similarity at long timescales.
Extended Data Fig. 9 | Behavioral drift and inter-press intervals. (a) Correlations between mean velocity profiles plotted against time difference for all pairs of days in each animal. Top row: lever-pressing task; bottom row: wet dog shakes. Blue indicates animals with recordings from DLS, red from MC. (b) Distribution of correlations between time difference and behavioral similarity across all animals, generated by a bootstrap analysis of the data in a. All animals exhibit a significant negative correlation between behavioral similarity and time difference in both the lever-pressing task and wet dog shake behavior (p < 0.001; one-sided bootstrap test). (c) Inter-press interval (IPI) for each animal, convolved with a 200-trial Gaussian filter. Time is normalized from 0 to 1 for each animal (n = 9365 ± 6886 trials, mean ± std). Black horizontal line indicates 700 ms. (d) We computed the IPI autocorrelation as a function of trial number and normalized time by the average number of trials per day for each animal (colored lines). Black line and shading indicate mean and standard error across animals. Task performance is only correlated over short timescales of 0.5-1 days despite behavioral drift on timescales of weeks (c.f. panel a). This suggests that behavioral changes are predominantly along 'task-null' directions that do not affect performance.
Extended Data Fig. 10 | Task-modulation of neurons in the lever-pressing task and wet-dog shake behavior. (a) A PETH was computed across all trials for each neuron in 20 ms bins, and the time bin identified with the maximum deviation from the mean across all time bins. The corresponding z-score was computed, and the distribution of absolute values of these z-scores plotted across all DLS neurons for the lever-pressing task (black) and wet-dog shake behavior (blue). (b) As in a, now for neurons recorded from MC.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a	Confirmed
- | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- | The statistical test(s) used AND whether they are one- or two-sided
- | Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- | A description of all covariates tested
- | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- | For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- | Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection	Behavioral data was acquired using "A Fully Automated High-Throughput Training System for Rodents" (Poddar et al. 2013). Electrophysiological data was acquired using custom software (FAST) described by Dhawale et al. 2017.
Data analysis	All analyses and statistical tests were performed in Python 3 (Python Software Foundation). Recurrent network models were trained using TensorFlow version 2.7. For kinematic tracking, the DeeperCut implementation in TensorFlow (Insafutdinov et al. 2016) was used, together with custom code written in Matlab R2018 (Mathworks) and in Python 3. All analyses used custom code written in Python 3. The code used for this study is publicly available on github: https://github.com/KrisJensen/stability_paper_code.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data has been previously used by Dhawale et al (2021). See https://github.com/KrisJensen/stability_paper_code for instructions on how to download the subset of data used for this paper.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender
The study did not involve any human research participants.

Population characteristics
The study did not involve any human research participants.

Recruitment
The study did not involve any human research participants.

Ethics oversight
The study did not involve any human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
For the experimental data, three animals were used in each experimental group to ensure reproducibility and consistent results across animals following previous work (Dhawale et al. 2021). No statistical methods were used to predetermine sample sizes. All results in our recurrent network models were repeated across 10 independent networks to ensure consistency across random seeds.

Data exclusions
No data was excluded from the study.

Replication
Analyses were repeated either across animals (n = 3) or across units pooled from all animals within an experimental group as described in the main text and methods. Analyses of experimental data were consistent across animals within each experimental group. Model training was repeated across multiple random seeds with consistent results across seeds.

Randomization
Animals were randomly assigned to the individual experimental groups.

Blinding
The experimenters were not blinded to group allocation during data collection or subsequent analyses since the aim of the study was not to compare experimental groups. The same set of analyses was applied to each experimental group and no explicit comparisons between groups were performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

- Antibodies
- Eukaryotic cell lines
- Palaeontology and archaeology
- Animals and other organisms
- Clinical data
- Dual use research of concern

Methods

- ChIP-seq
- Flow cytometry
- MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in Research.

Category	Information
Laboratory animals	Experimental subjects were female Long Evans rats 3-10 months old at the start of training.
Wild animals	The study did not involve wild animals.
Reporting on sex	All experimental subjects were female.
Field-collected samples	The study did not contain samples collected from the field.
Ethics oversight	The care and experimental manipulation of all animals were reviewed and approved by the Harvard Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.