Thermal annealing effects on hydrothermally synthesized unsupported MoS$_2$ for enhanced deoxygenation of Propylguaiacol and Kraft lignin

You Wayne Cheaha, Muhammad Abdus Salama, Joby Sebastiana, Sreetama Ghosha, Olov Öhrmanb, Derek Creasera and Louise Olssona,*

aCompetence Centre for Catalysis and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden

bPreem AB Sweden

*$louise.olsson@chalmers.se

Element	Impurity (mg/kg)	Manganese (mg/kg)
Aluminium, Al	18	Mn
Antimony, Sb	0.06	Mo
Arsenic, As	0.08	Na
Barium, Ba	0.04	Nd
Beryllium, Be	0.013	Nb
Lead, Pb	0.04	Ni
Boron, B	22	Os
Bromine, Br	1.2	Au
Cerium, Ce	0.012	Pt
Gadolinium, Gd	0.016	Pr
Dysprosium, Dy	<0.005	Re
Erbium, Er	<0.005	Rh
Europium, Eu	<0.005	Ru
Phosphorus, P	12	Sm
Gadolinium, Gd	<0.005	Eu
Gallium, Ga	0.03	Se
Germanium, Ge	0.03	Ag
Gold, Au	<0.005	Sc
Hafnium, Hf	<0.005	Sr
Holmium, Ho	<0.005	S
Iridium, Ir	<0.005	Ta
Iodine, I	0.5	Te
Iron, Fe	0.17	Sn
Cadmium, Cd	200	Tb
Calcium, Ca	1100	Ti
Silicon, Si	6000	Th
Cobalt, Co	0.08	Th
Copper, Cu	0.9	U
Chromium, Cr	0.3	V
Mercury, Hg	<0.005	Bi
Lanthanum, La	0.007	W
Lithium, Li	0.07	Y
Lutetium, Lu	<0.005	Zr
Magnesium, Mg	21	Zn

Figure S1 ICP analysis of impurities in kraft lignin.
Table S1 Elemental analysis for kraft lignin.

Elemental analysis (%)	Wt%
C	62.1
H	5.85
N	0.35
S	2.18
O	29.5*

*by difference and neglecting other impurities

Figure S2 Nitrogen adsorption-desorption isotherms for studied catalysts.
Figure S3 Additional HRTEM images of a-c) MoS$_2$-12, d-f) MoS$_2$-12a, g-i) MoS$_2$-24, and j-l) MoS$_2$-24a.
Figure S4a) Distribution of the number of stacks and b) MoS\(_2\) slab length for different unsupported MoS\(_2\).

Figure S5 Comparison of PG conversion and product selectivity for HDO of PG over MoS\(_2\)-24 following an annealing treatment under different atmosphere (air or N\(_2\)) at 400 °C for 2 h. Reaction conditions: 50 bar total H\(_2\) pressure, 300 °C, and 1000 rpm.
Figure S6 Reaction product distribution for HDO of PG over a) Bulk MoS\textsubscript{2} b) 13.2 wt\% MoS\textsubscript{2} supported on alumina at 50 bar total H\textsubscript{2} pressure, 300 °C and 1000 rpm.

Figure S7 GC spectrum of the lignin fraction obtained from the hydrotreatment of kraft lignin over commercial MoS\textsubscript{2} (blue line) and MoS\textsubscript{2}-12a (black line). Reaction conditions: 3:1 lignin to catalyst ratio, 340 °C, 40 bar initial H\textsubscript{2} pressure, and 1000 rpm. The major compounds were labeled in the spectrum as (1) Methylcyclopentane, (2) Cyclohexane, (3) Methylcyclohexane, (4) Ethylcyclopentane, (5) Toluene, (6) Ethylcyclohexane, (7) 1,3-dimethylbenzene, (8) Propylcyclohexane, (9) Propylbenzene, (10) Guaiacol, (11) Creosol, (12) 4-ethyl-2-methoxyphenol and (13) Propylguaiacol.

Table S2 Products identified from GC-MS spectra and product yields for hydrotreatment of Kraft lignin over bulk MoS\textsubscript{2} and MoS\textsubscript{2}-12a. Reaction conditions: 3:1 lignin to catalyst mass ratio, 340 °C, 40 bar initial H\textsubscript{2} pressure, and 1000 rpm.

Retention time (min)	Compound identified	Compound chemical formula	FID peak area (Bulk MoS\textsubscript{2})	Bulk MoS\textsubscript{2} Product yield (area %)	FID peak area (MoS\textsubscript{2}-12a)	MoS\textsubscript{2}-12a Product yield (area %)	
7.135	Methylcyclopentane	C\textsubscript{6}H\textsubscript{12}	-	-	2.10 \times 106	2.53	
8.089	Cyclohexane	C\textsubscript{6}H\textsubscript{10}	6.19 \times 105	1.9	1.56 \times 107	18.83	
	Common Name	Molecular Formula	N	K			
-----	---------------------------------	-------------------	---	--------	---	-----	
16.034	n-butylbenzene	C_{10}H_{14}	-	-		5.67 × 10^5	0.68
16.136	Cyclopropylbenzene	C_{6}H_{10}	-	-		1.08 × 10^5	1.31
16.321	1-methyl-3-propylbenzene	C_{10}H_{14}	-	-		9.61 × 10^5	1.16
16.441	n-butylbenzene	C_{10}H_{14}	-	-		3.89 × 10^5	0.47
16.588	3-methylphenol	C_{7}H_{5}O	2.04 × 10^6	6.25	-	-	
16.944	Guaiacol	C_{8}H_{10}O_{2}	5.13 × 10^6	15.71	-	-	
17.134	(2-Methylbutyl)cyclohexane	C_{11}H_{22}	-	-		3.31 × 10^5	0.40
17.832	Pentylcyclohexane	C_{11}H_{22}	-	-		5.45 × 10^4	0.66
17.888	2,4-dimethylphenol	C_{8}H_{10}O	2.89 × 10^5	0.88	-	-	
17.919	(3-methyl-2-butenyl)-benzene	C_{11}H_{14}	-	-		3.36 × 10^4	0.41
18.151	3-ethylphenol	C₈H₁₀O	1.43 \times 10^6	4.37	-	-	
18.152	2,5-Dimethylphenyl methyl carbinol	C₁₀H₁₄O	-	-	1.03 \times 10^6	1.24	
18.395	1,2,3,4-tetrahydro-Naphthalene	C₁₀H₁₂	-	-	8.78 \times 10^5	1.06	
18.658	Creosol	C₉H₁₀O₂	7.09 \times 10^6	21.71	-	-	
19.247	3,4-dimethoxyltoluene	C₉H₁₂O₂	4.63 \times 10^5	1.42	-	-	
19.249	1,2,3,4-tetrahydro-2-methyl-Naphthalene	C₁₁H₁₄	-	-	5.24 \times 10^5	0.63	
19.563	3-propylphenol	C₉H₁₂O	1.21 \times 10^6	3.69	-	-	
19.927	4-ethyl-2-methoxyphenol	C₉H₁₂O₂	4.73 \times 10^6	14.50	-	-	
20.460	4-ethyl-1,2-dimethoxybenzene	C₁₀H₁₄O₂	3.93 \times 10^5	1.20	-	-	
20.634	2,5-diol-p-cymene	C₁₀H₁₄O₂	2.71 \times 10^5	0.83	-	-	
20.884	4-(2-propenyl)-phenol	C₉H₁₀O	6.56 \times 10^5	2.01	-	-	
21.171	2-methoxy-4-propylphenol	C₁₀H₁₄O₂	2.76 \times 10^6	8.28	-	-	
21.502	4-(1-methylethyl)-benzaldehyde	C₁₀H₁₂O	1.27 \times 10^6	3.89	-	-	