Wound Healing Property Review of Siam Weed, *Chromolaena odorata*

Anushika Sirinthipaporn, Wannee Jiraungkoorskul

Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom, 1Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand

ABSTRACT

Chromolaena odorata (Family: Asteraceae) synonyms as *Eupatorium odoratum* is a traditional medicinal plant that is widely used for its wound healing property. In particular, the several parts of this herb have been used to treat wounds, burns, and skin infections. Furthermore, it has also been shown to possess anticancer, anti-diabetic, anti-hepatoxic, anti-inflammatory, antimicrobial, and antioxidant properties. Its phytochemical components are alkaloids, flavonoids, flavanone, essential oils, phenolics, saponins, tannins, and terpenoids. The other important constituents of this plant are Eupolin, chromomoric acid, quercetagetin, and quercetin, all of which contribute to its remedial properties. Published information on the wound healing property of *C. odorata* was gathered by the use of different scientific websites such as Google Scholar, Science Direct, PubMed, and Web of Knowledge to provide an up-to-date review showing its importance.

Key words: Antioxidant, *Chromolaena odorata*, healing property, plant, traditional medicine, wound

WOUND HEALING PLANTS

The ancient history of wound healing treatments in several countries was reported; for example, Tirunelveli Hills in Southern India;[2] Northern Himalaya Range, Abbottabad district, Pakistan;[3] several districts in Bangladesh;[4] Kpando area of Volta Region in Ghana;[5] and Kuruma tribes, Wayanad districts of Kerala, India.[6] The natural or biological products are studied for wound and burn healing agents in many countries such as India, China, and Thailand.[6] Because of poor hygienic status, wound infection is still one of the most common diseases in developing countries.[7] Some examples of wound healing plants include korpfad, *Aloe vera*,[6] Madeira vines, *Anredera diffusa*,[6] jungle geranium, *Ixora coccinea*,[6] Indian mulberry, *Morinda pubescens*.[8] simple-leaf chaste tree, *Vitex trifolia*; and peacock chaste tree, *Vitex altisima*.[8] The present review provided an up-to-date information about the properties of *Chromolaena odorata*, one of the wound healing plants that is being investigated for its diverse health benefits.

PLANT DESCRIPTION OF CHROMOLAENA ODORATA

C. odorata or Siam weed has a minimum 10-year life span. *C. odorata* is a scrambling perennial shrub which grows 2–3 m in height with straight, pithy, brittle stems that branch readily. The arrowhead-shaped leaves are 6–12 cm in length and 3–7 cm in width, with three veins in a pitchfork appearance. The leaves grow in opposite pairs along the stems and branches. There are 15–25 tubular florets per head, each 10 mm long and several colors such as white, purple, pink, or blue. The color of seeds is brown-gray to black and is 4–5 mm long with a pale brown pappus that is 5 or 6 mm long. The roots are narrow and fibrous and generally reach 0.3 km in depth.[13–15] *C. odorata* shows morphological in terms of flower color, leaf shape, odor of the crushed leaves, and plant architecture variable in its native environment.[14]

TAXONOMICAL CLASSIFICATION

The taxonomy of *C. odorata* is in the Kingdom: Plantae; Subkingdom: Viridiplantae; Infrakingdom: Streptophyta; Superdivision: Embryophyta; Division: Tracheophyta; Subdivision: Spermatophyta; Class: Magnoliopsida; Superorder: Asteranae; Order: Asterales; Family: Asteraceae; Genus: Chromolaena; Species: *C. odorata*.[17] The plant genus *Chromolaena* is a genus of the family *Asteraceae* which comprises over 165 species that are distributed across tropical and subtropical regions. The name is derived from the Greek word meaning “color.” Due to its species name “odorata,” the leaves exhibit a strong odor when they are crushed.

NOMENCLATURE

C. odorata aka *Eupatorium odoratum* is a weedy herb native of Central and South America, which has spread throughout the tropical and subtropical areas.[18,19] It was first introduced to Southeast Asia in the 1920s and Africa in around 1940 as a plantation cover crop and has ever since spread worldwide.[20,21] The vernacular names of *C. odorata* are
include sunflower family, Christmas bush, Jack in the bush, communist weed, Siam weed, devil weed (English); sekou toure, acheampong, jabinde, matapa, mighbe (African); herbe du Laos (French); Siam kraut (German); kesengesil (Guam); bagh dhoka, tvira gandha (Hindi); rumput belang, rumput putih, rumput golkar (Indonesian); pokok kapal terbang, rumput japun, rumput Siam (Malayalam); ropani, seekharasari (Sanskrit); cariaquillo Santa Maria (Spanish); agnoi, hagonoy, huluhuongai (Tagalog); sab suea (Thai); and co hoi (Vietnamese).

PHYTOCHEMICAL SUBSTANCES

The dried leaf of *C. odorata* contained ash (11%), crude fat (11%), fiber (15%), moisture (15%), crude protein (18%), and carbohydrate (31%).[23] Its active phytochemical substances are as follows: (1) flavonoid aglycones (flavanones, flavonols, flavones) including acacetin, chalcones, eupatilin, luteolin, naringenin, kaempferol, quercetin, quercetagetin, and sinensetin,[24–31] (2) terpenes and terpenoids,[32] (3) essential oils,[33–38] (4) alkaloids including pyrrolizidine,[39–41] (5) saponins and tannins,[42] (6) phenolic acids including ferulic acid, protocatechuic acid,[42] (7) phytoprostane compound including chromomoric acid.[43]

TRADITIONAL USES

From review literature regarding the traditional uses, phytochemical properties of *C. odorata* are anti-bacterial,[27,44–47] anticonvulsant,[48] anti-diabetic,[49] anti-diarrheal,[51,52] anti-fungal,[45,56] anti-inflammatory,[45,58] antioxidant,[60–63] and antiparasitic[30,40] hemostatic and wound healing,[13,22,23,46–49] and hepatoprotective activities.[70,71]

WOUND HEALING PROPERTY

The efficiency of healing wounds come from the antioxidant property of the drug or plant which enhances conserving the fibroblast and keratinocyte proliferation on those wounds.[22] *C. odorata* is popularly used for traditional wound healing in Vietnam; moreover, the leave aqueous extract has been used for the treatment of soft-tissue burns or skin infections.[42,46,72,73]

IN VITRO STUDY

Phan et al.[72] reported that Eupolin extract increased the proliferation of fibroblasts, endothelial cells, and keratinocytes in wound assay. Stimulation of keratinocyte migration, upregulation of production by keratinocytes of extracellular matrix proteins and basement membrane components, and protection of collagen lattice contraction by fibroblasts were reported. Moreover, Phan et al.[74] also reported that Eupolin extract enhanced the expression of many adhesion complexes, for example, laminin-5, laminin-1, collagen IV, and fibronectin by human keratinocytes. Pandith et al.[69] reported that *C. odorata* stimulated hemostatic process and wound healing activity by inducing the expression of genes, including heme oxygenase-1, thromboxane synthase, and anti-platelet aggregator matrix metalloproteinase 9 (MM9). This plant can promote fibroblast cell migration and proliferation. Moreover, they found that heme oxygenase-1, the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by *C. odorata* treatment. Thromboxane synthase, a vasoconstrictor, was increased and MMP-9, an anti-platelet aggregator, was decreased when treated with *C. odorata*.

IN VIVO STUDY

According to the study of Mahmood et al.[47] adult male Sprague-Dawley rats with wounds in the posterior neck were divided into four groups for the twice daily application of normal saline, pure unboiled honey, 90% honey in combined with 10% *C. odorata* aqueous leave extract, and solcoseryl jelly. They reported the advantage of honey combined with this extract for the stimulation of wound healing process, decrease scar formation and period of epithelialization, and the rates of wounds sterility. Pandurangan et al.[25] investigated the wound healing activity of 2.5%, 7.5%, and 10% w/w of leaves of *C. odorata* extract ointments for 14 days in rats. Their results revealed that varying concentrations of this herb extract in the ointment base was capable of producing significant cutaneous wound dressing activity by inducing wound contraction and wound closure time.

BLEEDING TIME STUDY

Anyasar et al.[23] reported the aqueous extract of *C. odorata* (coagulation: 15.18 ± 0.023 min; clotting time 0.26 ± 0.014 min) showed significantly higher hemostatic activity than the ethanolic extract (21 min in coagulation time and clotting 2 min in clotting time). Akomas and Lijoma[75] studied the effect of the oral administration of *C. odorata* in rats for 14 days. This herb significantly lowered bleeding times from 4.5 min in control group to 3.0 and 2.7 min, in low and high doses, respectively. The extract also lowered clotting time from 2.6 min in control group to 1.8 and 1.5 min, respectively. The bleeding and clotting times decreased in animals treated with *C. odorata* extract, suggesting that it remains the good hemostatic property and reduces the bleeding and clotting times by inducing the formation and activation platelets.[75] The results obtained therefore indicates that *C. odorata* promotes wound healing, by stopping of bleeding which may be the first step in the wound healing mechanism.[73]

CONCLUSION

C. odorata exhibits its wound healing property using multiple mechanisms. From the literature reviews, these mechanisms can be summarized as follows: (1) *C. odorata* extract contains many antioxidant compounds that enhance wound healing property[24] (2) *C. odorata* reduces the bleeding and clotting time may be the first line of action in the physiology of wound healing.[23] (3) *C. odorata* can protect the cells from destruction by inhibiting the inflammatory mediators.[73] (4) *C. odorata* has the antibacterial activities against both Gram-positive and Gram-negative bacteria, suggesting that it may reduce the wound infections.[45] This review article has attempted to compile the new medicinal plant *C. odorata*, to be one of choices in the wound healing treatment.

Acknowledgement

A special thanks to the members of the Fish Research Unit, Department of Pathobiology, Faculty of Science, Mahidol University, for their support. We would like to thank anonymous reviewers and editors of this review article for their perceptive comments and positive criticism in this review article.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Ayyanar M, Ignacimuthu S. Herbal medicines for wound healing among tribal people in Southern India: Ethnobotanical and scientific evidences. Int J Appl Res Nat Prod 2009;2:29-42.
2. Abbas AM, Khan MA, Ahmad M, Qureshi R, Arshed M, Jahan S, et al. Ethnobotanical study of wound healing herbs among the tribal communities in Northern Himalaya Ranges district Abbottabad, Pakistan. Pak J Bot 2010;42:3747-53.

3. Rani CA, Mohammed R. Ethnobotanical study of wound healing plants among the folk medicinal practitioners of several districts in Bangladesh. Am J Sustain Agric 2012:41:371-7.

4. Barku YV, Boahen YO, Dali GA. Ethnobotanical study of wound healing plants in Kpando traditional area, Ghana. Int J Phytomed 2014:6:56-72.

5. Thomas B, Arumugam R, Veerasamy A, Ramamoorthy S. Ehnomedical plants used for the treatment of cuts and wounds by Kuruma tribes, Wayanadu districts of Kerala, India. Asian Pac J Trop Biomed 2014;4:Suppl 1:S489-91.

6. Kunwar B, Vijayakumar M, Govindarajan R, Pushpagandan P. Ethnopharmacological approaches to wound healing – Exploring medicinal plants of India. J Ethnopharmacol 2007;10:114-103.

7. Hussein J, Mavalankar DN, Sharma S, D’Soumburoo L. A review of health system infection control measures in developing countries: What can be learned to reduce maternal mortality. Global Health 2011;7:14.

8. Maenthaisong R, Chaikarunapruk N, Niniutraporn S, Kongkaew C. The efficacy of Aloe vera used for bum wound healing: A systematic review. Burns 2007;33:713-60.

9. Moure-lets G, Villeges LF, Marcquita A, Varsberg AJ, Hammond GB. In vivo wound-healing activity of dialanolic acid from the acid hydrolysis of Aridunia diffusa. J Nat Prod 2006;69:978-89.

10. Upadhyay A, Chattopadhyay P, Goyal D, Mira Mazumder P, Veer V. Jussia coccinea enhances cutaneous wound healing by upregulating the expression of collagen and basic fibroblast growth factor. JISO Pharmacol 2014;2014:761524.

11. Mathivanan N, Surendiran G, Sinivasan K, Malaviyahi K. Morinda pubescens JE Smith (Morinda tinctoria Roxb) fruit extract accelerates wound healing in rats. J Med Food 2008;9:591-6.

12. Manjunatha BK, Vidya SM, Krishna V, Mankani KL, Singh SD, Mohanara VN. Comparative evaluation of wound healing potency of Vitex infolia L. and Vitex attissima L. Phytother Res 2007;21:457-61.

13. Henderson L. Alien Weeds and Invasive Plants. Vol. XII. Pretoria: ARC-PPRI; 2001.

14. F LSU, Rouw A. The invasion of Chromolaena odorata (L.) R.M. King & H. Rob. From Western Ghats region of North West Karnataka, India. J Essent Oil Bearing Plants 2011;20:1360-6.

15. Ovelabi MS, Ogundaju A, Yusuf KO, Lajide L, Villanueva HE, Tuten JA, et al. Chemical composition and bioactivity of the essential oil of Chromolaena odorata from Nigeria. J Nat Prod 2010;73:472-8.

16. Joshi RK. Chemical composition of the essential oils of aerial parts and flowers of Chromolaena odorata (L.) R.M. King & H. Rob. From Western Ghats region of North West Karnataka, India. J Ethnopharmacol 2014;9:825-35.

17. Joshi RK. Chemical composition of the essential oil of Chromolaena odorata (L.) R.M. King & H. Rob. roots from India. J Chem 2013;1:4.

18. Biller A, Bopp M, Witte L, Hartmann T. Pyrolizidine alkaloids in Chromolaena odorata. chemical and biochemical aspects. Phytochemistry 1994;35:615-9.

19. Thoden TC, Bopp M, Hallmann J. Pyrolizidine alkaloids of Chromolaena odorata act as nematocidal agents and reduce infection of lettuce roots by Meloidogyne incognita. Nematology 2007;9:343-9.

20. Yakubu MT. Effect of a 60 day oral gavage of a crude alkaloid extract from Chromolaena odorata leaves on hormonal and spermatogenic indices of male rats. J Androl 2012;3:1199-207.

21. Phan TT, Wang L, See P, Grayer RJ, Chan SY, Lee ST. Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: Implication for cutaneous wound healing. Biol Pharm Bull 2001;24:1373-9.

22. Heiss EH, Tran TV, Zimmermann K, Schwager S, Vouk C, Mayerhofer B, et al. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. J Nat Prod 2014;77:503-8.

23. Irobi ON. Activities of Chromolaena odorata (Compositae) leaf extract against Pseudomonas aeruginosa and Staphylococcus faecalis. J Ethnopharmacol 1999;32:81-3.

24. Johari SA, Kiang LS, Mohtar M, Isa MM, Man S, Mustafa S, et al. Efflux inhibitory activity of flavonoids from Chromolaena odorata against selected methicillin-resistant Staphylococcus aureus (MRSA) isolates. Afr J Microbiol Res 2012;6:5631-5.

25. Kigipa LT, Zige DV. Activity of Chromolaena odorata on enteric and superficial etiologic bacterial agents. Am J Rem Comm 2013;1:6-76.

26. Stanley MC, Ifeanyi OE, Nwaikwe CC, Esther IO. Antimicrobial effects of Chromolaena odorata on some human pathogens. Int J Curr Microbiol Appl Sci 2014;3:1006-12.

27. Adedapo AA, Ogbede AA, Fagbush OA, Omobowale TO, Yakubu MA. Evaluation of the anticancer properties of the methanol extract of Chromolaena odorata on HT29 lung cancer cell line. The FASEB Journal 2016;30:Supplement1193.6.

28. Amazu LU, Omorogede P, Ajueogho AO, Iheziukwu CC, Azikwe CC. Antiulcerogenic potential of the leaf extract of Chromolaena odorata in rats. J Ethnopharmacol 2013;145:863-7.

29. Ilomje SN, Okafor AI, Nnukworo PI, Akamia AA, Akoras SC. Hypoglycemic, hematologic and lipid profile effects of Chromolaena odorata ethanol leaf extract in alloxan induced diabetic rats. Ann Biol Sci 2014;2:27-32.

30. Uhegbu FO, Imo C, Onwegbuchukem CH. Lipid lowering, hypoglycemic and antioxidant
activities of Chromolaena odorata (L) and Ageratum conyzoides (L) ethanolic leaf extracts in albino rats. J Med Plants Stud 2016;4:155-9.

53. Atindehou M, Lagnika L, Guérolt B, Strub JM, Zhao M, Dorsselaeer Alv, et al. Isolation and identification of two anti-bacterial agents from Chromolaena odorata L. active against four diarrheal strains. Adv Microbiol 2013;3:115-21.

54. Aba PE, Joshua PE, Ezeonugu FC, Ezeja MI, Omoja VU, Umekuahua PU. Possible anti-diarrheal potential of ethanol leaf extract of Chromolaena odorata in castor oil-induced rats. J Complement Integr Med 2015;12:301-6.

55. Ngono NA, Ebele Etame R, Nifor F, Biyi L, Amvam ZP, Bouchet P. Antifungal activity of Chromolaena odorata (L.) King and Robinson (Asteraceae) of Cameroon. Chemotherapy 2006;52:103-6.

56. Naidoo KK, Cooposamy RM, Naidoo G. Screening of Chromolaena odorata (L.) King and Robinson for anti-bacterial and anti-fungal properties. J Med Plant Res 2011;5:4859-62.

57. Owoyele VB, Adediji JO, Soladoye AO. Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata. Inflammopharmacology 2005;13:479-84.

58. Hanh TT, Hang DT, Minh CV, Dat NT. Anti-inflammatory effects of fatty acids isolated from Chromolaena odorata. Asian Pac J Trop Med 2011;4:760-3.

59. Pandith H, Zhang X, Thonggraditchote S, Wongkrayang Y, Gritsanapan W, Baek SJ. Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway. J Ethnopharmacol 2013;147:434-41.

60. Phan TT, Sae P, Lee ST, Chan SY. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage. Burns 2001;27:319-27.

61. Akinmoladun AC, Ibukun EO, Dan‑Ologe IA. Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata. Sci Res Essays 2007;2:191-4.

62. Melinda KP, Rathnam X, Marimuthu K, Diwakar A, Ramanathan S, Kathiresan S, et al. A comparative study on the antioxidant activity of methanolic leaf extracts of Ficus religiosa L., Chromolaena odorata (L.) King & Robinson, Cynodon dactylon (L.i Pers. and Tridax procumbens L.. Asian Pac J Trop Med 2010;3:348-50.

63. Rao KS, Chaudhury PK, Pradhan A. Evaluation of anti-oxidant activities and total phenolic content of Chromolaena odorata. Food Chem Toxicol 2010;48:729-32.

64. Vijayraghavan K, Mohamed Ai S, Maruthi R. Studies on phytochemical screening and antioxidant activity of Chromolaena odorata and Annona squamosa. Int J Innov Res Sci Eng Technol 2013;2:7315-21.

65. Boudjeko T, Magnekou R, Woguia AL, Kegne FM, Ngomyogoli JE, Tchapoum CD, et al. Antioxidant and immunomodulatory properties of polysaccharides from Alantllobaivia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves. BMC Res Notes 2015;8:759.

66. Akah PA. Mechanism of hemostatic activity of Eupatorium odoratum. Int J Crud Drug Res 1990;28:253-6.

67. Mahmood AA, Indran M, Salmah I, Sidix K, Suzainur KA. Evaluation of in vivo wound healing activity of Chromolaena odorata leaf extract on excision wounds model in rats. J Food Technol 2005;3:126-9.

68. Pandith H, Thonggraditchote S, Wongkrayang Y, Gritsanapan W. In vivo and in vitro hemostatic activity of Chromolaena odorata leaf extract. Pharm Biol 2012;50:1073-7.

69. Pandith H, Zhang X, Liggett J, Min KW, Gritsanapan W, Baek SJ. Hemostatic and wound healing properties of Chromolaena odorata leaf extract. ISRN Dermatol 2013;2013:168269, 8 pages.

70. Ali CS, Onyeze GO, Ojako OA, Osuagwu CG. Evaluation of the protective potential of Chromolaena odorata Linn. extract on carbon tetrachloride-induced oxidative liver damage. Int J Biochem Res Rev 2011;1:69-81.

71. Asormugha RN, Okafor PN, Ihej II, Orisakwe OE, Asormugha AL. Hepatic effects of aqueous extract of Chromolaena odorata in male Wistar albino rats. Pharmacoil Online 2014;1:127-36.

72. Phan TT, Hughes MA, Cherry GV. Enhanced proliferation of fibroblasts and endothelial cells treated with an extract of the leaves of Chromolaena odorata (Eupolin), an herbal remedy for treating wounds. Plast Reconstr Surg 1998;101:761-65.

73. Thang PT, Patrick S, Tehil LS, Yong CS. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage. Burns 2001;27:319-27.

74. Phan TT, Allen J, Hughes MA, Cherry G, WajnarewskiF. Upregulation of adhesion complex proteins and fibronectin by human keratinocytes treated with an aqueous extract from the leaves of Chromolaena odorata (Eupolin). Eur J Dermatol 2000;10:522-7.

75. Alkorn SC, Lijoma SN. Bleeding and clotting time effect of ethanolic extracts of Chromolaena odorata versus Ocimum gratissimum treated albino rats. Compr J Med Sci 2014;2:9-13.