Advanced HIV Infection in Treatment Naïve Individuals: Effectiveness and Persistence of Recommended Three-Drug Regimens

Karam MOUNZER, MD; Philadelphia FIGHT, Philadelphia, PA, USA
Laurence BRUNET, PhD; Epividian, Durham, NC, USA
Jennifer S FUSCO, BSc; Epividian, Durham, NC, USA
Ian R MCNICHOLL, PharmD; Gilead Sciences, Inc., Foster City, CA, USA
Helena DIAZ CUERVO, PhD; No current affiliation, Spain
Michael SENSION, MD; CAN Community Health, Ft. Lauderdale, FL, USA
Lewis MCCURDY, MD; Atrium Health, Charlotte, NC, USA
Gregory P FUSCO, MD, MPH; Epividian, Durham, NC, USA

Corresponding author
Laurence Brunet
4819 Emperor Blvd, Suite 400
Durham, NC 27703, USA
laurence.brunet@epividian.com

Alternate corresponding author
Jennifer Fusco
4819 Emperor Blvd, Suite 400
Durham, NC 27703, USA
jennifer.fusco@epividian.com

© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Summary

Among ART-naive people with advanced HIV infection (CD4 <200 cells/μL at start) initiating bictegravir-, dolutegravir-, elvitegravir- or boosted darunavir-based therapy, regimen discontinuation was less likely with bictegravir-based regimens and viral suppression was less likely with boosted darunavir-based regimens.
Abstract

Background: Approximately 20% of newly diagnosed people with HIV (PWH) in the U.S. have advanced HIV infection, yet literature on current antiretroviral therapy (ART) options is limited. Discontinuation/modification and effectiveness of common regimens were compared among ART-naïve people with advanced HIV infection (CD4 cell count <200 cells/μL).

Methods: ART-naïve adults with advanced HIV infection initiating bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) or a boosted darunavir (bDRV)-, dolutegravir (DTG)- or elvitegravir/cobicistat (EVG/c)-based three-drug regimen between 1JAN2018 and 31JUL2019 in the OPERA cohort were included. The association between regimen and discontinuation or viral suppression (<50 or <200 copies/mL) was assessed using Cox proportional hazards models with inverse probability of treatment weights.

Results: Overall, 961 PWH were included (416 B/F/TAF, 106 bDRV, 271 DTG, 168 EVG/c); 70% achieved a CD4 cell count ≥200 cells/μL over a 16 months median follow-up. All regimens were associated with a statistically higher likelihood of discontinuation than B/F/TAF (bDRV aHR: 2.65 [95% CI: 1.75, 4.02], DTG: 2.42 [1.75, 3.35], EVG/c: 3.52 [95% CI: 2.44, 5.07]). Compared to B/F/TAF, bDRV initiators were statistically less likely to suppress to <50 copies/mL (0.72 [0.52, 0.99]) and <200 copies/mL (0.55 [0.43, 0.70]); no statistically significant difference was detected with DTG or EVG/c.

Conclusions: Among people with advanced HIV infection, those initiating B/F/TAF were less likely to discontinue/modify their regimen than those on any other regimen, and more likely to achieve viral suppression compared to those on bDRV but not compared to those on other integrase inhibitors.

Key words

Advanced HIV; Antiretroviral Therapy; Cohort; Discontinuation; Effectiveness; Late Presenters
Introduction

Advancements in antiretroviral therapy (ART) over the past three decades\(^1\) have changed HIV infection from a fatal illness to a manageable chronic disease.\(^2\) Despite the advent of effective ART, advanced HIV infection in treatment naïve people remains a concern. In a consensus definition developed by the European Late Presenter Consensus working group, advanced HIV infection is defined as presenting with a CD4 cell count <200 cells/μL or with an AIDS-defining event (ADE).\(^3\) Advanced HIV infection has been associated with an increased risk of clinical progression,\(^4\) morbidity,\(^5,6\) mortality\(^5-7\) and HIV transmission,\(^6\) as well as poor long-term retention in care\(^7,8\) and higher healthcare costs.\(^9-11\)

Advanced HIV infection remains a common scenario, even in high income countries. An analysis of CD4 cell counts at ART initiation across 54 countries from 2002 to 2015 by the International epidemiology Databases to Evaluate AIDS (IeDEA) and the Collaboration of Observational HIV Epidemiological Research in Europe (COHERE) showed that the prevalence of ART initiation with a CD4 cell count <200 cells/μL has plateaued around 29% in high income countries.\(^12\) In the U.S., 21% of newly diagnosed individuals in 2015 had Stage 3 HIV disease, defined as having either an opportunistic infection, a CD4 cell count <200 cells/μL, and/or a CD4 % <14%.\(^13\)

Current guidelines support the immediate initiation of therapy for people with HIV (PWH), irrespective of their disease stage,\(^14\) despite risks of immune reconstitution inflammatory syndrome (IRIS), an exaggerated inflammatory reaction that can occur when the immune system begins to recover after ART initiation, causing the flare-up of a previously undiagnosed infection or the worsening of a previously treated infection.\(^15\) The same treatment options are recommended for initial therapy whether someone has early or advanced HIV infection. However the use of rilpivirine and of the combination of darunavir/ritonavir (DRV/r) + raltegravir (RAL) are discouraged among
those with low pretreatment CD4 cell counts, due to their association with higher risks of virologic failure.

Data on the efficacy of common regimens to treat advanced HIV is limited. In most trials, <20% of participants had CD4 cell counts <200 cells/μL, and they had not been powered to detect differences in this subpopulation. Only one trial was restricted to participants with CD4 cell counts <200 cells/μL (DRV/r vs. RAL, in combination with abacavir/lamivudine [ABC/3TC]), and in two, at least a third of participants had CD4 cell counts <200 cells/μL (dolutegravir [DTG] vs. efavirenz, in combination with tenofovir disoproxil fumarate (TDF) + 3TC; DRV/r vs. lopinavir/r, in combinations with emtricitabine (FTC)/TDF). Moreover, recent observational studies conducted in Europe have been focused on class associations rather than specific regimens. This study aimed to compare regimen discontinuation, virologic effectiveness and immunologic response with common first-line three-drug regimens (3DR) in ART-naïve PWH initiating ART with CD4 cell counts <200 cells/μL in a real world setting in the U.S.

Methods

Study population

The study population for this observational clinical cohort analysis was derived from the Observational Pharmaco-Epidemiology Research and Analysis (OPERA) cohort. The OPERA cohort is a database of prospectively collected electronic health record (EHR) data from 84 clinics across 18 U.S. states/territories. At the time of this study, it included more than 118,000 PWH. PWH included in this study were ART-naïve, at least 18 years of age and had advanced HIV infection, defined as a CD4 cell count <200 cells/μL at the time of ART initiation between January 1, 2018 and July 31, 2019. Of those, only PWH initiating a 3DR consisting of either bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF), boosted DRV (bDRV) + 2 nucleoside reverse transcriptase inhibitors (NRTI), DTG + 2 NRTIs, or elvitegravir/cobicistat (EVG/c) + 2 NRTIs with an estimated glomerular filtration rate (eGFR)
$\geq 30 \text{ mL/min}/1.73\text{m}^2$ were included. PWH were considered ART-naïve if their last viral load prior to ART initiation was $\geq 1000 \text{ copies/mL}$ and if there was no evidence in the EHR of a prior ART exposure.

Baseline was defined as the date of ART initiation, and follow-up ended at any change in the third agent (i.e., stop, add or substitute third agent), 12 months after last clinical contact (i.e., telephone contact, visit, lab test, or consultation), death or study end (i.e., July 31, 2020), whichever censoring event came first. Analyses of virologic or immunologic outcomes were further restricted to PWH with at least one follow-up viral load or CD4 cell count.

Measurements

Regimen discontinuation was defined as either a modification of the third agent (i.e., stop, add or substitute third agent), or a gap of over 45 days without any ART prescriptions. Reasons for regimen discontinuation were derived from the provider’s notes in the EHR, supplemented with a review of laboratory results, diagnoses and following regimen prescribed. More specifically, unfavorable events were defined as those noted in the chart, as a diagnosis of a new mental health, liver, renal or bone comorbidity within 21 days prior to discontinuation of the regimen, or a lab abnormality. Lab abnormalities consisted of alanine transaminase, aspartate transaminase, alkaline phosphatase or bilirubin $> 3\times \text{ULN}$, or an eGFR $<45 \text{ mL/min}/1.73\text{m}^2$ at the last reading within 21 days prior to discontinuation. Simplification was defined as noted in the chart or as a reduction in total pill count for bDRV- and DTG-based regimens only; B/F/TAF or EVG/c-based regimens could not be simplified because they are only available as single tablet formulations. Pregnancy was defined as any diagnosis indicative of pregnancy within 3 months of discontinuation. Drug holiday was defined as a gap in ART of over 45 days. Other possible reasons for regimen discontinuation were identified through notes in the chart: access issues (e.g., cost, formulary or availability issues), non-adherence, patient or provider choice, or any other reason noted. Reasons for discontinuation were not mutually exclusive.
Viral suppression was defined using both a more stringent threshold (i.e., first viral load <50 copies/mL) and a more lenient threshold (i.e., first viral load <200 copies/mL). IRIS was documented by the provider in the EHR and captured through both text and diagnosis code searches. A nurse reviews all new diagnosis titles on a regular basis to determine if they are consistent with IRIS. Immune recovery was defined as achieving a CD4 cell count ≥200 cells/μL; the first CD4 cell count over the threshold was considered. CD4:CD8 ratio normalization was defined as the first CD4:CD8 ratio ≥1.

Statistical analyses
Baseline demographic and clinical characteristics were described using medians with interquartile ranges (IQR) for continuous variables and frequencies with proportions for categorical variables. For all outcomes, unadjusted incidence rates were estimated with univariate Poisson regression. Unadjusted cumulative probability of immune recovery was estimated over time with Kaplan-Meier methods.

The association between regimen and either discontinuation or viral suppression was assessed using Cox proportional hazards models with a robust variance estimator. Stabilized inverse probability of treatment weights (sIPTW) were employed to control for confounding in marginal structural models. Propensity scores for the probability of receiving each regimen were obtained from multinomial logistic regression including baseline age, CD4 cell count, viral load and index year, all measured continuously and modeled using a quadratic term, as well as sex, Black race and hepatitis B coinfection.
Results

Study population

The study population included a total of 961 PWH, including 416 (43%) on B/F/TAF, 106 (11%) on a bDRV-based 3DR, 271 (28%) on a DTG-based 3DR, and 168 (18%) on an EVG/c-based 3DR. Most bDRV-based regimens were single or multiple tablet regimens with FTC/TAF (89%). DTG-based regimens were evenly divided between a single tablet regimen with abacavir/lamivudine (52%) and a multiple tablet regimen with FTC/TAF (46%); 2% were multiple tablet regimens with FTC/TDF. B/F/TAF and EVG/c-based regimens were always formulated as a single tablet regimen; only 52% of DTG-based regimens and 25% of bDRV-based regimens were single tablet regimens [Table 1].

Key baseline characteristics were generally well balanced across groups, although some notable differences were observed [Table 1]. Compared to other regimens, PWH on EVG/c were most likely to be Black, those on B/F/TAF or EVG/c-based regimens were most likely to have a very low CD4 cell count (i.e., ≤ 50 cells/μL), those on bDRV and DTG were most likely to have a very high viral load (i.e., ≥ 100,000 copies/mL), and those on bDRV and EVG/c were most likely to have HBV co-infection.

Regimen discontinuation

The maximum follow-up time was 31 months, with a median follow-up of 17 months (IQR: 13, 21) on B/F/TAF, 14 months (11, 20) on bDRV, 17 months (12, 23) on DTG, and 14 months (8, 23) on EVG/c. The unadjusted incidence rate of regimen discontinuation (i.e., stop, add or substitute third agent, or >45 days gap in ART) was significantly lower with B/F/TAF (11.2 per 100 person-years, 95% CI: 8.8, 14.3), compared to bDRV (32.0, 95% CI: 23.4, 43.8), DTG (28.6, 95% CI: 23.5, 34.5) and EVG/c (40.7, 95% CI: 32.9, 50.4).

Out of 64 B/F/TAF discontinuers, no reason for discontinuation could be identified among 56%; a treatment-related reason (i.e., unsuppressed at discontinuation or unfavorable event) was identified
among 14%; the remaining 30% discontinued for other reasons (drug holiday, provider choice). Out of 39 PWH who discontinued bDRV, 23% had no identifiable reason for discontinuation, 41% had a treatment-related reason, and 36% had another reason identified (simplification, drug holiday, patient/provider choice). Out of 105 DTG discontinuers, 41% had no identifiable reason, 23% had a treatment-related reason, and 36% had another reason for discontinuation (simplification, access issues, drug holiday, provider choice). Finally, out of 85 PWH who discontinued EVG/c, 44% discontinued without any identifiable reason; a treatment-related reason was identified in 34%, and another reason was identified in 22% (drug holiday, provider choice).

Reasons for discontinuation were not mutually exclusive, although multiple reasons per individual were uncommon. The most common reasons for discontinuation identified were provider choice (B/F/TAF: 28%, bDRV: 54%, DTG: 36%, EVG/c: 31%), and absence of viral suppression defined as last viral load ≥200 copies/mL within 30 days prior to discontinuation (B/F/TAF: 6%, bDRV: 33%, DTG: 17%, EVG/c: 26%). A pregnancy was recorded for three discontinuations only. Among bDRV and DTG discontinuers, a majority discontinued a multiple tablet regimen (80% and 53%, respectively); regimen simplification was observed in 44% of bDRV discontinuations and 25% of DTG discontinuation. While most bDRV- and EVG/c-based regimens discontinued included a backbone of FTC/TAF (85% and 86% respectively), most DTG-based regimens discontinued included either FTC/TAF (48%) or ABC/3TC (48%).

In the adjusted analysis, B/F/TAF remained statistically significantly associated with a lower likelihood of regimen discontinuation compared to other regimens. In fact, compared to B/F/TAF, the likelihood of regimen discontinuation was 2.65 times higher with bDRV-based regimens (95% CI: 1.75, 4.02), 2.42 times higher with DTG- (95% CI: 1.75, 3.35), and 3.52 times higher with EVG/c-based regimens (95% CI: 2.44, 5.07)[Figure 1].
Viral suppression

In a subset of the population with follow-up viral loads (N = 771), 356 PWH initiated B/F/TAF, 77 initiated a bDRV-based regimen, 220 initiated a DTG-based regimen, and 118 initiated an EVG/c-based regimen. Unadjusted incidence rates of suppression at <50 copies/mL were of 100.7 per 100 person-years (95% CI: 89.0, 114.0) with B/F/TAF, 70.9 (52.1, 96.2) with bDRV-based regimens, 95.4 (81.1, 112.2) with DTG-based regimens, and 85.5 (67.3, 108.6) with EVG/c-based regimens. Using a cut-off of <200 copies/mL, the unadjusted incidence rate was 237.4 per 100 person-years (212.6, 265.0) with B/F/TAF, 123.5 (95% CI: 94.3, 161.7) with bDRV-based regimens, 200.9 (173.8, 2323) with DTG-based regimens and 182.4 (148.2, 224.5) with EVG/c-based regimens.

In adjusted analyses, B/F/TAF appeared to be associated with a higher likelihood of virologic suppression compared to bDRV-based regimens [Figure 2]. Indeed, people with advanced HIV infection on a bDRV-based regimen were statistically significantly less likely to achieve virologic suppression compared to those on B/F/TAF when defined as the first viral load <50 copies/mL (aHR: 0.72; 95% CI: 0.52, 0.99), or as the first viral load <200 copies/mL (aHR: 0.55; 95% CI: 0.43, 0.70). No statistically significant difference was observed in the likelihood of achieving virologic suppression at <50 or <200 copies/mL between B/F/TAF and other integrase strand transfer inhibitors (INSTI)-based regimens [Figure 2].

Immune recovery

Out of 765 people with advanced HIV infection with follow-up CD4 cell counts, 355 initiated B/F/TAF, 76 initiated a bDRV-based regimen, 218 a DTG-based regimen and 116 initiated an EVG/c-based regimen. The 12-month cumulative probability of achieving a CD4 cell count ≥ 200 cells/μL was 67% (95% CI: 62, 72) with B/F/TAF, 63% (51, 74) with bDRV-based regimens, 68% (61, 74) with DTG-based regimens, and 60% (51, 69) with EVG/c-based regimens [Figure 3]. Overall, 70% achieved a CD4 cell count ≥ 200 cells/μL over up to 31 months of follow-up, and no statistically significant difference was
detected across groups in unadjusted assessments of immune recovery. The unadjusted incidence rate of a first CD4 cell count ≥ 200 cells/μL was of 120.0 per 100 person-years (95% CI: 106.3, 135.4) with B/F/TAF, 115.6 (95% CI: 87.1, 153.4) with bDRV-based regimens, 109.3 (95% CI: 93.3, 128.2) with DTG-based regimens, and 92.1 (73.5, 115.5) with EVG/c-based regimens. In a population restricted to 545 PWH with at least one CD4:CD8 ratio during follow-up, only 4% achieved normalization of the ratio overall (i.e. CD4:CD8 >1). Of note, a diagnosis of IRIS in the EHR was rare during follow-up with only seven cases recorded overall (3/416 with B/F/TAF, 1/106 with bDRV-, 2/271 with DTG-, 1/168 with EVG/c-based regimens).

Discussion

In this OPERA study, among 961 ART-naïve people with advanced HIV infection in the U.S., those initiating B/F/TAF were less likely to discontinue their regimen compared to PWH initiating other 3DRs in adjusted analyses. Moreover, those initiating a bDRV-based 3DR were 28% less likely to achieve viral suppression at <50 copies/mL and 44% less likely to achieve viral suppression at <200 copies/mL compared to those initiating B/F/TAF. However, no statistical difference was observed between B/F/TAF and other INSTI-based regimens, regardless of the definition of suppression used. Of note, the majority of people with advanced HIV achieved a CD4 cell count ≥ 200 cells/μL during follow-up, without any statistically significant difference detected between groups.

IRIS is of particular concern among people with advanced HIV infection because rapid viral load declines and rapid immune recovery have been identified as risk factors for IRIS. Moreover, some studies have shown an association between INSTI initiation and a higher risk of IRIS among those with advanced infection. However, in OPERA, despite rapid viral suppression, diagnoses of IRIS were rare during follow-up and did not differ notably between groups.
Literature on treatment options for people with advanced HIV infection in the modern ART era is sparse, leaving providers with little guidance on how to select the best regimen. In Germany and Spain, 35% of providers surveyed reported that regimen simplicity was the most important factor when choosing a regimen for people presenting with advanced HIV infection, followed by the presence of comorbidities (27%) and the provider’s experience with specific antiretrovirals (21%). Such preferences may in part explain the regimen discontinuations observed in OPERA, as 25% and 44% of discontinuations resulted in regimen simplification among DTG and bDRV users, respectively; 35% of overall discontinuations were justified as the provider’s choice. In addition, only 10% of PWH experienced an unfavorable effect of treatment such as a lab abnormality or a new diagnosis prior to discontinuation, with no notable difference between groups, suggesting that observed differences in discontinuation were not driven by safety concerns. However, despite the best efforts to understand why discontinuations occurred, no reason could be determined in 43% of cases overall. Contrary to this OPERA study, where specific regimens were compared and lower adjusted hazards of discontinuation were seen with B/F/TAF than with other regimens, other published studies only compared discontinuation across classes of antiretrovirals among people with advanced HIV. In a European analysis of 218 newly diagnosed PWH with CD4 cell counts < 200 cells/μL and/or an ADE, no statistically significant difference in regimen discontinuation was observed between INSTI- and protease inhibitor (PI)-based regimens by 12 or 48 weeks of ART. However, changes in NRTI backbone were included in the definition of regimen discontinuation, and represented the most important reason for discontinuation overall. In Italy, of 272 people with advanced HIV infection, 67% discontinued their first-line regimen, mainly for regimen simplification including switching from TDF to TAF. However, the association between regimen and discontinuation observed in OPERA among people with advanced HIV mirrors findings of other U.S. studies among ART-naive PWH initiating ART regardless of baseline CD4 cell counts. Indeed, compared to B/F/TAF, statistically significant increases in the likelihood of discontinuation were observed with DTG-based regimens (HR ranging from 1.58 to 6.20), EVG/c-based regimens (HR ranging from 1.49 to 2.58) and bDRV-
based regimens (HR: 3.56); reasons for discontinuation were not reported.37,38 However, in a multicenter cohort study in Italy, no statistically significant difference in the rate of all-cause discontinuations were observed, although discontinuations due to treatment adverse events (all grade 1-2) were more likely with DTG/ABC/3TC than B/F/TAF (RR: 2.32, 95% CI: 11.11, 5.16).39 With a similar efficacy and safety profile as DTG-based 3DR,40,41 it could be surmised that B/F/TAF was less likely to be discontinued due in part to its novelty. Indeed, a survey of Australian medical practitioners revealed that DTG/ABC/3TC and B/F/TAF were the preferred regimens for ART initiation due to their high barrier to resistance, and over two thirds selected B/F/TAF as the anticipated preferred regimen for PLW eventually switching ART in the next 3 to 6 months.42 The advantages of a single tablet regimen for adherence and simplification also cannot be ignored.35,43

In the only trial restricted to 46 PWH with CD4 cell counts <200 cells/μL, viral suppression at <200 copies/mL was achieved by 77% in the RAL + ABC/3TC arm and 67% in the DRV/r + ABC/3TC group, the difference being non-statistically significant.25 While point estimates may suggest favorable virologic outcomes with B/F/TAF compared to DTG- or EVG/c-based regimens, these differences were not statistically significant in this OPERA study. Moreover, in trials comparing B/F/TAF and DTG-based regimens, 89 to 93% achieved suppression at <50 copies/mL, with no difference between groups, although only 11% of participants had a CD4 cell count <200 cells/μL.17,18

In addition, viral suppression does not appear to differ between INSTI and PI initiators in observational studies. In five European HIV treatment centers in Germany, Spain and England, no difference in the frequency of suppression at <50 copies/mL was detected between PWH with a CD4 cell count < 200 cells/μL and/or an AIDS-defining condition on an INSTI (86%) and those on a PI (81%) after 48 weeks of treatment.28 Similarly, in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) between 2010 and 2018, no difference in viral suppression to <50 copies/mL was observed between PWH with CD4 cell counts <350 cells/μL on an INSTI or a PI (adjusted OR: 1.03, 95%CI: 0.75,
1.43), although a higher likelihood of viral suppression was observed with NNRTIs compared to
INSTIs (adjusted OR: 1.36; 95% CI: 1.00, 1.85).

This study has several strengths. The OPERA cohort is a large, diverse cohort representative of the
HIV population in care in the U.S. At the time of this study, it included EHR data from over 118,000
PWH in care in clinics from 65 cities across the U.S., ranging from small rural practices to large
metropolitan healthcare centers, which represents ~10% of PWH in the U.S. This large database of
routine clinical care data allowed the investigation of real-world prescription practices and related
health outcomes in a large study population of up to 961 people initiating HIV therapy with
advanced HIV infection in recent years. Moreover, a thorough review of lab results, diagnoses and
provider notes was conducted to better understand why regimens were discontinued. Cox
proportional hazards model were selected to conduct time to event analyses, in recognition of the
importance of both the number of events and the speed at which they occur. Finally, inverse
probability weighting was employed to ensure the balance of important covariates across groups
and control for confounding in the analyses of discontinuation and viral suppression.

This study also has some limitations. Despite the best efforts to characterize reasons for
discontinuation, none could be inferred in almost half. This issue is not unique to OPERA, as no
reason was documented for close to a third of discontinuations reported in a study of treatment
outcomes among people with advanced HIV from five European clinics. Another shortcoming is the
narrow window of eligibility due to B/F/TAF being approved in February 2018. This resulted in a
smaller sample size for the older drug DRV, as well as short follow-up time for all regimens.
Expanding the eligibility window or extending follow-up time may provide more power to detect
statistically significant differences between groups. Person-time was censored at changes in the
third agent only. B/F/TAF is the only regimen in the study available exclusively as one unique fixed-
dose combination; a change in any agent therefore automatically results in a change in regimen. In
contrast, all the other third agents of interest are available in more than one formulation and/or as a single agent. It is therefore possible to change the backbone while remaining on bDRV, DTG or EVG/c. Therefore, although regimen simplification is an important reason for switching regimens, adjusted analyses could not be controlled for single tablet regimen use without violating the positivity assumption. It is possible that some PWH with a viral load ≥1000 copies/mL could have been misclassified as ART-naïve if they had received ART in the past at a different clinic and did not report prior use to their OPERA-participating provider. However, history notes were reviewed to determine if prior ART use was ever reported, thus mitigating the potential magnitude of such misclassification. Also, slightly fewer viral loads were measured during the follow-up period with bDRV-based regimens compared to other regimens, thus reducing the opportunities to observe viral suppression. Moreover, no statistical adjustment was performed for analyses of immune recovery. Finally, the last five months of study follow-up occurred during the COVID pandemic, potentially resulting in less patient contact. However, any effect of COVID on HIV care is not expected to have differed among groups.

In conclusion, among people initiating ART with advanced HIV infection, those on B/F/TAF were less likely to discontinue their regimen compared to those on other 3DRs. They also had a higher likelihood of achieving virologic suppression at both <50 copies/mL and <200 copies/mL compared to those on bDRV-based 3DRs but did not differ from those on DTG- or EVG/c-based 3DRs in adjusted analyses. Thus, it appears that B/F/TAF and other INSTI-based regimens are excellent options for initial therapy in people presenting with advanced HIV infection.
Funding

This work was supported by Gilead Sciences

Potential Conflicts of Interest

KM has received research grants from Gilead Sciences, Merck, Janssen, and GSK/ViiV Healthcare and honoraria for Speakers Bureau and Advisory Boards from Gilead Sciences, Merck, Janssen and GSK/ViiV Healthcare; and advisory board participation with Epividian. LB, JSF and GPF are employed by Epividian, Inc.; Epividian has had research funded by AIDS Healthcare Foundation, ViiV Healthcare, Merck & Co., Janssen Scientific Affairs, LLC, Gilead Sciences, and EMD-Serono. IRM is employed by Gilead and hold stocks in Gilead. HDC was employed by Gilead at the time the study was conducted and hold stocks in Gilead. MS is on the Speakers Bureau for ViiV Healthcare and Gilead Sciences, and on the advisory board for ViiV Healthcare. LM reports no conflict of interest.

Patient Consent Statement

OPERA® complies with all HIPAA and HITECH requirements and has received annual institutional review board (IRB) approval by Advarra IRB, including a waiver of informed consent and authorization for use of protected health information.

Data availability

The datasets used in this study are not publicly available due to privacy concerns and the proprietary nature of the database but can be accessed upon reasonable request through the corresponding author to the OPERA® Epidemiological and Clinical Advisory Board.
Acknowledgments

This research would not be possible without the people living with HIV in the OPERA Observational Database and the healthcare providers who care for them. Additionally, we are grateful for the following individuals: Robin Beckerman (SAS programming), Lito Torres (QA), Bernie Stooks (IT/data management), Lisa Lutzi (Data architecture), and Judy Johnson (Med Terminology Classification).
References

1. Fauci AS, Lane HC. Four Decades of HIV/AIDS — Much Accomplished, Much to Do. *New England Journal of Medicine*. 2020;383(1):1-4.

2. Deeks SG, Lewin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. *Lancet*. Nov 02 2013;382(9903):1525-1533.

3. Antinori A, Coenen T, Costagiola D, et al. Late presentation of HIV infection: a consensus definition. *HIV Medicine*. 2011;12(1):61-64.

4. Mocroft A, Lundgren J, Antinori A, et al. Late presentation for HIV care across Europe: update from the Collaboration of Observational HIV Epidemiological Research Europe (COHERE) study, 2010 to 2013. *Euro Surveill*. 2015;20(47).

5. Battegay M, Fehr J, Flückiger U, Elzi L. Antiretroviral therapy of late presenters with advanced HIV disease. *Journal of Antimicrobial Chemotherapy*. 2008;62(1):41-44.

6. Girardi EM, Sabin CAP, Monforte AdAM. Late Diagnosis of HIV Infection: Epidemiological Features, Consequences and Strategies to Encourage Earlier Testing. *JAIDS Journal of Acquired Immune Deficiency Syndromes*. 2007;46:S3-S8.

7. Prabhu S, Harwell JI, Kumarasamy N. Advanced HIV: diagnosis, treatment, and prevention. *The Lancet HIV*. 2019/08/01/ 2019;6(8):e540-e551.

8. Summers NA, Armstrong WS. Management of Advanced HIV Disease. *Infectious Disease Clinics*. 2019;33(3):743-767.
9. Krentz HB, Gill MJ. The Direct Medical Costs of Late Presentation (<350/mm) of HIV Infection over a 15-Year Period. *AIDS research and treatment.* 2012;2012:757135-757135.

10. Fleishman JA, Yehia BR, Moore RD, Gebo KA. The economic burden of late entry into medical care for patients with HIV infection. *Med Care.* Dec 2010;48(12):1071-1079.

11. Krentz H, Auld M, Gill M. The high cost of medical care for patients who present late (CD4<200 cells/μL) with HIV infection. *HIV Medicine.* 2004;5(2):93-98.

12. IeDEA and COHERE Cohort Collaborations. Global Trends in CD4 Cell Count at the Start of Antiretroviral Therapy: Collaborative Study of Treatment Programs. *Clin Infect Dis.* Mar 5 2018;66(6):893-903.

13. Centers for Disease Control and Prevention. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data—United States and 6 dependent areas, 2015. *HIV surveillance supplemental report* 2017;22(2) 2017; https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-supplemental-report-vol-22-2.pdf. Accessed 25 February 2021.

14. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. 2019; https://files.aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed 4/29/2020, 2020.
15. Mahnke YD, Greenwald JH, DerSimonian R, et al. Selective expansion of polyfunctional pathogen-specific CD4+ T cells in HIV-1–infected patients with immune reconstitution inflammatory syndrome. *Blood.* 2012;119(13):3105-3112.

16. Squires K, Kityo C, Hodder S, et al. Integrase inhibitor versus protease inhibitor based regimen for HIV-1 infected women (WAVES): a randomised, controlled, double-blind, phase 3 study. *Lancet HIV.* Sep 2016;3(9):e410-e420.

17. Gallant J, Lazzarin A, Mills A, et al. Bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection (GS-US-380-1489): a double-blind, multicentre, phase 3, randomised controlled non-inferiority trial. *The Lancet.* 2017/11/04/ 2017;390(10107):2063-2072.

18. Sax PE, Pozniak A, Montes ML, et al. Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380–1490): a randomised, double-blind, multicentre, phase 3, non-inferiority trial. *The Lancet.* 2017/11/04/ 2017;390(10107):2073-2082.

19. Sax PE, DeJesus E, Mills A, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. *Lancet.* Jun 30 2012;379(9835):2439-2448.

20. DeJesus E, Rockstroh JK, Henry K, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir
plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial
treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority
trial. *Lancet.* 2012;379(9835):2429-2438.

21. Raffi F, Rachlis A, Stellbrink HJ, et al. Once-daily dolutegravir versus raltegravir in
antiretroviral-naive adults with HIV-1 infection: 48 week results from the
randomised, double-blind, non-inferiority SPRING-2 study. *Lancet.*
2013;381(9868):735-743.

22. Walmsley SL, Antela A, Clumeck N, et al. Dolutegravir plus Abacavir–Lamivudine for
the Treatment of HIV-1 Infection. *New England Journal of Medicine.*
2013;369(19):1807-1818.

23. Clotet B, Feinberg J, van Lunzen J, et al. Once-daily dolutegravir versus darunavir plus
ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week
results from the randomised open-label phase 3b study. *Lancet.*
2014;383(9936):2222-2231.

24. Eron JJ, Orkin C, Gallant J, et al. A week-48 randomized phase-3 trial of
darunavir/cobicistat/emtricitabine/tenofovir alafenamide in treatment-naive HIV-1
patients. *AIDS (London, England).* 2018;32(11):1431-1442.

25. Mussini C, Roncaglia E, Borghi V, et al. A prospective randomized trial on
abacavir/lamivudine plus darunavir/ritonavir or raltegravir in HIV-positive drug-naïve
patients with CD4<200 cells/µL (the PRADAR study). *PLOS ONE.*
2019;14(9):e0222650.
26. NAMSAL ANRS Study Group, Kouanfack C, Mpoudi-Etame M, et al. Dolutegravir-Based or Low-Dose Efavirenz-Based Regimen for the Treatment of HIV-1. *N Engl J Med.* Aug 29 2019;381(9):816-826.

27. Mills AM, Nelson M, Jayaweera D, et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. *AIDS.* 2009;23(13).

28. Schuettfort G, Boekenkamp L, Cabello A, et al. Antiretroviral treatment outcomes among late HIV presenters initiating treatment with integrase inhibitors or protease inhibitors. *HIV Medicine.* 2021;22(1):47-53.

29. Rava M, Bisbal O, Domínguez-Domínguez L, et al. Late presentation for HIV impairs immunological but not virological response to antiretroviral treatment. *AIDS (London, England).* 2021/03// 2021.

30. Andrade BB, Singh A, Narendran G, et al. Mycobacterial Antigen Driven Activation of CD14++CD16− Monocytes Is a Predictor of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. *PLOS Pathogens.* 2014;10(10):e1004433.

31. Tan HY, Yong YK, Shankar EM, et al. Aberrant Inflammasome Activation Characterizes Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. *The Journal of Immunology.* 2016;196(10):4052.

32. Hsu DC, Breglio KF, Pei L, et al. Emergence of Polyfunctional Cytotoxic CD4+ T Cells in Mycobacterium avium Immune Reconstitution Inflammatory Syndrome in Human
33. Wijting IEA, Wit FWNM, Rokx C, et al. Immune reconstitution inflammatory syndrome in HIV infected late presenters starting integrase inhibitor containing antiretroviral therapy. *EClinicalMedicine.* 2019/12/01/ 2019;17:100210.

34. Psychogiou M, Basoulis D, Tsikala-Vafea M, Vlachos S, Kapelios CJ, Daikos GL. Integrase Strand Transfer Inhibitors and the Emergence of Immune Reconstitution Inflammatory Syndrome (IRIS). *Current HIV Research.* // 2017;15(6):405-410.

35. Schuettfort G, Cabello A, Cotter AG, et al. Reasons for Choice of Antiretroviral Regimens in HIV Patients Presenting Late for Initial Treatment in Europe. *AIDS Patient Care STDS.* Apr 2021;35(4):110-115.

36. Rossetti B, Baldin G, Sterrantino G, et al. Efficacy and safety of dolutegravir-based regimens in advanced HIV-infected naïve patients: results from a multicenter cohort study. *Antiviral Research.* 2019/09/01/ 2019;169:104552.

37. Sutton S, Wang X, Diaz-Cuervo H, Magagnoli J. P032: Persistence of antiretroviral therapy regimens among veterans with HIV newly initiating treatment in the US. *Journal of the International AIDS Society;* 5-8 October 2020 2020; HIV Glasgow - Virtual.

38. Cohen JP, Wang X, Wade RL, Cuervo HD, Dionne DM. 1036. Persistence of Guideline-Recommended Antiretroviral Therapy Regimens among Persons Living with HIV.
Newly Initiating Treatment in the US. *Open Forum Infectious Diseases*. 2020;7(Suppl 1):S548-S549.

39. Lagi F, Botta A, Cicullo A, et al. Early discontinuation of DTG/ABC/3TC and BIC/TAF/FTC single-tablet regimens: a real-life multicenter cohort study. *HIV Research & Clinical Practice*. 2021/07/04 2021;22(4):96-101.

40. Orkin C, DeJesus E, Sax PE, et al. Fixed-dose combination bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir-containing regimens for initial treatment of HIV-1 infection: week 144 results from two randomised, double-blind, multicentre, phase 3, non-inferiority trials. *Lancet HIV*. Jun 2020;7(6):e389-e400.

41. Snedecor SJ, Radford M, Kratochvil D, Grove R, Punekar YS. Comparative efficacy and safety of dolutegravir relative to common core agents in treatment-naïve patients infected with HIV-1: a systematic review and network meta-analysis. *BMC Infectious Diseases*. 2019/05/30 2019;19(1):484.

42. Smith DE, Woolley IJ, Russell DB, Bisshop F, Furner V. Trends in practice: attitudes and challenges in the diagnosis, treatment and management of HIV infection in Australia. *Internal Medicine Journal*. 2020/12/01 2020;50(55):5-17.

43. Altice F, Evuarherhe O, Shina S, Carter G, Beaubrun AC. Adherence to HIV treatment regimens: systematic literature review and meta-analysis. *Patient preference and adherence*. 2019;13:475-490.
Table 1. Baseline demographic and clinical characteristics

	B/F/TAF N = 416	bDRV N = 106	DTG N = 271	EVG/c N = 168
Age, median years (IQR)	36 (29, 46)	35 (27, 46)	36 (28, 45)	37 (28, 47)
Female, n (%)	85 (20)	19 (18)	46 (17)	34 (20)
Black race, n (%)	257 (62)	67 (63)	170 (63)	116 (69)
CD4 cell count (cells/μL), median (IQR)	87 (33, 155)	94 (30, 151)	93 (38, 153)	91 (26, 145)
CD4 ≤50 cells/μL, n (%)	151 (36)	35 (33)	82 (30)	64 (38)
Log_{10} Viral load (copies/mL), median (IQR)	5.3 (4.8, 5.7)	5.4 (4.8, 5.7)	5.3 (4.7, 5.7)	5.2 (4.8, 5.7)
Viral load ≥100,000 copies/mL, n (%)	257 (62)	72 (68)	178 (66)	100 (60)
Hepatitis B coinfection, n (%)	19 (5)	10 (9)	19 (7)	19 (11)
Single tablet regimen, n (%)	416 (100)	26 (25)	140 (52)	168 (100)
eGFR ≥90 mL/min/1.73m², n (%)	363 (87)	84 (79)	231 (85)	135 (80)

bDRV, boosted darunavir; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; DTG, dolutegravir; EVG/c, elvitegravir/cobicistat; IQR, interquartile range; mL, milliliter; n, number; μL, microliter.
Figure Legends

Figure 1. Adjusted* association between regimen and regimen discontinuation

bDRV, boosted darunavir; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; CI, confidence interval; DTG, dolutegravir; EVG/c, elvitegravir/cobicistat; HR, hazard ratio.

* Estimated with a Cox proportional hazards model with stabilized inverse probability of treatment weights, controlling for baseline sex, Black race, hepatitis B, index year, age, CD4 cell count and viral load.

Figure 2. Adjusted* association between regimen and viral suppression

bDRV, boosted darunavir; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; CI, confidence interval; DTG, dolutegravir; EVG/c, elvitegravir/cobicistat; HR, hazard ratio; mL, milliliter; VL, viral load.

* Estimated with a Cox proportional hazards model with stabilized inverse probability of treatment weights, controlling for baseline sex, Black race, hepatitis B, index year, age, CD4 cell count and viral load.

Figure 3. Cumulative probability of achieving CD4 cell count ≥200 cells/μL

bDRV, boosted darunavir; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; DTG, dolutegravir; EVG/c, elvitegravir/cobicistat; μL, microliter.
Figure 1

Group	# events	HR* (95% CI)
B/F/TAF (n=416)	64	Ref.
bDRV (n=106)	39	2.65 (1.75, 4.02)
DTG (n=271)	105	2.42 (1.75, 3.35)
EVG/c (n=168)	85	3.52 (2.44, 5.07)

Adjusted Hazard Ratio*
