Dynamical correlation functions
of the spin Calogero-Sutherland model

Takashi Yamamoto* and Mitsuhiro Arikawa†
Department of Physics, Tohoku University, Sendai 980-8578, Japan

November 24, 2018

Abstract

The thermodynamic limit of the dynamical density and spin-density two-point correlation functions for the spin Calogero-Sutherland model are derived from Uglov’s finite-size results. The resultant formula for the density two-point correlation function is consistent with the previous conjecture on the basis of the minimal number of elementary excitations.

*CREST researcher: Japan Science and Technology Corporation (JST), Kawaguchi 332-0012, Japan. e-mail: yam@cmpt01.phys.tohoku.ac.jp
†arikawa@cmpt01.phys.tohoku.ac.jp
1 Introduction

In recent years, a considerable number of studies have been made on the \(SU(N)\) spin Calogero-Sutherland (CS) model \[1, 2\]. This model describes \(n\) particles system on a circle of length \(L\) interacting with the inverse-square type potential. Each particle is labelled by its coordinate \(x_j\) and spin with \(N(\geq 1)\) possible values. (When \(N = 1\), this is the CS model \[2, 2\].) The Hamiltonian of the model is given by

\[
H = -\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} + \left(\frac{\pi}{2}\right)^2 \sum_{1 \leq i < j \leq n} \frac{\beta(\beta + P_{ij})}{\sin^2(\pi(x_i - x_j))},
\]

where \(\beta\) is a coupling parameter and \(P_{ij}\) is the spin exchange operator for particles \(i\) and \(j\). In this paper, we take \(N = 2\) and \(\beta\) to be a positive integer.

A lot of intriguing results have been obtained in connection with the spin CS model. In particular, the eigenfunctions of the spin CS model have been explicitly constructed and then, using these properties, the dynamical correlation functions of this model were computed. For \(\beta = 1\) which is the simplest nontrivial case, the hole propogator of the \(SU(2)\) spin CS model (with finite \(n\) and in the thermodynamic limit) has been calculated by Kato \[3\]. He also gave a conjectural formula for the arbitrary integer coupling case. Using the Jack polynomials with prescribed symmetry \[1, 2\], this conjecture was recently confirmed by Kato and one of the authors \[3\]. On the other hand, introducing the new class of orthogonal polynomials \[9, 10\], exact results have been obtained by Uglov \[10\]. He computed the dynamical density and spin-density two-point correlation functions of the \(SU(2)\) spin CS model with finite \(n\). In \[11\], Kato and authors have studied the construction for the dynamical correlation functions of the \(SU(N)\) spin CS model in the thermodynamic limit. We gave the formula for the density two-point correlation function in the thermodynamic limit and checked the consistency with the predictions from conformal field theory \[12\]. However, the relation between Uglov’s work and ours is missing.

In this paper, from Uglov’s formulae for the dynamical correlation function of the spin CS model, we take our main results together with those of the work in ref. \[5, 8\]. We introduce the following notations: for non-negative integers \(a\), \(b\) and \(c\),

\[
\mathcal{E}(u, v, w; a, b, c) = \sum_{i=1}^{a} \epsilon_p(u_i) + \sum_{j=1}^{b} \epsilon_h(v_j) + \sum_{k=1}^{c} \epsilon_h(w_k),
\]

\[
\mathcal{P}(u, v, w; a, b, c) = \frac{\pi \rho_0}{2} \left[- (2\beta + 1) \sum_{i=1}^{a} u_i + \sum_{j=1}^{b} v_j + \sum_{k=1}^{c} w_k \right],
\]

\[
I(a, b, c)[\ast] = \prod_{i=1}^{a} \int_{-1}^{1} du_i \prod_{j=1}^{b} \int_{-1}^{1} dv_j \prod_{k=1}^{c} \int_{-1}^{1} dw_k(\ast)|F_\beta(u, v, w; a, b, c)|^2,
\]

where \(\rho_0\) is the density of particles, variables \(u = (u_1, \cdots, u_a)\), \(v = (v_1, \cdots, v_b)\) and \(w = (w_1, \cdots, w_c)\) represent the normalized momenta of quasiparticle with spin \(\sigma\), quasiholes with spin \(-\sigma\) and \(\sigma\), respectively (\(\sigma = \pm 1/2\)). The quasiparticle and quasihole dispersions are introduced by

\[
\epsilon_p(y) = (2\beta + 1)^{1/2} \left(\frac{\pi \rho_0}{2}\right)^{1/2} (y^2 - 1),
\]

\[
\epsilon_h(y) = (2\beta + 1)^{1/2} \left(\frac{\pi \rho_0}{2}\right)^{1/2} (1 - y^2),
\]

respectively. The function \(F_\beta\) is defined by

\[
F_\beta(u, v, w; a, b, c) = \frac{\prod_{1 \leq i < j \leq b} (v_i - v_j)^{g^0} \prod_{1 \leq i < j \leq c} (w_i - w_j)^{g^0} \prod_{i=1}^{b} \prod_{j=1}^{c} (v_i - w_j)^{g^0}}{\prod_{i=1}^{a} \prod_{j=1}^{b} (u_i - v_j)^{1-(g^0)^2/2} \prod_{i=1}^{b} (1 - v_j^2)^{(1-g^0)^2/2} \prod_{k=1}^{c} (1 - w_k^2)^{(1-g^0)^2/2}}
\]
where
\[g_p^0 = \beta + 1, \quad g_p^n = (\beta + 1)/(2\beta + 1), \quad g_p^n = -\beta/(2\beta + 1). \tag{8} \]

The retarded Green function, density and spin-density two-point correlation functions can respectively be written as the following form:

\[
\begin{align*}
\langle \psi(x, t)\psi(0, 0) \rangle &= A(\beta)I(0, \beta + 1, \beta)[(\pi\rho_0/2)e^{(P(0, \beta + 1, \beta)x - (E(0, \beta + 1, \beta) - \zeta)t}], \\
\langle \rho(x, t)\rho(0, 0) \rangle &= B(\beta)I(1, \beta + 1, \beta)[P(1, \beta + 1, \beta)^2 \cos(P(1, \beta + 1, \beta)x)e^{-iE(1, \beta + 1, \beta)t}], \\
\langle s(x, t)s(0, 0) \rangle &= C_I(\beta)I(1, \beta, \beta + 1)[(\pi\rho_0/2)^2 \cos(P(1, \beta, \beta + 1)x)e^{-iE(1, \beta, \beta + 1)t}]
\end{align*} \tag{9, 10, 11}
\]

where \(\zeta = (\pi(2\beta + 1)\rho_0/2)^2 \) is the chemical potential and we use the convention \(\prod_{i=1}^{n}(1) = 1 \). Constant factors in the above formulae are defined by

\[
\begin{align*}
A(\beta) &= \frac{1}{\pi(2\beta + 1)^2}D(\beta), \\
B(\beta) &= \frac{1}{\pi^2(2\beta + 1)^{\beta + 1}}D(\beta), \\
C_I(\beta) &= \frac{1}{4\pi^2(2\beta + 1)^{\beta - 1}}D(\beta), \\
C_{II}(\beta) &= \frac{1}{4\pi^2(2\beta + 1)^{\beta - 1}}\frac{\beta}{\beta + 2}D(\beta),
\end{align*} \tag{12, 13, 14, 15}
\]

where, using the gamma function \(\Gamma(z) \), the constant \(D(\beta) \) is given by

\[
D(\beta) = \frac{1}{\Gamma(\beta + 2)} \prod_{j=1}^{2\beta + 1} \frac{\Gamma((\beta + 1)/(2\beta + 1))}{\Gamma(2j/(2\beta + 1))}. \tag{16}
\]

The paper is organized as follows. In section 2, we recall Uglov’s results about the dynamical correlation functions of the \(SU(2) \) spin CS model. In section 3, firstly, we examine the excitation contents of the intermediate states of the dynamical correlation functions. Secondly, taking the thermodynamic limit, we derive the formulae (10) and (11). The conclusion is presented in section 4. Appendix A contains proof of the statement in the subsection 3.1. In appendix B, we give the examples of the explicit formulae of the building blocks for the dynamical correlation functions.

2 Uglov’s formulae for the dynamical correlation functions

In this section, we fix notations and then recall Uglov’s exact results for the dynamical correlation functions. We only give the final results of Uglov’s paper. For details, see ref. [10].

2.1 Notations

In Uglov’s formulation, the states of the (transformed) Hamiltonian are labeled by the colored partitions. A brief mathematical preliminary here may be in order. We fix notations which will be to the fore in this paper (see refs. [14]).

For a fixed non-negative integer \(n \), let \(\Lambda_n = \{ \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in (\mathbb{Z}_{\geq 0})^n \mid \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \} \) be the set of all partitions with length less or equal to \(n \). The weight of a partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \) is defined by \(|\lambda| = \sum_{i=1}^{n} \lambda_i \). A partition can be represented by a Young diagram. For example, the partition \(\lambda = (4, 3, 1) \) is expressed as

\[
\begin{array}{c}
\boxdot \\
\boxdot \\
\boxdot \\
\boxdot \\
\end{array}
\]
When there is a square in the ith row and jth column of λ, we write $(i, j) \in \lambda$. The conjugate of a partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n)$ is the partition $\lambda' = (\lambda'_1, \lambda'_2, \cdots, \lambda'_n)$ whose diagram is the transpose of the diagram λ. For instance, if $\lambda = (4, 3, 1)$, then $\lambda' = (3, 2, 2, 1)$:

\[
\lambda' = \begin{array}{cccc}
\square & \square & \square & \\
\square & \square & \\
\end{array}
\]

Let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n)$ be a partition. For a square $s = (i, j) \in \lambda$, the numbers

\[
a(s) = \lambda_i - j, \quad a'(s) = j - 1, \quad l(s) = \lambda'_j - i, \quad l'(s) = i - 1,
\]

are called arm-length, coarm-length, leg-length, and coleg-length, respectively:

\[
\lambda = \begin{array}{cccc}
\square & \square & \square & \square \\
\square & \square & \\
\end{array}
\]

Also the numbers

\[
c(s) = a'(s) - l'(s) = j - i, \quad h(s) = a(s) + l(s) + 1 = \lambda_i + \lambda'_j - i - j + 1,
\]

are called content and hook-length, respectively. For $\alpha \in \mathbb{C}$, their refinements are defined by

\[
c(s; \alpha) = a'(s) - \alpha l'(s) = j - 1 - \alpha(i - 1), \quad h(s; \alpha) = a(s) + \alpha l(s) = \lambda_i - j + 1 + \alpha(\lambda'_j - i), \quad h^\ast(s; \alpha) = a(s) + \alpha(l(s) + 1) = \lambda_i - j + \alpha(\lambda'_j - i + 1).
\]

Moreover we define the following numbers:

\[
d(s; \alpha) = h^\ast(s; \alpha)h(s; \alpha), \quad e(s; \alpha) = \frac{a'(s) + \alpha(n - l'(s))}{a'(s) + 1 + \alpha(n - l'(s) - 1)} = \frac{j - 1 + \alpha(n - i + 1)}{j + \alpha(n - i)}.
\]

We recall a coloring scheme of diagrams. (Here we only need a coloring by two colors, white and black, since we consider the case with $N = 2$.) For a partition λ, we define two subsets of λ by $W_\lambda = \{s \in \lambda | c(s) \equiv 0 \text{ mod } 2\}$ and $B_\lambda = \{s \in \lambda | c(s) \equiv 1 \text{ mod } 2\}$. We call the color of $s \in \lambda$ white (black) if $s \in W_\lambda (\in B_\lambda)$, and call $\lambda = W_\lambda \cup B_\lambda$ the colored partition. (Notice that $(1, 1) \in W_\lambda$ (if $\lambda \neq O$).) For example, if $\lambda = (4, 3, 1)$, then $W_\lambda = \{\square\}$ in the following diagram, and $B_\lambda = \{\bullet\}$ in the following diagram:

\[
\lambda = \begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet \\
\end{array}
\]

We define another subset of λ by $H_2(\lambda) = \{s \in \lambda | h(s) \equiv 0 \text{ mod } 2\}$. For example, if $\lambda = (4, 3, 1)$, then $H_2(\lambda) = \{\star\}$ in the following diagram:

\[
\lambda = \begin{array}{ccc}
\star & \star & \star \\
\star & \star \\
\end{array}
\]
2.2 Dynamical correlation functions

We now recall Uglov’s formulae for the dynamical correlation functions \[10\]. We take the number of particles \(n\) to be an even number such that \(n/2\) is odd \[10\].

In Uglov’s formalism, the states of the CS Hamiltonian are labeled by the colored partitions. First of all, the total energy with respect to the transformed Hamiltonian, total momentum, and total \(z\)-component of spin for the colored partition \(\lambda\) are respectively given by

\[
E_\lambda = \frac{1}{2} \left(\frac{2\pi}{L} \right)^2 \left[n_{\text{w}}(\lambda') - \gamma n_{\text{w}}(\lambda) + \frac{1}{2}((n-1)\gamma + 1)|W_\lambda| \right],
\]

\[
P_\lambda = \frac{2\pi}{L} |W_\lambda|,
\]

\[
S_\lambda = |W_\lambda| - |B_\lambda|,
\]

where \(\gamma = 2\beta + 1(\in \mathbb{Z})\), and

\[
n_{\text{w}}(\lambda) = \sum_{s \in W_\lambda} l'(s),
\]

\[
n_{\text{w}}(\lambda') = \sum_{s \in W_\lambda} a'(s).
\]

Here, for any subset \(\mu \subset \lambda\), we denote by \(|\mu|\) the number of squares in \(\mu\).

Next, the building blocks for the main factors of the dynamical correlation functions are defined as follows: for a colored partition \(\lambda \in \Lambda_n\),

\[
X_\lambda = \prod_{s \in W_\lambda \setminus \{(1,1)\}} c(s; \gamma)^2,
\]

\[
Y_\lambda = \prod_{s \in H_2(\lambda)} d(s; \gamma),
\]

\[
Z_\lambda = \prod_{s \in W_\lambda} e(s; \gamma).
\]

For the system with Hamiltonian \[1\], we denote the ground state expectation value of the operator \(\mathcal{O}\) by \(\langle \mathcal{O} \rangle_n\). Then, the (ground state) dynamical density and spin-density two point correlation functions are respectively given by \[10\]

\[
\langle \rho(x,t)\rho(0,0) \rangle_n = \frac{4}{\pi^2} \sum_{\lambda \in \Lambda_n \text{ colored partition}} \sum_{|\lambda| \text{ even}} |P_\lambda|^2 X_\lambda Y_\lambda^{-1} Z_\lambda e^{-itE_\lambda} \cos(xP_\lambda),
\]

\[
\langle s(x,t)s(0,0) \rangle_n = \frac{1}{2L^2} \sum_{\lambda \in \Lambda_n \text{ colored partition}} \sum_{|\lambda| \text{ odd}} |X_\lambda Y_\lambda^{-1} Z_\lambda e^{-itE_\lambda} \cos(xP_\lambda),
\]

where \(\rho(x,t)\) and \(s(x,t)\) are the Heisenberg representations of the reduced density operator \(\rho(x) = \sum_{i=1}^n \delta(x - x_i) - n/L\) and the \(z\)-component of spin-density operator \(s(x) = \sum_{i=1}^n \delta(x - x_i)\sigma_i^z/2\), respectively. Here \(\sigma_i^z\) is the \(z\)-component of Pauli matrices.

3 Thermodynamic limit of the dynamical correlation functions

In this section, we take the thermodynamic limit of Uglov’s exact formulae \[33\] and \[34\].

\footnote{The formula for \(E_\lambda\) in ref. \[10\] has typographical error.}
Firstly, we determine the excitation contents of the intermediate states for the dynamical correlation functions (33) and (34). Secondly, we rewrite the formulae (33) and (34) in terms of parameters which correspond to the elementary excitations. Finally, we take the thermodynamic limit.

3.1 Intermediate states

In order to take the thermodynamic limit, we must determine the excitation contents of the intermediate states for the dynamical correlation functions (33) and (34). For this purpose, we introduce some notations. In consideration of above observation, we define the subset

\[\Lambda_n^\gamma = \{ \lambda \in \Lambda_n \mid (2, \gamma + 1) \notin \lambda \}. \]

That is, a partition \(\lambda \in \Lambda_n^\gamma \) has \(\gamma \) columns and one ‘arm’. For a partition \(\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \Lambda_n^\gamma \), we introduce the notation \(\lambda = (\lambda_1', \lambda_2', \cdots, \lambda_n'; r) \), which consists of \(\gamma \) columns and one ‘arm’. Here \(r = \lambda_1 - \gamma \). (If \(\lambda_1 < \gamma \), then \(r = 0 \).) For example, \(\lambda = (13, 5, 5, 4, 4, 2, 2, 1) = (10, 9, 7, 7, 4; 8) \in \Lambda_8^5 \):

Using these notations, we can state that the intermediate states for the density two-point correlation function (33) are colored partitions \(\lambda \in \Lambda_n^\gamma \) with even weight, \(S_\lambda = 0 \) and \(|W_\lambda| = |H_2(\lambda)| \). We call these colored partitions the d-d admissible. Similarly, the intermediate states for the spin-density two-point correlation function (34) are colored partitions \(\lambda \in \Lambda_n^\gamma \) with odd weight, \(S_\lambda = \pm 1 \) and \(|W_\lambda| = |H_2(\lambda)| + 1 \). We call these colored partitions the s-s admissible.

The above conditions on the intermediate states of dynamical correlation functions are rather complicated. Technical difficulty in taking the thermodynamic limit comes from these complicated conditions. Then, in the following, we simplify the conditions for d-d and s-s admissible colored partitions. For this purpose, we introduce more notations.

For \(\nu = (\nu_1, \cdots, \nu_{\gamma+1}) \in \{0, 1\}^{\times(\gamma+1)} \), we define two subsets \(I_1(\nu) \) and \(I_2(\nu) \) of \(I = \{1, \cdots, \gamma\} \) by

\[
I_1(\nu) = \left\{ j \in \{1, \cdots, \gamma\} \mid \nu_j = \begin{cases} (1 + (-1)^j)/2, & \text{if } \nu_{\gamma+1} = 0 \\ (1 + (-1)^{j+1})/2, & \text{if } \nu_{\gamma+1} = 1 \end{cases} \right\},
\]

\[
I_2(\nu) = I \setminus I_1(\nu).
\]

For example, if \(\nu = (1, 1, \cdots, 1) \), then \(I_1(\nu) = \{ j \in I \mid j : \text{odd} \} \) and \(I_2(\nu) = \{ j \in I \mid j : \text{even} \} \). We introduce the function \(\rho : \Lambda_n^\gamma \rightarrow \{0, 1\}^{\times(\gamma+1)} \) by

\[
\rho(\lambda) = (\sigma(\lambda_1'), \cdots, \sigma(\lambda_{\gamma'}), \sigma(r)), \text{ if } \lambda = (\lambda_1', \cdots, \lambda_{\gamma'}; r),
\]
where $\sigma(a) = 0$ (1) if a is even (odd). We call $\rho(\lambda)$ the parity of $\lambda \in \Lambda_\gamma^n$.

It can be easy to show that, for a colored partition $\lambda \in \Lambda_\gamma^n$ with parity $\rho(\lambda) = (\nu_1, \cdots, \nu_{\gamma+1})$,

$$S_\lambda = |W_\lambda| - |B_\lambda| = \sum_{j=1}^{\gamma+1} (-1)^{j-1} \nu_j. \quad (37)$$

Using these formulae, we have

$$S_\lambda = \begin{cases} 0 & \iff \#I_1(\rho(\lambda)) = \beta + 1 \\
\pm 1 & \iff \#I_1(\rho(\lambda)) = \beta \text{ or } \beta + 2. \end{cases} \quad (38)$$

Here, for a set A, $\#A$ denotes the number of elements. Moreover we can show that, for $\lambda \in \Lambda_n$ with even (resp. odd) weight,

$$S_\lambda = 0 \quad (\text{resp. } \pm 1) \iff |W_\lambda| = |H_2(\lambda)| \quad (\text{resp. } |H_2(\lambda)| + 1). \quad (39)$$

The proof of the statement (39) is given in Appendix A. The statements (38) and (39) are essential to taking the thermodynamic limit.

From above statements, we see that a colored partition $\lambda \in \Lambda_{\nu_1}^\gamma$ is the d-d admissible if and only if $|\lambda|$ is even and $\#I_1(\rho(\lambda)) = \beta + 1$. Similarly, a colored partition $\lambda \in \Lambda_{\nu_1}^\gamma$ is the s-s admissible if and only if $|\lambda|$ is odd and $\#I_1(\rho(\lambda)) = \beta$ or $\beta + 2$. The s-s admissible colored partitions are divided into two types which are characterized by $\#I_1(\rho(\lambda)) = \beta$ or $\beta + 2$. We call former type I and latter type II.

The $SU(2)$ spin degrees of freedom of the elementary excitations are assigned as follows. For an admissible colored partition $\lambda = (\lambda'_1, \cdots, \lambda'_r; \nu_1, \cdots, \nu_{\gamma+1})$ with parity $\rho(\lambda) = (\nu_1, \cdots, \nu_{\gamma+1})$, the spin of quasiparticle is $1/2$ (resp. $-1/2$) if $\nu_{\gamma+1} = 0$ (resp. 1). On the other hand, the spin of quasihole corresponding to λ'_j is $1/2$ (resp. $-1/2$) if $\nu_{\gamma+1} = 0$ and $j \in I_2(\rho(\lambda))$ or $\nu_{\gamma+1} = 1$ and $j \in I_1(\rho(\lambda))$ (resp. $\nu_{\gamma+1} = 0$ and $j \in I_1(\rho(\lambda))$ or $\nu_{\gamma+1} = 1$ and $j \in I_2(\rho(\lambda))$).

Now, we can determine the excitation contents of the intermediate states for the dynamical density two-point correlation function is given by the following set of quasiparticle and quasiholes:

$$\begin{align*}
\{ & \text{one quasiparticle with spin } \sigma \\
& \beta + 1 \text{ quasiholes with spin } -\sigma \\
& \beta \text{ quasiholes with spin } \sigma,
\end{align*} \quad (40)$$

where $\sigma = \pm 1/2$. This is consistent with the result in ref. \[1\]. Similarly, the excitation contents of the intermediate states for the dynamical spin-density two-point correlation function is given by the following sets of quasiparticle and quasiholes:

$$\begin{align*}
\{ & \text{one quasiparticle with spin } \sigma \\
& \beta \text{ quasiholes with spin } -\sigma \\
& \beta + 1 \text{ quasiholes with spin } \sigma,
\end{align*} \quad (41)$$

and

$$\begin{align*}
\{ & \text{one quasiparticle with spin } \sigma \\
& \beta + 2 \text{ quasiholes with spin } -\sigma \\
& \beta - 1 \text{ quasiholes with spin } \sigma.
\end{align*} \quad (42)$$

It is remarkable that two types of the set of the elementary excitations contribute to the dynamical spin-density two-point correlation function.

For later convenience, using (38) and (39), we rewrite (33) and (34) as

$$\langle \rho(x, t) \rho(0, 0) \rangle_n = \frac{4}{\pi^2} \sum_{\nu=(\nu_1, \cdots, \nu_{\gamma+1}) \in (0, 1)^{\gamma+1}} \sum_{\lambda \in \Lambda_{\nu_1}^\gamma} \sum_{\kappa \text{ even } \rho(\lambda) = \nu} |P_{\lambda}|^2 X_{\lambda} Y_{\lambda}^{-1} Z_{\lambda} e^{-itE_{\lambda}} \cos(x P_{\lambda}) \quad (43)$$
\[
\langle s(x,t)s(0,0) \rangle_n = \frac{1}{2L^2} \sum_{\nu=(\nu_1,\cdots,\nu_{\gamma+1}) \in \{0,1\}^{(\gamma+1)}} \sum_{\lambda \in \Lambda_n^{(\gamma)}} X_\lambda Y_\lambda^{-1} Z_\lambda e^{-itE_\lambda} \cos(xP_\lambda)
\]

\[
+ \frac{1}{2L^2} \sum_{\nu=(\nu_1,\cdots,\nu_{\gamma+1}) \in \{0,1\}^{(\gamma+1)}} \sum_{\lambda \in \Lambda_n^{(\gamma)}} X_\lambda Y_\lambda^{-1} Z_\lambda e^{-itE_\lambda} \cos(xP_\lambda).\tag{44}
\]

The first summation in the right hand side of (43) is taken over \(2\gamma C_{(\gamma+1)/2}\) different parities, since

\[
2\gamma C_{(\gamma+1)/2} = \#\{\nu = (\nu_1,\cdots,\nu_{\gamma+1}) \in \{0,1\}^{(\gamma+1)} | \#I_1(\nu) = \beta + 1\}.\tag{45}
\]

Similarly, the first summations of the first and second line in the right hand side of (44) are respectively taken over \(2\gamma C_{(\gamma-1)/2}\) and \(2\gamma C_{(\gamma+3)/2}\) different parities.

3.2 Quasiparticle and quasihole description of the dynamical correlation functions

To take the thermodynamic limit, next our task is to rewrite the formulae (43) and (44) in terms of parameters which correspond to the momenta of quasiholes and quasiparticle (see [14]). We have already introduced such parameters, i.e., \(\lambda = (\lambda_1', \lambda_2', \cdots, \lambda_\gamma'; r)\). The quantities \(\lambda_1', \lambda_2', \cdots, \lambda_\gamma'\) and \(r\) are respectively related to the momenta of quasiholes and quasiparticle.

Although it can be possible to proceed the calculation by using the parameters \(\lambda_1', \lambda_2', \cdots, \lambda_\gamma'\) and \(r\), it is appropriate to introduce new parameters as follows. We define the following numbers [10]:

\[
w_i(\lambda) = \#\{s \in i\text{th row of } \lambda | s : \text{white}\}, \tag{46}
\]

\[
w_j(\lambda') = \#\{s \in j\text{th column of } \lambda | s : \text{white}\}. \tag{47}
\]

We note that, using these numbers, we have \(|W_\lambda| = \sum_{i=1}^{\gamma} w_i(\lambda) = \sum_{j=1}^{\lambda_1} w_j(\lambda')\). Then, instead of \(\lambda_1', \lambda_2', \cdots, \lambda_\gamma'\) and \(r\), we adopt \(w_1(\lambda'), \cdots, w_\gamma(\lambda'),\) and \(p = w_1(\lambda) - \gamma\) as the parameters. These two sets of parameters are related by the formulæ

\[
\lambda_j' = \begin{cases} 2w_j(\lambda') - 1, & \text{if } j: \text{odd}, \lambda_j': \text{odd}, \\ 2w_j(\lambda'), & \text{if } j: \text{even}, \lambda_j': \text{even}, \\ 2w_j(\lambda') + 1, & \text{if } j: \text{even}, \lambda_j': \text{odd}, \end{cases} \tag{48}
\]

and

\[
r = \begin{cases} 2p + 1, & \text{if } r: \text{odd}, \\ 2p, & \text{if } r: \text{even}. \end{cases} \tag{49}
\]

Let us rewrite the formulæ for the dynamical correlation functions (43) and (44) by using \(w_1(\lambda'), \cdots, w_\gamma(\lambda'),\) and \(p\). First of all, for \(\lambda \in \Lambda_n^{(\gamma)}\), we have

\[
|W_\lambda| = \sum_{j=1}^{\lambda_1} w_j(\lambda') = \sum_{j=1}^{\gamma} w_j(\lambda') + p, \tag{50}
\]

\[
n_w(\lambda) = \sum_{\nu'(s) \in W_\lambda} \nu'(s) = \sum_{1 \leq j \leq \gamma} (w_j(\lambda')^2 - w_j(\lambda')) + \sum_{2 \leq j \leq \gamma - 1} w_j(\lambda')^2, \tag{51}
\]

\[
n_w(\lambda') = \sum_{\nu'(s) \in W_\lambda} \nu'(s) = \sum_{j=1}^{\gamma} (j - 1)w_j(\lambda') + p(p + \gamma). \tag{52}
\]

Then, from the definitions (23) and (26), we obtain the formulæ for \(E_\lambda\) and \(P_\lambda\).
Next we rewrite X_{λ}, Y_{λ} and Z_{λ}. For this purpose, following Ha [4], we decompose a partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \Lambda_n^{(s)}$ into three sub-diagrams $\lambda = A_{\lambda} \cup B_{\lambda} \cup C_{\lambda}$ where

\begin{align*}
A_{\lambda} &= \{ (i, j) \in \Lambda_n^{(s)} | 1 \leq j \leq \gamma \}, \\
B_{\lambda} &= \{ (i, j) \in \Lambda_n^{(s)} | 1 \leq j \leq \gamma, 2 \leq i \leq \lambda_j \}, \\
C_{\lambda} &= \{ (1, j) \in \Lambda_n^{(s)} | \gamma + 1 \leq j \leq \lambda_1 \}.
\end{align*}

(53) (54) (55)

For example, if $\lambda = (13, 5, 5, 4, 4, 4, 2, 2, 1) = (10, 9, 7, 4, 8) \in \Lambda_n^{(5)}$, then A_{λ} = sub-diagram which contains \blacktriangle in the following diagram, B_{λ} = sub-diagram which contains \blacklozenge, and C_{λ} = sub-diagram which contains \blacktriangleleft

![Diagram](image)

\[\lambda = \]

We denote $W_{A_{\lambda}} = W_{A_{\lambda}} \cap D_{\lambda}, B_{D_{\lambda}} = B_{B_{\lambda}} \cap D_{\lambda}$ and $H_{2,C_{\lambda}} = H_{2, D_{\lambda}} = H_{2}(\lambda) \cap D_{\lambda}$ for $D = A, B, C$. (Notice that $(1, 1) \in W_{A_{\lambda}}$ (if $\lambda \neq \emptyset$).)

For a colored partition $\lambda \in \Lambda_n^{(s)}$, we denote $X_{D_{\lambda}} = \prod_{s \in W_{D_{\lambda}} \setminus \{(1, 1)\}} c(s; \gamma)^2$ and $Y_{D_{\lambda}} = \prod_{s \in H_{2,D_{\lambda}}} d(s; \gamma)$ for $D = A, B, C$. It is obvious that $X_{A_{\lambda}} = X_{A_{\lambda}} X_{B_{\lambda}} X_{C_{\lambda}}, Y_{A_{\lambda}} = Y_{A_{\lambda}} Y_{B_{\lambda}} Y_{C_{\lambda}}$ and $Z_{A_{\lambda}} = Z_{A_{\lambda}} Z_{B_{\lambda}} Z_{C_{\lambda}}$. Then, it is easy to show that, for $\lambda \in \Lambda_n^{(s)}$,

\begin{align*}
X_{A_{\lambda}} &= 2^{\gamma - 1} \Gamma(\gamma + 1)/2, \\
X_{B_{\lambda}} &= \xi^{\gamma + 1} \prod_{j=1}^{\gamma} \xi^{2w_j(\lambda')} \Gamma^{-2}(j/\gamma) \\
&\times \prod_{\substack{1 \leq j \leq \gamma \\text{j: odd}}} \Gamma^2(w_j(\lambda') - \xi(j - 1)) \prod_{\substack{2 \leq j \leq \gamma - 1 \\text{j: even}}} \Gamma^2(w_j(\lambda') + 1/2 - \xi(j - 1)), \\
X_{C_{\lambda}} &= 2^{2p+1} \Gamma^2(p + (\gamma + 1)/2)/\Gamma^2((\gamma + 1)/2), \\
Y_{C_{\lambda}} &= 2^{2p+1} \Gamma(p + 1)/\Gamma((\gamma + 1)/2), \\
Z_{A_{\lambda}} &= \prod_{\substack{1 \leq j \leq \gamma \\text{j: odd}}} \gamma j - 1 \gamma j - \gamma, \\
Z_{B_{\lambda}} &= \prod_{\substack{1 \leq j \leq \gamma \\text{j: odd}}} \Gamma(n/2 + \xi j - \xi) \Gamma(n/2 - w_j(\lambda') + \xi j + 1/2) \\
&\times \prod_{\substack{2 \leq j \leq \gamma - 1 \\text{j: even}}} \Gamma(n/2 + \xi j - \xi + 1/2) \Gamma(n/2 - w_j(\lambda') + \xi j + 1/2), \\
Z_{C_{\lambda}} &= \Gamma(\gamma n/2 + 1) \Gamma(\gamma n/2 + p + (\gamma + 1)/2)/\Gamma(\gamma n/2 + (\gamma + 1)/2), \\
\end{align*}

(56) (57) (58) (59) (60) (61) (62)

where $\xi = (2\gamma)^{-1}$. Notice that we can derive all above formulae without fixing the parity $\rho(\lambda)$.

On the other hand, to derive the explicit forms of \(Y_{A\lambda} \) and \(Y_{B\lambda} \), for \(\lambda \in \Lambda^{(n)} \), we must fix the parity \(\rho(\lambda) \). In fact, to write down the explicit forms of \(Y_{A\lambda} \) and \(Y_{B\lambda} \), we need more complicated notations. However, for the purpose of taking the thermodynamic limit, the necessary information are the sets \(I_1(\rho(\lambda)) \), \(I_2(\rho(\lambda)) \), and the quantities of order \(O(n) \). We see that, after replacing the elements of sets \(I_1 \) and \(I_2 \) appropriately, the thermodynamic limit of \(Y_{D\lambda} \) and \(Y_{D\lambda'} \), with \(\rho(\lambda) \neq \rho(\lambda') \) coincide with each other (\(D = A, B \)). We do not give the explicit forms of \(Y_{A\lambda} \) and \(Y_{B\lambda} \) for the general admissible colored partition \(\lambda \). In Appendix B, we give the examples for some admissible colored partitions. The thermodynamic limit of \(Y_{A\lambda} \) and \(Y_{B\lambda} \) for general admissible colored partitions are easily obtained from those examples.

Finally, we change the summation indices for the sums in the dynamical correlation functions. For example, we rewrite the sum in the density two-point correlation function \(Y_{K} \) as

\[
\sum_{\nu=\nu_1 \cdots \nu_{\gamma+1} \in (\gamma+1) \times (\gamma+1)} \sum_{\rho \geq 0} \sum_{n/2 \nu j_1(\lambda') \geq \cdots \geq n/2 w_{j_{\beta+1}(\lambda') \geq 0} \sum_{\rho \geq 0} \sum_{n/2 \nu k_1(\lambda') \geq \cdots \geq w_{k_{\beta}(\lambda')} \geq 0} ,
\]

where \(\{j_1^{\beta+1} = I_1(\rho(\lambda) = \nu) \) such that \(j_1 \geq \cdots \geq j_{\beta+1} \) and \(\{k_1^{\beta} = I_2(\rho(\lambda) = \nu) \) with \(k_1 \geq \cdots \geq k_{\beta} \).

3.3 Thermodynamic limit

In this subsection, we take the thermodynamic limit, \(i.e., n \to \infty, L \to \infty \) with \(\rho_0 = n/L \) fixed.

Let us introduce the momenta \(u \) and \(v_j \) for \(j = 1, \cdots, \gamma \) of the quasiparticle and quasiholes, respectively, by the formulæ,

\[
\frac{1}{\gamma n} p \rightarrow \frac{u + 1}{4}, \quad \frac{w_j(\lambda')}{n} \rightarrow \frac{v_j + 1}{4}.
\]

Then we have the thermodynamic limit of the energy and total momentum,

\[
E_{\lambda} \rightarrow E = \sum_{j=1}^{\gamma} \epsilon_h(v_j) + \epsilon_p(u),
\]

\[
P_{\lambda} \rightarrow P = \frac{\pi \rho_0}{2} \left[\sum_{j=1}^{\gamma} v_j - \gamma u \right],
\]

where

\[
\epsilon_h(y) = \gamma \frac{1}{2} \left(\frac{\pi \rho_0}{2} \right)^2 (1 - y^2),
\]

\[
\epsilon_p(y) = \gamma \frac{1}{2} \left(\frac{\pi \rho_0}{2} \right)^2 (y^2 - 1).
\]

We have adopted the normalization \((64)\) and \((65)\) of \(u \) and \(v_j \) so that the Fermi points coincides with \(\{\pm 1\} \).

Also, using the formula \(\lim_{|a| \to \infty} \Gamma(a + z)/\Gamma(a) = a^z \), we can obtain the thermodynamic limit of \(X_{\lambda}^{-1} Y_{\lambda}^{-1} Z_{\lambda} \). In the following, we consider the case of density two-point correlation function. In this case, we have

\[
X_{\lambda} Y_{\lambda}^{-1} Z_{\lambda} \rightarrow L^{-(\gamma+1)2^{\gamma}(\gamma \rho_0)^{-(\gamma+1)}} \Gamma((\gamma + 1)/2) \prod_{j=1}^{\gamma} \Gamma(\xi + 1/2) \Gamma^{-2}(j/\gamma)
\]

\[
\times (\rho^2 - 1)^{(\gamma-1)/2} \prod_{j=1}^{\gamma} (1 - v_j^2)^{\xi - 1/2} \prod_{j \in I_1(\rho(\lambda))} (u - v_j)^{-2}
\]

\[
\times \prod_{s=1,2} \prod_{j,k \in I_1(\rho(\lambda)) \atop j < k} (v_j - v_k)^{-2(\xi + 1/2)} \prod_{j \in I_1(\rho(\lambda))} \prod_{k \in I_2(\rho(\lambda))} (v_j - v_k)^{-2(\xi - 1/2)}
\]
for a d-d admissible colored partition \(\lambda \in \Lambda_n^{(\gamma)} \) with the fixed parity \(\rho(\lambda) \).

For each d-d admissible colored partition \(\lambda \in \Lambda_n^{(\gamma)} \) with the fixed parity \(\rho(\lambda) \), we replace \(\{v_j\}_{j \in I_1(\rho(\lambda))} \) and \(\{v_j\}_{j \in I_2(\rho(\lambda))} \) by \(\{v_j\}_{j=1}^{\beta+1} \) such that \(v_1 \geq \cdots \geq v_{\beta+1} \) and \(\{w_j\}_{j=1}^{\beta} \) such that \(w_1 \geq \cdots \geq w_{\beta} \), respectively.

In the thermodynamic limit, we rewrite the sums as integrals

\[
\sum_{n/2 \geq w_{\beta}} \sum_{\lambda' \geq \lambda} L^{2-2\gamma_0} \rho_0 \int_{\lambda' \geq \lambda} dv_1 dv_2 \cdots dv_{\beta+1} \int_{\lambda' \geq \lambda} dw_1 dw_2 \cdots dw_{\beta+1} (71)
\]

\[
\sum_{p \geq 0} \rightarrow -L^{2-2\gamma_0} \rho_0 \int_{-\infty}^{-1} du. \quad (72)
\]

Notice that, for each d-d admissible colored partition \(\lambda \in \Lambda_n^{(\gamma)} \) with the fixed parity \(\rho(\lambda) \), the energy \(\mathcal{E} \), total momentum \(\mathcal{P} \) and thermodynamic limit of the quantity \(X_j Y_{\lambda}^{-1} Z_{\lambda} \) are invariant under the exchange \(v_i \leftrightarrow v_j \) and/or \(w_i \leftrightarrow w_j \). Then, finally, after removing the order on momenta, we arrive at the formula (74). This formula coincides with our previous result in (11) up to the constant factor.

The formula (74) can be derived in the same way.

Essential part of the formulae (11) and (13) can be described by the function \(F_{\beta} \). As is the spinless case (14), we call the function \(F_{\beta} \) the minimal form factor of the \(SU(2) \) spin CS model (with integer coupling parameter). The physical interpretation of the minimal form factor has been discussed in ref. (16).

4 Conclusion

In this work, we have taken the thermodynamic limit of dynamical density and spin-density two-point correlation functions of the spin CS model. We have obtained the exact formulae (10) and (11) of the density and spin-density two-point correlation functions, respectively. We have exactly shown that, with appropriate numbers of quasiparticles and quasiholes, the dynamical correlation functions of the spin CS model can be described by the unique function \(F_{\beta} \) which is called the minimal form factor. These results are consistent with our previous work (11).

Appendix A

In this appendix, we prove the following lemma: for a colored partition \(\lambda \in \Lambda_n \) with even (resp. odd) weight, \(S_\lambda = 0 \) (resp. \(\pm 1 \)) \(|W_\lambda| = |H_2(\lambda)| \) (resp. \(|H_2(\lambda)| + 1 \)). In this appendix, we do not assume that \(n \) is even.

We introduce the notations. The partition \(\lambda = (\lambda_1, \lambda_2, \cdots) \) can be represented by the notation \(\lambda = (1^{m_1(\lambda)} 2^{m_2(\lambda)} \cdots) \) where \(m_i(\lambda) = \#\{j \mid \lambda_j = i\} \). Using this notation, we define the following transformations \(\tau_i \) and \(\tau'_i \) for \(i \in \mathbb{Z}_{\geq 0} \):

\[
\tau_i : \lambda = (1^{m_1(\lambda)} 2^{m_2(\lambda)} \cdots i^{m_i(\lambda)} \cdots) \rightarrow \begin{cases} (1^{m_1(\lambda)} 2^{m_2(\lambda)} \cdots i^{m_i(\lambda)-2} \cdots), & m_i(\lambda) \geq 2, \\ \lambda, & m_i(\lambda) < 2, \end{cases} \quad (73)
\]

\[
\tau'_i : \lambda \rightarrow (\tau_i(\lambda'))'. \quad (74)
\]

That is, \(\tau_i \) (\(\tau'_i \)) is the following transformation: if there exist two rows (columns) which have same number of squares \(i \) then \(\tau_i \) (\(\tau'_i \)) removes these rows (columns), if not then \(\tau_i \) (\(\tau'_i \)) is the identity. If \(\lambda \) has even (odd) weight then both \(\tau_i(\lambda) \) and \(\tau'_i(\lambda) \) have even (odd) weights. We introduce the special partition \(\delta(k) \in \Lambda_n \) by

\[
\delta(k) = \begin{cases} \varnothing, & k = 0, \\ (k, k-1, \cdots, 1) = (1^{2^1 \cdots k^1}), & k = 1, \cdots, n. \end{cases} \quad (75)
\]
In this appendix, we give examples of the explicit formula for δ_n in this case, and the fact proves the lemma.

We see that the set of all d-d (resp. s-s) admissible colored partitions is the set Λ. The partitions λ are defined as follows: for a colored partition λ, we have the explicit formula for δ_n and τ and τ' can be defined on the set of all colored partitions. For instance,

$$\tau = \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{pmatrix} - \begin{pmatrix} \bullet \\ \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix} = \delta(2)$$

We define the following numbers: for a colored partition $\lambda \in \Lambda_n$, $wb(\lambda) = |W_\lambda| - |B_\lambda| (= S_\lambda)$ and $wh(\lambda) = |W_\lambda| - |H_2(\lambda)|$. It is easy to see that these numbers are invariant under the transformations τ and τ', i.e., $wb(\tau(\lambda)) = wb(\lambda)$, $wb(\tau'(\lambda)) = wb(\lambda)$ and same formulae for wh. Therefore $wb(\tau(\lambda)) = wb(\lambda)$ and $wb(\tau'(\lambda)) = wb(\lambda)$. Moreover we have

$$wb(\delta(k)) = \begin{cases} 0, & k = 0, \\
1, & k = 2l - 1, \quad (l = 1, 2, \ldots), \\
-l, & k = 2l, \quad (l = 1, 2, \ldots) \end{cases}$$

(Notice that $H_2(\delta(k)) = \emptyset$ for all k).

We define the subset $\Lambda_n(\delta(k))$ of Λ_n by

$$\Lambda_n(\delta(k)) = \{ \lambda \in \Lambda_n | \tau(\lambda) = \delta(k) \}.$$

(76)

(77)

It is important to note the following fact: if $\lambda \in \Lambda_n(\delta(k))$ then $wb(\lambda) = wb(\delta(k))$ and $wh(\lambda) = wh(\delta(k))$. Therefore, from the formulae \mathcal{R} and \mathcal{T}, $\Lambda_n(\delta(k)) \cap \Lambda_n(\delta(k')) = \emptyset$ if $k \neq k'$. This fact proves the lemma.

We have the following decomposition for the set of all colored partitions Λ_n

$$\Lambda_n = \bigcup_{k=0}^n \Lambda_n(\delta(k)).$$

(79)

We see that the set of all d-d (resp. s-s) admissible colored partitions is the set $\Lambda_n(\delta(0)) \cap \Lambda_n^{(\gamma)}$ (resp. $\Lambda_n(\delta(1)) \cup \Lambda_n(\delta(2)) \cap \Lambda_n^{(\gamma)}$).

Appendix B

In this appendix, we give examples of the explicit formula for Y_{A_λ} and Y_{B_λ}.

a) Example for the d-d admissible colored partition

We consider the d-d admissible colored partition $\lambda \in \Lambda_n^{(\gamma)}$ with parity $\rho(\lambda) = (1, 1, \ldots, 1)$. In this case, $I_1(\rho(\lambda)) = \{ j \in I | j : \text{odd} \}$ and $I_2(\rho(\lambda)) = \{ j \in I | j : \text{even} \}$.

We have the explicit formula for Y_{A_λ} and Y_{B_λ}

$$Y_{A_\lambda} = \xi^{-(\gamma+1)} \prod_{j \in I_2(\rho(\lambda))} \left(p/\gamma + w_j(\lambda') - 1/2 - \xi(j - 2) \right)(p/\gamma + w_j(\lambda') - \xi(j - 1)), $$

(80)

$$Y_{B_\lambda} = \xi^{\gamma+1} \frac{\Gamma((1 + 1/\gamma)/2)}{\Gamma(\xi(j - 1))} \prod_{j \in I_1(\rho(\lambda))} \xi^{-2w_j(\lambda')} \gamma \prod_{j=1}^\gamma \Gamma\left(w_j(\lambda') - \xi(j - 1)\right) \Gamma\left(w_j(\lambda') - \xi(j - 1) + 2\right)$$
c) Example for the type II s-s admissible colored partition

We have the explicit formulae for

\[\mu = \begin{cases} j \in I_1(\rho(\lambda)) \times I_1(\rho(\lambda)), \\ j < k \end{cases} \]

\[\prod_{j, k \in I_1(\rho(\lambda)), \, j < k} \frac{\Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) - \xi - 1/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 1/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 1)}{\Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) - \xi - 1/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 1/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 1/2)} \]

\[\times \prod_{j, k \in I_1(\rho(\lambda)), \, j < k} \frac{\Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) - 3/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) - 3/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 3)}{\Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) - 1/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 1/2) \Gamma(w_j(\lambda') - w_k(\lambda') + \xi(k - j) + 3/2)} \]

b) Example for the type I s-s admissible colored partition

We consider the type I s-s admissible colored partition \(\mu \in \Lambda_n^{(\gamma)} \) with parity \(\rho(\mu) = (1, 1, \ldots, 1, 0) \). In this case, \(I_1(\rho(\lambda)) = \{ j \in I \mid j : \text{even} \} \) and \(I_2(\rho(\mu)) = \{ j \in I \mid j : \text{odd} \} \).

The formula for \(Y_{A_n} \) is given by

\[Y_{A_n} = \xi^{-(\gamma - 1)} \prod_{j \in I_1(\rho(\mu))} (p' \gamma + w_j(\mu') + 1 - \xi j)(p' \gamma + w_j(\mu') + 1 - \xi j). \]

(82)

The explicit form of \(Y_{B_n} \) is given by the same formula as in a) with replacement of \(I_1(\rho(\lambda)) \) and \(I_2(\rho(\lambda)) \) by \(I_1(\rho(\mu)) \) and \(I_2(\rho(\mu)) \), respectively.

c) Example for the type II s-s admissible colored partition

Finally, we consider the type II s-s admissible colored partition \(\eta \in \Lambda_n^{(\gamma)} \) with parity

\[\rho(\eta) = (0, 1, 0, 1, \ldots, 0, 1, 0, 1, 0, 1, \ldots, 0, 1, 0), \quad ((\gamma + 3)/2 : \text{odd}). \]

In this case, \(I_1(\rho(\eta)) = \{ 1, \ldots, \beta + 2 \} \) and \(I_2(\rho(\eta)) = \{ \beta + 3, \ldots, 2\beta + 1 \} \).

We have the explicit formulae for \(Y_{A_n} \) and \(Y_{B_n} \)

\[Y_{A_n} = \xi^{-(\gamma + 3)} \prod_{j \in I_1(\rho(\eta))} (p' \gamma + w_j(\eta') - \xi j)(p' \gamma + w_j(\eta') + 1 - \xi j) \]

\[\times \prod_{j \in I_1(\rho(\eta))} (p' \gamma + w_j(\eta') + 1 - \xi j)(p' \gamma + w_j(\eta') + 1 - \xi j), \]

(83)

\[Y_{B_n} = \xi^{\gamma + 5} \Gamma((1 + 1/\gamma)/2)^{-\gamma} \prod_{j=1}^{\gamma} \xi^{-2w_j(\eta')} \]

\[\times \prod_{s=1,2} \prod_{j \in I_1(\rho(\eta))} \Gamma(w_j(\eta') - \xi j)(w_j(\eta') + 1/2) \]

\[\times \prod_{s=1,2} \prod_{j \in I_1(\rho(\eta))} \Gamma(w_j(\eta') - \xi j + 1/2), \]
\[
\times \prod_{s=1,2} \prod_{j,k \in I_s(\rho(q))} \sum_{j<k} \frac{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j)) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - \xi + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1)}{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + \xi + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1)}
\]

\[
\times \prod_{s=1,2} \prod_{j,k \in I_s(\rho(q))} \sum_{j<k} \frac{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j)) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - \xi + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2)}{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + \xi + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2)}
\]

\[
\times \prod_{s=1,2} \prod_{j,k \in I_s(\rho(q))} \sum_{j<k} \frac{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - \xi)}{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + \xi + 1) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 3/2)}
\]

\[
\times \prod_{j \in I_1(\rho(q)), k \in I_2(\rho(q))} \sum_{j<k} \frac{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - \xi + 3/2)}{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1)}
\]

\[
\times \prod_{j \in I_1(\rho(q)), k \in I_2(\rho(q))} \sum_{j<k} \frac{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - \xi + 1)}{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2)}
\]

\[
\times \prod_{j \in I_1(\rho(q)), k \in I_2(\rho(q))} \sum_{j<k} \frac{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 3/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) - \xi + 2)}{\Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2) \Gamma(w_j(\eta') - w_k(\eta') + \xi(k-j) + 1/2)}
\]

Acknowledgement:
The authors thank Y. Kato and Y. Kuramoto for discussions. TY is grateful to K. Takemura for useful comments. TY was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Science and Technology Agency of Japan.

References
[1] Z. N. C. Ha and F. D. M. Haldane, Phys. Rev. B 46 (1992) 9359.
[2] J. A. Minahan and A. P. Polychronakos, Phys. Lett. 302B (1993) 265.
[3] F. Calogero, J. Math. Phys. 10 (1969) 2191, 2197.
[4] B. Sutherland, Phys. Rev. A4 (1971) 2019, A5 (1972) 1372, J. Math. Phys. 12 (1971) 246, 251.
[5] Y. Kato, Phys. Rev. Lett. 78 (1997) 3191.
[6] T. H. Baker and P. J. Forrester, Nucl. Phys. B 492 (1997) 682.
[7] C. F. Dunkl, Commun. Math. Phys. 197 (1998) 451.
[8] Y. Kato and T. Yamamoto, J. Phys. A 31 (1998) 9171.
[9] K. Takemura and D. Uglov, J. Phys. A 30 (1997) 3685.

[10] D. Uglov, Commun. Math. Phys. 191 (1998) 663.

[11] Y. Kato, T. Yamamoto and M. Arikawa, J. Phys. Soc. Jpn. 66 (1997) 1954.

[12] N. Kawakami, Phys. Rev. B 46 (1992) 1005, 3191, J. Phys. Soc. Jpn. 62 (1993) 2270, 4163.

[13] I. G. Macdonald, *Symmetric Functions and Hall Polynomials, 2nd ed.*, (Oxford University Press, 1995).

[14] Z. N. C. Ha, Phys. Rev. Lett. 73 (1994) 1574, 74 (1995) 620 (errata), Nucl. Phys. B 435 (1995) 604.

[15] F. Lesage, V. Pasquier and D. Serban, Nucl. Phys. B 435 (1995) 585.