BACKGROUND: Evidence indicates that in utero exposure to chorioamnionitis might increase the risk of neurodevelopmental disorders in the offspring. However, findings on this topic have been inconsistent.

OBJECTIVE: To examine the association between chorioamnionitis and neurodevelopmental disorders in offspring.

STUDY DESIGN: This was a retrospective population-based cohort study in Sweden. A total of 2,228,280 singleton live births and stillbirths between 1998 and 2019 were included in our study population. Data on maternal characteristics and neurodevelopmental disorders in offspring were obtained by individual record-linkages of nationwide Swedish registries. Chorioamnionitis was identified using the National Medical Birth Register. Inpatient and outpatient diagnoses were obtained for cerebral palsy, autism, attention deficit hyperactivity disorder, epilepsy, and intellectual disability. Multivariable Cox proportional hazards regression was used to estimate the association between chorioamnionitis and each neurodevelopmental disorder with adjusted hazard ratios and 95% confidence intervals. A causal mediation analysis of the relationship between chorioamnionitis and neurodevelopmental disorders with preterm delivery was performed.

RESULTS: A total of 5770 (0.26%) offspring were exposed to chorioamnionitis during pregnancy. During the study’s follow-up time there were 4752 (0.21%) cases of cerebral palsy, 17,897 (0.80%) cases of autism, 14,574 (0.65%) cases of attention deficit hyperactivity disorder, and 14,574 (0.65%) cases of intellectual disability. After adjusting for potential confounders, exposure to chorioamnionitis increased the hazard ratios of cerebral palsy (adjusted hazard ratio, 7.43; 95% confidence interval, 5.90–9.37), autism (adjusted hazard ratio, 1.43; 95% confidence interval, 1.21–1.68), attention deficit hyperactivity disorder (adjusted hazard ratio, 1.17; 95% confidence interval, 1.03–1.33), and intellectual disability (adjusted hazard ratio, 1.99; 95% confidence interval, 1.53–2.58), whereas chorioamnionitis was not significantly associated with higher rates of epilepsy in offspring. Mediation analysis revealed that these associations were mainly explained through preterm delivery; however, increased risk was also observed among term infants.

CONCLUSION: Chorioamnionitis increases the risk of neurodevelopmental disorders, particularly cerebral palsy, autism, attention deficit hyperactivity disorder, and intellectual disability. These associations were mainly mediated through preterm delivery. Efforts for timely identification and appropriate interventions to treat infections during pregnancy will have sustained benefits in reducing the burden of neurologic complications in children at the population level.

Key words: attention deficit hyperactivity disorder, autism, cerebral palsy, chorioamnionitis, epilepsy, intellectual disability, intraamniotic inflammation, intraamniotic infection, neurodevelopmental disorders

Introduction
Neurodevelopmental disorders represent a significant public health issue worldwide and are responsible for a considerable proportion of the global burden of disease. Over the last decades, there has been a rise in the prevalence of neurodevelopmental disorders and an increase in the number of individuals acquiring such diagnosis. Many risk factors are likely to operate during fetal life and infancy, the earliest and most sensitive stages of brain development.

Evidence indicates that maternal infections, in particular chorioamnionitis, might negatively affect the sensitive fetal brain and lead to brain injury, adverse neurodevelopmental outcomes, and an increased lifetime risk of specific psychiatric diseases. Clinical chorioamnionitis is globally the most common infection-related complication in labor and delivery wards and is estimated to have a prevalence of 1% to 6% in all pregnancies in the United States, whereas intraamniotic infection might be present in 10% of patients with perterm labor. Clinical chorioamnionitis has been characterized as a syndrome rather than a single entity, linked with proven intraamniotic infection, sterile intraamniotic inflammation, or signs of a maternal systemic inflammatory process without intraamniotic inflammation. The diagnostic criteria involve the presence of fever with 2 or more of the following: maternal or fetal tachycardia, maternal leukocytosis, tenderness of the uterus, and purulent or malodorous amniotic fluid.

Chorioamnionitis has been shown to be associated with long-term neonatal outcomes, such as cerebral palsy. However, epidemiologic evidence about the association between chorioamnionitis and risks of other long-term neurologic disorders in offspring is limited. Therefore, in this Swedish nationwide population-based cohort study of >2 million singleton births, we...
Evidence indicates that in utero exposure to chorioamnionitis might increase the risk of neurodevelopmental outcomes in the offspring. However, findings on this topic have been inconsistent. This study aimed to examine the association between chorioamnionitis and long-term neurodevelopmental disorders in the offspring.

Key findings
Chorioamnionitis increases the risk of neurodevelopmental disorders, particularly cerebral palsy, autism, attention deficit hyperactivity disorder (ADHD), and intellectual disability. These associations were mediated through preterm birth; however, increased risk was also observed among term infants.

What does this add to what is known?
Chorioamnionitis was associated with increased hazard ratios of 7.43 for cerebral palsy, 1.43 for autism, 1.17 for ADHD, and 1.99 for intellectual disability in the offspring (compared with offspring not exposed to chorioamnionitis), even after adjusting for several potential confounders. Preterm delivery accounted for a large proportion of the neurodevelopmental disorder risk associated with chorioamnionitis.

Aim
To investigate the association between chorioamnionitis and long-term neurodevelopmental disorders in offspring, in particular cerebral palsy, autism, attention deficit hyperactivity disorder (ADHD), epilepsy, and intellectual disability. We also examined the extent to which preterm delivery mediates the effect of chorioamnionitis on neurodevelopmental disorders in offspring. We hypothesized that the exposure to chorioamnionitis is associated with increased risks of long-term neurodevelopmental disorders in offspring.

Materials and Methods
Using the Swedish Medical Birth Register, our cohort comprised all singleton births at ≥22 completed gestational weeks in Sweden from January 1, 1998, through December 31, 2019. Using the unique personal national registration numbers of mothers and their offspring the Medical Birth Register was cross-linked with the nation-wide National Patient, National Prescribed Drug, Total Population and Education Registers. Since 1997, diseases have been coded according to the Swedish version of the International Classification of Diseases, Tenth Revision (ICD-10). The Anatomical Therapeutic Chemical Classification System and the Drug Identification Numbers were used to retrieve the prescription medications for ADHD.

Exposure
Women with chorioamnionitis were identified from the Medical Birth Register with diagnosis records for the ICD-10 code O41.1 (including diagnoses of infection of amniotic sac and membranes, chorioamnionitis, and amnionitis) and their infants’ records including the ICD-10 code P02.7 (fetus or newborn affected by complications of placenta, cord, and membranes: chorioamnionitis). This case definition refers to clinical chorioamnionitis in the assessment of the clinician treating the mother and/or infant. Results of pathologic placental investigations were not available in our data sources.

Disorders
Adverse neurodevelopmental disorders included all clinically ascertained diagnoses of cerebral palsy, epilepsy, autism, ADHD, and intellectual disability. Children with epilepsy who had also cerebral palsy were not included in the epilepsy group. Diagnoses were identified from birth until December 31, 2020, in the National Patient Register and the prescription registry using ICD-10 codes (Supplemental Table 1 shows specific codes). In Sweden, all infants and preschool children regularly undergo routine medical and developmental examinations. At 4 years of age, a mandatory assessment of motor, language, cognitive, and social development is conducted. Children who are suspected of having a developmental disorder are referred to a specialist team for further assessment, with any diagnostic information reported to the National Patient Register.

Covariates
We obtained maternal information about the country of birth, age at child’s birth, early-pregnancy body mass index (BMI), height, parity, years of education, smoking during pregnancy, cohabitation with a partner, history of psychiatric disorders, prepregnancy hypertension, and diabetes mellitus. Infant’s information included the calendar year of birth, sex, gestational age at birth, birthweight for gestational age, and major congenital malformation. The percentiles of birthweight for gestational age were based on the Swedish fetal growth reference obtained from the Medical Birth Register.

Maternal BMI (kg/m²) was classified according to the World Health Organization as underweight (BMI <18.5), normal weight (18.5–24.9), overweight (25.0–29.9), obesity class I (30.0–34.9), and obesity class II and III (≥35.0). Mothers who reported daily smoking at the first antenatal visit and/or at 30 to 32 gestational weeks were classified as smokers.

The mode of delivery was obtained from obstetrical records and categorized as vaginal noninstrumental, vaginal instrumental, elective cesarean delivery, and emergency cesarean delivery.

Statistical analysis
Baseline demographic characteristics of children born to mothers with and without chorioamnionitis were compared as presented in Table 1.
Maternal characteristics	Total (n=2,228,280)	No chorioamnionitis (N=2,222,510)	Chorioamnionitis (N=5,770)	Pvalue
Maternal age (y)				
<19	32,245 (1.45)	32,139 (99.67)	106 (0.33)	<.001
20—24	278,510 (12.50)	277,805 (99.75)	705 (0.25)	
25—29	689,567 (30.95)	687,805 (99.74)	1762 (0.26)	
30—34	768,023 (34.47)	766,201 (99.76)	1822 (0.24)	
≥35	459,935 (20.64)	458,560 (99.70)	1375 (0.30)	
Country of birth				<.001
Nordic	1,747,142 (78.41)	1,742,965 (99.76)	4177 (0.24)	
Non-Nordic	478,948 (21.49)	477,364 (99.67)	1584 (0.33)	
Data missing	2190 (0.10)	2181 (99.59)	9 (0.41)	
Education (y)				<.001
≤9	189,100 (8.49)	188,507 (99.69)	593 (0.31)	
10—11	258,711 (11.61)	257,923 (99.70)	788 (0.30)	
12	570,843 (25.62)	569,403 (99.75)	1440 (0.25)	
13—14	320,862 (14.40)	319,996 (99.73)	866 (0.27)	
≥15	867,879 (38.95)	865,870 (99.77)	2009 (0.23)	
Data missing	20,885 (0.94)	20,811 (99.65)	74 (0.35)	
Mother cohabits with partner				<.001
Yes	1,986,484 (89.15)	1,981,738 (99.76)	4746 (0.24)	
No	128,252 (5.76)	127,729 (99.79)	523 (0.41)	
Data missing	113,544 (5.10)	113,043 (99.56)	501 (0.44)	
Parity				<.001
1	977,410 (43.86)	973,492 (99.60)	3918 (0.40)	
2	823,667 (36.96)	822,527 (99.86)	1140 (0.14)	
3	298,019 (13.37)	297,579 (99.85)	440 (0.15)	
≥4	129,184 (5.80)	128,912 (99.79)	272 (0.21)	
Maternal height (cm)				<.001
≤159	307,412 (13.80)	306,308 (99.64)	1104 (0.36)	
160—164	565,833 (25.39)	564,220 (99.71)	1613 (0.29)	
165—169	635,203 (28.51)	633,651 (99.76)	1552 (0.24)	
≥170	686,815 (30.82)	685,488 (99.81)	1327 (0.19)	
Data missing	33,017 (1.48)	32,843 (99.47)	174 (0.53)	
Smoking				<.001
No	1,970,016 (88.41)	1,965,174 (99.75)	4842 (0.25)	
Yes	169,202 (7.59)	168,704 (99.71)	498 (0.29)	
Data missing	89,062 (4.00)	88,632 (99.52)	430 (0.48)	

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022. (continued)
Maternal characteristics	Total (n=2,228,280)	No chorioamnionitis (N=2,222,510)	Chorioamnionitis (N=5,770)	P-value
Year of delivery				
1998—1999	164,677 (7.39)	164,345 (99.80)	332 (0.20)	<.001
2000—2004	453,815 (20.37)	452,897 (99.80)	918 (0.20)	
2005—2008	402,523 (18.06)	401,727 (99.80)	796 (0.20)	
2009—2012	430,092 (19.30)	429,119 (99.77)	973 (0.23)	
2013—2015	329,119 (14.77)	328,094 (99.69)	1025 (0.31)	
2016—2019	448,054 (20.11)	446,328 (99.61)	1726 (0.39)	
Maternal body mass index				
<18.5	50,502 (2.27)	50,409 (99.82)	93 (0.18)	<.001
18.5—24.9	1,224,691 (54.96)	1,222,204 (99.80)	2487 (0.20)	
25.0—29.9	514,705 (23.10)	513,222 (99.71)	1483 (0.29)	
30.0—34.9	177,365 (7.96)	176,693 (99.62)	672 (0.38)	
≥35.0	74,939 (3.36)	74,557 (99.49)	382 (0.51)	
Missing	186,078 (8.35)	185,425 (99.65)	653 (0.35)	
Pregestational diabetes mellitus				
No	2,188,462 (98.21)	2,182,864 (99.74)	5598 (0.26)	<.001
Yes	39,818 (1.79)	39,646 (99.57)	172 (0.43)	
Pregestational hypertension				.431
No	2,213,181 (99.32)	2,207,455 (99.74)	5726 (0.26)	
Yes	15,099 (0.68)	15,055 (99.71)	44 (0.29)	
Any psychiatric diagnoses				<.001
No	1,987,049 (89.17)	1,982,158 (99.75)	4891 (0.25)	
Yes	241,231 (10.83)	240,352 (99.64)	879 (0.36)	
Mode of delivery				
Vaginal noninstrumental	1,704,444 (76.49)	1,702,571 (99.89)	1873 (0.11)	<.001
Vaginal instrumental	153,563 (6.89)	153,123 (99.71)	440 (0.29)	
Elective cesarean delivery	182,067 (8.17)	181,859 (99.89)	208 (0.11)	
Emergency cesarean delivery	173,621 (7.79)	170,426 (98.16)	3195 (1.84)	
Data missing	14,585 (0.65)	14,531 (99.63)	54 (0.37)	
Gestational age at delivery (wk)				<.001
≥37	2,116,876 (95.00)	2,113,213 (99.83)	3663 (0.17)	
32—36	93,085 (4.18)	92,326 (99.18)	759 (0.82)	
28—31	10,770 (0.48)	10,278 (95.43)	492 (4.57)	
22—27	6408 (0.29)	5563 (86.81)	845 (13.19)	
Data missing	1141 (0.05)	1130 (99.04)	11 (0.96)	
Newborn’s sex				<.001
Male	1,146,581 (51.46)	1,143,493 (99.73)	3088 (0.27)	
Female	1,081,685 (48.54)	1,079,003 (99.75)	2682 (0.25)	
Data missing	14 (0.00)	14 (100)	0 (0.00)	

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022. (continued)
Summaries of categorical variables were presented in absolute numbers and proportions (%), whereas statistical significance was assessed by the Pearson chi-square test. Cumulative hazard curves were used to compare risks of each neurodevelopmental outcome over time according to chorioamnionitis status. The differences between the curves were assessed using the log-rank test. We calculated hazard ratios (HRs) and the corresponding 2-sided Wald-type 95% confidence intervals (CIs) using Cox proportional hazards regression models, which allowed detailed adjustment for censoring depending on the length of follow-up of each child. Each child was followed up from birth until the diagnosis of the outcome, death, emigration, or end of follow-up on December 31, 2020, whichever occurred first.

Adjusted HRs were obtained from multivariable Cox models in 3 steps, gradually adjusting for additional potential confounders. In model 1, we adjusted for maternal age at child’s birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner. In model 2, we also adjusted for major congenital malformations, and in model 3, additional adjustment was made for the mode of delivery. The robust sandwich estimate of the covariance matrix was used to calculate 95% CIs in all Cox models to account for the sequential births to the same mother.

Causal mediation analysis
We considered preterm birth (<37 weeks) as a potential mediator for the effect of chorioamnionitis on cerebral palsy, autism, ADHD, and intellectual disability (Supplemental Figure, Supplemental Table 2, Supplemental Table 3). Therefore, we undertook causal mediation analyses based on a counterfactual framework to disentangle the association between chorioamnionitis and the outcomes (ie, total effect) into the natural direct effect (the association between chorioamnionitis and the outcomes [cerebral palsy, autism, ADHD, and intellectual disability] in the absence of preterm birth) and the natural indirect effect (the association operating through the mediators). We also estimated the controlled direct effect, which provided an estimate of the effect of chorioamnionitis on the outcomes that is not mediated through preterm birth (ie, among term births). We also assessed the proportion of the total effect (on the HR scale) between chorioamnionitis and the outcome(s) that was mediated through preterm delivery. Furthermore, we created a composite mediator of preterm delivery and neonatal infection, and preterm delivery and respiratory distress syndrome (RDS), diagnosed at 0 to 27 days of age, to examine the joint mediation effect of neonatal morbidity and preterm delivery on the association between chorioamnionitis and the disorders.

Sensitivity analyses
We performed several sensitivity analyses. First, because mediation methods were developed under a strict no-unmeasured-confounding assumption, we examined the robustness of causal effects to unmeasured confounders by estimating an E-value (defined as the maximal strength of association that an unmeasured confounder would need to have with the exposure and the outcome to fully explain away an observed exposure–outcome association). Second, given that death before the diagnosis of outcome would preclude a child
from being diagnosed with such conditions in the future, we also quantified the adjusted association between chorioamnionitis and a composite outcome including any of the following: stillbirth, infant mortality (ie, death within the first year after birth), or any neurodevelopmental disorder (ie, stillbirth, infant death, or epilepsy). Logistic regression analyses were used to assess the association between chorioamnionitis and each composite outcome, adjusting for the same founders noted in model 2.

Third, to focus only on potentially clinically relevant cases of neurodevelopmental disorders, we restricted the age at diagnosis: 3+ years of age for ADHD and intellectual disability, 1+ years of age for diagnoses of autism, and 26+ days of age for epilepsy. Fourth, to address missing values of covariates in our cohort and the possible bias that it could introduce, we performed multiple imputation with chained equations under the assumption of missing at random. All analyses were performed using Stata statistical software, version 16 (StataCorp, College Station, TX) and SAS, version 9.4 (SAS Institute, Cary, NC).

Results
Between January 1, 1998 and December 31, 2019, the Medical Birth Register recorded information of about 2,228,290 singleton live births and stillbirths with valid national registration numbers for mothers and children. After excluding 10 births with missing information on child’s sex and maternal age, the final study cohort included 2,228,280 singleton births.

Demographic and clinical characteristics
Overall, there were 5570 (0.26%) offspring of mothers with chorioamnionitis. During the study follow-up, cerebral palsy was diagnosed in 4752 (0.21%), epilepsy in 17,897 (0.80%), autism in 50,570 (2.27%), ADHD in 114,087 (5.12%), and intellectual disability in 14,574 (0.65%) children. The median age at diagnosis of cerebral palsy was 2.04 years (interquartile range [IQR], 1.10–3.95), 5.60 years (IQR, 2.20–9.82) for epilepsy, 10.49 years (IQR, 6.29–14.14) for autism, 11.04 years (IQR, 6.54–14.31) for ADHD, and 8.86 years (IQR, 5.23–12.56) for intellectual disability. Compared with women without chorioamnionitis, those with chorioamnionitis were more likely to be older (≥35 years), non-Nordic, to live without a partner, to smoke, to be obese (BMI >30.0), to be nulliparous, and to have a lower education. Women with chorioamnionitis were more likely to have a history of psychiatric disorders (Table 1). Furthermore, women with chorioamnionitis had elevated rates of emergency cesarean delivery, preterm birth, premature rupture of membranes, and small-for-gestational age (SGA <10th percentile) infants.
Offspring outcome	Number of cases	Child-years	Rate b	Hazard ratio (95% CI)			
				Crude	Model 1 b	Model 2 c	Model 3 d
Cerebral palsy							
With chorioamnionitis	93	46,743	19.89	9.05 (7.37—11.11)	7.43 (5.90—9.37)	6.61 (5.24—8.34)	4.48 (3.53—5.70)
Without chorioamnionitis	4659	23,028,205	2.02	Ref.	Ref.	Ref.	Ref.
Epilepsy							
With chorioamnionitis	37	46,886	7.89	1.00 (0.73—1.39)	0.98 (0.70—1.38)	0.93 (0.66—1.31)	0.88 (0.62—1.24)
Without chorioamnionitis	17,860	22,926,563	7.79	Ref.	Ref.	Ref.	Ref.
Autism							
With chorioamnionitis	185	46,855	39.48	1.90 (1.65—2.20)	1.43 (1.21—1.68)	1.40 (1.19—1.65)	1.32 (1.12—1.56)
Without chorioamnionitis	50,385	22,868,756	22.03	Ref.	Ref.	Ref.	Ref.
Attention deficit hyperactivity disorder							
With chorioamnionitis	305	46,224	65.98	1.43 (1.28—1.60)	1.17 (1.03—1.33)	1.16 (1.02—1.32)	1.11 (0.98—1.26)
Without chorioamnionitis	113,782	22,623,194	50.29	Ref.	Ref.	Ref.	Ref.
Intellectual disability							
With chorioamnionitis	77	47,072	16.35	2.75 (2.20—3.45)	1.99 (1.53—2.58)	1.78 (1.37—2.32)	1.60 (1.23—2.08)
Without chorioamnionitis	14,497	22,996,338	6.30	Ref.	Ref.	Ref.	Ref.

b Rate is calculated as number of cases per 10,000 person-years; c Model 1 adjusted for maternal age at child birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner; d Model 2: in addition to the factors noted in model 1, also adjusted for major malformation; e Model 3: in addition to the factors noted in model 2, also adjusted for mode of delivery.
TABLE 3
Causal mediation analysis to estimate the impact of preterm delivery (<37 weeks) on the association between maternal chorioamnionitis and adverse neurodevelopmental outcomes in offspring. Live-born singleton offspring in Sweden, 1998 to 2019

Mediators	Adjusted HR (95% CI)	Controlled direct effect among term infants	Natural direct effect	Natural indirect effect	Percentage mediated (%)
		Total effect			
Cerebral palsy					
Preterm birth	7.47 (5.96–9.36)	2.63 (1.56–4.45)	2.91 (2.01–4.21)	2.57 (1.93–3.41)	70
Preterm and neonatal infection	7.19 (5.73–9.01)	4.84 (3.57–6.57)	4.67 (3.46–6.29)	1.54 (1.29–1.84)	41
Preterm and respiratory distress syndrome	7.36 (5.87–9.22)	4.04 (2.80–5.83)	3.76 (2.68–5.26)	1.96 (1.54–2.49)	57
Autism					
Preterm birth	1.49 (1.27–1.75)	1.14 (0.91–1.43)	1.18 (0.96–1.46)	1.26 (1.12–1.42)	63
Preterm and neonatal infection	1.50 (1.28–1.75)	1.33 (1.11–1.59)	1.33 (1.11–1.59)	1.13 (1.05–1.20)	34
Preterm and respiratory distress syndrome	1.52 (1.30–1.77)	1.26 (1.03–1.52)	1.26 (1.05–1.52)	1.20 (1.10–1.32)	49
Attention deficit hyperactivity disorder					
Preterm birth	1.19 (1.05–1.35)	1.02 (0.86–1.20)	1.04 (0.88–1.21)	1.15 (1.06–1.24)	81
Preterm and neonatal infection	1.20 (1.06–1.36)	1.11 (0.97–1.28)	1.11 (0.97–1.28)	1.08 (1.03–1.13)	44
Preterm and respiratory distress syndrome	1.20 (1.07–1.36)	1.05 (0.90–1.21)	1.05 (0.91–1.22)	1.14 (1.07–1.22)	74
Intellectual disability					
Preterm birth	1.96 (1.52–2.53)	1.23 (0.80–1.91)	1.29 (0.88–1.88)	1.52 (1.20–1.93)	70
Preterm and neonatal infection	2.01 (1.56–2.58)	1.57 (1.15–2.15)	1.57 (1.15–2.14)	1.28 (1.11–1.48)	43
Preterm and respiratory distress syndrome	2.01 (1.56–2.59)	1.45 (1.02–2.05)	1.45 (1.04–2.03)	1.39 (1.15–1.67)	56

BMI, body mass index; CI, confidence interval; HR, hazard ratio.

* Causal effects were adjusted for confounding effects of maternal age at child birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.
Univariable and multivariable analysis

Unadjusted cumulative hazard curves showed a significantly higher cumulative hazard of cerebral palsy, autism, ADHD, and intellectual disability among offspring born to mothers with chorioamnionitis than among those born to mothers without chorioamnionitis (Figure). After adjusting for potential confounders, compared with offspring of mothers without chorioamnionitis, the adjusted HRs were higher for cerebral palsy, autism, ADHD, and intellectual disability in offspring of mothers with chorioamnionitis (Table 2, Model 1), whereas chorioamnionitis was not significantly associated with epilepsy in offspring. Although slightly attenuated, the same pattern of associations remained after adjusting for major malformations and mode of delivery (Table 2, Model 2 and 3).

We examined the impact of preterm delivery on the association between chorioamnionitis and cerebral palsy, autism, ADHD, and intellectual disability (Table 3). The HRs for the natural direct and natural indirect (mediated) effects of chorioamnionitis on cerebral palsy were 2.91 (95% CI, 2.01–4.21) and 2.57 (95% CI, 1.93–3.41), respectively. This indicates that 70% of the total effect of chorioamnionitis on cerebral palsy was mediated through preterm delivery, and about 30% of the total effect was explained through other undiscovered pathways (other than preterm birth). Furthermore, 41% of the total effect was jointly mediated through preterm delivery and neonatal infections, and 57% jointly mediated through preterm delivery and RDS. Similar mediation effects of preterm delivery, neonatal infection, and RDS were also observed for autism, ADHD, and intellectual disability (Table 3).

Sensitivity analyses

In the sensitivity analyses, the E-value for the HR and the lower 95% CI were greater than the observed estimates (Supplemental Table 4). These results suggest that the casual mediation parameters were robust to unmeasured confounding. Analyses addressing the competing risk of death showed similar associations between chorioamnionitis and each composite outcome of death and/or each neurodevelopmental disorder (Supplemental Table 5). Furthermore, restricting the age at diagnosis of the outcomes did not change our results (Supplemental Table 6). The results were also unchanged in supplemental analyses using multiple imputation for missing data (Supplemental Table 7).

Results in the context of what is known

Consistently with our findings, previous studies have found increased risk of neurologic disorders, specifically cerebral palsy, among offspring exposed to chorioamnionitis. In addition, elevated risks of other adverse neurodevelopmental outcomes, such as autism, epilepsy, ADHD, cognitive impairment, speech delay, and hearing loss, have been reported in children exposed to maternal infection or chorioamnionitis, suggesting that exposure to inflammation in utero could alter brain development and function. In contrast, several studies have concluded that chorioamnionitis poses no independent risk on short-term neurodevelopmental outcomes. However, a direct comparison of our results with those of previous studies is hampered by the absence of a uniform, well-established clinical diagnostic algorithm for chorioamnionitis. Consequently, there is large variation in the diagnosis and definition of clinical chorioamnionitis. Clinical chorioamnionitis is frequently used interchangeably with histologically proven chorioamnionitis without being distinguished among clinicians and researchers, further complicating comparisons between individual studies.

Clinical and research implications

Our results demonstrated that the association between chorioamnionitis and neurodevelopmental disorders is mainly mediated through associated neonatal conditions including preterm birth, RDS, and neonatal infections. However, about 30% of the total effect was explained through other undiscovered pathways, and we also observed increased risks of cerebral palsy, autism, and intellectual disability among term infants. Overall, preterm infants are at greater risk of developing major short- and long-term neurodevelopmental disorders. These risks increase with decreasing gestational age at birth, whereas the inflammatory environment in chorioamnionitis decreases with increasing gestational age. Some studies have previously shown associations between preterm birth and neurodevelopmental conditions, including autism, ADHD, cerebral palsy, and cognitive impairment. Our results provide further evidence that preterm birth, triggered by infection such as chorioamnionitis, increases the risk of neurodevelopmental adversity. Chorioamnionitis is also associated with significant neonatal morbidity, such as neonatal sepsis, intraventricular hemorrhage, and respiratory syndrome, which puts the surviving neonates at higher risk of long-term neurologic adversity.

The underlying mechanism linking chorioamnionitis with neurodevelopmental outcomes may involve the activation and upregulation of infection and inflammatory processes in the mother and the fetus. This activation results in the release of cytokines and chemokines from decidua and fetal membranes, such as interleukin-6, which stimulate the synthesis of prostanoids and metalloproteases that can...
lead to the ripening of the cervix, rupture of the membranes, and spontaneous labor or induction of labor and delivery. In addition, chorioamnionitis can induce a fetal inflammatory response syndrome, resulting in the release of inflammatory products and reactive oxygen species, which can directly damage the sensitive fetal cerebral cells, predominantly the white matter, resulting in cerebral palsy and other neurodevelopmental disorders.

Strengths and limitations

Our study has several strengths. First, the population-based study design along with high-quality registry data that are prospectively and independently collected minimized the possibility of information bias in our study. Second, we adjusted for a number of important maternal confounders, including maternal BMI, smoking during pregnancy, and maternal psychiatric history. We used the Swedish version of ICD-10 diagnostic codes to ascertain chorioamnionitis and adverse outcomes in the offspring. Although these specific codes have not been externally validated, previous studies have shown that in the Swedish National Inpatient Register, positive predictive values of diagnostic codes are between 85% and 95%. In Sweden, the diagnosis of chorioamnionitis is routinely made by the obstetrician, which adds to the clinical accuracy of the diagnosis and its ascertainment by the ICD codes. Lastly, we quantified the effects of chorioamnionitis on the composite outcome, including death and neurodevelopmental conditions, and thereby addressed the competing risk of death.

Nonetheless, our study might have some limitations. Our outcome ascertainment was based on inpatient—outpatient clinical data and drug register data. Therefore, it is possible that we included only patients with the most severe cases of the disorders who sought clinical help, whereas milder cases were not captured. However, this misclassification of the outcomes is non-differential, thus possibly resulting in an underestimation of the true associations. Furthermore, although the diagnosis of chorioamnionitis was based on specific clinical criteria, the clinical presentation varies between patients, which can lead to variation in diagnosis between clinicians. The incidence of chorioamnionitis was 0.26% in our study, which is lower than reported previously. This discrepancy can imply that only the most severe cases of chorioamnionitis were included in our cohort, and the clinically silent or subclinical cases were not detected. This potential underascertainment of chorioamnionitis could also lead to an underestimation of the true effects. Furthermore, premature or ill newborns might serve as a stimulus for clinicians to investigate their mothers more actively for an underlying infection than mothers of apparently healthy infants, which makes such newborns more likely to receive a diagnosis of chorioamnionitis. However, in our data, all infants’ records for chorioamnionitis coincided with maternal diagnosis, therefore limiting bias. In addition, in our mediation analyses we have assumed that the causal pathways between preterm birth, preterm birth—neonatal infections, and preterm birth—infec tion—RDS are not sequential. Future studies may consider exploring these pathways through a mediation analysis with sequentially ordered causal mediators. Lastly, we cannot exclude that residual confounders by unmeasured or unknown factors could drive the observed association.

Conclusion

This study revealed a significant association between chorioamnionitis and neurodevelopmental disorders. A large driver of this risk was preterm delivery; however, increased risk was also observed among term infants. Efforts for timely identification and appropriate interventions to treat infections during pregnancy will have sustained benefits in reducing the burden of neurologic complications in children at the population level.

References

1. Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One 2015;10:e0116820.
2. Global Research On Developmental Disabilities Collaborators. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Health 2018;6:e1100–21.
3. Hirvonsalo H, Myllyla V, Aalto-Setälä S, et al. Neurodevelopmental outcomes of children born very preterm at term age: the EVA study. J Pediatr 2020;222:71–8.e6.
4. de Jonge T, Guo Z, Gouw DJ, et al. Moderate and severe development delay in children born extremely preterm (≤28 weeks) at term age. JAMA Pediatr 2016;170:298–303.
5. Ancar J, Berglund A, Ahmadi H, et al. Growth, cognition, and neurodevelopmental delays associated with extreme preterm birth. Early Hum Dev 2017;99:31–5.
6. Mikkelsen MD, Pulkkinen KL, Sallinen M, et al. Developmental and educational outcomes of children born extremely preterm in early infancy: a cohort study. Acta Paediatr 2020;109:116–24.
7. Yoon BH, Romero R, Park JY, et al. Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol 2020;222:71–8.e6.
8. Conde-Agudelo A, Romero R, Jung EJ, Garcia Sánchez AJ. Management of clinical chorioamnionitis: an evidence-based approach. Am J Obstet Gynecol 2020;223:848–69.
9. Romero R, Pacora P, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology, clinical signs, placental pathology, and neonatal bacteremia - implications for clinical care. J Perinat Med 2021;49:275–86.
10. Yoon BH, Romero R, Park JY, et al. Antibiotic administration can eradicate intraamniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol 2019;221:142.e1–22.
11. Romero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med 2015;43:19–36.
12. Bierstone D, Wagenaar N, Gano DL, et al. Association of histologic chorioamnionitis with perinatal brain injury and early childhood neurodevelopmental outcomes among
preterm neonates. JAMA Pediatr 2018;172: 534–41.

17. The Total Population Register (RTB). Available at: https://www.registerforsking.se/en/register/population-statistics/. Accessed March 31, 2022.

18. Sandin S, Lichtenstein P, Kuja-Halokka R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA 2014;311: 1770–7.

19. Marsál K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr 1996;85:843–8.

20. George L, Granath F, Johansson LS, Cnattingius S. Self-reported nicotine exposure and plasma levels of cotinine in early and late pregnancy. Acta Obstet Gynecol Scand 2006;85:1331–7.

21. Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods 2013;18:137–50.

22. Ananth CV, VanderWeele TJ. Placental abruption and perinatal mortality with preterm delivery as a mediator: disentangling direct and indirect effects. Am J Epidemiol 2011;174: 99–108.

23. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 2017;167:268–74.

24. Freud A, Wainstock T, Sheiner E, et al. Maternal chorioamnionitis & long term neurological morbidity in the offspring. Eur J Paediatr Neurol 2019;23:484–90.

25. Shatrov JG, Birch SCM, Lam LT, Quinnivan JA, McIntyre S, Mendz GL. Chorioamnionitis and cerebral palsy: a meta-analysis. Obstet Gynecol 2010;116:387–92.

26. Suppiej A, Fanizzi M, Vedovato S, Marucco A, Chiarelli S, Zanardo V. Neurodevelopmental outcome in preterm histological chorioamnionitis. Early Hum Dev 2009;85:187–90.

27. Pappas A, Kendrick DE, Shankaran S, et al. Chorioamnionitis and early childhood outcomes among extremely low-gestational-age neonates. JAMA Pediatr 2014;168:137–47.

28. Al-Haddad BJS, Jacobsson B, Chabra S, et al. Long-term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry 2019;76:594–602.

29. Ylikorkala O, Eiholm E, Ekblad M, Lehtonen L. Prenatal risk factors for adverse developmental outcome in preterm infants-systematic review. Front Psychol 2019;10:595.

30. Schlabach LJ, Ersh J, Adams M, Bernet V, Bucher HU, Latal B. Impact of chorioamnionitis and preeclampsia on neurodevelopmental outcome in preterm infants below 32 weeks gestational age. Acta Paediatr 2010;99:1504–9.

31. Hendson L, Russell L, Robertson CM, et al. Neonatal and neurodevelopmental outcomes of very low birth weight infants with histologic chorioamnionitis. J Pediatr 2011;158:397–402.

32. Johnson CT, Farzin A, Burd I. Current management and long-term outcomes following chorioamnionitis. Obstet Gynecol Clin North Am 2014;41:649–69.

33. Kachikis A, Eckert LO, Walker C, et al. Chorioamnionitis: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2019;37:7610–22.

34. Huango J, Zhu T, Qu Y, Mu D. Prenatal, perinatal and neonatal risk factors for intellectual disability: a systemic review and meta-analysis. PLoS One 2016;11:e0153655.

35. Nosarti C, Reichenberg A, Murray RM, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 2012;69:E1–8.

36. Kerstens JM, de Winter AF, Boccia-Taetere IF, Bos AF, Reijnveld SA. Risk of developmental delay increases exponentially as gestational age of preterm infants decreases: a cohort study at age 4 years. Dev Med Child Neurol 2012;54:1096–101.

37. Park CW, Park JS, Jun JK, Yoon BH. The inflammatory milieu of amniotic fluid in acute chorioamnionitis decreases with increasing gestational age. Placenta 2015;36:1283–90.

38. Johnson S, Evans TA, Draper ES, et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. Arch Dis Child Fetal Neonatal Ed 2015;100:F301–8.

39. Crump C, Sundquist J, Sundquist K. Preterm or early term birth and risk of autism. Pediatrics 2021;148:e2020032300.

40. Montagna A, Karolis V, Batalle D, et al. ADHD symptoms and their neurodevelopmental outcomes in children born very preterm. PLoS One 2020;15:e0224343.

41. Hafström M, Källén K, Serenius F, et al. Cerebral palsy in extremely preterm infants. Pediatrics 2018;141:e20171433.

42. Paghavan R, Helfrich BB, Cerda SR, et al. Preterm birth subtypes, placental pathology findings, and risk of neurodevelopmental disabilities during childhood. Placenta 2019;83:17–25.

43. Gagliardi L, Rusconi F, Da Frè M, et al. Pregnancy disorders leading to very preterm birth influence neonatal outcomes: results of the population-based ACTION cohort study. Pediatr Res 2013;73:794–801.

44. Shane AL, Sánchez Pj, Stoll BJ. Neonatal sepsis. Lancet 2017;390:1770–80.

45. Jain VG, Willett KA, Jobe A, Ambalavanan N. Chorioamnionitis and neonatal outcomes. Pediatr Res 2022;91:289–96.

46. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev 2014;27:21–47.

47. Froehlich-Santino W, Londono Toban A, Cleveland S, et al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders. J Psychiatr Res 2014;54:100–8.

48. Kuzniecovic MW, Wi S, Qian Y, Walsh EM, Armstrong MA, Croen LA. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr 2014;164:20–5.

49. Wolfsberger CH, Bruckner M, Baik-Schnedlitz N, et al. Fetal inflammatory response syndrome and cerebral oxygenation during immediate postnatal transition in preterm neonates. Front Pediatr 2020;8:401.

50. Villamor E, Todd K, Peterson M, et al. Association between maternal body mass index in early pregnancy and incidence of cerebral palsy. JAMA 2017;317:925–36.

51. Razaz N, Tedroff K, Villamor E, Cnattingius S. Maternal body mass index in early pregnancy and risk of epilepsy in offspring. JAMA Neurol 2017;74:668–76.

52. Ludvigsson JF, Andersson E, Ekborn A, et al. External review and validation of the Swedish national inpatient register. BMC Public Health 2011;11:450.

53. Liew Z, Olsen J, Cui X, Ritz B, Araah OA. Bias from conditioning on live birth in pregnancy cohorts: an illustration based on neurodevelopment in children after prenatal exposure to organic pollutants. Int J Epidemiol 2015;44:345–54.

54. Metcalfe A, Lisonkova S, Sabr Y, Stritzke A, Joseph KS. Neonatal respiratory morbidity following exposure to chorioamnionitis. BMC Pediatr 2017;17:128.

Author and article information
From the Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (Dr Tsamantiot, Muraca, Örtqvist, and Razaz); Department of Obstetrics and Gynaecology, BC Women’s Hospital, Vancouver, Canada (Dr Lisonkova and Muraca); School of Population and Public Health, The University of British Columbia, Vancouver, Canada (Dr Lisonkova); and Department of Obstetrics and Gynecology, Visky County Hospital, Visby, Sweden (Dr Örtqvist).
Received Oct. 29, 2021; revised March 2, 2022; accepted March 14, 2022.

The authors report no conflict of interest.

The study was approved by the Regional Ethical Review Board at Karolinska Institutet, Stockholm, Sweden (approval number 2020-01545).

The lead author (E.T.) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

The study was supported by grants from the Swedish Research Council for Health, Working Life and Welfare (grant number 4-2702/2019) and the Stockholm County Council, ALF Medicine (grant number 501143). Funders were not involved in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Corresponding author: Eleni Tsamantiot, MD, MMedSc: eleni.tsamantiot@ki.se
Appendix

SUPPLEMENTAL FIGURE
Simplified DAG of the relation between chorioamnionitis and neurodevelopmental disorders with preterm delivery as the mediator

ADHD, attention deficit hyperactivity disorder; CP, cerebral palsy.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.

SUPPLEMENTAL TABLE 1
International Classification of Diseases-10 codes for maternal and neonatal diseases

Diseases	ICD-10 codes
Maternal complications	
Prepregnancy hypertension	I10-I15, 010 and 011 + checkbox^a
Preeclampsia and eclampsia	014 and 015
Prepregnancy diabetes mellitus	E10-E14, 024.0-024.3
Gestational diabetes mellitus	024.4
Psychiatric disorders	F00-F99
Major malformation^b	Q00-Q99 — minor excluded
Neurodevelopmental disorders	
Cerebral palsy	G80
Autism	F840-F845, F848, F849
Attention deficit hyperactivity disorder	F90, F988 and ATC N06B
Intellectual disability	F70-F79
Epilepsy	G40
Neonatal morbidity	
Neonatal infection	P35-P39
Respiratory distress syndrome	P22

Diseases were defined using the Swedish version of ICD-10.

ICD-10, International Classification of Diseases, tenth revision.

^a Essential hypertension is also recorded in a checkbox in the prenatal record at first prenatal visit; ^b Diagnosis of malformations is derived from the Medical Birth Register or the Patient Register (also including outpatient hospital care from 2001) at 0–364 days of life. Minor (excluded) malformations are defined by the Swedish National Board of Health and Welfare (https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/dokument-webb/ovrigt/diagnostik-som-inte-ska-rapporteras-om-fosterskador.pdf).

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 2

Variables	Preterm birth	Preterm and RDS	Preterm and neonatal infection
	Odds ratio (95% CI)	Odds ratio (95% CI)	Odds ratio (95% CI)
With chorioamnionitis	8.85 (8.29–9.44)	17.31 (16.00–18.71)	36.29 (32.79–40.17)
Without chorioamnionitis	Reference	Reference	Reference

BMI, body mass index; CI, confidence interval; OR, odds ratio; RDS, respiratory distress syndrome.

*Adjusted for confounding effects of maternal age at child’s birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.

SUPPLEMENTAL TABLE 3

Comparison group	Cerebral palsy	Epilepsy	Autism	ADHD	Intellectual disability
	Odds ratio (95% CI)				
Preterm birth	7.18 (6.68–7.71)	1.44 (1.35–1.53)	1.33 (1.28–1.39)	1.22 (1.19–1.26)	2.43 (2.30–2.57)
Preterm birth + RDS	15.46 (14.18–16.85)	1.66 (1.48–1.86)	1.72 (1.60–1.84)	1.44 (1.36–1.51)	3.24 (2.95–3.56)
Preterm birth + neonatal infections	22.05 (19.46–24.98)	2.19 (1.82–2.64)	2.23 (2.00–2.49)	1.66 (1.52–1.82)	5.05 (4.41–5.78)

ADHD, attention deficit hyperactivity disorder; BMI, body mass index; CI, confidence interval; OR, odds ratio; RDS, respiratory distress syndrome.

*Adjusted for confounding effects of maternal age at child’s birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 4
Robustness to unmeasured confounding (E-values) of the total adjusted hazard ratio expressing the relation between chorioamnionitis and cerebral palsy, autism, attention deficit hyperactivity disorder, and intellectual disability liveborn singleton infants in Sweden, 1998 to 2019

Mediators	Hazard ratio (95% CI) for outcomes	Total effect	E-value for HR	E-value for lower 95% CI
Cerebral palsy				
Preterm birth	7.47 (5.96–9.36)	14.42	11.4	
Preterm and neonatal infection	7.19 (5.73–9.01)	13.86	10.94	
Preterm and respiratory distress syndrome	7.36 (5.87–9.22)	14.2	11.22	
Autism				
Preterm birth	1.49 (1.27–1.75)	2.34	1.86	
Preterm and neonatal infection	1.50 (1.28–1.75)	2.37	1.88	
Preterm and respiratory distress syndrome	1.52 (1.30–1.77)	2.41	1.92	
Attention deficit hyperactivity disorder				
Preterm birth	1.19 (1.05–1.35)	1.67	1.28	
Preterm and neonatal infection	1.20 (1.06–1.36)	1.69	1.31	
Preterm and respiratory distress syndrome	1.20 (1.07–1.36)	1.69	1.34	
Intellectual disability				
Preterm birth	1.96 (1.52–2.53)	3.33	2.41	
Preterm and neonatal infection	2.01 (1.56–2.58)	3.41	2.49	
Preterm and respiratory distress syndrome	2.01 (1.56–2.59)	3.43	2.49	

BMI, body mass index; CI, confidence interval; HR, hazard ratio.

* Causal effects were adjusted for confounding effects of maternal age at child’s birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.
Composite outcome	N (%)	Crude OR (95% CI)	Adjusted OR (95% CI)
Cerebral palsy (composite outcome)			
with chorioamnionitis	262 (4.54)	8.68 (7.66—9.84)	6.49 (5.12—8.23)
without chorioamnionitis	12,113 (0.55)	Ref.	Ref.
Epilepsy (composite outcome)			
with chorioamnionitis	206 (3.57)	3.21 (2.80—3.69)	0.89 (0.63—1.25)
without chorioamnionitis	25,314 (1.14)	Ref.	Ref.
Autism (composite outcome)			
with chorioamnionitis	354 (6.14)	2.45 (2.20—2.73)	1.35 (1.14—1.59)
without chorioamnionitis	57,839 (2.60)	Ref.	Ref.
Attention deficit hyperactivity disorder			
with chorioamnionitis	474 (8.21)	1.55 (1.41—1.70)	1.11 (0.97—1.28)
without chorioamnionitis	121,236 (5.45)	Ref.	Ref.
Intellectual disability (composite outcome)			
with chorioamnionitis	246 (4.26)	4.46 (3.93—5.08)	1.71 (1.31—2.25)
without chorioamnionitis	21,951 (0.99)	Ref.	Ref.

BMI, body mass index; CI, confidence interval; OR, odds ratio; Ref., reference.

a Model 1 adjusted for maternal age at child’s birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, cohabitation with a partner, calendar year of birth, and major malformation.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 6
Risk of adverse outcomes in offspring born to mothers with chorioamnionitis vs offspring born to mothers without chorioamnionitis after restricting the age at diagnosis. Live-born singleton children in Sweden, 1998 to 2019

Offspring outcome	Number of cases	Child-years	Rate^a	Hazard ratio (95% CI)	Crude	Model 1^b	Model 2^c
Cerebral palsy							
with chorioamnionitis	93	46,716	19.91	9.06 (7.38—11.13)	7.43	5.90—9.37	6.61 (5.24—8.35)
without chorioamnionitis	4644	23,011,320	2.01	Ref.	Ref.	Ref.	Ref.
Epilepsy							
with chorioamnionitis	37	46,859	7.89	1.01 (0.73—1.40)	0.99	0.70—1.39	0.94 (0.68—1.32)
without chorioamnionitis	17,683	22,910,877	7.71	Ref.	Ref.	Ref.	Ref.
Autism							
with chorioamnionitis	185	46,827	39.51	1.91 (1.65—2.21)	1.43	1.22—1.69	1.41 (1.20—1.66)
without chorioamnionitis	50,238	22,851,031	21.99	Ref.	Ref.	Ref.	Ref.
Attention deficit hyperactivity disorder							
with chorioamnionitis	293	46,302	63.28	1.38 (1.23—1.55)	1.12	0.99—1.28	1.12 (0.98—1.27)
without chorioamnionitis	113,245	22,606,719	50.09	Ref.	Ref.	Ref.	Ref.
Intellectual disability							
with chorioamnionitis	76	47,049	16.15	2.77 (2.21—3.48)	1.98	1.52—2.57	1.77 (1.36—2.32)
without chorioamnionitis	14,275	22,981,643	6.21	Ref.	Ref.	Ref.	Ref.

BMI, body mass index; CI, confidence interval; Ref., reference.

^a Rate is calculated as number of cases per 10,000 person-years; ^b Model 1 adjusted for maternal age at child’s birth, parity, maternal education level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner; ^c Model 2: in addition to the factors noted in model 1, also adjusted for major malformation; ^d Diagnoses restricted up to the fifth year of age; ^e Follow-up time starts at twenty-seventh days of age; ^f Follow-up time starts at the first year of life; ^g Follow-up time starts at the third year of age.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 7
Risk of adverse outcomes in offspring born to mothers with chorioamnionitis vs offspring born to mothers without chorioamnionitis after multiple imputation with chained equations of missing covariates. Live-born singleton children in Sweden, 1998 to 2019

Offspring outcome	Number of cases	Child-years	Rate^a	Hazard ratio (95% CI)	Crude	Model 1^b	Model 2^c	Model 3^d
Cerebral palsy								
With chorioamnionitis	93	46,743	19.89	9.05 (7.37—11.11)	7.78 (6.32—9.58)	6.64 (5.38—8.18)	4.48 (3.61—5.55)	
Without chorioamnionitis	4659	23,028,205	2.02	Ref.	Ref.	Ref.	Ref.	Ref.
Epilepsy								
With chorioamnionitis	37	46,886	7.89	1.00 (0.73—1.39)	0.93 (0.67—1.29)	0.88 (0.63—1.21)	0.82 (0.59—1.14)	
Without chorioamnionitis	17,860	22,926,563	7.79	Ref.	Ref.	Ref.	Ref.	Ref.
Autism								
With chorioamnionitis	185	46,855	39.48	1.90 (1.65—2.20)	1.54 (1.33—1.78)	1.51 (1.30—1.74)	1.43 (1.23—1.65)	
Without chorioamnionitis	50,385	22,868,756	22.03	Ref.	Ref.	Ref.	Ref.	Ref.
Attention deficit hyperactivity disorder								
With chorioamnionitis	305	46,224	65.98	1.43 (1.28—1.60)	1.26 (1.12—1.41)	1.25 (1.11—1.40)	1.18 (1.06—1.33)	
Without chorioamnionitis	113,782	22,623,194	50.29	Ref.	Ref.	Ref.	Ref.	Ref.
Intellectual disability								
With chorioamnionitis	77	47,072	16.35	2.75 (2.20—3.44)	2.27 (1.81—2.84)	1.96 (1.56—2.47)	1.75 (1.39—2.21)	
Without chorioamnionitis	14,497	22,996,338	6.30	Ref.	Ref.	Ref.	Ref.	Ref.

BMI, body mass index; CI, confidence interval; Ref., reference.

^a Rate is calculated as number of cases per 10,000 person-years; ^b Model 1 adjusted for maternal age at child birth, parity, maternal educational level, country of mother’s birth, smoking during pregnancy, maternal height, early-pregnancy BMI, any psychiatric disorders, child’s sex, calendar year of birth, and cohabitation with a partner; ^c Model 2: in addition to the factors noted in model 1, also adjusted for major malformation; ^d Model 3: in addition to the factors noted in model 2, also adjusted for mode of delivery.

Tsamantioti. Chorioamnionitis and the risk of long-term neurodevelopmental disorders in offspring. Am J Obstet Gynecol 2022.