A Quantum-chemical Study of the Relationships Between Electronic Structure and Anti-proliferative Activity of Quinoxaline Derivatives on the HeLa Cell Line

Gaston Assongba Kpotin¹, * , Juan Sebastián Gómez-Jeria²

¹Department of Chemistry, Faculty of Sciences and Technologies, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
²Quantum Pharmacology Unit, Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile

Email address:
gaston.kpotin@fast.uac.bj (G. A. Kpotin)
*Corresponding author

To cite this article:
Gaston Assongba Kpotin, Juan Sebastián Gómez-Jeria. A Quantum-chemical Study of the Relationships Between Electronic Structure and Anti-proliferative Activity of Quinoxaline Derivatives on the HeLa Cell Line. International Journal of Computational and Theoretical Chemistry. Vol. 5, No. 6, 2017, pp. 59-68. doi: 10.11648/j.ijctc.20170506.12

Received: November 28, 2017; Accepted: December 9, 2017; Published: January 11, 2018

Abstract: A study of the relationships between electronic structure and anti-proliferative activity of quinoxaline derivatives on the HeLa cell line was carried out. For this QSAR study the technique employed is the Klopman-Peradejordi-Gómez (KPG) method. We obtain a statistically significant equation (R= 0.97 R²= 0.94 adj-R²= 0.91 F (8, 15)=29.50 p<0.000001 and SD=0.06). The results showed that the variation of the activity depends on the variation of the values of eight local atomic reactivity indices. The process seems to be charge and orbital-controlled. Based on the analysis of the result, a partial two-dimensional pharmacophore was built. The results should be useful to propose new molecules which higher activity.

Keywords: Quinoxaline, HeLa Cell Line, KPG Method, QSAR, Pharmacophore, DFT

1. Introduction

HeLa is the first immortalized cell line [1]. This cell line originates from a cervical cancer tumor of a patient named Henrietta Lacks, who later died of her cancer in 1951 [1]. One of the earliest uses of HeLa cells was to develop the vaccine against the polio virus [2]. The genomic and transcriptomic resource for a HeLa cell line based on deep DNA and RNA sequencing was created in 2013 [3]. Several studies are performed to found molecules that inhibit the proliferation of this cell line [4–28]. Theoretical studies were also done and are useful to explain the mechanism, the affinity and the activities of different compounds [26–29]. This work presents the results of the use of the KPG method [30] to obtain quantitative relationships between the electronic structure of quinoxaline derivatives and their anti-proliferative activities on the HeLa cell line.

2. Methods, Models and Calculations

2.1. Methods and Models

For this study we use the Klopman-Peradejordi-Gomez (KPG) method. In 1967, Klopman and Hudson presented a general perturbation model for chemical reactivity including ionic interactions and not restricted only to π electron [31–33]. In their model, the electronic energy change, ΔE, associated with the interaction of atom i of molecule A with atom j of molecule B is given by:

$$\Delta E = \sum_{p} Q_{i} Q_{j} / R_{ij} + (1/2)(\beta_{ij}) \sum_{m} F_{mi} F_{mj} / (E_{m} - E_{m'}) + (1/2)(\beta_{ij}) \sum_{m} \sum_{n} F_{mi} F_{nj} / (E_{m} - E_{n'})$$

(1)
is the energy of the m-th occupied MO (m' for the empty MOs) of molecule A. n and n' refer to molecule B. The summation on p is over all interacting atom pairs. The first term of the right side of Equation 1 represents the electrostatic interaction between atom with net charges Q_i and Q_j. The next two terms introduce the interactions between occupied MOs of one molecule with the empty MOs of the other molecule and vice versa. As this model represents the interaction energy in terms of atom-atom interactions, it was only a matter of time that someone applied it for pharmacological/biological problems. Then, in 1971, Peradejordi et al published an article where they presented the results of a quantum-chemical study of the structure-activity relationships of tetracycline antibiotics [34]. The authors proposed that the inhibitory rate constants, \(K_i \), can be expressed as:

\[
\log K_i^f = \text{const} \tan t + \log K_i^r
\]

(2)

where \(K_i^r \) is the ribosome-tetracycline equilibrium constant. Now, let us consider the state of thermodynamic equilibrium and a 1:1 stoichiometry in the formation of the drug-receptor complex:

\[
D_i + R \rightleftharpoons D_iR
\]

(3)

where \(D_i \) is the drug, \(R \) the receptor and \(D_iR \) the drug-receptor complex. According to statistical thermodynamics the equilibrium constant \(K_i \) is written as:

\[
\log(\text{IC}_{50}) = a + bM_{D_i} + c \log \left[\sigma_{D_i} / (ABC)^{\frac{1}{2}} \right] + \sum_j \left[e_jQ_j + f_jS_j^E + g_jS_j^N \right] + \sum_j \left[j_r(m_jF_j(m_j) + \eta_j \bar{\eta}_j + \omega_j \bar{\omega}_j + z_j \bar{z}_j + w_j \bar{w}_j) \right]
\]

(7)

where \(a, b, c \) are constants, \(M_{D_i} \) is the drug’s mass, \(\sigma_{D_i} \) its symmetry number and \(ABC \) the product of the drug’s moments of inertia about the three principal axes of rotation. \(Q_j \) is the net charge of atom j, \(S_j^E \) and \(S_j^N \) are, respectively, the total atomic electrophilic and nucleophilic superdelocalizability of Fukui et al., \(F_j(m_j) \) (\(F_j(m_j) \)) is Fukui index of the occupied (vacant) MO \(m(m') \) located on atom j. \(S_j^E(m) \) is the atomic electrophilic superdelocalizability of MO m on atom j, etc. The total atomic electrophilic superdelocalizability of atom j corresponds to the sum over occupied MOs of the \(S_j^E(m) \)’s and the total atomic nucleophilic superdelocalizability of atom j is the sum over vacant MOs of \(S_j^N(m') \)’s. \(\mu_j \) is the local atomic electronic chemical potential of atom j, \(\eta_j \) is the local atomic hardness of atom j, \(\omega_j \) is the local atomic electrophilicity of atom j, \(S_j \) is the local atomic softness of atom j, and \(Q_j^{\text{max}} \) is the maximum amount of electronic charge that atom j may accept from another site. \(O_k \)'s are the orientational parameters of the substituents. Throughout this paper HOMO\(^\text{f} \) refers to the highest occupied molecular orbital localized on atom j and LUMO\(^\text{f} \) to the lowest empty MO localized on atom j.

\[
\Delta \epsilon_i^f = K_i \exp(-\Delta \epsilon_i^f / kT)
\]

(4)

where \(Q_{D_iR}, Q_{D_i} \) and \(Q_R \) are respectively the total partition functions of the drug-receptor complex, the drug and the receptor; \(k \) is the Boltzmann’s constant and \(T \) is the absolute temperature. \(\Delta \epsilon_i^f \) is the difference between the ground-state energy of \(D_iR \) and the energies of the ground-states of \(D_i \) and \(R \):

\[
\Delta \epsilon_i^f = \epsilon_{D_iR} - (\epsilon_{D_i} + \epsilon_R)
\]

(5)

Peradejordi et al consider that the partition function terms and the solvation energy are constant. After overs considerations and approximations (for details see [34]), the linear equations is obtained:

\[
\log K_i^f = A + \sum_p \left[a_pQ_{b_p} + b_pS_{b_p}^E + c_pS_{b_p}^N \right]
\]

(6)

where \(A, a_p, b_p, c_p \) are constant to be determined \(Q_{b_p} \) is the net charge \(S_{b_p}^E \) is the total atomic electrophilic superdelocalizability of atom p and \(S_{b_p}^N \) is the total atomic nucleophilic superdelocalizability of atom p. Gómez-Jeria continued working the drug-site interaction energy and published the results [35–43]. In 2013, he derived the following equation [44]:

\[
\log K_i^f = 1/2 \sum_t \left[\log((ABC)^{1/2}) + \sum_j \left[m_jh_j + x_jS_j^E(m_j) \right] + \sum_j \left[r_jS_j^N(m_j) + t_jS_j^N(m_j) \right] \right]
\]

(7)

where the summation over t is over the different substituents of the molecule, \(m_{i,t} \) is the mass of the i-th atom belonging to the t-th substituent, \(R_{i,t} \) being its distance to the atom to which the substituent is attached. This approximation allows him to transform a molecular property into a sum of substituent properties. He proposed that these terms represent...
the fraction of molecules attaining the proper orientation to interact with a given site. He called them Orientational Parameters (OP). The new local atomic reactivity indices (LARIs) of Eq. 7 are defined as follows:

Local atomic electronic chemical potential:

\[\mu_i = \frac{\epsilon_{\text{HOMO}^*}}{2} + \frac{\epsilon_{\text{LUMO}^*}}{2} \]

(9)

Local atomic hardness:

\[\eta_i = \epsilon_{\text{HOMO}^*} - \epsilon_{\text{LUMO}^*} \]

(10)

Local electrophilic superdelocalizability of the HOMO* of atom i and local nucleophilic superdelocalizability of the LUMO* of atom i:

\[S_i^{E*} = \frac{F_i \text{HOMO}^*}{\epsilon_{\text{HOMO}}} \]

(11)

\[S_i^{N*} = \frac{F_i \text{LUMO}^*}{\epsilon_{\text{LUMO}}} \]

(12)

The maximal amount of charge atom i may receive:

\[Q_i^{\text{max}} = -\frac{\mu_i}{\eta_i} \]

(15)

The physical meaning of these indices is summarized in Table 1.

Index	Name	Physical meaning
Q_i	Net atomic charge of atom i	Electrostatic interaction
S_i^E	Total atomic electrophilic superdelocalizability of atom i	Total atomic electron-donating capacity of atom i (MO-MO interaction)
S_i^N	Total atomic nucleophilic superdelocalizability of atom i	Total atomic electron-accepting capacity of atom i (MO-MO interaction)
$S_i^{E*}(m)$	Orbital atomic electrophilic superdelocalizability of atom i and occupied MO m	Electron-donating capacity of atom i at occupied MO m (MO-MO interaction)
$S_i^{N*}(m')$	Orbital atomic nucleophilic superdelocalizability of atom i and empty MO m'	Electron-accepting capacity of atom i at empty MO m' (MO-MO interaction)
F_i	Fukui index of atom i	Total electron population of atom i (MO-MO interaction)
F_{mi}	Fukui index of atom i and occupied MO m	Electron population of occupied MO m at atom i (MO-MO interaction)
$F_{m'i}$	Fukui index of atom i and empty MO m'	Electron population of empty MO m' at atom i (MO-MO interaction)
μ_i	Local atomic electronic chemical potential of atom i	Propensity of atom i to gain or lose electrons
η_i	Local atomic hardness of atom i	Resistance of atom i to exchange electrons with a site
ς_i	Local atomic softness of atom i	The inverse of μ_i
ω_i	Local atomic electrophilicity of atom i	Propensity of atom i to receive extra electronic charge together with its resistance to exchange charge with a site
Q_i^{max}	Maximal amount of electronic charge atom i may receive	Maximal amount of electronic charge that atom i may receive from a donor site

The Klopman-Peradejordi-Gómez (KPG) method is also discussed in many previous papers [30, 35, 36, 38, 39, 42, 44–46]. From a conceptual perspective, the work presented here is a test of the hypothesis stating that the KPG model can provide a quantitative and formal relationship between the molecular structure and any biological activity. Nowadays, the KPG model produced excellent results in all its applications [35, 44, 46–53].

2.2. Selection of Molecules

For this study, a series of quinoxline derivatives were selected [23]. These molecules have an anti-proliferative activity on the HeLa cell line. The experimental data was taken from a recent study [23]. The structures of the
compounds are shown in Figure 1 and Table 2 which also summarizes the values of their median inhibitory concentrations expressed as log(IC₅₀).

![Figure 1. Structure of quinoxaline derivatives.](image)

Table 2. Quinoxalines and their experimental anti-proliferative activity.

Mol.	R₁	R₂	R₃	R₄	R₅	log(IC₅₀)
1	H	H	CH₃	CH₃	CH₃	1.66
2	H	H	CH₃	(CH₃)₂CHCH₂	CH₃	1.35
3	H	H	CH₃	CH₃CH₂CH(CH₃)	CH₃	1.58
4	H	Cl	CH₃	CH₃	CH₃	1.42
5	H	Cl	CH₃	(CH₃)₂CHCH₂	CH₃	1.51
6	Cl	H	CH₃	CH₃	C₆H₄CH₂-	1.44
7	Cl	H	CH₃	(CH₃)₂CHCH₂	CH₃	1.34
8	H	H	CH₃	CH₃	H	1.45
9	H	H	CH₃	(CH₃)₂CHCH₂	H	1.29
10	H	H	CH₃	CH₃CH₂CH(CH₃)	H	1.48
11	H	Cl	CH₃	CH₃	H	1.32
12	H	Cl	CH₃	(CH₃)₂CHCH₂	H	1.33
13	Cl	H	CH₃	C₆H₄CH₂-	H	1.33
14	Cl	H	CH₃	(CH₃)₂CHCH₂	H	1.16
15	H	H	NH(CH₃)₂	C₆H₄CH₂-	CH₃	1.48
16	H	H	NH(CH₃)₂	CH₃	CH₃	1.43
17	H	H	NH(CH₃)₂	(CH₃)₂CHCH₂	CH₃	1.49
18	H	H	NH(CH₃)₂	CH₃	H	1.63
19	H	H	NH(C(H₃)=CH₂)	CH₃	CH₃	1.59
20	H	H	NH(C(H₃)=CH₂)	C₆H₄CH₂-	CH₃	1.01
21	H	H	NH(CH₃)₂	C₆H₄CH₂-	H	0.87
22	H	H	NH(CH₃)₂	CH₃	H	0.52
23	H	H	NH(CH₃)₂	(CH₃)₂CHCH₂	H	1.33
24	H	H	NH(CH₃)₂	H	H	1.42
25	H	H	NH(C(H₃)=CH₂)	CH₃	H	1.26
26	H	H	NH(C(H₃)=CH₂)	CH₃CH₂CH(CH₃)-	H	1.63
27	H	H	NH(C(H₃)=CH₂)	C₆H₄CH₂-	H	1.18

2.3. Calculations

The electronic structure of each fully optimized molecule was obtained using the Density Functional Theory (DFT) at the B3LYP/6-31G (d, p) level with the Gaussian software [54]. The local atomic reactivity indices were calculated from the single point results of Gaussian03 using the D-Cent-QSAR software [55] with a correction for Mulliken populations [56]. All populations of electrons less than or equal to 0.01e are considered null [56]. The orientational parameters of the substituents are calculated in the usual manner [57, 58]. We have used the concept of common skeleton defined as a set of atoms common to all the molecules analyzed. We hypothesize that the variation of the numerical values of the local atomic reactivity indices (LARIs) of the atoms of this common skeleton accounts for almost all the variation of the biological activity. As the number of LARIs involved is greater than the number of molecules, the solving of the linear systems of equations is not possible. For this reason we employed the technique of multiple linear regression analysis (LMRA) to determine the
atoms that are directly involved in the variation of the biological activity. The data matrix contains log (IC$_{50}$) as a dependent variable, and the local indices of atomic reactivity of all the atoms of the common skeleton as independent variables. The Statistica 10 software was used to perform LMRA studies [59]. The numbering of the common skeleton atoms is shown in Figure 2.

Figure 2. Common skeleton numbering.

3. Results

The best statistically significant equation obtained is the following:

$$\log(\text{IC}_{50}) = -33.32 + 1.69F_{21}(\text{HOMO})^* - 2.61S_{21}^E + 0.04S_{16}^N - 78.05Q_{16} - 0.12F_{23}(\text{HOMO})^* - 1.28F_{15}(\text{LUMO})^* + 0.69F_{20}(\text{HOMO})^* + 0.0015S_{22}^N(\text{LUMO})^*$$

(16)

with n=24, R= 0.97, R2= 0.94, adj-R2= 0.91, F(8.15)=29.50, (p<0.000001) and a standard error of estimate of 0.06. No outliers were detected and no residuals fall outside the ±2σ limits. Here $F_{21}(\text{HOMO})^*$ is the electron population (Fukui index) of the highest occupied MO localized on atom 21, S_{21}^E is the total atomic electrophilic superdelocalizability of atom 21, S_{16}^N is the total atomic nucleophilic superdelocalizability of atom 16, Q_{16} is the net charge of atom 16, $F_{23}(\text{HOMO})^*$ is the Fukui index of the highest occupied MO localized on atom 23, $F_{15}(\text{LUMO})^*$ is the Fukui index of the first lowest vacant MO localized on atom 15, $F_{20}(\text{HOMO})^*$ is the electron population of the highest occupied MO localized on atom 20 and $S_{22}^N(\text{LUMO})^*$ is the atomic nucleophilic superdelocalizability of the first lowest vacant MO localized on atom 22. Table 3 shows the beta coefficients and the t-test results for the significance of coefficients of equation 1. Concerning independent variables, Table 4 shows that the highest internal correlation is $r^2[F_{20}(\text{HOMO})^*, F_{23}(\text{HOMO})^*]=0.43$. Figure 3 shows the plot of observed values vs. calculated values of log(IC$_{50}$). The associated statistical parameters of Eq.16 show that this equation is statistically significant and that the variation of the numerical values of eight LARIs explains about 91% of the variation of the biological activity.

Table 3. Beta coefficients and t-test for significance of coefficients in equation 1.

Term	Beta	t(10)	p-level
$F_{21}(\text{HOMO})^*$	0.70	7.44	<0.0000002
S_{21}^E	-1.11	-10.08	<0.000000
S_{16}^N	0.97	7.67	<0.0000001
Q_{16}	-0.43	-5.06	<0.0001
$F_{23}(\text{HOMO})^*$	-0.26	-3.51	<0.003
$F_{15}(\text{LUMO})^*$	-0.31	-3.26	<0.005
$F_{20}(\text{HOMO})^*$	0.34	3.23	<0.006
$S_{22}^N(\text{LUMO})^*$	0.28	2.61	<0.02
Figure 3. Plot of predicted vs. observed log(IC50) values. Dashed lines denote the 95% confidence interval.

Table 4. Squared correlation coefficients for the variables appearing in equation 16.

	S_{21}^2	S_{16}^2	Q_{16}	$F_{23}(HOMO)^*$	$F_{15}(LUMO)^*$	$F_{20}(HOMO)^*$
S_{21}^2	0.004	1.00				
S_{16}^2	0.02	0.3	1.00			
Q_{16}	0.002	0.034	0.2	1.00		
$F_{23}(HOMO)^*$	0.08	0.05	0.1	0.0001	1.00	
$F_{15}(LUMO)^*$	0.001	0.03	0.4	0.07	0.03	1.00
$F_{20}(HOMO)^*$	0.4	0.06	0.00004	0.03	0.01	0.002
$S_{20}^2(LUMO)^*$	0.01	0.3	0.3	0.2	0.04	0.19

Local Molecular Orbitals

Tables 5 and 6 show the Local Molecular Orbitals of atom 5, 10, 20, 21, 22 and 23 (see Figure 3). Nomenclature: Molecule (HOMO) / (HOMO-2)* (HOMO-1)* (HOMO)* - (LUMO)* (LUMO+1)* (LUMO+2)*.

Table 5. Local Molecular Orbitals of atoms 10, 15 and 20.

Mol	Atom 10 (C)	Atom 15 (C)	Atom 20 (C)
1(96)	92e93e96e-97e98e99e	94e95e96e-97e98e100e	86e90e94e-103e107e109
2(108)	104e105e108e-109e110e111e	106e107e108e-109e110e112e	99e100e106e-114e115e118e
3(116)	113e115e116e-117e118e119e	114e115e116e-117e118e120e	107e112e114e-122e124e127e
4(104)	101e103e104e-105e106e107e	102e103e104e-105e106e108e	93e98e102e-112e115e118e
5(116)	113e115e116e-117e118e119e	114e115e116e-117e118e120e	107e111e114e-122e124e127e
6(124)	118e119e122e-125e126e127e	120e121e122e-125e126e128e	120e121e124e-130e132e134e
7(116)	112e113e116e-117e118e119e	114e115e116e-117e118e120e	108e111e115e-122e124e127e
8(92)	88e89e92e-93e94e95e	90e91e92e-93e94e96e	81e86e90e-96e100e106e
9(104)	100e101e104e-105e106e107e	102e103e104e-105e106e108e	97e98e102e-111e112e116e
10(104)	100e101e104e-105e106e107e	102e103e104e-105e106e108e	97e98e102e-111e112e116e
11(100)	97e99e100e-101e102e103e	98e99e100e-101e102e104e	89e94e98e-106e108e110e115e
12(112)	109e111e112e-113e114e115e	110e111e112e-113e114e116e	104e106e110e-118e120e121e
13(120)	114e115e118e-121e122e123e	116e117e118e-121e122e124e	110e112e116e-126e128e130
14(112)	109e110e112e-113e114e115e	110e111e112e-113e114e116e	106e110e111e-118e120e122e
15(164)	160e162e164e-168e171e77e	160e162e164e-165e166e167e	158e159e163e-169e171e173e
16(144)	142e143e144e-148e150e159e	142e143e144e-145e146e147e	125e138e140e-151e157e163e
17(156)	154e155e156e-160e162e171e	154e155e156e-157e158e159e	145e153e154e-161e163e166e
18(140)	138e139e140e-144e146e167	138e139e140e-141e142e143e	119e134e137e-147e154e161e
19(112)	109e111e112e-116e118e122e	110e111e112e-113e114e115e	106e110e110e-119e127e128e
4. Discussion

The HeLa inhibition mechanism is unknown. We have stated that it is important to stress that our hypothesis covers multi-step (for example, in the n-th step molecules must cross a pore) and multimechanistic (for example, to cross the pore molecules must interact consecutively with j unknown sites) processes. Therefore it seems logical to state that a necessary condition to obtain good structure-activity relationships is that all the steps and all the mechanisms inside each step must be the same for all the group of molecules under study) [44]. If the molecules studied here employ multi-step and/or multimechanistic action mechanisms that are not exactly the same for all, we may expect that the linear multiple regression results contain sometimes variables whose interpretation seems contradictory.

The beta values shows that the importance of variables is $S_{21}^{E} > S_{16}^{N} > F_{21}(HOMO)^{*} > Q_{16} > F_{20}(HOMO)^{*} > F_{15}(LUMO)^{*} > S_{20}^{N}(LUMO)^{*} > F_{23}(HOMO)^{*}$. The process seems to be charge and orbital-controlled. A variable-by-variable analysis indicates that a good activity is associated with low negative numerical values of S_{21}^{E} (they are always negative) and Q_{16}, with low numerical values of $F_{21}(HOMO)^{*}$ and $F_{20}(HOMO)^{*}$ (their values are always positive) and with high numerical values for $F_{15}(LUMO)^{*}$ and $F_{23}(HOMO)^{*}$. If $S_{22}^{N}(LUMO)^{*}$ is positive, a high inhibitory activity is associated with low numerical values. If S_{16}^{N} is positive, a good activity is associated with low numerical values for this index.

Atom 21 is a carbon atom in the lateral chain of ring C (Figure 2). Table 6 shows that all local MO have σ nature. A low value of S_{21}^{E}, with low negative numerical values of S_{21}^{N} (they are always negative) and Q_{16}, with low numerical values of $F_{21}(HOMO)^{*}$ and $F_{20}(HOMO)^{*}$ (their values are always positive) and with high numerical values for $F_{15}(LUMO)^{*}$ and $F_{23}(HOMO)^{*}$. If $S_{22}^{N}(LUMO)^{*}$ is positive, a high inhibitory activity is associated with low numerical values. If S_{16}^{N} is positive, a good activity is associated with low numerical values for this index.

4(160) 158s158106s164s168s174σ 156s158s160s161s162s163σ 152s154s155s163σ167σ169σ
22(140) 138s139s140s144s146s155σ 138s139s140s141s142s143σ 134s136s137s147s148s162σ
23(152) 150s151s152s156s158s168σ 150s151s152s153s154s155σ 146s148s149s157s159s160σ
24(136) 134s135s136s140s142s148σ 134s135s136s137s138s139σ 132s133s134s143s144s157σ
25(108) 106s107s108s112s114s119σ 106s107s108s109s110s111σ 102s104s105s110s115s123σ
26(120) 118s119s120s124s126s133σ 118s119s120s121s122s123σ 114s116s117s125s127s129σ
27(128) 124s126s128s132s136s141σ 124s126s128s129s130s131σ 120s122s123s133s135s137σ

Table 6. Local Molecular Orbitals of atoms 21, 22 and 23.
definition of \(S^N_{16} \), the dominant term is \(S^N_{16}(\text{LUMO})^* \). Low numerical values are obtained by shifting upwards the energy of the empty MOs, making this atom a bad electron acceptor. Therefore, we suggest that atom 16 is interacting with an electron deficient center. On the other hand, Eq. 16 shows that a high inhibitory activity is related with a positive value for \(Q_{16} \), fact that seems to be contradictory with the interaction with an electron deficient center. Examining Table II we may see that \(S^N_{16} \) is more significant than \(Q_{16} \). Therefore, and as a first approximation, we shall not consider \(Q_{16} \). Atom 20 is a carbon atom of the side chain of ring C (Figure 2). All local MOs have \(\sigma \) nature (Table 6). A low value for \(F_{20}(\text{HOMO})^* \) suggests that atom 20 is probably interacting with a center rich in \(\sigma \) electrons. Note that this condition is the same that the one for atom 21. Atom 22 is the carbon atom of the carboxylate moiety of the side chain of ring C (Figure 2). \(L(\text{LUMO})^* \) is a \(\pi \) MO in all molecules (Table 6). A low value for \(F_{22}(\text{LUMO})^* \) suggests that the lowest unoccupied local MO is interacting with an electron rich center. Atom 23 is an oxygen atom of the carboxylate moiety in the side chain of ring C (Figure 2). A high value for \(F_{23}(\text{HOMO})^* \) suggests that the highest occupied local MO is interacting with an electron deficient center. All the above suggestions are shown in the partial 2D pharmacophore of Figure 4.

5. Conclusion

We obtained a statistically significant relationship between the variation of the anti-proliferative activity of some quinoxaline derivatives and the variation of the numerical values of a set of local atomic reactivity indices. This allowed us to build the associated pharmacophore that should serve as a starting point for chemical modifications producing more active compounds. According to the obtained pharmacophore, it is not necessary to modify the indices of the atoms of the quinoxaline cycle. But the indices which would be modified to improve the anti-proliferative activity are those from the side chain.

References

[1] Skloot, R., The Immortal Life of Henrietta Lacks, Pan Macmillan, 2011.
[2] Scherer, W. F., Syverton, J. T., Gey, G. O., Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 1953, 97, 695–710.
[3] Landry, J. J. M., Pyl, P. T., Rausch, T., Zichner, T., et al., The Genomic and Transcriptomic Landscape of a HeLa Cell Line. G3 Genes Genomes Genet. 2013, 3, 1213–1224.
[4] Akhtar, J., Khan, A. A., Ali, Z., Haider, R., et al., Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017, 125, 143–189.
[5] Akrami, H., Safavi, M., Mirjalili, B. F., Ashkezari, M. D., et al., Facile synthesis and antiproliferative activity of 7H-benzo[7,8]chromeno[2,3-d]pyrimidin-8-amines. Eur. J. Med. Chem. 2017, 127, 128–136.
[6] An, W., Wang, W., Yu, T., Zhang, Y., et al., Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents. Eur. J. Med. Chem. 2016, 112, 367–372.
[7] Hernández-Padilla, L., Vázquez-Rivera, D., Sánchez-Briones, L. A., Díaz-Pérez, A. L., et al., The Antiproliferative Effect of Cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa Cells Involves Inhibition of Phosphorylation of Akt and S6K Kinases. Molecules 2017, 22.
[8] Carta, D., Bortolozzi, R., Sturlese, M., Salmaso, V., et al., Synthesis, structure-activity relationships and biological evaluation of 7-phenyl-pyroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur. J. Med. Chem. 2017, 127, 643–660.
[9] Cheng, W.-H., Shang, H., Niu, C., Zhang, Z.-H., et al., Synthesis and Evaluation of New Podophyllotoxin Derivatives with in Vitro Anticancer Activity. *Molecules* 2015, 20, 12266–12279.

[10] Dandriyal, J., Singla, R., Kumar, M., Jaitak, V., Recent developments of C-4 substituted coumarin derivatives as anticancer agents. *Eur. J. Med. Chem.* 2016, 119, 141–168.

[11] Diao, P.-C., Li, Q., Hu, M.-J., Ma, Y.-F., et al., Synthesis and biological evaluation of novel indole-pyrimidine hybrids bearing morpholine and thiomorpholine moieties. *Eur. J. Med. Chem.* 2017, 134, 110–118.

[12] Li, F.-Y., Wang, X., Duan, W.-G., Lin, G.-S., Synthesis and In Vitro Anticancer Activity of Novel Dehydroabietic Acid-Based Acylhydrazones. *Molecules* 2017, 22.

[13] Fayts, C., Zoidis, G., Tsotinis, A., Fayts, G., et al., Novel 1-(2-aryl-2-adamantyl)perazine derivatives with antiproliferative activity. *Eur. J. Med. Chem.* 2015, 93, 281–290.

[14] Gabr, M. T., El-Gohary, N. S., El-Bendary, E. R., El-Kerdawy, M. M., et al., Isatin-f-thiohcarbodrazones: Microwave-assisted synthesis, antitumor activity and structure-activity relationship. *Eur. J. Med. Chem.* 2017, 128, 36–44.

[15] Goncalves, B. M. F., Salvador, J. A. R., Marin, S., Cascante, M., Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives. *Eur. J. Med. Chem.* 2016, 114, 101–117.

[16] Li, W., Tan, G., Cheng, J., Zhao, L., et al., A Novel Photosensitizer 31,131-phenylhydrazine -Mpa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells. *Molecules* 2016, 21.

[17] Żołnowska, B., Sławiński, J., Pogorzelska, A., Sławiński, J., et al., Novel 5-Substituted 2-(Azmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides: Synthesis, Molecular Structure, Anticancer Activity, Apoptosis-Inducing Activity and Metabolic Stability. *Molecules* 2016, 21.

[18] Liu, Q., Li, W., Sheng, L., Zou, C., et al., Design, synthesis and biological evaluation of novel asperpenamate derivatives. *Eur. J. Med. Chem.* 2016, 110, 76–86.

[19] Romagnoli, R., Baraldi, P. G., Precipite, F., Oliva, P., et al., Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents. *Eur. J. Med. Chem.* 2017, 134, 258–270.

[20] Levrier, C., Sadowski, M. C., Rockstroh, A., Gabrielli, B., et al., 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. *Mol. Cancer Ther.* 2017, 16, 3–15.

[21] Sun, B., Li, L., Hu, Q., Zheng, H., et al., Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic histibenzyl analogues as antitubulin agents. *Eur. J. Med. Chem.* 2017, 129, 186–208.

[22] Xie, R., Yao, Y., Tang, P., Chen, G., et al., Design, synthesis and biological evaluation of novel hydroxamates and 2-aminobenzamides as potent histone deacetylase inhibitors and antitumor agents. *Eur. J. Med. Chem.* 2017, 134, 1–12.

[23] Xia, Q.-H., Hu, W., Li, C., Wu, J.-F., et al., Design, biological evaluation and molecular docking study on peptidomimetic analogues of XK469. *Eur. J. Med. Chem.* 2016, 124, 311–325.

[24] Banu, S., Bollu, R., Bantu, R., Nagarapu, L., et al., Design, synthesis and docking studies of novel 1,2-dihydro-4-hydroxy-2-oxoquinoline-3-carboxamide derivatives as a potential anti-proliferative agents. *Eur. J. Med. Chem.* 2017, 125, 400–410.

[25] Gregorić, T., Sedić, M., Grbčić, P., Paravić, A. T., et al., Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anticancer agents: Synthesis, computational and X-ray analysis and biological evaluation. *Eur. J. Med. Chem.* 2017, 125, 1247–1267.

[26] Karki, R., Jun, K.-Y., Kadaday, T. M., Shin, S., et al., A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study. *Eur. J. Med. Chem.* 2016, 113, 228–245.

[27] Pogorzelska, A., Slawiński, J., Żołnowska, B., Szafranski, K., et al., Novel 2-(2-alkylthiobenzensulfonyl)-3-(phenylprop-2-ynyl)denaminoguanidine derivatives as potent anticancer agents – Synthesis, molecular structure, QSAR studies and metabolic stability. *Eur. J. Med. Chem.* 2017, 138, 357–370.

[28] Grozav, A., Purbö, U. D., Găină, L. I., Filip, I., et al., Cytotoxicity and Antioxidant Potential of Novel 2-(2-(1H-indol-5-yl)methylene)-hydrazinyl)-thiazole Derivatives. *Molecules* 2017, 22.

[29] Gómez-Jeria, J. S., Abarca-Martínez, S., A theoretical approach to the cytotoxicity of a series of β-carbolinedithiocarbamate derivatives against prostatic cancer (DU-145), breast cancer (MCF-7), human lung adenocarcinoma (A549) and cervical cancer (HeLa) cell lines. *Pharma Chem.* 2016, 8, 507–526.

[30] Gómez-Jeria, J. S., 45 Years of the KPG Method: A Tribute to Federico Peradejordi. *J. Comput. Methods Mol. Des.* 2017, 7, 17–37.

[31] Hudson, R. F., Klopman, G., A general perturbation treatment of chemical reactivity. *Tetrahedron Lett.* 1967, 8, 1103–1108.

[32] Klopman, G., Chemical reactivity and the concept of charge-and-frontier-controlled reactions. *J. Am. Chem. Soc.* 1968, 90, 223–234.

[33] Klopman, G., Hudson, R. F., Polyelectronic perturbation treatment of chemical reactivity. *Theor. Chim. Acta* 1967, 8, 165–174.

[34] Peradejordi, F., Martin, A. N., Cammarata, A., Quantum chemical approach to structure-activity relationships of tetracycline antibiotics. *J. Pharm. Sci.* 1971, 60, 576–582.

[35] Gómez-Jeria, J. S., A new set of local reactivity indices within the Hartree-Fock-Roothaan and density functional theory frameworks. *Can. Chem. Trans.* 2013, 1, 25–55.

[36] Gómez-Jeria, J. S., Elements of Molecular Electronic Pharmacology, 1st ed., Ediciones Sokar, Santiago de Chile 2013.

[37] Gómez-Jeria, J. S., Calculation of the Nucleophilic Potential of New Podophyllotoxin Derivatives: Synthesis, computational and X-ray analysis and biological evaluation. *Eur. J. Med. Chem.* 2017, 134, 357–370.

[38] Gómez-Jeria, J. S., La Pharmacologie Quantique. *Boll Chim Farm.* 1982, 121, 619–625.
[39] Gomez-Jeria, J. S., On some problems in quantum pharmacology I. The partition functions. Int. J. Quantum Chem. 1983, 23, 1969–1972.

[40] Gomez-Jeria, J. S., Cassels, B. K., Saavedra-Aguilar, J. C., A quantum-chemical and experimental study of the hallucinogen (±)-1-(2,5-dimethoxy-4-nitrophenoxy)-2-aminopropane (DON). Eur. J. Med. Chem. 1987, 22, 433–437.

[41] Gomez-Jeria, J. S., Morales-Lagos, D., Rodriguez-Gatica, J. I., Saavedra-Aguilar, J. C., Quantum-chemical study of the relation between electronic structure and pA2 in a series of 5-substituted tryptamines. Int. J. Quantum Chem. 1985, 28, 421–428.

[42] Gomez-Jeria, J. S., Modeling the Drug-Receptor Interaction in Quantum Pharmacology, in: Maruani, J. (Ed.), Molecules in Physics, Chemistry, and Biology, Springer Netherlands, Dordrecht 1989, pp. 215–231.

[43] Gomez-Jeria, J. S., Sotomayor, P., Quantum chemical study of electronic structure and receptor binding in opiates. J. Mol. Struct. THEOCHEM 1988, 106, 493–498.

[44] Gomez Jeria, J. S., Flores-Catalán, M., Quantum-chemical Modeling of the Relationships between Molecular Structure and In Vitro Multi-Step, Multimechanistic Drug Effects. HIV-1 Replication Inhibition and Inhibition of Cell Proliferation as Examples. Can. Chem. Trans. 2013, 1, 215–237.

[45] Gomez Jeria, J. S., The use of competitive ligand binding results in QSAR studies. II Farm. n. d., 40, 299–302.

[46] Bruna-Larenas, T., Gomez-Jeria, J. S., A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core. Int. J. Med. Chem. 2012, 16.

[47] Gomez-Jeria, J. S., Castro-Latorre, P., A Density Functional Theory analysis of the relationships between the Badger index measuring carcinogenicity and the electronic structure of a series of substituted Benz[a]anthracene derivatives, with a suggestion for a modified carcinogenicity index. Chem. Res. J. 2017, 2, 112–126.

[48] Gomez Jeria, J. S., Ovando-Guerrero, R., A DFT Study of the Relationships between Electronic Structure and Central Benzodiazepine Receptor Affinity in a group of Imidazo[1,5-\text{a}]quinoline derivatives and a group of 3-Substituted 6-Phenyl-4H-imidazo[1,5-\text{a}]-[1,4]benzodiazepines and related compounds. Chem. Res. J. 2017, 2, 170–181.

[49] Kpotin, A. G., Atohouon, G. S., Kuevi, A. U., Houngue-Kpota, A., et al., A quantum-chemical study of the relationships between electronic structure and anti-HIV-1 activity of a series of HEPT derivatives. J. Chem. Pharm. Res. 2016, 8, 1019–1026.

[50] Kpotin, G., Atohouon, S. Y. G., Kuevi, A. U., Kpota-Houngue, A., et al., A Quantum-Chemical study of the Relationships between Electronic Structure and Trypanocidal Activity against Trypanosoma Brucei Brucei of a series of Thiosemicarbazone derivatives. Pharm. Lett. 2016, 8, 215–222.

[51] Gomez-Jeria, J. S., Moreno-Rojas, C., Dissecting the drug-receptor interaction with the Klopman-Peradejordi-Gomez (KPG) method. I. The interaction of 2,5-dimethoxyphenethylamines and their N-2-methoxybenzyl-substituted analogs with 5-HT1A serotonin receptors. Chem. Res. J. 2017, 2, 27–41.

[52] Kpotin, A. G., Kankinou, G., Kuevi, U., Gomez Jeria, J. S., et al., A Theoretical Study of the Relationships between Electronic Structure and Inhibitory Effects of Caffeine Derivatives on Neoplastic Transformation. Int. Res. J. Pure Appl. Chem. 2017, 14, 1–10.

[53] Robles-Navarro, A., Gomez Jeria, J., A quantum-chemical analysis of the relationships between electronic structure and cytotoxicity, GyrB inhibition, DNA supercoiling inhibition and antituberular activity of a series of quinoline–aminopiperidine hybrid analogues. Pharma Chem. 2016, 8, 417–440.

[54] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., et al., G03 Rev. E. 01, Gaussian:, Pittsburgh, PA, USA 2007.

[55] Gomez Jeria, J. S., D-Cent-QSAR: A program to generate Local Atomic Reactivity Indices from Gaussian 03 log files. 1.0, Santiago de Chile 2014.

[56] Gomez-Jeria, J. S., An empirical way to correct some drawbacks of Mulliken Population Analysis (Erratum in: J. Chil. Chem. Soc., 55, 4, IX, 2010). J. Chil. Chem. Soc. 2009, 54, 482–485.

[57] Gomez Jeria, J. S., ON the Orientation Parameter of the Substituent. I. 3.0, Santiago de Chile 2014.

[58] Gomez Jeria, J. S., ON the Orientation Parameter of the Substituent. II. J. Chil. Chem. Soc. 2010, 55, 482–485.

[59] Statsoft, Statistica 8.0, 2300 East 14 th St. Tulsa, OK 74104, USA 1984.