The regulatory pathways leading to stem-like cells underlie prostate cancer progression

Chun-Jung Lin, U-Ging Lo, Jer-Tsong Hsieh

Prostate cancer (PCa) is the most common cause of malignancy in males and the third leading cause of cancer mortality in the United States. The standard care for primary PCs with local invasive disease mainly is surgery and radiation. For patients with distant metastases, androgen deprivation therapy (ADT) is a gold standard. Regardless of a favorable outcome of ADT, patients inevitably relapse to an end-stage castration-resistant prostate cancer (CRPC) leading to mortality. Therefore, revealing the mechanism and identifying cellular components driving aggressive PCs is critical for prognosis and therapeutic intervention. Cancer stem cell (CSC) phenotypes characterized as poor differentiation, cancer initiation with self-renewal capabilities, and therapeutic resistance are proposed to contribute to the onset of CRPC. In this review, we discuss the role of CSC in CRPC with the evidence of CSC phenotypes and the possible underlying mechanisms.

Asian Journal of Andrology (2019) 21, 233–240; doi: 10.4103/aja.aja_72_18; published online: 4 September 2018

Key words: cancer stem cell; castration-resistant prostate cancer; neuroendocrine differentiation; transdifferentiation

INTRODUCTION

Prostate cancer (PCa) remains the most commonly diagnosed cancer, from the 2017 cancer statistic report, there were 180,890 estimated new cases in 2017, and PCa is also the third leading cause of death, with 26,120 estimated deaths in the United States.

Clinical treatment for primary PCs includes radical prostatectomy and radiotherapy. Androgen deprivation therapy (ADT) is commonly used to decrease the androgen-dependent tumor burden of metastatic PCs (mPCa). Castration-resistant PCs (CRPC) is defined as the reappearance of cancer lesion from metastatic site(s) often with rising prostate-specific antigen (PSA) in patients’ serum. CRPC is recognized as the end-stage disease since patients do not respond to chemotherapeutics very well with average 6-month to 1-year survival. Although recent introduction of second-line anti-androgen agents has prolonged patients’ survival, PCs eventually develops therapy-resistant phenotypes. Clinically, therapy-resistant tumors can be divided into several different phenotypes such as neuroendocrine, androgen receptor (AR) variants, and AR hyperactivation due to gene amplification and/or mutation, which raise a critical question for the cell origin of these subtypes. Many studies have demonstrated the presence of stem-like population in normal prostate and abnormal prostate, which raises the potential role of cancer stem cell (CSC) in cancer progression. In this article, we have summarized the potential pathways associated with CSC leading to CRPC and the possible therapeutic strategies to improve the clinical outcomes of PCs patients.

CANCER STEM CELL IN CRPC

Cell markers for CSC

The CSC theory, as a potential mechanism for CRPC, has raised significant attention in recent years. In general, embryonic stem cell is pluripotent with the ability of developing into different tissue types. Somatic stem cell in each organ is considered to be quiescent most of time with limited number and capable of self-renewing and differentiation maintained in a homeostatic balance. Isaacs and Coffey first proposed that prostate stem cell resides in basal cell population; its expansion underlies the development of benign prostatic hyperplasia (BPH). Further study suggested that enrich stem cell is in the proximal duct of prostate. During normal prostate development, androgen binding to the AR in surrounding stromal cells plays a key role of basal stem cell different into luminal cell population. Recent study using gene-tracing technology indicated that luminal cell population has stem cells as well with less potency than basal stem cell. For CSC, its self-renewal ability allows a single cell remained after therapies to repopulate entire tumor population as therapeutic resistance. Further, the pluripotency of CSC is capable of differentiating into different cell types such as neuroendocrine. It has been reported that prostate CSC is likely derived from basal cell population. Normal prostate gland can be divided into epithelial, stromal, and neuroendocrine cells; the epithelial cells include luminal and basal cells. Among all these heterogeneous cell types in the normal prostate, the gene expression profile of basal cell is highly correlated with that of stem cell. Noticeably, the basal cell gene profiles are enriched in advanced, anaplastic, castration-resistant, and metastatic PCs in the human PCs sample set. However, it is still unclear whether clonal expansion and/or adaptation through epithelial-to-mesenchymal transition (EMT) or transdifferentiation during therapies results in the expansion of CSC.

Several markers have been commonly used to identify CSC population including CD44, stem cell antigen (Sca-1 or Ly6A), prominin-1 (CD133), and ATP-binding cassette subfamily G member 2 (junior blood group) (ABCG2). CD44 is often associated...
with CSC, which is a cell membrane receptor that is involved in cell–cell interactions, adhesion, and migration. Especially, cells expressing CD44, but lacking CD24 (CD44+/CD24−) PCa cells, were identified as the CSC population in vivo and in vitro models.14 These CD44+/CD24− PCa cells have the ability of forming spheres and producing tumor from a single cell, which is known as stem cell self-renewal ability. Sca-1 is a mouse glycosyl phostidylinositol-anchored surface protein that expressed by stem cells or progenitor cells. However, the human homolog of Sca-1 has not been identified yet. Studies in mouse model demonstrated that cells with Sca-1 expression have tumor-initiating ability, and tumor cells expressing higher Sca-1 were correlated with their aggressive phenotype.15,16 CD133 is a transmembrane glycoprotein, and is known as a marker for basal stem cell as well as PCa-initiating cell. Richardson et al.17 reported that a subset of CD133+ population exhibited higher clonogenic potential than CD133− population. Furthermore, these CD133+ populating can fully differentiate to prostatic acini from in vivo animal model. In addition, studies demonstrated that CD133 involved in cell growth, cell development, and tumor progression, in which the expression of CD133 was significantly increased in cancer-initiating cells using patient-derived primary cell model.18 ABCG2 is the ATP-binding cassette transporter. Patient-derived cells with high ABCG2 expression correlated with cell that expresses stem cell markers, and these subsets of cells have shown to gain multidrug resistance and be responsible for the recurrence of PCa.19 Although these CSC markers20 listed in this review are indeed correlated with CSC population associated with cancer progression, recurrence, and therapy resistance, there is still lacking a specific PCA CSC marker.

Molecular signaling pathways lead to CSC in CRPC

Three signaling pathways have been suggested to be critical for CSC development including Wnt, Sonic Hedgehog, and Notch signaling pathways. Several reports have demonstrated that targeting these signaling pathways along with conventional treatment can prevent the emergence of CRPC.21,22

Wnt

In the canonical of Wnt pathway, Wnt ligands bind to Frizzled and low-density lipoprotein receptor–related protein (LRP) 5/6, which activate downstream molecular targets, leading to the accumulation and nuclear translocation of β-catenin, subsequently affecting cell survival; while, in the noncanonical pathways, Wnt activates downstream effectors and activates targeted gene expression and cytoskeleton rearrangement, resulting in altered cell survival. Abnormal Wnt signaling has been found in several cancer types, including brain, breast, and colorectal cancer.23 In PCa, elevated β-catenin expression was often found in the nucleus of cancer cells.24 Importantly, Wnt signal regulates self-renewal ability of several cell models including LNCaP, C42B, and PC3 cell in an AR-independent manner,23,24 while downregulated Wnt/β-catenin pathway significantly suppresses stem cell-like properties.25 Furthermore, Wnt3 has been shown to increase the expression of its downstream effectors, as well as CSC markers including CD133 and CD44, which subsequently lead to sphere formation.25 In addition, Zhang et al.26 demonstrated that human telomerase reverse transcriptase (hTERT)-expressing PCa cells have higher Wnt/β-catenin activity and can thereby regulate the self-renewal and differentiation activity of PCa cells. Collectively, Wnt plays a key role in CSC development in CRPC (Figure 1a).

Sonic Hedgehog

Sonic Hedgehog signaling pathway is a conserved process that controls cell renewal and cell survival. Hedgehog signaling is initiated by hedgehog family ligands (Sonic, Desert, and Indian). These ligands bind to membrane receptors Patched (Ptc1 and 2) and Smoothened on the primary cilium, leading to the activation and nuclear translocation of glioma-associated oncogene homolog (Gli) (Gli 1, 2, and 3), which trigger the expression of targeted genes that regulate cell survival. Abnormal Hedgehog signaling pathway has been found in several cancer types, including brain, gastrointestinal, lung, breast, and prostate cancers.28,29 Some studies also demonstrated that Hedgehog involved in tumor progression and CSC proliferation.30,31 Importantly, using several PCa cell line models,29 i.e., LNCaP, Du145, PC3, 22Rv1, and

![Figure 1: Schematic representation of signal contributes to CSC phenotype. (a) Wnt proteins bind to both frizzled receptor proteins and the co-receptor LRP5/6. This binding further facilitates the activation of β-catenin. Activated β-catenin translocates into nucleus and promotes Wnt downstream gene transcription. Furthermore, Wnt/β-catenin induced hTERT also acts as a transcriptional factor, resulting a positive feedback in the enhanced expression of Wnt target genes that leads to cancer-promoting functions and CSC phenotypes. (b) Sonic Hedgehog pathway is initiated by binding one of the three secreted Hedgehog ligands to its receptor. This binding releases Smoothened that modulates the expression of three Gli zinc-finger transcription factors. (c) The Notch receptor is activated by ligand binding, which is presented by a neighboring cell. Notch activation releases an active fragment, NICD. NICD then translocates into the nucleus and promotes the expression of targeted genes. Notch-dependent signaling induces several genes associated with differentiation, survival, stemness, and EMT, which all relate to PCa progression and metastasis. Further, Notch signaling is often activated by hypoxia through HIF-1α. CSC: cancer stem cell; PCa: prostate cancer; hTERT: human telomerase reverse transcriptase; LRP: low-density lipoprotein receptor-related protein; Gli: glioma-associated oncogene homolog; Sox 2: sex determining region Y-box 2; FOXA1/A2: forkhead box A1/A2; NICD: notch intracellular domain; HIF-1α: hypoxia-inducible factor 1 subunit alpha; EMT: epithelial-to-mesenchymal transition; Bcl2: B-cell lymphoma 2; Oct4: octamer-binding transcription factor 4.](image-url)
Caveolin-1 (Cav-1)

The Caveolin protein family including caveolin-1, -2, and -3 is the major component of caveolae; Cav-1 is the first member identified and has been extensively characterized. It is known to regulate multiple cellular functions, including cell cycle, signal transduction, endocytosis, and cholesterol trafficking and efflux. Cav-1 levels are correlated with therapy resistance ability in CRPC. Importantly, Notch interacts with AR pathway and the phosphoinositide 3-kinase (PI3k)/Akt pathway, which are the two main signaling pathways in controlling prostate development and carcinogenesis. Studies from cell culture models and human PCa specimens have demonstrated that higher Notch ligand, Jagged 1-Notch1 signaling contributes to PCa progression and metastasis, and promotes EMT and CSC phenotype. Higher Notch3 expression was found in CRPC, which was induced by hypoxia condition. Recently, Notch4-targeted silencing, leading to the inhibition of nuclear factor kappa B (NF-kB) activity, also showed a promising anti-PCa growth and anti-EMT effect. These reports all point out the importance of Notch signal in PCa progression and the initiation of CSC phenotype.

MicroRNAs contribute to CSC properties of PCa cell

Emerging evidence has implied that microRNA (miRNA) regulation is crucial in promoting or repressing cancer metastasis via regulating the characteristics of CSCs. In particular, dysregulation of miRNAs is associated with tumor initiation and progression of PCa. A coordinated downregulation of miR-34a, let-7b, miR-106a, and miR-200 family has been observed in the progenitor stem cell population of PCa (Table 1).

miR-34, a p53 downstream target gene, is known as a tumor suppressor miRNA. Frequent hypermethylation of miR-34 has been observed in many malignancies with p53 mutation. Cheng et al. using conditional knockout/transgenic mouse model demonstrated that inactivation of both p53 and miR-34a in mouse prostate epithelium leads to the expansion of the prostate stem cell compartment, as well as development of early invasive adenocarcinoma and high-grade prostatic intraepithelial neoplasia. Consistent with their in vivo observations, combined deficiency of both miR-34 and p53 leads to accelerated EMT-dependent growth, enhanced self-renewal capacity, and increased cell motility in prostate stem/progenitor cells derived from the proximal region of prostatic ducts. In addition, miR-34a is known to be a key negative regulator of CD44, an adhesion molecule that is a key player in metastasis. CSCs derived from multiple malignant tumors have shown high expression of CD44. These CD44-positive CSC populations have colonogenic, tumor-initiating, and metastatic capacities. Liu et al. demonstrated that systemic delivery of miR-34a can inhibit PCa metastasis and regeneration by targeting CD44. A recent study done by Bucy et al. also revealed that another CD44-targeting miRNA, miR-383, is frequently downregulated due to loss of the chromosome 8p22 locus in the progression of PCa. Functionally, miR-383 is shown to inhibit tumor-initiating potential and metastasis of CD44-positive PCa cells by direct targeting of CD44.

miR-320 is found significantly downregulated in the progression of PCa; reduction of miR-320 associated with increased β-catenin expression has been observed in a CD44-high subpopulation of PCa cells and clinical prostatic tumor specimens. By global gene expression profiling, we reported that ectopic expression of miR-320 in PCa cells leads to suppression of CSC markers such as CD133, CD117, CXCXR4, and ABCG2, as well as downstream target genes of Wnt/β-catenin pathway. Functionally, miR-320 deficiency facilitates the CSC properties including tumor-sphere formation, chemo-resistance, and tumorigenic abilities. Overall, this study strongly suggested that miR-320 is a potent regulator of tumor-initiating cells in prostate.

Similar to miR-320, expression level of miR-7 is also significantly reduced in a subpopulation of CD133-positive/CD44-positive PCa cells, which possess CSC-like features and are sufficient for tumorigenesis based on a limited dilution analysis. On the other hand, restoration of miR-7 in PCa cell lines results in sustained inhibition of CSC characteristics and impaired tumorigenesis via targeting Kruppel-like factor 4 (Klf4). Overall, this study implies the critical role of miR-7 in regulating the properties of PCa stem cell.

Meanwhile, loss of the let-7 family has been observed in PCa tissue specimens, particularly in high-grade tumor. Kong et al. demonstrated an inverse correlation between let-7 and enhancer of Zeste homolog 2 (EZH2), a putative let-7 family target that is highly expressed in CSCs of many malignancies and is known to regulate expansion and maintenance of CSC. Functionally, let-7 is shown to diminish both colonogenic ability and sphere-forming capacity via targeting EZH2 in PCa cells. Similar to let-7, expression level of miR-100 is also significantly decreased particularly in bone metastatic PCa specimens. Wang et al. suggested that miR-100 regulates spheroid and colony formation of PCa cells by targeting argonaute 2, RISC catalytic component (Ago2), leading to suppression of stemness markers such as c-Myc, CD44, Klf4, and Oct4. This indicates that loss of miR-100 may promote the stemness.
Asian Journal of Andrology

properties of PCa. On the contrary, by screening miRNA expression in PCa patient-derived xenograft tumor lineages, a recent study done by Nabavi et al. demonstrated that several miRNAs (miR-100-5p, miR-411-5p, and miR-185-5p) are associated with the regression to dormancy status after ADT. Particularly, miR-100 has been recognized as a key component contributing to initiation and evolution of CRPC, it is believed that miR-100 is critical for the cell survival upon AR deprivation in AR-positive PCa cell lines.

The miR-200 family (miR-200a/b/c and miR-141) is known for targeting mesenchymal transcription factors leading to inhibition of EMT. In particular, Yu et al. reported that miR-200b is significantly downregulated in PCa in vivo and in advanced PCa cell lines (LNCaP, PC3, and DU145), as well as patient samples (BPH) in vitro. Ectopic expression of miR-200b sensitizes PCa cells to chemotherapeutic reagent, docetaxel, by targeting the gene, B-cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1), which is a critical regulator of CSC properties in several malignancies such as breast and gastric cancers. In contrast, miR-141-3p has an opposite regulatory role. Li et al. utilized miR-141-3p mimics to demonstrate its effect on facilitating spheroid formation and proliferation of PCa cell line (PC3). The impact of miR-141 on promoting PC3 stemness is associated with the upregulation of Oct4, Bmi-1, sex-determining region Y-box 9 (Sox9), and CD44, suggesting that miR-141 can target a common repressor of these genes. Certainly, more detailed studies are needed to unveil the mechanism of action of miR-141.

Both miR-143 and miR-145 are known to regulate bone metastasis of PCa. Huang et al. reported that both miR-143 and miR-145 can inhibit colony formation, suppress sphere-forming capacity, and reduce expression of CSC markers (CD133, CD44, Oct4, c-Myc, and Ki67) in bone-metastasis-derived PCa cell line. The finding of this study strongly suggested that miR-143 and miR-145 may play a crucial role in regulating CSCs in bone metastatic PCa. Accumulating studies have indicated that miR-145 negatively regulates pluripotency of embryonic stem cells via targeting several stemness markers such as Oct4, Sox2, and Ki67. Ozen et al. demonstrated that ectopic expression of miR-145 leads to reduced cell renewal of PCa cell lines by targeting Sox2 gene expression. By screening the miRNA expression between 3D-sphere and 2D-adherent PCa cells, Fan et al. unveiled that progressively elevated miR-143 is found in the sphere-re-adherent culture of PCa cells, suggesting that miR-143 is involved in stem cell formation.

In contrast to those miRNAs with CSC-promoting activities, it is significantly reduced miR-128 in PCa compared to benign prostate tissue that may have an opposite function. Indeed, lin et al. demonstrated that overexpression of miR-128 leads to diminished CSC properties by reducing sphere formation and clonogenic potential in PCa cells. Mechanistically, miR-128 is shown to target on several self-renewal genes such as BMI-1, NANOG, and transforming growth factor beta receptor 1 (TGFBR1). NEON. Overall, this study highly suggested that miR-128 regulates tumor initiation in PCa by limiting the CSC properties mediated by BMI-1 and NANOG.

NEUROENDOCRINE DIFFERENTIATION (NED) IN CRPC AND CSC

Prostate NED carcinoma is considered as a type of prostatic epithelial neoplasms that have NED feature, which usually identified by histopathological examination with NED markers. Therefore, NED can be found in small cell carcinoma, carcinoid, and carcinoid-like tumors, as well as prostatic adenocarcinoma. Interestingly, a study with PCa cells (Du145 and PC3) and xenograft models demonstrates that CD44+ is selectively expressed in neuroendocrine cells and these cells are responsible for PCa recurrence. NEPC is an end stage of CRPC and most patients survive less than a year after recurrence. Clinically, NEPC is identified based on histology features. In general, the tumor cell morphology was similar to high-grade neuroendocrine cancers, which have high numbers of mitotic cells with nuclear molding and chromatin-like “salt and pepper” similar to small cell. In addition, there are neuroendocrine markers that can be used for validation.

Cell markers for NED in CRPC

There are several general NED markers that are currently used to diagnose NEPC, and the presence of at least one of these is diagnostic of the condition. These markers include (1) neuron-specific enolase (NSE), a cell-specific isoenzyme of the glycolytic enzyme enolase, and it is one of the most reliable markers for the diagnosis of small cell in lung cancer; (2) synaptophysin (SYP), a major synaptic vesicle protein, is usually combined with the neuroendocrine secretory protein, chromogranin A (ChgA), for diagnosis; (3) ChgA, a secretory
Molecular mechanisms leading to NED in CRPC

Several studies have indicated that Myc (N-Myc or c-Myc) plays a key role in NEPC and also Myc gene amplification or protein overexpression is often detected in clinical specimens. Recently, Lee et al. have indicated that ectopic expression of N-Myc in basal cell population of prostate potentiates NEPC through the activation of Akt signaling pathway with human patient sample model in vivo and in vitro. Other embryonic transcription factors such as FOXA1 and FOXA2 are associated with NEPC. FOXA1 is known as a pioneering factor in modulating AR activity, and is also involved in prostate epithelial differentiation by altering chromatin tertiary structure. However, the loss of FOXA1 is found to facilitate NEPC through the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways in both cell line model (TRAMP-C and 22Rv1) and human patient sample. In contrast, FOXA2 expression was detected in NEPC, but not in primary and metastatic PCa samples (NCI-H660, PC3). It cooperates with hypoxia-inducible factor 1 subunit alpha (HIF-1α) activity to facilitate NED in PCa cell model (PC3, NCIH660, LAPC4, and LNCaP). In addition, other key regulators in neuronal differentiation such as BRN2, POU-domain transcription factor, have recently shown to regulate Sox2, which contributes to NED in PCa cell model (PC3, NCI-H660, LNCaP, and LAPC4).

Figure 2: Schematic representation of the relationship of CSC, PCa cells, and NE-like cell. CSC maintains its multipotency to form different types of tumor cell and is capable of self-renewing to expand its progeny. NE-like tumor cell can originate from the same type of tumor cells that undergo NED or transdifferentiation from other type of tumor cell (i.e., adenocarcinoma to small cell adenocarcinoma with NE phenotype). CSC: cancer stem cell; PCa: prostate cancer; NE: neuroendocrine; NED: neuroendocrine differentiation.

Transdifferentiation in CRPC

Transdifferentiation is the process of cell conversion from one type to another type (Figure 2). For example, pancreatic progenitor cells transdifferentiate into hepatocyte-like cells. Recent data clearly show that somatic cells can undergo reprogramming process by exogenously introducing key transcription factors such as Sox2, Klf4, c-Myc, Oct4, Nanog, and lin-28 homolog A (LIN28). For cancer cells, particularly, high-grade poorly differentiated cancer cells exhibiting CSC phenotypes can transdifferentiate into different cell types by turning on similar genes endogenously. For example, loss of Rb1 and TP53 underlying cancer lineage plasticity is mediated by increased Sox2 expression in these cells. Similarly, loss of PTEN and TP53 facilitates ADT resistance and initiates transdifferentiation event in adenocarcinoma, which is evidenced by elevated NED markers. All these data conclude that CSC is the result of cancer cell de-differentiation through genetic alteration and/or epigenetic
alteration from tumor microenvironment. In CRPC, accumulating evidence supports that CSC plays a central role of therapeutic resistance, Ned. Thus, developing anti-CSC strategy is expected to improve the survival of CRPC patients.

CONCLUSION
The presence of CSC has been identified in hematopoietic and testicular cancers but less known in solid tumors, particularly PCs. Accumulating data support the critical role of prostate CSC in disease progression. Despite these progresses, there is still lacking human PCA-specific CSC marker(s). Further, the underlying mechanisms of transdifferentiation as well as NED in CSC are not fully understood, which will be critical for further developing better therapeutic strategies.

AUTHOR CONTRIBUTIONS
CJL and UGL prepared manuscript. JTH outlined framework and finalized manuscript. All authors read and approved the final manuscript.

COMPETING INTERESTS
All authors declare no competing interests.

ACKNOWLEDGMENTS
We thank Dr. Samarrita Sengupta for editorial assistance. This work was supported in part by grants from the United States Army (W81XWH-16-1-0474 to Jer-Tsong Hsieh).

REFERENCES
1 Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG21 and ABCG22 cancer cells are similarly tumorigenic. Cancer Res 2005; 65: 6207–19.
2 Maitland NJ, Collins A. A tumour stem cell hypothesis for the origins of prostate cancer. BJU Int 2005; 96: 1219–23.
3 Schallken JA, van Leenders G. Cellular and molecular biology of the prostate: stem cell biology. Urology 2003; 62: 11–20.
4 Isaacs JT, Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 1989; 2: 33–50.
5 Goto K, Salm SN, Coetsee S, Xiong X, Burger PE, et al. Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 2006; 24: 1859–68.
6 Cunha GR, Lung B. The possible influence of temporal factors in androgen responsive isogenous tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 1978; 205: 181–93.
7 Moad M, Hannezo E, Buzzacchi SJ, Wilson L, El-Shair A, et al. Multipotent basal stem cells, maintained in localized proximal niches, support directed long-ranging epithelial flows in human prostate. Cell Rep 2017; 20: 1609–22.
8 Schallken JA. Molecular and cellular prostate biology: origin of prostate-specific antigen expression and implications for benign prostatic hyperplasia. BJU Int 2004; 93 Suppl 1: 5–9.
9 Zhang D, Park D, Zhong Y, Lu Y, Rycas K, et al. Stem cell and neurogenic gene expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun 2016; 7: 10798.
10 Herne-Forman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, et al. A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 2017; 7: 40633.
11 Kong D, Sethi S, Li Y, Chen W, Sakr WA, et al. Androgen receptor splice variants contribute prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 2015; 75: 161–74.
12 Abell AN, Johnson GL. Implications of mesenchymal cancers in cell stem cell populations: relevance to EMT. Curr Pathobiol Rep 2014; 2: 21–6.
13 Chiu SH, Wang ML, Chou YT, Chen CJ, Hong CF, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010; 70: 10433–44.
14 Klarman GJ, Hurt EM, Mathews LA, Zhang X, Duhacon MA, et al. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 2009; 26: 433–46.
15 Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis.
Overexpression of miR-34a inhibits prostate cancer cell growth by targeting the p21 pathway. J Biol Chem 2014; 289: 13059–69.

Tahir SA, Yang G, Goltsov A, Song KD, Ren C, et al. Caveolin-1 mediates chemoresistance in prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. J Biol Chem 2014; 289: 15679–89.

Zhu J, Lu Y, Cui D, Li E, Zhu Y, et al. miR-200b suppresses cell proliferation, migration and enhances chemotherapy sensitivity in prostate cancer by regulating Bmi-1. Oncol Rep 2014; 31: 910–8.

Wang X, Wang C, Zhang X, Hua R, Gan L, et al. Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating miRNAs. J Hematol Oncol 2016; 9: 90.

Kim SH, Singh SV. The role of polycomb group protein Bmi-1 and Notch4 in breast cancer stem cell inhibition by benzyl isothiocyanate. Breast Cancer Res Treat 2015; 149: 681–92.

Li JZ, Li J, Wang HQ, Li X, Wen B, et al. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun 2017; 482: 1381–6.

Huang S, Guo W, Tang Y, Ren D, Zou X, et al. miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol Rep 2012; 28: 1831–7.

Liu T, Cheng W, Huang Y, Huang Q, Jiang L, et al. Human amniotic epithelial cell feeder layers maintain human iPSC cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res 2012; 318: 424–34.

Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137: 647–58.

Ozen M, Karatas OF, Guloglu S, Bayrak OF, Sevli S, et al. Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Lett 2014; 350: 198–205.

Kim J, Jin H, Zhao JC, Yang YA, Li Y, et al. Overexpression of miR-34a in prostate cancer by inhibiting Bmi-1 to inhibit tumor-initiating cells. Cancer Res 2014; 74: 4183–95.

Parimi V, Goyal R, Poropatch K, Yang XJ. Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol 2014; 2: 273–85.

Yash M, Terachi F, Nukui A, Ochi M, Yuzawa M, et al. Small-cell neuroendocrine carcinoma as a variant form of prostate cancer recurrence: a case report and short literature review. Urol Oncol 2006; 24: 313–7.

Yu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radiosensitivity and treatment failure. Front Oncol 2015; 5: 90.

Cohen A, Richards KA, Patel S, Weiner A, Eggenger SE, et al. Metastatic small cell carcinoma of the prostate: population-based analysis of patient characteristics and treatment paradigms. Urol Oncol 2015; 33: 70.e1–7.

Palapattu GS, Wu C, Silvers CR, Martin HB, Weidner N, et al. Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 2009; 69: 787–98.

Deorah S, Rao MB, Raman R, Gaitonde K, Donovan JF. Survival of patients with small cell carcinoma of the prostate during 1973-2003: a population-based study. BJU Int 2012; 109: 826–31.

Stein ME, Bernstein Z, Abaciglou U, Sengoz M, Miller RC, et al. Small cell neuroendocrine carcinoma of the prostate: etiology, diagnosis, prognosis, and therapeutic implications – a retrospective study of 30 patients from the rare cancer network. Am J Med Sci 2008; 336: 478–88.

Igno MA, Bottini P, Scatena R. Neuro-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol 2015; 867: 125–43.

Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci U S A 1986; 83: 3500–4.

Gupta P, Czarnywiwetz A, Fischbach B, Baczky M, Ziemnicka K, et al. Chromogranin A-unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch Med Sci 2016; 12: 1–9.

Farinola MA, Weir EG, Ali SZ. CD56 expression of neuroendocrine neoplasms on immunophenotyping by flow cytometry: a novel diagnostic approach to fine-needle aspiration biopsy. Cancer 2003; 99: 240–6.

Viachostorgios PJ, Puca L, Beltran H. Emerging variants of castration-resistant prostate cancer. Curr Urol Rep 2016; 17: 193.

Park JW, Lee JK, Witte ON, Huang J. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate. Mod Pathol 2017; 30: 1262–72.

Maina PK, Shao P, Liu Q, Fazli L, Tyler S, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget 2016; 7: 55357–68.

Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 2016; 29: 536–47.

Kim J, Jin H, Zhao JC, Yang YA, Li Y, et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 2017; 36: 4072–80.

Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, et al. Siah-2dependent
Transdifferentiation of the master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov 2017; 7: 54–71.

Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 2016; 30: 563–77.

Sun F, Zhang ZW, Tan EM, Lim ZL, Li Y, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis 2016; 37: 701–11.

Chang PC, Wang TY, Chang YT, Chu CY, Lee CL, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS One 2014; 9: e88556.

Morell C, Bort A, Vara-Ciruelos D, Ramos-Torres A, Altamirano-Dimas M, et al. Up-regulated expression of LAMP2 and autophagy activity during neuroendocrine differentiation of prostate cancer LNCaP cells. PLoS One 2016; 11: e0162977.

Kanayama M, Hayano T, Koebis M, Maeda T, Tabe Y, et al. Hyperactive mTOR induces neuroendocrine differentiation in prostate cancer cell with concurrent up-regulation of IRF1. Prostate 2017; 77: 1489–98.

Courel M, El Yamani FZ, Alexandre D, El Fatemi H, Delestre C, et al. Secretogranin II is overexpressed in advanced prostate cancer and promotes the neuroendocrine differentiation of prostate cancer cells. Eur J Cancer 2014; 50: 3039–49.

Sang M, Hulsurkar M, Zhang X, Song H, Zheng D, et al. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget 2016; 7: 45171–85.

Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res 2014; 20: 890–903.

Bu SY, Rosario S, Wang Y, Mu P, Seshadri M, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017; 355: 78–83.

Dang Q, Li L, Xie H, He D, Chen J, et al. Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells → androgen receptor (AR) → miRNA32 signals. Mol Oncol 2015; 9: 1241–51.

Jiao L, Deng Z, Xu C, Yu Y, Li Y, et al. miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence. J Cell Physiol 2014; 229: 834–44.

Liang H, Studach L, Hullinger RL, Xie J, Andrisani OM. Down-regulation of RE-1 silencing transcription factor (REST) in advanced prostate cancer by hypoxia-induced miR-106b – 25. Exp Cell Res 2014; 320: 188–99.

Gatte F, Pasic S, Olynyk JK, Yesh GC, Tosh D, et al. Transdifferentiation of pancreatic progenitor cells to hepatocyte-like cells is not serum-dependent when facilitated by extracellular matrix proteins. Sci Rep 2018; 8: 4385.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–76.

Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 2011; 9: 113–8.

Prasad A, Manivannan J, Loong DT, Chua SM, Gharibani PM, et al. A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation. Regen Med 2016; 11: 181–91.

Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017; 355: 84–8.

Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov 2017; 7: 736–49.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.