Revealing Hanny’s Voorwerp: radio observations of IC 2497

G. I. G. Józsa1, M. A. Garrett1,2,3, T. A. Oosterloo1,4, H. Rampadarath3,5, Z. Paragi5,6, H. van Arkel1, C. Lintott7, W. C. Keel8, K. Schawinski9, and E. Edmondson10

1 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands
2 Leiden Observatory, Univ. Leiden, P.O. Box 9513 NL-2300 RA Leiden, The Netherlands
3 Centre for Astrophysics and Supercomputing, Univ. Swinburne, Mail number H39, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
4 Kapteyn Astronomical Institute, Univ. Groningen, Postbus 800, 9700 AV Groningen, The Netherlands
5 Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, The Netherlands
6 MTA Research Group for Physical Geodesy and Geodynamics, P.O. Box 91, H-1521 Budapest, Hungary
7 Univ. Oxford, Dept. Physics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
8 Univ. Alabama, Dept. Physics & Astronomy, Box 870324, University of Alabama, Tuscaloosa, AL 35487-0324, USA
9 Univ. Yale, Dept. Physics, J.W. Gibbs Laboratory, 260 Whitney Avenue, Yale University, New Haven, CT 06511, USA
10 Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK

Received 29/04/2009 / Accepted 12/05/2009

ABSTRACT

We present multi-wavelength radio observations in the direction of the spiral galaxy IC 2497 and the neighbouring emission nebula known as “Hanny’s Voorwerp”. Our WSRT continuum observations at 1.4 GHz and 4.9 GHz, reveal the presence of extended emission at the position of the nebulosity, although the bulk of the emission remains unresolved at the centre of the galaxy. e-VLBI 1.65 GHz observations show that on the milliarcsecond-scale a faint central compact source is present in IC 2497 with a brightness temperature in excess of 4 × 10^6 K. With the WSRT, we detect a large reservoir of neutral hydrogen in the proximity of IC 2497. One cloud complex with a total mass of 5.6 · 10^6 M⊙ to the South of IC 2497, encompasses Hanny’s Voorwerp. Another cloud complex is located at the position of a small galaxy group ~ 100 kpc to the West of IC 2497 with a mass of 2.9 · 10^9 M⊙. Our data hint at a physical connection between both complexes. We also detect H I in absorption against the central continuum source of IC 2497.

Our observations strongly support the hypothesis that Hanny’s Voorwerp is being ionised by an AGN in the centre of IC 2497. In this scenario, a plasma jet associated with the AGN, clears a path through the ISM. The large-scale radio continuum emission possibly originates from the interaction between this jet and the large cloud complex that Hanny’s Voorwerp is embedded in. The H I kinematics do not fit regular rotation, thus the cloud complex around IC 2497 is probably of tidal origin. From the H I absorption against the central source, we derive a lower limit of 2.8 ± 0.4 · 10^21 atoms cm^-2 to the H I column density. However, assuming non-standard conditions for the detected gas, we cannot exclude the possibility that the AGN in the centre of IC 2497 is Compton-thick.

Key words. Galaxies: active, Galaxies: IGM, Galaxies: individual: IC 2497

1. Introduction

Dutch school teacher, Hanny van Arkel, discovered what is surely one of the most bizarre objects uncovered via the GalaxyZoo.org morphological census (Lintott et al. 2008), SDSS J094103.80+344334.2. This object, now known as “Hanny’s Voorwerp”, appears as an irregular cloud located 15 – 25 kpc in projection from the massive disk galaxy IC 2497 (see grey scale plots in Figs. [1] and [2] and has a redshift matching with the galaxy (Vsys = 15056 ± 40 km s^-1, taken from the NASA Extragalactic Database NED) to within 300 km s^-1 (Lintott et al. 2009). The detected [O III] λ5007 emission, dominating the optical appearance of the cloud, is distributed over an area of roughly 15′′ × 25′′, corresponding to 15 kpc × 25 kpc at the distance of IC 2497 (Dsys = 210 ± 15 Mpc). A WHT spectrum shows strong line emission, with high-ionisation lines (He II, [Ne V]) coexistent with the continuum (Lintott et al. 2009). The quiescent kinematics with line widths of less than 100 km s^-1 (Lintott et al. 2009) and a global velocity gradient of ~ 100 km s^-1, make ionisation from photons probable as the predominant ionisation process rather than ionisation from shocks. The data do not indicate the presence of any ionising source in the immediate proximity of the nebulosity.

The current leading hypothesis is that Hanny’s Voorwerp is being illuminated and heated by an AGN situated at the centre of IC 2497. The phenomenon has been studied in observations of other objects (Morganti et al. 1991; Fosbury et al. 1998; Yoshida et al. 2002; Croft et al. 2006) and the hypothesis is supported by the optical observations (Lintott et al. 2009), showing an emission spectrum of the nucleus of IC 2497 comparable to a low-ionization nuclear emission-line region (LINER) or the narrow-line region of a Seyfert galaxy (see also [Morganti et al. 1991] and Fig. 3 therein). The FIRST survey catalogue lists a radio continuum source situated at the central position of IC 2497 (White et al. 1997). Hence, Hanny’s Voorwerp appears to be a prime example of AGN feedback processes ionising the surrounding IGM.

However, there is some puzzling evidence against this scenario. A non-detection in a short X-ray observation with the Swift satellite (Lintott et al. 2009) implies that the hypothetical
AGN is Compton-thick towards the observer, but not towards Hanny’s Voorwerp. The alternative explanation is that in the short time span of about 80000 years that the radiation needs to reach the nebula, the AGN activity has been reduced by a large factor or has even ceased altogether.

The aim of this letter is to present continuum and H\textsc{i} radio observations of IC 2497 and Hanny’s Voorwerp, conducted by the Westerbork Synthesis Radio Telescope (WSRT) and by the European VLBI Network (EVN). Our continuum data show extended radio emission at the position of Hanny’s Voorwerp. At VLBI resolution a compact source at the centre of the galaxy is detected. This clearly supports the hypothesis that Hanny’s Voorwerp is illuminated and ionised by an AGN hosted by IC 2497. We demonstrate that Hanny’s Voorwerp is embedded in a large cloud complex of neutral hydrogen, possibly being the remnant of an interaction of IC 2497 with a galaxy group located in a large cloud complex of neutral hydrogen, possibly being the remnant of an interaction of IC 2497 with a galaxy group located in a large cloud complex of neutral hydrogen, possibly being the remnant of an interaction of IC 2497 with a galaxy group located in a large cloud complex of neutral hydrogen.

We describe the observations and the data reduction (Sect.2), the data (Sect.3) and discuss our results (Sect.4).

2. Observations and data reduction

Radio continuum observations were performed with the WSRT as a service project in two epochs on 28 September 2008 and 29 September 2008 with a total integration time of 7.5 hours. We alternated the receiver frequency between 4.9 GHz and 1.4 GHz with a total bandwidth of 160 MHz to optimally uniform uv-coverage in each band. The data underwent a standard data reduction with the Australia Telescope National Facility (ATNF) software package Miriad. The 4.9-GHz map shown in Fig.\textsubscript{1} was generated using visibilities with a baseline length of < 10 k\textlambda\textsubscript{l} only and a robust weighting of 0.4. We found that this was the optimal weighting scheme to map the observed features (see Sect.3).

In addition, we observed IC 2497 in H\textsc{i} with the WSRT for 2×12h on 12 October 2008 and 28 October 2008. We used a total bandwidth of 20 MHz, two parallel polarisations, and 1024 channels in total. After a standard data reduction with Miriad we obtained a continuum map, and several data cubes each suited for the specific analyses as described below. Due to the better spatial resolution resulting from a complete uv-coverage, we use the 1.4-GHz continuum map from the H\textsc{i} observations for our analysis and the one from the dedicated continuum observations as a consistency check. Both maps match within the errors. Figure\textsubscript{2} shows both a total-H\textsc{i} map, derived from a data cube using natural weighting and a velocity resolution of 108 km s−1, and the uniformly weighted 1.4-GHz continuum map.

IC 2497 was observed by the European VLBI network (EVN) in phase reference mode for 2 hours at 1.65 GHz on 30 September 2008. The observing bandwidth was 64 MHz in both LCP and RCP, with 2-bit sampling employed. The array included the Westerbork, Medicina, Onsala 25-m, Torun, Effelsberg, Jodrell Bank MkII, and Darnhall telescopes. The data from each telescope were transported to the correlator at the Joint Institute for VLBI in Europe (JIVE) in real-time, achieving a sustainable data rate of 512 Mbps. For the observations, the target was phase-referenced to J0945+3534, a VLBA calibrator located 1.3 degrees away from the target source (IC2497). The data analysis with the National Radio Astronomical Observatory (NRAO) data reduction package AIPS yielded a detection of a single compact source with a signal-to-noise (SNR) > 7, located at RA 09h41m04s.0875 ± 0′′0002 and Dec +34°43′57″.778 ± 0′′0002 (J2000) with a resolution of 45 milliarcseconds × 38 milliarcseconds.

3. Results

While most of the continuum emission is unresolved in the WSRT observations, positioned at the centre of the galaxy, it

Fig. 1. WSRT 4.9-GHz continuum map (grey contours, red in online version) overlaid on SDSS g-band image of IC 2497. Contours: 0.6, 0.75, 1.5, 3.6 mJy/beam. The ellipse in the lower left corner represents the clean beam HPBW (HPBW = 23.3′′ × 14.2′′, σ\textsubscript{rms} = 0.15 mJy/beam). To the South of the galaxy, the optical image shows Hanny’s Voorwerp.

Fig. 2. H\textsc{i} column density (dark grey, blue in online version, contours: 0.5, 1, 1.5, 2 × 1019 atoms cm−2) and 1.4-GHz continuum map (light grey, pink in online version, contours 0.35, 0.7, 2.8, 11.2 mJy/beam, σ\textsubscript{rms} = 0.07 mJy/beam) overlaid on SDSS g-band image of IC 2497 (see Fig.\textsubscript{1}). The ellipses in the lower left corner represent the clean beam HPBWs, the larger one for the H\textsc{i} measurement (HPBW = 37.9′′ × 24.5′′), the smaller for the continuum image (HPBW = 22.1′′ × 9.9′′). The white cross marks the position of the absorption spectrum shown in Fig\textsubscript{3}. The PV-diagram shown in Fig\textsubscript{4} has been taken along the solid line.
is evident from the 1.4-GHz map (Fig. 2) that a faint extension towards the SW is present, stretching out to the location of Hanny’s Voorwerp. Also at 4.9 GHz we detect extended radio emission in addition to a dominating point source at the centre of IC 2497 (Fig. 1).

At 1.4 GHz we measure a total flux density of 20.9 ± 1.1 mJy. This is confirmed in our second, independent continuum map (20.9 ± 1.1 mJy). The extended part of the emission has a flux density of 3.2 ± 0.2 mJy. The FIRST catalogue (White et al. 1997) reports a flux density of 16.8 ± 0.9 mJy, hence we conclude that probably the extended part of the emission is not detected or resolved out in the FIRST snapshot observation. Taking into account the flux density of 51.0 ± 4.9 mJy measured at 325 MHz (Fig. 3) as given in the Westerbork Northern Sky catalogue (WENSS, Rengelink et al. 1997) and the flux densities of 20.9 ± 1.1 mJy at 1.4 GHz and 11.6 ± 0.6 mJy at 4.9 GHz as derived from our measurements, we fit a power law with a spectral index of −0.55 ± 0.05 (see Fig. 3).

We detect a central, unresolved source in IC 2497 in the WSRT measurements at 1.4 GHz and 4.9 GHz. The clear VLBI detection shows the presence of a compact source at the centre of IC 2497 with a flux density of $S_{1.65 \text{GHZ, VLBI}} = 1.09 ± 0.14 \text{ mJy}$. The observed position (RA 09h41m04s.094 ± 0.023, Dec +34°43′58″.00 ± 0.001, J2000) is offset approximately 230 milliarcseconds to the Southwest of the VLA FIRST catalogue source at RA 09h41m04s.087 ± 0.0001, Dec +34°43′57″.78 ± 0.001, J2000, errors at 90% confidence level. Both positions are hence identical within the errors. An analysis of the VLBI measurement using the AIPS routine IMFIT suggests a size of < 60 milliarcseconds. The flux density ratio of about 1/20 between the central sources in VLBI- and the WSRT measurements implies that within the WSRT beam the source must be extended on intermediate scales.

We detect HI in the vicinity of IC 2497 at velocities matching the one of IC 2497 with a total mass of about $8.5 ± 2.1 \cdot 10^9 M_\odot$ (see Fig. 2). Due to the distance of the observed objects, the detections are at a faint level, and we assume an error of 20 percent in the column densities and the total flux. The neutral gas is concentrated in two cloud complexes. One, with a mass of $M_{\text{H}\text{I}} = 5.6 ± 1.4 \cdot 10^9 M_\odot$, is surrounding the Southern half of IC 2497 with a peak in column density of $2.5 \cdot 10^{20} \text{ atoms cm}^{-2}$, roughly located at the position of a small galaxy to the East of IC 2497. The other has a mass of $M_{\text{H}\text{I}} = 2.9 ± 0.8 \cdot 10^9 M_\odot$ and is located to the West at a distance of 94″ (~96 kpc) from the centre of IC 2497, with a peak column-density of $2.3 \cdot 10^{20} \text{ atoms cm}^{-2}$, located at the position of a small galaxy group. At the position of IC 2497 itself we do not detect any significant amount of HI in emission. The kinematics of the HI is complex while showing a gradient towards higher recession velocities from West to East (Fig. 4). Apart from the clear detection shown in Fig. 2, our data hint at the presence of gas spread out in the whole surroundings of IC 2497, albeit at low significance. The most remarkable weak feature is a connection between the Eastern and Western cloud complexes in space and velocity, as indicated in the position-velocity (PV-) diagram in Fig. 4. The Eastern cloud complex contains roughly 2/3 of the total detected HI and encompasses the location of Hanny’s Voorwerp. While we detect HI at the position of the extended continuum feature and the nebulosity with a redshift matching that of Hanny’s Voorwerp, the column density has a depression at that position.

HI is also detected in absorption against the central continuum source at the peak position of the continuum. Fig. 5 shows the absorption feature as detected in a robust-weighted data cube with a velocity resolution of 72 km s$^{-1}$. The total absorbed HI flux contained in a beam of $T_{\text{mb, abs}} = 0.28 ± 0.03 \text{ Jy km s}^{-1}$ was determined from the spectrum, using a Gaussian- and second-order polynomial fit for an additional background subtraction. A Gaussian with a width of $FWHM_{\text{H}\text{I}} = 226 ± 22 \text{ km s}^{-1}$ (corrected for instrumental broadening) represents the absorption profile well (Fig. 5). The HI column density was estimated using the flux density of the unresolved WSRT continuum detection at 1.4 GHz, under the assumption that the absorbing sheet covers the background continuum source. We derive a column density of $N_{\text{H}\text{I}} = 2.8 ± 0.4 \cdot 10^{21} \text{ atoms cm}^{-2}$, where T_{mb} is the
spin temperature and f a covering factor of the absorbing sheet with respect to the background source.

4. Discussion

Our observations support the hypothesis that IC 2497 contains an active galactic nucleus with a radio jet emerging in the direction of Hanny’s Voorwerp.

From the flux density and the estimated size of the central continuum source detected in our VLBI experiment, we determine a limit on the brightness temperature of the source $T_B \gtrsim 4 \times 10^5$ K. This suggests that the source is probably related to AGN activity in the core of IC2497. Furthermore, with the WSRT we detect extended continuum emission containing a considerable fraction of the total flux density at 1.4 GHz. The extended emission originates at the centre of IC 2497 and points in the direction of Hanny’s Voorwerp. The extension is close to perpendicular (at an angle of 76° to 87°) to the optical disk of IC 2497 and reaches a considerable distance from the galaxy (Fig. 5). Most likely, it represents a large-scale radio jet.

The substantial 1.4 GHz radio luminosity $L_{1.4\text{GHz}} = 1.1 \pm 0.2 \cdot 10^{23} \text{W Hz}^{-1}$ and the spectral index $\alpha = -0.55 \pm 0.05$ are consistent with that picture. However, we note that this could also be associated with strong star formation (e.g. Sadler et al. 2002).

The Eastern H I complex has a depression in column density at the position of Hanny’s Voorwerp and the extended continuum emission. It seems that the radiation from the central source can reach the gas associated in Hanny’s Voorwerp and ionise it. As a consequence the density of the neutral gas is lower at the position of the nebulosity. The asymmetric radio jet appears to be visible only in connection to the gas complex detected in H I, where it passes through the IGM, suggesting that it has cleared a path for the radiation from the AGN to reach Hanny’s Voorwerp.

Hanny’s Voorwerp is thus not an isolated gas cloud. It is embedded in and part of a very large gas complex spanning about 110 kpc in projection. The location of the cloud complex and its irregular morphology and kinematics, makes it rather likely that the cloud complex is external in origin. The presence of the Western cloud complex at the location of a galaxy group with rather small members and the tentative kinematical and morphological connection with the Eastern cloud complex, suggests a scenario in which both complexes belong to the same structure that contains gas stripped from the galaxy group, instead of gas that has been stripped from a single galaxy. Another candidate as a gas donator or another member of the galaxy group would be the galaxy located to the East of IC 2497 close to the peak of the total H I intensity. In favour of a tidal interaction with a more massive companion rather than a dwarf galaxy is also the appearance of IC 2497 in the optical. IC 2497 seems to exhibit a massive warp.

The detection of H I in absorption already shows that the radiation emerging from the centre of IC 2497 towards us passes through the ISM/IGM at the location of IC 2497. The H I column density of the absorbing material as given above is a lower limit, assuming that the absorbing material is part of the cool, extended ISM. This assumption is supported by extended dust-lanes crossing the centre of the galaxy, already visible in the SDSS images, indicating the existence of such an extended component of the ISM (see also Lintott et al. 2009). We can, however, not exclude a scenario in which (part of) the absorption takes place closer to the nucleus, in a compact, circumnuclear disk. This might scale the H I column density by a factor of up to $1/f \gtrsim 10$ does not contradict our results, taking into account that we measure a ratio of low- and high resolution flux densities of ~ 20. The second factor is the assumed spin temperature of the standard value of 100 K for H I in normal spiral galaxies. Under the assumption of a covering factor of 0.1, a shielding column density of $\gtrsim 10^{24}$ atoms cm$^{-2}$ would imply a spin-temperature of $\gtrsim 3600K$, a realistic value for a gas residing in a circumnuclear disk (Bahcall & Ekers 1969). Hence, the H I column density might well reach the Compton-thick regime. This would offer an alternative to a short-time variability of the AGN as an explanation for non-detections of the AGN at other wavelength regimes. Sensitive radio observations at high resolution and forthcoming X-ray observations with Suzaku and XMM-Newton will help to solve this issue.

In conclusion, our observations consistently support the picture that the nebulosity called Hanny’s Voorwerp is being illuminated and heated by an AGN situated at the centre of IC 2497. The emission nebula is part of a large cloud complex detected in H I. We detect H I in absorption against the central continuum source, indicating the possibility that the AGN is Compton-thick and hence not yet detected at other wavelengths. Future observations will help to clarify this.

Acknowledgements. The Westerbork Synthesis Radio Telescope (WSRT) is operated by the ASTRON (Netherlands Foundation for Research in Astronomy) with support from the Netherlands Foundation for Scientific Research (NWO). We thank the director of the Radio Observatory division of ASTRON, Rene Vermeulen, for allocating Director’s time for this project, and the WSRT staff for making the observations possible on short notice.

The European VLBI Network is a joint facility of European, Chinese, South African and other radio astronomy institutes funded by their national research councils. e-VLBI developments in Europe are supported by the EC DG-INFSO funded Communications Network Development project ‘EXPREs’, Contract No. 02662. We thank the EVN PC chair, Tiziana Venturi, for her approval of the e-EVN observations on short notice.

This research was supported by the EU Framework 6 Marie Curie Early Stage Training programme under contract number MEST-CT-2005-19669 "ESTRELA". This research has made use of the NASA/IPAC Extragalactic Database (NED). This work has made use of the data releases of the Sloan Digital Sky Survey (Adelman-McCarthy et al. 2008).

References

Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2008, ApJS, 175, 297
Bahcall, J. N. & Ekers, R. D. 1969, ApJ, 157, 1055
Croft, S., van Breugel, W., de Vries, W., et al. 2006, ApJ, 647, 1040
Fosbury, R. A. E., Morganti, R., Wilson, W., et al. 1998, MNRAS, 296, 701
Lintott, C. J., Schawinski, K., Keel, A., et al. 2009, MNRAS, submitted
Lintott, C. J., Schawinski, K., Slosar, A., et al. 2008, MNRAS, 389, 1179
Morganti, R., Robinson, A., Fosbury, R. A. E., et al. 1991, MNRAS, 249, 91
Rengelink, R. B., Tang, Y., de Bruyn, A. G., et al. 1997, A&AS, 124, 259
Sadler, E. M., Jackson, C. A., Cannon, R. D., et al. 2002, MNRAS, 329, 227
White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479
Yoshida, M., Yagi, M., Okamura, S., et al. 2002, ApJ, 567, 118