SUPPLEMENTARY MATERIAL

A new dihydrofurocoumarin from the fruits of Pandanus tectorius Parkinson ex Du Roi

Nguyen Tan Phata, Le Tien Dunga, Phan Nhat Minha, Bui Trong Data, Pham Nguyen Kim Tuyenb, Do Thi My Lienb,c, Nguyen Dinh Tuyend, Mai Dinh Tria*

aInstitute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh city, Viet Nam.
bSai Gon University, Ho Chi Minh city, Viet Nam.
cChulalongkorn University, Thailand.
dQuang Ngai General Hospital, Quang Ngai city, Viet Nam.

Corresponding author. Email: maidinhtri@gmail.com

\section*{Abstract}
From the fruit of Pandanus tectorius Parkinson ex Du Roi, one new dihydrofurocoumarin, named pandanusin A (1) and fifteen known compounds, including one furanocoumarin (2), two coumarins (3, 4), four lignans (5-8), one neolignan (9), two flavonoids (10, 11), three phenolics (12-14), one monoglyceride (15) and one monosaccharide (16) were isolated by various chromatography methods. Among them, compounds (3-5) were obtained from the Pandanus genus for the first time and compounds (9-14, 16) were reported from this species for the first time. Their structures were elucidated by HR-ESI-MS, NMR 1D and 2D experiments and comparison with previous reported data. The \(\alpha\)-glucosidase inhibitory activity of all compounds was measured. The isolated compounds (1-12, 14) showed better \(\alpha\)-glucosidase inhibitory activity (IC\textsubscript{50} = 42.2, 36.5, 84.7, 73.2, 40.8, 26.7, 76.5, 33.8, 68.1, 14.4, 22.1, 81.5, 43.8 \(\mu\)M, respectively) than the standard drug acarbose (IC\textsubscript{50} = 214.5 \(\mu\)M).

Keywords: Pandanus tectorius; pandanusin A; \(\alpha\)-glucosidase inhibition
List of supporting information

Table S1. α-Glucosidase inhibition of compounds 1-16.
Figure S1. Chemical structures and selected HMBC, NOESY correlations of 1
Figure S2. 1H-NMR spectrum (500 MHz) of compound 1 in Acetone-d_6.
Figure S3. 13C-NMR spectrum (125 MHz) of compound 1 in Acetone-d_6.
Figure S4. DEPT spectrum of compound 1 in Acetone-d_6.
Figure S5. HSQC spectrum of compound 1 in Acetone-d_6.
Figure S6. HMBC spectrum of compound 1 in Acetone-d_6.
Figure S7. NOESY spectrum of compound 1 in Acetone-d_6.
Figure S8. HR-ESI-MS spectrum of compound 1 in Acetone-d_6.
Figure S9. CD spectrum of compound 1 in Methanol.
Compound	Inhibition (I%)				
	250 µM	100 µM	50 µM	25 µM	10 µM
1	68.4 ± 2.7	54.9 ± 0.28	38.9 ± 2.1	-	
2	83.8 ± 1.6	71.1 ± 2.7	32.0 ± 3.0	-	
3	91.3 ± 2.1	58.7 ± 1.3	26.8 ± 2.2	3.1 ± 1.4	-
4	95.4 ± 2.3	64.1 ± 1.5	39.2 ± 1.1	4.8 ± 1.6	-
5	96.9 ± 0.4	63.3 ± 0.8	27.0 ± 1.6	21.5 ± 3.0	
6	94.1 ± 2.6	75.5 ± 1.7	63.4 ± 1.2	46.2 ± 1.3	29.8 ± 2.0
7	58.6 ± 2.0	36.7 ± 1.3	7.7 ± 1.7	-	
8	98.2 ± 1.0	88.3 ± 1.2	29.1 ± 1.3	10.1 ± 2.6	
9	72.9 ± 0.61	36.9 ± 3.0	22.3 ± 2.6	12.8 ± 2.6	
10	99.5 ± 1.0	78.6 ± 4.6	71.0 ± 3.7	41.2 ± 3.3	
11	97.2 ± 3.2	90.9 ± 2.2	74.9 ± 1.4	56.0 ± 1.4	27.3 ± 1.4
12	77.5 ± 2.8	11.8 ± 2.4	4.5 ± 2.2	-	
13	50.79 ± 0.47	20.3 ± 2.7			
14	90.9 ± 0.4	63.3 ± 0.8	29.0 ± 1.6	19.8 ± 3.0	
15	-	-	-	-	-
16	-	-	-	-	-
Acarbose	59.8 ± 1.2	21.2 ± 2.2	9.8 ± 1.4	3.2 ± 1.7	-

- Not shown inhibitory activity.
- Positive control.
Figure S1. Chemical structures and selected HMBC, NOESY correlations of 1.

Figure S2. 1H-NMR spectrum (500 MHz) of compound 1 in Acetone-d_6.

Figure S3. 13C-NMR spectrum (125 MHz) of compound 1 in Acetone-d_6.
Figure S4. DEPT spectrum of compound 1 in Acetone-d_6.
Figure S5. HSQC spectrum of compound 1 in Acetone-d$_6$.
Figure S6. HMBC spectrum of compound 1 in Acetone-d_6.
Figure S7. NOESY spectrum of compound 1 in Acetone-d_6.

Figure S8. HR-ESI-MS spectrum of compound 1 in Acetone-d_6.
Figure S9. CD spectrum of compound 1 in Methanol.