Path integration in the field of a topological defect: the case of dispiration

Akira Inomata, Georg Junker and James Raynolds

1 Department of Physics, State University of New York at Albany, Albany, NY 12222, USA
2 European Organization for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany
3 College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12203, USA
E-mail: gjunker@eso.org

Received 12 October 2011, in final form 29 December 2011
Published 30 January 2012
Online at stacks.iop.org/JPhysA/45/075301

Abstract
The motion of a particle in the field of dispiration (due to a wedge disclination and a screw dislocation) is studied by path integration. By formulating a SO(2) × T(1) gauge theory, first we derive the metric, curvature and torsion of the medium of dispiration. Then we carry out explicitly path integration for the propagator of a particle moving in the non-Euclidean medium under the influence of a scalar potential and a vector potential. We also obtain the winding number representation of the propagator by taking the non-trivial topological structure of the medium into account. We extract the energy spectrum and the eigenfunctions from the propagator. Finally we make some remarks for special cases. Particularly, paying attention to the difference between the result of the path integration and the solution of Schrödinger’s equation in the case of disclination, we suggest that the Schrödinger equation may have to be modified by a curvature term.

PACS number: 61.72.Lk
(Some figures may appear in colour only in the online journal)

1. Introduction
In recent years, quantum effects on particle propagation in a field of topological defects have attracted considerable attention (see, e.g., [1–3]; see also a recent review article [4]). Although the notion of ‘defects’ in physics was originally associated with crystalline irregularities, it has been extended to more general topological structures such as entangled polymers, liquid crystals, vortices, anyons, global monopoles, cosmic strings, domain walls, etc. In the 1950s, from the structurological aspect, Kondo et al [5] extensively studied unified geometrical treatments of various subjects including elastic and plastic media, relativity, network systems.
and information theory. In particular, Kondo [6] related dislocations to Cartan’s torsion in the medium. Since then, the relation between dislocation theory and non-Riemannian geometry has been well established. More recent approaches to defect problems are gauge theories similar to those in particle physics [7–10]. In 1978, Kawamura [11] pointed out that a screw dislocation in a crystal produces an Aharonov–Bohm-type effect in particle scattering. The Aharonov–Bohm effect [12] is usually understood as a topological effect [13–16]. Since standard approaches to particle–defect interaction problems consist in solving relevant (local) differential equations, the role of topology often becomes obscure.

In this paper, we analyze the quantum behavior of a particle in the vicinity of a topological defect by the path integral method. Specifically, we carry out path integration for a particle moving around a dispiration. The dispiration we consider is a composite structure of a screw dislocation and a wedge disclination with a common defect line. In section 2, we study the geometrical and topological properties of the dispiration by using the $SO(2) \times T(1)$ gauge theory. For the medium \mathcal{M} of the dispiration, we derive the squared line element

$$ds^2 = dr^2 + \sigma^2 r^2 d\theta^2 + (dz + \beta d\theta)^2,$$

where β and σ are the parameters directly related to the Burgers vector of dislocation and the Frank vector of disclination, respectively. The medium has a non-Euclidean structure with singular torsion and curvature along the dispiration line.

In section 3, we calculate in detail the path integral to obtain the propagator (Feynman kernel) for a particle in the field of the dispiration characterized by the line element (1) under the influence of a scalar potential and a vector potential. From the propagator so obtained, we extract the energy spectrum and the energy eigenfunctions. In section 4, converting the propagator in the partial wave expansion into that in the winding number representation, we show that the effect due to the multiply connected structure of the medium is taken into account. The energy eigenfunctions and the energy spectrum are extracted from the propagator in section 5. Section 6 is devoted to interpretation of the energy spectrum. In particular, we discuss the difference between the results from the Schrödinger equation with no curvature term and those from the path integral for the case of the conical space. Our path integral calculation suggests that the standard Schrödinger equation may have to be modified by a curvature term in order for the two approaches to be consistent.

2. Gauge formulation of dispiration

The dispiration under consideration is a combined structure of a screw dislocation along the z-axis and a wedge disclination about the same z-axis. See figures 1 and 2. The gauge theoretical approach to dislocation and disclination has been extensively discussed in the literature [7–10]. Here we wish to present a $SO(2) \times T(1)$ gauge approach to the dispiration developed along the line similar to the formulation by Puntigam and Soleng [10].

The $SO(2) \times T(1)$ gauge transformation: in the gauge theoretical treatment, a deformation of an elastic medium in three dimensions is described by a local coordinate transformation consisting of a rotation and a translation,

$$x' = \rho(x) \cdot x + \tau(x),$$

where $\rho \in SO(2)$, $\tau \in T(1)$, and $x = [x, y, z]$ is the position vector of the undeformed three-dimensional medium.

4 The Volterra process of forming a dislocation and a disclination involves a translation and a rotation, respectively. A dispiration is a defect formed by a translation and a rotation at the same time [17]. See figures 1 and 2.
Figure 1. Make a thin cylindrical tube along the central line and remove a wedge of angle $\gamma > 0$ from the main body.

Figure 2. Close the open lips in such a way that a screw dislocation is created along the center line. The resulting medium is what we call the field of a dispiration.

As is well known, an axial wedge disclination can be created by the so-called Volterra process, that is, by (a) removing a wedge-shaped portion of an angle $\gamma \in [0, 2\pi)$ from the medium and pasting the open walls together, or (b) inserting an extra wedge-shaped portion with $\gamma \in [-2\pi, 0)$ into the medium. Note that the deficit angle γ is chosen to be positive for case (a) and negative for case (b). See figure 1 for case (a). The wedge disclination about the z-axis is a rotational deformation obtained by gauging $SO(2)$:

$$\mathbf{x}' = \rho(\theta) \cdot \mathbf{x},$$

with the rotation matrix

$$\rho(\theta) = \begin{pmatrix}
\cos(\gamma\theta/2\pi) & -\sin(\gamma\theta/2\pi) & 0 \\
\sin(\gamma\theta/2\pi) & \cos(\gamma\theta/2\pi) & 0 \\
0 & 0 & 1
\end{pmatrix}.$$

Here $\theta = \tan^{-1}(y/x) \in [0, 2\pi)$.

3
A screw dislocation lying along the z-axis (i.e. having a constant Burgers vector pointing toward the z-direction) as shown in figure 2 is a translational deformation obtained by gauging the z-translational group $T(1)$:

$$x' = x + \tau(\theta),$$

(5)

with the angle-dependent z-translation vector

$$\tau(\theta) = -\frac{b\theta}{2\pi} e_z,$$

(6)

where b is a translation parameter and $\theta = \tan^{-1}(y/x)$ as before.

The dispiration comprised of such a wedge disclination and a screw dislocation is described by the combined coordinate transformation,

$$x' = \rho(\theta) \cdot x + \tau(\theta),$$

(7)

where $\rho(\theta)$ and $\tau(\theta)$ are given by (4) and (6), respectively.

Gauge connections: the standard Yang–Mills theory localizes with respect to the external space the gauge group which acts homogeneously in the internal space and introduces the gauge potential or the connection Γ that transforms under the group action G as

$$\Gamma' = G\Gamma G^{-1} - dG G^{-1}.$$

What we wish to formulate for the dispiration is a $SO(2) \times T(1)$ gauge approach which differs in character from the Yang–Mills theory; the gauge group acts inhomogeneously on the (internal) coordinates x that are soldered locally to the (external) coordinates of the medium of dispiration. It is more appropriate for us to follow the procedures used in constructing a Poincaré gauge theory [10, 18] or an affine gauge theory [19] for gravity.

First we write the group action (7) in the matrix form

$$G\tilde{x} = \begin{pmatrix} \rho & \tau \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} \rho \cdot x + \tau \\ 1 \end{pmatrix}.$$

Then we define the connection Γ as

$$\Gamma = \begin{pmatrix} \Gamma^{(R)} & \Gamma^{(T)} \\ 0 & 0 \end{pmatrix},$$

where $\Gamma^{(R)}$ and $\Gamma^{(T)}$ are the rotational connection and the translational connection, respectively. In order for Γ to behave like a connection in the Yang–Mills theory, $\Gamma^{(R)}$ and $\Gamma^{(T)}$ must transform as

$$\Gamma^{(R)'} = \rho \Gamma^{(R)} \rho^{-1} - (d\rho) \rho^{-1}$$

and

$$\Gamma^{(T)'} = \rho \Gamma^{(R)} - d\tau - [\rho \Gamma^{(R)} \rho^{-1} - (d\rho) \rho^{-1}] \tau.$$

Evidently the rotational connection is a $SO(2)$-valued one-form, and the translational connection is an R-valued connection one-form.

Now we construct the solder form that locally connects the global gauge coordinates $x(0)$ to the coordinates $x(\theta)$ of the dispiration medium as

$$\omega = dx + \Gamma^{(R)} \cdot x + \Gamma^{(T)},$$

(8)

which is a vector-valued one-form\(^5\). It transforms as $\omega' = \rho \omega$, leaving $g = \omega' \cdot \omega$ invariant. Since we create the dispiration by a gauge transformation in flat space, we choose a connection

\(^5\) It is possible to derive this solder form by starting with the homogeneous group $SO(4)$ and applying the group contraction to reduce it to $SO(3) \times T(1)$. The solder form may be obtained as a limiting form of a component of the connection. For instance, the de Sitter gauge theory can be contracted to the Poincaré gauge theory, so that the solder form is obtained from the gauge potential as the vierbeine [20]. This contraction scheme does not work for the affine gauge theory [19].
that vanishes at $\theta = 0$. Then the corresponding rotation and translation connections are given, respectively, by

$$\Gamma^{(R)} = \rho \, d\rho^{-1}$$

and

$$\Gamma^{(T)} = -d\tau.$$

(10)

The rotational connection (9) and the translational connection (10) can be easily calculated by using the rotation matrix (4) and the translation vector (6). The differential of the rotation matrix (4) is

$$d\rho^{-1}(\theta) = \rho(d\rho(-\theta) = -\gamma \frac{\gamma}{2\pi} \theta

\begin{pmatrix}
\sin(\gamma \theta / 2\pi) & -\cos(\gamma \theta / 2\pi) & 0 \\
\cos(\gamma \theta / 2\pi) & \sin(\gamma \theta / 2\pi) & 0 \\
0 & 0 & 0
\end{pmatrix},$$

(11)

where

$$d\theta = \frac{1}{r^2} (x \, dy - y \, dx), \quad r^2 = x^2 + y^2.$$

(12)

This and the rotation matrix (4) together lead us to the rotational connection

$$\Gamma^{(R)} = \rho(\theta) \, d\rho^{-1}(\theta) = \gamma \frac{\gamma}{2\pi} m \, d\theta,$$

(13)

where

$$m = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$

(14)

The translational connection is found in a simple form by differentiating the translation vector (6),

$$\Gamma^{(T)} = -d\tau = \frac{b}{2\pi} \, d\theta \, e_z.$$

(15)

Substitution of (13) and (15) into (8) yields

$$\omega = dx + \gamma \frac{\gamma}{2\pi} \, d\theta \, m \cdot x + \frac{b}{2\pi} \, d\theta \, e_z = \begin{pmatrix}
dx + \frac{\gamma}{2\pi} y \, d\theta \\
dy - \frac{\gamma}{2\pi} x \, d\theta \\
dz + \frac{b}{2\pi} \, d\theta
\end{pmatrix}.$$

(16)

Utilizing this solder form as the coframe, we can determine the squared line element

$$ds^2 = g_{ij} \, dx^i \otimes dx^j \text{ in the medium of the dispiration},$$

$$ds^2 = \sigma^2 \, r^2 \, d\theta^2 + (dz + \beta \, d\theta)^2,$$

(17)

where

$$\sigma = 1 - \frac{\gamma}{2\pi}, \quad \beta = \frac{b}{2\pi}.$$

(18)

Evidently $\sigma \in (0, 1]$ when $\gamma \in [0, 2\pi)$, and $\sigma \in (1, 2]$ when $\gamma \in [-2\pi, 0)$.

In this paper, we consider the non-simply connected medium $\mathcal{M} = \mathbb{R}^3 \setminus \{ x = y = 0 \}$ with metric (17) as the field of dispiration. In the following, we briefly review some of the geometrical and topological properties that will be useful for later discussion.

Curvature and Frank vector: the curvature two-form \mathbf{R} is defined in terms of the rotational connection $\Gamma^{(R)}$,

$$\mathbf{R} = d\Gamma^{(R)} + \Gamma^{(R)} \wedge \Gamma^{(R)}.$$

(19)

For the case of dispiration with (13), since $\Gamma^{(R)} \wedge \Gamma^{(R)} = 0$, it integrates into

$$\int_S \mathbf{R} = \int_S d\Gamma^{(R)} = \int_{\partial S} \Gamma^{(R)} = \int_{\partial S} \frac{\gamma}{2\pi} \, m \, d\theta = \gamma m.$$

(20)
where \(\partial S\) denotes the boundary of a surface \(S\). Now we choose an orthogonal frame \((\xi^1, \xi^2, \xi^3)\) such that \(ds^2 = \delta_{ij}\xi^i \wedge \xi^j\) with \(\xi^1 = dr, \xi^2 = \sigma r d\theta, \xi^3 = dz + \beta d\theta\). Then we have \(R = R_{ij}\xi^i \wedge \xi^j\). The surface is chosen to be orthogonal to \(\xi^3\). Equation (20) implies that

\[
R = \gamma m \delta^{(2)}(\xi^1, \xi^2) d\xi^1 \wedge d\xi^2. \tag{21}
\]

The corresponding scalar curvature is

\[
R = 2\gamma \delta^{(2)}(x, y), \tag{22}
\]

or equivalently

\[
R = 2\gamma \delta^{(2)}(x, y). \tag{23}
\]

Apparantly the curvature of the medium \(M\) is zero everywhere except along the \(z\)-axis \((x = y = 0)\). Note that the curvature is created not by the dislocation but by the disclination.

The Frank vector \(f = \{\Phi^1, \Phi^2, \Phi^3\}\) is defined to characterize a disclination with

\[
\Phi = \int_S R = \gamma m. \tag{24}
\]

where again the integral is over a surface \(S\) which is delimited by a loop \(\partial S\) enclosing the \(z\)-axis. Obviously the only non-vanishing components of the Frank vector for the dispiration are given by \(\Phi^{12}\). As a result, the Frank vector takes the form

\[
f = \gamma e_z. \tag{25}
\]

which points toward the \(z\)-direction and its magnitude is identical to the deficit angle \(\gamma\).

Torsion and Burgers vector: the torsion two-form is defined by

\[
T = d\omega + \Gamma^{(R)} \wedge \omega = R \cdot x + d\Gamma^{(T)} + \Gamma^{(R)} \wedge \Gamma^{(T)}, \tag{26}
\]

which, in general, depends not only on the translational connection but also on the rotational connection. For (13) and (15), \(\Gamma^{(R)} \wedge \Gamma^{(T)} = 0\). Note also that the integration of \(R \cdot x\) vanishes. Then the torsion two-form integrates into

\[
\int_S T = \int_S d\Gamma^{(T)} = \int_{\partial S} \Gamma^{(T)} = b e_z, \tag{27}
\]

from which follows

\[
T = b e_z \delta^{(2)}(\xi^1, \xi^2) d\xi^1 \wedge d\xi^2. \tag{28}
\]

We see that the only non-vanishing component of the torsion two-form is in the \(z\)-direction and is contributed only by the screw dislocation.

The Burgers vector \(b\) is defined by the surface integral of the torsion two-form

\[
b = \int_S T \tag{29}
\]

which has been evaluated in (27)

\[
b = b e_z. \tag{30}
\]

As is expected, the translation parameter \(b\) of (6) is indeed the magnitude of the Burgers vector \(b\).

Conical space: before concluding this section, we consider a special case of the line element (1) with constant \(z\) and \(\beta = 0\). The two-dimensional surface having the metric

\[
dl^2 = dr^2 + \sigma^2 r^2 d\theta^2 \tag{31}
\]

where \(\sigma\) is a constant.
to which (1) reduces may be realized as a conical surface \(M_c \) if the surface is imbedded into a three-dimensional Euclidean space \(E^3 \). Let

\[
X = (\sigma r \cos \theta, \sigma r \sin \theta, \sqrt{1 - \sigma^2 r}).
\]

(32)

Apparently,

\[
I : dX \cdot dX = dl^2
\]

(33)

which is the first fundamental form of the imbedded surface \(M_c \). Again, parameterizing the surface by \(0 < r < \infty \) and \(0 \leq \theta < 2\pi \), we have the metric tensor and its inverse,

\[
g_{ab} = \begin{pmatrix} 0 & 0 \\ 1 \sigma^2 r^2 & 0 \end{pmatrix}, \quad g^{ab} = \begin{pmatrix} 0 & 0 \\ 1 / \sigma^2 r^2 & 0 \end{pmatrix},
\]

(34)

which will be used later. With

\[
X_r = (\sigma \cos \theta, \sigma \sin \theta, \sqrt{1 - \sigma^2 r}),
\]

(35)

\[
X_\theta = (-\sigma r \sin \theta, \sigma r \cos \theta, 0),
\]

(36)

the unit vector normal to \(M_c \) at a point \((r, \theta)\),

\[
n = X_r \times X_\theta / |X_r \times X_\theta|,
\]

(37)

is easily calculated to be

\[
n = (-\sqrt{1 - \sigma^2} \cos \theta, -\sqrt{1 - \sigma^2} \sin \theta, \sigma).
\]

(38)

The second fundamental form

\[
II : -dX \cdot dn = G_{ab} du^a \otimes du^b
\]

(39)

is also immediately obtained for the conical surface \(M_c \) as

\[
-\ dX \cdot dn = \sqrt{1 - \sigma^2} \sigma r d\theta^2.
\]

(40)

Hence,

\[
G = \left(\sum_b g^{ab} G_{bc} \right) = \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{1 - \sigma^2} / (\sigma r) \end{pmatrix}
\]

(41)

whose two eigenvalues \(k_1 = 0 \) and \(k_2 = \sqrt{1 - \sigma^2} / (\sigma r) \) are the principal curvatures of the conical surface for \(r \neq 0 \). The Gaussian curvature and the mean curvature of a two-dimensional surface imbedded in \(E^3 \) are defined, respectively, by

\[
K = \det G = k_1 k_2
\]

(42)

\[
H = \frac{1}{2} \text{tr} G = \frac{1}{2} (k_1 + k_2).
\]

(43)

For the conical surface in question,

\[
K = 0 \quad \text{and} \quad H = \sqrt{1 - \sigma^2} / (2\sigma r)
\]

(44)

for \(r \neq 0 \). Of course, the Gaussian curvature \(K \) does not vanish at the apex of the cone. According to the Gauss–Bonnet theorem,

\[
\int_S K \ da + \int_{\partial S} k_g \ dl = 2\pi \chi (S),
\]

(45)

where \(S \) is a compact two-dimensional Riemann manifold with boundary \(\partial S \). \(K \) is the Gaussian curvature of \(S \), \(k_g \) is the geodesic curvature of \(\partial S \) and \(\chi (S) \) is the Euler characteristic of \(S \).
Now we let S be the lateral surface of a frustum with slant height r. Then $k_g = 1/r$ and the line element dl integrated along the boundary ∂S with $dr = 0$ result in
\[
\int_{\partial S} k_g dl = 2\pi \sigma = 2\pi - \gamma,
\]
where γ is the deficit angle defined in (18). The Euler characteristic of a cone is unity. Hence, we have
\[
\int_S K da = \gamma,
\]
where $da = \sigma r dr d\theta$. From this and (44) follows
\[
K = \frac{\gamma}{\sigma} \delta^2(x, y)
\]
which includes the curvature at the apex ($r = 0$). As is well known, the Ricci or scalar curvature of a two-dimensional manifold is twice the Gaussian curvature. Indeed, twice the Gaussian curvature (48) coincides with the scalar curvature (23).

3. Path integration

The medium surrounding the dispiration considered in the preceding section is $\mathcal{M} = \mathbb{R}^3 \setminus \{x = y = 0\}$, which is geometrically a non-Riemannian space and topologically a non-simply connected space. In this section, we carry out path integration for the propagator of a particle moving in the field of the dispiration. To confine the particle in the vicinity of the dispiration, we introduce a two-dimensional harmonic oscillator potential. Furthermore, we assume a repulsive inverse-square potential to prevent the particle from falling into the singularity at the defect line. For the purpose of comparison, we also introduce a vector potential due to a flux tube and a uniform magnetic field.

The standard approach deals with the Schrödinger equation in curved space. As will be discussed in section 5, the Schrödinger equation is usually modified in curved space not only by the Laplace–Beltrami operator replacing the Laplacian but also the so-called curvature term added as an effective potential. The energy spectrum is sensitive to the type of curvature term; yet the controversy on the choice of the term is not fully settled. The path integral calculation we present suggests that the Gaussian curvature of the surface where the particle moves would dominate the curvature term.

3.1. The Lagrangian

Now that the dispiration field is characterized by the line element (17), the Lagrangian for a charged point particle of mass M moving in the vicinity of the dispiration under the influence of a scalar potential $V(x)$ and a vector potential $A(x)$ is written as
\[
L = \frac{1}{2} M \left(\frac{ds}{dt}\right)^2 - \frac{e}{c} \mathbf{A} \cdot \mathbf{x} - V(x).
\]
(49)
As has been mentioned before, we choose the vector potential $A(x)$ consisting of two parts: one due to an ideally thin flux tube that contains the constant magnetic flux Φ along the dispiration line and another due to a uniform constant magnetic field $\mathbf{B} = B \mathbf{e}_z$ pointing toward the z-direction. Then the vector potential term of Lagrangian (49) is expressed in cylindrical coordinates (r, θ, z) as
\[
\frac{e}{c} \mathbf{A} = a h \dot{\theta} + M \omega L r^2 \dot{\theta},
\]
(50)
where
\[\alpha = \frac{e \Phi}{2\pi \hbar c}, \quad \omega_L = \frac{eB}{2Mc}. \] (51)

Here \(\alpha \) is the ratio of the magnetic flux to the fundamental flux \(\Phi_0 = 2\pi \hbar c/e \), which is identical to the statistical parameter in Wilczek’s anyon model [35], and \(\omega_L \) is the Larmor frequency. The flux tube is included in our calculation in order to observe the similarity between the Aharonov–Bohm effect and the effect of a screw dislocation. In the scalar potential \(V(x) \), we include a two-dimensional short-range repulsive potential (the inverse square potential with \(\kappa > 0 \) sufficiently large) to emphasize the impenetrable feature of the central singularity, and a two-dimensional long-range attractive potential (the harmonic oscillator potential) to confine the particle in the vicinity of the dispiration. Namely, \(V(x) \) is specified to be a two-dimensional central force potential,
\[V(r) = \frac{\kappa \hbar^2}{8M\sigma^2 r^2} + \frac{1}{2} Mo^2 r^2, \quad r^2 = x^2 + y^2. \] (52)

Thus, the Lagrangian we consider is
\[L = \frac{1}{2} M \left[\dot{r}^2 + \sigma^2 \ddot{\theta}^2 + (\dot{z} + \beta \dot{\theta})^2 \right] - \alpha \hbar \dot{\theta} - Mo_L r^2 \dot{\theta} - V(r). \] (53)

3.2. The propagator

The transition amplitude (propagator) for the three-dimensional motion of the charged particle from the point \(x = (r', \theta', z') \) to point \(x'' = (r'', \theta'', z'') \) can be calculated by the path integral [21]
\[K(x'', x'; \tau) = \int_{x = x(t')}^{x'' = x(t'')} \exp \left[\frac{i}{\hbar} \int_{t'}^{t''} L \, dt \right] D^3x, \] (54)
where \(\tau = t'' - t' > 0 \). The integral measure must be so chosen that the propagator satisfies the properties
\[\lim_{t'' \to t'} K(x'', x'; t'' - t') = \delta(x'' - x'), \] (55)
\[\int K(x'', x; t'' - t') K(x, x'; t - t') \, d^3x = K(x'', x'; t'' - t'). \] (56)

The path integral we calculate with Lagrangian (53) is
\[K(r'', \tau''; r', \tau') = \int \exp \left[\frac{i}{\hbar} \int_{t'}^{t''} \left\{ \frac{M}{2} (\dot{r}^2 + \sigma^2 \ddot{\theta}^2) + \frac{M}{2} (\dot{z} + \beta \dot{\theta})^2 - \alpha \hbar \dot{\theta} - Mo_L r^2 \dot{\theta} - V(r) \right\} \right] \, D^2r \, D\zeta. \] (57)
In (57), \(r \) signifies two variables \((r, \theta)\) symbolically, and the two-dimensional integral measure \(d^2r \) will be specified later. After path integration, from the propagator, we should be able to extract the energy spectrum and the wavefunctions for the system.

3.3. The \(z \)-integration

First we perform the \(z \)-integration by letting \(\zeta = z + \beta \theta \). The \(z \)-path integral is nothing but the Gaussian path integral for a one-dimensional free particle, which yields the standard result
\[\int_{\zeta'' = \zeta(t'')}^{\zeta' = \zeta(t')} \exp \left[\frac{i}{\hbar} \int_{t'}^{t''} \frac{M}{2} \zeta^2 \, dt \right] D\zeta = \sqrt{\frac{M}{2\pi i \hbar \tau}} \exp \left[i \frac{M (\zeta'' - \zeta')^2}{2\hbar \tau} \right]. \] (58)
Now we rewrite the right-hand side of (58) as
\[\sqrt{\frac{M}{2\pi i\hbar \tau}} \exp \left[\frac{1}{2\hbar} \int_{-\infty}^{\infty} e^{-ir\hbar k^2/2M} e^{i(k^2-\epsilon)k} \, dk \right], \] (59)
where \(\hbar k \) is the \(z \)-component of momentum of the particle. We also note that
\[\frac{\zeta''}{\zeta} = \frac{\zeta''}{\zeta' + \beta'(\theta'' - \theta')} = \frac{\zeta''}{\zeta' + \beta} \int_{r'}^{r} \dot{\theta} \, dr. \] (60)

Incorporating these results into the path integral (57), we decompose the propagator as
\[K(x'', x'; \tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ik(z'' - \zeta')} e^{-ir\hbar k^2/2M} K^{(k)}(r'', r'; \tau) \] (61)
with the two-dimensional propagator for a fixed \(k \) value,
\[K^{(k)}(r'', r'; \tau) = \int_{r=r''}^{r=r''} \exp \left\{ \frac{i}{\hbar} \int_{r'}^{r''} \left[\frac{M}{2} (r'^2 + \sigma^2 \dot{r}'^2) - \frac{M\omega_k r'^2}{2} - \xi \dot{r}' - V(r) \right] \, dr \right\} D^2 r, \] (62)
where \(\xi = \alpha - \beta \hbar k \). The integral on the right-hand side of (59) is the spectral decomposition of the \(z \)-motion with the continuous spectrum,
\[E_k = \frac{\hbar^2 k^2}{2M}. \] (63)

Next we make a change of the angular variable from \(\theta \) to \(\dot{\theta} \) by letting
\[\dot{\theta} = \dot{\theta} - \dot{\omega}, \] (64)
where \(\dot{\omega} = \omega \sqrt{\sigma^2}. \) Accordingly, the \(k \)-propagator (62) is transformed into
\[K^{(k)}(r'', r'; \tau) = \int_{r=r''}^{r=r''} \exp \left\{ \frac{i}{\hbar} \int_{r'}^{r''} \left[\frac{M}{2} (r'^2 + \sigma^2 \dot{r}'^2) - \xi \dot{r}' - U(r) \right] \, dr \right\} D^2 r(r, \dot{\theta}), \] (65)
where
\[U(r) = V(r) + \frac{1}{2} M \dot{\omega}^2 r^2 - \xi \hbar \dot{\omega}, \] (66)
or
\[U(r) = \frac{\kappa \hbar^2}{8M \sigma^2 r^2} + \frac{1}{2} M \dot{\omega}^2 r^2 + V_0 \] (67)
where
\[\omega^2 = \omega_0^2 + \dot{\omega}^2, \quad V_0 = -\xi \hbar \dot{\omega}. \] (68)

Note that \(\dot{\theta} \) is the angular variable in a rotating frame with the angular velocity \(-\dot{\omega} \). For simplicity, the constant \(V_0 \) in the potential will be ignored in the calculation below.

3.4. The short-time action

To calculate the two-dimensional path integral (65) in polar coordinates [22–24], we first express it in discretized form,
\[K^{(k)}(r'', r'; \tau) = \lim_{N \to \infty} \int_{r=r''}^{r=r''} \prod_{j=1}^{N} K^{(k)}(r_j, r_{j-1}; \epsilon) \prod_{j=1}^{N-1} d^2 r_j, \] (69)
where the propagator for a short-time interval $\epsilon = t_j - t_{j-1} = \tau/N$ is given by

$$K^{(k)}(r_j, r_{j-1}; \epsilon) = A_j \exp \left(\frac{i}{\hbar} S_j \right).$$

(70)

Now we select a relevant approximation of the short-time action S_j in cylindrical coordinates and determine the amplitude A_j, so as to meet the normalization condition

$$\lim_{\epsilon \to 0} \frac{K^{(k)}(r_j, r_{j-1}; \epsilon)}{\epsilon^{3/2}} = \frac{1}{\epsilon}.$$

(71)

where the two-dimensional delta function satisfies

$$\int \delta^2(r_j - r_{j-1}) \, d^2r_j = 1.$$

(72)

The short-time action is

$$S_j = \int_{t_{j-1}}^{t_j} \left[\frac{M}{2} (\dot{r}^2 + \sigma^2 \dot{\vartheta}^2) - \xi \hbar \dot{\vartheta} - U(r) \right] \, dt$$

(73)

which we approximate by

$$S_j = \frac{M}{2\epsilon} \left((\Delta r_j)^2 + 2\sigma^2 r_j r_{j-1} [1 - \cos(\Delta \vartheta_j)] \right) - \xi \hbar \Delta \vartheta_j - U_j \epsilon,$$

(74)

where $\Delta r_j = r_j - r_{j-1}, \Delta \vartheta_j = \vartheta_j - \vartheta_{j-1}$ and $U_j = U(r_j)$. It is tempting to approximate $(\Delta \vartheta_j)^2$ by $(\Delta \vartheta_j)^2 / \epsilon$ cannot be ignored because $(\Delta \vartheta_j)^2 \sim \epsilon$.

Hence, it is appropriate to replace $(\Delta \vartheta_j)^2$ by $1 - \cos(\Delta \vartheta_j)$ even though unimportant higher order terms are included (see [25]). Since it is sufficient for a short-time action to consider the contributions up to first order in ϵ, we further employ the approximate relation for small ϵ [15],

$$\cos(\Delta \vartheta) + a \epsilon \Delta \vartheta \sim \cos(\Delta \vartheta - a \epsilon) + \frac{1}{2} a^2 \epsilon^2,$$

(75)

to write the short-time action multiplied by (i/\hbar) as

$$\frac{i}{\hbar} S_j = \frac{i M}{2\epsilon} \left(r_j^2 + r_{j-1}^2 \right) + \left(\sigma^2 - 1 \right) \frac{M \sigma^2 r_j r_{j-1}}{i \hbar} + \frac{M \sigma^2 r_j r_{j-1}}{i \hbar} \cos \left(\Delta \vartheta_j - \frac{\xi \hbar}{M \sigma^2 r_j r_{j-1}} \right)$$

$$+ \frac{(4\xi^2 + \epsilon) \hbar}{8 \omega \sigma^2 r_j r_{j-1}} - \frac{i M \omega^2 \epsilon}{4 \hbar} (r_j^2 + r_{j-1}^2).$$

(76)

We use this short-time action (multiplied by i/\hbar) for evaluating the angular path integral. However, before starting the angular integration, let us determine the amplitude A_j by considering the limit $\epsilon \to 0$ of the short-time action (76),

$$\lim_{\epsilon \to 0} A_j e^{iS_j/\hbar} = \lim_{\epsilon \to 0} A_j e^{i \frac{1}{2\epsilon} \left((\Delta r_j)^2 \right) \frac{M \sigma^2 r_j^2}{2 \hbar} \left((\Delta \vartheta_j)^2 \right) / \left(2 \hbar \right)}$$

$$= A_j \frac{2 \pi \hbar}{M \sigma r_j} \delta(\Delta r_j) \delta(\Delta \vartheta_j).$$

(77)

Now let the area element be given by

$$d^2r_j = r_j \, dr_j \, d\vartheta_j.$$

(78)

Then the amplitude meeting condition (71) must be of the form

$$A_j = \frac{M \sigma}{2 \pi i \hbar}.$$

(79)

Alternatively, if

$$d^2r_j = \sigma r_j \, dr_j \, d\vartheta_j,$$

(80)

then the corresponding amplitude is

$$A_j = \frac{M}{2 \pi i \hbar}.$$

(81)

Since path integration with either combination yields the same result, we employ the first choice (78) with (79) for our calculation.
3.5. Asymptotic recombination

For path integration in polar coordinates, separation of variables is not straightforward. To separate the angular variable from the radial function, we employ the asymptotic recombination technique (see [25]). The asymptotic form of the modified Bessel function $I_n(z)$ for large $|z|$ (GR:8.451.5 in [26]) is

$$I_n(z) \sim \frac{e^z}{\sqrt{2\pi z}} \sum_{n=0}^{\infty} (-1)^n \frac{(v, n)}{(2z)^n} + \frac{e^{-z-(v+1/2)z}}{\sqrt{2\pi z}} \sum_{n=0}^{\infty} \frac{(v, n)}{(2z)^n}, \quad (82)$$

where $-3\pi/2 < \arg z < \pi/2$ and

$$(v, n) = \frac{\Gamma(v+n+\frac{1}{2})}{n!\Gamma(v-n+\frac{1}{2})}, \quad (v, 0) = 1.$$

The asymptotic recombination technique is based on the conjecture that the one-term asymptotic form,

$$I_n(az) e^{bc} e^{-cz} \sim \sqrt{\frac{a+b}{a}} I_n [(a+b)z], \quad (84)$$

where $a > 0, b \geq 0, 8a(a+b)c > b - 4(a+b)v^2$ and

$$\mu = \left[\frac{a+b}{a} v^2 - \frac{b}{4a} + 2(a+b)c \right]^{1/2}. \quad (85)$$

Making use of this asymptotic relation together with the Jacobi–Anger expansion formula

$$e^{z \cos \theta} = \sum_{m=-\infty}^{\infty} e^{im\theta} I_m(z), \quad (86)$$

we obtain another asymptotic relation for large $z,$

$$\exp \left\{ b_z + z \cos \left[\Delta \theta + i \frac{d^2 + 2f}{2z} \right] \right\} \sim \sqrt{1+b} \sum_{m=-\infty}^{\infty} e^{im\Delta \theta} I_m [(1+b)z] \quad (87)$$

with

$$\mu = \left[(1+b)(m+d^2 + 2f) - b/4 \right]^{1/2}. \quad (88)$$

In the above, we have let $a = 1$ and $c = (d^2 + 2f + 2md)/2.$

3.6. Angular integration

Utilizing (87) with $b = \alpha^2 - 1, \ z = M\sigma^2 r_j r_{j-1}/(i\hbar \epsilon), \ d = \xi = \alpha - \beta k$ and $f = \kappa/2,$ we separate variables of the short-time propagator (70) as

$$K^{(k)}(r_j, r_{j-1}; \epsilon) = A_j \exp \left\{ \frac{1}{\hbar \epsilon} S_j \right\} = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{im(\theta_j - \theta_{j-1})} R_{\mu}(r_j, r_{j-1}; \epsilon) \quad (89)$$

with the short-time radial propagator

$$R_{\mu}(r_j, r_{j-1}; \epsilon) = \frac{M}{i\hbar \epsilon} \exp \left[\frac{iM}{2\hbar \epsilon} (r_j^2 + r_{j-1}^2) - \frac{iM\sigma^2 \epsilon}{4\hbar}(r_j^2 + r_{j-1}^2) \right] I_{\mu}(m_j) \left(\frac{M \sigma^2 r_j r_{j-1}}{i\hbar \epsilon} \right), \quad (90)$$

In the above, we have let $a = 1$ and $c = (d^2 + 2f + 2md)/2.$
where
\[\mu(m_j) = \frac{1}{2\sigma} [4(m_j + \xi)^2 + \sigma^2 - 1 + \kappa]^{1/2}. \]
(91)

The prefactor \(\sqrt{1 + h} \) appeared on the right-hand side of formula (87) results in a multiple factor \(\sigma^{-1} \) before the summation of (89), which will cancel out the factor \(\sigma \) appearing in amplitude (79). Thus, the two-dimensional path integral (69) is reduced to the form
\[K^{(k)}(r''; r'; \tau) = \lim_{N \to \infty} \int \prod_{j=1}^{N} \frac{1}{2\pi} \sum_{m_j} e^{im_j(\theta_j - \theta_{j-1})} R_{m_j}(r_j, r_{j-1}; \epsilon) \prod_{j=1}^{N-1} r_j \, dr_j \, d\theta_j. \]
(92)
The angular integration can be done straightforwardly by using the orthogonality relation}
\[\int_0^{2\pi} e^{i(m''-m)\theta} \, d\theta = 2\pi \delta_{m',m}. \]
(93)

Namely,
\[\int \prod_{j=1}^{N} e^{im_j\Delta\theta_j} \prod_{j=1}^{N-1} d\theta_j = (2\pi)^N \prod_{j=1}^{N-1} \delta_{m,m_j} e^{i(m\theta - \theta')}, \]
(94)

where \(m = m_N \). After angular integration, we have \(m_j = m \) for all \(j \), and arrive at the expression for the full propagator with a fixed wave number \(k \),
\[K^{(k)}(r'', r'; \tau) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \exp\left[i m(\theta'' - \theta')\right] R_{m}(r'', r'; \tau), \]
(95)

where
\[R_{m}(r'', r'; \tau) = \lim_{N \to \infty} \int \prod_{j=1}^{N} R_{m}(r_j, r_{j-1}; \epsilon) \prod_{j=1}^{N-1} r_j \, dr_j. \]
(96)
The left-hand side of (95) is nothing but the partial wave expansion in two dimensions, and the radial propagator (96) corresponds to the \(m \)th partial wave propagator. However, the last radial path integration (96) remains to be carried out.

3.7. Radial path integration

To perform the radial path integration explicitly, we first note that the short-time radial propagator (90) with \(m = m_j \) for all \(j \) is similar in form as that of the radial harmonic oscillator. Then we rewrite (96) as
\[R_m(r_j, r_{j-1}; \epsilon) = \frac{M}{ih\epsilon} \exp \left[\frac{i M \omega}{2h} \left(r_j^2 + r_{j-1}^2 \right) \frac{1}{i\epsilon} \left(1 - \frac{1}{2} \omega^2 \epsilon^2 \right) \right] I_{\mu(m)} \left(\frac{Mr_{j-1}}{ih\epsilon} \right). \]
(97)

We further simplify (97) by letting \(\eta_j = (M\omega/2h)r_j^2 \) and \(\varphi = \arcsin(\omega\epsilon) \) as
\[R_m(r_j, r_{j-1}; \epsilon) = \frac{M\omega}{ih\sin\varphi} \exp[i(\eta_j + \eta_{j-1})\cot\varphi] I_{\mu}(-2i\sqrt{\eta_j/\eta_{j-1}} \csc\varphi). \]
(98)

Here we have used the approximation
\[\cos\varphi_j = \cos[\arcsin(\omega\epsilon)] \sim 1 - \frac{1}{2} \omega^2 \epsilon^2. \]
(99)
At this point, for convenience, we introduce a two-point function, referred to as the \(\nu \)-function [25, 28], by
\[\nu_{\mu}(\eta, \eta'; \varphi) = -i \csc\varphi \exp\left[i(\eta + \eta')\cot\varphi\right] I_{\mu}(-2i\sqrt{\eta/\eta'} \csc\varphi). \]
(100)
satisfying the convolution relation
\[\int_{0}^{\infty} u_\mu(\eta'', \eta; \varphi) v_\mu(\eta, \eta'; \varphi) \, d\eta = v_\mu(\eta'', \eta'; 2\varphi) \] (101)
which can be derived from Weber’s formula (GR: 6.633.2 in [26]) as modified in [23],
\[\int_{0}^{\infty} \exp\left(i \alpha r^2\right) I_\mu(-i \alpha r) I_\mu(-i \beta r) \, dr = \frac{i}{2\alpha} \exp\left[-\frac{i}{4\alpha}(a^2 + b^2)\right] I_\mu\left(-\frac{ab}{2\alpha}\right) \] (102)
valid for \(\text{Re} \alpha > 0 \) and \(\text{Re} \mu > -1 \). Then the short-time radial function can be expressed in terms of the \(\nu \)-function as
\[R_m(r_j, r_{j-1}; \epsilon) = \frac{M\omega}{\hbar} v_\mu(m)(\eta_j, \eta_{j-1}; \varphi). \] (103)

Now we are ready to perform the radial path integration. Substitution of this into (96) gives
\[R_m(r'', r'; \tau) = \frac{M\omega}{\hbar} \lim_{N \to \infty} \int \prod_{j=1}^{N} v_\mu(m)(\eta_j, \eta_{j-1}; \varphi) \prod_{j=1}^{N-1} d\eta_j. \] (104)

The convolution property (101) of the \(\nu \)-function enables us to reach
\[R_m(r'', r'; \tau) = \frac{M\omega}{\hbar} v_\mu(m)(\eta'', \eta'; \omega \tau). \] (105)

In the above, we have also used the property
\[\lim_{N \to \infty} (N \varphi) = \lim_{N \to \infty} (N \sin \varphi) = \lim_{N \to \infty} (\omega N \epsilon) = \omega \tau. \] (106)

In terms of the modified Bessel function, it is written as
\[R_m(r'', r'; \tau) = \frac{M\omega}{\hbar \sin \omega \tau} \exp\left[I\frac{M\omega}{2\hbar}(r''^2 + r'^2) \cot \omega \tau\right] I_\mu(m) \left(\frac{M\omega r''}{\hbar \sin \omega \tau}\right) \] (107)
with
\[\mu(m) = \frac{1}{2\alpha} \sqrt{4(m + \alpha - \beta k)^2 + \sigma^2 - 1 + \kappa}. \] (108)

Note that \(\mu(m) \) is a real positive number if \(1 - \sigma^2 < \kappa \). In this manner, we have completed the radial path integration for the partial propagator with \(k \) fixed. It turns out that the radial propagator we have obtained above is identical in form with that of the radial harmonic oscillator. The characteristics of the dissipation, the flux tube, the uniform magnetic field and the assumed potential, which make the present system different from the simple harmonic oscillator, are all taken into the index \(\mu(m) \) of the modified Bessel function.

With the radial propagator (107), the full propagator with \(k \) fixed is obtained by
\[K^{(k)}(r'', \vartheta''; r', \vartheta'; \tau) = \frac{M\omega}{2\pi i \hbar \sin \omega \tau} \exp\left[I\frac{M\omega}{2\hbar}(r''^2 + r'^2) \cot \omega \tau\right] \times \sum_{m=-\infty}^{\infty} e^{i(m\vartheta'' - \vartheta')} I_\mu(m) \left(\frac{M\omega r''}{\hbar \sin \omega \tau}\right) \] (109)
or by converting \(\vartheta \) into \(\vartheta = \theta + \tilde{\vartheta} \),
\[K^{(k)}(r'', \vartheta''; r', \vartheta'; \tau) = \frac{M\omega}{2\pi i \hbar \sin \omega \tau} \exp\left[I\frac{M\omega}{2\hbar}(r''^2 + r'^2) \cot \omega \tau\right] \times \sum_{m=-\infty}^{\infty} e^{i(m\vartheta'' - \vartheta + \tilde{\vartheta})} I_\mu(m) \left(\frac{M\omega r''}{\hbar \sin \omega \tau}\right) \] (110)
4. Winding number expansion

In the angular path integration performed above, we have not explicitly taken account of the topological structure of the background medium \mathcal{M}. Since $\mathcal{M} = \mathbb{R}^3 \setminus \{x = y = 0\} \cong \mathbb{R} \times \mathbb{R}^+ \times S^1$, the paths connecting two points, say a and b, in \mathcal{M} can wind around the z-axis many times, and may be classified (into homotopy classes) by the fundamental group $\pi_1(\mathcal{M}) = \pi_1(S^1) \cong \mathbb{Z}$ of \mathcal{M}. A set of all homotopically equivalent paths in \mathcal{M} is now characterized by a single winding number $n \in \mathbb{Z}$. Therefore, the propagator $K(b, a)$ may be given as a sum of subpropagators $\tilde{K}_n(b, a)$ for the paths with different winding numbers n,

$$K(b, a) = \sum_{n \in \mathbb{Z}} C_n \tilde{K}_n(b, a). \quad (111)$$

The paths in the same class may be deformed into one another, so that the transition amplitudes corresponding to these paths must share the same phase factor. On the other hand, the paths belonging to different classes may have different phases. Laidlaw and deWitt [29], and Schulman [13] argue that the coefficients C_n are the one-dimensional unitary representations of the fundamental group $\pi_1(\mathcal{M}) \cong \mathbb{Z}$. From equation (111), it is apparent that $C_{n+m} = C_n C_m$. If no degeneracies and no internal degrees of freedom are assumed, $C_{n+1} = e^{i\lambda} C_n$. Then the coefficients are given by the one-dimensional representations of the fundamental group $\pi_1(\mathcal{M})$ or the additive group \mathbb{Z}, namely $C_n = e^{im\lambda}$.

It has also been pointed out [30] that the angular momentum representation and the winding number representation are complementary to each other via Poisson’s sum formula,

$$\sum_{n \in \mathbb{Z}} e^{2\pi nm\xi} = \sum_{m \in \mathbb{Z}} \delta(\xi - m). \quad (112)$$

This means that the propagator $K^{(k)}(r'', r'; \tau)$ we have obtained in the preceding sections, as is given in the angular momentum representation, cannot be regarded as a subpropagator carrying a single winding number. Similarly, any partial propagator with a fixed angular momentum quantum number cannot be decomposed to a full set of subpropagators with winding numbers. The propagator obtained for the diaphragm field must be understood as a full bound state propagator that contains contributions from all homotopically possible paths (see [15, 16] for detail). Thus, we look for a winding number representation of $K^{(k)}(r'', r'; \tau)$ in (109) via Poisson’s formula (112).

Let us rewrite (95) as

$$K^{(k)}(r'', r'; \tau) = \frac{1}{2\pi} \int \sum_{n \in \mathbb{Z}} \delta(\alpha' + \lambda - m) e^{i(\alpha' + \lambda)(\theta'' - \theta')} R_{\alpha' + \lambda}(r'', r'; \tau) \, d\lambda, \quad (113)$$

with the radial propagator $R_{\alpha}(r'', r'; \tau)$ given by (107). Then we utilize Poisson’s formula (112) to convert (113) into the winding number representation

$$K^{(k)}(r'', r'; \tau) = \sum_{n \in \mathbb{Z}} C_n \tilde{K}_n(r'', r'; \tau), \quad (114)$$

where

$$C_n = e^{i2\pi nm\alpha'} \quad (115)$$

and

$$\tilde{K}_n(r'', r'; \tau) = \frac{M \omega}{2 \pi \hbar \sin \omega \tau} \exp \left[\frac{i M \omega}{2 \hbar} \left(r''^2 + r'^2 \right) \cot \omega \tau \right] \times \int_{-\infty}^{\infty} e^{i(\theta'' - \theta' - 2\pi m)} I_{\mu(\alpha' + \lambda)} \left(\frac{M \omega r''}{\hbar \sin \omega \tau} \right) \, d\lambda. \quad (116)$$
In the coefficients C_n of (115), α' can be chosen to be an arbitrary real number. In particular, choosing $\alpha' = -\alpha$, one observes that the magnetic flux only appears as a pure phase factor $\exp[-i\alpha(\theta'' - \theta' + 2\pi n)]$ in (116). The choice $\alpha' = \beta k - \alpha$ furthermore shows that the screw dislocation has a similar effect, that is, it only appears as a phase $\exp[-i(\alpha - k\beta)(\theta'' - \theta' + 2\pi n)]$ in (116). Evidently both belong to $U(1)$, the one-dimensional unitary representation of $\pi_1(\mathcal{M}^4)$. The result is consistent with the Laidlaw–deWitt–Schulman theorem albeit the unitary factor is not unique.

5. Energy spectrum and wavefunctions

All the information concerning the energy spectrum and associated radial wavefunctions for the bound states in two dimensions is contained in the radial propagator (107). In order to extract such information out of (107), we make use of the Hille–Hardy formula (GR: 8.976.1 in [26])

\[I_\mu \left(\frac{2\sqrt{xyz}}{1 - z} \right) \left(\frac{xz}{1 - z} \right)^{-\mu/2} \exp \left[-\frac{1}{2}(x + y) \frac{1 + z}{1 - z} \right] = \exp \left[-\frac{x + y}{2} \right] \sum_{n=0}^{\infty} \frac{n! z^n}{\Gamma(n + \mu + 1)} L_n^{(\mu)}(x) L_n^{(\mu)}(y), \] (117)

where $L_n^{(\mu)}(x)$ is the Laguerre polynomial related to the confluent hypergeometric function as

\[L_n^{(\mu)}(x) = \frac{\Gamma(n + \mu + 1)}{\Gamma(\mu + 1) n!} F(-n, \mu + 1; x). \] (118)

Note that the confluent hypergeometric function is in general an infinite series,

\[F(a, b; x) = \sum_{s=0}^{\infty} \frac{\Gamma(b) \Gamma(a + s)}{\Gamma(b + n) n!} x^n, \] (119)

which converges only for $|x| < 1$ and becomes a polynomial for any x when $a = 0, -1, -2, ...$. Letting $x = (M\omega/\hbar)r^2$, $y = (M\omega/\hbar)r''^2$ and $z = e^{-2i\omega\tau}$ in (117), we write (107) as

\[R_m(r'', r'; \tau) = \frac{2M\omega}{\hbar} \left(\frac{M\omega}{\hbar} r''^2 \right)^{\mu/2} \exp \left[-\frac{M\omega}{2\hbar} (r''^2 + r^2) \right] \times \sum_{n=0}^{\infty} \frac{n! e^{-i\omega(2n + \mu + 1)}}{\Gamma(n + \mu + 1)} L_n^{(\mu)} \left(\frac{M\omega}{\hbar} r''^2 \right) L_n^{(\mu)} \left(\frac{M\omega}{\hbar} r^2 \right). \] (120)

With this radial propagator, k-propagator (110) can be cast into the form

\[K^{(k)}(r'', \theta''; r', \theta'; \tau) = \sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} \psi_m(r'', \theta'') \psi_m^*(r', \theta') e^{-i\tilde{E}_m \tau}, \] (121)

where

\[\tilde{E}_m = \hbar\omega(2n + \mu(m + 1)) + m\hbar\omega \] (122)

and

\[\psi_m(r, \theta) = \sqrt{\frac{M\omega}{\pi \hbar}} \frac{n!}{\Gamma(n + \mu + 1)} \left(\frac{M\omega}{\hbar} r^2 \right)^{\mu/2} e^{-i\omega(2n + \mu + 1)} L_n^{(\mu)} \left(\frac{M\omega}{\hbar} r^2 \right) e^{i\mu\theta}. \] (123)

Substitution of (91) into (122) results in the energy spectrum for the particle bound in two dimensions

\[\tilde{E}_m = \hbar\omega \left\{ 2n + 1 + \frac{1}{2\sigma} \sqrt{4(m + \alpha - \beta k^2 + \sigma^2 - 1 + \kappa)} + m\hbar\omega \right\}, \] (124)
where \(n = 0, 1, 2, \ldots, m = 0, \pm 1, \pm 2, \ldots \). Adding the continuous spectrum (63) as well as the ignored \(V_0 \) yields the full spectrum of the system,

\[
E_{mnk} = \tilde{E}_{mn} + \frac{\hbar^2 k^2}{2M} + (\beta k - \alpha)\bar{\omega}.
\] (125)

6. Concluding remarks

In concluding this paper, we would like to make some remarks on the discrete energy spectrum (124) for the two-dimensional motion around the dispiration. First we examine special cases.

(i) The Landau levels: the presence of the uniform magnetic field is unimportant for the study on the dispiration. However, if there are no dislocation, no disclination, no magnetic tube, no external short-ranged repulsive and long-ranged attractive potential but the uniform magnetic field, that is, if \(\alpha = \beta = \kappa = 0, \sigma = 1 \) and \(\omega_0 = 0 \), then, as is expected, we have the Landau levels

\[
E_{\bar{n}, k} = 2\hbar \omega_L \left(\bar{n} + \frac{1}{2} \right) + \frac{\hbar^2 k^2}{2M},
\] (126)

where \(\omega_L = eB/(2M) \) and \(\bar{n} = n + (|m| + m)/2 = 0, 1, 2, \ldots \).

(ii) The screw dislocation spectrum: in the absence of the uniform magnetic field, the disclination and the inverse-square potential, i.e. in the case of \(\bar{\omega} = 0, \sigma = 1 \) (i.e. \(\kappa = 0 \)), the discrete energy spectrum for the two-dimensional motion (with fixed \(k \)) becomes

\[
\tilde{E}_{mn} = \hbar \omega_0 (2n + 1 + |m + \alpha - \beta k|),
\] (127)

which shows that the effect of the Burgers vector \(b = 2\pi \beta \) is practically identical to that of the magnetic tube (the Aharonov–Bohm effect) as pointed out in [11]. In comparison with Wilczek’s anyon model [33], the screw dislocation plays a similar role of an anyon by generating a fractional spin. From the geometrical point of view, as we have seen earlier, the line dislocation causes torsion. This spectrum explicitly shows that a source of torsion generates a spin effect [31, 32]. In the limiting case of the vanishing flux tube and the diminishing Burgers vector, we have simply the harmonic oscillator spectrum

\[
E_{\bar{n}} = \hbar \omega_0 (\bar{n} + 1),
\] (128)

where \(\bar{n} = 2n + |m| = 0, 1, 2, \ldots \). The harmonic oscillator potential is important in the present dislocation spectrum, without which two-dimensional bound states cannot be formed in the vicinity of the defect. In the calculation of the partition function for an anyon gas, the oscillator potential has played a role of the regulator for taming divergences [33, 34].

(iii) The wedge disclination spectrum: if \(\alpha = 0, \beta = 0 \) and \(\bar{\omega} = 0 \), then the two-dimensional discrete spectrum takes the form

\[
\tilde{E}_{mn} = \hbar \omega_0 \left\{ 2n + 1 + \frac{1}{2\sigma} \sqrt{4m^2 + \sigma^2 - 1 + \kappa} \right\},
\] (129)

which belongs to a particle bound near the disclination by the harmonic oscillator potential plus a repulsive inverse-square potential. From (18), it is clear that \(\sigma = 1 \) implies the vanishing deficit angle \(\gamma = 0 \). This corresponds to the absence of disclination. If \(0 < \sigma < 1 \), then \(2\pi > \gamma > 0 \), that is, the medium carries a positive curvature at the center of disclination. In comparison with the assumed square inverse repulsive potential term with \(\kappa \) inside the square root of the spectrum, we see that the negative term with
\(\sigma^2 - 1 \) represents the effect of an attractive force; we may argue that the disclination effectively generates a short-ranged attractive force around it. If \(\sigma > 1 \), the medium is negatively curved, and a repulsive force is created around the center of disclination (the saddle point).

The Schrödinger equations for the harmonic oscillator interacting separately with dislocation and disclination have been solved by Furtado and Moraes [36]. In the absence of the flux tube \(\alpha = 0 \), our dislocation spectrum (127) coincides with their result obtained for the dislocation. However, our disclination spectrum (129) with \(\kappa = 0 \) is not in agreement with theirs.

Finally, we examine for the case of disclination the difference between the result from the Schrödinger equation and that of path integration. Since some errors are involved in [36], we present our own solution of the Schrödinger equation which is slightly different from that in [36].

The line element (1), if \(\beta = 0 \), reads
\[
dx^2 = dr^2 + \sigma^2 r^2 d\theta^2 + dz^2. \tag{130}\]

Although the Laplace–Beltrami operator can be used to write down the Schrödinger equation as in [36], we choose to let \(\phi = \sigma \theta \) and express (130) as
\[
dx^2 = dr^2 + r^2 d\phi^2 + dz^2, \tag{131}\]

which is identical with the flat space line element except for \(0 < \phi < 2\pi \sigma \). Then it is rather trivial to write down the Schrödinger equation in terms of coordinates (\(r, \phi, z \)), namely
\[
- \frac{\hbar^2}{2M} \left\{ \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} \right\} \psi + V(r) \psi = E \psi, \tag{132}\]

which can be easily solved for a two-dimensional harmonic oscillator potential \(V(r) = \frac{1}{2} M \omega^2 r^2 \) with the periodic condition \(\psi(r, 2\pi\sigma + \phi, z) = \psi(r, \phi, z) \). The normalizable solution is obtained in the form
\[
\psi(r, \phi, z) = N e^{i k z} e^{i m \phi / \sigma} e^{-M \omega^2 / 2 \hbar} r^{-|m| / \sigma} F(-n_r, 1 + |m| / \sigma; (M\omega / \hbar)^2 r^2), \tag{133}\]

with the condition
\[
\frac{1}{2} \left(1 + \frac{|m|}{\sigma} - \frac{E}{\hbar \omega} + \frac{k^2 \hbar^2}{2M} \right) = -n_r \quad (n_r \in \mathbb{N}_0), \tag{134}\]

which yields the energy spectrum
\[
E_{n,m} = \hbar \omega \left\{ 2n_r + 1 + \frac{|m|}{\sigma} \right\} + \frac{k^2 \hbar^2}{2M}. \tag{135}\]

Here \(m \in \mathbb{Z} \) as follows from the periodic condition. It is apparent that the above spectrum differs from the path integral result (129). The term \(\sigma^2 - 1 \) inside the square root of (129) lacks in (135). Furthermore, the wavefunctions are different. The wavefunctions (133) with \(m \neq 0 \) vanish at \(r = 0 \), but the function with \(m = 0 \) remains to be non-zero. This is in contrast with the fact that the radial wavefunction (123) obtained by path integration vanishes at \(r = 0 \) for all values of \(m \). In this treatment, the nonvanishing singular curvature at the disclination center \(r = 0 \) plays no role. The Schrödinger equation may have to be modified so as to accommodate the curvature effect.

In general, the Schrödinger equation in curved space is written in the form
\[
\left\{ - \frac{\hbar^2}{2M} \Delta + V_c(r) + V(r) \right\} \psi(r, t) = i\hbar \frac{\partial}{\partial t} \psi(r, t), \tag{136}\]

where \(\Delta \) is the Laplace–Beltrami operator, \(V_c(r) \) is the potential due to the curvature effect and \(V(r) \) is any external potential. Historically, Podolsky [37] defined the Schrödinger equation in
curved space without the curvature term, i.e. $V_c(r) = 0$, but, as Schulman [14] puts it, there is no reason, other than the prejudice for simplicity, to ignore the curvature term. Comparing with Feynman’s path integral, DeWitt [38] has proposed that the scalar curvature term is needed, that is, $V_c(r) = g \hbar^2 R(r)$ where g is a constant. More recently, however, Kleinert [39] has argued by using a quantum equivalence principle that there is no need of the curvature term. On the other hand, viewing the motion in a two-dimensional curved space as a constrained motion on the curved surface imbedded in a three-dimensional Euclidean space, Jensen and Koppe [40], da Costa [41] and others have argued that the Schrödinger equation on a curved surface carries in it an effect potential due to the Gaussian curvature $K(r)$ and the mean curvature $H(r)$.

Our path integral calculation necessitates an effective potential of the inverse square form which is due to neither the scalar curvature nor the Gaussian curvature. In a forthcoming paper [42], it will be shown that the path integration in a conical space with $K = 0$ and $H = \sqrt{1 - \sigma^2/(2\pi r)}$ for $r \neq 0$ is compatible with the Schrödinger equation modified with the mean curvature H of the conical surface as suggested in [40].

References

[1] Rebane T Y and Steeds J W 1995 Phys. Rev. Lett. 75 3716
[2] Bausch R, Schmitz R and Turski L A 1999 Phys. Rev. B 59 13491
[3] Azevedo S 2001 J. Phys. A: Math. Gen. 34 6081
[4] Klein M and Friedel J 2008 Rev. Mod. Phys. 80 61
[5] Kondo K 1952 RAAG Memoirs of the Unifying Study of the Basic Problems in Engineering and Physical Sciences by Means of Geometry vol 1 (Tokyo: Gakujutsu Bunken Fukyu-kai)
[6] Kondo K 1955 RAAG Memoirs of the Unifying Study of the Basic Problems in Engineering and Physical Sciences by Means of Geometry vol 2 (Tokyo: Gakujutsu Bunken Fukyu-kai)
[7] Kröner E 1981 Physics of Defects (Les Houches Lectures) ed B Balian et al (Amsterdam: North-Holland)
[8] Kadić A and Edelen D G B 1983 A Gauge Theory of Dislocations and Disclinations (Lecture Notes in Physics vol 174) (Berlin: Springer)
[9] Kleinert H 1989 Gauge Fields in Condensed Matter vol 2 (Singapore: World Scientific)
[10] Puntigam R A and Soleng H H 1997 Class. Quantum Grav. 14 1129 (arXiv:gr-qc/9604057)
[11] Kawamura K 1978 Z. Phys. B 29 101
[12] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[13] Schulman L S 1971 J. Math. Phys. 12 304
[14] Schulman L S 1981 Techniques and Applications of Path Integration (New York: Wiley)
[15] Inomata A and Singh V A 1978 J. Math. Phys. 19 2318
[16] Gerry C C and Inomata A 1999 Fundamental Questions in Quantum Mechanics ed L Roth and A Inomata (New York: Gordon and Breach) p 199
[17] Harris W F 1970 Phil. Mag. 22 949
[18] Tseytlin A A 1982 Phys. Rev. D 26 3327
[19] Hehl F W, McCrea J D, Mielke E W and Ne'emann Y 1995 Phys. Rep. 258 1
[20] Inomata A and Trnkala M 1979 Phys. Rev. D 19 1665
[21] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)
[22] Edwards S F and Gulyaev Y V 1964 Proc. R. Soc. A 279 229
[23] Peak D and Inomata A 1969 J. Math. Phys. 10 1422
[24] Bohm M and Junker G 1987 J. Math. Phys. 28 1978
[25] Inomata A, Kuratsuji H and Gerry C C 1992 Path Integrals and Coherent States of SU(2) and SU(1,1) (Singapore: World Scientific)
[26] Gradsteyn I S and Ryzhik I W 1965 Table of Integrals, Series and Products (New York: Academic)
[27] Langguth W and Inomata A 1979 J. Math. Phys. 20 499
[28] Inomata A and Junker G 1994 Noncompact Lie Groups and Some of Their Applications ed E A Tanner and R Wilson (Dordrecht: Kluwer) p 199
[29] Laidlaw M G G and Morette-DeWitt C 1971 Phys. Rev. D 3 1375
[30] Inomata A 1986 *New Techniques and Ideas in Quantum Measurement Theory* (Annals of the New York Academy of Sciences vol 480) ed D M Greenberger (New York: The New York Academy of Sciences) p 217

[31] Hehl F W and Data B K 1971 *J. Math. Phys.* 12 1334

[32] Inomata A 1978 *Phys. Rev.* D 18 3552

[33] Arovas D 1989 *Geometric Phases in Physics* ed A Schapere and F Wilczek (Singapore: World Scientific) p 284

[34] Inomata A and Zhu P C 1993 *Path Integrals from meV to MeV: Tutzing ’92* ed H Grabert, A Inomata, L Schulman and U Weiss (Singapore: World Scientific) p 136

[35] Wilczek F 1982 *Phys. Rev. Lett.* 48 1144

Wilczek F 1982 *Phys. Rev. Lett.* 49 957

See also Wilczek F 1990 *Fractional Statistics and Anyon Superconductivity* (Singapore: World Scientific)

[36] Furtado C and Moraes F 2000 *J. Phys. A: Math. Gen.* 33 5513

[37] Podolsky B 1928 *Phys. Rev.* 32 812

[38] DeWitt B S 1957 *Rev. Mod. Phys.* 29 337

[39] Kleinert H 1995 *Path Integrals in Quantum Mechanics, Statistics and Polymer Physics* 2nd edn (Singapore: World Scientific)

[40] Jensen H and Koppe H 1971 *Ann. Phys. (NY)* 63 589

[41] da Costa R C T 1981 *Phys. Rev.* A 23 1982

[42] Inomata A and Junker G 2012 *Phys. Lett.* A 376 305 (arXiv:1110.2279)