Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

Stefanie Tietz, Suzith Puthiyaveetil, Heather M. Enlow, Robert Yarbrough, Magnus Wood, Dmitry A. Semchonok, Troy Lowry, Zhirong Li, Peter Jahns, Egbert J. Boekema, Steven Lenhert, Krishna K. Niyogi, and Helmut Kirchhoff

From the 1Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, the 2Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands, the 3Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4370, the 4Howard Hughes Institute, Department of Plant and Microbial Biology, University of California and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3102, and the 5Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany

Significance: The functional significance of semicrystalline protein states in photosynthetic membranes is unknown.

Background: The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotection, electron transport, and protein repair.

Results: A mutant with high levels of semicrystalline PSII arrays shows facilitated diffusion of small lipophilic molecules but restricted mobility of large supercomplexes.

Conclusion: The results indicate that supramolecular protein organizations control photoprotection, electron transport, and protein repair.

Significance: Changes in supramolecular organization of thylakoid membranes seem to underlie acclimation processes.

The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotection. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion.

Many functions of biomembranes are crucially dependent on precise spatial interactions between membrane-embedded proteins (1). A prime example for this interaction is the photosynthetic thylakoid membrane in plants where structural cooperation of protein ensembles ensures the conversion of solar radiation into chemical energy that fuels life on earth. The protein supercomplexes involved in this supramolecular collaboration form dynamic light-harvesting networks and electron transport (ET)3 chains for sunlight-driven charge transfer from water to terminal electron acceptors (2). A fascinating facet of supramolecular collaboration in photosynthetic thylakoid membranes is that part of the supercomplexes can form highly ordered semicrystalline arrays (3). Although these protein crystals in plant photosynthetic membranes were already recognized in the 1960s (4) and since then have been reported frequently (3), their functional significance for photosynthesis remains unknown. Semicrystalline arrays seem to have high physiological relevance because their abundance is controlled by different abiotic factors, including temperature, light, or osmotic potential (3). The fact that multiple environmental factors trigger changes of the protein organization from disordered to a crystalline state points to a central biological role of this rearrangement and highlights the need to understand their functional implications. Detailed electron microscopic studies.

*This work was supported by National Science Foundation Grant MCB15871 (to H.K.), United States-Israel Binational Agricultural Research and Development Fund US-4334-10, United States Department of Agriculture ARC Grant WPN00775, and Washington State University. The immuno blot experiments were supported by a grant from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy, FWP number SISGRKN (to K.K.N.)

1 Investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation.

2 To whom correspondence should be addressed: Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340. Tel.: 509-335-3304; Fax: 509-335-7643; E-mail: kirchhh@wsu.edu.

3 The abbreviations used are: ET, electron transport; PS, photosystem; LHC, light-harvesting complex; P700, photosystem I; NFQ, nonphotochemical quenching; AFM, atomic force microscopy; TEM, transmission electron microscopy; MV, methyl viologen; Chl, chlorophyll; pmf, proton-motive force; cyt, cytochrome; VDE, violaxanthin-de-epoxidase; Vio, violaxanthin; Zea, zeaxanthin; MGDG, monogalactosyl diacylglycerol; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; HL, high light.
have established that protein arrays occur only in strictly
stacked so-called grana thylakoid areas and that they consist of
the dimeric water-splitting photosystem (PS) II supercomplex
with attached light-harvesting complex (LHC) II (3, 5).

It has been hypothesized that the ordering of protein com-
plexes in grana thylakoid membranes could be a strategy to
optimize lateral diffusion processes (6). This hypothesis emerged
from a conceptual problem for diffusion-dependent reactions
in stacked grana membranes, which is based on the fact that the
very high protein density in these membranes (macromolecular
crowding) can significantly impair the mobility
of membrane components (7, 8). Macromolecular crowding
is a common feature of bioenergetic membranes (6). Evidence
for severe restriction in mobility of grana components by mac-
romolecular crowding comes from both computer simulation
and fluorescence recovery after photobleaching (FRAP) exper-
iments (7, 9–11). A restricted mobility in grana membranes is
in stark contrast to the necessity of rapid lateral molecular dif-
fusion required for proper membrane function. Diffusion-de-
pendent reactions in grana thylakoid membranes can be
divided in reactions that require the mobility of small hydro-
phobic molecules and processes that involve migration of larger
protein complexes. Examples for diffusion of small hydropho-
bic molecules are electron shuttling between PSII and cyto-
chrome b$_{6}$ (cyt b$_{6}$) complexes by plastoquinone (PQ) and
diffusion of xanthophylls required for photoprotective non-
photochemical quenching (NPQ). Examples for migration of
protein complexes include large scale redistributions of LHCCI
complexes during low-light acclimation by state transitions
(12), high-light induced NPQ (13, 14), and protein traffic
between stacked grana and unstacked so-called stroma lamel-
lae for the repair of photodamaged PSII (15–18). Until now, it
was not possible to test the hypothesis that protein ordering
facilitates membrane mobility.

How might the formation of semicrystalline arrays impact
lateral diffusion in crowded membranes? First, recent electron
tomographic data on granal PSII arrays indicate a 1–2-nm lip-
id-filled gap between the protein rows (5). This lipidic channel
could act as a diffusion highway for small molecules (PQ or
xanthophylls) by switching from a two-dimensional diffusion
process as found in disordered membrane areas to a one-di-
ensional diffusion in the lipid channel. Second, the protein
density in PSII arrays is higher compared with disordered mem-
brane regions (as determined in this study). In consequence,
reorganization of part of the grana membrane into a tightly
packed crystalline state can create less protein crowding and
higher mobility in the remaining disordered grana areas. Third,
besides these advantages for lateral diffusion processes, the
mobility of PSII localized in semicrystalline arrays is expected
to be highly restricted. That could impair the repair of pho-
todamaged PSII that has to escape from stacked grana to reach
the molecular repair machinery located in unstacked stroma
lamellae. This report will address these possibilities. Taking
advantage of a mutant that constitutively forms semicrystalline
arrays, we have the possibility to systematically study functional
implications of protein crystals in photosynthetic membranes.

Experimental Procedures

Growth Conditions and Thylakoid Membrane Preparation

Arabidopsis thaliana wild type and *fad5* plants were grown
for 7 to 8 weeks at 110 µmol quanta m$^{-2}$ s$^{-1}$ and 9 h of daylight.
Thylakoids were isolated from intact chloroplasts according to
Ref. 5, with modifications for *Arabidopsis*. In detail, about 30 g
of leaf material were blended in 330 mM sorbitol, 50 mM Hepes
(pH 7.5) (KOH), 2 mM EDTA, 15 mM NaCl, 5 mM MgCl$_{2}$, 5 mM
CaCl$_{2}$, and 0.1% (w/v) BSA filtered through 1 layer of Miracloth
and 4 layers of muslin. Chloroplasts were obtained from the
homogenate by pelleting them at 3000 × g. The chloroplasts
were shocked in 50 mM Hepes (pH 7.5), 150 mM NaCl, and 5 mM
MgCl$_{2}$ for 2 min, and larger unsolubilized material was pelleted
at 200 × g for 1 min. Intact thylakoids were obtained by centri-
fugation of the supernatant at 3000 × g for 10 min and washed in
0.1 M sorbitol, 50 mM Hepes, 15 mM NaCl, and 10 mM MgCl$_{2}$
washing buffer).

Grana Preparations

Grana were isolated from intact thylakoid membranes by
adding 400 µl of a 2% (w/v) digitonin solution, which was added
to 2 ml of thylakoid suspension with a Chl concentration of 400
µg/ml. The mixture was stirred for 15 min at room tempera-
ture. Unsolubilized thylakoids were pelleted by centrifugation
at 1000 × g for 5 min. The supernatant with grana membranes
was pelleted at 15,000 × g for 15 min, and grana were washed in
the washing buffer mentioned above. Chl concentrations were
determined spectrophotometrically in 80% (v/v) acetone (19).

Polarographic Oxygen Measurements

Cyt b$_{6}$ complex-dependent electron transport rates were
measured using a Clark-type oxygen electrode (Hansatech)
at 20 °C in buffer containing 300 mM sorbitol, 50 mM Hepes
(pH 7.6) (KOH), 7 mM MgCl$_{2}$, and 40 mM KCl in the presence
of 100 µM methyl viologen (MV), 1 mM sodium ascorbate, 1
µM nigericin, and 1.5 mM duroquinol. Excitation light was
saturating (>1000 µmol quanta m$^{-2}$ s$^{-1}$). Reduced duro-
quinol was prepared as described in Ref. 20.

Difference Absorption Spectroscopy and Calculation of LHCCI/ PSII Ratios

Protein Complex Quantifications—Difference spectroscopic
quantification of cyt b$_{559}$ and P$_{700}$ was used to determine the
content of PSII and PSI, respectively, and the cyt b$_{6}$ complex
determined by quantification of cyt f and cyt b$_{6}$ as described
in Ref. 21. Baseline-corrected coefficients of 28.7 for cyt f and of
22.0 mm$^{-1}$ cm$^{-1}$ for cyt b$_{6}$ were used. Signals were recorded
using a Hitachi U3900 spectrometer (2-nm slit width, 530–580
nm), and the spectra were analyzed as described previously
(21). P$_{700}$ detected as an 810- minus 900-nm difference signal
was measured with a flash spectrophotometer on dark-adapted
grana samples at a concentration of 30 µg/ml after addition of
10 µM MV and 1.5 mM sodium ascorbate. Quantitative oxida-
tion was induced by a 400-ms saturation pulse. To determine
Chl/P$_{700}$ ratios, Chl was measured according to Ref. 19, and
P$_{700}$ concentration was determined by using the differential
extinction coefficient (9.60 mm$^{-1}$ cm$^{-1}$) as described previ-
ously (22). Data were analyzed with SigmaPlot 11 software.
The ratio of LHCII₃ and PSII-core for grana thylakoids was calculated as described previously (23). The calculation was based on the assumption that the measured Chl_{total}/PSII ratio was given by the sum of Chls bound to PSII (Chl/PSII), LHCII₃ (Chl/LHCII₃), and PSI-LHCl (Chl/PSI) divided by the amount of PSII. From high resolution structures, it is known that the Chl/PSII is 63 and the Chl/LHCII₃ is 42 (23). The Chl/PSI is 173 taking the four LHCI into account or 112 without LHCIs. The range of LHCII₃/PSII ratios in Table 2 gives the numbers of the two different Chl/PSI ratios.

Time Resolved Difference Absorption Spectroscopy—Difference absorption kinetics of cyt f, b₆, and P₇₀₀ for intact isolated Arabidopsis thylakoid membranes (freshly osmotically shocked chloroplasts) was recorded with a home-built flash spectrometer. Cytochrome f redox kinetics was monitored following absorption changes at 545, 554, and 572 nm and cyt b₆ kinetics from absorption changes at 545, 563, and 572 nm (22). P₇₀₀ signals were derived as described above. Redox changes of Qₐ were derived from chlorophyll fluorescence (22). All redox changes were measured with the same samples. For inducing redox changes, dark-adapted samples were illuminated with saturating pulses (200 ms and 630 nm) in the presence of MV (100 μM), 2 μM nigericin, 5 μM valinomycin, and 5 mM sodium ascorbate in measuring buffer (330 mM sorbitol, 7 mM MgCl₂, 40 mM KCl, 25 mM Hepes (pH 8.0)). Nigericin and valinomycin (uncouplers) prevent feedback effects of the light-induced pmf on electron transfer. MV is an efficient electron acceptor for PSI and prevents cyclic electron transport reactions. A measuring cycle averages four repetitions for each wavelength.

SDS-PAGE and Immunoblot Analysis—Protoplasts were solubilized and analyzed by SDS-PAGE and immunoblotting as described previously (24). Protoplast samples containing 0.5 nmol of Chl a were loaded in each lane. The anti-D1 antibody was kindly provided by Prof. Anastasios Melis (University of California, Berkeley), and the anti-CP24 antibody was kindly provided by Prof. Stefan Jansson (Umeå University). Proteins were detected using an enhanced chemiluminescence Western blotting kit (SuperSignal West Femto, Thermo Scientific). D1 immunoblot of photoinduced leaf disc (Fig. 10D) was performed as described previously (25). In detail, proteins separated by SDS-PAGE (11.5% polyacrylamide gel containing 6 M urea) were electroblotted onto a PVDF membrane (Millipore). Membranes were probed with antibody raised against the C terminus of the D1 protein (Agrisera) and then incubated with horseradish peroxidase-conjugated secondary antibody. Immunoreactive bands were detected by fluorography using the ECL detection kit (GE Healthcare). The loading control actin (Fig. 10D) was detected by a monoclonal antibody against the plant actins (A0480, Sigma). D1 and actin contents were determined from densitometric quantification of the Western blot bands by using ImagePro Plus software. The FtsH level was checked using an anti-FtsH antibody from Agrisera (AS111789) and the PS II phosphorylation level, using an anti-phosphothreonine antibody (Zymed Laboratories Inc.). The sample storage buffer for phosphorylated thylakoids contained 10 mM NaF and phosSTOP to prevent dephosphorylation. For both Western blots, samples were loaded on an equal Chl basis (5 μg of Chl/sample). The gel electrophoresis and Western blotting were done as before.

Pigment Analysis

The Chl and carotenoid content of intact leaves was quantified by reversed phase HPLC according to the method described previously (26). Intact leaves were carefully ground, and pigments were extracted with 100% acetone. Pigment extracts were stored up to 7 days at −80 °C until used for HPLC analysis.

VDE Activity

VDE activity was measured in vitro on luminal extracts prepared from intact thylakoid membrane.

Violaxanthin Isolation—Violaxanthin was extracted from dark-adapted Arabidopsis leaves in a chloroform/distilled H₂O/methanol mixture. The organic phase was dried down and resuspended in 100% acetone. The extract was separated by TLC in a mobile phase containing 100 ml of hexane, 12 ml of isopropyl alcohol, and 1 ml of H₂O. The second line from the bottom containing violaxanthin was quickly scraped off and dissolved in 1 ml of methanol. Silica was separated by centrifugation. The identity of violaxanthin was verified spectroscopically (27).

Lumen Extraction—The aqueous lumen of thylakoids was isolated as described previously (28) and then used for the in vitro de-epoxidation assay. Determination of the total pigment content of the extracts was done according to Ref. 29.

VDE Activity—VDE activity was assayed spectrophotometrically (Hitachi U3900) where activity was determined from the initial rate of absorbance change at 502 minus 540 nm according to Ref. 27. The reaction mixture contained 15 μl of 270 μM MGDG in methanol, 15 μl of 10 μM violaxanthin in methanol, and 250 μl of 200 mM citrate buffer (pH 5.2). Variable amounts of luminal extracts and distilled H₂O were added to 0.495 ml. After a stable absorbance baseline was established, 5 μl of 3 mM sodium ascorbate was added to initiate reaction, and spectra were recorded after 1, 2.5, 5, 10, 30, and 60 min (27). VDE activity is derived from the initial slope of absorption changes and expressed in micromoles of violaxanthin de-epoxidation/mg protein⁻¹ min⁻¹ (27). For conversion of absorption change to micromoles of violaxanthin de-epoxidation, an extinction coefficient (502 nm) of 63 mm⁻¹ cm⁻¹ was used (27). We checked that the different fatty acid compositions in WT and fad5 do not change VDE activities. Therefore, VDE activities were measured with MGDG isolated from WT and fad5 mutant, respectively. The fatty acid profile for WT-MGDG is 1.9 ± 0.2% (16:0), 1.2 ± 0.2% (16:1), 31.4 ± 0.3% (18:3), 0.3 ± 0.6% (18:0), 2.5 ± 0.4% (18:2), and 62.7 ± 0.2% (18:3). The profile for the fad5-MGDG is 18.2 ± 0.4% (16:0), 2.5 ± 0.0% (16:1), 2.0 ± 0.0% (16:3), 2.1 ± 0.1% (18:0), 2.6 ± 0.1% (18:2), and 72.5 ± 0.4% (18:3). The rates are almost identical.

In Vivo Fluorescence, NPQ, and Zeaxanthin Measurements

Measurements were carried out on dark-adapted leaves at room temperature with the flash spectrophotometer mentioned above at different light intensities. Minimum fluorescence (F₀) was measured over 2 s with a measuring light of 2
Protein Ordering in Photosynthetic Membranes

μmol quanta m\(^{-2}\) s\(^{-1}\), and maximum fluorescence (\(F_{\text{m}}\)) was determined with a 0.6-s light pulse of 1870 μmol m\(^{-2}\) s\(^{-1}\). NPQ was calculated according to the following equation: NPQ = \((F_{\text{m}} - F'_{\text{m}})/F'_{\text{m}}\), where \(F'_{\text{m}}\) is the maximum Chl fluorescence from dark-adapted leaves and \(F_{\text{m}}\) the maximum Chl fluorescence under actinic light. Zeaxanthin was measured alongside the NPQ measurement at 505 nm. The data were further corrected through the signals at 520, 535, and 488 nm according to Ref. 30. The ECS was measured at 520 nm.

PQ-Pool Size

The number of total electrons that can enter the PQ-pool (PQ-pool size), given in Table 2, is derived from the ratio of the area of growth above Chl fluorescence induction curves in DCMU-free and DCMU-poised (100 μM) leaf discs. Leaf discs were infiltrated with tap water containing 150 mM sorbitol to avoid osmotic artifacts. Fluorescence induction was performed with a home-built instrument according to Ref. 31.

Fluorescence Recovery after Photobleaching (FRAP) on Thylakoid Membranes and Lipid Bilayers

Isolated thylakoids were labeled with 10 μM lipophilic dye D3832 (Molecular Probes). FRAP measurements were carried out by a Leica TCS SP5 laser-scanning confocal microscope. D3832 and Chl fluorescence were measured in parallel. D3832 was excited by a 543 nm HeNe laser line and detected between 550 and 600 nm. The Chl fluorescence was excited by a 633 nm HeNe laser line, and emission was detected between 650 and 720 nm. For FRAP, total and line bleaches across the sample were performed. A series included the following: eight pre-bleaches; the bleach (thin line); 10 post-bleaches with 3-s separations. The total bleaches; the bleach (thin line); 10 post-bleaches with 10-s separations. The final bleaches; the bleach (thin line); 10 post-bleaches with 3-s separations. The total bleaches; the bleach (thin line); 10 post-bleaches with 10-s separations. The final bleaches; the bleach (thin line); 10 post-bleaches with 3-s separations. The total bleaches; the bleach (thin line); 10 post-bleaches with 10-s separations. The final bleaches were performed. A series included the following: eight pre-bleaches; the bleach (thin line); 10 post-bleaches with 3-s separations; and 10 post-bleaches with 10-s separations. The total bleaches detect the recovery of bleached pigments and were subtracted from the line-bleached data to visualize only diffusion-based fluorescence recovery. Data were analyzed through SigmaPlot 11 as described previously (10).

Atomic Force Microscopy

Sample Preparation—fad5 and WT grana samples at a concentration of 30 μg/ml were diluted in 10 μl of destacking buffer (15 mM MES (pH 6.5)), 10 mM KCl, and 0.5 mM EDTA. Samples were then sonicated for 1 min. 100 μl of the destacked grana solution was then placed onto a freshly cleaved mica substrate (100 nm2) for 2 min, and the sample was rinsed 10 times with distilled water with 200 μl per rinse. The samples were dried under a steady, gentle nitrogen stream for 2 min.

AFM Imaging—The grana were imaged in tapping mode with a Dimension 3000 AFM (Veeco Instruments, Plainview, NY) with silicon dioxide tapping mode AFM cantilevers (catalog no. OMCLAC160TS-W2, 7-nm tip radius, 15-μm tip height, 42 newtons/m spring constant, Olympus, Center Valley, PA). A total of 20 grana patches for WT and 19 for the fad5 mutant were analyzed to derive the particle densities and the fraction of arrayed grana thylakoids.

Calculation of LHCII Fraction in Disordered and Ordered Grana Thylakoids in fad5 Mutant

The single particle TEM analysis (C2S2M2 supercomplex) gives a trimeric LHCII (LHCII\(_3\)) to PSII-core ratio of two for the semicrystalline arrays (\(R1 = 2\), see Equation 1 below). The overall measured LHCII/PSII ratio in fad5 grana (\(R_{\text{total}}\)) is four (Table 2). Knowledge of the relative fraction of grana organized in arrays (\(F_{\text{arr}}\), 0.5 for fad5) and the fraction of disordered grana (\(F_{\text{dis}}\) for disordered regions (\(R2\)) by solving Equation 1 for \(R2\),

\[
R_{\text{total}} = R1 \times F_{\text{arr}} + R2 \times F_{\text{dis}}
\]

It follows that the LHCII to PSII-core ratio in disordered grana regions is 5.8 ± 0.2 for fad5 (the ± numbers indicate the range of LHCII/PSII ratios in Table 2). From the LHCII/PSII-core ratios and the PSII densities (from AFM) for arrayed and disordered grana in fad5, the LHCII densities in both regions are given to 4000 LHCII μm\(^{-2}\) (arrayed, 2000 PSII μm\(^{-2}\)) and 8404 LHCII μm\(^{-2}\) (disordered, 5.81449 PSII μm\(^{-2}\)). Weighted by the fraction of arrayed and disordered membrane regions (1:1, from AFM), it follows that 68% of LHCII in fad5 grana are localized in disordered regions (100%·0.5·8404/(0.5·8404 + 0.5·4000)) and the rest in arrayed regions.

EM and Single Particle Analysis

Specimens containing grana thylakoid membranes were prepared by negative staining with 2% uranyl acetate on glow-discharged carbon-coated copper grids. Transmission electron microscopy was carried out on a Philips CM120 electron microscope equipped with a LaB\(_6\) tip, operated at 120 kV. Images were recorded with a Gatan 4000 SP 4K slow-scan CCD camera at ×80,000 magnification with a pixel size of 0.375 nm at the specimen level after binning the images to 2048 × 2048 pixels. GRACE software was used for semi-automated data acquisition (32). Electron micrographs were bandpass-filtered prior to analysis to improve an image contrast. Sub-areas of semi-crystalline arrays of PSII supercomplexes were analyzed using a single particle averaging approach with the Groningen Image Processing (GRIP) software, including reference alignments and averaging of aligned projections. Sets of sub-areas (192 × 192 pixels) of PSII arrays selected from individual electron micrographs were repeatedly aligned and finally summed to provide two-dimensional maps.

Phenomics

The photoinhibitory qL parameter was determined for intact Arabidopsis plants in the Phenomics Facility at Washington State University consisting of a greenhouse (artificial illumination) and an optical screening robot. Nine fad5 mutants and 18 WT plants were grown in the greenhouse with a 9-h day period of 200 μmol quanta m\(^{-2}\) s\(^{-1}\) illumination in daily temperatures of 21 °C in the dark and 23 °C in the light. Measurements were performed every 2–4 days while the plants were between about 4 and 6 weeks old. The Fluorcam XYZ system (PSI Co., Drasov, Czech Republic) is a mobile and programmable fluorescence imaging robot capable of moving throughout the growth chamber on a gantry, performing automated measurements utilizing blue (455 nm) LEDs to excite chlorophyll fluorescence. The fluorescence is captured by a Fluorcam 2701 LU camera equipped with a fluorescence filter. The qL parameter was determined as NPQ values in the dark determined 2 min after a
Results

Establishing a Model Plant for Studying Semicrystalline Protein Formation—An adequate model plant for studying functional implications of semicrystalline protein arrays requires that only the supramolecular arrangement has been altered. In this respect, we tested the fatty acid desaturase 5 (fad5) mutant of Arabidopsis thaliana (33), because it has been reported by using freeze-fracture electron microscopy that this mutant constitutively forms protein crystals in grana with high abundance (34). Its model system credentials, however, have not yet been ascertained. Other mutants also form semicrystalline protein arrays in grana thylakoids as the WT but with much higher abundance (50% compared versus 16% in WT).

Next, we analyzed the composition of fad5 thylakoid membranes. A thorough biochemical and functional analysis is summarized in Table 2. It turns out that the Chl, carotenoid, and thylakoid lipid content is very similar in WT and fad5 mutant. In Ref. 36, it was reported that the Chl content is 30% lower in the fad5 mutant. A possible explanation for this inconsistency is that plants in Ref. 36 grew under 100% higher light intensity than in our study (300 μmol quanta m⁻² s⁻¹ versus 100–150 μmol quanta m⁻² s⁻¹). As detailed below, PSI in fad5 is more vulnerable to photoinhibition, which could eventually lead to the partial chlorotic fad5 phenotype in Ref. 36. The xanthophyll cycle pool size (violaxanthin + antheraxanthin + zeaxanthin) is slightly (20%) increased in fad5. More in-depth quantifications of grana thylakoids reveal that the PSII, LHClI, and PSI contents in grana thylakoids of WT and fad5 plants were statistically indistinguishable (Table 2). For grana membranes from WT and the fad5 mutant, the trimeric LHClI to monomeric PSI ratio was approximately 4. Thus, fad5 has very similar thylakoid membrane composition as WT membranes.

Functional information on the photosynthetic apparatus was deduced from analysis of Chl fluorescence data on intact leaves (Table 2). The maximal photochemical efficiency of PSII (Fv/Fm parameter) was identical in fad5 and WT plants. This indicates that PSI is fully functional in the mutant. Linear photosynthetic electron flux monitored by the photochemical quantum efficiency parameter ΦII (37) at two different light intensities is 20–30% higher in fad5, in accordance with the previous study (38). It is interesting to note that in the study of Kunst et al. (38), the ET rates for PSI and PSI alone were not different between fad5 and WT. This points to the possibility that the higher ET rate in fad5 is caused by a more efficient intersystem ET. Indeed, we found that the PQ pool is more oxidized in fad5 (Qₐ parameter (Table 2) (37), suggesting that electron shuttling between PSI and PSI by the small hydrophobic electron carrier PQ is facilitated, as examined in detail below. Overall, it turns out that the composition of fad5 and

4-min illumination period with 200 μmol quanta m⁻² s⁻¹. Measurements were performed with plants that were at the end of the night period.

Protein Ordering in Photosynthetic Membranes

	MGDG	DGDG	SQDG	PG
fad5	44.6±5.3	23.6±2.5	8.2±1.2	23.9±3.4
WT	46.2±5.3	25.5±1.9	7.8±2.3	20.5±3.2

TABLE 1 Lipid and fatty acid composition of WT and fad5 thylakoid membranes

All numbers are in %. Values for lipid class quantification (2nd and 3rd rows) are the mean ± S.E. of 10–14 determinations. Significant changes (p < 0.05) of fad5 relative to WT are highlighted in light gray and highly significant changes (p < 0.001) in gray.
Protein Ordering in Photosynthetic Membranes

WT thylakoid membranes is very similar and that only the level of protein ordering is increased, making this mutant an attractive system to study the functional impact of semicrystalline arrays.

Protein Crystal Formation Accelerates Molecular Diffusion in Thylakoid Membranes—Having established fad5 as a model system for studying semicrystalline protein arrays, we then tested the hypothesis that protein ordering increases the mobility of thylakoid membrane components. Therefore, we performed diffusion measurements probing lipid and protein mobility in intact thylakoid membranes by FRAP. For measuring lipid mobility in crowded thylakoid membranes, the green fluorescence dye D3832 (Molecular Probes) was used. Diffusion of this dye was measured in parallel with red Chl autofluorescence that probes diffusion of pigment protein complexes, mainly PSII and LHCII (10, 39). For FRAP analysis, a small stripe in stained thylakoid membranes was irreversibly bleached by a high laser intensity (t/1000 s in Fig. 3, A and B), and the fluorescence recovery was recorded in time with low laser power. As seen in the FRAP image series in Fig. 3, A and B, the bleached stripe recovered significantly faster in fad5 for both the lipid analogue D3832 and Chl fluorescence. Statistical analysis of the FRAP measurements for D3832 shows a doubling in the fraction of mobile dyes (indicated by the percentages in Fig. 3C). Furthermore, the kinetics of the mobile fraction was faster in fad5, i.e. the curve reached its saturation level earlier.

TABLE 2
Characterization of WT and fad5 mutant
Mean values with standard deviation are shown. n.d. means not detectable. Carotenoid content is given in millimoles/mol of total Chl.

	WT	fad5
Chl/leaf (mg/m²)	606±29	576±28
Chl a/b, leaf	3.3±0.1	3.3±0.1
Lipid/Chl, thylakoids	1.7±0.1	1.7±0.1
mmol cyt b₅₆₅ mol Chl, thyl.	2.73±0.44	2.68±0.43
mmol cyt b₅₆₅ mol Chl, thyl.	1.04±0.05	1.10±0.06
Chl a/b, grana	2.3±0.1	2.4±0.1
mmol cyt b₅₆₅ mol Chl, grana	4.065±0.099	4.098±0.119
mmol cyt b₅₆₅ mol Chl, grana	0.473±0.018	0.443±0.041
LHCII/PSII, grana	3.9±1.1	3.8±1.1
PSII/PSI₂, grana	5.7±1.0	5.7±1.1
PQ-pool size (electrons/PSII)²	10.1±0.5	8.9±0.3
Carotenoids		
Viologanthin	29.7±0.6	35.2±2.8
Antheroxanthin	2.0±0.6	2.9±0.4
Zeaxanthin	94.7±2.8	92.7±5.1
Lutein	n.d.	n.d.
Carotene	80.5±3.7	79.2±8.1
Neoxanthin	34.7±0.7	34.9±1.1
VDE activity³	0.018±0.005	0.018±0.007

1 Data were calculated from the Chl/cyt. b₅₆₅ and PSII/PSI ratios (see under “Experimental Procedures”).
2 PSI was determined by difference absorption spectroscopy of P700.
3 The PQ pool size was estimated from the area above the chlorophyll fluorescence induction curve in the presence and absence of DCMU.
4 VDE activity is given as initial rate of violaxanthin de-epoxidation in micromoles (mg of protein)⁻¹ min⁻¹. Violaxanthin de-epoxidation was induced by sodium ascorbate addition and measured on aqueous lumen extracts from isolated thylakoids (see “Experimental Procedures” for further details). The differences between fad5 and WT are not statistically significant (p = 0.056). Gray shading of cells indicates statistically significant differences (t test, p < 0.05).

WT thylakoid membranes is very similar and that only the level of protein ordering is increased, making this mutant an attractive system to study the functional impact of semicrystalline arrays.

Protein Crystal Formation Accelerates Molecular Diffusion in Thylakoid Membranes—Having established fad5 as a model system for studying semicrystalline protein arrays, we then tested the hypothesis that protein ordering increases the mobility of thylakoid membrane components. Therefore, we performed diffusion measurements probing lipid and protein mobility in intact thylakoid membranes by FRAP. For measuring lipid mobility in crowded thylakoid membranes, the green fluorescence dye D3832 (Molecular Probes) was used. Diffusion of this dye was measured in parallel with red Chl autofluorescence that probes diffusion of pigment protein complexes, mainly PSII and LHCII (10, 39). For FRAP analysis, a small stripe in stained thylakoid membranes was irreversibly bleached by a high laser intensity (t/1000 s in Fig. 3, A and B), and the fluorescence recovery was recorded in time with low laser power. As seen in the FRAP image series in Fig. 3, A and B, the bleached stripe recovered significantly faster in fad5 for both the lipid analogue D3832 and Chl fluorescence. Statistical analysis of the FRAP measurements for D3832 shows a doubling in the fraction of mobile dyes (indicated by the percentages in Fig. 3C). Furthermore, the kinetics of the mobile fraction was faster in fad5, i.e. the curve reached its saturation level earlier.

these results, it follows that the overall mobility of lipophilic components in fad5 thylakoid membranes was significantly increased compared with WT thylakoid membranes. The higher mobility of small lipid-like molecules in fad5 can be
caused by higher mobility in the lipid bilayer or by reorganization into a semicrystalline state. The former is unlikely because fluorescence polarization studies with diphenyl-hexatriene show unaltered lipid micro-diffusion (nanometer range) in \textit{fad5} thylakoid membranes compared with the WT (38). The diphenyl-hexatriene study provides clear evidence that the mobility in the lipid bilayer itself is not affected by the altered fatty acid composition in the mutant. The comparison of FRAP and diphenyl-hexatriene fluorescence polarization measurements indicates that long range diffusion of small molecules in thylakoid membranes is faster in the \textit{fad5} mutant because of the protein reorganization into semicrystalline state.

Similar to the increased lipid mobility, the overall protein mobility (measured by Chl fluorescence) was nearly doubled in \textit{fad5} thylakoid membranes (Fig. 3D). As illustrated in Fig. 3E, the bleach line of the FRAP experiment (t = 0 s in Fig. 3, A and B) covers about a dozen grana stacks. Because each stack consists of several grana membranes, the mobility data in Fig. 3 represents an averaged view of roughly 100 grana membranes. The limited recovery of fluorescence indicates that some fluorophores are moving very slowly within grana (relative to the time frame of the experiment of 125 s) and/or that total grana are bleached and the diffusion of unbleached fluorophores from adjacent grana is very slow. The latter should also be determined by mobility in the adjacent grana because the mobility in unstacked thylakoid regions is much faster compared with grana thylakoids, i.e. not rate-limiting (39). It thus follows that higher amplitude of fluorescence recovery as measured in \textit{fad5} indicates higher molecular mobility mainly in its stacked grana.

Functional Implications of Semicrystalline Array Formation for the Diffusion of Small Lipophilic Molecules—The FRAP data with D3832 indicates that lipid-like molecules diffuse faster in the thylakoid lipid bilayer in \textit{fad5}. Therefore, it is expected that the mobility of PQ and xanthophylls in crowded grana thylakoid membranes (see Fig. 6A for an illustration of protein crowding in grana) is affected, which would impact PQ-dependent ET and xanthophyll-dependent NPQ. First, we analyzed PQ-dependent ET reactions by time-resolved (milliseconds) difference and fluorescence spectroscopy. It is difficult to monitor PQ electron transfer from PSII to the cyt \textit{b}_{6f} complex directly, but it is rather straightforward to measure its direct reaction partners, i.e. QA (primary quinone acceptor of PSII) as well as cytochrome \textit{f} (cyt \textit{f}) and cytochrome \textit{b}_{6} (cyt \textit{b}_{6}) of the cyt \textit{b}_{6f} complex (see schematic in Fig. 4A). For this purpose, we applied a 200-ms saturating light pulse that quantitatively reduces QA (QA), and the PQ-pool, whereas cyt \textit{f} and P_{700} are completely oxidized (cyt \textit{f}^{+}, P_{700}^{+}). This “redox crossover” is well established and is due to the fact that the rate-limiting step in linear electron transport is the plastoquinol (PQH_{2}) oxidation at the cyt \textit{b}_{6f} complex (40). Measurements were done with fresh thylakoid membranes in the presence of MV (electron acceptor for PSI (7, 22)). The addition of the ionophore valinomycin (41) allows detection of cyt \textit{b}_{6} redox kinetics, which is in the reduced state at the end of the light pulse (\textit{b}_{6}^{0}) due to Q-cycle activity (42). Starting from this defined redox situation at the end of the light pulse (Fig. 4A, left, \textit{t}_{0}), we examined the relaxation in the subsequent dark period (Fig. 4B). What is obvious from Fig. 4B is that all PQ-dependent redox reactions are faster in \textit{fad5} compared with the WT. The simplest explanation for this acceleration is that PQ and PQH_{2} find the binding niches at PSI (Q_{b} site) and at the cyt \textit{b}_{6f} complex (Q_{o} site and Q_{r} site) faster, i.e. by accelerated PQ diffusion in membranes with semicrystalline protein arrays.

FIGURE 3. FRAP analysis on isolated thylakoid membranes shows higher diffusion of photosynthetic components in the \textit{fad5} mutant. A and B, examples for D3832 (A) and Chl fluorescence (B) time series. The line bleach was induced at time point 0 (t = 0 s) p.b., pre-bleach images. D3832 signal is a measure for lipid diffusion. Note the faster recovery of D3832 fluorescence in the \textit{fad5} mutant. Chl fluorescence measures mainly LHCII and PSII mobility. C, statistical analysis of the FRAP data for D3832. Pigments were bleached at time point 0 (corresponds to t = 0 s in Fig. 2A). Data represents the mean of 12 (WT) and 21 (\textit{fad5}) measurements with 95% confidence interval given as gray areas. The percent values give the mobile fraction that recover in the course of the experiment. D, same analysis as in C but for the chlorophyll fluorescence. E, schematics demonstrating the relation between the width of the bleach stripe (typically 700 nm, orange bar) and the density and sizes of grana discs (green circles) in the FRAP experiment shown in A and B. The gray images are trimmed CLSM images showing grana thylakoids as bright spots (modified from Ref. 75). Red crosses indicate the centers of individual grana piles. Scale bar, 2 \textmu m.
In detail, re-oxidation of \(Q_A\) requires that oxidized PQ binds to the PSII-Qo-binding niche. After the light pulse, oxidized PQ is provided by the oxidation of PQH\(_2\) at the Qo site of the cyt \(b_{6}\) complex followed by diffusion of PQ from the cyt \(b_{6}\) complex to PSII. Thus, accelerated \(Q_A\) re-oxidation is indicative of faster quinone diffusion. Similar to \(Q_A\), cyt \(b_{6}\) re-oxidation also needs binding of oxidized PQ at the Qr site. As for \(Q_A\), the oxidized PQ is produced by turnover of PQH\(_2\) at the Qo site of the cyt \(b_{6}\) complex and subsequent diffusion to the Qr site. Cyt \(f^+\) shows complex re-reduction with a lag phase. The lag phase is caused by the fact that the electrons from PQH\(_2\) first reduce P700 via the Rieske FeS center. Acceleration of both processes in the subsequent re-reduction kinetics of cyt \(b_{6}\) complex by PQH\(_2\), which is further confirmed by the faster \(P_{700}\) re-reduction kinetics.

Importantly, the observed accelerations of PQ-dependent ET reactions in \(fad5\) mutants are not caused by higher cyt \(b_{6}\) complex concentrations (the rate-limiting enzyme for ET) in thylakoid membranes (see Table 2), supporting the notion that the semi-crystalline protein arrays are the reason why ET reactions are faster. In summary, the faster redox kinetics of the PQ reaction partners in thylakoid membranes of the \(fad5\) mutant is a clear indication of higher mobility of PQ and PQH\(_2\) as predicted by the FRAP data (Fig. 3) and the qL parameter (Table 2). Alternatively, a shorter diffusion distance between PSII and cyt \(b_{6}\) complex in disordered grana membranes in the \(fad5\) mutant could explain faster PQ-dependent ET. This possibility is examined in detail under the "Discussion" (under "Two Scenarios That Explain Faster Diffusion of Small Lipophilic Molecules in \(fad5\)")..

For further characterization of PQH\(_2\) diffusion to the cyt \(f^+\), single turnover experiments were performed on isolated thylakoid membranes (Fig. 5). For WT thylakoids, cyt \(f^+\) re-reduction shows a lag phase of about 2 ms. Because under single turnover excitation, cyt \(f^+\) can only be reduced by PQH\(_2\) generated at the QB site (PQ-pool is oxidized). This lag most likely represents the PQH\(_2\) diffusion from PSII to cyt \(b_{6}\) complexes. In contrast to WT, this lag is virtually absent in \(fad5\) thylakoids. This indicates facilitated PQH\(_2\) diffusion from PSII to cyt \(b_{6}\) complexes in \(fad5\) membranes supporting the conclusion of the previous paragraph.

It was reported that the cyt \(b_{6}\) activity is dependent on MGDG (43). To test whether the activity of the cyt \(b_{6}\) complex is affected by the higher saturation level of fatty acids in the \(fad5\) mutant, its turnover number was determined with isolated thylakoid membranes. The turnover number is calculated by dividing the light-saturated cyt \(b_{6}\)-specific electron transport rate by the cyt \(b_{6}\) content determined from difference spectroscopy. The cyt \(b_{6}\)-specific electron transport rates were measured from polarographic oxygen measurements in the presence of the electron donor duroquinol, methyl viologen, and the uncoupler nigericin. Turnover numbers of 173 ± 14 electrons s\(^{-1}\) were measured for WT thylakoid membranes and 172 ± 4 electrons s\(^{-1}\) for the \(fad5\) mutant. It follows that the altered fatty acid composition in \(fad5\) does not cause changes in cyt \(b_{6}\) activity.

Another process that may be influenced by higher mobility in the lipid bilayer is the conversion of violaxanthin (Vio) to zeaxanthin (Zea) by the xanthophyll cycle. Zea is an important...
stimulator for NPQ (44–46), a main photoprotective mechanism in plants that minimizes photodamage under high light stress (47, 48). The conversion of Vio to Zea is catalyzed by the enzyme VDE localized in the aqueous thylakoid lumen (44, 49). For the conversion, Vio unbinds from LHClII in grana and diffuses to VDE where it is converted to Zea (Fig. 6A). Zea diffuses back to LHClII and activates NPQ, which safely converts excess excitation energy into heat. To study the diffusion-dependent conversion of Vio to Zea, we measured light-induced Zea formation spectroscopically as absorption changes at 505 nm

$\Delta A_{505\text{nm}}$ for the conversion, Vio unbinds from LHClII in grana and diffuses to VDE where it is converted to Zea (Fig. 6A). Zea diffuses back to LHClII and activates NPQ, which safely converts excess excitation energy into heat. To study the diffusion-dependent conversion of Vio to Zea, we measured light-induced Zea formation spectroscopically as absorption changes at 505 nm ($\Delta A_{505\text{nm}}$, see Ref. 50) on intact leaves. We verified by HPLC that $\Delta A_{505\text{nm}}$ measures Zea formation (Fig. 7). Fig. 6, B and C, reveals that the kinetics of Zea formation measured at three different light intensities is significantly faster in fad5 leaves. Quantifications of the initial rates of Zea formation (Fig. 6D), deduced from the regression lines in Fig. 6, B and C, show an increase by 140 to 170% for fad5 compared with the WT. This acceleration in Zea formation is neither caused by changes in VDE activity (Table 2) nor by the slight (20%) increase in the xanthophyll pool size (Table 2). It was reported that Vio conversion by VDE requires the nonbilayer HII phase of MGDG (51). Therefore, the lower desaturation level of MGDG in the fad5 mutant could impact Zea formation by altering nonbilayer propensities of MGDG. However, the tendency of MGDG to form HII phases strongly declines with lower desaturation level (52). It follows that the lower fatty acid desaturation level in the fad5 mutant would impair VDE-catalyzed Zea formation in contrast to our measured stimulation. Thus, most likely the higher Zea formation rate is caused by the higher mobility in the lipid bilayer in fad5 thylakoid membranes and not by changes in nonbilayer characteristics of the lipid bilayer.

Because Zea formation is faster in fad5, it is possible that NPQ induction is also accelerated. As illustrated in Fig. 8, NPQ induction kinetics were measured in parallel with the Zea kinetics and reveal acceleration for fad5. The initial rate of NPQ formation is about 40% higher in fad5, independent of the light intensity (Fig. 8C). An accelerated NPQ induction kinetics was also observed in light-acclimated plants (compare Fig. 8, D and E). This suggests that these structures also exist in light-adapted plants (assuming that they do not re-form after light-induced dissolving within 30 min of darkness). We checked whether this acceleration is caused by changes in the other two major factors involved in NPQ, the PsbS protein (53) and the pmf across the thylakoid membrane (48). Both the PsbS level as well as the pmf are indistinguishable in fad5 and WT (Fig. 9). Overall, the functional studies on photosynthetic processes that depend on the mobility of small hydrophobic molecules (PQ, xanthophylls) show that protein ordering in grana accelerates these processes most likely by faster diffusion. Although semicrystalline arrays are advantageous for the mobility of small molecules, their impact on larger components like protein complexes turned out to be different, as examined below.

Implications of Semicrystalline Array Formation for Protein Repair—A central protein repair mechanism in plants is the PSII repair cycle, which is one of the fastest protein turnover processes in vivo (70). The central step of the PSII repair cycle is the hydrolysis of the nonfunctional D1 protein, which is targeted to the thylakoid membrane for degradation (71). The hydrolysis of the D1 protein is catalyzed by the protease DegP and is induced by the presence of D1 fragments (72). The degradation of D1 is thought to be an important mechanism to prevent further damage to the PSII reaction center (73). The protease DegP is located in the stroma lamellae and the stroma lamellae are thought to be involved in the degradation of D1 protein. However, the role of the stroma lamellae in the degradation of D1 protein is still unclear.

FIGURE 5. A, re-reduction kinetics of cyt f^* after single turnover excitation. Same measuring conditions as for Fig. 4. The full width of half-maximum of the flash was 5 µs. B, zoom-in to the time region directly after flash application. Arrows indicate the lag phase derived by extrapolating the reduction kinetics to the complete oxidation level (dashed line). Data represent the mean ± S.D. of 10 measurements. Note the difference in lag phase between mutant and WT.

FIGURE 6. Zea induction is accelerated in the fad5 mutant. A, schematic showing the diffusion-dependent enzymatic conversion from Vio to Zea. Because the concentration of VDE is low in thylakoid membranes (44), long range xanthophyll diffusion within the thylakoid lipid bilayer between LHClII and VDE is required. However, this diffusion is expected to be very slow because macromolecular crowding in grana thylakoids impairs lateral mobility of lipophilic molecules as was shown for PQ (7, 21). Black areas in A indicate the available diffusion space for lipids (6). B and C, Zea induction kinetics for dark-adapted leaves for three different light intensities measured as absorption change at 505 nm ($\Delta A_{505\text{nm}}$). The $\Delta A_{505\text{nm}}$ is normalized to the chlorophyll content. A lag for Zea formation in WT leaves is indicated by the blue arrow. D, initial rates of Zea formation derived from the regression lines in B and C. The data represent mean values of 11 (WT) and 9 (fad5) measurements with standard error.

FIGURE 7. Linear correlation between xanthophyll de-epoxidation levels measured by reverse phase HPLC and absorption change at 505 nm ($\Delta A_{505\text{nm}}$) in intact leaves. The different zeaxanthin levels were induced by illumination of WT plants with different light intensities. DEPS, de-epoxidation state.
has to be replaced by a newly synthesized copy to maintain photosynthetic efficiency. Before the new D1 subunit can be inserted, PSII has to migrate from the grana to the stroma lamellae, and the damaged subunit has to be degraded by specific proteases (55, 56). After repair, the restored PSII reassembles into the holocomplex and diffuses back into the grana, which completes the repair cycle. Thus, the PSII repair cycle depends on efficient protein traffic between stacked grana thylakoids where damage occurs and unstacked stroma lamellae where the repair machinery is localized (18). We examined whether the diffusion-dependent PSII repair is influenced by semicrystalline array formation in the fad5 mutant.

In a first set of experiments, intact plants were monitored from the juvenile to the mature developmental stage. This long term experiment was performed in the Phenomics Facility at Washington State University that allows automated, noninvasive, and repetitive observation of the chlorophyll fluorescence qI parameter, which is a measure of PSII photoinhibition (57). Recently, it has been suggested that qI is heterogeneous, containing components other than the one that indicates damage to PSII (58). However, the higher photoinhibitory qI in the fad5 mutant is in agreement with a slower D1 degradation, as detailed below. Thus, a combination of increased qI parameter and slower D1 degradation in fad5 is strongly suggestive of an increased photoinhibition in the mutant. False color images for qI of mature dark-adapted plants in Fig. 10A show a clear increase in qI for the fad5 mutant plants compared with WT plants. Statistical analysis over the 17-day measuring period in the phenomics greenhouse reveals, on average, a 37% increase in the qI parameter in fad5 mutants relative to WT plants indicating that the PSII repair cycle is impaired in agreement with previous studies (59). This was further analyzed with isolated protoplasts (Fig. 10C). Illumination with strong white light over 1 h to induce PSII photodamage causes significantly more inhibition in fad5 protoplasts (higher qI in Fig. 10C), in accordance with the phenomics data. The stronger photoinhibition in fad5 can be explained by a drastically reduced mobility of PSII localized in semicrystalline protein arrays, because the 1–2-nm gap (5) between rows in the arrays prevents diffusion of LHCCI trimers (diameter ~7.5 nm, Ref. 60) or monomeric PSII-cores (~9 nm, Ref. 61) (see also Fig. 1C). It is expected that PSII complexes that are damaged in crystalline arrays will be degraded more slowly because they cannot efficiently escape to reach the proteases in distant unstacked thylakoid regions. To test this, we measured D1 degradation in the presence of the plastidial protein synthesis inhibitor lincomycin. Lincomycin prevents the synthesis of nascent D1 (62) allowing the monitoring of the net degradation of this subunit. Western blot analysis (Fig. 10D) demonstrates that after 15, 30, 60, and 120 min of high light treatment, less D1 is degraded in fad5 than in WT leaves. Analysis of this extended time series confirms that retarded D1 degradation is apparent for shorter as well as longer HL treatments (Fig. 10D). The use of a dilution series for the D1 reveals that our quantification is in the linear detection range of the Western blot analysis (Fig. 10D).

The degradation of D1 depends on FtsH proteases (55) and the phosphorylation of PSII-core subunits (63, 64). For FtsH, it was also postulated that its oligomerization state can influence
its proteolytic activity (65). To examine whether the mutant has any aberrant protease or phosphorylation levels that might explain its delayed D1 degradation, Western blot analysis with FtsH and phosphothreonine antibodies was performed (Fig. 10, E and F). The level of FtsH was slightly increased in the fad5 mutant compared with WT (Fig. 10E), indicating a possible compensatory response in the mutant to the impaired D1 degradation. It thus follows that changes in FtsH level cannot explain the slower D1 degradation in fad5 (the D1 level should, in fact, go down more extensively, given the increased FtsH level). Similarly, the dark and HL phosphorylation levels of PSII-core subunits (D1, D2, and CP43) is indistinguishable in both genotypes (Fig. 10E). Thus, an altered PSII-core phosphorylation behavior in the fad5 mutant cannot also be the reason for its slower D1 breakdown. These studies support the notion that impaired mobilization of damaged PSII in grana thylakoids by semicrystalline arrays inhibits efficient D1 degradation and initiation of the repair cycle. However, an alternative possibility is that steps in PSII degradation could be affected by the altered fatty acid composition in fad5.

Protein Densities and Compositions in Disordered Grana—At first sight, the retarded mobilization of damaged PSII in the fad5 mutant contradicts the FRAP data that showed higher protein mobility in fad5 thylakoid membranes (Fig. 3). However, we have to consider that only 50% of grana membranes are in a semicrystalline state in fad5, whereas the rest are disordered (Fig. 1). FRAP analysis integrates over both regions and reflects the overall protein mobility (Fig. 3E). Assuming that the protein mobility in semicrystalline arrays is zero, then the mobile fraction (fraction that recovers in FRAP experiments) in disordered grana regions can be calculated as 21% for the WT (18% mobile fraction from FRAP/0.86 fraction of disordered...
Protein Ordering in Photosynthetic Membranes

granae) and 56% for fad5 (28%/0.5). To understand the 2.7 times higher mobile fraction in disordered granae in fad5 relative to the WT, knowledge about the protein compositions and densities in this membrane region is required.

The quantitative analysis of AFM data combined with protein quantifications in Table 2 allows calculation of the protein compositions and densities in disordered granae. In the first step, the concentrations of PSII, cyt $b_{6}f$ complex, and LHCII trimers are calculated for the disordered granae (abbreviated as PSIIdis, cytdis, and LHCIIdis). In the second step, this information is used to calculate particle densities and protein area fractions for disordered grana thylakoids. The measured total PSII (PSII$_{\text{total}}$) and cyt $b_{6}f$ complex (cyt$_{\text{total}}$) concentrations in granae shown in Table 2 (including semicrystalline and disordered grana) is given by weighted concentrations of the complexes in both membrane types. The weighing factor is the fraction of arrayed (F$_{\text{arr}}$) and disordered (F$_{\text{dis}}$) granae derived from AFM analysis (F$_{\text{arr}}$ = 0.16 for WT and 0.5 for fad5). As shown in Equation 2,

$$
cyt_{\text{total}} = cyt_{\text{arr}} \cdot F_{\text{arr}} + cyt_{\text{dis}} \cdot F_{\text{dis}} \quad \text{(Eq. 2)}
$$

$$
PSII_{\text{total}} = PSII_{\text{arr}} \cdot F_{\text{arr}} + PSII_{\text{dis}} \cdot F_{\text{dis}} \quad \text{(Eq. 3)}
$$

Rearranging these equations leads to protein concentrations in disordered granae as shown in Equation 4,

$$
cyt_{\text{dis}} = \frac{cyt_{\text{total}} - cyt_{\text{arr}} \cdot F_{\text{arr}}}{F_{\text{dis}}} \quad \text{(Eq. 4)}
$$

$$
PSII_{\text{dis}} = \frac{PSII_{\text{total}} - PSII_{\text{arr}} \cdot F_{\text{arr}}}{F_{\text{dis}}} \quad \text{(Eq. 5)}
$$

From the fact that semicrystalline arrays in granae contain C2S2M2 supercomplexes and no cyt $b_{6}f$ complex, it follows that cyt$_{\text{arr}}$ = 0 and PSII$_{\text{arr}}$ = 6.803 mmol of PSII/mol of Chl. The latter number is derived from published data giving that each PSII monomer in a C2S2M2 complex binds 147 Chls (23). From Eq. 3 and the concentration data in Table 2, the concentration for cyt $b_{6}f$ complex in disordered granae is calculated to 0.525 mmol of cyt $b_{6}f$ mol of Chl in WT and 0.946 mmol of cyt $b_{6}f$ mol of Chl in fad5. For PSII, the numbers are 3.543 mmol of PSII/mol of Chl in WT and 1.393 mmol of PSII/mol of Chl in fad5.

These numbers can be converted into particle densities by using the total particle densities in disordered granae derived from AFM (1449 particles μm^{-2} for fad5 and 1681 particles μm^{-2} for WT) as shown in Equation 6,

$$
\text{WT:} cyt_{\text{dis}} = 1681 \text{ particles } \mu m^{-2} \cdot \frac{0.525}{3.543 + 0.525} = 217 \text{ particles } \mu m^{-2}
$$

$$
fad5, cyt_{\text{dis}} = 1449 \text{ particles } \mu m^{-2} \cdot \frac{0.946}{1.393 + 0.946} = 586 \text{ particles } \mu m^{-2}
$$

$$
\text{WT, PSII}_{\text{dis}} = 1681 \text{ particles } \mu m^{-2} \cdot \frac{3.543}{3.543 + 0.525} = 1464 \text{ particles } \mu m^{-2}
$$

$$
fad5, \text{PSII}_{\text{dis}} = 1449 \text{ particles } \mu m^{-2} \cdot \frac{1.393}{1.393 + 0.946} = 863 \text{ particles } \mu m^{-2}
$$

An important outcome of these quantitative considerations is that the PSII density in disordered granae of fad5 plants decreases by about 40%. At the same time, the PSII/cyt $b_{6}f$ complex ratio drops from 6.7 in WT to 1.5 in fad5.

To complement the protein analysis for disordered granae, the density of LHCII trimers (abbreviated as just LHCII in the following sections) have to be added. This is derived from the PSII particle densities (see above) and the LHCII/PSII ratios. The LHCII/PSII ratio in disordered granae (LHCII/PSII$_{\text{dis}}$) is calculated similarly as in Eq. 3 and as shown in Equation 7,

$$
\frac{\text{LHCII}}{\text{PSII}}_{\text{dis}} = \frac{\text{LHCII}_{\text{total}} - \text{LHCII}_{\text{arr}} \cdot F_{\text{arr}}}{F_{\text{dis}}} \quad \text{(Eq. 6)}
$$

WT, LHCII$_{\text{dis}}$ = 4.4 \cdot 2 \cdot 1464 particles μm^{-2}

$$
= 12,883 \text{ particles } \mu m^{-2}
$$

fad5, LHCII$_{\text{dis}}$ = 6.0 \cdot 2 \cdot 863 particles μm^{-2}

$$
= 10,356 \text{ particles } \mu m^{-2}
$$

The factor of 2 has to be introduced because each PSII-AFM particle represents a dimer (35). The particle densities in disordered granae are visualized in Fig. 11. LHCII can be either part of the C2S2M2 supercomplex or can be free (LHCII$_{\text{free}}$). The free LHCII trimers are given by Equation 7,

$$
\text{WT, LHCII}_{\text{free}} = 12,883 - 4 \cdot 1464 \text{ particles } \mu m^{-2}
$$

$$
= 7027 \text{ particles } \mu m^{-2}
$$

FIGURE 11. Particle densities and protein composition in disordered grana. Quantitative analysis of protein complex concentrations combined with AFM data was used to estimate the particle densities of the PSII supercomplex, LHCII, and cyt $b_{6}f$ complexes in disordered thylakoid membranes for WT (black) and fad5 mutant (red). From the data, the relative protein area was calculated (right). Error bars indicate standard error.
Protein Ordering in Photosynthetic Membranes

Higher Protein Mobility in the fad5 Mutant Is Caused by Structural Alterations in Disordered Grana Thylakoids—As pointed out under "Results," the higher overall protein mobility in fad5 is most likely due to the significant lower protein density in disordered grana (Fig. 11). Monte Carlo computer simulations (9) predict that a drop in protein area occupancy from 72% (WT) to 54% (fad5) has a huge impact on the overall protein mobility. The computer simulation shows that between 60 and 70% protein area, a percolation threshold (cP) exists. If the protein density is above cP, long range protein diffusion is no longer possible. If the density is below cP, long range diffusion is possible. This threshold characteristic for protein mobility in grana is supported by FRAP measurements on “diluted” isolated grana thylakoids (10). The crucial point is that small changes (a few 10%) in protein packing density around cP have significant impact on protein mobility (68). The drop to 54% protein area in disordered grana in fad5 brings the system to below cP and allows much higher protein mobility compared with the WT.

The higher protein mobility in disordered grana can support the faster induction of NPQ (Fig. 8), because evidence exists that diffusion-dependent reorganization of the PSII antenna system in stacked grana membranes is involved in this photo-protective mechanism (13, 14). In these studies, it was proposed that part of the LHCBII decouples from PSII and migrates to separated grana areas where they form quenching aggregates (quenched LHCBII supercomplex). It is likely that these rearrangements in grana thylakoids are facilitated in disordered fad5 grana because of the higher protein mobility. An open question is how PSII/LHCBII supercomplexes are photoprotected in semicrystalline arrays because in these membranes areas large scale re-arrangements of proteins are very difficult. Therefore, a second photoprotective mechanism could be realized for C2S2M2 supercomplexes in arrayed regions. There is evidence that besides the formation of quenched LHCBII supercomplexes an independent second quenching process exists localized in C2S2M2 (69). As for the energy quenching in
Protein Ordering in Photosynthetic Membranes

LHCII supercomplexes, photoprotective energy dissipation into heat in C2S2M2 is also Zea-dependent (69). In this respect, the small lipidic gap between PSII-LHCII rows postulated from EM tomographic data (5) could ensure exchange of xanthophylls between C2S2M2 localized in semicrystalline protein arrays and VDE to induce Zea-dependent photoprotective quenching. An alternative explanation is that due to a high excitonic connectivity between C2S2M2 supercomplexes in semicrystalline arrays, the binding of quenchers at the crystal periphery could be sufficient for photoprotection.

Two Scenarios That Explain Faster Diffusion of Small Lipophilic Molecules in fad5—In contrast to the large protein complexes where the higher mobility in fad5 can be pinpointed to disordered grana, the faster diffusion of lipid-like molecules can have two reasons. As mentioned above, one possibility is that diffusion of lipid-like molecules can be improved by formation of small lipid-filled diffusion channels between protein rows in the semicrystalline grana domains. This channel would not only be important for xanthophyll exchange (see above) but also for electronic connection between PSII in semicrystalline arrays and cyt b f complexes localized outside these arrays. As the protein arrays are extended (see Fig. 1), PQ must travel over a few 100 nm to reach cyt b f complexes that do not fit into the array architecture (Fig. 1). The fact that the reduction level of the PQ-pool is even lower in the fad5 mutant compared with WT (qL parameter in Table 2) indicates an efficient PQ diffusion between the PSII rows in semicrystalline arrays. A second possibility is that PQ diffuses faster in less crowded disordered grana in the mutant, which also explains accelerated kinetics of PQ-dependent ET reactions (Fig. 4). However, the fact that other mutants with semicrystalline PSII arrays but different crystal architecture show a very different behavior concerning PQ mobility suggests that the more efficient diffusion of lipid-like molecules between PSII rows in the arrays could be the main factor for the higher mobility in fad5. This is addressed below.

Comparison with Other Mutants—It was reported that some other mutants also show higher abundances of semicrystalline protein arrays in grana thylakoid membranes. Although the abundance of arrays in the Arabidopsis ko-PsbS (npq4 mutant) and the ko-CP26 mutants increases only marginally (8, 70), a significant fraction of grana membranes is in the arrayed state in the ko-CP24 mutant (71) and the barley viridis zb64 mutant (72). Although the abundance of protein arrays in the latter two mutants is high, their functional consequences are very different compared with the fad5 mutant. In detail, compared with WT plants, the ko-CP24 and viridis zb63 mutants have lower linear electron flow, lower ΔPH and NPQ, and have strongly impaired PQ diffusion (71, 72). Furthermore, state transitions are impaired indicating retarded diffusion of LHCI1 (71). The very different phenotypes of the ko-CP24 and viridis zb63, compared with the fad5 mutant, are caused by different protein crystal geometries (lattice constants). This in turn is caused by the prevalence of C2S2 supercomplexes in ko-CP24 and viridis zb63, as opposed to C2S2M2 complexes in WT and fad5 (8, 73). This different crystal architecture in ko-CP24 and viridis zb63 blocks access of PQ and xanthophylls to PSII in semicrystalline arrays, which causes their severe phenotypes. The comparison between these mutants and fad5 reveals that the exact type of PSII supercomplexes and the resulting difference in protein array structure are essential for understanding their functional implications.

Physiological Consequences of Protein Array Formation in Grana Thylakoids—The mixed consequences of semicrystalline protein arrays have interesting physiological implications because changes in the supramolecular order can favor either diffusion-dependent ET and NPQ or the PSII repair cycle. In this respect, it is understandable that abiotic factors like temperature, light, or osmotic potential trigger the re-arrangement in grana thylakoids because it allows the fine-tuning of different photosynthetic processes to different requirements dictated by environmental cues. For the same reason, protein arrays do not exist in high light conditions (74), where the PSII repair has an overriding functional importance for the survival of the plant.

In summary, our work demonstrates that the degree of ordering in thylakoid membranes affects the mobility of membrane constituents and consequently membrane functions. An intriguing question is what factors govern supramolecular changes. A favorite candidate for the photosynthetic membrane is the PsbS protein (53) because overexpression or knocking out this membrane-integral protein either decreases or increases the abundance of semicrystalline arrays (70). However, the observation that simple cold incubation of isolated thylakoid membranes with exactly the same composition can induce semicrystalline array formation in grana (66) points to the possibility that other factors are involved as well. In this respect, it is noteworthy that rearrangement to the semicrystalline state is often accompanied by changes in lipid/fatty acid properties (as studied here for the fad5 mutant). Therefore, lipid/fatty acid-induced changes of physicochemical properties of the lipid bilayer could play a central role in controlling protein organization in photosynthetic membranes.

Acknowledgment—We thank Dr. John Browse (Washington State University) for the kind gift of Arabidopsis fad5 mutant seeds and for help with fatty acid analysis.

References

1. Engelman, D. M. (2005) Membranes are more mosaic than fluid. Nature 438, 578–580
2. Nelson, N., and Ben-Shem, A. (2004) The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 1–12
3. Dekker, J. P., and Boekema, E. J. (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706, 12–39
4. Park, R. B., and Biggins, J. (1964) Quantsosome: Size and composition. Science 144, 1009–1011
5. Daum, B., Nicastro, D., Austin, J., 2nd, McIntosh, J. R., and Kühlbrandt, W. (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22, 1299–1312
6. Kirchoff, H. (2008) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13, 201–207
7. Kirchoff, H., Horstmann, S., and Weis, E. (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim. Biophys. Acta 1459, 148–168
8. Goral, T. K., Johnson, M. P., Duffy, C. D., Brain, A. P., Ruban, A. V., and Mullineaux, C. W. (2012) Light-harvesting antenna composition controls
the macrostructure and dynamics of thylakoid membranes in Arabidopsis. *Plant J.* **69**, 289–301
9. Tremmel, I. G., Kirchhoff, H., Wei, E., and Farquhar, G. D. (2003) Dependence of the plastoquinone diffusion coefficient on the shape, size, density of integral thylakoid proteins. *Biochim. Biophys. Acta* **1607**, 97–109
10. Kirchhoff, H., Haferkamp, S., Allen, J. F., Epstein, D. B., and Mullineaux, C. W. (2008) Significance of macromolecular crowding for protein diffusion in thylakoid membranes of chloroplasts. *Plant Physiol.* **146**, 1571–1578
11. Goral, T. K., Johnson, M. P., Brain, A. P., Kirchhoff, H., Ruban, A. V., and Mullineaux, C. W. (2010) Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. *Plant J.* **62**, 948–959
12. Allen, J. F. (1992) Protein phosphorylation in regulation of photosynthesis. *Biochim. Biophys. Acta* **1109**, 275–335
13. Betterle, N., Ballottari, M., Zorzani, S., de Bianchi, S., Cazzaniga, S., Dall’osto, L., Morosinotto, T., and Bassi, R. (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. *J. Biol. Chem.* **284**, 15255–15266
14. Johnson, M. P., Goral, T. K., Duffy, C. D., Brain, A. P., Mullineaux, C. W., and Ruban, A. V. (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. *Plant Cell* **23**, 1468–1479
15. Kyle, D. J., Ohad, I., and Arntzen, C. J. (1984) Membrane protein damage and repair: selective loss of quinone-protein function in chloroplast membranes. *Proc. Natl. Acad. Sci. U.S.A.* **81**, 4070–4074
16. Melis, A. (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? *Trends Plant Sci.* **4**, 130–135
17. Mulo, P., Sirpiö, S., Suorsa, M., and Aro, E. M. (2008) Auxiliary proteins involved in the assembly and sustenance of photosystem II. *Photosyn. Res.* **98**, 489–501
18. Kirchhoff, H. (2013) Structural constraints for protein repair in plant photosynthetic membranes. *Plant Signal. Behav.* **8**, e23634
19. Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989) Determination of accurate extinction coefficient and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. *Biochim. Biophys. Acta* **975**, 384–394
20. Izawa, S., and Pan, R. L. (1978) Photosystem I electron transport and phosphorylation supported by electron donation to the plastoquinone region. *Biochim. Biophys. Res. Commun.* **83**, 1171–1177
21. Kirchhoff, H., Mukherjee, U., and Gall, H. J. (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. *Biochemistry* **41**, 4872–4882
22. Kirchhoff, H., Schöttler, M. A., Maurer, J., and Wei, E. (2004) Plastocyanin redox kinetics in chloroplasts: Evidence for a dis-equilibrium in the high potential chain. *Biochim. Biophys. Acta* **1659**, 63–72
23. Haferkamp, S., Haase, W., Pascal, A. A., van Amerongen, H., and Kirchhoff, H. (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. *J. Biol. Chem.* **285**, 17020–17028
24. Li, X.-P., Phippard, A., Pasari, J., and Niyogi, K. K. (2002) Structure-function analysis of photosystem II subunit S (Psbs) in vivo. *Funct. Plant Biol.* **29**, 1131–1139
25. Puthiyaveetil, S., Tsabari, O., Lowry, T., Lenhert, S., Lewis, R. R., Reich, Z., Kirchhoff, H. (2014) Compartmentalization of the protein repair machinery in photosynthetic membranes. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 15839–15844
26. Farber, A., Young, A. J., Ruban, A. V., Horton, P., and Jahns, P. (1997) Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants: the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching. *Plant Physiol.* **115**, 1609–1618
27. Yamamoto, H. Y. (1985) Xanthophyll cycles. *Methods Enzymol.* **110**, 303–312
28. Frommolt, R., Goss, R., and Wilhelm, C. (2001) The de-epoxidase and epoxidase reactions of Mantonella squarrosa (Prasinophyceae) exhibit different substrate-specific reaction kinetics to spinach. *Planta* **213**, 446–456
29. Bradford, M. M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **72**, 248–254
30. Zhang, R., Kramer, D. M., Cruz, J. A., Struck, K. R., and Sharkey, T. D. (2011) The effects of moderately high temperature on zeaxanthin accumulation and decay. *Photosynth. Res.* **108**, 171–181
31. Rappaport, F., Béal, D., Joliot, A., and Joliot, P. (2007) On the advantages of using green light to study fluorescence yield changes in leaves. *Biochim. Biophys. Acta* **1767**, 56–65
32. Oostergetel, G. T., Keegstra, W., and Brissone, A. (1998) Automation of specimen selection and data acquisition for protein electron crystallography. *Ultraromicroscopy* **74**, 47–59
33. Kunst, L., Browse, J., and Somerville, C. (1989) A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids. *Plant Physiol.* **90**, 947–949
34. Tsvetkova, N. M., Brain, A. P., and Quinn, P. I. (1994) Structural characteristics of thylakoid membranes of Arabidopsis mutants deficient in lipid fatty acid desaturation. *Biochim. Biophys. Acta* **1192**, 263–271
35. Kirchhoff, H., Lenhert, S., Büchel, C., Chi, L., and Nield, J. (2008) Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. *Biochemistry* **47**, 431–440
36. Heilmann, I., Mekhedov, S., King, B., Browse, J., and Shanklin, J. (2004) Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol Δ7-desaturase gene FADS, and effects of plastidial retargeting of Arabidopsis desaturases on thefad5 mutant phenotype. *Plant Physiol.* **136**, 4237–4245
37. Kramer, D. M., Johnson, G., Kjirats, O., and Edwards, G. E. (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. *Photosyn. Res.* **79**, 209–218
38. Kunst, L., Browse, J., and Somerville, C. (1989) Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. *Plant Physiol.* **91**, 401–408
39. Kirchhoff, H., Sharpe, R. M., Herbstova, M., Yarbrough, R., and Edwards, G. E. (1993) Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C3 and C4 plants. *Plant Physiol.* **161**, 497–507
40. Haehnel, W. (1984) Photosynthetic electron transport in higher plants. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **35**, 659–693
41. Klughammer, C., Heinmann, S., and Schreiber, U. (1998) Inhibition of cytochrome b563-oxidation by triorganotins in spinach chloroplasts. *Photosyn. Res.* **56**, 117–130
42. Cramer, W. A., Soriano, G. M., Ponomarev, M., Huang, D., Zhang, H., Martinez, S. E., and Smith, J. L. (1996) Some new structural aspects and old controversies concerning the cytochrome b6f complex of oxygenic photosynthesis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **47**, 477–508
43. Wu, W., Ping, W., Wu, H., Li, M., Gu, D., and Xu, Y. (2013) Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photo stability of the photosystem II apparatus. *Biochim. Biophys. Acta* **1827**, 709–722
44. Jahns, P., Latowski, D., and Strzalka, K. (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. *Biochim. Biophys. Acta* **1787**, 3–14
45. Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W., 3rd (2003) Significant role of the photosynthetic electron transfer chain of the photosystem II antenna. *Biochim. Biophys. Acta* **1817**, 167–181
46. Arnoux, P., Morosinotto, T., Saga, G., Bassi, R., and Pignol, D. (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis
Protein Ordering in Photosynthetic Membranes

thaliana. Plant Cell 21, 2036–2044
50. Bilger, W., Heber, U., and Schreiber, U. (1988) Kinetic relationship between energy-dependent fluorescence quenching, light scattering, chlorophyll luminescence and proton pumping in intact leaves. Z. Naturforsch. 43, 877–887
51. Pesaresi, P., Pribil, M., Wunder, T., and Leister, D. (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim. Biophys. Acta 1807, 887–896
52. Webb, M. S., and Green, B. R. (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biophys. Acta 1060, 133–158
53. Li, X.-P., Björkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., and Niyogi K. K. (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395
54. Ohad, I., Kyle, D. J., and Arntzen, C. J. (1984) Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptide in chloroplast membranes. J. Cell Biol. 99, 481–485
55. Wagner, R., Aigner, H., and Funk, C. (2012) FtsH proteases located in the plant chloroplast. Physiol. Plant. 145, 203–214
56. Schuhmann, H., and Adamska, I. (2012) Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol. Plant. 145, 224–234
57. Krause, G. H., and Jahns, P. (2003) in Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration (Green, B. R., and Parson, W. W., eds) Vol. 13, pp. 373–399. Kluwer Academic Publishers, Dordrecht
58. Ruban, A. V. (2015) Evolution under the sun: optimizing light harvesting in photosynthesis. J. Exp. Bot. 66, 7–23
59. Vijayan, P., and Browse, J. (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol. 129, 876 – 885
60. Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., and Chang, W. (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292
61. Nield, J., and Barber, J. (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim. Biophys. Acta 1757, 353–361
62. Tystjärvi, E., and Aro, E. M. (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. U.S.A. 93, 2213–2218
63. Pesaresi, P., Pribil, M., Wunder, T., and Leister, D. (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim. Biophys. Acta 1807, 887–896
64. Tikkonen, M., and Aro, E. M. (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim. Biophys. Acta 1807, 232–238
65. Yoshioka-Nishimura, M., Nanba, D., Takaki, T., Ohba, C., Tsumura, N., Morita, N., Sakamoto, H., Murata, K., and Yamamoto, Y. (2014) Quality control of photosystem II: direct imaging of the changes in the thylakoid structure and distribution of FtsH proteases in spinach chloroplasts under light stress. Plant Cell Physiol. 55, 1255–1265
66. Semenova, G. A. (1995) Particule regularity on thylakoid fracture faces is influenced by storage conditions. Can. J. Bot. 73, 1676–1682
67. Sznee, K., Dekker, J. P., Dame, R. T., van Roon, H., Wuite, G. J., and Frese, R. N. (2011) Jumping mode atomic force microscopy on grana membranes from spinach. J. Biol. Chem. 286, 39164–39171
68. Kirchhoff, H. (2014) Diffusion of molecules and macromolecules in thylakoid membranes. Biochim. Biophys. Acta 1837, 495–502
69. Jahns, P., and Holzwarth, A. R. (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817, 182–193
70. Kereiče, S., Kiss, A. Z., Kouril, R., Boekema, E. J., and Horton, P. (2010) The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. FEBS Lett. 584, 759–764
71. de Bianchi, S., Dall’Osto, L., Tognon, G., Morosinotto, T., and Bassi, R., (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20, 1012–1028
72. Morosinotto, T., Bassi, R., Frigerio, S., Finazzi, G., Morris, E., and Barber, J. (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. Consequences of a chronic over-reduction of the plastoquinone pool. FEBS J. 273, 4616–4630
73. Kovács, L., Damkjaer, J., Kereiče, S., Illoia, C., Ruban, A. V., Boekema, E. J., and Horton, P. (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18, 3106–3120
74. Kouril, R., Wientjes, E., Bultema, J. B., Croce, R., and Boekema, E. J. (2013) High-light vs. low-light effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta 1827, 411–419
75. Herbstová, M., Tietz, S., Kinzel, C., Turkina, M. V., and Kirchhoff, H. (2012) Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. U.S.A. 109, 20130–20135
