Feature Extraction from Uterus Signal and Image for Diagnosing Pregnancy Complications

1Rajeshwari R
Department of Biomedical Engineering
KPR Institute of Engineering & Technology, Coimbatore.
rajeshwari.r@kpriet.ac.in

2Mythili Shanmugam
Department of Electronics & Communication Engineering
PSNA College of Engineering & Technology, Coimbatore
smbme@psnacet.edu.in

Abstract - Preeclampsia is a disorder that arises during pregnancy which results in maternal death during delivery, fetal death in the womb and growth retention in infants based on the degree of severity and duration of onset. The markers for identification are found to be Strength of uterine muscles, Decreased velocity & volume of Uterine Artery, Poor placentation, Deficient in Remodeling of Spiral artery. The proposed work emphasis on extraction of features of EHG signal and Ultrasound Image of normal and suspected preeclampsia patients at second trimester to identify the condition at the earliest. The ability of the Uterine Muscle can be identified by recording of electrical activity of the uterus, by a device called Electrohysterograph that uses surface bipolar electrodes placed at various points in the lower abdominal region of pregnant women that can indicate the possibility of Preterm labor. The anatomy of Uterus, an indicator of weaker cervix and anatomy of kidney can be analyzed by Abdominal Ultrasound Imaging. Based on the combined analysis of images and signal along with the support of biochemical tests it is possible to identify the disease at the start of second trimester.

Keywords – Electrohysterograph, Abdominal Ultrasound Imaging, Second Trimester.

1. Introduction
Preeclampsia is characterized by high blood pressure, seizure, swelling, kidney dysfunction, shortness of breath in pregnant women [1]. The disorder will unfortunately show symptoms only during third trimester but during the course of detection it might have brought significant destruction to foetal growth [2]. Reason for disease is not known yet. This disorder is considered to be more fatal during pregnancy. Prediction is found to be via blood test which doesn’t ensure early prediction in most cases.

Proposed Markers for the prediction
- Strength of uterine muscle.
- Poor Placentation.
- Placental abruption.
- Cervical incompetency.

Strength of uterine muscle
Myometrium of uterus is responsible for inducing uterine contractions [3]. The use of EHG can help in recording uterine electrical activity to analyse the strength of the muscle to carry the foetal for the entire trimester.EHG analysis raw signals from the myometrial muscle using bipolar electrodes placing them in the abdominal surface [4]. The electrodes are placed at 2.5 cm to 7cm apart in horizontal or vertical directions such that it covers the entire abdominal region [5].

Poor Placentation -Placenta Previa
Placenta previa is a condition that arises due to low lying or poor placentation [6]. Women with poor placentation are highly susceptible to preeclampsia and may have premature delivery. They are susceptible to hemorrhage during delivery [7].

Placental Abruption
This is a premature departure of the placenta. Despite being an important obstetrical condition, placental abruption lacks a diagnostic procedure [8]. It can be defined as the complete or partial separation of the normally located placenta from its uterine site before the delivery of the fetus [9]. Abruption of placenta is confirmed after placental delivery by evaluation of the retro placental clots or a depression in the maternal surface of placenta [10]. This condition is clearly linked with preterm labor.

Cervical Incompetency
The cervix, mouth uterus, is closed during pregnancy to hold the baby intact [11]. Cervix should open during the time of delivery only. For women with preeclampsia the cervix begins to dilate well in advance leading to premature growth [12].

Abnormal Uterus Shape
Abnormalities in uterus can be identified as,
- appearance as false uterus
• septum in the uterus
• an irregularly shaped uterus mass or cyst in uterus

2. Block Diagram of proposed system

![Block Diagram of proposed system]

Figure 1 shows the Block Diagram of proposed system.

Data Collection
EHG signals are collected from TPEHG database. The TPEHG records were collected from a general population of pregnant patients at the Department of Obstetrics and Gynecology Medical Centre in Ljumljana. Records saved are less taken at less than 26 weeks [13].

The ultrasound images of cervix, uterus, and placenta which are found to be the effective markers for premature labor. All the collected images are taken at the second trimester stage of pregnant patient.

Pre-processing of EHG signals
Band pass filters with pass band frequencies Fc1 and Fc2 set as 0.34 and 1 respectively.

Pre-processing of Images
The images cannot be used directly for analysis. 1. Input image can have different resolution which leads to the increased complexity in processing 2. Poor resolution of anatomical features in raw image. the first drawback is removed, input images are resized to a resolution of 256*256. The second drawback can be minimized by adopting suitable enhancement technique according to the anatomical features extracted.

Features Extracted in EHG Signal for classification
The features considered are Mean, zero crossing, variance, absolute standard deviation, square integral, peak frequency, log detector, amplitude change, absolute standard deviation value, integrated EH is shown in Figure 2.

Feature Extraction in Images
Textural and anatomical features are considered. The features extracted from the image should provide the characteristics of the input type to the classifier by including the properties description of the image into a feature space of specific dimension (n) [14]. The various features such as average mixel value mean, standard deviation, skewness, kurtosis, energy and entropy based on the first order histogram are computed.

3. FNN for Classification
The number of neurons in the input layer is one for the FNN classifier. The output layer is determined by the number of classes desired., The output is either suspected for preeclampsia or no; the output layer consists of one neuron [15]. Here we have used three hidden layers with 60, 6 and 1 neurons in the respective layers. 110 datasets are used for training and testing process. The tangent sigmoid (transig) function is used as the neural activation function is shown in Figure 3. The proposed network is trained with 60 signal cases and 20 images in each category (uterus, cervix, and placenta). MATLAB software package version 13 is used. Learning rate is set to 0.04, the output of the network is 1 for preterm and 0 for term [16]. The training algorithm used for this network is BPA. The performance goal is met at 700 epochs after a training time of 9 sec.

4. Results of Feature Extraction
This section shows the extracted features of EHG signals and ultrasound images as shown in Tables 1-5 and Figures 4-6.
Table 1: Observation of Placental images P1 to P8 represents placental image.

Image Name	ag	ahg	egy	megy	Etp	metp	sd	msd	sk	bag	diff%	ctr	
P1	93.6238	2.41E+04	256	256	2.66E-04	0.3806	11.458	0.0425	4.12E+12	0.074	93.5498	0.9984	
P2	101.2831	2.60E+04	256	256	0	0.5675	15.4857	0.0724	-Inf	0.1337	101.1494	0.9974	
P3	69.7502	1.79E+04	256	0	0	0.1602	10.16	0.0951	Inf	0.0234	69.7267	0.9993	
P4	76.4461	1.96E+04	256	21	0	0.0025	0.3954	9.1349	0.0836	3.76E+09	0.0781	76.368	0.998
P5	40.9706	1.05E+04	256	1	0.6697	0.0506	9.1543	0.0644	7.50E+06	0.0057	40.9649	0.9997	
P6	38.8908	1.00E+04	256	19	5.02E-04	0.4173	4.5773	0.1445	-	-	38.8065	0.9957	
P7	57.5338	1.48E+04	256	0	0	0.073	12.8932	0.0772	Inf	0.0088	57.525	0.9997	
P8	80.1051	2.06E+04	256	0	0.1551	0.1587	8.4724	0.0918	4.84E+08	0.0231	80.0819	0.9994	

Table 2: Observation of Cervix images C1 to C8 represents cervix images

Image Name	Ag	ahg	egy	megy	Etp	metp	sd	msd	sk	bag	diff%	ctr
C1	30.6533	7.88E+03	256	0	0.9997	0.032	21.9818	0.0487	-6.55E+06	0.0033	30.6499	0.9998
C2	28.2074	7.25E+03	256	0	0.782	0.1531	12.0002	0.1039	-6.03E+06	0.0221	28.1853	0.9984
C3	31.4839	8.09E+03	256	0	0.992	0.052	13.5276	0.0617	-2.13E+06	0.0059	31.4781	0.9996
C4	63.7501	1.64E+04	256	0	0.0018	0.1032	11.5953	0.0716	-1.08E+10	0.0135	63.7366	0.9996
C5	67.6679	1.74E+04	256	6	0.6968	0.2092	11.6517	0.0902	3.33E+07	0.033	67.6349	0.999
C6	48.9542	1.26E+04	256	0	0.0216	0.0591	13.3153	0.068	-1.20E+09	0.0069	48.9473	0.9997
C7	51.3678	1.32E+04	256	39	0.0033	0.135	13.1336	0.0648	9.61E+10	0.0189	51.349	0.9993
C8	57.3338	1.4735	256	0	0.966	0.2595	28.3179	0.1544	-4.73E+07	0.0438	57.2899	0.9985

Table 3: Observation of images U1 to U8 represents the uterus image

Table 4: Observation of normal pregnancy patients EHG Signals
Table 5: Observation of suspected pre-eclampsia patients EHG Signals

Signals	IEHG	MAE	SSI	VO	WL	LOG	RMSE	VAR	ASD	MFL	AA	PF
546	152128.	760.644	1.63E+08	802.9051	228156	511.3318	902.9051	-1.6E+08	-2.6E-09	4.292874	1142.357	1.161063
567	149483.4	747.417	1.6E+08	894.4717	208128.4	501.7434	894.4717	-1.6E+08	-2.7E-09	4.281816	1046.085	-1.47189
586	161619.9	808.0996	1.77E+08	840.7023	240385	594.7281	940.7023	-1.8E+08	-2.2E-09	4.329565	1216.245	2.651872
614	160777.9	803.3896	1.64E+08	804.2184	216378	623.0601	904.2184	-1.6E+08	-2.7E-09	4.28425	1088.299	-2.50334
617	164798	823.9901	1.89E+08	71.5568	244456.1	577.9021	971.5568	-1.9E+08	-2.1E-09	4.339434	1229.274	2.57069
641	175379.4	876.8968	2.06E+08	701.825	254508.7	649.7222	1013.825	-2.1E+08	-1.9E-09	4.363504	1286.006	0.501251
745	176572.5	882.8626	2.24E+08	1059.024	275217.1	626.0801	1059.024	-1.6E+08	1.6E-09	4.393842	1378.702	1.570796
797	171788.6	858.9428	2.07E+08	517.855	275675.4	614.6613	1017.855	-1.5E+08	1.7E-09	4.381676	1387.048	1.570796
877	145280.3	726.4014	1.52E+08	871.8792	216972.9	511.1103	871.8792	-1.5E+08	-2.6E-09	4.289826	1091.291	1.685525
914	205354.6	1026.773	2.72E+08	766.474	302368.4	764.0376	1166.474	-2.7E+08	-1.4E-09	4.427981	1521.053	2.509373
939	161747.9	808.7395	1.87E+08	976.65	235789.8	573.0436	966.5	-1.9E+08	-2.1E-09	4.340618	1193.48	1.733747
1007	163841.9	819.2093	1.83E+08	756.8761	237210	603.4726	956.8761	-1.8E+08	-2.2E-09	4.332046	1196.167	1.945705
5. Conclusion
From the analysis of the ultrasound images feature values Mean Energy and Average pixel value tend to become deviate for suspected preeclampsia patients. Other features in the image are not showing considerable deviations. EHG feature difference between suspected and normal preeclampsia patients show considerable change in variance of EHG signal. There are only few parameters that shows difference between preeclampsia and normal patients hence it is necessary to validate increased number of features in combination with blood test to confirm the result.

References
[1]. Allwyn Gnanadas, A; Sathishbabu, S; Shankar, N; Post Evaluation of Tumor Cells Using Fused Positron Emission Tomography CT Imaging Journal of Computational and Theoretical Nanoscience 17 4 1877-1879 2020
[2]. Barati, M., Shahbaziyan, N., Ahmadi, L., & Masjhi, S. Diagnostic evaluation of uterine artery Doppler sonography for the prediction of adverse pregnancy outcomes. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19(6), 515–519, (2014).
[3]. Erez et al. “Early preterm delivery due to placenta previa is an independent risk factor for a subsequent spontaneous preterm birth” BMC Pregnancy and Childbirth 2012 12:82.
[4]. Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Alram, S. “Prediction of Preterm Deliveries from EHG Signals Using Machine Learning” PLoS ONE, 8(10), e77154, (2013).
[5]. Hemalatha, N., & Kumar, D. G. Image Denoising Based on Non-Local means Algorithm. International Journal of Computer Science Engineering (IJCSE), 3, (2014).
[6]. L. Lange, A. Vaegomose, P. Kidmose, E. Mikkelisen, N. Uldbjerg, and P. Johansen, “Velocity and Directionality of the Electrohysterographic Signal Propagation,” PLoS ONE, vol. 9, no. 1, p. e86775, Jan. 2014.
[7]. Lucovnik M, Maner WL, Chambilis LR, Blumrick R, Balducci J, “Noninvasive uterine electromyography for prediction of preterm delivery” American journal of obstetrics and gynecology 204 (3): 228.e1–10, (2011).
[8]. Maner WL, Garfield RE “Identification of human term and preterm labor using artificial neural networks on uterine electromyography data” Annals of biomedical engineering 35(3): 465–73, (2007).
[9]. McPheters M, Miller WC, Hartmann KE, Savitz DA, Kaufman JS, “The Epidemiology of Threatened Premature Labor: A Prospective Cohort Study” American journal of obstetrics and gynecology 192 (4): 1325–9, (2005).
[10]. Rabotti, C. “Characterization of uterine activity by Electrohysterography” Eindhoven: Technische Universities Eindhoven DOI: 10.6100/IR672724.
[11]. Rajeshwari, R., Preetha, S. H., Hemavathy, K., & Reshma, A. R. Performance analysis of Polyvinylidene Fluoride and Polyflux dialysis membranes. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 3051-3055). IEEE, (2016, March).
[12]. Rajeshwari R, Allwyn Ganadass, Geetha Devasena M, Sreelatha P, Bharath V. Effect of Desecpeckling Of Ultrasound Images Using Anistropic Diffusion Method Waffen-Und Kostumkunde Journal, Volume 9, Issue 6, Pages 214-217, (2020).
[13]. Shinde, G. R., Vaswani, B. P., Patange, R. P., Laddad, M. M., & Bhosale, R. B., “Diagnostic Performance of Ultrasonography for Detection of Abruptio and Its Clinical Correlation and Maternal and Fetal Outcome” Journal of Clinical and Diagnostic Research: JCDDR, 10(8), QC04–QC07, (2016).
[14]. Shobha, C., & Rajeshwari, R. Automatic fovea detection and grading of diabetic maculopathy severity levels. Int. J. Eng. Res. Tech, (2014).
[15]. Sreelatha, P., & Ezhlarasi, M. Improved Adaptive Wavelet Thresholding for Effective Speckle Noise Reduction in Low Contrast Medical Images. Journal of Circuits, Systems and Computers, 28(10), 1950176, (2019).
[16]. S. L Kumar., Swathy, M., Vidya, M., Poojaa, K., Manikandan, G., & Jennifer, A. A. Wireless Bio Signal Acquisition Electrode module for EMG. In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 1839-1844), (2018). IEE