Room temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi$_x$Se$_{1-x}$ film

M. DC1, R. Grassi2, JY Chen2, M. Jamali2, D. Hickey3, D. Zhang2, Z. Zhao2, H. Li3, P. Quarterman2, Y. Lv2, M. Li2, K. Mkhoyan3, T. Low2, and JP Wang2,1,3,*

1School of Physics and Astronomy, University of Minnesota, MN 55455
2Department of Electrical and Computer Engineering, University of Minnesota, MN 55455
3Department of Chemical Engineering and Material Science, University of Minnesota, MN 55455

The spin-orbit torque (SOT) arising from materials with large spin-orbit coupling promises a path for ultra-low power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered Bi$_x$Se$_{1-x}$ thin films in Bi$_x$Se$_{1-x}$/CoFeB heterostructures by using dc planar Hall and spin-torque ferromagnetic resonance (ST-FMR) methods. Remarkably, the spin Hall angle (SHA) was determined to be as large as 18.62 ± 0.13 and 8.67 ± 1.08 using dc planar Hall and ST-FMR methods, respectively. Moreover, switching of perpendicular CoFeB multilayer using SOT from the Bi$_x$Se$_{1-x}$ has been observed at room temperature (RT) with the lowest-ever switching current density reported in a bilayer system 4.3×10^5 A/cm2. The demonstrated giant SHA, ease of growth of the films on silicon substrate, successful growth and switching of a perpendicular CoFeB multilayer on Bi$_x$Se$_{1-x}$ film opens a path for use of Bi$_x$Se$_{1-x}$ topological insulator (TI) as a spin-current generator in SOT-based memory and logic devices.

- IEEE Member Number:
- Year Expected Graduation: 2018
- Advisor Name: Jian-Ping Wang
- Advisor Institution: University of Minnesota