Resistance to Plum Pox Virus (Dideron Isolate RB3.30) in a Group of California Almonds and Transfer of Resistance to Peach

P. Martínez-Gómez, M. Rubio, and F. Dicenta
Departamento de Mejora y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investiguaciones Científicas, P.O. Box 4195, E-30080 Murcia, Spain

T.M. Gradziel
Department of Pomology, University of California, One Shields Avenue, Davis, CA 95616

ABSTRACT. Sharka [(plum pox virus (PPV))] mainly affects Prunus species, including apricot (Prunus armeniaca L.), peach (Prunus persica L.), plum (Prunus salicina Lindl., Prunus domestica L.), and, to a lesser degree, sweet (Prunus avium L.) and sour cherry (Prunus cerasus L.). Level of resistance to a Dideron isolate of PPV in seven California almond [P. dulcis (Miller) D.A. Webb], five processing peach cultivars, and two peach rootstocks was evaluated. In addition, almond and peach selections resulting from interspecific almond × peach hybridization and subsequent gene introgression were tested. Evaluations were conducted in controlled facilities after grafting the test genotypes onto inoculated GF305 peach rootstocks. Leaves were evaluated for PPV symptoms during three consecutive cycles of growth. ELISA-DASI and RT-PCR analysis were also employed to verify the presence or absence of PPV. Peach cultivars and rootstocks showed sharka symptoms and were ELISA-DASI or RT-PCR positive for some growth cycles, indicating their susceptibility to PPV. Almond cultivars and almond × peach hybrids did not show symptoms and were ELISA-DASI and RT-PCR negative, demonstrating resistance to PPV. Two (almond × peach) F1 selections as well as two of three backcrossed peach selections also showed a resistant behavior against the PPV-D isolate. Results demonstrate a high level of resistance in almond and indicate potential for PPV resistance transfer to commercial peach cultivars.

Materials and Methods

PLANT MATERIALS. Plant material evaluated included seven almond cultivars, five processing peach cultivars, and two peach rootstocks (Table 1). Also tested were genotypes resulting from interspecific almond × peach hybridization as well as subsequent backcrossing and selfing with selection for peach fruit types.

PPV ISOLATE. PPV isolate RB3.30 was used as virus inoculum and is a Dideron Type isolate obtained in Spain from the plum ‘Red Beaut’. The isolate is maintained at the Instituto Valenciano de Investigaciones Agrarias (IVIA) Valencia, Spain (Asensio, 1996).
EVALUATION PROCEDURE. Evaluation experiments were carried out in a sealed greenhouse in Murcia (Spain), following procedure described by Martínez-Gómez and Dicenta (1999). Scions were propagated onto infected symptomatic GF305 peach seedlings (one scion per seedling). GF305 peach is characterized by its susceptibility to PPV (Bernhard et al., 1969). Following 4 months of growth, scion-grafted trees were forced into dormancy by subjecting them to 7 °C and darkness for 2 months. After this cold dark treatment, trees were moved to an insect-proof greenhouse for 4 months. Three cycles of evaluation were performed over 2 years. The number of plants evaluated depended on scion graft success as only plants where the GF305 rootstock showed unambiguous PPV symptoms were considered as successfully inoculated. During each growth cycle leaf symptoms were scored from 0 (no symptoms) to 5 (maximum intensity of symptoms as observed on GF305 rootstock) at 2 months following budbreak. PPV symptoms evaluated include chlorotic discoloration of expanding and mature leaves and deformations of leaf tips and margins (Fig. 1). ELISA-DASI or RT-PCR positive reactions and the presence of disease symptoms in leaves in any cycle indicated the susceptibility of the genotype.

ELISA-DASI ANALYSIS. To ascertain the presence or absence of PPV in samples, an ELISA-DASI (Double Antibody Sandwich Indirect) assay was applied to the leaves during the first and third growth cycles using the 5B monoclonal antibody against the coat protein of PPV (Cambra et al., 1994). Optical densities (OD) at 405 nm were recorded after 60 min. In accordance with Sutula et al. (1994), OD readings were considered positive when above the 0.6 arbitrary units cut-off value.

Table 1. Plant material evaluated including the origin, use, and main horticultural characteristics; BC = backcrossed.

Genotype	Origin	Use	Endocarp	Mesocarp color	Mesocarp texture	Flowering time
Carmel	Nonpareil × Mission	Almond	Paper	White	Almond-like	Very early
Mission	Early California selection	Almond	Hard	White	Almond-like	Early
Ne Plus Ultra	Early California selection	Almond	Soft	White	Almond-like	Very early
Nonpareil	Early California selection	Almond	Paper	White	Almond-like	Early
Padre	Mission × Swanson	Almond	Paper	White	Almond-like	Early
Price	Nonpareil × Mission	Almond	Paper	White	Almond-like	Early
Sonora	Nonpareil × Eureka (BC)	Almond	Paper	White	Almond-like	Very early
Andross	Early California selection	Processing peach	Hard	Yellow	Peach-like	Late
Bolinha	Brazilian selection	Processing peach	Very hard	Yellow	Peach-like	Early
Dr Davis	California selection	Processing peach	Hard	Yellow	Peach-like	Late
Halford	Lovell seedling	Processing peach	Very hard	Yellow	Peach-like	Late
Ross	California selection	Processing peach	Very hard	White	Peach-like	Late
Lovell	Early California selection	Peach rootstock	Very hard	White	Peach-like	Late
Nemaguard	P. davidiana × peach	Peach rootstock	Very hard	White	Intermediate	Early
Hansen 536	Almond × peach	Hybrid rootstock	Very hard	White	Intermediate	Early
Nickels	Almond × Nemaguard	Hybrid rootstock	Very hard	White	Intermediate	Early
54P455	Peach selection	Peach breeding line	Hard	Yellow	Peach-like	Early
7926-1	Padre almond × 54P455	Hybrid breeding line	Very hard	White	Intermediate	Early
F10C,20-51	(Padre × 54P455) _F_2_	Almond breeding line	Paper	White	Peach-like	Early
F10C,12-28	(Padre × 54P455) _F_2_	Almond breeding line	Paper	White	Peach-like	Early
F8,5-156	(Peach × F10C,12-28) _F_	Peach breeding line	Very hard	Yellow	Peach-like	Early
F8,5-166	(Peach × F10C,12-28) _F_	Peach breeding line	Very hard	Yellow	Peach-like	Early
99,15-154	(Peach × Nonpareil) _BC_	Peach breeding line	Very hard	Yellow	Peach-like	Late

Fig. 1. Disease response following grafting onto PPV infected rootstock. (A) Absence of PPV symptoms in Nonpareil almond grafted onto GF305 showing strong symptoms of the disease (indicated by arrows). (B) PPV symptoms (indicated by arrows) in the Nemaguard peach grafted onto GF305 also showing symptoms of the disease.
al. (1986), samples with OD at least double those of the healthy control were considered ELISA-positive.

RT-PCR Analysis. RT-PCR analysis (Wetzel et al., 1991) was carried out using total RNA extracted using the RNeasy Plant Mini Kit (Qiagen, Valencia, Calif.) as described by MacKenzie et al. (1997). Two specific primers within the coat protein (CP) gene, VP337 (CTCTGTGTCCTCTTCTTTG) complementary to 9487-9508 positions of genomic PPV and VP338 (CAATAAAGCCATTGTTGATC) homologous to 9194 to 9216 positions, were assayed. PCR parameters were: one cycle at 94 °C for 2 min followed by 30 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and finally with an extension temperature at 72 °C for 5 min (Martínez-Gómez et al., 2003a). Amplified products were electrophoresed in 1% agarose gels in 40 mM Tris-acetate and 1 mM EDTA, pH 8.0 (TAE) and stained with ethidium bromide. A 1-kb plus DNA Ladder (Invitrogen Life Technologies) was used as molecular size standard.

Results

All almond cultivars grafted onto previously inoculated GF305 peach rootstocks showed resistance to the PPV-D isolate assayed after three cycles of study (Table 2). They did not show any symptoms and were ELISA-DASI and RT-PCR negative (Fig. 2) despite the symptoms observed in the GF305 rootstock.

Processing peach cultivars Andross, Bolinha, Dr. Davis, Halford, and Ross, peach breeding parent '54P455', and the peach rootstocks Lovell and Nemaguard, were susceptible to the PPV-D isolate assayed. Symptomatic plants developed chlorotic discoloration and distortion of leaves characteristic of PPV (Fig. 1) and assayed positive by ELISA-DASI or RT-PCR during at least one of the three growth cycles assayed (Table 2).

Interspecific almond x peach hybrids, including the 'Hansen 536' and 'Nickels' rootstocks, and the ('Padre' x '54P455' peach) hybrid '7926-1', demonstrated resistance. Six of the eight almond x peach derived genotypes also showed a resistant response to the PPV-D isolate assayed. Peach-type selection '99,15-154' and 'F8,5166' developed PPV symptoms.

Symptomatic plants were always associated with high ELISA-DASI OD values (Table 2). Four of the symptomatic and ELISA-DASI positive genotypes also gave positive RT-PCR responses while three other symptomatic ELISA-DASI positive genotypes gave negative RT-PCR responses.

Table 2. Evaluation of resistance of genotype assayed to plum pox virus (PPV)-D isolate RB3.30 of PPV.

Genotype	Cycle 1	Cycle 2	Cycle 3										
	Mean intensity	ELISA-DASI	Mean intensity	ELISA-DASI	Mean intensity	ELISA-DASI							
Plants Symptomatic of symptoms	Symptomatic plants	Positive plants	OD$_{405}$	Plants Symptomatic of symptoms	Symptomatic plants	Positive plants	OD$_{405}$	Plants Symptomatic of symptoms	Symptomatic plants	Positive plants	OD$_{405}$	RT-PCR	
Almond													
Carmel	3	0	0	0.06	0	0	0	0.06	–				
Mission	4	0	0	0.10	0	0	0	0.06	–				
NePlusUltra	1	0	0	0.10	0	0	0	0.06	–				
Nonpareil	3	0	0	0.10	0	0	0	0.06	–				
Padre	2	0	0	0.10	0	0	0	0.06	–				
Price	1	0	0	0.08	0	0	0	0.05	–				
Sonora	1	0	0	0.10	0	0	0	0.06	–				
Peach													
Andross	4	0	0	0.11	0	0	1	1.0	0.35	+			
Bolinha	3	1	1.0	1.40	0	0	0	0.06	–				
Dr. Davis	5	2	1.0	2.63	0	0	1	1.0	0.20	–			
Halford	3	1	1.0	0.59	0	0	1	1.0	0.18	+			
Ross	4	0	0	0.09	0	0	1	1.0	0.20	–			
Peach rootstock													
Lovell	3	1	2.0	1.14	0	0	0	0.06	–				
Nemaguard	2	2	2.0	1.89	0	0	1	1.0	0.20	–			
Hybrid rootstock													
Hansen 536	3	0	0	0.06	0	0	0	0.06	–				
Nickels	3	0	0	0.06	0	0	0	0.06	–				
Breeding lines													
54P455	5	3	1.5	3.71	0	0	3	1.5	0.46	+			
7926-1	1	0	0	0.07	0	0	0	0.07	–				
F10C,20-51	3	0	0	0.08	0	0	0	0.06	–				
F10C,12-28	4	0	0	0.08	0	0	0	0.06	–				
F8,5-156	2	0	0	0.06	0	0	0	0.05	–				
F8,5-166	5	0	0	0.10	1	2.0	0	0	0.27	+			
99,15-134	3	1	2.0	1.68	0	0	1	1.0	0.27	+			

*Positive (+) or negative (–) reaction.

*OD$_{405}$ = optical density at 405 nm values after 60 min. Mean OD$_{405}$ in infected and healthy GF305 peach rootstocks were 1.80 and 0.07, respectively.

*Intensity: 0 = no symptoms to 5 = maximum intensity of leaf chlorosis and distortion. Mean intensity of PPV symptoms in infected GF305 peach rootstocks was 3.0.
Mean intensity of PPV symptoms of all the infected peach genotypes was 1.4. This intensity is very low in comparison to the intensity of symptoms as observed in the replications of each cultivar during the third cycle of the study. All plants showing symptoms also gave positive ELISA-DASI readings. In addition, detection of PPV by RT-PCR during the third cycle confirmed the results obtained by ELISA-DASI. All samples that were positive by RT-PCR were also positive by ELISA-DASI. However, in the cases of lower OD of ELISA-DASI (peach cultivars Dr. Davis and Ross, and Nemaguard rootstock), the RT-PCR was negative. While a higher sensitivity has been reported for the RT-PCR in comparison to the ELISA-DASI (Candresse et al., 1994; Martínez-Gómez et al., 2003a; Wetzel et al., 1991), the erratic distribution of PPV common in infected Prunus tissue together with the presence of PCR inhibitors described by Olmos et al. (2002) in some Prunus tissues could have contributed to false RT-PCR negatives.

The level of resistance to the PPV-D isolate of all the California almond cultivars assayed support Dicента et al. (2003), Pascal et al. (2003), and Rubio et al. (2003), who reported the resistance of selected European almond cultivars to PPV-D and PPV-M isolates. Dallot et al. (1997), detected the PPV virus by ELISA in ‘Aï’ almond cultivar, after graft-inoculation with five Dideron, three Marcus, and one El Amar isolates. However, the ODs they obtained were low, particularly in the almond inoculated with PPV-D isolates. Only one isolate induced some chlorotic discoloration of the leaves of ‘Aï’, which rapidly disappeared. Dallot et al. (1997) also demonstrated a lower rate of infection by PPV-D isolates, as described previously by Quiot et al. (1995) in apricot and peach. While ‘Aï’, may represent a particular case of susceptibility among almond cultivars, Dallot et al. (1997) did not find any ELISA-positive samples after analyzing 356 trees in a field survey.

Results support the low potential of the almond genotypes used in this study as virus sources in sharked epidemics where Type D isolates of PPV are involved. The almond cultivars used in this study represent ≈70% of current production in California, with most remaining commercial varieties being the progeny of crosses between the resistant ‘Nonpareil’ and ‘Mission’ varieties (Martínez-Gómez et al., 2003b). Type D, which is the most readily transmitted isolate, is the major isolate found in Western Europe and the only isolate reported in North and South America (Dammelsteedt et al., 2001). In both Western Europe and North America, the control of PPV is through widespread and recurrent visual and ELISA-DASI based surveys of existing orchards with tree removal and quarantine restrictions when PPV is found. Confirmation of a freedom from PPV in remaining almond cultivars planted in California could lead to the exclusion of these almond varieties as a potential virus reservoir. In California, where plantings of these almond varieties account for ≈180,000 ha, their removal as a potential host species would allow a more efficient focusing of virus surveys to susceptible Prunus crops.

These findings support the hypothesis that transfer of some level of PPV resistance from almond to peach breeding lines is possible. All almond × peach hybrids as well as six of the eight genotypes derived from interspecific hybridizations were resistant to PPV. The absence of any formidable crossing barriers in either
the initial hybridization or subsequent backcrosses between peach and almond (Gradziel et al., 2001; Gradziel, 2003) further supports the suitability of almond germplasm for peach improvement. Two resistant breeding lines, ‘F10C.20-51’ and ‘F10C.12-28’, have an almond-type tree and nut, and were selected for their high level of self-compatibility derived from the peach parent. The resistant selection ‘F8.5-156’ and the susceptible selection ‘F8.5-166’ have a peach-type tree and fruit and were selected for good canning quality and uniform fruit ripening within the tree. All selections resulted from interspecific hybridization between the resistant ‘Padre’ almond and the susceptible ‘54P455’ peach. The quarantine safeguards required for PPV testing limited the number of peach and almond selections for this initial evaluation. The selections ‘54P455’ peach, ‘7926-1’ interspecific hybrid, and derived progeny were selected for testing since this was the population used for developing the genetic map for peach and almond (Bliss et al., 2002; Foolad et al., 1995) and our eventual goal is to map the resistance gene(s) in almond. The lack of native sources of resistance within peach (Dobša et al., 1994; Escalettes et al., 1998; Gabova, 1994; Pascal et al., 2003) also make almond species a valuable source of PPV resistance for peach species, as previously proposed by Gradziel (2003) and Pascal et al. (2003). Pascal et al. (2003) have reported resistance to PPV Type M in several *P. davidiana* lines, but Moing et al. (2003) had indicated that poor fruit quality is transmitted from *P. davidiana* to peach, which was not a problem in advanced almond-derived peach selections (Gradziel, 2003).

Literature Cited

Albrechtova, L. 1986. Investigations on the distribution of shank virus (plum pox) in tissue of *Prunus domestica*. Z. Pflanz. Pflanz. 93:190–201.

Asensio, M. 1996. El virus de la shank (plum pox virus). Caracterización, diagnóstico y detección mediante anticuerpos monoclonales específicos. PhD diss., Univ. Valencia, Spain.

Audergon, J.M., F. Josi, I. Kareyanis, and F. Dicenta. 1994. Amélioration de l’abricotier pour la résistance à la shank. EPPO Bul. 24:741–748.

Audergon, J.M., P. Monestiez, G. Labonne, and J.B. Quiot. 1989. Virus de la shank. Répartition spatiale du virus dans un arbre. Abstracts, 2e Rencontres de Virologie Végétale, Jan. 1989, Aussois, France. 13.

Bernhard, R., C. Marénaud, and D. Sutic. 1969. Le péché GF305 indicateur from peach, which was not a problem in advanced almond-derived peach selections (Gradziel, 2003).

Crescenzi, A., L. d’Aquino, S. Comes, M. Nuzzaci, and P. Piazzola. 1997. Characterization of sweet cherry isolate of plum pox potyvirus. Plant Dis. 81:711–714.

Dallot, S., M. Bousalem, M. Boeglin, L.Y. Renaud, and J.B. Quiot. 1997. Potential role of almond in shanka epidemics: susceptibility under controlled conditions to the main types of plum pox potyviruses and survey for natural infections in France. EPPO Bul. 27:539–546.

Damsteegt, V.S., A.L. Stone, D.G. Luster, F.E. Gildow, L. Levy, and R. Welliver. 2001. Preliminary characterization of a North American isolate of plum pox virus from naturally infected peach and plum orchards in Pennsylvania. Acta Hort. 550:145–151.

Desvignes, J.C. 1976. The virus diseases detected in greenhouse and in field by the peach seedling GF305 indicator. Acta Hort. 67:47–48.

Dobša, F., M. Lansac, J.P. Eysuard. 1994. Résistance des *Prunus* a la shank. EPPO Bul. 24:691–696.

Egea J., L. Burgos, P. Martínez-Gómez, and F. Dicenta. 1999. Apricot breeding for shank resistance at CEBAS-CSIC, Murcia (Spain). Acta Hort. 488:153–157.

Escalettes, V., F. Dobša, M. Lansac, J.P. Eysuard, and R. Monet. 1998. Genetic resistance to PPV in peach. Acta Hort. 465:689–697.

Foolad, M.S.R., S. Arulsekar, V. Becerra, and E.A. Bliss. 1995. A genetic map of *Prunus* based on an interspecific cross between almond and peach. Theor. Appl. Genet. 91:262–269.

Gabova, M. 1994. Evaluation of peach and nectarine cultivars in Bulgaria for their resistance to plum pox potyvirus. EPPO Bul. 24:755–760.

Gradziel, T.M. 2003. Almond species as source of new genes for peach improvement. Acta Hort. 592:81–88.

Gradziel, T.M., P. Martínez-Gómez, F. Dicenta, and D.E. Kester. 2001. The utilization of related almond species for almond variety improvement. J. Amer. Pomol. Soc. 55:100–109.

Hubert, I., B. Parquet, and G. Pecheur. 1988. La lutte contre la shank en France. L’action du service de la protection des vegetaux. Bul. Tech. Info. 1:465–480.

Kegler, M., M. Grünzig, and E. Fuchs, 1994. A glasshouse test detecting resistance of plum genotypes to plum pox virus. Acta Hort. 359:152–158.

Kolber, M. 2001. Workshop on plum pox. Acta Hort. 550:249–255.

Levy, L.V., S.M. Dasmann, and R. Welliver. 2000. First report of plum pox virus (shanka disease) in *Prunus persica* in the United States. Plant Dis. 84:202.

MacKenzie, D.J., M.A. McLean, S. Mukerji, and M. Green. 1997. Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis. 81:222.

Marenà, C. and M. Yürekürt. 1974. Problèmes posés par la détection du virus de la shank. Pomologie Française 16:207–214.

Martínez-Gómez, P. and F. Dicenta. 1999. Evaluation of resistance to shank in the breeding apricot program in CEBAS-CSIC in Murcia (Spain). Acta Hort. 488:731–737.

Martínez-Gómez, P. and F. Dicenta. 2000. Evaluation of resistance of apricot cultivars to a Spanish isolated of plum pox virus. Plant Breed. 119:174–181.

Martínez-Gómez, P., M. Rubio, F. Dicenta, F. Aparicio, and V. Pallás. 2003a. Comparative analysis of three diagnostic methods for the evaluation of *Plum pox virus* (PPV) resistance in apricot breeding programs. XXVI Intl. Hort. Congr. Toronto, Canada. 335. Acta Hort. 622:353–357.

Martínez-Gómez, P., S. Arulsekar, D. Potter, and T.M. Gradziel. 2003b. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322.

Moing A., J.L. Poëssel, L. Svanella-Dumas, M. Loonis, and J. Kervella. 2003. Biochemical basis of low fruit quality of *Prunus davidiana*, a pest and disease resistance donor for peach breeding. J. Amer. Soc. Hort. Sci. 128:55–62.

Németh, M. 1994. History and importance of plum pox in stone-fruit production. EPPO Bul. 24:525–537.

Olmos, A., E. Bertolini, and M. Cambra. 2002. Simultaneous and co-operational amplification (Co-PCR): A new concept for detection of plant viruses. J. Virol. Meth. 106:51–59.

Pascal, T., F. Pfeiffer, and J. Kervella. 2003. Preliminary observations on the resistance to shanka in peach and related species. Acta Hort. 592:699–704.

Pribék, D., R. Gáborjányi, and L. Palkovics. 2001. Molecular characterization of plum pox virus almond isolate. Acta Hort. 550:91–95.

Quiot, J.B., G. Labonne, M. Boeglin, C. Adamsolle, L.Y. Renaud, and T. Candresse. 1995. Behavior of two isolates of plum pox inoculated on peach and apricot trees. First results. Acta Hort. 386:290–297.

Reyes, F., M.A. Reyes, P. Sepúlveda, J.J. López-Moya, and H. Prieto. 2001. New insights of plum pox virus in Chile. Acta Hort. 550:135–140.

Rubio, M., P. Martínez-Gómez, and F. Dicenta. 2003. Resistance of almond cultivars to plum pox virus (shanka). Plant Breed. 122:462–464.

Sutula, T.C., D.G. Luster, E.F. Gildow, and R. Welliver. 1986. Interpreting ELISA data and establishing the positive-negative threshold. Plant Dis. 70:722–726.

Watkins, R. 1976. Cherry, plum, peach, apricot and almond. In: N.W. Simmonds (ed.). Evolution of crop plants. Longman, London.

Wetzel, T., C. Candresse, M. Ravelonandro, and J. Dunez. 1991. A polymerase chain reaction assay adapted to plum pox potyvirus detection. J. Virol. Meth. 33:355–365.

548

J. AMER. SOC. HORT. SCI. 129(4):544–548. 2004.