Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma

Wendy Anne Boivin1,2, Dawn Michelle Cooper1,2, Paul Ryan Hiebert1,2 and David James Granville1,2

The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.

INTRODUCTION
Granzymes

Granzymes are a family of conserved serine proteases stored within the cytotoxic granules of cytotoxic lymphocytes (CLs) whose functions were once believed to be primarily involved in immune-targeted cell death. There are 5 granzymes expressed in humans: granzymes A, B, H, K, and M, and 11 in mice (A, B, C, D, E, F, G, K, L, M, and N).1 Granzymes A and B are the most abundant granzymes and for this reason have been the most studied. Granzyme B (GrB), which is the primary focus of this review, has received much attention over the past two decades.

GrB was first discovered in the mid-1980s, where several groups reported the presence of the protease in granules within CLs.2–5 Also known as cytotoxic T lymphocyte-associated serine esterase 1 or granzyme 2, GrB is a 32-kDa serine protease resembling chymotrypsin, and has homologues expressed in a number of different species. The gene product encoding GrB is ~3500 bp long, contains five exons and four introns, and maps to chromosome 14 on the human genome.6 Similar to caspases, GrB has a preference for cleaving peptides immediately adjacent to aspartate (Asp) residues.7,8 This specificity is due to the structure of the GrB active site, which contains an arginine (Arg) residue positioned at the P1 position of the substrate and the Arg residue within the active site pocket.9 An interaction between an Asp residue at the P1 position of the substrate and the Arg residue within the active site is key for enzyme–substrate interaction.9

Although once believed to be expressed exclusively by natural killer (NK) cells and cytotoxic T cells (CTLs), recent reports have shown that GrB can be expressed by various additional cell types. Under certain pro-inflammatory

1UBC James Hogg Research Laboratory, Providence Heart and Lung Institute at St. Paul’s Hospital, Vancouver, BC, Canada and 2Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
Correspondence: Dr D Granville, PhD, Providence Heart and Lung Institute at St Paul’s Hospital, University of British Columbia, 166-1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6.
E-mail: dgranville@mrl.ubc.ca
Received 23 May 2009; revised 13 July 2009; accepted 29 July 2009
conditions, GrB can be expressed by CD4+ cells, mast cells, activated macrophages, neutrophils, basophils, dendritic cells (DCs), T regulatory cells, and nonimmune cell types such as smooth muscle cells (SMCs), chondrocytes, keratinocytes, type II pneumocytes, Sertoli cells, primary spermatocytes, granulosa cells, and sncytial trophoblasts.27

Granzyme expression is regulated at both the transcriptional and translational levels, and is influenced by many of the same factors that stimulate immune cell activation. Transcriptional activation of GrB within T lymphocytes involves activation of the T cell receptor and co-stimulation with cytokines.21 The promoter region upstream of the GrB transcription start site contains binding sites for two transcription factors, activating transcription factor/cyclic AMP-responsive element-binding protein (ATF/CREB) and activator protein-1 (AP-1), and two lymphoid specific-factors, Ikaros and core-binding factor (CBF/PEBP2).22–25 All transcription factors act together to regulate GrB expression, and mutations to any of the transcription factor-binding sites will abrogate GrB expression.24,26 Most lymphocytes constitutively express GrB transcripts and upregulate transcription when the lymphocyte has been activated. In T lymphocytes and NK cells, many of the extracellular factors that stimulate T cell activation will also augment GrB expression, including the composition of the cytokine milieu, the nature of receptor engagement, and the presence of helper or regulatory CD4+ T cell populations.21

The post-transcriptional regulation of GrB is evident in many cells types, although the mechanisms involved in this regulation are not fully understood. Comparable levels of GrB transcripts are detected in resting and activated plasma DCs, but significantly higher levels of GrB protein is evident in the activated cells.25 Resting mouse NK cells have an abundance of GrB transcripts, but not of GrB protein or cytotoxicity.27 However, once the cells have been activated, there is a significant increase in GrB protein levels, with relatively little change in GrB transcript levels.27 In contrast, human mast cells express high levels of GrB transcripts and relatively low levels of GrB protein.28

The post-translational regulation of GrB is accomplished through several mechanisms that include the synthesis of GrB as a propeptide requiring proteolytic cleavage for activation and the tagging of GrB with a mannose-6-phosphate receptor (MPR) used to target the protease to the acidic lytic granule.29 These mechanisms will be discussed in more detail in the Granzyme synthesis, storage and exocytosis section of this review.

Specific inhibitors regulate the activity of GrB to minimize accidental GrB-mediated apoptosis. The only known endogenous inhibitor of GrB in humans is protease inhibitor-9 (PI-9), which is a potent inhibitor of GrB and is expressed by immune cells as protection against accidental cytosolic GrB leakage.30,31 Endothelial cells, vascular SMCs, and hepatocytes have also shown an ability to express PI-9 as a means of protection from GrB-mediated cytotoxicity.32–35 High levels of PI-9 expression can be found in DCs, T cells, and endothelial cells of lymphoid and non-lymphoid tissue, as well as in cells of immune-privileged tissues, including the eyes, testes, ovaries, and placenta.36 In mice, serine protease inhibitor 6 shares homology with human PI-9, in which it functions to regulate GrB activity.37 Recently, Sipione et al38 discovered an inhibitor of mouse and human GrB, serpina3n, expressed by mouse Sertoli cells. Serpina3n shares homology with the human α-1-antitrypsin, which interestingly does not appear to show any inhibitory effect on GrB in humans. GrB activity may also be indirectly influenced by the actions of granzyme H (GrH) and granzyme M (GrM). GrM may inhibit the action of human PI-9, thereby promoting GrB activity,39 whereas GrH has the ability to cleave the adenoviral protein Ad5-100K in an effort to counter viral defense against GrB.40

Given its role in immune-mediated cytotoxicity, increased attention has been devoted toward GrB in an effort to elucidate the mechanisms of CTLs and NK cell-mediated elimination of cells. Traditional views on the function of GrB have, for the most part, been limited to its intracellular pro-apoptotic role. However, as discussed below, recent reports suggest that there may also be perforin- and/or apoptosis-independent roles for GrB in disease progression. Apoptosis and extracellular matrix (ECM) modification are hallmarks of many, if not most, chronic inflammatory disorders and the involvement of GrB in a number of inflammatory diseases is becoming evident and will be the focus of this review.

GrB-INDUCED CELL DEATH

Granzyme Synthesis, Storage and Exocytosis

A wide variety of immune cells possess cytotoxic capabilities, which are generally mediated by two pathways: the death receptor-mediated pathway involving the engagement of cell surface receptors with death ligands41–45 and the granule pathway mediated by the granzyme family of proteins.21,46 The granule pathway is the primary pathway used for the clearance of pathogen-infected cells and the eradication of tumors (reviewed in Russell and Ley47). The key effectors of the granule pathway are the granzymes. Granzymes are expressed with a signal sequence that directs them to the endoplasmic reticulum. Cleavage of this signal peptide produces an inactive pro-enzyme that contains an N-terminal dipeptide and requires cleavage to produce an active protease.48,49 In the golgi, granzymes are tagged with a mannose 6-phosphatase used to target the granzymes to the lytic granule.29 Once inside the granule, granzymes are activated by removal of the N-terminal dipeptide by cathepsin C and stored on a scaffold of the chondroitin sulfate proteoglycan, serglycin.48–54 Storage on this scaffolding, in combination with the acidic pH of the lytic granules, acts to minimize the proteolytic activity of granzymes55 (reviewed in Chowdhury and Lieberman51).

Upon engagement, activated granzymes are delivered to target cells after the rapid polarization of lytic granules.
toward the immunological synapse (IS). The IS functions as a conduit for the transfer of lytic granules and other soluble factors between the CLs and the target cell. The movement of lytic granules from CLs to the target cell is directional and depends on an underlying microtubule cytoskeleton, known as the microtubule-organizing center. Once delivered to the site of secretion, lytic granules fuse with the plasma membrane and release their contents into a secretory cleft formed between the CL and the target cell.

Granzyme Entry into Target Cells

Delivery of granzymes into the cytoplasm of target cells induces cell death. The major lytic proteins packaged within the granules are granzymes and the pore-forming protein perforin. Traditional models indicate that GrB delivery into a target cell is mediated by perforin; however, the mechanism by which this is accomplished remains an active area of investigation. Perforin is a Ca²⁺-dependent pore-forming protein that multimerizes in the target cell’s plasma membrane, forming 5–20 nm pores. Early models suggested that perforin facilitates the movement of granzymes into the cytoplasm of the target cell through the formation of pores; however, this model was challenged when it was discovered that granzymes could be endocytosed without perforin.

More recent models show that GrB binds to the MPR and is rapidly endocytosed by the target cell. This process is likely dynamin-dependent and results in the formation of endosomes containing GrB and perforin; however, a dynamin-independent role has been proposed. GrB is then released from the endosomes into the cytosol, using a perforin-dependent mechanism where it can target cellular substrates and initiate cell death. However, although increasing evidence supports a role for MPR in GrB uptake, controversy does exist with regard to the dynamin/MPR mechanism as some evidence suggests this may not be necessary. Several other intracellular substrates have been identified including of PARP, the nuclear mitotic apparatus protein, Omi/HtrA2, and apoptosis-inducing factor (AIF).

GrB-induced Apoptosis

GrB delivery and substrate identification in apoptotic cell death has been the subject of much research. Once released into the cytoplasm, GrB can target substrates in the cytosol and the nucleus, and induce apoptosis through multiple pathways, as illustrated in Figure 1.

GrB shows broad substrate specificity, but preferentially cleaves after Asp residues. One of the first substrates to be identified for GrB was pro-caspase-3. GrB-activated caspase-3 results in the processing of several cellular substrates integral to eliciting the apoptotic phenotype, including the inhibitor of caspase-activated deoxyribonuclease, the DNA damage sensor, poly(ADP ribose) polymerase (PARP), nuclear lamins, and many others (reviewed in Hengartner). Several other caspases, including caspase-2, -6, -7, -8, and -10, are reported to serve as direct substrates for GrB in vitro; however, only cleavage of caspase-3, -7 and -8 has been established in vivo.

A major mechanism by which GrB is believed to induce cell death is through the cleavage of the BH3-only protein Bid into a truncated form, gtBid, which then translocates to the mitochondrion and disrupts mitochondrial membrane integrity through interactions with the pro-apoptotic proteins Bax and/or Bak. Disruption of the mitochondrial membrane integrity increases membrane permeability, leading to the release of apoptogenic factors, such as cytochrome c, smac/DIABLO, Omi/HtrA2, and apoptosis-inducing factor (AIF).

Cytochrome c release stimulates the formation of a macromolecular complex consisting of cytochrome c, dATP, apaf-1, and procaspase-9 known as the apoptosome, which results in the activation of caspase-9 and the subsequent activation of caspases-3 and -7. GrB also cleaves the anti-apoptotic protein Mcl-1, which results in the release of the pro-apoptotic Bcl-2 family member Bim, followed by mitochondrial outer membrane permeabilization and cytochrome c release.

Several other intracellular substrates have been identified including of PARP, the nuclear mitotic apparatus protein, cytoskeletal components such as α-tubulin, the nuclear-envelope intermediate filament protein (lamin B), and ROCKII. GrB has also been shown to target proteins involved in cellular homeostasis and the stress response, including Hsp-70 and Hsp-90 from the heat shock family of proteins, and also the heat-shock-associated proteins Hip, Hop, and Bag1-L.

Although the mechanisms of CL/NK-mediated GrB-induced apoptosis have been studied for some time, the relative contribution of these pathways to disease pathogenesis is less understood. With the discovery of GrB expression in non-immune cell types such as chondrocytes and keratinocytes, the effect of apoptosis (if any) mediated by these cells in vivo is still under investigation.
disease has yet to be determined and presents a new role for GrB in disease pathogenesis. However, as several GrB-expressing cells may not co-express perforin and/or form IS with target cells, it is likely that these cells would exert more of an extracellular impact on disease. A role of GrB in chronic inflammation and disease will be described in more detail in the following sections of this review.

EXTRACELLULAR GrB ACTIVITY

Until recently, GrB was largely studied in its intracellular capacity, specifically in the context of apoptosis. However, the granzymes were originally identified as both intracellular and extracellular proteases, and over the past few years, increased research has focused on extracellular GrB activity. Several groups have reported that GrB is present in the ECM of tissue and can be found extracellularly in bodily fluids. Several novel extracellular substrates for GrB have been identified, potential implications of ECM cleavage have been described, and extracellular GrB activity has been linked to arthritis, vascular pathologies, and other diseases. Although cell types such as keratinocytes, chondrocytes, and neutrophils can express both GrB and perforin simultaneously, other cell types such as mast cells express GrB in the absence of perforin and GrA, suggesting that GrB may act exclusively extracellularly in these cells. This is probably due to the GrB gene localization to a cluster of genes along with mast cell proteases (separate from the perforin and GrA genes). As a result, GrB can be expressed by myeloid cells (DCs, granulocytes) and others upon activation, independently of perforin.

GrB is released from cytotoxic granules upon target cell recognition. Upon reaching the neutral pH of the extracellular environment, GrB is instantly active and can readily cleave susceptible extracellular substrates. The stimuli involved in GrB release have not been fully elucidated; however, several mechanisms have been described to date. GrB may leak into the ECM from the IS during target cell engagement, it may be released non-specifically upon TCR signaling or after prolonged IL-2 stimulation, and it is likely released after other unidentified stimuli. Recently, Prakash et al found that GrB is constitutively released from CTLs and NK cells in vivo and that GrB release can occur in the absence of target cell engagement. GrB is released in both active and inactive forms, suggesting that there may be an extracellular GrB activator for the zymogen form of the enzyme. The pro-form of GrB may be regulated outside cells in a process similar to the extracellular regulation of other ECM proteases, such as the pro-forms of matrix metalloproteases (MMPs), although this has yet to be defined. Besides NK cells and CTLs, other immune and nonimmune cell types also express and secrete GrB; however, the stimuli and signaling pathways regulating GrB release are largely unknown in these cell types.
Granzymes were initially discovered as both intracellular and extracellular proteases, and since early the 1990’s, several ECM substrates for GrB such as aggrecan, fibronectin, vitronectin, and laminin have been identified (Table 1). In terms of cleavage site identification, the lone cleavage site described thus far is for vitronectin. The cleavage site is in the RGD domain of vitronectin, which is an integrin-binding motif. GrB-mediated cleavage of this domain disrupts cellular–vitronectin interactions and influences cell adhesion and migration properties.

In addition to ECM proteolysis, GrB can act on extracellular substrates involved in the clotting cascade such as plasmin, plasminogen, von Willebrand Factor (VWF), and the matrix form of fibrinogen. GrB cleaves VWF in domains that are necessary for platelet interaction and cleavage prevents platelet aggregation, spreading, tethering, and adhesion to the VWF multimer. As GrB has a high affinity for ECM binding, Buzza et al suggest that it would accumulate in areas of inflammation and prevent/delay thrombosis in these areas. GrB-dependent cleavage of plasmin and plasminogen has implications outside clotting as degradation of these proteins may also inhibit angiogenesis.

GrB can cleave cell surface receptors such as the neuronal glutamate receptor, Notch1, and FGFR1. The cleavage of these cell surface receptors may have implications in cell

Table 1 Extracellular GrB substrates and receptors: implications of proteolysis

Protein	Implications
Proteoglycans	
Aggrecan128	Disruption of structural integrity in cartilage
Cartilage proteoglycans128	Disruption of structural integrity in cartilage
Blood proteins/clotting	
von Willebrand factor 129	GrB cleavage site in the domain of platelet interaction, prevention/delay of thrombosis
Plasminogen130	Cleavage yields angiostatin, which is anti-angiogenic. Implications in angiogenesis
Plasmin130	As plasmin is pro-angiogenic, cleavage results in the reduction of angiogenesis
Cell receptors	
Neuronal glutamate receptor131	GrB cleaves the non-glycosylated form of the receptor into an autoantigenic fragment
FGFR1132	Cleavage activates pro-cell death functions as well as inactivates pro-growth signals
Notch1132	Cleavage results in cell signaling affecting tumor survival and antiviral activities
Acetylcholine receptor133	Cleavage results in a reduction of the receptor in neuromuscular junctions and yields an autoantigenic fragment
Other ECM components	
Vitronectin134	GrB cleavage site in integrin-binding domain, implications in cell adhesion, migration, and anoikis
Fibronectin134,135	Cell adhesion, migration, and anoikis
Fibrinogen129	Matrix form of fibrinogen is cleaved. The uncleaved protein responsible for platelet adhesion and thrombus growth. Cleavage results in anti-thrombosis implications
Laminin134	Cell adhesion, anoikis
Smooth muscle cell matrix135	Cell adhesion, anoikis
signaling affecting tumor survival and antiviral activities. Cleavage fragments of receptors can also have physiological activities such as seen with the FGFR1 cleavage fragment, which can activate pro-cell death functions and inactivate pro-growth signals facilitated by FGFR1 in cancer.

Consequences of ECM Degradation
GrB-mediated ECM cleavage may contribute to disease not only through mechanical damage but also through other mechanisms (Figure 2). One consequence of ECM cleavage is anoikis, a form of cell death similar to apoptosis that is caused by a loss of cell–matrix interaction. Fibronectin, laminin, and vitronectin are adhesive proteins that are involved in connecting cells to the surrounding insoluble matrix. As all of these proteins are substrates for GrB, GrB-mediated cleavage may induce anoikis in various cell types. Choy et al.135 described anoikis in cultured SMCs when treated with extracellular GrB that cleaved fibronectin in the matrix. They135 also showed that \(\sim 30\% \) of SMC death induced by CLs was perforin-independent but GrB-dependent, pointing toward anoikis as the mechanism of cell death. Buzzu et al.134 further investigated this by seeding endothelial cells on pure fibronectin, laminin, and vitronectin matrices and reported cell detachment and death by anoikis.

GrB-dependent cleavage of vitronectin and fibronectin can also inhibit cell motility and migration.134 UVA stimulates keratinocyte motility; however, GrB expression during exposure inhibits this process, possibly preventing against carcinogenesis and the normal skin structure disruption that results from keratinocyte migration.136 An area poorly understood is whether GrB-generated ECM fragments can elicit chemotactic properties. GrB ECM cleavage fragments could possess chemotactic properties, leading to the recruitment of immune cells and promotion of inflammation.137 Indeed, fibronectin fragments can attract both neutrophils and monocytes.137–140 Fibronectin fragments also have other properties such as inducing MMP expression by chondrocytes.140 ECM fragments may also act as signaling molecules in neighboring resident cells, as mentioned previously with the FGFR1 fragment.132 As the ECM has affinity for and serves as a reservoir for many growth factors and cytokines, the disruption of the ECM by GrB could induce the release of these growth factors and influence surrounding cells in an indirect manner.

GrB IN DISEASE
GrB has the capacity to act on both intracellular and extracellular substrates. Recently, with the discovery of new immune and nonimmune cell sources of the protease, its importance in infection and cancer is evolving while its contribution to other chronic diseases is emerging. Infiltrating immune cells during chronic inflammation results in elevated levels of GrB to diseased tissue and induces apoptosis in damaged and inflamed areas. Extracellular concentrations of GrB in bodily fluids are elevated in various diseases, and the extracellular activity of this protease in chronic inflammation is an emerging area of research. The remainder of the review will summarize and critically review the current knowledge pertaining to the intracellular and extracellular roles for GrB in inflammatory diseases. As there have been many excellent reviews written pertaining to the role of GrB activity in infection and cancer,21,141,142 we will focus on chronic diseases where the pathogenic role of GrB is emerging (Table 2 and Figure 3).

GrB in Autoantigen Production
Autoimmunity results when the body does not recognize its own proteins as self, and as a result, it mounts an immune response against itself. The process of apoptosis has been intricately described as key initiator of autoimmune responses and autoimmune disease. During apoptosis, autoantigens from various subcellular compartments are clustered in surface blebs and apoptotic bodies of dead cells, in which they are highly accessible to the immune system.262 These peptides are captured and presented to immune cells by antigen-presenting cells, which drive the autoimmune response.

This process may occur during immune cell-mediated apoptosis, in which enzymes such as caspases and GrB are responsible for uncovering cryptic epitopes of intracellular proteins from the proteolytic cleavage of cellular substrates. Some of these hidden epitopes are not present during immune cell development and as a result the immune system may not always tolerate them (ie, recognize them as self-proteins), thus they become autoantigenic and are identified as foreign by the immune system.

Recently, it has been shown that some of these intracellular-derived autoantigens are cleaved by GrB during CTL-induced apoptosis. Furthermore, many of these cleavage fragments are unique to GrB and are not synthesized in other forms of cell death. Casciola-Rosen et al.205 have described some of these GrB-specific autoantigens in great detail and several disease-specific examples are provided in this review. Of 29 well-defined autoantigens, 21 in systemic lupus erythematosus (SLE), scleroderma (SSc), Sjögren syndrome (SS), and myositis are directly cleaved by GrB into unique autoantigenic fragments. Non-autoantigens were either not cleaved by GrB or cleaved into fragments identical to those cleaved during other forms of apoptosis and as a result are not unique. This suggests these non-unique fragments were already tolerized during immune cell development and are not autoantigenic, whereas the uniquely cleaved autoantigens would have escaped tolerance.205 As GrB appears to selectively and uniquely generate a wide variety of autoantigens in several autoimmune diseases and as there is a high-titer autoantibody response to most of these antigens in autoimmune patients, GrB has been identified as a critical enzyme in autoimmune disease pathogenesis.205,263
SLE
SLE is a disease involving a specific autoimmune response toward nuclear autoantigens. High amounts of soluble nucleosomes have been found in SLE serum and SLE macrophages have reduced phagocytic activity, suggesting there is a defect in the clearance of apoptotic cell material. This may allow for a high availability of autoantigens for DCs to process and present, as this cell type is believed to be a driving force in SLE pathogenesis. In addition to DCs, CTLs are an important cell type in SLE autoimmunity. Effector CTLs from patients with SLE disease flares show greater perforin/GrB immunopositivity and the frequency of these cells coincides with disease progression. These CTLs also generate soluble nucleosomes and GrB-specific autoantigens, suggesting they contribute to the initiation of autoimmunity. Interestingly, in the presence of SLE serum, DCs can facilitate CTL differentiation into active effector cells, which are no different from those in SLE patients, providing further evidence that DCs are capable of presenting autoantigens to CTLs and inducing their activation in an autoimmune response.

GrB has been implicated as a key protease in autoantigen processing in SLE and generates fragments unique to those of other autoimmunity-associated proteases such as the caspases. For example, GrB is capable of producing autoantigens from the non-homologous end-joining pathway of DNA double-strand break repair. Sera from SLE patients contained antibodies against XRCC4, and three of these patients recognized the specific GrB cleavage epitope, suggesting GrB may produce these fragments in vivo. However, in a mouse model of autoimmunity in which GrB-deficient mice were injected with the mineral oil pristane, GrB knockout mice still produced autoantibodies and had a higher mortality than mice expressing GrB, suggesting that GrB may not be a critical enzyme in autoantigen synthesis. However, the latter study would not rule out the possibility that the other granzymes may be contributing to autoantigen formation in this model. In addition, the authors suggest that GrB may be protective because of its role in viral clearance, as viral infection is believed to promote autoimmunity.

SSc
SSc or systemic sclerosis is an inflammatory connective tissue disease that affects the vasculature and results in blood flow reduction, tissue ischemia, and wound healing defects. GrB cleaves several SSc autoantigens including topoisomerase I,
Table 2 GrB in disease

Condition	Intracellular versus extracellular	Description
Lung diseases		
Chronic obstructive pulmonary disease (COPD)	Intracellular/ extracellular	Increased CTLs and NK cells expressing GrB in the blood and BAL of patients with COPD. Type II pneumocytes and alveolar macrophages in the lung express GrB. Increased perforin expression by CD8+ cells in the lung of smoking subjects with COPD
Asthma	Intracellular/ extracellular	Increase in lymphocytes expressing GrB in the BAL fluid of patients suffering from allergic asthma after allergen challenge. Induction of GrB expression by basophils upon stimulation with IL-3 released by mast cells
Acute respiratory distress syndrome (ARDS)	Intracellular/ extracellular	GrB and perforin mRNA levels are upregulated in the BAL of patients in the acute phase of ARDS
Pulmonary sarcoidosis	Intracellular/ extracellular	GrB and perforin are expressed by CD8+ and some CD4+ T cells in the BAL fluid. Serum levels of GrB are decreased in patients with sarcoidosis
Hypersensitivity pneumonitis	Extracellular	Granzyme B is increased in the BAL fluid of patients with hypersensitivity pneumonitis
Oral		
Chronic obstructive sialadenitis/sialolithiasis	Intracellular (?)	GrB is expressed by periductal and periacinar lymphocytes in patients with chronic sialadenitis
Papillon–Lefèvre syndrome (PLS)	Intracellular/ extracellular	NK cells in patients with PLS fail to induce the caspase cascade in target cells because of an inactive form of GrB as a result of a mutation in cathepsin C
Reduced active GrB in cytotoxic cells in patients with PLS compared with controls		
Blood disorders		
Aplastic anemia	Intracellular/ extracellular	No difference in GrB-expressing cytotoxic effector cells in disease patients compared with controls
Increase in perforin but no increase in GrB in bone marrow clot sections of disease patients compared with controls		
Idiopathic neutropenia	Intracellular (?)	No difference in GrB-expressing CD16+ cells in the blood between patients with chronic idiopathic neutropenia
Chronic idiopathic thrombocytopenic purpura (ITP)	Intracellular (?)	Increased GrB-expressing T cells in the blood of patients with ITP compared with controls
Increased GrB mRNA levels in CD8+ cells in patients with ITP compared with controls		
Skin diseases		
Alopecia	Intracellular	GrB-expressing CTLs are closely associated with hair follicles and may damage follicles. Substance P increases CD8+ T cells expressing GrB, which may cause hair follicle regression
UV photoaging	Intracellular/ extracellular	GrB is expressed by keratinocytes in response to confluence, UVA, and UVB. UVB-treated keratinocytes have cytotoxic potential against co-cultured cells and GrB from UVA-treated keratinocytes can cleave fibronectin
Acne	Intracellular	GrB is upregulated in acne lesions
Atopic dermatitis/allergic contact dermatitis	Intracellular	GrB-expressing CD4+ and CD8+ T cells are observed in the perivascular infiltrate and focially at spongiosis sites. In contact dermatitis, keratinocytes neighboring GrB-expressing cells are damaged
Table 2 Continued

Condition	Intracellular versus extracellular	Description
Vitiligo\(^{166,167}\)	Intracellular	GrB-expressing CTLs cluster around disappearing melanocytes and may induce apoptosis in these cells
Lichen planus\(^{165,168–172}\)	Intracellular	GrB-expressing cells are found in close proximity to apoptotic keratinocytes. DCs expressing GrB are found in lesions
Lichen sclerosus\(^{173–175}\)	Intracellular	GrB is expressed in dermal infiltrate close to keratinocytes. Vasculitis associated with the disease contains GrB-positive cells in the perivascular infiltrate
Stevens–Johnson syndrome/toxic epidermal necrolysis\(^{176–180}\)	Intracellular/ extracellular	CTLs expressing GrB may induce apoptosis in keratinocytes. GrB-positive lymphocytes in blister fluid. GrB upregulation correlated to disease severity
Pityriasis rosea\(^{162}\)	Intracellular	GrB is expressed by immune cells in pityriasis rosea lesions
Psoriasis\(^{163,164}\)	Intracellular	GrB is expressed by some lymphocytes in psoriasis lesions
Pemphigus vulgaris (PV)\(^{183}\)	Intracellular	GrB is expressed in bullous lesions by T cells
		GrB is expressed on lesional lymphocytes expressing the skin-homing proteins CLA and MxA. GrB-positive cells are perivascular and located in the dermoepidermal junction
		Decreased ex vivo expression of GrB by circulating NK cells in patients with PV compared with controls

Bones and joints

- **Rheumatoid arthritis (RA)**\(^{13,14,54,114,115,128,184–191}\) | Extracellular/ intracellular | GrB cleaves aggrecan and other cartilage components. Levels of GrB are markedly elevated in the synovial fluid and plasma of patients. All GrB-expressing cell types may also contribute to RA through GrB-mediated apoptosis, including chondrocytes that show the surface antigens of NK cells |
| Osteoarthritis\(^{187}\) | Extracellular | mRNA and protein expression of GrB in the synovium of joints |
| Reactive arthritis\(^{192}\) | Extracellular | GrB expressed in the synovial tissue |

Neurological disorders

- **Rasmussen's encephalitis (RE)**\(^{124,131,193–196}\) | Intracellular/ extracellular/ autoimmunity | GrB-expressing CTLs described in RE brains. GrB from CTLs is polarized toward neurons and astrocytes that express MHC I. Extracellular GrB levels in cerebrospinal fluid (CSF) are elevated. GrB cleaves the GLUR-3 receptor yielding an autoantigenic fragment |
| **Multiple sclerosis (MS)**\(^{123,197–199}\) | Intracellular/ extracellular | CTLs are involved in neuronal toxicity and T_{eff}17 cells, which cross the blood–brain barrier, express GrB, and can kill neurons in vitro. Increase in extracellular GrB levels in the CSF in relapsing remitting MS |
| **Guillain–Barré syndrome**\(^{200}\) | Intracellular | GrB-expressing CTLs described in RE brains. GrB from CTLs is polarized toward neurons and astrocytes that express MHC I. Extracellular GrB levels in cerebrospinal fluid (CSF) are elevated. GrB cleaves the GLUR-3 receptor yielding an autoantigenic fragment |
| **Vasculitic neuropathy**\(^{201}\) | Intracellular | GrB is expressed in the peri-vascular infiltrate |
| **Sensory perineuritis**\(^{202}\) | Intracellular | GrB-expressing CTLs contribute to perineurial cell apoptosis |
| **Ischemic stroke**\(^{203}\) | Intracellular | GrB from CTLs and NK cells induce apoptosis of brain cells |
| **Spinal cord injury**\(^{204}\) | Intracellular | GrB levels are elevated and CTLs in close proximity to neurons in regions of damage |
| **Myasthenia gravis**\(^{205}\) | Extracellular/ autoantigen | GrB cleaves the autoantigen AChR. GrB is present in myasthenia gravis thymus glands but absent in controls |

Autoimmune disease

- **Systemic lupus erythematosus (SLE)**\(^{205–209}\) | Intracellular/ autoimmunity | Frequency of GrB-expressing CTLs coincides with disease progression. GrB is involved in autoantigen processing of XRCC4 and other potential SLE autoantigens |
Table 2 Continued

Condition	Intracellular versus extracellular	Description
Neonatal lupus erythematosus		GrB expression in the left ventricle of hearts from fetuses/infants with complete atrioventricular block
Scleroderma (SSc)	Autoimmunity/ extracellular	GrB cleaves the autoantigens topoisomerase I, NOR-90, fibrillarin, B23, and others. SSc patients with ischemic digital loss have autoantibodies for CENP-C, which may be useful as biomarkers for IDL. The GrB cleavage product angiostatin inhibits angiogenesis and may be responsible for the poor circulation in SSc
Sjögren syndrome (SS)	Intracellular/ autoimmunity	GrB cleaves the autoantigens SS-B (La) autoantigen, α-fodrin, β-fodrin, type 3 muscarinic acetylcholine receptor, and others. CD4+ and CD8+ T cells induce apoptosis of epithelial cells through the granule pathway and these cells are only present in SS glands
Myositis	Intracellular/ autoimmunity	GrB cleaves autoantigens such as PMS-1 and HisRS. GrB-expressing cells are found in the endomysial sites of polymyositis and are proposed to cause muscle cell damage
Type 1 diabetes	Intracellular	Human and mouse β-cells undergo apoptosis in the presence of GrB, which correlates with a loss in islet insulin secretion capacity
Bile/liver/intestinal diseases		
Lymphocytic gastritis (LG)	Intracellular?	Intraepithelial CD8+ cells from LG children with celiac disease lack GrB
Autoimmune cholangitis (AC) and primary biliary cirrhosis (PBC)		Increase in GrB expressing intraepithelial lymphocytes in patients with acute gastric mucosal lesions compared with controls
Nodular regenerative hyperplasia (NRH) of the liver		Increased GrB expressing intraepithelial lymphocytes in patients with non-celiac disease associated LG compared with patients with celiac disease associated LG
Inflammatory bowel disease		
Vascular diseases		
Atherosclerosis	Extracellular/ intracellular	GrB levels increase with increased disease severity. Present in high levels in advanced atherosclerotic and TVD plaques. Elevated in lipid-rich regions. Granzyme B in the blood is significantly higher in patients with unstable atherosclerotic plaques. The study also showed that raised plasma levels of GrB in unstable carotid plaques were associated with an increased frequency of cerebrovascular events (ie, strokes), suggesting that GrB may be a marker of plaque instability. GrB expressed in macrophages in atherosclerotic plaques. Perforin deficiency in LDLR-KO mice does not affect atherosclerosis. Supports role for extracellular GrB or its role in late-stage/advanced atherosclerosis. GrB in the absence of perforin can induce smooth muscle cell apoptosis through the cleavage of extracellular matrix proteins. Fibronectin identified as a substrate. GrB production from PBMCs of unstable angina pectoris (UAP) patients was significantly higher than those with stable angina (SAP). GrB production from PBMCs increased with the increasing TIMI risk score in UAP patients. The percentage of GrB-positive lymphocytes to CD3-positive lymphocytes in UAP patients was significantly higher than in SAP.

Table 2 continued on the next page...
Table 2 Continued

Condition	Intracellular versus extracellular	Description
Acute transplant rejection	Intracellular	GrB-mediated apoptosis that occurs during the recruitment of inflammatory cells after the nonspecific injury to graft vessels. GrB can contribute to lesion formation through processes that include GrB-mediated apoptosis, and the promotion of EC activation and SMC migration
Allograft vasculopathy	Intracellular	GrB/perforin pathway involved in endothelial and smooth muscle cell apoptosis
Kawasaki disease	Extracellular	Children with Kawasaki’s show elevated vascular inflammation and often die from fatal aortic dissections or aneurysms. Elevated levels observed in lesions, aneurysms, and plasma of Kawasaki’s patients; however, its involvement of GrB disease pathogenesis requires further elucidation

Kidney diseases

Condition	Intracellular	Description
Crescent glomerulonephritis (CG)	Intracellular	Perforin-neutralizing antibody protects against the progression of CG in rats
Goodpasture’s disease (GD)		Glomerular GrB expression and GD pathogenesis is reduced upon administration of anti-CD8+ antibody

Esophagus

Condition	Intracellular	Description
Achalasia		The inflammatory infiltrate found in the myenteric plexus contains cytotoxic T cells, some of which express GrB
Esophagitis		Significant increase in GrB-expressing intraepithelial lymphocytes in biopsy specimens from patients with esophagitis compared with controls
Crohn’s disease		Increase in GrB-expressing cells in esophagus biopsy specimens taken from patients with CD compared with controls

Other

Condition	Intracellular	Description
Eosinophilic fasciitis		The inflammatory infiltrate in eosinophilic fasciitis contains some CD8+ cells expressing GrB, suggesting a cytotoxic immune response
Cryptorchidism	Intracellular/ apoptotic necrosis	Lymphocytes expressing GrB are decreased in the testis of patients with cryptorchidism and GrB-expressing cells found in necrotizing lesions of patients with Kikuchi disease
Histiocytic-necrotizing lymphadenitis (HNL)/Kikuchi disease		The majority of lymphocytes found in the necrotic foci in HNL are GrBexpressing CD8+ cells
Chediak–Higashi syndrome		CTL granules are unable to release their contents upon recognition of a T-cell receptor, express normal levels of GrB
Duchenne muscular dystrophy (DMD)/facioscapulohumeral dystrophy (FSHD)	Intracellular	GrB expression detected in muscle biopsy specimens from patients with DMD and FSHD but absent in control samples

NOR-90, fibrillarin, and others. Some SSc patients also develop complications from the disorder, such as ischemic digital loss (IDL). Serum samples from SSc patients with IDL contain autoantibodies for the specific GrB cleavage fragments of CENP-C, pointing toward GrB as a mediator of IDL. Moreover, as there is a need for predictive biomarkers for digital loss in SSc, specific IDL autoantigens cleaved by GrB maybe a useful tool for diagnosis.
In addition to autoimmunity, extracellular cleavage fragments created by GrB also have other functional roles in SSc. The reduction of blood flow characteristic of SSc may be due to an imbalance between proangiogenic and antiangiogenic factors that control new vessel growth. Plasma from SSc patients shows reduced endothelial cell migration and tube
Granzyme B in immunity and disease
WA Boivin et al

Myositis
Myositis is an autoimmune inflammatory skeletal muscle disease resulting in muscle weakness. Areas of muscle damage show a characteristic mononuclear cell infiltrate consisting of T lymphocytes and NK cells, which express major histocompatibility complex II (MHC-II) molecules. These cells invade and destroy muscle fibers, leading to muscle fiber necrosis, potentially through muscle cell MHC-I. GrB- and perforin-expressing cells were found in the endomysial sites of polymyositis (PM) and may cause muscle cell damage, apoptosis, and necrosis in PM. However, although there is a significant amount of inflammation and cytotoxic molecules in PM, muscle cells are generally resistant to apoptosis, which may be linked to their expression of human IAP-like protein, a cell death repressor.

In addition to its potential role in muscle cell integrity, GrB may be a source of autoantigen production in myositis through the processing of the DNA mismatch repair enzyme PMS-1 protein fragment, as 7.5% of myositis patient serum tests positive were for the autoantibody. The sera from myositis patients also recognized other unidentified protein fragments, suggesting there may be several more unidentified autoantigens derived from GrB cleavage in myositis.

Myositis patients can also develop interstitial lung disease and Levine et al showed that this lung pathogenesis may be due to a difference in the protein structure of the autoantigen histidyl-transfer RNA synthetase (HisRS). The conformation of the lung-specific HisRS makes it more susceptible to GrB cleavage compared with the normal HisRS conformation present in the rest of the body. This lung-specific conformation exposes a cryptic GrB cleavage site, resulting in HisRS fragmentation and GrB-dependent synthesis of an autoantigen.

Figure 3
Granzyme B in the pathogenesis of rheumatoid arthritis, skin disease, and atherosclerosis. (a) Infiltrating immune cells in RA (CTLs, macrophages, NK cells, and T-helper cells) express and release GrB in joints and induce apoptosis in resident cells. GrB may contribute to proteoglycan degradation as GrB-positive cells are found at the pannus-cartilage junction, an area of cartilage destruction. Extracellular GrB levels are elevated in the synovial fluid of RA joints and are believed to further degrade matrix. Chondrocytes express GrB in RA and are capable of inducing apoptosis in neighboring cells and secreting GrB into the extracellular milieu, which causes further extracellular damage. (b) GrB may contribute to skin aging, alopecia, and disease through various intracellular and extracellular pathways. UV light, which is believed to be responsible for visible aging that occurs in the skin, induces reactive oxygen species production, which leads to GrB expression in keratinocytes. GrB from keratinocytes cleaves the ECM protein fibronectin (2), inhibits cell migration, and can also induce apoptosis in neighboring cells. Mast cells from the skin are another cell type that express GrB (4). GrB from CTLs has been proposed to induce melanocyte apoptosis in vitiligo. Invading CTLs express GrB in alopecia areata and influence hair follicle regression. (6) Substance P secreted by skin mast cells increases GrB-positive CTLs in the skin, further promoting AA. Whether substance P induces mast cell degranulation leading to the release of GrB is unknown. (e) At the early stages of atherosclerosis, after endothelial dysfunction and intimal lipid retention, CTLs, and monocytes infiltrate the vessel wall and migrate into the intima. SMCs and macrophages engulf oxidized lipoproteins and become lipid-laden foam cells, leading to GrB expression in these cells. The latter may promote foam cell apoptosis in developing plaques. GrB can also cleave various extracellular matrix proteins that maintain fibrotic cap stability. In addition to a loss in matrix integrity, ECM cleavage will also result in a loss of SMC–ECM interactions, which may promote apoptosis. SMC expression of PI-9 is decreased in unstable plaques, rendering SMCs susceptible to GrB-dependent apoptosis and further promoting plaque instability and rupture.
autoantigenic peptide, specific to the lung.\(^{223}\) It is interesting to speculate that GrB-specific autoantigens are cleaved when protein conformation is altered, thereby uncovering otherwise hidden GrB cleavage sites. Protein conformational changes due to post-translational modifications, pH changes, mechanical damage, dissociation from binding partners, changes in subcellular localization, and other factors may have a role in the susceptibility to GrB cleavage of not just autoantigens but also to intracellular and extracellular substrates involved in a vast array of activities, having endless potential implications in signaling, apoptosis, and extracellular activities in vivo.

RA

RA is a chronic autoimmune inflammatory disease involving tissue destruction in joints and tendons. GrB has been implicated intracellularly and extracellularly in this disease through apoptosis and cartilage matrix destruction (Figure 3a). GrB is present in several cell types in areas of inflammation as well as in regions of matrix disruption, making it a potentially important mediator of RA pathogenesis.

The expression of GrB by activated CTLs in the SF from RA patients was first described by Young et al.\(^{184}\) with \(~15\%\) of SF lymphocytes expressing GrB. Since then, soluble extracellular GrB has been reported as increased in the SF and plasma of patients with RA, with levels averaging as high as 3 and 1 ng/ml, respectively.\(^{14,114}\) The presence of extracellular GrB in the SF of RA complements the study by Froelich et al.\(^{128}\) showing that GrB degrades the ECM synthesized by chondrocytes in vitro. One of these substrates was identified as aggrecan, a major constituent of cartilage; however, no other substrates have been identified to date. Fibronectin, as well as bioactive fibronectin fragments, has also been reported in inflammatory arthritis SF.\(^{137,140,269,270}\) Fibronectin fragments are chemotactic for macrophages and neutrophils, and these fragments can release proteoglycans and cause chondrolysis by binding to cartilage.\(^{271,272}\) However, despite the fact that fibronectin is a well-established substrate of GrB, no one has reported whether extracellular GrB activity contributes to the synthesis of these fragments.

Froelich et al.\(^{128}\) proposed that CTLs secrete GrB extracellularly in the joint, which degrades and remodels the interstitial ECM. Complementary to this study is that of Ronday et al.\(^{185}\) showing that GrB cleaves proteoglycans from bovine cartilage explants, resulting in glycosaminoglycan release. GrB-positive cells were identified at the invasive front of the inflamed synovial tissue (pannus) and in the cartilage–pannus junction, suggesting that GrB may be responsible for the cartilage invasion and destruction that occurs in this junction.\(^{185,186}\)

In addition to CTLs, other cell types may act as sources of GrB in RA. GrB-expressing NK cells are present in the synovial tissue of RA patients and these cells are the main GrB-expressing cell type in the RA joint.\(^{187,188}\) Macrophages express GrB in the lining and perivascular areas of the synovial tissues of RA joints. Macrophage numbers are increased in RA compared with normal joints, suggesting that macrophages are also a significant source of GrB, and may contribute to cartilage destruction.\(^{189}\) Although CD4\(^{+}\) T cells are believed to act largely as T-helper cells in RA, CD4\(^{+}\)CD28\(^{-}\) cells have been suggested to show cytotoxicity. Unlike their CD28\(^{+}\) counterparts, which express GrB but not perforin, CD4\(^{+}\)CD28\(^{-}\) T cells express both perforin and GrB and show cytotoxic activity in vitro. CD4\(^{+}\)CD28\(^{-}\) perforin-expressing T cells account for up to 50% of CD4\(^{+}\)T cells in synovial tissue, suggesting they may be a significant source of GrB in RA.\(^{14}\) Mast cells, DCs, and neutrophils are other cell types upregulated in RA, which express GrB under specific circumstances.\(^{15,20,28}\) However, it is unknown whether these cell types express GrB in RA.

GrB and perforin are also expressed by articular chondrocytes as GrB and perforin transcript/protein levels are increased in diseased RA cartilage, as detected by semi-quantitative RT-PCR and immunostaining.\(^{13,115}\) Increased GrB and perforin levels in these cells correspond to chondrocyte apoptosis, particularly in the pannus region invading the cartilage, suggesting that self-synthesized GrB may induce self-regulated apoptosis. Cultured chondrocytes also express the surface antigens of NK cells and show cytotoxicity against co-cultured cells, suggesting that in addition to having a self-inducing-apoptosis capacity, chondrocytes may also act as resident cytotoxic cells in the cartilage of RA patients.\(^{115}\) Finally, secreted GrB from chondrocytes may have cartilage degradation potential as well; suggesting that GrB from this cell source has both intracellular and extracellular implications.\(^{13}\)

Despite the fact that RA is an autoimmune disease and that increased levels of GrB are associated with rheumatoid factor autoantibody-positive patients, little is known regarding the GrB generation of RA-specific autoantigens.\(^{190}\) A rat chondrocyte cDNA library was immunoscreened with serum from an RA patient and the DNA-binding protein AHNAK was detected as a potential autoantigen. This protein is cleaved in vitro by GrB, suggesting that it may be involved in the autoantigen processing of this protein.\(^{209}\) GrB-mediated autoantigen processing could be another mechanism by which GrB may contribute to the pathogenesis of RA, as little study has been done thus far in this area.

Type I Diabetes

Type I diabetes results from the selective destruction of the insulin-producing β-cells in pancreatic islets, and is primarily a T-cell-mediated autoimmune disease directed against one or more β-cell autoantigens.\(^{273}\) Lymphocyte infiltration (termed insulitis) occurs early in models of type I diabetes and is necessary but not sufficient to cause β-cell destruction, insulin deficiency, and hyperglycemia.\(^{274}\) It is now accepted that β-islet destruction is caused by islet antigen-specific autoreactive T cells and that both CD4\(^{+}\) and...
CD8+ T cells are required for the disease to occur (reviewed in refs. 273,275,276) Although still an area of active investigation, β-cells are believed to be destroyed primarily by granule-mediated apoptosis.274,276–281 Mouse models of diabetes have provided support for T-cell-induced cell death with β-cell apoptosis observed in both spontaneous diabetes in non-obese diabetic mice277,279 and in more accelerated diabetes models.277,278 Furthermore, cell death mediators, including perforin, cytokines, and death ligands, have been identified in the insulitis lesions of NOD mice.282 Both CD4+ and CD8+ T-cell subsets are required for the development of diabetes in the NOD mouse; however, CD8+ T effector cells have a fundamental role in the destruction of pancreatic β-cells and contribute to sustaining islet inflammation.283,284 Pancreatic β-cells express MHC-I molecules that present antigenic peptides to CD8+ T cells,282 and NOD mice lacking MHC-I expression and CD8+ T cells are resistant to type 1 diabetes.285,286 Perforin has a key role in β-cell apoptosis in the NOD model, as perforin-deficient NOD mice are reported to develop insulitis but have a markedly reduced incidence of diabetes.75,287 This implies that CTLs destroy β-cells, at least in part, by granule-mediated apoptosis. Support for GrB in β-cell damage is provided by in vitro studies indicating that both human and mouse β-cells undergo apoptosis in the presence of GrB, which correlates with a loss in the islet insulin secretion capacity.225

Lastly, there is evidence that GrB has a predominant role in the destruction of β-cells after pancreatic islet transplantation, with several recent studies showing elevated GrB levels in plasma preceding islet graft rejection.288,289 This suggests that GrB may be a reliable indicator of ongoing graft loss after β-islet transplantation. Evidence from both human and mouse models has shown that β-cell death observed in diabetes occurs through apoptosis and that granule-mediated cytotoxicity is involved in β-cell loss. In summary, although studies to date would suggest that the GrB/perforin pathway contributes to β-cell apoptosis, it remains to be determined whether there is an extracellular role for GrB in diabetes. Whether GrB has a role in type 2 diabetes remains unclear.

Neurological Disorders
The central nervous system is regarded as an immune-privileged site because of the blood–brain barrier and an immunsuppressive environment. However, in many neurological conditions, there is a loss of immune privilege and, as a result, GrB has been implicated in the pathogenesis of a number of neurological disorders through mechanisms of immune cell-mediated apoptosis, receptor cleavage, autoantigen synthesis, and potential extracellular activities, as described below.

There are several neurological diseases where the role of GrB is just emerging, largely in an immune cell-mediated, pro-apoptotic role. In vasculitic neuropathy, the characteristic perivascular infiltrate expresses GrB and GrB-positive cells are significantly upregulated.201 In sensory perineuritis, GrB-expressing infiltrates were detected and T cells are believed to contribute to perineural cell apoptosis.202 During cerebral ischemia, in a rat model of ischemic stroke, GrB secreted from CTLs and NK cells results in the breakdown of Hsp-70 and AIF translocation from the mitochondria to the nucleus, ultimately resulting in apoptosis of brain cells.203 Finally, in a rat model of spinal cord injury, GrB levels were elevated and CTLs were found in close proximity to neurons in damaged regions of the spinal cord. Many of the neurons undergoing death were positive for GrB, suggesting that GrB is responsible for neuron cell death in spinal cord injury.204

In addition to inducing apoptosis intracellularly, GrB may contribute to neurological disease through other mechanisms, such as through receptor signaling or through direct cleavage of receptors. In myasthenia gravis (MG), a decrease in acetylcholine receptors (AChR) at neuromuscular junctions is observed as a result of autoimmune attack. Furthermore, GrB and the autoantigen fragments of AChR are observed in the thymus of MG patients but are not present in healthy controls. Casciola-Rosen et al293 showed that GrB cleaves AChR, suggesting that GrB-mediated cleavage of this protein exposes cryptic antigens that facilitate an autoimmune response in the disease and results in a loss of functional AChR. G-protein-coupled receptors are also linked to GrB and neurotoxicity. The addition of recombinant GrB to neuronal cell cultures results in neurotoxicity, even in the absence of perforin through the Gix-coupled receptor.290 Whether GrB facilitates cytotoxicity by cellular interaction or uptake, by cleaving the receptor itself, or by creating an ECM fragment that may act as a ligand is not known.

Rasmussen’s encephalitis
Rasmussen’s encephalitis (RE) is an autoimmune chronic inflammatory disease occurring mainly in childhood, characterized by seizures and a loss of motor skills and speech. Immune infiltrates consisting mainly of GrB-positive CTLs are found in the brains of these patients. Using confocal microscopy, Bien et al195 found that GrB was polarized toward neurons, some of which expressed MHC-I. This suggests that MHC-I-initiated GrB-mediated cytotoxicity is responsible for the loss of neurons in this disease. In similar studies, Bauer et al described GrB-positive lymphocytes in close proximity to astrocytes on the border of astrocyte-deficient lesions. Some of these cytotoxic cells showed GrB polarized toward astrocytic membranes. Similarly to neurons, astrocytes express MHC-I, suggesting that GrB is contributing to astrocyte loss in RE.194 In another study, Vß T-cells expressing GrB were found in close apposition to neurons and astrocytes in patients, further supporting the aforementioned studies.195

Extracellular GrB activity has also been linked to RE as extracellular GrB levels in CSF are elevated in patients with RE, with the original cellular source believed to be CTLs.124
It is possible that an elevation in extracellular GrB could be used as a biomarker for RE, as it is present at earlier stages of the disease and remains slightly elevated as the disease progresses. Extracellular GrB is capable of cleaving the neuronal glutamate receptor subunit 3 (GLUR3) and producing an autoantigenic fragment. Antibodies against GLUR3 are present in the serum of children with this disease. However, GrB can only cleave the non-glycosylated form of the receptor, suggesting that normal tolerance is escaped when neurons produce the unglycosylated form of the protein. The change in glycosylation of this protein makes it more susceptible to GrB cleavage, possibly by exposing a cryptic cleavage site not present in the glycosylated form of the receptor. This suggests that GrB cleavage of ECM and receptors may also be regulated by post-translational modifications, such as glycosylation, an area that has been scarcely described and may be significant in disease pathogenesis in general.

Demyelination diseases: MS and Guillain–Barré syndrome

MS is a complex autoimmune disease of the central nervous system resulting in demyelination of nerves and GrB has been implicated in MS pathogenesis. In patients with relapsing remitting MS, GrB levels in peripheral T cells decrease, whereas plasma GrB levels do not change. However, there is an increase in extracellular GrB in the CSF as quantified by ELISA, suggesting that extracellular granzyme may contribute to the disease. There was no correlation between the CSF cell count and levels, suggesting that this is not due to an increase in cell number and that there is localized GrB release in the CSF/central nervous system of MS patients. As there are low numbers of NK cells in the CSF of MS patients, it is believed that the cellular source of GrB is CTLs. Although it has yet to be shown, the extracellular localization of GrB in CSF implies that the enzyme has access to the ECM in the spinal cord and brain, suggesting that it may be actively cleaving this matrix, perhaps similar to what has been described in arthritis.

There have been several studies reporting an intracellular pro-apoptotic role for GrB in MS. As oligodendrocytes and neurons express MHC-I, GrB-expressing CTLs may be responsible for the induction of cytotoxicity resulting in axonal damage and demyelination. In addition, neurons expressing MHC-I resist Fas-mediated killing but are susceptible to granule-mediated apoptosis. γδ T cells have also been suggested to direct cytotoxicity to the myelin-oligodendrocyte unit; however, inhibition of GrB in these cells only partially reduced cytolysis. T helper 17 lymphocytes crossing the blood–brain barrier express GrB and have the capacity to kill human fetal neuron cultures in vitro, suggesting that this cell type is also a source of cytotoxic GrB in MS.

In Guillain–Barré syndrome, an inflammatory demyelinating disease of the peripheral nervous system, GrB-expressing CD8+ T cells were increased and localized close to neurons of the dorsal root ganglion. MHC-I molecules were also detected on Schwann cells and myelin sheaths, suggesting that these T cells may be responsible for myelin damage in both the peripheral nervous system and the central nervous system. This could be intracellularly and/or extracellularly mediated and more studies are required to determine the role of GrB in demyelination.

Skin Disorders

GrB expression in the skin

The role of GrB in dermatological conditions is emerging and the contribution of GrB to skin aging, alopecia, and disease is illustrated in Figure 3b. There are several potential sources of GrB in the skin, namely CLs, DCs, macrophages, mast cells, and keratinocytes. Keratinocytes express GrB in vitro after treatment with UVA, UVB, and at high confluence. Interestingly, UVB and high confluence induce both GrB and perforin expression, whereas GrB is expressed without perforin in response to UVA. UVA induced GrB expression in human skin in vivo. In the latter study, UVA treatment of cultured keratinocytes caused a reactive oxygen species (ROS)-dependent release of macrophage migration inhibitor factor (MIF), and MIF induced GrB expression by keratinocytes. This GrB expression was p38 mitogen-activated protein kinase (MAPK)-dependent and resulted in the phosphorylation of its subsequent substrate MAPKAPK2. During UVB treatment, ROS production results in signaling through EGFR, MAPK activation, and subsequent MAPKAPK-2 phosphorylation. It should be noted that it is unclear as to whether these pathways are involved in the induction of GrB expression in other cell types.

Perforin was expressed in parallel with GrB in response to UVB and increased confluence, and UVB-irradiated HaCaT keratinocytes showed cytotoxic activity against various skin cell types in vitro, suggesting that GrB in this cell type shows cytotoxic potential. GrB from keratinocytes decreased *Staphylococcus epidermidis* growth, suggesting that keratinocyte GrB may be protective in vivo against skin bacterial infection. This is only the second report of GrB-mediated cytotoxicity by a nonimmune cell type (the first was described in chondrocytes), as most cell types do not express perforin simultaneously. Despite the evidence of UV induction of GrB, it remains unclear whether GrB from keratinocytes contributes to UV-dependent photoaging or wrinkling, as GrB should have ECM cleavage potential if released extracellularly.

GrB is also expressed by mast cells in mouse skin in vivo, as well as in cultured skin mast cells after IgE treatment. Mast cells do not express perforin and GrB that is released extracellularly from these cells induces fibroblast anoikis, suggesting that it has a role in ECM degradation in the skin. No follow-up studies have been published describing GrB from mast cells or keratinocytes contributing to skin diseases in vivo, and the majority of dermatological studies to date exclusively examine CTLs as the sole source of GrB in the skin. As mast cells do not express perforin and keratinocytes...
express GrB (but not perforin) in response to stimuli such as UVA, there is clearly a potential extracellular, perforin-independent capacity for GrB in the skin. As the skin contains a high proportion of ECM such as collagen, elastin, and ground substance, future extracellular studies will be useful in further examining the extracellular activity of GrB and its role in disease.

Alopecia areata

Alopecia areata (AA) is an inflammatory condition that results in non-scarring patchy hair loss. Perifollicular and intrafollicular CTLs have been implicated in AA, suggesting that there is an immune cell attack on the normally immune privileged hair follicle during the growth phase (anagen) of the hair cycle. GrB-expressing cytotoxic cells were found closely associated with human hair follicles in chronic AA patients, suggesting that GrB may contribute to CTL-mediated follicular damage. However, in a contradictory study, Sato-kawamura et al did not see GrB-positive cells around follicles in lesions of AA. In a C3H/HeJ mouse model of AA, GrB expression was described in immune cells in the intrafollicular dermis, although few of these cells expressed CD8. Interestingly, supplying the neuropeptide substance P to the skin of AA-affected mice led to an increase in CD8+ cells expressing GrB, possibly leading to an increase in cytotoxicity in the skin. Substance P also resulted in regression of hair follicles out of the growth phase into catagen, suggesting this could be related to a substance P-dependent increase in CD8+ GrB-expressing cells. Although more studies are required to determine causation and to define the mechanism by which GrB contributes to AA, there is an association between the disease and GrB expression.

Other skin disorders

GrB has been linked to other skin conditions such as acne, vitiligo, atopic dermatitis, allergic contact dermatitis, psoriasis, lichen planus (LP), lichen sclerosus, Stevens–Johnson syndrome, and toxic epidermal necrolysis. GrB expression in most of these diseases was found to be localized to CTLs and GrB-specific disease implications were almost exclusively believed to be through intracellular CTL-mediated apoptosis of keratinocytes and other resident cell types. As more cellular sources of GrB have been identified as of late and the emerging role of extracellular GrB activity gains traction, determining other GrB sources and examining the importance of extracellular GrB activity will be a necessity in dermatological research involving GrB.

Vitiligo is characterized by a loss of pigmentation in the skin due to a progressive loss of melanocytes, the cell type that produces the pigment melanin. In the perilesional area of vitiligo biopsies, the border between the unpigmented lesion and normal pigmented skin, CD8+ CTLs were shown to cluster around disappearing melanocytes with ~60% of these T cells expressing perforin and GrB, respectively. Furthermore, GrB-expressing T cells were not found elsewhere in vitiligo or in non-diseased control skin. As there have been several accounts that melanocytes are insensitive to FasL-mediated apoptosis, GrB from surrounding CTLs is believed to mediate the death of melanocytes in vitiligo and may be a major contributor to the vitiligo phenotype.

GrB-expressing T cells have also been linked to atopic dermatitis and allergic contact dermatitis. In atopic dermatitis, a chronic inflammatory skin disease with eczematous lesions, an increase in GrB expression in CD4+ and CD8+ lymphocytes was described, particularly in the perivascular infiltrate and focally at spongiosis sites (areas of intracellular fluid accumulation in the dermis). In contact dermatitis, a skin disease caused by hapten exposure in sensitized individuals, a very similar GrB expression pattern was found, within CD4+ and CD8+ cells in perivascular infiltrate and spongiosis sites. Interestingly, keratinocytes in close proximity to GrB-positive lymphocytes showed signs of cell damage at sites of spongiosis. Weak GrB and perforin staining was described in these keratinocytes, suggesting they may be exposed to GrB from neighboring lymphocytes or may express the proteins themselves.

Lesions of the chronic inflammatory skin diseases, lichen sclerosis and LP, also showed abundant T cell expression of GrB. In lichen sclerosis, GrB mRNA expression was found in dermal infiltrate close to keratinocytes in the intra-epidermal area, was highly expressed at early stages of the disease, and levels were over 100 times greater than that of normal skin. GrB-positive cells were found in close vicinity to apoptotic keratinocytes and through electron microscopy GrB was found to be transferred from a lymphocyte into an apoptotic keratinocyte, suggesting that GrB from lymphocytes is contributing to keratinocyte cell death in this disease. GrB-expressing plasmacytoid DCs usually found in blood were seen in oral LP lesions and may contribute to GrB-associated damage in this disorder.

Stevens–Johnson syndrome and toxic epidermal necrolysis are rare and potentially life-threatening diseases involving keratinocyte apoptosis and epidermal necrosis, which are largely believed to be drug induced. GrB-positive lymphocytes were found in blister fluid and GrB upregulation correlated to increased disease severity. T cells in lesions express perforin and GrB, and it has been suggested that T cells may trigger keratinocyte cell death in these skin conditions.

Vascular Diseases

Atherosclerosis

Atherosclerosis a lipid-driven inflammatory disease responsible for the majority of heart attacks, strokes, and lower limb loss, and, as such, is now the leading cause of death world-wide. The most abundant inflammatory and immune cells in atherosclerotic lesions are T lymphocytes and macrophages, and their role in atherosclerosis is well documented. Small populations of neutrophils, mast cells, DCs, and NK cells also are present. The role...
of GrB in atherosclerotic plaque progression is illustrated in Figure 3c. Until recently, GrB expression was believed to be limited to CTLs and NK cells. However, CD4+/CD8+ macrophages infiltrating inflammation sites and lipid-laden foam cells within atherosclerotic plaques also express GrB.10,189,304 In atherosclerotic lesions, GrB expression increases with disease severity and is observed in both lipid-rich areas and cellular regions surrounding the core of developing plaques, as well as in the shoulder regions of advanced plaques.10 Within the intima and media, GrB is found within SMCs, macrophages, and T cells, but can also be detected extracellularly. Furthermore, GrB is found to localize to TUNEL-positive foam cells, suggesting that it could be contributing to cell death in lipid-rich regions of developing plaques.10

The presence of GrB in advanced atherosclerotic lesions and its association with increased disease severity suggests that GrB may affect plaque stability. Indeed, elevated levels of GrB are detected in the plasma of patients with atherosclerosis, with the highest levels detected in patients with unstable plaques, lending support to the hypothesis that GrB influences plaque instability. In a study by Skjelland et al.,232 increased GrB levels in the plasma corresponded to carotid plaque instability and increased incidence of cerebrovascular events in humans. Elevated GrB production was also observed in peripheral blood mononuclear cells isolated from patients with unstable angina pectoris compared with cells from patients with stable angina pectoris.233 Thus, evidence to date indicates that GrB might be involved in the initiation of plaque instability and rupture. In addition, the repercussions of elevated GrB levels may extend beyond plaque rupture and into post-infarct ventricular remodeling as Kondo et al. recently reported elevated GrB levels in the plasma of patients with myocardial infarction (MI) in both the acute and subacute phases. They also found that sustained levels of GrB was an independent factor for left-stage left ventricular remodeling.234

The mechanisms by which GrB may contribute to plaque stability include ECM fragmentation, release of ECM-sequestered cytokines, and/or induction of macrophage or SMC apoptosis in the fibrous cap. To the latter point, Choy et al.135 showed, using a cell culture model, that GrB could induce SMC apoptosis in the absence of perforin through the disruption of SMC–ECM interactions and induction of anoikis. Conversely, levels of the endogenous GrB inhibitor PI-9 in SMC markedly reduced in unstable plaques versus stable plaques, implying a role for GrB-induced SMC apoptosis. It should be noted, however, that although the GrB-inhibitory role of PI-9 is well-established, its effects on GrB as a potential mechanism were not considered nor discussed in the latter study. Rather, reduced PI-9 was associated with increased SMC caspase-1 activity and IL-1β production.35 With regard to its extracellular function in atherosclerosis, GrB is capable of cleaving multiple ECM proteins, including fibronectin, vitronectin, and laminin.134,135 These data suggest that GrB may contribute to plaque instability through both intracellular and extracellular activities, leading to the formation of a necrotic core and thinning of the fibrous cap, and ultimately plaque rupture.10 Although ongoing, preliminary studies have been reported using apolipoprotein E × GrB double knockout mice in which GrB deficiency was found to be associated with reduced atherosclerosis, suggesting that this protease may be important in this disease.305

Although GrB appears to be involved in the pathogenesis of atherosclerosis, it should be noted that the precise effects of elevated GrB levels may depend on the stage of lesion development. During the early stages of lesion development, GrB-induced SMC apoptosis may be a beneficial way to reduce intimal hyperplasia,306 whereas in more advanced lesions, increased SMC apoptosis may decrease plaque stability through decreased cellularity and increased ECM proteolysis.

Cardiac allograft vasculopathy

Transplantation is the recommended therapy for end-stage organ disease. Although the prognosis for acute rejection has improved considerably with the introduction of immunosuppressive agents, long-term allograft survival has not improved appreciably since the early 1980s. Numerous studies have reported elevated GrB levels in the plasma and inflammatory infiltrate of biopsies from patients experiencing acute rejection, suggesting GrB may be a useful biomarker for the prediction of acute rejection.237–245 Although acute rejection constitutes a major challenge in the early postoperative period, the major impediment to long-term survival for solid organ transplant recipients is allograft vasculopathy (AV), which is an accelerated, immune-mediated form of occlusive arteriosclerotic vascular disease that affects vessels of solid organ allografts.307,308 The pathogenesis of AV is complex and characterized by intimal accumulation of SMCs, T lymphocytes, and macrophages, as well as extensive medial thinning that is associated with increased SMC apoptosis.10,308,309

GrB is abundant in the intima, media, and adventitia of cardiac AV (CAV) vessels, and increased GrB corresponds to increased CAV disease severity.10 In the intima, GrB localizes to macrophage foam cells, whereas in the media and adventitia, GrB was found extracellularly, as well as in SMC and leukocyte infiltrates.10 Similar to developing atherosclerotic lesions, GrB within CAV lesions localizes to TUNEL-positive foam cells within the deep intima, suggesting that it contributes to cell death within the lesions.10 Roles for both GrB and perforin in CAV pathogenesis have been assessed using a mouse heterotopic cardiac transplant model of CAV.246,247 In these studies, hearts transplanted into GrB-KO mice or perforin-KO mice showed smaller lesions, reduced luminal narrowing, and a marked reduction in endothelial cell apoptosis when compared with wild-type recipients.246,247 Similar to its predicted role in atherosclerosis,
GrB may contribute to CAV pathogenesis through apoptosis of SMC and endothelial cells, and through extracellular activities such as SMC anoikis and cleavage of ECM proteins. Both mechanisms are likely to contribute to the overall integrity of blood vessels and the development of CAV.

Other cardiovascular diseases

Inflammation, activated T cells, and SMC death are associated with other inflammatory vascular diseases such as Kawasaki disease, Takayasu myocarditis, and giant cell arteritis. Kawasaki disease is a childhood form of vasculitis that affects the coronary arteries and is characterized histologically by inflammation and ECM destruction, resulting in the formation of coronary artery aneurysms. Elevated levels of CTLs, macrophages, and B cells have been noted in the lesions, aneurysms, and the plasma of Kawasaki’s patients; however, the involvement of GrB in Kawasaki disease pathogenesis requires further elucidation. Increased plasma levels of GrB, in addition to GrB-positive CTL and macrophages, have been reported in Kawasaki disease; however, a more recent study showed elevated CTLs in acute Kawasaki disease in which neither GrB nor perforin could be detected. Whether the variations in GrB and perforin expression reflect alterations in differentiated T-cell populations, genetic differences in GrB/perforin production, or variation in preparation are unknown, but will prove to be an interesting area of future research.

Inflammatory Lung Diseases

COPD

COPD is an inflammatory lung disorder characterized by features of emphysema, chronic bronchitis, and small airways disease and is associated with chronic pulmonary and systemic inflammation. COPD patients who smoke have shown increased levels of CD8+ cells expressing perforin in the BAL fluid. An increase in the number of T cells and NK cells expressing GrB in the blood and BAL fluid of patients with COPD has also been reported. A plausible apoptotic role for GrB in COPD was suggested by Hodge et al, who showed a positive correlation between T cell-derived GrB in the BAL fluid and apoptosis of bronchial epithelial cells. CD8+ CTLs and NK cells infiltrating the lung in COPD patients are active and express GrB while GrB protein and mRNA were also detected in type II pneumocytes from patients with COPD. Although these findings raise the possibility of an interesting new source of GrB delivery into the parenchymal spaces of the diseased lung, more studies are needed to determine whether GrB release by these cells does in fact contribute significantly to COPD pathogenesis. Given the apoptotic and degenerative nature of COPD along with the pro-apoptotic and matrix-degrading ability of GrB, speculation of a major role for GrB in COPD pathogenesis continues to gain momentum.

Asthma

Asthma is a Th2-dependent inflammatory disease of the lung characterized by reversible airway obstruction, bronchial hyper-reactivity, and chronic inflammation leading to tissue remodeling. Little is known regarding the specific role of GrB in allergic asthma; however, Bratke et al were able to show an increase in GrB-expressing T cells and NK cells, as well as extracellular GrB in the BAL fluid of patients suffering from allergic asthma after allergen challenge, leading to speculation that GrB contributes to pathogenesis through matrix destruction and remodeling. These findings are supported by Tschopp et al, who reported an alteration in the granule content of basophils and the induction of GrB expression upon stimulation with IL-3 released by mast cells. Despite a lack of perforin expression, human basophils showed NK-like cytotoxicity, which was abolished after GrB inhibition further supporting a possible perforin-independent extracellular role of GrB in allergic asthma.

Other inflammatory lung diseases

Several other lung diseases are affected by GrB activity as well. It has been reported that GrB and perforin mRNA levels are increased in the BAL fluid of patients in the acute phase of acute respiratory distress syndrome (ARDS). A functioning and unbroken alveolar epithelium is critical for recovery from ARDS and increased granzyme-mediated apoptosis of alveolar epithelial cells could compromise the integrity of this barrier leading to disease progression. Furthermore, hypersensitivity pneumonitis has been shown to be associated with an increase in GrB protein levels in the BAL fluid supporting the notion that GrB contributes to alveolar destruction and matrix remodeling observed in this disease. GrB-expressing CD4+ and CD8+ T cells have also been detected in the BAL fluid of patients with pulmonary sarcoidosis, a disease characterized by a Th1-dominant immune response and the formation of granulomas often found in the lung. Reduced levels of GrB have also been detected in the serum of sarcoidosis patients, leading to speculation that the protease is increased in tissues elsewhere in the body where it participates in the cytotoxicity observed in pulmonary sarcoidosis. However, as with all inflammatory lung diseases, much work remains to be done to confirm a specific role for GrB in disease pathogenesis and to determine the intracellular and/or extracellular mechanisms that might be involved.

CONCLUSION

GrB is emerging as a multifunctional protease that may have important roles in a number of inflammatory and/or degenerative pathologies. The realization that this protease can be expressed and secreted by both immune and non-immune cells, in addition to the fact that the function of this protease extends beyond the induction of CTL/NK-induced apoptosis suggests that there is much to be learned about this protease in disease. Nonetheless, it is becoming apparent that
Granzyme B (GrB) may have a larger role in chronic inflammatory, autoimmune, and/or degenerative diseases than previously believed. Future studies may show GrB as a novel therapeutic target for such diseases.

ACKNOWLEDGEMENTS

We gratefully acknowledge funding from the Canadian Institutes of Health Research (DJG), the Michael Smith Foundation for Health Research (MSFHR)/British Columbia Transplant Research Foundation and the Heart and Stroke Foundation (HSFC) (DJG). WAB is supported by an Alexander Graham Bell Canadian Graduate Studentship from the Natural Sciences and Engineering Research Council of Canada and a graduate fellowship from the MSFHR. DMC is funded by post-doctoral fellowships from the HSFC and the CIHR IMPACT strategic training program.

DISCLOSURE/CONFLICT OF INTEREST

The authors declare no conflict of interest.

1. Bots M, Medema JP. Granzymes at a glance. J Cell Sci 2006;119(24):5011–5014.
2. Bleackley RC, Duggan B, Ehrman N, et al. Isolation of two cDNA sequences which encode cytotoxic cell proteases. FEBS Lett 1988;234:153–159.
3. Brunet JF, Dosseto M, Denizot F, et al. The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 1986;322:268–271.
4. Masson D, Nabholtz M, Estrade C, et al. Granules of granulocytic F-lymphocytes contain two serine esterases. EMBO J 1986;5:1595–1600.
5. Pasternack MS, Eisen HN. A novel serine esterase expressed by T-lymphocytes. Nature 1985;314:743–745.
6. Klein JL, Shows TB, Dupont B, et al. Genomic organization and chromosomal assignment for a serine protease gene (CSPB) expressed by human cytotoxic lymphocytes. Genomics 1989;5:110–117.
7. Poe M, Blake JT, Boulton DA, et al. Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem 1991;266:98–103.
8. Murphy ME, Mout J, Bleackley RC, et al. Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins 1988;4:190–204.
9. Waugh SM, Harris JL, Fletterick R, et al. The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity. Nat Struct Biol 2000;7:762–765.
10. Choy JC, McDonald PC, Suarez AC, et al. Granzyme B in atherosclerosis and transplant vascular disease: association with cell death and atherosclerotic disease severity. Mod Pathol 2003;16:460–470.
11. Hernandez-Pigeon H, Jean C, Charruyer A, et al. Human keratinocytes acquire cellular cytotoxicity under UV-B irradiation. Implication of granzyme B and perforin. J Biol Chem 2006;281:13525–13532.
12. Hirst CE, Buzza MS, Sutton VR, et al. Perforin-independent expression of granzyme B and protease inhibitor 9 in human tests and placenta suggests a role for granzyme B-mediated proteolysis in reproduction. Mol Hum Reprod 2001;7:1133–1142.
13. Horluchi K, Saito S, Sasaki R, et al. Expression of granzyme B in human articular chondrocytes. J Rheumatol 2003;30:1799–1810.
14. Namekawa T, Wagner UG, Goronzy JJ, et al. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum 1998;41:2108–2116.
15. Rissou MC, Duhen T, Bridon JM, et al. Subtractive hybridization reveals the expression of immunoglobulin-like transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytid dendritic cells. Blood 2002;100:3295–3303.
16. Saxson R, Dantes A, Tajima K, et al. Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J 2003;17:1256–1266.
17. Tschopp CM, Spiegel N, Didichenko S, et al. Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma. Blood 2006;108:2290–2299.
18. Vanrooy JH, Moller GM, van Suylen RJ, et al. Increased granzyme A expression in tryptase positive patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:464–472.
19. Grossman WJ, Verbsky JW, Tollefsen BL, et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004;104:2840–2848.
20. Wagner C, Iking-Konert C, Denefleh B, et al. Granzyme B and perforin: constitutive expression in human polymorphonuclear neutrophils. Blood 2004;103:1099–1104.
21. Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 2008;26:389–420.
22. Babichuk CK, Duggan BL, Bleackley RC. In vivo regulation of murine granzyme B gene transcription in activated primary T cells. J Biol Chem 1996;271:16485–16493.
23. Fregueau CJ, Bleackley RC. Transcription of two cytotoxic cell protease genes is under the control of different regulatory elements. Nucleic Acids Res 1991;19:5583–5590.
24. Wargnier A, Lafaurie C, Legros-Maïda S, et al. Down-regulation of human granzyme B expression by glucocorticoids. Dexamethasone inhibits binding to the Ikaros and AP-1 regulatory elements of the granzyme B promoter. J Biol Chem 1998;273:35326–35331.
25. Haddad P, Wargnier A, Bourge JF, et al. A promoter element of the human serine esterase granzyme B gene controls specific transcription in activated T cells. Eur J Immunol 1993;23:625–629.
26. Babichuk CK, Bleackley RC. Mutational analysis of the murine granzyme B gene promoter in primary T cells and a T cell clone. J Biol Chem 1997;272:18564–18571.
27. Fehniger TA, Cai SF, Cao X, et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007;26:798–811.
28. Strik MC, de Koning PJ, Kleijmeer MJ, et al. Human mast cells produce and release the cytolytic lymphocyte associated protease granzyme B upon activation. Mol Immunol 2007;44:3462–3472.
29. Griffiths GM, Isaac S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 1993;120:885–896.
30. Bird CH, Sutton VR, Sun J, et al. Selective regulation of apoptosis: the cytolytic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas death pathway. Mol Cell Biol 1996;16:6387–6398.
31. Sun J, Bird CH, Sutton V, et al. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytolytic lymphocytes. J Biol Chem 1996;271:27802–27809.
32. Barrie MB, Stout HW, Abougergi MS, et al. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6. J Immunol 2004;172:6453–6459.
33. Buzza MS, Hirst CE, Bird CH, et al. Granzyme B inhibitor, PI-9, is present in endothelial and mesothelial cells, suggesting that it protects bystander cells during immune responses. Cell Immunol 2001;210:21–29.
34. Kanamori H, Krieg S, Mao C, et al. Proteinase inhibitor 9, an inhibitor of granzyme B-mediated apoptosis, is a primary estrogen-inducible gene in human liver cells. J Biol Chem 2000;275:5867–5873.
35. Young JL, Sukhova GK, Foster D, et al. The serpin proteinase inhibitor 9 is an endogenous inhibitor of interleukin 1beta-converting enzyme (caspase-1) activity in human vascular smooth muscle cells. J Exp Med 2000;191:1535–1544.
36. Bladergren BA, Strik MC, Bovenschen N, et al. The granzyme B inhibitor, protease inhibitor 9, is mainly expressed by dendritic cells and at immune-privileged sites. J Immunol 2001;166:3218–3225.
37. Bots M, L VANB, Rademaker MT, et al. Serpins prevent granzyme-induced death in a species-specific manner. Immunol Cell Biol 2006;84:79–86.
38. Sipione S, Simmen KC, Lord SJ, et al. Identification of a novel human granzyme B inhibitor secreted by cultured sertoli cells. J Immunol 2006;177:5051–5058.
39. Mahrus S, Kiel W, Craik CS. Granzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B. J Biol Chem 2004;279:54275–54282.
40. Andrade F, Fellows E, Jenne DE, et al. Granzyme H destroys the function of critical adenosin proteins required for viral DNA replication and granzyme B inhibition. EMBO J 2007;26:2148–2157.
51. Galvin JP, Spaeny-Dekking LH, Wang B, et al. Apoptosis mediated by granzyme B-glycosaminoglycan complexes: implications for granule-mediated apoptosis in vivo. J Immunol 1999;162:5345–5350.

54. Spaeny-Dekking EH, Hanna WL, Wolbink AM, et al. Extracellular granzymes A and B in humans: detection of native species during CTL responses in vitro and in vivo. J Immunol 1995;154:6299–6305.

57. Huse M, Quann EJ, Davis MM. Shouts, whispers and the kiss of death: delivery and subsequent apoptosis. J Biol Chem 1996;271:29073–29079.

59. Kupfer A, Dennert G, Singer SJ. Polarization of the Golgi apparatus by charge and must be added at the same time as perforin to trigger apoptosis. J Immunol 2005;174:5456–5461.

66. Vugeler K, Motyka B, Goping IS, et al. granule-mediated killing by granzyme B and perforin requires a mannose 6-phosphate receptor and is augmented by cell surface heparan sulfate. Mol Biol Cell 2006;17:623–633.

69. Shi L, Keefe D, Durand E, et al. Granzyme B binds to target cells mostly by charge and must be added at the same time as perforin to trigger apoptosis. J Immunol 2005;174:5456–5461.

75. Kagi D, Ledermann B, Burki K. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994;369:31–37.

84. Gross C, Koelch W, DeMaio A, et al. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 2003;278:41173–41181.

89. Darmon AJ, Nicholson DW, Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. J Biol Chem 1994;269:13142–13150.

90. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:31–37.

94. Voskoboinik, I. J Immunol 2005;279:8019–8029.
91. Pinkoski MJ, Waterhouse NJ, Heibein JA, et al. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J Biol Chem 2001;276:12060–12067.

92. Sutton VR, Davis JE, Cancilla M, et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med 2000;192:1403–1414.

93. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2002;275:3119–31203.

94. Li P, Nijhawan D, Budhirajo D, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

95. Han J, Goldstein LA, Gastman BR, et al. Degradation of McI-1 by granzyme B: Implications for Bim-mediated mitochondrial apoptotic events. J Biol Chem 2004;279:22020–22029.

96. Adrain C, Duriez PJ, Brumatti G, et al. The cytotoxic lymphocyte protease, granzyme B, targets the cytoskeleton and perturbs microtubule polymerization dynamics. J Biol Chem 2006;281:8118–8125.

97. Andrade F, Roy S, Nicholson D, et al. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 1998;8:451–460.

98. Froelich CJ, Hanna WL, Poiger GG, et al. Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem Biophys Res Commun 1996;227:658–665.

99. Goping IS, Sawchuk T, Underhill DA, et al. Identification of (alpha)-tubulin as a granzyme B substrate during CTL-mediated apoptosis. J Cell Sci 2006;119(5):858–865.

100. Sebbagh M, Hamelin J, Bertoglio J, et al. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2002;275:3119–31203.

101. Pinkoski MJ, Waterhouse NJ, Heibein JA, et al. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J Biol Chem 2001;276:12060–12067.
Barilla ML, Carsons SE. Fibronectin fragments and their role in inflammatory arthritis. Semin Arthritis Rheum 2000;29:252–265.

Norris DA, Clark RA, Swigart LM, et al. Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes. J Immunol 1982;129:1612–1618.

Odekon LE, Frewin MB, Del Vecchio P, et al. Fibronectin fragments released from phorbol ester-stimulated pulmonary artery endothelial cell monolayers promote neutrophil chemotaxis. Immunology 1991;74:114–120.

Stanton H, Ung L, Fosang AJ. The 45 kDa collagen-binding fragment of fibronectin is an efficient activator of neutrophil respiratory burst. Biochem J 2002;364(Part 1):51–100.

Trapani JA, Sutton VR. Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol 2003;15:533–543.

Bleckley RC. A molecular view of cytotoxic T lymphocyte induced killing. Biochem Cell Biol 2005;83:747–751.

Chrysosfakis G, Tzanakis N, Kyriakoy D, et al. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest 2004;125:71–76.

Hodge S, Hodge G, Nairn J, et al. Increased airway granulocyte b and perforin in current and ex-smoking COPD subjects. COPD 2006;3:179–187.

Hashimoto S, Kobayashi A, Kooguchi K, et al. Uregulation of two death pathways of perforin/granzyme and Fas/FasL in septic acute respiratory distress syndrome. Am J Respir Crit Care Med 2000;161:237–243.

Kurumagawa T, Seki S, Kobayashi H, et al. Characterization of bronchoalveolar lavage T cell subsets in sarcoidosis on the basis of CD57, CD4 and CD8. Clin Exp Immunol 2003;133:438–447.

Dourado M, Bento J, Mesquita L, et al. Characterization of lymphoid infiltrates in chronic obstructive sialadenitis associated with sialolithiasis. J Oral Pathol Med 2001;30:308–310.

Meade JL, de Wynter EA, Brett P, et al. A family with Papillon–Lefevre syndrome reveals a requirement for cathepsin C in granulocyte B activation and NK cell cytotoxic activity. Blood 2006;107:3665–3668.

Pham CT, Ivanovich JL, Raptis SZ, et al. Papillon–Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol 2004;173:7277–7281.

Kock H, Zeng W, Guibin C, et al. Increased cytotoxic T cells with effector phenotype in aplastic anaemia and myelodysplasia. Exp Hematol 2001;29:1270–1277.

Ju JL, Nagasaka S, Nakashima N. Involvement of cytotoxic granules in the apoptosis of aplastic anaemia. Br J Haematol 2003;120:850–852.

Papadaki HA, Couloucheri S, Xylouri I, et al. Defective natural killer cell activity of peripheral blood lymphocytes correlates with the degree of neutropenia in patients with chronic idiopathic neutropenia of adults. Ann Hematol 1998;76:127–134.

Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003;9:1123–1124.

Wang L, Zhang F, Zhu YY, et al. [Mechanism of cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura]. Zhonghua Yi Xue Za Zhi 2005;85:3048–3051.

Chang F, Chu X, Wang L, et al. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2006;76:427–431.

Bodemer C, Peuchmaur M, Fraihat S, et al. Role of cytotoxic T cells in chronic alopecia areata. J Invest Dermatol 2000;114:112–116.

Sato-Kawamura M, Alba S, Tagami H. Strong expression of CD40, CD54 and HLA-DR antigen and lack of evidence for direct cellular cytotoxicity are unique immunohistopathological features in alopecia areata. Arch Dermatol Res 2003;294:536–543.

Siebenhaar F, Sharov AA, Peters EM, et al. Substance P as an immunomodulatory neurotransmitter in a mouse model for autoimmune hair loss (alopecia areata). J Invest Dermatol 2007;127:1489–1497.

Benihou C, Michel L, Soulie A, et al. Acquisition of granulocyte B and Fas ligand proteins by human keratinocytes contributes to epidermal cell defense. J Immunol 1997;159:5293–5300.

Trivedi NR, Gilliland KL, Zhao W, et al. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol 2006;126:1071–1079.

Hasan MR, Abdel-Magid WM, Saleh R, et al. Phenotypic characteristics of the immune cells in allergic contact dermatitis, atopic dermatitis and pityriasis rosea. Pathol Oncol Res 2009;15:73–79.

Yawalkar N, Hunger RE, Buri C, et al. A comparative study of the expression of cytotoxic proteins in allergic contact dermatitis and psoriasis: spongiotic skin lesions in allergic contact dermatitis are highly infiltrated by T cells expressing perforin and granzyme B. Am J Pathol 2001;158:803–808.

Yawalkar N, Schmid S, Buthen LR, et al. Perforin and granzyme B may contribute to skin inflammation in atopic dermatitis and psoriasis. Br J Dermatol 2001;144:1133–1139.

Hasan MR, Aboulhamag NM, Atsu H, et al. Evaluation of the profile of the immune cell infiltrate in lichen planus, discoid lupus erythematosus, and chronic dermatitis. Pathology 2008;40:682–693.

van den Wijngaard R, Wankowicz-Kalinska L, Pe Loole C, et al. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest 2000;80:1299–1309.

Oyarbide-Valencia K, van den Boon JG, Deman CJ, et al. Therapeutic implications of autoimmune vitiligo T cells. Autoimmun Rev 2006;5:486–492.

Shimizu M, Higaki Y, Higaki K, et al. The role of granulyme B-expressing CD8-positive T cells in apoptosis of keratinocytes in lichen planus. Arch Dermatol Res 1997;289:527–532.

Ammar M, Mokni M, Boubaker S, et al. Involvement of granulyme B and granulysin in the cytotoxic response in lichen planus. J Cutan Pathol 2008;35:630–634.

Santoro A, Majarana A, Roversi L, et al. Recruitment of dendritic cells in oral lichen planus. J Pathol 2005;205:426–434.

Santoro A, Majarana A, Bardellini E, et al. Cytotoxic molecule expression and epithelial cell apoptosis in oral and cutaneous lichen planus. Am J Clin Pathol 2004;121:758–764.

Wenzel J, Scheler M, Proels J, et al. Type I interferon-associated cytotoxic inflammation in lichen planus. J Cutan Pathol 2006;33:672–678.

Hunger RE, Bronnimann M, Kappeler A, et al. Detection of perforin and granulyme B mRNA expressing cells in lichen sclerosus. Exp Dermatol 2007;16:416–420.

Wenzel J, Wiechert A, Merkel C, et al. IP10/CXCL10–CXCR3 interaction: a potential self-recruiting mechanism for cytotoxic lymphocytes in lichen sclerosus et atrophicus. Acta Derm Venereol 2007;87:112–117.

Regauer S, Liegl B, Reich O, et al. Vasculitis in lichen sclerosus: an under recognized feature? Br J Dermatol 2005;153:241–244.

Chave TA, Mortimer NJ, Sladden MJ, et al. Toxic epidermal necrolysis: current evidence, practical management and future directions. Br J Dermatol 2005;153:241–253.

Nassif A, Moslehi H, Le Gouvello S, et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J Invest Dermatol 2004;123:850–855.

Borchers AT, Lee JL, Naguwa SM, et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 2004;114:209–1215.

Posadas SJ, Padial A, Torres MJ, et al. Delayed reactions to drugs show levels of perforin, granulyme B, and Fas-L to be related to disease severity. J Allergy Clin Immunol 2002;109:155–161.

Hasan MR, Ali FM, Omar AE. Immunohistological analysis of immune cells in blistering skin lesions. J Clin Pathol 2007;60:62–71.

Wenzel J, Uerlich M, Worrenkamper E, et al. Type II interferon-induced protein MA6. Br J Dermatol 2005;153:1011–1015.

Takahashi H, Amagai M, Takawaki A, et al. T helper type 2-biased natural killer cell phenotype in patients with pemphigus vulgaris. J Invest Dermatol 2007;127:324–330.

Young LH, Joag SV, Lin PY, et al. Expression of cytolytic mediators by synovial fluid lymphocytes in rheumatoid arthritis. Am J Pathol 1992;140:1261–1268.
Granzyme B in immunity and disease
WA Boivin et al

185. Ronday HK, van der Laan WH, Tak PP, et al. Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology (Oxford) 2001;40:55–61.

186. Smeets TJ, Kraan MC, Galjaard S, et al. Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage–pannus junction in patients with RA. Ann Rheum Dis 2001;60:561–565.

187. Kummer JA, Tak PP, Brinkman BM, et al. Expression of granzymes A and B in synovial tissue from patients with rheumatoid arthritis and osteoarthritis. Clin Immunol Immunopathol 1994;73:88–95.

188. Tak PP, Kummer JA, Hack CE, et al. Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum 1994;37:1735–1743.

189. Kim WJ, Kim H, Suk K, et al. Macrophages express granzyme B in the lesion areas of atherosclerosis and rheumatoid arthritis. Immunol Lett 2007;111:57–65.

190. Goldbach-Mansky R, Suson S, Wesley R, et al. Raised granzyme B levels are associated with erosions in patients with early rheumatoid factor positive rheumatoid arthritis. Ann Rheum Dis 2005;64:715–721.

191. Kraan MC, Haringman JJ, Weezen H, et al. T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Ann Rheum Dis 2004;63:483–488.

192. Smeets TJ, Dolhain RJ, Breedveld FC, et al. Analysis of the cellular infiltrates and expression of cytoxins in synovial tissue from patients with rheumatoid arthritis and reactive arthritis. J Pathol 1998;186:75–81.

193. Bien CG, Bauer J, Deckwerth TL, et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol 2002;51:311–318.

194. Bauer J, Elger CE, Hans VH, et al. Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol 2007;62:67–80.

195. Schwab N, Bien CG, Waschbisch A, et al. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain 2009;132(Pt 5):1236–1246.

196. Bauer J, Bien CG, Lassmann H. Rasmussen’s encephalitis: a role for autoimmune cytotoxic T lymphocytes. Curr Opin Neurol 2002;15:197–200.

197. Poully S, Antel JP. Multiple sclerosis and central nervous system demyelination. J Autoimmun 1999;13:297–306.

198. Rensing-Ehl A, Malipiero U, Irmler M, et al. Neuronal induction of lymphocyte function activation antigen-1(CD54) is up-regulated in primary optic neuritis. Eur J Immunol 1996;26:2224–2230.

199. Kebir H, Kreyberg K, Ifergan I, et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 2007;13:1173–1175.

200. Wanschitz J, Maier H, Lassmann H, et al. Recognition of granzyme B-positive (activated) intraepithelial and lamina propria CD8+ T cells in autoimmune gastritis in chronic active gastric mucosal lesions. J Gastroenterol 2003;38:216–221.

201. Oberhuber G, Bodingbauer M, Mosberger I, et al. High proportion of granzyme B-positive (activated) intraepithelial and lamina propria lymphocytes in lymphomatous gastric. J Surg Pathol 1999;22:450–458.

202. Kaserer K, Exner M, Mosberger I, et al. Characterization of the inflammatory infiltrate in autoimmune cholangitis. Arch Pathol Immunol 1998;3:217–222.
230. Ziol M, Poirel H, Kountchou GN, et al. Intrinsinosoidal cytotoxic CD8+ T cells in nodular regenerative hyperplasia of the liver. Hum Pathol 2004;35:1241–1251.

231. Mitomi H, Ohkura Y, Yokokama K, et al. Contribution of TIA-1+ and granzyme B+ cytotoxic T lymphocytes to cryptal apoptosis and ulceration in active inflammatory bowel disease. Pathol Res Pract 2007;203:717–723.

232. Skjelland M, Michelsen AE, Krogh-Sorensen K, et al. Plasma levels of granzyme B are increased in patients with lipid-rich carotid plaques as determined by echogenicity. Atherosclerosis 2007;195a:E142–E146.

233. Tsuru R, Kondo H, Hojo Y, et al. Increased granzyme B production from peripheral blood mononuclear cells in patients with acute coronary syndrome. Heart 2008;94:305–310.

234. Kondo H, Hojo Y, Tsuru R, et al. Elevation of plasma granzyme B levels after acute myocardial infarction. Circ J 2009;73:503–507.

235. Schiller NK, Boisvert WA, Curtiss LK. Inflammation in atherosclerosis: lesion formation in LDL receptor-deficient mice with perforin and Lyst(beige) mutations. Arterioscler Thromb Vasc Biol 2002;22:1341–1346.

236. Nakajima T, Schulte S, Warrington KJ, et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 2002;105:570–575.

237. Altman A, Gruppioni E, Capizzi E, et al. Blood monitoring of granzyme B and perforin expression after intestinal transplantation: considerations on clinical relevance. Transplantation 2008;85:1778–1783.

238. Cashion A, Sabek O, Driscoll C, et al. Potential of real-time PCR assessment of granzyme B and perforin up-regulation for rejection monitoring in intestinal transplant recipients. Transplant Proc 2005;37:4467–4471.

239. D’Errico A, Corti B, Pinna AD, et al. Serial peripheral blood cytotoxic lymphocyte gene expression measurements for prediction of pancreas transplant rejection. Transplant Proc 2006;38:3676–3677.

240. Corti B, Altmini A, Gabusi E, et al. Expression of granzyme A and B proteins by cytotoxic lymphocytes involved in acute renal allograft rejection. Kidney Int 1995;47:70–77.

241. Li B, Hamton C, Ding R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 2001;344:947–954.

242. Simon T, Opelz G, Wiesel M, et al. Serial peripheral blood perforin and granzyme B gene expression measurements for prediction of acute rejection in kidney graft recipients. Am J Transplant 2005;3:1121–1127.

243. Yannaraki M, Reibou JM, Ducloix D, et al. Urinary cytotoxic molecular markers for a noninvasive diagnosis in acute renal transplant rejection. Transpl Int 2006;19:759–768.

244. Choy JC, Cruz RP, Kerjner A, et al. Granzyme B induces endothelial cell apoptosis and contributes to the development of transplant vascular disease. Am J Transplant 2005;5:494–499.

245. Choy JC, Kerjner A, Wong BW, et al. Perforin mediates endothelial cell death and resultant transplant vascular disease in cardiac allografts. Am J Pathol 2004;165:127–133.

246. Brown TJ, Crawford SE, Cornwai ML, et al. CD8 T lymphocytes and macrophages infiltrate coronary artery atheromas in acute Kawasaki disease. J Infect Dis 2001;184:940–943.

247. Kuijpers TW, Biezeveld M, Achtenhuis A, et al. Longstanding obliteration panarteritis in Kawasaki disease: lack of cyclosporin A effect. Pediatrics 2003;112:986–992.

248. Guzman-Cortiril JA, Garcia FL, Shulman ST, et al. CD8 T lymphocytes do not express cytotoxic proteins in coronary artery atheromas in acute Kawasaki disease. Pediatr Infect Dis J 2005;24:382–384.

249. Fujikawa K, Yamamoto T, Feng L, et al. Anti-perforin antibody treatment ameliorates experimental crescentic glomerulonephritis in WKY rats. Kidney Int 2007;72:823–830.

250. Reynolds J, Norga VA, Bhambra U, et al. Anti-CD8 monoclonal antibody therapy is effective in the prevention and treatment of experimental autoimmune glomerulonephritis. J Am Soc Nephrol 2002;13:359–369.

251. Clark SB, Rice TW, Tubbs RR, et al. The nature of the myenteric infiltrate in achalasia: an immunohistochemical analysis. Am J Surg Pathol 2000;24:1153–1158.

252. Resnick MB, Finkelstein Y, Weissler A, et al. Assessment and diagnostic utility of the cytotoxic T-lymphocyte phenotype using the specific markers granzyme-B and TIA-1 in esophageal mucosal biopsies. Hum Pathol 1999;30:397–402.

253. Oberhuber G, Puspop A, Peck-Radosavlevic M, et al. Aberrant esophageal HLA-DR expression in a high percentage of patients with Crohn’s disease. Am J Surg Pathol 1999;23:970–976.

254. Toquet C, Hamidou MA, Renaudin K, et al. In situ immunophenotype of the inflammatory infiltrate in eosinophilic fasciitis. J Rheumatol 2003;30:1811–1815.

255. Yakirievich E, Yanai O, Sova Y, et al. Cytotoxic phenotype of intraepithelial lymphocytes in normal and cryptorchid human testicular excrunt ducts. Hum Reprod 2002;17:275–283.

256. Ohshima K, Shimazaki K, Kume T, et al. Perforin and Fas pathways of cytotoxic T-cells in histiocytic necrotizing lymphadenitis. Histopathology 1998;33:471–478.

257. Mori N, Yatabe Y, Asai J, et al. Immunohistochemical study of necrotizing lymphadenitis: a possible mechanism for apoptosis involving perforin and granzyme-producing cytotoxic T cells. Pathol Int 1997;47:31–37.

258. Baetz K, Isaac S, Griffiths GM. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J Immunol 1995;154:6122–6131.

259. Sandri M, El Meslemani AH, Sandri C, et al. Caspase 3 expression correlates with skeletal muscle apoptosis in Duchenne and facioscapulo humar muscular dystrophy. A potential target for pharmacological treatment? J Neuropathol Exp Neurol 2001;60:302–312.

260. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994;179:1317–1330.

261. Ida H, Utz PJ, Anderson P, et al. Granzyme B and natural killer (NK) cell death. Mod Rheumatol 2005;15:315–322.

262. Amoura Z, Piette JC, Chabre H, et al. Circulating plasma levels of nucleosomes in patients with systemic lupus erythematosus: correlation with serum antinucleosome antibody titers and absence of clear association with disease activity. Arthritis Rheum 1997;40:2217–2225.

263. Licht R, Dieker JW, Jacobs CW, et al. Decreased phagocytosis of apoptotic cells in diseased SLE mice. J Autoimmun 2004;22:139–145.

264. Litt L, A. Casciola-Rosen L. Clearing the way to mechanisms of autoimmunity. Nat Med 2001;7:664–665.

265. Graham KL, Utz PJ. Sources of autoantigens in systemic lupus erythematosus. Curr Opin Rheumatol 2005;17:513–517.

266. Casciola-Rosen LA, Pluta AF, Plotz PH, et al. The DNA mismatch repair enzyme PMS1 is a myostis-specific autoantigen. Arthritis Rheum 2001;44:389–396.

267. Carson S, Moxesson MW, Diamond HS. Detection and quantitation of fibronectin in synovial fluid from patients with rheumatic disease. Arthritis Rheum 1981;24:1261–1267.

268. Scott DL, Wainwright AC, Walton KW, et al. Significance of fibronectin in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 1981;40:142–153.

269. Hombaudgen BA, Meyers R, Williams JM. Intracellular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 1993;20:1378–1382.

270. Hombaudgen BA, Meyers R, Xie DL. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 1992;267:3597–3604.

271. Baker C, Petrich de Marquesini LG, Bishop AJ, et al. Human CD8+ T cells responses to a complete epitope set from preproinsulin: implications for approaches to epitope discovery. J Clin Immunol 2008;28:527–532.

272. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001;358:221–229.
Granzyme B in immunity and disease
WA Boivin et al.