An Ergodic Study of Painlevé VI

Katsunori Iwasaki and Takato Uehara

Graduate School of Mathematics, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 Japan

Dedicated to Professor Masuo Hukuhara on his 100th birthday

Abstract
An ergodic study of Painlevé VI is developed. The chaotic nature of its Poincaré return map is established for almost all loops. The exponential growth of the numbers of periodic solutions is also shown. Principal ingredients of the arguments are a moduli-theoretical formulation of Painlevé VI, a Riemann-Hilbert correspondence, the dynamical system of a birational map on a cubic surface, and the Lefschetz fixed point formula.

1 Introduction
Painlevé equations have been investigated actively in recent years. However most researches have been done from the viewpoint of integrable systems and little attention has been paid to the ergodic and chaotic aspects of their dynamics. In this paper we develop an ergodic study of the sixth Painlevé equation $P_{VI}(\kappa)$ and explore the chaotic behavior of its global dynamics, namely, that of its Poincaré return map. The aim of this paper is to show that the Poincaré return map is chaotic along almost all loops in the space of independent variable

$$Z = \mathbb{P}^1 - \{0, 1, \infty\}.$$

The exponential growth of the number of periodic solutions along those loops is also established.

The sixth Painlevé equation $P_{VI}(\kappa)$ is a Hamiltonian system of differential equations

$$\frac{dq}{dz} = \frac{\partial H(\kappa)}{\partial p}, \quad \frac{dp}{dz} = -\frac{\partial H(\kappa)}{\partial q}, \quad (1)$$

with an independent variable $z \in Z$ and unknown functions $q = q(z)$ and $p = p(z)$, depending on complex parameters $\kappa = (\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4)$ in a 4-dimensional affine space

$$\mathcal{K} := \{ \kappa = (\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4) \in \mathbb{C}^5 : 2\kappa_0 + \kappa_1 + \kappa_2 + \kappa_3 + \kappa_4 = 1 \}.$$

*Mathematics Subject Classification: 34M55, 37F10
†E-mail addresses: iwaseki@math.kyushu-u.ac.jp and ma205003@math.kyushu-u.ac.jp
where the Hamiltonian $H(\kappa) = H(q,p,z;\kappa)$ is given by

$$z(z - 1)H(\kappa) = (q_0q_1q_2)p^2 - \{\kappa_1q_1q_z + (\kappa_2 - 1)q_0q_1 + \kappa_3q_0q_z\}p + \kappa_0(\kappa_0 + \kappa_4)q_z,$$

with $q_\nu = q - \nu$ for $\nu \in \{0, 1, z\}$. More intrinsically, $P VI(\kappa)$ can be formulated as a holomorphic uniform foliation on a fibration of certain smooth quasi-projective rational surfaces

$$\pi_\kappa : M(\kappa) \to Z,$$

which is transversal to each fiber of the fibration. Equation (1) is just a coordinate expression of the foliation in terms of a natural coordinate system on an affine open subset of the phase space $M(\kappa)$. See [1] [16] [17] [28] [30] [31] for various construction of the space $M(\kappa)$. Especially the papers [16] [17] give a comprehensive description of it as a moduli space of stable parabolic connections. The fiber $M_z(\kappa)$ over $z \in Z$ is called the space of initial conditions at time z.

Since the foliation is uniform (Painlevé property), each loop $\gamma \in \pi_1(Z,z)$ admits global horizontal lifts along the foliation and induces an automorphism $\gamma_* : M_z(\kappa) \to M_z(\kappa)$, called the holonomy or the Poincaré return map along the loop γ. Then the global structure of the foliation is described by the holonomy representation

$$PS_z(\kappa) : \pi_1(Z,z) \to \text{Aut} M_z(\kappa), \quad \gamma \mapsto \gamma_*.$$ (4)

which is referred to as the Poincaré section of the Painlevé dynamical system $P VI(\kappa)$. Here and hereafter a loop means the homotopy class of a loop without further comment.

In this paper we are interested in the dynamics of the Poincaré return map $\gamma_* : M_z(\kappa) \to M_z(\kappa)$ for each individual loop $\gamma \in \pi_1(Z,z)$. One of our main results will state that γ_* always exhibits a chaotic behavior as long as γ is a non-elementary loop (see Theorem 2.1), where the adjective “chaotic” and the words “non-elementary loop” are used in the following senses.

Definition 1.1 The dynamical system of a holomorphic map $f : S \to S$ on a complex surface S (in our case, $S = M_z(\kappa)$ and $f = \gamma_*$) is said to be chaotic if there exists an f-invariant Borel probability measure μ on S such that the following conditions are satisfied:

(C1) f has a positive entropy $h_\mu(f) > 0$ with respect to the measure μ.

(C2) f is mixing with respect to the measure μ, that is, $\mu(f^{-n}(A) \cap B) \to \mu(A)\mu(B)$ as $n \to \infty$ for any Borel subsets A and B of S. In particular, f is ergodic with respect to μ.

(C3) μ is a hyperbolic measure of saddle type, that is, the two Lyapunov exponents $L_+(f)$ of f with respect to the ergodic measure μ satisfy $L_-(f) < 0 < L_+(f)$. Moreover, μ has product structure with respect to local stable and unstable manifolds.

(C4) hyperbolic periodic points of f are dense in the support of μ.

For the basic terminology used here, we refer to the standard textbooks [24] [32] on dynamical systems and ergodic theory. While there are many possible definitions of a chaotic dynamical system [5], the definition adopted here is a typical one possessing the three ingredients usually required for a “chaos”: (i) unpredictability, that is, the sensitive dependence on initial values represented by conditions (C1) and (C3); (ii) indecomposability, that is, ergodicity or a related property as in (C2); (iii) an element of regularity, that is, the existence of periodic points which
are dense in a dynamically interesting subset as in (C4). We also remark that conditions (C2) and (C3) imply that the dynamical system f with invariant measure μ is Bernoulli, namely, it is measurably conjugate to a Bernoulli shift [29].

Next we explain what we mean by the words “non-elementary loop”. Treating the three fixed singular points 0, 1, ∞ of $P_{VI}(\kappa)$ symmetrically, we put

$$z_1 = 0, \quad z_2 = 1, \quad z_3 = \infty.$$

For each $i \in \{1, 2, 3\}$ with \{i, j, k\} = \{1, 2, 3\}, let $\gamma_i \in \pi_1(Z, z)$ be a loop surrounding the points z_i once anti-clockwise, leaving the remaining points z_j and z_k outside, as in Figure 1. Then the fundamental group $\pi_1(Z, z)$ is generated by $\gamma_1, \gamma_2, \gamma_3$, having a defining relation

$$\gamma_1\gamma_2\gamma_3 = 1.$$

(5)

Definition 1.2 A loop $\gamma \in \pi_1(Z, z)$ is said to be elementary if γ is conjugate to the loop γ_i^m for some $i \in \{1, 2, 3\}$ and $m \in \mathbb{Z}$. Otherwise, γ is said to be non-elementary.

The second issue to be discussed in this paper is the number of periodic solutions to $P_{VI}(\kappa)$. Given a loop $\gamma \in \pi_1(Z, z)$ and a positive integer $N \in \mathbb{N}$, we are interested in the number of periodic solutions to $P_{VI}(\kappa)$ of period N along the loop γ. To be more precise, we wish to count the number of all initial conditions at time z that come back to the original positions after the N-th iterate of the Poincaré return map along γ, namely, the cardinality of the set

$$\text{Per}_N(\gamma; \kappa) = \{ Q \in M_z(\kappa) : \gamma_+^NQ = Q \}.$$

(6)

It will be shown that for any non-elementary loop γ, the cardinality is finite for every period $N \in \mathbb{N}$ and grows exponentially as the period N tends to infinity (see Theorem 2.2). We shall
also give an algorithm to count the number exactly as well as to determine its exponential growth rate explicitly (see Theorem 2.8). The logarithm of this rate will give the entropy of the Poincaré return map γ_s. Recently several authors [4, 5, 9, 13, 14, 25, 26] have been interested in finding algebraic solutions, which must have only finitely many branches under the analytic continuations along all loops in Z. On the other hand, in this article we will be concerned with those solutions which are finitely many-valued along a fixed single loop.

Painlevé equations and dynamical systems on complex manifolds are two subjects of mathematics which have attracted much attention in recent years. In this paper we shall demonstrate a substantial interplay between them by presenting a fruitful application to the former subject of the latter. On the former side, algebraic geometry of Painlevé equations, especially a moduli-theoretical formulation of Painlevé dynamical systems [16, 17] is an essential ingredient of our discussion. On the latter side, recent advances in complex surface dynamics, especially some deep ergodic studies of birational maps of complex surfaces [2, 7, 8, 10] are another basis of our analysis. These two stuffs are combined fruitfully via a Riemann-Hilbert correspondence to reveal the chaotic nature of the sixth Painlevé dynamics.

2 Main Results

Let us describe our main results in more detail. In this paper we make a certain generic assumption on the parameters $\kappa \in K$ to avoid a technical difficulty (see Remark 2.11). To this end we recall an affine Weyl group structure of the parameter space K [16, 20]. In view of formula (2), the affine space K can be identified with the linear space \mathbb{C}^4 by the isomorphism

$$K \to \mathbb{C}^4, \quad \kappa = (\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4) \mapsto (\kappa_1, \kappa_2, \kappa_3, \kappa_4),$$

where the latter space \mathbb{C}^4 is equipped with the standard (complex) Euclidean inner product. For each $i \in \{0, 1, 2, 3, 4\}$, let $w_i : K \to K$ be the orthogonal reflection having $\{ \kappa \in K : \kappa_i = 0 \}$ as its reflecting hyperplane with respect to the inner product mentioned above. Then the group generated by w_0, w_1, w_2, w_3, w_4 is an affine Weyl group of type $D^{(1)}_4$,

$$W(D^{(1)}_4) = \langle w_0, w_1, w_2, w_3, w_4 \rangle \triangleleft K,$$

corresponding to the Dynkin diagram in Figure 2. The reflecting hyperplanes of all reflections in the group $W(D^{(1)}_4)$ are given by affine linear relations

$$\kappa_i = m, \quad \kappa_1 \pm \kappa_2 \pm \kappa_3 \pm \kappa_4 = 2m + 1 \quad (i \in \{1, 2, 3, 4\}, m \in \mathbb{Z}),$$

Figure 2: Dynkin diagram of type $D^{(1)}_4$
where the signs ± may be chosen arbitrarily. Let Wall be the union of all these hyperplanes. Then the generic condition to be imposed on parameters is that κ should lie outside Wall; this is a necessary and sufficient condition for PVI(κ) to admit no Riccati solutions \[16\].

The first main theorem of this paper is concerned with the chaotic behavior of PVI(κ).

Theorem 2.1 Assume that κ ∈ K − Wall. For any non-elementary loop γ ∈ π1(Z, z), the Poincaré return map γ∗ : Mz(κ) ↲ along the loop γ is chaotic, that is, there exists a γ∗-invariant Borel probability measure µγ such that the conditions of Definition 1.1 are satisfied. Moreover there exists an algorithm to calculate the entropy h(γ) := hµγ(γ∗) of the map γ∗ with respect to the measure µγ in terms of a reduced word for the loop γ (see Theorem 2.8).

The second main theorem is about the periodic solutions to PVI(κ) along a given loop.

Theorem 2.2 Assume that κ ∈ K − Wall. For any non-elementary loop γ ∈ π1(Z, z), the cardinality of the set PerN(γ; κ) is finite for every period N ∈ N and grows exponentially as N tends to infinity. There is an algorithm to count the cardinality exactly as well as to determine its exponential growth rate in terms of a reduced word for the loop γ (see Theorem 2.8).

Example 2.3 We illustrate Theorems 2.1 and 2.2 by presenting two examples.

1. An eight-loop is a loop conjugate to γiγj−1 for some indices \{i, j, k\} = \{1, 2, 3\} as in Figure 3 (left). For an eight-loop γ we have

\[
h(γ) = \log(3 + 2\sqrt{2}), \quad \# \text{Per}_N(γ; κ) = (3 + 2\sqrt{2})^N + (3 + 2\sqrt{2})^{-N} + 4.
\]

2. A Pochhammer loop is a loop conjugate to the commutator \([γ_i, γ_j^{-1}] = γ_iγ_j^{-1}γ_i^{-1}γ_j\) for some indices \{i, j, k\} = \{1, 2, 3\} as in Figure 3 (right). For a Pochhammer loop ϕ we have

\[
h(ϕ) = \log(9 + 4\sqrt{5}), \quad \# \text{Per}_N(ϕ; κ) = (9 + 4\sqrt{5})^N + (9 + 4\sqrt{5})^{-N} + 4.
\]

As is mentioned in Theorems 2.1 and 2.2, there are algorithms to calculate the entropy and to count the number of periodic solutions exactly. In order to describe them we need some preparations concerning reduced words for representing loops in terms of the standard generators γ1, γ2, γ3.

Definition 2.4 For any nontrivial loop γ ∈ π1(Z, z), there exists an expression

\[
γ = γ_{i_1}^{ε_{i_1}}γ_{i_2}^{ε_{i_2}}⋯γ_{i_m}^{ε_{i_m}}, \quad (7)
\]
with some positive number \(m \in \mathbb{N} \), some indices \((i_1, \ldots, i_m) \in \{1, 2, 3\}^m\) and some signs \((\varepsilon_{i_1}, \ldots, \varepsilon_{i_m}) \in \{\pm 1\}^m\). Such an expression is not unique and its length \(m \) may be reduced by using the relation (5). The expression (4) is said to be reduced if its length \(m \) is minimal among all feasible expressions. The length \(\ell_{\pi_1}(\gamma) \) of the loop \(\gamma \) is defined to be the length \(m \) of a reduced expression (4) for \(\gamma \). By convention the length of the trivial loop is zero.

Remark 2.5 At this stage we should notice that relevant to our discussion is not a loop itself but the conjugacy class of a loop. Indeed, if two loops \(\gamma \) and \(\gamma' \) are conjugate to each other, say, \(\gamma' = \delta \gamma \delta^{-1} \) for some loop \(\delta \), then the corresponding Poincaré return maps are also conjugate to each other as \(\gamma'_s = \delta_s \gamma_s \delta^{-1}_s \), and hence have the same dynamical properties. If \(\mu_\gamma \) is a \(\gamma_s \)-invariant measure asserted in Theorem 2.1, then the push-forward \(\mu_{\gamma'} = (\delta_s)_* \mu_\gamma \) of the measure \(\mu_\gamma \) by the map \(\delta_s \) is a desired invariant measure for \(\gamma'_s \). As for the sets of periodic points, the loop \(\delta \) induces a bijection \(\delta_s : \text{Per}_N(\gamma; \kappa) \to \text{Per}_N(\gamma'; \kappa) \) and hence an equality \(\#\text{Per}_N(\gamma; \kappa) = \#\text{Per}_N(\gamma'; \kappa) \). So what is relevant is only the conjugacy class of a loop.

This remark leads us to the following definition.

Definition 2.6 A loop \(\gamma \in \pi_1(Z, z) \) is said to be minimal if it has the minimal length among all loops conjugate to \(\gamma \), namely, if \(\ell_{\pi_1}(\gamma) = \min \{ \ell_{\pi_1}(\gamma') : \gamma' \in \pi_1(Z, z) \text{ is conjugate to } \gamma \} \).

In what follows we may and shall consider minimal loops only by replacing a given loop with all loops conjugate to \(\gamma \). Indeed, if two loops \(\gamma \) and \(\nu \) are conjugate to each other as \(\gamma \equiv \gamma \nu \gamma^{-1} \) for some loop \(\nu \), then the corresponding Poincaré return maps are also conjugate to each other as \(\gamma_s \equiv \nu_s \gamma_s \nu^{-1}_s \), and hence have the same dynamical properties. If \(\mu_\gamma \) is a \(\gamma_s \)-invariant measure asserted in Theorem 2.1, then the push-forward \(\mu_\gamma = (\delta_s)_* \mu_\gamma \) of the measure \(\mu_\gamma \) by the map \(\delta_s \) is a desired invariant measure for \(\gamma_s \). As for the sets of periodic points, the loop \(\delta \) induces a bijection \(\delta_s : \text{Per}_N(\gamma; \kappa) \to \text{Per}_N(\gamma; \kappa) \) and hence an equality \(\#\text{Per}_N(\gamma; \kappa) = \#\text{Per}_N(\gamma'; \kappa) \). So what is relevant is only the conjugacy class of a loop.

Any element \(\sigma \in G \) other than the unit element is uniquely represented in the form

\[
\sigma = \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_n},
\]

for some \(n \in \mathbb{N} \) and some \(n \)-tuple of indices \((i_1, \ldots, i_n) \in \{1, 2, 3\}^n\) such that every neighboring indices \(i_p \) and \(i_{p+1} \) are distinct. The expression (8) is called the reduced expression of \(\sigma \) and the number \(\ell_G(\sigma) = n \) is called the length of \(\sigma \), where the unit element is of length zero by convention. An element of even length is called an even element. Let \(G(2) \) be the subgroup of all even elements in \(G \). Then there exists an isomorphism of groups

\[
\pi_1(Z, z) \to G(2)
\]

sending the basic loops and their inverses as

\[
\begin{align*}
\gamma_1 & \mapsto \sigma_1 \sigma_2, & \gamma_2 & \mapsto \sigma_2 \sigma_3, & \gamma_3 & \mapsto \sigma_3 \sigma_1, \\
\gamma_1^{-1} & \mapsto \sigma_2 \sigma_1, & \gamma_2^{-1} & \mapsto \sigma_3 \sigma_2, & \gamma_3^{-1} & \mapsto \sigma_1 \sigma_3.
\end{align*}
\]

Given an expression (7) of a loop \(\gamma \in \pi_1(Z, z) \), make the replacement of alphabets

\[
\{\gamma_1^{\pm 1}, \gamma_2^{\pm 1}, \gamma_3^{\pm 1}\} \to \{\sigma_1, \sigma_2, \sigma_3\}
\]

according to the rule (10). If the expression (7) is reduced in \(\pi_1(Z, z) \), then the resulting word is also reduced in \(G \). In particular the reduced expression (7) is unique for a given loop \(\gamma \) and one has \(\ell_G(\sigma) = 2 \ell_{\pi_1}(\gamma) \), where \(\sigma \in G(2) \) is the element corresponding to the loop \(\gamma \).
Recall that any Coxeter group admits its geometric representation \cite{15}. We apply this construction to our particular group \(G \). Let \(V \) be the 3-dimensional vector space spanned by basis vectors \(e_1, e_2, e_3 \), endowed with a nondegenerate symmetric bilinear form

\[
B(e_i, e_j) = \begin{cases}
1 & (i = j), \\
-1 & (i \neq j).
\end{cases}
\]

(11)

For each \(i \in \{1, 2, 3\} \) we can define an orthogonal reflection \(r_i : V \to V \) by the rule

\[
r_i(v) := v - 2B(e_i, v)e_i \quad (v \in V).
\]

(12)

Note that \(r_i \) sends \(e_i \) to its negative \(-e_i \) while fixing all the vectors orthogonal to \(e_i \) relative to the bilinear form \(B \). It is known that there is a unique injective homomorphism \(\text{GR}(\sigma) : G \to O_B(V) \) such that \(\text{GR}(\sigma_i) = r_i \) for \(i \in \{1, 2, 3\} \), where \(O_B(V) \) is the group of orthogonal transformations on \((V, B)\). Identified with its image \(\text{GR}(G) \), the group \(G \) can be thought of as a reflection group acting on \((V, B)\). The faithful representation \(\text{GR} : G \to O_B(V) \) is called the geometric representation of \(G \). For each \(i \in \{1, 2, 3\} \) we define an endomorphism \(s_i : V \to V \) by

\[
s_i(v) := \frac{v + r_i(v)}{2} = v - B(e_i, v)e_i \quad (v \in V),
\]

(13)

and make the following definition.

Definition 2.7 Given a loop \(\gamma \in \pi_1(Z, z) \), choose a minimal representative for the conjugacy class of \(\gamma \) and call it \(\gamma \) again. Take the reduced expression of \(\gamma \) as in \cite{17}. Make the change of alphabets \(\{\gamma_1^{\pm1}, \gamma_2^{\pm1}, \gamma_3^{\pm1}\} \to \{\sigma_1, \sigma_2, \sigma_3\} \) according to the rule \cite{10} to obtain the corresponding element \(\sigma \in G(2) \), together with its reduced expression as in \cite{8}. To the indices \((i_1, \ldots, i_n) \) in \cite{8}, associate an endomorphism \(s_\gamma := s_{i_n} \cdots s_{i_2}s_{i_1} \in \text{End} \ V \). Finally, take its trace

\[
\alpha(\gamma) = \text{Tr}[s_\gamma : V \to V].
\]

(14)

We are now in a position to give the algorithm to calculate the entropy and to count the number of periodic points, which complete the statements of Theorems \cite{24} and \cite{22}.

Theorem 2.8 Assume that \(\kappa \in \mathcal{K} - \text{Wall} \) and let \(\gamma \in \pi_1(Z, z) \) be any non-elementary loop. Then the number \(\alpha(\gamma) \) defined in \cite{14} is an even integer not smaller than 6, with the equality \(\alpha(\gamma) = 6 \) if and only if \(\gamma \) is an eight-loop as in Example \cite{23}. Put

\[
\lambda(\gamma) := \frac{1}{2} \left\{ \alpha(\gamma) + \sqrt{\alpha(\gamma)^2 - 4} \right\}.
\]

(15)

1. The measure-theoretic entropy \(h(\gamma) := h_{\mu_\gamma}(\gamma) \) of the Poincaré return map \(\gamma_* : M_\zeta(\kappa) \cap \) with respect to the invariant measure \(\mu_* \) mentioned in Theorem \cite{24} is given by

\[
h(\gamma) = \log \lambda(\gamma).
\]

2. The cardinality of the set \(\text{Per}_N(\gamma; \kappa) \) is given by

\[
\#\text{Per}_N(\gamma; \kappa) = \lambda(\gamma)^N + \lambda(\gamma)^{-N} + 4 \quad (N \in \mathbb{N}).
\]

In particular its exponential growth rate is given by \(\lambda(\gamma) \).
Remark 2.9 Theorem 2.8 implies that for any non-elementary loop $\gamma \in \pi_1(Z, z)$, we have
$$\lambda(\gamma) \geq 3 + 2\sqrt{2}, \quad h(\gamma) \geq \log(3 + 2\sqrt{2}),$$
with the equalities if and only if γ is an eight-loop. In this sense the eight-loops are the most “elementary” loops among all non-elementary loops in Z. On the other hand, one may ask what happens with the Poincaré return map $\gamma_* : M_\kappa(\kappa) \to \mathbb{C}$ when the loop γ is elementary. In this case it turns out that γ_* preserves a certain analytic fibration $M_\kappa(\kappa) \to \mathbb{C}$ and exhibits an essentially 1-dimensional dynamical behavior. Hence γ_* is not so interesting or too elementary from the standpoint of chaotic dynamical systems. See Remark 10.3 for more information.

Remark 2.10 There exists a standard complex area form $\omega_\kappa(\kappa)$ on $M_\kappa(\kappa)$ such that the Poincaré return map γ_* is area-preserving for every loop $\gamma \in \pi_1(Z, z)$, where we refer to Remark 3.4 for the description of $\omega_\kappa(\kappa)$. Hence the Lyapunov exponents $L_\pm(\gamma)$ of γ_* satisfy the relation $L_-(\gamma) = -L_+(\gamma)$. Moreover the positive Lyapunov exponent admits an estimate $L_+(\gamma) \geq \frac{1}{8} \log \lambda(\gamma)$. We refer to Remark 10.3 for the derivation of this estimate.

Remark 2.11 In this article we restrict our attention to the generic case $\kappa \in K - \text{Wall}$ only, leaving the nongeneric case $\kappa \in \text{Wall}$ untouched. The difference between the generic case and the nongeneric case lies in the fact that the Riemann-Hilbert correspondence to be used in the proof becomes a biholomorphism in the former case, while it gives an analytic minimal resolution of Klein singularities in the latter case (see Remark 4.2). The presence of singularities would make the treatment of the nongeneric case more complicated. However it is expected that the basic strategy developed in this article will be effective also in the nongeneric case. The relevant discussion will be made elsewhere.

The plan of this article is as follows: $PV_1(\kappa)$ is formulated as a flow, Painlevé flow, on a moduli space of stable parabolic connections in §3. It is conjugated to an isomonodromic flow on a moduli space of monodromy representations via a Riemann-Hilbert correspondence in §4. The moduli space of monodromy representations is identified with an affine cubic surface and each Poincaré return map for $PV_1(\kappa)$ is conjugated to a biregular automorphism of the affine cubic in §5. This map is extended to a birational map on the compactified projective cubic surface and some basic properties of it are studied in §6. The induced cohomological action of the birational map is investigated in §7. After these preliminaries, the ergodic properties of our dynamical system are established by applying some recent deep results from birational surface dynamics in §8. Moreover the number of periodic points of the birational map is counted by using the Lefschetz fixed point formula in §9. Then, back to the original phase space of $PV_1(\kappa)$ in §10, we arrive at our final goals, that is, at the ergodic properties of the Poincaré return map and the exact number of periodic solutions to $PV_1(\kappa)$ of any period along a given loop.

3 Moduli Space of Stable Parabolic Connections

In order to describe the fibration (3), we first construct an auxiliary fibration $\pi_\kappa : \mathcal{M}(\kappa) \to T$ over the configuration space of mutually distinct, ordered, three points in \mathbb{C},
$$T = \{ t = (t_1, t_2, t_3) \in \mathbb{C}^3 : t_i \neq t_j \text{ for } i \neq j \},$$
and then reduce it to the original fibration (3). We put the fourth point t_4 at infinity. Given any $(t, \kappa) \in T \times K$, a (t, κ)-parabolic connection is a quadruple $Q = (E, \nabla, \psi, l)$ such that
singularities	t_1	t_2	t_3	t_4
first exponent	$-\lambda_1$	$-\lambda_2$	$-\lambda_3$	$-\lambda_4$
second exponent	λ_1	λ_2	λ_3	$\lambda_4 - 1$
difference	κ_1	κ_2	κ_3	κ_4

Table 1: Riemann scheme: κ_i is the difference of the second exponent from the first.

1. E is a rank 2 algebraic vector bundle of degree -1 over \mathbb{P}^1,
2. $\nabla : E \rightarrow E \otimes \Omega^1_{\mathbb{P}^1}(D_t)$ is a Fuchsian connection with pole divisor $D_t = t_1 + t_2 + t_3 + t_4$ and Riemann scheme as in Table 1, where $t_4 = \infty$ as mentioned above,
3. $\psi : \det E \rightarrow \mathcal{O}_{\mathbb{P}1}(-t_4)$ is a horizontal isomorphism called a determinantal structure, where $\mathcal{O}_{\mathbb{P}1}(-t_4)$ is equipped with the connection induced from $d : \mathcal{O}_{\mathbb{P}1} \rightarrow \Omega^1_{\mathbb{P}1}$,
4. $l = (l_1, l_2, l_3, l_4)$ is a parabolic structure, namely, l_i is an eigenline of $\text{Res}_{t_i}(\nabla) \in \text{End}(E_{t_i})$ corresponding to eigenvalue λ_i (whose minus is the first exponent $-\lambda_i$ in Table 1).

There exists a concept of stability for parabolic connections, with which the geometric invariant theory [27] can be worked out to establish the following theorem [16, 17].

Theorem 3.1 For any $(t, \kappa) \in T \times K$ there exists a fine moduli scheme $\mathcal{M}_t(\kappa)$ of stable (t, κ)-parabolic connections. The moduli space $\mathcal{M}_t(\kappa)$ is a smooth, irreducible, quasi-projective surface. As a relative setting over T, for any $\kappa \in K$, there exists a family of moduli spaces $\pi_\kappa : \mathcal{M}(\kappa) \rightarrow T$ such that the projection π_κ is a smooth morphism having fiber $\mathcal{M}_t(\kappa)$ over $t \in T$.

In [16, 17] the moduli space $\mathcal{M}_t(\kappa)$ is compactified into a moduli space of stable parabolic phi-connections. Given any $(t, \kappa) \in T \times K$, a parabolic phi-connection is roughly speaking a sextuple of data $Q = (E_1, E_2, \phi, \nabla, \psi, l)$ consisting of
1. a variant of connection $\nabla : E_1 \rightarrow E_2 \otimes \Omega^1_{\mathbb{P}^1}(D_t)$ over rank 2, degree -1 bundles on \mathbb{P}^1,
2. an $\mathcal{O}_{\mathbb{P}1}$-homomorphism $\phi : E_1 \rightarrow E_2$ (called a phi-operator), which may be degenerate or non-isomorphic, satisfying a generalized Leibniz rule
 \[\nabla(fs) = \phi(s) \otimes df + f\nabla(s), \quad (s \in E_1, f \in \mathcal{O}_{\mathbb{P}1}), \]
3. extra data of a determinantal structure ψ and a parabolic structure l.

We refer to [16, 17] for the complete definition. Very roughly the idea of compactification is as follows: If a parabolic connection is regarded as a “matrix-valued Schrödinger operator”, then a parabolic phi-connection may be thought of as a matrix-valued Schrödinger operator with a “matrix-valued Planck constant” ϕ which may be degenerate, namely, may be semi-classical. Then the moduli space $\mathcal{M}_t(\kappa)$ can be compactified by adding some semi-classical objects, that is, some parabolic phi-connections with degenerate phi-operator ϕ.

There exists a concept of stability for parabolic phi-connections, with which geometric invariant theory can be worked out to establish the following theorem [16, 17].
Theorem 3.2 For any \((t, \kappa) \in T \times K\) there exists a coarse moduli scheme \(\overline{M}_t(\kappa)\) of stable parabolic phi-connections. The moduli space \(\overline{M}_t(\kappa)\) is a smooth, irreducible, projective surface, having a unique effective anti-canonical divisor \(Y_t(\kappa)\). Under the natural embedding
\[
\mathcal{M}_t(\kappa) \hookrightarrow \overline{M}_t(\kappa), \quad (E, \nabla, \psi, l) \mapsto (E, E, \text{id}, \nabla, \psi, l),
\]
the space \(\mathcal{M}_t(\kappa)\) is exactly the locus of \(\overline{M}_t(\kappa)\) where the phi-operator \(\phi\) is isomorphic, and so
\[
\mathcal{M}_t(\kappa) = \overline{M}_t(\kappa) - Y_t(\kappa).
\]
The divisor \(Y_t(\kappa)\) on \(\overline{M}_t(\kappa)\) is called the vertical leaves at time \(t\). There is the following realization of our moduli spaces [16, 17] (see Figure 4).

Theorem 3.3 The compactified moduli space \(\overline{M}_t(\kappa)\) is isomorphic to an 8-point blow-up of the Hirzebruch surface \(\Sigma_2 \to \mathbb{P}^1\) of degree 2, blown up at certain two points on each fiber over the points \(t_1, t_2, t_3, t_4 \in \mathbb{P}^1\). The unique effective anti-canonical divisor on \(\overline{M}_t(\kappa)\) is given by
\[
Y_t(\kappa) = 2E_0 + E_1 + E_2 + E_3 + E_4,
\]
where \(E_0\) is the strict transform of the section at infinity of the fibration \(\Sigma_2 \to \mathbb{P}^1\), while \(E_1, E_2, E_3, E_4\) are the strict transforms of the fibers over \(t_1, t_2, t_3, t_4\), respectively.

Remark 3.4 There is a meromorphic 2-form \(\omega_t(\kappa)\) on \(\overline{M}_t(\kappa)\), holomorphic and nondegenerate on \(\mathcal{M}_t(\kappa)\), whose pole divisor is given by the vertical leaves \(Y_t(\kappa)\) [16, 17, 30, 31]. It is unique up to constant multiples. This complex area form is just what we have mentioned in Remark 2.10. A further description of the area form \(\omega_t(\kappa)\) will be given in Remark 5.1

Now the fibration (3) is defined to be the pull-back of the fibration (16) by an injection
\[
i : Z \hookrightarrow T, \quad z \mapsto (0, z, 1),
\]
The group \(\text{Aff}(\mathbb{C})\) of affine linear transformations on \(\mathbb{C}\) acts diagonally on the configuration space \(T\) and the quotient space \(T/\text{Aff}(\mathbb{C})\) is isomorphic to \(Z\), with the quotient map given by
\[
r : T \to Z, \quad t = (t_1, t_2, t_3) \mapsto z = \frac{t_2 - t_1}{t_3 - t_1}. \tag{17}
\]
The map \(r\) yields a trivial \(\text{Aff}(\mathbb{C})\)-bundle structure of \(T\) over \(Z\) and the fibration (16) is in turn the pull-back of the fibration (3) by the map \(r\). Hence we have a commutative diagram
\[
\begin{array}{ccc}
\mathcal{M}(\kappa) & \longrightarrow & M(\kappa) \\
\pi_\kappa \downarrow & & \downarrow \pi_\kappa \\
T & \longrightarrow & Z.
\end{array} \tag{18}
\]
In [16, 17] the Painlevé dynamical system \(PVI(\kappa)\) is formulated as a holomorphic uniform foliations on the fibration (16) which is compatible with the diagram (18). Thus the Poincaré section (4) is reformulated as a group homomorphism
\[
PS_t(\kappa) : \pi_1(T, t) \to \text{Aut} \mathcal{M}_t(\kappa), \tag{19}
\]
Let us describe the fundamental group \(\pi_1(T,t) \) in terms of a braid group \([3]\). We take a base point \(t = (t_1, t_2, t_3) \) \(\in T \) in such a manner that the three points lie on the real line in an increasing order \(t_1 < t_2 < t_3 \). To treat them symmetrically, we denote them by \(t_i, t_j, t_k \), where \((i,j,k)\) is a cyclic permutation of \((1,2,3)\), and think of them as cyclically ordered three points on the equator \(\hat{R} = \mathbb{R} \cup \{ \infty \} \) of the Riemann sphere \(\hat{C} = \mathbb{C} \cup \{ \infty \} \). Let \(\beta_i \) be a braid on three strings as in Figure 5 (left) along which \(t_i \) and \(t_j \) make a half-turn, with \(t_i \) moving in the southern hemisphere and \(t_j \) in the northern hemisphere, while \(t_k \) is kept fixed as in Figure 5 (right). Then the braid group on three strings is the group generated by \(\beta_i, \beta_j, \beta_k \), and the pure braid group \(P_3 \) is the normal subgroup of \(B_3 \) generated by their squares \(\beta_i^2, \beta_j^2, \beta_k^2 \),

\[
P_3 = \langle \beta_i^2, \beta_j^2, \beta_k^2 \rangle \triangleleft B_3 = \langle \beta_i, \beta_j, \beta_k \rangle.
\]

The generators of \(B_3 \) satisfy relations \(\beta_i \beta_j \beta_i = \beta_j \beta_i \beta_j \) and \(\beta_k = \beta_i \beta_j \beta_i^{-1} \), so that \(B_3 \) is generated by \(\beta_i \) and \(\beta_j \) only. The fundamental group \(\pi_1(T,t) \) can be identified with the pure braid group \(P_3 \). The reduction map \([17]\) induces a group homomorphism \(r_* : P_3 = \pi_1(T,t) \rightarrow \pi_1(Z,z) \). It is easy to see that this homomorphism sends the three basic pure braids in \(P_3 \) to the three basic loops in \(\pi_1(Z,z) \) (see Figure 1) in such a manner that

\[
r_* : \beta_i^2 \mapsto \gamma_i \quad (i = 1, 2, 3).
\]

It is sometimes convenient to lift the Poincaré section \([18]\), which makes sense for pure braids, to the “half-Poincaré section” for ordinary braids. Now let us construct this lift. The symmetric group \(S_3 \) acts on \(T \) by permuting the entries of \(t = (t_1, t_2, t_3) \) and the quotient space \(T/S_3 \) is the configuration space of mutually distinct, unordered, three points in \(\mathbb{C} \). The
fundamental group $\pi(T/S_3, s)$ with base point $s = \{t_1, t_2, t_3\}$ is identified with the ordinary braid group B_3 and there exists a short exact sequence of groups

$$1 \longrightarrow \pi_1(T, t) \longrightarrow \pi_1(T/S_3, s) \longrightarrow S_3 \longrightarrow 1$$

Then the Poincaré section [19] naturally lifts to a collection of isomorphisms

$$\beta_\ast : M_t(\kappa) \to M_{\tau(t)}(\tau(\kappa)), \quad (\beta \in B_3)$$

which should be called the half-Poincaré section of $P_{VI}(\kappa)$, where $\tau \in S_3$ denotes the permutation corresponding to $\beta \in B_3$. Note that $\tau \in S_3$ acts on $\kappa \in K$ by permuting the entries of $(\kappa_1, \kappa_2, \kappa_3)$ in the same manner as it does on $t = (t_1, t_2, t_3) \in T$, since κ_i is loaded on t_i. Now the permutation corresponding to the basic braid β_i is the substitution $\tau_i = (i, j)$ that exchanges t_i and t_j while keeping t_k fixed. Thus there are three basic half-Poincaré maps:

$$\beta_{i\ast} : M_t(\kappa) \to M_{\tau_i(t)}(\tau_i(\kappa)), \quad (i = 1, 2, 3). \quad (21)$$

4 Riemann-Hilbert Correspondence

It is very difficult or rather hopeless to deal with the Painlevé flow directly, since it is a highly transcendental dynamical system on the moduli space of stable parabolic connections. A good idea is to recast it to a more tractable dynamical system, called an isomonodromic flow, on a moduli space of monodromy representations via a Riemann-Hilbert correspondence. We review the construction of such a Riemann-Hilbert correspondence in the sequel.

Let $A := \mathbb{C}^4$ be the complex 4-space with coordinates $a = (a_1, a_2, a_3, a_4)$, called the space of local monodromy data. Given $(t, a) \in T \times A$, let $\mathcal{R}_t(a)$ be the moduli space of Jordan equivalence classes of representations $\rho : \pi_1(\mathbb{P}^1 - D_t, *) \to SL_2(\mathbb{C})$ such that $\text{Tr} \rho(C_i) = a_i$ for $i \in \{1, 2, 3, 4\}$, where the divisor $D_t = t_1 + t_2 + t_3 + t_4$ is identified with the point set $\{t_1, t_2, t_3, t_4\}$ and C_i is a loop surrounding t_i as in Figure 6. Any stable parabolic connection $Q = (E, \nabla, \psi, l) \in \mathcal{M}_t(\kappa)$, when restricted to $\mathbb{P}^1 - D_t$, induces a flat connection

$$\nabla|_{\mathbb{P}^1 - D_t} : E|_{\mathbb{P}^1 - D_t} \to (E|_{\mathbb{P}^1 - D_t}) \otimes \Omega_{\mathbb{P}^1 - D_t}^1.$$
Figure 6: Four loops in $\mathbb{P}^1 - D_t$; the fourth point t_4 is outside C_4, invisible.

and one can speak of the Jordan equivalence class ρ of its monodromy representations. Then the Riemann-Hilbert correspondence at $t \in T$ is defined by

$$\text{RH}_{t,\kappa} : \mathcal{M}_t(\kappa) \to \mathcal{R}_t(a), \; Q \mapsto \rho,$$

where in view of the Riemann scheme in Table I, the local monodromy data $a \in A$ is given by

$$a_i = \begin{cases}
2 \cos \pi \kappa_i & (i = 1, 2, 3), \\
-2 \cos \pi \kappa_4 & (i = 4).
\end{cases}$$

As a relative setting over T, let $\pi_a : \mathcal{R}(a) \to T$ be the family of moduli spaces of monodromy representations with fiber $\mathcal{R}_t(a)$ over $t \in T$. Then the relative version of Riemann-Hilbert correspondence is formulated as the commutative diagram

$$\begin{array}{ccc}
\mathcal{M}(\kappa) & \xrightarrow{\text{RH}_\kappa} & \mathcal{R}(a) \\
\downarrow \pi_\kappa & & \downarrow \pi_a \\
T & \xrightarrow{\pi_a} & T,
\end{array}$$

whose fiber over $t \in T$ is given by (22). Then we have the following theorem [16, 17].

Theorem 4.1 If $\kappa \in K - \text{Wall}$, then $\mathcal{R}(a)$ as well as each fiber $\mathcal{R}_t(a)$ is smooth and the Riemann-Hilbert correspondence RH_κ in (24) is a biholomorphism.

Remark 4.2 If $\kappa \in \text{Wall}$, then $\mathcal{R}_t(a)$ is not a smooth surface but a surface with Klein singularities and (22) yields an analytic minimal resolution of singularities, so that (24) gives a family of resolutions of singularities. We refer to [16] for a detailed description of these singularity structures. As is mentioned in Remark 2.11, this fact makes the treatment of the nongeneric case more involved and we leave this case in another occasion.

5 Cubic Surface and the 27 Lines

In this section, following the construction in [16], we shall realize the moduli space $\mathcal{R}_t(a)$ of monodromy representations as an affine cubic surface $S(\theta)$ and describe the braid group action...
on $R_t(a)$ explicitly in terms of $S(\theta)$. Moreover we discuss some materials from the geometry of a cubic surface, including the 27 lines on it, as a preliminary to the later sections.

Given $\theta = (\theta_1, \theta_2, \theta_3, \theta_4) \in \Theta := \mathbb{C}_{\theta}^4$, we consider an affine cubic surface

$$S(\theta) = \{ x = (x_1, x_2, x_3) \in \mathbb{C}_x^3 : f(x, \theta) = 0 \},$$

where the cubic polynomial $f(x, \theta)$ of x with parameter θ is given by

$$f(x, \theta) = x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 - \theta_1x_1 - \theta_2x_2 - \theta_3x_3 + \theta_4.$$

Then there exists an isomorphism of affine algebraic surfaces, $R_t(a) \rightarrow S(\theta)$, $\rho \mapsto x$, where

$$x_i = \text{Tr} \rho(C_jC_k), \quad \text{for} \quad \{i, j, k\} = \{1, 2, 3\},$$

together with a correspondence of parameters, $A \rightarrow \Theta$, $a \mapsto \theta$, given by

$$\theta_i = \begin{cases} a_i a_4 + a_j a_k & \{i, j, k\} = \{1, 2, 3\}, \\ a_1 a_2 a_3 a_4 + a_1^2 + a_2^2 + a_3^2 + a_4^2 - 4 & (i = 4). \end{cases}$$

(25)

With this identification, the Riemann-Hilbert correspondence (22) is reformulated as a map

$$\text{RH}_t(\kappa) : \mathcal{M}_t(\kappa) \rightarrow S(\theta), \quad \text{with} \quad \theta = \text{rh}(\kappa),$$

(26)

where $\text{rh} : \mathcal{K} \rightarrow \Theta$ is the composition of the maps $\mathcal{K} \rightarrow A$ and $A \rightarrow \Theta$ defined by (28) and (29), and is referred to as the Riemann-Hilbert correspondence in the parameter level. Through the reformulated Riemann-Hilbert correspondence (26), the i-th basic half-Poincaré map $\beta_{i,x}$ in (21) is conjugated to a map $g_i : S(\theta) \rightarrow S(\theta')$, $(x, \theta) \mapsto (x', \theta')$, defined by

$$g_i : (x'_i, x'_j, x'_k, \theta'_i, \theta'_j, \theta'_k, \theta'_4) = (\theta_j - x_j - x_k x_i, x_i, x_k, \theta_j, \theta_i, \theta_k, \theta_4),$$

(27)

where (i, j, k) is a cyclic permutation of $(1, 2, 3)$. A derivation of this formula can be found in (20) (see also [5, 9, 12, 19, 23]). The map (27) is strictly conjugate to the map (21), since (26) is biholomorphic by Theorem 11. We can easily check the relations $g_i g_j g_i = g_j g_i g_j$ and $g_k = g_i g_j g_k^{-1}$, which are just parallel to those for the braids β_{i}, β_{j}, β_{k}.

Remark 5.1 The affine cubic surface $S(\theta)$ admits a natural complex area form

$$\omega(\theta) = \frac{dx_1 \wedge dx_2 \wedge dx_3}{d_x f(x, \theta)},$$

(28)

the Poincaré residue for the surface $S(\theta)$. The transformations g_i are area-preserving with respect to $\omega(\theta)$. It is known [16, 18, 20] that the standard area form $\omega_t(\kappa)$ on the moduli space $\mathcal{M}_t(\kappa)$ in Remark 3.4 is the pull-back of $\omega(\theta)$ by the Riemann-Hilbert correspondence (26).

In order to utilize standard techniques from algebraic geometry and complex geometry, we need to compactify the affine cubic surface $S(\theta)$ by a standard embedding

$$S(\theta) \hookrightarrow \overline{S}(\theta) \subset \mathbb{P}^3, \quad x = (x_1, x_2, x_3) \mapsto [1 : x_1 : x_2 : x_3],$$

where the compactified surface $\overline{S}(\theta)$ is defined by $\overline{S}(\theta) = \{ X \in \mathbb{P}^3 : F(X, \theta) = 0 \}$ with

$$F(X, \theta) = X_1 X_2 X_3 + X_0 (X_1^2 + X_2^2 + X_3^2) - X_0^2 (\theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3) + \theta_4 X_0^3.$$
Figure 7: Tritangent lines at infinity on $S(\theta)$

It is obtained from the affine surface $S(\theta)$ by adding three lines at infinity,

$$L_i = \{ X \in \mathbb{P}^3 : X_0 = X_i = 0 \} \quad (i = 1, 2, 3). \quad (29)$$

The union $L = L_1 \cup L_2 \cup L_3$ is called the tritangent lines at infinity and the intersection point of L_j and L_k is denoted by p_i as in Figure 7. Note that $p_1 = [0 : 1 : 0 : 0]$, $p_2 = [0 : 0 : 1 : 0]$, $p_3 = [0 : 0 : 0 : 1]$.

For $i \in \{1, 2, 3\}$ we put $U_i = \{ X \in \mathbb{P}^3 : X_i \neq 0 \}$ and take inhomogeneous coordinates of \mathbb{P}^3 as

$$u = (u_0, u_j, u_k) = (X_0/X_i, X_j/X_i, X_k/X_i) \quad \text{on} \quad U_i,$$

$$v = (v_0, v_i, v_k) = (X_0/X_j, X_j/X_i, X_k/X_j) \quad \text{on} \quad U_j,$$

$$w = (w_0, w_i, w_j) = (X_0/X_k, X_j/X_k, X_k/X_j) \quad \text{on} \quad U_k,$$

where $\{i, j, k\} = \{1, 2, 3\}$. In terms of these coordinates we shall find local coordinates and local equations of $\overline{S}(\theta)$ around L. Since $L \subset U_1 \cup U_2 \cup U_3$, we can divide L into three components $L \cap U_i$, $i = 1, 2, 3$, and make a further decomposition

$$L \cap U_i = \{ p_i \} \cup (L_j - \{ p_i, p_k \}) \cup (L_k - \{ p_i, p_j \}) \quad (\{i, j, k\} = \{1, 2, 3\})$$

into a total of nine pieces. Then a careful inspection of equation $F(X, \theta) = 0$ implies that around those pieces we can take local coordinates and local equations as in Table 2, where $O_m(u_j, u_k) = O((|u_j| + |u_k|)^m)$ denotes a small term of order m as $(u_j, u_k) \to (0, 0)$.

Lemma 5.2 As to the smoothness of the surface $\overline{S}(\theta)$, the following hold.

1. For any $\theta \in \Theta$, the surface $\overline{S}(\theta)$ is smooth in a neighborhood of L.

2. If $\theta = \text{rh}(\kappa)$ with $\kappa \in K$, the surface $\overline{S}(\theta)$ is smooth everywhere if and only if $\kappa \in K-$Wall.

Proof. In terms of the inhomogeneous coordinates u in (30), we have

$$\overline{S}(\theta) \cap U_i \cong \{ u = (u_0, u_j, u_k) \in \mathbb{C}^3 : f_i(u, \theta) = 0 \},$$

15
where the defining equation \(f_i(u, \theta) \) is given by
\[
f_i(u, \theta) = u_j u_k + u_0 (1 + u_j^2 + u_k^2) - u_0^2 (\theta_i + \theta_j u_j + \theta_k u_k) + \theta_4 u_0^3.
\]
The partial derivatives of \(f_i = f_i(u, \theta) \) with respect to \(u = (u_0, u_j, u_k) \) are calculated as
\[
\frac{\partial f_i}{\partial u_0} = (1 + u_j^2 + u_k^2) - 2u_0(\theta_i + \theta_j u_j + \theta_k u_k) + 3\theta_4 u_0^2
\]
\[
\frac{\partial f_i}{\partial u_j} = u_k + 2u_0 u_j - \theta_j u_0^2
\]
\[
\frac{\partial f_i}{\partial u_k} = u_j + 2u_0 u_k - \theta_k u_0^2.
\]
Restricted to the set \(L \cap U_i = (L_j \cap U_i) \cup (L_k \cap U_i) \), these derivatives become
\[
\frac{\partial f_i}{\partial u_0} = 1 + u_k^2, \quad \frac{\partial f_i}{\partial u_j} = u_k, \quad \frac{\partial f_i}{\partial u_k} = 0, \quad \text{on} \quad L_j \cap U_i;
\]
\[
\frac{\partial f_i}{\partial u_0} = 1 + u_j^2, \quad \frac{\partial f_i}{\partial u_j} = 0, \quad \frac{\partial f_i}{\partial u_k} = u_j, \quad \text{on} \quad L_k \cap U_i.
\]
Hence the exterior derivative \(d_u f_i \) does not vanish on \(L \cap U_i \), and the implicit function theorem implies that \(\mathcal{S}(\theta) \) is smooth in a neighborhood of \(L \). This proves assertion (1). In order to show assertion (2) we recall that the affine surface \(S(\theta) \) is smooth if and only if \(\theta = \text{rh}(\kappa) \) with \(\kappa \in K - \text{Wall} \) (see [18]). Then assertion (2) readily follows from assertion (1). \(\square \)

coordinates	valid around	local equation
\((u_j, u_k)\)	\(p_i\)	\(u_0 = -(u_j u_k)\{1 - (u_j^2 + \theta_i u_j u_k + u_k^2) + O_3(u_j, u_k)\} \)
\((u_0, u_k)\)	\(L_j - \{p_i, p_k\}\)	\(u_j = -(u_k + 1/u_k)u_0 + (\theta_k + \theta_i/u_k)u_0^2 + O(u_0^3) \)
\((u_0, u_j)\)	\(L_k - \{p_i, p_j\}\)	\(u_k = -(u_j + 1/u_j)u_0 + (\theta_j + \theta_i/u_j)u_0^2 + O(u_0^3) \)
\((v_i, v_k)\)	\(p_j\)	\(v_0 = -(v_i v_k)\{1 - (v_i^2 + \theta_j v_i v_k + v_k^2) + O_3(v_i, v_k)\} \)
\((v_0, v_i)\)	\(L_k - \{p_i, p_j\}\)	\(v_k = -(v_i + 1/v_i)v_0 + (\theta_i + \theta_j/v_i)v_0^2 + O(v_0^3) \)
\((v_0, v_k)\)	\(L_i - \{p_j, p_k\}\)	\(v_i = -(v_k + 1/v_k)v_0 + (\theta_k + \theta_j/v_k)v_0^2 + O(v_0^3) \)
\((w_i, w_j)\)	\(p_k\)	\(w_0 = -(w_i w_j)\{1 - (w_i^2 + \theta_k w_i w_j + w_j^2) + O_3(w_i, w_j)\} \)
\((w_0, w_j)\)	\(L_i - \{p_j, p_k\}\)	\(w_i = -(w_j + 1/w_j)w_0 + (\theta_j + \theta_k/w_j)w_0^2 + O(w_0^3) \)
\((w_0, w_i)\)	\(L_j - \{p_i, p_k\}\)	\(w_j = -(w_i + 1/w_i)w_0 + (\theta_i + \theta_k/w_i)w_0^2 + O(w_0^3) \)

Table 2: Local coordinates and local equations of \(\mathcal{S}(\theta) \)
Now let us review some basic facts about smooth cubic surfaces in \mathbb{P}^3 (see e.g. [11]). It is well known that every smooth cubic surface S in \mathbb{P}^3 can be obtained by blowing up \mathbb{P}^2 at six points P_1, \ldots, P_6, no three colinear and not all six on a conic, and embedding the blow-up surface into \mathbb{P}^3 by the proper transform of the linear system of cubics passing through the six points P_1, \ldots, P_6. It is also well known that there are exactly 27 lines on the smooth cubic surface S, each of which has self-intersection number -1. Explicitly, they are given by

\begin{align*}
E_a \quad (a = 1, \ldots, 6); & \quad F_{ab} \quad (1 \leq a < b \leq 6); & \quad G_a \quad (a = 1, \ldots, 6),
\end{align*}

(1) E_a is the exceptional curve over the point P_a,

(2) F_{ab} is the strict transform of the line in \mathbb{P}^2 through the two points P_a and P_b,

(3) G_a is the strict transform of the conic in \mathbb{P}^2 through the five points $P_1, \ldots, \hat{P}_a, \ldots, P_6$.

Here the index a should not be confused with the local monodromy data $a \in A$. All the intersection relations among the 27 lines with nonzero intersection numbers are listed as

\begin{align*}
(E_a, E_a) &= (G_a, G_a) = (F_{ab}, F_{ab}) = -1 \quad (\forall a, b), \\
(E_a, F_{bc}) &= (G_a, F_{bc}) = 1 \quad (a \in \{b, c\}), \\
(E_a, G_b) &= 1 \quad (a \neq b), \\
(F_{ab}, F_{cd}) &= 1 \quad (\{a, b\} \cap \{c, d\} = \emptyset).
\end{align*}

Moreover there are exactly 45 tritangent planes that cut out a triplet of lines on S. In our case $S = \mathfrak{S}(\theta)$, the plane at infinity $\{X \in \mathbb{P}^3 : X_0 = 0\}$ is an instance of tritangent plane,
Table 3: Eight lines intersecting the line L_i at infinity, divided into four pairs

	$L_i(b_i, b_4; b_j, b_k)$	$L_i(1/b_i, 1/b_4; b_j, b_k)$
1	$L_i(b_i, b_4; b_j, b_k)$	$L_i(1/b_i, 1/b_4; b_j, b_k)$
2	$L_i(b_j, b_k; b_i, b_4)$	$L_i(1/b_j, 1/b_k; b_i, b_4)$
3	$L_i(1/b_i, b_4; b_j, b_k)$	$L_i(b_i, 1/b_4; b_j, b_k)$
4	$L_i(1/b_j, b_k; b_i, b_4)$	$L_i(b_j, 1/b_k; b_i, b_4)$

which cuts out the lines in (29). The arrangement of the 27 lines viewed from the tritangent plane at infinity is shown in Figure 8 and the lines at infinity are given by

$$L_1 = F_{14}, \quad L_2 = F_{25}, \quad L_3 = F_{36}. \quad (31)$$

Each line at infinity is intersected by exactly eight lines and this fact enables us to divide the 27 lines into three groups of nine lines labeled by lines at infinity. **Caution:** only the intersection relations among the lines of the same group are indicated and no other intersection relations are depicted in Figure 8.

If E_0 is the strict transform of a line in \mathbb{P}^2 not passing through P_1, \ldots, P_6 relative to the 6-point blow-up $S \to \mathbb{P}^2$, then the second cohomology group of $S = \overline{\mathcal{S}}(\theta)$ is expressed as

$$H^2(\overline{\mathcal{S}}(\theta), \mathbb{Z}) = \mathbb{Z}E_0 \oplus \mathbb{Z}E_1 \oplus \mathbb{Z}E_2 \oplus \mathbb{Z}E_3 \oplus \mathbb{Z}E_4 \oplus \mathbb{Z}E_5 \oplus \mathbb{Z}E_6, \quad (32)$$

where a divisor is identified with the cohomology class it represents. It is a Lorentzian lattice of rank 7 with intersection numbers

$$(E_a, E_b) = \begin{cases}
1 & (a = b = 0), \\
-1 & (a = b \neq 0), \\
0 & \text{(otherwise)}.
\end{cases} \quad (33)$$

In terms of the basis in (32) the lines F_{ab} and G_a are represented as

$$F_{ab} = E_0 - E_a - E_b, \quad G_a = 2E_0 - (E_1 + \cdots + \hat{E}_a + \cdots + E_6). \quad (34)$$

We shall describe the 27 lines on our cubic surface $\overline{\mathcal{S}}(\theta)$ under the condition that $\overline{\mathcal{S}}(\theta)$ is smooth, namely, $\theta = \rhoh(\kappa)$ with $\kappa \in \mathcal{K} - \text{Wall}$. To this end we introduce new parameters

$$b = (b_1, b_2, b_3, b_4) \in B := (\mathbb{C}^*)^4$$

in such a manner that b is expressed as

$$b_i = \begin{cases}
\exp(\sqrt{-1\pi\kappa_i}) & (i = 1, 2, 3), \\
-\exp(\sqrt{-1\pi\kappa_4}) & (i = 4),
\end{cases}$$

as a function of $\kappa \in \mathcal{K}$. Then the Riemann scheme in Table 2 implies that b_i is an eigenvalue of the monodromy matrix $\rho(C_i)$ around the point t_i and formula (23) implies that $a_i = b_i + b_i^{-1}$. Here parameters $b \in B$ should not be confused with the index b above. In terms of the parameters $b \in B$, the discriminant $\Delta(\theta)$ of the cubic surfaces $\mathcal{S}(\theta)$ factors as

$$\Delta(\theta) = \prod_{i=1}^{4} (b_i - b_i^{-1})^2 \prod_{\varepsilon \in \{\pm 1\}^4} (b^\varepsilon - 1), \quad (35)$$

18
Lemma 6.1 The birational map \(\sigma \) has the following properties (see Figure 11).

1. \(\sigma \) blows down the line \(L_i \) to the point \(p_i \),

2. \(\sigma \) restricts to the automorphism of \(L_j \) that fixes \(q_j \) and exchanges \(p_i \) and \(p_k \),
Figure 9: Involutions of a \((2,2,2)\)-surface

Figure 10: The birational map \(\sigma_i\) restricted to \(L\)

(3) \(\sigma_i\) restricts to the automorphism of \(L_k\) that fixes \(q_k\) and exchanges \(p_i\) and \(p_j\),

(4) \(p_i\) is the unique indeterminacy point of \(\sigma_i\),

Proof. In order to investigate \(\sigma_i\), we use the inhomogeneous coordinates of \(\mathbb{P}^3\) in (30) and local coordinates and local equations of \(\mathbb{S}(\theta)\) in Table 2 with target coordinates being dashed.

In terms of the inhomogeneous coordinates \(v\) and \(u'\) of \(\mathbb{P}^3\), the map \(\sigma_i : v \mapsto u'\) is given by

\[
\begin{align*}
u'_0 &= \frac{v_0^2}{\theta_i v_0^2 - v_0 v_i - v_k}, \\
u'_j &= \frac{v_0}{\theta_i v_0^2 - v_0 v_i - v_k}, \\
u'_k &= \frac{v_0 v_k}{\theta_i v_0^2 - v_0 v_i - v_k}.
\end{align*}
\]

(38)

In a neighborhood of \(L_i - \{p_j, p_k\}\) in \(\mathbb{S}(\theta)\), using \(v_i = O(v_0)\), we observe that

\[
\theta_i v_0^2 - v_0 v_i - v_k = -v_k \{1 + O(v_0^2)\},
\]

which is substituted into (38) to yield

\[
\begin{align*}
u'_j &= -\frac{v_0}{v_k \{1 + O(v_0^2)\}} = -\frac{v_0}{v_k} \{1 + O(v_0^2)\}, \\
u'_k &= -\frac{v_0 v_k}{v_k \{1 + O(v_0^2)\}} = -v_0 \{1 + O(v_0^2)\}.
\end{align*}
\]

In particular putting \(v_0 = 0\) leads to \(u'_j = u'_k = 0\). This means that \(\sigma_i\) maps a neighborhood of \(L_i - \{p_j, p_k\}\) to a neighborhood of \(p_i\), collapsing \(L_i - \{p_j, p_k\}\) to the single point \(p_i\).
In a similar manner, in a neighborhood of \(p_j \) in \(\mathcal{S}(\theta) \) we observe that
\[
v_0 = -(v_i v_k) \{1 + O_2(v_i, v_k)\}, \quad \theta_i v_0^2 - v_0 v_i - v_k = -v_k \{1 + O_2(v_i, v_k)\},
\]
which are substituted into (38) to yield
\[
u_j' = v_i \{1 + O_2(v_i, v_k)\}, \quad u_k = (v_i v_k) \{1 + O_2(v_i, v_k)\}.
\]
In particular putting \(v_i = 0 \) leads to \(u_j' = u_k' = 0 \). This means that \(\sigma_i \) maps a neighborhood of \(p_j \) to a neighborhood of \(p_i \), collapsing a neighborhood in \(L_i \) of \(p_j \) to the single point \(p_i \). Using \((w, u') \) in place of \((v, u') \), we can argue similarly in a neighborhood of \(p_k \). Therefore \(\sigma_i \) blows down \(L_i \) to the point \(p_i \), which proves assertion (1). Moreover it is clear from the argument that there is no indeterminacy point on the line \(L_i \).

In terms of the inhomogeneous coordinates \(u \) and \(u' \) of \(\mathbb{P}^3 \) the map \(\sigma_i : u \mapsto u' \) is given by
\[
u_0' = \frac{u_0^2}{\theta_i u_0^2 - u_0 - u_j u_k}, \quad u_j' = \frac{u_0 u_j}{\theta_i u_0^2 - u_0 - u_j u_k}, \quad u_k' = \frac{u_0 u_k}{\theta_i u_0^2 - u_0 - u_j u_k}; \quad (39)
\]
In a neighborhood of \(L_j - \{p_i, p_k\} \) in \(\mathcal{S}(\theta) \), using \(\theta_j u_0^2 - u_0 - u_j u_k = u_0 \{u_k^2 + O(u_0)\} \), we have
\[
\theta_i u_0^2 - u_0 - u_j u_k = u_0 \{u_k^2 + O(u_0)\},
\]
which is substituted into (39) to yield
\[
u_0' = \frac{u_0}{u_k^2 + O(u_0)} = \frac{u_0}{u_k^2 + O(u_0)}, \quad u_j' = \frac{u_k}{u_k^2 + O(u_0)} = \frac{1}{u_k} + O(u_0).
\]
In particular putting \(u_0 = 0 \) leads to \(u_0' = 0 \) and \(u_k' = 1/u_k \). This means that \(\sigma_i \) restricts to an automorphism of a neighborhood of \(L_j - \{p_i, p_k\} \) in \(\mathcal{S}(\theta) \) which induces a unique automorphism of \(L_i \) fixing \(q_j \) and exchanging \(p_i \) and \(p_k \). This proves assertion (2) and also shows that there is no indeterminacy point on \(L_j - \{p_i, p_k\} \). Assertion (3) and the nonexistence of indeterminacy point on \(L_k - \{p_i, p_j\} \) are established just in the same manner.

From the above argument we have already known that there is no indeterminacy point other than \(p_i \). Then the point \(p_i \) is actually an indeterminacy point, because \(\sigma_i \) is an involution blowing down \(L_i \) to \(p_i \) and hence blows up \(p_i \) to \(L_i \) reciprocally. This proves assertion (4). \(\Box \)

Later we will need some information about how the involution \(\sigma_i \) transforms a line to another curve, which is stated in the following lemma.

Lemma 6.2 For any \(\{i, j, k\} = \{1, 2, 3\} \), the involution \(\sigma_i \) satisfies the following properties:

1. \(\sigma_i(E_i) \) intersects \(E_i \) at two points counted with multiplicity. Similarly, \(\sigma_i(E_{i+3}) \) intersects \(E_{i+3} \) at two points counted with multiplicity.

2. \(\sigma_i(E_i) \) intersects \(E_{i+3} \) at one point counted with multiplicity. Similarly, \(\sigma_i(E_{i+3}) \) intersects \(E_i \) at one point counted with multiplicity.

3. \(\sigma_i \) exchanges the lines \(E_j \) and \(G_{j+3} \); \(E_{j+3} \) and \(G_j \); \(E_k \) and \(G_{k+3} \); \(E_{k+3} \) and \(G_k \), respectively.
In a similar manner, by exchanging \((b_i, b_4)\) and \((b_j, b_k)\) in (36), the line \(E_{i+3}\) is given by
\[
x_i = b_j b_k + (b_j b_k)^{-1}, \quad x_j + (b_j b_k) x_k = a_i b_i + a_j b_k.
\] (41)
Moreover, by applying formula (37) to (40), the curve \(\sigma_i(E_i)\) is expressed as
\[
\theta_i - x_i - x_j x_k = b_i b_4 + (b_i b_4)^{-1}, \quad x_j + (b_i b_4) x_k = a_k b_i + a_j b_4.
\] (42)
Note that the second equations of (40) and (42) are the same.

In order to find out the intersection of \(\sigma_i(E_i)\) with \(E_i\), let us couple (40) and (42) together. Eliminating \(x_i\) and \(x_j\) we obtain a quadratic equation for \(x_k\),
\[
(b_i b_4) x_k^2 - (a_k b_i + a_j b_4) x_k + \theta_i - 2\{b_i b_4 + (b_i b_4)^{-1}\} = 0.
\]
For a simple root of this equation we have a simple intersection point of \(\sigma_i(E_i)\) with \(E_i\) and for a double root we have an intersection point of multiplicity two. This proves assertion (1) for the pair \(\sigma_i(E_i)\) and \(E_i\). The assertion (1) for \(\sigma_i(E_{i+3})\) and \(E_{i+3}\) is proved in a similar manner.

Next, in order to find out the intersection of \(\sigma_i(E_i)\) with \(E_{i+3}\), let us couple (41) and (42). From the first equation of (41) the \(x_i\)-coordinate is already fixed. The second equations of (41) and (42) are coupled to yield a linear system for \(x_j\) and \(x_k\), whose determinant
\[
b_j b_k - b_i b_4 = b_i b_4 (b_i^{-1} b_j b_k b_4^{-1} - 1)
\]
is nonzero by the assumption that \(\mathfrak{S}^{-1}(\theta)\) is smooth, that is, the discriminant \(\Delta(\theta)\) in (35) is nonzero. Then the linear system is uniquely solved to determine \(x_j\) and \(x_k\). Now we can check that the first equation of (42) is redundant, that is, automatically satisfied. Therefore \(\sigma_i(E_i)\) and \(E_{i+3}\) has a simple intersection, which implies assertion (2) for the pair \(\sigma_i(E_i)\) and \(E_{i+3}\). The assertion (2) for \(\sigma_i(E_{i+3})\) and \(E_i\) is proved in a similar manner.

Finally we see that \(\sigma_i\) exchanges \(E_j\) and \(G_{j+3}\). We may put \(E_j = L_j(b_j, b_4; b_k, b_i)\) and \(G_{j+3} = L_j(1/b_j, 1/b_4; b_k, b_i)\). By formula (36) (with indices suitably permuted), these lines are given by
\[
x_j = b_j b_4 + (b_j b_4)^{-1}, \quad x_k + (b_j b_4) x_i = a_i b_j + a_k b_4.
\] (43)
\[
x_j = b_j b_4 + (b_j b_4)^{-1}, \quad x_k + (b_j b_4)^{-1} x_i = a_i b_j^{-1} + a_k b_4^{-1}.
\] (44)
Using formula (37) we can check that equations (43) and (44) are transformed to each other by \(\sigma_i\). This together with similar argument for the other lines establishes assertion (3).

\[\square\]

7 Cohomological Action

A general theory of the dynamical system for a bimeromorphic map of a surface is developed in [7]. The basic strategy employed there is to consider the induced action of the map on the \((1, 1)\)-cohomology group, taking into account the influence of its exceptional set and indeterminacy set. In this section we shall use this technique in our context.
Let S be a compact complex surface, $f : S \to S$ a bimeromorphic map. Then f is represented by a compact complex surface Γ, called the desingularized graph of f, together with proper modifications $\pi_1 : \Gamma \to S$ and $\pi_2 : \Gamma \to S$ such that $f = \pi_2 \circ \pi_1^{-1}$ on a dense open subset. For $i = 1, 2$, let $\mathcal{E}(\pi_i) := \{ x \in \Gamma : \# \pi_i^{-1}(\pi_i(x)) = \infty \}$ be the exceptional set for the projection π_i. The images $\mathcal{E}(f) := \pi_1(\mathcal{E}(\pi_2))$ and $I(f) := \pi_1(\mathcal{E}(\pi_1))$ are called the exceptional set and the indeterminacy set of f respectively. Between these sets there is a useful relation

$$f(\mathcal{E}(f)) = I(f^{-1}). \quad (45)$$

If $S = \overline{S(\theta)}$ and $f = \sigma_i$, then Lemma 6.1 readily leads to the following lemma.

Lemma 7.1 For each $i \in \{1, 2, 3\}$, we have $\mathcal{E}(\sigma_i) = L_i$, $\sigma_i(\mathcal{E}(\sigma_i)) = \{p_i\}$ and $I(\sigma_i) = \{p_i\}$.

Given any element $\sigma \in G$ other than the unit element, we can write

$$\sigma = \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_n}, \quad (46)$$

for some $n \in \mathbb{N}$ and some n-tuple of indices $(i_1, \ldots, i_n) \in \{1, 2, 3\}^n$ such that every neighboring indices i_i and i_{i+1} are distinct. It is not yet clear at this stage whether the expression (46) is unique or not, though the uniqueness will be established later (see Theorem 7.7). In any case, we begin with the determination of the exceptional set and the indeterminacy set of σ.

Lemma 7.2 For the expression (46) we have

$$\mathcal{E}(\sigma) = \bigcup_{\nu=1}^n L_{i_{\nu}}, \quad \sigma(\mathcal{E}(\sigma)) = \{p_{i_1}\}, \quad I(\sigma) = \{p_{i_n}\}. \quad (47)$$

Proof. Let us prove the first formula of (47) by induction on the length n. For $n = 1$ the assertion immediately follows from Lemma 7.1. Assume that the assertion holds when the length is $n - 1$ and consider the element $\sigma' = \sigma_{i_2} \cdots \sigma_{i_n}$ of length $n - 1$. Since p_{i_1} and p_{i_2} are distinct, we have $I(\sigma_{i_1}) \cap \sigma'(\mathcal{E}(\sigma')) = \{p_{i_1}\} \cap \{p_{i_2}\} = \emptyset$ and hence $\mathcal{E}(\sigma') \subseteq \mathcal{E}(\sigma)$. Therefore,

$$\bigcup_{\nu=2}^n L_{i_{\nu}} \subset \mathcal{E}(\sigma) \subset \bigcup_{\nu=1}^n L_{i_{\nu}}, \quad (48)$$

where the first inclusion follows from the induction hypothesis and the second inclusion is easily seen from Lemma 6.1. If $i_1 \in \{i_2, \ldots, i_n\}$, then the leftmost and rightmost sets in (48) are the same and hence all the three coincide. If $i_1 \notin \{i_2, \ldots, i_n\}$, then Lemma 6.1 implies that σ' maps L_{i_1} isomorphically onto itself and then σ_{i_1} blows down L_{i_1} to the single point p_{i_1}. This means that $L_{i_1} \subseteq \mathcal{E}(\sigma)$ and hence the second inclusion in (48) becomes equality. Thus the assertion is verified for length n and the induction is complete.

The second formula in (47) is also proved by induction on the length n. For $n = 1$ the assertion immediately follows from Lemma 7.1. Assume that the assertion holds when the length is $n - 1$. Then we have $\sigma'(\mathcal{E}(\sigma')) = \{p_{i_2}\}$ by induction hypothesis and hence $\sigma(\mathcal{E}(\sigma)) = \sigma_{i_1}(\mathcal{E}(\sigma_{i_1}) \cup \sigma'(\mathcal{E}(\sigma'))) = \sigma_{i_1}(L_{i_1} \cup \{p_{i_2}\}) = \sigma_{i_1}(L_{i_1}) = \{p_{i_1}\}$, since $p_{i_2} \notin L_{i_1}$. This shows that the assertion is verified for length n and hence the induction is complete.

Next we prove the last formula of (47). Instead of σ we consider its inverse σ^{-1}. Since $\sigma^{-1} = \sigma_{i_n} \cdots \sigma_{i_2} \sigma_{i_1}$, the second formula of (47) yields $\sigma^{-1}(\mathcal{E}(\sigma^{-1})) = \{p_{i_n}\}$. Then applying formula (45) to $f = \sigma^{-1}$, we have $I(\sigma) = \{p_{i_n}\}$. Thus the lemma is established. \qed
that the lemma holds when the length is

For the expression

Lemma 7.4

actions

σ

H

If

Lemma 7.3

true. However a useful criterion under which this rule becomes true is given in [7].

obtain

differential,

in Table 4 with respect to the basis in

(The linear operators

Lemma 7.5

On

is a Kähler surface, two natural actions of

f, pull-back and push-forward, on the Dolbeault cohomology group

H^{1,1}(S)

are defined in the following manner: A smooth

(1,1)-form

ω on

S
can be pulled back as a smooth

(1,1)-form

π^*_2 ω on

Γ

and then pushed forward as a

(1,1)-current

π_1 * π^*_2 ω on

S.
 Hence we define the pull-back

f^* ω := π_1 * π^*_2 ω

and also the push-forward

f_* ω := (f^{-1})^* ω := π_2 * π^*_1 ω.

The operators

f^*

and

f_*

commute with the exterior differential

d

and the complex structure of

S

and so descend to linear actions on

H^{1,1}(S).

For general bimeromorphic maps

f

and

g,

the composition rule

(f ∘ g)^* = g^* ∘ f^*

is not necessarily true. However a useful criterion under which this rule becomes true is given in [7].

Table 4: Matrix representations of

σ_1^*,

σ_2^*,

σ_3^*,

c^* : H^2(S(\theta), \mathbb{Z}) \circledast,

where

c = \sigma_1 \sigma_2 \sigma_3

If

S

is a Kähler surface, two natural actions of

f,

pull-back and push-forward, on the Dolbeault cohomology group

H^{1,1}(S)

are defined in the following manner: A smooth

(1,1)-form

ω on

S
can be pulled back as a smooth

(1,1)-form

π^*_2 ω on

Γ

and then pushed forward as a

(1,1)-current

π_1 * π^*_2 ω on

S.
 Hence we define the pull-back

f^* ω := π_1 * π^*_2 ω

and also the push-forward

f_* ω := (f^{-1})^* ω := π_2 * π^*_1 ω.

The operators

f^*

and

f_*

commute with the exterior differential

d

and the complex structure of

S

and so descend to linear actions on

H^{1,1}(S).

For general bimeromorphic maps

f

and

g,

the composition rule

(f ∘ g)^* = g^* ∘ f^*

is not necessarily true. However a useful criterion under which this rule becomes true is given in [7].

Lemma 7.3

If

I(f) \cap f(E(g)) = \emptyset,

then

(f ∘ g)^* = g^* ∘ f^* : H^{1,1}(S) \circledast.

We shall apply this lemma to our birational transformation

σ

in [16].

Lemma 7.4

For the expression

\[\square \]

we have

\[\sigma^* = \sigma^*_1 \cdots \sigma^*_2 \sigma^*_1 : H^{1,1}(\overline{S}(\theta)) \circledast. \]

Proof. We prove the lemma by induction on the length

n.

It is trivial when

n = 1.

Assume that the lemma holds when the length is

n-1.

If we put

σ' = \sigma_{i_2} \cdots \sigma_{i_n},

then the induction hypothesis implies that

\((σ')^* = \sigma^*_1 \cdots \sigma^*_{i_2} \).

Lemma [7.2] shows that

I(σ_{i_1}) \cap σ'(E(σ')) = \{ p_{i_1} \} \cap \{ p_{i_2} \} = \emptyset,

since

p_{i_1}

and

p_{i_2}

are distinct. We now apply Lemma [7.3] to

f = \sigma_{i_1}

and

g = σ'

to obtain

\(\sigma^* = (σ_{i_1} σ')^* = (σ')^* σ_{i_1}^* = \sigma^*_1 \cdots \sigma^*_{i_2} \sigma^*_1 \).

Thus the lemma is true for length

n.

By Lemma [7.3] the calculation of the action

\(\sigma^* : H^{1,1}(\overline{S}(\theta)) \circledast \)

is reduced to that of the actions

\(\sigma^*_1, \sigma^*_2, \sigma^*_3 : H^{1,1}(\overline{S}(\theta)) \circledast, \)

which is now set forth. Since the cubic surfa ce

\(\overline{S}(\theta) \)

is rational, we have

\(H^{1,1}(\overline{S}(\theta)) = H^2(\overline{S}(\theta), \mathbb{C}) \),

where the latter group is described in [32].

Lemma 7.5

The linear operators

σ^*_1, \sigma^*_2, \sigma^*_3 : H^2(\overline{S}(\theta), \mathbb{Z}) \circledast

have matrix representations as in Table 4 with respect to the basis in [32].
Proof. First we shall find the matrix representation of σ_1^*. If ξ_{ab} denotes the (a,b)-th entry of the matrix to be found, where $0 \leq a, b \leq 6$, then (33) implies that

$$\sigma_1^*E_b = \sum_{a=0}^{6} \xi_{ab}E_a = \sum_{a=0}^{6} \delta_a(\sigma_1^*E_b, E_a)E_a,$$

where we put $\delta_a = 1$ for $a = 0$ and $\delta_a = -1$ for $a \neq 0$. Now we claim that

$$\xi_{ab} = \delta_a(\sigma_1^*E_b, E_a), \quad \xi_{ab} = \delta_a \delta_b \xi_{ba}. \quad (49)$$

The first formula in (49) is obvious and the second formula is derived as follows:

$$\xi_{ab} = \delta_a(\sigma_1^*E_b, E_a) = \delta_a(E_b, \sigma_1E_a) = \delta_a(E_b, \sigma_1^*E_a) = (\delta_a \delta_b) \cdot \delta_b(\sigma_1^*E_a, E_b) = (\delta_a \delta_b) \xi_{ba},$$

where in the third equality we have used the fact that σ_1 is an involution; $\sigma_1^* = (\sigma_1^{-1})^* = \sigma_1^*$. By assertions (1) and (2) of Lemma 6.2 we have $(\sigma_1^*E_1, E_1) = 2$ and $(\sigma_1^*E_1, E_4) = 1$ and likewise $(\sigma_1^*E_4, E_4) = 2$ and $(\sigma_1^*E_4, E_1) = 1$. Then the first formula of (49) yields

$$\xi_{11} = \xi_{44} = -2, \quad \xi_{14} = \xi_{41} = -1. \quad (50)$$

The assertion (3) of Lemma 6.2 together with the second formula of (34) yields

$$\left\{ \begin{array}{l}
\sigma_1^*E_2 = 2E_0 - E_1 - E_2 - E_3 - E_4 - E_6, \\
\sigma_1^*E_3 = 2E_0 - E_1 - E_2 - E_3 - E_4 - E_5, \\
\sigma_1^*E_5 = 2E_0 - E_1 - E_3 - E_4 - E_5 - E_6, \\
\sigma_1^*E_6 = 2E_0 - E_1 - E_2 - E_4 - E_5 - E_6, \\
\end{array} \right. \quad (51)$$

It follows from (51) and (52) that the matrix representation for σ_1^* takes the form

$\sigma_1^* = \begin{pmatrix}
* & * & 2 & 2 & * & 2 & 2 \\
* & -2 & -1 & -1 & -1 & -1 & -1 \\
* & -1 & 1 & 0 & -1 & 0 & -1 \\
* & -1 & -1 & -2 & -1 & -1 & -1 \\
* & -1 & -1 & 0 & 0 & -1 & -1 \\
* & -1 & -1 & 0 & -1 & -1 & -1
\end{pmatrix}, \quad (52)$

where the entries denoted by \bullet and $*$ are yet to be determined. The entries denoted by \bullet are easily determined by the second formula in (49). The final ingredient taken into account is the fact that σ_1 blows down $L_1 = E_0 - E_1 - E_4$ to the point p_1 (see Lemma 6.1), which leads to

$$\sigma_1^*E_0 - \sigma_1^*E_1 - \sigma_1^*E_4 = 0.$$

This means that the 0-th column is the sum of the first and fourth columns in the matrix (52). Using the second formula in (34) repeatedly, we see that (52) becomes the first matrix of Table 4. The matrix representations of σ_2^* and σ_3^* are obtained just in the same manner. \hfill \Box

In order to make Lemma 7.5 more transparent, we consider the direct sum decomposition

$$H^2(\mathfrak{S}(\theta), \mathbb{C}) = V \oplus V^\perp, \quad (53)$$

25
where V is the subspace spanned by the lines L_1, L_2, L_3 at infinity and V^\perp is the orthogonal complement to it with respect to the intersection form. In view of (31) and (34), we have

$$L_1 = E_0 - E_1 - E_4, \quad L_2 = E_0 - E_2 - E_5, \quad L_3 = E_0 - E_3 - E_6.$$

On the other hand, it is easily seen that the subspace V^\perp is spanned by the vectors

$$2E_0 - E_1 - E_2 - E_3 - E_4 - E_5 - E_6, \quad E_1 - E_4, \quad E_2 - E_5, \quad E_3 - E_6.$$

A little calculation in terms of the new basis shows that Lemma 7.3 can be restated as follows.

\begin{lemma}
\textbf{Lemma 7.6} The linear operators $\sigma_1^*, \sigma_2^*, \sigma_3^*: H^2(\mathcal{S}(\theta), \mathbb{Z}) \ominus$ preserve the subspaces V and V^\perp. They act on these subspaces in the following manner.

1. The operators $\sigma_1^*, \sigma_2^*, \sigma_3^*$ restricted to V are represented by the matrices

$$s_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}, \quad (54)$$

respectively, with respect to the basis L_1, L_2, L_3.

2. The operators $\sigma_1^*, \sigma_2^*, \sigma_3^*$ act on V^\perp as the negative of identity -1.

\end{lemma}

It should be noted that each matrix in (54) has eigenvalues 0, 1, 1, counted with multiplicities, and in particular has vanishing determinant.

\begin{theorem}
\textbf{Theorem 7.7} The group $G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle$ is a universal Coxeter group of rank three over the basis involutions $\sigma_1, \sigma_2, \sigma_3$, that is, there are no relations other than $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$. In particular the expression (46) is unique for any given element $\sigma \in G$.

\end{theorem}

\begin{proof}
Assume the contrary that there exists a nontrivial relation $\sigma_{i_1}^* \sigma_{i_2}^* \cdots \sigma_{i_n}^* = 1$ in G such that each neighboring indices i_ν and $i_{\nu+1}$ are distinct. Then it follows from Lemma 7.3 that $\sigma_{i_n}^* \cdots \sigma_{i_2}^* \sigma_{i_1}^* = 1^* = 1$ as a linear endomorphism on $H^2(\mathcal{S}(\theta), \mathbb{C})$. But this is impossible because each factor $\sigma_{i_\nu}^*$ has vanishing determinant. This contradiction establishes the theorem.
\end{proof}

\begin{remark}
\textbf{Remark 7.8} Recall that we have introduced the universal Coxeter group G of rank three abstractly in (2) Theorem 4.4 yields a concrete realization of it as a group of birational transformations on the cubic surface $\mathcal{S}(\theta)$. Hereafter the former group will be identified with the latter. In this context the 3-dimensional abstract linear space V for the geometric representation $GR: G \to O_B(V)$ in (2) is realized as the subspace of $H^2(\mathcal{S}(\theta), \mathbb{C})$ spanned by the lines at infinity L_1, L_2, L_3. Here we should put $e_1 = L_1, e_2 = L_2, e_3 = L_3$ in accordance with the notation in (2). The symmetric bilinear form B in (11) is now given by the negative of the intersection form on $H^2(\mathcal{S}(\theta), \mathbb{C})$ restricted to the subspace V. The basic reflections in (12) are then represented by the matrices

$$r_1 = \begin{pmatrix} -1 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad r_2 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad r_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & -1 \end{pmatrix}.$$

\end{remark}
It is easy to see that the linear operators s_1, s_2, s_3 in (53) have matrix representations as in (54) and hence correspond to the operators $\sigma_1^*, \sigma_2^*, \sigma_3^*$ restricted to V. So the trace $\alpha(\gamma)$ in (54) can be calculated practically by using the matrix representations (54).

Next we shall calculate the characteristic polynomial of the linear map $\sigma^* : \mathcal{H}^3(\mathcal{S}(\theta), \mathbb{C}) \to \mathcal{H}^3(\mathcal{S}(\theta), \mathbb{C})$. In general the characteristic polynomial of a linear endomorphism A is denoted by

$$P(\lambda; A) = \det(\lambda I - A).$$

For the reduced expression (46) of the element σ^*, we put $s_\sigma := s_{i_1} \cdots s_{i_2} s_{i_1}$ and define

$$\alpha(\sigma) := \text{Tr}[s_\sigma : V \to V]. \quad (55)$$

Lemma 7.9 The map σ^* preserves the direct sum decomposition (55) and hence factors as $\sigma^* = (\sigma^*|_V) \oplus (\sigma^*|_{V^\perp})$. The characteristic polynomial of the first component $\sigma^*|_V$ is given by

$$P(\lambda; \sigma^*|_V) = \{\lambda - (-1)^n\}^4.$$

Proof. By Lemma 7.4 we have $\sigma^* = \sigma_1^* \cdots \sigma_2^* \sigma_1^*$. Hence the map σ^* preserves the decomposition (55), because each factor σ_i^* does so by Lemma 7.6. Thus there are factorizations $\sigma^* = (\sigma^*|_V) \oplus (\sigma^*|_{V^\perp})$ and $P(\lambda; \sigma^*) = P(\lambda; \sigma^*|_V)P(\lambda; \sigma^*|_{V^\perp})$. The second component $\sigma^*|_{V^\perp}$ is found

$$\sigma^*|_{V^\perp} = (\sigma_{i_1}^*|_{V^\perp}) \cdots (\sigma_{i_2}^*|_{V^\perp}) = (-1)^n,$$

since each factor $\sigma_{i_v}^*$ restricted to V^\perp is the scalar operator -1 by assertion (2) of Lemma 7.6.

It remains to consider the first component $\sigma^*|_V$, which is represented by the three-by-three matrix $s_\sigma = s_{i_1} \cdots s_{i_2} s_{i_1}$. The argument will be based on the general fact that the characteristic polynomial of a three-by-three matrix A is given by

$$P(\lambda; A) = \lambda^3 - (\text{Tr} A)\lambda^2 + (\text{Tr} \tilde{A})\lambda - \det A, \quad (57)$$

where \tilde{A} is the adjugate matrix of A, namely, the matrix \tilde{A} such that $A \tilde{A} = \tilde{A} A = (\det A) I$. Let us apply this formula to $A = s_\sigma$. First we have $\text{Tr}(s_\sigma) = \alpha(\sigma)$ by definition (55). Secondly we have $\det(s_\sigma) = 0$, since each factor σ_{i_v} has vanishing determinant. Finally we wish to calculate the trace $\text{Tr}(\tilde{s}_\sigma)$. The general formula $\tilde{AB} = \tilde{B}\tilde{A}$ for the product of adjugate matrices yields $\tilde{s}_\sigma = \tilde{s}_{i_1} \tilde{s}_{i_2} \cdots \tilde{s}_{i_1}$. Now it follows from (51) that

$$\tilde{s}_1 = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \tilde{s}_2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \tilde{s}_3 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \quad (58)$$
Note that among the three rows of the matrix \tilde{s}_i, only the i-th row does not vanish. Thus the only row of \tilde{s}_σ that can be nonzero is the i_1-th row, so that the trace $\text{Tr}(\tilde{s}_\sigma)$ is just given by the (i_1, i_1)-th entry of \tilde{s}_σ. Now the latter quantity is calculated as

$$(\tilde{s}_{i_1})_{i_1i_1}(\tilde{s}_{i_2})_{i_2i_3} \cdots (\tilde{s}_{i_{n-1}})_{i_{n-1}i_n}(\tilde{s}_{i_n})_{i_ni_1},$$

where $(\tilde{s}_i)_{ij}$ denotes the (i,j)-th entry of the matrix \tilde{s}_i. It follows from (58) that $(\tilde{s}_i)_{ij}$ is $+1$ or -1 according as the indices i and j are equal or not. Since i_ν and $i_{\nu+1}$ are distinct for every $\nu \in \{1, \ldots, n-1\}$, we have $\text{Tr}(\tilde{s}_\sigma) = (-1)^{n-1}$ or $\text{Tr}(\tilde{s}_\sigma) = (-1)^n$ according as i_n and i_1 are equal or not. Putting all these considerations into (57) yields formula (56).

\[\blacksquare \]

8 Ergodic Properties

We continue to study the dynamical properties of each individual transformation $\sigma \in G$. The main concern in this section is the investigation into the ergodic properties of this map, where the notions of dynamical degree, entropy and invariant measure play important roles. It is a good application of the fundamental methods and techniques in bimeromorphic (or birational) surface dynamics, recently developed by [2, 7, 8, 10]. Since they are not so familiar in the circle of Painlevé equations, we shall develop our discussion upon reviewing some rudiments of them.

We begin with the concept of first dynamical degree [7]. Given a bimeromorphic map f of a compact Kähler surface S, its first dynamical degree $\lambda_1(f)$ is defined by

$$\lambda_1(f) := \lim_{N \to \infty} \| (f^N)^* \|^1/N,$$

where $\| \cdot \|$ is an operator norm on $\text{End} H^{1,1}(S)$. It is known that the limit certainly exists, independent of the norm $\| \cdot \|$ chosen, $\lambda_1(f) \geq 1$, and $\lambda_1(f)$ is invariant under bimeromorphic conjugation. It is usually difficult to evaluate this quantity in a simple mean. However there is a distinguished class of maps whose first dynamical degree can be equated to a more tractable quantity. A bimeromorphic map $f : S \to \mathbb{C}$ is said to be analytically stable (AS for short) if the condition $(f^n)^* = (f^*)^n : H^{1,1}(S) \to \mathbb{C}$ holds for every $n \in \mathbb{N}$. Evidently, if f is AS then

$$\lambda_1(f) = \text{SR}(f^*),$$

(59)

where $\text{SR}(f^*)$ is the spectral radius of the linear endomorphism $f^* : H^{1,1}(S) \to \mathbb{C}$. It is known that any bimeromorphic map is bimeromorphically conjugate to an AS map. It is also known that a bimeromorphic map f is AS if and only if

$$\bigcup_{N \geq 0} f^{-N} I(f) \cap \bigcup_{N \geq 0} f^N I(f^{-1}) = \emptyset.$$

(60)

This condition may be viewed as a separation between the obstructions to forward and backward dynamics. Back to our context, it is natural to ask when a given element $\sigma \in G$ is AS.

Lemma 8.1 An element $\sigma \in G$ is AS if and only if the initial index i_1 and the terminal index i_n are distinct in the reduced expression (40) of σ.

28
Proof. If \(\sigma\) is AS then it follows from condition (59) that \(I(\sigma) \cap I(\sigma^{-1}) = \emptyset\). On the other hand, Lemma 7.2 implies that \(I(\sigma) = \{p_{i_n}\}\) and \(I(\sigma^{-1}) = \{p_{i_1}\}\). Hence the points \(p_{i_1}\) and \(p_{i_n}\) must be distinct, that is, the indices \(i_1\) and \(i_n\) must be distinct. Conversely, assuming that the indices \(i_1\) and \(i_n\) are distinct, we shall show that for every \(N \geq 0\),

\[
\sigma^{-N} I(\sigma) = \{p_{i_n}\}, \quad \sigma^N I(\sigma^{-1}) = \{p_{i_1}\}.
\]

It suffices to verify the first formula of (61), since the second formula is obtained from the first one by replacing \(\sigma\) with \(\sigma^{-1}\). Since \(I(\sigma) = \{p_{i_n}\}\) by Lemma 7.2 we have only to show that \(\sigma^{-1}(p_{i_n}) = p_{i_1}\), namely, that the indeterminacy point \(p_{i_n}\) of \(\sigma\) is a fixed point of \(\sigma^{-1} = \sigma_{i_n} \cdots \sigma_{i_2} \sigma_{i_1}\). By Lemma 6.1 if two indices \(i\) and \(j\) are distinct, then the point \(p_i\) lies on the line \(L_j\) and hence is sent to \(p_j\) by the map \(\sigma_j\). Using this fact repeatedly, we see that

\[
p_{i_n} \xrightarrow{\sigma_{i_1}} p_{i_1} \xrightarrow{\sigma_{i_2}} p_{i_2} \cdots \xrightarrow{\sigma_{i_n}} p_{i_n},
\]

because every neighboring indices are distinct. Now it follows from formula (61) that \(\sigma\) satisfies condition (60) and hence is AS as desired. \(\square\)

Definition 8.2 We introduce two simple examples of AS transformations in \(G\).

1. An AS element \(\sigma \in G\) is said to be elementary if \(\sigma = (\sigma_i \sigma_j)^m\) for some \(\{i, j, k\} = \{1, 2, 3\}\) and \(m \in \mathbb{N}\); otherwise, \(\sigma\) is said to be non-elementary.

2. An element \(\sigma \in G\) is called a Coxeter element if \(\sigma = \sigma_i \sigma_j \sigma_k\) for some \(\{i, j, k\} = \{1, 2, 3\}\).

We may assume without loss of generality that \(\sigma\) is AS, since if \(\sigma\) is not AS then it can be replaced with its conjugate \(\sigma' := \tau^{-1} \sigma \tau = \sigma_{i_{\nu+1}} \cdots \sigma_{i_{\nu-1}}\) which is AS, where \(\tau = \sigma_{i_1} \cdots \sigma_{i_{\nu}}\) with \(\nu\) being the index such that \(i_1 = i_{\nu}, i_2 = i_{\nu-1}, \ldots, i_{\nu} = i_{\nu-1\nu+1}\) but \(i_{\nu+1} \neq i_{\nu-1}\). Under this assumption we can apply formula (59) to conclude that the first dynamical degree of \(\sigma\) is equal to the spectral radius of the linear map \(\sigma^*: H^2(\mathbb{S}(\theta), \mathbb{C}) \to \mathbb{C}\). On the other hand, Lemma 7.4 implies that the eigenvalues of \(\sigma^*\) are 0, \((-1)^n\) and the roots of the quadratic equation

\[
\lambda^2 - \alpha(\sigma) \lambda + (-1)^n = 0,
\]

so that the spectral radius of \(\sigma^*\) is the largest absolute value of the roots of equation (62). This observation leads us to investigate the value distribution of \(\alpha(\sigma)\).

Lemma 8.3 Assume that \(\sigma \in G\) is AS. Then \(\alpha(\sigma)\) is an even positive integer. Moreover,

1. \(\alpha(\sigma) = 2\) if and only if \(\sigma\) is elementary in the sense of Definition 8.2,

2. \(\alpha(\sigma) = 4\) if and only if \(\sigma\) is a Coxeter element,

3. \(\alpha(\sigma) = 6\) if and only if \(\sigma = \sigma_i \sigma_j \sigma_k \sigma_j\) or \(\sigma = \sigma_j \sigma_i \sigma_j \sigma_k\) for some \(\{i, j, k\} = \{1, 2, 3\}\).

Proof. Let \(\sigma = \sigma_i \sigma_j \sigma_k \sigma_{i}\) be the reduced expression of \(\sigma\) as in (60). For \(\nu = 1, \ldots, n\), we put \(A_\nu := s_{i_{\nu}} \cdots s_{i_{3}} s_{i_{1}}\) and denote its \((i, j)\)-th entry by \((A_\nu)_{ij}\). By definition (55) we have \(\alpha(\sigma) = \text{Tr} A_n\). We may assume that \(i_1 = 1\), since the other cases can be treated in a similar manner. In this case, if we put \(M_\nu := \min\{(A_\nu)_{ij} : i = 1, 2, 3, j = 2, 3\}\), then

\[
M_{\nu+1} \geq M_\nu \quad (\nu = 1, \ldots, n-1).
\]
Moreover, if the index $j_{\nu+1}$ is defined by \(\{ j_{\nu+1} \} = \{ 1, 2, 3 \} - \{ i_\nu, i_{\nu+1} \} \), then
\[
\text{Tr} A_{\nu+1} = \text{Tr} A_\nu + 2(A_\nu)_{j_{\nu+1}, i_{\nu+1}} \quad (\nu = 1, \ldots, n - 1).
\] (64)

Indeed it is easy to see from formula (64) that when $i_1 = 1$, the matrix A_ν takes the form
\[
A_\nu = \begin{pmatrix}
0 & a_{12}' & a_{13}' \\
0 & 0 & a_{23}' \\
0 & 0 & a_{33}'
\end{pmatrix},
\]
where a_{ij}', $i = 1, 2, 3$, $j = 2, 3$, are nonnegative integers, and $A_{\nu+1} = s_{i_{\nu+1}} A_\nu$ is given by
\[
A_{\nu+1} = \begin{pmatrix}
0 & a_{12}' + a_{32}' & a_{13}' + a_{33}' \\
0 & 0 & a_{23}' \\
0 & 0 & a_{33}'
\end{pmatrix} \quad (\text{if } i_{\nu+1} = 1),
\]
\[
A_{\nu+1} = \begin{pmatrix}
0 & a_{12}' + a_{32}' & a_{13}' \\
0 & a_{22}' & a_{23}' \\
0 & 0 & a_{33}'
\end{pmatrix} \quad (\text{if } i_{\nu+1} = 2),
\]
\[
A_{\nu+1} = \begin{pmatrix}
0 & a_{12}' & a_{13}' \\
0 & a_{22}' & a_{23}' \\
0 & 0 & a_{33}'
\end{pmatrix} \quad (\text{if } i_{\nu+1} = 3).
\]

Inequality (63) readily follows from these observations and formula (64) is verified by a case-by-case check. Indeed, if $i_\nu = 1$ and $i_{\nu+1} = 2$, then $j_{\nu+1} = 3$ and $a_{i_\nu} = a_{22}' + a_{32}'$ so that
\[
\text{Tr} A_{\nu+1} = a_{i_\nu} + a_{32}' + a_{33}' = (a_{22}' + a_{32}') + a_{23}' + a_{33} = a_{22}' + a_{33} + 2a_{32}' = \text{Tr} A_\nu + 2(A_\nu)_{j_{\nu+1}, i_{\nu+1}}.
\]

If $i_\nu = 2$ and $i_{\nu+1} = 1$, then $j_{\nu+1} = 3$ and $(A_\nu)_{j_{\nu+1}, i_{\nu+1}} = 0$ so that
\[
\text{Tr} A_{\nu+1} = a_{i_\nu} + a_{33}' = \text{Tr} A_\nu + 2(A_\nu)_{j_{\nu+1}, i_{\nu+1}}.
\]

The remaining cases can be treated in similar manners. Note that (64) yields an inequality $\text{Tr} A_{\nu+1} \geq \text{Tr} A_\nu$, since $(A_\nu)_{j_{\nu+1}, i_{\nu+1}}$ is nonnegative. A repeated use of formula (64) shows that $\alpha(\sigma) = \text{Tr} A_n$ is an even integer not smaller than 2, because $\text{Tr} A_1 = \text{Tr} s_1 = 2$.

Next we observe that $\alpha(\sigma) = 2$ if $\sigma = (\sigma_i \sigma_j)^m$ for any $\{ i, j, k \} = \{ 1, 2, 3 \}$ and $m \in \mathbb{N}$. Indeed, since we are assuming that $i_1 = 1$, we have only to check the two cases where $A_n = (s_2 s_1)^m$ and $A_n = (s_3 s_1)^m$ with $m \in \mathbb{N}$. In either case we have $\alpha(\sigma) = \text{Tr} A_n = 2$ because
\[
\begin{pmatrix}
0 & 1 & 2m - 1 \\
0 & 1 & 2m \\
0 & 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
0 & 2m - 1 & 1 \\
0 & 1 & 0 \\
0 & 2m & 1
\end{pmatrix}.
\]

From now on we assume that σ is not of the form $(\sigma_i \sigma_j)^m$ for any $\{ i, j, k \} = \{ 1, 2, 3 \}$ and $m \in \mathbb{N}$. Then the length n must be not less than 3 and there exists an index ν such that $\{ i_\nu, i_{\nu+1}, i_{\nu+2} \} = \{ 1, 2, 3 \}$. Here we may assume without loss of generality that $\nu = 1$, since the quantity $\alpha(\sigma)$ is invariant under any cyclic permutation of the indices $\{ i_1, \ldots, i_n \}$, provided that σ is an AS element. Since moreover we are assuming that $i_1 = 1$, we have
\[
A_3 = s_3 s_2 s_1 = \begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 3
\end{pmatrix}, \quad \text{or} \quad A_3 = s_2 s_3 s_1 = \begin{pmatrix}
0 & 1 & 1 \\
0 & 3 & 2 \\
0 & 2 & 1
\end{pmatrix}.
\] (65)
If \(n = 3 \) we have \(\sigma = \sigma_1 \sigma_2 \sigma_3 \) or \(\sigma = \sigma_1 \sigma_3 \sigma_2 \). Then formula (65) yields \(\alpha(\sigma) = \text{Tr} A_3 = 4 \) in either case. If \(n = 4 \) we have \(\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_2 \) or \(\sigma = \sigma_1 \sigma_3 \sigma_2 \sigma_3 \). Since

\[
A_4 = s_2 s_3 s_2 s_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 2 & 3 \end{pmatrix}, \quad \text{or} \quad A_4 = s_3 s_2 s_3 s_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 4 & 3 \end{pmatrix},
\]

we have \(\alpha(\sigma) = \text{Tr} A_4 = 6 \) in either case. Finally we assume that \(n \geq 5 \). Then \(A_4 \) is either (66) or \(A_4 = s_1 s_j s_k s_1 \) for some \(\{ j, k \} = \{ 2, 3 \} \). In the latter case we must have \(A_5 = s_j s_1 s_j s_k s_1 \) or \(A_5 = s_k s_1 s_j s_k s_1 \). Here we can eliminate the last term \(s_1 \) by taking a cyclic permutation of the indices \((i_1, \ldots, i_n) \) and obtain \(A_4 = s_j s_1 s_j s_k \) or \(A_4 = s_k s_1 s_j s_k \). By relabeling the indices, the matrix \(A_4 \) can be reduced to the form (66). So we have only to consider the former case (66).

Since \(\sigma \) is assumed to be AS, the index \(i_n \) is different from \(i_1 \) so that \((A_{n-1})_{i_n,i_n} \geq M_{n-1} \) by the definition of \(M_\nu \). Then it follows from (63) and (64) that \(\alpha(\sigma) = \text{Tr} A_n \) is estimated as

\[
\alpha(\sigma) = \text{Tr} A_{n-1} + 2(A_{n-1})_{i_n,i_n} \geq \text{Tr} A_{n-1} + 2M_{n-1} \geq \text{Tr} A_4 + 2M_4 = 6 + 2 \times 1 = 8.
\]

Putting all these arguments together we establish the lemma. \(\square \)

Lemma 8.4 If \(\sigma \in G \) is AS then the first dynamical degree of \(\sigma \) is given by

\[
\lambda_1(\sigma) = \frac{1}{2} \left\{ \alpha(\sigma) + \sqrt{\alpha(\sigma)^2 + 4(-1)^{n+1}} \right\},
\]

where \(n = \ell_G(\sigma) \) is the length of the element \(\sigma \). Moreover,

1. if \(\sigma \) is elementary then \(\lambda_1(\sigma) = 1 \),
2. if \(\sigma \) is a Coxeter element then \(\lambda_1(\sigma) = 2 + \sqrt{5} \),
3. if \(\sigma = \sigma_i \sigma_j \sigma_k \sigma_j \) or \(\sigma = \sigma_j \sigma_i \sigma_j \sigma_k \) for some \(\{ i, j, k \} = \{ 1, 2, 3 \} \), then \(\lambda_1(\sigma) = 3 + 2\sqrt{2} \),
4. otherwise, we have \(\lambda_1(\sigma) \geq 4 + \sqrt{15} \).

Proof. Since \(\alpha(\sigma) \geq 2 \) by Lemma 8.3, the quadratic equation (62) has the real roots

\[
\lambda_{\pm}(\sigma) = \frac{1}{2} \left\{ \alpha(\sigma) \pm \sqrt{\alpha(\sigma)^2 + 4(-1)^{n+1}} \right\},
\]

where \(\lambda_+(\sigma) \geq 1 \) and \(|\lambda_-(\sigma)| = \lambda_+(\sigma)^{-1} \leq 1 \). Therefore the root \(\lambda_+(\sigma) \) gives the spectral radius \(\text{SR}(\sigma^*) \) of \(\sigma^* \) and hence the first dynamical degree \(\lambda_1(\sigma) \) of \(\sigma \) by formula (68). Assertions (1), (2), (3) can be checked directly by using Lemma 8.3. Finally we shall show assertion (4). In this case, since \(\alpha(\sigma) \geq 8 \) by Lemma 8.3 formula (67) implies that

\[
\lambda_1(\sigma) \geq \frac{1}{2} \left\{ \alpha(\sigma) + \sqrt{\alpha(\sigma)^2 - 4} \right\} \geq \frac{1}{2} \left(8 + \sqrt{8^2 - 4} \right) = 4 + \sqrt{15}.
\]

Hence the lemma is proved. \(\square \)

We proceed to the construction of a natural \(\sigma \)-invariant measure for an AS element \(\sigma \in G \). Again let us start with the general situation where \(f : S \to S \) is an AS bimeromorphic map on a compact Kähler surface \(S \). If \(\lambda_1(f) = 1 \) then either \(f \) is a dynamically trivial automorphism
or \(f \) preserves a rational or elliptic fibration and exhibits an essentially 1-dimensional dynamic \([7]\). In our case where \(f = \sigma \) and \(S = \overline{S}(\theta) \), the condition \(\lambda_1(\sigma) = 1 \) means that \(\sigma \) is elementary by Lemma 8.4. If so, the existence of a \(\sigma \)-invariant rational fibration on \(\overline{S}(\theta) \) can be seen easily (see Remark 10.3). So we are not interested in the case \(\lambda_1(f) = 1 \) and assume hereafter that

\[
\lambda_1(f) > 1.
\]

(69)

In this case it is known \([7]\) that there are positive closed \((1, 1)\)-currents \(\mu^\pm \) on \(S \) such that

\[(f^{\pm 1})^* \mu^\pm = \lambda_1(f) \mu^\pm,\]

where \(\mu^+ \) and \(\mu^- \) are called the stable and unstable currents for \(f \). A natural strategy to obtain an \(f \)-invariant measure \(\mu \) on \(S \) is to take the wedge product

\[
\mu = \mu^+ \wedge \mu^-.
\]

(70)

However the main issue here is whether the operation of wedge product is feasible or not. If the stable and unstable currents are expressed as \(\mu^\pm = dd^c g^\pm \) in terms of local potentials \(g^\pm \), then the wedge product \([70]\) may be interpreted as the complex Monge-Ampère operator \(dd^c g^+ \wedge dd^c g^- \). In order for this operation to be well-defined, a quantitative condition

\[
\sum_{N=0}^\infty \lambda_1(f)^{-N} \log \text{dist}(f^N I(f^{-1}), I(f)) > -\infty,
\]

(71)

is introduced in \([2]\), where dist is the distance on \(S \) induced from a Riemannian metric on it. This condition is slightly stronger than \([60]\) and a map enjoying this condition might be called quantitatively AS. Under these settings the following theorem is established in \([2]\).

Theorem 8.5 If \(f : S \circ \) satisfies conditions \([69]\) and \([71]\), then the wedge product \(\mu \) of the stable and unstable currents \(\mu^\pm \) in \([70]\) is well-defined and, after a suitable renormalization, \(\mu \) gives an \(f \)-invariant Borel probability measure such that all the conditions in Definition \([11]\) are satisfied. Moreover the measure \(\mu \) puts no mass on any algebraic curve on \(S \).

Applying this theorem to our situation, we obtain the following theorem.

Theorem 8.6 For any non-elementary AS map \(\sigma \in G \) there exists the wedge product \(\mu_\sigma = \mu^+_\sigma \wedge \mu^- \sigma \) of the stable and unstable currents \(\mu^\pm \sigma \) for \(\sigma \) and, after a suitable renormalization, \(\mu_\sigma \) gives a \(\sigma \)-invariant Borel probability measure such that all the conditions in Definition \([11]\) are satisfied. Moreover the measure \(\mu_\sigma \) puts no mass on any algebraic curve on \(\overline{S}(\theta) \).

Proof. It is enough to check that any non-elementary AS map \(\sigma \in G \) satisfies conditions \([69]\) and \([71]\). Lemma 8.4 implies that \(\lambda_1(\sigma) > 1 \) if and only if \(\sigma \) is non-elementary, so that condition \([69]\) is satisfied. In order to check condition \([71]\) let \(\sigma = \sigma_{i_1} \cdots \sigma_{i_n} \) be the reduced expression of \(\sigma \). Since \(\sigma \) is assumed to be AS, the indices \(i_1 \) and \(i_n \) are distinct and hence \(\text{dist}(p_{i_1}, p_{i_n}) > 0 \). On the other hand, by formula \([61]\), we have \(I(\sigma) = \{p_{i_n}\} \) and \(\sigma^N I(\sigma^{-1}) = \{p_{i_1}\} \) independently of \(N \geq 0 \). Therefore we have

\[
\sum_{N=0}^\infty \lambda_1(\sigma)^{-N} \log \text{dist}(\sigma^N I(\sigma^{-1}), I(\sigma)) = \log \text{dist}(p_{i_1}, p_{i_n}) \sum_{N=0}^\infty \lambda_1(\sigma)^{-N}
\]

\[= \frac{\lambda_1(\sigma) \log \text{dist}(p_{i_1}, p_{i_n})}{\lambda_1(\sigma) - 1} > -\infty,
\]

which shows that condition \([71]\) is satisfied. The theorem then follows from Theorem 8.5. \(\square \)
Remark 8.7 Under the setting of Theorem 8.5 it is shown in [2] that the Lyapunov exponents $L_\pm(f)$ of f with respect to the ergodic measure μ satisfy the estimate

$$L_-(f) \leq -\frac{\log \lambda_1(f)}{8} < 0 < \frac{\log \lambda_1(f)}{8} \leq L_(f),$$

which applies to the mapping $\sigma : S(\theta) \cap$ in Theorem 8.6. On the other hand, we have $L_-(\sigma) = -L_+(\sigma)$ since σ is area-preserving with respect to the Poincaré residue $\omega(\theta)$ in (28). It follows from the above estimate that $L_+(\sigma) \geq \frac{\log \lambda_1(\sigma)}{8}$. Finally we shall calculate the entropy of a non-elementary AS map $\sigma \in G$. For a birational map $f : S \cap$ of a projective surface S and an f-invariant Borel probability measure μ on S, there are two concepts of entropies: one is the measure-theoretic entropy $h_\mu(f)$ with respect to the invariant measure μ and the other is the topological entropy $h_{\text{top}}(f)$. In general these quantities and the first dynamical degree $\lambda_1(f)$ are related as

$$h_\mu(f) \leq h_{\text{top}}(f) \leq \log \lambda_1(f),$$

(72)

where the first inequality is the so-called variational principle and the second inequality is a consequence of a main result of [8]. Moreover, if f satisfies conditions (69) and (71) and if μ is the invariant measure mentioned in Theorem 8.6 then it is proved in [10] that the leftmost and rightmost terms in (72) are equal and consequently all the three terms in (72) coincide. Applying this triple coincidence to our situation we obtain the following theorem.

Theorem 8.8 For any non-elementary AS map $\sigma \in G$, we have

$$h_{\mu_\sigma}(\sigma) = h_{\text{top}}(\sigma) = \log \lambda_1(\sigma),$$

(73)

where μ_σ is the σ-invariant probability measure mentioned in Theorem 8.6. The value of (73) is not smaller than $\log(2 + \sqrt{5})$ with equality if and only if σ is a Coxeter element.

Proof. The proof is already finished in the above argument. The assertion that (73) takes its minimum precisely when σ is a Coxeter element follows from Lemma 8.4

Remark 8.9 Theorems 8.6 and 8.8 are results for an element $\sigma \in G$ viewed as a birational map of the projective surface $\overline{S}(\theta)$. However, since the invariant measure μ_σ put no mass on any algebraic curve on $\overline{S}(\theta)$, the lines $L = L_1 \cup L_2 \cup L_3$ at infinity can be neglected as far as the ergodic properties of $\sigma : \overline{S}(\theta) \cap$ relative to the measure μ_σ are concerned. So Theorems 8.6 and 8.8 lead to results for the biregular map $\sigma^\prime := \sigma|_{S(\theta)}$ of the affine surface $S(\theta) = \overline{S}(\theta) - L$. Namely μ_σ can be restricted without losing any mass to an σ^\prime-invariant Borel probability measure μ_{σ^\prime} on $S(\theta)$ such that the conditions in Definition 11 are satisfied, and one has an equality $h_{\mu_{\sigma^\prime}}(\sigma^\prime) = \log \lambda_1(\sigma)$. Here we do not refer to $h_{\text{top}}(\sigma^\prime)$, because the concept of topological entropy, usually defined on a compact space, is not very clear on the affine surface $S(\theta)$. In what follows σ^\prime and μ_{σ^\prime} will be written σ and μ_σ for the simplicity of notation.

9 Number of Periodic Points

Given any non-elementary AS element $\sigma \in G$, we are interested in the number of periodic points of the birational map $\sigma : \overline{S}(\theta) \cap$. For each positive integer $N \in \mathbb{N}$ we shall consider the
set of all periodic points of period \(N \) on the projective cubic surface \(\bar{S}(\theta) \),

\[
\overline{\text{Per}_N}(\sigma; \theta) := \{ X \in \bar{S}(\theta) - I(\sigma^N) : \sigma^N(X) = X \},
\]
as well as the corresponding set on the affine cubic surface \(S(\theta) \),

\[
\text{Per}_N(\sigma; \theta) := \{ x \in S(\theta) : \sigma^N(x) = x \}.
\]

Our tasks are then to count the cardinality of \(\overline{\text{Per}_N}(\sigma; \theta) \) and to relate it with the cardinality of \(\text{Per}_N(\sigma; \theta) \). The first task is based on the Lefschetz fixed point formula, while the second one is by a careful inspection of the behavior of the map \(\sigma \) around the lines \(L = L_1 \cup L_2 \cup L_3 \) at infinity. In order to apply the Lefschetz fixed point formula, we need the following lemma.

Lemma 9.1 Assume that \(\sigma \in G \) is AS and non-elementary. Then for any \(N \in \mathbb{N} \), the birational map \(\sigma : \bar{S}(\theta) \cap S(\theta) \) admits no curves of periodic points of period \(N \).

Proof. The lemma is proved by contradiction. Assume that \(\sigma \) admits a curve (an effective divisor) \(D \subset \bar{S}(\theta) \) of periodic points of some period \(N \). Since \(\sigma^N \) fixes \(D \) pointwise, we have \((\sigma^N)^*D = D \) in \(H^2(\bar{S}(\theta), \mathbb{Z}) \). Moreover, since \(\sigma \) is assumed to be AS, we have \((\sigma^*)^N = (\sigma^N)^* \) and hence \((\sigma^*)^N D = D \), which means that \((\sigma^*)^N \) has an eigenvalue 1 with an eigenvector \(D \).

On the other hand, by Lemma 7.9, there is a direct sum decomposition \(\sigma^* = (\sigma^*|_V) \oplus (\sigma^*|_{V^\perp}) \) with \(H^2(\bar{S}(\theta), \mathbb{Z}) = V \oplus V^\perp \) as in (68), such that \(\sigma^*|_V \) has the eigenvalues 0 and \(\lambda_\pm(\sigma) \) as in (69), while \(\sigma^*|_{V^\perp} \) is the scalar operator \((-1)^n \) on \(V^\perp \), where \(n = \ell_G(\sigma) \) is the length of \(\sigma \). By Lemma 8.4 we have \(\lambda_+(\sigma) = \lambda_1(\sigma) > 1 \) and \(|\lambda_-(\sigma)| = \lambda_1(\sigma)^{-1} < 1 \), since \(\sigma \) is assumed to be non-elementary. Therefore the eigenvector \(D \) of \(\sigma^* \) must belong to the subspace \(V^\perp \) and its eigenvalue 1 must arise as the \(N \)-th power of the scalar operator \((-1)^n \) on \(V^\perp \), where the integer \(nN \) must be even. Since \(L_1, L_2, L_3 \in V \) and \(D \in V^\perp \), we have

\[
(D, L_1) = (D, L_2) = (D, L_3) = 0.
\]

(74)

We now write \(D = D' + m_1 L_1 + m_2 L_2 + m_3 L_3 \), where \(D' \) is either empty or an effective divisor not containing \(L_1, L_2, L_3 \) as an irreducible component of it and \(m_1, m_2, m_3 \) are nonnegative integers. Since \((L_i, L_j) = -1 \) for \(i = j \) and \((L_i, L_j) = 1 \) for \(i \neq j \), formula (74) yields

\[
0 = (D, L_1) = (D', L_1) - m_1 + m_2 + m_3,
0 = (D, L_2) = (D', L_2) + m_1 - m_2 + m_3,
0 = (D, L_3) = (D', L_3) + m_1 + m_2 - m_3,
\]

which sum up to

\[
(D', L_1) + (D', L_2) + (D', L_3) + m_1 + m_2 + m_3 = 0.
\]

(75)

Since none of the lines \(L_1, L_2, L_3 \) is an irreducible component of \(D' \), the intersection number \((D', L_i) \) must be nonnegative for every \(i = 1, 2, 3 \). Since the numbers \(m_1, m_2, m_3 \) are also nonnegative, formula (75) implies that \((D', L_1) = (D', L_2) = (D', L_3) = 0 \) and \(m_1 = m_2 = m_3 = 0 \). Hence \(D = D' \) and \((D, L_1) = (D, L_2) = (D, L_3) = 0 \). It follows that \(D \) is an effective divisor such that \((D, L_i) = 0 \) and \(L_i \) is not an irreducible component of \(D \) for every \(i = 1, 2, 3 \). This means that the compact curve \(D \) does not intersect \(\bar{L} = L_1 \cup L_2 \cup L_3 \) and hence must lie
in the affine cubic surface \(S(\theta) = \overline{S}(\theta) - L \). However no compact curve can lie in any affine variety. By this contradiction the lemma is established. \(\square \)

Now we shall apply the Lefschetz fixed point formula to the iterates of a non-elementary AS element \(\sigma \in G \). For each \(N \in \mathbb{Z} \) let \(\Gamma_N \subset \overline{S}(\theta) \times \overline{S}(\theta) \) be the graph of the \(N \)-th iterate \(\sigma^N : \overline{S}(\theta) \to \overline{S}(\theta) \), and \(\Delta \subset \overline{S}(\theta) \times \overline{S}(\theta) \) be the diagonal. Note that \(\Gamma_N = \Gamma_N^N \), where \(\Gamma_N^N \) is the reflection of \(\Gamma_N \) around the diagonal \(\Delta \). Moreover let \(I_N \subset \overline{S}(\theta) \) denote the indeterminacy set of \(\sigma^N \). Then the Lefschetz fixed point formula consists of two equations concerning the intersection number \((\Gamma_N, \Delta)\) of the cycles \(\Gamma_N \) and \(\Delta \) in \(\overline{S}(\theta) \times \overline{S}(\theta) \),

\[
(\Gamma_N, \Delta) = \sum_{q=0}^{4} (-1)^q \text{Tr} \left[(\sigma^N)^* : H^q(\overline{S}(\theta), \mathbb{Z}) \right], \\
(\Gamma_N, \Delta) = \# \text{Per}_N(\sigma; \theta) + \sum_{p \in I_N} \mu((p, p), \Gamma_N \cap \Delta),
\]

where \(\mu((p, p), \Gamma_N \cap \Delta) \) denotes the multiplicity of intersection between \(\Gamma_N \) and \(\Delta \) at \((p, p)\). Lemma 9.1 assures that all terms involved in (76) and (77) are well defined and finite.

Lemma 9.2 Let \(n = \ell_G(\sigma) \) be the length of \(\sigma \). Then formula (76) becomes

\[
(\Gamma_N, \Delta) = \lambda_1(\sigma)^N + (-1)^n \lambda_1(\sigma)^{-N} + 4(-1)^n N + 2.
\]

Proof. We put \(T_N = \text{Tr} \left[(\sigma^N)^* : H^q(\overline{S}(\theta), \mathbb{Z}) \right] \). Because \(\overline{S}(\theta) \) is a smooth rational surface,

\[
H^q(\overline{S}(\theta), \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & (q = 0, 4), \\
0 & (q = 1, 3).
\end{cases}
\]

Trivially we have \(T_N^0 = 1 \) and \(T_N^1 = T_N^3 = 0 \). Since \(\sigma \) and so \(\sigma^N \) are birational, we have \(T_N^4 = 1 \). Since the map \(\sigma \) is assumed to be AS, we have \((\sigma^N)^* = (\sigma^*)^N : H^2(\overline{S}(\theta), \mathbb{Z}) \). By Lemmas 7.9 and 8.4 \(\sigma^* \) has three simple eigenvalues 0, \(\lambda_+ (\sigma) = \lambda_1(\sigma) \), \(\lambda_- (\sigma) = (-1)^n \lambda_1(\sigma)^{-1} \) and a quadruple eigenvalue \((-1)^n \). Thus we have \(T_N^2 = 0^N + \lambda_1(\sigma)^N + (-1)^n \lambda_1(\sigma)^{-N} + 4(-1)^n N \). Substituting these data into (76) yields the assertion of the lemma. \(\square \)

Lemma 9.3 Formula (77) becomes

\[
(\Gamma_N, \Delta) = \# \text{Per}_N(\sigma; \theta) + 1 = \# \text{Per}_N(\sigma; \theta) + 2.
\]

Proof. Let \(\sigma = \sigma_{i_1} \cdots \sigma_{i_n} \) be the reduced expression of \(\sigma \). Since \(\sigma \) is assumed to be AS, for any \(N \in \mathbb{N} \) the reduced expression of \(\sigma^N \) is given by \(\sigma^N = \overbrace{\sigma_{i_1} \cdots \sigma_{i_n}}^{\text{N-times}} \). Moreover, since \(\sigma \) is assumed to be non-elementary, the indices \(\{i_1, \ldots, i_n\} \) range the entire index set \(\{1, 2, 3\} \). By Lemma 7.2 the exceptional set of \(\sigma^N \) is given by

\[
\mathcal{E}(\sigma^N) = \bigcup_{\nu=1}^{n} L_{i_\nu} = L_1 \cup L_2 \cup L_3 = L,
\]

whose \(\sigma^N \)-image is \(\sigma^N(L) = \sigma^N(\mathcal{E}(\sigma^N)) = \{p_{i_\nu}\} \). This means that \(p_{i_\nu} \) is the unique fixed point of the map \(\sigma^N \) on the lines \(L \) at infinity. Lemma 7.2 also implies that \(p_{i_\nu} \) is the unique
indeterminacy point of \(\sigma^N \). Therefore we have \(\overline{\text{Per}}_N(\sigma; \theta) = \text{Per}_N(\sigma; \theta) \cup \{p_i\} \) and \(I_N = \{p_i\} \), which implies that formula (77) is rewritten as
\[
\begin{align*}
(\Gamma_N, \Delta) &= \# \overline{\text{Per}}_N(\sigma; \theta) + \mu((p_i, p_i), \Gamma_N \cap \Delta),
\# \overline{\text{Per}}_N(\sigma; \theta) &= \# \text{Per}_N(\sigma; \theta) + \nu(p_i, \sigma^N),
\end{align*}
\] (78)
where \(\nu(p_i, \sigma^N) \) is the local index of the map \(\sigma^N \) around the fixed point \(p_i \). If \(j \) and \(k \) are defined by \(\{j, k\} = \{1, 2, 3\} - \{i\} \), then \(L_j \) and \(L_k \) are linearly independent lines passing through the point \(p_i \). These two lines are mapped onto the single point \(p_i \) by \(\sigma^N \) since \(\sigma^N(L_j) = \{p_i\} \). This implies that \(p_i \) is a superattracting fixed point of \(\sigma^N \), namely,
\[
\nu(p_i, \sigma^N) = \det(I - (d\sigma^N)p_i) = \det(I - O) = 1.
\]
Likewise \(p_i \) is a superattracting fixed point of \(\sigma^{-N} = (\sigma^{-1})^N \) where \(\sigma^{-1} = \sigma_{i_n} \cdots \sigma_{i_1} \) is the reduced expression of \(\sigma^{-1} \) (see Figure 11), so that the same reasoning as above with \(\sigma \) replaced by \(\sigma^{-1} \) yields \(\nu(p_i, \sigma^{-N}) = 1 \). Therefore we have
\[
\mu((p_i, p_i), \Gamma_N \cap \Delta) = \mu((p_i, p_i), \Gamma_N' \cap \Delta) = \mu((p_i, p_i), \Gamma_N \cap \Delta) = \nu(p_i, \sigma^{-N}) = 1.
\]
These arguments imply that (78) is equivalent to the assertion of the lemma.

Putting Lemmas 9.2 and 9.3 together, we have established the following theorem.

Theorem 9.4 Let \(\sigma \in G \) be any non-elementary AS map with length \(n = \ell_G(\sigma) \). For any \(N \in \mathbb{N} \) the cardinalities of periodic points of period \(N \) are finite and explicitly given by
\[
\begin{align*}
\# \overline{\text{Per}}_N(\sigma; \theta) &= \lambda_1(\sigma)^N + (-1)^n N \lambda_1(\sigma)^{-N} + 4(-1)^n N + 1,
\# \text{Per}_N(\sigma; \theta) &= \lambda_1(\sigma)^N + (-1)^n N \lambda_1(\sigma)^{-N} + 4(-1)^n N.
\end{align*}
\] (79)
The numbers grow exponentially as the period \(N \) tends to infinity, with the growth rate \(\lambda_1(\sigma) \).
Back to the space of initial conditions for $P_{VI}(\kappa)$ through the Riemann-Hilbert correspondence, we are now able to deduce the dynamical properties of the Poincaré return map for $P_{VI}(\kappa)$ from the already established properties of the dynamical system on the affine cubic surface $S(\theta)$. This deduction is based on the following lemma.

Lemma 10.1 Assume that $\kappa \in \mathcal{K} - \text{Wall}$. Given any loop $\gamma \in \pi_1(Z,z)$, let $\sigma \in G(2)$ be the corresponding element via the isomorphism (9). Then the Poincaré return map $\gamma^* : M_2(\kappa) \circlearrowleft$ along the loop γ is strictly conjugated to the biregular map $\sigma : S(\theta) \circlearrowleft$ via the Riemann-Hilbert correspondence (26) and the commutative diagram (18).

Proof. By Theorem 4.1 the Riemann-Hilbert correspondence (26) is biholomorphic under the assumption that $\kappa \in \mathcal{K} - \text{Wall}$. Hence, for $i = 1, 2, 3$, the half-Poincaré map $\beta_i^* \in \mathcal{M}_i(\kappa)$ is strictly conjugate to the transformation g_i in (27). Being squared, β_i^2 is strictly conjugate to g_i^2. On the other hand, using formulas (27) and (37), one can easily check that

$$g_i^2 = \sigma_i \sigma_{i+1},$$

(80)

where the index should be considered modulo 3. Furthermore, in view of formula (20), the Poincaré return map $\gamma_i^* : M_2(\kappa) \circlearrowleft$ is strictly conjugate to $\beta_i^2 : \mathcal{M}_i(\kappa) \circlearrowleft$ via the commutative diagram (18). Then the lemma is established by combining all these observations. \square

The above conjugacy principle stands on the isomorphism of groups $\pi_1(Z,z) \rightarrow G(2)$ in (9), where the abstract group $G(2)$ in §2 is identified with its concrete realization as a group of birational maps on $S(\theta)$ (see Remark 7.8). In order to utilize the results on cubic surface, we need to establish certain relations between the above two groups, e.g., between the minimality of a loop in $\pi_1(Z,z)$ and the analytic stability of an element in $G(2)$, etc.

Lemma 10.2 Let $\sigma \in G(2)$ be the image of a loop $\gamma \in \pi_1(Z,z)$ under the isomorphism (9).

1. If γ is minimal in the sense of Definition 2.6 then σ is AS.

2. If moreover γ is non-elementary in the sense of Definition 1.2 then σ is non-elementary in the sense of Definition 8.2.

Proof. Let (7) and (8) be the reduced expressions of γ and σ respectively, where $n = 2m$. Assume the contrary that σ is not AS, namely, that $i_1 = i_n$. The argument is separated into two cases: Case 1 where $i_2 = i_{n-1}$ and Case 2 where $i_2 \neq i_{n-1}$. If we define σ' and τ by

$$\sigma' := \begin{cases} \sigma_{i_2} \sigma_{i_3} \cdots \sigma_{i_{n-1}} \\ \sigma_{i_{n-1}} \sigma_{i_2} \cdots \sigma_{i_{n-1}} \end{cases} \quad \tau := \begin{cases} \sigma_{i_1} \sigma_{i_2} \\ \sigma_{i_1} \sigma_{i_{n-1}} \end{cases} \quad \text{(Case 1)},$$

then one has $\sigma = \tau \sigma' \tau^{-1}$ and the length of σ' is given by

$$\ell_G(\sigma') = \begin{cases} n - 4 = 2(m - 2) & \text{(Case 1)}, \\ n - 2 = 2(m - 1) & \text{(Case 2)}. \end{cases}$$
Let $\gamma', \delta \in \pi_1(Z, z)$ be the loops corresponding to $\sigma', \tau \in G(2)$. Then $\gamma = \delta \gamma' \delta^{-1}$ and

$$\ell_{\pi_1}(\gamma') = \begin{cases} m - 2 & \text{(Case 1)}, \\ m - 1 & \text{(Case 2)}. \end{cases}$$

In either case γ' is conjugate to γ and the length of γ' is smaller than that of γ. This contradicts the minimality of γ and hence σ must be AS, which proves assertion (1). Assertion (2) easily follows from Definitions 12 and 8.2 and the translation rule 10.

We are now in a position to establish our main results, Theorems 2.1, 2.2 and 2.8 together with the related statements in Remarks 2.9 and 2.10. Let $\gamma \in \pi_1(Z, z)$ be any non-elementary loop and $\sigma \in G(2)$ be the corresponding element under the isomorphism (9). As mentioned in Remark 10.2 we may assume without loss of generality that γ is minimal. By Lemma 10.2 the birational map $\sigma : S(\theta) \to S(\theta)$ is AS and non-elementary, so that Theorems 8.6, 8.8 and 9.4 can be applied to the map σ. Then the concluding arguments of this article proceed as follows.

Proof of Theorem 2.1 and (1) of Theorem 2.8 Let μ_σ be the σ-invariant Borel probability measure stated in Theorem 8.6. As is mentioned in Remark 8.9 the measure μ_σ can be restricted to the affine cubic surface $S(\theta)$ without losing any mass and any ergodic properties. The resulting measure on $S(\theta)$ is also denoted by μ_σ. We pull it back to the space $M_z(\kappa)$ of initial conditions via the Riemann-Hilbert correspondence. Let μ_γ be the resulting measure on $M_z(\kappa)$. It is now clear from Theorems 8.6 and 8.8 that the measure μ_γ satisfies all the requirements in Theorem 2.1 and in assertion (1) of Theorem 2.8. Here note that formula (67) leads to (15), since the length $n = \ell_G(\sigma)$ of $\sigma \in G(2)$ is an even integer.

Proof of Theorem 2.2 and (2) of Theorem 2.8 We have defined in (6) the set $\text{Per}_N(\gamma; \kappa)$ of periodic points of period N for the Poincaré return map γ_*. By Lemma 10.1 the Riemann-Hilbert correspondence (26) maps $\text{Per}_N(\gamma; \kappa)$ bijectively onto $\text{Per}_N(\sigma; \theta)$ and hence

$$\# \text{Per}_N(\gamma; \kappa) = \# \text{Per}_N(\sigma; \theta).$$

Then Theorem 2.2 and assertion (2) of Theorem 2.8 are an immediate consequence of the above equality and Theorem 9.4 where we note that $n = \ell_G(\sigma)$ is even in the formula (79).

Remark 10.3 Detailed explanations of Remarks 2.9 and 2.10 are in order at this stage.

1. The first half of Remark 2.9 follows from Lemma 8.4. Indeed one has $\lambda_1(\sigma) \geq 3 + 2\sqrt{2}$ for every even non-elementary map $\sigma \in G(2)$. Here one has the equality if and only if $\sigma = \sigma_i \sigma_j \sigma_k \sigma_j$ or $\sigma = \sigma_j \sigma_i \sigma_j \sigma_k$ for some $\{i, j, k\} = \{1, 2, 3\}$. As is easily seen, this occurs precisely when σ comes from an eight-loop in Example 2.3 through the isomorphism (9). For example, if $(i, j, k) = (1, 2, 3)$ then $\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_2$ comes from the eight-loop $\gamma_1 \gamma_2^{-1}$.

2. An inspection of formula (27) shows that the transformation $g^2_i = \sigma_i \sigma_{i+1}$ in (80) preserves the fibration $S(\theta) \to \mathbb{C}$, $x = (x_1, x_2, x_3) \mapsto x_k$, where (i, j, k) is the cyclic permutation of $(1, 2, 3)$. Pull it back to the space $M_z(\kappa)$ via the Riemann-Hilbert correspondence. Then the resulting fibration $M_z(\kappa) \to \mathbb{C}$ is preserved by the Poincaré return map $\gamma_* : M_z(\kappa) \to M_z(\kappa)$ along the i-th basic loop γ_i. This explains the second half of Remark 2.9.

3. As is mentioned in Remark 5.1 the Riemann-Hilbert correspondence is an area-preserving biholomorphism between $(M_z(\kappa), \omega(\kappa))$ and $(S(\theta), \omega(\theta))$ which intertwines the invariant measures μ_γ and μ_σ. Therefore Remark 2.10 readily follows from Remark 8.7.
In connection with Example 2.3 we give the relation between Pochhammer loops in $\pi_1(Z, z)$ and Coxeter elements in G. For any cyclic permutation (i, j, k) of $(1, 2, 3)$, the Pochhammer loop $\varphi = [\gamma_i, \gamma_j^{-1}]$ corresponds to the square c^2 of the Coxeter element $c = \sigma_i \sigma_j \sigma_k$ via the isomorphism (\mathfrak{g}). Hence one has $\lambda(\varphi) = \lambda_1(c^2) = \lambda_1(c)^2 = (2 + \sqrt{5})^2 = 9 + 4\sqrt{5}$, which yields the formula in (2) of Example 2.3.

In this article we have observed that the geometry of cubic surfaces and dynamical systems on them play important parts in understanding an aspect of the global structure of the sixth Painlevé equation. Their relevance to other aspects will be discussed elsewhere (e.g. [21]).

Acknowledgment. The authors are grateful to Yutaka Ishii and Yasuhiko Yamada for their comments on an earlier version [22] of this article, which were quite helpful in revising the manuscript up to the present version.

References

[1] D. Arinkin and S. Lysenko, On the moduli of SL(2)-bundles with connections on $\mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}$, Internat. Math. Res. Notices 1997, no. 19, 983–999 (1997).
[2] E. Bedford and J. Diller, Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2), (2005) 331–368.
[3] J.S. Birman, Braids, links, and mapping class groups, Ann. Math. Stud., Princeton Univ. Press, Princeton, 1974.
[4] P. Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), 167–208.
[5] P. Boalch, The fifty-two icosahedral solutions to Painlevé VI, preprint (arXiv: math.AG/0406281).
[6] R.L. Devaney, An introduction to chaotic dynamical systems, 2nd ed., Perseus Books Publ., Reading, 1989.
[7] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), 1135–1169.
[8] T.-C. Dinh and N. Sibony, Une borne supérieure pour l'entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (3) (2005), 1637–1644.
[9] B. Dubrovin and M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (1) (2000), 55–147.
[10] R. Dujardin, Laminar currents and birational dynamics, to appear in Duke Math. J. (arXiv: math.DS/0409557).
[11] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc., New York, 1978.
[12] W.M. Goldman, Ergodic theory on moduli spaces, Ann. of Math. 146 (1997), 475–507.
[13] N. Hitchin, *Poncelet polygons and the Painlevé equations*, Geometry and analysis (Bombay, 1992), 151–185, Tata Inst. Fund. Res., Bombay, 1995.

[14] N. Hitchin, *A lecture on the octahedron*, Bull. London Math. Soc. **35** (5) (2003), 577–600.

[15] J.E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge Univ. Press, Cambridge, 1990.

[16] M. Inaba, K. Iwasaki and M.-H. Saito, *Dynamics of the sixth Painlevé equation*, Théorie asymptotique et équations de Painlevé (Angers, juin 2004), M. Loday and E. Delabaere (Ed.), Séminaires et Congrès, Soc. Math. France, 2006. (arXiv: math.AG/0501007).

[17] M. Inaba, K. Iwasaki and M.-H. Saito, *Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI*. Part I, to appear in Publ. Res. Inst. Math. Sci., (math.AG/0309342); Part II, preprint (2005).

[18] K. Iwasaki, *Moduli and deformation for Fuchsian projective connections on a Riemann surface*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **38** (3) (1991), 431–531.

[19] K. Iwasaki, *A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation*, Proc. Japan Acad. Ser. A **78** (2002), 131–135.

[20] K. Iwasaki, *An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation*, Comm. Math. Phys. **242** (1-2) (2003), 185–219.

[21] K. Iwasaki, *Bounded trajectories of the sixth Painlevé equation*, in preparation.

[22] K. Iwasaki and T. Uehara, *Periodic solutions to Painlevé VI and dynamical system on cubic surface*, preprint (arXiv: math.AG/0512583).

[23] M. Jimbo, *Monodromy problem and the boundary condition for some Painlevé equations*, Publ. Res. Inst. Math. Sci., **18** (3) (1982), 1137–1161.

[24] A. Katok and B. Hasselblatt, *Introduction to the modern theory of dynamical systems*, Cambridge Univ. Press, Cambridge, 1995.

[25] A.V. Kitaev, *Grothendieck’s dessins d’enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations*, Algebra i Analiz **17** (1) (2005), 224–275.

[26] M. Mazzocco, *Rational solutions of the Painlevé VI equation*, J. Phys. A: Math. Gen. **34** (2001), 2281–2294.

[27] D. Mumford, *Geometric invariant theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band **34**, Springer-Verlag, Berlin, 1965.

[28] K. Okamoto, *Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Espaces des conditions initiales*, Japan. J. Math. **5** (1979), 1–79.

[29] D.S. Ornstein and B. Weiss, *Statistical properties of chaotic systems*, Bull. Amer. Math. Soc. (N.S.) **24** (1991), 11–116.
[30] M.-H. Saito, T. Takebe and H. Terajima, *Deformation of Okamoto-Painlevé pairs and Painlevé equations*, J. Algebraic. Geom. 11 (2) (2002), 311–362.

[31] H. Sakai, *Rational surfaces associated with affine root systems and geometry of the Painlevé equations*, Comm. Math. Phys. 220 (2001), 165–229.

[32] P. Walters, *An introduction to ergodic theory*, GTM 79, Springer-Verlag, New York, 1982.