CP-violating triple-product asymmetries in Charm decays

MAURIZIO MARTINELLI
ON BEHALF THE LHCb AND BABAR COLLABORATIONS

Laboratoire de Physique des Hautes Energies
École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

The use of triple-product correlations is described in relation to the search for CP violation in 4-body charm meson decays. The latest results from the LHCb and BaBar Collaborations are reported. A novel interpretation of the asymmetries from triple-product correlations is used for the BaBar results, which enables the extraction of information on the properties of D decays under parity and charge-conjugation transformations.

PRESENTED AT

8th International Workshop on the CKM Unitarity Triangle
(CKM 2014)
Vienna, Austria, September 8–12, 2014
1 Introduction

Violation of \(CP \) symmetry in charm meson decays is expected to be extremely small in the Standard Model (SM) \[1,2\], although recent calculations do not exclude effects up to a few times \(10^{-3} \) \[3,4,5\]. This small \(CP \) violation effect in the SM leaves room for beyond-SM effects that, even if small, could produce an asymmetry significantly larger than that predicted from the SM. The large samples of charm meson decays recorded at the \(B \) factories, and more recently at LHCb, enable the search for \(CP \) violation at the sub-percent level, hence approaching the largest SM predictions.

Three kinds of search are usually pursued in probing \(CP \) violation. These involve interference effects between the decay amplitudes, between the mixing and the decay amplitudes, and in the mixing amplitudes \[1\]. In the present contribution, an alternative approach using triple-product correlations is shown. If the invariant matrix element of a quasi-two-body decay is expressed in the terms of its scalar, vector and tensor contributing amplitudes, the asymmetry built from triple-product correlations is indeed found to be sensitive to \(CP \) violation \[6\]. Furthermore, this observable has different sensitivity to strong phases than the direct \(CP \) violation asymmetry observable. In the first case, the observable is proportional to the cosine of the difference of the strong phases of the interfering amplitudes, while in the second case it is proportional to the sine of this angle. Since in both cases these terms are multiplied by the sine of the difference between the \(CP \)-violating weak phases, one is more sensitive to \(CP \) violation when the difference of the strong phases of the interfering amplitudes is small, while the other is more sensitive when this difference is large \[7\].

2 The LHCb measurement

The LHCb collaboration used triple-product correlations to search for \(CP \) violation in \(D^0 \rightarrow K^+K^-\pi^+\pi^- \) decays\[8\]. The triple-product is defined by using the momenta of three out of the four daughters in the \(D^0 \) rest frame (\(C_T \equiv \vec{p}_{K^+} \cdot \vec{p}_{\pi^+} \times \vec{p}_{\pi^-} \)). A sample of 170,000 \(D^0 \) decays is found in 3 fb\(^{-1}\) of data recorded by the LHCb detector in 2011 and 2012, when selecting them through partial reconstruction of semileptonic decays of the \(B \) meson (\(B \rightarrow D^0\mu^-X \), where \(X \) indicates any system composed of charged and neutral particles). The charge of the muon is used to identify the flavour of the \(D^0 \) meson. The distributions of the \(D^0 \) meson candidates in four different regions defined by \(D^0 \) flavour and \(C_T \) value being greater or less then zero are shown in Figure \[1\].

*Throughout this document the use of charge conjugate reactions is implied, unless otherwise indicated.
Figure 1: D^0-candidate mass distributions depending on flavour and the value of C_T [8].
In each case, the result of the fit is overlaid as a solid curve, while a dashed line represents the background. The distribution of normalised residual (pull), defined as the difference between the fit result and the data, divided by the data uncertainty, is shown above each data distribution.

The triple-product C_T is used to define the two asymmetries

$$A_T = \frac{\Gamma(D^0; C_T > 0) - \Gamma(D^0; C_T < 0)}{\Gamma(D^0; C_T > 0) + \Gamma(D^0; C_T < 0)}, \quad \overline{A}_T = \frac{\Gamma(D^0; -C_T > 0) - \Gamma(D^0; -C_T < 0)}{\Gamma(D^0; -C_T > 0) + \Gamma(D^0; -C_T < 0)}.$$

These are not CP-violating asymmetries because they are proportional to the sine of the sum of the strong and weak phase differences [6]. The CP violating observable is given by the difference of these two asymmetries $a_{T-odd}^{CP} \equiv (A_T - \overline{A}_T)/2$.

The size and the quality of the sample allowed the LHCb Collaboration to perform three different searches for CP violation: a time-integrated measurement, a measurement as a function of phase-space region and a measurement as a function of D^0-decay-time region, with the results shown in Figures 2 and 3.

The result of the integrated measurement is $a_{T-odd}^{CP} = (1.8 \pm 2.9\text{(stat)} \pm 0.4\text{(syst)}) \times$
10^{-3}. No significant deviation from zero is observed either as a function of phase-space region or as a function of decay-time, and a χ^2 probability test used to estimate the compatibility of the CP conservation hypothesis gave the values 74% and 83%, for the respective distributions.

The non-CP-violating asymmetries A_T and \overline{A}_T were also measured and found to be significantly different from zero, namely $A_T = (-71.8 \pm 4.1 \text{(stat)} \pm 1.3 \text{(syst)}) \times 10^{-3}$ and $\overline{A}_T = (-75.5 \pm 4.1 \text{(stat)} \pm 1.2 \text{(syst)}) \times 10^{-3}$. Furthermore, while their distributions are flat in D^0 decay time, they show significant deviations from the average values in different regions of the phase space, with local asymmetry values ranging from -30% to 30%. These effects can be interpreted as being due to the various resonant contributions which produce different asymmetries as a result of final state interactions in different regions of the phase space.

An interesting feature of this measurement is that, by definition, the systematic uncertainties are very small. The largest uncertainty on $a_{CP}^{T\text{-odd}}$ is due to detector bias as estimated from a control sample of $B \rightarrow D^0(K^-\pi^+\pi^+\pi^-)\mu^-X$ decays. This
is conservatively assigned as the statistical uncertainty of the measurement on this sample, since no significant bias is observed. For the A_T and \overline{A}_T measurements, the background from prompt D^0 decays and flavour misidentification are the largest sources of uncertainty, but they cancel in $a^{T\text{-odd}}_{CP}$.

3 A new interpretation of triple-product correlations

A recent paper [9] suggests a novel interpretation of the triple-product correlation asymmetries previously mentioned, and suggests further asymmetries to investigate. Since C_T is P-odd, the A_T and \overline{A}_T asymmetries are interpreted as P-violating asymmetries ($A_P = A_T$ and $\overline{A}_P = -\overline{A}_T$). Further, considering that $C(A_P) = \overline{A}_P$ and $CP(A_P) = -\overline{A}_P$, one can build the C- and CP-violating asymmetries $a^C_P \equiv (A_P - \overline{A}_P)/2$ and $a^{CP}_P \equiv (A_P + \overline{A}_P)/2 = a^{T\text{-odd}}_{CP}$.

The same exercise can be repeated for C and CP. Considering that $C(C_T) = \overline{C}_T$, one can define the C-violating asymmetries

$$A_C = \frac{\Gamma(D^0, \overline{C}_T < 0) - \Gamma(D^0, C_T < 0)}{\Gamma(D^0, \overline{C}_T < 0) + \Gamma(D^0, C_T < 0)}; \quad \overline{A}_C = \frac{\Gamma(D^0, C_T > 0) - \Gamma(D^0, \overline{C}_T > 0)}{\Gamma(D^0, C_T > 0) + \Gamma(D^0, \overline{C}_T > 0)}.$$

Since $P(A_C) = \overline{A}_C$ and $CP(A_C) = -\overline{A}_C$, $a^C_P \equiv (A_C - \overline{A}_C)/2$ and $a^{CP}_C \equiv (A_C + \overline{A}_C)/2$ are P- and CP-violating asymmetries, respectively.

Finally, since $CP(C_T) = -\overline{C}_T$, the CP-violating asymmetries

$$A_{CP} = \frac{\Gamma(D^0, \overline{C}_T > 0) - \Gamma(D^0, C_T < 0)}{\Gamma(D^0, \overline{C}_T > 0) + \Gamma(D^0, C_T < 0)}; \quad \overline{A}_{CP} = \frac{\Gamma(D^0, C_T < 0) - \Gamma(D^0, \overline{C}_T > 0)}{\Gamma(D^0, C_T < 0) + \Gamma(D^0, \overline{C}_T > 0)}.$$

can be defined. Applying P and C to these asymmetries $P(A_{CP}) = \overline{A}_{CP}$ and $C(A_{CP}) = -\overline{A}_{CP}$, and the P- and C-violating asymmetries $a^P_{CP} \equiv (A_{CP} - \overline{A}_{CP})/2$ and $a^{CP}_C \equiv (A_{CP} + \overline{A}_{CP})/2$ are obtained.

4 Reinterpretation of BaBar results

The BaBar Collaboration reinterpreted their previous results on CP violation using triple-product correlations in prompt $D^0 \rightarrow K^+K^-\pi^+\pi^-$ [10] and $D^+_s \rightarrow K^+K^0\pi^+\pi^-$ [11] decays in light of Ref. [9]. The A_T and \overline{A}_T asymmetries previously measured are translated into yields following $\Gamma(D, C_T \geq 0) = N_D(1 \pm A_P)$ and $\Gamma(D, \overline{C}_T \geq 0) = N_{\overline{D}}(1 \mp \overline{A}_P)$, and the event rates in Table 1 are obtained.

The systematic uncertainties are extracted following the same considerations and assuming them to be distributed as Gaussian functions. A few specific sources of
−6
−7
−C
10974 ± 117 5406 ± 136 6792 ± 135
12587 ± 125 5287 ± 131 8287 ± 131
12380 ± 124 5073 ± 104 7886 ± 121
10749 ± 116 5443 ± 111 6826 ± 107

Event	D^0	D^+	D^+_s
$\Gamma(D, C_T > 0)$	10974 ± 117	5406 ± 136	6792 ± 135
$\Gamma(D, C_T < 0)$	12587 ± 125	5287 ± 131	8287 ± 131
$\Gamma(D, C_T > 0)$	12380 ± 124	5073 ± 104	7886 ± 121
$\Gamma(D, C_T < 0)$	10749 ± 116	5443 ± 111	6826 ± 107
Total	46690 ± 241	21209 ± 242	29791 ± 248

Table 1: Number of signal events extracted from the asymmetry measurements in previous BaBar publications [10, 11].

Asymmetry	$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$	$D^+ \rightarrow K^+ K^0_S \pi^+ \pi^-$	$D^+_s \rightarrow K^+ K^0_S \pi^+ \pi^-$
A_P	$-6.9 \pm 0.7 \pm 0.6(7.5)$	$1.1 \pm 1.4 \pm 0.6(0.7)$	$-9.9 \pm 1.1 \pm 0.8(7.3)$
\bar{A}_P	$7.1 \pm 0.7 \pm 0.4(8.8)$	$-3.5 \pm 1.4 \pm 0.7(2.2)$	$7.2 \pm 1.1 \pm 1.1(4.6)$
a^P_C	$-7.0 \pm 0.5 \pm 0.1(13.5)$	$2.3 \pm 1.1 \pm 0.2(2.1)$	$-8.6 \pm 0.9 \pm 0.2(9.3)$
a^P_{CP}	$0.1 \pm 0.5 \pm 0.4(0.2)$	$-1.2 \pm 1.0 \pm 0.5(1.1)$	$-1.4 \pm 0.8 \pm 0.3(1.6)$
A_C	$6.0 \pm 0.7 \pm 0.1(8.3)$	$-2.6 \pm 1.6 \pm 0.5(1.6)$	$8.0 \pm 1.3 \pm 0.5(5.7)$
\bar{A}_C	$-7.9 \pm 0.7 \pm 0.1(10.8)$	$2.0 \pm 1.6 \pm 0.5(1.2)$	$-9.2 \pm 1.2 \pm 0.5(7.1)$
a^C_C	$7.0 \pm 0.5 \pm 0.1(13.5)$	$-2.3 \pm 1.1 \pm 0.2(2.1)$	$8.6 \pm 0.9 \pm 0.2(9.3)$
a^C_{CP}	$-0.9 \pm 0.5 \pm 0.0(1.8)$	$-0.4 \pm 1.1 \pm 1.0(0.3)$	$-0.6 \pm 0.9 \pm 1.0(0.4)$
A_{CP}	$-0.8 \pm 0.7 \pm 0.4(1.0)$	$-1.6 \pm 1.6 \pm 0.8(0.9)$	$-2.0 \pm 1.2 \pm 0.8(1.4)$
\bar{A}_{CP}	$-1.0 \pm 0.8 \pm 0.4(1.1)$	$0.8 \pm 1.6 \pm 0.8(0.5)$	$0.8 \pm 1.3 \pm 0.9(0.5)$
a^P_{CP}	$0.1 \pm 0.5 \pm 0.4(0.2)$	$-1.2 \pm 1.1 \pm 0.6(1.0)$	$-1.4 \pm 0.9 \pm 0.6(1.3)$
a^C_{CP}	$-0.9 \pm 0.5 \pm 0.0(1.8)$	$-0.4 \pm 1.1 \pm 1.0(0.3)$	$-0.6 \pm 0.9 \pm 1.0(0.4)$

Table 2: Asymmetry measurements extracted from the BaBar data (percent values). The first uncertainty is statistical, the second systematic. The statistical significance of the asymmetry is quoted in parentheses.

systematic uncertainty are considered in addition to those identified in the original publications [10, 11]. The slow pion reconstruction asymmetry, which affects A_C and A_{CP} asymmetries from D^0 decays, is found to be negligible. Neutral kaon regeneration and interference introduces an effect of 0.06% [12]. The asymmetry between of K^+- and K^--interactions in the BaBar detector material introduces an uncertainty of 0.5%. Both uncertainties affect only the D^+ and D^+_s decay mode.

Table 2 shows the results for all the aforementioned asymmetries and all the decay modes considered. No evidence of CP violation is found. The tests performed on the D^+ show no significant asymmetry. A significant deviation from 0, indicating violation of parity and charge-conjugation (A_P, \bar{A}_P, a^P_C, a^P_{CP}, A_C, \bar{A}_C), is found for the D^0 and D^+_s decays. Similar effects are not observed in D^+ decays. A better understanding of the amplitude structure of these decays and theoretical input are
needed to fully understand this difference.

5 Conclusions

The triple-product correlations provide alternative and complementary measurements with which to search for CP violation in multi-body particle decays. Recent studies suggest that these correlations can be used to probe C and P symmetries as well. Both LHCb and BaBar Collaborations searched for CP violation using T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays, finding $a_{CP}^{T\text{-odd}}\text{(LHCb)} = (1.8 \pm 2.9(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-3}$ and $a_{CP}^{T\text{-odd}}\text{(BaBar)} = (1.0 \pm 5.1(\text{stat}) \pm 4.4(\text{syst})) \times 10^{-3}$. The two results are consistent with each other and show no sign of CP violation. Nevertheless, they demonstrated that this observable is affected by systematic uncertainties which are very small, and therefore is appropriate for the study of very large data samples expected at LHCb after LHC Run 2 ($\sim 10 \text{ fb}^{-1}$) or at future experiments, such as Belle-II and the LHCb Upgrade.

References

[1] S. Bianco, F. L. Fabbri, D. Benson and I. Bigi, Riv. Nuovo Cim. 26N7, 1 (2003).
[2] Y. Grossman, A. L. Kagan and Y. Nir, Phys. Rev. D 75, 036008 (2007).
[3] T. Feldmann, S. Nandi and A. Soni, JHEP 1206, 007 (2012).
[4] J. Brod, A. L. Kagan and J. Zupan, Phys. Rev. D 86, 014023 (2012).
[5] B. Bhattacharya, M. Gronau and J. L. Rosner, Phys. Rev. D 85, 054014 (2012).
[6] G. Valencia, Phys. Rev. D 39, 3339 (1989).
[7] A. Datta and D. London, Int. J. Mod. Phys. A 19, 2505 (2004).
[8] R. Aaij et al. [LHCb Collaboration], JHEP 1410, 5 (2014).
[9] A. J. Bevan, arXiv:1408.3813 [hep-ph].
[10] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 81, 111103 (2010).
[11] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 84, 031103 (2011).
[12] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 83, 071103 (2011).