Description and genome analysis of *Luteimonas viscosa* sp. nov., a novel bacterium isolated from soil of a sunflower field

Ya Chen · Ying Zhang · Di Xin · Xiaonan Luo · Huancheng Pang · Yuyi Li · Jianli Zhang

Received: 10 December 2021 / Accepted: 19 March 2022 / Published online: 7 April 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract Strain XBU10ᵀ was isolated from a soil sample of a sunflower plot in Inner Mongolia, China. The isolate was a Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, and its colonies were bright yellow in colour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XBU10ᵀ belonged to the genus *Luteimonas* of the family *Lysobacteraceae* and was most closely related to *Luteimonas panaciterrae* Gsoil 068ᵀ (97.8%), *Luteimonas marina* FR130ᵀ (97.6%), *Luteimonas aquatica* RIB1-20ᵀ (97.4%) and *Luteimonas huebeiensis* HB2ᵀ (97.2%). Growth occurred at 4–40 °C (optimum, 28–30 °C), with 0–5.0% (w/v) NaCl (optimum, 0.5%) and at pH 6.0–10.0 (optimum, pH 7.0–8.0). The chemotaxonomic characteristics of strain XBU10ᵀ, which had Q-8 as its predominant quinone and iso-C₁₇:₁ ω₉c, iso-C₁₅:₀, iso-C₁₇:₀ and iso-C₁₆:₀ as its major fatty acids, were consistent with classification in the genus *Luteimonas*. The polar lipid profile of strain XBU10ᵀ comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, two unidentified aminophospholipids and three unidentified polar lipids. The genome of strain XBU10ᵀ was 4.17 Mbp with a G+C content of 69.9%. Its genome sequence showed genes encoding alkaline phosphatase and catalase. Protein-coding genes related to carbohydrate-active enzymes were also observed. Average nucleotide identity (ANI) values between XBU10ᵀ and other species of the genus *Luteimonas* were found to be low (ANIm < 88.0%, ANIb < 85.0% and OrthoANIu < 85.0%). Furthermore, digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between strain XBU10ᵀ and the closely related species ranged from 20.3 to 28.9% and from 64.2 to 82.3%, respectively. Based on the results of our phylogenetic, phenotypic, genotypic and chemotaxonomic analyses, it is concluded that strain XBU10ᵀ represents a novel species within the genus *Luteimonas*, for which the name *Luteimonas viscosa* sp. nov. is proposed. The type strain is XBU10ᵀ (= CGMCC 1.12158ᵀ = KCTC 23878ᵀ).

Keywords *Luteimonas viscosa* sp. nov. · Polyphasic taxonomy · 16S rRNA gene

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10482-022-01730-y.

Y. Chen · Y. Zhang · D. Xin · X. Luo · J. Zhang
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
e-mail: zhangjianli@bit.edu.cn

H. Pang · Y. Li
Institute of Agri-Resources and Regional Planning, CAAS, Beijing 100081, People’s Republic of China
Introduction

The genus *Luteimonas* was initially proposed by Finkmann et al. (2000), with *Luteimonas mephitis* as the type species. The genus is a member of the family *Lysobacteraceae*, class Gammaproteobacteria and closely to the genera *Lysobacter*, *Xanthomonas*, *Pseudoxanthomonas* and *Stenotrophomonas*. According to LPSN (https://lpsn.dsmz.de/genus/luteimonas), the genus *Luteimonas* currently contains 24 species with validly published names. These members have been isolated from various environments such as sea water (Baik et al. 2008), soil (Wang et al. 2015; Lin et al. 2020; Xiong et al. 2020; Rani et al. 2016), rhizosphere (Zhao et al. 2018; Cheng et al. 2016), sediment (Fan et al. 2014; Roh et al. 2008), fresh water (Chou et al. 2008), food waste (Young et al. 2007), plant (Sun et al. 2012) and intertidal macroalga (Verma et al. 2016). The species within the genus *Luteimonas* have several common characteristics, including Gram-negative, non-flagellated, non-spore-forming, aerobic, rod-shaped, yellow coloured, iso-C15:0 as the predominant fatty acid and the presence of ubiquinone-8 (Q-8) as the major ubiquinone. Some *Luteimonas* species not only play an important role in the ecosystem, but also have a considerable potential value in the field of basic research and biological engineering. Notably, *Luteimonas arsenica* is tolerant to arsenite and arsenate (Mu et al. 2016), *Luteimonas terricola*, *L. mephitis*, “*Luteimonas dalianensis*” and *Luteimonas huabeiensis* are capable of degrading petroleum (Zhang et al. 2010; Finkmann et al. 2000; Xin et al. 2014; Wu et al. 2013). These species have potentials to be applied in bioremediation. Thus, isolation and characterization of a novel *Luteimonas* species from soil are crucial for our understanding of soil-related bacterial communities as well as for developing commercially useful metabolites. Accordingly, we here describe a novel bacterium belonging to the genus *Luteimonas*, designated strain XBU10T, which was isolated from the soil of a sunflower field. It is interesting to note that genes related to degradation of aromatic compounds were found in strain XBU10T, suggesting that the bacterium could be used in bioremediation. Apart from these, function genes related to alkaline phosphatase and catalase were also observed in strain XBU10T.

Materials and methods

Isolation and culture conditions

Strain XBU10T was isolated from a saline-alkaline soil sample collected from a sunflower field in Wuyuan county (41° 04’ 39” N, 108° 00’ 21” E) in Inner Mongolia, China. To isolate bacteria, 1 g soil sample was suspended in 100 ml sterile water, and then diluted and spread onto tryptic soy agar (TSA) plates, followed by incubation at 28 °C for 5 days. Single colonies were picked and re-streaked repeatedly onto new TSA plates until the purity was confirmed. Purified colonies of strain XBU10T were maintained on TSA medium slants at 4 °C and preserved in 20% (v/v) glycerol at −20 °C.

In the present study, some species were chosen as reference strains, including *Luteimonas panaciterrae* Gsoil 068T and *Luteimonas marina* FR1330T from the Korean Collection of Type Cultures (KCTC; https://kctc.kribb.re.kr/KCTC), *Luteimonas aquatica* RIB1-20T and *L. huabeiensis* HB2T from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH (DSM; https://www.dsmz.de/), *Luteimonas composti* CC-YY255T from Bioresource Collection and Research Center (BCRC; https://www.bcrc.firdi.org.tw/). They were cultured under the same conditions for comparative analysis.

16S rRNA gene sequencing and phylogenetic analysis

For phylogenetic analysis, genomic DNA of strain XBU10T was isolated from a sunflower field using a commercial genomic DNA extraction kit (TianGen, China). The 16S rRNA genes were amplified by using universal primers 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-TACGGTACCCTGTTACGACTT-3’) (Weisburg et al. 1991). The resultant 16S rRNA gene sequence of strain XBU10T was acquired and compared with the recognized species in the EzTaxon database (www.ezbiocloud.net/identify) (Yoon et al. 2017a, b) to determine the closest type strains and calculate the levels of sequence similarity. Multiple sequence alignments were performed using the Clustal_X program (Thompson et al. 1997). Evolutionary distances were calculated according to Kimura’s two-parameter model (Kimura 1980). The neighbour-joining (NJ) (Saitou and Nei 1987), maximum-parsimony (MP) (Kluge and Farris 1969) and
maximum-likelihood (ML) (Felsenstein 1981) algorithms were used to reconstruct phylogenetic trees by using MEGA X software (Kumar et al. 2018). The topologies of the resultant trees were evaluated by using the bootstrap resampling method of Felsenstein (1985) with 1000 replicates.

Genome sequencing, assembly and function analysis

The whole genome sequence of the reference strain \textit{L. panaciterrae} Gsoil 068T for genomic comparison with strain XBU10T was not available. For the comparison of genome relatedness, genomic DNA of strain XBU10T together with reference strain \textit{L. panaciterrae} Gsoil 068T were extracted following the method of Marmur (1961). Genome sequencing was performed using the HiSeq X Ten sequencer system (Illumina) with paired-end reads of 150 bp. Reads of each data sets were filtered, and high quality paired-end reads were assembled using SOAPdenovo version 2.04 (http://soap.genomics.org.cn/) (Li et al. 2010). The draft genome sequence data has been deposited in the GenBank/DDBJ/ENA. The genomic DNA G+C content was calculated directly from the draft genome sequence. The function of coding genes in the assembled genome were annotated by Gene Ontology (GO) (Ashburner et al. 2000), Clusters of Orthologous Groups (COG) (Galperin et al. 2015) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Minoru et al. 2016). The carbohydrate-active enzyme coding genes were annotated by HMMMER searching (Finn et al. 2011) against the Carbohydrate-Active enZYMes database (Lombard et al. 2014).

DNA-DNA hybridization and genome-based phylogenetic analysis

The available whole genomes of \textit{Luteimonas} species were collected from the National Center for Biotechnology Information (NCBI) database. Average nucleotide identity (ANI) values using BLAST (ANIB), MUMmer (ANIm) and the OrthoANlTu algorithm between strain XBU10T and the reference strains were calculated by the JSpecies Web Server (http://jspecies.ribohost.com/jspeciesws/) (Richter and Rossello-Mora 2009) and the EzGenome web service (https://www.ezbiocloud.net/tools/ani) (Yoon et al. 2017a, b). Moreover, digital DNA-DNA hybridization (dDDH) was performed at the Genome-to-Genome Distance Calculator (GGDC) website (http://ggdc.dsmz.de/distcalc2.php) (Meier-Kolthoff et al. 2013). The average amino acid identity (AAI) was assessed using an online AAI calculator (http://enve-omics.ce.gatech.edu/aaic/). Two-way AAI analysis was performed. Protein sequence data from NCBI database. Additionally, a phylogenetic tree based on the whole genome sequences of strain XBU10T and related species was constructed using the Type (Strain) Genome Server (https://tygs.dsmz.de/) (Meier-Kolthoff and Goker 2019).

Morphological, physiological and biochemical analysis

Growth on different bacteriological culture media was assessed using nutrient agar (NA), marine agar 2216 (MA), Reasoner’s 2A (R2A), Luria–Bertani agar (LB), MacConkey agar and TSA medium, with sub culturing at 28 °C for 7 days. The Gram stain reaction of strain XBU10T was determined according to the method of Smibert and Krieg (1994). Colony characteristics were observed after incubation of the bacterial cells at 28 °C for 3 days on TSA medium. Cell size and morphology of strain XBU10T was observed by using light microscope (BH-2, Olympus) and transmission electron microscopy (JEM-1400, JEOL), with cells grown for 3 days at 28 °C on TSA medium. Cell motility was performed depending on turbidity development in a tube containing semi-solid medium and was confirmed by the hanging-drop method (Leifson 1960; Skerman 1967). Poly-β-hydroxybutyrate granule accumulation was observed by using light microscopy after staining of the cells with Sudan black (Baomanbio). Growth at various temperatures (2, 4, 10, 15, 20, 25, 28, 30, 33, 35, 37, 40, 42 and 45 °C) was tested on TSA medium for 15 days. NaCl tolerance for salinity was assessed by inoculating the strain in tryptone soya broth (TSB) medium supplemented with different NaCl concentrations (0–10.0%, at intervals of 0.5%, w/v). To assess the pH range and the optimal pH (4.0–12.0, at intervals of 1.0 pH unit) for growth of the strain, cultures were incubated in TSB medium. The pH of the basal medium was adjusted using the buffer system: pH 4.0–5.0: 0.1 M citric acid/0.1 M sodium citrate; pH 6.0–8.0: 0.1 M KH\textsubscript{2}PO\textsubscript{4}/0.1 M NaOH; pH 9.0–10.0: 0.1 M NaHCO\textsubscript{3}/0.1 M Na\textsubscript{2}CO\textsubscript{3}; pH 11.0:
0.05 M Na₂HPO₄/0.1 M NaOH; pH 12.0: 0.2 M KCl/0.2 M NaOH (Xu et al. 2005). Catalase activity was detected by the production of bubbles after the addition of 3% (v/v) H₂O₂ solution. Oxidase activity was determined by the oxidation of 1% (w/v) tetramethyl-p-phenylenediamine (Tarrand and Groschel 1982). The anaerobic growth test was performed on TSA medium with 1 g pyrogallic acid and 2 ml 10% (w/v) NaOH in the plate, which was then sealed with vaseline and growth detected for 2 weeks (Ping et al. 2020). Endospore formation was examined according to the Schaeffer-Fulton method by staining bacterial cells with malachite green (Chaudhary and Kim 2016). Nitrate reduction, hydrolysis of Tweens 20, 40, 60, 80, casein, xylan and starch were investigated according to the methods of Dong and Cai (2001). Cells for physiological and biochemical characterization of strain XBU10ᵀ were prepared by routine cultivation on TSA medium at 28 °C. Other physiological and biochemical tests were performed using API 20E, API 20NE and API 50CH kits (bioMérieux) and a GN2 MicroPlate (Biolog). Enzyme activities were tested using an API ZYM kit (bioMérieux) according to the manufacturer’s instructions. Antibiotic resistance was tested by placing antibiotic-impregnated discs (TIANTAN) on TSA medium inoculated with bacterial cultures. The strain was recorded as susceptible to the antibiotic if the clear zone of growth inhibition was >10 mm in diameter (Goodfellow and Orchard 1974).

Chemotaxonomic characterization

For analysis of fatty acid methyl esters, strain XBU10ᵀ and its reference strains were cultured under the same conditions in TSB medium at 28 °C for 3–4 days. Fatty acid methyl esters were further prepared and analysed using the Sherlock Microbial Identification System (MIDI) (Athalye et al. 1985). The fatty acid methyl esters were obtained from the cells through saponification, methylation and extraction and were then separated on a gas chromatograph. The peaks were automatically integrated, the fatty acid names and percentages were determined using the MIDI Sherlock MIS system (Library: TSBA6; Version, 6.0B). Cells of strain XBU10ᵀ for quinones and polar lipids were obtained by cultivating in TSB medium at 28 °C for 3–4 days. Cells were harvested by centrifugation, washed with distilled water and freeze-dried. The respiratory quinones were extracted and subsequently analysed by HPLC as previously described by Collins et al. (1977). Polar lipids were extracted from 100 mg freeze-dried cultures by the method described by Minnikin et al. (1984) and then they were separated by two-dimensional TLC on 10 × 10 cm silica-gel plates (Sillica gel 60 F254, Merck), with chloroform/methanol/water (65:25:4, v/v) and chloroform/glacial acetic acid/methanol/water (80:15:12:4, v/v) used in the first and second dimensions, respectively. The lipid profile of strain XBU10ᵀ was identified by spraying the following reagents: 10% ethanolic phosphomolybdic acid hydrate reagent (for total lipids), molybdenum blue reagent (for phospholipids) and 0.4% ninhydrin reagent (for aminolipids).

Results and discussion

Phylogenetic characteristics

The almost complete 16S rRNA gene sequence for strain XBU10ᵀ contained 1459 bp nucleotides. Comparative 16S rRNA gene sequence analyses showed that strain XBU10ᵀ was phylogenetically affiliated with species of the genus Luteimonas, showing high similarity with strains L. panaciterrae Gsoil 068ᵀ (97.8%), L. marina FR1330ᵀ (97.6%), L. aquatica RIB1-20ᵀ (97.4%) and L. huabeiensis HB2ᵀ (97.2%). Moreover, 16S rRNA gene sequence similarities between strain XBU10ᵀ and other type strains with validly published names of the genus Luteimonas were less than 96.9%. The NJ phylogenetic tree (Fig. 1) indicated that strain XBU10ᵀ clustered with the members of the genus Luteimonas and formed a robust clade with the related species L. marina FR1330ᵀ and L. compositi CC-YY255ᵀ. This phylogenetic relationship was also confirmed in the trees generated with the maximum-parsimony (Fig. S1, available in the online version of this article) and maximum-likelihood (Fig. S2) algorithms. According
to phylogenetic analysis and sequence similarities of the 16S rRNA genes, strain XBU10T represented a member of the genus *Luteimonas*.

Genome composition and DNA-DNA hybridisation

The assembled genome sequence of strain XBU10T has been deposited in the GenBank database under the accession number VTFT00000000. The total length of the assembly contained 4 169 055 bp, comprising 9 contigs with an N50 value of 3 026 340 bp and 283 × coverage. The draft genome contained 3579 predicted protein-coding sequences, 47 tRNAs, 3 rRNAs and 5 ncRNAs were predicted. In addition, the GenBank accession number for the whole genome sequence of the closest related type strain *L. panaciterrae* Gsoil 068T is JAJAVH000000000. The genome of *L. panaciterrae* Gsoil 068T was 4 093 429 bp with a 257 × average genome coverage. A total of 3682 genes were predicted, including 53 RNA genes (46 tRNAs, 3 rRNAs and 4 other RNAs) and 3565 protein-coding genes. The DNA G + C content of strain XBU10T was calculated directly from the genome sequence and determined to 69.9%. This value falls within the range reported for the genus *Luteimonas* (64.3–73.4 mol%). General features of the draft genome of strain XBU10T are given in Table S1. The ANI values between strain XBU10T and several other *Luteimonas* species were found to be low (ANIm < 88.0%, ANIb < 85.0% and OrthoANlu < 85.0%), as given in Table S2. All the ANI values are below the 95–96% cut-off value previously proposed species delineation (Stackebrandt and Good 1994). dDDH values inferred by the GGDC were from 20.3 to 28.9%, which are lower than the accepted threshold value (70%) to separate two species in prokaryotic systematics (Meier-Kolthoff et al. 2013). Furthermore, the result of AAI analyses between strain XBU10T and other reference strains were in the range 64.2–84.3%, and all values are far below the threshold of 95% for differentiating bacterial species (Konstantinidis and Tiedje 2005; Luo et al. 2014). A genome-based phylogenetic tree was included in Fig. S3, which showed that strain XBU10T was affiliated to the genus *Luteimonas*. These results strongly support that strain XBU10T is different from all closely related species described previously and represents a novel species.

Genome features and function prediction

During the comparison from different databases, the GO annotation indicated that gene functions of strain XBU10T covered all aspects of cellular metabolism, with the most diverse gene types and number associated with biological process (6164 genes), followed by the genes associated with cellular component (4824 genes) and the genes associated with molecular function (3675 genes). Notably, among these genes related to molecular function, the number of the genes associated with catalytic activity was high and up to 1593 (Fig. S4). The COG classification annotation indicated that 74.7% protein-coding genes could be annotated to COG. Among the 21 general COG functional categories, the detailed distribution of genes was as follows: transcription, 186 genes; cell wall/membrane/envelope biogenesis, 177 genes; translation, ribosomal structure and biogenesis, 172 genes; amino acid transport and metabolism, 170 genes; signal transduction mechanisms, 164 genes. Other information of the COG functional categories was presented in Fig. S5. KEGG metabolic pathways were classified according to the relationship between KO (KEGG ORTHOLOGY) and Pathway. Functional annotation of genes by comparisons against the manually curated KEGG GENes database revealed that there were 296 genes related to the amino acid metabolism, 105 genes related to the xenobiotics biodegradation and metabolism, 142 genes related to the lipid metabolism, 364 genes related to the carbohydrate metabolism, 162 genes related to the energy metabolism and 197 genes related to the signal transduction (Fig. S6). Regarding the carbohydrate related genes, including cellobiose phosphorylase (EC. 2.4.1.20), N-acetylglucosamine-6-phosphate deacetylase (EC. 3.5.1.25), lactase (EC 3.2.1.108) and trehalose 6-phosphate phosphatase (EC. 3.1.3.12). The presence of genes associated with D-cellobiose, N-acetyl-D-glucosamine, α-D-lactose and D-trehalose utilization supported the results obtained for the physiological tests. Apart from these, the genes for alkaline phosphatase (EC. 3.1.3.1) and catalase (EC. 1.11.1.6) were found in genome of strain XBU10T, and these enzyme activities were positive in the enzyme tests. Analysis of the genome sequence of strain XBU10T showed 253 genes encoding different CAZymes in six different classes: glycoside hydrolases (GHs), enzymes that catalyze the
hydrolysis of glycosidic linkage of glucoside—71 gene counts; glycosyltransferases (GTs), involved in the formation of glycosidic bonds—70 gene counts; carbohydrate esterases (CEs), which hydrolyze carbohydrate esters—65 gene counts; auxiliary activities (AAs), redox enzymes that act in conjunction with CAZymes—19 gene counts; carbohydrate-binding modules (CBMs)—19 gene count and polysaccharide lyases (PLs), which perform non-hydrolytic cleavage of glycosidic bonds—9 gene counts (Fig. S7).

Morphological, physiological, and biochemical characteristics

Strain XBU10T was a Gram-stain-negative, aerobic, non-motile and non-spore-forming bacterium. Colonies grown on TSA medium plates for 3 days at 28 °C were circular, convex, smooth, bright yellow in colour, with entire margins and approximately 1.0–2.0 mm in diameter. Cells were rod-shaped and were 0.4–0.6 μm in width and 1.3–2.4 μm in length (Fig. 2). These phenotypic characteristics of strain XBU10T were in line with the genus Luteimonas.

Growth occurred at temperatures ranging from 4 to 40 °C (optimum, 28–30 °C), at pH 6.0–10.0 (optimum, pH 7.0–8.0) and with 0–5.0% (optimum, 0.5%, w/v) NaCl concentration. According the result of antibiotic sensitivity tests, resistant to gentamicin (10 μg), lincomycin (10 μg), novobiocin (30 μg) and streptomycin (10 μg), but sensitive to ampicillin (10 μg), chloramphenicol (30 μg), erythromycin (15 μg), kanamycin (30 μg), nalidixic acid (30 μg), neomycin (30 μg), penicillin G (10 U), rifampicin (5 μg) and tetracycline (30 μg). Strain XBU10T was positive for hydrolysis of aesculin and gelatin, assimilation of D-glucose and maltose, consistent with data for other reference strains. Detailed cultural, biochemical and physiological properties of strain XBU10T are given in the species description and the features that differentiate strain XBU10T from closely related species of the genus Luteimonas are shown in Table 1. Several phenotypic and biochemical characteristics of strain XBU10T clearly distinguished it from its closest related phylogenetic neighbours in the genus Luteimonas such as nitrate reduction, temperature range, NaCl tolerance, hydrolysis of casein, assimilation of malate, and utilization of glycy1 L-aspartic acid, lactulose, L-proline, L-serine, L-threonine and Tween 40. In addition, enzyme activity of valine arylamidase was negative for strain XBU10T while positive for the reference strains. These phenotypic characteristics clearly distinguished strain XBU10T from other related species of the genus Luteimonas.

Chemotaxonomic characteristics

A comparison of the fatty acid compositions of strain XBU10T and reference strains is presented in Table S3. The major fatty acids were iso-C_{17:1} ω9c (34.7%), iso-C_{15:0} (21.0%), iso-C_{17:0} (11.9%) and iso-C_{16:0} (10.3%), similar to other members of the genus Luteimonas. Although the fatty acid composition of strain XBU10T was consistent with that of the genus Luteimonas, there were marked between-strain differences in the proportions of these fatty acids. In particular, strain XBU10T differed from recognized Luteimonas species based on its higher content of iso-C_{17:1} ω9c and lower content of iso-C_{15:0} and C_{16:0}. The predominant respiratory quinone of strain XBU10T was ubiquinone Q-8, which is in consistent with the quinone system of the genus Luteimonas. The main polar lipids detected in strain XBU10T, as in many members of the genus Luteimonas, contained phosphatidylglycerol (PG), diphasphatidylglycerol (DPG) and phosphatidylethanolamine (PE). In addition, the polar lipids of strain XBU10T included one unidentified phospholipid (PL), two unidentified aminophospholipids (APL1, APL2) and three unidentified polar lipids (L1–L3) (Fig. S8). All in all, the chemotaxonomic characteristics confirmed the
Table 1 Differential characteristics between strain XBU10^T and the closely related species of *Luteimonas*

Characteristic	1	2	3	4	5	6
Source of isolation	Soil	Soil	Seawater	Fresh water	Stratum water	Food waste
Colony colour	Yellow	Cream-light yellow	Light yellow	Yellow	Yellow	Yellow
Temperature range (°C)	4–40	15–45	20–42	15–37	20–45	20–45
Temperature optimum (°C)	28–30	30	30	25	30	30
pH range	6.0–10.0	5.0–8.0	6.0–10.0	7.0–8.0	6.0–11.0	7.0–10.0
pH optimum	7.0–8.0	6.0–7.0	8.0	7.0	7.0	7.0
NaCl range (%, w/v)	0–5.0	0–3.0	0–1.0	0–3.0	0–5.0	0–6.0
NaCl optimum (%, w/v)	0.5	0	0	0	0.1	0–0.5
Nitrate reduction	+	−	−	−	−	−
Catalase	+	−	+	w	+	+
Hydrolysis of:						
Urea	−	−	−	−	−	−
Starch	−	−	−	w	−	−
Casein	−	+	+	+	+	+
Assimilation of (API 20NE):						
L-Arabinose	+	−	+	−	−	−
N-Acetyl-D-glucosamine	w	+	+	+	+	+
Caprate	−	+	−	−	−	−
Adipate	−	−	−	−	−	−
Malate	−	+	+	+	+	−
Citrate	−	w	+	−	−	−
Activity of (API ZYM):						
Alkaline phosphatase	+	−	+	+	+	+
Esterase (C4)	+	−	+	+	+	+
Esterase lipase (C8)	+	−	+	+	+	+
Lipase (C14)	w	−	−	−	+	−
Leucine arylamidase	−	−	+	+	+	+
Valine arylamidase	−	+	+	+	+	+
Cystine arylamidase	−	−	−	+	+	−
Trypsin	−	+	+	−	+	−
α-Chymotrypsin	+	+	+	−	+	+
Acid phosphatase	+	−	+	+	+	+
Naphthol-AS-BI-phosphohydrolase	+	−	+	+	+	+
β-Galactosidase	−	−	−	+	+	−
α-Glucosidase	−	+	+	−	−	+
β-Glucosidase	−	+	+	−	−	+
α-Mannosidase	−	+	+	−	−	−
Utilization of (Biolog GN2):						
α-Cyclodextrin	−	−	+	−	−	−
Glycogen	−	+	−	+	−	−
Tween 40	−	+	+	+	+	−
N-Acetyl-D-galactosamine	−	w	+	+	−	−
N-Acetyl-D-glucosamine	−	+	w	+	+	−
L-Arabinose	+	−	+	−	−	−
D-Cellobiose	+	+	+	−	+	−
D-Fructose	+	+	−	+	+	−
Characteristic	1	2	3	4	5	6
--------------------------------------	---	---	---	---	---	---
L-Fucose	-	-	-	+	-	-
Gentiose	+	-	+	+	+	+
α-D-Lactose	+	-	-	+	-	-
Lactulose	+	-	-	-	-	-
Maltose	+	+	+	+	-	+
D-Mannose	-	+	-	+	-	-
D-Melibiose	+	-	+	-	-	+
Methyl β-D-glucoside	-	-	-	+	-	-
D-Psicose	-	-	-	+	-	-
D-Sorbitol	-	-	-	+	-	-
Sucrose	w	-	-	+	-	-
D-Trehalose	+	-	-	+	-	-
Turanose	+	w	-	+	-	+
Succinic acid monomethyl ester	-	+	-	-	+	-
Acetic acid	-	+	w	+	+	-
Formic acid	-	-	-	+	+	-
D-Galactonic acid lactone	-	-	-	+	-	-
D-Galacturonic acid	-	-	-	+	-	-
D-Glucosaminic acid	-	-	-	+	-	-
α-Hydroxybutyric acid	-	-	-	+	-	-
β-Hydroxybutyric acid	+	+	-	+	+	-
p-Hydroxyphenylacetic acid	-	-	-	+	-	-
α-Ketobutyric acid	-	+	w	+	+	-
α-Ketoglutaric acid	-	w	-	+	+	-
α-Ketovaleric acid	-	-	-	+	-	-
DL-Lactic acid	-	-	-	+	+	-
Malonic acid	-	-	-	+	-	-
Propionic acid	-	+	-	+	-	-
Sebacic acid	-	-	-	+	-	-
Succinic acid	-	-	-	+	-	-
Bromosuccinic acid	-	+	w	+	-	-
Succinamic acid	-	w	-	+	-	-
L-Alaninamide	+	w	+	-	-	+
L-Alanine	-	-	-	+	-	-
L-Alanyl glycine	+	w	+	+	-	+
L-Aspartic acid	-	+	-	+	-	-
L-Aspartic acid	-	+	+	+	-	-
Glycyl L-aspartic acid	-	+	+	+	+	+
Hydroxy-L-proline	-	-	-	+	-	-
L-Leucine	-	-	-	+	-	-
L-Ornithine	-	-	w	+	-	-
L-Proline	-	-	-	+	-	-
D-Serine	-	w	-	-	-	-
L-Serine	-	+	+	+	-	-
L-Threonine	-	w	w	+	+	-
Urocanic acid	-	+	-	+	-	-
phylogenetic affiliation of strain XBU10T to the genus *Luteimonas*.

On the basis of phylogenetic analysis of its 16S rRNA gene sequence, together with phenotypic and chemotaxonomic analyses, and genome comparisons presented in this study, strain XBU10T represents a novel species within the genus *Luteimonas*, for which the name *Luteimonas viscosa* sp. nov. is proposed.

Description of *Luteimonas viscosa* sp. nov.

Luteimonas viscosa (vis.co’sa. L. fem. adj. *viscosa*, sticky, a property of the colonies).

Cells are Gram-stain-negative, aerobic, non-motile, rod-shaped, 0.4–0.6 μm in width and 1.3–2.4 μm in length. Colonies on TSA medium plates are circular, convex, smooth, bright yellow in colour, with entire margins and approximately 1.0–2.0 mm in diameter after incubation for 3 days at 28 °C. Cells grow well on TSA, NA, MA, LB agar and MacConkey agar medium, but poorly on R2A agar medium. Growth occurs at 4–40 °C (optimum, 28–30 °C), with 0–5.0% (w/v) NaCl (optimum, 0.5%) and at pH 6.0–10.0 (optimum, 7.0–8.0). Poly-β-hydroxybutyrate granule is not accumulated. Oxidase and catalase activities are positive. Nitrate could be reduced. Tweens 20, 40, 60 and 80 are hydrolysed, but casein, starch or xylan are not hydrolysed. In the API 20E systems, there are positive results for hydrolysis of aesculin and gelatin; assimilation of D-glucose and maltose; activity of N-acetyl-β-glucosaminidase. All were negative for the following: assimilation of phenylacetate; activity of α-fucosidase, α-galactosidase and β-glucuronidase. All data are from this study except where otherwise indicated. +, Positive; −, negative; w, weakly positive

Characteristic	1	2	3	4	5	6
Inosine	−	−	−	+	−	+
Uridine	−	−	−	+	−	−
Glycerol	−	+	−	−	−	−
α-D-Glucose 1-phosphate	−	+	−	+	+	−
D-Glucose 6-phosphate	−	−	−	+	−	−
DNA G+C content (mol%)	69.9	67.0*	67.6+	70.3‡	67.0§	68.1¶

Strains: 1, Strain XBU10T; 2, *Luteimonas panaciterrae* Gsoil 068 T; 3, *Luteimonas marina* FR1330T; 4, *Luteimonas aquatica* RIB1-20 T; 5, *Luteimonas huabeiensis* HB2 T; 6, *Luteimonas composti* CC-YY255 T

All were positive for the following: hydrolysis of aesculin and gelatin; assimilation of D-glucose and maltose; activity of N-acetyl-β-D-galactopyranosidase (PNGP), assimilation of N-acetyl-D-glucosamine (weakly), L-arabinose, D-glucose and maltose, but negative results for arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase, urease, citrate utilization, H2S and indole production, as well as assimilation of adipate, caprate, gluconate, malate, mannitol, mannose and phenylacetate. In the API 50CH tests, positive for acid production from aesculin ferric citrate and D-turanose (weakly), but negative for acid production from other substrates of the system. The major isoprenoid quinone is ubiquinone Q-8. Cellular fatty acids mainly consist of iso-C17:1 ω9c, iso-C15:0 iso-C17:0 and iso-C16:0. The polar lipid profile consists of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, two unidentified aminophospholipids and three unidentified polar lipids.

The type strain, XBU10T (= CGMCC 1.12158 T = KCTC 23878 T) was isolated from soil of a sunflower plot in Inner Mongolia, China. The DNA G+C content of the type strain is 69.9%. Accession numbers are MN850872 (16S rRNA gene) and VTFT00000000 (whole genome).

Acknowledgements We thank Korean Collection of Type Cultures, Leibniz Institute DSMZ-German Collection of
Microorganisms and Cell Cultures GmbH, Bioresource Collection and Research Center for kindly providing reference strains.

Author’s contribution JZ, HP, YL and YC designed research and project outline. YC, YZ, XL and DX performed isolation, deposition and polyphasic taxonomy. YC and YZ performed genome analysis. YC, YZ and DX drafted the manuscript. JZ revised the manuscript. All authors read and approved the final manuscript.

Funding This research was supported by the National Key Research and Development Program of China (2016YFC0501302) and by the National Natural Science Foundation of China (NSFC, grant number 31070002).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Mates JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

Athalye M, Noble WC, Minnikin DE (1985) Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 58:507–512

Baik KS, Park SC, Kim MS, Kim EM, Park C, Chun J, Seong CN (2008) Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58:2904–2908

Chaudhary DK, Kim J (2016) Arvibacter flaviflagrants gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 66:4347–4354

Cheng J, Zhang MY, Wang WX, Manikprabhu D, Salam N, Zhang TY, Wu YY, Li WJ, Zhang YX (2016) Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 66:946–950

Chou JH, Cho NT, Arun AB, Young CC, Chen WM (2008) Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 58:2051–2055

Collins MD, Pirouz T, Goodfellow M (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

Dong XZ, Cai MY (2001) Determination of biochemical properties. In: Manual for the Systematic Identification of General Bacteria. Science Press, Beijing

Fan X, Yu T, Li Z, Zhang XH (2014) Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 64:668–674

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Finkmann W, Altendorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthohomas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegberensis gen.nov., sp. nov. Int J Syst Evol Microbiol 50:273–282

Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:261–269

Goodfellow M, Orchard VA (1974) Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J Gen Microbiol 83:375–387

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Kluge AG, Farris JS (1969) Quantitative phylogenetics and the evolution of anurans. Syst Biol 18:1–32

Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6528–6564

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

Leifson E (1960) Atlas of bacterial flagellation. Q Rev Biol, vol 242

Li R, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Li YR, Li ST, Shan G, Kristiansen K, Li SG, Yang HM, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

Lin P, Yan ZF, Li CT (2020) Luteimonas cellulosilyticus sp. nov., cellulose-degrading bacterium isolated from soil in changguangxi national wetland park China. Curr Microbiol 77:1341–1347

Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

Luo C, Rodriguez-R LM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:D478–D482

Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208-IN1

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated highthroughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

Luteimonas aquatica sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58:2904–2908

Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 64:668–674

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Finkmann W, Altendorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthohomas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegberensis gen.nov., sp. nov. Int J Syst Evol Microbiol 50:273–282

Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:261–269

Goodfellow M, Orchard VA (1974) Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J Gen Microbiol 83:375–387

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Kluge AG, Farris JS (1969) Quantitative phylogenetics and the evolution of anurans. Syst Biol 18:1–32

Konstantinidis KT, Tiedje JM(2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6528–6564

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

Leifson E (1960) Atlas of bacterial flagellation. Q Rev Biol, vol 242

Li R, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Li YR, Li ST, Shan G, Kristiansen K, Li SG, Yang HM, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

Lin P, Yan ZF, Li CT (2020) Luteimonas cellulosilyticus sp. nov., cellulose-degrading bacterium isolated from soil in changguangxi national wetland park China. Curr Microbiol 77:1341–1347

Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

Luo C, Rodriguez-R LM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:D478–D482

Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208-IN1

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated highthroughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

Antonie van Leeuwenhoek (2022) 115:749–760
Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An intergrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

Minoru K, Yoko S, Masayuki K, Miho F, Mao T (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 1:457–462

Mu Y, Pan Y, Shi W, Liu L, Jiang Z, Luo X, Zeng XC, Li WJ (2016) Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 66:2291–2296

Ping WW, Zhang Y, Pang HC, Zhang JL, Li D, Li YY, Zhang JL (2020) Chitinophaga solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 70:4808–4815

Rani P, Mukherjee U, Verma H, Kamra K, Lal R (2016) Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 66:1851–1856

Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

Roh SW, Kim KH, Nam YD, Chang HW, Kim MS, Yoon JH, Oh HM, Bae JW (2008) Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 46:525–529

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Sekaran VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn.

Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

Sun ZB, Zhang H, Yuan XF, Wang YX, Feng DM, Wang YH, Feng YJ (2012) Luteimonas cunicerus sp. nov., isolated from a cucumber leaf. Int J Syst Evol Microbiol 62:2916–2920

Tarrand JJ, Groschel DHM (1982) Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774

Ten LN, Jung HM, Im WT, Yoo SA, Oh HM, Lee ST (2009) Lysobacter panaciterae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 59:958–963

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S, Krishnamurthi S (2016) Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 66:5444–5451

Wang X, Yang HX, Zhang YK, Zhu SJ, Liu XW, Zhang H, Zhang CF, Zhao CR, Hu G, Hong Q (2015) Luteimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 65:4809–4815

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

Wu G, Liu Y, Li Q, Du H, You J, Li H, Ke C, Zhang X, Yu J, Zhao T (2013) Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 63:3352–3357

Xin Y, Cao X, Wu P, Xue S (2014) Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 52:729–733

Xiong L, An L, Zong Y, Wang M, Wang G, Li M (2020) Luteimonas gilva sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 70:3462–3467

Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017a) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017b) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

Young CC, Kampfer P, Chen WM, Yen WS, Arun AB, Lai WA, Shen FT, Rekha PD, Lin KY, Chou JH (2007) Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 57:741–744

Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010) Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:1581–1584

Zhao GY, Shao F, Zhang M, Zhang XJ, Wang JY, Fan SJ, Dai MX (2018) Luteimonas rhizospherae sp. nov., isolated from the rhizosphere of Triticum aestivum L. Int J Syst Evol Microbiol 68:1197–1203

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.