Infinite Families of Recursive Formulas
Generating Power Moments of Kloosterman Sums: $O^-(2n, 2^r)$ Case

Dae San Kim

Department of Mathematics, Sogang University, Seoul 121-742, South Korea

Abstract

In this paper, we construct eight infinite families of binary linear codes associated with double cosets with respect to certain maximal parabolic subgroup of the special orthogonal group $SO^-(2n, 2^r)$. Then we obtain four infinite families of recursive formulas for the power moments of Kloosterman sums and four those of 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless power moment identity and by utilizing the explicit expressions of exponential sums over those double cosets related to the evaluations of "Gauss sums" for the orthogonal groups $O^-(2n, 2^r)$

Key words: Kloosterman sum, 2-dimensional Kloosterman sum, orthogonal group, special orthogonal group, double cosets, maximal parabolic subgroup, Pless power moment identity, weight distribution.

MSC 2000: 11T23, 20G40, 94B05.

1 Introduction

Let ψ be a nontrivial additive character of the finite field \mathbb{F}_q with $q = p^r$ elements (p a prime), and let m be a positive integer. Then the m-dimensional Kloosterman sum $K_m(\psi; a)$ ([18]) is defined by

$$K_m(\psi; a) = \sum_{\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q^*} \psi(\alpha_1 + \cdots + \alpha_m + a\alpha_1^{-1} \cdots \alpha_m^{-1})(a \in \mathbb{F}_q^*).$$

1 Email address: dskim@sogang.ac.kr.

Preprint submitted to Elsevier 9 January 2009
In particular, if $m = 1$, then $K_1(\psi; a)$ is simply denoted by $K(\psi; a)$, and is called the Kloosterman sum. The Kloosterman sum was introduced in 1926 to give an estimate for the Fourier coefficients of modular forms (cf. [16], [4]). It has also been studied to solve various problems in coding theory and cryptography over finite fields of characteristic two (cf. [3], [5]).

For each nonnegative integer h, by $MK_m(\psi)^h$ we will denote the h-th moment of the m-dimensional Kloosterman sum $K_m(\psi; a)$. Namely, it is given by

$$MK_m(\psi)^h = \sum_{a \in \mathbb{F}_q^*} K_m(\psi; a)^h.$$

If $\psi = \lambda$ is the canonical additive character of \mathbb{F}_q, then $MK_m(\lambda)^h$ will be simply denoted by MK_m^h. If further $m = 1$, for brevity MK_1^h will be indicated by MK^h.

Explicit computations on power moments of Kloosterman sums were begun with the paper [23] of Salié in 1931, where he showed, for any odd prime q,

$$MK^h = q^2 M_{h-1} - (q - 1)^{h-1} + 2(-1)^{h-1} \quad (h \geq 1).$$

Here $M_0 = 0$, and for $h \in \mathbb{Z}_{>0}$,

$$M_h = \left| \left\{ (\alpha_1, \ldots, \alpha_h) \in (\mathbb{F}_q^*)^h \mid \sum_{j=1}^{h} \alpha_j = 1 = \sum_{j=1}^{h} \alpha_j^{-1} \right\} \right|. $$

For $q = p$ odd prime, Salié obtained MK^1, MK^2, MK^3, MK^4 in [23] by determining M_1, M_2, M_3. MK^5 can be expressed in terms of the p-th eigenvalue for a weight 3 newform on $\Gamma_0(15)$ (cf. [19], [22]). MK^6 can be expressed in terms of the p-th eigenvalue for a weight 4 newform on $\Gamma_0(6)$ (cf. [7]). Also, based on numerical evidence, in [6] Evans was led to propose a conjecture which expresses MK^7 in terms of Hecke eigenvalues for a weight 3 newform on $\Gamma_0(525)$ with quartic nebentypus of conductor 105. For more details about this brief history of explicit computations on power moments of Kloosterman sums, one is referred to Section IV of [8].

From now on, let us assume that $q = 2^r$. Carlitz [11] evaluated MK^h for the other values of h with $h \leq 10$ (cf. [21]). Recently, Moisio was able to find explicit expressions of MK^h, for $h \leq 10$ (cf. [21]). This was done, via Pless power moment identity, by connecting moments of Kloosterman sums and the frequencies of weights in the binary Zetterberg code of length $q + 1$, which were known by the work of Schoof and Vlugt in [24].

In [8], the binary linear codes $C(SL(n, q))$ associated with finite special linear groups $SL(n, q)$ were constructed when n, q are both powers of two. Then obtained was a recursive formula for the power moments of multi-dimensional
Kloosterman sums in terms of the frequencies of weights in $C(SL(n, q))$. In particular, when $n = 2$, this gives a recursive formula for the power moments of Kloosterman sums. Also, in order to get recursive formulas for the power moments of Kloosterman and 2-dimensional Kloosterman sums, we constructed in [9] three binary linear codes $C(SO^+(2, q)), C(O^+(2, q)), C(SO^+(4, q))$, respectively associated with $SO^+(2, q), O^+(2, q), SO^+(4, q)$, and in [10] three binary linear codes $C(SO^-(2, q)), C(O^-(2, q)), C(SO^-(4, q))$, respectively associated with $SO^-(2, q), O^-(2, q), SO^-(4, q)$. All of these were done via Pless power moment identity and by utilizing our previous results on explicit expressions of Gauss sums for the stated finite classical groups. So, all in all, we had only a handful of recursive formulas generating power moments of Kloosterman and 2-dimensional Kloosterman sums.

In this paper, we will be able to produce four infinite families of recursive formulas generating power moments of Kloosterman sums and four those of 2-dimensional Kloosterman sums. To do that, we construct eight infinite families of binary linear codes $C(DC^+_1(n, q)) (n = 2, 4, \ldots), C(DC^-_1(n, q)) (n = 1, 3, \ldots), C(DC^+_2(n, q)) (n = 3, 5, \ldots), C(DC^{-}_2(n, q)) (n = 2, 4, \ldots), C(DC^+_3(n, q)) (n = 3, 5, \ldots), C(DC^{-}_3(n, q)) (n = 2, 4, \ldots), C(DC^{-}_4(n, q)) (n = 3, 5, \ldots), C(DC^+_4(n, q)) (n = 4, 6, \ldots)$, both associated with $Q^{-}\sigma^{-}_nQ^{-}$, with respect to the maximal parabolic subgroup $Q^{-} = Q^{-}(2n, q)$ of the special orthogonal group $SO^{-}(2n, q)$, and express those power moments in terms of the frequencies of weights in each code. Then, thanks to our previous results on the explicit expressions of exponential sums over those double cosets related to the evaluations of “Gauss sums” for the orthogonal groups $O^{-}(2n, q)$ [15], we can express the weight of each codeword in the duals of the codes in terms of Kloosterman or 2-dimensional Kloosterman sums. Then our formulas will follow immediately from the Pless power moment identity. Analogously to these, in [11] and [12], we obtained infinite families of recursive formulas for power moments of Kloosterman and 2-dimensional Kloosterman sums by constructing binary codes associated with double cosets with respect to certain maximal parabolic subgroup of the symplectic group $Sp(2n, q)$ and the orthogonal group $O^+(2n, q)$, respectively.

Theorem 1 in the following(cf. (17), (18), (20)-(25)) is the main result of this paper. Henceforth, we agree that the binomial coefficient $\binom{b}{a} = 0$, if $a > b$ or $a < 0$. To simplify notations, we introduce the following ones which will be used throughout this paper at various places.
\[A_1^+(n, q) = q^{\frac{1}{4}(5n^2 - 2n - 4)} (q^{n-1} - 1) \prod_{j=1}^{\frac{n-2}{2}} (q^{2j-1} - 1), \tag{1} \]

\[B_1^+(n, q) = (q + 1)q^{\frac{1}{4}n^2} \prod_{j=1}^{\frac{n-2}{2}} (q^{2j} - 1), \tag{2} \]

\[A_2^+(n, q) = q^{\frac{1}{4}(5n^2 - 2n - 8)} [n-1]_q \prod_{j=1}^{\frac{n-2}{2}} (q^{2j-1} - 1), \tag{3} \]
\[B_2^+(n, q) = (q + 1)q^{\frac{1}{2}(n-2)^2}(q^{n-1} - 1) \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[A_3^+(n, q) = (q + 1)q^{\frac{1}{2}(5n^2-2n-8)} [n-1]_q \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[B_3^+(n, q) = q^{\frac{1}{2}(n-2)^2}(q^{n-1} - 1) \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[A_4^+(n, q) = (q + 1)q^{\frac{1}{2}(5n^2-6n-4)} [n-1]_q \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[B_4^+(n, q) = q^{\frac{1}{2}(n-2)^2}(q^{n-1} - 1) \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[A_1^-(n, q) = q^{\frac{1}{2}(n^2-1)} \prod_{j=1}^{(n-1)} (q^{2j-1} - 1), \]
\[B_1^-(n, q) = (q + 1)q^{\frac{1}{2}(n-1)^2} \prod_{j=1}^{(n-1)} (q^{2j} - 1), \]
\[A_2^-(n, q) = q^{\frac{1}{2}(5n^2-4n-5)} [n-1]_q \prod_{j=1}^{(n-2)} (q^{2j-1} - 1), \]
\[B_2^-(n, q) = (q + 1)q^{\frac{1}{2}(n-1)^2} \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[A_3^-(n, q) = (q + 1)q^{\frac{1}{2}(5n^2-4n-5)} [n-1]_q \prod_{j=1}^{(n-2)} (q^{2j-1} - 1), \]
\[B_3^-(n, q) = q^{\frac{1}{2}(n-1)^2} \prod_{j=1}^{(n-2)} (q^{2j} - 1), \]
\[A_4^-(n, q) = (q + 1)q^{\frac{1}{2}(5n^2-4n-9)} [n-1]_q \prod_{j=1}^{(n-3)} (q^{2j-1} - 1), \]
\[B_4^-(n, q) = q^{\frac{1}{2}(n-3)^2}(q^{n-2} - 1)(q^{n-1} - 1) \prod_{j=1}^{(n-3)} (q^{2j} - 1). \]

From now on, it is assumed that either + signs or - signs are chosen everywhere, whenever ± signs appear.

Theorem 1 Let \(q = 2^r \). Then, with the notations in (1)-(16), we have the following.
(a) With \(i = 1 \) and + signs everywhere for ± signs, we have a recursive
formula generating power moments of Kloosterman sums over \(\mathbb{F}_q \), for each \(n \geq 2 \) even and all \(q \); with \(i = 3 \) and \(+ \) signs everywhere for \(\pm \) signs, we have such a formula, for either each \(n \geq 4 \) even and all \(q \), or \(n = 2 \) and \(q \geq 8 \); with \(i = 1 \) and \(-\) signs everywhere for \(\pm \) signs, we have such a formula, for each \(n \geq 1 \) odd and all \(q \); with \(i = 3 \) and \(-\) signs everywhere for \(\pm \) signs, we have such a formula, for each \(n \geq 3 \) odd and all \(q \).

\[
(\pm(-1))^h MK^h = -\sum_{t=0}^{h-1} (\pm(-1))^t \binom{h}{t} (B_i^\pm(n,q) q^{-t} MK^t + qA_i^\pm(n,q))^{-h}
\]

\[
\times \sum_{j=0}^{\min\{N_i^\pm(n,q), h\}} (-1)^j C_{i,j}(n,q) \sum_{t=j}^h t! S(h,t) 2^{h-t} \left(\frac{N_i^\pm(n,q) - j}{N_i^\pm(n,q) - t} \right) (h = 1, 2, \ldots),
\]

(17)

where \(N_i^\pm(n,q) = |DC_i^\pm(n,q)| = A_i^\pm(n,q) B_i^\pm(n,q) \), and \(\{C_{i,j}(n,q)\}_{j=0}^{N_i^\pm(n,q)} \) is the weight distribution of the binary code \(C(DC_i^\pm(n,q)) \) given by

\[
C_{i,j}(n,q) = \sum_{\nu_0} \left(q^{-1} A_i^\pm(n,q) (B_i^\pm(n,q) \pm 1) \right) \prod_{\text{tr}(\beta^{-1}) = 0} \left(q^{-1} A_i^\pm(n,q) (B_i^\pm(n,q) \pm (q + 1)) \right)
\]

\[
\times \prod_{\text{tr}(\beta^{-1}) = 1} \left(q^{-1} A_i^\pm(n,q) (B_i^\pm(n,q) \pm (-q + 1)) \right),
\]

(18)

where the sum is over all the sets of nonnegative integers \(\{\nu_\beta\}_{\beta \in \mathbb{F}_q} \) satisfying \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \) and \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \). In addition, \(S(h,t) \) is the Stirling number of the second kind defined by

\[
S(h,t) = \frac{1}{t!} \sum_{j=0}^{t} (-1)^{t-j} \binom{t}{j} j^h.
\]

(19)

(b) With \(+ \) signs everywhere for \(\pm \) signs, we have recursive formulas generating power moments of 2-dimensional Kloosterman sums over \(\mathbb{F}_q \) and even power moments of Kloosterman sums over \(\mathbb{F}_q \), for each \(n \geq 2 \) even and \(q \geq 4 \); with \(- \) signs everywhere for \(\pm \) signs, we have such formulas, for each \(n \geq 3 \) odd and \(q \geq 4 \).

\[
(\pm1)^h MK^h = -\sum_{t=0}^{h-1} (\pm1)^t \binom{h}{t} (B_2^\pm(n,q) q^{-t} MK^t + qA_2^\pm(n,q))^{-h}
\]

\[
\times \sum_{j=0}^{\min\{N_2^\pm(n,q), h\}} (-1)^j C_{2,j}(n,q) \sum_{t=j}^h t! S(h,t) 2^{h-t} \left(\frac{N_2^\pm(n,q) - j}{N_2^\pm(n,q) - t} \right) (h = 1, 2, \ldots),
\]

(20)
$$(\pm 1)^h MK^{2h} = -\sum_{l=0}^{h-1} (\pm 1)^l \binom{h}{l} B_2^\pm(n, q)^{h-l} MK^{2l} + qA_2^\pm(n, q)^{-h}$$

$$\times \sum_{j=0}^{\min\{N_2^+(n, q), h\}} (-1)^j C_{2, j}^\pm(n, q) \sum_{t=j}^{h} t! S(h, t) 2^{h-t} \left(\frac{N_2^+(n, q) - j}{N_2^+(n, q) - t}\right) (h = 1, 2, \ldots), \quad (21)$$

where $N_2^+(n, q) = |DC_2^+(n, q)| = A_2^+(n, q)B_2^+(n, q)$, and $\{C_{2, j}^+(n, q)\}_{j=0}^{N_2^+(n, q)}$ is the weight distribution of the binary code $C(DC_2^+(n, q))$ given by

$$C_{2, j}^+(n, q) = \sum (q^{-1}A_2^+(n, q)(B_2^+(n, q) \pm (q + 1 - q^2)))_{\nu_0} \times \prod_{|\tau| < 2\sqrt{q}} \prod_{\tau \equiv -1 \pmod{44}} \left(q^{-1}A_2^+(n, q)(B_2^+(n, q) \pm (q + 1 - q\tau))\right)_{\nu_\beta}, \quad (22)$$

where the sum is over all the sets of nonnegative integers $\{\nu_\beta\}_{\beta \in \mathbb{F}_q}$ satisfying $\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j$ and $\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0.$

(c) With $+$ signs everywhere for \pm, we have recursive formulas generating power moments of 2-dimensional Kloosterman sums over \mathbb{F}_q and even power moments of Kloosterman sums over \mathbb{F}_q, for each $n \geq 4$ even and $q \geq 4$; with $-$ signs everywhere for \pm, we have such formulas, for each $n \geq 3$ odd and $q \geq 4$.

$$(\pm 1)^h MK_2^h = -\sum_{l=0}^{h-1} (\pm 1)^l \binom{h}{l} \{B_4^\pm(n, q) \pm q^2\}^{h-l} MK_2^l + qA_4^\pm(n, q)^{-h}$$

$$\times \sum_{j=0}^{\min\{N_4^+(n, q), h\}} (-1)^j C_{4, j}^\pm(n, q) \sum_{t=j}^{h} t! S(h, t) 2^{h-t} \left(\frac{N_4^+(n, q) - j}{N_4^+(n, q) - t}\right) (h = 1, 2, \ldots), \quad (23)$$

and

$$(\pm 1)^h MK^{2h} = -\sum_{l=0}^{h-1} (\pm 1)^l \binom{h}{l} \{B_4^\pm(n, q) \pm (q^2 - q)\}^{h-l} MK^{2l} + qA_4^\pm(n, q)^{-h}$$

$$\times \sum_{j=0}^{\min\{N_4^+(n, q), h\}} (-1)^j C_{4, j}^\pm(n, q) \sum_{t=j}^{h} t! S(h, t) 2^{h-t} \left(\frac{N_4^+(n, q) - j}{N_4^+(n, q) - t}\right) (h = 1, 2, \ldots), \quad (24)$$

where $N_4^+(n, q) = |DC_4^+(n, q)| = A_4^+(n, q)B_4^+(n, q)$, and $\{C_{4, j}^+(n, q)\}_{j=0}^{N_4^+(n, q)}$ is
the weight distribution of the binary code \(C(\mathcal{DC}_4^+(n,q)) \) given by

\[
C_{4,j}^\pm(n,q) = \sum \left(q^{-1}A_4^\pm(n,q)(B_4^\pm(n,q) \pm (q^2 + 1 - q^3)) \right)_{\nu_0} \times \prod_{|\tau| < 2\sqrt{q}} \prod_{\tau \equiv -1 (mod 4)} \left(q^{-1}A_4^\pm(n,q)(B_4^\pm(n,q) \pm (q^2 + 1 - q\tau)) \right)_{\nu_\beta}, \quad (25)
\]

where the sum is over all the sets of nonnegative integers \(\{\nu_\beta\}_{\beta \in \mathbb{F}_q} \) satisfying \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \) and \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \).

The following corollary is just the \(n = 2 \) and \(n = 1 \) cases of (a) in the above. It is amusing to note that the recursive formula in (26) and (27), obtained from the binary code \(C(\mathcal{DC}_1^-) \) associated with the double coset \(\mathcal{DC}_1^-(1,q) = Q^-(2,q) \), is the same as the one in (10), (1), (2), gotten from the binary code \(C(SO^-(2,q)) \) associated with the special orthogonal group \(SO^-(2,q) \).

Corollary 2 (a) For all \(q \) and \(h = 1, 2, \ldots \),

\[
MK^h = \sum_{l=0}^{h-1} (-1)^{h+l+1} \binom{h}{l} (q^2 + q)^{h-l} MK^l + q^{1-3h}(q - 1)^{-h} \times \sum_{j=0}^{\min\{q^4(q^2-1),h\}} (-1)^{h+j} C_{1,j}^+(2,q) \sum_{l=j}^{h} t! S(h,t) 2^{h-t} \binom{q^4(q^2-1) - j}{q^4(q^2-1) - t},
\]

where \(\{C_{1,j}^+(2,q)\}_{j=0}^{q^4(q^2-1)} \) is the weight distribution of \(C(\mathcal{DC}_1^+(2,q)) \) given by

\[
C_{1,j}^+(2,q) = \sum \left(q^2(q - 1)(q^2 + q + 1) \right)_{\nu_0} \times \prod_{tr(\beta^{-1}) = 0} \left(q^2(q + 1)(q^2 - 1) \right)_{\nu_\beta} \prod_{tr(\beta^{-1}) = 1} \left(q^2(q - 1)(q^2 + 1) \right)_{\nu_\beta}.
\]

Here the sum is over all the sets of nonnegative integers \(\{\nu_\beta\}_{\beta \in \mathbb{F}_q} \) satisfying \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \) and \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \). In addition, \(S(h,t) \) is the Stirling number of the second kind as defined in (19).
(b) For all \(q \), and \(h = 1, 2, \ldots \),

\[
MK^h = -\sum_{l=0}^{h-1} \binom{h}{l} (q + 1)^{h-l} MK^l + q \sum_{j=0}^{\min\{q+1,h\}} (-1)^j C_{1,j}^{-1}(1,q) \sum_{t=j}^{h} t! S(h,t) 2^{h-t} \left(\frac{q + 1 - j}{q + 1 - t} \right),
\]

(26)

where \(\{C_{1,j}^{-1}(1,q)\}_{j=0}^{q+1} \) is the weight distribution of \(C(DC_1^{-1}(n,q)) \) given by

\[
C_{1,j}^{-1}(n,q) = \sum \left(\frac{1}{\nu_0} \right) \prod_{\text{tr}(\beta^{-1})=1} \left(\frac{2}{\nu_\beta} \right).
\]

(27)

Here the sum is over all the sets of nonnegative integers \(\{\nu_0\} \cup \{\nu_{\beta}\}_{\text{tr}(\beta^{-1})=1} \) satisfying \(\nu_0 + \sum_{\text{tr}(\beta^{-1})=1} \nu_\beta = j \) and \(\sum_{\text{tr}(\beta^{-1})=1} \nu_\beta \beta = 0 \).

2 \(O^{-}(2n,q) \)

For more details about the results of this section, one is referred to the paper [15]. Throughout this paper, the following notations will be used:

\(q = 2^r \) \((r \in \mathbb{Z}_{>0})\),

\(\mathbb{F}_q = \) the finite field with \(q \) elements,

\(TrA = \) the trace of \(A \) for a square matrix \(A \),

\(tB = \) the transpose of \(B \) for any matrix \(B \).

Let \(\theta^- \) be the nondegenerate quadratic form on the vector space \(\mathbb{F}_q^{2n \times 1} \) of all \(2n \times 1 \) column vectors over \(\mathbb{F}_q \), given by

\[
\theta^- \left(\sum_{i=1}^{2n} x_i e^i \right) = \sum_{i=1}^{n-1} x_i x_{n-i+i} + x_{2n-1}^2 + x_{2n-1} x_{2n} + ax_{2n}^2,
\]

(28)

where \(\{e^1 =^t [10\ldots0], e^2 =^t [01\ldots0], \ldots, e^{2n} =^t [0\ldots01]\} \) is the standard basis of \(\mathbb{F}_q^{2n \times 1} \), and \(a \) is a fixed element in \(\mathbb{F}_q \) such that \(z^2 + z + a \) is irreducible over \(\mathbb{F}_q \), or equivalently \(a \in \mathbb{F}_q \setminus \Theta(\mathbb{F}_q) \), where \(\Theta(\mathbb{F}_q) = \{\alpha^2 + \alpha \mid \alpha \in \mathbb{F}_q\} \) is a subgroup of index 2 in the additive group \(\mathbb{F}_q^+ \) of \(\mathbb{F}_q \).
Let δ_a (with a in the above paragraph), η denote respectively the 2×2 matrices over \mathbb{F}_q given by:

$$
\delta_a = \begin{bmatrix} 1 & 1 \\ 0 & a \end{bmatrix}, \eta = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
$$

Then the group $O^-(2n, q)$ of all isometries of $(\mathbb{F}_q^{2n \times 1}, \theta^-)$ consists of all matrices

$$
\begin{bmatrix} A & B & e \\ C & D & f \\ g & h & i \end{bmatrix}
$$

in $GL(2n, q)$ satisfying the relations:

$$
\begin{align*}
^tAC + ^tg\delta_a g & \text{ is alternating,} \\
^tBD + ^th\delta_a h & \text{ is alternating,} \\
^tef + ^t\delta_a i + \delta_a & \text{ is alternating,} \\
^tAD + ^tCB + ^tg\eta h & = 1_{n-1}, \\
^tAf + ^tCe + ^t\eta i & = 0, \\
^tBf + ^tDe + ^t\eta i & = 0.
\end{align*}
$$

Here an $n \times n$ matrix (a_{ij}) is called alternating if

$$
\begin{cases}
 a_{ii} = 0, & \text{for } 1 \leq i \leq n, \\
 a_{ij} = -a_{ji} = a_{ji}, & \text{for } 1 \leq i < j \leq n.
\end{cases}
$$

$P^- = P^-(2n, q)$ is the maximal parabolic subgroup of $O^-(2n, q)$ defined by:

$$
P^- (2n, q) = \left\{ \begin{bmatrix} A & 0 & 0 \\ 0 & tA^{-1} & 0 \\ 0 & 0 & i \end{bmatrix} \begin{bmatrix} 1_{n-1} & B & ^tih^i\theta \\ 0 & 1_{n-1} & 0 \\ 0 & h & 1_{2} \end{bmatrix} \left| \begin{array}{l} A \in GL(n-1, q), i \in O^-(2, q), \\
^tB + ^t\delta_a h & \text{is alternating} \end{array} \right. \right\},
$$

where $O^-(2, q)$ is the group of all isometries of $(\mathbb{F}_q^{2 \times 1}, \theta^-)$ with

$$
\theta^-(x_1e^1 + x_2e^2) = x_1^2 + x_1x_2 + ax_2^2 \quad (cf. (28)).
$$

One can show that

$$
O^-(2, q) = SO^-(2, q) \bigoplus \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} SO^-(2, q), \tag{29}
$$

where $SO^-(2, q)$ is the group of all isometries of $(\mathbb{F}_q^{2 \times 1}, \theta^-)$.
\[
SO^-(2, q) = \left\{ \begin{bmatrix} d_1 & ad_2 \\ d_2 & d_1 + d_2 \end{bmatrix} \mid d_1^2 + d_1d_2 + ad_2^2 = 1 \right\}
= \left\{ \begin{bmatrix} d_1 & ad_2 \\ d_2 & d_1 + d_2 \end{bmatrix} \mid d_1 + d_2b \in \mathbb{F}_q(b), \text{ with } \right\},
\]

where \(b \in \overline{\mathbb{F}_q} \) is a root of the irreducible polynomial \(z^2 + z + a \) over \(\mathbb{F}_q \). \(SO^-(2, q) \) is a subgroup of index 2 in \(O^-(2, q) \), and

\[
|SO^-(2, q)| = q + 1, |O^-(2, q)| = 2(q + 1).
\]

\(SO^-(2, q) \) here is defined as the kernel of a certain epimorphism \(\delta^\prime : O^-(2n, q) \to \mathbb{F}_2^+ \) (cf. [15], (3.45)).

The Bruhat decomposition of \(O^-(2n, q) \) with respect to \(P^- = P^-(2n, q) \) is

\[
O^-(2n, q) = \prod_{r=0}^{n-1} P^- \sigma_r^- P^-,
\]

where

\[
\sigma_r^- = \begin{bmatrix}
0 & 0 & 1_r & 0 & 0 \\
0 & 1_{n-1-r} & 0 & 0 & 0 \\
1_r & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1_{n-1-r} & 0 \\
0 & 0 & 0 & 0 & 1_2
\end{bmatrix} \in O^-(2n, q).
\]

For each \(r \), with \(0 \leq r \leq n - 1 \), put

\[
A_r^- = \{ w \in P^- (2n, q) \mid \sigma_r^- w(\sigma_r^-)^{-1} \in P^- (2n, q) \}.
\]

As a disjoint union of right cosets of \(P^- = P^-(2n, q) \), the Bruhat decomposition in (30) can be written as

\[
O^-(2n, q) = \prod_{r=0}^{n-1} P^- \sigma_r^- (A_r^- \setminus P^-).
\]
$Q^{-}(2n, q)$ is a subgroup of index 2 in $P^{-}(2n, q)$, defined by:

$$Q^{-} = Q^{-}(2n, q) = \left\{ \begin{bmatrix} A & 0 & 0 \\ 0 & tA^{-1} & 0 \\ 0 & 0 & i \end{bmatrix} \right\} \left\{ \begin{bmatrix} 1_{n-1} & B & t'hiq \\ 0 & 1_{n-1} & 0 \\ 0 & h & 1_2 \end{bmatrix} \right\} A \in GL(n-1, q), i \in SO^{-}(2, q), \quad tB + t'h_\delta h \text{ is alternating} \right\}.$$

In fact, in view of (29), we have:

$$P^{-}(2n, q) = Q^{-}(2n, q) \prod \rho Q^{-}(2n, q),$$

with

$$\rho = \begin{bmatrix} 1_{n-1} & 0 & 0 \\ 0 & 1_{n-1} & 0 \\ 0 & 0 & 1_1 \\ 0 & 0 & 1_1 \end{bmatrix} \in P^{-}(2n, q).$$

For each r, with $0 \leq r \leq n - 1$, we define

$$B_r^{-} = \{ w \in Q^{-}(2n, q) \mid \sigma_r^{-} w (\sigma_r^{-})^{-1} \in P^{-}(2n, q) \} = \{ w \in Q^{-}(2n, q) \mid \sigma_r^{-} w (\sigma_r^{-})^{-1} \in Q^{-}(2n, q) \},$$

which is a subgroup of index 2 in A_r^{-}.

The decompositions in (30) and (31) can be modified so as to give:

$$O^{-}(2n, q) = \prod_{r=0}^{n-1} P^{-} \sigma_r^{-} Q^{-} = \left(\prod_{r=0}^{n-1} Q^{-} \sigma_r^{-} Q^{-} \right) \prod_{r=0}^{n-1} \rho Q^{-} \sigma_r^{-} Q^{-}, \quad (32)$$

$$O^{-}(2n, q) = \prod_{r=0}^{n-1} P^{-} \sigma_r^{-} (B_r^{-} \setminus Q^{-}) = \left(\prod_{r=0}^{n-1} Q^{-} \sigma_r^{-} (B_r^{-} \setminus Q^{-}) \right) \prod_{r=0}^{n-1} \rho Q^{-} \sigma_r^{-} (B_r^{-} \setminus Q^{-}). \quad (33)$$

The order of the general linear group $GL(n, q)$ is given by

$$g_n = \prod_{j=0}^{n-1} (q^n - q^j) = q^{n(n)} \prod_{j=1}^{n} (q^j - 1). \quad (34)$$

For integers n, r with $0 \leq r \leq n$, the q-binomial coefficients are defined as:

$$[n \atop r]_q = \prod_{j=0}^{r-1} (q^{n-j} - 1)/(q^{r-j} - 1).$$
Then, for integers n, r with $0 \leq r \leq n$, we have
\[
\frac{g_n}{g_{n-r}g_r} = q^{r(n-r)} [\frac{n}{r}]_q. \tag{35}
\]

In [15], it is shown that
\[
|A^-_r| = 2(q + 1)g_r g_{n-1-r} q^{(n-1)(n+2)/2} q^{r(2n-3r-5)/2}, \tag{36}
\]
\[
|P^-(2n, q)| = 2(q + 1)g_{n-1} q^{(n-1)(n+2)/2}. \tag{37}
\]
So, from (35)-(37), we get:
\[
|A^-_r \setminus P^-(2n, q)| = |B^-_r \setminus Q^- (2n, q)| = [\frac{n-1}{r}]_q q^{(r+3)/2}, \tag{38}
\]
and
\[
|Q^- (2n, q) \sigma^-_r Q^- (2n, q)| = |\rho Q^- (2n, q) \sigma^-_r Q^- (2n, q)|
= \frac{1}{2} |P^- (2n, q) \sigma^-_r Q^- (2n, q)|
= \frac{1}{2} |P^- (2n, q) |B^-_r \setminus Q^- (2n, q)|
= \frac{1}{2} |P^- (2n, q) |A^-_r \setminus P^- (2n, q)|
= \frac{1}{2} |P^- (2n, q) |^2 |A^-_r|^{-1}
= (q + 1)q^{n^2-n} \prod_{j=1}^{n-1} (q^j - 1) [\frac{n-1}{r}]_q q^{(\frac{3}{2})} q^{2r}.
\]
(cf. (34), (37), (38)).

Let
\[
\begin{align*}
DC^+_1 (n, q) &= Q^- (2n, q) \sigma^-_{n-1} Q^- (2n, q), \text{ for } n = 2, 4, 6, \ldots, \tag{40} \\
DC^+_2 (n, q) &= Q^- (2n, q) \sigma^-_{n-2} Q^- (2n, q), \text{ for } n = 2, 4, 6, \ldots, \tag{41} \\
DC^+_3 (n, q) &= \rho Q^- (2n, q) \sigma^-_{n-2} Q^- (2n, q), \text{ for } n = 2, 4, 6, \ldots, \tag{42} \\
DC^-_1 (n, q) &= Q^- (2n, q) \sigma^-_{n-1} Q^- (2n, q), \text{ for } n = 1, 3, 5, \ldots, \tag{43} \\
DC^-_2 (n, q) &= Q^- (2n, q) \sigma^-_{n-2} Q^- (2n, q), \text{ for } n = 3, 5, 7, \ldots, \tag{44} \\
DC^-_3 (n, q) &= \rho Q^- (2n, q) \sigma^-_{n-2} Q^- (2n, q), \text{ for } n = 3, 5, 7, \ldots, \tag{45} \\
DC^-_+(n, q) &= \rho Q^- (2n, q) \sigma^-_{n-2} Q^- (2n, q), \text{ for } n = 3, 5, 7, \ldots, \tag{46} \\
\end{align*}
\]

Then, from (39), we have:
\[
N^+_i (n, q) := |DC^+_i (n, q)| = A^+_i (n, q) B^+_i (n, q), \text{ for } i = 1, 2, 3, 4 \tag{48}
\]
(cf. (1)-(16)).
Unless otherwise stated, from now on, we will agree that anything related to $DC_{1}^{+}(n, q)$, $DC_{2}^{+}(n, q)$ and $DC_{3}^{+}(n, q)$ are defined for $n = 2, 4, 6, \ldots$, anything related to $DC_{1}^{-}(n, q)$ is defined for $n = 4, 6, 8, \ldots$, anything related to $DC_{2}^{-}(n, q)$ is defined for $n = 1, 3, 5, \ldots$, and anything related to $DC_{3}^{-}(n, q)$, $DC_{3}^{+}(n, q)$, and $DC_{4}^{-}(n, q)$ are defined for $n = 3, 5, 7, \ldots$.

3 Exponential sums over double cosets of $O^{-}(2n, 2r)$

The following notations will be used throughout this paper:

\[
tr(x) = x + x^2 + \cdots + x^{2r-1} \text{ the trace function } F_q \to F_2,
\]
\[
\lambda(x) = (-1)^{tr(x)} \text{ the canonical additive character of } F_q.
\]

Then any nontrivial additive character ψ of F_q is given by $\psi(x) = \lambda(ax)$, for a unique $a \in F_q^*$.

For any nontrivial additive character ψ of F_q and $a \in F_q^*$, the Kloosterman sum $K_{GL(t, q)}(\psi; a)$ for $GL(t, q)$ is defined as

\[
K_{GL(t, q)}(\psi; a) = \sum_{w \in GL(t, q)} \psi(Trw + aTrw^{-1}).
\]

Notice that, for $t = 1$, $K_{GL(1, q)}(\psi; a)$ denotes the Kloosterman sum $K(\psi; a)$.

For the Kloosterman sum $K(\psi; a)$, we have the Weil bound (cf. [13])

\[
|K(\psi; a)| \leq 2\sqrt{q}.
\]

(49)

In [13], it is shown that $K_{GL(t, q)}(\psi; a)$ satisfies the following recursive relation: for integers $t \geq 2$, $a \in F_q^*$,

\[
K_{GL(t, q)}(\psi; a) = q^{t-1}K_{GL(t-1, q)}(\psi; a)K(\psi; a) + q^{2t-2}(q^{t-1} - 1)K_{GL(t-2, q)}(\psi; a),
\]

(50)

where we understand that $K_{GL(0, q)}(\psi; a) = 1$. From (51), in [13] an explicit expression of the Kloosterman sum for $GL(t, q)$ was derived.

Theorem 3 ([13]) For integers $t \geq 1$, and $a \in F_q^*$, the Kloosterman sum $K_{GL(t, q)}(\psi; a)$ is given by
\[K_{GL(t,q)}(\psi; a) = q^{(t-2)(t+1)/2} \sum_{l=1}^{[(t+2)/2]} q^l K(\psi; a)^{t+2-2l} \sum_{\nu=1}^{l-1} (q^{j_\nu-2\nu} - 1), \]

where \(K(\psi; a) \) is the Kloosterman sum and the inner sum is over all integers \(j_1, \ldots, j_{l-1} \) satisfying \(2l - 1 \leq j_{l-1} \leq j_{l-2} \leq \cdots \leq j_1 \leq t + 1 \). Here we agree that the inner sum is 1 for \(l = 1 \).

Proposition 4 ([14], Prop. 3.1) Let \(\psi \) be a nontrivial additive character of \(\mathbb{F}_q \). Then

(a) \(\sum_{i \in SO^-(2,q)} \psi(Tr i) = K(\psi; 1), \)

(b) \(\sum_{i \in SO^-(2,q)} \psi(Tr \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} i) = q + 1. \)

Proposition 5 ([15], Prop. 4.4) Let \(\psi \) be a nontrivial additive character of \(\mathbb{F}_q \). For each positive integer \(r \), let \(\Omega_r \) be the set of all \(r \times r \) nonsingular symmetric matrices over \(\mathbb{F}_q \). Then the \(b_r(\psi) \) defined below is independent of \(\psi \), and is equal to:

\[b_r = b_r(\psi) = \sum_{B \in \Omega_r} \sum_{h \in \mathbb{F}_q^{r \times 2}} \psi(Tr \delta a^t hBh) \]

\[= \begin{cases} q^{r(r+6)/4} \prod_{j=1}^{r/2} (q^{2j-1} - 1), & \text{for } r \text{ even,} \\ -q^{r^2 + 4r - 1)/4} \prod_{j=1}^{(r+1)/2} (q^{2j-1} - 1), & \text{for } r \text{ odd.} \end{cases} \]

In Section 5 of [15], it is shown that the Gauss sum for \(O^-(2n,q) \), with \(\psi \) a nontrivial additive character of \(\mathbb{F}_q \), is given by:

\[\sum_{w \in O^-(2n,q)} \psi(Tr w) = \sum_{r=0}^{n-1} \sum_{w \in P^- \sigma_r Q^-} \psi(Tr w) \]

\[= \sum_{r=0}^{n-1} \sum_{w \in Q^- \sigma_r Q^-} \psi(Tr w) + \sum_{r=0}^{n-1} \sum_{w \in \rho Q^- \sigma_r Q^-} \psi(Tr w) \quad (\text{cf. (32)}), \]
with
\[
\sum_{w \in Q^*} \psi(Trw) = |B_r^* \setminus Q^-| \sum_{w \in Q^-} \psi(Trw \sigma_r^*) \\
= q^{(n-1)(n+2)/2} \sum_{i \in SO^-(2,q)} \psi(Tri) \\
\times |B_r^* \setminus Q^-| q^{(n-r-3)} b_r(\psi) K_{GL(n-1-r,q)}(\psi; 1),
\]
(54)

\[
\sum_{w \in \rho Q^*} \psi(Trw) = |B_r^* \setminus Q^-| \sum_{w \in Q^-} \psi(Trw \sigma_r^*) \\
= q^{(n-1)(n+2)/2} \sum_{i \in SO^-(2,q)} \psi(T(1 1 \ 0 1) i) \\
\times |B_r^* \setminus Q^-| q^{(n-r-3)} b_r(\psi) K_{GL(n-1-r,q)}(\psi; 1).
\]
(55)

Here one uses (33) and the fact that \(\rho^{-1} w \rho \in Q^\perp\), for all \(w \in Q^\perp\).

Now, we see from (52)-(56) and (38) that, for each \(r\) with \(0 \leq r \leq n - 1\),
\[
\sum_{w \in Q^*} \psi(Trw) = q^{(n-1)(n+2)/2} [n-1]_q K(\psi; 1) K_{GL(n-1-r,q)}(\psi; 1) \\
\times \begin{cases}
- q^{rn-\frac{1}{2}r^2} \prod_{j=1}^{r/2} (q^{2j-1} - 1), & \text{for } r \text{ even,} \\
q^{rn-\frac{1}{2}(r+1)^2} \prod_{j=1}^{(r+1)/2} (q^{2j-1} - 1), & \text{for } r \text{ odd,}
\end{cases}
\]
(56)

\[
\sum_{w \in \rho Q^*} \psi(Trw) = (q + 1) q^{(n-1)(n+2)/2} [n-1]_q K_{GL(n-1-r,q)}(\psi; 1) \\
\times \begin{cases}
q^{rn-\frac{1}{2}r^2} \prod_{j=1}^{r/2} (q^{2j-1} - 1), & \text{for } r \text{ even,} \\
-q^{rn-\frac{1}{2}(r+1)^2} \prod_{j=1}^{(r+1)/2} (q^{2j-1} - 1), & \text{for } r \text{ odd.}
\end{cases}
\]
(57)

For our purposes, we need the following special cases of exponential sums in (57) and (58). We state them separately as a theorem.

Theorem 6 Let \(\psi\) be any nontrivial additive character of \(\mathbb{F}_q\). Then, in the...
notations of (1), (3), (5), (7), (9), (11), (13), and (15), we have

\[\sum_{w \in DC^+_{i}(n,q)} \psi(Trw) = \pm A^+_{i}(n,q)K(\psi; 1), \text{for } i = 1, 3, \]

\[\sum_{w \in DC^+_{2}(n,q)} \psi(Trw) = \pm (-1)A^+_{2}(n,q)K(\psi; 1)^2, \]

\[\sum_{w \in DC^+_{4}(n,q)} \psi(Trw) = \pm (-1)q^{-1}A^+_{4}(n,q)K_{GL(2,q)}(\psi; 1) \]

\[= \pm (-1)A^+_{4}(n,q)(K(\psi; 1)^2 + q^2 - q) \]

(cf. (40)-(47), (51)).

Proposition 7 ([9]) For \(n = 2^s (s \in \mathbb{Z}_{\geq 0}) \), and \(\psi \) a nontrivial additive character of \(\mathbb{F}_q \),

\[K(\psi; a^n) = K(\psi; a). \]

For the next corollary, we need a result of Carlitz.

Theorem 8 ([2]) For the canonical additive character \(\lambda \) of \(\mathbb{F}_q \), and \(a \in \mathbb{F}_q^* \),

\[K_2(\lambda; a) = K(\lambda; a)^2 - q. \] (58)

The next corollary follows from Theorems 6 and 8, Proposition 7, and by simple change of variables.

Corollary 9 Let \(\lambda \) be the canonical additive character of \(\mathbb{F}_q \), and let \(a \in \mathbb{F}_q^* \). Then we have

\[\sum_{w \in DC^+_{i}(n,q)} \lambda(aTrw) = \pm A^+_{i}(n,q)K(\lambda; a), \text{for } i = 1, 3, \] (59)

\[\sum_{w \in DC^+_{2}(n,q)} \lambda(aTrw) = \pm (-1)A^+_{2}(n,q)K(\lambda; a)^2 \]

\[= \pm (-1)A^+_{2}(n,q)(K_2(\lambda; a) + q), \] (60)

\[\sum_{w \in DC^+_{4}(n,q)} \lambda(aTrw) = \pm (-1)A^+_{4}(n,q)(K(\lambda; a)^2 + q^2 - q) \]

\[= \pm (-1)A^+_{4}(n,q)(K_2(\lambda; a) + q^2). \] (61)

Proposition 10 ([9]) Let \(\lambda \) be the canonical additive character of \(\mathbb{F}_q \), \(m \in \mathbb{F}_q^* \).
Corollary 12 (a) For all even \(n \geq 2 \) and all \(q \), \(N_{DC_i^+(n,q)}(\beta) > 0 \), for all \(\beta \) and \(i = 1, 2 \).
(b) For all even \(n \geq 4 \) and all \(q \), \(N_{DC_+}^{(n,q)}(\beta) > 0 \), for all \(\beta \); for \(n = 2 \) and all \(q \),

\[
N_{DC_+}^{(2,q)}(\beta) = \begin{cases}
q^3 + q^2, & \beta = 0, \\
2q^3 + 2q^2, & tr(\beta^{-1}) = 0, \\
0, & tr(\beta^{-1}) = 1.
\end{cases}
\] (68)

(c) For all even \(n \geq 4 \) and all \(q \), \(N_{DC_+}^{(n,q)}(\beta) > 0 \), for all \(\beta \).

(d) For all odd \(n \geq 3 \) and all \(q \), \(N_{DC_-}^{(n,q)}(\beta) > 0 \), for all \(\beta \); for \(n = 1 \) and all \(q \),

\[
N_{DC_-}^{(1,q)}(\beta) = \begin{cases}
1, & \beta = 0, \\
0, & tr(\beta^{-1}) = 0, \\
2, & tr(\beta^{-1}) = 1.
\end{cases}
\] (69)

(e) For all odd \(n \geq 3 \) and all \(q \), \(N_{DC_-}^{(n,q)}(\beta) > 0 \), for all \(\beta \) and \(i = 2, 3 \).

(f) For all odd \(n \geq 5 \) and all \(q \), or \(n = 3 \) and all \(q \geq 4 \), \(N_{DC_-}^{(n,q)}(\beta) > 0 \), for all \(\beta \); for \(n = 3 \) and \(q = 2 \),

\[
N_{DC_-}^{(3,2)}(\beta) = \begin{cases}
576 = |\rho Q^{-}(6, 2)|, & \beta = 0, \\
0, & \beta = 1.
\end{cases}
\] (70)

Proof. All assertions except (f) are left to the reader.

(f) Let \(\beta = 0 \). Then \(N_{DC_-}^{(n,q)}(0) > 0 \), for all odd \(n \geq 3 \) and all \(q \), as one can see from (68). Now, let \(\beta \neq 0 \). Then, by invoking the Weil bound in (50), we have

\[
N_{DC_-}^{(n,q)}(\beta) \geq q^{-1}A_1^{-}(n, q) \\
\times \left\{ q^{1/2(n-3)/2} (q^{n-2} - 1) \prod_{j=1}^{(n-1)/2} (q^{2j} - 1) - (q^2 + 2q^{3/2} + 1) \right\}.
\] (71)

Let \(n \geq 5 \). Then we see from (72) that, for all \(q \),

\[
N_{DC_-}^{(n,q)}(\beta) \geq q^{-1}A_1^{-}(n, q) \{ q(q^3 - 1) - (q^2 + 2q^{3/2} + 1) \} > 0.
\]

If \(n = 3 \) and \(q \geq 4 \), then, from (72), we have

\[
N_{DC_-}^{(3,q)}(\beta) \geq q^{-1}A_1^{-}(3, q) \{ (q - 1)(q^2 - 1) - (q^2 + 2q^{3/2} + 1) \} > 0.
\]

On the other hand, if \(n = 3 \) and \(q = 2 \), then we get the values in (71) directly from (68).
Here we will construct eight infinite families of binary linear codes $C(\text{DC}_i^+(n, q))$ of length $N_1^+(n, q)$, $C(\text{DC}_2^+(n, q))$ of length $N_2^+(n, q)$, $C(\text{DC}_3^+(n, q))$ of length $N_3^+(n, q)$, for $n = 2, 4, 6, \ldots$ and all q; $C(\text{DC}_4^+(n, q))$ of length $N_4^+(n, q)$, for $n = 4, 6, 8, \ldots$ and all q; $C(\text{DC}_1^-(n, q))$ of length $N_1^-(n, q)$ for $n = 1, 3, 5, \ldots$ and all q; $C(\text{DC}_2^-(n, q))$ of length $N_2^-(n, q)$, $C(\text{DC}_3^-(n, q))$ of length $N_3^-(n, q)$, $C(\text{DC}_4^-(n, q))$ of length $N_4^-(n, q)$, for $n = 3, 5, 7, \ldots$ and all q, respectively associated with the double cosets $\text{DC}_1^+(n, q)$, $\text{DC}_2^+(n, q)$, $\text{DC}_3^+(n, q)$, $\text{DC}_4^+(n, q)$, $\text{DC}_1^-(n, q)$, $\text{DC}_2^-(n, q)$, $\text{DC}_3^-(n, q)$, $\text{DC}_4^-(n, q)$ (cf. (40)-(48)).

Let $g_1, g_2, \ldots, g_{N_i^+(n, q)}$ be fixed orderings of the elements in $\text{DC}_i^+(n, q)$, for $i = 1, 2, 3, 4$, by abuse of notations. Then we put

$$v_i^\pm(n, q) = (\text{Tr}g_1, \text{Tr}g_2, \cdots, \text{Tr}g_{N_i^+(n, q)}) \in \mathbb{F}_q^{N_i^+(n, q)} \text{ for } i = 1, 2.$$

The binary codes $C(\text{DC}_1^+(n, q))$, $C(\text{DC}_2^+(n, q))$, $C(\text{DC}_3^+(n, q))$, $C(\text{DC}_4^+(n, q))$, $C(\text{DC}_1^-(n, q))$, $C(\text{DC}_2^-(n, q))$, $C(\text{DC}_3^-(n, q))$, and $C(\text{DC}_4^-(n, q))$ are defined as:

$$C(\text{DC}_i^+(n, q)) = \{ u \in \mathbb{F}_q^{N_i^+(n, q)} \mid u \cdot v_i^\pm(n, q) = 0 \}, \text{ for } i = 1, 2, 3, 4, \quad (72)$$

where the dot denotes respectively the usual inner product in $\mathbb{F}_q^{N_i^+(n, q)}$, for $i = 1, 2, 3, 4$.

The following theorem of Delsarte is well-known.

Theorem 13 ([20]) Let B be a linear code over \mathbb{F}_q. Then

$$(B|_{\mathbb{F}_2})^\perp = \text{tr}(B^\perp).$$

In view of this theorem, the respective duals of the codes in (73) are given by:

$$C(\text{DC}_i^+(n, q))^\perp = \{ c_i^\pm(a) = c_i^\pm(a; n, q) = (\text{tr}(a \text{Tr}g_1), \ldots, \text{tr}(a \text{Tr}g_{N_i^+(n, q)}) \mid a \in \mathbb{F}_q \}, \quad (73)$$

for $i = 1, 2, 3, 4$.

Let \mathbb{F}_2^+, \mathbb{F}_q^+ denote the additive groups of the fields \mathbb{F}_2, \mathbb{F}_q, respectively. Then we have the following exact sequence of groups:

$$0 \rightarrow \mathbb{F}_2^+ \rightarrow \mathbb{F}_q^+ \rightarrow \Theta(\mathbb{F}_q) \rightarrow 0,$$
where the first map is the inclusion and the second one is the Artin-Schreier operator in characteristic two given by \(\Theta(x) = x^2 + x \). So

\[
\Theta(\mathbb{F}_q) = \{ \alpha^2 + \alpha \mid \alpha \in \mathbb{F}_q \}, \quad \text{and} \quad [\mathbb{F}_q^+ : \Theta(\mathbb{F}_q)] = 2. \quad (74)
\]

Theorem 14 ([9]) Let \(\lambda \) be the canonical additive character of \(\mathbb{F}_q \), and let \(\beta \in \mathbb{F}_q^* \). Then

\[
(a) \quad \sum_{\alpha \in \mathbb{F}_q - \{0,1\}} \lambda\left(\frac{\beta}{\alpha^2 + \alpha}\right) = K(\lambda; \beta) - 1, \quad (75)
\]

\[
(b) \quad \sum_{\alpha \in \mathbb{F}_q} \lambda\left(\frac{\beta}{\alpha^2 + \alpha + b}\right) = -K(\lambda; \beta) - 1, \quad (76)
\]

if \(x^2 + x + b(b \in \mathbb{F}_q) \) is irreducible over \(\mathbb{F}_q \), or equivalently if \(b \in \mathbb{F}_q \setminus \Theta(\mathbb{F}_q) \) (cf. (75)).

Theorem 15 (a) The map \(\mathbb{F}_q \to C(DC^+_1(n,q))^\perp \) \((a \mapsto c^+_1(a)) \) \((i = 1, 2)\) is an \(\mathbb{F}_2 \)-linear isomorphism for \(n \geq 2 \) even and all \(q \).

(b) The map \(\mathbb{F}_q \to C(DC^+_3(n,q))^\perp \) \((a \mapsto c^+_3(a)) \) is an \(\mathbb{F}_2 \)-linear isomorphism for \(n \geq 4 \) even and all \(q \), or \(n = 2 \) and \(q \geq 8 \).

(c) The map \(\mathbb{F}_q \to C(DC^+_4(n,q))^\perp \) \((a \mapsto c^+_4(a)) \) is an \(\mathbb{F}_2 \)-linear isomorphism for \(n \geq 4 \) even and all \(q \).

(d) The map \(\mathbb{F}_q \to C(DC^-_1(n,q))^\perp \) \((a \mapsto c^-_1(a)) \) is an \(\mathbb{F}_2 \)-linear isomorphism for \(n \geq 1 \) odd and all \(q \).

(e) The map \(\mathbb{F}_q \to C(DC^-_i(n,q))^\perp \) \((a \mapsto c^-_i(a)) \) \((i = 2, 3)\) is an \(\mathbb{F}_2 \)-linear isomorphism for \(n \geq 3 \) odd and all \(q \).

(f) The map \(\mathbb{F}_q \to C(DC^-_4(n,q))^\perp \) \((a \mapsto c^-_4(a)) \) is an \(\mathbb{F}_2 \)-linear isomorphism for \(n \geq 5 \) odd and all \(q \), or \(n = 3 \) and \(q \geq 4 \).

Proof. All maps are clearly \(\mathbb{F}_2 \)-linear and surjective. Let \(a \) be in the kernel of map \(\mathbb{F}_q \to C(DC^+_1(n,q))^\perp \) \((a \mapsto c^+_1(a)) \). Then \(tr(a Tr g) = 0 \), for all \(g \in DC^+_1(n,q) \). Since, by Corollary 12(a), \(Tr : DC^+_1(n,q) \to \mathbb{F}_q \) is surjective, \(tr(a \alpha) = 0 \), for all \(\alpha \in \mathbb{F}_q \). This implies that \(a = 0 \), since otherwise \(tr : \mathbb{F}_q \to \mathbb{F}_2 \) would be the zero map. This shows (a). All other assertions can be handled in the same way, except for \(n = 2 \) and \(q \geq 8 \) case of (b) and \(n = 1 \) case of (d).

Assume first that we are in the \(n = 2 \) and \(q \geq 8 \) case of (b). Let \(a \) be in the kernel of the map \(\mathbb{F}_q \to C(DC^+_3(2,q))^\perp \) \((a \mapsto c^+_3(a)) \). Then, by (69), \(tr(a \beta) = 0 \), for all \(\beta \in \mathbb{F}_q^* \), with \(tr(\beta^{-1}) = 0 \). Hilbert’s theorem 90 says that \(tr(\gamma) = 0 \) \(\iff \gamma = \alpha^2 + \alpha \), for some \(\alpha \in \mathbb{F}_q \), and hence \(\sum_{\alpha \in \mathbb{F}_q - \{0,1\}} \lambda\left(\frac{a}{\alpha^2 + \alpha}\right) = q - 2 \). If \(a \neq 0 \), then, using (76) and the Wéil bound (50), we would have

\[
q - 2 = \sum_{\alpha \in \mathbb{F}_q - \{0,1\}} \lambda\left(\frac{a}{\alpha^2 + \alpha}\right) = K(\lambda; a) - 1 \leq 2\sqrt{q} - 1.
\]

21
But this is impossible, since \(x > 2\sqrt{x} + 1 \), for \(x \geq 8 \).

Assume next that we are in the \(n = 1 \) case of (d). Let \(a \) be in the kernel of the map \(\mathbb{F}_q \to C(DC_1^\pm(1,q)) \) \((a \mapsto c_1^\pm(a))\). Then, by (70), \(\text{tr}(a\beta) = 0 \), for all \(\beta \in \mathbb{F}_q^* \) with \(\text{tr}(\beta^{-1}) = 1 \). Let \(b \in \mathbb{F}_q\setminus\Theta(\mathbb{F}_q) \). Then \(\text{tr}(\gamma) = 1 \Leftrightarrow \gamma = a^2 + \alpha + b \), for some \(\alpha \in \mathbb{F}_q \). As \(z^2 + z + b \) is irreducible over \(\mathbb{F}_q \), \(a^2 + \alpha + b \neq 0 \), for all \(\alpha \in \mathbb{F}_q \), and hence \(\text{tr}(\frac{a}{a^2 + \alpha + b}) = 0 \), for all \(\alpha \in \mathbb{F}_q \). So \(\sum_{\alpha \in \mathbb{F}_q} \lambda(\frac{a}{a^2 + \alpha + b}) = q \).

Assume now that \(a \neq 0 \). Then, from (77) and (50),

\[
q = -K(\lambda; a) - 1 \leq 2\sqrt{q} - 1.
\]

But this is impossible, since \(x > 2\sqrt{x} + 1 \), for \(x \geq 2 \).

Remark : One can show that the kernel of the maps \(\mathbb{F}_q \to C(DC_3^\pm(2,q))^\perp(a \mapsto c_3^\pm(a)) \), for \(q = 2, 4 \), and of the map \(\mathbb{F}_2 \to C(DC_4^\pm(3,2))^\perp(a \mapsto c_4^\pm(a)) \) are all equal to \(\mathbb{F}_2 \).

5 Recursive formulas for power moments of Kloosterman sums

Here we will be able to find, via Pless power moment identity, infinite families of recursive formulas generating power moments of Kloosterman and 2-dimensional Kloosterman sums over all \(\mathbb{F}_q \) (with three exceptions) in terms of the frequencies of weights in \(C(DC_i^\pm(n,q)) \), for \(i = 1, 3 \) and \(C(DC_i^\pm(n,q)) \), for \(i = 2, 4 \), respectively.

Theorem 16 (Pless power moment identity, [20]) Let \(B \) be an \(q \)-ary \([n,k]\) code, and let \(B_i \) (resp. \(B_i^\perp \)) denote the number of codewords of weight \(i \) in \(B \) (resp. in \(B^\perp \)). Then, for \(h = 0, 1, 2, \ldots \),

\[
\sum_{j=0}^{n} j^h B_j = \sum_{j=0}^{\min\{n,k\}} (-1)^j B_j^\perp \sum_{t=j}^{h} \frac{t!S(h,t)q^{k-t}(q-1)^{t-j}}{n-j},
\]

where \(S(h,t) \) is the Stirling number of the second kind defined in (19).

Lemma 17 Let \(c_i^\pm(a) = (\text{tr}(Trg_1), \ldots, \text{tr}(Trg_{N_i^\pm(n,q)})) \in C(DC_i^\pm(n,q))^\perp \), for
$a \in \mathbb{F}_q^*$ and $i = 1, 2, 3, 4$. Then their Hamming weights are expressed as follows:

\begin{align*}
(a) w(c_i^+(a)) &= \frac{1}{2} A_i^+(n, q) \{ B_i^+(n, q) \pm (-1)K(\lambda; a) \}, \quad \text{for } i = 1, 3, \quad (78) \\
(b) w(c_2^+(a)) &= \frac{1}{2} A_2^+(n, q) (B_2^+(n, q) \pm K(\lambda; a)^2) \\
&= \frac{1}{2} A_2^+(n, q) \{ B_2^+(n, q) \pm (q + K_2(\lambda; a)) \}, \quad (80) \\
(c) w(c_4^+(a)) &= \frac{1}{2} A_4^+(n, q) \{ B_4^+(n, q) \pm (q^2 + K_2(\lambda; a)) \} \\
&= \frac{1}{2} A_4^+(n, q) \{ B_4^+(n, q) \pm (q^2 + K_2(\lambda; a)) \} \quad (82)
\end{align*}

\[w(c_i^+(a)) = \frac{1}{2} \sum_{j=1}^{N_i^+(n, q)} (1 - (-1)^{tr(a Tr g_j)}) = \frac{1}{2} (N_i^+(n, q) - \sum_{w \in DC_i^+(n, q)} \lambda(a Tr w)), \]

for $i = 1, 2, 3, 4$. Our results now follow from (48) and (59)-(62). \hfill \square

Let $u = (u_1, \ldots, u_{N_i^+(n, q)}) \in \mathbb{F}_2^{N_i^+(n, q)}$, for $i = 1, 2, 3, 4$, with ν_{β} 1’s in the coordinate places where $Tr(g_j) = \beta$, for each $\beta \in \mathbb{F}_q$. Then from the definition of the codes $C(DC_i^+(n, q))$ (cf. (73)) we see that u is a codeword with weight j if and only if $\sum_{\beta \in \mathbb{F}_q} \nu_{\beta} = j$ and $\sum_{\beta \in \mathbb{F}_q} \nu_{\beta} \beta = 0$ (an identity in \mathbb{F}_q). As there are $\prod_{\beta \in \mathbb{F}_q} \left(N_{DC_i^+(n, q)}(\beta) \right) \nu_{\beta}$ many such codewords with weight j, we obtain the following result.

Proposition 18 Let $\{C_{i,j}^+(n, q)\}_{j=0}^{N_i^+(n, q)}$ be the weight distribution of $C(DC_i^+(n, q))$, for $i = 1, 2, 3, 4$. Then we have

\[C_{i,j}^+(n, q) = \sum_{\beta \in \mathbb{F}_q} \left(N_{DC_i^+(n, q)}(\beta) \right) \nu_{\beta}, \quad \text{for } 0 \leq j \leq N_i^+(n, q), \text{ and } i = 1, 2, 3, 4, \quad (83) \]

where the sum is over all the sets of integers $\{\nu_{\beta}\}_{\beta \in \mathbb{F}_q} (0 \leq \nu_{\beta} \leq N_{DC_i^+(n, q)}(\beta))$, satisfying

\[\sum_{\beta \in \mathbb{F}_q} \nu_{\beta} = j, \text{ and } \sum_{\beta \in \mathbb{F}_q} \nu_{\beta} \beta = 0. \quad (84) \]

Corollary 19 Let $\{C_{i,j}^+(n, q)\}_{j=0}^{N_i^+(n, q)}$ be the weight distribution of $C(DC_i^+(n, q))$, for $i = 1, 2, 3, 4$. Then we have

\[C_{i,j}^+(n, q) = C_{i,N_i^+(n, q)-j}^+(n, q), \text{ for all } j, \text{ with } 0 \leq j \leq N_i^+(n, q). \]
Theorem 21

Let \(N_{DC_i^+(n,q)}(\beta) \) for each \(\beta \in \mathbb{F}_q \), the first equation in (85) is changed to \(N_{DC_i^+(n,q)}(\beta) = 1 \), while the second equation in there and the summands in (84) are left unchanged. The second sum in (85) is left unchanged, since \(\sum_{\beta \in \mathbb{F}_q} N_{DC_i^+(n,q)}(\beta) \beta = 0 \), as one can see by using the explicit expressions of \(N_{DC_i^+(n,q)}(\beta) \) in (66)-(68).

\[\square \]

Theorem 20 ([17])

Let \(q = 2^r \), with \(r \geq 2 \). Then the range \(R \) of \(K(\lambda; a) \), as a varies over \(\mathbb{F}^*_q \), is given by:

\[R = \{ \tau \in \mathbb{Z} \mid |\tau| < 2\sqrt{q}, \tau \equiv -1(\text{mod } 4) \}. \]

In addition, each value \(\tau \in R \) is attained exactly \(H(\tau^2 - q) \) times, where \(H(d) \) is the Kronecker class number of \(d \).

The formulas appearing in the next theorem and stated in (18), (22), and (25) follow by applying the formula in (84) to each \(C \) and \(\tau \) in (66). Then we take Theorem 20 into consideration.

Theorem 21

Let \(\{C_{i,j}^\pm(n,q)\}_{j=0}^{\mathbb{Z}} \) be the weight distribution of \(C(DC_i^\pm(n,q)) \), for \(i = 1, 2, 3, 4 \), and assume that \(q \geq 4 \), for \(C(DC_i^\pm(n,q)) \) \((i = 2, 4) \). Then we have

(a) For \(i = 1, 3 \), and \(j = 0, \ldots, N_i^\pm(n,q) \),

\[
C_{i,j}^\pm(n,q) = \sum_{\nu_0} \left(q^{-1} A_i^\pm(n,q)(B_i^\pm(n,q) \pm 1) \right) \prod_{\text{tr}(\beta^{-1}) = 0} \left(q^{-1} A_i^\pm(n,q)(B_i^\pm(n,q) \pm (q + 1)) \right) \prod_{\text{tr}(\beta^{-1}) = 1} \left(q^{-1} A_i^\pm(n,q)(B_i^\pm(n,q) \pm (-q + 1)) \right),
\]

where the sum is over all the sets of nonnegative integers \(\{\nu_\beta\}_{\beta \in \mathbb{F}_q} \) satisfying \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \), and \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \).

(b) For \(j = 0, \ldots, N_2^\pm(n,q) \),

\[
C_{2,j}^\pm(n,q) = \sum_{\nu_0} \left(q^{-1} A_2^\pm(n,q)(B_2^\pm(n,q) \pm (q + 1 - q^2)) \right) \prod_{|\tau| < 2\sqrt{q}} \prod_{\tau \equiv -1(\text{mod } 4)} \left(q^{-1} A_2^\pm(n,q)(B_2^\pm(n,q) \pm (q + 1 - q\tau)) \right),
\]

where the sum is over all the sets of nonnegative integers \(\{\nu_\beta\}_{\beta \in \mathbb{F}_q} \) satisfying \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \), and \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \).
(c) For $j = 0, \ldots, N_1^\pm(n, q)$,

$$C_{4,j}^\pm(n, q) = \sum_{v_0} \left(q^{-1}A_4^\pm(n, q)(B_4^\pm(n, q) \pm (q^2 + 1 - q^2)) \right)$$

$$\times \prod_{|\tau| < 2\sqrt{q}} \prod_{\tau \equiv -1 (\text{mod} 4)} \left(q^{-1}A_4^\pm(n, q)(B_4^\pm(n, q) \pm (q^2 + 1 - q\tau)) \right)$$

where the sum is over all the sets of nonnegative integers $\{\nu_\beta\}_{\beta \in \mathbb{F}_q}$ satisfying $\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j$, and $\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0$.

From now on, we will assume that, for $C(\mathcal{DC}_1^+(n, q))^\perp$, $n \geq 2$ even and all q; for $C(\mathcal{DC}_2^+(n, q))^\perp$, $n \geq 2$ even and $q \geq 4$; for $C(\mathcal{DC}_3^+(n, q))^\perp$, either $n \geq 4$ even and all q, or $n = 2, q \geq 8$; for $C(\mathcal{DC}_4^+(n, q))^\perp$, $n \geq 4$ even and $q \geq 4$; for $C(\mathcal{DC}_1^-(n, q))^\perp$, $n \geq 1$ odd and all q; for $C(\mathcal{DC}_2^-(n, q))^\perp$, $n \geq 3$ odd and $q \geq 4$; for $C(\mathcal{DC}_3^-(n, q))^\perp$, $n \geq 3$ odd and all q; for $C(\mathcal{DC}_4^-(n, q))^\perp$, $n \geq 3$ odd and $q \geq 4$. Under these assumptions, each codeword in $C(\mathcal{DC}_i^\pm(n, q))^\perp$ can be written as $c_i^\pm(a)$, for $i = 1, 2, 3, 4$, and a unique $a \in \mathbb{F}_q$ (cf. Theorem 15, (74)).

Now, we apply the Pless power moment identity in (78) to $C(\mathcal{DC}_i^\pm(n, q))^\perp$, for those values of n and q, in order to get the results in Theorem 1(cf. (17), (18), (20)-(25)) about recursive formulas.

The left hand side of that identity in (78) is equal to

$$\sum_{a \in \mathbb{F}_q^*} \sum_{l=0}^{h} w(c_i^\pm(a))^h,$$

with $w(c_i^\pm(a))$ given by (79)-(83). We have, for $i = 1, 3$,

$$\sum_{a \in \mathbb{F}_q^*} w(c_i^\pm(a))^h = \frac{1}{2h} A_i^\pm(n, q)^h \sum_{a \in \mathbb{F}_q^*} \{B_i^\pm(n, q) \pm (-1)K(\lambda; a)\}^h$$

$$= \frac{1}{2h} A_i^\pm(n, q)^h \sum_{l=0}^{h} (-1)^l \binom{h}{l} B_i^\pm(n, q)^{h-l}MK^l. \quad \text{(85)}$$

25
Similarly, we have

\[
\sum_{a \in \mathbb{F}_q^*} w(c^\pm_2(a))^h = \frac{1}{2^h} A_2^\pm(n, q)^h \sum_{l=0}^{h} (\pm 1)^l \binom{h}{l} B_2^\pm(n, q)^{h-l} MK^{2l} \tag{86}
\]

\[
= \frac{1}{2^h} A_2^\pm(n, q)^h \sum_{l=0}^{h} (\pm 1)^l \binom{h}{l} (B_2^\pm(n, q) \pm q)^{h-l} MK_2^l. \tag{87}
\]

\[
\sum_{a \in \mathbb{F}_q^*} w(c^\pm_4(a))^h = \frac{1}{2^h} A_4^\pm(n, q)^h \sum_{l=0}^{h} (\pm 1)^l \binom{h}{l} \{B_4^\pm(n, q) \pm (q^2 - q)\}^{h-l} MK^{2l} \tag{88}
\]

\[
= \frac{1}{2^h} A_4^\pm(n, q)^h \sum_{l=0}^{h} (\pm 1)^l \binom{h}{l} (B_4^\pm(n, q) \pm q^2)^{h-l} MK_2^l. \tag{89}
\]

Note here that, in view of (59), obtaining power moments of 2-dimensional Kloosterman sums is equivalent to getting even power moments of Kloosterman sums. Also, one has to separate the term corresponding to \(l = h \) in (86)-(90), and notes \(\dim_{\mathbb{F}_2} C(DC_i^\pm(n, q)) = r \).

Acknowledgments

This work was supported by grant No. R01-2008-000-11176-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

References

[1] L. Carlitz, “Gauss sums over finite fields of order \(2^n \),” Acta Arith. vol.15, pp. 247-265, 1969.

[2] L. Carlitz, “A note on exponential sums,” Pacific J. Math., vol. 30, pp. 35-37, 1969.

[3] P. Charpin, T. Helleseth, and V. Zinoviev , “Propagation characteristics of \(x \mapsto x^{-1} \),” Finite Fields Appl. 13 (2007), 366-381.

[4] J.-M. Deshouillers and H. Iwaniec, “Kloosterman sums and Fourier coefficients of cusp forms,” Inv. Math. 70(1982), 219-288.

[5] H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl,, “Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums,” IEEE Trans. Inf. Theory, vol. 52, pp. 613-627, 2006.

[6] R.J.Evans, “Seventh power moments of Kloosterman sums,” Israel J. Math., to appear.

[7] K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, “The modularity of the Barth-Nieto quintic and its relatives,” Adv. Geom. 1 (2001), 263-289.
[8] D.S.Kim, “Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums,” submitted.

[9] D.S.Kim, “Codes associated with $O^+(2n, 2^r)$ and power moments of Kloosterman sums,” submitted.

[10] D.S.Kim, “Codes associated with $O^-(2n, 2^r)$ and power moments of Kloosterman sums,” submitted.

[11] D.S.Kim, “Infinite families of recursive formulas generating power moments of Kloosterman sums: symplectic case,” submitted.

[12] D.S.Kim, “Infinite families of recursive formulas generating power moments of Kloosterman sums: $O^+(2n, 2^r)$ case,” submitted.

[13] D.S.Kim, “Gauss sums for symplectic groups over a finite field,” Mh. Math., vol.126, pp. 55-71, 1998.

[14] D.S.Kim, “Exponential sums for $O^-(2n, q)$ and their applications,” Acta Arith., vol. 82, pp. 331-357, 1997.

[15] D. S. Kim and Y. H. Park, “Gauss sums for orthogonal groups over a finite field of characteristic two,” Acta Arith., vol. 82, pp. 331-357, 1997.

[16] H. D. Kloosterman, “On the representation of numbers in the form $ax^2 + by^2 + cz^2 + dt^2$,” Acta Math. vol. 49, pp. 407-464, 1926.

[17] G. Lachaud and J. Wolfmann, “The weights of the orthogonals of the extended quadratic binary Goppa codes,” IEEE Trans. Inform. Theory, vol. 36, pp. 686-692, 1990.

[18] R. Liidl and H. Niederreiter, “Finite Fields,” 2nd ed. Cambridge, U. K.: Cambridge University Pless, 1997, vol.20, Encyclopedia of Mathematics and Its Applications.

[19] R. Livné, “Motivic orthogonal two-dimensional representations of $\text{Gal} (\overline{\mathbb{Q}}/\mathbb{Q})$,” Israel J. Math. 92 (1995), 149-156.

[20] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error Correcting Codes,” Amsterdam, The Netherlands: North-Holland, 1998.

[21] M. Moisio, “The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code,” IEEE Trans. Inform. Theory, vol. 53, pp. 843-847, 2007.

[22] C. Peters, J. Top, and M. van der Vlugt, “The Hasse zeta function of a $K3$ surface related to the number of words of weight 5 in the Melas codes,” J. Reine Angew. Math. 432 (1992), 151-176.

[23] H. Salié, “Über die Kloostermanschen Summen $S(u, v; q)$,” Math. Z., vol. 34, pp. 91-109, 1931.

[24] R. Schoof and M. van der Vlugt, “Hecke operators and the weight distributions of certain codes,” J. Combin. Theory Ser. A, vol. 57, pp. 163-186, 1991.