L-ARGININE is converted to the highly reactive and unstable nitric oxide (NO) and l-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO$_3^-$) and nitrate (NO$_2^-$), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO$^-$). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Other cytokines can modulate the induction of NO biosynthesis in macrophages. NO is a major effector molecule of the anti-microbial and cytotoxic activity of rodent macrophages against certain microorganisms and tumour cells, respectively. The NO synthesizing pathway has been demonstrated in human monocytes and other cells, but its role in host defence seems to be accessory. A delicate functional balance between microbial stimuli, host-derived cytokines and hormones in the microenvironment regulates iNOS expression. This review will focus mainly on the known and proposed mechanisms of the regulation of iNOS induction, and on agents that can modulate NO release once the active enzyme has been expressed in the macrophage.

History and basic concepts

The history of the discovery of the l-arginine–NO pathway is discussed only briefly, as excellent reviews are available. In the early 1980s, in vivo studies demonstrated that rats, mice and humans excrete more nitrate than they ingest, suggesting that mammals form nitrogen oxides endogenously. In 1987, NO was found to explain both the biological activity of the elusive endothelium-derived relaxing factor and the l-arginine-dependent tumoricidal activity of activated murine macrophages. The products of this enzymatic pathway are l-citrulline and the highly reactive and unstable nitric oxide (NO), which decomposes (after complexing with certain forms of iron, or non-enzymatically) into other nitrogen oxides such as nitrite (NO$_2^-$) and nitrate (NO$_3^-$) (Fig. 1). The enzyme responsible for NO production has been named nitric oxide synthase (NOS). Although evidence exists that NO is the primary product released by NOS, it is possible that NOS-containing cells produce a mixture of NO, NO$_2^-$, NO$_3^-$, N$_2$O$_5^-$, nitrosamines, non-protein nitrosothiols and S-nitrosylated proteins.

Soon after its discovery, the new metabolic pathway was found to be l-arginine dependent. NO is synthesized from the terminal guanidino nitrogen atom of this amino acid (and not d-arginine), without loss of the guanidino carbon atom. Although it was initially believed that cNOS produced NO by a different process without nucleotide-derived cofactors, recent work now supports a general scheme. NOS incorporates molecular oxygen both into NO and citrulline. Activated macrophages form NO from α-hydroxy-l-arginine, confirming the proposal that this compound is an intermediate in the biosynthesis of NO.

Modulation of nitric oxide synthase activity in macrophages

P. G. Jorens,* K. E. Matthys and H. Bult

Division of Pharmacology, Department of Medicine, University of Antwerp (UIA), B-2610 Wilrijk, Belgium

*Current address: Department of Intensive Care Medicine, University Hospital of Antwerp, Belgium

CA Corresponding Author
Soon it became clear that this metabolic pathway exists in various cells from different embryological origins, and that different forms of NOS can be distinguished, based on their expression and mode of NO release. A first subclass consists of Ca²⁺- and calmodulin-dependent enzymes (cNOS), releasing NO within seconds when calmodulin binds to the enzyme in response to a rise of cytoplasmic Ca²⁺ levels upon receptor stimulation. These forms are constitutively expressed in endothelial cells and certain neuronal cells. The NO produced by these cells acts as an inhibitory signal: it stimulates a cytoplasmic guanylate cyclase, and cyclic GMP is formed as second messenger. The second subclass (iNOS) consists of inducible, Ca²⁺-independent enzymes, which can be expressed in most nucleated cells, including rodent macrophages, following induction with cytokines. "l-Arginine can serve as a substrate for iNOS, but not for cNOS.

Recently, NOS has been purified and cloned from cerebellum, endothelium, rodent macrophages and human hepatocytes (reviewed by Nathan). NOS has a close homology to cytochrome P₄₅₀ reductase. The biochemical and molecular biological reports on NOS result in a confusing synopsis with respect to a scale of variables: specific activity, Kₘ for l-arginine, relative dependence on Ca²⁺ and co-factors, subcellular distribution or the gene regulating the expression of this enzyme. Until the cloning from additional cells and species and the use of antibody probes clarify the systematics of the various forms of NOS, the division into two subclasses (cNOS and iNOS) can be retained as the most useful one.

The murine iNOS macrophage enzyme displays approximately 50% sequence homology to the NOS of neuronal origin. Macrophage iNOS mRNA is strikingly inducible and it is absent in quiescent macrophages. Like neuronal NOS, macrophage NOS has recognition sites for FAD, FMN and NADPH and has a consensus calmodulin binding site. Calmodulin binds tightly as a subunit to iNOS, which explains why iNOS is Ca²⁺ independent, in contrast to cNOS.

Macrophages from the cloned macrophage cell line RAW264.7 from Albeson leukaemia virus-induced BALB/c lymphocytic lymphoma are rather exceptional as they also express cNOS activity, which is Ca²⁺ dependent and decreases after activation with IFNγ or LPS, or with increasing passage number.

Many studies have shown that iNOS expression in macrophages is tightly regulated by a delicate balance between microbial stimuli, host-derived cytokines and hormones in the micro-environment. This review will therefore focus on the known and proposed mechanisms of the regulation of iNOS expression in macrophages and on the agents that can modulate NO release in these cells.

Functions of nitric oxide in host defence

Nitric oxide is a major effector molecule of the antimicrobial and cytotoxic activity of rodent macrophages against intracellularly growing microorganisms, some extracellular parasites, some extracellular viruses and some tumours. Haem proteins, proteins containing non-haem Fe and DNA are the molecular targets of NO in cells in general and in tumour cells in particular. These interactions have many consequences in the target cell: decreased protein synthesis, inhibition of ribonucleotide reductase and hence DNA synthesis, suppression of mitochondrial respiration and aconitase of the citric acid cycle, modulation of the post-transcriptional regulation of genes involved in iron homeostasis, activation of RNA binding by an iron regulatory factor, suppression of antibody synthesis and inhibition of T-cell proliferation. NO can also combine with superoxide anion to form the potent oxidizing agent peroxynitrite (ONOO⁻). It is interesting to observe that macrophages, the prototypical effector cells for NO-mediated cytotoxicity, are themselves targets for NO or peroxynitrite, as they die prematurely in culture when activated to express iNOS, a process that appears to be mediated through apoptosis. Moreover, NOS activity in macrophages is associated with glucose depletion, glycolysis and hexose monophosphate shunt activity, a decreased flux of glucose through the tricarboxylic acid cycle and the induction of glucose-6-phosphate dehydrogenase. These results demonstrate that energy metabolism in macrophages can, to a significant extent, be determined by products of iNOS. A regulatory loop exists between iron metabolism and NO in macrophages, as the addition of iron to macrophages incubated with LPS/IFNγ significantly reduces their ability to produce NO.

Induction of NOS in monocytes or tissue macrophages in vivo has been demonstrated or suggested by indirect measurements in several animal models. These include intravenous injection of LPS, oral endrin administration to rats, IgA immune-complex vasculitis of the lung, tracheal bleomycin instillation, diabetes, treatment with cytotoxic drugs, exposure to benzene or inhalation of ozone. The role of endogenous NO in inflammation is still unclear. An inhibitor of NOS activity enhanced neutrophil adhesion to endothelial cells and their subsequent extravasation by upregulation of the expression of the CD11/CD18 integrin on the neutrophil, suggesting that endogenous NO continuously suppresses neutrophil adhesion. In contrast, the same inhibitor blocked neutrophil-dependent injury of the pulmonary vasculature and the oedema induced by intradermal injection of substance P. The pro- and anti-inflam-
Nitric oxide and macrophages

Inflammatory activity of endogenous NO deserves further investigation in different experimental settings.

Atherosclerosis and iNOS

Oxidatively modified low-density lipoprotein (oxLDL) is taken up by macrophages via unregulated receptor-mediated endocytosis. The lipid-laden macrophages are transformed to foam cells, which are present in early atherosclerotic lesions. Macrophages are capable of accelerating LDL oxidation in vitro. NO, particularly when generated in the presence of superoxide anion, can oxidize LDL as well, since the highly reactive peroxynitrite is generated. However, NO synthesis by macrophages is not required for macrophage-mediated oxidation of LDL in vitro. On the contrary, it seems to exert a protective role in preventing oxidative LDL modification by macrophages. It has been proposed that NO can inhibit LDL oxidation by acting as a chain-breaking anti-oxidant that is capable of scavenging carbon-centred and peroxyl radicals.

Moreover, uptake of oxLDL, but not the acetylated form, by macrophages has been shown to modulate iNOS activity. OxLDL may prime the macrophage for enhanced, presumably prostaglandin-mediated NO biosynthesis, as assessed by nitrite and citrulline accumulation in the supernatant. On the other hand, it suppresses iNOS activity resulting from stimulation with LPS or IFNγ. Addition of the glucocorticoid receptor antagonist mifepristone did not prevent the oxLDL dependent iNOS inhibition, indicating that the glucocorticoid receptor is not involved in the suppressive effect of oxLDL. Failure to detect NO production by those macrophages appears to result from lack of NO synthase activity.

Recent evidence suggests that iNOS activity, which is normally not present in the arterial wall, is expressed when macrophage-rich lesions develop. The cholesterol-induced formation of foam-cell-rich fatty streaks in the rabbit aorta leads to the induction of a non-endothelial NOS. Furthermore, balloon angioplasty and denudation of, respectively, rabbit and rat carotid artery, which induces intimal thickening with a prominent influx of macrophages, is accompanied by induction of NOS activity. Yet this does not prove that macrophages are the source of NO, since iNOS can be induced in smooth muscle cells as well. The continuous NO release leads to hyporeactive contractile responses, but its consequences for the development of atherosclerotic lesions remain to be determined.

Induction of iNOS in rodent macrophages

Direct inducers: A first, critical level of regulation consists of the induction process, since iNOS is normally not expressed in resting macrophages. LPS, the major constituent of the outer wall of Gram-negative bacteria and IFNγ are potent inducers of iNOS, and therefore often employed to elicit NO biosynthesis in macrophages. Contamination with the omnipresent LPS can thus be a serious and complicated technical problem when studying the regulation of iNOS activity. Other bacterial products, such as exotoxins of Gram-positive bacteria, toxic shock syndrome toxin-1, enterotoxin B and lipoteichoic acid, have high molecular weight material derived from *Mycoplasma fermentans* and synthetic analogues of the N-terminal part of bacterial lipoprotein are direct inducers of iNOS in macrophages as well. A few cytokines, such as IFNγ and migration inhibitory factor (MIF) can directly activate macrophages to synthesize NO. Other inducers include Ca²⁺ ionophore, which both induces and enhances the potency of LPS to induce NO; production, certain antitumour agents such as flavone-8-acetic acid, certain food proteins, asbestos fibres, stable analogues of cyclic AMP (see subsequent section), monoclonal antibodies to MHC II antigens and membrane fragments of tumour cells.

In primary mouse peritoneal macrophages, LPS and IFNγ only caused significant biosynthesis of nitrogen oxides when the cells were elicited by thioglycolate broth or pretreated with *Bacillus Calmette–Guérin*. Based on these experiments with mouse cells, it appears that macrophage activation for cytotoxicity requires two exogenous signals: one signal primes or sensitizes the cell, the second activates it for killing and production of NO. In rats, however, resident alveolar and peritoneal macrophages produce NO in response to relatively low doses of a single exogenous activating stimulus, including LPS. Moreover, the macrophage activation process may differ between mouse strains, and appears to be age-dependent. The ability of cultured macrophages to secrete nitrogen oxides correlates with the age of the mice from which they are harvested. IFNγ-induced release of NO is 50% lower in macrophages taken from old mice than from young mice.

Signal transduction: The induction of NOS in macrophages requires protein synthesis. When added during the induction phase, inhibitors of ADP ribosylation are also able to inhibit nitrite production. Certain protein synthesis inhibitors can trigger an immediate early gene response and efficiently activate transcription of iNOS. The mRNA for iNOS shares some features with mRNA of cytokines such as the transient expression and decay of its mRNA (half-life of approximately 6 h) which can be prevented by protein synthesis inhibition. The signal transduction pathway by which IFNγ induces iNOS expression remains to be established. Experimental
evidence suggests the involvement of G-proteins and phospholipase C. Experiments with the G-protein inhibitor pertussis toxin suggest that LPS stimulates tumour necrosis factor-α (TNFα) and NO production in mouse peritoneal macrophages through different biochemical pathways, but the signal transduction for both pathways is regulated by a pertussis toxin-sensitive factor. Presumably a G-protein. NO biosynthesis is dose-dependently reduced by protein kinase C inhibition and induced by phorbol esters, activators of protein kinase C as well as by translocation of protein kinase C via activation of the membrane protein CD53, providing evidence that protein kinase C is involved in iNOS induction. Analysis of diacylglycerol synthesis provided direct evidence that NO synthesis in macrophages involves the activation of an unusual phosphatidylcholine-specific phospholipase C. However, tyrosine phosphorylation may also participate in the induction of NO, as protein tyrosine kinase inhibitors (of the tyrophostin AG 126 family) protect mice against LPS-induced lethal toxicity, correlating with the ability of these agents to block LPS-induced NO production in macrophages. Macrophages from mice with a targeted disruption of the IFN regulatory factor 1-gene produced very little NO. The promoter of the murine iNOS gene contains an NF-kappa B site, designated NF-kappa B d. Pyrrolidinedithiocarbamate, an inhibitor of NF-kappa B, blocks both the activation of NF-kappa B d-binding proteins and NO biosynthesis in LPS-treated macrophages.

Interactions between stimuli: Bacterial LPS interacts synergistically with IFNγ to induce NOS when both stimuli are added together. A recombinant NH₂-terminal fragment of bactericidal/permeability-increasing protein, which binds to LPS in the outer membrane of Gram-negative bacteria, was shown to inhibit murine macrophage nitric oxide production elicited by LPS plus IFNγ, while the rabbit plasma LPS-binding protein, which enhances binding and functional responses to LPS, enhanced this NO production. The elevated expression of iNOS mRNA after co-stimulation has been shown to be due to increased stability by some investigators, but due to a much higher rate of transcription of the NOS gene by others. This synergism of LPS can be mimicked by a monoclonal antibody directed against the 73 kDa LPS receptor on murine leucocytes, which identifies this 73 kDa protein as a receptor that mediates LPS-induced changes in macrophage NO production. IFNγ has been identified as the major priming factor when IFNγ, LPS and TNFα are added together to the macrophage.

Another regulatory mechanism is the observation that pretreatment of macrophages with low doses of LPS can selectively reprogram these cells, i.e., down-regulate for subsequent LPS-activated NO produc-

tion, a mechanism refractory to pertussis toxin. Pre-exposure of peritoneal macrophages to low concentrations of LPS also suppresses the subsequent induction of iNOS by IFNγ. These findings suggest that preactivation of pathways normally contributing to synergistic induction of NOS may deplete macrophages of factors needed for its expression. Regulation of NOS in vivo may therefore depend on the relative tempo with which the inflammatory and immune responses evolve. Reduced NO production by macrophages exposed to LPS has also been shown to markedly reduce the ability of macrophages to kill the intracellular parasite Leishmania major. This endotoxin tolerance may represent an important means of regulation of NO synthesis and thus a survival mechanism for intracellular parasites.

Phagocytosis itself may cause upregulation of iNOS induction. Phagocytosis of Leishmania enrietti promastigotes or latex beads by murine macrophages enhanced IFNγ-stimulated nitrite production and could be an important mechanism of up-regulating their microbicidal activity. Ingestion of zymosan, but not of latex beads or silica, also acted synergistically with LPS to induce iNOS activity. These results demonstrate that phagocytosis, although capable, is not always sufficient to provide an additional signal for the induction of iNOS in mouse macrophages. In rat macrophages opsonized zymosan induced nitrite production in the absence of further stimuli.

Autocrine and paracrine regulation by TNF: Conflicting results have been reported on the ability of TNFα to induce NOS in murine macrophages. Some authors reported substantial amounts of nitrite in supernatants of mouse macrophages stimulated with this cytokine alone. Others did not find TNFα or TNFβ to induce NO production by itself, but TNF is believed to serve as an autocrine signal for cytokine induced NO production in murine macrophages. Endogenously produced TNF is also involved in the induction of NO effector mechanisms when muramyl dipeptide (MDP), a bacterial wall constituent, or Leishmania promastigotes are added as co-stimuli with IFNγ. For Leishmania and Toxoplasma, the parasite itself participates in the regulation of NO production by macrophages through autocrine TNFα induction by the parasite; NO synthesis by IFNγ treated cells can be blocked by monoclonal antibodies to TNFα and TNFβ to induce NO production by itself, but TNF is believed to serve as an autocrine signal for cytokine induced NO production in murine macrophages. These results are in agreement with the results obtained with lymphokines in the activation of macrophages against trypanosomes: T-cell derived TNFα and IFNγ synergistically activate mouse macrophages for the killing of intracellular
Nitric oxide and macrophages

Trypanosoma cruzi through an NO-mediated mechanism. The complement subcomponent Clq may be involved in the modulation of autocrine binding of TNF for subsequent generation of cytotoxic NO: pretreatment of macrophages with 3,4-dehydro-D,L-proline, an inhibitor of Clq secretion, suppresses lipid A-induced activation for cytotoxicity which correlates with a decreased NO production and reduction in their capacity to bind TNF. The role of TNF in macrophage-mediated cytotoxicity is thus not limited to its lytic action on certain target cells, but TNF also acts with IFNγ as an autocrine immunomodulator to elicit the conversion of L-arginine into nitrogen oxides.

In addition, paracrine effects of TNF have been documented. TNFα or TNFβ fail to induce NO production by themselves, but addition of either cytokine to IFNγ increased nitrite production compared with IFNγ alone. In contrast to the paracrine effects of TNF in murine macrophages, TNF exerts no or only a small enhancing effect on IFNγ-induced NO production by resident rat macrophages.

Synergy with α and β interferons: IFNα or IFNβ, in combination with LPS, also raised LPS-induced nitrite production. A monoclonal antibody specific for IFNβ inhibited LPS-induced NO production in thioglycollate-elicited peritoneal macrophages, which supports the concept that IFNβ also provides an essential signal for LPS-triggered NO production by mouse macrophages. However, neither IFNβ nor TNFα, alone or in combination, triggered NO production, demonstrating again that these macrophage-derived cytokines, while necessary, are by themselves not sufficient to induce iNOS in these murine cells.

Other stimulating cytokines: Granulocyte-macrophage colony stimulating factor (GM-CSF)-elicited, bone marrow-derived mouse macrophages required only LPS for effective killing of K562 cells, but produced little nitrite in response to LPS, unless treated with IFNγ. Conversely, macrophage colony stimulating factor CSF-1-elicited bone marrow macrophages required the classical IFNγ plus LPS treatment protocol to become tumouricidal, but secreted nitrite in response to high concentrations of LPS alone. Moreover, GM-CSF, but not CSF-1-derived macrophages, showed an L-arginine dependent Listeriaicidal activity. Macrophage colony stimulating factor- and GM-CSF-derived bone marrow macrophages treated with cisplatin are effective in the production of NO and the generation of tumouricidal activity. GM-CSF is also an efficient enhancer and primer of iNOS activity in rat alveolar macrophages.

When interleukin-2 (IL-2) was combined with IFNγ and TNFα, there was a marked cooperative induction of mRNA and iNOS enzyme activity in murine peritoneal macrophages. This cooperation was truly synergistic, as the full combination was many times more effective than the individual agents or paired combinations. As it required protein synthesis, the intermediate expression of new gene products is suggested. Indeed, endogenous production of TNFα was required for this cooperative effect of IL-2 on IFNγ-induced NO production and tumour cell lysis. Moreover, certain susceptible tumour targets constitutively produce one or more soluble recognition factors that synergize with the natural cytokines IFNγ and IL-2 to render macrophages cytotoxic for the target cell.

A recombinant form of human MIF, a lymphokine produced by antigen-stimulated lymphocytes which suppresses macrophage migration in vitro, induced murine macrophages to express iNOS and to produce high levels of NO. However, another group reported that MIF-mediated migration inhibition was not accompanied by endogenous production of NO or TNF. Inhibition of murine macrophage migration was also triggered by lipid A, the lipid moiety of LPS, after priming with IFNγ, whereas neither MIF nor IFNγ inhibited migration when given alone. Priming with IFNγ induced the biosynthesis of NO and TNF. This resembled the effects of IFNγ on the induction of NO-dependent tumour cytotoxicity in mouse macrophages, which requires autocrine stimulation by TNF as well.

Inhibitory cytokines: IL-4, IL-10, IL-13, transforming growth factor-β (TGFβ) and macrophage deactivating factor have been shown to inhibit the induction of NO production in macrophages. The effects of these cytokines on macrophage function are more complex than previously recognised. IL-4 is able to inhibit NO synthesis by IFNγ-stimulated murine peritoneal and adherent splenic macrophages, while evidence has also been presented for synergism between IL-4 and IFNγ for the induction of the L-arginine-dependent killing of *Leishmania major* amastigotes. The repression of iNOS induction and NO biosynthesis by IL-10 is effective only when cells are pretreated with this cytokine and the mechanism of this action was identified as inhibition of endogenous TNFα production. IL-10 also has, however, the capacity to enhance the early production of NO by macrophages co-stimulated with IFNγ and exogenous TNFα. These data support the notion that the cytokines IL-4 and IL-10, secreted by the T_{H}2 lymphocyte subset, might modulate NO synthesis induced by IFNγ, an effector of T_{H}1 cells. Moreover, the combination of sub-optimal concentrations of two or any two of the cytokines IL-4, IL-10 and TGFβ gave a potent synergistic effect on the suppres-
sion of NO production and killing of schistosomes by IFN-γ-treated macrophages.149 TGFβ inhibited NO synthesis in IFN-γ-activated murine macrophages, but only at high concentrations (100 ng/ml).150,151,152 while it enhanced iNOS induction in 3T3 fibroblastic cells.153 On the other hand induction of iNOS by MIF is highly sensitive to the inhibitory effect of TGFβ. This observation is a further indication that macrophage activation by IFN-γ and MIF occurs through different signalling pathways.74 TGFβ has been demonstrated to reduce NOS specific activity and protein in both cytosolic and particulate fractions, to reduce iNOS mRNA and translation by decreasing the stability of mRNA, and by degrading the NOS protein.154

Monocyte chemotactic protein 1, a potent chemoattractant for monocytes, is able to inhibit the production induced by LPS and IFN-γ in a dose-dependent manner, but this effect is only achieved when the cells are pretreated with the chemotactant.155

Up-regulation by miscellaneous agents: Elevated temperature may contribute to enhanced host defence by accelerating and amplifying the induction of NO synthesis in macrophages.156 Picolinic acid, a catabolite of l-tryptophan, while being ineffective by itself, augmented IFN-γ-induced nitrite production via both TNFα-dependent and -independent mechanisms. This provides further evidence for possible connections between the tryptophan and arginine dependent cytotoxic effector pathways in murine macrophages.157 Binding of extracellular nucleotides, including ATP, to purinergic receptors may increase NO production by macrophages.158 This effect might occur in pathological conditions where significant amounts of ATP can be released due to cellular damage.

An l-arginine terminal synthetic compound belonging to the family of hypoxanthine derivatives enhanced IFN-γ-induced nitrite release from cultured peritoneal macrophages.159 Muramyldipeptide (MDP), a constituent of bacterial cell walls has been shown to enhance both LPS150 and IFN-γ-induced151 NO production. A cytotoxic substance, isolated from Bacillus stearothermophilus and identified as bis(2-hydroxyethyl)trisulphide, increased NO formation by macrophages.152 The macrophage activating tetrapeptide tuftsin has been shown to synergize with IFN-γ for NO production in murine, but not in rat macrophages.153,154

Ligated complement receptor type 3 (CR3) and IFN-γ act synergistically to induce NO production and CR3 mediates the group B streptococcus-induced signal for NO production in IFN-γ-treated macrophages.155 Baflomycin A1 (BAF), an inhibitor of vacuolar-type-H⁺-ATPases, causes an increase in intravesicular pH and enhances nitrite release by activated macrophages. However, the NO concentration necessary to kill parasites was higher in BAF-exposed than in control macrophages, suggesting that microbicidal nitrogen derivatives were less active at alkaline pH.156 The anti-cancer drug taxol, which blocks cell division by stabilizing microtubules, synergized with IFN-γ, like LPS, to activate macrophages for l-arginine-dependent tumour lysis.157 Conversely, nocodazole and colchicine, two chemically distinct microtubule depolymerizing agents, completely prevented LPS-induced NO production in vascular smooth muscle cells.158

Regulation by prostanooids and other lipids: The hypothesis that platelet activating factor (PAF) acts as auto- or paracrine up-regulator of iNOS, has been substantiated by the finding that WEB 2086, an antagonist of PAF receptors, attenuated LPS-stimulated NO biosynthesis in cultured murine macrophages.159 Thus, inhibition of NO induction may contribute to the beneficial effects of PAF antagonists in endotoxaemia.

Macrophages derived from mice fed with a diet rich in n-3 polyunsaturated fatty acids produce more NO₂⁻ in response to IFN-γ compared with macrophages from the control group.160 Bronchoalveolar macrophages from rats fed diets rich in n-3 fatty acids produce significantly more NO than macrophages isolated from n-6 polyunsaturated fatty acids fed animals: changes in n-6-derived prostanooids may account for these data.161 However, the regulation of iNOS activity by arachidonic acid metabolites is still controversial. Nitrite production by peritoneal mouse macrophages was suppressed by phospholipase A₂ inhibitors, 5-lipoxygenase inhibitors and a glutathione-S-transferase inhibitor, while inhibitors of 12- and 15-lipoxygenase, and of cyclooxygenase were without effect.162,163 However, Gaillard et al. reported that PGE₂ and dibutylryl-cyclic AMP, a stable analogue of cyclic AMP, enhanced LPS-induced NO₂⁻ secretion by rat Kupffer cells.164 The stimulation is maximal when PGE₂ is added after LPS. Cyclic AMP appeared to be a positive signal for iNOS expression in rat vascular smooth muscle, as well.165,166 Others, however, have reported that PGE₂ and dibutylryl-cyclic AMP inhibit the LPS-stimulated induction of NOS in murine macrophages. PGE₃₃, a stable analogue of thromboxane A₂, and the leukotrienes B₄ and C₄ were without effect.167,168

The hypothesis that cyclic AMP was the second messenger in the down-regulation of NOS by prostaglandins was reinforced by the use of drugs which elevate the intracellular levels of cAMP (8-bromo-cyclic AMP and IBMX). When added during the LPS activation step, these drugs decreased NO
synthase activity. The combination of PGE2 and a phosphodiesterase inhibitor, which induced a prolonged elevation of intracellular cyclic AMP levels, also caused a marked reduction of the NO production by macrophages. The finding that norepinephrine caused a dose-dependent, adrenoceptor-mediated inhibition of the LPS-induced iNOS activity in rat astrocyte cultures, but not in the RAW 264.7 macrophage cell line, is a further indication that cyclic AMP may cause down-regulation of iNOS in some, but not in all cell types.

NO also enhanced cyclooxygenase enzymatic activity in macrophages. This suggests that in conditions in which both NOS and cyclooxygenase become active, there is an NO-mediated increase of the production of pro-inflammatory prostaglandins that may exacerbate inflammatory responses. In respect of this finding, and of the conflicting data on iNOS regulation by prostaglandins, the relationships between eicosanoids and NOS deserve further investigation.

Regulation of iNOS activity

Once iNOS has been expressed in macrophages, its activity is regulated by several factors, including auto-inactivation, and availability of substrate and cofactors.

Auto-inactivation: NO may function as a negative feedback modulator of iNOS activity by interacting with the enzyme-bound haem of iNOS, which may represent a mechanism by which the NO pathway in activated macrophages is turned off. None of 14 monoclonal antibodies raised against iNOS from rat macrophages neutralized iNOS activity, but some of them enhanced enzyme activity through stabilization of the enzyme. Recently, a novel post-translational and non-degradative inactivation of iNOS has been described. LPS, after inducing iNOS, caused macrophages to inactivate the enzyme about 3 days later. The mechanism which remains to be identified is novel as it decreases neither the amount nor the apparent molecular mass of the enzyme.

Bioavailability of l-arginine: Arginine plays a pivotal role in body protein biosynthesis, biosynthesis of other amino acids and in the urea cycle. Resting macrophages express arginase and the enzyme is up-regulated after immune activation. Arginase releases urea from l-arginine (Fig. 2) and might modulate iNOS activity by competition for the substrate in the microenvironment, thereby suppressing macrophage-mediated cytotoxicity. Regenerating wounds have a decreased concentration of l-arginine, elevated ornithine content and high arginase activity, and it has been proposed that the local arginine concentration could have a major effect on cell proliferation rate. o-Hydroxy-l-arginine, the intermediate in the biosynthesis of NO from l-arginine, is a competitive inhibitor of arginase, which may have implications in the regulation of NO levels in cells.

Citrulline, the by-product of iNOS, can be recycled to arginine by the action of argininosuccinate synthetase and argininosuccinate lyase. Induction of NOS in macrophages is accompanied by co-induction of activity and mRNA for argininosuccinate synthetase, the rate limiting step in this reaction. The enhanced cellular capacity to regenerate arginine from citrulline could play a significant role in maintaining NO production in macrophages.

Cofactors: Various inducible and constitutive cytosolic co-factors are required for full iNOS activity. These include the electron donor NADPH, tetrahydrobiopterin (THB), FAD, FMN and glutathione. These findings implicate a redox cycle in which the generation of NO is facilitated. GTP-cyclohydrolase I, the key step in the biosynthesis of tetrahydrobiopterin, is induced by
IFNγ and LPS in human and rodent macrophages.186,190 The GTP cyclohydrolase I inhibitor 2,4-diamino-6-hydroxypyrimidine, is capable of inhibiting NO production by macrophages.186,190 Sepiapterin, a pteridine that does not occur naturally in mammals, but which can substitute tetrahydrobiopterin via a salvage pathway,184 led to a further increase of NO production even in fully activated macrophages. Phenprocoumon, an inhibitor of sepiapterin reductase, inhibited production of NO by interference with later steps of tetrahydrobiopterin biosynthesis.187 Because tetrahydrobiopterin is required for the biosynthesis of neurotransmitters, a therapeutic potential of inhibitors of tetrahydrobiopterin for NO-mediated pathological conditions would appear to be limited.3 Moreover, the addition of high amounts of tetrahydrobiopterin and sepiapterin to activated rat macrophages led to a marked inhibition of NO secretion, which may suggest that iNOS in intact cells is susceptible to feedback regulatory mechanisms.195

The flavoprotein inhibitors diphenylene iodonium and its analogues inhibit NO synthesis by mouse macrophages, their lysates and partially purified macrophage iNOS,195 confirming that iNOS activity depends on an NADPH-utilizing flavoprotein. Proteolytic inhibitors, such as chloromethylketone derivatives, which covalently bind to the active site of serine proteases, can decrease cytotoxicity and nitrite production by both mouse and rat macrophages.196,197 They have been shown to be effective after induction of the enzyme.196 As these agents reduce glutathione levels in mononuclear cells,198 the inhibition might be due to depletion of intracellular thiol pools and hence glutathione, one of the co-factors of the iNOS.

Inhibitors of iNOS Induction

Glucocorticoids: Corticosteroids are potent suppressors of iNOS induction in macrophages,184,199,200 (Fig. 3) without influencing the induction of the 1-arginine transporter \(y^+ \).184 None of the different glucocorticoids used has any effect once the enzyme has been expressed.185,199 The underlying mechanism is receptor-mediated, since addition of equimolar concentrations of a partial agonist or a full agonist of the glucocorticoid receptor partially reversed the action of these glucocorticoids.199,201 At present it is unclear whether transcription of the iNOS gene itself, a transcription factor or a protein which degrades iNOS mRNA is controlled by a glucocorticoid receptor response element. Dexamethasone also blocked IFNγ-induced down-regulation of the mannose receptor expression on macrophages, at least partially, by inhibition of the IFNγ-mediated induction of NO production.202

Miscellaneous inhibitors of iNOS induction: Co-incubation of murine peritoneal macrophages with mast cell granules during LPS activation dose-dependently inhibited macrophage-mediated tumour cell lysis, and this was associated with a decreased NO production.203 The inhibitory effect was not due to histamine or serotonin present in the mast cell granules. Cloricromene, a coumarin derivative, which has been found to increase the survival of rats injected with lethal doses of LPS, inhibited the induction but not the activity of the enzyme.204 Therefore, these agents may have anti-inflammatory/immunosuppressive effects. Pharmacological agents inhibiting iNOS induction in activated macrophages also include the bisbenzylisoquinoline alkaloids, anti-inflammatory constituents of plants of the families Menispermaceae and Ranunculaceae, which have been used as folk remedies in Japan and China.205 All-trans-retinoic acid, a retinoid with growth-inhibiting and differentiation-inducing properties, inhibited TNF and NO production in peritoneal macrophages.206

High concentrations of some dihydropyridine Ca2+ channel antagonists, such as nifedipine, as well as a Ca2+ channel agonist inhibited the induction of iNOS in phagocytic cells.207,208 It is unlikely that the effect of nifedipine was dependent on Ca2+ channel antagonism, as two other Ca2+ antagonists (verapamil and diltiazem) and reduction of extracellular Ca2+ with EGTA exerted only a marginal inhibitory effect.207,208

Inhibitors of iNOS activity

Substrate analogues: After the discovery of the inhibition of NO formation by \(N^\gamma \)-monomethyl-L-arginine (L-NMMA),12,209 other \(L \)-arginine analogues, i.e., \(L \)-\(N^\gamma \)-nitroarginine (L-NNA), its methyl ester (L-NAME) and \(N \)-iminoethyl-L-ornithine (L-NIO),203
have been shown to inhibit NOS by competition with L-arginine (reviewed by Moncada et al. and Nathan). Previous studies have established that iNOS and cNOS may vary in their susceptibility to inhibitory L-arginine analogues. The structure of the Nω substituent appears to determine isoform selectivity. L-NNA appeared to be about 300 times less potent as an inhibitor of mouse macrophage iNOS when compared with bovine brain cNOS, whereas L-NMMA is more potent than L-NNA as inhibitor of macrophage iNOS. The irreversible inactivation of iNOS by L-NMMA requires NADPH-dependent hydroxylation. Conversely, L-NNA was significantly more potent than L-NMMA as inhibitor of cNOS in vascular endothelial cells. This could be due to the significant metabolism of L-NMMA, but not L-NNA, to L-citrulline in the endothelial cell. L-citrulline is subsequently transformed to L-arginine. This indicates that L-NMMA may serve as a supply of substrate, as well as an inhibitor of NOS under in vitro conditions. L-NIO is a potent irreversible inhibitor of both isoforms.

These L-arginine analogues are taken up by macrophages. This is mediated by both the cationic y+ transporter (L-NMMA, L-NIO) and a neutral amino acid transporter (L-NNA, L-NAME). L-Arginine transport by system y+ is reduced by L-NMMA and L-NIO, but not affected by L-NNA and L-NAME. A neutral amino acid transporter (Fig. 2), with low substrate specificity and insensitive to LPS, mediated the uptake of L-citrulline, L-NNA and L-NAME. Hence, these arginine analogues appear to be not specific for NOS, and may interfere with transport or other aspects of L-arginine metabolism.

The effects of guanidines and ureamic compounds, endogenous NOS inhibitors which may accumulate in renal failure, have been tested on NO production in macrophages. Aminoacuamide, a bifunctional molecule containing the guanido group of L-arginine linked to hydrazine, inhibits iNOS in pancreatic B cells, macrophages, and endothelium-denuded blood vessels of LPS-treated rats and has little effect on cNOS. N,Nω-diaminoguanidine, though being less potent than aminoacuamide as inhibitor of iNOS, appeared to be more selective without effect on cNOS. 1,1-Dimethylguanidine inhibited both iNOS and cNOS, with a potency comparable with L-NMMA. From these data it would appear to be feasible to develop iNOS specific inhibitors, which would be of great help as pharmacological tools for the elucidation of the role of iNOS in pathological conditions.

Inhibition via cofactors: Flavoprotein binders, calmodulin binders, haem binders and depletors of tetrahydrobiopterin all have inhibitory activities. Catalase inhibits the activity but not the induction of the enzyme in macrophages stimulated with IFN\textgamma. The inhibition by catalase is reversed in a dose-dependent manner by the addition of the cofactor tetrahydrobiopterin. These results suggest that hydrogen peroxide, which is broken down by the catalase enzyme, may interfere with NO production by affecting the levels of cofactor needed for its synthesis.

Miscellaneous inhibitors of iNOS: Some naturally occurring inhibitors include a 5000 MW protein recovered from saliva of the Lyme disease vector *Borrelia dammattii* and phosphatidyl serine released by mammary tumour cells. Taurine chloramine, a naturally occurring derivative of taurine, one of the most abundant intracellular free amino acids present in mammalian tissues, inhibits NO secretion and iNOS activity in activated macrophages. This suggests a mechanism through which taurine supplementation may protect against oxidant-induced tissue damage as taurine chloramine is formed by chlorination of taurine by the halide-dependent myeloperoxidase system. Other inhibitors include 3- and 4-amino-1,2,4-triazole, inhibitors of catalase and peroxidases, indazoles, spermine and certain antifungal imidazoles.

NO as a regulator of macrophage function: NO may curtail macrophage energy metabolism and viability (*vide supra*), but information on the role of NO as modulator of cytokine production in effector cells is relatively scant. A donor of exogenous NO has been shown to elevate cyclic GMP levels in human macrophages. Correlations between nitrite release and biosynthesis of cytokines by peritoneal macrophages were absent. Physiological levels of NO, as produced by activated mouse macrophages, can selectively down-regulate IL-3 production by spleen cells from contact-sensitized mice, while leaving IL-2 activity unaffected. NO produced endogenously by rat Kupffer cells inhibits the synthesis of IL-6 by these cells in an autocrine way.

NO also inhibits macrophage expression of the major histocompatibility complex class II antigen Ia, which may prevent excessive NO production by inhibiting secretion of IFN\textgamma by T-cells after inhibition of antigen presentation. The ability of anti-Ia antibodies, which may mimic the effect of T-cells, to induce NO production in macrophages suggests that MHC class II molecules act as transmembrane signal transducers finally leading to induction of NOS.

Exposure of primed macrophages to NO-generating compounds results in inhibition of both the consumption of tryptophan and formation of its metabolite kynurenine in the culture medium by inhibiting the haem-containing enzyme indoleamine-2,3-dioxygenase, the other inducible and amino acid dependent effector pathway with antimicrobial and...
antitumour activities in macrophages. Thus NO may have an important role as an immuno-modulatory as well as effector and autocrine molecule in the immune system.

Is NO formed by human macrophages?

Reactive nitrogen intermediates are important host defence activities of mouse and rat macrophages, but conclusive proof for NO formation from L-arginine by human macrophages is lacking. Indeed, human monocytes and macrophages acquire cytostatic and anti-microbial activity independent of NO and fail to produce nitrite after stimulation with different cytokines. These results suggest that the L-arginine dependent generation of reactive nitrogen intermediates is a species-restricted macrophage mechanism unlikely to participate in the intracellular antimicrobial activity of IFNγ-stimulated human mononuclear phagocytes. Tetrahydrobiopterin biosynthesis is induced in human macrophages and deficiency of tetrahydrobiopterin, a cofactor for NOS activity, cannot explain the inability of human macrophages to generate NO. Even exogenous administration of tetrahydrobiopterin failed to elicit NO biosynthesis in human macrophages. Still, two questions remain to be resolved. First, it is unclear whether the Griess reaction, often employed to detect NO production by macrophages, is sufficiently sensitive. Secondly, it is unclear whether the cytokine profiles used so far to stimulate human macrophages are incomplete and/or distinct from the rodent systems.

Indeed, several lines of indirect evidence suggest the existence of iNOS in human cells. Elevated nitrate levels are found in the plasma and urine of individuals treated with the cytokine IL-2, and in patients suffering from infections or sepsis, conditions known to induce IFNγ, TNFα and IL-1 in vitro. CA++-independent NOS activity and iNOS mRNA expression have recently been demonstrated in human primary hepatocytes following treatment with LPS and three cytokines, a megakaryocyte cell line and a human colonic epithelial cell line.

Moreover, a number of in vitro studies have provided circumstantial evidence for NO generation by human mononuclear cells. Human mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. TNFα and GM-CSF stimulate human monocytes to restrict growth of Mycobacterium avium after incubation for several days, dependent on the generation of nitrite. A virulent strain of Mycobacterium avium has been shown to induce NO formation in human monocyte-derived macrophages. Human monocytes are stimulated to release NO upon in vitro co-incubation with some tumour cells. Human alveolar macrophages are positive for iNOS in areas of acute and chronic inflammation, as shown by immunohistochemistry of human lung specimens with an antibody directed against cloned murine macrophage iNOS. Human mononuclear cells stimulated with glycoprotein 120 of the envelope of human immunodeficiency virus produced small amounts of nitrite. Small quantities of nitrite and citrulline were also generated after incubation of human alveolar macrophages with Pneumocystis carinii. Recently, Reiling et al. have isolated an iNOS-specific amplification product from human monocytes stimulated with LPS/IFNγ prior to mRNA extraction, as detected by reverse transcriptase polymerase chain reaction. Moreover, analysis of human genomic DNA revealed a specific human iNOS gene. Finally, IFNγ and TNFα were involved in the activation of the trypaocidal activity of human monocytes through an NO dependent mechanism.

The combined data thus suggest that iNOS activity can be induced to some extent in human macrophages. However, in contrast to the indoleamine-2,3-dioxygenase effector pathway, the expression of iNOS in human macrophages requires rather specific conditions and limited quantities of NO appear to be generated via the L-arginine dependent effector pathway.

Conclusion

In the past few years it has become clear that NO, formed from L-arginine by inducible forms of NOS, acts as effector molecule in the cytotoxic and cytostatic activities of rodent macrophages. Since iNOS is normally not constitutively expressed in resting macrophages, transcription and translation of the iNOS gene constitutes the first regulatory level of this pathway. Appropriate stimuli, i.e., microbial constituents and some cytokines, trigger iNOS transcription. Fine tuning of the induction process appears to be complex, and priming, suppression or stimulation of the induction may occur, depending on the cocktail of cytokines present in the macrophage environment. Glucocorticoids inhibit NO release at this level; they repress transcription and/or translation of the iNOS gene. Several mechanisms govern the activity of iNOS once it has become expressed. Auto-inactivation by NO appears to curtail the life-span of active iNOS enzyme. Availability of the substrate L-arginine is another important mechanism of post-translational regulation. Expression of the y' carrier, which transports basic amino acids across the cytoplasmic membrane, can be up-regulated by the same set of stimuli that induce iNOS transcription. Up-regulation of argininosuccinate synthetase activity, the rate limiting step in the pathway that recycles L-citrulline to L-arginine, is another mechanism to provide INOS with substrate. Conversely, the same set of stimuli may cause up-regulation of arginase expression and ex-
cretion, and remove l-arginine from extracellular and intracellular sources, thereby competing with the y' carrier and iNOS for the available substrate. It is still unclear to what extent NO influences the biosynthesis of cytokines, prostanooids and other macrophage products, as several reports contradict each other. However, there is little doubt that excessive NO formation will eventually kill the macrophage itself.

Despite intense, often unpublished research, demonstration of the expression of iNOS activity in human macrophages remains troublesome. Inadequate analytical procedures and/or stimuli could form an explanation. Moreover, the role of NO in inflammatory reactions, and its interactions with prostanooids are still controversial. Important progress is, however, to be expected in these fields, once specific pharmacological tools, i.e., substrate analogues with selectively for the inducible isoforms of NOS, or mice in which the iNOS has been knocked out, become available.

References

1. Hibbs JB Jr, Taitton RR, Ravin Z, Granger DL, Draper JC, Amber JL, Lancaster JR. Synthesis of a neuronal guanosine nitrogen oxide of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S, Higgs EA, eds. Nitric Oxide from L-Arginine: A Bioregulatory System. Amsterdam, New York, Oxford: Excerpta Medica, Elsevier Science Publishers, 1994: 199-223.

2. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43: 109-142.

3. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 3051-3064.

4. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor: from pulmonary artery and vein possesses pharmacological and chemical properties identical to those of nitric oxide radical. Circ Res 1987; 61: 866-879.

5. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 1989; 335: 646-650.

6. Shibuya H, Tuzcu EM, Varela J, Ratchlin EM. Nitric oxide: a cytoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157: 87-94.

7. Stuehr DJ, Gross SS, Sakuma I, Levi R, Nathan CF. Activated murine macrophages secrete a bioactive arginine with the biochemical characteristics of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med 1989; 169: 1011-1020.

8. Stuehr DJ, Marletta MA. Induction of nitric/nitrogenate synthesis in murine macrophages by BCG infection, lymphokines, or interferon. J Immunol 1987; 139: 518-525.

9. Marletta MA, Yoon PS, Jeyarajah E, Leaf CD, Wishnok JS. Macrophage oxidation of l-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988; 27: 8706-8711.

10. Tatem MA, Marletta MA. Macrophage oxidation of dL-arginine to nitrite, nitrate, and nitric oxide. J Biol Chem 1989; 264: 19564-19569.

11. Stuehr DJ, Kwoon NS, Gross SS, Thiel BA, Levi R, Nathan CF. Synthesis of nitrogen oxides from l-arginine by macrophage cytosol requires inducible and constitutive components. Biochem Biophys Res Commun 1989; 154: 428-426.

12. Leone AM, Palmer BMJ, Knowles RG, Francis PI, Ashton DS, Moncada S. Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem 1991; 266: 23790-23795.

13. Stuehr DJ, Kwoon NS, Nathan CF, PAI and GSHP participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun 1990; 166: 565-565.

14. Haaschild S, Luckschl A, Millich A, Kohler J, Bessler W, Busse D. Induction and activity of NO synthases in bone marrow-derived macrophages are independent of Ca++. Biochem Biophys Res Commun 1990; 270: 351-356.

15. Jeyarajah E, Stuehr DJ, Marletta MA. Macrophage synthesis of nitrite, nitrate, and N-nitrosoamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 1987; 84: 5369-5374.

16. Xie QQ, Cho HJ, Calmayar J, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256: 225-228.

17. Breck BS, Dower PM, Grae CF, Lovenstein C, Reed RS, Snyder SH. Cloned and expressed nitric oxide synthase structureally resembles cytochrome P-450 reductase. Nature 1991; 351: 714-718.

18. Heveel JM, White KA, Marletta MA. Purification of the inducible murine macrophage nitric oxide synthase—identification as a flavoprotein. J Biol Chem 1991; 266: 22789-22791.
P. G. Jorens, K. E. Matthys and H. Bult

86 Mediators of Inflammation. Vol 4. 1995

60: Jorens PG, Rosseneu M, Devreese A-M, Bult H, Marescau B, Herman AG.

53: Hughes SR, Williams TJ, Brain SD. Evidence that endogenous nitric oxide modulates osteonecrosis formation induced by substance P. Biochem Pharmacol 1993; 46: 719-725.

56: Jessup W, Dean RT. Autoinhibition of murine macrophage-mediated oxidation of low-density lipoprotein by nitric oxide synthesis. Atherosclerosis 1993; 101: 145-155.

57: Yates MT, Lambert LT, Whitton JP, et al. A protective role for nitric oxide in the oxidative modification of low-density lipoproteins by mouse macrophages. Eur J Pharmacol 1992; 229: 159-158.

58: Hogg N, Kalayanaratana B, Joseph S, Zuckr A, Farhatshany S. Induction of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. Arch Biochem Biophys 1993; 304: 170-174.

59: Jorens PG, Van Hove CE, Jorens PG, et al. Oxidized low-density lipoprotein affects proliferation, production and nitric oxide synthase activity in macrophages. Br J Pharmacol 1994; (in press). [Abstract]

60: Jorens PG, Rosseneu M, Devreeze M, Bult H, Marescau B, Herman AG. Diminished capacity to release nitric oxide in macrophages loaded with oxidized low-density lipoproteins. Eur J Pharmacol 1992; 212: 113-115.

61: Yang X, Cai B, Sciacca RR, Cannon PJ. Inhibition of inducible nitric oxide synthase in macrophages by lipopolysaccharide. Biochem Pharmacol 1992; 44: 387-390.

62: Jorens PG, Rosseneu M, Devreeze M, Bult H, Marescau B, Herman AG. Increased production of nitric oxide in macrophages activated by IFN-gamma and LPS. Biochem Biophys Res Commun 1991; 179: 296-301.

63: Marescau B, Matthys KE, Jorens PG, Rosseneu M, Bult H, Herman AG. Oxidized lipoprotein apheresis and increased nitric oxide synthase activity in macrophages. Biochem Pharmacol 1991; 43: 2401-2406.

64: Bolton EJ, Jorens W, Stanley KK, Dean RT. Enhanced LDL oxidation by murine macrophages. J Biol Chem 1991; 266: 151: 7196-7205.

65: Severson A, Wakelam MJ, Liew FY. The role of protein kinase C in the induction of nitric oxide synthase by murine macrophages. Biochem Biophys Res Commun 1993; 119: 125-129.

66: Szebeni J, Nakajima I. Allophycocyanin-dependent nitric oxide from murine macrophages by direct stimulation of tumor cells. Biochem Biophys Res Commun 1993; 205: 461-466.

67: Trinchieri G, Murphy WJ, Lowenstein CJ, Snyder SH, Russell RW. Expression of the nitric oxide synthase gene in macrophages activated for tumor cell killing. J Biol Chem 1993; 268: 1908-1913.
Nitrergic signals and macrophages

107. Green SJ, Chen T-Y, Crawford RM, Nacy CA, Morrison DC, Meltzer MS. Cytotoxic activity and production of toxic nitrogen oxides by macrophages treated with IFN-γ and monoclonal antibodies against the 75-kDa lipopolysaccharide receptor. J Immunol 1993; 150: 2610-2617.

108. Anibert F, Hébé E, Parker DJ, Johnson BL, Taitzer RR, Vavrin Z. Activated macrophage conditioned medium: identification of the soluble factors inducing cytotoxicity and the l-arginine dependent effectors mechanism. J Leukoc Biol 1991; 50: 639-645.

109. Bogdan C, Vodicov Z, Park J, Xie Q-W, Nacy C. Traces of bacterial lipopolysaccharide suppress IFN-γ-induced nitric oxide synthase gene expression in primary mouse macrophages. J Immunol 1993; 151: 301-309.

110. Severin A, Xu D, Doyle J, et al. Pro-expressors of nitric oxide of macrophages to lipopolysaccharide inhibits the induction of nitric oxide synthase and reduces leukemoid activity. Eur J Immunol 1995; 25: 1711-1714.

111. Cunha FQ, Assreuy J, Moncada S, Liew F-Y. Phagocytosis and induction of nitric oxide synthase by interferon-γ and tumor necrosis factor-α. Eur J Immunol 1991; 21: 2555-2558.

112. García MC, Sánchez A, Liew F-Y. Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology 1993; 79: 409-411.

113. Kremling PG, Nielsler A, Selter S, et al. Malaria antigen and cytokine-induced production of reactive nitrogen intermediates by bone marrow-derived macrophages: no relevant role in the development of experimentally cerebral malaria. Immunology 1995; 88: 286-290.

114. Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA. Leishmania major amastigotes induce l-arginine-dependent killing mechanism in IFN-γ-stimulated murine peritoneal macrophages. J Immunol 1993; 151: 1746-1754.

115. Liew FY, Li Y, Millott S. Tumour necrosis factor (TNF-alpha) in Leishmania. II. TNF-alpha-induced macrophage leucidal activity is mediated by nitric oxide from l-arginine. Immunology 1999; 97: 556-559.

116. Liew FY, Li Y, Michelot S. Tumor necrosis factor alpha synergizes with IFN-γ in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 1993; 150: 406-410.

117. Moncada S, Fernandez MA, Fresno M, et al. Synergistic tumor necrosis factor alpha and IFN-γ activity on macrophage killing of infective L. tropica amastigotes in vitro. J Leukoc Biol 1992; 51: 206-209.

118. Jones PG, Van Overdijk PJ, Bull H, Vermeiren PA, Herman AG. Mesenteric lymph node and peritoneum macrophages induce nitric oxide production by Listeria monocytogenes. Agents Actions 1995; 40: 100-105.

119. Ziegler A, Bubendorf Y, Moos R, et al. Peritoneal macrophages treated with IFN-γ produce nitric oxide and-inhibit intracellular Trypanosoma cruzi through nitric oxide-dependent mechanism. Eur J Immunol 1992; 22: 1034-1038.

120. Nelson BJ, Ralph P, Green SJ, Nacy CA. Differential susceptibility of activated macrophage cytokine effectors reactions to the suppressive effects of stimulating growth factor β1. J Immunol 1991; 146: 1849-1857.

121. Fuessemann U, Schmidt BHEW, Kollibus KL, Mundt F. Induced RAW 264.7 macrophages express soluble and particulate nitric oxide synthase: inhibition by growth factors. Eur J Pharmac 1992; 225: 161-165.

122. Gilbert BS, Frensch MR. Transforming growth factor β1 differentially modulates the inducible nitric oxide synthase gene expression in different cell types. Biochim Biophys Acta 1993; 1195: 300-306.

123. Vodicov Z, Bogdan C, Park J, Xie Q-W, Nacy C. Interleukin-10 and transforming growth factor β1 inhibit macrophage nitric oxide synthase activity. J Immunol 1992; 149: 2137-2146.

124. Cenci E, Romani L, Mencacci A, et al. Interleukin 4 and IL-10 inhibit nitric oxide synthase in murine macrophages. J Immunol 1993; 151: 2451-2457.

125. Zhang X, Allevi SW, Russell SW, Morrison DC. Necessity and sufficiency of beta interferon for nitric oxide production in mouse peritoneal macrophages. J Immunol 1991; 146: 1849-1857.

126. Sodhi A, Suresh A. Production of reactive nitrogen intermediates by bone marrow-derived macrophages: identification of the soluble factors inducing cytotoxicity and the l-arginine dependent effector mechanisms. J Leukoc Biol 1991; 50: 639-645.

127. Zhang X, Allevi SW, Russell SW, Morrison DC. Necessity and sufficiency of beta interferon for nitric oxide production in mouse peritoneal macrophages. J Immunol 1991; 146: 1849-1857.
P. G. Jorens, E. M. Matthews and H. Bull

158. Mantle CP, Peretz PY, Salkowicz CA, Vogel SN. T-cell provides a second signal for macrophage tumour necrosis activity. J Immunol 1994; 152: 825-831.

159. Marcin N, Papapetropoulos A, Jilling T, Caravas JD. Prevention of nitric oxide synthase induction in vascular smooth muscle cells by micromolar adsorption of the NO donor S-nitrosothiols. Br J Pharmacol 1995; 116: 605-606.

160. Sabo C, Wu CC, Mitchell JA, Gross SS, Thiemermann C, Vane JR. Platelet-derived nitric oxide synthase is regulated by n-3 polyunsaturated fatty acids. J Biol Chem 1994; 269: 24999-25006.

161. Renier G, Skamene E, De Sanctis J, Radzioch D. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities. Arterioscler Thromb 1993; 13: 1515-1524.

162. Graedel DC, Vaccarino F, Ziegler MM. Dietary oil enhances macrophage production of nitric oxide. J Surg Res 1994; 57: 65-68.

163. Imam S, Koli B, Burkel V. Nitric oxide production from macrophages is regulated by arachidonic acid metabolites. Biochem Biophys Res Commun 1993; 197: 505-509.

164. Royo-Arana N, Toma M, Nakamura S. Inhibition of macrophage nitric oxide synthase activity by arachidonate-cascade inhibitors. Cancer Immunol Immunother 1995; 40: 98-102.

165. Gaillatt T, Malsch A, Busse R, Klein H, Deckert R. Regulation of nitric oxide production by stimulated rat Kupffer cells. Pathology 1991; 59: 280-283.

166. Keole M, Kawahata T, Nakayama I, Tisuda T, Yokomizu M. Cyclic AMP-elevating substances inhibit an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. J Biol Chem 1995; 268: 24999-25006.

167. Imam S, Hizuta Y, Kanno K, Marumo F.Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Biol Chem 1994; 269: 93: 543-549.

168. Mauve P, Sueblin L, Di Rosa M. Modulation of the induction of nitric oxide synthase by isocitrate in the murine macrophage cell line J774. Br J Pharmacol 1995; 113: 540-544.

169. Raddassi K, Petit J-F, Lemaire G. LPS-induced activation of primed murine peritoneal macrophages is modulated by prostaglandins and cyclic nucleotides. Cell Immunol 1995; 149: 50-64.

170. Buchheit-Krausler Y, Cornélia SB, Mauel J. Differential effects of prostaglandins on macrophage activation induced by calcium ionophore A23187 or LPS. J Immunol 1992; 149: 1171-1175.

171. Bukh V, Liew FY, Nyberg P. Nitric oxide production by macrophages is inhibited by prolonged elevation of cyclic AMP. Biochem Biophys Res Commun 1993; 195: 1134-1138.

172. Flemström DL, Galia E, Reis D. Norepinephrine suppresses inducible nitric oxide synthase in rat atrial cultures. J Neurochem 1993; 60: 1945-1948.

173. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide synthetase activity is increased in macrophages induced with tumor necrosis factor-alpha. FASEBJ 1991; 5: 987-998.

174. Galliard T, Mlsch A, Busse R, Klein H, Decker K. Regulation of nitric oxide synthase activity by inflammatory compounds in the murinemacrophage cell line J774. Br J Pharmacol 1993; 11()(): 640-641.

175. Jorens PG, Van Overveld FJ, Bult H, Vermeire PA, Herman AG. Anti-inflammatory agents induce inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 1991; 182: 1257-1261.

176. Baydoun AR, Bogle RG. Selective inhibition by all-trans-retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages. J Biol Chem 1994; 269: 640-644.

177. Zingarelli B, Carnuccio R, DiRosa M. Clorocromene inhibits the induction of nitric oxide synthase by monocytes. Hybridoma 1993; 12: 763-770.

178. Baydoun AR, Mann GE. Selective targeting of nitric oxide synthase inhibitors to endothelial cells. J Pharmacol Exp Ther 1993; 265: 674-680.

179. Mehta K, McQueen T, Tucker S, Pandit R, Aggarwal BB. Inhibition by all-trans-retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages. J Biol Chem 1993; 268: 4342-4348.

180. Sabo C, Thiemermann C, Vane JR. Dihydropyridine antagonists and agonists of omega-3 fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities. Arterioscler Thromb 1993; 1: 1515-1524.

181. Macroside S, Palmer BM. Inhibition of the induction of nitric oxide synthase by glucocorticoids: yet another explanation for their anti-inflammatory effects. Trends Pharmacol Sci 1991; 12: 130-133.

182. Jorens PG, Van Overveld FJ, Bult H, Vermeire PA, Herman AG. Corticosteroids prevent the induction of nitric oxide synthase activity in different pulmonary cells. In: De Deen PD, Marescau B, Stuln Y, Quershi IA, eds. Guanidino Compounds in Biology and Medicine. London. John Libby & Company, 1992. 97-100.

183. Jacques RA, Cowan RH, Beloosman K, Vick S. Dexamethasone blocks the interferon-gamma-mediated downregulation of the macrophage mannose receptor. Proc Natl Acad Sci USA 1992; 89: 1740-1744.

184. Jorens PG, Van Overveld FJ, Bult H, Vermeire PA, Herman AG. Serine-protease inhibitors modulate nitric oxide synthase activity of alveolar macrophages. Agents Actions 1992; 36: 243-247.

185. Sibille Y, Merrill WW, Cooper JA Jr, Polonius L, Goe JKG. Effects of a series of chloromethylenone protease inhibitors on superoxide release and the glutathione system in human polymorphonuclear leukocytes and alveolar macrophages. Am Rev Respir Dis 1992; 146: 110-114.

186. Di Rosa M, Badosani M, Careccoro M, Soccia M. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun 1990; 172: 1246-1250.

187. Kwon NS, Nathan CF, Stuehr DJ. Reduced biopterin cofactor in the generation of nitric oxide. J Immunol 1996; 157: 19654-19658.

188. Baydoun AR, Bogle RG. Selective targeting of nitric oxide synthase inhibitors to endothelial cells. J Pharmacol Exp Ther 1993; 265: 674-680.

189. McQueen T, Tucker S, Pandit R, Aggarwal BB. Inhibition by all-trans-retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages. J Biol Chem 1993; 268: 4342-4348.

190. Sabo C, Thiemermann C, Vane JR. Dihydropyridine antagonists and agonists of omega-3 fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities. Arterioscler Thromb 1993; 1: 1515-1524.

191. Feldman PG, Griffis OW, Hong JS, Staube DJ. Irreversible inactivation of nitric oxide synthase by t-Na-nitroarginine. Biochemistry 1993; 32: 8512-8517.

192. Baydoun AR, Mann GE. Selective targeting of nitric oxide synthase inhibitors to endothelial cells. Biochem Biophys Res Commun 1994; 200: 726-732.
Nitric oxide and macrophages

219. Bogle RG, Moncada S, Pearson JD, Mann GE. Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial l-arginine transporter. Br J Pharmacol 1992; 105: 766-770.

220. Vallance P, Leone A, Calver A, Giller J, Moncada S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthase. J Cardiovasc Pharmacol 1992; 20: Suppl 12: S60-S62.

221. Hasnan K, Hessen BJ, Cobbert JA, et al. Inhibition of nitric oxide formation by generalists. Br J Pharmacol 1993; 109: 119-125.

222. Misko TP, Moore WM, Kasten TP, et al. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. J Pharmacol 1993; 239: 1139-1146.

223. MacAllister RJ, Whiteley GS, Vallance P. Effects of guanidines and uremic compounds on nitric oxide pathways. Kidney Int 1994; 45: 737-742.

224. Griffiths MJD, Messent M, MacAllister RJ, Evans TW. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol 1995; 110: 965-968.

225. Li Y, Seven A, Rogers MVG, Palme RMJ, Moncada S, Liew S, Liew FY. Catalase inhibits nitric oxide synthase and the killing of intracellular Leishmania major in murine macrophages. Eur J Immunol 1992; 22: 441-446.

226. Urioste S, Hall LR, Telford SR, Titus RG. Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism. J Exp Med 1994; 180: 1077-1085.

227. Calderon G, Huang ZH, Gage OA, Sotomayor EM, Lopez DM. Isolation of a nitric oxide inhibitor from mammalian tunicate and its characterization as phosphatidyl serine. J Exp Med 1994; 180: 945-958.

228. Park E, Quinn MR, Wright CE, Schuller-Levis G. Taurinechloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol 1995; 58: 119-124.

229. Buchtmiller-Rouiller Y, Schneider P, Betz-Corradin S, Smith J, Mauel J. S-Amino-1,2,4-triazole inhibits macrophage NO synthase. Biochem Biophys Res Commun 1993; 183: 150-155.

230. Wolff DJ, Gribbin BJ. The inhibition of the constitutive and inducible nitric oxide synthase isoforms by indolacine agents. Arch Biochem Biophys 1994; 311: 172-179.

231. Szabo C, Southan CJ, Wood E, Thiemermann C, Vane JR. Inhibition by spermine of the induction of nitric oxide synthase in J774.2 macrophages: requirement of spermine binding to PKC and NO synthase. J Biol Chem 1994; 269: 155-156.

232. Bogle RG, Whiteley GS, Sook SC, Johnstone AP, Vallance P. Effect of anti-fungal imidazoles on mRNA levels and enzyme activity of inducible nitric oxide synthase. Br J Pharmacol 1994; 112: 1257-1261.

233. Heshiki AP, Adolfs M, De Jonge HB. Aminoethoxydiprophenoxylate provoke opposite changes in cGMP and cAMP levels in human macrophages. Br J Pharmacol 1995; 179: 413-417.

234. Tacke F, Richter I, Messerotti MR, Rosenberg J, Lopez-Diezarensen G. Inhibition of the pattern of cytokine release from autoregulation by nitric oxide. J Leukoc Biol 1991; 50: 509-516.

235. Thomas SR, Make D, Skober R. Nitric oxide inhibits leukotriene B_4 synthesis by human monocytes/macrophages. J Immunol 1995; 154: 166-169.

236. Stadler J, Herbrecht BD, Gi Silvio M, et al. Functional and differential regulation of cytokine costimulation by LPS, INF-gamma, TGF-beta and IL10 in murine macrophage cell lines and rat peritoneal macrophages. Biochem Biophys Res Commun 1994; 206: 126-131.

237. Taylor MW, Feng G. Relationship between interferon-gamma, indolamine 2,3-dioxygenase, and tryptophan catabolism. PAS 1991; 5: 2510-2522.

238. Padgett RE, Prouet SB. Evaluation of nitrite production by human monocytic-derived macrophages. Biochem Biophys Res Commun 1992; 186: 775-781.

239. Keller R, Kiesel R, Joller P, Graeber P. Monocytic type nitric oxide synthase from human monocytes/macrophages. J Immunol 1993; 300: 1220-1224.

240. Hille Jr JB, Wesenfelder C, Titus RG, et al. Evidence for cytokine-inducible nitric oxide synthase from patients receiving interferon-alpha therapy. J Clin Invest 1993; 92: 867-877.

241. Ochsen U, Ueda K, Ollier TR, et al. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 1994; 219: 621-626.

242. Nusser AK, Di Silvio M, Bittar HL, et al. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med 1992; 176: 261-266.

243. Leichtbuch R, Radomski MW, Martin JF, Moncada S. Constitutive and inducible nitric oxide synthases in human megakaryocytic cells. J Pharmacol Exp Ther 1992; 262: 1220-1224.

244. Miiller-Ruiller Y, Schneider P, Betz-Corradin S, Smith J, Mauel J. S-Amino-1,2,4-triazole inhibits macrophage NO synthase. Biochem Biophys Res Commun 1993; 233: 119-125.

245. Kolios G, Robson R, Brown Z, Robertson D, Westwick J. Modulation of the inducible nitric oxide synthase (NOS) in the human colonic epithelial cell line HT-29. Br J Pharmacol 1995; (in press). (Abstract)

246. Fuchs D, Murr C, Reibnegger G, et al. Nitric oxide synthase and antimicrobial activity in interferon-gamma-primed mononuclear phagocytes. J Leukoc Biol 1994; 55: 300-306.

247. Tibble DE, Luster R, Luster R, et al. Stimulation of the nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. J Leukoc Biol 1994; 165: 513-517.

248. Shibao S, Southan CJ, Wood E, Thiemermann C, Vane JR. Inhibition by spermine of the induction of nitric oxide synthase in J774.2 macrophages: requirement of spermine binding to PKC and NO synthase. J Biol Chem 1994; 269: 155-156.

249. Murphy VK, Weil DF. L-Arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human macrophages. J Infect Dis 1992; 165: 513-517.

250. Pett JP, Paton R, Lemaire G, Marzec I, Lopen M. During their differentiation into macrophages, human monocytes acquire cytostatic activity independent of NO and TNFalpha. J Immunol 1995; 144: 277-280.

251. Cameron ML, Granger DJ, Weinberg JB, Kono WM, Worek HS. Human alveolar and peritoneal macrophages mediate fungicidal independently of L-arginine oxidation to nitrite and nitrates. Am Rev Respir Dis 1990; 142: 1315-1319.

Received 30 January 1995; accepted 31 January 1995