Blunt head and neck trauma: Interesting chest tomographic “effect”

Preyas Vaidya1,2, Arvind Kate1,2, Deval Mehta1,2, Vikram Chavan3, Prashant N Chhajed1,2

1Lung Care and Sleep Centre, Fortis Hiranandani Hospital, Navi Mumbai, Maharashtra, 2Institute of Pulmonology Medical Research and Development [IPMRD], Mumbai, 3Department of Radiology, SRL Diagnostics, Fortis Hiranandani Hospital, Navi Mumbai, Maharashtra, India

A 20-year-old male was admitted in the critical care unit with alleged history of blunt trauma to head and neck that was caused by falling heavy object while working at a construction site. On presentation, he had extensive subcutaneous emphysema over neck and chest bilaterally. He was intubated and put on mechanical ventilator in view of poor respiratory efforts and drowsiness. Chest radiograph showed extensive subcutaneous emphysema. Computed tomography (CT) of chest showed interesting “radiological effect” for which one bedside procedure was performed. The patient was treated with intercostal tube drainage along with other supportive care and eventually he had prolonged intensive care stay.

QUESTIONS

1. What are the CT thorax findings?
2. What interesting “special radiological effect” was noticed by the radiologist?
3. Which procedure was performed and what are the expected findings?
ANSWERS

Answer 1: CT of chest [Figures 1 and 2] showed extensive subcutaneous emphysema with pneumomediastinum and left-sided pneumothorax.

Answer 2: The radiologist noticed and gave special mention of air along the endobronchial tree, the WW effect [Figure 1], and suspected endobronchial tear.

Answer 3: Flexible bronchoscopy was done to identify any tracheobronchial injury as a cause of Macklin effect seen on the CT scan of thorax. It showed tracheal injury on posterior wall about 5 cm above the carina [Figure 3].

DISCUSSION

Tracheobronchial injuries although rarely observed following a blunt chest trauma, are associated with mortality ranging between 9% and 30%.[1-3] Traumatic injuries of the airway are suspected in the presence of subcutaneous cervical emphysema expanding with mechanical ventilation, pneumomediastinum, and recurrent pneumothorax due to persisting air leak. Motor vehicle accidents have been reported as the commonest cause of tracheobronchial injuries.[3] A theory for mechanism of tracheobronchial injuries is related to rapid deceleration, such as that experienced in motor vehicle accidents. The lungs are fixed at the carina, whereas they are more mobile within the pleural space. Rapid deceleration produces a shearing force, causing rupture of the trachea and bronchi.[4] This mechanism of injury seems the most logical in the current population of blunt trauma victims, the majority of whom are involved in motor vehicle accidents. Both deceleration and crush injuries occur at or near the carina and most commonly involve the right main bronchus. Injury to the right bronchus or trachea predicts a worse outcome when compared with left-sided injuries.[3]

The Macklin effect was first described by Macklin with an experiment in 1939.[5] It is a pathophysiologic process characterized by the blunt traumatic alveolar ruptures and air dissection along bronchovascular sheaths, with the formation of blunt pulmonary interstitial emphysema.[6] Its early diagnostic acknowledgment is important in the management of blunt chest trauma.[6]

Although conventional radiography still plays an important role in the initial emergency room setting, for follow-up in the intensive care unit, multidetector computed tomography has established itself as the standard imaging method for the evaluation of chest trauma patients.[7] The Macklin effect is present in 39% of severe blunt traumatic pneumomediastinum as detected by CT.[6] Its identification, as possible origin of pneumomediastinum, should not prevent the performance of bronchoscopy and esophagoscopy in order to detect a possible concomitant tracheobronchial or esophageal injury.[6] Identification of the Macklin effect is associated with significantly longer intensive care stay.[8]
has been reported that close clinical observation with suspect and rigorous bronchoscopic evaluation are necessary to confirm the diagnosis.[8]

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Huh J, Milliken JC, Chen JC. Management of tracheobronchial injuries following blunt and penetrating trauma. Am Surg 1997;63:896-9.
2. Kelly JP, Webb WR, Moulder PV, Everson C, Burch BH, Lindsey ES. Management of airway trauma. I. Tracheobronchial injuries. Ann Thorac Surg 1985;40:551-5.
3. Kiser AC, O’Brien SM, Deterbeck FC. Blunt tracheobronchial injuries: Treatment and outcomes. Ann Thorac Surg 2001;71:2039-65.
4. Kirsh MM, Orringer MB, Behrendt DM, Sloan H. Management of tracheobronchial disruption secondary to nonpenetrating trauma. Ann Thorac Surg 1976;22:93-101.
5. Macklin CC. Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum: Clinical implications. Arch Intern Med 1939;64:913-26.
6. Wintermark M, Schnyder P. The Macklin effect: A frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest 2001;120:543-7.
7. Peters S, Nicolas V, Heyer CM. Multidetector computed tomography-spectrum of blunt chest wall and lung injuries in polytraumatized patients. Clin Radiol 2010;65:333-8.
8. Hwang JJ, Kim YJ, Cho HM, Lee TY. Traumatic tracheobronchial injury: Delayed diagnosis and treatment outcome. Korean J Thorac Cardiovasc Surg 2013;46:197-201.