An efficient solver for designing optimal sampling schemes

Filip Elvander*, Johan Swärd, and Andreas Jakobsson†
*Dept. of Electrical Engineering (ESAT-STADIUS), KU Leuven, Belgium
†Centre for Mathematical Sciences, Lund University, Sweden

Abstract—In this short paper, we describe an efficient numerical solver for the optimal sampling problem considered in Designing Sampling Schemes for Multi-Dimensional Data \cite{1}. An implementation may be found on https://www.maths.lu.se/staff/andreas-jakobsson/publications/.

Index Terms—Optimal sampling, convex optimization.

I. PROBLEM STATEMENT

For a background to the optimal sampling problem, see \cite{1}. Consider the signal model

\[y(t) \sim p(\cdot; t, \theta) \]

where \(p \) is a probability density function parametrized by the sampling parameter \(t \in \mathbb{R}^n \) and the parameter vector \(\theta \in \mathbb{R}^P \). Here, \(\theta \) is the parameter of interest to be estimated. Assume that we get to choose to sample \(y \) at \(K \) out of \(N \) potential samples \(t_n, n = 1, \ldots, N \). We then want to solve

\[
\begin{align*}
\min_{w \in W, \mu \in \mathbb{R}^P} & \sum_{p=1}^P \psi_p \mu_p \\
\text{subject to} & \sum_{n=1}^N w_n F_n(\theta) e_p \mu_p \succeq 0 \quad \forall p = 1, \ldots, P,
\end{align*}
\]

(1)

where

\[W = \left\{ w \in \mathbb{R}^N \mid \sum_{n=1}^N w_n = K, w_n \in [0, 1] \right\} \]

is the set of allowed weights, indicating which \(K \) samples that are selected, \(\mu \) is a probability density function parametrized by the sampling parameter \(t \in \mathbb{R}^n \) and the parameter vector \(\theta \in \mathbb{R}^P \). Herein, we describe how to solve (1) efficiently by considering its dual problem1

II. DUAL PROBLEM

Consider the Lagrangian relaxation of (1) according to

\[
\mathcal{L} = \sum_p \psi_p \mu_p - \sum_{p=1}^P \left\langle G_p, \left[\sum_{n=1}^N w_n F_n(\theta) e_p \mu_p \right] \right\rangle,
\]

where \(G_p, p = 1, \ldots, P \), are dual variables, i.e., positive semi-definite matrices of dimension \(P \times P \). Let \(G_p \) be structured according to

\[G_p = \begin{bmatrix} \bar{G}_p & \gamma_p \\ \gamma_p^T & g_p \end{bmatrix}. \]

(2)

For notational convenience, let a dual point be denoted

\[\bar{G} = \{G_p\}_{p=1}^P \]

(3)

and define

\[\xi_n(\bar{G}) = \left\langle F_n(\theta), \sum_{p=1}^P \bar{G}_p \right\rangle \]

(4)

Then, for any \(w \),

\[
\inf_{\mu} \mathcal{L} = \begin{cases} -\sum_{n=1}^N w_n \xi_n(\bar{G}) - 2 \sum_{p=1}^P e_p^T \gamma_p, & \text{if } g_p = \psi_p, \\ -\infty, & \text{otherwise}. \end{cases}
\]

The infimum with respect to \(w \in W \) is given by setting the \(K \) entries corresponding to the \(K \) largest values of \(\xi_n(\bar{G}) \) equal to 1 and the rest to zero. Note that the minimizing \(w \) is not necessarily unique. Specifically, if the \(K+1 \)th largest value of \(\xi_n(\bar{G}) \) is strictly smaller than the \(K \)th largest, the minimizing \(w \) is unique. Otherwise, there are infinitely many solutions.

Algorithm 1 Sub-gradient ascent.

\[\text{Require: Initial guess } \bar{G} = \{G_p\}_{p=1}^P, \text{ step size } \alpha. \]

\[\text{while Not converged do} \]

\[\text{Find } w \in \arg \min_{w \in W} -\sum_{n=1}^N w_n \xi_n(\bar{G}). \]

\[\text{for } p=1:P \text{ do} \]

\[\mu_p \leftarrow e_p^T \left(\sum_{n=1}^N w_n F_n(\theta) \right)^{-1} e_p. \]

\[\text{end for} \]

\[\bar{G} \leftarrow \{g_p\}_{p=1}^P. \]

\[\text{end while} \]

\[\text{return } w \in \arg \min_{w \in W} -\sum_{n=1}^N w_n \xi_n(\bar{G}). \]

\[\]

1An implementation of the solution algorithm may be found on https://www.maths.lu.se/staff/andreas-jakobsson/publications/.

1
Thus, the dual problem is

\[
\text{maximize}_{G \geq 0} \quad \inf_{w \in W} \quad - \sum_{n=1}^{N} w_n \xi_n(G) - \sum_{p=1}^{P} e_p^T \gamma_p
\]

subject to \(g_p = w_p, \quad p = 1, \ldots, P \).

Letting \(E = e_p e_p^T \), we may express the constraint as

\[
\langle G_p, E \rangle = w_p, \quad p = 1, \ldots, P.
\]

Thus, defining the family of sets parametrized by \(\phi \),

\[
K_\phi = \{ U \mid \langle U, E \rangle = \phi, \ U \geq 0 \}
\]

and letting \(\chi_\phi = \{ G \mid G_p \in K_{\psi_p}, \ p = 1, \ldots, P \} \)

we may express the dual problem as

\[
\text{maximize}_{G \in \chi_\phi} \quad q(G)
\]

where the dual objective function is

\[
q(G) = \inf_{w \in W} \quad \sum_{n=1}^{N} w_n \xi_n(G) - \sum_{p=1}^{P} e_p^T \gamma_p.
\]

We utilize the ideas from Nedic and Ozdaglar [2] in order to maximize the dual problem [6] using sub-gradient ascent. The algorithm is summarized in Algorithm 1. A short derivation of the step is presented in the following sections.

A. Sub-gradient ascent

For a dual point \(\bar{G} \in \chi_\phi \), a sub-gradient of \(q \) in [6] at \(\bar{G} \), denoted \(\nabla q(\bar{G}) \), can be decomposed in components \(\nabla q_p(\bar{G}) \), where each component is given by

\[
\nabla q_p(\bar{G}) = - \left[\sum_{n=1}^{N} w_n F_n(\theta) e_p \right] e_p^T \mu_p
\]

where

\[
(w, \mu_p) = \arg \min_{w, \mu_p} \mathcal{L}(\mu, w, G).
\]

As noted earlier, one may retrieve a primal vector \(w \) from this set setting the entries of \(w \) corresponding to the \(K \) largest values of \(\{ \xi_n(G) \} \) to 1 and the rest to zero. Noting that any \(\mu_p \in \mathbb{R} \) is a member of the minimizing set, one may here choose

\[
\mu_p = e_p^T \left(\sum_{n=1}^{N} w_n F_n(\theta) \right)^{-1} e_p,
\]

i.e., the \(\mu_p \) minimizing the primal objective, while still retaining primal feasibility for this choice of \(w \). Then, a dual ascent method guaranteeing that the dual variable \(\bar{G} \) is feasible may be realized according to

\[
G_p \leftarrow \mathcal{P}_{K_{\psi_p}}(G_p + \alpha \nabla q_p(G))
\]

for \(p = 1, \ldots, P \), where \(\mathcal{P}_{K_{\phi}} \) denotes projection on \(K_\phi \), as defined in [5]. How to perform this projection is described in the next section.

B. Projection on PSD cone with constraint

Consider a set of \(G = \{ G_m \}_{m=1}^{M} \) of \(M \in \mathbb{N} \) symmetric matrices \(G_m \in \mathbb{R}^{P \times P} \). Let \(C \) be the set of \(P \times P \) positive semidefinite matrices. Here, we are interested in computing the projection on the set

\[
K_\phi = \{ U \mid \langle U, E \rangle = \phi, \ U \in C \}
\]

for \(\phi \in \mathbb{R}_+ \) and a symmetric matrix \(E \in C \).

Proposition 1. The projection on \(K_\phi \), denoted \(\mathcal{P}_{K_\phi} \), is given as

\[
\mathcal{P}_{K_\phi} : G \mapsto \mathcal{P}_C(G + \lambda E)
\]

where \(\mathcal{P}_C \) denotes projection on \(C \), and where \(\lambda \in \mathbb{R} \) is the unique root of the equation

\[
\langle \mathcal{P}_C(G + \lambda E), E \rangle = \phi.
\]

Proof. See appendix.

Remark 1. It may here be noted that projecting on \(C \) is simply performed by computing an eigenvalue decomposition and setting all negative eigenvalues to zero.

C. Computational complexity

It may be noted that finding \((w, \mu) \in \arg \min_{w, \mu} \mathcal{L}(\mu, w, G) \) is linear in \(N \) and quadratic in \(P \). Performing the gradient step is linear in \(P \), whereas the projection on the dual feasible set is \(O(P^3) \). To see this, it may be noted that in practice, one may solve the equation \(\langle \mathcal{P}(G + \lambda E), E \rangle = \phi \) using interval halving techniques, where each evaluation of the right-hand side requires computing one eigenvalue decomposition. The per-iteration complexity for this scheme is thus \(O(P^3) \).
APPENDIX

Proof of Proposition 1. By definition, \(U = P_K \phi(G) \) solves

\[
\minimize_{U \in K} \frac{1}{2} \left\| U - G \right\|_F^2,
\]

where \(\left\| \cdot \right\|_F \) is the Frobenius norm. To arrive at a dual formulation, consider the Lagrangian

\[
\tilde{\mathcal{L}} = \frac{1}{2} \left\| U - G \right\|_F^2 - \lambda \left(\langle U, E \rangle - \phi \right) - \langle \Lambda, U \rangle,
\]

with dual variables \(\Lambda \in C \) and \(\lambda \in \mathbb{R} \). We may complete the square according to

\[
\frac{1}{2} \left\| U - G \right\|_F^2 - \langle \lambda E + \Lambda, U \rangle
= \frac{1}{2} \left\| U - (G + \lambda E + \Lambda) \right\|_F^2 - \frac{1}{2} \left\| G + \lambda E + \Lambda \right\|_F^2 - \frac{1}{2} \left\| G \right\|_F^2.
\]

Then, the infimum of \(\tilde{\mathcal{L}} \) with respect to \(U \) is given by

\[
\inf_U \tilde{\mathcal{L}} = -\frac{1}{2} \left\| G + \lambda E + \Lambda \right\|_F^2 + \langle G \rangle_2^2 + \phi \lambda,
\]

which is attained for \(U = G + \lambda E + \Lambda \). Consider the dual function

\[
r(\Lambda, \lambda) = -\frac{1}{2} \left\| G + \lambda E + \Lambda \right\|_F^2 + \phi \lambda.
\]

For each \(\lambda \), this is maximized with respect to \(\Lambda \in C \) by

\[
\Lambda = P_C \left(- (G + \lambda E) \right),
\]

i.e., \(\Lambda \) is constructed from the negative part of the eigendecomposition of \(G + \lambda E \), with flipped sign. Using

\[
G + \lambda E = P_C (G + \lambda E) + P_C \left(- (G + \lambda E) \right),
\]

this yields

\[
\tilde{r}(\lambda) = \sup_{\Lambda} r = -\frac{1}{2} \left\| P_C (G + \lambda E) \right\|_F^2 + \phi \lambda.
\]

This one-dimensional criterion may then be maximized with respect to \(\lambda \in \mathbb{R} \). However, as we from the analysis obtain \(U = P_C (G + \lambda E) \), we may utilize the primal feasibility condition \(\langle U, E \rangle = \phi \). Specifically, one may seek the roots of

\[
f(\lambda) = \langle P_C (G + \lambda E), E \rangle - \phi.
\]

As \(E \in C \), \(f \) is a continuous, monotone increasing function, and \(f \) thus has a unique zero. \(\square \)

REFERENCES

[1] J. Swärd, F. Elvander, and A. Jakobsson, “Designing Sampling Schemes for Multi-Dimensional Data,” Signal Processing, vol. 150, pp. 1–10, 9 2018.

[2] A. Nedic and A. Ozdaglar, “Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods,” SIAM J. Optim., vol. 19, no. 4, pp. 1757–1780, 2009.