Article

The immunomodulatory activity in vitro of NDV ZG1999HDS in comparison to NDV La Sota

Bratko Filipič 1*, Lidija Gradišnik 2, Adriana Pereyra 3 and Hrvoje Mazija 1

1 CIETO (Croatian institute for experimental and translation oncology), Kolečinečka 3, 10040 Zagreb, Croatia; Bratko.Filipic@gmail.com, Mazija@vef.unizg.hr
2 Institute of Biomedical Sciences, Medical Faculty, University of Maribor, Taborska 8, 2000 Maribor, Slovenia; lidija.gradisnik@UM.si
3 MEDEX d.o.o., Linhartova cesta 49a, 1000 Ljubljana, Slovenia; adriana.pereyra@Medex.si
* Correspondence: Correspondence: Bratko.Filipic@gmail.com Mobile: 0038671232804

ABSTRACT. The immunotherapies, as a modern therapeutic approach, get an attention because of theirs’ promise to treat a large number of different medical disorders. Immunomodulation effects of low titres (10 HA/ml) of NDV (Newcastle Disease Virus) ZG1999HDS or La Sota were tested on TLT (Human macrophage cell line) bound to PBMC (Peripheral Blood Mononuclear Cells). During the immunomodulation, the amount of NO, H2O2, lysozym and induced antibacterial activity against Gram - positive bacteria (Staphylococcus aureus, MRSA, Streptococcus agalactiae and Streptococcus mutants) and against Gram - negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Acinetobacter baumanii) were analysed. In addition, the cytokine secretion, IL-1α, IL-2, IL-4, GM-CSF, TNF-α, IFN-α and IFN-γ were evaluated. Firstly, the TLT cells are activated through the NDV ZG1999HDS or La Sota binding, followed by the NO “burst” and H2O2 and lysozyme level increase. Secondly, after the binding to the TLT cells and interaction with the PBMCs, the decrease of GM-CSF, and an increase of TNF – α and IFN – γ were found. Simultaneously, the decrease of pro – inflammatory cytokine IFN-α and the differentially increase of IL-1α, IL-2 and IL-4 were recorded. During the induction of the antibacterial response, against Gram - positive bacteria (Staphylococcus aureus, MRSA, Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus mutants) the effect was one third higher with NDV ZG1999HDS compared to La Sota. Antibacterial response against Gram - negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Acinetobacter baumanii) was not so clear. In general, NDV ZG1999HDS or La Sota activated TLT cells, further bound to PBMC; the ZG1999HDS is stronger immunomodulator than La Sota.

Keywords: Newcastle Disease Virus ZG1999HDS; Newcastle Disease Virus La Sota; immunomodulation; TLT (Human macrophage cell line) with PBMCs; Cytokines; lysozime; Antibacterial activity; Gram – positive bacteria; Gram - negative bacteria

1. Introduction

The substances interacting with the immune system with aim to increase or decrease the host response are named immunomodulators [1, 2, 3]. They are also known as biologic response modifier or immunoregulators, which function as a drug leading mostly to a non-specific stimulation of immunological defence mechanisms of the body [4, 5]. To enhance immune system, the agents such as chemicals, proteins and/or viruses are used [6]. Among viruses, for the Newcastle Disease Virus (NDV) was found to have pleiotropic immunomodulatory properties in addition to good cell-binding and selective proliferation in replicating cells. Simultaneously this virus has the ability to introduce T-cell co-stimulatory activity and induce cytokines such as IFN-α, IFN-β and TNF-α that can affect T-cell recruitment and activation [7, 8, 9]. The cellular cytotoxicity of PBMC was enhanced
significantly after the co-incubation of NDV with effector’s cells [10, 11]. Through the study, the NK (natural killer) cells were found to be the main mediator of the cell lyses. The increased cytotoxicity also correlates with the induction of TNF-α and with the reduced synthesis of IFN-α in PBMC by NDV. The strain of NDV, ZG1999HDS that was recently isolated, was patented and genetically characterized by Mazija [12, 13] and by Nedeljković [14]. Additionally, the strain of NDV ZG1999HDS was deposited in “Collection National de Cultures de Microorganisms (CNCM)” in the year 2013 [15] and in the “Gene Bank” at 2014 [16]. The strain of NDV ZG1999HDS was isolated only from lung tissue of broiler chickens suffering of a respiratory disease and was not present in the brain tissue, as it was described by Biđin and Mazija [17]. Due to its lentogenic properties that it caused death of 74.6% of chickens because of the virus tropism for the respiratory system. It belongs to genotype II of class II NDV that is closely related to the strains of NDV La Sota and Hitcher. In the same group, there are strains: La Sota, Ulster and Queensland. Cytolytic characteristics of the strain of NDV ZG1999HDS were investigated in vitro on tumour cell cultures and in vivo on mice’s and compared with the impact of the strain of NDV La Sota. The strain of NDV ZG1999HDS is a relatively strong inducer of human type I IFN, more precisely HuIFN-αN3, in the PBMCs from Human Buffy coats. 100 HA of the strain of NDV ZG1999HDS can induce 483 ± 45pg/ml of the HuIFN-αN3. The RP-HPLC profile of the HuIFN-αN3 show: subtypes α1, α2, αA and α2b. [18] For the biological activity of the NDV induced HuIFN-αN3, it is important the relative ratio between the α1 and α2 subtypes [19].

The presented experiments were aimed to analyse the immunomodulatory activity in vitro of the strain of NDV ZG1999HDS in comparison to the strain of NDV La Sota.

2. Material and methods

2.1. Viruses used in the experiments

The strain of NDV ZG1999HDS virus was obtained from the Prof. emeritus Hrvoje Mazija (Croatian institute for experimental and translation oncology, Koledišneka 03, 10040 Zagreb, Croatia). The strain of NDV La Sota was obtained from different commercial sources. Both of them were multiplied in SPF (Specific Pathogen Free) chicken embryos, and concentrated by lyophilisation. The EID50 that was determined in the SPF chicken embryos was 2.0x10^7 for NDV ZG1999HDS and 2.5x10^7 for NDV La Sota.

2.2. Tissue culture medium and cells

Eagle’s medium with high content of glucose, L-glutamine, 25 mM HEPES and antibiotics (Penicillin, Streptomycin and Gentamycin) and Trypsin solution were prepared in the CIETO laboratory. FBS (Foetal bovine serum) was from Euro clone (Pero, Italy). Human TLT (macrophage) cell line was obtained from As. Mag. Lidija Gradišnik from the Institute of Biomedical Sciences, Medical Faculty in Maribor, University of Maribor, Slovenia. The TLT cells were cultivated in Eagle’s medium with a high content of glucose, L-glutamine, 25mM HEPES and antibiotics with the addition of 10% of FBS.

2.3. Isolation of PBMC (Peripheral Blood Mononuclear Cells) from Human Buffy coats

The Buffy coats were combined and centrifuged at 1700 RPM for 20 min at 4°C. The supernatant containing plasma and part of the leukocytes were resuspended in the PBS containing 1% of glucose. To the sediment containing erythrocytes, lymphocytes, macrophages and granulocytes, the nine parts of 0.83% NH4Cl (ammonium chloride) were added. The erythrocyte lyses was performed at 4°C during 15-20 min. After this, cell suspension of “black chocolate colour” was centrifuged at 2,500 RPM for 20 minutes at 4°C. The supernatant was removed and the white cell sediments were resuspended in the PBS (Phosphate Buffer Saline) containing 1% of glucose. Both supernatants were combined and white cells were sediment by centrifugation at 2500 RPM for 20 min at 4°C. The percentage of living cells was determined by Trypan blue staining.
2.4. Bacterial species used in the experiments

Bacterial species selected for the study, were obtained from the “Microbecollection” at the Institute for Microbiology and Immunology, Medical Faculty, University of Ljubljana, Slovenia. The Gram - positive bacteria were: *Staphylococcus aureus*, MRSA (Metycilline Resistant *Staphylococcus aureus*), *Micrococcus luteus*, *Streptococcus pyogenes*, *Streptococcus agalactiae* and *Streptococcus mutants*. Gram -negative bacteria were: *Escherichia coli*, *Pseudomonas aeruginosa*, *Proteus mirabilis* and *Acinetobacter baumanii*.

2.5. Cells’ treatment

In the 10.0 ml flat bottom glass vials with rubber stoppers, the Human macrophage (TLT) cell line was cultivated in the Eagle’s medium with 10% of FBS. After reaching the confluence, the supernatant was discharged and the 2.0 ml of PBMC suspension (10⁶ cells/ml) was added. After two hours, 2.5 ml of Eagle’s medium with 2.0% of FBS was added. To exert the immunomodulation and the antimicrobial activity, 0.5 ml of 10.0 HAU/ml of the strain of NDV ZG1999HDS or La Sota were added and vials were stored at 37°C for 24 and 48 hours (Figure 1). All the treatments were performed in triplicate and repeated two to three times. After the indicated time (24 or 48 hours at 37°C) the vials were centrifuged at 1700 RPM/20 minutes, and clear supernatants were collected, filtered through 0.2 μm filters and stored before the analyses at -20°C.

2.6. The H₂O₂ (Hydrogen peroxide) determination

Quantity (μM/ml) of H₂O₂ produced by the cultivated cells (TLT with PBMC) after the treatment or in untreated control was determined according to the method developed by Orsi et al. [20]. In brief: To the freshly sediment of cells (TLT with PBMC) 500.0 μl of the Phenol red solution (50 ml) containing 140.0 mM NaCl, 10.0 mM K₂HPO₄, 5.5 mM dextrose and 8.5 U/ml of Horseradish peroxidase. After four hours of incubation at 37°C, 100.0 μl of 1.0 M NaOH was added, and solution was dissolved for 10 times with 4.5 ml of saline. The optical density of the solution was measured at 620.0 nm. As the control, 10.0 mM of H₂O₂ was used.

2.7. Lysozym determination

The amount of lysozym in the cells’ (TLT with PMBC) supernatant was determined according to the method developed by Nash et al. [21]. In brief: one thousand CFU (Colony Forming Units) of *Streptococcus pyogenes* in 200.0 μl of 10.0 mM PBS (Potassium phosphate...
buffer) (pH 7.4) and 200.0 μl of sample or 1.0, 10.0 and 100.0 μg/ml of lysozyme were
added to the 1.6 ml of MH (Mueller Hinton) – broth (pH 6.5) and incubated overnight at
37°C. On the next day, the OD was measured at 595 nm. The amount of lysozyme (μM/ml)
was calculated in comparison to the bacterial OD after 24 hours.

2.8. The NO (Nitrite) assay

The concentration of stable NO (nitrite), that is an end product of the nitric oxide
present in the supernatant of treated or untreated human macrophages (TLT
with PMBC) was measured by the method based on the Griess reaction, that
was described by More and Pai [22]. In brief, 50μl of the cells’ supernatant was
incubated with the equal volume of Griess reagent composed from 1% of sul-
phanilamide in 2.5% H$_3$PO$_4$ and 0.1% of NEDD (naphthyl-ethylene-diamine-di-
hydrochloride) in distilled water. Both solutions were mixed in a ratio of 1:1 at
room temperature for 30 minutes. The absorbance at 550 nm was measured in a
micro titre plate reader. The standard curve for nitrite was prepared using 10
- 100 μM sodium nitrates in distilled water.

2.9. HuIFN-αN3 monoclonal ELISA

The quantity of induced HuIFN-αN3 (pg/ml) was determined by Human IFN
ELISA kit »Platinum ELISA« from eBioscience (Vienna, Austria). In the assay, the
international HuIFN-αN3 standard was used (Human IFN-α Platinum ELISA (BMS
216/BMS 216 TEN), Affymetrix, eBioscience, USA). The assay was performed according
to the manufacturer’s instructions, with the final reading by the ELISA reader at 620 nm
and calculating of the pg-s of HuIFN-αN3 /ml.

2.10. HuIFN-αN3 RP-HPLC analysis

The HuIFN-αN3 subtype composition was analyzed by the RP – HPLC (Reverse
phase high performance liquid chromatography). Different HuIFN-α samples (natural or
recombinant, approximately one million antiviral units/ml) of 20 to 40 μl were applied to
the Phenomenex, Aeris PEPTIDE column 3.6μm XB-C18, 250 x 4.6 mm and eluted with
the linear gradient of solvent A = water + 0.1% of TFA and solvent C = acetonitril + 0.1%
TFA for 20 minutes with a flow rate of 0.8 ml/min. and pressure of 139 – 140 bar. The
course of RP-HPLC chromatography of different IFN samples is shown in Table 1. The
temperature of the column was 40°C. The absorbance was monitored at 214 and 280 nm.
HuIFN-α interferon species in different IFN compositions were separated according to
their relative hydrophobic using RP-HPLC as it was described by Punainen et al.[23].

Table 1. The course of RP-HPLC chromatography of different IFN samples.

Step	Time (min.)	Solvent A (%)	Solvent C (%)
0	0	91	9
1	3	80	20
2	6	50	50
3	12	50	50
4	15	91	9
5	20	91	9

2.11. HuIFN-γ Mini ELISA Development Kit (Peprotech)
The amount of HuIFN-γ (pg/ml) in the cell (TLT with PBMC) supernatant was performed according to the manufacturer instructions. Bind the capture antibodies (1.0μg/ml) to the Nunc Maxisorp plates, and add the 300.0 μl of the blocking buffer.

Standard/Sample: Dilute standard (HuIFN-γ) from 300.0 pg/ml to zero in diluents. Immediately add 100.0 μl of standard or sample to each well in triplicate and incubate the plates for six hours at 37°C.

Detection: After washing the plates, dilute the detection antibodies in diluent to a concentration of 1.0 μg/ml and add 100.0μl/well and incubate at room temperature for two hours.

Avidin-HRP Conjugate: After washing the plates, dilute 5.5μl of Avidin-HRP Conjugate 1:2000 in diluent for total volume of 11.0 ml. Add 100μl/well. Incubate plates one hour at room temperature.

ABTS Liquid Substrate: Wash and aspirate the plates two times. To the empty plates add 100.0μl of substrate solution to each well and monitor the colour development. After, add 10.0μl of 1.0% SDS to each well and measure the plate with the ELISA reader at 405 nm with the wavelength correction at 650 nm. The reliable standard curves are obtained when either OD readings should not exceed 0.2 units for the zero standard concentration, or 1.2 units for the highest standard.

2.12. GM-CSF Mini ELISA Development Kit (Peprotech)

The amount of GM-CSF (pg/ml) in the cell (TLT with PBMC) supernatant was performed in the same way as in the case of HuIFN-γ, with the use of GM-CSF specific capture and detection antibodies as well as specific Avidin-HRP (Horse-radish Peroxidase) conjugate.

2.13. TNF-α Mini ELISA Development Kit (Peprotech)

The amount of TNF-α (pg/ml) in the cell (TLT with PBMC) supernatant was performed in the same way as in the case of HuIFN-γ, with the use of TNF-α specific capture and detection antibodies as well as specific avidin-HRP (Horse-radish Peroxidase) conjugate.

2.14. IL-1α Mini ELISA Development Kit (Peprotech)

The amount of IL-1α (pg/ml) in the cell (TLT with PBMC) supernatant was performed in the same way as in the case of HuIFN-γ, with the use of IL-1α specific capture and detection antibodies as well as specific avidin-HRP (Horse-radish Peroxidase) conjugate.

2.15. IL-2 Mini ELISA Development Kit (Peprotech)

The amount of IL-2 (pg/ml) in the cell (TLT with PBMC) supernatant was performed in the same way as in the case of HuIFN-γ, with the use of IL-2 specific capture and detection antibodies as well as specific avidin-HRP (Horse-radish Peroxidase) conjugate.

2.16. IL-4 Mini ELISA Development Kit (Peprotech)

The amount of IL-4 (pg/ml) in the cell (TLT with PBMC) supernatant was performed in the same way as in the case of HuIFN-γ, with the use of IL-4 specific capture and detection antibodies as well as specific avidin-HRP (Horse-radish Peroxidase) conjugate.

2.17. Antibacterial activity

The antibacterial (Gram - positive and Gram - negative bacteria) screening was carried out by agar diffusion method described by Lino and Deogracious [24]. According to theirs’ protocols the suspensions of different bacteria in saline with McFarland 0, 5 were swabbed over the surface of the MH (Mueller Hinton) agar plate, using a sterile cotton swab. Wells of 6.0 mm diameter were bored in the medium with the help of a sterile cork-borer, having a 6.0 mm diameter. 70μl of different samples were filled in the wells with a micropipette. On separate plate 70μl of the control antibiotics in a concentration of 10%
were added. The plates were left for some time till the extracts diffused into the medium, with the lid closed, and incubated at 37°C for 72 hours. The zone of the inhibition was measured in millimetres using a scale.

2.18. Statistics
All the treatments were performed in triplicate and repeated three to four times. The average values ± SD (Standard deviation) were recorded. The obtained data were analyzed by the Two-tailed unpaired student’s t test for the groups comparing NDV1999HDS to La Sota group. The Stat graphics stratus online statistics software (www.statgraphics-stratus.com) from Stat point Technologies Inc., USA was used. Statistically significant differences with the p values: * = < 0.05, ** = < 0.01.

3. Results
3.1. Determining of NO (Nitric oxide), H$_2$O$_2$ (Hydrogen peroxide) and lysozym
In case of NO, the releasing enhancement was found (7.12 μM/ml) when NDV ZG1999HDS was used. The level of H$_2$O$_2$ and lysozyme were increased with the use of the same virus (1.82 μM and 0.748 μg). The lysozyme is the indicator of the antimicrobial activity induction. The results are presented in the Figure 2 and Table 2.

![Figure 2](image)

Figure 2. The influence of the strain of NDV ZG1999HDS or strain of NDV La Sota on the level of NO, H$_2$O$_2$ and lysozym released from activated TLT cells cultivated with human PBMCs.

Virus	NO (μM/ml)	H$_2$O$_2$ (μM/ml)	Lysozym (μM/ml)			
	Control	NO	Control	H$_2$O$_2$	Control	Lysozym
NDV ZG1999HDS	3±0.66	7±1.12	1±0.17	1±0.082	0.14±0.05	0.74±0.08
NDV La Sota	3±0.66	5±0.86	1±0.17	2±0.065	0.14±0.05	0.34±0.05

3.2. Activity of GM-CSF and TNF-α
GM-CSF as proliferators of different tumour cells in vitro and in vivo was inhibited by either NDV ZG1999HDS or NDV La Sota. The opponent TNF-α was increased, when the NDV ZG1999HDS was used. In case of NDV La Sota the level of TNF – α was decreased. In Table 3 and Figure 3, there are the data about GM-CSF and TNF-α analysis.

![Graph showing the influence of NDV strain ZG1999HDS or NDV strain La Sota on the level of GM-CSF and TNF-α](image)

Figure 3. The influence of the strain of NDV ZG1999HDS or strain of NDV La Sota on the level of GM – CSF and TNF - α released from activated TLT cells cultivated with human PBMCs.

Virus	GM-CSF (pg/ml)	TNF-α (pg/ml)
Control	74±4.21	140±22
NDV ZG1999HDS	63±4.10	179±34
NDV La Sota	66±4.25	122±18

Table 3. Influence of NDV strain ZG1999HDS or NDV strain La Sota on the level of GM-CSF and TNF-α.

3.3. Activity of IFN-γ and IFN-α

When the levels of two different IFNs were studied, the following data were obtained: Increase of IFN-γ and decrease of pro-inflammatory IFN-α. The higher increase of HuIFN-γ was found with NDV ZG1999HDS and higher decrease of HuIFN-α. Data about level of IFN-α and IFN-γ are shown in Table 4 and Figure 4. The RP-HPLC profile of NDV ZG1999HDS induced interferon’s show the higher decrease of α2, αA and α1 and total absence of α2b together with the increase of the HuIFN-γ in comparison to the NDV La Sota induced interferon’s (Figure 5).
Figure 4. The influence of NDV strain ZG1999HDS or NDV strain La Sota on the level of HuIFN-γ and HuIFN-α released from activated TLT cells cultivated with PBMCs.

Figure 5. The RP-HPLC profiles of NDV ZG1999HDS or NDV La Sota induced Interferons. (A) With the NDV induced Russian HuIFN-αN3; (B) With NDV ZG1999HDS induced HuIFN-αN3 and HuIFN-γ; (C) With NDV La Sota induced HuIFN-αN3 and HuIFN-γ.
Table 4. Influence of NDV strain ZG1999HDS or NDV strain La Sota on the level of HuIFN-γ and HuIFN-α.

Virus	HuIFN-γ (pg/ml)	HuIFN-α (pg/ml)	
	Control	NDV ZG1999HDS	NDV La Sota
	62±3.10	120±9.88	25±1.39
	25±1.39	19±1.22	23±1.98

3.4. Activity of IL-1α, IL-2 and IL-4

The level of IL-1α being the cytokine inducing the “Programmed cell death« (apopotosis) of mostly different tumour cells was increased, similarly as IL-2 and IL-4 when NDV (strain ZG1999HDS) was used (Table 5, Figure 6).

Figure 6. The influence of NDV ZG1999HDS or NDV La Sota on the level of IL-1α, IL-2 and IL-4 released from activated TLT(Human macrophage cell line) +PBMCs.

Table 5. Influence of NDV strain ZG1999HDS or NDV strain La Sota on the level of IL-1α, IL-2 and IL-4.

Virus	IL-1α (pg/ml)	IL-2 (pg/ml)	IL-4 (pg/ml)			
	Control	IL-1α	Control	IL-2	Control	IL-4
NDV ZG1999HDS	59±6.33	68±2.11	77±4.17	108±8.42	86±9.13	164±6.11
NDV La Sota	59±6.33	62±1.86	77±4.17	79±6.15	86±9.13	110±5.14

3.5. Antibacterial activity

Concomitantly with the immunomodulation, the induced antibacterial activity against different Gram - positive and Gram-negative bacteria was studied. The induced antibacterial activity was compared with the NDV La Sota. In general, it can be concluded, that NDV ZG1999HDS induced higher antibacterial activity against Gram - positive
bacteria, than against Gram-negative one. It seems that such activity could be connected to the lysozyme content. (Table 6 Figure 7 and Figure 8)

Figure 7. Induction of antibacterial activity against different Gram-positive bacteria with the strain of NDV ZG1999HDS or of the strain of NDV La Sota.

Figure 8. Induction of antibacterial activity against different Gram-negative bacteria with NDV ZG1999HDS and NDV La Sota.

Table 6. By NDV strain ZG1999HDS or NDV strain La Sota induced antibacterial activity against various Gram-positive and Gram-negative bacteria.
4. Discussion

The results of the experiments, comparing the immunomodulatory activity of low amount (10 HA/ml) of the strain of NDV ZG1999HDS or La Sota show in general the priority of the strain of NDV ZG1999HDS. At first, after the TLT cells activation the NO »burst«, H$_2$O$_2$ and lysozym level increase. After the binding of both NDV viruses separately to the TLT cells and theirs’ interaction with the PBMCs, the decrease of GM-CSF and increase of TNF – α and IFN – γ was found. Concomitantly, it was found the decrease of pro – inflammatory cytokines (IFN-α) and the differentially increase of IL-1α, IL-2 and IL-4. During the inducion of the antibacterial response, it was 1/3 higher when it was induced with NDV ZG1999HDS against Gram - positive bacteria (Staphylococcus aureus, MRSA, Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus mutants). Against Gram - negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Acinetobacter baumanii) this effect was not so clear (Figure 7, Figure 8). One of possible explanation is, in the level of lysozym induced by the strain of NDV ZG1999HDS in comparison to La Sota. Although NDV causes direct oncolytic effects on tumour cells, it has also the ability to modulate the human immune system. So, Wolska et al. [25] showed that cellular cytotoxicity of PBMC was enhanced significantly, after co-incubation of NDV with the effectors cells. Throughout the study, NK cells were found to be the predominant mediator of lyses. Indeed, NDV was found to stimulate the host immunity to produce NO and cytokines, such as IFN-α, IFN-γ, TNF-α, and IL-1, which in turn leads to the activation of NK cells, macrophages, and sensitized T cells as it was shown by Avaki et al. [26]. Therefore, the activated NK cells are important contributors to innate defence against viral infections and through the stimulating of cytokines’ secretion, such as IL-2, IFN-γ, and TNF-α, further influencing and activating other immune cells’ functions connected with cytolsis so affecting the tumour cells.

5. Conclusions

The immunotherapy raised the attention of many scientists because it holds to promise to be an attractive therapeutic strategy for treating different medical disorders. In this study, the immunomodulatory effects of low titres (10 HA/ml) of the strain of NDV ZG1999HDS in comparison to La Sota on mixture of TLT cells with PBMC were analyzed. The TLT activation by the NO »burst«, H$_2$O$_2$ and lysozym level increase. After the binding to the TLT cells and theirs’ interaction with the PBMC, the decrease of GM-CSF, and increase of TNF – α and IFN – γ was found. Concomitantly, the decrease of pro – inflammatory cytokines (IFN-α) and the selected increase of IL-1α, IL-2 and IL-4 were found. In inducing of the antibacterial response, it was 1/3 higher, when it was induced with the strain of NDV ZG1999HDS against Gram – positive bacteria (Staphylococcus aureus, MRSA,
Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus mutants). Against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Acinetobacter baumanii) this effect was not so clear. In general, the strain of NDV ZGI999HDS was immunomodulatory stronger than La Sota in vivo.

Authors’ Contributions: F.B., L.G. and H.M. prepare and perform the experiments and the text of the article. A.P. performs the RP-HPLC analyses of different samples. L.G. and A.P. made the language of the text. T.V. made the English corrections.

Conflicts of Interest: All the authors have declared that there is no conflict of interest.

Funding: The research was performed in the frame of CIETO (Croatian institute for Experimental and Translational Oncology, Koledinečka 03, 10040 Zagreb, Croatia). It was included into the Project: “Oncolytic Newcastle Disease Virus in the Veterinary Medicine.” The research was partially supported by Ivan Čermak and by Crodux – plin, Savska Opatovina, 10000 Zagreb, Croatia.

Acknowledgments: Authors are indebted to Tomaž Velnar for English suggestions.

References

[1] Ortuño-Sahagún, D., Zänker, Rawat, A.K.S., Kaveri, S.V., Hegde, P. Natural Immunomodulators. J. Immunol Res. 2017. 7529408. DOI: 10.1155/2017/7529408

[2] Stanilova, S.A., Dobrev, Z.G., Slavov, E.S., I.D. Miteva, L.D. C3 binding glycoprotein from Cuscuta europea induced different cytokine profiles from human PBMC compared to other plant and bacterial immunomodulators. Intern Immunopharm. 2005. 5(4): 723 - 734. DOI: 10.1016/j.intimp.2004.12.003.

[3] Utoh-Nedos, A.U., Akah, P.A., Okoye, T.C., Okoli, C.O. Evaluation of the Toxic Effects of Dihydroartemisinin on the Vital Organs of Wistar Albino Rats. Am Journ of Pharmacol. and Toxicol. 2009. 4(4): 169 – 173. DOI: 10.3844/ajptsp.2009.169.173.

[4] Tzianabos, A.O. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin Microbiol Reviews. 2000. 13(4): 523 – 533 DOI: 10.1128/cmr.13.4.523-533.2000.

[5] Ooi, V.E., Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current medicinal chemistry. 2000. 7(7): 715 – 729. DOI: 10.2174/0929867003374705.

[6] Kobayashi, S., Sato, R., Aoki, T., Omoe, K., Inanami, O., Hankanga, C., Yamada, Y., Tomizawa, N., Yasuda, Jun. Sasaki, J. Effect of bovine lactoferrin on functions of activated feline peripheral blood mononuclear cells during chronic Feline immunodeficiency virus infection. J Vet Med Sci. 2008. 70(5): 429 - 435. DOI: 10.1292/jvms.70.429.

[7] Schirrmacher, V., Ahlert, T., Probstle, T., Steiner, H.H., C. Herold-Mende, C., Gerhrads, R., Hagmuller, E., Steiner, H.H. Immunization with virus-modified tumour cells. Sem Oncol. 1998. 25(6): 677-696. PMID: 9865682.

[8] Schirrmacher, V., Hass, C., Boniër, R., Ahlert, T., Gerhrads, R., Ertel, C. Human tumour cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 1999. 6 (1): 63 - 73. DOI: 10.1038/sj.gt.3300787. PMID: 10341877

[9] Schirrmacher, V., Bai, L., Umansky, V., Yu, Y., Xing, Z. Qian, Z. Newcastle disease virus activates macrophages for anti-tumour activity. Int. J. Oncology. 2000. 16 (2): 363 - 436. DOI: 10.3892/ijo.16.2.363.

[10] Zorn, U., Dallman, I., Grosse, J., Kirchner, H., Poliwoda, H., J. Atzpodienn, J. Induction of cytokines and cytotoxicity against tumour cells by Newcastle disease virus. Cancer Biother. 1994. 9(3), 225 - 235. DOI:10.1089/cbr.1994.9.225

[11] Burke, S., Shergold, A., Elder, J.M., Whitworth, J., Cheng, X., Jin, H., Wilkinson, W.R., Harper, J., Carroll, K. D. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol Immunother. 2020. 69(6): 1015 – 1027. DOI: 10.1007/s00262-020-02495-x.

[12] Mazija, H., Gottstein, Ž., Ivanković, S., Čović, D. Lentogenic cytolitic strain of the Newcastle
disease virus isolated in Croatia (In Croatian). In: Balenović M. (Ed) IXth Poultry days, Proceedings, Poultry Centre Zagreb, 2011. pp. 48–58.

[13] Mazija, H. Pneumotropic lentogenic strain of Newcastle disease virus ZG1999HDS isolated in Croatia. Republic of Croatia. State intellectual property Office (In Croatian). Patent application 2011. P20100579A.

[14] Nedeljković, G. Genomic characterization and phylogenetic analysis of Newcastle disease virus isolate ZG1999HDS from the outbreak in 1999 in Croatia. Master’s of Science, 2011. Master’s Programme in Infection Biology, Uppsala University, Sweden.

[15] Collection National de Cultures de Microorganismes (CNCM). Virus NDV (strain ZG1999HDS) was deposited at “Collection Nationale de Cultures de Microorganismes (CNCM)” in Paris, France. Accession No: CNCM I-4811. 2013.

[16] Anonymous. The sequence data were deposited in the Gene Bank under the accession No: NDV_ZG1999HDS.sqm NDV_Zagreb_1999\ Consensus KJ670427. 2015.

[17] Bidin, M., H. Mazija, H. Immunogenicity of field strain of Newcastle disease Virus ZG2000 applied to SPF chickens. VIIIth Symposium Poultry days 2009, Croatia, Poreč, March 25 - 28, 2009. pp 241-245 (In Croatian).

[18] Ginting, E.T., Christian, S., Larasati, Y.O., Suryatenggara, J., Suriaparanta, I.M., Mathew, G. Antiviral Interferon’s induced by Newcastle Disease Virus (NDV) drive a tumour selective apoptosis. Scientific Reports. 2019. 9 : 15160.

[19] Antonelli, G. Biological basis for a proper clinical application of alpha interferons. NewMicrobiologica. 2008. 31(3): 305-318. PMID: 18843884.

[20] Orsi, R.O., Funari, S.R.C., Soares, A.M.V.C., Calvi, S.A., Olivera, S.L., Sforcin, J.M., Bankova, V. Immunomodulatory action of propolis on macrophage propolis on macrophage activation. J. Venom. Anim. Toxins. 2000. 6(2): 205 – 219.

[21] Nash, A.J., Ballard, S.N.T., Weavwer,T.E., Akinbi, T.H. The Peptydoglycan Degrading property of Lysozyme is not Required for Bactericidal activity in vivo. The Journal of Immunology 2006. 177(1): 519 - 526.

[22] More, P., Pai, K. Immunomodulatory effects of Tinospora cordifolia (Guduchi) on Immunomodu-latory effects of Tinospora cordifolia (Guduchi) on Macrophage activation. Biology and Medicine, 2011. 3 (2) Special Issue: 134 - 140, eISSN: 09748369.

[23] Punainen, S., Veripavel, U.R., Tőlő, H., J. Parkkinen, J. Alpha Interferon Manufacturing process Using immunoadsorbion and virus removal filtration. 1999. Patent No. WO 99/64440.

[24] Lino, A., Deogracious, O. The in vitro antibacterial activity of Annona negalensis, Securidaca longipendiculata and Steganotaenia araliacea – Ugandan medicinal plants. African health sciences. 2006. 6(1): 31 - 35.

[25] Wolska, K., Gorska, A., Antosik, K., Lugowska, K. Immunomodulatory Effects of Propolis and its Components on Basic Immune Cell Functions. Indian J Pharm Sci. 2019. 81(4): 575 – 588.

[26] Avaki, S., Turuğlu, H., Simsek, A., Unsal, A. Clinical and immunological effects of Newcastle disease virus vaccine on Bovine papillomatosis. Veterinary Immunology and Immunopathology. 2004. 98 (1-2): 9 - 16.

DOI: 10.1016/j.vetimm.2003.10.003.