ORIGINAL ARTICLE

Loss of heat shock factor 1 promotes hepatic stellate cell activation and drives liver fibrosis

Asmita Choudhury1 | Anuradha Ratna1 | Arlene Lim1 | Rebecca M. Sebastian2 | Christopher L. Moore2 | Aveline A. Filliol3 | Jacob Bledsoe4 | Chengkai Dai5 | Robert F. Schwabe3 | Matthew D. Shoulders2 | Pranoti Mandrekar1

1Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
4Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, USA
5Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA

Correspondence
Pranoti Mandrekar, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA. Email: pranoti.mandrekar@umassmed.edu

Funding information
National Institutes of Health, Grant/Award Number: R01 AA17986-01A1, R01 AA25289-01 and R01 AR071443

Abstract
Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress-mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well-established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1-deficient mice exhibit augmented HSC activation and fibrosis despite limited pro-inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte-specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable overexpression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases.

Hepatology Communications. 2022;6:2781–2797.

wileyonlinelibrary.com/journal/hep4 2781
INTRODUCTION

Liver fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) leading to scar tissue formation due to hepatocellular injury caused by various etiologies such as alcohol abuse, viral hepatitis B and C, and nonalcoholic steatohepatitis (NASH). Fibrotic livers can often progress to cirrhosis, which is irreversible and leads to hepatocellular carcinoma, making it one of the leading causes of mortality and morbidity in the United States. Activation of hepatic stellate cells (HSCs) is the hallmark to development of fibrogenesis. In response to profibrogenic stimuli, HSCs undergo transdifferentiation and activation to a proliferative myofibroblast-like phenotype that secretes components of ECM. Regardless of the etiology, fibrogenic responses are regulated by cellular stress pathways, including endoplasmic reticulum stress and oxidative stress. Generation of reactive oxygen species (ROS) contributes to activation of HSCs. In addition, overproduction of reactive nitrogen species and hepatic glutathione are also implicated in profibrogenic activation. These studies indicate the involvement of cellular stress pathways, leading us to hypothesize that stress-mediated heat shock factor 1 (HSF1) plays a crucial role in liver fibrosis.

HSF1 is a transcription factor that acts as an integrated sensory mechanism to modulate protein synthesis, folding, and quality control to facilitate cellular response to environmental stress. Exposure to cellular stressors activates HSF1 and induces heat shock proteins (HSPs) to restore homeostasis. Recent studies have assigned a role for HSF1 in regulation of metabolic pathways and inflammation. Notably, in vitro studies show that HSF1 regulates HSP47, collagen-specific chaperone in stellate cells. We previously reported an anti-inflammatory function of HSF1 in human monocytes, in models of lipopolysaccharide (LPS)–induced liver injury in mice, and during chronic alcohol exposure in liver and murine macrophages. However, the precise function of HSF1 in the pathogenesis of liver fibrosis in vivo and its potential impact on HSC activation remains undefined.

Here, we report increased HSF1 expression but loss of DNA binding activity in fibrotic livers. Nuclear HSF1 is observed in hepatocytes but not in activated HSCs in human cirrhotic livers. Furthermore, we demonstrate that deficiency of HSF1 in vivo exacerbates liver fibrosis and delays resolution. Hepatocyte-specific deletion of HSF1 exacerbates hepatocyte cell death, and similar to HSC-specific HSF1 deficiency, induces a profibrogenic response to CCl4, suggesting its important role in HSC activation and fibrosis. We established that HSF1-deficient primary HSCs as well as stable expression of dominant negative HSF1 exhibit increased HSC activation and profibrogenic responses in vitro. Finally, we show that activation of HSF1 significantly ameliorates profibrogenic gene expression in HSCs via decreased phosphorylation of c-Jun NH2-terminal kinases (JNK), confirming a protective role for HSF1 in preventing HSC activation and liver fibrosis.

METHODS

Human samples

Normal, NASH cirrhotic, and alcoholic cirrhotic human livers were provided by the Liver Tissue Cell Distribution System (Division of Pediatric Gastroenterology and Nutrition, University of Minnesota, Minneapolis) from the patients who received transplantation. Normal liver tissue was the noninvolved surrounding tissue, obtained from patients undergoing partial hepatectomy for liver cancer (Table 1).

Study approval

The study was approved by the Institutional Animal Care and Use Committee of the University of Massachusetts Chan Medical School. All animals received proper care.
Liver injury models

Hsf1-deficient mice (Hsf1^{−/−}; male) aged 8–12 weeks old on a mixed B6/CD1 background and corresponding wild-type (WT) littermates were used for the study. Homozygous Hsf1-deficient mice were obtained from Dr. Ashok Saluja, University of Miami Health System, on CD1 background, backcrossed 8–10 generations on C57BL/6, and Hsf1-deficient offspring were confirmed by real-time polymerase chain reaction (PCR) and electrophoretic mobility-shift assay (EMSA) (Supporting Methods). To generate stellate-specific HSF1-deficient (Hsf1^{fl/fl} LratCre^{+/−}) mice and hepatocyte-specific HSF1-deficient (Hsf1^{fl/fl} AlbCre^{+/−}) mice, Hsf1^{fl/fl} were obtained from Dr. Chengkai Dai (National Cancer Institute) and cross bred with LratCre transgenic mice or AlbCre transgenic mice (Jackson Laboratory). Hsf1^{+/−}Cre-negative littermates served as WT controls. Cell-specific knockouts were confirmed by isolation of liver cells and messenger RNA (mRNA) expression. Fibrosis was induced by intraperitoneal injection of 25% CCl₄ (Sigma-Aldrich) in corn oil (0.5 μl/g body weight), twice a week, for either for 2 or 6 weeks. Mice injected with corn oil served as controls. Acute toxic injury was induced by giving a single intraperitoneal injection of 1 μl/g body weight of 25% CCl₄ in corn oil, and livers were collected after 48 h. Fibrosis was also induced by diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; Dyets Inc.) for 4 weeks. Cholestatic liver fibrosis was induced by mice by common bile duct ligation (BDL) for 2 weeks as described.

Supplemental methods

Supplemental methods include biochemical assays, EMSA, HSC isolation, peritoneal exudate cell (PEC) isolation and stimulation, LX-2 cell stimulations, chemical genetic modulation of HSF1 in LX-2, small interfering RNA (siRNA) transfection, quantitative PCR, western blotting, immunohistochemistry, and terminal deoxynucleotidyl transferase–mediated deoxuryridine triphosphate nick-end labeling (TUNEL) staining.

Statistical analysis

Data are expressed as mean±SEM and considered statistically significant at p<0.05. Statistical analyses were performed using GraphPad Prism 8.1. Differences between two groups were assessed using a Student’s t-test. One-way or two-way analysis of variance was used to assess differences between multiple groups.

Activation of HSCs and differentiation to myofibroblasts is the hallmark of liver fibrosis. Having observed increased HSF1 in human cirrhotic and mouse fibrotic livers, we sought to determine whether HSF1 and HSPs are induced in HSCs. Nuclear localization of HSF1 in the pathogenesis of liver fibrosis is unknown. Here we observed that HSF1 was increased in both alcoholic cirrhotic and NASH cirrhotic livers when compared with normal liver biopsies and positively correlated with alpha-smooth muscle actin (αSMA) (Figure 1A). Nuclear localization of HSF1 in the hepatocytes was observed in the cirrhotic livers (Figure 1B). Elevated αSMA, collagen α1(I) (COL1A1), and HSP47 in the human cirrhotic livers validated the clinical features (Figure S1A,B). Transcriptional up-regulation of HSPs is a hallmark of HSF1 activation. Elevated HSP40, HSPA1A, and HSP90AA1 confirmed the presence of active HSF1 in both alcoholic and NASH cirrhotic human livers (Figure 1C).

HSF1 expression is increased but not activity in liver fibrosis

The role of cellular oxidative pathways in liver fibrosis is well-established. Oxidative stress can induce and activate proteostasis regulator, HSF1, which acts as a protective mechanism to restore cellular homeostasis. Clinical relevance of HSF1 in the pathogenesis of liver fibrosis is unknown. Here we observed that HSF1 was increased in both alcoholic cirrhotic and NASH cirrhotic livers when compared with normal liver biopsies and positively correlated with alpha-smooth muscle actin (αSMA) (Figure 1A). Nuclear localization of HSF1 in the hepatocytes was observed in the cirrhotic livers (Figure 1B). Elevated αSMA, collagen α1(I) (COL1A1), and HSP47 in the human cirrhotic livers validated the clinical features (Figure S1A,B). Transcriptional up-regulation of HSPs is a hallmark of HSF1 activation. Elevated HSP40, HSPA1A, and HSP90AA1 confirmed the presence of active HSF1 in both alcoholic and NASH cirrhotic human livers (Figure 1C).

Murine models of liver fibrosis including CCl₄ intoxication for 6 weeks and methionine-choline–deficient diet for 8 weeks exhibited hepatic Hsf1 induction compared with respective controls (Figure 1D). The murine fibrotic livers also exhibited elevated Hsp40, Hspa1a, and Hsp90aa1 (Figure 1E), similar to human cirrhotic livers (Figure 1C). While HSF1 and HSP90AA1 protein levels were elevated in fibrotic livers, HSPA1A was not significantly altered compared with controls (Figure 1F). Similar to the CCl₄ intoxicated animals, the DDC diet–fed fibrotic liver also demonstrated elevated hepatic HSF1 (Figure 1F). Interestingly, we found that DNA binding activity of HSF1 in fibrotic livers demonstrated a trend of decrease compared with the controls (Figure 1G). Acute CCl₄-induced liver injury leads to activation of early oxidative stress responses. After 48 h of acute CCl₄, we observed induction of Hsf1, Hsp40, Hspa1a, and Hsp90aa1 (Figure 1F), concomitant to up-regulation of αSma, Col1a1, platelet-derived growth factor receptor beta (Pdgfrβ), and Hsp47 (Figure S1C). At 72 h, Hsf1 and HSP genes decreased significantly, suggesting a transient induction of proteostasis responses (Figure 1F). Collectively, these results suggest a role for HSF1 in the pathophysiology of liver fibrosis.
HSF1, which confirms its stress-mediated activation, was not observed in αSMA-positive cells (blue nuclei) in fibrotic septae, but was observed in hepatocytes (brown nuclei) of human cirrhotic livers (Figure 2A).

Furthermore, αSma and Col1a1 expressing primary HSCs isolated from mice intoxicated with CCl4 for 2 weeks (Figure S2A), and BDL (Figure S2B) failed to express Hspa1a and Hsp90aa1 (Figure 2B,C). We...
also found that transforming growth factor β (TGFβ)—induced activation of HSCs, confirmed by induction of αSMA and Col1α1 in primary HSCs (Figure S2C) and LX-2 cells (Figure S2D), failed to induce Hspa1a and Hsp90αa1 (Figure 2D,E). We found decreased DNA binding activity of HSF1 in LX-2 cells exposed to TGFβ (Figure 2F). Previous studies have reported that JNK activation can suppress HSF1 transcriptional activity.[22] We found that TGFβ mediated JNK phosphorylation in activated LX-2 cells (Figure S2E), suggesting that JNK may likely mediate inactivation of HSF1 following exposure to profibrogenic stimulus. Our data show that lack of HSF1 activation in HSCs is linked to fibrosis, implying a protective role for HSF1 in HSC activation.

Deficiency of HSF1 exacerbates liver fibrosis

Next, we sought to understand whether deficiency of HSF1 in vivo would have an impact on induction of liver fibrosis. We used two models of liver fibrosis: biweekly intoxication with CCl4 for 6 weeks or chronic feeding with a diet containing 0.1% DDC for 4 weeks in Hsf1−/− and their WT counterparts. Hsf1−/− mice were confirmed by real-time PCR (Figure S3A). Also, lack of DNA binding activity in livers of Hsf1−/− mice confirmed the absence of functional HSF1 (Figure S3B). Furthermore, CCl4 intoxication of WT mice demonstrated elevated hepatic Hspa1a and Hsp90αa1, whereas no induction was observed in the Hsf1−/− mice (Figure S3C,D), confirming no functional activation of HSF1. Following CCl4 intoxication, Hsf1−/− mice demonstrated higher serum alanine transaminase (ALT) (Figure 3A). Although an increase in the trend of serum ALT was observed in the Hsf1−/− DDC-fed mice, the difference between WT and Hsf1−/− mice was not statistically significant (Figure 3A). Both CCl4 intoxication and DDC diet resulted in higher αSMA and Col1α1 in Hsf1−/− mice (Figure 3B). Western blotting and immunohistochemical staining revealed elevated hepatic αSMA in Hsf1−/− intoxicated with CCl4, for 6 weeks (Figure 3C,D) and 2 weeks (Figure S3E). Furthermore, both CCl4 intoxication and DDC diet led to higher hepatic collagen accumulation and increased bridging fibrosis in Hsf1−/− (Figure 3D).

F I G U R E 3 Deficiency of HSF1 exacerbates liver fibrosis. Wild-type (WT) and Hsf1−/− mice were either injected with corn oil or CCl4, twice weekly for 6 weeks, or fed with diet containing 0.1% DDC. (A) Hepatic injury was assessed by serum alanine aminotransferase (ALT). (B) Hepatic fibrosis was quantified by αSMA and collagen α1(I) (Col1α1) expression. (C) αSMA immunoblotting was quantified by normalizing to tubulin using ImageJ. (D) αSMA immunohistochemistry (original magnification ×10) was quantitated as percentage area demonstrating αSMA by ImageJ, Sirius red staining (original magnification ×10) with graphs represent percentage fibrotic area quantitated by ImageJ. (E) Expression of Tgfβ, platelet-derived growth factor receptor beta (Pdgfrβ), connective tissue growth factor (Ctgf), Pdgfrα, Hspa1a, and Hsp90αa1 were either injected with corn oil or CCl4, twice weekly for 6 weeks, or fed with diet containing 0.1% DDC. (F) Expression of Tgfβ, Pdgfrα, Pdgfrβ, Hspa1a, and Hsp90αa1 was assessed by qPCR. Statistical analysis was performed using Student’s t test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Growth factors like Tgfβ, Pdgfα, and connective tissue growth factor (Ctgf) induce trans-differentiation of HSCs and promote fibrosis.[3] CCl4 intoxication resulted in increase of Tgfβ in Hsf1−/− fibrotic livers at 2 weeks (Figure S3F). Six weeks of CCl4 intoxication induced Tgfβ and Pdgfa in Hsf1−/− fibrotic livers to some extent (Figure 3E). On the other hand, Pdgfrβ was significantly increased in Hsf1−/− after acute CCl4 intoxication (Figure S3E). Furthermore, Hsf1−/− fibrotic livers did not exhibit induction of Ctgf (Figure 3E). Pdgfrβ expression by activated HSCs binds to the PDGF ligands to activate mitogenic pathways in the stellate cells.[23] Our data show that Pdgfrβ is increased in Hsf1−/− fibrotic livers after 6 weeks (Figure 3E), acute, and 2 weeks of CCl4 administration (Figure S3F). The collagen-specific chaperone, Hsp47, was also elevated in Hsf1−/− and parallels increased collagen synthesis (Figure 3E). The balance between tissue inhibitors of metalloproteinases (TIMP) and matrix metalloproteinases (MMP) determines the extent of ECM deposition during hepatic fibrosis.[24] Hsf1−/− demonstrated higher tissue inhibitor of metalloproteinase 1 (Timp1) (Figure 3E) and decreased Mmp8 and Mmp13 (Figure 3E). In the DDC diet–induced fibrosis model, Hsf1−/− mice demonstrated elevated Tgfβ and Pdgfrβ (Figure 3F). In addition, Hsf1−/− fibrotic livers from DDC-fed mice showed increase in Pdgfa, Pdgfrα, Hsp47, and Timp1 (Figure 3F). However, expression of Mmp8 and Mmp13 remained high in these livers (Figure 3F). Collectively, our data indicate that—regardless of the etiological factors—HSF1 deficiency promotes HSC activation, profibrogenic responses, and ECM deposition.

Deficiency of HSF1 impedes resolution of fibrosis

Having established that absence of HSF1 accelerates the progression of liver fibrosis, we sought to understand whether HSF1 deficiency hinders resolution of fibrosis. WT and Hsf1−/− mice subjected to CCl4 intoxication for 6 weeks were allowed to recover for 4 weeks. Significant reduction in αSMA was observed in WT compared with Hsf1−/− mice after 4 weeks of recovery (Figure 4A). The Hsf1−/− mice following recovery still exhibit significant ECM deposition (Figure 4B) and Col1α1 (Figure 4C). The WT mice exhibited no induction of Hsp47 concomitant to reduced Col1α1, whereas the Hsf1−/− recovery
A group of mice demonstrated higher Hsp47, correlating with higher collagen deposition (Figure 4D). Timp1 was reduced significantly in the livers of WT, but Hsf1−/− mice displayed high Timp1 even after a 4-week recovery (Figure 4E). Induction of Timp1 provides pro-survival signals to activated HSCs, and its expression in the...
Deficiency of HSF1 delays resolution of liver fibrosis. WT and Hsf1^{−/−} mice injected with corn oil or CCl₄ for 6 weeks were allowed to recover for 4 weeks. Fibrosis was evaluated by αSMA immunoblotting and quantified by densitometry after normalization to tubulin using ImageJ (A), sirius red staining (original magnification ×10) and quantified by ImageJ (B), and Col1a1 (C), Hsp47 (D), Timp1 (E), and Mmp8 (F) expression (n = 4–7 per treatment group per genotype). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Hsf1^{−/−} livers after 4 weeks of recovery strengthens the presence of activated HSCs in these livers. Moreover, expression of Mmp8 in the Hsf1^{−/−} recovery group of animals suggests likely ongoing resolution after 4 weeks of recovery (Figure 4F). These results indicate that lack of HSF1 significantly hampers resolution of liver fibrosis.
Deficiency of HSF1 induces selective inflammatory response and facilitates neutrophil recruitment

Exacerbated chronic pro-inflammatory response is prerequisite for liver fibrosis.[26] Because HSF1 and HSPs interact and regulate signaling intermediates involved in innate and adaptive immune responses,[27] we evaluated inflammatory chemokines and cytokines implicated in hepatic fibrogenesis. Monocyte chemotactant protein 1 (Mcp1), important in myeloid cell recruitment and crucial in fibrosis,[28] was elevated in Hsf1−/− in both the CCl4-intoxicated (Figure 5A,C) and DDC diet–fed mice (Figure 5B). In contrast, CC-chemokine receptor 2 (CCR2), a MCP1-specific receptor,[15] was decreased in Hsf1−/− fibrotic livers in both models (Figure 5A,B). Chemokine (C-C motif) ligand 5, crucial for stellate cell migration and proliferation during liver fibrosis,[29] was induced to a similar level in both WT and Hsf1−/−. Macrophage inflammatory protein l alpha (Mip1α), also known to promote liver fibrosis,[30] was reduced in the Hsf1−/− fibrotic livers, in both models (Figure 5A,B). Although tumor necrosis factor alpha (Tnfα) and interleukin (Il)1β were decreased in the CCl4-intoxicated Hsf1−/− (Figure 5A), these were significantly elevated in the Hsf1−/− fibrotic livers induced by...
DDC diet (Figure 5B). After 6 weeks of CCl₄ administration, F4/80 expression (Figure 5B) was significantly reduced, whereas DDC diet in Hsf1⁻/⁻ fibrotic livers showed a trend toward increased F4/80 (Figure 5B). As macrophages contribute to the pool of Tnfa and Il1β, we predict that discrepancy in both models can be due to differences in F4/80-expressing macrophages. Similarly, Hsf1⁻/⁻ mice challenged with CCl₄ for 2 weeks displayed a decreasing trend in mRNA expression of F4/80 when compared with WT (Figure S4A). Recent studies have established that neutrophils promote HSC activation, and activated HSCs promote the survival of neutrophils.[31] Increased myeloperoxidase staining and CD11b indicated elevated neutrophil infiltration in Hsf1⁻/⁻ mice at 2 weeks (Figure 5D) and 6 weeks of CCl₄ administration (Figure S4B). Cellular cross-talk between HSF1 and inflammatory pathways is well established.[13,27,32] PECs from Hsf1⁻/⁻ displayed lower Il1β, Mcp1, Ile6 (Figure 5E) and TNFα (Figure 5F), suggesting dysfunctional macrophage activity. Collectively, our data suggest that neutrophils, and not macrophages, contribute to elevated fibrosis in Hsf1⁻/⁻ mice.

Absence of HSF1 promotes TGFβ-mediated activation of HSCs

Previous studies have reported TGFβ as a major profibrogenic factor. Also, we observed higher induction of Tgfβ1 in the Hsf1⁻/⁻ CCl₄-administered mice (Figure S3E). Thus, to determine the significance of HSF1 in HSC activation, we used different approaches to knock out HSF1 in HSCs and used TGFβ as a profibrogenic mediator in vitro. Primary HSCs were isolated from WT and Hsf1⁻/⁻ mice, and a representative image is depicted in Figure S5A. HSF1-deficient primary HSCs stimulated with TGFβ displayed increased αSma and Col1a1 (Figure 6A). Similar results were observed in TGFβ-stimulated LX-2 cells transiently transfected with HSF1 siRNA (siHSF1), in which significant up-regulation of αSMA and COL1A1 was observed compared to cells transfected with scrambled siRNA (scram) (Figure 6B). Knockdown efficiency of siHSF1 was approximately 80% (Figure S5B).

In another approach, we stably transduced LX-2 cells with a dominant negative, constitutively active version of HSF1 (dn-cHSF1) fused to a destabilized variant of E. coli dihydrofolate reductase (DHFR.dn-cHSF1.LX-2 cells). Addition of the small molecule Trimethoprim (TMP) to these cells stabilizes the N-terminal DHFR domain of the fusion protein and prevents proteasomal degradation, resulting in an increased pool of DHFR.dn-cHSF1.LX-2 cells (Figure 6C), which selectively inhibits endogenous HSF1 activity.[33] Adding TMP to DHFR.dn-cHSF1.LX-2 cells significantly decreased heat shock–mediated induction of HSPA1A (Figure 6C), validating the regulatable inhibition of endogenous HSF1 by DHFR.dn-cHSF1. Exposure of DHFR.dn-cHSF1.LX-2 cells to TMP followed by stimulation with TGFβ significantly elevated αSMA and COL1A1 compared with the non-TMP exposed cells (Figure 6D), confirming that HSF1 inhibition promotes HSC activation.

HSC and hepatocyte-specific HSF1 deficiency enhances profibrogenic response

Having observed an exacerbated profibrogenic response in HSF1-deficient HSCs, we sought to determine the effects of cell-specific HSF1 deficiency in vivo on CCl₄-mediated liver injury. We generated HSC-specific HSF1-deficient mice by cross-breeding HSF1-floxed (HSF1floxed) mice with Lrat Cre transgenic mice. To characterize and evaluate specificity of HSF1 deletion, hepatocytes, Kupffer cells (KCs), HSCs, and bone marrow–derived macrophages (BMDMs) were isolated from Hsf1floxed and Hsf1⁺/⁻ LratCre⁺/⁻ mice subjected to heat shock at 42°C, and induction of Hspa1a was analyzed. HSCs isolated from Hsf1⁺/⁻ LratCre⁺/⁻ mice demonstrated about 85% decrease in HSF1 activity (Figure 7A). Hepatocytes, KCs, and BMDMs demonstrate similar induction of Hspa1a (Figure S6A), confirming that HSF1 deletion is restricted only to HSCs. Primary HSCs isolated from Hsf1⁺/⁻ LratCre⁺/⁻ mice stimulated with TGFβ showed higher αSma and Col1a1 compared with Hsf1⁺/⁻ (Figure S6B), demonstrating HSC activation similar to Hsf1⁻/⁻ (Figure 6A). Using the acute CCl₄ model that establishes a pro-inflammatory and profibrotic milieu in the liver, we observed increased αSma, Pdgfα, Pdgfβ, and Mcp1 in Hsf1⁻/⁻ LratCre⁺/⁻ mice compared with Hsf1⁺/⁻ (Figure 7B). Elevated Tnfα and Il1β were also noted in CCl₄-treated Hsf1⁺/⁻ LratCre⁺/⁻ mice (Figure 7C) showed comparable induction in both groups of mice. Inflammatory markers such as Mcp1, Ccr2, Mip1α, Tnfa, Il1β and F4/80 (Figure 5E), and profibrogenic markers like Tgfβ1, Pdgfα, Pdgfβ, and Mmp13 (Figure 7D), were increased after CCl₄ similar to Hsf1⁻/⁻ mice. These data highlight the importance of HSF1 in early HSC activation and fibrosis.

Apart from HSCs, hepatocytes significantly contribute to the pathogenesis of liver fibrosis through hepatocellular cell death and oxidative stress. To evaluate the importance of hepatocellular HSF1 in liver fibrosis, we generated hepatocyte-specific HSF1-deficient mice by cross-breeding HSF1 floxed (HSF1floxed) mice with AlbCre transgenic mice. Hepatocyte-specific deletion of HSF1 was confirmed in Hsf1⁺/⁻ AlbCre⁺/⁻ mice by reduced Hspa1a in the heat shocked primary hepatocytes, when compared with the Hsf1⁺/⁻ mice (Figure 7E).
Administration of acute CCl₄ to Hsf1⁻⁻/⁻ AlbCre⁺⁺/⁻ mice resulted in elevated αSMA protein (Figure 7F) as well as αSma, Pdgfβ, Pdgfrβ, and Mcp1 mRNA (Figure 7G). Similar increase in αSMA was observed in Hsf1⁻⁻/⁻ AlbCre⁺⁺/⁻ mice after 6 weeks of CCl₄ (Figure 7H). Profibrogenic genes (Figure 7I) and pro-inflammatory cytokines (Figure S6F) was also increased in 6-week CCl₄-treated Hsf1⁻⁻/⁻ AlbCre⁺⁺/⁻ mice. Assessment of hepatocyte cell death revealed significant increase in caspase-3 activity (Figure 7J) and TUNEL-positive cells (Figure 7K) in CCl₄-treated Hsf1⁻⁻/⁻ AlbCre⁺⁺/⁻ mice. Collectively, our data suggest that deficiency of HSF1 in stellate cell and hepatocytes enhances profibrogenic responses in the liver.
HEAT SHOCK FACTOR 1 IN LIVER FIBROSIS

(A) Hsc70 mRNA (Fold change)

(B) Acute CCl4

(C) Hsf1f/f LratCre+/

(D) 6 weeks CCl4

(E) Hepatocytes

(F) Hsf1f/f AlbCre+/−

(G) Acute CCl4

(H) Hsf1f/f AlbCre+/−

(I) 6 weeks CCl4

(J) Caspase 3 activity (RLU)

(K) TUNEL

Downloaded from http://journals.lww.com/hepcomm by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX on 12/14/2023
Activation of HSF1 ameliorates TGFβ-mediated induction of profibrogenic genes

Because both Hsf1−/− and in vitro inhibition of HSF1 escalated HSC activation, we sought to understand the effects of HSF1 activation on induction of profibrogenic genes in response to TGFβ. In the first approach, LX-2 cells were heat shocked (HS) to activate HSF1, allowed to recover for 1 h, and exposed to TGFβ. Heat shock–mediated activation of HSF1 decreased αSMA and COL1A1 in response to TGFβ (Figure 8A). Elevated HSPA1A at 2, 4, and 8 h after HS confirmed the activation of HSF1 (Figure S7A). In another approach, we used celestrol, a pharmacological inducer of HSF1 activation with kinetics similar to HS. [34] Treatment of TGFβ-stimulated LX-2 cells with celestrol at a concentration of 1.5 μM minimally affected cell viability (Figure S7B) and decreased αSMA and COL1A1 (Figure 8B). Activation of HSF1 by celestrol was confirmed by the increased HSPA1A in the celestrol-treated LX-2 cells (Figure S7C).

To better understand whether HSF1 activation can reduce HSC activation, we used a chemical method to induce HSF1 activity independent of stress stimuli. We engineered LX-2 cells to stably express a previously reported constitutively active HSF1 variant (cHSF1) fused to a ligand-regulated, destabilized version of FKBP (FKBP.cHSF1.LX-2 cells).

FIGURE 8C. FKBP.cHSF1.LX-2 cells treated with vehicle and then exposed to TGFβ displayed induction of αSMA and COL1A1 similar to that seen in the parental LX-2 cells. Addition of Shield-1 significantly attenuated the TGFβ-mediated expression of αSMA and COL1A1 (Figure 8D). Previous studies reported that TGFβ induces JNK phosphorylation, which is required for HSC activation. [36] The FKBP.cHSF1.LX-2 cells stimulated with TGFβ increased phosphorylated JNK (p-JNK) (Figure 8D), similar to LX-2 cells (Figure S2D).

Notably, addition of Shield-1 activated HSF1 and diminished p-JNK (Figure 8E), which correlated with decreased profibrogenic response (Figure 8D). Thus, we can conclude that HSF1 activity is directly responsible for the attenuation of these profibrogenic genes via inhibition of JNK activity. Overall, our studies identify that HSF1 can regulate and curb HSC activation promoting anti-fibrotic responses in the liver.

DISCUSSION

Traditionally characterized as a sensor of cellular stress caused by protein misfolding, HSF1 functions as a transcriptional regulator of HSPs to restore proteostasis. Here we established that loss of HSF1 activity facilitates HSC activation and profibrogenic gene expression. We identified that HSF1 and HSPs are elevated in human cirrhotic and mouse fibrotic livers. However, fibrotic livers and myofibroblasts associated with ECM did not show activated HSF1. Also, whole-body, hepatocyte, and stellate cell–specific HSF1 deficiency exacerbated liver fibrosis by increased HSC activation. Hsf1-deficient stellate cells in vitro and stellate cell–specific HSF1 knockout mice exhibited enhanced HSC activation. On the other hand, activation of HSF1 caused a significant reduction in HSC activation likely via decreased JNK activation. Overall, our studies demonstrate that TGFβ-mediated JNK may induce loss of HSF1 activity and facilitate hepatic fibrosis, whereas activation of HSF1 reduces HSC activation likely via inhibition of JNK and induces antifibrotic responses (Figure 8F).

Overactivation of HSF1 in alcoholic murine macrophages has been previously demonstrated by our group. [12,14] Recent studies point to a role for HSF1 in metabolic processes [80] and demonstrate that HSF1 is required for maintaining oxidized nicotinamide adenosine dinucleotide NAD+ and adenosine triphosphate in hepatic cells. [37] Transition of quiescent HSCs to myofibroblast is triggered by the activation of NOX and generation of ROS. [5] The oxidant byproducts such as ROS and reactive nitrogen species results in decline of cell homeostasis and detrimental alterations leading to pathological conditions. [38] HSF1 and HSPs are regulators of the cytoplasmic proteostasis network.
FIGURE 8 Activation of HSF1 ameliorates TGFβ-mediated LX-2 cell activation. (A,B) Expression of αSMA and COL1A1 in TGFβ-stimulated heat-shocked LX-2 cells (A), and LX-2 cells treated with celastrol (B). (C) Schematic representation of FKBP.cHSF1 variant of LX-2 cells and assessment of HSP40, HSPA1A, and HSP90AA1 in the FKBP.cHSF1.LX-2 cells in the presence or absence of Shield-1 (n = 6). (D) αSMA and COL1A1 in TGFβ-stimulated FKBP.cHSF1.LX2 cells in the presence or absence of Shield-1. (E) Lysates from FKBP.cHSF1.LX2 stimulated with TGFβ were assessed for p-JNK, JNK, HSP70, and β-actin by immunoblotting and quantified by ImageJ. (F) Schematic representation demonstrating the effects of HSF1 deficiency on HSC activation (n = 6–9 per treatment group). *p<0.05, ****p<0.0001.
that senses cellular stress to restore homeostasis.[20] Increased HSFl and HSPs in human cirrhotic and murine fibrotic livers is likely a defense mechanism that cells adapt to restore the cellular homeostasis.

Although nuclear HSFl is observed in hepatocytes, activated stellate cells did not exhibit nuclear HSFl and downstream HSPs. Similar cell-specific differences in proteostasis mediators are described previously in the brain.[36] Activation of JNK is known to suppress HSFl activity.[23] In the CCl\textsubscript{4}-induced fibrotic livers, JNK activation in activated myofibroblast and not hepatic parenchyma is reported.[36] Our data suggest that TGF\textbeta-induced p-JNK during HSC activation[36] may inhibit HSFl activity. Activation of proteostasis sensors is required for cell survival during stressful conditions and maintenance of cellular homeostasis. Hence, the inability to activate HSFl in HSCs is likely detrimental, leading to fibrosis.

Using HSFl−/− mice, we revealed that absence of HSFl exacerbates liver fibrosis as evidenced by increased HSC activation, ECM deposition, and profibrogenic gene activation. Previous studies demonstrate a positive relation between HSFl activation and expression of Hsp47, a collagen-specific chaperone in LX-2 cells.[10] Despite the deficiency of HSFl, we observed high expression of Hsp47, concomitant to increased Col1a1 in HSFl−/− fibrotic livers. These data suggest that Hsp47 may be regulated by transcription factors other than HSFl, such as SP1 and ZF9, which are previously implicated in HSC activation.[40,41] Expression of Timp1 is increased in HSFl−/− fibrotic livers, whereas Mmp8 and 13 are decreased, suggesting that elevated Timp1 may result in increased ECM via down-regulation of MMPs. Liver macrophages are the predominant source of Mmp8 and MMP13.[42] HSFl−/− mice inherently exhibit reduced migration and lack of terminal differentiation of macrophages.[43] It is likely that reduced macrophages contribute to decreased MMPs and increased ECM deposition in HSFl−/− mice.

In addition to their contribution to fibrogenic processes, macrophages are also crucial mediators of resolution of liver fibrosis.[42] Decreased macrophages in HSFl−/− fibrotic livers after 6 weeks of CCl\textsubscript{4} intoxication may further account for the delay in the resolution of liver fibrosis in HSFl−/− mice. Studies demonstrate that regression of liver fibrosis in Hspa1a/b−/− mice was strongly accelerated compared with WT mice, likely due to apoptosis of inactivated HSCs.[44] Interestingly, HSFl−/− mice exhibit a lesser degree of resolution, suggesting that HSFl, which is a transcriptional regulator of Hspa1a, may provide a protective regulatory function in reversal of activated HSCs in addition to its antiapoptotic properties. Thus, HSFl may play a central role in driving antifibrotic responses by modulating HSC activation.

Hepatic inflammation mediated by macrophages is tightly linked to HSC activation and development of fibrosis.[26] HSFl−/− mice show elevated Mcp1 and decreased Ccr2 and Mip1a. Following liver injury, MCP1 is secreted by hepatocytes, KCs, and activated stellate cells.[14,23] It is likely that increased Mcp1 in HSFl−/− mice is predominantly contributed by hepatocytes and activated HSCs. TNF\alpha and IL-1\beta are two potent inflammatory cytokines implicated in liver fibrosis.[3] Although the DDC model of liver fibrosis demonstrated elevated Tnf\alpha and Il1\beta expression, we did not observe induction of Tnf\alpha and Il1\beta in HSFl−/− fibrotic livers induced by CCl\textsubscript{4} intoxication, indicating no significant contribution of macrophages in inflammation in HSFl−/− mice. This can be attributed either to differences in the stage of disease progression in both fibrosis models or the defect in monocyte differentiation in HSFl−/− mice. Previous studies have shown that absence of HSFl decreases the transcription of the Spl1/Pu.1 gene required for monocyte to macrophage differentiation, resulting in about 50% decrease in macrophage activation.[43] In line with this, our data revealed that HSFl−/− PECs stimulated with LPS displayed decreased induction of pro-inflammatory cytokines. Notably, we observed increased hepatic infiltration of neutrophils in CCl\textsubscript{4}-administered HSFl−/− mice. Our finding is supported by Chen et al., who demonstrated an increase in hepatic neutrophils in LPS-administered HSFl−/− mice due to greater surface expression of P-selectin glycoprotein ligand-1 that promotes leukocyte recruitment.[45] Neutrophils promote HSC activation, and, in turn, activated HSCs increase the survival of neutrophils in the model of high-fat diet and binge ethanol.[31] It is likely that decreased HSFl activity in the liver promotes higher neutrophil activation, and this will be evaluated in the future. Our data establish that HSFl−/− fibrotic livers demonstrate selective increase in inflammatory response, likely facilitated by neutrophils.

Because HSFl activity is dramatically reduced in activated HSCs, we investigated the role of HSFl in HSC activation. We observed that HSFl-deficient HSCs show exacerbated profibrogenic gene expression in vitro. Likewise, our data show that stellate cell–specific HSFl deficiency confers elevated fibrosis genes in an acute CCl\textsubscript{4} model of liver injury. In fact, primary HSFl-deficient stellate cells isolated from HSFl−/− and LratCre−/− mice also show increased aSma and Col1a1 when stimulated with TGF\beta1 in vitro. We did not use PDGF as a profibrogenic stimul, as previous studies have reported that HSFl deficient mouse embryonic fibroblasts are resistant to PDGF-mediated proliferation.[46] Furthermore, our data show similar extent of fibrosis after 6 weeks of CCI\textsubscript{4} administration between HSFl−/− and HSFl−/− LratCre−/− mice, suggesting that HSFl in hepatocytes may also contribute to augmented fibrosis in whole-body HSFl knockouts. We further investigated this possibility by generating HSFl−/− AlbCre−/− mice, which demonstrated elevated liver injury in response to acute CCI\textsubscript{4}. Hepatocellular injury leads to higher ROS production via nicotinamide adenine dinucleotide phosphate (reduced form) oxidases,
leading to its interaction with surrounding inflammatory cells and HSCs facilitating the progression of liver fibrosis.\cite{67} Because HSF1 is required for the expression of anti-apoptotic gene HSPA1A,\cite{48} and to combat oxidative stress,\cite{19} we confirmed increased hepatocellular cell death in Hsf1fl/fl AlbCre+/- mice, which likely induces profibrogenic gene response. These data suggest that active HSF1 plays a beneficial role in ameliorating liver fibrosis via regulation of cell death pathways and myofibroblast differentiation in a cell-specific manner.

The beneficial effects of HSF1 activation on obesity, insulin resistance, and liver steatosis in mice exposed to high-fat diet have been previously reported.\cite{8} Augmentation of HSF1 activity via celastrol decreases inflammation and prevents liver dysfunction in response to thioacetamide exposure.\cite{48} In our study, activation of HSF1 down-regulated TGFβ-mediated profibrogenic genes in HSCs. TGFβ promotes JNK phosphorylation in HSCs, and pharmacological inhibition of JNK results in decreased HSC activation and fibrosis.\cite{36} HSF1 is known to suppresses activity of JNK.\cite{50} Our studies demonstrate that constitutive activation of HSF1 leads to decreased phosphorylation of JNK in response to TGFβ stimulation, which in turn leads to decreased TGFβ-mediated profibrogenic response (Figure 8F).

In summary, we establish that absence of HSF1 promotes HSC activation and liver fibrosis. HSF1 deficiency hampers resolution of liver fibrosis, and its activation prevents TGFβ-mediated expression of profibrogenic genes. Thus, up-regulation of HSF1 activity as a potential therapeutic for liver fibrosis is attractive. Our study introduces a paradigm in understanding the role of proteostasis mediators in pathogenesis of liver fibrosis. Future studies dissecting the stellate cell–specific antifibrogenic transcriptional program regulated by HSF1 will uncover underlying mechanisms in liver fibrosis and identify potential therapeutic targets.

ACKNOWLEDGMENT

The authors thank Dr. Ashok Saluja for providing the HSF1 knockout mice, and Dr. Scott Friedman for providing the LX-2 cells.

FUNDING INFORMATION

Supported by the National Institutes of Health (National Institute Alcohol Abuse and Alcoholism - R01 AA17986-01A1 [PM], R01 AA25289-01 [PM] and National Institute of Arthritis and Musculoskeletal and Skin Diseases - R01 AR071443 [MS]).

CONFLICT OF INTEREST

Nothing to report.

REFERENCES

1. Weiskirchen R, Weiskirchen S, Tacke F. Recent advances in understanding liver fibrosis: bridging basic science and individualized treatment concepts. F1000Res. 2018;7:921.

2. Yoon YH, Chen CM. Liver cirrhosis mortality in the United States: national, state, and regional trends, 2000–2015 National Institute on Alcohol Abuse and Alcoholism Division of Epidemiology and Prevention Research Alcohol Epidemiologic Data System 2018. Surveillance Report. 2018;111:1–73.

3. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–79.

4. Maiers JL, Malhi H. Endoplasmic reticulum stress in metabolic liver diseases and hepatic fibrosis. Semin Liver Dis. 2019;39:235–48.

5. Liang S, Kisseleva T, Brenner DA. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol. 2016;7:17.

6. Diesen DL, Kuo PC. Nitric oxide and redox regulation in the liver. Part II: Redox biology in pathologic hepatocytes and implications for intervention. J Surg Res. 2011;167:96–112.

7. Calderwood SK. HSF1, a versatile factor in tumorigenesis. Curr Mol Med. 2012;12:1102–7.

8. Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1alpha transcriptional Axis. Cell Metab. 2015;22:695–708.

9. Choudhury AMP. Chaperones in sterile inflammation and injury. In: Asea A, Kaur P, editors. Chaperone activity of heat shock proteins. Heat Shock Proteins. Volume 16. Cham, Switzerland: Springer; 2019.

10. Park SJ, Sohn HY, Park SI. TRAIL regulates collagen production through HSF1-dependent Hsp47 expression in activated hepatic stellate cells. Cell Signal. 2013;25:1635–43.

11. Sasaki H, Sato T, Yamauchi N, Okamoto T, Kobayashi D, Iyama S, et al. Induction of heat shock protein 47 synthesis by TGF-β and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immunol. 2002;168:5178–83.

12. Muralidharan S, Ambade A, Fulham MA, Deshpande J, Catalano D, Mandrekar P. Moderate alcohol induces stress proteins HSF1 and hsp70 and inhibits proinflammatory cytokines resulting in endotoxin tolerance. J Immunol. 2014;193:1975–87.

13. Ambade A, Catalano D, Lim A, Mandrekar P. Inhibition of heat shock protein 47 (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology. 2012;55:1585–95.

14. Mandrekar P, Catalano D, Jeliazkova V, Kodys K. Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-alpha regulation. J Leukoc Biol. 2008;84:1335–45.

15. Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen M, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185–97.

16. Ichirata-Vellve A, Petrasek J, Satellite S, Rokitskaya T, Kodys K. Alcohol-induced activation of the JNK/p38 MAPK pathways in the liver with dysregulated bile transporters and impaired tight junctions during chronic liver injury in mice. Gastroenterology. 2018;155:1218–32. e1224.

17. Pradhan-Sundt T, Vats R, Russell JO, Singh S, Michael AA, Molina L, et al. Dysregulated bile transporters and impaired tight junctions during chronic liver injury in mice. Gastroenterology. 2018;155:1218–32. e1224.

18. Xie H, Pradere JP, Affo S, Capito DH, Friedman R, Lefkovitch JH, et al. Epithelial transforming growth factor-β signaling does not contribute to liver fibrosis but protects mice from cholangiocarcinoma. Gastroenterology. 2016;150:720–33.

19. Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 2003;17:516–28.

20. Dai C, Sampson SB. HSF1: guardian of proteostasis in cancer. Trends Cell Biol. 2016;26:17–28.
21. BaecK C, Wehr A, KarlmakR KR, Heymann F, VucM r, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61:416–26.

22. Dai R, Frejtag W, He B, Zhang Y, Mivechi NF. C-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppresses its transcriptional activity. J Biol Chem. 2000;275:18210–8.

23. Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X, Fiel MI, et al. Beta-PDGFR receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 2015;63:141–7.

24. Duarte S, Baber J, Fujii T, Colto AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015;44:46–157.

25. Yoshihi H, Kuriyama S, Yoshih I, Ikenaka Y, Noguchi R, Nakatani T, et al. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology. 2002;36:850–60.

26. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014;20:2515–32.

27. Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol. 2013;94:1167–84.

28. Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol. 1998;152:423–30.

29. Berres ML, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H, et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest. 2010;120:4129–40.

30. Heinrichs D, Berres ML, Nellen A, Fischer P, Scholten D, Trautwein C, et al. The chemokine CCL3 promotes experimental liver fibrosis in mice. PLoS One. 2013;8:e66106.

31. Zhou Z, Xu MJ, Cai Y, Wang W, Jiang MJ, Varga ZV, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol. 2018;5:399–413.

32. Choudhury A, Bullock D, Lim A, Argemi J, Orning P, Lien E, et al. Inhibition of HSP90 and activation of HSF1 diminish macromolecular NLRP3 inflammasome activity in alcohol-associated liver injury. Alcohol Clin Exp Res. 2020;44:1300–11.

33. Moore CL, Dewal MB, Nekongo EE, Santiago S, Lu NB, Levine SS, et al. Transportable, chemical genetic methodology for the small molecule-mediated inhibition of heat shock factor 1. ACS Chem Biol. 2016;11:200–10.

34. Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, et al. Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem. 2004;279:5605–60.

35. ShoulLers MD, Ryno LM, Cooley CB, Kelly JW, Wiseman RL. Broadly applicable methodology for the rapid and dosable small molecule-mediated regulation of transcription factors in human cells. J Am Chem Soc. 2013;135:8129–32.

36. Kluwe J, Pradere JP, Gwak GY, Mencin A, De Minicis S, Osterreicher CH, et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology. 2010;138:347–59.

37. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723–41.

38. Pajares M, Jimenez-Moreno N, Dias IHK, Debelec B, Vucetic M, Fladmark KE, et al. Redox control of protein degradation. Redox Biol. 2015;6:409–20.

39. Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, et al. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc Natl Acad Sci USA. 2015;112:E2497–506.

40. Rippe RA, Almounajed G, Brenner DA. Sp1 binding activity increases in activated Ito cells. Hepatology. 1995;22:241–51.

41. Ratziu V, Lalazar A, Song D,D, Qiang D, Collins C, Shaulian E, et al. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA. 1998;95:9500–5.

42. Fallowsfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benvyon RC, Duffield JS, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–95.

43. Jego G, Lanneau D, De Thonel A, Berthenet K, Hazoume A, Droin N, et al. Dual regulation of S$^\text{F}1$/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia. 2014;28:1676–86.

44. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA. 2012;109:9448–53.

45. Chen S, Zuo X, Yang M, Lu H, Wang N, Wang K, et al. Severe multiple organ injury in Hsf1 knockout mice induced by lipo polysaccharide is associated with an increase in neutrophil infiltration and surface expression of adhesion molecules. J Leukoc Biol. 2012;92:851–7.

46. Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2004;119:1005–18.

47. De Minicis S, Seki E, Paik YH, Osterreicher CH, Kodama Y, Kluwe J, et al. Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology. 2010;52:1420–30.

48. Jaattela M, Wissing D, Kolkholm T, Kallunki T, Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 1998;17:6124–34.

49. Sharma S, Mishra R, Walker BL, Deshmukh S, Zampino M, Patel J, et al. Celastrol, an oral heat shock activator, ameliorates multiple animal disease models of cell death. Cell Stress Chaperoners. 2015;20:185–201.

50. Su KH, Cao J, Tang Z, Dai S, He Y, Sampson SB, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527–39.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Choudhury A, Ratna A, Lim A, Sebastian RM, Moore CL, Filliol AA, Loss of heat shock factor 1 promotes hepatic stellate cell activation and drives liver fibrosis. Hepatol Commun. 2022;6:2781–2797. https://doi.org/10.1002/hep4.2058