COMPASS, a Histone H3 (Lysine 4) Methyltransferase Required for Telomeric Silencing of Gene Expression*

Received for publication, January 12, 2002
Published, JBC Papers in Press, January 22, 2002, DOI 10.1074/jbc.C200023200

Nevan J. Krogan‡‡, Jim Dover³, Shahram Khorrami, Jack F. Greenblatt‡‡‡, Jessica Schneider, Mark Johnston*, and Ali Shilatifard††††

From the 1Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, the 1Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, and the 1Banting and Best Department of Medical Research, Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada

The trithorax (Trx) family of proteins is required for maintaining a specific pattern of gene expression in some organisms. Recently we reported the isolation and characterization of COMPASS, a multiprotein complex that includes the Trx-related protein Set1 of the yeast Saccharomyces cerevisiae. Here we report that COMPASS catalyzes methylation of the fourth lysine of histone H3 in vitro. Set1 and several other components of COMPASS are also required for histone H3 methylation in vivo and for transcriptional silencing of a gene located near a chromosome telomere.

Alteration of chromatin by covalent modification of histone proteins is central to the regulation of gene expression in eukaryotic organisms (1–3). Acetylation of histones H3 and H4 are the best characterized covalent modifications of histones and have wide ranging effects on gene expression (1–4). Histone phosphorylation is important for transcriptional activation, condensation of chromosomes during mitosis and meiosis, and regulation of cell division (5, 6).

Recently, Lys4 and Lys9 of histone H3 and Arg3 of histone H4 were found to be methylated (7, 8). An enzyme that catalyzes the methylation of Lys4 of histone H3 was identified in mammals (human SUV39H1 and mouse Suv39 h1) and found to be the homologue of Drosophila Su(var)3–9, involved in silencing of heterochromatic gene expression, and of Schizosaccharomyces pombe clr4, which is involved in silencing of the mating-type locus and genes near centromeres (9–12). The catalytic domain of Su(var)39 is thought to be its SET domain, which takes its name from the Drosophila proteins Su(var)3–9, Enhancer of zeste (E(z)), and trithorax (trx) (13, 14).

We recently identified COMPASS, a multiprotein complex that contains the Saccharomyces cerevisiae SET domain-containing protein Set1 and another yeast protein related to the human Trx protein ASH2 (15). Here we show that COMPASS catalyzes methylation of lysine 4 of histone H3 and is required for transcriptional silencing of genes located near chromosome telomeres.

EXPERIMENTAL PROCEDURES

Materials—Media and reagents were purchased from Sigma. Western development reagents were purchased from ICN ImmunoBiologicals (Irvine, CA). S-Adenosylmethionine was purchased from Fisher.

Yeast Strains—The role of the CPS genes (encoding proteins that comprise COMPASS) in telomere-associated silencing of gene expression was determined by disrupting them in the strain UCC1001 (MATa ure-52 his3D200 ade2–101 lys2–801 trp1-D1 leu2-D1 tris::KanMX418), which carries the URA3 gene near the left telomere of chromosome 7. Each CPS gene was replaced by the KanMX gene (16) by transforming yeast to G418 resistance with a PCR product of cpc::KanMX (amplified from the S. cerevisiae yeast gene knockout collection (17) that includes 45 nucleotides of DNA sequence flanking each side of the cpc::KanMX gene disrupted (to provide for homologous recombination with the target CPS genes)). Each cpc::KanMX mutant was confirmed by a PCR test using, as primers, one oligonucleotide within KanMX and one oligonucleotide flanking the disrupted CPS gene.

Preparation of Yeast Cell Extracts and Test for Histone H3 Methylation—Yeast cells were grown in YPD overnight to mid-log phase. Cells were washed with distilled water, pelleted, and resuspended in lysis buffer (20 mM Tris at pH 7.5, 50 mM KCl, 1 mM EDTA, 0.1% Nonidet P-40, 1 mM dithiothreitol, and fresh protease and phosphatase inhibitors (1 mg/ml aprotinin, leupeptin, and pepstatin A, 1 mM phenylmethylsulfonyl fluoride, 1 μM microcystin-LR, 2 μM phenylmethylsulfonyl fluoride). Cells were then disrupted by vortexing with glass beads (0.5 mm diameter) from Bioprobe (Product) for 15 min at 4 °C. The contents of the microcentrifuge tubes were punctured, and cell extracts were recovered into a larger tube by brief centrifugation in a microcentrifuge. The lysate was clarified by centrifugation at 20,000 × g for 30 min, subjected to SDS-PAGE, transferred to nitrocellulose membrane, and probed with anti-methylhistone antisera (United States Biochemical, Inc., catalog number 07-030) at 1:1000 dilution, followed by detection of the bound antibody with horseradish peroxidase conjugated to anti-rabbit IgG secondary antibodies (1:10,000 dilution).

RESULTS

Methylation of Lysine 4 of Histone H3—We tested for the presence of methylated histones H3 and H4 by employing antibodies specific for methylated Lys4 of histone H3, Lys3 of histone H3, and Arg3 of histone H4. Probing yeast extracts separated by SDS-PAGE with antisera specific to these modifications reveals that only Lys4 of histone H3 is methylated in S. cerevisiae (Fig. 1A). The protein indicated is indeed [methyl-Lys4]H3, because histone H3 purified from cells via 6 histidine residues placed at its C terminus is recognized by this antisera and exhibits approximately the same mobility in SDS-PAGE as the protein inferred to be [methyl-Lys4]H3 (Fig. 1C). We observed methylation of histone H3 Lys4 and histone H4 Arg3 in extracts obtained from both mammalian and Drosophila.
COMPASS, a Histone H3 (Lysine 4) Methyltransferase

FIG. 1. Methylation of the fourth lysine of histone H3 in *S. cerevisiae*. 32 A, whole cell extracts from *S. cerevisiae* were subjected to a 16% SDS-PAGE, blotted to nitrocellulose membrane, and probed with polyclonal antisera specific for methylated Lys\(^4\) of histone H3, Lys\(^4\) of histone H3, and Arg\(^2\) of histone H4. B, whole cell extracts from wild-type *S. cerevisiae* or yeast strains missing SET1 or SET2 were tested for the presence of Lys\(^4\)-methylated histone H3. Cell extracts were subjected to 16% SDS-PAGE, blotted to nitrocellulose membrane, and probed with polyclonal antisera specific for Lys\(^4\) of histone H3. C, to confirm that we have correctly assigned the SDS-PAGE band corresponding to Lys\(^4\)-methylated H3, the histone H3 gene (HHT2) was tagged at its C terminus with six histidine residues in both wild-type and set1Δ cells. Whole cell extracts of these cells were treated with nickel-agarose beads, and the bound fraction was subjected to a 16% SDS-PAGE, blotted to nitrocellulose membrane, and probed with the anti-[methyl-Lys\(^4\)]H3 polyclonal antiserum. D, increasing amounts of Cps60 TAP-purified COMPASS were tested for *in vitro* histone H3 Lys\(^4\) methyltransferase activity. Reaction mixtures containing cold S-adenosylmethionine, recombinant histone H3, and appropriate buffers (9) without or with increasing concentration of COMPASS were incubated at 37°C for 1 h. Reactions were stopped by the addition SDS-PAGE sample loading buffer and subjected to a 16% SDS-PAGE. The appearance of Lys\(^4\)-methylated histone H3 was detected by Western analysis employing polyclonal antisera specific to Lys\(^4\) of histone H3.

Fig. 2. Analysis of the subunits of COMPASS essential for histone H3 Lys\(^4\) methylation *in vivo*. A, the purified core COMPASS consists of Set1, Cps60, Cps50, Cps40, Cps35, Cps30, Cps25, and Cps15. TAP-tagged Cps60 was purified as described previously (15) and applied to 16% SDS-PAGE, and COMPASS subunits were visualized by silver staining. Cps15 is not detected in COMPASS separated on a lower percentage SDS-PAGE gel. B, the presence of methylation of Lys\(^4\) of histone H3 in yeast strains missing genes encoding subunits of COMPASS was determined by subjecting an increasing concentration of whole cell extracts from wild-type and nonessential cps mutants to 16% SDS-PAGE followed by immunoblotting as described above. We observed the same pattern of H3 Lys\(^4\) methylation in the cps mutants from the yeast gene knockout strain collection (data not shown).

DISCUSSION

The Set1 protein of yeast is similar to the *Drosophila* and human trithorax proteins (Trithorax (Trx) and MLL, respectively) (21–24). Our understanding of the role of this class of proteins in regulation of gene expression and development is rudimentary. Trx is a putative DNA-binding protein that seems to be a positive regulator of gene expression (24). Mutations affecting MLL result in the development of hematological malignancies (24). Our characterization of the Set1-containing protein complex we call COMPASS is a first step toward un-

1. The abbreviations used are: TAP, tandem affinity purification; HMT, histone methyltransferase; 5-FOA, 5-fluoro-orotic acid.
understanding the function of SET-domain-containing proteins. We and others (15, 18, 25) have now provided evidence that COMPASS is a histone methyltransferase that catalyzes methylation of Lys⁴ of histone H3.

Set1 is the COMPASS subunit likely responsible for its catalytic activity. It appears that tagging Set1 on its C-terminal domain cripples its methyltransferase activity both in vivo and in vitro (Fig. 1E). Although it was recently demonstrated that the Set domain of mammalian Trx (MLL) lacks histone methyltransferase activity in vitro (9), it is possible the recombinant protein used in that study is defective due to the lack of interacting proteins. Some of the other COMPASS subunits that are required for its methyltransferase activity in vivo may play a role in either substrate recognition or proper folding of the Set domain.

It has been reported that the Trx-related Ash1 protein is a methyltransferase specific for H3 lysines 9 and 27 (25). The observation that Cps60, which is similar to Ash2, is important for the methyltransferase activity of COMPASS suggests a common role for the Trx group of proteins as histone methyltransferases. Since the methyltransfer activity of COMPASS seems to be roughly correlated with silencing of telomeric gene expression (Fig. 3), methylation of the Lys⁴ of histone H3 is implicated in the establishment and/or maintenance of telomeric gene silencing.

Recently, a few key pieces of evidence suggest that modification of histone H3 at its fourth lysine residue facilitates transcriptional activation (26). First, methylation of Lys⁴ of histone H3 is preferentially associated with regions of chromosomes that are transcriptionally active or seem poised for transcriptional regulation, meiosis, DNA repair, and cell cycle (15, 20, 29). In contrast, COMPASS seems required for silencing of gene expression at telomeres. In addition to our results and those of Pillus and co-workers supporting this idea (15, 20), Allis and colleagues have recently demonstrated that [methyl-Lys⁴]histone H3 is present at the rDNA locus and that this modification is required for silencing of RNA polymerase II transcription of a gene situated within the rDNA (18).

The apparent dual nature of methylation of histone H3 in repression and activation may be explained, at least in part, by the different roles played by this modification in yeast and multicellular eukaryotes. The different roles of this histone modification emphasize the importance of the "histone code" (26) in chromatin structure and regulation of gene expression.

REFERENCES

1. Workman, J. L., and Kingstone, R. E. (1998) Annu. Rev. Biochem. 67, 545–579
2. Urnov, F. D., and Wolffe, A. P. (2001) Oncogene 20, 2991–3006
3. Berger, S. L. (2001) Oncogene 20, 3007–3013
4. Cheung, W. L., Briggs, S. D., and Allis, C. D. (2000) Curr. Opin. Cell Biol. 12, 326–333
5. de la Barre, A. E., Gerson, V., Gout, S., Creaven, M., Allis, C. D., and Dimitrov, S. (2000) EMBO J. 19, 379–381
6. Hans, F., and Dimitrov, S. (2001) Oncogene 20, 3021–3027
7. Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., Aswad, D. W., and Stallcup, M. R. (1999) Science 284, 2174–2177
8. Koh, S. S., Chen, D., Lee, Y. H., and Stallcup, M. R. (2001) J. Biol. Chem. 276, 1098–1098
9. Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B. D., Sun, Z., Manfredi, S., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D., and Jenewein, T. (2000) Nature 406, 593–599
10. Thon, G., Cohen, A., and Klar, A. J. (1994) Genetics 138, 29–38
11. Honig, D., Ivanova, A. V., Altieri, A. S., Klar, A. J., and Byrd, R. A. (2001) J. Biol. Chem. 276, 861–870
12. Honig, D., and Verhein-Hansen, J. (2000) Genetics 155, 551–568
13. Jones, R. S., and Gehr, I. W. (1993) Mol. Cell. Biol. 13, 6357–6366
14. Tachibana, M., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994) EMBO J. 13, 3822–3831
15. Miller, T., Krogan, N. J., Dover, J., Brumage, H., Tempst, P., Johnston, M., Greenblatt, J. F., and Shilatifard, A. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 12902–12907