A unique mechanism of successful fertilization in a domestic bird

Tomohiro Sasamami1, Shunsuke Izumi2, Naoki Sakurai3, Toshifumi Hirata2, Shusei Mizushima1, Mei Matsuoka1, Gen Hiyama1, Eriko Yorinaga4, Takashi Yoshimura4, Kazuyoshi Ukena5 & Kazuyoshi Tsutsui6

1Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan, 2Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 739-8526, Japan, 3Department of Environmental Dynamics and Management, Graduate School of Biosphere Science, Hiroshima University, 739-8528, Japan, 4Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan, 5Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 739-8521, Japan, 6Department of Biology and Center for Medical Life Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.

Fertilization is an indispensable step for formation of a zygote in sexual reproduction, leading to species survival. When mating occurs, sperm is transported to the female reproductive tracts via the seminal plasma (SP). SP is derived from male accessory sex glands and it plays pivotal roles for fertilization in animals. However, molecular mechanisms of SP or a fluid derived from male accessory sex glands for successful fertilization remain unclear. Here, we report that in male quail the cloacal gland (CG) produces prostaglandin F$_2$α (PGF$_2$α) that contributes to successful fertilization. PGF$_2$α, as well as the secretion of CG, induced vaginal contractions and caused the opening of the entrance of the sperm storage tubules, the structures responsible for the long-term sperm storage and fertilization. The removal of CGS from the male before mating reduced the fertility, but the supplementation of CGS or PGF$_2$α rescued the subfertility. We further showed that male CG contains glucose that is utilized as energy source for the intrinsic sperm mobility after transportation to female vagina. This mechanism, in concert with the excitatory effects of PGF$_2$α enables successful fertilization in the domestic bird.
the uterus since polymorphonuclear neutrophils are activated by PGF2\alpha. Furthermore, polymorphonuclear neutrophils might improve sperm transport through PGF2\alpha. Therefore, the observed effects of PGF2\alpha on sperm filling rate in the SST of female quail, which were received intra-vaginal injection of CGS or PGF2\alpha, supports the sperm uptake into the SST in quail. Presence of paternal PGF2\alpha in the CGS might improve sperm transport into the vagina at the time of mating, and this substance was detected in the vaginal bioassay (Fig. 2d).

In this study, we first identified PGF2\alpha in the CG of male quail and subsequently demonstrated unique mechanisms of PGF2\alpha for successful fertilization after transportation with sperm to female vagina by copulation in quail. We further found that the CG contains glucose that acts as energy source for the intrinsic mobility of sperm after transportation to female vagina in this domestic bird.

Results and Discussion

In the first experiment, we found that a crude extract derived from the CG of two males potentiates spontaneous contractions of the female vagina (Fig. 1c). In contrast, the testicular extract did not induce such a significant change (Fig. 1c). Likewise, injections of cloacal gland secretion (CGS) into the vagina caused the opening of the entrance of sperm storage tubules (SST) (compare Fig. 1, d and e), the specialized simple tubular invaginations responsible for the long-term sperm storage and fertilization in birds18. These results prompted us to identify the active components responsible for the stimulation of vaginal contractions. By using a series of C-18 reversed-phase columns (Fig. 2a) and a cation-exchange column (Fig. 2b) of the high-performance liquid chromatography (HPLC) system (Supplementary Fig. S3), we purified a bioactive substance from the extract of the CG of 100 males showing a single peak on the final reversed-phase column under an isocratic condition (Fig. 2c).

The spectroscopic data of the isolated bioactive substance (Supplementary information) identified prostaglandin F\textsubscript{2a} (PGF\textsubscript{2a}) as compared with the spectra of authentic specimens, such as PGF\textsubscript{2a}, (15R)-PGF\textsubscript{2a} and (13Z,15R)-PGF\textsubscript{2a}.19 The calculated amount of the isolated substance (PGF\textsubscript{2a}) from the tissues of 100 males was 0.21 \textmu mol. An excitatory effect of this substance (2.5 \times 10^{-11} M) was detected in the vaginal bioassay (Fig. 2d). In addition, intra-vaginal injection of 2 \times 10^{-9} M PGF\textsubscript{2a}, which is equivalent to the PGF\textsubscript{2a} concentration in the CSG (2.1 \pm 0.25 \times 10^{-9} M, mean \pm SEM, n = 3), successfully opened the entrance of SST (Fig. 1f). Because the effective dose of PGF\textsubscript{2a} coincided with that in the CSG, the observed effects of PGF\textsubscript{2a} are considered as physiological actions. Effects of PGF\textsubscript{2a} on the spontaneous contractions of the female vagina was inhibited by pretreatment of female vagina with AL 8810, a selective antagonist for the receptor of PGF\textsubscript{2a} (PGF\textsubscript{2a}-R)20 (Supplementary Fig. S1).

The bioactivity of an isolated substance that results in vaginal contractions was compared with those of PGF\textsubscript{2a} analogues. Although all of the stereoisomers resulted in vaginal contractions, PGF\textsubscript{2a} caused the greatest effect (Fig. 3). From these results, we hypothesized that PGF\textsubscript{2a} in the CGS supports sperm uptake into the SST by opening the SST entrance and vaginal contractions. To test this hypothesis, we measured sperm filling rate in the SST of quail, which were received intra-vaginal injection of CGS or PGF\textsubscript{2a} before artificial insemination (AI) of the washed sperm. As the results, both CGS and PGF\textsubscript{2a} treatment increased SST sperm filling (Fig. 4, a, b, c). These results indicated that the male bird transports PGF\textsubscript{2a} into the vagina at the time of mating, and this substance supports the sperm uptake into the SST in quail. Presence of PGF\textsubscript{2a}-R in the utero-vaginal junction (UVJ) where SST exists was also confirmed by gene-specific in situ hybridization (Supplementary Fig. S2a). Our semi-quantitative RT-PCR analysis indicated that PGF\textsubscript{2a}-R mRNA was expressed not only in the vagina and UVJ, but was also present in the uterus, isthmus, magnum and infundibulum of the oviduct (Supplementary Fig. S2b). This observation coincides with previous findings that PGF\textsubscript{2a} derived from preovulatory follicles induced contractions of the oviduct and might also be involved in the process of egg transport and oviposition21. We predicted that paternal PGF\textsubscript{2a}, transported into the female vagina at the
time of copulation does not reach to the uterus beyond the UVJ. This is because our previous findings in which Hoechst 33342 DNA dye injected into the vagina was able to stain the nucleus of the surface epithelium of the vagina and UVJ, but not those of the uterus. From these findings, we predicted that PGF$_2$R expressed in the vagina and UVJ would only be involved in sperm transport and uptake into the SST. The elucidation of the roles of PGF$_2$R expressed in the uterus or other parts of the oviduct for sperm transport should be examined in the future studies.

Constitutive expression of PGF$_2$R in the UVJ throughout the ovulatory cycle is advantageous because females can copulate with a male at any time (Supplementary Fig. S2c). In agreement with this assumption, sperm filling rate of the SST was constant irrespective of the timing of mating during the ovulatory cycle (Supplementary Fig. S2d). Our results demonstrated the fertility of the male whose foam was manually removed before mating was significantly decreased when compared to that of the intact male (Fig. 4d). Notably, the intra-vaginal injection of CGS or PGF$_2$ before mating recovered fertility of the subfertile male (Fig. 4d). The hatchability of the fertilized eggs obtained from the CGS- or PGF$_2$-treated animals was 100% (4 or 3 birds were used for CGS or PGF$_2$ treatment, respectively). These results indicated that this treatment had no adverse effects on embryo development. In addition, intact male fertility was decreased when AL 8110 was intra-vaginally injected prior to copulation (Fig. 4d). These results indicate the physiological importance of PGF$_2$ in the CGS for successful fertilization. The inability of the male to fertilize without foam appears to be related to the absence of PGF$_2$ as the biological basis of sustained fertility in domestic birds is in their capacity for the sperm to reside in the SST. The concentrations of PGF$_2$ found in the SP of turkey and rooster are reported to be 100–140 pg/ml and less than 100 pg/ml, respectively. Those values are approximately 7 times lower than that of quail CG. Although we did not perform vaginal bioassay in turkeys or chickens, their SP PGF$_2$ levels were sufficient to induce the vaginal contraction of quail. The question of whether this unique mechanism is also functional in other birds remains to be solved.

Figure 2 | HPLC profile of the retained material (RM) of disposable C-18 reversed-phase cartridges on a reversed-phase column. (a), The RM loaded onto the column was eluted with a linear gradient of acetonitrile (ACN) and collected in 50 fractions of 2 ml each. Aliquots (20 μl) of each fraction were evaporated to dryness, dissolved in the physiological saline (pH 7.3) and applied to the bioassay. The bioactive fractions were indicated by the horizontal bar. (b), HPLC profile of the bioactive fractions (in panel a) on a cation-exchange column. Elution was performed in a linear gradient of NaCl in PB (pH 6.8) and eluents were collected in 1-ml fractions. The bioactivity was detected in the flow through fractions (horizontal bar). (c), Final purification of the bioactive substance (0.21 μmoles) by HPLC using a reversed-phase column. Isocratic elution with 36% ACN at a flow rate of 0.3 ml/min. (d), Bioactivity of the isolate on spontaneous contractions of the isolated female vagina. The upward arrow indicates application of an aliquot (2.5 × 10$^{-11}$ M) of the isolate.
After natural mating, the ejaculated sperm are deposited into the vagina; however, it is reported that more than 80% of the sperm are ejected from the vagina following mating. This suggests that the vagina is the primary sperm selection site in avian species. It is also reported that less than 1% of the sperm that are inseminated into the vagina are able to enter the SST and the resident sperm in the SST are thought to participate in the subsequent process of fertilization. In addition to the vaginal rejection of the sperm, the oviductal immune system may also affect the survivability of the sperm since the sperm are recognized as foreign bodies in the oviduct. Immunocompetent cells for acquired immunity (i.e. macrophages, antigen-presenting cells expressing MHC class II, CD4, CD8 T cells and premature B and plasma cells) are reported to localize in the oviduct mucosal tissue in sexually matured chickens to protect the tissues from infection. A significant increase in the number of lymphocytes as well as antigen-presenting cells expressing MHC class II in the stroma of UVJ in low fertility hens were observed. Das et al. demonstrated that the resident sperm in the SST of a fertile bird are protected from immune responses by TGF-β-mediated suppression of anti-sperm immunoreactions presumably by suppressing the proliferation of T- and B-lymphocytes. Thus, the elimination of anti-sperm immune responses is one of the factors responsible for sperm maintenance in the SST. Although prostaglandin E was reported to induce oviposition in quail, the immune-tolerance systems against male antigens that have been reported in the mammalian SP are not found in birds. Similarly, evidence for another sperm protection system in mice was recently published by Kawano et al. who observed that mice lacking seminal vesicle secretion 2 protein are infertile and their sperm are killed by uterus-derived cytotoxic factors. They showed that SVS2 protein coats sperm surface and protects the sperm from the attack by the uterus. These views suggest that the SST provides a shelter for the sperm from the female attack. Importantly, the transport of PGF2α at the time of mating is considered as a natural mechanism protecting the sperm from the rejection or killing by the female reproductive tract. Thus, the successful sperm uptake into the SST with the aid of PGF2α action appears to be a key event for the achievement of fertilization in birds.

It is reported that CGS possesses the potency to augment sperm motility, however, we failed to detect such stimulatory effects when the physiological concentration of PGF2α was added to the sperm extender, indicating that PGF2α does not participate in the enhancement of sperm motility in quail. To explore the machinery of how CGS contributes to the enhancement of sperm motility, free sugar analysis of a water-soluble phase of tissue homogenates of the CG was further carried out with the HPLC and gas chromatography (GLC) systems. The water-soluble extract of the CG contained free sugars, such as glucose, galactose and fructose. The present determination showing a significant level of glucose in the CG is in agreement with previous findings in which the production of the foamy material results from the production of carbon dioxide and hydrogen through bacterial action on glucose. Accordingly, it is probable that glucose in the CGS is ejected as a foamy material accompanying with sperm, which may be utilized as energy source for sperm mobility. This mechanism, in concert with the excitatory effects of PGF2α, enables successful fertilization in quail. Our results provide a novel biological insight into the understanding of how the CG contributes to fertilization in a domestic bird.

Methods

Animals. Male and female Japanese quail, Coturnix japonica, 8–20 weeks of age (Motoki Corporation) maintained individually under a photoperiod of 14-h light (L):
was dissolved in 0.1% trifluoroacetic acid (TFA) and then forced through disposable homogenized by a Polytron. The homogenate was centrifuged at 10,000 g and the supernatant fluid was evaporated to dryness. Dried extract was dissolved in 0.1% trifluoroacetic acid (TFA) and then forced through disposable C-18 cartridges (Mega Bond-Elut, Varian). The retained material (RM) eluted with 50% methanol was concentrated and filtered through a membrane (0.45 μm, Dismic-100, Advantec). The filtrate was subjected to the HPLC system (TRY ROTAR VI, Jasco) according to our previous methods. In brief, the RM of disposable C-18 cartridges was loaded onto a C-18 reversed-phase column and eluted with a 120-min linear gradient of 0–60% acetonitrile (ACN) in 0.1% trifluoroacetic acid (TFA) (pH 2.2) at a flow rate of 1 ml/min. The bioactive fractions were then applied onto a cation-exchange column and eluted with a 70-min linear gradient of 0–0.7 M NaCl in 10 mM phosphate buffer (PB; pH 6.8) at a flow rate of 0.5 ml/min. The bioactive fractions were re-chromatographed by the other C-18 reversed-phase column with a linear gradient of 28–43% ACN in 0.1% TFA. Final purification was performed with the same column under an isocratic condition with 36% ACN at a flow rate of 0.3 ml/min. The purification scheme is presented in supplementary Fig. S3.

Bioassay for vaginal contractions. The bioactivity of an extract and each HPLC fraction was examined by monitoring the effects on spontaneous contractions of the vaginal oviduct. For the bioassay, the vaginal oviduct of female quail was excised and cut transversely with 5–10 mm length. Both ends of the excised vagina were tied with two cotton threads, one being connected to the bottom of an experimental chamber and the other to a force-displacement transducer (NEC San-ei Instruments). The chamber was filled with 10 ml physiological saline (pH 7.3), which was bubbled with air and incubated at 37–39 °C. The test substance dissolved in 0.1 ml saline was injected into the chamber.

Structure determination of bioactive substance. Mass spectrometry (MS) analyses were performed on a JEOL JMS SX-102 equipped with a xenon beam generating system as a FAB-ion source at 10 kV of accele voltage by use of glycerol as a matrix. 1H NMR spectra were observed with a JEOL JSX-500 spectrometer at 500 MHz in CDCl3 using tetramethylsilane as an internal standard. The spectroscopic data of the isolated substance were compared with those of authentic specimens. Based on the results of structure analyses, the substance was identical with PGF2α. Therefore, the characterized native substance was further compared with PGF2α with regard to behavior on HPLC.

Semen collection and artificial insemination. Ejaculated semen was obtained from male quail during mating prior to ejaculation according to the procedure of Kuroki and Mori. Semen obtained from two males was suspended in Hanks’ balanced salt solution (HBSS) supplemented with 0.5 μM Hoechst 33342. The concentrations of sperm were measured with a hemocytometer. The ejaculates were washed two times with HBSS with repeated centrifugation at 800 × g for 3 min, and the final pellet was used for artificial insemination (AI).

Fertility assay. The CGS was obtained by centrifugation of isolated foam at 20,000 × g for 10 min. PGF2α level in the CGS was measured by ELISA kit (Cayman). The CGS or PGF2α dissolved in PBS (1 ng/ml) was intra-vaginally injected (30 μl/bird). To observe the effects of AL8110 (Cayman), the chemical dissolved in dimethyl sulfoxide (DMSO) was diluted with PBS (1 μM), and intra-vaginally injected before copulation. The concentration of AL8110 was adopted from Griffen et al. After 10 min, the female was allowed to copulate with the male. Eggs were collected everyday and fertility was confirmed by the development of a blastoderm. In addition, some eggs were incubated at 37 °C with rocking at a 30° angle until hatching to assess the hatchability.

Observation of SST. The UVJ was isolated as described previously. After washing with PBS, the specimens were fixed with 3.7% formaldehyde solution, and the fixed UVJ was cut into small pieces with scissors, mounted in glycerol and examined under fluorescence microscope with a 20 × objective (BX 51, Olympus Optics). The total number of SST and the number of SST filled with sperm were counted, and the filling rate (%) of SST was calculated.

In situ hybridization. The frozen sections of the isolated UVJ were prepared for in situ hybridization, as described elsewhere. The antisense 45-mer oligonucleotide probes for the receptor for PGF2α (5′-CATGGTTAGGACGAGGAGGCAGC-GCTAAACACCATTTCCGACCC-3′, 5′-GCGATGGCTCCGTTGATGAG-
GTGGCCAAAGAGACGAGTTGGAAGC-3'; 5'-GGCTGAGTTGCTCC-AATGCAAGCCTCAACACCGTACAGGCCC-3') were labeled with [33P]dATP (NEB Life Science Products) using terminal deoxynucleotidyl transferase (Gibco, Frederick). Hybridization was performed overnight at 42 °C. Washing was performed twice at room temperature for 30 min and at 55 °C for 40 min. After washing, the slides were exposed imaging plate (Fujifilm) and detected with BAS-2000 (FujiFilm).

RT-PCR. Total RNA was extracted from the oviductal tissues with a commercial kit, RNAiso (TaKaRa Biomedical), according to the manufacturer’s instructions. Messenger RNA was isolated using an oligo(dT)30 mRNA purification kit (TaKaRa Biomedicals), according to the manufacturer’s instructions, and was reverse transcribed using a ReverTra Ace kit (Toyobo). PCR amplification was performed using specific primer sets for the receptor for PGF2α (sense: 5'-CCAAAGCTGTCGCAATAAGCA-3'; antisense: 5'-AAAGTGGCACAAACCAAGG-3'). In parallel, specific primers (sense: 5'-GACGAGACGGTGAGAAGG-3'; antisense: 5'-CTTGGTGTCCTGGTCCACTT-3') for quail S17 ribosomal protein were used as an internal control. For data sharing, mRNA of UVJ was treated in a way except to replace the reverse transcriptase with water. The products were analyzed on a 10% agarose gel stained with ethidium bromide and visualized under UV transillumination. The intensity of the bands was measured with NIH Image ver. 1.61.

Free sugar analysis. For the measurement of free sugar contents, 1 ml homogenate of the CG was first boiled in deionized water for 10 min, and then 4 µl ethanol was added to the homogenate. Supernatant was obtained by centrifugation (1,000 g). Sample solution (0.5 ml) was introduced into the HPLC system (model 307, Gilson) equipped with a pulsed amperometric detector (Dionex). The column (CarboPac PA-1, Dionex) was eluted with 0.16 M NaOH at a flow rate of 1 ml/min. Fructose was eluted at 4.3 min. The other half sample solution was reduced for 1 h at room temperature by the addition of 0.5 M NaBH4 (20 mg/ml) in 2 M NH2OH containing 300 µg insitol as an internal standard. Reduced monosaccharides were acetylated for 15 min at room temperature by the addition of 200 µl acetic anhydride and 50 µl 1-methylimidazole as a catalyst. Acetylated monosaccharides were analyzed by gas chromatography (GLC; GC-7A, Shimadzu) with a capillary column (SP-2440, Supelco).

Statistical analysis. Results were expressed as the mean ± SEM. The significance of differences between the groups was evaluated by one-way ANOVA followed by the Duncan’s Multiple Range test or Student’s t-test (only Table S1). The differences were considered significant if p < 0.05.

1. Florman, H. M. & Ducibella, T. Physiology of Reproduction, 3rd edition (eds Nell, J.D.) 55–145 (Academic Press, San Diego, 2006).
2. Robertson, S. A. Seminal plasma and male factor signaling in the female reproductive tract. Cell Tissue Res. 331, 43–52 (2005).
3. Rodriguez-Martinez, H. et al. Seminal plasma proteins: What role do they play? Am. J. Reprod. Immunol. 66, 11–22 (2011).
4. Juyena, N. S. & Stelletta, C. Seminal plasma: An essential attribute to spermatogenesis. J. Androl. 33, 536–551 (2012).
5. Lengerova, A. & Vojtiskova, M. Prolonged survival of syngenic male skin grafts in porcine CGB1 mice. Folia Biol. 9, 72–74 (1963).
6. Gwashney, T. M. et al. Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-A6 share functional roles in storing sperm in the oviduct. Biol. Reprod. 57, 501–506 (2002).
7. Bergström, S. Prostaglandins: members of a new hormonal system. These compounds are synthesized and stored in various tissues and glands. Experientia 15, 941–943 (1967).
8. Li, D. et al. A sperm-activating factor involved in sperm motility and aggregation of spermatozoa in the chicken ovary. Endocrinology 137, 1618–1626 (1996).
9. Ubuka, T. et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 153, 373–385 (2012).
10. Osugi, T. et al. Evolutionary origin of the structure and function of gonadotropin-inhibitory hormone: insights from lampreys. Endocrinology 153, 2362–2374 (2012).
11. Kuroki, M. & Mori, M. Binding of spermatozoa to the perivitelline layer in the presence of a protease inhibitor. Poult. Sci. 76, 748–752 (1997).
12. Kawano, N. et al. Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proc. Natl. Acad. Sci. U. S. A. 111, 4145–4150 (2014).
13. Singh, R. P. et al. Clonal gland foam emissions enhance motility and disaggregation of spermatozoa in Japanese quail (Coturnix japonica). Theriogenology 75, 563–569 (2011).
14. Bakst, M. R., Hickman, A. R. & Nichols, C. R. Role of the proecdial gland foam of male Japanese quail in natural copulations. Auk 106, 279–285 (1989).
15. Lengerova, A. & Vojtiskova, M. Effect of a protease inhibitor on sperm motility and aggregation of spermatozoa in the chicken ovary. Endocrinology 137, 1618–1626 (1996).
16. Ubuka, T. et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 153, 373–385 (2012).
17. Osugi, T. et al. Evolutionary origin of the structure and function of gonadotropin-inhibitory hormone: insights from lampreys. Endocrinology 153, 2362–2374 (2012).
18. Yoshimura, T. et al. Clonal gland foam emissions enhance motility and disaggregation of spermatozoa in Japanese quail (Coturnix japonica). Theriogenology 75, 563–569 (2011).
19. Singh, R. P. et al. Clonal gland foam emissions enhance motility and disaggregation of spermatozoa in Japanese quail (Coturnix japonica). Theriogenology 75, 563–569 (2011).
20. Bakst, M. R., Wishart, G. & Brullard, J. P. Oviductal sperm selection, transport, and storage in poultry. Poult. Sci. 75, 117–143 (1994).
21. Zheng, W. M., Yoshimura, Y. & Tamura, T. Effects of age and gonadal steroids on the localization of antigen-presenting cells, T and B cells in the chicken oviduct. J. Reprod. Fertil. 114, 45–54 (1998).
22. Zheng, W. M. & Yoshimura, Y. Localization of macrophages in the chicken oviduct: effects of age and gonadal steroids. Poult. Sci. 78, 1014–1018 (1999).
23. Das, S. C., Nagasaka, N. & Yoshimura, Y. Changes in the localization of antigen presenting cells and T cells in the utero-ovarian junction after repeated artificial insemination in laying hens. Reprod. Dev. 51, 687–697 (2005).
24. Das, S. C., Isobe, N., Nishibori, M. & Yoshimura, Y. Expression of transforming growth factor-β isoforms and their receptors in utero-ovarian junction of the hen oviduct in presence or absence of resident sperm with reference to sperm storage. Reproduction 132, 781–790 (2006).
25. Kawano, N. et al. Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proc. Natl. Acad. Sci. U. S. A. 111, 4145–4150 (2014).
26. Singh, R. P. et al. Clonal gland foam emissions enhance motility and disaggregation of spermatozoa in Japanese quail (Coturnix japonica). Theriogenology 75, 563–569 (2011).
27. Singh, R. P. et al. Clonal gland foam emissions enhance motility and disaggregation of spermatozoa in Japanese quail (Coturnix japonica). Theriogenology 75, 563–569 (2011).
28. Yoshimura, T. et al. Molecular analysis of avian circadian clock genes. Mol. Brain Res. 78, 207–215 (2000).
29. Yamamoto, I., Tsukada, A., Saito, N. & Shimada, K. Profiles of mRNA expression of genes related to sex differentiation of the gonads in the chicken embryo. Poult. Sci. 82, 1462–1467 (2003).
30. Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. Simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113, 291–299 (1983).

Acknowledgments

The authors thank Drs Y. Minoueoka (Hiroshima University) and T. Ubuka (Waseda University) for their valuable discussions, T. Kotegawa (Hiroshima University), M. Niikawa (Shizuoka University), T. Aoya (Shizuoka University) and Dr. Y. Tobari (Waseda University) for their valuable discussions, T. Kotegawa (Hiroshima University), M. Niikawa (Shizuoka University) and Dr. Y. Tobari (Waseda University) for their technical assistance and Dr. S. Meddle (Roslin Institute) for critical reading and English editing of our manuscript. This work was supported in part by Grants-in-Aid for Scientific Research (21133004 and 22227002 to K.T.; 24380153 and 24112710 to T.S.) and for Challenging Exploratory Research (25600211 to T.S.).

Author contributions

T.S. and K.T. conceived and designed the study. T.S., S.I., N.S., T.H., S.M., M.M., G.H., E.Y., T.Y., K.U. and K.T. performed the experiments and wrote the paper. All authors approved the final manuscript.
Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sasanami, T. et al. A unique mechanism of successful fertilization in a domestic bird. Sci. Rep. 5, 7700; DOI:10.1038/srep07700 (2015).