Composable Rate-Independent Computation in Continuous Chemical Reaction Networks

Cameron Chalk, Niels Kornerup, Wyatt Reeves, David Soloveichik

Abstract—Biological regulatory networks depend upon chemical interactions to process information. Engineering such molecular computing systems is a major challenge for synthetic biology and related fields. The chemical reaction network (CRN) model idealizes chemical interactions, allowing rigorous reasoning about computational power of chemical kinetics. Here we focus on function computation with CRNs, where we think of the initial concentrations of some species as the input and the equilibrium concentration of another species as the output. Specifically, we are concerned with CRNs that are rate-independent (the computation must be correct independent of the reaction rate law) and composable \((f \circ g \text{ can be computed by concatenating the CRNs computing } f \text{ and } g) \). Rate independence and composability are important engineering desiderata, permitting implementations that violate mass-action kinetics, or even “well-mixedness”, and allowing the systematic construction of complex computation via modular design. We show that to construct composable rate-independent CRNs, it is necessary and sufficient to ensure that the output species of a module is not a reactant in any reaction within the module. We then exactly characterize the functions computable by such CRNs as superadditive, positive-continuous, and piecewise rational linear. Thus composability severely limits rate-independent computation unless more sophisticated input/output encodings are used.

1 INTRODUCTION

A ubiquitous form of biological information processing occurs in complex chemical regulatory networks in cells. The formalism of chemical reaction networks (CRNs) has been widely used for modelling the interactions underlying such natural chemical computation. More recently CRNs have also become a useful model for designing synthetic molecular computation. In particular, DNA strand displacement cascades can in principle realize arbitrary CRNs, thus motivating the study of CRNs as a programming language [2], [5], [13], [14]. The applications of synthetic chemical computation include reprogramming biological regulatory networks, as well as embedding control modules in environments that are inherently incompatible with traditional electronic controllers for biochemical, nanotechnological, or medical applications.

The study of information processing within biological CRNs, as well the engineering of CRN functionality in artificial systems, motivates the exploration of the computational power of CRNs. In general, CRNs are capable of Turing universal computation [3], however, we are often interested in restricted classes of CRNs which may have certain desired properties. Previous work distinguished two programmable features of CRNs: the stoichiometry of the reactions and the rate laws governing the reaction speeds [4]. As an example of computation by stoichiometry alone, consider the reaction \(2X \rightarrow Y \). We can think of the concentrations of species \(X \) and \(Y \) to be the input and output, respectively. Then this reaction effectively computes \(f(X) = \frac{Y}{2} \), as in the limit of time going to infinity, the system converges to producing one unit of \(Y \) for every two units of \(X \) initially present. The reason we are interested in computation via stoichiometry is that it is fundamentally rate-independent, requiring no assumptions on the rate law (e.g., that the reaction occurs at a rate proportional to the product of the concentrations of the reactants). This allows the computation to be correct independent of experimental conditions such as temperature, chemical background, or whether or not the solution is well-mixed.

Computation does not happen in isolation. In an embedded chemical controller, inputs would be produced by other chemical systems, and outputs would affect downstream chemical processes. Composition is easy in some systems (e.g. digital electronic circuits can be composed by wiring the outputs of one to the inputs of the other). However, in other contexts composition presents a host of problems. For example, the effect termed retroactivity, which results in insufficient isolation of modules, has been the subject of much research in synthetic biology [7]. In this paper, we attempt to capture a natural notion of composable rate-independent computation, and study whether compositability restricts computational power.

\[
\begin{align*}
X_1 + X_2 & \rightarrow Y \\
X_1 & \rightarrow Z_1 + Y \\
X_2 & \rightarrow Z_2 + Y \\
Z_1 + Z_2 & \rightarrow K \\
Y + K & \rightarrow \emptyset
\end{align*}
\]

Above, we see two examples of rate-independent computation. Example (a) shows \(y = \min(x_1, x_2) \). The amount of \(Y \) eventually produced will be the minimum of the initial amounts of \(X_1 \) and \(X_2 \), since the reaction will stop as soon as the first reactant runs out. Example (b) shows

The authors were with the University of Texas at Austin.
C. Chalk and D. Soloveichik were supported in part by National Science Foundation grants CCF-1618895 and CCF-1652824.
\[y = \max(x_1, x_2). \] The amount of \(Y \) eventually produced in reactions 1 and 2 is the sum of the initial amounts of \(X_1 \) and \(X_2 \). The amount of \(K \) eventually produced in reaction 3 is the minimum of the initial amounts of \(X_1 \) and \(X_2 \). Reaction 4 subtracts the minimum from the sum, yielding the maximum.

Now consider how rate-independent computation can be naturally composed. Suppose we want to compute \(\min(\min(x_1, x_2), x_3) \). It is easy to see that simple concatenation of two min modules (with proper renaming of the species) correctly computes this function:

\[
\begin{align*}
X_1 + X_2 &\rightarrow Y \\
Y + X_3 &\rightarrow Y'
\end{align*}
\]

where \(Y' \) represents the output of the composed computation. In contrast, suppose we want to compute \(\min(\max(x_1, x_2), x_3) \). Concatenating the modules yields:

\[
\begin{align*}
X_1 &\rightarrow Z_1 + Y \\
X_2 &\rightarrow Z_2 + Y \\
Z_1 + Z_2 &\rightarrow K \\
Y + K &\rightarrow \emptyset \\
Y + X_3 &\rightarrow Y'
\end{align*}
\]

where \(Y' \) represents the output of the composed computation. Observe that depending on the relative rates of reactions 4 and 5, the eventual value of \(Y' \) will vary between \(\min(\max(x_1, x_2), x_3) \) and \(\min(x_1 + x_2, x_3) \), and the composition does not compute in a rate-independent manner.

Why is min composable, but max not? The problem arose because the output of the max module \((Y) \) is consumed in both the max module and in the downstream min module. This creates a competition between the consumption of the output within its own module and the downstream module.

Towards modularity, we assume the two CRNs to be composed do not share any species apart from the interface between them (i.e., a species \(Y \) representing the output of the first network is used as the species representing the input to the second network, and otherwise the two sets of species are disjoint). We prove that to construct composable rate-independent modules in this manner, it is necessary and sufficient to ensure that the output species of a module is not a reactant in any reaction of that module. We then exactly characterize the computational power of composable rate-independent computation.

Previously it was shown that without the composable restriction, rate-independent CRNs can compute arbitrary positive-continuous, piecewise rational linear functions [4]. We show that requiring the CRN to be composable restricts the class of computable functions to be superadditive functions; i.e., functions that satisfy: for all input vectors \(a, b \), \(f(a) + f(b) \leq f(a + b) \). This strongly restricts computational power: for example, subtraction or max cannot be computed or approximated in any reasonable sense. In the positive direction, we show that any superadditive, positive-continuous, piecewise rational linear function can be computed by composable CRNs in a rate-independent manner. Our proof is constructive, and we further show that unimolecular and bimolecular reactions are sufficient.

We note that different input and output encodings can change the computational power of rate-independent, composable CRNs. For example, in the so-called dual-rail convention, input and output values are represented by differences in concentrations of two species (e.g., the output is equal to the concentration of species \(Y^+ \) minus the concentration of \(Y^- \)). Dual-rail simplifies computation—indeed of consuming the output species to decrease the output value, a dual-rail CRN can produce \(Y^- \) at the cost of greater system complexity. Dual-rail CRNs can compute the full class of continuous, piecewise rational linear functions while satisfying rate-independence and composability [4].

Note, however, that the dual-rail convention moves the non-superadditive subtraction operation to “outside” the system, and converting from a dual-rail output to a direct output must break composability.

2 Preliminaries

Let \(\mathbb{N} \) and \(\mathbb{R} \) denote the set of nonnegative integers and the set of real numbers, respectively. The set of the first \(n \) positive integers is denoted by \(\{1, 2, \ldots, n\} \). Let \(\mathbb{R}_{\geq 0} \) be the set of non-negative real numbers, and similarly \(\mathbb{R}_{> 0} \) be the set of positive real numbers. If \(\Lambda \) is a finite set (in this paper, of chemical species), we write \(\mathbb{R}^{\Lambda} \) to denote the set of functions \(f: \Lambda \rightarrow \mathbb{R} \), and similarly for \(\mathbb{R}^{\Lambda}_{\geq 0}, \mathbb{R}^{\Lambda}_{> 0}, \mathbb{N}^{\Lambda}, \mathbb{R}^{\Lambda}_{\geq 0}, \mathbb{R}^{\Lambda}_{> 0} \). Equivalently, we view an element \(c \in \Lambda^\Lambda \) as a vector of \(|\Lambda| \) elements of \(\Lambda \), each coordinate “labeled” by an element of \(\Lambda \). Given a function \(f: \Lambda \rightarrow B \), we use \(f|_C \) to denote the restriction of \(f \) to the domain \(C \). We also use the notation \(c \upharpoonright \Delta \rightarrow c \) to represent \(c \) projected onto \(\mathbb{R}^{\Delta}_{\geq 0} \). Thus, \(c \upharpoonright \Delta = 0 \) iff \((\forall S \in \Delta) \ c(S) = 0 \). If \(\Delta \subseteq \Lambda \), we view a vector \(c \in \mathbb{R}^{\Delta}_{\geq 0} \) equivalently as a vector \(c \in \mathbb{R}^{\Lambda}_{\geq 0} \) by assuming \(c(S) = 0 \) for all \(S \in \Lambda \setminus \Delta \).

2.1 Chemical reaction networks

We will start by defining the notation used to describe a state composed of chemical species.

Definition 1. For any \(c \in \mathbb{R}^{\Lambda}_{\geq 0} \) and any \(S \in \Lambda \), \(c(S) \) is the concentration of species \(S \) in \(c \).

Definition 2. For any \(c \in \mathbb{R}^{\Lambda}_{\geq 0} \), the set of species present in \(c \) (denoted by \(|c| \)) is \(\{ S \in \Lambda : c(S) > 0 \} \).

Now that we have defined these properties of a state, we can proceed to define chemical reactions.

Definition 3. Given a finite set of chemical species \(\Lambda \), a reaction over \(\Lambda \) is a pair \(\alpha = (r, p) \in \mathbb{N}^\Lambda \times \mathbb{N}^\Lambda \), specifying the stoichiometry of the reactants and products, respectively.
In this paper, we assume that \(r \neq 0 \), i.e., we have no reactions of the form \(\varnothing \rightarrow \ldots \). For instance, given \(\Lambda = \{A, B, C\} \), the reaction \(A + 2B \rightarrow A + 3C \) is the pair \((\{1, 2, 0\}, \{1, 0, 3\}) \).

Definition 4. A (finite) chemical reaction network (CRN) is a pair \(\mathcal{C} = (\Lambda, R) \), where \(\Lambda \) is a finite set of chemical species, and \(R \) is a finite set of reactions over \(\Lambda \). A state of a CRN \(\mathcal{C} = (\Lambda, R) \) is a vector \(\mathbf{c} \in \mathbb{R}^{\Lambda}_{\geq 0} \).

Definition 5. Given a state \(\mathbf{c} \) and reaction \(\alpha = (r, p) \), we say that \(\alpha \) is applicable in \(\mathbf{c} \) if \(|r| \subseteq |\mathbf{c}| \) (i.e., \(\mathbf{c} \) contains positive concentration of all of the reactants).

2.2 Reachability and stable computation

We now follow [4] in defining rate-independent computation in terms of reachability between states (this treatment is in turn based on the notion of “stable computation” in distributed computing [1]). Intuitively, we say a state is “reachable” if some rate law can take the system to this state. For computation to be rate-independent, since unknown rate laws might take the system to any reachable state, the system must be able to reach the correct output from any such reachable state.

To define the notion of reachability, a key insight of [4] allows one to think of reachability via a sequence of straight line segments. This may be unintuitive, since mass-action[3] and other rate laws trace out smooth curves. However, a number of properties are shown which support straight-line reachability as an interpretation which includes mass-action reachability as well as reachability under other rate laws.

Definition 6. Let \(\mathcal{C} \) be a CRN defined by \((\Lambda, R) \). The linear transformation \(\mathbf{M} : \mathbb{R}^\Lambda \rightarrow \mathbb{R}^\Lambda \) that maps from the unit vector representing a reaction to the net change in species caused by that reaction is the stoichiometry matrix for \(\mathcal{C} \).

Note that we can intuitively think of \(\mathbf{M} \) being a matrix where the columns represent the net change in species cause by each reaction. Under this representation, observe that entries in \(\mathbf{M} \) will be negative when more of a reactant is consumed than is produced in a reaction. Observe that the image of \(\mathbf{M} \) represents the possible changes in a state that can occur via the reactions in \(R \). We will formalize this notion with the next few definitions.

Definition 7. For a CRN with the reactions \(R \), we say that any vector \(\mathbf{u} \in \mathbb{R}^\Lambda \) is a flux vector. We use \([\mathbf{u}] \) to denote the set \(\{r | \mathbf{u}(r) > 0\} \). We say that \(\mathbf{u} \) is valid at a state \(\mathbf{c} \) if every reaction in \([\mathbf{u}] \) is applicable at \(\mathbf{c} \).

Definition 8. For a CRN with species \(\Lambda \) and stoichiometry matrix \(\mathbf{M} \), we say a state \(\mathbf{d} \in \mathbb{R}^\Lambda_{\geq 0} \) is straight-line reachable from \(\mathbf{c} \), written \(\mathbf{c} \rightarrow_{\mathbf{u}} \mathbf{d} \), or more precisely as \(\mathbf{c} \rightarrow_{\mathbf{u}} \mathbf{d} \), if there is a valid flux vector \(\mathbf{u} \) such that \(\mathbf{c} + \mathbf{M} \mathbf{u} = \mathbf{d} \).

Intuitively, a single segment means running the reactions applicable at \(\mathbf{c} \) at a constant (possibly 0) rate to get from \(\mathbf{c} \) to \(\mathbf{d} \). Since applying a flux vector can change the set of species present, \(\mathbf{a} \rightarrow_{\mathbf{u}} \mathbf{b} \) does not imply that \(\mathbf{a} \) and \(\mathbf{b} \) have the same set of applicable reactions. Therefore there can be a state \(\mathbf{c} \) that is straight-line reachable from \(\mathbf{b} \) but not from \(\mathbf{a} \). This leads us to our next definition.

Definition 9. We say state \(\mathbf{d} \) is 1-segment reachable from \(\mathbf{c} \) if it is straight line reachable. We say a state \(\mathbf{d} \) is \(l \)-segment reachable if there is a state \(\mathbf{d}' \) that is \((l - 1)\)-segment reachable from \(\mathbf{c} \) such that \(\mathbf{d}' \rightarrow_{\mathbf{u}} \mathbf{d} \).

Generalizing to an arbitrary number of segments, we obtain our general notion of reachability below. Note that by the definition of straight-line reachability, only applicable reactions occur in each segment. The definition of reachability is closely related to exploring the “stoichiometric compatibility class” of the initial state [9].

Definition 10. A state \(\mathbf{d} \) is reachable from \(\mathbf{c} \), written \(\mathbf{c} \rightarrow \mathbf{d} \), if \(\exists l \in \mathbb{N} \) such that \(\mathbf{d} \) is \(l \)-segment reachable from \(\mathbf{c} \). We denote the set of states reachable from \(\mathbf{c} \), i.e., \(\{\mathbf{d} | \mathbf{c} \rightarrow \mathbf{d}\} \), as Post(\(\mathbf{c} \)).

We think of state \(\mathbf{d} \) as being reachable from state \(\mathbf{c} \) if there is a “reasonable” rate law that takes the system from \(\mathbf{c} \) to \(\mathbf{d} \). As desired, previous work showed that if state \(\mathbf{d} \) is reached from \(\mathbf{c} \) via a mass-action trajectory, it is also segment-reachable.

Lemma 1 (Proven in [4]). If \(\mathbf{d} \) is mass-action reachable from \(\mathbf{c} \), then \(\mathbf{c} \rightarrow \mathbf{d} \).

We can now use reachability to formally define rate-independent computation.

Definition 11. A chemical reaction computer (CRC) is a tuple \(\mathcal{C} = (\Lambda, R, \Sigma, Y) \), where \((\Lambda, R) \) is a CRN, \(\Sigma \subseteq \Lambda \), written as \(\Sigma = \{X_1, \ldots, X_n\} \), is the set of input species, and \(Y \in \Lambda \setminus \Sigma \) is the output species.

For simplicity, assume a canonical ordering of \(\Sigma = \{X_1, \ldots, X_n\} \) so that a vector \(\mathbf{x} \in \mathbb{R}^\Sigma_{\geq 0} \) (i.e., an input to \(f \)) can be viewed equivalently as a state \(\mathbf{x} \in \mathbb{R}^\Sigma_{\geq 0} \) of \(\mathcal{C} \) (i.e., an input to \(\mathcal{C} \)).

Definition 12. A state \(\mathbf{o} \in \mathbb{R}^\Lambda_{\geq 0} \) is output stable if, for all \(\mathbf{o}' \) such that \(\mathbf{o} \rightarrow \mathbf{o}' \), \(\mathbf{o}(Y) = \mathbf{o}'(Y) \), i.e., once \(\mathbf{o} \) is reached, no reactions can change the concentration of the output species \(Y \).

Definition 13. Let \(f : \mathbb{R}^\Sigma_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \) be a function and let \(\mathcal{C} \) be a CRC. We say that \(\mathcal{C} \) stably computes \(f \) if, for all \(\mathbf{x} \in \mathbb{R}^\Sigma_{\geq 0} \) and all \(\mathbf{o} \) such that \(\mathbf{x} \rightarrow \mathbf{o} \), there exists an output stable state \(\mathbf{o} \) such that \(\mathbf{o} \rightarrow \mathbf{c} \) and \(\mathbf{o}(Y) = f(\mathbf{x}) \).

We can intuitively justify the above definition of reachability and stable computation as capturing the class of computation that is independent of the rate law. The output stable states are exactly those in which the output cannot be changed by a rate law chosen by an adversary. If a chemical reaction network does not stably compute a function, then some rate law can take the system to a state from which an output stable state is not reachable (including by mass-action by Lemma [1]).

The results herein extend easily to functions \(f : \mathbb{R}^n \rightarrow \mathbb{R}^l \), i.e., whose output is a vector of \(l \) real numbers. This is because such a function is equivalently \(l \) separate functions \(f_i : \mathbb{R}^n \rightarrow \mathbb{R} \).
Also note that initial states contain only the input species Σ; other species must have initial concentration 0. Section 5 discusses how allowing some initial concentration of non-input species affects computation.

2.3 Composability

Definition 14. We call a CRC (Λ, R, Σ, Y) output-oblivious if Y does not appear as a reactant in R.

We now show that an output-oblivious CRC is composable. For simplicity, in this section we focus on single-input, single-output CRCs, but our results can be easily generalized to multiple input and output settings.

First, we define the composition of two CRCs as the concatenation of their chemical reactions, such that the output species of the first is the input species of the second:

Definition 15. Given two CRCs $C_1 = (\Lambda_1, R_1, \Sigma_1, Y_1)$ and $C_2 = (\Lambda_2, R_2, \Sigma_2, Y_2)$, consider $C'_2 = (\Lambda'_2, R'_2, \Sigma'_2, Y'_2)$ constructed by renaming species of C_2 such that $\Lambda_2' \cap \Lambda'_2 = \{Y_1\}$ and $Y_1 \in \Sigma'_2$. The composition of C_1 and C_2 is the CRC $C'_{2\cdot1} = (\Lambda_1 \cup \Lambda'_2, R_1 \cup R'_2, \Sigma_1 \cup \Sigma'_2 \setminus \{Y_1\}, Y_2)$. In other words, the composition is constructed by concatenating C_1 and C_2 such that their only interface is the output species of C_1, used as the input for C_2.

Definition 16. A CRC C_1 which stably computes f_1 is composable iff $\forall C_2$ stably computing f_2, $C_{2\cdot1}$ stably computes $f_2 \circ f_1$.

We first show that output-oblivious CRCs are composable. Second, we show that if a CRC is composable then any reactions using the output species as a reactant can be removed without affecting functionality.

Definition 17. In a CRC $C = (\Lambda, R)$, flux vector u_1 is independent of u_2 if u_1 does not consume any species involved in u_2. More formally, for each species $s \in \Lambda$, if $(M_{u_1})_s < 0$, then none of the reactions in $[u_2]$ have species s as a reactant or product.

Lemma 2. In a CRC $C = (\Lambda, R)$ if flux vector u_1 is independent of flux vector u_2 then:

1. If $a \rightarrow u_2 \ d \rightarrow u_1 \ c$, then $a \rightarrow u_1 + u_2 \ c$.
2. If $a \rightarrow u_2 + u_3 \ c$, then the state $b = a + Mu_1$ is in $R_{\geq 0}$, and $a \rightarrow u_1 \ b \rightarrow u_2 \ c$.
3. If $a \rightarrow u_1 \ b$ and $a \rightarrow u_2 \ c$, then the state $d = c + Mu_1$ is in $R_{\geq 0}$ and $c \rightarrow u_1 \ d$.

Proof. For 1., since u_1 is independent of u_2, we know that u_2 cannot produce any of the species necessary to make u_1 valid. Since u_1 was valid at d, we know that u_1 must be valid at a, so $a \rightarrow u_1 + u_2 \ c$.

For 2., we first want to prove that $b \in R_{\geq 0}$. Consider any species $S \in \Lambda$ such that S is not produced in u_2, since $b = c - Mu_2$ and $c(S) \geq 0$, we know that S has nonnegative concentration at b. Now consider any species $S \in \Lambda$ such that S is produced in u_2. Since u_2 produces S, we know that u_1 must not consume it because u_1 is independent of u_2. Since $b = a + Mu_1$, we can conclude that S must have nonnegative concentration at b. Therefore we can conclude that $b \in R_{\geq 0}$. Since $u_1 + u_2$ is valid at a we know that u_2 must be valid at a since flux is non-negative. Likewise since u_1 is independent of u_2 this implies that u_2 must also be valid at b. Observe that since the stoichiometry matrix is a linear transformation, applying flux vectors u_1 and then u_2 is the same as applying $u_1 + u_2$. Therefore $a \rightarrow u_1 \ b \rightarrow u_2 \ c$.

Lemma 3. Given two output-oblivious CRCs C_1 and C_2, consider the composition $C_{2\cdot1}$. If $c \rightarrow d$ then there is b such that $c \rightarrow b \rightarrow d$, where $c \rightarrow b$ only uses reactions from C_1 and $b \rightarrow d$ only uses reactions from C_2.

Proof. Let $\{v_1, \ldots, v_n\}$ be the flux vectors such that $c \rightarrow v_1, v_1 \rightarrow v_2, \ldots, v_n \rightarrow d$. We can write $v_i = u_{1,i} + u_{2,i}$, where $u_{1,i}$ corresponds to the reactions in C_1 and $u_{2,i}$ corresponds to the reactions in C_2. Since C_1 is output oblivious, we know that every $u_{1,i}$ is independent of every $u_{2,i}$ and thus we can apply Lemma 2 to see that $c \rightarrow u_{1,i} \ b \rightarrow u_{2,i} \ c \rightarrow u_{2,j} \ b \rightarrow u_{1,j} \ c \rightarrow u_{2,k} \ b \rightarrow u_{2,l} \ d$. By repeatedly applying Lemma 2, we can then rearrange the sequence of reactions so that each $u_{1,i}$ precedes each $u_{2,j}$ to get $c \rightarrow u_{1,i} \ b \rightarrow u_{2,i} \ c \rightarrow u_{2,j} \ b \rightarrow u_{2,k} \ c \rightarrow u_{2,l} \ d$. By repeatedly applying Lemma 2 repeatedly to the flux vectors in r and s, we see that $c \rightarrow u_1 \ y_1 \ a$. Then applying Lemma 2 repeatedly to the flux vectors in r and s, we see that $c \rightarrow u_1 \ y_1 \ a$. Since C_2 stably computes f_2, since $o_1(\Sigma_1) = f(x)$, and since b is reachable from o_1 only using reactions in C_2, there must be some o_2 that is C_2-output stable such that $b \rightarrow o_2$ and $o_2(\Sigma_2) = f_2 \circ f_1(x)$. We know that o_2 is reachable from c since $c \rightarrow a \rightarrow o_2$. Finally, since o_1 is C_1-output stable, reactions from C_1 cannot change the concentrations of species in o_2 \ Λ_2, so if $o_2 \rightarrow y$, then restricting to C_2 we find $o_2 \rightarrow \Lambda_2 \rightarrow y \ \Lambda_2$. Since o_2 is C_2-output stable we see that $y(\Sigma_2) = o_2(\Sigma_2)$, so o_2 is $C_{2\cdot1}$-output stable.

In the proof of Lemma 6 we will want to reach a state that has used up its capacity to produce more of a certain species. This next lemma shows that, under reasonable assumptions, no matter where we start we can always reach a state where afterwards it is impossible to net-increase the amount of a certain species that is present. The proof is left to the appendix.

Lemma 5. For any state c and any species S, if the amount of S present in any state reachable from c is bounded above, there is a state d reachable from c such that for any state a reachable from d, we know that $a(S) \leq d(S)$.

The next lemma shows that the output oblivious condition is effectively necessary for composition. Technically,
there are CRCs which are not output oblivious but are composable. However, we show that for such CRCs, we can remove reactions until they are output oblivious, resulting in a CRC which is still composable and computes the same function. Thus, characterizing what is computable by output oblivious CRCs does characterize the class of functions computable by composable CRCs.

Lemma 6. If a CRC C stably computes f and is composable, then we can remove all reactions where the output species appears as a reactant, and the resulting output-oblivious CRC will still stably compute f.

Proof. Let $C_1 = (\Lambda_1, R_1, \Sigma_1, Y_1)$ be a composable CRC stably computing some function f. Let $C_0 \subseteq C_1$ be the CRN obtained by removing all of the reactions that consume Y_1 from C_1. We would like to show that C_0 stably computes f. Suppose we compose C_1 with $C_2 = \langle \{Y_1, Y_2\}, \{(1,0), (0,1)\}, \{Y_1\}, Y_2 \rangle$. Since C_1 is composable and C_2 stably computes the identity function, the resulting CRN $C_{2|1}$ must stably compute f. For input vector x consider a state c reachable from x.

Assume that C_0 could reach a state d from c where $d(Y_1) > f(x)$. Then C_1 would not be composable because $C_{2|1}$ can also reach d and then applying the reaction in C_2 to convert all Y_1 into Y_2 gives us a state d' with $d'(Y_2) > f(x)$. Since there is no reaction in $C_{2|1}$ that consumes Y_2 there is no output stable state reachable from d' that computes $f(x)$. Therefore by contradiction there is no state d such that $d(Y_1) > f(x)$ and $d \in \text{Post}_c(a)$.

Since this implies that the amount of Y_1 in any state reachable from c is bounded, we can apply Lemma 5 to say that there is a state d such that $c \rightarrow d$ and for any state d' reachable from d we know $a(Y_1) \leq d(Y_1)$. Since C_0 has no reactions that consume Y_1, this is an output stable state. Now, consider the state b in $C_{2|1}$ obtained by converting all Y_1 in d into Y_2. Observe that if there was a way to produce Y_1 from b, then there would be a state in C_0 reachable from d that contained more Y_1. Since there are no reactions in $C_{2|1}$ that consume Y_2 and no reactions that produce Y_1, we know that b is an output stable state. Since $C_{2|1}$ stably computes $f(x)$, we know $b(Y_2) = f(x)$. Thus we can conclude that $d(Y_1) = f(x)$ and C_0 stably computes $f(x)$.

To allow composition of multiple downstream CRCs, we can use the reaction $Y \rightarrow Y_1 + \ldots + Y_n$ to generate n “copies” of the output species Y, such that each downstream module uses a different copy as input. Additionally, if the downstream module is output-oblivious, then the composition is also output-oblivious and thus the composition is composable. These observations allow complex compositions of modules, and will be used in our constructions in Section 3.2.

3 Functions Computable by Composable CRNs

Here we give a complete characterization of the functions computable by composable CRNs. First, we define exactly our notions of superadditive, positive-continuous, and piecewise rational linear.

Definition 18. A function $f : \mathbb{R}^n \rightarrow \mathbb{R}^l$ is superadditive if $\forall a, b \in \mathbb{R}^n, f(a) + f(b) \leq f(a + b)$.

Note that superadditivity implies monotonicity in our case, since the functions computed must be nonnegative. As an example, we show that the max function is not superadditive:

Lemma 7. The function $\max(x_1, x_2)$ is not superadditive.

Proof. Pick any $x_1, x_2 > 0$. Observe that $\max(x_1, 0) + \max(0, x_2) = x_1 + x_2$. But since x_1 and x_2 are both positive, we know that $x_1 + x_2 > \max(x_1, x_2)$. Thus max is not superadditive and by Lemma 9 there is no composable CRN which stably computes max.

Definition 19. A function $f : \mathbb{R}_{\geq 0}^n \rightarrow \mathbb{R}^l$ is positive-continuous if for all $U \subseteq [n]$, f is continuous on the domain $D_U = \{ x \in \mathbb{R}_{\geq 0}^n \mid (\forall i \in [n]), x(i) > 0 \iff i \in U \}$. Let, f is continuous on any subset $D \subset \mathbb{R}_{\geq 0}^n$ that does not have any coordinate $i \in [n]$ that takes both zero and positive values in D.

Next we give our definition of piecewise rational linear. One may (and typically does) consider a restriction on the domains selected for the pieces, however this restriction is unnecessary in this work, particularly because the additional constraint of positive-continuity gives enough restriction.

Definition 20. A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is rational if there exist $a_1, \ldots, a_n \in \mathbb{Q}$ such that $f(x) = \sum_{i=1}^{\infty} a_i x(i)$. A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is piecewise rational linear if there is a finite set of partial rational linear functions $f_1, \ldots, f_p : \mathbb{R}^n \rightarrow \mathbb{R}$ with $\bigcup_{j=1}^{p} \text{dom} f_j = \mathbb{R}^n$, such that for all $j \in [p]$ and all $x \in \text{dom} f_j$, $f(x) = f_j(x)$. We call f_1, \ldots, f_p the components of f.

The following is an example of a superadditive, positive-continuous, piecewise rational linear function:

$$f(x) = \begin{cases} x_1 + x_2 & x_3 > 0 \\ \min(x_1, x_2) & x_3 = 0 \end{cases}$$

The function is superadditive since for all input vectors $a = (a_1, a_2, a_3)$, $b = (b_1, b_2, b_3)$, there are three cases: (1) $a_3 = b_3 = 0$, in which case both input vectors compute min which is a superadditive function; (2) $a_3, b_3 \neq 0$, in which case both input vectors compute $x_1 + x_2$, which is a superadditive function; (3) without loss of generality, $a_3 = 0$ and $b_3 \neq 0$, in which case case $f(a) + f(b) = \min(a_1, a_2) + b_1 + b_2 \leq a_1 + a_2 + b_1 + b_2 = f(a + b)$. The function is positive-continuous, since the only points of discontinuity are when x_3 changes from zero to positive. The function is piecewise rational linear, since min is piecewise rational linear.

Theorem 1. A function $f : \mathbb{R}_{\geq 0}^n \rightarrow \mathbb{R}_{\geq 0}$ is computable by a composable CRC if and only if it is superadditive positive-continuous piecewise rational linear.

We prove each direction of the theorem independently in Sections 3.1 and 3.2.
The constraints of positive-continuity and piecewise rational linearity stem from previous work:

Lemma 8. [Proven in [4]] If a function \(f : \mathbb{R}^n_{\geq 0} \to \mathbb{R}_{\geq 0} \) is stably computable by a CRC, then \(f \) is positive-continuous piecewise rational linear.

In addition to the constraints in the above lemma, we show in Lemma 9 that a function must be superadditive if it is stably computed by a CRC. To prove this, we first note a useful property of reachability in CRNs.

Claim 1. Given states \(a, b, c \), if \(a \to b \) then \(a + c \to b + c \).

This claim comes from the fact that adding species cannot prevent reactions from occurring. Thus, we can consider the series of reactions where \(c \) doesn’t react to reach the state \(b + c \) from the state \(a + c \). We now utilize this claim to prove that composably computable functions must be superadditive.

Lemma 9. If a function \(f : \mathbb{R}^5_{\geq 0} \to \mathbb{R}_{\geq 0} \) is stably computable by a composable CRC, then \(f \) is superadditive.

Proof. Assume \(C \) stably computes \(f \). By definition of \(C \) stably computing \(f \), \(\forall \) initial states \(x_1, x_2, \exists \) \(o_1, o_2 \) such that \(x_1 \to o_1 \) with \(o_1(Y) = f(x_1) \) and \(x_2 \to o_2 \) with \(o_2(Y) = f(x_2) \). Consider \(C \) on input \(x_1, x_2 \). By the claim, \(x_1 + x_2 \to o_1 + o_2 \), and again by the claim, \(o_1 + x_2 \to o_1 + o_2 \). Looking at the concentration of output species \(Y \), we have \((o_1 + o_2)(Y) = f(x_1) + f(x_2) \). Since \(C \) stably computes \(f \), there exists an output stable state \(o' \) reachable from initial state \(x_1 + x_2 \) and reachable from state \(o_1 + o_2 \). Since \(C \) is computable, species \(Y \) does not appear as a reactant and thus its concentration in any state reachable from state \(o_1 + o_2 \) cannot be reduced from \(f(x_1) + f(x_2) \), implying \(o'(Y) = f(x_1 + x_2) \geq f(x_1) + f(x_2) \). This holds for all input states \(x_1, x_2 \), and thus \(f \) is superadditive.

Corollary 1. No composable CRC computes \(f(x_1, x_2) = \max(x_1, x_2) \).

3.2 Superadditive Positive-Continuous Piecewise Rational Linear Functions are Computable

It was shown in [10] that every piecewise linear function can be written as a max of min of linear functions. This fact was exploited in [4] to construct a CRN that dual-rail computed continuous piecewise rational linear functions. To directly compute a positive-continuous piecewise rational linear function, dual-rail networks were used to compute the function on each domain, take the appropriate max of mins, and then the reaction \(Y^+ + Y^- \to \emptyset \) was used to convert the dual-rail output into a direct output where the output species is \(Y^+ \). However, this technique is not usable in our case: by Corollary 1 we cannot compute the max function, and the technique of converting dual-rail output to a direct output is not output oblivious. In fact, computing \(f(Y^+, Y^-) = Y^+ - Y^- \) is not output oblivious, and so by Lemma 9 there is no composable CRC which computes this conversion.

Since our functions are positive-continuous, we first consider domains where the function is continuous, and show that it can be computed by composing rational linear functions with min. Since rational linear functions and min can be computed without using the output species as a reactant, we achieve composability. We then extend this argument to handle discontinuities between domains.

Definition 21. An open ray \(\ell \) in \(\mathbb{R}^n \) from the origin through a point \(x \) is the set \(\{ y \in \mathbb{R}^n \mid y = t \cdot x, t \in \mathbb{R}_{>0} \} \). Note that \(t \) is strictly positive, so the origin is not contained in \(\ell \).

Definition 22. We call a subset \(D \subseteq \mathbb{R}^n \) a cone if for all \(x \in \mathbb{R}^n \), we know that \(x \in D \) implies the open ray from the origin through \(x \) is contained in \(D \).

Lemma 10. Suppose we are given a continuous piecewise rational linear function \(f : \mathbb{R}^n_{>0} \to \mathbb{R}_{\geq 0} \). Then we can choose domains for \(f \) which are cones which contain an open ball of non-zero radius.

Intuitively, we can consider any open ray from the origin and look at the domains for \(f \) along this ray. If the ray traveled through different domains, then there must be boundary points where the function switches domains. But we know that \(f \) is continuous, so the domains must agree on their boundaries. Since there is only one line that passes through the origin and any given point, the domains must share the same linear function to be continuous. Thus we can place the ray into one domain corresponding to its linear function. Applying this argument to all rays gives these domains as cones. This argument is formalized in a proof in the appendix.

Lemma 11. Any superadditive continuous piecewise rational linear function \(f : \mathbb{R}^n_{>0} \to \mathbb{R}_{\geq 0} \) can be written as the minimum of a finite number of rational linear functions \(g_i \).

Proof. Since \(f \) is a continuous piecewise rational linear function, by Lemma 11 we can choose domains \(\{D_i\}_{i=1}^N \) for \(f \) which are cones and contain an open ball of non-zero radius, such that \(f|_{D_i} = g_i |_{D_i} \), where \(g_i \) is a rational linear function. Now pick any \(x \in \mathbb{R}^n_{>0} \) and any \(g_j \). Then because \(D_j \) is a cone containing an open ball of finite radius, it contains open balls with arbitrarily large radii. In particular, it contains a ball with radius greater than \(|x| \), so there exist points \(y, z \in D_j \) such that \(y + x = y \). By the superadditivity of \(f \), the linearity of \(g_j \), and the fact that \(y, z \in D_j \), we see:

\[
g_j(y) + f(x) = f(y) + f(x) \leq f(z) = g_j(x+y) = g_j(y) + g_j(x)
\]

So that \(f(x) \leq g_j(x) \). Since this is true for all \(g_j \), and since we know that \(f(x) = g_i(x) \) for some \(i \), we see that \(f(x) = \min_i g_i(x) \), as desired.

Lemma 12. We can construct a composable CRC that stably computes any superadditive continuous piecewise rational linear function \(f : \mathbb{R}^n_{>0} \to \mathbb{R}_{\geq 0} \).
Proof. By Lemma 11 we know that \(f \) can be written as the minimum of a finite number of rational linear functions \(g_i \). Observe that a general rational linear function \(g(x) = a_1x_1 + a_2x_2 + \ldots + a_nx_n \) is stably computed by the reactions

\[
\forall i, \ k_iX_i \rightarrow a_ik_iY
\]

where \(k_i \) is a positive integer such that \(k_ia_i \) is also a positive integer. Since \(f \) is the minimum of a number of \(g_i \)'s, we can make a chemical reaction network where we compute each \(g_i \) using a copy of the input species, calling the output \(Y_i \) (the reaction \(X_i \rightarrow X_i^1 + \ldots + X_i^n \) produces five species with concentrations equal to \(X_i \)'s initial concentration, effectively copying the input species so that the input may be a reactant in several modules without those modules competing). Next, we use the chemical reaction

\[
Y_1 + \ldots + Y_n \rightarrow Y
\]

to get the minimum of the \(Y_i \)'s. Since each \(Y_i \) obtains the count of the corresponding \(g_i \), this CRN will produce the minimum of the \(g_i \)'s quantity of \(Y \)'s. Thus, according to Lemma 11, the described CRC stably computes \(f \). Note that each sub-CRC described in this construction is output oblivious, and thus composable, so the composition of these modules maintains correctness. \(\square \)

The above construction only handles the domain \(\mathbb{R}_{\geq 0}^n \), where we know our functions are continuous by positive-continuity. However, when extended to the domain \(\mathbb{R}_{\geq 0}^n \), positive-continuity of our functions allows discontinuity where inputs change from zero to positive. The challenge, then, is to compute the superadditive continuous piecewise rational linear function corresponding to which inputs are nonzero.

Surprisingly, Lemma 13 below shows that we can express a superadditive positive-continuous piecewise rational linear function as a min of superadditive continuous piecewise rational linear functions. The first step towards this expression is to see that, given two subspaces of inputs wherein the species present in one subspace \(A \) are a superset of the species present in a subspace \(B \), the function as defined on the subspace \(A \) must be greater than the function as defined on the subspace \(B \); otherwise, the function would disobey monotonicity and thus superadditivity, as proven below:

Lemma 13. Consider any superadditive positive-continuous piecewise rational linear function \(f : \mathbb{R}_{\geq 0}^n \to \mathbb{R}_{\geq 0} \). Write \(N = [n] \), and for each \(S \subseteq N \), let \(g_S(x) \) be the superadditive continuous piecewise rational linear function that is equal to \(f \) on \(D_S \). If \(S, T \subseteq N \) and \(S \subseteq T \), then for all \(x \in D_S \) we know \(g_S(x) \leq g_T(x) \).

Proof. Write \(e_i \) for the vector of length 1 pointing in the positive direction of the \(i \)th coordinate axis. Define the vector \(v = \sum_{i \in T \setminus S} e_i \). Then for any \(x \in D_S \) and any \(\epsilon \in \mathbb{R}_{\geq 0} \), we know that \(x + \epsilon v \in D_T \). Since \(f \) is superadditive, it is also monotonic. Suppose that \(g_T(x) < g_S(x) \). Because \(g_T \) is continuous, taking \(\delta = g_S(x) - g_T(x) > 0 \), there is some small enough \(\epsilon > 0 \) such that

\[
f(x + \epsilon v) = g_T(x + \epsilon v) < g_T(x) + \delta = g_S(x) = f(x)
\]

contradicting the monotonicity of \(f \). Our assumption must be false, so \(g_S(x) \leq g_T(x) \). \(\square \)

Next we define a predicate for each subset of inputs which is true if all inputs in that subset are nonzero. Intuitively, in the CRC construction to follow, this predicate is used by the CRC to determine which inputs are present:

Definition 23. For any set \(S \subseteq [n] \), define the \(S \)-predicate \(P_S : \mathbb{R}_{\geq 0}^n \to \{0, 1\} \) to be the function given by:

\[
P_S(x) = \begin{cases}
1 & x(i) > 0 \forall i \in S \\
0 & \text{otherwise}
\end{cases}
\]

A naïve approach might be the following: for each subdomain \(D_S \), the function is continuous, so compute it by CRC according to Lemma 12, producing an output \(Y_S \). Then compute the \(P_S \) predicate by CRC, and if the predicate is true (e.g., a species representing \(P_S \) has nonzero concentration), use that species to catalyze a reaction which changes the \(Y_S \) to \(Y \), the final output of the system. However, note that if \(T \) is a subset of \(S \), \(P_S \) and \(P_T \) are both true, so this technique will overproduce \(Y \).

The following technique solves this issue by identifying a min which can be taken over the intermediate outputs \(Y_S \). In particular, for each \(S \), we compute \(g_S(x) + \sum_{K \subseteq S} P_K(x)g_K(x) \), and then take the min of these terms. When \(S \) corresponds to the set of input species with initially nonzero concentrations, then the summation term in this expression is 0, since \(P_K(x) = 0 \) for all \(K \not\subseteq S \). When \(S \) does not correspond to the set of input species with initially nonzero concentration, then either (1) it is a superset of the correct set \(I \), in which case Lemma 13 says that \(g_S(x) \geq g_I(x) \) (thus the min of these is \(g_I(x) \)) or (2) the summation term added to \(g_S(x) \) contains at least \(g_I(x) \), and since \(g_S(x) + g_I(x) \geq g_I(x) \), the min of these is \(g_I(x) \). Thus taking the min for all \(S \) of \(g_S(x) + \sum_{K \subseteq S} P_K(x)g_K(x) \) is exactly \(g_I(x) \), where \(I \) is the correct set of initially present input species.

Lemma 14. Consider any superadditive positive-continuous piecewise rational linear function \(f : \mathbb{R}_{\geq 0}^n \to \mathbb{R}_{\geq 0} \). Write \(N = [n] \), and for each \(S \subseteq N \), let \(g_S(x) \) be the superadditive continuous piecewise rational linear function that is equal to \(f \) on \(D_S \). Then, \(f(x) = \min_{S \subseteq N} [g_S(x) + \sum_{K \subseteq S} P_K(x)g_K(x)] \).

Proof. For \(S \subseteq N \), let \(h_S : \mathbb{R}_{\geq 0}^n \to \mathbb{R}_{\geq 0} \) be given by

\[
h_S(x) = g_S(x) + \sum_{K \subseteq S} P_K(x)g_K(x)
\]

We want to show that \(f(x) = \min_{S \subseteq N} h_S(x) \). To do this, fix \(x \in \mathbb{R}_{\geq 0}^n \) and define the set \(I = \{i \in N \mid x(i) > 0\} \). First, let’s show that \(h_I(x) = f(x) \). By the definition of \(I \), for all \(K \not\subseteq I \), we know \(P_K(x) = 0 \). Thus, \(\sum_{K \not\subseteq I} P_K(x)g_K(x) = 0 \), so \(h_I(x) = g_I(x) = f(x) \). Now we must show that \(h_S(x) \geq f(x) \) for all \(S \subseteq N \). There are two cases to consider:
Case 1: $S \not\supseteq I$
In this case,
\[
 h_S(x) = g_S(x) + \sum_{K \subseteq S} P_K(x)g_K(x) \\
 \geq g_S(x) + P_I(x)g_I(x) \\
 \geq P_I(x)g_I(x).
\]
By the definition of I, we know $P_I(x) = 1$, so $P_I(x)g_I(x) = g_I(x) = f(x)$. Thus we get that $h_S(x) \geq f(x)$.

Case 2: $S \supseteq I$
By Lemma 13 $g_S(x) \geq g_I(x)$. As a result,
\[
 h_S(x) = g_S(x) + \sum_{K \subseteq S} P_K(x)g_K(x) \\
 \geq g_S(x) \geq g_I(x) \\
 = f(x).
\]
Since for all $x \in \mathbb{R}_{\geq 0}^n$, we know $h_S(x) \geq f(x)$ for all $S \subseteq N$ and $h_I(x) = f(x)$ for some $I \subseteq N$, it follows that $f(x) = \min_{S \subseteq N} h_S(x)$. \hfill \Box

Lemma 15. Given any superadditive positive-continuous piecewise rational linear function $f : \mathbb{R}_{\geq 0}^n \rightarrow \mathbb{R}_{\geq 0}$, there exists a composable CRC which stably computes f.

Proof. The proof follows by identifying that the function can be expressed as a composition of functions (via Lemma 14) which are computable by output oblivious CRCS and are thus composable by Lemma 4. By Lemma 14 we know that $f(x) = \min_{S \subseteq N} [g_S(x) + \sum_{K \not\subseteq S} P_K(x)g_K(x)]$. The first subroutine copies the input species, e.g., $X_1 \rightarrow X_1^{+} + \ldots + X_1^{+}$, in order for each sub-CRC to not compete for input species. This copying is output oblivious. Then for any $Q \subseteq [n]$, $P_Q(x)$ is computed using one set of copies via the reaction:
\[
 \sum_{i \in Q} X_i \rightarrow P_Q
\]
noting that although the predicate $P_Q(x)$ is defined to be 0 or 1, it is sufficient in this construction for the concentration of the species representing $P_Q(x)$ to be zero or nonzero. This CRC is output oblivious.

We can also compute each $g_Q(x)$ (via Lemma 12) using copies of the input molecules. This construction is output oblivious. To compute $P_Q(x)g_Q(x)$ given the concentration species P_Q as nonzero iff $P_Q(x) = 1$ as shown above, we simply compute the following (assuming Y_Q is the output of the module computing $g_Q(x)$):
\[
 f(P_Q, Y_Q) = \begin{cases}
 Y_Q & P_Q \neq 0 \\
 0 & P_Q = 0
 \end{cases}
\]
which is computed by this output-oblivious CRC:
\[
 Y_Q + P_Q \rightarrow Y + P_Q.
\]
The CRC computing \min is output oblivious, as seen in the introduction. The CRC computing the sum of its inputs is output oblivious (e.g., $X_1 \rightarrow Y, X_2 \rightarrow Y$ computes $X_1 + X_2$). Since each CRC shown is output oblivious and thus composable, we can compose the modules described to construct a CRC stably computing $\min_{S \subseteq N} [g_S(x) + \sum_{K \not\subseteq S} P_K(x)g_K(x)]$, which is equal to $f(x)$ by Lemma 14. \hfill \Box

Corollary 2. Given any superadditive positive-continuous piecewise rational linear function $f : \mathbb{R}_{\geq 0}^n \rightarrow \mathbb{R}_{\geq 0}$, there exists a composable CRC with reactions with at most two reactants and at most two products which stably computes f.

To deduce this corollary, note that the reactions with more than two reactants and/or products are used to compute the following functions: computation of a rational linear function, copying inputs, min, and predicate computation. We can decompose such reactions into a set of bimolecular reactions. For example, a reaction $X_1 + X_2 \rightarrow X_1$ is decomposed into the reactions $X_1 + X_2 \rightarrow X_1, X_2 + X_3 \rightarrow X_3, \ldots, X_{n-1} + X_n \rightarrow X_n$. We can verify that each affected module stably computes correctly with these expanded systems of reactions, and remains composable.

4 Example
In this section, we demonstrate the construction presented in the previous section through an example. Consider the function shown in Equation 2 in Section 3. As shown in that section, the function is superadditive, positive-continuous, and piecewise rational linear. Thus, we can apply our construction to generate a composable CRN stably computing this function. Note that while this CRN is generated from our methodology, we have removed irrelevant species and reactions.

Making copies of input:
\[
 X_1 \rightarrow X_1'', X_2'' \\
 X_2 \rightarrow X_2'', X_2'' \\
 X_3 \rightarrow X_3'
\]
Using X_3' to make P_3, which catalyzes reactions for the domain $X_3 > 0$:
\[
 X_3' \rightarrow P_3
\]
Computing the sum in Y_3:
\[
 X_2'' \rightarrow Y_3 \\
 X_3'' \rightarrow Y_3
\]
Computing the min in Y_6:
\[
 X_2'' + X_3'' \rightarrow Y_6
\]
Making a copy of Y_3 for use in increasing Y_6':
\[
 Y_3 \rightarrow Y_3' + Y_3 \cdot \varnothing
\]
Increase Y_6' so that it won’t be the min when x_3 is present:
\[
 Y_3 \cdot \varnothing + P_3 \rightarrow Y_6' + P_3
\]
Renaming Y_6 to Y_6' so that it will be summed with the term created by the previous reaction:
\[
 Y_6 \rightarrow Y_6' \\
 Y_6' + Y_3' \rightarrow Y
\]

5 Functions Computable by Composable CRNs with Initial Context
So far, our CRNs restrict the concentrations of non-input species in the initial state to be zero. One may consider some
(constant) initial concentration of non-input species, called initial context, and how that may affect computation.

Definition 24. A CRC with initial context, denoted $C^{i, i}_{\Lambda} = (\Lambda, R, \Sigma, Y, I, i)$ with $\Lambda, R, \Sigma,$ and Y defined as in Definition 17 and the initial context species $I \subset \Lambda \setminus (\Sigma \cup Y)$ and initial context concentrations $i \in \mathbb{R}_{>0}^{\mathbb{Z}_{\geq 0}}$. $C^{i, i}_{\Lambda}$ stably computes $f : \mathbb{R}_{\geq 0}^{k} \rightarrow \mathbb{R}_{\geq 0}$ if, for all $x \in \mathbb{R}_{\geq 0}^{k}$ and all c such that $x + i \rightarrow c$, there exists an output stable o such that $c \rightarrow o$ and $o(Y) = f(x)$.

We show that initial context for composable CRCs allows only functions which are a min of rational affine functions (in contrast to, without initial context, functions which are a min of rational linear functions).

Note that such functions are not superadditive (e.g., $f(x) = 1$ is rational affine but not superadditive), so we cannot characterize the class of functions as superadditive positive-continuous piecewise rational affine. Additionally, they are more restricted than positive-continuous piecewise rational affine functions (without superadditivity). Thus, we leave the characterization stated as a min of rational affine functions.

As defined, we allow an arbitrary number of initial context species with differing initial concentrations, but we will focus on the single species case with an initial concentration of one. As it turns out, this is well motivated: we show that initial context for composable CRCs allows only functions which are a min of rational affine functions.

Lemma 16. Given a CRC with initial context $C^{i, i}_{\Lambda}$ with $i \in \mathbb{Q}_{\geq 0}$ (rational initial concentrations) which stably computes $f : \mathbb{R}_{\geq 0}^{k} \rightarrow \mathbb{R}_{\geq 0}$ if, for all $x \in \mathbb{R}_{\geq 0}^{k}$ and all c such that $x + i \rightarrow c$, there exists an output stable o such that $c \rightarrow o$ and $o(Y) = f(x)$.

We know that scaling the value of the initial context retains the fact that C stably computes a function in the region where that species has a positive concentration. We can view a single species of initial context as an additional input to C and claim that this CRN stably computes some function, using lemmas from the case of no initial context to prove properties of that function.

Definition 25. A function $f : \mathbb{R}^{n} \rightarrow \mathbb{R}$ is rational affine if there exists $a_{1}, . . . , a_{n}, b_{1}, . . . , b_{n} \in \mathbb{Q}$ such that $f(x) = \sum_{i=1}^{n} a_{i} x(i) + b_{i}$.

Lemma 17. Given a CRN $\{\Lambda, R\}$, for any $r \in \mathbb{R}_{\geq 0}$ and $c \in \mathbb{R}_{\geq 0}^{\Lambda}$, $\text{Post}(rc) = r \text{Post}(c)$.

Proof. If $c \rightarrow d$, then for any $k \in \mathbb{R}_{>0}$, $kc \rightarrow kd$. This can be verified by taking the straight line segments to get from c to d and scaling them by k.

When $r = 0$, this lemma is trivial, as the only state reachable from the zero state is the zero state and zero times any state yields the zero state. Thus we only need to consider the case where $r > 0$.

Let $v \in \text{Post}(rc)$. By the definition of Post this implies that $rc \rightarrow v$. This implies that $c \rightarrow \frac{1}{r}v$. Therefore $\frac{1}{r}v \in \text{Post}(c)$ and $v \in r \text{Post}(c)$.

Let $v \in r \text{Post}(c)$. By the definition of Post this implies that $c \rightarrow \frac{1}{r}v$. This implies that $rc \rightarrow v$. Which implies that $v \in \text{Post}(rc)$.

Lemma 18. Let $C^{i, i}_{\Lambda}$ with $I = \{S_{1}\}$ and $i(S_{1}) = q_{1}$ stably compute f. Then $C^{i, \gamma i}_{\Lambda}$ for $\gamma \in \mathbb{R}_{\geq 0}$ stably computes g.

Proof. Consider running C with an initial concentration of $q_{1} = \gamma q_{1}$ for the species S_{1}. Observe that the initial state $x' = \frac{1}{\gamma}x$, where x is a state that will stably compute f under the definition of C. By Lemma 17 we know that the set of reachable states from x' is equal to the set of reachable states from x scaled by γ. Thus consider some state c' reached from x'. Observe that there exists a state c reachable from x such that $c' = \gamma c$. Consider some output stable o reachable from c. Observe that by Lemma 17 the state $o' = \gamma o$ must be reachable from c'. Likewise by Lemma 17 we know that o' must be an output stable state. Thus, we know that C must stably compute some function regardless of the initial value for S_{1}.

We know that scaling the value of the initial context retains the fact that C stably computes a function in the region where that species has a positive concentration. We can view a single species of initial context as an additional input to C and claim that this CRN stably computes some function, using lemmas from the case of no initial context to prove properties of that function.

Lemma 19. Let $C^{i, \gamma i}_{\Lambda}$ be output-oblivious with $I = \{S_{1}\}$ and $i(S_{1}) = 1$. $C^{i, \gamma i}_{\Lambda}$ stably computes $f : \mathbb{R}_{\geq 0}^{k} \rightarrow \mathbb{R}_{\geq 0}$ if f is a min of rational affine functions.

Proof. Intuitively, we treat the initial context as an input species. For $C^{i, \gamma i}_{\Lambda} = (\Lambda, R, \Sigma, Y, I, i)$, let $C' = (\Lambda, R, \Sigma \cup I, Y)$. By assumption, $C^{i, \gamma i}_{\Lambda}$ is output-oblivious, so C' is output-oblivious. Further, by Lemma 19 C' stably computes some function for all (positive) initial concentrations of S_{1}. So C' must stably compute a superadditive positive-continuous piecewise rational linear function f' on the domain with positive (nonzero) initial concentration of S_{1}. Therefore by Lemma 11 f' is a min of rational linear functions:

$$f'(x_{1}, . . . , x_{n}, s_{1}) = \min_{j=1, \ldots , m} \left(\sum_{i=1}^{n} a_{ij} x_{i} + b_{j} s_{1} \right).$$

As a result, the function f' restricted to the domain with the input value represented by S_{1} equal to one is a min of rational affine functions:

$$f'(x_{1}, . . . , x_{n}, 1) = \min_{j=1, \ldots , m} \left(\sum_{i=1}^{n} a_{ij} x_{i} + b_{j} \right).$$

So C' with initial concentration of S_{1} equal to one stably computes a min of rational affine functions. Note that C'
with this input restriction is exactly the CRC $C^{f,i}$. Then $C^{f,i}$ also computes a min of rational affine functions.

Theorem 2. Let $C^{f,i}$ be output-oblivious with $i \in Q_l$. Then $C^{f,i}$ stably computes $f : \mathbb{R}_{\geq 0}^n \to \mathbb{R}_{\geq 0}$ if and only if f is a min of rational affine functions.

Proof. To compute a rational affine function $\sum_{i=1}^n a_i x_i + b_i$, we produce $a_i x_i$ of species Y as in the case with no initial context (Lemma 12) and then produce $\sum_{i=1}^n b_i$ of Y via the initial context: n different initial species S_i with initial concentrations equal to each b_i and the reaction $S_i \to Y$. This is done composably, so we can compute each rational affine function and then compute the min, resulting in f.

To show that a computed function must be a min of rational affine functions, by Lemma 16 there exists a CRC $C^{f,i}$ with $I = \{ S_i \}$ and $I'(S_i) = 1$ (one initial species with concentration one) which stably computes the same f. By Lemma 19, $C^{f,i}$ must compute a min of rational affine functions.

6 Future Work

Instead of continuous concentrations of species, one may consider discrete counts. This changes which functions are stably computed by CRNs. Without the composability constraint, 5 shows in the discrete model that a function $f : \mathbb{N} \to \mathbb{N}$ is stably computable by a direct CRN if and only if it is semilinear; i.e., its graph $\{ (x, y) \in \mathbb{N} \times \mathbb{N} \mid f(x) = y \}$ is a semilinear subset of $\mathbb{N} \times \mathbb{N}$. The proof that composably computable functions must be superadditive (Lemma 9) holds for the discrete model as well. Additionally, there exist functions which is superadditive and semilinear but is not computable in the discrete model by a composable CRN. For example (the proof is omitted):

$$f(x_1, x_2) = \begin{cases} x_1 - 1 & x_1 > x_2 \\ x_1 & x_1 \leq x_2, \end{cases}$$

so the class of composably computable functions is slightly more restricted; a characterization in the case of initial context for functions on two inputs ($f : \mathbb{N}^2 \to \mathbb{N}$) is given by 6.

Currently, no similar characterization has been proven for functions on more than two inputs.

Our negative and positive results are proven with respect to stable computation, which formalizes our intuitive notion of rate-independent computation. It is possible to strengthen our positive results to further show that our CRNs converge (as time $t \to \infty$) to the correct output from any reachable state under mass-action kinetics (proof omitted). It is interesting to characterize the exact class of rate laws that guarantee similar convergence.

Apart from the dual-rail convention discussed in the introduction, other input/output conventions for computation by CRNs have been studied. For example, 11 considers fractional encoding in the context of rate-dependent computation. As shown by dual-rail, different input and output conventions can affect the class of functions stably computable by CRNs. While using any superadditive positive continuous piecewise rational linear output convention gives us no extra computational power—since the construction in this paper shows how to compute such an output convention directly—it is unclear how these conventions change the power of rate-independent CRNs in general.

Finally we can ask what insights the study of composition of rate-independent modules gives for the more general case of rate-dependent computation. Is there a similar tradeoff between ease of composition and expressiveness for other classes of CRNs?

References

[1] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of population protocols. Distributed Computing, 20(4):279–304, November 2007.

[2] Luca Cardelli. Strand calculi for DNA computing. Natural Computing, 10(1):407–428, 2011.

[3] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with chemical reaction networks. Natural computing, 13(4):517–534, 2014.

[4] Ho-Lin Chen, David Doty, and David Soloveichik. Rate-independent computation in continuous chemical reaction networks. In Proceedings of the 5th conference on Innovations in Theoretical Computer Science, pages 313–326. ACM, 2014.

[5] Yuan-Jyue Chen, Neil Dalchau, Niranjnan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature nanotechnology, 8(10):755, 2013.

[6] Ben Chugg, Hooman Hashemi, and Anne Condon. Output-oblivious stochastic chemical reaction networks. In 22nd International Conference on Principles of Distributed Systems, OPODIS 2018, December 17-19, 2018, Hong Kong, China, pages 21:1–21:16, 2018.

[7] Domitilla Del Vecchio, Alexander J Ninfa, and Eduardo D Sontag. Modular cell biology: retroactivity and insulation. Molecular systems biology, 4(1):161, 2008.

[8] François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In International Conference on Computational Methods in Systems Biology, pages 108–127. Springer, 2017.

[9] Martin Feinberg and Friedrich JM Horn. Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chemical Engineering Science, 29(3):775–787, 1974.

[10] Sergei Ovchinnikov. Max-min representation of piecewise linear functions. Contributions to Algebra and Geometry, 45(1):297–302, 2004.

[11] Sayed Ahmad Salehi, Xingyi Liu, Marc D. Riedel, and Keshab K. Parhi. Computing mathematical functions using dna via fractional coding. Scientific Reports, 8(8312), 2018.

[12] Alexander Schrijver. Theory of Linear and Integer Programming, pages 85–88. John Wiley & Sons, Inc., New York, NY, USA, 1986.

[13] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

[14] Niranjnan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik. Enzyme-free nucleic acid dynamical systems. Science, 358(6369):eaal2052, 2017.
7 APPENDIX

Most definitions and lemmas in this section work towards proving Lemma 5. We also include a proof of Lemma 10.

Definition 26. A polyhedron is a subset of \mathbb{R}^n of the form $\{x \mid Ax \leq b\}$ for some $m \times n$ matrix A and some vector $b \in \mathbb{R}^m$.

Definition 27. A convex polytope is the convex hull of a finite set of points in \mathbb{R}^n.

Definition 28. A polyhedral cone is a set of the form $\{x = \lambda_1 x_1 + \ldots + \lambda_n x_n \mid \lambda_1, \ldots, \lambda_n \geq 0\}$ for some finite set of points $\{x_1, \ldots, x_n\}$ in \mathbb{R}^n.

The following lemma comes from a previous work. Note that this sum is the Minkowski sum.

Lemma 20. [Proven in [12]] A subset $P \subseteq \mathbb{R}^n$ is a polyhedron if and only if $P = Q + C$ for some convex polytope Q and some polyhedral cone C.

Lemma 21. For a given state c of a CRN C, the set of states $\{d \mid c \to^1 d\}$ that are straight-line reachable from c is a polyhedron.

Proof. If $m = |R|$ is the number of reactions in C and $n = |A|$ is the number of species in C, then the stoichiometry matrix can be thought of as a linear transformation from the reaction space \mathbb{R}^m to the species space \mathbb{R}^n. Let R_c be the set of basis vectors corresponding to reactions fireable at c. Then since M is a linear transformation, it sends the polyhedral cone defined by R_c to a polyhedral cone C' in \mathbb{R}^n. By Lemma 20, the set $c + C'$ is a polyhedron in \mathbb{R}^n, and since the set of states that are straight-line reachable from c is the intersection of this polyhedron with the set of all vectors with nonnegative components, it is also a polyhedron.

Definition 29. The set of possible species produced from a state c is $\mathcal{P}(c) = \bigcup_{d \in \text{Post}(c)} [d]$.

Lemma 22. For a CRN the set of reachable states is closed under convex combination.

Proof. Consider some state c and states $S = \{\alpha_1, \ldots, \alpha_k\}$ reachable from c. Let $d = \sum_{i=0}^k a_i \alpha_i$ where $\forall i, a_i > 0$ and $\sum_{i=0}^k a_i = 1$. By Lemma 17 we know that $\forall i, a_i \alpha_i$ is reachable from $a_i c$. Since $\sum_{i=0}^k a_i \alpha_i = c$, we know that $c \to \sum_{i=0}^k a_i \alpha_i$, which is equal to d.

Lemma 23. Given a state c, there is a state d reachable from c such that $\mathcal{P}(d) = \{c\}$. For such a state, $\mathcal{P}(d) = \mathcal{P}(c)$.

Proof. If c is the zero vector, observe that $\mathcal{P}(c) = [c]$, so setting $d = c$ makes this hold. Otherwise, for each species $S \in \mathcal{P}(c)$, there is some state d_S reachable from c with $S \in [d_S]$. Then the state $d = \sum_{S \in \mathcal{P}(c)} a_S d_S$ is reachable from c by Lemma 22. Since d contains a positive contribution from each d_S, $\mathcal{P}(c) = [d]$. Since $c \to d$ we know that $\mathcal{P}(d) \subseteq \mathcal{P}(c)$. Since $\mathcal{P}(c) = [d]$ and $d \notin \mathcal{P}(d)$ we know that $\mathcal{P}(c) \not\subseteq \mathcal{P}(d)$. Thus we can conclude that $\mathcal{P}(d) = \mathcal{P}(c)$.

Lemma 24. If c is a state such that $\mathcal{P}(c) = [c]$, then any state d that is reachable from c is straight-line reachable from c.

Proof. Since $\mathcal{P}(c) = [c]$, by the definition of $\mathcal{P}(c)$ we know that the set of applicable reactions from c is a superset of those applicable from any state reachable from c. Thus we can take the sum of all the straight-line segments used to reach d from c and apply them all in a single straight-line segment to get $c \to d$.

Lemma 5. For any state c and any species S, if the amount of S present in any state reachable from c is bounded above, there is a state d reachable from c such that for any state a reachable from d, we know that $a(S) \leq d(S)$.

Proof. By Lemma 23, there is some c_1 reachable from c such that $[c_1] = \mathcal{P}(c)$. By Lemma 21, we know that the states that are straight-line reachable from c_1 are a polyhedron P. The linear map $\mathbb{R}^n \to \mathbb{R}$ sending $x \to x(S)$ maps P to some polyhedral subset of \mathbb{R}—in particular this is a closed subset. Since we assume that the image of this map is bounded above, we know that this subset attains its maximum M, so there is some $d \in P$ with $d(S) = M$. Any state a that is reachable from d is also reachable from c_1, so by Lemma 24 it is contained in P. As a result, $a(S) \leq M = d(S)$.

Lemma 10. Suppose we are given a continuous piecewise rational linear function $f : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$. Then we can choose domains for f which are cones which contain an open ball of non-zero radius.

Proof. Since f is piecewise rational linear, we can pick a finite set of domains $D = \{D_i\}_{i=1}^N$ for f, such that $f|_{D_i} = g_i|_{D_i}$, where g_i is a rational linear function. Fix a domain D_k, and consider any point $x \in D_k$. Since the open ray ℓ_x from the origin passing through x is contained in $\mathbb{R}^{\geq 0}$, it is covered by the domains in D. If we write any point $y \in \ell_x$ in the form $t \cdot x$, then, for each i, the restriction of g_i to $D_i \cap \ell_x$ is of the form $g_i((t \cdot x) = a_k t$ for some $a_k \in \mathbb{R}$. Since $x \in D_k \cap \ell_x$, we know that $f((t \cdot x) = a_k t$.

Now suppose that for some $s \in \mathbb{R}^{\geq 0}$, we know that $f(s \cdot x) \neq a_k x$. First consider the case where $s > 1$. Then define the set $A = \{t \in [1, s] \mid f(t \cdot x) = a_k t\}$ and define the set $B = \{t \in [1, s] \mid f(t \cdot x) \neq a_k t\}$. We know that A is non-empty since $1 \in A$, so sup A exists - call it t'. From the standard properties of the supremum, we know that there exists a sequence of points $\{t_j\}_{j=1}^\infty$ such that $t_j \in A$ for all j and $\lim_{j \to \infty} t_j = t'$. As a result, from the continuity of f, we see that:

$$f(t' \cdot x) = \lim_{j \to \infty} f(t_j \cdot x) = \lim_{j \to \infty} a_k t_j = a_k t'$$

So $t' \in A$. However, by assumption, $s \in B$, so that $t' < s$. Since t' is an upper bound on A, it must then be the case that $(t', s] \subseteq B$, so that there exists a sequence of points $\{s_j\}_{j=1}^\infty$ such that $s_j \in B$ for all j and $\lim_{j \to \infty} s_j = t'$. Since there are only finitely many domains in D, but infinitely many s_j, by the pigeonhole principle infinitely many of the s_j must be contained in a single domain D_k. Now write the subsequence of points contained in D_k as $\{s_j\}_{j=1}^\infty$. We still know that $\lim_{j \to \infty} s_j = t'$, so by the continuity of f and the fact that $s_j \in D_k$, we see that:

$$\alpha_k t' = f(t' \cdot x) = \lim_{j \to \infty} f(s_j \cdot x) = \lim_{j \to \infty} a_k s_j = a_k t'$$
Since $t' > 0$, this implies that $\alpha_{k'} = \alpha_k$, so that $f(s_{j'} \cdot x) = \alpha_k s_{j'}$. However, this contradicts the fact that we were able to choose $s_{j'} \in B$. As a result, our assumption, that there is some $s > 1$ such that $f(s \cdot x) \neq \alpha_k s$, must be false. A similar argument, using the infimum instead of the supremum, shows that there can be no $s < 1$ such that $f(s \cdot x) \neq \alpha_k s$. As a result, for every point $t \in \ell_x$, we know $f(t \cdot x) = \alpha_k t$. In other words, $f|_{\ell_x} = g_k|_{\ell_x}$, so we can replace D_k with $D_k \cup \ell_x$ without issue. Doing this for every $x \in D_k$, we can replace D_k with a cone. By enlarging every domain in D in this way, we can choose domains for f which are cones.

Since f is continuous, we can replace each $D_i \in D$ by its closure, which is again a cone. Suppose that for any $D_i \in D$, there is a point $x \in D_i$ is not in the interior of D_i. Then x is in the closure of the complement of D_i, so there exists a sequence $\{x_k\}_{k=1}^\infty$ of points in the complement of D_i such that $\lim_{k \to \infty} x_k = x$. Since the complement of D_i is covered by the $D_j \in D$, where $j \neq i$, we know that each x_k lies in one of the D_j. Since there are only finitely many D_j but infinitely many x_k, we know that infinitely many x_k must lie in at least one of the D_j. As a result, x is in the closure of this D_j, and since D_j is closed, we see that $x \in D_j$. Because of this, if D_i has no interior points, then it is completely contained in the other D_j, so we can remove it from the set of domains. After doing this for every D_i which contains no interior points, we can ensure that the domains we have chosen for f all contain an open ball of non-zero radius. \(\square\)