Review Article

Autoimmune Inner Ear Disease: Immune Biomarkers, Audiovestibular Aspects, and Therapeutic Modalities of Cogan’s Syndrome

Oded Shamriz,1 Yuval Tal,2,3 and Menachem Gross4

1Pediatric Division, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
2Internal Medicine Division, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
3Allergy and Clinical Immunology Unit, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
4Department of Otolaryngology-Head and Neck Surgery, Hadassah Hebrew-University Medical Center, Jerusalem, Israel

Correspondence should be addressed to Menachem Gross; drgrossm@hotmail.com

Received 3 March 2018; Accepted 21 March 2018; Published 23 April 2018

Academic Editor: Armando de Virgilio

Copyright © 2018 Oded Shamriz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cogan’s syndrome (CS) is a rare autoimmune disorder characterized by audiovestibular dysfunction and ocular inflammation. Currently, there is no specific serum autoantibody used in the diagnostic workup of CS. Treatment is based on immunosuppressive agents, mainly corticosteroids as first-line choice. Recently, novel therapeutic modalities in CS have emerged. These include tumor necrosis factor-α inhibitors and other biologicals. Despite medical treatment, hearing loss may progress to irreversible bilateral profound SNHL in approximately half of CS patients resulting in candidacy for cochlear implantation (CI). Due to the inflammatory nature of the disease that is causing endosteal reaction with partial obliteration or complete neoossification of the intracochlear ducts, early CI is recommended. CI provides excellent and stable hearing rehabilitation with high score of word and sentence recognition. In this review, we will discuss different aspects of CS including clinical presentation, diagnosis, treatment, and future directives.

1. Introduction

Classical definition of autoimmune inner ear disease (AIED) has been suggested as a disorder with bilateral sensorineural hearing loss (SNHL) progressing over a period of 3 to 90 days, which showed response to steroid treatment [1]. Suggested mechanisms include humoral, as well as cellular-mediated responses with upregulation and expression of different cytokines, such as interleukin- (IL-) 1β and interstitial cell adhesion molecule-1 (ICAM-1) [2]. Many systemic autoimmune diseases may be associated with bilateral rapidly progressive SNHL and vestibular symptoms that clinically resemble AIED.

Within the group of AIED, Cogan’s syndrome (CS) is of special interest. Typical CS is characterized by inflammation of the eyes and inner ears, manifesting as interstitial keratitis (IK) and audiovestibular dysfunction (AVD), respectively [3]. Association with systemic vasculitis is well described [4]. CS is believed to have an autoimmune aetiology, although many questions regarding aetiopathogenesis remain unanswered.

As current understanding of possible causes, disease course, and available biologic treatments is limited, a comprehensive review of the existing literature concerning CS is needed. In this review, we will uncover different clinical audiovestibular aspects, immune mechanisms, and therapeutic modalities and try to shed some light on this rare autoimmune disease.

2. Epidemiology of Cogan’s Syndrome

CS is a rare disorder with approximately 250 cases reported so far [5]. It affects mainly young Caucasian adults in their third decade of life [6], although cases of CS were reported in children and in the elderly. In one study that analysed data from a cohort of 78 CS patients, median age of disease onset was 25 years and ranged between 5 and 63 years [7]. In
large cohorts published, there is no specific gender predominance [8].

3. The Clinical Spectrum of Cogan’s Syndrome

Mandatory diagnostic criteria of CS consist of SNHL, inflammatory ocular symptoms, and ruling out any other causes of inflammation or infection, such as tuberculosis and syphilis [6].

CS is classified as having a “typical” and an “atypical” presentation. Typical CS, as it was first described in 1945, consists of IK and AVD including Meniere-like episodes and SNHL [9]. In typical CS, inner ear symptoms occur within a time period of 2 years from ocular symptoms [3]. Atypical CS manifests with non-IK inflammatory ocular symptoms. These comprise glaucoma, conjunctivitis, and episcleritis [10]. Uveitis is another ocular manifestation of atypical CS and was reported even in children [11], alerting physicians to be aware of the association between uveitis and SNHL in the context of atypical CS.

Systemic manifestations are more common in atypical CS [3]. Fever, headaches, polyarthralgia and arthritis, myalgia, anorexia, and gastrointestinal (GI) symptoms were previously described in CS patients [12]. Systemic vasculitis is seen in 15–21% of the patients [6]. Aortic root vasculitis, which is reported in 10% of CS patients, can result in life-threatening complications, such as aortic aneurysms, dissection, and insufficiency [13–15]. Mitral insufficiency was also reported [16]. Other organs, such as the kidneys and brain, may be affected by systemic vasculitis in CS [17], and CS patients with stroke have been reported [18].

Interestingly, review of the literature reveals a coexistence between CS and other autoimmune diseases. This includes the presence of atypical CS with granulomatosis with polyangiitis (Wegener’s granulomatosis) [19], rheumatoid arthritis [20], and tubulointerstitial nephritis and uveitis (TINU syndrome) [21]. One study reported of 4 inflammatory bowel disease (IBD) patients presenting with CS symptoms, including SNHL and ocular inflammation, following GI symptoms [22]. Another large international multicenter study supported these findings and described 22 CS-IBD patients; 50% of them had GI symptoms before CS onset [23]. This coexistence of CS with other autoimmune diseases constitutes a clue for its autoimmune pathogenesis.

4. Autoantibodies and Serological Markers in Cogan’s Syndrome

Currently, no specific serological biomarker is available in the routine diagnostic workup of CS. Moreover, the absence of serum autoantibodies does not rule out CS diagnosis [5].

However, several autoantibodies have previously been associated with CS (Table 1). In 2003, researchers from Italy identified autoantibodies produced in CS patients against a “Cogan peptide,” which shared homology with laminin, connexin 26, cell density-enhanced protein tyrosine phosphatase-1 (DEP-1/CD148), SSA/Ro, and reovirus III major core protein lambda 1. Injection of these autoantibodies into mice resulted in vasculitis and ocular symptoms. Furthermore, administering the Cogan peptide into rabbits has resulted in the development of SNHL [24].

As autoimmune aetiology of CS became more likely, a search for other autoantibodies was conducted. Anti-heat shock protein- (HSP)- 70 was suggested to be a strong candidate. Antibodies to both HSP-70 and inner ear 68 kDa antigen were isolated from an experimental autoimmune SNHL model of guinea pigs and patients with progressive SNHL and were suggested to be a marker for AIED [25]. In 2007, another study tested 14 CS patients for anti-HSP-70 serum titers and found that 50% of them were positive, as compared to only 4% in the control group [26]. A cohort of 38 CS patients, 55 autoimmune SNHL patients, and 19 control subjects found that positivity of anti-HSP-70 was highest among typical CS patients (92.9%), followed by ASNHL (52.7%), atypical CS (16.6%), and control (5.2%) groups [27].

Finally, one should also mention general autoimmune markers. These include anti-neutrophil cytoplasmic antibodies (ANCA), anti-nuclear antibodies (ANA), and rheumatoid factor (RF). ANCA are directed against myeloperoxidase (C-ANCA) and proteinase-3 (P-ANCA). Their association with numerous autoimmune diseases, including ulcerative colitis and vasculitides, is well established [28, 29]. Regarding CS, review of the literature yields several case reports of ANCA-associated CS, especially in the context of glomerulonephritis and renal vasculitis [30–33]. ANA and RF were also identified in sporadic CS cases [34]. However, positivity of ANCA, RF, and ANA among CS patients in large studies was found to be low [26], as well as with other general autoimmune markers, such as circulating anticoagulant antibodies, antcardiolipin antibodies, and cryoglobulins [35].

It appears that the sensitivity and specificity of serum biomarkers of CS are still not sufficient, and thus the search for a routine laboratory test that will support CS diagnosis is still not completed.

5. Biological Therapy in Cogan’s Syndrome

Treatment of CS is challenging and particularly concerns AVD. Data regarding immunosuppressive treatment of CS is scarce and mainly relies on case reports and case series [6]. First-line therapy in order to achieve remission in CS remains high-dosage corticosteroids. Treatment failure may necessitate the addition of other immunosuppressive agents, such as methotrexate, cyclophosphamide, azathioprine, and cyclosporine A, which were shown to have a favourable outcome than corticosteroid monotherapy [36, 37]. In a systematic review, the use of methotrexate in CS was most common, as a nonsteroidal immunosuppressive agent [38].

However, there are increasing reports of CS patients treated successfully with different biological drugs (Table 2). Tumor necrosis factor (TNF-α) inhibitory agents are increasingly being used in autoimmune diseases, such as IBD. Among that group, data regarding treatment with infliximab, a chimeric anti-TNF-α monoclonal antibody, seems to be the most extensive. Review of the literature reveals 12 CS patients treated with infliximab [6, 39–45], of which one patient failed to achieve clinical remission [39]. Data
regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 (range: 16 to 67) years were reported. AVD was noted in 8 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 (range: 16 to 67) years were reported. AVD was noted in 8 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 (range: 16 to 67) years were reported. AVD was noted in 8 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 (range: 16 to 67) years were reported. AVD was noted in 8 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 regarding age and gender of patients was available in 11 patients. Five males and 6 females with a mean age of 39.2 (range: 16 to 67) years were reported. AVD was noted in 8 patients. Five males and 6 females with a mean age of 39.2

Autoantibody	Antigen location	Antigen function	References	Animal models
Anti-HSP-70	Not specific	Protein folding and ubiquitin-mediated degradation; protection from cell stress	38/case control/Italy [27]; 14/case control/Italy [26]; 8/case control/USA [71]	—
ANCA	Neutrophils	Proteolysis (PR3) Production of oxidative free radicals (MPO)	5/case reports/France [72]; Japan [32, 73]; USA [30]; the Netherlands [33]	—
Anti-Cogan peptide	Endothelial cells in the inner ear, lymphocytes, and kidney	Contact inhibition of cell growth; homolog with laminin, connexin 26, SSA/Ro, reovirus III major core protein lambda1, and cell density-enhanced protein tyrosine phosphatase-1 (DEP-1/CD148)	8/case control/Italy [24]	Rabbits and mice [24]

HSP-70: heat shock protein-70; CS: Cogan’s syndrome; ANCA: anti-neutrophil cytoplasmic antibody; PR3: proteinase-3; MPO: myeloperoxidase.

CS has a poor prognosis when eye, ear, and cardiovascular complications occur. Most of the untreated patients have moderate, severe, or profound hearing loss at 5-year follow-up [7]. In a literature review of 111 cases by Grasland et al., 54% and 37% of cases with typical and atypical Cogan syndrome remained deaf in both ears despite treatment [35]. Gluth et al. reported profound hearing loss in 52% of CS patients despite immunosuppressive therapy [51].

In patients with bilateral profound SNHL in whom no benefits are obtained from conventional hearing aids, cochlear implantation (CI) is a highly effective hearing rehabilitation modality. However, some clinical reports of patients with CS who have undergone CI describe major surgical issues. CI in CS patients may be technically challenging due to inflammatory endosteal reaction leading to partial obliteration or complete neosclerosis of the intracochlear ducts [52–55]. Due to this tendency, early cochlear implantation should be recommended in patients with bilateral profound SNHL. Postoperative wound healing problems have been also described in CS patients who have undergone CI [56–58]. Skin atrophy from long-term corticosteroid and immunosuppressant therapy and ischemia caused by vasculitis may be risk factors that contributed to the wound healing complication.

Short-term post-CI hearing outcomes in postlingual CS patients have been described in few clinical reports. Although deterioration of auditory performance after CI has been described by Bovo et al., presumably secondary to apposition or progression of new bone formation in the cochlea, which in turn increases the distance of the

6. Hearing Prognosis and Otologic Surgical Interventions

Autoantibodies associated with Cogan’s syndrome.

Table 1: Autoantibodies associated with Cogan’s syndrome.

Autoantibody	Antigen location	Antigen function	References	Animal models
Anti-HSP-70	Not specific	Protein folding and ubiquitin-mediated degradation; protection from cell stress	38/case control/Italy [27]; 14/case control/Italy [26]; 8/case control/USA [71]	—
ANCA	Neutrophils	Proteolysis (PR3) Production of oxidative free radicals (MPO)	5/case reports/France [72]; Japan [32, 73]; USA [30]; the Netherlands [33]	—
Anti-Cogan peptide	Endothelial cells in the inner ear, lymphocytes, and kidney	Contact inhibition of cell growth; homolog with laminin, connexin 26, SSA/Ro, reovirus III major core protein lambda1, and cell density-enhanced protein tyrosine phosphatase-1 (DEP-1/CD148)	8/case control/Italy [24]	Rabbits and mice [24]

HSP-70: heat shock protein-70; CS: Cogan’s syndrome; ANCA: anti-neutrophil cytoplasmic antibody; PR3: proteinase-3; MPO: myeloperoxidase.

CS has a poor prognosis when eye, ear, and cardiovascular complications occur. Most of the untreated patients have moderate, severe, or profound hearing loss at 5-year follow-up [7]. In a literature review of 111 cases by Grasland et al., 54% and 37% of cases with typical and atypical Cogan syndrome remained deaf in both ears despite treatment [35]. Gluth et al. reported profound hearing loss in 52% of CS patients despite immunosuppressive therapy [51].

In patients with bilateral profound SNHL in whom no benefits are obtained from conventional hearing aids, cochlear implantation (CI) is a highly effective hearing rehabilitation modality. However, some clinical reports of patients with CS who have undergone CI describe major surgical issues. CI in CS patients may be technically challenging due to inflammatory endosteal reaction leading to partial obliteration or complete neosclerosis of the intracochlear ducts [52–55]. Due to this tendency, early cochlear implantation should be recommended in patients with bilateral profound SNHL. Postoperative wound healing problems have been also described in CS patients who have undergone CI [56–58]. Skin atrophy from long-term corticosteroid and immunosuppressant therapy and ischemia caused by vasculitis may be risk factors that contributed to the wound healing complication.

Short-term post-CI hearing outcomes in postlingual CS patients have been described in few clinical reports. Although deterioration of auditory performance after CI has been described by Bovo et al., presumably secondary to apposition or progression of new bone formation in the cochlea, which in turn increases the distance of the
CI electrode array from neural structures, most authors agree to the fact that prognosis of cochlear implantation with regard to hearing results is excellent [58–61].

There are only two studies on long-term post-CI hearing outcomes in postlingual CS patients. Kontorinis et al. reported the long-term outcomes of four patients with CS

Biological agent	Immune mechanism	Number of CS patients reported to be treated with biotherapy	Age (years)/gender/clinical presentation	Biologic dosage and regimen	Number of CS patients that responded to biotherapy	Study design	Country of publication	Ref
Infliximab	Chimeric anti-TNF-α monoclonal antibody	2	33/M/AVD, IK 49/M/SNHL	300 mg × 1/month 300 mg × 6/week 3 mg/Kg at weeks 0, 2, 6, 8, and then every 8 weeks	2	CR	Switzerland	[42]
		3	29/M/AVD, IK 35/M/SNHL, scleritis	NA	3	CR	Italy	[40]
		2	37/F/AVD, IK 36/F/AVD, IK	3 mg/kg at 0, 2, and 6 weeks	1	CR	USA	[39]
		1	16/M/TINU, SNHL, BRAO, glaucoma, and uveitis	900 mg at 0, 3, and 5 weeks	1	CR	USA	[41]
		1	48/F/AVD	3 mg/kg at 0 and 3 weeks and then every 8 weeks 3 mg/kg every 8 weeks for 3 years**	1	CR	Spain	[43]
		1	51/F/SNHL	3 mg/kg for 4 months	1	CR	Israel	[6]
		1	NA/NA/AVD, scleritis	NA	1	CR	Switzerland	[74]
		1	67/F/AVD	NA	1	CR	Greece	[45]
Etanercept	TNF-α receptor fusion protein	3	NA	25 mg × 2/week for 24 weeks	2	CR	USA	[46]
Adalimumab	Anti-TNF-α monoclonal antibody	1	69/M/SNHL, iritis, meningitis, panniculitis, and seronegative arthritis 25/F/AVD, conjunctivitis, IK	40 mg × 1/week for 2 weeks 40 mg × 1/week for 6 months	0	CR	Japan	[50]
Rituximab	Anti-CD20 monoclonal antibody	1	25/F/AVD, conjunctivitis, IK	500 mg × 1/week for 4 weeks	1	CR	Italy	[48]
		1	67/F/AVD	NA	0	CR	Greece	[45]
		1	43/F/AVD, IK	375 mg/m² × 1/week for 4 weeks	0	CR	USA	[49]
Tocilizumab	Humanized anti-IL-6 receptor monoclonal antibody	1	69/M/SNHL, iritis, meningitis, panniculitis, and seronegative arthritis 59/M/SNHL, anterior uveitis	8 mg/kg × 1/month 162 mg × 1/week for 2 weeks	1	CR	Japan	[50]
		1	59/M/SNHL, anterior uveitis	162 mg × 1/week for 2 weeks	0	CR	USA	[47]

CS: Cogan’s syndrome; Ref: references; M: male; F: female; AVD: audiovestibular dysfunction; SNHL: sensorineural hearing loss; IK: interstitial keratitis; TNF-α: tumor necrosis factor-α; CD: cluster of differentiation; IL: interleukin; CR: case report; NA: data is not available; TINU: tubulointerstitial nephritis and uveitis syndrome; BRAO: branch retinal artery occlusion. *Dosage is noted as given according to “international protocol.” **Unpublished data.
(average follow-up of 9.25 years) providing evidence of hearing outcome’s persistence [57].

These four patients achieved mean scores of 78.7 and 92.4% on word and sentence recognition tests, respectively. At their last evaluation, the mean word score was 80%, whereas the mean sentence score was 96.6%. Long-term study on 12 CS patients over 5 years of CI use by Bacciu et al. revealed that CI is safe in the long term and provides excellent and stable hearing results, with group means for word and sentence recognition tests 94 and 96.3%, respectively [62]. The data from these two long-term follow-up studies demonstrated that patients with CS receive significant open-set speech recognition benefits from a CI that remain stable in the long term.

7. Future Perspective

Human adipose-derived mesenchymal stem cells (hAdMSC) are known to have immunomodulatory properties. Their use in allograft transplantations was previously reported [63]. Interestingly, several animal models have shown promising results using hAdMSC in various autoimmune diseases. This includes murine models of rheumatoid arthritis [64], experimental autoimmune encephalomyelitis (EAE; animal model of multiple sclerosis) [65], and systemic lupus erythematosus [66]. Reduction of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6 [67], and induced production of the anti-inflammatory cytokine IL-10 [66] by hAdMSC constitute a possible immune mechanism.

Several animal models have studied the use of hAdMSC in autoimmune SNHL. Experimental SNHL mice were treated with hAdMSC and demonstrated improved hearing parameters, increase in regulatory CD25+ FOXP3+ T cells and IL-10, and decrease in T helper (Th)1/Th17 cellular response [68]. These results were supported by another murine model of autoimmune SNHL, with restoration of hearing loss and similar findings in the modulation of the immune cellular components of Th1/Th17 and regulatory CD25+ FOXP3+ T cells, as well as in induction of IL-10 [69].

Clinical trials regarding hAdMSC use in autoimmune SNHL are scarce. One study examined 10 patients with autoimmune diseases, among them a 19-year-old woman with progressive AIED, in which treatment with hAdMSC demonstrated hearing improvement with a follow-up period of 11 months [70]. However, reviewing the literature, we found no reports of studies regarding hAdMSC use in CS. Applying current data from animal models of autoimmune diseases, including autoimmune SNHL, on CS necessitates further studies that will evaluate efficacy and safety of this novel therapeutic modality.

8. Conclusions

CS pathogenesis is still not fully understood; however, an autoimmune underlying mechanism is probably responsible for disease onset. Diagnosis must rely on clinical findings, as laboratory markers are not fully accepted and routinely used. The use of steroids, with or without a combination with another immunosuppressive agent, is needed to achieve initial remission. As biological treatments and hAdMSC therapy develop, their increasing use in autoimmune diseases shows encouraging results, and thus new therapeutic modalities in CS are introduced. Early CI should be recommended in patients with bilateral profound SNHL because of the tendency for partial obliteration or complete neossisification of the cochlea. CI provides excellent and stable hearing rehabilitation with long-term follow-up in most patients.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors’ Contributions

Oded Shamriz and Yuval Tal contributed equally in the preparation of this manuscript and should both be considered as first authors.

References

[1] B. F. McCabe, “Autoimmune sensorineural hearing loss,” Annals of Otology, Rhinology, and Laryngology, vol. 88, no. 5, pp. 585–589, 1979.
[2] A. F. Goodall and M. A. Siddiq, “Current understanding of the pathogenesis of autoimmune inner ear disease: a review,” Clinical Otolaryngology, vol. 40, no. 5, pp. 412–419, 2015.
[3] A. Kessel, Z. Vadasz, and E. Toubi, “Cogan syndrome—pathogenesis, clinical variants and treatment approaches,” Autoimmunity Reviews, vol. 13, no. 4-5, pp. 351–354, 2014.
[4] D. D. Sevgi, L. Sobrin, and G. N. Papaliodis, “Cogan syndrome with severe medium and large vessel vasculitis,” Digital Journal of Ophthalmology, vol. 22, no. 1, pp. 32–34, 2016.
[5] D. A. Iliescu, C. M. Timaru, M. Batras, A. De Simone, and C. Stefan, “Cogan’s syndrome,” Romanian Journal of Ophthalmology, vol. 59, no. 1, pp. 6–13, 2015.
[6] O. E. Tayer-Shifman, O. Ilan, H. Tovi, and Y. Tal, “Cogan’s syndrome—clinical guidelines and novel therapeutic approaches,” Clinical Reviews in Allergy and Immunology, vol. 47, no. 1, pp. 65–72, 2014.
[7] R. S. Vollertsen, T. J. McDonald, B. R. Younge, P. M. Banks, A. W. Stanson, and D. M. Ilstrup, “Cogan’s syndrome: 18 cases and a review of the literature,” Mayo Clinic Proceedings, vol. 61, no. 5, pp. 344–361, 1986.
[8] A. Azami, N. Maleki, M. Kalantar Hormozzi, and Z. Tavosi, “Interstitial keratitis, vertigo, and vasculitis: typical Cogan’s syndrome,” Case Reports in Medicine, vol. 2014, Article ID 830831, 4 pages, 2014.
[9] B. F. Haynes, M. I. Kaiser-Kupfer, P. Mason, and A. S. Fauci, “Cogan syndrome: studies in thirteen patients, long-term follow-up, and a review of the literature,” Medicine, vol. 59, no. 6, pp. 426–441, 1980.
[10] G. M. Espinoza and A. Prost, “Cogan’s syndrome and other ocular vasculitides,” Current Rheumatology Reports, vol. 17, no. 4, p. 24, 2015.
[11] Z. F. Pollard, M. Greenberg, A. Bashinsky, and M. Bordenca, “Uveitis associated with atypical Cogan syndrome in children,” Archives of Ophthalmology, vol. 125, no. 11, pp. 1574-1575, 2007.
I. Pagnini, M. E. Zannin, F. Vittadello et al., "Clinical features and outcome of Cogan syndrome," The Journal of Pediatrics, vol. 160, no. 2, pp. 303–307.e1, 2012.

M. Kaya, K. Erkanli, F. Kilinc, M. Sar, and I. Bakir, "Surgical treatment in a case of Cogan’s syndrome complicated with proximal aortic vasculitis," The Annals of Thoracic Surgery, vol. 100, no. 4, pp. 1467–1469, 2015.

G. Weissen-Plenz, O. Sezer, C. Vahlhaus et al., "Aortic dissection associated with Cogan's syndrome: deleterious loss of vascular structural integrity is associated with GM-CSF over-stimulation in macrophages and smooth muscle cells," Journal of Cardiothoracic Surgery, vol. 5, no. 1, p. 66, 2010.

J. W. Su, A. H. L. Low, M. G. Sebastian, J. Thumboo, and K. Y. Sin, "Recurrent aortic aneurysms following thoracic aortic stent-graft repair in a patient with Cogan syndrome," Journal of Endovascular Therapy, vol. 13, no. 6, pp. 779–782, 2006.

H. Gasparovic, Z. Djuric, D. Bosnic et al., "Aortic root vasculitis associated with Cogan’s syndrome," The Annals of Thoracic Surgery, vol. 92, no. 1, pp. 340–341, 2011.

M. Gaubitz, B. Lübben, M. Seidel, H. Schotte, F. Gramley, and J. W. Su, A. H. L. Low, K. H. Tay, M. G. Sebastian, J. Thumboo, and K. Y. Sin, "Recurrent aortic aneurysms following thoracic aortic stent-graft repair in a patient with Cogan syndrome," Journal of Endovascular Therapy, vol. 13, no. 6, pp. 779–782, 2006.
R. Ghabban, M. Courret, and T. Zenone, “Efficacy of infliximab in Cogan’s syndrome,” The Journal of Rheumatology, vol. 35, no. 12, pp. 2456–2458, 2008.

C. Durtette, E. Hachulla, M. Resche-Rigon et al., “Cogan syndrome: characteristics, outcome and treatment in a French nationwide retrospective study and literature review,” Autoimmunity Reviews, vol. 16, no. 12, pp. 1219–1223, 2017.

C. Kalogeropoulos, D. Karachalios, G. Pentheroudakis et al., “Development of a low grade lymphoma in the mastoid bone in a patient with atypical Cogan’s syndrome: a case report,” Journal of Advanced Research, vol. 6, no. 3, pp. 523–527, 2015.

E. L. Matteson, H. K. Choi, D. S. Poe et al., “Etanercept therapy for immune-mediated cocheleostriolar disorders: a multicenter, open-label, pilot study,” Arthritis & Rheumatism, vol. 53, no. 3, pp. 337–342, 2005.

J. P. Utz, P. K. Jinnur, E. S. Yi, J. H. Ryu, D. E. Midthank, and J. M. Davis 3rd, “Acute bilateral pulmonary opacities associated with use of tocilizumab,” Journal of Clinical Rheumatology, vol. 21, no. 7, pp. 382–385, 2015.

J. G. Orsoni, B. Lagana, P. Rubino, L. Zavotta, S. Bacci, and P. Mora, “Rituximab ameliorated severe hearing loss in Cogan’s syndrome: a case report,” Orphanet Journal of Rare Diseases, vol. 5, no. 1. p. 18, 2010.

D. R. Bunker and L. D. Kerr, “Rituximab not effective for hearing loss in Cogan’s syndrome,” Case Reports in Rheumatology, vol. 2016, Article ID 8352893, 4 pages, 2016.

M. Shibuya, K. Fujiw, K. Morita, H. Harada, K. Kanda, and K. Yamamoto, “Successful treatment with tocilizumab in a case of Cogan’s syndrome complicated with aortitis,” Modern Rheumatology, vol. 23, no. 3, pp. 577–581, 2013.

M. B. Gluth, K. H. Baratz, E. L. Matteson, and C. L. Driscoll, “Cogan syndrome: a retrospective review of 60 patients throughout a half century,” Mayo Clinic Proceedings, vol. 81, no. 4, pp. 483–488, 2006.

K. E. Rarey, J. M. Bicknell, and L. E. Davis, “Intralabyrinthine osteogenesis in Cogan’s syndrome,” American Journal of Otology, vol. 7, no. 6, pp. 387–390, 1986.

J. W. Casselman, M. H. Majoer, and F. W. Albers, “MR of the inner ear in patients with Cogan syndrome,” American Journal of Neuroradiology, vol. 15, no. 1, pp. 131–138, 1994.

A. Aschendorff, P. Lohnstein, J. Chipper, and T. Klenzner, “Obliterated cochlea in Cogan’s syndrome – implications for cochlear implant surgery,” Laryngo-Rhino-Otolgie, vol. 83, no. 12, pp. 836–839, 2004.

M. U. Malik, V. Pandian, H. Masood et al., “Spectrum of immune-mediated inner ear disease and cochlear implant results,” Laryngoscope, vol. 122, no. 11, pp. 2557–2562, 2012.

R. C. Wang, S. C. Parisier, M. H. Weiss, P. M. Chute, S. A. Helman, and E. Sauris, “Cochlear implant flap complications,” Annals of Otolaryngology, Rhinology, & Laryngology, vol. 99, no. 10, pp. 791–795, 1990.

G. Kontorinis, A. Giourgas, J. Neuberger, A. Lesinski-Schiedat, and T. Lenarz, “Long-term evaluation of cochlear implantation in Cogan syndrome,” ORL: Journal of Otorhinolaryngology and Its Related Specialties, vol. 72, no. 5, pp. 275–279, 2010.

E. Pasanisi, V. Vincenti, A. Bacci et al., “Cochlear implantation and Cogan syndrome,” Otolaryngology & Neurotology, vol. 24, no. 4, pp. 601–604, 2003.

R. Bovo, A. Ciorba, P. Trevisi et al., “Cochlear implant in Cogan syndrome,” Acta Oto-Laryngologica, vol. 131, no. 5, pp. 494–497, 2011.
antineutrophil cytoplasmic autoantibodies,” *British Journal of Rheumatology*, vol. 35, no. 6, pp. 601-602, 1996.

[74] D. Aeberli, S. Oertle, H. Mauron, S. Reichenbach, B. Jordi, and P. M. Villiger, “Inhibition of the TNF-pathway: use of infliximab and etanercept as remission-inducing agents in cases of therapy-resistant chronic inflammatory disorders,” *Swiss Medical Weekly*, vol. 132, no. 29-30, pp. 414–422, 2002.