Vascular epiphytic medicinal plants as sources of therapeutic agents: Their ethnopharmacological uses, chemical composition, and biological activities

Ari S. Nugraha
Bawon Triatmoko
Phurpa Wangchuk
Paul A. Keller

University of Wollongong, keller@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/smhpapers1

Publication Details Citation
Nugraha, A. S., Triatmoko, B., Wangchuk, P., & Keller, P. A. (2020). Vascular epiphytic medicinal plants as sources of therapeutic agents: Their ethnopharmacological uses, chemical composition, and biological activities. Faculty of Science, Medicine and Health - Papers: Part B. Retrieved from https://ro.uow.edu.au/smhpapers1/1180

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Vascular epiphytic medicinal plants as sources of therapeutic agents: Their ethnopharmacological uses, chemical composition, and biological activities

Abstract
This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration. These epipythes have the potential to furnish drug lead compounds, especially for treating cancers, and thus warrant indepth investigations.

Publication Details
Nugraha, A. S., Triatmoko, B., Wangchuk, P. & Keller, P. A. (2020). Vascular epiphytic medicinal plants as sources of therapeutic agents: Their ethnopharmacological uses, chemical composition, and biological activities. Biomolecules, 10 (2)
Review

Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities

Ari Satia Nugraha 1*, Bawon Triatmoko 1, Phurpa Wangchuk 2 and Paul A. Keller 3,*

1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; bawon.farmasi@unej.ac.id
2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; phurpa.wangchuk@jcu.edu.au
3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia

* Correspondence: arisatia@unej.ac.id (A.S.N.); keller@uow.edu.au (P.A.K.);
Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.)

Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020

Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration. These epiphytes have the potential to furnish drug lead compounds, especially for treating cancers, and thus warrant in-depth investigations.

Keywords: epiphytes; medicinal plants; phytochemistry; pharmacology; drug leads

1. Introduction

Epiphytes are plants that grow on other plants and are often known as air plants. They are mostly found in moist tropical areas on canopy tree-tops, where they exploit the nutrients available from leaf and other organic debris. These plants exist within the plantae and fungi kingdom. The term epiphyte itself was first introduced in 1815 by Charles-François Brisseau de Mirbel in “Eléments de physiologie végétale et de botanique” [34]. Epiphytes can be categorized into vascular and non-vascular epiphytic plants; the latter includes the marchantiophyta (liverworts), anthocerotophyta (hornworts), and bryophyta (mosses). The common epiphytes are mosses, ferns, liverworts, lichens, and the orchids. Epiphytes fall under two major categories: As holo- and hemi-epiphytes. While orchids are a good example of holo-epiphytes, the strangler fig is a hemi-epiphyte. Although geological studies have proposed the existence of epiphytes since the pleistocene epoch, an epiphyte was first depicted in “the Badianus Manuscript” by Martinus de la Cruz in 1552, which showed the Vanilla fragrans, a hemi-epiphytic orchid, being used by the tribal communities in Latin America for fragrance and aroma, usually hung around their neck [34].
Epiphytes have been a source of food and medicine for thousands of years. Since they grow in a unique ecological environment, they produce interesting secondary metabolites that often show exciting biological activities. There are notable reviews on non-vascular epiphytes, bryophyta, regarding their phytochemical and pharmacological activities [35–38]. There are also extensive reviews on epiphytic lichens covering secondary metabolites and their pharmacological activities [39–42]. The only available review on vascular epiphytes related to medicinal uses was focused on Orchidaceae [43]. Therefore, to the best of our knowledge, there is no extensive database of vascular epiphytes regarding their medicinal contribution.

There are 27,614 recorded species of vascular epiphytes belonging to 73 families and 913 genera [44]. Vascular epiphyte species are commonly found in pteridophyta, gymnosperms, and angiosperms plant groups, which are mostly found in the moist tropical areas on canopy tree tops, where they exploit the nutrients available from leaf and other organic debris [45,46]. In this study, information on vascular epiphytic medicinal plant species was collected using search engines (Web of Science, Scifinder Scholar, prosea, prota, Google scholar), medicinal plant books (Plant Resources of South-East Asia: Medicinal and Poisonous Plants [47–49], Plant Resources of South-East Asia: Cryptogams: Ferns and Fern Allies [50], Mangrove Guide for South-East Asia [51], Medicinal Plants of the Asia-Pacific [52], Medicinal Plants of the Guiana [53], Indian Medicinal Plants [54,55], Medicinal Plants of Bhutan [56], Medicinal and aromatic plants of Indian Ocean islands: Madagascar, Comoros, Seychelles and Mascarenes [57]), and the Indonesian Medicinal Plants Database [58]. Scientific names of the epiphytic medicinal plant species were compared against the Plantlist database for accepted names to avoid redundancy [59]. The time-frame threshold for data coverage was from the earliest available data until early 2020. Nevertheless, empirical knowledge regarding traditional medicinal plants was passed through generations using verbal or written communication, with verbal communication highly practiced by remote tribes [60,61]. It is possible that some oral traditional medical knowledge may not be reported and therefore not captured in this review. In this current study, we collected and reviewed 185 epiphytic medicinal plants reported in the literature, covering ethnomedicinal uses of epiphytes, their phytochemical studies and the pharmacological activities. The data collection approach used is presented in Figure 1.

![Figure 1. Schematic data collection approach.](image)

2. Ethnopharmacological Information of Vascular Epiphytic Medicinal Plants

2.1. Vascular Epiphytic Medicinal Plant Species Distribution within Plant Families

In this component of the study, we collated and analysed 185 of the medicinally used epiphytic plants species using ethnopharmacological information. This data (Table 1) includes the name of species, plant family, areas where the epiphytes are used in traditional medicines, part(s) of the plant being used in medication, how the medicine was prepared, and indications. Of the 185 medicinally used epiphytes, 53 species were ferns (mostly polipodiaceae), with 132 species belonging to the non-fern category. The Orchidaceae family contains the Dendrobium genus that contains the highest number of medicinal epiphytes, including 64 orchid species and 20 Dendrobiun species. The
Orchidaceae epiphytes were the majority of non-fern epiphytes. *Cassytha filiformis* L., *Bulbophyllum odoratissimum* (Sm.) Lindl. ex Wall., *Cymbidium goeringii* Rchb.f.) Rchb.f., *Acrostichum aureum* Limme, and *Ficus natalensis* Hochst. were the five most popular vascular epiphytic medicinal plants used (Figure 2).

Figure 2. Five most popular medicinal epiphytes. (A) *C. filiformis* L. (B) *B. odoratissimum* (Sm.) Lindl. ex Wall. (C) *C. goeringii* (Rchb.f.) Rchb.f. (D) *A. aureum* Limme. (E) *F. natalensis* Hochst.

2.2. Distribution of Vascular Epiphytic Medicinal Plant Species by Country

Based on the available records, the data curation and analysis revealed that the Indigenous Indonesians have used 58 diverse epiphytic medicinal plant species throughout the archipelago and have the highest record compared to other tropical countries (Figure 3). China is second and is well known for its traditional medicine, including the use of epiphytes in medicament preparation. This is followed by the Indigenous Indians, with the well-established Ayurveda as a formal record of Indian medicinal plants. The traditional medicinal plant knowledge of Indonesia has been heavily influenced by Indian culture and enriched by Chinese and Arabian traders since the kingdom era [60].

Figure 3. Density map showing a number of epiphytic medicinal plant species used by different countries. The number of species used is proportional to colour intensity.

2.3. Parts of Vascular Epiphytic Medicinal Plant Species Used in Traditional Medicines

This review determined that leaves were the main plant components used in the traditional medicines (Figure 4). This was expected given they are more easily harvested (without excessive
tools) and processed compared to other plant parts, e.g., the root and stem. As some epiphytes have a small biomass compared to higher trees, the whole plant is commonly harvested in medicament preparation. Interestingly, almost half of epiphytic medicinal plants were ferns, in which the stem-like stipe is prepared for medicine. Without haustoria (a specialised absorbing structure of a parasitic plant), the root and rhizome of epiphytic medicinal plants are easily harvested and prepared.

![Figure 4. Components of epiphytic plants used in medicinal preparations (represented in percentages). LF: leaf; WP: whole; RT: root; ST: stem, RZ: rhizome; FT: fruit; PdB: pseudobulbs; BK: bark; LT: latex; TB: tuber; PT: pith; SD: seed; SP: spore; BD: buds; BL: bulbs; NT: nutmeg; PD: pedi; PdTB: pseudotuber; STh: sheath.]

2.4. Modes of Preparation and Dosage of Administration of Vascular Epiphytic Medicinal Plant Species in Traditional Medicines

Generally, medicinally active secondary metabolites have a water solubility problem likely related to the lipophilic moieties in their structures [62]. Using boiling water, decoctions are able to increase the yield of secondary metabolites extracted from medicinal plants. Therefore, it is not surprising that decoctions are commonly used in traditional medicine preparations from plants (Figure 5). External applications are also commonly practiced in traditional medicinal therapies, including poultice (moist mass of material), raw, or less processed medicine. Poultices were commonly prepared for skin diseases while a decoction was ingested for internal infectious diseases (i.e., fever).
Interestingly, epiphytes have been used for treating various ailments, including both infectious and non-infectious diseases. Traditional communities described infectious diseases related to skin diseases (wounds, boils, ulcers, abscesses, smallpox) and non-skin diseases (fever, diarrhoea, ulcers, colds, worm infections, and malaria). A total of 54 epiphytic medicinal plant species were prescribed to treat skin diseases while 81 species to treat non-skin infectious diseases (Figure 6).

Hygiene has been a serious issue in traditional communities as it gives rise to infectious diseases. Fever is a common symptom of pathogenic infection and has been treated using medicinal plants, including epiphytes. Hygiene issues are also a common cause of skin disease, wounds, dysentery, and diarrhoea in traditional communities.
3. Phytochemical Composition of Vascular Epiphytic Medicinal Plants

Epiphytes belong to a distinctive plant class as they do not survive in soil and this influences the secondary metabolites present. Epiphytes are physically removed from the terrestrial soil nutrient pool and grow upon other plants in canopy habitats, shaping epiphyte morphologies by the method in which they acquire nutrients [63]. Nutrients, such as nitrogen and phosphorus, are obtained from different sources, including canopy debris (through fall) and host tree foliar leaching [63], the latter influencing canopy soil nutrient cycling [64,65]. In the conversion of sunlight into chemical energy, the epiphyte often uses a specific carbon fixation pathway (CAM: Crassulacean acid metabolism) as a result of harsh environmental conditions [66], making them unique and thus worthwhile for scientific studies.

In the early 20th century, laboratory-based research on epiphytes studied the plant’s production of alkaloids, cyanogenetic, and organic sulfur compounds, with the plants producing limited quantities of these compounds [67]. Common plant steroids, e.g., β-sitosterol, have been shown to be present in 22 different epiphytic medicinal plants (Figure 7). This is possibly due to the function of the steroids as structural cell wall components, giving rise to a wide distribution across plant families and species. A further example of a common plant steroid present is stigmasterol.

Table 2 lists the secondary metabolites identified in epiphytic medicinal plants and details the species, isolated compounds, and provides references. Currently, only 69 species have been phytochemically studied (23 fern and 46 non-fern epiphytes) and 842 molecules have been isolated from these epiphytic plants. Analysis of the literature showed epiphytes were able to produce a range of secondary metabolites, including terpenes and flavonoids, with no alkaloids being isolated from epiphytic fern medicinal plants thus far. β-Sitosterol, a common phytosterol in higher plants, was reported across fern genera. Interestingly, there is one unique terpene produced, hopane, which is commonly called fern sterol. Common flavonoids, such as kaempferol, quercetin, and flavan-3-ol derivatives (catechin), were also reported across the epiphytic ferns. Epiphytic pteridaceae,
Acrostichum aureum Limme, is rich in quercetin [68]. Further analysis showed there were more secondary metabolites reported from non-fern epiphytic medicinal plants than from fern epiphytic medicinal plants, including terpene derivatives, flavonoids, and alkaloids. Included were flavanone, flavone, and flavonol derivatives but no flavan-3-ols were reported in these epiphytes so far. In the non-fern epiphytes, there were more phytochemical studies on orchid genera with additional classes of compounds reported, including penantrene derivatives (flavanthrinin, nudol, fimbriol B) [69,70] from the Bulbophyllum genus and the alkaloid dendrobine from the Dendrobium genus [71].

Therefore, while epiphytes may have limitations in accessing nutrients, adaptation has enabled them to successfully survive these environments. Studies on numerous medicinal epiphytes show that the unique environment does not constrain the plants from producing different types of secondary metabolites. These include terpenes, flavonoids, and alkaloids, especially the non-fern epiphytic medicinal plants.

4. Pharmacological Activities of Vascular Epiphytic Medicinal Plants

The pharmacological activities of medicinal epiphytes are summarised in Table 1, including the plant species, ethnopharmacological indication, and pharmacological test results. The ethnopharmacological uses of each plant are also present for a correlation and comparison with the pharmacological activities. There are a large number of phytochemical studies on the four fern-epiphytes (Stenochlaena palustris (Burm. F.) Bedd., Botrychum lanuginosum Wall.ex Hook & Grev., Pyrrosia petiolosa (Christ) Ching, Psilotum nudum (L.) P. Beauv) without any biological activity testing reported. This occurred to four non-fern epiphytes (Bulbophyllum vaginatum (Lindl.) Rchb.f, Mycaranthes pamea (Lindl.) S.C.Chen & J.J.Wood, Pholidota articulata Lindl., Viscum ovalifolium DC) and non-fern epiphytic medicinal plants. This lack of pharmacological testing limits scientific support for the traditional uses of these plants.

From the 191 collected records of epiphytic medicinal plants, around 71 species were subjected to bioactivity testing, with 25 of these species using crude extract samples. Although this testing represents almost 50% of the species examined, only a few of the pharmacological tests were related to ethnopharmacological claims. Here, we discuss selected species where the outcomes indicated a coherent relationship between bioactivities and traditional claims.

4.1. Infectious Disease Therapy

Research on epiphytes that have been used in infectious disease therapy include in wound healing, dysentery, and skin infections. A study on the methanol extract of Adiantum caudatum L., Mant showed anti-fungal activity against common fungi found in wounds (Aspergillus and Candida species) [72], including Aspergillus flavus, A. spinulosus, A. nidulans, and Candida albicans, with minimum inhibitory concentration (MIC) values of 15.6, 15.6, 31.2, and 3.9 µg/mL, respectively. Gallic acid was one of the bioactive constituents [73]. The methanol extract of Ficus natalensis Hochst (a semi-epiphytic plant) showed anti-malarial activity against Plasmodium falciparum, with an half maximal inhibitory concentration (IC50) value of 41.7 µg/mL, and weak bactericidal activity against Staphylococcus aureus, with an MIC value of 99 µg/mL [74]. These results became preliminary data for confirming its traditional uses as malarial fever therapy and wound healing. Phytochemical studies on Pyrrosia sheareri (Bak.) Ching successfully isolated several compounds and were subjected to antioxidant testing. While this was not in line with the plant’s ethnomedical uses for dysentery therapy [75], one of the isolated constituents was protocateuchic acid, which is known to possess anti-bacterial activity. It implies that the traditional uses of the epiphyte were for bacillary dysentery therapy.

4.2. Non-Infectious/Degenerative Disease-Related Therapy

An exploration on Drynaria species, highly prescribed in bone fracture therapy, successfully isolated flavonoid constituents that induce osteoblast proliferation [76]. Previous studies on Acrostichum aureum Limme failed to show its anti-bacterial activities [77] contrary to its traditional claims in wound management. However, patriscabratine 257 was isolated from the defatted
methanol extract of whole plant of *A. aureum*, and subsequent testing showed it possessed anti-cancer activity in gastric cells and this supported the traditional use of the plant in peptic ulcer therapy [68]. A decoction from the epiphyte *Ficus deltoida* has been used to treat diabetes. A study on the hot aqueous extract of this plant revealed anti-hyperglycemic activity by stimulating insulin secretion up to seven-fold. Furthermore, its activity mechanism was related to both the K^+ATP^-dependant and non-dependant insulin secretion pathway [78]. However, further studies are required to identify the constituents responsible for the anti-hyperglycemic activity.

The Indigenous people of Paraguay have used *Catasetum barbatum* Lindley to topically treat inflammation. Four bioactive compounds were isolated from this species and 2,7-dihydroxy-3,4,8-trimethoxyphenanthrene (confusarin) 595 showed the highest anti-inflammatory activity [79]. The study also revealed the compound to be a non-competitive inhibitor of the H-receptor.

From the polypodiaceae family, the rhizome of *Phymatodes scolopendria* (burm.) Ching has been used to treat respiratory disorders. A bioassay-guided phytochemical study on *Phymatodes scolopendria* (Burm. f.) Pic. Serm. isolated 1,2-benzopyrone (coumarin) 209 as a bronchodilator [80].

5. Epiphytic Plant–Host Interactions on Secondary Metabolite Tapping

Secondary metabolite tapping has been an interesting study to reveal the molecular interactions between epiphytes and their host. This interaction was more visible when a physical channel between the two were developed. This channel (haustorium) made an epiphytic plant act as a parasite that enabled the plant to harvest molecular components from the host plant. A study on *Scurulla oortiana* (Korth.) Danser growth in three different host species (*Citrus maxima*, *Persea Americana*, and *Camellia sinensis*) identified three secondary metabolites (quercitrin, isoquercitrin, and rutin) in the *S. oortiana* (Korth.) Danser epiphyte growing on the three hosts [81]. Interestingly, extensive chromatographic and spectroscopic studies discovered that the flavonoids found in the *S. oortiana* (Korth.) Danser were independent of the host plants [81]. Secondary metabolite production in a host plant can also be triggered by the existence of a parasite, as discussed in a study on *Tapirira guianensis* infested by *Phoradendron perrottetii*, in which infested branches produced more tannin compare to non-infested branches, with infestation inducing a systemic response [81].
No	Epiphyte species	Location	Part of plants	Preparation route and administration	Indication (traditional)	Pharmacological testing (modern)
1	*Adiantum caudatum* L.	India, Indonesia, Malaysia	LF	Decoction	Cough, heal wound, cold, tumors of spleen, liver and other viscera, skin diseases, bronchitis, and inflammatory diseases [73,82,83]	Antimicrobial (MeOH extract, gram +, -, fungi) [73]
2	*Asplenium nidus* L.	Tahiti, Malaysia, Philippines, Vanuatu, Indonesia	LF, WP	Ointment, decoction, eaten	Headache, hair loss (pounded leaves mixed with coconut oil), ease labor, fever (decoction), contraceptive, depurative, sedative agents. edible food (young leaves), ornament, anti-inflammation, promote blood circulation [84–86]	Antioxidative (MeOH extract, DPPH), tyrosinase inhibiting (MeOH extract, microtitre), antibacterial (MeOH extract) [77]
3	*Asplenium macrophyllum* Sw.	India	LF	Decoction	As laxative, emetic, diuretic, anthelmintic agent, to treat ophthalmia, jaundice, spleen diseases [85,87]	
4	*Asplenium polydon* G. Foster var *bipinnatum* (Sledge)	India	LF	Decoction, paste	Promote labor, tumor [88]	
5	*Asplenium serratum* L.	Columbia, Peru	na	Not mentioned	Liver problem, stomachache, ovary inflammation [85,89]	
6	*Stenochlaena palustris* (Burm. F.) Bedd.	Indonesia, India	LF, RZ	Eaten, decoction, poultice	Young reddish leaves are used as food, leaves are used to treat fever, skin diseases, throat, and gastric ulcer, as antibacterial, rhizome and leaves are used to treat burns and ulcers, as cooling agent [51,90]	
7	*Davallia denticulata* (Burm. f.) Mett. ex Kuhn	Malaysia, Indonesia	RT	Decoction	Gout, pain, as tonic [82,91]	
No.	Species	Origin	Part(s)	Traditional Uses	Modern Uses	
-----	------------------------------------	-------------------------	-------------	--	--	
8	*Araiosestia divaricata* (Blume) M. Kato	China, Taiwan	WP	Not mentioned	Joint pain [92]	
					Anti-psoriasis [93], antioxidant (water extract, DPPH) [94]	
9	*Davallia parvula* Wall. Ex Hook. & Grev.	na	WP	Not mentioned	Not mentioned [51,95]	
10	*Davallia solida* (G. Forst.) Sw.	Tahiti, Fiji, other Polynesian	WP	Decoction (external and internal)	Dysmenorrhea, luochorea, uterine hemorrhage, sore throat, asthma, constipation, fracture, fish sting, promote health pregnancy, as a bath for newborn, anti-microbial [86,96–98]	
					Antioxidant (extract, ABTS) [94], antioxidant (DPPH, all isolates) [99], anti-neurotoxicity (extract, Neuro-2a cells, ATCC CCL-131) [100], C-terminal cytosolic domain of P-pg [101], anti-skin aging [102]	
11	*Leucostegia immersa* Wall. ex C. Presl	Nepal	RZ	Decoction, paste	Boils (paste), constipation (decoction), as antibacterial (paste) [103]	
12	*Aeschynanthus radicans* Jack	Malaysia	LF	Decoction	Headache [52]	
13	*Cyrtandra sp*	Indonesia	LF	Poultice	Skin ailments [104]	
14	*Hymenophyllum polyanthos* Sw.	Suriname	WP	Burnt (smoke inhaling), decoction	Dizziness (insanity), pain, cramps [105]	
15	*Hymenophyllum javanicum* Spreng.	India	WP	Smoke together with garlic and onions	Headache [88]	
16	*Huperzia carinata* (Desv. ex Poir.) Trevis	South-East Asia	WP	Ointment	Stimulate hair growth [106]	
					Anti-acetylcholinesterase (74,75,76, colorimetric Ellman method) [107]	
17	*Huperzia phegmaria* (L.) Rothm.	South-East Asia, India	WP	Ointment	Stimulate hair growth, skin diseases [108,109]	
18	*Huperzia megastachya* (Baker) Tardieu	Madagascar	LF	Decoction (infusion)	Tonic [111]	
19	*Huperzia obtusifolia* (Sw.) Rothm.	Madagascar	LF	Decoction (infusion)	Tonic [111]	
20	*Nephrolepis acutifolia* (Desv.) Christ	Malaysia	WP	Boiled, eaten	Food [112]	
No.	Species	Origin	Parts Used	Uses	Comments	
-----	---	--------------------------	--------------	--	--	
21	*Nephrolepis biserrata* (Sw.) Schott	Malaysia, Indonesia, Ivory Coast, New Guinea	LF, RZ, WP	Decoction, cooked Leaves are used to treat boils, blister, abscesses, sores, and cough. Rhizomes are used as edible food [113,114]	Antibacterial (extract) [115]	
	Oleandraceae					
22	*Nephrolepis cordifolia* (L.) C. Presl	India	RZ	Decoction (fresh leaves) Cough, rheumatism, chest congestion, nose blockage, loss appetites, infection (antibacterial), pinnae is used to treat cough, wounds, jaundice, anti-fungal, styptic, anti-tussive [90]	Antibacterial, anti-fungal (extract fractions aerial part) [116]	
	Opiglossaceae					
23	*Oleandra musifolia* (Blume) C. Presl	Philippines, India	ST	Decoction Anthelmintic, emmenagogue, antidote (snake bite) [103,117]		
	Botrychum lanuginosum Wall.ex Hook & Grev.	India	WP	Decoction, paste Antibacterial, anti-dysentery agents [90]		
24	*Ophioglossum pendulum* L.	Indonesia, Philippines	LF	Ointment, decoction Hair treatment (crushed leaves), cough (decocotion), rid the first feces (spores), ornament [118]	Cell activator, skin whitening agent and antioxidant (patent, mixed with other *Ophioglossum* species) [119], anti-diarrhea (stipe MeOH extract, rabbit jejunum) [119]	
	Polypodiaceae					
26	*Pyrosia piloselloides* (L.) M.G. Price	Indonesia, Malaysia, China, Philippines, Pacific islands	LF	Decoction (internal), chewed, poultice (external) Smallpox, rashes, gonorrhea, dysentery, tuberculosis, urinary tract infection, headache, cough, gum inflammation, tooth sockets, eczema, coagulate blood [120–123]	Antibacterial, anti-fungal (extracts) [124]	
27	*Drynaria rigidula* (Sw.) Bedd.	Indonesia, Philippines, Treasury Island	LF, RZ	Decoction, chewing Gonorrhea, dysentery (rhizome, decoction), and seasickness (chewed) [54]	n-Hexane, dichloromethane and ethyl acetate fractions from both rhizome and leaves of *Drynaria rigidula* were screened for activity against *Plasmodium falciparum, Mycobacterium tuberculosis*, vero cells and herpes simplex virus which all extracts showed insignificant activities [125]	
28	*Drynaria sparsisora* (Desv.) T. Moore	Indonesia, Philippines, Thailand	LF, RZ	External, decoction Rhizome: headache, fever, diarrhea, gonorrhea, swollen limbs, fever. Leaves:		
No.	Species	Origin	Type	Uses	Compounds	
-----	--------------------------	------------------	----------	---	---	
29	Drynaria roosii Nakaike	China	WP	Decoction	Compound 230 was isolated and the biotesting showed the highest stimulation toward UMR 106 cells (osteoblast) by 42.6% at a concentration of 1 µM [127]	
30	Drynaria propinqua (Wall. ex Mett.) Bedd	Bhutan, India and Nepal	ST	Pills	Antidote and detoxifier especially when suffering from meat poisoning and other human-made poisons (sbyar-dug) [128]	
31	Drynaria quercifolia (L.) J.Sm.	Malaysia, Philippines, Indonesia, India	LF, RZ	Decoction, poultice	Compound 200 from the ethyl acetate fraction to be responsible for good antimicrobial activity [129]	
32	Lepisorus contortus (Christ) Ching	Bhutan, India, China	LF	Powder	Heals bone fracture, burns, wounds and kidney disorders [130]	
33	Loxogramme involuta (D. Don) C. Presl	Indonesia	LF, WP	Smoked	Smoked with tobacco [51]	
34	Loxogramme scolopendria (Bory) Presley	Indonesia	LF	Smoked	Cigarette paper [131]	
35	Microsorum fortunei (T. Moore) Ching	Indonesia	WP	Decoction	Diuretic, promote blood circulation [82,84]	
36	Microsorum punctatum (L.) Copel.	India	LF	Juice	Diuretic, purgative, wounds [103]	
37	Phlebodium aureum (L.) J.Sm	Mexico	RZ	Decoction	Cough, fever, sudorific agents [90]	
38	Phymatosorus scolopendria (Burm. f.) Pic. Serm.	South-East Asia, Madagascar	RZ	Fragrance (external), poultice, decoction	Bronchodilator (341, in vivo) [80]	Respiratory disorder [51,80]
39	Platycerium coronarium (Mull.) Desv.	Indonesia	LF	Poultice (salt added)	Thyroid edema, scabies [51,132]	

- **Drynaria roosii** Nakaiké: Deficient kidney, invigorate blood, heal wound, stop bleeding [54].
- **Drynaria propinqua**: Antidote and detoxifier especially when suffering from meat poisoning and other human-made poisons (sbyar-dug) [128].
- **Drynaria quercifolia**: Swelling, fever (poultice leaves), haemoptysis, typhoid fever, ulcers, dyspepsia, arthralgia, diarrhea (decoced rhizome), inflammation, anthelmitic, cough, fever, phthisis, poultice of rhizome mixed with *Lannea coromandelica* (Houtt.) Merr. to treat headache, hepatoprotective agent [21, 22, 96].
- **Lepisorus contortus**: Heals bone fracture, burns, wounds and kidney disorders [130].
- **Loxogramme involuta**: Smoked with tobacco [51].
- **Loxogramme scolopendria**: Cigarette paper [131].
- **Microsorum fortunei**: Diuretic, promote blood circulation [82,84].
- **Microsorum punctatum**: Diuretic, purgative, wounds [103].
- **Phlebodium aureum**: Cough, fever, sudorific agents [90].
- **Phymatosorus scolopendria**: Bronchodilator (341, in vivo) [80].
- **Platycerium coronarium**: Thyroid edema, scabies [51,132].
| No. | Species | Origin | Usage/Preparation | Uses/Properties |
|-----|--------------------------------|---------------------------------|------------------------------------|---|
| 40 | *Platycerium bifurcatum* (Cav.) C. Chr. | Indonesia | LF Poultice (salt added) | Thyroid edema, scabies, fever, swelling [100, 101] |
| 41 | *Pleopeltis macrocarpa* (Bory ex Willd.) Kaulf. | South-Africa, Mexico, Guatemala | LF, RZ Decoction | Sore throat, itches, cough, febrifuge [103,133] |
| 42 | *Pyroecia heterophylla* (L.) M.G. Price | India | WP Poultice | Swelling, sprain, pain (cooling agent) [134] |
| 43 | *Pyroecia lanceolata* (L.) Farw. | Malaysia, South-Africa, Mexico | LF, WP Juice, poultice, decoction | Dysentery, headache, colds, sore throats, itch guard [88,120] |
| 44 | *Pyroecia lingua* (Thunb.) Farw. | Japan, China, Indonesia, Pacific Islands | LF, WP Decoction | Diuretic, anti-inflammation, analgesic, cough, stomachache, urinary disorder (diuretic agent) [120,135–137] |
| 45 | *Pyroecia longifolia* (Burm.f.) C.V. Morton | Indonesia, Pacific Islands | LF Poultice (cold water) | Ease pains in labor [51,120] |
| 46 | *Pyroecia petiolosa* (Christ) Ching | China | WP Decoction | Urinary tract infections, as diuretic [139] |
| 47 | *Pyroecia sheareri* (Baker) Ching | China | LF Decoction | Bacillary dysentery, rheumatism [120,140] |
| 48 | *Psilotum nudum* (L.) P. Beauv. | India | LF, SP Fresh, decoction | Diarrhea (infants), antibacterial, purgative [88] |
| 49 | *Acrostichum aureum* L. | South-East Asia, Bangladesh, Fiji, China, Panama | LF, RZ Eaten, decoction | Wounds, peptic ulcers and boils, worm infections, asthma, constipation, elephantiasis, febrifuge, chest pain, emollients [51,68] |
| 50 | *Acrostichum speciosum* Wild. | South-East Asia | Thatch | Anti-implantation (EtOH extract, albino rats) [141], Anti-tumour (hella cells, MTT assay) [142], Antioxidant (DPPH), tyrosine inhibition (96-well microtitre), antibacterial activity [77,143], antitumor ((gastric: AGS; colon: HT-29 and breast: MDA-MB-435S) using the MTT assay) [144] |
| 51 | *Taenitis blechnoides* (Willd.) Sw. | Malaysia | LF Decoction | Postnatal protection [145] |
| No. | Species | Origin/Location | Usage/Preparation | Uses/Activities |
|-----|--------------------------------|---------------------------------|----------------------------|--|
| 52 | Selaginella tamariscina | Nepal WP, SP | Fresh (spore), decoction | Vermilion powder, prolapsed rectum, cough, bleeding piles, amenorrhea, antibacterial [90,146] |
| | | | | Anti-acne [147], thymus growth-stimulatory activity in adult mice (reversal of involution of thymus) and remarkable anti-lipid peroxidation activity [148] |
| | | | | |
| 53 | Vittaria elongata Sw. | South-East Asia, Andaman | LF Decoction | Rheumatism [90] |
| | | | | Cytotoxicity against two human cancer cell lines, lung carcinoma (NCI-H460) and central nervous system carcinoma (SF-268), antioxidant (DPPH) [149] |
| | | | | |
| | | | | |
| 54 | Philodendron fragrantissinum | Guyana, Suriname, Brazil | LF, RT Decoction, external (leaves) | Inflammation, aphrodisiac, demulcent, diuretic [105] |
| | | | | |
| 56 | Schefflera caudata (Vidal) | Philippines WP | Decoction | Tonic for women after birth [150] |
| | | | | |
| 57 | Schefflera elliptica (Blume) | South-East Asia, China, India | BK, LF, RT Decoction, chewed, external | Bechic, vulnerary, toothache, aromatic bath, dropsy [150]. Antimicrobial [151] |
| | | | | |
| 59 | Schefflera elliptifoliola Merr. | Philippines | LF Decoction | Tonic for woman after birth [150] |
| | | | | |
| 60 | Schefflera simulans Craib | Thailand, Malaysia | LF, RT Decoction | Stomach problem, protective medicine after birth [150] |
| | | | | |
| 61 | Asclepiadaceae | Indonesia | LF, RT Decoction | Promote blood circulation [104] |
| | | | | |
| 62 | Dischidia acuminata Constantin | Vietnam WP | Decoction | Blenorrhoea, promote urination [52] |
| | | | | |
| 63 | Dischidia bengalensis Colebr. | Thailand LT, RT | Latex (external), decoction (tonic) | Anthemintic (ringworm), tonic [152] |
| | | | | |
| 64 | Dischidia imbricata (Blume) | Indonesia | LF Poultice | Gonorrhoea, burns and wounds [58,153] |
| | Steud. | | | |
| 65 | Dischidia major (Vahl) Merr. | India, Thailand, Philippines | LF, RT, crusped (external), | Peptic ulcer, liver dysfunction (decoked leaves mixed with Hoya kerii Craib leaves and Vanilla aphylla Blume stem), fever |
| | | | | |
Biomolecules 2020, 10, 181

66 **Dischidia nummularia** R.Br.
Malaysia, Brunei
Decoction, latex (external)
Chewed with areca catechu (root), goiter (crushed leaves mixed with salt), cough (root mixed betel quid), wound and injuries, stomache [52,154,155]
Wound, gonorrhea, sprue in children, cirrhosis [156]

67 **Dischidia platyphylla** Schltr.
Philippines
Decoction
Putrefaction [52]

68 **Dischidia purpurea** Merr.
Philippines
Crushed leaves mixed with coconut oil applied as external poultice
Eczema, herpes [52,157]

69 **Toxocarpus sp.**
Indonesia
Decoction
Headache, fever, nervous system problem [104]

70 **Impatiens niamniamensis** Gilg (semi epiphytic)
Congo
Poultice
Wounds, sores, pain [158]
Anti-hyperglicemic (Rat) [159]

71 **Convolvulaceae** (parasite)

72 **Cassytha filiformis** L
India, Taiwan, China, Vietnam, Malaysia, Philippines, Indonesia, Fiji, Africa, Central America.
Decoction
Cough, dysentery, diarrhea, intestinal problems, headache, malaria fever, nephritis, edema, hepatitis, sinusitis, gonorrhea, syphilis, skin ulcer, eczema, prevent haemoptysis. Parasite skin and scalp. Induce lactation (after still birth), promote hair growth, diuretic, vermifuge, laxative agent, saliva blood removal (childbirth) [52,160–162]
An α1-adrenoceptor antagonist (Rat thoracic aorta) [163], antiplatelet and vasorelaxing actions (Rabbit platelet, aortic contraction) [164], anti-trypanosomal, citotoxicity [165], antioxidant [166]

73 **Cuscuta australis** R.Br.
Indonesia, Vietnam, China
Decoction, poultice
Whole plant: emollient, sedative, sudorific and tonic agents, urinary complaint. The seeds: sedative agent, diuretic, cornea opacity, acne, dandruff [167]
Cytotoxicity, antioxidant activity, and inhibitory effects on tyrosinase activity and melanin biosynthesis were estd. by using melanoma Clone M-3 [168]

74 **Cuscuta reflexa** Roxb.
India
Decoction, poultice
Mixed with the twigs of *Vitex negundo* L. applied as fomentation on the abdomen of kwarsikor children, fever, itchy [139, 140]
Anti-viral [141, 142], anti-HIV [169], analgesic, relaxant (ether extract) [170], antisteroidogenic activity (MeOH extract) [171], antibacterial activity [172],
hair growth activity in androgen-induced alopecia [173], anti-inflammatory (murine macrophage cell line RAW264.7), anti-cancer (Hep3B cells by MTT assay) [174], antioxidant (etOAc extract, DPPH), anti-obesity (EtOAc extract) [175]

Clusiaceae						
75	Clusia grandiflora Splitg. (hemi epiphyte)	Guyana, Suriname	RT	Decoction	Aphrodisiac [105]	Antibacterial [176]
76	Clusia fockeana Miq. (hemi epiphyte)	Guyana, Suriname	ST(Exudate)	Poultice	Snake bites, ulcers [105]	

Gesneriaceae					
77	Columnea nicaraguensis Oerst.	Panama	ST, LF, WP	Decoction, maceration	Fever [177]
78	Columnea sanguinolenta (Klotzsch ex Oerst.) Hanst.	Panama	ST, LF	Decoction	Dysmenorrhea [177]
79	Columnea tulae Urb. var. tomentulosa (C.V. Morton) B.D. Morley	Panama	ST	Decoction	Fever [177]

Loganiaceae					
80	Drymonia serrulata (Jacq.) Mart.	Amazon	na	Not mentioned	Eczema [178]
81	Drymonia coriacea (Oerst. ex Hanst.) Wiehler	Amazon	na	Not mentioned	Toothache [178]

Loranthaceae (parasite)					
82	Fagraea auriculata Jack. (semi epiphyte)	Indonesia	ST	Stem for stick [58]	Anti-inflammatory [180]

Loranthaceae (parasite)					
83	Amyema bifurcata (Benth.) Tieg.	Australia	ST, LF	Decoction	Colds, fever, sores [181]
84	Amyema quandang (Lindl.) Tieg.	Australia	LF	Decoction	Fever [182]
85	Amyema maidenii (Blakely) Barlow	Australia	FT	Decoction	Inflammation in the genital regions [183]
86	Dendrophthoe falcata (L.f.) Ettingsh	India	WP	Decoction	Pulmonary tuberculosis, asthma, menstrual disorders, swellings, wounds, ulcers, strangury, renal and vesical calculi, Wound healing activity was studied, antimicrobial activity and antioxidant activity [185]
No.	Species	Country	Application/Side Effects	Additional Information/Notes	
-----	---	------------------------------	--	---------------------------------------	
87	*Dendrophthoe frutescens* L.	Indonesia	Drink (decoction)	Anti-inflammation, antibacterial [84]	
88	*Dendrophthoe incarnata* (Jack) Miq.	Malaysia	Poultice	Mixed with *Curcuma longa* L. and rice to make poultice to treat ringworm [186]	
89	*Dendrophthoe pentandra* (L.) Miq.	Indonesia, Malaysia, Thailand	Poultice, decoction	Sores, ulcers, other skin infections, protective medicine after childbirth, cough, hypertension, cancer, diabetes, tonsil problem [51,58,186,187]	
90	*Taxillus umbellifer* (Schult. f.) Danser	Indonesia, Malaysia, Vietnam	Decoction drink, poultice	Antioxidant (MeOH extract, DPPH), Tyrosinase activity [187]	
91	*Erianthemum dregei* (Eckl. & Zeyh.) Tiegh.	Southern & Eastern Africa	Mixed with milk	Powdered mixed with milk to treat stomach problems in children [188]	
92	*Loranthus globosus* Roxb.	Malaysia, Indo-China	Poultice (leaves), juice	Headache, expel afterbirth, cough [189]	
93	*Loranthus spec div.*	Indonesia	Poultice, decoction	Ariola, varicella, diarrhea, ankylostomiasis, morbilli (gagbag), cancer [58]	
94	*Macrosolen robinsonii* (Gamble) Danser	Vietnam	Decoction	Enlarged abdomen (diuretic tea) [192]	
95	*Macrosolen cochinchinensis* (Lour.) Tiegh.	Malaysia, Indo-China	Decoction, juice, poultice	Expel after birth, headache, cough [192]	
96	*Scurrula atropurpurea* (Blume) Danser	Indonesia, Philippines	Decoction	Mouthwash (gargled), cancer (breast, throat cancer), cowpox, chickenpox, diarrhea, hookworm, measles, hepatitis, and cancer [193–195]	
97	*Scurrula ferruginea* (Jack) Danser	Malaysia	Decoction, poultice	Decocted whole plant (mixed with *Milletta sericea* (Vent.) Wight & Arnott) is used as bathing to relieve malaria, decocted leaves as protective medicine after childbirth, pounded leaves to treat wounds, snake bites [193]	
98	*Scurrula parasitica* L.	China, Vietnam	Decoction	Swelling, back pains, numbness, soreness of limbs, hypertension, galactagogue, quieting uterus (no contraction), reducing lumbago, bone strengthening, [193]	

Note: The listed applications and side effects are based on traditional uses and may not be scientifically verified. Always consult a healthcare professional before using any natural remedies.
No.	Species	Origin	Part(s)	Use(s)	Additional Information
99	Viscum aethiopicum [sic]	Southern & Eastern Africa	LF	Decoction (tea)	Diarrhea [188]
100	Viscum capense L.f.	Southern & Eastern Africa	ST, FT	Decoction, external	Wart, asthma, irregular menstruation, hemorrhage [188]
101	Viscum pauciflorum L.f.	Southern & Eastern Africa	WP	Decoction	Astringent [188]
102	Viscum rotundifolium L.f.	Southern & Eastern Africa	WP	External	Wart [188]
	Melastomataceae				
103	Medinilla radicans Blume		LF, RT	Leaves eaten to treat dysentery, adventitious roots applied as poultice to wound, young leaves to skin disorders	Dysentery, wound and skin disorders [153]
104	Pachycentria constricta (Bl)	Indonesia	TB	Tubers are boiled and eaten	Hemorrhoids [51,104]
	Moraceae				
105	Ficus annulata Blume	Indonesia	LF, RT	Leaves decoction to treat fever, the root to treat Hansen diseases	Fever and Hansen diseases [195]
106	Ficus deltoidea Jack	Indonesia, Malaysia, Thailand	LF, RT, FT	Drink (decoction), ointment	Leucorrhea, headache, fever, diabetes, high blood pressure, skin infection, aphrodisiac agent, ornament [104,208–210]

Additional Information:
- Cancer (Polysaccharide fraction, S180, K562 and HL-60 cell lines, MTT assay) [202], anti-obesity activity using porcine pancreatic lipase assay (EtOH extract, PPL; triacylglycerol lipase, EC 3.1.1.3)[203], neuroprotective activity (168, H2O2-induced oxidative damage in NG108-15 cells)[204], antibacterial (EtOH extract, MRSA) [205]
- Antimicrobial activity (stems extract), Anticonvulsant activity (MeOH extract, albino mice) [206]
- Immunoassay (stem, aqueous extracts, T cell activity in ruminants) [207]
scavenging, xanthine oxidase (XOD), nitric oxide (NO) and lipid peroxidn) [213], anti-melanogenic effect (extract, B16F1 melanoma cells, MTT assay) [214], anti-cancer [215], hypoglycemic activity (extract, rodents) [78,214] antimicrobial activity (extract) [216], Anti-inflammatory [217]

The medicated liquor has effects of relaxing muscles and tendons, activating collateral flow, promoting blood circulation, dispelling blood stasis, expelling wind, removing dampness, and relieving pain [221] Antimicrobial, antimalarial, and/or antileishmania activities were obsd. in some crude extracts., and five of these exts. showed a significant cytotoxicity against human tumor cells [74]

107 *Ficus lacor* Buch.-Ham. India BK, LT, BD, SD Decoction, poultice Decoked stem bark to treat gastric and ulcer, latex to treat boils (external), typhoid and fever (internal), decocted bud to treat ulcer, leukorrhoea, Seed as tonic for stomach disorder [184,218–220]

108 *Ficus natalensis* Hochst. Uganda, Tanzania, Senegal, West Africa, South Africa, (semi epiphytic, secondary terrestrial) LF, LT, RT, BK Decoction, poultice Root was used to treat lumbago, headache, arthritis, cataract and cough, Leaves were used to treat snakes bite, malaria, dysentery, ulcers, wounds and used as septic ears [222]

109 *Ficus parietalis* Blume Vietnam, Thailand, Malaysia, Indonesia RT Decoction Stomach-ache [210]

110 *Ficus pumila* L. Vietnam FT, LF, LT Drink (decoction) Diarrhea, hemorloid, rheumatic, anemia, haematuria, dysentery, dropsy, galactoge, tonic for impotence, lumbago, anthelmintic agent, externally used to treat carbuncles [210]

111 *Poikilospermum suaveolens* (Blume) Merr. Indonesia, Thailand BK Decoction Water from the stem for drink, aide the secretion of waste products from the vagina, pain, numbness, stomach ulcer [58,225,226]

Orchidaceae

112 *Acampe carinata* (Griff.) Panigrahi Himalaya, Nepal WP Decoction Rheumatism, sciatica, neuralgia, beneficial in secondary syphilis and uterine diseases [228]
113	*Acriopsis liliifolia* (J.Koenig) Seidenf.	Malaysia	LF, RT	Decoction of the roots and leaves	Fever [229]
114	*Anoectochilus formosanus* Hayata	Taiwan	WP	Decoction	Fever, anti-inflammatory agent, diabetes, liver disorder, chest and abdominal pain [230]
 	 	 	 	 	Anti-inflammatory (water extract, rat paw), hepatoprotective (water extract, rat, SGOT-OPT) [231], anti-hyperliposis (414, rat induced) [232], ameliorative effect (water extract, ovariecotmised rat) [233], antioxidant (water extract, DPPH) [234], anti-hyperglycemic (water extract, diabetic rats induced by streptozotocin) [235], anti-cancer (extracts, breast cancer MCF-7 cell) [236], liver regeneration (extract, rat) [237,238], Hepatoprotective (414, CCl4 induced rat) anti-inflammatory (414, lps stimulate mice) [239,240], anti-cancer (polysaccharide water extract, protate cancer cell lin PC3) [241]
115	*Anoectochilus roxburghii* (Wall.) Lindl.	Taiwan, China, Japan	WP	Decoction	Fever, snake bite, lung and liver diseases, hypertension, child malnutrition [242]
 	 	 	 	 	Hypoglycemic effect (414, streptozotocin (STZ) diabetic rats) [243], hypoglycemic and antioxidant effects (water extract, alloxan-induced diabetic mice, DPPH) [244]
116	*Ansellia africana* Lindl.	Southern & Eastern Africa	PD, ST, RT	Decoction	Pedi is used to treat cough, the stem is used as aphrodisiac, used as emetic agent [188]
117	*Bulbophyllum kwangtungense* Schltr.	China, Japan	TB	Tonic	To treat pulmonary tuberculosis, promote body liquid production, reduce fever, hemostatic agent [245]
118	*Bulbophyllum odoratissimum* (Sm.) Lindl. ex Wall.	China, Burma, Vietnam, Thailand, Laos, Nepal, Bhutan, India	WP	Decoction	To treat pulmonary tuberculosis, chronic inflammation and fracture [247]
 	 	 	 	 	Anti-tumor activities (456, 457, 458, against HeLa and K562 human tumor cell line) [246], Anti-tumor (bibenzyl, inhibiting NO microphage) [247,248], anti-cancer (225,470, 471, 475, 476, 478, 479, 482, 484, human leukaemia cell lines K562 and HL-60, human lung adenocarcinoma A549, human hepatoma BEL-7402 and human stomach cancer SGC-790) [249], anti-cancer (human leukemia cell lines K562 and HL-60, human lung
119	Bulbophyllum vaginatum (Lindl.) Rchb.f.	Malaysia	WP	Juice	Juice of the plant is instilled in the ear to cure earache [160]
120	Catasetum barbatum (Lindl.) Lindl.	Japan, Guiana, Paraguayan	WP	Decoction	Febrifuge, anti-inflammatory [79]
121	Coelogyne sp	Indonesia	RT	Decoction	Headache, fever [104]
122	Cymbidium aloifolium (L.) Sw.	Thailand, Vietnam	LF	Decoction (internal), juice from heated or crushed leaves.	Otitis media, colds, irregular periods, arthritis, sores, burns, tonic [252]
123	Cymbidium canaliculatum R.Br	Australia	PdB	Chewed, poultice	Dysentery, boils, sores, wounds, itchy skin, fractured arms over the break [181,254]
124	Cymbidium ensifolium (L.) Sw	Taiwan, Vietnam	LF, RT, FL, WP, RT	Decoction	Diuretic agent (leaves), pectoral agent (root), eye problem (flower), cough, lung, gastrointestinal problems and sedative [252]
125	Cymbidium goeringii (Rchb.f.) Rchb.f.	Japan, China, Korea, Thailand, Vietnam, India	WP	Decoction	Hypertension, diuretic agent [255]
126	Cymbidium madidum Lindl.	Australia	PdB	Chewed	Dysentery [181]
127	Dendrobium affine (Decne.) Steud.	Australia	PdB	Poultice, external	Crushed pseudobulbs (sticky) is applied to itchy skins, boils, infected skin lesion, minor burns [181]
128	Dendrobium aloifolium (Blume) Rchb.f.	South East Asia	LF	Poultice	Headache [51]
129	Dendrobium amoenum Wall. ex Lindl.	China	LF	Dried and ground	Skin diseases [257]
130	Dendrobium chrysium Rolfe	Australia	LF	Decoction	Diabetes [258]
131	*Dendrobium candidum*	China	LF	Decoction	Diabetes [260]
	Wall. ex Lindl.				

Inhibitory effect of atropine on salivary secretion (extracts, rabbit) [261], anti-hyperglycemic (extract, streptozotocin-induced diabetic (STZ-DM) rats) [260], antioxidant (polysaccharide, 10-phenanthroline-Fe²⁺-H₂O₂ systems and ammonium peroxydisulfate/N,N,N',N'-tetra-methylethanediamine systems) [262] antioxidant (555, 556, DPPH) [263], antioxidant (558, 559, 560, DPPH) [264], anti-tumor (soluble polysacharride, human neuroblastoma (SH2SY5Y) induced by SPD was observed and analyzed by Hoechst stain method) [265]

| 132 | *Dendrobium canaliculatum* var. foelschei (F.Muell.) | Australia | PdB | Poultice, external | Crushed pseudobulbs (sticky) is applied to infected skin and cuts [181] |
| | Rupp & T.E.Hunt | | | | |

| 133 | *Dendrobium crumenatum* Sw. | Malaysia, Indonesia | LF, PdTB | Leaves pounded, bulbs heated to produce juice and applied as external uses | Acne (leaves), infected ears (pseudotubers) [266,267] |

Antimicrobial [268]

| 134 | *Dendrobium chrysanthum* Wall. ex Lindl. | China | LF | Dried and ground | Skin diseases, immune regulator, anti-pyretic, improve eyesight [269,268] |

Anti-inflammation (590, macrophages were harvested from 2-month-old male C57BL/6J mice) [268]

| 135 | *Dendrobium densiflorum* Lindl. | China | LF | Tonic | Promote body fluid production [270] |

| 136 | *Dendrobium faciferum* J.J.Sm | Indonesia | ST | Dried | For twist work (craft) [271] |

| 137 | *Dendrobium fimbriatum* Hook. | Japan, China | LF | Decoction, paste | Promote body fluid production, set fractured bone (paste) [272] |

Antioxidant (water-soluble crude polysaccharide (DFHP), DPPH) [273] Inhibitors of Na⁺, K⁺-ATPase of rat kidney (607, 608) [275], antiplatelet aggregation activity (479, 523, 606, rabbit platelet) [276], antioxidant (DPPH), anti NO production (activated |

| 138 | *Dendrobium lodigesii* Rolfe | China | LF | Decoction | Promote body fluid production, reduce fever, nourish the stomach, anti-cancer agent [274] |
No.	Species	Country	Part	Description
139	*Dendrobium moniliforme* (L.) Sw.	China, Taiwan	ST Decocted dried stem	Anti-pyretic, analgesic, aphrodisiac, stomachic, tonic agents [278] Anti-inflammatory (RAW264.7) [277] Hypoglicemic (polisaccharide, mice) [280], antioxidant (polisaccharide) [281]
140	*Dendrobium moschatum* (Buch.-Ham) S.w	Nepal	LF Juice	Cure earache [282]
141	*Dendrobium nobile* Lindl.	China, Indonesia	WP Tonic	Fever, reduce mouth dryness, aphrodisiac, promote body fluid production, nourish stomach, anorexia, lumbago, impotence [266,283-286] Immunomodulatory activity (lymphocyte proliferation test MTT test) [287,288], antioxidant (water-soluble polysaccharide, DPPH) [290], antimicrobial (Extracts), antitumour (extracts, Dalton's lymphoma ascites (DLA) cells w), induction of in vitro lipid peroxidation (extracts, TBARS) [291], NO inhibition (murine macrophage RAW 264.7 cells) [292], anti-tumor (polysaccharide extracts, sarcoma 180 in vivo and HL-60)[293]
142	*Dendrobium pachyphyllum* (Kuntze) Bakh.f.	Indonesia	WP Decoction	Hydropsy [271]
143	*Dendrobium purpureum* Roxb.	Indonesia, Malaysia	LF Crushed and heated to make poultice	Nail fungal infection [266]
144	*Dendrobium salaccense* (Blume) Lindl.	Indonesia	LF Fragrance	Fragrance [271]
145	*Dendrobium teretifolium* R.Br.	South-Pacific Island	LF Decoction	Severe headache, other pains [294,295]
146	*Dendrobium catenatum* Lindl.	China	LF Decoction	Anxiety and panic [296]
147	*Dendrobium utile* J.J.Sm.	Indonesia	ST Dried	Twist work [271]
148 *Dichaea muricata* (Sw.) Lindl.
Central, South American
Decoction (wash)
Eye infection [285]

149 *Eulophia speciosa* (R.Br.) Bolus
Indonesia
Decoction
Analgesic [271]

150 *Epidendrum strobiliferum* Rchb.f.
China, Korea
Infusion, decoction
Analgesic [297]

151 *Epidendrum rigidum* Jacq.
Mexico, North Sudamerica, Antilles
Infusion, decoction
Replenish body fluid [299]

152 *Mycaranthes panna* (Lindl.) S.C.Chen & J.J.Wood
Vietnam, Malaysia
External, medicinal bath
Medicinal bath to treat ague and malaria fever, fractures, bruises, skin complaints, dislocated joint to relieve severe pain, swelling, dislocation and fracture [153,300,301]

153 *Eriopsis biloba* Lindl.
America
Poultice
Sore gums and mouth membranes [285]

154 *Grammatophyllum scriptum* (L.) Blume
Indonesia, Thailand
Poultice
Pseudo bulb mixed with curcuma and salt applied to sores and abdomen to expel worms, to treat dropsy and aphthae, seeds mixed with food to treat dysentery, aphthae, crushed plant mixed with rice liquor to treat snake bite, scorpions’ and centipedes’ stings [271,302]

155 *Jumellea fragrans* (Thouars) Schltr.
Madagascar
Decoction
Anti-spasmodic, anti-asthmatic agents, mixed leaves of *Ziziphus mauritiana, Mussaenda arcuate* to treat eczema (decocition), mixed with *Eugenia uniflora* to treat diarrhea [57]

156 *Liparis condylobulbon* Rchb.f.
Indonesia
Chewing, external
Intestinal complaints and constipation. (eastern Sulawesi, ambon), tormina, abscess [271,303]

157 *Liparis nervosa* (Thunb.) Lindl.
China, Thailand, Malaysia
Decoction, external
Stop internal/external bleeding, treat snake bites [303]
No.	Species/Genus	Country/Region	Formulate	Use	Additional Properties
158	Neottia ovata (L.) Bluff & Fingerh.	Spain TB	Tincture	Stomach diseases [304]	Anti-viral (extract, SARS-CoV Frankfurt 1 strain [305])
159	Masdevallia uniflora Ruiz & Pav.	Mexico, south America WP	Decoction	Facilitate urination (pregnant women), reduce bladder inflammation [285]	Spasmolytic activity (667, 690, 693, 694, 695, Wistar rat) [70], antinociceptive activity (extract, mice) [306]
160	Camaridium densum (Lindl.) M.A.Blanco	Mexico WP	Decoction	Analgesic, relaxant agents [306]	
161	Neotena boothii (Lindl.) Schltr.	Malaysia WP	Decoction	Relaxant agent [307]	Spasmolytic effects (471, 478, 488, 508, 671, 696, 697, 699, 700, 702, guinea ileum pig model) [307]
162	Oberonia lycopodioides (J.Koenig) Ormerod & Seidenf.	Malaysia LF	Poultice	Boils [153,308]	
163	Oberonia mucronata (D.Don) Ormerod & Seidenf.	China, Vietnam WP	Decoction	Rheumatism, promote blood circulation, inflammation of the bladder/ureter, bruises and fractures, detoxicant, diuretic agent [309]	
164	Erycina pusilla (L.) N.H.Williams & M.W.Chase	Mali WP	Decoction	Lacerations [285]	
165	Otochilus lancilabius Seidenf.	Bhutan, Nepal, India, China (Tibet), Laos and Vietnam WP	Pills	Antiemetic, febrifuge for stomach inflammation (bad-tshad), and allays hyperdipsia and dehydration [56]	
166	Phragmipedium pearcei (Rchb.f.) Rauh & Senghas	South America WP	Decoction	Stomachache [285]	
167	Pholidota articulata Lindl.	Himalaya, Nepal WP	Decoction	Whole plant: bone fractures [228]	
168	Pholidota chinensis Lindl.	China, India PdB	Tincture	Scrofula, toothache, stomachache, chronic bronchitis, duodenal ulcer [310]	Antioxidant (475, 539, 667, 670, 671, 711, 712, 717, 722, 723, 726, (DPPH), anti-inflammatory (475, 539, 667, 670, 671, 711, 712, 717, 722, 723, 726, inhibitory activity on NO production from activated macrophage-like cell line, RAW 264.7)[311], antioxidant (715, 741, 742, 746, 747, 749, 750, DPPH), anti-inflammatory (as above, inhibitory activity on NO production from
No.	Species	Origin/Location	Use/Curative Property		
-----	---	--	--		
169	*Renanthera moluccana* Blume	Indonesia	Ornament [271]		
170	*Rhynchostylis retusa* (L.) Blume	Himalaya, Nepal, India	Rheumatic, hepaoprotective agent [312,228]		
171	*Scaphyglottis livida* (Lindl.) Schltr.	Mexico	Analgesic, anti-inflammatory agents [306,313]		
172	*Vanda tessellata* (Roxb.) Hook. ex G.Don	India, Sri Lanka, Burma	Fever (as paste), otitis (dropped juice), the root to treat bronchitis, rheumatic,		
			dyspepsia, sciatica, inflammation, otitis, nervous problem, fever and as aphrodisiac,		
			laxative, tonic (for liver) agent [140,289-291]		
173	*Papilinanthe teres* (Roxb.) Schltr.	Indonesia	Ornamental [318]		
174	*Vanilla griffithii* Rchb.f.	Indonesia	Edible [318]		
175	*Vanilla planifolia* Jacks. ex Andrews	Indonesia, Mexico	Fever, rheumatism, hysteria, increase energy and muscular system [58,284,318]		
176	*Peperomia galioides* Kunth	Peru	Poultice (external), drink (internal)		
177	*Piper retrofractum* Vahl	Indonesia	Anticonvulsion, antivomiting, diarrhea, dysentery, constipation, headache [324]		
178	*Hydnophytum formicarum* Jack	Indonesia, Philippines, Thailand	Poultice to treat swelling, headache, decoction to treat liver, intestinal complaints,		
			powder as anthelmintic, heart		

activated macrophages-like cell line, RAW 264.7 [310]
Code	Species	Origin	Part	Preparation	Use
179	*Myrmecodia tuberosa* Jack	Indonesia	PT	Drink (decocted)	Swelling, headache [51,104,338]
180	*Myrmecodia pendens* Merr. & L.M.Perry	Papua	PT	Decoction	Rheumatism, headache, renal problems, tumor [340]
181	*Scaphium macropodum* (Miq.) Beumée ex K.Heyne ex K.Heyne (hemi-epiphyte)	Indonesia	RT	Drink (decoction)	Nervous system problem [104]
182	*Premna parasitica* Blume	Indonesia	LF	Drink (decoction)	Fever [58]
183	*Viscum articulatum* Burm.f.	Cambodia, India, Taiwan, China	WP	Poultice, decocction	Decoction to treat bronchitis, skin tumour, neuralgia, arthritis and as tonic, sedative, febrifuge, crushed plant to treat cut [341]
					Extract, assayed spectrophotometrically under aerobic conditions [334], antimicrobial, cytotoxicity (226, 786, 787, against HuCCA-1 and KB cell lines) [335], trigger cytochrome C release in treated MCF-7 cell [786, ELISA] [336], anti-cancer [786, the human breast carcinoma cell line MCF-7] [337], Immunomodulatory effect (EtOH fractions) [339], Toxicity (extract, mice) [342], anti-tumor (820, MTT assay) [343], anti-inflammatory (1234718, superoxide inhibition) [344], cytotoxicity and anti-HIV-1 activity (shown by isolated compounds including 801, 804, 803, 813, 814, 815, 824, 828); MDAMB-435 and Hela cells, HIV-1-IIIIB-infected C8166 cells) [345], anti-nephrotoxic (127, gentamicin-induced renal damage in Wistar rats) [346], antioxidant, anti-inflammatory (810, 811, 812, 822, 825, 829, 830, 831, 832, 833, 834, DPPH, NO production and cell viability assay. The murine macrophage cell line RAW264.7) [347], diuretic activity (MeOH extract, male rats) [348], antiepileptic activity (MeOH extract, rat) [349], anti-hypertension (glucocorticoid-induced...
No.	Species	Origin	Parts	Uses	
-----	---------------------------------	-----------------	--------	--	
184	*Viscum ovalifolium* DC.	Cambodia, Malaysia	LF, WP	Poultice, external Leaves (poultice) to treat neuralgia, as herbal bath to treat fever in children, ash mixed with sulphur, coconut oil to treat pustular itches [353]	
185	*Hedychium ongi cornutum* Griff.	Indonesia	RZ, RT	Drink (decoction) Rhizome is used to treat syphilis; root is used to treat worm [58]	

Note: na: not mentioned; ST: stem, PT: pith; TB: tuber; SP: spore; BK: bark; LT: latex; NT: nutmeg; SD: seed; FT: fruit; BD: buds; PD: pedi; PdB: pseudobulbs; FL: flower; PdTB: pseudotuber; BL: bulbs; STh: sheath; WP: whole; LF: leaf; RT: root; RZ: rhizome.
Table 2. Phytochemical constituents of epiphytic medicinal plants.

No	Epiphyte species	Constituents
1	Adiantum caudatum L., Mant	16-hentriacontanone 1, 19α-hydroxyferna-7,9(11)-diene 2, 29-norhopan-22-ol 3, 3α-hydroxy-4α-methoxyflicane 4, 8α-hydroxyferran-25,7β-olide 5, adiantone 6, flic-3-ene 7, hentriacontane 8, isoadiantone 9, quercetin-3-O-glucoside 10, β-sitosterol 11, β-sitosterol 11, β-sitosterol glucoside 12 [354–356]
2	Asplenium nidus L. Blechnaceae	(-)-epiafzelechin 3-O-β-D-allopyranoside 13, homoserine 14 [357]
3	Davallia solida (Blume) M. Kato	1-Oβ-D-glucopyranosyl-(2S,3R*,4E,8Z)-2-N-[(2R)-hydroxytetrasanoyl]octadescaphasinga 4,8-diene 15, 3-formylindole 16, 3-oxo-4,5-dihydro-α-ionyl-β-D-lucopyranoside 17, kaempferol 3-O-β-D-glucopyranoside 18, kaempferol 3-O-(3',6'-di-O-E-p-coumaroyl)-β-D-glucopyranoside 19, kaempferol 3-O-(3',6'-di-O-E-p-coumaroyl)-(6'-O-E-feruloyl)-β-D-glucopyranoside 20, kaempferol 3-O-(3',6'-di-O-E-p-coumaroyl)-β-D-glucopyranoside 21, kaempferol 3-O-(6'-O-E-p-coumaroyl)-β-D-glucopyranoside 22, lutein 23, stenopaluside 24, stenopalustrosides A–E 25–29, β-sitosterol-3-O-β-D-glucopyranoside 30 [358,359]
4	Araucaria diversicolor (Blume) M. Kato	(-)-epicatechin 3-O-β-D-(2″-O-vanillyl)allopyranoside 31, (-)-epicatechin 3-O-β-D-(2″-trans-cinnamoyl)allopyranoside 32, (-)-epicatechin 3-O-β-D-(3″-O-vanillyl)allopyranoside 33, (-)-epicatechin 3-O-β-D-(3″-trans-cinnamoyl)allopyranoside 34, (-)-epicatechin 3-O-β-D-allopyranoside 35, (-)-epicatechin 3-O-β-D-allopyranoside 36, 24-norferna-4 (23) 37, 4β-carboxymethyl(-)-epicatechin 38, 4β-carboxymethyl(-)-epicatechin methyl ester 39, 4β-carboxymethyl(-)-epicatechin potassium 40, 9(11)-diene 41, cyanin 42, davallic acid 43, epiafzelechin-(4β→8)-epicatechin 3-O-β-D-allopyranoside 44, epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin-D-glucouctono-β-lactone endiol 45, epicatechin-(4β→8)-4β-carboxymethylpyrroline 46, hop-21-ene 47, monardein 48, pelargomin 49, procyanidin B-2 3″-O-β-D-allopyranoside 50, sodium salts 51 [92,93,360–364]
5	Davallia solida (G. Forst.) Sw.	18-diene 52, 18-diene 52, 19α-hydroxyfermenes 53, 19α-hydroxyflicic-3-ene 54, 2-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone 55, 2-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone 56, 2-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone 56, 30-O-P-hydroxybenzoylmangiferin 57, 3-O-P-hydroxybenzoylmangiferin 58, 40-O-phydroxybenzoylmanfigerin 59, 4-O-β-D-glucopyranosyl-2,6,4-trihydroxybenzophenone 60, 4β-carboxymethyl(-)-epicatechin 38, 4β-carboxymethyl(-)-epicatechin methyl ester 39, 60-O-P-hydroxybenzoylmanfigerin 61, eriodictyol 62, eriodictyol-8-C-β-D-glucopyranoside 63, fena-(9(11)) 64, fern-7-en-19α-ol 65, fern-9(11)-en-19α-ol 66, ferna-7 67, filic-3-en-19α-ol 68, filica-3,18,20-triene 69, flic-3,18-diene 70, icariside E3 71, icariside E5 72, mangiferin 73 [99,101,362,365,366]
6	Huperzia carinata (Desv. ex Poir.) Trevis	carinatums A, B, and C 74, 75, 76 [107]
7	Huperzia phlegmaria (L.) Rothm	14β,21α,29-trihydroxyserran-3β-y1 dihydrocaffeate (lycophlegmarial D) 77, 21α,24-dihydroxyserrat-14-en-3β-y1 4-hydroxyccinamate (lycophlegmarial C) 78, 21β,24,29-trihydroxyserrat-14-en-3β-y1 dihydrocaffeate (lycophlegmarial B) 79, 21β,29-dihydroxyserrat-14-en-3α-y1 dihydrocaffeate (lycophlegmarial A) 80, 21β-hydroxy-serat-14-en-3α-ol 81, 21β-hydroxy-serat-14-en-3α-y1 acetate 82, 8,11,13-abietatriene-3β,12-dihydroxy-7-one (margocinil) 83, 8-deoxy-13-dehydroseratinine 84, 8-deoxyseratinidine 85, acrifoline 86, annotine 87, annotinine 88, ...
Biomolecules 2020, 10, 181

8 Huperzia megastachya (Baker) Tardieu
Huperzia megastachya (Baker) Tardieu
Nephrolepis biserata (Sw.) Schott
Nephrolepis cordifolia (L.) C. Presl
Oleandraceae
Opioglossaceae
Polypodiaceae
Bolttigium lanuginosum Wall.ex Hook & Grev.

B. lanuginosum: 6'-O-palmitoyl-sitosterol-3-O-β-D-glucoside 129, 1-O-β-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2R-hydroxy hexadecanoyl) amino]-4,8-octadecadiene-1, 3-diol 130, 30-nor-21β-hopan-22-one 131, apigenin 132, β-sitosterol 133, daucosterol 134, luteolin 135, luteolin-7-O-glucoside 136, thunbergol A 137 [378].

9 Huperzia megastachya (Baker) Tardieu
Nephrolepis biserata (Sw.) Schott
Nephrolepis cordifolia (L.) C. Presl
Oleandraceae
Opioglossaceae
Polypodiaceae
Bolttigium lanuginosum Wall.ex Hook & Grev.

B. lanuginosum: 6'-O-palmitoyl-sitosterol-3-O-β-D-glucoside 129, 1-O-β-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2R-hydroxy hexadecanoyl) amino]-4,8-octadecadiene-1, 3-diol 130, 30-nor-21β-hopan-22-one 131, apigenin 132, β-sitosterol 133, daucosterol 134, luteolin 135, luteolin-7-O-glucoside 136, thunbergol A 137 [378].

10 Huperzia megastachya (Baker) Tardieu
Nephrolepis biserata (Sw.) Schott
Nephrolepis cordifolia (L.) C. Presl
Oleandraceae
Opioglossaceae
Polypodiaceae
Bolttigium lanuginosum Wall.ex Hook & Grev.

B. lanuginosum: 6'-O-palmitoyl-sitosterol-3-O-β-D-glucoside 129, 1-O-β-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2R-hydroxy hexadecanoyl) amino]-4,8-octadecadiene-1, 3-diol 130, 30-nor-21β-hopan-22-one 131, apigenin 132, β-sitosterol 133, daucosterol 134, luteolin 135, luteolin-7-O-glucoside 136, thunbergol A 137 [378].

12 Drynaria roosii Nakaike
Drynaria roosii Nakaike

Drynaria roosii: kaempferol 3-O-β-D-glucopyranoside-7-O-α-L-arabinoside 138, (2R)-naringin 139, (2S)-naringenin-7-O-β-D-glucoside 140, kaempferol 3-O-α-L-rhamnosyl-7-O-β-D-glucoside 141, luteolin-7-O-β-D-neohesperidoside 142, maltol glucoside 143, (-)-epicatechin 144, 12-O-cafeoyl-12-hydroxydodecanolic acid 145, xanthohalogenol 146, naringenin 147, kushennol F 148, sporafallone G 149, kuraminone 150, leachianone A 151, 8-phenylkaempferol 152, kaempferol 153, chitratone 154, fern-(9(11)-ene 155, hop-22(29)-ene 156, isoglucanone 157, dryocarposol 158, dryocarposyl acetate 159, (-)-azefelechin-3-O-β-D-allopyranoside 160, (-)-azefelechin-6-C-β-α-glucopyranoside 161, 4α-carboxymethyl-(-)-catechin methyl ester 162, (-)-epiafzelechin-(4β→8)-(-)-epiafzelechin-(4β→8)-4β-carboxymethyl(-)-epiafzelechin methyl ester 163, (-)-epiafzelechin-(4β→8)-4β-carboxymethyl(-)-epicatechin methyl ester 164, (-)-epiafzelechin-(4β→8)-4α-carboxymethyl(-)-epiafzelechin ethyl ester 165, (-)-epiafzelechin-3-β-O-β-D-allopyranoside 166, (-)-epicatechin-3-O-β-α-D-allopyranoside 167, (-)-catechin 168, 4β-carboxymethyl(-)-epiafzelechin methyl ester 169, 4β-carboxymethyl(-)-epiafzelechin 170, (-)-epiafzelechin-(4β→8)-(-)-epiafzelechin 171, (-)-epiafzelechin 172, (-)-epiafzelechin (4β→8)-4β-carboxymethyl-epiafzelechin methyl ester 173, epicatechin-(4β→8)-epicatechin 174, (-)-azefelechin 175, (-)-epicatechin-3-O-β-D-allopyranoside 176, (-)-epicatechin-8-C-β-D-glucopyranoside 177, (-)-epiafzelechin-5-O-β-D-allopyranoside 178, drynachromoside A 179, drynachromoside B 180, forntubolin A, curcumin B, demethoxycurcumin B, bisdemethoxycurcumin, 183, 184, bacchanine 185, isobavachalcone, 186, (-)-epicatechin 144, liquiritigenin 187, bakuchiol 188, protocatechuic acid 189, (R)-5,7,3′,5′-tetrahydroxyflavonone 7-O-neohesperidoside 190, (2S)-5,7,3′,5′-tetrahydroxyflavonone 7-O-β-D-glucopyranoside 191, 5,7,3′,5′-tetrahydroxyflavanone 192, 3′-lavadulyl-4-methoxy-2,2′,4′,6′-tetrahydroxyflavonone 193, 5,7-dihydroxycromene-7-O-β-D-glucopyranoside 194, 5,7-dihydroxycromene-7-O-neohesperidosyl 195 [76,379-383].
Biomolecules 2020, 10, 181

15 **Drynaria rigidula** (Sw.) Bedd. fern-9(11)ene 202, hop-22(29)-ene 156, \(\gamma \)-sitosterol 203, 3,4-dihydroxybenzoic acid 200, 4-hydroxybenzoic acid 204, 4-hydroxyphenyl-1-(2-arabinopyranosyl)-tetrahydro-2H-pyran-3,4,5-triol 205, 4-hydroxyphenyl-1-tetrahydro-2H-pyran-3,4,5-triol 206, kaempferitrin 207, 3,5-dihydroxy-flavone-7-O-\(\beta \)-rhamnopyranosyl-4\’-O-\(\beta \)-glucopyranoside 208 [125,386]

16 **Phymatosorus scolopendria** (Burm. f.) Pic. Serm. diploptene 210, \(\beta \)-sitosterol 11, octanordammarane 211, dammara-18(28),21-diene 212, (18S)-18-hydroxydammar-21-en 213, (18R)-18-hydroxydammar-21-ene 214, (18S)-pyrrosialactone 215, (18R)-pyrrosialactone 216, (18S)-pyrrosialactol 217, 3-deoxycoptilol 218, dammara-18(28),21-diene 212, cyclohexopene 219, cyclohexopanediol 220, hop-22(29)-en-28-al 221 [387–389]

17 **Pyroisa lingua** (Thunb.) Farw. diploptene 210, \(\beta \)-sitosterol 11, octanordammarane 211, dammara-18(28),21-diene 212, cyclohexopene 219, cyclohexopanediol 220, hop-22(29)-en-28-al 221 [387–389]

18 **Pyroisa petiolosa** (Christ) Ching diploptene 210, \(\beta \)-sitosterol 11, octanordammarane 211, dammara-18(28),21-diene 212, cyclohexopene 219, cyclohexopanediol 220, hop-22(29)-en-28-al 221 [387–389]

19 **Pyroisa showert** (Baker) Ching diploptene 210, \(\beta \)-sitosterol 11, octanordammarane 211, dammara-18(28),21-diene 212, cyclohexopene 219, cyclohexopanediol 220, hop-22(29)-en-28-al 221 [387–389]

Pilostates

20 **Psilotum nudum** (L.) P. Beauv apigenin di-C-glucoside 233, 7,4',4'-tri-O-\(\beta \)-D-glucopyranoside 234, 4',4'-di-O-\(\beta \)-D-glucopyranosides 235, 7,4'-di-O-\(\beta \)-D-glucopyranoside 236, 3'-hydroxyprosolin (6-{[\(\beta \)-D-glucopyranosyloxy]-3'-hydroxyphenyl}-5,6-dihydro-2-oxo-2H-pyran) 237, 24-methylene-5a-lanost-8-en-3\'-ol 238, 24\'-methyl-25-dehydrolophenol 239, codisterol 240, isofucosterol 241, 24-methylene-25-hydroxyphenol 242, avenasterol 243, psilotin 244 [391–394]

Pteridaceae

21 **Acrostichum aureum** L. quercetin 3-O-\(\beta \)-D-glucoside 245, ponasterone A 246, lupeol 247, friedelin 196, \(\beta \)-sitosterol 11, stigmasterol 248, campesterol 249, tetracosanoic acid 250, ursolic acid 251, gallic acid 252, (2R,3S)-sulfated pterosin C 253, (2S,3S)-sulfated pterosin C 254, (2S,3R)-pterosin C 255, (2R)-pterotonin P 256, patriscabratine 257, tetracosane 258, quercetin-3-O-\(\beta \)-D-glucoside 259, quercetin-3-O-\(\beta \)-D-glucosyl-(6\’-1)-\(\alpha \)-L-rhamnoside 260, quercetin-3-O-\(\alpha \)-D-glucoside 261, quercetin-3-O-\(\beta \)-L-rhamnoside 262, kaempferol 153 [68,395–397]

22 **Selaginella involvens** (P. Beauv.) Spring hexadecanoic acid 263, stearic acid 264, \(\beta \)-sitosterol 11, stigmasterol 248, amentoflavone 265, \(\beta \)-D-glucopyranoside 266, (3\'-cholest-5-en-3-yl) \(\beta \)-amyrin 198 [398]

Vittariaceae

23 **Vittaria elongate** Sw. vittarin-A-F 268–273, 3-O-acetylindoloidic acid 274, ethyl 3-O-acetylindololactone 275, methyl 4-O-coumaroylquinone 276, vittarilide-A, B 277, 278, vittarilflavone 279, methyl 4-O-cafeoylquinone 280, ethyl 4-O-cafeoylquinone 281, methyl 5-O-cafeoylquinone 282, apigenin 132, vitexin 283, 5,7-dihydroxy-3',4',5'-trimethoxyflavone 284, amentoflavone 265, trans-p-coumaric acid 285, methyl trans-p-coumarate 286, methyl caffeate 287, ferulic acid 288, p-cresol 289, 4-hydroxybenzaldehyde 290, 4-hydroxybenzoic acid 204, methyl 4-hydroxybenzoate 291, protocatechualdehyde 226, protocatechuic acid 189, methyl protocatechuete 292, vanillin 293, vanillic acid 225 [149]

Non-Fern

24 **Impatiens niamniensis** Gilg (semi epiphytic) \(\alpha \)-N,N,N-trimethyltryptophan betaine 294 [159]
25. Convolvulaceae (parasite)
26. Cuscuta filiformis L.

N-(3,4-dimethoxyphenethyl)-4,5-methylenedioxy-2-nitrophenylacetamide 295, actinodaphnine 296, cassythine 297, isoboldine 298, cassamiderine 299, cassamedine 300, lyciscamine 301, cathafiline 302, cathaformine 303, actinodaphnine 304, N-methylactinodaphnine 305, cathafiline 306, cathaformine 307, predicentrine 308, oceleine 309, filiformine 310, (+)-diisoyringaresinol 311, cassythine 312, cathaformine 313, actinodaphnine 314, N-methylactinodaphnine 315, predicentrine 308, oceleine 316, neoistigmaster 317, dichentrace 318, cassythine (cassamyl) 319, actinodaphnine 320, 4-O-methylbalanopphonin 321, cassyformedrine 322, cassythine acid 323, cassythine acid 324, cassythine 325, neoistigmaster 326, dichentrace 318, 1,2-methylenedioxy-3,10,11-trimethoxyaporphine 327, (+)-O-methylflavinatine 328, (-)-salutaridine 329, isohamnetin-3-O-glucoside 330, isohamnetin-3-O-rutinoside 331 [164,378,399-403]

27. Cuscuta australis (Blume) Danser

Roxb.
Cuscata reflexa Roxb.
Coumarin 341, α-amyrin 342, β-amyrin 198, α-amyrin acetate 343, β-amyrin acetate 344, oleanolic acid 345, oleanolic acid 127, stigmastanol 248, lupeol 247, stigmast-5-en-3-O-β-D-glucopyranoside tetraacetate 346, stigmast-5-en-3-O-β-D-glucopyranoside 347, stigmast-5-en-3-yl-acetate 348, β-sitosterol 11, 3,5,7,3'-pentahydroxyflavanone (taxifolin) 349, 3,5,7',4'-tetrahydroxyflavanone (aromadendrin) 350 [169,407,408]

28. Cuscuta australis (Blume) Danser

Roxb.
Cuscata reflexa Roxb.
Coumarin 341, α-amyrin 342, β-amyrin 198, α-amyrin acetate 343, β-amyrin acetate 344, oleanolic acid 345, oleanolic acid 127, stigmastanol 248, lupeol 247, stigmast-5-en-3-O-β-D-glucopyranoside tetraacetate 346, stigmast-5-en-3-O-β-D-glucopyranoside 347, stigmast-5-en-3-yl-acetate 348, β-sitosterol 11, 3,5,7,3'-pentahydroxyflavanone (taxifolin) 349, 3,5,7',4'-tetrahydroxyflavanone (aromadendrin) 350 [169,407,408]

29. Clusia grandiflora Splittg. (parasite)

(hemi epiphyte)
Clusia grandiflora Splittg. (parasite)
(hemi epiphyte)
Loranthaceae (parasite)

30. Fagraea auriculata Jack. (semi epiphyte)

Loranthaceae (parasite)

31. Dendrophthoe falcata (L.f.) Ettingsh

parasite)

32. Loranthus globosus Roxb

(+) catechin 168, 3,4-dimethoxycinnamyl alcohol 370, 3,4,5-trimethoxycinnamylalcohol 371 [190]

33. Macrosolen cochinchenensis (Lour.) Tiegh.

Scirrula atropurpurea (Blume) Danser

404-406]

34. octadeca-8,10,12-triynoic acid 376, hexadec-8-yanoic acid 377, hexadec-10-yanoic acid 378, hexadec-8,10-diyanoic acid 379, hexadec-6,8,10-triynoic acid 380, hexadec-8,10,12-triynoic acid 381, (Z)-9-octadecenoic acid 382, (Z,Z)-octadec-9,12-dienoic acid 383, (Z,Z)-octadec-9,12,15-trienoic acid 384, octadeca-8,10-diyanoic acid 385, (Z)-octadec-12-ene-8,10-diyanoic acid 386, octadeca-8,10,12-triynoic acid 376, theobromine 387,
Biomolecules 2020, 10, 181

caffeine 388, quercitrin 389, rutin 373, icariside B2 390, aviculin 391, (+)-catechin 168, (-)-epicatechin 144, (-)-epicatechin-3-O-gallate 392, (-)-epigallocatechin-3-O-gallate 393 [196,197]

35 Scurrula ferruginea (Jack) Danser

Bulbophyllum roxburghii Lindl. ex Wall.
go-odoratissimum noectochilus

36 Scurrula parasitica L. Moraceae

(+)-catechin 168 [204]

Orchidaceae

37 Ficus pumila L.

(1S,4S,5R,6R,7S,10S)-1,4,6-trihydroxyudesmane 6-O-β-D-glucopyranoside 39, (1S,4S,5R,6R,7S,10S)-1,4-dihydroxyamaliane 1-O-β-D-glucopyranoside 396, (23Z)-3β-acetoxyacycloart-23-en-25-ol 39, (23Z)-3β-acetoxeyupha-7,23-dien-25-ol 39, (24RS)-3β-acetoxyacycloart-23-en-24-ol 39, (2S)-24-hydroxystigmast-4-en-3-one 400, (24S)-stigmast-5-ene-3β,24-diol 401, 1α,11-dihydroxyacin-4-ene 11-0-β-D-glucopyranoside 402, 3β-acetoxy-(20R,22E,24RS)-20,24-dimethoxydammaran-22-en-25-ol 403, 3β-acetoxy-(20S,22E,24RS)-20,24-dimethoxydammaran-22-en-25-ol 404, 3β-acetoxy-20,21,22,23,24,25,26,27-octanordammaran-17β-ol 405, 3β-acetoxy-22,23,24,25,26,27-hexanordammaran-20-one 406, cycloartane-type triterpenoids 407, triterpenoids 408 [413-415]

38 Anoectochilus formosanus Hayata

(6R,9S)-9-hydroxy-megastigma-4,7-dien-3-one-9-O-β-D-glucopyranoside 409, (R)-(+)3,4-dihydroxybutanoic acid ϒ-lactone 410, 1-O-isopropyl-β-D-glucopyranoside 411, 2-(β-D-glucopyranosyloxy)methyl-5-hydroxymethylfuran 412, 3-(R)-3-β-D-glucopyranosyloxybutanolide (kinesinolide) 414, 4-(β-D-glucopyranosyl)benzyl alcohol 415, corchoinoside C 416 [416]

39 Anoectochilus roxburghii (Blume)

24α-isopropenylcholesterol 417, 5-hydroxy-3',4'-7-trimethoxyflavonol-3-O-β-D-rutinoside 418, 7-O-β-D-diglucoside 419, 8-C-β-hydroxybenzyloxyquinocerin 420, 8-p-hydroxybenzyloxy quercetin, 421, anochocerin 422, campesterol 249, cirsilolin 423, daucosterol 134, ferulic acid 288, isorhamnetin 424, isorhamnetin-3-β-D-glucoside 426, isorhamnetin-3-O-β-D-rutinoside 427, isorhamnetin-7-O-β-D-glucopyranoside 428, isorhamnetin-7-O-β-D-diglucoside 429, kaempferol-3-β-D-glucopyranoside 430, kaempferol-7-O-β-D-glucopyranoside 431, p-coumaric acid 334, p-hydroxybenzaldehyde 432, quercetin 336, quercetin 3-0-β-D-glucopyranoside 433, quercetin 3-O-β-D-glucopyranoside 434, quercetin 3-O-β-D-rutinoside 435, quercetin 7-O-β-glucoside 436, quercetin-7-O-β-D-[6'-O-(trans-feruloyl)]glucopyranoside 437, sitosterol 438, stigmasterol 248, succinic acid 439, 3',4',7-trimethoxy-3,5-dihydroxyflavone 440, 3-methoxy-p-β-hydroxybenzaldehyde 441, daucosterol 134, daucosterol 134, ferulic acid 288, isorhamnetin-3-O-β-D-rutinoside 443, lanosterol 444, methyl 4-β-D-glucopyranosyl-butanoate 445, o-hydroxy phenol 446, oleandric acid 127, palmitic acid 447, p-hydroxy benzaldehyde 448, p-hydroxy cinnamic acid 449, p-hydrobenzaldehyde 452, rutin 373, sorphumol 3-O-E-p-coumarate 450, sorgumol 3-O-Z-p-coumarate 451, stearic acid 264, succinic acid 452, β-D-glucopyranosyl-(3R)-3-hydroxybutanoic acid 453, β-sitosterol 11 [395-403]

40 Bulbophyllum kwangtungense Schltr.

10,11-dihydro-2,7-dimethoxy-3,4-methylenedioxydibenzof[b,f]oxepine 454, 5-(2,3-dimethoxyphenethyl)-6-methylbenzo[d][3,4]dioxole 455, 7,8-dihydro-3-hydroxy-12,13-methylenedioxy-11-methylenidibenz[b,f]oxepine 456, 7,8-dihydro-4-hydroxy-12,13-methylenedioxy-11-methylenidibenz[b,f]oxepine 457, 7,8-dihydro-5-hydroxy-12,13-methylenedioxy-11-methylenidibenz[b,f]oxepine, cumulatin 459, densiflorol A 460, plicatol B 461 [245,417]

41 Bulbophyllum odoratissimum (Sm.) Lindl. ex Wall.

(+)-lyoniresinol-3α-O-β-D-glucopyranoside 462, 3,5-dimethoxyphenethyl alcohol 463, 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene 464, 3,7-dihydroxy-6'-O-(6''-O-β-apiofuranosyl)-β-D-glucopyranoside 465, 3-methoxy-4-hydroxyccinnamic aldehyde 466, 3-methoxyphenethyl alc. 4-O-β-D-glucopyranoside 467, 4-hydroxy-3,5-dimethoxybenzaldehyde 468, 4-O-β-D-glucopyranoside 469, 7-hydroxy-2,3,4-trimethoxy-9,10-dihydrophenanthrene 470, batatasin III 471, Bulbophyllanthrone 472, bulbothyrins A, B 473, 474, Coelenin 475, densiflorol B 476, ethyl orsellinat 477, gigantol 478, moscatin 479, p-hydroxyphenylpropionic acid 480, p-hydroxyphenylpropionic methyl ester 481, syringaldehyde 482, syringin 483, tristin 484, vanillic acid 225 [245,250,418-421]
Bulbophyllum vaginatum (Lindl.) Rchb.f. (±)-syringaresinol 485, (2R*,3S*)-3-hydroxymethyl-9-methoxy-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2,3,6,7-tetrahydrophenanthro [4,3-b]furan-5,11-diol 486, 2,4-dimethoxyphenanthrene-3,7-diol 487, 3,4,6-trimethoxyanthrone-2,7-diol 488, 3,4,6-trimethoxy-9,10-dihydrophenanthrene-2,7-diol 489, 3,4′,5-trihydroxy-3′-methoxybibenzyl (tristin) 490, 3,4′-dihydroxy-5,5′-dimethoxybibenzyl 491, 3,4-dihydroxybenzoic acid 200, 3,4-dimethoxy-9,10-dihydrophenanthrene-2,7-diol (erianthrin) 492, 3,4-dimethoxyphenanthrene-2,7-diol (nudol) 493, 3,5-di-methoxy-9,10-dihydrophenanthrene-2,7-diol (6-methoxycoelonin) 494, 3,5-dimethoxyphenanthrene-2,7-diol 495, 3′-dihydroxy-5-methoxybibenzyl 496, 4′,4′,6,6′-tetramethoxy-[1′,1′-biphenanthrene]-2,2′,3′,7′,7′-hexol 497, 4,6-dimethoxy-9,10-di-hydrophenanthrene-2,3,7-triol 498, 4,6-dimethoxyphenanthrene-2,3,7-triol 499, 4-methoxy-9,10-dihydrophenanthrene-2,7-diol (coelonin) 500, 4-methoxyphenanthrene-2,3,7-diol (flavanthrinin) 501, 4-methoxyphenanthrene-2,3,5-triol (fimbriol B) 502, 9,10-dihydrophenanthrenes 503, dihydroferulic acid 504, Friedelin 196, p-coumaric acid, 334 [69,422,423]

Catasetum barbatum (Lindl.) Lindl. 2,7-dihydroxy-3,4,8-trimethoxyphenanthrene 505 [251]

Cymbidium aloifolium (L.) Sw. aloifol I 506, aloifol II 507, 6-O-methylcoelonin 508, batatasin III 471, coelonin 475, gigantol, 478, 1′-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2-(3′-hydroxyphenyl)ethane 479, 2,4-dimethoxy-4,6-dimethoxy-9,10-dihydrophenanthrene 511, cymbinadin-A 512, cymbinadin B 513 [424–426]

Cymbidium goeringii (Rchb.f.) Rchb.f. β-sitosterol 11, daucosterol 134, ergosterol 514, gigantol 478, cymbidine A 515 [255,256,427]

Dendrobium amoenum Wall. ex Lindl. amotin 516, amoenin 517, amoenumin 518, amoeylin, isoamoeylin 519, 3,4′-dihydroxy-5-methoxybibenzyl 520, 4,4′-dihydroxy-3,3′,5-trimethoxybibenzyl (moscatinin) 521 [428–430]

Dendrobium chryseum Rolfe araxerol 522, coumarin 531, moscatilin 523, chrysotobibenzyl 524, chrysotocin 525, gigantol 478, kaempferol 153, cis-melilotoside 526, defuscin 527, dendroforrin 528, dengibsin 529, dihydrodesmiletoside 530, naringenin 147, n-octacosyl ferulate 531, trans-melilotoside 532 [259,431]

Dendrobium candidum Wall. Ex Lindl. (-)-lophilide 533, (-)-secosolariciresinol 534, (-)-syringaresinol 535, (+)-lyoniresinol-3a-O-β-D-glucopyranoside 462, (+)-syringaresinol-4,4′-dimethoxy-5,4′-dimethoxy-3,5-dimethoxy-1′-O-methylbibenzyl 541, 3-O-methylgigantol 542, 4,4′-dihydroxy-3,5-dimethoxybibenzyl 543, 4′,5-dihydroxy-3,3′-dimethoxybibenzyl 544, 4-allyl-2,6-dimethoxyphenylglycoside 545, 4′-dihydroxy-5-methoxybibenzyl 546, 5-hydroxymethyl-furaldehyde 547, Adenosine 548, Aduncin 549, cisorufiyol-p-hydroxybenzenethylamine 550, coniferyl alcohol 551, daucosterol 134, defuscin 527, denbinbinol, 552, dendrocanadin A 553, dendrocanadin B 554, dendrocanadin C 555, dendrocanadin D 556, dendrocanadin E 557, dendrocanadins F–I 558–561, dromenoniliside E 562, dromophenol 563, dihydroresveratrol 564, gigantol 478, guanosine 565, hentriacontane 8, heptadecanoic acid 566, hexadecanoic acid 263, icaril A 2,4-O-β-D-glucopyranoside 567, khaephuoside 568, leonuriside A 569, naringenin 147, n-octacosyl ferulate 531, N-trans-feruloyl tyramine 570, n-triacetyl cis-p-coumarate 571, p-hydroxy-phenylpropionic acid 480, sucrose 232, syringaresinol 572, syringaresinol-4,4′-O-bis-β-D-glucoside 573, trans-cinnamoyl-p-hydroxybenzenethylamine 574, uridine 575, vanillyl alcohol 567, β-sitosterol 11 [237,239,419,421]

Dendrobium chrysanthum (Spreng.) Blume (2S)-N-cis-cinnamoyl-2-oxoppyrrolidine 577, (2S)-trans-cinnamoyl-2-oxoppyrrolidine 578, (β)-lyoniresinol 579, 2,5-dihydroxy-4,9-dimethoxyphenanthrene 580, 4,4′-dihydroxy-3,3′,5-trimethoxybibenzyl 581, 7,70-bis-(4-hydroxy-3,5-dimethoxyphenyl)-8,8-dihydroxymethyl-tetrahydrofurane-4,4′-d-glucoside 582, chrysophanol 583, chrysotobibenzyl 524, chrysotobibenzyl 524, chrysotoxin 525, crepidatin 584, crepidatin 584, dihydrodicoumaroyl alcohol 4,4′-d-glucoside 585, dencrysans A, B 586, 587, dencrysides A 588, dencrysides B 589, dencrychosane 590, dencroflorin 528, dengibsin 529, emodin 591, gigantol 478, moscatilin 523, moscatilin 523, moscatin 479, phoscin 592, β-sitosterol 11 [226,418,422,425]
50 *Dendrobium fimbriatum* Hook.

2-hydroxyethyl caffeate 593, ayaipin 594, chrysocephalin 583, chrysotobenzyl (l) 595, confusarin 596, crepidatin 584, defuscin 527, denhydroshizukanolide 597, fimbriatone 598, *n*-drotiaconoic acid 599, *n*-octacosyl ferulate 531, *n*-triacontyl *cis*-p-coumarate 571, physcion 592, rhein 600, scopolin methyl ether 601, β-sitosterol 11 [432,433]

51 *Dendrobium loddigesii* Rolfe

dendropholen (4,4′-dihydroxy-3,3′,5-trimethoxybenzoyl) 563, loddisegisins A-D 602-605, moscatilin 523, moscatilin diacetate 606, moscatin 479, shihunidine 607, shihunone 608, stilbenes 609 [275-277]

52 *Dendrobium moniliforme* (L.) Sw.

heptacosane 610, 3,4-dihydroxy-4,5-dimethoxy benzyl 611, 3,4-dihydroxy-5,4′-dimethoxy benzyl 612, 4-methoxybenzaldehyde 613, a known alkaloid 6-hydroxybenzyl 614, alkyl 4′-hydroxy-cis-cinnamates 615, alkyl ferulates 616, daucosterol 134, denbinbin 552, denbinbin, alkyl 4′-hydroxy-trans-cinnamates 617, dromerausiside E 562, ethyl linolenates 618, heptatriacontaneic acid 619, linoleic acid 620, methyl linolenates 621, monilin 622, monilin 623, *n*-nonacosane 624, *n*-octacosyl ferulate 531, *n*-triacontyl *p*-hydroxy-cis-cinnamate 625, octacosyl hexadecanoate 626, phytosterols 627, stigmat-4-en-3-one 628, vanillin 293, α-dihydropicrotoxinin 629, β-sitosterol 11 [285,434-438]

53 *Dendrobium moschatum* (Buch.-Ham) S.w.

moscatin 479, moscatilin 523 [254,428-432]

54 *Dendrobium nobile* Lindl.

10,12-dihydroxycarboxylate 630, 10,12,13,14-tetrahydroxyalloaromadendrane 631, 3,4,8-trimethoxyphenanthrene-2,5-diol 632, 3,4′-dihydroxy-5,5′-dimethoxydihydrostilbene 633, 3-O-methylgigantol 542, 5,7-dimethoxyphenanthrene-2,6-diol 634, 6-hydroxy-dendrobine (dendramine) 635, 6-hydroxy-dendroxine 636, 6α,10,12-trihydroxycarboxylate 637, 7,12-dihydroxy-5-hydroxymethyl-11-isopropyl-6-methyl-9-oxatriacyclo[6.2.1.0]undecan-10-one-15-O-β-D-glucopyranoside 638, batatasin III 471, bullantanol 639, chrysotobenzyl 524, coelenon 475, crepidatin 584, denbinbin 552, dendrobane A 640, dendrobine A,7,7′ chrysoxotone 641, dendrobine 642, dendrobiumane 643, dendrofensilfuran 644, dendroflorin 528, dendronobiolin A 645-653, dendronobiolin J 654, dendronobilone A 655, dendronobilosides A, B 656, 657, dendronophenol A-B 658, 659, dromonoside A 660, dendroxine E-G 661-663, dromoxine 664, ephemerosinthol A 665, ephemerosinthol C 666, ephemerosinth B 668, flavantheridin 669, gigantol 478, hircinol 670, luosathanidin 671, moscatilin 523, moscatilin 523, moscatin, 479, gigantol 478, nabilin D-E 672, 673, nobilone 674, nobilenione 675, stigmasteryl 248, β-sitosterol 11, β-sitosterol glucoside 12 [71,286-289,292,439-444]

55 *Epidendrum strobiliferum* Rchb.f.

24-methylenecycloartanol 676, campesterol 249, pholidin 677, stigmasterol 248, β-sitosterol 11 [297]

56 *Epidendrum rigidum* Jacq.

2,3-dimethoxy-9,10-dihydrophenanthrene-4,7-diol 678, 24-methyl-9,19-cycloolanostane-25-en-3β-ol 679, 3,4,9-trimethoxyphenanthrene-2,5-diol 680, apigenin 132, batatasin III 471, gigantol 478, isovitexin 681, stilbenoids I-IV 682-685, triterpenoids 24,24-dimethyl-9,19-cyclopanostane-25-en-3β-ol 686, vitexin 283 [299]

57 *Myrcarathus pannae* (Lindl.) S.C.Chen & J.J.Wood

Acervatol 687, acervatone 688, flavantheridin 669, flavantherin 689 [301]

58 *Camariaium densum* (Lindl.) M.A.Blanco

2,3-dihydroxy-3,4-dimethoxyphenanthrene 690, 2,3-dihydroxy-3,4-dimethoxyphenanthrene 690, 9,10-dihydro-2,5-dihydroxy-3,4-dimethoxyphenanthrene 691, 9,10-dihydro-2,7-dihydroxy-3,4-dimethoxyphenanthrene 692, ephemerosinth B 693, ephemerosinthone 700, gigantol 478, limonanthin 671, moscatin 523, moscatin 523, moscatin, 479, gigantol 478, nabilin D-E 701, nobile 709 [307,446]

59 *Niema bohtheii* (Lindl.) Schltr.

1,5,7-trimethoxy-9,10-dihydrophenanthrene-2,6-diol, 696, 1,5,7-trimethoxyphenanthrene-2,6-diol 697, 2,4-dimethoxyphenanthrene-3,7-diol 488, 9,19-cyclopanoate-24,24-dimethyl-25-en-3β-ol trans-p-hydroxycinnamate 698, aloifol I 507, batatasin III 471, ephemerosinthol B 699, ephemerosinthone 700, gigantol 478, limonanthin 671, nidiman 701, nidemone 702 [307,446]

60 *Pholidota articulata* Lindl.

2,7-dihydroxy-3,4,6-trimethoxy 9, 10-dihydrophenanthrene flavidin 703, 2,7-dihydroxy-7-methoxy-9,10-dihydrophenanthrene (coelenin) 704, 9, 10-dihydrophenanthrenes 705, coelaquin 706, coelogenin 707, flavidin 708, flavidin 709, oxoflavidin 710 [447]
61 Pholidota chinensis Lindl. (E)-2',3',3'-trihydroxy-5-methoxy stilbene (pholidotol C) 711, (Z)-3',3'-hydroxy-5-methoxy stilbene (pholidotol D) 712, 2,4,7-trihydroxy-9,10-dihydrophenanthrene 539, 2,5-dimethoxy-3,4,5'-bis(dimethylenedioxy)benzyl 713, 3',4'-dihydroxy-3',5'-dimethoxybenzyl 714, 3,4-dihydroxy-4'-methoxydihydrocannabinol 715, 4',4'-dihydroxydiphenylmethane 716, 4,5-dihydroxy-2-methoxy-9,10-dihydrophenanthrene 717, 5,3'-dihydroxy-2,3-(methylenedioxy)benzyl 718, 9,10-dihydro-2,4-dihydroxy-7-methoxyphenanthrene 719, batatasin III 471, blestrin A 720, blestrin A 721, bulbophyll B 722, cannabidiol 723, coelolin 475, coelolin 476, cyclopholidone 724, cyclopholidone 725, cyclopholidone 725, erianthridin 667, euphol 726, flavantherin 727, flavantherin 727, gynocpin C 728, hircinol 670, lusianthridin 671, lusianthridin 671, phochinenins A – F 719–724, pholidotols A–B 741, 742, 3,4-dihydroxy-5-methoxydihydrostilbene 743, phyanunnarin D 744, p-hydroxybenzaldehyde 432, p-hydroxybenzyl alcohol 745, proteacechmal aldehyde 746, resveratrol 477, thunabale 748, thunabale 749, trans-3,3-dihydroxy-2,5-dimethoxybenzene 750, 3,4-dihydroxy-2,3,5-trimethoxybenzene 751, β-daucosterol 752 [310,311,434,435,448,449]

62 Scaphyglottis livida (Lindl.) Schltr. 24,24-dimethyl-9,19-cyclooctanosta-11(9),25-dien-3-one (cyclobalanone) 753, 3,4'-dihydroxy-3',4'-trimetoxybenzene 754, 3,4'-dihydroxy-3',5'-dimethoxybenzene 714, 3,4-dihydroxy-2,4,8-trimethoxybenzene 755, 3,4-dihydroxy-2,4,4-dimethoxyphenanthrene 756, 5α-lanosta-24,24-dimethyl-9(11),25-dien-3β-ol 757, batatasin III 471, coelolin 475, gigantol 478, nideolin 701 [313,314,446]

63 Papilionanthe teres (Roxb.) Schltr. Eucomin acid 758, vandasteroids I-III 759–761 [319]

64 Vanda tessellate (Roxb.) Hook. ex G. Don. Oxotessallatin 762 [436]

Piperaceae

65 Peperomia galoides Kunth (+)-epi-α-bisabolol 763, galapiperone 764, grifolic acid 765, grifolin 766, hydropiperone 767, piperogalin 768, piperogalone 769 [437,438,440]

66 Piper retrofractum Vahl 28-methylmiconacos-27-en-1-oic acid 770, 3-methyl-5-decanoylpyridine 771, caffeeic acid 228, di-methyl 3,4-bis(4-hydroxyphenyl)-1,2-cyclobutanedicarboxylate 772, esculetin 773, methyl piperate 774, N-isobutylecicosa-2,4-dienamide 775, p-coumaric acid 334, piperiecosalidene 776, piperine 777, piperonine 778, piperocatalcalidene 779, retroflectamide-D 780, retroflectamides A, C 781, 782, uracil 783, uridine 575, vetixin 283, vetixin 2′-O-β-glucopyranoside 784, β-D-glucopyranoside 266, β-sitosterol 11 [325,330,451–454]

Rubiaceae

67 Hydnophytum formicarium Jack 4-aminophenyl acetate 785, 7,3',5'-trihydroxyflavone 786, butein 787, butin 788, Isoliquiritigenin 789, protocatechaldehyde 226, stigmasterol 11 [337,386]

Viscaceae

68 Viscum articulatum Burm.f. (2S)-5,3,4-trihydroxyflavanone 7-O-β-D-glucoside 790, (2S)-homoeorictodyl 791, (2S)-homoeorictodyl 7-O-β-D-glucoside 792, (2S)-naringenin 7-O-β-D-glucoside 793, (2S)-pinocembrin 7-O-[cinnamoyl(1′)]-β-D-glucoside 794, (2S)-pinocembrin 7-O-[β-D-apiosyl(1′)]-β-D-glucoside (1′) 795, (2S)-pinocembrin 7-O-β-D-glucoside 796, (4′-hydroxy-2′,3′,5′-tetramethoxy-1,3-diphenylpropane)-4″-O-β-Dglucopyranoside 797, 1-O-benzyl-[5-O-benzyl]-β-D-glucopyranosyl(1′→2′)-β-D-glucopyranoside 798, 2-deoxy-α-L-rhamnose 800, 4-β-D-glucosyl-3-hydroxy-benzoic acid 801, 4′-hydroxy-7,3′-dimethoxyflavan-5-O-β-D-glucopyranoside 802, 4-O-cinnamoyl quinic acid 803, 5,3′,4′-trihydroxyflavanone-7-0-β-D-glucopyranoside 804, 5,4′-dihydroxyflavanone-7-O-β-D-lucopyranoside 805, 7-O-β-D-glucopyranoside 806, butin 807, butin 808, butinolic acid 809, cinnamic acid methyl ester 810, diphenylpropane glycoside 811, eriodictyol 7-O-β-D-glucopyranoside 812, homoeorictodyl 7-O-β-D-glucopyranoside 813, homoeorictodyl 7-O-β-D-glucopyranoside 814, homoeorictodyl 7-O-β-D-glucopyranoside 815, homoeorictodyl 7-O-β-D-glucopyranoside 816, lupenyl
acetate 817, lupeol 247, lupeol acetate 818, lupeol palmitate 819, lupeol stearate 820, lycorin 821, methylparaben 822, naringenin 7-O-β-D-glucopyranoside 823, Oleanolic acid 127, p-hydroxybenzaldehyde 432, p-hydroxy-benzoic acid 824, pinocembrin 825, pinocembrin 7-O-β-D-glucopyranoside 826, pinocembrin-7-O-[cinnamoyl (1→5)-β-D-apiofuranosyl (1→2)]-β-D-glucopyranoside 827, pinocembrin-7-O-β-D-apiofuranosyl(1→2)-β-D-glucopyranoside 828, pinocembrin-7-O-β-D-apiofuranosyl-(1→5)-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside 829, protocatechuic acid 189, vanillin 293, visartisides A-C 830, 831, 832, visartisides D-F (4–6) 833, 834, 835, viscumtol 836, α-amyrin 342, β-amyrin acetate 837, β-sitosterol 11 [343–347,455–457]

Viscum ovalifolium DC 3-O-α-L-arabinopyranoyl-hederagenin-28-O-β-D-glucopyranosyl(1→6)-β-D-glucopyranoside 838, gypsogenic acid 839, hederagenin 840, hederagenin-3-O-α-L-arabinopyranoside 841, hederagenin-3-O-α-L-arabinopyranoyl-(2→1)-O-β-D-glucopyranoside 842, lupeol acetate 818, lupeol palmitate 819, oleanolic acid 127, lupeol stearate 820, β-amyrin 198, β-amyrin acetate 344 [458,459]
6. Conclusions

Epiphytes are the most beautiful vascular plants and contain interesting phytochemicals and possess exciting pharmacological activities. An analysis of the literature revealed 185 epiphytes that are used in traditional medicine, in which phytochemical studies identified a total of 842 secondary metabolites. Only 71 epiphytic medicinal plants were studied for their pharmacological activities and showed promising pharmacological activities, including anti-inflammatory, antimicrobial, and anticancer. Several species were not investigated for their activities and are worthy of exploration, including epiphytes from the Araceae (P. fragantissimum), Aralliaceae (S. caudata, S. elliptica, S. elliptifoliola, S. oxyphylla, S. simulans), and Asclepidaceae (Asclepias sp., D. acuminata, D. benghalensis, D. imbricate, D. nunnularia, D. platyphylla, D. purpurea, Toxocarpus sp) families, in which no phytochemical and pharmacological studies had been reported. These species have been used by Indigenous populations to treat both degenerative and nondegenerative diseases. It is known that there are examples of Indigenous populations living in protected forest reserves (e.g., in Indonesia) where epiphytes are used in their medicine, e.g., some species of Dischidia are used to treat fever, eczema, herpes etc.; these plants have not yet been studied. Therefore, the possibility of responsible bioprospecting exists (in compliance with the Nagoya protocol), which would be invaluable in biodiscovery knowledge as well as in mutual benefit sharing agreements.

Author Contributions: Conceptualization, A.S.N., P.W., P.A.K.; data curation and analysis, A.S.N.; making and editing of the figures, A.S.N.; writing—original draft preparation, A.S.N., P.W., P.A.K.; writing—review and editing, A.S.N., B.T., P.W., P.A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: ASN thanks to University of Jember and University of Wollongong for research support. Authors thank to Frank Zich (Australian Tropical Herbarium & National Research Collections Australia) for providing taxonomy consultation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Darnaedi, D.; Praptosuwiryo, T.N. Platycerium bifucartum C. Chr. In Plant resources of South-East Asia No 15(2): Ferns and Fern Allies; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 157–159.
2. Ding, Z.T.; Fang, Y.S.; Tai, Z.G.; Yang, M.H.; Xu, Y.Q.; Li, F.; Cao, Q.E. Phenolic content and radical scavenging capacity of 31 species of ferns. Fitoterapia 2008, 79, 581–583, doi:10.1016/j.fitote.2008.01.011.
3. Gaur, R.D.; Tiwari, J.K. Indigenous medicinal plants of Garhwal Himalaya (India): An ethnobotanical study. In Proceedings of Medicinal and Poisonous Plants of the Tropics: Proceedings of Symposium 5-35 of the 14th International Botanical Congress (Compiler), Berlin, UK, 24 July–1 August 1987.
4. Chopra, R.N.; Nayar, S.L.; Chopra, I.C.; Asolkar, L.V.; Kakkar, K.K.; Chakre, O.J.; Varma, B.S.; Council, S.; Industrial, R. Glossary of Indian Medicinal Plants; Council of Scientific & Industrial Research: New Delhi, India, 1956.
5. Awasthi, L.P. The purification and nature of an antiviral protein from Cuscuta reflexa plants. Arch. Virol. 1981, 70, 215–223, doi:10.1007/bf01315128.
6. Xiao, Y.J.; Chen, Y.Z.; Chen, B.H.; Chen, J.H.; Lin, Z.X.; Fan, Y.L. Study on cytotoxic activities on human leukemia cell line HL-60 by flavonoids extracts of Scutella parasitica from four different host trees. Zhongguo Zhong Yao Za Zhi 2008, 33, 427–432.
7. Sandrasagaran, U.M.; Ramanathan, S.; Subramaniam, S.; Mansor, S.M.; Murugaiyah, V. Antimicrobial activity of Dendrobium crumenatum (Pigeon Orchid). Malays. J. Pharm. Sci. 2010, 1, 111-112.
8. Basu, K.D.; Gupta, B.; Bhattacharya, S.K.; Lal, R.; Das, P.K. Antiinflammatory principles of Vanda roxburghii. Curr. Sci. 1971, 40, 40–86.
9. Suresh, P.K.; Subramaniam, A.; Pushpangadan, P. Aphrodisiac activity of Vanda tessellata. Indian J. Pharmacol. 2000, 32, 300–304.
10. Yang, Y.C.; Yang, C.; Mo, S.Y.; Shi, J.G. A new flavonol diglycoside from Pyrosia petiolosa. Chin. Chem. Lett. 2003, 14, 920–922.
11. Wang, N.; Wang, J.H.; Li, X.; Ling, J.H.; Li, N. Flavonoids from Pyrrosia petiolosa (Christ) Ching. J. Asian Nat. Prod. Res. 2006, 8, 753–756, doi:10.1080/1028602050246550.
12. Markham, K.R.; Ternai, B.; Stanley, R.; Geiger, H.; Mabry, T.J. Carbon-13 NMR studies of flavonoids-III: Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron 1978, 34, 1389–1397.
13. He, C.; Wang, C.; Guo, S.; Yang, J.; Xiao, P. Study on chemical constituents of Anoectochilus roxburghii (Wall.): From the n-hexane soluble fraction of the ethanol extracts of Anoectochilus roxburghii, sorghumol (1), friedelin (2), palmitic acid (3), and a mixture of steroids was isolated from the plant for the first time. Tianran Chuanmu Yanjiu Yu Kafza 2005, 17, 259–262.
14. Wang, L.F.; Liu, W.H. Moniline, a new alkaloid from Dendrobium moniliforme. J. Nat. Prod. 2006, 69, 1715, doi:10.1021/np05054a042.
15. He, C.; Wang, C.; Guo, S.; Yang, J.; Xiao, P. Study on chemical constituents in herbs of Anoectochilus roxburghii. Zhongguo Zazhi 2008, 31, 370–372.
16. Guan, J.; Wang, C.; Guo, S. Isolation and structural elucidation of flavonoids from Anoectochilus roxburghii. Zhongguo Zazhi 2005, 36, 1450–1453.
17. He, C.N.; Wang, C.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. A novel flavonoid glucoside from Anoectochilus roxburghii (Wall.) Lindl. J. Integr. Plant Biol. 2006, 48, 359–363, doi:10.1111/j.1744-7909.2006.00179.x.
18. Yang, X.; Han, M.; Jin, Y. Chemical constituents from herba aneectochilii. Zhongyaocai 2007, 30, 797–800.
19. Han, M.H.; Yang, X.W.; Jin, Y.P. Novel triterpenoid acyl esters and alkaloids from Anoectochilus roxburghii. Phytochem. Anal. 2008, 19, 438–443, doi:10.1002/pca.1070.
20. Cai, J.; Gong, L.; Zhang, Y.; Ruan, H.; Pi, H.; Wu, J. Chemical constituents from Anoectochilus roxburghii. Zhongguo Zazhi 2008, 31, 703–712.
21. Li, Y.; Wang, C.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. Two new compounds from Dendrobium candidum. Chem. Pharm. Bull. 2008, 56, 1477–1479, doi:10.1248/cpb.56.1477.
22. Yan, L.I. Chemical constituents of Dendrobium candidum. Zhongguo Zhongyao Zazhi 2010, 35, 1715, doi:10.4268/cjcmmm20101314.
23. Wang, F.; Li, Y.; Dong, H.; Guo, S.; Wang, C.; Yang, J. A new compound from Dendrobium candidum. Zhongguo Yaxue Zazhi 2010, 45, 989–902.
24. Min, Z.D.; Tanaka, T.; Linuma, M.; Mizuno, M. A new dihydrostilbene in Dendrobium chrysanthum. J. Nat. Prod. 1987, 50, 1189, doi:10.1021/jp0054a042.
25. Yang, L. Studies on chemical constituents of Dendrobium chrysanthum. Zhongguo Tian Ran Yao Wu 2004, 2, 280.
26. Ye, Q.H.; Zhao, W.M.; Qin, G.W. Lignans from Dendrobium chrysanthum. J. Asian Nat. Prod. Res. 2004, 6, 39–43, doi:10.1080/102860203100119808.
27. Yang, L.; Zhang, C.; Yang, H.; Zhang, M.; Wang, Z.; Xu, L. Two new alkaloids from Dendrobium chrysanthum. Heterocycles 2005, 65, 633–636.
28. Lin, T.H. Constituents from the stems of Dendrobium moniliforme. Chin. Pharm. J. 2000, 52, 251.
29. Bi, Z.M.; Yang, L.; Wang, Z.T.; Xu, L.S.; Xu, G.J. A new bibenzyl derivative from Dendrobium moniliforme. Chin. Chem. Lett. 2002, 13, 535–536.
30. Zhao, C.S.; Zhao, W.M. A new bibenzyl glycoside from Dendrobium moniliforme. Chin. Chem. Lett. 2003, 14, 276–277.
31. Bi, Z.; Wang, Z.; Xu, L. Chemical constituents of Dendrobium moniliforme. Acta Bot. Sin. 2004, 46, 124–126.
32. Liu, W.H. Moniline, a new alkaloid from Dendrobium moniliforme. J. Chem. Res. 2007, 317–318, doi:10.3184/03082307x218048.
33. Majumder, P.L.; Sen, R.C. Structure of moscatin-A a new phenanthrene derivative from the orchid Dendrobium moscatum. Indian J. Chem. Sect. B 1997, 26, 18–20.
34. Benzing, D.H. Vascular Epiphytes: General Biology and Related Biota; Cambridge University Press: Cambridge, UK, 1990.
35. Asakawa, Y.; Ludwiczuk, A. Chemical Constituents of Bryophytes: Structures and Biological Activity. J. Nat. Prod. 2018, 81, 641–660, doi:10.1021/acs.jnatprod.8b01046.
36. Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Phytochemical and biological studies of bryophytes. Phytochemistry 2013, 91, 52–80, doi:10.1016/j.phytochem.2012.04.012.
37. Ludwiczuk, A.; Asakawa, Y. Bryophytes as a source of bioactive volatile terpenoids—A review. Food Chem. Toxicol. 2019, 132, 110649, doi:10.1016/j.fct.2019.110649.
38. Sabovljevic, M.S.; Sabovljevic, A.D.; Ikram, N.K.K.; Peramuna, A.; Bae, H.; Simonsen, H.T. Bryophytes—An emerging source for herbal remedies and chemical production. *Plant Genet. Resour.* 2016, 14, 314–327, doi:10.1017/S1479262116000330.

39. Basnet, B.B.; Liu, H.; Liu, L.; Suleimen, Y.M. Diversity of anticancer and antimicrobial compounds from lichens and lichen-derived fungi: A systematic review (1985–2017). *Curr. Org. Chem.* 2018, 22, 2487–2500, doi:10.2174/138527282266618109110813.

40. Kekuda, T.R.P.; Lavanya, D.; Rao, P. Lichens as promising resources of enzyme inhibitors: A review. *J. Drug Deliv. Ther.* 2019, 9, 665–676, doi:10.22270/jddt.v9i2-s.2546.

41. Shrestha, G.; Clair, L.L. Lichens: A promising source of antibiotic and anticancer drugs. *Phytochem. Rev.* 2013, 12, 229–244, doi:10.1007/s11101-013-9283-7.

42. Solárová, Z.; Liskova, A.; Samec, M.; Kubatka, P.; Büsselberg, D.; Solár, P. Anticancer Potential of Lichens’ Secondary Metabolites. *Biomolecules* 2020, 10, doi:10.3390/biom10010087.

43. Sut, S.; Maggi, F.; Dall’Acqua, S. Bioactive Secondary Metabolites from Orchids (Orchidaceae). *Chem. Biodivers.* 2017, 14, doi:10.1002/cbdv.201700172.

44. Zotz, G. The systematic distribution of vascular epiphytes—A critical update. *Bot. J. Linn. Soc.* 2013, 171, 453–481, doi:10.1111/bij.12010.

45. Köster, N.; Nieder, J.; Barthlott, W. Effect of host tree traits on epiphyte diversity in natural and anthropogenic habitats in ecuador. *Biotropica* 2011, 43, 685–694.

46. Zotz, G.; Hietz, P. The physiological ecology of vascular epiphytes: Current knowledge, open questions. *J. Exp. Bot.* 2001, 52, 2067–2078.

47. De Padua, L.S.; Bunyapraphatsorn, N.; Lemmens, R.H.M.J.; Foundation, P. *Plant Resources of South-East Asia: Medicinal and Poisonous Plants 1*; Backhuys Publishers: Leiden, Netherlands, 1999.

48. van Valkenburg, J.L.C.H.; De Padua, L.S.; Bunyapraphatsara, N.; Lemmens, R.H.M.J.; Foundation, P. *Plant Resources of South-East Asia: Medicinal and Poisonous Plants 2*; Backhuys Publishers: Leiden, Netherlands, 2001.

49. Bunyapraphatsorn, N.; Lemmens, R.H.M.J.; Foundation, P. *Plant Resources of South-East Asia: Medicinal and Poisonous Plants 3*; Backhuys Publishers: Leiden, Netherlands, 2003.

50. De Winter, W.P. *Plant Resources of South-East Asia: Cryptogams: Ferns and Fern Allies*; Backhuys Publishers: 2003.

51. Giesen, W.; Wulffraat, S.; Zieren, M.; Scholten, L. *Mangrove Guidebook for Southeast Asia*; FAO and Wetlands International: Bangkok, 2007.

52. Wiart, C. *Medicinal Plants of the Asia-Pacific: Drugs for the Future*; World Scientific: Singapore, 2006.

53. DeFilipps, R.A.; Crepin, J.; Maina, S.L. *Medicinal Plants of the Guianas (Guyana, Surinam, French Guiana)*; National Museum of Natural History, Smithsonian Institution: Washington, DC, USA, 2004.

54. Praptosuwiryo, T.N. *Drynaria* (Bory) J. Smith. In *Plant Resources of South-East Asia No 15(2): Ferns and Fern Allies*; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 101–104.

55. Warrier, P.K.; Nambar, V.P.K.; Raman-Kutty, C. *Indian Medicinal Plants*; Orient Longman Ltd.: Hyderabad, India, 1996.

56. Wangchuk, P.; Yeshi, K.; Jamphel, K. Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. *Integr. Med. Res.* 2017, 6, 372–387, doi:10.1016/j.imr.2017.08.002.

57. Gurib-Fakim, A.; Brendler, T. *Medicinal and Aromatic Plants of Indian Ocean islands: Madagascar, Comoros, Seychelles and Mascarenes*; Medpharm Scientific Publisher: Stuttgart, Germany, 2004.

58. Anonim. *Medicinal Herb Index in Indonesia*; PT Eisi Indonesia: Jakarta, Indonesia, 1986.

59. The Plant List. Available online: http://www.theplantlist.org/ (accessed 3 January 2020).

60. Nugraha, A.S.; Keller, P.A. Revealing indigenous Indonesian traditional medicine: Anti-infective agents. *Nat. Prod. Commun.* 2011, 6, 1953–1966.

61. Roosita, K.; Kusharto Clara, M.; Sekiyama, M.; Fachrurozi, Y.; Ohtsuka, R. Medicinal plants used by the villagers of a Sundanese community in West Java, Indonesia. *J. Ethnopharmacol.* 2008, 115, 72–81.

62. Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. *Nat. Rev. Drug Discov.* 2007, 6, 881–890, doi:10.1038/nrd2445.

63. Cardeli’s, C.L.; Mack, M.C. The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. *Plant Ecol.* 2010, 207, 25–37.
64. Benner, J.W.; Conroy, S.; Lunch, C.; Toyoda, N. Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanobacterium *Pseudocryptophyllum crocatum* in Hawaiian Montane Forest. *Biotropica* **2007**, *39*, 400–405.

65. Cardelu's, C.L.; Mack, M.C.; Woods, C.L.; DeMarco, J.; Treseder, K.K. Nutrient cycling in canopy and terrestrial soils at lowland rainforest site, Costa Rica. *Plant Soil* **2009**, *318*, 47–61.

66. Reiner, F. Epiphytes: Photosynthesis, water balance and nutrients. *Occologia Bras.* **1998**, *4*, 5.

67. McNair, J.B. Epiphytes, parasites and geophytes and the production of alkaloids, cyanogenetic and organic sulfur compounds. *Am. J. Bot.* **1941**, *28*, 733–737, doi:10.2307/2486657.

68. Uddin, S.J.; Grice, D.; Tiralongo, E. Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant *Acrostichum aureum*. *Pharm. Biol.* **2012**, *50*, 1276–1280.

69. Leong, Y.W.; Kang, C.C.; Harrison, L.J.; Powell, A.D. Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid *Bulbophyllum Vaginatum*. *Phytotaxon.* **1996**, *44*, 157–165.

70. Estrada, S.; Lópe-Guerrero, J.J.; Villalobos-Molina, R.; Mata, R. Spasmolytic stilbene from *Maxillaria densa*. *Fitoterapia* **2004**, *75*, 690–695, doi:10.1016/j.fitote.2004.08.004.

71. Okamoto, T.; Natsume, M.; Onaka, T.; Uchimaru, F.; Shimizu, M. Alkaloidal constituents of *Dendrobium nobile* (Orchidaceae). Structure determination of 4-hydroxydendroxine and nobilemethylene. *Chem. Pharm. Bull.* **1972**, *20*, 418–421, doi:10.1248/cpb.20.418.

72. Chellan, G.; Shivaprasaksh, S.; Karimassery Ramaiyar, S.; Varma, A.K.; Varma, N.; Thekkeparambil Sukumaran, M.; Rohinivilasam Vasukutty, J.; Bal, A.; Kumar, H. Spectrum and prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes. *J. Clin. Microbiol.* **2010**, *48*, 2097–2102, doi:10.1128/jcm.02035-09.

73. Singh, M.; Singh, N.; Khare, P.B.; Rawat, A.K.S. Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine. *J. Ethnopharmacol.* **2008**, *115*, 327–329, doi:10.1016/j.jep.2007.09.018.

74. Krief, S.; Huffman, M.A.; Sevenet, T.; Ilhadik, C.M.; Grellier, P.; Loiseau, P.M.; Wrangham, R.W. Bioactive properties of plant species ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. *Am. J. Primatol.* **2006**, *68*, 51–71, doi:10.1002/ajp.20206.

75. Han, G.; Wang, M. Chemical constituents of Pyrosia shearerii (Bak.) Ching. *Nanjing Yu Protection* **1984**, *15*, 40–44.

76. Wang, X.L.; Wang, N.L.; Gao, H.; Zhang, G.; Qin, L.; Wong, M.S.; Yao, X.S. Phenylpropanoids and flavonoids from osteoprotective fraction of *Drynaria fortunei*. *Nat. Prod. Res.* **2010**, *24*, 1206–1213, doi:10.1080/14786410902991860.

77. Lai, H.Y.; Lim, Y.Y.; Tan, S.P. Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. *Biosci. Biotechnol. Biochem.* **2009**, *73*, 1362–1366, doi:10.1271/bbb.90018.

78. Adam, Z.; Khamis, S.; Ismail, A.; Hamid, M. *Ficus deltoidea*: A potential alternative medicine for diabetes mellitus. *Evid. Based Complement. Alternat. Med.* **2012**, *2012*, 632763.

79. Shimizu, M.; Shogawa, H.; Hayashi, T.; Arisawa, M.; Suzuki, S.; Yoshizaki, M.; Morita, N.; Ferro, E.; Basualdo, I.; Berganza, L.H. Antiinflammatory constituents of topically applied crude drugs. III. Constituents and anti-inflammatory activity of Paraguayan crude drug “Tambandá cuná” (*Catasetum barbatum LINDLE*). *Chem. Pharm. Bull.* **1988**, *36*, 4477–4482.

80. Ramanitrahasimbola, D.; Rakotondramanana, D.A.; Rasoanaivo, P.; Randriantsosoa, A.; Ratsimamanga, S.; Palazzino, G.; Galeffi, C.; Nicoletti, M. Bronchodilator activity of *Phyntodes scolopendria* (Burm.) Ching and its bioactive constituent. *J. Ethnopharmacol.* **2005**, *102*, 400–407, doi:10.1016/j.jep.2005.06.037.

81. Kirana, C. Bio-active Compounds Isolated from Mistletoe (*Scirrulla oortiana* (Korth.) Danser) Parasitizing Tea Plant (*Camellia sinensis* L.). Master’s thesis, University of Adelaide, Adelaide, Australia, 1996.

82. Anonim. *Jenis Paku Indonesia*; Bali Pustaka: Jakarta, Indonesia, 1979.

83. Burkill, I. *A dictionary of the Economic Products of the Malay Peninsula, Government of Malaysia and Singapore*: Kuala Lumpur, Malaysia, 1996.

84. Djumidi, H. *Inventaris Tanaman Obat Indonesia* V; Balai Penelitian Tanaman Obat: Tawangmangu, Indonesia, 2006.

85. Rusea, G. *Asplenium L*. In *Plant Resources of South-East Asia No 15(2): Ferns and Fern Allies*; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 61–62.
86. Baltrushes, N. Medical Ethnobotany, Phytochemistry, and Bioactivity of the Ferns of Moorea, French Polynesia. Senior Honors Thesis, University of California, Berkeley, CA, USA, 2006.
87. Mannan, M.M.; Maridass, M.; Victor, B. A review on the potential uses of ferns. *Ethnobot. Leafl.* 2008, 2, 281–285.
88. Manickam, V.S.; Irudayaraj, V. *Pteridophytes Flora of the Western Ghats of South India*; BI Publications Pvt Ltd.: New Delhi, India, 1992.
89. Luziatielli, G.; Sorensen, M.; Theilade, I.; Molgaard, P. Ashaninka medicinal plants: A case study from the native community of Bajo Quimiri, Junin, Peru. *J. Ethnobiol. Ethnomed.* 2010, 6, 21.
90. Singh, H.B. Potential medicinal pteridophytes of India and their chemical constituents. *J. Econ. Tax. Bot.* 1999, 23, 63–78.
91. Ahmad, F.B.; Holdsworth, D.K. Medicinal plants of Sarawak, Malaysia, part I. The Kedayans. *Pharm. Biol.* 1994, 32, 384–387, doi:10.3109/13880209409083020.
92. Hwang, T.H.; Kashiwada, Y.; Nonaka, G.I.; Nishioka, I. Flavan-3-ol and proanthocyanadins allosides from *Davallia divaricata*. *Phytochemistry* 1989, 28, 891–896, doi:10.1016/0031-9422(89)80138-4.
93. Vargas Gonzalez, J.F.; Yesares Ferrer, M. Extraction of α-D-glucocotono-δ-lactone enediol from ferns, as a drug for the treatment of psoriasis. Spain Patent 2012734, Apr 1, 1990.
94. Chang, H.C.; Huang, G.J.; Agrawal, D.C.; Kuo, C.L.; Wu, C.R.; Tsay, H.S. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”. *Bot. Stud.* 2007, 48, 397–406.
95. Praptosuwiryo, T.N.; Jansen, P.C.M. *Davallia parvula* Wall. Ex Hook. & Grev. In *Plant resources of South-East Asia 15 (2). Cryptograms: Ferns and Fern Allies*; de Winter, W.P.D., Amoroso, V.B., Eds.; Prosea Foundation by Backhuys Publishers: Leiden, The Netherlands, 2003; pp. 92.
96. Praptosuwiryo, T.N.; Jansen, P.C.M. *Davallia* J.E. Smith. In *Plant Resources of South-East Asia No 15(2): Ferns and Fern Allies*; De Winter, W.P., Amoroso, V.B., Eds. Backhuys: Leiden, The Netherlands, 2003; pp. 89–90.
97. Grepin, F.; Grepin, M. *La Medicine Tahitienne traditionnelle, Raau Tahiti*; Societe Nouvelle des Editions du Pacifique.: Papeete, Tahiti, 1984.
98. Petard, P. *Raau Tahiti: The Use of Polynesia Medicinal Plants in Tahitian Medicine*; South Pacific Commission: Noumea, New Caledonia, 1972.
99. Chen, Y.H.; Chang, F.R.; Lin, Y.J.; Hsieh, P.W.; Wu, M.J.; Wu, Y.C. Identification of antioxidants from rhizome of *Davallia solida*. *Food Chem.* 2008, 107, 684–691, doi:10.1016/j.foodchem.2007.08.066.
100. Boydron-Le Garrec, R.; Benoit, E.; Sauviat, M.P.; Lewis, R.J.; Molgò, J.; Laurent, D. Ability of some plant extracts, traditionally used to treat ciguatera fish poisoning, to prevent the in vitro neurotoxicity produced by sodium channel activators. *Toxicon* 2005, 46, 625–634, doi:10.1016/j.toxicon.2005.07.002.
101. Rancon, S.; Chaboud, A.; Darbou, N.; Comte, G.; Bayet, C.; Simon, P.N.; Raynaud, J.; Di, P.A.; Cabalion, P.; Barron, D. Natural and synthetic benzophenones: Interaction with the cytosolic binding domain of P-glycoprotein. *Phytochemistry* 2001, 57, 553–557, doi:10.1016/s0031-9422(01)00120-0.
102. Renimel, I.; Olivier, M.; Andre, P. Use of *Davallia* Plant Extract in Cosmetic and Pharmaceutical Compositions for the Treatment of Skin Aging. France Patent 2757395A1, June 26, 1998.
103. Benjamin, A.; Manickam, V.S. Medicinal pteridophytes from Western Ghats. *Indian J. Tradit. Knowl.* 2007, 6, 611–618.
104. Caniago, J.; Siebert, S.F. Medicinal plant ecology, knowledge and conservation in Kalimantan, Indonesia (FN1). *Econ. Bot.* 1998, 52, 229–250.
105. Lachman-White, D.A.; Adams, C.D.; Trotz, U.O.D. *A Guide to the Medicinal Plants of Coastal Guyana*; Commonwealth Science Council: London, UK, 1992.
106. Boonkerd, T. *Huperzia carinata* (desv. ex Poir.) Trevis. In *Plant resources of South-East Asia No 15(2): Ferns and Fern Allies*; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 112–113.
107. Choo, C.Y.; Hirasawa, Y.; Karimata, C.; Koyama, K.; Sekiguchi, M.; Kobayashi, J.i.; Morita, H. Carinatumins A–C, new alkaloids from *Lycopodium carinatum* inhibiting acetylcholinesterase. *Bioorganic Med. Chem.* 2007, 15, 1703–1707, doi:10.1016/j.bmc.2006.12.005.
108. Amoroso, V.B. *Huperzia phlegmaria* (L) Rothm. In *Plant resources of South-East Asia No 15(2): Ferns and Fern Allies*; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 113–115.
109. Rajagupathy, S.; Steven, N.; Maruthakuttali, M.; Velusamy, B.; Ul-Huda, M. Consensus of the ‘Malasars’ traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills, India. *J. Ethnobiol. Ethnomed.* 2008, 4, 8.
10. Wittayalai, S.; Sathalalai, S.; Thorroad, S.; Worawittayanon, P.; Ruchirawat, S.; Thasana, N. Lycopophlegmariols A-D: Cytotoxic serratene triterpenoids from the club moss Lycopodium phlegmaria L. Phytochemistry 2012, 76, 117–123, doi:10.1016/j.phytochem.2012.01.006.

11. Zimudzi, C.; Bosch, C.H. Lycopodium. In Volume 11 of Plant Resources of Tropical Africa: Medicinal Plants 1; Schmelzer, G.H., Ed.; PROTA: Leiden, Netherland, 2008; pp. 366–369.

12. Noweg, T.; Abdullah, A.R.; Nidang, D. Forest plants as vegetables for communities bordering the crocker range national park. ARBEC 2003, 1–3, 1–18.

13. Darmaedi, D.; Fraptosuwiryo, T.N. Nephrilepis Schott. In Plant resources of South-East Asia No 15(2): Ferns and Fern Allies; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 141–145.

14. Christensen, H. Uses of Ferns in Two Indigenous Communities in Sarawak, Malaysia. In Holttum Memorial Volume; Johns, R.J., Ed.; Royal Botanic Gardens: Kew, UK, 1997; pp. 177–192.

15. Ojo, O.O.; Ajayi, A.O.; Anibijuwon, I.I. Antibacterial potency of methanol extracts of lower plants. J. Zhejiang Univ. Sci. B 2007, 8, 189–191.

16. Rani, D.; Khare, P.B.; Dantu, P.K. In vitro antibacterial and antifungal properties of aqueous and non-aqueous frond extracts of Psilotum nudum, Nephrilepis biserrata and Nephrilepis cordifolia. Indian J. Pharm. Sci. 2010, 72, 818–822.

17. Kumar, P.; Otaghvari, A.M.; Govindaparyi, H.; Bahuguna, Y.M.; Uniyal, P.L. Some ethno-medicinally important Pteridophytes of India. In. J. Med. Arom. Plants 2011, 1, 18–22.

18. Ong, H.C.; Aguilar, N.O. Ophioglossum pendulum L. In Plant Resources of South-East Asia No 15(2): Ferns and Fern Allies; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 151–153.

19. Hatani, A.; Okumura, Y.; Maeda, H. Cell Activator, Skin Whitening Agent and Antioxidant Containing Plant Extract of Ophioglossum of Ophioglossaceae. Japan Patent 2005089375, Apr 7, 2005.

20. Hovenkamp, P.H. Pyrosia Mirbel. In Plant resources of South-East Asia No 15(2): Ferns and Fern Allies; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 170–174.

21. Anonim. Materia Medika Indonesia; Departemen Kesehatan Republik Indonesia: Jakarta, Indonesia, 1989; Volume V.

22. Abdul, R.M.D. Pengenalan dan Penggunaan Herba Ubatan; Orient Press Sdn. Bhd.: Kuala Lumpur, Malaysia, 1996.

23. Dalimartha, S. Atlas Tumbuhan Obat Indonesia. PT. Pustaka Pembangunan: Jakarta, Indonesia, 2003; p. 89.

24. Somchit, M.N.; Hassan, H.; Zuraini, A.; Chong, L.C.; Mohamed, Z.; Zakaria, Z.A. In vitro anti-fungal and anti-bacterial activity of DrynoGLOSSUM piloselloides L. Presl. against several fungi responsible for Athlete’s foot and common pathogenic bacteria. Afr. J. Microbiol. Res. 2011, 5, 3537–3541.

25. Nusagraha, A.S.; Haritakun, R.; Keller, P.A. Constituents of the Indonesian epiphytic medicinal plant Drynaria rigidula. Nat. Prod. Commun. 2013, 8, doi:10.1177/1934578x1300800606.

26. Neamsuvan, O.; Singdam, P.; Yingcharoen, K.; Sengnon, N. A survey of medicinal plants in mangrove and beach forests from satang Phra Peninsula, Songkhla Province, Thailand. J. Med. Plants Res. 2012, 6, 2421–2437.

27. Wang, X.L.; Wang, N.L.; Zhang, Y.; Gao, H.; Pang, W.Y.; Wong, M.S.; Zhang, G.; Qin, L.; Yao, X.S. Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortuneei (KUNZE) S.M. on osteoblastic proliferation using an osteoblast-like cell line. Chem. Pharm. Bull. 2008, 56, 46–51.

28. Wangchuk, P.; Pyne, S.G.; Keller, P.A. Ethnobotanical authentication and identification of Khrog-sman (Lower Elevation Medicinal Plants) of Bhutan. J. Ethnopharmacol. 2011, 134, 813–823, doi:10.1016/j.jep.2011.01.034.

29. Khan, A.; Haque, E.; Mukhlesur, R.M.; Mosaddik, A.; Rahman, M.; Sultana, N. Isolation of antibacterial constituent from rhizome of Drynaria quercifolia and its sub-acute toxicological studies. Daru J. Fac. Pharm. Tehran Univ. Med Sci. 2007, 15, 205–211.

30. Wangchuk, P.; Namgay, K.; Gayleg, K.; Dorji, Y. Medicinal plants of Dagala region in Bhutan: Their diversity, distribution, uses and economic potential. J. Ethnobiol. Ethnomed. 2016, 12, 28, doi:10.1186/s13002-016-0098-7.

31. Boonkerd, T.; de Winter, W.P. Loxogramme scolopendrina (Bory) C. Presl. In Plant resources of South-East Asia No 15(2): Ferns and Fern Allies; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 120–121.
132. Syamsuhidayat, S.S.; Hutapea, J.R. Inventarlis Tanaman Obat Indonesia; Badan Penelitian dan Pengembangan Kesehatan Departemen Kesehatan Republik Indonesia: Jakarta, Indonesia, 1991; Volume I.
133. May, L. The economic uses and associated folklore of ferns and fern allies. *Bot. Rev.* **1978**, *44*, 491–528, doi:10.1007/bf02860848.
134. Nair, B.K. Medicinal fern of India. *Bull. Nat. Bot. Gard.* **1959**, *29*, 1–36.
135. Suryana. Keanekearagaman jenis tumbuhan paku terestrial dan epifit di Kawasan PLTP Kamojang Kab. Garut Jawa Barat. *J. Biot.* **2009**, *7*, 20–26.
136. Namba, T. *Coloured illustration of Waikan-Yaku*; Hoikusha: Osaka, Japan, 1980.
137. Masuda, K.; Yamashita, H.; Shiojima, K.; Itoh, T.; Ageta, H. Fern constituents: Triterpenoids isolated from rhizomes of *Pyrosia lingua*. *L. Chem. Pharm. Bull.* **1997**, *45*, 590–594.
138. Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. *Antivir. Res.* **2005**, *67*, 18–23, doi:10.1016/j.antiviral.2005.02.007.
139. Hsu, C.Y. Antioxidant activity of *Pyrosia petiolosa*. *Fitoterapia* **2008**, *79*, 64–66.
140. Gan, R.Y.; Kuang, L.; Xu, X.R.; Zhang, Y.; Xia, E.Q.; Song, F.L.; Li, H.B. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. *Molecules* **2010**, *15*, 5988–5997, doi:10.3390/molecules15095988.
141. Prakash, A.O.; Saxena, V.; Shukla, S.; Tewari, R.K.; Mathur, S.; Gupta, A.; Sharma, S.; Mathur, R. Anti-implantation activity of some indigenous plants in rats. *Acta Eur. Fertil.* **1985**, *16*, 441–448.
142. Dai, H.; Mei, W.; Hong, K.; Zeng, Y.; Zhuang, L. Screening of the tumor cytotoxic activity of sixteen species of mangrove plants in Hainan. *Zhongguo Haiyang Yanwu* **2005**, *24*, 44–46.
143. Thomas, T. In vitro evaluation of antibacterial activity of *Acrostichum aureum* Linn. *Indian J. Nat. Prod. Resour.* **2012**, *3*, 135–138.
144. Uddin, S.J.; Grice, I.D.; Tiralongo, E. Cytotoxic effects of bangladeshis medicinal plant extracts. *Evid. Based Complement. Alternat. Med.* **2011**, *2011*, 578092.
145. Schneider, H.; Tawan, C.S. *Taenitis blechnoides* (Willd.) Swartz. In *Plant Resources of South-East Asia No 15(2): Ferns and Fern Allies*; De Winter, W.P., Amoroso, V.B., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 188–190.
146. Manandhar, P.N. Ethnobotanical observations on ferns and ferns allies of Nepals. *J. Econ. Taxon. Bot.* **1996**, *12*, 414–422.
147. Joo, S.S.; Jang, S.K.; Kim, S.G.; Choi, J.S.; Hwang, K.W.; Lee, D.I. Anti-acne activity of Selaginella involvens extract and its non-antibiotic antimicrobial potential on Propionibacterium acnes. *Phytother. Res.* **PTR 2008**, *22*, 335–339.
148. Gayathri, V.; Asha, V.V.; John, J.A.; Subramoniam, A. Protection of immunocompromised mice from fungal infection with a thymus growth-stimulatory component from *Selaginella involvens*, a fern. *Immunopharmacol. Immunotoxicol.* **2011**, *33*, 351–359.
149. Wu, P.L.; Hsu, Y.L.; Zao, C.W.; Damu, A.G.; Wu, T.S. Constituents of *Vittaria anguste-longata* and their biological activities. *J. Nat. Prod.* **2005**, *68*, 1180–1184, doi:10.1021/np050060o.
150. Tap, N.; Sosef, M.S.M. *Schefflera J.R. Foster & J.G. Foster*. In *Plant Resources of South-East Asia No 12(1): Medicinal and Poisonous Plants 1*; de Padua, L.S., Bunyapraphatsara, N., Lemmens, R.H.M.J., Eds.; Backhuys: Leiden, The Netherlands, 1999; pp. 433–438.
151. Oshima, R.; Soda, M. Antibacterial Agent/Highly Safe Antibacterial Agent Obtained from Plants. Japanese Patent 2000136141A, May 16, 2000.
152. Chuakul, W.; Soonthornchareonnon, N.; Ruangsomboon, O. *Dischidia bengalesis* Colebr. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3*; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 172.
153. Lemmens, R.H.M.J.; Bunyapraphatsara, N. *Plat Resources of Sout-East Asia 12 (3): Medicinal and Poisonous Plants*; Prosea Foundation by Backhuys Publishers: Leiden, The Netherlands, 2003.
154. Chuakul, W.; Soonthornchareonnon, N.; Ruangsomboon, O. *Dischidia major* (Vahl) Merr. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3*; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 172.
155. Hynniewta, S.R.; Kumar, Y. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. *Indian J. Tradit. Knowl.* **2008**, *7*, 581–586.
156. Chuakul, W.; Soonthornchareonn, N.; Ruangsomboon, O. Dischidia nummularia R.Br. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3, Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 173.

157. Chuakul, W.; Soonthornchareonn, N.; Ruangsomboon, O. Dischidia purpurea Merr. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3, Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 173.

158. Bosch, C.H. Impatiens niamniamensis Gilg. In PROTA (Plant Resources of Tropical Africa/Ressources Végétales de l’Afrique Tropicale); Grubben, G.J.H., Denton, O.A., Eds.; PROTA: Wageningen, The Netherlands, 2004.

159. Chand, K.; Rahuja, N.; Mishra, D.; Srivastava, A.; Maurya, R. Major alkaloidal constituent from Impatiens niamniamensis seeds as antihyperglycemic agent. Med. Chem. Res. 2011, 20, 1505–1508, doi:10.1007/s00044-010-9401-7.

160. Wiart, C. Ethnopharmacology of Medicinal Plants: Asia and the Pacific; Humana Press Inc.: Totowa, NJ, USA, 2006.

161. Hariana, H.A. Tumbuhan Obat & Khasiatnya 3; Niaga Swadaya: Depok, Indonesia, 2008.

162. Wardini, T.H. Cassytha filiformis L. In Plant Resources of South-East Asia No 12(2): Medicinal and Poisonous Plants 2; van Valkenburg, J.L.C.H., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2001; pp. 142–144.

163. Chang, C.W.; Ko, F.N.; Su, M.J.; Wu, Y.C.; Teng, C.M. Pharmacological evaluation of ocoteine, isolated from Cassytha filiformis, as an α1-adrenoceptor antagonist in rat thoracic aorta. Jpn. J. Pharmacol. 1997, 73, 207–214, doi:10.1254/jjp.73.207.

164. Wu, Y.C.; Chang, F.R.; Chao, Y.C.; Teng, C.M. Antiplatelet and vasorelaxing actions of aporphinoids from Cassytha filiformis. Phytother. Res. 1998, 12, S39–S41, doi:10.1002/(sici)1099-1573(1998)12:1+<s39::aid-ptr244+3.0.co;2-o.

165. Hoet, S.; Stevigny, C.; Block, S.; Opperdoes, F.; Colson, P.; Baldeyrou, B.; Lansiaux, A.; Bailly, C.; Quetin-Leclercq, J. Alkaloids from Cassytha filiformis and related aporphines: Antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta Med. 2004, 70, 407–413, doi:10.1055/s-2003-818967.

166. Sharma, S.; Hullatti, K.K.; Kumar, S.; Tiwari, K.B. Comparative antioxidant activity of Cuscuta reflexa and Cassytha filiformis. J. Pharm. Res. 2012, 5, 441–443.

167. Hoesen, D.H. Cuscuta asutralis R.Br. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 144–145.

168. Chang, S.J.; Suk, K.D. Inhibitory effects on melanin biosynthesis and tyrosinase activity, cytotoxicity in clone M-3 and antioxidant activity by Cuscuta japonica, C. australis, and C. chinensis extracts. Yakbuk Hoechi 2006, 50, 421–428.

169. Mahmood, N.; Facente, S.; Burke, A.; Khan, A.; Pizaa, C. Constituents of Cuscuta reflexa are anti-HIV agents. Antivir. Chem. Chemother. 1997, 8, 70–74.

170. Pal, D.; Panda, C.; Sinhababu, S.; Dutta, A.; Bhattacharya, S. Evaluation of psychopharmacological effects of petroleum ether extract of Cuscuta reflexa Roxb. stem in mice. Acta Pol. Pharm. 2003, 60, 481–486.

171. Gupta, M.; Mazumder, U.K.; Pal, D.K.; Bhattacharya, S. Anti-steroidogenic activity of methanolic extract of Cuscuta reflexa roxb. stem and Corchorus olitorius Linn. seed in mouse ovary. Indian J. Exp. Biol. 2003, 41, 641–644.

172. Pal, D.K.; Mandal, M.; Senthilkumar, G.P.; Pathiari, A. Antibacterial activity of Cuscuta reflexa stem and Corchorus olitorius seed. Fitoterapia 2006, 77, 589–591.

173. Pandit, S.; Chauhan, N.S.; Dixit, V.K. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J. Cosmet. Dermatol. 2008, 7, 199–204.

174. Suresh, V.; Sruthi, V.; Padmaja, B.; Asha, V.V. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J. Ethnopharmacol. 2011, 134, 872–877.

175. Poudel, A.; Kim, S.G.; Kim, D.K.; Kim, Y.K.; Lee, Y.S.; Lee, G.W.; Min, B.S.; Jung, H.J. Antioxidative and antiobesity activity of nepalese wild herbs. Nat. Prod. Sci. 2011, 17, 123–129.

176. Lokvam, J.; Braddock, J.F.; Reichardt, P.B.; Clausen, T.P. Two polyprenylated benzophenones from the trunk latex of Clusia grandiflora (Clusiaceae). Phytochemistry 2000, 55, 29–34, doi:10.1016/s0031-9422(00)00193-x.
177. Gupta, M.P.; Solis, P.N.; Calderón, A.I.; Guinevere-Sinclair, F.; Correa, M.; Galdames, C.; Guerra, C.; Espinosa, A.; Alventado, G.; Robles, G.; et al. Medical ethnobotany of the Teribes of Bocas del Toro, Panama. J. Ethnopharmacol. 2005, 96, 389–401, doi:10.1016/j.jep.2004.08.032.

178. Kubitzki, K.; Kadereit, J.W. The Families and Genera of Vascular Plants: Flowering Plants, Dicotyledons. In Lamiales (Except Acanthaceae Including Avicenniaceae); Springer-Verlag Berlin Heidelberg: Heidelberg, Germany, 2004.

179. Esposito Avella, M.; Gupta, M.P.; Calderon, A.; Zamora, V.O.; Buitrago de Tello, R. The analgesic and anti-inflammatory effects of Drymonia serrulata (Jaqc.) Mart. Rev. Med. Panamá 1993, 18, 211–216.

180. Suciati, S.; Lambert, L.K.; Ross, B.P.; Deseo, M.A.; Garson, M.J. Phytochemical study of Fagraea spp. uncovers a new terpene alkaloid with anti-inflammatory properties. Aust. J. Chem. 2011, 64, 489–494, doi:10.1071/ch10421.

181. Territory, A.C.O.T.N. Traditional Aboriginal Medicines in the Northern Territory of Australia; Conservation Commission of the Northern Territory of Australia: Darwin, Australia, 1993.

182. Roth, W.E. Superstition, magic, and medicine. North Qld. Ethnogr. Bull. 1903, 5, 1–42.

183. Cleland, J.B.; Johnston, T.H. Aboriginal names and uses of plants in the Northern Flinders Ranges. T. Roy. Soc. South Aust. 1939, 63, 172–179.

184. Warrier, P.K.; Nambiar, V.P.K.; Ramankutty, C.; Nair, R.V. Indian Medicinal Plants: A Compendium of 500 Species; Orient Longman: Chennai, India, 1993.

185. Pattanayak, S.P.; Sunita, P. Wound healing, anti-microbial and antioxidant potential of Dendrophthoe falcata (L.f) Ettingsh. J. Ethnopharmacol. 2008, 120, 241–247.

186. Chuakul, W.; Soonthornchareonnon, N.; Ruangsomboon, O. Dendrophthoe Mart. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3; Lemmens, R.H.M.J., Bunyaphrathatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 157–159.

187. Arung, E.T.; Kusuma, I.W.; Christy, E.O.; Shimizu, K.; Kondo, R. Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis. J. Nat. Med. 2009, 63, 473–480, doi:10.1007/s11418-009-0351-7.

188. Watt, J.M.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa: Being an Account of Their Medicinal and Other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal; E & S Livingstone: Edinburgh, UK, 1962.

189. Rahayu, S.S.B. Loranthus globosus Roxb. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3; Lemmens, R.H.M.J., Bunyaphrathatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 284–285.

190. Sadik, G.; Islam, R.; Rahman, M.M.; Khondkar, P.; Rashid, M.A.; Sarker, S.D. Antimicrobial and cytotoxic constituents of Loranthus globosus. Fitoterapia 2003, 74, 308–311, doi:10.1016/s0367-326x(03)00041-8.

191. Islam, R.; Alam, A.H.M.K.; Rahman, B.M.; Salam, K.A.; Hossain, A.; Baki, A.; Sadik, G. Toxicological studies of two compounds isolated from Loranthus globosus Roxb. Pak. J. Biol. Sci. 2007, 10, 2073–2077.

192. Rahayu, S.S.B. Macrosolen Blume. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3; Lemmens, R.H.M.J., Bunyaphrathatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 284–285.

193. Cardenas, L.B. Scurrula L. In Plant resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3; Lemmens, R.H.M.J., Bunyaphrathatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 370–373.

194. Ikawati, M.; Wibowo, A.E.; Octa, N.S.; Adelina, R. The Utilization of Parasite as Anticancer Agent; Faculty of Pharmacy-Gadjah Mada University: Yogyakarta, Indonesia, 2000.

195. Djumidi, H. Inventaris Tanaman Obat Indonesia; Badan Litbangkes Depkes RI: Jakarta, Indonesia, 1997; Volume IV.

196. Ohashi, K.; Winarno, H.; Mukai, M.; Shibuya, H. Preparation and cancer cell invasion inhibitory effects of C16-alkylam fatty acids. Chem. Pharm. Bull. 2003, 51, 463–466, doi:10.1248/cpb.51.463.

197. Ohashi, K.; Winarno, H.; Mukai, M.; Inoue, M.; Prana, M.S.; Simanjuntak, P.; Shibuya, H. Indonesian medicinal plants. XXV. Cancer cell invasion inhibitory effects of chemical constituents in the parasitic plant Scurrula atropurpurea (loranthaceae). Chem. Pharm. Bull. 2003, 51, 343–345, doi:10.1248/cpb.51.343.

198. Lohezic-Le Devehat, F.; Bakhtiar, A.; Bezivin, C.; Amoros, M.; Boustie, J. Antiviral and cytotoxic activities of some Indonesian plants. Fitoterapia 2002, 73, 400–405.

199. Chen, Y.; Xiao, Y.; Xu, J.; Wu, Y. Uses of Extracts of Loranthaceae Plants as NF-κB Inhibitor for Treating Diseases Associated with Abnormal Activation of NF-κB. China Patent 101548995A, Oct 7, 2009.
200. Sohn, S.H.; Lee, H.; Nam, J.-y.; Kim, S.H.; Jung, H.J.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Screening of herbal medicines for the recovery of cisplatin-induced nephrotoxicity. *Environ. Toxicol. Pharmacol.* 2009, 28, 206–212, doi:10.1016/j.etap.2009.04.005.

201. Chen, B.H.; Lai, J.J.; Zheng, Q.; Li, J.; Xiao, Y.J. Effects of different extraction solvents on the antioxidant activities of leaves extracts of *Scutellaria parasitica*. * Fujian Shifen Daxue Xuebao Ziran Kexueban* 2010, 26, 86–90.

202. Xiao, Y.; Fan, Y.; Chen, B.; Zhang, Q.; Zeng, H. Polysaccharides from *Scutellaria parasitica* L. inhibit sarcoma S180 growth in mice. *Zhongguo Zhong Yao Za Zhi* 2010, 35, 381–384.

203. Roh, C.; Jung, U. Screening of crude plant extracts with anti-obesity activity. *Int. J. Mol. Sci.* 2012, 13, 1710–1719, doi:10.3390/ijms13021710.

204. Oyen, L.P.A. *Ficus natalensis* Hochst. In *Lacor Buch-Ham with Effects of Eliminating Dampness Relieving Pain.* China Patent 1814035, Aug 9, 2006.

205. Abdsamah, O.; Zaidi, N.T.A.; Sule, A.B. Antimicrobial activity of *Loranthus parasiticus* Waign. *J. Ethnopharmacol.* 2012, 146, 237–244, doi:10.1016/j.jep.2012.03.003.

206. Amabeoku, G.J.; Leng, M.J.; Syce, J.A. Antimicrobial and anticonvulsant activities of *Viscum capense*. *J. Ethnopharmacol.* 1998, 61, 237–241, doi:10.1016/s0378-8741(98)00054-3.

207. Tibe, O.; Pernthaner, A.; Sutherland, I.; Lesperance, L.; Harding, D.R.K. Condensed tannins from Botswana forage plants are effective priming agents of γδ T cells in ruminants. *Vet. Immunol. Immunopathol.* 2012, 146, 237–244, doi:10.1016/j.vetimm.2012.03.003.

208. Zuo, G.Y.; Zhang, X.J.; Yang, C.X.; Han, J.; Wang, G.C.; Bian, Z.Q. Evaluation of traditional Chinese medicines for the recovery of cisplatin-induced nephrotoxicity. *Zhongguo Zhong Yao Za Zhi* 2010, 35, 381–384.

209. Sulaiman, M.R.; Hussain, M.K.; Zakaria, Z.A.; Moin, S.; Mohamad, A.S.; Israf, D.A. Antinociceptive activity of *Ficus deltoidea* Jack (Mas Cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. *Arch Dermatol. Res.* 2011, 303, 161–170.

210. Zakaria, Z.A.; Hussain, M.K.; Mohamad, A.S.; Abdullah, F.C.; Sulaiman, M.R. Anti-inflammatory activity of the aqueous extract of *Ficus deltoidea*. *Biol. Res. Nurs.* 2012, 14, 90–97.

211. Oh, M.J.; Hamid Mariani, A.; Ngadiran, S.; Seo, Y.K.; Sarmidi Mohamad, R.; Park Chang, S. *Ficus deltoidea* (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. *Arch Dermatol. Res.* 2011, 303, 161–170.

212. Lan, Z. Oral Medicated Liquor Comprising Caulis et Folium Piperis, Radix Celastris Angulati and Ficus Lacer Buch-Ham with Effects of Eliminating Dampness Relieving Pain. China Patent 1814035, Aug 9, 2006.

213. Choa, Y.; Wong, T.W.; Choo, C.Y. Evaluation of hypoglycemic activity and toxicity profiles of the leaves of *Ficus deltoidea* in rodents. *J. Complement. Integr. Med.* 2011, 8, doi:10.2202/1553-3840.1469.

214. Bhatt, D.D. *Natural History and Economic Botany of Nepal;* Dept. of Information, His Majesty’s Govt. of Nepal: Kathmandu, Nepal, 1970.

215. Bajracharya, D.; Rana, S.J.B.; Shrestha, A.K. A general survey and biochemical analysis of fodder plants found in Nagarjun hill forest of Kathmandu valley. *J. Nat. Hist. Mus.* 1978, 2, 105–116.

216. Rai, S.K.; Subedi, S.; Mishra, S. Utilization pattern of medicinal plants in Thumpakhar, Sindhupalchok, Nepal. *Bot. Orient.* 2004, 4, 75–78.

217. Zakaria, Z.A.; Hussain, M.K.; Mohamad, A.S.; Abdullah, F.C.; Sulaiman, M.R. Anti-inflammatory activity of the aqueous extract of *Ficus deltoidea*. *Biol. Res. Nurs.* 2012, 14, 90–97.

218. Bhatt, D.D. *Natural History and Economic Botany of Nepal;* Dept. of Information, His Majesty’s Govt. of Nepal: Kathmandu, Nepal, 1970.

219. Bajracharya, D.; Rana, S.J.B.; Shrestha, A.K. A general survey and biochemical analysis of fodder plants found in Nagarjun hill forest of Kathmandu valley. *J. Nat. Hist. Mus.* 1978, 2, 105–116.

220. Zakaria, Z.A.; Hussain, M.K.; Mohamad, A.S.; Abdullah, F.C.; Sulaiman, M.R. Anti-inflammatory activity of the aqueous extract of *Ficus deltoidea*. *Biol. Res. Nurs.* 2012, 14, 90–97.
223. Nakano, D.; Ishitsuka, K.; Hatsuse, T.; Tsuchihashi, R.; Okawa, M.; Okabe, H.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates against human adult T-cell leukemia/lymphoma from plants: Active principles from Physalis pruinosa and structure-activity relationships with withanolides. *J. Nat. Med.* 2011, 65, 559–567, doi:10.1007/s11418-011-0543-9.

224. Ragasa, C.Y.; Juan, E.; Rideout, J.A. A triterpene from *Ficus pumila*. *J. Asian Nat. Prod. Res.* 1999, 1, 269–275, doi:10.1080/10286029908039875.

225. Panyaphu, K.; On, T.V.; Sirisa-ard, P.; Sirisa-nga, P.; ChansaKaow, S.; Nathakarnkitkul, S. Medicinal plants of the Mien (Yao) in Northern Thailand and their potential value in the primary healthcare of Postpartum women. *J. Ethnopharmacol.* 2011, 135, 226–237.

226. Chua, S. Kajian Etnobotani ke Atas Komuniti Temuan di Semenyih, Selangor. Bachelor’s Thesis, Universiti Malaya, Kuala Lumpur, 1996.

227. Nardiah, R.J.; Nazlina, I.; Mohd, R.A.R.; Siti, N.A.Z.; Ling, C.Y.; Shariffah, M.S.A.; Farina, A.H.; Yaacob, W.A.; Ahmad, I.B.; Din, L.B. A survey on phytochemical and bioactivity of plant extracts from Malayan forest reserves. *J. Med. Plants Res.* 2010, 4, 203–210.

228. Jalal, J.S.; Kumar, P.; Pangtey, Y.P.S. Ethnomedicinal orchids of Uttarakhand, western Himalaya. *Ethnobot. Leaf.* 2008, 12, 1227–1230.

229. Sulistiarini, D. *Acriopsis javanica* Reinv. ex Blume. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3*; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 33–34.

230. Satish, M.N.; Abbay, P.S.; Chen-Yue, L.; Chao-Lin, K.; Hsin-Sheng, T. Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. *Bot. Bull. Acad. Sin.* 2003, 44.

231. Lin, J.M.; Lin, C.C.; Chiou, H.F.; Yang, J.J.; Lee, S.G. Evaluation of the anti-inflammatory and liver-protective effects of *Anoectochilus formosanus*, *Ganoderma lucidum* and *Gynostemma pentaphyllum* in Rats. *Am. J. Chin. Med.* 1993, 21, 59–69, doi:10.1142/S0192415X9300008X.

232. Du, X.M.; Sun, N.Y.; Tamura, T.; Mohri, A.; Sugiuera, M.; Yoshizawa, T.; Irino, N.; Hayashi, J.; Shoyama, Y. Higher yielding isolation of kinsenoside in *Anoectochilus* and its anti-hyperliposis Effect. *Biol. Pharm. Bull.* 2001, 24, 65–69.

233. Shih, C.C.; Wu, Y.W.; Lin, W.C. Ameliorative effects of *Anoectochilus formosanus* extract on osteopenia in ovariectomized rats. *J. Ethnopharmacol.* 2001, 77, 233–238, doi:10.1016/s0378-8741(01)00302-6.

234. Wang, S.Y.; Kuo, Y.H.; Chang, H.N.; Kang, P.L.; Tsay, H.S.; Lin, K.F.; Yang, N.S.; Shyur, L.F. Profiling and characterization antioxidant activities in *Anoectochilus formosanus* Hayata. *J. Agric. Food. Chem.* 2002, 50, 1859–1865, doi:10.1021/jf0113575.

235. Shih, C.C.; Wu, Y.W.; Lin, W.C. Antihyperglycaemic and anti-oxidant properties of *Anoectochilus Formosanus* in diabetic rats. *Clin. Exp. Pharmacol. Physiol.* 2002, 29, 684–688, doi:10.1046/j.1440-1681.2002.03717.x.

236. Shyur, L.F.; Chen, C.H.; Lo, C.P.; Wang, S.Y.; Kang, P.L.; Sun, S.J.; Chang, C.A.; Tseng, C.M.; Yang, N.S. Induction of apoptosis in MCF-7 human breast cancer cells by phytochemicals from *Anoectochilus formosanus*. *J. Biomed. Sci.* 2004, 11, 928–939, doi:10.1007/bf02254378.

237. Shih, C.C.; Wu, Y.W.; Hsieh, C.C.; Lin, W.C. Effect of *Anoectochilus formosanus* on fibrosis and regeneration of the liver in rats. *Clin. Exp. Pharmacol. Physiol.* 2004, 31, 620–625, doi:10.1111/j.1440-1681.2004.04062.x.

238. Shih, C.C.; Wu, Y.W.; Lin, W.C. Aqueous extract of *Anoectochilus formosanus* attenuate hepatic fibrosis induced by carbon tetrachloride in rats. *Phytomedicine* 2005, 12, 453–460.

239. Hsiao, H.B.; Wu, J.B.; Lin, H.; Lin, W.C. Kinsenoside isolated from *Anoectochilus formosanus* suppresses LPS-stimulated inflammatory reactions in macrophages and endotoxin shock in mice. *Shock* 2011, 35, 184–190, doi:10.1097/SHK.0b013e3181f07ae7a.

240. Hsieh, W.T.; Tsai, C.T.; Wu, J.B.; Hsiao, H.B.; Yang, L.C.; Lin, W.C. Kinsenoside, a high yielding constituent from *Anoectochilus formosanus*, inhibits carbon tetrachloride induced Kupffer cells mediated liver damage. *J. Ethnopharmacol.* 2011, 135, 440–449, doi:10.1016/j.jep.2011.03.040.

241. Lin, W.C.; Hsieh, C.C.; Lu, T.J.; Tsay, H.S.; Yang, L.C.; Lin, C.C.; Wang, C.H. *Anoectochilus spp.* Polysaccharide Extracts for Stimulating Growth of Advantageous Bacteria, Stimulating Release of Granulocyte Colony-Stimulating Factor, Modulating T Helper Cell Type 1, and/or Modulating T Helper Cell Type II and Uses of the Sa. US Patent 20110082103, Apr 7, 2011.

242. Ye, S.; Shao, Q.; Zhang, A. *Anoectochilus roxburghii*: A review of its phytochemistry, pharmacology, and clinical applications. *J. Ethnopharmacol.* 2017, 209, 184–202.
243. Zhang, Y.; Cai, J.; Ruan, H.; Pi, H.; Wu, J. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats. J. Ethnopharmacol. 2007, 114, 141–145, doi:10.1016/j.ejep.2007.05.022.

244. Cui, S.C.; Yu, J.; Zhang, X.H.; Cheng, M.Z.; Yang, L.W.; Xu, J.Y. Antihyperglycemic and antioxidant activity of water extract from Anoectochilus roxburghii in experimental diabetes. Exp. Toxicol. Pathol. 2012.

245. Wu, B.; He, S.; Pan, Y.J. New dihydrodibenzoazepins from Bulbophyllum kwangtungense. Planta Med. 2006, 72, 1244–1247.

246. Chen, Y.; Xu, J.; Yut, H.; Qin, C.W.; Zhangt, Y.; Liu, Y.; Wang, J. Bulbophyllum Odoratissimum 3,7-Dihydroxy-2,6-trimethoxyphenanthrene. J. Korean Chem. Soc 2007, 51, 352.

247. Yao, X.; Wang, N.; Bei, Z.; Liu, D. Bulbophyllumspiradione Compound and its Derivatives as Antitumor Agent and Inhibiting NO Release from Macrophage. China Patent 1594311, Mar 16, 2005.

248. Yao, X.; Wang, N.; Bei, Z.; Liu, D.; Zhang, J. New Dibenzyln Compounds as Antitumor Agent and Inhibiting Macrophage from Releasing NO. China Patent 1594309, Mar 16, 2005.

249. Chen, Y.; Xu, J.; Yu, H.; Chen, Q.; Zhang, Y.; Wang, L.; Liu, Y.; Wang, J. Cytotoxic phenolics from Bulbophyllum odoratissimum. Food Chem. 2007, 107, 169–173, doi:10.1016/j.foodchem.2007.07.077.

250. Xu, J.; Yu, H.; Qing, C.; Zhang, Y.; Liu, Y.; Chen, Y. Two new biphenanthrenes with cytotoxic activity from Bulbophyllum odoratissimum. Fitoterapia 2009, 80, 381–384, doi:10.1016/j.fitote.2009.05.007.

251. Shimizu, M.; Shogawa, H.; Hayashi, T.; Arisawa, M.; Suzuki, S.; Yoshizaki, M.; Morita, N.; Ferro, E.; Basualdo, I.; Berganza, L.H. Chemical and pharmaceutical studies on medicinal plants in Paraguay. Anti-inflammatory constituents of topically applied crude drugs. III. Constituents and anti-inflammatory effect of Paraguayan crude drug “Tamanda cuna” (Catasetum barbatum Lindle). Chem. Pharm. Bull. 1988, 36, 4447–4452, doi:10.1248/cpb.36.4447.

252. Huyen, D.D. Cymbidium aloifolium (L.) Sw. In Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 147–148.

253. Howlader, M.A.; Alam, M.; Ahmed, K.T.; Khutun, F.; Apu, A.S. Antinociceptive and anti-inflammatory activity of the ethanolic extract of Cymbidium aloifolium (L.). Pak. J. Biol. Sci. 2011, 14, 909–911.

254. Webb, L.J. Queensland. Proc. Roy. Soc. 1959, 71, 103.

255. Watanabe, K.; Tanaka, R.; Sakurai, H.; Iguchi, K.; Yamada, Y.; Hsu, C.S.; Sakuma, C.; Kikuchi, H.; Shibayama, H.; Kawai, T. Structure of cymbidine A, a monomeric peptidoglycan-related compound with hypotensive and diuretic activities, isolated from a higher plant, Cymbidium goeringii (Orchidaceae). Chem. Pharm. Bull. 2007, 55, 780–783.

256. Won, J.H.; Kim, J.Y.; Yun, K.J.; Lee, J.H.; Back, N.I.; Chung, H.G.; Chung, S.A.; Jeong, T.S.; Choi, M.S.; Lee, K.T. Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-kB inactivation in RAW 264.7 macrophages cells. Planta Med. 2006, 72, 1181–1187, doi:10.1055/s-2006-947201.

257. Venkateswarlu, S.; Raju, M.S.; Subbaraju, G.V. Synthesis and biological activity of isoamoenylin, a metabolite of Dendrobium amoenum. Biosci. Biotechnol. Biochem. 2006, 62, 2236–2238.

258. Yang, L.; Wang, Z.; Xu, L. Simultaneous determination of phenols (Bibenzyl, phenanthrene, and fluorene) in Dendrobium species by high-performance liquid chromatography with diode array detection. J. Chromatogr. A 2006, 1104, 230–237.

259. Yang, L.; Han, H.; Nakamura, N.; Hattori, M.; Wang, Z.; Xu, L. Bio-guided isolation of antioxidants from the stems of Dendrobium aurantiacum var. denneanum. Phytother. Res. 2007, 21, 696–698, doi:10.1002/ptr.2133.

260. Wu, H.S.; Xu, J.H.; Chen, L.Z.; Sun, J.J. Studies on anti-hyperglycemic effect and its mechanism of Dendrobium candidum. Zhongyu Zhong Yao Za Zhi 2004, 29, 160–163.

261. Xu, J.; Chen, L.; Li, L. Effects of white dendrobium (Dendrobium candidum) and American ginseng (Panax quinquefolium) on nourishing the Yin and promoting glandular secretion in mice and rabbits. Zhongcaoyao 1995, 26, 79–80.

262. He, T.G.; Yang, L.T.; Li, Y.R.; Wan, C.Q. Antioxidant activity of crude and purified polysaccharide from suspension-cultured protocorms of Dendrobium candidum in vitro. Zhongcaoyao 2007, 29, 1265–1269.

263. Li, Y.; Wang, C.L.; Wang, Y.J.; Guo, S.X.; Yang, J.S.; Chen, X.M.; Xiao, P.G. Three New Bibenzyl Derivatives from Dendrobium candidum. Chem. Pharm. Bull. 2009, 57, 218–219.
264. Li, Y.; Wang, C.L.; Wang, Y.J.; Wang, F.F.; Guo, S.X.; Yang, J.S.; Xiao, P.G. Four new benzylic derivatives from Dendrobium candidum. Chem. Pharm. Bull. 2009, 57, 997–999.
265. Guan, H.; Zhang, X.; Tu, F.; Yao, X. Chemical components of Dendrobium candidum. Zhongcaoyao 2009, 40, 1873–1876.
266. Sulistiarini, D. Dendrobium crumenatum Sw. In Plant Resources of South-East Asia No 12(2): Medicinal and Poisonous Plants 2; van Valkenburg, J.L.C.H., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2001; p. 216.
267. Mardisiswojo, S.; Rajakmangunsudarso, H. Cabe Puyag, Warisan Nenek Moyang; Balai Pustaka: Jakarta, Indonesia, 1985.
268. Yang, L.; Qin, L.H.; Bligh, S.W.; Bashall, A.; Zhang, C.F.; Zhang, M.; Wang, Z.T.; Xu, L.S. A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. Bioorganic Med. Chem. 2006, 14, 3496–3501.
269. Li, Y.M.; Wang, H.Y.; Liu, G.Q. Erianin induces apoptosis in human leukemia HL-60 cells. Acta Pharmacol. Sin. 2001, 22, 1018–1022.
270. Fan, C.; Wang, W.; Wang, Y.; Qin, G.; Zhao, W. Chemical constituents from Dendrobium densiflorum. Phytochemistry 2001, 57, 1255–1258.
271. Heyne, K. De Nuttige Planten Van Indonesie; N.V.Uitgeverij W. van Hoeve: ‘s-Gravenhage, The Netherlands, 1950.
272. Bi, Z.M.; Wang, Z.T.; Xu, L.S.; Xu, G.J. Studies on the chemical constituents of Dendrobium fimbriatum. Yao Xue Xue Bao 2003, 38, 526–529.
273. Luo, A.; Fan, Y. In vitro antioxidant of a water-soluble polysaccharide from Dendrobium fimbriatum Hook.var.occultatum Hook. Int. J. Mol. Sci. 2011, 12, 4068–4079, doi:10.3390/ijms12064068.
274. Ho, C.K.; Chen, C.C. Moscatilin from the orchid Dendrobium loddigesii is a potential anticancer agent. Cancer Investig. 2003, 21, 729–736.
275. Li. Chemical constituents of Dendrobium loddigesii Rolfe. Yao Hsüeh Hsüeh Pao 1991, 26, 307.
276. Chen, C.C.; Wu, L.G.; Ko, F.N.; Teng, C.M. Antiplatelet aggregation principles of Dendrobium loddigesii. J. Nat. Prod. 1994, 57, 1271–1274, doi:10.1021/np50111a014.
277. Ito, M.; Matsuzaki, K.; Wang, J.; Daikonya, A.; Wang, N.L.; Yao, X.S.; Kitanaka, S. New Phenanthrenes and Stilbenes from Dendrobium loddigesii. Chem. Pharm. Bull. 2010, 58, 628–633.
278. Chen, K.K.; Chen, A.L. The alkaloid of Chin-Shih-Hu. J. Biol. Chem. 1935, 653–658.
279. Lin, T.H.; Chang, S.J.; Chen, C.C.; Wang, J.P.; Tsao, L.T. Two phenanthraquinones from Dendrobium moniliforme. J. Nat. Prod. 2001, 64, 1084–1086, doi:10.1021/np010016i.
280. Chen, Y.L.; He, G.Q.; Zhang, M.; Li, H.J. Hypoglycemic effect of the polysaccharide from Dendrobium moniliforme. Zhejiang Daxue Xuebao Lixueban 2003, 30, 693–696.
281. Wang, S.; Wei, F.J.; Cai, Y.P.; Lin, Y. Anti-oxidation activity in vitro of polysaccharides of Dendrobium huoshanense and Dendrobium moniliforme. Agric. Sci. Technol. 2009, 10, 121–124.
282. Malli, B.; Gauchan, D.P.; Chhetri, R.B. An ethnomedical study of medicinal plants used by ethnic people in Parbat district of western Nepal. J. Ethnopharmacol. 2015, 165, 103–117.
283. van Valkenburg, J.L.C.H.; Bunyapraphatsara, N. Plant resources of South-East Asia 12 (2). Medicinal and poisonous plants 2; Backhuys Publisher: Leiden, The Netherlands, 2001.
284. Gutiérrez, R.M.P. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J. Med. Plants Res. 2010, 4, 592–638.
285. Kong, J.M.; Goh, N.K.; Chia, L.S.; Chia, T.F. Recent advances in traditional plant drugs and orchids. Acta Pharmacol. Sin. 2003, 24, 7–21.
286. Liu, Q.F.; Zhao, W. A new dedonbrine-type alkaloid from Dendrobium nobile. Chin. Chem. Lett. 2003, 14, 278–279.
287. Zhao, W.; Ye, Q.; Tan, X.; Jiang, H.; Li, X.; Chen, K.; Kinghorn, A.D. Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. J. Nat. Prod. 2001, 64, 1196–1200, doi:10.1021/np0102612.
288. Ye, Q.; Qin, G.; Zhao, W. Immunomodulatory sesquiterpene glycosides from Dendrobium nobile. Phytochemistry 2002, 61, 885–890, doi:10.1016/s0031-9422(02)00484-3.
289. Zhang, X.; Xu, J.K.; Wang, J.; Wang, N.L.; Kurihara, H.; Kitanaka, S.; Yao, X.S. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. J. Nat. Prod. 2006, 70, 24–28, doi:10.1021/np060449r.
290. Luo, A.; He, X.; Zhou, S.; Fan, Y.; He, T.; Chun, Z. In vitro antioxidant activities of a water-soluble polysaccharide derived from *Dendrobium nobile* Lindl. extracts. *Int. J. Biol. Macromol.* 2009, 45, 359–363, doi:10.1016/j.ijbiomac.2009.07.008.

291. Uma, D. Antitumor and antimicrobial activities and inhibition of in-vitro lipid peroxidation by *Dendrobium nobile*. *Afr. J. Biotechnol.* 2009, 8, 2289.

292. Hwang, J.S.; Lee, S.A.; Hong, S.S.; Han, X.H.; Lee, C.; Kang, S.J.; Lee, D.; Kim, Y.; Hong, J.T.; Lee, M.K.; et al. Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. *Bioorganic Med. Chem. Lett.* 2010, 20, 3785–3787, doi:10.1016/j.bmcl.2010.04.054.

293. Wang, J.H.; Luo, J.P.; Zha, X.Q.; Feng, B.J. Comparison of antitumor activities of different polysaccharide fractions from the stems of *Dendrobium nobile* Lindl. *Carbohydr. Polym.* 2010, 79, 114–118, doi:10.1016/j.carbpol.2009.07.032.

294. Lassak, E.V.; McCarthy, T. Australian Medicinal Plants: A Complete Guide to Identification and Usage; New Holland: Chatswood, Australia, 2011.

295. Maiden, J.H. Indigenous vegetable drugs. Part II. *Agric. Gaz. N.S.W.* 1899, 10, 131–141.

296. Lo, S.F.; Mulabagal, V.; Chen, C.L.; Ku, C.L.; Tsay, H.S. Bioguided fractionation and isolation of free radical scavenging components from in vitro propagated Chinese medicinal plants *Dendrobium tosaense* Makino and *Dendrobium moniliforme* SW. *J. Agric. Food Chem.* 2004, 52, 6916–6919.

297. Floriani, A.E.; Ferreira, J.; Santos, A.R.; Delle-Monache, F.; Yunes, R.A.; Cechinel-Filho, V. Analgesic compounds from *Epidendrum mosenii* stems. *Pharmazie* 1998, 53, 426–427.

298. Ferreira, J.; Floriani, A.E.O.; Cechinel, F.V.; Delle, M.F.; Yunes, R.A.; Calixto, J.B.; Santos, A.R.S. Antinociceptive properties of the methanolic extract and two triterpenes isolated from *Epidendrum mosenii* stems (Orchidaceae). *Life Sci.* 2000, 66, 791–802, doi:10.1016/s0024-3205(99)00652-9.

299. Hernández-Romero, Y.; Acevedo, L.; Sánchez, M.L.; Shier, W.T.; Abbas, H.K.; Mata, R. Phytotoxic activity of bibenzyl derivatives from the orchid *Epidendrum rigidum*. *J. Agric. Food Chem.* 2005, 53, 6276–6280.

300. Huyen, D.D. *Eria pannae* Lindley. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 192.

301. Namsa, N.D.; Tag, H.; Mandal, M.; Kalita, P.; Das, A.K. An ethnobotanical study of traditional anti-inflammatory plants used by the Lohit community of Arunachal Pradesh, India. *J. Ethnopharmacol.* 2009, 125, 234–245.

302. Sulistiarini, D. *Grammatophyllum scriptum* Bl. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 222.

303. Herman, M.J. *Liparis treubii* J.J. Smith. In *Plant resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 273–274.

304. Olof, T.C. Survival and flowering of some perennial herbs II. The behavior of some orchids on permanent plots. *Oikos* 1972, 23, 23–28.

305. Keyaerts, E.; Vijgen, L.; Pannecoque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. *Antivir. Res.* 2007, 75, 179–187, doi:10.1016/j.antiviral.2007.03.003.

306. Déciga-Campos, M.; Palacios-Espinosa, J.F.; Reyes-Ramírez, A.; Mata, R. Antinociceptive and anti-inflammatory effects of compounds isolated from *Scaphyglossis tivida* and *Maxillaria densa*. *J. Ethnopharmacol.* 2007, 114, 161–168.

307. Hernández-Romero, Y.; Rojas, J.I.; Castillo, R.; Rojas, A.; Mata, R. Spasmyloic effects, mode of action, and structure-activity relationships of stilbenoids from *Nidema boothii*. *J. Nat. Prod.* 2004, 67, 160–167.

308. Huyen, D.D. *Oberonia ances* Lindley. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 319.

309. Huyen, D.D. *Oberobia denticulate* Wight. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; p. 319.

310. Wang, J.; Matsuzaki, K.; Kitanaka, S. Stilbene derivatives from *Pholidota chinensis* and their anti-inflammatory activity. *Chem. Pharm. Bull.* 2006, 54, 1216–1218.
311. Wang, J.; Wang, L.; Kitanan, S. Stillene and dihydrofenanthenene derivatives from Pholidota chinensis and their nitric oxide inhibitory and radical-scavenging activities. J. Nat. Med. 2007, 61, 381–386, doi:10.1007/s11418-007-0162-7.

312. Majumdar, H.C.; Shyam, J.M.; Chowdhury, U.; Koch, D.; Roy, N. Traditional hepatoprotective herbal medicine of Koch tribe in the South-West Garo hills district, Meghalaya. Indian J. Tradit. Know. 2019, 18, 312–317.

313. Déciga-Campos, M.; Rivero-Cruz, I.; Arriaga-Alba, M.; Castañeda-Corial, G.; Angeles-López, G.E.; Navarrete, A.; Mata, R. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J. Ethnopharmacol. 2007, 110, 334–342.

314. Estrada, S.; Rojas, A.; Mathison, Y.; Israel, A.; Mata, R. Nitric oxide/cGMP mediates the spasmolytic action of 3,4′-dihydroxy-5,5′-dimethoxybibenzyl from Scaphyglottis livida. Planta Med. 1999, 65, 109–114, doi:10.1055/s-1999-14056.

315. Prasad, D.N.; Achari, G. A study of anti-arthritis action of Vanda roxburghii in albino rats. J. Indian Med. Assoc. 1966, 46, 234–237.

316. Chawla, A.S.; Sharma, A.K.; Handa, S.S.; Dhar, K.L. Chemical studies and anti-inflammatory activity of Vanda roxburghii roots. Indian J. Pharm. Sci. 1992, 54, 159–161.

317. Arya, A.; Abdullah, M.A.; Haerian, B.S.; Mohd, M.A. Screening for hypoglycemic activity on the leaf extracts of nine medicinal plants: In-Vivo evaluation. J. Chem. 2012, 9, doi:10.1155/2012/103760.

318. Corner, E.J.H.; Watanabe, K. Illustrated Guide to Tropical Plants; Hirokawa Publishing Co.: Tokyo, Japan, 1969.

319. Simmler, C.; Antheaume, C.; André, P.; Bonté, F.d.R.; Lobstein, A. Glucosyloxybenzyl eucomate derivatives from Vanda teres stimulate HaCaT cytochrome c oxidase. J. Nat. Prod. 2011, 74, 949–955, doi:10.1021/np1006636.

320. Shammugavalli, N.; Umashankar, V.; Raheem, S. Antimicrobial activity of Vanilla planifolia. Indian J. Sci. Technol. 2009, 2, 37–40.

321. Hammond, G.B.; Fernández, I.D.; Villegas, L.F.; Vaisberg, A.J. A survey of traditional medicinal plants from the Callejo’n de Huaylas, Department of Ancash, Peru. J. Ethnopharmacol. 1998, 61, 17–30.

322. De Feo, V.; Belaufnde, A.J.; Sandoval, J.G.; Senatore, F.; Formisano, C. Antibacterial activity and composition of the essential oil of Peperomia galioides HBK (Piperaceae) from Peru. Nat. Prod. Commun. 2008, 3, 933–936.

323. Langfield, R.D.; Scarano, F.J.; Heitzman, M.E.; Kondo, M.; Hammond, G.B.; Neto, C.C. Use of a modified micropate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J. Ethnopharmacol. 2004, 94, 279–281, doi:10.1016/j.ejep.2004.06.013.

324. Samsali, O. Tumbuhan Epifit Berkhasiat Obat di Sepanjang Jalur Pendakian Cemara Sewu Gunung Lawu. Bachelor’s Thesis, Universitas Sebelas Maret, Surakarta, Indoensia, 2008.

325. Shin, K.H.; Yun, H.S.; Woo, W.S.; Lee, C.K. Pharmacologically active principle of Piper retrofractum. Soil Taehakkyo Saengak Yongusyo Opjukjip 1979, 18, 87–89.

326. Masuda, T.; Oyama, Y.; Yamamoto, N.; Umebayashi, C.; Nakao, H.; Toi, Y.; Takeda, Y.; Nakamoto, K.; Kuninaga, H.; Nishizato, Y.; et al. Cytotoxic screening of medicinal and edible plants in Okinawa, Japan, and identification of the main toxic constituent of Rohdea japonica (Omot). Biosci. Biotechnol. Biochem. 2003, 67, 1401–1404, doi:10.1271/bbb.67.1401.

327. Huh, T.R.; Lee, S.E.; Park, B.S. Alkaloids Having Potent Inhibiting Activity of Platelet Aggregation. Korea Patent 2004009637, Jan 31, 2004.

328. Chansang, U. Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum vahl) from Thailand. J. Vector Ecol. 2005, 30, 195–200.

329. Komalamisra, N.; Trongtokit, Y.; Palakul, K.; Prummonkhol, S.; Samung, Y.; Apiwathnasorn, C.; Phampoo, T.; Asavanich, A.; Leemingsawat, S. Insecticide susceptibility of mosquitoes invading tsunami-affected areas of Thailand. Southeast Asian J. Trop. Med. Public Health 2006, 37, 118–122.

330. Kametani, S.; Kikuzaki, H.; Honzawa, M.; Nakatani, N. Chemical constituents of Piper retrofractum vahl and their antioxidant and radical scavenging activities. ITE Lett. Batter. New Technol. Med. 2005, 6, 566–573.

331. Bodiwala, H.; Singh, G.; Singh, R.; Dey, C.; Sharma, S.; Bhutani, K.; Singh, I. Antileishmanial amides and lignans from Piper cubea and Piper retrofractum. J. Nat. Med. 2007, 61, 418–421, doi:10.1007/s11418-007-0159-2.
332. Kim, K.J.; Lee, M.S.; Jo, K.; Hwang, J.K. Piperidine alkaloids from *Piper retrofitractum* Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. *Biochem. Biophys. Res. Commun.* 2011, 411, 219–225, doi:10.1016/j.bbrc.2011.06.153.

333. Ueda, J.Y.; Tetzuka, Y.; Banskota, A.H.; Tran, Q.L.; Tran, Q.K.; Harimaya, Y.; Saiki, I.; Kadota, S. Antiproliferative activity of Vietnamese medicinal plants. *Biol. Pharm. Bull.* 2002, 25, 753–760.

334. Nguyen, M.T.T.; Awale, S.; Tetzuka, Y.; Tran, Q.L.; Watanabe, H.; Kadota, S. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. *Biol. Pharm. Bull.* 2004, 27, 1414–1421.

335. Prachayasittikul, S.; Buraparungsang, P.; Worachartcheewan, A.; Isarankura-Na-Ayudhya, C.; Ruchirawat, S.; Prachayasittikul, V. Antimicrobial and antioxidative activities of bioactive constituents from *Hydnophytum formicarum* Jack. *Molecules* 2008, 13, 904–921.

336. Hasmah. Release of cytochrome c in MCF-7 cells treated with 7,3′,5′-trihydroxyflavanone of *Hydnophytum formicarum*. *Biomed. Pharmacol. J.* 2009, 2, 1–6.

337. Abdullah, H.; Pihie, A.H.L.; Hohmann, J.; Molnar, J. A natural compound from *Hydnophytum formicarum* induces apoptosis of MCF-7 cells via up-regulation of Bax. *Cancer Cell Int.* 2010, 10, doi:10.1186/1475-2867-10-14.

338. Lemmens, R.H.M.J. *Myrmecodia tuberosa* Jack. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3; Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 314–315.

339. Hertiani, T.; Sasmito, E.; Ulfah, M. Preliminary study on immunomodulatory effect of Sarang-Semut tubers *Myrmecodia tuberosa* and *Myrmecodia pendens*. *Online J. Biol. Sci.* 2010, 10, 136–141.

340. Syahrawi, N.F. Studi Pemanfaatan Sarang Semut (*Myrmecodia pendens* Merr. & Perry) oleh Masyarakat Sekitar Taman Nasional Wasur. Bachelor’s Thesis, Institut Pertanian Bogor, Bogor, Indonesia, 2008.

341. van Valkenburg, J.L.C.H. *Viscum articulatum* Burm.f. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3, Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds., Backhuys: Leiden, The Netherlands, 2003; pp. 417–418.

342. Samuelsson, G. Screening of plants of the family Loranthaceae for toxic proteins. *Acta Pharm. Suec.* 1966, 3, 353–362.

343. Yu, S.; Mikami, M.; Kitahara, M.; Yamazaki, M. The inhibitory effect of lycorine on tumor cell apoptosis induced by polymorphonuclear leucocyte-derived calprotectin. *Immunopharmacol.* 1998, 40, 151–162, doi:10.1016/s0162-3109(98)00040-x.

344. Leu, Y.L.; Kuo, S.M.; Hwang, T.L.; Chiu, S.T. The Inhibition of superoxide anion generation by neutrophils from *Viscum articulatum*. *Chem. Pharm. Bull.* 2004, 52, 858–860.

345. Li, Y.; Zhao, Y.L.; Huang, N.; Zheng, Y.T.; Yang, Y.P.; Li, X.L. Two new phenolic glycosides from *Viscum articulatum*. *Molecules* 2008, 13, 2500–2508.

346. Patil, C.R.; Jadhav, R.B.; Singh, P.K.; Mundada, S.; Patil, P.R. Protective effect of oleanolic acid on gentamicin induced nephrotoxicity in rats. *Phytother. Res.* 2010, 24, 33–37, doi:10.1002/ptr.2861.

347. Kuo, Y.J.; Yang, Y.C.; Zhang, L.J.; Wu, M.D.; Kuo, L.M.Y.; Kuo, Y.C.; Hwang, S.Y.; Chou, C.J.; Lee, K.H.; Ho, H.O.; et al. Flavanone and diphenylpropane glycosides and glycosidic acyl esters from *Viscum articulatum*. *J. Nat. Prod.* 2010, 73, 109–114, doi:10.1021/np9004294.

348. Jadhav, R.B. Diuretic and natriuretic activity of two mistletoe species in rats. *Pharmacogn. Res.* 2010, 2, 50, doi:10.4103/0974-8940.60576.

349. Geetha, K.M.; Bhaskara Gopal, P.V.V.S.; Murugan, V. Antiepileptic activity of aerial parts of *Viscum articulatum* (Viscaceae) in rats. *J. Pharm. Res.* 2010, 3, 2886–2887.

350. Bachhav, S.S.; Patil, S.D.; Bhutada, M.S.; Surana, S.J. Oleanolic acid prevents glucocorticoid-induced hypertension in rats. *Phytother. Res.* 2011, 25, 1435–1439, doi:10.1002/ptr.3431.

351. Bachhav, S.S.; Bhutada, M.S.; Patil, S.D.; Baser, B.; Chaudhari, K.B. Effect of *Viscum articulatum* Burm. (Loranthaceae) in *N*ω-nitro-l-arginine methyl ester induced hypertension and renal dysfunction. *J. Ethnopharmacol.* 2012, 142, 467–473, doi:10.1016/j.jep.2012.05.021.

352. Zhong, W.; Peng, W.; Yu, Z.; Chen, Y. In vitro antioxidant activity of polysaccharides from *Viscum articulatum*. *Shipin Kexue* 2011, 32, 25–28.

353. van Valkenburg, J.L.C.H. *Viscum ovalifolium* DC. In *Plant Resources of South-East Asia No 12(3): Medicinal and Poisonous Plants* 3, Lemmens, R.H.M.J., Bunyapraphatsara, N., Eds.; Backhuys: Leiden, The Netherlands, 2003; pp. 417–418.
354. Singh, J.; Rao, M.N.A.; Hardikar, S.G. Chemical constituents of Adiantum caudatum. Indian J. Pharm. 1975, 37, 64–65.
355. Gupta, M.; Bagchi, A.; Roy, S.K.; Ray, A.B. Chemical constituents of a member of Adiantum caudatum complex. J. Indian Chem. Soc. 1990, 67, 86–88.
356. Tsuzuki, K.; Ohashi, A.; Arai, Y.; Masuda, K.; Takano, A.; Shiojima, K.; Ageta, H.; Cai, S.Q. Triterpenoids from Adiantum caudatum. Phytochemistry 2001, 58, 363–367, doi:10.1016/s0031-9422(01)00198-4.
357. Berg, A.M.; Kari, S.; Althann, M.; Virtanen, A.I. Homoserine and α-aminoacidic acid in green plants. Acta Chem. Scand. 1954, 8, 358, doi:10.3891/acta.chem.scand.08-0358.
358. Liu, H.; Orjala, J.; Rali, T.; Sticher, O. Glycosides from Stenochlaena palustris. Phytochemistry 1998, 49, 2403–2408, doi:10.1016/s0031-9422(98)00352-5.
359. Liu, H.; Orjala, J.; Sticher, O.; Rali, T. Acyalted flavonol glycosides from leaves of Stenochlaena palustris. J. Nat. Prod. 1999, 62, 70–75, doi:10.1021/np980179f.
360. Lin, Y.Y.; Kakisawa, H.; Shiobara, Y.; Nakaniishi, K. Structure of dalvallic acid. Chem. Pharm. Bull. 1965, 13, 986–995, doi:10.1248/cpb.13.986.
361. Harborne, J.B. Comparative biochemistry of flavonoids. II. 3-Deoxyanthocyanins and their systematic distribution in ferns and gesnerads. Phytochemistry 1966, 5, 589–600, doi:10.1016/s0031-9422(00)83637-7.
362. Tanaka, Y.; Tohara, K.; Terasawa, K.; Sawada, M.; Ageta, H. Pharmacognostical studies on Ku-tsui-po. II. Shoyakugaku Zasshi 1978, 32, 260–266.
363. Murakami, T.; Wada, H.; Tanaka, N.; Kuraishi, T.; Saiki, Y.; Chen, C.M. Chemical and chemotaxonomical studies of Filices. 56. Constituents of the davalliac ferns. 1. Yakugaku Zasshi 1985, 105, 649–654.
364. Hwang, T.H.; Kashiwada, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. Part 89. 4-Carboxymethyl flavan-3-ols and procyanidins from Davallia divaricata. Phytochemistry 1990, 29, 279–282, doi:10.1016/0031-9422(90)89050-j.
365. Tanaka, Y.; Kitajima, J.I.; Ageta, H. Pharmacognostical studies on “Ku-tui-po”. III. Constituents of the rhizomes of Davallia solida. Nat. Med. 1998, 52, 409–413.
366. Rancon, S.; Chaboud, A.; Darbour, N.; Comte, G.; Barron, D.; Raynaud, J.; Cabalion, P. A new C-glycosyl xanthone isolated from Davallia solida. Phytochemistry 1999, 52, 1677–1679, doi:10.1016/s0031-9422(99)00190-9.
367. Rouffiac, R. Alkaloids in Lycopodium phlegmaria. Compt. Rend. 1961, 253, 2612–2613.
368. Rouffiac, R. Alkaloids of lycopods, particularly of Lycopodium phlegmaria. Ann. Pharm. Fr. 1963, 21, 685–698.
369. Inubushi, Y.; Hibino, T.; Hasegawa, T.; Somanathan, R. Isolation and structure of phlegmanol F. Phytochemistry 1971, 19, 2640–2642, doi:10.1016/0031-9422(73)80398-x.
370. Shi, H.; Li, Z.Y.; Guo, Y.W. A new serratane-type triterpene from Lycopodium phlegmaria. Nat. Prod. Res. 2005, 19, 777–781, doi:10.1080/1478641050044906.
371. Hirasawa, Y.; Tanaka, T.; Kobayashi, J.I.; Kawahara, N.; Goda, Y.; Morita, H. Malycorins A-C, new lycopodium alkaloids from Lycopodium phlegmaria. Chem. Pharm. Bull. 2008, 56, 1473–1476, doi:10.1248/cpb.56.1473.
372. Inubushi, Y.; Harayama, T. Alkaloid constituents of Lycopodium phlegmaria L. Yakugaku Zasshi 1982, 102, 434–439.
373. Miller, N.; Hootele, C.; Braekman, J.C. Triterpenoids of Lycopodium megastachyum. Phytochemistry 1973, 12, 1759–1761, doi:10.1016/0031-9422(73)80398-x.
374. Braekman, J.C.; Hootele, C.; Miller, N.; Declercq, J.P.; Germain, G.; Van Meersche, M. Megastachymine, a new alkaloid from Lycopodium megastachyum. Can. J. Chem. 1979, 57, 1691–1693, doi:10.1139/v79-271.
375. Siems, K.; Weigt, F.; Wollenweber, E. Drimanes from the epicuticular wax of the fern Nephelepis biseriata. Phytochemistry 1996, 41, 1119–1121, doi:10.1016/0031-9422(95)00753-9.
376. Sun, M.; Wang, T. Traditional Chinese Herbal Extractscontaining Sequoyitol for Preventing and Treating Diabetes and Complications. China Patent 1957992, May 9, 2007.
377. Liang, Z. Chemical constituents of Nephelepis cordifolia. Guangxi Zhiwu 2008, 28, 420.
378. Tsai, T.H.; Wang, G.J.; Lin, L.C. Vasorelaxing alkaloids and flavonoids from Cassytha filiformis. J. Nat. Prod. 2008, 71, 289–291, doi:10.1021/np070564h.
379. Wang, X.L.; Wang, N.L.; Zhang, Y.; Gao, H.; Pang, W.Y.; Wong, M.S.; Zhang, G.; Qin, L.; Yao, X.S. Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortunei (Kunze) J. SM. on osteoblastic proliferation using an osteoblast-like cell line. Chem. Pharm. Bull. 2008, 56, 46–51.
380. Liang, Y.H.; Wang, W.; Yu, S.W.; Ye, M.; He, X.H.; Gong, N.B.; Lu, Y.; Khan, I.A.; Guo, D.A. A new chiralrane
type triterpenoid from the rhizomes of Drynaria fortunei. Fitoterapia 2010, 81, 988–991.
381. Liang, Y.H.; Ye, M.; Yang, W.Z.; Qiao, X.; Wang, Q.; Yang, H.J.; Wang, X.L.; Guo, D.A. Flavan-3-ols from
the rhizomes of Drynaria fortunei. Phytochemistry 2011, 72, 1876–1882. doi:10.1016/j.phytochem.2011.05.011.
382. Shang, Z.P.; Meng, J.J.; Zhao, Q.C.; Su, M.Z.; Luo, Z.; Yang, L.; Tan, J.J. Two new chormone glycosides from
Drynaria fortunei. Fitoterapia 2013, 84, 130–134. doi:10.1016/j.fitote.2012.11.001.
383. Trinh, P.T.N.; Hao, N.C.; Thao, P.T.; Dung, L.T. Chemical components of the rhizomes of Drynaria fortunei
(KUNZE) J. Sm. (polypodiaceae) in Vietnam. Collect. Czech. Chem. Commun. 2011, 76, 1133–1139.
384. Liu, S.; Xiao, Z.; Feng, R. A flavanol glycoside from Drynaria propinqua. Phytochemistry 1994, 35, 1595–1596.
385. Ramesh, N.; Viswanathan, M.B.; Saraswathy, A.; Balakrishna, K.; Brindha, P.; Lakshmanaperumalsamy, P.
Phytochemical and antimicrobial studies on Drynaria quercifolia. Fitoterapia 2001, 72, 934–936.
386. Nagraha, A.S.; Wangchuk, T.; Willis, A.C.; Haritakun, R.; Sujadmiro, H.; Keller, P.A. Phytochemical and
pharmacological studies on four Indonesian epiphytic medicinal plants: Drynaria rigidula, Hydnophytum
formicarum, Usnea misaminensis, and Calypgeries schmidti. Nat. Prod. Commun. 2019, 14, doi:10.1177/1934578x18956792.
387. Hikin, H.; Meguro, K.; Takemot, T. Isolation of diploptene from Pyrrosia lingua. Chem. Pharm. Bull. 1963, 11,
409–410.
388. Yamashita, H.; Masuda, K.; Kobayashi, T.; Ageta, H.; Shiojima, K. Dammarane triterpenoids from rhizomes
of Pyrrosia lingua. Phytochemistry 1998, 49, 2461–2466. doi:10.1016/s0031-9422(98)00303-3.
389. Yamashita, H.; Masuda, K.; Ageta, H.; Shiojima, K. Fern constituents: Cyclohexenol and cyclocanepanediol,
novel skeletal triterpenoids from rhizomes of Pyrrosia lingua. Chem. Pharm. Bull. 1998, 46, 730–732,
doi:10.1248/cpb.46.730.
390. Yang, C.; Shi, J.G.; Mo, S.Y.; Yang, Y.C. Chemical constituents of Pyrrosia petiolosa. J. Asian Nat. Prod. Res.
2003, 5, 143–150, doi:10.1080/1028602031000066843.
391. Markham, K.R. The structures of amentoflavone glycosides isolated from Psilotum nudum. Phytochemistry
1984, 23, 2093–2096, doi:10.1016/s0031-9422(00)84969-9.
392. Balza, F.; Muir, A.D.; Towers, G.H.N. 3′-Hydroxypsilotin, a minor phenolic glycoside from Psilotum nudum.
Phytochemistry 1985, 24, 529–531. doi:10.1016/s0031-9422(00)80761-x.
393. Akihisa, T.; Kawashima, T.; Takahashi, S.; Sahashi, N.; Okamoto, T.; Niiya, I.; Tamura, T. Sterols and fatty
acids of a whisk fern Psilotum nudum. J. Am. Oil Chem. Soc. 1992, 69, 1232–1235, doi:10.1007/bf02637687.
394. Zheng, L. Psilotin with Antitumor Effect. China Patent 1028278, Sep 5, 2007.
395. Tanaka, N.; Murakami, T.; Saiki, Y.; Chen, C.M.; Gomez, P.L.D. Chemical and chemotaxonomical studies of
ferns. XXXVII. Chemical studies on the constituents of Costa Rican ferns. 2. Chem. Pharm. Bull. 1981, 29,
3455–3463, doi:10.1248/cpb.29.3455.
396. Sultana, S.; Ilyas, M.; Shaidea, W.A. Chemical investigation of Acrostichum aureum Linn. J. Indian Chem. Soc.
1986, 63, 1074–1075.
397. Uddin, S.J.; Jason, T.L.H.; Beattie, K.D.; Grice, I.D.; Tiralongo, E. (2S,3S)-Sulfated Pterosin C, a cytotoxic
sesquiterpene from the Bangladeshi angrove fern Acrostichum aureum. J. Nat. Prod. 2011, 74, 2010–2013,
doi:10.1021/np2004598.
398. Lu, M.; Huang, K.; Shi, S.; Zhang, H. Study on the chemical constituents of Selaginella involvens Spring and
in vitro antibacterial activities of partial chemical constituents. Tianran Chanwu Yanjiu Yu Kaifa 2009, 21,
973–975.
399. Merchant, J.R.; Desai, H.K. Isolation of nanentine from Cassytha filiformis and its synthesis. Indian J. Chem.
1973, 11, 342–344.
400. Wu, Y.C.; Chao, Y.C.; Chang, F.R.; Chen, Y.Y. Alkaloids from Cassytha filiformis. Phytochemistry 1997, 46,
181–184.
401. Chang, F.R.; Chao, Y.C.; Teng, C.M.; Wu, Y.C. Chemical constituents from Cassytha filiformis II. J. Nat. Prod.
1998, 61, 863–866. doi:10.1021/np970348g.
402. Stevigny, C.; Block, S.; De Pauw-Gillet, M.C.; De Hoffmann, E.; Llabres, G.; Adjakidje, V.; Quetin-Leclercq,
J. Cytotoxic aporphine alkaloids from Cassytha filiformis. Planta Med. 2002, 68, 1042–1044, doi:10.1055/s-
2002-35651.
403. Ho, J.C.; Chen, C.M.; Row, L.C. Neolignans from the parasitic plants. Part 2. Cassytha filiformis. J. Chin. Chem.
Soc. 2004, 51, 221–223.
404. Li, G.; Chen, Y. Study on the chemical constituents of Cuscuta australis R.Br. Zhongguo Zhongyang Zazhi 1997, 22, 548–550.
405. Guo, C.; Han, G.; Su, Z. Chemical constituents from the seeds of Cuscuta australis. Zhongguo Yaoxue Zazhi 1997, 32, 8–11.
406. Guo, H.; Li, J. Study on constituents of the seed from Cuscuta australis. Beijing Zhongyang Daxue Xuebao 2000, 23, 20–23.
407. Anis, E.; Mustafa, G.; Ullah, N.; Malik, A.; Afza, N.; Badar, Y. Phytochemical studies on Cuscuta reflexa. Pak. J. Sci. Ind. Res. 1999, 42, 170–172.
408. Anis, E.; Mustafa, G.; Ahmed, S.; Malik, A.; Afza, N.; Badar, Y. Sterols and sterol glycosides from Cuscuta reflexa. Nat. Prod. Sci. 1999, 5, 124–126.
409. Gonzalez, J.; Arias, T.; Moreno, B.; Arias, B. Terpenes isolated from the fruits of Clusia ssp. Rev. Colomb. Quim. 1988, 17, 89–91.
410. Mallavadhani, U.V.; Narasimhan, K.; Sudhakar, A.V.S.; Mahapatra, A.; Li, W.; van Breemen, R.B. Three new pentacyclic triterpenes and some flavonoids from the fruits of an Indian ayurvedic plant Dendrophthoe falcata and their estrogen receptor binding activity. Chem. Pharm. Bull. 2006, 54, 740–744, doi:10.1248/cpb.54.740.
411. Wang, Q.; Li, L.; Li, M. Studies on the chemical constituents of qiaohuaijisheng (Macrosolen cochinchinensis). Zhongcaoyao 1996, 27, 518–521.
412. Lohezic-Le Devehat, F.; Tomasi, S.; Fontanel, D.; Boustie, J. Flavonols from Scurrula ferruginea Danser (Loranthaceae). Z. Fuer Nat. C J. Biosci. 2002, 57, 1092–1095.
413. Kitajima, J.; Kimizuka, K.; Tanaka, Y. New sterols and triterpenoids of Ficus pumila fruit. Chem. Pharm. Bull. 1998, 46, 1408–1411, doi:10.1248/cpb.46.1408.
414. Kitajima, J.; Kimizuka, K.; Tanaka, Y. New dammarane-type acetylated triterpenoids and their related compounds of Ficus pumila fruit. Chem. Pharm. Bull. 1999, 47, 1138–1140, doi:10.1248/cpb.47.1138.
415. Kitajima, J.; Kimizuka, K.; Tanaka, Y. Three new sesquiterpenoid glucosides of Ficus pumila fruit. Chem. Pharm. Bull. 2000, 48, 77–80, doi:10.1248/cpb.48.77.
416. Du, X.M.; Sun, N.Y.; Irino, N.; Shoyama, Y. Glycosidic constituents from in Vitro Anoectochilus formosanus. Chem. Pharm. Bull. 2000, 48, 1803–1804.
417. Wu, B.; Chen, J.B.; He, S.; Pan, Y.J. Oxepine and bibenzyl compounds from Bulbophyllum kwangtungense. Gaodeng Xuexiao Huaxue Xuebao 2008, 29, 305–308.
418. Majumder, P.L.; Sen, R.C. Bulbophyllanthrone, a phenantraquinone from Bulbophyllum odoratissimum. Phytochemistry 1991, 30, 2092–2094, doi:10.1016/0031-9422(91)85078-e.
419. Liu, D.; Pang, F.; Zhang, J.; Wang, N.; Yao, X. Studies on the chemical constituents of Bulbophyllum odoratissimum Lindl. Zhongguo Yaoxue Huaxue Zazhi 2005, 15, 103–107.
420. Liu, D.; Pang, F.; Zhang, X.; Gao, H.; Wang, N.; Yao, X. Water-soluble phenolic glycosides from the whole plant of Bulbophyllum odoratissimum. Yaoxue Xuebao 2006, 41, 738–741.
421. Chen, Y.G.; Xu, J.J.; Yu, H.; Qing, C.; Zhang, Y.L.; Liu, Y.; Wang, J.H. 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene, a new phenanthrene from Bulbophyllum odoratissimum. J. Korean Chem. Soc. 2007, 51, 352–355.
422. Leong, Y.W.; Harrison, I.J.; Powell, A.D. Phenanthrene and other aromatic constituents of Bulbophyllum vaginatum. Phytochemistry 1999, 50, 1237–1241, doi:10.1016/s0031-9422(98)00687-6.
423. Leong, Y.W.; Harrison, I.J. A Biphenanthrene and a Phenanthro[4,3-b]furan from the orchid Bulbophyllum vaginatum. J. Nat. Prod. 2004, 67, 1601–1603, doi:10.1021/np049909b.
424. Juneja, R.K.; Sharma, S.C.; Tandon, J.S. Two substituted bibenzyls and a dihydrophenanthrene from Cymbidium aloifolium. Phytochemistry 1987, 26, 1123–1125, doi:10.1016/s0031-9422(00)82362-6.
425. Barua, A.K.; Ghosh, B.B.; Ray, S.; Patra, A. Cymbinodin A, a phenantraquinone from Cymbidium aloifolium. Phytochem. 1990, 29, 3046–3047, doi:10.1016/s0031-9422(90)87138-k.
426. Ghosh, B.B.; Ray, S.; Bhattacharyya, P.; Datta, P.K.; Mukherjee, B.B.; Patra, A.; Banerjee, A.K.; Barua, A.K. Cymbinodin B, a phenantraquinone from Cymbidium aloifolium. Indian J. Chem. Sect. B 1992, 31, 557–558.
427. Lee, J.H.; Kim, D.H.; Bang, M.H.; Yang, H.J.; Bang, S.H.; Chung, I.S.; Kwon, B.M.; Kim, S.H.; Kim, D.K.; Park, M.H.; et al. Isolation of sterols from the methanol extracts of Cymbidium goeringii REICHB. fil. Han’guk Eungyong Sangmyong Hwahakhoeji 2005, 48, 263–266.
428. Dahmen, J.; Leander, K. Amotin and amoenin, two sesquiterpenes of the picrotoxane group from Dendrobium amoenum. Phytochemistry 1978, 17, 1949–1952, doi:10.1016/s0031-9422(00)88740-3.
429. Veerraju, P.; Rao, N.S.P.; Rao, L.J.; Rao, K.V.J.; Rao, P.R.M. Amoenumin, a 9,10-dihydro-5H-phenanthro-(4,5-b,c,d)-pyran from *Dendrobium amoenum*. *Phytochemistry* 1989, *28*, 950–951, doi:10.1016/0031-9422(89)80154-2.

430. Majumder, P.L.; Guha, S.; Sen, S. Benzenyl derivatives from the orchid *Dendrobium amoenum*. *Phytochemistry* 1999, *52*, 1365–1369, doi:10.1016/s0031-9422(99)00370-2.

431. Yang, L.; Wang, Z.; Xu, L. Phenol and a triterpene from *Dendrobium auranthiacum* var. denneanum (Orchidaceae). *Biochem. Syst. Ecol.* 2006, *34*, 658–660, doi:10.1016/j.bse.2006.03.003.

432. Bi, Z. Chemical constituents of *Dendrobium fimbriatum* Hook. (I). *Zhongguo Yaoke Daxue Xuebao* 2001, *32*, 200.

433. Qiu, L.; Rui, L.; Xing, W.T.; Yuan, L.G. Isolation and purification of two constituents from *Dendrobium fimbriatum* Hook by high-speed counter-current chromatography using stepwise elution. *Sep. Sci. Technol.* 2009, *44*, 1218–1227, doi:10.1080/01496390902728850.

434. Yao, S.; Tang, C.P.; Li, X.Q.; Ye, Y. Phochinenins A–F, dimeric 9,10-dihydrophenanthrene derivatives, from *Pholidota chinensis*. *Heli. Chim. Acta.* 2008, *91*, 2122–2129.

435. Wu, B.; Qu, H.; Cheng, Y. Cytotoxicity of new stilbenoids from *Pholidota chinensis* and their spin-labeled derivatives. *Chem. Biodiv.* 2008, *5*, 1803–1810, doi:10.1002/cbdv.200890169.

436. Lin, L.; Liu, Y.; Wu, C.; Wang, Y. Chemical constituents of *Pholidota chinensis* Lindl. *Shizhen Guoyi Guoyao* 2009, *20*, 922–923.

437. Anuradha, V.; Rao, M.V.B.; Aswar, A.S. Oxo-tessalatin, a novel phenanthrapyrene isolated from *Vanda tessalata*. *Oriental. J. Chem.* 2008, *24*, 1119–1122.

438. Villegas, L.F.; Fernandez, I.D.; Maldonado, H.; Zavaleta, A.; Vaisberg, A.J.; Hammond, G.B. Evaluation of the wound-healing activity of selected traditional medicinal plants from Peru. *J. Ethnopharmacol.* 1997, *55*, 193–200.

439. Talapatra. Denbinobin, a new phenanthraquinone and other constituents from *Dendrobium nobile* Lindl (Orchidaceae). *Int. Conf. Chem. Biotechnol. Biol. Act.* Nat. Prod. 1981, *3*, 215.

440. Talapatra, B.; Mukhopadhyay, P.; Chaudhury, P.; Talapatra, S.K. Denbinobin, a new phenanthraquinone from *Dendrobium nobile* Lindl (Orchidaceae). *Indian J. Chem.* Sect. B 1982, *21*, 386–387.

441. Shu, Y.; Zhang, D.M.; Guo, S.X. A new sesquiterpene glycoside from *Pholidota chinensis* Lindl. *J. Asian Nat. Prod. Res.* 2004, *6*, 311–314, doi:10.10286/2031001595971.

442. Zhang, X.; Gao, H.; Han, H.; Liu, H.; Wang, N.; Yao, X.; Wang, Z. Sesquiterpenes from *Dendrobium nobile*. *Zhongcaoyao* 2007, *38*, 1771–1774.

443. Liu, Q.F.; Chen, W.L.; Tang, J.; Zhao, W.M. Novel bis(bibenzyl) and (propylphenyl)bibenzyl derivatives from *Dendrobium nobile*. *Helv. Chim. Acta.* 2007, *90*, 1745–1750, doi:10.1002/hlca.200790183.

444. Li, Y. Studies on chemical constituents from *Dendrobium nobile* Lindl. *Shizhen Guoyi Guoyao* 2010, *21*, 39.

445. Estrada, S.; Toscano, R.A.; Mata, R. New phenanthrene derivatives from *Maxillaria densa*. *J. Nat. Prod.* 1999, *62*, 1175–1178, doi:10.1021/np990061e.

446. Estrada, S.; Acevedo, L.; Rodriguez, M.; Toscano, R.A.; Mata, R. New triterpenoids from the orchids *Scaphyglottis livida* and *Nidema boothii*. *Nat. Prod. Lett.* 2002, *16*, 81–86, doi:10.1076/107563029019967.

447. Majumder, P.; Sarkar, A.K.; Chakraborti, J. Isoflavidinin and iso-oxoflavidinin, two 9,10-dihydrophenanthrenes from the orchids *Pholidota articulata*, *Otochilus porecta* and *Otochilus fusca*. *Phytochemistry* 1982, *21*, 2713–2716, doi:10.1016/0031-9422(82)83104-x.

448. Lin, W.; Chen, W.; Xue, Z.; Liang. New triterpenoids of *Pholidota chinensis*. *Planta Med.* 1986, *52*, 4–6.

449. Yao, S.; Tang, C.P.; Ye, Y.; Kurtán, T.; Kiss-Szikszaí, A.; Artus, S.; Pescitelli, G.; Salvadori, P.; Krohn, K. Stereochemistry of atropisomeric 9,10-dihydrophenanthrene dimers from *Pholidota chinensis*. *Tetrahedron Asymmetry* 2008, *19*, 2007–2014, doi:10.1016/j.tetasy.2008.08.013.

450. Mahiou, V.; Roblot, F.; Hocquemiller, R.; Cave, A.; Barrios, A.A.; Founet, A.; Ducrot, P.H. Piperogalin, a new prenylated diphenol from *Peperomia galoides*. *J. Nat. Prod.* 1995, *58*, 324–328, doi:10.1021/np50116a031.

451. Banerji, A.; Bandypadhyay, D.; Sarkar, M.; Siddhanta, A.K.; Pal, S.C.; Ghosh, S.; Abraham, K.; Shoolery, J.N. Structural and synthetic studies on the retrofractamides—Amide constituents of *Piper retrofractum*. *Phytochemistry* 1985, *24*, 279–284, doi:10.1016/s0031-9422(00)83537-2.

452. Ahn, J.W.; Ahn, M.J.; Zee, O.P.; Kim, E.J.; Lee, S.G.; Kim, H.J.; Kubo, I. Piperidine alkaloids from *Piper retrofractum* fruits. *Phytochemistry* 1992, *31*, 3609–3612.

453. Pande, A.; Shukla, Y.N.; Srivastava, R.; Verma, M. 3-Methyl-5-decanoylpyridine and amides from *Piper retrofractum*. *Indian J. Chem.* Sect. B Org. Chem. Incl. Med. Chem. 1997, *36*, 377–379.
454. Banerji, A.; Sarkar, M.; Datta, R.; Sengupta, P.; Abraham, K. Amides from *Piper brachystachyum* and *Piper retrofractum*. *Phytochemistry* **2002**, *59*, 897–901, doi:10.1016/s0031-9422(01)00364-8.

455. Ray, S.; Thakur, T.N.; Ghosh, A.; Barua, A.K. Chemical investigation of *Viscum articulatum*. *J. Indian Chem. Soc.* **1984**, *61*, 727–728.

456. Richter, A. Viscumitol, a dimethyl-ether of muco-inositol from *Viscum album*. *Phytochemistry* **1992**, *31*, 3925–3927, doi:10.1016/s0031-9422(00)97555-1.

457. Wang, X.; Li, L.; Li, M. Chemical constituents of *Viscum articulatum* Burm. F. (III). *Huaxi Yaoxue Zazhi* **1995**, *10*, 1–3.

458. Yang, Y. Determination of chemical constituents in *Viscum ovalifolium* DC. *Guangzhou Zhongyiyou Daxue Xuebao* **2005**, *22*, 144.

459. Yang, Y.; Sha, C.; Chen, M. Constituents of *Viscum ovalifolium* DC(II). *Zhongguo Yaoxue Zazhi* **2011**, *46*, 11–13.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).