Overexpression of the X-linked ribosomal protein S4 predicts poor prognosis in patients with intrahepatic cholangiocarcinoma

JIE KUANG\(^1\)*, QIN-YU LI\(^1\)*, FEI FAN\(^2\), NING-JIA SHEN\(^2\), YONG-JIE ZHAN\(^2\), ZHAO-HUI TANG\(^3\) and WEN-LONG YU\(^2\)

\(^1\)Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092; \(^2\)Department II of Biliary Tract Surgery, Eastern Hepatobiliary Hospital, Shanghai 200438; \(^3\)Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China

Received November 4, 2015; Accepted January 11, 2017

DOI: 10.3892/ol.2017.6137

Abstract. X-linked ribosomal protein S4 (RPS4X) has previously been reported to be associated with cisplatin resistance and clinical outcome in bladder and ovarian cancer. However, the value of RPS4X as a diagnostic and prognostic marker in intrahepatic cholangiocarcinoma (ICC) has not yet been investigated. The present study evaluated the expression pattern, and diagnostic and prognostic value of RPS4X in patients with ICC. Retrospective analysis was performed for a total of 201 patients with intrahepatic cholangiocarcinoma, and 8 patients with inflammation of the bile duct. Immunohistochemistry was performed using tissue microarrays to characterize the expression profile of RPS4X. Receiver operating characteristic (ROC) curves, the Kaplan-Meier estimator and Cox regression analysis were applied to evaluate the potential diagnostic and prognostic value of RPS4X in ICC. RPS4X was significantly upregulated in ICC tissues compared with the inflamed bile duct tissues. When differentiating ICC from normal controls, ROC analysis of RPS4X gave an area under the curve value of 0.9030 (sensitivity, 82.59%; specificity, 100%). RPS4X expression was significantly positively correlated with serum alkaline phosphatase levels. Survival analysis demonstrated that RPS4X expression levels were an independent prognostic factor for overall survival. Therefore, RPS4X expression levels may serve as a novel diagnostic and prognostic marker in ICC.

Introduction

Intrahepatic cholangiocarcinoma (ICC) constitutes the second most prevalent primary hepatic malignancy following hepatocellular carcinoma (HCC) (1,2). Whilst more uncommon in the United States and Europe, the incidence rates of this malignancy are high in China (2,3). Although the diagnostic and surgical approaches for the treatment of ICC have been improved to a certain extent, the survival rates for patients with ICC remain unfavorable (4). As adjuvant therapy is frequently ineffective for patients with ICC, complete surgical resection is currently the only curative treatment (5). However, the majority of patients with ICC are diagnosed at an advanced stage with intrahepatic and lymph node metastases, when curative surgery is not a viable option (6-8). Despite numerous advances in ICC research, the mechanisms underlying ICC progression remain poorly understood, and further studies to identify diagnostic and prognostic factors are required.

X-linked human ribosomal protein S4 (RPS4X) encodes a component of the 40S subunit of the ribosomal complex (9) and is not subject to X-inactivation (10). It has also been reported that RPS4X haploinsufficiency serves a role in Turner syndrome (11). Previous studies have suggested that RPS4X may be important in tumor progression, and demonstrated that RPS4X physically interacts with Y-box binding protein-1 (YB-1) in breast and ovarian cancer cell lines (12,13). The RPS4X/YB-1 complex is critical in counteracting cisplatin resistance in MCF7 and MDA-MB-231 breast cancer cells (12,13). Furthermore, RPS4X has been identified as an independent prognostic factor for ovarian and bladder cancer (13,14). However, the potential diagnostic and prognostic function of RPS4X in patients with ICC remains to be elucidated. In the present study, the expression profile of RPS4X, and its diagnostic and prognostic significance in patients with ICC was evaluated. This may aid in the future treatment and management of patients with ICC.
Patients and methods

Patients. A total of 201 patients (146 male, 55 female; age range, 27-81) with ICC, who underwent surgical resection at the Eastern Hepatobiliary Surgery Hospital (Shanghai, China) between July 2000 and December 2006, were included in the current study. Inflamed bile duct (IBD) samples were collected as normal control tissues from 8 patients with ICC who underwent a hepatectomy at the same hospital between March 2008 and September 2008. ICC tissue samples were pathologically diagnosed at the time of surgery and independently examined by two pathologists. No patients in the present study received chemotherapy or radiotherapy prior to surgery. Tumor stage was defined according to the American Joint Committee on Cancer Tumor-Node-Metastasis (TNM) staging system (15).

Follow-up. Patient follow-up examinations were performed monthly for the first 2-3 months following surgery, and every 2-6 months thereafter. Where tumor recurrence or metastasis was suspected, magnetic resonance imaging, positron emission tomography-computed tomography and biopsies were performed. Overall survival (OS) was defined as the time from the date of hepatectomy to the final follow-up or mortality. The time to recurrence (TTR) was defined as the time from the date of hepatectomy to the first relapse, distant metastasis. The median follow-up time was 22.5 months (range, 0.2-92.3 months). Of the 201 patients with ICC, the TTR information of 73 patients was not accessible for the follow-up period or until the date of mortality.

For the use of clinical materials in the current study, written informed consent was obtained from patients, in addition to approval from The Ethics Committee of the Eastern Hepatobiliary Surgery Hospital. All experiments were performed in accordance with the approved guidelines of the Eastern Hepatobiliary Surgery Hospital.

Tissue microarray construction (TMA), immunohistochemistry (IHC), signal evaluation and integrated optical density (IOD) analysis. TMA construction was performed as described previously (16,17). Representative formalin-fixed paraffin-embedded tumor tissues, fixed in 10% neutral formaldehyde at room temperature for 12-24 h and embedded in paraffin, were collected and used to construct a long-distance peritumoral TMA chip. For IHC, 4-µm-thick sections were used and IOD analysis was performed for evaluating the expression of RPS4X as described previously (18). An anti-RPS4X polyclonal antibody was purchased from Abmart (Shanghai, China; dilution, 1:200; cat. no. P30129S) and an EnVision Detection kit (cat. no. GK500705: Gene Tech, Shanghai, China), which included a horseradish peroxidase secondary antibody, was used with ChemMate™ diaminobenzidine Chromogen reagent (Gene Tech Biotechnology Co., Ltd. Shanghai, China), to visualize tissue antigens. Slides omitting the primary antibodies were produced as the negative control for the IHC assay. Images were captured under high-power magnification (x200, light microscopy). Mean IOD values were calculated and analyzed using Image-Pro Plus software (version 6.0; Media Cybernetics, Inc., Rockville, MD, USA). For the determination of high or low RPS4X expression levels, optimal cutoff IOD values were estimated using X-tile software (version 3.6.1; Yale University, New Haven, CT, USA).

Table I. Association between RPS4X expression and the clinicopathological characteristics of patients with ICC.

Clinicopathological characteristic	RPS4X	P-value	
	Low	High	
Age, years			
<52	40	61	0.138
>52	50	50	
Gender			
Male	68	78	0.403
Female	22	33	
Liver cirrhosis status			
Absent	56	80	0.138
Present	34	31	
Serum CEA, µg/l			
<5	72	91	0.721
>5	18	20	
Serum CA19-9, U/ml			
≤37	41	55	0.573
>37	49	56	
Serum ALT, U/l			
≤75	80	91	0.172
>75	10	20	
Serum GGT, U/l			
≤50	36	34	0.180
>50	54	76	
Serum ALP, U/l			
≤119	29	52	0.031*
>119	61	58	
Tumor size, cm			
≤5	32	40	0.944
>5	58	71	
Tumor number			
Single	72	93	0.487
Multiple	18	18	0.662
Microvascular invasion status			
Absent	59	76	
Present	31	35	
TNM stage			0.899
I	41	50	
II	34	45	
III	3	2	
IV	12	14	

*P<0.05. ICC, intrahepatic cholangiocarcinoma; RPS4X, X-linked ribosomal protein S4; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; ALT, alanine transaminase; GGT, γ-glutamyl transpeptidase; ALP, alkaline phosphatase; TNM, tumor node metastasis.
Statistical analysis. All statistical analyses were performed with SPSS software (version 13.0; SPSS, Inc., Chicago, IL, USA). Differences between variables were assessed using the χ² (chi-square) test or Mann-Whitney U test (scatter dot plot). Data are presented as the mean ± standard error of the mean. The Kaplan-Meier estimator was used to assess survival and the log-rank test was applied to compare survival rates between patient subgroups. Univariate and multivariate analyses were performed using the Cox’s proportional hazards regression model. The clinicopathological variables that were determined to be significant in univariate analysis were further evaluated using Cox’s multivariate proportional hazards regression analysis. Receiver operating characteristic (ROC) curve analysis was used to determine the predictive significance of parameters. P<0.05 was considered to indicate a statistically significant difference.

Results

RPS4X is significantly upregulated in ICC tissue samples. A total of 201 ICC tissue samples and 8 IBD tissue samples used to construct a TMA, and RPS4X expression levels were detected using IHC analysis (Fig. 1). Staining for RPS4X in the ICC tissues (Fig. 1C and D) was observed to be significantly more intense compared with that observed in the IBD control tissues (Fig. 1B). The IOD of each tissue sample was quantitatively analyzed, and the results demonstrated that the staining intensity of RPS4X in the ICC group was significantly higher compared with that of the IBD control group (P=0.0001; Fig. 1E). In addition, ROC analysis revealed that the area under the curve (AUC) value of RPS4X was 0.9030, where the optimal cutoff IOD value was 29993910, providing a sensitivity of 82.59% and a specificity of 100% for detecting ICC (Fig. 1F).

High RPS4X expression levels are associated with the clinicopathological features of patients with ICC. The association between the clinicopathological features of ICC and RPS4X expression levels was retrospectively investigated (Table I). The cohort included 91 cases of TNM stage I (45.3%), 79 cases of stage II (39.3%), 5 cases of stage III (2.5%) and 26 cases of stage IV (12.9%) ICC. RPS4X expression levels in the ICC tissue samples were determined to be high in 111/201 cases (55.2%) and low in 90/201 cases (44.8%). χ² test indicated a correlation between RPS4X expression levels and serum alkaline phosphatase levels (P=0.031). However, no significant association was observed between RPS4X expression levels and other clinicopathological parameters, including age, gender, liver cirrhosis, serum carcinoembryonic antigen (CEA), serum carbohydrate antigen (CA) 19-9, serum alanine transaminase, serum γ-glutamyl transpeptidase (GGT), tumor size, tumor number, microvascular invasion and TNM stage.

High RPS4X expression levels indicate poor survival in patients with ICC. To determine the prognostic value of RPS4X in postsurgical patients with ICC, Kaplan-Meier OS
Table II. Univariate and multivariate analysis of the prognostic value of the clinicopathological characteristics of patients with ICC.

Clinicopathological characteristic	OS Univariate	OS Multivariate	TTR Univariate	TTR Multivariate				
	P-value	HR	95% CI	P-value	HR	95% CI	P-value	
Age, years: ≤52 vs. >52	0.971	0.117			0.117			
Gender: Male vs. female	0.497	0.319			0.453			
Liver cirrhosis: Absent vs. present	0.970				0.957			
Serum CEA, µg/l: ≤10 vs. >10	0.065	0.957			0.552			
Serum CA19-9, U/ml: ≤75 vs. >75	0.099				0.625			
Serum ALT, U/l: ≤119 vs. >119	0.741				0.373			
Serum GGT, U/l: ≤50 vs. >50	0.029*	0.134			0.573			
Serum ALP, U/l: ≤119 vs. >119	0.094				0.031*	1.608	1.045-2.472	0.031*
Tumor size, cm: ≤5 vs. >5	0.085				0.188			
Tumor number: Single vs. multiple	0.043*	0.144			0.847			
Microvascular invasion: Absent vs. present	0.078				0.135			
TNM stage: I vs. II vs. III vs. IV	0.003*	1.258	1.086-1.457	0.002*	1.045-2.472	0.031*		
RPS4X expression: Low vs. high	0.026*	1.424	1.065-1.904	0.017*	0.438			

*P<0.05. ICC, intrahepatic cholangiocarcinoma; RPS4X, X-linked ribosomal protein S4; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; ALT, alanine transaminase; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; TNM, tumor node metastasis; NS, non significant; OS, overall survival; TTR, time to recurrence; CI, confidence interval; HR, hazard ratio.
Figure 2. Kaplan-Meier estimator survival analysis of RPS4X expression in patients with ICC. (A) Probability analysis of the post-operative overall survival demonstrated that patients with ICC expressing high levels of RPS4X had a poorer prognosis compared with those expressing low levels. (B) The time to recurrence for patients with ICC expressing high and low levels of RPS4X did not significantly differ. RPS4X, X-Linked ribosomal protein S4; ICC, intrahepatic cholangiocarcinoma.

Disease recurrence and mortality in patients with bladder and ovarian cancer (13,14). The present study aimed to determine the association between RPS4X expression levels and the clinical outcome of patients with ICC. Tissue samples from a population of 201 patients with ICC and 8 patients with IBD were analyzed using IHC. The results indicated that RPS4X expression was abnormally increased in the ICC tissue specimens compared with the normal IBD tissues. In this cohort of 201 patients with ICC, Kaplan-Meier OS analysis demonstrated that high levels of RPS4X expression were associated with a shorter survival time and poor prognosis following surgical resection of the tumor. Multivariate Cox regression analysis also revealed that RPS4X expression levels were an independent prognostic marker in patients with ICC. However, Kaplan-Meier analyses indicated no significant association between RPS4X expression levels and TTR in the present study. Concordantly, multivariate Cox regression analysis also excluded RPS4X expression levels as an independent prognostic marker for TTR. However, the missing TTR data (73/201) from the follow-up period potentially impacted the TTR analysis. To the best of our knowledge, the present study is the first to demonstrate that the overexpression of RPS4X is associated with the poor prognosis of patients with ICC.

The poor prognosis of patients with ICC following tumor resection has not improved over the last decade, which is primarily due to late stage diagnosis leading to high rates of metastasis and recurrence (25,26). Plasma serum markers for ICC, including CA19-9 and CEA, usually possess high specificity, but low sensitivity; CA19-9 is increased in ~50% of ICC cases, whereas CEA is elevated in 15-20% of ICC cases (27,28). Therefore, these serum markers are insufficiently sensitive for a definitive diagnosis. In the present study, ROC analysis of RPS4X expression determined an AUC value of 0.9030 with a sensitivity of 82.59% and a specificity of 100%. This result indicates that immunohistochemical staining of RPS4X in tissues enables the differentiation between ICC tissues and IBD. Tissue biopsy is not routinely recommended for patients with ICC that are going to undergo curative resection. In this cohort, the median expression level of RPS4X was lower in IBD compared with the normal IBD tissues. In this cohort, Kaplan-Meier analyses indicated no significant association between RPS4X expression levels and TTR in the present study.
tissues. A previous study demonstrated that the knockdown of RPS4X expression was able to decrease DNA synthesis and induce cisplatin resistance in MCF7 and MDA-MB-231 breast cancer cell lines (11). However, whether RPS4X serves a role in the response of patients with ICC to systemic adjuvant therapy, including 5-FU (fluourouracil)-based radiation and gemcitabine/5-FU, requires further clarification.

In conclusion, the findings of the present study indicate that increased RPS4X expression levels are a diagnostic and prognostic biomarker for ICC, which is able to independently identify patients with a poor clinical prognosis.

Acknowledgements

The present study was supported by the Medical Guide Fund of the Shanghai Science and Technology Committee (grant no. 134119a0202).

References

1. Zhang GW, Lin JH, Qian JP and Zhou J: Identification of risk and prognostic factors for patients with cholangiocarcinosis-associated intrahepatic cholangiocarcinoma. Ann Surg Oncol 21: 3628-3637, 2014.
2. Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin 64: 9-29, 2014.
3. Patel T: Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 33: 1353-1357, 2001.
4. Brown KM, Parmar AD and Geller DA: Intrahepatic cholangiocarcinoma. Surg Oncol Clin N Am 23: 231-246, 2014.
5. Kawarada Y, Yamagawa K and Das BC: Analysis of the relationships between clinicopathologic factors and survival time in intrahepatic cholangiocarcinoma. Am J Surg 183:679-685, 2002.
6. Dhanasankaran R: Hemming AW, Zendejas I, George T, Nelson DR, Soldevila-Pico C, Firpi RJ, Morelli G, Clark V and Cabrera R: Temperature-sensitive cell cycle mutant tsBN63: Identity of protein S4 consistent with a role in Turner syndrome. Nat Genet 4: 268-271, 1993.
7. Garand C, Guay D, Sereckuk C, Chow D, Tsafack SP, Langlois M, Perreault E, Yin HH and Lebel M: An integrative approach to identify YB-1-interacting proteins required for cisplatin resistance in MCF7 and MDA-MB-231 breast cancer cells. Cancer Sci 102: 1410-1417, 2011.
8. Tsafack SP, Meunier L, Sanchez L, Madore J, Provencher D, Mes-Masson AM and Lebel M: Low expression of the X-linked ribosomal protein S4 in human serous epithelial ovarian cancer is associated with a poor prognosis. BMC Cancer 15: 303, 2015.
9. Paquet ÉR, Hovington H, Brisson H, Lacombe C, Larue H, Tétu B, Lacombe L, Fradet Y and Lebel M: Low level of the X-linked ribosomal protein S4 in human uterine carcinomas is associated with a poor prognosis. Biomark Med 9: 187-197, 2015.
10. Edge SB and Compton CC: The American joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of the TNM. Ann Surg Oncol 17: 1471-1474, 2010.
11. Albanbahi M, Green A, Rakha E, Aleskandarany M, Nolan C, Ellis I and Cheung KL: Construction of tissue microarrays from core needle biopsy-a systematic literature review. Histopathology 68: 323-332, 2016.
12. Tan D, Li Q, Deeb G, Ramnath N, Slocum HK, Brooks J, Cheney R, Wiseman S, Anderson T and Loewen G: Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: A high-throughput tissue microarray and immunohistochemistry study. Hum Pathol 34: 597-604, 2003.
13. Jin GZ, Li Y, Cong WM, Yu H, Dong H, Shu H, Liu XH, Yan GQ, Zhang L, Zhang Y, et al: ITRAQ-2DLC-ESI-MS/MS based identification of a new set of immunohistochemical biomarkers for classification of dysplastic nodules and small hepatocellular carcinoma. J Proteome Res 10: 3418-3428, 2011.
14. Sang H, Li T, Li H and Liu J: Gabl regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma. Tumour Biol 36:8367-8377, 2015.
15. Hyder O, Hatzaras I, Sotiriopoulos GC, Paul A, Alexandrescu S, Marques H, Pulitano C, Barroso E, Clary BM, Aldighetti L, et al: Recurrence after operative management of intrahepatic cholangiocarcinoma. Surgery 153: 811-818, 2013.
16. Ali SM, Clark CJ, Zaydudin VM, Que FG and Nagorney DM: Role of major vascular resection in patients with intrahepatic cholangiocarcinoma. Ann Surg Oncol 20: 2023-2028, 2013.
17. de Jong MC, Nathan H, Sotiriopoulos GC, Paul A, Alexandrescu S, Marques H, Pulitano C, Barroso E, Clary BM, Aldighetti L, et al: Intrahepatic cholangiocarcinoma: An international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol 29: 3140-3145, 2011.
18. Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, Angelica M, DeMatteo RP, Fong Y, Schwartz L, et al: Intrahepatic cholangiocarcinoma: Rising frequency, improved survival, and determinants of outcome after resection. Ann Surg 248: 84-96, 2008.
19. Ribero D, Pinna AD, Guglielmi A, Ponti A, Nuzzo G, Giuliani SM, Aldighetti L, Calise F, Gerunda GE, Tomatis M, et al: Surgical approach for long-term survival of patients with intrahepatic cholangiocarcinoma: A multi-institutional analysis of 434 patients. Arch Surg 147: 1107-1113, 2012.
20. Razumilava N and Gores GJ: Cholangiocarcinoma. Lancet 383: 2168-2179, 2014.
21. Rizvi S and Gores GJ: Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145: 1215-1229, 2013.
22. Luo X, Yuan L, Wang Y, Ge R, Sun Y and Wei G: Survival outcomes and prognostic factors of surgical therapy for all potentially resectable intrahepatic cholangiocarcinoma: A large single-center cohort study. J Gastrointest Surg 18: 562-572, 2014.
23. Maithel SK, Gamblin TC, Kamel I, Corona-Villalobos CP, Marques H, Pulitano C, Barroso E, Clary BM, Aldighetti L, et al: Multidisciplinary approaches to the surgical treatment of intrahepatic cholangiocarcinoma: Rising frequency, improved survival, and determinants of outcome after resection. Ann Surg 291: 187-197, 2015.