In vitro and In vivo Anti-Helicobacter pylori Activities of Centella asiatica Leaf Extract

Hong-Mei Zheng, Myung-Joo Choi, Jae Min Kim, Kye Wan Lee, Yu Hwa Park, and Don Haeng Lee

1Department of New Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
2National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorder and
4Division of Gastroenterology & Hepatology, Inha University Hospital, Incheon 22332, Korea
3R&D Center, Dong Kook Pharm Co., Ltd., Seoul 06175, Korea

ABSTRACT: Helicobacter pylori infection is associated with an increased risk of developing upper gastrointestinal tract diseases. However, treatment failure is a major cause of concern mainly due to possible recurrence of infection, the side effects, and resistance to antibiotics. The aim of this study was to investigate the activities of Centella asiatica leaf extract (CAE) against H. pylori both in vitro and in vivo. The minimum inhibitory concentrations (MICs) against 55 clinically isolated strains of H. pylori were tested using an agar dilution method. The MICs of CAE ranged from 0.125 mg/mL to 8 mg/mL, effectiveness in inhibiting H. pylori growth was 2 mg/mL. The anti-H. pylori effects of CAE in vivo were also examined in H. pylori-infected C57BL/6 mice. CAE was orally administrated once daily for 3 weeks at doses of 50 mg/kg and 250 mg/kg. CAE at the 50 mg/kg dose significantly reduced H. pylori colonization in mice gastric mucosa. Our study provides novel insights into the therapeutic effects of CAE against H. pylori infection, and it suggests that CAE may be useful as an alternative therapy.

Keywords: Centella asiatica leaf extract, Helicobacter pylori, gastric mucosa, colonization

INTRODUCTION

Helicobacter pylori is a common bacterium and a major worldwide cause of gastrointestinal infection in approximately one-half of the world human population (1,2). H. pylori infection is associated with the development of upper gastrointestinal tract diseases namely chronic gastritis, as well as gastric and duodenal ulcers (3,4) and gastric carcinoma (5). In fact, H. pylori was classified as a Class I carcinogen by the World Health Organization for gastric carcinoma (6). The recommended first line treatments in subjects infected with H. pylori is standard triple therapy [a proton pump inhibitor (PPI)], two antibiotics (clarithromycin, amoxicillin, or metronizazole), or Bismuth based quadruple therapy (7,8). However, these therapies are not always successful due to a rapidly-increasing tolerance of the bacteria and recent results are not very encouraging. These treatments also raise concerns mainly infection recurrence, high costs, side effects, and poor compliance to the therapies (9-12). Despite numerous studies, identifying an optimal therapy for eradication of H. pylori still remains a challenging clinical problem. Based on the systematic reviews and meta-analysis reports, therapeutic failure mainly resulted from H. pylori resistance to the antibiotics (13,14). Therefore, in line with the alternative approaches of naturally occurring medicinal plants, herbal preparations have become more prominent and have been extensively studied worldwide in order to develop new treatment strategies for H. pylori infection.

Centella asiatica (L.) Urban is a perennial herbaceous creeper which belongs to the family Apiaceae, and it is commonly named Gotu Kola or Indian Pennywort and has been used as a traditional herbal medicine in Asiatic countries for hundreds of years (15,16). In several studies, C. asiatica has been reported to have anti-inflammatory and antioxidant activities (17-19), and C. asiatica has been cited in papers regarding anti-gastric ulcers induced by ethanol, aspirin, cold-restraint stress, pylorus ligation, and acetic acid (20-22). In a previous study, we demon-
strated that C. asiatica leaf extract (CAE) confers gastroprotective properties against indomethacin-induced gastric injury in rats (23).

To our knowledge, no studies have investigated the effects of CAE on H. pylori in vivo on its ability to colonize gastric mucosa. Therefore, the aim of this study is to assess the effects of CAE on H. pylori using both in vitro and in vivo models. The in vivo effectiveness of CAE in inhibiting H. pylori gastric mucosal colonization was examined in a C57BL/6 mouse model infected with the Sydney strain (SS1) of H. pylori.

MATERIALS AND METHODS

Preparation of CAE
A 20 g sample of C. asiatica leaf was extracted using the dichoping method in 320 mL of 75% ethanol at 30°C for 22 h and filtered using a fabric filter. The filtrate was evaporated using an evaporator (EYELA, Tokyo, Japan) at 60°C (yield 45%, 54°Brix). All other chemicals were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).

H. pylori strains and methods
Fifty-five archived strains of H. pylori, which were isolated from biopsy specimens of patients in Korea, and H. pylori SS1 (HpKTCC B0890) for animal experiments were obtained from the H. pylori Korean Type Culture Collection (HpKTCC, Korea National Microorganisms Research Resource Center, Suwon, Gyeonggi, Korea), and cultured on 10% bovine serum Muller-Hinton agar plates supplemented with 6 µg/mL vancomycin, 8 µg/mL amphotericin B, 10 µg/mL nalidixic acid in an anaerobic chamber with 10% CO₂, 5% O₂, and 85% N₂ at 37°C with ample humidity. The strain was identified on the basis of colony appearance, Gram staining, and positive reactions in biochemical tests (urease and catalase).

Minimal inhibitory concentration (MIC) determination
H. pylori strains were grown on Mueller-Hinton agar plates. The MICs of CAE for H. pylori were determined by an agar dilution method following the National Committee for Clinical Laboratory Standards Institute guidelines. Briefly, exponentially growing H. pylori cells were suspended in sterile phosphate-buffered saline (PBS) and adjusted to 5×10⁶ colony-forming units (CFU) and were then inoculated directly onto various concentrations of CAE-containing agar dilution plates. Final concentrations of CAE ranged from 0.125 to 8 mg/mL. All plates were incubated as previously described for 3 days. The MIC was defined as the lowest concentration of CAE preventing visible growth.

Animals
Specific pathogen-free 6-week-old male C57BL/6 mice were obtained from Central Lab Animal Inc. (Seoul, Korea). Animal care and all experimental procedures were conducted in accordance with the approval and guidelines of the INHA Institutional Animal Care and Use Committee (INHA 121205-171-1) at the medical school in Inha University. The animals were fed standard rat chow and tap water ad libitum and maintained under a 12-h dark/light cycle at 21°C. For biosafety, the investigators were fully protected with sterilized clothes, masks, and gloves based on Standard Operation Procedures.

H. pylori infection in C57BL/6 mice and CAE treatment
The mice were randomly divided into 3 experimental groups of 10 mice each (Fig. 1). The treatment groups were treated with CAE (50 or 250 mg/kg) by oral administration once daily for 3 weeks. The control group was treated with equivalent volumes of distilled water. Following a pre-treatment period of 1 week, infection was induced in concomitance with CAE administration as follows: the mice were fasted 4 h before inoculation. Specific pathogen-free C57BL/6 male mice were inoculated 3 times by oral gavage with H. pylori SS1 (2×10⁹ CFU/mouse) suspended in 500 µL PBS over 5 days. This followed the well-established mouse model of H. pylori infection (24). Mice inoculated with H. pylori SS1 were kept separately with free access to water and food.

Detection of H. pylori colonization
One day after the final administration, the mice were killed and their gastric mucosa was biopsied for the detection of H. pylori. The presence of H. pylori in gastric mucosa was confirmed by direct bacterial culture, as previously described (25). For culturing, tissue was rubbed across the surface of a plate containing a selective medium of 10% bovine serum, 6 µg/mL vancomycin, 5 µg/mL trimethoprim, 10 µg/mL polymyxin B, 200 µg/mL baci-

Fig. 1. Experimental protocol for Helicobacter pylori infection model. Mice in group 1 were orally administrated distilled water, group 2 and 3 were orally treated Centella asiatica leaf extract (CAE) (50 and 250 mg/kg) once daily for 3 weeks. After 1 week CAE treatment, mice in group 1, 2, and 3 were orally administered H. pylori (2×10⁹ colony-forming units (CFU)) 3 times over 5 days.
tracin, 8 µg/mL amphotericin B, and 10 µg/mL nalidixic acid. Plates were incubated at 37°C under microaerophilic conditions for 5~7 days. Quantitative assessment of *H. pylori* colonization was performed as previously described (26). Briefly, one piece of weighed stomach tissue was homogenized in 200 µL of Brucella broth using a hand homogenizer (Pellet Pestle® Cordless Motor, Kimble Kontes, Rockwood, TN, USA), and the homogenate was diluted 10- and 100-fold in Brucella broth. Fifty microliters of each dilution was plated on selective medium containing the antibiotics mentioned above. Plates were incubated at 37°C under microaerophilic conditions for 5~7 days. *H. pylori* strains were identified by Gram staining, positive urease, and catalase tests. *H. pylori* colonies were then counted to determine the number of CFU of the whole stomach tissue.

Statistical analysis

Data were expressed as mean±standard error of the mean (SEM) values. Statistical comparisons between groups were determined by the non-parametric Kruskal-Wallis and Mann-Whitney U tests. Differences were considered statistically significant at a value of *P*<0.05. Statistical calculations were performed using SPSS software on a MS Windows operating system (version 19, SPSS Inc., Chicago, IL, USA).

RESULTS AND DISCUSSION

Several studies have previously reported that extracts from several plants, such as garlic extracts (27,28), cinnamon extracts (29), and tea catechins (30) have anti-*H. pylori* activities. Previous reports that screened 54 Chinese herbs for anti-*H. pylori* activity revealed that *Rheum palmatum*, *Rhus javanica* L., *Coptis japonica*, and *Eugenia caryophyllata* exhibit strong anti-*H. pylori* activities (31).

In addition, Wang and Huang (32) studied herbs derived from Taiwanese folk medicinal plants and highlighted that *C. asiatica* L. Urban had moderate activity against *H. pylori*.

In the present study, we examined anti-*H. pylori* activity of CAE in vitro and in vivo with the established models of *H. pylori* SS1 infection in C57BL/6 mice.

In order to assess the inhibitory activity of CAE against 55 clinically isolated *H. pylori* strains, the MICs were determined by the agar dilution method. As shown in Fig. 2, the MIC of CAE ranged from 0.125 mg/mL to 8 mg/mL, and the majority of the strains (92%) showed a MIC of 2 mg/mL. CAE at 8 mg/mL concentrations completely inhibited the growth of *H. pylori*.

In order to assess the effectiveness of CAE in vivo, we investigated the anti-*H. pylori* activity of CAE on *H. pylori* colonization in C57BL/6 mice. The animals were killed 3 weeks after treatment with CAE. Stomachs were removed and analyzed by direct and quantitative cultures of *H. pylori*. The ability of *H. pylori* SS1 to colonize the gastric mucosa was significantly decreased in 50 mg/kg CAE treated mice compared to mice from the control (G1) group (5.666±0.062 log CFU vs. 5.913±0.041 log CFU, *P*<0.05). There were no toxic effects observed determined by body weight due to the CAE treatment. Our results confirm that oral treatment with CAE for 3 weeks could reduce *H. pylori* SS1 gastric colonization in a significant proportion of mice (*P*<0.05). These data suggest that CAE supplementation as a safe prophylactic/preventive agent for *H. pylori* infection eradication is worth further consideration.

In conclusion, the present study highlights the potential antibacterial activity of CAE against *H. pylori* in vitro, and showed that CAE may possess significant anti-*H. pylori* activities.

P. lori properties against H. pylori SS1 in C57BL/6 mice. This is the first known report to confirm the effects of CAE against H. pylori in an animal model. Our study suggests that CAE could be a good candidate for overcoming tolerance of antibiotics for the treatment of H. pylori-mediated gastric disease.

ACKNOWLEDGEMENTS

This research was supported by the grants from the Korean Health Industry Development Institute (KHIDI) and by the T2B Infrastructure Center for Digestive Disorders.

AUTHOR DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

1. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325: 1127-1131.

2. Nomura A, Stemmermann GN, Chyoun PH, Kato I, Perez-Perez GI, Blaser MJ. 1991. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325: 1132-1136.

3. Nomura A, Stemmermann GN, Chyoun PH, Perez-Perez GI, Blaser MJ. 1994. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann Intern Med 120: 977-981.

4. Schöttker B, Adamu MA, Weck MN, Brenner H. 2012. Helicobacter pylori infection is strongly associated with gastric and duodenal ulcers in a large prospective study. Clin Gastroenterol Hepatol 10: 487-493.e1.

5. Fuccio L, Zagari RM, Eusebi LH, Laterza L, Cennamo V, Ceroni L, Grilli D, Bazzoli F. 2009. Meta-analysis: can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann Intern Med 151: 121-128.

6. Owens SR, Smith LB. 2011. Molecular aspects of H. pylori-related MALT lymphoma. Patholog Res Int 2011: 193149.

7. Malfertheiner P, Megraud F, O’Morain C, Bazzoli F, El-Omar E, Graham D, Hunt R, Rokkas T, Vakil N, Kuipers EJ. 2007. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut 56: 772-781.

8. Chey WD, Wong BC. 2007. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol 102: 1808-1825.

9. Dannmann HG, Fölsch UR, Hahn EG, von Kleist DH, Körner T, Scharer S, Kist M. 2000. Eradication of H. pylori with pantoprazole, clarithromycin, and metronidazole in duodenal ulcer patients: a head-to-head comparison between two regimes of different duration. Helicobacter 5: 41-51.

10. Gerhard M, Rad R, Prinz C, Naumann M. 2002. Pathogenesis of Helicobacter pylori infection. Helicobacter 7: 17-23.

11. Głupczyński Y, Mégraud F, Lopez-Brea M, Andersen LP. 2001. European multicentre survey of in vitro antimicrobial resistance in Helicobacter pylori. Eur J Clin Microbiol Infect Dis 20: 820-823.

12. Parsons HK, Carter MJ, Sanders DS, Winstanley T, Lobo AJ. 2001. Helicobacter pylori antimicrobial resistance in the United Kingdom: the effect of age, sex and socio-economic status. Aliment Pharmacol Ther 15: 1473-1478.

13. Fischbach L, Evans EL. 2007. Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. Aliment Pharmacol Ther 26: 343-357.

14. De Francesco V, Giorgio F, Hassan C, Manes G, Vannella L, Panella C, Ierardi E, Zullo A. 2010. Worldwide H. pylori antibiotic resistance: a systematic review. J Gastrointestin Liver Dis 19: 409-414.

15. Boiteau P, Ratsimamanga AR. 1996. Asiaticoside extracted from Centella asiatica and its therapeutic uses in cicatrization of experimental and refractory wounds (leprosy, cutaneous tuberculosis and lupus). Therapie 11: 125-149.

16. James JT, Dubery IA. 2009. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 14: 3922-3941.

17. Bonpo P, Kataoka K, Arimochi H, Nakayama H, Kusuhara T, Bando Y, Izumi K, Vinikutkummun U, Ohnishi Y. 2004. Inhibitory effects of Centella asiatica on azoxymethane-induced aberrant crypt focus formation and carcinogenesis in the intestines of F344 rats. Food Chem Toxicol 42: 1987-1997.

18. Shukla A, Rasik AM, Dhawan BN. 1999. Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytother Res 13: 50-54.

19. Wang XS, Dong Q, Zuo JP, Fang JN. 2003. Structure and potential immunological activity of a extract from Centella asiatica (L.) Urban. Carbohydr Res 338: 2393-2402.

20. Cheng CL, Koo MWL. 2000. Effects of Centella asiatica on ethanol induced gastric mucosal lesions in rats. Life Sci 67: 2647-2653.

21. Saïrâm K, Rao CV, Goel RK. 2001. Effect of Centella asiatica Linn on physical and chemical factors induced gastric ulceration and secretion in rats. Indian J Exp Biol 39: 137-142.

22. Guo JS, Cheng CL, Koo MWL. 2004. Inhibitory effects of Centella asiatica water extract and asiaticoside on indolcnic oxide synthase during gastric ulcer healing in rats. Planta Med 70: 1150-1154.

23. Zheng HM, Choi MJ, Kim JM, Cha KH, Lee KW, Park YH, Hong SS, Lee DH. 2016. Centella asiatica leaf extract protects against indomethacin-induced gastric mucosal injury in rats. J Med Food 19: 38-46.

24. Golden SA, Covington HE III, Berton O, Russo SJ. 2011. A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6: 1183-1191.

25. Hernández F, Rivera P, Sigarón M, Miranda J. 1991. Diagnosis of Helicobacter pylori infection: an urease test, histological visualization of curved bacteria and culture. Rev Inst Med Trop Sao Paulo 33: 80-82.

26. Li GQ, Xia HHX, Chen MH, Gu Q, Wang JD, Peng JZ, Chan AOO, Cho CH, So HL, Lam SK, Hu PJ, Liang YJ, Lin HL, Berg DE, Feng ZH, Langenbach R, Wong BCY. 2006. Effects of cyclooxygenase-1 and -2 gene disruption on Helicobacter pylori induced gastric inflammation. J Infect Dis 193: 1037-1046.

27. Cellini L, Di Campli E, Masulli M, Di Bartolomeo S, Allocati N. 1996. Inhibition of Helicobacter pylori by garlic extract (Allium sativum). FEMS Immunol Med Microbiol 13: 273-277.

28. O’Gara EA, Hill DJ, Maslin DJ. 2000. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Appl Environ Microbiol 66: 2269-2273.

29. Tabak M, Armon R, Neeman I. 1999. Cinnamon extracts’ inhibitory effect on Helicobacter pylori. J Ethnopharmacol 67: 269-277.

30. Mabe K, Yamada M, Oguni I, Takahashi T. 1999. In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob Agents Chemother 43: 1788-1791.
31. Bae EA, Han MJ, Kim NJ, Kim DH. 1998. Anti-Helicobacter pylori activity of herbal medicines. *Biol Pharm Bull* 21: 990-992.
32. Wang YC, Huang TL. 2005. Screening of anti-Helicobacter pylori herbs deriving from Taiwanese folk medicinal plants. *FEMS Immunol Med Microbiol* 43: 295-300.