Epidemiology of cancer-related weight loss and sarcopenia in the UK and Ireland: incidence, prevalence, and clinical impact

Erin S. Sullivan1,2*, Louise E. Daly1,2*, Derek G. Power3 & Aoife M. Ryan1,2

1School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland, 2Cork Cancer Research Centre, University College Cork, Cork, Ireland, 3Department of Medical Oncology, Mercy and Cork University Hospitals, Cork, Ireland

Abstract

Background Weight loss (WL) and sarcopenia are associated with negative oncological outcomes including poor treatment tolerance, decreased quality of life, and reduced survival. The number of patients affected by sarcopenia and WL in Ireland and the UK is unknown.

Methods A systematic review was undertaken to determine median rate of WL > 5% and computed tomography-diagnosed sarcopenia in oncology populations. Gaps in the literature were supplemented using local data, collected as part of a 5 year prospective study. Rates of WL and sarcopenia in the population were extrapolated from these data based on incidence and prevalence of each cancer as per national cancer registries.

Results We estimated that across Ireland and the UK, 128 892 cancer patients (34%) are affected by WL > 5% annually (121 641 UK; 7251 Ireland) and there are 133 707 annual cases of sarcopenia in cancer patients (35%) (126 265 UK; 7442 Ireland). Furthermore, we estimate that there are 716 124 and 771 589 cancer survivors with history of WL > 5% or sarcopenia, respectively.

Conclusions Large numbers of patients are affected by cancer-related malnutrition. Given the impact of malnutrition on oncological outcomes and long-term frailty, there is an urgent need to improve access to cancer nutrition care.

Keywords Malnutrition; Cancer; Sarcopenia; Weight loss; Body composition; Epidemiology

Received: 22 January 2020; Accepted: 7 May 2020
*Correspondence to: Erin S. Sullivan, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland. Phone: +353 85 1333050, Email: erin.sullivan@ucc.ie

Background

Cancer cachexia (CC) is a multifactorial syndrome characterized by weight loss (WL) (muscle loss with or without fat loss) and anorexia on a background of inflammation.1 CC is known to be common in oncology populations and is associated with negative clinical outcomes including poor tolerance to treatment, decreased quality of life (QoL), and reduced survival.2 As well as clinical and social outcomes of relevance to the patient, the cost of disease-related malnutrition to the health service is significant.3,4

Many studies have explored the impact of CC, as a condition both in its own right and in terms of its components, WL and sarcopenia. A recent systematic review, which included 35 studies with a cumulative 6894 patients, reported on the impact of pre-treatment sarcopenia in cancer patients.5 They found an overall pre-treatment prevalence of sarcopenia of 39%. Furthermore, they reported increased risk of death, higher rates of post-operative complications, and reduced tolerance to chemotherapy in the patients exhibiting sarcopenia.5 Sarcopenia has consistently been shown to be associated with dose-limiting toxicity (DLT)
across a wide variety of systemic anticancer treatments (single agents, combination treatments, cytotoxic chemotherapy, immunotherapy, and targeted agents) since 2007 with 41 studies to date supporting these findings. Furthermore, the relationship between sarcopenia and poor survival has been the topic of various systematic reviews and meta-analysis. In a recent systematic review of 35 studies that included 6894 patients with solid tumours, low muscle cross-sectional area was observed in 38.6% of patients before commencement of treatment was and associated with poorer overall survival, post-operative complications, and chemotherapy toxicity. While WL has been shown frequently to impair QoL, specifically with 10% WL being associated with significantly poorer QoL, overall and in each of the individual QoL domains (including physical functioning, role functioning, and social functioning). However, the link with sarcopenia is less well described. However, in a recent study of 237 advanced lung and gastrointestinal cancer patients, sarcopenia was associated with worse QoL, specifically higher rates of depression.

Little is known about the prevalence of CC or sarcopenia at national level. A systematic review by Anker et al. estimated the prevalence of CC to be 15.8/10 000 in Europe (2013) and 16.5/10 000 in the USA (2014). Another study by the same group estimated that 170 000 patients in Japan would experience CC annually (13.4/10 000). Other than these studies, the relative burden of the individual components of CC, namely, WL and sarcopenia, has not been well studied. The number of patients with cancer affected by sarcopenia and WL in Ireland and the UK is currently unknown. Given that approximately 338 499 people are diagnosed annually with cancer in the UK and Ireland, even modest proportions of patients affected by WL and sarcopenia could amount to a significant population at risk of negative clinical outcomes, which could be treated with intensive nutrition support. While little evidence exists on the ideal patient–dietitian ratio, the quantification of the current population in need of care may help identify the true number of patients who would benefit from individualized nutrition counselling or support, which may assist in the justification of increased dietetic staffing. Therefore, the aim of this study was to estimate the prevalence and annual incidence of cancer-related WL and sarcopenia in British and Irish populations.

Materials and methods

Annual incidence and prevalence of cancer: national registry data

The 2015 cancer annual incidence and prevalence data (by cancer site) for each country (Ireland, Northern Ireland, England, Scotland, and Wales) were obtained from publicly available data from the websites of their respective national cancer registries, while prevalence data for Northern Ireland were inclusive of 2017 and for Ireland included 2016. Prevalence data reported were limited to the date of opening of each cancer registry; therefore, the data presented do not account for diagnoses that pre-date registry records (prior to 1993–95).

Weight loss and sarcopenia: diagnostic criteria

Weight loss >5% in 6 months was chosen as the standard for this study as this is part of the diagnostic criteria for CC as per the international consensus definition. WL >10% in 6 months was also chosen as it constitutes clinically severe WL in general clinical populations. Sarcopenia assessed using computed tomography (CT) images at the level of the third lumbar vertebra are the gold standard measure of body composition assessment and is an additional diagnostic criterion in the international consensus definition. Thus, when recording the prevalence of sarcopenia from the literature, studies chosen for inclusion were limited to those that measured body composition using lumbar CT scans. This technique to assess skeletal muscle area involves manually outlining the skeletal muscle components and measuring the area of the tissue, which falls within the recognized thresholds for muscle based on Hounsfield unit (HU) (−29 to +150 HU). Skeletal muscle area is normalized for stature to compute the skeletal muscle index (SMI). Patients are classified as sarcopenic based on SMI cut-points and given the heterogeneity in the cut-points used to define sarcopenia in oncology patients; only studies that defined sarcopenia using one of the three most commonly used criteria were included as these have been widely validated. These definitions are as follows: Prado et al.: SMI <52.4 cm²/m² in men and <38.5 cm²/m² in women; Martin et al.: SMI <43.0 cm²/m² in men with a body mass index (BMI) <25 kg/m² and <53.0 cm²/m² in men with a BMI <25 kg/m² and BMI <41.0 cm²/m² in women; and Baumgartner et al. converted dual X-ray absorptiometry cut-points by Mourtzakis et al. as SMI <55.4 cm²/m² in men and <38.9 cm²/m² in women.

Weight loss and sarcopenia: literature review

A systematic review using PubMed was conducted to identify the reported prevalence of WL and sarcopenia across primary tumour locations. After screening initial results and confirming inclusion of known studies of relevance and further studies listed in the references of other systematic reviews, 179 papers were identified, which reported WL or sarcopenia in cancer patients. Studies were then excluded where they did not report

DOI: 10.1002/rec.19
a rate of WL over a 6 month period or CT-diagnosed sarcopenia. Furthermore, as site-specific cancer prevalence data were not available for all included regions, to limit impact of heterogeneity in included studies, studies that were only included early or metastatic disease was excluded from the final analysis. Finally, six studies were included where individual cancer groups were reported and both 5% and 10% WL were reported. These studies contributed 2340 patients cumulatively. In addition, six studies were retained, which included patients across all stages of disease (n = 2916) and assessed for sarcopenia using widely validated CT cut-points.

Details of the studies included in the final analysis are shown in Table 1. Figure 1 is a schematic of the progressive exclusion of studies according to the inclusion/exclusion criteria outlined as follows:

- **Inclusion criteria**
 - Studies describing point prevalence of 6 month WL > 5% or 10% in cancer patients
 - Studies describing point prevalence of CT-diagnosed sarcopenia in cancer patients using Prado et al.27 Martin et al.28 or Mourtzakis et al.29 cut-points

- **Exclusion criteria**
 - Non-English language
 - No full text
 - Non-human
 - Paediatric studies
 - Studies limited to specific disease stages

Weight loss and sarcopenia: local Irish data

As the data in the literature for the prevalence of WL and sarcopenia were scarce, prevalence data were obtained from a local database from University College Cork, where over a 6 year period, body composition data were collected prospectively on 1015 ambulatory cancer patients across two designated cancer centres, and these data have formed part of a number of previously published studies (methods described elsewhere).31–35 All solid invasive cancers across all stages were eligible for inclusion in this study, including lymphomas but excluding head and neck cancers, which were not treated at these centres (see Table 2).

Weight loss and sarcopenia: calculating annual incidence and prevalence

In order to account for heterogeneity, only studies that included patients at all stages of disease were included in these

Author et al.37	Country	Site	n	% with WL > 5% with WL > 10%	Author et al.37	Country
Correia et al.37	Portugal	Gastric	48	50.0	Correia et al.37	Portugal
Pacelli et al.38	Italy	Gastric	196	42.0	Pacelli et al.38	Italy
Pressoir et al.39	France	Upper GI and HBP	103	63.2	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Upper GI/HBP	35	68.6	Sanchez-Lara et al.40	Mexico
Pressoir et al.39	France	CRC	156	47.5	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	CRC	20	30.0	Sanchez-Lara et al.40	Mexico
Malietzis et al.41	UK	CRC	805	42.9	Malietzis et al.41	UK
Pressoir et al.39	France	Head and neck	156	42.9	Pressoir et al.39	France
Kabarriti et al.42	USA	Head and neck	158	42.9	Kabarriti et al.42	USA
Fattouh et al.43	USA	Head and neck	114	36.0	Fattouh et al.43	USA
Pressoir et al.39	France	Leukaemia, lymphoma, and myeloma	156	36.0	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Leukaemia, lymphoma, and myeloma	25	36.0	Sanchez-Lara et al.40	Mexico
Zhang et al.44	China	Lymphoma	132	34.0	Zhang et al.44	China
Pressoir et al.39	France	Ovary and uterus	137	45.1	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Cervix/uterus/ovary	12	66.7	Sanchez-Lara et al.40	Mexico
Pressoir et al.39	France	Breast	375	42.4	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Breast	61	11.5	Sanchez-Lara et al.40	Mexico
Pressoir et al.39	France	Lung	90	49.4	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Lung	11	45.5	Sanchez-Lara et al.40	Mexico
Pressoir et al.39	France	Other	349	36.7	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Other	27	33.3	Sanchez-Lara et al.40	Mexico
Meza-Junco et al.45	USA	Liver	116	36.0	Meza-Junco et al.45	USA
Pressoir et al.39	France	Mixed	1545	40.9	Pressoir et al.39	France
Sanchez-Lara et al.40	Mexico	Mixed	191	35.6	Sanchez-Lara et al.40	Mexico
Mauricio et al.46	Brazil	Mixed	228	22.0	Mauricio et al.46	Brazil
Martin et al. (2013)28	Canada	Mixed	1473	22.0	Martin et al. (2013)28	Canada
Prado et al. (2008)27	Canada	Mixed	250	22.0	Prado et al. (2008)27	Canada

CRC, colorectal cancer; GI, gastrointestinal; HBP, hepatobiliary/pancreatic; WL, weight loss.
Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram describing literature search for weight loss (WL) and sarcopenia prevalence in cancer.

![Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram](image)

Table 2 Rates of WL and sarcopenia in Irish cancer patients with solid tumours

Site	n	≥5% WL in 6 months	≥10% WL in 6 months	n CT	Sarcopenic
Breast	94	13.80%	6.40%	80	42.50%
CRC	258	31.80%	11.60%	264	37.10%
GU	54	27.80%	11.10%	48	41.70%
Gynaecological	54	40.70%	22.20%	54	37.70%
Haematological	93	29.00%	17.20%	95	37.90%
HPB	94	53.20%	27.70%	94	44.70%
Lung	117	26.50%	12.00%	119	38.70%
Upper GI	147	52.40%	29.00%	146	43.20%
Other	49	34.70%	14.30%	39	33.30%
Overall	960	34.80%	16.60%	940	39.40%

CRC, colorectal cancer; CT, computed tomography; GI, gastrointestinal; GU, genitourinary; HBP, high blood pressure; WL, weight loss. Methods and demographics have been described previously.31
analyses. Data from the Irish study were used to supplement the data obtained from the literature. The reported prevalence of WL and sarcopenia according to cancer site was collated, and weighted means for each site and condition were calculated according to the formula $\bar{x} = \frac{\sum P_i n_i}{\sum n_i}$, where P_i is the prevalence reported in each study and n_i is the respective sample size.

The weighted means (see Table 3) were subsequently used to crudely extrapolate the estimated annual incidence and prevalence of these conditions, according to cancer site among cancer survivors across the UK and Ireland based on the national cancer registry data. Annual incidence was estimated for each individual cancer group using the formula $I_e = I \times M$, where I_e is the site-specific estimated annual incidence of WL or sarcopenia related to cancer, I is the annual incidence of cancer cases, and M is the weighted mean of the reported point prevalence of WL or sarcopenia. The condition-specific I_e for each cancer group was then summed to give an overall annual incidence for each condition. This represents the number of new cases of cancer-related WL or sarcopenia that would be likely to occur in any given year based on the number of cancer cases.

Prevalence was extrapolated for each individual cancer group using the formula $P_e = P \times M$, where P_e is the estimated prevalence of WL or sarcopenia related to cancer, P is the prevalence of cancer cases, and M is the weighted mean of the reported point prevalence of WL or sarcopenia. The condition-specific P_e for each cancer group was then summed to give an overall prevalence for each condition.

Missing data

While most cancer groups had WL and sarcopenia reported at least once in the literature or in the local database, data regarding melanoma were not available, and thus, these cases were combined into the ‘other’ group, which also included endocrinological, sarcoma, and central nervous system cancers. Therefore, WL and sarcopenia rates on a population level were extrapolated using site-specific data from the literature for 96% of cancer cases, and the remaining 4% were extrapolated based on data from studies on mixed cohorts.

Results

Cancer annual incidence and prevalence

Across the UK and Ireland, an average of 380 964 patients are diagnosed with cancer annually, and it is estimated that 2 308 785 patients are currently living with cancer across both regions. In Ireland, according to the National Cancer Registry of Ireland (NCRI), an average of 22 000 cases of invasive cancers (excluding non-melanoma skin cancer) were diagnosed annually between 2015 and 2017, which equates to an incidence rate of 478 (men) and 387 (women) cases per 100 000 per year. The most common cancers among men and women are prostate and breast cancer, respectively, followed by colorectal and lung cancer. Looking at cancer survivorship, a total of 156 469 cancer patients, diagnosed since January 1994, were still alive at the end of 2016 in Ireland.

Cancer-related weight loss

The reported prevalence of WL > 5% over 6 months in the literature ranged between 11.5% and 68.6% depending on primary site. The prevalence of WL > 10% over 6 months ranged from 5.0% to 54.3%. See Table 1 for site-specific rates, in patients at any stage of disease. Local data are shown in Table 2. Rates of WL and sarcopenia according to primary site reported in the scientific literature and also as seen in local data (including weighted means) are displayed in Table 3. Taking into account relative prevalence of the various cancer sites, it is estimated that 33.8% of cancer patients experience WL > 5% annually.

We estimate that across Ireland and the UK, at least 101 204 cancer patients (7251 Ireland) are affected by

Site	n weight	≥5% WL in 6 months	≥10% WL in 6 months	n CT	Sarcopenic
Upper GI	623	47.90%	30.30%	146	43.20%
HBP					
Breast	530	20.90%	10.60%	210	36.60%
Head and neck	179	56.60%	37.10%	272	66.30%
CRC	434	37.40%	15.40%	1069	54.50%
Haematological	406	25.30%	26.10%	95	37.90%
Gynaecological	203	45.20%	26.70%	55	32.7%
Lung	218	36.90%	20.00%	119	38.70%
GU	54	27.80%	11.10%	48	41.10%
Other	425	36.30%	18.20%	39	33.30%
Mixed	2696	38.40%	20.90%	2663	37.80%
Overall	5996	37.30%	21.80%	4796	43.30%

CRC, colorectal cancer; CT, computed tomography; GI, gastrointestinal; GU, genitourinary; HBP, high blood pressure; WL, weight loss.
Table 4 Estimated annual incidence of cancer-related malnutrition (WL and sarcopenia) in Ireland and the UK calculated using weighted means of WL and sarcopenia prevalence as shown in Table 3 and cancer statistics from the national cancer registries

Country	England	Scotland	Wales	Northern Ireland	Ireland	Ireland and UK (total)									
	WL 5%	WL 10%	Sarc												
Colorectal	13 959	5748	20 342	1469	605	2141	901	371	1312	445	183	648	1055	434	1537
Upper GI	6280	3972	5664	731	462	659	429	271	378	194	122	175	485	307	437
Respiratory	13 890	7528	14 567	1833	994	1923	903	490	947	458	248	480	895	485	939
Genitourinary	16 441	6565	4309	1334	533	385	1020	407	228	468	187	141	1192	476	257
Hepatobiliary pancreatic	7064	4469	5398	776	491	593	464	293	354	235	149	180	474	300	362
Breast	9635	4887	19 593	993	504	2020	593	301	1205	307	156	624	694	352	1411
Gynaecological	7892	4662	5710	883	521	639	496	293	359	265	157	192	548	324	397
Melanoma	4848	2431	4448	493	247	452	285	143	261	146	73	134	425	213	390
Head and neck	5509	3611	6453	724	475	849	388	254	454	205	134	240	392	257	459
Haematological	6798	7013	10 184	600	619	899	431	445	646	196	202	294	434	448	650
Other	8888	4456	8153	988	495	906	548	275	503	237	119	217	658	330	604
Total (n)	101 204	55 341	104 819	10 825	5946	11 465	6457	3542	6657	3155	1730	3324	7251	3925	7442
Patients affected	33.70%	18.40%	34.90%	34.60%	19.00%	36.70%	34.00%	18.60%	35.00%	34.10%	18.70%	35.90%	33.80%	18.30%	34.70%

GI, gastrointestinal; WL, weight loss.
Sarc refers to sarcopenia diagnosed using computed tomography at the level of third lumbar vertebra.

DOI: 10.1002/rco2.19
Table 5 Estimated prevalence of cancer-related malnutrition (WL and sarcopenia) among cancer patients in Ireland and the UK calculated using weighted means of WL and sarcopenia prevalence as shown in Table 3 and cancer statistics from the national cancer registries

Country	England	Scotland	Wales	Northern Ireland	Ireland	Ireland and UK (total)									
	WL 5%	WL 10%	Sarc												
Colorectal	81 011	33 358	118 051	9636	3968	14 041	5238	2157	7633	3202	1318	4666	7061	2908	10 290
Upper GI	14 802	9363	13 350	1748	1106	1577	950	601	857	617	390	556	1536	972	1385
Respiratory	21 946	11 895	23 017	3150	1707	3304	1376	746	1443	855	463	896	2060	1116	2160
Genitourinary	121 252	48 414	23 204	10 208	4076	2426	8113	3239	1488	3853	1539	889	11 887	4746	1853
Hepatobiliary pancreatic	6669	4218	5095	834	5 28	637	229	145	175	233	147	178	623	394	476
Breast	99 442	50 435	202 215	10 275	5211	20 894	5962	3024	12 124	3343	1695	6798	7405	3756	15 059
Gynaecological	64 345	38 009	46 551	7460	4407	5397	3332	1968	2411	2604	1538	1884	5169	3053	82 910
Melanoma	43 922	22 021	40 292	4857	2435	4456	2478	1243	2273	1606	805	1474	3919	1965	3595
Head and neck	33 723	22 105	39 503	4625	3031	5417	2347	1539	2749	1241	814	1454	1568	1028	1837
Haematological	42 947	44 305	64 336	4294	4430	6432	1914	1974	2867	1550	1599	2323	3774	3894	5654
Other	23 889	11 978	21 915	2128	1067	1952	2633	1320	2415	871	437	799	3407	1708	3126
Total (n)	553 950	296 101	597 529	59 215	31 966	66 534	34 573	17 956	36 436	19 975	10 746	21 916	48 410	25 540	49 174
Patients affected	30.90%	16.50%	33.40%	31.80%	17.10%	35.70%	31.10%	16.20%	32.80%	31.50%	16.90%	34.60%	30.90%	16.30%	31.40%

GI, gastrointestinal; WL, weight loss.
Sarc refers to sarcopenia diagnosed using computed tomography at the level of third lumbar vertebra.
WL > 5% annually and that there are 553 950 cancer survivors (48 410 Ireland) who have suffered >5% WL at some point in their disease trajectory. This degree of WL is diagnostic of CC according to the international consensus criteria. Of these, we estimate that 55 341 cancer patients (3925 Ireland) are affected by WL > 10% and that there are 296 101 cancer survivors (25 540 Ireland) who have suffered >10% WL. Tables 4 and 5 show the relative abundance of cases by cancer site and country. Taking into account relative prevalence of the various cancer sites, it is estimated that 18.5% of cancer patients experience WL > 10% annually. Given the mid-year populations reported for 2015, this corresponds to 18.48/10 000 in the population developing WL > 5% related to cancer each year, 10.11/10 000 of which would experience WL > 10%.15,36

Cancer-related sarcopenia

The reported prevalence of sarcopenia in the literature ranged between 15.0% and 70.9% depending on the tumour type (Table 4). Local data are shown in Table 2.

Furthermore, we estimate that there are at least 104 819 annual cases (7442 Ireland) of sarcopenia among cancer patients in Ireland and the UK. We estimate that there are 597 529 cancer survivors alive (49 174 Ireland) who have been affected by sarcopenia during their disease trajectory. Tables 4 and 5 show the relative abundance of cases by cancer site and country. Taking into account relative prevalence of the various cancer sites, it is estimated that 35.1% of cancer patients experience sarcopenia annually. Given the mid-year populations reported for 2015, this corresponds to 19.17/10 000 in the population with both cancer and sarcopenia.15,36

Discussion

To our knowledge, this is the first study reporting the epidemiology of cancer-related WL and sarcopenia, specifically. A systematic review by Anker et al. reported the corresponding estimates for CC, which is a syndrome encompassing WL and sarcopenia. They estimated the prevalence of CC to be 15.8/10 000 in Europe (2013) and 16.5/10 000 in the USA (2014).13 This is in the same order of magnitude as the present study, which estimated 18.5/10 000 for WL > 5% and 19.2/10 000 for sarcopenia in Ireland and the UK. Another study by the same group estimated that 170 000 patients in Japan would experience CC annually (13.4/10 000).14 While the figures in the present study are marginally higher than previously published estimates, this is partially explained by WL and sarcopenia often being co-morbid, and so the populations affected by each condition are not mutually exclusive.47 The high incidence of WL and sarcopenia in these populations is clinically relevant because of their association with poor outcomes in cancer patients.38,48,49

A recent review on the toxicity of cancer treatments in sarcopenia by Hilmi et al. reported that of 32 studies evaluating chemotoxicity, 24 studies found a significant increase in sarcopenic patients. Similarly, they found that seven of eight studies in targeted therapies demonstrated the same increased risk of toxicity in sarcopenia, and finally, they assessed immunotherapy studies that were less numerous, but three of four studies found an increased rate of toxicities among those with sarcopenia.50 Previously published reports by our group have shown that patients being treated for renal cell carcinoma with sunitinib who suffer DLT within 6 months of starting therapy had significantly lower SMI. Interestingly, while the mean SMI of those suffering early DLT was lower, it did not reach the cut-point for sarcopenia. This suggests a dose–response relationship with an advantage of higher muscle mass, outside the range of frank sarcopenia (52 vs. 59 cm²/m², \(P = 0.01\)).33

A recent systematic review incorporating 35 studies (6894 patients) found that 8 of 11 studies that evaluated pre-operative sarcopenia showed significant independent associations between pre-treatment sarcopenia and serious post-operative complications after gastrectomy, pancreatectomy, oesophagectomy, and hepatic resections.5 A further two of these studies found an independent increased risk of hospital acquired infections post-colectomy in patients with pre-treatment sarcopenia.5

Both WL and sarcopenia have been associated with increased mortality in cancer. In a large US study of 4258 patients with cancers across all major primary sites (15% metastatic), WL > 10% at diagnosis was associated with increased risk of death vs. weight stability [hazard ratio: 2.5; 95% confidence interval (CI): 1.3–4.8, \(P < 0.001\)].51 A study across Canada and the European Union of 8160 patients showed similarly increased risk in patients suffering WL, at all BMI classes.52 Pamoukdjian et al.5 performed a meta-analysis of 22 studies with 5351 participants to examine the association between pre-treatment sarcopenia and post-operative survival. This group reported that 13 studies showed an independent association between pre-treatment sarcopenia and post-operative survival, 5 with peri-chemotherapy survival, 3 with post-operative relapse-free survival, and 2 with post-chemotherapy progression-free survival.5 Shachar et al. reviewed 7779 patients across 37 studies in a meta-analysis in 2016, of which 22 has multi-variate analyses available. Using only those studies that reported a multivariate model, they found a summary hazard ratio of 1.5 (95% CI: 1.4–1.7, \(P < 0.001\)) for overall survival suggesting a significantly increased risk of death in cancer patients who have sarcopenia.7

Quality of life is also impacted in patients with WL and sarcopenia. Numerous studies have demonstrated poorer QoL using a variety of validated tools in patients experiencing...
Cancer-related weight loss and sarcopenia

WL due to cancer.10,11,53,54 A systematic review of health-related QoL (HRQoL) instruments in 2013 found that 23 of 27 studies that examined HRQoL in relation to WL found a significant detriment to HRQoL in those who experienced greater WL, although the definitions of WL differed widely and the tools used to assess HRQoL varied also.10 In haematological cancer patients surveyed with the SF-36 HRQoL tool before stem cell transplantation, bodily pain, vitality, and physical function scores were poorer in those with sarcopenia.55 While one study of breast cancer patients did not find a significant difference between patients based on sarcopenia, the sample size was small.56 Recently, our group has shown that WL was an independent predictor of poorer global QoL in the setting of advanced cancer (n = 1027) [WL > 5% odds ratio (OR): 1.6, P = 0.048; WL > 10% OR: 2.7, P < 0.001]; however, sarcopenia was only associated with physical function score on univariate analysis [OR 1.7 (95% CI: 1.3–2.3), P < 0.001].54

The estimations provided by this study indicate that a large population exists who may be at greater risk of frailty as they enter old age with reduced reserves. Of note, hospitalizations (42% vs. 11%, P < 0.001), falls (18% vs. 55%, P < 0.001), and fear of falls (12% vs. 57%, P < 0.001) were more prevalent in the frail in a representative sample of US older adults.57 Fear of falls is likely to impact activity levels and lead to further deconditioning.58 While the systematic review by Pamoukdjian \textit{et al.}5 failed to identify any studies evaluating the risk of disability in relation to pre-treatment sarcopenia, Prado \textit{et al.}27 found that sarcopenia was associated with poor functional status in the sarcopenic patients of their lung and gastrointestinal cancer cohort. Similarly, a recent study of an elderly mixed cancer cohort has demonstrated that patients with cachexia experience significant impairments in their instrumental activities of daily living.47 Importantly, hospitalizations are associated with worsening of weight status.59 This is particularly concerning as the Irish and British populations are aging and the burden of frailty will increase alongside this population trend.60,61

In addition to patient-centred outcomes, the economic impact of cancer-related malnutrition is important to consider. The British Association for Parenteral and Enteral Nutrition commissioned a report in 2015, which reported that malnourished patients cost the National Health Service more annually than those who were not at risk of malnutrition (\textsterling}7408/\textsterling}8408 vs. \textsterling}2155/\textsterling}2445).3 An Irish study that replicated the British Association for Parenteral and Enteral Nutrition methodology found that at least \textsterling}750 million annually in additional healthcare costs were accrued in the care of malnourished patients in Ireland, equating to approximately \textsterling}357 extra per patient affected by disease-related malnutrition.4

This study has a number of limitations that must be acknowledged. Firstly, the data available in the literature documenting WL according to the standard 5% and 10% over 6 months and sarcopenia using third lumbar vertebra CT images are limited. Many articles that were identified during the literature search could not be included as they reported mean WL, proportions of patients with any WL or with sarcopenia measured using non-standard techniques. Secondly, while the incidence rates reported herein are likely to be good estimates based on the available data, caution must be applied in the interpretation of the prevalence data. There is an inherent survival bias because WL and sarcopenia are associated with increased risk of death in cancer. Thus, those suffering from WL or sarcopenia would have greater risk of death, and therefore, their transfer from incident to prevalent cases would not be a 1:1 with unaffected patients. Furthermore, to our knowledge, there is no evidence to suggest how many of these cases would resolve after treatment of the underlying cancer. Thus, the prevalence data we present herein represent the number of cancer survivors who are likely to have suffered WL or sarcopenia due to their cancer at some time in the past but does not accurately represent the point prevalence of these conditions and, consequently, is likely an overestimate. Despite these limitations, the study has notable strengths. This is the first study of its kind estimating the burden of WL and sarcopenia related to cancer in the British Isles. A thorough literature search was conducted, and a large local database was used to complement gaps in the literature. In addition, specific parameters were chosen for WL and sarcopenia, which were clinically relevant and in accordance with the international consensus definition. In order to provide more accurate estimates of the burden of cancer-related malnutrition, future studies should report these using standardized, clinically relevant measures.

Conclusion

In conclusion, this is the first report estimating the burden of cancer-related WL and sarcopenia across the UK and Ireland. These figures are crude estimates that are limited by gaps in the literature and potential survival bias. Ensuring that patients receive intervention for these changes in body composition is of the utmost importance, in order to optimize outcomes for patients undergoing palliative treatments and to aid recovery towards pre-diagnosis baseline in patients expected to achieve a cure and enter long-term survivorship. Given the impact of malnutrition on cancer outcomes during treatment and the long-term impact of sarcopenia on frailty among survivors, urgent attention is required to address gaps in access to nutrition care available to cancer patients.

Acknowledgement

The authors would like to acknowledge Dr Darren Dahly for his consultation on the epidemiological methods herein. The
authors of this manuscript certify that they comply with the ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle.

Conflict of interest

None declared.

Funding

No specific funding was received for the completion of this study.

Ethical approval and consent to participate

Ethical approval was granted for the human data collected by Clinical Research Committee of the Cork Teaching Hospitals [ECM 4 (g) 03/03/15], and informed consent was obtained for all human subjects. The study was conducted in accordance with the Declaration of Helsinki.

Consent for publication

N/A.

References

1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011;12:489–495.
2. Ryan AM, Prado CM, Sullivan ES, Power DG, Daly LE. Effects of weight loss and sarcopenia on response to chemotherapy, quality of life, and survival. Nutrition 2019;67–68:110539.
3. Elia M. The cost of malnutrition in England and potential cost savings from nutritional interventions. 2015.
4. Rice N, Normand C. The cost associated with disease-related malnutrition in Ireland. Public Health Nutr 2012;15:1966–1972.
5. Pamoukdjian F, Boulliet T, Levy V, Soussan M, Zelek L, Paillaud E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr 2018;37:1101–1113.
6. Pamoukdjian F, Boulliet T, Lévy V, Soussan M, Zelek L, Paillaud E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr 2018;37:1101–1113.
7. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer 2016;57:58–67.
8. Kazemi-Bajestani SM, Mazurak VC, Baracos V. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin Cell Dev Biol 2016;54:2–10.
9. Gibson DJ, Burden ST, Strauss BJ, Todd C, Lal S. The role of computed tomography in evaluating body composition and the influence of reduced muscle mass on clinical outcome in abdominal malignancy: a systematic review. Eur J Clin Nutr 2015;69:1079–1086.
10. Wheelwright S, Darlington AS, Hopkinson JB, Fitzsimmons D, White A, Johnson CD. A systematic review of health-related quality of life instruments in patients with cancer cachexia. Support Care Cancer 2013;21:2623–2636.
11. Nourissat A, Vasson MP, Merrouche Y, Bouteiloup C, Goutte M, Mille D, et al. Relationship between nutritional status and quality of life in patients with cancer. Eur J Cancer 2008;44:1238–1242.
12. Nipp RD, Fuchs G, El-Jawahri A, Mario J, Troschel FM, Greer JA, et al. Sarcopenia is associated with quality of life and depression in patients with advanced cancer. Oncologist 2018;23:97–104.
13. Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J Cachexia Sarcopenia Muscle 2019;10:22–34.
14. von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle 2016;7:507–509.
15. Central Statistics Office. Population and migration estimates. 2015.
16. Cartmill L, Comans TA, Clark MJ, Ash S, Sheppard L. Using staffing ratios for

Data availability

Results of local study are archived in accordance with GDPR. National cancer registry data were obtained from as follows:

- http://www.ukiacr.org/kpis
- http://www.ncin.org.uk/about_ncin/segmentation
- https://www.isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/All-Types-of-Cancer/
- https://public.tableau.com/views/
- CancerincidencenumberofnewcasesandprevalencepeoplelivingafterdiagnosisofcancerforclusternetworksinWales/Introduction?embed=y&showVizHome=no
- http://www.qub.ac.uk/research-centres/ncir/CancerInformation/official-statistics/BySite/
- https://www.nci.ie/sites/ncri/files/pubs/annualreport2018_26112018.pdf

Authorship

E.S.S. conducted the literature review and extrapolations and drafted the manuscript; L.E.D. conducted the literature review and data collection on local data presented; D.G.P. helped write the manuscript; and A.M.R. conceived the study and helped write the manuscript. All authors reviewed the final manuscript.
workforce planning: evidence on nine allied health professions. *Hum Resour Health* 2012;10:2.

17. Irish Nutrition & Dietetic Institute. Submission to the National Cancer Strategy 2016–2025, 2016.

18. United Kingdom & Ireland Association of Cancer Registries. UKIACR Performance Indicators Report 2016. London, UK: UKIACR; 2016. Available from: http://www.ukiacr.org/kpis

19. Macmillan, National Cancer Registration & Analysis Service, Public Health England. Cancer Prevalence in England - 21 year prevalence by demographic measures at Local Authority. London, England: NCRAS (PHE); 2018. Available from: http://www.nccn.org.uk/about_nccn/segmentation

20. Information Services Division, National Health Service, National Services Scotland. *Cancer Statistics: All Types of Cancer*. Edinburgh, UK: ISD, NHS Scotland; 2016. Available from: https://www.isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/All-Types-of-Cancer/

21. Macmillan, Welsh Cancer Intelligence & Surveillance Unit. *Cancer Incident (Number of New Cases) and Prevalence (People Living after a Diagnosis of Cancer) for Cluster Networks in Wales*. Cardiff, UK: WCISU; 2018. Available from: https://public.tableau.com/views/CancerIncidenceandnumberofnewcasesandprevalenceofpeoplelivingafterdiagnosisofcancerforclusternetworksinWales/Introduc tion?embed=y&showVizHome=no

22. Northern Ireland Cancer Registry, Queen’s University Belfast. *Cancer Information: Official Statistics: By Site*. Belfast, UK: NICR (QUB); 2019. Available from: http://www.qub.ac.uk/research-centres/nicr/CancerInformation/official-statistics/BySite/

23. National Cancer Registry of Ireland. *Cancer in Ireland 1994–2016 with Estimates for 2016–2018: Annual Report of the National Cancer Registry*. Dublin, Ireland: NCR; 2018. Available from: http://www.ncri.ie/sites/ncri/files/pubs/annualreport2018_26112018.pdf

24. Blackburn GL, Bistrian BR, Maini BS, Schlamm HT, Smith MF. Nutritional and metabolic assessment of the hospitalized patient. *JPEN J Parenter Enteral Nutr* 1977;1:11–22.

25. Mourtzakis M, Prado CM, Liefers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. *Appl Physiol Nutr Metab* 2008;33:997–1006.

26. Aubrey J, Esfandari N, Baracos VE, Butte FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. *Acta Physiol (Oxf)* 2014;210:489–497.

27. Prado CM, Liefers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. *Lancet Oncol* 2008;9:629–635.

28. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. *J Clin Oncol* 2013;31:1539–1547.

29. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. *Am J Epidemiol* 1998;147:755–763.

30. Bozetti F. Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. *Ann Oncol* 2017;28:2107–2118.

31. Ni Bhuachalla EB, Daly LE, Power DG, Cusken SJ, MacNedney P, Ryan AM. Computed tomography diagnosed cachexia and sarcopenia in 725 oncology patients: is nutritional screening capturing hidden malnutrition? *J Cachexia Sarcopenia Muscle* 2019;8:295–305.

32. Cusken SJ, Power DG, Murphy KP, McDermott RJ, Martin BT, Lim M. Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. *Clin Nutr ESPEN* 2016;13:e39–e45.

33. Cusken SJ, Power DG, Teo MY, Maceneaney P, Maher MM, McDermott RJ, et al. Body composition by computed tomography as a predictor of toxicity in patients with renal cell carcinoma treated with sunitinib. *Am J Clin Oncol* 2017;40:47–52.

34. Daly LE, Ni Bhuachalla EB, Power DG, Cusken SJ, James K, Ryan AM. Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. *J Cachexia Sarcopenia Muscle* 2018;9:315–325.

35. Daly LE, Power DG, O’Reilly A, Donnellan P, Cusken SJ, O’Sullivan K, et al. The impact of body composition parameters on imputed tumour toxicity and survival in patients with metastatic melanoma. *Br J Cancer* 2017;116:310–317.

36. Office for National Statistics. Population estimates for the UK, England and Wales, Scotland and Northern Ireland: mid-2015. 2016.

37. Correia M, Cravo M, Margues-Vidal P, Grimeb R, Dias Perea A, Faia S, et al. Serum concentrations of TNF-alpha as a surrogate marker for malnutrition and worse quality of life in patients with gastric cancer. *Clin Nutr* 2007;26:728–735.

38. Pacelli F, Bossola M, Rosa F, Tortorelli AP, Papa V, Doglietto GB. Is malnutrition still an underestimated health professions? *Support Care Cancer* 2010;18:966–971.

39. Sanchez-Lara K, Ugalde-Morales E, Motola-Kuba D, Green D. Gastrointestinal symptoms and weight loss in cancer patients receiving chemotherapy. *Br J Nutr* 2013;109:894–897.

40. Malietzis G, Currie AC, Athanasiou T, Johns N, Anyamene N, Glynn-Jones R, et al. Influence of body composition profile on outcomes following colorectal cancer surgery. *Br J Surg* 2016;103:572–580.

41. Kabarriti R, Bontempo A, Romano M, McGovern KP, Asaro A, Viswanathan S, et al. The impact of dietary regimen compliance on outcomes for HNNSC patients treated with radiation therapy. *Support Care Cancer* 2018;26:3307–3313.

42. Fattouh M, Chang GY, Ow TJ, Shifteh K, Rosenblatt G, Patel VM, et al. Association between pretreatment obesity, sarcopenia, and survival in patients with head and neck cancer. *Head Neck* 2019;41:707–714.

43. Zhang J, Chen B, Xu K, Lin Z, Huang B, Song J, et al. Clinical features of 66 lymphoma patients presenting with a fever of unknown origin. *Intern Med* 2012;51:2529–2536.

44. Meza-Junco J, Montano-Loza AJ, Baracos VE, Prado CM, Bain VG, Beaumont C, et al. Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. *J Clin Gastroenterol* 2013;47:861–870.

45. Mauricio SF, Ribeiro HS, Correia MI. Nutritional status parameters as risk factors for mortality in cancer patients. *Nutr Cancer* 2016;68:949–957.

46. Dunne RF, Rousset B, Culakova E, Pandya C, Fleming FJ, Hensley B, et al. Characterizing cancer cachexia in the geriatric oncology population. *J Geriatr Oncol* 2019;10:415–419.

47. Ryan AM, Power DG, Daly L, Cusken SJ, Ni Bhuachalla E, Prado CM. Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. *Proc Nutr Soc* 2016;75:199–211.

48. Daly LE, Prado CM, Ryan AM. A window beneath the skin: how computed tomography assessment of body composition can assist in the identification of hidden wasting conditions in oncology that profoundly impact outcomes. *Proc Nutr Soc* 2018;77:135–151.

49. Hilmi M, Jouniout A, Burns R, Pigneur F, Mounier R, Gondin J, et al. Body composition and sarcopenia: the next-generation of personalized oncology and pharmacology? *Pharmacol Ther* 2019;196:135–159.

50. O’Donoghue N, Shrotriya S, Aktas A, Hullihen B, Ayvaz S, Estfan B, et al. Clinical significance of weight changes at diagnosis in solid tumours. *Support Care Cancer* 2019;27:2725–2733.

51. Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozetti F, Deans C, et al. Diagnostic criteria for the classification of cancer-associated weight loss. *J Clin Oncol* 2015;33:190–95.

52. Ravasco P, Monteiro-Grillo I, Vidal PM, Camilo ME. Cancer: disease and nutrition are key determinants of patients’ quality of life. *Support Care Cancer* 2004;12:246–252.
54. Daly L, Dolan R, Power D, Ní Bhuaachalla É, Sim W, Fallon M, et al. The relationship between the BMI-adjusted weight loss grading system and quality of life in patients with incurable cancer. *J Cachexia Sarcopenia Muscle* 2019;11:160–168.

55. Morishita S, Kaida K, Tanaka T, Itani Y, Ikegame K, Okada M, et al. Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. *Support Care Cancer* 2012;20:3161–3168.

56. Sheean P, Gomez-Perez S, Joyce C, Vasilopoulos V, Bartolotta MB, Robinson P, et al. Body composition, serum biomarkers of inflammation and quality of life in clinically stable women with estrogen receptor positive metastatic breast cancer. *Nutr Cancer* 2019;71:981–991.

57. Bandeen-Roche K, Seplaki CL, Huang J, Buta B, Kalyani RR, Varadhan R, et al. Frailty in older adults: a nationally representative profile in the United States. *J Gerontol A Biol Sci Med Sci* 2015;70:1427–1434.

58. Jefferis BJ, Iliffe S, Kendrick D, Kerse N, Trost S, Lennon LT, et al. How are falls and fear of falling associated with objectively measured physical activity in a cohort of community-dwelling older men? *BMJ Geriatr* 2014;114.

59. Corish CA, Flood P, Mulligan S, Kennedy NP. Apparent low frequency of undernutrition in Dublin hospital in-patients: should we review the anthropometric thresholds for clinical practice? *Br J Nutr* 2007;84:325–335.

60. Central Statistics Office. Census of population 2016—profile 3 an age profile of Ireland 2017 Available from: https://www.cso.ie/en/releasesandpublications/ep/p/cp3oy/cp3/agr/

61. Office for National Statistics. Overview of the UK population: July 2017. 2017.

62. von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2019. *J Cachexia Sarcopenia Muscle* 2019;10:1143–1145.