A Robust Decomposition based Algorithm for removal of Pattern Noise from images

Vinit Kumar Gunjan, Fahimuddin Shaik

Associate Professor, Department of Computer Science & Engineering, CMR Institute of Technology, Hyderabad, TS, India
vinikumargunjan@gmail.com
https://orcid.org/0000-0002-3222-4186

Assistant professor, Department of Electronics & Communication Engineering, Annamacharya Institute of Technology & Sciences, Rajampet Andhra Pradesh, India
fahimuddin.shaik.in@ieee.org
http://orcid.org/0000-0001-6852-7851

Abstract

This article aims a melting pool of complex vectors, that is, the aggregation and the minimization problem of sufficiency spectra. A mixture of this blended standard and image, decline issue works admirably to reduce and deteriorate the example of concussion which occurs when old pictures are filtered with granular surfaces. In most cases, the appealing appropriation of regular photos easily reduces from low repetition to the high repetition band, while the episode of concussion is scarcely circulating. We agree along these lines that a picture viewed includes an idle image and an example clamor, describing them separately by using the full range and capacity work. This enables the two parts to decompose sensibly. In contrast to the comparative strategies of deterioration, for instance, robust PCA, our technique is decent, less computer expenditure, and moreover less time suited for any image organization.

Keywords

Decomposition, Gaussian, Image, Noise, Pixel
PCA, RPCA

1. Introduction

We are aiming to reduce example commotion based on the product and propose a precondition show to isolate the first image and the example clamor. Our divisions demonstrate and compute depend on the Wright et al. proposal (RPCA) for heartfelt primary part study[1] and on the Li et al. proposal for reflecting part evacuation[2]. These techniques accept that a watched picture comprises of two parts, and separate it into a perfect picture segment (in the future called "dormant" picture) and an antiquity picture segment unique in relation to shot commotion. While communicating the model as a scientific enhancement issue, notwithstanding the information fidelity communicating the perception procedure, these strategies use a few regularizations communicating the element of every segment, and separate picture parts by using the distinctions of the regularizations.
We regard design as an antique part in this paper. We propose a condition display to isolate an inactive frame and an example clamor image using a previously mentioned segment division and the vector standard of complex numbers. In the model, the dormant picture is portrayed by absolute variety minimization, while the example commotion is described by L1 standard minimization of ghastly qualities with a zero mean requirement. This model can be transmitted as a curved improvement problem, so that proper calculations are taken into account throughout the world. Subproblems that arise in the iterative calculation are also efficiently determined.

2. Literature Review

M. Belkin and P. Niyogi [2003] presented Laplacian eigenmaps for dimensionality decrease and information portrayal. Neural Computation. They proposed a geometrically roused calculation for speaking to the high-dimensional information. The calculation gives a computationally proficient way to deal with nonlinear dimensionality decrease that has area protecting properties and a characteristic association with bunching.

E. J. Candes’ [2006] proposed Robust vulnerability standards: definite flag recreation from exceptionally fragmented recurrence data. This considers the model issue of reproducing an article from deficient recurrence tests.

Z. Lin, A. Ganesh, J. Wright [2009] presented a Fast raised advancement calculations for careful recuperation of a tainted low-position network. Adaptive processing in multi-sensor computer advances.

Wright et al, Y. Peng, Y. Mama, A. Ganesh, and S. Rao [2009] Proposed "Vigorous main segment investigation: accurate recuperation of ruined low-position lattices by raised advancement". The RPCA respects luminance change (reflection) brought about by reflected light as an antique segment, and describe it in order to limit the entirety of outright luminance esteems over the entire picture.

Y. Li and M. Darker [2014] proposed "Single picture layer detachment utilizing relative smoothness". The reflection segment expulsion manages a swoon and obscured reflection picture segment, and describe it in order to limit the entirety of luminance varieties over the entire picture.

2.1. Robust Principal Component Analysis

PCA may be the most commonly used tool for data analysis and dimensional reduction. However, its sensitivity to severely corrupted observations is often jeopardized by the validity of a single largely damaged entry in the M range. Net blurring is currently widespread in today's applications, such as image development, web information research and bioinformatics, where some estimates may disappear discretionarily or simply unimportant for the small structure that we want to recognize (because of impediments, harmful alterations or sensors disappointments). More than a few years ago, various common ways of dealing with robustifying PCA have been investigated and proposed in writing.

![Fig. 1: Background modelling from video](image-url)
Three frames from a sequence of 250 frames taken in a lobby with different lighting. (a) Video original M. (b)-(c) Low-rank (\mathcal{E})+ sparse (\mathcal{S})+ PCP. (d)-(e) low-ranking and sparse components obtained by means of a competing approach based on an alternating minimization of m-estimation.

In spite of less prior information, convex programming produces a more attractive outcome. Delegate approaches include influential work plans, multi-variant cutting, minimization substitutes and irregular examination systems. Unfortunately, none of these current methods provides a solid performance calculation of polynomial times. The new issue that we are looking into can also be regarded as an appreciated form of robust PCA in which we plan to reclaim a low position L_0 from very poor estimates of $M = L_0 + S_0$. The passages in S_0 cannot be considerably considered as a minor clamor term N_0 in the established PCA, and their support is considered scarce but dark.

2.1.1. Limitations

In the RPCA, while we expect a low-ranked data matrix from a pattern image, the latent image is also low, so that when we tried to extract the pattern component the low frequency component was extracted incorrectly.

2.2. Reflection component removal

The elimination of the reflective component[2] addresses a weak and blurred reflective image component and defines it as the sum of light variations over the whole picture (Tikhonov regulation).

Fig. 2: comparison of RCR with original. Observed image (top), pattern image (bottom).

2.2.1. Limitations

Although in the reflection retrieval fig. 2(a) we tried to extract the reflective component as a pattern, the low-frequency component was also extracted as a reflecting component (bottom line).

3. Proposed Methodology

This area presents a detail as a curved progress problem in order to isolate a depleted photo into a idle image and an example image. First, we present the picture perception display, and then portray picture strategies (regularization terms) for the isolation of an image into each segment.

Development model of image segments and the term information fidelity: We categorize a viewed picture as a gray N pixel image and as a vector segment of the RN and pixel calculations. Every shadow
A Robust Decomposition based Algorithm for removal of Pattern Noise from images

canal in this paper is shaped freely by our strategy and does not think about the relationship between the hues.

We defined the inactive image \(l \) to RN and the example clamor image \(e \) to the RN and the connection between it as:= \(l+e \). At that moment we defined the inactive image \(l \). In addition, we make the associated assumptions: the mean estimates of example concussion is acknowledged as 0. The shot clamor in the shooting is small enough, lost from the model.

The model is commonly communicated as a minimum of the l2 perception error when taking care of the above perception as an advancement problem. Our technique then again shows that this is the 2nd ball limitation for tracking: \(-(l+e) \) the whole thing 2 for each other, \(l \) folder=0, where \(-(\text{alternatively}, -(l+e) \) the client defines resilience. The mean estimate (whole) is 0 for 1 to 1N is a vector of one.

Characterization for the latent image: TV regularization: In many places, luminance estimates of an image are consistent and flat, and luminance estimates change vigorously around the elementary edges. The sum of the light varieties (all kinds: television) turned out to be small, thanks to clear pictures. We also think of this TV minimum, and use the mixed l2,1 standard and the differential filter, define the character as "compared to Dl," where \(D:= [D v^T, D h^T] \) a mixture between R2N and Dn and Dd RNN, and the differential filters. Note that the differential filter is general with 2-tap coefficients [−1,1] but a round filter is used so that the figures shown below can be reorganised. The filter framework transposed D diam is also related to a filter with 180 diameters [1,−1].

Characterization of the noise pattern: Spectral regularization: The spectrum over frequency coordinates, corresponding to the design, tends to grow in a pattern in which the same pattern of the artifacts occurs iteratively. When the same pattern appears strongly, the sum of spectral values (total spectrums) is small. We focus on that character and use a mixed lC,1 norm and the Fourier transform, define spectra reduction as Transformation of the Spectrans« 1, where F al RN alternatively denotes the rapidly discrete transformation of Fourier. Note that we define \(F \) as a unitary matrix, so the sum of a function square is equal to the sum of its transform square. In this case, \(FH \) and the inverse Fourier transform \(F^{-1} \) become equivalent \(FH= F^{-1} \) which makes the preceding equations easier to manage.

Formulation for pattern noise decomposition: Combining the aforementioned data fidelity term, regularization terms, and constraint, we propose the formulation for noise pattern separation as

\[
\min_{l,e} \|Dl\|_{2,1} + \lambda \|Fe\|_{C,1} + \mathbb{I}_{\|l+e\|_2^2 \leq \eta, l^T e = 0}
\]

Where the first and second terms of the parameter are balanced in the objective function. In the experimental results V the parameters of \(\alpha \) and \(\gamma \) are described. Note that constraint \(l^Te=0 \) can be added to spectrum minimization and processed with only some algorithm alterations described below, so do not make it easy.

3.1. Algorithm using ADMM

In order to find a solution to the proposed (1) equation, some algorithms can be used and an algorithm can be displayed using ADMM. We do not draw the algorithm and calculations in each step due to the page limitations.

First, we prepare to add restrictions to the function of the object using the Lagrange multiplier method. To direct the \(l^2 \) ball constraint \(B_{y,\eta}:= \{x \mid \|x-y\|_2 \leq \eta \} \) as a regularizer, we familiarize an indicator function \(B_{y,\eta}:= \min_{l,e} \|Dl\|_{2,1} + \lambda \|Fe\|_{C,1} + \mathbb{I}_{\|l+e\|_2^2 \leq \eta, l^T e = 0} \). The indicator function is defined as \(\mathbb{I}_C(x):= \begin{cases} 0 & x \in C \\ \infty & \text{otherwise} \end{cases} \).
Where the set C is a set convex. In the case of the l2 ball, the indicator function becomes a convex function with an easy calculation of the proximity operator. These functions are then non-differentiable convex functions, so that the variables are replaced to make the functions more tractable, \(z_t := Dl, z_c := Fe, z := l + e \) and add these restrictions on equality to the objective function as

\[
L(l, e, \{z\}, \{u\}) := \|z\|_2^2 + (\rho/2)\|z - (Dl + u_t)\|_2^2 + \lambda\|z - (Fe + u_c)\|_2^2 + \iota_{\text{prox}}(z) + (\rho/2)\|z - (l + e + u_t)\|_2^2 \quad (2)
\]

Where \(u_t, u_c, u \) are multipliers of Lagrange. \(\iota \) is the size of the step to control the ADMM convergence and set in this paper to \(\rho = 1 \).

Algorithm of ADMM: When solving (2), each variable is solved iteratively by the following minimization subproblems w.r.t. and each variable is solved while other variables are fixed. The calculation is performed by \(t \)-th iteration

\[
l^{t+1}, e^{t+1} := \min L(l^{t+1}, e^{t+1}, z_t, u_t),
\]

\[
z_t^{t+1} := \min L(z_t^{t+1}, u_t) = \text{prox}_{\| \cdot \|_2^2} (Dl^{t+1} + u_t^t),
\]

\[
z_c^{t+1} := \min L(z_c^{t+1}, u_c^t) = \text{prox}_{\| \cdot \|_2^2} (Fe^{t+1} + u_c^t),
\]

\[
z^{t+1} := \min L(z^{t+1}, u_t^t) = \text{prox}_{\| \cdot \|_2^2} (l^{t+1} + e^{t+1} + u^t),
\]

\[
u_t^{t+1} := \min L(u_t^{t+1}, z_t^{t+1}) = u_t^{t+1} + Dl^{t+1} - z_t^{t+1},
\]

\[
u_c^{t+1} := \min L(u_c^{t+1}, z_c^{t+1}) = u_c^{t+1} + Fe^{t+1} - z_c^{t+1},
\]

\[
u^{t+1} := \min L(u^{t+1}, z^{t+1}) = u^{t+1} + e^{t+1} - z^{t+1} \quad (3)
\]

The details on how \(l, e \) and proximity operators can be solved are described below. The number of iterations in Sec. V is displayed. As for the initial values, we set \(l^{t=0} = y \) and zero vectors for other variables.

4. **Result and Discussion**

4.1. **For Different Input Images**

This segment appears, firstly, reenactment results utilizing the first inactive and design pictures, and afterward genuine outcomes utilizing checked and shot pictures. All considerations utilized in this trial are fixed: with respect to our model, \(\lambda = 3 \) and \(\eta = 0 \); concerning the ADMM, \(\rho = 1 \) and the quantity of emphasis is 100.
In the MATLAB programming first we have to peruse the picture from the present organizer as appeared underneath fig. 3.

Simulation Experiment: Preparing unique inert and design pictures as appeared in Fig.4, we produce perception pictures by straightforwardly blended them, and afterward isolating the perception pictures in to inactive and design pictures again, finally look at PSNRs (crest flag and clamor proportion) between the first pictures and resulting pictures. We utilized the "Lena" and "Mandrill" as the idle pictures, though free resources3 as the example pictures. The picture sizes are every one of the 512 × 512 and its luminance is standardized inside the range [0,1]. With respect to the example pictures, halfway 86×86 locales are appeared for showing the subtleties. Reminder that, in creating perception pictures, the luminance estimations of each example picture are focused with the goal that the mean an incentive to be 0, and afterward mounted to half (×0.5), finally added to the dormant pictures.

Qualitative assessment of the resulting images: The resulting images are shown in Fig. 5 and in Fig. 8(d), 8(b) the original pattern picture (gray color is null light), 8(c) a mixed image, 8(d) a latent picture, and (e) the pattern picture obtained are shown from Fig. 5, (a) a latent original picture. In the end their spectral images are shown. Here at Fig. 8(d), constant ring at the image boundary and isotropic design with identical texture in both horizontal and vertical directions. In Fig. 5 instead, we used a difficult pattern which, in the horizontal direction, is anisotropic and non-continuous.
Fig. 4: Simulation results using an anisotropic pattern that is non-circular.

The intensity of spectral images is normalized to display the specifics. The image as input is composed of the latent and model components in Fig. 5 below.

Fig. 5: Input image consists of latent and pattern components.

The latent image which is separated from input image is shown below in fig. 6.

Fig. 6: Latent component separated from input image.

The pattern noise component separated from input image is shown below in fig. 7.
Fig. 7: Pattern noise component separated from input image.

The results of simulation are based on an uncircular anisotropic pattern. The images below are their spectrum. The spectral image intensity is standardized to display the detail. The pictorial components as the input in Figure 4.4 below are the latent and model parts.

4.1.1. Comparison with related methods:

The outcome of this comparison and of the deletion of reflection[2] are shown in Fig. 8. Fig. 8. To extract components from the pattern, each method's factors are adjusted. We blur the pictures in this picture so that they appear as reflections in[2]. The standard 3 (pixel) difference is used to blur the spread-points Gaussian type function. Moreover, we change the pixel-specific multiplication model into the additive model in our method[2]. In the RPCA (Fig. 3.7(b)) the latent image is also low-ranking, although we expect that an image from the data matrix is low-ranking, so that the low-frequency component was wrongly extracted from the top row when we tried to extract the pattern part (b). Although in the reflective removal (c), the low frequency of the latent image was extracted, also as a reflection component (c) at the bottom of the line, as we attempted to extract the reflective component as a pattern. On the other hand, our technique can make a clear distinction between latent and pattern images.

Fig. 8: Comparison with the methods involved. (a) is the image observed (top) and the pattern of the ground truth (bottom).

5. Conclusion and Future Scope

In this paper, we examined a technique for removing from a degraded picture a model component object. Since the spectrum of the model is sparse, we distinguish the image with the mixed Standard containing the complexly appreciated standard and the L1 as a problem of mathematical optimization. While this method cannot remove any noise from patterns, we have shown that it does better than conventional methods such as RPCA and removal of reflective components. In conclusion, we note that the problem of the pattern considered for eliminating noise is linked to the image break-down methods of cartoon texture that distinguish the texture with a regularizaton of local low-ranks, for example[11],[12]. The noise pattern problem can be managed by these methods. We also note, however, that in each iteration these methods require an unparalleled decomposition to solve the associated optimizing problems that is costly than our method.

References

[1] J. Wright, Y. Peng, Y. Ma, A. Ganesh, and S. Rao (2009), Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization, in Proc. NIPS, 2009, pp. 2080–2088.
[2] Y. Li and M. Brown (2014), Single image layer separation using relative smoothness, in Proc. IEEE CVPR, 2014, pp. 2752–2759.
[3] T.-S. T. Chan and Y. H. Yang (2016), Complex and Quaternionic principal component pursuit and its application to audio separation, Signal Proce.Letters, vol.23, no. 2, pp. 287–291
[4] S. Samarah, S. Obeidat, and R. Salman (2005), A Schur test for weighted mixed-norm spaces, Anal. Math., vol.31, pp. 277–289
[5] A. Benedek and R. Panzone (1961), The space ℓ^p with mixed norm, Duke Math. J., vol. 28, pp. 301–324
[6] M. Kowalski (2009), Sparse regression using mixed norms, Applied Comput. Harmonic Anal., vol. 27, no. 3, pp.303–324
[7] L. Rudin, S. Osher, and E. Fatemi (1992), Nonlinear total variation based noise removal algorithms, *Physica D*, vol. 60, no. 1-4, pp. 259–268.

[8] D. Gabay and B. Mercier (1976), A dual algorithm for the solution of nonlinear variational problems via finite elements approximations, *Comput. Math. Appl.*, vol. 2, pp. 17–40.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011), Distributed optimization and statistical learning via the alternating direction method of multipliers,” *Founda. & Trends in Machine Learn.*, vol. 3, no. 1, pp. 1–122.

[10] K. Shirai and M. Okuda (2014), Fit based solution for multivariable l2 equations using kkt system via fit and inefficient pixel-wise inverse calculation, in *Proc. IEEE ICASSP*, 2014, pp. 2648–2652.

[11] H. Schaeffer and S. Osher, “A low patch-rank interpretation of texture,” *SIAM J. Imag. Sci.*, vol. 6, no. 1, pp. 226–262, 2013.

[12] S. Ono, T. Miyata, and I. Yamada (2014), Cartoon- texture image decomposition using blockwise low-rank texture characterization, *IEEE T. Image Proce.*, vol. 23, no. 3, pp. 1128–1142.

[13] M. Belkin and P. Niyogi (2014), Laplacian eigenmaps for dimensionality reduction and data that the representation. *Neural Computation*, 15(6):1373-1396.

[14] D.P. Bertsekas (2008), *Constrained Optimization and Lagrange Multiplier Method*. Academic Press, 1982. for matrix completion, preprint.

[15] E. J. Cand‘es and Y. Plan (2010), Matrix completion with noise. *Proceedings of the IEEE*, Volume: 98 , Issue: 6, June 2010.

[16] S.Chen, D.Donoho, and M. Saunders (2001), Atomic decomposition by basis pursuit. *SIAM Review*, volume 43, number 1, pp:129–159.

[17] S. Dewester, S. Dumains, T. Landauer, G. Furnas, and R. Harshman (1990), Indexing by latent semantic analysis. *Journal of the Society for Information Science*, volume 41, number 6, pp:391–407.

[18] C. Eckart and G. Young (1936), The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218.

[19] M. Fazel, H. Hindi, and S. Boyd (June 2013), Log-det heuristic for matrix rank minimization with applicationsto Hankel and Euclidean distance matrices. In *Proceedings of the American Control Conference*, pp: 2156–2162.

[20] M. Fischler and R. Bolles (1981), Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24, pp :381–385.

[21] A. Georghiades, P. Belhumeur, D. Kriegman (2001), From few to many: Illumination cone models for face recognition under variable lighting and pose *IEEE Trans. on Pattern Analysis and Machine Intelligence*, volume 23, number 6.

[22] R. Gnanadesikan and J. Kettenring (1971), Robust estimates, residuals ,and outlier detection with multi-response data. *Biometrics*, 28, pp:81–124.

Authors’ Biography

Vinit Kumar Gunjan

Associate Professor in Department of Computer Science & Engineering at CMR Institute of Technology Hyderabad (Affiliated to Jawaharlal Nehru Technological University, Hyderabad). An active researcher; published research papers in IEEE, Elsevier & Springer Conferences, authored several books and edited volumes of Springer series, most of which are indexed in SCOPUS database. Awarded with the prestigious Early Career Research Award in the year 2016 by Science Engineering Research Board, Department of Science & Technology, Government of India. An active Volunteer of IEEE Hyderabad section; volunteered in the capacity of Treasurer, Secretary & Chairman of IEEE Young Professionals Affinity Group & IEEE Computer Society. Was involved as organizer in many technical & non-technical workshops, seminars & conferences of IEEE & Springer. During the tenure I had an honour of working with top
leaders of IEEE and awarded with best IEEE Young Professional award in 2017 by IEEE Hyderabad Section.

He holds a PhD in Electronics and Communication Engineering and currently serves as an Associate Professor in Department of Electronics & Communication Engineering at Annamacharya Institute of Technology & Sciences (AITS) (an Autonomous Institute), India. He is BOS Member of the Department and also held a position as the Academic Council Member of the Institute.

His research interests include Signal Processing, Time Series Analysis and Biomedical Image Processing. He is a member of professional bodies such as IEEE, BMESI and ISTE. He is the Vice-Chair for IEEE YP AG (Young Professionals Affinity Group), IEEE Hyderabad Section for the year 2019 and Executive Committee Member and Treasurer for IEEE YP AG in 2017 and 2018 respectively. He acted as Publication Chair of IEEE Conference ICRTEECT-2017 organized by SREC, Warangal in 2017 and as Organizing Committee member of 15th IEEE International Conference, ICACT-2013 held at AITS, Rajampet in 2013. He has authored books by titles Medical Imaging in Diabetes with Cinnamonteal Publishers in 2011, Image Processing in Diabetic Related Causes with Springer Publications in 2015, Signal and Image Processing in Medical Applications with Springer Publications in 2016 and Computational Methods in Molecular Imaging Technologies with Springer publications in 2017. He filed 5 Patents and four of them published in IP India Journal, in the area of Health care and Image Processing. He is one of the Co-Principal Investigators for a project funded by the Science Engineering Research Board, Department of Science & Technology, Government of India.

How to Cite

Gunjan, Vinit Kumar, Shaik, Fahimuddin, “A Robust Decomposition based Algorithm for removal of Pattern Noise from images”, International Journal of Machine Learning and Networked Collaborative Engineering, Vol. 03, No. 1, 2019, pp. 66-75.

doi: https://doi.org/10.30991/IJMLNCE.2019v03i01.005