Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

This online publication has been corrected. The corrected version first appeared at thelancet.com on Nov 25, 2020.

Supplement to: The National SARS-CoV-2 Serology Assay Evaluation Group. Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infect Dis 2020; published online Sept 23. https://doi.org/10.1016/S1473-3099(20)30634-4.
Supplementary material

The National SARS-CoV-2 Serology Assay Evaluation Group (complete, alphabetical listing)

Surname	First name/subsequent initials	Affiliation
Ainsworth	Mark	Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Andersson	Monique	Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Auckland	Kathryn	Wellcome Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
Bailie	J. Kenneth	University of Edinburgh, Edinburgh, UK
Barnes	Eleanor	Nuffield Department of Medicine, University of Oxford, Oxford, UK
Beer	Sally	Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Beveridge	Amy	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
Bibi	Sagida	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
Blackwell	Luke	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
Borak	Martyna	University of Oxford, Oxford, UK
Bown	Abbie	Public Health England (PHE) Porton Down, Salisbury, UK
Brooks	Tim	Public Health England (PHE) Porton Down, Salisbury, UK
Burgess-Brown	Nicola A.	Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
Camara	Susana	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
Catton	Matthew	Public Health England (PHE) Porton Down, Salisbury, UK
Chau	Kevin K.	Nuffield Department of Medicine, University of Oxford, Oxford, UK
Christott	Thomas	The Structural Genomics Consortium, Nuffield Department of Medicine (NDM), University of Oxford and the Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
Clutterbuck	Elizabeth	Department of Paediatrics, University of Oxford, Oxford, UK
Coker	Jesse	The Structural Genomics Consortium, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
Cornell	Richard J.	Nuffield Department of Medicine, University of Oxford, Oxford, UK
Cox	Stuart	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Crawford-Jones	David	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Crook	Derrick W.	Nuffield Department of Medicine, University of Oxford, Oxford, UK
D’Arcangelo	Silvia	Public Health England (PHE) Porton Down, Salisbury, UK
Dejniratsai	Wanwisa	Wellcome Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
Dequaire	Julie M.M.	University of Oxford, Oxford, UK
Dimitriadis	Stavros	University of Oxford, Oxford, UK
Dingle	Kate E.	Nuffield Department of Medicine, University of Oxford, Oxford, UK
Name	Affiliation	
--------------------	---	
Doherty George	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Dold Christina	Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK	
Dong Tao	MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK and the Chinese Academy of Medical Science(CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK	
Dunachie Susanna J.	Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK	
Ebner Daniel	The Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Emmenegger Marc	Institute of Neuropathology, University of Zuerich, Zuerich, Switzerland	
Espinosa Alexis	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Eyre David W.	Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK	
Fairhead Rory	University of Oxford, Oxford, UK	
Fassih Shayan	University of Oxford, Oxford, UK	
Feehily Conor	Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland and APC Microbiome Ireland, University College Cork, Cork, Ireland	
Felle Sally	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK	
Fernandez-Cid Alejandra	The Structural Genomics Consortium, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK	
Fernandez Mendoza Maria	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Foord Thomas H.	University of Oxford, UK	
Fordwoh Thomas	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Fox McKee Deborah	Public Health England (PHE) Porton Down, Salisbury, UK	
Frater John	Nuffield Department of Medicine, University of Oxford, Oxford, UK and NIHR Oxford Biomedical Research Centre	
Gallardo Sanchez Veronica	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Gent Nick	Public Health England (PHE) Porton Down, Salisbury, UK	
Georgiou Dominique	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Groves Christopher J.	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Hallis Bassam	Public Health England (PHE) Porton Down, Salisbury, UK	
Hammond Peter M.	Public Health England (PHE) Porton Down, Salisbury, UK	
Hatch Stephanie B.	The Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Harvala Heli J.	NHS Blood and Transplant, UK	
Name	Last Name	Affiliation
---------------------	-----------	--
Hill	Jennifer	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
Hoosdally	Sarah J.	Nuffield Department of Medicine, University of Oxford, Oxford, UK
Horsington	Bryn	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Howarth	Alison	The Structural Genomics Consortium, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
James	Tim	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Jeffery	Katie	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, Oxford, UK
Jones	Elizabeth	Department of Paediatrics, University of Oxford, Oxford, UK
Justice	Anita	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Karpe	Fredrik	Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
Kavanagh	James	Nuffield Department of Medicine, University of Oxford, Oxford, UK
Kim	David S.	University of Oxford, UK
Kirton	Richard	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Klenerman	Paul	The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
Knight	Julian C.	Wellcome Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
Koukouflis	Leonidas	The Structural Genomics Consortium, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
Kwok	Andrew	Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
Leuschner	Ulrich	University of Oxford, Oxford, UK
Levin	Robert	Worthing Hospital, Worthing, UK
Linder	Aline	Department of Paediatrics, University of Oxford, Oxford, UK
Lockett	Teresa	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Lumley	Sheila F.	Oxford University Hospitals NHS Foundation Trust and Nuffield Department of Medicine, University of Oxford, Oxford, UK
Marinou	Spyridoula	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
Marsden	Brian D.	The Structural Genomics Consortium, Nuffield Department of Medicine (NDM), University of Oxford and the Kennedy Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
Martinez	Jose	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
Martins Ferreira	Lucas	The Structural Genomics Consortium, Nuffield Department of Medicine
Name	Affiliation	
----------------	---	
Mason	(NDM), University of Oxford, Oxford, UK	
Matthews	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Mentzer	Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Mobbs	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Mongkolsapaya	Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK and the Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand	
Morrow	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Makhopadhyay	Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Neville	Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK	
Oakley	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Oliveira	Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK	
Otter	Public Health England (PHE) Porton Down, Salisbury, UK	
Paddon	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Pascoe	Public Health England (PHE) Porton Down, Salisbury, UK	
Peng	MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK	
Perez	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Perumal	Public Health England (PHE) Porton Down, Salisbury, UK	
Peto	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Pickford	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Ploeg	Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK and NHS Blood & Transplant, UK and Leiden University, The Netherlands	
Pollard	Oxford Vaccine Group, Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK	
Richardson	Public Health England (PHE) Porton Down, Salisbury, UK	
Ritter	University of Oxford, Oxford, UK	
Roberts	NHS Blood and Transplant, UK	
Name	Affiliation	
-------------------	---	
Rodger Gillian	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Rollier Christine S.	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK	
Rowe Cathy	Public Health England (PHE) Porton Down, Salisbury, UK	
Rudkin Justine K.	Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, Oxford, UK	
Screaton Gavin	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Semple Malcolm G.	University of Liverpool, Liverpool, UK	
Sienkiewicz Alex	Public Health England (PHE) Porton Down, Salisbury, UK	
Silva-Reyes Laura	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK	
Skelly Donal T.	Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK	
Sobrino Diaz Alberto	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Stafford Lizzie	Oxford University Hospitals NHS Foundation Trust, Oxford, UK and NIHR Oxford Biomedical Research Centre, Oxford, Oxford, UK	
Stockdale Lisa	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK	
Stoesser Nicole	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Street Teresa	Nuffield Department of Medicine, University of Oxford, Oxford, UK	
Stuart David I.	The Division of Structural Biology (STRUBI), Nuffield Department of Medicine, University of Oxford, Oxford, UK and and Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK	
Sweed Angela	Public Health England (PHE) Porton Down, Salisbury, UK	
Taylor Adan	University of Oxford, Oxford, UK	
Thraves Hannah	Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK	
Tsang Hoi P.	NHS Blood and Transplant, UK	
Verheul Marije K.	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK and NIHR Oxford Biomedical Research Centre, Oxford, Oxford, UK	
Vipond Richard	Public Health England (PHE) Porton Down, Salisbury, UK	
Walker Timothy M.	Nuffield Department of Medicine, University of Oxford, Oxford, UK and Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam	
Wareing Susan	Oxford University Hospitals NHS Foundation Trust, Oxford, UK	
Warren Yolanda	Oxford University Hospitals NHS Foundation Trust, Oxford, UK	
Wells Charlie	Oxford University Hospitals NHS Foundation Trust, Oxford, UK	
Wilson Clare	Public Health England (PHE) Porton Down, Salisbury, UK	
Withycombe Kate	Public Health England (PHE) Porton Down, Salisbury, UK	
Young Rebecca K.	University of Oxford, Oxford, UK	
Complete Author contributions (as per CRediT; Contributor Roles Taxonomy)

Conceptualization - A Bown, T Brooks, DW Crook, DW Eyre, B Hallis, P Hammond, T James, PC Matthews, TEA Peto, C Rowe, A Sienkiewicz, N Stoesser, R Vipond

Methodology - A Bown, T Brooks, DW Crook, DW Eyre, B Hallis, P Hammond, T James, PC Matthews, TEA Peto, C Rowe, A Sienkiewicz, N Stoesser, R Vipond

Software - T Christott, DW Eyre, L Koutoufis, BD Marsden, L Martins Ferreira, K Paddon

Validation - A Bown, T Brooks, S Cox, DW Crook, W Dejnirattasai, D Ebner, M Emmenegger, DW Eyre, B Hallis, P Hammond, SB Hatch, A Howarth, T James, PC Matthews, J Mongkoliasapaya, TEA Peto, C Rowe, A Sienkiewicz, N Stoesser, R Vipond

Formal analysis - DW Eyre, N Gent, PC Matthews, TEA Peto, N Stoesser

Investigation - K Auckland, A Beveridge, S Bibi, L Blackwell, A Bown, T Brooks, S Camara, M Catton, KK Chau, T Christott, E Clutterbuck, D Crawford-Jones, S Cox, C Dold, S D’Arcangelo, W Dejnirattasai, J Dequaire, KE Dingle, G Doherty, D Ebner, A Espinosa, DW Eyre, C Feehily, S Felle, D Fox McKee, B Hallis, P Hammond, J Hill, SJ Hoosdally, A Howarth, J Kavanagh, R Kirton, A Linder, SF Lumley, S Marinou, L Mason, BD Marsden, J Martinez, L Martins Ferreira, PC Matthews, AJ Mentzer, A Mobbs, J Mongkoliasapaya, S Oakley, M Oliveira, A Otter, J Pascoe, PK Perumal, H Pickford, A Richardson, G Rodger, CS Rollier, C Rowe, JK Rudkin, A Sienkiewicz, L Silva-Reyes, M Spyridoulou, L Stafford, T Street, N Stoesser, A Sweeney, MK Verheul, R Vipond, C Wilson, K Withycombe

Resources - M Ainsworth, M Andersson, JK Baillie, E Barnes, S Beer, M Borak, A Bown, T Brooks, NA Burgess-Brown, J Coker, R Cornell, DW Crook, S Dimitriadi, T Dong, SJ Dunachie, D Ebner, DW Eyre, R Fairhead, S Fassih, A Fernandez-Cid, M Fernandez Mendoza, TH Foord, T Fordwih, J Frater, V Gallardo Sanchez, D Georgiou, CJ Groves, B Hallis, P Hammond, HJ Harvala, B Horsington, T James, E Jones, K Jeffery, A Justice, F Karpe, DS Kim, P Klemerman, JC Knight, U Leuschner, T Lockett, J Martinez, PC Matthews, AJ Mentzer, J Mongkoliasapaya, SM Mukhopadhyay, MJ Neville, S Oakley, M Oliveira, Elena Perez, RJ Ploeg, AJ Pollard, TG Ritter, DJ Roberts, C Rowe, CS Rollier, C Rowe, G Screaton, MG Semple, A Sienkiewicz, DT Skelly, A Sobrino Diaz, L Stockdale, DJ Stuart, N Stoesser, A Taylor, H Thraves, HP Tsang, S Wareing, R Vipond, TM Walker, Y Warren, C Wells, R Young

Data Curation - A Bown, T Christott, D Ebner, DW Eyre, SB Hatch, A Howarth, L Koutoufis, BD Marsden, L Martins Ferreira, PC Matthews, AJ Mentzer, MJ Neville, C Rowe, N Stoesser

Writing - Original draft - DW Eyre, PC Matthews, N Stoesser

Writing - Review & Editing - All authors

Visualization - DW Eyre, PC Matthews, TEA Peto, N Stoesser

Supervision - A Bown, T Brooks, R Cornell, DW Crook, D Ebner, DW Eyre, B Hallis, P Hammond, SB Hatch, A Howarth, T James, BD Marsden, PC Matthews, TEA Peto, C Rowe, A Sienkiewicz, N Stoesser, DI Stuart, R Vipond

Project administration - A Bown, T Brooks, DW Crook, D Ebner, DW Eyre, B Hallis, P Hammond, SB Hatch, SJ Hoosdally, A Howarth, T James, BD Marsden, PC Matthews, TEA Peto, A Sienkiewicz, N Stoesser, G Screaton, DJ Stuart, R Vipond

Funding acquisition - R Cornell, DW Crook, G Screaton, A Sienkiewicz, DJ Stuart

All authors - Declaration of Interests

Richard Cornall is a founder of MIROBIO and reports reports personal fees and other from MIROBIO, outside of the submitted work.

David W. Eyre has received lecture fees from Gilead, outside of the submitted work.

Malcolm G. Semple reports grants from the Department of Health and Social Care (DHSC), National Institute of Health Research UK, grants from Medical Research Council UK, grants from Health Protection Research Unit in Emerging & Zoonotic Infections, University of Liverpool, during the conduct of the study; other from Integrum Scientific LLC, Greensboro, NC, USA, outside of the submitted work.

Additional acknowledgements

We are grateful to all the participants and patients who have contributed samples, and all of the biomedical scientists who have processed samples for this study. This work uses data provided by patients and collected by the NHS as part of their care and support #DataSavesLives. We are extremely grateful to the 2,648 frontline NHS clinical and research staff and volunteer medical students, who collected this data in challenging circumstances; and the generosity of the participants and their families for their individual contributions in these difficult times.

Additional funding statements

This work is also supported by grants from: the National Institute for Health Research [award CO-CIN-01], the Medical Research Council [grant MC_PC_19059] and by the National Institute for Health Research Health
Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in
partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine
and the University of Oxford [NIHR award 200907], Wellcome Trust and Department for International
Development [215091/Z/18/Z], and the Bill and Melinda Gates Foundation [OPP1209135], and Liverpool
Experimental Cancer Medicine Centre for providing infrastructure support for this research (Grant Reference:
C18616/A25153). The views expressed are those of the authors and not necessarily those of the DHSC, DID,
NIHR, MRC, Wellcome Trust or PHE.

Eleanor Barnes is supported by the Oxford NIHR Biomedical Research Centre and is an NIHR Senior
Investigator.

Kevin K. Chau is a Medical Research Foundation National PhD Training Programme student (MRF-145-0004-
TPG-AVISO).

Christina Dold is funded by Innovate UK.

Tao Dong is funded by the Medical Research Council and the Chinese Academy of Medical Sciences (CAMS)
Innovation Fund for Medical Sciences (CIFMS), China (grant number: 2018-I2M-2-002).

Paul Kleereman is a Wellcome Trust Investigator (WT109965MA) and holds an NIHR Senior Fellowship.

Julian C. Knight is a Wellcome Trust Investigator (204969/Z/16/Z) and receives support from the NIHR Oxford
Biomedical Research Centre.

Jesse Coker is supported by the Kennedy Trust for Rheumatology Research and SGC, a registered charity
(number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada
Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics
Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen,
Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Pfizer, São Paulo Research Foundation-
FAPESP, Takeda, and Wellcome.

Nicola A. Burgess-Brown, Alejandra Fernandez-Cid, Lucas Martins Ferreira, Shubhashish Mukhopadhyay and
Thomas Christott are supported by the SGC, a registered charity (number 1097737) that receives funds from
AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for
Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative
(EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis
Pharma AG, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.

Yanchun Peng is funded by the Medical Research Council and the Chinese Academy of Medical Sciences
(CAMS) Innovation Fund for Medical Sciences (CIFMS), China (grant number: 2018-I2M-2-002).

Rutger Ploeg is supported by funding from the NIHR Oxford Biomedical Research Centre, the Medical
Research Council, NHS Blood and Transplant, the NIHR.

Alex J. Mentzer is supported by the NIHR and the NIHR Oxford Biomedical Research Centre.

Christine S. Rollier is supported by the NIHR Oxford Biomedical Research Centre.

Justine K. Rudkin is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the
Royal Society (Grant 101237/Z/13/B).

Donal T. Skelly is supported by the NIHR. The views expressed in this article are those of the author and not
necessarily those of the NHS, the NIHR, or the Department of Health.

Timothy M. Walker is a Wellcome Trust Clinical Career Development Fellow (214560/Z/18/Z).

Yolanda Warren is funded by the University of Oxford and the NIHR Clinical Research Network: Thames
Valley and South Midlands.

Supplementary Methods

A. Systematic review

We considered any article published in English, German, French, Spanish or Italian. Screening was performed
by a single reviewer, using a screening template to exclude studies if they were not focused on determining
SARS-CoV-2 serology, did not evaluate sensitivity/specificity for (an) assay(s), or did not evaluate assays
included in our head-to-head; replicate references across databases were de-duplicated. Data extraction for
relevant studies was completed by two extractors using a template table (in line with PICOS [Participants,
Interventions, Comparisons, Outcomes, Study design]) which included publication details, a description of the
cohort samples investigated, the sample sizes used to generate metrics, sensitivity and specificity for the
relevant assay being evaluated, and additional freetext notes (see Supplementary Methods/Supplementary
dataset SD1/PRISMA checklist).

The expanded search terms in PubMed were as follows:

("severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR "severe acute respiratory
syndrome coronavirus 2"[All Fields]) OR "sars cov 2"[All Fields]) AND ((((((((("elisa s"[All Fields] OR
For the PubMed search, the workflow is shown below:

For the BioRxiv/MedRxiv searches, the workflow is shown below:

Article screening results can be found in Supplementary Dataset SD1.
B. Cohorts from which samples were obtained

‘Known negative’ samples
- Oxford BioBank, Oxfordshire, UK; Oxfordshire Clinical Research Ethics Committee 08/H0606/107+5

‘Known positives’ samples
- Gastro-intestinal illness in Oxford: COVID substudy [Sheffield REC, reference: 16/YH/0247]
- ISARIC/WHO Clinical Characterisation Protocol for Severe Emerging Infections [Oxford REC C, reference 13/SC/0149]
- Sepsis Immunomics project [Oxford REC C, reference:19/SC/0296]
- Volunteer plasma donors being screened for convalescent plasma studies by NHS Blood and Transplant (NHSBT; RECOVERY [Cambridge East REC (ref: 20/EE/0101]) and REMAP-CAP [EudraCT 2015-002340-14] studies).

C. Oxford immunoassay (OIA) validation and calibration

Schematic of OIA and workflow

Plate layout - schematic

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	![Sample Plate Schematic](image)																							

Samples
- 1:400 dilution
- NHSBT high plasma standard (donor ID: 10062)
- NHSBT medium plasma standard (donor ID: 10065)
- NHSBT low plasma standard (donor ID: 10063)
- Neophiles (pre-pandemic) control
- NHSBS reagent (not always added)
Assay modifications
The assay was implemented as in (1), but with the following minor modifications:

- A 4-times instead of 5-times wash after incubating the sera
- Incubating with the secondary antibody for 90mins instead of 60 mins
- Adding a further 2-times wash with PBS after the secondary antibody had been washed away three times with PBS-T
- Incubating with 20μL of QuantaRed™ Enhanced Chemifluorescent HRP Substrate Kit (Thermo Scientific, Waltham Massachusetts, USA) for three instead of four minutes before the addition of 2μL of the stop solution

Calibration of the OIA assay
A total 8 milk ‘blank’ wells were included in each plate to determine a background reading which was subtracted from the raw signal per well to obtain a net reading.

A panel of dilution series made from the 3 NHSBT controls and the monoclonal antibody (CR3022), run on each 384 well plate, were used to calibrate readings between plates and batches. NHSBT 10061 was used at 1:25, 1:50, 1:100, 1:200, 1:400, 1:800, 1:1600, 1:3200, NHSBT 10062 at 1:25, 1:400, 1:800, 1:1600, 1:3200 and NHSBT at 1:25, 1:50, 1:100, 1:200, 1:400, 1:800, 1:1600 dilutions. CR3022 was used at concentrations of 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001 µg/ml. The majority of controls were included in duplicate (n=50 overall). An additional 5 NIBSC controls were run on a subset of runs. A single negative control, BD01 (a pre-pandemic blood donor serum provided by NHSBT) was also included on all plates.

A reference set of assay values for these controls were determined from data obtained on 3rd June 2020. All runs were converted into “3rd June” units using a natural cubic spline based linear regression model. For visualisation, values obtained for each control dilution within each 384 well plate were plotted on the x-axis and the reference values plotted on the y-axis. A linear regression model was fitted between the two, transforming the values on the x-axis using a 3-knot natural cubic spline (see Figure below). Model parameters were then used to convert net readings for all samples in the plate to normalised net readings.

Example mapping between net readings and normalised reference readings for control sample dilutions.

After initial model fitting a heuristic check for outliers was performed searching for differences between the normalised net readings and reference values >800,000 units. Such points were excluded, typically ≤2 out of a total of 50 controls, before re-fitting a final model.

Derivation of OIA diagnostic thresholds
We derived thresholds for the Oxford immunoassay (OIA) using an independent set of derivation samples:

- Known positives; defined by SARS-CoV-2 RT-PCR positive nose/throat swab; n=120
 - Acute; n=21
 - >10-28 days from symptom-onset; n=21
 - Convalescent; n=99 individuals
- >28 days from symptom-onset (from Oxfordshire); n=18
- >28 days from PCR-positive result (obtained from NHSBT); n=81 samples
- MERS-CoV anti-sera; n=1
- Other respiratory virus infections; n=23
 - Acute seasonal coronavirus-positive samples (≤28 days post-respiratory PCR [BioFire FilmArray RP panel]); n=6
 - Convalescent seasonal coronavirus-positive samples (>28 days post-respiratory PCR [BioFire FilmArray RP panel]); n=11
 - Acute non-coronavirus respiratory virus infections; n=6 (≤28 days post-respiratory PCR [BioFire FilmArray RP panel])
- Pre-pandemic controls n=1205
 - Serum samples taken from in- or outpatients having health monitoring, or samples as part of clinical management; n=954
 - Pre-pandemic blood donors recruited by NHSBT; n=251

We used a prespecified specificity target of 99% to set a threshold for determining a threshold for presence of antibody. The distribution of results obtained is shown in the figure below.

OIA diagnostic threshold derivation samples

At ≥10 days post symptom onset, excluding the MERS anti-sera (which was positive) but including the 23 samples from individuals with other viral infections, derivation sensitivity and specificity (at a normalised threshold of 8 million units) were 100% (120/120; 95% CI: 97.0-100.0%) and 99.6 (1223/1228; 95% CI: 99.1-99.9%) respectively.

Other methods

* Sensitivity was calculated using the following equation:
 \[
 \text{Sensitivity} = \frac{\text{Number of true positive tests}}{\text{Number of true positive tests} + \text{Number of false negative tests}}
 \]

* Specificity was calculated using the following equation:
 \[
 \text{Specificity} = \frac{\text{Number of true negative tests}}{\text{Number of true negative tests} + \text{Number of false positive tests}}
 \]

* The positive predictive value (PPV) was calculated from the following equation:
 \[
 \text{PPV} = \frac{\text{Sensitivity} \times \text{prevalence}}{\text{Sensitivity} \times \text{prevalence} + (1 - \text{specificity}) \times (1 - \text{prevalence})}
 \]
The negative predictive value (NPV) was calculated from the following equation:

\[\text{Specificity} \times (1-\text{prevalence}) / [(1-\text{sensitivity}) \times \text{prevalence} + (\text{specificity} \times (1-\text{prevalence}))] \]
Supplementary Tables

Table S1. Summary of serum/plasma samples used for head-to-head analysis of five immunoassays for the detection of SARS-CoV-2 antibodies. This reflects the details for samples that were evaluated across all assays.

Group	Source	Number of samples	Days from symptom onset, median (IQR; min, max; number of samples)	Days from PCR-positive test, median (IQR; min, max; number of samples)
Known negative	Healthy individuals 30-50 years of age, collected between 2015-2018 in Oxfordshire (Oxford BioBank, www.oxfordbiobank.org.uk)	976	n/a	n/a
Known positive	Healthcare workers and patients ≥18 years of age at Oxford University Hospital NHS Foundation Trust, Oxfordshire, UK	158	36·5 (28-53; 20, 73; n=158)	27 (4-58; 3, 59; n=105)
Known positive	Volunteer plasma donors ≥18 years of age via NHS Blood and Transplant (NHSBT), across the UK	378	All samples ≥28 days post-symptom onset*	44 (40-49; 32, 82; n=378)

Although specific data on time from symptoms is not available for this group, all donors had to have been at least 28 days post-symptom onset to be eligible for sampling: see https://www.nhsbt.nhs.uk/plasma-trial/
Table S2. Summary of the commercial immunoassays evaluated. Information presented is based on the product literature released by each manufacturer, using versions active on 8-June-2020 when our protocol was finalised.

Assay and analyser used	Viral target and antibody type	Sample type	Sensitivity (95% CI) on samples taken ≥14 days post-symptom onset/post-positive RT-PCR, number of samples	Specificity (95% CI), number of samples	Manufacturers’ thresholds
Abbott SARS-CoV-2 Immunoassay, Architect i2000SR	Nucleocapsid protein, IgG	Serum, serum separator tube and plasma (ACD, CPD, CPDA-1, dipotassium EDTA, tripotassium EDTA, lithium heparin, lithium heparin separator tube, sodium citrate, sodium heparin)	96.77% (90.86, 99.33), 88 (≥14 days post-symptom onset)	99.63% (99.05, 99.90), 1070	Negative: <1.4 Positive: ≥1.4
DiaSorin LIAISON® SARS-CoV-2 S1/S2 IgG, LIAISON® XL	Spike protein S1/S2, IgG	Serum, plasma (sodium heparin, lithium heparin, potassium EDTA)	97.56% (87.40, 99.57), 14 (≥15 days from diagnosis (RT-PCR))	98.5% (97.6, 99.2), 1090	Negative: <12.0 AU/mL Equivocal: 12.0 ≤ x <15.0 AU/mL Positive: ≥15.0 AU/mL
Roche Elecsys® Anti-SARS-CoV-2, Cobas e 411	Nucleocapsid protein, Total antibody	Serum collected using standard sampling tubes, Li-heparin, K2-EDTA and K3-EDTA plasma	100% (88.1, 100), 29 (≥14 days from diagnosis (RT-PCR))	99.81% (99.65, 99.91), 5272	Non-reactive: <1.0 Reactive: ≥1.0
Siemens SARS-CoV-2 Total (COV2T), Atellica Solution immunoassay analyzer	Spike protein S1 RBD, Total antibody	Serum and plasma (potassium EDTA and lithium heparin)	100.00% (91.59, 100.00), 42 (≥14 days from diagnosis (RT-PCR))	99.82 (99.34, 99.98), 1091	Non-reactive: <1.0 Reactive: ≥1.0
Publication DOI/URL, first author, date	Cohort	Sample number	Reactive/ positive	Specificity % (95% CI)	Notes
--	--------	---------------	-------------------	------------------------	-------
Abbott					
10.1128/JCM. 01029-20, Brecher S et al, 27/May/2020	RT-PCR-negative for SARS-CoV-2, PCR (Respiratory Panel 2, Film Array, BioFire Diagnostics) positive for other seasonal coronaviruses. Plasma samples taken >4 weeks after the positive respiratory PCR	9	0	100% (66.3,100)	Very small study focused on analytical specificity in the context of SARS-CoV-negative (by RT-PCR) individuals. Elderly male population as the study was undertaken in three regional Veterans Affairs (VA) institutions in the US.
10.1093/clinchem/hvaa120, Tang MS et al, 18/Jun/2020 (as BioRxiv preprint on 10/May/2020)	Control specimens included: 80 patients symptomatic but PCR negative for SARS-CoV-2; 50 serum specimens collected and frozen in 2015 before the emergence of SARS-CoV-2; 5 specimens from patients with other coronaviruses confirmed by molecular testing but PCR negative for COVID-19 (including Coronaviruses HKU1, NL63, and 229E); 4 specimens from patients with Influenza A or B. 14 specimens with potentially interfering antibodies were also included: 5 were positive for CMV IgG, 3 were positive for EBV VCA IgG, 3 were positive for EBV VCA IgM, 2 were positive for both EBV VCA IgG and IgM, and 1 was positive for rheumatoid factor	153	1	99.4% (96.41, 99.98)	The single false-positive was a patient with a consistent syndrome and "prolonged exposure to a family member with PCR confirmed COVID-19" i.e. a likely Covid-19 case that was falsely negative by RT-PCR, highlighting the difficulty with using post-pandemic samples as a "known negative" group for evaluating specificity.
10.1128/JCM. 00941-20, Bryan A et al, 7/May/2020	Pre-pandemic specimens 2018-2019 sent to the clinical laboratory	1020	1	99.9% (99.5, 100)	Proposed the use of AUC analysis to adjust thresholds: “These analyses indicated that optimal thresholds for the serologic diagnosis of SARS-CoV-2 was 1.42-1.49 at ≥ 17 days from symptom onset (sensitivity and specificity 100%); 0.7 at ≥ 14 days from onset (Sens 97.9%, Spec 99.6%); 0.7 at ≥ 10 days from onset (Sens 94.4%, Spec 99.6%); and 0.7 at ≥ 7 days from onset (Sens 88.0%, Spec 99.6%)” Pre-pandemic negative group represented samples submitted from 1010 individuals for HSV Western blot serology evaluation - i.e. likely to represent a biased subset of the population in whom HSV testing was being performed.
DiaSorin Liaison SARS-CoV-2 S1/S2 IgG

Total	Confounders: COVID-19-negative but who had other viral, bacterial, parasitic or autoimmune pathologies	Other coronavirus infection: COVID-19-negative patients but positive to another strain of coronavirus (NL63 strain and OC43 strain)	Healthy subjects
81	73	2	6

Proposed the use of ROC analysis to improve thresholds resulting in specificity of 99% (95% CI: 93%–100%) and sensitivity of 100% (95% CI: 92%–100%).

No breakdown by subgroup.

Pre-pandemic serum samples (routine laboratory, 2011)

Individuals with other coronavirus infections	SARS-CoV-2 RT-PCR negative patients	SARS-CoV-2 microneutralisation antibody negative samples	All negatives
1140	10	50	1380

98.5% (97.6, 99.1)

No breakdown by subgroup.

Pre-pandemic samples from 2018-2019

Individuals with other infections/autoantibodies including:	70	NA	94.9% (NA)
39 samples had autoantibodies			
3 acute EBV			
4 acute coronavirus			
35 from patients with respiratory infection			

Small sample size, with all samples coming from individuals with other infections/autoantibodies, confidence intervals not estimated.

Unclear which subset of 70 samples were used to evaluate the DiaSorin assay (insufficient sample to test all samples across all immunoassays included in the evaluation).

Total 191 individuals (negative by 3 sequential RT-PCR results)

| n=7 negative | NA | 96.8 (89.0-99.6) |

Number of samples and individuals tested not
0.05.22.20106	328, Plebani M et al, 26/May/2020	
Blood donors from 2015	Patients with autoimmune disease	Healthcare workers
samples	131 (pos and neg) samples from 271 individuals	101 individuals
19 individuals	71 individuals	
clear. Not specified which subset of positive/negative individuals/samples used.	Using optimised thresholds: 88.9% (78.4-95.4)	

| 05.2020 | GeurtsvanKessel CH et al, 05/May/2020 |
| Serum and plasma from people exposed to a human coronavirus (HCoV-229E, NL63 or OC43), SARS, MERS, or with a range of other respiratory viruses, and patients with recent CMV, EBV or M. pneumoniae infection. (69/147 negatives run on Liaison) |
| 69 samples |
| 1 |
| 98.55% (92.24, 99.93) |
| Evaluation on samples from patients with other infections only. |

| Roche Elecsys® |
| https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/887222/PHE_Evaluation_of_Roche_Elecsys_anti_SARS_CoV_2.pdf, PHE, 18/May/2020 |
| Total Confounder negative samples- from the Sero-Evaluation Unit (SEU), Manchester that are rheumatoid factor (12 samples), CMV (6 samples), EBV (19 samples) or VZV (13 samples) positive. All but one were negative using the Euroimmun IgG assay |
| 472 samples |
| 0 |
| 100% (99.1-100) |
| 100% (95.8-100.0) for Confounder and Porton sample sets (n=85) combined; results for individual sub-groups not reported individually |

| Roche Elecsys® |
| https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/887222/PHE_Evaluation_of_Roche_Elecsys_anti_SARS_CoV_2.pdf, PHE, 18/May/2020 |
| Porton negative samples- from the RIPL 2015 Lyme disease negative sample collection |
| 35 samples |
| 0 |
| Not reported individually |
| Siemens |
| No additional published data available at the time of review |
Table S4. Summary of external evaluations of assay sensitivity

Publication DOI/URL, first author, date	Cohort	Sample number	Reactive/positive	Sensitivity (95% CI)	Notes
10.1093/clinchem/hvaa120 Tang MS et al, 18 Jun/2020 (as BioRxiv preprint on 10 May/2020)	Abbott	Post-symptom onset:	12 specimens from 48 individuals	0% (0.00, 26.47)	Multiple samples from individuals included, which may not accurately reflect intra-individual variation. Longitudinal samples from individuals used.
		<3 days post-symptom onset	6	20	30.0% (11.89, 54.28)
		3-7 days post-symptom onset	23	11	47.8% (26.82, 69.41)
		≥14 days post-symptom onset	48	45	93.8 (82.80, 98.69%)
		Post-positive PCR:	42 specimens from 23 individuals	20	47.6% (32.0, 63.6)
		<3 days post-positive PCR	42	20	47.6% (32.0, 63.6)
		3-7 days post-positive PCR	22	13	59.1% (36.3, 79.3)
		8-13 days post-positive PCR	23	16	69.6% (47.1, 86.8)
		≥14 days post-positive PCR	16	13	81.3% (54.4, 96.0)
10.1128/JCM.00941-20, Bryan A et al, 7 May/2020	RT-PCR positive, March-April 2020	680 specimens from 125 individuals	53.1% (39.4, 66.3)	Proposed the use of AUC analysis to adjust thresholds: “These analyses indicated that optimal thresholds for the serologic diagnosis of SARS-CoV-2 was 1.42-1.49 at ≥ 17 days from symptom onset (sensitivity and specificity 100%); 0.7 at ≥ 14 days from onset (Sens 97.9%, Spec 99.6%); 0.7 at ≥ 10 days from onset (Sens 94.4%, Spec 99.6%); and 0.7 at ≥ 7 days from onset (Sens 88.0%, Spec 99.6%)”	
		Post-symptom onset:	≤7 days post-symptom onset	82.4% (51.0, 76.4)	
		8-10 days post-symptom onset	96.9% (89.5, 99.5)		
		11-14 days post-symptom onset	100% (95.1, 100)		
		15-17 days post-symptom onset	88.7% (78.5, 94.4)		
		Post-positive PCR:	≤7 days post-positive PCR	97.2% (90.4, 99.5)	
		8-10 days post-positive PCR	100.0% (95.4, 100.0)		
		11-14 days post-positive PCR	100.0% (95.5, 100.0)		
		15-17 days post-positive PCR	100.0% (95.5, 100.0)		
https://doi.org/10.1101/2020.05.18.20101618, Jääskeläinen AJ et al, 22 May/2020	RT-PCR positive by one of three methods: “...cobas® SARS-CoV-2 test on the Cobas® 6800 system (Roche Diagnostics, Basel, Switzerland), Amplidiag® COVID-19 test (Mobidiag, Espoo, Finland) and a protocol based on Corman et al (2020).”	70 samples from 62 individuals	80.5% (NA)	Longitudinal samples from the same individuals included, small sample sizes.	
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/928864/COVID-19_RTPCR_Positive_102220.pdf	RT-PCR positive, otherwise healthy individuals, “14 had an onset date ≤14 days prior to sample collection and 81 had an onset date ≥14 days prior to	96 samples, unknown number of individuals	80.5% (NA)	It should be noted here that none of the patients with previously positive PCR who tested negative by this assay had been	
Sample Date	Asymptomatic	Hospital admission to sample date <=10			
-------------	--------------	--------------------------------------			
11-20 days	5	100% (47.8-100)			
21-30 days	31	93.6% (78.6-99.2)			
31-40 days	37	94.6% (81.8-99.3)			
41-50 days	8	87.5% (47.3-99.7)			
From 14 days	82	93.9% (86.3-98.0)			
From 21 days	76	93.4% (85.3-97.8)			

The conclusion states:

“93.4% (95%CI 85.3-97.8) for samples collected ≥14 days post symptom onset
93.9% (95%CI 86.3-98.0) for samples collected ≥21 days post symptom onset.”

DiAsorin Liaison SARS-CoV-2 S1/S2 IgG

Study Reference	Sample Description	Sensitivity (%)	Specificity (%)
10.1515/cclm -2020-0594, Tré-Hardy M et al, 25/May/2020	RT-PCR-positive patients with mild, moderate, severe and critical infection based on CT appearances and clinical symptoms	None provided	91% (79, 96)
https://doi.org/10.1101/2020.05.19.105445, Bonelli, F et al, 20/May/2020	RT-PCR positive by one of three methods: -cobas® SARS-CoV-2 test on the Cobas® 6800 system (Roche Diagnostics, Basel, Switzerland), Amplidiag® COVID-19 test (Mobidiag, Espoo, Finland) and a protocol based on Corman et al (2020).“	43.8% (NA)	None provided
https://doi.org/10.1101/2020.05.18.20101618, Plebani M et al, 26/May/2020	Microneutralisation antibody positive samples ≤5 days post RT-PCR-positive	None provided	22.6% (14.2, 33.0)
https://doi.org/10.1101/2020.05.22.20106328, Jääskeläinen AJ et al, 22/May/2020	80 with at least one positive nasopharyngeal swab, consisting of: 16 healthcare workers, not hospitalised, SARS-CoV-2 positive	Sens 82.4% (71.2, 90.5)	Using optimised thresholds: Sens 97.1% (89.8, 99.6)

Unknown number of individuals tested.
32 hospitalised SARS-CoV-2 patients with moderate disease (not requiring ventilation)	32 hospitalised SARS-CoV-2 patients with severe disease (requiring ventilation)
53 samples, number individuals unknown.	Number of individuals not stated, all were from patients with severe disease.
RT-PCR confirmed COVID-19 patients with different levels of disease severity	Included here as data different from product literature above.
All Severe	41 samples
>14 days post symptoms	40
73.58% (60.42, 83.56)	97.6% (87.4, 99.6)
94.44% (74.24, 99.72)	Different sensitivity reported from that of the manufacturer; provenance of the results reported here unclear.

Roche Elecsys®

RT-PCR positive from a swab sample	Report symptom onset to sample date	93 samples, number of individuals unknown
		78
11-20 days	4	3
21-30 days	35	28
31-40 days	30	28
41-50 days	8	8
From 14 days	77	67
From 21 days	73	64
Hospital admission to sample date	71.4% (41.9-91.6)	50.0% (1.3-98.7)
<=10 days	14	10
Asymptomatic, not admitted	2	1
Number of individuals not reported. Small numbers in subgroups.	Number of individuals not reported. Small numbers in subgroups.	
Table S5. Positive and negative predictive values (PPV, NPV) for each assay, using the manufacturer’s threshold and sensitivity and specificity for samples tested at ≥20 days, at population prevalences of 5%, 10%, 20% and 50%. Absolute numbers of false negative (FN) and false positive (FP) per million tests are also shown.

Manufacturer	Population prevalence	Specificity (95% CI)	Sensitivity (95% CI)	FN per 1m tests (95% CI)	FP per 1m tests (95% CI)	Total errors per 1m tests (95% CI)	PPV	NPV
Siemens	5%	99.9 (99.4-100)	97.2 (90.2-94.8)	7300 (7134-7469)	900 (842-961)	15400 (15160-15643)	99.6%	98.2%
	10%	99.9 (99.4-100)	96.2 (90.2-94.8)	36500 (3533-3770)	950 (891-1012)	12350 (12135-12568)	98.0%	99.6%
	20%	99.9 (99.4-100)	99.1 (97.8-99.7)	1900 (1817-1987)	10450 (10252-10651)	12350 (12135-12568)	92.2%	99.8%
	50%	99.9 (99.4-100)	99.1 (97.8-99.7)	450 (409-494)	9500 (9311-962)	9950 (9756-10147)	83.9%	99.95%
Roche	5%	99.9 (99.3-100)	97.2 (95.4-98.4)	1400 (1328-1475)	1900 (1816-1987)	3300 (3189-3414)	96.2%	99.85%
	10%	99.9 (99.4-100)	98.1 (96.6-99.1)	950 (891-1012)	950 (891-1012)	1900 (1816-1987)	98.1%	99.90%
	20%	99.9 (99.4-100)	99.1 (97.8-99.7)	900 (842-961)	9000 (8158-9187)	9900 (9707-10100)	91.7%	99.90%
	50%	99.9 (99.4-100)	99.1 (97.8-99.7)	7600 (7431-7772)	9000 (8266-8985)	9800 (9608-9995)	96.1%	99.77%
Siemens	5%	99.9 (99.4-100)	98.1 (96.6-99.1)	1900 (1816-1987)	900 (842-961)	2800 (2697-2906)	99.1%	99.79%
	10%	99.9 (99.4-100)	99.1 (97.8-99.7)	3800 (3680-3923)	800 (746-857)	15400 (15160-15643)	99.6%	98.2%
	20%	99.9 (99.4-100)	99.1 (97.8-99.7)	1600 (1523-1680)	500 (457-546)	37000 (36631-37372)	99.9%	93.2%
	50%	99.9 (99.4-100)	99.1 (97.8-99.7)	8500 (8184-8877)	500 (457-546)	15000 (14763-15240)	99.9%	99.10%
Abbotsyn	5%	99.9 (99.4-100)	97.2 (90.2-94.8)	19000 (18733-19270)	5500 (5356-5647)	24500 (24198-24805)	98.9%	96.30%
	10%	99.9 (99.4-100)	99.1 (97.8-99.7)	45000 (4370-4653)	5000 (4863-5140)	5000 (9311-962)	99.0%	97.27%
	20%	99.9 (99.4-100)	99.1 (97.8-99.7)	14000 (13771-14232)	1000 (939-1064)	15000 (14763-15240)	99.8%	97.27%
	50%	99.9 (99.4-100)	98.1 (96.6-99.1)	9500 (9311-962)	500 (457-546)	10000 (9806-10197)	99.9%	98.13%
Table S6. Summary of concordance/discordance of results between assays for “known positive” samples analysed as part of the main analysis. “+” denotes a positive result, “−” a negative result and “+/−” an equivocal result (the latter relevant for the DiaSorin assay only). These data represent last samples per patient.

Abbott	DiaSorin	OIA	Roche	Siemens	n	Acute samples (<20 days post symptom onset)	% Acute	Samples from PCR-positive cases (≥20 days post symptom onset)	% Positive	Pre-pandemic negative	% Negative
-	-	-	-	-	977	25	2.6	3	0.3	949	97.1
+	+	+	+	+	551	62	11.3	489	88.7	0	0.0
-	+	-	-	-	19	5	26.3	4	21.1	10	52.6
-	+	+	-	-	18	2	11.1	16	88.9	0	0.0
+	-	+	+	+	12	6	50.0	6	50.0	0	0.0
-	+	-	-	-	11	0	0.0	0	0.0	11	100.0
-	+	+	-	-	10	4	40.0	6	60.0	0	0.0
-	-	+	-	-	5	2	40.0	1	20.0	2	40.0
-	-	-	+	-	5	4	80.0	1	20.0	0	0.0
-	+/−	+	+	+	5	1	20.0	4	80.0	0	0.0
+	+/−	+	+	-	4	3	75.0	1	25.0	0	0.0
+	+/−	+	+	+	4	1	25.0	3	75.0	0	0.0
-	-	+	+	+	3	1	33.3	2	66.7	0	0.0
-	-	-	+	+	2	0	0.0	1	50.0	1	50.0
-	+/−	-	-	-	2	0	0.0	0	0.0	2	100.0
+	+/−	+	+	-	2	2	100.0	0	0.0	0	0.0
-	+/−	+	+	-	1	0	0.0	1	100.0	0	0.0
+	+/−	+	+	+	1	1	100.0	0	0.0	0	0.0
+	+/−	+	+	-	1	0	0.0	0	0.0	1	100.0
+	+/−	+	+	+	1	1	100.0	0	0.0	0	0.0
+	+/−	+	+	-	1	1	100.0	0	0.0	0	0.0
Table S7. Summary of concordance/discordance of results between assays for early acute samples analysed at <14 days post-symptom onset. First sample per patient analysed; total n=118.

	Abbott	DiaSorin	OIA	Roche	Siemens
% of	-	-	-	-	-
samples	32	27	40	34	11
+	+	+	+	+	+
	6	5	3	3	9
-	-	-	-	-	-
	0	0	0	0	0
%	-	-	-	-	-
2	1.7	4	0.8	0.8	0.8
+	+	+	+	+	+
	3	3	0	0	0
-	-	-	-	-	-
	0	0	0	0	0
%	+	+	+	+	+
1	0.8	1	0.8	0.8	0.8
+	+	-	-	-	-
	2	1.7	0	0	0
+	+	+	+	+	+
	1	0.8	0	0	0
+	+	+	+	+	+
	1	0.8	0	0	0

Acute samples (<14 days post symptom onset)
Figure S1. Sample collections and inclusions/exclusions. For de-duplication of samples by individual, the latest sample meeting the MHRA criteria (i.e. latest sample taken ≥20 post-symptom onset) was included. The Table below the figure summarises the partial results for the five samples that were of insufficient volume to run across all platforms, and the text below the table the results for the 18 samples that did not pass QC due to liquid handling failures for the OIA.

Sample barcode	Expected result	Days since symptom onset	Platform	Actual result
900753	Negative	n/a	Abbott	Negative
			DiaSorin	Negative
			Roche	Negative
500379	Positive	40	Abbott	Positive
			DiaSorin	Positive
500380	Positive	41	Abbott	Positive
			DiaSorin	Positive
500381	Positive	41	Abbott	Negative
			DiaSorin	Negative
500384	Positive	42	Abbott	Positive
			DiaSorin	Positive
For the 18 samples that failed on the OIA, all were in the pre-pandemic (known negative) sample group, and all were negative by Abbott, Roche and Siemens; a single sample was positive on the DiaSorin assay (900079).
Figure S2. Sensitivity and specificity (95% confidence intervals) plotted for each assay on all samples ≥20 days post-symptom onset in confirmed laboratory cases of SARS-CoV-2 for positive cases, and >6 months prior to the first known COVID-19 cases for negatives. A target performance in line with the UK MHRA Target Product Profile is shown (dashed line) including the required lower bound of the 95% confidence interval (dotted line) for both sensitivity and specificity. Data are presented for all known negative samples (Abbott n=995, DiaSorin n=995, OIA n=977, Roche n=995, Siemens n=994) and all known positive samples run across (Abbott n=540, DiaSorin n=540, OIA n=540, Roche n=536, Siemens n=536) assays; equivocal results were excluded from the calculation of sensitivity and specificity for the DiaSorin assay (n=9).
Figure S3. Distribution of numerical results obtained for each commercial assay on all samples taken ≥20 days post-symptom onset (i.e. not restricted to samples only run across all platforms). Results are represented as A. histograms, to enable assessment of the frequency of values, and B. dotplots, to review scatter of values, especially around thresholds. Pre-specified assay thresholds are shown as dashed lines. For the purposes of plotting values on a log scale, values of zero were set to the lowest non-zero value and results of greater or less than the largest or smallest values were truncated to the largest and smallest values. Data are presented for all known negative samples (Abbott n=995, DiaSorin n=995, OIA n=977, Roche n=995, Siemens n=994) and all known positive samples run across (Abbott n=540, DiaSorin n=540, OIA n=540, Roche n=536, Siemens n=536) assays.
Figure S4. Sensitivity and specificity (95% confidence intervals) plotted for each assay on samples ≥14 days post-symptom onset in confirmed laboratory cases of SARS-CoV-2 for positive cases, and >6 months prior to the first known COVID-19 cases for negatives. A target performance in line with the UK MHRA Target Product Profile is shown (dashed line) including the required lower bound of the 95% confidence interval (dotted line) for both sensitivity and specificity. Data are presented for samples run across all platforms (n=976 and 561 for pre-pandemic and samples from positive cases respectively).
Figure S5. Sensitivity and specificity (95% confidence intervals) plotted for each assay on samples ≥30 days post-symptom onset in confirmed laboratory cases of SARS-CoV-2 for positive cases, and >6 months prior to the first known COVID-19 cases for negatives. A target performance in line with the UK MHRA Target Product Profile is shown (dashed line) including the required lower bound of the 95% confidence interval (dotted line) for both sensitivity and specificity. Data are presented for samples run across all platforms (n=976 and n=490 for pre-pandemic and samples from positive cases respectively).
Figure S6. ROC curves for each assay on samples taken ≥14 days after the onset of symptoms. The green shaded area represents sensitivity and specificity of ≥98% and ≥98% respectively. Assay values associated with 10 exemplar points on the ROC curve are shown in each panel. Data are presented for 976 known negative samples and 561 known positive samples run on each assay.
Figure S7. ROC curves for each assay on samples taken ≥30 days after the onset of symptoms. The green shaded area represents sensitivity and specificity of ≥98% and ≥98% respectively. Assay values associated with 10 exemplar points on the ROC curve are shown in each panel. Data are presented for 976 known negative samples and 490 known positive samples run on each assay.
Figure S8. Sensitivity and specificity (95% confidence intervals) plotted for each assay with alternative assay thresholds to keep specificity $\geq 98\%$ and revised criteria to show samples ≥ 30 days after the appearance of first symptoms. For each assay the lowest threshold that kept specificity $\geq 98\%$ was chosen (Abbott=0.49, DiaSorin=10, OIA=7.19 million normalised standard units, Roche=0.128, Siemens=0.29). The UK MHRA target performance is shown (dashed line) including the required lower bound of the 95% confidence interval (dotted line) for both sensitivity and specificity. Data are presented for 976 known negative samples and 490 known positive samples run on each assay.
Figure S9. Values for 8-point 1:2 dilution series of high-volume plasma controls defined as having high, medium and low titre antibodies (by EUROIMMUN; ratio values of 33·33, 4·34 and 2·50 respectively, where ratio is the optical density of the sample divided by the optical density of the calibrator [ratio of ≥ 1.1 is positive]; the S1 component of the SARS-CoV-2 spike protein is the antigen target for the EUROIMMUN assay), and a known pre-pandemic negative control. The “high” dilution series is represented by samples QC1001-QC1008, the “medium” dilution series by QC1009-1016, and the “low” dilution series by samples QC1017-1024. QC1025 is the negative control (sample BD01). Values were log(2) transformed prior to plotting.
Figure S10. Percentage of tests from SARS-CoV-2 RT-PCR-positive individuals positive over time by serology platform. Samples from <20 days from symptom onset, excluded from the main analysis, are included here. Panel A shows the percentage by time since symptom onset and panel B the percentage by the time since the individual’s first positive RT-PCR test.
Figure S11. Modelled antibody trajectories by assay, by day post-symptom onset. First sample per patient only were included. The black line shows the modelled mean and the grey shading the 95% confidence interval for the mean.
Figure S12. Sensitivity for each assay by disease severity (asymptomatic, mild, severe, critical/death; n=158). Disease severity was defined in line with WHO guidance(2) as follows: asymptomatic = no symptoms; mild = no oxygen requirement; severe = SaO2 ≤93%; critical = respiratory failure requiring intubation. Severity category was assigned on the day of sampling (asymptomatic n=13, mild n=122, severe n=16, critical/death n=7).
STARD checklist for evaluations of diagnostic accuracy

Section & Topic	No	Item	Reported on page #
Title or Abstract		Identification as a study of diagnostic accuracy using at least one measure of accuracy (such as sensitivity, specificity, predictive values, or AUC)	Title, Abstract
Abstract	2	Structured summary of study design, methods, results, and conclusions (for specific guidance, see STARD for Abstracts)	Abstract
Introduction	3	Scientific and clinical background, including the intended use and clinical role of the index test	Introduction
	4	Study objectives and hypotheses	Introduction
Methods			
Study design	5	Whether data collection was planned before the index test and reference standard were performed (prospective study) or after (retrospective study)	Methods - study design
Participants	6	Eligibility criteria	Methods - study design
	7	On what basis potentially eligible participants were identified (such as symptoms, results from previous tests, inclusion in registry)	Methods - study design
	8	Where and when potentially eligible participants were identified (setting, location and dates)	Methods - study design, Appendix - Table S1
	9	Whether participants formed a consecutive, random or convenience series	Methods - study design
Test methods			
10a		Index test, in sufficient detail to allow replication	Methods - study design and procedures, Appendix - supplementary methods section C, previous publication
10b		Reference standard, in sufficient detail to allow replication	Methods - study design
11		Rationale for choosing the reference standard (if alternatives exist)	Methods - study design
12a		Definition of and rationale for test positivity cut-offs or result categories of the index test, distinguishing pre-specified from exploratory	Methods - study design, Appendix - Table S1, Appendix - supplementary methods section C
12b		Definition of and rationale for test positivity cut-offs or result categories of the reference standard, distinguishing pre-specified from exploratory	Methods - study design, Appendix - Table S1, Appendix - supplementary methods section C
13a		Whether clinical information and reference standard results were available to the performers/readers of the index test	Methods - procedures
13b		Whether clinical information and index test results were available to the assessors of the reference standard	Methods - procedures
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	Methods - study design, procedures, outcomes and statistical analysis
15	How indeterminate index test or reference standard results were handled	Methods - study design, procedures, outcomes and statistical analysis	
16	How missing data on the index test and reference standard were handled	Methods - study design, procedures, outcomes and statistical analysis, Appendix Figure S1	
17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	Methods - study design, procedures, outcomes and statistical analysis	
18	Intended sample size and how it was determined	Methods - outcomes and statistical analysis	

RESULTS

Participants

19	Flow of participants, using a diagram	Appendix Figure S1
20	Baseline demographic and clinical characteristics of participants	Appendix Table S1
21a	Distribution of severity of disease in those with the target condition	Appendix Fig S12, dataset available at https://doi.org/10.6084/m9.figshare.c.5046032.v1
21b	Distribution of alternative diagnoses in those without the target condition	No detail available, mentioned in Discussion
22	Time interval and any clinical interventions between index test and reference standard	Methods - study design, Appendix Table S1

Test results

23	Cross tabulation of the index test results (or their distribution) by the results of the reference standard	Table 1
24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	Results, Table 1, Fig 1, Fig 2, Appendix Table S5-S7, Fig S2-S8, S10, S12
25	Any adverse events from performing the index test or the reference standard	Not applicable

DISCUSSION

| 26 | Study limitations, including sources of potential bias, statistical uncertainty, and generalisability | Discussion |
| 27 | Implications for practice, including the intended use and clinical role of the index test | Abstract, Discussion |

OTHER INFORMATION

28	Registration number and name of registry	Not applicable
29	Where the full study protocol can be accessed	https://doi.org/10.6084/m9.figshare.c.5046032.v1
30	Sources of funding and other support, role of funders	Abstract, Funding section
PRISMA checklist for systematic review

PRISMA 2009 Checklist

Section/Topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Abstract, Research in context
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Abstract, Research in context, Appendix Supplementary Methods section A
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Research in context
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Appendix Supplementary Methods section A
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address) and, if available, provide registration information including registration number.	No protocol registered for systematic review
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Supplementary Methods section A
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Research in context, Supplementary Methods
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Section A
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Supplementary Methods section A
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Supplementary Methods section A
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Supplementary Methods section A
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Not evaluated
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Supplementary Methods section A
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	Not applicable

RESULTS

Section/Topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Not evaluated
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Not applicable
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Research in context
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supplementary Methods section A
-----------------------	----	---	---------------------------------
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Not evaluated
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Not applicable
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Not applicable
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Not evaluated
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression (see item 16)).	Not applicable

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Research in context
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Supplementary Tables S3, S4
Conclusions	26	Provide a general interpretation of the results In the context of other evidence, and implications for future research.	Research in Context section

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data), role of funders for the systematic review. | Funding section in Abstract and at end of manuscript |
Supplementary References
1. Emmenegger M, de Cecco E, Lamparter D, et al. Early plateau of SARS-CoV-2 seroprevalence identified by tripartite immunoassay in a large population. medRxiv 2020. DOI: https://doi.org/10.1101/2020.05.31.20118554.
2. Word Health Organisation (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed: 18/Jun/2020.