Enablers and Inhibitors in
Causal Justifications of Logic Programs*

Pedro Cabalar and Jorge Fandinno
Department of Computer Science
University of Coruna, Spain
(e-mail: {cabalar, jorge.fandinno}@udc.es)

submitted October 21 2015; revised January 26 2016; accepted February 22 2016

Abstract

To appear in Theory and Practice of Logic Programming (TPLP). In this paper we propose an extension of logic programming (LP) where each default literal derived from the well-founded model is associated to a justification represented as an algebraic expression. This expression contains both causal explanations (in the form of proof graphs built with rule labels) and terms under the scope of negation that stand for conditions that enable or disable the application of causal rules. Using some examples, we discuss how these new conditions, we respectively call enablers and inhibitors, are intimately related to default negation and have an essentially different nature from regular cause-effect relations. The most important result is a formal comparison to the recent algebraic approaches for justifications in LP: Why-not Provenance (WnP) and Causal Graphs (CG). We show that the current approach extends both WnP and CG justifications under the Well-Founded Semantics and, as a byproduct, we also establish a formal relation between these two approaches.

KEYWORDS: causal justifications, well-founded semantics, stable models, answer set programming.

1 Introduction

The strong connection between Non-Monotonic Reasoning (NMR) and Logic Programming (LP) semantics for default negation has made possible that LP tools became nowadays an important paradigm for Knowledge Representation (KR) and problem-solving in Artificial Intelligence (AI). In particular, Answer Set Programming (ASP) (Niemelä 1999; Marek and Truszczynski 1999) has established as a preeminent LP paradigm for practical NMR with applications in diverse areas of AI including planning, reasoning about actions, diagnosis, abduction and beyond. The ASP paradigm is based on the stable models semantics (Gelfond and Lifschitz 1988) and is also closely related to the other mainly accepted interpretation for default negation, well-founded semantics (WFS) (Van Gelder et al. 1991). One interesting difference between these two LP semantics and classical models (or even other NMR approaches) is that true atoms in LP must be founded or justified by a given derivation. These justifications are not provided in the semantics

* This is an extended version of a paper presented at the Logic Programming and Nonmonotonic Reasoning Conference (LPNMR 2015), invited as a rapid communication in TPLP. The authors acknowledge the assistance of the conference program chairs Giovambattista Ianni and Mirosław Truszczynski.
itself, but can be syntactically built in some way in terms of the program rules, as studied in several approaches (Specht 1993; Denecker and Schreye 1993; Pemmasani et al. 2004; Gebser et al. 2008; Pontelli et al. 2009; Oetsch et al. 2010; Schulz and Toni 2013).

Rather than manipulating justifications as mere syntactic objects, two recent approaches have considered extended multi-valued semantics for LP where justifications are treated as algebraic constructions: Why-not Provenance (WnP) (Damásio et al. 2013) and Causal Graphs (CG) (Cabalar et al. 2014a). Although these two approaches present formal similarities, they start from different understandings of the idea of justification. On the one hand, WnP answers the query “why literal \(L \) might hold” by providing conjunctions of hypothetical modifications on the program that would allow deriving \(L \). These modifications include rule labels, expressions like \(\neg (A) \) with \(A \) an atom, or negations ‘\(\neg \)’ of the two previous cases. As an example, a justification for \(L \) like \(r_1 \land \neg(p) \land \neg r_2 \land \neg(q) \) means that the presence of rule \(r_1 \) and the absence of atom \(p \) would allow deriving \(L \) (hypothetically) if both rule \(r_2 \) were removed and atom \(q \) were added to the program. If we want to explain why \(L \) actually holds, we have to restrict to justifications without ‘\(\neg \)’, that is, those without program modifications (which will be the focus of this paper).

On the other hand, CG-justifications start from identifying program rules as causal laws so that, for instance, \((p \leftarrow q) \) can be read as “event \(q \) causes effect \(p \).” Under this viewpoint, (positive) rules offer a natural way for capturing the concept of causal production, i.e. a continuous chain of events that has helped to cause or produce an effect (Hall 2004; Hall 2007). The explanation of a true atom is made in terms of graphs formed by rule labels that reflect the ordered rule applications required for deriving that atom. These graphs are obtained by algebraic operations exclusively applied on the positive part of the program. Default negation in CG is understood as absence of cause and, consequently, a false atom has no justification.

The explanation of an atom \(A \) in CG is more detailed than in WnP, since the former contains graphs that correspond to all relevant proofs of \(A \) whereas in WnP we just get conjunctions that do not reflect any particular ordering among rule applications. However, as explained before, CG does not capture the effect of default negation in a given derivation and, sometimes, this information is very valuable, especially if we want to answer questions of the form “why not.”

As in the previous paper on CG (Cabalar et al. 2014a), our final goal is to achieve an elaboration tolerant representation of causality that allows reasoning about cause-effect relations. Under this perspective, although WnP is more oriented to program debugging, its possibility of dealing with hypothetical reasoning of the form “why not” would be an interesting feature to deal with counterfactuals, since several approaches to causality (see Section 5) are based on this concept.

To understand the kind of problems we are interested in, consider the following example. A drug \(d \) in James Bond’s drink causes his paralysis \(p \) provided that he was not given an antidote \(a \) that day. We know that Bond’s enemy, Dr. No, poured the drug:

\[
p \leftarrow d, \neg a\tag{1}
\]

\[
d\tag{2}
\]

In this case it is obvious that \(d \) causes \(p \), whereas the absence of \(a \) just enables the application of the rule. Now, suppose we are said that Bond is daily administered an antidote by the MI6, unless it is a holiday \(h \):

\[
a \leftarrow \neg h\tag{3}
\]

Adding this rule makes \(a \) become an inhibitor of \(p \), as it prevents \(d \) to cause \(p \) by rule (1). But suppose now that we are in a holiday, that is, fact \(h \) is added to the program (1)-(3). Then, the
inhibitor a is disabled and d causes p again. However, we do not consider that the holiday h is a (productive) cause for Bond’s paralysis p although, indeed, the latter counterfactually depends on the former: “had not been a holiday h, Bond would have not been paralysed.” We will say that the fact h, which disables inhibitor a, is an enabler of p, as it allows applying rule (1).

In this work we propose dealing with these concepts of enablers and inhibitors by augmenting CG justifications with a new negation operator ‘∼’ in the CG causal algebra. We show that this new approach, which we call Extended Causal Justifications (ECJ), captures WnP justifications under the Well-founded Semantics, establishing a formal relation between WnP and CG as a byproduct.

The rest of the paper is structured as follows. The next section defines the new approach. Sections 3 and 4 explain the formal relations to CG and WnP through a running example. Section 5 studies several examples of causal scenarios from the literature and finally, Section 6 concludes the paper. Appendix A contains an auxiliary figure depicting some common algebraic properties and Appendix B contains the formal proofs of theorems from the previous sections.

2 Extended Causal Justifications (ECJ)

A signature is a pair (At, Lb) of sets that respectively represent atoms (or propositions) and labels. Intuitively, each atom in At will be assigned justifications built with rule labels from Lb. In principle, the intersection $At \cap Lb$ does not need to be empty: we may sometimes find it convenient to label a rule using an atom name (normally, the head atom). Justifications will be expressions that combine four different algebraic operators: a product ‘∗’ representing conjunction or joint causation; a sum ‘+’ representing alternative causes; a non-commutative product ‘·’ that captures the sequential order that follows from rule applications; and a non-classical negation ‘∼’ which will precede inhibitors (negated labels) and enablers (doubly negated labels).

Definition 1 (Terms)

Given a set of labels Lb, a term, t, is recursively defined as one of the following expressions $t ::= l \mid \Pi S \mid \Sigma S \mid t_1 \cdot t_2 \mid \sim t_1$ where $l \in Lb$, t_1, t_2 are in their turn terms and S is a (possibly empty and possibly infinite) set of terms. A term is elementary if it has the form l, $\sim l$ or $\sim\sim l$ with $l \in Lb$ being a label.

When $S = \{t_1, \ldots, t_n\}$ is finite we simply write ΠS as $t_1 \ast \cdots \ast t_n$ and ΣS as $t_1 + \cdots + t_n$. Moreover, when $S = \emptyset$, we denote ΠS by 1 and ΣS by 0, as usual, and these will be the identities of the product ‘∗’ and the addition ‘+’, respectively. We assume that ‘·’ has higher priority than ‘∗’ and, in turn, ‘∗’ has higher priority than ‘+’.

Definition 2 (Values)

A (causal) value is each equivalence class of terms under axioms for a completely distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figures 1 and 2. The set of (causal) values is denoted by V_{Lb}.

Note that $(V_{Lb}, +, ∗, ∼, 0, 1)$ is a completely distributive Stone algebra (a pseudo-complemented, completely distributive, complete lattice which satisfies the weak excluded middle axiom) whose meet and join are, as usual, the product ‘∗’ and the addition ‘+’. Informally speaking, this means that these two operators satisfy the properties of a Boolean algebra but without negation.

Note also that all three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’ and addition ‘+’ are also commutative, and they hold the usual absorption and distributive laws with respect to infinite sums and products of a completely distributive lattice.
closed, that is, of the form of (2) only elementary terms are in the scope of application; and (3) every product is transitively
an NNF term is in ∼ by

an equivalent expression that avoids its application to other operators. We say that a term is in

of an application is defined as the negation of the product

Boolean negation in some aspects. In the general case, the axioms

weak version of the excluded middle axiom

This behaviour coincides indeed with the properties for default negation obtained in Equilibrium Logic (Pearce 1996)
or the equivalent General Theory of Stable Models (Ferraris et al. 2007).

Consequently 1 and 0 are respectively the top and bottom elements with respect to relation ≤.

Definition 3 (Labelled logic program)

\(t \leq u \iff (t \cdot u = t) \iff (t + u = u) \)

\(t \cdot (u+w) = (t \cdot u) + (t \cdot w) \)

\(t \cdot (u+w) = (t \cdot u) + (t \cdot w) \)

\(t = t + u \cdot t \cdot w \)

\(t = t + u \cdot t \cdot w \)

\(u \cdot t \cdot w = t + u \cdot t \cdot w \)

\(u \cdot t \cdot w = t + u \cdot t \cdot w \)

\(t = 1 \cdot t \)

\(t = 1 \cdot t \)

\(0 = t \cdot 0 \)

\(0 = t \cdot 0 \)

\(x \cdot x = x \)

\(x \cdot x = x \)

\((t+u) \cdot w = (t \cdot w) + (u \cdot w) \)

\((t+u) \cdot w = (t \cdot w) + (u \cdot w) \)

\(c \cdot d \cdot e = (c \cdot d) * (d \cdot e) \) with \(d \neq 1 \)

\(c \cdot d \cdot e = (c \cdot d) * (d \cdot e) \)

\((c \cdot d) \cdot e = (c \cdot e) * (d \cdot e) \)

\((c \cdot d) \cdot e = (c \cdot e) * (d \cdot e) \)

\(\neg (t + \neg t) = \neg t \)

\(\neg (t + \neg t) = \neg t \)

\(\neg (t + u) = (\neg t + \neg u) \)

\(\neg (t + u) = (\neg t + \neg u) \)

\(\neg t + \neg \neg t = 1 \)

\(\neg t + \neg \neg t = 1 \)

\(\neg (t \cdot u) = \neg (t \cdot u) \)

\(\neg (t \cdot u) = \neg (t \cdot u) \)
Given a signature \((At, Lb)\), a (labelled logic) program \(P\) is a set of rules of the form:

\[
 r_i : H \leftarrow B_1, \ldots, B_m, notC_1, \ldots, notC_n
\]

where \(r_i \in Lb\) is a label or \(r_i = 1\), \(H\) (the head of the rule) is an atom, and \(B_i\)’s and \(C_i\)’s (the body of the rule) are either atoms or terms.

When \(n = 0\) we say that the rule is positive, furthermore, if in addition \(m = 0\) we say that the rule is a fact and omit the symbol ‘\(-\).’ When \(r_i \in Lb\) we say that the rule is labelled; otherwise \(r_i = 1\) and we omit both \(r_i\) and ‘\-',. By these conventions, for instance, an unlabelled fact \(A\) is actually an abbreviation of \((1 : A \leftarrow)\). A program \(P\) is positive when all its rules are positive, i.e. it contains no default negation. It is uniquely labelled when each rule has a different label or no label at all. In this paper, we will assume that programs are uniquely labelled. Furthermore, for the sake of clarity, we also assume that, for every atom \(A \in At\), there is an homonymous label \(A \in Lb\), and that each fact \(A\) in the program actually stands for the labelled rule \((A : A \leftarrow)\). For instance, following these conventions, a possible labelled version for the James Bond’s program could be program \(P_1\) below:

\[
 \begin{align*}
 r_1 & : p \leftarrow d, nota & \quad \text{d} \\
 r_2 & : a \leftarrow not h & \quad \text{h}
 \end{align*}
\]

where facts \(d\) and \(h\) stand for rules \((d : d \leftarrow)\) and \((h : h \leftarrow)\), respectively.

An ECJ-interpretation is a mapping \(I : At \rightarrow V_{Lb}\) assigning a value to each atom. For interpretations \(I\) and \(J\) we say that \(I \leq J\) when \(I(A) \leq J(A)\) for each atom \(A \in At\). Hence, there is a \(\leq\)-bottom interpretation \(0\) (resp. a \(\leq\)-top interpretation \(1\)) that stands for the interpretation mapping each atom \(A\) to \(0\) (resp. \(1\)). The value assigned to a negative literal \(notA\) by an interpretation \(I\), denoted as \(I(notA)\), is defined as \(I(notA) \eqdef \neg I(A)\), as expected. Similarly, for a term \(t\), \(I(t) \eqdef [t] \) is the equivalence class of \(t\).

Definition 4 (Model)

An interpretation \(I\) satisfies a rule like \((4)\) iff

\[
 (I(B_1) \ast \ldots \ast I(B_m) \ast I(notC_1) \ast \ldots \ast I(notC_n)) \cdot r_i \leq I(H)
\]

and \(I\) is a (causal) model of \(P\), written \(I \models P\), iff \(I\) satisfies all rules in \(P\).

As usual in LP, for positive programs, we may define a direct consequence operator \(T_P\) s.t.

\[
 T_P(I)(H) \eqdef \sum \{ (I(B_1) \ast \ldots \ast I(B_n)) \cdot r_i \mid (r_i : H \leftarrow B_1, \ldots, B_n) \in P \}
\]

for any interpretation \(I\) and atom \(H \in At\). We also define \(T_P^{\alpha} (0) \eqdef T_P(T_P^{\alpha-1} (0))\) for any successor ordinal \(\alpha\) and

\[
 T_P^{\alpha} (0) \eqdef \sum_{\beta < \alpha} T_P^{\beta} (0)
\]

for any limit ordinal alpha. As usual, \(\omega\) denotes the smallest infinite limit ordinal. Note that 0 is considered a limit ordinal and, thus, \(T_P^{\omega} (0) = \sum_{\beta < 0} T_P^{\beta} (0) = 0\).

Theorem 1

Let \(P\) be a (possibly infinite) positive logic program. Then, (i) the least fixpoint of the \(T_P\) operator, denoted by \(\text{lpf}(T_P)\), satisfies \(\text{lpf}(T_P) = T_P^{\omega} (0)\) and it is the least model of \(P\), (ii) furthermore, if \(P\) is positive and has \(n\) rules, then \(\text{lpf}(T_P) = T_P^{n} (0) = T_P^{\omega} (0)\).
Theorem\(\text{1}\) asserts that, as usual, positive programs have a \(\leq\)-least causal model. As we will see later, this least model coincides with the traditional least model (of the program without labels) when one just focuses on the set of true atoms, disregarding the justifications explaining why they are true. For programs with negation we define the following reduct.

Definition 5 (Reduct)

Given a program \(P\) and an interpretation \(I\) we denote by \(P^d\) the positive program containing a rule of the form

\[
\begin{align*}
 r_1 &: \ H \leftarrow B_1, \ldots, B_m, \ I(\text{not}\ C_1), \ldots, I(\text{not}\ C_n)
\end{align*}
\]

for each rule of the form \(\text{4}\) in \(P\). \(\square\)

Program \(P^d\) is positive and, from Theorem\(\text{1}\) it has a least causal model. By \(\Gamma_P(I)\) we denote the least model of program \(P^d\). The operator \(\Gamma_P\) is anti-monotonic and, consequently, \(\Gamma_P^2\) is monotonic (Proposition\(\text{4}\) in the appendix) so that, by Knaster-Tarski’s theorem, it has a least fixpoint \(\mathbb{L}_P\) and a greatest fixpoint \(\mathbb{U}_P \equiv \Gamma_P(\mathbb{L}_P)\). These two fixpoints respectively correspond to the justifications for true and for non-false atoms in the (standard) well-founded model (WFM), we denote as \(W_P\).

For instance, in our running example, \(\mathbb{L}_P(d) = \Gamma_P^{\alpha}(\emptyset)(d) = d\) for \(1 \leq \alpha\) points out that atom \(d\) is true because of fact \(d\). Similarly, \(\mathbb{L}_P(h) = h\) and \(\mathbb{L}_P(a) = \sim h \cdot r_2\) reveals that atom \(h\) is true because of fact \(h\), and that atom \(a\) is not true because fact \(h\) has inhibited rule \(r_2\).

Furthermore,

\[
\mathbb{L}_P(p) = \Gamma_P^2(\emptyset)(p) = (\sim (\sim h \cdot r_2) \cdot d) \cdot r_1 = (\sim h \cdot d) \cdot r_1 + (\sim r_2 \cdot d) \cdot r_1
\]

for \(2 \leq \alpha\). That is, Bond has been paralysed because fact \(h\) has enabled drug \(d\) to cause the paralysis by means of rule \(r_1\). This corresponds to the justification \((\sim h \cdot d) \cdot r_1\). Notice how the real cause \(d\) is a positive label (not in the scope of negation) whereas the enabler \(h\) is in the scope of a a double negation \(\sim \sim h\). Justification \((\sim r_2 \cdot d) \cdot r_1\) means that \(d \cdot r_1\) would have been sufficient to cause \(p\), had not been present \(r_2\). This example is also useful for illustrating the importance of axiom appl. negation. By directly evaluating the body of rule \(r_1\), we have seen that \(\Gamma_P^2(\emptyset)(p) = (\sim (\sim h \cdot r_2) \cdot d) \cdot r_1\). Then, axiom appl. negation allows us to break the dependence between \(\sim h\) and \(r_2\) into enablers and inhibitors: \((\sim h \cdot r_2) = \sim(\sim h \cdot r_2) = \sim h \cdot \sim r_2\) and, applying distributivity, we obtain one enabled justification, \((\sim h \cdot d) \cdot r_1\), and one disabled one, \((\sim r_2 \cdot d) \cdot r_1\).

In our previous example, the least and greatest fixpoint coincided \(\mathbb{L}_P = \mathbb{U}_P = \Gamma_P^2(\emptyset)\). To illustrate the case where this does not hold consider, for instance, the program \(P_5\) formed by the following negative cycle:

\[
\begin{align*}
 r_1 &: \ a \leftarrow \text{not} b \\
 r_2 &: \ b \leftarrow \text{not} a
\end{align*}
\]

In this case, the least fixpoint of \(\Gamma_P^2\) assigns \(\mathbb{L}_P(a) = \sim r_2 \cdot r_1\) and \(\mathbb{L}_P(b) = \sim r_1 \cdot r_2\), while, in its turn, the greatest fixpoint of \(\Gamma_P^2\) corresponds to \(\mathbb{U}_P(a) = r_1\) and \(\mathbb{U}_P(b) = r_2\). If we focus on atom \(a\), we can observe that it is not concluded to be true, since the least fixpoint \(\mathbb{L}_P\) has only provided one disabled justification \(\sim r_2 \cdot r_1\) meaning that \(r_2\) is acting as a disabler for \(a\). But, on the other hand, \(a\) cannot be false either since the greatest fixpoint provides an enabled justification \(r_1\) for being non-false (remember that \(\mathbb{U}_P\) provides justifications for non-false atoms). As a result, we get that \(a\) is left undefined because \(r_2\) prevents it to become true while \(r_1\) can still be used to conclude that it is not false.
To capture these intuitions, we provide some definitions. A query literal (q-literal) \(L \) is either an atom \(A \), its default negation ‘notA’ or the expression ‘undef A’ meaning that \(A \) is undefined.

Definition 6 (Causal well-founded model)

Given a program \(P \), its causal well-founded model \(\mathbb{W}_P \) is a mapping from q-literals to values s.t.

\[
\mathbb{W}_P(A) \equiv L_P(A) \quad \mathbb{W}_P(\text{not}A) \equiv \sim\mathbb{W}_P(A) \quad \mathbb{W}_P(\text{undef} A) \equiv \sim\mathbb{W}_P(\text{not} A) \quad \square
\]

Let \(l \) be a label occurrence in a term \(r \) in the scope of \(n \geq 0 \) negations. We say that \(l \) is an odd or an even occurrence if \(n \) is odd or even, respectively. We further say that \(l \) is a strictly even occurrence if it is even and \(n > 0 \).

Definition 7 (Justification)

Given a program \(P \) and a q-literal \(L \) we say that a term \(E \) with no sums is a (sufficient causal) justification for \(L \) iff \(E \leq \mathbb{W}_P(L) \). Odd (resp. strictly even) labels \(1 \) in \(E \) are called inhibitors (resp. enablers) of \(E \). A justification is said to be inhibited if it contains some inhibitor and it is said to be enabled otherwise.

True atoms will have at least one enabled justification, whereas false atoms only contain disabled justifications. As an example of a query for a plain atom \(A \), take the already seen explanation for \(p \) in Bond’s example program \(A \) \(\mathbb{W}_P(p) = \mathbb{L}_P(p) = (\sim h) \cdot r_1 + (\sim r_2) \cdot r_1 \). We have here two justifications for atom \(p \), let us call them \(E_1 = (\sim h) \cdot r_1 \) and \(E_2 = (\sim r_2) \cdot r_1 \). Justification \(E_1 \) is enabled because it contains no inhibitors (in fact, \(E_1 \) is the unique real support for \(p \)). Moreover, \(h \) is an enabler in \(E_1 \) because it is strictly even (it is in the scope of double negation) whereas \(d \) is a productive cause, since it is not in the scope of any negation. On the contrary, \(E_2 \) is disabled because it contains the inhibitor \(r_2 \) (it occurs in the scope of one negation). Intuitively, \(r_2 \) has prevented \(d \cdot r_1 \) to become a justification of \(p \). On the other hand, for atom \(a \) we had \(\mathbb{W}_P(a) = h \cdot r_2 \) that only contains an inhibited justification (being \(h \) the inhibitor), and so, atom \(a \) is not true. Now, if we query about the negative q-literal not\(a \), we obtain \(\mathbb{W}_P(\text{not}a) = \sim\mathbb{W}_P(a) \) which in this case happens to be \(\sim\mathbb{L}_P(a) = \sim(h \cdot r_2) = \sim h + \sim r_2 \). That is, q-literal not\(a \) holds, being enabled by \(h \). Moreover, \(\sim r_2 \) points out that removing \(r_2 \) would suffice to cause not\(a \) too. It is easy to see that the explanations we can get for q-literals not\(A \) or undef\(A \) will have all their labels in the scope of negation (either as inhibitors or as enablers).

To illustrate a query for undef\(A \), let us return to program \(P \) whose standard well-founded model left both \(a \) and \(b \) undefined. Given the values we obtained in the least and greatest fixpoints, the causal WFM will assign \(\mathbb{W}_P(a) = \sim r_2 \cdot r_1 \) and \(\mathbb{W}_P(b) = \sim r_1 \cdot r_2 \), that is, \(r_2 \) prevents \(r_1 \) to cause \(a \) and \(r_1 \) prevents \(r_2 \) to cause \(b \). Furthermore, the values assigned to their respective negations, \(\mathbb{W}_P(\text{not}a) = \sim r_1 \) and \(\mathbb{W}_P(\text{not}b) = \sim r_2 \), point out that atoms \(a \) and \(b \) are not false because rules \(r_1 \) and \(r_2 \) have respectively prevented them to be so. Finally, we obtain that undef\(a \) is true because

\[
\mathbb{W}_P(\text{undef} A) = \sim\mathbb{W}_P(a) \ast \sim\mathbb{W}_P(\text{not} A) = (\sim \sim r_2 + \sim r_1) \ast \sim \sim r_1 = \sim \sim r_2 \ast \sim \sim r_1
\]

that is, rules \(r_1 \) and \(r_2 \) together have made \(a \) undefined. Similarly, \(b \) is also undefined because of rules \(r_1 \) and \(r_2 \), \(\mathbb{W}_P(\text{undef} b) = \sim \sim r_1 \ast \sim \sim r_2 \).

\[2\] We just mention labels, and not their occurrences because terms are in NNF and \(E \) contains no sums. Thus, having odd and even occurrences of a same label at a same time would mean that \(E = 0 \).
The next theorem shows that the literals satisfied by the standard WFM are precisely those
ones containing at least one enabled justification in the causal WFM.

Theorem 2

Let \(P \) be a labelled logic program over a signature \(\langle \text{At}, \text{Lb} \rangle \) where \(\text{Lb} \) is a finite set of labels and let \(W_P \) its (standard) well-founded model. A q-literal \(L \) holds with respect to \(W_P \) if and only if there is some enabled justification \(E \) of \(L \), that is, \(E \leq W_P(L) \) and \(E \) does not contain odd negative labels. \(\square \)

Back to our example program \(P_1 \), as we had seen, atom \(p \) had a unique enabled justification \(E_1 = (\neg \neg h \ast d) \cdot r_1 \). The same happens for atoms \(d \) and \(h \) whose respective justifications are just their own atom labels. Therefore, these three atoms hold in the standard WFM, \(W_P_1 \). On the contrary, as we discussed before, the only justification for \(a \), \(W_P_1(a) = \neg h \cdot r_2 \), is inhibited by \(h \), and thus, \(a \) does not hold in \(W_P_1 \). The interest of an inhibited justification for a literal is to point out “potential” causes that have been prevented by some abnormal situation. In our case, the presence of \(\neg h \) in \(W_P_1(a) = \neg h \cdot r_2 \) points out that an exception \(h \) has prevented \(r_2 \) to cause \(a \). When the exception is removed, the inhibited justification (after removing the inhibitors) becomes an enabled justification.

In our running example, if we consider a program \(P_3 \) obtained by removing the fact \(h \) from \(P_1 \), then \(W_P_3(a) = r_2 \) points out that \(a \) has been caused by rule \(r_2 \) in this new scenario. This intuition about inhibited justifications is formalized as follows.

Definition 8

Given a term \(t \) in DNF, by \(\rho_x : \mathcal{V}^{CG}_{Lb} \rightarrow \mathcal{V}^{CG}_{Lb} \), we denote the function that removes the elementary term \(x \) from \(t \) as follows:

\[
\rho_x(t) \overset{\text{def}}{=} \begin{cases}
\rho_x(u) \otimes \rho_x(w) & \text{if } t = u \otimes v \text{ with } \otimes \in \{+,*,\cdot\} \\
1 & \text{if } \neg\neg t \text{ is equivalent to } \neg\neg x \\
0 & \text{if } t \text{ is equivalent to } \neg x
\end{cases}
\]

Note that we have assumed that \(t \) is in DNF. Otherwise, \(\rho_x(t) \overset{\text{def}}{=} \rho_x(u) \) where \(u \) is an equivalent term in DNF. \(\square \)

Theorem 3

Let \(P \) be a program over a signature \(\langle \text{At}, \text{Lb} \rangle \) where \(\text{Lb} \) is a finite set of labels. Let \(Q \) be the result of removing from \(P \) all rules labelled by some \(r_i \in \text{Lb} \). Then, the result of removing \(r_i \) from the justifications of some atom \(A \) with respect to program \(P \) are justifications of \(A \) with respect to \(Q \), that is, \(\rho_{r_i}(W_P(A)) \leq W_Q(A) \).

3 Relation to Causal Graph Justifications

We discuss now the relation between ECJ and CG approaches. Intuitively, ECJ extends CG causal terms by the introduction of the new negation operator ‘\(\neg \)’. Semantically, however, there are more differences than a simple syntactic extension. A first minor difference is that ECJ is defined in terms of a WFM, whereas CG defines (possibly) several causal stable models. In the case of stratified programs, this difference is irrelevant, since the WFM is complete and coincides with the unique stable model. A second, more important difference is that CG exclusively considers productive causes in the justifications, disregarding additional information like the inhibitors or
enablers from ECJ. As a result, a false atom in CG has no justification – its causal value is 0 because there was no way to derive the atom. For instance, in program P_1, the only CG stable model I just makes $I(a) = 0$ and we lose the inhibited justification $\sim h \cdot r_2$ (default r_2 could not be applied). True atoms like p also lose any information about enablers: $I(p) = d \cdot r_1$ and nothing is said about $\sim h$. Another consequence of the CG orientation is that negative literals $\lnot A$ are never assigned a cause (different from 0 or 1), since they cannot be “derived” or produced by rules. In the example, we simply get $I(\lnot a) = 1$ and $I(\lnot p) = 0$.

To further illustrate the similarities and differences between ECJ and CG, consider the following program P_2 capturing a variation of the Yale Shooting Scenario.

\begin{align*}
d_{t+1} & \leftarrow shoot_t, \text{loaded}_t, \lnot \text{ab}_t & & \text{loaded}_0 \quad \text{load}_1 \\
l_{t+1} & \leftarrow \text{load}_t & & \text{dead}_0 \quad \text{water}_3 \\
a_{t+1} & \leftarrow \text{water}_t & & \text{ab}_0 \quad \text{shoot}_8
\end{align*}

plus the following rules corresponding inertia axioms

\begin{align*}
F_{t+1} & \leftarrow F_t, \lnot F_{t+1} \\
F_{t+1} & \leftarrow F_t, \lnot F_{t+1}
\end{align*}

for $F \in \{\text{loaded}, ab, \text{dead}\}$. Atoms of the form \overline{A} represent the strong negation of A and we disregard models satisfying both A and \overline{A}. Atom dead_9 does not hold in the standard WFM of P_2 and so there is no CG-justification for it. Note here the importance of default reasoning. On the one hand, the default flow of events is that the turkey, Fred, continues to be alive when nothing threatens him. Hence, we do not need a cause to explain why Fred is alive. On the other hand, shooting a loaded gun would normally kill Fred, being this a cause of its death. But, in this example, another exceptional situation – water spilled out – has inhibited this existing threat and allowed the world to flow as if nothing had happened (that is, following its default behaviour).

In the CG-approach, dead_9 is simply false by default and no justification is provided. However, a gun shooter could be “disappointed” since another conflicting default (shooting a loaded gun normally kills) has not worked. Thus, an expected answer for the shooter’s question “why $\lnot \text{dead}_9$?” is that water_3 broke the default, disabling d_9. In fact, ECJ yields the following inhibited justification for dead_9:

\begin{equation}
\forall_{\text{d}_9}(\text{dead}_9) = (\sim \text{water}_3 \ast \text{shoot}_8 \ast \text{load}_1 \ast l_2) \cdot d_9
\end{equation}

meaning that dead_9 could not be derived because inhibitor water_3 prevented the application of rule d_9 to cause the death of Fred. Note that inertia rules are not labelled, which, as mentioned before, is syntactic sugar for rules with label 1. Since 1 is the identity of product and application, this has the effect of not being traced in the justifications. Note also that, according to Theorem 3, if we remove fact water_3 (the inhibitor) from P_2 leading to a new program P_3, then we get:

\begin{equation}
\forall_{\text{d}_9}(\text{dead}_9) = (\text{shoot}_8 \ast \text{load}_1 \ast l_2) \cdot d_9
\end{equation}

which is nothing else but the result of removing $\sim \text{water}_3$ from (7). In fact, the only CG stable model of P_3 makes this same assignment (8) which also corresponds to the causal graph depicted in Figure 3. In the general case, CG-justifications intuitively correspond to enabled justifications after forgetting all the enablers. Formally, however, there is one more difference in the definition of causal values: CG causal values are defined as ideals for the poset of a type of graphs formed by rule labels.

Definition 9 (Causal graph)
Fig. 3. G_2 is the cause of $dead_9$ in program P_4 while G_2^* is its associated causal graphs, that is, its reflexive and transitive closure.

Given some set Lb of (rule) labels, a causal graph (c-graph) $G \subseteq Lb \times Lb$ is a reflexively and transitively closed set of edges. By G_{Lb}, we denote the set of causal graphs. Given two c-graphs G and G', we write $G \leq G'$ when $G \supseteq G'$. □

Intuitively, causal graphs, like G_2 in Figure 3, are directed graphs representing the causal structure that has produced some event. Furthermore, $G \leq G'$ means that G contains enough information to yield the same effect as G', but perhaps more than needed (this explains $G \supseteq G'$). For this reason, we sometimes read $G \leq G'$ as "G' is stronger than $G"$". Causes will be \leq-maximal (or \subseteq-minimal) causal graphs. Formally, including reflexive and transitive edges allows to capture this intuitive relation simply by the subgraph relation. Note that, since causal graphs are reflexively closed, every vertex has at least one edge (the reflexive one) and, thus, we can omit the set of vertices. Besides, for the sake of clarity, we only depict the minimum set of edges necessary for defining a causal graph (transitive and reflexive reduction). For instance, graph G_2 in Figure 3 is the transitive and reflexive reduction of the causal graph G_2^*.

Definition 10 (CG Values in Cabalar et al. 2014a)

Given a set of labels Lb, a CG causal value is any ideal (or lower-set) for the poset (G_{Lb}, \leq). By $I_{CG}^{G_{Lb}}$, we denote the set of CG causal values. Product `\cdot`, sums `\plus` and the \leq-order relation are defined as the set intersection, union and the subset relation, respectively. Application is given by $U \cdot U' \equiv \{ G'' \leq G \cdot G' \mid G \in U \text{ and } G' \in U' \}$. □

It has been shown in (Fandinno 2015a) that CG values can be alternatively characterised as a free algebra generated by rule labels under the axioms of a completely distributive lattice with meet `\cdot` and join `\plus` plus the axioms of Figure 1.

Definition 11 (CG Values in Fandinno 2015a)

Given a set of labels Lb, a CG term is a term without negation `\sim`. CG causal values are the equivalence classes of CG terms for a completely distributive (complete) lattice with meet `\cdot` and join `\plus` plus the axioms of Figure 1. By $V_{CG}^{G_{Lb}}$, we denote the set of CG causal values. □

Theorem 4 (Causal values isomorphism from Fandinno 2015a)

The function $\text{term} : I_{CG}^{G_{Lb}} \rightarrow V_{CG}^{G_{Lb}}$ given by

$$\text{term}(U) \mapsto \sum_{G \in U} \prod_{(v_1, v_2) \in G} v_1 \cdot v_2$$

is an isomorphism between algebras $(I_{CG}^{G_{Lb}}, +, \cdot, G_{Lb}, 0)$ and $(V_{CG}^{G_{Lb}}, +, \cdot, 1, 0)$. □
Theorem 4 states that CG causal values can be equivalently described either as ideals of causal graphs or as elements of an algebra of terms. Furthermore, by abuse of notation, by G we also denote the ideal whose maximum element is G, corresponding to $\text{term}(G)$ as well. For instance, for the causal graph G_2 in Figure 5 it follows $G_2 = \text{term}(G_2) = \text{term}(\downarrow G_2)$ with $\downarrow G_2$ the ideal whose maximum element is G_2. Moreover, from the equivalences in Figure 11 it also follows that

$$
G_2 = \text{shoot}_8 \cdot d_9 \cdot \text{load}_1 \cdot \text{l}_2 \cdot \text{d}_9 \cdot \alpha
= \text{shoot}_8 \cdot d_9 \cdot \text{load}_1 \cdot \text{l}_2 \cdot \text{d}_9
= \text{shoot}_8 \cdot d_9 \cdot \text{load}_1 \cdot \text{l}_2 \cdot \text{d}_9
$$

where $\alpha = \text{load}_1 \cdot \text{d}_9 \cdot \text{shoot}_8 \cdot \text{d}_9 \cdot \text{load}_1 \cdot \text{d}_9 \cdot \text{l}_2 \cdot \text{d}_9 \cdot \text{d}_9$ is a term that, as we can see, can be ruled out and corresponds to the transitive and reflexive doted edges in G_2^α. That is, justification α associated to atom dead_d by the causal well-founded model of program P_5 actually corresponds to causal graph G_2.

Theorem 4 also formalises the intuition that opens this section: ECJ extends CG causal terms by the introduction of the new negation operator `\sim`. We formalise next the correspondence between CG and ECJ justifications.

Definition 12 (CG mapping)

We define a mapping $\lambda^c : V_{Lb} \rightarrow V_{CG}^{Lb}$ from ECJ values into CG values in the following recursive way:

$$
\lambda^c(t) \overset{\text{def}}{=} \begin{cases}
\lambda^c(u) \otimes \lambda^c(w) & \text{if } t = u \otimes v \text{ with } \otimes \in \{+, \ast, \cdot\} \\
1 & \text{if } t = \sim \sim l \text{ with } l \in Lb \\
0 & \text{if } t = \sim l \text{ with } l \in Lb \\
l & \text{if } t = l \text{ with } l \in Lb
\end{cases}
$$

Note that we have assumed that t is in DNF. Otherwise, $\lambda^c(t) \overset{\text{def}}{=} \lambda^c(u)$ where u is an equivalent term in DNF. \hfill \square

Function λ^c maps every negated label $\sim l$ to 0 (which is the annihilator of both product `\ast' and application `\cdot' and the identity of addition `$+$'). Hence λ^c removes all the inhibited justifications. Furthermore λ^c maps every doubly negated label $\sim \sim l$ to 1 (which is the identity of both product `\ast' and application `\cdot'). Therefore λ^c removes all the enablers (i.e. doubly negated labels $\sim \sim l$) for the remaining (i.e. enabled) justifications.

A CG interpretation is a mapping $I : At \rightarrow V_{CG}^{Lb}$. The value assigned to a negative literal $\text{not} A$ by a CG interpretation I, denoted as $I(\text{not} A)$, is defined as: $I(\text{not} A) \overset{\text{def}}{=} 1$ if $I(A) = 0$; $I(\text{not} A) \overset{\text{def}}{=} 0$ otherwise. A CG interpretation I is a CG model of rule like (4) iff

$$
(I(B_1) \ast \ldots \ast I(B_m) \ast I(\text{not} C_1) \ast \ldots \ast I(\text{not} C_n)) \cdot r_i \leq I(H)
$$

(9)

Notice that the value assigned to a negative literal by CG and ECJ interpretations is different. According to (Cabalar et al. 2014a), a CG interpretation I is a CG stable model of a program P iff I is the least model of the program P_l. In the following, we provide an ECJ based characterisation of the CG stable models that will allow us to relate both approaches. By $\lambda^c(I)$ we will denote a CG interpretation I s.t. $I(A) = \lambda^c(I(A))$ for every atom A.

Enablers and Inhibitors in Causal Justifications of Logic Programs

11
Definition 13 (CG stable models)
Given a program \(P \), a CG interpretation \(\tilde{I} \) is a CG stable model of \(P \) iff there exists a fixpoint \(I \) of the operator \(\Gamma^2_\tilde{I} \), i.e. \(\Gamma_\tilde{I}(\Gamma_\tilde{I}(I)) = I \), such that \(\tilde{I} = \lambda c(\Gamma_\tilde{I}(I)) = \lambda c(\Gamma_P(I)) \). □

Theorem 5
Let \(P \) be a program over a signature \(\langle At, Lb \rangle \) where \(Lb \) is a finite set of labels. Then, the CG stable models (Definition 13) are exactly the causal values and causal stable models defined in (Cabalar et al. 2014a). □

Theorem 5 shows that Definition 13 is an alternative definition of CG causal stable models. Furthermore, it settles that every causal model corresponds to some fixpoint of the operator \(\Gamma^2_\tilde{I} \). Therefore, for every enabled justification there is a corresponding CG-justification common to all stable models. In order to formalise this idea we just take the definition of causal explanation from (Cabalar et al. 2014b).

Definition 14 (CG-justification)
Given an interpretation \(I \) we say that a c-graph \(G \) is a (sufficient) CG-justification for an atom \(A \) iff \(\text{term}(G) \leq \tilde{I}(A) \). □

Since \(\text{term}(\cdot) \) is a one-to-one correspondence, we can define its inverse \(\text{graph}(v) \overset{\text{def}}{=} \text{term}^{-1}(v) \) for all \(v \in V^{CG}_{Lb} \).

Theorem 6
Let \(P \) be a program over a signature \(\langle At, Lb \rangle \) where \(Lb \) is a finite set of labels. For any enabled justification \(E \) of some atom \(A \) w.r.t. \(\forall P \), i.e. \(E \leq \forall P(A) \), there is a CG-justification \(G \overset{\text{def}}{=} \text{graph}(\lambda c(E)) \) of \(A \) with respect to any stable model \(\tilde{I} \) of \(P \). □

As happens between the (standard) well-founded and stable model semantics, the converse of Theorem 6 does not hold in general. That is, we may get a justification that is common to all CG-stable models but does not occur in the ECJ well-founded model. For instance, let \(P_6 \) be the program consisting on the following rules:

\[
\begin{align*}
 r_1 & : a \leftarrow \text{not } b \\
 r_2 & : b \leftarrow \text{not } a, \text{not } c \\
 r_3 & : c \leftarrow a \\
 r_4 & : d \leftarrow b, \text{not } d
\end{align*}
\]

The (standard) WFM of program \(P_6 \) is two-valued and corresponds to the unique (standard) stable model \(\{a, c\} \). Furthermore, there are two causal explanations of \(c \) with respect to this unique stable model: the fact \(c \) and the pair of rules \(r_1 \cdot r_3 \). Note that when \(c \) is removed \(\{a, c\} \) is still the unique stable model, but all atoms are undefined in the WFM. Hence, \(r_1 \cdot r_3 \) is a justification with respect to the unique stable model of the program, but not with respect to its WFM.

4 Relation to Why-not Provenance
An evident similarity between ECJ and WnP approaches is the use of an alternating fixpoint operator (Van Gelder 1989) which has been actually borrowed from WnP. However, there are some slight differences. A first one is that we have incorporated from CG the non-commutative operator \(\cdot \) which allows capturing not only which rules justify a given atom, but also the dependencies among these rules. The second is the use of a non-classical negation \(\sim \) that is crucial to distinguish between productive causes and enablers. This distinction cannot be represented with the classical negation \(\neg \) in WnP since double negation can always be removed. Apart from the
A first observation is that the subexpression $l_2 \land d_9 \land \text{load}_1 \land \text{shoot}_8$ constitutes, informally speaking, a “flattening” of \ref{eq:example} (or graph G_2) where the ordering among rules has been lost. We get, however, new labels of the form $\text{not}(A)$ meaning that atom A is required not to be a program fact, something that is not present in CG-justifications. For instance, \ref{eq:example2} points out that water cannot be split on the gun along situations $0, \ldots, 7$. Although this information can be useful for debugging (the original purpose of WnP) its inclusion in a causal explanation is obviously inconvenient from a Knowledge Representation perspective, since it explicitly enumerates all the defaults that were applied (no water was split at any situation) something that may easily blow up the (causally) irrelevant information in a justification.

An analogous effect happens with the enumeration of exceptions to defaults, like inertia. Take program P_I obtained from P_4 by removing all the performed actions, i.e., facts load_1, water_3, and shoot_7. As expected, Fred will be alive, $\overline{\text{dead}}_t$, at any situation t by inertia. ECJ will assign no cause for dead_t, not even any inhibited one, i.e. $\forall t \overline{\text{dead}}_t = 1$ and $\forall t \overline{\text{dead}}_t = 0$ for any t. The absence of labels in $\forall t \overline{\text{dead}}_t = 1$ is, of course, due to the fact that inertia axioms are not labelled, as they naturally represent a default and not a causal law. Still, even if inertia were labelled, say, with in_k per each situation k, we would obtain a unique cause for $\forall t \overline{\text{dead}}_t = in_1 \cdot \ldots \cdot in_t$ for any $t > 0$ while maintaining no cause for $\forall t \overline{\text{dead}}_t = 0$. However, the number of minimal WnP justifications of dead_t grows quadratically, as it collects all the plans for killing Fred in t steps loading and shooting once. For instance, among others, all the following:

\begin{align*}
\text{d}_9 & \land \overline{\text{not}(\text{load}_0)} \land \text{r}_2 \land \overline{\text{not}(\text{shoot}_1)} \land \text{not}(\text{water}_0) \land \text{not}(\text{ab}_1) \\
\text{d}_9 & \land \overline{\text{not}(\text{load}_0)} \land \text{r}_2 \land \overline{\text{not}(\text{shoot}_2)} \land \text{not}(\text{water}_0) \land \text{not}(\text{water}_1) \land \text{not}(\text{ab}_1) \land \text{not}(\text{ab}_2) \\
\text{d}_9 & \land \overline{\text{not}(\text{load}_1)} \land \text{r}_2 \land \overline{\text{not}(\text{shoot}_3)} \land \text{not}(\text{water}_0) \land \\
& \land \text{not}(\text{water}_1) \land \text{not}(\text{water}_2) \land \text{not}(\text{ab}_1) \land \text{not}(\text{ab}_2) \land \text{not}(\text{ab}_3) \\
\end{align*}

are WnP-justifications for dead_9. The intuitive meaning of expressions of the form $\overline{\text{not}(A)}$ is that $\overline{\text{dead}_t}$ can be justified by adding A as a fact to the program. For instance, the first conjunction means that it is possible to justify $\overline{\text{dead}_9}$ by adding the facts load_0 and shoot_1 and not adding the fact water_0. We will call these justifications, which contain a subterm of the form $\overline{\text{not}(A)}$, hypothetical in the sense that they involve some hypothetical program modification.

Definition 15 (Provenance values)

Given a set of labels Lb, a provenance term t is recursively defined as one of the following expressions $t := l \mid \prod S \mid \sum S \mid \overline{t}_1$ where $l \in Lb$, t_1 is in its turn a provenance term and S is a (possibly empty and possible infinite) set of provenance terms. **Provenance values** are the equivalence classes of provenance terms under the equivalences of the Boolean algebra. We denote by B_{Lb} the set of provenance values over Lb. \hfill \square

Informally speaking, with respect to ECJ, we have removed the application ‘·’ operator, whereas product ‘∗’ and addition ‘+’ hold the same equivalences as in Definition 2 and negation ‘∼’.

\begin{align*}
\text{Definition 15 (Provenance values)}
\end{align*}
has been replaced by ‘¬’ from Boolean algebra. Thus, ‘¬’ is classical and satisfies all the axioms of ‘¬’ plus ¬t = t. Note also that, in the examples, we have followed the convention from (Damásio et al. 2013) of using the symbols ‘∧’ and ∨ to respectively represent meet and join. However, in formal definitions, we will keep respectively using ‘∗’ and ‘+’ for that purpose.

We define a mapping λP : VLb → BLb in the following recursive way:

\[
\lambda^P(t) \overset{\text{def}}{=} \begin{cases}
\lambda^P(u) \otimes \lambda^P(w) & \text{if } t = u \otimes v \text{ with } \otimes \in \{+,*\} \\
\lambda^P(u) \ast \lambda^P(w) & \text{if } t = u \cdot v \\
\neg \lambda^P(u) & \text{if } t = \neg u \\
l & \text{if } t = l \text{ with } l \in Lb
\end{cases}
\]

Definition 16 (Provenance)

Given a program P, the why-not provenance program ΨP(P) \overset{\text{def}}{=} P ∪ P′ where P′ contains a labelled fact of the form (¬¬not (A) : A) for each atom A ∈ At not occurring in P as a fact. We will write Ψ1 instead of Ψ(P) when the program P is clear by the context. We denote by WhyP(L) \overset{\text{def}}{=} λP(Ψ∅(L)) the why-not provenance of a q-literal L. We also say that a justification is hypothetical when not(A) occurs oddly negated in it, non-hypothetical otherwise.

Theorem 7

Let P be program over a finite signature ⟨At, Lb⟩. Then, the provenance of a literal according to Definition 16 is equivalent to the provenance defined by (Damásio et al. 2013).

Theorem 8

Let P be program over a finite signature ⟨At, Lb⟩. WhyP is the result of removing all non-hypothetical justification from WhyP and each occurrence of the form ¬¬not (A) for the remaining ones, that is, WhyP = ρ(WhyP) where ρ is the result of removing every label of the form not (A), that is ρ is the composition of ρnot(A1) ◦ ρnot(A2) ◦ ... ◦ ρnot(An) with At = {A1, A2, ..., An}.

On the one hand, Theorem 7 shows that the provenance of a literal can be obtained by replacing the negation ‘¬’ by ‘¬’ and ‘•’ by ‘∗’ in the causal WFM of the augmented program Ψ. On the other hand, Theorem 8 asserts that non-hypothetical justifications of a program and its augmented one coincide when subterms of the form ¬¬not (A) are removed from justifications of the latter. Consequently, we can establish the following correspondence between the ECJ justifications and the non-hypothetical WnP justifications.

Theorem 9

Let P be program over a finite signature ⟨At, Lb⟩. Then, the ECJ justifications of some atom A (after replacing “•” by “∗” and “¬•” by “¬∗”) correspond to the WnP justifications of A (after removing every label of the form not (B) with B ∈ At), that is, λP(WhyP)(A) = ρ(WhyP)(A) where ρ is the result of removing every label of the form not (A) as in Theorem 8.

Theorem 9 establishes a correspondence between non-hypothetical WnP-justifications and (flattened) ECJ justifications. In our running example, (7) is the unique causal justification of dead9, while (11) (below) is its unique non-hypothetical WnP justification.

\[
\neg \text{water}_3 \land \text{shoot}_8 \land \text{load}_1 \land \text{l}_2 \land d_9 \land \\
\neg \text{not(dead}_1) \land \ldots \land \neg \text{not(dead}_9) \land \neg \text{not(ab}_1) \land \ldots \land \neg \text{not(ab}_8)
\]

(11)
It is easy to see that, by applying λ^p to (7) we obtain

$$\lambda^p((\neg^\text{water}_3 * \text{shoot}_8 * \text{load}_1 \cdot l_2) \cdot d_9) = \neg^{\text{water}_3} \land \text{shoot}_8 \land \text{load}_1 \land l_2 \land d_9$$

which is just the result of removing all labels of the form ‘not(A)’ from (11). The correspondence between the ECJ justification \[8\] and the WnP justification \[10\] for program P_5 can be easily checked in a similar way.

Hypothetical justifications are not directly captured by ECJ, but can be obtained using the augmented program P as stated by Theorem 7. As a byproduct we establish a formal relation between WnP and CG.

Theorem 10

Let P be a program over a finite signature $\langle \text{At}, \text{Lb} \rangle$. Then, every non-hypothetical and enabled WnP-justification D of some atom A (after removing every label of the form $\text{not}(B)$ with $B \in \text{At}$) is a justification with respect to every CG stable model \bar{I} (after replacing ‘$.$’ by ‘$*$’ and ‘\sim’ by ‘‘\neg’’), that is $D \leq \text{Why}^P(A)$ implies $\rho(D) \leq \lambda^p(\bar{I})(A)$ where ρ is the result of removing every label of the form $\text{not}(B)$ as in Theorem\[8\].

Note that, as happened between the ECJ and CG justifications, the converse of Theorem\[10\] does not hold in general due to the well-founded vs stable model difference in their definitions. As an example, the explanation for atom c at program P_6 has a unique WnP justification c as opposed to the two CG justifications, c and $r_1 \cdot r_3$.

5 Contributory causes

Intuitively, a **contributory cause** is an event that has helped to produce some effect. For instance, in program P_5, it is easy to identify both actions, load_1 and shoot_8, as events that have helped to produce dead_9 and, thus, they are both contributory causes of Fred’s death. We may define the above informal concept of contributory cause as: any non-negated label l that occurs in a maximal enabled justification of some atom A. Similarly, a **contributory enabler** can be defined as a doubly negated label $\sim \sim l$ that occurs in a maximal enabled justification of some atom A. These definitions correctly identify load_1 and shoot_8 as contributory causes of dead_9 in program P_5 and d as a contributory cause of p in program P_1. Fact h is considered a contributory enabler of p. These definitions will also suffice for dealing with what Hall (2007) calls trouble cases: nonexistent threats, short-circuits, late-preemption and switching examples.

It is worth to mention that, in the philosophic and AI literature, the concept of contributory cause is usually discussed in the broader sense of actual causation which tries to provide an unique everyday-concept of causation. Pearl (2000) studied actual and contributory causes relying on causal networks. In this approach, it is possible to conclude cause-effect relations like “A has been an actual (resp. contributory) cause of B” from the behaviour of structural equations by applying, under some contingency (an alternative model in which some values are fixed) the counterfactual dependence interpretation from (Hume 1748): “had A not happened, B would not have happened.” Consider the following example which illustrates the difference between contributory and actual causes under this approach.

Example 1 (Firing Squad)

Suzy and Billy form a two-man firing squad that responds to the order of the captain. The shot of any of the two riflemen would kill the prisoner. Indeed, the captain gives the order, both riflemen shoot together and the prisoner dies.
On the one hand, the captain is an actual cause of the prisoner’s death: “had the captain not given the order, the riflemen would not have shot and the prisoner would not have died.” On the other hand, each riflemen alone is not an actual cause: “had one riflemen not shot, the prisoner would have died anyway because of the other riflemen.” However, each riflemen’s shot is a contributory cause because, under the contingency where the other riflemen does not shoot, the prisoner’s death manifests counterfactual dependence on the first riflemen’s shot. Later approaches like (Halpern and Pearl 2001, Halpern and Pearl 2005, Hall 2004, Hall 2007) have not made this distinction and consider the captain and the two riflemen as actual causes of the prisoner’s death, while (Halpern 2015) considers the captain and the conjunction of both riflemen’s shoots, but not each of them alone, as actual causes. We will focus here on representing the above concept of contributory cause and leave to the reader whether this agrees with the concept of cause in the every-day discourse or not.

As has been slightly discussed in the introduction, Hall (2004, 2007), has emphasized the difference between two types of causal relations: dependence and production. The former relies on the idea that “counterfactual dependence between wholly distinct events is sufficient for causation.” The latter is characterised by being transitive, intrinsic (two processes following the same laws must be both or neither causal) and local (causes must be connected to their effects via sequences of causal intermediates).

These two concepts can be illustrated in Bond’s example by observing the difference between pouring the drug (atom d), which is a cause under both understandings, and being a holiday (atom h), which is not considered a cause under the production viewpoint, although it is considered a cause under the dependence one.

In this sense, all the above approaches to actual causation, but (Hall 2004), can be classified in the dependence category. ECJ and CG do not consider h a productive cause of d because the default (or normal) behaviour of rule (1) is that “d causes p.” This default criterion is also shared by (Hall 2007, Halpern 2008, Hitchcock and Knobe 2009, Halpern and Hitchcock 2011). Note that, ECJ (but not CG) captures the fact that d counterfactually depends on h, as it considers it an enabler. In (Hall 2004), the author relies on intrinsicness for rejecting h as a productive cause of d: any causal structure (justification) including h and p would have to include the absence of the antidote (atom a), and it would be enough that Bond had taken the antidote by another reason to break the counterfactual dependence between h and p. By applying the above contributory cause definition to the WnP justification h ∧ d ∧ r₁ of Bond’s paralysis (atom p) in program P₁, we can easily identify that h is being considered a cause in WnP, thus, a causal interpretation of WnP clearly follows the dependence-based viewpoint. On the other hand, the unique CG justification d∧r₁ only considers d as a cause, which illustrates the fact that CG is mostly related to the concept of production. ECJ combines both understandings, and what is a cause under the dependence viewpoint is either an enabler or a cause under the production viewpoint.

In order to illustrate how ECJ can be used for representing the so-called non-existent threat scenarios, consider a variation of Bond’s example where today is not a holiday and, thus, Bond takes the antidote. The poured drug d is a threat to Bond’s safety, represented as s, but that threat is prevented by the antidote. We may represent this scenario by program P₈ below:

\[
\begin{align*}
r₁ : & \quad p \leftarrow d, \text{not a} \\
r₂ : & \quad a \leftarrow \text{not h} \\
r₃ : & \quad s \leftarrow \text{not p}
\end{align*}
\]
The causal WFM of program P_8 assigns
\[
W_{P_8}(s) = \sim r_2 \cdot r_3 + \sim d \cdot r_3 + \sim r_1 \cdot r_3
\]
which recognises rule r_2 (taking the antidote) as a contributory enabler of Bond’s safety. The difficulty in this kind of scenarios consists in avoiding the wrong recognition of r_2 as an enabler when the threat d does not exist. If we remove fact d from P_8 to get the new program P_9 then we obtain that $W_{P_9}(d) = 0$ and, consequently, $W_{P_9}(s) = r_3$. Intuitively, in the absence of any threat, Bond is just safe because that is his default behaviour as stated by rule r_3.

Short-circuit examples consist in avoiding the wrong recognition of an event as a contributory enabler that provokes a threat that eventually prevents itself. Consider the program P_{10} below:

\[
\begin{align*}
r_1 &: p \leftarrow a, \neg f \\
r_2 &: f \leftarrow c, \neg b \\
r_3 &: b \leftarrow c
\end{align*}
\]

Here, c is a threat to p, since it may cause f through rule r_2. However, c eventually prevents r_2, since it also causes b through rule r_3. The causal WFM of program P_{10} assigns
\[
W_{P_{10}}(p) = (a \cdot \sim r_3 \cdot r_1) + (a \cdot \sim r_2 \cdot r_1) + (a \cdot \sim c \cdot r_1)
\]
which correctly avoids considering c as a contributory enabler of p and recognises r_3 as the enabler of p. Note that c is actually considered an inhibitor due to justification $(a \cdot \sim c \cdot r_1)$ pointing out that, had c not happened, then $a \cdot r_1$ would have been an enabled justification. But then, $(a \cdot \sim r_3 \cdot r_1)$ would stop being a justification since $(a \cdot \sim r_3 \cdot r_1) + a \cdot r_1 = a \cdot r_1$.

To illustrate late-preemption consider the following example from (Lewis 2000).

Example 2 (Rock Throwers)

Billy and Suzy throw rocks at a bottle. Suzy throws first and her rock arrives first. The bottle shattered. When Billy’s rock gets to where the bottle used to be, there is nothing there but flying shards of glass. Who has caused the bottle to shatter?

The key of this example is to recognise that Suzy, and not Billy, has caused the shattering. The usual way of representing this scenario in the actual causation literature is by introducing two new fluents $hit_{_suzy}$ and $hit_{_billy}$ in the following way (Hall 2007; Halpern and Hitchcock 2011; Halpern 2014; Halpern 2015):

\[
\begin{align*}
hit_{_suzy} & \leftarrow \text{throw}_{_suzy} \\
hit_{_billy} & \leftarrow \text{throw}_{_billy}, \neg hit_{_suzy} \\
\text{shattered} & \leftarrow hit_{_suzy} \\
\text{shattered} & \leftarrow hit_{_billy}
\end{align*}
\]

It is easy to see that such a representation mixes, in law (14), both the description of the world and the narrative fact asserting that Suzy threw first. This may easily lead to a problem of elaboration tolerance. For instance, if we have N shooters and they shoot sequentially we would have to modify the equations for all of them in an adequate way, so that the last shooter’s equation would have the negation of the preceding $N-1$ and so on. Moreover, all these equations would have to be reformulated if we simply change the shooting order. On the other hand, we may represent
this scenario by a program P_{11} consisting of the following rules

$$s_{t+1} : \quad \text{shattered}_{t+1} \leftarrow \text{throw}(A)_t, \neg \text{shattered}_t$$

with $A \in \{\text{suzy}, \text{billy}\}$, plus the following rules corresponding to the inertia axioms

$$\text{shattered}_{t+1} \leftarrow \text{shattered}_t, \neg \text{shattered}_{t+1}$$

$\text{shattered}_{t+1} \leftarrow \text{shattered}_t, \neg \text{shattered}_{t+1}$

Atom shattered_2 holds in the standard WFM of P_{11} and its justification corresponds to

$$\text{throw(}\text{suzy})_0 \cdot s_1 + (\neg\text{throw(}\text{suzy}) \ast \text{throw(}\text{billy})_1) \cdot s_2 + (\neg s_1 \ast \text{throw(}\text{billy})_1) \cdot s_2$$

On the one hand, the first addend points out that fact $\text{throw(}\text{suzy})_0$ has caused shattered_2 by means of rule s_1. On the other hand, the second addend indicates that $\text{throw(}\text{billy})_1$ has not caused it because Suzy’s throw has prevented it. Finally, the third addend means that $\text{throw(}\text{billy})_1$ would have caused the shattering if it were not for rule s_1. This example shows how our semantics is able to recognise that it was Suzy, and not Billy, who caused the bottle shattering. Furthermore, it also explains that Billy did not cause it because Suzy did it first.

Finally, consider the following example from (Hall 2000).

Example 3 (The Engineer)

An engineer is standing by a switch in the railroad tracks. A train approaches in the distance. She flips the switch, so that the train travels down the right-hand track, instead of the left. Since the tracks reconverge up ahead, the train arrives at its destination all the same; let us further suppose that the time and manner of its arrival are exactly as they would have been, had she not flipped the switch.

\[\square\]

This has been a controversial example. In (Hall 2000), the author has argued that the switch should be considered a cause of the arrival because switch has contributed to the fact that the train has travelled down the right-hand track. In a similar manner, it seems clear that the train travelling down the right-hand track has contributed to the train arrival. If causality is considered to be a transitive relation, as (Hall 2000) does, the immediate consequence of the above reasoning is that flipping the switch has contributed to the train arrival. In (Hall 2007) he argues otherwise and points out that commonsense tells that the switch is not a cause of the arrival. (Halpern and Pearl 2005) had considered switch a cause of arrival depending on whether the train travelling down the tracks is represented by one or two variables in the model. Although our understanding of causality is closer to the one expressed in (Hall 2007), it is not the aim of this work to go more in depth in this discussion, but to show instead how both understandings can be represented in ECJ. Consider the following program P_{12}

$$r_1 : \quad \text{arrival} \leftarrow \text{right} \quad \text{\textit{\text{\underline{\text{switch}}}} \leftarrow \text{notswitch}}$$

$$r_2 : \quad \text{arrival} \leftarrow \text{left} \quad \text{\textit{\text{\underline{\text{switch}}}} \leftarrow \text{notswitch}}$$

$$r_3 : \quad \text{right} \leftarrow \text{train, notswitch} \quad \text{\textit{\text{\underline{\text{train}}}}}$$

$$r_4 : \quad \text{left} \leftarrow \text{train, notswitch} \quad \text{\textit{\text{\underline{\text{switch}}}}}$$

where $\text{\textit{\text{\underline{\text{switch}}}}}$ represents the strong negation of switch. The two unlabelled rules capture the idea that the switch behaves classically, that is, it must be activated or not. The literal $\text{\textit{\text{\underline{\text{notswitch}}}}}$ in the body of rule r_3 points out that the $\text{\textit{\text{\underline{\text{switch}}}}}$ position is an enabler and not a cause of the track.
taken by the train. This representation can be arguable, but the way in which the rule has been written would be expressing that if a train is coming, then a train will cross the right track by default unless switch prevents it. In that sense, the only productive cause for right (a train in the right track) is train (a train is coming) whereas the switch position just enables the causal rule to be applied. A similar default \(r_4 \) is built for the left track, flipping the roles of switch and switch.

The causal WFM of program \(P_{12} \) corresponds to

\[
\forall P_{12}(arrival) = (train \ast \sim\sim switch) \cdot r_3 \cdot r_1 + (train \ast \sim switch) \cdot r_3 \cdot r_2
\]

It is easy to see that switch is a doubly-negated label occurring in the maximal enabled justification \(E_1 = (train \ast \sim\sim switch) \cdot r_3 \cdot r_1 \) and, thus, we may identify it as a contributory enabler of arrival, but not its productive cause. On the other hand, by looking at the inhibited justification \(E_2 = (train \ast \sim switch) \cdot r_4 \cdot r_2 \), we observe that switch is also preventing rules \(r_4 \) and \(r_2 \) to produce the same effect, arrival, that is helping to produce in \(E_1 \).

If we want to ignore the way in which the train arrives, one natural possibility is using the same label for all the rules for atom arrival, reflecting in this way that we do not want to trace whether \(r_1 \) or \(r_2 \) has been actually used. Suppose we label \(r_2 \) with \(r_1 \) instead, leading to the new program \(P_{13} \)

\[
\begin{align*}
r_1 : \quad & arrival \leftarrow right \\
r_1 : \quad & arrival \leftarrow left \\
r_3 : \quad & right \leftarrow train, not switch \\
r_3 : \quad & left \leftarrow train, not switch
\end{align*}
\]

whose causal WFM corresponds to

\[
\forall P_{13}(arrival) = (train \ast \sim\sim switch) \cdot r_3 \cdot r_1 + (train \ast \sim switch) \cdot r_3 \cdot r_1 = train \cdot r_3 \cdot r_1
\]

As we can see, this justification does not consider switch at all as a cause of the arrival (nor even a contributory enabler, as before). In other words, switch is irrelevant for the train arrival, which probably coincides with the most common intuition.

However, we do not find this solution fully convincing yet, because the explanation we obtain for right, \(\forall P_{13}(right) = (train \ast \sim\sim switch) \cdot r_3 \) is showing that switch is just acting as an enabler, as we commented before. If we wanted to represent switch as a contributory cause of right, we would have more difficulties to simultaneously keep switch irrelevant in the explanation of arrival. One possibility we plan to explore in the future is allowing the declaration of a given atom or fluent, like our switch, as classical so that we include both, the the rule:

\[
switch \leftarrow not switch
\]

in the logic program and the axiom \(\sim switch = switch \) in the algebra. The latter immediately implies \(switch + \sim switch = 1 \) (due to the weak excluded middle axiom).

3 This implication actually corresponds to a choice rule \(0[\{switch\}] \cdot 1 \), commonly used in Answer Set Programming.
Then, \(P_{13} \) could be simply expressed as
\[
\begin{align*}
 r_1 : & \quad \text{arrival} \leftarrow \text{right} \quad \text{train} \\
 r_1 : & \quad \text{arrival} \leftarrow \text{left} \quad \text{switch} \\
 r_3 : & \quad \text{right} \leftarrow \text{train, switch} \\
 r_3 : & \quad \text{left} \leftarrow \text{train, not switch}
\end{align*}
\]
and the justification of \(\text{right} \) and \(\text{left} \) would become
\[
\begin{align*}
 \forall P(\text{right}) &= (\text{train} \ast \text{switch}) \cdot r_3 \\
 \forall P(\text{left}) &= (\text{train} \ast \neg \text{switch}) \cdot r_3
\end{align*}
\]
pointing out that \(\text{switch} \) is a cause (resp. an inhibitor) of the train travelling down the right (resp. left) track. Then, the justification of \(\text{arrival} \) would be
\[
\begin{align*}
 \forall P(\text{arrival}) &= (\text{train} \ast \text{switch}) \cdot r_3 \cdot r_1 + (\text{train} \ast \neg \text{switch}) \cdot r_3 \cdot r_1 = \text{train} \cdot r_3 \cdot r_1
\end{align*}
\]
We leave the study of this possibility for a future deeper analysis.

6 Conclusions and other related work

In this paper we have introduced a unifying approach that combines causal production with enablers and inhibitors. We formally capture inhibited justifications by introducing a “non-classical” negation ‘\(~\)’ in the algebra of causal graphs (CG). An inhibited justification is nothing else but an expression containing some negated label. We have also distinguished productive causes from enabling conditions (counterfactual dependences that are not productive causes) by using a double negation ‘\(\neg\neg\)’ for the latter. The existence of enabled justifications is a sufficient and necessary condition for the truth of a literal. Furthermore, our justifications capture, under the Well-Founded Semantics, both Causal Graph and Why-not Provenance justifications. As a byproduct we established a formal relation between these two approaches.

We have also shown how several standard examples from the literature on actual causation can be represented in our formalism and illustrated how this representation is suitable for domains which include dynamic defaults – those whose behaviour are not predetermined, but rely on some program condition – as for instance the inertia axioms. As pointed out by (Maudlin 2004), causal knowledge can be structured by a combination of inertial laws – how the world would evolve if nothing intervened – and deviations from these inertial laws.

In addition to the literature on actual causes cited in Section 5, our work also relates to papers on reasoning about actions and change (Lin 1995; McCain and Turner 1997; Thielscher 1997). These works have been traditionally focused on using causal inference to solve representational problems (such as, the frame, ramification and qualification problems) without paying much attention to the derivation of cause-effect relations. Focusing on LP, our work obviously relates to explanations obtained from ASP debugging approaches (Specht 1993; Denecker and Schreye 1993; Pemmasani et al. 2004; Gebser et al. 2008; Pontelli et al. 2009; Oetsch et al. 2010; Schulz and Toni 2013). The most important difference of these works with respect to ECJ, and also WnP and CG, is that the last three provide fully algebraic semantics in which justifications are embedded into program models. A formal relation between (Pontelli et al. 2009) and WnP was established in (Damásio et al. 2013) and so, using Theorems 7 and 9 it can be directly extended to ECJ, but at the cost of flattening the graph information (i.e. losing the order among rules).

Interesting issues for future study are incorporating enabled and inhibited justifications to the
stable model semantics and replacing the syntactic definition in favour of a logical treatment of default negation, as done for instance with the Equilibrium Logic (Pearce 1996) characterisation of stable models. Other natural steps would be the consideration of syntactic operators, for capturing more specific knowledge about causal information as done in (Fandinno 2015b) capturing sufficient causes in the CG approach, and also the representation of non-deterministic causal laws, by means of disjunctive programs or the incorporation of probabilistic knowledge.

Acknowledgements We are thankful to Carlos Damásio for his suggestions and comments on earlier versions of this work. We also thank the anonymous reviewers for their help to improve the paper. This research was partially supported by Spanish Project TIN2013-42149-P.

References

Balbes, R., and Dwinger, P. 1975. Distributive lattices. Melinda Inn.

Cabalar, P., Fandinno, J., and Fink, M. 2014a. Causal graph justifications of logic programs. Theory and Practice of Logic Programming TLP 14, 4-5, 603–618.

Cabalar, P., Fandinno, J., and Fink, M. 2014b. A complexity assessment for queries involving sufficient and necessary causes. In Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, E. Fermé and J. Leite, Eds. Lecture Notes in Computer Science, vol. 8761. Springer, 297–310.

Damásio, C. V., Analyti, A., and Antoniou, G. 2013. Justifications for logic programming. In Logic Programming and Nonmonotonic Reasoning, Twelfth International Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer Science, vol. 8148. Springer, 530–542.

Denecker, M. and Schreye, D. D. 1993. Justification semantics: A unifying framework for the semantics of logic programs. In Logic Programming and Non-monotonic Reasoning, 2nd International Workshop, LPNMR 1993, Lisbon, Portugal, June 1993. The MIT Press, 365–379.

Fandinno, J. 2015a. A causal semantics for logic programming. Ph.D. thesis, University of Corunna.

Fandinno, J. 2015b. Towards deriving conclusions from cause-effect relations. In ASPoCP.

Ferraris, P., Lee, J., and Lifschitz, V. 2007. A new perspective on stable models. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, M. M. Veloso, Ed. 372–379.

Gebser, M., Pührer, J., Schaub, T., and Tompits, H. 2008. A meta-programming technique for debugging answer-set programs. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, D. Fox and C. P. Gomes, Eds. AAAI Press, 448–453.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 15-19, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, 1070–1080.

Hall, N. 2000. Causation and the price of transitivity. The Journal of Philosophy 97, 4, 198–222.

Hall, N. 2004. Two concepts of causation. In Causation and counterfactuals, J. Collins, N. Hall, and L. A. Paul, Eds. Cambridge, MA: MIT Press, 225–276.

Hall, N. 2007. Structural equations and causation. Philosophical Studies 132, 1, 109–136.

Halpern, J. Y. 2008. Defaults and normality in causal structures. In Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September 16-19, 2008, G. Brewka and J. Lang, Eds. AAAI Press, 198–208.

Halpern, J. Y. 2014. Appropriate causal models and stability of causation. In Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, C. Baral, G. D. Giacomo, and T. Eiter, Eds. AAAI Press.
HALPERN, J. Y. 2015. A modification of the halpern-pearl definition of causality. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, Q. Yang and M. Wooldridge, Eds. AAAI Press, 3022–3033.

HALPERN, J. Y. AND HITCHCOCK, C. 2011. Actual causation and the art of modeling. CoRR abs/1106.2652.

HALPERN, J. Y. AND PEARL, J. 2001. Causes and explanations: A structural-model approach, part I: Causes. Proceedings of the Seventeenth Conference in Uncertainty in Artificial Intelligence, UAI 2001, University of Washington, Seattle, Washington, USA, August 2-5, 194–202.

HALPERN, J. Y. AND PEARL, J. 2005. Causes and explanations: A structural-model approach, part I: Causes. British Journal for Philosophy of Science 56, 4, 843–887.

HITCHCOCK, C. AND KNOBE, J. 2009. Cause and norm. Journal of Philosophy 11, 587–612.

HUME, D. 1748. An enquiry concerning human understanding. Reprinted by Open Court Press, LaSalle, IL, 1958.

LEWIS, D. K. 2000. Causation as influence. The Journal of Philosophy 97, 4, 182–197.

LIN, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1985–1993.

MAREK, V. W. AND TRUSZCZYŃSKI, M. 1999. Stable models and an alternative logic programming paradigm. In The Logic Programming Paradigm, K. R. Apt, V. W. Marek, M. Truszczynski, and D. Warren, Eds. Artificial Intelligence. Springer Berlin Heidelberg, 375–398.

MAUDLIN, T. 2004. Causation, counterfactuals, and the third factor. In Causation and Counterfactuals, J. Collins, E. J. Hall, and L. A. Paul, Eds. MIT Press.

MCCAIN, N. AND TURNER, H. 1997. Causal theories of action and change. In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., B. Kuipers and B. L. Webber, Eds. Artificial Intelligence. Springer Berlin Heidelberg, 375–398.

NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

OETSCH, J., PÜHRER, J., AND TOMPITS, H. 2010. Catching the ouroboros: On debugging non-ground answer-set programs. CoRR abs/1007.4986.

PEARCE, D. 1996. A new logical characterisation of stable models and answer sets. In Non-Monotonic Extensions of Logic Programming, NMELP 1996, Bad Honnef, Germany, September 5-6, 1996, Selected Papers, J. Dix, L. M. Pereira, and T. C. Przymusinski, Eds. Lecture Notes in Computer Science, vol. 1216. Springer, 57–70.

PEARL, J. 2000. Causality: models, reasoning, and inference. Cambridge University Press, New York, NY, USA.

PEMMASANI, G., GUO, H., DONG, Y., RAMAKRISHNAN, C. R., AND RAMAKRISHNAN, I. V. 2004. Online justification for tabled logic programs. In Functional and Logic Programming, Seventh International Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings, Y. Kameyama and P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 2998. Springer, 24–38.

PONTELLI, E., SON, T. C., AND EL-KHATIB, O. 2009. Justifications for logic programs under answer set semantics. Theory and Practice of Logic Programming TPLP 9, 1, 1–56.

SCHULZ, C. AND TONI, F. 2013. Aba-based answer set justification. Theory and Practice of Logic Programming TPLP 13, 4-5 Online-Supplement.

SPECHT, G. 1993. Generating explanation trees even for negations in deductive database systems. In Proceedings of the Fifth Workshop on Logic Programming Environments (LPE 1993), October 29-30, 1993, In conjunction with ILPS 1993, Vancouver, British Columbia, Canada, M. Ducassé, B. L. Charlier, Y. Lin, and L. Ü. Yalçınalp, Eds. IRISA, Campus de Beaulieu, France, 8–13.

THEILSCHER, M. 1997. Ramification and causality. Artificial Intelligence 89, 1-2, 317–364.

VAN GELDER, A. 1989. The alternating fixpoint of logic programs with negation. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania, USA, A. Silberschatz, Ed. ACM Press, 1–10.
VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic programs. *Journal of the ACM (JACM)* 38, 3, 620–650.
Appendix A. Auxiliary figures

Associativity	Commutativity	Absorption
\(t + (u + w) = (t + u) + w \)	\(t + u = u + t \)	\(t = t + (t * u) \)
\(t * (u * w) = (t * u) * w \)	\(t * u = u * t \)	\(t = t * (t + u) \)

Distributive	Identity	Idempotency	Annihilator
\(t + (u * w) = (t + u) * (t + w) \)	\(t = t + 0 \)	\(t = t + t \)	\(1 = 1 + t \)
\(t * (u + w) = (t * u) + (t * w) \)	\(t = t * 1 \)	\(t = t * t \)	\(0 = 0 * t \)

Fig. A 1. Sum and product satisfy the properties of a completely distributive lattice.

Appendix B. Proofs of Theorems and Implicit Results

In the following, by abuse of notation, for every function \(f : \mathcal{V}_{Lb} \rightarrow \mathcal{V}_{Lb} \), we will also denote by \(f \) a function over the set of interpretations such that \(f(I)(A) = f(I(A)) \) for every atom \(A \in At \).

We have organized the proofs into different subsections.

Appendix B.1. Proofs of Propositions[7]to[3]

Proposition 1

Negation ‘\(\sim \)’ is anti-monotonic. That is \(t \leq u \) holds if and only if \(\sim t \geq \sim u \) for any given two causal terms \(t \) and \(u \).

Proof. By definition \(t \leq u \) iff \(t * u = t \). Furthermore, by De Morgan laws, \(\sim(t * u) = \sim t + \sim u \) and, thus, \(\sim(t * u) = \sim t \) iff \(\sim t + \sim u = \sim t \). Finally, just note that \(\sim t + \sim u = \sim t \) iff \(\sim t \geq \sim u \). Hence, \(t \leq u \) holds iff \(\sim t \geq \sim u \). □

Proposition 2

The map \(t \mapsto \sim \sim t \) is a closure. That is, it is monotonic, idempotent and it holds that \(t \leq \sim \sim t \) for any given causal term \(t \).

Proof. To show that \(t \mapsto \sim \sim t \) is monotonic just note that \(t \mapsto \sim t \) is antimonotonic (Proposition[1]) and then \(t \leq u \) iff \(\sim t \geq \sim u \) iff \(\sim \sim t \leq \sim \sim u \). Furthermore, \(\sim \sim (\sim \sim t) = \sim (\sim \sim t) = \sim \sim t \), that
is, $t \mapsto \neg\neg t$ is idempotent. Finally, note that, by definition, $t \leq \neg\neg t$ if $t \ast \neg\neg t = t$ and

$$t \ast \neg\neg t = t \ast \neg\neg t + 0$$

(identity)

$$= t \ast \neg\neg t + t \ast t$$

(pseudo-complement)

$$= (t \ast \neg\neg t + t) \ast (t \ast \neg\neg t + \neg t)$$

(distributivity)

$$= t \ast (\neg\neg t + \neg t) \ast (\neg\neg t + \neg t)$$

(idempotency)

$$= t \ast (\neg\neg t + t) \ast \neg t \ast \neg t$$

(w. excluded middle)

$$= t \ast (\neg\neg t + t) \ast \neg\neg t$$

(identity)

$$= t$$

(absorption)

Hence, $t \mapsto \neg\neg t$ is a closure. □

Proposition 3

Given any term t, it can be rewritten as an equivalent term u in negation and disjunctive normal forms. □

Proof. This is a trivial proof by structural induction using the DeMorgan laws and negation of application axiom. Furthermore, using the axiom $\neg\neg\neg t = t$ no more than two nested negations are required. Furthermore, it is easy to see that by applying distributivity of “\cdot” and “$+$” over “\cdot”, every term can be equivalently represented as a term “$+$” over “\cdot” every such term can be represented as one in every application subterm is elementary. □

Lemma B.1

Let t be a join irreducible causal value. Then, either $t \ast \neg\neg u = 0$ or $t \ast \neg\neg u$ is join irreducible for every causal value $u \in V_{lb}$. □

Proof. Suppose that $t \ast u$ is not join irreducible and let $W \subseteq V_{lb}$ a set of causal values such that $w \neq t \ast \neg\neg u$ for every $w \in W$ and $t \ast \neg\neg u = \sum_{w \in W} w$. Since $t \ast \neg\neg u = \sum_{w \in W} w$, it follows that $w \leq t \ast \neg\neg u$ for every $w \in W$ and, since $w \neq t \ast \neg\neg u$, it follows that $w < t \ast \neg\neg u$ for every $w \in W$. Furthermore, $t \ast \neg\neg u + t \ast \neg\neg u = t \ast (\neg\neg u + \neg u) = t$.

Since t is join irreducible, it follows that either $t \ast \neg\neg u$ or $t = t \ast \neg u$. If $t = t \ast \neg u$, then $t \ast \neg\neg u = (t \ast \neg u) \ast \neg\neg u = 0$. Otherwise, $t = t \ast \neg\neg u$ and t is join irreducible by hypothesis. □

Lemma B.2

Let t be a term. Then $\lambda^p(\neg t) = \neg\lambda^p(t)$. □

Proof. We proceed by structural induction assuming that t is in negated normal form. In case that $t = a$ is elementary, it follows that $\lambda^p(\neg a) = \neg a = \neg\lambda^p(a)$. In case that $t = \neg a$ with a elementary, $\lambda^p(\neg t) = \lambda^p(\neg\neg a)$ and $\lambda^p(\neg\neg a) = a = \neg a = \neg\lambda^p(\neg\neg a) = \lambda^p(t)$. In case that $t = \neg a$, with a elementary, $\lambda^p(\neg t) = \lambda^p(\neg\neg a)$ and $\lambda^p(\neg\neg a) = \lambda^p(\neg a) = \neg a = \neg\lambda^p(\neg a) = \neg\lambda^p(t)$.
In case that \(t = u + v \). Then

\[
\lambda^P(t) = \lambda^P(u \ast v) = \lambda^P(u) \land \lambda^P(v)
\]

By induction hypothesis \(\lambda^P(u) = \neg \lambda^P(u) \) and \(\lambda^P(v) = \neg \lambda^P(v) \) and, therefore, it holds that

\[
\lambda^P(t) = \neg \lambda^P(u) \land \neg \lambda^P(v).
\]

Thus, \(\neg \lambda^P(t) = \neg (\lambda^P(u) \lor \lambda^P(v)) = \neg \lambda^P(u) \land \neg \lambda^P(v) = \lambda^P(t) \).

In case that \(t = u \otimes v \) with \(\otimes \in \{*, \cdot\} \). Then \(\lambda^P(t) = \lambda^P(u + v) = \lambda^P(u) \lor \lambda^P(v) \) and by induction hypothesis \(\lambda^P(u) = \neg \lambda^P(u) \) and \(\lambda^P(v) = \neg \lambda^P(v) \). Consequently it holds that \(\lambda^P(t) = \neg \lambda^P(t) \).

\(\square \)

Lemma B.3

Let \(t \) be a term and \(\phi \) a provenance term. If \(\phi \leq \lambda^P(t) \), then \(\neg \lambda^P(t) \leq \neg \phi \) and if \(\lambda^P(t) \leq \phi \), then \(\neg \phi \leq \lambda^P(t) \).

Proof. If \(\phi \leq \lambda^P(t) \), then \(\phi = \lambda^P(t) \ast \phi \) and then \(\neg \phi = \neg \lambda^P(t) + \neg \phi \) and, by Lemma B.2, it follows that \(\neg \phi = \lambda^P(t) \leq \neg \phi \). Furthermore if \(\lambda^P(t) \leq \phi \), then \(\phi = \lambda^P(t) + \phi \) and then \(\neg \phi = \lambda^P(t) \ast \neg \phi \) and, by Lemma B.2, it follows that \(\neg \phi = \lambda^P(t) \leq \neg \phi \). Hence \(\neg \phi \leq \lambda^P(t) \).

\(\square \)

Appendix B.2. Proof of Theorem 1

The proof of Theorem 1 will rely on the definition of the following direct consequence operator

\[T_P(I)(H) \overset{\text{def}}{=} \sum \{ I(B_1) \ast \ldots \ast I(B_n) \cdot r_i \mid (r_i : H \leftarrow B_1, \ldots, B_n) \in P \} \]

for any CG interpretation \(I \) and atom \(H \in At \). Note that the definition of this direct consequence operator \(\hat{T}_P \) is analogous to the \(T_P \) operator, but the domain and image of \(\hat{T}_P \) are the set of CG interpretations while the domain and image of \(T_P \) are the set of ECJ interpretations.

Theorem 11 (Theorem 2 from Cabalar et al. 2014a)

Let \(P \) be a (possibly infinite) positive logic program with \(n \) causal rules. Then, (i) \(lfp(\hat{T}_P) \) is the least model of \(P \), and (ii) \(lfp(T_P(\hat{T}_P)) = T_P(\hat{T}_P) \)

Proof of Theorem 1 Assume that every term occurring in \(P \) is NNF and let \(Q \) be the program obtained by renaming in \(P \) each occurrence of \(\sim l \) as \(l' \) and each occurrence of \(\sim l \) as \(l'' \) with \(l' \) and \(l'' \) new symbols. Note that this renaming implies that \(\sim l \) and \(\sim l \) are treated as completely independent symbols from \(l \) and, thus, all equalities among terms derived from program \(Q \) are also satisfied by \(P \), although the converse does not hold. Note also that, since \(\sim \) does not occur in \(Q \), this is also a CG program. From Theorem 11 \(lfp(\hat{T}_Q) = T_Q(\hat{T}_Q) \) is the least model of \(Q \). By renaming back \(l' \) and \(l'' \) as \(\sim l \) and \(\sim l \) in \(\hat{T}_Q(\hat{T}_Q) \) we obtain \(lfp(T_P) = T_P(\hat{T}_P) \) for any \(k \). Hence, \(lfp(T_P) = T_P(\hat{T}_P) \) is the least model of \(P \). Statement (ii) is proved in the same manner.

\(\square \)
Appendix B.3. Proof of Proposition 4

Lemma B.4
Let \(P_1 \) and \(P_2 \) be two programs and let \(U_1 \) and \(U_2 \) be two interpretations such that \(P_1 \supseteq P_2 \) and \(U_1 \subseteq U_2 \). Let also \(I_1 \) and \(I_2 \) be the least models of \(P_1 \) and \(P_2 \), respectively. Then \(I_1 \supseteq I_2 \). \(\square \)

Proof. First, for any rule \(r_i \) and pair of interpretations \(J_1 \) and \(J_2 \) such that \(J_1 \supseteq J_2 \),
\[
J_1(\text{body}^+(r_i^{U_1})) \supseteq J_2(\text{body}^+(r_i^{U_2}))
\]
Furthermore, since \(U_1 \subseteq U_2 \), by Proposition \[it follows
\[
U_1(\text{body}^-(r_i^{U_1})) \supseteq U_2(\text{body}^-(r_i^{U_2}))
\]
and, since by Definition \[J_j(\text{body}^-(r_i^{U_1})) \equiv U_j(\text{body}^-(r_i^{U_1})), it follows that
\[
J_1(\text{body}^-(r_i^{U_1})) \supseteq J_2(\text{body}^-(r_i^{U_2}))
\]
Hence, we obtain that \(J_1(\text{body}(r_i^{U_1})) \supseteq J_2(\text{body}(r_i^{U_2})).
\]
Since \(P_1 \supseteq P_2 \), it follows that every rule \(r_i \in P_2 \) is in \(P_1 \) as well. Thus, \(T_{P_1}^*(J_1)(H) \geq T_{P_2}^*(J_2)(H) \)
for every atom \(H \). Furthermore, since
\[
T_{P_1}^0(0)(H) = T_{P_2}^0(0)(H) = 0
\]
it follows \(T_{P_1}^*(0)(H) \geq T_{P_2}^*(0)(H) \) for all \(0 \leq i \). Finally,
\[
T_{P_1}^*(0)(H) \equiv \sum_{i \leq 0} T_{P_1}^i(0)(H) = 0
\]
and hence \(T_{P_1}^*(0)(H) \geq T_{P_2}^*(0)(H) \). By Theorem \[these are respectively the least models of \(P_1 \) and \(P_2 \). That is \(I_1 \supseteq I_2. \) \(\square \)

Proposition 4
\(\Gamma_p \) operator is anti-monotonic and operator \(\Gamma_p^0 \) is monotonic. That is, \(\Gamma_p(U_1) \supseteq \Gamma_p(U_2) \) and \(\Gamma_p^0(U_1) \subseteq \Gamma_p^0(U_2) \) for any pair of interpretations \(U_1 \) and \(U_2 \) such that \(U_1 \subseteq U_2 \). \(\square \)

Proof. Since \(U_1 \subseteq U_2 \), by Lemma \[it follows \(I_1 \supseteq I_2 \) with \(I_1 \) and \(I_2 \) being respectively the least models of \(P_1 \) and \(P_2 \). Then, \(\Gamma_p(U_1) = I_1 \) and \(\Gamma_p(U_2) = I_2 \) and, thus, \(\Gamma_p(U_1) \supseteq \Gamma_p(U_2) \).
Since \(\Gamma_p \) is anti-monotonic it follows that \(\Gamma_p^0 \) is monotonic. \(\square \)

Appendix B.4. Proof of Theorem 2
The proof of Theorem 2 will rely on the relation between ECJ justifications and non-hypothetical WnP justifications established by Theorem 9 and it can be found below the proof of that theorem in page 36.
The following results hold:

Proposition 5

Theorem 1 follows by induction assuming that $\rho_{\sim l}(I) \geq J$. Then, $\rho_{\sim l}(\Gamma_P(I)) \leq \Gamma_Q(J)$.

Proof. The first result directly follows from Theorem 1 in [Balbes and Dwinger 1975, page 65]. Furthermore, from Theorem 2 in [Balbes and Dwinger 1975, page 66], in every distributive lattice satisfying the descending chain condition, any element can be represented as a unique finite sum of pairwise incomparable join irreducible terms.

Lemma B.5

Let P be a positive program over a signature $\langle At, Lb \rangle$ where Lb is a finite set of labels and Q be the result of removing all rules labelled by some label $l \in Lb$. Let I and J be two interpretations such that J satisfies the descending chain condition. Then, $\rho_{\sim l}(I) \geq J$. Then, $\rho_{\sim l}(\Gamma_P(I)) \leq \Gamma_Q(J)$.

Proof. By definition $\Gamma_P(I)$ and $\Gamma_Q(J)$ are the least models of programs P^I and Q^J, respectively. Furthermore, from Theorem 1, the least model of any program P is the least fixpoint of the T_P operator, that is, $\Gamma_X(Y) = T_X \uparrow^\alpha (0)$ with $X \in \{P, Q\}$ and $X^Y \subseteq \{P^I, P^J\}$. Then, the proof follows by induction assuming that $u \leq T_{Q^J} \uparrow^\beta (0)(H)$ implies $\rho_{\sim l}(u) \leq T_{Q^J} \uparrow^\beta (0)(H)$ for any join irreducible u, atom H and every ordinal $\beta < \alpha$.

Note that $T_{Q^J} \uparrow^0 (0)(H) = 0 = \rho_{\sim l}(0) = T_{P^I} \uparrow^0 (0)(A)$ for any atom H and, thus, the statement holds vacuously.

If α is a successor ordinal, since $u \leq T_{P^I} \uparrow^\alpha (0)(H)$, there is a rule in P of the form $\langle \text{At} \rangle$ such that

$$u \leq (u_{B_1} \ast \ldots \ast u_{B_m} \ast u_{C_1} \ast \ldots \ast u_{C_n}) \cdot r_i$$

where $u_{B_j} \leq T_{P^I} \uparrow^{\alpha - 1} (0)(B_j)$ and $u_{C_j} \leq \neg I(C_j)$ for each positive literal B_j and each negative literal $\neg C_j$ in the body of rule r_i. Then,

1. By induction hypothesis, it follows that $\rho_{\sim l}(u_{B_j}) \leq T_{Q^J} \uparrow^{\alpha - 1} (0)(B_j)$, and
2. from $\rho_{\sim l}(\neg I(H)) \geq J(H)$, it follows that $u_{C_j} \leq \neg I(C_j)$ implies $\rho_{\sim l}(u_{C_j}) \leq \neg J(C_j)$.

Furthermore, if $r_i \neq l$, then $r_i \in Q$ and, thus,

$$\rho_{\sim l}(u) \leq (\rho_{\sim l}(u_{B_1}) \ast \ldots \ast \rho_{\sim l}(u_{B_m}) \ast \rho_{\sim l}(u_{C_1}) \ast \ldots \ast \rho_{\sim l}(u_{C_n})) \cdot r_i \leq T_{Q^J} \uparrow^\alpha (0)(H)$$

If otherwise $r_i = l$, then $\rho_{\sim l}(u) = 0 \leq T_{Q^J} \uparrow^\alpha (0)(H)$.

In case that α is a limit ordinal, $u \leq T_{P^I} \uparrow^\alpha (0)$ iff $u \leq T_{P^I} \uparrow^\beta (0)$ for some $\beta < \alpha$ and any join irreducible u. Hence, by induction hypothesis, it follows that $\rho_{\sim l}(u) \leq T_{Q^J} \uparrow^\beta (0) \leq T_{Q^J} \uparrow^\alpha (0)$ and, thus, $\rho_{\sim l}(T_{P^I} \uparrow^\alpha (0)) \leq T_{Q^J} \uparrow^\alpha (0)$.

By definition $\rho_{\sim l}(1) = 1 = \rho_{\sim l}(0)$. Therefore, $\rho_{\sim l}(u) \leq \rho_{\sim l}(1) = 1 = \rho_{\sim l}(0)$, and, thus, $\rho_{\sim l}(T_{P^I} \uparrow^\alpha (0)) \leq T_{Q^J} \uparrow^\alpha (0)$.

\[\square\]
Proof of Theorem 5. In the sake of simplicity, we just write \(\rho \) instead of \(\rho_{\sim r} \). Note that, by definition, for any atom \(H \), it follows that \(\forall X(H) = L_X(H) \) with \(X \in \{ P, Q \} \). The proof follows by induction in the number of steps of the \(\Gamma^2 \) operator assuming as induction hypothesis that \(\Gamma^2_Q \uparrow^\beta (0) \leq \rho(\Gamma^2_R \uparrow^\beta (0)) \) for every \(\beta < \alpha \). Note that \(\Gamma^2_Q \uparrow^{\alpha_0} (0)(H) = 0 \leq \rho(\Gamma^2_R \uparrow^{\alpha_0} (0))(H) \) and, thus, the statement trivially holds for \(\alpha = 0 \).

In case that \(\alpha \) is a successor ordinal, by induction hypothesis, it follows that

\[
\Gamma^2_Q \uparrow^{\alpha - 1} (0) \leq \rho(\Gamma^2_R \uparrow^{\alpha - 1} (0))
\]

and, from Lemma B.5 it follows that

\[
\Gamma_Q(\Gamma^2_Q \uparrow^{\alpha - 1} (0)) \geq \rho(\Gamma_R(\Gamma^2_R \uparrow^{\alpha - 1} (0)))
\]

\[
\Gamma^2_Q(\Gamma^2_Q \uparrow^{\alpha - 1} (0)(H))) \leq \rho(\Gamma^2_R(\Gamma^2_R \uparrow^{\alpha - 1} (0)))
\]

That is, \(\Gamma^2_Q \uparrow^{\alpha} (0) \leq \rho(\Gamma^2_R \uparrow^{\alpha} (0)) \).

Finally, in case that \(\alpha \) is a limit ordinal, every join irreducible \(u \) satisfies \(u \leq \Gamma^2_Q \uparrow^{\alpha} (0) = \sum_{\beta < \alpha} \Gamma^2_Q \uparrow^{\beta} (0) \) iff \(u \leq \Gamma^2_Q \uparrow^{\beta} (0) \) for some \(\beta < \alpha \) and, thus, by induction hypothesis \(\rho(u) \leq \Gamma^2_R \uparrow^{\beta} (0) \leq \Gamma^2_R \uparrow^{\alpha} (0) \). Consequently, \(\Gamma^2_Q \uparrow^{\alpha} (0) \leq \rho(\Gamma^2_R \uparrow^{\alpha} (0)) \) and \(\forall X(A) \leq \rho(\forall X(A)) \) for any atom \(A \). □

Appendix B.6. Proof of Theorem 5

By \(\bar{\Gamma}_P(I) \) we denote the least model of a program \(P^I \). Note that the relation between \(\bar{\Gamma}_P \) and \(\Gamma_P \) is similar to the relation between \(T_P \) and \(T_P^I \): the \(\bar{\Gamma}_P \) operator is a function in the set of CG interpretations while \(\Gamma_P \) is a function in the set of ECJ interpretations. Note also that the evaluation of negated literals with respect to CG and ECJ interpretations and, thus, the reducts \(P^I \) and \(P^\lambda \) may be different even if \(I(A) = I(A) \) for every atom \(A \).

Lemma B.6

Let \(P \) be a labelled logic program, \(\bar{I} \) and \(J \) be respectively an CG and a ECJ interpretation such that \(\bar{I} \geq \lambda^c(J) \). Then \(\bar{\Gamma}_P(\bar{I}) \leq \lambda^c(\Gamma_P(J)) \).

Proof. By definition \(\bar{\Gamma}_P(\bar{I}) \) and \(\Gamma_P(J) \) are respectively the least model of the programs \(P^I \) and \(P^\lambda \). Furthermore, from Theorem 1 the least model of any program \(P \) is the least fixpoint of the \(T_P \) operator, that is, \(\bar{\Gamma}_P(\bar{I}) = \bar{T}_P \uparrow^{\alpha_0} (0) \) and \(\bar{\Gamma}_P(\bar{I}) = T_P \uparrow^{\alpha_0} (0) \). In case that \(\alpha = 0 \), it follows that \(\bar{T}_P \uparrow^{\alpha_0} (0)(H) = 0 \leq \lambda^c(T_P \uparrow^{\alpha_0} (0))(H) \) for every atom \(H \). We assume as induction hypothesis that \(\bar{T}_P \uparrow^{\beta} (0) \leq \lambda^c(T_P \uparrow^{\beta} (0)) \) for all \(\beta < \alpha \).

In case that \(\alpha \) is a successor ordinal, \(E \leq \bar{T}_P \uparrow^{\alpha} (0) = \bar{T}_P \uparrow^{\alpha - 1} (0) \) if and only if there is a rule \(R^I \) in \(P^I \) of the form

\[
r_i : H \leftarrow B_1, \ldots, B_m,
\]

which is the reduct of a rule \(R \) of the form (4) in \(P \) and that satisfies \(E \leq (E_{B_1} \ast \ldots \ast E_{B_m}) \cdot r_i \) with each \(E_{B_j} \leq \bar{T}_P \uparrow^{\alpha - 1} (0)(B_j) \) and \(\bar{I}(C_j) = 0 \) for all \(B_j \) and \(C_j \) in body \(R \). Hence there is a rule in \(P \) of the form

\[
r_i : H \leftarrow B_1, \ldots, B_m, J(not C_1), \ldots, J(not C_n)
\]
and, by induction hypothesis, \(E_{B_j} \leq \lambda^c(T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_j)) \) for all \(B_j \). Furthermore, by definition

\[
(T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_1) \ast \ldots \ast T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_m) \ast J(\text{not}C_1) \ast \ldots \ast J(\text{not}C_m)) \cdot r_i \leq T_{p^{\alpha}} \uparrow \alpha(0)(H)
\]

From the fact that \(\tilde{I}(C_j) = 0 \) and the lemma’s hypothesis \(\tilde{I} \geq \lambda^c(J) \), it follows that \(0 \geq \lambda^c(J(C_j)) \) and, thus, \(1 \leq \lambda^c(\sim J(C_j)) = \lambda^c(J(\text{not}C_j)) \). Hence,

\[
\lambda^c((T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_1) \ast \ldots \ast T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_m) \ast J(\text{not}C_1) \ast \ldots \ast J(\text{not}C_m)) \cdot r_i) = \lambda^c((T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_1) \ast \ldots \ast T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_m)) \ast \lambda^c(J(\text{not}C_1)) \ast \ldots \ast \lambda^c(J(\text{not}C_m))) \cdot r_i
\]

and, thus,

\[
\lambda^c((T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_1) \ast \ldots \ast T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_m)) \cdot r_i) \leq \lambda^c(T_{p^{\alpha}} \uparrow \alpha(0)(H))
\]

Since \(E_{B_j} \leq \lambda^c(T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_j)) \) for all \(B_j \), it follows that

\[
E \leq (E_{B_1} \ast \ldots \ast E_{B_m}) \cdot r_i \leq \lambda^c(T_{p^{\alpha}} \uparrow \alpha(0))(H)
\]

Finally, in case that \(\alpha \) is a limit ordinal, it follows from Theorem \ref{thm:lambda_limit} that \(\alpha = \omega \). Furthermore, since \(I \) is a CG interpretation, it follows that \(P^I \) is a CG program and, thus, \(E \leq T_{p^{\alpha}} \uparrow \alpha(0) \) iff \(E \leq T_{p^{\alpha}} \uparrow \alpha(0) \) for some \(n < \omega \) (see Cabalar et al. 2014). Hence, by induction hypothesis, it follows that \(E \leq T_{p^{\alpha}} \uparrow \alpha(0) \leq T_{p^{\alpha}} \uparrow \alpha(0) \).

\[\square\]

\textbf{Lemma B.7}

Let \(P \) be a labelled logic program over a signature \(\langle At, Lb \rangle \) where \(Lb \) is a finite set of labels, \(\tilde{I} \) and \(J \) respectively be a CG and an ECIJ interpretation such that \(\tilde{I} \leq \lambda^c(J) \). Then \(\Gamma_P(\tilde{I}) \geq \lambda^c(\Gamma_P(J)) \).

\textbf{Proof.} Since \(Lb \) is finite, it follows that \(V_{Lb} \) is also finite. Furthermore, since \(V_{Lb} \) is a finite distributive lattice, every element \(t \in V_{Lb} \) can be represented as a unique sum of join irreducible elements (Proposition \ref{prop:unique_sum}).

Assume as induction hypothesis that \(u \leq T_{p^{\beta}} \uparrow \beta(0)(H) \) implies \(\lambda^c(u) \leq T_{p^{\alpha}} \uparrow \alpha(0)(H) \) for every join irreducible \(u \), atom \(H \in At \) and ordinal \(\beta < \alpha \).

In case that \(\alpha \) is a successor ordinal. For any join irreducible justification \(u \leq T_{p^{\alpha}} \uparrow \alpha(0)(H) \) there is a rule \(R^l \) in \(P^I \) of the form \(\text{[4]} \) and there are join irreducible terms \(u_{B_j} \leq T_{p^{\alpha}} \uparrow \alpha^{-1}(0)(B_j) \) and \(u_{C_j} \leq \sim J(C_j) \) for all \(B_j \) and \(C_j \) such that

\[
u \leq (u_{B_1} \ast \ldots \ast u_{B_m} \ast u_{C_1} \ast \ldots \ast u_{C_n}) \cdot r_i
\]

If \(u_{C_j} \) contains an oddly negated label for some \(C_j \), then \(\lambda^c(u_{C_j}) = 0 \) and it consequently follows that \(\lambda^c(u) = 0 \leq T_{p^{\alpha}} \uparrow \alpha(0)(H) \). Thus, we assume that \(u_{C_j} \) only contains evenly negated labels for any \(C_j \). Note that, since \(u_{C_j} \leq \sim J(C_j) \), then \(u_{C_j} \) cannot contain any non-negated label, that is, all occurrences of labels in \(u_{C_j} \) are strictly evenly negated and, thus, every term \(u_{C_j} \leq J(C_j) \) must contain some oddly negated label. Hence, \(\tilde{I}(C_j) \leq \lambda^c(J(C_j)) = 0 \) for any \(C_j \) and there is a rule \(R^l \) in \(Q^I \) of the form

\[
u \leq H \leftarrow B_1, \ldots, B_m
\]
By induction hypothesis, \(u_B \leq T_p^\lambda \uparrow^{\alpha - 1} (0)(B_j) \) implies \(\lambda^c(u_B) \leq \tilde{T}_p^\lambda \uparrow^{\alpha - 1} (0)(B_j) \) and, consequently, \(\lambda^c(u) \leq \tilde{T}_p^\lambda \uparrow^{\alpha} (0)(H) \).

Since \(T_p^\lambda \uparrow^{\alpha} (0)(H) = \sum_{u \in U_H} u \) where every \(u \in U_H \) is join irreducible and every \(u \in U_H \) satisfies \(u \leq T_p^\lambda \uparrow^{\alpha} (0)(H) \), it follows that \(\lambda^c(u) \leq \tilde{T}_p^\lambda \uparrow^{\alpha} (0)(H) \) and, thus, \(\sum_{u \in U_H} \lambda^c(u) \leq \tilde{T}_p^\lambda \uparrow^{\alpha} (0)(H) \).

Note that, by definition, \(\lambda^c(\sum_{u \in U_H} u) = \sum_{u \in U_H} \lambda^c(u) \) and, thus,

\[
\lambda^c(\tilde{T}_p^\lambda \uparrow^{\alpha} (0)(H)) = \lambda^c(\sum_{u \in U_H} u) \leq \tilde{T}_p^\lambda \uparrow^{\alpha} (0)(H)
\]

In case that \(\alpha \) is a limit ordinal, it follows \(u \leq T_p^\lambda \uparrow^{\alpha} (0)(H) \) iff \(u \leq T_p^\lambda \uparrow^\beta (0)(H) \) for some \(\beta < \omega \) and, by induction hypothesis, it follows that \(\lambda^c(u) \leq \tilde{T}_p^\lambda \uparrow^\beta (0)(H) \leq \tilde{T}_p^\lambda \uparrow^\alpha (0)(H) \) and, thus, \(\tilde{T}_p^\lambda \uparrow^\alpha (0) \geq \lambda^c(\tilde{T}_p^\lambda \uparrow^\alpha (0)) \).

Finally, by definition \(\tilde{\Gamma}_P(I) \) and \(\Gamma_P(J) \) are respectively the least models of \(P^I \) and \(P^J \) and, from Theorem [11] these are precisely \(\tilde{T}_p^\lambda \uparrow^\alpha (0) \) and \(T_p^\lambda \uparrow^\omega (0) \). Hence, \(\tilde{T}_p^\lambda \uparrow^\omega (0) \geq \lambda^c(T_p^\lambda \uparrow^\omega (0)) \) implies \(\Gamma_P(I) \geq \lambda^c(\Gamma_P(J)) \).

\(\square \)

Proposition 6

Given a program \(P \) over a signature \(\langle At, Lb \rangle \) where \(Lb \) is a finite set of labels, any ECJ interpretation \(I \) satisfies \(\Gamma_P(\lambda^c(I)) = \lambda^c(\Gamma_P(I)) \).

\(\square \)

Proof of Proposition 6

Let \(\tilde{I} \) be a CG interpretation such that \(I(H) = \tilde{I}(H) \) for every atom \(H \). Then, it follows that \(\tilde{I} = \lambda^c(I) \). Hence, from Lemmas [B.6] and [B.7], it respectively follows that \(\tilde{\Gamma}_P(I) \leq \lambda^c(\Gamma_P(I)) \) and \(\tilde{\Gamma}_P(I) \geq \lambda^c(\Gamma_P(I)) \). Then, \(\tilde{\Gamma}_P(I) = \tilde{\Gamma}_P(\lambda^c(I)) = \lambda^c(\Gamma_P(I)) \).

\(\square \)

Proof of Theorem 5

According to [Cabalar et al. 2014a], a CG interpretation \(\tilde{I} \) is a CG stable model of \(P \) iff \(\tilde{I} \) is the least model of the program \(P^I \). Then, the CG stable models are just the fixpoints of the \(\Gamma_P \) operator.

Let \(\tilde{I} \) be a CG stable model according to [Cabalar et al. 2014a], let \(I \) be an ECJ interpretation such that \(I(H) = \tilde{I}(H) \) for every atom \(H \in At \) and let \(J \equiv \Gamma_P^\alpha(I) \) be the least fixpoint of \(\Gamma_P \) iterating from \(I \). Since \(I(H) = \tilde{I}(H) \) for every atom \(H \in At \), it follows that \(\tilde{I} = \lambda^c(I) \) and, by definition of CG stable model, it follows that \(\tilde{I} = \tilde{\Gamma}_P(I) \). Thus, from Proposition 6 it follows that \(\tilde{I} = \lambda^c(\Gamma_P(I)) \). Applying \(\Gamma_P \) to both sides of this equality, we obtain that \(\Gamma_P(I) = \Gamma_P(\lambda^c(\Gamma_P(I))) \).

From Proposition 6 again, it follows that \(\tilde{\Gamma}_P(\lambda^c(\Gamma_P(I))) = \lambda^c(\Gamma_P(\Gamma_P(I))) = \lambda^c(\Gamma_P(I)) \) and, thus, \(\tilde{\Gamma}_P(I) = \lambda^c(\Gamma_P(I)) \). Inductively applying this argument, it follows that \(\tilde{I} = \lambda^c(\Gamma_P^\alpha(I)) \) for any successor ordinal \(\alpha \). Moreover, for a limit ordinal \(\alpha \),

\[
\lambda^c(\Gamma_P^\alpha(I)) = \lambda^c\left(\sum_{\beta < \alpha} \Gamma_P^\beta(I) \right) = \sum_{\beta < \alpha} \lambda^c(\Gamma_P^\beta(I)) = \tilde{I}
\]

Then, since we have defined \(J = \Gamma_P^\alpha(I) \), it follows that \(\tilde{I} = \lambda^c(J) = \lambda^c(I) \) and, since we also have that \(\tilde{I} = \lambda^c(\Gamma_P(I)) \), we obtain that \(\lambda^c(I) = \lambda^c(\Gamma_P(I)) \).

The other way around. Let \(I \) be a fixpoint of \(\Gamma_P \) such that \(\lambda^c(I) = \lambda^c(\Gamma_P(I)) \) and let \(\tilde{I} \equiv \lambda^c(I) \).

In the same way as above, it follows that \(\Gamma_P(I) = \lambda^c(\Gamma_P(I)) = \lambda^c(I) = \tilde{I} \). That is, \(\Gamma_P(I) = \tilde{I} \) and so that \(\tilde{I} \) is a causal stable model of \(P \) according to [Cabalar et al. 2014a].

\(\square \)
Appendix B.7. Proof of Theorem 6

Proof of Theorem 6. Let \bar{I} be a causal stable model of P and I be the correspondent fixpoint of Γ_{ω}^P with $I = \lambda^\omega(I)$. Since E is a enabled justification of A, i.e. $E \leq \forall P(A)$, then $E \leq \bot_P$ with \bot_P the least fixpoint of Γ_{ω}^P. Since, I is a fixpoint of Γ_{ω}^P, it follows that $E \leq \bot_P(A) \leq I(A)$ and, thus, $\lambda^\omega(E) \leq \lambda^\omega(I(A)) = I(A)$. Then $G \overset{\text{def}}{=} \text{graph}(\lambda^\omega(E))$ is, by definition, a causal explanation of the atom A.

Appendix B.8. Proof of Theorem 7

The proof of Theorem 7 will need the following definition.

Definition 18
Given a program P, a WnP interpretation is a mapping $\mathcal{I} : \text{At} \longrightarrow \mathcal{B}_{Lb}$ assigning a Boolean form to each atom. The evaluation of a negated literal $\text{not} A$ with respect to a WnP interpretation is given by $\mathcal{I}(\text{not} A) = \neg \mathcal{I}(A)$. An interpretation \mathcal{I} is a WnP model of rule like (4) iff

$$\mathcal{I}(B_1) \ast \ldots \ast \mathcal{I}(B_m) \ast \mathcal{I}(\text{not} C_1) \ast \ldots \ast \mathcal{I}(\text{not} C_n) \ast r_i \leq \mathcal{I}(H)$$

The operator $\mathcal{G}_P(\mathcal{I})$ maps a WnP interpretation \mathcal{I} to the least fixpoint of the program P^ω. □

Note that the only differences in the model evaluation between ECJ and WnP comes from the valuation of negative literals and the use of ‘$*$’ instead of ‘$.'’ for keeping track of rule application. Besides, we will also use the following facts whose proof is addressed in an appendix.

Definition 19
Given a positive program P, we define a direct consequence operator Σ_P such that

$$\Sigma_P(\mathcal{I})(H) \overset{\text{def}}{=} \sum \{ \mathcal{I}(B_1) \ast \ldots \ast \mathcal{I}(B_n) \ast r_i \mid (r_i : H \leftarrow B_1, \ldots, B_n) \in P \}$$

for any WnP interpretation \mathcal{I} and atom $H \in \text{At}$. □

Definition 20 (From [Damásio et al. 2013])
Given a program P, its why-not program is given by $\mathcal{P} \overset{\text{def}}{=} P \cup P'$ here P' contains a labelled fact of the form

$$\neg \text{not}(A) : A$$

for each atom $A \in \text{At}$ not occurring in P as a fact. The why-not provenance information under the well-founded semantics is defined as follows: $\text{Why}_\mathcal{P}(H) = [\Sigma_\mathcal{P}(H)]$; $\text{Why}_\mathcal{P}(H) = [\Sigma_\mathcal{P}(H)]$; and $\text{Why}_\mathcal{P}(\text{undef} A) = [\neg \Sigma_\mathcal{P}(H) \land \Sigma_\mathcal{Q}(H)]$ where $\Sigma_\mathcal{P}$ and $\Sigma_\mathcal{Q} = \mathcal{G}_\mathcal{Q}(\Sigma_\mathcal{P})$ be the least and greatest fixpoints of $\Sigma_\mathcal{P}$, respectively. □

Lemma B.8
Let P be a labelled logic program over a signature $\langle \text{At}, Lb \rangle$ where Lb is a finite set of labels and let I and J be respectively a ECJ and a WnP interpretation such that $\lambda^P(I) \geq J$. Then, $\lambda^P(I) \geq \mathcal{G}_\mathcal{P}(\mathcal{J})$.

Proof. By definition $\Gamma_{\omega}^P(I)$ and $\mathcal{G}_\mathcal{P}(\mathcal{J})$ are the least model of the programs \mathcal{P}' and \mathcal{P}^ω, respectively. Furthermore, the least model of programs \mathcal{P}' and \mathcal{P}^ω are the least fixpoint of the $T_{\mathcal{P}'}$ and $\Sigma_{\mathcal{P}^\omega}$ operators, that is, $\Gamma_{\omega}^P(I) = T_{\mathcal{P}^\omega} \uparrow^\omega(\emptyset)$ and $\mathcal{G}_\mathcal{P}(J) = \Sigma_{\mathcal{P}^\omega} \uparrow^\omega(\bot)$.

In case that $\alpha = 0$, it follows that $\lambda^p(T_{\mathcal{P}I} \uparrow^0 (\mathbf{0})(H)) = \tau_{\not\exists} \uparrow^0 (\bot) = 0$ for every atom H. We assume as induction hypothesis that $\lambda^p(T_{\mathcal{P}I} \uparrow^\beta (\mathbf{0})) \leq \tau_{\not\exists} \uparrow^\beta (\bot)$ for all $\beta < \alpha$.

In case that α is a successor ordinal. Assume that $u \leq T_{\mathcal{P}I} \uparrow^{\alpha-1} (\mathbf{0})(H)$ for some join irreducible u and atom H. Then there is a rule $r_i \in P$ of the form $\mathbf{4}$ and

$$u \leq (u_{B_1} \cdots u_{B_j} \cdots u_{C_1} \cdots) \cdot r_i$$

where $u_{B_j} \leq T_{\mathcal{P}I} \uparrow^{\alpha-1} (\mathbf{0})(B_j)$ and $u_{C_j} \leq \neg \exists(C_j)$. Hence, by induction hypothesis, it follows that $\lambda^p(u_{B_j}) \leq \tau_{\not\exists} \uparrow^{\alpha-1} (\bot)(B_j)$ and, since $u_{C_j} \leq \neg \exists(C_j)$, it also follows that $\lambda^p(u_{C_j}) \leq \neg \not\exists(C_j)$ for all C_j. Consequently, we have that $\lambda^p(u) \leq \tau_{\not\exists} \uparrow^\alpha (\bot)(H)$.

In case that α is a limit ordinal, $u \leq T_{\mathcal{P}I} \uparrow^\alpha (\mathbf{0})$ iff $u \leq T_{\mathcal{P}I} \uparrow^\beta (\mathbf{0})$ for some $\beta < \alpha$ and all join irreducible u. Hence, by induction hypothesis, it follows that $\lambda^p(u) \leq T_{\mathcal{P}I} \uparrow^\beta (\mathbf{0}) \leq T_{\mathcal{P}I} \uparrow^\alpha (\mathbf{0})$ and, thus, $\lambda^p(T_{\mathcal{P}I} \uparrow^\alpha (\mathbf{0})) \leq \tau_{\not\exists} \uparrow^\alpha (\bot)$. □

Lemma B.9

Let P be a labelled logic program over a signature $\langle \mathcal{A}_I, L_R \rangle$ where L_R is a finite set of labels and let I and $\not\exists$ be respectively a ECJ and a WnP interpretation such that $\lambda^p(I) \leq \not\exists$. Therefore, $\lambda^p(\Gamma_{\mathcal{P}I}(I)) \geq \not\exists \not\exists(\not\exists)$. □

Proof. The proof is similar to the proof of Lemma B.8 and we just show the case in which α is a successor ordinal.

Assume that $u \leq \tau_{\not\exists} \uparrow^\alpha (\bot)(H)$ for some join irreducible u and atom H. Hence, there is some rule $r_i \in P$ of the form $\mathbf{4}$ and

$$u \leq (u_{B_1} \cdots u_{B_j} \cdots u_{C_1} \cdots) \cdot r_i$$

where $u_{B_j} \leq \tau_{\not\exists} \uparrow^{\alpha-1} (\bot)(B_j)$ for each B_j and $u_{C_j} \leq \neg \exists(C_j)$ for each C_j. By induction hypothesis, $u_{B_j} \leq \lambda^p(T_{\mathcal{P}I} \uparrow^{\alpha-1} (\bot)(B_j))$ for all B_j. Furthermore, since $\lambda^p(I) \leq \not\exists$ it follows, from Lemma B.3, that $\lambda^p(\neg \exists(\Gamma_{\mathcal{P}I}(I)) \geq \not\exists$ and, since $u_{C_j} \leq \neg \exists(C_j)$, it also follows that $u_{C_j} \leq \lambda^p(\neg \exists(C_j))$.

Hence,

$$\lambda^p(u) \leq (\lambda^p(u_{B_1}) \cdots \lambda^p(u_{B_j}) \cdots \lambda^p(u_{C_1}) \cdots) \cdot r_i \leq \lambda^p(T_{\mathcal{P}I} \uparrow^\alpha (\mathbf{0})(H))$$

Thus, $\tau_{\not\exists} \uparrow^\alpha (\bot)(B_j) \leq \lambda^p(T_{\mathcal{P}I} \uparrow^\alpha (\mathbf{0}))(B_j)$. □

Note that the image of λ^p is a boolean algebra and the set of causal values corresponding to negated terms $\{ \sim t \mid t \in V_{L_R} \}$ are also a boolean algebra. Consequently, we define a function $\lambda^q(t) = \sim t$ which is analogous to λ^p but whose image is in V_{L_R}.

Lemma B.10

Let P be a labelled logic program and let I be an ECJ interpretation. Then, $\Gamma_{\mathcal{P}I}(I) = \Gamma_{\mathcal{P}I}(\lambda^q(I))$ and $\lambda^p(I) = \lambda^p(\lambda^q(I))$. □

Proof. For $\Gamma_{\mathcal{P}I}(I) = \Gamma_{\mathcal{P}I}(\lambda^q(I))$. Since $\lambda^q(t) = \sim t$ and $\sim \sim t = \sim t$, it follows that $\lambda^q(\sim I) = \sim \sim I = \sim I$ and, thus, $\mathcal{P}^I = \mathcal{P}^{\lambda^q(I)}$. Since by definition $\Gamma_{\mathcal{P}I}(I)$ and $\Gamma_{\mathcal{P}I}(\lambda^q(I))$ are respectively the least models of programs \mathcal{P}^I and $\mathcal{P}^{\lambda^q(I)}$ it is clear that $\Gamma_{\mathcal{P}I}(I) = \Gamma_{\mathcal{P}I}(\lambda^q(I))$.

For $\lambda^p(I) = \lambda^p(\lambda^q(I))$, just note $\lambda^p(\lambda^q(I)) = \lambda^p(\sim I) = \sim \lambda^p(I) = \lambda^p(I)$. □
Proposition 7
Let \(P \) be a program over a signature \(\langle At, Lb \rangle \) where \(Lb \) is a finite set of labels. Then, any causal interpretation \(I \) satisfies:

(i). \(\mathfrak{S}_P(\lambda^P(I)) = \lambda^P(\Gamma^P(I)) \),
(ii). \(\Gamma^P(\lambda^Q(I)) = \Gamma^P(I) \) and
(iii). \(\lambda^P(t) = \lambda^P(\lambda^Q(t)) \).

\(\square \)

Proof. (i) From Lemmas B.8 and B.9 it respectively follows that \(\lambda^P(\Gamma^P(I)) \leq \mathfrak{S}_P(\lambda^P(I)) \) and that \(\lambda^P(\Gamma^P(I)) \geq \mathfrak{S}_P(\lambda^P(I)) \). Then, \(\mathfrak{S}_P(\lambda^P(I)) = \lambda^P(\Gamma^P(I)) \). (ii) and (iii) follow from Lemma B.10.

\(\square \)

Proof of Theorem 7 Note that \(\text{Why}_P(A) = \Sigma_P(A) \) and that, by \(\lambda^P \) definition, it follows that \(\lambda^P(0) = 0 \) and thus, from Proposition 7(i), it follows that \(\mathfrak{S}_P(\bot) = \mathfrak{S}_P(\lambda^P(0)) = \lambda^P(\Gamma^P(0)) \) and

\[\mathfrak{S}_P(\bot) = \mathfrak{S}_P(\lambda^P(0)) = \lambda^P(\Gamma^P(0)) = \lambda^P(\lambda^Q(\Gamma^P(0))) \]

Hence, from Proposition 7 it follows that

\[\mathfrak{S}_P^2(\bot) = \mathfrak{S}_P(\lambda^P(\lambda^Q(\Gamma^P(0)))) = \lambda^P(\Gamma^P(\lambda^Q(\Gamma^P(0)))) = \lambda^P(\Gamma^P(\lambda^Q(\Gamma^P(0)))) \]

Inductively applying this reasoning it follows that \(\mathfrak{S}^n_P(\bot) = \lambda^P(\Gamma^P(\lambda^Q(\Gamma^P(0)))) \) which, by Knaster-Tarski theorem are the least fixpoints of the operators, that is, \(\Sigma_P = \lambda^P(\Gamma^P(0)) \) and, consequently, \(\text{Why}_P(A) = \Sigma_P(A) = \lambda^P(\Gamma^P(0)) = \lambda^P(\Gamma^P(0)) = \text{Why}_P(A) \). Similarly, by definition, it follows that \(\text{Why}_P(\text{not} A) = \Sigma^2_P(A) \) where \(\Sigma^2_P \) is the greatest fixpoint of the operator \(\mathfrak{S}_P^2 \). Thus,

\[\text{Why}_P(\text{not} A) = \Sigma_P^2(A) = \Sigma^2_P(\Sigma_P(A)) = \lambda^P(\Sigma_P(\Gamma^P(0))) = \lambda^P(\Sigma_P(\Gamma^P(0))) \]

Finally, \(\text{Why}_P(\text{undef} A) = \Sigma_P(A) \text{ and, thus} \)

\[\text{Why}_P(\text{undef} A) = \lambda^P(\Sigma_P(A)) = \lambda^P(\Sigma_P(\Gamma^P(0))) = \lambda^P(\Sigma_P(\Gamma^P(0))) \]

and, thus, \(\text{Why}_P(\text{undef} A) = \lambda^P(\Sigma_P(\text{undef} A)) = \text{Why}_P(\text{not} A) \).

Appendix B.9. Proof of Theorem 8

Lemma B.11
Let \(P \) be a labelled logic program over a signature \(\langle At, Lb \rangle \) where \(Lb \) is a finite set of labels and no rule is a labelled by \(\text{not} (A) \) nor \(\sim\text{not} (A) \). Let \(Q \) be the result of removing all rules labelled by \(\sim\text{not} (A) \) for some atom \(A \). Let \(I \) and \(J \) be two interpretations such that \(J = \rho_{\text{not}(A)}(I) \). Then, \(\Gamma_Q(J) = \rho_{\text{not}(A)}(\Gamma_P(I)) \).

\(\square \)

Proof. In the sake of simplicity, we just write \(\rho \) instead of \(\rho_{\text{not}(A)} \). By definition \(\Gamma_P(I) \) and \(\Gamma_Q(J) \) are respectively the least model of \(P^J \) and \(Q^J \). The proof follows then by induction on the steps of the \(T_P \) operator assuming that \(\rho(T_P^\beta (0)) = T_Q^\beta (0) \) for all \(\beta < \alpha \).
Note that, $T_X \uparrow^0 (0)(H) = 0$ for any program X and atom H and, thus, the statement trivially holds.

In case that α is a successor ordinal. Let $u \in \mathbb{V}_{Lb}$ be a join irreducible causal value such that $u \leq T_{pr} \uparrow^\alpha (0)(H)$. Then, there is a rule in P of the form (4) such that

$$u \leq (u_{B_1} * \ldots * u_{B_m} * u_{C_1} * \ldots * u_{C_n}) \cdot r_i$$

where $u_{B_j} \leq T_{pr} \uparrow^{\alpha-1} (0)(B_j)$ and $u_{C_j} \leq \sim I(C_j)$ for each positive literal B_j and each negative literal $not C_j$ in the body of rule r_i.

If $r_i = \sim not(A)$, then $\rho(u) = 0 \leq T_{Q \uparrow^{\alpha-1}} (0)(H)$. Otherwise,

1. By induction hypothesis, it follows that $\rho(u_{B_j}) \leq T_{Q \uparrow^{\alpha-1}} (0)(B_j)$, and
2. from $J(H) = \rho(I(H))$ and $u_{C_j} \leq \sim I(C_j)$, it follows that $\rho(u_{C_j}) \leq \rho(\sim I(C_j))$.

Furthermore, no rule in the program P is labelled with $not(A)$ nor $\sim not(A)$ and, thus, $r_i \neq not(A)$ and $r_i \neq \sim not(A)$. Hence, $\rho(u) \leq T_{Q \uparrow^{\alpha-1}} (0)(H)$.

The other way around is similar. Since $u \leq T_{Q' \uparrow^\alpha} (0)(H)$ there is a rule in Q of the form (4) such that

$$u \leq (u_{B_1} * \ldots * u_{B_m} * u_{C_1} * \ldots * u_{C_n}) \cdot r_i$$

and $u_{B_j} \leq T_{Q'} \uparrow^{\alpha-1} (0)(B_j)$ and $u_{C_j} \leq \sim J(C_j)$ for each positive literal B_j and each negative literal $not C_j$ in the body of rule r_i. By induction hypothesis, $u_{B_j} \leq \rho(T_{pr} \uparrow^{\alpha-1} (0)(B_j))$ for each B_j with $1 \leq j \leq m$ and, since $J(H) = \rho(I(H))$ and $u_{C_j} \leq \sim J(C_j)$, it follows that $u_{C_j} \leq \rho(\sim J(C_j))$. Then, $u \leq \rho(T_{Q' \uparrow^\alpha} (0)(H))$.

In case that α is a limit ordinal $T_X \uparrow^\alpha (0) = \sum_{\beta < \alpha} T_X \uparrow^\beta (0)(H)$ and, thus, $u \leq T_X \uparrow^\alpha (0)$ if and only if $u \leq T_X \uparrow^\beta (0)(H)$ with $\beta < \alpha$. By induction hypothesis, $\rho(T_{pr} \uparrow^\beta (0)(H)) = T_{Q' \uparrow^\beta} (0)(H)$ and, thus, $u \leq \rho(T_{pr} \uparrow^\alpha (0))$ if and only if $u \leq T_{Q' \uparrow^\alpha} (0)$. Hence, $\rho(T_{pr} \uparrow^\alpha (0)) = T_{Q' \uparrow^\alpha} (0)$ and, consequently, $\Gamma_Q(J) = \rho(\Gamma_I(I))$.

\begin{proof}
Let P be a labelled logic program over a signature (At, Lb) where Lb is a finite set of labels where no rule is a labelled by $not(A)$ or $\sim not(A)$. Let Q be the result of removing all rules labelled by $\sim not(A)$ for some atom A. Then, $\mathbb{L}_Q = \rho_{not(A)}(\mathbb{L}_P)$ and $\mathbb{U}_Q = \rho_{not(A)}(\mathbb{U}_P)$.

In case that α is a limit ordinal $\Gamma_X^\alpha (0) = \sum_{\beta < \alpha} \Gamma_X^\beta (0)$. Then, assume as induction hypothesis that $\Gamma_X^\beta (0) = \rho(\Gamma_{X}^{\beta}(0))$ for all $\beta < \alpha$. When α is a successor ordinal, by definition $\Gamma_X^\alpha (0) = \Gamma_X (\Gamma_X^\beta (0))$ with $X \in \{P, Q\}$ and, thus, the statement follows from Lemma [B.11].

Finally, note that $\mathbb{L}_X = \Gamma_X (\mathbb{L}_X)$ with $X \in \{P, Q\}$ and, thus, the statement follows directly from Lemma [B.11].
\end{proof}
Proof of Theorem 9

By definition, program \(P \) is the result of removing all rules labelled with \(\sim \text{not}(A) \) in \(\mathfrak{Q} \). In case that \(L \) is some atom \(H \), by definition, it follows that \(\mathbb{W}_P(H) = \mathbb{L}_P(H) \) and \(\mathbb{W}_\mathfrak{Q}(H) = \mathbb{L}_\mathfrak{Q}(H) \) and, from Proposition 8 it follows that \(\mathbb{L}_P = \rho(\mathbb{L}_\mathfrak{Q}) \) and, thus \(\mathbb{W}_P = \rho(\mathbb{W}_\mathfrak{Q}) \).

Similarly, in case that \(L \) is a negative literal \((L = \text{not} H) \), then \(\mathbb{W}_P(H) = \sim \mathbb{U}_P(H) \) and \(\mathbb{W}_\mathfrak{Q}(H) = \sim \mathbb{U}_\mathfrak{Q}(H) \) and, from Proposition 8 it follows that \(\mathbb{U}_P = \rho(\mathbb{U}_\mathfrak{Q}) \). Just note that \(\rho_x(\sim u) = \sim \rho_x(u) \) for any elementary term \(x \) and any value \(u \). Hence, \(\mathbb{U}_P = \rho(\mathbb{U}_\mathfrak{Q}) \).

In case that \(L \) is an undefined literal \((L = \text{undef} H) \), by definition, it follows that \(\mathbb{W}_P(H) = \sim \mathbb{W}_P(\text{not} H) = \sim \mathbb{L}_P(H) \) and, from Proposition 8, it follows that \(\mathbb{L}_P = \rho(\mathbb{L}_\mathfrak{Q}) \) and, consequently, \(\mathbb{W}_P = \rho(\mathbb{W}_\mathfrak{Q}) \).

\[\square \]

Appendix B.10. Proof of Theorem 9

Proof of Theorem 9

Note that \(\rho(\lambda^P(u)) = \lambda^P(\rho(u)) \) for any causal value \(u \in V_{Lb} \). By definition \(W_{Why}(L) = \lambda^P(\mathbb{W}_\mathfrak{Q})(L) \) and, thus

\[\rho(W_{Why}(L)) = \rho(\lambda^P(\mathbb{W}_\mathfrak{Q})(L)) = \lambda^P(\rho(\mathbb{W}_\mathfrak{Q}))(L) \]

From Theorem 8 it follows that \(\mathbb{W}_P = \rho(\mathbb{W}_\mathfrak{Q}) \) and, thus, \(\rho(W_{Why}(L)) = \lambda^P(\mathbb{W}_P)(L) \).

\[\square \]

Appendix B.11. Proof of Theorem 2

The proof of Theorem 2 will rely on the relation between ECJ justifications and non-hypothetical WnP justifications established by Theorem 9 plus the following result from (Damásio et al. 2013).

First, we need some notation. Given a conjunction of labels \(D \), by \(\text{Remove}(D) \) we denote the set of negated labels in \(D \), by \(\text{Keep}(D) \) the set of positive labels, by \(\text{AddFacts}(D) \) the set of facts \(A \) such that \(\sim \text{not}(A) \) occurs in \(D \) and by \(\text{NoFacts}(D) \) the set of facts \(A \) such that \(\text{not}(A) \) occurs in \(D \).

Theorem 12 (Theorem 3 from Damásio et al. 2013)

Given a labelled logic program \(P \), let \(N \) be a set of facts not in program \(P \) and \(R \) be a subset of rules of \(P \). A literal \(L \) belongs to the \(\text{WFM} \) of \((P \setminus R) \cup N \) iff there is a conjunction of literals \(D \models \text{Why}(L) \), such that \(\text{Remove}(D) \subseteq R \), \(\text{Keep}(D) \cap R = \emptyset \), \(\text{AddFacts}(D) \subseteq N \), and \(\text{NoFacts}(D) \cap N = \emptyset \).

\[\square \]

Definition 21

Given a positive program \(P \), we define a direct consequence operator \(\hat{T}_P \) such that

\[\hat{T}_P(\hat{I})(H) \overset{\text{def}}{=} \sum \{ \hat{I}(B_1) \ast \ldots \ast \hat{I}(B_n) \mid (r_i : H \leftarrow B_1, \ldots, B_n) \in P \} \]

for any standard interpretation interpretation \(\hat{I} \) and atom \(H \in At \).

\[\square \]

Lemma B.12

Let \(P \) be a labelled logic program over a signature \((At, Lb) \) where \(Lb \) is a finite set of labels and let \(I \) and \(\hat{I} \) be respectively a ECJ and a standard interpretation satisfying that there is some enable justification \(E \leq \sim I(H) \) for every atom \(H \) such that \(\hat{I}(H) = 0 \). Then, every atom \(H \) satisfies \(\hat{T}_P(\hat{I})(H) = 1 \) iff there is some enabled justification \(E \leq \Gamma_P(I)(H) \).

\[\square \]
Proof. By definition \(\Gamma_P(I) \) and \(\hat{\Gamma}_P(I) \) are the least model of the programs \(P^l \) and \(P^l \), respectively. Furthermore, the least model of programs \(P^l \) and \(P^l \) are the least fixpoint of the \(T_P \) and \(\hat{T}_P \) operators, that is, \(\Gamma_P(I) = T_P \uparrow^\alpha (0) \) and \(\hat{\Gamma}_P(I) = \hat{T}_P \uparrow^\alpha (0) \). In case that \(\alpha = 0 \), it follows that \(\hat{T}_P \uparrow^0 (0)(H) \) for every atom \(H \) and, thus, the statement holds vacuously. We assume as induction hypothesis that for every atom \(H \) and ordinal \(\beta < \alpha \) such that \(\hat{T}_P \uparrow^\beta (0)(H) = 1 \), there is some enabled justification \(E \leq T_P \uparrow^\beta (0)(H) \).

In case that \(\alpha \) is a successor ordinal. If \(\hat{T}_P \uparrow^{\alpha-1} (0)(H) = 1 \), then there is a rule \(r_i \in P \) of the form \(\phi \) such that \(\hat{T}_P \uparrow^{\alpha-1} (0)(B_j) = 1 \) and \(I(C_j) = 0 \). On the one hand, by induction hypothesis, it follows that there is some enabled justification \(E_B \leq T_P \uparrow^{\alpha-1} (0)(B_j) \) and, by hypothesis, there is some enabled justification \(E_{C_j} \leq \sim I(C_j) \). Hence,

\[
E \overset{\text{def}}{=} (E_{B_1} \ast \ldots \ast E_{B_m} \ast E_{C_1} \ast \ldots \ast E_{C_n}) \cdot r_i
\]

is an enabled justification \(E \leq T_P \uparrow^\alpha (0)(H) \).

The other way around, let \(E \) be some join irreducible justification. If \(E \leq T_P \uparrow^\alpha (0)(H) \), then there is a rule \(r_i \in P \) of the form \(\phi \) such that

\[
E \leq (E_{B_1} \ast \ldots \ast E_{B_m} \ast E_{C_1} \ast \ldots \ast E_{C_n}) \cdot r_i
\]

where \(E_{B_j} \leq T_P \uparrow^\alpha (0)(B_j) \) and \(E_{C_j} \leq \sim I(C_j) \) are enabled justifications. Hence, it follows that \(\hat{T}_P \uparrow^\alpha (0)(B_j) = 1 \) and \(\hat{I}(C_j) = 0 \).

In case that \(\alpha \) is a limit ordinal, \(\hat{T}_P \uparrow^\alpha (0) = 1 \) if \(\hat{T}_P \uparrow^\beta (0) = 1 \) for some \(\beta < \alpha \) iff there is a join irreducible enabled justification \(E \leq T_P \uparrow^\beta (0) \) \(\leq \lambda^P(T_P \uparrow^\alpha (0)) \). \(\square \)

Proof of Theorem Let \(E \leq \mathbb{W}_P(L) \) be an enabled justification of \(L \in \{A, notA, undef A\} \). From Theorem 9 it follows that \(\lambda^P(E) \leq \lambda^P(\mathbb{W}_P(L)) = \rho(\mathbb{W}_P(L)) \), that is, \(\lambda^P(E) \leq \rho(\mathbb{W}_P(L)) \). Note that the minimum causal value \(t \) such that \(\rho(t) = \rho(\mathbb{W}_P(L)) \) is \(\mathbb{W}_P(L) \wedge \bigwedge_{A \in A} not(A) \) and, thus, \(D \leq \mathbb{W}_P(L) \) where \(D \) is defined by \(D = \lambda^P(E) \wedge \bigwedge_{A \in A} not(A) \). Furthermore, since \(E \) is an enabled justification, \(\lambda^P(E) \) is a positive conjunction and, thus, so is \(D \). Hence, there is a positive conjunction \(D \) such that \(D \leq \mathbb{W}_P(L) \) and, from Theorem 12 it follows that \(L \) holds with respect to the standard WFM of \(P \).

The other way around. If \(L = A \) is an atom, then \(L \) holds with respect to the standard WFM iff \(\text{lf}p(\Gamma_P^2)(L) = 1 \). Furthermore, \(\Gamma_P^2 \uparrow^0 (0)(H) = \Gamma_P^2 \uparrow^0 (0) = 0 \) for any atom \(H \) and, thus, there is an enabled justification \(E \leq \sim \Gamma_P^2 \uparrow^0 (0) = 0 \) for any atom \(H \). Then, from Lemma 12 for any atom \(H \), there is an enabled justification \(E \leq \Gamma_P(\hat{\Gamma}_P^2 \uparrow^0 (0))(H) \) iff \(\hat{\Gamma}_P(\hat{\Gamma}_P^2 \uparrow^0 (0))(H) = 1 \). Applying this result again, it follows that \(E \leq \Gamma_P^2 \uparrow^1 (0)(H) \) iff only if \(\hat{\Gamma}_P^2 \uparrow^1 (0)(H) = 1 \). Inductively applying this reasoning it follows that \(\hat{\Gamma}_P^2 \uparrow^\infty (0)(H) = 1 \) iff there is an enabled justification \(E \leq \Gamma_P^2 \uparrow^\infty (0)(H) \) which, by Knaster-Tarski theorem are the least fixpoints respectively of the \(\Gamma_P \) and \(\hat{\Gamma}_P \) operators.

Similarly, if \(L = notA \), then \(L \) holds with respect to the standard WFM if and only if \(\text{gfp}(\hat{\Gamma}_P^2)(L) = \hat{\Gamma}_P(\text{lf}p(\hat{\Gamma}_P^2))(L) = 0 \) if and only if there is not any an enabled justification \(E \leq \Gamma_P(\text{lf}p(\hat{\Gamma}_P^2))(L) = \text{gfp}(\hat{\Gamma}_P^2)(L) \) iff there is an enabled justification \(E \leq \mathbb{W}_P(L) = \sim \text{gfp}(\hat{\Gamma}_P^2)(L) \).

Finally, if \(L = undef A \), then \(L \) holds with respect to the standard WFM iff \(\text{lf}p(\Gamma_P^2)(L) = 0 \) and \(\text{gfp}(\Gamma_P^2)(L) = 1 \) if and only if there is not any enabled justification \(E \leq \mathbb{W}_P(L) \) and there is not
any enabled justification \(E \leq \mathbb{W}_P(\text{not } L) \) iff there is some enabled justification \(E \leq \sim \mathbb{W}_P(L) \) and there is some enabled justification \(\mathbb{W}_P(\text{undef } A) = \sim \mathbb{W}_P(\text{not } A) \).

\[\square \]

Appendix B.12. Proof of Theorem 10

Lemma B.13

Let \(t \) and \(u \) be two causal terms such that no-sums occur in \(t \) and \(u \). Then, \(\rho_c(t) \leq \rho_c(u) \). \(\square \)

Proof. By definition \(t \leq u \) if and only if \(t = t \cdot u \). Then, \(\rho_c(t) = \rho_c(t \cdot u) = \rho_c(t) \cdot \rho_c(u) \) and, thus if follows that \(\rho_c(t) \leq \rho_c(u) \). \(\square \)

Lemma B.14

Let \(t \) be a causal term. Then, \(\lambda^c(\lambda^p(t)) \leq \lambda^p(\lambda^c(t)) \).

Proof. If \(t \in \mathbb{L}b \) is a label, then \(\lambda^c(t) = t \) and \(\lambda^p(t) = t \) and, thus, \(\lambda^c(\lambda^p(t)) = t \leq t = \lambda^p(\lambda^c(t)) \).

If \(t = \sim_l \) with \(l \in \mathbb{L}b \) a label, then \(\lambda^c(t) = 0 \) and \(\lambda^p(t) = \sim_l \) and, thus, \(\lambda^c(\lambda^p(t)) = 0 \leq 0 = \lambda^p(\lambda^c(t)) \). If \(t = \sim_l \) with \(l \in \mathbb{L}b \) a label, then \(\lambda^c(t) = 1 \) and \(\lambda^p(t) = l \) and, thus, \(\lambda^c(\lambda^p(t)) = l \leq 1 = \lambda^p(\lambda^c(t)) \).

Assume as induction hypothesis that \(\lambda^c(\lambda^p(u)) \leq \lambda^p(\lambda^c(u)) \) for every subterm \(u \) of \(t \). If \(t = u_1 \cdot u_2 \), then

\[
\lambda^c(\lambda^p(u_1 \cdot u_2)) = \lambda^c(\lambda^p(u_1)) \cdot \lambda^c(\lambda^p(u_2)) \leq \lambda^p(\lambda^c(u_1)) \cdot \lambda^p(\lambda^c(u_2)) = \lambda^p(\lambda^c(u_1 \cdot u_2))
\]

Similarly, if \(t = \sum_{u \in U} u \), then

\[
\lambda^c(\lambda^p(\sum_{u \in U} u)) = \sum_{u \in U} \lambda^c(\lambda^p(u)) \leq \sum_{u \in U} \lambda^p(\lambda^c(u)) = \lambda^p(\lambda^c(\sum_{u \in U} u))
\]

and if \(t = \prod_{u \in U} u \), then

\[
\lambda^c(\lambda^p(\prod_{u \in U} u)) = \prod_{u \in U} \lambda^c(\lambda^p(u)) \leq \prod_{u \in U} \lambda^p(\lambda^c(u)) = \lambda^p(\lambda^c(\prod_{u \in U} u))
\]

\(\square \)

Proof of Theorem 10 From Theorem 9 it follows that \(\rho(\text{Why}_P(A)) = \lambda^p(\mathbb{W}_P(A)) \). Furthermore, since \(D \leq \text{Why}_P(A) \), from Lemma B.13 it follows that

\[
\rho(D) \leq \rho(\text{Why}_P(A)) = \lambda^p(\mathbb{W}_P(A)) = \lambda^p(\mathbb{L}_P(A))
\]

and, thus, \(\lambda^c(\rho(D)) \leq \lambda^c(\lambda^p(\mathbb{L}_P(A))) \). Let \(\tilde{I} \) be any CG stable model. Then, since \(\tilde{I} = \lambda^c(I) \) for some fixpoint \(I \) of \(\Gamma^2_P \), it follows that \(\lambda^c(\mathbb{L}_P) \leq \tilde{I} \) and, thus, \(\lambda^p(\lambda^c(\mathbb{L}_P)) \leq \lambda^p(\tilde{I}) \). Furthermore, from Lemma B.14 it follows that \(\lambda^c(\lambda^p(\mathbb{L}_P)) \leq \lambda^p(\lambda^c(\mathbb{L}_P)) \) and, thus

\[
\lambda^c(\rho(D)) \leq \lambda^c(\lambda^p(\mathbb{L}_P))(A) \leq \lambda^p(\lambda^c(\mathbb{L}_P))(A) \leq \lambda^p(\tilde{I})(A)
\]

Note that, since \(D \) is non-hypothetical and enabled, it does not contain negated labels and, thus, \(\lambda^c(\rho(D)) = \rho(D) \). Consequently, \(\rho(D) \leq \lambda^p(\tilde{I})(A) \). \(\square \)