BMJ Open

Systematic review of incidence and complications of herpes zoster: towards a global perspective

Kosuke Kawai,1 Berhanu G Gebremeskel,2 Camilo J Acosta1

ABSTRACT

Objective: The objective of this study was to characterise the incidence rates of herpes zoster (HZ), also known as shingles, and risk of complications across the world.

Design: We systematically reviewed studies examining the incidence rates of HZ, temporal trends of HZ, the risk of complications including postherpetic neuralgia (PHN) and HZ-associated hospitalisation and mortality rates in the general population. The literature search was conducted using PubMed, EMBASE and the WHO library up to December 2013.

Results: We included 130 studies conducted in 26 countries. The incidence rate of HZ ranged between 3 and 5/1000 person-years in North America, Europe and Asia-Pacific, based on studies using prospective surveillance, electronic medical record data or administrative data with medical record review. A temporal increase in the incidence of HZ was reported in the past several decades across seven countries, often occurring before the introduction of varicella vaccination programmes. The risk of developing PHN varied from 5% to more than 30%, depending on the type of study design, age distribution of study populations and definition. More than 30% of patients with PHN experienced persistent pain for more than 1 year. The risk of recurrence of HZ ranged from 1% to 6%, with long-term follow-up studies showing higher risk (5–6%). Hospitalisation rates ranged from 2 to 25/100,000 person-years, with higher rates among elderly populations.

Conclusions: HZ is a significant global health burden that is expected to increase as the population ages. Future research with rigorous methods is important.

INTRODUCTION

Herpes zoster (HZ), also known as shingles, is typically characterised by painful, blistering dermatomal rash.1,2 The estimated lifetime risk of HZ in the general population is approximately 30%, with the risk increasing sharply after 50 years of age.3 After conducting a careful long-term observational study in the 1960s, Hope-Simpson4 showed that HZ results from reactivation of the varicella-zoster virus (VZV) in sensory ganglia after a long latency period following primary infection from varicella (chickenpox). In some patients particularly in the elderly, the pain continues to persist after the rash heals and develops into postherpetic neuralgia (PHN), which is the most common complication. PHN causes physical disability, emotional distress and interference with daily activities and sleep.5 HZ also causes neurological sequelae, HZ ophthalmicus (HZO) with eye involvement or disseminated disease. Severe cases of these complications often require hospitalisation.

A live-attenuated VZV vaccine (ZOSTAVAX by Merck) has been demonstrated to significantly reduce the incidences of HZ and PHN in addition to the severity and duration of pain associated with HZ.6 Public health interventions that promote healthy ageing are increasingly becoming more important, as the elderly population is growing rapidly worldwide. Over the next half century, the proportion of people ≥60 years of age is projected to double, reaching more than 20% of the total population in all regions of the world.7 Moreover, the prevalence of disability in the elderly populations is increasing across the world.8

It is essential for healthcare practitioners and health policymakers to be informed by the best available and up-to-date evidence on the HZ burden of disease. In a previous
review by Thomas and Hall, there were limited population-based studies on HZ incidence. Since then, many studies have been conducted across countries to examine the incidence rates and temporal trends of HZ. Other reviews have been restricted to specific geographic regions. Moreover, to the best of our knowledge, there has been no systematic review of studies examining the risk of complications and hospitalisation. The objective of this study is to characterise the incidence rates of HZ and risk of complications across the world. We systematically reviewed studies examining the incidence rates of HZ, temporal trends of HZ, risk of HZ complications including PHN and HZ-associated hospitalisation and mortality rates in the general population.

METHODS

Literature search

We performed a literature search in PubMed, EMBASE, and the WHO’s Global Health Library Regional Index up to December 2013. For PubMed, we used Medical Subject Headings (MeSH) and the title terms ‘herpes zoster’, ‘zoster’ or ‘shingles’ in combination with the term ‘incidence’. We also searched eligible articles using MeSH and the title terms ‘postherpetic neuralgia’ or ‘post-herpetic neuralgia’. We used the same search strategy with text terms in EMBASE and the WHO library. We manually searched the references cited by the retrieved articles and review articles for additional references. Two investigators (KK and BG) independently conducted a systematic review of the literature, assessed study eligibility and extracted data. Discrepancies were settled through discussion with a third investigator (CJA).

Inclusion and exclusion criteria

We included studies examining the incidence of HZ, risk of PHN, risk of a recurrent episode of HZ, risk of HZO, HZ-associated hospitalisation or HZ-associated mortality. For studies examining the efficacy or effectiveness of vaccination against HZ, we included estimates of incidence rates among unvaccinated individuals. We did not apply language restrictions. We did not include studies limited to children, immunocompromised populations (eg, HIV, cancer and chronic kidney disease) or patients on immunosuppressive therapy (eg, corticosteroids). We also excluded review articles and case reports.

Data extraction

We developed a standard abstraction form for data extraction. We extracted information regarding authors, publication year, journal, country, study design, study year(s), population, number of cases, number at risk, case definition, case ascertainment, incidence rates of HZ (per 1000 person-years), risk of PHN and other complications, HZ-associated hospitalisation rates and HZ-associated mortality rates. For studies on incidence that did not report 95% CI, we computed exact 95% CI.

RESULTS

After conducting a literature search, we included 130 studies conducted in 26 countries in this review (figure 1). There were 63 studies on the incidence of HZ from 22 countries 4 6 12–71; 25 studies on trends of HZ from 7 countries 3 12 15–19 23–29 27 28 49 53 65 68 72–80; 60 studies on PHN from 19 countries 4 6 12 18 33–36 38 40 42 43 46 54 56 60–63 69 81–115; 9 studies on HZ recurrence from 5 countries 4 12 15 57 60 119–122; 12 studies on HZO from 5 countries 32 35 43 61 123–130; 28 studies on hospitalisation rates from 14 countries 24 26 27 30 37 41 44 46 48 52 55 56 58 62–64 72 73 76 77 131–137 and 10 studies on mortality rates from 10 countries. 26 30 37 41 44 48 58 62 134 138

Incidence rates of HZ

Studies examining the incidence rates of HZ were conducted in countries from North America (N=18), Europe (N=33), Asia (N=7), South America (N=3) and the Middle East (N=2; table 1). The incidence rate of HZ ranged between 3 and 5/1000 person-years in North America, Europe and Asia-Pacific, based on studies using prospective surveillance, electronic medical record data or administrative data with medical record review. The age-specific incidence rates of HZ were similar across countries, with a steep rise after 50 years of age (figure 2). The incidence rate was about 6–8/1000 person-years at 60 years of age and 8–12/1000 person-years at 80 years of age. We observed an increase in the reported incidence rate over time within a country. For example, studies conducted more than 20 years ago in the USA by Ragozzino et al 112 and Donahue et al 33 showed lower rates compared with studies conducted in recent years. It is noteworthy that prospective population-based studies that identified relatively small numbers of patients with HZ (eg, by Scott et al 35 Paul and Thiel, 39 Di Legami et al 31 and Lionis et al 39) estimated lower incidence compared with other studies.
Country	Author	Study design and population	Case ascertainment	Year	HZ cases	Age	Incidence 1000 person-years	95% CI
USA	Ragozzino	Medical records database in Minnesota	ICD-9 confirmed by medical records	1945–1959	590	All ages	1.31	1.15 to 1.35*
USA	Donahue	Health maintenance organisation claims database in Massachusetts	ICD-9 confirmed by medical records	1990–1992	1075	All ages	2.15	2.02 to 2.28*
USA	Insinga	MarketScan claims database in the USA	ICD-9	2000–2001	9152	All ages	3.20	3.10 to 3.20
USA	Mulloloy	Kaiser Northwest health maintenance organisation claims database	ICD-9 multiplied by positive predictive value	1997–2002	9895	All ages	3.69	3.58 to 3.82
USA	Yih	Annual random-digit telephone survey in Massachusetts	Survey from patients	1999–2003	194	All ages	4.33	3.72 to 4.93*
USA	Jumaan	Health maintenance organisation claims database in Washington	ICD-9	1992–2002	357	All ages	3.71	
USA	Oxman	Zostavax trial in the control group	Notified by physicians and PCR/ culture confirmation	1998–2001	642	≥60 years	11.12	
USA	Yawn	Retrospective population-based study confirmed by medical records	ICD-9	1996–2001	1669	≥22 years	3.60	3.40 to 3.70
USA	Rimland	National Veterans Affairs claims database	ICD-9	2000–2007	28 710	All ages	5.22	
USA	Leung	MarketScan claims database	ICD-9	1993–2006	48 000	All ages	4.40	4.30 to 4.40
USA	Tseng	Kaiser Southern California health maintenance organisation claims database	ICD-9	2007–2009	4606	≥60 years	13.0	12.6 to 13.3
USA	Langan	Medicare claims database in the unvaccinated group	ICD-9	2007–2009	19 385	≥65 years	14.9	15.1 to 15.3
USA	Chen	Commercial, Medicare and Medicaid MarketScan claims database	ICD-9	2005–2009	435 378	≥18 years	4.82	4.81 to 4.84
USA	Hales	Medicare claims database	ICD-9	1992–2010	281 317	≥65 years	14.2	14.0 to 14.5
Canada	Brisson	Administrative claims database in Manitoba	ICD-9	1979–1997	NA	All ages	3.48	
Canada	Russell	Health insurance claims database in Alberta	ICD-9/ICD-10	1986–2002	NA	All ages	4.30	
Canada	Edgar	Administrative claims database in British Columbia	ICD-9	1994–2003	114 596	All ages	2.89	
Canada	Tanuseputro	Administrative claims database in Ontario	ICD-9	1992–2010	686 763	All ages	3.23	
Canada	Russell	Health insurance claims database in Alberta	ICD-9/ICD-10	1994–2010	213 265	All ages	4.50	
UK	Hope-Simpson	Prospective population-based study in Cirencester	Medical records by GP	1947–1962	192	All ages	3.39	
UK	Ross	Prospective population-based study in Glasgow	Notified by 10 GPs	1972–1973	87	All ages	2.40	
UK	Brisson	RCGP database in England and Wales	ICD-9 medical records by GPs	1979–1997	NA	All ages	3.82	
UK	Brisson	RCGP database in England and Wales	ICD-9 medical records by GPs	1991–2000	NA	All ages	3.73	
UK	Fleming	RCGP database in England and Wales	ICD-9 medical records by GPs	1994–2001	14 532	All ages	3.90	
UK	Chapman	RCGP database in England and Wales	ICD-9 medical records by GPs	1994–2001	NA	≥15 years	3.95	
Canada	Edgar	Administrative claims database in British Columbia	ICD-9	1994–2003	114 596	All ages	2.89	
Canada	Tanuseputro	Administrative claims database in Ontario	ICD-9	1992–2010	686 763	All ages	3.23	
Canada	Russell	Health insurance claims database in Alberta	ICD-9/ICD-10	1994–2010	213 265	All ages	4.50	
UK	Hope-Simpson	Prospective population-based study in Cirencester	Medical records by GP	1947–1962	192	All ages	3.39	
UK	Ross	Prospective population-based study in Glasgow	Notified by 10 GPs	1972–1973	87	All ages	2.40	
UK	Brisson	RCGP database in England and Wales	ICD-9 medical records by GPs	1979–1997	NA	All ages	3.82	
UK	Brisson	RCGP database in England and Wales	ICD-9 medical records by GPs	1991–2000	NA	All ages	3.73	
UK	Fleming	RCGP database in England and Wales	ICD-9 medical records by GPs	1994–2001	14 532	All ages	3.90	
UK	Chapman	RCGP database in England and Wales	ICD-9 medical records by GPs	1994–2001	NA	≥15 years	3.95	
Country	Author	Study design and population	Case ascertainment	Year	HZ cases	Age	Incidence 1000 person-years	95% CI
---------	--------	----------------------------	-------------------	------	----------	-----	-----------------------------	-------
UK	Scott	Prospective population-based study in East London	Notified by 18 GPs and PCR confirmation	NA	186	All ages	1.85	
UK	Gauthier	GPRD in UK	Medical records by 603 GPs	2000–2006	27 225	≥50 years	5.23	5.17 to 5.29
France	Chidiac	Prospective sentinel surveillance	Notified by 4635 GPs and 513 dermatologists	1997–1998	8103	All ages	4.80	
France	Czernichow	Retrospective population-based study	Survey from 744 GPs	1998	605	All ages	3.20	3.00 to 3.40
France	Gonzalez-Chiappe	Prospective sentinel surveillance	Notified by 1200 GPs	2005–2008	2375	All ages	3.82	3.64 to 4.05
France	Mick	Retrospective population-based study	Survey from 231 GPs, 41 dermatologists and 15 neurologists	2005	777	≥50 years	8.99	8.34 to 9.64
Germany	Paul	Prospective population-based study in Ansbach	Notified by GPs, dermatologists and others	1992–1993	152	All ages	2.26	
Germany	Schiiffner-Rohe	National Statutory Health Insurance claims database	ICD-10	2004	1170	≥50 years	9.80	9.20 to 10.40
Germany	Ultsch	National Statutory Health Insurance claims database	ICD-10	2007–2008	374 645	≥50 years	9.60	9.56 to 9.63
Germany	Ultsch	National Statutory Health Insurance claims database	ICD-10	2004–2009	5384	All ages	5.79	5.64 to 5.93
The Netherlands	Opstelten	Huisartsen Netwerk Utrecht database in six locations	Medical records from 22 GPs	1994–1999	837	All ages	3.40	2.90 to 3.90
The Netherlands	de Melker	Prospective sentinel surveillance	Notified by 43 GPs	1998–2001	NA	All ages	3.25	
The Netherlands	Opstelten	National survey of physicians	Medical records from 104 GPs	2001	1080	All ages	3.22	3.00 to 3.40
The Netherlands	Pierik	Retrospective population-based study in Almere	Medical records from 22 GPs	2004–2008	3371	All ages	4.75	4.06 to 5.44
Switzerland	Richard	Prospective sentinel surveillance	Notified by 250 physicians	1998–2001	2236	All ages	2.36	
Belgium	Blijke	Retrospective population-based study	Notified by 150 GPs	2000–2007	NA	All ages	3.78	
Spain	Pérez-Farinós	Prospective sentinel surveillance in Madrid	Notified by GPs	1997–2004†	1798	All ages	3.59	3.22 to 3.97
Spain	Garcia Cenoz	Primary care database in Navarre	Medical records from GPs	2005–2006	4959	All ages	4.15	
Spain	Cebrián-Cuenca	Prospective population-based study in Valencia	Notified by 25 GPs	2006–2007	146	≥14 years	4.10	3.40 to 4.70
Spain	Morant-Talamante	Electronic medical record database in Valencia	ICD-9	2007–2010	85 586	All ages	4.60	4.57 to 4.63
Spain	Esteban-Vasallo	Electronic medical record in the Madrid regional public health system	ICPC	2005–2012†	211 650	All ages	4.82	
Italy	di Luzio Paparatti	Retrospective population-based study	Survey from 71 GPs	1995	408	≥15 years	4.14	3.75 to 4.56
Italy	Di Legami	Prospective population-based study in Piedmont	Notified by 24 GPs	2004	46	≥14 years	1.74	1.28 to 2.32
Country	Author	Study design and population	Case ascertainment	Year	HZ cases	Age	Incidence 1000 person-years	95% CI
--------------	--------------	--	--	----------	----------	-----------	-----------------------------	------------
Italy	Gialloreti	National primary-care database (Societa Italiana Medici Generici)	Medical records from 342 GPs	2003–2005	5675	All ages	4.31	4.11 to 4.52
Iceland	Helgason	Prospective population-based study	Notified by 62 GPs	1990–1995	462	All ages	2.00	1.80 to 2.20
Sweden	Studahl	Swedish National Pharmacy register	Prescriptions for antiviral medications	2006–2010	127 832	All ages	2.70	
Greece	Lionis	Prospective population-based study in rural Crete	Notified by 19 GPs	2007–2009	58	All ages	1.60	
Israel	Weitzman	Macabbi Healthcare Services claims database	ICD-9	2006–2010	28 977	All ages	3.46	
Saudi Arabia	Alakloby	Medical records from the dermatology clinic	Medical charts from the dermatologist	1988–2006	141	All ages	6.20	5.18 to 7.22*
Australia	Stein	National GP database (Bettering the Evaluation of Care and Health)[†]	Medical records of GPs	2000–2006	379	≥50 years	9.67	8.66 to 10.68
Taiwan	Jih	Taiwan National Health Insurance claims database	ICD-9	2000–2006	34 280	All ages	4.89	4.76 to 5.04*
Taiwan	Lin	Taiwan National Health Insurance claims database	ICD-9	2000–2005	672 782	All ages	4.97	4.96 to 4.98
Taiwan	Chao	Taiwan National Health Insurance claims database	ICD-9	2000–2008	11 908	All ages	5.67	
South Korea	Park	NA Health Insurance claims database (estimated prevalence)	NA	1999–2003	1089	All ages	2.98	
South Korea	Choi	Health Insurance claims database (estimated prevalence)	ICD-10	2003–2007	2 431 744	All ages	9.97	
Japan	Toyama	Prospective population-based study in Miyazaki	Notified by 46 dermatology clinics	1997–2006	48 388	All ages	4.15	4.12 to 4.19*
Argentina	Vujacich	Medical records from the ID reference centre	Medical charts from IDs	2000–2005	302	All ages	3.57	3.17 to 3.97*
Brazil	Castro	Medical records from the dermatology clinic	Medical charts from the dermatologist	1987–1989	469	All ages	5.62*	
Colombia	Gaitan	Medical records from the oncology, radiology and nuclear medicine centre	Medical charts from patients without cancer	NA	75	NA	6.50*	

*We computed the overall estimate or 95% CI based on the study results.
†The estimate from the latest study year.
GP, general practitioner; GPRD, general practice research database; HZ, herpes zoster; ICD, International Classification of Diseases; ICPC, International Classification For Primary Care; RCGP, Royal College of GPs.
Trends of HZ incidence

In the USA, studies conducted during the postvaricella vaccination era showed inconsistent results, with some showing no change in incidence but others reporting an increase in HZ incidence, suggesting a potential impact of varicella vaccination (table 2). However, Leung et al.19 Hales et al.23 and Yawn et al.75 examined trends over a longer period and found that incidence rates increased continuously across all age groups before the introduction of the varicella vaccination programme and continued to increase throughout the postvaccination era. These studies concluded that the increase was not due to the varicella vaccination programme. Most studies conducted in Canada, the UK, Spain, Taiwan and Japan reported an increase in the incidence of HZ over the past decade often occurring in the absence of the national varicella vaccination programmes.24 25 49 65 68 Several studies in Australia suggested increasing trends in HZ outpatient visits or hospitalisation during prevaricella and postvaricella vaccination eras.76 77 79

Risk of PHN

The risk of developing PHN varied from 5% to more than 30% (table 3; 49 studies). The estimated risk of PHN varied by study design, age distribution of study populations and definitions used for PHN. For studies that used multiple definitions of PHN, we present results based on the definition of at least 90 days of persistent pain. Studies that reported risk of PHN by age groups consistently found that older patients have a greater risk of developing PHN (see online supplementary table S1). In this review, we found that researchers have used a different duration of persistent pain (persisting for 30, 90 or 180 days) and severity of pain (clinically meaningful pain or any pain) to define PHN. For example, 18% of patients had pain for at least 30 days and 10% for at least 90 days in a population-based study using medical records by Yawn et al.3 in the USA. Similarly, 20% of patients had pain for at least 30 days and 14% for at least 90 days in a study by Gauthier et al.64 in the UK. Administrative database studies (eg, Ultsch et al.42 (4.5%), Opstelten et al.43 (2.6%) and Gialloreti et al.56 (6.2%)) were more likely to report a lower estimated risk of PHN compared with other studies. Researchers have used diagnosis and medication data in various algorithms, many of which are not validated. It is noteworthy that retrospective studies involving specialists (eg, Mick et al.38 (32.5%), Kanbayashi et al.102 (52%) and Ro et al.103 (39.4%)) may have included existing severe cases of patients with PHN and possibly overestimated the overall risk of PHN.

We identified six prospective cohort and three cross-sectional studies examining the duration of PHN in North America and Europe (table 4). Several studies reported that PHN may last up to 10 years. Prospective cohort studies demonstrated that approximately 30–50% of patients with PHN experienced pain lasting for more than 1 year. Cross-sectional studies also reported a similar high proportion of patients with PHN; however, these studies are most likely an overestimate because they are more likely to include patients experiencing a longer duration of pain.

Risk of recurrence

A limited number (N=9) of studies examined recurrence of HZ. Four studies reported a risk of <1.5%, with three of these studies conducted over 1–2 years of follow-up.13 57 119 122 About 2.9% of patients had
Country	Author	Study periods	Varicella vaccination era	Trends			
USA	Ragozzino	1945–1959	Pre	Incidence increased from 1.1 to 1.5/1000 person-years between 1945–1949 and 1955–1959			
USA	Jumaan	1992–2002	Pre and post (1996–)	Incidence did not change between 1992 and 2002			
USA	Yih	1998–2003	Post	Incidence increased from 2.8 to 5.3/1000 person-years between 1999 and 2003			
USA	Mullooly	1997–2002	Post	Incidence did not change between 1997 and 2002			
USA	Yawn	1996–2005	Post	Incidence increased from 3.2 to 4.1/1000 person-years between 1996–1997 and 2000–2001			
USA	Patel	1993–2004	Pre and post	Hospitalisation rate did not change during 1993–2000 but increased between 2001 and 2004			
USA	Jackson	1992–2004	Pre and post	Hospitalisation rate did not change during 1992–2004			
USA	Civen	2000–2006	Post	Incidence increased between 2000 and 2006 among unvaccinated adolescents 10–19 years			
USA	Rimland	2000–2007	Post	Incidence increased from 3.1 to 5.2/1000 person-years between 2000 and 2007			
USA	Yawn	1945–2008	Pre and post	Incidence increased from 0.8/1000 person-years in 1945–1947, to 1.6/1000 person-years in 1980–1982, to 3.0/1000 person-years in 2005–2007			
USA	Leung	1993–2006	Pre and post	Incidence increased from 1.7 to 4.4/1000 person-years between 1993 and 2006			
USA	Hales	1992–2010	Pre and post	Incidence increased from 10.0 to 13.9/1000 person-years between 1992 and 2010 in adults ≥65 years			
Canada	Brisson	1979–1997	Pre	Incidence increased from 2.6 to 3.5/1000 person-years between 1979 and 1997			
Canada	Russell	1986–2002	Pre and post (2001–)	Incidence increased from 2.8 to 4.2/1000 person-years between 1986 and 2002			
Canada	Tanuseputro	1992–2010	Pre and post	Incidence did not change during 1992–2009			
Canada	Russell	1994–2010	Pre and post	Incidence increased from 3.5 to 4.5/1000 person-years between 1994 and 2010			
UK	Brisson	1979–1997	Pre	Incidence increased from 3.2 to 3.9/1000 person-years between 1979 and 1997			
Spain	Perez-Farinós	1997–2004	Pre	Incidence increased from 2.5 to 3.6/1000 person-years between 1997 and 2004			
Spain	Esteban-Vasallo	2005–2012	Pre and post (2006–)	Incidence increased from 3.6 to 4.8/1000 person-years between 2005 and 2012			
Australia	Macintyre	1993–1999	Pre	Hospitalisation rate increased between 1993 and 1999			
Australia	Carville	1995–2007	Pre and post (2005–)	Hospitalisation rate increased from 6.3 to 9.1/1000 000 person-years between 1995 and 2007			
Australia	Nelson	1998–2009	Pre and post	Incidence increased from 1.7 to 2.4/1000 person-years between 1998 and 2008			
Australia	Jardine	1998–2007	Pre and post	Hospitalisation rate did not change during 1992–2009			
Taiwan	Chao	2000–2008	Pre and post	Incidence increased from 4.5 to 6.9/1000 person-years between 2000 and 2008			
Taiwan	Wu	2000–2009	Pre and post	Incidence increased from 4.0 to 6.2/1000 person-years between 2000 and 2009			
Japan	Toyama	1997–2006	Low coverage (20–30%)	Incidence increased from 3.8 to 4.5/1000 person-years between 1997 and 2006			
Country	Author	Study design	Definition of PHN*	Year	PHN cases	Age	Risk of PHN (%)
---------	--------	--	---	---------	-----------	-----------	-----------------
USA	Ragozzino	Medical records database in Minnesota	Physician diagnosis	1945–1959	55	All ages	9.3
USA	Galil	Administrative claims database confirmed by medical records in Massachusetts	Pain persisted for ≥60 days from medical records	1990–1992	68	All ages	7.9
USA	Oxman	Zostavax trial in the control	Pain ≥3 score for ≥90 days	1998–2001	80	≥60 years	14.0
USA	Yawn	Retrospective population-based study confirmed by medical records in Minnesota	Pain persisted for ≥90 days from medical records	1996–2001	171	≥22 years	10.0
USA	Thyregod	Prospective cohort study in California	Pain persisted for ≥180 days	1999–2003	30	≥50 years	31.9
USA	Klompass	Administrative claims database confirmed by medical records in Massachusetts	Pain persisted for ≥30 days and required pain medication from medical records	2008	237	≥20 years	12.2
USA	Rimland	Atlanta Veterans Affairs claims database confirmed by medical records	Physician diagnosis from medical charts	2000–2007	205	All ages	19.6
USA	Katz	Prospective cohort study in New York	Pain persisted for ≥120 days	NA	20	≥18 years	19.6
Canada	Drolet	Prospective cohort study, recruited by 83 physicians throughout country	Pain ≥3 score for ≥90 days	2005–2006	56	≥50 years	22.5
UK	Hope-Simpson	Prospective population-based study in Cirencester	Physician diagnosis	1947–1962	46	All ages	14.3
UK	Scott	Prospective cohort study	Pain persisted for ≥90 days	NA	45	All ages	27.4
UK	Jung	Prospective cohort study (combined two trials)	Pain persisted for ≥120 days	NA	114	≥15 years	12.8
UK	Scott	Prospective cohort study in East London	Pain persisted for ≥90 days	NA	9	All ages	13.4
UK	Coen	Prospective cohort study, recruited by GPs	Pain ≥3 score for ≥90 days	1998–2001	24	All ages	9.0
UK	Gautier	GPRD in the UK	Physician diagnosis or pain medication at 90 days from medical records	2000–2006	415	≥50 years	13.7
France	Chidiac	Prospective sentinel surveillance	Physician diagnosis	1997–1998	935	All ages	10.3
France	Czernichow	Retrospective population-based survey from GPs	Pain persisted for ≥30 days and required treatment from medical records	1998	111	All ages	18.4
France	Mick	Retrospective population-based survey from GPs, dermatologists and neurologists	Pain persisted for ≥90 days from medical records	2005	227	≥50 years	32.5
France	Bouhassira	Prospective cohort study, recruited by GPs	Pain persisted for ≥90 days	2007–2008	127	≥50 years	11.6
Germany	Meister	Retrospective population-based survey from GPs, dermatologists and specialists	Pain persisted for ≥90 days and physician diagnosis	NA	131	≥50 years	20.6
Germany	Schiffner-Rohe	National Statutory Health Insurance claims database	Pain persisted for ≥90 days and diagnosis or pain medication from ICD-10	2004	NA	≥50 years	6.9
Germany	Weinke	Telephone survey of patients, previous HZ diagnosis in 5 years	Pain persisted for ≥90 days	2008	32	≥50 years	11.4

Continued
Country	Author	Study design	Definition of PHN*	Year	PHN cases	Age	Risk of PHN (%)
Germany	Ultsch	National Statutory Health Insurance claims database	Pain persisted for ≥90 days and diagnosis or pain medication from ICD-10	2004–2009	18 160	All ages	4.5
The	Opstelten	Huisartsen Netwerk Utrecht database in six locations	Pain persisted for ≥90 days and required treatment from medical records	1994–1999	22	All ages	2.6
The	Opstelten	Prospective cohort study, recruited by GPs (PINE trial)	Pain ≥3 score for ≥90 days	2001–2004	46	≥50 years	7.1
The	Pierik	Population-based GPs database in Almere	Physician diagnosis from medical codes	2004–2008	195	All ages	5.8
Spain	Cebrian-Cuenca	Prospective cohort study, recruited by 25 GPs in Valencia	Pain persisted for ≥90 days	2006–2007	19	≥14 years	14.5
Spain	Sicas Mainar	Medical records from six primary care and one hospital	Physician diagnosis from medical records	2007–2010	228	≥30 years	15.1
Italy	di Luzio Paparatti	Retrospective population-based survey from GPs	Pain persisted for ≥30 days from medical records	1995	275	≥15 years	19.6
Italy	Volpi	Prospective cohort study, recruited by dermatologists	Pain ≥3 score for ≥180 days	2001	70	NA	32.0
Italy	Parruti	Prospective cohort study, recruited from GPs and hospitals in Pescara	Pain persisted for ≥90 days	2006–2008	130	NA	30.0
Italy	Gialloreti	National primary care database (Societa Italiana Medici Generici)	Pain persisted for ≥90 days and diagnosis or pain medication from ICD-9	2003–2005	350	≥50 years	6.2
Italy	Bricout	Prospective cohort study, recruited from GPs	Pain persisted for ≥90 days	2009–2010	85	≥50 years	20.6
Iceland	Helgason	Prospective population-based study	Physician diagnosis at 90 days	1990–1995	28	All ages	7.2
6 European	Lukas	Telephone survey, previous 5 years	Pain persisted for ≥90 days	2008–2009	131	≥50 years	13.0
Israel	Weitzman	Maccabi Healthcare Services claims database	ICD-9 code and healthcare service code	2006–2010	1508	All ages	5.2
Saudi Arabia	Alakloby	Medical record database from the dermatology clinic	Physician diagnosis	1988–2006	21	≥18 years	14.9
Australia	Stein	National GP database (Bettering the Evaluation of Care and Health)	Physician diagnosis from medical codes	2000–2006	57	≥50 years	15.0
Taiwan	Jih	Taiwan National Health Insurance claims database	Pain persisted for ≥90 days and diagnosis or pain medication from ICD-9	2000–2006	2944	All ages	8.6
Taiwan	Tsai	Prospective cohort study in five centres and clinics in Hyogo	Pain ≥3 score for ≥90 days	2008–2009	31	≥50 years	20.7
Japan	Kurokawa	Prospective cohort study in hospitals and clinics in Hyogo	Pain persisted for ≥90 days	2008–2009	37	≥20 years	26.2
Country	Author	Study design	Definition of PHN*	Year	PHN cases	Age	Risk of PHN (%)
-----------	-------------------	--	--	----------	-----------	--------------	-----------------
Japan	Kurokawa	Prospective cohort study in hospitals and clinics in Hyogo	Pain persisted for ≥90 days	2001–2003	78	All ages	24.7
Japan	Kanbayashi	Retrospective cohort study in pain treatment hospital	Pain persisted for ≥90 days	2008–2010	38	NA	52.0
South Korea	Ro	Retrospective, dermatology department hospital	NA	2007–2011	826	NA	39.4
South Korea	Song	Prospective cohort study in clinics	Pain ≥3 score for ≥90 days	2009–2010	58	≥50 years	38.4
South Korea	Cho	Prospective cohort study in clinics	Pain ≥3 score for ≥90 days	2010–2012	19	≥18 years	6.2
Thailand	Tunsuriyawong	Retrospective study of medical records at hospital	Physician diagnosis from medical record	1995–2000	67	All ages	16.8
Thailand	Aunhachoke	Prospective cohort study, recruited by GPs	Pain persisted for ≥90 days	2007–2008	35	≥50 years	19.4
Singapore	Goh	Prospective cohort study in dermatology clinic	Pain persisted for ≥90 days	1994–1995	46	All ages	28.0
India	Chaudhary	NA	NA		33	NA	14.3
India	Abdul Latheef	NA	NA		21	All ages	10.2
Argentina	Vujacich	Medical record database from ID reference centre	Pain persisted for ≥60 days and diagnosis from medical records	2000–2005	39	All ages	12.9
Argentina	Vujacich	Prospective cohort study, recruited by GPs	Pain ≥3 score for ≥90 days		11	≥50 years	11.5

*For studies that used multiple definitions of PHN, we present results based on the definition that used at least 90 days of persistent pain.

GP, general practitioner; GPRD, general practice research database; HZ, herpes zoster; ICD, International Classification of Diseases; PHN, postherpetic neuralgia.
recurrence of HZ in Israel during 2 years of follow-up, while 2.3% of patients had recurrence in South Korea up to 10 years of observation.60 121 However, studies with a long-term follow-up period tended to report a higher risk of recurrence. Hope-Simpson et al115 reported that 4.7% had recurrence of HZ during 16 years of follow-up in the UK. Similarly, Ragozzino et al12 reported that 5.3% of patients had episodes of recurrence during more than 20 years of follow-up. A recent study by Yawn et al120 also demonstrated that a recurrence of HZ occurred with a rate of 6.2% after 8 years of follow-up. The risk of recurrence may also depend on immune status.120 Thus, overall risk of recurrence may vary by inclusion of those immunocompromised individuals.

Risk of HZO
HZO occurs when VZV reactivation affects the distribution of the ophthalmic division of the trigeminal nerve and can occur with or without eye involvement. Although the number of population-based studies is limited, similar risks of HZO were reported across studies. The reported risks of HZO among patients with HZ were 10.1% (Ragozzino et al,12 USA), 12.3% (Chidiac et al,35 France), 14.4% (Opstelten et al,43 the Netherlands) and 14.9% (Alakloby et al,61 Saudi Arabia). Borkar et al124 reported an overall incidence of 30.9/100 000 person-years, which corresponds to an approximately 10% risk among patients with HZ in the USA. As has been previously recognised, the risk of HZO is similar across age groups.123 124

A wide range of eye complications, such as keratitis, uveitis and conjunctivitis, could result from HZO. The reported risk of these eye complications in patients with HZO ranged widely from approximately 30% to 78%.125–129 In a population-based study in the USA, the risk of HZO with eye involvement among patients with HZ was 2.5%.130 The HZ-associated eye complications required an average of 10 months of medical care with 6% of cases resulting in vision loss.130

Hospitalisation rates associated with HZ
We identified 28 studies that reported HZ-associated hospitalisation (table 5). All studies used hospital discharge or claims data. Rates of HZ-related hospitalisation ranged widely from 2 to 25/100 000 person-years in studies examining all ages. The variation in the estimates may reflect the differing admission criteria in the different settings. Hospitalisations with a primary diagnosis of HZ accounted for about 29–42% of HZ-related hospitalisations.37 62 73 Studies that included hospitalisations with non-primary diagnosis codes (eg, secondary) may have overestimated the hospitalisation rate because they may represent prior or incidental HZ. Hospitalisation rates increased steeply with age, with the majority of the cases occurring in adults \geq50 years of age. For example, Jackson et al75 reported HZ-associated hospitalisation rates (confirmed with medical records) ranging from 10/100 000 in adults 60–69 years of age to 65/100 000 in:

Duration of postherpetic neuralgia (sorted by study design)
Country

USA
Canada
UK
UK
Iceland
France
USA
UK
Europe

HZ, herpes zoster; PHN, postherpetic neuralgia.
Table 5 Hospitalisation rates associated with herpes zoster

Country	Author	Study design/database	Case ascertainment	Years	Age	Hospitalisation, 100,000 person-years	Older age group
USA	Lin	Hospital discharge data in Connecticut	ICD-9 primary or secondary	1986–1995	All ages	16.1	144.2 in ≥80 years
USA	Coplan	Kaiser Northern California	ICD-9 primary confirmed by medical charts	1994	All ages	2.1	9.3 in ≥60 years
USA	Patel	National inpatient sample data	ICD-9 any diagnostic position	1993–2004	All ages	25.0	112.3 in ≥60 years
USA	Jackson	Group Health in Washington medical records	ICD-9 primary confirmed by medical charts	1992–2004	≥50 years	14.0	65.1 in ≥80 years
Canada	Brisson	Hospital claims in Manitoba	ICD-9 any diagnostic position	1979–1997	All ages	NA	86.0 in ≥65 years
Canada	Edgar	Ministry of health service data in British Columbia	ICD-9/ICD-10 any diagnostic position	1994–2003	All ages	1.0	99.0 in ≥80 years
Canada	Tanuseputro	Hospital discharge data in Ontario	ICD-9/ICD-10 any diagnostic position	1992–2010	All ages	6.7	75.0 in ≥80 years
UK	Brisson	Hospitalisation episode statistics in England	ICD-9/ICD-10 any diagnostic position	1995–1996	All ages	NA	148.0 in ≥65 years
UK	Brisson	Hospitalisation episode statistics in England	ICD-10 primary diagnosis	1991–2000	All ages	4.4	19.1 in ≥60 years
France	Gonzalez-Chiappe	National hospital data	ICD-10 primary diagnosis	2005–2008	All ages	4.1	–
Germany	Ultsch	Federal health monitoring system	ICD-10 primary diagnosis	2007–2008	≥50 years	44.6	102.5 in ≥80 years
The Netherlands	de Melker	National healthcare registry	ICD-9/ICD-10 primary or secondary	1998–2001	All ages	2.7	19.0 in ≥80 years
The Netherlands	Pierik	Retrospective population-based study, GPs in Almere	Hospital referrals by GPs	2004–2008	All ages	15.5	–
Belgium	Blicke	National Christian Sickness Fund	ICD-9 primary or secondary	2000–2007	All ages	14.2	85.0 in ≥80 years
Spain	Gil	National hospital data	ICD-9 any diagnostic position	1999–2000	All ages	8.4	–
Spain	Gil	National hospital data	ICD-9 primary or secondary	1998–2004	≥30 years	13.4	54.3 in ≥80 years
Spain	Bayas	National hospital data in Catalonia	ICD-9 any diagnostic position	1993–2003	All ages	9.7	–
Spain	Morant-Talamante	Electronic medical record database in Valencia	ICD-9 any diagnostic position	2007–2010	All ages	3.0	15.7 in ≥80 years
Spain	Gil-Prieto	National hospital data	ICD-9 any diagnostic position	2005–2010	All ages	10.3	–
Italy	Di Legami	Hospital discharge records in Piemonte	ICD-9 primary or secondary	2004	≥14 years	12.0	46.0 in ≥80 years
Italy	Gialloreti	National hospital discharge records	ICD-9 primary diagnosis	2003–2005	All ages	5.6	26.0 in ≥80 years
Portugal	Mesquita	National public hospital data	ICD-9 primary diagnosis	2000–2010	All ages	1.9	–
Sweden	Studahl	National patient register	ICD-10 primary diagnosis	2006–2010	All ages	6.9	–

Continued
adults ≥80 years of age in the USA. Similarly, the rate of hospitalisation with primary diagnosis of HZ ranged from 13/100 000 in adults 60–64 years of age to 96/100 000 in adults ≥80 years of age in Australia. The rates ranged from 31/100 000 in adults 60–64 years of age to 100/100 000 in adults ≥80 years of age in Germany.

Mortality rates associated with HZ

Mortality rates associated with HZ ranged from 0.017 to 0.465/100 000 person-years in studies (see online supplementary table S2). Most studies reported that the majority of deaths occurred in adults ≥60 years of age.

DISCUSSION

HZ is a significant global health burden that is expected to increase as the population ages. The incidence rises steeply after 50 years of age and many working-age adults and elderly individuals are at increased risk. Risk of complications, particularly debilitating and long-lasting PHN, and hospitalisation is common in the elderly population. The major strength of our study is that we assessed the HZ burden across the globe and comprehensively reviewed incidence, risk of complications, hospitalisation and mortality. Our review included 63 studies on incidence, substantially more than the prior review by Thomas and Hall, which included 17 studies with overall incidence ranging from 1.2 to 4.8/1000 person-years. Other reviews were restricted to specific geographic regions and/or assessed only incidence.

Relatively similar estimates of the HZ incidence rate (between 3 and 5/1000 person-years) were reported in North America, Europe and Asia-Pacific. However, we observed some variations in estimates most likely due to the various study designs, case ascertainment, age distributions of the population and year of the study. It is difficult to accurately estimate the incidence rates because it is not a commonly reportable disease and surveillance systems are not usually in place. Most studies had limitations in their study methodology. Almost all studies may be susceptible to under-reporting due to patients who did not seek medical care. However, administrative database studies using diagnostic and billing codes may have overestimated the incidence due to misclassification. Several validation studies reported a relatively high sensitivity for the International Classification of Diseases (ICD)-9 code (98%) and positive predictive value (PPV; 84–94%). Furthermore, studies using administrative insurance data may lack generalisability because they may not be representative of the general population. Population-based surveillance studies face difficulty in estimating the numbers of the population at risk in the study catchment area. Several prospective cohort studies that identified relatively small numbers of patients with HZ (eg, by Scott et al, Paul and Thiel, Di Legami et al and Lionis et al) may have
underrated the rate of HZ due to under-reporting of cases or inaccuracy in estimating the numbers of the population at risk. In spite of these limitations, it is reassuring to find similar incidences across countries in well-conducted studies.

There is a scarcity of research examining the incidence of HZ in Asia, Latin America and Africa. HZ may be regarded as a low health priority in many of these countries; however, the proportion of people ≥60 years of age is projected to double in the next several decades, and the numbers of HZ cases are expected to increase substantially. Further research is needed because it is unclear whether the incidence would be similar in these regions. Age-specific incidence rates may vary because of the regional differences in epidemiology of varicella infection and VZV genotype distribution. Varicella primarily affects young children in temperate countries, whereas varicella tends to occur at a later age during adolescence and adulthood, presenting in severe form with frequent risks of complication and mortality in tropical countries.

Severe varicella infections during adolescence may result in greater numbers of VZVs remaining latent and possibly resulting in earlier reactivation of VZV. The distribution of VZV clades varies globally. VZV can be classified into at least five major clades. VZV clades 1 and 3 are dominant strains in Europe and the Americas, whereas clade 2 is a dominant strain in Asia and clade 5 in Africa. Molecular epidemiology of VZV is still an active area of investigation and requires more research. Furthermore, the incidence of HZ may be higher in the countries heavily affected by HIV/AIDS or other immunocompromising conditions.

Hope-Simpson hypothesised that exogenous exposure to VZV from individuals with varicella or HZ may boost VZV-specific cell-mediated immunity and thereby decrease the risk of HZ. Because varicella vaccination programmes reduce VZV circulating in the community, thus potentially leading to a decrease in the opportunity for boosting immunity against VZV, it has been hypothesised that the introduction of varicella vaccination might increase the incidence of HZ in the population. However, based on the current literature, there is no conclusive evidence as to whether varicella vaccination programmes have been associated with an increase in the incidence of HZ. In fact, a number of studies across countries have found an increase in the incidence of HZ before introduction of the varicella vaccination programme. It is unclear why the incidence of HZ is increasing. The temporal change or emergence of infectious disease is usually due to changes in the society, technology, virus itself or environment, such as climate change. The temporal increase was independent of age. It may partly be explained by an increase in the prevalence of risk factors, an increase in the use of immunosuppressive agents (eg, chemotherapy) or an increase in diagnosis through improved access to healthcare and public awareness. Because HZ is usually clinically diagnosed, diagnostic modalities are unlikely to have affected the reported incidences. Given the steady continuous increase in the incidence of HZ across age groups, it is plausible that a genetic change in the VZV may be playing a role. For example, a study in the UK suggested that changes in genotype distribution have occurred through importation of different strains. Although VZV is considered a genetically stable virus, a recombination between different VZV strains could possibly occur.

We reviewed the risk of PHN in patients with HZ. Several long-term prospective cohort studies demonstrated that more than 30% of patients with PHN could experience pain lasting for more than 1 year. The reported risk of developing PHN in patients with HZ varied widely from 5% to more than 30%. The risk of PHN may have differed across countries due to the varying prevalence of disability and other underlying comorbidities in the elderly population. However, we could not conclude whether the risk of PHN differed by country because of wide variation. The wide variation in the estimates could be partly due to the different study designs used in prior studies. Prospective cohort studies of patients with HZ tend to report greater risk of PHN than studies utilising electronic medical records or administrative databases. We found that administrative database studies often face a numbers of challenges in identifying patients with PHN and they are likely to underestimate the risk of PHN. Currently, there is only one study, by Klompas et al, that developed and validated an algorithm for PHN using ICD-9 codes and claims for a filled prescription. The algorithm detected PHN with a sensitivity of 86% and PPV of 78%; however, they defined PHN as a persistent pain for 30 days or more after zoster onset rather than 90 days or more. More validation studies are needed.

Researchers used different definitions of PHN. A difficulty in reaching consensus on a definition for PHN is probably due to a multifactorial pathophysiological nature of the condition and difficulty in objectively assessing the pain. Patients with PHN also experience different types of pain including a steady burning pain, a sudden stabbing pain or stimulus-evoked pain (allodynia). The best option for defining PHN would be clinically meaningful pain lasting for more than 90 days after rash onset, considering the pathophysiology and definitions suggested from prior trials on antiviral treatment and zoster vaccination. We also believe that healthcare utilisation patterns and prescribed treatment for PHN vary across countries and that characterising the treatment patterns would be important for future research.

Several prior studies with a long-term follow-up found that recurrence of HZ is frequent, with a rate of 5–6%, which is comparable to rates of first occurrence of HZ. However, a limited number of studies examined the risk of recurrence and more studies are needed to confirm these findings. There were a limited number of population-based studies examining HZO, a severe condition that may lead to significant visual impairment.
Several limitations of this review are worth noting. Because the quality of the study, study design and age distribution of population varied widely across studies, we could not synthesise the data quantitatively to estimate the pooled incidence rates. We did not conduct a formal study quality assessment. However, we described the study design and outcome ascertainment of each study and discussed limitations of studies. Our review focused on general populations, primarily immunocompetent populations, and we did not include studies restricted to immunocompromised populations (such as HIV/AIDS, malignancy or autoimmune disease). Our review also did not include uncommon complications of HZ, such as Ramsay Hunt syndrome, Bell’s palsy and transverse myelitis.

In conclusion, similar age-specific incidence of HZ was reported in North America, Europe and Asia-Pacific; however, there is a scarcity of research from other regions. Risk of complications, particularly PHN, and hospitalisation is common in the elderly population. HZ is a global health burden that is expected to increase as the population ages across the world in the near future. The prevalence of disability in the elderly populations is also increasing. It is important for healthcare practitioners and health policymakers to consider implementing effective preventive measures such as vaccination against HZ across the globe.

Contributors KK, BG and CJA designed the study. KK and BG conducted the literature search and extracted data. KK wrote the first draft of the manuscript. KK, BG and CJA interpreted the data, critically revised the manuscript and approved the final version of this manuscript.

Funding Merck & Co, Inc.

Competing interests KK is a consultant working for Merck & Co, Inc. BG is a research fellow funded by Merck & Co, Inc. CJA is employed by Merck & Co, Inc.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided they credit the work with the appropriate licence and include a link to the licence. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Cohen JI. Clinical practice: herpes zoster. N Engl J Med 2013;369:255–63.
2. Dworkin RH, Johnson RW, Breuer J, et al. Recommendations for the management of herpes zoster. Clin Infect Dis 2007;44(Suppl 1): S1–26.
3. Yawn BP, Satterfield P, Wollan PC, et al. A population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. Mayo Clin Proc 2007;82:1341–9.
4. Hope-Simpson RE. The nature of herpes zoster: a long-term study and a new hypothesis. Proc R Soc Med 1965;58:9–20.
5. Johnson RW, Bouhassira D, Kassianos G, et al. The impact of herpes zoster and post-herpetic neuralgia on quality-of-life. BMC Med 2010;8:37.
6. Oxman MN, Levin MJ, Johnson GR, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 2005;352:2271–84.
7. World Population Prospects: The 2012 Revision. United Nations, Department of Economic and Social Affairs, Population Division, 2013.
8. World report on disability. World Health Organization and the World Bank, 2011.
9. Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? Lancet Infect Dis 2004;4:26–33.
10. Araujo LQ, Macintyre CR, Vujacicich J. Epidemiology and burden of herpes zoster and post-herpetic neuralgia in Australia, Asia and South America. Herpes 2007;14(Suppl 2):40–4.
11. Pinchinat S, Cebrián-Cuenca AM, Bricout H, et al. Similar herpes zoster incidence across Europe: results from a systematic literature review. BMC Infect Dis 2013;13:170.
12. Ragozzino MW, Melton LJ, Kurtland LT, et al. Population-based study of herpes zoster and its sequelae. Medicine (Baltimore) 1982;61:310–16.
13. Donahue JG, Choo PW, Manson JE, et al. The incidence of herpes zoster. Arch Intern Med 1999;159:1605–9.
14. Insinga RP, Itzler RF, Pollissier JM, et al. The incidence of herpes zoster in a United States administrative database. J Gen Intern Med 2005;20:748–53.
15. Mullooly JP, Riedlinger K, Chun C, et al. Incidence of herpes zoster among veterans. Clin Infect Dis 2010;50:1000–5.
16. Yih WK, Brooks DR, Lett SM, et al. The incidence of varicella and herpes zoster in Massachusetts as measured by the Behavioral Risk Factor Surveillance System (BRFSS) during a period of increasing varicella vaccine coverage, 1998–2003. BMC Public Health 2005;5:88.
17. Jumaan AO, Yu O, Jackson LA, et al. Incidence of herpes zoster, before and after varicella-vaccination-associated decreases in the incidence of varicella, 1992–2002. J Infect Dis 2005;191:2002–7.
18. Rimland D, Moanna A. Increasing incidence of herpes zoster among veterans. Clin Infect Dis 2010;50:1000–5.
19. Leung J, Harpaz R, Molinari NA, et al. Herpes zoster incidence among insured persons in the United States, 1993–2006: evaluation of impact of varicella vaccination. Clin Infect Dis 2011;52:332–40.
20. Tseng HF, Smith N, Harpaz R, et al. Herpes zoster vaccine in older adults and the risk of subsequent herpes zoster disease. JAMA 2011;305:160–6.
21. Langan SM, Smeeth L, Margolis DJ, et al. Herpes zoster vaccine effectiveness against incident herpes zoster and post-herpetic neuralgia in an older US population: a cohort study. PLoS Med 2013;10:e1001420.
22. Chen SY, Suaya JA, Li Q, et al. Incidence of herpes zoster in patients with altered immune function. Infection 2014;42:325–34.
23. Hales CM, Harpaz R, Joesoef MR, et al. Examination of links between herpes zoster incidence and childhood varicella vaccination. Ann Intern Med 2013;159:739–45.
24. Briss M, Edmunds WJ, Law B, et al. Epidemiology of varicella zoster virus infection in Canada and the United Kingdom. Epidemiol Infect 2001;127:305–14.
25. Russell ML, Schopflocher DP, Svenson L, et al. Secular trends in the epidemiology of shingles in Alberta. Epidemiol Infect 2007;135:908–13.
26. Edgar BL, Galanis E, Kay C, et al. The burden of varicella and zoster in British Columbia 1994–2003: baseline assessment prior to universal vaccination. Can Commun Dis Rep 2007;33:1–15.
27. Tanuseputro P, Zagorski B, Chan KJ, et al. Population-based incidence of herpes zoster after introduction of a publicly funded varicella vaccination program. Vaccine 2011;29:8580–4.
28. Russell ML, Dover DC, Simmonds KA, et al. Shingles in Alberta: before and after publicly funded varicella vaccination. Vaccine 2013. doi:10.1016/j.vaccine.2013.09.018. [Epub ahead of print 4 Oct 2013].
29. Ross CA, Brown WK, Clarke A, et al. Herpes zoster in general practice. J R Coll Gen Pract 1975;25:29–32.
30. Briss M, Edmunds WJ. Epidemiology of varicella-zoster virus infection in England and Wales. J Med Virol 2003;70(Suppl 1):S9–14.
31. Fleming DM, Cross KW, Cobb WA, et al. Gender difference in the incidence of shingles, Epidemiol Infect 2004;132:1–5.
32. Chapman RS, Cross KW, Fleming DM. The incidence of shingles and its implications for vaccination policy. Vaccine 2003;21:2541–7.
33. Scott FT, Leedham-Green ME, Barrett-Muir WY, et al. A study of shingles and the development of postherpetic neuralgia in East London. J Med Virol 2003;70(Suppl 1):S24–30.
34. Gauthier A, Breuer J, Carrington D, et al. Epidemiology and cost of herpes zoster and post-herpetic neuralgia in the United Kingdom. Epidemiol Infect 2009;137:38–47.
35. Chidiac C, Bruxelle J, Daures JP, et al. Characteristics of patients with herpes zoster on presentation to practitioners in France. Clin Infect Dis 2001;33:62–9.
36. Czernichow S, Dupuy A, Fiallaut A, et al. [Herpes zoster: incidence study among “sentinel” general practitioners]. Ann Dermatol Venereol 2001;128:497–501.
37. Gonzalez Chiappe S, Sarazin M, Turbelin C, et al. Herpes zoster: burden of disease in France. Vaccine 2010;28:7939–8.
38. McG K, Gallant C, Simon F, et al. [Burden of herpes zoster and postherpetic neuralgia: incidence, proportion, and associated costs in the French population aged 50 or over]. Rev Epidemiol Sante Publique 2010;58:393–401.
39. Paul E, Thiel T. [Epidemiology of varicella zoster infection. Results of a prospective study in the Ansbach area]. Hautartz 1996;47:604–9.
40. Schiffer-Rohe J, Jov S, Lille HM, et al. [Herpes zoster in Germany. A retrospective analysis of SHL data] MMW Fortschr Med 2010;151(Suppl 4):193.
41. Pierik JG, Gumbs PD, Fortanier SA, et al. Disease burden of herpes zoster and post-herpetic neuralgia in Germany. Fam Pract 2002;19:471–5.
42. de Melker H, Berbers G, Hahné S, et al. The epidemiology of varicella and herpes zoster in the Netherlands: implications for varicella zoster virus vaccination. Vaccine 2006;24:3946–52.
43. Opstelten W, Van Essen GA, Schellevis F, et al. Gender as an independent risk factor for herpes zoster: a population-based prospective study. Ann Epidemiol 2006;16:692–5.
44. Pierik JG, Gumbs PD, Fortanier SA, et al. Epidemiological characteristics and societal burden of varicella zoster virus in the Netherlands. BMC Infect Dis 2012;12:110.
45. Richard J-L, Zimmermann H. Herpes zoster 1998–2001. Sentinelle-Jahresbericht, 2001.
46. Blicke J, Ogura B, Marais C, et al. The health and economic burden of chickenpox and herpes zoster in Belgium. Epidemiol Infect 2012;140:2096–109.
47. Pérez-Farínos N, Ordóñez M, García-Fernández C, et al. Varicella and herpes zoster in Madrid, based on the Sentinel General Practitioner Network. 1997–2004. BMC Infect Dis 2007;7:59.
48. García Cenoz M, Castilla J, Montes Y, et al. [Varicella and herpes zoster incidence prior to the introduction of systematic child vaccination in Navarre, 2005–2006]. An Sist Sanit Navar 2008;31:110–20.
49. Cebrián-Cuenca AM, Diez-Domingo J, Rodríguez MS, et al. Epidemiology of herpes zoster infection among patients treated in primary care centers in the Valencian community (Spain). BMC Fam Pract 2010;11:33.
50. Montani-Talamo D, Diez-Domingo J, Martínez-Ubeda S, et al. Herpes zoster surveillance using electronic databases in the Valencian community (Spain). BMC Infect Dis 2013;13:463.
51. Esteban-Vasallo MD, Gil-Prieto R, Domínguez-Berjón MF, et al. Temporal trends in incidence rates of herpes zoster among patients treated in primary care centers in Madrid, (Spain), 2005–2012. J Infect 2014;68:378–86.
52. di Luzio Paparratti U, Arpinelli F, Visonà G. Herpes zoster and its complications in Italy: an observational survey. J Infect 1999;39:116–20.
53. Alakoby OM, Aljabre SH, Randhawa MA, et al. Herpes zoster in eastern Saudi Arabia: clinical presentation and management. J Drugs Dermatol 2008;7:457–62.
54. Vázquez-García M, Betía JR, Harrison C, et al. Herpes zoster burden of illness and health care resource utilisation in the Australian population aged 50 years and older. Vaccine 2009;27:520–9.
55. Loh JS, Chen YJ, Lin MW, et al. Epidemiological features and costs of herpes zoster in Taiwan: a national study 2000 to 2006. Acta Derm Venereol 2009;89:12–16.
56. Lin YH, Huang LM, Chang IS, et al. Disease burden and epidemiology of herpes zoster in pre-vaccine Taiwan. Vaccine 2010;28:1217–20.
57. Choi WS, Noj HY, Huh JY, et al. Disease burden of herpes zoster in Korea. J Clin Virol 2010;47:325–9.
58. Toyma N, Shiraki K; Society of the Miyazaki Prefecture Dermatologists. Epidemiology of herpes zoster and its relationship to varicella in Japan: a 10-year survey of 48,388 herpes zoster cases in Miyazaki prefecture. J Med Virol 2009;81:2053–8.
59. Vujacich C, Poggi E, Cecchini D, et al. [Clinical and epidemiological aspects of herpes zoster]. Medicina (B Aires) 2006;68:131.
60. Castro L, Chen S. Zoster: mais frequentes entre jovens que entre idosos/zoster is more frequent among younger than aged. An Bras Dermatol 1990;65:129–33.
61. Gaitan M. Herpes zoster y cancer: relaciones entre estas dos enfermedades/herpes zoster and cancer: relationship between these 2 diseases. Acta Med Colomb 1981;6:287–93.
62. Patel MS, Gebremariam A, Davis MM. Herpes zoster-related hospitalizations and expenditures before and after introduction of the varicella vaccine in the United States. Infect Control Hosp Epidemiol 2008;29:147–53.
63. Jackson LA, Reynolds MA, Harpaz R. Hospitalizations to treat herpes zoster in older adults: causes and validated rates. Clin Infect Dis 2008;47:754–9.
64. Civen R, Chaiken SS, Johnson A, et al. The incidence and clinical characteristics of herpes zoster among children and adolescents after implementation of varicella vaccination. Pediatr Infect Dis J 2009;28:954–9.
65. Yawn B, Wollan P, Bialek S, et al. Trends in herpes zoster prevalence in a population based cohort from 1945 to 2008. 48th Annual Meeting of the Infectious Diseases Society of America. 2010.
66. MacIntyre CR, Chu CP, Burgess MA. Use of hospitalization and pharmaceutical prescribing data to compare the prevaccination burden of varicella and herpes zoster in Australia. Epidemiol Infect 2003;131:675–82.
67. Carville KS, Riddell MA, Kelly HA. A decline in varicella but an uncertain impact on zoster following varicella vaccination in Victoria, Australia. Vaccine 2010;28:5352–6.
68. Nelson MR, Britt HC, Harrison CM. Evidence of increasing frequency of herpes zoster management in Australian general practice since the introduction of a varicella vaccine. Med J Aust 2010;193:110–13.
69. Jardine A, Conaty SJ, Vally H. Herpes zoster in Australia: evidence of increase in incidence in adults attributable to varicella immunization? Epidemiol Infect 2011;139:658–65.
70. Wu PY, Wu HD, Chou TC, et al. Varicella vaccination alters the chronological trends of herpes zoster and varicella. PLoS ONE 2013;8:e75599.
71. Gall K, Choo PW, Donahue JG, et al. The sequelae of herpes zoster. Arch Intern Med 1997;157:1209–13.
72. Thyrsgod HG, Rowbotham MC, Peters M, et al. Natural history of pain following herpes zoster. Pain 2007;128:148–56.
73. Kompas M, Kulidoff M, Vilky Y, et al. Herpes zoster and postherpetic neuralgia surveillance using structured electronic data. Mayo Clin Proc 2011;86:1146–53.
74. Katz J, McDermott MP, Cooper EM, et al. Psychosocial risk factors for postherpetic neuralgia: a prospective study of patients with herpes zoster. J Pain 2005;6:782–90.
75. Drolet M, Brisson M, Schmader K, et al. Predictors of postherpetic neuralgia among patients with herpes zoster: a prospective study. J Pain 2010;11:1211–21.
Aunhachoke K, Bussaratid V, Chirachanakul P, Tunsuriyawong S, Puavilai S. Herpes zoster, clinical course and associated diseases: a 5-year retrospective study. Pain 2012;153:342–9.

Meister W, Neiss A, Gross G, et al. A prognostic score for postherpetic neuralgia in ambulatory patients. Infection 1998;26:399–63.

Weinke T, Edle A, Schmitt S, et al. Impact of herpes zoster and post-herpetic neuralgia on patients’ quality of life: a patient-reported outcomes survey. Z Gesundh Wiss 2010;18:367–74.

Opstelten W, Zulthoff NP, van Essen GA, et al. Predicting postherpetic neuralgia in elderly primary care patients with herpes zoster: prospective prognostic study. Pain 2007;132(Suppl 1):S52–9.

Sicras-Mainar A, Navarro-Artieda R, Ibáñez-Nolla J, et al. Incidence, resource use and costs associated with postherpetic neuralgia: a population-based retrospective study. Rev Neurol 2009;39:449–61.

Cebrián-Cuenca AM, Díez-Domingo J, San-Martín-Rodríguez M, et al. Herpes zoster and its complications: an observational prospective study in patients aged over 50 years in general practice. Rev Esp Med Res 2007;30:56.

Kurokawa I, Kumano K, Murakawa K, et al. The change in intensity and persistence in a prospective Italian cohort of patients aged 50 and over in Italy: results from a gp-based survey of health state impairment and treatment patterns in patients with postherpetic neuralgia. Acta Neurol Scand 2012;125:195–201.

Welch CM, Vråle J, et al. Measuring herpetic neuralgia and predisposing factors in elderly patients older than 60 years. J Pain 2013;14:261–7.

Yawn BP, Wollan PC, Kurland MJ, et al. Herpes zoster recurrences more frequent than previously reported. Mayo Clin Proc 2011;86:88–93.

Jeong S, Kim I. Recurrence rate of herpes zoster during the previous decade. Korean J Dermatol 2012;50:287–9.

Tseng HF, Chi M, Smith N, et al. Herpes zoster vaccine and the incidence of recurrent herpes zoster in an immunocompetent elderly population. J Infect Dis 2012;206:190–5.

Ghaznavi NW, Virdi A, Dayan A, et al. Herpes zoster ophthalmicus: comparison of disease in patients 60 years and older versus younger than 60 years. Ophthalmology 2011;118:2242–50.

Borkar DS, Tham VM, Esterberg E, et al. Incidence of herpes zoster ophthalmicus: results from the pacific ocular inflammation study. Ophthalmology 2013;120:451–6.

Bahay S, Alemayehu W. Clinical profile of herpes zoster ophthalmicus in Ethiopians. Clin Infect Dis 1997;24:1256–60.

Liesegang TJ. Herpes zoster ophthalmicus: natural history, risk factors, clinical presentation, and morbidity. Ophthalmology 2008;115(Suppl 2):S3–12.

Zaal MJ, Völker-Dieben HJ, D’Amorano V, et al. Visual prognosis in immunocompetent patients with herpes zoster ophthalmicus. Br J Ophthalmol 2007;91:153–8.

Yawn BP, Wollan PC, St Sauver JL, et al. Herpes zoster ophthalmicus: rates of varicella and herpes zoster before varicella vaccine introduction: a baseline assessment of the shifting epidemiology of varicella disease. Pediatr Infect Dis J 2001;20:641–5.

Gahner ES, Miraglia F, et al. Herpes zoster: a retrospective study at Tamathibodi Hospital. J Med Assoc Thai 2005;88:678–81.

Aunhachoke K, Bussaratid V, Chirachanakul P, et al. Measuring herpes zoster, zoster-associated pain, post-herpetic neuralgia-associated loss of quality of life, and healthcare utilization and costs in Thailand. Int J Dermatol 2011;50:428–35.

Goh CL, Kho L. A retrospective study of the clinical presentation and outcome of herpes zoster in a tertiary dermatology outpatient referral clinic. Int J Dermatol 1997;36:667–72.

Chaudhary SD, Dashore A, Pahwa US. A clinico-epidemiologic profile of herpes zoster in North India. Indian J Dermatol Venereol Leprol 1987;53:213–16.

Abdul Latheef EP, Rawthahn K. Herpes zoster: a clinical study in 205 patients. Indian J Dermatol 2011;56:529–32.

Vujacic C, De Wouters L, Margari A, et al. Assessment of burden due to herpes zoster in Argentina: a prospective observational study. Value Health 2013;16:A688.

Oster G, Harding G, Dunne D, et al. Pain, medication use, and health-related quality of life in older persons with postherpetic neuralgia: results from a population-based survey. J Pain 2005;6:365–6.

Reda H, Green K, Rice FL, et al. Natural history of herpes zoster: late follow-up of 3.9 years (n=43) and 7.7 years (n=10). Pain 2013;154:2227–33.

Watson CP, Oaklander AL. Postherpetic neuralgia. Pain Pract 2002;2:296–307.

Hope-Simpson RE. Postherpetic neuralgia. J R Coll Gen Pract 1972;25:571–5.

Bowsher D. The lifetime occurrence of herpes zoster and prevalence of post-herpetic neuralgia: a retrospective survey in an elderly population. Eur J Pain 1999;3:335–42.

McKenzie MM, Ongerth CC. A 9-year follow up of post herpetic neuralgia and predisposing factors in elderly patients followed for 4 years. J Infect Dis 2009;59:416–20.

van Severen R, Sadosky A, Lucero M, et al. A cross-sectional survey of health state impairment and treatment patterns in patients with postherpetic neuralgia. Age Ageing 2006;35:132–7.

Epstein E. Recurrences in herpes zoster. Cutsis 1980;26:378–9.

Yawn BP, Wollan PC, Kurland MJ, et al. Herpes zoster recurrences more frequent than previously reported. Mayo Clin Proc 2011;86:88–93.

Jeong S, Kim I. Recurrence rate of herpes zoster during the previous decade. Korean J Dermatol 2012;50:287–9.

Tseng HF, Chi M, Smith N, et al. Herpes zoster vaccine and the incidence of recurrent herpes zoster in an immunocompetent elderly population. J Infect Dis 2012;206:190–5.

Ghaznavi NW, Virdi A, Dayan A, et al. Herpes zoster ophthalmicus: comparison of disease in patients 60 years and older versus younger than 60 years. Ophthalmology 2011;118:2242–50.

Borkar DS, Tham VM, Esterberg E, et al. Incidence of herpes zoster ophthalmicus: results from the pacific ocular inflammation study. Ophthalmology 2013;120:451–6.

Bayu S, Alemayehu W. Clinical profile of herpes zoster ophthalmicus in Ethiopians. Clin Infect Dis 1997;24:1256–60.

Liesegang TJ. Herpes zoster ophthalmicus: natural history, risk factors, clinical presentation, and morbidity. Ophthalmology 2008;115(Suppl 2):S3–12.

Zaal MJ, Völker-Dieben HJ, D’Amorano V, et al. Visual prognosis in immunocompetent patients with herpes zoster ophthalmicus. Acta Ophthalmol Scand 2003;80:1646–50.

Womack LW, Liesegang TJ. Complications of herpes zoster ophthalmicus. Arch Ophthalmol 1983;101:42–5.

Harding SP, Lipton JR, Wells JC. Natural history of herpes zoster. Mayo Clin Proc 2000;75:295–300.

Lin F, Hadler JL. Epidemiology of primary varicella and herpes zoster hospitalizations: the pre-varicella vaccine era. J Infect Dis 2000;181:987–905.

Coplan P, Black S, Rojas C, et al. Incidence and hospitalization rates of varicella and herpes zoster before varicella vaccine introduction: a baseline assessment of the shifting epidemiology of varicella disease. Pediatr Infect Dis J 2001;20:641–5.

Gil A, San-Martín M, Carrasco P, et al. Epidemiology of severe varicella-zoster virus infection in Spain. Vaccine 2004;22:3947–51.

Gil A, Gil R, Alvaro A, et al. Burden of herpes zoster requiring hospitalization in Spain during a seven-year period (1998–2004). BMC Infect Dis 2009;9:55.

Bayas JM, Gil R, Llopia A, et al. Hospitalizations due to herpes zoster and postherpetic neuralgia in Catalonia, 1998–2003. Vacunas 2011;12:122–4.

Gil-Prieto R, Walter S, Gonzalez-Escalada A, et al. Different vaccination strategies in Spain and its impact on severe varicella and zoster. Vaccine 2014;32:77–83.
137. Mesquita M, Froes F. Hospital admissions for herpes zoster in Portugal between 2000 and 2010. *Acta Med Port* 2013;26:531–6.

138. Mahamud A, Marin M, Nickell SP, *et al*. Herpes zoster-related deaths in the United States: validity of death certificates and mortality rates, 1979–2007. *Clin Infect Dis* 2012;55:960–6.

139. Yawn BP, Wollan P, St Sauver J. Comparing shingles incidence and complication rates from medical record review and administrative database estimates: how close are they? *Am J Epidemiol* 2011;174:1054–61.

140. Lee BW. Review of varicella zoster seroepidemiology in India and Southeast Asia. *Trop Med Int Health* 1998;3:886–90.

141. Vergara-Castañeda A, Escobar-Gutiérrez A, Ruiz-Tovar K, *et al*. Epidemiology of varicella in Mexico. *J Clin Virol* 2012;55:51–7.

142. Niagasako EM, Johnson RW, Griffin DR, *et al*. Geographic and racial aspects of herpes zoster. *J Med Virol* 2003;70(Suppl 1): S20–3.

143. Schmidt-Chanasit J, Sauerbrei A. Evolution and world-wide distribution of varicella-zoster virus clades. *Infect Genet Evol* 2011;11:1–10.

144. Loparev VN, Gonzalez A, Deleon-Carnes M, *et al*. Global identification of three major genotypes of varicella-zoster virus: longitudinal clustering and strategies for genotyping. *J Virol* 2004;78:8349–58.

145. Morse SS. Factors in the emergence of infectious diseases. *Emerg Infect Dis* 1995;1:7–15.

146. Sengupta N, Taha Y, Scott FT, *et al*. Varicella-zoster-virus genotypes in East London: a prospective study in patients with herpes zoster. *J Infect Dis* 2007;196:1014–20.

147. Sauerbrei A, Wutzler P. Different genotype pattern of varicella-zoster virus obtained from patients with varicella and zoster in Germany. *J Med Virol* 2007;79:1025–31.

148. Wahrendorf M, Reinhardt JD, Siegrist J. Relationships of disability with age among adults aged 50 to 85: evidence from the United States, England and continental Europe. *PLoS ONE* 2013;8: e71893.

149. Johnson RW, Wassner G, Saddier P, *et al*. Postherpetic neuralgia: epidemiology, pathophysiology and management. *Expert Rev Neurother* 2007;7:1581–95.

150. Dworkin RH, Carrington D, Cunningham A, *et al*. Assessment of pain in herpes zoster: lessons learned from antiviral trials. *Antiviral Res* 1997;32:73–85.

151. Coplan PM, Schmader K, Nikas A, *et al*. Development of a measure of the burden of pain due to herpes zoster and postherpetic neuralgia for prevention trials: adaptation of the brief pain inventory. *J Pain* 2004;5:344–56.