Nickel, a widely used heavy metal, exerts potent toxic effects on peripheral tissues as well as on the reproductive system. Low dietary protein coupled with exposure to this metal induces more severe changes, including biochemical defects, structural disorders, and altered physiologic functions. This study was designed to assess the effects of nickel sulfate on testicular steroidogenesis and to ascertain whether such alterations are reversible with normal protein and protein-restricted dietary regime. Nickel sulfate (2 mg/100 g body weight [bw]) dissolved in double-distilled water was administered on alternate days for 10 doses in a normal protein diet (18% casein) and a protein-restricted diet (5% casein) to Wistar male albino rats (bw 160 ± 5 g). Two groups, one with a normal protein diet and the other with a protein-restricted diet, served as controls. Twenty-four hours after the last treatment, all the animals except those in withdrawal groups were sacrificed by decapitation. We observed a significant reduction in the activities of the testicular steroidogenic enzymes and plasma testosterone concentration accompanied by a significant elevation in cholesterol and ascorbic acid level in both dietary groups. After 15 days of withdrawal from the nickel sulfate treatment, the testicular steroidogenic enzymes, along with plasma testosterone level, improved significantly in both normal protein-fed and protein-restricted dietary groups. The effects of nickel on testicular cholesterol and ascorbic acid concentration were also reduced after withdrawal. Our results indicate that nickel sulfate affects the steroidogenic enzymes, causing alteration in the formation of testosterone in both dietary groups, which was manifested in the elevated cholesterol and ascorbic acid level with decreased activities of steroidogenic enzymes in adult rats testes. However, these alterations were reversible in both groups of animals fed normal protein diets and protein-restricted diets. Key words: hydroxysteroid dehydrogenase, nickel sulfate, protein restriction, testes, testosterone.

Materials and Methods

Animals and treatment. Adult (age 60–70 days) laboratory-bred male Wistar rats, weighing 160 ± 5 g, were initially maintained on standard laboratory stock diet and water ad libitum. They were acclimatized for 7 days to the laboratory conditions at 22–24°C and a 12-hr light:dark cycle. Rats were then divided into six equal groups of 10 each, and five animals were kept in each metabolic wire cage (24 in x 12 in x 8 in). Three groups were fed a normal protein diet (18% casein), and the other three groups were fed a protein-restricted isocaloric diet (5% casein; Table 1). The low-protein diet (5% casein) used in the present study was prepared by replacing a portion of the protein source (casein) in the normal stock diet with starch.

After 3 weeks of acclimatization, in the above mentioned dietary regime group 1 (18% casein) and group 4 (5% casein) served as controls and received the appropriate volume of the vehicle injected intraperitoneally. Groups 2 and 5 animals were treated with nickel sulfate (Sigma, Chemicals, St. Louis, MO) intraperitoneally in double-distilled water at a dose of 2 mg/100 g body weight (bw) on alternate days for 10 doses (15). This was an effective dose, and it does not cause any deleterious effect on the kidney because it is far below from the LD₅₀ value of nickel sulfate. Groups 3 and 6 animals received the...
same dose of nickel sulfate as groups 2 and 5, but they were given an additional recovery period of 15 days after dose 10. The dietary status was maintained by pair feeding. The chances of nickel toxicity occurring under these circumstances by the oral route are remote because a large amount of nickel is required to produce a toxic effect by ingestion. In contrast to nickel salts administrated orally, nickel salts administrated intraperitoneally or subcutaneously are highly toxic (3). Hence, nickel sulfate was administrated intraperitoneally in this study.

We recorded the body weights of all rats on day 1 of the dietary treatment, on day 1 of the nickel sulfate injection, and just before sacrifice. At the end of the nickel sulfate treatment, animals of all groups except those of groups 3 and 6 were fasted overnight and sacrificed by decapitation from 0700 to 1100 hr to avoid any possible diurnal variation. The entire experimental protocol was approved by the Calcutta University ethical committee on animal research, and utmost care was taken because all rats were sacrificed by decapitation from 0700 to 1100 hr to avoid any possible diurnal variation.

Study of testicular steroids. We used the right testes of each animal to estimate the activity of the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) and to estimate cholesterol and ascorbic acid content. For enzymatic study, testicular tissue was homogenized (20% glyc- erol, 5 mM potassium phosphate, 1 mM ercol, 5 mM potassium phosphate, 1 mM EDTA) and then centrifuged at 10,000 rpm at 4°C for 30 min. The supernatant was decanted. Enzyme activities were measured by optical measurement (absorbance at 340 nm) of the rate of reduction of pyridine nucleotides (NAD or NADP) according to the method of Lowry et al. (19). The enzyme activity was expressed in units per milligram of protein. We estimated the cholesterol (20) and ascorbic acid (27) content spectrophotometrically.

Study of plasma testosterone. We carried out radioimmunoassay of plasma testosterone according to the method of Coombs (22) using [125I]-testosterone (Diagnostic Products Corp., Los Angeles, CA, USA) and used 13% polyethylene glycol to separate antibody-bound and free hormone according to the method of Anderson et al. (23). All samples were assayed in duplicate. Because chromatographic purification of the samples was not performed, the testosterone values are the sum of testosterone and dehydrotestosterone (plasma levels of dehydrotestosterone are only about 1/10 of testosterone levels, and the cross-reactivity is typically less than 5%). The coefficient of variance within the assay was 6.2%. Between-assay variance was not determined because all samples were measured in a single assay. The average sensitivity of the assay was 5 pg testosterone/tube at the 95% confidence level. The blank plasma value was 40 pg testosterone/mL of plasma (n = 20), as determined by the assay of a pool of adult male rat plasma after treatment twice with 0.2 mL dextran-coated charcoal (2% charcoal, 0.5% dextran)/mL plasma. We determined the accuracy of the assay by adding 1 mg testosterone/mL (nonradioactive) to 20 plasma samples.

Statistical analysis. We calculated the mean ± SEM values for each group. To determine the significance of the intergroup differences, each parameter was analyzed separately and one-way analysis of variance (ANOVA) was carried out at 5% of Fisher’s distribution. To find out which of the groups differed among themselves, we applied Duncan’s multiple range test with the level of significance fixed at p < 0.05 (24).

Results

The nickel sulfate-treated rats showed a significant decrease in the growth rate, as indicated by the body weights (Table 2) of the treated rats in both the normal protein-fed and protein-restricted groups. In case of withdrawal groups (groups 3 and 6), marked improvement in body weights was observed. Table 3 shows that the relative weights of testes significantly decreased in all the experimental groups (groups 2, 3, 5, 6) compared to their respective controls (groups 1 and 4). Withdrawal groups in both dietary regimes showed a significant improvement in testicular weight. An insignificant decrease of seminal vesicle weights was observed after nickel sulfate treatment.

Table 1. Composition of normal and protein-restricted diets.

Dietary components	Normal diet (%)	Protein-restricted diet (%)
Carbohydrate (amylopectin)	70	83
Fat (peanut oil)	7	7
Protein (casein)	18	5
Salt mixture	4	4
Vitamin mixture	1	1

Table 2. Changes in body weight after nickel sulfate treatment (2 mg/100 g bw for 10 days).

Group	Day of 1st injection	Day of sacrifice	Percent change
1	190 ± 24.2	203 ± 4.2	0.01
2	195 ± 4.8	162 ± 3.4	0.001
3	194 ± 5.4	174 ± 4.8	0.001
4	160 ± 3.4	150 ± 4.2	0.001
5	160 ± 4.2	129 ± 4.2	0.001
6	170 ± 3.8	144 ± 3.8	0.001

Each value is mean ± SEM of 10 observations in each group. In each column, values with different superscripts are significantly different from each other (p < 0.05). Group 1: normal protein diet (18% casein); group 2: normal protein diet + NiSO4; group 3: normal protein diet + NiSO4 + withdrawal; group 4: protein-restricted diet (5% casein); group 5: protein-restricted diet + NiSO4; group 6: protein-restricted diet + NiSO4 + withdrawal.

Figure 1. Percentage change in testicular cholesterol weight after nickel treatment. E1, group 1 vs. group 2; E2, group 1 vs. group 3; E3, group 1 vs. group 4; E4, group 1 vs. group 5; E5, group 1 vs. group 6.
sulfate treatment in all the experimental groups. The percent changes in testicular weight in both normal protein-fed and protein-restricted groups after nickel sulfate treatment are depicted in Figure 1.

Table 4 depicts the changes in the testicular cholesterol and ascorbic acid concentration after nickel sulfate treatment in the same experimental condition. Significant increases in ascorbic acid and cholesterol level occurred after nickel sulfate administration in all the experimental groups compared to their respective controls, whereas the withdrawal groups in both dietary regimens showed significant reductions compared to control groups.

Nickel sulfate treatment significantly reduced the activities of the two testicular steroidogenic enzymes 3β-HSD and 17β-HSD and plasma testosterone level (Table 4) in both dietary experimental groups. In contrast, 15 days after withdrawing nickel sulfate from rats in both dietary regimens (groups 3 and 6), the two steroidogenic enzymes and plasma testosterone level showed a significant recovery compared to nickel sulfate-treated groups. Percent changes in testicular cholesterol, ascorbic acid, 3β-HSD, 17β-HSD, and plasma testosterone level in both normal protein-fed and protein-restricted groups after nickel treatment are depicted in Figures 2 and 3.

We also observed that protein restriction itself produced a deleterious effect on body weight, organ weight, concentration of cholesterol, ascorbic acid, 3β-HSD, and plasma testosterone, but not on 17β-HSD activities (Tables 2–4).

Discussion

Our results indicate that nickel sulfate has an adverse effect on total body weight and on weights of testes under both normal and protein-restricted conditions, but a partial recovery took place in withdrawal groups under both dietary conditions. Loss of body weight after nickel sulfate administration indicates the interference of protein metabolism, presumably by inhibiting enzymatic pathways (1). The reduction in weights of testes and accessory glands is likely caused by lowered production of testicular androgen, possibly as a result of loss of mass of Leydig cells (27,28). Nickel sulfate induced a decrease in testicular weight, with decreased sperm concentration and motility (14). Nickel sulfate degenerated the seminal epithelium of testes and reduced testicular weight (29).

Steroidogenesis in the testes is under the physiologic control of two dehydrogenases. A constant supply of cholesterol and ascorbic acid is required for the synthesis of steroid hormones (30). Both dehydrogenases are directly involved in biosynthesis of testosterone from pregnenolone as well as androstenedione. Any alteration in the activity of these two enzymes affects androgen production. Reduced activities of these steroidogenic enzymes in mature testes of adults rats indicate reduced steroidogenesis (30).

The role of cholesterol as a precursor molecule in the synthesis of steroids is well established (31). In this study, the cholesterol content in the testes of experimental groups of rats showed significant increases compared to their respective dietary control groups. This high accumulation of cholesterol may suggest that cholesterol is not used in testosterone biosynthesis and thereby corroborate nickel sulfate-induced reduction in steroidogenesis.

Ascorbic acid, an easily diffusible water-soluble biologic reductant, is found in abundance in testes (32), where it plays an important role in testicular hormonogenesis (33). Nickel sulfate induced an increase in ascorbic acid concentration in both normal and protein-restricted groups, reflecting that ascorbic acid is not used in the process of testicular steroidogenesis (33). Nickel might have some influence on the distribution and concentration of ascorbic acid, which in turn influences the physiologic fate of the metallic ions by a separate type of mechanism (34).

The alteration of testicular steroidogenic activities and concentration of cholesterol and ascorbic acid in the protein-restricted condition is higher than that in normal protein condition, which indicates that the toxic effects of nickel were aggravated by protein restriction.

Our investigation further revealed that nickel sulfate induced a decreased plasma testosterone level in both dietary experimental groups. Nickel also affects the hypothalamic–pituitary–testicular axis (29). Metal exposure decreased the neurotransmitter content in anterior and mediobasal hypothalamus and decreased circulating levels of luteinizing hormone (LH) and testosterone (35). Our investigations show that nickel sulfate affects the hormonal milieu of the testes in both dietary groups. The hormonal milieu originates in the hypophalamus, which releases gonadotropin-releasing hormone in a pulsatile manner. This results in secretion of LH, which in turn stimulates the Leydig cell production of testosterone.

The production of testicular testosterone requires cholesterol and ascorbic acid, along with 3β-HSD and 17β-HSD (36). Low level of plasma testosterone may be due to a direct effect of nickel on the testicular hormonogenesis, which is supported by the decrease in steroidogenic enzyme activities with a concomitant increase in cholesterol and ascorbic acid levels (Table 4, Figures 2 and 3). The decrease in plasma testosterone level in protein-restricted experimental groups after nickel sulfate treatment is higher than in the normal dietary protein experimental groups (Table 4). Possibly, the low level of dietary testosterone in protein-restricted rats is due to a decreased production of testosterone from cholesterol through enzyme 3β-HSD, which catalyzes the conversion of cholesterol to pregnenolone.

The alterations in the activities of 3β-HSD and 17β-HSD, as well as the decrease in plasma testosterone levels were dose dependent, with significant reductions compared to control groups. The percent changes in testicular cholesterol, ascorbic acid, 3β-HSD, 17β-HSD, and plasma testosterone concentration in rats.

Table 4. Effect of nickel (2 mg/100 g bw) on testicular cholesterol, ascorbic acid, 3β- and 17β-hydroxysteroid dehydrogenase, and plasma testosterone concentration in rats.

Group	Cholesterol (mg/g tissue)	Ascorbic acid (mg/g tissue protein)	3β-HSD (U/mg protein)	17β-HSD (U/mg protein)	Testosterone (nmol/mL)
1	86.35 ± 4.80^d	147.42 ± 8.32^d	8.97 ± 0.18^d	6.50 ± 0.29^d	3.27 ± 0.06^d
2	142.48 ± 8.34^d	194.32 ± 9.48^d	6.57 ± 0.23^d	5.10 ± 0.21^d	2.43 ± 0.10^d
3	100.28 ± 7.32^c	175.32 ± 9.21^c	7.83 ± 0.21^c	6.04 ± 0.22^d	2.84 ± 0.07^c
4	125.34 ± 8.28^b	170.46 ± 5.78^b	7.51 ± 0.22^b	6.10 ± 0.21^b	2.93 ± 0.11^c
5	168.32 ± 9.40^d	205.48 ± 10.41^d	4.21 ± 0.18^d	4.04 ± 0.11^c	2.17 ± 0.29^b
6	138.48 ± 10.30^c	188.32 ± 7.81^d	6.20 ± 0.21^d	5.34 ± 0.28^b	2.52 ± 0.12^d

Each value is mean ± SEM of 10 observations in each group. In each column, values with different superscripts were significantly different from each other (p < 0.05). Group 1: normal protein diet (18% casein); group 2: normal protein diet + NiSO4; group 3: normal protein diet + NiSO4 + withdrawal; group 4: protein-restricted diet (5% casein); group 5: protein-restricted diet + NiSO4; group 6: protein-restricted diet + NiSO4 + withdrawal.

Figure 2. Percent change in testicular cholesterol and ascorbic acid concentration after nickel treatment. E1, group 1 vs. group 2; E2, group 1 vs. group 3; E3, group 1 vs. group 4; E4, group 1 vs. group 5; E5, group 1 vs. group 6.

Figure 3. Percent change in testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase and plasma testosterone concentration after nickel treatment. E1, group 1 vs. group 2; E2, group 1 vs. group 3; E3, group 1 vs. group 4; E4, group 1 vs. group 5; E5, group 1 vs. group 6.
protein intake decreases synthesis of testicular enzymes, lowering the testosterone level, which is further aggravated by exposure of nickel (37). After 15 days of withdrawal from the nickel sulfate treatment, the effects of nickel on testicular cholesterol, ascorbic acid, β-HSD, and plasma testosterone content were reduced in normal protein-fed as well as protein-restricted dietary groups. This may be explained by the fact that withdrawal from nickel sulfate causes an improvement of testicular steroidogenesis.

Simple dietary protein restriction induced reduction of body weight, organ weight, testicular cholesterol, and plasma testosterone level with a concomitant increase of testicular cholesterol and ascorbic acid concentration reflecting biochemical defects, structural disorders, and altered physiologic function. The organism depends essentially on dietary protein that directly or indirectly regulates biochemical processes (38). It has been reported that nickel sulfate adversely affects the expression of genetic information by reducing DNA, RNA, and protein concentration in the testes of albino rats fed normal protein and protein-restricted diets (14). A relationship between the threshold level of nickel toxicity and dietary protein levels may be considered (14). Nickel sulfate appears to adversely affect the biochemical microenvironment of the testes of albino rats fed a normal protein diet, which is further aggravated in protein-restricted diets. However, all these alterations may be reversible.

REFERENCES AND NOTES

1. Das KK, Dasgupta S. Alteration of testicular biochemistry during protein restriction in nickel treated rats. Biol Trace Elem Res 60(3):243–249 (1997).
2. WHO. Nickel Guidelines for Drinking Water Quality, 2nd ed., addendum, Vol. 2. Health Criteria and Other Supporting Information. Geneva: World Health Organization, 1998;48–61.
3. Nielsen FH, Shuler TR, Mcleod TG, Zimmerman TJ. Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in the rat. J Nutr 114:1280–1288 (1984).
4. Das KK, Das SN, Dasgupta S. Influence of ascorbic acid against nickel induced hepatic lipid peroxidation in rats. J Basic Clin Physiol Pharmacol 13(3):187–194 (2001).
5. Dieter MF, Jameson CW, Tucker AN, Luster MJ, French JE, Hong HL, Boorman GA. Evaluation of tissue deposition myelopoietic and immunologic responses in mice after long term exposure to nickel sulfate in the drinking water. J Toxicol Environ Health 24(3):357–372 (1988).
6. Ottolenshi AD, Haseeman JK, Payne WW, Falk HL, MacFarland RN. Inhalation of nickel sulphide in pulmonary carcinogenesis of rats. J Natl Cancer Inst 54:1165–1172 (1974).
7. Sunderman FW, Donnelly AJ. Studies of nickel carcinogenesis metastasizing pulmonary tumors in rats induced by the inhalation of nickel carbonyl. Am J Pathol 46:1027–1032 (1965).
8. Phatak SS, Patwardhan VN. Toxicity of nickel. J Sci Ind Res 9:70–76 (1950).
9. Angerer J, Lehner G. Occupational chronic exposure to metals. II. Nickel exposure of stainless steel welders—biological monitoring. Int Arch Occup Environ Health 62(1):10–19 (1990).
10. Scansetti G, Maina G, Botta GC, Bambace P, Spinelli P. Exposure to cobalt and nickel in the hard metal production industry. Int Arch Occup Environ Health 71(1):60–63 (1998).
11. Das KK, Dasgupta S. Studies on the role of nickel in the metabolism of ascorbic acid and cholesterol in experimental animal. Ind J Physiol and Allied Sci 53(2):58–61 (1998).
12. Luckey CD, Venugopal B. Metal Toxicity in Mammals, Vol 2. New York: Plenum Press, 1974.
13. Dasgupta S, Biswas SK, Das KK. Effect of nickel on acid and alkaline phosphate activities in the reproductive system of male rats during protein restriction. Med Sci Res 17:95–99 (1989).
14. Das KK, Dasgupta S. Effect of nickel on testicular nucleic acid concentration of rats on protein restriction. Biol Trace Elem Res 73(2):175–180 (2000).
15. Borders E, Papillian VV. Myocardial changes induced by nickel as in association with cadmium. Rev Ig Bacteriol Trace Elem Res 73(2):175–180 (2000).
16. Declaration of Helsinki (1964), amended by World Medical Assembly, Venice, Italy, 1983. Br Med J 313(7070):1448–1449 (1996).
17. Talalay P. Hydroxysteroid dehydrogenases. In: Methods in Enzymology, Vol 5 (Clayton RB, ed). New York: Academic Press, 1962:512–516.
18. Jarabek J, Soluble 17p Hydroxysteroids dehydrogenase of human placenta. In: Methods in Enzymology, Vol 25 (Clayton RB, ed). New York: Academic Press, 1969:146–182.
19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin Phenol Reagent. J Biol Chem 193:265–275 (1951).
20. Sperry WM, Webb MA. Revision of the Schoenheimer-Sperry method for cholesterol determination. J Biol Chem 187:97–106 (1950).
21. Roe JH, Kueether GA. The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenyl hydrazine derivative of dehydro ascorbic acid. J Biol Chem 147:399–407 (1943).
22. Coombs R. 1 Iodine–125, testosterone RIA without chromatography. Clin Chem 25:Abstract No. 226 (1979).
23. Anderson PH, Fukushima K, Schiller HS. Radioimmunoassay of plasma testosterone with use of polyethylene glycol to separate antibody bound and free hormone. Clin Chem 21:706–714 (1975).
24. Steel RGD, Torrie JH. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960.
25. U.S. Pharmacopeia. Modified U.S.P. XIV salt mix. In: United States Pharmacopoeia 14:789 (1950). Available: http://ipdex.com/200950.htm [cited 9 August 2002].
26. American Institute of Nutrition. Report of the AIN adhoc committee on standards of nutritional studies. J Nutr 107:1340–1348 (1977).
27. Ray A, Chatterjee S, Bagchi P, Deb C. Effect of quinolones on testicular steroidogenesis in rats. Andrologia 20183–168 (1988).
28. Ng TB, Liu WK. Toxic effect of heavy metals on cells isolated from the rat adrenal and testes. In: Vitro Cell Dev Biol 26(1):24–28 (1990).
29. Pandey R, Kumar R, Singh SP, Saxena DK, Srivastava SP. Male reproductive effect on nickel sulfate in mice. Bioelectromagnetics 12(4):339–346 (1999).
30. Basile AH, Ferguson MM, McHart D. Developments in Steroids Histochemistry. New York: Academic Press, 1966.
31. Deb C, Mukherjee R, Kaul P, Mallick N. Pentose phosphate pathway and testicular steroidogenesis in male rats following ascorbic acid deficiency. Steroids 39(2):21–27 (1984).
32. Choudhury AR, Dewan A, Gandhi DN. Toxic effects of lead on testicular steroidogenesis in rats. Andrologia 20:163–168 (1988).
33. Hughes RE, Vitamin C. London: Applied Science Publishers, 1974.
34. Steel RGD, Torrie JH. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960.
35. Lafuente A, Marquez N, Perez-Lorezo M, Pazo D, Esquifino A. Cadmium effects on testicular function and testicular steroidogenesis in male rats. Int Arch Occup Environ Health 70:11–17 (1997).
36. Kolbe E. Recent knowledge concerning the biochemistry and significance of ascorbic acid. Z Gesamte Inn Med 39(2):21–27 (1984).
37. Choudhury AR, Dewan A, Gandhi DN. Toxic effects of lead on testicular function and testicular steroidogenesis in male rats. Int Arch Occup Environ Health 70:11–17 (1997).
38. American Institute of Nutrition. Report of the AIN adhoc committee on standards of nutritional studies. J Nutr 107:1340–1348 (1977).
39. Ray A, Chatterjee S, Bagchi P, Deb C. Effect of quinolones on testicular steroidogenesis in rats. Andrologia 20:183–168 (1988).
40. Ng TB, Liu WK. Toxic effect of heavy metals on cells isolated from the rat adrenal and testes. In Vitro Cell Dev Biol 26(1):24–28 (1990).
41. Pandey R, Kumar R, Singh SP, Saxena DK, Srivastava SP. Male reproductive effect on nickel sulfate in mice. Biometals 12(4):339–346 (1999).
42. Basile AH, Ferguson MM, McHart D. Developments in Steroids Histochemistry. New York: Academic Press, 1966.
43. Deb C, Mukherjee R, Kaul P, Mallick N. Pentose phosphate pathway and testicular steroidogenesis in male rats following ascorbic acid deficiency. Steroids 39(2):21–27 (1984).
44. Choudhury AR, Dewan A, Gandhi DN. Toxic effects of lead on testicular steroidogenesis in rats. Andrologia 20:163–168 (1988).
45. Hughes RE, Vitamin C. London: Applied Science Publishers, 1974.
46. Steel RGD, Torrie JH. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960.
47. Lafuente A, Marquez N, Perez-Lorezo M, Pazo D, Esquifino A. Cadmium effects on testicular function and testicular steroidogenesis in male rats. Int Arch Occup Environ Health 70:11–17 (1997).
48. Kolbe E. Recent knowledge concerning the biochemistry and significance of ascorbic acid. Z Gesamte Inn Med 39(2):21–27 (1984).
49. Hughes RE, Vitamin C. London: Applied Science Publishers, 1974.
50. Steel RGD, Torrie JH. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960.
51. Lafuente A, Marquez N, Perez-Lorezo M, Pazo D, Esquifino A. Cadmium effects on testicular function and testicular steroidogenesis in male rats. Int Arch Occup Environ Health 70:11–17 (1997).
52. Kolbe E. Recent knowledge concerning the biochemistry and significance of ascorbic acid. Z Gesamte Inn Med 39(2):21–27 (1984).
53. Hughes RE, Vitamin C. London: Applied Science Publishers, 1974.
54. Steel RGD, Torrie JH. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960.