The third logarithmic coefficient for the class S

Milutin OBRADOVIĆ1, Nikola TUNESKI2,*

1Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
2Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia

Received: 28.02.2020 • Accepted/Published Online: 31.08.2020 • Final Version: 21.09.2020

Abstract: In this paper we give an upper bound of the third logarithmic coefficient for the class S of univalent functions in the unit disc.

Key words: Univalent, third logarithmic coefficient

1. Introduction

Let A be the class of functions f that are analytic in the open unit disc $D = \{ z : |z| < 1 \}$ of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots,$$

(1.1)

and let S be its subclass consisting of functions that are univalent in the unit disc D.

The logarithmic coefficients of the function f given by (1.1) are defined in D by

$$\log \frac{f(z)}{z} = 2 \sum_{n=1}^{\infty} \gamma_n z^n.$$

(1.2)

By using (1.1), after differentiation and comparing the coefficients, we can obtain that $\gamma_1 = \frac{1}{2} a_2$, $\gamma_2 = \frac{1}{2} (a_3 - \frac{1}{2} a_2^2)$ and

$$\gamma_3 = \frac{1}{2} \left(a_4 - a_2 a_3 + \frac{1}{3} a_3^2 \right).$$

(1.3)

Very little is known about the estimates of the modulus of the logarithmic coefficients for the whole class S of normalized of univalent functions. The Koebe function $k(z) = \frac{z}{(1-z)^2} = \sum_{n=1}^{\infty} n z^n$ with $\gamma_n = \frac{1}{n}$ being extremal in majority estimates over the class S inspires a conjecture that $|\gamma_n| \leq \frac{1}{n}$ for $n = 1, 2, \ldots$ and $f \in S$. Apparently, this is true only for the class of starlike functions ([8]), but not for the class S in general ([5, Theorem 8.4, p.242]). Sharp estimates for the class S are known only for the first two coefficients, $|\gamma_1| \leq 1$ and $|\gamma_2| \leq \frac{1}{2} + \frac{1}{e}$.

In this paper we give an upper bound of $|\gamma_3|$ for the class S.

*Correspondence: nikola.tuneski@mf.edu.mk

2010 AMS Mathematics Subject Classification: 30C45, 30C50, 30C55.
It is worth mentioning that the problem of estimating the modulus of the first three logarithmic coefficients is widely studied for the subclasses of S and in some cases sharp bounds are obtained. Namely, sharp estimates for the class of strongly starlike functions of certain order and γ-starlike functions are given in [8] and [3], respectively, while nonsharp estimates for the class of Bazilevic, close-to-convex and different subclasses of close-to-convex functions are given in [4], [1] and [7], respectively.

2. Main result
As announced before, here is an estimate of the modulus of the third logarithmic coefficient for the whole class of univalent functions.

Theorem 2.1 For the class S we have

$$|\gamma_3| \leq \frac{\sqrt{133}}{15} = 0.7688\ldots$$

Proof In the proof of this theorem we will use mainly the notations and results given in the book of N. A. Lebedev ([6]).

Let $f \in S$ and let

$$\log \frac{f(t) - f(z)}{t - z} = \sum_{p,q=0}^{\infty} \omega_{p,q} t^p z^q,$$

where $\omega_{p,q}$ are called Grunsky’s coefficients with property $\omega_{p,q} = \omega_{q,p}$. For those coefficients we have the next Grunsky’s inequality ([5, 6]):

$$\sum_{q=1}^{\infty} q \left| \sum_{p=1}^{\infty} \omega_{p,q} x_p \right|^2 \leq \sum_{p=1}^{\infty} \frac{|x_p|^2}{p}, \quad (2.1)$$

where x_p are arbitrary complex numbers such that last series converges.

Further, it is well-known that if f given by (1.1) belongs to S, then also

$$f_2(z) = \sqrt{f(z^2)} = z + c_3 z^3 + c_5 z^5 + \cdots \quad (2.2)$$

belongs to the class S. Then for the function f_2 we have the appropriate Grunsky’s coefficients of the form $\omega_{2p-1,2q-1}^{(2)}$ and the inequality (2.1) has the form

$$\sum_{q=1}^{\infty} (2q - 1) \left| \sum_{p=1}^{\infty} \omega_{2p-1,2q-1}^{(2)} x_{2p-1} \right|^2 \leq \sum_{p=1}^{\infty} \frac{|x_{2p-1}|^2}{2p - 1}. \quad (2.3)$$

As it has been shown in [6, p.57], if f is given by (1.1) then the coefficients a_2, a_3, a_4 are expressed by Grunsky’s coefficients $\omega_{2p-1,2q-1}^{(2)}$ of the function f_2 given by (2.2) in the following way (in the next text we omit upper index 2 in $\omega_{2p-1,2q-1}^{(2)}$):

$$a_2 = 2\omega_{11},$$

$$a_3 = 2\omega_{13} + 3\omega_{11}^2,$$

$$a_4 = 2\omega_{33} + 8\omega_{11}\omega_{13} + \frac{10}{3}\omega_{11}^3. \quad (2.4)$$

1951
Now, from (1.3) and (2.3) we have

\[
\gamma_3 = \omega_{33} + 2\omega_{11}\omega_{13}
\]

On the other hand, from (2.4) for \(x_{2p-1} = 0, p = 3, 4, \ldots \) we have

\[
|\omega_{11}x_1 + \omega_{31}x_3|^2 + 3|\omega_{13}x_1 + \omega_{33}x_3|^2 \leq |x_1|^2 + \frac{|x_3|^2}{3}.
\]

(2.5)

From (2.5) for \(x_1 = 2\omega_{11}, x_3 = 1 \) and since \(\omega_{31} = \omega_{13} \), we have

\[
|2\omega_{11}^2 + |\omega_{13}|^2 + 3|\gamma_3|^2 \leq 4|\omega_{11}|^2 + \frac{1}{3},
\]

and from here

\[
|\gamma_3|^2 \leq \frac{1}{9} + \frac{4}{3}|\omega_{11}|^2 - \frac{1}{3}|2\omega_{11}^2 + \omega_{13}|^2
\]

\[
= \frac{1}{9} + \frac{4}{3}|\omega_{11}|^2 - \frac{1}{3}\left(4|\omega_{11}|^4 + |\omega_{13}|^2 + 4\text{Re} \{\omega_{13}\overline{\omega_{11}}^2\}\right)
\]

\[
= \frac{1}{9} + \frac{4}{3}|\omega_{11}|^2 - \frac{4}{3}|\omega_{11}|^4 - \frac{1}{3}|\omega_{13}|^2 - \frac{4}{3}\text{Re} \{\omega_{13}\overline{\omega_{11}}^2\}.
\]

Using the fact that

\[-|\omega_{13}|^2 \leq -|\text{Re} \{\omega_{13}\}|^2 = -(\text{Re} \{\omega_{13}\})^2,
\]

we obtain

\[
|\gamma_3|^2 \leq \frac{1}{9} + \frac{4}{3}|\omega_{11}|^2 - \frac{4}{3}|\omega_{11}|^4 - \frac{1}{3}(\text{Re} \{\omega_{13}\})^2 - \frac{4}{3}\text{Re} \{\omega_{13}\overline{\omega_{11}}^2\}.
\]

Next, without loss of generality using suitable rotation of \(f \) we can assume that \(0 \leq a_2 \leq 2 \) and \(a_2 = 2\omega_{11} \) receive that \(0 \leq \omega_{11} \leq 1 \). So, let put \(\omega_{11} = a, 0 \leq a \leq 1 \), and continue analysing

\[
|\gamma_3|^2 \leq \frac{1}{9} + \frac{4}{3}a^2 - \frac{4}{3}a^4 - \frac{1}{3}(\text{Re} \{\omega_{13}\})^2 - \frac{4}{3}a^2\text{Re} \{\omega_{13}\}.
\]

(2.6)

It is a classical result that for the class \(S \) we have \(|a_3 - a_2|^2 \leq 1 \) (see [9, p.5]), which is by (2.4) equivalent with

\[
|2\omega_{13} - \omega_{11}|^2 \leq 1.
\]

From here,

\[-1 \leq \text{Re} \{2\omega_{13} - \omega_{11}^2\} \leq 1,
\]

i.e.

\[-\frac{1}{2}(1 - a^2) \leq \text{Re} \{\omega_{13}\} \leq \frac{1}{2}(1 + a^2).
\]

(2.7)

If we put \(x_1 = 1 \) and \(x_3 = 0 \) in (2.5), then we get

\[
|\omega_{11}|^2 + 3|\omega_{13}|^2 \leq 1,
\]

which implies

\[
|\omega_{13}| \leq \frac{1}{\sqrt{3}}\sqrt{1 - |\omega_{11}|^2} = \frac{1}{\sqrt{3}}\sqrt{1 - a^2}.
\]

1952
Combining this with (2.7), we receive

\[-\frac{1}{2}(1 - a^2) \leq \text{Re} \{\omega_{13}\} \leq \frac{1}{\sqrt{3}} \sqrt{1 - a^2}\]

(because \(-\frac{1}{2}(1 - a^2) \geq -\frac{1}{\sqrt{3}} \sqrt{1 - a^2}\)).

By using (2.6), (2.7) and the notation \(t = \text{Re} \{\omega_{13}\}\) we obtain

\[|\gamma_3| \leq \frac{1}{9} + \frac{4}{3} a^2 - \frac{4}{3} a^4 - \frac{1}{3} t^2 - \frac{4}{3} a^2 t : \equiv \psi(a, t) = \frac{1}{9} + \frac{1}{3} \varphi(a, t),\]

where \(0 \leq a \leq 1, -\frac{1}{2}(1 - a^2) \leq t \leq \frac{1}{\sqrt{3}} \sqrt{1 - a^2}\) and \(\varphi(a, t) = 4a^2 - 4a^4 - t^2 - 4a^2 t\).

It remains to show that the maximal value of the function \(\psi(a, t)\) over the region \(\Omega = [0, 1] \times [-\frac{1}{2}(1 - a^2), \frac{1}{\sqrt{3}} \sqrt{1 - a^2}]\) equals \(\left(\frac{\sqrt{133}}{15}\right)^2 = \frac{133}{225}\), or equivalently that \(\varphi(a, t)\) has maximal value \(\frac{36}{25}\) on the same region.

Indeed, the system of equations

\[
\begin{cases}
\varphi'_a(a, t) = 8a - 16a^3 - 8at = 0 \\
\varphi'_t(a, t) = -4a^2 - 2t = 0
\end{cases}
\]

has unique real solution \(a = t = 0\) with \(\varphi(0, 0) = 0\), while on the edges of the region \(\Omega\) we have the following:

- for \(a = 0\) we have that the function \(\varphi(0, t) = -t^2\) on the interval \(-\frac{1}{2} \leq t \leq \frac{1}{\sqrt{3}}\) attains maximal value \(\varphi(0, 0) = 0\);

- when \(a = 1\), \(t\) can take single value, \(t = 0\), and in that case \(\varphi(1, 0) = 0\);

- for \(t = -\frac{1}{2}(1 - a^2)\), the function \(\varphi_a \left(-\frac{1}{2}(1 - a^2) \right) = -\frac{1}{4} (a^2 - 1) (a^2 - \frac{1}{25})\) is with maximal value \(\frac{36}{25}\) on the interval \(0 \leq a \leq 1\) attained for \(a = \frac{\sqrt{133}}{5}\);

- for \(t = \frac{1}{\sqrt{3}} \sqrt{1 - a^2}\), the values of the function

\[
\varphi \left(a, \frac{1}{\sqrt{3}} \sqrt{1 - a^2} \right) = \frac{1}{3} (-12a^4 + 13a^2 - 1) - \frac{4a^2}{\sqrt{3}} \sqrt{1 - a^2}
\]

\[\leq \frac{1}{3} (-12a^4 + 13a^2 - 1) < \frac{36}{25}.
\]

on the interval \(0 \leq a \leq 1\) are smaller than \(\frac{36}{25}\).

This completes the proof.

\[\square\]

References

[1] Ali MF, Vasudevarao A. On logarithmic coefficients of some close-to-convex functions. Proceedings of the American Mathematical Society 2018; 146 (3): 1131-1142. doi: 10.1090/proc/13817
[2] Cho NE, Kowalczyk B, Kwon OS, Lecko A, Sim YJ. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2020; 114. doi: 10.1007/s13398-020-00786-7

[3] Darus M, Thomas DK. α-logarithmically convex functions. Indian Journal of Pure and Applied Mathematics 1998; 29 (10): 1049-1059.

[4] Deng Q. On the logarithmic coefficients of Bazilevič functions. Applied Mathematics and Computation 2011; 217 (12): 5889-5894. doi: 10.1016/j.amc.2010.12.075

[5] Duren PL. Univalent function. New York, NY, USA: Springer-Verlag, 1983.

[6] Lebedev NA. Area principle in the theory of univalent functions. Moscow, Russia: Nauka, 1975 (in Russian).

[7] Thomas DK. The logarithmic coefficients of close-to convex functions. Proceedings of the American Mathematical Society 2016; 144 (2): 1681-1687. doi: 10.1090/proc/12921

[8] Thomas DK. On the coefficients of strongly starlike functions. Indian Journal of Mathematics 2016; 58 (2): 135-146.

[9] Thomas DK, Tuneski N, Vasudevarao A. Univalent Functions: A Primer. De Gruyter Studies in Mathematics, 69. Berlin, Germany: De Gruyter, 2018.