Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi

G R Sadimantara\textsuperscript{1}, B Kadidaa \textsuperscript{2}, Suaid \textsuperscript{1}, L O Safuan \textsuperscript{1} and Muhidin\textsuperscript{1}

\textsuperscript{1}Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, 93232 Indonesia

\textsuperscript{2}Postgraduate Program in Agricultural sciences, Halu Oleo University Kendari, Southeast Sulawesi, 93232 Indonesia

Email : gusti5@yahoo.com

Abstract. To evaluate the growth performance and yield stability of seven selected local upland rice genotypes, field experiment was conducted in Buton Utara during rainy season 2015 and 2016. Seven selected upland rice genotypes were grown in six different locations and evaluated in a randomized complete block design with three replications. The variables observed were plant height, leaf area, number of tillers, number of productive tillers, panicle length, number of grains per panicle, number of filled grain per panicle, percentage of unfilled grain, 1000 grain weight, grain dry weight, and grain yield (t/ha). The results were analyzed using analysis of variance and combined analysis of variance for the interaction of environment x cultivars. Data on various growth characters and yield stability indicated different among genotypes and significant effect followed by the DMRT test at the significant level $\alpha = 0.05$. The genotypes of Wakawondu, Wabalongka, and Mantebeka have high yield stability, while the genotypes of Waapolo, Warangka, Wahila Lambale, and Warara have low yield stability. Hence, Wakawondu, Wabalongka, and Mantebeka could be recommended for cultivation by the farmers in Buton Utara and these cultivars should be popularized in larger scale to make use of its superiority.

1. Introduction

Rice is the second largest produce cereal in the world in 158.3 million hectare area with annual production of about 685.24 million metric tons \cite{1} and the staple food for over one third of the world’s population, but more than 90% of rice is produced and consumed in Asia. Rice grain contains 75 to 80% starch, 12% water and 7% protein \cite{2-3}.

Rice is a very important staple food in Indonesia. Indonesia has been major rice producing but in another side as the main rice consumer \cite{4-5}. The rice demanding is expected to increase in line with the increase in population. The government of Indonesian has two police to reach rice self-sufficiency \cite{6}. First is through the increasing rice production and second through the decreasing level rice consumption, and promoting local source staple foods such sago \cite{7}, cassava or corn \cite{5}. One effort to improve rice production is through development of upland rice in dry land \cite{8}.

Upland rice comprises 11% of the total global rice production and is cultivated on about 14 million hectares \cite{9}. It is also important in cropping systems, because of the lack of irrigation facilities and lower cost of production \cite{10}. Genotype relationship is mainly based on information about plant
characteristic. Agronomic and morphological characters are usually used as an initial tool to distinguish between varieties [11]. The sustainability of rice production depends on the development of new rice cultivars with high yield and stable performance across diverse environments [12]. Many tools related to grain yield analysis are available for this purpose. One of the effective factors to study of stability is to determine interaction between genotype and environment and it was studied by many researchers on the various genotypes of rice [13-14]. The $G \times E$ interaction can cause differences in grain yield performance and stability of a genotype developed in different environments [15].

The stability of yield in cultivars in different places can be due to cultivar performance that derived from a specific collection of genes (G), the characteristic that associated factors of the environment in which it is grown (E), and the interaction between genotype and location which are usually conducted in various years and locations to satisfactorily stand for spatio temporal variation [16].

Statistical analyzed using AMMI analysis and biplot facility, the promising rice yield data were analyzed to determine the nature and magnitude of $G \times E$ interaction effects on grain yield in diverse production environments to identify high yielding and stable genotypes adapted to diverse production environments, and to determine the areas where rice genotypes would be adapted and produce economically competitive yields [17]. Present study was carried out to evaluate the growth performance and yield stability of seven promising local upland rice genotypes in the various locations and agro-climatic regions of North Buton Regency, Indonesia.

2. Materials and Methods

Seven selected upland rice genotypes were grown in six different locations and evaluated in a randomized complete block design (RCBD) in each location. The field was divided into three blocks; representing three replications. The seeds were directly grown in the soil plots. The local upland rice cultivars consisted of Wabalongka, Waapolo, Warangka, Wakawondu, Mantebeka, Wabila Lambale, and Warara.

Land preparation for the planting of seeds involved slashing of the bush, plowing and harrowing. The seeds were planted at the rate of three seeds per hole at a depth of 5 cm, with an inter and intra–row spacing of 25 x 25 cm. The plot size was 3 x 4 m². Several agronomic traits, i.e: plant height, leaf width, leaf length, flag leaf length, tillers number, and productive tillers number were observed to characterize the cultivars phenotypically. Data on grain yield and some other yield components, i.e: harvesting date, the number of grains per panicle, filled grains, unfilled grains, 1000 grain weight, and total grain yield ($t\text{ha}^{-1}$) at 14% moisture level were collected. The results were analyzed using analysis of variance and combined analysis of variance for the interaction of environment x cultivars. Data on various growth characters and yield stability indicated different among genotypes and significant effect followed by the DMRT test at the significant level $\alpha = 0.05$.

Overall characterization results data were analyzed using analysis of variance (ANOVA) and displayed descriptively. The mean differences were adjudged with Duncan’s Multiple Range Test (DMRT), Genotype-Environment Interaction (GEI) were estimated by the AMMI model [18]. All data were subjected to analysis using Cropstat version 7.2.

3. Results and Discussion

3.1. Growth components

Plant height of local upland rice recorded different among seven rice genotypes at observation on 30, 60, 90, and 120 days after planted (DAP) (Fig. 1). All cultivars gained different plant height at maturity due to various internodal lengths. The cultivars having longer internodes produced taller plants.

The findings are in agreement with those of other research stated that longer internodes increased plant heights in rice [19]. Genetic differences between different varieties also caused variation in plant lengths. Similar results were described that plant height depends on genetic character of a plant and environmental conditions [20]. Mantebeka cultivar gained the highest plant length at maturity (Fig. 1). From transplanting to maximum tillering stage it was similar to Warangka and Wabila lambale.
cultivars but afterwards length increased at much faster rate than others, so it became vulnerable to lodging. Other reported lodging in varieties having length of 4th and 5th internode equal to or more than 15 cm [21].

*Wakawondu* cultivar produced higher number of tillers as compared to other cultivars, except *Warangka* and *Montebeka* cultivars statistically the same (Fig. 2). It was due to their genetic variations. At maximum tillering stage *Warangka* achieved higher number of tillers than *Wakawondu* but this number decreased rapidly as compared to Wakawondu which retained significantly higher number at maturity.

![Plant height of seven cultivars at 30, 60, 90 and 120 DAP](image1)

![Tillers number of local upland rice at 60, 90, and 120 DAP](image2)

### 3.2. Yield components and yield

Yield components and yield of local upland rice cultivar obtained differed based on panicle length, grains number, filled grain number, fresh weight grain, dry weight grain, grain weight per clump, and yield t.ha⁻¹ (Table 1). The DMRT result shows that *Wabalongka* has longest panicle length compared with other cultivars, but was not significantly different with *Waapolo* and *Wabila Lambale* cultivars (Table 1). *Wa Apolo* found to be the cultivar with highest number of grains but was not significant different with *Wakawondu* cultivar.

The largest number of filled grain was obtained from *Wa Apolo* cultivar which was significantly different with other cultivars. The heaviest fresh and dry weight grains recorded on *Wakawondu* cultivar which was significantly different with other cultivars. *Warara* obtained as cultivar with the heaviest grain weight clump⁻¹, but was not significantly different with *Wakawondu*, *Wabalongka* and *Warangka* cultivars, respectively.

The highest yield (t.ha⁻¹) recorded on *Wakawondu* cultivar which was not significantly with *Wabalongka* and *Warangka* cultivars, but found significantly different from other cultivars. It can be considered that panicle number and grain number of almost local upland rice in the present study depends on tillers number and panicle length. Other reported that number of panicles depends on number of tillers and proportion of effective tillers [4].
showed that all cultivars significantly different to zero. This means all the cultivars are not stable and only adaptable to the specific region. Lauki and Peteta'a location have large absolute scores of IPCA 1 and small IPCA 2 means high productivity environment, so genotypes that planted at Lauki and Peteta'a sites will reflect the true genetic ability due to small environmental influences.

According to the character of grain dry weight per clump indicated all tested genotypes were stable in all locations, there were also specific cultivars adapted very well at some locations. Wabalongka and Warara cultivars were most adaptable at Eelahaji and Labajaya, while Warangka cultivar was most adaptable at Lauki. Waapo, Wakawondu and Wabila lambale cultivars were most adapted at Peteta'a, West Bubu and Labajaya, respectively.

Table 2. Stability analysis for grain dry weight (clump⁻¹) of seven upland rice genotypes in six environments

| Cultivars     | Average  | IPCA 1 | IPCA 2 | ASV   |
|---------------|----------|--------|--------|-------|
| Wabalongka    | 31.433   | 2.954  | 3.718  | 6.407*|
| Waapo         | 32.329   | -4.370 | 5.427  | 9.436*|
| Warangka      | 30.749   | -0.706 | -6.743 | 6.857*|
| Wakawondu     | 23.172   | -8.381 | 2.762  | 15.061*|
| Mantebeka     | 30.222   | 10.715 | 0.795  | 18.944*|
| Wabila lambale| 31.947   | -3.596 | -6.128 | 8.827*|
| Warara        | 26.487   | 3.385  | 0.168  | 5.982*|
| Location      | Average  | IPCA 1 | IPCA 2 |       |
| Lauki         | 28.354   | 5.633  | -3.115 |       |
| Peteta'a      | 32.036   | 10.372 | -0.254 |       |
| Eelahaji      | 37.109   | -2.408 | -2.079 |       |
| West Bubu     | 22.582   | -0.348 | 4.730  |       |
| Labajaya      | 33.496   | -8.167 | -6.636 |       |
| Ronta         | 23.285   | -5.082 | 7.354  |       |

*significant different to zero on ASV

Based on AMMI analysis with ASV value approach for the character of grain dry weight per panicle (Table 2) showed that all cultivars significantly different to zero. This means all the cultivars are not stable and only adaptable to the specific region. Lauki and Peteta'a location have large absolute scores of IPCA 1 and small IPCA 2 means high productivity environment, so genotypes that planted at Lauki and Peteta'a sites will reflect the true genetic ability due to small environmental influences.

The grain weight character per clump for all cultivars tested were stable at all locations, there were Wabalongka cultivar with specifically adapted to several locations (Table 2). Mantebeka and Warara cultivars were most adaptable at Eelahaji and Ronta, while Warangka cultivar was most adaptable at Lauki. Waapo, Wakawondu and Wabila lambale cultivars were most adapted at Peteta'a, West Bubu and Labajaya, respectively.
environments Lebajaya, Ronta and Peteta’a had long spokes therefore represent the most discriminating environments.

Fig. 3. AMMI 2 biplot for grain dry weight (clump\(^1\)) showing the interaction of IPCA2 against IPCA1 scores of seven upland rice genotype (V) in six environments

Genotypes and environments that fall in the same sectors interact positively; in contrast if they fall in opposite sectors interact negatively. If they fall into adjacent sectors, interaction is somewhat more complex. In the present study, the best genotype with respect to sites Lebajaya and Eelahaji was Wabila lambale and Warangka genotypes but unsuitable for Peteta’a. Genotype Waapolio and Wakawondu were suitable for Ronta and West Bubu but unsuitable for Lauki and Peteta’a. The AMMI model is better for partitioning the G x E into the causes of variation, which ease identification of environments’ potential and is used to identify superior genotypes either with specific adaptation or wide adaptation [26].

4. Conclusions

The genotypes of Wakawondu, Wabalongka, and Mantebeka have high yield stability, while the genotypes of Wa Apolo, Warangka, Wabila Lambale, and Warara have low yield stability. Hence, Wakawondu, Wabalongka, and Mantebeka could be recommended for cultivation by the farmers in Buton Utara and these cultivars should be popularized in larger scale to make use of its superiority.

References
[1] FAOSTAT 2011 Food and Agricultural commodities production / Countries by commodity (Rome : Food and Agriculture Organization of the United Nations Statistics Division)
[2] Oko AO, Ubi BE, Efisue AA and Dambaba N 2012 Comparative analysis of the chemical nutrient composition of selected local and newly introduced rice varieties grown in Ebonyi State of Nigeria Int. J. Agric.For. 2(2) 16-23
[3] Hossain MB, Islam MO and M. Hasanuzzaman 2008 Influence of different nitrogen levels on the performance of four aromatic rice varieties. Int. J. Agric. Biol. 10 693-96
[4] Muhidin, Jusoff K, Syam’un E, Musa Y, Kaimuddin, Meisanti, Sadimantara GR and Baka LR 2013 The development of upland red rice under shade trees World Applied Sciences Journal 24(1) 23-30
[5] Sutariati GAK, Khaeruni A, Pasolon YB, Muhidin and Mudi L 2016. The effect of seed bio-
invigoration using indigenous rhizobacteria to improve viability and vigor of upland rice (oryza sativa L.) Seeds International Journal of PharmTech Research 9(12) 565-73

[6] Kadidaa B, Sadimantara GR, Suaib, Safaun LO, Muhidin 2017 Genetic diversity of local upland rice (Oryza sativa L.) genotypes based on agronomic traits and yield potential in marginal land of North Buton Indonesia Asian Journal of Crop Science 9(4) 109-117

[7] Muhidin, Leomo S, Alam S and Wijayanto T 2016 Comparative studies on different agroecosystem base on soil physicochemical properties to development of sago palm on dryland International Journal of ChemTech Research 9(8) 511-18

[8] Syaiful SA, Syam’un E, Dachlan A, Jusoff K, Haerani N 2013 The effect of inoculating nitrogen fixing bacteria on production of rice World Applied Sciences Journal 26(26) 94-99

[9] Sohrabi M, Rafii MY, Hanafi MM, Akmar ASN and Latif MA 2012 Genetic diversity of upland rice germplasm in Malaysia based on quantitative traits The Scientific World Journal 2012 Article ID416291 p9

[10] Fageria NK, Carvalho MCS and dos Santos FC 2014 Response of upland rice genotypes to nitrogen fertilization Communications in Soil Science and Plant Analysis 45(15) 2058–66

[11] Sadimantara GR, Muhidin and Cahyono E 2014 Genetic analysis on some agro-morphological characters of hybrid progenies from cultivated paddy rice and local upland rice Advanced Studies in Biology 6(1) 7–18

[12] Akter A, Jamil Hassan M, Umma Kulsum M, Islam MR, Hossain K and Rahman MM 2014 AMMI biplot analysis for stability of grain yield in hybrid rice (Oryza sativa L.) J.Rice Res. 2(2) 1-4

[13] Lestari PA, Buang A, Ahmad J and Hajrial A 2010 Yield stability and adaptability of aromatic new plant type (NPT) rice lines J. Agron. Indonesia 38(3) 199–204

[14] Bose LK, Jambhulkar NN, Pande K and Singh ON 2013 Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions Chilean Journal of Agricultural Research 74 3-9

[15] Colombari Filho JM, de Resende MDV, de Morais OP, Pereira A, Guimarães EP and Pereira JA 2013 Upland rice breeding in Brazil: a simultaneous genotypic evaluation of stability, adaptability and grain yield Euphytica 192 117-29

[16] Karimizadeh R, Mohammadi M, Sabaghni N, Mahmoodi AA, Roustami B and Seyyedi F 2013 GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition Notulae Scientia Biologicae 5 256-62

[17] Islam MR, Anisuzzaman M, Khatun H, Sharma N, Islam MZ, Akter A and Biswas PS 2014 AMMI analysis of yield performance and stability of rice genotypes across different haor areas. Eco-friendly Agril. J 7(02) 20-24

[18] Zobel RW, Wright MJ and Gauch HG 1988 Statistical analysis of a yield trial Agronomy Journal 80 388-93

[19] Ashrafuzzaman M, Islam MR, Ismail MR, Shahidullah SM and Hanafi MM 2009 Evaluation of six aromatic rice varieties for yield and yield contributing characters Int. J. Agric. Bio. 11 616-620

[20] Kanegana MZ and Kargbo AM 2011 Effect of nitrogen topdressing at different growth stages on rice plant growth, yield and yield components. In: Report on experiments in rice cultivation techniques development course 3 Tsukuba Int Center Japan Int Coop Agency. pp-43-45

[21] Anandan A, Eswaran R, Sabesan T and Prakash M 2009 Additive main effects and multiplicative interactions analysis of yield performances in rice genotypes under coastal saline environments Advances in Biological Research 3(1-2) 43-4