Radiomics in radiotherapy: Applications and future challenges

Qingtao Qiu | Jinghao Duan | Yong Yin

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, PR China

Correspondence
Yong Yin, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117 Jinan, PR China.
Email: yinyongsd@126.com

Funding information
National Natural Science Foundation of China, Grant/Award Number: 81901743; Key Research and Development Program of Shandong Province, Grant/Award Numbers: 2018GSF118006, 2019GSF108134

Abstract
Radiomics has the potential to personalize patient treatment by using medical images that are already being acquired in clinical practice. Recently, with the development of computational and imaging technology, radiotherapy has brought unlimited opportunities driven by radiomics in individual cancer treatment and precision medicine care. This article reviews the advances in the application of radiomics in lung cancer, head and neck cancer, and other cancer sites. Additionally, we comment on the future challenges of radiomic research.

KEYWORDS
application and future challenges, radiomics, radiotherapy

1 | INTRODUCTION TO RADIOMICS

1.1 | What is radiomics?
Radiomics utilizes many, sometimes thousands, of automated feature extraction algorithms to transform region of interest imaging data into first-order or higher-order feature data.1,2 Furthermore, it improves the accuracy of clinical diagnosis, and has prognostic and predictive value by mining and analyzing the underlying relationship between the levels of the clinical data.3,4

1.2 | Why is radiomics a good choice to personalize patient treatment?
Radiomics rather than other -omics studies, which are advancing the development of radiation physics or cancer therapy, are now being utilized.5 There are three main aspects to the development of radiomics in radiology and oncology research:

1. There is an urgent clinical need.
 - Lack of more effective clinical methods to decode tumor heterogeneity.

2. Accurate computing technology as a guarantee.
 - Use of deep learning, machine learning, and artificial intelligence is on the rise.

 It is widely known that individual differences in tumors, as a result of tumor heterogeneity, are the key to the lack of effective treatment.6,7 Clinically, there is a great heterogeneity of tumors, and clinicians need clear decision-making information to support decisions about the treatment.8 Tumor heterogeneity is mainly manifested in morphology, gene expression, metabolism, proliferation, metastasis, and response to treatment.9 This might be the reason the same tumor type and treatment strategy results in a good prognosis in some patients, whereas similar patients have a recurrence or metastasis. The key concept behind radiomics is that the image contains more information than visual perception information. This hidden information can be extracted using complex algorithms to probe tumor heterogeneity.

2 | APPLICATION OF RADIOMICS IN RADIOThERAPY
As one of the three main means of tumor treatment, radiotherapy makes a major contribution to the cure rate of tumors. Radiotherapy has brought unlimited opportunities in cancer treatment, there is an
emerging and urgent need for personalized radiation therapy strategy that should be delivered. Radiomics is widely studied in the radiotherapy of lung cancer, and head and neck cancer. Here, we mainly introduce radiomics from these two aspects, and briefly explain the application in radiotherapy of other tumors.

2.1 | Radiomics in lung cancer

For locally advanced lung adenocarcinoma, radiomic features describing tumor phenotype were used as biomarkers for radiotherapy prognosis and had a strong correlation with distant metastasis. Radiation injury is one of the complications of radiotherapy. It was found that the difference in radiomic features increases with the accumulation of treatment dose, which could predict the incidence of radiation pneumonitis in patients with radiotherapy. Another study came to a similar conclusion, they found significant feature changes extracted from daily computed tomography (CT) as the treatment progressed. A rapid decrease in the mean CT number within gross tumor volume was associated with a higher survival rate. Also, part of the feature changes was found to be dose-related, which could be used to predict the clinical outcome according to the daily changes of CT. Patients with recurrent lung cancer after stereotactic body radiotherapy are often accompanied by ground-glass artifacts. Radiomics technology can detect local recurrence 2–5 months after stereotactic body radiotherapy, which is before that of a professional radiologist. Recently, a multicentric study reported that a prediction model incorporating positron emission tomography and CT radiomic features can accurately predict local recurrence with a sensitivity of 100% and a specificity of 96%. In patients with non-small cell lung cancer, radiotherapy can affect radiomic features, which can be used as a predictor of tumor clinical response at the end of radiotherapy, known as delta-radiomics (Δradiomics). Radiotherapy combined with the changes of Δradiomics (before and after radiotherapy) can better predict the overall survival and distant metastasis. Lung cancer radiomic studies mainly focus on the diagnosis, description of tumor biological characteristics, and prognosis. These studies provide additional information for the precise treatment of lung cancer by more fully mining the value behind the imaging.

2.2 | Radiomics in head and neck cancer

The morbidity and mortality of human papilloma virus (HPV)-positive oropharyngeal squamous cell carcinoma were higher than those of HPV-negative oropharyngeal squamous cell carcinoma. One study showed that CT imaging features can distinguish between HPV positive and HPV negative oropharyngeal squamous cell carcinoma and can be used to select appropriate treatment strategy. In head and neck cancer, such as oropharyngeal head and neck squamous cell carcinoma and non-oropharyngeal head and neck squamous cell carcinoma, different cell sublines have different radiosensitivity factors and different resistance to radiation. Radiomics can also identify sublines (subregions) of radioresistant cells in the tumor, so that individual therapeutic protocols can be developed to selectively increase the dose of radiation to these sublines of cells. In a 2014 study, Aerts et al. showed that a radiomic signature composed of four features models can provide prognostic information about intratumoral heterogeneity and can be used to predict survival, pathological grading, and gene expression typing. In addition to these studies, in head and neck cancer radiotherapy, the parotid gland usually receives a higher dose of radiation. Thus, its anatomical structure and radiomic features will change. The volume, mean intensity, fractal dimension, and entropy of the parotid gland decreased significantly at different time points during radiotherapy, which can be used to monitor the treatment response. For patients with glioblastoma, surgery and postoperative radiotherapy are often used. In these patients, radiotherapy with a uniform dose is usually associated with early recurrence. Rathore et al. used a support-vector machine, a machine learning algorithm, to grade the risk of peritumoral recurrence by extracting the radiomic features from the peritumoral region after surgery. These data gave a dose escalation regimen based on the recurrence probability score of the peritumoral region.

2.3 | Radiomics in other tumors

For clinical outcome prediction of gastroesophageal junction adenocarcinoma treated by chemo/radiotherapy, the authors extracted the radiomic features from CT images of 146 patients before radiotherapy. The results showed that the imaging model can effectively divide patients into low-risk, medium-risk and high-risk overall survival groups. Another study used radiotherapy planning based on radiomics. First, a texture-based machine learning classifier was used to detect the tumor edge on magnetic resonance imaging, and then, the target volume and organs at risk were mapped from magnetic resonance imaging to CT by multimodal deformation registration. Finally, a treatment plan (including brachytherapy and external irradiation) was designed based on radiomics heterogeneity of lesions. Furthermore, fractal dimension features extracted from tumor subregions in locally advanced rectal cancer patients receiving neoadjuvant chemoradiotherapy, conformal radiotherapy, with a prescription dose of 55 Gy, were the most accurate predictors of pathological complete response. In addition, the emergence of volumetric intensity modulated arc therapy technology has reduced the occurrence of serious radiation liver injury. Cozzi et al. evaluated the clinical outcome of volumetric intensity modulated arc therapy in hepatocellular carcinoma radiotherapy. Their results showed that two features have good accuracy in the prediction of local control: the area under the curve of energy and Gray-level Non-Uniformity (GLNU), which were 0.6659 and 0.6396, respectively. For the prediction of overall survival, the area under the curve of the feature named compacity reached 0.8014. Another study quantitatively evaluated radiation-induced changes of internal obturator muscles after radiotherapy for prostate cancer. The authors found that the pattern of change in radiomic features varied with the irradiation dose. ΔIntensity and Δ95th percentile showed an upward trend with the dose, and the Gray-level Co-occurrence Matrix (ΔGLCM)-contrast showed a decreasing trend with the dose. It is an imaging level reflection of the physiological structure change.
3 | FUTURE CHALLENGES OF RADIOMICS IN RADIOTHERAPY

Since the concept of radiomics was proposed in 2012, the research using radiomics has been increasing year by year, and good research results have been achieved in various fields. However, with the deepening of the radiomic research, more and more limitations have been exposed, including the poor reproducibility of the research results and non-standard image acquisition protocols. These limitations make clinical conversion difficult. We present here a detailed summary of the limitations being faced in radiomics and ways to combat them.

3.1 | Images acquisition and reconstruction

The scanning equipment, parameters, and reconstruction methods in different medical centers are quite different, and these differences affect the stability of the radiomic features.31-33 Because of the lack of a uniform standard protocol for imaging and image acquisition, the quality of medical images of the same tumor lesions acquired by varied equipment are very different, which affects the features based on gray levels, such as histogram-based features, or texture-based features.34-35 The acquisition parameters of the imaging protocol must be strictly controlled; otherwise, the normalization, denoising, and other procedures should be applied to image pre-processing.

3.2 | Images segmentation

Region of interest segmentation mainly refers to tumor region segmentation, which is an important step in the radiomic workflow. In order to obtain reproducible image features, stable and accurate tumor delineation is very important. Manual segmentation is often considered the “gold standard,” but it is time-consuming and suffers from interobserver variability.36 Many studies have confirmed that automatic (or semi-automatic) segmentation can reduce uncertainty and improve efficiency, but the effect of tumor segmentation methods on the stability of features should not be ignored.37-38

3.3 | Features extraction

In radiomics, we are faced with a large number of features that result in the need to reduce the data dimensions, and improve the reproducibility and repeatability of parameters.39-40 Here, there is a flawed idea: more radiomic features are better. First, there is obvious repeatability between different radiomic feature categories, which not only increases the workload, but also requires a reduction in redundancy. Second, among different types of extraction methods, how to standardize the feature data in the process of reducing redundancy is also a challenge. Furthermore, there is “arbitrariness” because of a lack of uniform standards for reduction of redundancy.

There is also a lack of an effective “gold standard” or “reference standard” in feature extraction. For example, the “gold standard” for a series of clinical practices is listed in Table 1. With respect to radiomics, there are two issues that need to be addressed in future radiomics research. First, what are the valuable criteria for feature extraction? Second, what is the biological significance of these valuable features? So far, the answer has been elusive.

Images have a basic texture unit, also known as a texture primitive. The human body is made up of tissues and cells. What is the relationship between the smallest basic unit of radiomics and human tissue? There is no clear explanation or acceptable definition. In circumstances where the basic theory is not clear and the technical methods are not standardized, any “meaningful” research results obtained will have to be reconsidered.41 Only by clarifying the biological meaning and key influencing factors expressed by every radiomic feature can we promote the further development of radiomic studies.

3.4 | Modeling and analysis

Accurate and robust machine learning, deep learning algorithms, or statistical methods to establish classification or a prediction model are conducive to the transformation to clinical applications.42-43 However, using many features for classification and prediction from a limited sample not only takes a long time to calculate, but also might not be optimal. Most of the existing radiomic studies are limited to a single institution. Therefore, the conclusions suffer from a lack of external validation.

Radiomics studies must be repeatedly tested and refined by multicenter, large sample, and randomized controlled clinical trials in the future. This will enable them to guide clinical treatment accurately, reliably, and effectively.

4 | CONCLUSIONS

Radiomics has brought a rare opportunity for the development of radiotherapy. Artificial intelligence and big data can be used to greatly promote the development of individualized radiotherapy. Every process of radiomics is faced with challenges, but the challenges often coexist with the opportunities. The future is the era of artificial intelligence-precision medicine, and we have many clinical resources to utilize. There is still a long way to go to truly achieve a personalized, precise treatment of cancer.
REFERENCES

1. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441-446.

2. Zhou J, Tan H, Bai Y, et al. Evaluating the HER-2 status of breast cancer using mammography radiomics features. Eur J Radiol. 2019;121:108718.

3. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2):563-577.

4. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Review of Precision Medicine and Drug Development. 2016;1(2):207-226.

5. Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol. 2015;12(8):862-866.

6. O’Connor JPB, Rose CJ, Waterton JC, et al. Imaging Intratumor Heterogeneity: role in Therapy Response, Resistance, and Clinical Outcome. Clin Cancer Res. 2015;21(2):249-257.

7. Aktolun C. Artificial intelligence and radiomics in nuclear medicine: potentials and challenges. Eur J Nucl Med Mol Imaging. 2019;11:1-6.

8. Lambin P, Zindler J, Vanneste BGL, et al. Decision support systems for personalized and participative radiation oncology. Adv Drug Deliv Rev. 2017;109(1):131-153.

9. Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2016;72(1):3-10.

10. Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016;119(3):480-486.

11. Moran A, Daly ME, Yip SSF, et al. Radiomics-Based Assessment of Radiation-Induced Lung Injury after Stereotactic Body Radiotherapy. Clin Lung Cancer. 2017;18(6):e425-e431.

12. Cunliffe A, Armato SG, Castillo R, et al. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys. 2015;91(5):1048-1056.

13. Paul J, Yang C, Wu H, et al. Early assessment of treatment responses during radiation therapy of lung cancer based on quantitative analysis of daily CT. International Journal of Radiation Oncology, Biology, Physics. 2017;98(2):463-472.

14. Mattonen SA, Palma DA, Johnson C, et al. Detection of local cancer recurrence after stereotactic ablative radiotherapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys. 2016;94(5):1121-1128.

15. Dissaux G, Visvikis D, Da-Ano R, et al. Pre-treatment 18F-FDG PET/CT Radiomics predict local recurrence in patients treated with stereotactic radiotherapy for early-stage non small cell lung cancer: a multicentric study. J Nucl Med. 2019;119:228106, jnumed.

16. Fave X, Zhang L, Yang J, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7(1):588.

17. Scrizner M, De Jong EEC, Van Timmeren JE, et al. Radiomics applied to lung cancer: a review. Transl Cancer Res. 2016;5(4):398-409.

18. Fujita A, Buch K, Li B, et al. Difference between HPV-positive and HPV-negative non-oropharyngeal head and neck cancer. J Comput Assist Tomogr. 2016;40(1):43-47.

19. Caudell JJ, Torres-Roca JF, Gillies RJ, et al. The future of personalized radiography for head and neck cancer. Lancet Oncol. 2017;18(5):e266-e273.

20. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

21. Wong AJ, Kanwar A, Mohamed AS, et al. Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res. 2016;5(4):371-382.

22. Scalcio E, Moriconi S, Rizzo G. Texture analysis to assess structural modifications induced by radiotherapy(C)/ engineering in medicine & biology society. IEEE. 2015:5219-5222.

23. Hall WA, Pugh SL, Wefel JS, et al. Influence of residual disease following surgical resection in newly diagnosed glioblastoma on clinical, neurocognitive, and patient reported Outcomes. Neurosurgery. 2018;84(1):66-76.

24. Rathore S, Akbari H, Doshi J, et al. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging (Bellingham). 2018;5(2):021219.

25. Wang Q, Zhou S, Court LE, et al. Radiomics predicts clinical outcome in primary gastroesophageal junction adenocarcinoma treated by chemo/radiotherapy and surgery. Physics and Imaging in Radiation Oncology. 2017;3(1):37-42.

26. Shiradkar R, Podder TK, Alghory A, et al. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol. 2016;11(1):148.

27. Cusumano D, Dinapoli N, Boldrini L, et al. Fractal-based radiomic approach to predict complete pathological response after chemoradiotherapy in rectal cancer. Radiol Med (Torino). 2017;123(4):286-295.

28. Kuo YC, Chiu YM, Shih WP, et al. Volumetric intensity-modulated Arc (RapidArc) therapy for primary hepatocellular carcinoma: comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy. Radiat Oncol. 2011;6(1):1-9.

29. Cozzi L, Dinapoli N, Fogliata A, et al. Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer. 2017;17(1):829-839.

30. Scalcio E, Ranceti T, Pirovano I, et al. Texture analysis of T1-w and T2-w MR images allows a quantitative evaluation of radiation-induced changes of internal obturator muscles after radiotherapy for prostate cancer. Med Phys. 2018;45(4):1518-1528.

31. Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of radiomics Features. Invest Radiol. 2015;50(11):757-765.

32. Larue RTHM, Van Timmeren JE, De Jong EEC, et al. Influence of gray level discretization on radiomic feature stability for different CT scanner, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol (Madr). 2017;1-10.

33. Shafiq-ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050-1062.
34. Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428.
35. Lin L, Ehmke RC, Schwartz LH, et al. Assessing agreement between radiomic features computed for multiple CT imaging Settings. PLoS One. 2016;11(12):e0166550.
36. Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep. 2013;3(12):3529.
37. Qiu Q, Duan J, Gong G, et al. Reproducibility of radiomic features with GrowCut and GraphCut semiautomatic tumor segmentation in hepatocellular carcinoma. Transl Cancer Res. 2017;6(5):940-948.
38. Qiu Q, Duan J, Duan Z, et al. Reproducibility and nonredundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg. 2019;9(3):453-464.
39. Hunter LA, Krafft S, Stingo F, et al. High-quality machine-robust image features: identification in nonsmall cell lung cancer computed tomography images. Med Phys. 2013;40(12):121916.
40. O’Connor JPB, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14(3):169-186.
41. Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10(5):e0124165.
42. Chen JH, Asch SM. Machine learning and prediction in medicine—beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507-2509.
43. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505-515.

How to cite this article: Qiu Q, Duan J, Yin Y. Radiomics in radiotherapy: Applications and future challenges. Prec Radiat Oncol. 2020;4:29–33. https://doi.org/10.1002/pro6.1087