Role of Chemokine Ligand CCL20 and its Receptor CCR6 in Intestinal Inflammation

Waheedha Basheer, Dale Kunde, Rajaraman Eri*

School of Human Life Sciences, University of Tasmania, Launceston7250, Tasmania, Australia

*Corresponding Author: Rajaraman.Eri@utas.edu.au

Abstract Chemokines are important players in the immune system with individual chemokine axes demonstrating significant associations with numerous inflammatory disorders. The chemokine receptor CCR6 and its ligand CCL20 are reported to be involved in the pathogenesis of inflammatory bowel disease, however the exact mechanism remains elusive. The Ccr6 gene has been identified as a susceptibility gene in Crohn’s disease, while the expression of its ligand, CCL20 is up regulated following inflammatory stimulus in the intestine. The identification of the role of CCR6-CCL20 axis during the inflammation will shed valuable light into the pathogenesis of IBD as well as providing a potential therapeutic target for treatment for IBD.

Keywords CCR6, CCL20, Inflammatory Bowel Disease

1. Introduction

Inflammatory bowel disease (IBD) is an immune mediated disorder characterized by intestinal inflammation[1,2]. Crohn’s Disease (CD) and Ulcerative Colitis (UC) are the two most common forms of IBD affecting the gastrointestinal tract[3]. Overlapping symptoms of CD and UC are chronic relapsing flares associated with rectal bleeding, abdominal pain and / or diarrhea[4]. CD is a transmural, granulomatous condition commonly involving ileum and colon, while UC specifically involves the colon and manifests as superficial inflammation confined to the mucosal and submucosal layers of the intestinal wall[3,4]. Colorectal cancer and toxic- mega colon are life threatening gastrointestinal complications of UC and CD patients[3,5,6]. Extra-intestinal manifestations are observed in 25-40% of IBD patients[7].

Globally, IBD is highly prevalent among young adults and has a huge impact on their quality of life[8]. The onset of IBD occurs at a peak age of 15-29 in both men and women[9]. Epidemiological studies reveal the high incidence and prevalence of IBD is now in a stabilized pattern in continents such as America, Australia, and also in some European countries[10]. However an increase in the incidence of IBD has been observed over the last decade in some countries in the Asian continent[10]. Such a change in IBD incidence may be attributed to factors such as westernization of lifestyle, diet, increased consumption of foods high in sugar, improved hygiene and increased use of antibiotics [10].

Although the pathogenesis leading to the disease process is widely researched, detailed mechanisms remain elusive[11]. While the etiology of IBD remains unclear, evidence suggests that impaired innate and adaptive immune responses play a significant role in the initiation of IBD[8,12-14]. An altered immune response evoked against luminal bacteria in genetically predisposed individual is reported as a primary risk factor for IBD[11]. Mucosal breaches by luminal microflora initiates an abnormal immune response, altering the balance between commensal and pathogenic bacteria is also considered as another risk factor.
Additionally, environmental factors are also indicated to have significant involvement in the development of IBD. Genetic predispositions of individuals play a major role in the initiation of IBD. Environmental factors and luminal microflora may act as triggers, in the presence of a dysregulated immune response which exacerbates IBD. Environmental factors such as the use of antibiotics, smoking, westernized diet, psychological stress, appendectomy, oral contraceptives, antibiotics, atypical mycobacterial infection, episodes of childhood infections, and increased intestinal permeability can possibly act as triggers for the initiation of IBD [8]. Mawdsley et al [15] reported psychological stress augments disease activity in IBD. In IBD patients, episodes of acute and chronic stress influence the immune mechanisms and may be relevant to the initiation of IBD pathogenesis.

Genetic susceptibility is one of the major contributing factors to the onset of IBD [16, 17]. Numerous studies have investigated the genetic factors associated with IBD and have found it to be polygenic [18]. Genome wide association studies (GWAS) have specifically shown new insights into the complex pathway of IBD pathogenesis [19]. GWAS have subsequently identified up to 71 new associations to the existing loci adding up to around 163 risk conferring loci associated with IBD [20].

The first IBD susceptible gene, identified using candidate gene studies, was mapped to chromosome 16, and identified as nucleotide-binding oligomerization containing protein 2 (NOD2) also known as caspase recruitment domain-containing protein 15 (CARD15) [4, 18]. The identification of the gene NOD2/CARD15 was pivotal in providing a better understanding of IBD pathogenesis and emphasizing a link between development and innate immunity [18]. The association between NOD2 mutations and CD is much stronger than with UC [4]. Of the genes identified some are specific to CD or UC, whereas some are shared between CD and UC [4, 18, 20]. Interestingly many of the genes associated with IBD such as NOD2, TLR, JAK2 and STAT3 play a role in the innate immune response [4, 18].

Dysregulation of chemokines and chemokine receptors are suggested to contribute to mucosal immune responses in IBD. Recent research reports suggest chemokine and chemokine receptors could be targeted for therapy in human diseases [21, 22]. The C-C chemokine receptor type 6 (Ccr6) gene has recently been identified to be associated with Crohn’s disease [23].

2. The Intestinal Immune System

The intestinal epithelium consists of a single layer of epithelial cells and is interconnected by close knit junctions covered by mucus providing a mucosal barrier preventing the entry of luminal toxins, microorganisms and foreign antigens [24]. The intestine normally encounters enormous numbers of luminal microbes of (up to 10^{13}) and incoming pathogens [25, 26], comprising over 500 different species [27]. It has selective permeability and allows passage of dietary nutrients, water and electrolytes to enter into the circulation from the intestinal lumen [24, 28, 29]. The prevention of bacterial penetration, invasion and systemic spread is essential to maintain immune homeostasis [24].

The intestinal mucosa is rich in tissue macrophages and lymphocytes [30]. The balance between the tolerance towards commensal microbes and the effective responses mounted to an external pathogen needs to be maintained for the prevention of disease as well as to maintain immune homeostasis [31]. Mucin, a protein produced by intestinal goblet cells, forms an integral part of the mucus layer covering the intestinal epithelium along with antibodies, defensins and lysozymes [32-34]. The outer loose mucus layer serves as the first physical and chemical barrier to the luminal microbes, while the inner mucus layer is sterile and is highly concentrated with antimicrobial molecules [30].

A range of antimicrobial peptides are produced by Paneth cells, which are granulated cells, located at the base of the small intestinal crypts. Paneth cells prevent microbial invasion in the small intestine by secreting α-defensins, lysozymes and secretory phospholipase A2 [35]. The epithelial cells involved in the host defense mechanism internalize the incoming gram negative bacteria through phagocytosis. Goblet cells are also involved in delivering the luminal antigens to the immature dendritic cells for antigen sampling [34]. Microbial cell wall components such as lipopolysaccharide (LPS) can stimulate the enterocyte, provoking an innate immune response with the increased production of interleukin 8 (IL-8) via an activation of the transcription factor nuclear factor kappa B (NFκB) [36].

The microfold cells (M-cells) are a unique cell type present in the follicle associated epithelium (FAE) covering the Peyer’s patches and these along with the intestinal dendritic cells are involved in luminal antigen sampling [37]. Neutra et al [38] suggested that the uptake of immune complexes by M cells may regulate mucosal immune responses, but the exact significance of the interaction between the M cells and the intestinal antibodies remain unknown.

2.1. Th17 and T-regulatory Cells

The dendritic cells mature as they migrate from intestinal peripheral/proinflamed tissue and pass on the antigens to the mesenteric lymph node where naïve T cells undergo differentiation after an antigen encounter [39]. The differentiation of T cells is often dependent on the cytokine environment, and an intricate association between cells of innate and adaptive immune responses [40, 41]. CD4+ T cells differentiate into T regulatory cells, Th1, Th2, and Th17. Both Th1 and Th2 produce some cytokines such as interferon-γ (IFNγ), lymphotxin-α (LTα), interleukin-4 (IL-4), IL-5 and IL-13, in response to stimuli by pathogens [42]. Until recently Th1 was shown to be involved in mediating a number of autoimmune conditions [42, 43]. T helper lymphocytes requiring IL-23 for differentiation and...
inflammatory cytokine production is thought to initiate IBD involving TH17/TH1 inflammatory response and increased process [52]. Impaired innate and adaptive immune response intestinal homeostasis and also to prevent any disease innate and adaptive immune cells are vital in maintaining CCR6+, IL-23R+, and CD161+. The effective communication between the intestinal epithelial barrier, Th17 cells exist in a sub-population of CD4 T cells that are IL-17 and IL-23 was up regulated in Crohn’s disease lesions, new therapeutic agents [66]. becoming attractive potential targets for the development of Th17 cells [51]. Weaver et al [44] reported expression of modulates the T cell differentiation process toward Th17 cells [51]. IL-6 is necessary for Th17 development and this suppresses transcription factor forkhead box P3(FoxP3) and modulates the T cell differentiation process toward Th17 cells [51]. Weaver et al [44] reported expression of IL-17 and IL-23 was up regulated in Crohn’s disease lesions, Th17 cells exist in a sub-population of CD4 T cellsthat are CCR6+, IL-23R+, and CD161+. The effective communication between the intestinal epithelial barrier, innate and adaptive immune cells are vital in maintaining intestinal homeostasis and also to prevent any disease process [52]. Impaired innate and adaptive immune response involving TH17/TH1 inflammatory response and increased inflammatory cytokine production is thought to initiate IBD [53].

3. Chemokines

Chemokines are cytokines with chemotactic and chemotactant ability and are part of a large family of small globular proteins secreted by a wide range of cells such as macrophages, T lymphocytes, neutrophils and monocytes[54]. Chemokines are involved in both innate and adaptive immunity [55-57] and around 40 to 50 human chemokines have been identified [58-62]. The chemokine activities are mediated by chemokine receptors which belong to a superfAMILY of seven-transmembrane domain G-protein coupled receptors. Around 20 chemokine receptors have been identified, and these receptors are located on the surface of a range of immune cells[62-65]. Chemokines are becoming attractive potential targets for the development of new therapeutic agents [66].

Chemokines function as signaling proteins of the immune system [57,67] and are of two fundamental types - homeostatic and inflammatory, based on their gene expression regulation [14,59]. Homeostatic chemokines are involved in recruiting lymphocytes, neutrophils and macrophages during an immune response while inflammatory chemokines are strongly implicated in many acute and chronic inflammatory diseases such as respiratory diseases, arthritis and atherosclerosis [68].

Chemokines are essential in the transmigration of the immune cells by binding to their specific G-protein coupled receptors present on the surface of the immune cells whilst mediating their own biological functions. This emphasizes the need for the tight regulation of potent pro-inflammatory chemokines[64]. During inflammation chemokines are also involved in directing the lymphocytes to the site of inflammation thereby exhibiting their inflammatory properties [14,62]. The ongoing release of chemokines at the site of inflammation facilitates the migration of effector cells in a chronic inflammatory environment [69]. Chemokines are instrumental in recruiting immature and activated cells to the site of inflammation, whereas the inhibition of chemokine activities results in an anti-inflammatory environment and leads into wound healing process.

3.1. Chemokine Structure

Chemokines are proteins with a molecular weight of 8-14 kDa[59,61,64,70] and have three β-pleated sheets and a carbon terminal α-helix with disulphide bonds connecting cysteine residues [71]. Chemokines consist of structurally related secreted proteins of 67-127 amino acids in length [62] and they exist as a monomer, dimer or tetramer, with the functional form being a monomer. Dimers can form at the NH₂—terminal which is the activation and primary binding site, the secondary binding site is present in the flexible loop region that follows the second cysteine [69]. Chemokines are divided into subclasses CXC, CC, CX3C and XC [65,67,72] based on the presence of an amino-acid between (CXCR) or adjacent (CC) to the first two N—terminal cysteine residues [59]. Chemokines have very similar monomeric structures and all have a flexible NH2-terminal region connected to a loop and have three antiparallel β strands and a single COOH- terminal α-helix [69]. Chemokines have a preference to bind with a superfamily of G-protein coupled receptors; these chemokine receptors are found on T cells and B cells and also on other cells like neurons and endothelial cells. Amongst the chemokines, IL-8 was one of the first to be discovered and characterized [65].

3.2. Chemokines and Chemokine Receptors

Chemokines are named based on their receptors they bind (CXC, CC, CX3C, XC) with an addition of R for receptor, followed by a number indicating the order of discovery [62]. CC chemokines bind with CCR chemokine receptors, when bound they tend to attract monocytes, lymphocytes, eosinophils and basophils. CXC chemokines bind with CXCRs and thereby attract neutrophils [71]. Many chemokines bind to multiple receptors, whereas some chemokines bind specifically to a single receptor [73]. Chemokines are important factors in mast cell and eosinophil degranulation and is involved in differentiation of T helper cells and their phenotypes [41].

3.3. Chemokine receptor CCR6

The Ccr6 gene in humans is located on chromosome 6q27
The chemokine receptor CCR6 is expressed in the intestine by dendritic cells (DC), subsets of T cells (CD4+, CD8+), and in most B cells [59,75]. It was initially found to be expressed by memory T and B cells [76,77]. Furthermore CCR6 is also expressed by the central and effector memory T cells which are characterized by the expression of CCR7 [78,79]. Apart from the expression of CCR6 on Th17 cells, recently CCR6 was reportedly expressed by IL-22 producing γ/δ T cells [80,78,79]. IL-17 producing NK cells [80] and IL-17 producing γ/δ T cells [81] and a sub-population of CD4+ FoxP3+ regulatory T cells (Treg) [82-85]. All cells expressing CCR6 are found in the intestine [80,86,87].

The CD4+T cells and dendritic cells both migrate into the gut mucosal tissue when IL-17 is and their migration is said to be mediated by CCR6 [73]. Recent studies have identified CCR6 as a specific marker for Treg cells and Th17 cells [82,88]. In the intestine Th17 cells are generated depending on the intestinal flora [86,89]. CCR6 is expressed by both Th17 and T regulatory cells; recent studies suggesting that they have opposite roles in autoimmune diseases [90]. Ccr6 is a susceptibility gene, strongly involved in Crohn’s disease [91,92]. An in-vitro study of differentiated T effector and T helper subsets by Yamazaki et al [88] showed mRNA and protein expression of CCR6 being very high in Th17 cells when compared with the small amounts of expression seen in Th1 and Th2 cells [90]. Evidence of CCR6 expression in Treg cells both in vivo and in vitro were reported by Kleinewietfeld et al [82], and showed consistency with the findings of Yamazaki et al [90].

CCR6 deficient mouse models are used to understand the immune responses and the role of chemokine axis CCR6/CCL20 in the intestine [93]. CCR6 is found to be expressed selectively by the T cells, B cells and also in sub-populations of dendritic cells of mice and human [94]. The chemokine ligand CCL20 has its specific chemokine sub-populations which indicates a possible role of this chemokine receptor in immune regulation [100]. In contrast, the Ccr6 knock-out mice confer normal systemic immune responses to subcutaneous antigens [97]. Research suggested CCR6 to be a regulator of both humoral and lymphocyte homeostasis in the intestine [97].

The Ccr6 knock-out mice when treated with DSS developed less severe intestinal inflammations compared to wild type mice [93]. Interestingly, Ccr6 knock-out mice treated with 2, 4, 6 trinitrobenzenesulphonic acid (TNBS) showed increased susceptibility to intestinal inflammation in otherwise genetically resistant strains [93,101,102]. Ccr6 knock-out mice were used to demonstrate the role of CCR6 and its importance in many lung and gut disorders [75]. Studies using CCR6 deficient mice suggest that CCR6/CCL20 axis has an important role in the immune process leading to inflammatory bowel disease [93].

Wild Type Th17 cells or CCR6+/+T cells when transferred into a Rag1−/−severe combined immune-deficient mouse (SCID) resulted in severe intestinal inflammation [85,103]. Reduction in the population of Th17 and T regulatory cells was noted in this process [85,103]. According to these results Lee et al [103] suggests the function of CCR6 is more important to Treg cells than Th17 cells. However the relationship of this chemokine duo and the balance between Treg and Th17 largely relies on the selective skewing of CCR6-CCL20 ascertaining the prominence of either Treg or Th17 may be an essential factor in the process of intestinal inflammation.

3.4. Chemokine ligand CCL20

CCR6 uniquely interacts with the chemokine CCL20 also known as Exodus-1, macrophage inflammatory protein (MIP-3α), liver and activation- regulated chemokine (LARC) [75,93,95,104]. Hieshima et al [105] first identified CCL20, a novel chemokine ligand expressed in the liver. The CCL20 gene is located on chromosome 2q33-37 [105,106]. The chemokine ligand CCL20 is expressed in thymus, appendix, fetal liver and by peripheral blood lymphocytes [104]. Furthermore expression of CCL20 is also found in various types of epithelial cells such as pulmonary epithelial cells, keratinocytes and also in intestinal epithelial cells [75]. Follicle – associated epithelial cells (FAE) covering the Peyer’s patches of the intestine and the isolated lymphoid follicles (ILFs) are involved in the making of CCL20 the only ligand for CCR6 [14]. CCL20 was reported to be expressed only in Th17 cells and it was not expressed by...
either Treg cells or T helper subsets [90]. Up-regulation of CCL20 expression in intestinal epithelial cells can be seen in response to induction by invasive or non-invasive flagellated bacteria [107]. Furthermore, pro-inflammatory cytokines such as IL-1α or tumor necrosis factor-α (TNF-α) produced during acute intestinal inflammation also stimulate and upregulate CCL20 expression [108].

3.5. The CCR6-CCL20 axis

The CCR6-CCL20 axis is an important factor in the intestinal immunity. Ito et al [75] describes the involvement of the CCR6-CCL20 axis during the normal development of innate immunity and immune homeostasis. In intestinal immune responses, especially in the innate immune response where CCR6 mediated signals are important, the CCR6-CCL20 axis might have a very significant impact during tissue damage and injury [75]. CCR6 is suggested to be associated with regulation of leukocyte migration followed by effector function of T cells, are all considered as important factors in gut immunity [75,91]. Induction of CCL20 by bacterial lipopolysaccharide (LPS) endotoxin in response to infection occurring in intestinal epithelial cells has been demonstrated [109]. The CCR6-CCL20 axis also mediates the chemotaxis of dendritic cells and macrophages and recruits them to the site of inflammation [75].

![Figure 2.](image)

CCR6 is the pivotal link between the anti-inflammatory and pro-inflammatory cells.

Le Borgne et al [110] demonstrated a significant involvement of CCR6-CCL20 in the migration of dendritic cells from the blood to the lamina propria of the intestine during the inflammation process [110]. Th17 cells and Treg cells are present in large numbers in the lamina propria during normal and in inflammatory conditions suggesting that the axis is critical for the outcome of intestinal pathology [102]. The immune system importantly has to select to either suppress or initiate inflammation while maintaining immune self-tolerance. Maintaining the balance between inflammatory cells and T regulatory cells is vital for the outcome of intestinal pathologies [102]. The CCR6-CCL20 axis has been demonstrated to play an important role in many lung and gut disorders [75]. Furthermore, the CCR6-CCL20 axis is of notable importance in cancer and autoimmune diseases [82,111]. The CCR6-CCL20 axis appears to hold promise as the new target for therapeutic interventions in many diseases including IBD [102].

4. Conclusion & Future Directions

Current conventional therapies involve the use of anti-inflammatory drugs; aminosalicylates and steroids. Immunomodulators such as azathioprine, 6-mercaptopurine, methotrexate or cyclosporine are also being used in patients who are resistant to or dependent on steroids. Biological therapies have gained importance in IBD therapy, and targeted therapies with anti-inflammatory cytokine-therapy like anti-TNF-alpha antibody, anti-IL-6R, and anti-IL-12 or toxin-conjugated anti IL-7R, recombinant cytokines (IL-10 or IL-11) are the recent advancements in the field of IBD therapy [28].

Research involving CCR6-CCL20 and their role in various autoimmune disorders are of particular interest to global scientific community. The CCR6-CCL20 axis needs to be further dissected as there is need to provide us with a clear understanding of its role with regards to inflammatory bowel disease. CCR6 appears to play a pivotal link between the anti-inflammatory and pro-inflammatory cells with the CCR6-CCL20 chemokine axis mediating the inflammatory pathway, and the factors leading up to triggering this duo to exacerbate inflammation or suppress the inflammatory environment and facilitate homeostasis need to be clearly identified. Future studies need to investigate the exact mechanisms of this axis, and if identified it would be an innovative breakthrough to solving the IBD puzzle.

Conflict of Interest

None to disclose.

REFERENCES

[1] Wen, Z. and C. Fiocchi, Inflammatory Bowel Disease: Autoimmune or Immune-mediated Pathogenesis? Clinical and Developmental Immunology, 2004. 11(3-4): p. 195-204.

[2] Das, K.M. and L. Biancone, Is IBD an autoimmune disorder? Inflammatory Bowel Diseases, 2008. 14: p. S97-S101.

[3] Blumberg, R.S. and W. Strober, Prospects for Research in Inflammatory Bowel Disease. JAMA, 2001.

[4] Monteleone, G. and M.F. Neurath, Inflammatory bowel disease., in Principles Of Mucosal Immunology, P.D. Smith, T.T. Macdonald, and R.S. and Blumberg, Editors. 2013 Garland Science. p. 473-487.

[5] Sheth, S. and T. LaMont. Toxic megacolon. 2007 April 12,2013; Available from: http://www.uptodate.com/contents/t
oxic-megacolon.

[6] Autenrieth, D.M. and D.C. Baumgart, Toxic megacolon. Inflamm Bowel Dis, 2012. 18(3): p. 584-91.

[7] Levine, J.S. and R. Burakoff, Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Hepatol (N Y), 2011. 7(4): p. 235-41.

[8] Loftus, E.V., Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 2004. 126(6): p. 1504-1517.

[9] Johnston, R.D. and R.F. Logan, What is the peak age for onset of IBD? Inflamm Bowel Dis, 2008. 14 Suppl 2: p. S4-5.

[10] Prideaux, L., et al., Inflammatory bowel disease in Asia: A systematic review. Journal of Gastroenterology and Hepatology, 2012. 27(8): p. 1266-1280.

[11] Molodecky, N.A. and G.G. Kaplan, Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (N Y), 2011. 7(4): p. 235-41.

[12] Satsangi, J., et al., Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet, 1996. 347(9010): p. 1212-7.

[13] Satsangi, J., et al., Genetics of inflammatory bowel disease. Clin Sci (Lond), 1998. 94(5): p. 473-8.

[14] Williams, L.R., CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann N Y Acad Sci, 2006. 1072: p. 52-61.

[15] Mawdsley, J.E., Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut, 2005. 54(10): p. 1481-1491.

[16] Danese, S., M. Sans, and C. Fiocchi, Inflammatory bowel disease: the role of environmental factors. Autoimmunity Reviews, 2004. 3(5): p. 394-400.

[17] Carter, M.J., Guidelines for the management of inflammatory bowel disease in adults. Gut, 2004. 53(suppl_5): p. v1-v16.

[18] Ishihara, S., et al., Inflammatory bowel disease: review from the aspect of genetics. Journal of Gastroenterology, 2009. 44(11): p. 1097-1108.

[19] Van Limbergen, J., D.C. Wilson, and J. Satsangi, The Genetics of Crohn's Disease. Annual Review of Genomics and Human Genetics, 2009. 10(1): p. 89-116.

[20] Jostins, L., et al., Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012. 491(7422): p. 119-124.

[21] Papadakis, K.A., Chemokines in inflammatory bowel disease. Current Allergy and Asthma Reports, 2004. 4(1): p. 83-89.

[22] Kaser, A. and H. Tilg, Novel therapeutic targets in the treatment of IBD. Expert Opin Ther Targets, 2008. 12(5): p. 553-63.

[23] Lees, C.W., et al., New IBD genetics: common pathways with other diseases. Gut, 2011. 60(12): p. 1739-53.

[24] Groschwitz, K.R. and S.P. Hogan, Intestinal barrier function: Molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology, 2009. 124(1): p. 3-20.

[25] Macpherson, A.J. and N.L. Harris, Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol, 2004. 4(6): p. 478-85.

[26] McGhee, J.R., et al., The mucosal immune system: from fundamental concepts to vaccine development. Vaccine, 1992. 10(2): p. 75-88.

[27] Cucchiara, S., L. Stronati, and M. Aloisi, Interactions between intestinal microbiota and innate immune system in pediatric inflammatory bowel disease. J Clin Gastroenterol, 2012. 46 Suppl: p. S64-6.

[28] Anthony, T.B., et al., Restoration of barrier function in injured intestinal mucosa. Physiol Rev, 2007. 87(2): p. 545-64.

[29] Karl, K. and M. Marcus, Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev, 2002. 82(1): p. 245-89.

[30] Macpherson, A.J. and T. Uhr, Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann N Y Acad Sci, 2004. 1029: p. 36-43.

[31] MacDonald, T.T., et al., Regulation of Homeostasis and Inflammation in the Intestine. Gastroenterology, 2011. 140(6): p. 1768-1775.

[32] Heazlewood, C.K., et al., Aberrant Mucin Assembly in Mice Causes Endoplasmic Reticulum Stress and Spontaneous Inflammation Resembling Ulcerative Colitis. PLoS Med, 2008. 5(3): p. e54.

[33] Linden, S.K., et al., Mucins in the mucosal barrier to infection. Mucosal Immunology, 2008. 1(3): p. 183-97.

[34] Kim, Y.S. and S.B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep, 2010. 12(5): p. 319-30.

[35] Elphick, D.A. and Y.R. Mahida, Paneth cells: their role in innate immunity and inflammatory disease. Gut, 2005. 54(12): p. 1802-1809.

[36] Fusunyan, R.D., et al., Evidence for an Innate Immune Response in the Immature Human Intestine: Toll-Like Receptors on Fetal Enterocytes. Pediatr Res, 2001. 49(4): p. 589-593.

[37] Lügering, A., et al., Absence of CCR6 Inhibits CD4+ Regulatory T-Cell Development and M-Cell Formation inside Peyer's Patches. The American Journal of Pathology, 2005. 166(6): p. 1647-1654.

[38] Neutra, M.R., A. Frey, and J.P. Kraehenbuhl, Epithelial M cells: gateways for mucosal infection and immunization. Cell, 1996. 86(3): p. 345-8.

[39] Corinti, S., et al., Regulatory activity of autocrine IL-10 on dendritic cell functions. 2001.

[40] Zhou, L., M.M.W. Chong, and D.R. Littman, Plasticity of CD4+ T Cell Lineage Differentiation. Immunity, 2009. 30(5): p. 646-655.

[41] Lukacs, N.W., Migration of helper T-lymphocyte subsets into inflamed tissues. Journal of Allergy and Clinical Immunology, 2000. 106(5, Supplement): p. S264-S269.

[42] Ivanov, I.I., L. Zhou, and D.R. Littman, Transcriptional regulation of Th17 cell differentiation. Seminars in Immunology, 2007. 19(6): p. 409-417.
Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003. 421(6924): p. 744-8.

Weaver, C.T., et al., The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol, 2013. 8: p. 477-512.

Brandtzaeg, P., Principles in mucosal immunology. 2013: Garland science.

Hathaway, L.J. and J.P. Kraehenbuhl, The role of M cells in mucosal immunity. Cell Mol Life Sci, 2000. 57(2): p. 323-32.

Mohlty, M. and B. Gaugler, Dendritic cells: interfaces with immunobiology and medicine. A report from the Keystone Symposium Meeting held in Keystone, 3–8 March 2003. Leukemia, 2003. 17(9): p. 1753-8.

Couper, K.N., D.G. Blount, and E.M. and Riley, IL-10: The Master Regulator of Immunity to Infection. BMC Bioinformatics, 2013. 14(Suppl 2): p. S13.

Doe, W.F., The intestinal immune system. Gut, BJM, 1989. 30: p. 1679-1685.

Annunziato, F., et al., Defining the human T helper 17 cell phenotype. Trends in Immunology, 2012. 33(10): p. 505-512.

Reikvam, H., et al., The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation. Toxins, 2013. 5(2): p. 336-362.

Rot, A. and U.H. von Andrian, Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol., 2004. 22: p. 891-928.

Esche, C., C. Stellato, and L.A. Beck, Chemokines: key players in innate and adaptive immunity. J Invest Dermatol, 2005. 125(4): p. 615-28.

Allen, S.J., S.E. Crown, and T.M. Handel, Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol, 2007. 25: p. 787-820.

Dürr, M. and A. Peschel, Chemokines Meet Defensins: the Merging Concepts of Chemotactracts and Antimicrobial Peptides in Host Defense. Infection and Immunity, 2002. 70(12): p. 6515-6517.

Zlotnik, A. and O. Yoshie, Chemokines: a new classification system and their role in immunity. Immunity, 2000. 12: p. 121-127.

Sarkar, S.A., et al., Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes, 2012. 61(2): p. 436-46.
Immunology and Infectious Diseases 1(2): 30-37, 2013

[80] Cellia, M., et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature, 2009. 457(7230): p. 722-5.

[81] Martin, B., et al., Interleukin-17-Producing T Cells Selectively Expand in Response to Pathogen Products and Environmental Signals. Immunity, 2009. 31(2): p. 321-330.

[82] Kleineieweltfeld, M., et al., CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood, 2005. 105(7): p. 2877-86.

[83] Hirahara, K., et al., The Majority of Human Peripheral Blood CD4+CD25highFoxp3+ Regulatory T Cells Bear Functional Skin-Homing Receptors. The Journal of Immunology, 2006. 177(7): p. 4488-4494.

[84] Zhang, N., et al., Regulatory T Cells Sequentially Migrate from Inflamed Tissues to Draining Lymph Nodes to Suppress the Allotransplant Response. Immunity, 2009. 30(3): p. 458-469.

[85] Wang, C., et al., The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol, 2009. 2(2): p. 173-83.

[86] Ivanov, I.I., et al., Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell host & microbe, 2008. 4(4): p. 337-349.

[87] Annunziato, F., et al., Phenotypic and functional features of human Th17 cells. J Exp Med, 2007. 204(8): p. 1849-61.

[88] Hirota, K., et al., Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med, 2007. 204(12): p. 2803-12.

[89] Atarashi, K., et al., ATP drives lamina propria T(H)17 cell differentiation. Nature, 2008. 455(7214): p. 808-12.

[90] Yamazaki, T., et al., CCR6 Regulates the Migration of Inflammatory and Regulatory T Cells. The Journal of Immunology, 2008. 181(12): p. 8391-8401.

[91] Barrett, J.C., et al., Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet, 2008. 40(8): p. 955-62.

[92] Brand, S., Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut, 2009. 58(8): p. 1152-67.

[93] Varona, R., et al., CCR6 has a non-redundant role in the development of inflammatory bowel disease. Eur J Immunol, 2003. 33(10): p. 2937-46.

[94] Iwasaki, A. and B.L. Kelsall, Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med, 2000. 191(8): p. 1381-94.

[95] Schuttsyer, E., S. Struyf, and J. Van Damme, The CC chemokine CCL20 and its receptor CCR6. Cytokine & Growth Factor Reviews, 2003. 14(5): p. 409-426.

[96] Varona, R., et al., CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest, 2001. 107(6): p. R37-45.

[97] Cook, D.N., et al., CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity, 2000. 12(5): p. 495-503.

[98] Pene, J., et al., Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol, 2008. 180(11): p. 7423-30.

[99] Westphal, S., et al., Resistance of Chemokine Receptor 6-Deficient Mice to Yersinia Enterocolitica Infection. The American Journal of Pathology, 2008. 172(3): p. 671-680.

[100] Kitamura, K., J.M. Farber, and B.L. Kelsall, CCR6 marks regulatory T cells as a colon-tropic, IL-10-producing phenotype. J Immunol, 2010. 185(6): p. 3295-304.

[101] Katchar, K., et al., MIP-3a neutralizing monoclonal antibody protects against TNBS-induced colonic injury and inflammation in mice. 2007.

[102] Comerford, I., et al., An immune paradox: How can the same chemokine axis regulate both immune tolerance and activation? Bioessays, 2010. 32(12): p. 1067-1076.

[103] Lee, A.Y., et al., CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil? Front Immunol, 2013. 4: p. 194.

[104] Rodig, S.J., et al., CCR6 is a functional chemokine receptor that serves to identify select B-cell non-hodgkin's lymphomas. Human Pathology, 2002. 33(12): p. 1227-1233.

[105] Hieshima, K., et al., Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2. J Biol Chem, 1997. 272(9): p. 5846-53.

[106] Nelson, R.T., et al., Genomic Organization of the CC Chemokine MIP-3a/CCL20/LARC/EXODUS/SCYA20. Showing Gene Structure, Splice Variants, and Chromosome Localization. Genomics, 2001. 73(1): p. 28-37.

[107] Rimoldi, M., et al., Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood, 2005. 106(8): p. 2818-26.

[108] Izadpanah, A., et al., Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol, 2001. 280(4): p. G710-9.

[109] Fujiie, S., et al., Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3alpha/CCL20 in mucosal epithelial cells through NF-kappaB [correction of NK-kappaB]. Int Immunol, 2001. 13(10): p. 1255-63.

[110] Fujii, S., et al., Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3alpha/CCL20 in mucosal epithelial cells through NF-kappaB. Int Immunol, 2001. 13(10): p. 1255-63.

[111] Page, G., S. Lebecque, and P. Miossec, Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J Immunol, 2002. 168(10): p. 5333-41.