A standardized framing for reporting protein identifications in mzIdentML 1.2

Sean L. Seymour1*, Terry Farrah2*, Pierre-Alain Binz3**, Robert J. Chalkley4, John S. Cottrell5, Brian C. Searle6, David L. Tabb7,8,9, Juan Antonio Vizcaíno10, Gorka Prieto11, Julian Uszkoreit12, Martin Eisenacher12, Salvador Martínez-Bartolomé13, Fawaz Ghali14 and Andrew R. Jones14

1 AB SCIEX, Redwood City, CA, USA
2 Institute for Systems Biology, Seattle, WA, USA
3 Swiss-Prot group, Swiss Institute of Bioinformatics, Geneva, Switzerland
4 Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
5 Matrix Science Ltd., London, UK
6 Proteome Software, Inc., Portland, OR, USA
7 Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
8 Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
9 Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
10 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Proteomics Services Team, Wellcome Trust Genome Campus, Cambridge, UK
11 Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao, Spain
12 Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
13 Centro Nacional de Biotecnología, CSIC, Madrid, Spain
14 Institute of Integrative Biology, University of Liverpool, Liverpool, UK

Inferring which protein species have been detected in bottom-up proteomics experiments has been a challenging problem for which solutions have been maturing over the past decade. While many inference approaches now function well in isolation, comparing and reconciling the results generated across different tools remains difficult. It presently stands as one of the greatest barriers in collaborative efforts such as the Human Proteome Project and public repositories such as the PRoteomics IDENTifications (PRIDE) database. Here we present a framework for reporting protein identifications that seeks to improve capabilities for comparing results generated by different inference tools. This framework standardizes the terminology for describing protein identification results, associated with the HUPO-Proteomics Standards Initiative (PSI) mzIdentML standard, while still allowing for differing methodologies to reach that final state. It is proposed that developers of software for reporting identification results will adopt this terminology in their outputs. While the new terminology does not require any changes to the core mzIdentML model, it represents a significant change in practice, and, as such, the rules will be released via a new version of the mzIdentML specification (version 1.2) so that consumers of files are able to determine whether the new guidelines have been adopted by export software.

Keywords:
Bioinformatics / Data standards / Protein identification / Proteomics Standards Initiative / Software / XML

Received: March 4, 2014
Revised: July 2, 2014
Accepted: July 31, 2014

Correspondence: Dr. Andrew R. Jones, Institute of Integrative Biology, Biosciences building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
E-mail: andrew.jones@liv.ac.uk

Abbreviations: CV, controlled vocabulary; iPRG, Proteome Informatics Research Group; PAG, Protein Ambiguity Group; PDH, protein identification hypothesis; PSI, Proteomics Standards Initiative; PSM, peptide-spectrum match; XSD, XML schema document
*These authors contributed equally to this work.
**Current address: Pierre-Alain Binz, Service de Biomédicine, Centre Hospitalier Universitaire Vaudois CHUV, Rte du Bugnon, Lausanne, Switzerland.

Colour Online: See the article online to view Figs. 2–3 colour online only.
1 Introduction

In many proteomics workflows (so-called bottom-up), proteins within the sample(s) are digested into peptides prior to analysis. This causes a loss of the link from an identified peptide to its parent protein, as many peptide sequences can be assigned to more than one protein. In such cases it is not possible to determine definitively which protein (or proteins) the peptide originated from and thus which proteins were present in the sample. Two proteins sharing one or more peptides may arise from the same gene but differ due to single-nucleotide polymorphisms, posttranslational cleavage (e.g. removal of a signal peptide), or alternative splicing; if arising from different genes they may be homologs (paralogs in a single species-derived database, or paralogs and orthologs if the search database contains proteins from multiple species), or unrelated but sharing a short sequence of amino acids. The concept of proteoform has been coined to describe the unit of protein as present in the cell and carrying a given sequence and a specific set of PTMs [1]. It should be noted that PTMs can also introduce ambiguity in assignment of a parent protein, for example deamidation of asparagine is physically indistinguishable from aspartic acid, and as such different peptide sequences (from different proteins) could equally “explain” the same mass spectrum. Up to roughly the middle of the last decade it was common for investigators to report all protein sequences matching any putatively detected proteins, leading to highly inflated protein counts.

The so-called “protein inference” problem in proteomics aims to determine how many protein species have actually been detected and convey the remaining ambiguity in an optimal way, and has been tackled by many different groups [2–9]. Protein counting inflation has been brought under control in the last few years, driven by advances in protein inference algorithms and perhaps more importantly, increased awareness of their importance driven by journal publication guidelines [10–12]. It is now generally expected by journals that rules of parsimony are applied in producing the list of proteins identified [13]; that is the shortest list of proteins that can adequately explain all of the data is submitted for publication. While this pressure has forced the numbers of detected proteins reported by different methods to converge to some extent, there remains greater heterogeneity in the second major concern of protein inference—conveying the ambiguity.

Whether a result of the output of an algorithm or a subsequent choice made by a user, the way that ambiguity is conveyed in a protein identification result can have a major effect on how that result can be compared to other results. Even if multiple results use the same protein identifier system and are derived from the same database searched (problems not directly addressed here), insufficient description of ambiguity in protein groups can cause failure to recognize common protein detections between results, causing falsely low apparent intersections. Additionally, different protein inference tools describe ambiguity in different ways with different terminology. While individual publications may no longer report inflated protein lists, because of the missing information about ambiguity and how this was handled by the software employed, it is presently not possible to compare or combine findings from multiple laboratories adequately, when a broad range of different tools is used.

The challenges of comparing protein identification results were highlighted by the ABRF (Association of Biomolecular Resource Facilities) Proteome Informatics Research Group (iPRG) in 2008 (iPRG2008 results poster, http://www.abrf.org/ResearchGroups/ProteomicsInformaticsResearchGroup/EPosters/iPRG2008_InitialResultsPoster.pdf; iPRG2008 results presentation, http://www.abrf.org/ResearchGroups/ProteomicsInformaticsResearchGroup/EPosters/iPRG2008_InitialResultsOralPresentation.pdf) where the committee, entirely composed of creators of protein inference tools, attempted to analyze a common dataset and determine a consensus protein identification result, each using their respective software. The committee agreed a common terminology for describing identification results: protein accession—one entry in a database searched; protein group—a set of protein accessions that have some independent evidence in common (evidence distinguishing them from all other proteins)—generally considered to be a single unit of (protein-level) identification in proteomics; and a protein cluster—a set of protein groups that share some evidence in common (e.g. some peptides/spectra shared between groups), but within which different groups also have evidence independent from each other (e.g. some peptides/spectra uniquely assigned to some groups only). The minimal list of proteins “identified” from a study should be the count of the number of protein groups, for example passing a given threshold (Fig. 1A–C). In earlier work by Nesvizhskii and Aebersold at providing a consistent nomenclature [13], concepts of “protein,” “protein group,” and “protein family” were defined—which are broadly consistent with the three main concepts in the iPRG nomenclature. In [13], further classifications of “distinct proteins,” “differentiable proteins,” “indistinguishable proteins,” “subset proteins,” and “subsumable proteins” were also described. In this work, the (simpler) iPRG concepts are used throughout, as they were derived by a consensus of protein inference tool creators, including the lead author of [13].

Even with the exceptional advantage of having direct input from each tool’s creator, the synthesis exercise performed in iPRG2008 still proved time-consuming, requiring much manual intervention. For repositories and collaborative studies to function, this same kind of synthesis needs to be accomplished not only without the benefit of direct interaction with software creators, but via automated computation. Additional standardization is needed to achieve this, which is the aim of this work.

The Proteomics Standards Initiative (PSI) is an entirely open collaboration of academic research groups, instrument
Figure 1. Terminology defined by the iPRG2008 working group, for a protein accession (A), protein group (B), and protein cluster (C), with a multiple sequence alignment displaying the peptides shared between the different proteins.
and software vendors, and journal representatives, which has
been developing resources to facilitate data sharing and pub-
lic deposition for over 10 years [14]. Each PSI workgroup
develops broadly three types of output: minimum reporting
guidelines, standard data formats, and controlled vocabu-
laries sets. The “minimum information about a proteomics ex-
periment” (MIAPE) specifications are a set of modules that
provide minimum reporting guidelines for specific experi-
mental techniques or approaches [15]. Data format standards
seek to improve data exchange between software packages
and databases; efforts to date include mzML for MS data [16],
mzIdentML for peptide and protein identification data [17],
and new formats for quantitation results—mzQuantML [18]
and mzTab [19]. Established controlled vocabularies (CVs)
containing well-defined terminology to use within the data
formats enable concepts to be unambiguously interpreted.
Examples include the PSI-MOD [20] and Unimod [21] nomen-
clatures for describing peptide modifications and the PSI-MS
CV [22] used in a variety of PSI standards.

The initial stable version of mzIdentML (version 1.1 [17])
has now become a well-established standard for captur-
ing the outputs of proteomic search engines, particularly
the scores and statistical values associated with peptide-
spectrum matches (PSMs). The mzIdentML version 1.1 spe-
cifications enabled protein identification results to be reported
as grouped accessions (where shared peptide evidence exists)
in a relatively flexible structure, with the intention that more
robust guidelines could be developed later. In this work, we
have now developed guidelines for reporting (grouped) protein
identification results in a format that can be consumed and
interpreted in an unambiguous manner, and supporting
the majority of known approaches for inferring protein iden-
tifications. The guidelines do not require an update to the
core mzIdentML structure (the XML Schema), but do rep-
resent a change in practice in how protein-level results should
be encoded, and, as such, we are now releasing a new version
of mzIdentML (version 1.2), so that consuming software is
able to differentiate those following the new guidelines on
protein reporting.

2 Methods

The guidelines reported here have been developed through
an open consultation process at PSI meetings [14] and
teleconferences. The guidelines have been formally captured in the mzIdentML specification document:
http://code.google.com/p/psi-pi/source/browse/trunk/speci-
fication_document/specdoc1_2/, supporting examples files
(http://code.google.com/p/psi-pi/source/browse/trunk/exam-
iples/) updates to the PSI-MS CV [22], a new mapping file
indicating how the CV terms should be used within the format
(http://code.google.com/p/psi-pi/source/browse/trunk/cv/)
and updates to the mzIdentML validator [23].

2.1 mzIdentML overview

The mzIdentML standard has been designed to capture
the outputs of peptide/protein identification software, such
as sequence database search engines and search result
verification/post-processing software. The format captures
the software used, the sequence database searched, soft-
ware parameters (including modifications), and output
results—one or more lists of PSMs and the set of proteins
inferred from those PSMs. Each PSM or protein identi-
fication can be reported with one or more scores or sta-
tistical measures, such as e-values or p-values (encoded
using standard terminology from the PSI-MS CV), which
allow subsequent manual or automated assessment of the
quality of individual results. An up-to-date listing of soft-
ware implementations for mzIdentML can be found here:
http://www.psidev.info/tools-implementing-mzidentml.

Each mzIdentML file has a <SequenceCollection> contain-
ing elements called <DBSequence> (Fig. 2A). <DBSequence>
is a reusable (referenced from several elements in an mzIdentML file) representation of a single
database entry, capturing the accession in the source database
and optionally the protein sequence, description, taxonomy,
and so on. One or more <DBSequence> elements is refer-
ced from every PSM (not shown on Fig. 2), capturing all
possible parent proteins for every peptide prior to protein
inference. An mzIdentML file could in theory encode an en-
tire search database (for example from a FASTA formatted
file) in the <SequenceCollection>, although generally the
<SequenceCollection> contains only the listing of all possi-
ble proteins mapped from PSMs, which is typically a superset
of the protein accessions identified following protein infer-
ence.

The <ProteinDetectionList> contains a hierarchical
structure in which the protein identifications are repre-
sented (Fig. 2B). Each <ProteinDetectionList> con-
tains <ProteinAmbiguityGroup> elements (here referred
as PAG), each capturing a single identified protein or a
group of proteins where there is some ambiguity in exactly which protein has been identified. Each pro-
tein within a group is recorded as an element called
<ProteinDetectionHypothesis> (here referred as PDH).
Each PDH references exactly one <DBSequence> element,
indicating the database entry that has been potentially identi-
fied. Each PDH also references the set of PSMs on which it is
based, completing the evidence trail for its identification (not
shown on Fig. 2). Also, each PDH has a mandatory true/false
attribute called passThreshold, indicating whether the protein
identification is deemed to have passed a threshold reported
elsewhere within the file. This attribute was included in mzI-
dentML 1.1 (and earlier releases) to allow the data producer
to export identifications both above and below the threshold.
However, no such attribute was also present on the protein
group (PAG) level.

When the mzIdentML standard was completed as a sta-
ble release (version 1.1), a set of CV terms was added to the
Figure 2. (A and B) Graphical representation of how the concepts defined in Fig. 1 map onto an mzIdentML file, following the recommendations presented in this manuscript. Each `<ProteinDetectionHypothesis>` has references back to all PSMs on which the protein identifications are based (not shown—consult [17] for more details).

PSI-MS CV allowing basic annotations as to the role that each protein (PDH) played within its group (PAG)—intended to capture same-set, subset, and subsumable relationships between PDHs. However, the original mzIdentML specification document did not enforce the use of these CV terms and provided little guidance on how more general grouping relationships should be captured. The result is that software reading mzIdentML files containing protein identification results would have difficulty comparing the results exported from different packages. Specific problems that have been identified are as follows. Most critically, the specifications did not contain a clear statement in terms of how the concepts represented in Fig. 1A–C should be mapped onto mzIdentML—for example different exporters could choose to map onto a PAG either a “cluster” or a “protein group” or, for some software packages that define sets/groups of proteins at yet further levels of granularity, something else. Second, when reading an mzIdentML file, the answer to a simple question “how many proteins were being reported as identified” could not be decisively determined, and different users or software could arrive...
at different answers (for example one might count PAGs or count PDHs). Third, the specification documentation was not clear on how the passThreshold attribute on PDH should be interpreted—potentially implying that this protein was determined as identified and representative of a group or only that it had statistically significant PSMs. In this manuscript, we describe work undertaken to formalize how protein inference should be reported in mzIdentML (although the guidelines could be adapted for other methods of reporting proteomics identification results), including the definition of a new set of CV terms that have been added to the PSI-MS CV.

3 Results and Discussion

The primary result reported here is a standardized set of rules for mapping the concepts represented in Fig. 1 onto mzIdentML, as shown graphically in Fig. 2 and as actual mzIdentML XML code in Fig. 3. The following mappings and rules have now been established in this work—capitalized MUST, SHOULD, and MAY have a formal interpretation by validation software:

1. As in mzIdentML version 1.1, a single protein accession that has been cited by software (Fig. 1A) is captured in mzIdentML in <ProteinDetectionHypothesis> (PDH).
 a. A PDH MAY contain scores or statistical values produced by the export software, encoded as CV terms.
2. A “protein group” (Fig. 1B), representing a “biological entity” for which the software claims independent evidence is present, MUST be mapped onto <ProteinAmbiguityGroup> (PAG).
 a. A PAG MAY have additional scores produced by the export software, encoded as CV terms.
3. The reporting of protein identification thresholds is now mapped onto PAGs. There is no desire to change the core XML Schema Document (XSD) for mzIdentML and as such, a new CV term “protein group passes threshold” value = "xsd:boolean" MUST be present on every PAG (MS:1002415). If no thresholding has been done by the software, all protein groups MUST be annotated as “protein group passes threshold” value = “true”.
 a. The attribute passThreshold = “true|false” remains present on PDH and MAY be used if software packages wish to report a two-level hierarchy of thresholds applied, however, it is not expected that consuming software will use this attribute to determine which proteins have been reported as identified.
 b. As in mzIdentML 1.1, the threshold applied to protein-level results MUST be present in the <ProteinDetectionProtocol>. However, the mzIdentML 1.1 specifications implied that the threshold value present here was used to determine the passThreshold attribute on all PDH elements. In mzIdentML 1.2, the threshold value reported here corresponds with PAG-level thresholding applied—either to a score reported specifically on each PAG itself, or a score on the PDH flagged as a “group representative”. In approaches that do not use the “group representative” CV term, there is an expectation that thresholds SHOULD be applied to scores reported at the PAG-level. The <ProteinDetectionProtocol> MUST contain either the “no threshold” term or a suitable score/value pair sourced from the PSI-MS CV – such as p-value, FDR, e-value and so on, determined by any type of statistical analysis (i.e. not limited to target-decoy approaches). The file reader can then determine the error rate that has been estimated by the software in determining those PAGs that pass the reported threshold.
4. The <ProteinDetectionList> MUST contain the CV term “count of identified proteins” value = “xsd:integer” (MS:1002404). The value MUST be derived from the count of PAGs passing the threshold reported in the file and will be checked by validation software. Optional CV terms for alternative methods for counting protein identifications or providing ranges can be requested from the working group.
5. Few software packages report “protein clusters” at present (Fig. 1C), but for those packages that wish to report clusters, a CV term “cluster identifier” value = “xsd:integer” (MS:1002407). If no thresholding has been done by the software whether one or more proteins have stronger evidence than others in the group (see Table 1 for examples).
 a. An additional term, “group representative”(MS:1002403) MAY be used to annotate one PDH, which is also flagged as a “leading protein”, if the export software wishes to enforce that only one of potential several “leading proteins” will be interpreted by the consuming software as the representative of the group, for example acting as a tiebreaker.
 b. If the export software does not explicitly flag one protein as the “group representative”, it is assumed that if consuming software requires a single accession to represent the group, an arbitrary choice will be made (among “leading proteins” only if these exist).
6. Every PDH MUST be annotated as either a “leading protein” (MS:1002401) or a “non-leading protein” (MS:1002402), as defined in Table 1, within a PAG. This recommendation thus makes it explicit for consuming software whether one or more proteins have stronger evidence than others in the group (see Table 2 for examples).
 a. An additional term, “group representative”(MS:1002403) MAY be used to annotate one PDH, which is also flagged as a “leading protein”, if the export software wishes to enforce that only one of potential several “leading proteins” will be interpreted by the consuming software as the representative of the group, for example acting as a tiebreaker.
7. Any PDHs MAY be annotated with terms present in the CV for spectrum/sequence same-set, spectrum/sequence subset, spectrum/sequence subsumable, marginally distinguished, and so on (Table 1).
A snippet of mzIdentML showing a `<ProteinAmbiguityGroup>` (lines 5038 to 5095) containing four `<ProteinDetectionHypothesis>` elements (two minimized on lines 5068 and 5080). In this example, the first PDH (lines 5039–5055) has been flagged as both a “leading protein” and “group representative” (lines 5051 and 5052). The second PDH (lines 5056–5067) has been assigned as a “nonleading protein” (line 5066) and a “sequence subset protein” (line 5065). CV terms assigned to the PAG level are on lines 5092–5094, including the mandatory term “protein group passes threshold” (line 5092).

a. A PDH MAY be annotated with more than one of these terms if appropriate to describe the complex set relationships that exist within a group.

b. Developers of software packages MAY propose additional terms for describing group membership of PDHs, which will be incorporated into the CV.

c. The associated value for these CV terms MAY be used to annotate which PDH(s) are the super/same-set of the annotated PDH.

d. There is no expectation that consuming software should be aware of these terms, but they may be useful in internal pipeline or visualization software packages that are specifically designed to work with this terminology set.

8. Some PDHs could be mapped to more than one PAG, for example where proteins are multiply subsumed. To capture these cases, multiple PDHs in different PAGs MAY reference the same `<DBSequence>`.

These guidelines have been developed as a consensus of opinion from the creators of protein inference tools, and we believe they can accommodate all currently known approaches—including those that are spectrum or peptide-based, statistical, and/or set-based, those that include only confidently identified PSMs or those that take evidence from weakly identified PSMs.

The CV terms and mapping into mzIdentML described have been added to the mzIdentML specification document (version 1.2 candidate)—standardization process described in [24]. The semantic validation software has been updated to encode these rules and report errors (“MUST” rule), warnings (“SHOULD” rule), or informational messages (“MAY” rule) [25]. We have also started collecting information describing how concepts from a number of different protein inference packages map onto the terminology described here (http://www.psidev.info/mzidentml#mzid12—link “Rosetta”). A set of example files is available from the project website. The example files can be visualized using the ProteoIDViewer software [23], which has been updated to support the new specifications (available from http://code.google.com/p/mzidentml-viewer/). Several examples have been generated by different protein inference tools from the same artificially constructed set of spectra, known to produce grouping and clustering scenarios when searched against databases containing more or less redundancy, thus ensuring we have standardized example files that test the full range of biological conditions that might exist and different software approaches.

A number of other issues have been identified since the release of the stable mzIdentML 1.1 in 2011, which will also be resolved in the release of mzIdentML 1.2. These include explicit support for approaches using multiple database search engines; and approaches where multiple MS analyses originating from separation of the same sample (e.g. fractionation) are combined in a single database search or the protein inference stage. We have also improved
Table 1. New CV terms for reporting protein set (group) relationships and global statistics about the protein identification results
mzIdentML context
ProteinDetectionList
ProteinDetectionList
ProteinAmbiguity-Group
ProteinAmbiguity-Group
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis
ProteinDetection-Hypothesis

The semantic validation software for mzIdentML (v.1.2) reports an error (MUST), a warning (SHOULD), or an informational message (MAY) if these terms are not reported within the file.
Table 2. A summary of grouping options and recommendation for CV term annotations, assuming a group of four related proteins A–D

Scenario	Software preference	Encoding
Software scores A and B as same-set, C and D as subset.	Software wishes to make A the group representative (arbitrary)	A = leading protein and group representative
B = leading protein		
C = nonleading protein		
D = nonleading protein (use of formal same-set and subset notation is also allowed but optional)		
As above	Software does not wish to choose which is the group representative	A = leading protein
B = leading protein		
C = nonleading protein		
D = nonleading protein		
Software scores A as best protein; B, C, and D are all subset or subsumed	N/A	A = leading protein
B = nonleading protein		
C = nonleading protein		
D = nonleading protein		
Software scores all four proteins as same-set or more generally as having equal evidence	Software wishes to make A the group representative (arbitrary)	A = leading protein and group representative
B = leading protein		
C = nonleading protein		
D = nonleading protein		
As above	Software does not wish to choose which is the group representative	A = leading protein
B = leading protein		
C = nonleading protein		
D = nonleading protein		
Software scores A as having slightly more evidence than B. B has additional weak independent evidence relative to A. C and D have less evidence than either A or B.	Software wishes to assign A as the leading protein and the independent evidence for B is not sufficient for it to form a new PAG.	A = leading protein
B = nonleading protein and marginally distinguished (optional)		
C = nonleading protein		
D = nonleading protein		
As above	Software does not wish to choose which is the leading protein out of A and B or group representative	A = leading protein
B = leading protein		
C = nonleading protein		
D = nonleading protein		
As above	Software does not wish to choose which is the leading protein but does select a group representative	A = leading protein and group representative
B = leading protein
C = nonleading protein
D = nonleading protein |

support for capturing peptide identifications from de novo sequencing approaches and for experiments where statistical analysis was performed at the peptide level, removing redundant PSMs reporting on the same peptide unit. Details are available in the new specification document: http://code.google.com/p/psi-pi/source/browse/trunk/specification_document/specdoc1_2/ and will be described fully in a separate publication.

The PSI will continue to support mzIdentML 1.1 for the foreseeable future (e.g. the mzIdentML 1.1 validator will remain in general use), and it is expected that both mzIdentML 1.1 and 1.2 should be supported by importing software and databases. New export software will only be expected to create mzIdentML 1.2 however, and over time we expect software packages exporting mzIdentML currently to move over to the new guidelines.

4 Concluding remarks

In this work, we have described a standardized terminology for use with the mzIdentML data standard for reporting protein identification results in a standard way. The new guidelines are released as a new version (1.2) of the standard. We anticipate that the mechanism described here for
reporting protein grouping results will improve capabilities for multisite collaborations, comparisons between different approaches and consistent import of data into public repositories, such as PRIDE (Proteomics IDENTifications) [26] and other members of the ProteomeXchange Consortium [27].

ARJ would like to acknowledge funding from BB-BRC (BB/K01997X/1, BB/K004123/1) and ARJ/JAV (BB/100095X/1, BB/K01997X/1). ARJ, JAV, and PAB would like to acknowledge funding from EU FP7 grant ProteomeXchange (grant no. 260538). JAV is also funded by the Wellcome Trust (grant numbers WT085949MA and WT101477MA). PAB is part of the Swiss-Prot group, whose activities are supported by the Swiss Federal Government through the Federal Office of Education and Science and by the National Institutes of Health (NIH) grant 1 U41 HG006104-01. JU and ME would like to acknowledge funding by PURE (Protein Unit for Research in Europe, Az.: 131/1.08–031), a project of North Rhine-Westphalia, Germany. RJC is supported by NIH NIGMS grant 8P41GM103481. TF is supported by federal funds from the National Institutes of Health-National Genome Research Institute (grant no. 1RC2 HG005805-01), the National Science Foundation MRI (grant no. 0923536), and the National Institute of General Medical Sciences (grant no. R01 GM087221).

The authors have declared no conflict of interest.

5 References

[1] Smith, L. M., Kelleher, N. L., Proteoform: a single term describing protein complexity. Nat. Methods 2013, 10, 186–187.
[2] Koskinen, V. R., Emery, P. A., Creasy, D. M., Cottrell, J. S., Hierarchical clustering of shotgun proteomics data. Mol. Cell. Proteomics 2011, 10, M110.003822.
[3] Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4656.
[4] Searle, B. C., Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 2010, 10, 1265–1269.
[5] Slotta, D. J., McFarland, M. A., Markey, S. P., MassSieve: panning MS/MS peptide data for proteins. Proteomics 2010, 10, 3035–3039.
[6] Tabb, D. L., McDonald, W. H., Yates, J. R., DTASelect and Contrast: tools for assembling and comparing peptide identifications from shotgun proteomics. J. Proteome Res. 2002, 1, 21–26.
[7] Yang, X., Dondeti, V., Dezube, R., Maynard, D. M. et al., DBParser: web-based software for shotgun proteomic data analyses. J. Proteome Res. 2004, 3, 1002–1008.
[8] Zhang, B., Chambers, M. C., Tabb, D. L., Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J. Proteome Res. 2007, 6, 3549–3557.
[9] Qeli, E., Ahrens, C. H., PeptideClassifier for protein inference and targeted quantitative proteomics. Nat. Biotech. 2010, 28, 647–650.
[10] Bradshaw, R. A., Burlingame, A. L., Carr, S., Aebersold, R., Reporting protein identification data. Mol. Cell. Proteomics 2006, 5, 787–788.
[11] Carr, S., Aebersold, R., Baldwin, M., Burlingame, A. et al., The need for guidelines in publication of peptide and protein identification data: working group on publication guidelines for peptide and protein identification data. Mol. Cell Proteomics 2004, 3, 531–533.
[12] Wilkins, M., Appel, R., Van Eyk, J., Chung, M. et al., Guidelines for the next 10 years of proteomics. Proteomics 2006, 6, 4–8.
[13] Nesvizhskii, A. I., Aebersold, R., Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics 2005, 4, 1419–1440.
[14] Orchard, S., Binz, P.-A., Jones, A. R., Vizcaino, J. A. et al., Preparing to work with big data in proteomics – a report on the HUPO-PSI Spring workshop. Proteomics 2013, 13, 2931–2937.
[15] Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P.-A. et al., The minimum information about a proteomics experiment (MI-APE). Nat. Biotech. 2007, 25, 887–893.
[16] Martens, L., Chambers, M., Sturm, M., Kessner, D. et al., mzML—a community standard for mass spectrometry data. Mol. Cell. Proteomics 2011, 10, R110.000133.
[17] Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O. et al., The mzIdentML data standard for mass spectrometry-based proteomics results. Mol. Cell. Proteomics 2012, 11, M111.014381.
[18] Walzer, M., Qi, D., Mayer, G., Uszkoreit, J. et al., The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics. Mol. Cell. Proteomics 2013, 12, 2332–2340.
[19] Griss, J., Sachsenberg, T., Walzer, M., Gatto, L. et al., The mzTab data exchange format: communicating MS-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell. Proteomics 2014, pii: mcp.O113.036681.
[20] Montecchi-Palazzi, L., Beavis, R., Binz, P.-A., Chalkley, R. J. et al., The PSI-MOD community standard for representation of protein modification data. Nat. Biotech. 2008, 26, 864–866.
[21] Creasy, D. M., Cottrell, J. S., Unimod: protein modifications for mass spectrometry. Proteomics 2004, 4, 1534–1536.
[22] Mayer, G., Montecchi-Palazzi, L., Ovelleiro, D., Jones, A. R. et al., The HUPO proteomics standards initiative – mass spectrometry and targeted quantitative proteomics. Proteomics 2010, 10, 531–533.
[23] Zhang, B., Chambers, M. C., Tabb, D. L., Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J. Proteome Res. 2007, 6, 3549–3557.
[24] Vizcaíno, J. A., Martens, L., Hermjakob, H., Julian, R. K. et al., The PSI formal document process and its implementation on the PSI website. *Proteomics* 2007, 7, 2355–2357.

[25] Montecchi-Palazzi, L., Kerrien, S., Reisinger, F., Aranda, B. et al., The PSI semantic validator: a framework to check MIAPE compliance of proteomics data. *Proteomics* 2009, 9, 5112–5119.

[26] Vizcaíno, J. A., Côté, R., Reisinger, F., Barsnes, H. et al., The Proteomics Identifications database: 2010 update. *Nucl. Acids Res.* 2010, 38, D736–D742.

[27] Vizcaíno, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nat. Biotech.* 2014, 32, 223–226.