Рисковая орентированная модель причинно-следственных связей факторов риска заражения медицинского персонала, участвующего в оказании медицинской помощи пациентам с новой коронавирусной инфекцией COVID-19

Е.А. Анненкова 1, О.А. Тихонова 1, А.П. Бiryуков 1, Л.И. Баранов 1, И.Г. Дибиргаджiev 1, М.В. Шеянov 1, О.А. Касымова 1, О.В. Паринов 1

1 ФГБУ «ГНЦ – Федеральный медицинский биофизический центр им. А.И. Бурназяна», ФМБА России, Москва, Россия

Резюме. Цель исследования – разработка и применение математической модели оценки рисков заражения медицинского персонала, участвующего в оказании медицинской помощи пациентам с COVID-19 в условиях «красной зоны». Материалы и методы исследования. На основе анализа информативных признаков и информации об условиях труда в инфекционном отделении Федерального медицинского биофизического центра им. А.И.Бурназяна ФМБА России разработана система поддержки принятия решений, позволяющая дать объективную оценку рисков заражения медицинского персонала при оказании медицинской помощи в условиях «красной зоны». Результаты исследования и их анализ. Проанализировано влияние различных факторов риска заражения медицинского персонала, участвующего в оказании медицинской помощи пациентам с новой коронавирусной инфекцией COVID-19; определены самые значимые факторы риска.

Ключевые слова: доза-эффект, «красная зона», математическая модель оценки рисков заражения, медицинский персонал, новая коронавирусная инфекция COVID-19, пациенты

Конфликт интересов. Авторы статьи подтверждают отсутствие конфликта интересов

Для цитирования: Анненкова Е.А., Тихонова О.А., Бирюков А.П., Баранов Л.И., Дибиргаджiev И.Г., Шеянов М.В., Касымова О.А., Паринов О.В. Риск-ориентированная модель причинно-следственных связей факторов риска заражения медицинского персонала, участвующего в оказании медицинской помощи пациентам с новой коронавирусной инфекцией COVID-19 // Медицина катастроф. 2021. №3. С. 65-68. https://doi.org/10.33266/2070-1004-2021-3-65-68

A RISK-BASED CAUSAL MODEL OF RISK FACTORS FOR INFECTION AMONG MEDICAL PERSONNEL INVOLVED IN THE CARE OF PATIENTS WITH THE NEW COVID-19 CORONAVIRUS INFECTION

E.A.Annenkova ¹, O.A.Tikhonova ¹, A.P.Biryukov ¹, L.I.Baranov ¹, I.G.Dibirgadzhiev ¹, M.V.Sheyanov ¹, O.A.Kasymova ¹, O.V.Parinov ¹

¹ State Research Center – Burnasayn Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russian Federation

Abstract. The aim of the study is to develop and apply a mathematical model for assessing the risks of contamination of medical personnel involved in providing medical care to patients with COVID-19 in a “red zone” environment. Materials and methods. Based on the analysis of informative signs and information on working conditions in the infectious disease department of the A.I. Burnazyan Federal Medical Biophysical Center of the Federal Medical and Biological Agency of Russia, a decision-making support system was developed to provide an objective assessment of the risks of infection for medical personnel when providing medical care in the “red zone”.

Results of the study and their analysis. The influence of various risk factors for infection of medical personnel involved in the provision of medical care to patients with new coronavirus infection COVID-19 was analyzed; the most significant risk factors were identified.

Key words: dose-effect, mathematical model of infection risk assessment, medical personnel, new coronavirus infection COVID-19, patients, red zone

Conflict of interest. The authors declare no conflict of interest

For citation: Annenkova E.A., Tikhonova O.A., Biryukov A.P., Baranov L.I., Dibirgadzhiev I.G., Sheyanov M.Y., Kasymova O.A., Parinov O.V. Risk-Based Causal Model of Risk Factors for Infection among Medical Personnel Involved in the Care Of Patients with the New COVID-19 Coronavirus Infection. Meditsina katastrof = Disaster Medicine. 2021;3:65-68 [In Russ.]

https://doi.org/10.33266/2070-1004-2021-3-65-68

Contact information:
Elena A. Annenkova – Cand. Sci. (Phys.–Math.); Senior Research
Address: 46, Zhyvopisnaya str., Moscow, 123098, Russia
Phone: +7(499)190-94-35
E-mail: a-a-annenkova@yandex.ru
Введение

Чрезвычайные ситуации (ЧС) в том числе эпидемии, оказывают большое влияние на системы здравоохранения, вызывая глубокие структурные и функциональные проблемы в организации оказания медицинской помощи больным и пострадавшим. Пандемия COVID-19 иллюстрирует это на глобальном уровне. Особое внимание в этой ситуации следует уделять социально-профессиональной группе медицинских специалистов, от квалифицированных и слаженных действий которых в первую очередь зависит общественное здоровье и здоровьедельного человека [1]. Риск профессионального заражения приводит к нарушению бесперебойной работы медицинских служб, поскольку необходимо устанавливать обязательный карантин для инфицированных специалистов и отстранять их от работы. Кроме того, существует проблема замены заболевших на рабочем месте. В настоящее время в связи с пандемией COVID-19 становится актуальным прогнозирование заболеваемости медицинских работников на основе данных о других вирусах из группы коронавирусов.

Цель исследования – разработка и применение математической модели оценки рисков заражения медицинского персонала, участвующего в оказании медицинской помощи пациентам с COVID-19 в условиях «красной зоны».

Материалы и методы исследования. С целью математического моделирования риска инфицирования медицинского персонала в «красной зоне» были проанализированы факторы, оказавшие влияние на риски распространения вируса COVID-19. Основой формирования пространства информативных признаков для математической модели послужили данные об условиях труда в инфекционном отделении ГНЦ – Федерального медицинского биофизического центра им. А.И. Бурназяна ФМБА России (далее – ФМБЦ им. А.И. Бурназяна), где для оказания помощи больным, инфицированным SARS-CoV-2, были привлечены 223 чел. (медицинские работники, водители, дезинфекторы, повара, рабочие и т.д.), в том числе 166 чел. (медицинский персонал) в условиях повышенного риска профессионального заражения. В группу медицинского персонала вошли 48 мужчин и 118 женщин в возрасте от 18 до 69 лет, средний возраст – (48,7±1,8) лет, из них 57 – врачи различного профиля; 109 – медицинские сестры и санитарки. Никто из участников исследования ранее не работал в условиях инфекционного отделения и не обладал специальными знаниями по вирусологии. Перед началом работы в «красной зоне» все сотрудники в «красной зоне» всех медицинских работников, участвующих в оказании медицинской помощи больным COVID-19, проводилась с целью составления плана в инфекционном отделении был отрицательным. Было также учтено рабочее пространство больничных помещений. Большинство палат было рассчитано на 4 пациента. Объём помещения на 4 пациентов составлял 70 м³. Пациенты с симптомами считались единственным источником инфекции в помещении, при этом исходили из того, что COVID-19 передается главным образом через аэрозоли. Вирусный выброс в помещение рассчитывали по формуле:

\[
V_i = \frac{\pi d_i^2}{6} \times 10^{-12},
\]

где \(V \) – объем для каждого распределения капель по размерам, которые выбрасываются в помещение во время каждого кашля; \(d_i \) – диаметр капель – в пределах её сферической формы [2].

Скорость вентиляционного потока \(q_{vent} \) определялась количеством воздухообменов в час (ACH) на объем помещения, т. е. по кратности воздухообмена, осуществляющегося в помещениях «красной зоны» по нормам для палат инфекционных больных:

\[
q_{vent} = V \times ACH
\]

Суточная доза воздействия в ПФУ (блювокозаирующе единицы) для медицинского персонала во время посещения палат с пациентами с новой коронавирусной инфекцией COVID-19 рассчитывалась по следующей формуле:

\[
D = C_{CoV} \times C_{saliva} \times N_{cough} \times \frac{1}{q_{vent}} \times V_{inhaled} \times N_{room} \times N_{pat} \times t_{spent} \times t_{work}
\]

где \(C_{CoV} \) – концентрация инфекции в слюне, среднее значение и распределение которой рассчитывались на основе исследований в работе [3]; \(C_{saliva} \) – концентрация частиц в воздухе после одного кашля, которая рассчитывалась на основе модели переноса частиц [2]; \(N_{cough} \) – количество кашлевых выбросов в час; \(V_{inhaled} \) – объем вдоха; \(N_{room} \) – количество рабочих часов в сутки; \(N_{pat} \) – число пациентов, которых посетил медицинский работник за одно посещение палат; \(t_{spent} \) – время, затраченное на каждого взрослого; \(t_{work} \) – количество рабочих часов в сутки; \(t_{mask} \) – время, в течение которого может быть задействованы медицинский работник в зависимости от должностей функций медработников. Например, медсестры в среднем обходили 6 палат за 1 ч, находясь в каждой палате по 10 мин. Их рабочий день составлял 8 ч. Формула для определения суточной дозы воздействия [3] при ношении маски дополняется множителем

\[
P_{mask} = \frac{C_{saliva}}{C_{mask}}
\]
где P_{mask} – проникновение частиц через маску, C_{out} – концентрация частиц, прошедших через маску. В "красной зоне" инфекционного отделения ФМБЦ им. А.И.Бурназяна использовались респираторы со степенью защиты FFP3, эффективность фильтрации которых составляет 99%, т.е. $P_{\text{mask}} = 1$ [6]. Однако если маска не была заменена ранее, чем была утрачена ее эффективность (до 4 ч), то нужно учесть, что коэффициент проникновения частиц через маску становится 100%ным на всё время ношения данной маски с момента утраты эффективности.

Рекомендуемая модель дозо-эффект следует экспоненциальной зависимости доза-эффект:

$$P_{\text{inf}} = 1 - e^{-kD}$$ \hspace{1cm} (4)

где P_{inf} – вероятность (risk) заражения; k – оптимизированный параметр функции доза-эффект, PFU$^{-1}$.

Кумулятивный риск заболеваемости в течение нескольких дней воздействия был сформулирован следующим образом:

$$P_{M} = 1 - \left(1 - P_{\text{inf}}\right)^n$$ \hspace{1cm} (5)

где P_{M} – вероятность заболеваемости; n – количество дней воздействий с P_{inf} вероятностью заражения от ежедневного воздействия [7].

Результаты исследования и их анализ. Всего за период работы инфекционного отделения были зафиксированы 26 случаев (15,6%) острого профессионального заболевания COVID-19, подтвержденных тестом ПЦР или серологическим тестом. В группу заболевших при выполнении служебных обязанностей входили 10 медицинских сестер, в том числе работавших в отделении анестезиологии, 9 санитарок и 3 уборщицы помещений (все – женщины). Врачи в меньшей степени подвергались профессиональному заражению – 4 заболевших (два мужчин, две женщины). Средний возраст всех заболевших – (39,63±1,2) лет.

Все случаи были локально приобретенными в период с 8-го по 21-й день с момента открытия инфекционного отделения – в период освоения новых навыков и приобретения опыта работы с данным видом инфекции, поскольку опыт работы сотрудников в условиях была недостаточным.

Эмпирическое значение вероятности заражения персонала в "красной зоне" инфекционного отделения ФМБЦ им. А.И.Бурназяна в течение одного рабочего дня при вышеупомянутых условиях составляет 0,011,1876. Объективные условия работы персонала в "красной зоне", при которых такая вероятность заболевания стала реальностью, отражены в вычисленном по формуле (3) значении параметра D. На основе вычисленных значений P_{inf} и D получим эмпирическую оценку значения параметра k по формуле:

$$k = - \frac{\ln(1 - P_{\text{inf}})}{D}$$ \hspace{1cm} (6)

Получено значение $k = 13,8238987774$. Таким образом, зная оптимизированный параметр функции доза-эффект k и применяя формулу [5], мы можем оценивать риски заражения медицинского персонала, участников в "красной зоне", при которых такая вероятность заболевания стало реальностью, отражены в исходных данных, что связано с постоянно меняющимися исходными данными, что связано с постоянно меняющимися исходными данными. Кумулятивная вероятность заражения в течение n рабочих дней:

$$P_{\text{cumulative}} = \left(1 - P_{\text{inf}}\right)^n$$ \hspace{1cm} (7)

где $P_{\text{cumulative}}$ – вероятность заболеваемости; n – количество дней воздействия.

Значения P_{inf}, k, D были взяты из медицинской статистики, а также из работы [7]. Оценка риска заражения медицинского персонала при работе с инфекционными агентами с воздушно-капельным механизмом передачи может быть использована при разработке мероприятий по их устранению.

Разработанные рекомендации по использованию алгоритма оценки риска заболевания медперсонала при наличии в рабочей среде инфекционных агентов с воздушно-капельным механизмом передачи направлены на снижение риска для здоровья в данной профессиональной группе и могут быть использованы в практической деятельности врачей-гигиенистов, гостипедиологов, организаторов здравоохранения, инженеров по охране труда лечебных медицинских организаций (ЛМО).

Заключение

Данная работа проводилась в условиях постоянно меняющихся исходных данных, что связано с новизной исследуемой проблемы и, соответственно, с постоянно изменениями, что связано с постоянно меняющимися исходными данными. Кумулятивная вероятность заражения в течение n рабочих дней:

$$P_{\text{cumulative}} = \left(1 - P_{\text{inf}}\right)^n$$ \hspace{1cm} (7)

где $P_{\text{cumulative}}$ – вероятность заболеваемости; n – количество дней воздействия.

Значения P_{inf}, k, D были взяты из медицинской статистики, а также из работы [7]. Оценка риска заражения медицинского персонала при работе с инфекционными агентами с воздушно-капельным механизмом передачи может быть использована при разработке мероприятий по их устранению.

Разработанные рекомендации по использованию алгоритма оценки риска заболевания медперсонала при наличии в рабочей среде инфекционных агентов с воздушно-капельным механизмом передачи направлены на снижение риска для здоровья в данной профессиональной группе и могут быть использованы в практической деятельности врачей-гигиенистов, гостипедиологов, организаторов здравоохранения, инженеров по охране труда лечебных медицинских организаций (ЛМО).
Проведенные нами исследования еще раз подтвердили, что для снижения рисков инфицирования медицинского персонала новой коронавирусной инфекцией COVID-19 в ЛМО необходимо проводить разъяснительную работу с персоналом о строгом соблюдении всех мер безопасности при работе с инфекционными больными. Для повышения информированности медицинских работников необходимо включать в программы отраслевых и городских медицинских конференций доклады об основных факторах риска для здоровья с учетом региональных особенностей заболеваемости коронавирусной инфекцией COVID-19.

В целом теоретическая значимость выполненной работы заключается в том, что получена и апробирована математическая модель оценки рисков заражения медицинского персонала в конкретных условиях работы с инфекционными больными на основе количественной оценки ключевых факторов, от которых зависит эффективность передачи инфекционного агента от человека к человеку. Установленные взаимосвязи между возможностью инфицирования медицинских работников и факторами, обусловленными профессиональной деятельностью, являются предметом для дальнейших исследований и могут быть использованы при разработке комплексных программ по охране здоровья медицинского персонала, задействованного в оказании медицинской помощи больным новой коронавирусной инфекцией COVID-19.

СПИСОК ИСТОЧНИКОВ / REFERENCES

1. Black J.R.M., Bailey C., Przewrocka J., et al. COVID-19: the Case for Health-Care Worker Screening to Prevent Hospital Transmission. Lancet. 2020;395:1418-1420.
2. Stilianakis N.I., Drissinos Y. Dynamics of Infectious Disease Transmission by Inhala-ble Respiratory Droplets. J R Soc Interface. 2010;7(50):1355-1366.
3. Liu Y., Ning Z., Chen Y., Gao M., Liu Y., Gao N. K., Sun L., Duan Y., Cai J., Wast-erdahl D., Liu X., Hong K., Han H., Fu Q., Jan K. Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Out- break. BioRxiv 2020.03.08.982637.
4. Loudon R., Brown L. Droplet Expulsion from the Respiratory Tract. Am Rev Respir Dis. 1967;95(3):435–442.
5. U.S. EPA. Exposure Factors Handbook 2011 Edition (Final Report). U.S. Environ-mental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011.
6. Fertoli M., Cisternino C., Leo V., Pisani L., Polangie P., Nova S. Protecting Health-care Workers from SARS-CoV-2 Infection: Practical Indications. European Respiratory Review. 2020;29(155):200068.
7. Haas C., Rosa J., Gerba C. Quantitative Microbial Risk Assessment. 2nd Edi-tion. Wiley-Blackwell, 2014.
8. Liu Y., Wang Z, Ren J., et al. COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study. J Med Internet Res. 2020;22(6):e19786.
9. Güler M.G., Geçici E. A Decision Support System for Scheduling the Shifts of Physicians During COVID-19 Pandemic. Comput Ind Eng. 2020;150:106874.
10. Krausz M., Westenberg J.N., Vigo D., Spence R.T., Ramsey D. Emergency Response to COVID-19 in Canada: Platform Development and Implementation for eHealth in Crisis Management. JMIR Public Health Surveill. 2020;6(2):e18995.
11. Adhikari U., Chabrelie A., Weir M., Boehnke K., McKenzie E., Ikner L., Wang M., Wang Q., Young K., Haas C.N., Rosa J., Mitchell J. A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting through Bioaerosols. Risk Anal. 2019;39(12):2608-2624.

Материал поступил в редакцию 26.03.21; статья принята после рецензирования 12.07.21; статья принята к публикации 10.09.21
The material was received 26.03.21; the article after peer review procedure 12.07.21; the Editorial Board accepted the article for publication 10.09.21