Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes

Neuroeng Rehabil. 2022 Jan 28;19(1):9. doi: 10.1186/s12984-022-00983-y

With Meridium compared to energy-storage-and-return (ESR) feet:

→ **Increased toe clearance**
 The increase of toe clearance is due to the fact that Meridium remains in a dorsiflexed position during swing.

→ **Larger range of motion during slope walking**
 Meridium offers a larger and situation-dependent ankle range of motion (ROM) than ESR feet.

→ **Reduced moments while ascending slopes with Meridium**
 - Reduced dorsiflexion moment by 29% for transfemoral amputees (TF) and 49% for transtibial amputees (TT).
 - Reduced knee extension moment by 26% (TF) and 49% (TT).

→ **For TF, the prosthetic knee joint is likely the more important component with regard to safety and walking modes on slopes than the foot.**

Products
Meridium

Major Findings

Population

Subjects:
- TT: 7 unilateral TT
- TF: 7 unilateral TF
- Control: 10 able-bodied subjects

Previous prostheses:
- TT: Triton 1C60 (2x), C-Walk 1C40 (2x), Trias 1C30 (1x), Triton Harmony (1C62) (1x), Triton LP 1C63 (1x)
- TF: Prosthetic feet: Triton 1C60 (6x), C-Walk 1C40 (1x); Prosthetic knee: X3 (3x), Genium (2x), C-Leg (2x)
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes

Study Design

Interventional, pre-post design:

1Slope ascent (“Up”) and descent (“Down”) were measured on a ramp (3m) with a handrail and a 10° inclination. Kinetic data was measured with a force plate installed on the ramp. Additionally, kinematic data of the subjects and prostheses was recorded.

Prior to each measurement session, participants accommodated to the lab environment and test setup. At least seven valid trials with one gait cycle each were recorded for each situation (ramp up/down, Meridium/ESR).

Functions and Activities	Participation	Environment							
Level walking	Stairs	Ramps, Hills	Uneven ground, Obstacles	Cognitive demand	Metabolic Energy Consumption	Safety	Activity, Mobility, ADLs	Preference, Satisfaction, QoL	Health Economics

Results

Category	Outcomes	Results	Sig.*	
Ramps, Hills	Sagittal joint angles [°]	TF	Meridium	ESR

Sagittal joint angle	Meridium	ESR	
Ankle — most plantar-flexed angle (early stance)	6.5	4.2	++
Ankle — most dorsiflexed angle (mid stance)	-15.3	-12.7	++
Ankle — angle in swing	-6.5	0.1	++

Ankle — most plantar-flexed angle (early stance)	10.7	9.9	–
Ankle — most dorsiflexed angle (mid stance)	-9.9	-10	0
Ankle — angle in swing	-5.6	-0.2	++

*Positive: Plantar flexion
Negative: Dorsiflexion
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes

Table 1: Sagittal joint moments for the prosthetic side

Category	Outcomes	Results	Sig.*	
TT	**Meridium**	**ESR**		
UP	Ankle — most plantar-flexed angle (early stance)	4.5	2.8	+
	Ankle — most dorsiflexed angle (mid stance)	-15.9	-11.5	++
	Ankle — angle in swing	-6.4	-0.1	++
DOWN	Ankle — most plantar-flexed angle (early stance)	14.4	8.5	++
	Ankle — most dorsiflexed angle (mid stance)	-10.4	-8.5	+
	Ankle — angle in swing	-3.9	0.1	++

Sagittal joint moments for the prosthetic side [Nm/kg]

- **Ankle:**
 - **Positive** = Dorsiflexing moment
 - **Negative** = Plantar flexing moment

- **Knee:**
 - **Positive** = Extension moment
 - **Negative** = Flexion moment

Table 2: Sagittal joint moments for the prosthetic side

Category	Outcomes	Results	Sig.*	
TF	**Meridium**	**ESR**		
UP	Ankle — Sagittal ankle moment (Vert. shank orientation)	0.65	0.92	++
	Ankle — Peak sagittal ankle dorsiflexion moment	1.59	1.45	++
	Knee — Sagittal knee moment (Vert. shank orientation)	0.53	0.72	++
	Knee — Peak sagittal knee moment	0.68	0.74	0
DOWN	Ankle — Sagittal ankle moment (Vert. shank orientation)	-0.18	-0.11	0
	Ankle — Peak sagittal ankle dorsiflexion moment	1.18	1.27	--
	Knee — Sagittal knee moment (Vert. shank orientation)	-0.34	-0.28	0
	Knee — Peak sagittal knee moment	-0.78	-0.85	0

Table 3: Sagittal joint moments for the prosthetic side

Category	Outcomes	Results	Sig.*	
TT	**Meridium**	**ESR**		
UP	Ankle — Sagittal ankle moment (Vert. shank orientation)	0.42	0.83	++
	Ankle — Peak sagittal ankle dorsiflexion moment	1.45	1.26	+
	Knee — Sagittal knee moment (Vert. shank orientation)	0.28	0.55	++
The Meridium facilitated walking on slopes by adapting instantaneously to terrain inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to ESR feet with a fixed ankle attachment, possibly making it easier to walk up a slope and to control the gait speed when descending. It assumed a dorsiflexed position during swing and enabled a larger ankle ROM and reduced the moments acting on the residual knee, which might help reduce knee overuse long-term. For individuals with TFA, the prosthetic knee joint seems to play a more important role than the foot for walking on ramps.” (Ernst et al, 2022)