A rapamycin derivative, biolimus, preferentially activates autophagy in vascular smooth muscle cells

Yerin Kim, Jun Kyu Park, Jun-Hyuk Seo, Hyun-Seung Ryu, Kyung Seob Lim, Myung Ho Jeong, Dong Hoon Kang & Sang Won Kang

Although rapamycin is a well-known conformational inhibitor of mTORC1, it is now widely used for treating arterial restenosis. Various rapamycin analogues (rapalogue) have been made for applying to drug-eluting stents. Here we show that two major rapalogues, everolimus and biolimus, exert a differential effect on the mTORC1-mediated signaling pathways in vascular smooth muscle cells. In balloon-injured carotid arteries, both rapalogues strongly inhibit neointimal hyperplasia. Signaling pathway analyses reveal that everolimus exert cytotoxicity by increasing cellular reactive oxygen species and consequently reduce energy metabolism. By contrast, biolimus confers a preferential induction of autophagy by more strongly activating major autophagy regulator, ULK1, in vascular smooth muscle cells than everolimus does. As a consequence, the implantation of biolimus-eluting stent reduces endothelial loss, which in turn reduces inflammation, in porcine coronary arteries. Thus, this study reveals that a chemical derivatization can cause a change among mTORC1-dependent signaling pathways in vascular smooth muscle cells, thereby enabling to elicit a differential efficacy on arterial restenosis.

Balloon angioplasty and stent implantation have been applied to extend arterial vessels narrowed by atherosclerosis. However, through the procedure, endothelial cells are denuded and thus the underlying vascular smooth muscle cells (VSMC) are exposed to blood stream containing macrophage/monocytes. As a result, VSMCs de-differentiate and aggressively proliferate, thereby causing in-stent restenosis. To prevent such complications, drug-eluting stents coated with cytostatic/cytotoxic drugs that inhibit VSMC proliferation have been developed and widely used in clinics. Nonetheless, those drugs also suppress re-endothelialization and thus induce inflammation and thrombosis.

Rapamycin is one of the most widely used drugs for drug-eluting stent. Rapamycin was identified from soil bacterium *S. hygroscopicus* and it was initially known for its broad immunosuppressive and anti-proliferative effects. Later, it was found that TOR protein (mTOR in mammals) is the target of rapamycin, a Ser/Thr protein kinase with many substrates, is a central regulator of cell proliferation, metabolism, and autophagy. The mTOR kinase forms functionally distinct two complexes, mTORC1 and mTORC2, of which only mTORC1 is sensitively suppressed by rapamycin. In mammalian cells, rapamycin firstly binds to a FKBP12 protein and then this complex allosterically inhibits mTORC1 by binding to the FRB domain next to the kinase domain of mTOR. Recent studies have shown that some mTORC1 substrates are resistant to rapamycin in several cell types. The p70S6K, a mTORC1 substrate involved in protein translation, is fully inhibited by rapamycin in most cell types, while the multiple phosphorylation sites of another protein translation regulator 4E-BP1 show a differential degree of de-phosphorylation responding to the rapamycin-induced mTORC1 inhibition. Also, the mTORC1-dependent phosphorylation of autophagy-inducing kinase ULK1 at S758 is resistant to rapamycin.

To date, many rapamycin analogues (rapalogue) have been developed to improve drug delivery and lower toxicity. In general, rapamycin was broadly modified on C40 branch that does not bind to either the FRB domain of mTORC1.
mTOR or the FKBP12 protein11. Those analogues exhibit different bioavailability and stability in vivo20. For example, the natural rapamycin sirolimus has a disadvantage of causing thrombosis42, whereas everolimus prevents such in-stent thrombosis22. The latest version of rapalogues is biolimus that shows an improved drug delivery capacity as it has more lipophilic properties23. Nonetheless, the differential signaling impact among rapalogues has not been evaluated seriously in VSMCs.

In this study, we found that biolimus is unexpectedly preferential to autophagy induction by enhancing the dephosphorylation of ULK at S758. Mechanistically, sirolimus and everolimus were cytotoxic by inducing cell death, while biolimus was rather cytostatic by inducing autophagy. More importantly, biolimus-eluting stents lowered inflammation score when it was implanted in porcine coronary arteries. Overall, our signaling study implicates the importance of structure-activity relationship for drug derivatization.

Materials and Methods

Reagents. Sirolimus (Cat No. 37094), everolimus (Cat No. 07741), anti-LC3B antibody (Cat No. L7543) were purchased from Sigma-Aldrich. Biolimus (Cat No. sc-391515) and anti-pRb antibody (Cat No. sc-50) were purchased from Santa Cruz Biotechnology. Anti-p-mTOR (pS2448) (Cat No. 5536S), Anti-mTOR (Cat No. 2972S), Anti-p-ULK1 (pS758) (Cat No. 14202S), Anti-ULK1 (Cat No. 6439S), Anti-p-4EBP1 (pS65) (Cat No. 9451S), Anti-4EBP1 (Cat No. 9644), Anti-p-P70S6K (pT389) (Cat No. 9205S), Anti-P70S6K (Cat No. 9202S) antibodies were purchased from Cell Signaling Technology. Anti-Ki67 antibody (Cat No. 550609) was purchased from BD Pharmigen. Alexa Fluor 488 (Cat No. A21206) and 568-conjugated donkey anti-rabbit secondary antibodies (Cat No. A10042) and Alexa Fluor 568-conjugated donkey anti-mouse secondary antibodies (Cat No. A10037) were purchased from Invitrogen. pRb (pThr373) antibody (Cat No. 9306S) was purchased from New England Biolabs.

Cell culture. Human aortic SMCs (HASMC) were purchased from Lonza. Cells were cultured using Smooth Muscle Cell Growth Medium (SmGM) containing 5% fetal bovine serum with growth factors and antibiotics (Lonza, Cat no. cc-4149) in humidified incubator containing 5% CO\textsubscript{2} at 37°C. All experiments were performed with HASMCs at passages 5–7.

Immunoblot analysis. Cells were rinsed twice with ice-cold phosphate-buffered saline (PBS) and were frozen on liquid nitrogen. Then, they were lysed in a lysis buffer containing 20 mM HEPES (pH 7.0), 1% Triton X-100, 150 mM NaCl, 10% glycerol, 1 mM EDTA (pH 8.0), 2 mM EGTA (pH 8.0), 1 mM DTT, 5 mM Na\textsubscript{3}VO\textsubscript{4}, 5 mM NaF, 1 mM AEBSF, 5 μM leupeptin, and 5 μM mlupeptin. The cell lysates were centrifuged at 15,000 × g for 15 min, and the protein concentrations were determined by Bradford assay (Pierce). Protein samples were mixed with SDS sample buffer and boiled for 5 min. The proteins were separated by SDS-PAGE and transferred onto nitrocellulose membranes by electroblotting for 1 hr. The membranes were blocked with 5% bovine serum albumin (BSA) or 5% dry skimmed milk in Tris-buffered saline containing 0.05% (v/v) Tween-20 (TBST) for 2 hr at room temperature and then incubated with the appropriate primary antibody (1:1,000 dilution) in blocking buffer at 4°C overnight. After washing three times with TBST, membranes were incubated with horseradish peroxidase-conjugated secondary antibody (Amersham Biosciences) in blocking buffer. The immune-reactive bands were detected with an enhanced chemiluminescence kit (AbFrontier, Korea) and quantified by a LAS-3000 imaging system (Fuji Film, Japan). When necessary, the membranes were stripped by shaking them for 60 mins at 37°C in 67 mM Tris (pH 6.7), 2% SDS, and 100 mM β-mercaptoethanol and reprobed with the appropriate pan-antibody.

Cell viability assay. HASMCs (3,000 cells) were seeded in 100 μl of complete media on white flat bottom 96-well plate (3917, Corning Costar). After 24 hr, rapalogues in ethanol were treated to cells at indicated concentrations and incubated for additional 24 hr. Cellular ATP concentration was measured using CellTiter-Glo Luminescence Assays kit (Promega) according to manufacturer’s protocol. Luminescence was measured by MicroLumat Plus LB96V (Berthold Technologies, USA).

Flow cytometry Analysis. HASMCs (1 × 104 cells) were cultured on 35-mm tissue culture dish (153066, Nunc) for 24 hr and then treated with rapalogues for additional 24 hr. For cell cycle analysis, cells were detached and permeabilized in 70% ethanol for overnight at −20°C. The cells were treated with RNase A (100 μg/ml in PBS) for 1 hr at 37°C and then stained with propidium iodide (final conc. 10 μg/ml).

For determination of S-phase cells, cells were incubated with 10 μM BrdU for 2 hr at 37°C and then analyzed by BrdU Flow Kits (BD Biosciences) according to manufacturer’s protocol. Briefly, cells were fixed and permeabilized, and incubated with 300 μg/ml of DNase for 1 hr at 37°C. FITC-conjugated anti-BrdU antibody was incubated with cells for 20 min at room temperature in the dark. Then, 7-AAD was treated just before analysis for total DNA contents. The percentages of G\textsubscript{0}/G\textsubscript{1} diploid cells were analyzed by ModFit LT software (Verity Software House, Topsham, ME) in FACSCalibur system (BD biosciences). The percentages of BrdU-positive cells were analyzed by Flowjo software (Tree Star).

Balloon-induced injury procedure in rat carotid artery. Animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Ewha Womans University and conformed to Guide for Care and Use of Laboratory Animals published by the US National Institutes of Health (The National Academies Press, 8th Edition, 2011). The ten-week-old male Sprague-Dawley rats were used for a balloon-induced injury model. A balloon injury was created using an infiltrated 2 F Fogarty balloon embolectomy catheter in the left common carotid artery as previously described22. In brief, the rats were anaesthetized by inhalation of isoflurane gas (N\textsubscript{2}O: O\textsubscript{2} / 70%: 30%). Then, the left external carotid artery was exposed and arterial branches were electro-coagulated. A catheter was inserted through the transverse arteriotomy of the external carotid artery and...
μl of 50% Acetonitrile savant SPD121P Speedvac Concentrator (Thermo Fisher Scientific), dissolved in the 200 were detected by UV absorbance at 278 nm.

drug concentrations of 2
coating solutions were spray-coated on the metal stent (SoniCoater, Noanix Co., Korea) and then were vacuum-dried for 24 hr. Coating thickness measured by reflection spectrometry (F40, Filmetrics, Inc., USA) was 8.5 ± 2.46 μm.

Coating of drug on metal stent. Coating method was used by an ultrasonic spray method as described previously. Briefly, 20 mg of sirolimus, evolimus, or biolimus with 20 mg of poly lactic acid (PLA, 0.80 ~1.2 dL/g of inherent viscosity in chloroform at 0.1 w%/v% at 25°C) were dissolved in 5 mL of tetrahydrofuran (THF), respectively. The coating solutions were spray-coated on the metal stent (Sonicoater, Noanix Co., Korea) and then were vacuum-dried for 24 hr. Coating thickness measured by reflection spectrometry (F40, Filmetrics, Inc., USA) was 6.5 ± 2.46 μm.

Stent implantation procedure. The animal study was approved by the Ethics Committee of Chonnam National University Medical School and Chonnam National University Hospital, and conformed to Guide for Care and Use of Laboratory Animals published by the US National Institutes of Health (The National Academies Press, 9th Edition, 2011). The mini-pigs weighing 25–30 kg were anesthetized with zolazepam and tiletamine (2.5 mg/kg, Zoletil50, Virvac, Caros, France), xylazine (3 mg/kg, kumpus, Bayer AG, Leverkusen, Germany) and azaperone (6 mg/kg, Stresnil, Janssen-Cilag, Neuss, Germany). They received supplemental oxygen continuously through an oxygen mask. After subcutaneous administration of 2% lidocaine at the cut-down site, the left carotid artery was surgically exposed. A 7 French (F) sheath was inserted. Also, heparin (5,000 U) was administered intravenously as a bolus prior to the procedure. The target coronary artery was engaged using standard 7 F guide catheters and control angiograms of both coronary arteries were performed using nonionic contrast agent in two orthogonal views. The stent was deployed by inflating the balloon and the resulting stent-to-artery ratio was 1.3:1. Coronary angiograms were obtained immediately after stent implantation. All equipment was removed and the carotid artery ligated. The bare metal stent (BMS) and drug coated BMS were implanted in the left or right femoral arteries alternatively in each pig. Continuous hemodynamic and surface electrocardiographic monitoring was maintained throughout the procedure. To prevent acute thrombosis after stenting, aspirin 100 mg and clopidogrel 75 mg were administered daily for 5 days before the procedure, which was continued until sacrifice stage. After day 28 post-implantation, stenting, the animals underwent follow-up angiography in the same orthogonal views before sacrifice with 5 ml of potassium chloride via the intracarotid artery. The part of the arteries surrounding the stent were removed carefully and processed for histological analysis.

Histopathological analysis. The balloon-injured rats were anesthetized and the common carotid arteries were excised after transcardiac perfusion-fixation with heparinized saline containing 3.7% formaldehyde. The vessels were paraffin embedded and sectioned by rotary microtome (Leica RM2255). The two serial tissue sections (4 μm in thickness) were obtained from the middle area of common carotid arteries and stained with haematoxylin and eosin (HE). The luminal, internal elastic laminal, and external elastic laminal areas were measured using NIH Image v.1.62. The intimal and medial areas were determined by subtraction of the luminal area from the internal elastic area and by subtraction of the internal elastic area from the external elastic area. The values from two serial sections per rat were averaged for analysis.

The stented coronary arteries were dissected and histopathological analysis was performed by cardiovascular pathologists. The specimens were cut 50–100 μm in thickness, and stained with hematoxylin and eosin (HE).
Quantitative measurements of the samples were performed using a calibrated microscope, digital video imaging system, and a microcomputer program (Visus 2000 Visual Image Analysis System, IMT Tech). Borders were manually traced for lumen area, area circumscribed by the internal elastic lamina, and the innermost border of the external elastic lamina (external elastic lamina area). Morphometric analysis of the neointimal area for a given vessel was calculated as the measured internal elastic lamina (IEL) area minus lumen area. The measurements were made on five cross-sections from the proximal, middle, and distal ends of each stented segment. Histopathological stenosis was calculated as 100 × (lesion neointimal area/lesion internal elastic lamina area). Injury, inflammation, and fibrin scores were determined by methods of Schwartz26, Kornowskii27, and Suzuki28, respectively. Ordinal data for the inflammation, fibrin, and endothelial scores were collected on each stent section using a scale of 0 to 3. The endothelial score for evaluation of artery healing was as follows: 0 = no generation, 1 = <25%, 2 = 20–75%, 3 = complete circumferential endothelialization.

Statistical Analyses. All the graphs shows the mean values with error bars from three or more repeated experiments. Student’s t-test was performed to determine the statistical significance between two groups. One-way ANOVA with Turkey’s test was used to determine the overall statistical significance of three drug groups. Two-way ANOVA with Turkey’s test was used when concentration or time parameters were involved. A P < 0.05 was considered to be statistically significant.

Results

A rapamycin analogue biolimus exhibit a cytostatic, not cytotoxic, effects in VSMCs. To understand the molecular mechanism underlying the differential clinical outcome of rapalogues, we performed the signaling pathway analysis in VSMCs using two major rapalogues, everolimus, and biolimus. We also include the rapamycin (also known as sirolimus) as a standard drug. These drugs equally act as the conformational inhibitor of the mTORC1 complex29 but have different chemical moiety at C40 residue (Fig. 1a). Thus, we primarily tested the drug uptake by VSMCs40, when standard compounds were analyzed on C18 reverse-phase column by high-performance liquid chromatography, biolimus was eluted much later than other rapalogues (Fig. 1b), which confirmed that it is a more lipophilic version of rapamycin. To quantify the cellular uptake of drugs, VSMCs were incubated with drugs (2 or 10 μM in 2.5 ml culture media) for 2 hr and subjected to the methanol extraction. The methanol extracts of drug-treated VSMCs ran through C18 reverse-phase column for analysis. As a result, sirolimus and everolimus were mainly permeable, whereas biolimus did not (Fig. 2a). Indeed, sirolimus and everolimus significantly increased intracellular level of reactive oxygen species (ROS) in VSMCs, whereas biolimus did not (Fig. 2a). Consistent with the tryphan blue assay, the ATP-based viability assay also revealed that sirolimus and everolimus, not biolimus, preferentially induce cell death by reducing energy metabolism and consequent ROS production.

Biolimus preferentially induces autophagy. We postulated that biolimus may elicit cell cycle arrest through a distinct signaling pathway. Since the mTORC1 complex is involved in various signaling pathways for protein translation, metabolism, and autophagy30, we examined the activation level of key signaling molecules downstream of mTORC1 in the drug-treated VSMCs. Sirolimus and two rapalogues all similarly reduced the mTOR phosphorylation and completely inhibited the activation of p70S6K, a central regulator of protein synthesis, which might be the underlying mechanism for the similar cell cycle arrest among drugs (Fig. 3a). It is noted that complete de-phosphorylation of Thr 389 residue on p60S6K was confirmed by electrophoretic mobility in total p70S6K blot4. However, the activation of another protein synthesis regulator 4E-BP1, represented by mTORC1-dependent phosphorylation at Ser65 residue, was more effectively inhibited by biolimus compared to sirolimus and everolimus. Moreover, the level of inhibitory phosphorylation at Ser798 site on ULK1 was also decreased to a greater extent by biolimus (Fig. 3a). Thus, the data suggested that biolimus is certainly distinct, while sirolimus and everolimus are very similar, in term of signaling pathway specificity.

Since the previous studies have emphasized the importance of autophagy in the vascular environment31, we focused the distinct effect of biolimus on ULK1 as a key autophagy inducer. Therefore, we examined the autophagy induction in the drug-treated VSMCs. LB3B is a key molecular marker for autophagosome formation because the cytosolic form of LC3B (LC3B-II) is converted to phosphatidylethanolamine conjugate (LC3B-II) recruited to autophagosomal membranes32. As a result, biolimus treatment preminently increased LC3B-II level in both a dose- and time-dependent manner compared to other drugs (Fig. 3b and c). In addition, level of LC3B-II was similar between sirolimus and everolimus treatments. Subsequently, we measured the number...
of autophagosomes by immunofluorescence staining of LC3B in VSMCs. Indeed, biolimus treatment markedly increased the number of LC3B-positive punctas compared to those in sirolimus and everolimus treatments (Fig. 3d). Overall, these results demonstrate that biolimus preferentially induces autophagy, thereby resulting in the inhibition of VSMC proliferation.

Figure 1. Cellular uptake of rapamycin analogues in VSMCs. (a) Chemical structures of three rapalogues—sirolimus (Siro), everolimus (Ever), and biolimus (Bio). Structures are drawn using ChemDraw software (PerkinElmer). Different moieties attached to C40 of the common macrolide core are shown. (b) Elution profile of rapalogues from high-performance liquid chromatography. The indicated rapalogue in methanol (10 μM) was separated on C18 column and then eluted by 50–95% acetonitrile gradient in 0.1% trifluoroacetic acid solution. The chromatogram shows the different retention times and absorbance intensities of the drugs measured at 278 nm. (c) Quantification of the concentration of rapalogue absorbed in HASMCs. The methanol extracts from cultured cells treated with rapalogues (2 and 10 μM in PBS) for 2 hr were separated on C18 column as in (B). Concentration was calculated from a standard curve of each compound. Bar in the graph are means ± SD of intracellular concentrations of rapalogues (n = 3, *P < 0.05 with Student's t-test). N.S., not significant.
Figure 2. Comparisons of the effects of rapamycin analogues on HASMCs cell cycle progression and cell viability. (a) Cell cycle analysis of rapalogue-treated HASMCs. Cells were treated with 2μM rapalogues for 24 hr and then labelled with BrdU and 7-AAD. The labelled cells were separated by fluorescence-assorted cell sorting (FACS). Representative FACS images including S-phase cells (inner box) are shown. Data in the graph show means ± SD of the percentage of BrdU+ cells (n = 3, *P < 0.05, **P < 0.01 with Student's t-test). (b, c) Cell viability was measured by trypan blue staining (b) and CellTiter-Glo reagent (c). Cells were treated with rapalogues at increasing concentrations for 24 hr. Cells were collected and either stained by trypan blue or incubated with CellTiter-Glo reagent. In latter assay, the ATP-based luminescent signal was measured by a luminometer. Data in the graph show means ± SD of the percentages of live cells versus total cells (n = 3, *P < 0.05, **P < 0.001 with two-way ANOVA). N.S., not significant. (d) Intracellular reactive oxygen species (ROS) level in rapalogue-treated HASMCs. Cells were treated with 50μM rapalogues for 2 hr and then incubated with 3μM CM-H2DCFDA for additional 30 min. The labelled cells were analyzed by FACS. Representative histogram, where cells with high ROS level are marked, is shown. Data in the graph show means ± SD of the percentage of ROSHigh cells (n = 3, *P < 0.05, **P < 0.01, #P < 0.005 with Student's t-test). N.S., not significant.
Figure 3. Differential effect of rapamycin analogues on mTORC1 substrates de-phosphorylation and autophagy induction. (a) Phosphorylation-specific immunoblot analysis of mTORC1 substrates in HASMCs. Cells were pretreated with rapalogues at increasing concentrations for 2 hr. The phospho-specific bands were quantified and normalized by the intensities of corresponding unphosphorylated protein bands. Data in graph show means ± SD of fold changes of ULK1 and 4EBP1 phosphorylation versus untreated control sample (n = 3, *P < 0.05, **P < 0.01, ***P < 0.005 with Student’s t-test). (b, c) Immunoblot analysis of LC3B conversion in the rapalogue-treated HASMCs. Cells were pretreated with rapalogues at increasing concentrations for 2 hr (b) or with 1 μM rapalogues for indicated times (c). Data in the graph show means ± SD of the ratio of LC3B-II versus LC3B-I (n = 3, *P < 0.001 with two-way ANOVA). (d) Immunofluorescence staining of LC3B in the rapalogue-treated HASMCs. HASMCs were pretreated with 2 μM rapalogues for 3 hr. The number of LC3B puncta was averaged from 40 cells per experiment. Data in the graph show means ± SEM of the number of LC3B puncta per cell (n = 3, *P < 0.05 with Student’s t-test). N.S., not significant. Representative immunoblots and images are shown.
Biolimus inhibits neointimal hyperplasia via autophagy induction in injured carotid arteries. We evaluated the in vivo efficacy of rapalogues in a balloon injury model of rat carotid artery. As expected, everolimus and biolimus effectively inhibited the SMC hyperplasia in intimal lesion of the injured rat carotid arteries (Fig. 4a). It is noted that the inhibition of SMC hyperplasia exhibited a dose dependency proportional to the increasing concentrations of everolimus. Thus, we examined the cell proliferation and death in the tissue sections of the injured carotid arteries. Immunostaining of Ki-67 as a proliferation marker indicated a marked reduction of the neointimal VSMC proliferation in the rapalogue-treated arteries compared to untreated control arteries (Fig. 4b). Subsequently, we measured the number of apoptotic cells by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. While everolimus treatment strongly induced the apoptosis in the injured arteries compared to untreated control, biolimus treatment did not induce it (Fig. 4c). This unexpected result indicated that biolimus might inhibit the SMC hyperplasia through autophagy induction. To see it, we examined the autophagosome formation in the balloon-injured carotid arteries. Immunofluorescence images of injured carotid tissue sections clearly revealed that biolimus treatment significantly increased the number of LC3B punctas compared to control and everolimus treatment (Fig. 4d).

Biolimus prevents inflammation in porcine aorta with stent implantation. To validate the differential signaling impact of rapaloues in a porcine model, we performed the percutaneous transluminal angioplasty using the metal stents coated with sirolimus and rapalogues. Drugs were coated on the metal stent by an ultrasonic spray method. As a result, the drug amount per metal stent was 140 ± 8.5, 136 ± 5.9, 159 ± 7.1 μg and coating thickness was 6.5 ± 2.46, 5.8 ± 4.15, 5.9 ± 6.41 μm for sirolimus, everolimus, and biolimus, respectively. Drug release kinetics were also similar between sirolimus-eluting stent (SES) and everolimus-eluting stent (EES) during 32 days (Supplementary Figure S2). However, the drug release from the biolimus-eluting stent (BES) was significantly slow compared to other coating stents. The stents were crimped onto the balloon delivery system and sterilized with EO gas. Fifteen stents (5 SES, 5 EES and 5 BES) were successfully implanted in the porcine coronary arteries. These coronary arteries with stents were isolated to histopathological analysis (Fig. 5a). The hematoxylin and eosin staining analysis showed absolutely no difference in injury score and area stenosis among the implanted stents (Fig. 5b,c). However, biolimus-eluting stents tended to have better endothelial score (Fig. 5d) and hence slightly lower fibrin and inflammation scores than other drug-eluting stents (Fig. 5e–g). Collectively, the results suggest that autophagy-dependent VSMC arrest by biolimus might promote endothelialization and hence reduce vascular inflammation.

Discussion
Siroliimus, also known as rapamycin, has been used in the first-generation drug-eluting stents to inhibit smooth muscle cells proliferation. When metal stents are implanted to arteries, a complication of in-stent thrombosis occurs due to direct contact of circulating blood with metal stents unless the denuded endothelial cells are recovered. Thus, advanced drug-eluting stents have been developed to alleviate the thrombosis complication or to increase the efficiency of drug delivery. In general, chemical derivatization of rapamycin has been pursued at the C40 residue which does not interfere rapamycin binding to mTOR or FKBP12. Although clinical studies were conducted to evaluate effects of advanced drug-eluting stents on atherosclerotic arteries, there have been no mode of action studies to define a biological effect of such chemical derivatization on VSMC signaling.

In this study, we found that the latest rapalogue, biolimus, which has the hydrophobic C40 branch, acts on mTORC1-mediated signaling differently from the current widely used rapalogue, everolimus. The mTORC1 complex mediates activation of mRNA translation and inhibition of autophagy. Our signaling pathway analyses reveal that sirolimus, everolimus, and biolimus all similarly inhibit the S6K1 activation that promotes protein translation. However, sirolimus and everolimus strongly induce intracellular ROS production and thereby cell death in VSMCs, whereas biolimus favorably activates 4E-BP1 and induces autophagy in VSMCs. It is noted that the inhibition of SMC hyperplasia exhibited a dose dependency proportional to the increasing concentrations of everolimus. Thus, we examined the cell proliferation and death in the tissue sections of the injured carotid arteries. Immunostaining of Ki-67 as a proliferation marker indicated a marked reduction of the neointimal VSMC proliferation in the rapalogue-treated arteries compared to untreated control arteries (Fig. 4b). Subsequently, we measured the number of apoptotic cells by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. While everolimus treatment strongly induced the apoptosis in the injured arteries compared to untreated control, biolimus treatment did not induce it (Fig. 4c). This unexpected result indicated that biolimus might inhibit the SMC hyperplasia through autophagy induction. To see it, we examined the autophagosome formation in the balloon-injured carotid arteries. Immunofluorescence images of injured carotid tissue sections clearly revealed that biolimus treatment significantly increased the number of LC3B punctas compared to control and everolimus treatment (Fig. 4d).

We also revealed that biolimus inhibits neointimal hyperplasia as efficient as other drugs, although it does not provoke cell death. Unlike sirolimus and everolimus, biolimus preferentially activates ULK1-dependent autophagy process in VSMCs. Autophagy is a dynamic recycling system for maintaining cellular homeostasis by degrading cytoplasmic materials. In the process of autophagy, cytoplasmic substances and organelles are encircled by membrane to form autophagosomes. Then, outer membrane of autophagosomes is combined with lysosome. Internal materials are degraded by lysosomal enzymes in the autolysosome. Defective autophagy is associated with various diseases including cancer, neurodegeneration, and metabolic diseases. Autophagy has been broadly studied in VSMCs. For example, insulin-like growth factor-1 and TNF-α inversely regulate autophagy in human VSMCs. Autophagy induced by PDGF-BB promotes contractile-to-synthetic phenotype.
Figure 4. Different effects of rapamycin analogues on neointimal hyperplasia in injured carotid arteries. (a) Representative histological images of balloon-injured rat carotid arteries. The injured arteries were treated with control vehicle (0.1% dimethyl sulfoxide in PBS, Cont) or everolimus (5 and 20 μM in PBS, Ever) or biolimus (20 μM in PBS, Bio) for 15 min. Data in the graph are means ± SEM of intima-to-media ratio (n = 5–6 rats per group, *P < 0.05, **P < 0.001 with one-way ANOVA). N.S., not significant. (b,c) Immunofluorescence staining for Ki67 (b) or TUNEL assay (c) in the tissue sections of injured carotid arteries. Data in the graph are means ± SEM of the percentages of Ki67+ cells (b) or TUNEL+ apoptotic cells (c) versus DAPI-labelled total cells in the lesion (dashed lines). DAPI indicates nuclei. (n = 3, *P < 0.05, **P < 0.01 with Student’s t-test). N.S., not significant. (d) Immunofluorescence staining of LC3B in the tissue sections of injured carotid arteries. The number of LC3B puncta was counted in the marked lesions (dashed line). Data in the graph show means ± SD of total number of LC3B puncta (n = 3, *P < 0.05, **P < 0.01 with Student’s t-test). N.S., not significant. Representative images are shown.
Figure 5. Histopathological analysis in the porcine coronary arteries with stent implantation. (a) Restenosis level in the cross-section of porcine coronary arteries implanted with rapalogue-coated metal stent. Representative HE images are shown. (b) Injury score representing similar level of vascular injury by stent implantation. (c) The ratio of neointimal area versus internal elastic luminal area was calculated as described in the Materials and Methods. Data in the graph show means ± SEM of the percent of restenosis area. (d) Endothelial score was measured in the tissue sections of porcine coronary arteries implanted with rapalogue-coated metal stent. (e,f) Fibrin score was measured by Carstairs's fibrin staining in the tissue sections of porcine coronary arteries implanted with rapalogue-coated metal stent. Representative fibrin staining images are shown (e). (g) Inflammation score was measured in the tissue sections of porcine coronary arteries implanted with rapalogue-coated metal stent. Data in graphs b,c,d,f, and g show means ± SEM of the measured scores (n = 5, *P < 0.05, **P < 0.001 with one-way ANOVA). N.S., not significant. Bare metal stent (BMS) is used as the uncoated stent control.
transition and increases proliferation of VSMCs by degrading contractile proteins. Sonic hedgehog, another secretory factor, also induces autophagy and thus promotes VSMC proliferation. By contrast, it was shown that rapamycin induces VSMC differentiation through the inhibition of mTORC1/S6K1 axis. However, the precise regulatory action of rapalogues on VSMC autophagy remains unclear. In our study, cellular ROS and ATP levels remains unchanged after biolimus treatment, which indicates that biolimus is unlikely to induce autophagic cell death. Instead, the biolimus-induced autophagy contributes in enhancing cell cycle arrest and consequently inhibiting neointimal hyperplasia in vivo as effectively as do sirolimus and everolimus. Similarly, we have shown that a chemical compound targeting monoamine transporter induces autophagy in VSMCs, which sufficiently inhibits neointimal hyperplasia in the injured carotid vessels. In addition, we cannot exclude a possibility that the enhanced 4E-BP1 function also contributes to cytostatic effect of biolimus because the 4E-BP1 de-phosphorylation inhibits cell proliferation.

Overall, our in vitro and in vivo data demonstrate that a distinct feature of biolimus selective to autophagy induction is clinically beneficial by lowering thrombotic complication.

In summary, our in-depth signaling study reveals that a minor chemical modification on rapamycin can elicit an unexpected effect in the mTORC1-mediated signaling pathways. Thus, this evidence provides an insight on medicinal chemistry for drug candidates targeting protein complexes that orchestrates diverse signaling pathways.

References
1. Lemos, P. A., Serruys, P. W. & Sousa, J. E. Drug-eluting stents: cost versus clinical benefit. *Circulation* **107**, 3003–3007, https://doi.org/10.1161/01.CIR.0000078025.19258.28 (2003).
2. Cercek, B., Sharifi, B., Barath, P., Bailey, L. & Forrester, J. S. Growth factors in pathogenesis of coronary arterial restenosis. *Am J Cardiol* **68**, 24C–33C (1991).
3. Marx, S. O., Totary-Jain, H. & Marks, A. R. Vascular smooth muscle cell proliferation in restenosis. *Circ Cardiovasc Interv* **4**, 104–111, https://doi.org/10.1161/CIRCINTERVENTIONS.110.957332 (2011).
4. Sousa, J. E. et al. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasound study. *Circulation* **103**, 192–195 (2001).
5. Martel, R. R., Klicius, J. & Galet, S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. *Can J Physiol Pharmacol* **55**, 48–51 (1977).
6. Houchens, D. F., Ovejera, A. A., Riblet, S. M. & Slagel, D. E. Human brain tumor xenografts in nude mice as a chemotherapy model. *Eur J Cancer Clin Oncol* **19**, 799–805 (1983).
7. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. *Nature* **369**, 756–758, https://doi.org/10.1038/369756a0 (1994).
8. Heitman, J., Moova, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. *Science* **253**, 905–909 (1991).
9. Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. *Cell* **103**, 253–262 (2000).
10. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. *Cell* **149**, 274–293, https://doi.org/10.1016/j.cell.2012.03.017 (2012).
11. Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. *Nat Rev Drug Discov* **10**, 868–880, https://doi.org/10.1038/nrd3531 (2011).
12. Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. *Science* **341**, 1236566, https://doi.org/10.1126/science.1236566 (2013).
13. Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. *Proc Natl Acad Sci USA* **105**, 17414–17419, https://doi.org/10.1073/pnas.0809136105 (2008).
34. Krause, U., Bertrand, L., Maisin, L., Rosa, M. & Hue, L. Signalling pathways and combinatory effects of insulin and amino acids in isolation of rat hepatocytes. *Eur J Biochem* 286, 586–596, https://doi.org/10.1111/j.1432-1033.2002.00200.x (2002).

35. Salabei, J. K. & Hill, B. G. Autophagic regulation of smooth muscle cell biology. *Arterioscler Thromb Vasc Biol* 37, 689–701, https://doi.org/10.1161/ATVBAHA.112.300417 (2017).

36. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. *Methods* 47, 313–326, https://doi.org/10.1016/j.ymeth.2008.03.001 (2008).

37. Virmani, R. et al. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. *J Am Coll Cardiol* 41, 225–230 (1998).

38. Suzuki, T. et al. Intramura gel delivery of rapamycin with alphabeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. *Arterioscler Thromb Vasc Biol* 28, 820–826, https://doi.org/10.1161/ATVBAHA.107.156281 (2008).

39. Yuan, Y., Shi, J., Kondo, K., Noguchi, S. & Jutila, M. A. Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. *J Biol Chem* 282, 28273–28282, https://doi.org/10.1074/jbc.M703914200 (2007).

40. Windecker, S. et al. Long-term outcome of patients with early-generation drug-eluting stents versus newer-generation everolimus-eluting stent: data from a large two-institutional cohort study. *Lancet* 369, 667–678, https://doi.org/10.1016/S0140-6736(07)60314-6 (2007).

41. Windecker, S. et al. New-Generation Coronary Stents: Current Data and Future Directions. *Current atherosclerosis reports* 19, 14, https://doi.org/10.1007/s11883-017-0565-1 (2017).

42. MacKeigan, J. P. & Krueger, D. A. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. *Neuro Oncol* 17, 1550–1559, https://doi.org/10.1093/neuonc/nov152 (2015).

43. Daemen, J. et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. *Lancet* 369, 667–678, https://doi.org/10.1016/S0140-6736(07)60314-6 (2007).

44. van Boven, N. et al. Stent thrombosis in early-generation drug-eluting stents versus newer-generation everolimus-eluting stent assisted by LVEF *Heart* 101, 50–57, https://doi.org/10.1136/heartjnl-2014-305743 (2015).

45. Grube, E. & Buelsfeld, L. BioMatrix Biolimus A9-eluting stent for coronary artery disease. *Expert Rev Med Devices* 3, 731–741, https://doi.org/10.1586/17444006.3.6.731 (2006).

46. Jiang, P. & Mizushima, N. Autophagy and human diseases. *Arterioscler Thromb Vasc Biol* 31, 224–230 (1998).

47. Jia, G. H., Cheng, G., Gangahar, D. M. & Agrawal, D. K. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. *Arterioscler Thromb Vasc Biol* 31, 4012–4024 (2011).

48. Schwartz, R. S. et al. Lents and the proportional neointimal response to coronary artery injury: results in a porcine model. *Journal of the American College of Cardiology* 19, 267–274 (1992).

49. Kornowski, R. et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. *Am J Physiol Heart Circ Physiol* 298, H1612–H1620, https://doi.org/10.1152/ajpheart.00120.2008 (2008).

50. Martin, K. et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. *Am J Physiol Cell Physiol* 286, C507–C517, https://doi.org/10.1152/ajpcell.00201.2003 (2004).

51. Martin, K. A. et al. Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. *J Biol Chem* 282, 36112–36120, https://doi.org/10.1074/jbc.M703914200 (2007).

52. Martin, K. A. et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. *Am J Physiol Cell Physiol* 286, C507–C517, https://doi.org/10.1152/ajpcell.00201.2003 (2004).
52. Cho, Y. S. et al. Antidepressant indatraline induces autophagy and inhibits restenosis via suppression of mTOR/S6 kinase signaling pathway. Sci Rep 6, 34655, https://doi.org/10.1038/srep34655 (2016).
53. Rousseau, D., Gingras, A. C., Pause, A. & Sonenberg, N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415–2420 (1996).

Acknowledgements
This study was supported by grants from the National Research Foundation of Korea (NRF-2017M3A9G2077885 and 2012R1A5A1048236). This study was also supported by a grant from the Korean Health Technology R&D Project (H16C0094). D.H.K was a recipient of a Basic Science Research Program Award from the National Research Foundation of Korea (NRF-2014R1A6A3A04058006).

Author Contributions
Y.K. and J.K.P. performed experiments; Y.K., J.K.P., J.-H.S., K.S.L., M.H.J., D.H.K., and S.W.K. designed experiments and analyzed data; J.-H.S., H.-S.R., and S.W.K. conceived the project and supervised the study; Y.K., D.H.K., and S.W.K. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-34877-8.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018