A dissipative quantum reservoir for microwave light using a mechanical oscillator

L. D. Tóth†, N. R. Bernier†, A. Nunnenkamp2, A. K. Feofanov† and T. J. Kippenberg†*

Engineered dissipation can be used for quantum state preparation. This is achieved with a suitably engineered coupling to a dissipative cold reservoir usually formed by an electromagnetic mode. In the field of cavity electro- and optomechanics, the electromagnetic cavity naturally serves as a cold reservoir for the mechanical mode. Here, we realize the opposite scenario and engineer a mechanical oscillator cooled close to its ground state into a cold dissipative reservoir for microwave photons in a superconducting circuit. By tuning the coupling to this dissipative mechanical reservoir, we demonstrate dynamical backaction control of the microwave field, leading to stimulated emission and maser action. Moreover, the reservoir can function as a useful quantum resource, allowing the implementation of a near-quantum-limited phase-preserving microwave amplifier. Such engineered mechanical dissipation extends the toolbox of quantum manipulation techniques of the microwave field and constitutes a new ingredient for optomechanical protocols.

Dissipation can significantly affect the quantum behaviour of a system and even completely suppress it. However, if carefully constructed, dissipation can relax the system of interest to a desired target quantum state. This pioneering insight was originally theoretically conceived and studied in the context of trapped ions, experimentally first realized with trapped atomic ensembles and later with trapped ions. Moreover, reservoir engineering has recently also been realized in the context of circuit quantum electrodynamics (circuit QED). In these experiments the optical or microwave field provides a dissipative reservoir to the quantum systems. In cavity optomechanics, in which a mechanical oscillator and electromagnetic degree of freedom are parametrically coupled, analogous ideas have been developed, and reservoir engineering for the preparation of squeezed mechanical states has been theoretically proposed and recently demonstrated. As in the atomic physics case, the electromagnetic field acts as the engineered environment of the quantum system of interest.

In contrast, recent theoretical work has considered the opposite scenario, where the mechanical degree of freedom is employed to provide a dissipative, cold bath for light. This engineered bath can then be employed to achieve desirable quantum states of light or to modify the optical field properties. For example, such a dissipative reservoir for light can be exploited for amplification or entanglement generation or dissipative squeezing of electromagnetic modes. Moreover, it provides an ingredient to realize nonreciprocal devices such as isolators, circulators or directional microwave amplifiers. For a sufficiently cold dissipative mechanical reservoir, nonreciprocal devices implemented in this manner can operate in the quantum regime, with minimal added noise.

Here we engineer a mechanical oscillator into a quantum reservoir for microwave light. This is achieved in a microwave optomechanical system by engineering the mechanical dissipation rate to exceed that of the electromagnetic mode. This regime allows one to demonstrate dynamical backaction on microwave light, and the control of a microwave mode by tuning its coupling to the reservoir. Backaction amplification leads to stimulated emission of microwaves and maser action using the mechanical oscillator as the gain medium. Below the masing threshold, we implement a large-gain, phase-preserving amplifier that operates with added noise. This demonstrates that the mechanical reservoir for light can function as a useful quantum resource.

Optomechanical circuit with dark and bright modes

We utilize a scheme in which two microwave modes are coupled to the same mechanical oscillator. One (auxiliary) electromagnetic mode is used to damp the oscillator via optomechanical sideband cooling and engineer it into a cold bath for the other (primary) electromagnetic mode. A key ingredient for the scheme is an optomechanical cooling rate of the auxiliary mode which greatly exceeds the electromagnetic decay rate of the primary microwave mode, necessitating vastly different decay rates of the employed microwave cavities. This is challenging to achieve with previously realized dual-mode circuits, since any parasitic coupling between the two modes opens a decay channel, equilibrating their decay in energy. Here, we address this challenge by engineering hybridized modes with inherently dissimilar decay rates arising from interference in the output channel (see Fig. 1b,c and Supplementary Information).

Specifically, we design an electromechanical circuit using two LC resonators, both coupled inductively to a common feedline, one of which has a mechanically compliant vacuum-gap capacitor coupling mechanical vibrations to the microwave mode. The two resonators are strongly coupled through sharing a common inductor (see Fig. 1b). In terms of the annihilation operators \(\hat{a}_1 \) and \(\hat{a}_2 \) of the bare modes, the resulting interaction Hamiltonian is given by

\[
\hat{H}_{int} = \hbar \gamma (\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1) - \hbar g_0 \hat{a}_1^\dagger \hat{a}_1 (\hat{b} + \hat{b}^\dagger)
\]

where \(\hat{b} \) designates the annihilation operator for the mechanical mode, \(\gamma \) the intermode coupling strength, and \(g_0 \) the vacuum electromechanical coupling strength to the first mode (\(\hbar \) is the Planck constant).
Realization of a dissipative mechanical reservoir

We realize the electromechanical circuit experimentally by fabricating two lumped-element LC circuits coupled to each other via a common inductor, made from thin-film aluminium on a sapphire substrate (see Supplementary Information for the details of fabrication, design and full circuit parameters). The primary and auxiliary modes have resonance frequencies ($\omega_{\text{p}}, \omega_{\text{aux}}$) = ($5.33\,\text{GHz}$, $4.26\,\text{GHz}$) with respective total energy decay rates ($\Gamma_{\text{p}}, \Gamma_{\text{aux}}$) = ($2\pi \times 30\,\text{Hz}$, $2\pi \times 60\,\text{Hz}$). Details of the calibration procedure are described in Supplementary Information. Importantly, the resolved sideband regime is still attained for both microwave modes, that is, $\Delta \omega_{\text{aux}} \gg \omega_{\text{aux}} / \kappa_{\text{aux}}$.

Figure 2a,b show respectively an optical image of the fabricated circuit and a scanning electron micrograph of the drum–type capacitor. The simplified measurement setup is shown in Fig. 2c. In brief, the device is mounted on the base plate of a dilution refrigerator and cooled to a base temperature of about 10 mK. The microwave input lines are heavily attenuated to suppress residual thermal noise and, in addition, filter cavities are employed to remove unwanted frequency noise from the applied tones (see Supplementary Information). After amplification with a commercial high-electron-mobility transistor (HEMT) amplifier mounted on the 3 K plate, the signal is measured with an electromagnetic spectrum analyser (ESA) or a vector network analyser (VNA). To prepare a cold, dissipative mechanical bath we follow the approach outlined in ref. 18 and use optomechanical sideband cooling to prepare the mechanical oscillator as a strongly dissipative, cold reservoir. We proceed by pumping the auxiliary mode on the lower motional sideband (Fig. 1d). We strongly damp the mechanical oscillator to an effective energy decay rate $\Gamma_{\text{eff}} \approx 2\pi \times 500\,\text{kHz}$ (corresponding to a mean intracavity photon number of $N_{\text{ph}} \approx 1.5 \times 10^5$), while still remaining in the weak-coupling regime for the auxiliary mode. Thereby, we realize a dissipative mechanical reservoir for the primary, high-Q mode, since $\Gamma_{\text{aux}} \gg \kappa$. The effective temperature of this reservoir and its utility as a quantum resource are studied below.

Dynamical backaction on microwave light

We first study the modified microwave cavity susceptibility resulting from the dissipative cold reservoir, that is, the dynamical backaction on the microwave light. The engineered bath provided by the mechanical resonator modifies the response of the electromagnetic mode when a microwave tone is applied. With a pump detuned by Δ from the primary microwave cavity resonance, the frequency and the decay rate of the mode shift by

$$\delta \omega_{\text{om}} = Re\,\Sigma \quad \text{and} \quad \kappa_{\text{om}} = -2Im\,\Sigma$$

increased coupling rate to the feedline. The antisymmetric mode has current flowing in opposite directions in the two resonators, causing the external magnetic flux to create currents that cancel out, leading to a suppression in the external coupling to the feedline (see Fig. 1b,c and Supplementary Information). For bare coupling rates similar in magnitude ($\kappa_{\text{p}} \approx \kappa_{\text{aux}}$), this enforces the coupling-rate hierarchy $\kappa_{\text{aux}} \ll \kappa_{\text{p}}$ necessary to achieve a dissipative mechanical reservoir with the present scheme. In the remainder, we refer to the dark mode as the primary mode and the bright mode as the auxiliary mode, with resonance frequencies ω_{p} and ω_{aux} and energy decay rates κ_{p} and κ_{aux}, respectively (Fig. 1).
of detuning (that is, \(\Delta = \mp \Omega_m \)), we have \(\delta \omega_{om} = 0 \) (neglecting the term \(\propto \Gamma_{om}/\Omega_m \)) and the change in the microwave decay rate simplifies to

\[
\kappa_{om} = \pm \overline{C} \kappa
\]

(6)

directly proportional to the cooperativity \(C = 4g^2/(\kappa \Gamma_{om}) \). Figure 3a,b shows the linear response for a tone on the lower and upper sidebands, respectively, for various pump powers. The width of the resonance, corresponding to the cavity decay rate, increases (for \(\Delta = -\Omega_m \)) or decreases (for \(\Delta = +\Omega_m \)) linearly with \(C \). Strikingly, the depth of reflection on resonance \(|S_{11}(\omega)|^2 \) varies significantly to reflect this change (Fig. 3c). The effective internal loss of the cavity \(\kappa_0 + \kappa_{om} \) can be tuned on demand by changing the coupling to the dissipative reservoir via the pump tone. While the microwave cavity is initially undercoupled (\(\kappa_0 + \kappa_{om} < \kappa_0 \)), pumping on the upper sideband reduces the effective internal loss and increases the depth on resonance until the cavity becomes critically coupled (the effective internal loss matches the external coupling, that is, \(\kappa_0 + \kappa_{om} = \kappa_0 \)). Increasing the power further, the cavity becomes overcoupled (\(\kappa_0 + \kappa_{om} < \kappa_0 \)) and resonant reflection increases again. When \(\kappa_0 + \kappa_{om} \) becomes negative, there is net internal gain: the absorptive feature in the cavity reflection becomes a peak, indicating amplification of the reflected microwave signal. By pumping on the lower sideband (\(\Delta = -\Omega_m \)), extra damping is introduced and the resonance becomes increasingly undercoupled. The mechanical mode provides a dissipative bath for the microwave resonator, down-converting the cavity photons to the pump. In Fig. 3c we plot the resonant reflection and observe good agreement with the expected dependence according to equation (5). For the data corresponding to the pump tuned to the lower motional sideband (\(\Delta = -\Omega_m \)), the depth of the resonance is systematically lower than expected, due to a decrease of the intrinsic microwave cavity loss in the presence of a strong pump\(^{17}\). In Fig. 3d,e, we keep the pump power constant and sweep the detuning \(\Delta \), to measure the mechanical spring and damping effects. For the frequency shift \(\delta \omega_{om} \), intrinsic nonlinearities redshift the resonance frequency in an asymmetric fashion, providing a different background for the red and blue sidebands. The spring effect agrees well with the prediction from equation (3) when the two sidebands are fitted independently with different constant offsets. We note that the mechanical spring effect as a function of detuning has the opposite parity compared to the better known case of the optical spring effect\(^{10}\).

Maser action and amplification

In the remainder, we demonstrate the cold nature of the dissipative mechanical reservoir by studying the noise properties of the system. To this end, we fix the microwave drive to the upper sideband (\(\Delta = +\Omega_m \)) and study the regime where the pump introduces net gain in the microwave cavity (\(\kappa_0 + \kappa_{om} < 0 \)). We use a different (second) device for this analysis, with optimized properties, due to higher coupling strength (\(g_0 = 2\pi \times (106,79) \) Hz respectively for the primary and auxiliary modes) and the primary mode being overcoupled (\(\kappa_{om}/\kappa_0 = 0.76 \); see Supplementary Information). In Fig. 4a, the emitted noise spectra of the microwave cavity are shown for different pump powers. The measured power spectrum is rescaled to the symmetric cavity output field spectrum \(\tilde{S}_{om}(\omega) \) in units of photons per second (flux) per unit bandwidth, using the noise temperature of the HEMT as an absolute noise reference (see Supplementary Information). As the pump compensates for the losses, the width of the emitted noise spectrum, corresponding to the cavity linewidth \(\kappa_{om} = (1 - C)\kappa_0 \), decreases linearly with the pump power towards zero (at unity cooperativity \(C = 1 \); see inset of Fig. 4b. In this below-threshold regime, the peak photon flux spectral density emitted from the cavity increases with power, as the vacuum noise and the residual thermal microwave noise (consisting in both a finite residual occupancy \(n_{om} \) of the dissipative mechanical

Figure 2 | Device, experimental setup, and characterization of the electromechanical circuit.
(a) Inverted colour optical micrograph of the circuit consisting of two coupled LC resonators, one having a mechanically compliant capacitor. Blue regions are aluminium and grey regions are the exposed sapphire substrate. (b) False-colour scanning electron micrograph of the mechanically compliant drum capacitor. (c) Simplified schematics of the measurement setup with the circuit. The (multiple) input lines are filtered and attenuated at various stages before reaching the device mounted in a dilution refrigerator. Both the coherent and the spectral response can be measured. (d) Linear response measurement of the device revealing the symmetric (bright, used as the auxiliary) and antisymmetric (dark, used as the primary) microwave modes.

The self-energy \(\Sigma \) is defined as

\[
\Sigma = -ig^2 \left(\frac{1}{\Gamma_{om}/2 + i(\Delta + \Omega_m)} - \frac{1}{\Gamma_{om}/2 + i(\Delta - \Omega_m)} \right)
\]

(4)

where \(g = \sqrt{n_e} \) is the effective electromechanical coupling rate enhanced by the mean intracavity photon number of the primary mode \(n_e \). This effect can be viewed as radiation pressure dynamical backaction\(^{15,17,18}\) onto the microwave mode. This leads to a change in the reflection from the microwave cavity, due to a modification of its susceptibility (defined as \(\Delta_{om}(\omega) = S_{11}(\omega) - \Delta_{om}(\omega) , \) where \(\Delta_{om}(\omega) \) are Fourier domain operators associated with the input and output fields, respectively, see Fig. 1b). The susceptibility becomes

\[
S_{11}(\omega) = \frac{\kappa_0 + \kappa_{om} - \kappa_0 - i\Omega (\omega - \omega'_0)}{\kappa_0 + \kappa_{om} + \kappa_0 - i\Omega (\omega - \omega'_0)}
\]

(5)

where \(\kappa_0 \) is the internal loss of the primary mode and \(\omega'_0 = \omega_0 + \delta \omega_{om} \) the modified resonance frequency.

The engineered reservoir therefore supplies a way to tailor the susceptibility of the primary electromagnetic mode, which we can directly probe using a coherent response measurement. First, we fix the detuning to either motional sideband of the primary mode, and measure \(S_{11}(\omega) \) while the power is varied. For this choice of called mechanical spring effect and mechanical damping, respectively. The self-energy \(\Sigma \) is defined as

\[
\Sigma = -ig^2 \left(\frac{1}{\Gamma_{om}/2 + i(\Delta + \Omega_m)} - \frac{1}{\Gamma_{om}/2 + i(\Delta - \Omega_m)} \right)
\]

(4)

where \(g = \sqrt{n_e} \) is the effective electromechanical coupling rate enhanced by the mean intracavity photon number of the primary mode \(n_e \). This effect can be viewed as radiation pressure dynamical backaction\(^{15,17,18}\) onto the microwave mode. This leads to a change in the reflection from the microwave cavity, due to a modification of its susceptibility (defined as \(\Delta_{om}(\omega) = S_{11}(\omega) - \Delta_{om}(\omega) , \) where \(\Delta_{om}(\omega) \) are Fourier domain operators associated with the input and output fields, respectively, see Fig. 1b). The susceptibility becomes

\[
S_{11}(\omega) = \frac{\kappa_0 + \kappa_{om} - \kappa_0 - i\Omega (\omega - \omega'_0)}{\kappa_0 + \kappa_{om} + \kappa_0 - i\Omega (\omega - \omega'_0)}
\]

(5)

where \(\kappa_0 \) is the internal loss of the primary mode and \(\omega'_0 = \omega_0 + \delta \omega_{om} \) the modified resonance frequency.
reservoir and a finite thermal microwave occupancy of the cavity \(\langle n_{\text{om}} \rangle \) are amplified according to

\[
\tilde{\xi}_{\text{aa}}(\omega) = \frac{\kappa_{\text{ex}}(\kappa_{\text{om}} - \kappa_{\text{ex}}) - \kappa_{\text{ex}}(\kappa_{\text{om}} + \frac{\kappa}{2})}{(\frac{\kappa}{2})^2 + (\omega - \omega_0)^2}
\]

where the thermal input noise is neglected and only the amplified noise is considered. We analyse the noise properties of the device in detail below when considering amplification and added noise. We find the residual thermal occupancy of the dissipative reservoir to be \(n_{\text{th}} = 0.66 \), when neglecting \(n_{\text{om}} \). Equation (7) then implies that 60% of the emitted noise from the cavity is amplified vacuum fluctuations, when \(C \to 1 \).

For \(C = 1 \) and greater pump powers, the microwave mode undergoes self-sustained oscillations. This regime leads to a parametric instability and electromechanical maser action of the microwave mode, via stimulated emission of microwave photons into the microwave cavity. The salient features of maser action are a transition from sub- to above-threshold masing, as well as linewidth narrowing. These observations are analogues to the radiation-pressure-induced parametric instability of a mechanical mode in the normal optomechanical regime \[22,28,31,32 \] (\(\kappa > \Gamma_{\text{ex}} \)). In the experiments a clear threshold behaviour, characteristic of masing, is demonstrated when the emitted noise abruptly increases in strength at \(C = 1 \) (see Fig. 4b). Such microwave lasing in superconducting circuits has previously been demonstrated using a single artificial

Figure 3 | Dynamical backaction on the microwave mode using an engineered mechanical reservoir. a, b, The modification of the susceptibility of the microwave cavity when a pump tone is placed on the lower (a) and upper (b) motional sideband of the primary mode (that is, \(\Delta = \pm \Omega_{\text{m}} \), see inset), shown for various values of the multiphoton cooperativity \((\mathcal{C}' = 1 \) corresponds to a mean intracavity photon number of \(n_{\text{cav}} = 5 \times 10^4 \)). The slight shift of the peaks comes from the finite sideband resolution parameter of the auxiliary mode \((\Omega_{\text{m}}/\kappa_{\text{aux}}) \). c, The depth of the resonance changes depending on the effective internal losses \(\kappa_0 + \kappa_{\text{om}} \). Measurements with a pump on the lower and upper sideband (\(\Delta = -\Omega_{\text{m}} \) for the red squares and \(\Delta = +\Omega_{\text{m}} \) for the blue circles), and a theoretical fit are shown. The cavity is originally undercoupled. When pumped on the upper motional sideband, it first becomes critically coupled, then overcoupled as the power of the pump tone is increased. For \(\kappa_0 + \kappa_{\text{om}} < 0 \), there is a net gain and the electromechanical system acts as a phase-preserving microwave amplifier. d,e, Using a fixed pump power, the detuning \(\Delta \) of the pump tone is swept and the change in the microwave resonance frequency (d) and decay rate (e) is recorded. The theoretical fit corresponds to equation (3), showing good agreement with the experimental data.

Figure 4 | Amplified vacuum fluctuations and parametric instability of the microwave mode (masing). a, Noise spectrum of the cavity emission as a function of the power of a pump on the upper motional sideband. The spectrum is measured in quanta using the HEMT amplifier for calibration (see main text). Above a certain threshold power \(P_{\text{th}} \), the microwave mode undergoes self-sustained oscillations, characteristic of masing. The vertical axis is normalized by the pump power at masing threshold \(P_{\text{th}} \), equivalent to the cooperativity \(\mathcal{C} = P/P_{\text{th}} \) below threshold. b, Two examples of emission from the microwave mode at the input of the HEMT, below and above the masing threshold (line cuts of a), as well as a reference measurement of the background without the pump (dark blue). The inset shows the emission linewidth narrowing below threshold. In this regime, noise emission is composed of amplified vacuum and thermal fluctuations, described by equation (7). The analysis reveals that amplified vacuum noise amounts to 60% of the total, below the instability threshold.
Figure 5 | Near-quantum-limited phase-preserving amplification. a, Linear response of the cavity, with increasing powers of the pump on the upper sideband from red to blue. b, Power gain (triangles) and bandwidth (circles) of the amplifier extracted from a fit of the linear response, as a function of the cooperativity of the pump on the upper sideband. The colour points correspond to the curves on a, c. Relative gain and noise of the amplifier, sharing the same baseline. The difference from noise to gain corresponds to over 12 dB of apparent signal-to-noise ratio improvement of our device over the HEMT, from which the insertion loss between the HEMT and the device (measured separately to be 1.6 dB) must be subtracted to infer the real improvement. d, Added noise of the amplification referred to the input, expressed in quanta. The total added noise in the high-gain limit amounts to 1.68 ± 0.02 quanta, corroborated by an independent optomechanical calibration technique (see Supplementary Information). This is only 0.87 quanta above the device quantum limit \(n_{\text{DDL}} \), defined in equation (10).

Due to the strong photon population generated by masing, nonlinearities of the cavity redshift the frequency of emission. This clearly distinguishes masing from the mechanical parametric instability (that is, phonon lasing) in the normal optomechanical regime, as in the latter case the emission does not follow the cavity but has a constant detuning of \(-\Omega_m\) with respect to the pump.

Below the masing threshold, the microwave mode coupled to the dissipative bath acts as a phase-insensitive parametric amplifier\(^{13,14}\) for incoming signals. For \(\kappa_I + \kappa_m < 0 \), there is net internal gain and the susceptibility \(S_{11}(\omega) \) develops a peak, implying that reflection is larger than input for signals within the resonance bandwidth (in-band). The power gain of the amplifier is defined as the resonance peak height above the background, given by (see Supplementary Information)

\[
G(\omega) = |S_{11}(\omega)|^2 = \left(\frac{2\kappa_e - 1}{1 - C} \right)^2 \quad (8)
\]

The bandwidth of the amplifier is the linewidth of the microwave resonance, given by \(\kappa_{\text{eff}} = (1 - C)\kappa_e \). To measure the gain, bandwidth and noise properties of the amplifier, we inject, in addition to the pump tone on the upper sideband (\(\Delta = +\Omega_m \)), a weak signal tone (swept around the cavity resonance) and measure the reflected signal as a function of the pump tone power. With increasing pump power, a narrowing of the cavity bandwidth (Fig. 5a) is observed, as well as an increase in the power of the reflected signal (increasing gain). By fitting the reflected power as a function of detuning, the gain and bandwidth as a function of cooperativity are extracted, and found to be in good agreement with the theoretical predictions given by equation (8) (Fig. 5b). The observed gain exceeds 42 dB.

Near-quantum-limited amplification

Next, we study the added noise of the dissipative amplification process. The added noise \(N \), as referred to the input of the amplifier, is given by the noise output of equation (7) without the input noise and divided by the gain \(G(\omega) \). On resonance, it is found to be (see Supplementary Information)

\[
N(\omega_c) = \frac{4C\kappa_e^2(n_{\text{eff}} + \frac{1}{2}) + 4\kappa_m^2(n_{\text{eff}} + \frac{1}{2})}{(C - 1 + 2\kappa_e^2\kappa^-\kappa^+)^2} \quad (9)
\]

which, in the high-gain limit \((C \rightarrow 1) \), simplifies to \(N(\omega_c) \rightarrow (\kappa_I/\kappa_m)(n_{\text{eff}} + 1/2) + (\kappa/\kappa_m)(n_{\text{eff}} + 1/2) \). This quantity can be measured by recording the improvement of the signal-to-noise ratio (SNR) of amplification in and out of the bandwidth of our device. This directly compares the noise performance of our device with the commercial HEMT amplifier, which is used as a calibrated noise source (the noise temperature of the HEMT is measured separately at \(\omega_c \) and found to be 3.95 ± 0.02 K, corresponding to 20.0 ± 0.1 quanta; see Supplementary Information). In Fig. 5c, the gain of the device is compared to the noise output of the chain, normalized to the HEMT noise background. This calibration was corroborated by a second, independent calibration technique, which uses the scattered power in the motional sideband in conjunction with the...
knowledge of the intracavity photon number and g_0 (see Supplementary Information). The relative gain of the signal exceeds the relative noise by more than 12 dB. From this apparent SNR improvement, one must subtract the insertion loss of the components between the device and the HEMT, measured independently at 77 K to be 1.6 dB (see Supplementary Information). The analysis reveals therefore that the optomechanical amplifier provides more than 10 dB of improvement over the SNR of the HEMT. The inferred added noise on resonance is shown as a function of gain in Fig. 5d: in the high-gain limit, it is a constant value of $\Delta N(\omega_c) = 1.68 \pm 0.02$ quanta per second per unit bandwidth (with the uncertainty given by statistical fluctuations). Using equation (9) and assuming $n_{\text{dc}} = 0$, the effective occupancy of the dissipative reservoir is found to be $n_{\text{dc}} = 0.66$. However, the strong cooling pump increases the temperature of the cavity thermal bath to an occupancy $n_{\text{dc}} = 1.03$, obtained from measuring the emitted thermal noise of the microwave cavity (see Supplementary Information). Taking the residual cavity thermal noise into account, the estimate for the mechanical occupancy is reduced to $n_{\text{dc}} = 0.41$. This demonstrates that the dissipative mechanical reservoir constitutes a quantum resource. We note that even in the case when all the thermal noise sources are reduced to zero (that is, $n_{\text{dc}} = n_{\text{ev}} = 0$), the added noise of the amplifier is

$$n_{\text{DQL}} = \frac{1}{2} \frac{k_0}{k_{0*}}$$

which we call the device quantum limit and deviates from 1/2 due to the finite internal dissipation rate k_0. For the present system the device quantum limit amounts to 0.81 quanta for the coupling ratio of $k_{0*}/k_0 = 0.76$, which is only 0.87 quanta below the added noise we measure. Compared to other electromechanical phase-preserving amplifiers2,5,6, the preparation of an engineered cold, dissipative mechanical bath enables lower added noise. It is interesting to compare the present amplifier scheme, relying on a dissipative reservoir, to the microwave parametric amplifiers as used in circuit QED. In the latter case, typically both idler and signal are resonant with one or more microwave cavities9–10. As gain increases, this leads to a simultaneous increase in both the signal and idler mode population. In contrast, while the present amplifier scheme uses a parametric interaction as well, the large dissipation rate for the (mechanical) idler mode leads only to the generation of a signal photon (microwave field), suppressing the idler, a situation akin to a Raman-type interaction found in nonlinear optics11.

Conclusions

In summary, we have implemented and studied a new regime of circuit electromechanics by coupling an electromagnetic cavity mode to an engineered cold dissipative reservoir formed by a mechanical oscillator. The usual roles of the two modes are reversed, implying dynamical backaction on the microwave mode using the mechanical reservoir. We demonstrate the control of the internal losses of the cavity in the form of backaction-induced amplification, de-amplification, and masing of the microwave field. By performing microwave amplification close to the quantum limit, we show that the mechanical reservoir functions as a useful quantum resource.

The near-quantum-limited amplification with a mechanical reservoir extends the available quantum information manipulation toolkit, adding to the existing devices based on Josephson junctions27–29,41. Although the present amplifier is not frequency-tunable, recent advances in circuit electromechanics have demonstrated such functionality42. The observed reservoir-mediated microwave damping may allow the removal of residual thermal occupancy from the microwave cavity, akin to cooling schemes developed in circuit QED43. Moreover, the control over internal dissipation enables all-electromechanical tuning of the coupling of the microwave resonator to the feedline, offering the potential for an electromechanically reconfigurable network44. Although the present scheme employs a single pump tone, dual-tone pumping would lead to the preparation of squeezed states of the microwave cavity25. Viewed more broadly, the realization of a cold mechanical reservoir for microwave light provides a central ingredient for new electromechanical devices. Indeed, the circuit can be extended to multiple microwave resonators coupled to a shared mechanical reservoir and implement the dissipative cavity–cavity interactions that are at the heart of recent schemes to entangle microwave photons37 and, combined with coherent interactions, to perform nonreciprocal microwave transmission39. Such nonreciprocal devices can be of use for the rapidly expanding field of circuit QED46–48.

Data availability. The code and data used to produce the plots within this paper are available at http://dx.doi.org/10.5281/zenodo.545822. All other data used in this study are available from the corresponding authors upon reasonable request.

Received 7 February 2017; accepted 31 March 2017; published online 15 May 2017

References

1. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).
2. Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser-cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).
3. Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).
4. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).
5. Lin, Y. et al. Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504, 415–418 (2013).
6. Kienzler, D. et al. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 347, 53–56 (2015).
7. Murch, K. W. et al. Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012).
8. Shankar, S. et al. Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419–422 (2013).
9. Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015).
10. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
11. Kronwald, A., Marquardt, F. & Clerk, A. A. Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A 88, 063833 (2013).
12. Woolley, M. J. & Clerk, A. A. Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A 89, 063805 (2014).
13. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
14. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).
15. Lecocq, F., Clark, J., Simmonds, R., Aumentado, J. & Teufel, J. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).
16. Wang, Y.-D. & Clerk, A. A. Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013).
17. Metelmann, A. & Clerk, A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).
18. Nunnenkamp, A., Sudhir, V., Feofanov, A. K., Roulet, A. & Kippenberg, T. J. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett. 113, 023604 (2014).
19. Kronwald, A., Marquardt, F. & Clerk, A. A. Dissipative optomechanical squeezing of light. New J. Phys. 16, 063658 (2014).
20. Metelmann, A. & Clerk, A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).
21. Teufel, I. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).
22. Braginsky, V. & Manukin, A. Measurement of Weak Forces in Physics (Univ. Chicago Press, 1977).
23. Teufel, I. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).
Acknowledgements

We thank A. A. Clerk, V. Sudhir and D. Wilson for helpful comments, E. Glushkov for helping out with the measurement setup and C. Javerzac-Galy for general assistance. This work was funded by the SNF, the NCCR Quantum Science and Technology (QSIT), and the European Union Seventh Framework Program through iQUOEMS (grant no. 323924). L.D.T. is supported by Marie Curie ITN cQOM (grant no. 290161). T.J.K. acknowledges financial support from an ERC AdG (QuREM). A.N. holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability. All samples were fabricated in the Center of MicroNanoTechnology (CMi) at EPFL.

Author contributions

T.J.K. and A.K.F. conceived the idea. L.D.T. fabricated the devices. L.D.T. and N.R.B., under the supervision of A.K.F., performed the measurements. N.R.B. carried out the data analysis. A.N. contributed to the theoretical framework. All authors contributed to writing the manuscript.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to A.K.F. or T.J.K.

Competing financial interests

The authors declare no competing financial interests.

24. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

25. Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96, 093902 (2010).

26. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008).

27. Braginsky, V., Manukin, A. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 31, 829–831 (1970).

28. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

29. Megrant, A. et al. Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012).

30. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

31. Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).

32. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a trapped atom. Nat. Phys. 4, 431–435 (2008).

33. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Eichler, C. Quantum-limited phase noise of nanomechanical oscillators. Nat. Phys. 4, 646–648 (2008).

34. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 23, 1817–1839 (1982).

35. Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011).

36. Ockeloen-Korppi, C. F. et al. Low-noise amplification and frequency conversion with a multiport microwave optomechanical device. Phys. Rev. X 6, 041024 (2016).

37. Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

38. Andrews, R. W., Reed, A. P., Cicak, K., Teufel, J. D. & Lehnert, K. W. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nat. Commun. 6, 10022 (2015).

39. Graćar, M. et al. Sisyphus cooling and amplification by a superconducting qubit. Nat. Phys. 4, 612–616 (2008).

40. Bloembergen, N. Nonlinear Optics 4th edn (World Scientific, 1996).

41. Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

42. Andrews, R. W., Reed, A. P., Cicak, K., Teufel, J. D. & Lehnert, K. W. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nat. Commun. 6, 10022 (2015).

43. Graćar, M. et al. Sisyphus cooling and amplification by a superconducting qubit. Nat. Phys. 4, 612–616 (2008).

44. Kerckho, J. et al. Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X 3, 093502 (2013).

45. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

46. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).