Experiments with Probabilistic Quantum Auctions

Kay-Yut Chen Tad Hogg

August 8, 2008

Abstract

We describe human-subject laboratory experiments on probabilistic auctions based on previously proposed auction protocols involving the simulated manipulation and communication of quantum states. These auctions are probabilistic in determining which bidder wins, or having no winner, rather than always having the highest bidder win. Comparing two quantum protocols in the context of first-price sealed bid auctions, we find the one predicted to be superior by game theory also performs better experimentally. We also compare with a conventional first price auction, which gives higher performance. Thus to provide benefits, the quantum protocol requires more complex economic scenarios such as maintaining privacy of bids over a series of related auctions or involving allocative externalities.

1 Introduction

Auctions usually have a well-defined decision rule to determine which bidder, if any, wins the auction. In these cases, the outcome is a deterministic function of the submitted bids. More generally, an auction may include various informal or loosely defined preferences, such as a diversity of winners to avoid too much concentration in a single supplier, an extreme bid suggesting a low quality supplier, or public policy requirements [23]. To the extent these factors are not clearly expressed to participants or are not fully evaluated until after the auction, bidders face some uncertainty on how the auction winner will be selected, e.g., whether the highest bidder will win.

While such additional criteria can be complicated, an approach to understanding their effect on bidder behavior is to treat the auction outcome as probabilistic. That is, while traditional auction criteria, such as the amount bid, affect the winner selection, the relation is probabilistic rather than deterministic.
More speculative examples of probabilistic auctions are quantum auctions \[19, 18\], where bidders use quantum states to express their bids. Such auctions use quantum information processing \[26\] both to express the bids and determine the winner(s). A potential benefit of quantum auctions is helping to preserve privacy of the losing bids: the observation at the end of the protocol to determine the winner also destroys the quantum state encoding the bidders’ behavior. Cryptographic methods can also hide information \[25\] through the presumed computational difficulty of breaking the code. However, cryptographic approaches retain the information after completing the protocol, which may be revealed if the corresponding keys become available, either accidentally or intentionally. Moreover, the political context of some auctions can lead to difficulties in using economically efficient methods when information, beyond just the winner and price, remains available \[23\]. Quantum auctions could provide an attractive alternative to address these concerns. Quantum auctions, through using entangled states, also offer a privacy-preserving approach to scenarios in which one bidder cares about what another bidder wins (called an “allocative externality”), and allow compact expression of bids for combinatorial auctions \[10\].

Other examples of quantum economic mechanisms include encouraging cooperation in the context of the prisoner’s dilemma \[13, 14, 11, 12\], coordination \[20, 24\], the minority game \[16\] and public goods provisioning \[7\]. In particular, a quantum public-goods mechanism can significantly reduce the free-rider problem without a third-party enforcer or repeated interactions, both in theory and practice \[6\]. Technology for manipulating and communicating just a few qubits could be sufficient to implement such mechanisms. The use of quantum information for economic mechanisms contrasts with the attention given to computational advantages \[28, 17\] of quantum computers with many qubits, which are much more difficult to implement physically than few-qubit economic applications.

A key question for economic mechanisms is how well they perform. In this paper we consider this question for a quantum auction protocol \[19\] that mimics the conventional first-price sealed-bid auction. In this type of conventional auction, participants each submit a single bid, without knowledge of the bids submitted by others. This contrasts with the more common open outcry auctions where bidders learn each others bids and can choose to increase their bid if someone else bids higher. Moreover, in first-price auctions, the winner is the bidder submitting the highest bid, and the winner pays the amount of that bid. We focus on the first-price sealed-bid auction due to its simplicity.

A core issue is whether the probabilistic auction protocol, with the ap-
appropriate design, performs as well as an efficient deterministic auction of the same items. A partial game theoretic analysis of this quantum auction indicates how ideal rational players would react to the probabilistic nature of the outcomes [19]. In particular, this analysis indicates design details of the distributed quantum search to find the winner affect the game theory incentives and the resulting auction efficiency.

However, there are many reasons to be skeptical of game theory predictions of human decision-making behavior. One particularly relevant issue is that standard theory has difficulty predicting how people make decisions under uncertainty [22, 1]. In the quantum auction, bidders face three different types of uncertainty. First, they do not know other bidders’ valuation of the item. Second, they do not know how other bidders will bid as a function of their values, a form of “strategic uncertainty” that, in some cases, is useful in encouraging more participation in the auction than would be the case for rational bidders [23]. To some extent, game theory assumes away this strategic uncertainty by having everyone use the equilibrium strategy. The last type of uncertainty, unique to probabilistic auctions, comes from the ability of the bidders to change winning probabilities by manipulating the auction protocol. That is, the winning probabilities are not exogenously given values, but instead determined by the bidders’ behaviors. Other situations often leading to poor predictive performance of game theory include situations with multiple equilibria or mixed strategy equilibria, where rational players select among their available choices according to a probability distribution. Moreover, in some cases people may use non-equilibrium strategies that are more Pareto efficient than the Nash equilibrium, e.g., cooperating to some extent in single prisoner’s dilemma situations. These features often occur in quantum games, including the quantum auction protocol evaluated in this paper. Thus, it is important to test quantum auctions with real human bidders, rather than relying only on game theory analyses, to evaluate their suitability for real world applications.

In this paper, we report a series of economic experiments, using human subjects, designed to test whether people can perform successfully in quantum auctions. Our experiments compare the two existing protocols for quantum auctions [19]. Furthermore, we test whether game theory predicts how people bid in quantum auctions. Since we examine human behavior in a controlled laboratory setting, it is sufficient to simulate the behavior of the quantum auctions with conventional computers for our experiments. Thus we can evaluate the performance and potential usefulness of economic applications relying on few-qubit quantum information processing prior to their physical implementation.
The remainder of this paper describes a quantum auction protocol, our experiment design and the results comparing both conventional deterministic auctions and probabilistic auctions based on the quantum protocols simulated with conventional computers.

2 A Quantum Auction Protocol

The quantum auction [19] uses quantum superpositions to represent bids and adiabatic quantum search [15] to identify the winning bid. The overall procedure for the bidders and auctioneer is as follows. The auctioneer starts by creating a set of quantum physical systems in a specified initial state. This set has one system for each bidder, which consists of a number of qubits. The protocol proceeds through a series of rounds which implement a distributed version of an adiabatic search. In each round, the auctioneer starts with all the quantum systems, performs an operation on them and then sends one system to each bidder. Each bidder performs an operation on the system received from the auctioneer and then returns it to the auctioneer. After completing all the rounds, the auctioneer measures all the quantum systems to obtain a unique outcome for the auction while simultaneously destroying the bid states. Thus the bids of the losing bidders are never revealed. This protocol includes outcomes in which none of the bidders win, which is analogous to conventional auctions with a reservation price: if no one bids at least that much, the seller keeps the item.

Each bidder privately selects their operator. Nominally, this bidder operator corresponds to the bid they wish to place according to an encoding announced prior to the auction. In this case, after sufficiently many rounds, the adiabatic theorem gives high probability that when the auctioneer measures the final state of the quantum systems, the observations will indicate the highest bid and the corresponding bidder. This outcome arises through the choice of operators and initial states for the quantum systems. Specifically, the bidders’ operators place the quantum systems in the ground state of an initial Hamiltonian. During the subsequent rounds, the auctioneer gradually changes the operation performed until the final Hamiltonian corresponds to the value of each outcome to the auctioneer, with the ground state having the highest value. Typically this value is the revenue received by the auctioneer.

Bidder operators constrain the state to only have nonzero amplitudes among outcomes bidders are willing to pay, so the adiabatic search finds the highest-revenue state consistent with the bidders’ choices. This process can
be viewed as an adiabatic search constrained to a subspace of all possible outcomes rather than finding the global state of maximum revenue for the auctioneer, which would amount to asking bidders to pay the maximum possible price.

This protocol has two distinct reasons for probabilistic outcomes. First, the auctioneer may not perform enough rounds to satisfy the adiabatic theorem, in which case amplitude may spread among various eigenstates and lead the final observation to give outcomes other than the ground state. Second, a bidder may strategically choose an operator different from that corresponding to the intended bid. Such choices can form an initial state for the adiabatic search that is not the ground state of the initial Hamiltonian, but instead some superposition of eigenstates of the initial Hamiltonian. In this case, a slow adiabatic search will produce a corresponding mixture of eigenstates of the final Hamiltonian, resulting in probabilistic outcomes for the auctioneer’s measurement. In particular, such choices could give some probability for low bidders to win.

Our experiments consider the choices bidders make, so we focus on this second source of probabilistic outcomes. Thus we take the auctioneer to use enough rounds to satisfy the adiabatic theorem with probability close enough to one that outcomes violating the adiabatic theorem do not occur in our limited set of experiments.

A single bidder, having only one of the quantum systems to operate on, cannot form arbitrary initial states of the full set. Thus an important consideration for the auction design is the range of excited states of the Hamiltonian available to a single bidder. Game theory suggests simple changes in the design of the Hamiltonian (as implemented by the auctioneer) significantly affects the strategic behavior of players by changing the available excited states to a single bidder [19]. Testing the effect of such changes on actual human decision-makers is the key focus of the experiments described below.

3 Economic Experiments

Game theory, along with traditional economic theory, is the standard theory for human decision-making in economic contexts. This theory makes strong assumptions of rationality, including: a) each decision-maker is selfish and maximizes his or her preferences, b) they make no mistakes, and c) they know that all the other decision-makers are rational. While these assumptions are not accurate descriptions of how people actually make decisions,
game theory provides key insights into strategic decision-making behavior with fairly accurate predictions in some contexts.

Since Chamberlain [2] and Smith [29], there has been growing interest in using economic experiments [21] to understand the behavioral factors affecting decisions. These factors include, but not limited to, those arising from social preferences (how people deal with each other), individual bounded rationality (how people make mistakes in decisions) and uncertainty [22]. In an experiment, human subjects are recruited to play the roles of decision makers and receive monetary rewards based on their profits during the experiment. Subjects receive a full description about the experiment with no deception. Anonymity with respect to roles and payment is preserved.

While no one expects subjects to engage in complicated mathematical calculations during experiments, there is ample evidence that subjects with adequate training and instructions can make good decisions within a laboratory setting where they only have limited amounts of time. For example, subjects respond strategically to nonlinearities in a first price auction when given about one minute to make their bidding decisions [9, 8]. These auction experiments involve bidding decisions that are a bit less complicated than the experiments we report in this paper, which allowed a bit more time for each decision. As another point of comparison, an experiment with much more complicated decisions than our experiments allowed subjects 5 to 10 minutes for each decision [3]. Moreover, subjects without specific domain knowledge can make similar strategic choices to those trained to make these choices, as examined, for example, with the complex task of allocating multiple resources on the space station [27].

Previous work has also addressed how subjects learn about relevant aspects of the game through interacting with the software as opposed to being given a precise mathematical description. One example using decision support to convey key aspects of a complex game is experiments with electricity markets [4]. Another example is an experiment with a manufacturing system with complicated demand function [5]. The demand function was only shown to the subjects through a software decision support tool. No explicit formulae or tables were given. The authors found that participants made effective decisions based only on these tools and thus successfully identified behavior patterns driven by changes in contract policies. This approach using “what if” scenario tools is similar our method of instructing subjects about the probabilities of winning the auctions in the experiments reported in this paper.

Economic experiments have limitations, primarily with regard to involving small groups of people over short times (typically a dozen people making
decisions over a period of a few hours). Thus some extrapolation is required from experimental results to behavior of real economic institutions. Nevertheless, such experiments provide a useful addition to game theory and empirical observations of economic institutions. In particular, laboratory experiments involve both real human decision-making and control over economic variables (such as supply and demand, and the information exchanged among participants). Game theory lacks the former property and empirical observations of existing institutions lack the latter. Because of the limitations of experiments and game theory, we cannot expect them to always give quantitative predictions for how large groups of people would behave in real-world situations. Instead experiments, by incorporating behavioral effects of real decision making, can indicate how different mechanisms likely will compare, e.g., which will likely work better. Such comparisons are sufficient to help decide among competing mechanism choices, e.g., when designing auctions.

4 Experiment Design

We conducted economics experiments to study actual behavior with probabilistic auctions. We used auctions with exactly three bidders and simulated the quantum auction protocol with conventional computers so the probabilities of each outcome in the experiment corresponded to that of the auctions with the given bidder inputs.

Each experiment consisted of a number of periods. At the beginning of each period, subjects were grouped randomly into groups of three and each group bid in their own auction. We determined the value for the auctioned item for each bidder by randomly generating a value, between 0 and 100, for each participant. Bidders then entered their choices and the auction outcome was revealed. If a person won the auctioned item, he or she would receive as profit the difference between their value for the item and the amount of their bid. The groupings and bidder values were regenerated for each subsequent period. At the end of the experiment, each person was paid the total profit they had received in all periods (converted to dollars at a preannounced exchange rate).

4.1 Experimental Treatments

Our experiments compared three treatments:

1. Classical First Price Sealed Bid Auction
This classical auction has been well studied both theoretically and experimentally. We included this treatment as a benchmark because it is efficient in both theory and practice. In this treatment, in each period, each subject entered a bid into the computer. The highest bid, in each group of three, won the auction.

2. Quantum Auction with standard search

In this quantum auction, each subject entered a bid, as well as two numbers we dubbed “x” and “y” for the auction. x and y are two real numbers in the range from 0 to 12, with 12 equivalent to 0, as on the face of a clock. Unknown to the subjects, these two numbers determine a quantum operator specifying their bids for the initial state of a subsequent distributed quantum search to find the winner [19], using the standard quantum adiabatic search procedure [15].

The subjects saw an auction that requires each bidder to specify 3 numbers (a bid, x and y) instead of just one number (the bid) as in the classical auction. Furthermore, as opposed to the highest bid always winning, lower bids also have the possibility of winning depending on the values of x, y and the bid of every bidder. Thus, this is a probabilistic auction with the subjects having some control over the probabilities. Moreover, there is also a chance that no one wins.

3. Quantum Auctions with permuted search

This auction is exactly the same as treatment 2 except that the probability of winning has a different dependency on the bids, x and y values, corresponding to a permuted search with better performance according to game theory [19]. If every bidder in an auction sets x to 0 and y to 3, then the probability of the highest bid winning is 1, and this is a Nash equilibrium [19] at least with respect to changes in the initial state.

Fig. 1 illustrates a difference between the standard and permuted search methods by showing the probability the lowest bid wins as a function of the x and y values that one bidder selects when the other two bidders select x = 0 and y = 3. When all three bidders select x = 0 and y = 3, the highest bidder always wins. With the standard search, in this situation each bidder is tempted to change values to one of the peaks in this figure (e.g., x = 6 and y = 3) giving a high chance to win with a low bid, and hence earn a large profit from the auction. However, if the other bidders also make this choice then there is always no winner for the auction. By contrast, the permuted
Figure 1: The probability the lowest of three bidders wins as a function of x and y values selected by that bidder when the other two bidders select $x = 0$ and $y = 3$ (values indicated by the large black point). The upper surface is for the standard search and the lower surface (with zero probability for the lowest bidder to win) is for the permuted search.

search method does not have this temptation: when the other bidders select $x = 0$ and $y = 3$, there is no probability for either the lowest bid or the second lowest bid to win no matter what the remaining bidder chooses.

Each experiment session was divided into two or three treatments as summarized in Table 1. That is, we ran a series of periods using one treatment and then switched to a different treatment. The subjects were notified before each new treatment took effect. We report a total of three experiments. Two were conducted with Stanford students covering all three treatments. The remaining experiment (number 2) was conducted with physicists from HP Labs and only two of three treatments were used due to time constraints.

4.2 Subjects' View of the Experiments

We provided experiment instructions to the subjects via the web. The subjects were told the decisions they were going to make, and the potential consequences. They were also quizzed on the mechanics of the game via the web site prior to coming to the lab for the actual experiment. We im-

1 At www.hpl.hp.com/econexperiment/Quantum auction/instructions.htm
implemented the experiments with the HP Experimental Economics Software and followed standard procedures for economics experiments.

After the subjects arrived in the laboratory and before starting the experiment, we reviewed the instructions for the series of auctions we would conduct during the experiment. We emphasized the subjects will be bidding in groups of three and these groupings will be randomized before each auction. This randomization was done in the experimental software and did not involve any physical rearrangement of the people in the room.

We described that subjects would be told their individual values for winning the auction before the start of each auction. We further told the subjects that a) their values are private meaning no other players see them, b) the distribution of the values (uniform between 0 and 100) is known to everyone, and c) the values would be randomized for every auction. To gain familiarity with the interface and decisions, subjects played several training periods before the actual experiment. In the training periods, subjects were not paid for the outcome of the auction. The subjects were given about 90 seconds to make their decisions for each auction, although this rule was relaxed somewhat in the training periods as well as the first few periods of the game.

In the treatments with the quantum protocols, subjects were asked to make three decisions for each period: a bid (the amount they had to pay if they won), and two numbers between 0-12. We first explained to them that 0 is equivalent to 12. Thus, the two numbers each behave like hours on a clock. Second, we said these two numbers affect the probability that the highest, second highest and the lowest bid wins the auction, as well

experiment	number of subjects	treatment	number of periods
1	12	classical	35
		quantum standard	35
		quantum permuted	31
2	6	classical	30
		quantum permuted	40
3	12	classical	30
		quantum standard	30
		quantum permuted	30

Table 1: Summary of the experiments. The multiple treatments in each experiment were done in the order listed.
Figure 2: User interface for making decisions. Another sheet in the interface (not shown) listed the history of outcomes during the game. The user entered choices for bid, x and y in the “Decision” section. Prior to submitting their decision, they could investigate consequences of different choices they and others might make in the support tool at the bottom, which showed outcome probabilities corresponding to those choices.

Bid	x	y	Win Prob.
1	9	6	0.1861
2	9	6	0.0015
3	2	3	0.0000
-	-	-	0.8124

as the probability for no winner. Third, we described the decision support software tool that calculates the outcome probabilities given their decisions, and assumed values for their opponents’ decisions. Using this tool, a subject could enter a trial decision, i.e., values for the bid, x and y, and guesses of the decisions of the other bidders. The computer would then display, in table form, the probability of winning for each bidder and the probability of there would be no winner. Fig. 2 shows the interface people used to make their decisions and evaluate consequences of possible choices.

For the experiments with the Stanford students, we did not describe the underlying physics or present equations relating the outcome probabilities to their choices. The subjects learn about the relationships between their decisions and the actual probability of winning by the use of the decision support tool. In the experiment involving physicists we also described the quantum procedure underlying the auction and how the standard and permuted search treatments corresponded to different quantum search procedures.

The end of the experiment and upcoming switches to a different treatment were announced two periods in advance, a standard protocol in such experiments.
5 Results

Our experimental results allow quantifying and comparing the performance of the three auctions. This section first describes several common measures of auction performance and then uses these measures to present the experimental outcomes.

5.1 Auction Evaluation Criteria

An key measure of auction outcome is the revenue, i.e., the amount the seller receives from the auction. From the bidders' perspective, the corresponding measure is their expected payoff, i.e., item value minus amount bid if they win, and zero otherwise.

Allocative efficiency is a standard measure of the efficiency of an economic mechanism. Instead of measuring how much money the system generates (revenue), it measures whether the item is allocated to the person with the highest value. Thus, it is defined as the ratio of the achieved value to the maximum possible value. In the case of auctions, allocative efficiency is simply the ratio of the value of the winning bidder to the highest value amongst the bidders. Notice that a high allocative efficiency does not necessarily imply high revenue. For auctions with no winner, the allocative efficiency is defined to be zero, corresponding to a situation in which there is no value for the seller keeping the item.

Bidders must balance a low bid, giving higher profit if they win, with a high bid, giving a higher chance of winning. Bidders with high value can make a profit even with a relatively high bid. Thus a measure giving insight into bidder strategies is the ratio of amount bid to the item value for each bidder.

5.2 Experimental Outcomes

We evaluated the auction outcomes with several criteria, listed in Table 2. We report separately the averages over all auctions and bidders in each treatment for each experiment (i.e., over all periods and all groups of three in each period).

As context for our experiments, the results of the classical auctions are consistent with previous studies. For example, subjects bid above 80% of their values, as also seen in prior experiments [9 8]. This similarity with prior experiments suggests our experimental setup and subject pool are sufficient to obtain behavior based on the economics forces in the mechanisms.
Table 2: Auction performance measures. Averages are over the auctions in the corresponding experiment and treatment. Numbers in parentheses are the standard error in the estimate of the average under the assumption of independence among the auctions. The fraction of no winner applies only to the quantum auctions and indicates the fraction of auctions that resulted in none of the bidders winning the item.

expt.	treatment	mean revenue	allocative efficiency	bid to value ratio	mean payoff	fraction no winner
1	classical	58(2)	97(1)%	75(2)%	4.3(0.4)	N/A
	q. standard	7(2)	34(4)%	18(2)%	6.1(0.7)	51%
	q. permuted	14(2)	33(4)%	34(3)%	3.0(0.5)	59%
2	classical	56(2)	97(1)%	89(16)%	4.7(0.5)	N/A
	q. permuted	10(3)	36(5)%	33(4)%	5.5(0.9)	49%
3	classical	61(1)	97(1)%	87(8)%	4.5(0.3)	N/A
	q. standard	4(2)	31(4)%	14(2)%	6.5(0.9)	57%
	q. permuted	8(2)	27(4)%	32(4)%	3.6(0.7)	66%

A point of comparison for our observations with classical auctions is with the predictions of game theory with risk-neutral bidders. For the uniform distribution of values we use, theory predicts the equilibrium bidding strategy with n bidders has a bid to value ratio of $(n - 1)/n$, which is 66.7% for all our experiments since bidders competed in groups of three. Furthermore, with uniform values between 0 and 100, the expected largest value in a group of three is 75, with a corresponding bid equal to $2/3$ of this value, i.e., 50. Thus this theory predicts average revenue for the classical auction is 50, a bit lower than we observe experimentally. In fact, people are usually risk-averse, which theory indicates leads to higher bids. Furthermore, game theory predicts the allocative efficiency should be 100% since the highest bid always wins and the predicted equilibrium bidding strategy has bids increasing monotonically (in fact, linearly) with a bidder’s value. However in practice, bidders vary somewhat from this ideal bidding behavior. Thus occasionally a person with lower value outbids the person with highest value. This situation is rare in our experiments as seen by the high allocative efficiency ($\sim 97\%$) in all experiments. Similarly, theory predicts the average payoff to the bidders: in this case 25 to the winner (75 average value minus the bid of 50) and zero payoff to the two losing bidders, for an overall average payoff per bidder of $25/3 = 8.3$. This payoff is higher than the values...
Table 3: For auctions with a winner, fraction won by highest, second highest and lowest bids for the standard and permuted search quantum protocols.

treatment	highest	middle	lowest
q. standard	33%	21%	46%
q. permuted	56%	11%	33%

we observe (4.3 to 4.7), again because people are bidding somewhat higher than theory suggests.

Several conclusions on the quantum auctions can be drawn from the experimental data. First, both types of quantum auctions, with the standard search and permuted search, resulted in significantly lower revenue and allocative efficiency than the classical auction. The average revenue per auction dropped from around 60 in the classical auction to less than 10 for the standard search treatment and around 10 to 15 for the permuted search. Specifically, pairwise Wilcoxon tests comparing the classical auction with each of the two quantum auctions indicate the differences in revenue, bid to value ratio, mean payoff and allocative efficiency are statistically significant with p-values less than 10^{-4}. We can understand the lower allocative efficiency as due largely to the significant fraction of quantum auctions with no winner (since these cases give zero efficiency). The many cases of no winner combined with the lower bids leads to the lower observed revenue.

Second, comparing the two quantum auctions, the permuted search resulted in significantly higher revenue and bid to value ratio compared to the standard search. Pairwise Wilcoxon tests indicate these differences are statistically significant with p-values less than 10^{-4}. The better performance of the permuted search protocol is consistent with theory [19]. In particular the theory indicates the standard search gives bidders an incentive to attempt to win with low bids, whereas the permuted search reduces this incentive by requiring collusion among bidders to arrange for low bids to win (instead of having no winner). Table 3 shows the permuted search has a much larger fraction of winning auctions that are won by the highest bidder. This difference between the two methods is significant (p-value less than 10^{-4}). Due to the lower bids in the standard search, the mean payoff to bidders is higher in the standard search than the permuted search (Wilcoxon test p-value 0.02). However, the fraction of auctions with no winners in the two treatments is not significantly different (p-value of the proportional test 0.29), nor is the allocative efficiency (p-value of pairwise Wilcoxon test 0.42).

Third, we can dispel the notion that players were entering random
and y values because they were confused. The observation that behavior changes systematically between the standard and permuted search methods indicates users respond to the change in treatment. Furthermore, the bid to value ratios were systematically below the 0.5 ratio that would arise from selecting bids uniformly at random up to the bidders’ values. Instead, the low ratios suggest people were often attempting to win with a low bid by exploiting the possibility that the highest bid is not always the winner. Finally, the distribution of which bids won in auctions with a winner (Table 3) is significantly different (p-value less than 10^{-4}) from a uniform distribution that would arise if auctions were won randomly. These observations are strong evidence that subjects were developing reasonable understanding of the implications of their decisions and were responding to the strategic opportunities of the auction protocol.

The large number of quantum auctions with no winner contributes significantly to the lower performance we observed. Thus one key challenge for the quantum auction is enabling coordination among bidders to avoid choices leading to no winner (which give zero profit to all bidders). To quantify the effect of this coordination problem, Table 4 shows the behavior for the subset of quantum auctions that had a winner. For this subset of auctions, revenue, allocative efficiency and payoff to the bidders are all higher, as they must be since auctions without a winner contribute zero to these measures. The bid to value ratio is also higher. Nevertheless, these values still differ from the classical auction (p-value less than 10^{-4}). From this we conclude that coordination difficulties account for some, but not all, of the difference in performance between the classical and quantum auctions. In particular, even when bidders manage to coordinate, their strategy still involves bidding fairly low, either based on expectation that others also will bid low or in the hope of winning in spite of not having the highest bid.

Comparing the two quantum auctions for cases with a winner, we find significantly higher revenue and bid to value ratio in the permuted vs. the standard search (p-values less than 10^{-4}). There is no significant difference in allocative efficiency of the two methods among winning auctions (p-value 0.15).

By our measure of bidder strategy, the bid to value ratio, we find a significant difference (p-values less than 0.01) in the ratios involved in auctions with vs. without a winner when using the standard search method. For the permuted search, ratios are higher but the difference is not statistically significant. Thus, at least for the standard search, users appear to adjust their bidding strategy based on a sense of how much they expect to coordinate with others to achieve a winning auction.
Table 4: Auction performance measures for the quantum auctions that had a winner. Numbers in parentheses are the standard error in the estimate of the average.

expt.	treatment	mean revenue	allocative efficiency	bid to value ratio	mean payoff
1	q. standard	14(3)	69(4)%	21(4)%	12.6(1.1)
	q. permuted	35(4)	80(4)%	38(5)%	7.4(0.9)
2	q. permuted	20(4)	73(5)%	35(6)%	11.1(1.4)
3	q. standard	8(2)	72(5)%	20(4)%	15.3(1.5)
	q. permuted	25(4)	80(5)%	36(9)%	10.7(1.5)

6 Conclusions

In summary, we conducted a series of experiments to determine if individuals can bid reasonably in a quantum auction protocol. We conclude that subjects can react to the strategic consideration of the auctions. In particular, the quantum protocol with permuted search outperformed, with respect to efficiencies and revenue, the one with standard search. This is consistent with prior game theory analysis.

However, both treatments with quantum auctions resulted in substantially lower revenue and efficiencies than classical first price auction. This was largely driven by a much higher percentage of “no winner” situations when subjects tried to manipulate the winning probabilities through their choices of x and y. Since these cases of no winner can be avoided with suitable choices of x and y, an interesting question is whether with further experience participants would learn to avoid these no winner situations and thereby increase their profits.

There are several directions for future work. First, the fact that subjects responded to mechanism changes opens the possibility of redesigning the protocol to improve efficiencies and revenue. Second, this research has only focused on the quantum auction protocol in isolation. It would be interesting to analyze and conduct experiments with the same protocol in a larger economic context (for example, where information about bids can be used in future auctions) to see if the protocol has any benefits over traditional auctions. The current experiments lack such context, but indicate the quantum auction will only be economically beneficial if its other properties (such as information privacy over repeated interactions among the same group of bidders) outweigh their lower revenue and efficiency.
We found that while quantum auctions were not as efficient as classical auctions, subjects were responsive to design differences in the quantum protocol. The experimental evidence suggests participants had a fairly good understanding of the consequences of their decisions and responded to structural changes in the quantum protocol accordingly.

Acknowledgments

We have benefited from discussions with Ray Beausoleil, David Fattal, Saikat Guha, Pavithra Harsha and Cecilia Zenteno. This work was supported by DARPA via the Army Research Office contract #W911NF0530002. This article does not necessarily reflect the position or the policy of the Government funding agencies, and no official endorsement of the views contained herein by the funding agencies should be inferred.

References

[1] Colin Camerer. Individual decision making. In John Kagel and Alvin E. Roth, editors, The Handbook of Experimental Economics, chapter 8, pages 587–703. Princeton Univ. Press, 1995.

[2] E. Chamberlain. An experimental imperfect market. J. of Political Economy, 56:95–108, 1948.

[3] Gary Charness and Kay-Yut Chen. Minimum advertised-price policy rules and retailer behavior: An experiment by hewlett-packard. Interfaces, 32:62–73, 2002.

[4] H. Chen and Wang Xifan. Strategic behavior and equilibrium in experimental oligopolistic electricity markets. IEEE Trans. on Power Systems, 22:1707–1716, 2007.

[5] K-Y. Chen, M. Kaya, and O. Ozer. Dual sales channel management with service competition. Manufacturing and Service Operations Management, 2008.

[6] Kay-Yut Chen and Tad Hogg. How well do people play a quantum prisoner’s dilemma? Quantum Information Processing, 5:43–67, 2006.

[7] Kay-Yut Chen, Tad Hogg, and Raymond Beausoleil. A quantum treatment of public goods economics. Quantum Information Processing, 1:449–469, 2002. arxiv.org preprint quant-ph/0301013.
[8] Kay-Yut Chen and Charles R. Plott. Nonlinear behavior in sealed bid first price auctions. *Games and Economic Behavior*, 25:34–78, 1998.

[9] James C. Cox, Vernon L. Smith, and James M. Walker. Theory and individual behavior of first-price auctions. *Journal of Risk and Uncertainty*, 1:61–99, 1988.

[10] Peter Cranton, Yoav Shoham, and Richard Steinberg, editors. *Combinatorial Auctions*. MIT Press, 2006.

[11] Jiangfeng Du et al. Entanglement enhanced multiplayer quantum games. *Physics Letters A*, 302:229–233, 2002. arxiv.org preprint quant-ph/0110122.

[12] Jiangfeng Du et al. Experimental realization of quantum games on a quantum computer. *Physical Review Letters*, 88:137902, 2002. arxiv.org preprint quant-ph/0104087.

[13] J. Eisert, M. Wilkens, and M. Lewenstein. Quantum games and quantum strategies. *Physical Review Letters*, 83:3077–3080, 1999. arxiv.org preprint quant-ph/9806088.

[14] Jens Eisert and Martin Wilkens. Quantum games. *J. Modern Optics*, 47:2543–2556, 2000. arxiv.org preprint quant-ph/0004076.

[15] Edward Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. *Science*, 292:472–476, 2001.

[16] Adrian P. Flitney and Andrew D. Greentree. Coalitions in the quantum minority game: Classical cheats and quantum bullies. *Physics Letters A*, 362:132–137, 2007.

[17] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. *Physical Review Letters*, 79:325–328, 1997. arxiv.org preprint quant-ph/9706033.

[18] Saikat Guha, Tad Hogg, David Fattal, Timothy Spiller, and Raymond G. Beausoleil. Quantum auctions using adiabatic evolution: The corrupt auctioneer and circuit implementations. *International Journal of Quantum Information*, 6, 2008.

[19] Tad Hogg, Pavithra Harsha, and Kay-Yut Chen. Quantum auctions. *Intl. J. of Quantum Information*, 5:751–780, 2007. arxiv.org preprint 0704.0800.
[20] Bernardo A. Huberman and Tad Hogg. Quantum solution of coordination problems. *Quantum Information Processing*, 2:421–432, 2003. arxiv.org preprint quant-ph/0306112.

[21] John Kagel and Alvin E. Roth, editors. *The Handbook of Experimental Economics*. Princeton Univ. Press, 1995.

[22] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. *Econometrica*, 47(2):263–292, 1979.

[23] Paul Klemperer. *Auctions: Theory and Practice*. The Toulouse Lectures in Economics. Princeton Univ. Press, Princeton, NJ, 2006.

[24] Pierfrancesco La Mura. Correlated equilibria of classical strategic games with quantum signals. arxiv.org preprint quant-ph/0309033, Sept. 2003.

[25] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and mechanism design. In *Proc. of the ACM Conference on Electronic Commerce (EC99)*, pages 129–139, NY, 1999. ACM Press.

[26] Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information*. Cambridge Univ. Press, 2000.

[27] Charles R. Plott and David P. Porter. Market architectures and institutional testbedding: An experiment with space station pricing policies. *J. of Economic Behavior and Organization*, 31:237–272, 1996.

[28] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In S. Goldwasser, editor, *Proc. of the 35th Symposium on Foundations of Computer Science*, pages 124–134, Los Alamitos, CA, November 1994. IEEE Press.

[29] Vernon L. Smith. An experimental study of competitive market behavior. *J. of Political Economy*, 70:111–137, 1962.