STAT3 inhibitors for cancer therapy
Have all roads been explored?

Remi Fagard,1,2,3,* Valeri Metelev,4 Inès Souissi1,2,† and Fanny Baran-Marszak1,2,5

1INSERM Unité 978; Bobigny, France; 2University Paris 13; UFR SMBH; Sorbonne Paris Cité; Bobigny, France; 3Biochimie Biologie Moléculaire; AP-HP; Hôpital Avicenne; Bobigny, France; 4Moscow State University; Moscow, Russia; 5Hématologie Biologique; AP-HP; Hôpital Avicenne; Bobigny, France

*Current affiliation: INSERM Unité 967, CEA; Fontenay aux Roses, France

Keywords: STAT3, STAT1, decoy oligodeoxynucleotides, G quartet oligodeoxynucleotides, SH2 domain, anti-tumor, anti-cancer compounds

Abbreviations: IFNs, interferons; GAS, gamma-interferon-activated sequence; EMSA, electrophoretic migration shift assay; pY, phosphotyrosine

The signal transducer and activator of transcription STAT3 is a transcription factor which plays a key role in normal cell growth and is constitutively activated in about 70% of solid and hematological cancers. Activated STAT3 is phosphorylated on tyrosine and forms a dimer through phosphotyrosine/ src homology 2 (SH2) domain interaction. The dimer enters the nucleus via interaction with importins and binds target genes. Inhibition of STAT3 results in the death of tumor cells, this indicates that it is a valuable target for anticancer strategies; a view that is corroborated by recent findings of activating mutations within the gene. Yet, there is still only a small number of STAT3 direct inhibitors; in addition, the high similarity of STAT3 with STAT1, another STAT family member mostly oriented toward apoptosis, cell death and defense against pathogens, requires that STAT3-inhibitors have no effect on STAT1. Specific STAT3 direct inhibitors consist of SH2 ligands, including G quartet oligodeoxynucleotides (ODN) and small molecules, they induce cell death in tumor cells in which STAT3 is activated. STAT3 can also be inhibited by decoy ODNs (dODN), which bind STAT3 and induce cell death. A specific STAT3 dODN which does not interfere with STAT3-mediated interferon-induced cell death has been designed pointing to the STAT3 DBD as a target for specific inhibition. Comprehensive analysis of this region is in progress in the laboratory to design DBD-targeting STAT3 inhibitors with STAT3/STAT1 discriminating ability.

Central Role of STAT3 in Tumors

STAT3 belongs to a family of transcription factors (TFs) comprising STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6.1 Like STAT5, STAT3 was found to play an important role in cell growth,2 and its activation has been described in nearly 70% of solid and hematological tumors,3,4 giving good reason for a search for specific direct inhibitors,5,6 of which there are unfortunately only a few, and none in the clinic to this day. STAT3 comprises several distinct functional domains including: an N-terminal domain containing an oligomerization and a coiled-coil domain, a DNA binding domain (DBD), a linker domain, a Src homology 2 (SH2) domain involved in the interaction of two monomers via phosphotyrosine 705 resulting in dimerization and a C-terminal transactivation domain (see Fig. 1). STAT3 activation occurs following cytokine- or growth factor-receptor activation; it involves phosphorylation within the cytoplasm, dimerization and nuclear transfer7 (Fig. 2). Nuclear transfer of STAT3 requires nuclear localization signals (NLS) which are in the coiled-coil domain (comprising arginines 214 and 215) and in the dimer-dependent DBD (comprising arginines 414 and 417). The NLSs interact with importin α1, yet which of the five importin αs (α1, α3, α4, α5 or α7) actually carries STAT3 is still debated,8,9 the complex interacts with importin β and is carried through the nuclear pore complex (NPC) (Fig. 3). While arginines 214 and 215 appear to be the major importin-binding site, arginines 414 and 417 are thought to be required for STAT3 to adopt the proper conformation for importin binding.9 Several studies have shown that STAT3 cycling is probably somewhat more complicated. Unphosphorylated forms of STAT3 can enter the nucleus and stimulate transcription of a subset of gene targets, apparently via interaction with the TF NFκB.11 However, whether unphosphorylated STAT3 interacts on its own with importins for nuclear entry is not entirely clear: tyrosine 705-mutated STAT3 can shuttle to the nucleus12 and phosphotyrosine 705/SH2-independent STAT3 dimers were shown to enter the nucleus (but more slowly than phosphorylated STAT3 dimers)13 (Fig. 2). Interestingly, in the case of STAT1, unphosphorylated monomers enter the nucleus through direct interaction with the NPC proteins nucleoporins, not with importins14 and unphosphorylated STAT1 dimers bind DNA with a 200-fold lower affinity than phosphorylated STAT1 dimers,15 in fact, single-molecule imaging showed that interferon (IFN) -γ-activated STAT1 has a
The high similarity between STAT3 and STAT1 is intriguing. Both TFs share a 50% amino-acid sequence homology and share similar activating stimuli (types I and II IFNs, cytokines and growth factors); yet, their functions differ: STAT1 is mostly involved in immunity, host defense against pathogens and cell death (see refs. 23 and 24), with the notable exception that in certain contexts STAT1 exerts proliferative potential, while STAT3 is mostly involved in cell growth and proliferation (see ref. 3). Their gene targets are mostly distinct: STAT3 stimulates the transcription of cell growth-associated genes, including cyclin-D1, survivin, Vegf, C-myc, Bcl-xL, Mcl-1, vascular endothelial...
growth factor, IL-10, transforming growth factor β and Bcl2 and STAT1 stimulates the transcription of pro-inflammatory and anti-proliferative genes, including caspases, iNOS, Mdm2, p21waf/cip1 and p27kip1 but there is also an overlap of repertoires. In reality, STAT3 and STAT1 recognize very similar DNA consensus sequences, based on a TTCNNN(T,G)AA motif (see Table 1). In this motif, a 3N spacing (N representing any base) is most frequently present for STAT1 and STAT3, as shown by electrophoretic migration shift assay (EMSA). Natural binding sites share this consensus with minor variations such as a preference for T at position -5 for STAT1, but there is greater diversity outside this consensus (see Table 1), suggesting that target recognition in vivo requires additional co-factors. Thus, when attempting to inhibit STAT3 with the aim to kill tumor cell or block their growth, one must use substances that have no effect on STAT1, as has been pointed out and shown in tumor cell lines with siRNA-suppressed STAT1. Indeed, STAT1 is required for the antiproliferative effects of interferons α and γ; apoptosis is defective in STAT1-null cells and STAT1 is the major effector of IFN-γ, a cytokine with antitumor and cancer immunosurveillance functions.

STAT3 Direct Inhibitors

The recognition that activated STAT3 is widely present in tumors and that its inhibition is a valuable anti-cancer strategy led to a search for STAT3-targeting compounds. Among those the DNA-alkylating platinum complexes were found to induce the death of tumor cells with activated STAT3 and were thought to act directly on STAT3; other compounds target the SH2 of STAT3, including G quartet oligodeoxynucleotides and small molecules, some of which are highly specific for STAT3. STAT3 inhibitors also comprise the decoy oligodeoxynucleotides which target the DBD.

Small molecules targeting the SH2 domain and inhibiting STAT3 dimerization.

The dimerization of STAT3 through reciprocal phosphotyrosine 705/SH2 interaction can be impaired by a phosphopeptide with the sequence PpYLTK. This phosphopeptide inhibits STAT3 activity in tumor cell lines, induces cell death and has a high affinity and specificity for STAT3: in particular it had no effect on the SH2-containing tyrosine kinase p56lck, and little effect on STAT1 as determined by EMSA. Despite their efficacy and specificity, the inefficient cell penetration of phosphopeptides led to a search for smaller equivalents using computational docking studies exploring the phosphotyrosine 705/SH2 interaction area (see Fig. 3A and B). These studies yielded several small molecules with high affinity and high specificity for STAT3, including STA-21, Static, S31-201 and recently BP-1-102, a compound with improved bioavailability and anti-cancer properties. The mechanism of action of these compounds is thought to be based on their interaction with STAT3 SH2 (Fig. 4A and B), an area where the other monomer's phosphotyrosine 705 docks, thereby impairing the formation of the active dimer, as shown in (see Fig. 4D and E, borrowed from ref. 44); the phosphotyrosine peptide is represented together with the inhibitor S31-201, both form H-bonds with the same residues, including lysine 591, serine 611, serine 613 and arginine 609). Interestingly, STAT1-specific inhibitors have also been obtained using this peptidomimetic strategy. STAT3 SH2-targeting compounds are efficacious STAT3 inhibitors, they inhibit STAT3 DNA binding, reduce STAT3-dependent cell proliferation and expression of biological targets. Yet, experimental demonstration of their interaction with STAT3 is missing, the actual data are based on computational studies, not on actual interaction measurements, as noted earlier. This implies that a compound claimed to interact with SH2 might actually interfere with the binding of STAT3 to the receptor's phosphotyrosine site leading to biological effects similar to those of JAK-inhibitors. The compound might also interact with the DBD with just the same effect.

![Figure 3. STAT3 nuclear entry.](image-url)
cysteine, such as cysteine 687 which is next to the phosphopeptide motif of STAT3 and faces the phosphopeptide-binding area of SH2. While this point does not invalidate Stattic’s specificity for STAT3, it suggests possible limitations for its in vivo utilization. Despite considerable progress and clear anti-cancer efficacy, this family of compounds has not reached the clinic.

Figure 4. A detailed view of STAT3 SH2 and DBD regions. (A) STAT3 surface obtained as in Figure 1. The areas in squares are the SH2 region where small molecules interact (B and C) and the SH2/DBD region where G quartets interact (D and E). (B) Close up view of the region of the SH2 of STAT3 that interacts with the small molecule inhibitors: the key amino acids involved in interaction are labeled; the inhibitors interact particularly in the groove located between arginine 595 and lysine 591. (C) The same area as in (B) is shown but STAT3 and STAT1 are superimposed; this shows the overall great similarity between these two regions, yet some differences are present, accounting for the capacity of the inhibitors to discriminate between STAT3 and STAT1 (arrows); STAT1 crystal coordinates used in (C) were from PDB file 1BF5. (D) Modeled interaction of inhibitor S31-201 with STAT3 SH2 domain, note the important role of lysine 591, serine 611 and arginine 609 in the interaction. (E) Same as (D), with added phosphotyrosine peptide, showing its overlap with the STAT3 SH2/small molecule inhibitors binding area. (F) Detailed view of the region of STAT3 interacting with G quartets, this region includes the phosphotyrosine 705-interacting region of SH2 and a neighboring region including part of the DBD, including glutamic acid 638, glutamine 644, aspartic acid 647, glutamine 643 and asparagine 646. (G) Same region as in F is shown with the superimposition of STAT1, the major differences are indicated by arrows. [Panels (D and E) are reprinted from ref. 44 with permission; © 2007 National Academy of Sciences USA].

in the cell (reduced DNA binding, cell death). Besides, compounds usually undergo modifications in a biological environment (cells or body fluids), these modifications can occur before the compounds reach their target. For instance, Stattic’s inhibitory activity of STAT3 increases with time and is temperature- and dithiothreitol-sensitive, this suggests that it interacts with a cysteine, such as cysteine 687 which is next to the phosphopeptide motif of STAT3 and faces the phosphopeptide-binding area of SH2. While this point does not invalidate Stattic’s specificity for STAT3, it suggests possible limitations for its in vivo utilization. Despite considerable progress and clear anti-cancer efficacy, this family of compounds has not reached the clinic.
G quartet oligodeoxynucleotides. G quartets are G-rich oligodeoxynucleotides that form potassium-dependent four-stranded intramolecular G-quartet structures. They inhibit STAT3 at micromolar concentrations and induce the death of several tumor cell lines, including head and neck cancer lines, they also arrest the development of breast tumor, prostate tumor or non-small cell lung cancer xenografts in nude mice. These reagents are interesting in that their specificity for STAT3, demonstrated by EMSA showing high affinity binding to STAT3 and much lower affinity for STAT1, is somewhat unexpected. A computational study of the interaction of the G quartet with STAT3 showed the following SH2 domain amino-acids to be involved in the binding: glutamic acid 638, glutamine 644, asparagine 647, glutamine 643 and asparagine 646 (Fig. 4F). Using a 3D analysis program (Accelrys) we compared STAT3 and STAT1 surfaces in the area where the G quartet interacts and found that the surfaces differ significantly (Fig. 4F and G). However, the use of G quartets is problematic due to their large size and potassium dependence, which limit cellular delivery.

Decoy oligodeoxynucleotides targeting the DNA binding domain. Decoy oligodeoxynucleotides (dODNs) are short stretches of double stranded DNA containing a TF’s consensus binding sequence. Once in the cells, dODNs inhibit the corresponding TF as shown for NFκB in animal models (cardiovascular disease and ischemia-reperfusion injury) and in cancer cells. This property has been used for STAT3: in cells in which STAT3 is constitutively activated, STAT3 dODNs (Table 1) induce cell death. While some studies suggested that dODNs must enter nuclei to exert their inhibitory action, our studies of the subcellular location of STAT3 in dODN-treated cells have shown that the dODNs prevent nuclear translocation of STAT3. Inhibition of importin binding by the dODN is thought to result from the masking of the DBD-located NLS (arginines 414 and 417) (see Figs. 1 and 5A) indirectly confirming its involvement in nuclear entry. In fact, competition between DNA binding and importin binding was observed in vitro with STAT1 and within cells with STAT3. Thus, despite the uncertainty regarding the two STAT3 NLSs’ relative requirement for nuclear transfer, it seems that the DBD-located NLS plays an important role for nuclear translocation since its masking is sufficient to impair it, confirming that it may be a good target for inhibition, as suggested by others.

STAT3	References
1 C A T T T C C C G T A A A T C G	57
2 C A G T T C C C C T A A T C C	89
3 C T C C T T C C C G G C A G C A T	90
4 C A G T T C C A G G A A T C G G G	91
5 C T G C T T C C C C G A A C G T G	30
6 A G G C T T G G C G G G A A A A G	92
7 A T C C T T C T G G G A A A T T C T A	93
8 A T C C T T C T G G G A A A T T C T A	86, 94

The STAT1 and STAT3 consensus sequences are shown in bold.

Table 1. Comparison and alignment of the STAT3 and STAT1 specific DNA recognition sites and of the dODNs used to inhibit STAT3.

-9 -8 -7 -6 -5	STAT1	References
1 C T A C T T C C C T G G A A A T C C	75	
2 C G C T T T C C C C T A A A T G G	76, 77	
3 T G A T T T C C C C G G A A T G A C	78	
4 A G G T T T C C G G G A A A G C A	79	
5 A C T C T T C C T T G A A A C G C	80	
6 G C A T T T C G G A A A G A C G	81	
7 C C A C T T C C G T A A A A G C A	82	
8 C A G T T T C C C C G T T C C C T	83	
9 T G T G A A T T A C C C G G A A G T G	84	
10 A T A T T T C C T G T A A G T G	85, 86	
11 C A T G T T A T G C A T A T T C	87	
12 G G C G T T C T T G G A A A T G C C C	88	
13 C A T T T C C C G T A A A T C G	57	
14 G C A G T T C C C C T A A T C C	89	
15 C T C C T T C C C C G G C A G C A T	90	
16 G C A G T T C C A G G A A A T C G G G	91	
17 C T G C T T C C C C G A A C G T G	30	
18 A G G C T T G G C G G G A A A A G	92	
19 A T C C T T C T G G G A A A T T C T A	93	
20 A T C C T T C T G G G A A A T T C T A	86, 94	

STAT3 dODNs

-9 -8 -7 -6 -5	STAT1	References
1 C A T T T C C C G T A A A T C G	57	
2 T A T T T C C C C T A A A T G G	65	
As discussed above, the opposed cellular functions of STAT1 and STAT3, in spite of their similarity, is puzzling. STAT1 and STAT3 can form heterodimers, whose function is not elucidated to this day, they recognize very similar DNA motifs (Table 1), and they have targets in common and regulate one another. Indeed, in STAT3-deficient cells, STAT3-activators such as IL-6 trigger an IFN-γ-like response through STAT1 activation, and in STAT1-deficient cells, IFN-γ and IFN-α trigger STAT3-dependent proliferative responses. Thus the STAT1/STAT3 cross-regulation suggests that STAT3 inhibitors may work best in STAT1-expressing cells. It is therefore essential to inhibit STAT3 without inhibiting STAT1 to keep cell death processes operational. In this regard, it should be noted that STAT3-dODNs inhibit STAT3 but also inhibit activated STAT1, thereby abolishing IFN-γ-induced cell death and reducing the dODNs anti-STAT3 efficacy. Computer analysis of the dODN’s interaction with STAT1 and STAT3 DBDs showed that within the highly similar DNA sequences, there were subtle differences including a T at positions −7 and −5, a dC at position 0, a dA at position +5 (see Table 1, dODN #22), which had been previously noted by computer analysis and DNA-binding studies. This allowed designing a dODN that could inhibit STAT3 without inhibiting STAT1, demonstrating that at this level specific interaction can be achieved. Therapeutic use of the dODNs not only requires specific target recognition, but also stability in biological fluids. Modifications, including phosphothioate end modification and hairpin structures considerably increased intracellular stability and efficacy. A recent improvement consisting of a cyclic STAT3 dODNs comprising a hairpin at both ends was designed and found to reduce xenograft tumors following intravenous administration. Furthermore, a STAT3 dODN has been found to have few side effects when administered to primates, suggesting interesting therapeutic perspectives.

Another possibility is to design smaller molecules mimicking the dODN’s interaction with STAT3, similarly to what was achieved with the SH2 domain. The STAT3 area that interacts with the DNA target and the dODN (Fig. 5A) is of particular interest because it also interacts with importins. This area comprises the DBD-located NLS including arginines 414 and 417 that are located closely to arginine 423, involved in interaction with the dODN; these three arginines surround an opening in the surface in which small molecules could interact (Fig. 5A). Furthermore, superimposition of STAT3 and STAT1 showed that in spite of their striking overall similarity, these areas comprise in the same location glutamic acid 421 (in italic) of STAT1 whose interaction with DNA is very different from that of arginine 423 of STAT3 (see ref. 65), and other differences indicated by arrows.

As discussed above, the opposed cellular functions of STAT1 and STAT3, in spite of their similarity, is puzzling. STAT1 and STAT3 can form heterodimers, whose function is not elucidated to this day, they recognize very similar DNA motifs (Table 1), and they have targets in common and regulate one another. Indeed, in STAT3-deficient cells, STAT3-activators such as IL-6 trigger an IFN-γ-like response through STAT1 activation, and in STAT1-deficient cells, IFN-γ and IFN-α trigger STAT3-dependent proliferative responses. Thus the STAT1/STAT3 cross-regulation suggests that STAT3 inhibitors may work best in STAT1-expressing cells. It is therefore essential to inhibit STAT3 without inhibiting STAT1 to keep cell death processes operational. In this regard, it should be noted that STAT3-dODNs inhibit STAT3 but also inhibit activated STAT1, thereby abolishing IFN-γ-induced cell death and reducing the dODNs anti-STAT3 efficacy. Computer analysis of the dODN’s interaction with STAT1 and STAT3 DBDs showed that within the highly similar DNA sequences, there were subtle differences including a T at positions −7 and −5, a dC at position 0, a dA at position +5 (see Table 1, dODN #22), which had been previously noted by computer analysis and DNA-binding studies. This allowed designing a dODN that could inhibit STAT3 without inhibiting STAT1, demonstrating that at this level specific interaction can be achieved. Therapeutic use of the dODNs not only requires specific target recognition, but also stability in biological fluids. Modifications, including phosphothioate end modification and hairpin structures considerably increased intracellular stability and efficacy. A recent improvement consisting of a cyclic STAT3 dODNs comprising a hairpin at both ends was designed and found to reduce xenograft tumors following intravenous administration. Furthermore, a STAT3 dODN has been found to have few side effects when administered to primates, suggesting interesting therapeutic perspectives.

Another possibility is to design smaller molecules mimicking the dODN’s interaction with STAT3, similarly to what was achieved with the SH2 domain. The STAT3 area that interacts with the DNA target and the dODN (Fig. 5A) is of particular interest because it also interacts with importins. This area comprises the DBD-located NLS including arginines 414 and 417 that are located closely to arginine 423, involved in interaction with the dODN; these three arginines surround an opening in the surface in which small molecules could interact (Fig. 5A). Furthermore, superimposition of STAT3 and STAT1 showed that in spite of their striking overall similarity, these areas comprise in the same location glutamic acid 421 (in italic) of STAT1 whose interaction with DNA is very different from that of arginine 423 of STAT3 (see ref. 65), and other differences indicated by arrows.

Conclusion

Because STAT3 is constitutively activated in nearly 70% of tumors, it provides a valuable target for anti-cancer therapy. The recent findings that tumors harbor activating mutations of STAT3 underlines the need for additional STAT3 inhibitors, and inhibitors that target other regions of STAT3 than its SH2, especially as most identified mutations are within this region. In addition, studies on cancer cell lines indicate that even when STAT3 direct targeting is insufficient to induce cell death; it can diminish the resistance to other anti-cancer compounds such as doxorubicin or EGFR inhibitors. Finally, STAT3 direct inhibitors are also probably less toxic than many others because inhibition of STAT3 in mature cells has minimal effects.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported in part by a grant (BQR) from University Paris 13.
References

1. Schindler C, Levy DE, Decker T. JAK-STAT signal- portion from interferons to cytokines. J Biol Chem 2005; 280:7905-63; PMID:15912067; http://dx.doi.org/10.4161/jbc.200506138. PubMed

2. Frank DA. STATs in the pathogenesis and treatment of cancer. Mol Med 1999; 5:432-56; PMID:10499805. PubMed

3. Frank DA. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 2007; 251:199-210; PMID:17129668; http://dx.doi.org/10.1016/j.canlet.2006.10.017. PubMed

4. Bar-Natan M, Nelson EA, Xiang M, Frank DA. STATs signaling in the pathogenesis and treatment of myeloid malignancies. JAK-STAT 2012; 1:55-64; http://dx.doi.org/10.4161/jkr.20006. PubMed

5. Yue P, Turkson J. Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 2009; 18:45-56; PMID:19053881; http://dx.doi.org/10.1517/13543780902565791. PubMed

6. Manka AK, Grettin FR. Inhibiting signal transducer and activator of transcription 3: rationality and rationale design of inhibitors. Expert Opin Investig Drugs 2011; 20:1265-73; PMID:21751940; http://dx.doi.org/10.1517/13543784.2011.601739. PubMed

7. Regis G, Pensa S, Boselli D, Novelli F, Poli V. STAT1 nuclear traffic. Nat Rev Immunol 2006; 6:602-12; PMID:16868551; http://dx.doi.org/10.1038/nri1885. PubMed

8. Ma J, Zhang T, Novotny-Dieryman V, Tan AL, Cao X. A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J Biol Chem 2003; 278:29252-60; PMID:12746641; http://dx.doi.org/10.1074/jbc.M304196200. PubMed

9. Ma J, Cao X. Regulation of Stat3 alpha nuclear import by importin alpha3 and importin alpha7 via two different functional sequence elements. Cell Signal 2006; 18:1117-26; PMID:16298512; http://dx.doi.org/10.1016/j.cellsig.2006.04.004. PubMed

10. Lin J, Buettner R, Yuan YC, Yip R, Horne D, Jove R, et al. Molecular dynamics simulations of the conformational changes in signal transducers and activators of transcription, Stat1 and Stat3. J Mol Graph Model 2009; 28:347-56; PMID:19781967; http://dx.doi.org/10.1016/j.jmgm.2008.09.013. PubMed

11. Regis G, Pensa S, Boselli D, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis a matter of balance. Expert Opin Investig Drugs 2008; 17:877-91; PMID:18325675; http://dx.doi.org/10.1517/13543784.2008.11235675. PubMed

12. Darnell Jr. EF, Kerr IM, Stark GR. Jak-STAT pathways and transcription activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264:1415-21; PMID:8197455; http://dx.doi.org/10.1126/science.8197455. PubMed

13. Herrmann A, Vogt M, Monningmann M, Clahsen T, Sommer U, Haan S, et al. Nucleocytoplasmic shuttling of permanently activated STAT3. J Cell Sci 2007; 120:3539-61; PMID:17726604; http://dx.doi.org/10.1242/jcs.03482. PubMed

14. Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M, Vinkemeier U. Nucleocytoplasmic shuttling by nuclear perinuclear Nup133 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat3. J Cell Biol 2004; 165:823-33; PMID:15210729; http://dx.doi.org/10.1083/jcb.200403057. PubMed

15. Wenta N, Straus H, Meyer S, Vinkemeier U. Tyrosine phosphorylation regulates the partitioning of STAT1 between the cytoplasm and the nucleus. Proc Natl Acad Sci U S A 2008; 105:9238-43; PMID:18591661; http://dx.doi.org/10.1073/pnas.0802310105. PubMed

16. Speil J, Baumgart E, Siebrasse JP, Veith R, Vinkemeier U, Kubitza U. Activated STAT1 transcription factors compete with distinct salutary proteins in the cell nucleus. Biophys J 2011; 101:2592-600; PMID:22261046; http://dx.doi.org/10.1016/j.bpj.2011.10.006. PubMed
57. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Weerasinghe P, Garcia GE, Zhu Q, Yuan P, Feng L, Jing N, Li Y, Xiong W, Sha W, Jing L, Teardy PMID:15498923; http://dx.doi.org/10.1093/nar/oligonucleotides. Nucleic Acids Res 2004; 32:e142; PMID:15374974; http://dx.doi.org/10.1101/gad.1743.5.1573

58. Meyer VE, Yee LY. Multiple matrix complexes interact at the interferon regulatory factor-1–interferon-gamma activation sequence in prolactin-stimulated Nb2 T cells. Mol Cell Endocrinol 1996; 121:19-28; PMID:8865162; http://dx.doi.org/10.1016/S0303-7182(00)00284-3

59. Park YG, Nesterova M, Agrawal S, Cho-Chung YS. Dual blockade of cyclic AMP response element- (CRE) sites by Stat3 and STAT1 and STAT3 induced NF-kappaB activation. Am J Physiol Cell Physiol 2009; 296:C1251-60; PMID:19352854; http://dx.doi.org/10.1152/ajpcell.90536.2008

60. Nardozzi J, Wentz A, Yasuhara N, Vinkemeier U, Cingolani G. Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. J Biol Chem 2010; 402:83-100; PMID:20645317; http://dx.doi.org/10.1074/jbc.2010.097974.x

61. Nardozzi J, Wentz A, Yasuhara N, Vinkemeier U, Cingolani G. Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. J Biol Chem 2010; 402:83-100; PMID:20645317; http://dx.doi.org/10.1074/jbc.2010.097974.x

62. Mayer VE, Yee LY. Interferon-gamma activation sequence in prolactin-stimulated Nb2 T cells. Mol Cell Endocrinol 1996; 121:19-28; PMID:8865162; http://dx.doi.org/10.1016/S0303-7182(00)00284-3

63. Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schiattacchia M, Iriz O, et al. Serine/threonine phosphorylation of Stat3 and Stat5 activates the Stat3- and Stat5-regulated NF-kB pathway. J Biol Chem 1999; 274:15734-46; PMID:10345847; http://dx.doi.org/10.1074/jbc.274.23.15734

64. Lagrange PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Maj JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide inhibits tumor growth suppression of non-small cell lung cancer by Cyclin D1 and Cyclin D2. J Biol Chem 2004; 5:279-86; PMID:16505011; http://dx.doi.org/10.1101/gad.1743.5.1573

65. Johnston PA, Grandis JR. STAT3 signaling: anticancer strategies and challenges. Mol Interv 2011; 11:18-26; PMID:21441118; http://dx.doi.org/10.1124/mi.111.1.1.4

66. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr., Kuriyan J. Crystal structure of a tyrosine phosphorylated Stat1 dimer bound to DNA. Cell 1998; 93:827-39; PMID:9630226; http://dx.doi.org/10.1126/science.8715762

67. Rouyex MC, Wen Z, Darnell JE Jr. A Stat protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 1995; 9:984-94; PMID:7774815; http://dx.doi.org/10.1101/gad.3.11.984

68. Lamb P, Seidel HM, Haslam J, Milocco L, Kessler LV, Stein BP, et al. Stat3 protein complexes activated by interferon-gamma and gp130 signaling molecules differ in their sequence preferences and transcriptional induc tion properties. Nucleic Acids Res 1995; 23:3283-9; PMID:7667105; http://dx.doi.org/10.1093/ nar/23.16.3283

69. Polakowska CM, Uenishi K, Natsukawa S, Nishimura K, Taniguchi T, Takeda K, et al. Stat3 is required for the generation and progression of murine tumors through induction of apoptosis. Cancer Res 2006; 66:6603-9; PMID:15374974; http://dx.doi.org/10.1158/0008-5472.CAN-05-0341

70. Park YG, Nesterova M, Agrawal S, Cho-Chung YS. Dual blockade of cyclic AMP response element- (CRE) sites by Stat3 and STAT1 and STAT3 induced NF-kappaB activation. Am J Physiol Cell Physiol 2009; 296:C1251-60; PMID:19352854; http://dx.doi.org/10.1152/ajpcell.90536.2008

71. Permenter EF, Liao CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605-12; PMID:15264254; http://dx.doi.org/10.1002/jcc.20084

72. Becker S, Groner B, Muller CW. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 1998; 394:145-51; PMID:9671298; http://dx.doi.org/10.1038/28101

73. Valente AJ, Xie JF, Abramova MA, Wenzel UO, Abboud HE, Graves DT. A complex element regulates IFN-gamma-stimulated monocytic chemotactr actant protein-1 gene transcription. J Immunol 1998; 161:3719-28; PMID:9759897

74. Sluyser WF, Van Leeuwen A. Multiple matrix complexes interact at the interferon regulatory factor-1–interferon-gamma activation sequence in prolactin-stimulated Nb2 T cells. Mol Cell Endocrinol 1996; 121:19-28; PMID:8865162; http://dx.doi.org/10.1016/S0303-7182(00)00284-3

75. Xu W, Comair SA, Zheng S, Chu SC, Marks-Konczalik J, Moss J, et al. Stat1-1 decoy oligodeoxynucleotide inhibition of acute rejection in mouse heart transplants. Basic Res Cardiol 2009; 104;719-29; PMID:19352854; http://dx.doi.org/10.1007/s00395-009-0228-0

76. Sen M, Thomas SM, Kim S, Yeh JH, Ferris RL, Johnson JT, et al. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2012; 2:694-705; PMID:22719020; http://dx.doi.org/10.1101/gad.1743.5.1573

77. Sen M, Tosca PJ, Zwyer C, Ryan MJ, Johnson JD, Knostman KA, et al. Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother Pharmacol 2009; 63:983-95; PMID:18676340; http://dx.doi.org/10.1007/s00280-008-0823-6

78. Pfizenmaier K, Sattler M, Wienands J, Stelzer EG, Deppert K, Crouch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605-12; PMID:15264254; http://dx.doi.org/10.1002/jcc.20084

79. Sen M, Tosca PJ, Zwyer C, Ryan MJ, Johnson JD, Knostman KA, et al. Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother Pharmacol 2009; 63:983-95; PMID:18676340; http://dx.doi.org/10.1007/s00280-008-0823-6

80. Colome A, Egea J, Xie JF. Gene 3.0: a stable complex that modulates cyclin D1 expression. Mol Cell Biol 2003; 23:8394-45; PMID:14654506; http://dx.doi.org/10.1128/MCB.23.24.8394-45.2003
91. Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci U S A 1999; 96:6964-9; PMID:10359822; http://dx.doi.org/10.1073/pnas.96.12.6964

92. Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizano K, et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189:63-73; PMID:9874564; http://dx.doi.org/10.1084/jem.189.1.63

93. Pallard C, Gouilleux F, Bénir L, Cocault L, Souyri M, Levy D, et al. Thrombopoietin activates a STAT5-like factor in hematopoietic cells. EMBO J 1995; 14:2847-56; PMID:7796811.