The role of S-acylation in protein trafficking

Jose L. Daniotti1,2 | Maria P. Pedro1,2 | Javier Valdez Taubas1,2

1Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
2Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina

Correspondence
Jose L. Daniotti, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
Email: daniotti@fcq.unc.edu.ar

Present address
Maria P. Pedro, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Funding information
Secretaría de Ciencia y Tecnología (SECyT), Universidad Nacional de Córdoba (UNC), Grant/Award number: 366/16; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grant/Award number: PIP 112-20110100930; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Grant/Award numbers: PICT-2013-0288, PICT-2013-456, PICT-2015-1316; Mizutani Foundation for Glycoscience, Grant/Award number: 160059

1 | INTRODUCTION

Many proteins have been shown to contain covalently bound lipids, and the lipidation of proteins in eukaryotic cells can be divided into two main categories: that occurring in the cytosol or on the cytoplasmic face of cellular membranes, and that taking place in the lumen of secretory organelles. Concerning the latter, the addition of glycosyl-phosphatidylinositol (GPI) in the endoplasmic reticulum is the best characterized. In this case, the proteins transit the exocytic path to the cell surface, where they remain anchored to the extracellular face of the plasma membrane. Another modification that occurs in secretory proteins (such as morphogens and cytokines) is the addition of cholesterol or fatty acids (N-acylation) through an ether or amide bond, respectively. Examples of these are the Hedgehog and Wingless proteins Wnt-1 and Wnt-3a. In addition, three main types of cytosolic lipid modifications take place: prenylation, the addition of an isoprenyl group such as 15-carbon farnesyl or 20-carbon geranylgeranyl to a cysteine through a thioether bond; N-myristoylation, the addition of a myristoyl group to a glycine residue through an amide bond; and S-acylation, the addition of long chain fatty acid, usually palmitate, to a cysteine through a thioester bond. There are some excellent general reviews on lipid modifications.1-6

This review will focus mainly on S-acylation of peripheral and integral membrane proteins, with particular emphasis on how this chemical modification regulates the membrane affinity and intracellular trafficking of a few selected proteins (Figure 1). We first...
summarize below some general features of acylation and of the molecular machinery that carries it out.

2 | PROTEIN S-ACYLATION

To date, more than 2000 human proteins have been either shown or predicted to be palmitoylated, which represents approximately 12% of the proteome.7 Even though there is no clear consensus on the amino acid sequence for this lipid modification, some features shared by different substrates can help to predict palmitoylation, and algorithms have been developed to identify potential palmitoylation sites.8–10 In the case of single-spanning membrane proteins, palmitoylation may occur at cysteines located in the cytoplasmic domain or near the cytosolic border of the transmembrane domain. In contrast, for soluble proteins, S-acylatable cysteines are present close to regions with an affinity for membranes, such as a hydrophobic or basic stretch of amino acids, or at sites where other lipid modifications such as myristoylation or prenylation occur.5

S-acylation is mediated by protein acyltransferases (PATs) that belong to the DHHC (aspartate-histidine-histidine-cysteine) family, whereas acyl-protein thioesterases (APTs) are required for deacylation (Figure 1). PATs were first described in 2002 in two independent studies performed on Saccharomyces cerevisiae.11,12 The number of PATs varies from 7 in yeast to 23 in humans, with a common feature of these enzymes being the presence of a cysteine-rich domain with a conserved DHHC motif, which is indispensable for enzyme activity.13,14 The DHHC motif is located in one of the cytosolic loops of these 4 to 6-pass transmembrane proteins. Additionally, a palmitoyltransferase conserved C-terminus (PaCCT) domain is conserved in the majority of PATs from several eukaryotic organisms and is important for their function and localization.15 These enzymes are mainly localized at the Golgi complex but have also been found in the endoplasmic reticulum, plasma membrane and endosomes.13,16,17

PAT enzymes are likely to display a certain degree of redundancy since they may have partially overlapping substrate specificities.18,19 However, some particular substrates have been demonstrated to be dependent on an individual PAT for their efficient modification.13 In yeast, Ras2 is mostly S-acylated by the yeast palmitoyltransferase Erf2-Erf4, although deletion of this enzyme does not completely block S-acylation.11 On the other hand, deletion of Swf1, the PAT responsible for the palmitoylation of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) protein Tlg1, leads to a complete absence of Tlg1 palmitoylation, which is not rescued by overexpression of other yeast PATs.20,21

Some aspects of PATs biology that remain to be investigated in depth are: how PATs achieve their respective intracellular localizations, the relevance of posttranslational modifications on PAT activity and, very importantly, the dynamic exchange of PATs between membranes since these enzymes might be relevant for S-acylation of a specific substrate in different membrane environments. Currently, many studies show the important contribution of acylation to protein trafficking. However, PATs are generally regarded as "static actors," which in our opinion, may not represent the real situation. One of the few pieces of evidence that highlight the importance of these concepts came from the Chamberlain's laboratory. They showed that DHHC2, which mediates activity-dependent S-acylation of PSD95, is regulated by a dynamic cycling pathway that connects the plasma membrane with recycling endosomes, and they also identified domains that specify the membrane targeting of this protein.22,23 Also, a previous report demonstrated that blocking synaptic activity, which leads to enhanced palmitoylation of PSD95, also modulates DHHC2 trafficking, promoting its accumulation to sites near the postsynaptic membrane.24

![FIGURE 1 S-acylation cycle regulates the membrane association, segregation and intracellular transport of both peripheral and integral membrane proteins. Peripheral (A) and integral membrane (B) proteins may be palmitoylated by a PAT and depalmitoylated by an APT. This reversible S-acylation cycle, which can occur at multiple membranes including Golgi complex and plasma membrane regulates protein trafficking (vesicular and nonvesicular [diffusion] transport), recycling, targeting to specialized membrane microdomains (lateral segregation), biological function and degradation. Rods in red represent palmitates. Membrane microdomains are indicated in old rose](image-url)
The enzymes that mediate deacylation have not been as extensively characterized as the PATs, with only two cytosolic APTs having been described to date: APT1 and APT2. An additional protein, called APT1-like thioesterase, is active against the BK potassium channel, although its role as a thioesterase is still debated.

More recently, ABHD17, a protein depalmitoylase, was also found to deacetylate N-Ras and postsynaptic density-95 (PSD-95) protein.

APT1 and APT2, which share a 64% homology at the amino acid level, mediate fatty acid turnover on many peripheral proteins and are thought to be selective because not all substrates are deacylated with the same efficiency. APT1 and APT2 contain a catalytic triad made up of serine, histidine, and aspartic acid, and also a glycine-X-serine-X-glycine motif, which is characteristic of the large family of α/β hydrolases and serine hydrolases. The crystal structures of APT1 and APT2 have been determined, revealing an architecture containing a central structure made up of parallel β sheets, connected by loops and surrounded by α-helices.

Experimental evidence obtained in various laboratories (including ours) has indicated that both enzymes are mainly cytosolic with a highly hydrophilic character. Recently, APT1 and APT2 were found to undergo palmitoylation on cysteine 2, which was suggested to facilitate the steady-state membrane localization and function of these thioesterases. However, it should be mentioned that the acylatable cysteine in APT1 and APT2 is not conserved in all analyzed species, with the exact role of this modification still being unclear.

During decades, radioactive labeling was used for detection of palmitoylation; this method is tedious, time-consuming and does not allow the identification of the S-acylated sites. Mass spectrometry approaches such as shotgun proteomic assays are challenging for S-acylated proteins because palmitoylated peptides are hydrophobic, water insoluble and have a high susceptibility to hydrolysis of the thioester-linked palmitate. To partially circumvent these limitations, new methodologies were developed such as the acyl-biotin exchange (ABE), acyl-resin assisted capture (Acyl-RAC), and metabolic labeling approaches involving alkyne-tagged analogues of palmitic acid which are later derivatized using click chemistry, allowing affinity purification and analysis by shotgun proteomics.

Although these methods proved powerful for the identification of palmitoylated proteins, they do not provide information such as the identity of modified cysteine residues with multiple possible palmitoylation sites, and more importantly, to what extent are the proteins modified, as the unpalmitoylated proteins are not retained in these assays.

Another issue that remains a significant challenge in the field is the development of experimental strategies to study the regulation and dynamics of S-acylation in vivo. There is a need for methods to monitor the activity levels of PATs and APTs under physiological and pathological contexts. In this sense, a recent novel approach has been the development and application of a fluorescent probe for S-depalmitoylation activity, which reports on endogenous levels of depalmitoylation activity in live cells. Particularly, this approach elegantly allowed the observation of the rapid growth factor-mediated inhibition of the depalmitoylation activity of APTs, revealing a novel regulatory mechanism of dynamic lipid signaling.

3 | ROLE OF S-ACYLATION ON THE TRAFFICKING OF PERIPHERAL MEMBRANE PROTEINS: THE PARADIGMATIC CASE OF THE SMALL GTPASE H-RAS

Ras family proteins are monomeric GTPases which couple extracellular signals to intracellular effector pathways, and have a role in the control of multiple biological functions including proliferation, differentiation, and survival, among many others. Hyperactivating mutations in Ras are a hallmark of cancer, with these gain-of-function mutations in RAS genes being found in approximately 20% to 35% of all human cancers, which has led to intensive research aimed at interfering with the Ras function.

There are four Ras isoforms, namely H-Ras, N-Ras, K-Ras4A and K-Ras4B, and despite them sharing over 90% homology, their functions are not redundant. All of these isoforms have a CAAX sequence (in which C is a cysteine, A is an aliphatic amino acid and X is any amino acid) that directs the posttranslational modification of the C-terminus. Ras proteins are first modified in the cytosol, where a farnesyltransferase enzyme transfers a 15-carbon isoprenyl group to cysteine 186 in the CAAX motif, thereby allowing the transient association of farnesylated Ras with the cytosolic surface of the endoplasmic reticulum (Figure 2). Then, the C-terminal AAX sequence is cleaved by the endopeptidase Rce1, and the farnesylated cysteine becomes methylated by the isoprenylcysteine carboxyl methyltransferase icmt. Depending on the Ras isoform, a second signal for the membrane anchor is present in the vicinity of the farnesylated cysteine.

H-Ras is dually S-acylated at cysteines 181 and 184, whereas N-Ras is S-acylated at cysteine 181. In contrast, K-Ras4B is not further modified but contains a polybasic domain that binds to the phospholipid headgroups present in the internal layer of membranes. K-Ras4A is unique among the four Ras proteins in possessing (in addition to the farnesylated cysteine) an S-acylated cysteine and a polybasic region.

After farnesylation, Ras moves to the Golgi complex, where S-acylation is believed to occur by the action of the DHHC9/GCP16 complex and possibly by other PATs. As mentioned above, in yeast this reaction is mediated by its orthologue Erf2/4. Single or dual palmitoylation significantly increases the affinity of prenylated Ras to biological membranes, which is required for its correct intracellular transport. Farnesylated and palmitoylated N- and H-Ras move to the plasma membrane associated to the cytoplasmic leaflet of vesicular carriers (Figure 2). Then, once at the cell surface, Ras proteins can become depalmitoylated and released back to the cytosol where they travel by diffusion to the Golgi complex for another round of palmitoylation and exocytic delivery to the plasma membrane. We have previously shown that H-Ras is endocytosed and delivered to the recycling endosome in a Rab5- and Rab11-dependent vesicular transport in CHO-K1 cells, with this subcellular localization and route having also been described in other cell lines. Additionally, diacylated GAP-43 was also found to localize to the recycling endosomes, arriving from the plasma membrane by vesicular transport. For both H-Ras and GAP-43, double palmitoylation is necessary for them to be targeted to this location. More recently, an alternative exocytic route for N- and H-Ras has been described in COS-1 cells,
H-Ras is potentially acylated on cysteines 181 and 184, and how these residues contribute individually to H-Ras trafficking is now being studied. Seminal work from Hancock’s laboratory has demonstrated that mutation of acylation sites causes H-Ras to accumulate in different subcellular compartments. Recently, our laboratory has shown that the S-acylated cysteines 181 and 184 contribute differentially to H-Ras membrane affinity and exhibit distinct APT sensitivities and deacylation kinetics. In particular, it was found that mono-acylated H-Ras species are selectively incorporated into carrier vesicles at the level of the post-Golgi complex with different efficiencies. The mutant that is palmitoylated only in cysteine 184 is more efficiently incorporated into the Golgi to plasma membrane vesicular carriers. Notably, fluorescence photobleaching and photoactivation experiments revealed that both mono-acylated mutants exhibit deacylation-dependent and independent diffusion, with rapidly reversible membrane binding to different organelles. Consequently, the cysteines 181 and 184 each provide unique information on the spatial organization and trafficking of H-Ras. The interplay between PAT and APT activities, as well as protein stability and other posttranslational modifications, results in a heterogeneous distribution of acylated species, which may have physiological or even pathological implications due to the influence it may have on the connection of the small GTPase with downstream signaling molecules.

Although the relative activities of PATs and APTs are the primary factors regulating acylation stoichiometry, and hence the subcellular sorting of Ras isotypes, additional chemical modifications have important consequences on their acylation status, subcellular distribution, and lateral segregation on biomembranes. FKBP12, the best-characterized member of the FK506-binding protein (FKBP) family of prolyl isomerases, binds to diacylated H-Ras and promotes depalmitoylation in a proline 179-dependent fashion. Moreover, it has been demonstrated that H- and N-Ras, but not K-Ras, are modified by...
lysin 63-linked di-ubiquitin chains.72,73 CAAX-mediated modification of
H-Ras (farnesylation and palmitoylation) is necessary for its ubiquitina
tion and association with endosome membranes, and more recently, Sasaki et al have demonstrated the mono-ubiquitination of
K-Ras in lysine 147 resulted in enhanced GTP loading.79

The activation status of H-Ras also has profound consequences on
its distribution in membrane microdomains and its deacylation
kinetics. When H-Ras is in the GTP-bound state, it segregates to dis
ordered lipid domains, whereas the inactive GDP-loaded H-Ras
resides in liquid-ordered lipid raft domains.80 Nevertheless, H-Ras
distribution in plasma membrane microdomains varies depending on
the cell type and is determined by the balance between palmitoyla
tion and depalmitoylation.81 Intriguingly, the oncogenic GTP-bound
form of H-Ras is more accessible to APT(s) than the inactive one,82
suggesting that depalmitoylation of H-Ras is mainly carried out in
specialized membrane microdomains containing active H-Ras.

Caveolae are bulb-shaped plasma membrane microdomains
enriched in cholesterol and glycosphingolipids. Investigations carried
out by Parton's laboratory have indicated that caveolae regulate Ras
nanoclustering and signal transduction by controlling plasma mem
brane organization.83,84 Caveolin-1 deficiency affects cellular lipid
composition and plasma membrane dynamics, which correlates with
an increased K-Ras nanoclustering and signal transmission but a
reduction in GTP-dependent lateral segregation of H-Ras, resulting in
a compromised signal output from H-RasG12V nanoclusters.85 Thus,
these results illustrate the cross-talk between caveolae, lipid metabo
lism and key signal transduction pathways.

The regulation of many other peripheral proteins through
acylation-deacylation cycles has been described in numerous original
research articles and summarized in excellent reviews.13,85–92 In brief,
the dynamic acylation cycle acts as a molecular switch that regulates
the spatial distribution of proteins at the micro- (ie, inter-organellar
transport) and nano- (ie, segregation or clustering of proteins at mem
brane microdomains) scale dimensions.

4 | INFLUENCE OF S-ACYLATION IN THE
TRAFFIC OF TRANSMEMBRANE PROTEINS

While the role of peripheral membrane protein palmitoylation is to
regulate interactions between the modified proteins and membranes,
palmitoylation of integral membrane proteins modulates their behav
ior within the plane of the membrane, due to the partition to differ
ent subdomains and/or the modulation of interactions with other
proteins (Figure 1). In many cases, this will affect the traffic of the
protein and therefore its final membrane localization, whereas in
other cases, there are no gross changes in localization or the changes
that may occur require more sophisticated tools for them to be
detected (see below).

The role of lipid domains in membrane traffic has been exten
sively reviewed.93,94 However, the nature of these domains and the
affinity they have for palmitoylated proteins is still not entirely clear.
There are examples of S-acylated proteins partitioning both in and
out of traditional lipid rafts,86,95,96 but the difficulties encountered in
visualizing and characterizing these domains complicate our
understanding of their relationship with palmitoylation. These, often
contradictory, findings are not only a result of the technologies that
have been used for raft study.77 Cells may form ordered liquid mem
brane domains of various properties,98 and the partition of a protein
into these domains and the consequences it will have on the protein
traffic will result from the emergent properties of complex systems
and interactions. These include, in addition to the membrane compo
sition and heterogeneity, the nature of the transmembrane domains
(length, shape and composition),99–101 the position of the acylatable
cysteines, and importantly, the nature of the added lipid (length and
saturation) since it is now becoming clear that some PATs will trans
fer lipids of different length to their substrates.102,103 It is also possi
ble that sorting events will be mediated by the partition of proteins
into regions of different curvatures, and to discover how palmitoyla
tion affects these events is an interesting line for future research.
Concerning this, a study by van der Goot and coworkers showed that
palmitoylation of calnexin (a type I membrane protein and a major
endoplasmic reticulum chaperone involved in glycoprotein folding)
leads to the preferential localization of calnexin to the perinuclear
rough endoplasmic reticulum, at the expense of endoplasmic reticu
lum tubules.104

Overall, it is unlikely that general rules about the consequences
of transmembrane protein palmitoylation will emerge, as these will be
specific for each protein or family of proteins. Palmitoylation of trans
membrane proteins can be classified according to the position of the
palmitoylated cysteines with respect to the transmembrane domain.
S-acylation of cysteines that are located in a cytosolic loop may have
structural consequences on this protein region, leading to a variety of
responses including modification of the interaction (either intra-
or intermolecular), or partitioning to different lipid domains as reviewed
in Reference 86. On the other hand, many single and multispansing
membrane proteins have conserved cysteines either at the cytosolic
border or within their transmembrane domain/s, which in many cases
were found to be palmitoylated. The consequences of this latter type
of palmitoylation are less obvious in terms of the changes they may
produce in the structure of a protein, with the effects of this modifi
cation most likely being due to changes in the solubility of the trans
membrane domain, as well as to the tilting of the transmembrane
domain in the membrane (which will also affect solubility).86,105
Finally, the interplay between palmitoylation and other posttransla
tional modifications, such as ubiquitination and phosphorylation, is
also an important determinant of a protein's fate.

There are multiple examples of palmitoylated membrane pro
teins, and for many of these, palmitoylation affects their traffic and
localization. Although a detailed review of this topic is beyond the
scope of this article, there are some excellent reviews.13,86,106 In the
following paragraphs, we will cover a few examples obtained from
our investigations and the literature, with emphasis on single-
spanning membrane proteins, which are simpler to address. Particular
focus will be placed on SNAREs (type II membrane proteins), since
these are central to the trafficking machinery, with the SNAREs that
are exclusively lipid-anchored to the membranes, such as SNAP25,
being treated in the following section.

Palmitoylation of transmembrane SNAREs was first identified in
yeast.21,107 Interestingly, out of the 20 currently known yeast
SNAREs, only those that are localized in distal regions of the secretory pathway have conserved palmitoylated cysteines, which are located at the cytosolic border of the transmembrane domains. Several mammalian SNAREs also have conserved cysteines in this region, and some of these have been shown to be palmitoylated. However, this distribution of cysteine-bearing SNAREs, which increases towards the late secretory pathway, is not observed in mammalian cells. This may be due to the properties of the yeast membranes, in particular, the yeast plasma membrane, as it is highly enriched in ergosterol and long chain lipids (reviewed in References 111–113).

The subcellular distribution of four acylated yeast SNAREs (Snc1, Syn8, Tlg1 and Sso1 [Valdez Taubas J, unpublished]) was analyzed in a yeast strain that has the cognate PAT deleted (swf1Δ). Although no gross changes in localization were observed for the majority of the SNAREs, when Tlg1 is not palmitoylated, it becomes ubiquitinated and degraded in the yeast vacuole. Also, nonacetylated versions of these proteins were observed in wild-type backgrounds with similar results. The swf1Δ strain, however, has multiple phenotypes that cannot be ascribed to a lack of palmitoylation of any of its known substrates but are possibly a consequence of a general defect in membrane traffic, suggesting that this modification is important for the function of the SNAREs. The study of the influence of palmitoylation on the SNARE function in vivo is complicated by the fact that SNAREs are redundant, and it is also difficult to test in vitro since this requires purification of palmitoylated SNAREs from sources other than bacteria. Nevertheless, as the reconstitution of SNARE-mediated fusion has been achieved in vitro, palmitoylation is not essential for SNARE activity, although it is not known whether lipidation affects the efficiency of SNARE-mediated fusion.

The role of S-acylation in membrane traffic has been studied for two mammalian SNAREs. Palmitoylation did not influence the steady-state localization of syntaxin 8 in late endosomes, whereas syntaxin 7, which normally cycles between endosomes and the plasma membrane, was retained in the latter upon mutation of the palmitoylated cysteine. The PAT/s responsible for mammalian transmembrane SNARE palmitoylation has not yet been identified, and therefore the global effect of a lack of SNARE palmitoylation has not yet been addressed.

Another important set of type II membrane proteins is the Golgi complex. The catalytic domain is oriented towards the lumen of the Golgi complex. Moreover, there are multiple GTs that do not have conserved cysteines that can be palmitoylated. Therefore, it is more likely that palmitoylation is involved with the fine-tuning of the enzyme activity because of subtle changes in the segregation to membrane domains or in subtle associations that might not be picked-up in an in vitro reaction or by observing the localization of the overexpressed enzymes using conventional optic microscopy.

Synaptotagmin VII is a Ca2+ sensor that regulates lysosome exocytosis and plasma membrane repair, which is a type I membrane protein that is palmitoylated in cysteine residues adjacent to the transmembrane domain. This palmitoylation is essential for the association of the protein with the tetraspanning CDC63, as it is required for localization of synaptotagmin in lysosomes. Mutation of the cysteines results in Golgi complex localization of synaptotagmin VII, and in the loss of its function. Most members of the tetraspanin family are palmitoylated, which is necessary for them to be able to organize signaling microdomains.

A large number of G protein-coupled receptors are S-acylated at cysteines in their cytoplasmic tails following the last transmembrane domain (reviewed in Reference 126). This modification can have a variety of consequences which include defects in transport to the plasma membrane and targeting to lipid rafts (reviewed in Reference 13). S-acylation also controls the activity of a great number of ion channels and transporters.

A recent example of a membrane protein whose localization is regulated by palmitoylation is the glucose transporter Glut4. This multispansing membrane protein plays a key role in the regulation of glucose homeostasis and is palmitoylated at a juxtamembrane cysteine (cysteine 223) adjacent to the transmembrane domain. Glut4 normally localizes to the TGN and in small vesicles in tubulovesicular structures, with the substitution of cysteine 223 abolishing Glut4 palmitoylation and insulin dependent Glut4 plasma membrane translocation. Glut4 palmitoylation is mediated by the PAT DHHC7, and the activity of this PAT is increased upon addition of insulin, representing one of the first examples of regulated PAT activity.

From the examples described above and many others, it can be inferred that S-acylation might affect the fate of a protein in multiple transport steps in the cell. For example, protein endocytosis of the anthrax receptor, the transferrin receptor and the DJ-1 protein are affected by palmitoylation. Also, a massive endocytosis event (MEND) in cardiac cells can be triggered by palmitoylation. Some proteins require S-acylation to leave the endoplasmic reticulum, as in the case of Chs3 and the Wnt receptor LRP6. As already mentioned for Glut4, certain proteins require palmitoylation to leave the Golgi complex, and examples of endosomal/lysosomal traffic alterations due to palmitoylation have been described above, including Tlg1, Syn 7 and Synaptotagmin VII. Furthermore, the mannose 6-phosphate receptor and sortilin recycling are controlled by S-acylation.

Overall, the importance of palmitoylation in membrane traffic is becoming increasingly recognized. However, while examples of the influence of S-acylation in the traffic of membrane proteins continue to be reported, the mechanisms by which this modification exerts its function in the different transport steps are still not well understood.
and represent an interesting future line of research that might yield novel biological insights. Additionally, the apparent lack of consequences of palmitoylation for many proteins will likely be clarified as more sophisticated approaches are utilized for their study. In both scenarios, detectable or nondetectable effects of palmitoylation, gene editing technologies such as CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat-associated endonuclease Cas9) system will allow the analysis of cell lines devoid of specific PATs, and the detection of endogenous palmitoylated proteins fused to fluorescent tags. Additionally, if palmitoylation causes the partition to specific membrane domains, these may be detected using super-resolution microscopy. However, if the domains remain too small and dynamic to be detected, it is possible to turn to yeast, in which membrane subdomains are sufficiently stable and big enough to be detected by optical microscopy both at the plasma membrane and the vacuole membrane.

5 | REGULATION OF INTRACELLULAR TRANSPORT PROCESSES BY PROTEIN S-ACYLATION

In addition to its specific role in the transport of multiple proteins, palmitoylation also plays a more general role in membrane transport by influencing the trafficking machinery of the cell. In the following paragraphs, we will cover a few examples of how protein S-acylation orchestrates intracellular transport and membrane fusion processes.

Phosphatidylinositol 4-phosphate (PI4P) has recently emerged as a TGN resident that establishes a signpost for the recruitment of trafficking proteins. The major TGN clathrin adaptor, AP-1, binds PI4P and requires PI4P for TGN targeting. Furthermore, the Golgi-localized γ-ear-containing Arf-binding proteins (GGAs), which mediate the trafficking between the TGN and endosomes, use PI4P to ensure organelle-specific targeting. In addition, PI4P also participates in sphingolipid homeostasis by regulating the transport of glycolipid precursors at the TGN as well as the delivery of lysosomal enzymes involved in sphingolipid degradation.

Four distinct phosphatidylinositol 4-kinases have been identified in mammalian cells, which are able to catalyze the phosphorylation of phosphatidylinositol (PI) to synthesize PI4P. These 4-kinases localize to distinct membrane compartments and have specific roles in modulating inter-organelle lipid trafficking, phosphoinositide signaling and intracellular vesicle trafficking, as well as the Golgi function. One of the phosphatidylinositol 4-kinase isoforms, PI4KIIα, has been shown to localize to endosomal compartments but also at the Golgi complex. This enzyme contains a conserved cysteine-rich motif (CCPCC) that is palmitoylated by 6 different PATs (i.e., DHHC2, 3, 7, 14, 15 and 21). Palmitoylation strongly enhances PI4KIIα activity, whereas unpalmitoylated PI4KIIα is unable to associate with the TGN or phosphorylate PI, resulting in a decrease in the Golgi pool of PI4P. Consequently, the depletion of PI4P leads, among other effects, to the impaired recruitment of clathrin adaptor protein AP-1 to the TGN and inhibition of constitutive secretion from this site. Additionally, PI4KIIα was shown to behave as both a cargo and enzymatic regulator of adaptor protein (AP)-3, which participates in the targeting of membrane proteins from endosomes to lysosomes and synaptic vesicles. In the absence of AP-3, PI4KIIα redistributes to the Golgi complex area, suggesting that the steady-state localization of PI4KIIα reflects an equilibrium between the Golgi complex and the endosomal compartments. According to these antecedents, this enzyme cycle might be highly dependent on the S-acylation status of PI4KIIα.

The c-Jun amino-terminal kinases (JNK) are crucial players in the stress response in neurons. Among these, JNK3 isoform is S-acylated in two cysteine at the C-terminal. Palmitoylated JNK3 is localized at the Golgi complex independently of its kinase activity, with its palmitoylation impeding axon growth, a process that relies on active Golgi functions. At this location, JNK3 interacts and retains the vesicular stomatitis virus G glycoprotein. Moreover, Rab8 and Rab11, which facilitate anterograde transport along the secretory pathway, also selectively accumulate in the Golgi complex upon association with JNK3. It was also reported that palmitoylated JNK3 reduces PI4P in the Golgi complex in both rat hippocampal neurons and COS7 cells, which is caused by the sequestration of the phosphatase SacI at the Golgi complex, where it binds to JNK3 and metabolizes PI4P to PI. In this way, by regulating JNK3 subcellular localization, S-acylation controls the anterograde transport of several proteins.

Many components of the vesicle fusion machinery in neurons are S-acylated, including synaptosome-associated protein of 25 kDa (SNAP25), cysteine string protein (CSP), the vesicle-associated membrane protein, VAMP2, as well as the calcium sensor for fusion synaptotagmin 1 and multiple syntaxins.

SNAP25 is a SNARE peripheral protein that is palmitoylated in four cysteines contained in a cysteine-rich domain protein and is involved in membrane fusion events at the plasma membrane and the endosomal system. S-acylation controls membrane binding and the localization of SNAP25, thereby affecting its function. It was also described that the localization in lipid rafts of SNAP25 and SNAP23 (a ubiquitously expressed homolog), regulates the SNARE function and therefore vesicle exocytosis, with this localization being associated with palmitoylation.

The presynaptic protein CSP is a molecular chaperone that plays an essential role in regulated exocytosis pathways and is probably one of the most heavily palmitoylated proteins on a per mole basis. The cysteine-rich domain of mammalian CSP contains 14 cysteines in a span of 24 amino acids, with the majority of these cysteines being palmitoylated. S-acylation is essential for its association with membranes, subcellular trafficking, and activity.

Taken together, these above examples illustrate the importance of S-acylation at several stages of intracellular trafficking. Moreover, they highlight the danger of using general palmitoylation/depalmitoylation inhibitors to infer the role of palmitoylation in the localization and transport of a particular protein, under the conditions in which the whole trafficking machinery is affected.

6 | CONCLUSIONS AND OPEN QUESTIONS

In summary, this review emphasizes the importance of S-acylation on protein-membrane association and intracellular trafficking. We expect
that emerging technologies will increase our ability to explore in a more systematic mode the functional consequences of fatty acid acylation of proteins, including S-acylation as well as the in vivo dynamics of these co- and posttranslational modifications. The development of specific activators and inhibitors for PATs and APTs is crucial for the field and will certainly open new research avenues. Particularly, it will allow exploring if the manipulation of protein palmitoylation represents an opportunity to fight diseases in which acylation or its misregulation is involved. In this sense, greater advances have been obtained for APTs than for PATs, with the recent discovery of the human APT1 and APT2 crystal structures, as well as isoform-selective inhibitors, which have provided new ways to probe the function of each enzyme. More importantly, these pharmacological approaches represent a substantial advance for the development of rational therapies to control the oncogenic pathways driven by acylated proteins, as recently described for H- and N-Ras, and also for the Scrib tumor suppressor in Snail-overexpressing epithelial cells, in which a common feature of the inhibitors was to modulate the membrane binding and intracellular distribution of the target protein. Finally, an important aspect still to be elucidated in the field is the determination of the stoichiometry and dynamics of palmitoylation in proteins with multiple palmitoylation sites, with the interplay between PAT and APT activities being critical for this process. Undoubtedly, the physiological or pathological implications of the heterogeneous distribution of acylated species have been underestimated and poorly studied mainly due to methodological limitations, which will surely be overcome in the near future.

ACKNOWLEDGMENTS

This work was supported in part by grants from Secretaría de Ciencia y Tecnología (SECyT), Universidad Nacional de Córdoba (UNC, grant number 366/16), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, grant number PIP 112-20110100930), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, grant numbers PICT-2013-0288, PICT-2013-456 and PICT-2015-1316), Argentina, and from the Mizutani Foundation for Glycoscience (grant number 160059), Japan. J.V.T. and J.L.D. are career investigators of CONICET (Argentina). The authors would like to thank Somersault18:14 (http://www.somersault1824.com/science-illustrations/) since some figures components were created using parts of the Library of Science and Medical Illustrations under the Creative Commons license CC BY-NC-SA 4.0. The authors wish to thank Dr. Ricardo Lardone (CIQUIBIC, Córdoba, Argentina) who assisted in the design of the figures.

The authors wish to thank the past and present members of Daniotti and Valdez Taubas’ labs who contributed with comments, data and discussions. We apologize to all colleagues whose relevant work unfortunately could not be cited here because of space limitations and organization of the manuscript.

Conflict of interests

The authors declare no conflict of interests.

EDITORIAL PROCESS FILE

The Editorial Process File is available in the online version of this article.

REFERENCES

1. Ganesan L, Leventhal I. Pharmacological inhibition of protein lipida- tion. J Membr Biol. 2015;248(6):929-941.
2. Hang HC, Linder ME. Exploring protein lipidaion with chemical biol- ogy. Chem Rev. 2011;111(10):6341-6358.
3. Hentschel A, Zahedi RP, Ahrends R. Protein lipid modifications— more than just a greasy ballast. Proteomics. 2016;16(5):759-782.
4. Nadolski MJ, Linder ME. Protein lipidaion. FEBS J. 2007;274(20):5202-5210.
5. Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol. 2006;2(11):584-590.
6. Resh MD. Covalent lipid modifications of proteins. Curr Biol. 2013;23(10):R431-R435.
7. Blanc M, David F, Abrami L et al. SwissPalm: protein palmitoylation database. F1000Res. 2015;4:261.
8. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel. 2008;21(11):639-644.
9. Wang XB, Wu LY, Wang YC, Deng NY. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel. 2009;22(11):707-712.
10. Li YX, Shao YH, Deng NY. Improved prediction of palmitoylation sites using PWMs and SVM. Protein Pept Lett. 2011;18(2):186-193.
11. Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem. 2002;277(43):41268-41273.
12. Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol. 2002;159(1):23-28.
13. Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol Rev. 2015;95(2):341-376.
14. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. Protein palmi- toylation by a family of DHHC protein S-acyltransferases. J Lipid Res. 2006;47(6):1118-1127.
15. González Montoro A, Quiroga R, Maccioni HJ, Valdez Taubas J. A novel motif at the C-terminus of palmitoyltransferases is essential for Swf1 and Phα3 function in vivo. Biochem J. 2009;419(2):301-308.
16. Gorłek OA, Barns AM, Prescott GR, Greaves J, Chamberlain LH. Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals. J Biol Chem. 2011;286(45): 39573-39584.
17. Ohno Y, Kihara A, Sano T, Igarashi Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta. 2006;1761(4):474-483.
18. Tsutsuiri R, Fukata Y, Fukata M. Discovery of protein-palmitoylation enzymes. Pflügers Arch. 2008;456(6):1199-1206.
19. Hou H, John Peter AT, Meiringer C, Subramanian K, Ungemann C. Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism. Traffic. 2009;10(8):1061-1073.
20. Gonzalez Montoro A, Chumpen Ramirez S, Quiroga R, Valdez Taubas J. Specificity of transmembrane protein palmitoylation in yeast. PLoS One. 2011;6(2):e16969.
21. Valdez Taubas J, Pelham HR. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J. 2005;24(14):2524-2532.
22. Greaves J, Carmichael JA, Chamberlain LH. The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway: regulation by a C-terminal domain. Mol Biol Cell. 2011;22(11):1887-1895.
23. Salaun C, Ritchie L, Greaves J, Bushell TJ, Chamberlain LH. The C- terminal domain of zDHHC2 contains distinct sorting signals that regulate intracellular localization in neurons and neuroendocrine cells. Mol Cell Neurosci. 2017. In press. https://doi.org/10.1016/j. mcn.2017.07.007.
24. Noritake J, Fukata Y, Iwana T, et al. Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. *J Cell Biol*. 2009;186(1):147-160.

25. Duncan JA, Gilman AG. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). *J Biol Chem*. 1999;274(25):15830-15837.

26. Tomatis VM, Trenchi A, Gomez GA, Daniotti JL. Acyl-protein thioesterase 2 catalyzes the deacylation of peripheral membrane-associated GAP-43. *PLoS One*. 2010;5(11):e15045.

27. Lin DT, Conibear E. Enzymatic protein depalmitoylation by acyl protein thioesterases. *Biochem Soc Trans*. 2015;43(2):193-198.

28. Ziedman R, Jackson CS, Magee AL. Protein acyl thioesterases (Review). *Mol Membr Biol*. 2009;26(1):32-41.

29. Tian L, McClafferty H, Knaus HG, Ruth P, Shipston MJ. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels. *J Biol Chem*. 2012;287(18):14718-14725.

30. Görner K, Bürger M, Krujilzer JA, et al. Chemical-biological exploration of the limits of the Ras de- and repalmitoylating machinery. *Chembiochem*. 2012;13(7):1017-1023.

31. Bürger M, Zimmermann TJ, Kondoh Y, et al. Crystal structure of the predicted phospholipase LYLPLA1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases. *J Lipid Res*. 2012;53(1):43-50.

32. Lin DT, Conibear E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. *Elife*. 2015;4:e11306.

33. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 depalmitoylating enzymes. *J Neurosci*. 2016;36(24):6431-6444.

34. Rusch M, Zimmermann TJ, Bürger M, et al. Identification of acyl protein thioesterases 1 and 2 as the cellular targets of the Ras-signaling modulators palmostatin B and M. *Angew Chem Int Ed Engl*. 2011;50(42):9838-9842.

35. Duncan JA, Gilman AG. Characterization of Saccharomyces cerevisiae acyl-protein thioesterase 1, the enzyme responsible for G protein alpha subunit deacylation in vivo. *J Biol Chem*. 2002;277(35):31740-31752.

36. Wang A, Deems RA, Dennis EA. Cloning, expression, and catalytic mechanism of murine lysophospholipase I. *J Biol Chem*. 1997;272(19):12723-12729.

37. Wang A, Luo R, Chen Z, Dennis EA. Regiospecificity and catalytic triad of lysophospholipase I. *J Biol Chem*. 1997;272(35):22030-22036.

38. Devedjian Y, Dauter Z, Kuznetsov SR, Jones TL, Derewenda ZS. Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A. *Structure*. 2000;8(11):1137-1146.

39. Toyota T, Sugimoto H, Yamashita S. Sequence, expression in Escherichia coli, and characterization of lysophospholipase II. *Biochim Biophys Acta*. 1999;1437(2):182-193.

40. Won SJ, Davda D, Labby KJ, et al. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). *ACS Chem Biol*. 2016;11(12):3374-3382.

41. Pedro MP, Vilcaes AA, Tomatis VM, Oliveira RG, Gomez GA, Daniotti JL. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities. *PLoS One*. 2013;8(10):e75232.

42. Hirano T, Kishi M, Sugimoto H, et al. Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1. *Biochim Biophys Acta*. 2009;1791(8):797-805.

43. Kong E, Peng S, Chandra G, et al. Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto- oncogene H-ras protein and growth-associated protein-43. *J Biol Chem*. 2013;288(13):9112-9125.

44. Vartak N, Papke B, Grecco HE, et al. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. *Biophys J*. 2014;106(1):93-105.

45. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. *Mol Cell Proteomics*. 2010;9(1):54-70.

46. Davda D, Martin BR. Acyl protein thioesterase inhibitors as probes of dynamic S-palmitoylation. *MedChemComm*. 2014;5(3):268-276.

47. Dresdel RC, Green WN. Labeling and quantifying sites of protein palmitoylation. *Biotechniques*. 2004;36(2):276-285.

48. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. *Mol Cell Proteomics*. 2010;9(1):54-70.

49. Won SJ, Davda D, Labby KJ, et al. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). *ACS Chem Biol*. 2016;11(12):3374-3382.

50. Pedro MP, Vilcaes AA, Tomatis VM, Oliveira RG, Gomez GA, Daniotti JL. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities. *PLoS One*. 2013;8(10):e75232.

51. Hirano T, Kishi M, Sugimoto H, et al. Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1. *Biochim Biophys Acta*. 2009;1791(8):797-805.

52. Kong E, Peng S, Chandra G, et al. Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto-oncogene H-ras protein and growth-associated protein-43. *J Biol Chem*. 2013;288(13):9112-9125.

53. Vartak N, Papke B, Grecco HE, et al. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. *Biophys J*. 2014;106(1):93-105.

54. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. *Mol Cell Proteomics*. 2010;9(1):54-70.
94. Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic.

95. Levental I, Lingwood D, Grzybek M, Coskun U, Simons K. Palmitoylation regulates raft affinity for the majority of integral raft proteins.

96. Roy S, Wyse B, Hancock JF. H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Biochim Biophys Acta. 2011;1812(2):298-307.

97. Trenchi A, Gomez GA, DanioTTI JL. Dual acylation is required for trafficking of growth-associated protein-43 (GAP-43) to endosomal recycling compartment via an Arf6-associated endocytotic vesicular pathway. Biochim. J. 2009;421(3):357-369.

98. Roy S, Plowman S, Rotblat B, et al. Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol. Cell. Biol. 2005;25(15):6722-6733.

99. Ahearn IM, Tsai FD, Court H, et al. PKBp162 binds to acylated H-ras and promotes depalmitoylation. Mol. Cell. 2011;41(2):173-185.

100. Sasaki AT, Carracedo A, Locasale JW, et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal. 2011;4(163):ra13.

101. Rotblat B, Prior IA, Muncke C, et al. Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol. Cell. Biol. 2004;24(15):6799-6810.

102. Agudo-Ibañez L, Herrero A, Barbacid M, Crespo P. H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and decylation events. Mol. Cell. Biol. 2015;35(11):1898-1914.

103. Baker TL, Zheng H, Walker J, Coloff JL, Buss JE. Distinct rates of palmitate turnover on membrane-bound cellular and oncogenic H-ras. J. Biol. Chem. 2003;278(21):19292-19300.

104. Ariotti N, Fernandez-Rojo MA, Zhou Y, et al. Caveolae regulate the conserved mechanism for steroid receptor translocation to the nucleus. Mol. Membr. Biol. 2007;24(2):112-122.

105. Lackaraju AK, Abrami L, Lemmin T, et al. Palmitoylated calnexin is a key component of the ribosome-translocase complex. EMBO J. 2012;31(7):1823-1835.

106. Joseph M, Nagaraj R. Interaction of peptides corresponding to fatty acylation sites in proteins with model membranes. J. Biol. Chem. 1995;270(28):16749-16755.

107. Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat. Rev Mol. Cell. Biol. 2007;8(1):74-84.

108. Couve A, Protopopov V, Gerst J. Yeast synaptobrevin homologs are modified posttranslationally by the addition of palmitate. Proc. Natl. Acad. Sci U S A. 1995;92(13):5987-5991.

109. Roth AF, Wan J, Bailey AO, et al. Global analysis of protein palmitoylation in yeast. Cell. 2006;125(5):1003-1013.

110. He Y, Linder ME. Differential palmitoylation of the endosomal SNAREs syntaxin 7 and syntaxin B. J. Lipid. Res. 2009;50(3):398-404.

111. Lang R, Wan J, Arstikaitis P, et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456(7224):904-909.

112. Holthuis JC, Pomorski T, Raggars R, Spong H, Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 2001;81(4):1689-1723.

113. van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol. Rev. 1995;59(2):304-322.

114. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112-124.

115. Tsui MM, Banfield DK. Yeast Golgi SNARE interactions are promiscuous. J. Cell Sci. 2000;113(pt 1):145-152.

116. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92(6):759-772.

117. Chumpen Ramirez S, Ruggiero FM, DanioTTI JL, Valdez Taubas J. Ganglioside glycosyltransferases are S-acylated at conserved cysteine residues. Involved in homodimerisation. Biochem. J. 2017;474(16):2803-2816.

118. DanioTTI JL. Iggias-Bartolome R. Metabolic pathways and intracellular trafficking of gangliosides. IUBMB Life. 2011;63(7):513-520.

119. Maciotti HJ, DanioTTI JL, Martina JA. Organization of ganglioside synthesis in the Golgi apparatus. Biochim. Biophys. Acta. 1999;1437(2):101-118.

120. Sibille E, Berdeau C, Martina L, et al. Ganglioside profiling of the human retina: comparison with other ocular structures, brain and plasma reveals tissue specificities. PLoS One. 2016;11(12):e0168794.

121. Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca(2+), Ba(2+), and Sr(2+) concentration to SNARE-mediated membrane fusion. Mol. Biol. Cell. 2005;16(10):4755-4764.

122. Maciotti HJ, DanioTTI JL, Martina JA. Organization of ganglioside synthesis in the Golgi apparatus. Biochim. Biophys. Acta. 1999;1437(2):101-118.
exocytosis of lysosomes in fibroblasts. J Cell Biol. 2000;148(6):1141-1149.

122. Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 2001;104(2):157-169.

123. Flannery AR, Czibener C, Andrews NW. Palmitoylation-dependent association with CD63 targets the Ca(2+) sensor synaptotagmin VII to lysosomes. J Cell Biol. 2010;191(3):599-613.

124. Yang X, Claas C, Kraeft SK, et al. Palmitoylation of tetranspan proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell. 2002;13(3):767-781.

125. Yang X, Kovalenko OV, Tang W, Claas C, Stipp CS, Hemler ME. Palmitoylation supports assembly and function of integrin-tetranspan complexes. J Cell Biol. 2004;167(6):1231-1240.

126. Qanbar R, Bouvier M. Role of palmitoylation/dempalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther. 2003;97(1):1-33.

127. Shipston MJ. Ion channel regulation by protein S-acylation. J Gen Physiol. 2014;143(6):659-678.

128. Ren W, Sun Y, Du K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem Biophys Res Commun. 2015;460(3):709-714.

129. Du K, Murakami S, Sun Y, Kilpatrick CL, Luscher B. DHHC7 palmitoylates glucose transporter 4 (Glut4) and regulates Glut4 membrane translocation. J Biol Chem. 2017;292(7):2979-2991.

130. Abram L, Leppla SH, van der Goot FG. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J Cell Biol. 2006;172(2):309-320.

131. Alvarez E, Girones N, Davis RJ. Inhibition of the receptor-mediated endocytosis of dextriferrin is associated with the covalent modification of the transferrin receptor with palmitic acid. J Biol Chem. 1990;265(7):16644-16655.

132. Kim KS, Kim JS, Park JY, et al. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Hum Mol Genet. 2013;22(23):4805-4817.

133. Hilgemann DW, Fine M, Linder ME, Jennings BC, Lin MJ. Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. Elife. 2013;2:e01293.

134. Lu D, Sun HQ, Wang H, et al. Phosphatidylinositol 4-kinase IIalpha contains an AP-3-sorting motif and a kinase domain that are both required for morphological control of the enzymatic complex. Mol Biol Cell. 2005;16(8):3692-3704.

135. Xu Z, Huang G, Kandror KV. Phosphatidylinositol 4-kinase type II alpha is targeted specifically to celluylarin-positive glucose transporter 4 vesicles. Mol Endocrinol. 2006;20(11):2890-2897.

136. Barylko B, Gerber SH, Binns DD, et al. A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J Biol Chem. 2001;276(11):7705-7708.

137. Barylko B, Mao YS, Wlodarski P, et al. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II(alpha). J Biol Chem. 2009;284(15):9994-10003.

138. Lu D, Sun HQ, Wang H, et al. Phosphatidylinositol 4-kinase Ialpha is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J Biol Chem. 2012;287(26):21856-21865.

139. De Matteis MA, Wilson C, D’Angelo G. Phosphatidylinositol-4-phosphate: the Golgi and beyond. Bioessays. 2013;35(7):612-622.

140. Craige B, Salazar G, Faundez V. Phosphatidylinositol 4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell. 2005;16(8):3692-3704.

141. Wang J, Sun HQ, Macia E, et al. PIAP promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell. 2007;18(7):2646-2655.

142. D’Angelo G, Polischuk E, Di Tullio G, et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature. 2007;449(7158):62-67.

143. Jovic M, Kean MJ, Szentpetery Z, et al. Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, β-glucocerebrosidase. Mol Biol Cell. 2012;23(8):1533-1545.

144. Balla A, T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 2006;16(7):351-361.

145. Yang X, Claas C, Stipp CS, Hemler ME. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog Lipid Res. 2013;52(3):294-304.

146. Balla A, T. Palmitoylation/phosphatidylinositol 4-kinases: who controls the controllers? Mol Biol Cell. 2008;105(14):1236-1240.

147. Balla A, T. Palmitoylation/phosphatidylinositol 4-kinases: who controls the controllers? Mol Biol Cell. 2008;19(4):1415-1426.

148. Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V. Phosphatidylinositol 4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell. 2005;16(8):3692-3704.

149. Barylko B, Gerber SH, Binns DD, et al. A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J Biol Chem. 2001;276(11):7705-7708.

150. Barylko B, Mao YS, Wlodarski P, et al. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II(alpha). J Biol Chem. 2009;284(15):9994-10003.

151. Lu D, Sun HQ, Wang H, et al. Phosphatidylinositol 4-kinase Ialpha is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J Biol Chem. 2012;287(26):21856-21865.

152. De Matteis MA, Wilson C, D’Angelo G. Phosphatidylinositol-4-phosphate: the Golgi and beyond. Bioessays. 2013;35(7):612-622.

153. Craige B, Salazar G, Faundez V. Phosphatidylinositol 4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosomal trafficking. Mol Biol Cell. 2008;19(4):1415-1426.

154. Salazar G, Zlatic S, Craige B, Peden AA, Pohl J, Faundez V. Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J Biol Chem. 2009;284(3):1790-1802.

155. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239-252.

156. Yang G, Liu Y, Yang K, et al. Isoform-specific palmitoylation of JNK regulates axonal development. Cell Death Differ. 2012;19(4):553-561.

157. Yang G, Zhou X, Zhu J, et al. JNK3 couples the neuronal stress response to inhibition of secretory trafficking. Sci Signal. 2013;6(283):ra57.

158. Prescott GR, Gorleko OA, Greaves J, Chamberlain LH. Palmitoylation of the synaptic vesicle fusion machinery. J Neurochem. 2009;110(4):1135-1149.

159. Gonzalo S, Greenterre WK, Linder ME. SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain. J Biol Chem. 1999;274(30):21313-21318.

160. Salaün C, Gould GW, Chamberlain LH. The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells. Regulation by distinct cysteine-rich domains. J Biol Chem. 2005;280(2):1236-1240.

161. Salaün C, Gould GW, Chamberlain LH. Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. J Biol Chem. 2005;280(20):19449-19453.
168. Greaves J, Chamberlain LH. Dual role of the cysteine-string domain in membrane binding and palmitoylation-dependent sorting of the molecular chaperone cysteine-string protein. Mol Biol Cell. 2006;17(11):4748-4759.

169. Dekker FJ, Rocks O, Vartak N, et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol. 2010;6(6):449-456.

170. Xu J, Hedberg C, Dekker FJ, et al. Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood. 2012;119(4):1032-1035.

171. Hernandez JL, Davda D, Cheung See Kit M, et al. APT2 inhibition restores scribble localization and S-palmitoylation in snail-transformed cells. Cell Chem Biol. 2017;24(1):87-97.

How to cite this article: Daniotti JL, Pedro MP, Valdez Taubas J. The role of S-acylation in protein trafficking. Traffic. 2017;18:699–710. https://doi.org/10.1111/tra.12510