SUPPORTING INFORMATION

Supplementary Table S1

Antibodies used for immunofluorescence

Antigen	Type	Product Number	Company
NFL	chicken polyclonal	ab72997	Abcam, Cambridge, UK
CD133	rabbit polyclonal	NB120-16518	Novus Biologicals, Littleton, USA
PDGFRβ	rabbit monoclonal	ab32570	Abcam, Cambridge, UK
MAP2	rabbit polyclonal	sc-20172	Santa Cruz Biotechnology, Dallas, USA
CD73	rat monoclonal	BD TY/23	BD Biosciences, Allschwil, Switzerland
TOM20	rabbit polyclonal	sc-17764	Santa Cruz Biotechnology, Dallas, USA
TUBB3	mouse monoclonal	TUJ1	Biolegend, San Diego, USA
SCA-1	rat monoclonal	ab51317	Abcam, Cambridge, UK
	Secondary goat antibodies coupled to Alexa 488 or 647	Thermo Fisher Scientific, Waltham, USA.	

Antibodies used for immunoblotting

Antigen	Type	Product Number	Company
HIF-1α	rabbit polyclonal	NB100-449	Novus Biologicals, Littleton, USA
HIF-2α	rabbit polyclonal	PAB12124	Abnova, Taipei, Taiwan
HIF-2α	rabbit polyclonal	A-700-002-T	Bethyl, Montgomery, TX, USA
α-tubulin	rabbit polyclonal	2144	Cell Signaling, Danvers, MA, USA
Tbp	mouse monoclonal	ab818	Abcam, Cambridge, UK
	Secondary goat anti-rabbit (HRP)	31460	Thermo Fisher Scientific, Waltham, USA.
	Secondary goat anti-mouse (HRP)	31430	Thermo Fisher Scientific, Waltham, USA.
Supplementary Table S2

RT-qPCR primers

Gene	Forward Primer	Reverse Primer
Acta2_fwd	5’-gactactgcccgacgcgtgag-3’	
Acta2_rev	5’-gtcagcaatgcctgcctgctca-3’	
Actb_fwd	5’-ccagccttccttcttggtat-3’	
Actb_rev	5’-ctcctgcatcctgtcagc-3’	
Eno2_fwd	5’-agcccctatcagcctcaggt-3’	
Eno2_rev	5’-ctgacgcaatgtgctgctgatag-3’	
Epo_fwd	5’-aatggaggtggaagacagg-3’	
Epo_rev	5’-accgcagcagtagtagagta-3’	
Hif1a_fwd	5’-acacagaaatgcccgctga-3’	
Hif1a_rev	5’-ttcacaatcagcaccacg-3’	
Hif2a_fwd	5’-ggacgctctgcctatgagtt-3’	
Hif2a_rev	5’-cagcaccacacatacttcctgt-3’	
L28_fwd	5’-gcaaaaggggctgtgtagtt-3’	
L28_rev	5’-ttgctttgcaaggtgtgctgca-3’	
Map2_fwd	5’-gccagcctcagaacacacaga-3’	
Map2_rev	5’-aaggtctttgagagggaagac-3’	
Nestin_fwd	5’-tgcagggcaacgtgaaagtt-3’	
Nestin_rev	5’-aggttgtctgcaagccacaggt-3’	
Ngf_fwd	5’-gcagtgaggctcatacgtgta-3’	
Ngf_rev	5’-ctgtgtaaagggatgtcagta-3’	
Pai1_fwd	5’-ccacactcttgagcatgtaaa-3’	
Pai1_rev	5’-ctgcctgtgctcgaagact-3’	
Pdk1_fwd	5’-gcgcggcttttgatgtggtat-3’	
Pdk1_rev	5’-acccgatcggggggataacg-3’	
Phd2_fwd	5’-gcaacggaacagctctgatgc-3’	
Phd2_rev	5’-ctgtgctctgcatcataaa-3’	
Phd3_fwd	5’-ccacctctccctgtctctca-3’	
Phd3_rev	5’-gcgtggacttcagcttgatt-3’	
Rest_fwd	5’-gtgcaactacacagggagag-3’	
Rest_rev	5’-aaggggcggccttgtgctgt-3’	
Sca1_fwd	5’-gttcttggtggcctactgtggtg-3’	
Sca1_rev	5’-ggcagatggtgaagacaaaaa-3’	
Sox2_fwd	5’-aaggggtcttgctggtgttt-3’	
Sox2_rev	5’-agacacagaaaaacggctgg-3’	
Vhl_fwd	5’-atccacagctacccagaggtca-3’	
Vhl_rev	5’-ctccgcacacttgggtgtgat-3’	
Supplementary Figure S1. SCA-1 expression in REP cells in vivo. mRNA fluorescence in situ hybridization (mRNA-FISH) of Epo (red) and SCA-1 (green) in a kidney derived from a mouse exposed for 4 hours to 0.1% CO. Tubuli were visualized by their autofluorescence (white) and nuclei were stained with DAPI (blue). Yellow arrows indicate SCA-1 positive REP cells.
Supplementary Figure S2. HIFα protein levels in REPD cells. Immunoblotting of HIF-1α and HIF-2α using extracts of REPD cells cultured under conditions that have been found to specifically induce HIF-2α mRNA levels. Where indicated, HIFα induction in extracts of livers derived from mice exposed to 0.1% carbon monoxide for 4 hours (CO) vs. normoxic control mice (Nx) was used as positive control. (A) AB2-22 REPD cells were exposed to permissive (33°C) or non-permissive (37°C) conditions for 14 days, followed by exposure to 0.2% for 8 hours. α-Tubulin served as loading/blotting control. (B) AB2-22 REPD cells with shRNA-mediated knockdown of the indicated genes were exposed as above. Nuclei were isolated and nuclear extracts were immunoblotted. TATA-box-binding protein (Tbp) served as loading/blotting control. (C) AB2-22 REPD cells were cultured under control or neurotrophic conditions followed by treatment, extraction and immunoblotting as in B. Short and long exposure times are shown for the HIF-2α immunoblot, indicating treatment-independent faint normoxic background HIF-2α protein levels.