ON THE COHOMOLOGY COMPARISON THEOREM

ALIN STANCU

(communicated by James Stasheff)

Abstract

A relative derived category for the category of modules over a presheaf of algebras is constructed to identify the relative Yoneda and Hochschild cohomologies with its homomorphism groups. The properties of a functor between this category and the relative derived category of modules over the algebra associated to the presheaf are studied. We obtain a generalization of the Special Cohomology Comparison Theorem of M. Gerstenhaber and S. D. Schack.

1. Introduction

Hochschild cohomology of a \(k \)-algebra \(A \), denoted here \(H^\bullet(A, -) \), plays an important role in the study of associative algebras, by serving as a tool in the deformation theory of this class of algebras where, broadly speaking, deformations of \(A \) are parameterizations \(A_t \), of associative algebras, such that for \(t = 0 \) one obtains \(A \). We mention here only two of its many other interesting properties: first, separable algebras \(A \) are characterized by \(H^1(A, -) = 0 \) and second, as discovered by Gerstenhaber, \(H^\bullet(A, A) \) has a rich algebraic structure (of \(G \)-algebra). In fact, one need not to restrict to a single algebra and, as M. Gerstenhaber and S. D. Schack did, may consider deformations of presheaves of algebras, or more general of diagrams of algebras, where the naturally defined Hochschild cohomology plays a similar role. The Hochschild cohomology of presheaves is interesting as a step to subsuming the deformation theory of complex manifolds in the deformation theory of associative algebras. The authors mentioned above associated to each presheaf of algebras \(\mathbb{A} \) a single algebra \(\mathbb{A}^! \) and proved the Special Cohomology Comparison Theorem which states that Yoneda and Hochschild cohomologies of the presheaf and the algebra associated to the presheaf are isomorphic.

Note that Yoneda and Hochschild cohomologies are relative theories since \(k \) is a commutative ring that is not necessarily a field.

In this paper we develop a relative derived category, \(D^-_R(\mathbb{A} - \text{bimod}) \), of the category of bimodules over a presheaf \(\mathbb{A} \) of \(k \)-algebras, one where the relative Yoneda
cohomology, \(\text{Ext}^i_{A \rightarrow A}(M, N) \), so in particular Hochschild cohomology, can be regarded as homomorphism groups, \(\text{Mor}_{\mathcal{D}}(A \rightarrow \text{bimod})(M_\bullet, N_\bullet[i]) \). The reader should be aware that the term ‘presheaf of \(k \)-algebras’ is used to describe functors \(\mathcal{A} \) defined on posets \(C \), with images in the category of \(k \)-algebras. In this context, we also show that the functor \(!\), induced between the relative derived categories of \(\mathcal{A} \)-bimod and \(\mathcal{A}!\)-bimod, is full and faithful and we obtain a generalization of the Special Cohomology Comparison Theorem.

This natural construction may be part of providing a more conceptual interpretation for the Hochschild cohomology of a presheaf of algebras together with its Gerstenhaber bracket, that of the Lie algebra of an algebraic group (i.e. a group valued functor). In the case of a single algebra over a field \(B \). Keller, in [6], identifies deformations of \(A \) and then establishing a bijection between the latter groups and certain infinitesimal momorphism group

\[\text{Mor}(A \rightarrow \text{bimod})(A^*, A^*[i]) \]

which have a natural Lie bracket. Since the Gerstenhaber bracket exists on the Hochschild cohomology of presheaves of algebras presumably a similar interpretation exists for this situation too. To adapt Keller’s technique to this case one needs to find the “correct” derived category that allows the interpretation of the relative Hochschild cohomology as \(\text{Hom} \) groups.

2. Resolutions, adjoint functors and the functor \(!\)

Let \(k \) be a commutative ring and \(C \) a poset viewed as a category in the usual way: for each \(i \leq j \) there is a unique map \(\varphi^{ij} : i \to j \). When \(A \) is a \(k \)-algebra and \(M \) any \(A \)-bimodule we assume \(M \) to be symmetric over \(k \). (i.e. \(ax = xa \) for all \(x \in M \) and \(a \in k \).) \(A \) a presheaf of \(k \)-algebras over \(C \) is a functor \(\mathcal{A} : C^{op} \to k\text{-alg} \). We will denote \(\mathcal{A}(i) \) by \(\mathcal{A}^i \). A presheaf as above is a special case of functor defined from a small category to the category of \(k \)-algebras. In [1] these functors are called a “diagrams”.

The category \(\mathcal{A} \)-bimod is the category whose objects are \(\mathcal{A} \)-bimodules and the maps are maps of bimodules. An \(\mathcal{A} \)-bimodule \(\mathcal{M} \) is a presheaf of abelian groups such that \(\mathcal{M}^i \) is an \(\mathcal{A}^i \)-bimodule map \((\forall) i \in C \) and for all \(i \leq j \) the map \(T^i_{ij} : \mathcal{M}^j \to \mathcal{M}^i \) is an \(\mathcal{A}^j \)-bimodule map. An \(\mathcal{A} \)-bimodule map \(\eta : \mathcal{M} \to \mathcal{N} \) is a natural transformation in which \(\eta^i \) is an \(\mathcal{A}^i \)-bimodule map \((\forall) i \in C \).

In defining Yoneda cohomology of the category \(\mathcal{A} \)-bimod ‘allowable’ maps play a vital role. A map \(\eta : \mathcal{M} \to \mathcal{N} \) is allowable if \((\forall) i \in C \) the map \(\eta^i : \mathcal{M}^i \to \mathcal{N}^i \) admits a \(k \)-bimodule splitting map \(k^i : \mathcal{N}^i \to \mathcal{M}^i \) satisfying \(\eta^i k^i \eta^i = \eta^i \). We do not require the splitting maps \(k^i \) to be natural. An \(\mathcal{A} \)-bimodule \(P \) is a relative projective if for every allowable epimorphism \(\mathcal{M} \to \mathcal{N} \) the induced map \(\text{Hom}_{\mathcal{A} \to \mathcal{A}}(P, \mathcal{M}) \to \text{Hom}_{\mathcal{A} \to \mathcal{A}}(P, \mathcal{N}) \) is an epimorphism of sets.

A relative projective allowable resolution of an \(\mathcal{A} \)-bimodule \(\mathcal{M} \) is an exact sequence \(\cdots \to P_n \to P_{n-1} \to P_0 \to \mathcal{M} \to 0 \) in which all \(P \) are relative projective \(\mathcal{A} \)-bimodules and all maps are allowable. The category \(\mathcal{A} \)-bimod has enough relative projective bimodules and each bimodule has a relative projective allowable resolution. Moreover, there is a functorial way of getting this type of
resolutions. The construction of such a resolution is due to M. Gerstenhaber and S. D. Schack (see [1]) and is based on two facts: First, the ‘forgetful’ functor A-bimod $\to K$-bimod has a left adjoint $A \otimes_K - \otimes_K A$, where K is the constant presheaf $K^i = k_i$, $(\forall) i \in C$. For each $N \in A$-bimod we set $(A \otimes_K N \otimes_K A)^i = A^i \otimes_k N^i \otimes_k A^i$ and the map $A^j \otimes_k N^j \otimes_k A^j \to A^i \otimes_k N^i \otimes_k A^i$ corresponding to $i \leq j$ in C is just $\varphi^j \otimes T_{ij}^N \otimes \varphi^i$.

The corresponding categorical bar resolution, of [2], of an A-bimodule N, denoted $B_*(N)$, is allowable and since $B_q(N) = A \otimes_K B_{q-1}(N) \otimes_K A$ we have that $B_q(N)^i$ is a relative projective A^i-bimodule $(\forall) i \in C$. In addition, the resolution has a functorial contracting homotopy $x_q : B_q(N) \to B_{q+1}(N)$, $x_q(a) = 1 \otimes a \otimes 1$.

Second, observe that $(\forall) i \in C$ the functor $(i)^* : A$-bimod $\to A^i$-bimod defined by $(i)^*M = \prod_i M_i$ admits a left adjoint $(i)_! : A^i$-bimod $\to A$-bimod, where $(i)_!M^h = \prod_i M_i \otimes_i A^h$ if $h \leq i$ and $(i)_!M^h = 0$ otherwise. If $h \leq j \leq i$ the map $(i)_!(M^j) \to (i)_1(M^h)$ is $A^j \otimes I_M \otimes A^h$ and it is zero otherwise.

Combining the functors $(i)_!$ we obtain a single exact functor $R : A$-bimod $\to \prod_{i \in C}(A^i$-bimod$)$, defined on objects by $RM = \prod_{i \in C} M_i$ and whose left adjoint L is defined on objects by $LM_i = \prod_{i \in C}(i)_! M_i$. Applying again the categorical bar resolution of [2] we obtain an allowable resolution with a functorial contracting homotopy. We denote this resolution by S_*. Thus $S_p = (LR)^{p+1} = LR S_{p-1}$ and the boundary maps $d_p : S_{p+1} \to S_p$ are defined inductively by $d_p = a_{S_p} - \Lambda R d_{p-1}$, where $d_{-1} = \varepsilon$ is the counit of the adjunction. The contracting homotopy is the unit $\eta_{R S_p} : RS_p \to R S_{p+1}$.

Here is a more direct description of S_*. Let $[p]$ be the linearly ordered set $0 < 1 < \cdots < p$. A covariant functor $\sigma : [p] \to C$ is called a p-simplex. Thus p-simplices are objects of the functor category $C^{[p]}$. The domain of σ is defined as $\sigma(0)$ and is denoted by $\partial \sigma$. Similarly, the codomain of σ is defined as $\sigma(p)$ and is denoted by $\partial \sigma$. For each p-simplex σ we write $\sigma = (\sigma^0, \ldots, \sigma^p)$ and define

$$\sigma_r = \begin{cases} (\sigma^0, \ldots, \sigma^{p-1}, \sigma^r) & \text{if } r = 0 \\ (\sigma^0, \ldots, \sigma^{r-1}, \sigma^r, \sigma^{r+1}, \ldots, \sigma^p) & \text{if } 0 < r < p \\ (\sigma^0, \ldots, \sigma^{p-2}, \sigma^{p-1}) & \text{if } r = p \end{cases}$$

Note that $d \sigma_r = d \sigma = \sigma(0)$ if $r \neq 0$ and $d \sigma_0 = \sigma(1)$. Similarly, $d \sigma_r = d \sigma = \sigma(p)$ if $r \neq p$ and $d \sigma_p = \sigma(p-1)$. Also, note that $d \sigma_r \leq d \sigma_r$ and $d \sigma_r \leq \sigma_r$ and recall that the structure maps defining presheaves and bimodules are contravariant.

For $N \in A$-bimod and $p \geq 0$ we have $S_p N = \prod_{i \in C^p} S_p^N$, where $S_p^N = (d \sigma_r)(A^{d \sigma_r} \otimes A^{d \sigma_r} N^{d \sigma_r} \otimes A^{d \sigma_r} A^{d \sigma_r})$ and $A^{d \sigma_r}$ is an $A^{d \sigma_r}$-bimodule via the map $\varphi^{d \sigma_r} : A^{d \sigma_r} \to A^{d \sigma_r}$.

For $p \geq 0$, the boundary $\partial : S_p N \to S_{p-1} N$ is a sum $\partial = \sum_{r=0}^p (-1)^r \partial_r$ where the restriction of ∂_r to S_p^N is denoted $\partial^r : S_p^N \to (d \sigma_r)(A^{d \sigma_r} \otimes A^{d \sigma_r} N^{d \sigma_r} \otimes A^{d \sigma_r} A^{d \sigma_r}) \to (d \sigma_r)(A^{d \sigma_r} \otimes A^{d \sigma_r} N^{d \sigma_r} \otimes A^{d \sigma_r} A^{d \sigma_r}) = S_{p-1}^N$.

We obtain that for $h \leq d \sigma$ and $a \otimes n \otimes a' \in (S_p^N)^h = A^h \otimes A^{d \sigma} N^{d \sigma} \otimes A^{d \sigma} A^h$, $\partial^r(\sigma(a \otimes n \otimes a')) = a \otimes T_{N}^{\sigma, d \sigma}(n) \otimes a' \in (S_{p-1}^N)^h$. Here $T_{N}^{\sigma, d \sigma}$ is the structure map of the bimodule N corresponding to $\sigma_r \leq \sigma$. In particular, when $r = p$ we get $\partial^p(\sigma(a \otimes n \otimes a')) = a \otimes T_{N}^{\sigma, d \sigma}(n) \otimes a'$.

The functor and A use the equivalent representation are defined by:

$$\phi \colon A \to B$$

for any A. It plays a crucial role in the study of deformations of diagrams of algebras and it is ability and is full and faithful.

Let 1

\[\phi \colon A \to B \]

be a morphism of A-bimodules, then (\(\phi \circ \phi \)) is regarded as an A-bimodule. If \(\phi \circ \phi \neq 0 \), then \(\phi \circ \phi \) is identity, where \((S^{i,j}) = 0 \) if \(i \neq j \). If \(i \leq j \), then \(\phi \) is the isomorphism \((i, j, \sigma = (0, \ldots, \sigma)) \).

In general the above resolution is not a relative projective resolution, but it is when each \(N \) is a relative projective A-bimodule. Thus, to construct a relative projective allowable resolution of an A-bimodule N we take the resolution \(B(\mathbb{N}) \to N \) determined by the forgetful functor and its left adjoint, and then apply \(S_{\bullet} \) to it to obtain a double complex \(S_{\bullet}B(\mathbb{N}) \). Take now the total complex of this double complex to get the desired resolution.

The Hochschild cohomology of a presehaf \(\mathcal{A} \) is defined to be the relative Yoneda cohomology of \(\mathcal{A} \).

That is,

$$H^*(\mathcal{A}, -) = \text{Ext}_{\mathcal{A}}^*(\mathcal{A}, -).$$

It plays a crucial role in the study of deformations of diagrams of algebras and it has the same rich structure as the Hochschild cohomology of a single algebra.

If \(\mathbb{P}_{\bullet} \to \mathcal{A} \) is a relative projective allowable resolution of \(\mathcal{A} \) then \(H^*(\mathcal{A}, -) \) is the homology of the complex \(\text{Hom}_{\mathbb{A}-\mathcal{A}}(\mathbb{P}_{\bullet}, -) \).

To each presehaf of algebras \(\mathcal{A} \) over \(\mathcal{C} \) we can associate a single algebra \(\mathbb{A}! = \bigoplus_{i \in \mathbb{C}} \bigoplus_{j \in \mathbb{C}} \mathbb{A}^i \), with \(\mathbb{A}^i \) is a \(\mathbb{A} \)-module if \(i < j \) and \(\mathbb{A}^i = 0 \) otherwise. The addition is componentwise and the multiplication \((a_{ij})(b_{ij}) = (c_{ij}) \) is induced by the matrix multiplication with the understanding that, for \(h \leq i \leq j \), the summand \(a_{hi}b_{ij} \) of \(c_{ij} \) is regarded as \(a_{hi} = a_{hi}b_{ij}(b_{ij}) \). For our purpose it is convenient to use the equivalent representation \(A! = \bigoplus_{i \in \mathbb{C}} \bigoplus_{j \in \mathbb{C}} \mathbb{A}^i \), as \(\mathbb{A} \)-bimodule. Here \(\varphi^i \) serve to distinguish distinct copies of \(\mathbb{A}^i \) from one another. The general element of \(\mathbb{A}^i \) will be denoted \(a^i \varphi^i \). The multiplication is defined componentwise and subject to the rule: \((a^i \varphi^i)(a^j \varphi^j) = a^i \varphi^i(a^j \varphi^j) \) if \(i = j \) and \(0 \) otherwise.

Let \(1_i \) the unit element of \(\mathbb{A}^i \). Since \((a^i \varphi^i)(1_i \varphi^j) = a^i \varphi^i \) and \((1_i \varphi^i)(a^i \varphi^j) = \varphi^i(a^i) \varphi^j \), we may abbreviate \(1_i \varphi^j \) to \(\varphi^j \). The maps \(\varphi^j \) are the elements of \(\mathbb{A}^i \) and \(\varphi^i \varphi^j = \varphi^j \varphi^i = 0 \) if \(i \neq j \).

We define the functor \(! : \mathbb{A} \text{-bimod} \to \mathbb{A} \text{-bimod} \), such that \(\mathbb{A} \to \mathbb{A}! \), by setting for any \(\mathbb{A} \)-bimodule \(\mathbb{M}, \mathbb{M}! = \bigoplus_{i \in \mathbb{C}} \bigoplus_{j \in \mathbb{C}} \mathbb{M}^i \varphi^j \), as a \(\mathbb{A} \)-bimodule. The actions of \(\mathbb{A}! \) are defined by:

\[
(a^i \varphi^j)(m^i \varphi^j) = (a^i \varphi^j)(m^i \varphi^j) = m^i \varphi^j(a^i \varphi^j)
\]

\[
(a^i \varphi^j)(m^i \varphi^j) = (m^i \varphi^j)(a^i \varphi^j), \text{if } i \neq j.
\]

For \(\eta \in \text{Hom}_{\mathbb{A}-\mathbb{A}}(\mathbb{N}, \mathbb{M}) \) define \(\eta! \in \text{Hom}_{\mathbb{A}-\mathbb{A}}(\mathbb{N}, \mathbb{M}) \) by \(\eta!(m^i \varphi^j) = \eta(m^i \varphi^j) \).

We will use the following proposition due to M. Gerstenhaber and S. D. Schack.

Proposition 2.1. The functor \(! : \mathbb{A} \text{-bimod} \to \mathbb{A}! \text{-bimod} \) is exact, preserves allowability and is full and faithful.
Proof. see [2]

In fact, M. Gerstenhaber and S. D. Schack proved in [2] the “Special Cohomology Comparison Theorem” (SCCT).

Theorem (SCCT). Let \mathcal{C} be an arbitrary poset and \mathcal{A} a presheaf over \mathcal{C}. The functor $!$ induces an isomorphism of relative Yoneda cohomologies

$$\text{Ext}_R^*(\mathcal{A}, (-)) \cong \text{Ext}_R^*(\mathcal{A}!, (-))!.$$

In particular, we have an isomorphism of relative Hochschild cohomologies $H^*(\mathcal{A}, (-)) \cong H^*(\mathcal{A}!, (-))!$.

An important consequence of this theorem is that the deformation theories of \mathcal{A} and of $\mathcal{A}!$ are equivalent, if the poset \mathcal{C} has a terminator. Another is that $H^*(\mathcal{A}!, \mathcal{A}!)$ has a G-algebra structure. These results can be found in their full generalization to diagrams in [2], but we will not deal with them here. We will however generalize the SCCT to derived categories and prove theorems 3.9 and 4.1. The SCCT follows as a corollary from these theorems. To do this we need to introduce a subcategory of the category of $\mathcal{A}!$-bimod. The image of $!$ lies in a full subcategory of $\mathcal{A}!$-bimod. This is the category of aligned bimodules, $\mathcal{A}!$-albimod. The main reason to consider it here is that the functor $!$ has a left adjoint when restricted to $! : \mathcal{A}!$-bimod $\to \mathcal{A}!$-albimod. Thus, for every $\mathcal{A}!$ bimodule X we set $X_{al} = \prod_{i \leq j} \prod_{k \in \mathcal{C}} \varphi^i X \varphi^j$ with the obvious $\mathcal{A}!$-albimodule structure.

Definition 2.2. An $\mathcal{A}!$ bimodule X is said to be aligned if the k linear map $X \to \prod_{i \in \mathcal{C}} \prod_{j \leq k} \varphi^i X \varphi^j$, $x \mapsto \langle \varphi^i X \varphi^j \rangle$ induces an $\mathcal{A}!$ bimodule isomorphism $\alpha_X : X \to X_{al} = \prod_{i \in \mathcal{C}} \prod_{i \leq j} \varphi^i X \varphi^j$.

For each $\mathcal{A}!$-bimodule map $f : X \to Y$, the restriction of f to $\varphi^i X \varphi^j$ is a k linear, even a $\mathcal{A}!-\mathcal{A}!$-bimodule map $f^ij : \varphi^i X \varphi^j \to \varphi^i Y \varphi^j$ where $f^ij(x) = \varphi^i f(x) \varphi^j$. Thus, f gives rise to a family of k linear maps $f^ij : \varphi^i X \varphi^j \to \varphi^i Y \varphi^j$ such that $f^hi(a b \varphi^h, x) = a b \varphi^h \cdot f^ij(x)$ and $f^hi(x \cdot a \varphi^h) = f^ih(x) \cdot a \varphi^h \forall x \in \varphi^i X \varphi^j, a \in \mathcal{A}! and h \leq i \leq j \leq q$ in \mathcal{C}.

In fact these are exactly the conditions necessary on such a collection of maps for $f_{al} = \prod_{i \in \mathcal{C}} \prod_{j \leq k} f^ij$ to be an $\mathcal{A}!$-bimodule map $X_{al} \to Y_{al}$. One can easily see that $\mathcal{A}!$-albimod is abelian, and that both the inclusion functor $\text{inc} : \mathcal{A}!$-albimod $\to \mathcal{A}!$-albimod and the alignment functor $(-)_{al} : \mathcal{A}!$-albimod $\to \mathcal{A}!$-albimod, $X \mapsto X_{al}$ are exact and preserve allowability and that $\alpha : \text{Id}_{\mathcal{A}!}$-albimod $\to (\alpha)_{al} \circ \text{inc}$ is a natural isomorphism.

Now, we describe a method of producing relative projective allowable resolutions of aligned bimodules of the form $\mathcal{A}!$ that we will use to replace complexes of aligned bimodules with relative projective ones in a suitable derived category. We begin with a result due to M. Gerstenhaber and S. D. Schack.

Proposition 2.3. 1. For each $i \leq j$ in \mathcal{C} the restriction functor $(-)^ij : \mathcal{A}!$-albimod $\to \mathcal{A}!$-mod-$\mathcal{A}!$, $X \mapsto \varphi^i X \varphi^j$ is exact and preserves allowability.

2. The functor $(-)^ij$ has a left adjoint L^ij that preserves relative projectivity.
Proof. Part 1 is obvious. For 2, define $L_{ij} : \mathcal{A}^l \text{-mod-} \mathcal{A}^l \to \mathcal{A}^l \text{-albimod}$ as follows:

$$L_{ij}(N)^{hl} = \begin{cases}
\mathcal{A}^h \otimes_{\mathcal{A}^l} |N|_j & \text{if } h \leq i \leq j \leq l \\
0 & \text{otherwise}
\end{cases}$$

Here, $|N|_j$ is N viewed as a left \mathcal{A}^l-module and a right \mathcal{A}^l-module via the map φ^h. The actions of \mathcal{A}^l are given by

$$a^r \varphi^h (a^h \otimes n) = a^r a^r^h (a^h) \otimes n \in L_{ij}(N)^{rl},$$

$$(a^h \otimes n)^l \varphi^m = a^h \otimes n^l \varphi^j (a^j) \in L_{ij}(N)^{hm},$$

for $a^h \otimes n \in L_{ij}(N)^{hl}$ and $a^r \varphi^h, a^l \varphi^m \in \mathcal{A}^l$.

One can check now that we have a natural isomorphism

$$\text{Hom}_{\mathcal{A}^l \text{-albimod}}(L_{ij}(N), X) \cong \text{Hom}_{\mathcal{A}^l \text{-albimod}}(N, X^{ij})$$

for all $X \in \mathcal{A}^l \text{-albimod}$ and $N \in \mathcal{A}^l \text{-mod-} \mathcal{A}^l$.

If $P \in \mathcal{A}^l \text{-mod-} \mathcal{A}^l$ is relative projective then the natural isomorphism

$$\text{Hom}_{\mathcal{A}^l \text{-albimod}}(L_{ij}(P), -) \cong \text{Hom}_{\mathcal{A}^l \text{-albimod}}(P, (-)^{ij}) = \text{Hom}_{\mathcal{A}^l \text{-albimod}}(P, (-) \circ (-)^{ij})$$

is a composite of functors which preserve allowable epimorphisms, so $L_{ij}(P)$ is relative projective. (for more details see [2])

Modeled on the M. Gerstenhaber - S. D. Schack resolution \mathcal{S}, C. B. Kullmann obtained in [3] an allowable resolution $T_p \mathcal{N} \to \mathcal{N}!$ in $\mathcal{A}^l \text{-albimod}$ as follows. For $p \geq 0$ let $T_p \mathcal{N} = \bigoplus_{\sigma \in [i], l} T_p^\sigma \mathcal{N}$, where the coproduct is taken in $\mathcal{A}^l \text{-albimod}$ (constructed by applying $(-)_{al}$ to that in \mathcal{A}^l-albimod), where $T_p^\sigma \mathcal{N} = L_{d \sigma, c \sigma} (\mathcal{A}^{da} \otimes_{\mathcal{A}^{c \sigma}} \mathcal{N}^{c \sigma})$.

For $h \leq l < c \sigma \leq l$ we have a natural isomorphism $(T_p^\sigma \mathcal{N})^{hl} = \mathcal{A}^h \otimes_{\mathcal{A}^{l}} |\mathcal{A}^{da} \otimes_{\mathcal{A}^{c \sigma}} \mathcal{N}^{c \sigma}|_{l, c \sigma, l} \cong \mathcal{A}^h \otimes_{\mathcal{A}^{l}} |\mathcal{N}^{c \sigma}|_{l, c \sigma, l}$ and we use this identification to define the differentials. If $p \geq 1$ we define $d : T_p^\sigma \mathcal{N} \to T_{p-1}^\sigma \mathcal{N}$ as a sum $d = \sum_{r=0}^p (-1)^r d_r$, where each d_r is determined by its restriction to $T_p^\sigma \mathcal{N}$ and for $h \leq l < c \sigma \leq l$ and $a \otimes n \in (T_p^\sigma \mathcal{N})^{hl} = \mathcal{A}^h \otimes |\mathcal{N}^{c \sigma}|_{l, c \sigma, l}$, we have $d_r (a \otimes n) = a \otimes n^{c \sigma} \sigma (a) \in \mathcal{A}^h \otimes |\mathcal{N}^{c \sigma}|_{l, c \sigma, l}$. If $p = 0$ the map $\varepsilon_T : T_0 \mathcal{N} = \bigoplus_{\sigma \in [i], l} T_0^\sigma \mathcal{N} \to \mathcal{N}$ is determined by $(T_0^\sigma \mathcal{N})^{hl} = \mathcal{A}^h \otimes |\mathcal{N}|_{il} \to |\mathcal{N}|^{hl} = \mathcal{A}^h \varphi^{hl}$, $a \otimes n \mapsto a T_0^{hl} (n)^{hl}$, for $h \leq i \leq l$.

It is easy to check that $T_p \mathcal{N} \to \mathcal{N}!$ is a chain complex and it is in fact an allowable resolution since it has a contracting homotopy induced by $\kappa_p : (T_p^\sigma \mathcal{N})^{hl} \to (T_{p+1}^{(h, \sigma)} \mathcal{N})^{hl}, \kappa_p = \text{identity, where } (h, \sigma)$ is the simplex $(h, \sigma(0), \ldots, \sigma(p))$ if $h \leq \sigma(0)$ and $T_{p+1}^{(h, \sigma)} \mathcal{N} = 0$ if $h \nleq \sigma(0)$.

In general $T_p \mathcal{N}$ is not a relative projective aligned \mathcal{A}^l-bimodule, but it is when each \mathcal{N}^i is relative projective \mathcal{A}^l-bimodule. To obtain a relative projective aligned resolution, for each \mathcal{A}-bimodule \mathcal{N}!, take the relative projective resolution $\mathcal{B}_\bullet (\mathcal{N})$, apply $!$ and then T_\bullet to obtain a double complex. Now, take the total complex to obtain the desired resolution.

We conclude this section with a result which connects T_\bullet and \mathcal{S}_\bullet via a left adjoint of $!$. Because the only source for the following theorem is [3] the proof is included in the Appendix A.
Theorem 2.4. 1. The functor \(! : \mathcal{A}\text{-bimod} \rightarrow \mathcal{A}\text{!-albimod} \) admits a left adjoint \(! : \mathcal{A}\text{!-albimod} \rightarrow \mathcal{A}\text{-bimod} \).

2. There are natural isomorphisms \(T_p N_i \rightarrow S_p N \) which induce a natural isomorphism of complexes \((T_p N \rightarrow N)_! \) and \((S_p N \rightarrow N)_! \).

Proof. see Appendix A.

3. Derived categories and Hochschild cohomology

Let \(\text{Kom}^{-}(\mathcal{A} \text{– bimod}) \) the category of bounded to the right complexes of \(\mathcal{A} \)-bimodules

\[
M_* := \cdots \longrightarrow M_n \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow 0
\]

A map between two complexes \(M_* \) and \(N_* \) is a collection of maps \(f = (f_i) : M_i \rightarrow N_i \), one for each positive integer \(i \), which commute with the differentials of \(M_* \) and \(N_* \). We do not require the maps defining the complexes or the maps between complexes to be \(k \)-split.

Similarly, we define \(\text{Kom}^{-}(\mathcal{A}! \text{– albimod}) \) and \(\text{Kom}^{-}(\mathcal{A}! \text{– bimod}) \).

Definition 3.1. 1) A map \(f : M_* \longrightarrow N_* \) in \(\text{Kom}^{-}(\mathcal{A}! \text{– bimod}) \) (or \(\text{Kom}^{-}(\mathcal{A}! \text{– albimod}) \)) is a relative quasi-isomorphism if its cone \(C(f)_* \) is contractible when considered as a complex of \(k \)-bimodules.

2) A map \(f : M_* \longrightarrow N_* \) in \(\text{Kom}^{-}(\mathcal{A} \text{– bimod}) \) is a relative quasi-isomorphism if the maps of complexes \(f_i : M_i \longrightarrow N_i \) have contractible cones, when considered as complexes of \(k \)-bimodules, for all \(i \in C \).

The word “relative” in the above definition is used as a reminder to the reader that Yoneda and Hochschild cohomologies are relative theories, since \(k \) is a commutative ring that is not necessarily a field. It is the relative Yoneda groups that we want to view as homomorphism groups in a suitable category.

Proposition 3.2. Let \(A \) be any \(k \)-algebra and \(f : M_* \longrightarrow N_* \) a map of complexes of \(A \) bimodules in \(\text{Kom}^{-}(A \text{– bimod}) \). Then, \(f \) is a relative quasi-isomorphism if and only if there exists \(\gamma : N_* \longrightarrow M_* \) a map of complexes of \(k \)-bimodules such that \(f \gamma \sim \text{id}_M \) and \(\gamma f \sim \text{id}_N \) in \(\text{Kom}^{-}(k \text{– bimod}) \), where \(\sim \) stands for homotopy equivalence.

Proof. ‘\(\Rightarrow \)’

Assume that \(f \) is a relative quasi-isomorphism. Thus \(\mathcal{C}(f)_* \) is contractible when regarded as a complex of \(k \)-bimodules, so there exist \(s = (s_n) : \mathcal{C}(f)^{n-1} \longrightarrow \mathcal{C}(f)^n \) maps of \(k \)-bimodules such that \(s \mathcal{C}(f)_* + d\mathcal{C}(f)_* s = \text{id} \). We may assume that

\[
s = \begin{pmatrix}
\alpha & \gamma \\
\beta & \delta
\end{pmatrix}
\]

and

\[
d\mathcal{C}(f)_* = \begin{pmatrix}
-d_M & 0 \\
f & d_N
\end{pmatrix}.
\]
where $\alpha : M_{*+1} \to M_*$, $\beta : M_{*+1} \to N_{*+1}$, $\gamma : N_* \to M_*$ and $\delta : N_* \to N_{*+1}$ are k linear maps. Since $sd_{C(f)} + d_{C(f)}s = id$, we obtain $-\alpha d_{M_*} + \gamma f - d_{M_*} \alpha = id_{M_*} - \beta d_{M_*} + \delta f + \alpha + d_{N_*} \beta = 0$, $\gamma d_{N_*} - d_{M_*} \gamma = 0$ and $\delta d_{N_*} + f \gamma + d_{N_*} \delta = id_{N_*}$.

Thus, γ is a map of complexes of k-bimodules and since $\delta d_{N_*} + d_{N_*} \delta = id_{N_*} - f \gamma$ and $\alpha d_{M_*} + d_{M_*} \alpha = \gamma f - id_{M_*}$, we have $f \gamma \sim id_{N_*}$ and $\gamma f \sim id_{M_*}$ in $Kom^- (k - \text{bimod})$.

Proposition 3.2. allows us to conclude that if any two of f, g or fg are relative quasi-isomorphisms then so is the third. We prove now the following

Proposition 3.3. The class of relative quasi-isomorphisms in the homotopic category $K^- (k - \text{bimod})$ is localizing.

Proof. We showed already that the class of relative quasi-isomorphisms is closed under the composition of maps. To conclude this class is localizing we need to justify two facts:

1) The extension conditions: For every $f \in Mor_{K^- (k - \text{bimod})}$ and s relative quasi-isomorphism there exist $g \in Mor_{K^- (k - \text{bimod})}$ and t relative quasi-isomorphism such that the following square

\[
\begin{array}{c}
N_* \xrightarrow{f} M_* \\
 \downarrow t \quad \quad \quad \downarrow s \\
K_* \xrightarrow{g} L_*,
\end{array}
\]

(resp.

\[
\begin{array}{c}
L_* \xrightarrow{g} K_* \\
 \downarrow s \quad \quad \downarrow t \\
M_* \xrightarrow{f} N_*
\end{array}
\]

is commutative.
2) Given \(f, g \) two morphisms from \(N_\bullet \) to \(M_\bullet \), the existence of \(s \) relative quasi-isomorphism with \(sf = sg \) is equivalent to the existence of \(t \) relative quasi-isomorphism with \(ft = gt \).

The proof of theorem 4, chapter 3 in [5], which states that the class of quasi-isomorphisms (not relative) in the homotopic category of an abelian category is localizing, can be used entirely so we will not reproduce it here. One needs to note for 1) that the cone of the map \(t \) constructed there is the same, in \(\mathcal{K}^- (A - \text{bimod}) \), as the cone of \(s \); and for 2) that the cone of the map \(t \) constructed there is the cone of \(s \) shifted by 1. Thus in both cases \(t \) is a relative quasi-isomorphism.

Remark that the same result is true for \(\mathcal{K}^- (\mathcal{A}! - \text{bimod}) \) and \(\mathcal{K}^- (\mathcal{A}! - \text{albimod}) \).

We now define the relative derived categories by formally inverting all relative quasi-isomorphisms.

Definition 3.4. Let \(A \) be any of the categories \(A\text{-bimod}, \mathcal{A}!\text{-bimod} \) or \(\mathcal{A}!\text{-albimod} \) and \(\Sigma \) the appropriate class of relative quasi-isomorphisms.

\[
\mathcal{D}_k (A) := \mathcal{K}^- (A)(\Sigma^{-1}),
\]

where \(\mathcal{K}^- \) is the corresponding homotopy category.

Because \(\Sigma \) is localizing we may regard the morphisms, in any of the relative derived categories defined above, as equivalence classes of diagrams

\[
\begin{array}{ccc}
U & \xrightarrow{t} & \mathcal{C}(f) \\
X & \xleftarrow{g} & Y
\end{array}
\]

The maps \(t \) and \(g \) are morphisms in the homotopy category with \(t \in \Sigma \). These diagrams are usually called roofs and we adopt this terminology. In addition, because \(\Sigma \) is a localizing class the relative derived categories defined above are triangulated.

We begin studying the objects of \(\mathcal{D}_k (A - \text{bimod}) \) with the complexes of relative projective bimodules.

Lemma 3.5. Let \(P_\bullet \) be a complex of relative projective A-bimodules and \(R_\bullet \xrightarrow{f} P_\bullet \) a relative quasi-isomorphism. We have

\[
\text{Mor}_{\mathcal{K}^- (A - \text{bimod})} (P_\bullet, \mathcal{C}(f)_\bullet) = 0.
\]

Proof. Because \(f \) is a relative quasi-isomorphism the cone \(\mathcal{C}(f)_i \) is acyclic and allowable \(\forall i \in \mathcal{C} \). Given \(g \in \text{Mor}_{\mathcal{K}^- (A - \text{bimod})} (P_\bullet, \mathcal{C}(f)_\bullet) \) we show that \(g = (g)_i : P_i \longrightarrow \mathcal{C}(f)_i, i \geq 0 \) is homotopic to 0 inductively. Since \(P_0 \) is a complex of relative projective \(A \)-bimodules we obtain that the map \(g_0 \) from \(P_0 \) to \(\mathcal{C}(f)_0 \) can be lifted to a map \(\delta_0 : P_0 \longrightarrow \mathcal{C}(f)_1 \) such that \(d_{\mathcal{C}(f)_1} \delta_0 = g_0 \). The image of \(\delta_0 \) is contained in the image of \(d_{\mathcal{C}(f)_1} \), so it has a lifting \(\delta_1 : P_1 \longrightarrow \mathcal{C}(f)_2 \) such that \(d_{\mathcal{C}(f)_2} \delta_1 = g_1 - \delta_0 d_{\mathcal{C}(f)_1} \). Now, the image of \(g_2 - \delta_1 d_{\mathcal{C}(f)_2} \) is contained in the image of \(d_{\mathcal{C}(f)_2} \), and the conclusion follows inductively.

Proposition 3.6. Let \(P_\bullet \) be a complex of relative projective bimodules in \(\text{Kom}^- (A - \text{bimod}) \). The canonical map
is an isomorphism for all \(M \in \text{Kom}^-(\mathbb{A} - \text{bimod}) \).

Proof. To prove the injectivity let \(\mathbb{P} \xrightarrow{\alpha} \mathbb{M} \) and \(\mathbb{P} \xrightarrow{\beta} \mathbb{M} \) such that their corresponding roofs:

are equivalent in \(D^-(\mathbb{A} - \text{bimod}) \). Thus, we have the commutative diagram in \(K^-(\mathbb{A} - \text{bimod}) \)

We obtain \(a = b \) and \(\alpha a = \beta b \).

To check that \(\alpha = \beta \), apply \(\text{Mor}_{K^-}((\mathbb{A} - \text{bimod})((\mathbb{P}, -)) \) to the distinguished triangle \(X \xrightarrow{a} \mathbb{P} \longrightarrow \mathcal{C}(a) \longrightarrow X[1] \) and use previous lemma to see that \(\text{Mor}_{K^-}((\mathbb{A} - \text{bimod})((\mathbb{P}, \mathcal{C}(a)) = 0 \). This implies the existence of a map \(c \) such that \(ac = id_{\mathbb{P}} \) in \(K^-((\mathbb{A} - \text{bimod}) \) and the injectivity follows from here.

For a morphism in \(\text{Mor}_{D^-}((\mathbb{A} - \text{bimod})((\mathbb{P}, \mathbb{M})) \) represented by the roof

the distinguished triangle \(\mathbb{R} \xrightarrow{f} \mathbb{P} \longrightarrow \mathcal{C}(f) \longrightarrow \mathbb{R}[1] \) induces a long exact sequence by applying \(\text{Mor}_{K^-}((\mathbb{A} - \text{bimod})((\mathbb{P}, -)) \) to it. Again, by the previous lemma \(\text{Mor}_{K^-}((\mathbb{A} - \text{bimod})((\mathbb{P}, \mathcal{C}(f)) = 0 \), thus the map

is onto, so \(\exists \) a map \(\mathbb{P} \xrightarrow{s} \mathbb{R} \) such that \(fs = id_{\mathbb{P}} \) in \(K^-((\mathbb{A} - \text{bimod}) \). Since \(f \) is a relative quasi-isomorphism \(s \) is a relative quasi-isomorphism, so we have the
Thus, the roofs

are equivalent and since the second is the image of αs the surjectivity is proved.

Note that relative projective complexes in $Kom^{-}(\mathcal{A}! - \text{bimod})$ and $Kom^{-}(\mathcal{A}! - \text{albimod})$ satisfy the same property.

We prove now that each complex of \mathcal{A}-bimodules is relative quasi-isomorphic to a complex of relative projective bimodules. For this we need the following

Proposition 3.7. Let A be a k algebra and assume that we have a double complex of A bimodules

such that:

a) Each row is k contractible. (i.e. There exist k-bimodule maps

$$X_{(k-1)i} \xrightarrow{t_i} X_{ki}$$

such that $d_i t_i^{k+1} + t_i^k d_i = id_{X_{ki}}$.)

b) The following diagrams are commutative:
The map for each bimodule the total complex, we define the map (homology of indication that isomorphism (the allowable resolution of each with a relative quasi-isomorphism M
Thus, by taking the total complex of the double complex with augmented column complex of column relative projective d because cients in an arbitrary cohomology recall that given a presheaf of \mathbb{A}-bimodules, where $\varepsilon_i = 0$ on $X_{jk}, j + k = i$ if $j > 0$. Thus, the relative Hochschild cohomology of a presheaf of algebras, with coefficients in an arbitrary \mathbb{A}-bimodule \mathbb{M}, is computed by taking any relative projective \mathbb{A}-bimodule.

Proof. 1. The map t_0^i is a map of complexes by b) and ε_\bullet is a map of complexes because $d^i_M\varepsilon_{i+1} = d^i\varepsilon_i$ and $\varepsilon_id_i = 0$.

2. The only thing to prove here is $t_0^i\varepsilon_\bullet \sim id_{\text{Tot}X_\bullet}$ in $\text{Kom}^-(\mathbb{A} - \text{bimod})$. For $n \geq 0$ we define the map $(\text{Tot}X_\bullet)^n \xrightarrow{h^n} (\text{Tot}X_\bullet)^{n+1}$ by $h^n := (t_0^{n+1}, t_1^n, \ldots, t_n^1, 0)$. It is a simple exercise to check that $h^*d_{\text{Tot}X_\bullet} + d_{\text{Tot}X_\bullet}h^* = id - t_0^i\varepsilon_\bullet$.

Theorem 3.8. For each $\mathbb{M}_\bullet \in \mathcal{D}_\mathbb{A}^-(\mathbb{A} - \text{bimod})$ there exist $\mathcal{U}\mathbb{M}_\bullet \in \mathcal{D}_\mathbb{A}^-(\mathbb{A} - \text{bimod})$ and $\mathcal{U}\mathbb{M}_\bullet \xrightarrow{\varepsilon} \mathbb{M}_\bullet$, a relative quasi-isomorphism such that $\mathcal{U}\mathbb{M}_\bullet$ is a complex of relative projective \mathbb{A}-bimodules.

Proof. We described in section 2 a method of constructing a relative projective allowable resolution $\text{Tot}S_\bullet\mathbb{B}_\bullet(M) \rightarrow M$, for each $M \in \mathbb{A}$-bimod. We use this for each term \mathbb{M}_\bullet of the complex \mathbb{M}_\bullet, $i \geq 0$. We obtain a double complex with augmented column \mathbb{M}_\bullet. In addition, each row is contractible and for all $p \in \mathbb{C}$ we obtain a double complex of \mathbb{A}^p-bimodules which satisfies the conditions of the previous proposition. Thus, by taking the total complex of the double complex with augmented column \mathbb{M}_\bullet we obtain the desired complex of relative projective \mathbb{A}-bimodules, $\mathcal{U}\mathbb{M}_\bullet$, together with a relative quasi-isomorphism $\mathcal{U}\mathbb{M}_\bullet \xrightarrow{\varepsilon} \mathbb{M}_\bullet$.

Note that the same argument shows that for each complex $\mathbb{M}_\bullet! \in \mathcal{D}_\mathbb{A}^-(\mathbb{A} - \text{bimod})$ the total complex, $\text{Tot}\mathcal{T}_\bullet\mathbb{M}_\bullet$, of the double complex $\mathcal{T}_\bullet\mathbb{M}_\bullet$ obtained by taking the allowable resolution of each $\mathbb{M}_\bullet!$ described in section 2, gives a relative quasi-isomorphism $(\text{Tot}\mathcal{T}_\bullet\mathbb{M}_\bullet) \xrightarrow{\varepsilon} \mathbb{M}_\bullet!$. In addition, by theorem 2.4., the left adjoint i to \mathcal{U} has the property that $(\text{Tot}\mathcal{T}_\bullet\mathbb{M}_\bullet \xrightarrow{\varepsilon} \mathbb{M}_\bullet)!i$ is isomorphic to $\text{Tot}S_\bullet\mathbb{B}_\bullet(M) \xrightarrow{i} M$, so εi is a relative quasi-isomorphism.

To see how the relative derived categories defined earlier relate to Hochschild cohomology recall that given a presheaf of k-algebras \mathbb{A} the relative Hochschild cohomology of \mathbb{A}, denoted $H^\mathbb{A}(\mathbb{A}, (-))$, is the same as the relative Yoneda cohomology $\text{Ext}_{\mathcal{A}}^{\bullet, -}(\mathbb{A}, (-))$ of the category of \mathbb{A}-bimodules. The word relative appears as an indication that k is not necessarily a field, in general only a commutative ring.

Thus, the relative Hochschild cohomology of a presheaf of algebras, with coefficients in an arbitrary \mathbb{A}-bimodule \mathbb{M}, is computed by taking any relative projective
Let the functor \(D \) be the induced functor. To prove the proposition we need to show that the isomorphisms obtained from \(\text{Mor} \) and \(\text{Ext} \) using theorem 3.8. We obtain the isomorphisms \(D \) is not clear how one can find ancestors in \(k \). That is, \(\text{Mor} \) is full and faithful.

Theorem 4.2. Proposition 4.2.

Proof. Let \(\text{Tot} \mathbf{E} \text{.S} \mathbf{M} \) the relative allowable projective resolution described in section 2. (same as \(\mathbf{U} \mathbf{M} \) in this case since \(M_i = 0, (\forall) i \neq 0 \).) Using proposition 3.6. and theorem 3.8. we obtain the isomorphisms

\[
\text{Ext}^i_{\mathbf{A} \to \mathbf{A}}(M, N) = H^i(\text{Hom}_{\mathbf{A} \to \mathbf{A}}(\mathbf{U}M \bullet, N)) = \text{Mor}_{D_k(\mathbf{A} \to \mathbf{bimod})}(\mathbf{U}M \bullet, N \bullet[i])
\]

\[
\cong \text{Mor}_{D_k(\mathbf{A} \to \mathbf{bimod})}(\mathbf{U}M \bullet, N \bullet[i]) \cong \text{Mor}_{D_k(\mathbf{A} \to \mathbf{bimod})}(M \bullet, N \bullet[i]).
\]

\[\square\]

4. Functors between derived categories

The functor \(\mathbf{A} \to \mathbf{bimod} \) is exact and preserves allowability so it induces a functor between the corresponding relative derived categories. In this section we prove the following property of the induced functor.

Theorem 4.1. The functor \(D_k(\mathbf{A} \to \mathbf{bimod}) \) is full and faithful. That is,

\[
\text{Mor}_{D_k(\mathbf{A} \to \mathbf{bimod})}(M \bullet, N \bullet) \cong \text{Mor}_{D_k(\mathbf{A!} \to \mathbf{bimod})}(M \bullet!, N \bullet!)
\]

is an isomorphism of sets for all \(M \bullet, N \bullet \in D_k(\mathbf{A} \to \mathbf{bimod}) \).

The difficulties in proving the theorem reside in two places. First, since the morphisms in \(D_k(\mathbf{A} \to \mathbf{bimod}) \) and \(D_k(\mathbf{A!} \to \mathbf{bimod}) \) are equivalence classes of roofs, it is not clear how one can find ancestors in \(D_k(\mathbf{A} \to \mathbf{bimod}) \) for arbitrary roofs in \(D_k(\mathbf{A!} \to \mathbf{bimod}) \).

A good sign for that would be the existence of a left adjoint for \(! \), but there is none. Fortunately, a left adjoint exists between \(\mathbf{A} \to \mathbf{bimod} \) and the full subcategory of \(\mathbf{A!} \to \mathbf{bimod} \) of aligned bimodules. Second, left adjoints do not necessarily preserve all relative quasi-isomorphisms. However, this left adjoint preserves some that can be used to trace back ancestors for any roof in \(\text{Mor}_{D_k(\mathbf{A!} \to \mathbf{bimod})}(M \bullet!, N \bullet!) \).

We will prove that \(D_k(\mathbf{A} \to \mathbf{bimod}) \) is full and faithful.

Proposition 4.2. The functor \(D_k(\mathbf{A} \to \mathbf{bimod}) \) is full and faithful.

Proof. To prove the proposition we need to show that

\[
\text{Mor}_{D_k(\mathbf{A} \to \mathbf{bimod})}(M \bullet, N \bullet) \cong \text{Mor}_{D_k(\mathbf{A} \to \mathbf{albimod})}(M \bullet, N \bullet!)
\]
is an isomorphism for all M_* and $N_* \in \mathcal{D}_k(\mathcal{A} \dashv \text{bimod})$.

Since for all $M_* \in \mathcal{D}_k(\mathcal{A} \dashv \text{bimod})$ there exist $\mathcal{U}M_* \xrightarrow{\varepsilon} M_*$ relative quasi-isomorphism in $\mathcal{D}_k(\mathcal{A} \dashv \text{bimod})$ such that $\mathcal{U}M_i$ is relative projective for all i, we may assume that M_* is a complex of relative projective \mathcal{A} bimodules. This is because of the commutative diagram

$$
\begin{array}{ccc}
\text{Mor}_{\mathcal{D}_k(\mathcal{A} \dashv \text{bimod})}(M_*, N_*) & \xrightarrow{\varepsilon} & \text{Mor}_{\mathcal{D}_k(\mathcal{A} \dashv \text{bimod})}(M_*!, N_*!)
\\
\downarrow & & \downarrow
\\
\text{Mor}_{\mathcal{D}_k(\mathcal{A} \dash v \text{bimod})}(\mathcal{U}M_*, N_*) & \xrightarrow{\varepsilon!} & \text{Mor}_{\mathcal{D}_k(\mathcal{A} \dash v \text{bimod})}(\mathcal{U}M_*!, N_*!)
\end{array}
$$

where ε and $\varepsilon!$ are isomorphisms.

Because $(M_i)^p$ is a relative projective \mathcal{A}^p-bimodule, $(\forall)p \in \mathcal{C}$, each $M_*!$ admits a resolution of relative projective aligned $\mathcal{A}!$-bimodules obtained using \mathcal{T}_*. The total complex of the double complex obtained by taking the resolution of each $M_*!$ gives a relative quasi-isomorphism $\text{Tot}(\mathcal{T}_*M_* \xrightarrow{\varepsilon} M_*!)$, where each $\text{Tot}(\mathcal{T}_*M_*)_i$ is a relative projective aligned $\mathcal{A}!$ bimodule.

Moreover, the left adjoint i has the property that $(\text{Tot}\mathcal{T}_*M_* \xrightarrow{\varepsilon} M_*!)$ is isomorphic to $\text{Tot}\mathcal{S}_*M_* \xrightarrow{i} M_*$ and εi is a relative quasi-isomorphism. Now, given any roof

$$
\begin{array}{ccc}
& & X_{}
\\
& \xrightarrow{s} & \\
M_*! & \xrightarrow{f} & N_*!
\end{array}
$$

in $\text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(M_*!, N_*!)$ take $\text{Tot}(\mathcal{T}_*M_* \xrightarrow{\varepsilon} M_*!)$ as above.

By applying $\text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(\text{Tot}(\mathcal{T}_*M_*), (-))$ to the distinguished triangle

$$
\begin{array}{ccc}
X_* & \xrightarrow{s} & M_*!
\\
& & \xrightarrow{C(s)}
\\
& & X_*[1]
\end{array}
$$

we obtain a long exact sequence.

In this sequence $\text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(\text{Tot}(\mathcal{T}_*M_*), C(s)_*) = 0$ because $C(s)_*$ is contractible, as a complex of k-bimodules, and $\text{Tot}(\mathcal{T}_*M_*)$ is a complex of relative projective aligned $\mathcal{A}!$ bimodules, so the map

$$
\text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(\text{Tot}(\mathcal{T}_*M_*), X) \xrightarrow{\varepsilon} \text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(\text{Tot}(\mathcal{T}_*M_*), M_*!)
$$

is onto. Because $\varepsilon \in \text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(\text{Tot}(\mathcal{T}_*M_*), M_*!)$, there exist $q \in \text{Mor}_{\mathcal{D}_k(\mathcal{A}! \dash v \text{bimod})}(\text{Tot}(\mathcal{T}_*M_*), X_*)$ such that the diagram

$$
\begin{array}{ccc}
\text{Tot}(\mathcal{T}_*M_*), X_*(X_! \xrightarrow{s} M_*!)
\\
\xrightarrow{q}
\\
\text{Tot}(\mathcal{T}_*M_*) \xrightarrow{\varepsilon}
\end{array}
$$
commutes. The map q is a relative quasi-isomorphism because both s and ε are and we have the equivalence of roofs

$$
\begin{array}{ccc}
M_\bullet & \xrightarrow{s} & N_\bullet \\
\downarrow f & & \downarrow \varepsilon \\
X_\bullet & \xleftarrow{\varepsilon} & \text{Tot}(\mathcal{T}M_\bullet) \\
\downarrow \varepsilon & & \downarrow fq \\
M_\bullet & \xleftarrow{\text{Tot}(\mathcal{T}M_\bullet)} & N_\bullet!
\end{array}
$$

because the diagram

$$
\begin{array}{ccc}
M_\bullet & \xrightarrow{s} & N_\bullet \\
\downarrow f & & \downarrow \varepsilon \\
X_\bullet & \xleftarrow{\varepsilon} & \text{Tot}(\mathcal{T}M_\bullet) \\
\downarrow \varepsilon & & \downarrow fq \\
M_\bullet & \xleftarrow{\text{Tot}(\mathcal{T}M_\bullet)} & N_\bullet!
\end{array}
$$

is commutative.

Since $(\text{Tot}\mathcal{T}M_\bullet \xrightarrow{\varepsilon} M_\bullet !) i$ is isomorphic to $\text{Tot}\mathcal{S}M_\bullet \xrightarrow{\varepsilon i} M_\bullet$ and εi is a relative quasi-isomorphism, the roof

$$
\begin{array}{ccc}
\text{Tot}(\mathcal{T}M_\bullet) & \xrightarrow{\varepsilon i} & M_\bullet \\
\downarrow \varepsilon & & \downarrow fq \\
\text{Tot}(\mathcal{T}M_\bullet) & \xrightarrow{\varepsilon i} & N_\bullet
\end{array}
$$

exists in $\mathcal{D}^{-}(\mathcal{A} \times \mathcal{A}^{\mathcal{B}imod})$. Here, ε_{M_\bullet} and ε_{N_\bullet} are the maps of complexes induced by the counit of the adjunction $\mathcal{A} \times \mathcal{A}^{\mathcal{B}imod} \xrightarrow{i} \mathcal{A}^{\mathcal{B}imod}$. The image of this roof via $!$ is

$$
\begin{array}{ccc}
\text{Tot}(\mathcal{T}M_\bullet) & \xleftarrow{(\text{Tot}(\mathcal{T}M_\bullet)i)!} & M_\bullet ! \\
\downarrow \varepsilon_{M_\bullet} i! & & \downarrow \varepsilon_{N_\bullet} i! \\
\text{Tot}(\mathcal{T}M_\bullet) & \xleftarrow{(\text{Tot}(\mathcal{T}M_\bullet)i)!} & N_\bullet!
\end{array}
$$

and is equivalent to

$$
\begin{array}{ccc}
\text{Tot}(\mathcal{T}M_\bullet) & \xleftarrow{i} & M_\bullet ! \\
\downarrow \varepsilon & & \downarrow fq \\
\text{Tot}(\mathcal{T}M_\bullet) & \xleftarrow{i} & N_\bullet!
\end{array}
$$
This results from the commutative diagram

\[
\begin{array}{c}
\text{Tot}(T \mathcal{M}_*) \\
\downarrow \eta_{\text{Tot}(T \mathcal{M}_*)} \\
[(\text{Tot}(T \mathcal{M}_*))!] \\
\end{array}
\]

\[
\begin{array}{c}
\text{Tot}(T \mathcal{M}_*) \\
\downarrow \eta_{\text{Tot}(T \mathcal{M}_*)} \\
[(\text{Tot}(T \mathcal{M}_*))!] \\
\end{array}
\]

\[
\begin{array}{c}
\varepsilon \\
\downarrow \eta_{\text{Tot}(T \mathcal{M}_*)} \\
[(\text{Tot}(T \mathcal{M}_*))!] \\
\end{array}
\]

\[
\begin{array}{c}
\varepsilon \\
\downarrow \eta_{\text{Tot}(T \mathcal{M}_*)} \\
[(\text{Tot}(T \mathcal{M}_*))!] \\
\end{array}
\]

(1) $\varepsilon_{\mathcal{M}_*}[\varepsilon i]\eta_{\text{Tot}(T \mathcal{M}_*)} = \varepsilon$

(2) $\varepsilon_{\mathcal{M}_*}[fiq]\eta_{\text{Tot}(T \mathcal{M}_*)} = fq$

To check (1) observe that we have $\varepsilon_{\mathcal{M}_*}[\varepsilon i] = id_{\mathcal{M}_*}$ by the adjunction. In addition, the functoriality of η induces the commutative square

\[
\begin{array}{c}
\text{Tot}(T \mathcal{M}_*) \\
\downarrow \eta_{\text{Tot}(T \mathcal{M}_*)} \\
[(\text{Tot}(T \mathcal{M}_*))!] \\
\end{array}
\]

Thus, we have $(\varepsilon i)\eta_{\text{Tot}(T \mathcal{M}_*)} = \eta_{\mathcal{M}_*}\varepsilon$ and by composing with $\varepsilon_{\mathcal{M}_*}$ we obtain (1). Similarly one may check (2).

To prove injectivity, let

\[
\begin{array}{c}
\mathbb{R}_* \\
\downarrow r! \\
\mathbb{M}_* \\
\end{array}
\quad \text{and} \quad
\begin{array}{c}
\mathbb{S}_* \\
\downarrow s! \\
\mathbb{M}_* \\
\end{array}
\]

be equivalent roofs in $\mathcal{D}_k^{\mathbb{A}}(\mathbb{A}! - \text{albimod})$. One may assume that \mathbb{R}_* is a complex or relative projective \mathbb{A} bimodules. To see this, let $\mathcal{U}\mathcal{M}_* \xrightarrow{\varepsilon} \mathbb{M}_*$ the relative quasi-isomorphism with $\mathcal{U}\mathcal{M}_*$ relative projective \mathbb{A}-bimodules.

Again, applying $\text{Mor}_{\mathcal{D}_k^{\mathbb{A}!}}(\mathcal{U}\mathcal{M}_*, (-))$ to the distinguished triangle

\[
\begin{array}{c}
\mathbb{R}_* \xrightarrow{r} \mathbb{M}_* \xrightarrow{C(r)_*} \mathbb{R}[1]_* \\
\end{array}
\]

in $\mathcal{D}_k^{\mathbb{A}}(\mathbb{A} - \text{bimod})$, we obtain a long exact sequence where $\text{Mor}_{\mathcal{D}_k^{\mathbb{A}!}}(\mathcal{U}\mathcal{M}_*, C(r)_*) = 0$.

This implies the existence of a map t such that the following diagram

\[
\begin{array}{c}
\mathcal{U}\mathcal{M}_* \\
\downarrow t \\
\mathbb{R}_* \xrightarrow{r} \mathbb{M}_* \\
\end{array}
\]

commutes. In addition, t is a relative quasi-isomorphism, since r and ε are and we
have the equivalent roofs

\[
\begin{align*}
R \xrightarrow{r} M & \quad \text{and} \quad \text{and} \\
\downarrow f & \quad \downarrow c \\
N & \quad M \\
\end{align*}
\]

\[
\begin{align*}
UM \xrightarrow{t} UM & \quad \text{and} \quad \text{and} \\
\downarrow ft & \quad \downarrow ft \\
M & \quad M \\
\end{align*}
\]

in \(\mathcal{D}_k(\Lambda - \text{bimod}) \) because of the following commutative diagram

\[
\begin{align*}
\begin{array}{c}
\xymatrix{
R \ar[r]^r & M \\
\ar[d]_f & \\
N & M \\
\ar[u]^c & \ar[u]^r & \\
UM \ar[r]^{ft} & M \\
\ar[r]_{id} & UM \\
\ar[u]^t & \\
R & UM \\
\end{array}
\end{align*}
\]

This implies the the equivalence of

\[
\begin{align*}
\begin{array}{c}
\xymatrix{
R \ar[r]^r & M \\
\ar[d]_f & \\
N & M \\
\ar[u]^c & \ar[u]^r & \\
UM \ar[r]^{ft} & M \\
\ar[r]_{id} & UM \\
\ar[u]^t & \\
R & UM \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\xymatrix{
R \ar[r]^r & M \\
\ar[d]_f & \\
N & M \\
\ar[u]^c & \ar[u]^r & \\
UM \ar[r]^{ft} & M \\
\ar[r]_{id} & UM \\
\ar[u]^t & \\
R & UM \\
\end{array}
\end{align*}
\]

in \(\mathcal{D}_k(\Lambda! - \text{albimod}) \). So, we may assume that \(R \) is a complex of relative projective \(\Lambda \)-bimodules. The equivalence of

\[
\begin{align*}
\begin{array}{c}
\xymatrix{
R \ar[r]^{rt} & M \\
\ar[d]_{f!} & \\
N! & N! \\
\ar[u]_{s!} & \ar[u]_{r!} & \\
S \ar[r]^{st} & M! \\
\ar[r]_{g!} & N! \\
\end{array}
\end{align*}
\]

translates into the existence of a commutative diagram

\[
\begin{align*}
\begin{array}{c}
\xymatrix{
X \ar[r]^x & X \\
\ar[d]_{p} & \\
R \ar[r]^{rt} & M \\
\ar[d]_{s!} & \\
S \ar[r]^{st} & M! \\
\ar[r]_{g!} & N! \\
\end{array}
\end{align*}
\]

Here, \(X \in \mathcal{D}_k(\Lambda! - \text{albimod}) \) and \(x \) is a relative quasi-isomorphism such that \(f!x = g!p \), (1) and \(s!p = r!x \), (2). Since \(x \) is a relative quasi-isomorphism and \(\text{Tot} \mathcal{T}_R \) is a complex of aligned relative projective \(\Lambda! \)-bimodules there exist \(j \) such that the diagram
We obtain the commutative diagram

because \(f!xj = g!pj \), by (1) and \(s!pj = r!xj \), by (2). Because \(!\) is full and faithful we have the isomorphism \((\mathbb{T}^*!i) \xrightarrow{\epsilon \cdot i} \mathbb{T}^* \) for all \(\mathbb{T}^* \) in \(\mathcal{D}^-_k(\mathbb{A} - \text{bimod}) \) and so \((r!)i\) and \((s!)i\) are relative quasi-isomorphisms in \(\mathcal{D}^-_k(\mathbb{A} - \text{bimod}) \). In addition, \(\epsilon i \) is a relative quasi-isomorphism and we get the commutative diagram

Finally, we obtain the equivalence of

by constructing

This is because \(f\varepsilon_{\mathbb{S}^*} = \varepsilon_{\mathbb{N}^*}(f!)i\varepsilon i = \varepsilon_{\mathbb{N}^*}(g!)i(pj)i = g\varepsilon_{\mathbb{S}^*}(pj)i \) and \(s\varepsilon_{\mathbb{N}^*}(pj)i = \varepsilon_{\mathbb{M}^*}(s!)i(pj)i = \varepsilon_{\mathbb{M}^*}(r!)i\varepsilon i = r\varepsilon_{\mathbb{R}^*}i \).

\[\square\]
We show now that the inclusion
\[D_{\mathcal{K}}^-(A! - \text{albimod}) \xrightarrow{\text{inc}} D_{\mathcal{K}}^-(A! - \text{bimod}) \]
is full and faithful. The lack of an adjoint in this case requires a two step process of replacing the top of each roof by a complex of aligned bimodules. For \(X \in A! - \text{bimod} \), let \(X^+ := \prod_{i \in C} \varphi_{i!}X \). This defines an exact functor \(A! - \text{bimod} \rightarrow A! - \text{bimod} \) that preserves allowability, so also relative quasi-isomorphisms.

We also have the natural maps \(X \xrightarrow{\beta_X} X^+ \) and \(X \xrightarrow{\gamma_X} X^+ \). Also, if \(X \) is aligned both \(\beta_X \) and \(\gamma_X \) are isomorphisms and \(\beta_X = \gamma_X \alpha_X \), where \(\alpha \) is the natural isomorphism \(\alpha : Id_{A!-\text{albimod}} \rightarrow (-)_{\text{al}} \circ \text{inc} \).

Proposition 4.3. The functor
\[D_{\mathcal{K}}^-(A! - \text{albimod}) \xrightarrow{\text{inc}} D_{\mathcal{K}}^-(A! - \text{bimod}) \]
is full and faithful.

Proof. We have to prove that the map is onto. For any roof
\[X \xrightarrow{s} M \xrightarrow{f} N \]
in \(Mor_{D_{\mathcal{K}}^-(A!-\text{bimod})}(M, N) \) we have the equivalences
\[\begin{align*}
\beta_M^{-1}s^+ & \xrightarrow{\beta_M^{-1}s^+} X^+ \\
\beta_N^{-1}f^+ & \xrightarrow{\beta_N^{-1}f^+} X^+ \\
\beta_M^{-1}s^+ & \xrightarrow{\beta_M^{-1}s^+} X^+ \\
\beta_N^{-1}f^+ & \xrightarrow{\beta_N^{-1}f^+} X^+
\end{align*} \]

To see this, observe that since \(\beta \) is a natural transformation we have \(s^+ \beta_X = \beta_M s \) and \(f^+ \beta_X = \beta_N f \).

In addition, because \(M \) and \(N \) are aligned \(\beta_M \) and \(\beta_N \) are isomorphisms and we obtain \(\beta_M^{-1}s^+ \beta_X = s \) and \(\beta_N^{-1}f^+ \beta_X = f \).

This implies the first equivalence because the diagram
is commutative.

For the second equivalence, since γ is natural we have $s^+\gamma_X = \gamma_M s_{al}$ and $f^+\gamma_X = \gamma_N f_{al}$.

Because M_\bullet and N_\bullet are aligned $\gamma_M, \gamma_N, \alpha_M, \alpha_N, \beta_M$ and β_N are isomorphisms, so we get $\beta^{-1}_M s^+\gamma_X = \beta^{-1}_M \gamma_M s_{al} = \alpha^{-1}_M \gamma_M \gamma_M s_{al} = \alpha^{-1}_M s_{al}$ and $\beta^{-1}_N f^+\gamma_X = \beta^{-1}_N \gamma_N f_{al} = \alpha^{-1}_N \gamma_N \gamma_N f_{al} = \alpha^{-1}_N f_{al}$.

The diagram

is commutative and implies the second equivalence. Now, the surjectivity follows since the roof

exists in $\text{Mor}_{\mathcal{D}(-\text{albimod})}(M_\bullet, N_\bullet)$ and its image is equivalent to

in $\text{Mor}_{\mathcal{D}(-\text{bimod})}(M_\bullet, N_\bullet)$.

To prove the injectivity, let
in $\text{Mor}_{\mathcal{D}_k^-}(\mathcal{A}!\text{-albimod}) (M_\bullet, N_\bullet)$ equivalent in $\text{Mor}_{\mathcal{D}_k^-}(\mathcal{A}!\text{-bimod}) (M_\bullet, N_\bullet)$.

Thus, we have a commutative diagram

\[
\begin{array}{c}
Z^\bullet \\
\downarrow r \\
X^\bullet \\
\downarrow s \\
M^\bullet
\end{array}
\quad
\begin{array}{c}
Y^\bullet \\
\downarrow f \\
\quad h \\
\downarrow g \\
N^\bullet
\end{array}
\quad
\begin{array}{c}
Z_{\text{al}}^\bullet \\
\downarrow r_{\text{al}} \\
X^\bullet \\
\downarrow s \\
M^\bullet
\end{array}
\quad
\begin{array}{c}
Y^\bullet \\
\downarrow f \\
\quad h_{\text{al}} \\
\downarrow g \\
N^\bullet
\end{array}
\]

where r and s are relative quasi-isomorphisms. Since the alignment functor preserves relative quasi-isomorphisms and M^\bullet, N^\bullet, X^\bullet and Y^\bullet are complexes of aligned $\mathcal{A}!$ bimodules we have the commutative diagram

\[
\begin{array}{c}
Z^\bullet \\
\downarrow r \\
X^\bullet \\
\downarrow s \\
M^\bullet
\end{array}
\quad
\begin{array}{c}
Y^\bullet \\
\downarrow f \\
\quad t \\
\downarrow g \\
N^\bullet
\end{array}
\quad
\begin{array}{c}
Z^\bullet_{\text{al}} \\
\downarrow r_{\text{al}} \\
X^\bullet \\
\downarrow s \\
M^\bullet
\end{array}
\quad
\begin{array}{c}
Y^\bullet \\
\downarrow f \\
\quad t \\
\downarrow g \\
N^\bullet
\end{array}
\]

which implies the equivalence of roofs

\[
\begin{array}{c}
Z^\bullet \\
\downarrow r \\
X^\bullet \\
\downarrow s \\
M^\bullet
\end{array}
\quad
\begin{array}{c}
Y^\bullet \\
\downarrow f \\
\quad t \\
\downarrow g \\
N^\bullet
\end{array}
\quad
\begin{array}{c}
Z_{\text{al}}^\bullet \\
\downarrow r_{\text{al}} \\
X^\bullet \\
\downarrow s \\
M^\bullet
\end{array}
\quad
\begin{array}{c}
Y^\bullet \\
\downarrow f \\
\quad t \\
\downarrow g \\
N^\bullet
\end{array}
\]

in $\text{Mor}_{\mathcal{D}_k^-}(\mathcal{A}!\text{-albimod}) (M_\bullet, N_\bullet)$, and so the injectivity of inc. \qed

The proof of theorem 4.1. follows now easily combining propositions 4.2. and 4.3. In particular, we obtain the following theorem of [2], due to M. Gerstenhaber and S. D. Schack.

Corollary 4.4. (Special Cohomology Comparison Theorem)

The functor $!$ induces an isomorphism of relative Yoneda cohomologies

\[
\text{Ext}^*_{\mathcal{A}!\mathcal{A}}((-), (-)) \cong \text{Ext}^*_{\mathcal{A}!\mathcal{A}}((-)!((-)!)).
\]

In particular, we have an isomorphism of relative Hochschild cohomologies

\[
H^*(\mathcal{A}, (-)) \cong H^*(\mathcal{A}!, (-)!)�.
\]

Proof.

\[
\begin{align*}
\text{Ext}^i_{\mathcal{A}!\mathcal{A}}(M_\bullet, N_\bullet) &\cong \text{Mor}_{\mathcal{D}_k^-}(\mathcal{A}!\text{-bimod}) (M_\bullet, N_\bullet[i]) \\
&\cong \text{Mor}_{\mathcal{D}_k^-}(\mathcal{A}!\text{-albimod}) (M_\bullet, N_\bullet[i]) \\
&\cong \text{Ext}^i_{\mathcal{A}!\mathcal{A}}(M_\bullet[1], N_\bullet[i]) \\
&\cong \text{Ext}^i_{\mathcal{A}!\mathcal{A}}(M_\bullet, N_\bullet[i])
\end{align*}
\]

\qed
Note: By taking a very different approach Wendy Lowen and Michel Van Den Bergh also proved in [8] that the functor \(! \) is full and faithful.

Appendix A. theorem 2.4.

Theorem Appendix A.1. 1. The functor \(!: \mathcal{A}-\text{bimod} \to \mathcal{A}!-\text{bimod} \) admits a left adjoint \(i: \mathcal{A}!-\text{bimod} \to \mathcal{A}-\text{bimod} \).

2. There are natural isomorphisms \(T_p N_i \to S_p N \) which induce a natural isomorphism of complexes \((T_p N \to N!)i \) and \((S_p N \to N)\).

Proof. 1. The left adjoint is the restriction of a functor \(i: \mathcal{A}!-\text{bimod} \to \mathcal{A}-\text{bimod} \). For any \(\mathcal{A}-\text{bimodule} \) \(X \) and \(i \in C \) we define \(X^i \) as the colimit of a particular functor over the poset \(C^i \) whose elements are the \(i \)-simplices of \(C \). The ordering is \(\sigma \ll \tau \Leftrightarrow \sigma = \tau \) or \(\sigma \) is degenerate \((\sigma = \varepsilon)\). Thus, we only have to define \(X^i \) if \(h \leq i \leq j \).

First, we have a natural transformation \(\Gamma^i_X: F^i_X \to h \) such that \(T^b_{X^i} = T^b_{X^i} T^b_j \).

Second, let \(\Gamma^i_X \) be the composite of maps \(X^i = \text{colim} F^i_X \to \text{colim}(h) = h \) \(\circ i \circ \text{inc}_{hi} \).

One may easily check the identity \(T^b_{X^i} = T^b_{X^i} T^b_j \) \(\forall i, j \leq h \leq i \leq j \).

So far we have defined \(i \) on the objects of \(\mathcal{A}-\text{bimod} \) so we need to define it on maps. Let \(g: X \to Y \) be an \(\mathcal{A}-\text{bimodule} \) map. The restriction of \(g \) to \(X^{ij} \) is an \(\mathcal{A}^{i-j} \) bimodule map, \(g: X^{i-j} \to Y^{i-j} \), and for \(\sigma \in C \), the \(\mathcal{A}^{i-j} \) bimodule map \(g \circ id: X^{i-j} \to Y^{i-j} \) \(\mathcal{A}^i \) induces the map \(\overline{g}_{\sigma}: F^i_X(\sigma) \to F^i_Y(\sigma) \) defined by \(\overline{g}_X(\sigma)(x \otimes a) = \overline{g}_X(\sigma)(x) \otimes a \).

These are the components of an \(\mathcal{A}-\text{bimodule} \) map and by taking the colimits we obtain an \(\mathcal{A}^i \)-bimodule map \(\overline{g}^i: X^i \to Y^i \), given by \(\overline{g}^i(\sigma)(x \otimes a) = \overline{g}_X(\sigma)(x) \otimes a \).

Secondly, let \(\overline{g}^i \) be the composite of maps \(\overline{g}^i = \text{colim}(h) = h \) \(\circ i \circ \text{inc}_{hi} \).

Thus we have \(T^b_{X^i} = T^b_{X^i} T^b_j \) \(\forall i, j \leq h \leq i \leq j \).
map, i.e. $T_{Yi}^h \circ g_i^i = g_i^h \circ T_{Xi}^h$ for $h \leq i$ because of the commutative diagram

\[
\begin{array}{ccc}
F_X^i & \xrightarrow{T_{Xi}^i} & h_i \\
\downarrow{\gamma_i^i} & & \downarrow{\gamma_i^i} \\
F_Y^i & \xrightarrow{T_{Yi}^i} & h_i \\
\end{array}
\]

In addition, one has $(g_1g_2)i = (g_1)i \circ (g_2)i$ and $(id)i = id$ since $\tilde{g}_i \tilde{g}_i = \tilde{g}_i \tilde{g}_i$ and $\tilde{id} = id$, so i is a functor.

We now prove that the functor constructed above is a left adjoint to $!$, when restricted to A-albimod. Let X be an aligned A-bimodule. For $i \leq j$ we define $\eta_X^i \colon X^i \to (Xi)!$ to be the $A^i \to A^j$ bimodule map $\eta_X^i = t^i_{ij(x \otimes 1)}$. One may check that for $h \leq i \leq j \leq q$, $a^h \in A^h$, $a^j \in A^j$ and $x \in X^j$ we have $\eta_X^h(a^h \varphi^i \cdot x) = a^h \varphi^i \cdot \eta_X^i(x)$ and $\eta_X^i(x \cdot a^j \varphi^q) = \eta_X^i(x) \cdot a^j \varphi^q$ so the family of maps η_X^i determine an A-bimodule natural map $\eta_X : X \to (Xi)!$.

Let $N \in A$-bimod. To define the components of the counit $\varepsilon^i_N \colon (\eta_!: N!i^i) \to N^i$, we define a family of A-bimodule maps $\varepsilon^i_N : F^i_N(\sigma) \to N^i$ such that $\varepsilon^i_{N!} \circ F^i_N(\sigma) = \varepsilon^i_N$, for $\sigma \ll \tau$ in C^i_1 and use the universal property of colimits. The A^i-bilinear function $N^i \varphi^i \otimes A^i \to N^i$, $(n \varphi^i \cdot a) \mapsto na$ is A^i-balanced and the induced A^i-bimodule map $N^i \varphi^i \otimes A^i \to N^i$ vanishes on $\{n \varphi^i \otimes a \mid n \in N^i, a \in A^i\}$ so for each $\sigma \in C^i_1$, we obtain the A^i-bimodule map $\varepsilon^i_N : F^i_N(\sigma) \to N^i$, $n \varphi^i \otimes a \mapsto na$. We have that $\varepsilon^i_N \circ F^i_N(\sigma)(n \varphi^i \otimes a) = \varepsilon^i_N(n \varphi^i \otimes a)$ and thus the map ε^i_N is given by $\varepsilon^i_N(n \varphi^i \otimes a) = na$. The maps ε^i_N determine a natural map $\varepsilon_N : (\eta_!: N!)i^i \to N$ of A-bimodules since for $h \leq i$ and $\sigma \in C^i_1$ we have $T_{Yi}^h \varepsilon^i_N(n \varphi^i \otimes a) = T_{Yi}^{h,i}(na) = T_{N}^i(n)a = T_{N}^{h,i}(n)\varphi^h(a)$.

To finish the proof we show that η and ε form an adjoint pair. To see that $\varepsilon^i_N \circ \eta^i_N = id_{N^i}$ it is enough to check this on each $N^i \varphi^j$ and $\varepsilon^i_N(\eta^i_N(n \varphi^j)) = \varepsilon^i_N((t^i_{ij \leq j}(n \varphi^j \otimes 1)) \varphi^j) = \varepsilon^i_N(t^i_{ij \leq j}(n \varphi^j \otimes 1)) = (\varphi^j \otimes 1) \varphi^j = n \varphi^j = n \varphi^i$, as required.

Last, for each $X \in A$-albimod we need to verify that $\varepsilon_X^i \circ \eta_X^i = id_X^i$. This can be checked on a set of A^i-bimodule generators for each component X^i and the set $\{t^i_{ij \leq j}(x \otimes 1) \mid j \geq i, x \in X^j\}$ has this property. Since $(\varepsilon_X^i \circ \eta_X^i)(t^i_{ij \leq j}(x \otimes 1))) = \varepsilon_X^i(t^i_{ij \leq j}(\eta_X^i(x) \otimes 1))) = \varepsilon_X^i(t^i_{ij \leq j}(t^i_{ij \leq j}(x \otimes 1) \varphi^j \otimes 1))) = t^i_{ij \leq j}(x \otimes 1)$ we obtain the required identity.

2. Because both T^P and S_P are coproducts and i, as a left adjoint, preserves colimits it is enough to find natural isomorphisms $\gamma^i : (T^P)^i \to S^i_P$ such that, for
0 ≤ r ≤ p, the following square
\[
\begin{array}{ccc}
(T_p^\sigma) & \xrightarrow{(d^T_\sigma)^*} & (T_{p-1}^\sigma) \\
\gamma^\sigma_r & \downarrow & \gamma^\sigma_{r-1} \\
S_p^\sigma & \xrightarrow{S^\sigma_{r-1}} & S_{p-1}^\sigma
\end{array}
\]
commutes, where, when \(p = 0 \), we interpret the right column as the counit \(\varepsilon_N: (N!)^i \longrightarrow N \) and \(d_0^T \) and \(d_0^S \) as the augmentations. To construct the isomorphisms, for \(p > 0 \), observe that, for each \(\sigma \in \mathcal{C}[p] \), the diagram
\[
\begin{array}{ccc}
\mathbb{A} - \text{bimod} & \xrightarrow{i} & \mathbb{A}! - \text{albimod} \\
\mathbb{A}^{d\sigma} - \text{bimod} & \xrightarrow{(d\sigma)^*} & \mathbb{A}^{d\sigma} - \text{mod} - \mathbb{A}^{\delta\sigma} \\
\mathbb{A}^{\delta\sigma} - \text{bimod} & \xrightarrow{\delta\sigma} & \mathbb{A}^{\delta\sigma} - \text{bimod}
\end{array}
\]
is commutative. Since each functor in it admits a left adjoint and \(d_{\sigma,\sigma'}/d_{\sigma,\sigma} \circ (d\sigma)^* = d_{\sigma,\sigma'} \circ (d\sigma)^* = d_{\sigma,\sigma'} \circ | - | \circ (\delta\sigma,\delta\sigma') \circ ! \), we have the isomorphisms, natural in \(N \),
\[
\gamma_N^\sigma: (L_{d\sigma,\sigma'}(\mathbb{A}^{d\sigma} \otimes \mathbb{A}^{\delta\sigma} N)) | i \longrightarrow (d\sigma)!((\mathbb{A}^{d\sigma} \otimes \mathbb{A}^{\delta\sigma} N) \otimes \mathbb{A}^{\delta\sigma}).
\]
The \(\mathbb{A}^i \) bimodule \((L_{d\sigma,\sigma'}(\mathbb{A}^{d\sigma} \otimes \mathbb{A}^{\delta\sigma} N)))^i \) is generated by \(\{i_{(1 \otimes n)}(1) \mid j \geq \sigma, n \in N \} \) for \(i \leq d\sigma \) and is 0 if \(i \notin d\sigma \). Tracing through the adjunction we obtain that, for each \(i \in \mathcal{C} \), \(\gamma_N^{\sigma_i}(i_{(1 \otimes n)}(1)) = 1 \otimes n \otimes 1 \).

For all \(N \) and \(\sigma \) we define \(\gamma_N^\sigma = \gamma_N^\sigma^{\delta\sigma} \) and, for \(p > 0 \), we have that \((d^T_\sigma)^* | i_{(1 \otimes n)}(1) \otimes d_{\sigma,\sigma}^{d\sigma}(n) \otimes 1 \) is \(\gamma_N^\sigma(i_{(1 \otimes n)}(1)) = i_{(1 \otimes n)}(1) \otimes d_{\sigma,\sigma}^{d\sigma}(n) \otimes 1 \), while \(d_{\sigma,\sigma}^{d\sigma}(1) \otimes n \otimes 1 = 1 \otimes T_{n,\sigma,\sigma}^{d\sigma}(n) \), the square is commutative. When \(p = 0 \), we obtain, for \(\sigma \in \mathcal{C}[0] \) and \(i \leq d\sigma = \sigma \), that \(\varepsilon_0^\sigma \circ (d^T_\sigma)^* i_{(1 \otimes n)}(1) = \varepsilon_0^\sigma(i_{(1 \otimes n)}(1)) = \varepsilon_0^\sigma(i_{(1 \otimes n)}(1) \otimes 1) = T_{n,\sigma,\sigma}^{d\sigma}(n) = T_{n,\sigma,\sigma}^{d\sigma}(n) \otimes 1 = T_{n,\sigma,\sigma}^{d\sigma}(n) \otimes 1 = \varepsilon_0^\sigma(i_{(1 \otimes n)}(1) \otimes 1) = \gamma_N^{\sigma^{-1}}(i_{(1 \otimes n)}(1)), \) so the square commutes in this case too.

\[\square\]

References

[1] M. Gerstenhaber and S. D. Schack, Algebraic Cohomology and Deformation Theory, Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht (1988) 11-264.

[2] M. Gerstenhaber and S. D. Schack, The Cohomology of Presheaves of Algebras: Presheaves over a Partially Ordered Set, Trans. Amer. Math. Soc. 310 (1988) 135-165.

[3] C. B. Kullmann, Adjoints and Cohomology for Presheaves of Algebras Over a Poset , SUNY at Buffalo Ph.D. thesis, (1998).
[4] S. MacLane, *Homology*, Spinger-Verlag, Berlin, (1967).

[5] S. I. Gelfand and Yu. I. Manin, *Methods of Homological Algebra*, Springer Verlag (1996).

[6] B. Keller, *Hochschild Cohomology and the Derived Picard Group*, Journal of Pure and Applied Algebra 190 (2004), 177-196.

[7] A. Stancu, *Hochschild Cohomology and Derived Categories*, SUNY at Buffalo Ph.D. thesis, (2006).

[8] W. Lowen and M. Van Den Bergh, *A Hochschild Cohomology Comparison Theorem for Prestaks*, arXiv:0905.2354v1 [math.KT]

http://www.emis.de/ZMATH/
http://www.ams.org/mathscinet

This article may be accessed via WWW at http://tcms.org.ge/Journals/JHRS/

Alin Stancu
stancu_alin1@colstate.edu
Department of Mathematics
Columbus State University
Columbus, GA 31907, USA