Relationship between pre-pubertal nutrition plane with reproduction performance and milk quality in Kurdish female kids

Sedigheh Menatian1, Mostafa Nemati2, Mehdi Rashnavadi2, Ali Salimi3, Mohammad Rashid Taheri3, Farshad Yasemi1

1Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
2Department of Veterinary, Ilam University, Ilam, Iran
3Department of Nomadic Management of Ilam Province, Ilam, Iran

ARTICLE INFO

Article history:
Received 1 April 2017
Revision 10 May 2017
Accepted 30 May 2017
Available online 1 July 2017

Keywords:
Kids
Iran
Milk
Nutrition
Reproduction

ABSTRACT

Objective: To investigate the reproductive performance and milk quality to nutrition pre-pubertal plane in Kurdish female kids. Methods: Forty Kurdish female kids [aged (28.0±6.6) d and weighted (7.56±1.10) kg] were assigned randomly in pre-weaning period to one of two practical diets: low quality diet (LQD) [87 g CP/kg dry matter (DM) and 2.02 Mcal ME/kg DM], and high quality diet (HQD), (148 g CP/kg DM and 2.50 Mcal ME/kg DM). At weaning, from each group, one half of kids was separated randomly and allocated to LQD or HQD. Consequently, in post-weaning period, there were four treatment groups including: LQD pre and post-weaning (L-L), control group and LQD pre-weaning and HQD post-weaning (L-H); HQD pre-weaning and LQD post-weaning (H-L), HQD pre- and post-weanin (H-H). From 30 to 180 d of age, body weight and DM intake were determined every 2 wk. Results: Results showed that the HQD treatment enhanced body weight and DM intake during pre-weaning period, in comparison with the LQD treatment (P<0.01). During post-weaning, kids of H-H treatment had higher DM intake compared with other kid’s treatments. Kids fed the HQD treatment had greater withers height compared to kids on the LQD treatment at 90 d of age (P<0.01). Kids in the L-H and H-H groups weighed more and were younger at puberty. In the period of pre-pubertal, diet plan was not significantly affected milk yield and reproductive performance at the first lactation. Conclusions: Overall, management strategies that have been used to availability of nutrition could increase growth and feed intake in Kurdish female kids. In addition, these strategic programs should be enhancing economic characteristics at the start of puberty of kid in goat husbandry.

1. Introduction

In semi-arid, arid and tropical areas, animal production would be highly reliant on supplemental feeding, particularly during expensive reproductive seasons[1]. In west of Iran, goats have been proved to perform well under extensive, semi-intensive as well as intensive management systems. In these climates it is often difficult to meet these requirements because quantity and quality of forage varies with season, and can be scarce during dry-seasons. Therefore, they are economically important mainly on account of their short gestation period, generation interval and high prolificacy. Especially, the optimal reproductive performance undoubtedly would have a crucial role in intensive goat breeding in Zagros Mountains. During the goats’ productive life, for both animal health and performance puberty period is highly important. The puberty onset in goat is influenced by environmental and genetic factors like day length, nutrition, breed, temperature, breeding technology, and their interaction. In a closed space, with respect to economic feasibility goats, one approach is manipulating the puberty age. For accelerating the goat kid maturity, farmers must change the traditional nutrition. However, because of the high positive correlation between body weights (BW) and kid morality would be required to apply supplementary strategies. Reproduction becomes possible, when the ewe lambs obtained 50%-70% of the adult weight. Weight gain includes two muscle and fat tissues and the activities of fat will be affected by nutrition[2]. Due to the live weight importance, the factors like before and after weaning weight gain crucial factors in determination of age at puberty[3]. Utilization of diet with high energy and protein increased plasma concentrations of leptin in ewe lambs[3,4]. If in the first autumn, a kid could not achieve puberty, until the next breeding season, it will be delayed[5,6].

Most livestock milk produced in the world is processed into cheese, yogurt and other dairy products. For this reason, the relationship between ewe nutrition and milk quality is mainly evaluated in terms of its technological and coagulation properties[7,8]. From lactation studies, the indirect evidence in ewe lambs proposes that before and after the main allometric growth phase, continuous rapid growth may depress mammary development as compared to feeding regimes including minimum one phase of limited feed intake[9,10]. Certainly, this subject could explain higher milk production of ewe lambs that fed lower energy and protein at 30-120 d of age[3]. Although studies into nutritional needs and the correlation between reproductive performance, nutrition, and milk production of animals have increased in recent years, more data would be required as the results have been contradictory. To the authors’ knowledge, there are

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, tweak and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

©2017 Asian Pacific Journal of Reproduction Produced by Wolters Kluwer-Medknow

How to cite this article: Sedigheh Menatian, Mostafa Nemati, Mehdi Rashnavadi, Ali Salimi, Mohammad Rashid Taheri, Farshad Yasemi. Relationship between pre-pubertal nutrition plane with reproduction performance and milk quality in Kurdish female kids. Asian Pac J Reprod 2017; 6(4): 172-175.
limited reports on the influence of nutrition on milk production and reproduction response in Kurdish female kids. Hence, our objective was to determine effects of survey of correlation between nutrition pre-pubertal plane with reproduction efficiency and milk production quality in the west of Iran.

2. Materials and methods

2.1. Hormonal drugs

A progestagen analogue (InterAg, Hamilton, New-Zeland), controlled internal drug release (CIDR) with 300 mg of progesterone, and pregnant mare serum gonadotropin (PMSG) (foligven; Intervet International B.V., Boxmeer, the Netherlands) were used.

2.2. Animals, diets, experimental design, and management

This research was carried out from January 2013 to December 2015, at Nomadic Management Department, Ilaam Province, Iran (33°51′ N, 46° 27′ E). In this study, a total of 40 clinically health Kurdish female kids [weighing (7.56±1.10) kg and (28.0±6.6) d] were considered. Kids were randomly housed together with at 30 d of age and twice daily access to their mother milk and during two consecutive periods were assigned to one of two practical treatments to obtain either low or high rates of BW gain, from 30 to 90 d (pre-weaning period) and from 91 to 180 d of age (post-weaning period). For 3 consecutive days, they were kept in individual pens (1 m x 2 m) every 2 wk in order to record dry matter intake (DMI).

The kids fed low quality diet (LQD, n = 20) or high quality diet (HQQ, n = 20) in pre-weaning period and at the weaning time LQD and HQD fed kids were re-randomized. Consequently, from each group, one half of kids randomly assigned to LQD or HQD. Therefore, in post-weaning period, there were four treatment groups (n = 10) including: LQD pre- and post- weaning (L-L, control group); LQD pre- and HQD post- weaning (L-H); HQD pre- weaning and LQD post- weaning (H-L); HQD pre- and post- weaning (H-H). The LQD and HQD were formulated for small ruminants based on nutrient needs[9] suggestions that received a diet covering nutrient needs including protein and energy requirements for a 20-kg growing kid with an average of 200 and 100 g/d daily gain, respectively.

To have various crude protein (CP) content and metabolize energy (ME), diets were formulated. The LQD and HQD were included 14.9% and 8.9% CP (DM basis) and 2.50 and 2.02 Mcal ME/kg DM, respectively. In pre- and post-weaning period, rations were totally hand-mixed for each pen and offered twice daily at 09:00 and 16:00 in equal proportions. Chemical composition and ingredient of the experimental diets can be seen in Table 1.

Table 1

Composition (%)	Experimental diets	
	HQD	LQD
Alfalfa hay	445.1	
Wheat straw	253.70	513.70
Ground barley	445.1	428.10
Soybean meal	59.3	
Calcium carbonate	5.9	6.80
Salt	5.0	5.00
Mineral and vitamin premix	39.6	46.40
DM	916.0	919.00
CP	148.0	87.00
EE	58.0	22.00
NDF	285.0	450.00
NFC	466.0	371.00
ME (Mcal/kg)	2.5	2.02

Each kg (DM basis) of mineral and vitamin premix contained 180 g of Ca, 70 g of P, 35 g of K, 50 g of Na, 58 g of Cl, 30 g of Mg, 32 g of S, 5 g of Mn, 4 g of Fe, 3 g of Zn, 300 mg of Cu, 100 mg of I, 100 mg of Co, 20 mg of Se, 400 000 IU vitamin A, 100 000 IU vitamin D3, and 245 IU vitamin E. EE = Ether extract; NFC = Non-fiber carbohydrates = 100 – (CP+NDF+EE+ash); ME = Metabolite energy.

2.3. Procedures of sampling and measurements

From 30 to 180 d of age, the BW, hip width (HW), and wither height (WH) were measured every 2 wk. HW was characterized by tape measure, and WH was using of vertical graduated rod. Individual pens’ feed offered and feed refusals were weighed and recorded daily and total mix ration and orts DM content were evaluated to predict CP and DMI. ME intake were obtained as DMI from each diet multiplied by their CP and ME contents, respectively[11]. Experimental animals’ DM, CP and ether extract were evaluated based on the AOAC methods 990.03. The neutral detergent fiber was determined based on the method explained by Van Soest et al.[13] without sodium sulfite and ɑ-amylase and was described exclusive of residual ash. Considering National Research Council[11] dairy cattle model, non-fibrous carbohydrates content was determined as 100-(CP + neutral detergent fiber + ether extract + ash). Milk intake by goat kids was determined in 3 consecutive days every 2 wk by the weigh-suckle-weigh method from the beginning of study to weaning (30-90 d). At each sucking occasion (twice daily), at the beginning of weigh-suckle-weigh method, goat kids were weighed, permitted to suckle the udder of their dams and immediately after sucking weighed again. As milk intake, the difference between pre- and post-suckling weights was considered[4]. Goat kids were hand milked twice daily after kidding cease throughout milk yield and lactation for the entire lactation (2 mo) was recorded at each milking. On each milking occasion, after intravenous injection of 1 IU synthetic oxytocin goats were milked by hand. In subsequent lactation, milk samples of dams and goat kids were collected every 2 wk in 3 consecutive days and using Milk-O-Scan 133B (Foss Electric, Hillerod, Denmark) evaluated for fat, protein and lactose. Milk fat, protein and lactose yields were determined by multiplying milk yield from the respective day by milk fat, protein and lactose contents for each goat. Milk gross energy (GE) was obtained using GE = [(0.054 7 × CP %) + (0.092 9 × Fat %) + (0.039 5 × Lactose %)] based on National Research Council[15]. The goat milk GE mean metabolize ability was 0.94[16], consequently, milk ME content was obtained as GE × 0.94. Fat corrected milk (6.5% FCN) and energy corrected milk (ECM) were determined as FCN = Milk yield × (0.370 × Fat %) and ECM = (0.327 × kg milk) + (12.950 × kg fat) + (7.200 × kg protein).

2.4. Statistical analyses

Applying the mixed model procedure of SAS software, the data of pre-weaning parameters were subjected to statistical analysis by using of completely randomized design (CRD) and post-weaning data were analyzed as a CRD in factorial arrangement (2×2×7[17]) with fixed influences of treatment and kid nested random effects in treatments.

\[Y_{ijk} = \mu + D_i + Lk(D) + \varepsilon_{ik} \]

\[Y_{ijk} = \text{dependent variable} \]

\[\mu = \text{mean} \]

\[D_i = \text{fixed influence of dietary treatment} \]

\[Lk(D) = \text{kid nested effect in the dietary treatment} \]

\[\varepsilon_{ik} = \text{error} \]

For repeated measure data, the model was:

\[Y_{ijk} = \mu + D_i + Time_j + D_i \times Time_j + Lk(D) + \varepsilon_{ijk} \]

\[Time_j = \text{influence of time} j \text{ as a fixed influence} \]

\[\varepsilon_{ijk} = \text{error} \]

Measurements performed before dietary treatments administration was applied as covariates. Starting with the least significant, the covariates were eliminated from the model one at a time. Mean±SE respectively trends are discussed. When P<0.05, statistical differences were considered significant and when P>0.01 trends are discussed.
3. Results

Table 2 indicates body and skeletal growth and feed intake (as calculated by BW, WH and HW) measurements by treatment between 30 and 90 d age. Results showed that the HQD treatment successfully increased skeletal and body growth (longitudinal dimensions) rates and DM intake, in comparison with the LQD treatment during pre-weaning period (P<0.01). Although at weaning time, there were no differences among treatments in HW. During post-weaning (Table 3), H-H treatment kids had higher BW, skeletal growth rates and DM intake in comparison with other kid’s treatments (P<0.01), but from 90 to 180 d of age, there were no differences between H-L and L-H groups (P>0.01). Throughout this time, BW and skeletal growth rates of L-H treatment were higher than H-L treatment numerically (P>0.05). Age at the puberty time was influenced by treatments (P<0.05). In addition, kids in the H-H and L-H groups were younger and weighed more at puberty. In addition, kids in the H-H and L-H groups were younger and weighed more at puberty. Thus, puberty age seemed to be similar in L-L and H-L treatments. Lack of diet effect (body condition) on H-L group puberty age did not seem to be due to pre-weaning diet quality, but it depends on the use time of high quality diet. Results of the current study showed that the kids fed the HQD would gain faster compared to kids fed LQD in both skeletal size and body weight. The theory was later confirmed by Mahgoub et al.[21] who documented an evaluated three concentrations of dietary ME of 2.10, 2.38 and 2.68 Mcal/kg DM and revealed a positive influence of increased energy supplementation on BW of Dhofari and Omani Batina goats. During post-weaning period, H-L group skeletal growth rate was lower than L-L group, but final H-L group skeletal growth rate was higher than L-L group, due to kids’ low birth weight despite of good HW of their dams, that the incidence of reproductive abnormalities was higher in H-L sequence compared with other treatments, and may be because of the higher kids’ birth weight of this treatment. Age at first parturition, age at puberty, at a younger age spending successful and safe parturition, optimal nutrition; stress, breed and geographical region are important characteristics relevant to overall reproductive efficiency. In overall, taking the results together suggests that by the effective nutrients utilization, productivity of goats is fostered which is possible with a sufficient energy supply. Animals reproductive performance is affected by a range of external factors, including socio-sexual cues, photoperiod and energy balance, age and breed. Reproduction is very energetically demanding, energy balance is arguably the next most powerful regulator of reproductive function. Variation in the level of nutrition (and changes in energy balance) can affect the reproductive cycle at almost any stage[2-4].

The reproductive abnormalities incidence was higher in H-L sequence compared with other treatments, and may be because of the higher kids’ birth weight of this treatment. Age at first parturition, age at puberty, at a younger age spending successful and safe parturition, optimal nutrition; stress, breed and geographical region are important characteristics relevant to overall reproductive efficiency. In overall, taking the results together suggests that by the effective nutrients utilization, productivity of goats is fostered which is possible with a sufficient energy supply. Animals of H-H sequence indicated their case dystocia, with regard to kids’ low birth weight despite of good HW of their dams, that the possible cause should be searched at the future study. Some reports indicated the supplementation with energy rich and/or protein rich diets exerts a significant effect on reproductive function in ruminants by affecting follicular development, ovulation rate and pregnancy rate[18,19]. These findings are consistent with the results of current studies. The authors suggested that these feed sources may supply the protein and energy needs for reproduction, but can include plant secondary compounds affecting different components of the reproductive cycle that must be explore in future study.

In the pre-pubertal period, diet plan was not significantly affected colostrum yield (P>0.05, Table 5). First lactation milk yields and quality of milk had not change among treatments (P>0.05), however in pre-weaning period, milk yield of kids fed LQD produced numerically more milk.

4. Discussion

4.1. Reproduction and growth

Animals reproductive performance is affected by a range of external factors, including socio-sexual cues, photoperiod and energy balance, age and breed. Reproduction is very energetically demanding, energy balance is arguably the next most powerful regulator of reproductive function. Variation in the level of nutrition (and changes in energy balance) can affect the reproductive cycle at almost any stage[2-4].

The reproductive abnormalities incidence was higher in H-L sequence compared with other treatments, and may be because of the higher kids’ birth weight of this treatment. Age at first parturition, age at puberty, at a younger age spending successful and safe parturition, optimal nutrition; stress, breed and geographical region are important characteristics relevant to overall reproductive efficiency. In overall, taking the results together suggests that by the effective nutrients utilization, productivity of goats is fostered which is possible with a sufficient energy supply. Animals of H-H sequence indicated their case dystocia, with regard to kids’ low birth weight despite of good HW of their dams, that the possible cause should be searched at the future study. Some reports indicated the supplementation with energy rich and/or protein rich diets exerts a significant effect on reproductive function in ruminants by affecting follicular development, ovulation rate and pregnancy rate[18,19]. These findings are consistent with the results of current studies. The authors suggested that these feed sources may supply the protein and energy needs for reproduction, but can include plant secondary compounds affecting different components of the reproductive cycle that must be explore in future study.

The nutrition action on reproduction is thought to be mediated by different physiological pathways. Various studies have shown that in small ruminant (sheep and goats) variations in energy balance, defined as the difference between the pool of disposable energy and the pool of expended energy, can influence any of the three levels of the reproductive axis (hypothalamus, pituitary gland, gonads) and also impact on regulatory feedback mechanisms[1,4,20]. And also, Jaborek et al.[18] recommend that availability of energy has a key role on reproductive efficiency, because of the reproductive axis sensitivity to the adequacy of stores and nutrition of metabolic reserves.

Results of the current study showed that the kids fed the HQD would gain faster compared to kids fed the LQD in both skeletal size and body weight. The theory was later confirmed by Mahgoub et al.[21] who documented an evaluated three concentrations of dietary ME of 2.10, 2.38 and 2.68 Mcal/kg DM and revealed a positive influence of increased energy supplementation on BW of Dhofari and Omani Batina goats. During post-weaning period, H-L group skeletal growth rate was lower than L-L group, but final H-L group skeletal size was higher than L-L sequence, indicating the importance of pre-weaning nutrition plane. Our results indicated...
that more than 50% of pre-pubertal skeletal growth to maturity can be pre-weaning period. Regarding the higher skeletal growth rate, responses to quality of diet are dependent on various parameters including the animal capacity to skeletal growth (mineral deposits and protein synthesis), the diet and protein quality considering to satisfy the mineral and amino acid requirement of animal for increased bone synthesis[3]. Our experiment results, in addition to energy and protein supply (quality of diet), skeletal growths might be relevant to the application of alfalfa in HQD treatment. Since the mineral and protein deposition rate decreases with age, the response of protein will reduce as the animal matures. According to the results of the present study the HQD diet was effective during the early parts of the study but less effective as the kids matured. It was seen that skeletal compensatory growth during post-weaning period for losses caused by poor nutrition can be compensated during this period.

A part from the HW, is the same for other sizes? The rate of pre-weaning skeletal growth is approximately more than three times the rate of growth after weaning. Some factors such as shoulder width and shoulder height grow at a slower rate compared to body length, while these linear body measurements are also highly correlated with live weight[6]. According to the results of the current study, it seemed that there was a positive relation between nutrition and puberty. Results indicated that kids in the L-H and H-H groups weighed more and were younger at puberty.

4.2. Milk

A more complete understanding of nutritional regulation of milk secretion would contribute to the feeding and management practices development for altering milk composition and optimizing milk production[8,22]. Thus, one of the main objectives of this study was to determine effects of survey of relationship between pre-pubertal planes of nutrition with milk quality in Kurdish female kids in the west of Iran.

Utilization of high energy diet has been shown to reduce the mammary parenchymal growth in replacement heifers[23] and ewe lambs[24,25] and is in agreement with current results, while milk protein concentration did not differ. In this reason, the HQD probably had high energy and increased mammary fat pad during the pre-weaning period (mammary allometric growth phase) and depressed mammary tissue secretion[25]. Also, Capuco et al.[10] reported that pre-pubertal dietary protein and BST supplementation have often resulted in no effects on milk yield and composition of dairy heifers. Synthesis of milk fat shows a major energy cost for production of cows and goats[26]. A part from the HW, is the same for other sizes? The rate of pre-weaning skeletal growth can be approximately more than three times the rate of growth after weaning. Some factors such as shoulder width and shoulder height grow at a slower rate compared to body length, while these linear body measurements are also highly correlated with live weight[6]. According to the results of the current study, it seemed that there was a positive relation between nutrition and puberty. Results indicated that kids in the L-H and H-H groups weighed more and were younger at puberty.

Acknowledgments

The authors would like to acknowledge Nomadic Management Department of Ilam Province (Iran) for providing research opportunities and for their help and collaborations in this work.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

[1] Lôbo AMBO, Lôbo RNB, Facó O, Souza V, Alves AAC, Costa AC, et al. Characterization of milk production and composition of four exotic goat breeds in Brazil. Small Rumin Res 2017; 153: 9-16.

[2] Niero CA, Ferguson MB, Macleay CA, Briegel JR, Wood DA, Martin GB, et al. Ewe lambs with higher breeding values for growth achieve higher reproductive performance when mated at age 8 months. Theriogenology 2013; 80(5): 427-435.

[3] Menatian S, Mirzaei AHR, Fatarnia F, Masoumi R. Effect of pre-pubertal plan of nutrition on reproductive performance, production concentrations and milk production in Kurdish female lambs. Iranian J Appl Anim Sci 2016; 6(3): 613-620.

[4] Lassoued N, Reikik M, Salem HB, Dargouth MA. Reproductive and productivity traits of goats grazing Acacia cyanophylla Lindl. with and without daily PEG supplementation. Livest Sci 2006; 105(1-3): 129-136.

[5] Kenyon PR, Thompson AN, Morris ST. Breeding ewe lambs successfully to improve lifetime performance. Small Rumin Res 2014; 118(1-3): 2-15.

[6] Kenyon PR, Smith SL, Morel PC, Morris ST, West DM. The effect of the maturity and prior breeding activity of rams and body condition score of ewe hoggets on the reproductive performance of ewe hoggets. N Z Vet J 2009; 57(5): 290-294.

[7] Shingfield KJ, Bernard L, Leroux C, Chilliard Y. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 2010; 4(7): 1140-1166.

[8] Jussig G, Renna M, Gorlier A, Lonati M, Lassoued N, Reikik M, Salem HB, Dargouth MA. Reproductive and productivity traits of goats grazing on alpine open grassland and grazable woodland. Small Rumin Res 2015; 132: 12-24.

[9] Silva LF, Vandehaar MJ, Whitlock BK, Radcliff RP, Tucker HA. Short communication: Relationship between body growth and mammary development in dairy heifers. J Dairy Sci 2002; 85(10): 2600-2602.

[10] Capuco AV, Dahl GE, Wood DL, Moalem U, Erdman RE. Effect of bovine somatotropin and rumen-undegradable protein on mammary growth of prepubertal dairy heifers and subsequent milk production. J Dairy Sci 2004; 87(11): 3762-3769.

[11] National Research Council. Nutrient requirements of small ruminants: Sheep, goats, cervids, and New World camelsid. Washington, DC: National Research Council of the National Academies, National Academies Press; 2007.

[12] AOAC. Official methods of analysis. 16th ed. Washington, DC: Association of Official Analytical Chemists; 2000.

[13] Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74(10): 3583-3597.

[14] Van der Linden DS, Lopez-Villalobos N, Kenyon PR, Thorstensen E, Jenkinson CMC, Peterson SW, et al. Comparison of four techniques to estimate milk production in singleton-rearing non-dairy ewes. Small Rumin Res 2010; 99(1-3): 18-26.

[15] National Research Council. Nutrient requirements of dairy cattle. 7th ed. Washington, DC: National Academy Press; 2001.

[16] Treacher TT, Caja G. Nutrition during lactation. In: Freer M, Dove H, editors. Sheep Nutrition. Australia: CSIRO Publishing; 2002. p. 65-71.

[17] SAS. SAS Users Guide. Cary, NC: SAS Institute Inc; 2003.

[18] Jablovec JR, Zerby HN, Moeller SJ, Fluharty FL. Effect of energy source and level, and sex on growth, performance, and carcass characteristics of lambs. Small Rumin Res 2017; 14: 1-22.

[19] O’Brian PM, Campbell J, Downing JA, Kendall RR, Khalid M, Muñoz-Gutiérrez M, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reprod Nutr Dev 2006; 46(4): 339-354.

[20] Daniel JA, Foradori CD, Whitlock BK, Sartin JL. Hypothalamic integration of nutrient status and reproduction in the sheep. Reprod Domest Anim 2013; 48(Suppl 1): 44-52.

[21] Mahgoub O, Lu CD, Hameed MS, Michel A, Al-Halhali AS, Annamalai K. Performance of Omani goats fed diets containing legumes and grasses. Small Rumin Res 2005; 58(2): 175-180.

[22] Harvatine KJ, Boisclair YR, Bauman DE. Recent advances in the regulation of milk fat synthesis. Animal 2009; 3(1): 40-54.

[23] Moalem U, Warner D, Lehrer H, Zachut M, Livshitz L, Yakooby S, et al. Long-term effects of ad libitum whole milk prior to weaning and prepubertal protein supplementation on skeletal growth rate and first-lactation milk production. J Dairy Sci 2010; 93(6): 2693-2690.

[24] Hofman PC, Funk DA. Applied dynamics of dairy replacement growth and management. J Dairy Sci 1992; 75(9): 2504-2516.

[25] Umberger SH. The effect of accelerated growth and fattening from early weaning to parturition on ewe reproduction and lactation. Thesis. North Carolina State Univ., Raleigh, North Carolina; 1980.

[26] Toral PG, Chilliard Y, Rouel J, Leskinen H, Shingfield KJ, Bernard L. Comparison of the nutritional regulation of milk fat secretion and composition in cows and goats. J Dairy Sci 2015; 98(10): 7727-7779.