SEMISIMPLICITY OF THE CATEGORIES OF YETTER-DRINFE LD M O D U LES AND LONG DIMODULES

S. CAENEPEEL AND T. GUÉDÉNON

Abstract. Let k be a field, and H a Hopf algebra with bijective antipode. If H is commutative, noetherian, semisimple and cosemisimple, then the category \mathcal{YD}^H of Yetter-Drinfeld modules is semisimple. We also prove a similar statement for the category of Long dimodules, without the assumption that H is commutative.

Introduction

Let H be a Hopf algebra at the same time acting and coacting on a vector space M. We can impose various compatibility relations between the action and coaction, leading to different notions of Hopf modules. Hopf modules are already considered by Sweedler [13], and they have to satisfy the relation

$$\rho(hm) = \Delta(h)\rho(m) = h_1m_0 \otimes h_2m_1$$

One can also require that the H-coaction is H-linear:

$$\rho(hm) = h\rho(m) = hm_0 \otimes m_1$$

A module satisfying this condition is called a Long dimodule. Long dimodules are the building stones of the Brauer-Long group, in the case where the Hopf algebra H is commutative, cocommutative and faithfully projective (see [7], and [1] for a detailed discussion). Long dimodules are also connected to a non-linear equation (see [9]). Another - at first sight complicated and artificial - compatibility relation is the following:

$$h_1m_0 \otimes h_2m_1 = (h_2m)_0 \otimes (h_2m)_1h_1$$

A module that satisfies it is called a Yetter-Drinfeld module. There is a close connection between Yetter-Drinfeld modules and the Drinfeld double (see [4]): if H is finitely generated projective, then the

1991 Mathematics Subject Classification. 16W30.

Key words and phrases. semisimple, Yetter-Drinfeld module, Long dimodule.

Research supported by the project G.0278.01 “Construction and applications of non-commutative geometry: from algebra to physics” from FWO Vlaanderen.
category of Yetter-Drinfeld modules is isomorphic to the category of modules over the Drinfeld double. Yetter-Drinfeld modules have been studied intensively by several authors over the past fifteen years, see for example [2], [6], [8], [11], this list is far from exhaustive. One of the important features is the fact that the category of Yetter-Drinfeld modules is braided monoidal. As Long dimodules, Yetter-Drinfeld modules are related to a non-linear equation, the quantum Yang-Baxter equation (see e.g. [5]). If \(H \) is commutative and cocommutative, then Yetter-Drinfeld modules coincide with Long dimodules.

In this note, we give sufficient conditions for the categories of Yetter-Drinfeld modules and Long dimodules to be semisimple (Section 3) and we study projective and injective dimension in these categories. Our main result is that the category of Yetter-Drinfeld modules is semisimple if \(H \) is a commutative, noetherian, semisimple and cosemisimple Hopf algebra over a field \(k \). The same is true for the category of Long dimodules, without the assumption that \(H \) is commutative.

For generalities on Hopf algebras, we refer the reader to [3], [10], [13]. For a detailed study of Hopf modules and their generalizations, we refer to [2].

1. Preliminary Results

Let \(k \) be a commutative ring, and \(H \) a faithfully flat Hopf algebra with bijective antipode \(S \). Unadorned \(\otimes \) and Hom will be over \(k \). We will use the Sweedler-Heyneman notation for comultiplication and coaction: for \(h \in H \), we write

\[
\Delta(h) = h_1 \otimes h_2
\]

(summation implicitly understood), and for a right \(H \)-comodule \((M, \rho_M)\) and \(m \in M \), we write

\[
\rho_M(m) = m_0 \otimes m_1
\]

\(_H M \) and \(M^H \) will be the categories of respectively left \(H \)-modules and left \(H \)-linear maps, and right \(H \)-comodules and right \(H \)-colinear maps. If \(M \) and \(N \) are right \(H \)-comodules, then we denote the \(k \)-module consisting of right \(H \)-colinear maps from \(M \) to \(N \) by \(\text{Hom}^H(M, N) \).

\[
M^{coH} = \{ m \in M \mid \rho_M(m) = m \otimes 1 \}
\]

is called the \(k \)-submodule of coinvariants of \(M \). Observe that \(H^{coH} = k \).

Suppose that a \(k \)-vector space \(M \) is at the same time a left \(H \)-module and a right \(H \)-comodule. Recall that \(M \) is called a left-right Yetter-Drinfeld module if

\[
h_1 m_0 \otimes h_2 m_1 = (h_2 m)_0 \otimes (h_2 m)_1 h_1
\]
or, equivalently,
\[\rho(hm) = h_2m_0 \otimes h_3m_1S^{-1}(h_1) \]
for all \(m \in M \) and \(h \in H \). \(M \) is called a left-right Long dimodule if
\[\rho(hm) = hm_0 \otimes m_1 \]
for all \(m \in M \) and \(h \in H \). If \(H \) is commutative and cocommutative, then a Long dimodule is the same as a Yetter-Drinfeld module. \(H \text{YD}^H \) and \(H \text{L}^H \) will be the categories of respectively Yetter-Drinfeld modules and Long dimodules, and \(H \)-linear \(H \)-colinear maps. The \(k \)-module consisting of all \(H \)-linear \(H \)-colinear maps between two Yetter-Drinfeld modules or two Long dimodules \(M \) and \(N \) will be denoted by \(H \text{Hom}^H(M, N) \). If \(H \) is finitely generated and projective, then the category \(H \text{YD}^H \) is isomorphic to the category \(D(H)\text{M} \), where \(D(H) \) is the Drinfeld double of \(H \), and \(H \text{L}^H \) is isomorphic to \(H \otimes H^* \text{M} \).

The functors
\[(-)^{coH} : H \text{YD}^H \to \text{M} \]
and \((-)^{coH} : H \text{L}^H \to \text{M} \)
are exact if
\[(-)^{coH} : \text{M}^H \to \text{M} \]
is exact. This is the case if \(H \) is cosemisimple and \(k \) is a field.

Lemma 1.1.

1. Let \(M \) and \(N \) be objects of \(H \text{YD}^H \). Then \(M \otimes N \) is an object of \(H \text{YD}^H \); the \(H \)-action and \(H \)-coaction are given by
\[h(m \otimes n) = h_1m \otimes h_2n \quad \text{and} \quad \rho(m \otimes n) = m_0 \otimes n_0 \otimes m_1n_1 \]
2. Let \(M \) and \(N \) be objects of \(H \text{L}^H \). Then \(M \otimes N \) is an object of \(H \text{L}^H \); the \(H \)-action and \(H \)-coaction are given by
\[h(m \otimes n) = h_1m \otimes h_2n \quad \text{and} \quad \rho(m \otimes n) = m_0 \otimes n_0 \otimes m_1n_1 \]
3. For any \(H \)-comodule \(N \), \(H \otimes N \) is an object of \(H \text{YD}^H \) via the following structures
\[h(h' \otimes n) = hh' \otimes n \quad \text{and} \quad \rho(h \otimes n) = h_2 \otimes n_0 \otimes h_3n_1S^{-1}(h_1) \]
4. For any \(H \)-comodule \(N \), \(H \otimes N \) is an object of \(H \text{L}^H \) via the following structures
\[h(h' \otimes n) = hh' \otimes n \quad \text{and} \quad \rho(h \otimes n) = h \otimes n_0 \otimes n_1 \]

Proof. This result is well-known, and the proof is a straightforward computation. It may be found in \[1\], p. 440], \[1\], Prop. 12.1.2], \[2\], Prop. 123], and \[2\], Sec. 7.2].\[\square\]
Lemma 1.2. (1) Let M and N be in $\mathcal{H}YD^H$. If H is commutative, then $M \otimes_H N$ is an object of $\mathcal{H}YD^H$. The H-action and H-coaction are given by

$$h(m \otimes n) = hm \otimes n = m \otimes hn$$

and

$$\rho_{M \otimes_H N}(m \otimes n) = m_0 \otimes n_0 \otimes n_1m_1$$

(2) Let H be commutative. Let M and N be in $\mathcal{H}YD^H$ with M finitely generated projective in $\mathcal{H}M$. Then

(a) $\mathcal{H}Hom(M, N) \in \mathcal{H}M^H$ and

$$\mathcal{H}Hom^H(M, N) = \mathcal{H}Hom(M, N)^{coH}$$

The coaction is defined by

$$\rho(f) = f_0 \otimes f_1 \in \mathcal{H}Hom(M, N) \otimes H$$

if and only if

$$f_0(m) \otimes f_1 = f(m_0)_0 \otimes f(m_0)_1S(m_1)$$

for all $m \in M$.

(b) $\mathcal{H}Hom(M, N) \in \mathcal{H}YD^H$; the H-action is defined by $(hf)(m) = hf(m)$.

Proof. 1) It is clear that $M \otimes_H N$ is an H-module. An easy verification shows that the H-coaction is well-defined on the tensor product over H and that the necessary associativity and counit properties are satisfied, so that $M \otimes_H N$ is also an H-comodule. $M \otimes_H N$ is a Yetter-Drinfeld module, since we have for every $h \in H$ that

$$\rho_{M \otimes_H N}(hm \otimes n) = (hm)_0 \otimes n_0 \otimes n_1(hm)_1$$

$$= h_2m_0 \otimes n_0 \otimes n_1h_3m_1S^{-1}(h_1)$$

$$= h_2(m_0 \otimes n_0) \otimes h_3n_1m_1S^{-1}(h_1)$$

$$= h_2(m \otimes n)_0 \otimes h_3(m \otimes n)_1S^{-1}(h_1)$$

2a) Let us define a map

$$\pi : \text{Hom}(M, N) \rightarrow \text{Hom}(M, N \otimes H)$$

by

$$\pi(f)(m) = f(m_0)_0 \otimes f(m_0)_1S(m_1)$$

Let f be H-linear. Using the commutativity of H, we obtain

$$\pi(f)(hm) = f((hm)_0)_0 \otimes f((hm)_0)_1S((hm)_1)$$

$$= (h_2f(m_0))_0 \otimes (h_2f(m_0))_1S(h_3m_1S^{-1}(h_1))$$

$$= h_2f(m_0)_0 \otimes h_4f(m_0)_1S^{-1}(h_2)h_1S(m_1)S(h_5)$$

$$= hf(m_0)_0 \otimes f(m_0)_1S(m_1) = h\pi(f)(m)$$
so \(\pi(f) \) is \(H \)-linear, and \(\pi \) restricts to a map
\[
\pi : \mathcal{H}\text{Hom}(M, N) \to \mathcal{H}\text{Hom}(M, N \otimes H)
\]
Now \(H \) is finitely generated and projective as an \(H \)-module, so we have a natural isomorphism \(\mathcal{H}\text{Hom}(M, N \otimes H) \cong \mathcal{H}\text{Hom}(M, N) \otimes H \), and we obtain a map
\[
\pi : \mathcal{H}\text{Hom}(M, N) \to \mathcal{H}\text{Hom}(M, N) \otimes H
\]
with \(\pi(f) = f_0 \otimes f_1 \) if and only if
\[
(\pi(f))(m) = f_0(m) \otimes f_1 = f(m_0)_0 \otimes f(m_0)_1 S(m_1)
\]
It is straightforward to show that \(\pi \) makes \(\mathcal{H}\text{Hom}(M, N) \) a right \(H \)-comodule. Now take \(f \in \mathcal{H}\text{Hom}^H(M, N) \) and \(m \in M \). Then
\[
\pi(f)(m) = f_0(m) \otimes f_1 = f(m_0)_0 \otimes f(m_0)_1 S(m_1) = f(m_0) \otimes m_1 S(m_2) = f(m) \otimes 1 = (f \otimes 1)(m)
\]
so \(f \) is coinvariant. Conversely, take \(f \in \mathcal{H}\text{Hom}(M, N)^{\text{co}H} \). Then for every \(m \in M \)
\[
f(m_0)_0 \otimes f(m_0)_1 S(m_1) = f_0(m) \otimes f_1 = f(m) \otimes 1
\]
and
\[
f(m_0)_0 \otimes f(m_0)_1 S(m_1) m_2 = f(m_0) \otimes m_1
\]
and it follows that
\[
\rho_N(f(m)) = \rho_N(f(m_0)) \varepsilon(m_1) = f(m_0) \otimes m_1
\]
and \(f \) is \(H \)-colinear.

2b) Clearly \(\mathcal{H}\text{Hom}(M, N) \) is an \(H \)-module and, by a), it is an \(H \)-comodule. On the other hand, we have
\[
((hf)_0 \otimes (hf)_1)(m) = ((hf)(m_0))_0 \otimes ((hf)(m_0))_1 S(m_1)
\]
\[
= (hf(m_0))_0 \otimes (hf(m_0))_1 S(m_1)
\]
\[
= h_2 f(m_0)_0 \otimes h_3 f(m_0)_1 S^{-1}(h_1) S(m_1)
\]
\[
= h_2 f(m_0)_0 \otimes h_3 f(m_0)_1 S(m_1) s^{-1}(h_1)
\]
\[
= h_2 f_0(m) \otimes h_3 f_1 S^{-1}(h_1)
\]
\[
= (h_2 f_0 \otimes h_3 f_1 S^{-1}(h_1))(m)
\]
so \(\mathcal{H}\text{Hom}(M, N) \in \mathcal{H}\mathcal{Y}\mathcal{D}^H \).

\[\square\]

Remark 1.3. The results in Lemma \[\ref{lem:1.2}\] remain true after we replace \(\mathcal{H}\mathcal{Y}\mathcal{D}^H \) by \(\mathcal{H}\mathcal{L}^H \). The \(H \)-coaction on \(M \otimes_H N \) is given by
\[
\rho_{M \otimes_H N}(m \otimes n) = m_0 \otimes n_0 \otimes m_1 n_1
\]
The \(H \)-coaction on \(\mathcal{H}\text{Hom}(M, N) \) is also defined by \(\Box \). Part 2a) of Lemma \[\ref{lem:1.2}\] then also holds if \(H \) is noncommutative.
Lemma 1.4. Let V be a k-module and N an H-module.

(1) $H\text{Hom}(H \otimes V, N)$ and $\text{Hom}(V, N)$ are isomorphic as k-modules.

(2) If V is projective as k-module, then $H \otimes V$ is projective in $H\mathcal{M}$.

Proof. 1) is well-known: the k-isomorphism $\Phi: H\text{Hom}(H \otimes V, N) \to \text{Hom}(V, N)$ is defined by $\Phi(f)(v) = f(1 \otimes v)$.

2) follows immediately from (1). □

Let V be an H-comodule which is finitely generated and projective as a k-module. By Lemmas 1.1 and 1.4, $H \otimes V$ is an object in $H\mathcal{YD}^H$ and in $H\mathcal{L}^H$, and is finitely generated projective as an H-module. So if N is an object of $H\mathcal{YD}^H$ and if H is commutative, then, by Lemma 1.2, $H\text{Hom}(H \otimes V, N)$ is an object in $H\mathcal{YD}^H$. If N is an object of $H\mathcal{L}^H$, then by Remark 1.3, $H\text{Hom}(H \otimes V, N)$ is an object of \mathcal{M}^H; if furthermore H is commutative, then $H\text{Hom}(H \otimes V, N)$ is an object of $H\mathcal{L}^H$.

Lemma 1.5. Let H be commutative and $N \in H\mathcal{YD}^H$.

(1) If V is an H-comodule which is finitely generated and projective as a k-module, then the H-comodules $H\text{Hom}(H \otimes V, N)$ and $\text{Hom}(V, N)$ are isomorphic.

(2) Let k be a field and V a finite-dimensional H-comodule that is projective as an H-comodule. Then $H \otimes V$ is a projective object of $H\mathcal{YD}^H$.

Proof. 1) Consider the canonical k-isomorphism $\phi: H\text{Hom}(H \otimes V, N) \to \text{Hom}(V, N)$, $\phi(f)(v) = f(1 \otimes v)$.

ϕ is H-colinear since

$$\phi(f)_0(v) \otimes \phi(f)_1 = (\phi(f)(v_0))_0 \otimes (\phi(f)(v_0))_1 S(v_1)$$

$$= f(1 \otimes v_0) \otimes f(1 \otimes v_0)_1 S(v_1)$$

$$= f((1 \otimes v)_0 \otimes f((1 \otimes v)_0)_1 S((1 \otimes v)_1)$$

$$= f_0(1 \otimes v) \otimes f_1$$

$$= (\phi(f_0))(v) \otimes f_1$$

2) By 1) and Lemma 1.2, we have

$$H\text{Hom}^H(H \otimes V, N) \cong H\text{Hom}(H \otimes V, N)^{coH}$$

$$\cong \text{Hom}(V, N)^{coH} \cong \text{Hom}^H(V, N)$$

□

Lemma 1.5 also holds with $H\mathcal{YD}^H$ replaced by $H\mathcal{L}^H$, and without the assumption that H is commutative.
Proposition 1.6. Let \(k \) be a field. An object \(M \) of \(_H \mathcal{YD}^H \) or \(_H \mathcal{L}^H \) is finitely generated as an \(H \)-module if and only if there exists a finite dimensional \(H \)-comodule \(V \) and an \(H \)-linear \(H \)-colinear epimorphism \(\pi : H \otimes V \to M \).

Proof. If there exist a finite dimensional \(H \)-comodule \(V \) and an epimorphism of \(H \)-modules \(\pi : H \otimes V \to M \), then \(H \otimes V \) is finitely generated as an \(H \)-module and \(M \) is a quotient of \(H \otimes V \) in \(_H \mathcal{M} \), so \(M \) is finitely generated in \(_H \mathcal{M} \).

Suppose that \(M \) is finitely generated as an \(H \)-module, with generators \(\{m_1, \ldots, m_n\} \). By [3, 5.1.1], there exists a finite dimensional \(H \)-subcomodule \(V \) of \(M \) containing \(\{m_1, \ldots, m_n\} \) and the \(k \)-linear map \(\pi : H \otimes V \to M, \pi(h \otimes v) = hv \) is an \(H \)-linear \(H \)-colinear epimorphism. \(\square \)

Let \(H^* \) be the linear dual of \(H \). If \(M \) and \(N \) are \(H \)-comodules, then \(\text{Hom}_k(M, N) \) is a left \(H^* \)-module, with \(H^* \)-action

\[
(h^* f)(m) = h^* (f(m_0)S(m_1))f(m_0)
\]

(adapt the proof of [12, Proposition 1.1]).

Lemma 1.7. Let \(H \) be commutative. For \(M, N \in _H \mathcal{YD}^H \), \(_H \text{Hom}(M, N) \) is a left \(H^* \)-submodule of \(\text{Hom}_k(M, N) \).

Proof. For all \(\alpha \in H^* \), \(f \in \text{Hom}_H(M, N) \), \(h \in H \) and \(m \in M \), we have

\[
(\alpha f)(hm) = \alpha \left(f((hm)_0)S((hm)_1) \right) f((hm)_0)
= \alpha \left(f(h_2m_0)_1S(h_3m_1S^{-1}(h_1)) \right) f(h_2m_0)
= \alpha \left((h_2(f(m_0)))_1h_1S(m_1)S(h_3) \right) (h_2f(m_0))_0
= \alpha \left(h_4f(m_0)_1S^{-1}(h_2)h_1S(m_1)S(h_5) \right) h_3f(m_0)_0
= \alpha \left(f(m_0)_1S(m_1) \right) hf(m_0)_0
= h(\alpha f)(m)
\]

and it follows that \(\alpha f \) is \(H \)-linear. Observe that we used the commutativity of \(H \). \(\square \)

Recall that a left \(H^* \)-module \(M \) is called rational if there exists a right \(H \)-coaction on \(M \) inducing the left \(H^* \)-action.

Proposition 1.8. Let \(H \) be a commutative Hopf algebra over a field \(k \). If \(M, N \in _H \mathcal{YD}^H \) with \(M \) finitely generated as \(H \)-module, then \(_H \text{Hom}(M, N) \in _H \mathcal{YD}^H \).
Proof. By Proposition 1.6, there exist a finite dimensional H-subcomodule V of M and an H-linear H-colinear epimorphism $\pi : H \otimes V \to M$. So we obtain an injective k-linear map

$$H\text{Hom}(\pi, N) : H\text{Hom}(M, N) \to H\text{Hom}(H \otimes V, N)$$

For all $\alpha \in H^*$, $f \in H\text{Hom}(M, N)$, $h \in H$ and $v \in V$, we have $\pi(h \otimes v) = hv$, $(1 \otimes v)_0 \otimes (1 \otimes v)_1 = 1 \otimes v_0 \otimes v_1$ and

$$(\alpha f) \circ \pi(1 \otimes v) = (\alpha f)(v) = \alpha(f(v)_1 S(v_1))f(v)_0$$

$$= \alpha(f(\pi(1 \otimes v)_0))_1 S(v_1)f(\pi(1 \otimes v)_0)_0$$

$$= \alpha(f(\pi(1 \otimes v)_0))(1 \otimes v)$$

This relation and the fact that $(\alpha f) \circ \pi$ and $\alpha(f \circ \pi)$ are H-linear imply that $((\alpha f) \circ \pi)(h \otimes v) = (\alpha(f \circ \pi))(h \otimes v)$, and it follows that the map $H\text{Hom}(\pi, N)$ is H^*-linear. By Lemma 1.2, $H\text{Hom}(H \otimes V, N)$ is an H-comodule, and therefore a rational H^*-module. It follows that $H\text{Hom}(M, N)$ is a rational H^*-module, being an H^*-submodule of the rational H^*-module $H\text{Hom}(H \otimes V, N)$. This shows that $H\text{Hom}(M, N)$ is an H-comodule. By Lemma 1.2, $H\text{Hom}(M, N) \in H\text{YD}^H$. \hfill \Box

Remark 1.9. 1) Lemma 1.7 is still true if we replace $H\text{YD}^H$ by $H\text{L}^H$, without the assumption that H is commutative.

2) We have the following Long dimodule version of Proposition 1.8: for a (not necessarily commutative) Hopf algebra over a field k, and $M, N \in H\text{L}^H$, with M finitely generated as an H-module, $H\text{Hom}(M, N) \in M^H$.

2. Projective and injective dimension in the category of Yetter-Drinfeld modules

Lemma 2.1. Let H be commutative, and $M, N, P \in H\text{YD}^H$, with N finitely generated projective as an H-module.

1) We have a k-isomorphism

$$H\text{Hom}^H(M, H\text{Hom}(N, P)) \cong H\text{Hom}^H(M \otimes_H N, P)$$

2) The functor

$$H\text{Hom}(N, -) : H\text{YD}^H \to H\text{YD}^H$$

preserves injective objects.

Proof. 1) We have a natural isomorphism

$$\phi : H\text{Hom}(M, H\text{Hom}(N, P)) \to H\text{Hom}(M \otimes_H N, P)$$
given by $\phi(f)(m \otimes n) = f(m)(n)$. We will show that ϕ restricts to an isomorphism between $\text{Hom}_H(M, \text{Hom}(N, P))$ and $\text{Hom}_H(M \otimes_H N, P)$. Take $f \in \text{Hom}_H(M, \text{Hom}(N, P))$ and $\phi(f) = g$. Then f is H-colinear if and only if
\[
 f(m_0) \otimes m_1 = f(m_0) \otimes f(m_1)
\]
for all $m \in M$. Using (1), we find that this is equivalent to
\[
 f(m_0)(n) \otimes m_1 = f(m_0)(n) \otimes f(m)(n_0) = f(m)(n_0) \otimes f(m)(n_1) S(n_1)
\]
for all $m \in M$ and $n \in N$, or
\[
 g(m_0 \otimes n) \otimes m_1 = g(m \otimes n_0) \otimes g(m \otimes n_0) S(n_1)
\]
which is equivalent to
\[
 g(m_0 \otimes n_0) \otimes m_1 n_1 = g(m \otimes n_0) \otimes g(m \otimes n) n_1
\]
and this equation means that g is H-colinear.

2) If I is an injective object of \mathcal{YD}_H^H, then the functor
\[
 \text{Hom}_H(-, I) : \mathcal{YD}_H^H \to k \mathcal{M}
\]
is exact. On the other hand, N is H-projective, hence the functor
\[
 (-) \otimes_H N : \mathcal{YD}_H^H \to \mathcal{YD}_H^H
\]
is exact, and it follows from (1) that
\[
 \text{Hom}_H(-, \text{Hom}(N, I)) : \mathcal{YD}_H^H \to k \mathcal{M}
\]
is exact. \qed

If k is a field, then the category of Yetter-Drinfeld modules \mathcal{YD}_H^H is Grothendieck, and every object has an injective resolution. For every Yetter-Drinfeld module M, we can define the right derived functors $\text{Ext}_H^H(M, -)$ of the covariant left exact functor
\[
 \text{Hom}_H(M, -) : \mathcal{YD}_H^H \to k \mathcal{M}
\]

Proposition 2.2. Let H be a commutative Hopf algebra over a field k, and $M, N, P \in \mathcal{YD}_H^H$ with N finitely generated projective as an H-module. Then
\[
 \text{Ext}_H^H(M, \text{Hom}(N, P)) \cong \text{Ext}_H^H(M \otimes_H N, P)
\]

Proof. By the first part of Lemma 2.1, the functors
\[
 \text{Hom}_H(M, \text{Hom}(N, -)) \quad \text{and} \quad \text{Hom}_H(M \otimes_H N, -)
\]
coincide on \mathcal{YD}_H^H. By the projectivity and the finiteness assumptions on N, the $\text{Hom}(N, -)$ is an exact endofunctor of \mathcal{YD}_H^H. By the second part of Lemma 2.1, it preserves the injective objects of \mathcal{YD}_H^H. \qed
Thus the functor $H\text{Hom}(N, -)$ preserves injective resolutions in HYD^H.

In the following corollary, $H\text{pdim}^H(-)$ and $H\text{injdim}^H(-)$ denote respectively the projective and injective dimension in the category HYD^H.

Corollary 2.3. Let H be a commutative Hopf algebra over a field k, and $M, N, P \in HYD^H$ with N finitely generated projective as an H-module. Then

1. $H\text{pdim}^H(M \otimes_H N) \leq H\text{pdim}^H(M)$.
2. $H\text{injdim}^H(H\text{Hom}(N, P)) \leq H\text{injdim}^H(P)$.

Remarks 2.4.
1) Let H be semisimple. Then the projectivity assumption in Lemma 2.1, Proposition 2.2 and Corollary 2.3 is no longer needed.
2) If k is a field, then HL^H is a Grothendieck category with enough injective objects, and every Long dimodule has an injective resolution. For every $M \in HL^H$, we can then define the right derived functors $H\text{Ext}^H(M, -)$ of the covariant left exact functor

$$H\text{Hom}^H(M, -) : HL^H \rightarrow kM$$

All the results of this Section remain valid for HL^H. If H is semisimple, then the projectivity assumptions are not needed.

3. Semisimplicity of the category of Yetter-Drinfeld modules

Throughout this Section, k will be a field, and H a commutative Hopf algebra. Recall that $M \in HYD^H$ is called simple if it has no proper subobjects; a direct sum of simples is called semisimple. If every $M \in HYD^H$ is semisimple, then we call the category HYD^H semisimple. We say that HYD^H satisfies condition (\dagger) if the following holds:

- if $M \in HYD^H$ is finitely generated as a left H-module, then $H\text{Hom}(M, -) : HYD^H \rightarrow HYD^H$ is exact.
- By Proposition 1.8, $H\text{Hom}(M, N) \in HYD^H$ if H is commutative and M is finitely generated as an H-module. Also observe that HYD^H satisfies condition (\dagger) if H is semisimple.

Proposition 3.1. Let H be commutative. Assume that HYD^H satisfies condition (\dagger) and that the functor

$$(-)^{coH} : HYD^H \rightarrow M$$

is exact. If $M \in HYD^H$ is finitely generated as an H-module, then M is a projective object in HYD^H.
Proof. We know that
\[H\Hom^H(M, -) \cong H\Hom(M, -)^{\text{co}H} \]
so \(H\Hom^H(M, -) \) is exact since it is isomorphic to the composition of two exact functors. \(\square \)

Corollary 3.2. With the same assumptions as in Proposition 3.1, and with \(H \) noetherian, we have that every object \(M \in \mathcal{YD}^H \) which is finitely generated as an \(H \)-module is a direct sum in \(\mathcal{YD}^H \) of a family of simple subobjects that are finitely generated as \(H \)-modules.

Proof. Let \(N \) be a subobject of \(M \) in \(\mathcal{YD}^H \). Then \(M/N \) is finitely generated as an \(H \)-module and we have an exact sequence
\[0 \to N \to M \to M/N \to 0 \]
in \(\mathcal{YD}^H \). \(N \) is finitely generated as \(H \)-module, since \(H \) is noetherian, so it follows from Proposition 3.1 that \(M/N \) and \(N \) are projective in \(\mathcal{YD}^H \), hence the sequence \((2) \) splits in \(\mathcal{YD}^H \). \(\square \)

Take \(M \in \mathcal{YD}^H \) and \(V \) a right \(H \)-subcomodule of \(M \). We will set
\[HV = \{ \sum_{i \in I} a_i v_i \mid a_i \in H, v_i \in V, \text{ where } I \text{ is a finite set} \} \]
\(HV \) is a subobject of \(M \) in \(\mathcal{YD}^H \); the \(H \)-action and \(H \)-coaction on \(HV \) are given by
\[h(\sum_{i \in I} a_i v_i) = \sum_{i \in I} h a_i v_i \]
\[\rho(\sum_{i \in I} a_i v_i) = \sum_{i \in I} (a_i)_2(v_i)_0 \otimes (a_i)_3(v_i)_1 S^{-1}((a_i)_1) \]

Corollary 3.3. Let \(H \) be commutative and noetherian. Assume that \(\mathcal{YD}^H \) satisfies condition (†), and that the functor \((-)^{\text{co}H}\) from \(\mathcal{YD}^H \) to \(\mathcal{M} \) is exact. Then \(M \in \mathcal{YD}^H \) is a direct sum in \(\mathcal{YD}^H \) of a family of simple subobjects that are finitely generated as \(H \)-modules. Therefore \(M \) is a semisimple object in \(\mathcal{YD}^H \) and \(\mathcal{YD}^H \) is a semisimple category.

Proof. Every \(m \in M \) is contained in a finite-dimensional \(H \)-subcomodule \(V_m \) of \(M \), see e.g. [3, 5.1.1]. Then \(HV_m \) is finitely generated as \(H \)-module, and, by Corollary 3.2, each \(HV_m \) is a direct sum of a family of simple subobjects of \(HV_m \) (and of \(M \)) in \(\mathcal{YD}^H \), which are finitely generated as an \(H \)-module. Consequently each \(m \in M \) is contained in a simple object which is finitely generated as an \(H \)-module, so \(M \) is a sum of simple objects finitely generated as an \(H \)-module. The sum is a direct sum since the intersection of two simple objects is trivial. \(\square \)
Corollary 3.4. Let H be commutative, noetherian (in particular: finite dimensional), semisimple and cosemisimple. Then each $M \in H\mathcal{YD}^H$ is a direct sum in $H\mathcal{YD}^H$ of a family of simple subobjects of M finitely generated as H-modules. Hence M is semisimple in $H\mathcal{YD}^H$ and $H\mathcal{YD}^H$ is a semisimple category.

Proof. The cosemisimplicity of H implies that the functor $(-)^{coH} : \mathcal{M}^H \to \mathcal{M}$ is exact, and, a fortiori $(-)^{coH} : H\mathcal{YD}^H \to \mathcal{M}$ is exact. □

Take $M, N \in H\mathcal{L}^H$, with M finitely generated as an H-module. By Proposition 1.8 and Remark 1.9, $H\text{Hom}(M, N) \in \mathcal{M}^H$, and we can study the semisimplicity of $H\mathcal{L}^H$. We will say that $H\mathcal{L}^H$ satisfies condition (†) if the functor $H\text{Hom}(M, -) : H\mathcal{L}^H \to \mathcal{M}^H$ is exact for every H-finitely generated $M \in H\mathcal{L}^H$. The previous results of this Section then remain true after we replace the category of Yetter-Drinfeld modules by Long dimodules, and without the assumption that H is commutative. We state the results without proof.

Proposition 3.5. Assume that $H\mathcal{L}^H$ satisfies condition (†) and that the functor $(-)^{coH} : \mathcal{M}^H \to \mathcal{M}$ is exact. Then every H-finitely generated $M \in H\mathcal{L}^H$ is a projective object in $H\mathcal{L}^H$.

Corollary 3.6. Let H be left noetherian, and assume that the conditions of Proposition 3.3 are satisfied. Then every H-finitely generated $M \in H\mathcal{L}^H$ is a direct sum in $H\mathcal{L}^H$ of a family of simple subobjects of M that are finitely generated as H-modules. $H\mathcal{L}^H$ is a semisimple category.

Corollary 3.7. Let H be left noetherian (in particular: finite dimensional), semisimple and cosemisimple. Then each $M \in H\mathcal{L}^H$ is a direct sum in $H\mathcal{L}^H$ of a family of simple subobjects of M that are finitely generated as H-modules. Hence $M \in H\mathcal{L}^H$ is semisimple and $H\mathcal{L}^H$ is a semisimple category.
REFERENCES

[1] S. Caenepeel, “Brauer groups, Hopf algebras and Galois theory”, K-Monographs Math. 4, Kluwer Academic Publishers, Dordrecht, 1998.
[2] S. Caenepeel, G. Militaru, and Shenglin Zhu, “Frobenius and separable functors for generalized module categories and nonlinear equations”, Lecture Notes in Math. 1787, Springer Verlag, Berlin, 2002.
[3] S. Dăscălescu, C. Năstăsescu and Ş. Raianu, “Hopf algebras: an Introduction”, Monographs Textbooks in Pure Appl. Math. 235, Marcel Dekker, New York, 2001.
[4] V. G. Drinfel’d, Quantum groups, in “Proc. ICM at Berkeley”, Amer. Math. Soc., Providence, 1987, 798–820.
[5] C. Kassel, “Quantum Groups”, Graduate Texts in Mathematics 155, Springer Verlag, Berlin, 1995.
[6] L. Lambe, D. Radford, Algebraic aspects of the quantum Yang-Baxter equation, J. Algebra 54 (1992), 228–288.
[7] F. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559-601.
[8] S. Majid, “Foundations of quantum group theory”, Cambridge Univ. Press, 1995.
[9] G. Militaru, The Long dimodules category and nonlinear equations, Algebr. Represent. Theory 2 (1999), 177–200.
[10] S. Montgomery, “Hopf algebras and their actions on rings”, American Mathematical Society, Providence, 1993.
[11] D. Radford, J. Towber, Yetter-Drinfeld categories associated to an arbitrary bialgebra, J. Pure Appl. Algebra 87 (1993), 259–279.
[12] D. Stefan, F. Van Oystaeyen, The Wedderburn-Malcev Theorem for comodule algebras, Comm. Algebra 27 (1999), 3569–3581.
[13] M. E. Sweedler, “Hopf algebras”, Benjamin, New York, 1969.

Faculty of Applied Sciences, Vrije Universiteit Brussel, VUB, B-1050 Brussels, Belgium
E-mail address: scaenepe@vub.ac.be
URL: http://homepages.vub.ac.be/ scaenepe/

Faculty of Applied Sciences, Vrije Universiteit Brussel, VUB, B-1050 Brussels, Belgium
E-mail address: guedenon@caramail.com