Multiple, Non-conserved, Internal Viral Ligands Naturally Presented by HLA-B27 in Human Respiratory Syncytial Virus-infected Cells*§

Susana Infantes‡§, Elena Lorente‡§, Eilon Barnea¶, Ilan Beer¶, Juan José Cragnolini||, Ruth García‡, Fátima Lasala‡, Mercedes Jiménez‡, Arie Admon¶, and Daniel López‡§**

Cytotoxic T lymphocyte (CTL)-mediated death of virus-infected cells requires prior recognition of short viral peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on the surface of infected cells. The CTL response is critical for the clearance of human respiratory syncytial virus (HRSV) infection. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HRSV-infected cells, we identified nine naturally processed HLA-B27 ligands. The isolated peptides are derived from six internal, not envelope, proteins of the infective virus. The sequences of most of these ligands are not conserved between different HRSV strains, suggesting a mechanism to explain recurrent infection with virus of different HRSV antigenic subgroups. In addition, these nine ligands represent a significant fraction of the proteome of this virus, which is monitored by the same HLA class I allele. These data have implications for vaccine development as well as for analysis of the CTL response. Molecular & Cellular Proteomics 9:1533–1539, 2010.

The recognition of short viral peptides associated with human histocompatibility complex (human leukocyte antigen (HLA))1 class I molecules on the cell surface allows cytotoxic T lymphocytes (CTLs) to recognize and kill virus-infected cells (1). These peptides are generated by proteolytic processing of newly synthesized viral proteins in the cytosol by the combined action of proteasomes, ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), and in some cases other peptidases (2). This degradation of viral proteins generates peptides of 8–11 residues that are transported to the endoplasmic reticulum lumen by transporters associated with antigen processing. These short peptides then assemble with the HLA class I heavy chain and β2-microglobulin. Usually, two major anchor residues in the antigenic peptide, at position 2 and the C terminus (3, 4), must be deeply accommodated into specific pockets of the antigen recognition site of the HLA class I molecule to stabilize the nascent complexes (5, 6) and allow for their subsequent transport to the cell membrane where they are exposed for CTL recognition (7).

Human respiratory syncytial virus (HRSV) (8), a member of the Paramyxoviridae family, is the single most important cause of bronchiolitis and pneumonia in infants and young children (9–11). Infections of this virus occur in people of all ages, but although usually mild infections are reported in healthy adults, HRSV poses a serious health risk in immunocompromised individuals (12, 13) and in the elderly (14, 15). The single-stranded, negative-sense RNA genome of this enveloped virus codes for 11 proteins.

Although the immune mechanism involved in HRSV disease and protection is not well understood, specific CD8+ T lymphocytes are required for the clearance of virus-infected cells (16). Previously, several HRSV epitopes restricted by different HLA class I molecules were identified using CTLs from seropositive individuals (17–21). However, these experiments were performed with synthetic peptides against individual proteins. In contrast, only one published study attempted to elucidate the nature and diversity of the possible array of HRSV ligands restricted by individual HLA molecules (22). In this study, virus-infected cells were cultured with stable, isotope-labeled amino acids, which were expected to act as anchor residues for the HLA allele of interest. The MHC molecules were then immunoprecipitated, and mass spectrometry analysis was performed. This study identified one HRSV ligand for each of the HLA-A2 and -B7 class I molecules (22). Therefore, is only one HRSV ligand restricted by a single HLA molecule exposed on the cell membrane surface as suggested by this study? Conversely, could a particular HLA molecule bind several ligands of this small virus simultaneously? To answer these questions, we compared HLA-B27

From the ‡Unidad de Proteómica and §Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain, ¶Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel, and ||Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received, October 27, 2009, and in revised form, January 5, 2010 Published, MCP Papers in Press, January 15, 2010, DOI 10.1074/mcp.M900508-MCP200

1 The abbreviations used are: HLA, human leukocyte antigen; Ab, antibody; B27-C1R, Hmy2.C1R transfected with HLA-B2705; CTL, cytotoxic T lymphocyte; EC50, half-maximal effective concentration; HRSV, human respiratory syncytial virus; MHC, major histocompatibility complex; TAP, transporter associated with antigen processing; μLC, microcapillary LC; SH, small hydrophobic.
Peptide samples were then concentrated to about 18 mg/mL in a mixture. The tip was then washed with an additional volume of 0.1% TFA, rinsed with 0.1% TFA, and then loaded with the peptide mass spectrum by CID.

The seven most intense masses that exhibited single, double, or triple charge states were selected for 24 min in the presence of 0.5% acetic acid. An MS/MS mode was used that focused on each hypothetical parental peptide with an isolation width (m/z of 1.5 Da (36). The charge and mass of the ionic species were determined by high resolution sampling of the mass/charge ratio. Collision energy and ion precursor resolution were improved to optimize the fragmentation spectrum.

Electrospray Ion Trap Mass Spectrometry Analysis—In addition, the corresponding synthetic peptide was used as controls in complex stability assays: Flu NP (SRYWAIRTR, HLA-B27-restricted) (37) and C4CON (QYDDAVYLK, HLA-Cw4-restricted) (38). RMA-S B27 transfectants, a cell line deficient in TAP that expresses low amounts of MHC class I on the cell surface (27), were incubated at 26 °C for 16 h in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum. This allows the expression on the cellular membrane of empty MHC class I molecules (without antigenic peptide) that are stable only at 26 °C but not at 37 °C. Later, the cells were washed and incubated for 2 h at 26 °C with various concentrations of peptide in the same medium. Then, the MHC-specific peptides could bind and stabilize the empty MHC class I molecules. Later, the cells were transferred to 37 °C and collected for flow cytometry after 4 h. This allows the internalization of empty MHC class I molecules and thus can discriminate between bound and unbound peptides. MHC expression was measured using 100 μl of a hybridoma culture supernatant containing the ME1 (anti-HLA-B27) monoclonal Ab as described previously (39). Samples were acquired on a FACSCalibur flow cytometer (BD Biosciences) and analyzed using CellQuest Pro 2.0 software (BD Biosciences). Cells incubated without peptide had peak fluorescence intensities close to background staining with secondary Ab alone. The fluorescence index was calculated for each time point as the ratio of peak channel fluorescence of the sample to that of the control incubated without peptide. Binding of peptides was expressed as EC50, which is the molar concentration of the peptide at 50% of the maximum fluorescence obtained at a concentration range of 100–0.001 μM.

RESULTS AND DISCUSSION

Nine Viral HLA Ligands Were Differentially Detected in HRSV-infected Cells—B27-C1R cells were incubated with the Long strain of HRSV and assayed at different times for the presence of HRSV antigens by flow cytometry. The results indicate that the transfectant cell line incubated with the virus, but not the mock-infected control, expressed HRSV F and G proteins (110 ± 10 mean fluorescence intensity versus 4 ± 3 for the mock control cells). These cells continued to synthesize HRSV viral proteins and secrete infectious virus several months after infection (data not shown). Thus, a B27-C1R transfectant cell line persistently infected with HRSV was obtained in the same manner as previously-reported.
ported for Epstein-Barr virus-transformed human B-cell lines (40).

HLA-bound peptide pools were isolated from large amounts of either healthy or HRSV-infected cells. These peptide mixtures were subsequently separated by reverse-phase HPLC and analyzed by mass spectrometry. Using several software technologies (see "Experimental Procedures"), 209 fragmentation spectra were resolved as peptidic sequences of different human cellular proteins. Moreover, 10 fragmentation spectra present in the HRSV-infected HLA-bound peptidic pool, but absent in the control uninfected pool (data not shown), were resolved with high confidence parameters as peptides of HRSV viral proteins. Additionally, a human proteome database search failed to reveal the identity of these spectra as human protein fragments, confirming the viral origin of these peptides (data not shown). Two different ion peaks at m/z 409.9 and 614.3 were assigned to the same viral amino acid sequence. These ion peaks corresponded to double (Fig. 1, upper panel) and triple charge (Fig. 1, lower panel) states, respectively, of the peptide HRQDINGKEM, which spans residues 100–109 of the HRSV nucleoprotein (Table I). Virtually all significant fragments of both MS/MS spectra were assigned as daughter ions of the tentative peptidic sequence (Fig. 1). This theoretical assignment was confirmed by identity with the MS/MS spectrum of the corresponding synthetic peptide (supplemental Fig. 1). In addition, the eight other molecular ions were assigned as HLA-restricted viral ligands (Table I and supplemental Figs. 2–9), and their tentative sequences were confirmed as above with the respective synthetic peptide (supplemental Fig. 1). Thus, these results indicate that a total of nine HRSV ligands were endogenously processed and presented in the infected cell line.

Identification of viral HLA ligands by immunoproteomics analysis is still very limited. A previous study identified 12 viral

\[\text{molecular species at } m/z 614.3\]

\[\text{molecular species at } m/z 409.9\]

2 S. Infantes, E. Lorente, E. Barnea, I. Beer, J. J. Cragnolini, R. García, F. Lasala, M. Jiménez, A. Admon, and D. López, manuscript in preparation.
ligands presented by HLA-A*0201 by differential stable isotope labeling of large amounts of vaccinia virus Ankara-infected cells (41). In another study with a similar approach but 10-fold fewer infected cells, only one HRSV ligand was identified for each HLA-A*0201 or -B*0702 class I molecule (22). In our current report in which the amount of cells used was similar to that in the vaccinia virus study and the peptide pools were compared directly without any labeling, nine endogenously processed HRSV HLA ligands were found. Thus, our current report shows a similar number of HLA ligands between viruses that differ 13-fold in their respective proteome sizes. Therefore, large scale immunoproteomics could allow for the systematic identification of the array of viral HLA ligands.

HRSV-specific Ligands Efficiently Bind to B*2705 Molecule—The classical anchor motifs for HLA-B*2705 binding, Arg at position 2 (P2) and basic or aliphatic C-terminal residues (SYFPEITHI database (4)), were present in all detected viral ligands (Table I). To confirm that HLA-B*2705 is the MHC class I molecule that presents these ligands, MHC-peptide complex stability assays were performed using TAP-deficient RMA-S cells transfected with the HLA-B*2705 molecule. The nine HRSV synthetic peptides induced similar numbers of HLA-peptide surface complexes to a well known HLA-B*2705 epitope from the influenza virus (Fig. 2). In addition, the relative MHC class I affinity was determined for all HRSV peptides. These peptides bound to HLA-B*2705 class I molecules with EC50 values in the range commonly found among natural ligands (Table II). These data indicate that all ligands detected in HRSV-infected cells were endogenously presented in association with the B*2705 molecule.

Among the nine HRSV peptides discovered by the proteomics analysis, four (matrix 76–84+, matrix 169–177+, polymerase-, and non-structural protein 2-derived peptides) were nonamers. In addition, two (matrix 2-22k and nucleoprotein 100–109 ligands) were decamers, and the other three (phosphoprotein, nucleoprotein 184–194, and nucleoprotein

TABLE I

Nominal massa	Experimental massa	ΔMassb	m/z	Sequencec	Protein	Position
614.299	614.297	0.002	2+	HRQDINGKEM	Nucleoprotein	100–109
409.868	409.868	0.000	3+	HRQDINGKEM	Nucleoprotein	100–109
672.862	672.858	0.004	2+	RRANVNLKNE	Nucleoprotein	184–194
444.278	444.277	0.001	3+	KRYKGGLPKD	Nucleoprotein	195–205
488.766	488.764	0.002	2+	SRSALLAQM	Matrix	76–84
536.809	536.807	0.002	2+	VRNKDLNLT	Matrix	169–177
525.770	525.769	0.001	2+	GRNEVFSNK	Polymerase	2089–2097
389.924	389.922	0.002	3+	KRLPADVLK	Matrix 2-22k	150–159
445.563	445.562	0.001	3+	LNEESEKMAK	Phosphoprotein	198–208
404.893	404.891	0.002	3+	HRFIYLINH	Non-structural protein 2	37–45

a Mass of monoisotopic ion in amu.

b Difference between nominal and experimentally detected monoisotopic ions.

c The HLA-B27 anchor motifs are underlined.

FIG. 2. HLA stabilization assay of HRSV synthetic ligands. The stability of HLA-B*2705-peptide complexes on the surface of RMA-S transfecnt cells was measured by flow cytometry. The indicated peptides were used at 200 μM. The C4CON (38) and Flu NP (37) peptides were used as negative and positive controls, respectively. The results, calculated as fluorescence index (see “Experimental Procedures”), are the mean (bars) ± S.D. (error bars) of three to four independent experiments.

TABLE II

Peptide	Sequence	EC50 ± S.D.
N 100–109	HRQDINGKEM	26 ± 5
N 184–194	RRANVNLKNE	10 ± 1
N 195–205	KRYKGGLPKD	5 ± 2
M 76–84	SRSALLAQM	9 ± 2
M 169–177	VRNKDLNLT	12 ± 5
L 2089–2097	GRNEVFSNK	18 ± 3
M2-22k 50–59	KRLPADVLK	9 ± 2
P 198–208	LRNEESEKMAK	14 ± 3
NS2 37–45	HRFIYLINH	11 ± 4
Flu NP	SRYWAI	8 ± 2

a All peptides were derived from the sequence of the Long strain of HRSV except for Flu NP 383–391 (37), which was used as positive control for HLA-B27 binding.

b Data are means of three to five independent experiments and are expressed as EC50 ± S.D. (see “Experimental Procedures”).
195–205) were undecamers. No correlation was found between the length of the peptides and their affinity for the HLA-B*2705 molecule (Table II). Of the 239 B*2705-bound cellular ligands previously sequenced (SYFPEITHI database), 4% were octamers, 65% were nonamers or decamers, and 11% were undecamers or longer peptides with both HLA-B*2705 anchor motifs. Thus, this HLA molecule could easily accommodate bulged peptides. The results shown here (Table I) indicate that bulged viral ligands could be presented by the B*2705 molecule.

Internal Protein, but Not F Protein, Ligands Are Presented by HLA-B*2705 in HRSV-infected Cells—Eleven proteins are encoded by the HRSV genome (8). In general, the larger proteins in this proteome contain more Arg residues with the exception of the G protein (Table III) and thus are candidates for the source of HLA-B27-restricted epitopes. All nine identified HLA-B*2705 ligands are derived from viral proteins with a significant Arg content in their sequences with the one exception. The F protein is the second largest protein in the HRSV proteome and is also the second most Arg-enriched protein of HRSV, containing 18 Arg residues (Table III). The epitope prediction for HLA-B*2705 binding using various web software tools showed HLA-B27 peptide scores similar to those for the binding of other HRSV proteins with HLA-B*2705 ligands (data not shown). In addition to the fusion protein F, the HRSV envelope contains two other transmembrane surface glycoproteins, the attachment protein G and the small hydrophobic (SH) protein (8). Both G and SH proteins contain only two Arg in their amino acid sequences; these residues are needed to anchor peptides to the HLA-B27 molecule. Thus, the lack of HLA-B27 ligands in these envelope proteins could be expected. In summary, the absence of F and, to a lesser extent, G and SH protein ligands indicates that HLA-B*2705 exclusively sampled internal HRSV viral proteins. This lack of envelope protein ligands was also recently described for influenza epitopes restricted by the HLA-B*0702 allele (42). Therefore, for some pairs of HLA and virus, only internal ligands are found associated to class I molecules.

Most of HLA-B*2705 Ligands Are Not Conserved between HRSV Antigenic Subgroups—HRSV exists as a single serotype but has two antigenic subgroups, A and B (8). Most proteins are highly conserved between these subgroups (88–96% amino acid identity). Greater differences are found in the M2-2, G, and SH proteins (61–71% amino acid identity). Within subgroups, the percentage of nucleotide and amino acid identity between viruses is much higher for all proteins (97–100% amino acid identity). In addition, mutations that enable escape from host immunity do not appear to accumulate with time (8). Thus, it would be reasonable to infer the identity of HLA-B*2705-restricted ligands between strains of different subgroups. Therefore, amino acid sequence comparison was performed for the ligands identified in the Long strain with two or three representative strains of subgroups A and B, respectively. Table IV shows that two-thirds of the ligands detected in the Long strain are mutated in all of the subgroup B strains sequenced. N 195–205 and M 76–84 ligands had mutations in T cell receptor-interacting residues, whereas N 100–109 and N 184–194 were mutated at the N- and C-terminal anchor residues, respectively. The sequences of the B subgroup present alterations in the P2 anchor motif as well as a change in the sequence of both NS2 37–45 and M 169–177 ligands. Only P 198–208, M2-22k 150–159, and L 2089–2097 peptides were conserved in all strains studied. Two ligands were not conserved across subgroup A strains: Arg was changed to Lys in the NS2 37–45 ligand of the A2

Table III

Distribution of Arg content and HLA-B27 ligands in HRSV proteome

Long strain	Number of Arg	Percentage of Arg	Number of residues	Percentage of proteome	Ligands
L	81	51.6	2165	49.2	1
F	18	11.5	573	13.0	0
N	16	10.2	391	8.9	3
P	11	7.0	219	5.0	1
M2-22k	11	7.0	195	4.4	1
M	6	3.8	256	5.8	2
NS2	6	3.8	124	2.8	1
M2-2	3	1.9	90	2.0	0
G	2	1.3	186	4.2	0
SH	2	1.3	65	1.5	0
NS1	1	0.6	138	3.1	0

a The abbreviations used are: L, polymerase; F, fusion protein; N, nucleoprotein; P, phosphoprotein; M2-22k, matrix protein 22k; M, matrix protein; NS2, non-structural protein 2; M2-2, matrix protein 2; G, attachment protein; SH, small hydrophobic protein; and NS1, non-structural protein 1.

b Number of Arg in the viral proteome.

c Percentage of Arg included in the viral proteome.

d Total number of residues.

e Number of residues of each protein/number of total residues as a percentage.

f Number of HLA-B27 ligands in HRSV.

Table IV

Conservation of HLA-B27 viral ligands in several HRSV strains

Strain	N 195–205	M 76–84	N 100–109	N 184–194	NS2 37–45	M 169–177	P 198–208	M2-22k 150–159	L 2089–2097
Long	KRYKGLLPFDI	SRSALLAQM	HRQDINGKEM	RRANVLYKXNM	HRFYLLNH	VRNKDLNTL	LRNEESEKMAK	KRLPADVRLK	GRNEVFSNK
S2	-----------	---------	----------	-----------	---------	-----------	-----------	----------------	-------------
A2	-----------	---------	----------	-----------	---------	-----------	-----------	----------------	-------------
9320	-----------	---------	----------	-----------	---------	-----------	-----------	----------------	-------------
18537	-----------	---------	----------	-----------	---------	-----------	-----------	----------------	-------------
B1	-----------	---------	----------	-----------	---------	-----------	-----------	----------------	-------------

a Long, S2, and A2 strains are representative of HRSV subtype A, whereas 9320, 18537, and B1 are HRSV subtype B strains.
Natural HLA-B27 Ligands in HRSV-infected Cells

Virus*	Proteome Residuesb	Arg Numberc	Epitopesd
HRSV	4402	2	157 6
Influenza	4112	2	284 2
HIV	3151	4	184 7

a. The sequences used were Long strain (HRSV), A/Puerto Rico/8/34 strain (influenza), and human immunodeficiency virus (HIV) clade B consensus (Los Alamos National Laboratory, National Institutes of Health).

b. Total number of residues.

c. Percentage of proteome included in the detected epitopes/ligands.

d. Number of epitopes or ligands/number of total Arg as a percentage.

In summary, the present report demonstrates that the endogenous processing of HRSV proteins generates multiple peptidic species that are bound to the HLA-B27 molecule in infected cells. These ligands, identified by mass spectrometry of intricate cellular extracts, induce high numbers of HLA-peptide complexes, and their respective MHC class I affinities are similar to those of other natural HLA-B27 ligands. All nine peptides are derived from internal proteins of the infective virus, and the sequences of most of the peptides are not conserved between the two HRSV antigenic subgroups described above. Lastly, these nine ligands represent a significant fraction of the proteome of this virus monitored by the same MHC class I allele.

Acknowledgment—We thank Dr. J. A. López de Castro (Centro de Biología Molecular Severo Ochoa, Madrid, Spain) for the cell lines.

REFERENCES

1. Shastri, N., Schwab, S., and Servold, T. (2002) Producing nature’s gene-chips: the generation of peptides for display by HLA class I molecules. Annu. Rev. Immunol. 20, 463–493

2. Del-Val, M., and López, D. (2002) Multiple proteases process viral antigens for presentation by HLA class I molecules to CD8+ T lymphocytes. Mol. Immunol. 39, 235–247

3. Parker, K. C., Bednarek, M. A., and Coligan, J. E. (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175

4. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A., and Stevanovic, S. (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219

5. Bjorkman, P. J., Unger, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512

6. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigen. Nature 329, 512–518

7. York, I. A., Goldberg, A. L., Mo, X. Y., and Rock, K. L. (1999) Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev. 172, 49–66

8. Collins, P. L., Chanock, R. M., and Murphy, B. R. (2007) Respiratory syncytial virus, in Fields Virology (Knipe, D. M., and Howley, P. M., eds) 5th Ed., Lippincott Williams and Wilkins, Philadelphia 1443–1486

9. Hall, C. B. (2001) Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 344, 1917–1928

10. Shay, D. K., Holman, R. C., Roosevelt, G. E., Clarke, M. J., and Anderson, L. J. (2003) Bronchiolitis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979–1997. J. Infect. Dis. 183, 16–22

11. Thompson, W. W., Shay, D. K., Weintraub, E., Brammer, L., Cox, N., Anderson, L. J., and Fukuda, K. (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186

12. Wendt, C. H., and Hertz, M. I. (1995) Respiratory syncytial virus and parainfluenza virus infections in the immunocompromised host. Semin. Respir. Infect. 10, 224–231

13. Ison, M. G., and Hayden, F. G. (2002) Viral infections in immunocompro-
mised patients: what’s new with respiratory viruses? Curr. Opin. Infect. Dis. 15, 355–367
14. Han, L. L., Alexander, J. P., and Anderson, L. J. (1999) Respiratory syncytial virus pneumonia among the elderly: an assessment of disease burden. J. Infect. Dis. 179, 25–30
15. Falsey, A. R., Hennessey, P. A., Formica, M. A., Cox, C., and Walsh, E. E. (2005) Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 352, 1749–1759
16. Anderson, L. J., and Heilman, C. A. (1995) Protective and disease-enhancing immune responses to respiratory syncytial virus. J. Infect. Dis. 171, 1–7
17. Brandenburg, A. H., de Waal, L., Timmerman, H. H., Hoogenhout, P., de Swart, R. L., and Osterhaus, A. D. (2000) HLA class I-restricted cytotoxic T-cell epitopes of the respiratory syncytial virus fusion protein. J. Virol. 74, 10240–10244
18. Rock, M. T., and Crowe, J. E., Jr. (2003) Identification of a novel human leucocyte antigen-A01-restricted cytotoxic T-lymphocyte epitope in the respiratory syncytial virus fusion protein. Immunology 108, 474–480
19. Venter, M., Rock, M., Puren, A. J., Ternesena, C. T., and Crowe, J. E., Jr. (2003) Respiratory syncytial virus nucleoprotein-specific cytotoxic T-cell epitopes in a South African population of diverse HLA types are conserved in circulating field strains. J. Virol. 77, 7319–7329
20. Heidema, J., de Bree, G. J., De Graaff, P. M., van Maren, W. W., Hoogerhout, P., Out, T. A., Kimjen, J. L., and van Bleek, G. M. (2004) Human CD8(+) T-cell responses against five newly identified respiratory syncytial virus-derived epitopes. J. Gen. Virol. 85, 2365–2374
21. Terrosi, C., Di Genova, G., Savellini, G. G., Corseale, P., Biardi, P., and Cusi, M. G. (2007) Immunological characterization of respiratory syncytial virus N protein epitopes recognized by human cytoplasmic T lymphocytes. Viral Immunol. 20, 399–406
22. Meiring, H. D., Soethout, E. C., Poelen, M. C., Moolbroek, D., Hoogerbrugge, R., Timmermans, H., Boog, C. J., Heck, A. J., de Jong, A. P., and van Elis, C. A. (2006) Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection. Mol. Cell. Proteomics 5, 902–913
23. Calvo, V., Rojo, S., López, D., Galocha, B., and López de Castro, J. A. (1990) Structure and diversity of HLA-B27-specific T-cell epitopes. Analysis with site-directed mutants mimicking HLA-B27 subtype polymorphism. J. Immunol. 144, 4038–4045
24. Storkus, W. J., Howell, D. N., Salter, R. D., Dawson, J. R., and Cresswell, P. (1987) NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 138, 1657–1659
25. Zemmour, J., Littie, A. M., Schendel, D. J., and Parham, P. (1992) The HLA-A,B “negative” mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J. Immunol. 148, 1941–1948
26. Ljunggren, H. G., and Kärre, K. (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J. Exp. Med. 162, 1745–1759
27. Villadangos, J. A., Galocha, B., and López de Castro, J. A. (1994) Unusual topology of an HLA-B27 allospecific T-cell epitope lacking peptide specificity. J. Immunol. 152, 2317–2323
28. Barnstable, C. J., Bodmer, W. F., Brown, G., Galfre, G., Milstein, C., Williams, A. F., and Ziegler, A. (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14, 9–20
29. Ellis, S. A., Taylor, C., and McMichael, A. (1982) Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum. Immunol. 5, 49–59
30. Cragnolini, J. J., and López de Castro, J. A. (2008) Identification of endogenously presented peptides from Chlamydia trachomatis with high homology to human proteins and to a natural self-ligand of HLA-B27. Mol. Cell. Proteomics 7, 170–180
31. Cragnolini, J. J., García-Medel, N., and López de Castro, J. A. (2009) Endogenous processing and presentation of T-cell Epitopes from chlamydia trachomatis with relevance in HLA-B27-associated reactive arthritis. Mol. Cell. Proteomics 8, 1850–1859
32. Ishihama, Y., Rappsilber, J., Andersen, J. S., and Mann, M. (2002) Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A 979, 233–239
33. Beer, I., Barnea, E., Ziv, T., and Admon, A. (2004) Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4, 950–960
34. Eng, J., McCormack, A., and Yates, J. (2009) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989
35. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567
36. López, D., Calero, O., Jiménez, M., García-Calvo, M., and Del Val, M. (2008) Antigen processing of a short viral antigen by proteasomes. J. Biol. Chem. 281, 30315–30318
37. Wang, M., Lambeth, K., Harndahl, M., Reder, G., Strynh, A., Larsen, M. V., Nielsen, M., Lundegaard, C., Tang, S. T., Dziegel, M. H., Rosenkvist, J., Pedersen, A. E., Buus, S., Claesson, M. H., and Lund, O. (2007) CTL epitopes for influenza A including the H5N1 bird flu; genome-, patho-, and HLA-wide screening. Vaccine 25, 2823–2831
38. Fan, Q. R., Garboczi, D. N., Winter, C. C., Wagtman, N., Long, E. O., and Wiley, D. C. (1996) Direct binding of a soluble natural killer cell inhibitory receptor to a soluble human leukocyte antigen-CW4 class I major histocompatibility complex molecule. Proc. Natl. Acad. Sci. U.S.A. 93, 7178–7183
39. López, D., Samino, Y., Koszinowski, U. H., and Del Val, M. (2001) HIV envelope protein inhibits MHC class I presentation of a cytomegalovirus protease epitope. J. Immunol. 167, 4238–4244
40. Bangham, C. R., and McMichael, A. J. (1986) Specific human cytotoxic T cells recognize B-cell lines persistently infected with respiratory syncytial virus. Proc. Natl. Acad. Sci. U.S.A. 83, 9183–9187
41. Meyer, V. S., Kastenmuller, W., Gasteiger, G., Franz-Wachtel, M., Lamkemeyer, T., Rammensee, H. G., Stevanovic, S., Sigurdardottir, D., and Drexlcr, I. (2008) Long-term immunity against actual poxviral HLA ligands as identified by differential stable isotope labelling. J. Immunol. 181, 6371–6383
42. Wahl, A., Schafer, F., Bardet, W., Buchli, R., Air, G. M., and Hildebrand, W. H. (2009) HLA class I molecules consistently present internal influenza epitopes. Proc. Natl. Acad. Sci. U.S.A. 106, 540–545
43. Chang, J., and Braciale, T. J. (2002) Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat. Med. 8, 54–60
44. Mufson, M. A., Belshe, R. B., Orvell, C., and Norrby, E. (1987) Subgroup characteristics of respiratory syncytial virus strains recovered from children with two consecutive infections. J. Clin. Microbiol. 25, 1535–1539
45. Peters, B., Sidney, J., Bourne, P., Bui, H. H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., Nemaze, D., Ponomarenko, J. V., Sathiamurthy, M., Schoenberger, S., Stewart, S., Surko, P., Way, S., Wilson, S., and Sette, A. (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol. 3, e91