Complete mitogenomes and phylogenetic relationships of *Haemaphysalis nepalensis* and *Haemaphysalis yeni*

Xin-yan Lu1†, Quan-fu Zhang2†, Dan-dan Jiang3, Ya-fang Liu1, Bin Chen1, Shuang-ping Yang1, Zong-ti Shao4, Hang Jiang4, Jian Wang4, Yi-hao Fang5*, Chun-hong Du6* and Xing Yang1*

The mitochondrial genome may include crucial data for understanding phylogenetic and molecular evolution. We sequenced the complete mitogenome of *Haemaphysalis nepalensis* and *Haemaphysalis yeni* for the first time. *H. nepalensis* and *H. yeni*’s complete mitogenomes were 14,720 and 14,895 bp in size, respectively, and both contained two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes (PCG). *Haemaphysalis nepalensis* have one control region (D-loop). The adenine + thymine concentration of the genomes of *H. nepalensis* and *H. yeni* was 77.75 and 78.41%, respectively. The codon use pattern and amino acid content of proteins were both observed to be affected by the AT bias. Genes in the mitogenome were organized and located in a comparable manner to previously known genes from *Haemaphysalis* ticks. Mitochondrial PCGs were used to perform phylogenetic relationships based on the Minimum Evolution (ME) approach using MEGA 7.0 software, the results reveal that *H. nepalensis* has tight links with *H. tibetensis*, *H. yeni* and *H. kolonini* share a sister group relationship, and that *H. nepalensis* and *H. yeni* belong to *Haemaphysalis*. The results of this study include the following: (i) discovered and supplied new tick records (*H. nepalensis*) for China, (ii) provided the first complete mitochondrial genome for *H. nepalensis* and *H. yeni* and revealed their phylogenetic relationships, and (iii) the features of the mitochondrial genome of *H. nepalensis* and *H. yeni* provided more genetic reference for Phylogeography, systematics, and population genetics of the *Haemaphysalis* species.

KEYWORDS
ticks, *Haemaphysalis nepalensis*, *Haemaphysalis yeni*, mitogenome, genome annotation
Introduction

Ticks are obligatory ectoparasites of all vertebrate species and are blood-sucking arachnids. They can spread the broadest spectrum of zoonotic pathogens that lead to animal and human diseases, causing substantial financial damage to animal productivity (1). Tick populations are also growing as a result of climate change (2). Recently, numerous major tick-borne pathogens have been identified in ticks, such as Babesia ovata, Chlamydiaceae bacteria, Rickettsia japonica, Anaplasma bovis, and Severe Fever with Thrombocytopenia Syndrome Bunyavirus, have sparked increased interest in the field of public health (3). Despite the medical importance of ticks in the spread of Lyme disease, spotted fever group rickettsiosis, and other human diseases, the details of the entire mitochondrial genome are not well recognized, and the phylogenetic links are not established (4).

Haemaphysalis nepalensis (5) (Ixodidae) is an important tick that belongs to the Ixodidae family, Herptobia Canestrini subgenus. H. nepalensis has previously been discovered in India and Nepal. H. nepalensis, a parasite that affects people, sheep, and dzo, is most widely distributed in Tibet in China (5). India, Japan, the Philippines, Indonesia, Ceylon, Borneo, and China are the main distribution areas for Haemaphysalis yeni (6) (Ixodidae). In China, Fujian, Guangdong, Hainan, Hunan, Hubei, Shanxi, and Yunnan account for the majority of the records (7). Although the morphological characteristics of H. nepalensis and H. yeni have been illustrated and documented, it is unknown what their complete mitochondrial genome looks like (8). In recent years, tick bite reports on people have increased. The quality of human health continues to decline as a result of relapsing and persistent illness, long-term effects linked to tick-borne diseases, and even fatalities brought on by delayed or incorrect diagnosis. It is crucial to verify tick classification in order to combat disease (9).

The mitochondrion, a vital organelle in eukaryotes, contains a distinct genome from the cell nucleus. The mitogenome typically contains minimal levels of recombination, a simple structure, maternal inheritance, and fast evolution. It is therefore acknowledged as one of the most trustworthy and effective molecular tools for research on tick phylogenetic studies, species identification, and population structure (10). Complete mitochondrial genomes are normally double-stranded, with the length of circular nucleotides ranging between 14 and 19 kb, and consist of 13 PCGs: cox1-cox3, nad1-nad6, atp8, atp6, nad4l, and cyt b, 22 tRNAs, two rRNAs, and D-loop. Researchers have used mitochondrial genomes as instructive molecular labels to investigate numerous evolutionary studies among animals (11). Recent advances in sequencing technology have made it easier than ever to reconstruct phylogenies using animal mitochondrial genomes in their entirety rather than just partial DNA sequences.

Using Illumina sequencing technology, we first sequenced and annotated the entire mitochondrial genomes of H. nepalensis and H. yeni in the current work, then we compared them to other Haemaphysalis mitochondrial genomes. Further study of phylogenetics, mitochondrial genomes, nuclear rRNA genes, and taxonomy revision of related Haemaphysalis species and the Ixodidae family may benefit from the information provided here (12).

Materials and methods

Samples and DNA extraction

The H. nepalensis adult specimens used in this study were procured in October 2020 from Deqin in the Yunnan Province of China (27°33′ N, 98°3′ E) (n = 2, female; n = 1, male), Diqing Tibetan Autonomous Prefecture. Adult samples of H. yeni were collected in March 2021 from High Li Gong Shan in the Nujiang Lisu Autonomous Prefecture of the Chinese Yunnan Province (26°34′ N, 98°48′ E) (n = 2, female; n = 1, male). Professor Chunhong Du examined the species’ morphological identification using the essential diagnostic features (13). After collection, one adult female specimen was used for DNA extraction, and the remainder of the ticks were held as voucher specimens. The collected tick specimens were deposited at the Parasitological Museum of Dali University under the voucher numbers DLUP2010 and DLUP2103, respectively. The samples were maintained at −80°C and preserved in 95% alcohol before being utilized for DNA extraction. Single tick genomic DNA was extracted using DNAzol (Life Technologies, USA) following the manufacturer’s instructions and stored for further processing (13).

DNA amplification and sequencing

Two overlapping sets of primers were used to amplify the mitogenomes of the H. nepalensis and H. yeni species. The long-PCR primers were created using the 12S rRNA and cox1 genes of Haemaphysalis bancrofti (NC041076) and Haemaphysalis japonica (MG253031). The following PCR primers were employed:

H1 1 (5′-CTCYAATTAAATTCTTTATAGAAT-3′, 5′-ATTAGGCTTTGTTGATGAAWAA-3′);

H2 2 (5′-ICTGTATTTAAAYTACAGCAATTATTTAC-3′, 5′-CAAATTTAAATTTAAACCCCAATTTTA-3′);

HY1 3 (5′-CTCAGTTAATTACAGCAGCAAAAATGTTAAG3′, 5′-AGCAGCAGCAGTTATACAAAWAAAG-3′);

HY2 4 (5′-TCGTATTAAATCCCTATCAGAATCTAC-3′, 5′-CAACTTATTTAATTTGAACTCCTCATACTTATATA-3′) (14).
Mitochondrial genome map of (A) *H. nepalensis* and (B) *H. yeni*. Genes encoded in the forward direction are located on the outside of the ring, while those encoded in the reverse direction are located on the inside of the ring.

The PCR was implemented in a 50 µl reaction mixture including 10 µl of 5X PrimeSTAR GXL Buffer (Takara, Japan), 1 µl of PrimeSTAR GXL DNA Polymerase (Takara, Japan), 4 µl of each primer, 4 µl of dNTPs, 4 µl of DNA template, and 23 µl of nuclease-free water. The PCR conditions used in the amplification procedure were as follows: initial denaturation at 95°C for 5 mins, followed by 45 cycles of denaturation (98°C for 10 s), annealing (68°C for 30 s), and extension (68°C for 10 mins), and a final extension was subjected to 68°C for 10 mins. The findings of the PCR were examined using 1.2 percent agarose gel electrophoresis stained with ethidium bromide (15). Libraries were sequenced on the Illumina HiSeq 2500 platform at Shanghai Biotechnology Co. Ltd. after the amplified PCR products had been purified.

Gene annotation and sequence analysis

Data quality was evaluated from four indicators: single base quality of sequencing data, base content distribution, GC content distribution, and sequence base quality. The software used is FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc). AdapterRemoval software (v2.0) was used to remove the contamination of original data, and SOAPe software (v2.01) was used to correct the quality of data based on k-mer distribution. With the mitochondrial genome sequence of *H. kolonini* as a reference, the whole mitogenomes of *H. nepalensis* and *H. yeni* were extracted using online BLAST tools (https://blast.ncbi.nlm.nih.gov/Blast.cgi). SPAdesv3.9.0 (http://cab.spbu.ru/software/spades/) and A5-miseqv20150522 were utilized to compile high-quality next-generation sequencing data for *de novo* mitogenome construction (16). BLASTn (BLAST v2.2.31+) alignment was performed between the sequences with high sequencing depth and the NT Library in NCBI to pick out the mitochondrial sequences of each spliced result. The mitochondrial stitching results obtained by the above different software were analyzed by using MUMmer (v3.1) software for collinearity analysis to determine the position relationship between contig and to fill the gap of contigs. Pilon software (v1.18) was used to correct the results to obtain the final mitochondrial sequence. Using the MITOS web server (http://mitos.bioinf.uni-leipzig.de/), the mitochondrial genomes of *H. nepalensis* and *H. yeni* were annotated (17). The program tRNAscan-SE was used to forecast the secondary cloverleaf architectures of tRNAs (18). The skewness of the composition was estimated using the formulas GC-skew = (G – C)/(G + C) and AT-skew = (A – T)/(A + T). The analysis of the nucleotide composition and relative synonymous codon usage was done using the software MEGA v7.0 and Geneious Prime (RSCU). The whole mitogenome annotation findings were submitted to NCBI in table (.tbl) format (19).

Phylogenetic analysis

Based on the concatenated datasets of 13 PCGs from 40 ticks, including 34 Metastratiata and six species of Prostriata, the phylogenetic connection was examined. The concatenated
Table 1: Organization of the *H. nepalensis* and *H. yeni* mitochondrial genomes.

Feature	Strand	Position	Length (bp)	Initiation codon	Stop codon	Anticodon	Intergenic nucleotide
trnC	N	1–55/1–57	55/57	GCA	2/1		
trnM	N	58–122/57–119	65/63				
nad2	N	123–1,082/120–1,079	960/960	ATT/ATT	TAA/TAA		
trnW	N	1,081–1,141/1,085–1,148	61/64	TCA	2/1		
trnY	J	1,140–1,203/1,150–1,213	64/64	GTA	7/8		
cox1	N	1,211–2,734/1,206–2,744	1,524/1,539	ATA/ATT	TAA/TAA	4/4	
cox2	N	2,739–3,414/2,734–3,423	676/675	ATG/ATG	TA(A)/TAA		
trnK	N	3,415–3,481/3,424–3,488	67/65	CTT	1/1		
trnD	N	3,481–3,547/3,488–3,552	67/65	GTC			
atp6	N	3,548–3,706/3,553–3,714	159/162	ATC/ATT	TAA/TAA		
cox3	N	4,369–5,146/4,377–5,156	778/780	ATT/ATT	TAA/TAA	0/1	
trnV	J	5,205–5,546/5,217–5,558	342/342	ADA/ATT	TAG/TAA	2/1	
trnA	N	5,545–6,055/5,558–6,060	61/62	TGG	4/3		
trnR	N	5,610–5,669/5,623–5,682	60/60	TCG	2/2		
trnS1	N	5,748–5,802/5,744–5,800	55/57	TCT			
trnE	N	5,807–5,867/5,815–5,875	61/61	TTC			
nad4	J	5,861–6,004/5,860–6,004	942/951	ATT/ATT	TAA/T(A)		
trnL2	J	6,003–6,057/5,999–6,057	61/62	TAA			
trnL3	J	6,323–6,482/6,317–6,479	1,243/334	TAC			
trnV	J	8,056–8,261/8,067–8,261	62/62	TAC	9/3		
rns	J	8,109–8,793/8,218–8,793	685/420	TGT	334/357		
trnI	N	9,128–9,192/9,192–9,192	65/66	CAT			
trnQ	J	9,192–9,259/9,259–9,259	67/66	TGT			
trnF	J	9,273–9,339/9,273–9,339	62/62	GAA			
nad5	J	9,333–9,398/9,398–9,398	61/61	ATT/ATT	TAA/T(A)		
trnF	J	10,989–11,052/11,052–11,052	64/64	ATC/ATT	TAA/T(A)		
nad4	J	11,053–11,367/11,049–11,367	1,315/315	TAA/TAA			
trnF	J	12,361–12,636/12,359–12,636	276/276	TAA/TAA			
trnT	N	12,639–12,701/12,687–12,701	63/63	TGT	2/1		
trnP	J	12,702–12,761/12,759–12,761	60/60	TGG	3/1		
nad6	N	12,765–13,218/13,218–13,218	454/454	TAA/TAA			
cytB	N	13,198–13,477/13,376–13,455	1,080/1,080	TAA/TAA			
trnS2	N	14,277–14,339/14,339–14,339	63/63	TAA			
trnL1	J	14,346–14,411/14,357–14,411	66/66	TAG	315/56		
OH	N	14,468–14,712/0	245/0				

The nucleotide sequence of the mitochondrial 13 PCGs was used to determine the evolutionary relationship using the ME approach in the software MEGA v.7.0 based on 1,000 bootstrapped datasets. The PCGs' multiple sequence alignments were conducted using the MUSCLE nucleotide mode. All places with incomplete or blank information were eliminated. Based on the Akaike information criterion (AIC), the GTR + G + I best model was selected as the best-fit replacement model for nucleotide phylogenetic connectivity (20). To examine the RSCU and nucleotide composition, MEGA program was utilized. A chronogram made with FigTree v1.4.2 was used to demonstrate the evolutionary relationships that emerged.
TABLE 2 List of the 40 tick species analyzed in this paper with their GenBank numbers.

Species	Genus	Length (bp)	Genbank accession
Haemaphysalis nepalensis	Haemaphysalis	14,720	NC064124
Haemaphysalis yeni	Haemaphysalis	14,895	ON853615
Haemaphysalis concinna	Haemaphysalis	14,675	NC034785
Haemaphysalis formosensis	Haemaphysalis	14,676	NC020334
Haemaphysalis flava	Haemaphysalis	14,686	NC055292
Haemaphysalis hystricis	Haemaphysalis	14,716	NC039765
Haemaphysalis inermis	Haemaphysalis	14,846	NC020335
Haemaphysalis longicornis	Haemaphysalis	14,718	NC037493
Haemaphysalis donsitzi	Haemaphysalis	14,671	NC062158
Haemaphysalis sulcata	Haemaphysalis	14,679	NC062063
Haemaphysalis kolomini	Haemaphysalis	14,948	MZ054209
Haemaphysalis colabelcouri	Haemaphysalis	14,885	NC062164
Haemaphysalis kitaokaai	Haemaphysalis	14,936	NC062161
Haemaphysalis tibetensis	Haemaphysalis	14,714	OM368296
Haemaphysalis danieli	Haemaphysalis	14,739	NC062065
Dermacentor marginatus	Dermacentor	15,178	NC062069
Dermacentor reticulatus	Dermacentor	14,806	MT478096
Dermacentor nitens	Dermacentor	14,839	NC023349
Hyalomma asiaticum	Hyalomma	14,723	NC035941
Hyalomma truncatum	Hyalomma	14,731	KY457529
Hyalomma rufipes	Hyalomma	14,761	NC061209
Amblyomma marmoreum	Amblyomma	14,677	KY457516
Amblyomma testudinarium	Amblyomma	14,760	MT029329
Amblyomma geeemydae	Amblyomma	14,780	MK814531
Amblyomma sculptum	Amblyomma	14,780	NC032369
Ixodes tasmani	Ixodes	15,227	NC041086
Ixodes ovatus	Ixodes	14,512	NC062061
Ixodes ricinus	Ixodes	14,566	NC018369
Ixodes simplex	Ixodes	14,556	NC062060
Ixodes uriae	Ixodes	15,053	NC060678
Ixodes ripirorensis	Ixodes	14,505	NC058242
Rhipicephalus nutalli	Rhipicephalus	14,779	NC039828
Rhipicephalus asustralis	Rhipicephalus	14,891	NC023348
Rhipicephalus decoloratus	Rhipicephalus	15,268	NC052828
Rhipicephalus evertsi	Rhipicephalus	14,739	KY457537
Rhipicephalus simus	Rhipicephalus	14,929	KY395954
Rhipicephalus maculatus	Rhipicephalus	14,714	KY457539
Rhipicephalus zambezensis	Rhipicephalus	14,691	KY457543
Rhipicephalus turanicus	Rhipicephalus	14,717	NC035946
Archaeocroton spheodonit	Archaeocroton	14,772	NC017745

Genome organization and nucleotide composition

The entire mitogenomes of *H. nepalensis* and *H. yeni* used in this study were closed circular molecules with a size of 14,720 and 14,895 bp, respectively (Figure 1). The complete mitochondrial genome had 37 distinguishing genes, including 22 tRNAs, two rRNAs (*rrnL* and *rrnS*), 13 PCGs (*cox1-3, nad1-6, atp8, atp6, nad4l, and cob*), and *H. nepalensis* has one D-loop (Table 1). Under the accession numbers NC064124 and ON853615, the whole mitochondrial genomes of *H. nepalensis* and *H. yeni*, respectively, had been uploaded to GenBank.
PCGs and codon usage

Both *H. nepalensis* and *H. yeni* possessed 13 typical PCGs in their whole mitogenomes, including four cytochrome genes (*cytb* and *cox1-3*), two ATP genes (*atp6* and *atp8*), seven NAD genes (*nad4l* and *nad1-6*) (Figure 1). The PCGs' respective regions were 10,828 bp and 10,837 bp in size. The PCGs of *H. nepalensis* began with ATA (*cox1 and nad3*), ATT (*nad1, nad2, nad5, nad6*), ATG (*cox3, atp6, cytb*), and ATC (*atp8*), and the remaining PCGs were terminated by TAA (*cox1, nad2, atp6, nad3, nad5, and nad6*). The stop codon employed by the *cox2, cox3, nad4*, and *nad6* was a single T, whereas the *nad3* and *cytb* were terminated with TAG. The PCGs of *H. yeni* begin with ATT (*cox1, nad2, nad3, atp8, nad1, and nad5*), ATG (*cox3, atp6, cox2, nad4l, nad4, and *cytb*), and only *nad6* with ATC. *Nad1* and *nad5* used incomplete termination codons that consisted of TA, while the majority of PCGs terminated with TAA (Table 2).

We investigated the RSCU and codon use patterns in the mitochondrial genomes of *H. nepalensis* and *H. yeni*. 3,405 amino acids in total were encoded by the mitochondrial genome of *H. nepalensis*. Leucine (16.18%) was the amino acid that was used the most, followed by phenylalanine (13.71%) and isoleucine (9.36%). The PCGs encoded a total of 3,474 amino acids of the *H. yeni* mitogenome; phenylalanine (14.42%), leucine (12.95%), and isoleucine (12.14%) were the most often utilized amino acids; arginine (0.9%) was the least frequently used amino acid, indicating the popularity of biasness toward AT content among the PCGs (Table 3; Figure 2).

A+T skewness and transfer RNAs

Positive AT and GC skew in the whole mitochondrial genomes of *H. nepalensis* and *H. yeni* indicates that bases A and G are less frequent than their comparable bases (Table 3). The mitogenomes of *H. nepalensis* and *H. yeni* had a set of 22 tRNAs, like the majority of mitochondrial genome DNA. The tRNAs of *H. nepalensis* are 1,370 bp long and range in size from 55 nucleotides (trnC and trnS1) to 67 nucleotides (trnK, trnD, and trnQ). *H. yeni*'s tRNAs were between 57 and 66 bp in length. The trnA-C, trnA-F, and trnA-S1 genes, as well as the 14 tRNAs

Table 3 Composition and skewness of *H. nepalensis* and *H. yeni* mitogenome.

Region	A%	C%	G%	T%	A+T%	G+C%	AT skew	GC skew
Whole genome	38.46/38.65	12.74/12.28	9.51/9.31	39.29/39.74	77.75/78.39	22.25/21.59	-0.011/-0.014	-0.145/-0.138
nad2	38.54/37.18	11.15/10.52	5.31/5.63	45.00/46.67	83.54/83.85	16.46/16.15	-0.077/-0.113	-0.354/-0.303
cox1	31.04/31.50	16.08/15.07	14.63/14.10	38.25/39.31	69.29/70.81	30.71/29.17	-0.140/-0.110	-0.047/-0.033
cox2	36.83/36.14	16.57/15.41	10.06/9.78	36.54/38.67	73.77/74.81	26.63/25.19	0.004/-0.034	-0.244/-0.223
atp8	47.80/43.21	11.95/7.41	3.77/4.94	36.48/44.44	84.28/87.65	15.72/12.35	0.134/-0.014	-0.520/-0.200
atp6	32.13/33.62	13.06/13.06	9.01/8.71	45.80/44.59	77.93/78.21	22.07/21.77	-0.175/-0.140	-0.184/-0.200
cox3	31.23/28.72	14.01/13.21	11.18/11.79	43.57/46.28	74.81/75.00	25.19/25.00	-0.165/-0.234	-0.112/-0.056
nad3	32.75/29.53	7.89/10.53	9.65/9.65	49.71/50.29	82.46/78.92	17.54/20.18	-0.206/-0.260	0.100/-0.044
nad1	33.33/33.79	9.66/9.16	12.85/12.42	44.16/44.63	77.49/78.42	22.51/23.58	-0.140/-0.138	0.142/0.138
rrnL	41.35/38.88	7.32/9.00	11.26/15.79	40.06/36.33	81.42/75.21	18.58/24.79	0.016/0.034	0.212/0.274
rrnS	43.80/40.24	8.18/10.24	11.68/14.29	36.35/35.24	80.15/75.48	19.85/24.55	0.093/0.066	0.176/0.165
nad5	35.33/33.17	8.57/8.85	10.81/10.78	45.29/47.20	80.62/80.37	19.38/19.63	-0.124/-0.175	0.115/0.098
nad4	31.18/32.42	9.35/7.44	12.62/11.54	46.84/48.60	78.02/81.02	21.98/18.98	-0.201/-0.176	0.149/0.216
nad4*	34.78/35.51	5.80/3.26	9.78/10.51	49.64/40.72	84.42/86.23	15.58/13.77	-0.176/-0.176	0.256/0.527
nad6	39.21/41.03	9.47/8.86	4.85/5.83	46.48/44.29	85.68/85.32	14.32/14.69	-0.085/-0.038	-0.323/-0.206
cob	30.00/29.91	15.19/13.52	10.83/10.46	43.90/46.11	73.98/76.02	26.02/23.98	-0.189/-0.213	-0.167/-0.128
tRNA	40.00/39.50	8.69/9.00	11.68/11.70	39.64/39.80	79.64/79.30	20.37/20.70	0.005/-0.004	0.147/0.130
OH	31.84	16.33	16.33	35.51	67.35	32.65	-0.055	0.000
Relative synonymous codon usage (RSCU) of codons. (A) *H. nepalensis* and (B) *H. yeni*. The box below the bar chart represents all codons encoding each amino acid, and the height of the column above represents the sum of all RSCU values.

Phylogenetic analysis

To determine the phylogenetic tree of 40 Ixodida, the whole mitogenomes of *H. nepalensis* and *H. yeni* were further examined (Table 2). Using ME investigations in the context of the Maximum Composite Likelihood model, the topologies of the phylogenetic tree were examined based on the concatenated nucleotide sequences of 13 PCGs (Figure 3). The majority of the genera *Ixodes*, *Amblyomma*, *Dermacentor*, *Hyalomma*, and *Rhipicephalus* in the tree formed a monophyletic branch in the phylogenetic analyses, according to the ML analyses. *Haemaphysalis* species were paraphyletic, despite this. The sequences in the tree are divided into the Metastriata and Prostriata main branches. There is only one explicit *Ixodes* species in the Prostriata group. *H. nepalensis* and *H. tibetensis* are clustered together on one branch of the phylogenetic tree with a high nodal support value, and *H. yeni* and *H. kolonini* have a close phylogenetic relationship, indicating a sister group link between them. Furthermore, the phylogenetic relationship revealed that *H. nepalensis* and *H. yeni* were divided into various clades, yet they belonged to *Haemaphysalis* within Ixodida, correlating with other studies.

Discussion

Similar to previously known tick mitochondrial genomes, a comparison of the mitochondrial genome sequences in the genus *Haemaphysalis* suggests that the D-loop is where...
the size shift is most prominent. The D-loop is the largest non-coding segment of the mitogenome and contains the major regulatory elements for its replication and expression. Furthermore, the high-level of intraspecific genetic variation found in the D-loop favors its use in population genetic studies of all kinds of organisms and phylogeographic analysis. Differences in the size of the complete mitogenome between species were driven by variation in the size of the control area, which in turn differed in both the size of different short repeat nucleotides and those replicated within it. In
In this study, most ticks in the *Haemaphysalis* genus have two D-loops. Nevertheless, *H. yeni* and *H. longicornis* have no D-loop, *H. nepalensis* and *H. hystricis* have one D-loop, and *H. colasbelcouri* and *H. kitaokai* have three D-loops. Because the D-loop lacks characteristic coding constraints, it accumulates indels, a variable number of tandem repeats, and base substitutions which are responsible for the widespread length differentiation found in the mtDNA molecule. Most of the tRNA secondary structures, the genome's codon use, and the gene makeup and quantity of *Haemaphysalis* are identical to other mitochondrial species that have been observed (21). The tRNA-F gene of *H. nepalensis*, however, differs from those of most of the genus *Haemaphysalis* in that it did not reveal the usual cloverleaf structure. The mitochondrial genomes’ gene arrangement is comparable with that of other *Haemaphysalis*.

Through the creation of two new primer nucleotide sequences, next-generation sequencing technologies, and a brand-new long-range PCR amplification, we explored the mitogenomes. This will open a new way for study into *H. nepalensis* and *H. yeni* in the future. Population biology, behavior, phylogenetics studies, and tick ecology are all made easier by genetic information. Only the 16S rDNA partial sequences for *H. nepalensis* and *H. yeni* are currently available in the database. The mitochondrial partial sequencing can only offer relevant data, though. The entire mitochondrial genome can provide more sensitivity and resolution for analysis of the evolutionary relationships between closely related species as compared to partial mitochondrial sequence.

The current study shows that whereas *Haemaphysalis* species are paraphyletic, the majority of genera analyzed are monophyletic. According to the results of the phylogenetic analysis, there are two branches within the eight genera: one major clade contains a branch of *Ixodes* species that is quite explicit and monophyletic, and the other clade is made up of the genera *Haemaphysalis, Archaeocroton, Amblyomma, Dermacentor, Rhipicephalus*, and *Hyalomma* and *Rhipicephalus*. Within the Metastriata, they are split into two branches, one of which has a sister-taxon (*Haemaphysalis + Archaeocroton*), and the other of which contains the genera *Amblyomma, Dermacentor*, and *Rhipicephalus*, which are sisters to the sister-group genera *Hyalomma* and *Rhipicephalus*.

In addition, the clade (*H. nepalensis + H. tibetensis + H. danieli*) that includes our target species *H. nepalensis* grouped into one branch, and *H. yeni* and *H. kolonini* have strong links and a high nodal bootstrap support value.

The *H. nepalensis* and *H. tibetensis*, the *H. yeni* and *H. kolonini* genes are arranged in the same order and the PCG encoding of *H. nepalensis* is 11 bp less than the PCG encoding of *H. tibetensis*, and the PCG encoding of *H. yeni* is 35 bp more than the PCG encoding of *H. kolonini*. The percent identity of the *cox1* gene of these two groups species were 98.37 and 90.16%, respectively. The percent identity of the complete mitochondrial sequences were 98.14 and 92.75%, respectively. Species identification mainly depends on morphology and molecular studies. Although the two groups (*H. nepalensis* and *H. tibetensis*, *H. yeni* and *H. kolonini*) were phylogenetically very closely related in phylogenetic tree analysis, the morphological differences and percent identity are ~99%, which may lead to the formation of different species. The *H. tibetensis* and *H. nepalensis* species are now only known to have been found in Tibet alone. The phylogenetic analysis result demonstrates a close relationship between *H. nepalensis* and *H. tibetensis*, demonstrating the correctness of our sequencing findings and demonstrating the first distribution of *H. nepalensis* in Yunnan Province.

Conclusion

In this study, we sequenced the entire mitochondrial genomes of *H. nepalensis* and *H. yeni*, measuring 14,720 base pairs (bp) and 14,895 base pairs (bp), respectively. These genomes contained 37 genes (13 PCGs, 22 tRNAs, and two rRNAs), which are typical of the *Haemaphysalis* mitochondrial genome. *H. nepalensis* had an extra D-loop. All PCGs began with the ATN codon, with ATT and ATG being the most frequent initiation codons. The *cox2, cox3, nad4, nad5* of *H. nepalensis* and *nad1 and nad5* of *H. yeni* had incomplete termination codons consisting of T or TA, and the other PCGs stop with the canonical TAG or TAA. The whole mitochondrial genomes of *H. nepalensis* and *H. yeni* had negative AT-skew and GC-skew, which is consistent with the majority of sequenced *Haemaphysalis*. Higher-level phylogenies might be provided by the whole mitochondrial genome. This study provides a crucial resource for better understanding the phylogenetics, molecular evolution, and population dynamics of these significant tick species.

Data availability statement

The data presented in the study are deposited in the NCBI repository, accession number NC064124 and ON853615.

Ethics statement

This study was approved by the Administration Committee of Experimental Animals, Dali University, First Affiliated Hospital of Chengdu Medical College, and Yunnan Provincial Hospital of Chengdu Medical College, and Yunnan Provincial
Key Laboratory of Natural Epidemic Disease Prevention and Control Technology.

Author contributions

X-YL and Q-ZZ conceived the study and wrote the manuscript. D-JJ, Y-FL, BC, and S-PY carried out the experiments and analyzed the data. Z-TS, HJ, and JW contributed to the collection of Haemaphysalis nepalensis and Haemaphysalis yenii and discussions. Y-HF, C-HD, and XY are responsible for the interpretation of experimental data, critical revision of important knowledge content, and final approval of the version to be published.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81760607 and U2002219), Yunnan Natural Science Foundation (2017FD139), and Scientific Research Fund of Yunnan Education Department (2022J0687).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Tao M, You C, Zhao R, Liu S, Zhang Z, Zhang C, et al. Animal mitochondria: evolution, function, and disease. Curr Mol Med. (2014) 14:115. doi: 10.1089/cmm.2013.0218
2. Yang X, Gao Z, Zhou T, Zhang J, Wang L, Xiao L, et al. Mapping the potential distribution of major tick species in China. Int J Environ Res Public Health. (2020) 17:5145. doi: 10.3390/ijerph17145145
3. Kelava S, Matsu BJ, Shao R, Moustafa M, Matsuno K, Takano A, et al. Phylogenies from mitochondrial genomes of 120 species of ticks: insights into the evolution of the families of ticks and of the genus Amblyomma. Ticks Tick Borne Dis. (2021) 12:101577. doi: 10.1016/j.ttbdis.2020.101577
4. Waterhouse RM, Sonenhine DE, Roe RM, Ribeiro JM, Sattelle DB, et al. Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front Cell Infect Microbiol. (2016) 6:103. doi: 10.3389/fcimb.2016.00103
5. Dhandha V. Haemaphysalis nepalensis Hoogstraal, 1962 (Ixodoidae: Ixodidae), systematic position based on description of the nymph, and host and locality records. J Parasitol. (1966) 52:783–5. doi: 10.2307/3276281
6. Kwak ML. A checklist of the ticks (Acari: Argasidae, Ixodidae) of Japan. Exp Appl Acarol. (2018) 75:263–7. doi: 10.1007/s10493-018-0259-6
7. Saito Y, Hoogstraal H. Haemaphysalis (kaiseri ana) yenii toumanoff (ixodoidae: ixodidae): discovery in Japan, description of female and immature stages, environment, and life cycle. J Parasitol. (1972) 58:950–9.
8. Hoogstraal H, Trapido H. Redescription of the type materials of Haemaphysalis kaiseri ana kaiseri ana (India), h. (K) Neumann donitz (Japan), h (K) Lagrangei larrouse (Vietnam), and h (K) Yeni toumanoff (vietnam) (Ixodidae, Ixodidae). J Parasitol. (1966) 52:1188–98.
9. Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell. (2020) 182:1328–40. doi: 10.1016/j.cell.2020.07.023
10. Xin ZZ, Liu Y, Zhang DZ, Wang ZF, Tang BP, Zhang HB, et al. Comparative mitochondrial genome analysis of Spilostreptus sp. and other noctuid insects. Int J Biol Macromol. (2018) 107:121–8. doi: 10.1016/j.ijbiomac.2018.08.153
11. Ciloglu A, Ibus O, Yildirim A, Aktas M, Duzlu O, Onder Z, et al. Complete mitochondrial genome characterization and phylogenetic analyses of the main vector of crimean-congo haemorrhagic fever virus: Hyalomma marginatum koch, 1844. Ticks Tick Borne Dis. (2021) 12:101736. doi: 10.1016/j.ttbdis.2021.101736
12. Lu X, Zhang Q, Jiang D, Wang T, Sun Y, Du C, et al. Characterization of the complete mitochondrial genome of Haemaphysalis al exchangedkholonos (ixodidae) and its phylogenetic implications. Parasitol Res. (2022) 121:1951–62. doi: 10.1007/s00436-022-07535-2
13. Lu X, Zuo X, Jiang D, Yang X. The complete mitochondrial genome of Ixodes senvirabilis (acari: ixodidae). Mitochon DNA Part B Resour. (2021) 6:3001–3. doi: 10.1080/23802359.2021.1976866
14. Rozen S, Skaletsky H. Primer3 on the www for general users and for biologist programmers. Methods Mol Biol (Clifton, NJ). (2000) 132:365–86.
15. Lu X, Zhang Q, Jiang D, Du C, Xu R, Guo X, et al. Characterization of the complete mitochondrial genome of Ixodes grani tus (ixodidae) and its phylogenetic implications. Parasitol Res. (2022) 121:2347–58. doi: 10.1007/s00436-022-07561-0
16. Coil D, Josip G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina miseq data. Bioinformatics. (2015) 31:587–9. doi: 10.1093/bioinformatics/btu661
17. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. Mito: improved de novo metazoa mitochondrial genome annotation. Mol Phylogenet Evol. (2013) 69:313–9. doi: 10.1016/j.ympev.2012.08.023
18. Lowe TM, Chan PP. Trnascan-se on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. (2016) 44:W54–7. doi: 10.1093/nar/gkw413
19. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol. (2016) 33:1870–7. doi: 10.1093/molbev/msw054
20. Yamaoka K, Nakagawa T, Uno T. Application of aukle’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm. (1978) 6:165–75. doi: 10.1007/BF01117450
21. Taanman J. The mitochondrial genome: structure, transcription, translation and replication. BBA Bioenergetics. (1999) 1410:103–23. doi: 10.1016/S0005-2728(98)00161-3