Telomerase activity in ecological studies: What are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations

Steve Smith, Franz Hoelzl, Sandrine Zahn, François Criscuolo

To cite this version:
Steve Smith, Franz Hoelzl, Sandrine Zahn, François Criscuolo. Telomerase activity in ecological studies: What are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations. Molecular Ecology, 2021, 10.1111/mec.16233. hal-03608073

HAL Id: hal-03608073
https://hal.science/hal-03608073
Submitted on 14 Mar 2022
Telomerase activity in ecological studies: what are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations

Steve Smith1, Franz Hoelzl1, Sandrine Zahn2, François Criscuolo2

1Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria
2Department of Physiology, Evolution and Behaviour, Institut Pluridisciplinaire Hubert Curien, CNRS, University of Strasbourg, 23 rue du loess - BP28, 67037 Strasbourg cedex 2, France

Corresponding author: Steve Smith, Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria
Email: steve.smith@vetmeduni.ac.at

ORCID
Steve Smith: 0000-0002-1318-0018
Franz Hoelzl: 0000-0001-9717-4338
Sandrine Zahn: 0000-0001-9303-4223
François Criscuolo: 0000-0001-8997-8184

Running title: Telomerase and fitness

Word count:

Key words: Telomeres, trade-off, immunity, reproductive effort, life history
Abstract

Increasing evidence at the cell level highlights the balance between investment in growth, reproduction and somatic maintenance in wild populations. Studies of telomere dynamics have informed researchers about the loss and gain of telomere length both on a seasonal scale and across the lifespan of individuals. In addition, telomere length and telomere rate of loss seems to have evolved differently among taxonomic groups, and relate differently to organismal diversity of lifespan. So far, the mechanisms behind telomere maintenance remain elusive, although many studies have inferred a role for telomerase, an enzyme/RNA complex known to induce telomere elongation from lab studies. Exciting further work is also emerging that suggests telomerase (and/or its individual component parts) has a role in fitness that goes beyond the maintenance of telomere length. Here we review the literature on telomerase biology and examine the evidence from ecological studies for the timing and extent of telomerase activation in relation to life history events associated with telomere maintenance. We suggest that the underlying mechanism is more complicated than originally anticipated, possibly involves several complimentary pathways, and is likely associated with high energetic costs. Potential pathways for future research are numerous and we outline what we see as the most promising prospects to expand our understanding of individual differences in immunity or reproduction efficiency.
Introduction

The burgeoning field of telomere dynamics has added new perspectives and directions to the study of ecology and evolutionary biology. The interest is testament to the fact that telomeres represent an intriguing biomarker that provides the link between individual physiology, life history, and fitness. As the field has developed, so too has the realisation that the maintenance of telomeres is at the centre of this balance. Studies so far, both experimental (Herborn et al., 2014; Nettle et al., 2015) and correlational (Hoelzl, Cornils, Smith, Moodley, & Ruf, 2016a; Turbill, Smith, Deimel, & Ruf, 2012), indicate that telomere restoration is costly (reviewed in Young, 2018). However, the mechanisms underlying telomere maintenance remain elusive and evolutionary biologists have turned to clinical research for answers. The obvious candidate as regulator within the system is the enzyme complex telomerase. Telomerase comprises an RNA component (TERC) and a catalytic protein domain (TERT) essential for the reverse transcriptase activity of the enzyme (see Box 1). Telomerase is known to catalyse the elongation and maintenance of telomeres by adding telomeric repeats to the chromosomal ends and thus counteracting losses that occur during end replication and oxidative stress (Harley, Futcher, & Greider, 1990; von Zglinicki, 2002). For most organisms, telomerase is not active throughout all life stages and across all tissue types (Haussmann, Winkler, Huntington, Nisbet, & Vleck, 2004; Lingner et al., 1997; Wright, Piatyszek, Rainey, Byrd, & Shay, 1996), strongly suggesting trade-offs between life history stages such as growth, maintenance and reproduction. As a potential regulator of these trade-offs, measurement telomerase is of increasing interest for evolutionary biologists trying to understand the process of senescence (see Box 2).
The structure and function of telomerase

- Telomerase in its active state is composed of a DNA polymerase enzyme complex (telomerase reverse transcriptase; TERT) that carries its own RNA template (telomerase RNA component; TERC, TER or TR) to add telomeric repeats to the ends of chromosomes.

- In vertebrates, TERT is composed of the essential telomerase N-terminal domain (TEN), the C-terminal extension domain (CTE), the telomerase RNA-binding domain (TRBD) and the reverse transcriptase domain (RT). The TEN domain stabilizes the DNA-RNA duplex in the active site of the enzyme (Akiyama, Parks, & Stone, 2015), CTE is necessary for stable binding of the enzyme to the DNA (Hossain, Singh, & Lue, 2002), TRBD binds the RNA-template (Lai et al, 2001) and RT is the catalytic domain (Dey & Chakrabarti, 2018).

- TERC is considered a non-coding RNA that contains the template region for adding telomeric repeats to the ends of chromosomes. Its total size is highly variable between taxa and ranges from 133 nucleotides (nt) in the fish Nothobranchius furzeri to over 2000 nt in the fungus Neurospora crassa (http://telomerase.asu.edu/; Podlevsky, Bley, Omana, Qi, & Chen, 2008). In vertebrates, the template-RNA is flanked by the template boundary element (TBE) at the 5’ side. The pseudoknot (PK) is located downstream of the template and is essential for TERT-TERC interaction and function of the holoenzyme. Furthermore, TERC contains several structures that interact with TERT and other proteins (e.g. dyskerin protein complex) to ensure functionality (reviewed in Logeswaran, Li, Podlevsky, & Chen, 2021; http://telomerase.asu.edu/).

- Telomeric repeat variants (e.g. TTAGGG - in vertebrates) differ between taxonomic groups. Correspondingly, both TERT and TERC have a distinct composition of subunits and regions in different taxa. In insects for example, TERT lacks the TEN domain while nematodes lack TEN and large fractions of CTE (reviewed in Mason, Schuller, & Skordalakes, 2011). In TERC, the arrangement and composition of elements (PK, TBE, ect.) is variable between taxa, but even more pronounced, the sequence and structure within these elements is highly variable between taxonomic groups (Logeswaran et al., 2021).

- Trafficking of TERT and TERC between nucleus and cytoplasm is not fully understood. In yeast (Saccharomyces cerevisiae), the assembly of the telomerase holoenzyme likely takes place in the cytoplasm before it is imported into the nucleus, while in humans, TERT and TERC are separated in the nucleus during most of the cell cycle and are only assembled during S phase. Such separation is likely to be necessary to avoid unregulated telomerase activity (reviewed in Gallardo & Chartrand, 2008). Telomerase activity is detectable throughout the cell cycle but only a small fraction of TERC is colocalized with telomeres during S phase (the stage where telomere elongation takes place in vivo), suggesting a low elongation rate per cell cycle (this is true for both, human and yeast; Gallardo & Chartrand, 2008; Teixeira, Arneric, Sperisen, & Lingner, 2004).

- A study by Schmidt, Zaug, and Cech (2016) reveals that telomerase diffuses throughout the nucleoplasm and that the enzyme frequently binds TPP1 (a protein of the shelterin complex) at telomeres. These bindings occur thousands of times per S phase, but only a very limited number of these probing events are sufficiently long to allow telomere elongation.

- After telomerase is guided to the chromosomal end, and forms stable “bonds”, elongation is carried out only on the G-rich overhang (either resulting from terminal RNA primer removal on the lagging strand, or by exonuclease dependent resection, reviewed in Procházková Schrumpfová and Fajkus (2020). Therefore, telomerase binds to the distal nucleotides of these overhangs and adds a new telomeric repeat (in vertebrates: GGTTAG). This elongation step can be repeated multiple times via a translocation mechanism and DNA Pol [alpha]-primase can fill the complementary strand (Diede & Gottschling, 1999).

- In multicellular organisms, telomerase activity is usually detected in all early developmental stages. After organogenesis, telomerase activity is restricted to proliferating stem cells, while it is downregulated in somatic cells (reviewed in Procházková Schrumpfová, Fojtová, & Fajkus, 2019). In mammals, the tendency to downregulate somatic telomerase activity is body mass dependent, where species of weight smaller than 1 kg (e.g. mice) keep telomerase activity throughout their life, while larger animals downregulate telomerase in somatic tissues (likely to reduce the risk of cancer; Seluanov et al., 2007).
Senescence is defined in evolutionary biology as the relaxation of natural selection at old-ages, attributed to the reduced fitness contribution of older breeders due to poor reproductive performances and survival rates (Gaillard & Lemaître, 2020). Williams’ theory of senescence stipulates that it should be found in all living organisms that have, among other prerequisites (Gaillard & Lemaître, 2017), genes that will be beneficial early in life and detrimental later on (i.e. (the antagonistic pleiotropy of aging, Williams, 1957). At a more mechanistic level, senescence, which promotes cell division arrest and apoptosis, could be considered as a cell response to aging stress, with both positive and negative impacts on individual fitness. For instance, cell senescence also promotes regular tissue repair, and protects against cell immortalization and cancer, while at the same time triggering pro-inflammatory or tissue degeneration processes (reviewed in Autexier & Lue, 2006; Campisi, 2013).

Because telomeres and telomerase stand at the crossroad of these cell mechanisms, we propose here that the study of telomerase will benefit from being considered in the context of its pleiotropic effects on individual fitness and through its modulation of life-history trade-offs. To do so, we highlight that (i) telomerase genes vary in sequences and expression, (ii) telomerase may act via non-telomere-related pathways, (iii) telomerase may have pleiotropic effects due to dynamic changes in expression and thus mediate trade-offs among traits. We then address what could be the costs associated to telomerase activation, and propose a few avenues for studying the putative telomerase – fitness link.
Box 2: Measurement of telomerase activity: previous studies and methods employed

Techniques employed to quantify telomerase activity (TA)

For more than a decade, evolutionary ecologists have focussed on telomeres (Haussmann & Vleck, 2002), and very rapidly to telomerase activity (Haussmann, Winkler, Huntington, Nisbet, & Vleck, 2007), in order to better understand individual variability in lifespan (Haussmann, Winkler, & Vleck, 2005). However, evaluations of telomerase activity are not a simple prospect for most of the species of ecological interest. Logistical constraints and/or specific expertise requirements are the major challenges. For instance, storage and pre-treatment of samples to preserve telomerase activity is inherently complicated ❶. Thus the development of reliable telomerase activity (TA) assessment methodologies is essential to allow research in evolutionary biology to develop and understand co-variation of age- or tissue-related telomerase activity with animal life-histories. This schematic representation shows the most common methods employed to measure TA in human and cancer research. The methods are presented following two main categories: ❷ detection of telomerase products and ❸ amplification of these products (TRAP-based methods). Figure is adapted from Mensà et al. (2019).

The Ecological Link to Telomerase

Early studies of telomere dynamics in non-model organisms reported individual differences in telomere attrition related to age (Aubert, 2014; 2020), birth order (Noguera, Metcalfe, Reichert, & Monaghan, 2016), birth timing (Eisenberg, Hayes, & Kuzawa, 2012), early life stress (Cram, Monaghan,
Gillespie, & Clutton-Brock, 2017; Price, Kao, Burgers, Carpenter, & Tyrka, 2013), reproductive output (Beaulieu, Reichert, Le Maho, Ancel, & Criscuolo, 2011; Monaghan & Haussmann, 2006), rewarming during hibernation (Hoelzl et al., 2016b), and habitat suitability (Angelier, Vleck, Holberton, & Marra, 2013) among others. After this initial interest in telomeres as a reliable biomarker for stress and biological aging, evidence began to emerge that, in some species at least, telomere length could be actively restored or even elongated (Foley et al., 2018; Haussmann et al., 2003; Hoelzl et al., 2016b). Despite initial scepticism, further studies confirmed active telomere maintenance across multiple species. Telomerase activity was considered the most likely mechanism responsible for telomeric restoration and once again ecological researchers borrowed from clinical fields and cancer research to find the best way to measure telomerase activity in an ecological setting (see Box 2). Subsequent work has implicated an association between telomerase activity levels and telomere dynamics in a broad range of taxa. Mu et al. (2015) found a link between seasonal leaf growth, telomere length and telomerase activity in the Chinese Pine (Pinus tabulaeformis). Interestingly, telomere length also increased with temperature throughout the year whereas telomerase activity showed a negative association, suggesting a potential lag between stimulus and response. A strong association between telomerase activity and telomere length was observed in multiple strains of zebra fish with a marked drop in both detected in older individuals (Anchelin, Murcia, Alcaraz-Pérez, García-Navarro, & Cayuela, 2011). In a follow-up experimental study (Anchelin et al., 2013), telomerase-knockdown zebra fish showed premature aging and reduced lifespan in the first generation. Restoration of telomerase activity in the second generation led to rescue of telomere length and survival confirming the causal role of telomerase in the association. Likewise, Hatakeyama et al. (2016) demonstrated in Japanese medaka (Oryzias latipes) that telomere attrition and restoration are linked to growth and telomerase activity respectively, and that a critical loss of telomere homeostasis is associated with mortality. Recently, an intriguing link with embryo corticosterone levels was shown in yellow-legged gulls (Noguera et al. 2020). Hatchlings from corticosterone–injected eggs were shown to have both higher levels of telomerase activity and longer telomeres. Telomerase was also shown to induce the synthesis
and repair of TTAGG-telomeric repeats in Lepidoptera (Gong et al. 2015) and this association seems to be widespread in most orders of insects (Korandova et al. 2014). Combined, these studies largely demonstrate that telomere length and telomerase is closely coupled as expected based on in vitro studies and tightly regulated by environmental factors.

Crucially though, many studies have not detected the expected link between telomere maintenance and telomerase activity (see citations in Supp. Table 1). Clinical studies in humans and experimental work show that in many conditions, telomere length is decoupled from telomerase activity (Xie et al., 2015) and that telomerase acts in diverse functions at cellular and physiological levels (de Punder, Heim, Wadhwa, & Entringer, 2019; Haendeler et al., 2009; Sahin & DePinho, 2012; Saretzki, 2009). Work in honeybees (Apis mellifera) also could not find a link between telomere length and telomerase activity, which was found to be regulated in a developmental and caste-specific manner (Korandová & Čapková Frydrychová, 2015; see also Koubová et al., 2019). The inconsistent findings from studies of the telomere – telomerase relationship raise questions about the ubiquity of a single telomere repair mechanism but, perhaps more interestingly, also suggests alternative roles for telomerase and its subunits in life history trade-offs. Resolving the links in these trade-offs promises to open the door to exciting avenues of research in ecology and evolutionary biology.

Linking life-history trade-offs and individual fitness with telomerase?

The essential requirement for a biological variable to play a role in evolution is to show variation among individuals in a population (along with transmission to the next generation and conferring fitness effect). Telomerase is formed via the assemblage of two main subunits coded by highly conserved genes (TERT, TERC), which are also characterized by a recent evolution history (Hrdličková, Nehyba, Lim, Grützner, & Bose Jr., 2012). More importantly, polymorphisms of those genes do exist in humans, their discovery originating from the study of telomere diseases such as congenital dyskeratosis (Savage et al., 2008; Vulliamy et al., 2001). In those patients, the RNA component of the telomerase (TERC) and an associated regulating protein (dyskerin, DCK1 gene) are
mutated, leading to defective telomere maintenance by telomerase and to premature ageing phenotypes (Marrone & Dokal, 2004). Human TERT mutations were also found to be associated with different, rather late-life, diseases (Calado & Young, 2012), and TERT single nucleotide polymorphisms (SNPs) have been identified in humans, often associated with an increase in cancer risks (Rafnar et al., 2009, together with shortened telomeres in this study), or bone marrow failure (Yamaguchi et al., 2005). Enhanced telomerase activity is found in more than 9 out of 10 cancer cells (Shay & Bacchetti, 1997). So how could telomerase defects enhance cancer risks? Causality is thought to relate to the capacity of hematopoietic cells (and then immune cells) to up-regulate telomerase when activated. Given that the level of TERT expression may be the rate-limiting mechanisms of control of telomerase activity (Counter et al., 1998), TERT deleterious mutations may shorten telomere length of leucocytes, and then decrease the ability of the immune system to survey cell immortalization and eliminate cancer cells (Calado & Young, 2012). Therefore, focusing on the individual variation in TERT expression and telomerase activity in white-blood cells, and characterising how it may modulate immunosenescence (de Punder et al., 2019), may provide the first insights into the telomerase – fitness relationship. In addition, telomerase polymorphisms have been previously associated with non-cancer diseases, with significantly modified soma protective effects (Snetselaar, van Oosterhout, Grutters, & van Moorsel, 2018). TERC variants were shown to have different longevities in humans (Soerensen et al., 2012), thereby suggesting that some telomerase mutations may carry putative fitness benefits.

Telomerase: a two-headed coin with telomere length and non-telomere length sides

The studies cited above mainly explain their results based on the protective action of telomerase on telomeres, which is of prime interest for biologists seeking for telomerase – fitness relationships but also renders difficult any conclusion on telomerase effect per se. However, non-canonical effects of telomerase do exist (i.e. not mediated by the maintenance of telomere length) and should be taken into account to explore further the potential fitness benefits provided by this enzyme. Insights for the putative importance of these non-canonical roles in shaping life-histories were recently
illustrated in an interspecific comparison study of TERT sequences and expressions (Lai et al., 2017). Highly variable patterns of alternative splicing of the catalytic subunit TERT was described even in closely related species, suggesting that different functions of telomerase may have evolved in relation to lineage specific life histories (Lai et al., 2017). However, to date, the nature of those non-canonical roles (and their control by alternative splicing) are almost exclusively studied in humans and seem restricted to a few main impacts of TERT expression: mitochondrial functioning, enhanced cell proliferation (via the activation of growth factor signalisation pathway), control of the gene expression (not only oncogenes, e.g. immune genes) and regulation of telomerase activity during early-life development (de Punder et al., 2019; Smith, Coller, & Roberts, 2003; Ulaner, Hu, Vu, Giudice, & Hoffman, 1998; Xiang, Wang, Mao, & Li, 2000). Even if we need additional aspects of telomerase activity or TERT to be better described (like non-telomeric DNA maintenance, Gorbunova, Seluanov, & Pereira-Smith, 2002), those observations are of broad interest for evolutionary biologists. They suggests that either due to genetic variance or post-transcriptional regulation, individuals may differently react to environmental factors, for which the physiological response needs the activation of TERT expression and/or telomerase activity. One intriguing observation was made in planarian worms, an animal showing tissue regeneration capacity and asexual or sexual reproduction. In this model, alternative splicing of TERT seems to regulate the mechanisms of telomere elongation either in the somatic cells during fission (asexual reproduction) or in the germ-line cells during sexual reproduction (Tan et al., 2012). Together with similar observations in colonial ascidians or urochordate animals, it suggests that variation in telomerase expression has coevolved with specific life-history traits like mode of reproduction (Lai et al., 2017), extreme lifespan or somatic regeneration capacity (Tan et al., 2012 and herein cited references).

Tackling the telomerase – fitness link from its pleiotropic nature

We have briefly introduced so far that the role of telomerase may go beyond its accepted contribution to the maintenance of telomere length (non-canonical impacts of the TERT or TERCC
subunits), which may be associated with species’ traits. However, to tackle the telomerase – fitness hypothesis, we may also reconsider the question through the prism of its main period of high activity (at least in most birds and mammals), early-life development, and of its primary role in cell replication. Could telomerase have a dual and age-related impact on fitness, via individual health and lifespan components? By favouring developmental processes and cell renewal in early life, do telomerase activity and non-canonical TERT/TERC expression have positive effects on individual reproductive output, while leading to increased cancer risks in later life? When thinking of such pleiotropies of telomerase and fitness relationships, the first objective of future studies should be to evaluate how early and late-life expression of telomerase may modulate individual fitness at young, reproductive and post-reproductive adult stages. For instance, TERT alternative splicing is recognized as being involved in modulating telomerase activity during development in humans, but only its consequence in terms of telomere length has so far been evaluated (reviewed in Shay & Wright, 2019). This question needs to be re-evaluated in biological models where individual health and fitness can be measured over life. Along the same lines, the pleiotropies of non-canonical effects should also be studied. In fact, TERT ectopic expression in mice fibroblasts triggers cell growth by repressing growth-inhibiting pathways (Geserick, Tejera, González-Suárez, Klatt, & Blasco, 2006). This suggests that individual variation in TERT expression may underline individual variation in growth rates, and thereby contribute to the growth – lifespan trade-off (Metcalf & Monaghan, 2003).

Tackling the telomerase – fitness link from its dynamic nature

An important second way of studying telomerase in an evolutionary context will be to search for acute telomerase activity or TERT expression in response to stress under natural conditions. Telomerase is mainly described as active during embryogenesis and early-life in most animals (Bekaert, Derradj, & Baatout, 2004; Prowse & Greider, 1995), and then is shutdown likely to avoid cancer-risks (Shay & Wright, 2019). However, this general view has been regularly amended by data collected on several taxa, suggesting that telomerase activity could be maintained at adulthood in certain
conditions. For instance, beside the maintained telomerase activity in the soma of insects, lizards or
fish (reviewed in Gomes, Shay, & Wright, 2010), repression of telomerase activity was not found as an
unalterable characteristic in mammals and birds. Telomerase activity actually covaries (negatively)
with species body mass in rodents (Gorbunova & Seluanov, 2009) and life-long telomerase activity
characterizes some long-lived small seabirds (Haussmann et al., 2007), while its expected positive
impact on telomere length was described in hibernating (Hoelzl et al., 2016a; Turbill, Ruf, Smith, &
Bieber, 2013) as well as in non-hibernating species (Criscuolo, Pillay, Zahn, & Schradin, 2020; Fairlie et
al., 2016). The latter studies highlighted that telomerase may be turned-on at certain life stages, likely
in some particular cells (e.g. stem or hematopoietic cells) and raises the question of whether
telomerase forms part of the response-repertoire an organism possesses to face stress (Beery et al.,
2012), or which may constrain adaptive abilities (Choi, Fauce, & Effros, 2008). Given the ability of
immune cells to express high telomerase activity when activated (Bodnar, Kim, Effros, & Chiu, 1996;
Hiyama et al., 1995; Yamada, Motoji, & Mizoguchi, 1996), future studies would benefit from a focus
on immune cells, and how changes in telomerase activity (i.e. increases) vary at the individual level in
response to immune challenge and what are the collateral effects on other somatic tissues. Still, while
exploratory, those studies will probably uncover only part of the global picture as they will focus solely
on the dynamics of telomerase activity. Adding the non-canonical functions of telomerase via the
characterization of TERT / TERC dynamics of expression over age and in response to stress is vitally
important to establish how telomerase may affect individual fitness or bestow individuals with specific
life-history trait associations.

Telomerase as a mediator of the reproductive trade-off

The different age-related risks of telomerase activity have so far been conceptualized based
on our present knowledge of telomerase implication in cell-growth or renewal processes (Morrison,
Prowse, Ho, & Weissman, 1996) and in cell immortalization and the associated cancer risk (Tian et al.,
2018). However, the risk has never been considered in relation to the cost of reproduction in adults,
neither for telomerase activity nor at the level of subunit expression and of their non-canonical effects. When studying the cost of reproduction, defined as decreased future reproductive and survival rates (Stearns, 1992), one may consider telomerase as one of the pleiotropic regulators that may affect adult breeders current success (via the maintenance of telomere length) and their future prospects (via the non-canonical TERT / TERC protective effects, see below). Because the cost of reproduction may be mediated through telomere erosion or other cell defects of the adult soma and of gametes, using telomerase as the response variable will extend our understanding of reproductive costs beyond the “Y model” of energy allocation between reproduction and lifespan (reviewed in Harshman & Zera, 2007). Such a possibility has been illustrated in a single cell-organism, yeast, where a role for telomerase in response to DNA replication stress, but also in additional maternal cell ageing, was highlighted (Xie et al., 2015). Such a telomerase-based fitness component may also relate to the regulation by telomerase of stem cells capacity to be mobilized and punctually proliferate (Calado & Chen, 2006), thereby modulating cell renewal rate and organ performance in breeders. Again, focusing on the immune system, as it is the somatic tissue where telomerase activity is more likely to be recorded, seems the best alternative if we are to evaluate how telomerase may mediate the ageing outcomes of reproduction (Schulenburg, Kurtz, Moret, & Siva-Jothy, 2009).

Evidences for a cost of telomerase activation

The first cost to consider for telomerase activity in an evolutionary biology sense is energetic. A previous review on the role of telomeres in the evolution of life-history traits underlined the importance (and lack) of obtaining accurate data on how costly it is for a cell, and thereby for an organism, to maintain telomere length (and thus indirectly in activating telomerase, Young, 2018). Ecophysiological studies have suggested that maintenance of telomere length may be interpreted as energetically costly since, for instance, food supply during bad years allowed better telomere maintenance in free-living edible dormice (Glis glis), (Hoelzl et al., 2016a; Nowack et al., 2019). Still,
those studies did not disentangle the specific impact of telomerase activation from telomere lengthening. The current absence of clear data showing increased ATP consumption associated with telomerase activity allows an alternative view that telomerase may modulate in return the efficiency of the cellular energy-generating machinery.

The intriguing telomerase and mitochondrial relationship

Interestingly, among the non-canonical cell functions of telomerase so far described (reviewed in Arndt & MacKenzie, 2016), one intriguing finding is the mitochondrial localization of the TERT—telomerase subunit, recurrently reported by independent research groups (Ahmed et al., 2008; Haendeler et al., 2009; Moslehi, DePinho, & Sahin, 2012). This appears to be of interest for studying the TERT specific role in the context of life-history trade-offs, since the mitochondria stands at the crossroads of the production of cell energy (*i.e.* ATP) and of deleterious by-products of cell respiration (*i.e.* reactive oxygen species (ROS) (Criscuolo et al., 2005; Sahin & DePinho, 2012; Speakman et al., 2004). The first observation came from TERT deficient mice strains that showed compromised mitochondrial biogenesis through decreased mitochondrial content in somatic tissues, such as the heart and liver, as well as through decreased ATP mitochondrial synthesis (Sahin et al., 2011). The cellular pathways implicated in those negative effects have been clearly established. The lack of TERT expression leads to the suppression of the PGC activation pathway (Sahin et al., 2011) with cascading negative effects on gluconeogenesis, fatty acid oxidation or oxidative balance (Sahin & DePinho, 2012). Whether those changes are telomere-length dependent or due to non-canonical functions of TERT remains under debate. TERT was found to bind to genes coding for the complex I of the respiration chain, a major site of superoxide production, to improve respiratory chain activity (of complex I and of maximal respiration rate) and to protect mitochondrial DNA from oxidative stress (Haendeler et al., 2009). However, at least one study found higher levels of mitochondrial DNA damages due to hydrogen peroxide when TERT was re-localized within the mitochondria, and suggested that the mitochondrial—telomerase relationship was part of the oxidative stress pathway that triggers cell apoptosis (Santos,
Meyer, Skorvaga, Annab, & Van Houten, 2004). In addition, TERC-/- mice but which retain TERT expression, presented the same mitochondrial dysfunction as TERT-deficient mice, strongly suggesting a telomere length deficiency (and not a non-canonical) explanation (Sahin & DePinho, 2012; Strong et al., 2011). In the future, studying the effects of telomerase on mitochondrial functioning and then on the bioenergetics of cells needs to be extended in two ways. First, towards the study on how telomerase, mitochondrial dysfunction and signalization pathways well-known to control the energy trade-offs of organism ageing (e.g. IGF1 and mTOR) are interconnected (reviewed in Sahin & DePinho, 2012). Whether the telomerase regulation of the mitochondrial functioning is direct or indirect is not of primary importance for evolutionary studies, but how telomerase may modulate those signalization pathways will uncover new sides of the individual variability in the growth and ageing trade-off.

Second, we need to extend those studies to a broader range of species, starting with those that maintain telomerase activity after early-life development. As with telomeres, telomerase, mitochondria and IGF1 / mTOR pathways are highly conserved over evolution. Exploring how they differently interact in species that evolved variable growth rates, metabolism and lifespans would be highly valuable. For instance, telomerase activity is not found in dipterian insects (Sasaki & Fujiwara, 2000), but whether non-canonical functions of telomerase play a role in individual fitness in those animals remains unexplored.

The best models to start with: the TERT-/- knock-out animals

On longevity trade-off...

Tackling the role of telomerase in regulating the trade-offs among cellular and life-history traits will be of paramount importance in the coming years. While it remains indescribably complex to decipher causality in telomere biology and ageing, one natural starting place is to examine how life-history traits like growth, reproduction and lifespan are combined in biological models that experimentally lack telomerase activity, such as the TERT or TERC-/- organisms (Anchelin et al., 2013; Blasco et al., 1997). Those knock-out models have provide us with some clues that need to be explained
in a life-history context. Up-to-date, only one study has indirectly addressed the variation of expression of telomerase and of TERT / TERC subunits in relation to lifespan evolution and extrinsic risks of mortality (Hartmann et al., 2009). In short (3 months) and longer-lived (6 months) killifish, *Nothobranchius furzeri*, TERT and TERC gene expression correlate with telomerase activity and are equally expressed in both strains, but increase with age in some tissues of the long-lived population. Since telomere ends erode with age in both strains, we may expect some non-canonical roles for telomerase subunits to play a role in lifespan in this animal. Using such populations of the same species, that have naturally evolved life-history trait differences due to ecological constrains (i.e. the short-lived killifish originates from temporary pools with eggs drying in the mud until the next generation, and so we short adult lifespan expectancy), we may extend our understanding of the impact of telomerase and telomerase subunits’ expression to divergent evolution of fast pace of life (i.e. fast growth and high reproductive investment).

...reproduction trade-off...

TERC -/- mice show progressive telomere shortening over generations, with reduced cell turnover, bone marrow failure, and reproductive impairment only in the sixth generation of homozygous mutants (TERT -/- mice presented similar phenotypes (Herrera et al., 1999; Strong et al., 2011) for consistent results in a mouse strain with a different genetic background). Telomerase-mutated *C. elegans* worms (trt-1) can survive the absence of full telomerase activity and show no particular deficiencies, apart from becoming sterile after few generations (Lackner & Karlseder, 2012). While being rather anecdotal for molecular and cell biologists focusing on lifespan, those studies conducted on very different species may say something about the control of reproduction by age signalling, but may also have missed how impaired telomerase activity may modulate the reproductive output of adults. If accumulation of DNA damage over generations is the main explanation for the late appearance of specific sterile phenotypes in knockout models, we may expect that reproduction, or any other activity either energy consuming or potentially stressful, would also be more detrimental for
the future reproductive and survival prospects of TERT-/- or TERC-/- breeders. Unfortunately, the original work on mice said nothing about the reproductive success of those mice (Blasco et al., 1997), while mutated worms did show a decrease in brood size (Lackner, Raices, Maruyama, Haggblom, & Karlseder, 2012). Additional telomerase mutants like TERT-/- zebrafish (in which telomerase is active through life and present in the ovary even in infertile old females) develop normally until adulthood (Anchelin et al., 2013) and start with normal clutch size and viability (i.e. until 1 year-old). However, TERT-/- zebrafishes then present a fast senescence and premature sterility (Henriques & Ferreira, 2012). Interestingly in this study, TERT -/+ and TERT +/+ zebrafish increased their reproductive performances after 1 year, while the female TERT -/- presented a reduced number of eggs per spawn (Anchelin et al., 2013). Still, there were no detailed data on how, for instance, the heterozygote strain may suffer from a lowered reproductive success than the control one. Such a question remains a key point to evaluate the putative telomerase – fitness links. Again, given that TERT has been found to have non-canonical roles in inducing neutropenia in zebrafish (Alcaraz-Pérez et al., 2014), it is unknown whether this could also modulate reproductive success via gamete viability (see Anchelin et al., 2013 for deleterious effect on sperm).

...or immune trade-off.

Since cell proliferation is one of the active arms of immunity, a last obvious context where telomerase impact should be evaluated in knock-out models relates to the cost of mounting an immune response. Telomerase seems to be involved in replicative capacity of immune cells (Allsopp, Cheshier, & Weissman, 2002) and TERC -/- mice show a reduced spleen size with a reduced rate of proliferation of either B and T lymphocytes following immune challenge (Blasco, 2002). In addition, a higher proportion of neutrophils has been recorded (Herrera et al., 1999) (maybe as a compensatory response to lymphocyte weakness) and macrophages of TERC -/- mice are characterized by an “old-phenotype” with reduced proliferative capacity and higher intracellular ROS concentrations (Sebastián et al., 2009). As neutrophils and macrophages are central in the set-up and control of the inflammatory
and innate immune responses (Desai, Grolleau-Julius, & Yung, 2010), evaluating how TERC -/-
individuals react to inflammatory challenges commonly used in ecophysiological studies (i.e.
lipopolysaccharide injection) will be of interest, both in terms of energy expenditure of collateral
oxidative damage, and ultimately of future reproductive and survival prospects.

Conclusion: there is a lot to gain in studying telomerase for evolutionary biologists

Our present knowledge of the role of telomerase in modulating cell ageing, bioenergetics or
signalization pathways (all mechanisms underlying the individual phenotype and ultimately its life-
history traits such as immunity, growth or reproductive rates) is largely lacking. Using knock-out
models of telomerase genes has provided us with a unique tool to study how the combination of
physiological and life history traits is likely to be altered when compared to wild-type strains. Of course,
hetereozygotes of mutated genes (TERT -/+ or TERC -/-) will be more valuable as they will take us
beyond the on/off (i.e. sterile/fertile) phenotypes. In addition, the study of telomerase must be
extended to a broader range of species in non-models animals like birds, fish, mammals or insects,
where descriptive studies on change in telomerase activity with age or tissue have already paved our
way (e.g. Hartmann et al., 2009; Jemielity et al., 2007; Koubová et al., 2019; McAloney, Silverstein,
Modiano, & Bagchi, 2014; O’Hare & Delany, 2005; Wang, McAllan, & He, 2011). Adding original data
on, more particularly, the pleiotropic action of canonical and non-canonical activities of telomerase,
and exploring how they may have co-evolved with particular life-history traits form our next scientific
objective.

Acknowledgements

Data accessibility. This article has no additional data.

Competing interests. We declare we have no competing interests.

Funding. We received no funding for this study

Author contributions

S.S. and F.C. conceived the study. S.S, F.C., F.H. and S.Z. wrote the text. All authors commented on
drafts of the manuscript.
Ahmed, S., Passos, J. F., Birket, M. J., Beckmann, T., Brings, S., Peters, H., . . . Saretzki, G. (2008). Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. *Journal of Cell Science, 121*(7), 1046-1053. doi:10.1242/jcs.019372

Akiyama, B. M., Parks, J. W., & Stone, M. D. (2015). The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA–DNA hybrids. *Nucleic Acids Research, 43*(11), 5537-5549. doi:10.1093/nar/gkv406

Alcaraz-Pérez, F., García-Castillo, J., García-Moreno, D., López-Muñoz, A., Anchelin, M., Angosto, D., . . . Cayuela, M. L. (2014). A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. *Nature Communications, 5*(1), 3228. doi:10.1038/ncomms4228

Allsopp, R. C., Cheshier, S., & Weissman, I. L. (2002). Telomerase Activation and Rejuvenation of Telomere Length in Stimulated T Cells Derived from Serially Transplanted Hematopoietic Stem Cells. *The Journal of Experimental Medicine, 196*(11), 1427-1433. doi:10.1084/jem.20021003

Anchelin, M., Alcaraz-Pérez, F., Martínez, C. M., Bernabé-García, M., Mulero, V., & Cayuela, M. L. (2013). Premature aging in telomerase-deficient zebrafish. *Disease Models & Mechanisms, 6*(5), 1101-1112. doi:10.1242/dmm.011635

Anchelin, M., Murcia, L., Alcaraz-Pérez, F., García-Navarro, E. M., & Cayuela, M. L. (2011). Behaviour of Telomere and Telomerase during Aging and Regeneration in Zebrafish. *PLoS ONE, 6*(2), e16955. doi:10.1371/journal.pone.0016955

Angelier, F., Vleck, C. M., Holberton, R. L., & Marra, P. P. (2013). Telomere length, non-breeding habitat and return rate in male American redstarts. *Functional Ecology, 27*(2), 342-350. doi:10.1111/1365-2435.12041

Arndt, G. M., & MacKenzie, K. L. (2016). New prospects for targeting telomerase beyond the telomere. *Nature Reviews Cancer, 16*(8), 508-524. doi:10.1038/nrc.2016.55

Aubert, G. (2014). Telomere Dynamics and Aging. *Progress in Molecular Biology and Translational Science, 125*, 89-111. doi:10.1016/B978-0-12-397898-1.00004-9

Autexier, C., & Lue, N. F. (2006). The Structure and Function of Telomerase Reverse Transcriptase. *Annual Review of Biochemistry, 75*, 493-517. doi:10.1146/annurev.biochem.75.103004.142412

Beaulieu, M., Reichert, S., Le Maho, Y., Ancel, A., & Criscuolo, F. (2011). Oxidative status and telomere length in a long-lived bird facing a costly reproductive event. *Functional Ecology, 25*(3), 577-585. doi:10.1111/j.1365-2435.2010.01825.x

Beery, A. K., Lin, J., Biddle, J. S., Francis, D. D., Blackburn, E. H., & Epel, E. S. (2012). Chronic stress elevates telomerase activity in rats. *Biology Letters, 8*(6), 1063-1066. doi:10.1098/rsbl.2012.0747

Bekaert, S., Derradji, H., & Baatout, S. (2004). Telomere biology in mammalian germ cells and during development. *Developmental Biology, 274*(1), 15-30. doi:10.1016/j.ydbio.2004.06.023

Blasco, M. A. (2002). Immunosenesence phenotypes in the telomerase knockout mouse. *Springer Seminars in Immunopathology, 24*(1), 75-85. doi:10.1007/s00281-001-0096-1

Blasco, M. A., Lee, H.-W., Hande, M. P., Samper, E., Lansdorp, P. M., DePinho, R. A., & Greider, C. W. (1997). Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA. *Cell, 91*(1), 25-34. doi:10.1016/S0092-8674(01)80006-4

Bodnar, A. G., Kim, N. W., Effros, R. B., & Chiu, C. P. (1996). Mechanism of Telomerase Induction during T Cell Activation. *Experimental Cell Research, 228*(1), 58-64. doi:10.1006/excr.1996.0299

Calado, R., & Young, N. (2012). Telomeres in disease. *F1000 Medicine Reports, 4*, 8. doi:10.3410/M4-8
Calado, R. T., & Chen, J. (2006). Telomerase: not just for the elongation of telomeres. BioEssays, 28(2), 109-112. doi:10.1002/bies.20365

Campisi, J. (2013). Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, 75, 685-705. doi:10.1146/annurev-physiol-030212-183653

Choi, J., Fauce, S. R., & Effros, R. B. (2008). Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain, Behavior, and Immunity, 22(4), 600-605. doi:10.1016/j.bbi.2007.12.004

Counter, C. M., Meyerson, M., Eaton, E. N., Ellisen, L. W., Caddle, S. D., Haber, D. A., & Weinberg, R. A. (1998). Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene, 16(9), 1217-1222. doi:10.1038/sj.onc.1201882

Cram, D. L., Monaghan, P., Gillespie, R., & Clutton-Brock, T. (2017). Effects of early-life competition and maternal nutrition on telomere lengths in wild meerkats. Proceedings of the Royal Society B, 284(1861), 20171383. doi:10.1098/rspb.2017.1383

Desai, A., Grolleau-Julius, A., & Yung, R. (2010). Leukocyte function in the aging immune system. Journal of Leukocyte Biology, 87(6), 1001-1009. doi:10.1189/jlb.0809542

Dey, A., & Chakrabarti, K. (2018). Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. International Journal of Molecular Sciences, 19(2), 333. doi:10.3390/ijms19020333

Diede, S. J., & Gottschling, D. E. (1999). Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases α and δ. Cell, 99(7), 723-733. doi:10.1016/S0092-8674(00)81670-0

Eisenberg, D. T. A., Hayes, M. G., & Kuzawa, C. W. (2012). Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10251-10256. doi:10.1073/pnas.1202092109

Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M., Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell, 15(1), 140-148. doi:10.1111/acel.12417

Foley, N. M., Hughes, G. M., Huang, Z., Clarke, M., Jebb, D., Whelan, C. V., . . . Teeling, E. C. (2010). Growing old, yet staying young: The role of telomeres in bats’ exceptional longevity. Science Advances, 4(2), eaa0926. doi:10.1126/sciadv.aao0926

Gaillard, J.-M., & Lemaître, J.-F. (2017). The Williams' legacy: A critical reappraisal of his nine predictions about the evolution of senescence. Evolution, 71(12), 2768-2785. doi:10.1111/evo.13379

Gaillard, J. M., & Lemaître, J. F. (2020). An integrative view of senescence in nature. Functional Ecology, 34(1), 4-16. doi:10.1111/1365-2435.13506

Gallardo, F., & Chartrand, P. (2008). Telomerase biogenesis. The long road before getting to the end. RNA Biology, 5(4), 212-215. doi:10.4161/rna.7115

Geserick, C., Tejera, A., González-Suárez, E., Klatt, P., & Blasco, M. A. (2006). Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-β signaling. Oncogene, 25(31), 4310-4319. doi:10.1038/sj.onc.1209465

Gomes, N. M. V., Shaya, J. W., & Wright, W. E. (2010). Telomere biology in Metazoa. FEBS Letters, 584(17), 3741-3751. doi:10.1016/j.febslet.2010.07.031
Gorbunova, V., & Seluanov, A. (2009). Coevolution of telomerase activity and body mass in mammals: From mice to beavers. *Mechanisms of Ageing and Development, 130*(1-2), 3-9. doi:10.1016/j.mad.2008.02.008

Gorbunova, V., Seluanov, A., & Pereira-Smith, O. M. (2002). Expression of Human Telomerase (hTERT) Does Not Prevent Stress-induced Senescence in Normal Human Fibroblasts but Protects the Cells from Stress-induced Apoptosis and Necrosis. *Journal of Biological Chemistry, 277*(41), 38540-38549. doi:10.1074/jbc.m202671200

Haendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., . . . Dimmeler, S. (2009). Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. *Arteriosclerosis, Thrombosis, and Vascular Biology, 29*(6), 929-935. doi:10.1161/ATVBAHA.109.185546

Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. *Nature, 345*(6274), 458-460. doi:10.1038/345458a0

Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: the devil in the details. *Trends in Ecology & Evolution, 22*(2), 80-86. doi:10.1016/j.tcb.2007.04.001

Hartmann, N., Reichwald, K., Lechel, A., Graf, M., Kirschners, J., Dorn, A., . . . Englert, C. (2009). Telomeres shorten while Tert expression increases during ageing of the short-lived fish *Nothobranchius furzeri*. *Mechanisms of Ageing and Development, 130*(5), 290-296. doi:10.1016/j.mad.2009.01.003

Hatakeyama, H., Yamazaki, H., Nakamura, K.-I., Izumiyama-Shimomura, N., Aida, J., Suzuki, H., . . . Ishikawa, N. (2016). Telomere attrition and restoration in the normal teleost *Oryzias latipes* are linked to growth rate and telomerase activity at each life stage. *Aging, 8*(1), 62-75. doi:10.18632/aging.100873

Haussmann, M. F., & Vleck, C. M. (2002). Telomere length provides a new technique for aging animals. *Oecologia, 130*(3), 325-328. doi:10.1007/s00442-001-0827-y

Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2004). Telomerase Expression Is Differentially Regulated In Birds Of Differing Life Span. *Annals of the New York Academy of Sciences, 1019*(1), 186-190. doi:10.1196/annals.1297.029

Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2007). Telomerase activity is maintained throughout the lifespan of long-lived birds. *Experimental Gerontology, 42*(7), 610-618. doi:10.1016/j.exger.2007.03.004

Haussmann, M. F., Winkler, D. W., O’Reilly, K. M., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2003). Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. *Proceedings of the Royal Society B-London Series B-Biological Sciences, 270*(1522), 1387-1392. doi:10.1098/rspb.2003.2385

Haussmann, M. F., Winkler, D. W., & Vleck, C. M. (2005). Longer telomeres associated with higher survival in birds. *Biology Letters, 1*(2), 212-214. doi:10.1098/rsbl.2005.0301

Henriques, C. M., & Ferreira, M. G. (2012). Consequences of telomere shortening during lifespan. *Current Opinion in Cell Biology, 24*(6), 804-808. doi:10.1016/j.cel.2012.09.007

Herborn, K. A., Heidinger, B. J., Boner, W., Noguera, J. C., Adam, A., Daunt, F., & Monaghan, P. (2014). Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird. *Proceedings of the Royal Society B, 281*(1782), 20133151. doi:10.1098/rspb.2013.3151

Herrera, E., Samper, E., Martín-Caballero, J., Flores, J. M., Lee, H.-W., & Blasco, M. A. (1999). Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. *The EMBO Journal, 18*(11), 2950-2960. doi:10.1093/emboj/18.11.2950

Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M. A., . . . Yamakido, M. (1995). Activation of Telomerase in Human Lymphocytes and Hematopoietic Progenitor Cells. *The Journal of Immunology, 155*(8), 3711-3715. Retrieved from https://www.jimmunol.org/content/jimmunol/155/8/3711.full/pdf
Hoelzl, F., Cornils, J. S., Smith, S., Moodley, Y., & Ruf, T. (2016a). Telomere dynamics in free-living edible dormice (Glis glis): the impact of hibernation and food supply. *Journal of Experimental Biology, 219*(Pt 16), 2469-2474. doi:10.1242/jeb.140871

Hoelzl, F., Smith, S., Cornils, J. S., Aydinonat, D., Bieber, C., & Ruf, T. (2016b). Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). *Scientific Reports, 6*, 36856. doi:10.1038/srep36856

Hossain, S., Singh, S., & Lue, N. F. (2002). Functional Analysis of the C-terminal Extension of Telomerase Reverse Transcriptase. A Putative "Thumb" Domain. *Journal of Biological Chemistry, 277*(39), 36174-36180. doi:10.1074/jbc.M201976200

Hrdličková, R., Nehyba, J., Lim, S. L., Grützner, F., & Bose Jr., H. R. (2012). Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes. *BMC Genomics, 13*, 216. doi:10.1186/1471-2164-13-216

Jemielity, S., Kimura, M., Parker, K. M., Parker, J. D., Cao, X., Aviv, A., & Keller, L. (2007). Short telomeres in short-lived males: what are the molecular and evolutionary causes? *Aging Cell, 6*(2), 225-233. doi:10.1111/j.1474-9726.2007.00279.x

Korandová, M., & Čapková Frydrychová, R. (2015). Activity of telomerase and telomeric length in Apis mellifera. *Chromosoma, 125*(3), 405-411. doi:10.1007/s00412-015-0547-4

Koubová, J., Jehlík, T., Kodrík, D., Sábová, M., Šima, P., Sehadová, H., . . . Frydrychová, R. Č. (2019). Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris). *Insect Biochemistry and Molecular Biology, 115*, 103241. doi:10.1016/j.ibmb.2019.103241

Lackner, D. H., & Karlseder, J. (2012). *C. elegans* survivors without telomerase. *The EMBO Journal, 31*(8), 2033-2034. doi:10.1038/emboj.2012.61

Lackner, D. H., Raices, M., Maruyama, H., Haggblom, C., & Karlseder, J. (2012). Organismal propagation in the absence of a functional telomerase pathway in Caenorhabditis elegans. *The EMBO Journal, 31*(8), 2024-2033. doi:10.1038/emboj.2012.61

Lai, A. G., Pouchkina-Stantcheva, N., Di Donfrancesco, A., Kildisiute, G., Sahu, S., & Aboobaker, A. A. (2017). The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. *BMC Evolutionary Biology, 17*(1), 107. doi:10.1186/s12862-017-0949-4

Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., & Cech, T. R. (1997). Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase. *Science, 276*(5312), 561-567. doi:10.1126/science.276.5312.561

Logeswaran, D., Li, Y., Podlevsky, J. D., & Chen, J. J.-L. (2021). Monophyletic Origin and Divergent Evolution of Animal Telomerase RNA. *Molecular Biology and Evolution, 38*(1), 215-228. doi:10.1093/molbev/msaa203

Marrone, A., & Dokal, I. (2004). Dyskeratosis congenita: molecular insights into telomerase function, ageing and cancer. *Expert Reviews in Molecular Medicine, 6*(26), 1-23. doi:10.1017/s1462399404008671

Mason, M., Schuller, A., & Skordalakes, E. (2011). Telomerase structure function. *Curr. Opin. Struct. Biol., 21*(1), 92-100. doi:10.1016/j.sbi.2010.11.005

McAloney, C. A., Silverstein, K. A. T., Modiano, J. F., & Bagchi, A. (2014). Polymorphisms within the Telomerase Reverse Transcriptase gene (TERT) in four breeds of dogs selected for difference in lifespan and cancer susceptibility. *BMC Veterinary Research, 10*, 20. doi:10.1186/1746-6148-10-20

Mensà, E., Latini, S., Ramini, D., Storci, G., Bonafè, M., & Olivieri, F. (2019). The telomere world and aging: Analytical challenges and future prospects. *Aging Research Reviews, 50*, 27-42. doi:10.1016/j.arr.2019.01.004

Metcalfe, N. B., & Monaghan, P. (2003). Growth versus lifespan: perspectives from evolutionary ecology. *Experimental Gerontology, 38*(9), 935-940. doi:10.1016/S0531-5565(03)00159-1
Monaghan, P., & Haussmann, M. F. (2006). Do telomere dynamics link lifestyle and lifespan? Trends in Ecology & Evolution, 21(1), 47-53. doi:10.1016/j.tree.2005.11.007

Morrison, S. J., Prowse, K. R., Ho, P., & Weissman, I. L. (1996). Telomerase Activity in Hematopoietic Cells Is Associated with Self-Renewal Potential. Immunity, 5(3), 207-216. doi:10.1016/s1074-7613(00)80316-7

Moslehi, J., DePinho, R. A., & Sahin, E. (2012). Telomeres and Mitochondria in the Aging Heart. Circulation Research, 110(9), 1226-1237. doi:10.1161/CIRCRESAHA.111.246868

Morrison, S. J., Prowse, K. R., Ho, P., & Weissman, I. L. (1996). Telomerase Activity in Hematopoietic Cells Is Associated with Self-Renewal Potential. Immunity, 5(3), 207-216. doi:10.1016/s1074-7613(00)80316-7

Mu, Y., Ren, L., Hu, X., Zhao, Y., Li, H., Lu, H., & Liu, D. (2015). Season-Specific Changes in Telomere Length and Telomerase Activity in Chinese Pine (Pinus tabulaeformis Carr.). Russian Journal of Plant Physiology, 62(4), 487-493. doi:10.1134/S1021443715040147

Nettle, D., Monaghan, P., Gillespie, R., Brilot, B., Bedford, T., & Bateson, M. (2015). An experimental demonstration that early-life competitive disadvantage accelerates telomere loss. Proceedings of the Royal Society B, 282(1798), 20141610. doi:10.1098/rspb.2014.1610

Noguera, J. C., Metcalfe, N. B., Reichert, S., & Monaghan, P. (2016). Embryonic and postnatal telomere length decrease with ovulation order within clutches. Scientific Reports, 6, 25915. doi:10.1038/srep25915

Nowack, J., Tarmann, I., Hoelzl, F., Smith, S., Giroud, S., & Ruf, T. (2019). Always a price to pay: Hibernation at low temperatures comes with a trade-off between energy savings and telomere damage. Biology Letters, 15, 20190466. doi:10.1098/rsbl.2019.0466

O’Hare, T. H., & Delany, M. E. (2005). Telomerase gene expression in the chicken: Telomerase RNA (TR) and reverse transcriptase (TERT) transcript profiles are tissue-specific and correlate with telomerase activity. Age, 27(4), 257-266. doi:10.1007/s11357-005-4558-6

Podlevsky, J. D., Bley, C. J., Omana, R. V., Qi, X., & Chen, J. J.-L. (2008). The Telomerase Database. Nucleic Acids Research, 36(Database issue), D339-D343. doi:10.1093/nar/gkm700

Price, L. H., Kao, H. T., Burgers, D. E., Carpenter, L. L., & Tyrka, A. R. (2013). Telomeres and Early-Life Stress: An Overview. Biological Psychiatry, 73(1), 15-23. doi:10.1016/j.biopsych.2012.06.025

Procházková Schrumpfová, P., & Fajkus, J. (2020). Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules, 10(10), 1425. doi:10.3390/biom10101425

Procházková Schrumpfová, P., Fojtová, M., & Fajkus, J. (2019). Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells, 8(1), 58. doi:10.3390/cells8010058

Prowse, K. R., & Greider, C. W. (1995). Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proceedings of the National Academy of Sciences of the United States of America, 92(11), 4818-4822. doi:10.1073/pnas.92.11.4818

Rafnar, T., Sulem, P., Stacey, S. N., Geller, F., Gudmundsson, J., Sigurdsson, A., ... Stefansson, K. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nature Genetics, 41(2), 221-227. doi:10.1038/ng.296

Sahin, E., Colla, S., Liesa, M., Moslehi, J., Muller, F. L., Guo, M. R., ... DePinho, R. A. (2011). Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 470(7334), 359-365. doi:10.1038/Nature09787

Sahin, E., & DePinho, R. A. (2012). Axis of ageing: telomeres, p53 and mitochondria. Nature Reviews Molecular Cell Biology, 13(6), 397-404. doi:10.1038/nrm3352

Santos, J. H., Meyer, J. N., Skorvaga, M., Annab, L. A., & Van Houten, B. (2004). Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell, 3(6), 399-411. doi:10.1111/j.1474-9728.2004.00124.x

Saretzki, G. (2009). Telomerase, mitochondria and oxidative stress. Experimental Gerontology, 44(8), 485-492. doi:10.1016/j.exger.2009.05.004

Sasaki, T., & Fujiwara, H. (2000). Detection and distribution patterns of telomerase activity in insects. European Journal of Biochemistry, 267(10), 3025-3031. doi:10.1046/j.1432-1033.2000.01323.x

Savage, S. A., Giri, N., Baerlocher, G. M., Orr, N., Lansdorp, P. M., & Alter, B. P. (2008). TINF2, a Component of the Shelterin Telomere Protection Complex, Is Mutated in Dyskeratosis
Ulaner, G. A., Hu, J.-F., Vu, T. H., Giudice, L. C., & Hoffman, A. R. (1998). Telomerase Activity in Human Development Is Regulated by Human Telomerase Reverse Transcriptase (hTERT) and by Alternate Splicing of hTERT Transcripts. Cancer Research, 58(18), 4168-4172. Retrieved from https://cancerres.aacrjournals.org/content/canres/58/18/4168.full.pdf

von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 27(7), 339-344. doi:10.1016/S0968-0004(02)02110-2

Vulliamy, T., Marrone, A., Goldman, F., Dearlove, A., Bessler, M., Mason, P. J., & Dokal, I. (2001). The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature, 413(6854), 432-435. doi:10.1038/35096585

Wang, L., McAllan, B. M., & He, G. (2011). Telomerase activity in the bats Hipposideros armiger and Rousettus leschenaultia. Biochemistry, 76(9), 1017-1021. doi:10.1134/S0006297911090057

Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398-411. doi:10.1111/j.1558-5646.1957.tb02911.x

Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W., & Shay, J. W. (1996). Telomerase activity in human germline and embryonic tissues and cells. Developmental Genetics, 18(2), 173-179. doi:10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3

Xiang, H., Wang, J., Mao, Y.-W., & Li, D. W.-C. (2000). hTERT Can Function with Rabbit Telomerase RNA: Regulation of Gene Expression and Attenuation of Apoptosis. Biochemical and Biophysical Research Communications, 278(3), 503-510. doi:10.1006/bbrc.2000.3834

Xie, Z., Jay, K. A., Smith, D. L., Zhang, Y., Liu, Z., Zheng, J., . . . Blackburn, E. H. (2015). Early telomerase inactivation accelerates aging independently of telomere length. Cell, 160(5), 928-939. doi:10.1016/j.cell.2015.02.002

Yamada, O., Motoji, T., & Mizoguchi, H. (1996). Up-regulation of telomerase activity in human lymphocytes. Biochimica et Biophysica Acta - Molecular Cell Research, 1314(3), 260-266. doi:10.1016/s0167-4889(96)00104-8

Yamaguchi, H., Calado, R. T., Ly, H., Kajigaya, S., Baerlocher, G. M., Chanock, S. J., . . . Young, N. S. (2005). Mutations in TERT, the Gene for Telomerase Reverse Transcriptase, in Aplastic Anemia. The New England Journal of Medicine, 352(14), 1413-1424. doi:10.1056/nejmoa042980

Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160452. doi:10.1098/rstb.2016.0452

Data accessibility statement

Author contributions

Supplementary Information

Supplementary Table 1: XXXX