Detection of Bacterial Leaf Blight Resistance Genes in Indigenous Glutinous Rice Landraces

T. Thanh¹, P.H. Ton¹,², V.D. Hai³, N.T. Luong², T.V. Hai¹,², P.B. Hien⁴, L.T. Nghia⁵, D.M. Trung⁶, N.T. Duong³, K.H. Trung³, T.D. Khanh*³

¹Biotechnology Faculty, Vietnam National University of Agriculture
²Center for conservation and development of crop genetic resources, Vietnam National University of Agriculture, Vietnam
³Agricultural Sciences Institute, Hanoi, Vietnam
⁴Department of Postgraduate Training, Vietnam Academy of Agricultural Sciences, Vietnam
⁵Plant Resources Center, Hanoi, Vietnam;
⁶Institute of Biomedicine and Pharmacy, Vietnam Military Medical University (VMMU), Hanoi, Vietnam

e-mail: tdkhanh@vaas.vn

Keywords Blight leaf blight, resistant genes, glutinous rice landraces, Xa7 gene, Xa4 gene, Xa5 gene.

Abstract. Bacterial leaf blight disease (BLB) caused by Xanthomonas oryzae pv is one of the most widespread devastating diseases of rice worldwide. In this study, a total of 86 indigenous glutinous rice landraces were examined for BLB resistant genes included Xa4, xa5, and Xa7 by using molecular markers. The results indicated that 37 samples carrying resistant genes, in which Xa4 was found in 11 samples, xa5 determined in 6 samples, Xa7 was in 19 samples, respectively. However, both of Xa7 and Xa4 were observed in only one sample. The resistant level against 10 bacterial strains carrying the resistant genes was also evaluated. We found that the number 6, 9, and 8 out of the 10 bacterial strains were resistant to the landraces which carried the Xa4, xa5, and Xa7. The bacterial strain number 5 was revealed highly toxic, causing infection of all samples. The agronomical traits, yield and yield components of 37 rice landraces included the resistant genes (Xa4, xa5 and Xa7) were evaluated. Our findings may provide useful genetic sources in indigenous glutinous rice landraces to further develop BLB resistant rice lines via molecular breeding program.

Introduction

Bacterial leaf blights (BLB) disease in rice caused by Xanthomonas oryzae pv.oryzae bacterial, and is one of the most widespread devastating diseases in all rice-cultivating areas of the world. Under the pressure of bacteria infestation, the rice leaves were blighted, severely infected leaves tend to dry promptly, and then the chlorophylls will be non-synthesis, leading to reduce productivity up to 80%. If the disease becomes serious, rice yield can be totally lost. In rice producing countries in Asia, millions of hectares of rice paddies have seriously influenced yearly by infestation of BLB.

Rice (Oryza sativa L.) is the main food and providing daily meals for over 90 million people in Vietnam. According to the report of MARD (2015) [1] BLB was caused severe infestation across the country up to 11.921 ha in both Mekong and Red River Deltas. More seriously, total BLB affected areas in south provinces were 7.069 ha, increased 2.129 ha comparing in 2016 and 110 ha were severely lost [2] (MARD, 2017). Currently, there is no specific treatment for this disease, other synthetic pesticides are being used only to prevent the disease infestation. Therefore, using the resistant varieties are considered as the most feasible solution, which could help for environmental-friendly and possibly produce safety products instead of using agrochemical pesticides. In order to successfully improve BLB resistant rice varieties, the genetic sources of rice landraces play a key role in controlling this disease.
To date, total 42 resistant genes to BLB have been reported. Among them, there are 14 recessive genes [3, 4]. In Vietnam, 4 resistant genes including Xa4, xa5, Xa7, and Xa21 have been reported as the significant resistant genes to pathogenic bacterial strains in the northern Vietnam. These genes have had important role in rice breeding for resistance to BLB. Some markers tightly linked with BLB resistant genes have been identified [5]. Therefore, application of molecular markers to detect genetic resources becomes the way of simple and accurate. Therefore, the objective of this study was to examine a total of 86 Vietnamese indigenous glutinous rice varieties for resistant genes Xa4, xa5, and Xa7 by molecular markers. Subsequently, resistant levels of rice varieties carrying the resistant genes were evaluated by applying infection of the 10 bacterial strains. Besides, some major agronomical traits were evaluated to select the best varieties for glutinous rice for molecular breeding.

Materials and Methods

Plant Materials

The 86 rice landraces were kindly provided by the Center for Conservation and Development of Crop Genetics Resources (CCD-CGR), Vietnam National University of Agriculture were used in this study. The 10 pathogenic bacterial strains of BLB were collected in the northern Vietnam were used in this study as shown in Table 1.

No.	Strain	Code	Isolated	Gathering location
1	Strain 1	HUA 01043	TN 13-4	Soc Son, Ha Noi
2	Strain 2	HUA 0020131-1	Khandan	Dong Trieu, Quang Ninh
3	Strain 3	HUA 0020131-2	Khandan	Dong Trieu, Quang Ninh
4	Strain 4	HUA 020361	Neptan	Thuan Chau, Son La
5	Strain 5	HUA 02012	Tethom	Dong Anh, Ha Noi
6	Strain 6	HUA 010081	Bacthom7	Binh Giang, Hai Duong
7	Strain 7	HUA 020020-2	Nep87	Xuan Truong, Nam Dinh
8	Strain 8	HUA 020083	Bacthom7	Quynh Luu, Nghe An
9	Strain 9	HUA 020020-1	Nep87	Xuan Truong, Nam Dinh
10	Strain 10	HUA 020131-3	Khandan	Dien Chau, Nghe An

The molecular markers were used to detect the resistant genes Xa4, xa5, and Xa7 including the information of sequence, genes, markers and chromosomes were shown in Table 2.

Linkage gene	Marker	Chr.	Sequences 5'-3'	Author
Xa4	Npb181	11	F: ATCGATCGATCTTCAACGG R: GTGCTATAACAGGTTCTG	[6]
xa5	RM122	5	F: GAGTCGATGTAATGTCATCAGTGC R: GGAGAGGTATCCTCGTTTGGACG	[7]
Xa7	P3	6	F: CAG CAA TTC ACT GGA GTA GTG GTT R: CAT CAC GGT CAC CAC CAT ATC GGA	[8]

Methods

Application of molecular marker to detect resistant genes Xa4, xa5 and Xa7

DNA extraction

Total DNA extraction was carried out according to the process of Zheng et al. [9]. The young leaves were chopped at 2 cm and crushed in 800 µl of mixed solution (200mM Tris-HCl pH 8.0 buffer; 25 mM EDTA; 250 mM NaCl, 0.5 SDS) in order to break the cells. Fine hundred µl of
crushing solution were transferred into the test tube (1.5 ml) and added 700μl of mixture (with the ratio of phenol:chloroform:isoamyl alcohol are 25:24:1, respectively). The mixture was slightly shaken and centrifuged for 5 min at 13,000 rpm and 4°C. The supernatant was then transferred into the new test tube, added 800 µl of ethanol 100%, and centrifuged for 5 min for 13,000 rpm at 4°C. The precipitated DNA extracts were collected, cleaned by ethanol 70% and naturally dried. The precipitated DNA extracts were dissolved in 50 µl TE and stored at -20°C for next use.

PCR performance

PCR performance was carried out with the volume of 20 µl including: 10 µl PCR master mix (2X) provided by Promega company, 1 µl Primer Forward (1.0 pmol/ul), 1 µl Primer Reverse (1.0 pmol/ul), 1 µl total DNA and 7 µl nuclease-Free water. PCR Performances of genes Xa4, xa5, and Xa7 were performed as follows: 94°C for 4 m, 30 cycles: 94°C for 1 min, 56°C for 1 min, 72°C for 2 min, and 72°C for 7 min. Electrophoresis of PCR products were performed on agarose gel 1.5%, 100V for 45 min. Gel was dyed with Ethidium Bromide 0.5 µg/ml and observed by UV scanner.

Evaluation of the agronomical traits

Investigation of rice landraces

The rice samples were grown in the paddy field according to the conventional methods. Each landrace was cultivated in an area of 5 m² with the density of 11 cm x 20 cm x 30 cm. The agronomic traits were evaluated following the method of IRRI [10] and QCVN 01–55: 2011/BNNPTNT such as: number of panicles per plant (NPP), filled grains per panicle (FGP), grain weight (GW-P1000), plant height (PH), days to heading (DTH) and some characteristics involving in quality were also recorded.

Experiment of artificial infection

Artificial infection was carried out at the time that rice plant started booting stage by cutting at 3-5 cm of leaf. The bacteria were cultured on Wakimoto medium for 48 h. The concentration of bacterial solution was about $10^8 - 10^9$ cells/ml. Whole green leaves of each plant were also cut. Resistant ability of each variety was evaluated by measuring the lesion length after 20 days of infection following the IRRI standards [10] as follows: lesion length <8 cm: resistance (R); from 8-12 cm: medium (M); and >12 cm: susceptibility (S).

Results and Discussion

Detection of resistant gene Xa4

The indigenous rice landraces have been cultivated and undergone a long time for domestification. Therefore, they have had many valuable agronomic characteristics such as: high yield potential (grains per panicle), high quality, strong tolerance to abiotic and biotic stresses, especially resistance to pests and diseases. In order to exploit them for rice breeding, it is initially examine for BLB resistant genes. In this research, we investigated the occurrence of Xa4, xa5 and Xa7 in the 86 rice landraces. According to report of Ton et al. [5], Xa4 gene was determined the resistance to 6/10 leaf blight bacterial strains in the northern Vietnam. This gene is located on the chromosome 11 which is tightly linked with the marker Npb181 and marker MP [6], respectively. Npb181 marker was used to detect Xa4 gene. PCR product was electrophoresised on agarose gel 1.5%. Rice landraces containing Xa4 gene showed a DNA band with the size of 150 base pair (bp). Otherwise, the landraces with non-carrying Xa4 gene which displayed a DNA band with the size of 120bp fragment as corresponding to the negative line IR24. The result of electrophoresis of PCR products disclosed that 11 glutinous rice varieties which had Xa4 gene in the total of 86 samples as shown in Fig. 1. Recently, Ullah et al [11] reported that Xa4 was detected in Basmati-385 and Basmati 2000 cultivars by using STS markers, which was agreed with our current study. In Vietnam, there are sporadical work examining BLB resistant genes of rice landstrains. In much
effort has been paid on developing the BLB resistant cultivars since 1970 by using Xa4 gene. Some cultivars carrying Xa4 were reported such as CR203, MT [12].

Figure 1. Electrophoresis of PCR-products to detect Xa4 gene using Npb181 marker
Lane 1: IR24 (Negative control); lane 2: IRBB4 (Positive control); Lane 3-15: glutinous rice varieties.

Detection of resistant gene xA5

The recessive gene xA5 is considered as the best resistant gene against BLB. This gene involves in the resistance to 9/10 leaf blight bacterial strains existing in the North of Vietnam [5]. Two markers were previously identified that tightly linking with this gene including RG556 [13] and RM122 [7]. In order to identify the resistant gene xA5 using RG556 marker, PCR products must be cut by restriction enzymes DraI. Otherwise xA5 can be detected directly from PCR products using RM122 marker. Basically, two markers have the same accuracy. Therefore, to save time and cost in this study, RM122 marker was used to detect xA5 gene. The results have shown that the samples carrying the xA5 gene which appears the band with the size of 240 bp, the samples with non-containing the xA5 gene displayed a band with the size of 220 bp, respectively (Fig. 2). Overall, 6 out of 86 rice landraces carrying the xA5 gene were identified.

Figure 2. Electrophoresis of PCR products to detect xA5 gene
Lane 1: IR24 (negative control); lane 2: IRBB7 (positive control); Lane 3-15: glutinous rice varieties.

Detection of resistant Xa7 gene

The Xa7 gene is dominant gene and considered as responsible for greater resistance level to 8/10 bacterial strains in the northern Vietnam [5]. Some markers have been found that tightly linking with this resistant gene such as P3 marker [8], RM5509 marker [13], M5 marker [14]. In Vietnam, P3 marker is widely used to screen and detect the Xa7 resistant gene. By using this marker, PCR products of the landraces containing Xa7 gene which were shown a band with the size of 262 bp after electrophoresis, the varieties with non-containing this gene appears a band with the
size of 297 bp (Fig. 3). The result of electrophoresis has shown that 19/86 glutinous rice varieties having Xa7 gene. Only one rice landrace, Pe con Lam (lua nep) carrying both Xa4 and Xa7 genes (Table 3). Previously, some single dominant genes codes for resistance to Xa, were reported in some varieties such as Di Huong HD, Dai Duc 65, Canh Nong HB, Mai Khua TB, IR20 and IR22 [12].

Table 3. Results of PCR performance to detect Xa4, xa5 and Xa7 resistant genes to BLB.

No.	landrace	Xa4	xa5	Xa7	No.	Landrace	Xa4	xa5	Xa7
1	Nep Van	-	-	-	44	Nep pelanh	-	-	+
2	Nep hoa vang	-	-	-	45	Lua nep bong tron	+	-	-
3	Bong tranh	+	-	-	46	Nep, Khau bong tron	-	+	-
4	Lua Thua	-	-	-	47	Nep Cam (suo thin)	-	-	-
5	Lua rang do	-	-	-	48	Nep Cam (Chiang pa)	-	-	-
6	Lua re do	-	-	+	49	Nep Som (Khau Vang)	-	-	-
7	Lua se	-	-	+	50	Nep Cam (ta luong)	-	-	-
8	Nam vang	-	-	-	51	Nep thom hat to	-	-	-
9	Nep ca ro	-	-	-	52	Nep Thom hat nho	-	-	+
10	Nep co pa	-	-	-	53	Nep Vang	-	-	+
11	Nep do	-	-	+	54	Nep Nati	-	-	+
12	Nep mo	-	-	+	55	Nep ve	+	-	-
13	Nep mui	-	+	-	56	Pe con lam (lua nep)	+	-	+
14	Nep muong	-	-	-	57	Pe lon (lua nep)	-	-	+
15	Nep non tre	-	-	-	58	Nep Plenh cau	-	-	+
16	Nep quan	-	-	+	59	Plenh lam	-	+	-
17	Nep ruoi	+	-	-	60	Planh meo	-	-	-
18	Nep sap	-	-	-	61	Plenh do	+	-	-
19	Nep som	-	-	-	62	Lua loc nep cam	+	-	-
20	Nep thap	-	-	-	63	Nep cam (Phu Yen)	-	-	-
21	Nep trang	-	-	-	64	Pau cam	-	-	-
22	Nep oc	-	-	+	65	Khau cam	-	-	-
23	Nep xap	-	-	+	66	Khau cam pi	-	-	-
24	Nep cai Hai Duong	-	-	-	67	Lo cam	-	-	+
25	Nep den	-	+	-	68	Nep cam nuong	-	-	-
26	Nep hom	-	-	-	69	Khau cam panh	+	-	-
27	Nep nut	-	-	-	70	Nep cam den	-	-	+
28	Lua ngoi	-	-	-	71	Nep cam (ban cam)	-	-	-
29	Nep Cam tim	+	-	-	72	Nep cam (ruot tim)	-	-	-
30	Nep cai hoa trang	-	-	-	73	Nep cam (vo tim)	-	-	-

Figure 3. Electrophoresis of PCR products to detect Xa7 gene
Lane 1: IR24 (Negative control); lane 2: IRBB24 (Positive control); Lane 3-15: glutinous rice varieties.
Currently, there were over ten existing bacterial strains in the north of Vietnam [3]. These strains are being stored at Faculty of Biotechnology, Vietnam National University of Agriculture. In this research, 10 bacterial strains were used to examine resistant level to BLB. The results demonstrated that the landraces containing Xa4 gene had similar resistant level to IRBB4 control variety (containing Xa4 gene). These landraces had resistant activity against 6/10 bacterial strains including the strains number 2, 5, 6, 7, 9, and 10, respectively. The other landraces containing xa5 resistant gene which had similar resistant level to control variety (carrying xa5 gene). These landraces were resistant against 9/10 bacterial strains except the bacterial strain number 5. The containing Xa7 resistant gene also had similar resistant ability to control variety (carrying Xa7 gene). These varieties were resistant to 8/10 bacterial strains, they were infected by only the two strains including number 4 and 5, respectively.

In general, almost the rice landraces with non-containing resistant genes to BLB were seriously infected by all the 10 bacterial strains or some strains out of the 10 studied strains (Figs. 4A, 4B, 4C and 4D). Additionally, the bacterial strain number 5 had the strongest toxicity, causing infection to all samples which carried three resistant genes. It noted that only carrying xa5 gene landraces showing resistant to the number 4 bacterial strains. Our results have been agreed with the previous of Ton et al. (2013) who reported that the number 4 and 5 bacterial strains were shown highly toxic.

Evaluation of BLB resistant samples

No.	Landrace	+	-	-	74	Nep cam (Vo trang)	-	-	-
31	Deo dang	+	-	-	74	Nep cam (Vo trang)	-	-	-
32	Nep rau	-	-	+	75	Khau cam pung	+	-	-
33	Nep loc nuong	-	-	+	76	Beo ta cam	-	-	-
34	Nep hat may	-	-	+	77	Nep nuong (Son La)	-	-	-
35	Khau tan pom	+	-	-	78	Nep 44	-	-	-
36	Khau tan hang	-	-	-	79	Nep TK90	-	-	-
37	Khau tan nuong	-	-	+	80	Nep 97	-	-	-
38	Nep ran	-	+	-	81	Nep 87	-	-	-
39	Dang chiem	-	-	-	82	Nep 352	-	-	-
40	Lua ma	-	-	-	83	Nep nhung	-	-	-
41	Nep chin som	-	-	-	84	Nep lang lieu	-	-	-
42	Lua nep Tang San	-	-	-	85	Nep cau	-	-	-
43	Lua nep, Pelenh	-	-	+	86	Nep qua vai	-	-	+

Note: “+”: Landrace containing resistant gene; “-”: Landrace non-containing resistant gene
Agronomic traits of some landraces carrying resistant genes

In order to effectively exploit some major agronomical characteristics of each genetic source were evaluated including some major traits: days to heading (DTH), plant height (PH), a number of panicle per plant (NPP), number of grains per panicle (NGP), grain weight (GW-P1000), individual yield (IY) were evaluated. The results showed that the 37 rice landraces containing resistant genes to BLB, then were evaluated their agronomic traits in spring season crop, 2016 to provide further comprehensive information for effective exploitation these genetic resources as shown in Table 4.

Table 4. Agronomic traits of the glutinous rice landraces carrying resistant genes to BLB.

No.	Landrace	GD (days)	PH (cm)	NPP	TG	PFGP (%)	GW (g)	IY (g)	CG
1	Bong tranh	138	140.5±4.0	5.0	139.8	76.9	28.0	13.6	Xa4
2	Lua re do	132	108.2±2.3	4.6	102.6	60.7	24.0	9.5	Xa7
3	Lua se	133	101.0±2.4	4.2	137.6	76.9	28.5	13.5	Xa7
4	Nep do	131	100.5±2.8	4.4	143.6	63.2	32.0	10.5	Xa7
5	Nep mo	132	132.0±4.1	4.6	85.8	55.1	32.0	11.3	Xa7
6	Nep mui	133	148.6±4.5	5.0	81.2	66.5	32.5	11.4	xa5
7	Nep ruoi	136	132.4±3.6	6.4	190.4	76.9	29.0	11.5	Xa4
8	Nep oc	139	145.6±6.1	5.0	126.2	48.5	28.5	9.4	Xa7
9	Nep xap	132	138.8±3.7	6.2	148.2	69.8	32.5	14.6	Xa7
10	Nep Den	133	142.0±5.2	6.4	116.6	65.9	28.0	13.5	xa5
11	Nep Cam tim	133	154.8±5.5	5.8	184.8	65.7	28.0	15.7	Xa4
12	Deo dang	146	143.5±4.3	4.4	171.4	78.3	24.3	12.4	Xa4
13	Nep ran	143	120.2±4.7	4.2	116.0	63.8	40.3	12.9	Xa7
14	Nep loc nuong	144	145.8±6.2	5.8	97.6	69.7	21.3	7.5	Xa7
15	Nep hat may	144	156.4±5.5	5.4	187.2	71.0	21.6	9.6	Xa7
16	Khau tan pom	143	124.2±3.6	4.8	159.4	75.9	20.6	10.6	Xa4
17	Khau tan nuong	132	133.6±2.3	5.6	178.0	77.0	24.5	14.2	Xa7
18	Nep ran	132	136.6±3.4	5.2	170.2	78.1	25.5	11.5	xa5
19	Lua nep, Pelenh	142	128.6±3.9	4.2	208.6	51.3	24.4	11.5	Xa7
20	Nep pelan (2)	136	141.8±4.7	6.2	124.8	71.6	15.4	8.8	Xa7
21	Lua nep bong tron	138	157.2±5.1	6.8	107.2	87.7	28.5	12.6	Xa4
22	Khau bong tron	135	163.6±5.5	4.8	118.8	76.1	28.8	10.1	xa5
Regarding the growth duration, the growth duration of 37 samples was ranged from 131 to 146 days. In which, 17 landraces were grouped into short growth duration (115 to 135 days). The other landraces were grouped into medium growth duration (136 to 160 days). For plant height, there were 7 rice landraces in medium height (90 to 125 cm). The other landraces were rather high with the height of more than 125 cm. The number of panicles per plant was ranged from 4.0 to 7.6 panicles. The number of grains per panicle was from 60.2 to 210 grains/panicle. Some rice varieties to BLB using 10 bacterial strains indicated that resistant genes rice landraces disclosed that they are precious source of materials for glutinous rice breeding program of resistance to BLB disease.

Conclusions

Among the total of 86 rice landraces, 11 samples carrying Xa4 gene, 6 landraces were detected xa5 gene, 19 landraces possessed Xa7 gene and 1 rice landrace carried both of the Xa4 and Xa7 genes were identified by using molecular markers. The evaluation of resistant level of rice varieties to BLB using 10 bacterial strains indicated that Xa4 gene involved in resistance to 6/10 strains, Xa5 gene involved in resistance to 9/10 strains and Xa7 gene involved in resistance to 8/10 strains of bacteria. The bacterial strain number 5 had the strongest toxicity. The evaluation of agronomic traits of the 37 samples included the resistant genes rice landraces disclosed that they are precious source of materials for glutinous rice breeding program of resistance to BLB disease.

References

[1] MARD – Ministry of Agriculture and Rural Development, The final report of pests and disease infestation in plant, No.29/TBSB-BVT-VT, 2015.

[2] MARD –PPD – Ministry of Agriculture and Rural Development – Plant Protection Department, Annual Report on plant diseases, No: 6/TBSB-BVT-VT, 2017.

[3] S. Chen et al., Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv. oryzae, Theor. Appl. Genet. 122(7) (2011) 1331-1338.
C.S. Wang, D.G. Lin, The application of genomic approaches in studying a bacterial blight – resistant mutant in rice, in: J. Li (Ed.), Advances in International Rice Research, Intech Publisher, 2017.

P.H. Ton, T.V. Hai, N.V. Hung, Research genetically diversity of bacterial leaf blight strains in Vietnam, Nat Confer Vietnam plant dis. (2012) 73-81.

S.R. Yoshimura et al., RFLP mapping of the bacterial blight resistance genes Xa-3 and Xa-4, Rice.Genet. Newsl. 9 (1992) 136-138.

M.W. Blair, S.R. McCouch, Microsatellite and sequence-tagged site markers diagnostic for the rice bacterial leaf blight resistance gene xa-5, Theor. Appl. Genet. 95(1) (1997) 174-184.

S. Taura, Y. Sugita, D. Kawahara, Gene distribution resistance to bacterial blight in Northern Vietnam rice varieties, Abstracts of the 1st Inter. Confer. Bacterial. Blight of Rice, March 17-19, 2004, Tsukuba, Japan.

J.S. Zheng, B. La, PCR technique and its practical methods, Mol. Plant Breed. 1(3) (2003) 381-394.

IRRI- International Rice Research Institute, Standard evaluation system for rice (SES), IRRI Publisher, 2002.

I. Ullah et al., Detection of bacterial blight resistance genes in basmati rice landstrains, Genet. Mol. Res. 11(3) (2012) 1960-1966.

T.M. Son, Breeding rice cultivars resistant to bacterial leaf blight (Xanthomonas campestris pv.oryzae) in Vietnam, in: T. Jacobs, J.E. Parlevliet (Eds.), Durability of disease resistance. Current plant Science and Biotechnology in Agriculture, vol. 18, Springer Publisher, 1993.

S.R. McCouch et al., Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.), DNA Res. 9(6) (2002) 199–207.

B.W. Porter et al., Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7, Crop Sci. 43(4) (2003) 1484-1492.