Parasites of the Neotropic cormorant *Nannopterum (Phalacrocorax) brasilianus* (Aves, Phalacrocoracidae) in Chile

Parasitos da biguá *Nannopterum (Phalacrocorax) brasilianus* (Aves, Phalacrocoracidae) do Chile

Daniel González-Acuña1*; Sebastián Llanos-Soto1,2; Pablo Oyarzún-Ruiz1; John Mike Kinsella3; Carlos Barrientos4; Richard Thomas1; Armando Cicchino5; Lucila Moreno6

1 Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile
2 Laboratorio de Vida Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile
3 Helm West Lab, Missoula, MT, USA
4 Escuela de Medicina Veterinaria, Universidad Santo Tomás, Concepción, Chile
5 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
6 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile

How to cite: González-Acuña D, Llanos-Soto S, Oyarzún-Ruiz P, Kinsella JM, Barrientos C, Thomas R, et al. Parasites of the Neotropic cormorant *Nannopterum (Phalacrocorax) brasilianus* (Aves, Phalacrocoracidae) in Chile. *Braz J Vet Parasitol* 2020; 29(3): e003920. https://doi.org/10.1590/S1984-29612020020049

Abstract

The Neotropic cormorant *Nannopterum (Phalacrocorax) brasilianus* (Suliformes: Phalacrocoracidae) is widely distributed in Central and South America. In Chile, information about parasites for this species is limited to helminths and nematodes, and little is known about other parasite groups. This study documents the parasitic fauna present in 80 Neotropic cormorants’ carcasses collected from 2001 to 2008 in Antofagasta, Biobío, and Nuble regions. Birds were externally inspected for ectoparasites and necropsies were performed to examine digestive and respiratory organs in search of endoparasites. Ectoparasites collected were cleared and mounted for identification under a microscope. Fecal samples were also evaluated to determine the presence of protozoan parasites employing a flotation technique. A total of 44 (42.5%) of birds were infested with at least one ectoparasite species, while 77 (96.25%) were carrying endoparasites. No protozoan forms were found after examination. Most prevalent endoparasite species found were *Contracaecum rudolphii s. l.* (72/80, 90%), followed by *Pectinopygus gyroceras* (33/80, 41.25%) and *Profilicollis altmani* (26/80, 32.5%). This is the first report of *P. altmani*, *Baruscapillaria carbonis*, *Avioserpens* sp., *Cyathostoma (Cyathostoma) phenisci*, and *Eidmaniella pelucida* in the Neotropic cormorant. These findings also expand the distributional range of *Andracantha phalacrocoracis*, *Paradilepis caballeroi*, *Hysteromorpha triloba*, and *P. gyroceras* to Chile.

Keywords: Helminths, ectoparasites, endoparasites, birds, lice.

Resumo

O Biguá *Nannopterum (Phalacrocorax) brasilianus* (Suliformes: Phalacrocoracidae) é amplamente distribuído na América Central e na do Sul. No Chile, as informações sobre parasitos para essa espécie são limitadas a helmintos e nematoides, e pouco se sabe sobre outros grupos de parasitos. Este estudo documenta a fauna parasitária presente em 80 biguás coletados de 2001 a 2008, nas regiões de Antofagasta, Biobío e Nuble. As aves foram fiscalizadas externamente em busca de ectoparasitas; adicionalmente, foram realizadas necropsias para examinar os órgãos digestivos e respiratórios em busca de endoparasitos. Os ectoparasitos coletados foram limpos e montados para identificação ao microscópio. As amostras de fezes também foram avaliadas para determinar a presença de parasitos protozoários, empregando-se uma técnica de flutuação. Um total de 44 (42,5%) aves estavam infectadas com pelo menos um ectoparasito, enquanto 77 (96,25%) estavam portando endoparasito. Nenhuma forma de protozoário foi encontrada após o exame. As espécies de endoparasitos mais prevalentes encontradas foram *Contracaecum rudolphii* (72/80, 90%), *Pectinopygus gyroceras* (33/80, 41,25%) e *Profilicollis altmani* (26/80, 32,5%).
Introduction

The Neotropic cormorant *Nannopterus (Phalacrocorax) brasilianus* (Suliformes: Phalacrocoracidae) is a widely distributed bird of Central and South America, reaching Mexico and the southern areas of the United States (Kennedy & Spencer, 2014; IUCN, 2017). It feeds on crustaceans, small fish, amphibians, and insects in different aquatic habitats with fresh, brackish, or saltwater (IUCN, 2017). In Chile, the Neotropic cormorant is distributed in marine coasts, lakes, and rivers from Arica (18°28'30"S, 70°18'52"W) to Tierra del Fuego (53°36'00"S, 69°23'00"W). It comprises two subspecies *N. (P.) b. brasilianus* and *N. (P.) b. hornensis*, with the latter being distributed along the Beagle Channel and Cape Horn in southern Chile (Chester, 2008). As established by the Chilean Hunting Law No. 19.473, the Neotropic cormorant is a pest bird in some regions of northern Chile (SAG, 2018).

Currently, the Neotropic cormorant does not face conservation issues, having an increasing population of more than 2 million individuals and a large distributional range (IUCN, 2017). However, it is still important to elucidate parasite species that might be affecting the health of Neotropic cormorants, particularly younglings, which are more susceptible to develop disease due to parasitism (Kuiken et al., 1999; Torres et al., 2005). Most surveys of the parasitic fauna of the Neotropic cormorant have been performed in Brazil, Argentina, Mexico, and the United States (Vicente et al., 1996; Fedynich et al., 1997; Drago et al., 2011; Monteiro et al., 2011). Information about its parasites in Chile is restricted to studies performed by Torres et al. (1982, 1991, 1992, 1993, 2000, 2005) and Garbin et al. (2011).

Previous studies of endoparasites in the Neotropic cormorant indicate the presence of Nematoda from genera *Eucoleus*, *Ornithocapillaria*, *Capillaria*, *Contracaecum*, *Baruscapillaria*, *Syncerca*, *Porrocaecum*, *Anisakis*, *Pseudoterranova*, *Eustrongylides*, *Syngamus*, and *Tetrameres* (Lamont, 1920; Vicente et al., 1995, 1996; Torres et al., 1991, 2005; Monteiro et al., 2006b, 2011; Garbin et al., 2011; Violante-González et al., 2011); four Acanthocephala species from genera *Andracantha*, *Corynosoma*, and *Southwellina* (Torres et al., 1992, 1993, 1999, 2000, 2005; Monteiro et al., 2006a, 2011; Violante-González et al., 2011); 28 species of Trematoda from genera *Strigea*, *Tylodelphys*, *Neodiplostomum*, *Austrodiplostomum*, *Hysteromorpha*, *Euhaplorchis*, *Mehrarostomum*, *Ribeiroia*, *Odheria*, *Drepanocephalus*, *Ascoscyte*, *Maritrema*, *Phocireniaides*, *Pseudopilostoma*, *Echinochasmus*, *Prothoagonimus*, *Clnostomatopsis*, *Clnostomum*, *Diplodistomum*, *Ignavia*, and *Paryphostomum* (Fedyech et al. 1997; Lunaschi & Drago, 2005; Monteiro et al., 2007, 2011; Drago et al., 2011; Violante-González et al., 2011); and two Cestoda from genera *Paradilepis* and *Tetrabothrius* sp. (Fedyech et al., 1997; Hinojosa-Sáez & González-Acuña, 2005; Monteiro et al., 2006a, 2011; Violante-González et al., 2011). There are few descriptions of ectoparasites in the Neotropic cormorant. For instance, lice *Piagetiella vigua* Eichler, 1943, *Eidmanniella eurygaster* Nitzsch, 1866, *Pectinopygus faralloni* Kellogg, 1896, *Pectinopygus gyroceras* Nitzsch, 1866, *Pectinopygus depressus* Rudow, 1869, *Colpocephalum commune* Rudow, 1869, and *Laemobothrion brasiliense* Rudow, 1869 (Malcomson, 1960; Price, 1970); fleas *Ceratophyllus titicacensis* Smit, 1978 (Hastriter, 2001); mites *Scutomegninia microfalcifera* Mironov, 1990, *Picotallolopes* sp. Dubinin, 1955, *Michaella neotropica* Mironov & Hernandes, 2016, *Frehelectes gaudi* Fain, 1964, *Neottialges evansi* Fain, 1966, *Dinalloloptes chelionatus* Atyeo e Peterson, 1966, and *Alloposoroptoides galli* Mironov, 2013 (Pence et al., 1997; Mironov, 2000; Barreto et al., 2012; Mironov, 2013; Tucci et al., 2014; Pedroso & Hernandes, 2016; Hernandes et al., 2016); and hippoboscids *Olfersia sordida* Bigot, 1885 (Santos et al., 2014).

There are no reports of protozoa parasites in the Neotropic cormorants or any other cormorant species in Chile. However, there are records of *Toxoplasma gondii*, *Cryptosporidium* sp., *Giardia* sp., *Entamoeba* sp., *Eimeria* sp., and *Sporozoa* (Apicomplexa) oocyst in the great (*Phalacrocorax carbo*) and flightless cormorants (*Phalacrocorax harrisi*) (Medema, 1999; Plutzner & Tomor, 2009; Deem et al., 2010; Carrera-Jativa et al., 2014; Vichová et al., 2016; Rzymski et al., 2017). Certain fish species act as reservoirs of *Cryptosporidium* sp. (Gabor et al., 2011), and *Giardia* sp. (Ghneim et al., 2012), underlining the role that cormorants might play as reservoirs of protozoan parasites due to their elevated fish consumption (Carss, 1997). Nonetheless, the importance that the Neotropic cormorant has in the maintenance of parasites in terrestrial and aquatic environments remains to be determined.

In South America, studies of the parasitic fauna of the Neotropic comorant have been mainly carried out in Brazil (Vicente et al., 1996; Monteiro et al., 2011) and Argentina (Drago et al., 2011). In Chile, information about parasites for this bird is restricted to studies performed by Torres et al. (1982, 1991, 1992, 1993, 2000, 2005) and...
Garbin et al. (2011), in which only the presence of nematodes and other helminths was reported. Due to the current lack of knowledge about the parasitic fauna of Neotropic cormorants in Chile, this study aimed to document new records of the ecto-, endoparasites, and protozoa of this widely distributed bird in the country. Additionally, most cormorants included in this study were residents of Talcahuano and San Vicente Bay, both areas characterized by the presence of estuarine wetlands and marshes, which are usually visited by resident and migratory birds to rest and feed (León & Benítez-Mora, 2005; García-Walther et al., 2017). Encounters among diverse bird species in these areas provide opportunities for the transmission of different parasite groups (Bjoersdorff et al., 2001), highlighting the importance of determining parasitic organisms in these birds to better understand parasite-host interactions in the established ecological communities.

Materials and Methods

Eighty Neotropic cormorants were hunted in years 2001 (1), 2002 (1), 2003 (4), 2005 (1), 2006 (1), 2007 (64), and 2008 (8) from four locations of the Biobío region: Talcahuano (36°43'S, 73°06'W), Lenga (36°47'S, 73°02'W), Infiernillo (36°35'S, 72°31'W), San Vicente Bay (36°44'S, 73°07'W); two locations from the Ñuble region: Chillán (36°36'S, 72°06'W) and Santa Elena Lake (36°48'S, 72°22'W), and a single location in the Antofagasta region (23°39'S, 70°23'W) (Figure 1). Cormorants collected from Talcahuano and San Vicente (Chile) in 2007 died because of an oil spill event that occurred in the area during the same year. All other carcasses examined in this study were donated by hunters. The Chilean Hunting Law N° 19.473, Article N° 5°, Supreme decree N°5, allows hunting of Neotropic cormorants along its distributional range from April to August. All carcasses were brought to the Department of Animal Science, Universidad de Concepción, Chillán, and kept stored at –40 °C for future examination.

Figure 1. Map of Chile showing the sampling locations.
Cormorants were externally inspected with a magnifier in search of ectoparasites. Feathers of the wings, tail, head, neck, flanks, back, and abdomen were closely examined. As birds were dead when they were collected, it is possible that ectoparasites may have abandoned their hosts after their death. Following collection, lice were cleared using 20% KOH and ascending concentrations of ethanol solutions (40%, 70%, and 96%) and were subsequently mounted using Canada balsam, as indicated in Palma (1978) and Price et al. (2003). Ectoparasites were identified using the keys provided in Giebel (1866), Keler (1938), Ryan & Price (1969), Clay (1973), Price et al. (2003), and Kuabara & Valim (2017).

Birds were necropsied using the modified Withlock technique (Cattán & Tagle, 1974). Digestive and respiratory organs were inspected in search of endoparasites and some segments of the intestine were observed with the stereomicroscope (20x and 40x) in order to collect parasites that could have been adhered to the mucous membrane. Endoparasites were stored following methods in Pritchard & Kruse (1982). Trematoda were preserved in 70% ethyl alcohol and stained with carmine and alum carmine stains for identification. Acanthocephalans and cestodes were maintained in water for 10 min and then kept in 10% buffered formalin and a mix of 70% ethyl alcohol and 10% lactic acid, respectively. Nematoda were preserved in 70% ethyl alcohol and then fixated with glycerin in 50-100 mL flasks (Oyarzún-Ruiz & González-Acuña, 2020). Endoparasites were identified using keys and descriptions in Skrjabin et al. (1954), Skrjabin (1961, 1969), Yamaguti (1958, 1959, 1961), and Khalil et al. (1994). A fecal sample was obtained from the distal rectum of each bird in order to search for intestinal protozoa using the flotation technique described in Boch & Supperer (1982).

The terminology used to describe parasitological assemblage descriptors (prevalence, mean intensity, and mean abundance) follows that of Bush et al. (1997). 'Range' displays the minimum and maximum number of individuals of a parasite species collected from the least and most infested hosts, respectively.

Results and Discussion

Ectoparasites

Thirty-four (42.5%) birds were parasitized by at least one species of ectoparasite. *Eidmaniella pelucida* Rudow, 1869 (Figure 2a) and *Pectinopygus gyroceras* (Figure 2b) were identified as lice species in the Neotropic Cormorant. The ratios of nymph/adult and male/female for *P. gyroceras* were 0.81 and 1.67, respectively (70 females, 42 males and 91 nymphs). Only a single individual *E. pelucida* was collected. Information about population parameters for *P. gyroceras* can be found in Table 1.

![Figure 2](image-url). (a) Female specimen of *Eidmaniella pelucida* (100x magnification); (b) Male (left) and female (right) *Pectinopygus gyroceras* (100x magnification).
Information about both ectoparasite species found in this study is extremely sparse. *Eidmaniella pelucida* was recorded in *Phalacrocorax capensis* and *P. carbo* in North America, *P. carbo* in Spain, and *Leucocarbo bougainvillii* (Phalacrocoracidae) in Peru (Emerson, 1947; Dale, 1970; Mateo, 2006). Similarly, *P. gyroceras* has been previously described in *N. (P.) brasilianus* in the United States and Brazil (Malcomson, 1960; Kuabara & Valim, 2017). This is the first time that *E. pelucida* is described in the Neotropic cormorant and expands the distributional range of *P. gyroceras* to Chile.

It is important to highlight that pollution with hydrocarbons could have resulted in a less intense infestation with ectoparasites in cormorants from Talcahuano and San Vicente Bay. This, because hydrocarbons adhere to feathers and cause a should be disruption of the water repellent properties of birds' plumage (Jenssen, 1994), allowing polluted water to cover feathers and remove ectoparasites. Moreover, affected feathers lose their ability to provide insulation and leads to hypothermia in birds, which might have caused ectoparasites to abandon their now dead hosts before carcasses arrived at the university for inspection. Parasites could have also been washed away when cleaning birds affected by the oil. All these effects of hydrocarbons could have led to a sub-estimation of ectoparasite abundance, intensity, and prevalence.

Table 1. Parasitological descriptors of ecto- and endoparasites collected from Neotropic cormorants (*Nannopterum* (*Phalacrocorax*) *brasilianus*).

Species	Habitat	Positive birds	Intensity	Mean	Range	Mean abundance	Standard deviation	Prevalence (%)	Total
Phthiraptera									
Pectinopygus gyroceras	Feathers	33	6.15	1-28	2.54	34.35	41.25	41.25	203
Trematoda									
Ascocotyle felipei	Small and large intestines	10	52.1	1-250	6.51	35.71	12.5	12.5	521
Hysteromorpha triloba	Small and large intestines	2	2467	150-4784	61.68	534.9	2.5	2.5	4934
Nematoda									
Anisakis sp.	Stomach	1	-	-	-	-	1.25	1.25	36
Avioserpens sp.	Stomach	1	-	-	-	-	1.25	1.25	2
Baruscapillaria carbonis	Stomach	1	-	-	-	-	1.25	1.25	1
Contracaecum rudolphii s. l.	Stomach	72	41	1-280	36.69	48.48	90	90	2935
Cyathostoma (*Cyathostoma*) *phenisci*	Trachea	1	-	-	-	-	1.25	1.25	1
Acanthocephala									
Andracantha phalacrocoracis	Small and large intestines	9	4.11	1-12	2.79	8.54	17.5	17.5	223
Corynosoma arctocephali	Small and large intestines	14	15.93	1-46	0.46	1.79	11.25	11.25	37
Profilicollis altmani	Small and large intestines	26	25.04	2-80	8.14	16.22	32.5	32.5	651
Cestoda									
Paradilepis caballeroi	Small intestine	3	73.33	2-183	2.75	31.77	3.75	3.75	220

Information about both ectoparasite species found in this study is extremely sparse. *Eidmaniella pelucida* was recorded in *Phalacrocorax capensis* and *P. carbo* in North America, *P. carbo* in Spain, and *Leucocarbo bougainvillii* (Phalacrocoracidae) in Peru (Emerson, 1947; Dale, 1970; Mateo, 2006). Similarly, *P. gyroceras* has been previously described in *N. (P.) brasilianus* in the United States and Brazil (Malcomson, 1960; Kuabara & Valim, 2017). This is the first time that *E. pelucida* is described in the Neotropic cormorant and expands the distributional range of *P. gyroceras* to Chile.

It is important to highlight that pollution with hydrocarbons could have resulted in a less intense infestation with ectoparasites in cormorants from Talcahuano and San Vicente Bay. This, because hydrocarbons adhere to feathers and cause a should be disruption of the water repellent properties of birds' plumage (Jenssen, 1994), allowing polluted water to cover feathers and remove ectoparasites. Moreover, affected feathers lose their ability to provide insulation and leads to hypothermia in birds, which might have caused ectoparasites to abandon their now dead hosts before carcasses arrived at the university for inspection. Parasites could have also been washed away when cleaning birds affected by the oil. All these effects of hydrocarbons could have led to a sub-estimation of ectoparasite abundance, intensity, and prevalence.

Endoparasites

From the 80 birds examined, 77 (96.25%) were infected with at least one species of endoparasite. A total of 9566 parasites were collected in total: 5455 Trematoda (57.02%), 2979 Nematoda (31.14%), 911 Acanthocephala (9.52%), and 221 Cestoda (2.31%).
No protozoan parasites were detected in this study during faecal examination. Previously, protozoan from the genera *Giardia* and *Cryptosporidium* have been informed in feces from *P. carbo* through microscopy (Medema, 1999; Rzymski et al., 2017) and PCR (Plutzer & Tomor, 2009). It is important to consider that the absence of protozoan oocysts and eggs observed in this study does not necessarily mean that birds were free of these parasites, but could be a result of factors associated with the low sensitivity of the flotation technique and/or low infestation rate (Zajac & Conboy, 2012). It is recommended for future studies to employ more sensitive techniques, such as molecular methods, to precisely diagnose protozoan parasite infection (Plutzer & Tomor, 2009).

Trematoda

Trematode species *Hysteromorpha triloba* (Figure 3a) and *Ascocotyle felippei* (Figure 3b) were identified and were isolated from two and ten cormorants, respectively. *Hysteromorpha triloba* was the most abundant parasite with 4784 individuals found in a single bird. Information about population parameters for Trematoda recorded in this study can be found in Table 1.

![Figure 3.](image)

(a) Photomicrographs of an adult *Hysteromorpha triloba* in toto with its trilobulated forebody, small oral sucker (black arrow) and oval ventral sucker (white arrow) covered by the holdfast organ (white arrow heads). The anterior oval testis is denoted by double asterisk and the posterior bilobulated testis each by single asterisk (200x magnification); (b) *Ascocotyle felippei* mature fluke with its typical pear-shaped body and its uterus filled with eggs. Post-mortem autolytic changes account for the absence of typical cephalic spines (100x magnification); (c, d) *Paradilepis caballeroi* with its (c) scolex bearing well-developed suckers (arrows) and an invaginated rostellum (arrowhead) (40x magnification); (d) Typical hooks for this species (400x magnification).
H. triloba

Hysteromorpha triloba is a cosmopolitan parasite that infects snails and fishes as first and second intermediate hosts, respectively, reaching piscivorous birds as their definitive hosts (Huggins, 1954a, b). It is commonly found in cormorants, being described in different cormorant species and found in several countries. For instance, it has been reported in Nannopterum (Phalacrocorax) auritus in the United States and Canada (Chandler & Rausch, 1948), Microcarbo melanoleucos and Phalacrocorax fuscens in Australia (Johnston, 1942), and P. carbo in Mongolia, Ukraine, Czech Republic, Curonian Lagoon Area (Russia and Lithuania), India, Japan, Australia, and Poland (Yamaguti, 1939; Johnston, 1942; Gupta, 1963; Našincová et al., 1993; Kanarek et al., 2003; Kornyushin, 2008; Svažas et al., 2011; Lebedeva & Chantuu, 2015). Hysteromorpha triloba has been previously recorded in the Neotropic cormorant in Argentina, Brazil, and the United States (Fedynich et al., 1997; Drago et al., 2011; Monteiro et al., 2011), however, this is the first time that it is reported in the Neotropic cormorant in Chile.

A. felippei

Species of the genus Ascocotyle infect snails and fishes as intermediate hosts and are common parasites of piscivorous birds and mammals, which serve as the definitive host (Ostrowski de Núñez, 1976). Ascocotyle felippei has been reported in different bird species of the American continent. For instance, it has been recorded in Egretta caerulea, Egretta tricolor, and Botaurus lentiginosus (Ardeidae) in the United States (Price, 1935; Leigh, 1956; Sepúlveda et al., 1996); Himantopus melanurus (Recurvirostridae), Batorides striata, Ixobrychus involucris (Ardeidae) Spheniscus magellanicus and Nycticorax nycticorax (Ardeidae) in Argentina (Boero et al., 1972; Ostrowski de Núñez, 1976; Alda et al., 2011); Ardea alba (Ardeidae) in Mexico and the United States (Aguirre-Macedo & García-Magaña, 1994; Sepúlveda et al., 1999); Ardea herodias (Ardeidae) and Buteogallus anthracinus (Accipitridae) in Mexico (Aguirre-Macedo & García-Magaña, 1994; Scholz et al., 2001); Ixobrychus exilis (Ardeidae) in Brazil (Travassos et al., 1969), and Falco sparrowius (Falconidae) in Chile (Moreno & González-Acuña, 2015). Ascocotyle felippei has been previously described in Neotropic cormorants in the United States and Mexico (Fedynich et al., 1997; Scholz et al., 2001) but it constitutes a new report for this species in Chile.

Cestoda

Paradilepis caballeroi (Figure 3c, d) was the only cestode isolated from cormorant carcasses. Information about population parameters for the species in this study can be found in Table 1.

P. caballeroi

Adults of the genus Paradilepis Hsü, 1935 are parasites of Pelecaniformes and, in many cases, cormorants (Presswell et al., 2012). It consists of fourteen species, Paradilepis delachauxi Fuhrmann, 1909, Paradilepis diminuta Huey & Dronen, 1981, Paradilepis kempi Southwell, 1921, Paradilepis longivaginosus Mayhew, 1925, Paradilepis maleki Khalil, 1961, Paradilepis urceina Bona, 1975, Paradilepis phalacrocoracis Ukoli, 1968, Paradilepis minima Goss, 1914, Paradilepis patriciae Baer & Bona, 1960, Paradilepis rugovaginosus Freeman, 1954, Paradilepis scolecina Rudolphi, 1819, Paradilepis simoni Rausch, 1949, Paradilepis urceus Wedl, 1855, and P. caballeroi (Presswell et al., 2012). The latter species has been found in Pelecanus occidentalis (Pelecanidae) and N. (P.) auritus in the United States (Fedynich et al., 1997; Forrester & Spalding, 2003), N. (P.) auritus in Canada (Robinson, 2011), N. (P.) brasilianus, P. occidentalis, Pelecanus erythrorhynchos (Pelecanidae), and Platalea ajaja (Threskiornithidae) in Mexico (Scholz et al., 2002; Ortega-Olivares et al., 2014), N. (P.) auritus in Cuba (Scholz et al., 2002) and N. (P.) brasilianus in Brazil (Monteiro et al., 2011). This is the first time that P. caballeroi has been reported in Chile.

Nematoda

Five nematode species were isolated from Neotropic cormorants’ carcasses, Anisakis sp. (Figure 4a), Baruscapillaria carbonis Dubinin & Dubinina 1940, Avioserpen sp. Wehr & Chitwood 1934 (Figure 4b, c), Cyathostoma (Cyathostoma) phenisci Baudet, 1937 (Figure 4d), and Contracaecum rudolphii s. l. (Rudolphi, 1809) Hartwich, 1964 (Figure 4e).

Anisakis sp. and C. rudolphii s. l. has been previously recorded in the Neotropic cormorant and C. (C.) phenisci has been described for the Imperial shag in Chile (Torres et al., 1982, 2005; Oyarzún-Ruiz & Muñoz-Alvarado, 2015). This is the first report of C. (C.) phenisci in the Neotropic cormorant. Information about population parameters for Nematoda recorded in this study can be found in Table 1.
Baruscapillaria carbonis is a specialist parasite of cormorants and it is suggested that fish may play an important role in its development and transmission (Frantová, 2001). Baruscapillaria carbonis has been described in P. carbo and Microcarbo pygmaeus in the European continent (Baruš & Sergeeva, 1990; Frantová, 2001; Sitko & Okulewicz, 2010; Kanarek & Zaleśny, 2014). Baruscapillaria carbonis has been reported in other fish-eating hosts in the Palearctic region, but those records are considered dubious as they were not properly described (Baruš et al., 1978; Moravec et al., 1994). This study is the first record of B. carbonis in the Neotropic cormorant.

Avioserpens sp.

Species of the Avioserpens genus usually occur in the subcutaneous tissue of piscivorous birds (Gibson, 1973; Wang et al., 1983). Nine species have been recognized in different domestic and wild birds, most of them in the Northern Hemisphere. For instance, Avioserpens mosgovoyi Supryaga, 1965 was identified in Podiceps cristatus,

Figure 4. (a) View of anterior end of Anisakis sp. larva showing the presence of boring tooth (arrow) and lips forming medial bilobed process without interlabia (250x magnification); (b, c) Photomicrographs of Avioserpens sp. displaying the (b) anterior view end bearing two double cephalic papillae (arrows) (40x magnification); (c) and magnification of a cephalic papillae (500x magnification); (d) View of an individual from Cyathostoma (Cyathostoma) phenisci showing its anterior end with a wide buccal capsule bearing six teeth at its basis (arrow) and its muscular esophagus dilated at its caudal third (arrowhead) (400x magnification); (e) View of posterior end from a male Contracaecum rudolphii s. l. displaying its long and thin pair of subequal spicules (arrow) (400x magnification).
Parasites of the Neotropic cormorant in Chile

Podiceps grisigena, Podiceps ruficollis (Podicipedidae), *Gavia arctica* (Gaviidae), *Anas platyrhynchos, Aythya ferina, Anser* sp. (Anatidae), and *Fulica atra* (Rallidae) in Russia and in *Alectoris rufa* (Phasianidae) in the Canary Islands (Gibson, 1973; Cordero del Campillo et al., 1994); *Avioserpens galliardi* Chabaud & Campana, 1949 in *Egretta garzetta* in France, *Ixobrychus minutus* in Italy, *Ardea cinerea* in Slovenia, *E. garzetta*, *A. cinerea*, *Ardea purpurea, A. alba, N. ncticorax, Botaurus stellaris* (Ardeidae), *Gavia stellata* (Gaviidae), and *Mergus merganser* (Anatidae) in the Palearctic region, and *N. ncticorax, I. minutus, A. purpurea*, and *E. garzetta* in Spain (Chabaud & Campana, 1949; Daiya, 1967; Baruš et al., 1978; Brgelz, 1982; Nogueserola et al., 2002; Santoro et al., 2016); *Avioserpens denticulophasma* Wehr & Chitwood, 1934 in *A. alba, Anhinga anhinga* (Anhingidae), *Anas fulvigula*, and *A. platyrhynchos* (Anatidae) in the United States (Wehr, 1934; Wehr & Chitwood, 1934); *Avioserpens taiwana* Sugimoto, 1919 in *A. platyrhynchos, Cairina moschata domesticus* (Anatidae), and *Gallus gallus domesticus* (Phasianidae) in China and *Anas boschas* and *C. m. domesticus* in Taiwan and Vietnam (Sugimoto, 1934; Chabaud et al., 1950), *Avioserpens nana* Mawson, 1957 in *A. herodias* in Canada (Mawson, 1957); *Avioserpens multispillolosa* Singh, 1949 in *Ardeola grayii* (Ardeidae) in India (Deshmukh, 1971); *Avioserpens bifidus* Olsen, 1952 in *Bucephala islandica* (Anatidae) in the United States, and *I. minutus* and *Plegadis falcinellus* (Threskiornithidae) in Iraq (Gibson, 1973; Arruda et al., 2001; González-Acuña et al., 2010; Al-Salim & Ali, 2010; Latas et al., 2016). This is the first time that *Avioserpens* sp. is recorded in the Neotropic cormorant.

C. (C.) phenisci

The genus *Cyathostoma* is composed of more than twenty species that parasitize sixteen different avian orders around the planet (Kanarek et al., 2013). Fish-eating birds are parasitized by the subgenus *Cyathostoma*, represented by species *Cyathostoma* (C.) *lari* (gulls), *C. (C.) phenisci* (penguins and cormorants), *Cyathostoma* (C.) *verrucosum* (pelicans and storks), *Cyathostoma* (C.) *trifurcatum* (*Ciconia nigra*), and *Cyathostoma* (C.) *microspiculum* (cormorants) (Kanarek et al., 2013; Oyarzún-Ruíz & Muñoz-Alvarado 2015). *Cyathostoma* (C.) *microspiculum* has been reported in *P. carbo* and *M. pygmaeus* in Asia and Europe and possibly in *N. (P.) auritus* in North America (Kanarek, 2009; Kanarek & Zalešny, 2014). *Cyathostoma* (C.) *phenisci* is the only species reported previously in a Chilean cormorant, *Phalacrocorax atriceps* (Oyarzún-Ruíz & Muñoz-Alvarado, 2015). This study is the first report of C. (C.) *phenisci* in the Neotropic cormorant.

Acanthocephala

Andracantha phalacroracoris (Figure 5a), *Profilicollis altmani* Perry, 1942 (Figure 5b) and *Corynosoma arctocephali* (Figure 5c) were identified in cormorants’ carcasses in this study. *Corynosoma arctocephali* has been previously reported in *N. (P.) brasilianus* in Chile (Torres et al., 1993). Information about population parameters for Acanthocephala recorded in this study can be found in Table 1.

A. phalacroracoris

Andracantha Schmidt, 1975 is a cosmopolitan genus that parasitizes cormorants and other piscivorous birds (Schmidt, 1975). There are seven species within the genus described to this date: *Andracantha baylisi* Zdzitowiecki, 1986, *Andracantha clavata* Goss, 1940, *Andracantha gravida* Alegret, 1941, *Andracantha mergi* Lundstrom, 1941, *Andracantha tandemtesticulata* Monteiro, 2006, *Andracantha tunitae* Weiss, 1914, and *A. phalacroracoris* (Monteiro et al., 2006a). *Andracantha phalacroracoris* has been described in *Urile pelagicus* (Phalacrocoracidae) in the United States and Japan, *P. carbo* in Czech Republic, *Halieaeetus leucocephalus* (Accipitriformes) in the United States, and *N. (P.) brasilianus* in Brazil (Schmidt, 1975; Našincová et al., 1993; Richardson & Cole, 1997; Aznar et al., 2006; Monteiro et al., 2006a). Findings in this study expand the distributional range of *A. phalacroracoris* to Chile.

P. altmani

The genus *Profilicollis* Meyer, 1931 is composed of nine species, which use crustaceans as intermediary hosts and parasitizes seabirds as their definitive host (Rodríguez et al., 2017). *Profilicollis antarcticus* Zdzitowiecki, 1985, *Profilicollis chasmagnathi* Holcmann-Spector, Mañé-Garzón and Dei-Cas, 1977, and *P. altmani* have been recorded in South America (Rodríguez et al., 2017), with the latter having a Pan-American distribution (Rodríguez & D’Elía, 2017). Along the Pacific coast of South America, *P. altmani* uses the Pacific mole crab (*Emerita analoga*) as
intermediate host and has been described in Larus belcheri, Leucophaeus modestus, and Larus pipixcan (Laridae) in Peru (Tantaleán et al., 2005) and Larus dominicanus, L. pipixcan (Laridae), Numenius phaeopus (Scolopacidae), Podiceps occipitalis (Podicipedidae), and Egretta sp. (Ardeidae) in Chile (Riquelme et al., 2006). This study reports P. altmani in the Neotropic Cormorant for the first time.

This is the first report of P. altmani, B. carbonis, Avioserpens sp., C. (C.) phenisci, and E. pelucida in the Neotropic cormorant. In addition, these findings expand the distributional range of A. phalacrocoracis, P. caballeroi, H. triloba, and P. gyroceras to Chile.

In this study, a total of 13 parasite morphs were collected from Neotropic cormorant, 11 of which were described to the species level. Most of these descriptions are new records for Chile. Lice P. gyroceras and E. pellucida, trematodes A. felippei and H. triloba, nematodes C. rudolphi s. l., B. carbonis, and C. (C.) phenisci, cestode P. caballeroi, and acanthocephalans A. phalacrocoracis, C. arctocephali, and P. altmani are, in most cases, parasite species distributed in different geographical areas of the American continent. There are some species, such as H. triloba, that are cosmopolitan and have been recorded in a wide range of hosts. Although this study describes their presence in Chile for the first time, it is likely that they have been present in the country since the establishment of parasite-host associations with local wildlife. Conversely, it is also possible that some of these species were introduced into the country through parasitized migratory birds that arrive seasonally to spend the summer in the Southern

Figure 5. (a) Andracantha phalacrocoracis showing its cylindrical proboscis swollen at its posterior half armed with several longitudinal rows of small hooks, neck lacking hooks (arrow heads), and trunk covered with small spines (asterisks) (400x magnification); (b) Profilicollis altmani with its typical spherical proboscis covered with several rows of small hooks and lacking hooks in the neck (400x magnification); (c) Corynosoma arctocephali showing its proboscis constricted at its middle area (arrow) and armed with larger hooks (asterisks) in comparison to hooks present in the anterior and posterior areas of the proboscis (400x magnification).
Parasites of the Neotropic cormorant in Chile

Hemisphere (Martínez & González, 2017). Nonetheless, molecular studies are necessary in order to test this latter hypothesis, which will most likely involve the application of molecular tools to study parasite populations in their different distribution areas.

Acknowledgements

We are deeply grateful for the support granted by members of the National Forest Corporation (CONAF) and the Agricultural and Livestock Service (SAG) of Chile. We also thank Karen Ardiles, Xotschlit Zepeda, Sofía González, Carolina Silva and Félix Varas for their support in the field and laboratory. Sebastián Muñoz-Leal reviewed the Portuguese “Resumo”. Thank to Project FONDECYT 1170972.

References

Aguirre-Macedo ML, García-Magaña L. Metacercarias of cíclidos nativos del Sureste de México; taxonomía y claves para su reconocimiento. Univ Cienc 1994; 11(21): 5-35. http://dx.doi.org/10.19136/era.a11n21.612.

Alda P, Martorelli SR, Sarria R. Digenean Parasites in the White-Backed Stilt Himantopus melanurus Vieillot, 1817 (Recurvirostridae) from the Argentine Coast. Comp Parasitol 2011; 78(1): 217-219. http://dx.doi.org/10.1654/4479.1.

Al-Salim NK, Ali AH. First record of five nematode species in some water birds from Al-Hammar marsh, south of Iraq. Bull Iraq Nat Hist Mus 2010; 11(2): 39-53.

Arruda VS, Pinto RM, Muniz-Pereira LC. New host and geographical records for helminths parasites of Ardeidae (Aves, Ciconiiformes) in Brazil. Rev Bras Zool 2001; 18(Suppl 1): 225-232. http://dx.doi.org/10.1590/S0101-81752001000500018.

Aznar FJ, Pérez-Ponce de León G, Raga JA. Status of Corynosoma (Acanthocephala: Polymorphidae) based on anatomical, ecological, and phylogenetic evidence, with the erection of Pseudocorynosoma n. gen. J Parasitol 2006; 92(3): 548-564. http://dx.doi.org/10.1645/GE-715R.1. PMid:16883999.

Barreto M, Burbano ME, Proctor HC, Mironov SV, Wauthy G. Feather mites (Acariformes: Psoroptidia) from Colombia: Preliminary list with new records. Zootaxa 2012; 3516(1): 1-68. http://dx.doi.org/10.11646/zootaxa.3516.1.1. PMid:23847408.

Baruš V, Sergeeva TP, Sonin MD, Ryzhikov KM. Helminths of fish-eating birds of the Palaearctic Region. 1. Nematoda. Prague: Springer Science; 1978. http://dx.doi.org/10.1007/978-94-009-9972-5.

Baruš V, Sergeeva TP. Capillariids parasitic in birds in the Palaearctic Region 3. Genus Baruscapillaria. Acta Sci Nat Brno 1990; 24(10): 1-53.

Bjoersdorff A, Bergstrom S, Massung RF, Haemig PD, Olsen B. Ehrlichia-infected ticks on migrating birds. Emerg Infect Dis 2001; 7(5): 877-879. http://dx.doi.org/10.3201/eid0705.017517. PMid:11747702.

Boch J, Supperer R. Parasitologia en medicina veterinaria. Buenos Aires: Hemisferio Sur; 1982.

Boero JJ, Led JE, Brandetti E. Algunos parásitos de la avifauna argentina. Analecta Vet 1972; 4(1): 17-25.

Brögel J. Avioserpens galliardii and Ingliseria cirrohamata in birds from Slovenia. Zb Bio Fak Uni Edv Kard Ljub Vet 1982; 19(2): 247-251.

Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227. PMid:9267395.

Carrera-Játiva PD, Rodríguez-Hidalgo R, Massung RF, Olsen B. Ehrlichia-infected ticks on migrating birds. Emerg Infect Dis 2001; 7(5): 877-879. http://dx.doi.org/10.3201/eid0705.017517. PMid:11747702.

Cattán P, Tagle L. Estudio preliminar de la helmintiasis gastrointestinal en el conejo silvestre Oryctolagus cuniculus. Rev Soc Med Vet Chile 1974; 24(1): 32-42.

Chabaud AG, Campana U, Truong-Tan-Ngoc. Note sur les dracunculides d'oiseaux. Ann Parasitol Hum Comp 1970; 45(2): 247-251.

Chandler AC, Rausch R. A contribution to the study of certain avian strigeids (Trematoda). J Parasitol 1948; 34(3): 207-210. http://dx.doi.org/10.2307/3273266. PMid:18867395.
Parasites of the Neotropic cormorant in Chile

Chester S. A wildlife guide to Chile: Continental Chile, Chilean Antarctica, Easter Island, Juan Fernandez Archipelago. Princeton: Princeton University Press; 2008.

Clay T. The species groups of Pectinopygus (Phthiraptera: philopteridae). Bull Br Mus Nat Hist Entomol Ser 1973; 29(4): 203-223.

Cordero del Campillo M, Castañón L, Reguera A. Índice catálogo de zooparásitos ibéricos. 2nd ed. León: Secretariado de Publicaciones Universidad de León; 1994.

Daiya GG. Nematodes of fish-eating birds of the lower Ob. In: Ryzhikov KM, editor. Sbornik rabot po gel’mintozaan ryb i ptits. Moscow: Izdat Akad Nauk SSSR; 1967. p. 133-153.

Dale W. Mallophaga (Hexapoda) en aves de la costa y sierra centrales del Perú [dissertation]. Lima: Universidad Nacional Agraria La Molina; 1970.

Deem SL, Merkel J, Ballweber L, Vargas FH, Cruz MB, Parker PG. Exposure to Toxoplasma gondii in Galapagos Penguins (Spheniscus mendiculus) and Flightless Cormorants (Phalacrocorax harrisi) in the Galapagos Island, Ecuador. J Wild Dis 2010; 46(3): 1005-1011. http://dx.doi.org/10.7589/0090-3558-46.3.1005. PMid:20688714.

Deshmukh PG. On the male of Avioserpen multipapillosa Singh, 1949 from Ardea grayii. Riv Parassitol 1971; 32(2): 101-103. PMid:5166875.

Drago FB, Lunaschi LI, Schenone M. Digenean parasites of the Neotropic cormorant, Phalacrocorax brasilianus (Gmelin, 1789) (Aves: Phalacrocoracidae) from Argentina: Distribution extension and new host records. Check List 2011; 7(6): 871-875. http://dx.doi.org/10.15560/7.6.871.

Emerson KC. Notes on the Menoponidae of North America. I. Can Entomol 1947; 79(7-8): 135-141. http://dx.doi.org/10.4039/Ent79135-7.

Fedynich AM, Pence DB, Bergan JF. Helminth community structure and pattern in sympatric populations of double-crested and Neotropic cormorants. J Helminthol Soc Wash 1997; 64(2): 176-182.

Forrester DJ, Spalding MG. Parasites and diseases of wild birds in Florida. Gainesville: University Press of Florida; 2003.

Frantová D. Capillariid nematodes (Nematoda: Capillariidae) parasitic in the common cormorant (Phalacrocorax carbo), with redescriptions of Baruscapillaria carbonis (Dubinín et Dubinín, 1940). Folia Parasitol (Praha) 2001; 48(3): 225-230. http://dx.doi.org/10.14411/fp.2001.037. PMid:11699658.

Garbin L, Mattiucci S, Paoletti M, González-Acuña D, Nascetti G. Genetic and morphological evidences for the existence of a new species of Contracaecum (Nematoda: Anisakidae) parasite of Phalacrocorax brasilianus (Gmelin) from Chile and its genetic relationships with congener from fish-eating birds. J Parasitol 2011; 97(3): 476-492. http://dx.doi.org/10.1645/G-E-2450.1. PMid:21506861.

García-Walther J, Senner NR, Norambuena HV, Schmitt F. Atlas de las aves playeras de Chile: sitios importantes para su conservación. Santiago: Universidad Santo Tomás; 2017.

Ghoneim NH, Abdel-Moein KA, Saeed H. Fish as a possible reservoir for zoonotic Giardia duodenalis assemblages. Parasitol Res 2012; 110(6): 2193-2196. http://dx.doi.org/10.1007/s00436-011-2748-y. PMid:22160281.

Gibson GG. Cardiofilaria pavlovskyi Strom, 1937 and Avioserpen sp. (Nematoda) from Canadian ciconiiform birds. Can J Zool 1973; 51(8): 847-851. http://dx.doi.org/10.1139/z73-126. PMid:4750285.

Giebel C. Die im zoologischen Museum der Universität Halle aufgestellten Epizoen nebst Beobachtungen über dieselben. Zeitschrift für die Gesammten der Naturwissenschaften 1866; 28: 353-397.

González-Acuña D, Moreno L, Cicchino A, Mironov S, Kinsella M. Checklist of the parasites of the black-necked swan, Cygnus melancoryphus (Aves: Anatidae), with new records from Chile. Zootaxa 2010; 2637(1): 55-68. http://dx.doi.org/10.11646/zootaxa.2637.1.3.

Gupta R. On two new diplostome parasites of birds, with a note on Hysteromorpha triloba (Rud., 1819) Lutz, 1931 from India (Trematoda: diplostomatidae). Rev Biol Trop 1963; 11(1): 75-87.

Hastriter MW. Ceratophyllum olitus Tipton and Mendez (Siphonaptera: Ceratophyllidae) in Chile, with notes on the distribution of the genus Ceratophyllum Curtis 1832 in the southern hemisphere. Proc Entomol Soc Wash 2001; 103(3): 582-585.

Hernandes FA, Mironov SV, Bauchan GR, Ochoa RA. A new asymmetrical feather mite of the genus Michaelia Trouessart, 1884 (Astigmata: Freyianidae) from the Neotropical Cormorant, Phalacrocorax brasilianus (Pelecaniformes). Acatologia 2016; 56(1): 45-61. http://dx.doi.org/10.1051/acarologia/20162187.
Parasites of the Neotropic cormorant in Chile

Hinojosa-Sáez A, González-Acuña D. Estado actual del conocimiento de helmintos en aves silvestres de Chile. Gayana 2005; 69(2): 241-253. http://dx.doi.org/10.4067/S0717-65382005000200004.

Hugghins EJ. Life history of a strieged trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. I. Egg and miracidium. Trans Am Microsc Soc 1954a; 73(1): 1-15. http://dx.doi.org/10.2307/3224180.

Hugghins EJ. Life history of a strieged trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. II. Sporocyst through adult. Trans Am Microsc Soc 1954b; 73(2): 221-236. http://dx.doi.org/10.2307/3224061.

International Union for Conservation of Nature and Natural Resources – IUCN. Phalacrocorax brasilianus. In International Union for Conservation of Nature and Natural Resources – IUCN. The IUCN Red List of Threatened Species [online]. Cambridge: IUCN; 2017. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22696773A93585558.en.

Jenssen BM. Review article: effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds. Environ Pollut 1994; 86(2): 207-215. http://dx.doi.org/10.1016/0269-7491(94)90192-9. PMid:15091638.

Johnston TH. Trematodes from Australian birds. I. Cormorants and darters. Trans R Soc S Aust 1942; 65(2): 226-242.

Kanarek G, Horne EC, Zalesny G. Cyathostoma (Cyathostoma) phenisci Baudet, 1937 (Nemata: Syngamidae), a parasite of respiratory tract of African penguin Spheniscus demersus: Morphological and molecular characterisation with some ecological and veterinary notes. Parasitol Int 2013; 62(5): 416-422. http://dx.doi.org/10.1016/j.parint.2013.05.002. PMid:23684707.

Kanarek G, Sitko J, Rolbiecki L, Rokicki J. Digenean fauna of the great cormorant Phalacrocorax carbo sinensis (Blumenbach, 1798) in the brackish waters of the Vistula Lagoon and the Gulf of Gdańsk (Poland). Wiad Parazytol 2003; 49(3): 293-299. PMid:16889033.

Kanarek G, Zalesny G. Extrinsic-and intrinsic-dependent variation in component communities and patterns of aggregations in helminth parasites of great cormorant (Phalacrocorax carbo) from N.E. Poland. Parasitol Res 2014; 113(3): 837-850. http://dx.doi.org/10.1007/s00436-013-3714-7. PMid:24297694.

Kanarek G. The occurrence of Cyathostoma (Cyathostoma) microspiculum (Skrjabin, 1915) (Nematoda: Syngamidae) in the great cormorant [Phalacrocorax carbo (L., 1758)] in north-eastern Poland. J Helminthol 2009; 83(4): 391-398. http://dx.doi.org/10.1017/S0090399093007. PMid:19531273.

Keler S. Über eine neue gattung von Mallophagen, Eidmaniella n. gen. Ann Mus Zool Pol 1938; 13: 81-87.

Kennedy M, Spencer HG. Classification of the cormorants of the world. Mol Phylogenet Evol 2014; 79: 249-257. http://dx.doi.org/10.1016/j.ympev.2014.06.020. PMid:24994028.

Khalil LF, Jones A, Bray RA. Keys to the cestode parasites of vertebrates. Wallingford: CAB International; 1994.

Kornyushin VV. Cormorant (Phalacrocorax carbo L.) as a potential source of the helmintosaurus spreading in fish, game-birds and fowls. Branta 2008; 11: 200-203.

Kuabara KM, Valim MP. New records of chewing lice (Insecta, Phthiraptera) from Brazilian birds (Aves) collected by Helmut Sick fowls. Trans R Soc S Aust 1994; 86(2): 207-215. http://dx.doi.org/10.1016/0269-7491(94)90192-9. PMid:15091638.

Kuiken T, Leighton FA, Wobeser G, Wagner B. Causes of morbidity and mortality and their effect on reproductive success in the Western Grebe (Aechmophorus occidentalis): A new Host and Geographic Record for a Dracunculoid Nematode and Implications of Migration and Climate Change. J Wildl Dis 2019; 55(2): 331-346. http://dx.doi.org/10.7589/0090-3558-35.2.331. PMid:10231760.

Lamont MA. A new species of Clinostomum. Occass Pap Mus Zool 1920; 83: 1-5.

Latas PJ, Stockdale Walden HD, Bates L, Marshall S, Rohr T, Whitehead LR. Avioserpens in the Western Grebe (Aechmophorus occidentalis): A new Host and Geographic Record for a Dracunculoid Nematoide and Implications of Migration and Climate Change. J Wildl Dis 2015; 51(2): 189-192. http://dx.doi.org/10.7589/2015-06-169. PMid:26555111.

Lebedeva DI, Chantuu K. New data on bird helminths in Mongolia. J Parasitol 1956; 42(4): 39.

León C, Benítez-Mora A. Guía de campo avifauna presente en el sector adyacente al Canal El Morro, Humedal Rocuant-Andalién, Octava Región, Chile. Talcahuano: Dirección de Medio Ambiente; 2005.

Lunaschi L, Drago F. Primer registro de Neodiplostomum travassosi (Digenea: Diplodistomidae) en Argentina. Rev Mex Biodivers 2005; 76(1): 97-100. http://dx.doi.org/10.22201/ib.20078706e.2005.001.353.

Malcomson RO. Mallophaga from birds of North America. Wilson Bull 1960; 72(2): 182-197.

Martinez DE, Gonzalez GE. Aves de Chile: guia de campo y breve historia natural. Santiago, Chile: Ediciones del Naturalista; 2017.

Mateo MM. Diversidad y distribución de las especies de Mallophaga (Insecta) en aves y mamíferos de la comunidad de Madrid. Graellsia 2006; 62(Extra): 21-32. http://dx.doi.org/10.3989/graellsia.2006.v62.iExtra.108.

Mawson PM. Filariid nematodes from Canadian birds. Can J Zool 1957; 35(2): 213-219. http://dx.doi.org/10.1139/z57-018.
Parasites of the Neotropic cormorant in Chile

Medema GJ. Cryptosporidium and Giardia: new challenges to the water industry [dissertation]. Utrecht: University of Utrecht; 1999.

Mironov SV. A review of the feather mite genus Scutamegninia Dubinin, 1951 (Acarina: Analgoidea: Avenzoariidae). Acarina 2000; 8(1): 9-58.

Mironov SV. Allopseudoptoides galli n. g., n. sp., a new genus and species of feather mites (Acari: Analgoidea: Psoroptoididae) causing mange in commercially raised domestic chicken in Brazil. Syst Parasitol 2013; 85(3): 201-212. http://dx.doi.org/10.1007/s11230-013-9422-y. PMid:23793494.

Monteiro C, Amato J, Amato S. A new species of Andracantha Schmidt (Anctanchocephala, Polymorphidae) parasite of Neotropical cormorants, Phalacrocorax brasilianus (Gmelin) (Aves, Phalacrocoracidae) from southern Brazil. Rev Bras Zool 2006a; 23(3): 807-812. http://dx.doi.org/10.1590/S0101-81752006000300027.

Monteiro C, Amato J, Amato S. Helminth parasitism in the Neotropical cormorant, Phalacrocorax brasilianus, in Southern Brazil: effect of host size, weight, sex, and maturity state. Parasitol Res 2011; 109(3): 849-855. http://dx.doi.org/10.1007/s00436-011-2311-x. PMid:21431903.

Monteiro C, Amato J, Amato S. Primeiro registro de Syncuria squamata (Linstow) (Nematoda, Acuariidae) em biguás, Phalacrocorax brasilianus (Gmelin) (Aves, Phalacrocoracidae) no Brasil. Rev Bras Zool 2006b; 23(4): 1268-1272. http://dx.doi.org/10.1590/S0101-81752006000400041.

Monteiro C, Amato J, Amato S. Prosthognomis ovatus (Rudolphi) (Digenea, Prosthogonimidae) em três espécies de aves aquáticas da Região Sul do Brasil. Rev Bras Zool 2007; 24(1): 253-257. http://dx.doi.org/10.1590/S0101-81752007000100035.

Moravec F, Scholz T, Našincová V. The systematic status of Trichosoma carbonis Rudolphi, 1819 and a description of Baruscapillaria rudolphi n. sp. (Nematoda: Capillariidae), an intestinal parasite of cormorants. Syst Parasitol 1994; 28(2): 153-158. http://dx.doi.org/10.1007/BF00009593.

Moreno L, González-Acuña D. Los parásitos de las aves rapaces de Chile: una revisión. Bol Chil Ornitol 2015; 21(1-2): 93-102.

Našincová V, Moravec F, Scholz T. Trematodes of the common cormorant (Phalacrocorax carbo) in Czech Republic. Acta Soc Zool Bohem 1993; 57(1): 31-46.

Nogueserola ML, Navarro P, Lluch J. Helminths parásitos de Ardeidae en Valencia (España). An Biol 2002; 24: 139-144.

Olsen OW. Avioesperns bifidus, a new species of nematode (Dracunculidae) from ducks. Trans Am Microsoc Soc 1952; 71(2): 150-153. http://dx.doi.org/10.2307/3223075.

Ortega-Olivares MP, García-Prieto L, García-Varela M. Grypohynchidae (Cestoda: Cyclophyllidea) in Mexico: species list, hosts, distribution and new records. Zootaxa 2014; 3795(2): 101-125. http://dx.doi.org/10.11646/zootaxa.3795.2.1. PMid:24870465.

Ostrowski de Núñez M. Fauna de agua dulce en la República Argentina. VI. Las cercarias de Ascocotyle (A) tenuicollis Price 1935 y de Pygidioptis pindoramensis Travassos 1929 (Trematoda, Heterophyidae). Phys. Secc B 1976; 35(90): 51-57.

Oyarzún-Ruiz P, González-Acuña D. Colecta, preparación e identificación de parásitos. Parasitol Latinoam 2020; 69(1): 12-29.

Oyarzún-Ruiz P, Muñoz-Alvarado P. Cormorán imperial, Phalacrocorax brasilianus (Gmelin) (Aves, Phalacrocoracidae) no Brasil. Rev Bras Zool 2015; 32(2): 153-358. http://dx.doi.org/10.4067/S0718-19572015000300013.

Oyarzún-Ruiz P, González-Acuña D. Colecta, preparación e identificación de parásitos. Parasitol Latinoam 2020; 69(1): 12-29.

Oyarzún-Ruiz P, González-Acuña D. Colecta, preparación e identificación de parásitos. Parasitol Latinoam 2020; 69(1): 12-29.

Palma R. Slide-mounting of lice: a detailed description of the Canada balsam technique. N Z Entomol 1978; 6(4): 432-436. http://dx.doi.org/10.1080/00779962.1978.9722313.

Pedroso LGA, Hernandes FA. New records of feather mites (Acariformes: Astigmata) from non-passerine birds (Aves) in Brazil. Check List 2016; 12(6): 1-25. http://dx.doi.org/10.15560/12.6.2000.

Pence DB, Spalding MG, Bergan JF, Cole RA, Newman S, Gray PN. New records of subcutaneous mites (Acari: Hypoderatidae) in birds, with examples of potential host colonization events. J Med Entomol 1997; 34(4): 411-416. http://dx.doi.org/10.1093/jmedent/34.4.411. PMid:9220674.

Plutzer J, Tomor B. The role of aquatic birds in the environmental dissemination of human pathogenic Giardia duodenalis cysts and Cryptosporidium oocysts in Hungary. Parasitol Int 2009; 58(3): 227-231. http://dx.doi.org/10.1016/j.parint.2009.05.004. PMid:19446039.

Presswell B, Poulin R, Randhawa HS. First report of a grypohynchid tapeworm (Cestoda: Cyclophyllidea) from New Zealand and from an eltrid fish, described from metacestodes and in vitro-grown worms. J Helminthol 2012; 86(4): 453-464. http://dx.doi.org/10.1017/S0022149311000691. PMid:22152219.

Price EW. Description of some heterophyid trematodes of the subfamily Centrocestinae. Proc Helminthol Soc Wash 1935; 2(2): 70-73.

Price RD, Hententhal RA, Palma RL, Johnson KP, Clayton DH. The chewing lice: world checklist and biological overview. Champaign: Illinois Natural History Survey; 2003.
Price RD. The *Piagetella* (Mallophaga: Menoponidae) of the Pelecaniformes. *Can Entomol* 1970; 102(4): 389-404. http://dx.doi.org/10.4039/Ent102389-4.

Pritchard MH, Kruse GOW. *The collection and preservation of animal parasites*. Lincoln: University of Nebraska Press; 1982.

Richardson DJ, Cole RA. Acanthocephala of the bald eagle (*Haliaeetus leucocephalus*) in North America. *J Parasitol* 1997; 83(3): 540-541. http://dx.doi.org/10.2307/3284428. PMID:9194845.

Riquelme C, García-González M, Balboa L. Morfometría y fecundidad de *Profilicollis bullocki* Mateo, Córdova & Guzmán 1982 (Acanthocephalana: Polymorphidae) en especies simpátricas de aves costeras de Chile. *Rev Chil Hist Nat* 2006; 79(4): 465-474. http://dx.doi.org/10.4067/S0716-078X2006000400005.

Robinson SA. *Parasitism and contaminants: relationships and underlying mechanisms for a model endohelminth-bird association* [dissertação]. Ottawa: Carleton University; 2011.

Rodríguez SM, D’Elía G. Pan-American marine coastal distribution of the acanthocephalan *Profilicollis altmani* based on morphometric and phylogenetic analyses of cystacanths from the mole crab *Emerita brasilienis*. *J Helminthol* 2017; 91(3): 371-375. http://dx.doi.org/10.1017/S0022149X16000237. PMID:27126405.

Rodríguez SM, Diaz JI, D’Elía G. Morphological and molecular evidence on the existence of a single estuarine and rocky intertidal acanthocephalan species of *Profilicollis Meyer*, 1931 (Acanthocephalana: Polymorphidae) along the Atlantic and Pacific coasts of southern South America. *Syst Parasitol* 2017; 94(4): 527-533. http://dx.doi.org/10.1007/s11230-017-9716-6. PMID:28337681.

Ryan S, Price RD. A review of the genus *Eidmanniella* (Mallophaga: Menoponidae) from the Pelecaniformes. *Ann Entomol Soc Am* 1969; 62(4): 815-823. http://dx.doi.org/10.1093/esa/62.4.815.

Rzymski P, Slodkowicz-Kowalska A, Klimaszyk P, Solarczyk P, Poniedzialek B. Screening of protozoan and microsporidian parasites in feces of great cormorant (*Phalacrocorax carbo*) in southern Italy. *Environ Sci Pollut Res Int* 2016; 23(4): 1238-1246. PMid:26895156.

Rzymski P, Slodkowicz-Kowalska A, Klimaszyk P, Solarczyk P, Poniedzialek B. Screening of protozoan and microsporidian parasites in feces of great cormorant (*Phalacrocorax carbo*) in southern Italy. *Environ Sci Pollut Res Int* 2016; 23(4): 1238-1246. PMid:26895156.

Santoro M, D’Alessio N, Di Prisco F, Veneziano V, Galiero G, Cerrone A, et al. Helminth communities of herons (Aves: Ardeidae) in Italy: a survey of species. *J Helminthol* 2015; 89(2): 229-238. PMid:26143788.

Santos A, López OG, Miller M. Hippoboscidae (Insecta: Diptera). Ectoparásitos en aves de Panamá, claves de identificación, hospederos y distribución. *Scientia* 2014; 24(1): 49-68.

Schmidt GD. *Andracantha*, a new genus of Acanthocephala (Polymorphidae) from fish-eating birds, with descriptions of three species. *J Parasitol* 1975; 61(4): 615-620. http://dx.doi.org/10.2307/3279453. PMID:1165545.

Scholz T, Aguirre-Macedo ML, Salgado-Maldonado G. Trematodes of the family Heterophyidae (Digenea) in Mexico: a review of species and new host and geographical records. *J Nat Hist* 2001; 35(12): 1733-1772. http://dx.doi.org/10.1080/00222930152667087.

Scholz T, Kuchta R, Salgado-Maldonado G. Cestodes of the family Dilepididae (Cestoda: Cyclophyllidea) from fish-eating birds in Mexico: a survey of species. *Syst Parasitol* 2002; 52(3): 171-182. http://dx.doi.org/10.1023/A:1015700801579. PMID:12143788.

Sepúlveda MS, Spalding MG, Kinsella JM, Forrester DJ. Parasites of the great egret (*Ardea albus*) in Florida and a review of the helminths reported for the species. *J Helminthol Soc Wash* 1999; 66(1): 7-13.

Sepúlveda MS, Spalding MG, Kinsella JM, Forrester DJ. Parasitic helminths of the little blue heron, *Egretta caerulea*, in southern Florida. *J Helminthol Soc Wash* 1996; 63(1): 136-140.

Servicio Agrícola y Ganadero – SAG. *La ley de caza y su reglamento* [online]. Chile; 2018 [cited 2020 May 19]. Available from: https://www.sag.gob.cl/sites/default/files/ley_de_caza_2018.pdf

Sitko J, Okulewicz A. *Checklist of the nematodes in birds in the Czech Republic and the Slovak Republic*. Přerov: Comenius Museum; 2010.

Skrjabin KL, Shikobalova NP, Schulz RS. *Essentials of nematodology*. Moscow: USSR Academy of Sciences Press; 1954. (vol. III, Trichostrongyloids of animals and man).

Skrjabin KL. *Key to parasitic nematodes*. Washington: National Science Foundation, Israel Program for Scientific Translations; 1961. (vol. III, Strongyloides).

Skrjabin KL. *Key to parasitic nematodes*. Jerusalem: Israel Program for Scientific Translations; 1969. (vol. I, Spirurata and filariae).

Sugimoto M. On the filaria from the Formosan domesticated birds. *Jap Soc Vet Sci* 1934; 13(4): 261-266. http://dx.doi.org/10.1292/jvms1922.13.261.

Švažas S, Chukalova N, Grishanov G, Püys Ž, Srūoga A, Butkauskas D, et al. The role of Great cormorant (*Phalacrocorax carbo sinensis*) for fish stock and dispersal of helminthes parasites in the Curonian Lagoon Area. *Vet Med Zoot* 2011; 55(77): 79-85.

Tantaleán M, Sánchez L, Gómez L, Huíza A. Acantocéfalos del Perú. *Rev Peru Biol* 2005; 12(1): 83-92.
Parasites of the Neotropic cormorant in Chile

Torres P, Contreras A, Cubillos V, Gesche W, Montefusco A, Rebolledo C, et al. Parasitismo en peces, aves piscívoras y comunidades humanas ribereñas de los lagos Yelcho y Tagua-Tagua, X Región de Chile. Arch Med Vet 1992; 24(1): 77-92.

Torres P, Figueroa L, Saldivia A, Barrientos J. Gastrointestinal helminths of fish-eating birds from the Valdivia River, Chile. J Parasitol 1982; 68(6): 1157. http://dx.doi.org/10.2307/3281111.

Torres P, Ortega J, Schlatter R. Nematode parasites of the digestive tract in Neotropic cormorant chicks (Phalacrocorax brasilianus) from the River Cruces Ramsar site in southern Chile. Parasitol Res 2005; 97(2): 103-107. http://dx.doi.org/10.1007/s00436-005-1372-0. PMid:15986255.

Torres P, Ruiz E, Gesche W, Montefusco A. Gastrointestinal helminths of fish-eating birds from Chiloe Island, Chile. J Wildl Dis 1991; 27(1): 178-179. http://dx.doi.org/10.7588/0090-3558-27.1.178. PMid:2023322.

Torres P, Schlatter R, Montefusco A, Gesche W, Ruiz E, Contreras A. Helminth parasites of piscivorous birds from lakes in the south of Chile. Mem Inst Oswaldo Cruz 1993; 88(2): 341-343. http://dx.doi.org/10.1590/0070-421519930000200028. PMid:8107596.

Torres P, Valdivieso J, Schlatter R, Montefusco A, Revenga J, Marín F, et al. Infection by Contracaecum rudolphii (Nematoda: Anisakidae) in the Neotropic cormorant Phalacrocorax brasilianus, and fishes from the estuary of the Valdivia river, Chile. Stud Neotrop Fauna Environ 2000; 35(2): 101-108. http://dx.doi.org/10.1076/0165-0521(200008)35;2;1-9;FT101.

Travassos L, Teixeira de Freitas JF, Kohn A. Trematódeos do Brasil. Mem Inst Oswaldo Cruz 1969; 67(1): 1-886. PMid:5397756.

Tucci EC, Soares NM, Faccini JLH, Vilas Boas D. Additional information about a mange outbreak by Allopsoroptoides galli (Acari: Psoroptoididae) in commercial laying hens in the state of São Paulo, Brazil. Pesq Vet Bras 2014; 34(8): 760-762. http://dx.doi.org/10.1590/S0100-736X2014000800009.

Vicente JJ, Pinto RM, Noronha D, Carvalho PGD. Nematode parasites of Brazilian Pelecaniformes and Trogoniformes birds: a general survey with new records for the species. Rev Bras Zool 1995;12(1 Suppl 1): 1-273. http://dx.doi.org/10.1590/S0101-81751995000100001.

Vichová B, Reiterová K, Špilovská S, Blaňarová L, Hurníková Z, Turčeková L. Molecular screening for bacteria and protozoa in great cormorants (Phalacrocorax carbo sinensis) nesting in Slovakia, central Europe. Acta Parasitol 2016; 61(3): 585-589. http://dx.doi.org/10.1515/ap-2016-0078. PMid:27447224.

Violante-González J, Monks S, Gil-Guerrero S, Rojas-Herrera A, Flores-Garza R, Larumbe-Morán E. Parasite communities of the neotropical cormorant Phalacrocorax brasilianus (Gmelin) (Aves, Phalacrocoracidae) from two coastal lagoons in Guerrero state, Mexico. Parasitol Res 2011; 109(5): 1303-1309. http://dx.doi.org/10.1007/s00436-011-2377-5. PMid:21503640.

Wang PQ, Sun YL, Zhao YR. Studies on the life history and epidemiology of Avioserpens taiwana (Sugimoto, 1919) of the domestic duck in Fujian. Dong Wu Xue Bao 1983; 29: 350-357.

Wehr EE, Chitwood BG. A new nematode from buds. Proc Helminthol Soc Wash 1934; 1: 10-11.

Wehr EE. A new host for the bird darcunculid (sic) Avioserpens denticulophasma. Proc Helminthol Soc Wash 1934; 1: 11.

Yamaguti S. Studies on the helminth fauna of Japan. 25. Trematodes of birds IV. Jap J Zool 1939; 8: 129-210.

Yamaguti S. Systema Helminthum. New York: Interscience; 1958. (vol. I, The Digenetic Trematodes of Vertebrates. Part I and II).

Yamaguti S. Systema Helminthum. New York: Interscience; 1959. (vol. II, The Cestodes of Vertebrates. Part I and II).

Yamaguti S. Systema helminthum: the nematodes of vertebrates. New York: Interscience Publisher; 1961. (vol. 3).

Zajac AM, Conboy GA. Veterinary clinical parasitology. 8th ed. Ames: Wiley-BlackWell; 2012.