The effects of fibroblasts on wave dynamics in a mathematical model for human ventricular tissue

Alok Ranjan Nayak and Rahul Pandit

Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore 560012, India.
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.

We present systematic numerical studies of electrical-wave propagation in two-dimensional (2D) and three-dimensional (3D) mathematical models, for human, ventricular tissue with myocyte cells that are attached (a) regularly and (b) randomly to distributed fibroblasts. In both these cases we show that there is a parameter regime in which single rotating spiral- and scroll-wave states (RS) retain their integrity and do not evolve to a state ST that displays spatiotemporal chaos and turbulence. However, in another range of parameters, we observe a transition from ST to RS states in both 2D or 3D domains and for both cases (a) and (b). Our studies show that the ST-RS transition and rotation period of a spiral or scroll wave in the RS state depends on (i) the coupling strength between myocytes and fibroblasts and (ii) the number of fibroblasts attached to myocytes. We conclude that myocyte-fibroblast coupling strength and the number of fibroblasts are more important for the ST-RS transition than the precise way in which fibroblasts are distributed over myocyte tissue.

PACS numbers: 87.19.Hh, 89.75.Kd, 05.45.-a
Keywords: Mathematical Model, Fibroblasts, Action-potential-duration-restitution, Spiral-wave dynamics

I. INTRODUCTION

Approximately 16% of all deaths in the industrialized world are caused by cardiac arrhythmias like ventricular tachycardia (VT) and ventricular fibrillation (VF) [1, 2]. There is a broad consensus that the analogs of VT and VF in mathematical models for cardiac tissue are, respectively, (a) a single rotating spiral or scroll wave of electrical activation and (b) spiral-wave or scroll-wave turbulence, which displays broken electrical waves and spatiotemporal chaos [3–6]. Thus, it is very important of study such spiral and scroll waves to develop an understanding of life-threatening cardiac arrhythmias. Such studies are truly interdisciplinary because they require inputs from biology, bio-medical engineering, cardiology, on the one hand, and physics, nonlinear dynamics, and numerical methods, on the other. We use methods from these areas to solve the nonlinear, partial-differential equations for state-of-the-art mathematical models for cardiac tissue with myocytes and fibroblasts. We build on our earlier studies of this problem [7, 8] to elucidate the role of two different forms of myocyte-fibroblast couplings on spiral- and scroll-wave dynamics in such models by using theoretical ideas from spatiotemporal chaos.

It is useful to begin with an overview of experimental and computational studies of cardiac myocytes and fibroblasts. Cardiac fibroblasts, which are inexcitable cells, often multiply and connect with cardiac myocytes during fibrosis [9–11], a process of cardiac-tissue healing after a myocardial infarction. Fibroblasts in cell culture and in intact tissue can couple with myocytes by expressing either the connexins-43 (Cx43) or Cx45 [12–16]. Zlochiver, et al. [15] have shown the expression of Cx43 between fibroblasts and myocytes in a monolayer of myocytes and fibroblasts of neonatal rats; Miragoli, et al. [16] have reported that Cx43 and Cx45 are expressed among fibroblasts and between fibroblasts and myocytes in cultured fibroblasts coated over rat-ventricular-myocyte strands. Both experimental and computational studies have shown that such coupling between myocytes and fibroblasts enhances electrical-signal propagation in cardiac tissue [7, 15–18]; this enhancement increases with \(N_f \), the number of fibroblasts that are attached to a myocyte. In cell-culture experiments, Miragoli, et al. [16] have found that the conduction velocity (CV) decreases with an increase in the density of fibroblasts in cultured strands of neonatal-rat myocytes coated by fibroblasts; studies by McSpadden, et al. [17] have found that CV decreases as the fibroblast number increases on the top of a myocyte layer in a monolayer of neonatal-rat cardiac myocytes, which are electrophysiologically loaded with a layer of cardiac fibroblasts. Zlochiver, et al. [15] have shown that CV decreases as (i) the gap-junctional conductance increases or (ii) the fibroblasts density increases in their experiments with fibroblasts of neonatal rats; they have also obtained similar result in their computational studies in a two-dimensional (2D) sheet of myocyte tissue in the dynamic Luo-Rudy (LRd) model [19, 20] by inserting fibroblasts. Computational studies by Xie, et al., [18] have shown that CV decreases as they increase the gap-junctional coupling or the fibroblasts density in a 2D LR1 myocyte model [21], with either randomly attached or randomly inserted fibroblasts. In simulations with the 2D TNNP04 model (due to ten Tusscher, et al. [22]), Nayak, et al. [7] have found that CV either decreases or increases, with attached fibroblasts, as they increase the gap-junctional coupling. The experimental and computational investigations men-
tioned above show that both the gap-junctional coupling and N_f enhance CV and, therefore, they can play a crucial role in spiral- and scroll-wave dynamics in mathematical models for cardiac tissue.

We develop and investigate two models with different arrangements of fibroblasts that are attached to myocytes. In the first arrangement there is a regular, spatially periodic attachment of fibroblast, whereas, in the second arrangement, fibroblasts are attached randomly to myocytes. Our study has been designed to understand the effects of fibroblast organization, fibroblast density, and the myocyte-fibroblast coupling on spiral- and scroll-wave dynamics. We use two parameter sets for myocytes. The remainder of this paper is organized as follows. In this Section, we describe the details of our myocyte-fibroblast models for two-dimensional (2D) and three-dimensional (3D) tissue. We also explain the numerical methods we use to solve the partial differential equations (PDEs) that comprise our mathematical models. We also discuss the methods that we use to analyze the data from our numerical simulations.

Section II is devoted to a description of our model and the numerical methods we use. Section III is devoted to the significance of our results. Section IV contains a discussion of the results obtained from our analyses and the methods used.

II. MODEL AND METHODS

In this Section, we describe the details of our myocyte-fibroblast models for two-dimensional (2D) and three-dimensional (3D) tissue. We also explain the numerical-simulation techniques that we use to solve the partial differential equations (PDEs) that comprise our mathematical models. We also discuss the methods that we use to analyze the data from our numerical simulations.

A. Model

The 2D and 3D myocyte domains, with attached fibroblasts, can be modeled by the following PDEs and ordinary-differential-equations (ODEs) [23, 24]:

$$\frac{\partial V_m}{\partial t} = \frac{-I_m + N_f(x)I_f}{C_m} + D \nabla^2 V_m, \quad (1)$$

$$\frac{\partial V_f}{\partial t} = \frac{-I_f - I_j}{C_f}, \quad (2)$$

where

$$I_f = G_f(V_f - V_m); \quad (3)$$

here C_m is the total cellular capacitance of a myocyte, V_m is the myocyte transmembrane potential, i.e., the voltage difference between intra- and extracellular spaces, and I_m is the sum of all the ionic currents that cross the myocyte cell membrane; C_f, V_f, and I_f are, respectively, the total cellular capacitance, the transmembrane potential, and the sum of all ionic currents for the fibroblast; $N_f(x)$ is the number of identical fibroblasts attached to a myocyte in our simulation domain at the point x; and I_j, G_j, and D are, respectively, the gap-junctional current, the myocyte-fibroblast gap-junctional conductance, and the diffusion coefficient that is related to the gap-junctional conductance between myocytes.

For myocytes, we use the state-of-the-art mathematical model for human ventricular tissue developed by ten Tusscher and Panfilov (the TP06 model) [25]. In the TP06 model the total ionic current is

$$I_m = I_{Na} + I_{Cal} + I_{Ks} + I_{Kr} + I_{K1}$$

$$+ I_{NaCa} + I_{NaK} + I_{pCa} + I_{pK} + I_{bNa} + I_{bCa}, \quad (4)$$

where I_{Na} is the fast, inward Na$^+$ current, I_{Cal} the L-type slow, inward Ca$^{2+}$ current, I_{Ks} the transient, outward current, I_{Kr} the slow, delayed, rectifier current, I_{K1} the rapid, delayed, rectifier current, I_{NaCa} the inward, rectifier K^+ current, I_{NaCa} the Na$^+$/Ca$^{2+}$ exchanger current, I_{NaK} the Na$^+$/K$^+$ pump current, I_{pCa} and I_{pK} the plateau Ca$^{2+}$ and K^+ currents, and I_{bNa} and I_{bCa} the background Na$^+$ and Ca$^{2+}$ currents, respectively. The full sets of equations for this model, including the ODEs for the ion-channel gating variables and the ion dynamics, are given in Refs. [7, 26].

We follow MacCannell, et al. [27] to model the fibroblasts as passive elements. The fibroblast ionic current I_f is

$$I_f = G_f(V_f - E_f), \quad (5)$$

where G_f and E_f are, respectively, the conductance and the resting membrane potential for the fibroblast.

Physical units in our model are as follows: time t is in milliseconds (ms), V_m and V_f are in millivolts (mV), C_m and C_f are in picofarads (pF), I_m and I_f are in picoamperes (pA), G_f is in nanoSiemens (nS), E_f is in mV, G_f is in nS, and D is in cm2/ms.

We study models with (a) regularly attached fibroblasts and (b) randomly attached fibroblasts. In case (a), $N_f(x) = N_f$ for all site x in our simulation domain. In case (b) we choose $N_f(x)$ randomly at each site x; $N_f(x)$ can be any integer from 0 to N_f, with equal probability for any one of these values.

B. Methods

Our 2D and 3D simulation domains are, respectively, squares (1024 \times 1024 grid points) and rectangular parallelepipeds (1024 \times 1024 \times 8 grid points). We use 5-point and 7-point stencils for the Laplacian in 2D and 3D, respectively, and a finite-difference scheme with step sizes $\delta x = \delta y = 0.25$ mm in 2D, and $\delta x = \delta y = \delta z = 0.25$ mm in...
3D, i.e., our simulation domains are 256×256 mm3 (in 2D) and $256 \times 256 \times 2$ mm3 (in 3D). For time marching we use a forward-Euler scheme with $\delta t = 0.02$ ms. We use Neumann (no-flux) conditions at the boundaries of our simulation domain.

For numerical efficiency, we have carried out our simulations on parallel computers, with an MPI code that we have developed for the TP06 model. Our code divides the 2D (or 3D) simulation domain into n columns (or slabs) along the x-direction of the domain, i.e., each processor carries out the computations for $(1024/n) \times 1024$ and $(1024/n) \times 1024 \times 16$ grid points, respectively, for 2D and 3D domains. To compute the Laplacian at the interface of processor boundaries, we use two extra grid lines (or surfaces), which can send and receive the data from left- and right-neighbor processors. The Neumann boundary condition is taken care of by adding an extra layer of grid points on the boundaries of the simulation domain of each processor.

Reference [28] suggests that we must have $D \delta t/(\delta x^2) < 1/2d$ for numerical stability, where d is the dimension of the simulation domain. For the TP06 model, with diffusion coefficients $D = 0.00154$ cm2/ms [25], time step $\delta t = 0.02$ ms, and space step $\delta x = 0.25$ mm, the value of $D\delta t/(\delta x^2)$ is ≈ 0.05; for the TP06 model, the quantity $1/2d = 0.25$ and ≈ 0.17, for the 2D and 3D domains, respectively, i.e., we have numerical stability because $D\delta t/(\delta x^2) < 1/2d$.

We check the accuracy of our numerical scheme, as in Ref. [28], by varying both δt and δx in a cable-type domain of myocytes [7, 26] and by measuring CV of a plane wave, which is injected into the domain by stimulating its left boundary for 3 ms with a stimulus of strength 150 pA. With $\delta x = 0.25$ mm, CV increases by 1.1% when we change δt from 0.02 to 0.01 ms; if we decrease δx from 0.25 to 0.15 mm, with $\delta t = 0.02$ ms, then CV increases by 3.1%; these changes are similar to those found in other studies [22, 26, 28, 29].

Although the numerical method we use satisfies both numerical-stability and accuracy conditions, an inappropriately large δx can give irregular wavefront-curvature, as a consequence of numerical artifacts [7, 26, 28]; this leads to unphysical wave dynamics. We check that our results are free from such numerical artifacts by investigating the spatiotemporal evolution of an expanding wave front that emerges from a point stimulus. We find that fronts of the expanding wave do not deviate substantially from circles, when we apply a point stimulus of strength 450 pA for 3 ms at the center of the domain.

We use two parameter sets P1 and P2 for myocytes to obtain, respectively, a stable rotating spiral (RS) and a spiral-turbulence (ST) states in our 2D simulation domain, and a stable rotating scroll or scroll-wave turbulence in our 3D domain. The parameter set P1 is the original one used in the TP06 model [7, 25, 26]. In the P2 parameter set, we use the following parameters, with all other parameters the same as in the original TP06 model: (a) G_{Kr}, the I_{Kr} conductance, is 0.172 nS/pF; (b) G_{Ks}, the I_{Ks} conductance, is 0.441 nS/pF; (c) G_{pCa}, the I_{pCa} conductance, is 0.8666 nS/pF; (d) G_{pK}, the I_{pK} conductance, is 0.00219 nS/pF; and (e) τ_j, the time constant of the f gating variable that is associated with the I_{CaL} current, is increased 2 times compared to its value in the TP06 model [7, 25, 26]. Our fibroblasts parameters are as follows: $C_f = 6.3$ pF, $G_f = 4$ nS, $E_f = -49.0$ mV, and G_j in the range $0 \leq G_j \leq 6$ nS [7, 30].

To obtain spiral and scroll waves we use the S1-S2 cross-field protocol [26, 31, 32]. We apply a stimulus (S1) of strength 150 pA for 3 ms to the left boundaries of our simulation domains, to form a plane wave. We then apply the second (S2) stimulus, with the same strength and duration as the S1 stimulus, from the bottom boundary and with $0 \text{ mm} \leq y \leq 125 \text{ mm}$ in 2D, and $0 \text{ mm} \leq y \leq 125 \text{ mm}$ and $0 \text{ mm} \leq z \leq 2 \text{ mm}$ in 3D. This protocol leads to the formation of spiral and scroll waves, respectively, in our 2D and 3D domains.

To examine the spatiotemporal evolution of our system, we obtain pseudocolor or isosurface plots of V_m, time series of V_m, from representative points $(x = 125 \text{ mm}, y = 125 \text{ mm} \text{ for 2D}, x = 125 \text{ mm}, y = 125 \text{ mm}, z = 1.25 \text{ mm} \text{ for 3D})$, which we mark with an asterisk (*) in all pseudocolor plots of V_m. We examine the inter-beat interval (IBI), by using this time series with 4.4×10^5 data points; the IBI is the interval between two successive spikes in this time series. We obtain the power spectra $E(\omega)$, of the time series of V_m, by using 2×10^5 data points; to eliminate transients we remove the initial 2.4×10^5 data points. To obtain the rotation period T of a spiral, in an RS state, we average over the last 5 rotations of that RS.

III. RESULTS

In subsection III A, we begin by studying spiral-wave dynamics in a 2D domain of myocytes without fibroblasts; we then introduce fibroblasts, either regularly or randomly, and examine the effects they have on spiral-wave dynamics. Subsection III B contains the results of our studies of scroll-wave dynamics in our 3D simulation domain.

A. Spiral-wave dynamics in our 2D model

In Fig. 1(A), we show a pseudocolor plot of V_m, at time $t = 8.8$ s, for the parameter set P1, in our 2D simulation domain without fibroblasts; the initial condition evolves to a state with a single rotating spiral (RS). The local time series of $V_m(x, y, t)$, from the representative point shown by the asterisk in Fig. 1(A), is given in Fig. 1(B) for $0 \text{ s} \leq t \leq 8.8 \text{ s}$; a plot of the IBI versus the beat number is given in Fig. 1(C), which shows that, after initial transients, the spiral wave rotates periodically with an average rotation period $T \approx 212$ ms. The power spectrum $E(\omega)$ in Fig. 1(D) has discrete peaks at the fundamental frequency $\omega_f \approx 4.75$ Hz and its harmonics. The periodic time series of V_m, the flattening of the IBI, and the discrete peaks in $E(\omega)$ demonstrate that the time evolution of the spiral wave, with the P1 parame-
is the consequence of the suppression of the steep APDR of \(G\) an ST to an RS state as we increase \(N\) composite that has been discussed in Refs. [7, 8].

The distance between the wave front and the wave back of Fig. 2). We define \(N\) an ST state; however, the spiral-arm width \(W\) in the first row of Fig. 2 show that the RS state, which we in Figs. 2(B1)-(B4) for the P2 parameter set; the irregular local time series, the fluctuating behavior of the IBI and the broad-band nature of the power spectrum characterize the ST state.

We focus next on spiral-wave dynamics, with P1 and P2 parameter sets, in our randomly attached fibroblast model. In Fig. 3, we show the exact analogs of Fig. 2, but now for the randomly attached fibroblast model. The pseudocolor plots in Figs. 3(A1)-(A4) show that the randomness in attaching fibroblasts does not lead to an RS-ST transition for the P1 parameter set. However, in spite of the randomness in the arrangement of fibroblasts, we observe an ST-RS transition for the P2 parameter set (see Figs. 3(B1)-(B4)), which is qualitatively similar to the ST-RS transition in the P1 case (compare the second rows of Figs. 2 and 3). However, the minimum value of \(N_f\), required for an ST-RS transition, is higher for the randomly attached fibroblast model than in the regularly attached case (compare Figs. 2(D) and 3(D)).
B. Scroll-wave dynamics in our 3D model

We turn now to a systematic study of scroll-wave dynamics in our 3D simulation domain. For both the P1 and P2 parameter sets and both regularly and randomly attached fibroblast models, we carry out simulations to study the dependence of scroll-wave dynamics on N_f and G_j. We present our numerical results below.

In Figs. 4(A1), (A2), (A3) and (A4), we show, respectively, isosurface plots of V_m, at time $t = 8.8$ ms, for the P1 parameter set in our regularly attached fibroblast model with $G_j = 4$ nS and $N_f = 0$ (i.e., isolated myocytes), $N_f = 1$, $N_f = 2$, and $N_f = 4$. In the absence of fibroblasts, i.e., $N_f = 0$, the P1 parameter set displays a rotating scroll wave with fundamental frequency $\omega_f \simeq 5$ Hz and rotation period $T \simeq 201$ ms; this is consistent, because $\omega_f \simeq 1/T$. In Fig. 4(C), we plot T versus N_f for $G_j = 1$ nS (\bullet) and 4 nS (\ast). We find that T increases as we increase (i) N_f, for a fixed value of G_j, or (ii) G_j, for a fixed value of N_f. In Figs. 4((B1)-(B4)) and (D), we show, respectively, the exact analogs of Figs. 4((A1)-(A4)) and (C), for the P2 parameter set. In the absence of fibroblasts and for the P2 parameter set, we obtain a scroll-wave-turbulence state (Fig. 4(B1)); this scroll-wave turbulence is converted to a rotating scroll if we have $N_f > 1$ (second row of Fig. 4). Once the scroll-wave turbulence state is suppressed, a rotating scroll rotates with a period T, which increases as we increase N_f for a fixed value of G_j, and vice-versa (Fig. 4(D)). Furthermore, from Fig. 4(D), we find that the minimum value of N_f, required for the ST-RS transition, is 4 and 2, respectively, for $G_j = 1$ nS (\bullet) and 4 nS (\ast). The isosurface plots in Fig. 4 show that the width W_d of a scroll-wave arm in the rotating-scroll state decreases as we increase N_f for both the P1 and P2 parameter sets. The mecha-

FIG. 3. Various RS and ST states in our 2D domain for the randomly attached fibroblast model (this figure is the analog of Fig. 2). The results are qualitatively similar to those in Fig. 2 for the regularly attached fibroblast case. Note that the minimum value of N_f, for a fixed value of G_j, for the ST-RS transition, is higher compared to that in Fig. 2(D).

FIG. 4. The rotating-scroll and scroll-wave-turbulence states, in our 3D simulation domain of size $256 \times 256 \times 2$ mm3, for the regularly attached fibroblast model, are shown in ((A1)-(B4)) via isosurface plots of V_m. The myocyte-fibroblast coupling strength $G_j = 4$ nS. The scroll-arm width of a rotating scroll, with the P1 parameter set, decreases as N_f increases (first row). The scroll-wave turbulence, associated with the P2 parameter set, is converted to a rotating scroll as N_f increases (second row). ((C)-(D)) Plots of the rotation period T of a scroll wave in a rotating-scroll state, for the P1 and P2 parameter sets; for both parameter sets T increases as G_j increases; note that, for the ST-RS transition, the minimum value of N_f decreases as G_j increases.

FIG. 5. The rotating-scroll and scroll-wave-turbulence states, in our 3D simulation domain for the randomly attached fibroblast model; the exact analog of Fig. 4. The results are qualitatively similar to those for the regularly attached fibroblast case. Note that the ST-RS transition N_f value, for a fixed value of G_j, is higher than its counterpart in Fig. 4(D).
nisms of the ST-RS transition, and increase of T and a
decrease of Wd, as we increase Nf and Gj, are the same
as those we have found in our 2D studies.

In Fig. 5 we show the exact analog of Fig. 4 for the ran-
domly attached fibroblast model, with both the P1 and
P2 parameter sets. Our scroll-wave results here are sim-
ilar to those for the case of regularly attached fibroblast
model. From Fig. 5(D), we find that the minimum value of
Nf, for the ST-RS transition, is 5 and 3, respectively,
for Gj = 1 nS (●) and 4 nS (●). Note that this minimum
value of Nf is higher for the randomly attached fibro-
blast model than it is for the regularly attached fibroblast
model (compare Figs.4(D) and 5(D)).

IV. CONCLUSIONS

We have presented the most extensive numerical study
carried out so far of the effects of fibroblasts on spiral-
and scroll-wave dynamics in a mathematical model for
human ventricular tissue with fibroblasts, attached regu-
larly or randomly to myocytes. Our numerical study has
been designed to uncover the role of (i) the organization
of fibroblasts in ventricular tissue (i.e., to compare reg-
ular and random arrangements), (ii) myocyte-fibroblast
coupling Gj, and (iii) the density of fibroblasts, i.e., the
maximum number of fibroblasts Nf attached to a my-
ocyte. One of the principal results of our studies is that
spiral- and scroll-wave dynamics depend only slightly on
the details of the organization of fibroblasts in ventricu-
lar tissue. However, the ST-RS transition, the stability of
spiral- and scroll-wave turbulence, the rotation period
of a rotating spiral and scroll, and the width of a rotating
spiral and scroll arms, depend sensitively on Nf and Gj.

Earlier studies have investigated the effects of fibro-
blasts on spiral-wave dynamics by introducing randomly
diffuse fibroblasts in a myocyte domain [15, 34]. Such
randomly diffuse fibroblasts in a myocyte domain inhibit
electrical-wave propagation, and initiate spiral-wave tur-
bulence state. Studies by Xie, et al [18] have found that
spiral-wave breakup occurs, in an LR1 model, because of
randomly diffuse fibroblasts in a localized area of a sim-
ulation domain; Zlochiver, et al. [15] have shown from
their experiments and simulations that a rotating spiral
becomes unstable and, finally, spiral breakup occurs, as
they increase the percentage of diffuse fibroblasts. Ma-
junder, et al. [34] have shown from their numerical ex-
periments that a transition from an RS to various ST
states occurs depending on the percentage of fibroblasts
in their simulation domain. In our attached-fibroblast
model studies, fibroblasts do not inhibit wave propa-
gation [7]; however, fibroblasts attached to a myocyte
can lower the steepness of the APDR curve, depending
on the values of Gj and Nf [8, 33]. Such a lowering of
the steep slope of the APDR eliminates spiral- and scroll-wave turbulence in our 2D and 3D simulation do-
 mains [35–38]. Therefore, we observe an ST-RS tran-
sition. Earlier studies in Ref. [33] have observed ST-RS
spiral-wave transitions because of a suppression of the
steep portion of the APDR slope in a 3D model consist-
ing of myocytes, fibroblasts, and extracellular space by
using the LR1 model [21]. However, those studies have
not investigated the spiral- and scroll-wave transition as
a function of Nf and Gj. Our study shows that both
Nf and Gj are important factors during the fibrosis pro-
cess [10, 39].

We suggest that our results from in silico studies can be
verified in in vitro experiments. Furthermore, by us-
ing advanced cell-culture techniques [40–42], our 2D and
3D numerical results can be tested easily in cell-culture
experiments.

ACKNOWLEDGMENTS

We thank the Department of Science and Technology
(DST), India, the University Grants Commission (UGC),
India, and the Robert Bosch Centre for Cyber Physical
Systems (RBCCPS), IISc, for support.

[1] A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin,
J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox,
S. Franco, et al., Circulation 129, e28 (2014).

[2] D. P. Zipes and H. J. Wellens, Circulation 98, 2334
(1998).

[3] J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter,
and J. Jalife (1992).

[4] A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T.
Baxter, and J. Jalife, Circulation research 72, 631 (1993).

[5] R. A. Gray, A. M. Pertsov, and J. Jalife, Nature 392, 75
(1998).

[6] J. Jalife, R. A. Gray, G. E. Morley, and J. M. Davidenko,
Chaos: An Interdisciplinary Journal of Nonlinear Science
8, 79 (1998).

[7] A. R. Nayak, T. Shajahan, A. Panfilov, and R. Pandit,
PloS One 8, e72950 (2013).

[8] A. R. Nayak and R. Pandit, Physical Review E 92,
032720 (2015).

[9] G. Krenning, E. M. Zeisberg, and R. Kalluri, Journal of
cellular physiology 225, 631 (2010).

[10] A. Biernacka and N. G. Frangogiannis, Aging and disease
2, 158 (2011).

[11] C. A. Souders, S. L. Bowers, and T. A. Baudino, Circu-
lation research 105, 1164 (2009).

[12] M. Rook, A. Van Ginneken, B. e. de Jonge,
A. El Aoumari, D. Gros, and H. Jongsma, American
Journal of Physiology-Cell Physiology 263, C959 (1992).

[13] P. Camelliti, G. P. Devlin, K. G. Matthews, P. Kohl, and
C. R. Green, Cardiovascular research 62, 415 (2004).

[14] L. Chilton, W. R. Giles, and G. L. Smith, The Journal
of physiology 583, 225 (2007).

[15] S. Zlochiver, V. Munoz, K. L. Vikstrom, S. M. Taffet,
O. Berenfeld, and J. Jalife, Biophysical journal 95, 4469
(2008).

[16] M. Miragoli, G. Gaudesius, and S. Rohr, Circulation re-
search 98, 801 (2006).
[17] L. C. McSpadden, R. D. Kirkton, and N. Bursac, American Journal of Physiology-Cell Physiology 297, C339 (2009).
[18] Y. Xie, A. Garfinkel, P. Camelliti, P. Kohl, J. N. Weiss, and Z. Qu, Heart Rhythm 6, 1641 (2009).
[19] C.-h. Luo and Y. Rudy, Circulation research 74, 1071 (1994).
[20] C.-H. Luo and Y. Rudy, Circulation Research 74, 1097 (1994).
[21] C.-h. Luo and Y. Rudy, Circulation research 68, 1501 (1991).
[22] K. Ten Tusscher, D. Noble, P. Noble, and A. Panfilov, American Journal of Physiology-Heart and Circulatory Physiology 286, H1573 (2004).
[23] J. Keener and J. Sneyd, Mathematical physiology, interdisciplinary applied mathematics 8 (1998).
[24] A. V. Panfilov, A. V. Holden, et al., Computational biology of the heart (Wiley, 1997).
[25] K. Ten Tusscher and A. Panfilov, Am J Physiol Heart Circ Physiol 291, H1088 (2006).
[26] A. R. Nayak, Ph.D. thesis, Indian Institute of Science (2013).
[27] K. A. MacCannell, H. Bazzazi, L. Chilton, Y. Shibukawa, R. B. Clark, and W. R. Giles, Biophysical journal 92, 4121 (2007).
[28] R. Clayton and A. Panfilov, Progress in biophysics and molecular biology 96, 19 (2008).
[29] T. Shajahan, A. R. Nayak, and R. Pandit, PLoS One 4, e4738 (2009).
[30] Y. Xie, A. Garfinkel, J. N. Weiss, and Z. Qu, American Journal of Physiology-Heart and Circulatory Physiology 297, H775 (2009).
[31] A. R. Nayak and R. Pandit, Frontiers in physiology 5, 207 (2014).
[32] R. Majumder, A. R. Nayak, and R. Pandit, in Heart Rate and Rhythm (Springer, 2011), pp. 269–282.
[33] V. S. Petrov, G. V. Osipov, and J. Kurths, Chaos: An Interdisciplinary Journal of Nonlinear Science 20, 045103 (2010).
[34] R. Majumder, A. R. Nayak, and R. Pandit, PloS one 7, e5040 (2012).
[35] Z. Qu, J. N. Weiss, and A. Garfinkel, Physical Review E 61, 727 (2000).
[36] Z. Qu, F. Xie, A. Garfinkel, and J. N. Weiss, Annals of biomedical engineering 28, 755 (2000).
[37] J. N. Weiss, P.-S. Chen, Z. Qu, H. S. Karaguezian, and A. Garfinkel, Circulation Research 87, 1103 (2000).
[38] A. Garfinkel, Y.-H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M.-H. Lee, H. S. Karaguezian, J. N. Weiss, and P.-S. Chen, Proceedings of the National Academy of Sciences 97, 6061 (2000).
[39] T. P. Nguyen, Z. Qu, and J. N. Weiss, Journal of molecular and cellular cardiology 70, 83 (2014).
[40] Y. Haraguchi, T. Shimizu, T. Sasagawa, H. Sekine, K. Sakaguchi, T. Kikuchi, W. Sekine, S. Sekiya, M. Yamato, M. Umezu, et al., Nature protocols 7, 850 (2012).
[41] T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, Circulation research 90, e40 (2002).
[42] T. A. Baudino, A. McFadden, C. Fix, J. Hastings, R. Price, and T. K. Borg, Microscopy and microanalysis 14, 117 (2008).