Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine

Natalia Andrea Marchese1 | Victoria Belén Occhieppo1 | Osvaldo Martin Basmadjian1 | Brenda Solange Casarsa2 | Gustavo Baiardi2 | Claudia Bregonzio1

1Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
2Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina

Correspondence
Claudia Bregonzio, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba. Haya de la Torre S/N, esquina Medina Allende. Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba, Córdoba, Argentina.
Email: bregonzio@fcq.unc.edu.ar

Funding information
Secretaría de Ciencia y Técnica, Universidad Nacional de Córdoba, Grant/Award Number: 411/18; Consejo Nacional de Investigaciones Científicas y Técnicas, Grant/Award Number: 11220120100373CO-KB1

Abstract
Amphetamine-induced neuroadaptations involve vascular damage, neuroinflammation, a hypo-functioning prefrontal cortex (PFC), and cognitive alterations. Brain angiotensin II, through angiotensin type 1 receptor (AT1-R), mediates oxidative/inflammatory responses, promoting endothelial dysfunction, neuronal oxidative damage and glial reactivity. The present work aims to unmask the role of AT1-R in the development of amphetamine-induced changes over glial and vascular components within PFC and hippocampus. Attention deficit was evaluated as a behavioral neuroadaptation induced by amphetamine. Brain microvessels were isolated to further evaluate vascular alterations after amphetamine exposure. Male Wistar rats were administered with AT1-R antagonist, candesartan, followed by repeated amphetamine. After one week drug-off period, animals received a saline or amphetamine challenge and were evaluated in behavioral tests. Afterward, their brains were processed for cresyl violet staining, CD11b (microglia marker), GFAP (astrocyte marker) or von Willebrand factor (vascular marker) immunohistochemistry, and oxidative/cellular stress determinations in brain microvessels. Statistical analysis was performed by using factorial ANOVA followed by Bonferroni or Tukey tests. Repeated amphetamine administration increased astroglial and microglial markers immunoreactivity, increased apoptotic cells, and promoted vascular network rearrangement at the PFC concomitantly with an attention deficit. Although the amphetamine challenge improved the attentional performance, it triggers detrimental effects probably because of the exacerbated malondialdehyde levels and increased heat shock protein 70 expression in microvessels. All observed amphetamine-induced alterations were prevented by the AT1-R blockade. Our results support the AT1-R involvement in the development of oxidative/inflammatory conditions triggered by amphetamine exposure, affecting cortical areas and increasing vascular susceptibility to future challenges.

Abbreviations: ABC, avidin–biotin–peroxidase Complex; Amph, amphetamine; AngII, angiotensin II; AT1-R, Angiotensin Type 1 Receptor; CNS, central nervous system; CV, candesartan; DA, dopamine; GFAP, glial fibrillary acidic protein; HPC, hippocampus; HSP, heat shock protein; MDA, malondialdehyde; NGS, normal goat serum; NO, nitric oxide; PB, phosphate buffer; PBS, phosphate-buffered saline; PFC, prefrontal cortex; ROS, reactive oxygen species; Sal, saline; SHR, spontaneous hypertensive rats; TBA, thiobarbituric acid; TBS, Tris-buffered saline; Veh, vehicle.

Editor by Prof. Paul Bolam.
The peer review history for this article is available at https://publons.com/publon/10.1111/ejn.14605
INTRODUCTION

Amphetamines constitute a group of drugs associated with clinical use and illicit consumption, being D-Amphetamine (Amph) the simplest compound presenting all the chemical properties that underlie their physiological actions (Berman, Kuczynski, McCracken, & London, 2009; Carvalho et al., 2012). In rodents, Amph has long been used as a pharmacological tool to promote dopamine (DA)-imbalance which modifies future responses to pharmacological and environmental stimuli (Kalivas, 2007). Currently, these neuroadaptations—including cellular, molecular and metabolic modifications—are considered to take place along with adaptations associated with Amph consumption (Downey & Loftis, 2014; Ornstein et al., 2000). Nevertheless, hippocampus (HPC)—implicated in spatial navigation and cognitive processes—also displays neurovascular and glial alterations after Amph exposure (Che et al., 2013; de Souza Gomes et al., 2015; Coelho-Santos et al., 2019).

In the last decades, brain angiotensin II (AngII) has come into focus as a pleiotropic system through angiotensin type 1 receptor (AT1-R) activation. In pathological conditions, AT1-R expressed in astrocytes, microglia and brain endothelial cells emerge as key mediator in the development of an oxidative/inflammatory microenvironment and glial activation (Zhou, Ando, Macova, Dou, & Saavedra, 2005; von Bohlen und Halbach & Albrecht, 2006). In this sense, glial reactivity elicited by LPS in cell cultures involves the activation and up-regulation of AT1-R, NFκB signaling, further production of cytokines and reactive oxygen species (ROS) (Bhat, Goel, Shukla, & Hanif, 2016). In the spontaneously hypertensive rats (SHR) strain, the AT1-R overexpression in brain microvessels is consistent with vascular oxidative stress and inflammation (Zhou et al., 2005). In this scenario, AT1-R mediates nitric oxide (NO) imbalance (Yamakawa, Jezova, Ando, & Saavedra, 2003), vascular increased permeability and inflammatory cells recruitment and activation (Ando, Jezova, Zhou, & Saavedra, 2004a; Ando, Zhou, Macova, Imboden, & Saavedra, 2004b). Particularly, AT1-R promotes the initiation and progression of local brain inflammatory and oxidative responses under DA-imbalance conditions, as described in animal models of senescence (Labandeira-Garcia et al., 2011) and Parkinson’s disease (Labandeira-Garcia et al., 2012).

Our previous reports support the AT1-R involvement in the development of Amph-induced neuroadaptations at neurochemical, structural, and behavioral levels (Paz, Assis, Cabrera, Cancela, & Bregonzio, 2011; Paz, Marchese, Cancela, & Bregonzio, 2013; Occhieppo et al., 2017). Moreover, a long-lasting overexpression of functional AT1-R was observed in DA-innervated areas after Amph exposure (Paz et al., 2014), whereas altered AT1-R functionality was described regarding classical AngII-elicted actions (Casarsa et al., 2015). In the present study, we aimed to characterize the pattern of Amph-induced...
deleterious effects, over microglia and astrocyte activation along with vascular network organization in PFC and HPC, and how the AT1-R modulates those effects. Additionally, Amph-induced oxidative and cellular stress responses were studied in isolated brain microvessels. Moreover, behavioral tests were performed to assess attentional deficit as a functional outcome of PFC activity, which is considered as the main cognitive alteration associated with Amph exposure.

2 MATERIALS AND METHODS

2.1 Animals

Adult male Wistar rats (250–320 g), from the Department of Pharmacology vivarium (Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina), were randomly housed in groups of four one week before the beginning of the experimental protocol. Throughout the experiment, animals were maintained at controlled environmental conditions (20–24°C, 12 hr light/dark cycle with lights on at 07 a.m.) with free access to food and water.

All procedures were approved by Animal Care and Use Committee of the Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina (Res nº 46/15), in accordance with the NIH Guide for the Care and Use of Laboratory Animals.

2.2 Drugs

The selective AT1-R antagonist, candesartan cilexetil (CV, Laboratorios Phoenix, Buenos Aires, Argentina), was dissolved in 0.1N NaHCO3 (vehicle, Veh). D-amphetamine sulfate (Amph) was dissolved in 0.9% NaCl (saline, Sal) immediately before use. The selected doses were chosen considering previous works (Marchese et al., 2016).

2.3 Experimental design

In order to evaluate the involvement of AT1-R in the development of Amph-induced long-term effects, the animals received oral administration of Veh/CV (3 mg/kg by gavage, using a feeding needle) once a day during 5 days. From day 6 to day 10, they were daily injected with Sal/Amph (2.5 mg/kg i.p.) and left undisturbed in their home cages for a drug-free period of 1 week until the day of the experiment. Then, four groups were formed: Veh-Sal; Veh-Amph; CV-Sal, and CV-Amph. On day 17, the animals were tested for behavioral performance after a Sal/Amph (0.5 mg/kg i.p.) challenge and brain samples were taken for immunohistochemistry or cresyl violet staining. Additionally, brain microvessels were isolated at day 17 to evaluate the putative oxidative and cellular stress evidenced by the Amph challenge (saline i.p., Sal, was considered for basal responses).

2.4 Immunohistochemistry

2.4.1 GFAP and CD11b immunohistochemistry

Animals were anesthetized with chloral hydrate (400 mg/kg i.p.) and transcardially perfused with 200 ml of saline and heparin (200 µL), followed by 250 ml of 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). Brains were removed and then stored at 4°C in a 30% sucrose solution. Coronal sections of 20 µm were cut using a freezing microtome (Leica CM1510S) and collected in 0.01 M PBS, pH 7.4. They were placed in a mixture of 10% H2O2 and 10% methanol for 2 hr and then incubated in 10% normal goat serum (NGS; Natocor, Córdoba, Argentina) in 0.1 M PBS for 2 hr, to block nonspecific binding sites. The free-floating sections were incubated overnight, at room temperature, with: mouse monoclonal anti-glial fibrillary acidic protein (GFAP) (1:1,000; Sigma-Aldrich, MO, USA) or mouse monoclonal anti-CD11b (1:1,000; Millipore, CA, USA). The next day, the sections were rinsed with 0.01 M PBS and incubated with biotin-labeled goat anti-mouse secondary antibody (Jackson Immune Research, Laboratories Inc, PA, USA) diluted 1:3,000 in 2% NGS-0.1M PBS, and avidin–biotin–peroxidase complex (ABC-Vector Laboratories, CA, USA) for 2 hr each one, at room temperature. The peroxidase label was detected with diaminobenzidine hydrochloride (Sigma-Aldrich, MO, USA) and hydrogen peroxide; the solution was intensified with 1% cobalt chloride and 1% nickel ammonium sulfate. Finally, the free-floating sections were mounted on gelatinized slides, air-dried overnight, dehydrated, cleared in xylene, and placed under a coverslip with DPX mounting medium (Flucka Analytical).

2.4.2 Von Willebrand factor immunohistochemistry

Animals were sacrificed by decapitation, and their brains were removed, snap-frozen, and stored at −70°C until use. Coronal sections of 40 µm were cut using the freezing microtome, mounted on gelatinized slides and fixed with methanol (15 min at −20°C). They were placed in a mixture of 10% H2O2 and 10% methanol for 2 hr and, after 3 washes in
0.01 M Tris-buffered saline (TBS), the samples were incubated in 10% NGS in 0.1 M TBS for 2 hr. Mounted sections were incubated overnight with a rabbit anti-von Willebrand factor antibody (Dako Denmark A/S), diluted 1:200 in 0.1 M TBS, containing 2% NGS and 0.3% Triton X-100 (Flucka Analytical). Then, they were incubated with biotin-labeled anti-rabbit secondary antibody (Vector Laboratories, CA, USA) diluted 1:500 in 2% NGS-0.1M TBS, and later with ABC, diluted 1:200 in 2% NGS-0.1M TBS, for 2 hr each at room temperature. The peroxidase label was detected as above mentioned, and the mounted sections were air-dried overnight, dehydrated, cleared in xylene, and placed under a coverslip with DPX mounting medium.

2.5 | Cresyl violet staining

Coronal sections of 20 µm were collected simultaneously from brains used for immunohistochemistry. Slices were mounted on gelatinized slides and air-dried overnight. To rehydrate, the mounted sections were dipped in distilled water for 10 min. Samples were stained with cresyl violet (Sigma-Aldrich, MO, USA) for 2 min and dipped in water. After staining, slides were sequentially dipped into 70% alcohol (2 min), acetic acid–96% alcohol mixture (2 min), 96% alcohol (1 min), and 100% alcohol (1 min). Finally, the mounted sections were air-dried overnight, dehydrated and cleared in xylene, and placed under a coverslip with DPX mounting medium.

2.6 | Brain microvessels determinations

2.6.1 | Isolation of brain microvessels

The procedure was performed as described elsewhere by other authors (Zhou et al., 2005). Briefly, animals were anesthetized with chloral hydrate (400 mg/kg i.p.) and perfused with 30 ml of saline. Brains were removed discarding cerebellum, rinsed, and homogenized. The homogenate was centrifuged twice at 1,000 g, rinsed, and homogenized. The homogenate was fused with 30 ml of saline. Brains were removed discarding anesthetized with chloral hydrate (400 mg/kg i.p.) and per-

other authors (Zhou et al., 2005). Briefly, animals were

The procedure was performed as described elsewhere by

2.6.2 | Immunofluorescence

Brain microvessels were mounted on microscope slides posi-
tive charged under a magnifying glass and dried at 37°C. The following steps were carried out on a wet chamber and shel-
tered from light. Microvessels were exposed to 1% bovine serum albumin in PBS for 1 hr, rinsed twice, and incubated overnight at 4°C with: mouse monoclonal anti-AT1-R (1:100, provided by Dr. Hans Imboden) or mouse monoclonal anti-

heat shock protein 70 (HSP70, 1:400, Sigma-Aldrich, MO,

USA). The next day, the microvessels were rinsed twice with PBS-0.05% tween followed by one rinse with PBS, 5 min, and incubated for 30 min at room temperature with the secondary antibody anti-mouse (1:400; Alexa Fluor 555-

Abcam). Then, the microvessels were rinsed and incubated with Hoechst (1:3,000) for 7 min. Finally, cover-slips were placed using 90% glycerol as mounting media and images were immediately obtained.

2.6.3 | Lipid peroxidation

Malondialdehyde (MDA) content was determined by thiobarbituric acid (TBA) reaction as previously described (Ohkawa, Ohishi, & Yagi, 1979). Briefly, the microvessels isolated at room temperature were resuspended in 1.15% KCl and homogenized for 10 min. An aliquot was reserved for protein content determination (by Bradford assay), and 8.1% sodium dodecyl sulfate, 20% acetic acid – pH 3.5 – and 0.8% TBA were added to the remaining homogenate. Samples were heated at 95°C for 1 hr, cooled afterward, and centri- fuged at 2,000 g. The colored product absorbance at 532 nm was estimated, and MDA content (nmol/protein μg) was cal-
culated. External standard of tetramethoxy-propane was used for the calibration curve.

2.7 | Image processing

All the images were obtained by using a Leica DM 4000B microscope equipped with Leica FW4000 and a DFC Leica digital camera attached to a contrast enhancement device, and digitalized images were stored in a computer. All the im-
ages were obtained with identical exposure times, gain and offsets, and saved in TIFF format (1,392 × 1,040 pixels). The images were processed using ImageJ software (U.S. National Institutes of Health, USA). The analyses were made blinded to the experimental groups.

Image quantification was performed in infra- and pre-limbic PFC (Bregma: 3.20 mm) and HPC (Bregma: −3.30/−3.60 mm), which were identified and delimited according to Paxinos and Watson (2009). The measurements were taken bilaterally in two sections, and the final value was obtained as the average of the
four counted sections. The presented results are meant to provide relative data on glial and vascular markers expression in all different experimental conditions but are not meant to be accurate estimates of absolute values.

2.7.1 | Astrocyte reactivity by GFAP immunostaining

GFAP-stained sections were taken at 400× magnification, and the area occupied by astrocytes was quantified, fixing a threshold of 120–140, and expressed as a percentage in relation to the total evaluated area.

2.7.2 | Microglial reactivity by CD11b immunostaining

CD11b-stained sections were taken at 400× magnification, and the area occupied by microglial cells was quantified, fixing a threshold of 175–200, and expressed as a percentage in relation to the total evaluated area.

2.7.3 | Apoptotic cells by cresyl violet staining

The images were taken at 400× magnification, and apoptotic cells were identified by delimited Nissl bodies’ accumulation, lacking cytoplasmic volume. Their number was manually quantified and expressed relative to 0.1 mm² of the brain area.

2.7.4 | Vascular network by von Willebrand factor immunostaining

The vascular architecture analysis (200× magnification) was made as described in a previous report (Occhieppo et al., 2017). Three parameters were analyzed: (a) percentage of vascular area, (b) number of branching points, and (c) vessels’ tortuosity, calculated as the ratio of the real distance between two consecutive branching points and the shortest distance between them (Figure 2). This last parameter takes values from 1 to infinite, where higher values indicate a more sinuous structure.

2.7.5 | Immunofluorescence of HSP70

Fluorescence was quantified by mean gray value, assessed at three different sections on one isolated microvessel, and its final value was calculated as follows: section’s mean gray value— (background’s mean gray value + 3 standard deviation of background’s mean gray value), and expressed as Arbitrary Units of fluorescence intensity. The final value for each subject was the average from the measurements obtained in 6 images per rat at 400× magnification, where a maximum of 5 microvessels was analyzed in each picture. The same protocol was applied to AT1-R quantification (Figure S1).

2.8 | Behavior

2.8.1 | Hole-board test

The exploratory behavior was evaluated at a single-time exposure in an arena with five holes (arena: 60 cm width × 60 cm long × 30 cm high; holes: 3 cm diameter, one hole at the center, four holes in the corners separated 10 cm from the wall). Behavior was recorded, and the number of head dipping into each hole was quantified for 5 min. The data were analyzed and shown as described previously (Baiardi et al., 2007). For each animal in the experimental group, the number of visits was ordered from the most to the least visited holes. Attention deficit is considered as a significant difference between the two most explored holes.

2.8.2 | Y-maze test

Animals were placed once at the center of a Y-shaped maze, with three equal arms (10 cm width × 50 cm long × 39 cm tall, separated by 120° angle) and left for free exploration during 8 min. The sequence of chosen entries was manually recorded, and the percentage of alternations was calculated. With this purpose, three consecutive choices of three different arms were counted as an alternation, whereas the total possible alternations were calculated as the total number of entries minus 2. In this behavioral task, a lower alternation percentage is considered as an attention deficit. Animals displaying a 2 min period of immobility between arms were excluded from the final analysis.

2.9 | Statistical analysis

Data were analyzed using one or two-way ANOVA and reported as means ± SEM. The analysis for two-way ANOVA considered Veh/CV as treatment factor and Sal/Amph as drug factor. If interaction and/or main effect were observed, multiple comparisons were made using the Tukey’s or Bonferroni’s post-test. A value of $p < .05$ was considered significant. The analyses were performed using GraphPad Prism® 6.03 software. The artwork was conducted with Inkscape software (Free and Open Source Software licensed under the GPL).
RESULTS

3.1 AT₁-R is involved in Amph-induced GFAP and CD11b increased expression, and vascular rearrangement in pre-limbic PFC

Amph exposure promoted glial reactivity along with neuronal apoptosis in pre-limbic PFC. Moreover, long-term vascular rearrangement was observed as increased vascular density and tortuosity, and decreased branching points in this brain area. These events were prevented by previous AT₁-R antagonism (Figures 1 and 2).

Astrocyte reactivity was evidenced as increased GFAP-positive area in Veh-Amph group when compared to Veh-Sal group (treatment*drug interaction $F_{(1,22)} = 6.89, p = .015$; Bonferroni post-hoc $p < .05$; Figure 1b), whereas no difference was found for CV-Amph group and control conditions. The same pattern and values were obtained after the Amph challenge, indicating no further change of astrocyte reactivity (data not shown). In the same direction, increased CD11b immunopositive area was evidenced in this brain area in Veh-Amph group, suggesting microglial reactivity after Amph exposure and its prevention by AT₁-R blockade (treatment $F_{(1,25)} = 6.40 p = .018$ and drug $F_{(1,25)} = 8.88 p = .006$; Figure 1c).

Cresyl violet staining revealed deleterious effects of Amph exposure in this brain area as Veh-Amph group showed a significantly elevated number of apoptotic cells when compared to Veh-Sal and CV-Amph groups (treatment $F_{(1,23)} = 7.94 p = .0098$, drug $F_{(1,23)} = 24.32 p = .0001$ and treatment*drug interaction $F_{(1,23)} = 15.09 p = .0007$; Bonferroni post-hoc $p < .05$; Figure 1d).

When vascular network was analyzed, a vascular rearrangement was found in Veh-Amph group when compared to Veh-Sal and CV-Amph groups, evaluated by three parameters: (a) percentage of vascular area (treatment $F_{(1,27)} = 4.51 p = .043$ and treatment*drug interaction $F_{(1,27)} = 11.30 p = .0023$); (b) vessels’ tortuosity (treatment $F_{(1,27)} = 5.88 p = .022$, drug $F_{(1,27)} = 5.32 p = .029$ and treatment*drug interaction $F_{(1,27)} = 4.48 p = .044$); and (c) number of branching points (treatment $F_{(1,27)} = 9.60 p = .0045$, drug $F_{(1,27)} = 7.67 p = .01$ and treatment*drug interaction $F_{(1,27)} = 4.27 p = .049$).
In all cases, Bonferroni comparison indicated \(p < .05 \) for all parameters analyzed (Figure 2).

3.2 | Amph-induced glial and vascular alterations are region-specific

There were no changes in GFAP and CD11b immunoreactivity or vascular rearrangement in infra-limbic PFC after Amph exposure (Figure 3). The results indicate no significant differences in the percentage of GFAP nor CD11b-positive area \((treatment*drug\ interaction\ F_{(1,22)} = 3.29\ p = .083\ and\ F_{(1,27)} = 0.05\ p = .83, \) respectively). However, 24 hr after the Amph challenge an increased GFAP-positive area in Veh-Amph group was observed compared to Veh-Sal and CV-Amph groups \((treatment*drug\ interaction\ F_{(1,20)} = 7.85,\ p = .011;\ Bonferroni\ post-hoc\ p < .05, \) Table 1). In addition, no significant difference was observed in the percentage of vascular area of this brain area in basal conditions \((treatment*drug\ interaction\ F_{(1,23)} = 0.00005\ p = .99\ and\ F_{(1,25)} = 0.00004\ p = .99, \) respectively). The same pattern and values were obtained after the Amph challenge for astrocyte reactivity (data not shown). In the same direction, in basal conditions, no significant difference was observed in the percentage of vascular area of this brain area \((treatment*drug\ interaction\ F_{(1,21)} = 0.72,\ p = .40). \)

3.3 | Amph-induced attentional deficit involves AT\(_1\)-R

The attentional deficit was observed as a lower performance in the two behavioral paradigms one week after the last Amph exposure. This deficit was not observed with the AT\(_1\)-R blocker pretreatment (Figure 5). Moreover, the Amph challenge masked the cognitive deficit observed in the Veh-Amph group (Figure 6).

For the hole-board test, there were significant differences in the head dipping into the holes \((F_{(19,149)} = 15.15\ p < .0001). \) Tukey's multiple comparisons indicated that Veh-Amph was the only group that showed significant
differences in the number of head dipping between the first and the second most explored holes \((p < .05)\). After the Amph challenge, significant differences in the head dipping into the holes were found \((F_{(19,195)} = 18.90 \ p < .0001)\). However, in this case, Tukey's multiple comparisons indicated no significant differences between the first and the second most explored holes in any of the experimental groups. Additionally, the results are shown as the difference in exploration percentage between the two more explored holes (left insets in Figures 4b and 5b). In this case, Veh-Amph group showed significantly higher differences than control group (Veh-Sal) and CV pretreated animals (CV-Amph group) in basal conditions \((treatment*drug interaction F_{(1,30)} = 4.50 \ p = .042; \text{Bonferroni post-hoc } p < .05)\). After the Amph challenge, no differences were found among the four experimental groups \((treatment*drug interaction F_{(1,32)} = 0.39 \ p = .53)\).

Additional analyses were performed for the total activity during the behavioral test to discard motor differences among the four experimental groups (inset graphs in Figures 5 and 6). For the hole-board test, there were no differences in the total number of head dipping, neither for basal conditions nor after the Amph challenge \((treatment*drug interaction F_{(1,30)} = 0.001 \ p = .97 \text{ and } F_{(1,39)} = 1.16 \ p = .29, \text{ respectively})\). For the Y-maze test, the total arm entries showed no differences neither for basal conditions nor after the Amph challenge \((treatment*drug interaction F_{(1,53)} = 0.74 \ p = .39 \text{ and } F_{(1,32)} = 3.84 \ p = .06, \text{ respectively})\).

3.4 AT\(_1\)-R is involved in amph-induced oxidative and cellular stress in brain microvessels

In brain microvessels, Amph long-term effects were observed as increased oxidative stress and cellular stress

TABLE 1 Astrocyte reactivity in infra-limbic prefrontal cortex

	GFAP + AREA (%)	n		GFAP + AREA (%)	n
Saline			Amphetamine		
Vehicle	1.62 ± 0.4	6	Candesartan	1.82 ± 0.43	6
Candesartan	4.23 ± 0.69*	6	Candesartan	1.85 ± 0.12	6

*Different from control \((p = .0041)\) and CV-Amph group \((p = .0093)\).

FIGURE 3 Structural characteristics in infra-limbic prefrontal cortex. The graphs show GFAP-positive area \((n = 6–8)\) (a), CD11b-positive area quantification \((n = 7–8)\) (b), and vascular network considering percentage of vascular area \((n = 7–8)\) (c). Values are the mean ± SEM for the four experimental groups
response evidenced by the Amph challenge (Figure 7). AT1-R blockade prevented the development of this sensitized response.

Malondialdehyde content (Figure 7b) was not different among the four experimental groups in basal conditions (treatment*drug interaction $F_{(1,16)} = 1.82 \ p=.20$); however, after the Amph challenge, Veh-Amph group showed significantly elevated MDA levels when compared to Veh-Sal and CV-Amph groups (treatment $F_{(1,17)} = 8.31 \ p = .01$, drug $F_{(1,17)} = 12.19 \ p = .003$ and treatment*drug interaction $F_{(1,17)} = 6.52 \ p = .02$; Bonferroni post-hoc $p < .05$).

In a similar way, Amph had no effect over HSP70 expression (Figure 7c) in basal conditions (treatment*drug interaction $F_{(1,15)} = 1.12 \ p = .31$), whereas, after the Amph challenge, Veh-Amph group showed significantly elevated HSP70 expression when compared to Veh-Sal and CV-Amph groups (treatment*drug interaction $F_{(1,15)} = 4.56 \ p = .049$. Bonferroni post-hoc $p < .05$).

4 | DISCUSSION

4.1 | Glial reactivity and vascular network rearrangement induced by Amph exposure require AT1-R stimulation

Our results indicate increased GFAP and CD11b-positive area and apoptosis up to one week after Amph exposure in PFC (Figure 1). Glial reactivity, observed as increased glial markers expression, has long been recognized as a specific marker for Amph toxicity (Ellison & Switzer, 1993; Thomas et al., 2004). In this scenario, the transient increase in dopaminergic and glutamatergic neurotransmission has been proposed as the main effect of amphetamines’ detrimental effects (Yamamoto, Moszczynska, & Gudelsky, 2010). Moreover, our results extend the Amph deleterious effects to the microvascular rearrangement in PFC (Figure 2); supporting their region-specific toxicity as vascular network modifications are closely related to inflammatory processes (Costa, Incio, & Soares, 2007). Similar vascular alterations have been previously described after Amph exposure (Occhieppo et al., 2017), chronic inflammatory disease (Dorr et al., 2012), and schizophrenia (Katsel, Roussos, Pletnikov, & Haroutunian, 2017).

In addition, our results show that AT1-R is involved in the development of Amph-induced alterations in PFC, as its blockade prevented the increase in glial markers expression and the vascular rearrangement (Figures 1 and 2). The role of AT1-R in Amph-induced alterations may be attributed to its multiple actions, including DA neurotransmission modulation (Jiang et al., 2018), dopaminergic neurons degeneration by oxidative stress, astrocyte and microglial reactivity and angiogenesis (Jiang et al., 2018; Labandeira-Garcia et al., 2014; Rodriguez-Pallares et al., 2008; Rodriguez-Perez, Dominguez-Mejide, Lanciego, Guerra, & Labandeira-Garcia, 2013). Particularly, in neuroinflammatory responses involving DA-imbalance, the
brain renin-angiotensin system is considered a key mediator in triggering glial cells activation with the subsequent progression of inflammation (Dominguez-Meijide, Rodriguez-Perez, Diaz-Ruiz, Guerra, & Labandeira-Garcia, 2017). In the same direction, the protective effects of AT1-R blockade have been reported for the alterations on DA neurotransmission and toxicity induced by methamphetamine (Jiang et al., 2018). Considering vascular events, AngII has long been identified as a key factor in several types of angiogenesis via local AT1-R activation and subsequent vascular endothelial growth factor synthesis and release (Greene & Amaral, 2002; Tamarat, Silvestre, Durie, & Levy, 2002). Although after ischemic injury, DA shows anti-angiogenic effects by decreasing AT1-R expression and activity (Sarkar, Ganju, Pompili, & Chakroborty, 2017), supporting the idea of an interplay between these two neuromodulatory systems. In this sense, blood flow regulation in PFC is highly dependent on the direct influence of DA over the local microvessels, whereas this area is the main and the first to express functional alterations during brain vascular disorders (Choi, Chen, Hamel, & Jenkins, 2006; Krimer, Muly, Williams, & Goldman-Rakic, 1998).

4.1.1 | Amph-induced alterations and AT1-R involvement are region-specific

It is recognized that exposure to psychostimulants allows the identification of region-specific alterations (Ellison & Switzer, 1993). These alterations also include the angiotensinergic system since Amph or methamphetamine induces an increase in AT1-R expression and activity, in specific brain areas (Jiang et al., 2018; Paz et al., 2014). Interestingly, Amph affected the analyzed glial and vascular components selectively in the PFC, whereas none of the studied alterations were observed at HPC (Figure 4). Moreover, even in PFC, we found differences between pre-limbic and infra-limbic subdivisions, because this latter
only showed glial reactivity after the Amph challenge (Figure 3 Table 1). In the same direction, Amph detrimental effects (regarding ROS, inflammatory cytokines and dopaminergic degeneration) were described in limbic areas, whereas they were not detected in HPC (Belcher, O’Dell, & Marshall, 2005; Dietrich et al., 2005; Jiang et al., 2018; Tan et al., 2012; Valvassori et al., 2015). On the contrary, vascular, glial, and oxidative markers increase have been described in HPC after higher doses of Amph or a very short time after the last administration (i.e., after 24 hr), suggesting time- and dose-dependent alterations (Che et al., 2013; Hodes, Lifschytz, Rosen, Cohen Ben-Ami, & Lichtstein, 2018; de Souza et al., 2004). Since the main long-lasting effect of Amph exposure is DA neurotransmission imbalance, PFC regional susceptibility could be triggered by its greater dopaminergic innervation (Sofuoglu, 2010).

4.1.2 Attentional deficit induced by Amph exposure and AT₁-R role

The present study identifies an attention deficit in rats after Amph exposure concomitant with the morphological and structural changes of the non-neuronal cell types in PFC (Figure 5). In this brain area, catecholamine neurotransmission is implicated in the coordination and integration of cues, even though they imply less complex behaviors (Arnsten, 2006; Jones, 2002). In this sense, attention is required when animals perform spatial recognition of novel environments; thus, behavioral tests evaluating exploration are indicative of PFC functional integrity, among other brain areas, such as HPC and other limbic structures (Dudchenko, 2004; Lalonde, 2002; Yabuki et al., 2014). The Amph-induced working memory deficit in rodents has been previously related to

FIGURE 6 Behavioral evaluation of attention performance-amphetamine challenge. Schematic representation of the experimental protocol (a). Head dipping number during exploration in the hole-board test (n = 10–12). The exploration to the holes is ordered from the most to the least visited hole for each experimental group. The left inset shows the difference in exploration percentage (%) between the two more explored holes. The right inset shows the total head dipping (n°) during hole-board test (b). Percentage of alternations in the Y-maze test for the four experimental groups, the inset shows the total entries (n°) (n = 8–10) (c). Values are the mean ± SEM. [Colour figure can be viewed at wileyonlinelibrary.com]
oligodendrocyte altered morphology in PFC, supporting the coexistence of functional and structural alterations in this brain area after Amph exposure (Yang, Wang, Cheng, & Xu, 2011). In the same direction, cortical hypoperfusion, glial reactivity, inflammation, and oxidative stress have been related to neuropsychiatric impairments in psychostimulant users, such as attention or decision-making deficits (Downey & Loftis, 2014; Ornstein et al., 2000). The PFC dysfunction described long after Amph exposure is also characterized by cortical hyporeactivity, due to decreased glutamate and DA levels together with a diminished electrical activity (Janetsian, Linsenbardt, & Lapish, 2015; Lu et al., 2010; Lu & Wolf, 1999). This last evidence could explain the improvement in the attention deficit after Amph challenge obtained in the present work (Figure 6) because Amph induces catecholamine release (Arnsten, 1998). The proposed phenomenon is in accordance with the data obtained from Amph users that show improved attentional performance after re-exposure to low doses of the stimulant (Mahoney, Jackson, Kalechstein, Garza, Newton, 2011). Additionally, we previously showed an increased hippocampal synaptic plasticity and resistance to the interference of long-term memory consolidation by using the same experimental protocol (Marchese et al., 2016).

Remarkably, AT1-R blockade prevented the development of Amph-induced attention deficit and a similar protective effect has been described in the development of cognitive deficits (Marchese et al., 2016), as well as in neuroinflammatory scenarios in different animal models (Mogi et al., 2007; Sharma & Singh, 2012; Sun et al., 2015), whereas a deleterious interplay between AT1-R activation and DA degeneration takes place in the striatum (Jiang et al., 2018) along with cognitive deficits in senescence (Villar-Cheda et al., 2014).

4.1.3 | Amph-induced oxidative and cellular stress in brain microvessels: AT1-R role

In our findings, the long-term effects of Amph exposure over brain microvascular responses are observed as sensitized oxidative stress and HSP70 expression, elicited by the Amph challenge (Figure 7). It has been previously reported that a single non-toxic dose of Amph increases the expression of...
inflammatory and cellular stress genes in the meninges-associated vasculature, up to 24 hr after drug exposure (Thomas et al., 2009, 2010). However, from our knowledge, no evidence has been previously reported after Amph exposure regarding sensitized oxidative/inflammatory responses in brain microvessels. Furthermore, there is an established link between elevated ROS levels and further stimulating HSP70 synthesis as a protective response to apoptotic signaling (Horowitz & Robinson, 2007; Lee et al., 2015). Additionally, we found no sensitized response to the Amph challenge in brain microvessels obtained from animals pretreated with AT1-R blocker. In complementary experiments, we found that a basal increase in AT1-R expression might trigger the sensitized response (in brain microvessels after Amph exposure, Figure S1) given that a similar increase in HSP70 levels was observed after the AngII intracerebroventricular challenge (Figure S2). Particularly, AT1-R up-regulation in SHR brain microvessels has been related to increased levels of heat shock family components, pro-inflammatory mediators, and endothelial imbalance of NO and ROS levels (Ando, et al., 2004a; Zhou et al., 2005).

5 | CONCLUSION

Our results bring into focus a sensitized brain vascular response long after Amph exposure and support the proposal that a compromised vasculature could be involved in the deleterious conditions, described for Amph users or chronic Amph treatments (Berman et al., 2009; Carvalho et al., 2012). Vascular alterations are considered triggering events for several inflammatory conditions in the CNS, as they would affect local metabolic demands and neuronal functioning (El Assar, Angulo, & Rodriguez-Manas, 2013; Iadecola, 2010; Tesfamariam & DeFelice, 2007). The brain region specific long-lasting changes in glial reactivity and vascular network rearrangement could imply an increased susceptibility to local alterations. Finally, the involvement of AT1-R in the enduring deleterious microenvironment encourages further studies focusing on AngII system in the development and progression of neuroinflammatory pathologies.

ACKNOWLEDGEMENTS

The authors are grateful to Estela Salde and Lorena Mercado for their laboratory technical assistance and Javier Reparaz for animal care support. This study was granted by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) nº 11220120100373CO-KB1 and Secretaría de Ciencia y Técnica (SECyT- UNC) to Dr. Bregonzio.

CONFLICTS OF INTERESTS

The authors declare no conflicts of interests.

AUTHOR CONTRIBUTIONS

NAM; VBO; OMB; and BSC performed the experiments. NAM performed statistical analyses. GB participated in behavioral tests planning and data interpretation. NAM and CB wrote the manuscript, and VBO and OMB revised the manuscript.

DATA AVAILABILITY STATEMENT

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

ORCID

Claudia Bregonzio https://orcid.org/0000-0003-3542-2177

REFERENCES

Ando, H., Jezova, M., Zhou, J., & Saavedra, J. M. (2004a). Angiotensin II AT1 receptor blockade decreases brain artery inflammation in a stress-prone rat strain. Annals of the New York Academy of Sciences, 1018, 345–350.
Ando, H., Zhou, J., Macova, M., Imboden, H., & Saavedra, J. M. (2004b). Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke, 35, 1726–1731.
Arnsten, A. F. (1998). Catecholamine modulation of prefrontal cortical cognitive function. Trends in Cognitive Sciences, 2, 436–447. https://doi.org/10.1016/S1364-6613(98)01240-6
Arnsten, A. F. (2006). Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology, 31, 2376–2383. https://doi.org/10.1038/sj.npp.1301164
Baiardi, G., Ruiz, A. M., Beling, A., Borgenovo, J., Martinez, G., Landa, A. I., … Gargiulo, P. A. (2007). Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex. Journal of Neural Transmission, 114, 1519–1528.
Belcher, A. M., O’Dell, S. J., & Marshall, J. F. (2005). Impaired object recognition memory following methamphetamine, but not p-chloroamphetamine- or d-amphetamine-induced neurotoxicity. Neuropsychopharmacology, 30, 2026–2034. https://doi.org/10.1038/sj.npp.1300771
Berman, S. M., Kuczenski, R., McCracken, J. T., & London, E. D. (2009). Potential adverse effects of amphetamine treatment on brain and behavior: A review. Molecular Psychiatry, 14, 123–142. https://doi.org/10.1038/mp.2008.90
Berman, S., O’Neill, J., Fears, S., Bartzokis, G., & London, E. D. (2008). Abuse of amphetamines and structural abnormalities in the brain. Annals of the New York Academy of Sciences, 1141, 195–220.
Bhat, S. A., Goel, R., Shukla, R., & Hanif, K. (2016). Angiotensin receptor blockade modulates NFkappaB and STAT3 signaling and inhibits glial activation and neuroinflammation better than angiotensin-converting enzyme inhibition. Molecular Neurobiology, 53, 6950–6967.
von Bohlen und Halbach, O., & Albrecht, D. (2006). The CNS renin-angiotensin system. Cell and Tissue Research, 326, 599–616. https://doi.org/10.1007/s00441-006-0190-8
Carvalho, M., Carmo, H., Costa, V. M., Capela, J. P., Pontes, H., Remiao, F., ... Bastos Mde, L. (2012). Toxicity of amphetamines: An update. *Archives of Toxicology*, 86, 1167–1231. https://doi.org/10.1007/s00204-012-0815-5

Casarosa, B. S., Marinzalda, M. A., Marchese, N. A., Paz, M. C., Vivas, L., Baiardi, G., & Bregonzio, C. (2015). A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. *Neuroscience*, 307, 1–13.

Che, Y., Cui, Y. H., Tan, H., Andreazza, A. C., Young, L. T., Wang, Y. I., Hamel, E., & Jenkins, B. G. (2006). Brain he...tory associated with use of stimulants. *Psychopharmacology (Berl)*, 227, 605–614. https://doi.org/10.1007/s00213-013-2993-0

Choi, J. K., Chen, Y. I., Hamel, E., & Jenkins, B. G. (2006). Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. *Neuroimage*, 30, 700–712. https://doi.org/10.1016/j.neuroimage.2005.10.029

Clark, K. H., Wiley, C. A., & Bradberry, C. W. (2013). Psychostimulant abuse and neuroinflammation: Emerging evidence of their interconnection. *Neurotoxicity Research*, 23, 174–188.

Costa, C., Incio, J., & Soares, R. (2007). Angiogenesis and chronic inflammation: Cause or consequence? *Angiogenesis*, 10, 149–166. https://doi.org/10.1007/s10456-007-9074-0

Coelho-Santos, V., Cardoso, F. L., Magalhaes, A., Ferreira-Teixeira, M., Leitao, R. A., Gomes, C., … Silva, A. P. (2019). Effect of chronic methylphenidate treatment on hippocampal neurovascular unit and memory performance in late adolescent rats. *European Neuropsychopharmacology*, 29, 195–210.

Dietrich, J. B., Mangeol, A., Revel, M. O., Burgun, C., Aunis, D., & Zwiller, J. (2005). Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. *Neuropharmacology*, 48, 965–974. https://doi.org/10.1016/j.neuropharm.2005.01.018

Dominguez-Mejide, A., Rodriguez-Perez, A. I., Diaz-Ruiz, C., Guerra, M. J., & Labandeira-Garcia, J. L. (2017). Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. *Brain, Behavior, and Immunity*, 62, 277–290. https://doi.org/10.1016/j.bbi.2017.02.013

Dorr, A., Sahota, B., Chinta, L. V., Brown, M. E., Lai, A. Y., Ma, K., … Stefanovic, B. (2012). Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. *Brain*, 135, 3039–3050.

Downey, L. A., & Loftis, J. M. (2014). Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine. *European Journal of Pharmacology*, 727, 125–129. https://doi.org/10.1016/j.ejphar.2014.01.032

Du, S. H., Qiao, D. F., Chen, C. X., Chen, S., Liu, C., Lin, Z., … Xie, W. B. (2017). Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes. *Frontiers in Molecular Neuroscience*, 10, 409.

Dudchenko, P. A. (2004). An overview of the tasks used to test working memory in rodents. *Neuroscience and Biobehavioral Reviews*, 28, 699–709. https://doi.org/10.1016/j.neubirev.2004.09.002

El Assar, M., Angulo, J., & Rodriguez-Manas, L. (2013). Oxidative stress and vascular inflammation in aging. *Free Radical Biology and Medicine*, 65, 380–401. https://doi.org/10.1016/j.freeradbiomed.2013.07.003

Ellison, G., & Switzer, R. C. 3rd (1993). Dissimilar patterns of degeneration in brain following four different addictive stimulants. *NeuroReport*, 5, 17–20. https://doi.org/10.1097/00001756-199311000-00004

Greene, A. S., & Amaral, S. L. (2002). Microvascular angiogenesis and the renin-angiotensin system. *Current Hypertension Reports*, 4, 56–62. https://doi.org/10.1007/s11906-002-0054-x

Hodes, A., Lifschytz, T., Rosen, H., Cohen Ben-Ami, H., & Lichtstein, D. (2018). Reduction in endogenous cardiac steroids protects the brain from oxidative stress in a mouse model of mania induced by amphetamine. *Brain Research Bulletin*, 137, 356–362. https://doi.org/10.1016/j.brainresbull.2018.01.016

Horowitz, M., & Robinson, S. D. (2007). Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. *Progress in Brain Research*, 162, 433–446.

Iadecola, C. (2010). The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. *Acta Neuropathologica*, 120, 287–296. https://doi.org/10.1007/s00401-010-0718-6

Janetsian, S. S., Linsenbardt, D. N., & Lapish, C. C. (2015). Memory impairment and alterations in prefrontal cortex gamma band activity following methamphetamine sensitization. *Psychopharmacology (Berl)*, 232, 2083–2095. https://doi.org/10.1007/s00213-014-3840-7

Jiang, L., Zhu, R., Bu, Q., Li, Y., Shao, X., Gu, H., … Cen, X. (2018). Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. *Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics*, 15, 500–510. https://doi.org/10.1007/s13131-018-0613-8

Jones, M. W. (2002). A comparative review of rodent prefrontal cortex and working memory. *Current Molecular Medicine*, 2, 639–647.

Kadota, T., & Kadota, K. (2004). Neurotoxic morphological changes induced in the medial prefrontal cortex of rats behaviorally sensitized to methamphetamine. *Archives of Histology and Cytology*, 67, 241–251.

Kallivas, P. W. (2007). Cocaine and amphetamine-like psychostimulants: Neurocircuitry and glutamate neuroplasticity. *Dialogues in Clinical Neuroscience*, 9, 389–397. https://doi.org/10.1016/j.dcn.2007.s12640-012-9334-7

Katsel, P., Roussos, P., Pletnikov, M., & Haroutunian, V. (2017). Microvascular anomaly conditions in psychiatric disease. *Schizophrenia - angiogenesis connection*. *Neuroscience and Biobehavioral Reviews*, 77, 327–339. https://doi.org/10.1016/j.neubiorev.2017.04.003

Kim, A., & Mandyam, C. D. (2014). Methamphetamine affects cell proliferation in the medial prefrontal cortex: A new niche for toxicity. *Pharmacology, Biochemistry, and Behavior*, 126, 90–96.

Krimer, L. S., Muly, E. C. 3rd, Williams, G. V., & Goldman-Rakic, P. S. (1998). Dopaminergic regulation of cerebral cortical microcirculation. *Nature Neuroscience*, 1, 286–289. https://doi.org/10.1038/1099

Labandeira-Garcia, J. L., Garrido-Gil, P., Rodriguez-Pallares, J., Valenzuela, R., Borrajo, A., & Rodriguez-Perez, A. I. (2014). Brain renin-angiotensin system and dopaminergic cell vulnerability. *Frontiers in Neuroanatomy*, 8, 67.

Labandeira-Garcia, J. L., Rodriguez-Pallares, J., Rodriguez-Perez, A. I., Garrido-Gil, P., Villar-Cheda, B., Valenzuela, R., & Guerra, M. J. (2012). Brain angiotensin and dopaminergic degeneration: Relevance to Parkinson’s disease. *American Journal of Neurodegenerative Disease*, 1, 226–244.
Labandeira-García, J. L., Rodríguez-Pallares, J., Villar-Cheda, B., Rodríguez-Perez, A. I., Garrido-Gil, P., & Guerra, M. J. (2011). Aging, Angiotensin system and dopaminergic degeneration in the substantia nigra. *Aging and Disease, 2*, 257–274.

Lalonde, R. (2002). The neurobiological basis of spontaneous alternation. *Neuroscience and Biobehavioral Reviews, 26*, 91–104. https://doi.org/10.1016/S0149-7634(01)00041-0

Lee, J. H., Lee, Y. K., Lim, J. J., Byun, H. O., Park, I., Kim, G. H., … Yoon, G. (2015). Mitochondrial respiratory dysfunction induces claudin-1 expression via reactive oxygen species-mediated heat shock factor 1 activation, leading to hepatoma cell invasiveness. *Journal of Biological Chemistry, 290*, 21421–21431. https://doi.org/10.1074/jbc.M115.659193

Loftis, J. M., & Janowsky, A. (2014). Neuroimmune basis of methamphetamine toxicity. *International Review of Neurobiology, 118*, 165–197.

Lu, P., Mamiya, T., Lu, L., Mouri, A., Niwa, M., Kim, H. C., … Nabeshima, T. (2010). Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. *Behavioral Brain Research*, 207, 387–393. https://doi.org/10.1016/j.bbr.2009.10.024

Lu, W., & Wolf, M. E. (1999). Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. *Synapse (New York, N. Y.), 32*, 119–131. https://doi.org/10.1002/(SICI)1098-2396(199905)32:2<119:AID-SYNS5>3.0.CO;2-F

Mackey, S., & Paulus, M. (2013). Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? *Neuroscience and Biobehavioral Reviews, 37*, 300–316.

Mahoney, J. J. 3rd, Jackson, B. J., Kaclestein, A. D., De La Garza, R. 2nd & Newton, T.F. (2011). Acute, low-dose methamphetamine administration improves attention/information processing speed and working memory in methamphetamine-dependent individuals displaying poorer cognitive performance at baseline. *Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35*, 459–465. https://doi.org/10.1016/j.pnpbp.2010.11.034

Marchese, N. A., Artur de la Villarmois, E., Basmadjian, O. M., Perez, M. F., Baiardi, G., & Bregonzio, C. (2016). Brain Angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. *Psychopharmacology (Berl), 233*, 795–807. https://doi.org/10.1007/s00213-015-4153-1

Mogi, M., Tsukuda, K., Li, J. M., Iwanami, J., Min, L. J., Sakata, A., … Horiuchi, M. (2007). Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan. *Neuropharmacology, 53*, 899–905. https://doi.org/10.1016/j.neuropharm.2007.08.020

Occhieppo, V. B., Marchese, N. A., Rodriguez, I. D., Basmadjian, O. M., Baiardi, G., & Bregonzio, C. (2017). Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1 receptor activation. *European Journal of Neuroscience, 45*, 1586–1593.

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. *Analytical Biochemistry, 95*, 351–358.

Ornstein, T. J., Iddon, J. L., Baldacchino, A. M., Sahakian, B. J., London, M., Everitt, B. J., & Robbins, T. W. (2000). Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. *Neuropsychopharmacology, 23*, 113–126. https://doi.org/10.1016/S0893-133X(00)00097-X

Paxinos, G., & Watson, C. (2009). *The Rat Brain in stereotaxic coordinates*. Oxford, UK: Elsevier.

Paz, M. C., Assis, M. A., Cabrera, R. J., Cancela, L. M., & Bregonzio, C. (2011). The AT(1) angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two injection protocol. *Synapse (New York, N. Y.), 65*, 505–512.

Paz, M. C., Marchese, N. A., Cancela, L. M., & Bregonzio, C. (2013). Angiotensin II AT(1) receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. *BioMed Research International, 2013*, 534817.

Paz, M. C., Marchese, N. A., Stroppa, M. M., Gerez de Burgos, N. M., Imboden, H., Baiardi, G., … Bregonzio, C. (2014). Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. *Behavioral Brain Research, 272*, 314–323. https://doi.org/10.1016/j.bbr.2014.07.021

Rodriguez-Pallares, J., Rey, P., Parga, J. A., Munoz, A., Guerra, M. J., & Labandeira-Garcia, J. L. (2008). Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. *Neurobiology of Diseases, 31*, 58–73. https://doi.org/10.1016/j.nbd.2008.03.003

Rodriguez-Perez, A. I., Dominguez-Mejide, A., Lanciego, J. L., Guerra, M. J., & Labandeira-Garcia, J. L. (2013). Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. *Age, 35*, 1675–1690. https://doi.org/10.1007/s11357-012-9470-2

Sailasuta, N., Abulseoud, O., Harris, K. C., & Ross, B. D. (2010). Glial dysfunction in abstinent methamphetamine abusers. *Journal of Cerebral Blood Flow and Metabolism, 30*, 950–960.

Sarkar, C., Ganju, R. K., Pompili, V. J., & Chakroborty, D. (2017). Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. *Angiogenesis, 20*, 97–107. https://doi.org/10.1007/s10456-016-9531-8

Shairzadeh, F., Streit, W. J., Heyseitallab, S., & Khoshbouei, H. (2018). Methamphetamine neurotoxicity, microglia, and neuroinflammation. *Journal of Neuroinflammation, 15*, 341.

Shah, A., Silverstein, P. S., Singh, D. P., & Kumar, A. (2012). Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-kappaB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. *Journal of Neuroinflammation, 9*, 52.

Sharma, B., & Singh, N. (2012). Experimental hypertension induced vascular dementia: Pharmacological, biochemical and behavioral recovery by angiotensin receptor blocker and acetylcarnitine-terase inhibitor. *Pharmacology, Biochemistry and Behavior, 102*, 101–108. https://doi.org/10.1016/j.pbb.2012.03.029

de Souza, F. A., Sanchis-Segura, C., Fukada, S. Y., de Bortoli, V. C., Zangrossi, H. Jr, & de Oliveira, A. M. (2004). Intracerebroventricular effects of angiotensin II on a step-through passive avoidance task in rats. *Neurobiology of Learning and Memory, 81*, 100–103. https://doi.org/10.1016/j.nlm.2003.08.006

de Souza Gomes, J. A., de Souza, G. C., Berk, M., Cavalcante, L. M., de Sousa, F. C., Budni, J., … Macedo, D. (2015). Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms. *European Neuropsychopharmacology, 25*, 2086–2097.

Sofuoglu, M. (2010). Cognitive enhancement as a pharmacotherapy target for stimulant addiction. *Addiction, 105*, 38–48. https://doi.org/10.1111/j.1360-0443.2009.02791.x
Sun, H., Wu, H., Yu, X., Zhang, G., Zhang, R., Zhan, S., … Li, Y. (2015). Angiotensin II and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus. *Molecular and Cellular Neurosciences*, 65, 58–67. https://doi.org/10.1016/j.mcn.2015.02.014

Tamarat, R., Silvestre, J. S., Durie, M., & Levy, B. I. (2002). Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. *Laboratory Investigation*, 82, 747–756. https://doi.org/10.1097/01.LAB.000013732.76297.EB

Tan, H., Young, L. T., Shao, L., Che, Y., Honer, W. G., & Wang, J. (2015). Angiotensin II and its receptor in activated microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. *Brain, Behavior, and Immunity*, 25, 767–776.

Yabuki, Y., Shiota, N., Maeda, T., Hiraide, S., Togashi, H., & Fukunaga, K. (2014). Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats. *Brain Research*, 1557, 90–100. https://doi.org/10.1016/j.brainres.2014.02.025

Yamakawa, H., Jezova, M., Ando, H., & Saavedra, J. M. (2003). Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. *Journal of Cerebral Blood Flow and Metabolism*, 23, 371–380.

Yamamoto, B. K., Mosczynska, A., & Gudelsky, G. A. (2010). Amphetamine toxicities: Classical and emerging mechanisms. *Annals of the New York Academy of Sciences*, 1187, 101–121. https://doi.org/10.1111/j.1749-6632.2009.05141.x

Yang, H. J., Wang, L., Cheng, Q., & Xu, H. (2011). Abnormal behaviors and microstructural changes in white matter of juvenile mice repeatedly exposed to amphetamine. *Schizophrenia Research and Treatment*, 2011, 542896. https://doi.org/10.1155/2011/542896

Zhou, J., Ando, H., Macova, M., Dou, J., & Saavedra, J. M. (2005). Angiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. *Journal of Cerebral Blood Flow and Metabolism*, 25, 878–886.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Marchese NA, Occhieppo VB, Basmadjian OM, Casarsa BS, Baiardi G, Bregonzio C. Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. *Eur J Neurosci*. 2020;51:1026–1041. https://doi.org/10.1111/ejn.14605