EXPLORATION OF MICROORGANISMS AS A POTENTIAL SOURCE OF XANTHINE OXIDASE INHIBITORS: AN UPDATED REVIEW

UMA RAJESWARI BATCHU*, JOSHLA RANI SURAPANENI*
*Department of Pharmaceutics, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati, 517502, India
Email: umarajeswaribatchu@gmail.com

Received: 22 Sep 2018 Revised and Accepted: 13 Nov 2018

ABSTRACT

Nowadays the prevalence of hyperuricemia has significantly increased in which serum uric acid levels are exceeding the normal range. Gout is the predominant clinical implication of the hyperuricemia, but many clinical investigations have confirmed that hyperuricemia is an independent risk factor for cardiovascular disease (CVD), hypertension, diabetes, and many other diseases. The xanthine oxidase (XO) converts hypoxanthine to xanthine and ultimately to uric acid, and the reversibly accumulated uric acid causes hyperuricemia associated with gout. Hence specific and selective xanthine oxidase inhibitors (XOI) are potentially powerful tools for inactivating target XO in the pathogenic process of hyperuricemia (Gout). The objective of the current study was to overview the various XOI isolated from the microorganisms. Microorganisms have been employed for several decades for the large-scale production of a variety of bio-chemicals ranging from alcohol to antibiotics and as well as enzyme inhibitors. Currently available XOI (allopurinol and febuxostat) for the treatment of gout have been exhibiting serious side effects. Thus, there is a need to search for new molecules to treat hyperuricemia and its associated disorders. At present, microbes have been unexplored in the development of successful products for the management of XO-related diseases. Hence, the present review focused on novel XOI produced from various microbial species such as Actinobacteria, lichens, bacteria, endophytic fungi and mushrooms, which can be expected to play an important role in the ongoing transition from the empirical screening to the rational drug design.

Keywords: Xanthine oxidase inhibitors, Hyperuricemia, Actinobacteria, Bacteria, Fungi, Lichens

INTRODUCTION

Hyperuricemia has long been established as the major etiological factor in various disorders such as gout, urolithiasis, chronic kidney disease (CKD), tumor lysis syndrome (TLS) and various cardiovascular diseases (CVD) [1, 2]. Hyperuricemia results due to high serum urate levels, which is attributed to its overproduction or undersecretion. Gout remains the most common among all pathologies associated with hyperuricemia. In India, approximately 0.12-0.19% population being affected by gout, and its prevalence has been more in men aged above 50 y than premenopausal women as estrogen hormone helps in urate clearance [3, 4]. Gout was described by Hippocrates as “The disease of kings” owing to its association with a rich diet [5]. The xanthine oxidoreductase (XOR) is generally recognized as the key factor in hyperuricemia, recognized as the terminal enzyme of purine catabolism in humans. Mammalian XO (XO; EC 1.1.3.22) and xanthine dehydrogenase (XDH) (XDH; EC 1.1.1.204) are interconvertible forms of the same gene product known as XOR catalyzing the hydroxylation of hypoxanthine to xanthine and xanthine to uric acid [6-8]. This process is a source of reactive oxygen species (ROS) as a byproduct of uric acid, which being associated with diverse pathological events including inflammation, metabolic disorders, cellular aging, atherosclerosis, Parkinson’s disease, Alzheimer’s dementia, reperfusion injury of brain or heart and carcinogenesis [9-11]. The detailed structure, physiological and pathological role of XOR was reviewed previously [12]. The strategy involves the inhibition of the XO appears to be safer as it inhibits circulating levels of uric acid as well as vascular oxidative stress and associated disorders. Till date, only allopurinol, a purine analog, Febuxostat and Topiroxostat, non-purine based selective inhibitors have been clinically approved as XO inhibitors [13]. Unfortunately, allopurinol is being associated with an infrequent but severe hypersensitivity [14]. Clinically non-purine analogs (Febuxostat and Topiroxostat) provides greater hyperuremic activity and less toxicity than allopurinol. However, hypersensitivity reactions of febuxostat also reported [15]. Nevertheless, topiroxostat exhibits high bioavailability and safety in humans, but side effects are not well explored owing to the short duration of clinical use in Japan [16]. In view of the drawbacks of existing therapies, there is a need to develop novel selective inhibitors of XO. Plants have served as an excellent source of novel medicinal compounds [17]. However, the inherent bottleneck encountered by the pharmaceutical industry in their bulk production as it requires huge quantities of biomass for their extraction which eventually threatens the existence of these plants. Moreover, enzyme inhibitors isolated from microbial sources are potent low molecular weight compounds derived from the hydrolysis of macromolecular substances when compared to inhibitors derived from plants and animals [18].

Several review articles focusing on the XOI of diverse sources such as plants, synthetic analogs have been published, serving as a starting point for exploration [19-23]. Thus the alternative resources were embattled to substitute these Phyto medicinals. It has been amply demonstrated by various studies that the metabolites produced by microorganisms, in particular, are recognized as a resource for numerous therapeutic moieties [24]. Therefore the objective of our present review is to summarize the various XOI derived from microbial origin. This is the first review exploring the updates of various XOI from microorganisms.

XOI from various microbial sources

Since several decades XOI has been screened and synthesized from various sources (fig. 1). Selected microorganisms, including bacteria, fungi, and yeasts have been globally studied for the bio-synthesis of economically valuable preparations of various enzymes and enzyme inhibitors for commercial applications [25, 26]. In view of their medicinal potential, they have been screened for the isolation of XOI.

Bacteria

Two specific XOI has been isolated from the culture filtrate of Alcaligenes aquamarinus No.655, and Bacillus cereus No. A-73 strains [27]. One among is identified as 2,3-dihydroxy adenine which was synthesized newly by microbial route (Alcaligenes aquamarinus No.655), but previously by chemical route [28]. The inhibitor has...
shown 50% inhibition at a concentration of 3 x 10−6 M (0.5 g/ml) on rat liver XO and 2 x 10−6 M (0.33 g/ml) on milk XO, respectively. As well as another strain identified as *Bacillus cereus* produced 5-formyluracil, a potent XO1, reported previously by microbial route [18].

A potent XO1, alkalone was identified and purified from the fermentation broth of a marine bacteria, *Agrobacterium aurantiacum* N-81 106[29]. When cultivation conditions of *A. aurantiacum* N-81 106 were changed using a 1,000 liter fermenter, alkalone was not produced, and another strong XO1, Hydroxy alkalone, was found to be produced instead of alkalone and IC50 value was 4.6 µm against XO [30].

A new method was explored to isolate the novel XO1 from the fermentation broth of *Lactobacillus rhamnosus* [31] and furthermore 51 novel *Acetobacter* and *Glucobacter* strains were screened to isolate XO1. Nevertheless, only seven strains have produced the inhibitors showing the more than 30% inhibition. In particular *Acetobacter pasteurianus* strain AHR01 has shown 73.6% inhibition [32, 33].

**Fig. 1: Various sources of XO inhibitors (Self-designed)**

### Actinobacteria

Actinobacteria especially *Streptomyces* is a proven source of microbial enzyme inhibitors. A new compound, 5-formyl uracil has been isolated from the culture broth of *Streptomyces* species and has shown strong inhibition against XO [18]. This is the only report on actinobacteria as a source of XO1.

### Lichens

Lichens are fungal species which are obligate symbionts in plants. Many natural lichens and cultured lichens have been screened for their biological activities, and several novel compounds were also isolated and identified. The phenolics and oxidative derivatives found in the lichens might be responsible for the inhibition of xanthine oxidase [34, 35]. The natural thallus of *Lecanora* contains a large number of biologically active compounds such as antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi provide an alternative source of natural products for the treatment of various diseases. They are generally less studied compared to other microorganisms such as bacteria and actinobacteria. Many natural lichens and cultured lichens have been screened for bioactive compounds and found to inhibit XO1. Among that species of lichens belong to Graphidaceae were reported for their biological activities, and several novel compounds were also isolated and identified. The phenolics and oxidative derivatives found in the lichens might be responsible for the inhibition of xanthine oxidase [34, 35]. The natural thallus of *Lecanora* has shown 50% inhibition at a concentration of 3 x 10−6 M (0.5 g/ml) on rat liver XO and 2 x 10−6 M (0.33 g/ml) on milk XO, respectively. As well as another strain identified as *Bacillus cereus* produced 5-formyluracil, a potent XO1, reported previously by microbial route [18].

A potent XO1, alkalone was identified and purified from the fermentation broth of a marine bacteria, *Agrobacterium aurantiacum* N-81 106[29]. When cultivation conditions of *A. aurantiacum* N-81 106 were changed using a 1,000 liter fermenter, alkalone was not produced, and another strong XO1, Hydroxy alkalone, was found to be produced instead of alkalone and IC50 value was 4.6 µm against XO [30].

A new method was explored to isolate the novel XO1 from the fermentation broth of *Lactobacillus rhamnosus* [31] and furthermore 51 novel *Acetobacter* and *Glucobacter* strains were screened to isolate XO1. Nevertheless, only seven strains have produced the inhibitors showing the more than 30% inhibition. In particular *Acetobacter pasteurianus* strain AHR01 has shown 73.6% inhibition [32, 33].

**Fig. 1: Various sources of XO inhibitors (Self-designed)**

### Actinobacteria

Actinobacteria especially *Streptomyces* is a proven source of microbial enzyme inhibitors. A new compound, 5-formyl uracil has been isolated from the culture broth of *Streptomyces* species and has shown strong inhibition against XO [18]. This is the only report on actinobacteria as a source of XO1.

### Lichens

Lichens are fungal species which are obligate symbionts in plants. Many natural lichens and cultured lichens have been screened for their biological activities, and several novel compounds were also isolated and identified. The phenolics and oxidative derivatives found in the lichens might be responsible for the inhibition of xanthine oxidase [34, 35]. The natural thallus of *Lecanora* contains a large number of biologically active compounds such as antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

**Fig. 1: Various sources of XO inhibitors (Self-designed)**

### Actinobacteria

Actinobacteria especially *Streptomyces* is a proven source of microbial enzyme inhibitors. A new compound, 5-formyl uracil has been isolated from the culture broth of *Streptomyces* species and has shown strong inhibition against XO [18]. This is the only report on actinobacteria as a source of XO1.

### Lichens

Lichens are fungal species which are obligate symbionts in plants. Many natural lichens and cultured lichens have been screened for their biological activities, and several novel compounds were also isolated and identified. The phenolics and oxidative derivatives found in the lichens might be responsible for the inhibition of xanthine oxidase [34, 35]. The natural thallus of *Lecanora* contains a large number of biologically active compounds such as antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].

Endophytic fungi

Over the last two decades, endophytic fungi have been demonstrated to be a rich source of novel bioactive compounds possessing antimicrobial, anticancer, neuroprotective, insulin-mimetic, anti-oxidant properties that may foster great medicinal or agricultural potentials [39, 40]. Endophytic fungi colonize the plants internally without apparent symptoms of their ubiquitous existence and are increasingly being prospected as underexplored resources of novel bioactive compounds [41].
The acetic, methanolic and hot water extracts from the fruiting bodies of *Pleurotus salmonoeyoshinum* and *P. nebrodensis* were reported to have XO inhibition which was found to be increased with increasing concentrations [55, 56]. In a similar way, a new compound was purified from the aqueous extract of *Pleurotus ostreatus* and has exhibited XO inhibitory activity with an IC₅₀ value of 0.9 mg/ml [57].

A new species of central European Phellinoid Hymenochaetae ( *Phellinus sesulato*) have screened for XO. The in vitro antioxidant and XO inhibitory assays demonstrated that most of the selected species possess remarkable antioxidant and XO inhibitory action [58].

A new study was reported in which fermented mushroom water extracts with lactic acid bacteria were exhibited XO inhibition. Fermented mushroom water extracts have increased the free radical scavenging activity, and the antioxidant activity of fermented mushroom extracts was further confirmed by XO inhibition [59]. As well as the above species XO inhibitory activity of aqueous and organic (n-hexane, chloroform, and 50% methanol) extracts of 47 wild-growing mushrooms native to Hungary have been reported. Among the 47 species, *Hypholoma fasciculare* (IC₅₀= 6.77± 1.105 μg/ml), *Suillus grevillei* (IC₅₀= 13.28 ± 1.58 μg/ml), and *Tricholoma populinum* (IC₅₀= 85.08 ± 15.02 μg/ml) were exhibited high inhibitory activity [60].

**CONCLUSION**

The disease burden of hyperuricemia remains a major problem and may be increasing day by day. As described in this article, the rich diversity of microorganisms with their unique characteristics emerged as a potential source for the discovery of XO. This review is a fine effort to compile and present XO from microbial sources to encourage further research to use natural microbial XO in the management and treatment of hyperuricemia and other associated disorders.

**ACKNOWLEDGMENT**

Authors are thankful to Dr. kiranmai, Principal, Bharat Institute of Technology for her constant encouragement and support.

**CONFLICT OF INTERESTS**

There is no conflict of interest

**REFERENCES**

1. Feig DI, Uric acid. A novel mediator and marker of risk in chronic kidney disease. Curr Opin Nephrol Hypertens. 2009;18:526-30.
2. Richette P, Bardyl T. Gout. Lancet 2010; 375:319-28.
3. Smith EU, Diaz-Torne C, Perez-Ruiz F, March LH. Epidemiology of gout. An update. Best Practice Res Clin Rheumatol 2010; 24:811-27.
4. Pandey M, Debnath M, Gupta S, Chikara SK. Phytomedicine: an ancient approach is turning into future potential source of therapeutics. J Pharmacoceony Phys Ther 2011;3:27-57.
5. Umezawa H. Enzyme inhibitors of microbial origin. Univ Tokyo Press; 1972. p. 109.
6. Ajay Kumar, Wamik Azmi. Phytomedicine: a novel alternative for treatment of gout. Ann Phytomed 2014;3:80-8.
7. Bhisupinder Kapoor, Gagandeep Kaur, Mukta Gupta, Reena Gupta. Indian medicinal plants useful in treatment of gout: a review for current status and future perspective. Asian J Pharm Clin Res 2017;10:407-16.
8. Rohit R Patil, Gajanan S Patil. A review: antiquit medicinal plants. Eur J Biomed Pharm Sci 2018;8:594-402.
9. Ling X, Bochu W. A review of phytotherapy of gout: perspective of new pharmacological treatments. Pharmaceutic 2014;69:243-56.
10. Ojha R, Singh J, Ojha A, Singh H, Sharma S, Neplak K. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin Patr 2017;27:149-315.
11. Schindler P, Hartley BS, Brunner S. Enzyme inhibitors of microbial origin. Phil Trans Royal Soc London B 1980;290:291-301.
12. Pandey A, Selvakumar P, Soccol CR, Nigam P. Solid-state fermentation for the production of industrial enzymes. Curr Sci 1999;77:149-62.
13. Panda H. Handbook on drugs from natural sources. Asia Pacific Business Press Inc; 2000. p. 1-34.
14. Suahara N, Nogi K, Yokogawa K. Production of xanthine oxidase inhibitor, 2,8-Dihydroxy adenine by *Acaligenes aquanamurius*. Agric Biotechnol 1977;41:1103-9.
15. Cavalieri LF, Bendich A. The ultra violet absorption spectra of pyrimidine and purine. J Am Chem Soc 1950;72:2587-94.
16. Izumida H, Adachi K, Nishijima M, Endo M, Miki W. Akalone: a novel xanthine oxidase inhibitor produced by the marine bacterium, *Agrobacterium aurantiacum* sp. nov. J Marine Biotechnol 1995;2:11-8.
17. Izumida H, Adachi K, Mihara A, Yasuawaft T, Sano H. Hydroxyakalone, a novel xanthine oxidase inhibitor produced by a marine bacterium, *Agrobacterium aurantiacum*. J Antibiotics 1997;50:916-8.
18. Siao Jen Chen, Yen Lin Chen, Hsun Yin Hsu, Shy Yunn Wann. Novel strains of *lotobacillus thannosus* and its metabolites for use in inhibiting xanthine oxidase and treating gout. US2016/0051602AD; 2016.
19. Siao Jen Chen, Yen Lin Chen, Hsun Yin Hsu, Shy Yunn Wann. Novel strains of lotobacillus thannosus and its metabolites for use in inhibiting xanthine oxidase. US2016/0051596A1; 2018.
20. Siao Jen Chen, Yen Lin Chen, Hsun Yin Hsu, Shy Yunn Wann. Antibiotics for use in inhibiting Xanthine oxidase. US2018/0051596A1; 2018.
21. Yamamoto Y, Hiroshi H, Kinoshita Y, Yoshimura I. Using lichen tissue culture in modern biology. Bryologist 1999;93:884-93.
36. Behera BC, Adawadkar B, Makhij U. Tissue culture of *Bulbothrix sethswanensis* (lichenized ascomycetes) *in vitro*. Curr Sci 2002;82:61-6.

37. Behera BC, Urmila Makhija. Inhibition of tyrosinase and xanthine oxidase by lichen species *Bulbothrix sethswanensis*. Curr Sci 2004;87:83-7.

38. Behera BC, Adawadkar B, Makhij U. Capacity of some graphidiaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities. Curr Sci 2004;87:83-7.

39. Nisa H, Kamiti AN, Nawchoo IA, Shafi S, Shameen N, Bandh SA. Fungal endophytes as a prolific source of phytochemicals and other bioactive natural products: a review. Microbiol Pathol 2015;82:50-9.

40. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep 2001;18:458-9.

41. Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep 2006;23:828-9.

42. Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microb Lett 2004;241:67–72.

43. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M. Endophytic fungi from *Nerium oleander* L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 2007;23:1253–63.

44. Kapoor N, Saxena S. Xanthine oxidase inhibitory and antioxidant potential of Indian *Muscador* species. J Biotech 2016;6:248.

45. Jang IT, Hyun SH, Lee YH. Characterization of an anti-gout xanthine oxidase inhibitor from pleurotus ostreatus. Mycobiology 2014;42:296-300.

46. Kim HJ, Yoon KN. Antioxidant activity of mushroom water extracts fermented by Lactic acid bacteria. J Korean Soc Food Sci Nutr 2014;43:80-5.