A hard metallic material: Osmium Diboride

Z. Y. Chen,¹,² H. J. Xiang,¹,² Jinlong Yang,¹,²,∗ J. G. Hou,¹ and Qingshi Zhu¹,²

¹Hefei National Laboratory for Physical Sciences at Microscale,
University of Science and Technology of China,
Hefei, Anhui 230026, People’s Republic of China
²USTC Shanghai Institute for Advanced Studies,
University of Science and Technology of China,
Shanghai 201315, People’s Republic of China

(Dated: March 23, 2022)

Abstract

We calculate the structural and electronic properties of OsB₂ using density functional theory with or without taking into account spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interaction are 364 and 365 Gpa respectively, both are in good agreement with experiment (365-395 Gpa). The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB₂ might suggest its potential application as hard conductors.

PACS numbers: 71.15.Mb, 71.20.-b, 62.20.Dc, 81.05.Bx
Hard materials are of great interest due to their superior properties of higher compressional strength, thermal conductivity, refractive index, and chemical stability beside higher hardness. Besides the two well-known super-hard materials of diamond and cubic boron nitride (c-BN), experimental and theoretical efforts are devoted to searching a new class of hard materials. Covalent materials are much better candidates for high hardness than ionic compounds because electrostatic interactions are omnidirectional and yield low bond-bending force constants, which result in low shear modulus. Some potential hard materials such as C3N4 polymorphs, Si3N4, BC2N, and B6O have been proposed and investigated intensively in recent years.

The pure Osmium (Os) has an exceptionally high bulk modulus (395-462 GPa) while its hardness is of only 400 kg/mm². The high bulk modulus of Os mainly due to the high valence electron density, while the low hardness is related to the metallic bonds and the hexagonal close-packed (HCP) crystal structure of Os. It has been found that many transition metals, such as W, Ru, and Zr, which are soft in their pure metals, can be converted into hard materials by combining with small covalent bond-forming atoms such as boron, carbon, oxygen, or nitrogen. For Os related materials, OsO₂ has been predicted to be very stiff and some compounds like OsB₀, OsB₂, and Os₂B₃ have already been synthesized. Recently, Cumberland et al. studied experimentally the mechanical properties of the OsB₂ compound, and showed that it is an ultra-incompressible (365-395 GPa) and hard (≥2000 kg/mm²) material.

In this brief report, we carry out density functional calculations on the electronic properties and the bulk modulus of OsB₂, using the highly accurate full potential linearized augmented plane wave plus local orbital (APW + LO) method as implemented in the Wien2k code. The nonoverlapping muffin-tin (MT) sphere radii of 2.02 and 1.57 bohr are used for the Os and B atoms, respectively. Expansion in spherical harmonics for the radial wave functions are taken up to l=10. The value of RₘₜK_max (the smallest muffin tin radius multiplied by the maximum k value in the expansion of plane waves in the basis set) which determines the accuracy of the basis set used is set to 7.0. The total Brillouin zones are sampled with 6000 k points, i.e., 672 k points in the irreducible wedge of the Brillouin zone. For the exchange-correlation energy functional, we use the local density approximation (LDA) in our calculations. Since Os is a heavy element, a fully relativistic calculation is performed for core states, whereas the valence states are treated in both scalar and fully relativistic
fashions. The spin-orbit coupling (SOC) is self-consistently added via the second variational step scheme with relativistic $p_{1/2}$ local orbitals included. We find there is no spontaneous spin polarization in OsB$_2$ in the framework of the local spin density approximation (LSDA) or LSDA+SO methods. Hereafter for the sake of simplicity, we only discussed the results from the spin-restricted calculations.

OsB$_2$ has an orthorhombic lattice (space group $Pmma$, No. 59) with the experimental lattice parameters $a = 4.6832 \pm 0.0001$, $b = 2.8717 \pm 0.0002$, and $c = 4.0761 \pm 0.0001$ Å. In the orthorhombic structure, two Os atoms occupy the 2a Wyckoff sites and four B atoms occupy the 4f sites, as shown in Fig. 1. We optimize both lattice and internal coordinates to get a relaxed structure for OsB$_2$. The total energy per unit cell as a function of volume is calculated and the results are fitted using the Murnaghan equation of state to get the bulk modulus. The corresponding equilibrium lattice parameters, bulk modulus from both LDA and LDA+SO methods are compared with the experimental result, as shown in Table I. We can see that the equilibrium lattice parameters calculated both in the absence and in the presence of SO are very close with the experimental value. And the bulk modulus calculated in the absence and in the presence of SO are 365 and 364 Gpa, respectively, both are in good agreement with the experimental result (365-395 GPa).

As discussed above, the hardness of a material is largely determined by the bonding type in the system. Thus the electronic properties of OsB$_2$ such as the electron density, band structure, and the density of state (DOS) are calculated in the absence and in the presence of SO at the equilibrium geometries. We find that the electron density from the LDA calculation is almost the same as that from the LDA+SO calculation. Here we show the electron density for OsB$_2$ from the LDA+SO calculation in Fig. 2. Two charge density contour plots (one in the plane including Os1, Os2, B2, and B3, and the other in the plane including Os1, B1, and B2) are shown in Fig. 2(a) and (b), respectively. There are some electrons between Os atoms and theirs neighbor B atoms, indicating covalent bonding in OsB$_2$. To gain a more detailed insight into the bonding characters of OsB$_2$, we plot the difference density (the difference between total density and superposition of atomic densities) in Fig. 2(c). We can see that some electrons are transferred from both B and Os atoms to B-B bonds and Os-B bonds. Clearly, two neighbor B atoms form very strong covalent bond. And the bonding between the Os atom and its neighbor B atoms is also covalent. The fact that Os-B bond is covalent rather than ionic is also evident from Bader’s atoms in
molecules (AIM) theory,19 which indicates there is only about 0.05 electron transferred from an Os atom to B atoms. Moreover, there is some region where the charge density is rather low, implying the bonding in this system is directional but not metallic, as can be seen from Fig. 2(a) and (b). Since there are eight B atoms around an Os atom, forming a three dimensional network instead of a plane, the anisotropy in OsB\textsubscript{2} is not expected to be very large. As discussed above, the strong covalent bonding of Os-B plays an important role to form a hard material, since the highly directional bonding is needed to withstand both elastic and plastic deformations. OsB\textsubscript{2} might be potential superhard material for effectively cutting ferrous metals, including steel, since diamond reacts with steel producing iron carbide.3 A recent report showed that the hardness of the Fe-based alloys is less than 1300kg/mm2,20 which is far less than that of the OsB\textsubscript{2}(\geq2000kg/mm2).15

Although the LDA electron density is almost indiscernible from that from the LDA+SO calculation, we note that there are some differences in the band structures and DOS between two results. Fig. 3(a) and (b) show the band structures near the Fermi energy in the absence or presence of SO, respectively. Due to the spin-orbit interaction, some bands are split: some bands crossing each other in Fig. 3(a) no longer cross in Fig. 3(b), and more noticeably almost all bands in the direction of M-N-K are split in the LDA+SO result. Except the band splitting in the presence of SO, the both band structures have main features in common. Both Fig. 3(a) and (b) show that the bands are dispersive but not flat indicating not large anisotropy in OsB\textsubscript{2}. We note that there are several bands crossing the Fermi level which are rather dispersive in the whole Brillouin zone, indicating good electronic mobility in OsB\textsubscript{2}. The metallicity is uncommon in superhard materials. Most of the superhard materials are insulators or semiconductor.11 This special character of OsB\textsubscript{2} should bring it special application on electron conductivity. Fig. 4 show the total and partial DOS with or without SOC which are obtained using a modified tetrahedron method of Blöchl \textit{et al.}21 We can see some minor differences between the results with or without SOC. Fig. 4(e) also implies the good metallicity due to the substantiaily large total DOS at the Fermi level. From the calculated partial DOS in Fig. 4 one can see that the electronic structure of OsB\textsubscript{2} is governed by a strong hybridization between the Os-d and B-p states, while with a rather small contribution from the Os-p and B-s states. This strong hybridization of Os-d and B-p also indicates the strong covalent bonding of Os-B.

Besides the bulk modulus, we want to mention that the shear modulus is also relevant
for the non-cubic OsB$_2$ materials. The shear modulus can be computed from the elastic constants. Unfortunately, the force calculation when including the spin-orbit coupling has not been implemented in the Wien2k package yet. As an approximation, in the calculation of elastic constants, we keep the relative positions of the atoms fixed at small elastic strains of the lattice. Both calculations without SOC or with SOC are carried out. The procedure for computing elastic constants is similar to that used by Zhou et al.22 For comparison, we also compute the elastic constants using VASP23 with LDA but no SOC included. In these calculations, we perform two series of calculations with atomic internal coordinates fixed or relaxed, respectively. Our results reported in Table [I]. We can see that the Voigt shear modulus G calculated using the Wien2k package (235.1 and 251.8 GPa when including SOC or not, respectively.) are in consistent with that (253.6 GPa) calculated using VASP with fixed atomic internal coordinates, but are much larger than that (197.1 GPa) calculated using VASP with a relaxation of the atomic internal coordinates. The results produced by VASP are in good agreement with those reported by Zhou et al.22 Thus we find that is not a very good approximate that computing the shear modulus with atomic internal coordinates fixed. The accurate shear modulus with SOC included might be computed in our future works.

In conclusion, the mechanical and electronic properties of OsB$_2$ are studied using the highly accurate full potential linearized APW + LO method. The OsB$_2$ is found to be metallic, which is uncommon in hard materials. The calculated bulk modulus with and without SOC are 364 and 365 GPa respectively, which are in good agreement with the experiment (365-395GPa)15 The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is manifested both in the difference charge density, AIM analysis, and DOS analysis. Our results indicate that OsB$_2$ might serve as hard conductors.

This work is partially supported by the National Project for the Development of Key Fundamental Sciences in China (G1999075305, G2001CB3095), by the National Natural Science Foundation of China (50121202, 10474087, 20533030), by the USTC-HP HPC project, and by the Virtual Laboratory for Computational Chemistry of CNIC and Supercomputing Cen-
ter of CNIC, Chinese Academy of Sciences.

* Corresponding author. E-mail: jlyang@ustc.edu.cn

1 A. G. Thornton and J. Wilks, Nature 274, 792 (1978).
2 J. Haines, J. M. Léger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).
3 R. B. Kaner, J. J. Gilman, and S. H. Tolbert, Science 308, 1268 (2005).
4 T. S. Wang, D. L. Yu, Y. J. Tian, F. R. Xiao, J. L. He, D. C. Li, W. K. Wang, and L. Li, Chem. Phys. Lett. 334, 7 (2001).
5 J. He, L. Guo, D. Yu, R. Liu, Y. Tiana, and H. T. Wang, Appl. Phys. Lett. 85, 5571 (2004).
6 H. Sun, S.-H. Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 64, 094108 (2001); Y. Zhang, H. Sun, and C. Chen, Phys. Rev. Lett. 93, 195504 (2004); Y. Zhang, H. Sun, and C. Chen, Phys. Rev. Lett. 94, 145505 (2005).
7 D. W. He, Y. S. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda, Appl. Phys. Lett. 82, 643 (2002).
8 M. Hebbache and M. Zemzemi, Phys. Rev. B 70, 224107 (2004).
9 M. Lee and R. S. Gilmore, J. Mater. Sci. 17, 2657 (1982).
10 D. M. Teter, Mater. Res. Soc. Bull. 23, 22 (1998).
11 J. Haines, J. M. Léger, and A. Atouf, J. Am. Ceram. Soc. 78, 445 (1995).
12 U. Lundin, L. Fast, L. Nordstrom, B. Johansson, J. M. Wills, and O. Eriksson, Phys. Rev. B 57, 4979 (1998).
13 L. Stuparević and D. Živković, Journal of Thermal Analysis and Calorimetry, 76, 975 (2004).
14 R. B. JR. Roof and C. P. Kempter, J. Chem. Phys. 34, 1473 (1962).
15 W. C. Robert, B. W. Michelle, J. G. John, M. C. Simon, H. T. Sarah, and B. K. Richard, J. Am. Chem. Soc. 127, 7264 (2005).
16 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, in WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Techn. Universität Wien, Austria, 2001).
17 J. Kunes, P. Novak, R. Schmid, P. Blaha and K. Schwarz, Phys. Rev. B 64, 153102 (2001).
18 F. D. Murnaghan, Proc. Natl Acad. Sci. USA 30, 244 (1944).
19 R. F. W. Bader, Atoms in Molecules-A Quantum Theory (Oxford University Press, Oxford,
1990); F. W. Klieger-Konig, R. F. W. Bader, and T. H. Tang, J. Comput. Chem. 3, 317 (1982).

20 M. Stoicaa, J. Eckerta, S. Rotha, Z.F. Zhangc, L. Schultza, and W.H. Wang, Intermetallics 13, 764 (2005).

21 P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

22 Z. F. Hou, cond-mat/0601216 (unpublished).

23 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
TABLE I: Structural parameters and bulk modulus of OsB$_2$.

	LDA	LDA+SO	Experiment
Lattice parameters(Å):			
a	4.6433	4.6581	4.6832±0.000114
b	2.8467	2.8700	2.8717±0.000214
c	4.0432	4.0560	4.0761±0.000114
Bulk modulus(GPa)	365	364	365-39515

TABLE II: Calculated elastic constants and Voigt shear modulus G of orthorhombic OsB$_2$. Unless otherwise stated, all results are computed with atomic internal coordinates unrelaxed. All values are in units of GPa.

	Wien2K LDA	Wien2K LDA+SO	VASP LDA	VASP LDA (relaxed)	Other VASP	LDA (relaxed)22
C_{11}	628.9	608.5	622.4	597.2	597.0	
C_{12}	194.7	198.3	185.8	188.7	198.1	
C_{13}	235.0	220.9	225.3	217.5	206.1	
C_{22}	627.8	590.3	624.9	584.5	581.2	
C_{23}	126.8	129.9	124.1	164.0	142.6	
C_{33}	923.2	855.7	910.4	833.8	825.0	
C_{44}	185.5	175.1	182.0	80.2	70.1	
C_{55}	313.5	292.6	311.4	214.5	212.0	
C_{66}	218.6	205.9	233.9	209.2	201.3	
G	251.8	235.1	253.6	197.1	193.8	
FIG. 1: (Color online) The crystal structure for OsB$_2$. The lattice vectors are denoted as \mathbf{a}, \mathbf{b}, and \mathbf{c}.

FIG. 2: (Color online) (a) The valence charge density contour (in e/a.u.3) plot in the plane including Os1, Os2, B2, and B3. (b) and (c) show respectively the valence charge density and difference charge density contour (in e/a.u.3) plot in the plane including Os1, B1, and B2. The charge density shown here is the result from the LDA+SO calculation. The LDA charge density has similar character. Os1, Os2, B1, B2, and B3 refer to the atoms labeled in Fig. 1(a).
FIG. 3: (a) Band structure of OsB$_2$ from the LDA calculation. (b) Band structure of OsB$_2$ from the LDA+SO calculation. $\Gamma = (0, 0, 0)$, $M = (0, 0.5, 0)$, $N = (0.5, 0.5, 0)$, $K = (0.5, 0, 0)$, $A = (0, 0.5)$.
FIG. 4: (Color online) Partial and total DOS of OsB$_2$ from the LDA and LDA+SO calculations.