VIRTUAL CLASSES OF \mathbb{G}_m-GERBES

F. QU

ABSTRACT. We show that a perfect obstruction theory of a \mathbb{G}_m-gerbe determines a semi-perfect obstruction theory of its base, which is perfect if the gerbe is quasi-compact and affine-pointed. This allows us to relate virtual classes of the gerbe and its base.

1. INTRODUCTION

We discuss virtual classes of \mathbb{G}_m-gerbes with perfect obstruction theories. These gerbes appear naturally in the Donaldson-Thomas theory of smooth projective 3-folds as moduli stacks of perfect complexes which have no higher automorphisms and are simple, and their perfect obstruction theories come from derived enhancements.

Consider a \mathbb{G}_m-gerbe \mathcal{G} with a perfect obstruction theory over a DM stack B. The main observation is that we can truncate its perfect obstruction theory from $[-1, 1]$ to $[-1, 0]$, then decompose it into moving and fixed parts. The moving part is given by a locally free sheaf H in degree -1 and the fixed part determines a semi-perfect obstruction theory of B. The virtual class of \mathcal{G} is obtained by pulling back the virtual class of B then cap with the Euler class of the vector bundle associated to H. When B is quasi-compact and affine-pointed, the semi-perfect obstruction of B is actually a perfect obstruction theory. See Section 3 for details. We conclude the paper with a remark on virtual classes in DT theory of 3-folds.

2. PRELIMINARIES

We work over the field of complex numbers \mathbb{C}.

2.1. Notation. For an algebraic stack X, $\text{Qcoh}(X)$ denotes the abelian category of quasi-coherent sheaves on X, $D(\text{Qcoh}(X))$ its derived category, $D_{\text{qcoh}}(X)$ the derived category of \mathcal{O}_X-modules with quasi-coherent cohomology sheaves, and $D_{\text{coh}}(X)$ the derived category of \mathcal{O}_X-modules with coherent cohomology sheaves. For derived categories, superscripts are used to further specify the range of cohomology sheaves. The truncation functor for complexes is denoted by τ, with a superscript to indicate the range of a truncation. A complex is perfect in $[a, b]$ if it is (smooth) locally quasi-isomorphic to a complex of locally free sheaves of finite rank in degrees $[a, b]$. The derived pullback of derived category objects along a map f is also denoted by f^*. The superscript \vee denotes taking dual.

The author is supported by NSFC Young Scientists Fund 11801185.
2.2. Quasi-coherent sheaves on \mathbb{G}_m-Gerbes and their derived categories. Let B be a DM stack locally of finite type over \mathbb{C}, and $p: \mathcal{G} \to B$ a \mathbb{G}_m-gerbe over B. Any quasi-coherent sheaf F on \mathcal{G} has a decomposition $F = \bigoplus_{i \in \mathbb{Z}} F_i$ where F_i has weight i. (See e.g., [7, Proposition 2.2.1.6].)

Remark 2.1. On the trivial gerbe $U \times B\mathbb{G}_m$, a quasi-coherent sheaf with weight i is of the form $F \boxtimes \mathcal{O}(i)$, where F is a quasi-coherent sheaf on U and $\mathcal{O}(i)$ the line bundle on $B\mathbb{G}_m$ induced by the character of \mathbb{G}_m with weight i.

Following [7], we call F_0 the fixed part of F and $\bigoplus_{i \neq 0} F_i$ the moving part, denoted by F^f and F^m respectively.

We have a decomposition of abelian categories

$$\text{QCoh}(\mathcal{G}) \simeq \text{QCoh}(\mathcal{G})^f \times \text{QCoh}(\mathcal{G})^m,$$

where QCoh$(\mathcal{G})^f$ (resp. QCoh$(\mathcal{G})^m$) is the full subcategory generated by quasi-coherent sheaves with only fixed (resp. moving) parts. The pushforward p_* induces an equivalence

$$\text{QCoh}(\mathcal{G})^f \simeq \text{QCoh}(B)$$

with inverse p^*.

For an algebraic stack X, the inclusion map $\text{QCoh}(X) \to \text{Mod}(\mathcal{O}_X)$ of quasi-coherent sheaves on X into the category of \mathcal{O}_X-modules induces a map between derived categories. Recall X is affine pointed if for every morphisms $\text{Spec } k \to X$ from a field k to X is affine. For instance, if X has affine diagonal, then it is affine-pointed.

Proposition 2.2 ([8, Theorem C.1]). Let X be an algebraic stack. If X is either quasi-compact with affine diagonal or noetherian and affine-pointed, then the natural map between derived categories $D^+(\text{QCoh}(X)) \to D^+_{\text{qcoh}}(X)$ is an equivalence.

2.3. Perfect obstruction theory (POT).

Definition 2.3 ([4, 13, 21]). Let $f : X \to Y$ be a map between algebraic stacks locally of finite type over \mathbb{C}, an obstruction theory for f is a map $\phi : E^\bullet \to L_f$ in $D_{\text{qcoh}}^{\leq 1}(X)$ such that $h^0(\phi), h^1(\phi)$ are isomorphisms and $h^{-1}(\phi)$ surjective in $\text{QCoh}(X)$. Here $L_f = \tau^{-1}_X \mathbb{L}_f$ is the truncated cotangent complex, with $\mathbb{L}_f \in D_{\text{coh}}^{\leq 1}(X)$ being the cotangent complex of f.

The obstruction theory ϕ is perfect if E^\bullet is perfect in $[-1, 1]$. The obstruction sheaf ob_f is defined as $h^1(E^\bullet)$.

Remark 2.4. For a summary of \mathbb{L}_f, see e.g., [2, 2.4]. POTs defined using \mathbb{L}_f in place of L_f can be truncate to $[-1, 1]$ and give rise to POTs defined above. We use L_f in this paper so that we can replace $D^{\leq 1}_{\text{qcoh}}(X)$ by $D^{\leq 1}(\text{QCoh}(X))$ when $D^b(\text{QCoh}(X)) \simeq D^b_{\text{qcoh}}(X)$.

When the map f is DM, $L_f \in D_{\text{coh}}^{[0,1]}(X)$, and a POT for f induces a closed embedding of the intrinsic normal sheaf $\mathcal{N}_f = h^1/h^0(L_f)$ into the vector bundle stack $\mathcal{E}_f = h^1/h^0(E^\bullet)$ ([4, Theorem 4.5] [21, Theorem 2.3]).

\footnote{Here L_f also denote its extension to the big fppf site, see [4, Section 2].}
Remark 2.5. When \(f \) is not DM, similar to \([4]\), \(L_f \) determines a Picard 2-stack \(\mathcal{N}_f \), and a POT \(\phi \) induces a closed embedding of \(\mathcal{N}_f \) into the vector bundle 2-stack associated to \(E^* \). To define a virtual class, we only need a closed embedding \(\pi_0(\mathcal{N}_f) \to \pi_0(\mathcal{E}_f) \) between their coarse sheaves (See e.g., [3] Section 2), this observation goes back to [15] and is recasted into semi-perfect obstruction theory. In particular, only the truncation of \(\phi \) to \([-1, 0]\) should matter, and this is the approach of [18] [21].

\textbf{Definition 2.6 ([6], [13]).} Let \(X \) be a DM stack over a pure dimensional base \(S \), a semi-perfect obstruction theory for \(X \) over \(S \) consists of a collection of étale locally defined POTs \((U_i, \phi_i) \), where \(\{U_i\} \) is an étale cover of \(X \) and \(\phi_i : E^*_i \to L_{U_i/S} \) is a POT for \(U_i \), and they satisfy the following conditions (1) and (2).

1. The local obstruction sheaves \(\text{ob}_i = h^1(E^*_i) \) are isomorphic over \(U_{ij} \) and descends to an obstruction sheaf \(\text{ob} \) on \(X \).
2. The restrictions of \(\phi_i \) and \(\phi_j \) to \(U_{ij} \) give the same obstruction assignment under the identification of local obstruction sheaves in (1).

A semi-perfect obstruction theory is symmetric if its local POTs \(\phi_i \) are symmetric ([3], [5]) and the induced isomorphisms \(\text{ob}_i \simeq \Omega_{U_i} \) descend to \(\text{ob} \simeq \Omega_X \).

Condition (2) is equivalent to the following by the proof of [6, Proposition 2.1]. For any closed point \(x : \text{Spec} \ C \to X \), there exists a well-defined map
\[
h^1((x^*L_X)^\vee) \to x^*\text{ob}
\]
obtained using a factorization of \(x \) as the composition of \(y : \text{Spec} \ C \to U_i \) and \(U_i \to X \). For any choice of \(y \), the POT \(\phi_i \) induces a map
\[
h^1((y^*\phi_i)^\vee) : h^1((y^*L_{U_i})^\vee) \to h^1((y^*E^*_i)^\vee) \simeq y^*\text{ob}_i,
\]
which can be identified as a map
\[
h^1((x^*L_X)^\vee) \to x^*\text{ob}.
\]

For any étale map \(U \to X \), the pullback of a POT \(\phi \) for \(X \) to \(U \) determines a POT for \(U \). In this way, a (symmetric) POT \(\phi \) for \(X/S \) induces a (symmetric) semi-perfect obstruction theory.

\textbf{Remark 2.7.} It is clear from [6] that (1) and (2) imply that
\[
\pi_0(\mathcal{N}^{\text{red}}_i) \to \pi_0(\mathcal{E}_i) \simeq \text{ob}^{[3]}
\]
descends to
\[
\pi_0(\mathcal{N}^{\text{red}}_{X/S}) \to \text{ob}.
\]
Here \(\mathcal{N}^{\text{red}}_i \) denote the reduced stack associated to the intrinsic normal sheaf \(\mathcal{N}_i \) of \(U_i/S \), \(\mathcal{E}_i \) the vector bundle stack associated with \(E^*_i \), and \(\pi_0(\mathcal{N}^{\text{red}}_i) \to \pi_0(\mathcal{E}_i) \) is the map between coarse sheaves of the composition of the closed embedding \(\mathcal{N}^{\text{red}}_i \to \mathcal{N}_i \) and the embedding \(\mathcal{N}_i \to \mathcal{E}_i \) induced by \(\phi_i \). The map \(\pi_0(\mathcal{N}^{\text{red}}_{X/S}) \to \text{ob} \) is used to construct the virtual class.

\textbf{Remark 2.8.} If a semi-perfect obstruction theory is obtain from a POT on \(X \) then the vector bundle stacks \(\mathcal{E}_i = h^1/h^0(E^*_i) \) descends to \(X \), which would require an isomorphism \(a_{ij} : \mathcal{E}_i|_{U_{ij}} \simeq \mathcal{E}_j|_{U_{ij}} \) on each \(U_{ij} \), and a two arrow \(b_{ijk} \) between \(\phi_{jk}|_{U_{ijk}} \) and \(a_{ij}|_{U_{ijk}} \circ a_{jk}|_{U_{ijk}} \) on each \(U_{ijk} \), and compatibilities between \(\{b_{ijk}\} \) on each

\footnotetext{2}{Here \(\text{ob}_i \) denote its extension to the big étale site of \(U_i \) as in [3].}
In terms of complexes, b_{ijk} correspond to chain homotopies, which are invisible in the derived category.

3. VIRTUAL CLASS OF \mathcal{G}_M GERBES

In this section, we prove the results sketched in the introduction.

Let $p: \mathcal{G} \to B$ be a \mathcal{G}_m-gerbe over B as in the last section, and $\phi: E^\bullet \to \mathcal{L}_G$ a POT of \mathcal{G}.

3.1. Virtual class of \mathcal{G}. For the distinguished triangle between cotangent complexes $p^*\mathbb{L}_B \to \mathbb{L}_G \to \mathbb{L}_p$, we have $p^*\mathbb{L}_B \simeq \tau_{\leq 0}(\mathbb{L}_G)$ and $h^1(\mathbb{L}_G) = h^1(\mathbb{L}_p)$, since $\mathbb{L}_B \in D_{\text{qcoh}}(B)$ and $\mathbb{L}_p[1] \simeq h^1(\mathbb{L}_p)$ is locally free. Therefore we have a distinguished triangle between truncated cotangent complexes

$$p^*\mathbb{L}_B \to \mathbb{L}_G \to \mathbb{L}_p.$$

We first truncate E^\bullet to $[-1, 0]$. There exists a map between distinguished triangles

$$\begin{array}{ccc}
F^\bullet & \to & E^\bullet \\
\downarrow \phi & & \downarrow \text{Id} \\
p^*\mathbb{L}_B & \to & \mathbb{L}_G \\
\end{array}$$

where $E^\bullet \to \mathbb{L}_p$ is the composition of ϕ and $\mathbb{L}_G \to \mathbb{L}_p$. Denote ψ the first vertical map $F^\bullet \to p^*\mathbb{L}_B$, then it can be identified with $\tau_{\leq 0}(\phi)$. Note that $h^0(\psi)$ is an isomorphism, $h^{-1}(\psi)$ is surjective, and F^\bullet is perfect in $[-1, 0]$.

Since p is flat, $h^{-1}(p^*\mathbb{L}_B) = p^*h^{-1}(\mathbb{L}_B)$ has no moving part. We can remove the moving part of $h^{-1}(F^\bullet)$ from ψ as follows. The map

$$h^{-1}(F^\bullet)[1] \simeq \tau_{\leq -1}F^\bullet \to F^\bullet$$

and the inclusion map $h^{-1}(F^\bullet)^m \to h^{-1}(F^\bullet)$ induces

$$h^{-1}(F^\bullet)^m[1] \to h^{-1}(F^\bullet)[1] \to F^\bullet,$$

denote $F^\bullet f$ the cone of this map. As $h^{-1}(F^\bullet)^m$ maps to 0 in $h^{-1}(p^*\mathbb{L}_B)$, we have an induced map

$$\psi^f: F^\bullet f \to p^*\mathbb{L}_B,$$

and $h^0(\psi^f)$ is an isomorphism, $h^{-1}(\psi^f)$ is surjective.

Lemma 3.1. The sheaf $h^{-1}(F^\bullet)^m$ is locally free.

Proof. Locally, we can assume F^\bullet is given by a two term complex of locally free sheaves in $[-1, 0]$, then its moving part is also a two term complex of locally free sheaves and has vanishing h^0, so $h^{-1}(F^\bullet)^m$ is the kernel of a surjective map between locally frees, hence locally free.

As $h^{-1}(F^\bullet)^m$ is locally free, $F^\bullet f$ is perfect, and ψ^f induces a closed imbedding

$$\iota: p^*\mathcal{N}_B \to \mathcal{F}^f$$

where $\mathcal{N}_B = h^1/h^0(\mathcal{L}_B^\vee)$ is the intrinsic normal sheaf of B and $\mathcal{F}^f = h^1/h^0(F^\bullet f^\vee)$ the vector stack associated with $F^\bullet f$.

Let $C_B \subset \mathcal{N}_B$ be the intrinsic normal cone of B, then we can view p^*C_B as a closed substack of \mathcal{F}^f via ι.

Lemma 3.2. The virtual class $[G]^{\text{vir}}$ determined by ϕ is given by

$$0!^\phi(p^*C_B) \cap e(V(h^{-1}(F^*)^m)),$$

here $0! : A_*(\mathcal{F}) \to A_*(G)$ denotes Gysin pullback along the zero section of \mathcal{F}, $V(h^{-1}(F^*)^m)$ the vector bundle $\text{Spec} \text{Sym} h^{-1}(F^*)^m$, and e the Euler class.

Proof. This follows directly from the definition of virtual classes in [21]. In this case, the virtual class of \mathcal{G} is obtained by pulling back $[p^*C_B]$ along the zero section of \mathcal{F}, which is isomorphic to $\mathcal{F}^\sharp \times_G V(h^{-1}(F^*)^m)$. □

Remark 3.3. As G has affine stabilizers, it is stratified by global quotients by Proposition 3.5.9 and $0! : A_*(\mathcal{F}) \to A_*(G)$ is defined.

3.2. Semi-perfect obstruction theory of B. For any étale map $U \to B$ with (smooth) section $s : U \to G$, note that $s^*p^*L_B \simeq L_U$ and $s^*\psi^f$ is a POT for U, denote it ψ_U.

Proposition 3.4. $\{\psi_U\}$ determines a semi-perfect obstruction theory ψ_B for B.

Proof. We verify conditions (1) and (2) for semi-perfect obstruction theories.

The local obstruction sheaf on U is obtained by pullback along s of $h^1(F^*\psi^f)$. As smooth locally $F^*\psi^f$ is given by a complex of locally free sheaves, and its cohomology sheaves have no moving parts, we see that $h^1(F^*\psi^f)$ has no moving parts. Then (1) is satisfied with $\text{ob} = p^*h^1(F^*\psi^f)$.

Condition (2) is satisfied because there is a unique section over any closed point of B.

Remark 3.5. If there exists a nondegenerate symmetric bilinear pairing $F^* \simeq F^*\psi^f[1]$, then $\psi^f = \psi$ and ψ_B is symmetric.

Theorem 3.6. Assume B is proper, let $[B]^{\text{vir}}$ be the virtual class determined by ψ_B, then

$$[G]^{\text{vir}} = p^*[B]^{\text{vir}} \cap e(V(h^{-1}(F^*)^m)).$$

Proof. We show that

$$p^*[B]^{\text{vir}} = 0!^\phi(p^*C_B),$$

and the theorem follows from Lemma 3.2.

As ψ_B is a semi-perfect obstruction theory, it determines a map

$$\pi_0(N^\text{red}_B) \to \text{ob}.$$

By the construction of ψ_B, its pullback along p can be identified with the map

$$\pi_0(p^*N^\text{red}_B) \to \pi_0(\mathcal{F}) \simeq p^*\text{ob}$$

induced by ι, as the two maps match when pulled back to any U étale over B. Then it is easy to see

$$p^*[B]^{\text{vir}} = 0!^\phi(p^*C_B)$$

from the construction of $[B]^{\text{vir}}$ in [6], since the flat pullback p^* commutes with the operations used in defining $[B]^{\text{vir}}$. □

Remark 3.7. A cosection $\text{ob}_0 \to O_G$ induces a cosection of ψ_B, and the theorem also holds for localized virtual cycles ([12] [11]).

Theorem 3.8. When B is quasi-compact and affine pointed, the semi-perfect obstruction theory ψ_B is a POT.
Proof. If B is quasi-compact and affine pointed, so is G.

As now $D^+(\text{QCoh}(\mathcal{G})) \simeq D^+_{\text{qcoh}}(\mathcal{G})$, we view ψ as a map in $D^+(\text{QCoh}(\mathcal{G}))$. Under the equivalence $D^+(\text{QCoh}(\mathcal{G})) \simeq D^+(\text{QCoh}(\mathcal{G}^\dagger)) \times D^+(\text{QCoh}(\mathcal{G}^m))$, the component in $D^+(\text{QCoh}(\mathcal{G}^\dagger))$ of ψ is ψ^\dagger, and ψ_B is obtained from ψ^\dagger under the equivalences $D^+(\text{QCoh}(\mathcal{G}^\dagger)) \simeq D^+(\text{QCoh}(B)) \simeq D^+_{\text{qcoh}}(B)$.

Remark 3.9. For gerbes banded by the cyclic group μ_r with POTs, their POTs have no h^1 and we can also decompose them into moving and fixed part with weights in $\mathbb{Z}/r\mathbb{Z}$, then all results above hold.

3.3. Let X be a smooth projective 3-fold, the moduli stack of perfect complexes which are simple and without higher automorphisms,\footnote{Negative self Ext groups are zero.} is a \mathbb{G}_m-gerbe locally of finite type (\cite{16} Corollary 4.3.3), and has a derived enhancement (\cite{24} Definition 5.1), which has a (1)-symplectic structure (\cite{19}) when X is Calabi-Yau. These derived enhancements induce obstruction theories (\cite{24} Proposition 1.2)). Alternatively, obstruction theories can be constructed as in \cite{6} using the deformation-obstruction results in \cite{9}. When truncated obstruction theories are perfect, results in this section apply, and hopefully complement the perspectives in existing literatures, e.g., \cite{6 20 22}.

Remark 3.10. There are two choices to fix the determinant of perfect complexes. Denote $\text{Perf}(X)$ the stack of perfect complexes on X (\cite{24,23}), \mathcal{G} the open sub-stack of $\text{Perf}(X)$ whose objects are simple and without higher automorphisms, $\text{Pic}(X)$ the Picard stack of X, $[\text{Pic}(X)/B\mathbb{G}_m]$ the Picard scheme of X, and let L be a line bundle on X. Consider the cartesian diagrams

$$
\begin{array}{ccc}
\mathcal{G}_L & \longrightarrow & \text{Spec} \mathbb{C} \\
\downarrow & & \downarrow \\
\mathcal{G}'_L & \longrightarrow & B\mathbb{G}_m \\
\downarrow & & \downarrow \\
\mathcal{G} & \longrightarrow & \text{Pic}(X) \\
\end{array}
$$

where \mathcal{G}_L and \mathcal{G}'_L denote fiber products, the vertical arrows from $\text{Spec} \mathbb{C}$ are determined by L, $\mathcal{G} \to \text{Pic}(X)$ induced by the perfect determinant morphism (\cite{24} Definition 3.1).

Note that \mathcal{G}_L is a gerbe banded by cyclic groups and \mathcal{G}'_L a \mathbb{G}_m-gerbe. It is not hard to check that the map $\mathcal{G}_L \to \mathcal{G}'_L$ induces an isomorphism after rigidification.

The obstruction theory for $\mathcal{G} \to \text{Pic}(X)$ comes from the tangent complex of $\mathbb{R}\text{Perf}(X) \to \mathbb{R}\text{Pic}(X)$ (\cite{24} Proposition 3.2), which is only perfect in $[0,2]$. By base change, we obtain obstruction theories for $\mathcal{G}_L \to \text{Spec} \mathbb{C}$ and $\mathcal{G}'_L \to B\mathbb{G}_m$. From the obstruction theory of $\mathcal{G}'_L \to B\mathbb{G}_m$, we obtain an obstruction theory of \mathcal{G}'_L (\cite{17} Appendix B). As the tangent complex of $B\mathbb{G}_m$ is perfect in degree -1, the obstruction theory on \mathcal{G}_L is perfect if and only if the obstruction theory on \mathcal{G}'_L is, and in that case, the induced semi-perfect obstruction theories on their rigidifications are identical. In fact, the truncation of ϕ to ψ in the beginning of the section reverses the process of obtaining the POT of \mathcal{G}'_L from $\mathcal{G}'_L \to B\mathbb{G}_m$.

\footnote{See \cite{2} C.3 for viewing rigidification as taking quotient.}
REFERENCES

[1] D. Abramovich, T. Graber, A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337-1398.
[2] D. Abramovich, M. Olsson, A. Vistoli, Twisted stable maps to tame Artin stacks, J. Algebraic Geom. 20 (2011), no. 3, 399-477.
[3] K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338.
[4] K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88.
[5] K. Behrend, B. Fantechi, Symmetric obstruction theories and Hilbert schemes of points on the threefolds, Algebra Number Theory 2 (2008), no. 3, 313-345.
[6] H. L. Chang, J. Li, Semi-perfect obstruction theory and Donaldson-Thomas invariants of derived objects, Comm. Anal. Geom. 19 (2011), no. 4, 807-830.
[7] T. Graber, R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487-518.
[8] J. Hall, A. Neeman, D. Rydh, One positive and two negative results for derived categories of algebraic stacks, J. Inst. Math. Jussieu (2018), First View, pp. 25.
[9] D. Huybrechts, R. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545-569.
[10] Y. Jiang, Symmetric semi-perfect obstruction theory revisited, arXiv:1811.08480v1.
[11] Y.-H. Kiem, Localizing virtual fundamental cycles for semi-perfect obstruction theories, Internat. J. Math. 29 (2018), no. 4, 1850032, 30 pp.
[12] Y.-H. Kiem, J. Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013), no. 4, 1025-1050.
[13] Y.-H. Kiem, J. Li, Critical virtual manifolds and perverse sheaves, J. Korean Math. Soc. 55 (2018), No. 3, 623-669.
[14] A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495-536.
[15] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119-174.
[16] M. Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175-206.
[17] M. Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007), no. 1, 23-118.
[18] F. Noseda, A proposal for a virtual fundamental class for Artin stacks, Sissa dissertation, 2007.
[19] T. Pantev, B. Toën, M. Vaquié, G. Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271-328.
[20] R. Pandharipande, R. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407-447.
[21] F. Poma, Virtual classes of Artin stacks, Manuscripta Math. 146 (2015), no. 1-2, 107-123.
[22] R. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438.
[23] B. Toën, M. Vaquié, Moduli of objects in dg-categories, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), no. 3, 387-444.
[24] T. Schürg, B. Toën, G. Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. reine angew. Math. 702 (2015), 1-40.
[25] Stacks Project Authors, Stacks Project.

E-mail address: fengquest@gmail.com