Research progress on the application of feed additives in ruminal methane emission reduction: a review

Kang Sun, Huihui Liu, Huiyu Fan, Ting Liu and Chen Zheng
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China

ABSTRACT

Background. Ruminal methane (CH$_4$) emissions from ruminants not only pollute the environment and exacerbate the greenhouse effect, but also cause animal energy losses and low production efficiency. Consequently, it is necessary to find ways of reducing methane emissions in ruminants. Studies have reported that feed additives such as nitrogen-containing compounds, probiotics, prebiotics, and plant extracts significantly reduce ruminant methane; however, systematic reviews of such studies are lacking. The present article summarizes research over the past five years on the effects of nitrogen-containing compounds, probiotics, prebiotics, and plant extracts on methane emissions in ruminants. The paper could provide theoretical support and guide future research in animal production and global warming mitigation.

Methods. This review uses the Web of Science database to search keywords related to ruminants and methane reduction in the past five years, and uses Sci-Hub, PubMed, etc. as auxiliary searchers. Read, filter, list, and summarize all the retrieved documents, and finally complete this article.

Results. Most of the extracts can not only significantly reduce CH$_4$ greenhouse gas emissions, but they will not cause negative effects on animal and human health either. Therefore, this article reviews the mechanisms of CH$_4$ production in ruminants and the application and effects of N-containing compounds, probiotics, prebiotics, and plant extracts on CH$_4$ emission reduction in ruminants based on published studies over the past 5 years.

Conclusion. Our review provides a theoretical basis for future research and the application of feed additives in ruminant CH$_4$ emission reduction activities.

INTRODUCTION

Methane (CH$_4$) is the world’s second most abundant greenhouse gas after carbon dioxide (CO$_2$), accounting for 16% of total greenhouse gas emissions (De Visscher & Van Cleemput, 2003). The potential global warming effect of CH$_4$ is 28-fold higher than that of CO$_2$ (Stocker et al., 2013). In addition, rumen CH$_4$ emissions from ruminants account for 13% to 19% of the global CH$_4$ emissions (Liu & Whitman, 2008); therefore, ruminant feeding is a major factor in exacerbating global warming. Therefore, reducing rumen CH$_4$ emissions could decrease the rate of global warming, which would be of great significance to efforts to

How to cite this article Sun K, Liu H, Fan H, Liu T, Zheng C. 2021. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ 9:e11151 http://doi.org/10.7717/peerj.11151
reduce global greenhouse gas emissions. CH4 emissions also represent energy losses during ruminant farming. On average, approximately 8–12% of the energy consumed in feed is wasted in the form of CH4 emissions (Johnson & Johnson, 1995).

Accordingly, to remedy the low production efficiency and mitigate the potential damage caused by livestock CH4 emissions to the environment, researchers have begun to explore the roles of different feed additives in reducing ruminant CH4 emissions. Among them, N2-containing compounds, probiotics, prebiotics, and plant extracts, which are feed additives that are not harmful to animal health, have been the first subjects of research and are expected to become ideal CH4 inhibitors in the future. This article reviews the mechanism of CH4 emission production in ruminants and the potential influence of nitrogenous compounds, probiotics, prebiotics, and plant extracts on ruminal CH4 production.

SURVEY METHODOLOGY

In this review, keywords related to additives, ruminants, methane emission reduction in the past five years were searched through the Web of Science database, and Sci-Hub, PubMed, etc. were used as auxiliary searchers. Perform a rough reading of all the retrieved documents; screen out documents related to the effects of additives on ruminant methane in ruminants; then list the documents related to the effects of different additives on ruminant methane in ruminants according to the type of additives; finally, classify different categories Make a summary and finally complete this article.

RESULTS

Methane production mechanism in ruminants

After ruminant ingestion, the nutrients (proteins, lipids, and carbohydrates) in feed are degraded by rumen microorganisms to produce hydrogen (H2) and primary fermentation products that contain methyl groups such as formic acid, acetic acid, methanol, and methylamine. Afterward, methanogens convert the primary fermentation products into CH4 and energy is obtained. There are three pathways of ruminal CH4 production (Thauer et al., 2008) (Fig. 1), including (1) the CO2–H2 reduction pathway; (2) synthesis pathways using short-chain fatty acids such as formic acid, acetic acid, and butyric acid as substrates; (3) and synthesis pathways using methyl compounds such as methanol and ethanol as substrates. Among the three, the CO2–H2 route is the primary pathway (Ellis et al., 2008) because the growth rates of Methanococcus that exploit acetic acid are low (Liu & Whitman, 2008), and acetic acid-producing bacteria have a low affinity for H2 (Morgavi et al., 2010). In addition, only methanogens of Methanosphaera use methanol to produce CH4 (Liu & Whitman, 2008).

Effects of nitrogenous compounds on methane production in ruminants

N-containing compounds are used as ammonium-N (NH4+-N) supplements in ruminant diets. Extensive research has revealed that N-containing compounds can reduce CH4 production via their influence on rumen microorganisms, for example, by reducing the
activity of participating CH$_4$-producing enzymes and competing for hydrogen (Table 1), in addition to supplementing NH$_4^+$-N. Among them, nitrate-N (NO$_3^-$-N) is considered to be a urea substitute; it can not only meet the requirements of rumen microorganisms for NH$_4^+$-N, but can also decrease CH$_4$ production substantially (Adejoro et al., 2020; Adejoro, Hassen & Thantsha, 2018; Alvarez-Hess et al., 2019; Wu et al., 2019). The mechanism of action is linked to the competitive effects of NO$_3^-$-N over H$_2$ consumption and the inhibitory effect of the generated nitrite (NO$_2^-$-N) on methanogen proliferation. However, large doses of NO$_3^-$-N may cause the accumulation of toxic NO$_2^-$-N (Jeyanathan, Martin & Morgavi, 2014). Therefore, it is necessary to control NO$_3^-$-N dosages, or supplement feed with NO$_2^-$-N reducing agents, to minimize nitrite toxicity (Jeyanathan, Martin & Morgavi, 2014); NO$_2^-$-N capsules could also be used (De Raphelis-Soissan et al., 2017).

A novel N-containing compound, 3-nitroxypropanol (3-NOP), has recently been introduced; it can continuously reduce CH$_4$ production without adversely affecting animal growth or development (Romero-Pérez et al., 2016). It is an ideal CH$_4$ inhibitor. The structure of 3-NOP is similar to that of methyl-coenzyme M, which is associated with the last step of CH$_4$ production, and 3-NOP can inhibit the activity of the reductase.

Figure 1 Schematic diagram of methane production. There are three basic pathways of ruminal methane production: (1) represents the CO$_2$-H$_2$ reduction pathway, (2) represents the synthesis pathway of short chain fatty acids such as formic acid, acetic acid, and butyric acid as substrates, and (3) represents the synthesis pathway with methyl compounds such as methanol and ethanol as substrates. Among these, route (1) is considered to be the primary route of methane production.
Table 1 Inhibitory effects of nitrogen-containing compounds on ruminal methane emissions and their mechanisms.

Types of nitrogenous compounds	Inhibitory effect	Addition amount; maximum methane suppression amount	Inhibition mechanism	References
Nitrate	***	20 mg/g dry matter; 21% (Alvarez-Hess et al., 2019)	(1) Hydrogen consumption; (2) Inhibits the proliferation of methanogens; reduces their activity and abundance	Adejoro et al. (2020); Adejoro, Hassen & Thantsha (2018); Alvarez-Hess et al. (2019); Wu et al. (2019); Liu et al. (2017); Zhao et al. (2018)
Encapsulated nitrate (EN)	**	70 g /100 kg of body weight; 18.5% CH4/kg of forage dry matter intake (Granja-Salcedo et al., 2019)	Reduces methane reducing bacteria	Granja-Salcedo et al. (2019); Capelari et al. (2018); Alemu et al. (2019)
Urea and nitrate mixture	**	34 g/kg straw dry matter + 6 g/kg dry matter of ammonium nitrate; 10.2% (Zhang et al., 2019)	Indirect consumption of hydrogen	Zhang et al. (2019); Zhang et al. (2018)
Nitroethane (NE), 2-Nitroethanol	***	10 mmol/L; 96.7% (NE), 96.7% (NEOH), 41.7% (NPOH)	(1) Inhibits the activity of methanogens; (2) Inhibits methyl-coenzyme M gene expression; (3) Reduces the content of coenzyme F420 and F430	Zhang et al. (2020a)

(continued on next page)
Types of nitrogenous compounds	Inhibitory effect	Addition amount; maximum methane suppression amount	Inhibition mechanism	References
3-Nitrooxypropanol (NOP)	***	0.08 mg/g dry matter; 44% (Alvarez-Hess et al., 2019) 2.5 g/animal/day; 38%/kg dry matter intake (Martinez-Fernandez et al., 2018) 60 mg/kg of feed dry matter; 26%/day (Melgar et al., 2020) 1.6 g; 28%(roughage), 23% (concentrate pellet) (Van Wesemael et al., 2019)	Inhibits methyl-Coenzyme M activity	Alvarez-Hess et al. (2019); Dijkstra et al. (2018); Kim et al. (2020a); Martinez-Fernandez et al. (2018); Melgar et al. (2020); Van Wesemael et al. (2019); Jayanegara et al. (2018); Henderson, Cook & Rominus (2018)

Notes.
***The additive has a significant effect on methane inhibition.
**The additive has a general effect on methane inhibition.
Nitroethane (NE), 2-nitroethanol (NEOH), and 2-nitro-1-propanol (NPOH) can also inhibit methanogenic bacteria and significantly reduce the expression of the methyl-coenzyme M reductase gene (Zhang et al., 2020a). In addition, these compounds could reduce the content of coenzymes F420 and F430, reducing ruminal CH₄ production in turn (Zhang et al., 2020a). There are numerous other N-containing compounds that inhibit methanogen activity and alter the structure of rumen microbial flora, the activity of enzymes involved in CH₄ production, and the distributions of volatile fatty acids, leading to the consumption of H₂ and reduction of CH₄ production in turn.

Effects of probiotics on methane production in ruminants

Probiotics are a class of beneficial active microorganisms or their cultures. Probiotics could reduce CH₄ emissions in ruminants (Table 2). There are many types of probiotics, and different strains have different inhibitory effects on CH₄ emissions. For example, the GA03 strain of *Acetobacter* is more effective at inhibiting CH₄ production than other isolated strains (Kim et al., 2020b). Most probiotics reduce CH₄ production by influencing the activities of ruminal microorganisms, with no adverse effects on animals. In addition, probiotics enhance ruminal fermentation.

Lactic acid bacteria, which have been used as feed additives for a long time, not only reduce CH₄ emissions per unit volatile fatty acid (VFA) output, but also improve the fermentation quality and fiber digestibility of silage (Guo et al., 2020). In addition, the denitrifying bacterium *Bacillus* 79R4 could prevent NO⁻₂-N poisoning and microbial ecosystems from impairing fermentation efficiency (Latham et al., 2019). Furthermore, *Bacillus licheniformis* reduces CH₄ production and increases feed energy and protein utilization (Deng et al., 2018). However, the inhibitory mechanism of lactic acid bacteria on CH₄ is still unclear; therefore, in the future, more research will need to be conducted on the influence of lactic acid bacteria on rumen microbes and hydrogen competition to elucidate the mechanism of inhibiting CH₄ production.

Effect of prebiotics on methane production in ruminants

Prebiotics are substances that are not easily digested or absorbed by the host. They selectively stimulate the growth and activity of one or several ruminal microorganisms with a positive effect on ruminal fermentation (De & Schrezenmeir, 2002). Prebiotics suppress ruminal CH₄ production in ruminants. Prebiotics mainly reduce rumen CH₄ production by altering the bacterial community structure, influencing the permeability of the cell walls of methanogenic archaea, and stimulating other bacteria to compete with methanogens for H₂ (Table 3). According to Tong et al. (2020), the prebiotic chitosan can influence bacterial community structures by altering microbial population compositions, for example, by replacing fibrinolytic enzyme-producing microbes (*Firmicutes* and *Fibrobacteres*) with amylolytic enzyme-producing microbes (*Bacteroides* and *Proteus*); in turn, reducing CH₄ production.

According to Seankamsorn, Cherdthong & Wanapat (2020), chitosan could influence the ruminal fermentation process by altering VFA distributions and increasing propionic acid concentrations, which reduces CH₄ production in turn. However, according to some
Table 2 The inhibitory effects of probiotics on ruminal methane emissions and their mechanisms.

Types of probiotics	Inhibitory effect	Addition amount; maximum suppression methane amount	Inhibition mechanism	References
Propionic acid bacillus	*(Most propionic bacteria)*^{**} *(P. jensenii LMGT282 and P. theonii LMGT2827 or T159)*	100 µL of the propionic acid bacteria culture *(2 × 10⁸ to 4 × 10⁸ colony forming units), Propionibacterium theonii T159; 20%	Unknown	Chen et al. (2020)
Lactic acid bacteria	***	5.3 lg cfu/g fresh weight, *Lactobacillus plantarum*, 8.8 ml/g(72h)	Hydrogen consumption	Guo et al. (2020)
Acetic acid bacteria	***	1% *Proteiniphilum acetatigenes* GA03; -	Reduced the number of methanogens	Kim et al. (2018c); Kim et al. (2020b)
Enterococcus faecium	***	0.1%; 2.08 mM/mL	Alters microbial flora	Mamuad et al. (2019)
Probiotic products	***	2 g probiotic products in powder; 1.2 ml/g of dry matter 10 ml probiotic products in liquid; 1.2 ml/g of dry matter	Reduce the number of rumen protozoa	Hasan et al. (2020)
of Ruminococcus flavefaciens	***			
Bacillus licheniformis	***	2.5 × 10⁸; 2.7 L/d	Unknown	Deng et al. (2018)
Saccharomyces cerevisiae	***(Pedraza-Hernández et al., 2019)***^{**} *(Darabighane et al., 2019)*	–	Affects rumen microbes	Pedraza-Hernández et al. (2019); Darabighane et al. (2019)

Notes.
- **The additive has a significant effect on methane inhibition.
- The additive has a general effect on methane inhibition.
- The additive has no obvious effect on methane inhibition.
| Types of prebiotics | Inhibitory effects | Addition amount; maximum methane suppression amount | Inhibition mechanism | References |
|---------------------|--------------------|---|--|--|
| Chitosan | *** | 3000 (molecular weights) dry matter; 22.9% dry matter; 2% Chitosan + 21% of crude glycerin; 53.67% | (1) Alters microbial community structure (Tong et al., 2020) (2) Alters fermentation pathway (Seankamsorn, Cherdthong & Wanapat, 2020) (3) Influences methanogenic bacteria cell wall permeability (Zanferari et al., 2018) | Tong et al. (2020); Seankamsorn, Cherdthong & Wanapat (2020); Zanferari et al. (2018); Haryati et al. (2019) |
| Yeast products | *** | 4 mg/1 g dry matter; - | Indirect consumption of hydrogen | Vallejo-Hernández et al. (2018) |

Notes.
*** The additive has a significant effect on methane inhibition.
researchers, the reduction in CH$_4$ is associated with the degree of chitosan deacetylation, which could alter the permeability of the methanogen cell wall. In addition, Vallejo-Hernández et al. (2018) observed that various yeast products could reduce CH$_4$ emissions by stimulating acetic acid-producing bacteria to compete with methanogens or metabolize hydrogen. Overall, compared with other feed additives, prebiotics are still relatively less applied in feed, and their types are limited. Therefore, future research should target strategies to promote the adoption of prebiotic feed additives. For example, when conducting scientific research, it is necessary to strengthen contact with breeding companies so that companies can see the effects of prebiotic additives and reduce penalties due to pollution. It is also necessary to enforce the guidelines and requirements of the national environmental protection department for low environmental pollution and exploit consumers’ demand for healthy food to promote the widespread use of prebiotic additives.

Effects of plant extracts on methane production in ruminants

In recent years, the effects of plant-derived feed additives on rumen microbial fermentation, rumen CH$_4$ production, and ruminant performance have been increasingly recognized. Many previous studies have demonstrated that natural plant-derived compounds are promising anti-CH$_4$-generation compounds, including tannins, essential oils, and saponins (Table 4). Although plant extracts have potentially significant effects on CH$_4$ emission reduction in ruminants, most of the inhibition mechanisms are not clear. According to research findings, the effects of plant-derived feed additives on ruminant methane emission reduction are mainly based on competition for hydrogen and rumen microbes. Competing for hydrogen is manifested in the form of increased propionic acid contents in fermentation products. Effects on rumen microbes are manifested in the number and activity of protozoa, methanogens, and total bacteria, and the results vary based on types of plant-derived feed additives.

Medicinal plant extracts (for example: patchouli, atracylodles, and honeysuckles), tannins, and essential oils have all been shown to suppress the production of CH$_4$ by altering ruminal microbial structure and abundance (Kim et al., 2016). The inhibitory effects of tannins on CH$_4$ reduction are influenced by their molecular weight (Petlum et al., 2019; Piñeiro Vázquez et al., 2018a). However, if the molecular weights of tannins are too high, the palatability of the diet would be adversely affected, and, in turn, the performance of animals. Therefore, it is critical to determine the optimal tannin supplementation levels. The effects of plant essential oils on rumen microorganisms could be linked to their antibacterial, antiviral, antifungal, and insecticidal properties. Plant essential oils contain various active ingredients that can regulate rumen fermentation and reduce CH$_4$ emissions (Soltan et al., 2018). As antibiotic substitutes, medicinal plant extracts could have unique influences on rumen microbes due to their equally unique medicinal properties, including CH$_4$ emission reduction (Kim et al., 2016; Yadeghari et al., 2015).

Generally, plant extracts have a significant effect on reducing methane emissions from ruminants, but most of its mechanism of action is still unclear. Almost all tests are in vitro tests, which are short-term tests. At present, research on plant extracts in animals is still lacking, and the effect of long-term use of plant extracts on animals is still unclear.
Table 4 Inhibitory effects of plant extracts on ruminal methane emissions and their mechanisms.

Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References	
Plant extracts	Corymbia citriodora leaf extract	***	10 ml/calf/day; –	(1) Protozoa number reduced (1. 84×10^5/ml) (2) Ratios of volatile fatty acids altered	Hassan et al. (2020)
	Aloe vera, Carica papaya, Azadirachta indica, Moringa oleifera, Tithonia diversifolia, Jatropha curcas, and Moringa oleifera pod extracts	***	25 mg/L and 50 mg/L Azadirachta indica, Carica papaya, Tithonia diversifolia; 15%, Jatropha curcas and Moringa oleifera pods; 30% (Akanmu & Hassen, 2018) Eragrostis substrate, 4 ml plant extracts; 50% reduction in methane / Total gas production (Akanmu, Hassen & Adejoro, 2020)	Unknown	Akanmu & Hassen (2018); Akanmu, Hassen & Adejoro (2020); Parra-Garcia et al. (2019)
	Pomegranate peel extract and Desert teak extract	***	2% of dry matter intake, Punica granatum; 46%; Tecomella undulata; 42%	Unknown	Hundal et al. (2019)
	Rhus succedanea extract	***	50 mg/L; lowest	Unknown	Kim et al. (2018a)
	Areca catechu and Acacia nilotica extract	**	2% dry matter basis, Areca Catechu; 21%; Acacia nilotica; 23%	Unknown	Wadhwa, Sidhu & Bakshi (2020)
	Asparagopsis armata Garlic extract	***	1.0%; 67.2% (Roque et al., 2019) 0.5%; – (Kim et al., 2018b) 1 g the experimental mixture; 6.9 ±10.7 ml/d (Eger et al., 2018)	Unknown	Roque et al. (2019); Lee et al. (2018) Kim et al. (2018b); Eger et al. (2018)
	Plant extract; resveratrol	***	25 mg, high-forage diets; 60%; high-concentrate diets; 41%	Decreased abundance of Methanobacter	Ma et al. (2020)
	Plant extracts: caffeic acid and p-coumaric acid	***	12 mM, Caffeic acid; 37.58%; p-coumaric acid; 28.33%	Unknown	Berchez et al. (2019)

(continued on next page)
Table 4 (continued)

Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Licorice extract	***	1 g/L; 51%	(1) Decline in the number of rumen protozoa (1.27 log cells/mL) (2) Decrease in bacterial diversity (3) Change in bacterial and archaea community structure	Ramos-Morales et al. (2018)
Eucalyptus leaf extract	***	100 mg ethyl acetate extract; 93.4%	Unknown	Boussaada et al. (2018)
Ginkgo extract	***	1.6% fruit equivalent, Forage-to-concentrate ratio 5:5; 41.9%	(1) Hydrogen consumption (2) Reduce the number of rumen flora (Decrease in total bacteria, Ruminococcus flavaeceans, Ruminococcus albus and Fibrobacter succinogenes. Increase in the levels of Selenomonas ruminantium, Anaerovibrio lipolytica, Ruminobacter amylophilus, Succinivibrio dextrinosolvens and Megasphaera elsdenii)	Oh, Koike & Kobayashi (2017)
Olive leaf extract	***	In oaten chaff treatments: Leccino leaf chloroform extract; 86.4% Kalamata leaf chloroform extract; 69.9% In commercial concentrate treatments: Leccino leaf chloroform extract; 94.5% Kalamata leaf chloroform extract; 92.5%	Decreased ratio of acetic acid and propionic acid, Hydrogen consumption	Shakeri et al. (2017)
Radish extract	***	12 hr incubation time 5, 7 and 9%; highest methane reduction	Unknown	Lee et al. (2017)
Propolis extract	***	Within 5 h, the methane production decreases linearly	Hydrogen consumption	Santos et al. (2016)

(continued on next page)
Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Malic acid or disodium malate	***	Treatment of sunflower meal with malic acid; 11.3%; Treat sunflower seeds with malic acid; 15.5%	Propionic acid increases, consumption of hydrogen	Vanegas et al. (2017a); Vanegas et al. (2017b)
Mulberry leaf flavonoids	***	2 g/head/day; 12%	(1) Reduction in the number of methanogens in the rumen; (2) Decline in the number of rumen protozoa; (3) Increase in populations of *Fibrobacter succinogenes*, *R. albus* and *Butyrivibrio fibrisolvens*	Ma et al. (2017)
Saturated medium chain fatty acids	***	2.5% Krabok (*Irvingia malayana*) seed oil and *Flemingia (Flemingia macrophylla)* leaf powder; Lowest yield	(1) Hydrogen consumption (2) Decrease in the numbers of methanogens and ciliates or inhibition of their activity.	Kang et al (2017); Dohme et al. (2000); Patra (2013)
Lauric acid	***	30 g/kg dry matter; the methane to total gas ratio with the Lauric acid diet was significantly reduced from day 4 onwards, to almost 0 at day 8	1) Hydrogen consumption	Klop et al. (2017)
Grape pomace Powder	***	5.0 kg dried grape marc dry matter/day; 23%; 5.0 kg Ensiled grape marc dry matter/day; 18%	(1) Hydrogen consumption (2) Significant decrease in the number of protozoa and *Cellulolytic bacteria*.	Foiklang, Wanapat & Norrapoke (2016); Moate et al (2014)
Medicinal plant extracts	Honeysuckle extract	Methane production (ml/g dig dry matter) decreased linearly with increasing concentrations of the *Honeysuckle extract*	Decrease in the total number of microorganisms, methanogenic archaea, and ciliate protozoa. And at 3%, *Ruminococcus albus*, *Fibrobacter succinogenes*, and *Ruminococcus flavifaciens* decreased significantly.	Yejun et al. (2019)
Table 4 (continued)

Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Papaya leaf extract	***	Methane production (mL/250 mg dry matter) decreased with increasing levels of Papaya leaf extract.	(1) Hydrogen consumption (2) Decreases in the total bacteria, total protozoa, *Butyrivibrio fibrisolvens* and methanogen populations	Jafari et al. (2018); Jafari et al (2016)
Bamboo Leaf	***	25%; 62% Hydrogen consumption	Unknown	Jafari et al. (2020)
Chicory	***	Pure chicory; 23%(when expressed per kg dry matter intake)	Unknown	Niderkorn et al. (2019)
Patchouli and Atractylodes	***	25 g/kg dry matter; Cablin patchouli herb and Amur cork tree abated methane release	(1) Decrease in methanogens, *Ruminococcus flavefaciens* and total fungi populations (2) Hydrogen consumption	Wang et al. (2019a); Wang et al. (2019b)
A mixture of absinthe, chamomile, fumigant and sunflower	**	Potential to reduce methane emissions from the rumen	Unknown	Petrić et al. (2020)
Rhubarb	***	1 g/d; 14%(*García-González, González & López, 2010*) 1.33 g/L; 55%(*Kim et al., 2016*)	(1) Hydrogen consumption (2) Increase in numbers of *Prevotella* and *Lactobacillus*, but decrease in *Methanobrevibacter*. (3) Depletion of methyl-Coenzyme M reductase binding sites	García-González, González & López (2010); Kim et al. (2016); Arokiyaraj, Stalin & Shin (2019)
Boerhovia diffusa, *Holarrhena antidysentericum*, *Solanum nigrum*, *Trigonella foenum-graecum*, *Withania somnifera* and *Woodfordia fruticosa*	***	When compared irrespective of the source of inoculum, methane production reduced linearly with the increasing dose of supplementation. Withania somnifera, Woodfordia fruticosa and *Boerhovia diffusa* more effective in reducing methanogenesis;	Unknown	Pattanaik et al. (2018)

(continued on next page)
Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Myrobalan	***	Ruminal methane production was linearly decreased with increasing level of *Terminalia chebula* supplementation	(1) Hydrogen consumption	
(2) Reduction in the number of protozoa	*Anantasook et al. (2016)*			
Sanguisorba	***	40 mg and 100 mg; methane expressed per units of total gas production decreased in a linear and quadratic manner	(1) Decrease in the protozoal population	
(2) Reduction of in vitro dry matter digestibility	*Cieslak et al. (2016)*			
Centella asiatica powder and Mangosteen peel power	***	25 g/kg dry matter intake; 4.8%	(1) Reduction in the number of rumen protozoa	
(2) Increase in Cellulolytic bacteria, Proteolytic bacteria, and *F. succinogenes*	*Norrapoke et al. (2014)*			
Plant tannins				
Rambutan peel	***	16 mg; 1.3 mL/0.5 mg dry matter	Hydrogen consumption	*Gunun et al. (2018)*
Black wattle bark extract	***	30 g Acacia/kg of dietary dry matter; Linear decline, 0.18 g/day or 0.16 g/kg dry matter intake	Unknown	*Denninger et al. (2020)*
Acacia leaf	***	36% of dry matter; 19.6% (Montoya-Flores et al., 2020) 100% leaves; 55% Rira et al. (2019) 100% pods; 64% (Rira et al., 2019)	Unknown	*Montoya-Flores et al. (2020); Rira et al. (2019)*
Pitaya peel powder	**	4% of dry matter; roughtage to concentrate ratio 100:8; 2.4 mmol/L, 70:30:3.8 mmol/L, 30:70:2.9 mmol/L	(1) Reduction of the number of rumen protozoa	
(2) Hydrogen consumption	*Matra et al. (2019)*			
Chinese chestnut	**	1.5 g/day chestnut tannins; 65%	Decrease in methanogens, *Ruminococcus albus*, *Methanobrevibacter sp.*, *Methanobrevibacter ruminantium*, and *Methanosphaera stadtmanae*.	*(Witzig, Zeder & Rodehutscord, 2018)*
Quebracho tannin	***	3%/kg dry matter; 41% (Pineiro-Vazquez et al., 2018b); 4.5% of dry matter; 20.38 L/d (Norris et al., 2020)	Unknown	*Pineiro-Vazquez et al. (2018b); Liu et al. (2019a); Norris et al. (2020)*

(continued on next page)
Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Red bean grass and Hazelnut peel extract	**	15.2% Sainfoin pellets+4.1% hazelnut pericarps; -	Unknown	Niderkorn et al. (2020)
Tannin-rich peanut skins and wet lees	***	20% peanut skin+15% Wet distiller’s grains plus solubles; 0.17 ml/24 h 15% peanut skin+10% Wet distiller’s grains plus solubles; 0.28 ml/24 h	(1) Hydrogen consumption (2) Decrease in the average populations of Bacteroidetes, total methanogens, *Methanobrevibacter* sp., AbM4, and total protozoa.	Min et al. (2019)
Table 4 (continued)

Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Contains tannins of sumac, chestnut, oak and mimosa	**	0.5, 0.75 and 1 mg/ml; decrease linearly with added amount	Decrease in the number of total methanogens, *Ruminococcus flavefaciens*, and *Fibrobacter succinogenes*	Jayanegara et al. (2015)
Delonix regia seed meal	***	16.7 mg of dry matter; 42.4%	Reduction in the number of protozoa	Supapong et al. (2017)
Banana flower powder pellet	**	0, 30, and 60 g/kg of dietary substrate; decrease linearly with added amount	Reduction in the number of protozoa; Increase in number of bacteria	Kang, Wanapat & Viennasay (2016)
Plant essential oil	**	300 mL/L incubated substrate; day 6 onward > 90%	Unknown	Garcia et al. (2019)
Lippen and Marigold essential oil	***	90 µg/g incubated substrate; 9%	Unknown	El-Zaiat & Abdalla (2019)
Patchouli essential oil	***	0.2 g/L bovine ruminal culturemedium, *(Castañeda Correa et al., 2019)*	Unknown	Castañeda Correa et al. (2019); Baraz, Jhanati-Azizabadi & Azizi (2018)
Thymol and carvacrol oils	**	100 µL/L; 2.89 mmol per 100 mol VFAs *(Baraz, Jhanati-Azizabadi & Azizi, 2018)*	Unknown	
Agolin	***	0.05 g/kg dry matter; -	Unknown	Belanche et al. (2020); Klop et al. (2017)
Oregano essential oil	***	52 mg/L; 6.4 mL (24 h)	Increase in the relative abundance of *Prevotella* and *Diaelister* bacteria	Zhou et al. (2020)
Citrus essential oil	**	0.8 mL / L; -	Reduction in rumen microbial adaptability	Wu et al. (2018)
Microencapsulated blend of essential oil	***	200 mg of microencapsulated blend of essential oils/kg dietary dry matter; 13.7/kg digestible organic matter	Unknown	Soltan et al. (2018); Yatoo et al. (2018)
Moringa seed oil	***	Roughage to concentrate ratio 70:30, 4% incubated substrate; 3.29 total CH₄ mL/g dry matter Roughage to concentrate ratio 50:50, 1% incubated substrate; 2.81 total CH₄ mL/g dry matter Roughage to concentrate ratio 30:70, 1% incubated substrate; 1.31 total CH₄ mL/g dry matter	(1) Hydrogen consumption (2) Roughage to concentrate ratio 30:70, 50:50; Reduction in the number of *Firmicutes* to *Bacteroidetes* ratio, protozoa and methanogens. 70:30; Significant increases in the numbers of protozoa, methanogens and bacteria.	Ebeid et al. (2020)

(continued on next page)
Table 4 (continued)

Types of probiotics	Inhibitory effects	Addition amount; maximum suppression methane amount	Inhibition mechanisms	References
Eucalyptus oil	***	10 ml/kg dry matter, Roughage to concentrate ratio 60:40; 46%	Reduction in the number of rumen protozoa	Abdelrahman et al. (2019); Wang et al. (2018)
Anise oil	***	400 mg/L; 39 mL/g of digestible dry matter	Unknown	Wang et al. (2018)
Silkworm pupa oil	***	5%; 30% (Thirumalaisamy et al., 2020)	Reduction in the number of rumen protozoa	Thirumalaisamy et al. (2020)
Tucumá oil	***	1%, forage:concentrate, 70:30; 0.66 mg/g dry matter	Hydrogen consumption	Ramos et al. (2018)
Linseed oil	***	4%; 17% (Guyader et al., 2015)	(1) Hydrogen consumption (2) Reduced the number of protozoa and copy number of total bacteria	Ruiz-Gonzalez et al. (2017); Vargas et al. (2020); Guyader et al. (2015)
Plant saponins	Tea extract	0.028%, forage-to-concentrate ratio 60:40; 3g/day (Kolling et al., 2018) 2.0 g/head/day; 8.80% (emissions scaled to metabolic body weight) (Liu et al., 2019b)	Unknown	Kolling et al. (2018); Liu et al. (2019b)
Ivy fruit saponins	***	5% dry matter; 1.98 mmol/day	Anaerobic fungi and Methanogens content decreased	Belanche et al. (2016)
Waste products	Humic acid	3.6 mg/mL; 1.6 mL/g dry matter (48 h)	Unknown	Sheng et al. (2019)
Geen tea waste	***	40 g/kg dry matter; 3.39 ml/200 mg dry matter	Unknown	Nasehi et al. (2018)
Palm oil industrial waste	***	50%; completely inhibited methane production.	(1) Reduced the content of methanogens, Lactoba-cillus sp. and Megasphaera sp. (2) Hydrogen consumption	Sheng et al. (2019); Nasehi et al. (2018); Mustapha et al. (2017)
Wastes of tomato fruit	***	Replacing 50% of cereals-based concentrate; 28%	Hydrogen consumption	Romero-Huelva & Molina-Alcaide (2013)

Notes.

*** The additive has a significant inhibitory effect on methane.

** The additive has an inhibitory effect on methane.
Therefore, in the future, we should focus on using plant extracts in animals and study the effects of long-term use on animals.

CONCLUSIONS

Considering the results of the studies that have been published over the past 5 years, the application of nitrogenous compounds, probiotics, prebiotics, and plant extracts has been shown to reduce ruminal CH$_4$ emissions. There are three main ways of reducing CH$_4$ production: (1) reducing the number of rumen protozoa and inhibiting methanogen activity; (2) increasing propionic acid production to compete with methanogens for hydrogen; (3) inhibiting the activity of enzymes involved in methanogen activity. However, the mechanisms of action of most plant extracts remain unclear; and almost all studies are based on in vitro fermentation tests. In addition, most plant extracts have no adverse effects on animals, and they are rich in resources. Consequently, research on the effects of plant extracts in animals and their mechanisms of action should be the main research direction in the future, to enhance their application in animal production and the mitigation of the adverse effects of global warming.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This study was supported by the National Natural Science Foundation of China (31860657). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31860657.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Kang Sun conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Huihui Liu and Huiyu Fan conceived and designed the experiments, prepared figures and/or tables, and approved the final draft.
- Ting Liu and Chen Zheng conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

This is a review article; there is no raw data.
REFERENCES

Abdelrahman SM, Li RH, Elnahr M, Farouk MH, Lou YJ. 2019. Effects of different levels of eucalyptus oil on methane production under in vitro conditions. *Polish Journal of Environmental Studies* 28:1031–1042 DOI 10.15244/pjoes/86117.

Adejoro FA, Hassen A, Akanmu AM, Morgavi DP. 2020. Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. *Animal Feed Science and Technology* 259:114360 DOI 10.1016/j.anifeedsci.2019.114360.

Adejoro FA, Hassen A, Thantsha MS. 2018. Preparation of acacia tannin loaded lipid microparticles by solid-in-oil-in-water and melt dispersion methods, their characterization and evaluation of their effect on ruminal gas production in vitro. *PLOS ONE* 13:e0206241 DOI 10.1371/journal.pone.0206241.

Akanmu AM, Hassen A. 2018. The use of certain medicinal plant extracts reduced in vitro methane production while improving in vitro organic matter digestibility. *Animal Production Science* 58:900–908 DOI 10.1071/AN16291.

Akanmu AM, Hassen A, Adejoro FA. 2020. Gas production digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. *Animals* 10:146 DOI 10.3390/ani10010146.

Alemu AW, Romero-Pérez A, Araujo RC, Beauchemin KA. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. *Animals* 9:21 DOI 10.3390/ani9010021.

Alvarez-Hess PS, Moate PJ, Williams SRO, Jacobs JL, Beauchemin KA, Hannah MC, Durmic Z, Eckard RJ. 2019. Effect of combining wheat grain with nitrate, fat or 3-nitrooxypropanol on in vitro methane production. *Animal Feed Science and Technology* 256:114237 DOI 10.1016/j.anifeedsci.2019.114237.

Anantasook N, Wanapat M, Gunun P, Cherdthong A. 2016. Reducing methane production by supplementation of Terminalia chebula RETZ, containing tannins and saponins. *Animal Science Journal* 87(6):783–790 DOI 10.1111/asj.12494.

Arokiyaraj S, Stalin A, Shin H. 2019. Anti-methanogenic effect of rhubarb (Rheum spp.) – an in silico docking studies on methyl-coenzyme M reductase (MCR). *Saudi Journal of Biological Sciences* 26:1458–1462 DOI 10.1016/j.sjbs.2019.06.008.

Baraz H, Jahani-Azizabadi H, Azizi O. 2018. Simultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics. *Veterinary Research Forum* 9:193–198.

Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yáñez Ruiz DR. 2020. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. *Animals* 10:620 DOI 10.3390/ani10040620.

Belanche A, Pinloche E, Preskett D, Newbold CJ. 2016. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. *FEMS Microbiology Ecology* 92(1).
Berchez M, Urcan AC, Corcionivoschi N, Criste A. 2019. In vitro effects of phenolic acids and IgY immunoglobulins on aspects of rumen fermentation. Romanian Biotechnological Letters 24:513–521 DOI 10.25083/rbl/24.3/513.521.

Boussaada A, Arhab R, Calabrò S, Grazioli R, Ferrara M, Musco N, Thlidiene M, Cutrignelli MI. 2018. Effect of *Eucalyptus globulus* leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population. Annals of Animal Science 18:753–767 DOI 10.2478/aosa-2018-0006.

Capelari M, Johnson KA, Latak B, Roth J, Powers W. 2018. The effect of encapsulated nitrate and monensin on ruminal fermentation using a semi-continuous culture system. Journal of Animal Science 96:3446–3459 DOI 10.1093/jas/sky211.

Chen J, Harstad OM, McAllister T, Dörsch P, Holm H. 2020. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agriculturae Scandinavica, Section A—Animal Science 10:1–7.

Cieslak A, Zmora P, Matkowski A, Nawrot-Hadzik I, Pers-Kamczyc E, El-Sherbiny M, Bryszak M, Szumacher-Strabel M. 2016. Tannins from *Sanguisorba officinalis* affect in vitro rumen methane production and fermentation. Journal of Animal and Plant Sciences 26:54–62.

Castañeda-Correa A, Corral-Luna A, Hume ME, Anderson RC, Ruiz-Barrera O, Castillo-Castillo Y, Rodriguez-Almeida F, Salinas-Chavira J, Arzola-Alvarez C. 2019. Effects of thymol and carvacrol, alone or in combination, on fermentation and microbial diversity during in vitro culture of bovine rumen microbes. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes 54:170–175 DOI 10.1080/03601234.2018.1536580.

Darabighane B, Salem AZM, Aghjehgheshlagh FM, Mahdavi A, Zarei A, Elghandour MMMY, López S. 2019. Environmental efficiency of *Saccharomyces cerevisiae* on methane production in dairy and beef cattle via a meta-analysis. Environmental Science and Pollution Research 26:3651–3658 DOI 10.1007/s11356-018-3878-x.

De VM, Schrezenmeir J. 2002. Probiotics prebiotics synbiotics. Advances in Biochemical Engineering/Biotechnology 22:357–360.

Deng KD, Xiao Y, Ma T, Tu Y, Diao QY, Chen YH, Jiang JJ. 2018. Ruminal fermentation nutrient metabolism and methane emissions of sheep in response to dietary supplementation with bacillus licheniformis. Animal Feed Science and Technology 241:38–44 DOI 10.1016/j.anifeedsci.2018.04.014.

Denninger TM, Schwarm A, Birkinshaw A, Terranovam, Dohme-Meier F, Münger A, Eggerschwiler L, Bapst B, Wegmann S, Clauss M, Kreuzer M. 2020. Immediate effect of acacia mearnsii tannins on methane emissions and milk fatty acid profiles of dairy cows. Animal Feed Science and Technology 261:114388 DOI 10.1016/j.anifeedsci.2019.114388.

De Raphelis-Soissan V, Nolan JV, Godwin IR, Newbold JR, Perdok HB, Hegarty RS. 2017. Paraffin-wax-coated nitrate salt inhibits short-term methane production in sheep and reduces the risk of nitrite toxicity. Animal Feed Science and Technology 229:57–64 DOI 10.1016/j.anifeedsci.2017.04.026.
De Visscher A, Van Cleemput O. 2003. Simulation model for gas diffusion and methane oxidation in landfill cover soils. *Waste Management* 23:581–591. DOI 10.1016/S0956-053X(03)00096-5.

Dijkstra J, Bannink A, France J, Kebreab E, Van Gastelen S. 2018. Short communication: antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. *Journal of Dairy Science* 101:9041–9047. DOI 10.3168/jds.2018-14456.

Dohme F, Machmüller A, Wasserfallen A, Kreuzer M. 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. *Canadian Journal of Animal Science* 80:473–474. DOI 10.4141/A99-113.

Ebeid HM, Li M, Kholif AE, Faiz-Ul H, Yang C, Peng L, Liang X. 2020. Moringa Oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. *Current Microbiology* 77(7):1271–1282. DOI 10.1007/s00284-020-01935-2.

Eger M, Graz M, Riede S, Breves G. 2018. Application of MootralTM reduces methane production by altering the archaea community in the rumen simulation technique. *Frontiers in Microbiology* 9:2094. DOI 10.3389/fmicb.2018.02094.

El-Zaiat HM, Abdalla AL. 2019. Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. *Environmental Science and Pollution Research* 26:30220–30228. DOI 10.1007/s11356-019-06198-4.

Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, France J. 2008. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. *The Journal of Agricultural Science* 146:213–233. DOI 10.1017/S0021859608007752.

Foiklang S, Wanapat M, Norrapoke T. 2016. Effect of grape pomace powder, mangosteen peel powder and monensin on nutrient digestibility, rumen fermentation, nitrogen balance and microbial protein synthesis in dairy steers. *Asian-Australasian Journal of Animal Sciences* 29(10):1416–1423.

García F, Vercoe PE, Martínez MJ, Durmic Z, Brunetti MA, Moreno MV, Colombatto D, Lucini E, Ferrer JM. 2019. Essential oils from Lippia turbinata and Tagetes minuta persistently reduce in vitro ruminal methane production in a continuous-culture system. *Animal Production Science* 59:709–720. DOI 10.1071/AN17469.

García-González R, González JS, López S. 2010. Decrease of ruminal methane production in Rusitec fermenters through the addition of plant material from rhubarb (Rheum spp.) and elder buckthorn (Frangula alnus). *Journal of Dairy Science* 93:3755–3763. DOI 10.3168/jds.2010-3107.

Granja-Salcedo YT, Fernandes RM, De Araujo RC, Kishi LT, Berchielli TT, De Resende FD, Berndt A, Siqueira GR. 2019. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. *Frontiers in Microbiology* 10:614. DOI 10.3389/fmicb.2019.00614.
Guo G, Shen C, Liu Q, Zhang SL, Shao T, Wang C, Wang Y, Xu Q, Huo W. 2020. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. *Journal of Integrative Agriculture* **19**:838–847 DOI 10.1016/S2095-3119(19)62707-3.

Guyader J, Eugéne M, Meunier B, Doreau M, Morgavi DP, Silberberg M, Rochette Y, Gerard C, Loncke C, Martin C. 2018. In vitro rumen fermentation and methane production as affected by rambutan peel powder. *Journal of Applied Animal Research* 626–631.

Guyader J, Eugéne M, Meunier B, Doreau M, Morgavi DP, Silberberg M, Rochette Y, Gerard C, Loncke C, Martin C. 2015. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. *Journal of Animal Science* **93**:3564–3577 DOI 10.2527/jas.2014-8196.

Haryati RP, Jayanegara A, Laconi EB, Ridla M, Suptijah P. 2019. Evaluation of chitin and chitosan from insect as feed additives to mitigate ruminal methane emission. In: *AIP Conference Proceedings* July 3. Malang: AIP Publishing LLC.

Hassan A, Abu Hafsa SH, Elghandour MMY, Kanth Reddy PR, Salem MZM, Anele UY, Ranga Reddy PP, Salem AZM. 2020. Influence of *Corymbia citriodora* leaf extract on growth performance, ruminal fermentation, nutrient digestibility, plasma antioxidant activity and faecal bacteria in young calves. *Animal Feed Science and Technology* **261**:114394 DOI 10.1016/j.anifeedsct.2020.114394.

Hassan A, Gado H, Anele UY, Berasain MAM, Salem AZM. 2019. Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs. *Animal Biotechnology* **31**:365–372 DOI 10.1080/10495398.2019.1604380.

Henderson G, Cook GM, Ronimus RS. 2018. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. *Animal Production Science* **58**:1017–1026 DOI 10.1071/AN15757.

Hundal JS, Singh I, Wadhwa M, Singh C, Uppal C, Kaur G. 2019. Effect of *Punica granatum* and *Tecomella undulata* supplementation on nutrient utilization, enteric methane emission and growth performance of Murrah male buffaloes. *Journal of Animal and Feed Sciences* **28**:110–119 DOI 10.22358/jafs/109237/2019.

Jafari S, Goh YM, Rajion MA, Ebrahimi M. 2020. Effects of polyphenol rich bamboo leaf on rumen fermentation characteristics and methane gas production in an in vitro condition. *Indian Journal of Animal Research* **54**:322–326.

Jafari S, Goh YM, Rajion MA, Ebrahimi M, Jahromi MF. 2018. Dietary supplementation with papaya (*Carica papaya* L.) leaf affects abundance of rumen methanogens, fermentation characteristics and blood plasma fatty acid composition in goats. *Spanish Journal of Agricultural Research* **16**:e0607 DOI 10.5424/sjar/2018162-11812.

Jafari S, Yong MG, Rajion MA, Jahromi MF, Ebrahimi M. 2016. Papaya (*Carica papaya*) leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation. *Animal Science Journal* **88**:267–276.

Jayanegara A, Goel G, Makkar HPS, Becker K. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation
and microbial population in vitro. *Animal Feed Science and Technology* **209**:60–68 DOI 10.1016/j.anifeedsci.2015.08.002.

Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, Nahrowi P. 2018. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. *Italian Journal of Animal Science* **17**:650–656 DOI 10.1080/1828051X.2017.1404945.

Jeyanathan J, Martin C, Morgavi DP. 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. *Animal* **8**:250–261 DOI 10.1017/S1751731113002085.

Johnson KA, Johnson DE. 1995. Methane emissions from cattle. *Journal of Animal Science* **73**:2483–2492 DOI 10.2527/1995.7382483x.

Kang S, Wanapat M, Phesatcha K, Norrapoke K, Foiklang S, Ampapon T, Phesatcha B. 2017. Using krabok (Irvindia malayana) seed oil and Flemingia macrophylla leaf meal as a rumen enhancer in an in vitro gas production system. *Animal Production Science* **57**:327–333 DOI 10.1071/AN15211.

Kang S, Wanapat M, Viennasay B. 2016. Supplementation of banana flower powder pellet and plant oil sources in vitro ruminal fermentation, digestibility, and methane production. *Tropical Animal Health and Production* **48**:1673–1678 DOI 10.1007/s11250-016-1142-2.

Kim H, Lee HG, Baek YC, Lee S, Seo J. 2020a. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. *Journal of Animal Science and Technology* **62**:31–42 DOI 10.5187/jast.2020.62.1.31.

Kim DH, Lee SJ, Oh DS, Lee ID, Eom JS, Park HY, Choi SH, Lee SS. 2018a. In vitro evaluation of *Rhus succedanea* extracts for ruminants. *Asian-Australas Journal of Animal Science* **31**:1635–1642 DOI 10.5713/ajas.18.0045.

Kim JY, Ghassemi Nejad JG, Park JY, Lee BH, Hanada M, Kim BW, Sung KI. 2018b. In vivo evaluation of garlic (*Allium sativum*) supplementation to rice straw-based diet on mitigation of CH4 and CO2 emissions and blood profiles using crossbreed rams. *Journal of the Science of Food and Agriculture* **98**:5197–5204 DOI 10.1002/jsfa.9055.

Kim KH, Arokiyaraj S, Lee J, Oh YK, Chung HY, Jin GD, Kim EB, Kim EK, Lee Y, Baik M. 2016. Effect of rhubarb (*Rheum spp*) root on in vitro and in vivo ruminal methane production and a bacterial community analysis based on 16S rRNA sequence. *Animal Production Science* **56**:402–408 DOI 10.1071/AN15585.

Kim SH, Mamuad LL, Choi YJ, Sung HG, Cho KK, Lee SS. 2018c. Effects of reductive acetogenic bacteria and lauric acid on in vivo ruminal methane production, microbial populations, and methane mitigation in hanwoo steers in South Korea. *Journal of Animal Science* **96**:4360–4367 DOI 10.1093/jas/sky266.

Kim SH, Mamuad LL, Islam M, Lee SS. 2020b. Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in holstein cows. *Journal of Animal Science and Technology* **62**:1–13 DOI 10.5187/jast.2020.62.1.1.

Klop G, Van Schuppen S, Laar-van , Pellikaan WF, Hendriks WH, Bannink A, Dijkstra J. 2017. Changes in in vitro gas and methane production from rumen fluid...
from dairy cows during adaptation to feed additives in vivo. *Animal* 11:591–599 DOI 10.1017/S1751731116002019.

Kolling GJ, Stivanin SCB, Gabbi AM, Machado FS, Ferreira AL, Campos MM, Tomich TR, Cunha CS, Dill SW, Pereira LGR, Fischer V. 2018. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. *Journal of Dairy Science* 101:4221–4234 DOI 10.3168/jds.2017-13841.

Latham EA, Pinchak WE, Trachselc J, Allenc HK, Callaway TR, Nisbetd DJ, Andersond RC. 2019. Paenibacillus 79R4, a potential rumen probiotic to enhance nitrite detoxification and methane mitigation in nitrate-treated ruminants. *Science of the Total Environment* 671:324–328 DOI 10.1016/j.scitotenv.2019.03.390.

Lee SJ, Choi YY, Lee SK, Lee ID. 2017. Reduce the energy loss in ruminant; using raphanus sativus extracts to mitigate methane emission*. *Korean Journal of Organic Agriculture* 25(4):917–0 DOI 10.11625/KJOA.2017.25.4.917.

Lee SJ, Shin NH, Jeong JS, Kim ET, Lee SK, Lee SS. 2018. Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. *Asian-Australasian Journal of Animal Sciences* 31:54–62 DOI 10.5713/ajas.17.0620.

Liu YL, Ma T, Chen DD, Zhang NF, Si BW, Deng KD, Tu Y, Diao Q. 2019b. Effects of tea saponin supplementation on nutrient digestibility, methanogenesis, and ruminal microbial flora in dorper crossbred ewe. *Animals* 9:29 DOI 10.3390/ani9010029.

Liu HY, Puchala R, LeShure S, Gipson TA, Flythe MD, Goetsch AL. 2019a. Effects of lespedeza condensed tannins alone or with monensin, soybean oil, and coconut oil on feed intake, growth, digestion, ruminal methane emission, and heat energy by yearling alpine doelings. *Journal of Animal Science* 97:885–899 DOI 10.1093/jas/sky452.

Liu Y, Whitman WB. 2008. Metabolic phylogenetic and ecological diversity of the methanogenic archaea. *Annals of the New York Academy of Sciences* 1125:171–189 DOI 10.1196/annals.1419.019.

Liu L, Xu X, Cao Y, Cai C, Cui H, Yao J. 2017. Nitrate decreases methane production also by increasing methane oxidation through stimulating nc10 population in ruminal culture. *AMB Express* 7:76 DOI 10.1186/s13568-017-0377-2.

Ma T, Chen DD, Tu Y, Zhang NF. 2017. Dietary supplementation with mulberry leaf flavonoids inhibits methanogenesis in sheep. *Animal Science Journal* 88:72–78 DOI 10.1111/asj.12556.

Ma T, Wu W, Tu Y, Zhang N, Diao Q. 2020. Resveratrol affects in vitro rumen fermentation, methane production and prokaryotic community composition in a time- and diet-specific manner. *Microbial Biotechnology* 13:1118–1131 DOI 10.1111/1751-7915.13566.

Mamuad LL, Kim SH, Biswas AA, Yu Z, Cho KK, Kim SB, Lee K, Lee SS. 2019. Rumen fermentation and microbial community composition influenced by live Enterococcus faecium supplementation. *AMB Express* 9:123 DOI 10.1186/s13568-019-0848-8.

Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Denman SE, nop vs McSweeney CS. 3. 2018. 3-nop vs halogenated compound: Methane production, ruminal fermentation and microbial community response in forage fed cattle. *Frontiers in Microbiology* 9:1582 DOI 10.3389/fmicb.2018.01582.
Matra M, Wanapat M, Cherdthong A, Foiklang S, Mapato C. 2019. Dietary dragon fruit (*Hylocereus undatus*) peel powder improved in vitro rumen fermentation and gas production kinetics. *Tropical Animal Health and Production* 51:1531–1538 DOI 10.1007/s11250-019-01844-y.

Melgar A, Harper MT, Oh J, Giallongo F, Young ME, Ott TL, Duval S, Hristov AN. 2020. Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. *Journal of Dairy Science* 103:410–432 DOI 10.3168/jds.2019-17085.

Min BR, Castleberry L, Allen H, Parker D, Waldrip H, Brauer D, Willis W. 2019. Associative effects of wet distiller’s grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes. *Journal of Animal Science* 97:5073–5087 DOI 10.1093/jas/skz317.

Moate PJ, Williams SRO, Torok VA, Hannah MC, Ribaux BE, Tavendale MH, Eckard RJ, Jacobs JL, Auldist MJ, Wales WJ. 2014. Grape marc reduces methane emissions when fed to dairy cows. *Journal of Dairy Science* 97:5073–5087 DOI 10.3168/jds.2013-7588.

Molina-Botero IC, Arroyave-Jaramillo J, Valencia-Salazar S, Barahona-Rosales R, Aguilar-Pérez CF, Ayala Burgos AA, Arango J, Ku-Vera JC. 2019a. Effects of tannins and saponins contained in foliage of *Gliricidia sepium* and pods of *Enterolobium cyclocarpum* on fermentation, methane emissions and rumen microbial population in crossbred heifers. *Animal Feed Science and Technology* 251:1–11 DOI 10.1016/j.anifeedsci.2019.01.011.

Molina-Botero IC, Montoya-Flores MD, Zavala-Escalante LM, Barahona-Rosales R, Arango J, Ku-Vera JC. 2019b. Effects of long-term diet supplementation with *Gliricidia sepium* foliage mixed with *Enterolobium cyclocarpum* pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. *Journal of Animal Science* 97:1619–1633.

Montoya-Flores MD, Molina-Botero IC, Arango J, Romano-Muñoz JL, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC. 2020. Effect of dried leaves of *Leucaena leucocephala* on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. *Animals* 10:300 DOI 10.3390/ani10020300.

Montoya-Flores MD, Molina-Botero IC, Arango J, Romano-Muñoz JL, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC. 2010. Morgavi DP, Forano E, Martin C, Newbold CJ. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4, 1024-1036 DOI 10.1017/S17517311110000546. *Animals* 10:300 DOI 10.1017/S17517311110000546.

Mustapha NA, Sharuddin SS, Zainudin MHM, Ramli N, Shirai Y, Maeda T. 2017. Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. *Journal of Cleaner Production* 165:621–629 DOI 10.1016/j.jclepro.2017.07.129.

Nasehi M, Torbatinejad NM, Rezaie M, Ghoorchi T. 2018. Effects of partial substitution of alfalfa hay with green tea waste on growth performance and in vitro methane emission of fat-tailed lambs. *Small Ruminant Research* 168:52–59 DOI 10.1016/j.smallrumres.2018.09.006.
Niderkorn V, Barbier E, Macheboeuf D, Torrent A, Mueller-Harvey I, Hoste H. 2020. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (*Onobrychis viciifolia* Scop.) pellets and hazelnut (*Corylus avellana* L.) pericarps. *Animal Feed Science and Technology* **259**:114357 DOI 10.1016/j.anifeedsci.2019.114357.

Niderkorn V, Martin C, Bernard M, Le Morvan A, Rochette Y, Baumont R. 2019. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. *Animal* **13**:718–726 DOI 10.1017/S1751731118002185.

Norrapoke T, Wanapat M, Wanapat S, Foiklang S. Effect of Centella Asiatica powder (CAP) and Mangosteen peel powder (MPP) on rumen fermentation and microbial population in swamp buffaloes. *Journal of Animal and Plant Sciences* **24**(2014):435–444.

Norris AB, Crossland WL, Tedeschi LO, Foster JL, Muir JP, Pinchak WE, Fonseca MA. 2020. Inclusion of quebracho tannin extract in a high-roughage cattle diet alters digestibility, nitrogen balance, and energy partitioning. *Journal of Animal Science* **98**.

Oh S, Koike S, Kobayashi Y. 2017. Effect of ginkgo extract supplementation on in vitro rumen fermentation and bacterial profiles under different dietary conditions. *Animal Science Journal* **88**:1737–1743 DOI 10.1111/asj.12877.

Parra-Garcia A, Elghandour MMMY, Greiner R, Barbabosa-Pliego A, Camacho-Diaz LM, Salem AZM. 2019. Effects of Moringa oleifera leaf extract on ruminal methane and carbon dioxide production and fermentation kinetics in a steer model. *Environmental Science and Pollution Research* **26**:15333–15344 DOI 10.1007/s11356-019-04963-z.

Patra AK. 2013. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis.. *Livestock Science* **155**:244–254 DOI 10.1016/j.livsci.2013.05.023.

Pattanaik AK, Ingale SL, Baliyan S, Dutta N, Kamra DN, Sharma K. 2018. Herbal additives influence in vitro fermentative attributes and methanogenesis differently in cattle and buffalo. *Animal Production Science* **58**:1064–1072 DOI 10.1071/AN15624.

Pedraza-Hernández J, Elghandour MMMY, Khuro A, Camacho-Diaz LM, Vallejo LH, Barbabosa-Pliego A, Salem AZM. 2019. Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. *Journal of Cleaner Production* **234**:779–786 DOI 10.1016/j.jclepro.2019.06.126.

Petlum A, Paengkoun P, Liang JB, Vasupen K, Paengkoun S. 2019. Molecular weight of condensed tannins of some tropical feed-leaves and their effect on in vitro gas and methane production. *Animal Production Science* **59**:2154–2160 DOI 10.1071/AN17749.

Petrič D, Mravčáková D, Kucková K, Čobanová K, Várádyová Z. 2020. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. *Journal of Animal and Plant Sciences* **104**(5):1219–1232 DOI 10.1111/jpn.13349.

Paengkoun Phommun JB, Liang XD, Huang XY, Tan MF, Jahromi P. 2015. Molecular weight protein binding affinity and methane mitigation of condensed tannins from
mangosteen-peel (Garcinia mangostana L), Asian Australasian. *Journal of Animal Sciences* 28(10):1442–1448 DOI 10.5713/ajas.13.0834.

Pineiro-Vazquez AT, Jimenez-Ferrer G, Alayon-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Aguilar-Perez CF, Ku-Vera JC. 2018b. Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass. *Tropical Animal Health and Production* 50:29–36 DOI 10.1007/s11250-017-1396-3.

Piñeiro Vázquez AT, Canul-Solis JR, Jiménez-Ferrer GO, Alayón-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Aguilar-Pérez CF, Ku-Vera JC. 2018a. Effect of condensed tannins from *Leucaena leucocephala* on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage. *Asian-Australas Journal of Animal Science* 31:1738–1746 DOI 10.5713/ajas.17.0192.

Ramos AFO, Terry SA, Holman DB, Gerhard B. 2018. Tucuma oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay - concentrate diet. *Frontiers in Microbiology* 9:1647 DOI 10.3389/fmicb.2018.01647.

Ramos-Morales E, Rossi G, Cattin M, Jones E, Braganca R, Newbold CJ. 2018. The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique. *FEMS Microbiology Ecology* 94:fiy009 DOI 10.1093/femsec/fiy009.

Romero-Huelva M, Molina-Alcaide E. 2013. Nutrient utilization, and fermentation, ruminal and flow, microbial nitrogen and abundances, microbial, ruminal fermentation microbial nitrogen flow microbial abundances and methane emissions in goats fed diets including tomato and cucumber waste fruits. *Journal of Animal Science* 91(2):914–923 DOI 10.2527/jas.2012-5212.

Romero-Pérez A, Okine EK, Guan LL, Duval SM, Kindermann M, Beauchemin KA. 2016. Effects of 3-nitrooxypropanol and monensin on methane production using a forage-based diet in rusitec fermenters. *Animal Feed Science and Technology* 220:67–72 DOI 10.1016/j.anifeedsci.2016.07.013.

Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of *Asparagopsis armata* in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. *Journal of Cleaner Production* 234:132–138 DOI 10.1016/j.jclepro.2019.06.193.

Ruiz-Gonzalez A, Debruyne S, Jeyanathan J, Vandaele L, De Campeneere S, Fievez V. 2017. Polyunsaturated fatty acids are less effective to reduce methanogenesis in rumen inoculum from calves exposed to a similar treatment early in life. *Journal of Animal Science* 95:4677–4686 DOI 10.2527/jas2017.1558.

Santos NW, Zeoula LM, Yoshimura EH, Machado E, Macheboeuf D, Cornu A. 2016. Brazilian propolis extract used as an additive to decrease methane emissions from the rumen microbial population in vitro. *Tropical Animal Health and Production* 48:1051–1056 DOI 10.1007/s11250-016-1062-1.

Seankamsorn A, Cherdthong A, Wanapat M. 2020. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. *Animals* 10:37 DOI 10.3390/ani10010037.
Shakeri P, Durmic Z, Vadhanabhuti J, Vercoe PE. 2017. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production. *Journal of the Science of Food and Agriculture* **97**:1367–1372 DOI 10.1002/jsfa.7876.

Sheng P, Ribeiro GO, Wang YX, McAllister TA. 2019. Umic substances reduce ruminal methane production and increase the efficiency of microbial protein synthesis in vitro. *Journal of the Science of Food and Agriculture* **99**:2152–2157 DOI 10.1002/jsfa.9407.

Shokryzadan P, Rajion MA, Goh YM, Ishak I, Ramlee MF, Faseleh JM, Ebrahimi M. 2016. Mangosteen peel can reduce methane production and rumen biohydrogenation in vitro. *South African Journal of Animal Science* **46**:419–421 DOI 10.4314/sajas.v46i4.10.

Soltan YA, Natel AS, Araujo RC, Morsy AS, Abdalla AL. 2018. Progressive adaptation of sheep to a microencapsulated blend of essential oils: ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. *Animal Feed Science and Technology* **237**:8–18 DOI 10.1016/j.anifeedsci.2018.01.004.

Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. 2013. Climate change 2013. In: *The physical science basis*. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. 1535.

Supapong C, Cherdthong A, Seankamsorn A, Khonkhaeng A, Polyorach S. 2017. In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. *Journal of Animal and Feed Sciences* **26**:123–1240 DOI 10.22358/jafs/73890/2017.

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. *Nature Reviews. Microbiology* **6**:579–591 DOI 10.1038/nrmicro1931.

Thirumalaisamy G, Malik PK, Kolte AP, Bhatta R. 2020. In vitro evaluation of graded level of Silkworm pupae (Bombyx mori) oil on methane production, fermentation characteristics, and protozoal populations. *Veterinary World* **13**:586–592 DOI 10.14202/vetworld.2020.586-592.

Tong JJ, Zhang H, Wang J, Liu Y, Mao SY, Xiong BH, Jiang L. 2020. Effects of different molecular weights of chitosan on methane production and bacterial community structure in vitro. *Journal of Integrative Agriculture* **19**:1644–1655 DOI 10.1016/S2095-3119(20)63174-4.

Vallejo-Hernández LH, Elghandour MMY, Greiner R, Anele UY, Rivas-Cáceres RR, Barros-Rodríguez M, Salem AZM. 2018. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. *Journal of Cleaner Production* **189**:40–46 DOI 10.1016/j.jclepro.2018.03.310.

Van Wesemael D, Vandaele L, Ampe B, Cattryse H, Duval S, Kindermann M, Fievez V, De Campeneere S, Peiren N. 2019. Reducing enteric methane emissions from dairy cattle: two ways to supplement 3-nitrooxypropanol. *Journal of Dairy Science* **102**:1780–1787 DOI 10.3168/jds.2018-14534.

Vanegas JL, Carro MD, Alvir MR, Gonzalez J. 2017a. Protection of sunflower seed and sunflower meal protein with malic acid and heat: effects on in vitro ruminal
fermentation and methane production. *Journal of the Science of Food and Agriculture* **97**:350–356 DOI 10.1002/jsfa.7743.

Vanegas JL, Gonzalez J, Alvir MR, Carro MD. 2017b. Influence of malic acid–heat treatment for protecting sunflower protein against ruminal degradation on in vitro methane production: a comparison with the use of malic acid as an additive. *Animal Feed Science and Technology* **228**:123–131 DOI 10.1016/j.anifeedsci.2017.04.015.

Vargas JE, Andrés S, López-Ferreras I, Snelling TJ, López S. 2020. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. *Scientific Reports* **10**:1613 DOI 10.1038/s41598-020-58401-z.

Wadhwa M, Sidhu PK, Bakshi MPS. 2020. Herbal feed additives containing tannins: Impact on in vitro fermentation and methane mitigation from total mixed ration. *Turkish Journal of Veterinary and Animal Sciences* **44**:47–58 DOI 10.3906/vet-1807-55.

Wanapat M, Chanthakhoun V, Phesatcha K, Kang S. Influence of mangosteen peel powder as a source of plant secondary compounds on rumen microorganisms, volatile fatty acids, methane and microbial protein synthesis in swamp buffaloes. *Livestock Science* **162**(2014):126–133 DOI 10.1016/j.livsci.2014.01.025.

Wang B, Jia M, Fang LY, Jiang LS, Li YL. 2018. Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. *Journal of Animal Science* **96**:3460–3470.

Wang SP, Wang WJ, Tan ZL, Liu GW, Zhou CF, Yin MJ. 2019a. Effect of traditional chinese medicine compounds on rumen fermentation, methanogenesis and microbial flora in vitro. *Animal Nutrition* **5**:185–190 DOI 10.1016/j.aninu.2018.09.004.

Wang WJ, Wang SP, Luo DM, Zhao XL, Yin MJ, Zhou CF, Liu GW. 2019b. Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro. *South African Journal of Animal Science* **49**:63–70 DOI 10.4314/sajas.v49i1.8.

Witzig M, Zeder M, Rodehutscord M. 2018. Effect of the ionophore monensin and tannin extracts supplemented to grass silage on populations of ruminal cellulolytics and methanogens in vitro. *Anaerobe* **50**:44–54 DOI 10.1016/j.anaerobe.2018.01.012.

Wu H, Meng Q, Zhou Z, Yu Z. 2019. Ferric citrate, and nitrate, saponin and their combinations affect in vitro ruminal fermentation, production of sulphide and methane and abundance of select microbial populations. *Journal of Applied Microbiology* **127**:150–158 DOI 10.1111/jam.14286.

Wu P, Liu ZB, He WF, Yu SB, Gao G, Wang JK. 2018. Intermittent feeding of citrus essential oils as a potential strategy to decrease methane production by reducing microbial adaptation. *Journal of Cleaner Production* **194**:704–713 DOI 10.1016/j.jclepro.2018.05.167.

Yadeghari S, Malecky M, Banadaky MD, Navidshad B. 2015. Evaluating in vitro dose–response effects of lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. *Vet Res Forum* **6**:285–293.
Yatoo MA, Chaudhary LC, Agarwal N, Chaturvedi VB, Kamra DN. 2018. Effect of feeding of blend of essential oils on methane production, growth, and nutrient utilization in growing buffaloes. *Asian-Australas Journal of Animal Science* 31:672–676 DOI 10.5713/ajas.16.0508.

Yejun L, Kyoung LS, Jong-Su E, Sill LS. 2019. Effects of *Lonicera japonica* extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population. *Animal Science Journal* 90:1170–1176 DOI 10.1111/asj.13259.

Zanferari F, Vendramini THA, Rentas MF, Gardinal R, Calomeni GD, Mesquita LG, Takiya CS, Rennô FP. 2018. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. *Journal of Dairy Science* 101:10939–10952 DOI 10.3168/jds.2018-14675.

Zhang H, Tong JJ, Wang Z, Xiong BH, Jiang LS. 2020b. Illumina MiSeq sequencing reveals the effects of grape seed procyanidin on rumen archaeal communities in vitro. *Asian-Australasian Journal of Animal Sciences* 33:61–68 DOI 10.5713/ajas.19.0226.

Zhang XM, Medrano RF, Wang M, Beauchemin KA, Ma ZY, Wang R, Wen J, Bernard LA, Tan Z. 2019. Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats. *Journal of Animal Science and Biotechnology* 10:6 DOI 10.1186/s40104-019-0312-2.

Zhang XM, Wang M, Wang R, Ma ZY, Long DL, Mao HX, Wen J, Bernard LA, Beauchemin KA, Tan Z. 2018. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture. *Journal of the Science of Food and Agriculture* 98:5205–5211 DOI 10.1002/jsfa.9056.

Zhang Z, Wang Y, Si X, Cao Z, Li S, Yang H. 2020a. Rumen methanogenesis, and fermentation, rumen fermentation and microbial community response to nitroethane, 2-nitroethanol, and 2-nitro-1-propanol: an in vitro study. *Animals* 10:479 DOI 10.3390/ani10030479.

Zhao LP, Meng QX, Li Y, Wu H, Huo YL, Zhang XZ, Zhou Z. 2018. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers. *BMC Microbiology* 18:21 DOI 10.1186/s12866-018-1164-1.

Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, Zhang L, Wei S. 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. *Journal of Dairy Science* 103:2303–2314 DOI 10.3168/jds.2019-16611.