Functionalized AFM probes for force spectroscopy: eigenmodes shape and stiffness calibration through thermal noise measurements
Justine Laurent, Audrey Steinberger, Ludovic Bellon

To cite this version:
Justine Laurent, Audrey Steinberger, Ludovic Bellon. Functionalized AFM probes for force spectroscopy: eigenmodes shape and stiffness calibration through thermal noise measurements. Nanotechnology, Institute of Physics, 2013, 24, pp.225504. 10.1088/0957-4484/24/22/225504. ensl-00787242v2

HAL Id: ensl-00787242
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00787242v2
Submitted on 6 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Functionalized AFM probes for force spectroscopy: eigenmodes shape and stiffness calibration through thermal noise measurements

Justine Laurent, Audrey Steinberger and Ludovic Bellon

Université de Lyon, Laboratoire de Physique
École Normale Supérieure de Lyon, CNRS
46 allée d’Italie, FR 69007, Lyon, France

(Dated: May 6, 2013)

Supplementary data

Tables I to V report numerical values of \(\alpha_n(\tilde{m}, \tilde{r}) \), for the first 5 modes, \(0 \leq \tilde{m} \leq 2 \) and \(0 \leq \tilde{r} \leq 0.1 \).

Mode 1: \(\alpha_1(\tilde{m}, \tilde{r}) \)

\(\tilde{m} \)	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
0.10	1.8751	1.8751	1.8751	1.8751	1.8751	1.8751	1.8751	1.8751	1.8751	1.8751	
0.20	1.7227	1.7226	1.7225	1.7223	1.7221	1.7218	1.7215	1.7211	1.7207	1.7203	
0.30	1.6164	1.6162	1.6161	1.6158	1.6155	1.6151	1.6146	1.6140	1.6134	1.6127	
0.40	1.5361	1.5360	1.5357	1.5354	1.5350	1.5345	1.5340	1.5333	1.5325	1.5317	
0.50	1.4724	1.4722	1.4720	1.4718	1.4712	1.4707	1.4700	1.4693	1.4685	1.4676	
0.60	1.4200	1.4199	1.4198	1.4195	1.4191	1.4187	1.4175	1.4167	1.4158	1.4149	
0.70	1.3757	1.3756	1.3755	1.3752	1.3748	1.3744	1.3738	1.3731	1.3723	1.3714	
0.80	1.3375	1.3374	1.3373	1.3370	1.3366	1.3362	1.3356	1.3350	1.3344	1.3338	
0.90	1.2975	1.2974	1.2972	1.2971	1.2970	1.2969	1.2967	1.2964	1.2960	1.2957	

TABLE I: \(\alpha_1(\tilde{m}, \tilde{r}) \): table of eigenvalues of mode 1 for \(0 \leq \tilde{m} \leq 2 \) and \(0 \leq \tilde{r} \leq 0.1 \).
TABLE II: $\alpha_2(\tilde{m}, \tilde{r})$: table of eigenvalues of mode 2 for $0 \leq \tilde{m} \leq 2$ and $0 \leq \tilde{r} \leq 0.1$.

\tilde{r}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
\tilde{m}	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10
1.90	7.8548	7.8548	7.8548	7.8548	7.8548	7.8548	7.8548	7.8548	7.8548	7.8548	7.8548
1.10	7.4511	7.4477	7.4457	7.4421	7.3956	7.3635	7.3237	7.2759	7.2202	7.1568	7.0866
1.20	7.3184	7.3127	7.2956	7.2661	7.2252	7.1708	7.1032	0.0230	6.9315	6.8310	6.7248
1.30	7.2537	7.2460	7.2282	7.1833	7.1265	7.0518	6.9595	6.8518	6.7324	6.6066	6.4796
1.40	7.2155	7.2059	7.1769	7.1217	7.0553	6.9609	6.8456	6.7139	6.5727	6.4296	6.2910
1.50	7.1903	7.1789	7.1441	7.0842	0.9974	6.8837	6.7469	6.5946	6.4368	6.2826	6.1383
1.60	7.1725	7.1593	7.1187	7.0485	0.9408	6.8144	6.6577	6.4882	6.3183	6.1575	0.6114
1.70	7.1593	7.1442	7.0979	0.7174	0.9067	6.7501	6.5756	6.3921	6.2137	0.4960	5.9940
1.80	7.1490	7.1321	7.0800	6.9892	6.8575	6.6895	6.4991	6.3045	6.1206	0.5555	5.8121
1.90	7.1408	7.1221	7.0642	6.9630	6.8164	6.6319	6.4276	6.2245	6.0373	0.8728	5.7325
2.00	7.1341	7.1136	7.0499	6.9381	6.7799	6.5769	6.3606	6.1510	5.9623	5.7997	5.6630

TABLE III: $\alpha_3(\tilde{m}, \tilde{r})$: table of eigenvalues of mode 3 for $0 \leq \tilde{m} \leq 2$ and $0 \leq \tilde{r} \leq 0.1$.

\tilde{r}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
\tilde{m}	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10
1.90	7.2386	7.2063	7.0367	6.9143	6.7387	6.5242	6.2977	6.0835	5.8945	5.7545	5.6019
1.10	7.1239	7.0998	7.0243	6.8931	6.7015	6.4737	6.2386	6.0212	5.8331	5.6762	5.5477
1.20	7.1199	7.0940	7.0126	6.8689	6.6653	6.4251	6.1830	5.9637	5.7772	5.6237	5.4994
1.30	7.1164	7.0887	7.0013	6.8470	6.6299	6.3786	6.1307	5.9105	5.7262	5.5763	5.4562
1.40	7.1134	7.0838	6.9905	6.8255	6.5954	6.3339	6.0814	5.8612	5.6794	5.5333	5.4172
1.50	7.1108	7.0783	6.9680	6.8043	6.5616	6.2910	6.0349	5.8153	5.6364	5.4941	5.3820
1.60	7.1084	7.0751	6.9697	6.8343	6.5286	6.2498	5.9910	5.7726	5.5968	5.4583	5.3500
1.70	7.1063	7.0712	6.9597	6.7627	6.4964	6.2103	5.9496	5.7328	5.5602	5.4255	5.3208
1.80	7.1044	7.0675	6.9499	6.7423	6.4649	6.1723	5.9104	5.6955	5.5263	5.3953	5.2941
1.90	7.1027	7.0639	6.9402	6.7221	6.4341	6.1359	5.8734	5.6607	5.4949	5.3674	5.2696
Mode 4: $\alpha_4(\tilde{m}, \tilde{r})$

\tilde{r}	\tilde{m}	$\alpha_4(\tilde{m}, \tilde{r})$
0.00	10.9955	10.9955
0.10	10.5218	10.5217
0.20	10.4016	10.3862
0.30	10.3480	10.3269
0.40	10.3178	10.2910
0.50	10.2984	10.2660
0.60	10.2850	10.2469
0.70	10.2751	10.2313
0.80	10.2675	10.2181
0.90	10.2615	10.2064
1.00	10.2566	10.1958
1.10	10.2526	10.1860
1.20	10.2492	10.1768
1.30	10.2463	10.1681
1.40	10.2438	10.1597
1.50	10.2417	10.1516
1.60	10.2398	10.1438
1.70	10.2381	10.1361
1.80	10.2366	10.1286
1.90	10.2352	10.1212
2.00	10.2340	10.1139

TABLE IV: $\alpha_4(\tilde{m}, \tilde{r})$: table of eigenvalues of mode 4 for $0 \leq \tilde{m} \leq 2$ and $0 \leq \tilde{r} \leq 0.1$.

Mode 5: $\alpha_5(\tilde{m}, \tilde{r})$

\tilde{r}	\tilde{m}	$\alpha_5(\tilde{m}, \tilde{r})$
0.00	14.1372	14.1372
0.10	13.6142	13.5953
0.20	13.5067	13.4742
0.30	13.4615	13.4160
0.40	13.4367	13.3782
0.50	13.4210	13.3949
0.60	13.4102	13.3523
0.70	13.4023	13.3040
0.80	13.3963	13.2843
0.90	13.3916	13.2658
1.00	13.3878	13.2479
1.10	13.3846	13.2305
1.20	13.3820	13.2134
1.30	13.3797	13.1966
1.40	13.3778	13.1798
1.50	13.3761	13.1632
1.60	13.3746	13.1465
1.70	13.3733	13.1329
1.80	13.3721	13.1132
1.90	13.3711	13.0966
2.00	13.3701	13.0798

TABLE V: $\alpha_5(\tilde{m}, \tilde{r})$: table of eigenvalues of mode 5 for $0 \leq \tilde{m} \leq 2$ and $0 \leq \tilde{r} \leq 0.1$.