Determination of 19 Organochlorine Pesticides Residues in Milk Powder by GPC-GC-MS

Zhaofeng Wu, Xiaoyan Peng, Sheng Chen, Zhanteng Zeng

China Customs Guangdong Inspection and Quarantine Technology Center, Guangzhou, China

Email address: wzhf107205@163.com (Zhaofeng Wu)

To cite this article:
Zhaofeng Wu, Xiaoyan Peng, Sheng Chen, Zhanteng Zeng. Determination of 19 Organochlorine Pesticides Residues in Milk Powder by GPC-GC-MS. International Journal of Nutrition and Food Sciences. Vol. 7, No. 4, 2018, pp. 129-133. doi: 10.11648/j.ijnfs.20180704.13

Received: June 5, 2018; Accepted: June 22, 2018; Published: July 17, 2018

Abstract: To establish the GPC - GC - MS detection method for determination of organochlorine pesticide residues in milk powder. After simple processing samples, concentration with multi-position concentrator, and online cleaning with GPC-GC-MS, injection into the mass spectrometer for analysis. Results showed that in the linear range of 5~100 ug/L, the correlation coefficient were >0.998, and the method detection limits (MDLs) were <0.5 ug/kg. The spiked recoveries at three levels of 10, 50, 100 ug/kg were in the range of 70~95%, the relative standard deviations (RSDs) (n=6) were<10%. This method had advantages of good accuracy and precision, simple operation, rapid, and was suitable for routine analysis.

Keywords: GPC - GC – MS, Organochlorine, Pesticide Residues, Milk Powder

1. Introduction

Organochlorine as broad-spectrum insecticides have been widely used, although now banned, but its easy to accumulate in the environment, difficult oxidation decomposition and high toxic, long-term residues in soil, through the food chain and biological enrichment of savings in various internal organs, and toxic. [1] Organic chlorine belongs to the nerve poison and viscera poison, [2] in the human body accumulates certain concentration, can interfere endocrine function, cause endocrine abnormality, even cause cancer. The maximum residue of organochlorine pesticides in milk and dairy products all around the world is very strict. The European Union stipulates that the residual of Endrin in milk and cheese is low to 0.8ug/kg. [3] Therefore, it is of great significance to establish an accurate, reliable and sensitive detection method for organochlorine pesticide residues in milk powder.

At present, the detection methods of organochlorine pesticide residues are mostly gas chromatography, gas chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry [4-6]. Due to the low content, and the complex matrix, pretreatment often need to use organic solvent assisted microwave, ultrasonic extraction, solid phase extraction, gel permeation chromatography, matrix dispersion methods such as solid phase extraction [7-10] for purification and then concentrated on sample analysis. [11] dairy products contain fatty ingredients, and the sample pretreatment in the national standard is cumbersome, time-consuming and laborious, leading to large losses and low recovery rate. GPC (Gel Permeation Chromatography) is widely used to purify the sample, high efficiency to remove grease, pigment and high molecular weight protein distractors, processing complex samples. [12] In this study, GPC- GC-MS system was used to purify dairy products online, used eight-channel parallel concentrator for enrichment, Simplified pretreatment process. It provides a simple and reliable method for the detection of organochlorine pesticide residue in milk powder.

2. Method

2.1. Material and Reagent

19 organochlorine pesticide standards: O2si smart solutions; Sodium chloride, lead acetate: pure analysis; N-hexane: chromatographic purity; Acetone: chromatographic purity.

2.2. Instrument

GPC- GC-MS; Eight-channel parallel concentrator.
2.3. Method

2.3.1. Preparation of Mixed Standard Solution
Accurately weigh the standard product of pesticide of 10mg into 10mL volumetric flask, and the acetone/cyclohexane (3/7) is dissolved and dilute to the mark. This standard solution concentration is 1000mg/L. Diluted concentration was 1mg/L when use. Then use the 1mg/L standard solution to create concentrations ranging from 5ug/L to 100ug/L.

2.3.2. Analysis Conditions

(i) GPC Conditions
Chromatographic column: Shodex CLNpak ev-200 (2.1mm x 150mm); flow phase: acetone/cyclohexane (3/7, V/V); Flow rate: 0.1 mL/min; column temperature: 40°C sample quantity: 10 uL.

(ii) GC - MS Conditions
Chromatographic column: inert quartz tube: 5m x 0.53mm; Pre-column: rtx-5 MS, 5m x 0.25mm x 0.25mm; Analysis column: Rtx-5 MS, 25m x 0.25mm x 0.25m; Column temperature program: 82°C (5 min) 8°C/ min_300°C (7.75 min). No diversion time: 7 min; Solvent cutting time: 9.7min; Interface temperature: 300°C; Ion source temperature: 200°C. Collection mode: SIM.

(iii) Sample Pretreatment
Accurately weigh milk powder of 1g. Place the sample into 50mL plug centrifuge tube. Add 1g Sodium Chloride, 10mL acetone/n-hexane (1:1) solution. The vortex was mixed for 2min and the ultrasonic extraction was 15min. Add 500uL 2% lead acetate solution, statics after mixed 2min. centrifug 10min at a speed of 4000 r/m. Collect of supernatant liquid, the residue was ultrasonic extraction 15min with 10mL acetone/n-hexane, centrifugation, merge supernatant liquid. Concentration to 1mL with Eight-channel parallel concentrator. Measurement with GPC-GC-MS after filter.

(iv) GPC Positioning
The mixed standard solution was injected into GPC and separated by column, determine the peak time of organic chlorine. According to this time, confirm the injection time program of switching valve and sample from GPC to GC-MS. This is the test method.

(v) GPC Purification Samples
Under the test method, Injection of processed sample 10uL. The components were collected during the peak time of organochlorine emission through switching of time programmed control valves. At other times, the column separates the fat and pigment from the sample and drained it into the waste liquid bucket.

(vi) GC - MS Analysis
After GPC collects component, it gives a signal to GC-MS. GC-MS will start after receiving the trigger signal, The collected components will be injected into GC-MS through time program control valve. Then, the GPC purification process is finished and the samples are entered into GC-MS for analysis.

3. Result

3.1. Linear Equation, Correlation Coefficient and Method Detection Limit
In this experiment, the external standard method was used to make a mixture of 5, 10, 20, 50 and 100ug/L mixed standard solutions using acetone/cyclohexane (3/7, V/V). The standard equation of concentration and peak area was used to obtain the linear equation of 19 target compounds. 5ug/kg was added to the blank milk powder, and 12 samples were measured to calculate the standard deviation. The detection limits calculated according to the formula

\[C_l = K_i S \frac{C}{X} \]

The Confidence factor \(K_i = 3 \) [13]

19 kinds of organic chlorine mixed standard solution GC-MS MIC chromatogram, as shown in Figure 1; blank milk powder sample added low concentration (5ug/kg) organic chlorine mixed standard solution SIM collection chromatogram, as shown in Figure 2 (b). The linear equation, retention time (tR), correlation coefficient and method detection limit (MDL) as shown in table 1.

![Image](image_url)

The pesticides represented by 1-19 digital annotations in the figure are shown in Table 1.

Figure 1. 19 kinds of organochlorine GC-MS MIC diagrams.
As shown in Figure 1, the chromatographic peaks can basically be separated, and the chromatographic parameters are suitable. It can be seen from Table 1 that, within the range of 5 to 100.0 ug/L, 19 kinds of organic chlorine have a good linear relationship, $r > 0.998$, MDL < 0.5 ug/kg, which satisfies the detection requirements of trace pesticide residues.

Table 1. Linear equations, retention time (t_R), correlation coefficient (r) and MDL.

Serial number	Compound	Linear equations	Retention time (t_R)	r	MDL (ug/kg)
1	α-HCH	$Y=134005X+370$	17.942	0.9986	0.10
2	hexachlorobenzene	$Y=58850X+185$	18.017	0.9988	0.37
3	β-HCH	$Y=105380X+92$	18.675	0.9990	0.18
4	PCNB	$Y=200545X+121$	18.908	0.9994	0.10
5	γ-HCH	$Y=96565X+269$	19.692	0.9992	0.15
6	δ-HCH	$Y=10835X+66$	20.933	0.9997	0.12
7	Heptachlor	$Y=23340X+166$	21.883	0.9992	0.43
8	Aldrin	$Y=4810X+87$	23.000	0.9999	0.35
9	Heptachlor epoxide	$Y=24655X+555$	23.508	0.9993	0.24
10	trans-chlordane	$Y=29140X+185$	23.808	0.9988	0.15
11	cis-chlordane	$Y=97442X+1076$	24.417	0.9989	0.10
12	P.P -DDE	$Y=11410X+82$	24.533	0.9990	0.08
13	Dieldrin	$Y=10515X+57$	25.058	0.9999	0.48
14	Endrin	$Y=132975X+8320$	25.450	0.9989	0.15
15	P.P -DDD	$Y=902325X+4711$	25.517	0.9993	0.12
16	O.P -DDT	$Y=10985X+14$	26.275	0.9986	0.36
17	Endosulfan sulfate	$Y=844300X-5858$	26.392	0.9989	0.22
18	P.P -DDT	$Y=38090X-46$	28.992	0.9990	0.20
19	Mirex	$Y=134005X+370$	17.942	0.9986	0.10

As shown in Figure 1, the chromatographic peaks can basically be separated, and the chromatographic parameters are suitable. It can be seen from Table 1 that, within the range of 5 to 100.0 ug/L, 19 kinds of organic chlorine have a good linear relationship, $r > 0.998$, MDL < 0.5 ug/kg, which satisfies the detection requirements of trace pesticide residues.

3.2. Recovery and Precision

The samples of 1.0g blank milk powder were added to the standard solution of 10, 50 and 100ug/kg19 organochlorine mixtures, and 6 parallel samples were determined according to the 1.3 method, and the accuracy and precision of the method were investigated. [14] The SIM chromatogram of the 19 mixed standard solutions added to the powdered milk samples is shown in Figure 2 (a). The average recoveries and relative standard deviations (RSD) of the samples are shown in Table 2. From table 2, The average recovery rate of three concentration levels is 70 to 95%, RSD < 10%, which meets the analysis requirements of various pesticide residues.

Table 2. The average recovery R (%) and the relative standard deviation RSD (%) (n=6).

Serial number	Compound	Addition concentration (ug/kg)	RSD (%)		
		10	50	100	
1	α-HCH	75.1	78.3	80.6	5.2~9.4
2	hexachlorobenzene	76.4	80.5	81.3	5.9~7.4
3	β-HCH	90.5	93.2	94.8	4.4~6.6
4	PCNB	85.6	88.2	84.3	2.2~3.3
4. Discussion

4.1. Simplified Preprocessing

4.1.1. Use of On-line Gel Chromatographic Purification System

The national standard uses solid phase extraction to process samples, which takes a long time and is cumbersome in operation. Each step causes unpredictable loss, resulting in low results and low recovery rate. Therefore, it is time-consuming and energy consuming, and it is difficult to ensure the accuracy of the results.

Gel permeation chromatography is also known as dimensional exclusion chromatography, which is a chromatographic technique for separation by the size of solute molecules. The eluant was injected into the chromatographic column elution separation, and the samples of different molecular size and shape were eluted through the porous gel fixed phase. The large molecules were first eluted, and then the small molecules were eluted. It is a rapid method for the determination of molecular weight and molecular weight distribution. It has become an important means of separation and purification in the analysis of pesticide residues. It has obvious advantages to remove the large molecular substances such as fat and pigment in the sample. [15] GPC sample purification method is recommended by the EPA, the food and Drug Administration and the International Association of analytical chemists. In the FDA2905 a method and EPA 3640 method, the GPC method is used to separate the macromolecular impurities from the target. The advantages of GPC method, such as simple method, high degree of automation and high recovery rate, are gradually accepted by many laboratories, and more and more standards adopt GPC method for sample purification and separation. [16]

In this study, SHIMADZU online gel chromatography tandem three quadrupole GC-MS was used to locate and determine the time of separation of organochlorine. GPC was used to purify samples and remove fat impurities from macromolecules. Collect the components within the set time and automatically enter the GC-MS. Online separation and detection, process automation, simple steps, reducing the loss of the experimental process. It not only guarantees the accuracy of the results, but also saves manpower and time.

4.1.2. Use of Parallel Concentrator

In this experiment, the 8 channel parallel concentrator is used to replace the traditional rotary evaporator. It has the functions of rotary evaporator and nitrogen blows instrument. Process automation does not require people to observe, and automatically fixed volume. When concentrated to 1mL, it will alarm and stop the nitrogen blow, which greatly liberates manpower. Because the concentrated liquid does not need to be transferred, the loss caused by operation is reduced. The operation is simpler and the result is more accurate.

4.2. The Results are Accurate and Meet the Requirements of the Limit

In the range of 5.0 ~ 100.0ug/L, the linear relationship was good, and the method detection limit was < 0.5ug/kg. The recovery rate of pesticide was between 70 ~ 95% and RSD < 10%, and the results were accurate. The detection limit of the current national standard GB/T 23210 - 2008 milk powder is 4.2 ug/kg~2.0mg/kg. The limit of quantification for GB 23200.86-2016[17] milk powder is 0.8 ug/kg. It can be seen that this method can meet the requirements of the national standard for detection limits and limit [18].

5. Conclusion

In this paper, GPC-GC-MS method for detecting organochlorine pesticide residues in milk powder was established. The process of pretreatment was optimized. The process was concentrated by multi-position concentrator to simplify the process of rotary steam and nitrogen blowing. The on-line GPC-GC-MS system was used to carry out on-line purification and automatic sampling analysis. In the concentration range of 5 to 100ug/L, the linear relationship, detection limit, precision and standard recovery were examined to confirm the index. The results are satisfactory: the linear relationship is good, the detection limit is low, the precision is good, and the recovery rate is high. Fully automated online GPC-GC-MS system, sample purification completely, the effect is good. The method is accurate, reliable
and easy to operate. It is suitable for the qualitative and quantitative determination of organochlorine pesticide residues in milk powder.

References

[1] Fu Yao, Yu Chao, Xu Chen, et al. Research progress on determination methods of organochlorine pesticide residues in food [J]. Beijing Agriculture, 2014, 12 (4): 9–11.

[2] Wu minglai. Exploration of pretreatment methods for detection of organochlorine and pyrethroid pesticide residues in vegetables [J]. Anhui Agricultural Science Bulletin, 2012, 18 (13): 197–198.

[3] Liu Yi, Zheng Guocan, Wang Jing, et al. Determination of 20 Organochlorine Pesticides Residues in Milk by Gas Chromatography-Tandem Mass Spectrometry [J]. Journal of Inspection and Quarantine, 2012, 4 (22): 38–45.

[4] Deng Xiaojuan, Li Wenbin, Jin Lichuan, et al. Determination of 24 Organochlorine and Pyrethroid Pesticide Residues in Milk by Modified QuEChERS Method and Gas Chromatography [J]. Food Science, 2016, 18 (37): 141–145.

[5] GB/T 23210—2008, Determination of 511 pesticides and related chemicals residues in milk and milk powder GC-MS method [S].

[6] GB/T 23211-2008, Determination of 493 pesticides and related chemicals residues in milk and milk powder LC-MS-MS method [S].

[7] Yan Hui, Zhang Wen-li, Jiang Jia-xiao, et al. Determination of 20 organochlorine pesticides in soils using gas chromatography-tandem mass spectrometry combined with accelerated solvent extraction and gel permeation chromatography [J]. Chinese Journal of Analysis Laboratory, 2015, 34(6): 722–726.

[8] Su Jian-feng, Zhong Mao-sheng, Chen Jing, et al. Multi-residue Determination of 295 Pesticides in Tea and Its Products by Gas Chromatography-Mass Spectrometry and Gas Chromatography [J]. Journal of Instrumental Analysis, 2015, 34 (6): 625–638.

[9] Wang Bo, Li Xian-liang, Zhang Lei, et al. Simultaneous Determination of Organochlorine and Pyrethroid Pesticide Residues in Hotpot Condiment by Gas Chromatography [J]. Chinese Journal of Analytical Chemistry, 2010, 38 (10): 1433–1438.

[10] Zhang Yuan, Zhang Qi, Wang Xian-qin. SPE-GC/MS determination of 19 organophosphorus pesticide residues and organochlorine pesticide residues in Rhizoma Curcumae [J]. Chin J Pharm Anal, 2012, 32(1): 95–98.

[11] Fu Wenwen, Luo Tong, Zhu Ying, et al. Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Milk by QuEChERS-Gas Chromatography-Tandem Mass Spectrometry [J]. Food Science, 2018, 8(39): 309–313.

[12] Xue Haisuan, Cui Zhaojie, Du Shiyong. Determination of organochlorine pesticides and polychlorinated biphenyls in wheat by gas chromatography with accelerated solvent extraction and gel permeation chromatography cleanup [J]. Journal of Shandong University (Natural Science), 2011, 46(1): 11–15.

[13] Du Juan, Lv Bing, Zhu Pan, et al. Determination of 30 organochlorine pesticides in animal-originated food products using combined purification by gel permeation chromatography and solid-phase extraction coupled with gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2013, 31(8): 739–746.

[14] Chen Meiyu. Study and Application of Analytical Method for Pesticide Residue in Food by Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry [D]. Xiamen: Xiamen University, 2007.

[15] Zheng Junhong. Determination of multiple pesticides residue in milk and milk powder by LC-MS/MS [D]. Shandong: Shandong Agricultural University, 2009.

[16] Chu Chun, Wang Bin. Detection of plasticizer in oil-bearing samples by gel chromatography purification system [A]. 7th chromatography symposium in northwest China 12th annual chromatography conference in Gansu province [C]. Beijing: Beijing Polytech Instrument co., LTD., 2012. 183–185

[17] GB 23200. 86-2016, National food safety standards-Determination of multiple residue of organochlorine pesticides in milk and dairy products Gas chromatography-mass spectrometry [S].

[18] GB 2763-2014, National food safety standard Maximum residue limits for pesticides in food [S].