微粉炭の燃焼ガス化特性に及ぼす
都市ガス吹き込み位置の影響

村尾 明紀1)・深田 喜代志1)・松野 英寿1)・佐藤 道貴1)・
赤尾津 翔大2)・齋藤 泰洋2)・松下 洋介2)・青木 秀之2)

Effect of Natural Gas Injection Point on Combustion and Gasification Efficiency
of Pulverized Coal under Blast Furnace Condition
Akinori Murao, Kiyoshi Fukada, Hitodoshi Matsuno, Michtiaka Sato,
Shota Akatsuki, Yasuhiro Saito, Yohsuke Matsushita and Hideyuki Aoki

Synopsis: The reduction of CO2 emission from the ironmaking process is important issue from the view of environmental problems typified by global warming in recent years. Low RAR (reducing agent rate) operation of the blast furnace is one of effective measures for reducing CO2 emission. Injection of HRA (hydrogenous reducing agents) from the tuyere (where is the lower part of blast furnace) is also effective measure. In this study, the influence of HRA injection point on combustion and gasification efficiency of pulverized coal (PC) in the case of simultaneous injection of HRA and PC from double-channel lance was examined by small scale combustion furnace and three-dimensional numerical simulation for improvement permeability in blast furnace. Combustion experimental conditions were in three cases, case1: injected HRA from outer side and PC from inner side of double-channel lance, case2: injected HRA from inner side and PC from outer side of double-channel lance and case3: injected HRA and PC premixed. As a result, the combustion and gasification efficiency was increase in the order of case3, case2 and case1. The rate of combustion and gasification of PC was investigated in case1. Not only the oxidation reaction was also accelerated CO2 and H2O gasification reaction in the case of simultaneous injection HRA and PC. A three-dimensional numerical simulation of the experimental furnace was conducted, we confirmed the increase of combustion temperature, the acceleration of oxygen consumption and gasification reaction as with the experimental results in the case of simultaneous injection HRA and PC.

Key words: blast furnace; CO2 emission; pulverized coal; hydrogenous reducing agent; lance; ignition; combustion; gasification.

1. 緒言

近年、製鉄工程においては、地球温暖化に代表される環境問題対応としてCO2発生量の削減が喫緊の課題となっている。また生産の効率化、合理化追求およびコーキングの老朽化対応の観点から各社、各高炉において高予鉄比、低還元比を（Reducing agent rate：RAR）下での微粉炭反応（Pulverized coal rate：PCR）操業が志向されているのが现状である。高出鉄比、低RAR・高PCR操業下での安定操業に向けまして、高炉内の熱バランス調整に加えて、通気性を確保することが重要である。従来、高炉での通気性確保の手段としては、原料の高温性材料利用1)、2)や、径方向の鈍鉄とコークスの密度調整や層厚調整3)、4)、また鈍層層へのコークス混合装入等の装入物分布制御7)、8)が挙げられるが、高PCR操業時には特に微粉炭の燃焼性が低下するため1),12)、通気性確保に向けた炉内の燃焼性改善が有効である。微粉炭の燃焼性に及ぼす因子としては、微粉炭性状（揮発分量、粒径）13),16)や、送風条件（送風速度、水蒸気添加等）14),17),18)，ランス構造、配置29),30)等、従来から種々の基礎研究により微粉炭燃焼性に及ぼす各因子の影響が調査された。1990年代以降は、多くの高炉において高PCR操業が志向され21),23)、国内高炉における微粉炭吹き込み量の平均値は1998年の130kg/tに対して、2012年は161kg/tに到達している26)。

更なる高PCRという観点では、試験操業でPCR 250kg/tを超えた実績があり27),28)、福山3高炉では燃焼性改善策として微粉炭周囲の酸素分圧を向上させる目的でランスからの酸素吹き込みが行われており、実操業で適用された例もある29),30)。
一方、CO₂発生量削減の観点からは、水素含有量の高い気体還元材吹込みが有効であり27), 微粉炭燃焼性に及ぼす影響も基礎実験や実験, 数値解析モデルにより調査されつつある26-33)が, 同一ラノスからの吹込み時の微粉炭と気体還元材吹込み位置が燃焼ガス化に及ぼす影響について検討された例は少ない。

本論文では, 今後重要になると考えられる低RAR下での高PCR操作に向けて微粉炭燃焼性の更なる向上を目的として, 微粉炭燃焼ガス化特性に及ぼす気体還元材吹込み位置の影響について燃焼実験と数値解析により調査した。

2. 微粉炭燃焼性に及ぼすCH₄吹込み位置の影響

2・1 燃焼実験装置, 実験条件および実験方法

Fig.1に燃焼実験に用いた小型燃焼炉（ホットモデル）の模式図を示す。本装置は高圧滑口室を模擬しており, プローバイプ, 端口, コックス充填層から構成されている。プローバイプ内径は90 mm, 端口内径は65 mm, コックス充填層厚は, 幅400 mm, 全長1000 mm, 高さ1450 mmである。燃焼はLPGの燃焼ガスに酸素を混合し, 所定の温度および組成になるように調整し, 微粉炭, 水素系還元材の同時吹込み試験を行った。水素系還元材として, ここでは天然ガスの主成分であるCH₄ガスを使用した。吹込みは2重管構造のシングルラノスで行い, 微粉炭とCH₄ガス同位置吹込みとした。

試験条件をTable 1に示す。送風温度は1200℃, 端口先流速は150 m/sの一定条件とした。酸素過剰率（送風中の酸素量と全吹込み還元材を完全燃焼させるのに必要な酸素量との比）は1.27とした。Fig.2に今回の実験で用いた2重管ラノスの寸法, 各吹込みにおける微粉炭およびCH₄の吹込み位置, 流路面積を示す。燃焼性に及ぼす吹込み速度の影響を除外するため, 微粉炭, CH₄の流面積は各水準でほぼ同等とするように設定した。

試験中にプローバイプ部に設置された3か所の観察窓において二色温度計による温度測定とラノス先端から250, 400 mmの位置において燃焼ガス温度が未燃チャーのサンプリングを実施した。未燃チャーについては, 画像解析ソフトを用いてチャー内部空隙率の定量評価を実施した。

2・2 実験結果および考察

Fig.3に二色温度計による温度測定結果を示す。ラノス先端からの距離の増加に伴い, 微粉炭燃焼の進行による温度上昇が確認された。微粉炭単独吹込みであるbaseに対し, CH₄同時吹込み条件であるcase1, case2, case3では, これに燃料温度が増加した。特にcase3ではラノス先端近

Table 1. Experimental conditions.

Blast temperature	O₂ enrichment	PCR	LNG (CH₄) Rate	Excess O₂ ratio
1200 (℃)	5.5 (%)	100 (kg/t)	10 (kg/t)	1.27 (–)

Fig. 2. Injection methods of pulverized coal and CH₄.

Fig. 3. Relationship between distance from lance tip and temperature.
従前から温度が大きく上昇した。Fig.4にガスサンプリング結果を示す。ランス先端からの距離の増加に伴い、酸素が低下し、二酸化炭素が増加した。baseに対してcase1, case2, case3の順に酸素の消費量が増加した。またbaseに対してcase1〜3では二酸化炭素の発生量が増加し、さらに矢印で示される燃焼焦点（CO₂ピーク位置）がランス先端寄りに変化した。各水準において、酸素の消費はランス先端からの距離250 mm以降で飽和し、二酸化炭素はピークを迎え、減少に転じた。これは微粉炭周囲の酸素が不足し、二酸化炭素による微粉炭のガス化が促進したためと考えられる。

Fig.5にガスと共にサンプリングした未燃チャーレの画像解析手順を示す。元画像からチャーフの認識を行い、2次画像化後、白色部を未燃部、灰色部を燃焼部と定義し、その面積比からチャー内の空隙率を算出した。

Fig.6に各水準におけるチャー内空隙率を示す。チャー内空隙率は、水準毎に樹脂焼めしたサンプル内で右視野を撮影し、視野内に存在するすべてのチャーの空隙率を算出し、平均値とした。baseに対して、case1, case2, case3の順に空隙率が増加し、Fig.3に示した温度と同様の傾向を示した。

微粉炭の燃焼性に及ぼす分散性の影響については従来から知見がある。 Fig.5. Definition of porosity of unburnt char by image analysis.

Table 2. Condition of image analysis.

	Flame speed	Pixel size	Sampling time
	10000 (fps)	768 × 768 (–)	200 (ms)

Fig.6. Effects of CH₄ injection point on porosity of the char.

	base	case1	case2	case3
Porosity (%)				
	30	40	50	

Fig.3. Relationship between distance from lance tip and gas composition.
画像解析ソフトによる256階調への輝度分割画像を示す。解析手法は、Satoらの方法で組織的に、微粉炭未燃部（A）と微粉炭の燃焼を伴う炎炎部（B）に分類し、微粉炭主流全体の面積（A＋B）を分散性を示す指標と定義した。Fig.8に各水準の処理画像を示し、Fig.9に1例としてbase条件のA＋Bの経時変化を示す。破線で示す時間平均値に対して、1割程度変動しているのが分かる。この変動を燃焼の安定性を示す指標として標準偏差で評価した。Fig.10に各水準のA＋B、A、Bの平均値と標準偏差を示す。平均値についてA＋Bはbaseに対して、case1、case2、case3の順に増加した。Aは、baseに対して、case1、case2、case3の順に低下し、case3ではほとんど未燃部が見られなかったため、燃焼の促進が示唆された。Bは、baseに対してcase1、case2、case3の順に増加した。CH₄同時吹込みにより分散性の改善、炎炎部面積の大幅な増加が確認された。CH₄吹込み位置による影響も定量的に確認され、燃焼温度の傾向と一致した。標準偏差については、A＋B、A、Bともcase1ではbaseに対して高値となったが、case2、case3ではbaseと同等であった。A部については、case2、case3では非常に低位であり安定した燃焼状況と推定される。

ここで、case2については、他の3水準と比較して微粉炭の吹込み位置が異なるため、分散性に及ぼす微粉炭吹込み位置の影響を調査した。Fig.11に吹込み条件を示す。case2として、内管から吹き込むCH₄をN₂に置換した水準として、Fig.12にFig.8同様、各水準の羽根後ろから撮影したプローパイプ内の処理画像を示す。baseに対してcase2では
外管から微粉炭を吹き込む影響で未燃部が縮小しているのが分かる。Fig.13にA + Bの時間平均値と標準偏差を示す。標準偏差は3本ともほぼ同等の値であった。時間平均値についてcase2'はbaseとcase2の中間の値であり、baseとcase2'の差が微粉炭吹込み位置の影響、case2'とcase2の差がCH₄同時吹込みの影響と考えられ、CH₄の同時吹込みにより微粉炭の分散性が向上することが示唆された。

以上、燃焼温度、酸素の消費速度、燃焼焦点変化、チャー内空隙率変化からbaseに対してcase1、case2、case3の順に燃焼性が向上したと考えられる。燃焼性向上の理由としては、同時に吹き込んだCH₄燃焼による微粉炭粒子の昇温促進32）33）に加えて、微粉炭分散性改善影響と考えられる。CH₄同時吹込みによる微粉炭の分散性改善については、現時点では、CH₄燃焼に伴う急速なガス量、および温度増加によるガスの拡散促進効果と推定されるが、今後更なる検討が必要と考えられる。

Fig. 10. Effects of CH₄ injection point on dispersibility of pulverized coal.

Fig. 11. Injection methods of pulverized coal and CH₄.

Fig. 12. Typical example of processed image of combustion area in case 2'.
3. 微粉炭燃焼・ガス化反応の寄与率に及ぼす
CH₄添加の影響

Fig.3およびFig.4に示すように、baseに対して微粉炭燃焼
場へCH₄を添加したcase1, case2およびcase3においては、
燃焼場の温度増加、酸素の消費速度増加および二酸化
炭素のピーク位置で表される燃焼点位置の上流側への移
行が確認された。微粉炭と比較して燃焼速度が大きいCH₄
が早期に燃焼する影響で酸素消費が早く、燃焼温度およ
びCO₂発生量が増加したためと考えられるが、一方で微粉
炭に供給される酸素量の低下による微粉炭の燃焼量変化、
CO₂およびH₂Oによるガス化反応量の変化に関する知見は
ないため、ここではプローブパイプ内の径方向ガス分布
による燃焼場のガス分布を調査し、下記(1) ～ (3) 式に示
される反応の割合について定量評価し、微粉炭燃焼場への
CH₄添加時の反応メカニズムを検討した。

\[
\begin{align*}
C + O_2 &= CO_2 \quad \text{(1)} \\
C + CO_2 &= 2CO \quad \text{(2)} \\
C + H_2O &= H_2 + CO \quad \text{(3)}
\end{align*}
\]

3・1 実験条件および実験方法

燃焼実験は2章と同様に、Fig.1に示すホットモデルを用
いた。吹込みランスの水準は、Table 2に示すbaseとcase1
とした。実験条件、および吹込み条件をTable 3に示す。微
粉炭比は150 kg/t相当、CH₄比は10 kg/t相当とし、酸素富化
率は、CH₄吹込みの有無で理論燃焼温度（TFT：Theoretical
Flame Temperature）が2208℃に一定となるように調整した。
Fig.14に燃焼場径方向ガスサンプリングゾンデの概略を示
す。プローブパイプの側面から高さ方向の中心レベルに水冷
プローブを挿入し、ランス先端から0.05 m, 0.3 mの位置に
いて、径方向にプローブを移動させて燃焼場の所定位置
のガスサンプリングを行った。

3・2 実験結果および考察

Fig.15にガスサンプリング結果を示す。ランス先端から
0.05 m, 0.3 mそれぞれの位置におけるO₂, CO₂, CO, H₂
の分布を示す。r/Rは無次元半径であり、サンプリング位置
をプローブパイプ径で除して規格化した。0.05 mではbase、
case1の両水準でほとんど差が無いのに対し、0.3 mでは
case1の方が径方向全域に渡って酸素の消費が進んでおり、
一方で、CO₂およびH₂₂₂₂₂₂₂₂₂₂₂₂₂₂�鱈圧が促進している。
特に無次元半径r/R = 0.4 近傍が顕著である。この位置では
H₂の濃度も高いことから、2管外側からのCH₄吹込みに
よるcase1では各反応が促進したと考えられる。

Fig.16に(1) ～ (3) 式の各C反応率およびCH₄の反応率
とランス先端からの距離の関係を示す。(1) ～ (3) 式による
C反応率をそれぞれR₁, R₂, R₃と定義し、以下の手順で算
出した。径方向ガスサンプリングにより得られる各サンプ
リング位置でのガス濃度C (vol%) と各サンプリング位置
のガス流速A （m²）、ガス流速V (m/s) から（4）式によ
りCO₂, CO, H₂を各成分のガス流量V (m³/s) を算出し、(5)
～ (7) 式で示されるマクロバランスからR₁, R₂, R₃の順に
算出した。

ここで、熟風発生バーナーのLPG (C₃H₆) とランスから
吹き込んだCH₄はサンプリング結果からも完全燃焼してい
ることが確認されたため、発生するCO₂, H₂Oはマクロバ
ランス上、入側条件として考慮した。

\[
P_{ij} = \sum_i \left(C_i \times \frac{100 \times V \times A}{1000} \right)
\]

ここで、j: ガス種CO₂, CO₃, H₂i: サンプリング位置

Table 3. Experimental conditions.

Condition	base	case1
Blast temperature	1200℃	1200℃
PCR	150 (kg/t)	150 (kg/t)
LNG (CH₄) Rate	0 (kg/t)	10 (kg/t)
O₂ enrichment	3.7 (%)	4.8 (%)
TFT	2208℃	2208℃
Excess O₂ ratio	1.07 (-)	0.99 (-)

Fig.13. Effect of pulverized coal injection point on
dispersibility of pulverized coal.

Fig.14. Schematic view of sampling probe.
ここで，W_c: 微粉炭中のC量 (kg/s)

ランス先0.05 mではcase1はCH₄添加により酸素との反応率が低下した。Fig.16に示すようにCH₄の反応率は、ランス先0.05 mの位置で100%に到達していることから、ランスから吹き込まれた直後は燃焼性が高いCH₄が優先的に酸素と反応し、微粉炭と酸素の反応が阻害されたと考えられる。ランス先0.3 mでは、case1の方がR_1，R_2，R_3とも増加した。Fig.17にbaseとcase1のC反応率と各反応率の内訳を示す。Cの反応率は、baseに対してcase1では11.6%向上した。各反応率の内訳はR_1は55.0→59.6%と4.6%増加，R_2は2.1→4.1%と2.0%増加，R_3は0.7→5.7%と5.0%増加し，酸化反応だけでなく，H₂Oによるガス化反応の促進量が大きいことが確認された。Fig.3，Fig.4からcase1ではCH₄燃焼による雰囲気温度上昇により燃焼初期の酸化反応が促進し，その後,燃焼温度上昇効果と酸素分圧低下効果によりガス化反応が促進したと考えられる。

$$R_1=\left\{V_{CO} + \left(V_{CO} - V_{H_2}\right)/2\right\} / (W_c / 12 \times 22.4) \times 100$$ (5)

$$R_2=\left\{\left(V_{CO} - V_{H_2}\right)/2\right\} / (W_c / 12 \times 22.4) \times 100$$ (6)

$$R_3=V_{H_2} / (W_c / 12 \times 22.4) \times 100$$ (7)

Fig. 16. Effect of CH₄ injection into pulverized coal combustion field on carbon and CH₄ reaction rate.

Fig. 15. Effect of CH₄ injection into pulverized coal combustion field on radial gas distribution in blow pipe.
4. 数値シミュレーションによる検討

4.1 微粉炭燃焼シミュレーションの概要
メタン吹込み時の微粉炭の燃焼ガス化学反応を検討するため、Fig.1に示す燃焼実験炉のプローパイブ部を再現した3次元数値解析モデルを作成し、Euler-Lagrange法に基づいた微粉炭燃焼シミュレータを実施した。プローパイブ内の乱流層モデルにRealizable k-ε方程式モデルを用いて乱流流れを表現した。微粉炭の反応モデルをTable 4にまとめ示す。元素分析値を厳密に反映し、微粉炭の熱分解に より生成がCH₄H₂Oの揮発分を放出し、チャーが生成するとした。生成するチャーの不均一反応として部分酸分解反応に加え、CO₂とH₂Oによるガス化反応を考慮した。均一反応として、揮発分、CO₃H₂とCH₄の酸化反応を考慮した。熱分解速度は昇温速度100,000 K/sを仮定し、PC Coal Lab®のFLASHCHAIN®を用いて1次反応で評価した。チャーの不 均一反応はすべて熱天秤を用いた実験結果をフィッティングし、容積反応モデルを用いて表現した。均一反応速度は熱流燃焼場であることから流消散モデルを用いて推算した。ふく射伝熱モデルとしてP1 Approximation法を採用し、 ふく射特性としてガスと粒子の放射を考慮した。二重管の外側からメタンを吹き込む場合（Base）と吹き込む場合（Case 1）を対象に微粉炭燃焼とふく射伝熱の連成解析を実施し、反復計算を実施することで収束解を求めた。

4.2 微粉炭燃焼シミュレーションの結果と考察
Fig.18.18にランス先端からの距離に対するプローパイブの中心軸上のガス温度を示す。解析結果はFig.3に示す測定結果とほぼ一致しており、位置によらず、メタンを吹き込む場合（Case 1）は、吹き込まない場合（Base）と比較してガスの温度が高い。これはメタンの燃焼により燃焼場の温度が上昇して、微粉炭の燃焼が促進されたためであると考えられる。
Fig.19の実験先端から0.05 m、0.3 mそれぞれの位置におけるプローパイブ半径方向のO₂とCO₂+COの体積分率分布を示す。Fig.15と同様に、r/Rは無次元半径であり、サンプリング位置をプローパイブ径で除して規格化した。
プロットがFig.15に示した測定結果を示し、実線が解析結果である。メタン吹込みの有無によらず、解析結果は下流（x=0.3 m）の特に壁近傍（r/R = 0.8 - 1.0）において酸素の体積分率を過大に見積もり、CO₂+COの体積分率を過小に見積もりている。これは乱流モデルが壁近傍における乱れを過小に見積もり、この乱れによる燃料と
5. 結言

高炉における高出鉄比、低還元比、高微粉炭比での安定操業達成のため、微粉炭燃焼性改善に向けて、同一ランスからの微粉炭、気体還元材吹込み時吹込み位置が微粉炭の燃焼ガス化特性に及ぼす影響について、燃焼実験と数値解析により実験結果と同様の傾向があらわれたことから、以下の結論を得た。

(1) 同一ランスからの微粉炭、CH₄吹込み時の微粉炭燃焼性を燃焼温度、燃焼場ガス組成、未燃チャー空隙率の変化から評価した結果、いずれのCH₄吹込み位置でも微粉炭単独吹込み時（base）に比較して微粉炭燃焼性は上昇した。CH₄の吹込み位置影響については、2重管外側（case1）、2重管内側（case2）、事前混合（case3）の順に微粉炭の燃焼性が向上した。

(2) 微粉炭主流部の画像解析により、CH₄吹込み時は微粉単独吹込み時（case1）に比較して、微粉炭燃焼性能が向上した。燃焼性向上の傾向については、CH₄吹込みによる分散性向上が燃焼性向上の一因と示唆された。

(3) 燃焼場の径方向のガスサブリングにより、CH₄吹込み時の微粉炭C反応率に及ぼす酸化反応率（Rₐ）、CO₂ガス化率（Rₐ）、H₂Oガス化率（Rₐ）の影響を調査した結果、CH₄吹込みにより、Rₐが55.0→59.6%と4.6%増加、Rₐが2.1→4.1%と2.0%増加、Rₐが0.7→5.7%と5.0%増加し、酸化率向上なく、H₂Oによるガス化反応の促進量が大きいことが確認された。

5. 文献

1) K.Mochizuki, T.Murai, Y.Kawaguchi and Y.Iwanaga: Tetsu-to-Hagané, 72(1986), 1855.
2) Y.Fujisawa, A.Yamaguchi, J.Kitayama, T.Ashimura, M.Naito and K.Yamaguchi: CAMP-ISIJ, 4(1991), 109.
3) M.Matsumura, M.Yoshikawa, K.Katayama, M.Yariyama, Y.Kawaguchi and K.Ohne: CAMP-ISIJ, H(1998), 849.
4) K.Higuchi, Y.Takamoto, T.Orimoto, T.Sato, F.Koizumi, K.Shinagawa and H.Furuta: Shinritetsu Giho, 38(2006).
5) M.Gono, N.Kawamura, T.Noda, T.Osawa, T.Miwa and K.Imada: Tetsu-to-Hagané, 69(1983), S59.
