A NEW RAMANUJAN-LIKE SERIES FOR $1/\pi^2$

JESÚS GUILLERA

Abstract. Our main results are a WZ-proof of a new Ramanujan-like series for $1/\pi^2$ and a hypergeometric identity involving three series.

1. The WZ-method

We recall that a function $A(n,k)$ is hypergeometric in its two variables if the quotients

$$\frac{A(n+1,k)}{A(n,k)} \quad \text{and} \quad \frac{A(n,k+1)}{A(n,k)}$$

are rational functions in n and k, respectively. Also, a pair of hypergeometric functions in its two variables, $F(n,k)$ and $G(n,k)$ is said to be a Wilf and Zeilberger (WZ) pair [11, Chapt. 7] if

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k).$$

In this case, H. S. Wilf and D. Zeilberger [13] have proved that there exists a rational function $C(n,k)$ such that

$$G(n,k) = C(n,k)F(n,k).$$

The rational function $C(n,k)$ is the so-called certificate of the pair (F,G). To discover WZ-pairs, we use EKHAD [11, Appendix A], a software written by D. Zeilberger. If EKHAD certifies a function, we have found a WZ-pair! Then, if we sum (1) over all $n \geq 0$, we get

$$\sum_{n=0}^{\infty} G(n,k) - \sum_{n=0}^{\infty} G(n,k+1) = -F(0,k) + \lim_{n \to \infty} F(n,k).$$

We will write the functions $F(n,k)$ and $G(n,k)$ using rising factorials, also called Pochhammer symbols, rather than the ordinary factorials. The rising factorial is defined by

$$(x)_n = \begin{cases} x(x+1) \cdots (x+n-1), & n \in \mathbb{Z}^+, \\ 1, & n = 0, \end{cases}$$

or more generally by

$$(x)_k = \frac{\Gamma(x+k)}{\Gamma(x)}.$$
For $k \in \mathbb{Z} - \mathbb{Z}^-$, (5) coincide with (11). But (5) is more general because it is also defined for all complex x and k such that $x + k \in \mathbb{C} - (\mathbb{Z} - \mathbb{Z}^+)$. To use package EKHAD we will replace groups of rising factorials according to the following equivalences

\[(1 + k)_n = \frac{(n + k)!}{k!}, \quad (1)\]
\[
\left(\frac{1}{2} + k\right)_n = \frac{1}{2^n} \frac{(2n + 2k)!}{(n + k)!(2k)!}, \quad (2)\]
\[
\left(\frac{1}{2} + \frac{k}{2}\right)_n \left(\frac{1}{2} + \frac{k}{2}\right)_n = \frac{1}{2^{2n}} \frac{(4n + 2k)!}{k!}, \quad (3)\]
\[
\left(\frac{1}{3} + \frac{k}{3}\right)_n \left(\frac{1}{3} + \frac{k}{3}\right)_n \left(\frac{2}{3} + \frac{k}{3}\right)_n = \frac{1}{3^{3n}} \frac{(6n + 3k)!}{k!}, \quad (4)\]

which we can derive easily from the properties of the Gamma function.

2. A NEW RAMANUJAN-LIKE SERIES FOR $1/\pi^2$

This paper is originated when we checked that EKHAD certifies the function

\[F(n, k) = \frac{\left(\frac{1}{2}\right)^3_n (1 + k)_n \left(\frac{1}{2} + k\right)_n \left(\frac{1}{2}\right)_k^2}{(1)_n^3 (1 + k)_n^2} \frac{96n^3}{(1)_k^2 2n + k}, \quad (5)\]

giving the companion

\[G(n, k) = \frac{\left(\frac{1}{2}\right)^3_n (1 + k)_n \left(\frac{1}{2} + k\right)_n \left(\frac{1}{2}\right)_k^2}{(1)_n^3 (1 + k)_n^2} \frac{12k(8n^2 + 6kn + 2n + k)}{2n + k}, \quad (6)\]

As $F(0, k) = 0$ and the last limit in (3) is also zero, we get

\[
\sum_{n=0}^{\infty} G(n, k) = \sum_{n=0}^{\infty} G(n, k + 1). \quad (7)\]

As a consequence of Weierstrass M-test [12, p. 49], the convergence of this series is uniform. Therefore, the following steps hold

\[
\lim_{k \to \infty} \sum_{n=0}^{\infty} G(n, k) = \sum_{n=0}^{\infty} \lim_{k \to \infty} G(n, k)
\]
\[
= 12 \sum_{n=0}^{\infty} \frac{1}{4^n} \frac{(\frac{1}{2})^3_n}{(1)_n^3 (1 + k)_n^2} \frac{6n + 1}{k} \lim_{k \to \infty} \frac{1}{k} \frac{(\frac{1}{2})^2_k}{(1)_k^2} = \frac{48}{\pi^2}, \quad (8)\]

in which we have used the asymptotic approximation $(k)_n \sim k^n$. The series in (13) is a Ramanujan series with sum $4/\pi$, see [2], and we have evaluated the last limit using Stirling’s formula. Hence, we have

\[
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^3_n (1 + k)_n \left(\frac{1}{2} + k\right)_n \left(\frac{1}{2}\right)_k^2}{(1)_n^3 (1 + k)_n^2} \frac{12k(8n^2 + 6kn + 2n + k)}{2n + k} = \frac{48}{\pi^2}. \quad (9)\]
For example, taking \(k = 1 \), we obtain a formula that Maple can evaluate, namely

\[
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^4}{(1)^n} \frac{8n^2 + 8n + 1}{(n+1)^2} = \frac{16}{\pi^2},
\]

which is an example of series which converge slowly to the constant \(1/\pi^2 \). To obtain more interesting series, we replace \(k \) with \(k + n \) in \(F(n, k) \). Then, we have the new function

\[
F(n, k) = U(n, k) \frac{96n^3}{3n + k},
\]

where

\[
U(n, k) = \frac{27}{64} n \left(\frac{1}{2}\right)_n^3 \left(1 + \frac{k}{3}\right)_n \left(\frac{1}{2} + \frac{k}{3}\right)_n \left(\frac{2}{3} + \frac{k}{3}\right)_n \left(\frac{2}{3}\right)_k^2
\]

\[
\left(1\right)_n (1 + k)_n \left(1 + \frac{k}{2}\right)_n \left(1 + \frac{k}{2}\right)_n^2 \left(1\right)_k^2.
\]

Package EKHAD gives the companion

\[
G(n, k) = U(n, k) \frac{n(2n+1)^2(74n^2 + 27n + 3) + kP(n, k)}{(n + \frac{k}{3})(2n + k + 1)^2},
\]

where

\[
P(n, k) = (2n+1)(296n^3 + 164n^2 + 26n + 1)
\]

\[
+ (480n^3 + 360n^2 + 78n + 5)k
\]

\[
+ (176n^2 + 80n + 8)k^2
\]

\[
+ (24n + 4)k^3.
\]

If we observe the steps in (13), we see that again we have

\[
\sum_{n=0}^{\infty} G(n, k) = \frac{48}{\pi^2}.
\]

Finally, taking \(k = 0 \), we obtain

\[
\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)_n^3 \frac{\left(\frac{1}{2}\right)_n^3 \left(\frac{2}{3}\right)_n \left(\frac{2}{3}\right)_n^2 (74n^2 + 27n + 3)}{(1)^n} = \frac{48}{\pi^2}.
\]

Although the convergence of this series is not very fast, it seems to us very interesting. The reason is that it is a new formula which belongs to a family of series for \(1/\pi^2 \) discovered by the author. See [3], [6], [7], [8] and [2], [3], [14]. Until now the unique existing proofs, and only for some of these series, are based on the WZ-method. However, it would be a major achievement to find a modular-like theory which can explain all these kind of formulas; see [4], [15] and [10].
3. An Hypergeometric identity

If \(F(n, k) \) and \(G(n, k) \) is a WZ-pair then obviously \(F_x(n, k) = F(n + x, k) \) and \(G_x(n, k) = G(n + x, k) \) is also a WZ-pair for every value of \(x \). If the last limit in \([1]\) is equal to zero then, if we repeat the proof in \([1]\) we see that

\[
\sum_{n=0}^{\infty} G_x(n, 0) = \sum_{n=0}^{\infty} G_x(n, 1) + F_x(0, 0) = \sum_{n=0}^{\infty} G_x(n, 2) + F_x(0, 1) + F_x(0, 0)
\]

\[
= \sum_{n=0}^{\infty} G_x(n, 3) + \sum_{k=0}^{2} F_x(0, k) = \sum_{n=0}^{\infty} G_x(n, 4) + \sum_{k=0}^{3} F_x(0, k) = \cdots .
\]

Therefore, as in \([1]\), we arrive to

\[
\sum_{n=0}^{\infty} G_x(n, 0) = \lim_{k \to \infty} \sum_{n=0}^{\infty} G_x(n, k) + \sum_{k=0}^{\infty} F_x(0, k).
\]

This is the formula we used to obtain the formulas in \([9]\). Observe that for \(x = 0 \) the last sum is zero. If we now apply the formula to the WZ-pair of functions \([15]\) and \([16]\), we obtain the following hypergeometric identity:

\[
\frac{1}{48} \sum_{n=0}^{\infty} \left(\frac{27}{64} \right)^n \frac{\left(\frac{1}{2} \right)^n}{n} + \left(\frac{1}{3} \right)^n \left(\frac{2}{3} \right)^n \frac{\left(74(n + x)^2 + 27(n + x) + 3 \right)}{(1 + x)^{n+x}}
\]

\[
= \frac{1}{4\pi} \sum_{n=0}^{\infty} \left(\frac{1}{4} \right)^n \frac{\left(\frac{1}{2} \right)^n}{n} + \left(\frac{1}{3} \right)^n \left(\frac{2}{3} \right)^n \frac{\left(6(n + x) + 1 \right)}{(1 + x)^{n+x}}
\]

\[
+ 2x^3 \left(\frac{27}{64} \right)^x \frac{\left(\frac{1}{2} \right)^x}{n} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} \right)^n}{n} (1 + x)^n \frac{1}{k + 3x}.
\]

or equivalently

\[
\frac{1}{48} \sum_{n=0}^{\infty} \left(\frac{27}{64} \right)^n \frac{\left(\frac{1}{2} + x \right)^n}{n} \frac{\left(\frac{1}{3} + x \right)^n}{n} \frac{\left(\frac{2}{3} + x \right)^n}{n} \frac{(74(n + x)^2 + 27(n + x) + 3)}{(1 + x)^{n+x}}
\]

\[
= \frac{2x}{\pi} \left(\frac{16}{27} \right)^x \frac{\left(\frac{1}{3} \right)^x}{n} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} \right)^n}{n} (1 + x)^n \frac{1}{n + 3x}.
\]

where we have used \([11]\) Iden. 1]. Taking \(x = 1/2 \), we get

\[
\sum_{n=0}^{\infty} \left(\frac{27}{64} \right)^n \frac{\left(\frac{1}{2} \right)^n}{n} \frac{\left(\frac{1}{3} + x \right)^n}{n} (74n^2 + 101n + 35)(6n + 1)
\]

\[
= \frac{16\pi^2}{3},
\]

which is a new formula for \(\pi^2 \).
A NEW RAMANUJAN-LIKE SERIES FOR $1/\pi^2$

REFERENCES

[1] T. Amdeberhan and D. Zeilberger, *Hypergeometric Series Acceleration via the WZ Method*, Electronic J. Combinatorics 4,(1997); arXiv:math/9804121.

[2] N.D. Baruah, B. C. Berndt, H.H. Chan, H.H, *Ramanujan’s series for $1/\pi$: A survey*, The Amer. Math. Monthly 116 (2009) 567-587.; also available at the pages http://www.math.ilstu.edu/cve/speakers/Berndt-CVE-Talk.pdf and http://www.math.uiuc.edu/berndt/articles/monthly567-587.pdf.

[3] D.H. Bailey, J.M. Borwein, N.J. Calkin, Roland Girgensohn, D. Russell Luke, V. Moll. Experimental Mathematics in Action. A K. Peters, Ltd. Wellesley, Massachusetts, (2007).

[4] Y.-H. Chen, Y. Yang, N. Yui, *Monodromy of Picard-Fuchs differential equations for Calabi-Yau threefolds (with an appendix by C. Erdenberger)*, J. Reine Andew. Math. 616 (2008), 167-203; [arxiv:math/0605675].

[5] J. Guillera, *Some binomial series obtained by the WZ-method*. Adv. in Appl. Math. 29, 599-603, (2002); [arXiv:math/0503345]

[6] J. Guillera, *About a new kind of Ramanujan type series*. Exp. Math. 12, 507-510, (2003).

[7] J. Guillera, *Generators of Some Ramanujan Formulas*, Ramanujan J. 11, 41-48, (2006).

[8] J. Guillera, *Series de Ramanujan: Generalizaciones y conjeturas*. Ph.D. Thesis, University of Zaragoza, Spain, (2007).

[9] J. Guillera, *Hypergeometric identities for 10 extended Ramanujan-type series*, Ramanujan J., 15 (2008) 219-234.

[10] J. Guillera *A matrix form of Ramanujan-type series for $1/\pi^2$*, Contemporary Mathematics (accepted for publication); [arXiv:0907.1547]

[11] M. Petkovšek, H. S. Wilf, D. Zeilberger, A=B, A K. Peters, Ltd., (1996); also available at http://www.math.upenn.edu/~wilf/AeqB.html.

[12] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis. Cambridge Univ. Press, (1927).

[13] H.S. Wilf, D. Zeilberger, *Rational functions certify combinatorial identities*, Journal Amer. Math. Soc. 3, 147-158, (1990). (Winner of the Steele prize).

[14] W. Zudilin, *Ramanujan-type formulae for $1/\pi$: A second wind?*, in Modular Forms and String Duality (Banff, June 3–8, 2006), N. Yui, H. Verrill, and C.F. Doran (eds.), Fields Inst. Commun. Ser. 54 (2008), Amer. Math. Soc. & Fields Inst., 179–188; [arXiv:0712.1332]

[15] Y. Yang, W. Zudilin, *On Sp4 modularity of Picard–Fuchs differential equations for Calabi–Yau threefolds (with an appendix by V. Pasol)*, Contemporary Mathematics (accepted for publication); [arXiv:0803.3322].

E-mail address: jguillera@gmail.com

Av. Cesáreo Alierta, 31 esc. izda 4º–A, Zaragoza (Spain)