Is CP Violation Observable in Long Baseline Neutrino Oscillation Experiments?

Morimitsu TANIMOTO

Science Education Laboratory, Ehime University, 790 Matsuyama, JAPAN

ABSTRACT

We have studied CP violation originated by the phase of the neutrino mixing matrix in the long baseline neutrino oscillation experiments. The direct measurements of CP violation is the difference of the transition probabilities between CP-conjugate channels. In those experiments, the CP violating effect is not suppressed if the highest neutrino mass scale is taken to be $1 \sim 5\text{eV}$, which is appropriate for the cosmological hot dark matter. Assuming the hierarchy for the neutrino masses, the upper bounds of CP violation have been calculated for three cases, in which mixings are constrained by the recent short baseline ones. The calculated upper bounds are larger than 10^{-2}, which will be observable in the long baseline accelerator experiments. The matter effect, which is not CP invariant, has been also estimated in those experiments.

\[^{1}\text{E-mail address: tanimoto@edserv.ed.ehime-u.ac.jp}\]
1 Introduction

The origin of \(CP \) violation is still an open problem in particle physics. In the quark sector, \(CP \) violation has been intensively studied in the KM standard model \([1]\). For the lepton sector, \(CP \) violation is also expected unless the neutrinos are massless. In particular, \(CP \) violation in the neutrino flavor oscillations is an important phenomenon because it relates directly to the \(CP \) violating phase parameter in the mixing matrix for the massive neutrinos \([4]\). Unfortunately, this \(CP \) violating effect is suppressed in the short baseline accelerator experiments if the neutrinos have the hierarchical mass spectrum. However, the suppression is avoidable in the long baseline accelerator experiments, which are expected to operate in the near future \([3]\) \([4]\). So one has a chance to observe the \(CP \) violating effect in those experiments.

The recent indications of a deficit in the \(\nu_\mu \) flux of the atmospheric neutrinos \([5]\) \(-[7]\) has renewed interest in using accelerator neutrinos to perform the long baseline neutrino oscillation experiments. Many possibilities of experiments have been discussed \([3]\). The purpose of this paper is to present the numerical study of \(CP \) violation in those accelerator experiments.

There are only two hierarchical mass difference scales \(\Delta m^2 \) in the three-flavor mixing scheme without introducing sterile neutrinos. If the highest neutrino mass scale is taken to be \(1 \sim 5\text{eV} \), which is appropriate for the cosmological hot dark matter(HDM) \([8]\), the other mass scale is either the atmospheric neutrino mass scale \(\Delta m^2 \approx 10^{-2}\text{eV}^2 \) \([5]\) \(-[7]\) or the solar neutrino one \(\Delta m^2 \approx 10^{-5} \sim 10^{-6}\text{eV}^2 \) \([9]\). Since the long baseline experiments correspond to the atmospheric neutrino mass scale, we take \(\Delta m^2 \approx 10^{-2}\text{eV}^2 \) as the lower mass scale. The solar neutrino problem is not discussed in this paper. The solar one may be solved by introducing the sterile neutrino \([10]\).
Our study of CP violation is presented in the framework of above pattern of the neutrino mass spectrum 2. We also investigate the matter effect in the long baseline accelerator experiments since the background matter effect is not CP invariant. If the matter effect is not negligibly small compared to the CP violating effect in the vacuum, one should consider how to extract the matter effect from the data. It is found that the matter effect strongly depends on the hierarchical pattern of the neutrino masses and mixings.

2 CP Violation in Neutrino Flavor Oscillations

The amplitude of $\nu_\alpha \rightarrow \nu_\beta$ transition with the neutrino energy E after traversing the distance L can be written as

$$A(\nu_\alpha \rightarrow \nu_\beta) = e^{-iEL} \left\{ \delta_{\alpha\beta} + \sum_{k=2}^{3} U_{\alpha k} U_{\beta k}^* \left[\exp \left(-i \frac{\Delta m^2_{k} L}{2E} \right) - 1 \right] \right\} ,$$

where $\Delta m^2_{ij} = m^2_i - m^2_j$ is defined, and $U_{\alpha i}$ denote the elements of the 3×3 neutrino flavor mixing matrix, in which α and i refer to the flavor eigenstate and the mass eigenstate, respectively. The amplitude $A(\bar{\nu}_\alpha \rightarrow \bar{\nu}_\beta)$ is given by replacing U with U^* in the right hand side in eq. (1). The direct measurements of CP violation originated by the phase of the neutrino mixing matrix are the differences of the transition probabilities between CP-conjugate channels 2:

$$\Delta P \equiv P(\bar{\nu}_\mu \rightarrow \nu_e) - P(\nu_\mu \rightarrow \nu_e) = P(\nu_\mu \rightarrow \nu_\tau) - P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\tau) = P(\bar{\nu}_e \rightarrow \nu_\tau) - P(\nu_e \rightarrow \nu_\tau) = 4J'_{CP}(\sin D_{12} + \sin D_{23} + \sin D_{31}) ,$$

where

$$D_{ij} = \frac{\Delta m^2_{ij} L}{2E} ,$$

2 CP and T violations have been studied in the case of $\Delta m^2_{31} \sim 10^{-2} eV^2$ 3.
and $J_{\nu CP}$ is defined for the rephasing invariant quantity of CP violation in the neutrino mixing matrix as well as the one in the quark sector [12]. In terms of the standard parametrization of the mixing matrix [13], we have

$$J_{\nu CP} \equiv \text{Im}(U_{\mu 3} U_{\tau 3}^* U_{\mu 2}^* U_{\tau 2}) = s_{12}s_{23}s_{13}c_{23}c_{13}^2 \sin \phi ,$$

(4)

where ϕ is the CP violating phase. The oscillatory terms are periodic in L/E and $D_{12} + D_{23} + D_{31} = 0$ is satisfied.

For the neutrino masses, we expect the typical hierarchical relation $\Delta m^2_{31} \gg \Delta m^2_{32}$ or $\Delta m^2_{31} \gg \Delta m^2_{21}$ in order to guarantee two different mass scales. The former relation (hierarchy I) corresponds to $m_3 \simeq m_2 \gg m_1$ and the latter one (hierarchy II) to $m_3 \gg m_2 \gg m_1$ (or $\simeq m_1$). The highest neutrino mass scale is taken to be $m_3 = 1 \sim 5\text{eV}$, which is appropriate for the cosmological HDM[8]. Those mass hierarchies have been discussed in the context of the solar neutrino problem, atmospheric neutrino one and HDM (as well as LSND [14]) by several authors [10][15]. Although their results seem to support hierarchy I, both cases of hierarchies I and II are studied in this paper.

Recently, there are significant short baseline accelerator experiments [14][17], in which the value of L/E is fixed for each one. For example, $L = 30\text{m}$ and $E = 36 \sim 60\text{MeV}$ are taken for the $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ experiment at LSND [14] and $L = 800\text{m}$ and $E = 30\text{GeV}$ for the $\nu_\mu \rightarrow \nu_\tau$ experiment at CHORUS and MOMAD [17]. In these experiments, the value of $D_{31}(\simeq -D_{12})$ is $1 \sim 10$ with $|D_{23}| \ll 1$ for hierarchy I ($D_{31} \simeq -D_{23}$ is $1 \sim 10$ and with $|D_{12}| \ll 1$ for hierarchy II). Therefore the factor $(\sin D_{23} + \sin D_{31} + \sin D_{31})$ is suppressed because two largest terms almost cancel due to opposite signs. Another term is still small. Then the CP violating effect in eq.(2) is significantly reduced due to this suppression. So one has no chance to observe CP violation for the present in the short baseline neutrino oscillation experiments.
However, the situation is very different in the long baseline accelerator experiments. Let us consider the case of hierarchy I for the neutrino masses. The oscillatory terms $\sin D_{12}$ and $\sin D_{31}$ can be replaced by the average value 0 since the magnitude of $D_{31}(\approx -D_{12})$ is $10^3 \sim 10^4$. Then CP violation is dominated by the $\sin D_{23}$ term, which is not small because of $|D_{23}| \simeq 1$. The same situation is kept for hierarchy II. Thus the CP violating quantity ΔP is not suppressed unless J_{CP} is very small.

3 Non-Suppression of CP Violation in Long Baseline Accelerator Experiments

The long baseline accelerator experiments are planned to operate in the near future \cite{3, 4}. The most likely possibilities are in KEK-SuperKamiokande(250Km), CERN-Gran Sasso(730Km) and Fermilab-Soudan 2(730Km) experiments(MINOS). The sensitivity of the observable transition probability is expected to be 10^{-2}. The average energy of the ν_μ beams are approximately 1GeV, 6GeV and 10GeV at KEK-PS(12GeV), CERN-SPS(80GeV) and Fermilab proton accelerator(120GeV), respectively. We can estimate $S_{CP} \equiv \sin D_{12} + \sin D_{23} + \sin D_{31}$ in those experiments. The neutrino energy E dependences of S_{CP} are shown by solid curves for fixed $L = 250$Km in fig.(a) and for $L = 730$Km in fig.(b), where S_{CP} is averaged over energy spread of 20% at the reference energy. Here $\Delta m^2_{31} = 2.25eV^2$ and $\Delta m^2_{32}(\Delta m^2_{21}) = 10^{-2}eV^2$ are taken in hierarchy I(II). Although our results depend on the value of Δm^2_{31}, these change only 5% for $\Delta m^2_{31} = 1 \sim 25eV^2$. We also show the oscillation function $\sin^2(\Delta m^2_{32}L/4E)$, which is important for the absolute value of the transition probability $P(\nu_\alpha \rightarrow \nu_\beta)$ at those experiments, by dashed curves in fig.1.

Fig. 1(a) and (b)
As seen in fig.1(a), the absolute value of S_{CP} is almost maximum at $E \simeq 1.3 \text{GeV}$. However, it depends on the atmospheric neutrino mass scale Δm^2_{32}. The Δm^2_{32} dependence of S_{CP} is obtained by replacing the axis E with $E \times \Delta m^2_{32}/10^{-2} \text{eV}^2$ in fig.1. Since the CP violating effect changes considerably according to values of E, the new project PS(50GeV) at KEK is very significant for observing CP violation. Both CERN-Gran Sasso and MINOS experiments are also important because of the non-suppression S_{CP} as seen in fig.1(b).

4 Constraints of Mixings from Present Reactor and Accelerator Data

Analyses of the three flavor neutrino oscillation have been presented recently\[18\]-\[20\]. In particular, the quantitative results by Bilenky et al.\[19\] and Fogli, Lisi and Scioscia\[20\] are the useful guide for getting constraints of the neutrino mixings. The upper bound of $J_{\nu CP}^\nu$ is estimated by using these constraints.

Let us begin with discussing constraints from the reactor and accelerator disappearance experiments. Since no indications in favor of neutrino oscillations were found in these experiments, we only get the allowed regions in $(U^2_{\alpha i}, \Delta m^2_{31})$ parameter space. Bugey reactor experiment\[21\] and CDHS\[22\] and CCFR\[23\] accelerator experiments give bounds for the neutrino mixing parameters at the fixed value of Δm^2_{31}. We follow the analyses given by Bilenky et al.\[19\].

Since the CP violating effect can be neglected in those short baseline experiments as discussed in section 3, we use the following formula without CP violation for the probability in the disappearance experiments:

$$P(\nu_\alpha \rightarrow \nu_\alpha) = 1 - 4|U_{\alpha i}|^2(1 - |U_{\alpha i}|^2) \sin^2(\frac{\Delta m^2_{31} L}{4E}), \quad (5)$$

where $i=1$ or 3 corresponds to hierarchy I or II. The mixing parameters can be expressed
in terms of the oscillation probabilities as

\[|U_{\alpha i}|^2 = \frac{1}{2}(1 \pm \sqrt{1 - B_{\nu\alpha\nu\alpha}}) \quad , \]

with

\[B_{\nu\alpha\nu\alpha} = \{1 - P(\nu_\alpha \rightarrow \nu_\alpha)\} \sin^{-2}\left(\frac{\Delta m_{31}^2 L}{4E}\right) \quad , \]

where \(\alpha = e \) or \(\mu \) and \(i = 1 \) or \(3 \). Therefore the parameters \(U_{\alpha i}^2 \) at the fixed value of \(\Delta m_{31}^2 \) should satisfy one of the following inequalities:

\[|U_{\alpha i}|^2 \geq \frac{1}{2}(1 + \sqrt{1 - B_{\nu\alpha\nu\alpha}}) \equiv a_{\alpha}^{(+)} \quad , \quad \text{or} \quad |U_{\alpha i}|^2 \leq \frac{1}{2}(1 - \sqrt{1 - B_{\nu\alpha\nu\alpha}}) \equiv a_{\alpha}^{(-)} \quad . \]

The negative results of Bugey [21], CDHS [22] and CCFR [23] experiments have given the values of \(a_{e}^{(\pm)} \) and \(a_{\mu}^{(\pm)} \), which were presented in ref. [19] and [24].

It is noticed from eq.(8) there are three allowed regions of \(|U_{ei}|^2 \) and \(|U_{\mu i}|^2 \) as follows:

\[(A) \quad |U_{ei}|^2 \geq a_{e}^{(+)} \quad , \quad |U_{\mu i}|^2 \leq a_{\mu}^{(-)} \quad , \]
\[(B) \quad |U_{ei}|^2 \leq a_{e}^{(-)} \quad , \quad |U_{\mu i}|^2 \leq a_{\mu}^{(-)} \quad , \]
\[(C) \quad |U_{ei}|^2 \leq a_{e}^{(-)} \quad , \quad |U_{\mu i}|^2 \geq a_{\mu}^{(+)} \quad , \]

where \(i = 1 \) (hierarchy I) or \(3 \) (hierarchy II). In addition to these constraints, we should take account of the constraints by E531 [25] and E776 [26] experimental data. These constraints often become severer than the ones of the disappearance experiments as discussed in the next section.

It may be important to comment on the case (A) with hierarchy I. In this case, one has \(U_{e3} \simeq 1 \) and then the survival probability of the solar neutrinos is too large to be consistent with the data of GALLEX and SAGE, which have shown less neutrino deficit than the Homestake and Kamiokande experiments [3]. Therefore, this case is an unrealistic one for the neutrino mixings although we include this case in our analyses.
5 Upper Bound of J_{CP}^{ν}

The CP violating measure J_{CP}^{ν} defined in eq. (4) is also expressed as

$$J_{CP}^{\nu} = |U_{e1}| |U_{e2}| |U_{e3}| |U_{\mu3}| |U_{\tau3}| (|U_{\mu3}|^2 + |U_{\tau3}|^2)^{-1} \sin \phi .$$

(10)

This formula is rather suitable for hierarchy II since the experimental constraints are directly given for $|U_{e3}|$ and $|U_{\mu3}|$ as seen in eq. (9). For hierarchy I, the constraints for $|U_{e3}|$ and $|U_{\mu3}|$ are indirectly given by using unitarity of the mixing matrix. We discuss the upper bound of J_{CP}^{ν} in six cases: cases (A), (B) and (C) with hierarchy I or II. At first, we study the cases with hierarchy II since those are easier for us to estimate J_{CP}^{ν} than the cases with hierarchy I.

The mixing matrix with hierarchy II is written for case (A) as

$$U \simeq \begin{pmatrix} \epsilon_1 & \epsilon_2 & 1 \\ \epsilon_1 & \epsilon_2 & \epsilon_3 \\ \epsilon_1 & \epsilon_2 & \epsilon_4 \end{pmatrix},$$

(11)

where $\epsilon_i (i = 1 \sim 4)$ are tiny numbers. Then J_{CP}^{ν} is given by

$$J_{CP}^{\nu} = \epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4 (\epsilon_3^2 + \epsilon_4^2)^{-1} \sin \phi \leq \frac{1}{2} \epsilon_1 \epsilon_2,$$

(12)

where the sign of equality is obtained at $\epsilon_3 = \epsilon_4$ with $\sin \phi = 1$. Here ϵ_3 is bounded by E776 $\nu_{\mu} \rightarrow \nu_{\tau}$ experiment $[24]$ and ϵ_4 is given by unitarity. The product $\epsilon_1 \epsilon_2$ is bounded by unitarity such as

$$\epsilon_1 \epsilon_2 \leq \frac{1}{2} (\epsilon_1^2 + \epsilon_2^2) = \frac{1}{2} (1 - |U_{e3}|^2) \leq \frac{1}{2} (1 - a_e^{(+)}).$$

(13)

Thus the upper bound of J_{CP}^{ν} is given only by $a_e^{(+)}$. In this case the atmospheric neutrino anomaly could be attributed to the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation if $|U_{\mu1}| = |U_{\mu2}| = |U_{\tau1}| = |U_{\tau2}| \simeq 1/\sqrt{2}$. But, it is emphasized that the estimated upper bound of J_{CP}^{ν} is independent of this condition.
For the case (B) with hierarchy II the mixing matrix is given as

\[
U \simeq \begin{pmatrix}
U_{e1} & U_{e2} & \epsilon_1 \\
U_{\mu1} & U_{\mu2} & \epsilon_2 \\
\epsilon_3 & \epsilon_4 & 1
\end{pmatrix}.
\] (14)

We get the bound of \(J_{CP}^\nu\) as follows:

\[
J_{CP}^\nu = |U_{e1}| |U_{e2}| \epsilon_1 \epsilon_2 \sin \phi \leq \frac{1}{2} \epsilon_1 \epsilon_2 ,
\] (15)

where the sign of equality is obtained at \(|U_{e1}| = |U_{e2}| = 1/\sqrt{2}\) with \(\sin \phi = 1\). Then the atmospheric neutrino anomaly could be solved by the large \(\nu_\mu \to \nu_e\) oscillation.

The bound of \(\epsilon_1\) is given by \(\delta_e^-\) in eq.(9). On the other hand, \(\epsilon_2\) is bounded by E531 \(\nu_\mu \to \nu_\tau\) experiment [23] since the relevant transition probabilities in the short baseline experiments are given for hierarchy II:

\[
\begin{align*}
P(\nu_\mu \to \nu_e) &\simeq 4 |U_{e3}|^2 |U_{\mu3}|^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right), \\
\end{align*}
\]

\[
\begin{align*}
P(\nu_\mu \to \nu_\tau) &\simeq 4 |U_{\mu3}|^2 |U_{\tau3}|^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right).
\end{align*}
\] (16)

It may be useful to comment on the possibility of the atmospheric neutrino anomaly by the large \(\nu_\mu \to \nu_e\) oscillation. The reactor experiments at Bugey [21] and Krasnoyarsk [27] have already excluded some large \(\nu_\mu - \nu_e\) mixing region. The allowed one is \(\sin^2 2\theta_{e\mu} \leq 0.7\) in the case of \(\Delta m_{21}^2 = 10^{-2}\text{eV}^2\). On the other hands, the data of the atmospheric neutrino anomaly in Kamiokande [7] suggests \(\Delta m_{21}^2 = 7 \times 10^{-3} \sim 8 \times 10^{-2}\text{eV}^2\) and \(\sin^2 2\theta_{e\mu} = 0.6 \sim 1\) for the \(\nu_\mu \to \nu_e\) oscillation. The overlap region is rather small such as \(\sin^2 2\theta_{e\mu} = 0.6 \sim 0.7\). Since the first long baseline reactor experiment CHOOZ [28] will soon give the severer constraint for the \(\nu_\mu - \nu_e\) mixing, one can check the possibility of the atmospheric neutrino anomaly due to the large \(\nu_\mu \to \nu_e\) oscillation.

In the case (C) with hierarchy II the mixing matrix is
\[
U \simeq \begin{pmatrix}
U_{e1} & U_{e2} & \epsilon_1 \\
\epsilon_2 & \epsilon_3 & 1 \\
U_{\tau 1} & U_{\tau 2} & \epsilon_4
\end{pmatrix}.
\]

(17)

Then we have

\[
J_{CP}^{\nu} = |U_{e1}| |U_{e2}| \epsilon_1 \epsilon_4 \sin \phi \leq \frac{1}{2} \epsilon_1 \epsilon_4,
\]

(18)

where the sign of equality is obtained at $|U_{e1}| = |U_{e2}| = 1/\sqrt{2}$ with $\sin \phi = 1$. In this case the atmospheric neutrino anomaly cannot be solved by the large ν_{μ} oscillation because both ϵ_2 and ϵ_3 are very small. Here ϵ_1 is bounded by E776 $\nu_{\mu} \rightarrow \nu_e$ experiment \[26\] while ϵ_4 is by E531 $\nu_{\mu} \rightarrow \nu_{\tau}$ experiment \[25\] as seen in eq.(16).

Let us study the cases with hierarchy I, in which the relevant transition probabilities in the short baseline experiments are given instead of eq.(16) as follows:

\[
P(\nu_{\mu} \rightarrow \nu_e) \simeq 4|U_{e1}|^2 |U_{\mu 1}|^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right),
\]

\[
P(\nu_{\mu} \rightarrow \nu_{\tau}) \simeq 4|U_{\mu 1}|^2 |U_{\tau 1}|^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right). \quad (19)
\]

For the case (A) with hierarchy I the mixing matrix is

\[
U \simeq \begin{pmatrix}
1 & \epsilon_1 & \epsilon_2 \\
\epsilon_3 & U_{\mu 2} & U_{\mu 3} \\
\epsilon_4 & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}.
\]

(20)

Then J_{CP}^{ν} is given by

\[
J_{CP}^{\nu} = \epsilon_1 \epsilon_2 |U_{\mu 3}| |U_{\tau 3}| (|U_{\mu 3}|^2 + |U_{\tau 3}|^2)^{-1} \sin \phi \leq \frac{1}{2} \epsilon_1 \epsilon_2, \quad (21)
\]

where the sign of equality is obtained at $|U_{\mu 3}| = |U_{\tau 3}| = 1/\sqrt{2}$ with $\sin \phi = 1$. The product $\epsilon_1 \epsilon_2$ is bounded by unitarity such as

\[
\epsilon_1 \epsilon_2 \leq \frac{1}{2} (\epsilon_1^2 + \epsilon_2^2) = \frac{1}{2} (1 - |U_{e1}|^2) \leq \frac{1}{2} (1 - a_e^{(+)}).
\]

(22)
Thus we get the same upper bound of $J_{\nu CP}$ as the one in the case (A) with hierarchy II. The atmospheric neutrino anomaly could be attributed to the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation if $|U_{\mu 2}| = |U_{\mu 3}| = |U_{\tau 2}| = |U_{\tau 3}| \simeq 1/\sqrt{2}$.

For the case (B) with hierarchy I the mixing matrix is written as

$$U \simeq \begin{pmatrix} \epsilon_1 & U_{e2} & U_{e3} \\ \epsilon_2 & U_{\mu 2} & U_{\mu 3} \\ 1 & \epsilon_3 & \epsilon_4 \end{pmatrix}. \quad (23)$$

Then we get

$$J_{\nu CP}^\nu = \epsilon_1 \epsilon_4 |U_{e2}| |U_{e3}| |U_{\mu 3}| (|U_{\mu 3}|^2 + \epsilon_4^2)^{-1} \sin \phi \leq \frac{1}{\sqrt{2}} \epsilon_1 \epsilon_4, \quad (24)$$

where the sign of equality is obtained at $|U_{e2}| = |U_{e3}| = |U_{\mu 3}| = 1/\sqrt{2}$ with $\sin \phi = 1$. However, this bound is not exact one in contrast to previous cases. We checked numerically that eq.(24) gives roughly the maximum value by using the present bound of ϵ_4. The magnitude of ϵ_1 is bounded by $a_e^{(-)}$ in eq.(3) while ϵ_4 is bounded by unitarity such as

$$\epsilon_4^2 = \epsilon_1^2 + \epsilon_2^2 - \epsilon_3^2 \leq \epsilon_1^2 + \epsilon_2^2, \quad (25)$$

where ϵ_2 is bounded by E531 $\nu_{\mu} \rightarrow \nu_{\tau}$ experiment [25]. The upper bound of $J_{\nu CP}^\nu$ is different from the one in the case (B) with hierarchy II. The atmospheric neutrino anomaly could be solved by the large $\nu_{\mu} \rightarrow \nu_{e}$ oscillation.

For the case (C) with hierarchy I the mixing matrix is

$$U \simeq \begin{pmatrix} \epsilon_1 & U_{e2} & U_{e3} \\ 1 & \epsilon_2 & \epsilon_3 \\ \epsilon_4 & U_{\tau 2} & U_{\tau 3} \end{pmatrix}. \quad (26)$$

Then $J_{\nu CP}^\nu$ is given by

$$J_{\nu CP}^\nu = \epsilon_1 \epsilon_3 |U_{e2}| |U_{e3}| |U_{\tau 3}| (\epsilon_3^2 + |U_{\tau 3}|^2)^{-1} \sin \phi \leq \frac{1}{\sqrt{2}} \epsilon_1 \epsilon_3, \quad (27)$$
where the sign of equality is obtained at $|U_{e2}| = |U_{e3}| = |U_{\tau 3}| \simeq 1/\sqrt{2}$ with $\sin \phi = 1$. This bound is also not exact one as well as the case (B) although it is roughly the maximum value. Here ϵ_1 is bounded by E776 $\nu_\mu \rightarrow \nu_e$ experiment [20]. On the other hand, ϵ_3 is bounded by unitarity

$$\epsilon_3^2 = |U_{\mu 3}|^2 = 1 - |U_{\mu 1}|^2 - |U_{\mu 2}|^2 \leq 1 - a_\mu^{(+)} ,$$

(28)

where $a_\mu^{(+)}$ is given by the disappearance experiments as seen in eq.(9). The upper bound of J_{CP}^ν is different from the one in the case (C) with hierarchy II.

Thus we obtain the upper bounds of J_{CP}^ν for six cases which are allowed by the present short baseline experiments.

6 Numerical Results of CP Violation

Now we can calculate the upper bound of $\Delta P \equiv P(\nu_\mu \rightarrow \nu_\tau) - P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\tau)$, which is the direct measurement of CP violation. Since the upper bounds of J_{CP}^ν have been given for fixed Δm_{31}^2, the upper bounds of ΔP are also presented for Δm_{31}^2 with fixing L, E and Δm_{21}^2 (for hierarchy I) or Δm_{21}^2 (for hierarchy II). In fig.2(a), we show numerical results for cases (A), (B) and (C) of hierarchy I with $L = 250$Km and $\Delta m_{32}^2 = 10^{-2}\text{eV}^2$. Fig.2(b) corresponds to hierarchy II. Here we used the energy band of $E = 1 \sim 1.5\text{GeV}$ in the energy spectrum of the incident neutrino, which is expected in KEK-PS [1]. Then we get the averaged value $S_{CP} = 0.725$ for $\Delta m_{31}^2 = 1 \sim 25\text{eV}^2$, which is used in our calculation to avoid long CPU time due to the oscillatory integrand. Therefore, one should take into consider 5% error in the results of Figs. (a) and (b).
The weakest bound is given in the case (B) with hierarchy I, in which the bound is almost determined only by Bugey reactor disappearance experiment \[21\]. In this case \(\Delta P\) could be \(10^{-1}\), which can be observed in KEK-SuperKamiokande experiment. Then the atmospheric neutrino anomaly is due to the large \(\nu_\mu \to \nu_e\) oscillation. The first long baseline reactor experiment CHOOZ \[28\] will soon test this possibility by presenting the severer constraint of the \(\nu_\mu - \nu_e\) mixing.

The observation of the \(CP\) violating effect is not expected in the case (C) for both hierarchies I and II since the upper bounds are around or below \(10^{-2}\). In addition, the atmospheric neutrino anomaly could not be explained by the large neutrino mixing.

If the large \(\nu_\mu \to \nu_\tau\) oscillation causes the atmospheric neutrino anomaly, the case (A) is preferred. The upper bound is around 0.03, which is same for both hierarchies. Since this bound is determined only by the reactor disappearance experiments \[21\], it will be improved by new disappearance experiments.

It is remarked that the estimated upper bounds of \(J_{CP}\) are given by the maximal mixing such as \(|U_{ai}| \simeq 1/\sqrt{2}\) except for the case (A) with hierarchy II. If the atmospheric neutrino anomaly is not due to the large neutrino mixing, the \(CP\) violating effect is reduced. The situation is different in the case (A) with hierarchy II. In this case, the upper bound has been obtained without assuming the large neutrino mixing.

In our analyses, we do not take account of the new experimental data given by LSND \[14\]. Even if the data is included, our obtained bounds do not almost change.

7 Matter Effect

The general discussion of the matter effect in the long baseline experiments was given by Kuo and Pantaleone \[29\]. The data in those experiments include the background
matter effect which is not \(CP\) invariant. Therefore, it is very important to investigate the matter effect in order to estimate the \(CP\) violation effect originated by the phase of the neutrino mixing matrix. The matter effect of the earth should be carefully analyzed since the effect considerably depends on the mass hierarchy and mixings as well as the incident energy of the neutrino.

We estimate the matter effect on the transition probabilities by switching off \(CP\) violation due to the mixing matrix. Then, \(\Delta P\) is given by the only matter effect. If the estimated \(\Delta P\) is comparable to the ones in the previous section, one should consider how to extract the matter effect from the data.

The matter effect in the long baseline accelerator experiments is rather easily estimated by assuming the constant electron density. The effective mass squared in matter \(M_m^2\) for neutrino energy \(E\) in weak basis \(^{[29]}\) is

\[
M_m^2 = U_m \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U_m^\dagger + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\]

where \(A = 2\sqrt{2}G_F n_e E\). We use the constant electron density \(n_e = 2.4\ \text{mol/cm}^3\). For antineutrinos, the effective mass squared is given by replacing \(A \rightarrow -A\) and \(U_m \rightarrow U_m^*\).

The effective mixing matrix without the \(CP\) violating phase \(U_m\) is written by

\[
U_m = \begin{pmatrix} c_{m13} c_{m12} & c_{m13} s_{m12} & s_{m13} \\ -c_{23} s_{m12} - s_{23} s_{m13} c_{m12} & c_{23} c_{m12} - s_{23} s_{m13} s_{m12} & s_{23} c_{m13} \\ s_{23} s_{m12} - c_{23} s_{m13} c_{m12} & -s_{23} c_{m12} - c_{23} s_{m13} s_{m12} & c_{23} c_{m13} \end{pmatrix},
\]

where \(s_{mij} \equiv \sin \theta_{ij}^m,\ c_{mij} \equiv \cos \theta_{ij}^m\) for effective mixings in the matter and \(s_{ij} \equiv \sin \theta_{ij},\ c_{ij} \equiv \cos \theta_{ij}\) for vacuum mixings. For example, the effective mixing angle \(s_{m12}\) is given in terms of vacuum mixings as

\[
\sin 2\theta_{12}^m = \frac{\Delta m_{21}^2 \sin 2\theta_{12}}{\sqrt{(A \cos^2 \theta_{13} - \Delta m_{21}^2 \cos 2\theta_{12})^2 + \Delta m_{21}^2 \sin^2 2\theta_{12}}}
\]

to zeroth order in \(A \sin 2\theta_{13}\).
In the case of hierarchy I \((m_3 \simeq m_2 \geq 1\text{eV})\), the matter effect is expected to be small because \(m_{21}^2 \gg A \simeq 5 \times 10^{-4}\text{eV}^2\). In fact, the obtained \(\Delta P\) is at most \(5 \times 10^{-3}\) for three cases of (A), (B) and (C). Therefore, the matter effect do not disturb the information of \(CP\) violation originated by the \(CP\) violating phase in the neutrino mixing matrix if the observed \(\Delta P\) is not far from our estimated upper bounds in section 6 (see Fig. 2).

However, the case with hierarchy I is another. Since the value of \(A\) is not negligible compared to \(m_{21}^2 \simeq 10^{-2}\text{eV}^2\), the matter effect is expected to be important. We show the matter effect \(\Delta P\) versus \(s_{12}\) for the typical parameters in Figs. 3(a) and (b). Here the solid curves denote the matter effect \(\Delta P(\nu_\mu \rightarrow \nu_\tau)\) and the dashed curves denote \(\Delta P(\nu_\mu \rightarrow \nu_e)\), where \(\Delta P(\nu_\alpha \rightarrow \nu_\beta) \equiv P(\nu_\alpha \rightarrow \nu_\beta) - P(\bar{\nu}_\alpha \rightarrow \bar{\nu}_\beta)\) \[7\]. The parameters are fixed to be \(m_{31}^2 = 2.25\text{eV}^2, m_{21}^2 = 10^{-2}\text{eV}^2, L = 250\text{Km}\) and \(E = 1.2\text{GeV}\). The vacuum mixing angles are taken to be \(s_{13} = 0.96\) and \(s_{23} = 1/\sqrt{2}\) for case (A) and \(s_{13} = 0.15\) and \(s_{23} = 0.12\) for case (B).

\[\text{Fig. 3(a) and (b)}\]

In case (A), the \(\nu_\mu - \nu_\tau\) mixing is maximum at \(s_{12} = 0\) or 1. Then, the matter effect \(\Delta P(\nu_\mu \rightarrow \nu_\tau)\) increases up to \(7.5 \times 10^{-3}\). For the \(\nu_\mu - \nu_e\) mixing which is very small in this case, the matter effect \(\Delta P(\nu_\mu \rightarrow \nu_e)\) is tiny. If the \(CP\) violation effect \(\Delta P\) is larger than \(10^{-2}\) as shown in Fig. 2(b), the matter effect does not dominate \(\Delta P\). The smallness of the matter effect is due to the suppressed \(A c_{13}^2\) in eq.(31) \((c_{13} \ll 1\) in case (A)).

In case (B), the \(\nu_\mu - \nu_e\) mixing is maximum at \(s_{12} = 1/\sqrt{2}\). The matter effect \(\Delta P(\nu_\mu \rightarrow \nu_e)\) could be \(8 \times 10^{-2}\). Since the \(\nu_\mu - \nu_e\) mixing is very small in this case, the

\(^3\)The \(CP\) non-invariant quantity \(|\Delta P(\nu_\mu \rightarrow \nu_\tau)|\) is different from \(|\Delta P(\nu_\mu \rightarrow \nu_e)|\) for the matter effect. On the other hand, those have same magnitudes for \(CP\) violation originated by the phase in the neutrino mixing matrix as seen in Eq.(2).
matter effect $\Delta P(\nu_{\mu} \rightarrow \nu_{\tau})$ is also small. Since the matter effect is very large compared to the results in Fig.2(b), it is difficult to get the information of the CP violating phase in the mixing matrix.

In case (C), both $\nu_{\mu} - \nu_e$ and $\nu_{\mu} - \nu_{\tau}$ mixings are very small, and so the matter effects ΔP’s are also small, at most 5×10^{-4}. In this case, there is no hope to observe the neutrino oscillation in the planned long baseline accelerator experiments.

Thus, the matter effect becomes important to observe CP violation in the case of hierarchy II. However, recent works of the pattern of the neutrino masses and mixings may exclude hierarchy II. If hierarchy I is realized for the neutrino masses, the matter effect does not almost modify our results in Fig.2(a).

8 Conclusions

We have studied the direct measurements of CP violation originated by the phase of the neutrino mixing matrix in the long baseline neutrino oscillations. In those experiments, the CP violating effect is not suppressed if the highest neutrino mass scale is taken to be $1 \sim 5eV$, which is appropriate for the cosmological HDM. The upper bounds have been calculated for three cases (A), (B), (C) in hierarchies I and II, where mixings are constrained by the recent short baseline ones. The estimated upper bounds are larger than 10^{-2}, which is observable in the long baseline accelerator experiments. The new reactor disappearance experiments will provide severer bound in the near future.

The matter effect on CP violation is also calculated. The effect is not significant for hierarchy I, but for hierarchy II. The recent works of the neutrino masses and mixings suggest the case (A) with hierarchy I. In this case, the matter effect on CP violation is negligible if the observed ΔP is close to our estimated upper bound.
Acknowledgments

I would like to thank J. Pantaleon for his critical comments on the matter effect. I thank A. Smirnov and H. Nunokawa for the quantitative discussion of the matter effect. I also thank S.M. Bilenky and W. Grimus for discussing the CP violating experiments. I wish to acknowledge the hospitality of DESY theory group, in particular, A. Ali. This research is supported by Alexander von Humboldt foundation (Germany) and the Grant-in-Aid for Science Research, Ministry of Education, Science and Culture, Japan(No. 07640413).
References

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49(1973)652.

[2] S. Pakvasa, in Proc of the XX International Conference of High Energy Physics, Madison, Wisconsin, USA, 1980, Part 2 (1980)1165, edited by L. Durand and L.G. Pondrom, AIP, New York;
V. Barger, K. Whisnant and R.J.N. Phillips, Phys. Rev. Lett. 45(1980)2084;
Phys. Rev. D23(1981)2773;
S.M. Bilenky and F. Nidermaler, Sov. J. Nucl. Phys. 34 (1981)606.

[3] S. Parke, Fermilab-Conf-93/056-T[hep-ph/9304271](1993);
L. Camilleri, CERN preprint, CERN-PPE/94-87(1994);
ICARUS Collaboration, Gran Sasso Lab. preprint LNGS-94/99-I(1994);
S. Wojcicki(MINOS), invited talk at XVII Conference on Neutrino Physics and Neutrino Astrophysics, June 13-19, 1996, Helsinki.

[4] Y. Suzuki(KEK), invited talk at XVII Conference on Neutrino Physics and Neutrino Astrophysics, June 13-19, 1996, Helsinki.

[5] K.S. Hirata et al., Phys. Lett. 205B(1988)416; 280B(1992)146;
D. Casper et al., Phys. Rev. Lett. 66(1991)2561;
R. Becker-Szendy et al., Phys. Rev. D46(1992)3720.

[6] NUSEX Collaboration, Europhys. Lett. 8(1989)611; ibidem 15(1991)559;
Soudan2 Collaboration, Nucl. Phys. B35(Proc. Suppl.)(1994)427;
ibidem 38(1995)337;
Fréjus Collaboration, Z. Phys. C66(1995)417;
MACRO Collaboration, Phys. Lett. 357B(1995)481.
[7] Y. Fukuda et al., Phys. Lett. 335B (1994) 237.

[8] R. N. Mohapatra and G. Senjanovic, Z. Phys. C17 (1983) 53;
R. Holman, G. Lazarides and Q. Shafi, Phys. Rev. D27 (1983) 995;
Q. Shafi and F. W. Stecker, Phys. Rev. Lett. 53 (1984) 1292;
R. Schaefer, Q. Shafi and F. W. Stecker, Astrophys. J. 347 (1989) 575;
J.A. Holtzman and J.R. Primack, Astrophys. J. 405 (1993) 428;
A. Klypin, J. Holtzman, J. Primack and E. Regos, Astrophys. J. 416 (1993) 1;
Y.P. Jing, H.J. Mo, G. Borner and L.Z. Fang, Astron. Astrophys. 284 (1994) 703;
J.R. Primack, J. Holtzman, A. Klypin and D. O. Caldwell, Phys. Rev. Lett. 74 (1995) 2160;
K.S. Babu, R.K. Schaefer and Q. Shafi, Phys. Rev. D53 (1996) 606;
C.Y. Cardall and G.M. Fuller, Phys. Rev. D53 (1996) 4421.

[9] GALLEX Collaboration, Phys. Lett. 327B (1994) 377;
SAGE Collaboration, Phys. Lett. 328B (1994) 234;
Homestake Collaboration, Nucl. Phys. B38 (Proc. Suppl.) (1995) 47;
Kamiokande Collaboration, Nucl. Phys. B38 (Proc. Suppl.) (1995) 55.

[10] J.T. Peltoniemi and J.W.F. Valle, Nucl. Phys. B406 (1993) 409;
D.O. Caldwell and R.N. Mohapatra, Phys. Rev. D48 (1993) 3259,
ibidem D50 (1994) 3477;
J.J. Gomez-Cadenas and M.C. Gonzalez-Garcia, preprint hep-ph/9504246 (1995);
S. Goswami, preprint hep-ph/9507212 (1995);
N. Okada and O. Yasuda, TMUP-HEL-9605, hep-ph/9606411 (1996);
N. Okada, TMUP-HEL-9607, hep-ph/9606221 (1996);
S.M. Bilenky, C. Giunti and W. Grimus, UWThPh-1996-42, hep-ph/9607372 (1996).
[11] J. Arafune and J. Sato, preprint ICRR-369-96-20, hep-ph/9607437(1996).

[12] C. Jarlskog Phys. Rev. Lett. 55(1985)1839.

[13] Particle Data Group, Phys. Rev. D50(1994)1173.

[14] LSND Collaboration, C. Athanassopoulos et al., Phys. Rev. Lett. 75(1995)2650;
 preprint, LA-UR-96-1326(1996)(nucl-ex/9605001);
 J. E. Hill, Phys. Rev. Lett. 75(1995)2654.

[15] S.T. Petcov and A.Yu. Smirnov, Phys. Lett. 322B(1994)109;
 D.O. Caldwell and R.N. Mohapatra, Phys. Lett. 354B(1995)371;
 G. Raffelt and J. Silk, Phys. Lett, 366B(1996)429.

[16] KARMEN Collaboration, Nucl. Phys. B38(Proc. Suppl.)(1995)235.

[17] K. Winter, Nucl. Phys. B38(Proc. Suppl.)(1995)211;
 M. Baldo-Ceolin, ibidem 35(1994)450;
 L. DiLella, Nucl. Phys. B31(Proc. Suppl.)(1993)319.

[18] H. Minakata, Phys. Lett. 356B(1995)61; Phys. Rev. D52(1995)6630.

[19] S.M. Bilenky, A. Bottino, C. Giunti and C. W. Kim, Phys. Lett. 356B
 (1995)273; DFTT 2/96(JHU-TIPAC 96002)(1996).

[20] G.L. Fogli, E. Lisi and G. Scioscia, Phys. Rev. D52(1995)5334.

[21] B. Achkar et al., Nucl. Phys. B434(1995)503.

[22] CDHS Collaboration, F. Dydak et al., Phys. Lett. 134B(1984)281.

[23] CCFR Collaboration, I.E. Stockdale et al., Phys. Rev. Lett. 52(1984)1384;
 Z. Phys. C27(1985)53.
[24] M. Tanimoto, Phys. Rev. **D53** (1996)6632.

[25] E531 Collaboration, N. Ushida et al., Phys. Rev. Lett. **57**(1986)2897.

[26] E776 Collaboration, L. Borodovsky et al., Phys. Rev. Lett. **68**(1992)274.

[27] G.S. Vidyakin et al., Pis’ma Zh.Eksp. Thor. Fiz. **59**(1994)364; JETP Lett. **59**(1994)390.

[28] R.I. Steinberg, Proc. of the 5-th Int.Workshop on neutrino Telescopes, Venice, Italy, ed. by M. Baldo-Ceolin, INFN, Padua(1993)209.

[29] T.K. Kuo and J. Pantaleo, Phys. Lett. **198B**(1987)406.
Figure Captions

Figure 1:

Dependences of S_{CP} on the neutrino energy E for (a) $L = 250$Km and (b) $L = 730$Km with $\Delta m_{31}^2 = 2.25\text{eV}^2$ and $\Delta m_{32}^2 = 10^{-2}\text{eV}^2$, which are shown by solid curves. The dashed curves denote $\sin^2(\Delta m_{32}^2 L/4E)$. Those are averaged over energy spread of 20% of the neutrino energy.

Figure 2:

Upper bounds of ΔP versus Δm_{31}^2 for (a) hierarchy I and (b) hierarchy II. The solid, dashed and dashed-dotted curves denote the cases (A), (B) and (C), respectively. We take $E = 1 \sim 1.5\text{GeV}$ and $L = 250$Km with $\Delta m_{32}^2 = 10^{-2}\text{eV}^2$ for hierarchy I and $\Delta m_{21}^2 = 10^{-2}\text{eV}^2$ for hierarchy II.

Figure 3:

The matter effect ΔP versus s_{12} in hierarchy II for (a) case (A) and (b) case (B). The solid and dashed curves denote $\Delta P(\nu_\mu \to \nu_\tau)$ and $\Delta P(\nu_\mu \to \nu_e)$, respectively. Here $\Delta m_{31}^2 = 2.25\text{eV}^2$, $\Delta m_{21}^2 = 10^{-2}\text{eV}^2$, $E = 1.2\text{GeV}$ and $L = 250$Km are taken.
Fig. 1 (a)
Fig. 1 (b)
Fig. 2 (a)
Fig. 2 (b)
Fig. 3 (a)
Fig. 3 (b)
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9605413v2
This figure "fig2-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9605413v2
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9605413v2
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9605413v2