Sphingolipids and kidney disease: Possible role of preeclampsia and intrauterine growth restriction (IUGR)

Rodrigo Yokota¹, Benjamin Bhunu¹, Hiroe Toba², Suttira Intapad¹

¹Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112.
²Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan

Corresponding Author:
Suttira Intapad, PhD
Assistant Professor
Department of Pharmacology
Tulane University School of Medicine
1430 Tulane Avenue, #8683
New Orleans, LA 70112-2699
Email: sintapad@tulane.edu
PHONE: 504-988-9924
Abstract

Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiological functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathological conditions, including kidney disease. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases and the possible involvement of preeclampsia and IUGR conditions.
Introduction

Over several decades, studies on bioactive lipids have provided information concerning their cellular functions beyond their structural and energy storage roles. Among a large number of bioactive lipids, sphingolipids and their metabolism have been the focus of attention1,2. Sphingolipids are commonly distributed in the cell membrane of the eukaryotic organism and contain an 18-carbon amino alcohol called sphingoid base with a fatty acid tail or headgroup attached to the base3,4. Sphingosine is a major sphingoid base in mammals and is often converted to a central intermediate of sphingolipid metabolism, ceramide5. Ceramide is ester-bonded with phosphatidylcholine and becomes sphingomyelin, which comprise 5–10\% of the total mammalian cell phospholipids6. The addition of various hydrophilic headgroups to ceramide ultimately produces more complex sphingolipids. Sphingolipid variations diversify their bio-functions, and sphingolipids and their metabolites are now known to be involved in cellular signaling regulating cell survival, growth, proliferation, differentiation, and cellular response to inflammation by acting as cell signaling mediators. Their mechanisms include acting as second messengers of intracellular signaling, supporting lipid raft composition, linking transmembrane domains of the signaling protein, creating mitochondrial membrane pores, and regulating enzymatic activation as cofactors1,7-9. Conversely, dysregulation of sphingolipid metabolism results in pathological states such as cancer, neurological disease, osteoporosis, diabetes, and atherosclerosis2,10-13.

Morbidity and mortality resulting from chronic kidney disease (CKD) are increasing worldwide. Abnormal lipid metabolism, including dyslipidemia and excessive accumulation of sphingolipids, has been reported to play a critical role in the pathogenesis and progression of CKD3,14,15. Previous studies suggest a positive correlation between the onset of adult CKD and a prior history of intrauterine growth restriction (IUGR) induced by pregnancy complications16-18. Moreover, precise sphingolipid metabolism is needed to maintain normal pregnancy. This review summarizes the pathophysiological roles of sphingolipid metabolism in CKD and its possible role in preeclampsia and IUGR.

Sphingolipid metabolism (See Figure 1)

1) \textit{De novo} synthesis

Sphingolipid \textit{de novo} synthesis occurs on the cytoplasmic side of the
endoplasmic reticulum through condensation of L-serine with palmitoyl Coenzyme A19,20. The \textit{de novo} sphingolipid biosynthesis is normally activated by metabolic overload of serine and/or palmitoyl CoA and by a stress stimulus such as heat, oxidation, chemotherapeutics, cannabinoids, and tumor necrosis factor (TNF)21. After biosynthesis of 3-ketosphingosine and dihydrosphingosine (sphinganine), ceramide, a precursor and central molecule in sphingolipid biosynthesis, is formed by desaturation of dihydroceramide at C4-C5 of the sphingoid base22.

In mammalian cells, ceramide is then converted into sphingomyelin or glucosylerceramide, and glucosylerceramide further changes into more complex glycosphingolipids. Major glycosphingolipids are glucosphingolipids and galactosphingolipids, which are attached with glucose and galactose, respectively. Glycosphingolipids are the largest subclass of sphingolipids and are often distributed in lipid rafts; they are present in the plasma membrane’s outer leaflet and, when needed, they play roles in regulating interactions between cells and protein activation23,24. Gangliosides are a minor class of glycosphingolipids containing complex attached sugar chains and are essential components of the plasma membranes. In some instances, glycosphingolipids may contain complex sugar chains such as N-acetylgalactosamine and N-glycolylneuraminic acid25,26. Gangliosides with one or more N-acetylneuraminic acids (NANA) linkages are labeled GM1, GM2, and GM3 (one N-acetylneuraminic acid) or GD1a, GD1b, GD2, GD3, GT1b, and GQ1 (more than one N-acetylneuraminic acid)27.

2) Salvage pathway

Ceramide is also synthesized by a salvage pathway28. In the presence of stress stimuli, sphingomyelin is broken down to ceramide and phosphocholine. This reaction is mediated by sphingomyelinase29,30. Undesired complex sphingolipids such as glycosphingolipids may be broken down in the acidic environment of lysosomes or late endosomes to ceramide29. Complex glycosphingolipids are degraded through sequential hydrolysis of terminal hydrophilic moieties by hydrolases, where glucose or galactose is removed by β-glucosidases or galactosidase, respectively, to produce ceramide.

Ceramide is hydrolyzed by ceramidase to a sphingosine base and free fatty acid. These two products leave the lysosomes or endosomes to become recycled substrates of ceramide biosynthesis30. Alternatively, biosynthesized sphingosine may be phosphorylated by sphingosine kinase (SphK) to form sphingosine-1-phosphate (S1P), an essential cellular
signaling molecule. S1P can be degraded to 2-trans hexadecenal and phosphoethanolamine by S1P lyase.

SphK/S1P/S1PRs axis in the kidney

Two SphK isoforms were identified: SphK1 and SphK2, these are present in the cytosol and intracellular compartments, respectively. SphK1 is reported to exert anti-apoptotic function in renal mesangial cells by increasing S1P level, while cultured mesangial cells isolated from SphK2-knockout mice are resistant to apoptosis. In the human proximal tubular HK-2 cell line, SphK1 overexpression protects against peroxidase-induced necrosis by increasing S1P content.

S1P can act as an extracellular ligand for cell membrane receptors and intracellular signaling molecule. Five S1P receptors (S1PRs: S1PR1-S1PR5) were identified, S1PR1-3 are detected in renal medulla and glomeruli. The protein levels of S1PR1 and S1PR2, not S1PR3-S1PR5, are abundantly expressed in rat preglomerular microvessels. On the other hand, whole mouse kidneys express S1PR1-S1PR4 mRNA with a rank order of S1PR1>S1PR3>S1PR2>S1PR4 except S1PR5 mRNA, whereas cultured mesangial cells express all 5 receptors.

Sphingolipids and kidney diseases

Dyslipidemia: high levels of low-density lipoprotein-cholesterol and triglycerides in addition to a low level of high-density lipoprotein-cholesterol, is a major risk factor for atherosclerotic diseases, including CKD. Alternatively, hypoalbuminemia resulting from proteinuria and a decline in renal function may induce the accumulation of atherogenic triglyceride-rich lipoproteins. Recent studies have shown lipid-induced oxidation and inflammation in the kidney, so-called lipotoxicity.

Some genetic disorders where sphingolipid metabolism is disrupted, exhibit renal damages indicating that the kidney is sensitive to sphingolipid alterations. Fabry’s disease is caused by α-galactosidase A (GLA) mutations, resulting in deficient activity of a lysosomal hydrolase and excessive accumulation of globotriaosylceramide (Gb3) in cells throughout the body, particularly cells in the kidney, heart, nervous and gastrointestinal system, and vasculature in the skin. The resulting phenotype may include fatal progressive kidney damage in hemizygous males, whereas in some individuals, milder symptoms often appear later in life. Although the precise mechanism has not been clarified, the potential of
Gb3 action has been investigated in podocytes, which accumulate more in Gb3 than other renal cell types. The GLA gene knockdown by RNA interference and lentiviral transduction techniques upregulates LC3-II and downregulates mTOR kinase activity in podocytes, indicating dysregulation of autophagy. The deacetylated bioactive form of Gb3 activates the NOTCH signaling pathway, leading to a pro-inflammatory response, dedifferentiation, and extracellular matrix accumulation via nuclear factor-κB translocation.

Accumulation of sphingolipids contributes to renal disorders. Although normal glomeruli express gangliosides abundantly, renal levels of glycosphingolipids such as glucosylceramide, lactosylceramide, and ganglioside GM3 are elevated in the patients with diabetic nephropathy, polycystic kidney disease, renal cell carcinoma, lupus nephritis, age-related decreased kidney function, and their experimental models. Conversely, in a model of minimal change disease induced by puromycin aminonucleoside, the amount of ganglioside GD3 and O-acetyl GD3 decreased in a time-dependent manner with the progression of proteinuria. Since sialoglycoproteins contribute to the glomerular filtration barrier by retaining the negative charge, decreases in gangliosides may alter glomerular permeability.

Diabetic nephropathy is characterized by albuminuria, glomerular and tubulointerstitial fibrosis, and glomerulosclerosis; this condition is a leading cause of end-stage renal disease. In patients with diabetes, high plasma levels of sphingolipids: including glycosphingolipids, ceramide, sphingosine, and sphinganine, have been observed. Inhibition of glucosylceramide formation suppresses pathological changes in diabetic rat kidneys, suggesting a pathogenic role of glycosphingolipids. Sphingomyelinase phosphodiesterase acid-like 3b (SMPDL3b) in the membrane lipid raft activates the conversion of sphingomyelin to ceramide and phosphorylcholine, purportedly by modulating acid sphingomyelinase. Glomerular expression of this enzyme is enhanced in both human and mouse diabetic nephropathy. In diabetic mice, ceramide levels in the renal cortex are decreased, whereas glomerular mesangial and tubular levels of sphingosine and S1P are enhanced. Increased SMPDL3b action may induce the production of other ceramide metabolites such as glycosphingolipids and S1P by promoting sphingomyelin conversion to ceramide. This hypothesis is also supported by acute kidney injury studies, demonstrating that sphingomyelinase activity and ceramide content increase in proportion to the extent of proximal tubule cell injury. Moreover, a selective S1P1R agonist, SEW2871, attenuates proteinuria in early-stage diabetic nephropathy in rats, suggesting a
beneficial property of S1PR1 stimulation. In the pathogenesis of type 2 diabetes mellitus, ceramide is reported to participate in islet β-cell dysfunction and apoptosis. This report suggests that abnormal sphingolipid metabolism deteriorates diabetic nephropathy by direct effects on the kidney and glucose intolerance. Obesity plays an essential role in the onset and progression of type 2 diabetes mellitus by releasing pathogenic adipocytokines, including inflammatory cytokines. Long-chain saturated-free fatty acids-treatment promotes ceramide and diacylglycerol accumulation and blocks insulin signaling in C2C12 myotubes. Inhibition of de novo sphingolipid synthesis suppresses inflammatory cytokine release from murine 3T3-L1 cells.

Unlike the diabetic kidney, renal SMPDL3b levels are low in patients with focal segmental glomerulosclerosis (FSGS). This provides the possibility that the accumulation of sphingomyelin may participate in FSGS pathogenesis. Fornoni et al. revealed that serum from FSGS patients has decreased acid sphingomyelinase activity and SMPDL3b levels, FSGS is associated with increases in actin cytoskeletal remodeling and apoptosis in podocytes. FSGS is the most common cause of nephrotic syndrome and shows progressive renal dysfunction. Soluble urokinase plasminogen activator receptor (suPAR), which is elevated in serum from patients with FSGS, activates αVβ3 integrin in podocytes, leading to migratory phenotype. Serum suPAR levels are also elevated in patients with diabetic nephropathy. In podocytes treated with serum obtained from patients with diabetic nephropathy, SMPDL3b interacts with suPAR and renders podocyte change from a migratory to an apoptotic phenotype through increasing RhoA activity. Taken together, regulation of sphingolipid metabolism could be a therapeutic target for glomerular diseases.

Inflammation induces the production and release of fibrogenic cytokines and growth factors, leading to fibrosis, which results in irreversible kidney dysfunction. S1P has been considered to play an important role in both inflammation and fibrosis. S1P, synthesized by SphK in the cytosol, is transported to the extracellular space by transporters, including ATP-binding cassette (ABC) transporters. Exported S1P can bind to G protein-coupled receptors (S1PRs) on the plasma membrane in an autocrine fashion or different cell types. S1P released from glomerular mesangial cells can bind to S1PR2 and S1PR3 in the fibroblasts, activating the transforming growth factor (TGF)-β1/Smad pathway and triggering fibrogenic action and SphK1 production. Extracellular S1P can bind to S1PRs on immune cells such as macrophages and lymphocytes, leading to inflammation. This
vicious cycle is called the SphK1/S1P/S1PRs axis15.

Furthermore, overexpression of SphK1 and S1P is found in the diabetic kidney and high glucose-treated mesangial cells 77. The SphK activity and S1P level are increased in isolated glomeruli of diabetic rats 78. In the pathogenesis of diabetic nephropathy, differentiation of tubular epithelial cells and fibroblasts to myofibroblasts is thought to be mediated by in the SphK1/S1P/S1PRs axis, presumably via S1PR2 and subsequent Rho kinase activation64,77,79,80. SphK2-knockout mice exhibit less renal fibrosis than wild-type and SphK1-knockout mice 14 days after acute kidney injury induced by folic acid or unilateral ischemia-reperfusion 81. Likewise, S1PR3 inhibition suppresses collagen deposition, myofibroblast differentiation, proteinuria, and leucocyte infiltration in the model of ureteral obstruction82. FTY720, an immunosuppressive S1PRs ligand that functions as S1PRs antagonist, prevents inflammatory alterations in ureteral obstruction and angiotensin II treatment models83,84. However, the S1P effects are diverse depending on receptor subtypes and pathological conditions85,86. For instance, SphK1/S1P/S1PR1 axis in endothelial cells and proximal tubular cells plays important roles in protecting against renal ischemia-reperfusion injury 37,87,88. Bajwa et al. demonstrated the therapeutic effects of S1PR3-deficient bone marrow-derived dendritic cell transfers in renal ischemia-reperfusion injury through the expansion of splenic CD4(+)Foxp3(+)T(REG)s 89.

Possible role of sphingolipids in preeclampsia and IUGR?

Preeclampsia is a maternal gestational disease characterized by kidney dysfunction shown by proteinuria and hypertension after 20 weeks of gestation and is a major cause of maternal and fetal morbidity and mortality, including IUGR. The origin of the preeclampsia pathology is believed to be in the placenta, even though preeclampsia shows a high degree of heterogeneity in clinical features. Abnormal placentation (characterized with insufficient cytotrophoblast invasion of spinal arteries) and abnormal remodeling of decidual vessels limit placental perfusion, leading to release of placental factors into the maternal circulation, including soluble fms-like tyrosine kinase 1 (sFlt1)90-94. The sFlt is believed to inhibit vasodilation and induce maternal hypertension by antagonizing vascular endothelial cell growth factor (VEGF) action to produce nitric oxide95.

In placentae from pregnancy complicated by IUGR without preeclampsia, low ceramide and high sphingosine levels are observed compared to age-matched controls 96. 2
Contrary to what is observed in IUGR pregnancy, acid ceramidase expression/activity and ceramide content are reported to increase in preeclampsia. In conjunction with the increase in de novo synthesis, ceramide overload causes excessive autophagy in cultured human trophoblast cells and in pregnant murine placentae and necroptosis in human choriocarcinoma JEG3 cells and primary isolated cytotrophoblasts and in human preeclamptic placentae. Progressive trophoblast cell death is a common feature of IUGR pregnancy, with or without preeclampsia. Furthermore, differences in sphingolipid metabolism may depend on trophoblast phenotypes, which are reported to be different between IUGR and preeclampsia. The serine palmitoyltransferase activity and the expression of sphingosine and sphingomyelin are high in chorionic arteries of the human preeclamptic placenta. In placental arterial endothelial cells, S1P content is reduced by heightened S1P phosphatase and lyase activity. Moreover, the equilibrium shift of S1PR expression/activity toward S1PR2 and lower S1PR1 promotes endothelial dysfunction in preeclampsia. The SphK/S1P/S1PR1 axis plays a crucial role in placental angiogenesis and endothelial barrier function during pregnancy through extracellular signal-regulated protein kinases (ERK) 1/2 and phospholipase C downstream signaling. FTY720 (non-specific agonist except for S1PR2) has been found to decrease the VEGF expression in human decidual natural killer (NK) cells and to inhibit decidual NK cell-mediated extravillous trophoblast migration and angiogenesis in vitro. Since S1PR5 is expressed predominantly in decidual NK cells, S1P signaling via S1PR5 may play an essential role in decidual NK cell angiogenic function and trophoblast migration during pregnancy.

The role of sphingolipids in hypertension and kidney disease in IUGR offspring has not been investigated, despite strong evidence that IUGR is known to increase the risk of adult cardiovascular and renal diseases. IUGR often results from placental insufficiency and is related to an increase in perinatal morbidity and mortality. IUGR is commonly defined as a fetal gap—inability to reach growth potential associated with birth weight less than the 10th percentile of the average gestational age. IUGR offspring is associated with having low nephron numbers, causing the reduction in filtration surface area, which leads to systemic hypertension and progressive renal insufficiency; sequelae made even more severe with confounding factors such as excess dietary sodium. Clinical and animal data regarding the maturation of renal function in IUGRs shows birth weight is positively associated with glomerular filtration rate (GFR) and negatively associated with blood pressure and serum creatinine. These data suggest that IUGR individuals are at risk of
developing hypertension and renal failure. The long-term effects of S1P on blood pressure may involve S1P-induced modulation of renal blood flow and renal Na+ handling. S1P mediates natriuresis via the activation of S1PR1 in the renal medulla of rats109,110. The \textit{s1p1} is a candidate gene that determines the response to salt in spontaneously hypertensive stroke-prone rats111. Given the essential role of sphingolipids on kidney function and control of blood pressure, which are impaired in IUGR, it is possible that the sphingolipid pathway may play a role in the pathophysiology of IUGR and requires further investigation.

Summary

Sphingolipids are synthesized and metabolized by multiple pathways. Abnormal sphingolipid metabolism is implicated in various diseases, especially of the kidney. S1P is the most active sphingolipid metabolite and causes kidney inflammation and fibrosis through the SphK1/S1P/S1PRs axis. On the other hand, in fetal development, the SphK/S1P/S1PR1 axis mediates angiogenesis, suppresses immune response to embryos and uterine cell differentiation and proliferation, which are essential processes required to maintain proper placenta functions. Hence, inadequate S1P action causes IUGR, increasing the risk of adult-onset diseases such as obesity, diabetes, hypertension, cardiovascular and kidney diseases, and a high susceptibility to kidney injury (Figure2)112,113. There are possibilities that abnormal sphingolipid metabolism may be consequent alterations of the diseases. However, studies using pharmacological inhibition and gene-deletion techniques raise the notion that sphingolipid metabolism may be one of the pivotal causes of kidney diseases. Controlling sphingolipid metabolism from the fetal period into adulthood determines our lifelong fate, including kidney function. The effects of S1P on endothelial barrier and sensitivity to vasoconstrictors also depend on its concentrations114. Further studies to determine the extent and timing of SphK/S1P/S1PRs inhibition/activation and the conditions which regulate the effects of S1P will provide a novel therapeutic target against kidney disease in general and specifically against kidney disease induced by preeclampsia and IUGR.
DISCLOSURES

All authors have nothing to disclose.

FUNDING

This work from S. Intapad was supported by the Norman Siegel Research Scholar Grant of the American Society of Nephrology (ASN) Foundation for Kidney Research, 16SDG27770041 from the American Heart Association (AHA), P20GM109036 from the National Institute of General Medical Sciences of the National Institutes of Health, and start-up funding from Tulane University. B. Bhunu was supported by the Fulbright Junior Staff Development Program fellowship awarded by the United States embassy in Zimbabwe. This work is also supported by grant-in-aids for scientific research from Hoansha Foundation to H. Toba.

ACKNOWLEDGMENTS

The author acknowledges Nancy Busija, M.A., for critically reading and editing of the manuscript.

AUTHOR CONTRIBUTIONS

R Yokota: Conceptualization; Writing - original draft; Writing - review and editing

B Bhunu: Conceptualization; Funding acquisition; Validation; Writing - original draft; Writing - review and editing

H Toba: Conceptualization; Funding acquisition; Validation; Writing - original draft; Writing - review and editing

S Intapad: Conceptualization; Funding acquisition; Supervision; Validation; Writing - original draft; Writing - review and editing
References
1. Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139-150, 2008.
2. Kroll A, Cho HE, Kang MH: Antineoplastic Agents Targeting Sphingolipid Pathways. Front Oncol 10:833, 2020.
3. Merscher S, Fornoni A: Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol (Lausanne) 5:127, 2014.
4. van Meer G, Voelker DR, Feigenson GW: Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112-124, 2008.
5. Merrill AH, Jr.: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277:25843-25846, 2002.
6. Tafesse FG, Huitema K, Hermansson M, et al: Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J Biol Chem 282:17537-17547, 2007.
7. Hakomori SI: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta 1780:325-346, 2008.
8. Hannun YA, Obeid LM: Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19:175-191, 2018.
9. Zheng W, Kollmeyer J, Symolon H, et al: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864-1884, 2006.
10. Chatterjee S: Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol 18:1523-1533, 1998.
11. Holland WL, Summers SA: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381-402, 2008.
12. Maceyka M, Harikumar KB, Milstien S, et al: Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50-60, 2012.
13. Pant DC, Aguilera-Albesa S, Pujol A: Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 143:105014, 2020.
14. Abou Daher A, El Jalkh T, Eid AA, et al: Translational Aspects of Sphingolipid Metabolism in Renal Disorders. Int J Mol Sci 18, 2017.
15. Zhang X, Ritter JK, Li N: Sphingosine-1-phosphate pathway in renal fibrosis. Am J Physiol Renal Physiol 315:F752-F756, 2018.
16. Barker DJ, Osmond C: Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077-1081, 1986.
17. Barker DJ, Winter PD, Osmond C, et al: Weight in infancy and death from ischaemic heart disease. Lancet 2:577-580, 1989.
18. Hinchliffe SA, Sargent PH, Howard CV, et al: Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 64:777-784, 1991.
19. Breslow DK: Sphingolipid homeostasis in the endoplasmic reticulum and beyond. Cold Spring Harb Perspect Biol 5:a013326, 2013.
20. Gault CR, Obeid LM, Hannun YA: An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1-23, 2010.
21. Bartke N, Hannun YA: Bioactive sphingolipids: metabolism and function. J Lipid Res 50 Suppl:S91-96, 2009.
22. Lewis AC, Wallington-Beddoe CT, Powell JA, et al: Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discovery 4:72, 2018.
23. Hall A, Rog T, Karttunen M, et al: Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. J Phys Chem B 114:7797-7807, 2010.
24. Mondal S, Mukhopadhyay C: Molecular level investigation of organization in ternary lipid bilayer: a computational approach. Langmuir 24:10298-10305, 2008.
25. D’Angelo G, Capasso S, Sticco L, et al: Glycosphingolipids: synthesis and functions. FEBS J 280:6338-6353, 2013.
26. Hannun YA, Obeid LM: Sphingolipids and their metabolism in physiology and disease. Nature reviews Molecular cell biology 19:175-191, 2018.
27. Hakomori S: Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265:18713-18716, 1990.
28. Di Pardo A, Maglione V: Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Frontiers in Neuroscience 12, 2018.
29. Bocheńska K, Gabig-Cimińska M: Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules (Basel, Switzerland) 25:1130, 2020.
30. Kitatani K, Idkowiak-Baldys J, Hannun YA: The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular signalling 20:1010-1018, 2008.
31. Intapad S: Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 317:F638-F640, 2019.
32. Weske S, Vaidya M, Reese A, et al: Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss. Nature Medicine 24:667-678, 2018.
33. Maceyka M, Sankaia H, Hait NC, et al: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280:37118-37129, 2005.
34. Hofmann LP, Ren S, Schwalm S, et al: Sphingosine kinase 1 and 2 regulate the capacity of mesangial cells to resist apoptotic stimuli in an opposing manner. Biol Chem 389:1399-1407, 2008.
35. Liu H, Toman RE, Goparaju SK, et al: Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278:40330-40336, 2003.
36. Igarashi N, Okada T, Hayashi S, et al: Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278:46832-46839, 2003.
37. Park SW, Kim M, Kim M, et al: Sphingosine kinase 1 protects against renal ischemia-reperfusion injury in mice by sphingosine-1-phosphatase1 receptor activation. Kidney Int 80:1315-1327, 2011.
38. Hla T, Lee MJ, Ancellin N, et al: Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem Pharmacol 58:201-207, 1999.
39. Imasawa T, Kitamura H, Ohkawa R, et al: Unbalanced expression of sphingosine 1-phosphate receptors in diabetic nephropathy. Exp Toxicol Pathol 62:53-60, 2010.
40. Zhu Q, Xia M, Wang Z, et al: A novel lipid natriuretic factor in the renal medulla: sphingosine-1-phosphate. Am J Physiol Renal Physiol 301:F35-41, 2011.
41. Guan Z, Singleton ST, Cook AK, et al: Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J Am Soc Nephrol 25:1774-1785, 2014.
42. Awad AS, Ye H, Huang L, et al: Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 290:F1516-1524, 2006.
43. Gennero I, Fauvel J, Nieto M, et al: Apoptotic effect of sphingosine 1-phosphate and increased sphingosine 1-phosphate hydrolysis on mesangial cells cultured at low cell density. J Biol Chem 277:12724-12734, 2002.
44. Rutledge JC, Ng KF, Aung HH, et al: Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol 6:361-370, 2010.
45. Dunn TM, Tifft CJ, Proia RL: A perilous path: the inborn errors of sphingolipid metabolism. J Lipid Res 60:475-483, 2019.

46. Liebau MC, Braun F, Hopker K, et al: Dysregulated autophagy contributes to podocyte damage in Fabry's disease. PLoS One 8:e63506, 2013.

47. Sanchez-Nino MD, Carpio D, Sanz AB, et al: Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet 24:5720-5732, 2015.

48. Sanz AB, Sanchez-Nino MD, Ramos AM, et al: NF-kappaB in renal inflammation. J Am Soc Nephrol 21:1254-1262, 2010.

49. Hoon DS, Okun E, Neuwirth H, et al: Aberrant expression of gangliosides in human renal cell carcinomas. J Urol 150:2013-2018, 1993.

50. Iwamori M, Shimomura J, Tsuyuhara S, et al: Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides. J Biochem 95:761-770, 1984.

51. Reivinen J, Holthofer H, Miettinen A: A cell-type specific ganglioside of glomerular podocytes in rat kidney: an O-acetylated GD3. Kidney Int 42:624-631, 1992.

52. Saito M, Sugiyama K: Gangliosides in rat kidney: composition, distribution, and developmental changes. Arch Biochem Biophys 386:11-16, 2001.

53. Shayman JA, Radin NS: Structure and function of renal glycosphingolipids. Am J Physiol 260:F291-302, 1991.

54. Zador IZ, Deshmukh GD, Kunkel R, et al: A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest 91:797-803, 1993.

55. Chatterjee S, Alsaeedi N, Hou J, et al: Use of a glycolipid inhibitor to ameliorate renal cancer in a mouse model. PLoS One 8:e63726, 2013.

56. Deshmukh GD, Radin NS, Gattone VH, 2nd, et al: Abnormalities of glycosphingolipid, sulfatide, and ceramide in the polycystic (cpk/cpk) mouse. J Lipid Res 35:1611-1618, 1994.

57. Nowling TK, Mather AR, Thiyagarajan T, et al: Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J Am Soc Nephrol 26:1402-1413, 2015.

58. Hernandez-Corbach MJ, Jenkins RW, Clarke CJ, et al: Accumulation of long-chain glycosphingolipids during aging is prevented by caloric restriction. PLoS One 6:e20411, 2011.

59. Holthofer H, Reivinen J, Solin ML, et al: Decrease of glomerular disialogangliosides in puromycin nephrosis of the rat. Am J Pathol 149:1009-1015, 1996.

60. Gorska M, Dobrzyn A, Baranowski M: Concentrations of sphingosine and sphinganine in plasma of patients with type 2 diabetes. Med Sci Monit 11:CR35-38, 2005.

61. Haus JM, Kashyap SR, Kasumov T, et al: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58:337-343, 2009.

62. Kremer GJ, Atzpodien W, Schnellbacher E: Plasma glycosphingolipids in diabetics and normals. Klin Wochenschr 53:637-638, 1975.

63. Brunskill EW, Potter SS: Changes in the gene expression programs of renal mesangial cells during diabetic nephropathy. BMC Nephrol 13:70, 2012.

64. Ishizawa S, Takahashi-Fujigasaki J, Kanazawa Y, et al: Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol 18:844-852, 2014.

65. Samad F, Hester KD, Yang G, et al: Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55:2579-2587, 2006.

66. Zager RA, Burkhart KM, Johnson A: Sphingomyelinase and membrane sphingomyelin content: determinants of Proximal tubule cell susceptibility to injury. J Am Soc Nephrol 11:894-902, 2000.
67. Zager RA, Conrad DS, Burkhart K: Ceramide accumulation during oxidant renal tubular injury: mechanisms and potential consequences. J Am Soc Nephrol 9:1670-1680, 1998.
68. Zager RA, Conrad S, Lochhead K, et al: Altered sphingomyelinase and ceramide expression in the setting of ischemic and nephrotoxic acute renal failure. Kidney Int 53:573-582, 1998.
69. Awad AS, Rouse MD, Khuvishtili K, et al: Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int 79:1090-1098, 2011.
70. Lang F, Ullrich S, Gubins E: Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 15:1061-1071, 2011.
71. Chavez JA, Summers SA: Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101-109, 2003.
72. Hamada Y, Nagasaki H, Fujiya A, et al: Involvement of de novo ceramide synthesis in pro-inflammatory adipokine secretion and adipocyte-macrophage interaction. J Nutr Biochem 25:1309-1316, 2014.
73. Fornoni A, Sageshima J, Wei C, et al: Rituximab targets podocytes in recurrent focal segmental glomerulonephritis. Sci Transl Med 3:85ra46, 2011.
74. Kitiyakara C, Eggers P, Kopp JB: Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis 44:815-825, 2004.
75. Yoo TH, Pedigo CE, Guzman J, et al: Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 26:133-147, 2015.
76. Toba H, Lindsey ML: Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 193:99-120, 2019.
77. Lan T, Liu W, Xie X, et al: Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol 25:2094-2105, 2011.
78. Geoffroy K, Troncy L, Wiernsperger N, et al: Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. FEBS Lett 579:1249-1254, 2005.
79. Lan T, Shen X, Liu P, et al: Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway. Arch Biochem Biophys 502:112-120, 2010.
80. Shiohira S, Yoshida T, Sugiuara H, et al: Sphingosine-1-phosphate acts as a key molecule in the direct mediation of renal fibrosis. Physiol Rep 1:e00172, 2013.
81. Bajwa A, Huang L, Kurmaeva E, et al: Sphingosine Kinase 2 Deficiency Attenuates Kidney Fibrosis via IFN-gamma. J Am Soc Nephrol 28:1145-1161, 2017.
82. Liu N, Tolbert E, Pang M, et al: Suramin inhibits renal fibrosis in chronic kidney disease. J Am Soc Nephrol 22:1064-1075, 2011.
83. Su K, Zeng P, Liang W, et al: FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017:3701385, 2017.
84. Thangada S, Shapiro LH, Silva C, et al: Treatment with the immunomodulator FTY720 (fingolimod) significantly reduces renal inflammation in murine unilateral ureteral obstruction. J Urol 191:1508-1516, 2014.
85. Dupre TV, Siskind LJ: The role of sphingolipids in acute kidney injury. Adv Biol Regul 70:31-39, 2018.
86. Kurano M, Tsuneyama K, Morimoto Y, et al: Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice. FASEB J 33:5181-5195, 2019.
87. Park SW, Kim M, Kim JY, et al: Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia. Kidney Int 82:878-891, 2012.
88. Perry HM, Huang L, Ye H, et al: Endothelial Sphingosine 1Phosphate Receptor1 Mediates Protection and Recovery from Acute Kidney Injury. J Am Soc Nephrol 27:3383-3393, 2016.
89. Bajwa A, Huang L, Kurmaeva E, et al: Sphingosine 1-Phosphate Receptor 3-Deficient Dendritic Cells Modulate Splenic Responses to Ischemia-Reperfusion Injury. J Am Soc Nephrol 27:1076-1090, 2016.
90. Brosens IA, Robertson WB, Dixon HG: The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1:177-191, 1972.
91. Robertson WB, Brosens I, Dixon HG: The pathological response of the vessels of the placental bed to hypertensive pregnancy. J Pathol Bacteriol 93:581-592, 1967.
92. Pijnenborg R, Anthony J, Davey DA, et al: Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 98:648-655, 1991.
93. Zhou Y, Damsky CH, Chiu K, et al: Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytотrophoblasts. J Clin Invest 91:950-960, 1993.
94. Hecht JL, Zsengeller ZK, Spiel M, et al: Revisiting decidual vasculopathy. Placenta 42:37-43, 2016.
95. Tomimatsu T, Mimura K, Matsuzaki S, et al: Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int J Mol Sci 20, 2019.
96. Chauvin S, Yinon Y, Xu J, et al: Aberrant TGFbeta Signalling Contributes to Dysregulation of Sphingolipid Metabolism in Intrauterine Growth Restriction. J Clin Endocrinol Metab 100:E986-996, 2015.
97. Melland-Smith M, Ermini L, Chauvin S, et al: Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy 11:653-669, 2015.
98. Bailey LJ, Alahari S, Tagliaferro A, et al: Augmented trophoblast cell death in preeclampsia can proceed via ceramide-mediated necroptosis. Cell Death Dis 8:e2590, 2017.
99. Newhouse SM, Davidge ST, Winkler-Lowen B, et al: In vitro differentiation of villous trophoblasts from pregnancies complicated by intrauterine growth restriction with and without preeclampsia. Placenta 28:999-1003, 2007.
100. Del Gaudio I, Sasset L, Lorenzo AD, et al: Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia. Int J Mol Sci 21, 2020.
101. Skaznik-Wikiel ME, Kaneko-Tarui T, Kashiwagi A, et al: Sphingosine-1-phosphate receptor expression and signaling correlate with uterine prostaglandin-endoperoxide synthase 2 expression and angiogenesis during early pregnancy. Biol Reprod 74:569-576, 2006.
102. Del Gaudio I, Sreckovic I, Zardoya-Laguardia P, et al: Circulating cord blood HDL-S1P complex preserves the integrity of the feto-placental vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158632, 2020.
103. Zhang J, Dunk CE, Lye SJ: Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. Hum Reprod 28:3026-3037, 2013.
104. American College of O, Gynecologists: ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol 121:1122-1133, 2013.
105. Sharma D, Shastri S, Sharma P: Intrauterine Growth Restriction: Antenatal and Prenatal Aspects. Clin Med Insights Pediatr 10:67-83, 2016.
106. Hughson M, Farris AB, 3rd, Douglas-Denton R, et al: Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113-2122, 2003.
107. Keijzer-Veen MG, Schrevel M, Finkel MJ, et al: Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J Am Soc Nephrol 16:2762-2768, 2005.
108. Wlodek ME, Westcott K, Siebel AL, et al: Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74:187-195, 2008.
109. Bischoff A, Meyer Zu Heringdorf D, Jakobs KH, et al: Lysosphingolipid receptor-mediated diuresis and natriuresis in anaesthetized rats. Br J Pharmacol 132:1925-1933, 2001.

110. Czyborra C, Bischoff A, Michel MC: Indomethacin differentiates the renal effects of sphingosine-1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 373:37-44, 2006.

111. Graham D, McBride MW, Gaasenbeek M, et al: Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat: congeneric analysis. Hypertension 50:1134-1141, 2007.

112. Barker DJ: The origins of the developmental origins theory. J Intern Med 261:412-417, 2007.

113. Rueda-Clausen CF, Morton JS, Lopaschuk GD, et al: Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovasc Res 90:285-294, 2011.

114. Kerage D, Brindley DN, Hemmings DG: Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta 35 Suppl:S86-92, 2014.

115. Breslow DK, Weissman JS: Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40:267-279, 2010.

116. Mashima R, Okuyama T, Ohira M: Biosynthesis of long chain base in sphingolipids in animals, plants and fungi. Future Sci OA 6:FSO434, 2019.

117. Mullen TD, Hannun YA, Obeid LM: Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441:789-802, 2012.

118. Cowart LA: A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on "Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue". Am J Physiol Cell Physiol 299:C549-551, 2010.
FIGURE LEGENDS

Figure 1. The Sphingolipid metabolism pathway

(de novo biosynthesis pathway): After condensation, serine palmitoyl CoA transferase (SPT) catalyzes the production of 3-ketodihydrosphingosine, which is a rate limiting step in sphingolipid metabolism. SPT belongs to the α-axoamine synthase family and requires pyridoxal 5’ phosphate as a cofactor. The 3-ketodihydrosphingosine reductase converts 3-ketodihydrosphingosine to sphinganine by reducing the keto group. Sphinganine is then N-acylated in microsomes by one of the six isoforms of dihydroceramide synthase to generate different species of dihydroceramide, depending on the length of the fatty-acyl added. *(Sphingomyelin pathway)*: Sphingomyelin is formed by the addition of phosphocholine to the C1 hydroxyl group of ceramides by sphingomyelin synthase in the Golgi apparatus. The phosphocholine comes from phosphatidylcholine, and diacylglycerol is released from the reaction. *(Glycolipids pathway)*: Glycosphingolipids contain sugar residues attached to C1 hydroxyl group of the sphingoid base. Another salvage pathway to produce ceramide is mediated by sphingomyelinase, which degrades sphingomyelin (Sphingomyelin pathway). *(Sphingosine-1-phosphate pathway)*: Ceramide biosynthesizes sphingosine-1-phosphate by sphingosine kinase-mediated phosphorylation.

Figure 2. Hypothesized roles of SphK/S1P/S1PRs axis in chronic kidney disease (CKD) and intrauterine growth restriction (IUGR).

Accelleration of SphK/S1P/S1PRs axis may induce inflammation and fibrosis, leading to CKD. On the other hand, the physiologically controlled SphK/S1P/S1PRs axis may essential in maintaining normal pregnancy through angiogenesis, suppression of the immune response to embryos, and uterine cell differentiation and proliferation.
