Aromatized to Find Mates: α-Pinene Aroma Boosts the Mating Success of Adult Olive Fruit Flies

Christos D. Gerofotis, Charalampos S. Ioannou, Nikos T. Papadopoulos*

Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece

Abstract

Background: Contrary to other Tephritidae, female but also male olive flies, Bactrocera oleae release pheromones during their sexual communication. Alpha-pinene, a common plant volatile found in high amounts in unripe olive fruit and leaves has been detected as one of the major components of the female pheromone. However, possible effects of α-pinene and that of other host volatiles on the mating behavior of the olive fly have not been investigated.

Methodology: Using wild olive flies, reared on olive fruit for 3 generations in the laboratory, we explored whether exposure of male and female olive flies to α-pinene affects their sexual performance.

Results: Exposure of sexually mature adult olive flies to the aroma of α-pinene significantly increases the mating performance over non-exposed individuals. Interestingly, exposure to α-pinene boosts the mating success of both males and female olive flies.

Conclusions: This is the first report of such an effect on the olive fly, and the first time that a single plant volatile has been reported to induce such a phenomenon on both sexes of a single species. We discuss the possible associated mechanism and provide some practical implications.

Introduction

Plant volatiles are of strong ecological importance shaping behavioural and physiological responses in insects [1]. They provide important cues to insect species for locating food sources [2–4], finding suitable oviposition sites [5,6] or mediating oviposition behavior [7,8]. Besides, there have been many studies demonstrating that volatiles of host and non-host plants may exert a profound effect on the sexual behavior of insects [9] by facilitating mate finding [10–12] or modifying mate selection strategies (i.e. sexual signaling, courting) [9,10]. Furthermore, the feeding activity of herbivores may result in a distinct blend of plant volatiles that (a) may facilitate colonization by attracting more herbivores [13,14] or (b) on the other hand, may be used by carnivorous insects (predators and parasitoids) to detect prey or hosts [15–17].

Over the last two decades, much information has been gathered regarding effects of plant volatiles on the adult sexual behavior of several species of the family Tephritidae (true fruit flies), which includes several of the most important insect pests of agricultural commodities worldwide [18,19]. In certain species, exposure of males to particular plant compounds of host or non-host species (usually a blend of essential oils) confers a mating advantage over individuals denied access to such substances [19–23]. Mating-enhancing chemicals usually elicit strong attraction for males, who have been frequently reported to feed on the source of the odor [19,24–27]. In one of the most thoroughly studied systems, males of the oriental fruit fly, Bactrocera dorsalis, are strongly attracted to methyl eugenol, which is ingested and used as precursor in sex pheromone synthesis [27]. Hence, males exposed to methyl eugenol become more attractive to females searching for mates than methy eugenol-deprived ones and, thereby, more successful in reproduction [20]. Furthermore, males of the Mediterranean fruit fly (medfly), Ceratitis capitata acquire a significant mating advantage after being exposed to ginger root oil, citrus oils and to synthetic attractants such as trimedlure [21,22,28]. Alpha-copaene, a sesquiterpene contained in ginger root oil and citrus oils, as well as other compounds seems to be involved in enhancing the mating performance (copulatory success) of male medflies [28–30]. Likewise, exposure of males of the south American fruit fly, Anastrepha fraterculus to guava fruit volatiles enhance their sexual performance [31]. The wealth of information regarding effects
Female olive flies release a sexual pheromone attractive to males that contains four components: (a) olean (1,7-dioxaspiro[5.5]-undecane), (b) methyl dodecanoate, (c) α-pinene, and (d) nonanal [48]. Interestingly, male olive flies are also able to attract virgin females [49] and body extracts of olive fly males are attractive to virgin females [50]. Young males have been reported to release olean (the main component of the female sexual pheromone) [51,52]. More recent studies have demonstrated that sexually mature males in addition to olean also produce muscalure ((Z)-9-tricosene), a male specific pheromone that selectively attracts females [43]. It was also recently demonstrated that the production of olean by male olive flies does not affect their mating success, and the hypothesis that the production of olean is a form of female chemical mimicry has been rejected [47]. Apparently, despite the wealth of older studies and the significant progress achieved over the last few years, the role and function of pheromonal signals, as well as details of sexual communication in wild olive flies remain unknown.

Similar to other insect species [53,54] (for review see ' [55]'), the female pheromone blend of the olive fly contains the plant compounds α-pinene and nonanal, both of which exhibit a synergistic action with olean (the main component of the pheromone) in attracting males [56]. Neither nonanal (an oxidation byproduct) nor α-pinene are known to be synthesized de novo in insects, and they are most probably acquired by plant materials. Alpha-pinene is one of the most common volatiles in nature, released by a wide range of plant species, including coniferous trees, rosemary, lavender, turpentine and olive [57]. There are many properties, such as anti-inflammatory, fungicidal, bactericidal, and insecticidal that have rendered α-pinene a chemical of general use [57]. In insects it has been shown that α-pinene may have a synergistic or inhibitory action with aggregation pheromones on the attraction of bark beetles to host plants [58,59], and it has been used to enhance the attractiveness of trap baits used in pest management programs [60]. Although α-pinene by itself does not attract predators, it enhances significantly the attraction of some predators to the pheromone of their corresponding prey [61]. On the other hand, α-pinene serves as pheromone precursor in pheromone biosynthesis of scolitids [62,63]. Alpha-pinene was also isolated in the frontal gland secretion of soldier volatile releases in Reticulitermes species [64].

As pointed out earlier, α-pinene (emitted at high rates by semi-ripe olive fruit and leaves) is one of the four major compounds of female sexual pheromone [48] that increases male attraction to synthetic pheromone [44], stimulates oviposition [65] and evokes electrophysiological responses in both male and female antennae [66]. Nonetheless, the effects of α-pinene on the mating success of adult olive flies have not yet been addressed.

Working towards understanding the complex mating system of the olive fly and the role of olive tree volatiles on their sexual behavior, and as much as α-pinene is an important component of the olive fly reproductive behavior, synergistically increasing the attractiveness of the female sexual pheromone, here for the first time we provide solid evidence that a single volatile (α-
pinene) from the host plant (the olive fruit) boosts the mating competitiveness of both sexes of the olive fly.

Materials and Methods

Ethics statement

This study was conducted in the laboratory using flies collected from the wild. There is no specific permission required for collecting wild olive flies, since this is a major pest of olives in the area and is, therefore, neither an endangered nor a protected species.

The experiments were conducted at 24 ± 1°C, 60 ± 5% R.H., and a photoperiod of L14: D10, with photophase starting at 07:00, in the laboratory of Entomology and Agricultural Zoology at the University of Thessaly, Greece during autumn - spring 2011 - 2012. In all experiments, the flies used originated from field-infested olives, collected in Volos in August 2011, and were reared for 1 to 3 generations (F₁ - F₃) on olive fruit that had been kept in a storeroom for several months. All adults were maintained in wooden nylon-screened holding cages (30 x 30 x 30 cm) and had free access to food [mixture of yeast hydrolysate (MP Biomedicals LLC., France) and sugar in a ratio of 1:4] and water. Olive fruit were offered to females for oviposition. Therefore, larval development took place in olive fruit, and the resulting pupae were kept under the same conditions noted above.

Effect of α-pinene on males

Flies were sexed within 24 h of emergence. Females were introduced individually into small cages made of transparent drinking cups (400-ml volume) with an opening 3x8 cm covered with nylon mesh to allow adequate ventilation. Ample adult food and water were provided in each cage. Males were kept in groups of 40 in plexiglass cages (20 cm cubes with a cloth sleeve on two sides for ventilation) with food and water. On day 10 of their adult life, to distinguish between treated and control individuals, males of each category were marked on the pronotum with a small dot of water-based paint of different colors after being anesthetized with CO₂. Four days following color marking, 10 males of each category were transferred into 15 cm plexiglass cages. Female exposure to α-pinene was conducted following the same procedure as described for the males, though using a single dose of 20 μl (chosen because it induced the highest response among males, see below). Upon emergence, males were introduced individually to 400-ml volume cages (see above). Procedures on the testing date were identical with those given earlier for males. In fact, one exposed and one non-exposed to α-pinene female were introduced into a male’s cage and were competing for mating. Both males and females used were sexually mature 17 days old. The percentage of matings, the latency to mate, and the copula duration were recorded. We conducted 100 replicates.

Statistical analyses

Departure from random mating was assessed using the chi-square test. An independent t-test was applied to detect differences in mating duration and latency to mate between exposed and non-exposed individuals.

Results

Reproductively mature males of the olive fly that were exposed to pure α-pinene gained a significant, dose-dependent mating advantage over non exposed males (Table 1). A significant difference between treated and control males was observed for the doses of 10 and 20 μl, respectively, with peak advantage reported at 20 μl. At this dose, exposed males achieved 82% of all matings. Higher doses seemed to induce some negative effects (though not significant), while lower ones failed to reach significance.

One of the most striking results that we report here regards the effect of α-pinene on female olive flies. Exposure of reproductively mature, non-mated females to a single dose (20 μl) of α-pinene significantly boosted their mating success (Table 1).
Table 1. Mating rates of olive fruit fly adults exposed to α-pinene (treatment) or maintained non-exposed to any compound (control).

α-pinene exposure dose (μl)	N	Treatment	Control	P	
Sex					
Males	5	81 (100)	0.59	0.41	0.094
	10	83 (100)	0.61	0.39	0.038*
	20	84 (100)	0.82	0.18	<0.001*
	40	82 (100)	0.46	0.54	0.500
	80	78 (100)	0.42	0.58	0.170
Females	20	98 (100)	0.62	0.38	0.015*

N = number of matings recorded (total number of replicates). Asterisks indicate significance at 0.05 level (Chi-square test).

doi: 10.1371/journal.pone.0081336.t001

Overall it seems that latency to mate and copulation duration was similar for exposed and non-exposed males (paired t-test, P > 0.05). Significant differences were reported at the lower dose of 5 μl only (Figure 2). Likewise exposure of females to 20 μl of α-pinene did not affect the latency to mate or the copulation duration (paired t-test P > 0.05; data not shown, Figure S1).

Discussion

Our results demonstrate that exposure to α-pinene, a plant volatile and one of the four components of female sexual pheromone, increases the mating propensity (readiness to mate) of adult olive flies. To our knowledge, this represents the first demonstration that a single plant volatile increases the mating propensity of both sexes in an insect species. It seems that the induced phenomenon is dose dependent at least for males (no such tests were conducted for females). Although there are several cases where plant volatiles and even a single compound increases mating success in other fruit flies of the family Tephritidae there are no reports on effects regarding females [19,21]. In one of the few trials, exposure of female medflies to ginger root oil has not affected their mating propensity [67]. Similar results have been recently obtained from our group when female medflies were exposed to orange oil (Papadopoulos et al. unpublished).

Host plant chemicals may affect the sex pheromone biology of phytophagous insects by acting on both the pheromone releasers and those detecting and responding to the pheromone emissions [9]. As noted earlier, males of several species of fruit flies exposed to plant volatiles acquire a significant mating advantage over non-exposed males. Males of tropical Bactrocera species, such as B. dorsalis, B. cucurbitae and B. tryoni are strongly attracted to and feed on plant or synthetic compounds, such as methyl-eugenol, cuelure or raspberry ketone. Feeding on these compounds elicits a significant mating advantage over males that have no access to these compounds [68,69]. After ingestion, these compounds are biochemically modified and then sequestered in the rectal gland and later emitted as pheromone components [70,71]. In other fruit flies, exposure of males to the aroma of plant derived or synthetic compound elicits similar phenomena and the function of these volatiles is yet to be clarified [22,28,72,73]. For example, regardless of intensive efforts, the role of citrus oils and ginger root oil in increasing the mating performance of Mediterranean fruit fly males has not been elucidated in detail. Both ginger and citrus oils increase male sexual signaling, and pheromone produced from males exposed to citrus oils induces some arrestment effects on virgin females [22]. On the other hand, volatiles may be absorbed by the cuticle of exposed males, and serve as short range stimuli during courtship [74]. Apparently the mechanisms operating in increasing the mating performance of both female and male olive flies remain unknown. There are several facets that make this system challenging to explore, since contrary to (a) other tephritids, both female and male olive flies produce sexual attractants, (b) other Bactrocera species, feeding is not required, and (c) all other known cases, exposure to α-pinene increases the mating performance of both males and females.

Exposure of female olive flies to α-pinene may alter the quality and even increase the quantity of the produced pheromone. Alpha-pinene vapors might be absorbed by female exoskeleton as in some scolitid beetles [63] and reach the pheromone producing glands conferring changes on sex pheromone composition rendering the produced blend more attractive for males via synergistic action with olean and the other components of the sexual pheromone [44]. Whether exposure of females to α-pinene increases mating propensity (readiness to mate) or attractiveness to males needs to be investigated in future studies. Additionally, as in the case of other Bactrocera species [19] (and references therein) [70,75] the acquired α-pinene may serve as precursor for synthesizing other active pheromonal compounds. Although α-pinene has been detected in the pheromone blend of female olive flies, it is not yet known whether females can synthesize it de novo or if they use ingested or absorbed compounds [76]. On the other hand, absorbed quantities of α-pinene may alter the “cuticular smell” of females and serve as a short-range stimulus to courting males [74]. This may involve a male choice for females [77,78]. Finally, female exposure to compounds, such as α-pinene, that indicate the presence of host fruit in an appropriate maturation stage (green olives) and stimulates oviposition [65] could activate hormonal mechanisms associated with reproductive activities and, therefore, increased mating receptivity.

Similar to females, male exposure to α-pinene could result in increased production or release of muscalure. Alternatively, α-pinene may synergistically act with male pheromone emissions rendering the produced blend more attractive. Likewise, absorption of α-pinene by male cuticle may alter the scent of males and affect female decision to mate during courtship. Exposure to α-pinene may also affect male courtship behavior.

As (a) this is the first report of increased mating performance of adult olive flies exposed to plant volatiles, specifically to α-pinene, (b) the mating system of the olive fly has yet to be resolved in detail, and (c) the induced phenomenon involves both sexes, it is rather premature to open a discussion on
ultimate underlying factors. Whether direct or indirect effects on counterparts mated with adults exposed to α-pinene exist, needs to be addressed in future studies in order to form a solid ground for discussion involving sexual or other forms of selection. Some ideas that could be considered in such a discussion are: first, the scent of α-pinene (absorbed by exoskeleton) of exposed males may indicate a superior ability to locate key compounds associated with critical insect-plant interactions like host location, acceptance and oviposition. Second, female preference for exposed males could represent

Figure 2. Effect of different α-pinene doses on male olive fruit fly copulation parameters. (A) Latency to mate and (B) copula duration. Solid and open bars stand for exposed males to α-pinene and non-exposed males respectively. * $P < 0.05$, ** $P < 0.001$ t-test, $N=31-84$. doi: 10.1371/journal.pone.0081336.g002
a “sensory trap” [79] or “sensory exploitation” [80] where the olfactory cues of exposed males exploits a preexisting bias in females that evolved in a different context, such as searching for food or oviposition resources. Third, a series of studies suggest that in some Bactrocera species plant chemicals (methyl eugenol) that enhance males’ mating competitiveness may also confer defense benefits against vertebrate predators (i.e. allomonal function) such as lizards and birds [75,81,82]. Given that pairs during copulation are usually immobile and hence highly vulnerable to predation, it would be beneficially adaptive for females to select males that have acquired these chemicals in order to minimize predation risk. Despite the fact that this theory lacks experimental evidence in a natural setting [68], it provides useful fields for further investigations regarding sexual selection in Bactrocera species and the olive fly considering the new findings presented here. Apparently, similar hypothesis should be put forward considering females of phytophagous insects might be of great importance in developing of sex-specific lures. In cases where host plants provide insects with biologically active compounds that interfere and/or influence in their sexual communication, man-made lures based solely on pheromone may not be effective when placed in the wild [9]. In light of our findings, it might be useful to re-examine the synergistic action between α-pinene and the commercial available female pheromone component 1,7-dioxaspiro[5.5]undecane (olean) in order to improve male attraction.

Besides practical implications, our findings shed important light on the mating behavior of the olive fly and pose a list of proximate and ultimate questions that need to be tested in the near future. The complex mating system of the olive fly where both sexes seem to release inter- and intrasexual attractants provides a challenging ground for further research. Current progress on pheromonal stimuli emitted by male and female olive flies together with our findings may help understand the olfactory communication between the sexes of the olive fly and the involvement of plant volatiles, such as α-pinene.

Supporting Information

Figure S1. Effect of α-pinene on female olive fruit fly copulation parameters. Latency to mate and copula duration. Solid and open bars stand for exposed females to 20 μl α-pinene and non-exposed females respectively. N=98. (PPTX)

Acknowledgements

Thanks are extended to Todd Shelly (Department of Agriculture, United States) for thoroughly reviewing an earlier draft of the ms and Stella Papanastasiou (University of Thessaly, Greece) for making valuable comments on an earlier draft.

Author Contributions

Conceived and designed the experiments: CDG CSI NTP. Performed the experiments: CDG. Analyzed the data: CDG. Wrote the manuscript: CDG CSI NTP.

References

1. Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology. New York: Oxford University Press.
2. Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1995) Antennal perception of oiled rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera: Curculionidae). Journal of Chemical Ecology 21: 1649-1664. doi: 10.1007/BF02033667.
3. Stensmyr M, Larson M, Bise S, Hansson B (2001) Detection of fruit and flower emitted volatiles by olfactory receptor neurons in the polyphagous fruit chaffer Pachnoda marginata (Coleoptera: Cetoniinae). Journal of Comparative Physiology A 187: 509-519.
4. Byers JA, Lanne BS, Löfqvist J, Schlyter F, Bergström G (1985) Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72: 324-326. doi: 10.1007/BF00454176.
5. Broad ST, Schellhorn NA, Lissom SN, Mendham NJ (2008) Host location and oviposition of lepidopteran herbivores in diversified broccoli cropping systems. Agricultural and Forest Entomology 10: 157-165. doi: 10.1111/j.1461-9563.2008.00374.x.
6. Showler AT (2001) Spodoptera exigua oviposition and larval feeding preferences for pigweed, Amaranthus hybridus, over squaring cotton, Gossypium hirsutum, and a comparison of free amino acids in each host plant. J Chem Ecol 27: 2013-2028. doi:10.1023/A: 1012238903311. PubMed: 11710608.
7. Linz J, Baschwitz A, Strutz A, Dweck HKM, Sachse S et al. (2013) Host plant-driven sensory specialization in Drosophila erecta. Proceedings of the Royal Society of London B. Biological Sciences 280: 20130626. PubMed: 23595274.
8. Fletcher BS, Prokopy RJ (1991) Host location and oviposition in teaphrid fruit flies: Reproductive Behaviour of Insects. In: WJ BallyJ Ridsdill-Smith. Chapman & Hall, New York.
9. Landolt PJ, Phillips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Entomologia Experimentalis et Applicata 52: 191-203. doi:10.1111/j.1570-7458.1989.tb01268.x.
10. Dickens JC (1989) Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomologia Experimentalis et Applicata 52: 191-203. doi:10.1111/j.1570-7458.1989.tb01268.x.
11. Frati F, Chamberlain K, Birkett M, Dufour S, Mayon P et al. (2009) Vicia faba–Lygus rugulipennis interactions: Induced plant volatiles and sex pheromone enhancement. J Chem Ecol 35: 201-208. doi:10.1007/s10886-008-9572-6. PubMed: 19198949.
12. Deng J-Y, Wei H-Y, Huang Y-P, Du J-W (2004) Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J Chem Ecol 30: 2037-2045. doi:10.1023/B:JOEC.0000045593.62422.73. PubMed: 15608935.
importance, 10-15 Semptember 2006, Salvador, Brazil, pp 59-69.

44. Mazomenos BE, Haniotakis GE (1981) A multicomponent female sex pheromone in laboratory and field tests. J Econ Entomol 74: 71-74. doi:10.1093/jee/74.1.71.

45. Mazomenos BE, Haniotakis GE (1985) Male olive fruit fly attraction to volatile compounds associated with virgin females of the same species. J Appl Entomol 102: 81-88. doi:10.1111/j.1439-0418.1985.tb00737.x.

46. Mazomenos BE, Haniotakis GE (1986) Rhyme-thyméthams d’activité sexuelle inverses l’un de l’autre chez deux Diptères Trypetidae, Dacus oleae Gmelin et Ceratitis capitata Wiedemann, C_R Acad Sci Paris, I 262: 1558-1560.

47. Papadopoulos AP, Chrisanakakis A, Tzanakakis ME, Voyadzoglou AV (1971) Reproductive behavior and physiology of olive fruit fly .1. Anatomy of adult rectum and odors emitted by adults. Annals of the Entomological Society of America 64: 1112-1116 (5).

48. Cavallero R, Delrio G (2001) A-Rfivelil sul comportamento sessuale di Dacus oleae Gmelin (Dipt: Trypetidae) in laboratorio. Reda 52: 201-230.

49. Sacantarinas K (1953) Methode d’elevage au laboratoire de la mouche des olives (Dacus oleae Gmel.). Revue de Pathologie Vegetale et d’Entomologie Agricole de France 32: 50-57.

50. Carpita A, Canale A, Raffaelli A, Saba A, Benelli G et al. (2012) (Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: First evidence of a male-produced female attractant in olive fruit fly. Naturwissenschaften 99: 77-81. doi:10.1007/s00114-011-0889-y.

51. Papadopoulos AP, Chrisanakakis A, Tzanakakis ME, Voyadzoglou AV (1971) Aromatherapy on a large scale: Exposing entire adult holding rooms to ginger root oil increases the mating competitiveness of sterile males of the Mediterranean fruit fly in field cage trials. Entomologia Experimentalis et Applicata 123: 193-201. doi:10.1111/j.1570-7458.2007.00538.x.

52. Rice RE, Phillips PA, Stewart-Leslie J, Sibbett GS (2003) Olive fruit fly populations measured in Central and Southern California. California Agriculture 57.

53. Nardi F, Carapelli A, Boone JL, Roderick GK, Dallai R et al. (2010) Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol Phylogenet Evol 57: 678-686. doi:10.1016/j.ympev.2010.08.008. PubMed:20723608.

54. Zygouridis NE, Augustinos AA, Zalorn FG, Mathiopoulos KD (2009) Analysis of olive fly invasion in California based on microsatellite markers. Heredity (Edinb) 102: 402-412. doi:10.1038/hdy.2008.125. PubMed:19107137.

55. Feron M (1970) L’appel sonore du mâle dans le comportement sexual du Dacus oleae Gmel. Bull Soc Entomol Fr 65: 139-143.

56. Cavallero R, Delrio G (2001) Exposure to ginger oil enhances mating success of male Mediterranean fruit fly (Diptera: Tephritidae). J Econ Entomol 94: 1413-1418. doi:10.1603/0022-4093.94.6.1413. PubMed: 11777043.

57. Shelly TE (2000) Flower feeding affects mating performance in male Ceratitis capitata (Diptera: Tephritidae). Journal of Insect Behavior 1-16.

58. Shelly TE (2006) Aromatherapy and medfly ST. Fruit flies of economic importance: From basic to applied knowledge: Proceedings of the 7th International Symposium on fruit flies of economic importance, 10-15 Semptember 2006, Salvador, Brazil, pp 59-69.

59. Shelly TE, Dewire ALM (1994) Chemically mediated mating success in male ornamental fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America 87: 375-382.

60. Shelly TE, McInnis DO (2001) Exposure to ginger oil enhances mating success of irradiated, mass-reared males of Mediterranean fruit fly (Diptera: Tephritidae). J Econ Entomol 94: 1413-1418. doi:10.1603/0022-4093.94.6.1413. PubMed: 11777043.

61. Papadopoulos AP, Shelly T, Nyazi N, Jang E (2006) Olfactory and behavioral mechanisms underlying enhanced mating competitiveness following exposure to ginger root oil and orange oil in males of the Mediterranean fruit fly, Ceratitis capriott (Diptera: Tephritidae). Journal of Insect Behavior 1-16.

62. Shelly TE (2000) Flower feeding affects mating performance in male ornamental fruit flies Bactrocera dorsalis. Ecological Entomology 25: 109-114. doi:10.1046/j.1365-2311.2000.00231.x.

63. Tan KH, Nishioka T, Kusano M (1996) Sex pheromone and mating competition after methyl eugenol consumption in the Bactroceras dorsalis complex. In: BA Baldwin IT, Preston CA (1999) The eco-physiological complexity of enemies in a tritrophic context. Annual Review of Entomology 37: 152-179.

64. Nardi F, Carapelli A, Boore JL, Roderick GK, Dallai R et al. (2012) A basis for the renewal of sterile insect technique for the olive fruit fly, Bactrocera oleae (Rossi). Journal of Applied Entomology 136: 1-16. doi:10.1111/j.1439-0418.2011.01516.x.

65. Feron M, Andreu AJ (1962) Etude des signaux acoustiques du mâle dans le comportement sexuel de Dacus oleae Gmel. (Dipt: Tryptidae). Annales de Epiphytes (Paris) 13: 269-276.

66. Benelli G, Bonsignori G, Stefani C, Raspi A, Canale A (2013) The production of female sex pheromone in Bactrocera oleae (Rossi) young males does not influence their mating chances. Entomological Science 16: 47-53. doi:10.1111/1479-8298.12053.x.

67. Mazomones BE, Haniotakis GE (1985) Male olive fruit fly attraction to synthetic sex pheromone components in laboratory and field tests. J Chem Ecol 11: 397-405. doi:10.1007/BF01411425.

68. Estes AM, Nestel D, Belcari A, Jessup A, Rempulakow P et al. (2012) A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). Journal of Applied Entomology 136: 1-16. doi:10.1111/j.1439-0418.2011.01516.x.

69. Cavallero R, Delrio G (2001) Rivelii sul comportamento sessuale di Dacus oleae Gmelin (Dipt: Trypetidae) in laboratorio. Reda 52: 201-230.

70. Canale A, Carpita A, Conti B, Canovali E, Delevy-Kahane I et al. (2012) Analyzing diurnal and age related pheromone emission of the olive fruit fly, Bactrocera oleae by sequential SPME-GCMS analysis. J
α-Pinene and the Mating Success of Olive Fly

Chen W, Ehrlich G, Siegfried H, Wang Z, Chen Z et al. (2013) Identification of atypical secondary plant volatiles and their role in pheromone synergism in the tussock moth (Orgyia pseudotsugata). Front Ecol Environ 11: 426-432. doi: 10.1130/0165-5447(1955)21<876:RSACIC>2.0.CO;2.

58. Jang EB, Light DM, Flath RA, Nagata JT, Mon TR (1989) Electroantennogram responses of the Mediterranean fruit fly, Ceratitis capitata to identified volatile constituents from calling males. Canadian Journal of Forest Research 10: 590-592. doi: 10.1016/0020-1790(81)90024-X.

59. Nishida R, Shelly TE, Kaneshiro KY (1997) Acquisition of female attracting fragrance by males of oriental fruit fly from a Hawaiian lei flower, Fagraea berteriana. Journal of Chemical Ecology 23: 2275-2285. doi: 10.1023/A:100598341.

60. Shelly TE, Kennelly S (2004) Exposure to orange (Citrus sinensis L.) trees, fruit, and oil enhance mating success of male Mediterranean fruit flies (Ceratitis capitata [Wiedemann]). Journal of Insect Behavior 17: 303-315. doi: 10.1023/B:JOIN.0000031532.20267.95.

61. Shelly TE, Whittey TS, Villalobos EM (1996) Tridemlure affects mating success and mate attraction in male Mediterranean fruit flies. Entomologia Experimentalis et Applicata 78: 181-185. doi: 10.1111/j.1570-694X.1996.tb00780.x.

62. ranked males and choosy females: Does male odor influence female mate choice in the Mediterranean fruit fly? J Chem Ecol 35: 2308-2324. doi: 10.1007/s10886-007-9304-y.

63. Shelly TE, Edu J, Pahio E, Nishimoto J (2007) Scented males and mate choice by lekking males: Evidence from the Mediterranean fruit fly from field cage trials (Diptera: Tephritidae). Journal of Insect Behavior 20: 368-376. doi:10.1603/AN11125.

64. Shelly TE, Edu J, Pahio E (2012) Mate choice by lekking males: Virgin females compete for mates in the male lekking species Ceratitis capitata. Physiological Entomology 37: 238-245. doi: 10.1111/j.1490-7710.2009.00680.x.

65. Pappadopoulos NT, Carey JR, Liedo P, Müller H-G, Sentürk D (2009) Selection of odorants by male Mediterranean fruit flies (Diptera: Tephritidae). Journal of Chemical Ecology 35: 835-849. doi: 10.1007/s10886-008-9626-z.

66. Raghu S (2004) Functional significance of phytocidal lures to dactine fruit flies (Diptera: Tephritidae): An ecological and evolutionary synthesis. Bull Entomol Res 94: 385-399. doi:10.1017/S0007469903000009.

67. Müller M, Buchbauer G (2011) Essential oil components as pheromones. A review. Flavour and Fragrance Journal 26: 357-377. doi: 10.1002/ffj.1158.

68. Papadopoulos NT, Carey JR, Liedo P, Müller H-G, Sentürk D (2009) Exposure to orange (Citrus sinensis L.) trees, fruit, and oil enhance mating success of male Mediterranean fruit flies (Ceratitis capitata [Wiedemann]). Journal of Insect Behavior 17: 303-315. doi: 10.1023/B:JOIN.0000031532.20267.95.