Deformation of contour and Hawking temperature

Chikun Ding and Jiliang Jing

Department of Physics and Institute of Physics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China and
Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China

E-mail: jljing@hunnu.edu.cn

Received 13 September 2009, in final form 20 November 2009
Published 12 January 2010
Online at stacks.iop.org/CQG/27/035004

Abstract

It was found that, in an isotropic coordinate system, the tunneling approach brings a factor of $\frac{1}{2}$ for the Hawking temperature of a Schwarzschild black hole. In this paper, we address this kind of problem by studying the relation between the Hawking temperature and the deformation of the integral contour for the scalar and Dirac particles tunneling. We find that the correct Hawking temperature can be obtained exactly as long as the integral contour deformed corresponding to the radial coordinate transform if the transformation is a non-regular or zero function at the event horizon.

PACS numbers: 04.70.Dy, 04.62.+v

1. Introduction

A semi-classical Hamilton–Jacobi method [1–19] for controlling Hawking radiation as a tunneling effect has been developed recently. In this method a semiclassical propagator $K(\vec{x}_2, t_2; \vec{x}_1, t_1)$ in a spacetime is described by $N \exp\left[\frac{i}{\hbar} (I(\vec{x}_2, t_2; \vec{x}_1, t_1) + C)\right]$ in which the action $I(\vec{x}_2, t_2; \vec{x}_1, t_1)$ acquires a singularity at the event horizon. This singularity can be regularized by specifying a suitable complex contour [1]. After integrating around the pole, we find that the action $I(\vec{x}_2, t_2; \vec{x}_1, t_1)$ is complex. Thus, we know that the probabilities are $\Gamma[\text{emission}] \propto e^{-2 \text{Im}[I^+ + C]}$ and $\Gamma[\text{absorption}] \propto e^{-2 \text{Im}[I^- + C]} = 1$, and the ratio is

$$\frac{\Gamma[\text{emission}]}{\Gamma[\text{absorption}]} = e^{-2 \text{Im}[I^+ - \text{Im}I^-]} \Gamma[\text{absorption}],$$

where I^\pm are the square roots of the relativistic Hamilton–Jacobi equation corresponding to outgoing and ingoing particles. In a system with a temperature T_H, the absorption and the emission probabilities are related by $\Gamma[\text{emission}] = e^{-E/T_H} \Gamma[\text{absorption}]$. Then, from the relation

$$e^{-E/T_H} = e^{-2 \text{Im}[I^+ - \text{Im}I^-]},$$

we can obtain the Hawking temperature.

* Author to whom any correspondence should be addressed.
It is well known that the Hawking temperature is an attribution of the black hole and is
independent of coordinates. This can be seen from its definition: \(T_H = \frac{\kappa}{2\pi} \) [20], where \(\kappa \) is
the surface gravity of the black hole. However, to calculate the Hawking temperature by the
tunneling approach, we need to regularize the singularity by specifying a suitable complex
contour to bypass the pole. For the Schwarzschild black hole in the standard coordinate
representation, we should take the contour to be an infinitesimal semicircle below the pole \(r = r_H \) for outgoing particles from inside of the horizon to outside; similarly, the contour
is above the pole for the ingoing particles from outside to inside. But, if we use another
coordinate representation, we find that the calculation of the Hawking temperature is related
to the choice of the integral contour and an improper contour would give an incorrect result.
For example, if a semi-circular contour is still employed in the isotropic coordinate system,
the temperature calculated by the Hamilton–Jacobi method is one-half of the standard result
(the so-called factor of \(\frac{1}{2} \) problem, see appendix A); and if we use a semi-circular contour in
a general coordinate (2.3), we can prove that the temperature would be \((\alpha + 1)\) times of the
standard result (see appendix B).

The factor of \(\frac{1}{2} \) problem of the Schwarzschild black hole in the isotropic coordinates is
studied by Aknmedov et al [21, 22] by deforming the contour, i.e. using a quarter-circular
contour instead of the semi-circular contour. How to extend it to a general case? In this paper,
we will study the problem in a general coordinate [5, 6] for a Kerr–Newman black hole via
the scalar and Dirac particles tunneling.

This paper is organized as follows. In section 2, the different coordinate representations
for the Kerr–Newman black hole are presented. In section 3, the Hawking temperature of the
Kerr–Newman black hole from scalar particles tunneling in a general coordinate is studied.
In section 4, the Hawking temperature of the Kerr–Newman black hole from Dirac particles
tunneling is studied. The last section is devoted to a summary.

2. Coordinate representations for a Kerr–Newman black hole

The no-hair theorem postulates that all black hole solutions of the Einstein–Maxwell equations
of gravitation and electromagnetism in general relativity can be completely characterized by
only three externally observable classical parameters: the mass, the electric charge and the
angular momentum. The final state of a collapsing star is described by the Kerr–Newman
black hole. In the Boyer–Lindquist coordinates, its line element reads

\[
\begin{align*}
\mathrm{d}s^2 &= -\left(1 - \frac{2Mr - Q^2}{\rho^2} \right) \mathrm{d}t^2 - \frac{2(2Mr - Q^2)a\sin^2 \theta}{\rho^2} \mathrm{d}t \, \mathrm{d}\varphi + \frac{\rho^2}{\Delta} \mathrm{d}r^2 \\
& \quad + \rho^2 \mathrm{d}\theta^2 + \left(r^2 + a^2 + \frac{(2Mr - Q^2)a^2\sin^2 \theta}{\rho^2} \right) \sin^2 \theta \, \mathrm{d}\varphi^2,
\end{align*}
\]

with \(\rho^2 = r^2 + a^2 \cos^2 \theta \), \(\Delta = r^2 - 2Mr + a^2 + Q^2 = (r - r_+)(r - r_-) \)
\(r_+ = M + \sqrt{M^2 - a^2 - Q^2}, \quad r_- = M - \sqrt{M^2 - a^2 - Q^2}, \)
where \(M, Q \) and \(a \) are the mass, electric charge and angular momentum of the black hole,
and \(r_- \) and \(r_+ \) are the inner and outer horizons. The spacetime has a timelike Killing vector
\(\tilde{\xi}'_\mu = (1, 0, 0, 0) \) and a spacelike Killing vector \(\tilde{\xi}''_\mu = (0, 0, 0, 1) \).

We note that the Painlevé-type [23], advanced Eddington–Finkelstein [24] and Boyer–
Lindquist coordinate representations can be casted into an united form which is given by a
general coordinate transform

\[
\begin{align*}
u &= \int \mathrm{d}r \, F(r), \quad v = \eta t_s + \eta \int (r^2 + a^2)G(r) \, \mathrm{d}r, \quad \varphi = \delta \varphi + \delta a \int G(r) \, \mathrm{d}r.
\end{align*}
\]
where \((t_1, r, \theta, \varphi)\) are the Boyer–Lindquist coordinates; \(v, u\) and \(\varphi\) represent the time, radial and angular coordinates respectively, \(\theta\) remains the same; \(\eta\) and \(\delta\) are arbitrary nonzero constants which re-scale the time and angle; and \(G\) and \(F\) are arbitrary functions of \(r\) only. The line element \((2.1)\) in the new coordinate system becomes

\[
\mathrm{d}s^2 = -\frac{1}{\eta^2} \left(1 - \frac{2Mr - Q^2}{\rho^2}\right) \left[\mathrm{d}v - \frac{\eta G(r^2 + a^2)}{F} \, \mathrm{d}u\right]^2 - \frac{2(2Mr - Q^2)a \sin^2 \theta}{\eta \delta \rho^2} \times \left[\mathrm{d}v - \frac{\eta G(r^2 + a^2)}{F} \, \mathrm{d}u\right] \left[\mathrm{d}\varphi - \frac{\delta aG}{F} \, \mathrm{d}u\right] + \frac{\rho^2}{\Delta F^2} \, \mathrm{d}u^2 + \rho^2 \, \mathrm{d}\varphi^2.
\]

The timelike and spacelike Killing vectors of the spacetime are

\[
\xi_{(t)}^\mu = \frac{\partial x^\mu}{\partial x^t}(\eta, 0, 0, 0), \quad \xi_{(\varphi)}^\mu = \frac{\partial x^\mu}{\partial x^\varphi}(\eta, 0, 0, \delta).
\]

Painlevé-type coordinate representation.

In the transformation \((2.2)\), if we take \(\eta = \delta = 1\),
\(G(r) = \frac{1}{\rho} \sqrt{2Mr - Q^2}\) and \(F(r) = 1\), the line element \((2.3)\) becomes the Painlevé-type coordinate representation \([23]\), which has no coordinate singularity at \(\Delta = 0\).

Advanced Eddington–Finkelstein coordinate representation.

In the transformation \((2.2)\), if we let \(\eta = 1\), \(\delta = -1\), \(G(r) = \frac{1}{\rho} \sqrt{2Mr - Q^2}\) and \(F(r) = 1\), the line element \((2.3)\) becomes the advanced Eddington–Finkelstein representation, which has no coordinate singularity just as in the Painlevé-type coordinates \([24]\).

Boyer–Lindquist coordinate representation.

In the transformation \((2.2)\), if we let \(\eta = \delta = F(r) = 1\), \(G(r) = 0\), the line element \((2.3)\) becomes the Boyer–Lindquist coordinate representation \((2.1)\).

3. Temperature of the Kerr–Newman black hole from scalar tunneling in the general coordinate system

Now we study the scalar tunneling in the general coordinates \((2.3)\). Applying the WKB approximation

\[
\phi(v, u, \theta, \varphi) = \exp \left[\frac{i}{\hbar} I(v, u, \theta, \varphi) + I_1(v, u, \theta, \varphi) + \mathcal{O}(\hbar)\right]
\]

\((3.1)\)

to the charged Klein–Gordon equation

\[
\frac{1}{\sqrt{-g}} \left(\partial_\mu - \frac{iq}{\hbar} A_\mu\right) \left[\sqrt{-g} g^{\mu\nu} \left(\partial_\nu - \frac{iq}{\hbar} A_\nu\right) \phi\right] - \frac{\mu^2}{\hbar^2} \phi = 0,
\]

\((3.2)\)

and then, to the leading order in \(\hbar\), we obtain the relativistic Hamilton–Jacobi equation

\[
g^{\mu\nu} \left(\partial_\mu I \partial_\nu I + q^2 A_\mu A_\nu - 2q A_\mu \partial_\nu I\right) + \mu^2 = 0,
\]

\((3.3)\)

where \(\mu\) is the mass of tunneling particles. From the symmetries of the metric \((2.3)\), we know that there exists a solution of the form (see appendix C)

\[
I = -\frac{1}{\eta} E v + W(u) + \frac{1}{\delta} m \varphi + J(\theta) + C.
\]

\((3.4)\)

Substituting the metric \((2.3)\) and equation \((3.4)\) into the Hamilton–Jacobi equation \((3.3)\), we obtain
\[\Delta^2 \left[F W'(u) - (r^2 + a^2) G \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right) \right]^2 \]
\[- (r^2 + a^2)^2 \left[E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right]^2 \Delta \lambda = 0, \quad (3.5) \]

with
\[\lambda = \mu^2 \rho^2 + J'(\theta) + \left(a E \sin \theta - \frac{m}{\sin \theta} \right)^2, \quad (3.6) \]

where \(W'(u) = \frac{dW(u)}{du} \) and \(J'(\theta) = \frac{dJ(\theta)}{d\theta} \). Then, \(W'(u) \) can be expressed as
\[W_{\pm}(u) = G \left(r^2 + a^2 \right) \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right) \]
\[\pm \frac{1}{F \Delta} \sqrt{(r^2 + a^2)^2 \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right)^2 - \Delta \lambda}. \quad (3.7) \]

One solution of equation (3.7) corresponds to the scalar particles moving away from the black hole (i.e. ‘+’ outgoing), and the other solution corresponds to particles moving toward the black hole (i.e. ‘−’ incoming). Without loss of generality, the function \(G \) can be expressed as
\[G(r(u)) = A(r(u)) \Delta + B(r(u)), \]
where \(A(r(u)) \) and \(B(r(u)) \) are regular functions. Thus, we have
\[\text{Im} W_{\pm}(u) = \text{Im} \int du \left[\left(\frac{B}{F} + \frac{A}{F \Delta} \right) (r^2 + a^2) \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right) \right. \]
\[\left. \pm \frac{1}{F \Delta} \sqrt{(r^2 + a^2)^2 \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right)^2 - \Delta \lambda} \right]. \quad (3.8) \]

Imaginary part of the action can only come from the pole at the horizon. We will work out the integral in two cases: (A) \(F \) is a regular and nonzero function at the horizon and (B) \(F \) is a singular or zero function at the horizon.

3.1. \(F \) is a regular and nonzero function at the horizon

If \(F \) is a regular and nonzero function at the horizon, using the law of residue we obtain
\[\text{Im} W_{\pm}(u) = [A(r_+) \pm 1] \frac{r^2_+ + a^2}{2(r_+ - M)} (E - m \Omega_+ - q V_+) \pi, \quad (3.9) \]
where \(V_+ = \frac{Q r}{r_+ a^2} \) is the electromagnetic potential, and \(\Omega_+ = \frac{a}{r_+ a^2} \) is the angular velocity. Then, equations (1.1) and (1.2) show us that the total probability is
\[\Gamma = \exp \left[-2\pi \frac{r^2_+ + a^2}{(r_+ - M)} (E - m \Omega_+ - q V_+) \right], \quad (3.10) \]
and the Hawking temperature is
\[T_H = \frac{r_+ - M}{2\pi (r^2_+ + a^2)}, \quad (3.11) \]
which is the same as in previous work [1, 2, 23, 25].

3.2. \(F \) is a singular or zero function at the horizon

If \(F \) is a non-regular or zero function at the horizon, without loss of generality, we set \(F = \Delta^\alpha X(r) \), where \(\alpha \) is a nonzero constant and \(X(r) \) is a regular and nonzero function.
Thus, equation (3.8) becomes
\[\text{Im } W_\pm(u) = \text{Im} \int du \left[\frac{B}{\Delta^{a+1} X} + \frac{A}{\Delta^{a+1} X} \right] (r^2 + a^2) \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right) \]
\[\pm \frac{1}{\Delta^{a+1} X} \sqrt{(r^2 + a^2)^2 \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right)^2 - \Delta \lambda} \]
(3.12)
from which we know
\[\text{Im}[W_+(u) - W_-(u)] = 2 \text{Im} \int du \frac{1}{\Delta^{a+1} X} \sqrt{(r^2 + a^2)^2 \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right)^2 - \Delta \lambda}. \]
(3.13)

We now study two cases: (1) \(\alpha \neq -1 \) and (2) \(\alpha = -1 \).

Case 1: \(\alpha \neq -1 \). The Laurent expansion for the factor \(\frac{1}{\Delta^{a+1}(r(u))} \) is
\[\frac{1}{\Delta^{a+1}(r(u))} = \frac{X(r(u))}{2(\alpha + 1)(r_* - M)(u - u_*)} + \sum_{n=0}^{\infty} a_n (u - u_*)^n. \]
(3.14)
Then, equation (3.13) can be written as
\[\text{Im}[W_+(u) - W_-(u)] = 2 \text{Im} \int du \left[\frac{1}{\alpha + 1} \cdot \frac{1}{2(r_* - M)(u - u_*)} + \frac{1}{X} \sum_{n=0}^{\infty} a_n (u - u_*)^n \right] \]
\[\cdot \sqrt{(r^2 + a^2)^2 \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right)^2 - \Delta \lambda}. \]
(3.15)

Now, we need to choose a contour to bypass the pole \(u = u_* \). We note that, in the Boyer–Lindquist coordinate, the contour can be constructed by taking \(r = r_* + \epsilon e^{\text{i} \theta} \) (\(\epsilon \) is a positive small real quantity, \(\theta \in [0, \pi] \) for outgoing particle and \(\theta \in [\pi, 2\pi] \) for ingoing particle). Thus, in the general coordinate (2.3), by substituting \(r = r_* + \epsilon e^{\text{i} \theta} \) into \(u = \int \Delta^n X(r) \, dr = \int [(r - r_*)(r - r_-)]^n X(r) \, dr \), we have
\[u = \int [\epsilon e^{\text{i} \theta} (r_* - r_- + \epsilon e^{\text{i} \theta})]^n X(r_* + \epsilon e^{\text{i} \theta}) \, d\epsilon \]
\[= u_* + f(u_*) e^{\text{i} \theta (\alpha + 1) \theta}, \]
(3.16)
where \(f(u_*) = \frac{\int (r - r_*)^n X(r_-)}{r_* - r_-} \). Equation (3.16) indicates that the contour is different from semi-circle now. The integral contours for outgoing particles corresponding to the \(r \) and \(u \) complex plane are shown in figure 1. Using equations (3.15), (3.16) and residue theorem, we have
\[\text{Im}[W_+(u) - W_-(u)] = -2 \text{Im} \lim_{\epsilon \to 0} \int_{\pi} \text{i} \, d\theta \]
\[\times \left[\frac{1}{2(r_* - M)} + \frac{f(u_*) (e^{\text{i} \theta})^{\alpha+1} (\alpha + 1)}{X} \sum_{n=0}^{\infty} a_n f^n(u_*) (e^{\text{i} \theta})^{(\alpha+1)n} \right] \]
\[\cdot \sqrt{(r_* + \epsilon e^{\text{i} \theta})^2 + a^2} \left[E - \frac{q Q (r_* + \epsilon e^{\text{i} \theta}) + ma}{(r_* + \epsilon e^{\text{i} \theta})^2 + a^2} \right]^2 - \Delta \lambda \]
\[= \pi \frac{r_*^2 + a^2}{(r_* - M)} (E - m \Omega - q V_*), \]
(3.17)
which gives the Hawking temperature (3.11).
Case 2: $\alpha = -1$. It is the tortoise coordinate transformation if $\alpha = -1$

$$u = \int X(r) \Delta^{-1} \, dr.$$ \hspace{1cm} (3.18)

By using $r = r_+ + \epsilon e^{i \theta}$, we know

$$u = u_+ + i \theta g(u_+),$$ \hspace{1cm} (3.19)

where $g(u_+) = \frac{X(r_+)}{e^{i \theta}}$. Substituting it into equation (3.13), we obtain

$$\text{Im}[W_+(u) - W_+(u)] = -2 \text{Im} \lim_{\epsilon \to 0} \int_0^\pi \frac{i \epsilon g(u_+)}{(r_+ + \epsilon e^{i \theta})^2 + a^2}$$

$$\times \left[\frac{1}{(r_+ + \epsilon e^{i \theta})^2 + a^2} \left[\frac{E - qQ(r_+ + \epsilon e^{i \theta}) + ma}{(r_+ + \epsilon e^{i \theta})^2 + a^2} \right] - \Delta \lambda \right]$$

$$= \pi \frac{r_+^2 + a^2}{(r_+ - M)} (E - m\Omega_+ - qV_+),$$ \hspace{1cm} (3.20)

which also presents the Hawking temperature (3.11).

The above discussions show us that (i) the integral contour needs to be deformed corresponding to the radial coordinate transformations if these transformations are non-regular or zero at the event horizon and (ii) the Hawking temperature is invariant in the general coordinate representation (2.3) for the scalar particle tunneling.

4. Temperature of the Kerr–Newman black hole from Dirac particle tunneling

In this section, we study the Dirac particle tunneling of the Kerr–Newman black hole in the coordinates (2.3). The Dirac equation is [26]

$$\gamma^\mu e^\mu_\alpha \left(\partial_\beta + \Gamma_\beta - \frac{i q}{\hbar} A_\beta \right) + \frac{\mu}{\hbar} \psi = 0,$$ \hspace{1cm} (4.1)

with

$$\Gamma_\beta = \frac{1}{2} [\gamma^\mu, \gamma^\nu] e_\mu^\alpha e_{\beta;\alpha},$$

where γ^μ is the Dirac matrix and e^μ_α is the inverse tetrad defined by $\{e^\mu_\alpha, e^\nu_\beta e_{\nu;\alpha}\} = 2\delta^{\mu\nu} \times 1$. For the Kerr–Newman metric in the general coordinate system (2.3), the tetrad e^μ_α can be
taken as
\[
e^0_\psi = \left(\sqrt{1-\Delta^2 \eta (\nu^2 a^2)^2} G^2, \ 0, \ 0, \ 0 \right),
\]
\[
e^0_\chi = \left(-\frac{1}{\rho \sqrt{2}} \sqrt{1-\Delta^2 \eta (\nu^2 a^2)^2} G^2, \ \frac{1}{\rho \sqrt{2}} \sqrt{1-\Delta^2 \eta (\nu^2 a^2)^2} G^2, \ 0, \ 0 \right),
\]
\[
e^0 = \left(0, \ 0, \ \frac{1}{\tilde{\rho}^2}, \ 0 \right),
\]
\[
e^0_\bar{\psi} = \left(\frac{\eta a G \sqrt{2}}{\rho \sqrt{1-\Delta^2 \eta (\nu^2 a^2)^2} G^2}, \ \frac{a b G \sqrt{2}}{\rho \sqrt{1-\Delta^2 \eta (\nu^2 a^2)^2} G^2}, \ 0, \ 0, \ \frac{\eta b \rho}{\sin \vartheta \sqrt{\chi}} \right),
\]
where \(\Delta = \eta^2 [(r^2 + a^2)^2 - \Delta a^2 \sin^2 \vartheta] \).

Without loss of generality, we can choose the following ansatz for spin-up and spin-down Dirac particles according to [27]
\[
\psi_\uparrow = \left(\frac{A(v, u, \theta, \varphi) \xi^\uparrow_1}{B(v, u, \theta, \varphi) \xi_1^\uparrow} \right) \exp \left(\frac{i}{\hbar} I_\uparrow (v, u, \theta, \varphi) \right) = \left(\frac{A(v, u, \theta, \varphi)}{B(v, u, \theta, \varphi)} \right) \exp \left(\frac{i}{\hbar} I_\uparrow (v, u, \theta, \varphi) \right),
\]
\[
\psi_\downarrow = \left(\frac{C(v, u, \theta, \varphi) \xi_1^\downarrow}{D(v, u, \theta, \varphi) \xi_1^\downarrow} \right) \exp \left(\frac{i}{\hbar} I_\downarrow (v, u, \theta, \varphi) \right) = \left(\frac{C(v, u, \theta, \varphi)}{D(v, u, \theta, \varphi)} \right) \exp \left(\frac{i}{\hbar} I_\downarrow (v, u, \theta, \varphi) \right),
\]
where \('\uparrow'\) and \('\downarrow'\), represent the spin-up and spin-down cases, and \(\xi_\uparrow^1\) and \(\xi_\downarrow^1\) are the eigenvectors of \(\sigma^3\). Inserting equations (4.2) and (4.3) into equation (4.1), and employing the ansatz
\[
I_\uparrow = -\frac{1}{\eta} E v + W(u) + \frac{1}{\delta} m \varphi + J(\theta) + C,
\]
to the lowest order in \(\hbar\), we obtain
\[
-\frac{e^0}{\eta} \left(\frac{1}{\rho} \left(\frac{\rho Q r}{\rho^2} \right) + e^0_\psi W(u) + e^0_\chi \frac{1}{\delta} \left(m - \frac{Q r}{\rho^2} a \sin^2 \theta \right) + \mu \right) A
\]
\[
+ B \left[e^0_\psi W'(u) + e^0_\chi \frac{1}{\delta} \left(m - \frac{Q r}{\rho^2} a \sin^2 \theta \right) \right] = 0,
\]
\[
B \left[e^2_\psi J'(\theta) + ie^2_\psi \frac{1}{\delta} \left(m - \frac{Q r}{\rho^2} a \sin^2 \theta \right) \right] = 0,
\]
\[
-\frac{e^0}{\eta} \left(\frac{1}{\rho} \left(\frac{\rho Q r}{\rho^2} \right) + e^0_\psi W(u) + e^0_\psi \frac{1}{\delta} \left(m - \frac{Q r}{\rho^2} a \sin^2 \theta \right) - \mu \right) B
\]
\[
- A \left[e^0_\psi W'(u) + e^0_\chi \frac{1}{\delta} \left(m - \frac{Q r}{\rho^2} a \sin^2 \theta \right) \right] = 0,
\]
\[
- A \left[e^2_\psi J'(\theta) + ie^2_\psi \frac{1}{\delta} \left(m - \frac{Q r}{\rho^2} a \sin^2 \theta \right) \right] = 0.
\]

Equations (4.6) and (4.8) both yield \(\left[e^2_\psi J'(\theta) + ie^2_\psi \frac{1}{\delta} \left(m - \frac{2Q r}{\rho^2} a \sin^2 \theta \right) \right] = 0\), regardless of \(A\) or \(B\). Then, substituting tetrad elements (4.2) into (4.5)–(4.8), after tedious calculating, we
obtain
\[\Delta^2 \left[F W'(u) - G(r^2 + a^2) \left(E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right)^2 \right] \\
- (r^2 + a^2)^2 \left[E - \frac{q Q r}{r^2 + a^2} - \frac{ma}{r^2 + a^2} \right]^2 \\
+ \Delta \left[\mu^2 \rho^2 + J'(\theta) + \left(a E \sin \theta - \frac{m}{\sin \theta} \right)^2 \right] = 0, \]
\tag{4.9}
which is the same as equation (3.5). Therefore, it is easy to find the Hawking temperature (3.11).

The spin-down calculation is similar to the spin-up case discussed above, and the result is the same.

5. Summary

We firstly cast three well-known coordinate representations, i.e. the Painlevé-type, advanced Eddington–Finkelstein and Boyer–Lindquist coordinate representations for the Kerr–Newman black hole, into an united and general coordinate representation (2.3). Then, based on this coordinate representation, we study the relation between the Hawking temperature and the deformation of the integral contour for the scalar and Dirac particle tunneling. We find that correct Hawking temperature can be obtained exactly as long as the integral contour deformed corresponding to the radial coordinate transform if the transformation is a non-regular or zero function at the event horizon.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant no 10875040, the key project of the National Natural Science Foundation of China under grant no 10935013, the National Basic Research of China under grant no 2010CB833004, the FANEDD under grant no 200317, the Hunan Provincial Natural Science Foundation of China under grant no 08JJ3010, the construct program of the key discipline in hunan province, the Hunan Provincial Innovation Foundation for Postgraduate; and Construct Program of the National Key Discipline.

Appendix A. Improper choice of contour in isotropic coordinates for Schwarzschild black hole

Improper choice of the integral contour can lead to an incorrect temperature. In this section, we review the following process mentioned in [14, 15]. By taking an isotropic coordinate transformation
\[t \rightarrow t, \quad r \rightarrow \rho, \quad \ln \rho = \int \frac{dr}{r \sqrt{1 - \frac{2M}{r}}}, \]
\tag{A.1}
the line element of the Schwarzschild black hole becomes
\[ds^2 = -\left(\frac{2\rho - M}{2\rho + M} \right)^2 dt^2 + \left(\frac{2\rho + M}{2\rho} \right)^4 d\rho^2 + \frac{(2\rho + M)^2}{16\rho^2} d\Omega^2. \]
\tag{A.2}
Class. Quantum Grav. 27 (2010) 035004
C Ding and J Jing

The horizon now is $\rho_H = M/2$. Substituting it and $\phi = e^{i(-Et + W(\rho) + J(\theta, \psi))}$ into Hamilton–Jacobi equation (3.3), we obtain

$$\text{Im} \ W_\pm(\rho) = \pm \text{Im} \left[\int \frac{(2\rho + M)^3 d\rho}{4\rho^2(2\rho - M)} \sqrt{E^2 - \left(\frac{2\rho - M}{2\rho + M}\right)^2 (m^2 + g^{ij} J_i J_j)} \right].$$ \hfill (A.3)

Because the imaginary part of above integration comes from the pole $\rho = M/2$, we only consider the integral around the pole. If we still set a semi-circular contour to bypass the pole, as we do in the Schwarzschild coordinates, i.e. setting $\rho = M/2 + \epsilon e^{i\theta}, \theta \in [0, \pi]$, then equation (A.3) becomes

$$\text{Im} \ W_\pm(\rho) = \pm \text{Im} \lim_{\epsilon \to 0} \left[\int_0^\pi \frac{4(M + \epsilon e^{i\theta})^3 i d\theta}{(M + 2\epsilon e^{i\theta})^2} \sqrt{E^2 - \left(\frac{\epsilon e^{i\theta}}{M + \epsilon e^{i\theta}}\right)^2 (m^2 + g^{ij} J_i J_j)} \right] = \pm 4\pi M E.$$ \hfill (A.4)

By using equations (1.1) and (1.2), the probability is

$$\Gamma = \frac{\Gamma[\text{emission}]}{\Gamma[\text{absorption}]} = \exp[-4 \text{Im} W_+] = \exp[-16\pi M E] = \exp\left[-\frac{E}{T}\right],$$ \hfill (A.5)

and incorrect temperature is

$$T = \frac{1}{16\pi M} = \frac{1}{2} T_H.$$ \hfill (A.6)

where T_H is the Hawking temperature of the Schwarzschild black hole. This is the so-called factor of $1/2$ problem.

Appendix B. Improper choice of integral contour gives an incorrect temperature in the general coordinates (2.3)

In equation (3.15), if we still set a semi-circular contour to bypass the pole $u = u_+$, i.e. $u = u_+ + \epsilon e^{i\theta}$, we obtain

$$\text{Im}[W_+ - W_-] = \frac{\pi}{\alpha + 1} \left[\frac{r_+^2 + a^2}{(r_+ - M)} (E - m\Omega_+ - qV_+) \right],$$ \hfill (B.1)

and the temperature would be

$$T = (\alpha + 1) T_H.$$ \hfill (B.2)

Appendix C. Definition of radiating particle energy and angular momentum

It is well known that there are conservational quantities as long as the spacetime possesses some certain symmetries. In the Borer–Lindquist coordinate system, the line element (2.1) obviously has temporal–translational invariance and φ_s–translational one, so we can define the particle energy as $E = -\partial_t I$, and the particle angular momentum as $m = \partial_{\varphi_s} I$. Thus, the action can be written as $I = -Et + W(r) + m\varphi_s + J(\theta)$, which is essentially related to the time-like Killing vector $\tilde{\xi}^\mu(t) = (1, 0, 0, 0)$ and the space-like Killing one $\tilde{\xi}^\mu(\varphi) = (0, 0, 0, 1)$.

As mentioned in [28], the scalar product between time-like Killing vector and particle four-momentum $p^\mu = m \, dx^\mu / d\lambda$ is a constant for the particle moving along geodesic, i.e.

$$\xi_\mu p^\mu = \text{constant}. \hfill (C.1)$$
Furthermore, this scalar product is also a constant in different coordinate systems. Hence, these quantities can be used to define particle energy \[7\] and angular momentum in different coordinate systems, i.e.

\[E = -\xi_{(t)}^\mu p_\mu, \quad m = \xi_{(\phi)}^\mu p_\mu. \]
(C.2)

In the general coordinates (2.3), the energy and angular momentum of test particle are

\[E = -\xi_{(t)}^\mu p_\mu = -\xi_{(t)}^\mu \partial_\mu I = -\eta \partial I, \]
\[m = \xi_{(\phi)}^\mu p_\mu = \xi_{(\phi)}^\mu \partial_\mu I = \delta \partial \phi I. \]
(C.3)

Thus, the expression of the action can be taken as

\[I = -\frac{1}{\eta} E v + W(u) + J(\theta) + \frac{1}{\delta} m \phi. \]
(C.4)

References

[1] Kerner R and Mann R B 2008 Phys. Lett. B 665 277
[2] Kerner R and Mann R B 2006 Phys. Rev. D 73 104010
[3] Kerner R and Mann R B 2008 Class. Quantum Gravity 25 095014
[4] Majhi B R 2009 Phys. Rev. D 79 044005
[5] Ding C K and Jing J L 2008 Class. Quantum Grav. 25 145015
[6] Ding C K and Jing J L 2009 Gen. Relat. Gravit. 41 2529
[7] Ding C K, Wang M J and Jing J L 2009 Phys. Lett. B 676 99
[8] Landau L D and Lifshitz E M 1975 Quantum Mechanics: Non-relativistic Theory (Course of Theoretical Physics, vol 2) (New York: Pergamon)
[9] Srivivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007
[10] Shankaranarayanan S, Srinivasan K and Padmanabhan T 2001 Mod. Phys. Lett. A 16 571
[11] Shankaranarayanan S, Padmanabhan T and Srinivasan K 2002 Class. Quantum Grav. 19 2671
[12] Chen D Y, Jiang Q Q and Zu X T 2008 Class. Quantum. Grav. 25 205022
[13] Stotyn S, Schleich K and Witt D 2009 Class. Quantum. Grav. 26 065010
[14] Angheben M, Naladini M, Vanzo L and Zerbini S 2005 J. High Energy Phys. JHEP05(2005)014
[15] Naladini M, Vanzo L and Zerbini S 2006 J. Phys. A: Math. Gen. 39 6601
[16] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[17] Kraus P and Wilczek Frank 1994 Mod. Phys. Lett. A 9 3713
[18] Kraus P and Wilczek F 1995 Nucl. Phys. B 433 403
[19] Kraus P and Wilczek F 1995 Nucl. Phys. B 437 231
[20] Bekenstein J D 1973 Phys. Rev. D 7 2333
[21] Akhmedov E T, Akhmedova V and Singleton D 2006 Phys. Lett. B 642 124
[22] Akhmedov E T, Akhmedova V, Singleton D and Pilling T 2007 Int. J. Mod. Phys. A 22 1705
[23] Jiang Q-Q, Shuang-Qing Wu and Cai Xu 2006 Phys. Rev. D 73 064003
[24] Visser M 2007 arXiv:0706.0622v2
[25] Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188
[26] Brill D R and Wheeler J A 1965 Rev. Mod. Phys. 29 465
[27] Weinberg S 1995 The Quantum Theory of Fields vol 1 (Cambridge: Cambridge University Press)
[28] Ohanian H C and Ruffini R 1994 Gravitation and Spacetime 2nd edn (New York: W W Norton & Company, Inc.)