Positronium formation cross-sections for Xe, CO$_2$ and N$_2$

To cite this article: D A Cooke et al 2010 J. Phys.: Conf. Ser. 199 012006

View the article online for updates and enhancements.

Related content
- Fragmentation in positronium collisions with atoms
 S J Brawley and G Laricchia
- Positron-impact ionization and positronium formation from helium
 D J Murtagh, M Szluinska, J Moxom et al.
- Total positron-impact ionization and positronium formation from the noble gases
 G Laricchia, P Van Reeth, M Szluinska et al.

Recent citations
- Positronium formation and ionization of atoms and diatomic molecules by positron impact
 Suvam Singh and Bobby Antony
- Methods and progress in studying inelastic interactions between positrons and atoms
 R D DuBois
- A Self-Consistent Model for Positronium Formation from Helium Atoms
 Ebrahim Ghanbari-Adivi
Positronium formation cross-sections for Xe, CO$_2$, and N$_2$

D A Cooke, D J Murtagh and G Laricchia

UCL, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
E-mail: g.laricchia@ucl.ac.uk

Abstract. The positronium formation cross-sections for Xe, CO$_2$, and N$_2$ have been measured using coincidences between γ-rays from positronium self-annihilation and the resultant ion. In the case of Xe, there is excellent agreement with previous experimental determinations. For CO$_2$, there is broad agreement in magnitude with previous measurements in contrast with N$_2$ where good shape agreement at low energies (<40 eV) is found though the magnitude of the present cross-section is significantly higher.

1. Introduction

When considering ionization by positron impact, there are two dominant channels: direct ionization ($e^+ + A \rightarrow A^+ + e^+ + e^-$) and positronium (Ps) formation ($e^+ + A \rightarrow A^+ + \text{Ps}$). For an atomic target, the total ionization cross-section (Q_{ti}) is defined as the sum of the Ps formation (Q_{Ps}) and direct ionization (Q_{+i}) cross-sections, contributions from higher order processes and from direct annihilation of a target electron are considered generally negligible [1]. This is illustrated in figure 1, which shows the partitioning of Q_{t} for He into contributions from Q_{+i} and Q_{Ps}. In the case of a molecular target, the dissociative ionization cross-section (Q_{diss}) must also be included in the sum for Q_{t}.

Recently, there have been experimental determinations of Q_{Ps} for the noble gases [e.g. 2, 3] and the first experimental measurements of Ps formation into the 2P state ($Q_{Ps}(2P)$) for He, Ar and Xe [4]. With the exception of He, there have been fewer theoretical determinations of Q_{Ps}, however, there are a number of cross-sections for excited-state Ps formation [e.g. 5, 6] and Ps formation from inner-shell electrons [e.g. 6–8].

Figure 2 shows the available experimental determinations of Q_{Ps} and $Q_{Ps}(2P)$ for Xe compared with theory. There is a large distribution of magnitudes and shapes when considering all determinations. There is, however, convergence between two recent measurements, those of [2] and [3]. The determination of [16], measured using γ-ray–ion coincidences, reproduces the structure observed by [2] in energy dependence only—an absolute scale was set by normalizing the coincidence yield to this previous determination. These measurements also suffered from a systematic effect at high energies ($E > 16$ eV) whereby the magnetic field failed to contain scattered projectiles, yielding an excess of γ-rays from annihilation on the cell walls.

In the present work, γ-ray–ion coincidences have been used to measure Q_{Ps} for Xe, N$_2$, and CO$_2$ with particular attention paid to confining all positrons after scattering. Unlike previous work [15], an absolute scale has been set on these measurements using Q_{t}^i. For Xe, there is good agreement between all determinations [see e.g. 17]; for the molecules, a concurrent measurement of Q_{t}^i for Ar was used for normalization.
2. Experimental Method

The experimental apparatus used in the present work is shown in figure 3 and has been described in detail elsewhere [18, 19]. Briefly, fast β^+ particles emitted from a 22Na source are moderated by annealed W meshes producing a slow positron beam with $\Delta E \sim 2$ eV. The slow positrons are radially confined by a magnetic field ($\vec{B} \approx 100$ G) along the length of the beam-line (see black squares in figure 3). The beam passes through a bent solenoid, an electron repeller (repeller R1 in figure 3) and a Wien filter in order to reduce the number of unwanted γ-rays, secondary electrons and fast positrons transported to the interaction region. A positively-biased electrode (repeller R2 in figure 3) may be used to repel the slow portion of the beam, allowing measurement of the background produced by the remaining particles. The interaction region is a hemispherical gas cell constructed from polished Al. A small electrostatic lens held at -500 V extracts ions from the cell towards the detector, which consists of a channel electron multiplier (CEM) housed in a separately-pumped chamber. A CsI γ-ray detector is placed directly on top of the interaction region to detect annihilation quanta from the cell, and a second CEM is positioned at the end of the beamline for the detection of positrons. The photomultiplier tube mounted on an extension arm was used for the determination of $Q_{Ps}(2P)$.

The measurements were normalized by recording the total ion yield (Y_i) simultaneously with the γ-ray–ion coincidence yield. Y_i is proportional to Q_i^t via:

$$Q_i^t = \frac{1}{nl} \frac{\varepsilon_i}{\varepsilon_i} Y_i$$

where n is the number density of the target gas, l is the effective cell length and ε refers to a detector efficiency. This normalization is performed similarly to that for Q_i^+ in [18], and allows the determination of $\frac{1}{nl} \frac{\varepsilon_i}{\varepsilon_i}$ for use in other normalizations. The error on this method is approximately $\pm 5\%$ [20]. The γ-ray–ion coincidence yield can then be normalized relative to the ion yield by correcting for the CsI detector efficiency which has been measured as 0.010 ± 0.001. This places an additional $\pm 10\%$ error on the absolute scale of the measured cross-sections.

Yield is defined as event per positron recorded
Figure 2. Review of experimental and theoretical determinations of Q_{Ps} for Xe. 2(a), experimental: •—[2], ○—[3], ◊—[12], □—[13], ▽ and △—lower and upper limits of [14] respectively, □—[15], ⊕—$Q_{Ps}(2P)$ [4]. 2(b), theoretical: solid line—[6]×0.5, dashed line—[7]×0.5, dotted line—[8], solid grey line—$Q_{Ps}(2P)$ [6], ○—as 2(a).

3. Results
Figures 4, 5 and 6 show Q_{Ps} for Xe, CO$_2$ and N$_2$, respectively. In the case of Xe (figure 4), the present determination of Q_{Ps} peaks at \sim10 eV with a magnitude of $8.9 \pm 0.3 \times 10^{-16}$ cm2. A shoulder feature is observed between \sim14 eV and 24 eV with the cross-section becoming negligible after \sim100 eV. In comparison with other determinations of Q_{Ps}, there is excellent agreement, within errors, between the present results and those of [2] and [3].

Figure 5 shows the present Q_{Ps} for CO$_2$ compared with other experimental measurements. The present results peak at \sim23 eV with a magnitude of $4.1 \pm 0.1 \times 10^{-16}$ cm2 and extend to 750 eV. In
Figure 3. The magnetically guided positron beam and interaction region, showing the placement of various detectors.

Figure 4. Determinations of Q_{Ps} for Xe: ■—present measurement, ○—[3], continuous curve—[2] (representative error bars are displayed).

comparison with previous determinations, the present Q_{Ps} displays fair agreement in the position and magnitude of the peak with the lower limit measurement of [22]. The present results are higher than the previous determination of [21] except in the peak region.

Finally, in the case of N$_2$ (see figure 6) the present measurement peaks at \sim25 eV with a magnitude of $3.57 \pm 0.06 \times 10^{-16}$ cm2 and extends to 350 eV. In comparison with the data of [23] there is excellent agreement in shape up to 40 eV (see inset), though the magnitude disagrees by $30 \pm 15\%$. Unlike for CO$_2$ [18], the separation of dissociation products from the parent ion has not been achieved for N$_2$. The extent to which N$^+$ is detected will affect the absolute scale placed on the reported results, and is the subject of ongoing investigation.
Figure 5. Q_{Ps} from CO$_2$: •—present measurement, ○—[21], △ and ▽—upper and lower limits of [22], respectively.

Figure 6. Q_{Ps} from N$_2$: •—present measurement, □—[23]. Inset shows data normalized to each other for comparison of energy dependence (arbitrary units).
4. Conclusions
In the present work, γ-ray–ion coincidences have been used to determine Q_{Ps} for Xe, CO$_2$, and N$_2$. In the case of Xe, excellent agreement has been found between the present results and the two most recent determinations [2, 3]. For CO$_2$, there are a number of determinations of Q_{Ps}, among which agreement is moderate. For N$_2$, there is an excellent agreement in shape between the present results and [23] up to 40 eV, although there is a \sim30% difference in magnitude. The apparent importance of Ps formation in molecules several hundred eV above threshold (in contrast to atoms) as implied by the present data is currently not understood, though it is noted that N$_2$ was found to be an efficient converter for positron-to-positronium beams up to \sim250 eV [24]. Clearly, further investigations are necessary.

5. Acknowledgements
We would like to thank J. Dumper and R. Jawad for technical assistance as well as EPSRC for funding this research.

References
[1] Van Reeth P, Laricchia G and Humberston J W 2005 Physica Scripta 71 C9
[2] Laricchia G, Van Reeth P, Szułwińska M and Moxom J 2002 J. Phys. B 35 2525
[3] Marler J P, Sullivan J P and Surko C M 2005 Phys. Rev. A 71 022701
[4] Murtagh D J, Cooke D A and Laricchia G 2009 Phys. Rev. Lett. 102 133202
[5] Campbell C P, McAlinden M T, Kernohan A A and Walters H R J 1998 Nucl. Instr. Meth B 143 41
[6] Gilmore S, Blackwood J E and Walters H R J 2004 Nucl. Instr. Meth B 221 129
[7] McAlinden M and Walters H 1992 Hyperfine Interactions 73 65
[8] Dunlop L and Gribakin G 2006 Nucl. Instr. Meth B 247 61
[9] Murtagh D J, Szułwińska M, Moxom J, Van Reeth P and Laricchia G 2005 J. Phys. B 38 3857
[10] Ashley P, Moxom J and Laricchia G 1996 Phys. Rev. Lett. 77 1250
[11] Moxom J, Ashley P and Laricchia G 1996 Can. J. Phys 74 367
[12] Charlton M, Clark G, Griffith T C and Heyland G R 1983 J. Phys. B 16 L465
[13] Diana L M, Brooks D L, Coleman P G, Chaplin R L and Powell J P 1989 Positron Annihilation ed Dorikens-Vanpraet L., Dorikens M and Segers D (World Scientific) p 311
[14] Stein T S, Harte M, Jiang J, Kauppila W E, Kwan C K, Li H and Zhou S 1998 Nucl. Instr. Meth B 143 68
[15] Szułwińska M and Laricchia G 2004 Nucl. Instr. Meth B 221 100
[16] Szułwińska M and Laricchia G 2004 Nucl. Instr. Meth. B 221 107
[17] Laricchia G, Armitage S, Kövér Á and Murtagh D J 2008 Adv. At. Mol. Opt. Phys. vol 56 (Elsevier) pp 1–47
[18] Cooke D A, Murtagh D J, Kövér Á and Laricchia G 2008 Nucl. Instr. Meth. B 266 466
[19] Szułwińska M, Van Reeth P and Laricchia G 2002 J. Phys. B 35 4059
[20] Cooke D A, Murtagh D J and Laricchia G In preparation
[21] Murtagh D J, Arcidiacono C, Pešić Z D and Laricchia G 2006 Nucl. Instr. Meth. B 247 92
[22] Kwan C K, Kauppila W E, Nazaran S, Przybyla D, Scahill N and Stein T S 1998 Nucl. Instr. Meth. B 143 61
[23] Marler J P and Surko C M 2005 Phys. Rev. A 72 062713
[24] Leslie D E, Armitage S and Laricchia G 2002 J. Phys. B 35 4819