Association between \textit{IL-37} gene polymorphisms and risk of HBV-related liver disease in a Saudi Arabian population

Mashael R. Al-Anazi1, Sabine Matou-Nasri2, Arwa A. Al-Qahtani3, Jahad Alghamdi2, Ayman A. Abdo4,9, Faisal M. Sanai5,9, Waleed K. Al-Hamoudi4,9, Khalid A. Alsawat4,9, Hamad I. Al-Ashgar6, Mohammed Q. Khan6, Ali Albenmousa7, Monis B. Shamsi8, Salah K. Alanazi1, Damian Dela Cruz1, Marie Fe F. Bohol1, Mohammed N. Al-Ahdal1,10 & Ahmed A. Al-Qahtani1,10

Interleukin-37 (IL-37) has recently been recognized as a strong anti-inflammatory cytokine having anti-tumor activity against hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients. HCC is a typical inflammation-related cancer, and genetic variations within the \textit{IL-37} gene may be associated with the risk of HBV infection. Identification of the allelic patterns that genetically have a high disease risk is essential for the development of preventive diagnostics for HBV-mediated liver disease pathogenesis. In this study, we aimed to investigate the association between single nucleotide polymorphisms (SNPs) within the \textit{IL-37} gene and disease sequelae associated with HBV infection. We genotyped ten \textit{IL-37} SNPs in 1274 patients infected with HBV and 599 healthy controls from a Saudi Arabian population. Among the selected SNPs, two SNPs (rs2723175 and rs2708973) were strongly associated with HBV infection, and six SNPs (rs2723176, rs2723175, rs2723186, rs364030, rs28947200, rs4392270) were associated with HBV clearance, comparing healthy controls and HBV-infected-patients respectively. A suggestive association of rs4849133 was identified with active HBV surface antigen (HBsAg) carrier and HBV-related liver disease progression. In conclusion, our findings suggest that variations at the \textit{IL-37} gene may be useful as genetic predictive risk factors for HBV infection and HBV-mediated liver disease progression in the Saudi Arabian population.

Hepatitis B virus (HBV) is a blood-borne virus that specifically infects the liver and triggers immune-mediated liver injury, which may result in cirrhosis or hepatocellular carcinoma (HCC) in extreme cases1. HBV is vertically transmitted from infected mothers to their offspring, though it is more frequently acquired through horizontal transmission including contaminated blood transfusion, parenteral routes or via sexual interaction2,3. HBV infection affects more than 2 billion people globally, with a high prevalence in Sub-Saharan African and Southeast Asian countries including Saudi Arabia4. In approximately 90% of cases, HBV infection is acute, and the virus is cleared within 6 months by the natural immune response5,6. Most patients chronically infected with HBV are...
Table 1. Demographic and clinical characteristics of patients infected with HBV and healthy control subjects.

Variable	Inactive (n = 563)	Active (n = 217)	Cirrhosis (n = 64)	HCC (n = 30)	Healthy Control (n = 599)	Clearance (n = 400)	p-value*
Age (yrs.)	40.65 ± 13.33	36.085 ± 11.76	53.17 ± 12.67	60.034 ± 11.78	30.79 ± 8.93	37.14 ± 10.72	<0.0001
Sex							
Male count (%)	380 (67.5%)	174 (80.2%)	57 (79.7%)	29 (96.7%)	567 (94.7%)		<0.0001
Female count (%)	183 (32.5%)	43 (19.8%)	13 (20.3%)	1 (3.3%)	32 (5.3%)		
BMI**	27.70 (24.87–31.73)	27.10 (23.06–30.855)	26.14 (21.815–29.87)	24.055 (21.960–27.44)	0.001		
ALT**	58.74 ± 293.82	91.13 ± 108.10	71.32 ± 116.04	80.72 ± 76.44	0.157		
HCV Load (Log10)**	2.290 (1.30–3.16)	5.54 (4.50–7.70)	2.77 (1.55–4.922)	3.64 (1.080–5.67)	<0.0001		

*Values are expressed as median interquartile range (25th–75th). **Values are expressed as Mean ± SD.

Table 1. Demographic and clinical characteristics of patients infected with HBV and healthy control subjects. Asymptomatic and characterized by the absence of the HB e antigen (HBeAg). The presence of anti-HBe antibodies is associated with largely intact liver tissue. Based on available age-related epidemiological data, in 90% of infants and 50% of young children affected with HBV, the infection becomes chronic and persists for many years. Belonging to the Hepadnaviridae family that replicates in human hepatocytes, HBV is an enveloped non-cytopathic virus containing a partially double-stranded viral DNA genome of 3.2-kb length within its core. After infecting hepatocytes, HBV releases its genome into the cell host nucleus for viral RNA transcription, DNA replication, and viral protein synthesis including HBV surface antigen (HBsAg). The degree of severity of HBV infection is influenced by several factors such as the age at infection, longer duration of infection, immune status, HBV genotype, high degree of viral mutations, high level of HBV replication, co-infection with hepatitis C or delta virus, or with human immunodeficiency virus (HIV), male gender, environmental factors (e.g., alcohol consumption, smoking and exposure to aflatoxin), and ethnic background.

Recent studies provided additional evidence of the pivotal role of inflammation in patients with chronic HBV infection, which may result in cirrhosis following secondary necroinflammation with the eventual progression to HCC. Pro-inflammatory mediators, such as interferons and cytokines, are produced after the binding of the HBV core protein to membrane heparin sulfate exposed on the cell surface of human hepatoma cells. Interleukin-37 (IL-37), a member of the IL-1 family, is an anti-inflammatory cytokine produced by immune cells and suppresses the production of inflammatory cytokines in several types of disease. It has been shown that IL-37 is capable of reducing the activity of both innate and specific immune responses. Zhao et al. (2014) showed that decreased expression of IL-37 was correlated with HCC progression, and elevated serum IL-37 levels have been observed in patients infected with HBV and treated with telbivudine. Several studies have shown that there is a significant association between certain genetic variations within the IL-37 gene and several diseases, including tuberculosis, coronary artery disease (CAD), and autoimmune-based thyroid diseases.

Despite the implementation of anti-HBV immunization programs for newborns, there are still approximately 5,000 new patients diagnosed with HBV infection per year in Saudi Arabia. In this study, we investigated the association between IL-37 SNPs and disease sequelae associated with HBV infection in a Saudi Arabian population.

Materials and Methods

Patients. Peripheral blood samples were collected from 1274 patients infected with HBV and 599 normal healthy volunteers of Saudi origin from three major hospitals in Riyadh City, including King Faisal Specialist Hospital and Research Center (KFSHRC), King Khalid University Hospital (KKUH), and Prince Sultan Military Medical City (PSMMC). Written informed consent was obtained from participating individuals, and the study was approved by the institutional review board of the participating hospitals in accordance with the Helsinki Declaration of 1975. The patients were grouped in five categories based on disease severity: group I included patients who cleared HBV (n = 400), group II patients with inactive HBV infection (n = 563), group III patients with active HBV infection (n = 217), group IV patients with HBV-associated cirrhosis (n = 64), and group V patients with cirrhosis diagnosed with HCC (n = 30). Control subjects were characterized by the absence of any known serological marker for HBV.

TagSNP Selection. The SNP data of the entire IL-37 gene were downloaded from the 1000 Genomes Project Database (GPD: http://www.internationalgenome.org). All genetic variants with a minor allele frequency ≥ 0.05 and located within the IL37 genomic region (Chromosome 2: 113,670,548-113,676,459, GRCh37) plus a flanking region of 7 kb were extracted from the 1000 Genome Project – Phase 3. The Tagger tool as implemented in Haploview Software (Broad Institute of MIT and Harvard, Cambridge, MA, USA, version 4.2) was used to select tag SNPs that span this genomic region using the pairwise tagging method and an r² threshold of 0.8. Of the identified 134 variants in the 1000 GP, we selected 10 tag SNPs that captures 103 (76%) alleles at r² ≥ 0.8 with a mean max r² equal to 0.925. The final set of SNPs investigated in this study was rs2723176, rs2723175, rs2723186, rs2723168, rs4364030, rs3811047, rs28947200, rs4392270, rs4849133, and rs2708973.
SNPs	Genotype/Allele distribution	Control (n = 599)	%	HBV patients (n = 874)	%	OR (95% C.I.)	χ²	p-value
rs2723176	CC	560	93.49%	794	90.85%	Ref		
	AC	36	6.01%	75	8.58%	1.469 (0.973–2.218)	3.387	0.066
	AA	3	0.50%	5	0.57%	1.175 (0.280–4.939)	0.049	1.00
	C	1156	96.49%	1663	95.14%	1.407 (0.965–2.051)	3.172	0.075
	A	42	3.51%	85	4.86%	0.875 (0.208–3.675)	0.033	0.854
	AA + AC vs CC							
	AA vs AC + CC							
rs2723175	GG	554	92.49%	591	93.49%	Ref		
	AG	28	4.67%	238	27.23%	7.968 (5.296–11.987)	127.66	<0.0001
	AA	17	3.01%	45	5.15%	2.481 (1.403–4.387)	10.370	0.001
	G	1134	94.82%	1420	81.24%	4.232 (3.191–5.613)	114.283	<0.0001
	A	64	5.18%	130	18.76%	0.875 (4.216–8.243)	126.976	<0.0001
	AA + AG vs GG							
	AA vs AG + GG							
rs2723186	GG	553	92.32%	782	94.47%	Ref		
	AG	28	4.67%	54	6.18%	1.364 (0.853–2.153)	0.049	1.00
	AA	18	3.01%	38	4.35%	0.875 (0.835–1.145)	0.025	0.874
	G	1134	94.66%	1618	92.56%	4.232 (3.191–5.613)	114.283	<0.0001
	A	64	5.34%	130	7.44%	0.988 (0.805–1.220)	0.007	0.933
	AA + AG vs GG							
	AA vs AG + GG							
rs273168	GG	578	96.49%	834	95.42%	Ref		
	AG	2	0.33%	5	0.57%	2.481 (1.403–4.387)	10.370	0.001
	AA	616	51.42%	904	51.72%	0.988 (0.835–1.145)	0.025	0.874
	G	582	48.58%	844	48.28%	0.988 (0.835–1.145)	0.025	0.874
	GG + AG vs AA							
	GG vs AG + AA							
rs4364030	CC	292	48.75%	428	48.97%	Ref		
	CG	245	40.90%	357	40.85%	0.994 (0.797–1.239)	0.003	0.958
	GG	62	10.35%	89	10.18%	0.979 (0.686–1.399)	0.013	0.909
	C	829	69.20%	1213	69.39%	0.991 (0.845–1.162)	0.013	0.910
	G	369	30.80%	535	30.61%	0.991 (0.805–1.220)	0.007	0.933
	GG + CG vs CC							
	GG vs CG + CC							
rs3811047	GG	168	28.05%	264	30.21%	Ref		
	AG	278	46.41%	389	44.51%	0.890 (0.695–1.140)	0.850	0.358
	AA	153	25.54%	221	25.29%	0.919 (0.693–1.219)	0.340	0.559
	G	614	51.25%	917	52.46%	0.953 (0.822–1.104)	0.420	0.519
	A	584	48.75%	831	47.54%	0.901 (0.716–1.133)	0.800	0.371
	AA + AG vs GG							
	AA vs AG + GG							
rs28947200	CC	511	85.31%	771	88.22%	Ref		
	CT	55	9.18%	80	9.15%	0.964 (0.672–1.383)	0.040	0.842
	TT	33	5.51%	23	2.63%	0.462 (0.268–0.796)	8.087	0.004
	T	121	10.10%	126	7.21%	0.691 (0.533–0.889)	7.739	0.005
	TT + CT vs CC							
	TT vs CT + CC							
rs4392270	GG	555	92.65%	796	91.08%	Ref		
	AG	33	5.51%	54	6.18%	1.141 (0.730–1.783)	0.335	0.562
	AA	11	1.84%	24	2.75%	1.521 (0.739–3.131)	1.316	0.251
	G	1143	95.41%	1646	94.16%	1.288 (0.920–1.803)	2.181	0.139
	A	55	4.59%	102	5.84%	0.663 (0.322–1.363)	1.268	0.260

Continued
SNPs	Genotype/Allele distribution	Control (n = 599) %	HBV patients (n = 874) %	OR (95% C.I.)	\(\chi^2 \)	p-value	
rs4849133	TT	513	796	80.78%	Ref		
	CT	67	119	13.62%	1.291 (0.937–1.778)	2.447	0.118
	CC	19	49	5.61%	1.874 (1.090–3.221)	5.312	0.021
	T	1093	1531	87.59%	1.475 (1.154–1.886)	9.725	0.002
	C	105	217	12.41%	1.419 (1.069–1.885)	5.894	0.015
	CC vs TT	0.552 (0.321–0.947)	4.784	0.029			
	rs2708973	G	9	150%	5.286 (2.611–10.701)	26.342	<0.0001
		A	14	2.34%	1.150 (0.583–2.267)	0.163	0.686
		C	37	3.09%	1.874 (1.090–3.221)	5.312	0.021
Table 2. Comparison of genotypic distributions between patients infected with HBV and healthy controls. Bold indicates significance.							

SNPs	Genotype/Allele distribution	Clearance (n = 400) %	HBV patients (n = 874) %	OR (95% C.I.)	\(\chi^2 \)	p-value			
rs2723176	CC	335	794	90.85%	Ref				
	AC	58	65	8.58%	0.546 (0.378–0.786)	10.780	0.001		
	AA	7	5	0.57%	0.301 (0.095–0.956)	4.650	0.031		
	C	728	1663	95.14%	0.517 (0.373–0.716)	16.250	<0.0001		
	A	72	85	4.86%					
	AA vs AC vs CC	3.096 (0.976–9.814)	4.080	0.043					
	rs2723175	G	369	92.25%	391	67.62%	Ref		
		A	14	3.50%	238	27.23%	10.614 (6.097–18.480)	99.850	<0.0001
		AA	37	4.25%	45	5.15%	1.653 (0.932–2.931)	3.010	0.083
		G	752	94.00%	1420	81.24%	3.619 (2.640–4.961)	71.080	<0.0001
		A	48	6.00%	328	18.76%			
	rs2723186	AA + AG vs GG	5.700 (3.848–8.443)	89.630	<0.0001				
		AA vs AG + GG	0.818 (0.462–1.447)	0.480	0.489				
	rs2723186	GG	331	82.75%	782	89.47%	Ref		
		A	62	15.50%	54	6.18%	0.369 (0.250–0.543)	27.150	<0.0001
		AA	7	1.75%	38	4.35%	2.298 (1.016–5.198)	4.210	0.040
		G	724	90.50%	1618	92.56%	0.765 (0.569–1.029)	3.140	0.076
		A	76	9.50%	130	7.44%			
	rs2723186	AA + AG vs GG	0.364 (0.403–0.791)	11.240	0.0008				
		AA vs AG + GG	0.392 (0.173–0.885)	5.430	0.019				
	rs2723168	AA	4	1.00%	35	4.00%	Ref		
		AG	393	98.25%	834	95.42%	0.243 (0.086–0.687)	8.320	0.004
		GG	3	0.75%	5	0.57%	0.190 (0.033–1.114)	3.890	0.049
		A	401	50.13%	904	51.72%	0.938 (0.794–1.109)	0.560	0.456
	rs2723168	GG + AG vs AA	0.242 (0.085–0.686)	8.350	0.004				
		GG vs AG + AA	1.313 (0.312–5.523)	0.140	0.799				
	rs4364030	CC	162	40.50%	428	48.97%	Ref		
		CG	171	42.75%	357	40.85%	0.790 (0.611–1.022)	3.240	0.072
		GG	67	16.75%	89	10.18%	0.503 (0.349–0.724)	13.920	0.0002
		C	495	61.88%	1213	69.39%	0.716 (0.601–0.853)	14.040	0.0002
	rs4364030	GG + CG vs CC	0.709 (0.558–0.901)	7.920	0.005				
		GG vs CC + CC	1.313 (0.312–5.523)	0.140	0.799				

Continued
Genotyping of IL-37 SNPs. Genomic DNA was extracted from the buffy coats isolated from patients with HBV using the Gentra Pure Gene kit (Qiagen, Hilden, Germany). Patient and control samples were genotyped for the ten selected SNPs using the 7900 HT Fast Real Time PCR System (Applied Biosystems, Foster City, CA, USA). The reagents used included universal TaqMan master mix, amplifying primers, and probes specific for each SNP and were purchased from Applied Biosystems. For each SNP, one allelic probe was labeled with FAM dye and the other with fluorescent VIC dye. The reaction was performed in a 96-well plate in a total reaction volume of 25 µL using 20 ng of genomic DNA. The TaqMan assay was subsequently read and analyzed by an automated software sequence detection system (SDS, version 2.4.1).

Statistical analysis. Statistical analysis was performed using the SPSS version 20.0 (SPSS Inc., Chicago, IL, USA) and HaploView version 4.2. The association between the IL-37 tag SNPs and disease status was expressed in odds ratio (OR) and 95% confidence intervals (CI). A statistically significant level of association was corrected for multiple testing, and only associations less than 0.00125 were considered significant. The SNPs were tested for the Hardy–Weinberg equilibrium (HWE) using Haploview software. A cut-off p-value of 0.05 was set for the HWE, and SNPs were excluded if they did not meet this value. OR values with CI calculated in fixed or random-effects models were used to estimate the strength of the association.

Results

Characteristics of the study subjects. Table 1 displays the demographic and clinical details of patients infected with HBV and the control subjects. The analysis shows that older age, male gender, body mass index (BMI), and HBV load were significantly associated with the risk of HBV chronic infection developing into severe liver disease such as cirrhosis and HCC.

![Table 3. Comparison of genotypic distributions between patients infected with HBV and the clearance group. Bold indicates significance.](https://www.nature.com/scientificreports/)
SNPs	Genotype/Allele distribution	Inactive (n = 563)	Active, cirrhosis and HCC (n = 311)	OR (95% C.I.)	χ²	p-value	
rs2723176	CC	518	276	88.75%		Ref	
	AC	42	33	10.61%	1.475 (0.914–2.380)	2.550	0.110
	AA	3	2	0.64%	1.251 (0.208–7.533)	0.060	0.806
	C	1078	585	94.05%	1.420 (0.914–2.206)	2.460	0.117
	A	48	37	5.95%			
rs2723175	AA + AC vs CC			1.460 (0.917–2.325)	2.560	0.109	
rs2723186	AA vs AC + CC			0.828 (0.138–4.980)	0.040	0.836	
rs2723168	G	509	273	87.78%		Ref	
	AG	156	82	26.37%	0.906 (0.661–1.242)	0.380	0.539
rs4364030	AA	3	12	3.86%	1.088 (0.554–2.137)	0.060	0.807
rs3811047	A	583	321	51.61%	1.007 (0.828–1.225)	0.00	0.946
rs4392270	AA + AG vs GG			1.312 (0.845–2.038)	1.470	0.226	
rs28947200	AA vs AG + GG			0.854 (0.481–1.854)	0.030	0.868	
rs2723168	A	23	12	3.86%		Ref	
rs4364030	GG	509	273	87.78%		Ref	
rs3811047	AG	156	82	26.37%	0.906 (0.661–1.242)	0.380	0.539
rs4392270	AA + AG vs GG			1.312 (0.845–2.038)	1.470	0.226	
rs28947200	AA vs AG + GG			0.854 (0.481–1.854)	0.030	0.868	

Continued
Table 4. Comparison of genotypic distributions between the inactive group and patients with active HBV, cirrhosis and HCC patients. Bold indicates significance.

SNPs	Genotype/Allele distribution	Inactive (n = 563)	Active, cirrhosis and HCC (n = 311)	OR (95% C.I.)	χ^2	p-value
rs4849133	TT	463	243	78.14%	Ref	
	CT	65	54	17.36%	1.583	5.310
	CC	35	14	4.50%	0.762	0.70
	T	991	540	86.82%	1.115	0.530
	C	135	82	13.18%		
	CC + CT vs TT			1.296	9.812	0.021
	CC vs CT + TT			1.406	4.338	0.021
rs2708973	GG	512	275	88.42%	Ref	
	AG	39	26	8.36%	1.241	0.670
	AA	12	10	3.22%	1.552	0.412
	G	1063	576	92.60%	1.347	0.021
	A	63	46	7.40%		
	AA + AG vs GG			1.314	2.170	0.141
	AA vs AG + GG			0.656	0.960	0.327
rs2723176	CC	195	55	85.94%	Ref	
	AC	21	9	14.06%	1.519	0.970
	AA	1	0	0.00%	1.174	0.596
	C	411	119	92.97%	1.351	0.021
	A	23	9	7.03%		
	AA + AC vs CC			1.450	2.250	0.141
	AA vs AC + CC			0.894	0.30	0.586
rs2723175	GG	148	46	71.88%	Ref	
	AG	61	14	21.88%	0.738	0.790
	AA	8	4	6.25%	1.609	0.570
	G	357	106	82.81%	0.962	0.021
	A	77	22	17.19%		
	AA + AG vs GG			0.839	0.780	0.378
	AA vs AG + GG			0.574	0.30	0.586
rs2723186	GG	193	55	85.94%	Ref	
	AG	15	6	9.38%	1.404	0.450
	AA	9	3	4.69%	1.170	0.050
	G	401	116	90.63%	1.257	0.420
	A	33	12	9.38%		
	AA + AG vs GG			1.316	0.430	0.512
	AA vs AG + GG			0.880	0.040	0.851
rs2723168	AA	9	3	4.69%	Ref	
	AG	207	61	95.31%	0.884	0.030
	GG	1	0	0.00%	0.905	0.330
	A	225	67	52.34%	0.980	0.010
	GG + AG vs AA			0.880	0.040	0.851
	GG vs AG + AA			0.894	0.30	0.586
rs4364030	CC	115	30	46.88%	Ref	
	CG	81	25	39.06%	1.183	0.30
	GG	21	9	14.06%	1.643	0.30
	C	311	85	66.41%	1.279	1.310
	G	123	43	33.59%		
	GG + CG vs CC			1.278	0.740	0.389
	GG vs CG + CC			0.655	1.00	0.318

Continued
Genotype and allele frequency distributions of IL-37 polymorphisms associated with HBV infection and clearance.

The genotype distribution and allele frequency for IL-37 polymorphisms between the HBV-infected group and control subjects are summarized in Table 2. The major allele homozygous genotype for each SNP was defined as the reference (Ref) genotype. Our results showed that two SNPs within the IL-37 gene (rs2723175 and rs2708973) were significantly associated with a higher risk for HBV infection compared to the healthy controls (Table 2). In particular, both SNPs were associated with the highest risk of HBV infection under the dominant model ($p < 0.0001$, OR $= 5.895$, 95% CI $= 4.216–8.243$ and $p < 0.0001$, OR $= 2.768$, 95% CI $= 1.727–4.438$, respectively). Three other SNPs showed suggestive significance at a nominal p-value threshold (rs4849133, rs28947200, and rs2723186). The TT genotype of rs28947200 was associated with a lower number of patients infected with HBV ($p = 0.004$, OR $= 0.462$, 95% CI $= 0.268–0.796$), whereas rs4849133 was related to the risk of HBV infection under both the dominant and recessive models ($p = 0.015$, OR $= 1.419$, 95% CI $= 1.069–1.885$; $p = 0.029$, OR $= 0.552$, 95% CI $= 0.321–0.947$, respectively) compared to healthy controls. The minor allele A of rs2723186 was associated with patients infected with HBV at a nominal p-value, with OR $= 1.424$, 95% CI $= 1.045–1.939$ and p-value of 0.024. No significant difference in the genotype and allele distributions of rs2723176, rs2723168, rs4364030, rs3811047, and rs4392270 SNPs was observed in patients infected with HBV compared to the healthy controls (Table 2).

Genotype and allele distribution were also determined in patients infected with HBV and the HBV clearance group due to the natural host immune response. Among the ten IL-37 polymorphisms, four SNPs (rs2723176, rs2723186, rs4364030 and rs4392270) were significantly associated with a predisposition for HBV clearance compared to patients with chronic HBV infection (Table 3). The A allele of rs2723176, compared to the C allele, showed the highest correlation with HBV clearance ($p < 0.0001$, OR $= 0.517$, 95% CI $= 0.373–0.716$). Under the dominant model, there was a significant association for rs2723176 when comparing chronically infected patients

SNPs	Genotype/Allele distribution	Active (n = 217)	%	Cirrhosis (n = 64)	%	OR (95% C.I.)	χ^2	p-value
rs3811047	GG	73	33.64%	19	29.69%	Ref		
	AG	84	38.71%	29	45.31%	1.326 (0.687–2.561)	0.710	0.399
	AA	60	27.65%	16	25.00%	1.025 (0.485–2.164)	0.00	0.949
	G	230	53.00%	67	52.34%	1.026 (0.692–1.523)	0.020	0.897
	A	204	47.00%	61	47.66%	Ref		
	AA + AG vs GG					1.201 (0.655–2.200)	0.350	0.554
	AA vs AG + GG					1.146 (0.605–2.173)	0.180	0.675
rs28947200	CC	194	89.40%	55	85.94%	Ref		
	CT	17	7.83%	8	12.50%	1.660 (0.680–4.050)	1.260	0.262
	TT	6	2.76%	1	1.56%	0.588 (0.069–4.987)	0.240	0.622
	C	405	93.32%	118	92.19%	1.184 (0.560–2.499)	0.20	0.658
	T	29	6.68%	10	7.81%	Ref		
	TT + CT vs CC					1.380 (0.604–3.155)	0.590	0.443
	TT vs CT + CC					1.791 (0.212–15.160)	0.290	0.587
rs4392270	GG	188	86.64%	58	90.63%	Ref		
	AG	18	8.29%	5	7.81%	0.900 (0.320–2.531)	0.040	0.842
	AA	11	5.07%	1	1.56%	0.295 (0.037–3.231)	1.510	0.219
	G	394	90.78%	121	94.53%	0.570 (0.249–1.305)	1.810	0.178
	A	40	9.22%	7	5.47%	Ref		
	AA + AG vs GG					0.671 (0.265–1.695)	0.720	0.396
	AA vs AG + GG					3.364 (0.426–26.566)	1.490	0.233
rs4849133	TT	177	81.57%	46	71.88%	Ref		
	CT	31	14.29%	16	25.00%	1.986 (1.001–3.940)	3.950	0.047
	CC	9	4.15%	2	3.13%	0.855 (0.179–4.094)	0.040	0.844
	T	385	88.71%	108	84.38%	1.455 (0.829–2.553)	1.720	0.189
	C	49	11.29%	20	15.63%	Ref		
	CC + CT vs TT					1.732 (0.909–3.297)	2.830	0.092
	CC vs CT + TT					1.341 (0.282–6.372)	0.140	0.711
rs2708973	GG	190	87.56%	59	92.19%	Ref		
	AG	20	9.22%	3	4.69%	0.483 (0.139–1.683)	1.360	0.244
	AA	7	3.33%	2	3.13%	0.920 (0.186–4.550)	0.010	0.919
	G	400	92.17%	121	94.53%	0.681 (0.294–1.574)	0.820	0.366
	A	34	7.83%	7	5.47%	Ref		
	AA + AG vs GG					0.596 (0.220–1.618)	1.050	0.306
	AA vs AG + GG					1.033 (0.209–5.102)	0.00	0.968

Table 5. Comparison of genotypic distributions between the active group and patients with cirrhosis.
with the clearance group (AA + AC vs CC, p = 0.0002, OR = 0.519, 95% CI = 0.365–0.738). In addition, the AG genotype of rs2723186, compared to the GG genotype (p < 0.0001, OR = 0.369, 95% CI = 0.250–0.543) exhibited a decreased risk of HBV infection. An individual carrying the G minor allele of rs4364030 showed improved viral clearance, with a p-value of 0.0002 and an OR of 0.716 with a 95% CI value of 0.601–0.853. The heterozygous genotype AG of rs4392270 was positively associated with HBV clearance with a p-value < 0.0001, and the A allele was found to be associated with a decreased risk of HBV infection at a nominal p-value level (p = 0.012, OR = 0.667, 95% CI = 0.485–0.918). Similarly, a significant association at a nominal p-value of rs4849133 heterozygous CT genotype was found, when compared to the dominant TT genotype, with p = 0.017 and OR = 0.681. However, two SNPs, rs2723175 and rs28947200, were associated with an increased risk of HBV infection (Table 3). The rs2723175 AG genotype was found to be associated with patients infected with HBV with a p-value < 0.0001 (OR = 10.614 and CI = 6.097–18.480). The rs28947200 CT genotype was associated with the highest risk of HBV infection (p < 0.0001, OR = 20.389, 95% CI = 4.986–83.377) when comparing patients with HBV to the clearance group. No significant difference was found between the HBV clearance group and the HBV infected group in the remaining SNPs (Table 3).

Genotype and allele frequency distributions of IL-37 polymorphisms associated with HBV-related liver diseases. Genotypic and allelic distributions were determined in patients characterized as inactive HBsAg carriers and patients infected with HBV who were considered as active carriers including patients who developed cirrhosis and HCC. Only two SNPs were found to be significantly associated with progression to more severe liver abnormalities at a nominal p-value level; rs4392270 with a p-value of 0.007 (OR = 1.731, 95% CI = 1.159–2.587), and rs4849133 (p-value = 0.021, OR = 1.583, 95% CI = 1.069–2.345). No significant difference in the genotype and allele distributions of the other SNPs was observed between the inactive group compared to the group of patients considered as active carriers, cirrhosis and HCC (Table 4).

To assess the influence of IL-37 polymorphism on the risk of HBV-mediated liver disease progression to end-stage liver diseases (liver cirrhosis and/or HCC), the genotype and allelic distributions were analyzed between patients actively infected with HBV and the patients diagnosed with liver cirrhosis with and without HCC. The CT genotype of rs4849133 was found to be nominally significantly associated with progressing to cirrhosis (p = 0.047, OR = 1.986, 95% CI = 1.001–3.940) (Table 5), as well as to cirrhosis with HCC (p = 0.025, OR = 1.990, 95% CI = 1.082–3.658) (Table 6). No significant difference in the genotype and allele distributions of the other SNPs were observed between patients infected with HBV characterized as active carriers and patients diagnosed with liver cirrhosis or liver cirrhosis with HCC.

Haplotype analysis. The haplotype combinations for the IL-37 polymorphisms and their genotypic distribution in HBV-infected patients and the clearance group were determined. The haplotype containing the C allele of rs4364030, A allele of rs3811047, and C allele of rs2723176 (CAC) (Supplementary Fig. 1) was found to be significantly associated with HBV clearance (p < 0.0001, freq. = 0.402) (Table 7). Moreover, the distribution of two haplotypes (GGC and CAA) with lower frequencies was found to be significantly different when comparing patients infected with HBV to the clearance group (p < 0.0001, freq. = 0.313; p < 0.001, freq. = 0.055, respectively) (Table 7).

Discussion

In the absence of an effective anti-HBV treatment, there is an urgent need for predictive genetic tools to characterize patients with a higher susceptibility to HBV infection, clearance and to HBV-mediated liver diseases. Such genetic screening could support improved therapeutic outcomes. It is well-established that host genetic variations are highly important in the development of HCC in HBV-infected patients. Therefore, it is essential to identify biomarkers for high-risk patients for improved management and treatment. Such markers could be useful in predicting tumor aggressiveness, progression and clinical phenotype. Host genetic markers have been identified for colorectal cancer, breast cancer and other types of cancer.

As immunity plays a pivotal role in the natural course of HBV, the outcome of the infection, and the pathogenesis of liver disease, the genes encoding inflammatory mediators (e.g., TNF-α, TGF-β, and IL-37) may be prospective candidates to predict the progression of HBV-mediated disease severity. Here, we investigated the frequency of genetic variants within the IL-37 gene, a recently discovered immune-suppressive cytokine, and determined the degree of association with HBV infection and different levels of HBV-related pathogenesis progression. More specifically, we were interested in identifying any association between the studied SNPs and spontaneous HBV clearance and/or development of severe forms of HBV-associated disease, such as those involving development of liver complications. Among ten IL-37 SNPs genotyped, our results revealed that the A allele of rs2723175 was strongly associated with the risk of HBV infection and viral clearance. Additionally, rs4849133 showed a suggestive association with risk for being an active HBsAg carrier and for HBV-mediated end-stage liver disease progression.

Increased risks for HBV infection and HBV-related liver disease are primarily influenced by host factors such as age, gender, BMI, and genetic characteristics. In this study, we confirmed the positive influence of these host factors on the increased risk for HBV infection and for HBV-related liver disease. However, on an individual basis, the search for potential predictive genetic risk factors for HBV infection and HBV-mediated end-stage liver disease progression has raised considerable attention in the field of human medical genetics for improved therapeutic management approaches.

In a normal non-infected state, the human liver contains resident antigen-nonspecific immune cells involved in innate immunity, such as natural killer cells, dendritic cells and macrophages named Kupffer cells. The liver also contains cells involved in adaptive immunity including antigen-specific immune T and B cells. Following liver infection with HBV, inflammation occurs due to the production and release of inflammatory cytokines by
SNPs	Genotype/Allele distribution	Active (n = 217)	Cirrhosis + HCC (n = 94)	OR (95% C.I.)	χ²	p-value	
	%	%					
rs2723176							
CC	195	89.86%	81	86.17%	Ref		
AC	21	9.68%	12	12.77%	1.376 (0.647–2.927)	0.690	0.406
AA	1	0.46%	1	1.06%	2.407 (0.149–38.956)	0.410	0.523
C	411	94.70%	174	92.55%	1.438 (0.723–2.860)	1.080	0.298
A	23	5.30%	14	7.45%	1.423 (0.684–2.961)	0.890	0.344
AA + AC vs CC							
AA vs AC + CC							
rs2723175							
GG	148	68.20%	69	73.40%	Ref		
AG	61	28.11%	21	22.34%	0.738 (0.417–1.309)	1.080	0.298
AA	8	3.69%	4	4.26%	1.072 (0.312–3.683)	0.010	0.911
G	357	82.26%	159	84.57%	0.846 (0.531–1.348)	0.50	0.480
A	77	17.74%	29	15.43%	0.777 (0.453–1.333)	0.840	0.359
rs2723186							
GG	193	88.94%	80	85.11%	Ref		
AG	15	6.91%	8	8.51%	1.448 (0.609–3.443)	0.710	0.401
AA	9	4.15%	5	5.32%	1.340 (0.436–4.124)	0.260	0.608
G	401	92.40%	168	93.66%	1.366 (0.756–2.470)	1.070	0.300
A	33	7.60%	18	6.34%	0.770 (0.251–2.933)	0.210	0.647
rs2723168							
GG	193	88.94%	80	85.11%	Ref		
AG	207	95.39%	90	95.74%	1.304 (0.345–4.931)	0.150	0.695
AA	1	0.46%	1	1.06%	3.00 (0.140–64.262)	0.530	0.468
G	401	92.40%	168	93.66%	1.366 (0.756–2.470)	1.070	0.300
A	33	7.60%	18	6.34%	0.770 (0.251–2.933)	0.210	0.647
rs4364030							
GG	115	53.00%	45	47.87%	Ref		
CG	81	37.33%	35	37.23%	1.104 (0.645–1.937)	0.14	0.711
GG	21	9.68%	14	9.89%	1.065 (0.603–1.881)	0.050	0.827
C	311	71.66%	125	66.49%	1.032 (0.733–1.453)	0.030	0.858
G	123	28.34%	63	33.51%	0.717 (0.464–1.116)	0.210	0.647
rs3811047							
GG	73	33.64%	31	32.98%	Ref		
AG	84	38.71%	38	40.43%	1.065 (0.603–1.881)	0.050	0.827
AA	60	27.65%	25	26.60%	0.981 (0.524–1.838)	0.00	0.953
G	230	53.00%	100	53.19%	0.992 (0.704–1.398)	0.00	0.964
A	204	47.00%	88	46.81%	1.030 (0.616–1.723)	0.010	0.909
rs28947200							
CC	194	89.40%	78	82.98%	Ref		
CT	17	7.83%	14	14.89%	2.048 (0.963–4.356)	3.580	0.059
TT	6	2.76%	2	2.13%	0.829 (0.164–4.197)	0.050	0.820
C	405	93.32%	170	90.43%	1.479 (0.800–2.735)	1.570	0.210
T	29	6.68%	18	9.57%	1.730 (0.868–3.450)	2.470	0.116
TT + CT vs CC							
TT vs CT + CC							
rs4392270							
GG	188	86.64%	86	91.49%	Ref		
AG	18	8.29%	7	7.45%	0.850 (0.342–2.11)	0.120	0.726
AA	11	5.07%	1	1.06%	0.199 (0.025–1.564)	2.890	0.089
G	394	90.78%	179	95.21%	0.495 (0.235–1.043)	3.550	0.059
A	40	9.22%	9	4.79%	0.603 (0.265–1.374)	1.470	0.225
AA + AG vs GG							
AA vs AG + GG							
Continued							
Polymorphisms of other anti-inflammatory cytokines such as IL-10 and IL-4 are also reported to have a genetic predisposition for auto-immune thyroid disease in the Chinese population. Among the ten polymorphisms screened, half show a significant association of susceptibility to HBV infection, including rs2723175, which in our study was found to be strongly disease-associated variants through the heterozygous AG genotype with a frequency of 42.43%. In contrast, six out of ten polymorphisms, including rs4849133, were associated with HBV clearance compared to HBV infection. This strong positive correlation of IL-37 polymorphisms with HBV clearance suggests an inability of IL-37 to induce key antiviral and immune stimulatory cytokines shifts from HBV viral clearance toward HBV viral persistence.

Table 6. Comparison of genotypic distributions between the active group and patients infected with HBV.

Table 7. Haplotype frequencies of IL-37 between the clearance group and patients infected with HBV.

hepatocytes and immune cells following the binding of the C-terminal domain of HBV core proteins to membrane heparan sulfate on the cell surface. It has been reported that IL-37 inhibits various functions, such as antigen presentation, macrophage activation, and cytokine production. Here, among the ten IL-37 SNPs screened, half show a significant association of susceptibility to HBV infection, including rs2723175, which in our study was found to be strongly disease-associated variants through the heterozygous AG genotype with a dominance of risk allele "A." Among the ten IL-37 SNPs analyzed in the Saudi population, three SNPs, rs2723176, rs2723186, and rs3811047, have been reported to have a genetic predisposition for auto-immune thyroid disease in the Chinese population. Polymorphisms of other anti-inflammatory cytokines such as IL-10 and IL-4 are also reported to be strongly associated with the outcome of HBV infection.

HBV clearance and clinical recovery occur mainly through the induction of effective intrahepatic virus-specific CD4+ and CD8+ T cells. Thus, the loss of T-cell activity or a decrease in T-cell ability to produce key antiviral and immune stimulatory cytokines shifts from HBV viral clearance toward HBV viral persistence. In comparison with patients undergoing HBV clearance, two IL-37 polymorphisms (rs2723175 and rs28947200) were strongly associated with HBV infection, suggesting an inhibition of T-cell activity which reinforces the immunosuppressive effects of IL-37. IL-37 has also been demonstrated to inhibit antigen-specific T-cell proliferation. In addition, IL-37 has been demonstrated to be expressed by immune cells and plasma cells. However, under inflammatory conditions, IL-37 gene expression is stimulated with pro-inflammatory cytokines, such as IL-1β, IL-18, TNF-α, IFN-γ, and TGF-β, or Toll-like receptor (TLR) ligands, and downregulated by IL-12, IL-32, and GM-CSF plus IL-4. This immune mechanism suppresses the proinflammatory cytokines IL-1β, IL-1α, IL-6, M-CSF, and GM-CSF but not the anti-inflammatory cytokines IL-10 and IL-1Ra. Thus, a comparative study of IL-37 genetic variants in patients infected with HBV for IL-37 production, at both the transcript and protein levels, will clarify the role of IL-37 in HBV clearance and persistence.

Globally, inactive HBsAg carriers form the largest group in chronic HBV-infected patients, indicating the tolerogenic status of HBV immunopathogenesis as patients infected with HBV do not display any discernable clinical disease. In contrast to inactive HBsAg carriers, the active carriers contain a high level of serum HBV.
DNA and circulating serum HBsAg with a high risk for developing liver cirrhosis and HCC. In this study, among the ten genetic variants for the IL-37 gene, only one SNP, rs4849133 with the CT genotype, showed a suggestive association with the risk for active HBsAg carriers compared to patients with inactive HBV infection. These findings are not surprising as the differences between inactive and active carriers based on the viral production of serum HBV DNA copies without involving the host's innate immune system. However, we previously reported that the haplotype of the CXCR1, a receptor for T-cell chemo-attractant cytokines such as IL-8, named Haplo-2 (AC genotype), was significantly associated with HBsAg carrier status, confirming the important influence of the adaptive T-cell immune system on the HBsAg carrier status for differences in IL-37. Although a previous study has reported that an increased serum IL-37 in patients with chronic HBV infection was positively correlated with liver damage, we only identified the SNP rs4849133 CT genotype as being associated with the susceptibility to end-stage liver disease progression in patients infected with HBV when compared to active carriers infected with HBV. Recently, IL-37 has been described to exhibit anti-tumor activity through chemo-attraction of CD57+ natural killer (NK) cells, inhibiting HCC development. Thus, patients infected with HBV harboring IL-37 SNP rs4849133 might fail in the production of active IL-37 protein, which may explain the increased risk for HCC progression. Furthermore, no mutation within IL-37 gene has been found in all the HCC cases described in The Cancer Genome Atlas - Liver Hepatocellular Carcinoma project (TCGA-LIHC). However, a modulation of the HCC tumor immune milieu including the depletion of neutrophils and activated macrophages, main sources of IL-37, have been recently reported in a TCGA-LIHC subset of HBV/HCV-infected patients only, which could also explain the decrease of IL-37 production contributing to HCC development and progression.

This study is limited by the fact that the sample sizes in the cirrhosis and HCC groups were small. Also, this study does not include in the final analysis some important factors, such as treatment protocol, treatment outcome and duration of the infection, well known to impact the course of HBV infection. Similarly, survival analyses were not conducted in our study due the cross-sectional feature of this study. Additional studies are required to include such analyses and validate these results. In conclusion, these findings suggest that IL-37 polymorphisms may not only be implicated in the development of HCC but may also be involved in HBV infection and determination different clinical outcomes of HBV infection, including active chronic HBV infection and low viremic “inactive” HBsAg carrier status.

References
1. Oh, I. S. & Park, S. H. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune Netw 15, 191–198, https://doi.org/10.1111/iwn.12101 (2015).
2. Franco, E. et al. Hepatitis B: Epidemiology and prevention in developing countries. World J Hepatol 4, 74–80, https://doi.org/10.4026/wjv.4.v4.74 (2012).
3. Khanna, R., Gupta, E. & Alam, S. Reverse vertical transmission of hepatitis-B from transfusion-infected children to biological mothers. Indian Pediatr 51, 739–741 (2014).
4. Abdo, A. A., Sanai, F. M. & Al-Faleh, F. Z. Epidemiology of viral hepatitis in Saudi Arabia: are we off the hook? Saudi J Gastroenterol 18, 349–357, https://doi.org/10.1016/j.sjg.2012.03.003 (2011).
5. Schuch, A., Hoh, A. & Thimme, R. The role of natural killer cells and CD8+ T cells in hepatitis B virus infection. Front Immunol 5, 258, https://doi.org/10.3389/fimmu.2014.00258 (2014).
6. Thimme, R. et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 77, 68–76 (2003).
7. Beadley, R. P. et al. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet 2, 1099–1102 (1993).
8. Jonas, M. M. et al. Treatment of chronic hepatitis B infection in the United States: patient selection and therapeutic options. Hepatology 52, 2192–2205, https://doi.org/10.1002/hep.23934 (2010).
9. Mason, W. S. et al. The amount of hepatocyte turnover that occurred during resolution of transient hepatitis B infections was lower when virus replication was inhibited with entecavir. J Virol 83, 1778–1789, https://doi.org/10.1128/JVI.01837-09 (2009).
10. Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus infection. Virology 479–480, 672–686, https://doi.org/10.1016/j.virol.2015.02.031 (2015).
11. Bertoletti, A. & Hong, M. Age-Dependent Immune Events during HBV Infection from Birth to Adulthood: An Alternative Interpretation. Front Immunol 5, 441, https://doi.org/10.3389/fimmu.2014.00441 (2014).
12. Chan, H. L. et al. Viral genotype and hepatitis B virus DNA levels are correlated with histological liver damage in HBsAg-negative chronic hepatitis B virus infection. Am J Gastroenterol 97, 406–412, https://doi.org/10.1111/j.1572-0241.2002.05478.x (2002).
13. Francisci, D., Baldelli, F., Papilli, R., Stagni, G. & Pauluzzi, S. Prevalence of HBV, HDV and HCV hepatitis markers in HIV-positive patients. Eur J Epidemiol 11, 123–126 (1995).
14. Marcellin, P. et al. Serum Levels of Hepatitis B Surface Antigen Predict Severity of Fibrosis in Patients With E-Antigen-Positive Chronic Hepatitis B. Clin Gastroenterol Hepatol 13, 1532–1539 e1531, https://doi.org/10.1016/j.cgh.2014.12.017 (2015).
15. Strollofili, T. et al. Gender differences in chronic HBsAg carriers in Italy: Evidence for the independent role of male sex in severity of liver disease. J Med Virol 87, 1899–1903, https://doi.org/10.1002/jmv.24243 (2015).
16. Zeng, Z. et al. A population-based study to investigate host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population. BMC Infect Dis 8, 1, https://doi.org/10.1186/1471-2334-8-1 (2008).
17. Trehanapati, N. & Vyas, A. K. Immune Regulation by T Regulatory Cells in Hepatitis B Virus-Related Inflammation and Cancer. Scand J Immunol 85, 175–181, https://doi.org/10.1111/j.1352-5085.2017.02568.x (2017).
18. Wang, M., Xi, D. & Ning, Q. Virus-induced hepatocellular carcinoma with special emphasis on HBV. Hepatol Int 11, 171–180, https://doi.org/10.1111/heb.12723-016-9779-5 (2017).
19. T. K. et al. HBV core protein enhances cytokine production. Diseases 3, 213–220 (2015).
20. Schulze, A., Grison, P. & Urban, S. Hepatitis B virus infection induces with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 40, 1759–1768, https://doi.org/10.1002/hep.20196 (2004).
21. Luo, Y. et al. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells. Proc Natl Acad Sci USA 111, 15178–15183, https://doi.org/10.1073/pnas.1416714111 (2014).
22. Nold, M. F. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11, 1014–1022, https://doi.org/10.1038/ni.1944 (2010).
23. Zhao, J. et al. Interleukin-37 mediates the antitumor activity in hepatocellular carcinoma: role for CD57+ NK cells. Sci Rep 4, 5177, https://doi.org/10.1038/srep05177 (2014).
24. Li, C. et al. Serum interleukin-37 concentrations and HBsAg seroconversion in chronic HBV patients during telbivudine treatment. *J Interferon Cytokine Res* 33, 612–618, https://doi.org/10.1089/jir.2013.0001 (2013).

25. Allam, G. et al. Association of IL-37 gene polymorphisms with susceptibility to tuberculosis in Saudi subjects. *Microbiol Immunol* 60, 778–786, https://doi.org/10.1111/1348-0421.12444 (2016).

26. Liu, H. et al. IL-37 Confers Protection against Mycobacterial Infection Involving Suppressing Inflammation and Modulating T Cell Activation. *PLoS One* 12, e0169922, https://doi.org/10.1371/journal.pone.0169922 (2017).

27. Yin, D. et al. Genomic Variant in IL-37 Confers A Significant Risk of Coronary Artery Disease. *Sci Rep* 7, 42175, https://doi.org/10.1038/srep42175 (2017).

28. Yan, N. et al. Polymorphism of IL37 gene as a protective factor for autoimmune thyroid disease. *J Mol Endocrinol* 55, 209–218, https://doi.org/10.1530/JME-15-0144 (2015).

29. MOH. A review of health situation. The Annual Health Statistics Book. Ministry of Health, Saudi Arabia., 107–123 (2016).

30. Carlson, C. S. et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. *Am J Hum Genet* 74, 106–120, https://doi.org/10.1086/381000 (2004).

31. Xu, Z., Kaplan, N. L. & Taylor, J. A. TAGster: efficient selection of LD tag SNPs in single or multiple populations. *Bioinformatics* 23, 3254–3255, https://doi.org/10.1093/bioinformatics/btm426 (2007).

32. J. C. et al. New insights into hepatitis B virus biology and implications for novel antiviral strategies. *Natl Sci Rev* 2, 296–313 (2015).

33. Gao, S. et al. Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer. *JAMA oncology* 2, 37–45, https://doi.org/10.1001/jamaoncol.2015.3413 (2016).

34. McGee, S. R., Tibeche, C., Trifiro, M. & Wang, E. Network Analysis Reveals A Signaling Regulatory Loop in the PI3KCA-mutated Breast Cancer Predicting Survival Outcome. *Genomics, proteomics & bioinformatics* 15, 121–129, https://doi.org/10.1016/j. gpb.2017.02.002 (2017).

35. Wang, E. et al. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. *Seminars in cancer biology* 30, 4–12, https://doi.org/10.1016/j.semcancer.2014.04.002 (2015).

36. Li, X., Liu, X., Tian, L. & Chen, Y. Cytokine-Mediated Immunopathogenesis of Hepatitis B Virus Infections. *Clin Rev Allergy Immunol* 50, 41–54, https://doi.org/10.1007/s12016-014-8465-4 (2016).

37. Yang, Q., Shi, Y., Yang, Y., Lou, G. & Chen, Z. The sterile inflammation in the exacerbation of HBV-associated liver injury. *Mediators Inflamm* 2015, 508681, https://doi.org/10.1155/2015/508681 (2015).

38. Matsuura, K., Iwagawa, M. & Tanaka, Y. Host genetic variants influencing the clinical course of hepatitis B virus infection. *J Med Virol* 88, 371–379, https://doi.org/10.1002/jmv.24350 (2016).

39. McMahon, B. J. The natural history of chronic hepatitis B virus infection. *Hepatology* 49, S45–55, https://doi.org/10.1002/hep.22898 (2009).

40. YJ, L. et al. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. *Proc Natl Acad Sci. USA* 107, 9340–9345 (2014).

41. Li, S. et al. Extracellular forms of IL-37 inhibit innate inflammation in *vitro* and in *vivo* but require the IL-1 family decoy receptor IL-1R8. *Proc Natl Acad Sci USA* 112, 2497–2502, https://doi.org/10.1073/pnas.1424261112 (2015).

42. Ye, L. et al. IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: its correlation with disease activity. *J Transl Med* 12, 69, https://doi.org/10.1186/1479-5876-12-69 (2014).

43. Z, W. et al. Association between IL-4 polymorphisms and risk of liver disease: an updated meta-analysis. *Medicine (Baltimore)* 94, e1345 (2015).

44. Gao, L. et al. Association of IL-10 polymorphisms with hepatitis B virus infection and outcome in Han population. *Eur J Med Res* 21, 23, https://doi.org/10.1186/s40001-016-0218-9 (2016).

45. Tzeng, H. T. et al. Tumor necrosis factor-alpha induced by hepatitis B virus core mediating the immune response for hepatitis B viral clearance in mice model. *PLoS One* 9, e103008, https://doi.org/10.1371/journal.pone.0103008 (2014).

46. Dinarello, C. A. et al. Suppression of innate inflammation and immunity by interleukin-37. *J Interferon Cytokine Res* 46, 1067–1081, https://doi.org/10.1002/ejij.201545828 (2016).

47. Shuai, X. et al. Expression of IL-37 contributes to the immunosuppressive property of human CD4+CD25+ regulatory T cells. *Sci Rep* 5, 14478, https://doi.org/10.1038/srep14478 (2015).

48. Gao, Y. et al. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation. *PLoS One* 10, e0137881, https://doi.org/10.1371/journal.pone.0137881 (2015).

49. Almajidi, F. N. et al. Single nucleotide polymorphisms in CXCR1 gene and its association with hepatitis B infected patients in Saudi Arabia. *Ann Hepatol* 12, 220–227 (2013).

50. Cancer Genome Atlas Research Network, Comprehensive and integrative genomic characterization of hepatocellular carcinoma. *Cell* 169, 1327–1341 (2017).

Acknowledgements

This work was supported by King Abdulaziz City for Science and Technology (KACST), National Plan for Science, Biotechnology, and Innovation (NSTIP) (Project number 11-MED1430-20). This study was approved by Research Advisory Council (RAC) of King Faisal Specialist Hospital and Research Centre (KFSHRC), project number 2150008. The support of the Research Center administration at KFSHRC is highly appreciated.

Author Contributions

Conceived and designed the experiments: A.A. Al-Q., H.I. Al-A., M.N. Al-A., A.A.A., F.M.S. Performed the experiments: M.R. Al-A., D.D.C., M.F.B. Analyzed the data: M.R. Al-A., S.K. Al-A., M.F.B., M.B.S., W.K. Al-H., K.A. Al-S., M.Q.K. Contributed reagents/materials/analysis tools: A.A.A., F.M.S., H.I. Al-A., M.Q.K., J.A. Al-G., W.K. Al-H., K.A. Al-S., M.Q.K. Wrote the paper: A.A. Al-Q., S.K. Al-A., M.N. Al-A.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42808-4.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
