Estimating Disability Weight of Human Neurocysticercosis in Dali, Yunnan province, China

Xinzhong Zang
National Center of Infectious and Parasitic Diseases; Qilu Hospital, Cheeloo College of Medicine, Shandong University

Huanzhang Li
Dandong Centers for Disease Control and Prevention, Liaoning Province

Menbao Qian
NIPD: National Institute of Parasitic Diseases

Yingdan Chen
NIPD: National Institute of Parasitic Diseases

Changhai Zhou
NIPD: National Institute of Parasitic Diseases

Hongkun Liu
Dali Prefectural Institute of Research and Control on Schistosomiasis, Yunnan Province

Yuhua Liu
Dali Prefectural Institute of Research and Control on Schistosomiasis, Yunnan Province

Yingjun Qian
National Institute of Parasitic Diseases https://orcid.org/0000-0001-5685-8901

Shizhu Li
NIPD: National Institute of Parasitic Diseases

Research

Keywords: Taenia solium, Neurocysticercosis, Quality of Life, China, Epilepsy, Cognition, Cysticercosis

DOI: https://doi.org/10.21203/rs.3.rs-117754/v1

License: ☺️ ☘️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Human cysticercosis, caused by the liver parasite *Taenia solium*, remains an important neglected tropical disease in China. In Yunnan province, a large proportion of in-patients with cysticercosis suffer from neurocysticercosis. Neurocysticercosis, though preventable, is a cause of epilepsy globally. Disability weight is an important parameter when estimating neurocysticercosis disease burden and assessing disability-adjusted life years. However, there is a paucity of information on disability weight in patients with neurocysticercosis.

Methods

Participants were separated into 2 groups and were interviewed by EQ-5D+C questionnaire in Dali prefecture, Yunnan province. Statistical analysis was performed using SPSS 20.0.

Results

Compared to those in the first-visit group, health barriers were less frequently reported in all six dimensions in the follow-up group, except for the cognitive dimension. Disability weights in both the first-visit and follow-up groups were 0.3.

Conclusions

The health-related quality of life of NCC patients was seriously impaired, and cognitive competence is the most prominent health barrier. Psychological medical care should be taken as one component in the treatment of NCC patients.

Background

Human cysticercosis is a tissue infection caused by larvae of the parasite *Taenia solium* [1–6]. The Food and Agriculture Organization (FAO) categorized cysticercosis as a neglected zoonotic disease in 2014 after it was classified by the World Health Organization (WHO) as a neglected tropical disease in 2010 [7–9]. Cysticercosis has been identified as a major health problem in Asia and is also endemic in developing countries of Latin America and Africa [1]. In addition, it has also been recently identified as an emerging infectious disease in some developed countries due to increasing international communications [2, 10]. The World Health Assembly passed the WHA66.12 resolution in 2013, targeting elimination of cysticercosis as a public health problem [11]. Cysticercosis can damage any tissue in the human body, including the central nervous system, subcutaneous tissues, eyes, and muscles [1, 2]. Symptoms vary by location. When the larvae invade central nervous system, it can cause neurocysticercosis (NCC). NCC accounts for the major proportion of human cysticercosis patients. Clinical symptoms of NCC can result in serious health complications [4, 5, 7, 12, 13]. The parasite causes a large number of NCC-associated epilepsy and deaths, with 2.79 million disability-adjusted life years
(DALYs) [14]. Following increasing global concern, disease burden studies have been carried out in many countries [9, 15–17]. In these studies, NCC disability weight (DW) is a key parameter in estimation of NCC burden [18]. However, the DW of epilepsy or headache was used to estimate NCC DALYs rather than that of NCC directly [9, 16, 17]. Moreover, not all NCC patients manifest symptoms of epilepsy or headache [4]. It is, therefore, imperative to obtain NCC DW in the research of disease burden.

Between 1987 and 1991, an inter-disciplinary, five-country group developed the EuroQol instrument to measure and evaluate health status [19–21]. The five-dimensional, three-level generic measuring instrument was subsequently termed the ‘EQ-5D’. A cognitive dimension was later added to the initial questionnaire, making the tool EQ-5D plus or EQ-5D+C [19, 22].

This study aimed to obtain NCC DW using EQ-5D+C tool in Dali, Yunnan province. Estimating NCC DW will not only provide basic scientific evidence in cysticercosis disease burden research, but also inform control strategies in this area.

Methods

Study area

This study was carried out in the Dali Prefectural Institute of Research and Control on Schistosomiasis, located in the Dali Bai Autonomous Prefecture, Yunnan, China. Dali prefecture is located in the central western part of Yunnan, 350 km northwest of Kunming, the capital of Yunnan province. It has a territory of 29,459 square kilometres and a population of 3,400,000. The prefecture is subdivided into 12 county-level divisions: one county-level city, eight counties, and three autonomous counties. In China, Dali is a hotspot for cysticercosis endemicity due to the local dietary habit of eating undercooked pork. For years, the Dali Prefectural Institute of Research and Control on Schistosomiasis has served as a reference hospital for cysticercosis patients in Yunnan province.

Study design

Participants were separated into 2 groups, the first-visit group and the follow-up group. The first-visit group were those patients who received standard anti-cysticercosis treatment for the first time in the hospital while the follow-up group were those who received subsequent treatment in the hospital. A survey was administered to both groups in 2018. It consisted of three parts: part one, demographical characteristics including age, sex, occupation, ethnic status, education, and marriage status; part two, case diagnosis and treatment information, including diagnosis basis, case classification, previous medical story, and clinical manifestations; and part three, the EQ-5D+C survey, which included 6-domains and a visual analogue scale.

Selection of participants

Participants were inpatients in the Dali Prefectural Institute of Research and Control on Schistosomiasis from September 2017 to September 2018. According to the national standardized diagnostic criteria for
NCC (WS381-2012) [23], patients were classified into three categories, suspected cases, clinically diagnosed cases, and confirmed cases. Only confirmed cases were eligible for inclusion in the survey. Exclusion criteria were: (i) patients who did not finish the questionnaire, (ii) cysticercosis other than NCC, (iii) patients with other underlying diseases, (iv) mixed cysticercosis, (v) patients younger than 5 years old.

Sampling

The sample size (n) was determined using the statistical formula:

\[
\frac{n}{\mu^2} \cdot \frac{\alpha/2}{\pi} \cdot \left(1 - \pi \right)
\]

Where \(\alpha\) is the type I error rate (0.05) and \(\alpha = 0.05\) (two-sided), \(\pi\) is the population rate and if \(\pi = 0.5\), the maximum sample size can be obtained. \(\sigma\) is the allowable error (0.1), \(N\) reaches to 96. Considering the cluster sampling power as 2, then the required sample size was 192. The study participants were then selected by systematic random sampling using selected participants as a sampling frame. As a result, a total of 210 participants were enrolled in the study (Fig. 1).

Data collection

Surveys were conducted face-to-face and data collected by trained investigators. Data were double-entered and logic correction was conducted using EpiData3.1 (The EpiData Association, Odense, Denmark).

Statistical analyses

Descriptive analysis was used to show the demographic characteristics and clinical symptoms of NCC patients; the \(\chi^2\) test was used to compare the differences in clinical symptoms between the first-visit and follow-up groups. Descriptive analyses were used to show the distribution of patients' six-dimensional and EQ-VAS scores. T-test or analysis of variance was used to compare the EQ-VAS scores for normally distributed data, while Mann-Whitney U or Kruskal-Wallis test was used for non-normally distributed data. The \(\chi^2\) test or Fisher's exact probability method was used to compare the proportion of health difficulties in the six dimensions. DW was determined by the formula \(DW = 1 - \frac{VAS}{100}\), with VAS as the patient's EQ-VAS self-assessment. SPSS 20.0 software (IBM, Armonk, NY, US) was used for statistical analysis. DW was compared using t-test or analysis of variance when data were normally distributed. Bonferroni test was used to make pairwise comparisons between groups when the difference was statistically significant. Mann-Whitney U test or Kruskal-Wallis test was used to compare DW for non-normally distributed data. Bonferroni test was performed when the difference was statistically significant.
Results

Socio-demographic findings

A total of 210 participants with age range of 7 to 74 years old were included. The mean age was 38.9 ± 15.5. The largest number of study participants, 69 (32.9%) was from the age group 30–44 years. The sex ratio (M/F) was 1.9 with 138 males and 72 females. Bai was the predominant ethnic group (29.1%), followed by Yi with 17.2%. Out of the 210 participants, 84 were in the first-visit group and 126 were in the follow-up group. Respondents’ demographic and socioeconomic characteristics are summarised in Table 1.
Characteristic	No.	Distribution(%)
Age		
5–14	10	4.76
15–29	51	24.29
30–44	69	32.86
45–59	61	29.05
≥ 60	19	9.05
Gender		
male	138	65.71
female	72	34.29
Marital status		
unmarried	49	23.33
married	156	74.29
divorced/widoerd	5	2.38
Occupation		
farmer	133	63.33
preschooler	7	3.33
student	24	11.43
worker	21	10.00
civil servant	7	3.33
others	18	8.57
Education		
no school graduation	22	10.48
primary school	76	36.19
junior high school	76	36.19
high school	23	10.95
college and/or above	13	6.19
Clinical symptoms

The most prominent clinical symptoms in the first-visit group and follow-up group were headache (64 cases) and hypomnesis (85 cases), respectively. Headache, epilepsy, and hypomnesis were the most frequently reported manifestations by the first-visit group while hypomnesis, headache, and muscle paraesthesia were more common in the follow-up group. The percentage of epilepsy was 54.76% in the first-visit group compared to 25.40% in the follow-up group ($\chi^2 = 18.52, P < 0.001$), and headache was 76.19% in the first-visit group compared to 62.70% in the follow-up group ($\chi^2 = 8.52, P < 0.05$), respectively. However, the proportion of patients with hypomnesis was significantly higher in the follow-up group (67.46%) than that in the first-visit group (52.38%; $\chi^2 = 8.76, P < 0.05$)(Table 2).

Variate	No. of NCC	Epilepsy***	Headache**	Hypomnesis*	Muscle paraesthesia*	Uncomfortable of eye*								
	NO.	ratio	NO.	ratio	NO.	ratio	NO.	ratio	NO.	ratio	NO.	ratio	NO.	ratio
First-visit group	84	46	54.76	64	76.19	44	52.38	26	30.95	12	14.29			
Follow-up group	126	32	25.40	79	62.70	85	67.46	37	29.37	11	8.73			
Total	210	78	37.14	143	68.10	129	61.43	63	30.00	23	10.95			

Note: *$P>0.05$; **$P<0.05$; ***$P<0.01$

Health-related life quality

The results collected through the EQ-5D + C questionnaire are summarized in Tables 2 and 3. Out of the 210 patients, 93.33% (196) complained of at least one impairment. The number of patients that claimed moderate and severe impairments were 175 (83.33%) and 21 (10.00%), respectively. Barriers in cognitive competence was the most frequently reported in patients (71.9%, 151/210) (Table 3).

In terms of the six-dimensional distribution, pain and/or discomfort ranked highest (77.38%) in the first-visit group while cognition was highest in the follow-up group (74.60%). Compared to those in the first-visit group, health barriers were less frequently reported in all six dimensions in the follow-up group, except for cognitive dimension (Table 4).
Table 3
Study population EQ-5D + C six-dimensional and three-level distribution

Dimension	Degree of health barriers	No of having any health barriers (%)		
	None (%)	Moderate (%)	Extreme (%)	
Mobility	201(95.71)	9(4.29)	0(0.00)	9(4.29)
Self-care	204(97.14)	6(2.86)	0(0.00)	6(2.86)
Usual activities	124(59.05)	83(39.52)	3(1.43)	86(40.95)
Pain/discomfort	61(29.05)	147(70.00)	2(0.95)	149(70.95)
Anxiety/depression	80(38.09)	118(56.19)	12(5.71)	130(61.90)
Cognitive competence	59(28.1)	144(68.57)	7(3.33)	151(71.90)
Any dimension	14(6.67)	175(83.33)	21(10.00)	196(93.33)

Table 4
Proportion of patients with health barriers in six dimensions

Dimension	First-visit group	Follow-up group	P			
	No. of health barriersa	ratio	No. of Health barriersa	ratio		
Mobility*	5	5.95	4	3.17	>0.05	
Self-care*	2	2.38	4	3.17	>0.05	
Usual activities	38	45.24	48	38.1	1.06	>0.05
Pain/discomfort	65	77.38	84	66.67	2.81	>0.05
Anxiety/depression	53	63.1	77	61.9	0.03	>0.05
Cognitive competence	57	67.86	94	74.6	1.14	>0.05

Note: aFisher exact probability method; a“Problem” = moderate or extreme health barriers

The findings indicated that age, occupation, usual activities, pain/discomfort, anxiety/depression, and cognition were predisposing factors for the EQ-VAS score (Table 5). Multiple linear regression analysis was applied by using EQ-VAS score as the dependent variable. The results of a multiple linear regression model showed a significant difference ($F= 16.99, P < 0.001$). R^2 was equal to 0.46, indicating that the variables included could account for 46% of the total DW variation. Multivariate analysis found that EQ-VAS score was negatively correlated with daily activities, pain/discomfort, anxiety/depression, and
cognitive ability. The standardized regression coefficients showed that cognitive ability had the greatest impact on EQ-VAS score (-0.32), followed by daily activities (-0.27), and pain/discomfort (-0.25) (Table 6).
Parameter	No.	M(P25-P75)	Mean Rank	Z/χ²	P
Type of patients					
first-visit	84	0.3(0.2–0.4)	101.78	-0.74	>0.05
follow-up	126	0.3(0.2–0.4)	107.98		
Gender					
male	138	0.3(0.2–0.4)	105.06	0.15	>0.05
female	72	0.3(0.2–0.4)	106.34		
Marital status					
unmarried	49	0.25(0.2–0.4)	114.92	1.65	>0.05
married	155	0.3(0.2–0.4)	99.26		
Age					
5–14a	10	0.2(0.1–0.2)	163.7	13.25	<0.05
15–29b	51	0.3(0.2–0.4)	111.51		
30–44b	69	0.3(0.2–0.4)	104.79		
45–59b	61	0.3(0.2–0.4)	97.93		
≥60b	19	0.3(0.2–0.3)	85.58		
Education					
No school graduation	22	0.4(0.25–0.4)	79.71	5.53	>0.05
Primary school	76	0.3(0.2–0.4)	108.28		
Junior high school	76	0.3(0.2–0.4)	106.26		
High school	23	0.3(0.2–0.4)	119.04		
College degree or above	13	0.3(0.2–0.4)	104.5		
Occupation					
Farmer	133	0.3(0.2–0.4)	93.12	3.97	<0.001
Nofarmer	77	0.2(0.2–0.3)	126.88		
Mobility					
No Problem	201	0.3(0.2–0.4)	106.94	-1.66	>0.05
Problem	9	0.4(0.25–0.5)	73.28		
Self-Care					
No Problem	204	0.3(0.2–0.4)	106.19	-0.98	>0.05
Problem	6	0.4(0.2–0.5)	82		
Usual Activities					
No Problem	124	0.23(0.2–0.3)	127.31	-6.39	<0.001
Parameter	M(P25-P75)	Mean Rank	Z/χ²	P	
---------------------	------------------	-----------	-------	-------	
Problem					
Pain/Discomfort	0.4(0.3–0.5)	74.06	5.66	<0.001	
No Problem	0.2(0.2–0.3)	141.8	6.61	<0.001	
Problem	0.3(0.2–0.4)	90.64			
Anxiety/Depression	0.2(0.2–0.3)	139.36	6.41	<0.001	
No Problem	0.3(0.25–0.4)	85.08			
Problem					
Cognitive ability	0.2(0.1–0.25)	156.25	7.74	<0.001	
No Problem	0.3(0.25–0.4)	85.67			
Problem					
Table 6
Linear regression parameter estimation of DW predisposing factors

Parameter	Partial regression co-efficient	Standard error	t	P	Standardized regression coefficient
Intercept					
Age(group)					
15–29	-1.39	3.47	-0.40	>0.05	-0.05
30–44	-0.33	3.43	-0.10	>0.05	-0.01
45–59	-0.09	3.48	-0.03	>0.05	0.00
≥ 60	-3.20	3.90	-0.82	>0.05	-0.07
Occupation	2.62	1.56	1.68	>0.05	0.10
Mobility	-0.38	3.43	-0.11	>0.05	-0.01
Self-Care	-6.19	4.16	-1.49	>0.05	-0.08
Usual activities	-7.13	1.46	-4.88	<0.001	-0.27
Pain/discomfort	-6.97	1.50	-4.66	<0.001	-0.25
Anxiety/depression	-5.42	1.52	-3.56	<0.001	-0.20
Cognitive	-9.12	1.65	-5.52	<0.001	-0.32

R² = 0.46

Disability weights

According to the normality test, DW did not conform with the normal distribution (Shapiro-Wilk test $W = 0.73, P < 0.001$). The DW in the first-visit and follow-up groups were both 0.3 (0.2–0.4) (Table 7, Table 8), without statistical significance (Z = 0.74, $P > 0.05$) (Table 9). No significant significance was found in the proportion of gender ($χ^2 = 2.87, P > 0.05$) or age ($χ^2 = 2.08, P > 0.05$) between the two groups. Therefore, DWs in both groups were combined and analysed as a whole. The overall DW of NCC was 0.3 (0.2–0.4), without significant difference between genders (Z = -0.15, $P > 0.05$). However, DWs were not equal among age groups ($χ^2 = 13.25, P < 0.05$). DW tended to increase with age. Pairwise comparison showed no significant differences between the age groups except for the 5–14 age group (Table 10).
Table 7

DW values of NCC patients in untreated group

Variate	Category	No.	DW	Z/χ²	P		
	M	P²₅-P₇₅	Mean Rank				
Gender	male	52	0.3	0.20–0.40	44.58	0.62	>0.05
	female	32	0.3	0.20–0.40	41.22		
Age group	5–14	8	0.2	0.10–0.25	19.75	10.93	<0.05
	15–29	19	0.3	0.20–0.40	44		
	30–44	27	0.3	0.20–0.40	41.24		
	45–59	23	0.3	0.20–0.40	45.93		
	≥ 60	7	0.3	0.30–0.50	58		
Total	84	0.3	0.20–0.40				

Note: statistical difference between a and b (Bonferroni test, P < 0.01)
Table 8
DW values of NCC patients treatment group

Variate	Category	No.	DW M	\(P_{25-75} \)	Mean Rank	\(Z/\chi^2 \)	\(P \)
Gender	male	86	0.3	0.20–0.40	64.94	-0.66	>0.05
	femal	40	0.28	0.20–0.38	60.4		
Age	5–14	2	0.15a	0.10–0.20	19.5	8.23	<0.05
	15–29	32	0.25b	0.20–0.38	56.56		
	30–44	42	0.30b	0.20–0.40	65.26		
	45–59	38	0.30b	0.20–0.40	67.92		
	≥ 60	12	0.30b	0.25–0.38	69.17		
Total		126	0.3	0.20–0.40			

Note: statistical difference between a and b (Bonferroni test, \(P < 0.01 \))

Table 9
Comparison of DW values of NCC patients with first visit group and follow-up group

Variate	No.	DW M	\(P_{25-75} \)	Mean Rank	\(Z \)	\(P \)
first-visit group	84	0.3	0.20–0.40	109.22	0.74	>0.05
follow-up group	126	0.3	0.20–0.40	103.02		
Table 10
DW values in NCC patients

Variate	Category	No.	DW	Z/χ²2	P	
			M	P₂₅-P₇₅	Mean Rank	
Gender	Male	138	0.3	0.20–0.40	109.44	-0.15 >0.05
	female	72	0.3	0.20–0.40	101.66	
Age group	5–14	10	0.20ᵃ	0.10–0.20	47.3	13.25 <0.05
	15–29	51	0.30ᵇ	0.20–0.40	99.49	
	30–44	69	0.30ᵇ	0.20–0.40	106.2	
	45–59	61	0.30ᵇ	0.20–0.40	113.07	
	≥ 60	19	0.30ᵇ	0.30–0.40	125.42	
Total		210	0.3	0.20–0.40		

Note: statistical difference between a and b (Bonferroni test, P<0.01)

Discussion

Cysticercosis has historically been widely distributed in China [3, 10, 24–25]. However, the prevalence has recently decreased gradually in parts of southwestern China due to improvements in social and economic development. Nevertheless, a large proportion of residents, especially in Yunnan province, are accustomed to consuming raw or undercooked pork [3, 13, 25–27].

Previous studies showed that seizures were the most common clinical manifestation among NCC patients [4, 6, 13, 28–32]. However, the main clinical symptom among patients in this study was headache, followed by hypomnness and seizure. This may be because the period of epilepsy symptoms in this study was defined as whether there was epilepsy in the last month, rather than whether there was epilepsy at any time prior. In addition, some of the patients received standardized treatment, indicating that treatment may effectively alleviate symptoms of seizures [5, 33–35].

The EQ-5D + C is a valid tool widely used to measure health-related quality of life [20, 36–38]. It was found that pain/discomfort and cognitive disorders were the most prominent symptoms attributable to NCC. Patients with NCC develop cognitive impairment, with mild to moderate cognitive dysfunction reported in about 88% [39], indicating that they suffer cognitive problems which may be due to changes such as partial seizures, mass effect of cysts, and increased intracranial pressure [39–41]. Hypomnness is rarely mentioned in previous studies, but is commonly reported in cysticercosis cases [42–43]. In this study, over 60% NCC patients had symptoms of hypomnness. Hypomnness has been identified as a cause
of cognitive disorders and is therefore an important parameter in assessing cognitive ability [39]. Long-term hypomnesia causes patients great psychological pressure and seriously affects their quality of life. Early detection and diagnosis are important for cysticercosis and taeniasis treatment [33, 44–45]. It can not only improve the prognosis of cysticercosis, reduce the burden of the patients themselves, but also reduce the risk of the patients as a source of infection to others[35]. In order to improve the case detection and reduce the risk of NCC [44], local residents should be informed to seek urgent medical attention whenever they experience unexplainable headache or epilepsy. Also, health workers should consider the possibility of NCC and arrange for further diagnosis.

Many studies have reported NCC DALYs globally, but few provide information on NCC DW [9, 14–17, 46]. This study showed a way to report NCC DW using EQ-5D + C. The general NCC DW was 0.30 in both the first-visit and follow-up groups. Except for hypomnesia, other clinical symptoms were alleviated in follow-up patients. Nevertheless, there was no statistical significance of DW between the two groups. This may because that treatment did not help improve the patients’ subjective health-related quality of life. Result showed that cognitive ability has the greatest impact on EQ-VAS score. In general, cognitive ability include memory, observation, and imagination [47]. Compared with first-visit patients, hypomnesia may be responsible for its DW in follow-up patients. The WHO [48] defines health as a “state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity”. With this in mind, changes in clinical symptoms alone cannot effectively improve a patient’s overall health. It is recommended that psychological treatment be incorporated into the treatment strategy for NCC patients. Therefore, it is proposed that in treating NCC patients, psychological counseling should be considered to help reduce emotional burden and psychological pressure caused by memory loss.

Based on the EQ-VAS score, patients rated themselves after getting to know their own health status. However, this method is highly subjective and may easily affected by the patients’ mood and other factors, which may lead to unstable result [49].

Conclusions

The health-related quality of life of NCC patients was seriously impaired, and cognitive competence is the most prominent health barrier. Psychological medical care should be taken as one component in the treatment of NCC patients.

List Of Abbreviations

NCC, neurocysticercosis; DALYs, disability-adjusted life years; DW, disability weight; VAS, visual analogue scale

Declarations

Ethics approval and consent to participate
This study was reviewed and approved by the Ethics Committee of the National Institute of Parasitic Disease (NIPD), Chinese Center for Disease Control and Prevention (No. 20180814). The objectives and procedures were explained to all participants. Written informed consent was also obtained from each participant or a literate relative. No animal work was carried out as part of this study.

Consent for publication

Not applicable.

Availability of data and materials

The data supporting the conclusions of this article are included within the article and its additional files. The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the National Special Science and Technology Project for Major Infectious Diseases of China (Grant No. 2012ZX10004-220, 2016ZX10004222-004). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the paper.

Authors’ contributions

SZL, MBQ and YJQ designed the study and revised the manuscript. XZZ wrote the draft of the manuscript. HZL, HKL and YHL examined the patients and conducted a questionnaire survey. CHZ and YDC critically revised the article for the important intellectual content. All authors read and approved the final manuscript.

Acknowledgments

Not applicable.

References
1. García HH, Gonzalez AE, Evans CAW, Gilman RH: Taenia solium cysticercosis. Lancet. Lancet 2003, 362(9383):547-556.

2. Del Brutto OH, García HH: Taenia solium Cysticercosis — The lessons of history. Journal of the Neurological Sciences 2015, 359(1-2):392-395.

3. Fang W. Epidemiological analysis of Taenia solium / cysticercosis in Dali from 1986 to 1998. [in Chinese]. Chinese Journal of parasitic disease control. 2001(02):39-41.

4. Carabin H, Ndimubanzi PC, Budke CM, Nguyen H, Qian Y, Cowan LD, Stoner JA, Rainwater E, Dickey M: Clinical Manifestations Associated with Neurocysticercosis: A Systematic Review. PLoS Neglected Tropical Diseases 2011, 5(5):e1152.

5. Garcia HH, Nash TE, Del Brutto OH: Clinical symptoms, diagnosis, and treatment of neurocysticercosis. The Lancet Neurology 2014, 13(12):1202-1215.

6. Huang X, Wang Z, Kou J, Liu H, Mao D, Yu Z, Liu X, Cheng P, Gong M: A Large Cohort of Neurocysticercosis in Shandong Province, Eastern China, 1997-2015. Vector borne and zoonotic diseases 2019.

7. Zang XZ, Li HZ, Liu HK, Li SZ: Epidemiological analysis of new cases of cysticercosis in Dali Prefecture, Yunnan Province, 2014-2017. [in Chinese]. Chin J Schisto Control ,2019,31(02):143-147.

8. Aung AK, Spelman DW: Taenia solium Taeniasis and Cysticercosis in Southeast Asia. The American Journal of Tropical Medicine and Hygiene 2016, 94(5):947-954.

9. Trevisan C, Devleesschauwer B, Schmidt V, Winkler AS, Harrison W, Johansen MV: The societal cost of Taenia solium cysticercosis in Tanzania. Acta Tropica 2017, 165:141-154.

10. Chen YD,Zhou CH, Zhu HH,et al.Investigation and Analysis on the status quo of major human parasitic diseases in 2015[in chinese].Chin J Parasitol Parasit Dis Feb,2020,38(01):5-16.

11. World Health Organization (2013) 66th World Health Assembly Resolutions. Geneva, Switzerland: World Health Organization. Available: http://www.who.int/neglected_diseases/mediacentre/WHA_66.12_Eng.pdf. Accessed 10 October 2019.

12. Zang X-Z, Li H-Z, Qian M-B, Chen Y-D, Zhou C-H, Liu H-K, Liu Y-H, Li S-Z: Extensive disseminated cysticercosis: a case report in Yunnan province, China. BMC Infectious Diseases 2019, 19(1).

13. Fang W, Chen F, Wang YY. Epidemiological analysis of hospitalized cases of cysticercosis in Dali prefecture from 1999 to 2006 [in Chinese]. J Pathogen Biol. 2009;4:298–300.

14. von Seidlein L, Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou X-N, Fèvre EM et al: World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLOS Medicine 2015, 12(12):e1001920.

15. Trevisan C, Devleesschauwer B, Praet N, Pondja A, Assane YA, Dorny P, Thamsborg SM, Magnussen P, Johansen MV: Assessment of the societal cost of Taenia solium in Angónia district, Mozambique. BMC Infectious Diseases 2018, 18(1).
16. Praet N, Speybroeck N, Manzanedo R, Berkvens D, Nsame ND, Zoli A, Quet F, Preux PM, Carabin H, Geerts S: The disease burden of Taenia solium cysticercosis in Cameroon. *PLoS Negl Trop Dis* 2009, 3(3):e406.

17. Bhattarai R, Budke CM, Carabin H, Proaño JV, Flores-Rivera J, Corona T, Ivanek R, Snowden KF, Flisser A: Estimating the non-monetary burden of neurocysticercosis in Mexico. *PLoS neglected tropical diseases* 2012, 6(2):e1521-e1521.

18. Joshua A Salomon JAH, Adrian Davis, Charline Maertens de Noordhout, Suzanne Polinder, Arie H Havelaar, Alessandro Cassini, Brecht Devleesschauwer MK, Niko Speybroeck, Christopher J L Murray, Theo Vos: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016, 388(10053):1545-1602.

19. Ophuis RH, Janssen MF, Bonsel GJ, Panneman MJ, Polinder S, Haagsma JA: Health-related quality of life in injury patients: the added value of extending the EQ-5D-3L with a cognitive dimension. *Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation* 2019, 28(7):1941-1949.

20. Jia T-W, Utzinger J, Deng Y, Yang K, Li Y-Y, Zhu J-H, King CH, Zhou X-N: Quantifying Quality of Life and Disability of Patients with Advanced Schistosomiasis Japonica. *PLoS Neglected Tropical Diseases* 2011, 5(2):e966.

21. Devlin NJ, Brooks R: EQ-5D and the EuroQol Group: Past, Present and Future. *Applied Health Economics and Health Policy* 2017, 15(2):127-137.

22. Krabbe PFM, Stouthard MEA, Essink-Bot ML, Bonsel GJ: The Effect of Adding a Cognitive Dimension to the EuroQol Multiattribute Health-Status Classification System. *Journal of clinical epidemiology* 1999, 52(4):293-301.

23. Diagnosis of cysticercosis: Health industry standards of the People's Republic of China. Available: http://www.ipd.org.cn/ Accessed 10 October 2019.

24. Fang W, Gan ZM, Qiu ZL *et al*: An epidemiological survey of taeniasis / cysticercosis in rural areas of Dali City, Yunnan Province[in chinese]. Chinese Journal of Parasitic Disease Control. 2005(06):458-460.

25. Office of National Survey of Current Status of Major Human Parasitic Diseases. Report on the National Survey of current status of major human parasitic diseases in China [in Chinese]. Chin J Parasitol Parasit Dis. 2005;23(b10):332–40.

26. Tang LH, Xu LQ, Chen YD: prevention and research of parasitic diseases in China[in chinese]: Beijing Science and Technology Press; 2012.

27. Chen Y, Xu L, Zhou X: Distribution and disease burden of cysticercosis in China. *Southeast Asian Journal of Tropical Medicine & Public Health* 2004, 35:231-239.

28. Bern C, Garcia HH, Evans C, Gonzalez AE, Verastegui M, Tsang VCW, Gilman RH: Magnitude of the Disease Burden from Neurocysticercosis in a Developing Country. *Clinical Infectious Diseases* 1999, 29(5):1203-1209.
29. Ng-Nguyen D, Noh J, Breen K, Stevenson MA, Handali S, Traub RJ: The epidemiology of porcine Taenia solium cysticercosis in communities of the Central Highlands in Vietnam. Parasites & Vectors 2018, 11(1):360.

30. Singh G, Sharma R: Controversies in the treatment of seizures associated with neurocysticercosis. Epilepsy & Behavior 2017, 76:163-167.

31. Gripper LB, Welburn SC: Neurocysticercosis infection and disease—A review. Acta Tropica 2017, 166:218-224.

32. Duque KR, Burneo JG: Clinical presentation of neurocysticercosis-related epilepsy. Epilepsy & Behavior 2017, 76:151-157.

33. The Lancet Infectious D: Treatment of neurocysticercosis. The Lancet Infectious Diseases 2014, 14(8):657.

34. Garg RK, Malhotra HS, Pandey S: Diagnosis and Treatment of Neurocysticercosis: Issues That Need to Be Addressed. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2018, 67(11):1796-1797.

35. Carpio A, Kelvin EA, Bagiella E, Leslie D, Leon P, Andrews H, Hauser WA: Effects of albendazole treatment on neurocysticercosis: a randomised controlled trial. Journal of Neurology, Neurosurgery & Psychiatry 2008, 79(9):1050-1055.

36. Jia TW, Zhou XN, Wang XH, Utzinger J, Steinmann P, Wu XH: Assessment of the age-specific disability weight of chronic schistosomiasis japonica. Bull World Health Organ 2007, 85(6):458-465.

37. Deng Yao: Study on burden of advanced schistosomiasis and quality of life of patients. China Center for Disease Control and prevention[in chinese], M1 - Master; 2008.

38. Steckling N, Plass D, Bose-O'Reilly S, Kobal AB, Krämer A, Hornberg C: Disease profile and health-related quality of life (HRQoL) using the EuroQol (EQ-5D + C) questionnaire for chronic metallic mercury vapor intoxication. Health and Quality of Life Outcomes 2015, 13:196.

39. Wallin MT, Pretell EJ, Bustos JA, Caballero M, Alfaro M, Kane R, Wilken J, Sullivan C, Fratto T, Garcia HH: Cognitive Changes and Quality of Life in Neurocysticercosis: A Longitudinal Study. PLoS Neglected Tropical Diseases 2012, 6(1):e1493.

40. Mori F, Rossi S Fau - Sancesario G, Sancesario G Fau - Codeca C, Codeca C Fau - Mataluni G, Mataluni G Fau - Monteleone F, Monteleone F Fau - Buttari F, Buttari F Fau - Kusayanagi H, Kusayanagi H Fau - Castelli M, Castelli M Fau - Motta C, Motta C Fau - Studer V et al: Cognitive and cortical plasticity deficits correlate with altered amyloid-beta CSF levels in multiple sclerosis. (1740-634X (Electronic)).

41. Hermann B, Meador Kj Fau - Gaillard WD, Gaillard Wd Fau - Cramer JA, Cramer JA: Cognition across the lifespan: antiepileptic drugs, epilepsy, or both? (1525-5069 (Electronic)).

42. Kanhere S, Bhagat M, Phadke V, George R: Isolated Intramuscular Cysticercosis: A Case Report. The Malaysian Journal of Medical Sciences : MJMS 2015, 22(2):65-68.

43. Bhattarai R, Budke CM, Carabin H, Proano JV, Flores-Rivera J, Corona T, Cowan LD, Ivanek R, Snowden KF, Flisser A: Quality of life in patients with neurocysticercosis in Mexico. Am J Trop Med
Hyg 2011, 84(5):782-786.

44. Bustos JA, Rodriguez S, Jimenez JA, Moyano LM, Castillo Y, Ayvar V, Allan JC, Craig PS, Gonzalez AE, Gilman RH et al: Detection of Taenia solium Taeniasis Coproantigen Is an Early Indicator of Treatment Failure for Taeniasis. Clinical and Vaccine Immunology 2012, 19(4):570-573.

45. Rizvi SAA, Saleh AM, Frimpong H, Al Mohiy HM, Ahmed J, Edwards RD, Ahmed SS: Neurocysticercosis: A case report and brief review. Asian Pacific Journal of Tropical Medicine 2016, 9(1):100-102.

46. Ock M, Lee JY, Oh IH, Park H, Yoon SJ, Jo MW: Disability Weights Measurement for 228 Causes of Disease in the Korean Burden of Disease Study 2012. J Korean Med Sci 2016, 31 Suppl 2:S129-S138.

47. Wallin MT, Pretell EJ, Bustos JA, et al. Cognitive Changes and Quality of Life in Neurocysticercosis: A Longitudinal Study. PLoS Neglected Tropical Diseases, 2012, 6(1): e1493.

48. 48. What is the WHO definition of health?: World Health Organization. Available: https://www.who.int/about/who-we-are/frequently-asked-questions. Accessed 10 October 2019.

49. McCaffrey N, Kaambwa B, Currow DC, et al. Health-related quality of life measured using the EQ-5D-5L: South Australian population norms. Health and quality of life outcomes, 2016, 14(1): 133-133.

Figures
Figure 1
Flow chart of case inclusion

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Figure2.png