Combination of the Perturbation Theory with Configuration Interaction Method

M. G. Kozlov1,2, I. I. Tupitsyn1,3, A. I. Bondarev1,4, and D. V. Mironova2

1Petersburg Nuclear Physics Institute of NRC “Kurchatov Institute”, 188300 Gatchina, Russia
2St. Petersburg Electrotechnical University “LETI”, Prof. Popov Str. 5, 197376 St. Petersburg, Russia
3Department of Physics, St. Petersburg State University, Ulianovskaya 1, Petrodvorets, 198504 St. Petersburg, Russia and
4Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaja 29, 195251 St. Petersburg Russia

(Dated: February 7, 2022)

Present atomic theory provides accurate and reliable results for atoms with a small number of valence electrons. However, most current methods of calculations fail when the number of valence electrons exceeds four or five. This means that we can not make reliable predictions for more than a half of the periodic table. Here we suggest a modification of the CI+MBPT (configuration interaction plus many-body perturbation theory) method, which may be applicable to atoms and ions with filling d and f shells.

I. INTRODUCTION

At present there are several methods of the relativistic calculation of atomic states, such as multiconfiguration Dirac-Fock [1,3], configuration interaction (CI) [4,8], many-body perturbation theory (MBPT) [9,11], CI+MBPT [12,14], coupled cluster [15,19], and others. Calculations are usually done in the no-virtual-pair approximation using Dirac-Coulomb, or Dirac-Coulomb-Breit approximations [20]. QED corrections may be included using radiative potential method developed by Flambaum and Ginges [21, 22], and QEDMOD potential [23, 24].

The coupled cluster method is one of the most popular and effective methods for calculation of atoms with a small number of open shell electrons (or holes). Calculations of the spectra of atoms and ions with many valence electrons (e.g. transition metals, lanthanides, and actinides) are very difficult and usually not very accurate. The reason for that is a combination of strong correlations and a very large configuration space. To account for strong correlations one needs non-perturbative methods, such as CI. On the other hand, a large configuration space makes such calculations very expensive. As a compromise one can try to combine CI with perturbation theory (PT). We will first assume that all closed atomic shells are considered frozen. Then we are treating only valence correlations and consider a combination of the valence CI with valence perturbation theory (VPT). Later we will see that this approach can also be used to treat core-valence correlations.

Recently there were several attempts [25–28] to develop an effective and fast CI+VPT method to speed up calculations for such systems, where straightforward CI calculations are impossible. Application of these methods for systems with a large number of valence electrons was demonstrated in Refs. [29,30]. A general idea of all these calculation schemes is to make CI in a smaller subspace P and calculate corrections from a complementary subspace Q using VPT. In Refs. [25,27] it is suggested to neglect non-diagonal blocks of the CI matrix in the subspace Q, which is equivalent to using VPT. All these methods require summation over all determinants of the complementary subspace Q. Though calculating this sum is much easier than calculating and diagonalizing the whole CI matrix, it is still too expensive for the number of valence electrons approaching, or exceeding ten.

In the paper [27], the sum over determinants was partly substituted by the sum over configurations that led to a significant increase in calculation speed. Here we want to make another step in this direction. To this end, we will partly substitute VPT with many-body perturbation theory (MBPT). The method we propose here is similar to the old CI+MBPT method [12] but uses different splitting of the problem into the CI and MBPT parts. In particular, we suggest to account for double excitations (D) from the subspace P by means of the MBPT and treat single excitations (S) within VPT, or, if possible, include them directly in CI. We think that this variant is not only more efficient for treating valence correlations, but may also be used for the core-valence correlations.

II. FORMALISM

A. Valence correlations

Consider many-electron atom, or ion with N valence electrons, where $N \gg 1$. Let us first assume that other electrons always occupy closed core shells, which is known as a frozen core approximation. Our aim is to solve the N-electron Schrödinger equation and find the spectrum of this system.

We start with splitting N-electron configuration space in two orthogonal subspaces P and Q. The subspace P, which we call valence, includes the most important shells. It may be not obvious from the start, which orbitals are ‘important’. We definitely must include into subspace P all orbitals with occupation numbers of the
Here and below indexes p and q run over configurations in the subspaces P and Q respectively and indexes m_p and n_q numerate determinants within one configuration. Now Eq. (2) takes the form:

$$\delta E_a = \sum_{n \in Q} \frac{\langle \Psi_a | \hat{P} \hat{Q} | n \rangle \langle n | \hat{Q} \hat{P} | \Psi_a \rangle}{E_a - E_n},$$

where $|n\rangle$ are N-electron determinants in the complementary subspace Q and $E_n = \langle n | \hat{Q} \hat{Q} | n \rangle$.

The wavefunction Ψ_a is a linear combination of the determinants:

$$\Psi_a = \sum_{m \in P} C^a_m |m\rangle = \sum_{p,m_p} C^a_{p,m_p} |m_p\rangle.$$ \hspace{1cm} (3)

Here and below indexes p and q run over configurations in the subspaces P and Q respectively and indexes m_p and n_q numerate determinants within one configuration. Now Eq. (2) takes the form:

$$\delta E_a = \sum_{p,m_p} \sum_{p',m_{p'}} C^a_{p,m_p} C^a_{p',m_{p'}} \times \sum_{q,n_q} \frac{\langle m_p | H | n_q \rangle \langle n_q | H | m_{p'} \rangle}{E_a - E_{n_q}},$$

where the sum over the subspace Q is also split in two.

For an atom with $N \sim 10$, the dimension of space Q is very large, which makes evaluation of expression (4) very lengthy. Therefore, our aim is to substitute double sum over q and n_q by a single sum over q. To this end we do the following approximation: we substitute the energy E_{n_q} in the denominator by the configuration average:

$$E_q = \frac{1}{N_q} \sum_{n_q=1}^{N_q} E_{n_q},$$

where N_q is the number of determinants in configuration q. Using this approximation we rewrite (4) in a form:

$$\delta E_a = \sum_{p,m_p} \sum_{p',m_{p'}} C^a_{p,m_p} C^a_{p',m_{p'}} \times \sum_q \frac{\langle m_p | H | \sum_{n_q} | n_q \rangle \langle n_q | H | m_{p'} \rangle}{E_a - E_q}. \hspace{1cm} (6)$$

Below we will show that in some very important cases one can get rid of the internal sum over n_q.

Hamiltonian H includes one-particle and two-particle parts. The former consists of the kinetic term and the core potential, while the latter corresponds to the Coulomb (or Coulomb-Breit) interaction between valence electrons. Thus, in the sum over q remain only configurations, which differ by no more than two electrons from configurations p and p'. This means that within this approximation the subspace Q is actually truncated to $Q_S + Q_D$. All non-zero contributions correspond to the diagrams, shown in Fig. 1.

![FIG. 1: Set of connected second-order diagrams. Black dots correspond to the core potential and wavy lines to the Coulomb interaction. Double and single lines denote electrons in valence and virtual orbitals respectively. Non-symmetric diagrams (b) and (c) have mirror twins.](image1.png)

According to our definition of the spaces P and Q, the latter must include at least one electron in the virtual shell. Diagrams (a), (b), and (e) include only one intermediate line, so they describe single excitations from the subspace P. Diagrams (c) and (d) include two intermediate lines, but only diagram (d) describes double (D) excitations, as both intermediate lines correspond to the virtual shells.

Figure 1 shows that all many-electron matrix elements in Eq. (6) are reduced to the effective one-electron, two-electron, and three-electron contributions. Effective one-electron contributions are described by diagram (a); diagrams (b), (c), and (d) correspond to the two-electron contributions; finally, diagram (e) describes effective three-electron contributions, see Figs. 2 and 3.

For combinatorial reasons the number of configurations with two excited electrons is much bigger, than the number of those with only one such electron. Therefore the vast majority of terms in Eq. (6) correspond to the two-electron contributions; finally, diagram (e) describes effective three-electron contributions, see Figs. 2 and 3.

![FIG. 2: Many-electron second-order expression in Eq. (7) (left) is reduced to the two-particle expression (middle), which, in turn, is reduced to the effective two-particle interaction (right).](image2.png)
electron excitations from configurations \(p \) and \(p' \). For these terms in the Hamiltonian \(H \) only the two-electron interaction \(V \) can contribute, so we can neglect the one-electron part and make substitution \(H \rightarrow V \). As we saw above, all such terms are described by the single diagram (\(d \)) from Fig. 1.

Let us consider the sum over doubly excited configurations. It can be written as:

\[
\delta E_a^D = \sum_{p,m_p} \sum_{p',m_{p'}} C_{p,m_p}^a C_{p',m_{p'}}^a \langle m_p|V(\sum_q|n_q\rangle\langle n_q|)|m_{p'}\rangle \times \sum_{q \in Q(D)} \frac{(m_p|V(\sum_q|n_q\rangle\langle n_q|)|m_{p'})}{E_a - E_q},
\]

where round brackets denote 3j-symbols, \(R_{a,b,c,d}^k \) denotes the Coulomb radial integral and \(\delta_p \) ensures parity selection rule: \(\delta_p = \xi(l_a + l_b + \xi(l_b + l_d + k)) \) and \(\xi(n) = 1, 0 \) for \(n \) even, odd. A similar multipole expansion holds for the effective interaction \(V_{\text{eff}} \), the effective radial integral being [12]:

\[
\langle c, d|V_{\text{eff}}^k|a, b \rangle = (-1)^{m_c + m_{d} + 1} \delta_p \sqrt{(2j_a + 1)(2j_b + 1)(2j_c + 1)(2j_d + 1)} \left(\begin{array}{ccc}
 j_c & j_a & k \\
 -m_c & m_a & \xi
\end{array} \right) \left(\begin{array}{ccc}
 j_b & j_d & k \\
 -m_b & m_d & \xi
\end{array} \right) \sum_{k_1,k_2} \left(\begin{array}{ccc}
 j_c & j_a & k \\
 k_1 & k_2 & 0
\end{array} \right) \left(\begin{array}{ccc}
 j_b & j_d & k \\
 k_1 & k_2 & 0
\end{array} \right) \delta_{\xi_1,\xi_2} R_{a,b,c,d}^{k_1,k_2},
\]

where curly brackets denote 6j-coefficients, the phase \(\chi = j_a + j_b + j_c + j_d + j_m + j_n + j_1 + k_1 + k_2 + k + 1 \), \(\Delta E \) is energy denominator, which we will discuss later. For the effective interaction there is no link between parity and multipolarity \(k \), so for \(V_{\text{eff}} \) we do not have factor \(\delta_p \) as in Eq. \(10 \). The sum in \(11 \) runs over multiplicities \(k_1 \) and \(k_2 \), which satisfies the triangle rule \(|k_1 - k_2| \leq k \leq k_1 + k_2 \).

All single excitations are described by the remaining diagrams from Fig. 1. The diagram (\(a \)) has a form of the effective one-electron radial integral, while diagrams (\(b \)) and (\(c \)) are reduced to the two-electron effective radial integrals. In principle, these effective radial integrals can be calculated and stored. However, the diagram (\(c \)) cor-
responds to the effective three-particle interaction. It is difficult to include such interactions into CI matrix for several reasons:

• When \(N > 3 \) the number of such effective three-particle integrals is huge.

• It is difficult to store them and find them.

• The number of the non-zero matrix elements in the matrix drastically increases. The matrix becomes less sparse and its diagonalization is much more difficult and time-consuming.

Because of all that it is inefficient to use the MBPT approach for three-particle diagrams and it is much easier to treat them within the determinant-based PT. However, it is difficult then to separate them from other contributions, which correspond to single excitations. Thus, it is better not to use MBPT for single excitations at all. We suggest to use instead any form of the determinant-based VPT described in Refs. [25–28]. This means that we do VPT in the subspace \(Q_S \). Note that the dimension of this subspace is incomparably smaller than the dimension of the \(Q_D \) subspace. In some cases it may be so small, that we can include \(Q_S \) in the subspace \(P \), where we do CI.

B. Core-valence correlations

It is easy to use the scheme described above for the core-valence correlations as well. Now \(P \) subspace corresponds to the frozen-core approximation and the subspaces \(Q_S \) and \(Q_D \) include single and double excitations from the core respectively. This means that these subspaces include many-electron states with one and two holes in the core. As before, the second-order MBPT corrections are described by one-electron, two-electron, and three-electron diagrams. All one-electron diagrams are given in Fig. 4. Excitations from the core correspond to the hole lines with arrows looking to the left. It is easy to see that only diagrams (c) and (d) describe double excitations. Therefore, we need to calculate them and store as one-electron effective radial integrals, see Fig. 5 (note that there are no one-electron contributions for the valence excitations). Expressions for these diagrams were given in Ref. [12].

There is only one two-electron diagram, which corresponds to the double excitations from the core. This diagram must be calculated and added to the similar diagram for valence excitations, which was discussed in the previous section, see Fig. 6. Finally, in analogy with the valence correlations, the three-particle diagrams correspond to the single excitations from the core.

We conclude that in order to account for both valence and core-valence correlations we need to calculate one-electron and two-electron effective radial integrals, which corresponds to the diagrams from Figs. 5 and 6. At the same time, we need to include all single excitations from the core shells and all single excitations to the virtual shells either in the subspace \(P \) or in the subspace \(Q_S \).

After that, we make CI calculation with effective radial integrals possibly followed by the VPT calculation in the \(Q_S \) subspace.

C. Sketch of the possible calculation scheme

Let us describe a most general computational scheme.

• Basis set orbitals are divided into four groups: inner core, outer core, valence, and virtual orbitals. The inner core is kept frozen on all stages of calculation.

• Effective radial integrals are calculated for the valence orbitals, which account for the double excitations from the outer core and the double excitations from the virtual orbitals to the virtual ones.

• Full CI calculation is done for the valence electrons. The effective radial integrals are added to
the conventional radial integrals when the Hamiltonian matrix is formed.

- Determinant-based PT is used in the complementary subspace Q_S, which includes single excitations from the outer core and single excitations to the virtual states.

Depending on the number of the valence electrons and the size of the core this scheme can be simplified. If there are only two valence electrons, one can include all virtual basis states into valence space. Single excitation from the core can be also added to the valence space. Double excitations from the core are accounted for through the effective radial integrals, while single excitations are included explicitly in the CI matrix. Formally this means that we substitute P, Q decomposition by the P', Q_D decomposition:

$$ P + Q = P + Q_S + Q_D = P' + Q_D , \quad (12) $$

$$ P' = P + Q_S . \quad (13) $$

In the new valence space P', we solve matrix equation with the energy-dependent effective Hamiltonian [12]:

$$ H_{\text{eff}}(E) = H + V_{\text{eff}}(E) , \quad (14) $$

$$ P' \hat{H}_{\text{eff}}(E_a) \hat{P}' \Psi_a = E_a P' \hat{H}_{\text{eff}} \hat{P}' \Psi_a , \quad (15) $$

where \hat{P}' is the projector on the subspace P'. When the size of the matrix H_{eff} becomes too large, one can neglect the non-diagonal part of the matrix in the Q_S space, as in the exp CI method [26].

III. ENERGY DENOMINATORS

Let us discuss the energy denominator Δ_E in Eq. (11). For simplicity we will consider the Rayleigh-Schrödinger perturbation theory, where the denominator in Eq. (6) would be $E_p - E_q$. Here E_p and E_q are average energies [9] for configurations p and q. Note that in order to return to the Brillouin-Wigner perturbation theory we will need to add $E_a - \bar{E}_p$, which can be approximately done using the method suggested in [12].

In the conventional MBPT the denominator $E_p - E_q$ is reduced to the difference of the Hartree-Fock energies of the orbitals ε_i which are different in these two configurations. That would give the following energy denominator in Eq. (11):

$$ \Delta_E \equiv \Delta_E(ab \to mn) = \varepsilon_a + \varepsilon_b - \varepsilon_m - \varepsilon_n , \quad (16) $$

where we assume that configuration q differs from p by excitation of two electrons from shells a and b to virtual shells m and n respectively. This expression neglects the interaction of the electrons with each other and depends on the choice of the Hartree-Fock potential. In order to improve this approximation, we will consider general expression for the average energy of the relativistic electronic configuration.

A. Average energy of the relativistic configuration

The average energy of the relativistic configuration \bar{E}_p [31, 32]:

$$ \bar{E}_p = \sum_{a \in p} q_a I_a + \frac{1}{2} \sum_{a \in p} q_a (q_a - 1) U_{aa} + \sum_{a \leq b; a, b \in p} q_a q_b U_{ab} , \quad (17) $$

where q_a and q_b are occupation numbers for the shells a and b in configuration p and matrix elements of the potential U are given by:

$$ U_{ab} = \begin{cases} F^0(a, a) + \sum_{k \geq 0} 2 f^k_{a, a} F^k(a, a) , & a = b , \\ F^0(a, b) + \sum_k g^k_{a, b} G^k(a, b) , & a \neq b . \end{cases} \quad (18) $$

In these equations I_a is the one-electron radial integral, while $F^k(a, b)$ and $G^k(a, b)$ are standard Coulomb and exchange two-electron radial integrals [32]. The angular factors $f^k_{a, a}$ and $g^k_{a, b}$ are also defined in agreement with Ref. [32]:

$$ f^k_{a, a} = -\frac{1}{2} \frac{2j_a + 1}{2j_a} \left(\frac{j_a}{2} - \frac{1}{2} k^2 \right) , \quad (19) $$

$$ g^k_{a, b} = -\left(\frac{j_a}{2} - \frac{1}{2} j_b k^2 \right) , $$

where j_a and j_b are the one-electron total angular momenta.

Let us use Eq. (17) to calculate the energy difference between configurations p and q which differ by the excitation of two electrons from shells a, b to shells m, n. In other words we need to calculate how the energy changes when occupation numbers change in the following way: $\delta q_a = \delta q_b = -1$ and $\delta q_m = \delta q_n = 1$. To this end we, can use Taylor expansion of Eq. (17) near the initial configuration p:

$$ \bar{E}_q = \bar{E}_p + \sum_a \frac{\partial \bar{E}_p}{\partial q_a} \delta q_a + \frac{1}{2} \sum_{a, b} \frac{\partial^2 \bar{E}_p}{\partial q_a \partial q_b} \delta q_a \delta q_b , \quad (20) $$

where derivatives are given by:

$$ \frac{\partial \bar{E}_p}{\partial q_a} = I_a + (q_a - \frac{1}{2}) U_{aa} + \sum_{b \neq a} q_b U_{ab} $$

$$ = I_a - \frac{1}{2} U_{aa} + \sum_b q_b U_{ab} , \quad (21) $$

$$ \frac{\partial^2 \bar{E}_p}{\partial q_a \partial q_b} = U_{ab} . \quad (22) $$

Note that all higher derivatives vanish, so expression (20)
is exact. With its help we get:

\[
\Delta E(ab \rightarrow mn) = I_a + I_b - I_m - I_n \\
+ \sum_{c \in P} q_c (U_{ac} + U_{bc} - U_{mc} - U_{nc}) \\
- U_{aa} - U_{bb} - U_{ab} - U_{mn} \\
+ U_{am} + U_{bn} + U_{an} + U_{bm}. \tag{23}
\]

This expression can be also used for the special cases \(a = b, \delta_{n_a} = -2 \) and/or \(m = n, \delta_{n_m} = 2 \).

Equation (23) includes the sum over the occupied shells of the initial configuration \(p \). Let us introduce one-electron energies in respect to this configuration as:

\[
\varepsilon_a = I_a + \sum_{c \in P} q_c U_{ac} - (1 - \delta_{n_a,n}) U_{aa}. \tag{24}
\]

Then Eq. (23) is simplified to

\[
\Delta E(ab \rightarrow mn) = \varepsilon_a + \varepsilon_b - \varepsilon_m - \varepsilon_n \\
- U_{ab} - U_{mn} + U_{am} + U_{bn} + U_{an} + U_{bm}. \tag{25}
\]

The first line here reproduces the conventional MBPT denominator [16], while the second line gives corrections caused by the interactions of the electrons with each other. It is important that in this form we do not have explicit sums over all electrons, which significantly simplifies calculations.

In the relativistic calculations the non-relativistic configurations are typically not used. However, sometimes one may need to find the average energy of the non-relativistic configuration. In the Appendix A we derive the necessary expressions for this case.

IV. NUMERICAL TESTS

We made four test calculations for very different systems. In the first two calculations for He I and B I, there was no core and we tested our method for the valence correlations. Then we applied our method for the highly charged ion Fe XVII, where there is a very strong central field, correlation corrections are rather small, and perturbation theory must be quite accurate. In this system we had core \(1s^2 \), so we calculated core-valence correlation corrections as well as valence ones. Finally, we made calculations for Sc I, where valence \(3d \) electrons have a large overlap with the core shell \(3p^6 \) and core-valence correlation corrections are as important as valence ones.

A. Ground state of He I

Helium is the simplest system where correlation effects can be tested. We calculate the ground state energy, where correlation corrections are the largest. We choose the space \(P \) to include shells \(n = 1 \ldots 3 \). The space \(Q \) includes virtual shells \(s, p, d \) with \(4 \leq n \leq 20 \). For this model problem, we can easily do CI in the whole space \(P + Q \) thus producing the “exact” solution and compare these results with different variants of the perturbation theory discussed above. Results are listed in Table I.

One can see that the valence CI provides accuracy on the order of 1%. The accuracy does not improve when we account for the single excitations to the virtual shells. However, when we include double excitations the agreement with the “exact” answer is significantly better. The determinant-based PT gives the best result. The results obtained with the effective Hamiltonian are less accurate, but corrections to the denominators reduce the discrepancy. Even the uncorrected variant of the MBPT is closer to the “exact” answer by an order of magnitude compared to the valence CI.

B. Ground state of B I

B is a five electron system. The full CI calculation here is already very expensive. The determinant-based PT is also rather lengthy, so we made calculations only with the effective Hamiltonian and compared our results with the experiment [33]. The effective radial integrals were calculated using the Hartree-Fock denominators. We tested two variants of the valence space: the first one, \(P \), included shells \(n = 1 \ldots 3 \) and the second one, \(\tilde{P} \), included also the shell \(n = 4 \). Corresponding \(Q \) and \(\tilde{Q} \) spaces included \(s, p, d, f, g \) shells up to \(n = 20 \). Results of these calculations for the ground state \(^2P_{1/2} \) are given in Table II. We see that the accuracy of the CI calculation does not change much when we include an extra shell in the subspace \(P \). The accuracy of the CI calculation in the subspaces \(P + Q_S \) and \(P + Q_S^{1/2} \) is only slightly better than similar calculation in the subspaces \(P \) and \(\tilde{P} \). Only including double excitations by means of the MBPT improves the agreement with the experiment by more than an order of magnitude.

C. Spectrum of Fe XVII

Ten-electron ion Fe XVII plays an important role in astrophysics and plasma physics, see Ref. [34] and references therein. The spectrum of this ion was calculated within several different approaches [35] with relative accuracy of about 0.03%. Here we repeat these calculations using the new method. We use basis set \([17s10p6d4f3g]\). Virtual orbitals starting from \(4s \) and up are formed from B-splines using the method from Ref. [36]. Valence subspace \(P \) includes shells \(2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, \) and \(4f \), while the \(1s \) shell is frozen. Single excitations to all higher orbitals are included in the subspace \(Q_S \) and the subspace \(Q_S^{1/2} \) in addition includes single excitations from the \(1s \) shell. We make two CI calculations in the spaces \(P \) and \(P + Q_S \) respectively. Then we repeat these calculations using the effective Hamiltonian, which accounts for
TABLE I: Ground state binding energy of He I (in a.u.). CI calculations are made for three spaces: P, $P + Q_S$, and $P + Q$. Δ_{P+Q} is the difference from the CI result in the $P + Q$ space. Three variants of PT calculations are made based on the CI calculation in $P + Q_S$ space: (a) determinant-based PT; (b) effective Hamiltonian with Hartree-Fock denominators; (c) effective Hamiltonian with corrected denominators [35]. Experimental binding energy is given for comparison in the last column [33].

P	$P + Q_S$	$P + Q$	PT	NIST				
$E(1s^2)$	2.8626	2.8700	2.9010	(a)	Ref. [33]			
Δ_{P+Q}	0.0384	0.0310	0.0000	(b)	-0.0011	-0.0054	-0.0021	-0.0024

TABLE II: Ground state binding energy of B I (in a.u.). CI calculations are made for valence spaces P and \hat{P}, which included 3 and 4 lower shells respectively. Experimental binding energy is given for comparison in the last column [33].

P	$P + Q_S$	\hat{P}	$\hat{P} + Q_S$	NIST				
$E(2P_{1/2})$	24.5683	24.5976	24.6595	24.5721	24.5999	24.6581	24.6581	Ref. [33]
Δ_{NIST}	0.0898	0.0605	-0.0014	0.0860	0.0582	0.0000	0.0000	

the excitations to the subspace Q_D. Finally, we make CI calculation in the $P + Q_S'$ for the effective Hamiltonian H_{eff}' which accounts for the double excitations from 1s shell as well as for the double excitations to the virtual shells with $n \geq 5$. Results of all these calculations are given in Table III.

One can see that already the CI calculation in the subspace P is quite accurate here, the relative errors being about 0.3%. This is not surprising for such a strongly central field. When we increase the size of the configuration space by adding single excitations to the virtual shells $n = 5 \ldots 17$ the errors substantially decrease but remain of the same order of magnitude. The same happens when we do CI for the effective Hamiltonian in the subspace P. Only when we include both single and double excitations to the virtual shells by doing CI for the effective Hamiltonian in the subspace $P + Q_S$ we increase the accuracy by an order of magnitude, the errors being 0.04% or less. Adding S and D excitations from the 1s shell leads to corrections to the transition energies within 0.01%. Our final accuracy is similar to the accuracy obtained in Ref. [34], where CI space included all double and some triple excitations to all virtual shells (the basis set there was different, but of the same length). In our present calculation, the size of the space $P + Q_S$ is about 1.4 million determinants, and the size of the space $P + Q_S'$ is close to 2 million determinants, which is significantly less than the CI space of Ref. [34].

D. Spectrum of Sc I

The ground state configuration for Sc I is $[\text{Ar}]3d^{2}4s^{2}$ and lowest excited states belong to the configurations $3d^{2}4s$ and $3d4s4p$. The 3d shell has a large overlap with the core shells 3s and 3p. Because of that frozen core approximation can not reproduce even the lowest part of the spectrum. Including 3s and 3p shells into the valence space makes its size extremely large. Therefore, this is a good system to apply our method.

We use a short basis set [9spdfgh], which is constructed as described in Ref. [36]. In the valence space P, the shells $n \leq 3$ are closed and the virtual shells $n \geq 8$ and all h orbitals are empty. The space Q_S includes single excitations from the upper core shells $n = 3$ and single excitations to the virtual shells. We keep core shells up to $n = 2$ frozen on all stages. Results of the calculation of the spectrum are presented in Table IV where excitation energies from the ground state in cm$^{-1}$ are shown for approximately 10 lower levels of each parity. The sizes of the valence space P and $P + Q_S$ are about 6×10^8 and 1×10^9 determinants respectively. We list the results of three calculations: the full CI in the valence space P and emu CI [26] in the space $P + Q_S$ for the bare and the effective Hamiltonians. The effective radial integrals were calculated with the Hartree-Fock denominators. For each of these calculations we also give differences from the experimental values [33] and the averaged absolute difference.

One can see that all the levels in the CI calculation are shifted from their experimental energies: the levels of the configuration $3d^24s$ lie higher by 3 thousand inverse centimeters, while the levels of the configuration $3d^44p$ lie lower by 2 thousand inverse centimeters. The picture changes drastically when we add single excitations and solve the problem in the space $P + Q_S$. Now the levels of the configuration $3d^24s$ lie lower by 3 thousand inverse centimeters, while the levels of the configuration $3d^44p$ are almost in place. Finally, when we use the effective Hamiltonian, which accounts for the double excitations, the levels get closer to their places with the average deviation about 300 cm$^{-1}$, or 7 times smaller, than for the CI calculation.

In this test calculation, we used a rather short basis set and were probably rather far from saturation. Therefore we can not reliably estimate the ultimate accuracy.
of the method for scandium. Looking at the results we see that the size of the PT corrections is very large and there is also large cancellation between contributions of the single and double excitations. Therefore it is unlikely that converged results would be significantly better than what we got here. On the other hand, we see systematic improvement in our final results compared to the pure valence calculation. It is also worth mentioning that if one would try to include all double excitations in CI calculation the size of the configuration space would be much above 1×10^8 even for the basis set as short as this one.

V. CONCLUSIONS

We suggest a new version of the CI+MBPT method [12] with the different division of the many-electron space into parts where non-perturbative and perturbative methods are used. This new division may be more practical for the atoms with many valence electrons, where the size of the valence space may be too big for solving the matrix eigenvalue problem. This method can be used in the all-electron calculations for light atoms as well as for the calculations with the frozen core. In the latter case, the single and double excitations from (some of) the core shells can be treated perturbatively. We ran four rather different tests which showed systematic one-order-of-magnitude improvement of the results when we added MBPT corrections to the CI calculations.

Acknowledgements

We thank Marianna Safronova, Charles Cheung, and Sergey Porsev for their constant interest in this work and very useful discussions. This work was supported by the Russian Science Foundation (Grant No. 19-12-00157). I.I.T. acknowledges the support from the Resource Center “Computer Center of SPbU”, St. Petersburg, Russia.

Appendix A: Average energy of the non-relativistic configuration

In the average over non-relativistic configuration (LS-average) [37, 38], the occupation numbers for the relativistic orbitals q_a may be non-integer, while occupation numbers for non-relativistic orbitals q_A are still integer (we use capital letters A, B, M, N to designate non-relativistic orbitals). Below we show that properly defining one-electron integrals I_{AB} and two-electron matrix elements U_{AB} we obtain expressions similar to Eqs. [24, 25].

The average energy of the non-relativistic configuration R can be written as:

\[
\bar{E}_R = \sum_a \bar{q}_a I_a + \frac{1}{2} \sum_a \bar{q}_a (\bar{q}_a - w_a) F^0_a(a, a) + \sum_{a < b} \bar{q}_a \bar{q}_b w_{ab} F^0(a, b) \\
+ \sum_{a, k > 0} \bar{q}_a (\bar{q}_a - w_a) f_{aa}^k F^k(a, a) + \sum_{a < b, k} \bar{q}_a \bar{q}_b w_{ab} g_{ab}^k G^k(a, b),
\]

(A1)
TABLE IV: Low-lying energy levels of Sc I (in cm⁻¹). For each calculation we also give the differences with NIST [33] and the average absolute difference |Δ|av = 1/k ∑ |Δ|, where we neglect non-diagonal matrix elements in the Q subspace. For the CI calculations in the P + Q₁ space we use the emu CI approach [20] where we neglect non-diagonal matrix elements in the Q₁ subspace. On the diagonal we use averaging over relativistic configurations, see Eq. [17].

Config. Level	Ref. [33]	CI(P) E	HΔ E	CIemu(P + Q₁) E	HΔ E	Hₐₜ E	HΔ E	
3d⁴s²	2D₃/₂	0	0	0	0	0	0	
	2D₅/₂	168	147	21	157	11	155	
3d⁴s	4F₃/₂	11520	14945	3425	7361	4159	11786	266
	4F₅/₂	11558	14968	3410	7422	4136	11847	290
	4F₇/₂	11610	15001	3391	7489	4121	11914	304
	4F₉/₂	11677	15047	3370	7541	4136	11963	285
3d⁴s²	2F₃/₂	14926	17368	2442	11331	3595	15661	735
	2F₅/₂	15042	17455	2413	11453	3589	15781	739
3d⁴s	2D₃/₂	17013	19972	2960	14574	2439	17475	462
	2D₅/₂	17025	19980	2955	14601	2424	17500	475
3d⁴s	4P₁/₂	17226	20329	3103	14606	2620	17472	246
	4P₃/₂	17253	20339	3084	14679	2576	17552	297
	4P₅/₂	17307	20380	3073	14739	2568	17606	299
3d⁴s₄p	4F₀/₂	15673	13921	1751	16019	346	15872	200
	4F₂/₂	15757	14002	1754	16099	342	15953	197
	4F₄/₂	15882	14139	1743	16211	330	16064	183
	4F₆/₂	16027	14290	1737	16340	314	16194	168
3d⁴s₄p	4D₁/₂	16010	14265	1745	16318	308	16448	438
	4D₃/₂	16022	14311	1711	16351	329	16517	495
	4D₅/₂	16141	14375	1766	16403	262	16559	418
	4D₇/₂	16211	14458	1753	16503	292	16621	410
3d⁴s₄p	2D₃/₂	16023	14172	1851	16516	493	16442	419
	2D₅/₂	16097	14189	1907	16525	428	16449	352
3d⁴s₄p	4F₁/₂	18504	16854	1650	18528	24	18529	25
	4F₃/₂	18516	16930	1586	18538	23	18543	27
	4F₅/₂	18571	17007	1565	18577	6	18572	1

| |Δ|av | 2247 | 1595 | 310 |

where

\[\tilde{q}_a = \frac{2j_a + 1}{4l_a + 2} q_A, \quad w_a = \frac{q_A - \tilde{q}_a + 2j_a}{4l_a + 1}, \quad w_{ab} = \begin{cases} \frac{4l_a + 2}{4l_a + 1} \frac{q_A - 1}{q_A}, & A = B, \\ \frac{1}{q_A}, & A \neq B. \end{cases} \] (A2)

Using expressions:

\[\tilde{q}_a(q_a - w_a) = \frac{2j_a + 1}{4l_a + 2} \frac{2j_a}{4l_a + 1} q_A(q_A - 1), \quad w_{ab} \tilde{q}_a \tilde{q}_b = \frac{2j_a + 1}{4l_a + 2} \frac{2j_a}{4l_a + 1} q_A(q_A - 1), \quad A = B, \ j_a \neq j_a', \] (A3)

we rewrite the equation [A1] in the form

\[\hat{E}_R = \sum_A q_A \sum_{j_a} \frac{2j_a + 1}{4l_a + 2} I_a + \frac{1}{2} \sum_A q_A (q_A - 1) \sum_{a, a' \in A} \frac{(2j_a + 1)(2j_{a'} + 1 - \delta_{a, a'})}{(4l_a + 2)(4l_a + 1)} F^{a}_{a}(a, a') + \]

\[+ \frac{1}{2} \sum_{A \neq B} q_A q_B \sum_{a \in A, b \in B} \left[\frac{(2j_a + 1)(2j_b + 1)}{(4l_a + 2)(4l_b + 2)} \right] F^{a}_{b}(a, b) + \sum_k g^{k}_{a}(a, b) G^{k}_{a}(a, b) \]

\[+ \frac{1}{2} \sum_A q_A(q_A - 1) \sum_{a, a' \in A, k > 0} \frac{2j_a + 1}{4l_a + 2} \frac{2j_{a'} + 1}{4l_{a'} + 1} g^{k}_{a}(a, a') G^{k}_{a}(a, a'). \] (A4)
In the last sum, the term \(k = 0 \) is absent since \(j_a \neq j_{a'} \) and \(k \geq |j_a - j_{a'}| \). Now we can introduce non-relativistic analogues of the integrals \(I_a \) and matrix elements \(U_{ab} \) and rewrite Eq. (A1) alike Eq. (17):

\[
\begin{align*}
\hat{E}_R &= \sum_A q_A I_A + \frac{1}{2} \sum_A q_A \left(q_A - 1 \right) U_{AA} + \frac{1}{2} \sum_{A \neq B} q_A q_B U_{AB}, \\
I_A &= \sum_{a \in A} \frac{2j_a + 1}{4l_a + 2} I_a, \\
U_{AA} &= \sum_{a,a' \in A} \frac{(2j_a + 1)(2j_{a'} + 1)}{(4l_a + 2)(4l_{a'} + 1)} \left[F^0(a,a') + \sum_{k>0} g_{aa'}^k G^k(a,a') \right] - \sum_{a \in A} \frac{(2j_a + 1)}{(4l_a + 2)} F^0(a,a), \\
U_{AB} &= \sum_{a \in A, b \in B} \frac{(2j_a + 1)(2j_b + 1)}{(4l_a + 2)(4l_b + 2)} \left[F^0(a,b) + \sum_{k} g_{ab}^k G^k(a,b) \right].
\end{align*}
\]

Using Eq. (A5) we get the following derivatives by analogy with Eqs. (21, 22):

\[
\begin{align*}
\frac{\partial \hat{E}_R}{\partial q_A} &= I_A + \sum_{B} q_B U_{AB} - \frac{1}{2} U_{AA}, \\
\frac{\partial^2 \hat{E}_R}{\partial q_A \partial q_B} &= U_{AB}.
\end{align*}
\]

The difference in energy between two configurations is

\[
\Delta \bar{E} = \sum_A I_A \delta q_A + \sum_A \left(q_A - \frac{1}{2} \right) U_{AA} \delta q_A + \sum_{B \neq A} q_B U_{AB} \delta q_B + \frac{1}{2} \sum_{A,B} U_{AB} \delta q_A \delta q_B.
\]

This equation allow us to find the energy of a double excitation \(\delta q_A = -1, \delta q_B = -1, \delta q_N = 1, \delta q_M = 1 \):

\[
\Delta \bar{E}(AB \to NM) = I_A + I_B - I_M - I_N + \sum_C q_C \left(U_{AC} + U_{BC} - U_{MC} - U_{NC} \right) - U_{AA} - U_{BB} - U_{AB} - U_{NM} + U_{AN} + U_{BN} + U_{AM} + U_{BM}.
\]

If we introduce an averaged one-electron energy by analogy with \(\[24\] \) we can rewrite \([11] \) as

\[
\varepsilon_A = I_A + \sum_{B} q_B U_{AB} - (1 - \delta q_{A,B}) U_{AA},
\]

\[
\Delta \bar{E}(AB \to NM) = \varepsilon_A + \varepsilon_B - \varepsilon_M - \varepsilon_N - U_{AB} - U_{NM} + U_{AN} + U_{BN} + U_{AM} + U_{BM}.
\]

We obtained corrections to the standard MBPT energy denominator \([10] \) using two approximations. Averaging over relativistic configurations gives expression \([25] \) and averaging over non-relativistic configurations leads to expression \([13] \). These expressions differ only by the definitions of the one-electron energies and two-electron matrix elements.

References:

[1] J. P. Desclaux, Computer Physics Communications 9, 31 (1975).
[2] P. Jönsson, G. Gaigalas, J. Bieroń, C. F. Fischer, and I. P. Grant, 184, 2197 (2013).
[3] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, Journal of Physics B Atomic Molecular Physics 49, 182004 (2016).
[4] M. F. Gu, Canadian Journal of Physics 86, 675 (2008).
[5] S. Fritzche, C. F. Fischer, and G. Gaigalas, Computer Physics Communications 148, 103 (2002).
[6] J. Jiang, J. Mitroy, Y. Cheng, and M. W. J. Bromley, Phys. Rev. A 94, 062514 (2016).
[7] I. I. Tupitsyn, V. M. Shabaev, J. R. Crespo López-Urrutia, I. Draganić, R. S. Orts, and J. Ullrich, Phys. Rev. A 68, 022511 (2003).
[8] I. I. Tupitsyn, A. V. Volotka, D. A. Glazov, V. M. Shabaev, G. Plunien, J. R. C. López-Urrutia, A. Lapierre, and J. Ullrich, Phys. Rev. A 72, 062503 (2005).
[9] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B 20, 1399 (1987).
[10] S. A. Blundell, D. S. Guo, W. R. Johnson, and J. Sapirstein, Atomic Data and Nuclear Data Tables 37, 103 (1987).
[11] J. Sapirstein, Reviews of Modern Physics 70, 55 (1998).
[12] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys.
[11] E. Kahl and J. Berengut, Computer Physics Communications 238, 232 (2019), arXiv:1805.11265.
[12] M. G. Kozlov, S. G. Porsev, M. S. Safronova, and I. I. Tupitsyn, Comput. Phys. Commun. 195, 199 (2015), ISSN 0010-4655.
[13] E. Eliav and U. Kaldor, Relativistic Four-Component Multireference Coupled Cluster Methods: Towards A Covariant Approach (Springer Netherlands, Dordrecht, 2010), pp. 113–144, ISBN 978-90-481-2885-3.
[14] T. Saue, R. Bast, A. S. P. Gomes, H. J. A. Jensen, L. Visscher, I. A. Aucar, R. Di Remigio, K. G. Dyall, E. Eliav, E. Fasshauer, et al., J. Chem. Phys. 152, 204104 (2020), arXiv:2002.06121.
[15] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 40, 2233 (1989).
[16] M. S. Safronova and W. R. Johnson, Advances in Atomic Molecular and Optical Physics 55, 191 (2008).
[17] A. V. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, and E. Eliav, Symmetry 12 (2020).
[18] W. R. Johnson, Atomic Structure Theory. Lectures on Atomic Physics (Springer Berlin Heidelberg, 2007).
[19] V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005).
[20] J. S. M. Ginges and J. C. Berengut, Phys. Rev. A 93, 052509 (2016).
[21] V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Phys. Rev. A 88, 012513 (2013).
[22] I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, and V. A. Dzuba, Phys. Rev. Lett. 117, 253001 (2016).
[23] V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum, Phys. Rev. A 95, 012503 (2017).
[24] A. J. Geddes, D. A. Czapski, E. V. Kahl, and J. C. Berengut, Physical Review A 98, 042508 (2018), arXiv:1805.06615.
[25] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 99, 032501 (2019), ArXiv:1812.09826.
[26] R. T. Imanbaeva and M. G. Kozlov, Annalen der Physik 531, 1800253 (2019).
[27] C. Cheung, S. G. Porsev, M. G. Kozlov, I. I. Tupitsyn, and A. I. Bondarev, Physical Review Letters 124, 163001 (2020), arXiv:1912.08714.
[28] J. Li and V. Dzuba, Journal of Quantitative Spectroscopy and Radiative Transfer 247, 106943 (2020), arXiv:2002.08033.
[29] I. Lindgren and A. Rosén, in Case Studies in Atomic Physics, edited by E. McDaniel and M. McDowell (Elsevier, 1975), pp. 93 – 196, ISBN 978-0-7204-0331-2.