Impact of HTM on lead-free perovskite solar cell with high efficiency

Aloke Kumar Das1 · R. Mandal1 · D. K. Mandal2

Received: 16 February 2022 / Accepted: 24 May 2022 / Published online: 22 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The Scaps-1d simulator was used to simulate a lead-free perovskite CH3NH3SnI3 based solar cell devices fabricated from different hole transport materials (HTM). This research looks at two organic and two inorganic HTM layers. The cell structure used in this study is FTO/TiO2/CH3NH3SnI3/HTM (variable)/Au(variable). Spiro-OMeTAD, PEDOT:PSS, CuO and Cu2O are the HTM materials used. The results show that utilizing CuO as an HTM produces better outcomes than other HTMs, with an efficiency of 28.45%. The thickness, acceptor concentration (N_A), and defect density (N_t) of the perovskite layer on optoelectronic properties of the solar cell are focus of simulation studies. According to this study, an perovskite layer thickness of 1000 nm is suitable for a decent photovoltaic cell. Furthermore, by adjusting the HTM thickness and the defect density of HTM and absorber layer, promising findings of J_sc of 34.38 mAcm⁻², V_oc of 1.011 V, FF of 80.85% and PCE of 28.10% were obtained for Spiro-OMeTAD based PSC. Finally, in order to improve the device’s performance, an anode material with high work function is required. Our findings reveal that using a thin absorber layer results in low photo generated charge carriers due to less absorption, but high carrier extraction. Although more carriers are created in the cell due to increased absorption, decreased collection efficiency is related to recombination, which decreases V_oc for thick perovskite layers. Device efficiency is improved by increasing the doping density up to 10¹⁸ cm⁻³ in the perovskite layer due to built-in electric field across the solar cell. Again a very thin or thick HTL is not ideal for high PCE. For low recombination and a high fill factor, an HTM (Spiro-OMeTAD) of 1–100 nm is necessary. The great power conversion efficiency of organic HTM based lead-free PSC brings up the new possibilities for obtaining renewable energy.

Keywords Perovskite solar cell · CH3NH3SnI3 · Lead-free · Hole transport material (HTM) · High efficiency
1 Introduction

The need for energy will skyrocket in the future. The majority of today’s energy usage is derived from fossil fuels, which will be depleted in the near future and it pollutes our environment. Because of this the renewable energy sources are in high demand as a result of industrialization and population growth. Solar energy is a promising source for this because it has no negative impact on our environment (Markose et al. 2020; Nocera 2017; Lipomi and Zhenan 2011; Li et al. 2019; Huang et al. 2019; Yang et al. 2017; Shih et al. 2017). Photovoltaic devices are required as a part of a long-term global energy strategy. The energy research community has been paying close attention to perovskite solar cells as their has improved PCE day by day. Efficiency of this cell was relatively low at the initial time. But recently PSC’s state of art certified PCE has a success rate of more than 25% (Shih et al. 2017; Kojima et al. 2009a, 2009b; Gao et al. 2018). Again, these perovskite materials have unique properties such as a high absorption coefficient, good charge carrier mobility, low exciton binding energy, and long charge carrier diffusion length (Kojima et al. 2009b; Lyu et al. 2017; Stranks et al. 2013; Su et al. 2014). As a result, it is indispensable to work on it. The photovoltaic effect can be used to transform this energy into electricity (Weiss et al. 2016). It is, however, a cheap and clean source of energy, and as a result, it has dominated the photovoltaic market for Si-based solar cells (Noel et al. 2014). Because of their excellent solar cell PCE, researchers investigated pure and modified methyl ammonium lead halide as a perovskite material (Burschka et al. 2013; Lee et al. 2012). Lead-based electronic equipment, on the other hand, have been strictly regulated by the European Union and other countries. The power conversion efficiency of these materials was extremely high. Lead, on the other hand, is not environmentally friendly and is damaging to both individuals and environment (Liu et al. 2019; Caputo et al. 2019; Los et al. 2020; Guo et al. 2017; Li et al. 2018; Noh et al. 2013; You et al. 2014; Etgar et al. 2012).

To address this issue, several scientists and researchers have looked into the lead-free perovskite CH$_3$NH$_3$SnI$_3$ as a photovoltaic material due to the excellent optoelectronic capabilities. This material has a direct band gap of 1.3 eV, lying in the range of the absorber. Several group of researchers have succeeded in fabricating organic–inorganic perovskite solar cells based on CH$_3$NH$_3$SnI$_3$. In this work we develop organic–organic echo friendly perovskite solar cells using two organic HTMs (Spiro-OMeTAD, PEDOT:PSS). The electron transport material (HTM) is an important part of the PSC. The proper energy level for electron injection, strong electron mobility, chemical stability, low synthesis cost, and environmental friendliness make TiO$_2$ an attractive candidate material (Guo et al. 2019; Yang et al. 2019; Yu et al. 2016a; Bera et al. 2014). The band gap of TiO$_2$ material is appropriate for reducing the transmission of holes (Zhou et al. 2019). In PSC, the hole transport material is crucial for achieving high PCE. For minimum recombination of charge carriers at the interface, HTM requires higher value hole carrier mobility with fewer defects at the HTM/absorber layer. Cu$_2$O as an HTM has recently been reported by Yu et al. to have strong hole mobility and appropriate energy level configuration with CH$_3$NH$_3$SnI$_3$ and photo-generated charges with higher life time (Yu et al. 2016a). It lowers the metal contact barrier height and lowers minority recombination loss at the anode. Because of this Cu$_2$O is employed as an HTM. P Swaicka-Chudy et al. reported that as a HTM layer CuO provided better efficiency in solar cell than Cu$_2$O (Sawicka-Chudy et al. 2019). Because of this we have chosen CuO as a HTM.
In this solar cell structure absorber layer is sandwiched between ETM and HTM where FTO and Au used as front and back electrode. A TiO₂ layer is utilized as an ETL towards the front electrode. Organic HTM is a Spiro-OMeTAD layer above the absorber that blocks electrons while allowing holes to flow towards the back electrode. Among all the organic HTM materials Spiro-OMeTAD is the most frequently used and benchmark material for high PCE solar cells. This is owing to CH₃NH₃SnI₃ perfect energy band alignment and great transparency of visible light (Jeyakumar et al. 2019). HTM not only aids hole conveyance, but it also prevents the contact between the back electrode and the absorber. The likely hood of collecting holes is determined by the thickness of HTM. As a result for high PCE solar cell HTM thickness optimization is required.

The conductivity of spiro-OMeTAD is about 3.5 × 10⁻⁷ S/cm (Vivo et al. 2017) which is quite low. However, the conductivity of p-type spiro-ometad is higher than that of intrinsic Spiro-ometad. When spiro-OMeTAD is utilised, high Jsc and Voc are obtained, indicating that Spiro-OMeTAD has a high charge collection efficiency. The quasi-Fermi level difference between ETM (TiO₂) and HOMO level of HTM (Spiro-OMeTAD) is responsible for the higher value of Voc (Reddy et al. 2016). Voc can be increased by lowering the HOMO energy level. Using Spiro-OMeTAD we have achieved a high FF with low series resistance (R₀) and high shunt resistance (Rsh).

Fill factor (FF), R₀, and PCE are all determined by the thickness of the absorber, ETL, and HTL. Around 120 nm of compact TiO₂ is adequate for ETL. As a result of our prior findings, we may conclude that when thickness of the TiO₂ layer grows, then cell’s R₀ grows. As a result, light transmission through TiO₂ diminishes. The latter diminishes Jsc and PCE by affecting photogeneration in the perovskite layer. Fill factor falls as series resistance rises, and PCE suffers as a result. In addition, our research indicated that a doping density of 10¹⁸ /cm³ was appropriate for high fill factor TiO₂. Various thicknesses are reported for perovskite (absorber) and HTM layers, and an optimal value for each layer is necessary. A thick (> 1000 nm) perovskite layer results in reduced hole collection efficiency due to an increase in R₀ and recombination inside the perovskite layer. A very thin (< 100 nm) perovskite layer causes low photocurrent because of less photo absorption. The probability of recombination is reduced since holes travel a shorter distance to reach the back electrode, device performance is improved when a thinner HTM (0.1–10 nm for Spiro-OMeTAD) is utilised. Despite this, an extremely thin HTM reduces the device’s repeatability and stability because the counter electrode can penetrate through the HTM and touch the perovskite layer, shunting the device. But if we use a HTM of higher thickness which uniformly cover the rough perovskite layer, but it increases R₀ and lowers μh. Furthermore, because CH₃NH₃SnI₃ contains crystallites, perovskite crystals can protrude through the HTM and contact the back electrode if a very thin HTL is utilised. To achieve a flat surface, HTL must be of an appropriate thickness which can cover the crystallites without altering the cell’s R₀ (Bag et al. 2020). Moreover, a good HTM thickness improves the chances of collecting holes. If the layers are deposited using a spin-coating approach, the thickness of the layers can be adjusted by changing the spin-coating speed. To tune fill factor, energy band alignment, carrier concentration, and PCE, suitable doping in the CH₃NH₃SnI₃ absorber and Spiro-OMeTAD is necessary. In the absorber layer, dopants such as Mg, Na, Sn etc. were utilised (Yang et al. 2018; Chang et al. 2019; Tang et al. 2017). The Mg dopant in CH₃NH₃SnI₃ lowered the conduction band and valance band levels to those of TiO₂ conduction band and Spiro-OMeTAD valance band, respectively. Magnesium doping enhanced the grain size, resulting in a pinhole-free film (Bag et al. 2020). The grain size of CH₃NH₃SnI₃ was similarly enhanced by sodium doping, and pinhole-free films were formed. Doping with tin is less difficult than doping with bismuth or
titanium. The CH$_3$NH$_3$SnI$_3$ band gap can be changed by changing the Sn doping concentration (Bag et al. 2020).

Spiro-OMeTAD is commonly utilised for hole transfer. The impact of Spiro-OMeTAD and CH$_3$NH$_3$SnI$_3$ layer thickness and doping density on solar cell characteristics is investigated in this paper. With the cell design of FTO/ETM/perovskite absorber/HTM/Au, its impact on solar cell characteristics is examined. High PCE solar cells are created via device modelling, which involves selecting an appropriate HTM and fine-tuning variables such as HTM thickness and doping density, as well as the active layer thickness and doping density. For this purpose we have used four different HTMs (Spiro-OMeTAD, PEDOT:PSS, CuO and Cu$_2$O). In results and discussion section, we present our findings.

2 Device structure and simulation details

SCAPS 1d software was used to perform a simulation of a Sn-based lead-free perovskite solar cell in this study. This simulation was carried out with a 1000 W/m2 light source. We have investigated this study at 300 K and an air mass of AM 1.5G. In the configuration of the reported solar cell HTM is p-type CuO (variable), the absorber layer is CH$_3$NH$_3$SnI$_3$, and the n-type TiO$_2$ as an ETM, it’s used. In addition, FTO was chosen as the contact material, while anodes made of Ag, Cu, Au, and Pt were chosen.

Tables 1 and 2 summarise material parameters derived from previous literature (Du et al. 2016; Lazemi et al. 2018; Lin et al. 2019a). As shown in Table 1, the thickness of FTO (500 nm), TiO$_2$ (120 nm), and CuO (100 nm variable) were initially tuned for high PCE. Experimental results (Noel et al. 2014; Sawicka-Chudy et al. 2019; Oku et al. 2014; Yu et al. 2016b; Dai et al. 2010; Jahantigh and Safikhani 2019) were used to calculate the absorption coefficients of FTO, CuO, Cu$_2$O, Spiro-OMeTAD, PEDOT:PSS, CH$_3$NH$_3$SnI$_3$, and TiO$_2$.

3 Results and discussion

The energy band alignment and J-V graph of the reported PSC were displayed in Fig. 1a–b, respectively. For this, the used parameters shown in Tables 1 and 2. Inside the absorber layer, electron–hole pairs are formed after illumination. Electrons and holes travel towards ETL and HTL, respectively, due to the junction field. The cathode and anode collect the electrons and holes, respectively, and form a voltage. Using the initial electrical parameters the obtained values of J_{sc}, Voc, FF and PCE are 27.23 mA/cm2, 0.854 V, 71.08% and 16.54% respectively. We have determined the device’s J_{sc} by the active material’s absorption coefficient, thickness, and mobility. The photo current will be higher if the absorption coefficient is higher (Kojima et al. 2009b; Stranks et al. 2013; Du et al. 2016; Lin et al. 2019a; Hao et al. 2014). The thickness of the absorber is the second crucial factor. It must be thick enough to absorb the incident solar radiation’s greatest cut off wavelength (Lazemi et al. 2018; Lin et al. 2019a). Apart from that, movement is quite important for achieving a high Jsc. After illumination, the Jsc should be equivalent to solar cell current. For CH$_3$NH$_3$SnI$_3$ samples synthesised by open tube technique, Ma et al. and Stoumpos et al. showed extremely high value of μ_e (2000 cm2/Vs) and μ_h (300 cm2/Vs) (Ma et al. 2016; Stoumpos et al. 2013). Lazemi et al. used similar values of carrier mobilities and reported a high value of J_{sc} (37 mA/cm2) (Oku et al. 2014). The mobility of electrons and holes in this
Table 1 The optoelectronic simulation parameters

Parameters	FTO	TiO₂(ETM)	CH₃NH₃SnI₃ (absorber)	Cu₂O	CuO	Spiro-OMeTAD	PEDOT:PSS
Thickness(nm)	500	120	800 (variable)	300	800	10 (variable)	300
Eg (eV)	3.4	3.2	1.3	2.17	1.51	3.06	2.2
X (eV)	4.5	4.1	4.17	3.2	4.07	2.05	3.6
εᵣ	9.1	9.0	8.2	7.1	18.1	3	10
Nᵥ (cm⁻³)	1.1×10¹⁹	2.2×10¹⁸	1×10¹⁸	2×10¹⁷	2.2×10¹⁹	2.8×10¹⁹	10¹⁹
Nᵥ (cm⁻³)	1.1×10¹⁹	1.8×10¹⁹	1×10¹⁸	1.1×10¹⁹	5.5×10²⁰	10¹⁹	10¹⁹
μᵥ (cm²/Vs)	20	0.05	2000	200	100	10⁻⁴	100
μᵥ (cm²/Vs)	10	0.05	300	80	0.1	2×10⁻⁴	0.4
Nᵥ (cm⁻³)	1.1×10¹⁹	1×10¹⁸	0	0	0	0	0
Nᵥ (cm⁻³)	0	0	1×10¹⁴ (variable)	1×10¹⁸	10¹⁸	10¹⁸	10¹⁸
Vᵥ (cm⁻¹)	10⁷	10⁷	10⁷	10⁷	10⁷	10⁷	10⁷
Vᵥ (cm⁻¹)	10⁷	10⁷	10⁷	10⁷	10⁷	10⁷	10⁷
A. K. Das et al.

Simulation was based on research published recently (Lazemi et al. 2018; Hao et al. 2014; Ma et al. 2016; Stoumpos et al. 2013). The high value of J_{sc} was reached because current density is linearly related to charge carrier mobility. Devi et al. (Devi and Mehra 2019)

Table 2 Parameters for the defects

Parameters	TiO$_2$(ETM)	CH$_3$NH$_3$SnI$_3$	CuO
Defect type	Neutral	Neutral	Neutral
σ_n	1×10^{-15}	2.5×10^{-15}	1×10^{-15}
σ_p	1×10^{-15}	8.5×10^{-15}	1×10^{-15}
Energy distribution	Single	Gaussian	Single
Energy level with respect to E_V (above E_V) (eV)	0.6	0.65	0.1
Characteristic energy	–	0.1	–
N_t (cm$^{-3}$)	1×10^{14}	1×10^{16} (variable)	1×10^{14}

Fig. 1 a Energy band diagram and b J vs V

simulation was based on research published recently (Lazemi et al. 2018; Hao et al. 2014; Ma et al. 2016; Stoumpos et al. 2013). The high value of J_{sc} was reached because current density is linearly related to charge carrier mobility. Devi et al. (Devi and Mehra 2019)
and Khattak et al. (Khattak et al. 2019), on the other hand, used substantially lesser and identical values of μ_e (1.6 cm2/Vs) and μ_h (0.16 cm2/Vs) and reported good J_{SC} (30 mA/cm2) results. Again, we found in some previous experimental literature that diffusion length is directly proportional to the mobility’s square root (Minemoto and Murata 2015). As a result, for high charge carrier mobility, diffusion length increases, and recombination of charge carriers reduces. There could be different causes for the greater J_{SC} when compared to recently published data (Devi and Mehra 2019; Khattak et al. 2019). The performance of the reported PSC is promising and reliable with the Sn-based PSC (Yang et al. 2019; Bera et al. 2014). It is feasible to improve photovoltaic performance even more. PSC’s energy band diagram is shown on Fig. 1a. At the absorber/ETL contact, we have observed a positive value of CBO which is roughly 0.35 eV. This positive spike blocks the flow of Photo-generated electrons towards the electrode (Minemoto and Murata 2015; Klenk 2001; Gloeckler and Sites 2005).

3.1 Absorber thickness

The thickness of the absorber, as indicated in Fig. 2, is a limiting parameter for cell performance. The absorber layer thickness can be adjusted to improve cell efficiency. Photon absorption and carrier collection have a reciprocal relationship in planar solar cells. The thickness of the absorber in this reported PSC ranged from 100 to 4000 nm. Photo
generated current is minimal for 100 nm thin absorber layer. Charge extraction, on the other hand, is high, as demonstrated by the high V_{oc}, which indicates less recombination.

Figure 2a, shows the increment of J_{sc} with absorber thickness due to better light absorption. It immediately climbs from 26.2 mA/cm2 to 34.56 mA/cm2 for an increment of thickness from 100 to 1000 nm, then decreases until all light is absorbed, at which point it saturates at 35 mA/cm2. J_{sc} is quite low around 100–200 nm due to decreased absorption, and utilising thicker (> 1000 nm) sheets has no benefit. The maximum value of J_{sc} (~ 35 mA/cm2) observed for a thickness of 1000 nm is mostly owing to the perovskite’s high value of absorption coefficient (Lin et al. 2019a). As a result, a 800–1000 nm absorber thickness is appropriate. Since R_s of the PSC increases, the fill factor falls with thickness. But a thick absorber surpasses the diffusion length and charge carriers are recombine.

Our findings demonstrate that the increase in J_{sc} of the PSC is just 6.25% when comparing thicknesses of 400 nm and 1000 nm. This signifies that, while more charge carriers are generated as a result of increased absorption, a thicker cell’s collection efficiency is reduced because of high recombination, as a result there is a decrease in V_{oc}. This decrease in V_{oc} with shown in Fig. 2b is linked to a decrease in the effective band gap and an increase in recombination (Lazemi et al. 2018). A decrease in V_{oc} as thickness grows could be owing to increased recombination. Increasing absorber thickness, a modest decrease in FF (Fig. 2c) indicates a raise in R_s in the PSC (Lin et al. 2019a). Cell efficiency (Fig. 2d) grows gradually until it reaches 1000 nm absorber thickness due to J_{sc} alone, while efficiency saturation is due to both absorption and J_{sc}. Due to small absorption of light and reduced photogeneration, efficiency around 100 nm is low. Because of the highest absorption of light beyond 1000 nm, PCE remains steady at 28.45%, as indicated by constant J_{sc}. From a non-optimized efficiency of 22.47 percent, an optimised thickness of 1000 nm increased efficiency to 28.45 percent. Adjusting the absorber thickness to 700–1000 nm results in excellent efficiency, according to our simulation.

3.2 Acceptor carrier concentration (NA) of CH$_3$NH$_3$SnI$_3$

Apart from the CH$_3$NH$_3$SnI$_3$ layer thickness, the acceptor density of holes in the perovskite layer has a considerable impact on the device performance of photovoltaic cells. Sn$^{2+}$ is transformed to Sn$^{4+}$ when the device is exposed to air in CH$_3$NH$_3$SnI$_3$ oxides. But, this procedure degrades the device’s PCE and converts it to a p-type semiconductor (Ma et al. 2016). The formation of Sn$^{2+}$ to Sn$^{4+}$ is inhibited by the addition of SnO$_2$ (Noel et al. 2014; Hao et al. 2014; Zhao et al. 2017). Feng et al. used Hall-effect measurement to calculate the dark carrier density of 10^{14} cm$^{-3}$ to 10^{17} cm$^{-3}$ (Hao et al. 2015). The hole concentration in this perovskite layer can be adjusted up to 10^{19} cm$^{-3}$, according to Takashi et al. (Takahashi et al. 2013). As a result, the acceptor density of our reported perovskite layer was changed from 10^{14} cm$^{-3}$ to 10^{19} cm$^{-3}$ to see how acceptor doping concentration influences photovoltaic characteristics.

Cell characteristics for varied acceptor density in the CH$_3$NH$_3$SnI$_3$ layer are shown in Fig. 3a and b. For a very high acceptor density (> 10^{19}/cm3), Auger recombination can be highly relevant. The device’s V_{bi} can increase as the doping level rises above 10^{14}/cm3. Strong V_{bi} enhances photogenerated carrier separation and cell efficiency. Nonetheless, a high level of doping promotes Auger recombination and lowers V_{oc}. As a result, the maximum acceptor density in the perovskite layer in our study was set to 10^{18}/cm3. In addition, due to a high recombination rate, very high p-type doping levels in the perovskite layer can restrict hole transportation from the absorber to the HTL. In our situation, the doping
density isn’t particularly great, hence no change in J_{sc} or Voc was detected. Simultaneously, increasing the acceptor density from 10^{14} \text{ cm}^{-3} to 10^{19} \text{ cm}^{-3} can develop the better device’s V_{bi}. This high V_{bi} forces the charge carriers towards the electrodes and boosts the charge collection efficiency and FF. As a result, cell performance improves with doping density. Our findings demonstrate that for N_A = 10^{14} /\text{cm}^3 to 10^{18} /\text{cm}^3 there is a continuous increase in FF and PCE, and then for N_A = 10^{19} /\text{cm}^3 FF and PCE decline rapidly from 81.26 to 62.17 and 28.30 to 22.81, respectively. So the optimized value of N_A of absorber layer is 10^{18} /\text{cm}^3.

3.3 Defect density (N_t) at absorber

We also examined the influence of absorber defect density was. In the absorber layer, defects are unavoidable. They can be found both in the bulk and on the surface. Defects in the perovskite absorber layer that appear as point defects include lattice vacancies, interstitial, Schottky, and Frenkel defects. The impurity defect in the absorber layer is caused by the self-doping process (Noel et al. 2014; Hao et al. 2014, 2015; Ma et al. 2016). Deep or shallow levels in the energy band gap are introduced by these defects (Lee et al. 2018). Charge carriers can trap and enhance nonradiative electron–hole recombination as a result of these imperfections (Du et al. 2016; Lazemi et al. 2018). The diffusion length of charge carriers in Sn-based perovskite absorber layers can be extended up to ~3 \text{ \mu m} by employing a tin-reduced precursor solution (Lin et al. 2019b). Because charge carrier diffusion length is proportional to defect density (Devi and Mehra 2019). To investigate the influence of electron diffusion length on photovoltaic responses, the defect density was changed from 10^{18} to 10^{14} \text{ cm}^{-3} (Minemoto and Murata 2014) and the electron diffusion length was adjusted from 0.046 to 4.6 m. Lazemi et al. and some other researchers (Du et al. 2016; Lazemi et al. 2018; Hao et al. 2014) have all used a similar change in defect density. The defect density was altered from 10^{14} to 10^{16} \text{ cm}^{-3} based on these research, and its influence on photovoltaic characteristics of the reported perovskite solar cell was displayed in Fig. 4. It was discovered that as the defect density was reduced, the device’s performance improved. The initial N_t of the perovskite layer was adjusted at 1 \times 10^{16} \text{ cm}^{-3}. Because the diffusion length of electrons and holes for this N_t value is almost identical to empirically reported values (Yu et al. 2016a). The cell performance is greatly enhanced when the

![Fig. 3 Influence of absorber doping density on a PCE and b J_{sc}](image-url)
defect density is 10^{14} per cm$^{-3}$, with the values of J_{sc}, V_{oc}, FF and PCE are 34.17 mA/cm2, 0.999 V, 80.68% and 27.54% respectively. Now, Nt has decreased even further, from 10^{14} to 0.5×10^{14} cm$^{-3}$, with little variations in J_{sc} and FF, but significant changes in V_{oc} and PCE.

3.4 Metal work function

A work function research was conducted using various anode materials to investigate the ohmic or rectifying behaviour at the metal/HTM junction. For PSC simulations, different metals such as Ag (4.74 eV), Cu (5.0 eV), Au (5.1 eV), and Pt (5.7 eV) were used as anodes (Kevin et al. 2011; Ming et al. 2018). Figure 5a,b shows the energy band alignment for different work function’s metals as anode. As can be seen, the hole barrier layer grows as the work function of the contact materials decreases. The influence of the anode material on FF and PCE of the reported Perovskite solar cell PSC is shown in Fig. 5c,d. We can see that as the work function of the anode is reduced, PCE decreases. When the work function of the anode is less than CuO’s work function, a rectifying Schottky barrier contact forms at the anode/CuO interface. As seen in Fig. 5a, this barrier obstructs the conduction of hole towards anode and lowering the fill factor with PCE. When the anode’s work function is greater than the CuO’s work function, an ohmic contact is produced at the anode/CuO.
Fig. 5 a Energy band alignment of the PSC for low work function Ag as anode, b EB of the PSC for high work function Pt as anode, c FF vs anode work function and d PCE vs work function
junction. The hole transport at that interface is enabled by this ohmic contact. As a result, J_{sc} and PCE are showing signs of improvement (Fig. 6).

3.5 Effect of HTM thickness

We have employed four distinct HTMs (CuO, Cu$_2$O, spiro-OMeTAD and PEDOT:PSS) and their thickness varying from 1 to 800 nm to investigate the effect of HTM thickness on optoelectronic capabilities. Except for Spiro-OMeTAD, we found that HTM thickness has no effect on optoelectronic properties of the PSC. Figure 7 depicts the role of HTM (spiro-OMeTAD) thickness. HTM thickness affects cell performance in the same way that absorber thickness does. For high efficiency, a thickness of around 1–100 nm is optimal. With a thickness of 10 nm, the highest value of Voc, J_{sc}, FF, and PCE were 1.011 V, 34.38

Fig. 6 3D plot of PCE for CuO as HTM

Fig. 7 Represents the variation of PCE with thickness and N_A of spiro-OMeTAD

 Springer
mAcm⁻², 80.85%, and 28.10%, respectively. This suggests that the device has good charge transfer, less recombination, a high FF, and low Rs. HTM may not completely cover up the projecting perovskite crystals which are present in the perovskite layer if the thickness is less than the optimum thickness. Our simulated results reveal that no HTM, as well as less than 10 nm or more than 100 nm, is ideal for high PCE. V_{oc} reaches saturation and is independent of thickness when the HTM thickness is less than 10 nm. The device’s V_{oc} and recombination are linked. V_{oc} can be influenced by factors that influence recombination, and this is true whether the HTM is thin (less than 10 nm) or not. A change in series resistance is indicated by a change in fill factor with HTM (spiro-OMeTAD) thickness. When the HTM thickness is increased from 0.1 nm to 10 nm, the fill factor rises to 80.85% and cell efficiency rises to 28.10%. When the thickness is increased to 800 nm, the FF and PCE are reduced to 73.19% and 25.46%, respectively. Because the path length of photo generated carriers to reach the bottom electrode is increased, raising Rs. A thin HTM (< 10 nm) does not completely cover the perovskite layer, increasing the likelihood of recombination. When the HTM thickness increases from 0.1 to 10 nm, the fill factor improves due to increased coverage. As a result of the rise in Rs with the thickness of HTL, the FF decreases.

3.6 Effect of secondary doping

By adding fresh dopants to the HTM, we may change the hole concentration, which has a secondary doping role in modifying the conductive polymer conduction. As a result, we investigated the effects of hole concentrations in the range of 10¹⁴–10¹⁹ cm⁻³ on the photovoltaic parameters of the PSC, and the findings are shown in Fig. 7. In general, polymer doping is done to enhance charge carrier density and μh. However, a large quantity of doping reduces μh. As a result, the secondary doping density must be tuned such that the cell’s performance is not harmed. We can only raise the efficiency of the Spiro-OMETAD HTM based PSC by increasing the hole density. Acceptor concentration was tuned from 10¹⁴ to 10¹⁹ /cm³ to explore the effect of HTL doping density, and the results are presented in Fig. 7. Because of improvements in conductivity of HTL, the fill factor improves to 80.85. Fill factor reaches to this maximum value when the doping density is 1 × 10¹⁸ cm⁻³. When the acceptor doping level was equivalent to 10¹⁸ cm⁻³, we were able to attain a high PCE of 28.10% with V_{oc}, J_{sc}, and FF of 1.011 V, 34.38 mAcm⁻², and 80.85%. Finally, Fig. 8 shows the optimized J vs V characteristics of a spiro-OMeTAD HTM based PSC.

3.7 Effect of temperature

Another key aspect that affects the performance of PSC is temperature. The temperature of the PSC rises with absorption of light, thus temperatures are frequently greater than 300 K. In this work, we varied a temperature from 300 to 360 K and plotted the photovoltaic parameters against it (Fig. 9). Where increasing the temperature lowers the V_{oc} and PCE. But increasing temperature increases FF and Jsc. The efficiency of all samples decreased as the temperature increased, which could be explained by the fact that at higher temperature, the electron absorbs more energy and goes to an unstable state, which increases the rate of recombination and lowering the PCE of the PSC (Mehmood et al. 2017; Jamalullail et al. 2018).
Fig. 8 J vs V characteristics of lead-free Perovskite solar cell using Spiro-OMeTAD as HTM

\[
\begin{align*}
V_{oc} &= 1.01 \text{ V} \\
J_{sc} &= 34.38 \text{ mA/cm}^2 \\
\text{FF} &= 80.84 \% \\
PCE &= 28.10 \% \\
V_{MP} &= 0.849 \text{ V} \\
J_{MP} &= 33.057 \text{ mA/cm}^2
\end{align*}
\]

Fig. 9 Impact of temperature on (a) Jsc, (b) Voc, (c) FF and (d) PCE for CuO based PSC
3.8 External Quantum efficiency

The ratio of the number of captured carriers to the number of incident photons is one of the solar cell’s figures of merits, and it is characterized as external quantum efficiency (EQE). Figure 10 shows the quantum efficiencies of various HTMs. This diagram is drawn in the 300–900 nm wavelength range. The EQE increases at wavelengths larger than 300 nm, peaks about 400 nm, and then steadily drops after 700 nm. Because the EQE diagrams for all of the HTMs are so similar, we can conclude that the HTM has no bearing on the EQE of these perovskite solar cells.

3.9 Comparative study

We picked two organic and two inorganic HTMs to construct four distinct PSCs for a comparative investigation. The PSC structure is unchanged in this investigation; only the HTM layer is altered. We picked a thickness of 300 nm for all HTM layers in this work. Table 3 summarizes the simulation findings, which indicate the impact of HTM layers on PSC performance. This demonstrates that CuO outperforms all other HTM in terms of efficiency. The spiro-OMeTAD HTM based PSC has a 28.10% efficiency in the optimal condition, with V_{oc}, J_{sc}, and FF values of 1.011, 34.38, and 80.85, respectively. The device’s
J_{sc} is determined by the active material’s absorption coefficient, thickness, and mobility. The photo current will be higher if the absorption coefficient is high. The thickness of the absorber is the second crucial factor. It must be thick enough to absorb the incident solar radiation’s greatest cutoff wavelength. Apart from that, movement is quite important for achieving a high J_{sc}. The high value of J_{sc} was reached because current density is linearly related to charge carrier mobility. Another feature is that diffusion length is related to mobility’s square root (Minemoto and Murata 2015). As a result, for high charge carrier mobility, diffusion length increases, and recombination of charge carriers reduces. There could be other explanations for J_{sc}’s substantially higher worth. The Fermi energy level of the hole lowers as the acceptor doping concentration increases, and hence V_{oc} rises. Another point to consider is that when the acceptor doping concentration rises, so does the built-in potential. As a result, charge separation improves, and V_{oc} rises.

Sn-based perovskite has oxidation problem. Sn^{2+} is transformed to Sn^{4+} (self-doping process) when the device is exposed to air in CH$_3$NH$_3$SnI$_3$ oxides. Unfortunately, this procedure degrades the device’s performance. The formation of Sn^{2+} to Sn^{4+} is inhibited by the addition of SnO_2 (Noel et al. 2014; Devi and Mehra 2019; Lee et al. 2018). If a modest amount of the tetra-n-butylammonium (TBA) cation is doped in Sn-based perovskite, the film defects are successfully passivated. In mixed perovskite films, TBA cation doping improves surface coverage, suppresses Sn^{2+} to Sn^{4+} oxidation, and lowers background charge carrier density (Li et al. 2020). The high value of PCE produced in this study is achieved by optimising acceptor carrier concentration, defect density, and metal work function.

4 Conclusion

The Scaps-1d simulator was used to simulate a planar type lead free perovskite solar cell in this study. Several criteria, including perovskite layer thickness, N_A of absorber, N_t at absorber, and work function of anode, were used to optimize photovoltaic characteristics. The absorber and HTM thicknesses and doping densities were changed to see how they affected V_{oc}, J_{sc}, fill factor, and efficiency. Cell efficiency rose from 22.47% to 28.45% depending on perovskite layer thickness between 100 and 1000 nm, owing primarily to an increase in J_{sc} from 26.26 mAcm$^{-2}$ to 34.56 mAcm$^{-2}$. J_{sc} and PCE increase more slowly beyond 700 nm and saturate at 1000 nm due to saturated light absorption. Because photo generated charge carriers generated at the layer’s centre will recombine when the thickness surpasses the diffusion length, long wavelength photon absorption due to band gap decrease in thicker films will be useless. The rise in J_{sc} between 400 and 850 nm is only 6.2%, yet the increase in absorption is 18%. This demonstrates that not all produced carriers reach their intended electrodes. According to our findings, a perovskite layer thickness of 800 to 1000 nm is adequate for device application, and there is no benefit to using a thicker layer. Cell characteristics are also influenced by HTL thickness and secondary doping.

We investigated the performance of lead-free PSCs made from two organic and two inorganic HTMs in this work. Our findings demonstrate that among polymer HTMs, PEDOT:PSS with PCE of 28.43% outperforms Spiro-OMeTAD with a 28.10% efficiency. Furthermore, CuO, with a photovoltaic efficiency of 28.45%, outperforms Cu$_2$O, which has a PCE of 28.34% among inorganic HTMs. The capacity to apply secondary doping and build flexible solar cells is a significant benefit of organic HTMs. In terms of secondary
doping in conductive polymers, we can conclude that secondary doping in Spiro-OMeTAD can effectively boost efficiency.

Acknowledgements Dr. Marc Burgelman of University of Gent provided the SCAPS 1d simulator, which the authors gratefully acknowledge.

Author contributions AKD was in charge of all experimental activities, data collection and analysis, and the first draught of the manuscript. The final version of the manuscript was approved. The manuscript was revised by Dr. RM. Dr. DKM revised the manuscript and gave his approval to the final version.

Funding There is no funding agency for this study.

Data availability On reasonable request, the corresponding author will provide the datasets generated during the current work.

Declarations

Conflict of interest There are no conflicts of interest declared by the authors.

References

Bag, A., Radhakrishnan, R., Nekovei, R., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)
Bera, A., Wu, K., Sheikh, A., Alarousu, E., Mohammed, O.F., Wu, T.: Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118(49), 28494–28501 (2014)
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)
Caputo, M., Cefarin, N., Radivo, A., Demitri, N., Gigli, L., Plaisier, J.R., Panighel, M., et al.: Electronic structure of MAPbl3 and MAPbCl3: Importance of band alignment. Sci. Rep. 9(1), 1–11 (2019)
Chang, C., Zou, X., Cheng, J., Yang, Y., Yao, Y., Ling, T., Ren, H.: NaI doping effect on photophysical properties of organic-lead-halide perovskite thin films by using solution process. Advan. Mater. Sci. Eng. 2019, 1–9 (2019)
Dai, S., Wu, Y., Sakai, T., Du, Z., Sakai, H., Abe, M.: Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethylammonium bromide nanoskeleton. Nanoscale Res. Lett. 5(11), 1829–1835 (2010)
De Los, S., Montoya, I., Cortina-Marrero, H.J., Ruiz-Sánchez, M.A., Hechavarría-Difur, L., Sánchez-Rodríguez, F.J., Courel, M., Hu, H.: Optimization of CH3NH3PbI3 perovskite solar cells: a theoretical and experimental study. Sol. Energy 199, 198–205 (2020)
Devi, C., Mehra, R.: Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide). J. Mater. Sci. 54(7), 5615–5624 (2019)
Du, H.-J., Wang, W.-C., Zhu, J.-Z.: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 25(10), 108802 (2016)
Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., Grätzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012)
Gao, F., Li, C., Qin, L., Zhu, L., Huang, X., Liu, H., Liang, L., et al.: Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate. RSC Adv. 8(25), 14025–14030 (2018)
Gloeckler, M., Sites, J.R.: Efficiency limitations for wide-band-gap chalcopyrite solar cells. Thin Solid Films 480, 241–245 (2005)
Guo, N., Zhang, T., Li, G., Xu, F., Qian, X., Zhao, Y.: A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond. 38(1), 014004 (2017)
Guo, Y., Xue, Y., Li, X., Li, C., Song, H., Niu, Y., Liu, H., Mai, X., Zhang, J., Guo, Z.: Effects of transition metal substituents on interfacial and electronic structure of CH3NH3PbI3/TiO2 interface: a first-principles comparative study. Nanomaterials 9(7), 966 (2019)
Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–
inorganic halide perovskite solar cells. Nat. Photon. 8(6), 489–494 (2014)
Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P.H., Kanatzidis, M.G.: Solvent-
mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445–11452 (2015)
Huang, H.-H., Shih, Y.-C., Wang, L., Lin, K.-F.: Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH3 NH3 PbI3 nanocomposite as photoactive layer. Energy Environ. Sci. 12(4), 1265–1273 (2019)
Jahantigh, F., Safikhani, M.J.: The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study. Appl. Phys. A Mater. Sci. Process. 125(4) (2019).
Jamalulail, N.U.R.N.A.E.I.M.A.H., Salwani-Mohamad, I.L.I., Natashah-Norizan, M.O.H.D., Mahmed, N.O.R.S.U.R.I.A.: The effect of temperature on anatase TiO2 photoanode for dye sensitized solar cell. In Solid State Phenomena, vol. 273, pp. 146–153. Trans Tech Publications Ltd (2018)
Jeyakumar, R., Bag, A., Nekovei, R., Radhakrishnan, R.: Interface studies by simulation on methylam-
monium lead iodide based planar perovskite solar cells for high efficiency. Sol. Energy 190, 104–111 (2019)
Kevin, M., Ong, W.L., Lee, G.H., Ho, G.W.: Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011)
Khattak, Y.H., Baig, F., Toura, H., Beg, S., Soucase, B.M.: CZTSe kesterite as an alternative hole trans-
port layer for MASnI3 perovskite solar cells. J. Electron. Mater. 48(9), 5723–5733 (2019)
Klenk, R.: Characterisation and modelling of chalcopyrite solar cells. Thin Solid Films 387(1–2), 135–140 (2001)
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensi-
tizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009a)
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensi-
tizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009b)
Lazemi, M., Asgharizadeh, S., Bellucci, S.: A computational approach to interface engineering of lead-
free CH 3 NH 3 SnI3 highly-efficient perovskite solar cells. Phys. Chem. Chem. Phys. 20(40), 25683–25692 (2018)
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)
Lee, Y.M., Maeng, I., Park, J., Song, M., Yun, J.-H., Jung, M.-C., Nakamura, M.: Comprehensive under-
standing and controlling the defect structures: An effective approach for organic-inorganic hybrid perovskite-based solar-cell application. Front. Energy Res. 6, 128 (2018)
Li, X., Yang, J., Jiang, Q., Lai, H., Li, S., Xin, J., Chu, W., Hou, J.: Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability. ACS Nano 12(6), 5605–5614 (2018)
Li, Y., Cole, M.D., Gao, Y., Emrick, T., Xu, Z., Liu, Y., Russell, T.P.: High-performance perovskite solar cells with a non-doped small molecule hole transporting layer. ACS Appl. Energy Mater. 2(3), 1634–1641 (2019)
Li, J., Hu, P., Chen, Y., Li, Y., Wei, M.: Enhanced performance of Sn-based perovskite solar cells by two-dimensional perovskite doping. ACS Sustain. Chem. Eng. 8(23), 8624–8628 (2020)
Lin, L., Jiang, L., Li, P., Fan, B., Qiu, Y.: A modeled perovskite solar cell structure with a Cu2O hole-
transporting layer enabling over 20% efficiency by low-cost low-temperature processing. J. Phys. Chem. Solids 124, 205–211 (2019a)
Lin, R., Xiao, K., Qin, Z., Han, Q., Zhang, C., Wei, M., Saidaminov, M.I., et al.: Monolithic all-per-
vskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (ii) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019b)
Lipomi, D.J., Zhenan, B.: Stretchable, elastic materials and devices for solar energy conversion. Energy Environ. Sci. 4(9), 3314–3328 (2011)
Liu, D., Li, Q., Hu, J., Jing, H., Wu, K.: Predicted photovoltaic performance of lead-based hybrid per-
vskites under the influence of a mixed-cation approach: theoretical insights. J. Mater. Chem. C 7(2), 371–379 (2019)
Lyu, M., Yun, J.-H., Chen, P., Hao, M., Wang, L.: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7(15), 1602512 (2017)
Ma, L., Hao, F., Stoumpos, C.C., Phelan, B.T., Wasielewski, M.R., Kanatzidis, M.G.: Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016)
Markose, K.K., Shaji, M., Bhatia, S., Nair, P.R., Saji, K.J., Antony, A., Jayaraj, M.K.: Novel boron-doped p-type Cu2O thin films as a hole-selective contact in c-Si solar cells. ACS Appl. Mater. Interfaces 12(11), 12972–12981 (2020)

Mehmood, U., Al-Ahmed, A., Al-Sulaaiman, F.A., Irфан-Malik, M., Shehzad, F., Khan, A.U.H.: Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 79, 946–959 (2017)

Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)

Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015)

Ming, W., Yang, D., Li, T., Zhang, L., Du, M.-H.: Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode. Adv. Sci. 5(2), 1700662 (2018)

Nocera, D.G.: Solar fuels and solar chemicals industry. Accounts Chem. Res. 50(3), 616–619 (2017)

Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghhighirad, A.-A., Sadhanala, A., et al.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014)

Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

Oku, T., Yamada, T., Fujimoto, K., Akiyama, T.: Microstructures and photovoltaic properties of Zn(Al) O/Cu2O-based solar cells prepared by spin-coating and electrodeposition. Coatings 4(2), 203–213 (2014)

Reddy, S.S., Gunasekar, K., Heo, J.H., Im, S.H., Kim, C.S., Kim, D.-H., Moon, J.H., Lee, J.Y., Song, M., Jin, S.-H.: Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability. Adv. Mater. 28(4), 686–693 (2016)

Sawicka-Chudy, P., Starowicz, Z., Wisz, G., Yavorskyi, R., Zapukhlyak, Z., Bester, M., Sibiński, M., Cholewa, M.: Simulation of TiO2/Cu2O solar cells with SCAPS-1D software. Mater. Res. Express 6(8), 085918 (2019)

Shih, Y.-C., Lan, Y.-B., Li, C.-S., Hsieh, H.-C., Wang, L., Wu, C.I., Lin, K.F.: Amino-acid-induced preferential orientation of Perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance. Small 13(22), 1604305 (2017)

Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organo-metal trihalide perovskite absorber. Science 342(6156), 341–344 (2014)

Su, Y., Kravets, V.G., Song, J.L., Waters, J., Geim, A.K., Nair, R.R.: Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5(1), 1–5 (2014)

Takahashi, Y., Hasegawa, H., Takahashi, Y., Inabe, T.: Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013)

Tang, Z.-K., Xu, Z.-F., Zhang, D.-Y., Hu, S.-X., Lau, W.-M., Liu, L.-M.: Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 7(1), 1–7 (2017)

Vivo, P., Salunke, J.K., Primagi, A.: Hole-transporting materials for printable perovskite solar cells. Materials 10(9), 1087 (2017)

Weiss, M., Horn, J., Richter, C., Schllettwein, D.: Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Phys. Status Solid (a) 213(4), 975–981 (2016)

Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., et al.: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

Yang, F., Kamarudin, M.A., Kapil, G., Hirotani, D., Zhang, P., Ng, C.H., Ma, T., Hayase, S.: Magnesium-doped MAPbI3 perovskite layers for enhanced photovoltaic performance in humid air atmosphere. ACS Appl. Mater. Interfaces. 10(29), 24543–24548 (2018)

Yang, H.-W., Rho, W.-Y., Lee, S.K., Kim, S.H., Hahn, Y.-B.: TiO2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells. Nanomaterials 9(3), 326 (2019)

You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.-B., Chen, C.-C., et al.: Low-temperature solution-processed perovskite solar cells with high efficiency and stability. ACS Nano 8(2), 1674–1680 (2014)
Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., Wang, L., et al.: Ultrathin Cu$_2$O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8(11), 6173–6179 (2016a)

Yu, S., Li, L., Lyu, X., Zhang, W.: Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6(1), 1–8 (2016b)

Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z., Huang, C.: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4(11), 1700204 (2017)

Zhou, Y., Hu, J., Wu, Y., Qing, R., Zhang, C., Xu, X., Jiang, M.: Review on methods for improving the thermal and ambient stability of perovskite solar cells. J. Photon. Energy 9(4), 040901 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.