Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell–Eyring non-Newtonian fluid

Ali Akgül
Art and Science Faculty, Department of Mathematics, Siirt University, Siirt, Turkey

ABSTRACT
In this work, the boundary layer flow of a Powell–Eyring non-Newtonian fluid over a stretching sheet has been investigated by a reproducing kernel method. Reproducing kernel functions are used to obtain the solutions. The approximate solutions are demonstrated, and the proposed technique is compared with some well-known methods. Convergence analysis of the technique is presented. The accuracy of the reproducing kernel method has been proved.

1. Introduction
The investigation of flow and transport operation in non-Newtonian fluids have taken very important interest with the significance of different such fluids in the industry, chemical engineering and biological processes [1]. Additionally, the problem of boundary layer flow over a stretching sheet has many industrial implementations [2]. The connection between the shear stress and the rate of strain in such fluids are very complex. The viscoelastic properties in non-Newtonian fluids perform more strain in the resulting equations than Navier–Stokes equations. Many authors have been captivated by the flow analysis of non-Newtonian fluids [3]. A valuable and complex non-Newtonian fluid is the Powell–Eyring fluid, which has some advances over other non-Newtonian fluid models such as Powell and Eyring in some aspects [4]. Zaman et al. [5] have applied the homotopy analysis method to incompressible Powell–Eyring flow in a pipe with porous walls. Nadeem and Saleem [6] have studied on the series of solutions of an unsteady Powell–Eyring nanofluid flow about a rotating cone. Malik et al. [7] have researched mixed convection in a magnetohydrodynamic (MHD) Powell–Eyring nanofluid over a stretching sheet. Nadeem et al. [8] have studied the MHD flow of a Powell–Eyring fluid between parallel heated plates. Parand et al. [9] have investigated the laminar two-dimensional flow of an incompressible Powell–Eyring non-Newtonian fluid over a linearly stretching sheet with the indirect radial basis function (IRBF) method.

Many nonlinear differential equations do not have analytical solutions. Therefore, scientists have used numerical methods such as finite-difference method [10], finite-element method [11], spectral methods [12], and meshless methods [13] to approximate the solutions of these problems.

The main goal of this work is to apply the reproducing kernel method (RKM) using reproducing kernel functions for investigating the nonlinear differential equation of the Powell–Eyring problem, in an unbounded domain. This method has been applied to many problems successfully [14–18].

Nanofluid has been obtained to possess enhanced thermophysical features such as thermal conductivity, thermal diffusively, viscosity and convective heat transfer coefficients compared to those of base fluids like oil or water [21]. For more details see [19–31].

We consider a stretching sheet with a linear velocity \(V = \alpha \) and \(\tau \) is the distance from the slit. The shear tensor in a Powell–Eyring model is given as [4]

\[
\gamma_{ij} = \eta \frac{\partial v_i}{\partial \tau_j} + \frac{1}{\omega} \sin h^{-1} \left(\frac{1}{P} \frac{\partial v_i}{\partial \tau_j} \right) \tag{1}
\]

The second-order approximation of the function is presented as [4]

\[
\sin h^{-1} \left(\frac{1}{P} \frac{\partial v_i}{\partial \tau_j} \right) \approx \frac{1}{P} \frac{\partial v_i}{\partial \tau_j} - \frac{1}{6} \left(\frac{1}{P} \frac{\partial v_i}{\partial \tau_j} \right)^3, \quad \left| \frac{1}{P} \frac{\partial v_i}{\partial \tau_j} \right| < 1. \tag{2}
\]
The boundary layer problems for an incompressible fluid based on the Powell–Eyring model is given as [4]
\[
\begin{align*}
\frac{\partial \nu}{\partial t} + \frac{\partial g}{\partial s} &= 0, \\
\nu \frac{\partial \nu}{\partial t} + g \frac{\partial \nu}{\partial s} &= \left(\mu + \frac{1}{\eta \rho p} \right) \frac{\partial^2 \nu}{\partial s^2} - \frac{1}{2 \eta \rho p^3} \left(\frac{\partial \nu}{\partial s} \right)^2 \frac{\partial^2 \nu}{\partial s^2}.
\end{align*}
\] (3)

The kinematic viscosity is given as \(\mu = \eta / \rho \). For Equations (3) and (4), the boundary conditions are given as [4]:
\[
\begin{align*}
\nu &= \nu(t) = \alpha t, \quad g = 0, \quad s = 0, \\
\nu &\to 0 \quad \text{as} \quad s \to \infty.
\end{align*}
\] (5)

The following equations are acquired by dimensionless stream function \(z(\xi) \), where \(\xi \) is the similarity variable:
\[
\begin{align*}
\nu &= \frac{\partial \psi}{\partial s}, \quad g = -\frac{\partial \psi}{\partial t}, \\
\phi &= (\alpha \mu)^{1/2} t z(\xi), \quad \xi = \left(\frac{\alpha}{\mu} \right)^{1/2} s.
\end{align*}
\] (6)

Then, we obtain [4]
\[
(1 + \varepsilon)z'''(\xi) - \varepsilon \delta z''(\xi)z''(\xi) - z''(\xi) + z(\xi)z''(\xi) = 0,
\] (8)
in which \(\varepsilon \) and \(\delta \) are the material fluid parameters. These quantities have the following definitions:
\[
\varepsilon = \frac{1}{\eta \rho p}, \quad \delta = \frac{\alpha^3 \mu^2}{2 \rho^2 p \mu}.
\] (9)

The boundary conditions for Equation (8) are acquired by Equation (5) as [4]
\[
\begin{align*}
z(0) &= 0, \\
z'(0) &= 1, \\
z''(\xi) &= 0 \quad \xi \to \infty.
\end{align*}
\] (10)

We investigate Equation (8) with its boundary conditions (10) in the reproducing kernel Hilbert space in this paper.

2. Reproducing kernel Hilbert spaces

We should construct two useful reproducing kernel Hilbert spaces to investigate our problem. We will obtain reproducing kernel functions in these spaces. We will use these functions to get approximate solutions of the problem.

Definition 2.1: We firstly need to construct \(V^0_2(0, \infty) \) for our problem. We define it as follows:

\[
V^0_2(0, \infty) = \{ z \in AC[0, 1] : z', z'', z^{(3)} \in AC[0, \infty), \}
\]
\[
z^{(4)}(0) \in L^2[0, \infty), \quad z(0) = z'(0) = z''(0) = 0.
\] (11)

We have the inner product and norm in this space as

\[
(z, c)_{V^0_2} = z(0)c(0) + z'(0)c'(0)
\]
\[
+ z''(0)c''(0) + z^{(3)}(0)c^{(3)}(0)
\]
\[
+ \int_0^{\infty} z^{(4)}(\xi)c^{(4)}(\xi) \, d\xi, \quad z, c \in W^0_2(0, \infty)
\] (12)

and

\[
\|z\|_{V^0_2} = \sqrt{(z, z)_{V^0_2}}, \quad z \in V^0_2(0, \infty).
\] (13)

Reproducing kernel function \(W_p \) of the reproducing kernel Hilbert space \(V^0_2(0, \infty) \) is obtained by reproducing property as

\[
z(p) = (z, W_p)_{V^0_2}.
\] (14)

Theorem 2.2: \(V^0_2(0, \infty) \) is a reproducing kernel Hilbert space. Reproducing kernel function \(W_p \) is acquired as

\[
W_p(\xi) = \begin{cases}
\sum_{i=1}^{8} A_i(p) \xi^{i-1}, & \xi \leq p, \\
\sum_{i=1}^{8} B_i(p) \xi^{i-1}, & \xi > p,
\end{cases}
\] (15)

where

\[
A_1(p) = 0, \quad A_2(p) = 0, \quad A_3(p) = \frac{1}{4} p^2,
\]
\[
A_4(p) = \frac{1}{36} p^3, \quad A_5(p) = \frac{1}{144} p^3, \quad A_6(p) = -\frac{1}{240} p^2,
\]
\[
A_7(p) = \frac{1}{720} p, A_8(p) = -\frac{1}{5040} p, \quad B_1(p) = -\frac{1}{5040} p^7,
\]
\[
B_2(p) = \frac{1}{720} p^6, B_3(p) = -\frac{1}{240} p^2 (p^3 - 60),
\]
\[
B_4(p) = \frac{1}{144} p^3 (p^3 + 4), \quad B_5(p) = 0, \quad B_6(p) = 0,
\]
\[
B_7(p) = 0, \quad B_8(p) = 0.
\]

Proof: We have

\[
(z(\xi), W_p(\xi))_{V^0_2} = z(0)W_p(0) + z'(0)W'_p(0) + z''(0)W''_p(0)
\]
\[
+ z^{(3)}(0)W^{(3)}_p(0) + \int_0^{\infty} z^{(4)}(\xi)W^{(4)}_p(\xi) \, d\xi,
\] (16)

by the inner product of reproducing kernel Hilbert space \(V^0_2(0, \infty) \).
We get
\[\langle z, W_p \rangle_{V^2_2} = z(0)W_p(0) + z'(0)W'_p(0) + z''(0)W''_p(0) \]
\[+ z^{(3)}(0)W^{(3)}_p(0) + z^{(3)}(0)W^{(3)}(0) \]
\[- z^{(3)}(0)W^{(3)}_p(0) - z''(1)W^{(3)}_p(1) + z''(0)W^{(3)}_p(1) \]
\[+ z'(1)W^{(3)}_p(1) - z'(0)W^{(3)}_p(0) - z(1)W^{(3)}_p(1) \]
\[+ z(0)W^{(2)}_p(0) + \int_0^\infty z(\zeta)W^{(2)}_p(\zeta) d\zeta, \tag{17} \]
by integrations by parts. We acquire
\[\langle z(\zeta), W_p(\zeta) \rangle_{V^2_2} = z(p), \tag{18} \]
by reproducing property. We choose
\[W_p(0) = 0, \]
\[W'_p(0) = 0, \]
\[W''_p(0) = 0, \]
\[W''_p(0) + W^{(3)}_p(0) = 0, \]
\[W^{(3)}_p(0) - W^{(4)}_p(0) = 0, \]
\[W^{(4)}_p(\infty) = 0, \]
\[W^{(3)}_p(\infty) = 0, \]
\[W^{(2)}_p(\infty) = 0. \]
Thus, we get
\[W^{(2)}_p(\zeta) = \delta(\zeta - p), \tag{20} \]
by (17). When \(\zeta \neq p \), we have
\[W^{(2)}_p(\zeta) = 0. \tag{21} \]
\[\text{Therefore, we obtain} \]
\[W^{(2)}_p(\zeta) = \delta(\zeta - p), \tag{22} \]
Since
\[W^{(2)}_p(\zeta) = \delta(\zeta - p), \tag{23} \]
\[\text{we obtain} \]
\[\delta^k W_{p^k}(p) = \delta^k W_{p^k}(p), \quad k = 0, 1, 2, 3, 4, 5, 6, \tag{24} \]
and
\[\delta^7 W_{p^7}(p) - \delta^7 W_{p^7}(p) = 1. \tag{25} \]

We can obtain the unknown coefficients \(A_i(p) \) and \(B_i(p) \) \((i = 1, 2, \ldots, 8)\) by (19)–(26). Then, the reproducing kernel function \(W_p(\zeta) \) is obtained as
\[W_p(\zeta) = \begin{cases}
- \frac{1}{5040} \zeta^2(21p^2 \zeta^3 + \zeta^5 - 1260p^2 - 7p^4) \\
- 140p^3 \zeta - 35p^4 \zeta^2, & \zeta \leq p \\
\frac{1}{5040} p^2(21 \zeta^2 p^3 + p^5 - 1260 \zeta^2 - 7p^4) \\
- 140p^3 - 35p^4 \zeta^2) \zeta > p. \end{cases} \tag{27} \]

Definition 2.3: The second reproducing kernel Hilbert space that we need is \(Y^2_2[0, \infty) \). We define it as
\[Y^2_2[0, \infty) = \{ Z \in \mathcal{AC}[0, \infty) : Z', Z'', Z''', \in \mathcal{AC}[0, \infty), \quad Z^4 \in L^2[0, \infty) \}. \tag{28} \]

We can define the inner product and norm of \(Y^2_2[0, \infty) \) as
\[\langle Z, c \rangle_{Y^2_2} = \sum_{i=0}^3 Z^{(i)}(0)c^{(i)}(0) + \int_0^\infty Z^{(i)}(\epsilon)c^{(i)}(\epsilon) d\epsilon \tag{29} \]
and
\[\| Z \|_{Y^2_2} = \sqrt{\langle Z, Z \rangle_{Y^2_2}}, \quad Z, c \in Y^2_2[0, \infty). \tag{30} \]

Theorem 2.4: We obtain the reproducing kernel function \(D_y(s) \) of reproducing kernel Hilbert space \(Y^2_2[0, \infty) \) as
\[D_y(s) = \begin{cases}
1 + ys + \frac{s^2 y^2}{4} + \frac{s^4 y^3}{144} - \frac{s^6 y^2}{240} + \frac{s^8 y}{720} \\
- \frac{s^7}{5040}, & s \leq y, \\
1 + ys + \frac{s^2 y^2}{4} + \frac{s^4 y^3}{144} - \frac{s^6 y^2}{240} + \frac{s^8 y}{720} \\
- \frac{s^7}{5040}, & s > y. \end{cases} \tag{31} \]

Proof: We have
\[\langle Z, D_y \rangle_{Y^2_2} = Z(0)D_y(0) + Z'(0)D'_y(0) + Z''(0)D''_y(0) + Z'''(0)D'''_y(0) \]
\[\quad + Z^4(0)D^4_y(0) + \int_0^\infty Z^{(4)}(s)D^{(4)}(s) d\epsilon. \tag{32} \]

We use integration by parts and obtain:
\[\langle Z, D_y \rangle_{Y^2_2} = Z(0)D_y(0) + Z'(0)D'_y(0) + Z''(0)D''_y(0) + Z'''(0)D'''_y(0) \]
\[+ Z^4(0)D^4_y(0) + \int_0^\infty Z^{(4)}(s)D^{(4)}_y(s) d\epsilon. \tag{32} \]
We choose
\begin{align*}
 (1) & \quad D_y(0) + D_y^{(7)}(0) = 0, & (33) \\
 (2) & \quad D_y'(0) - D_y^{(6)}(0) = 0, & (34) \\
 (3) & \quad D_y''(0) + D_y^{(5)}(0) = 0, & (35) \\
 (4) & \quad D_y'''(0) - D_y^{(4)}(0) = 0, & (36) \\
 (5) & \quad D_y^{(4)}(\infty) = 0, & (37) \\
 (6) & \quad D_y^{(5)}(\infty) = 0, & (38) \\
 (7) & \quad D_y^{(6)}(\infty) = 0, & (39) \\
 (8) & \quad D_y^{(7)}(\infty) = 0. & (40)
\end{align*}

Then, we obtain
\[D_y^{(8)}(s) = \delta(s - y) \] (41)
by reproducing property. When \(s \neq y \), \(D_y^{(8)}(s) = 0 \).
Therefore, we have
\[D_y(s) = \begin{cases}
 \sum_{i=1}^{8} M_i(y) S^{(i-1)}, & s \leq y, \\
 \sum_{i=1}^{8} N_i(y) S^{(i-1)}, & s > y.
\end{cases} \] (42)
We have
\begin{align*}
 (9) & \quad D_y'(y) = D_y'(y), \quad (43) \\
 (10) & \quad D_y'(y) = D_y'(y), \quad (44) \\
 (11) & \quad D_y''(y) = D_y''(y), \quad (45) \\
 (12) & \quad D_y'''(y) = D_y'''(y), \quad (46) \\
 (13) & \quad D_y^{(4)}(y) = D_y^{(4)}(y), \quad (47) \\
 (14) & \quad D_y^{(5)}(y) = D_y^{(5)}(y), \quad (48) \\
 (15) & \quad D_y^{(6)}(y) = D_y^{(6)}(y), \quad (49) \\
 (16) & \quad D_y^{(7)}(y) - D_y^{(7)}(y) = 1, \quad (50)
\end{align*}
by Dirac-Delta function. We have 16 unknown coefficients and 16 equations. Therefore, we can find the coefficients easily as
\[M_1 = 1, \quad M_2 = y, \quad M_3 = \frac{y^2}{4}, \quad M_4 = \frac{y^3}{36}, \]
\[M_5 = \frac{y^3}{144}, \quad M_6 = \frac{-y^2}{240}, \quad M_7 = \frac{y}{720}, \]
\[M_8 = \frac{-1}{5040}, \]
\[N_1 = -\frac{y^2}{5040} + 1, \quad N_2 = \frac{y^3}{720} + y, \]
\[N_3 = \frac{y^3}{240} + \frac{y^2}{4}, \quad N_4 = \frac{y^4}{144} + \frac{y^3}{36}, \]
\[N_5 = 0, \quad N_6 = 0, \quad N_7 = 0, \quad N_8 = 0. \]
This completes the proof.

3. **Approximate solutions in** \(V_2^2[0, \infty) \)
We use the following transformation:
\[u(\zeta) = z(\zeta) - \zeta \exp(-\zeta), \]
\[u(\zeta) = z(\zeta) - \zeta \exp(-\zeta), \]
\[u'(\zeta) = z'(\zeta) - \exp(-\zeta) + \zeta \exp(-\zeta) \]
\[u'(0) = z'(0) - 1 = 1 - 1 = 0, \]
\[u'(\infty) = z'(\infty) - 0 = 0. \]
Then, we have
\[z(\zeta) = u(\zeta) + \zeta \exp(-\zeta), \]
\[z'(\zeta) = u'(\zeta) + \exp(-\zeta) - \zeta \exp(-\zeta), \]
\[z''(\zeta) = u''(\zeta) - 2 \exp(-\zeta) + \zeta \exp(-\zeta), \]
\[z'''(\zeta) = u'''(\zeta) + 3 \exp(-\zeta) - \zeta \exp(-\zeta). \]
We put these functions into the following equation:
\[(1 + \varepsilon) z''(\zeta) - \varepsilon \delta(z''(\zeta))^2 z''(\zeta) - (z'(\zeta))^2 + z(\zeta) z'(\zeta) = 0. \] (52)
Then, we obtain
\[(1 + \varepsilon)(u''(\zeta) + 3 \exp(-\zeta) - \zeta \exp(-\zeta)) - \varepsilon \delta(u''(\zeta)) \]
\[-2 \exp(-\zeta) + \zeta \exp(-\zeta) u'''(\zeta) + 3 \exp(-\zeta) \]
\[-\zeta \exp(-\zeta)) - (u'(\zeta) + \exp(-\zeta) - \zeta \exp(-\zeta))^2 \]
\[+ (u(\zeta) + \zeta \exp(-\zeta)) u'(\zeta) - 2 \exp(-\zeta) \]
\[+ \zeta \exp(-\zeta)) = 0. \] (53)
If we make necessary operations, we can acquire
\[Ju = [1 + \varepsilon - \varepsilon \delta(\zeta \exp(-\zeta) - 2 \exp(-\zeta))] u''(\zeta) \]
\[+ [-2 \varepsilon \delta(\zeta \exp(-\zeta) - 2 \exp(-\zeta))] (3 \exp(-\zeta) \]
\[- \zeta \exp(-\zeta)) \]
\[+ (\zeta \exp(-\zeta)) u'(\zeta) - 2 \exp(-\zeta) \]
\[+ (\zeta \exp(-\zeta)) = Z(u, \zeta). \]
Where
\[Z(u, \zeta) = -(1 + \varepsilon)(3 \exp(-\zeta) - \zeta \exp(-\zeta)) \]
\[+ \varepsilon \delta(u''(\zeta))^2 (3 \exp(-\zeta) - \zeta \exp(-\zeta)) \]
\[+ 2 \varepsilon \delta u''(\zeta) u'''(\zeta) (\zeta \exp(-\zeta) - 2 \exp(-\zeta)) \]
\[-2 \exp(-\zeta))^2 (3 \exp(-\zeta) - \zeta \exp(-\zeta)) \]
\[+ (u'(\zeta))^2 + (\exp(-\zeta) - \zeta \exp(-\zeta))^2 \]
\[- \zeta \exp(-\zeta)) \]
\[-2 \exp(-\zeta) \]
\[- \zeta \exp(-\zeta) \]
\[- \zeta \exp(-\zeta). \]
We give the solutions of the problem in the \(V_2^2[0, \infty) \).
We define the bounded linear operator \(J : V_2^2[0, \infty) \to \)
Then the problem gets the form:

\[Ju = Z(u, \zeta), \quad \zeta \in [0, \infty), \]

\[u(0) = u'(0) = u'(\infty) = 0. \tag{54} \]

Let \(\hat{\psi}(\zeta) = D_\zeta (\zeta) \) and \(\hat{\psi}^*_{\beta}(\zeta) = J^* \hat{\psi}(\zeta) \), where \(J^* \) is conjugate operator of \(J \). The orthonormal system \(\{\hat{\psi}(\zeta)\}_{i=1}^\infty \) of \(V_2^0(0, \infty) \) can be acquired by the Gram–Schmidt orthogonalization process of \(\{\hat{\psi}(\zeta)\}_{i=1}^\infty \),

\[\hat{\psi}_i(\zeta) = \sum_{k=1}^i \beta_{ik} \psi_k(\xi), \quad (\beta_{ii} > 0, \; i = 1, 2, \ldots). \tag{55} \]

Theorem 3.1: If \(u(\zeta) \) is the exact solution of (54), then we have

\[u(\zeta) = \sum_{i=1}^\infty \sum_{k=1}^i \beta_{ik} Z(u_k, \xi_k) \hat{\psi}_i(\zeta), \tag{56} \]

where \(\{\zeta_i\}_{i=1}^\infty \) is dense in \([0, \infty) \).

Proof: We get

\[u(\zeta) = \sum_{i=1}^\infty \left(u(\zeta), \hat{\psi}_i(\zeta) \right)_{V_2^0} \hat{\psi}_i(\zeta) \]

\[= \sum_{i=1}^\infty \sum_{k=1}^i \beta_{ik} \left(u(\zeta), \Psi_k(\xi) \right)_{V_2^0} \hat{\psi}_i(\zeta) \]

\[= \sum_{i=1}^\infty \sum_{k=1}^i \beta_{ik} \left(J u(\zeta), \psi_k(\xi) \right)_{V_2^0} \hat{\psi}_i(\xi) \]

\[= \sum_{i=1}^\infty \sum_{k=1}^i \beta_{ik} \left(J u(\zeta), \psi_k(\xi) \right)_{V_2^0} \hat{\psi}_i(t) \]

\[= \sum_{i=1}^\infty \sum_{k=1}^i \beta_{ik} \left(Z(u, \xi), D_{\xi_k} \right)_{V_2^0} \hat{\psi}_i(\xi) \]

\[= \sum_{i=1}^\infty \sum_{k=1}^i \beta_{ik} Z(u_k, \xi_k) \hat{\psi}_i(\zeta), \]

from (55) and uniqueness of the solution of (54). \(\blacksquare \)

The approximate solution \(u_n(\zeta) \) can be written as

\[u_n(\zeta) = \sum_{i=1}^n \sum_{k=1}^i \beta_{ik} Z(u_k, \xi_k) \hat{\psi}_i(\zeta). \tag{57} \]

4. Numerical results

The absolute errors obtained from the approximation of the solution of Equation (8) was given in this section. We solved Equation (8) applying the presented technique. All computations were implemented by Maple 18. We demonstrated our results by Table 1.

5. Conclusion

We constructed the reproducing kernel Hilbert space method for the numerical solution of the nonlinear Powell–Eyring equation. The solution of this problem has implementations in many fields of sciences. We also determined that this method can be useful in dealing with other nonlinear differential equations, which utilized as governing dynamical models in nonlinear science problems and in studies of various physical fields. The principal benefit of this method is that highly accurate solutions were obtained using reproducing kernel functions.

Disclosure statement

No potential conflict of interest was reported by the author.

References

[1] Agbaje TM, Mondal S, Motsa SS, et al. A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation. Alex Eng J. 2017;56(1):81–91.

[2] Rahimi J, Ganji DD, Khaki M, et al. Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alex Eng J. 2017;56:621–627.

[3] Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet. Z Naturforsch A. 2010;65(3):231–239.

[4] Parand K, Bahramezhad A, Farahani H. A numerical method based on rational Gegenbauer functions for solving boundary layer flow of a Powell-Eyring non-Newtonian fluid. Comput Appl Math. 2018;37(5):6053–6075.

[5] Zaman H, Shah MA, Ibrahim M. Unsteady incompressible Couette flow problem for the Eyring-Powell model with porous walls. Am J Comput Math. 2013;3(4):313–325.

[6] Nadeem S, Saleem S. Series solution of unsteady Eyring Powell nanofluid flow on a rotating cone. Indian J Pure Appl Phys. 2015;52(11):725–737.

[7] Malik MY, Khan I, Hussain A, et al. Mixed convection flow of MHD Eyring-Powell nano fluid over a stretching sheet: a numerical study. AIP Adv. 2015;5:11.

[8] Nadeem S, Haq RU, Khan ZH. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan I Chem Eng. 2014;45(1):121–126.

Table 1

\(\zeta \)	Absolute errors
0.0	1.35046 × 10⁻⁴
0.5	2.41346 × 10⁻³
1.0	3.24561 × 10⁻⁴
1.5	4.12092 × 10⁻⁴
2.0	2.13236 × 10⁻⁵
2.5	8.20180 × 10⁻⁵
3.0	7.29301 × 10⁻⁵
3.5	4.00911 × 10⁻⁶
4.0	3.89171 × 10⁻⁶
4.5	1.09087 × 10⁻⁶
5.0	5.09171 × 10⁻⁶
Parand K, Lotfi Y, Rad JA. An accurate numerical analysis of the laminar two-dimensional flow of an incompressible Eyring-Powell fluid over a linear stretching sheet. Eur Phys J Plus. 2017;132(9):397.

Steger JL, Warming RF. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J Comput Phys. 1981;40(2):263–293.

Hughes TJ, Franca LP, Hulbert GM. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Method Appl Mech. 1989;73(2):173–189.

Bhrawy AH, Abdelkawy MA. A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J Comput Phys. 2015;294(1):462–483.

Assari P, Adibi H, Dehghan M. A meshless discrete Galerkin(MDG)method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math. 2014;30(267):160–81.

Azarnavid B, Parand K, Abbasband S. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition. Commun Nonlinear Sci Numer Simul. 2018;59:544–552.

Li X, Wu B. A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl Math Lett. 2018;86:194–199.

Akgül A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals. 2018;114:478–482.

Azarnavid B, Shivanian E, Parand K. Multiplicity results by shooting reproducing kernel Hilbert space method for the catalytic reaction in a flat particle. J Theor Comput Chem. 2018.

Akgül EK. A novel method for the space and time fractional Bloch-Torrey equations. Therm Sci. 2018;22:253–258.

Ellahi R, Alamri SZ, Basit A, et al. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–482.

Fetecau C, Ellahi R, Khan M, et al. Combine porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate. J Porous Media. 2018;21(7):589–605.

Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model. 2018;37(3):1451–1457.

Saif RS, Hayat T, Ellahi R, et al. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness. Results Phys. 2017;7:2821–2830.

Khan AA, Masooda F, Ellahi R, et al. Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. J Mol Liq. 2018;258(15):186–195.

Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2018;8:502–512.

Ellahi R, Zeeshan A, Shehzad N, et al. Structural impact of Kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity; application of cooling process. J Mol Liq. 2018;264:607–615.

Zeeshan A, Ijaz N, Abbas T, et al. The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body. Sustainability. 2018;10(8):2671.

Alamri SZ, Khan AA, Azeez M, et al. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383(2–3):276–281.

Bhatti MM, Abbas T, Rashidi MM, et al. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy. 2016;18(6):224.

Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. Int J Numer Methods Fluids. 1995;20(8–9):1081–1106.

Wang D, Chen P. Quasi-convex reproducing kernel meshfree method. Comput Mech. 2014;54(3):689–709.

Wang D, Wu J. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng. 2019;349:628–672.