Weak Lensing by Galaxy Clusters

Nick Kaiser

Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96816. http://www.ifa.hawaii.edu/~kaiser

Abstract. In this talk I review some of the key questions that weak lensing observations of clusters can potentially answer, and sketch the progress that has been made to date in extracting quantitative estimates of masses and density profiles. A major difficulty in interpreting these measurements is the diverse methods that have been used to calibrate the shear-polarization relation, none of which are completely satisfactory. I describe some recent developments in the theory of weak lensing calibration. I then present some results from the UH8K camera and discuss their implication for cosmology. Finally, I outline a new strategy for obtaining high resolution optical imaging from the ground using an array of small telescopes, and describe how such an instrument can greatly improve the power of weak lensing observations.

1. Introduction

Galaxy clusters act as gravitational lenses and distort the shapes and sizes of faint background galaxies. One can distinguish two regimes: the central strong lensing regime characterized by more or less obviously distorted galaxies, and the weak lensing regime at larger impact parameters where the distortion is weak and must be measured by averaging shapes of many galaxies. The division between these regimes lies at around $100h^{-1} \text{kpc}$ for a typical massive cluster. In this talk I shall focus on the weak lensing regime. From the shape distortion or ‘image shear’ one can in principle recover the full 2-dimensional projected total mass density, and over a wide range of scales, making this a very direct and powerful probe of the dark matter. Mass determinations to date have been somewhat noisy — the precision in the mass being limited by the finite number density of faint background galaxies — but coarse properties such as the mass profile can be detected at typically the 4-10 sigma level.

Weak lensing measurement of clusters can address a number of key questions in cosmology. First, it is of some interest to compare the lensing mass measurements with independent probes such as virial analysis and X-ray temperatures, since this provides a test of the various simplifying assumptions typically used in these techniques such as dynamical equilibrium, orbital anisotropies, spherical symmetry etc. Second, since lensing measures the projected mass, and the same observations yield the projected light of the lensing system, it makes sense to form the mass-to-light ratio. Questions which one might then hope to answer include: Is M/L universal? Does M/L vary with radius within individual clusters?
Does M/L vary with the lens redshift? Are there ‘dark clumps’ out there which have so far eluded detection? This analysis should directly reveal any ‘biasing’, or differences between the mass profile and the profile traced by the various types of galaxies, and the lensing approach is unique in being applicable seamlessly in both the equilibrium and infall regimes. It should also yield important constraints on the evolution of massive clusters, again with obvious implications for cosmological structure formation theory. Next, though this tack is somewhat more model dependent, one can compare the total mass with the X-ray derived gas mass, and with the total baryonic mass (gas plus baryons in galaxies). Again, one would very much like to know whether the $M_{\text{baryon}}/M_{\text{total}}$ ratio is universal, whether this ratio varies with radius within clusters and whether there are baryon poor or high gas entropy clusters. Finally, there is the question of the redshift distribution of the faint background galaxies, which enters as a calibration factor in weak lensing mass determinations. The variation of the mean redshift, or more generally the redshift distribution, as a function of magnitude say can provide important clues for galaxy formation. Finally, distortion strength depends on the ratio of lens-source to observer-source distances D_{LS}/D_{OS}. It is therefore of interest to compare lensing derived distances with spectroscopic redshifts, since the redshift-distance relation can be used to constrain cosmological parameters $\Omega_{\text{matter}}, \Omega_{\Lambda}$ etc.

Weak lensing observations have now been made for around 30 clusters, and the status as of early 1999 has been extensively reviewed by (Mellier 1999). He gives a very useful distillation of the data as a table of mass-to-light ratios, along with lens redshift, impact parameter for the observations etc. The M/L values are typically a few hundred (times h), not so different from those obtained from virial and X-ray studies. There is however considerable variation from cluster to cluster with extreme values of M/L ranging from $\sim 100h$ to $\sim 1000h$. There is also an indication of an increase in M/L with radius in at least one case. If correct, these are results of profound significance but it is difficult to know exactly what to make of this. Not all of the entries in the table have rigorous error estimates; different observers have quoted the M/L for different passbands; different assumptions have been made about the background galaxy redshifts; different models have been used to correct for evolution of the cluster galaxy population, and different techniques have been used to calibrate the shear-polarization relation. Put together, these problems make it very hard to draw any definitive conclusions about systematic M/L variations. The collection of results to date have shown that the technique is certainly viable, and have convincingly dispelled fears that the measurements are contaminated by instrumental effects etc. I would argue that the major ‘nuisance factors’ listed above are now quite well understood and the time is ripe for a significant advance in well calibrated and quantitative mass measurements which can convincingly confirm or refute the suggestions of mass-to-light variations from the current data.

In the rest of this talk I shall first describe some advances in our understanding of how to convert shape polarization measurements to quantitative shear estimates. I will then review an application to a redshift 0.4 supercluster using the UH8K camera, and the intriguing relation between the mass and the light in this system. Finally I describe a strategy for deep wide field optical imaging using an array of small telescopes with on-chip fast guiding, and the gains in improvement in lensing observations afforded by this technique.
2. Calibration of the Shear Polarization Relation

The effect of a weak gravitational lens is a mapping of the surface brightness \(f \) of distant objects:

\[
f'(r_i) = f((\delta_{ij} - \psi_{ij})r_j)
\]

(1)

where \(r_i \) is the angular position on the sky and \(\psi_{ij} \) is the symmetric ‘distortion tensor’ which is an integral along the line of sight of the transverse components of the tidal field:

\[
\psi_{lm} = 2 \int d\omega \frac{\sinh \omega \sinh(\omega_s - \omega)}{\sinh \omega_s} \partial_l \partial_m \Phi
\]

(2)

(Gunn 1967), (and see more recent discussions Bar-Kana (1996), Kaiser (1998)) where \(\omega \) is conformal distance and the potential \(\Phi \) is related to the density contrast by \(\nabla^2 \Phi = 4\pi G\delta\rho \). These results can be generalized to deal with sources at a range of distances, and with either accurately known redshifts or partial redshift information from broadband colors, and provide a direct quantitative connection between the observable distortion and the total mass density. What has proved more problematic has been establishing a precise relation between the distortion and the shape polarization actually measured, as I shall now review.

Specializing to a trace-free distortion tensor \(\psi_{ij} = \{\gamma_1, \gamma_2\}, \{\gamma_2, -\gamma_1\} \) the mapping (1) can be written as

\[
f' = S_\gamma f
\]

(3)

where the ‘linearized shear operator’ is

\[
S_\gamma = 1 - \gamma \alpha M_{\alpha ij} r_i \partial_j
\]

(4)

and where we have introduced the constant 2 \(\times \) 2 matrices \(M_0 = \{\{1, 0\}, \{0, 1\}\} \), \(M_1 = \{\{1, 0\}, \{0, -1\}\} \), \(M_2 = \{\{0, 1\}, \{1, 0\}\} \). This operator is similar to a rotation operator and provides a convenient way to compute the effect of a shear on measurable shape statistics.

It was realized early on (Valdes, Jarvis, & Tyson 1983) that a natural way to measure the shear is to look for a non-zero systematic average of the second central moments of the background galaxy images.

\[
q_{lm} = \int d^2 r r_l r_m f(r).
\]

(5)

Indeed, if we define \(q_A = \frac{1}{2} M_{\alpha ij} q_{ij} \) (so \(q_0 \) is a measure of the size of the object and \(q_{\alpha}, \alpha = 1, 2 \) is the ‘shape polarization’) and apply the shear operator to compute the response of the \(q_A \), one finds that a fair estimate of the shear is

\[
\hat{\gamma}_\alpha = \frac{\langle q_\alpha \rangle}{\langle q_0 \rangle} / 2 \langle q_0 \rangle
\]

(6)

This simple estimator is less than ideal in that the averages of \(q_\alpha \) and \(q_0 \) are heavily weighted towards larger galaxies, but illustrates the general idea and the approach can be generalized to give a shear estimator in terms of the ‘ellipticity vector’ \(e_\alpha = q_\alpha / q_0 \) (Bonnet & Mellier 1995; Kaiser, Squires, & Broadhurst 1995 hereafter KSB). A more serious shortcoming of (6) is that it ignores the effect
of atmospheric ‘seeing’ and instrumental point spread function (PSF) $g(r)$. The combined effect of gravitational shearing and the PSF convolution is to give an observed surface brightness

$$f'_o = g \otimes S_{\gamma} f.$$ \hspace{1cm} (7)

Circular seeing tends to reduce the ellipticity while departures from circularity will introduce an artificial polarization. We need some way to correct for the latter and calibrate the effect of the former. Interestingly, for moments defined as in (5) this is trivial since under convolution these moments add (Valdes, Jarvis, & Tyson 1983) so one can correct the averaged moments appearing in (6) by simply subtracting the moments for stellar objects.

Unfortunately, the moments as defined in (5) are useless in practice for a number of reasons: noise from photon counting and from other objects seen close by on the sky diverges strongly with the integration limit, and there is also the serious problem that for realistic PSFs the second moment itself does not converge. What has been done in practice is to truncate the second moment integral either with an isophotal threshold as in the FOCAS software package (Jarvis & Tyson 1981) and also the Sextractor package (Bertin & Arnouts 1996) or by introducing some kind of user defined weight function $w(r)$ in (5) and computing shapes in terms of the weighted moments (Bonnet & Mellier (1995), KSB). In either case the addition law for the moments no longer holds, and compensating for the effects of the PSF becomes considerably more complicated.

A partial solution to this problem was given in KSB (see also Hoekstra et al. (1998)) who computed the response of ellipticities to an anisotropy of the PSF under the assumption that this is a convolution of a circular PSF $g_{\text{circ}}(r)$ with some compact but highly anisotropic function $k(r)$. They found a response proportional to polarization computed from the unweighted second moments of $k(r)$. They also computed the response of ellipticities formed from weighted moments to a shear applied after smearing with the PSF. This of course is not what one wants, as one really needs the response to a shear applied before smearing with the PSF. Luppino & Kaiser (1997) extended the KSB analysis to account for finite resolution, but under the restrictive assumption that the PSF has a Gaussian profile. Rhodes, Refregier, & Groth (1999) have also attempted to generalize the KSB approach to properly allow for finite resolution. There is a serious problem with these approaches: The ‘convolution model’ of KSB and subsequent extensions is too restrictive. It is a good approximation for the simple case of atmospheric seeing plus small amplitude guiding errors or aberrations, but the perturbation expansion, of which the KSB result is the lowest order term, breaks down for large errors. For diffraction limited observations matters are worse as the unweighted central moment which appears here is dominated by the extreme wings of the PSF, so applying the KSB formalism then makes no sense at all. The KSB analysis is something of a blind alley and a fundamentally different approach is needed.

To make progress we need to return to (7). Using the convolution theorem one can rewrite this as

$$f'_o = f_o - \gamma_{\alpha} M_{\alpha ij} (r_i \partial_j f_o - (r_i \partial_j h) \otimes f_o).$$ \hspace{1cm} (8)

(Kaiser 1999) where h is the inverse transform of $\tilde{h} \equiv \ln \tilde{g}$, i.e. the logarithm of the optical transfer function (OTF). This ‘finite resolution linearized shear
operator’ is extremely powerful as it gives the response of an image to a shear applied before seeing purely in terms of observable quantities. It is the regular shear operator S_γ applied to the post-seeing image f_o plus a commutator term which is a correction for finite PSF size and which is a convolution of f_o with a kernel function $\gamma_\alpha M_{\alpha ij} r_i \partial_j h$. For the Gaussian PSF model the commutator term consists of second derivatives of f_o, and so in this case the shear operator is a local differential operator. This is a very special case. In the case of atmospheric turbulence limited seeing the log-OTF transform has a power law form $h(r) \propto r^{-11/3}$, so then commutator term is highly non-local and qualitatively different from the Gaussian model.

For diffraction limited observations things are a little more problematic, as the log-OTF \hat{h} then diverges as one approaches the diffraction limit. However, the amount of information in these marginal frequencies is asymptotically zero, and one can remove the divergence by computing shapes from an image f_s which has had the marginally detectable modes attenuated. One simple option is to re-convolve with the PSF itself. This approach might seem surprising since weak lensing observations tend to be ‘resolution starved’, and the obtainable signal to noise is a strong function of the seeing width. However, it is important to realize that unlike bad seeing, the convolution here is applied after the photon counting noise is realized in the CCD detector, so there is consequently no loss of information. In this case response to a shear is

$$f'_s = f_s + \gamma_\alpha M_{\alpha ij} (2(r_i \partial_j g) \otimes f_o - r_i (\partial_j g \otimes f_o)).$$

A nice feature of this approach is that with a minor modification one can at the same time ‘null out’ any instrumental shape anisotropy. Equations (8), (9) are quite general and allow one to predict the response of the shape statistic for an individual object to a shear, much as was down by KSB. They are slightly more complicated to implement since they require the full 2-dimensional form of the PSF rather than just the second moments, but this turns out not to be too difficult in practice.

The individual object response computed in this way could be used to construct a fair shear estimator simply by averaging polarizations and dividing by the average polarizability much as above. However, as before, this unweighted averaging is not ideal as the information content is strongly dependent on the size, brightness and eccentricity of the objects. To make an optimally weighted shear estimator we need to know the conditional mean polarization for galaxies of given flux, size and shape. This leads to an ‘effective polarizability’ which allows one to properly combine estimates of the shear from different types of galaxies. The great advantage of this approach is that for the first time it allows one to construct an optimized minimum variance weighting scheme for combining shear estimates and allows one to define a useful ‘figure of merit’ — essentially an inverse variance per steradian - to quantify the power of any given data for measuring gravitational shear. For example, a 2.75hr I-band imaging at CFHT gave 2.85×10^5/sq degree. These relations allow one to to objectively tune the parameters of one’s shape measurement scheme in an unbiased and objective manner, and can be modified to include e.g. photometric photometric information.
3. **MS0302**

We have applied this analysis to deep multicolor images of MS0302 taken with the UH8K camera at the CFHT. The field contains three physically associated massive clusters at $z \approx 0.42$ (Kaiser et al. 1998). Shear analysis of the 30,000 or so faint galaxies in the field reveals three major mass concentrations coincident with the optical and X-ray locations. There is also evidence of a further concentration which seems to be associated with a foreground cluster at $z \approx 0.2$.

As discussed in the Introduction, a major goal of weak lensing cluster studies is to compare the mass profile with that of the light to probe galaxy ‘bias’ directly. The data here are useful for this application since the 1/2 degree field allows one to probe out beyond the virial radius of the clusters. It must be realized here that there is no unique ‘light profile’; we expect from the morphology-density relation (Dressler 1980) that the result will be very different for early-type and late-type galaxies. The picture for the structure of clusters that emerges from these and other morphological studies is that the early-type galaxies are relatively concentrated in the densest parts of clusters with late-type galaxies dominating at larger radius and in the infall region.

To perform this test one cannot simply add all the bright galaxy light in the field because of contamination by foreground galaxies. Ideally one would use spectroscopic redshifts to generate a prediction for the shear field that properly incorporates galaxy distances, but unfortunately these are not available. Second best would be photometric redshifts from multi-color observations. Here we have only images in the two passbands V and I. This would seem to be inadequate since it is known that at the very least galaxies form a two parameter family (luminosity and type) so a minimum of 3 passbands is required to determine intrinsic luminosity, type and distance. However, what one can do is to generate a prediction for the surface mass density due to early type galaxies alone. This is because the early type galaxies are much redder than the other types. Thus if we assign distance to a galaxy based on its V-I color assuming it is an early type galaxy we will either get the right answer or, if the galaxy is really of later type, we will grossly underestimate the distance, and therefore grossly underestimate the luminosity, and the combination of these effects means that the non-early type galaxies receive essentially zero weight.

A comparison of the mass computed from the faint galaxies using the Kaiser & Squires (1993) algorithm, early-type light and X-ray distributions is shown in figure 1. There seems to be good general agreement between the mass and the early type galaxies. This conclusion is bolstered by the figure 2 which shows on the left the predicted versus observed shear and on the right a comparison between the light-mass cross-correlation and the light-light auto-correlation.

These results are very intriguing. First, the inferred mass-to-light ratio seems to be about a factor two lower than the value for more massive clusters like Abell 1689 say. Second, the mass seems to be clustered just like the early-type light. There is no indication that the mass profile around the clusters is more extended then the early-type light, as might be expected on the basis of standard morphology/density relation (though we should admit that we do not really know whether this particular system conforms to the norm in this regard). The physical picture that emerges is of a collection three clusters within a roughly $6 \times 6 \times 10(h^{-1}\text{Mpc})^3$ cuboid. This volume is over-luminous by about
Figure 1. A comparison of the mass, early-type light and X-ray distributions. The mass reconstruction was made using the KS93 method. The ‘light’ image is really a prediction for the mass reconstruction assuming early-type galaxies trace the mass with a fixed mass-to-light ratio $M/L_B = 270h$ in solar units. To construct this we assign bright galaxy distances based on their color and thus generate a prediction for the shear field and then feed this (noiseless) shear image through the reconstruction algorithm. The X-ray image is from the ROSAT HRI.

Figure 2. Left hand panel shows the measured shear versus that predicted. Right hand panel shows the light-mass cross-correlation (boxes) and the light-light auto-correlation functions (circles).
a factor 20 relative to the spatial average, but the system as a whole is actually unbound. Finally, if we take seriously the idea that the early-type galaxies accurately trace the mass, and that there is really very little mass associated with later-type galaxies, then applying the usual accounting arguments (and recognizing all the usual associated caveats) one obtains a very low value for the matter density of $\Omega \simeq 0.1$.

4. High Resolution Imaging from Small Telescopes

Weak lensing observations from the ground are hampered by the image degradation from the atmosphere. Empirically we have found from our CFHT observations that the information content of our images (defined as the inverse shear variance per unit solid angle) is a strongly decreasing function of the image width. Even at $m_I \simeq 25$ the great majority of galaxies are poorly resolved even in excellent seeing, and we know from the Hubble Deep Field that galaxies get still smaller at fainter magnitudes. In the coming era of weak lensing observations with 8m class telescopes this will become more and more a serious limitation. To get around this we have two options: either observe from space or apply some kind of adaptive optics correction. Here I will focus on the latter option and advertise a possible way to implement wide field image correction using an array of small telescopes (Kaiser, Tonry, & Luppino 1999).

Adaptive optics systems on large telescopes can give huge gains in angular resolution. Unfortunately they cannot easily be applied to wide field imaging because of the isoplanatic angle problem; objects more widely separated than a few tens of arc-seconds sample independent paths through the atmosphere and suffer largely independent wavefront deformations, so to correct over a wide field requires some kind of multiplexing of the wavefront correction method. However, very low order wavefront correction in the form of simple fast guiding on small telescopes (those with aperture diameter about four times the ‘Fried length’ r_0 which characterizes the wavefront deformation; this is $D \simeq 1.5m$ at a good site) can give a substantial gain in image quality of about a factor three in PSF width, which means a huge gain in improvement in efficiency for weak lensing observations. For a telescope of this size the instantaneous PSF is found to consist of a few diffraction limited speckles which dance around on the focal plane, and by tracking the brightest speckle one can obtain a PSF with about 30% of the light in a tight diffraction limited core and the rest in a halo of width similar to the uncorrected PSF. The uncorrected vs. corrected PSFs are shown in figure 3.

Fast guiding still suffers from isoplanatism — images move coherently over only about 1 arc-minute — so for a wide field we need to move different part of the focal plane independently. However, this can now be cheaply and efficiently implemented using OTCCD technology (Tonry, Burke, & Schechter 1997) in which the guiding is done by moving the accumulating charge on the chip. With a wafer scale device consisting of a large number of separately addressable cells one can effectively synthesize a ‘rubber focal plane’.

Some subset of the detector cells will contain bright stars, and these can be read out rapidly to provide the guiding information. Even if equipped with such a device a single telescope would not be able to provide sharp images
Figure 3. Comparison of uncorrected natural seeing PSF for a large telescope and fast guiding PSF for a 1.5m telescope. The FWHMs are $0''.4$ and $0''.12$ respectively.

Figure 4. Schematic illustration of guiding algorithm. The telescope on the left is unable to correct for the motion of the galaxy as it lies too far from a bright guide star. By combining guide star information from multiple telescopes one can fill in the missing information.
over the whole field of view. This is because the surface density of sufficiently bright guide stars falls somewhat short of that needed to fully constrain the deflection field. However, with multiple telescopes one obtains multiple samples of the atmospheric deflection as illustrated in figure 4. We have presented an algorithm which combines the measured deflections from multiple telescopes; it exploits the Gaussian statistics and highly stratified nature of atmospheric seeing and generates a Bayesian conditional mean estimator for the deflection. An array of ~ 36 such telescopes would give the collecting area equal to that of a conventional 9m telescope at a comparable cost — the cost here scaling linearly with collecting area — but with greatly improved image quality.

References

Bar-Kana, R. 1996, ApJ, 468, 17
Bertin, E., & Arnouts, S. 1996, Astronomy and Astrophysics Supplement Series, 117, 393
Bonnet, H., & Mellier, Y. 1995, A&A, 303, 331
Dressler, A. 1980, ApJ, 236, 351
Gunn, J. 1967, ApJ, 147, 61
Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636
Jarvis, J. F., & Tyson, J. A. 1981, AJ, 86, 476
Kaiser, N. 1998, ApJ, 498, 26
Kaiser, N. 1999, submitted to ApJ
Kaiser, N., & Squires, G. 1993, ApJ, 440, 441
Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460
Kaiser, N., Tonry, J., & Luppino, G. 1999, PASP submitted, http://www.ifa.hawaii.edu/~kaiser/wfhri
Kaiser, N., Wilson, G., Luppino, G., Kofman, L., Gioia, I., Metzger, M., & Dahle, H. 1998, ApJ submitted, http://xxx.lanl.gov/abs/astro-ph/9809268
Luppino, G., & Kaiser, N. 1997, ApJ, 475, 20
Mellier, Y. 1999, ARA&A, In press
Rhodes, J., Refregier, A., & Groth, E. 1999, ApJ, In press
Tonry, J., Burke, B. E., & Schechter, P. L. 1997, PASP, 109, 1154
Valdes, F., Jarvis, J. F., & Tyson, J. A. 1983, ApJ, 271, 431