Intercellular Adhesion Molecule-1 Polymorphisms in Korean Patients with Behcet’s Disease

INTRODUCTION

Behcet’s disease (BD) is a chronic and multisystemic inflammatory disease of multifactorial etiology, involving both infectious and genetic factors (1). The clinical major symptoms of BD in Korean patients are oral ulcers (98.8%), skin lesions (84.3%), genital ulcers (83.2%), ocular lesions (50.9%), and minor symptoms including articular symptoms (38.4%), gastrointestinal symptoms (7.3%), neurological symptoms (4.6%), epididymitis (0.6%), and vascular symptoms (1.8%) (2). This wide range of clinical symptoms of BD probably reflects different genetic backgrounds.

Intercellular adhesion molecule-1 (ICAM-1, CD54) is expressed on endothelial cells and various other cells and its expression is increased during inflammation. ICAM-1 is a member of the immunoglobulin superfamily and is a ligand of macrophage-1 antigen (Mac-1; CD11b/CD18) and lymphocyte function associated antigen-1 (LFA-1; CD11a/CD18) (3). It is also involved in leukocyte migration into sites of inflammation and T-cell receptor-mediated activation of resting T cells (4).

ICAM1 gene (OMIM 147840) is located on chromosome 19p13.3-13.2 with polymorphisms of K29M, G241R, K469E, A496T, and G1838A in the 3’UTR (5, 6). Single base polymorphisms causing amino acid substitutions were identified for ICAM1 at codon 241 in exon 4 (GGG→AAG; Gly→Arg) for the Ig-like domain 3, the binding site of Mac-1, and at codon 469 in exon 6 (AAG→GAG; Lys→Glu), which codes for the Ig-like domain 5 (7). BD patients were evaluated for the levels of both soluble and tissue ICAM-1 and it has been hypothesized that the two mutations, G241R and K469E, result in more effective binding of ICAM1 to Mac-1 and LFA-1, thereby enhancing the inflammatory response (8). Both Mac-1 and LFA-1 binding site mutations might be involved in some of the inflammation events responsible for BD. While the pathogenic role of these polymorphisms is unknown, an association has been found with inflammatory diseases such as Behcet’s disease in Jordanian or Palestinian populations (9), giant cell arteritis (10), rheumatoid arthritis (11), inflammatory bowel disease (12), and chronic renal allograft failure (13).

In this study, we investigated whether ICAM1 gene polymorphisms in Korean BD patients are associated with different clinical subsets of BD.

MATERIALS AND METHODS

Patients with BD were recruited from the Behcet’s Disease specialty clinic of Severance Hospital, Yonsei Universi-
A total of 197 patients with BD and 248 healthy controls without BD were enrolled. The diagnosis of BD was made according to the established clinical criteria of the International Study Group Behcet’s Disease (14) and the revised Shimizu’s classification (15). After obtaining informed consent, blood samples were collected and genomic DNA was extracted from peripheral blood leukocytes with a QiaAmp Blood kit (Qiagen, Valencia, CA, U.S.A.).

The ICAM1G241R polymorphism was detected by BsrGI PCR-RFLP (New England Biolabs, Beverly, MA, U.S.A.) (16, 17). The ICAM1K469E polymorphism was analyzed by BstUI PCR-RFLP (New England Biolabs, Beverly, MA, U.S.A.) (17, 18).

For statistical analysis of the data, the SAS program (v 8.0e) was used.

RESULTS

The distribution of the ICAM1469*E polymorphism differed significantly between patients and healthy controls. The frequency of both genotypes ICAM1469*K/*K and ICAM1469*E/*E was significantly higher in BD patients than in controls (66.0% vs 52.4%, \(p = 0.004 \), OR = 1.28, 95% CI 1.08-1.50). The genotype and allele frequencies of ICAM1469E in patients and in controls are shown in Table 2. The frequency of ICAM1469*E was higher in patients with skin lesions (0.41), genital ulcers (0.41), vasculitis (0.43), ocular lesions (0.41), and arthritis (0.39) than in controls (0.31). The disease duration, age at onset of BD, sex distribution, duration of follow-up, and the use of drugs did not differ between both genotypes of patients carrying ICAM1469E.

Only one heterozygote ICAM1241G/R was detected in BD patients and the ICAM1241*E mutation was not found among healthy Korean controls. The heterozygote was found in a 56-yr old man with a 12-yr history of the disease who presented with ocular lesions and had a genotype of ICAM1469*E. Our results show that the ICAM1469*E polymorphism is associated with BD, whilst the ICAM1241*E polymorphism is rare among Koreans.

DISCUSSION

Association between ICAM1 gene mutations and BD depends on ethnic origins (Table 3). The frequency of ICAM-1469*E was higher in Korean patients with BD than in controls, Palestinians, and Jordanians, while the frequency of ICAM1241*R was higher in Italians (9, 19). The ICAM1 gene has also been associated with rheumatoid arthritis (RA) in Italian patients. ICAM1241R was associated with RA.

Table 1. Demographic and clinical features of Korean patients with BD

	Female/Male	No. (%)
Female/Male	96/101	(49/51)
Mean age ±SD	40 ± 10 yr	
Mean disease duration ±SD	11 ± 7 yr	
Major symptoms		
Oral ulcers	96/101	197 (100.0)
Skin lesions	88/98	186 (94.4)
Genital ulcers	87/80	167 (84.6)
Ocular lesions	74/77	151 (76.6)
Minor symptoms		
Arthritis	57/57	114 (57.9)
Vasculitis	4/40	44 (22.3)
Central nervous system	7/4	11 (5.6)
Gastrointestinal lesions	4/7	11 (5.6)

Table 2. Genotype and allele frequencies of ICAM1K469E in Korean patients with BD and in controls

	*K/*K (%)	*K/*E (%)	*E/*E (%)	*E	\(p \) value	OR	95% CI	
Controls								
All patients	248	118 (47.6)	107 (43.1)	23 (9.3)	0.31			
skin lesions	197	67 (34.0)	100 (50.8)	30 (15.2)	0.41	0.004	1.28	1.08-1.50
without	116	61 (32.8)	96 (51.6)	29 (15.6)	0.41	0.002	1.29	1.10-1.52
genitai ulcers	167	56 (33.5)	84 (50.3)	27 (16.2)	0.41	0.004	1.26	1.08-1.47
without	30	11 (36.7)	16 (53.3)	3 (10.0)	0.35	0.002	1.89	1.26-2.86
ocular lesions	151	50 (33.1)	78 (51.6)	23 (15.2)	0.41	0.001	1.30	1.12-1.52
without	46	17 (34.8)	22 (50.0)	7 (15.2)	0.40	ns		
vasculitis	44	14 (31.8)	22 (50.0)	8 (18.2)	0.43	0.053	1.10	1.00-1.21
without	153	53 (34.6)	78 (51.0)	22 (14.4)	0.40	0.011	1.22	1.05-1.42
arthritis	114	38 (33.3)	63 (55.3)	13 (11.4)	0.39	0.011	1.20	1.05-1.38
without	83	29 (34.9)	37 (44.6)	17 (20.5)	0.43	0.045	1.14	1.01-1.29
CNS	11	6 (54.5)	4 (36.4)	1 (9.1)	0.27	ns		
without	186	61 (32.8)	96 (51.6)	29 (15.6)	0.41	0.002	1.29	1.10-1.52
gastrointestinal	11	2 (18.2)	7 (63.6)	2 (18.2)	0.50	ns		
without	186	65 (34.9)	93 (50.5)	28 (15.1)	0.40	0.008	1.25	1.06-1.46

CNS, central nervous system.

\(p \) value, patients with ICAM1469*E positive vs controls with ICAM1469*E positive; OR, odds ratio; CI, confidence interval; ns, not significant.
ICAM1 Polymorphisms in Korean Behcet’s Disease

Table 3. Allele frequencies of ICAM1241*R and ICAM1469*E among BD patients from different populations

Allele frequency	p value	Reference	
Patients with BD	Controls		
Korean			
241*R	0.003	0.000	ns
469*E	0.410	0.310	0.003
Jordanian or	9		
Palestinian			
241*R	0.012	0.015	ns
469*E	0.476	0.383	0.046
Italian	19		
241*R	0.115	0.031	0.0001
469*E	0.439	0.439	ns

*p value, patients vs controls; ns, not significant.

but the allele and phenotypic frequencies of ICAM1469E did not differ significantly between RA patients and the control group in the Italian study (11). The different results might be due to different genetic backgrounds. The frequency of ICAM1241*R showed a population variation in contrast to the frequency of ICAM1469*E. The frequency of ICAM1469*E is high in various countries (0.310-0.510). While ICAM1241*R is quite rare in most populations, the frequency of ICAM1241*R is higher in Europeans (0.031-0.180) (10, 13, 16, 20) compared to in Koreans and Japanese (0.000) (21) and Palestinians and Jordanians (0.015) (9). In line with a previous report that suggested ICAM1469*E is associated with inflammatory disease (22), our study shows that the frequency of ICAM1469*E is higher in Korean BD patients than in controls. We cannot draw any conclusion on the association of ICAM1G241R with BD, as described in Italian patients, because there was no case with ICAM1-G241R among the Korean BD patients in this study. ICAM1 mutations, especially ICAM1469*E, might act as another genetic susceptibility factor for BD in the Korean population as well as the recently described MICA A6 allele and HLA-B51 (23).

ACKNOWLEDGMENT

This study was supported by a grant (01-G05-08-001-00) from KISTEP, Korea.

REFERENCES

1. Sakane T, Takeno M, Suzuki N, Inaba G. Behcet’s disease. N Engl J Med 1999; 341: 1284-91.
2. Bang DS, Lee JH, Lee ES, Lee S, Choi JS, Kim YK, Cho BK, Koh JK, Won YH, Kim NI, Park SD, Ahn HJ, Lee YW, Wang HY, Lee WW, Eun HC, Song ES, Lee SW, Lee CW, Lee CJ, Park JH, Song YW, Kim ST, Kim CY, Park JK, Kwon KS. Epidemiologic and clinical survey of Behcet’s disease in Korea: the first multicenter study. J Korean Med Sci 2001; 16: 615-8.
3. Joling P, Boom S, Johnson J, Dekker ME, van den Tweel JG, Schuurman HJ, Bloem AC. Domain 5 of the intercellular adhesion molecule-1 (ICAM-1) is involved in adhesion of B-cells and follicular dendritic cells. Adv Exp Med Biol 1994; 355: 131-5.
4. Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 1995; 57: 827-72.
5. Iwao M, Morisaki H, Matsunaga H, Morisaki T. Two novel polymorphisms g.1715G>A (A496T) and g.1838G>A (3’UTR), and the g.1548G>A (E469K) variant in the intercellular adhesion molecule 1 (ICAM1) gene: distribution in the Japanese and European American populations. Hum Mutat 2001; 17: 355-8.
6. Fernandez-Reyes D, Craig AG, Kyess SA, Peshu N, Snow RW, Berendt AR, Marsh K, Newbold CI. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet 1997; 6: 1357-60.
7. Vora DK, Rosenblum CL, Beaudet AL, Cottingham RW. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster. Genomics 1994; 21: 473-7.
8. Verity DH, Wallace GR, Seed PT, Kanawati CA, Ayesh I, Holland-Gladwish J, Stanford MR. Soluble adhesion molecules in Behcet’s disease. Ocul Immunol Inflamm 1998; 6: 81-92.
9. Verity DH, Vaughan RW, Kondeatis E, Madanat W, Zureikat H, Fayyad F, Marr JE, Kanawati CA, Wallace GR, Stanford MR. Inter- cellular adhesion molecule-1 gene polymorphisms in Behcet’s disease. Eur J Immunogenet 2000; 27: 73-6.
10. Salvarani C, Casali B, Boiardi L, Ranzi A, Macchiioni P, Nicolli D, Farnetti E, Brini M, Portioli I. Intercellular adhesion molecule 1 gene polymorphisms in polymyalgia rheumatica/giant cell arteritis: association with disease risk and severity. J Rheumatol 2000; 27: 1215-21.
11. Macchiioni P, Boiardi L, Casali B, Nicolli D, Farnetti E, Salvarani C. Intercellular adhesion molecule 1 (ICAM-1) gene polymorphisms in Italian patients with rheumatoid arthritis. Clin Exp Rheumatol 2000; 18: 553-8.
12. Yang H. Analysis of ICAM-1 gene polymorphism in immunologic subsets of inflammatory bowel disease. Exp Clin Immunogenet 1997; 14: 214-25.
13. McLaren AJ., Marshall SE, Haldar NA, Mullighan CG, Fuggle SV, Morris PJ, Welsh KI. Adhesion molecule polymorphisms in chronic renal allograft failure. Kidney Int 1999; 55: 1977-82.
14. International study group for Behcet’s disease. Criteria for diagnosis of Behcet’s disease. Lancet 1990; 335: 1078-80.
15. Mizushima Y, Inaba G, Mimura Y, Ohno S. Diagnostic criteria for Behcet’s disease in 1987, and guideline for treating Behcet’s disease. Saishin Igaku 1998; 43: 391-3.
16. Amoli MM. Shelley E, Mattey DL, Garcia-Porrua C, Thomson W, Hajeer AH, Ollier WE, Gonzalez-Gay MA. Lack of association between intercellular adhesion molecule-1 gene polymorphisms and giant cell arteritis. J Rheumatol 2001; 28: 1600-4.
17. Gbadegesin RA, Watson CJ, Cotton SA, Brenchley PE, Webb NJ. A PCR-RFLP typing method for adhesion molecule gene polymorphisms and allele frequencies in a normal UK population. Eur J Immunogenet 2002; 29: 109-11.
18. Kristiansen OP, Nolsoe RL, Holst H, Reker S, Larsen ZM, Johannesen J, Nerup J, Pociot F, Mandrup-Poulsen T. The intercellular adhesion molecule-1 K469E polymorphism in type 1 diabetes. Immunogenetics 2000; 52: 107-11.

19. Boiardi L, Salvarani C, Casali B, Olivieri I, Ciancio G, Cantini F, Salvi F, Malatesta R, Govoni M, Trotta F, Filippini D, Paolazzi G, Nicolì D, Farnetti E, Macchioni L. Intercellular adhesion molecule-1 gene polymorphisms in Behcet’s disease. J Rheumatol 2001; 28: 1283-7.

20. Braun C, Zahn R, Martin K, Albert E, Folwaczny C. Polymorphisms of the ICAM-1 gene are associated with inflammatory bowel disease, regardless of the p-ANCA status. Clin Immunol 2001; 101: 357-60.

21. Nishimura M, Obayashi H, Maruya E, Ohta M, Tegoshi H, Fukui M, Hasegawa G, Shigeta H, Kitagawa Y, Nakano K, Saji H, Nakamura N. Association between type 1 diabetes age-at-onset and intercellular adhesion molecule-1 (ICAM-1) gene polymorphism. Hum Immunol 2000; 61: 507-10.

22. Mycko MP, Kwinkowski M, Tronczynska E, Szymanska B, Selmaj KM. Multiple sclerosis: the increased frequency of the ICAM-1 exon 6 gene point mutation genetic type K469. Ann Neurol 1998; 44: 70-5.

23. Park SH, Park KS, Seo YI, Min DJ, Kim WU, Kim TG, Cho CS, Mok JW, Park KS, Kim HY. Association of MICA polymorphism with HLA-B51 and disease severity in Korean patients with Behcet’s disease. J Korean Med Sci 2002; 17: 366-70.