Praca poglądowa/ Review
Zalecenia ekspertów/ Experts’ guidelines

Atopowe zapalenie skóry – aktualne wytyczne terapeutyczne. Stanowisko ekspertów Sekcji Dermatologicznej Polskiego Towarzystwa Alergologicznego i Sekcji Alergologicznej Polskiego Towarzystwa Dermatologicznego

Atopic dermatitis: current treatment guidelines. Statement of the experts of the Dermatological Section, Polish Society of Allergology, and the Allergic Section, Polish Society of Dermatology

Roman Nowicki¹,*, Magdalena Trzeciak¹, Aleksandra Wilkowska¹, Małgorzata Sokółowska-Wojdylo¹, Hanna Ługowska-Umer¹, Wioletta Barańska-Rybak¹, Maciej Kaczmarski², Cezary Kowalewski³, Jerzy Kruszewski⁴, Joanna Maj⁵, Wojciech Silny⁶, Radosław Śpiewak⁷, Andriy Petranyuk¹

¹Katedra i Klinika Dermatologii, Wenerologii i Alergologii, Gdańskie Uniwersytet Medyczny, Polska
²Klinika Pediatrii, Gastroenterologii i Alergologii Dziecięcej, Uniwersytet Medyczny w Białymstoku, Polska
³Klinika Dermatologii i Immunodermatologii, Warszawski University Medyczny, Polska
⁴Klinika Chorób Infekcyjnych i Alergologii, Wojskowy Instytut Medyczny, Polska
⁵Klinika Dermatologii, Wenerologii i Alergologii, Uniwersytet Medyczny we Wrocławiu, Polska
⁶Wielkopolskie Centrum Alergologii i Dermatologii Estetycznej „Art Clinic” Poznań, Polska
⁷Zakład Dermatologii Doświadczalnej i Kosmetologii, Uniwersytet Jagielloński Collegium Medicum, Kraków, Polska

Tłumaczenie i przedruk pracy opublikowanej w „Postępach Dermatologii i Alergologii” 2015;32 (4):239–249; DOI: 10.5114/pdia.2015.53319, Copyright: © 2016 Termedia Sp. z o. o.

Translation and reprint of article published in “Postępy Dermatologii i Alergologii” 2015;32 (4):239–249; DOI: 10.5114/pdia.2015.53319, Copyright: © 2016 Termedia Sp. z o. o.
Atopowe zapalenie skóry (AZS) to przewlekła, nawrotowa, zapalna dermatozą, która może współistnieć z innymi IgE-zależnymi chorobami atopowymi, np. astmą oskrzelnową, alergicznym nieżymytem nosa oraz alergią pokarmową [1, 2]. Atopowe zapalenie skóry jest wynikiem złożonych interakcji genetyczno-epigenetyczno- środowiskowo-immunologicznych z nakładającym się defektem bariery naskórkowej [1, 2]. Choroba istotnie obniża jakość życia pacjentów i ich rodzin oraz prowadzi do poważnych konsekwencji socjoeconomicznych [3–9]. W pierwszych latach życia częstość choroby u obu płci jest podobna, dopiero po 6. roku życia notuje się przewagę płci żeńskiej nad męską (3:2) [10, 11]. Atopowe zapalenie skóry najczęściej rozpoczyna się w wczesnym dzieciństwie. Uważa się, że 60% wszystkich przypadków ma początek w pierwszym roku życia, a 90% przed ukończeniem 5. roku życia. Choroba wykazuje tendencję do ustawiania przed 5. rokiem życia u 40–80% chorych, u 60–90% do 15. roku życia [12]. W Polsce częstość występowania AZS wzrasta w dużych miastach, natomiast maleje w środowisku wiejskim. Odsetek występowania AZS wśród dzieci wynosi 4,7–9,2%, a wśród osób dorosłych 0,9–1,4% [13].

leczenie – wskazania ogólne

Podstawą leczenia AZS jest połączenie codzienną terapią emolientową i właściwe pielęgnacji skóry z leczeniem przeciwpalnym oraz unikanie kontaktu z prowokującymi alergenami i czynnikami drażniącymi [14, 15]. Terapia przeciwzapalną powinna być właściwie dobrana: miejscowe glikokortykosteroidy (mGKS) i/lub miejscowe inhibitory kalcyneuryny (mIK) – w zależności od aktywności choroby (okresy zaostreń i remisji, lokalizacja zmian i in.).

Czynniki nasilające przebieg choroby

Podczas zbierania wywiadu ważne jest ustalenie możliwych czynników nasilających przebieg choroby. W przypadku AZS są to najczęściej: alergeny powietrznopochodne, pokarmy, czynniki klimatyczne, stres, gospodarka hormonalna, papierosy, czynniki drażniące i mikroorganizmy. Nie każdy pacjent z AZS reaguje na wszystkie ww. czynniki [14, 16]. U 20–40% małych dzieci i niemowląt z AZS rozpoznaje się alergię pokarmową, zwykle na: mleko krowie, jaja, ryby, orzeszki ziemne, soję i pszenicę [16]. Alergia pokarmowa i AZS często występują w tych samych chorych. Zmiany skórne występujące w atopowym zapaleniu skojarzone z alergią pokarmową obserwuje się częściej w pacjentów w wieku rozwojowym niż w wieku dorosłym. Są one przejawem nadwrażliwości organizmu na pewne pokarmy, które po ich spożyciu prowadzi do wystąpienia reakcji atopowo-alergicznej (IgE-zależnej, IgG-niezależnej lub mieszanjej).

Atopowe zapalenie skóry u niemowląt i najmłodszych dzieci wiąże się najczęściej z uczuciem na białka mleka krowiego i jaja kurzego, a u dzieci starszych, młodzieży i dorosłych – z uczuciem na alergeny zwierzęce i powietrznopochodne.

INFORMACJE O ARTYKULE

Historia artykułu:
Otrzymano: 30.06.2015
Zaakceptowano: 30.06.2015
Dostępne online: 02.03.2016

Słowa kluczowe:
• atopowe zapalenie skóry
• terapia
• emolienty
• kosmeceutyki
• miejscowe glikokortykosteroidy
• miejscowe inhibitory kalcyneuryny
• leki przeciwhistaminowe

A B S T R A C T

Atopic dermatitis (AD) is a condition frequently encountered in medical practices across the country. More than 60% of children with AD are at risk to develop allergic rhinitis or asthma (the atopic march). Patients with AD have a unique predisposition to colonization or infection by Staphylococcus aureus. Treatments for AD need to rapidly control symptoms of the disease, improve quality of life and prevent exacerbations. Given the chronic and relapsing nature of the disease, therapies need to encourage good compliance and be well tolerated.

Keywords:
• Atopic dermatitis
• Treatment
• Emollients
• Cosmeceuticals
• Topical corticosteroids
• Topical calcineurin
• Inhibitors
• Antihistamines
Badania kliniczne wykazały, że u około 50% najmłodszych dzieci z AZS zaoszczerzenie zmian skórnych może wystąpić po spożyciu jednego lub więcej szkodliwych pokarmów. Także młodzież i dorosli z AZS reagują zaoszczereńiem zmian chorobowych po spożyciu niektórych pokarmów. W odróżnieniu od wieku wczesnodziecięcego, reakcja nadwrażliwości u młodzieży i dorosłych rzadziej dotyczy białka mleka i białka jaja kurzęgo („klasycznych alergenów pokarmowych”). W tej grupie wiekowej częściej obserwuje się zaoszczerzenie zmian skórnych w wyniku „alergicznej reakcji krzyżowej”, spowodowanej jednoczesnym użyczeniem na alergeny pyłków roślinnych i alergeny pokarmowe.

Ustalenie związku etiopatogenetycznego nadwrażliwości pokarmowej i AZS jest wskazaniem do czasowego stosowania diety eliminacyjnej u tych chorych [17]. Natomiast alergeny powietrznopochodne (sierść zwierząt, karaluchy, roztoza kurzu domowego, naskórek ludzki, pleśnie i pyłki roślin) stanowią najczęstszą przyczynę zaoszczerzeń chorobowych u dzieci starszych i u dorosłych [18].

Pierwsza linia terapeutyczna: terapia podstawowa

Terapia podstawowa AZS to edukacja, profilaktyka i przywracanie zaburzonych funkcji bariery na skórce za pomocą całkowitej terapii emolientowej (Tab. I). Emolienty powinny być dobierane indywidualnie w zależności od stopnia suchości skóry, aktywności dziennej i nocnej oraz ewentualnej alergii kontaktowej. Rekonstrukcję lipidów uszkodzonej bariery naskórkowej w AZS można uzyskać, stosując tzw. aktywne emolienty, tj. mieszanninę tłuszczów występujących fizjologicznie w warstwie rogowej. Związki te, takie jak ceramidy, wolne kwasy tłuszczowe i cholesterol, są aktywnie transportowane za pośrednictwem swoistych receptorów i ATP do cytoplazmy komórek warstw żywych naskórka, tam podlegają przemianom metabolicznym, a następnie wraz z endogennymi lipidami tworzą płaszcz lipidowy bariery naskórkowej. W AZS najlepsze wyniki daje stosowanie aktywnych emolientów, w których składzie dominują ceramidy, ponieważ w tej jednostce chorobowej stwierdzany jest ich największy niewidomie [19]. Uszczelnienie bariery naskórkowej następuje po każdym zastosowaniu emolientu, ale trwa poprawa jej czynności dopiero po 2–4 tygodniach systematycznego leczenia, co jest związane z fizjologicznym procesem różnicowania się naskórka, którego końcowym produktem jest obfitująca w błony lipidowe warstwa rogowa.

Duże znaczenie w miejscowym leczeniu AZS ma stosowanie nowoczesnych emolientów z agonistami dla receptorów proliferatorów peroksyzomów (peroxisome proliferator-activated receptors; PPAR). Są to wysokoaktywne kwasy tłuszczowe, niektóre flavonoidy, które poprzez aktywację swoistych receptorów jądrowych nasilają syntezę endogennych lipidów, poprawiając czynność bariery naskórkowej, a ponadto poprzez hamowanie NF-κB, odpowiedzi Th2, mastocytów i interleukiny 4 wywierają działanie przeciwzapalne zbliżone do kortykosteroidów [20, 21]. Ważnym elementem leczenia jest przywrócenie prawidłowego nawodnienia naskórka. Właściwą hydratację warstwy rogowej można osiągnąć poprzez stosowanie emolientów zawierających obok lipidów mocznic – główny składnik naturalnego czynnika nawilżającego (natural moisturizing factor; NMF), którego rola jest zatrzymywania wody oraz glicerolu jako związku odpowiedzialnego za transport wody ze skóry właściwej do naskórka.

| Tabela I – Terapia podstawowa atopowego zapalenia skóry (AZS) (wg [15, 24]) Table I – First-line therapy of atopic dermatitis (AD) (based on [15, 24]) |
|---|---|
| **Edukacja** | *wytrzymywać lub zdominować, jak stosować emolienty*
zachować odczepy czasowe, gdy stosowane są leki miejscowe
u dzieci > 12. miesiąca życia stosować szampon zalecane w AZS
podczas rozmowy z pacjentem (opiekunem) upewnić się, czy zalecenia są zrozumiane i przestrzegane
przypominać zalecenia przynajmniej raz w roku |
| **Profilaktyka** | *unikanie alergenów i czynników drażniących:*
dympapierosowy
infekcje
wełniane ubrania
stres |
| **Oczyszczanie skóry** | *delikatne i dokładne, mechaniczne*
środki myjące z substancjami asetycznymi lub bez nich
odpowiednie formy galenowe
pH fizjologiczne, w granicach 6
śczyka kąpiel ≤ 5 min, w tym 2-minutowa kąpiel w olejku, temperatura 27–30°C
dodanie do wanny 1/2 szklanki podchorynowa sól – eliminuje stężenie
sól kąpielowa – ułatwia uzuwanie złuszczonych korneocytów, husek naskórka, korzystne zwłaszcza w nasilonym zafaszczeniu (impetignizacji) |
| **Terapia emolientowa** | *aplikacja co najmniej 2–3 razy dzienne!*
glicerol jest lepiej tolerowany niż mocznic i chlorek sodu
głok propylenu łatwo wywołuje podrażnienia u dzieci < 2 lat i nie powinien być u nich stosowany
u dzieci < 2 lat zaleca się stosowanie emolientów pozbawionych białkowych alergenów i haptenów
nie należy stosować emolientów zawierających wyciągi z orzeszków ziemnych, które zwiększają ryzyko uczenia i alergii!
stosowanie emolientów na stan zapalny jest źle tolerowane – najpierw należy zastosować leki przeciwzapalne (mGKS, mIK), stosować odpowiednie dawki emolientów (250–500 g/tydzień) |
Dobre wyniki leczenia AZS uzyskano, stosując pochodną kwasu palmitynowego – PEA, fiziologicznie obecną w naskórkach, której ilość w AZS jest drastycznie zmniejszona. Jej miejscowe podawanie stymuluje produkcję lipidów endogennych, a ponadto ma ona właściwości przeciwbakteryjne i działa na receptory histaminowe mastycytów, utrudniając ich degranulację [22].

Naturzaczanie suchej skóry zmniejsza świątynie oraz sprzyja łagodzeniu stanu zapalnego. Regularne stosowanie emolientów 3–4 razy na doby zmniejsza konieczność stosowania mGKS (steroid sparing effects) [23, 24].

Skóra atopowa wymaga szczególnych procesów pielęgnacyjnych [15, 24]. Stan skóry zaznacza się poprawia po krótkich kapielach w wodzie o temperaturze 36–37°C, po których zaleca się aplikację wspomnianych emolientów w ciągu 5 minut od wyjścia z kapieli.

Kosmecutyki

Kosmecutyki stanowią odrębną grupę miejscowych preparatów, które ze względu na dużą zawartość składników aktywnych są produktami o właściwościach leczniczych lub znacznie wspomagających procesy pielęgnacji naskórka. Wykorzystuje się je do odbudowy i przywrócenia prawidłowej funkcji bariery naskórkowej oraz redukcji miejscowego stanu zapalnego w AZS.

Do najważniejszych związków aktywnych zawartych w kosmecutykach należą: witaminy (np. witamina A, C, K, niacyna), związki mineralne, nenaszone kwasu tłuszczowe, przeciwulotnicze (np. rutyna), ekstrakty roślinne (np. z kasztanowca, milorzębu japońskiego, arniki), fitoestrogeny, β-karoten, związki z aktywność przeciwzapalną, kwasów owocowych i cytokiny oraz ostatnio poznana ektochina. Ektochina ma zdolność ograniczania procesów zapalnych wywołanych czynnikami zewnętrznynymi, np. promieniowaniem ultrafioletowym. Zmniejsza ona rozmiar uszkodzenia DNA, przyspiesza komórkowe mechanizmy naprawcze, chroni komórki Langerhansa, zwiększa płynność warstwy lipidowej, chroni przed utratą wody z naskórka. Najistotniejszą rolę ektochiny jest zabezpieczanie keratynocytów w naskórku przed działaniem niszczących czynników środowiska, w tym promieniach UV, wysoką temperaturą i suchością [25, 26].

Mokre opatrunki

U dzieci w wieku od 6 miesięcy do 10 lat z ciężkim AZS (SCORAD-index ponad 50) można zastosować tzw. mokre opatrunki (wet-wrap treatment; WWT). W metodzie tej stosuje się dwie warstwy opatrunków: bezpośrednio na skórę wilotonę, nasączane substancją leczniczą – emolientem lub w przypadku nasilonych zmian mGKS, a na powierzchnię suche. Terapię prowadzi się przez 3–14 dni pod ścisłą kontrolą lekarską, w przypadku stosowania mGKS konieczne jest poranne monitorowanie poziomu korytozu. Działaniem niepożądannym w przypadku zastosowania mGKS może być supresja nadnerczy [27].

Mokre opatrunki wywierają efekt chłodzący, przeciwzapalny, przeciwśródowy. Tworzą barię mechaniczną przed czynnikami środowiska zewnętrznego i zabezpieczają dziecięko przed drapaniem, potencjalnie zmniejszając ilość zużytych mGKS. Z drugiej jednak strony powodują nasiloną absorpcję mGKS, zwiększone ryzyko rozwoju zakażeń bakteryjnych mieszkańców włosowych i atrofi skóry. Ponadto ta forma terapii wymaga szkolenia opiekunów lub pacjentów, co zwiększa jej koszt [28].

W opublikowanym w 2006 r. konsensusie dotyczącym leczenia metodą WWT podkreślą się, że jest to relatywnie bezpieczna terapia w ciężkich i nawrotowych przypadkach AZS, dobrze tolerowana przez dzieci i w istotny sposób podnoszącą ich jakość życia [29]. Podkreśla się spektakularny dobry efekt terapeutyczny obserwowany już po tygodniu leczenia tą metodą, jednak w części przypadków w ciągu 4 tygodni od odstawienia leczenia może dojść do znacznego pogorszenia AZS, dlatego prowadzone są badania nad proaktywnym zastosowaniem mokrych opatrunków w opiece domowej [29].

Wyniki badań są zachęcające, jednak dla rekomendacji tej metody potrzebne są dalsze kontrowelowane, wystandaryzowane badania kliniczne [30].

Drużka linia terapeutyczna: miejscowe leczenie przeciwzapalne

Miejscowe glikokortykosteroidy

Glikokortykosteroidy stosowane miejscowo (mGKS) stanowią podstawę leczenia AZS od ponad 50 lat. W skojarzeniu z emolientami zapewniają znakomity efekt terapeutyczny. Ze względu na suchość skóry preferowane są mGKS w postaci maści, z wyjątkiem zmiar sączących, na które należy stosować leżące postoje (lotion, spray, krem). Aplikacja mGKS zmniejsza kolonizację skóry grzybiczymi zloctystym [14].

W okresie zaoszczędzenia zaleca się mGKS o średniwie ścieżce działania. Ze względu na dużą skuteczność uzyskawaną w krótkim czasie od wdrożenia terapii oraz niską cenę mGKS są często nadużywane. U dzieci te powinny być stosowane bardzo rozwiaźnie, pod ścisłą kontrolą dermatologiczną ze względu na odmienności budowy skóry w stosunku do dorosłych. W Polsce u dzieci poniżej pierwszego roku życia zarejestrowane są jedynie octan i maśliang hdrokortyzonu, natomiast powyżej 2. roku życia furoinian mometazonu, propionian flutikazonu oraz aceponian metylopredinolzonu – leki charakteryzujące się wysoką selektywnością i powinno- wactwem receptorowym. Pozostałe mGKS można zgodnie z rejestracją stosować dopiero po 12. roku życia.

Działania niepożądane miejscowych glikokortykosteroidów: szkody posteroiwowe

Długotrwałe stosowanie mGKS, szczególnie z grup o dużej sile działania, wiąże się z częstymi objawami niepożądonymi: atrófią skóry, trwałym rozszczepieniem naczyn krwionośnych (teleangiekzjami), rozstępami, hipertrzyząch, dyspigmentacją, zapałeniem okolęstnym (perioral dermatitis), trądzikiem typu rosacea, nadkażeniami bakteryjnymi i/lub grzybiczymi, efektem odstawienia (zaoszczędzeniem zmian skóry na skórze),(zaoszczędzeniami) oraz zjawiskiem tachyfilakacji (stopniowym zmniejszeniem efektywności leku w miarę przedłużania terapii). Miejscowa aplikacja silnych
mGKS na duże powierzchnie u dzieci, zwłaszcza u niemowląt, może powodować niepożądane objawy systemowe: hamowanie osi podwzgórze-przysadka-nadnercza, zahamowanie wzrostu, osteoporozę. Obawa przed działaniem niepożądanych (a także coraz bardziej powszechnaobia steroidowa) jest centralną przyczyną nieprzestrzegania zaleceń lekarskich przez pacjentów, a w przypadku dzieci – przez ich rodziców, co pociąga za sobą brak efektywności leczenia. W celu uniknięcia potencjalnych objawów niepożądanych zalecana jest tzw. terapia przerwana, polegająca na stosowaniu mGKS tylko przez 2-3 dni w tygodniu na przemian z emolientami. Glikokorytkosteroidy powinny być stosowane zgodnie z zalecieniami producenta jeden raz na dobę, gdyż ich częstsze aplikowanie nie zwiększa efektywności leczenia, a zwiększa ryzyko działań niepożądanych [14, 18, 24, 31-33].

„Fobia steroidowa” („korytkofobia”) Poniżej połowa pacjentów z AZS obawia się stosowania mGKS, co ujawniły badania dotyczące fobi steroidowej przeprowadzone wśród chorych. Ponadto wykazano, że pacjenci mają niewielką wiedzę na temat potencjału terapeutycznego mGKS oraz ich działań niepożądanych, a głównym źródłem informacji są dla nich lekarze oraz farmaceuci. Problem fobi steroidowej występuje nie tylko w Polsce, ale w całej Europie i jest przyczyną nieskuteczności terapii miejscowej AZS.

Wydaje się, że prawidłowa edukacja pacjentów i kontakt interpersonalny pacjent – opieka medyczna oparty na wzajemnym zaufaniu mogłyby poprawić skuteczność leczenia AZS [34].

Miejsce inhibitory kalcynyuryny Miejsce inhibitory kalcynyuryny: takrolimus i pimekrolimus, hamują aktywację limfocytów T i uwalnianie cytokin zapalnych.

Pimekrolimus w postaci kremu 1% jest zalecanym jako leczenie pierwszego rzutu w łagodnym AZS, a jego profil kliniczny sugeruje, że może być rozważany jako leczenie z wyboru w łagodnym i średnim AZS, zarówno u dzieci, jak i dorosłych, szczególnie w wrażliwych rejonach skóry [35].

Takrolimus w maści 0,03% i 0,1% jest zaleczany w umiarkowanym i ciężkim wyprysku atopowym. W porównaniu z pimekrolimusem wykazuje on szybsze i silniejsze działanie, a poprawa kliniczna po jego zastosowaniu jest widoczna już w pierwszym tygodniu leczenia. Preparaty te aplikuje się 2 razy dnia do czasu ustąpienia stanu zapalnego. Mogą być one bezpiecznie stosowane przez wiele miesięcy na wszystkie obszary skóry, włącznie z miejscami tak wrażliwymi, jak powieki, twarz, szyja, okolice wyprzyniionych oraz skóry narzędzi płciowych, zarówno u dorosłych, jak u dzieci. W przeciwieństwie do mGKS nie hamują one syntezy kolagenu, nie powodują ścięczenia naskórka, rozszerzenia naczyń i nie uszkadzają bariery skórnej. Najczęstszym objawem niepożądanym związанныm ze stosowaniem mKŁ jest pieczenie i zaczterwienie skóry w miejscu aplikacji, które ustępuje po kilku dniach [14, 35, 36].

Na podstawie analiz dotychczasowych wyników leczenia uważa się, że ograniczenia dotyczące stosowania pimekrolimusu u niemowląt są nieuzasadnione. Sugeruje się skonstruowanie nowych zaleceń i ostrzeżeń na etykietach miejscowych inhibitory kalcynyuryny [37].

Terapia proaktywna (podtrzymująca) Terapia proaktywna polega na stosowaniu takrolimusu 2 razy w tygodniu po ustąpieniu zmian skórnych przez okres do 12 miesięcy. W przypadku nawracającego AZS zaleca się stosowanie pimekrolimusu na całkowicie wygojone zmiany raz dziennie przez 7 dni w tygodniu lub rzadziej, w zależności od zaleceń lekarza prowadzącego terapię, przez okres 3 miesięcy [37]. Wśród pacjentów stosujących terapię proaktywną wykazano zmniejszenie częstości zaostreń AZS, zwiększenie przestrzegania zaleceń lekarskich, poprawę jakości życia oraz obniżenie kosztów leczenia AZS [38, 39].

Leczenie przeciwdrobnoustrojowe Każde zaosstrzenie objawów AZS może być związane z infekcją, najczęściej grynowcową. Skóra pacjentów z AZS jest skolonizowana tym patogenem w 90% przypadków. Próbowano dowodzić, że eradykacja Staphylococcus aureus znacząco zmniejsza ciężkość przebiegu choroby [40], jednak m.in. z uwagi na wzrastającą lekopoorność oraz zaburzenie profilu peptydów przeciwbakteryjnych w AZS uzyskanie trwałej dekolonizacji skóry nie jest praktycznie możliwe [41]. Badania wskazują na skuteczność oktendyny, chlorheksyny, mupirocyyny, kwasu fudysovégo i retapamuliny [40, 42, 43]. Ze względu na wyższe wspomniane zjawisko antybiotykoporności nie zaleca się przewlekłego stosowania antybiotyków miejscowych. Uzasadnieniem dla stosowania antybiotyków doustnych jest zaosstrzenie AZS z klinicznymi objawami zakażenia bakteryjnego [44, 46]. W innych przypadkach leczenie antybiotykami doustnymi jest niewskazane [14, 47]. Należy pamiętać, że samo leczenie przeciwdrobnoustrojowe (mKŁ, mGKS, UV) zmniejsza kolonizację grynovcom złościwą w AZS [14, 42]. Zakażenie skóry wirusem opryszkowym zwykle (herpes simplex virus; HSV), często manifestującej się jako erupciou scierelliformis Kaposi, wymaga ogólnoustrojowego leczenia przeciwdrobnoustrojowego [48]. Keto-konazol i cyklopiroksolamina są proponowane do leczenia powierzchownych infekcji Malassezia sympioïdis [49-51].

Taniny Taniny mają od wielu lat ugruntowaną pozycję w dermatologii. Ze względu na właściwości ściągające, przeciwdrobnoustrojowe, przeciwdrobnoustrojowe i osu-
i emoliencyjne podłoże kremu sprawiają, że preparat ten może być stosowany w stanach zapalnych skóry przebiegających z wytlenieniem skóry zarówno w monoterapii łagodnych postaci AZS, jak i w terapii skojarzonej z mGKS, lekami przeciwgryczycowymi i antybiotykami w cięższych postaciach powikłanych wtórna infekcja [53]. Lotion oprócz taniny zawiera dodatkowo tlenek cynku i tałk, które wykazują działanie higroskopijne. Z tego względu ta postać leku jest zalecana do stosowania w monoterapii lub terapii wspomagającej zmian skórnych z towarzyszącym wysiękiem i złokalizowanych w okolicach wyprzyniowów. Syntetyczna tanina dostępna w postaci roztworu do kąpieli i okładów jest zalecana do kąpieli częściowych, kąpieli całego ciała, do przemywania i okładów.

Leki przeciwhistaminowe

Leki przeciwhistaminowe pierwszej generacji (LPI), spośród których obecnie zalecana jest jedynie hydroksyryna, mogą hamować aktywność histamy w podskórnych ośrodkach ośrodowego układu nerwowego, wywierając działanie przeciwświadowe i sedatywne, co jest korzystne w przypadku pacjentów z AZS, u których występują zaburzenia snu i trudności w zasypaniu. Działanie antyhistaminowe może przyspieszać naprawę uszkodzonej bariery naskórkowej [55, 56]. Geschwender i wsp. wykazali, że dodanie histamy do kultur keratynocytów (in vitro) skutkuje znaczącym zmniejszeniem ekspresji keratyny 1/10, filagryny i lórinkry [55]. Preparaty drugiej generacji (LPII) są przydatne szczególnie u chorych na AZS, któremu towarzyszy zapalenie spojewek lub alergiczny nietrój nosa [15]. Większa specyficzność wiązania do receptora histaminowego H1, dłuższy okres półtrwania oraz hydrofilowa budowa LPRI przyczyniły się do zwiększenia skuteczności działania i poprawy bezpieczeństwa stosowania LPII [1].

Bezpieczeństwo cetyryzyny i lewocetyryzyny zostało potwierdzone dwoma dużymi badaniami: ETAC i EPAAC, obejmującymi 18-miesięczny okres leczenia dzieci z AZS między 1 a 3. rokiem życia [1, 58]. Badanie ETAC (Early Treatment of the Atopic Child) było pierwszym badaniem prospektynym oceniającym bezpieczeństwo i skuteczność stosowania cetyryzyny w populacji dziecięcej. Ciężkie zdarzenia niepożądane występowały rzadko i były częstszes w grupietrzymającej placebo. Wykazano, że zastosowanie cetyryzyny u dzieci chorujących na AZS w wieku od 1 roku do 2 lat przez 18 miesięcy zmniejszyło o polową ryzyko wystąpienia u nich astny [57]. Badanie EPAAC objęło grupę 510 dzieci z AZS między 12. a 24. miesiącem życia. Nie obserwowano istotnych działań niepożądanych poza infekcjami górnych dróg oddechowych, zaburzeniami ze strony przewodu pokarmowego czy zastraszonymi chorób alergicznych. Nie było istotnych statystycznie różnicy w liczbie tych objawów niepożądanych między grupą otrzymującą lewocetyryzynę i placebo [1].

Bilastyna i rupatadyna są nowymi LP, zarejestrowanymi jedynie do leczenia alergicznego nieżytu nosa oraz połkryzyw. Rupatadynę można stosować od 6. roku życia, natomiast bilastynę od 12. roku życia (Tab. 1). Bilastyna charakteryzuje się średnią mocą wiązania z receptorem H1, natomiast dużą selektywnością [59]. Po wchłonięciu nie jest metabolizowana, wydalana jest z moczem. Nie ma wpływu na zaburzenia rytmu serca nawet przy jednoczesnej podażi ketonazolu. Dawki terapeutyczne bilastyny nie wpływają na funkcje psychomotoryczne [59]. Dane dotyczące skuteczności działania przeciświodowego LPI i LPII w AZS są ograniczone i nie ma wystarczających dowodów, aby powszechnie stosować te leki w leczeniu świadu w AZS [24].

Tabela II – Wiek, w którym dopuszczane jest stosowanie poszczególnych leków przeciwhistaminowych

Lek przeciwhistaminowy	Wiek
fenantil	2. miesiąc życia
hydroksyryna	12. miesiąc życia
cetyryzyna	2. rok życia
lewocetyryzyna	2. rok życia
loratadyna	2. rok życia
desloratadyna	1. rok życia
feksofenadyna	12. rok życia
bilastyna	12. rok życia
rupatadyna	6. rok życia

Trzecia linia terapeutyczna: leczenie systemowe

U pacjentów z AZS, u których miejscowa terapia przeciwzapalna nie przynosi poprawy, należy rozważyć dołączenie cyklosporyny A (CsA), metotrexatu (MTX), azatiopryny (AZA), mykofenolanu mofetylu (MMF), kortykosteroidów systemowych (GKS) lub fototerapii [14, 15, 31, 54].

Cyklosporyna A jest rekomendowana jako lek pierwszego rzutu w ciężkich przypadkach przewlekłego AZS u dorosłych. U dzieci i młodzieży jej zastosowanie powinno być rozważane tylko w ciężkich przypadkach. Zalecenia dotyczące stosowania leku u dzieci opierają się na wynikach pojedynczych badań kohortowych i pojedynczych randomizowanych badań kontrolnych (wskazania off label) [24, 60, 61]. Cyklosporyna A powoduje zmniejszenie stanu zapalnego, zmniejszenie powierzchni zmian chorobowych, zmniejszenie nasilenia świadu oraz poprawę jakości snu. Zalecana początkowa dawka leku wynosi 2,5–3,5 mg/kg m.c./dobę w dwóch dawkach podzielonych i nie powinna przekraczać 5 mg/kg m.c./dobę [60]. Po uzyskaniu poprawy wskazana jest redukcja dawki CsA o 0,5–1,0 mg/kg m.c./dobę co 2 tygodnie [61]. Korzystny efekt działania CsA polegający na zmniejszeniu świadu i stanu zapalnego skóry obserwuje się już 2–6 tygodni od włączenia leczenia [59, 62]. Odstawienie leku wiąże się z ryzykiem nawrotu zmian skórnych w czasie do kilkunastu tygodni od zaprzestania leczenia, jednak ocenia się, że skóra pacjentów po terapii nie wraca do stanu przed leczeniem CsA [60, 62]. Lek można podawać w terapii ciągłej długoterminowej, jednakże zaleca się podawanie w cyklicznych okresach średnio 12 tygodni. Wykazano, że CsA w dawkach 2,5–5,0 mg/kg m.c./dobę podawana w cyklicznych okresach (czas trwania cyklu 12–16 tygodni) szybko dawała znaczną poprawę lub ustąpienie zmian u 80–90% pacjentów [24]. Mimo niewątpliwiej skuteczności CsA w leczeniu AZS, stosowanie tego leku niesie ryzyko poważnych działań niepożądanych. Większość objawów ubocznych pojawiających się w trakcie terapii cofa się po odstawieniu leku. Aby im zapobiec lub zmniejszyć ryzyko...
wystąpienia, rekomendowane jest ścisłe kontrolowanie leczenia. Chory przyjmujący CSa powinni być regularnie badani pod kątem ciśnienia tętniczego i parametrów nerwowych. Ryzyko wystąpienia działania nefrotokszycznego wzrasta, gdy dawka leku przekracza 5 mg/kg m.c./добę, przy utrzymywa-

nych się podwyższonych wartościach kreatynyny, a także u osób starszych. Do trwałego uszkodzenia nerek (tubulopatia, waskulopatia) może dojść u osób przyjmujących CSa w sposób ciągły ponad 2 lata [61]. W krótkotrwałej i przerywanej terapii CSa dysfunkcja nerek jest zwykle przejściowa. U dzieci ryzyko wystąpienia działania nefrotokszycznego jest mniejsze niż u dorosłych. Rzadziej występujące działania niepożądane w trakcie leczenia CSa obejmują objawy neurologiczne, takie jak bóle głowy, drgawki, pares-

tezie, a także zaburzenia w obrębie przewodu pokarmowego, infekcje, przerosz dziaśl, nadmiernie owlosienie, hiperlipide-

mię, zaburzenia poziomu elektrolitów, zwiększone ryzyko rozwoju nowotworów skóry i rozrostów limfoproliferacyj-

nych. Oznaczanie stężenia CSa we krwi w trakcie terapii tym lekiem nie jest wymagane, gdyż w niewielkim stopniu koreluje ono ze skutecznością i toksycznością [62]. Pomimo braku dowodów klinicznych, zaleca się odstawienie CSa 2 tygodnie przed planowanym szczepieniem i jej ponowne włączenie 4–6 tygodni po szczepieniu [15].

Metotrexat, AZA i MMF mogą być zastosowane off-label u dorosłych pacjentów z AZS, jeżeli CSa jest nieefektywna lub są przeciwwskazania do jej stosowania. Nie ma wystar-

czającej liczby randomizowanych badań klinicznych, prowadzonych metodą podwójnie ślepą próby, kontrolowanej placebo, prospektynowych, dotyczących stosowania AZA, MTX czy MMF u dzieci i młodzieży z AZS [15]. Metotrexat jest zalecany do leczenia ciężkich postaci AZS opornych na inne metody terapii. Podkreśla się, że jest on po CsA drugim co do częstości lekiem stosowanym w leczeniu ciężkich postaci AZS. W piśmiennictwie można znaleźć szereg donie-

sien na temat bezpieczeństwa i skuteczności MTX w AZS. Badania te dotyczą najczęściej osób dorosłych [63]. Istnieją też pojedyncze doniesienia na temat skuteczności i bez-

pieczeństwa stosowania MTX u dzieci [64]. Obecnie zaleca się MTX w leczeniu AZS w dorosłych w dawkach podobnych jak w leczeniu łuszczycy, tj. 10–20 mg/tydzień. Lek można stosować w jednej dawce raz w tygodniu, ale częściej podaje się go w trzech dawkach 2,5–7,5 mg co 12 godzin jeden raz w tygodniu [65]. Innii autorzy zalecają stosowanie MTX w dawce 7,5–25 mg/tydzień u osób dorosłych i 0,2–0,7 mg/kg m.c./tydzień u dzieci [62].

Leczenie jest zwykle dobrze tolerowane, ale należy pamiętać o możliwości wystąpienia poważnych działań niepożądanych. Uważa się, że ich częstość i nasilenie mają związek z wielkością dawki. Działania niepożądane zgła-

szane były głównie po zastosowaniu dużych dawek MTX w chemioterapii. Wśród częściej występujących wymienia się hepatotoksykowość, supresję szpiku, zwłóknienie płuc oraz niewydolność nerek. Ponadto często obserwuje się obniżoną odporność na zakażenia, leukopenię, jadowstrzęp, zawroty i bóle głowy, bóle brzucha, wzrodkujące zapalenie jamy ustnej, zapalenie i owrzodzenie jelit [66].

Azatiopryna jest stosowana ze wskazań pozarejestryacyj-

nych w leczeniu chorób skóry, w tym ciężkich postaci AZS opornych na inne metody terapii. Mechanizm działania AZA w AZS nie został dotychczas dokładnie poznany. Badania in vitro sugierują, że ma ona supresyjny i toksyczny wpływ na komórki Langerhansa [67]. Podkreśla się, że AZA jest bardzo skuteczna w leczeniu AZS, jednakże ze względu na mechanizm działania efekt terapeutyczny może się pojawiać z opóźnieniem [68]. U niektórych chorych pełny efekt terapeutyczny osiągany jest nawet po 12 tygodniach i później.

Zaleca się stosowanie AZA w dawce 1–3 mg/kg m.c./dobę. Przed rozpoczęciem leczenia powinno się ocenić aktyw-

ność metyltransferazy tiopurynowej (thiopurine methyltrans-

ferase; TPMT) – enzymu biorącego udział w metabolizmie 6-merkaptopuryny, gdyż u osób z jego wrodzonym niedo-

rem może dochodzić do zwiększonej mielosupresji. Mutacje genu TPMT mogą wpływać na skuteczność i bezpieczeństwo leczenia AZA. Oznaczenie poziomu TPMT pozwala na dostosowanie indywidualnej dawki dla pacjenta i zmniejsza ryzyko uszkodzenia szpiku [69–72].

Ze względu na fakt, że AZS występuje często u dzieci, powstaje pytanie, czy AZA jest przydatna w leczeniu tej choroby u dzieci. Powyższy Atlantyk autorzy stosowali lek w ciężkich przypadkach AZS u dzieci i wykazali, że jest on skuteczny. Nie obserwowano toksycznego działania na szpik [73, 74].

Wykazano, że AZA nie tylko wpływa na poprawę stanu klinicznego, lecz także obniża poziom całkowitych IgE u dzieci i młodzieży z AZS [75].

Azatiopryna wykazuje szereg działań niepożądanych. Do najczęściej obserwowanych należą uszkodzenie szpiku oraz zaburzenia układu imunologicznego. Obserwuje się także zaburzenia naczyniowe (zapalenie naczyń), zaburzenia żołądkowo-jelitowe (nudności, wymioty) oraz zaburzenia strony wątroby. Dlatego w trakcie leczenia konieczne jest monitorowanie transaminaz i morfologii krwi.

Zgodnie z charakterystyką produktu leczniczego w pierw-

szych 8 tygodniach leczenia kontrolę morfologii powinno się przeprowadzać raz na tydzień. W późniejszym okresie czę-

stość badań można zmniejszyć do jednego na miesiąc, a następnie na 3 miesiące. W przypadku obniżenia poziomu leukocytów lub płytek krwi poniżej normy, a także w przy-

padku wystąpienia innych działań niepożądanych dawkę leku należy zmniejszyć.

Podczas stosowania AZA pacjenci nie powinni być szczepiony szczepionkami zawierającymi żywe drobnoustroje. Reakcja immunologiczna na szczepionki zawierające zabite drobo-

nostroje również może być osłabiona. Ze względu na działanie teratogenne AZA nie należy stosować w okresie ciąży. Nie należy też stosować leku w czasie karmienia piersią [68]. Glikokortykosteroidy systemowe (GKS) są dopuiszczane do stosowania w ściśle wyselekcjonowanych przypadkach zaostrzenia AZS, głównie u pacjentów doro-

szych, przez okres jednego tygodnia [15].

W praktyce codzienniej (odmiennie niż w publikowanych wynikach badań klinicznych) najczęstszymi przyczynami zaprzestania leczenia GKS są: działania niepożądane, brak efektywności leczenia, brak współpracy ze strony pacjenta lub zaniechanie leczenia przez pacjenta po uzyskaniu po-

prawy stanu klinicznego. W 10-letnich badaniach obserwa-

cyjnych pacjentów z AZS w Holandii najmniej działań niepożądanych notowano podczas leczenia GKS (5%), MMF (22%) i CsA (24%). Więcej działań niepożądanych, głównie ze
strony przewodu pokarmowego, obserwowano po leczeniu AZA (38%) i MTX (41%). Z kolei brak efektywności leczenia oceniono na 15% w przypadku CsA i AZA, 20% GKS, 44% MMF i 65% MTX [76]. Pod kątem możliwości zastosowania w leczeniu AZS badano probiotyki. Uzasadnieniem stosowania probiotyków jest indukowanie przez zawarte w nich bakterie odpowiedzi immunologicznej typu TH1 zamiast TH2, co ma prowadzić do hamowania produkcji przeciwiał IgE. Niektóre doniesienia wykazują ograniczoną korzyść ze stosowania probiotyków w zapobieganiu i leczeniu AZS. Wyniki te wymagają potwierdzenia [77].

Fototerapia

W AZS skuteczne są wszystkie typy fototerapii: naturalnym światłem, wąskozakresowym UVB (narrow band-UVB – NB-UVB, 311 nm), szerokozakresowym UBV (broad band-UVB – BB-UVB, 290–320 nm), UVA (320–400 nm), UVA z zastosowaniem psoralenów (5-metoksypсорalen, 8-metoksypсорalen – związki fotoczułujące, które chory zażywa doustnie 1 lub 2 godziny przed naświetleniem) doustnie lub miejscowo (PUVA). UVA i UVB (UVAB) oraz UVA1 (340–400 nm). Nie ma dowodów na przewagę jednej metody nad inną ze względu na nieliczne badania porównawcze. Widalno tylko, że naturalne światło słoneczne jest najmniej efektywne. Najczęściej stosowaną metodą jest fototerapia UVB [62].

Protokoły terapeutyczne różnią się w zależności od regionu ciała i lokalnych rekomendacji. W przypadku szerokiego spektrum UBV BB-UVB można stosować system dawkowania w zależności od fototypu skóry. Dawkę inicjującą dla poszczególnych fototypów wynosi: I – 20 mJ/cm², II – 25 mJ/cm², III – 30 mJ/cm², IV – 40 mJ/cm², V – 50 mJ/cm², VI – 60 mJ/cm². Dawkę zwiększa się w fototypie I o 5 mJ/cm², II o 10 mJ/cm², III o 15 mJ/cm², IV – 20 mJ/cm², V – o 25 mJ/cm², VI – o 30 mJ/cm², przy każdym naświetleniu. Kolejne dawki winny być aplikowane 3–5 razy w tygodniu [62].

W zależności od minimalnej dawki rumieniowej (minimal erythema dose; MED) dawka inicjująca BB-UVB powinna być równa 50% MED. W kolejnych 10 naświetleniach dawka wzrasta o 25% w stosunku do dawki początkowej, w naświetlaniach 11–20 – o kolejne 10%, w kolejnych naświetlaniach dawka zależy od decyzji lekarza prowadzącego. Gdy pacjent opuści 1 tydzień naświetlenia, można utrzymać inną dawką, gdy opuści 2 tygodnie naświetlenia, wskazane jest zmniejszenie dawki o 50%, gdy opuści 3 tygodnie naświetlenia, dawkę powinno się zwiększyć o 75%, natomiast gdy opuści 4 tygodnie, naświetlenia należy rozpocząć od początku.

W przypadku NB-UVB także można stosować system dawkowania w zależności od fototypu skóry. Dawkę inicjującą w fototypie I wynosi 130 mJ/cm², w fototypie II – 220 mJ/cm², w fototypie III – 260 mJ/cm², w fototypie IV – 330 mJ/cm², w fototypie V – 350 mJ/cm², w fototypie VI – 400 mJ/cm². Przy każdym kolejnym naświetleniu zwiększa się dawkę w fototypie I o 15 mJ/cm² (maksymalna dawka 2000 mJ/cm²), w fototypie II – o 25 mJ/cm² (maksymalna dawka 2000 mJ/cm²), w fototypie III – o 40 mJ/cm² (maksymalna dawka 3000 mJ/cm²), w fototypie IV – o 45 mJ/cm² (maksymalna dawka 3000 mJ/cm²), w fototypie V – o 60 mJ/cm² (maksymalna dawka 5000 mJ/cm²), w fototypie VI – o 65 mJ/cm² (maksymalna dawka 3000 mJ/cm²). Kolejne dawki powinny być aplikowane 3–5 razy w tygodniu [62].

W zależności od MED dawka inicjująca jest podobna jak w BB-UVB, czyli 50% MED. Do 20. naświetlenia dawka wzrasta o 10%, a w kolejnych naświetlaniach zależy od decyzji lekarza. Gdy pacjent opuści 1 tydzień naświetlenia, można utrzymać inną dawką, gdy opuści 2 tygodnie naświetlenia, wskazane jest zmniejszenie dawki o 25%, gdy opuści 3 tygodnie naświetlenia, dawkę powinno się zmniejszyć o 50%, natomiast gdy opuści 4 tygodnie, naświetlenia należy rozpocząć od początku.

Po uzyskaniu ustąpienia ponad 95% zmian metodę NB-UVB stosuje się terapię podtrzymującą: przez 4 tygodnie w wysokości ostatniej dawki raz w tygodniu, następnie przez 4 tygodnie 1 dawkę zmniejsza się o 25% co 2 tygodnie, następnie raz na miesiąc 50% najwyższej dawki [62]. Fototerapia PUVA również powinna być prowadzona w zależności od fototypu – dawkę inicjującą w fototypie I wynosi 0,5 mJ/cm², w fototypie II – 1,0 mJ/cm², w fototypie III – 1,5 mJ/cm², w fototypie IV – 2,0 mJ/cm², w fototypie V – 2,0 mJ/cm², w fototypie VI – 3,0 mJ/cm². Przy każdym naświetleniu zwiększa się dawkę: w fototypach I i II – o 0,5 mJ/cm² (maksymalna dawka 8 mJ/cm²), w fototypach III i IV – o 1,0 mJ/cm² (maksymalna dawka 12 mJ/cm²), w fototypach V i VI – o 1,5 mJ/cm² (maksymalna dawka 20 mJ/cm²) [62]. Naświetlanie może być stosowane w mono- terapii lub w połączeniu z emolientami i mGKS. Ze względu na ostrzegania producenta podczas fototerapii należy ostrożnie aplikować mILK. Uważać się, że działania niepożądane fototerapii występują rzadko. Ich częstotliwość jest różna w zależności od metody. Do działań niepożądanych należą: rumień i tliwność po naświetlaniach, świad, oparzenie oraz uszkodzenie posłonczynych skóry. Rządziej występują raki skóry, czerniak (głównie w przebiegu PUVA), plamy soczewcowate, reakcje fotonadwrażliwości (głównie polimorficzne osudki świetlne), zapalenie mieszkańców płowych, fotonycholiza, reaktywacja wirusa HSV, nadmierne owłosienie twarzy, zaćma (również w przebiegu PUVA). W związku z przyjmowaniem psoralenów pacjenci uszkadzają się na nudności, wymioty, bóle głowy [62, 78, 79].

W przypadku stosowania fototerapii i fotochemoterapii u dzieci zaleca się NB-UVB jako terapię z wyboru u pacjentów, którzy nie odpowiedzieli na leczenie miejsce- we [15, 24]. Opisano raki skóry u pacjentów, którzy jako dzieci byli leczeni metodą PUVA – z tego względu nie jest to metoda pierwszego wyboru w AZS [62].

Immunoterapia swoista

Alergenowa immunoterapia swoista (specific arogen immunothe- rapy; SIT) jest jedyną metodą przyczynowego leczenia chorych na AZS. Wskazaniem do SIT u pacjentów z AZS jest niewy- starczająca odpowiedź na dotychczasowe leczenie z udokumentowanym uczeniu na IgE-zależne alergeny powietrznopochodne [15, 80–82]. Na podstawie danych literackich i doświadczeń własnych można stwierdzić, że SIT w AZS wykazuje dużą skuteczność kliniczną w leczeniu chorych z objawami uczenia na alergeny powietrznopochodne.
calorowe i sezonowe, szczególnie u pacjentów uczyólnych na jedną grupę alergenów [15, 83]. Najlepiej udokumentowane są efekty kliniczne uzyskiwane przy zastosowaniu SIT u pacjentów uczyólnych na roztocze kurzu domowego i pyłki roślin [83, 84]. Nie ma przeciwwskazań do odczułania pacjentów z AZS i współistniejącymi innymi chorobami atopowymi, takimi jak alergicznie nieżyty nosa czy łagodna astma oskrzełowa [15, 83]. O skuteczności SIT decyduje prawidłowa kwalifikacja pacjentów, odpowiedni dobór składu szczepionki i właściwe jej prowadzenie. Skład szczepionek powinien być opracowany na podstawie wyników szczegółowego badania podmiotowego, przedmiotowego oraz rezelowej diagnostyki alergologicznej, opartej m.in. na skórnych testach płatkowych (STP) i oznaczeniu aslgE w surowicy. O powodzeniu SIT decyduje właściwy dobór składu szczepionek i kolejności ich podawania u chorych na AZS z alergią wielowąsną. Przy planowaniu SIT u chorych na AZS diagnostyka alergiczna nie powinna się ograniczać do wykonania STP, lecz powinna być uzupełniona oznaczeniami poziomu aslgE dla odpowiednich alergenów [83, 84]. Objawy niepożądane występują głównie w fazie indukcji SIT i mają charakter łagodny oraz przejściowy. Najczęściej pojawia się rumień i obrzęk skóry w miejscu podania szczepionki. Efekty ogólne są rzadkie i mają postać reakcji ogniskowych odległych od miejsca podania alergenu lub objawów ogólnych. Obserwuje się zastrzeżenie nieżytu nosa lub astmy, wystąpienie świadu skóry i pokrzywki. Rzadziej zgłaszane są objawy nieszczodne, takie jak podwyższona temperatura, ból głowy, zawroty, osłabienie, mężczyźnie mięśni. W pojedynczych przypadkach może wystąpić spadek ciśnienia tętniczego, obrzęk krzani, a nawet wstrząs anafilaktyczny. Zazwyczaj objawy niepożądane SIT mają charakter łagodny, przemijający i dotyczą przede wszystkim skóry. Stosując SIT, musimy być jednak zawsze przygotowani na interwencję farmakologiczną i posiadać zabezpieczenie anestezjologiczne [84]. Alergenowa immunoterapia swoista powinna być prowadzona systematycznie przynajmniej przez 4–5 lat przez lekarza specjalisty, przy spełnionych warunkach bezpieczeństwa z uwzględnieniem możliwości wystąpienia reakcji niepożądanych [83, 84].

Leczenie alternatywne

Nie ma wystarczających dowodów na skuteczność nienasyconych kwasów tłuszczowych stosowanych doustnie lub miejscowo, kapieli w solankach czy krochmału. Nie potwierdzono też zasady stosowania ziół chińskich w leczeniu AZS. Brakuje dowodów na skuteczność leczenia AZS akupunkturą, homeopatią, aromaterapią [15].

Wydaje się, że suplementacja witaminą D lub E może być przydatna w leczeniu AZS, ale wymaga to dalszych kontrolowanych badań, zanim powstaną bezpośrednie rekomendacje [15].

Podsumowanie

W leczeniu AZS podstawową rolę odgrywają doświadczenia i ściśła współpraca z pacjentem i/ lub jego rodzicami, edukacja, unikanie czynników zastrzegających chorobę, przywrócenie zaburzonych funkcji bariery skórnej, zmniejszenie światła oraz eliminacja zjaw zapalnych i zakażenia skóry. Pacjenci wymagają częstych konsultacji dermatologicznych, a w przypadku uogólnionych zjaw erytrodermicznych – hospitalizacji.

PIŚMIENICTWO/REFERENCES

[1] Schlapbach C, Simon D. Update on skin allergy. Allergy 2014;69:1571–1581.
[2] Garmhausen D, Hagemann T, Bieber T, et al. Characterization of different courses of atopic dermatitis in adolescent and adult patients. Allergy 2013;68:498–506.
[3] Brown MM, Chamlin SL, Smidt AC. Quality of life in pediatric dermatology. Dermatol Clin 2013;31:211–221.
[4] Lewis-Jones S. Quality of life and childhood atopic dermatitis: the misery of living with childhood eczema. Int J Clin Pract 2006;60:984–992.
[5] Carroll CL, Balkrishnan R, Feldman SR, et al. The burden of atopic dermatitis: impact on the patient, family, and society. Pediatr Dermatol 2005;22:192–199.
[6] Eller E, Kjaer HF, Høst A, et al. Development of atopic dermatitis in the DARC birth cohort. Pediatr Allergy Immunol 2010;21:307–314.
[7] Shaw TE, Currie GP, Koulenda CW, et al. Eczema prevalence in the United States: data from the 2003 National Survey of Children’s Health. J Invest Dermatol 2011;131:57–73.
[8] Bozek A, Jarzab J. Epidemiology of IgE-dependent allergic diseases in elderly patients in Poland. Am J Rhinol Allergy 2013;27:140–145.
[9] Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol 2013;132:1132–1138.
[10] Grize L, Gassner M, Wüthrich B, et al. Trends in prevalence of asthma, allergic rhinitis and atopic dermatitis in 5–7-year old Swiss children from 1992 to 2001. Allergy 2006;61:556–562.
[11] Weber AS, Haidinger G. The prevalence of atopic dermatitis in children is influenced by their parents’ education: results of two cross-sectional studies conducted in Upper Austria. Pediatr Allergy Immunol 2010;21:1028–1035.
[12] Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol 2010;105:99–106.
[13] Kruszewski J. Definicja, epidemiologia i genetyka atopowego zapalenia skóry. W: Gliński W, Kruszewski J, reds. Atopowe zapalenie skóry u dzieci i dorosłych. Stanowisko Panelu Ekspertów Polskiego Towarzystwa Alergologicznego. Warszaw: Medycyna Praktyczna; 2012. p. 11–13.
[14] Darsow U, Wollenberg A, Simon D, et al. ETTAD/EADV eczema task force 2009 position paper on diagnosis and treatment of atopic dermatitis. J Eur Acad Dermatol Venereol 2010;24:317–328.
[15] Ring J, Alomar A, Bieber T, et al. Guidelines for treatment of atopic eczema (atopic dermatitis). Part I. J Eur Acad Dermatol Venereol 2012;26:1045–1060.
[16] Leung DYM, Bieber T. Atopic dermatitis. Lancet 2003;361:151–160.
[17] Werfel T, Ballmer-Weber B, Eigenmann PA, et al. Eczematous reactions to food in atopic eczema: position paper of the EAACI and GAZLE. Allergy 2007;62:723–728.
[18] Schmid-Grendelmeier P, Simon D, Simon HU, et al. Epidemiology, clinical features, and immunology of the
intrinsic (non-IgE-mediated) type of atopic dermatitis (constitutional dermatitis). Allergy 2001;56:841–849.

[19] Chamlin SL, Frieden IJ, Fowler A, et al. Ceramide-dominant, barrier-repair lipids improve childhood atopic dermatitis. Arch Dermatol 2001;137:1110–1112.

[20] Schmitt M, Jiang V, Elias PM. Thematic review series: skin lipids. Peroxisome proliferator-activated receptors and liver X receptors in epidermal biology. J Lipid Res 2008;49:499–509.

[21] De Bellivovsky C, Roo-Rodriguez E, Baudouin C, et al. Natural peroxisome proliferator-activated receptor-alpha agonist cream demonstrates similar therapeutic response to topical steroids in atopic dermatitis. J Dermatol Treat 2011;22:359–365.

[22] Eberlein B, Eicke C, Reinhardt HW, Ring J. Adjuvant treatment of atopic eczema: assessment of an emollient containing N-palmityloethanolamine (ATOPA study). J Eur Acad Dermatol Venereol 2008;22:73–82.

[23] Kirck LH. Nonsteroidal treatment of atopic dermatitis in pediatric patients with a ceramide-dominant topical emulsion formulated with an optimized ratio of physiological lipids. J Clin Aesthet Dermatol 2011;4:25–31.

[24] Ring J, Alomar A, Bieber T, et al. Guidelines for treatment of atopic eczema (atopic dermatitis). Part II. J Eur Acad Dermatol Venereol 2012;26:1176–1193.

[25] ABC atopowego zapalenia skóry. Nowicki R (red.). Termedia, Poznan 2015.

[26] Trzcziak M, Nowicki R. Terapia podstawowa atopowego zapalenia skóry. Terapia 2013;21:49–52.

[27] Devillers AC, Oranje AF. Wet-wrap treatment in children with atopic dermatitis: a practical guideline. Pediatr Dermatol 2012;29:24–27.

[28] Devillers AC, de Waard-van der Speck FB, Mulder PG, et al. Treatment of refractory atopic dermatitis using ‘wet-wrap’ dressings: a randomized controlled trial: results of standardized treatment in both children and adults. Dermatology 2002;204:50–55.

[29] Oranje AP, Devillers AC, Kunz B, et al. Treatment of patients with atopic dermatitis using wet-wrap dressings with diluted steroids and/or emollients. An export-panel’s opinion and review of the literature. J Eur Acad Dermatol Venereol 2006;20:1277–1286.

[30] Braham SJ, Pugashetti R, Koo J, et al. Occlusive therapy in atopic dermatitis: overview. J Dermatolog Treat 2010;21:62–72.

[31] Akdis CA, Akdis M, Bieber T, et al. Diagnosis and treatment of atopic dermatitis in children and adults. European Academy of Allergology and Clinical Immunology or PRACTALL Consensus Report. Allergy 2006;61:969–987.

[32] Hansen A, Sharpe KD, Ho VC, et al. Guidelines for care of atopic dermatitis. J Am Acad Dermatol 2004;50:391–404.

[33] Green C, Colquitt JL, Kirby J, et al. Topical corticosteroids for atopic eczema: clinical and cost effectiveness of once-daily vs. more frequent use. Br J Dermatol 2005;152:130–141.

[34] Jenerowicz D, Czarnecka-Operacz M, Silny W. Corticosteroid phobia in patients with atopic dermatitis. Wiad Lek 2005;58:607–615.

[35] Lugter T, de Raee L, Gelmetti C, et al. Recommendations for pimecrolimus 1% cream in the treatment of mild-to-moderate atopic dermatitis: from medical needs to a new treatment algorithm. Eur J Dermatol 2013;23:758–766.

[36] Schmitt J, von Kobyteleski L, Svensson A, et al. Efficacy and tolerability of proactive treatment with topical corticosteroids and calcineurin inhibitors for atopic eczema: systematic review and meta-analysis of randomized controlled trials. Br J Dermatol 2011;164:415–428.

[37] Lugter T, Boguniewicz M, Carr W. Pimecrolimus in atopic dermatitis: consensus on safety and the need to allow use in infants. Pediatr Allergy Immunol 2015;26:306–315.

[38] Wollenberg A, Bieber T. Proactive therapy of atopic dermatitis – an emerging concept. Allergy 2009;64:276–278.

[39] Wollenberg A, Reiner F, Kroth J, et al. Proactive therapy of atopic eczema – an evidence-based concept with a behavioral background. JDDG 2009;7:117–121.

[40] Huynh JT, Abrams M, Tlougan B, et al. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 2009;123:e808–e818.

[41] Alsterholm M, Flytstrøm I, Bergbrant IM, et al. Fusidic acid-resistant Staphylococcus aureus in impetigo contagiosa and secondarily infected atopic dermatitis. Acta Derm Venereol 2010;90:52–57.

[42] Thum D, Seidl HP, Hein R, et al. Current resistance patterns of Staphylococcus aureus towards topical antibiotics and relevant antiseptics in patients with atopic dermatitis and impetigo. J Dtsch Dermatol Ges 2013;11:875–878.

[43] Kirck LH. Efficacy and tolerability of retapamulin 1% ointment for the treatment of infected atopic dermatitis: a pilot study. J Drugs Dermatol 2012;11:858–860.

[44] Leyden J, Kligman A. The case for steroid-antibiotic combinations. Br J Dermatol 1977;96:179–187.

[45] Lever R. Infection in atopic dermatitis. Dermatol Ther 1996:1:32–37.

[46] Cardona ID, Cho SH, Leung DY. Role of bacterial superantigens in atopic dermatitis: implications for future therapeutic strategies. Am J Clin Dermatol 2006;7:273–279.

[47] Ewing C, Ashcroft C, Gibbs A. Fluocinocin in the treatment of atopic dermatitis. Br J Dermatol 1998;138:1022–1029.

[48] Hung SH, Lin YT, Chu CY, et al. Staphylococcus colonization in atopic dermatitis treated with flucinonac or tacrolimus with or without antibiotics. Ann Allergy Asthma Immunol 2007;98:51–56.

[49] Lintu P, Savolainen J, Kortekangas-Savolainen O, et al. Systemic ketoconazole is an effective treatment of atopic dermatitis with IgE-mediated hypersensitivity to yeasts. Allergy 2001;56:512–517.

[50] Maysper P, Kupfer J, Nemetz D, et al. Treatment of head and neck dermatitis with cyclosporinolamine cream – results of a double-blind, placebo-controlled study. Skin Pharmacol Physiol 2006;19:153–158.

[51] Schnopp C, Ring J, Mempel M. The role of antibacterial therapy in atopic eczema. Expert Opin Pharmacother 2010;11:929–936.

[52] Fölster-Holst R. Indication for tannin therapy in dermatology. W: European Society for Pediatric Dermatology 8th Congress; 2005.p. 31–32.

[53] Fölster-Holst R, Latussek E. Synthetic tannins in dermatology – a therapeutic option and variety of pediatric dermatoses. Ped Dermatol 2007;24:296–301.

[54] Heller M, Shin HT, Orlow SJ, et al. Myocophenolate mofetil for severe childhood atopic dermatitis: experience in 14 patients. Br J Dermatol 2007;157:127–132.

[55] Gschwandtner M, Mildner M, Militz V, et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy 2013;68:37–47.

[56] Simons FE. Safety of levocetirizine treatment in young atopic children: an 18-month study. Pediatr Allergy Immunol 2007;18:535–542.

[57] Simons FE. Prospective long-term safety evaluation of the H1-receptor antagonist cetirizine in very young children with atopic dermatitis. J Allergy Clin Immunol 1999;104:433–440.

[58] Dávalos I, Sastre J, Mullol J, et al. Effect of bilastine upon the ocular symptoms of allergic rhinoconjunctivitis. J Invest Allergol Clin Immunol 2011;21(Suppl. 3):2–8.

[59] Hoare C, Li Wan Po A, Williams H. Systematic review of treatments for atopic eczema. Health Technol Assess 2000;4:1–191.
Harper J, Ahmed I, Barclay G, et al. Cyclosporin for severe childhood atopic dermatitis: short course versus continuous therapy. Br J Dermatol 2000;142:52–58.

Schmitt J, Schmitt N, Meurer M. Cyclosporin in the treatment of patients with atopic eczema – a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2007;21:606–619.

Sidbury R, Davis DM, Cohen DE, et al. Guideline for the management of atopic dermatitis. Section 3. Management and treatment with phototherapy and systemic agents. J Am Acad Dermatol 2014;71:327–349.

Schramm ME, Roekevisch E, Leeflang MMG, et al. A randomized trial of methotrexate vs. azathioprine for severe atopic eczema. J Allergy Clin Immunol 2011;128:353–359.

El-Khalawany MA, Hassan H, Shaaban D, et al. Methotrexate versus cyclosporine in the treatment of severe atopic dermatitis in children: a multicenter experience from Egypt. Eur J Pediatr 2013;172:351–356.

Jenerowicz D, Silny W. Leczenie ogólne atopowego zapalenia skóry. W: Silny W, red. Atopowe zapalenie skóry. Poznań: Termedia; 2012. p. 260–270.

Summary of Product Characteristics. Harm. Methotrexate – Ewere – tablets. 3.12.2007.

Liu HN, Wong CK. In vitro immunosuppressive effects of methotrexate and azathioprine on Langerhans cells. Arch Dermatol Res 1997;289:94–97.

Summary of Product Characteristics – Decision of the President of the Office for Registration of Medicinal Products, Medical Devices and Biocidal Products No. UR/ZD/0449/12.

Megitt SJ, Gray JC, Reynolds NI. Azathioprine dosed by thiopurine methyltransferase activity for moderate-to-severe atopic eczema: a double blind, randomised controlled trial. Lancet 2006;367:839–846.

Berth-Jones J, Takwale A, Tan E, et al. Azathioprine in severe adult atopic dermatitis: a double-blind, placebo-controlled, crossover trial. Br J Dermatol 2002;147:324–330.

Patel AN, Langan SM, Batchelor JM. A randomized trial of methotrexate vs. azathioprine for severe atopic eczema: a critical appraisal. Br J Dermatol 2012;166:701–704.

Roekevisch E, Spuls PI, Keuster D, et al. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systemic review. J Allergy Clin Immunol 2014;133:429–438.

Murphy LA, Atherton D. A retrospective evaluation of azathioprine in severe childhood atopic eczema, using thiopurine methyltransferase levels to exclude patients at high risk of myelosuppression. Br J Dermatol 2002;147:308–315.

Caufield M, Tom WL. Oral azathioprine for recalcitrant pediatric atopic dermatitis: clinical response and thiopurine monitoring. J Am Acad Dermatol 2013;68:29–35.

Hon KL, Ching GK, Leung TF, et al. Efficacy and tolerability at 3 and 6 months following use of azathioprine for recalcitrant atopic dermatitis in children and young adults. J Dermatol Treat 2009;20:141–145.

Garritsen FM, Roekevisch E, van der Schaft J, et al. Ten years experience with oral immunosuppressive treatment in adult patients with atopic dermatitis in two academic centres. J Eur Acad Dermatol Venereol 2015 Mar 9. http://dx.doi.org/10.1111/jdv.13064.

Kim SO, Ah YM, Yu YM, et al. Effects of probiotics for the treatment of atopic dermatitis: a meta-analysis of randomized controlled trials. Ann Allergy Asthma Immunol 2014;113:217–226.

Gottlieb AB. Therapeutic options in the treatment of psoriasis and atopic dermatitis. J Am Acad Dermatol 2005;53:S3–S16.

Williams HC. Atopic dermatitis. New Engl J Med 2005;352:2314–2324.

Silny W, Czarnecka-Operacz M. Kontwersje w dziedzinie immunoterapii w chorobach skóry. Alergia Astma Immunologia 1998;3:14–15.

Czarnecka-Operacz M, Silny W. Specific immunotherapy in atopic dermatitis. Acta Dermatovener Croat 2006;14:52–59.

Jutel M, Solarewicz-Madejek K, Węgrzyń A. Allergen-specific immunotherapy in atopic dermatitis. Postep Derm Alergor 2011;28:399–395.

Silny W, Czarnecka-Operacz M. Spezifische Immuntherapie bei der Behandlung von Patienten mit atopischer Dermatitis: Ergebnisse einer placebokontrollierten Doppelblindstudie. Allergologie 2006;29:171–183.

Silny W, Jenerowicz D. Immunoterapia swoista. W: Silny W, red. Atopowe zapalenie skóry. Poznań: Termedia; 2012. p. 271–278.