Comparative study of lymph node dissection, and oncological outcomes of laparoscopic and open radical nephroureterectomy for patients with urothelial carcinoma of the upper urinary tract undergoing regional lymph node dissection

Takashige Abe1,*, Tsunenori Kondo2, Toru Harabayashi3, Norikata Takada3, Ryuji Matsumoto1, Takahiro Osawa1, Keita Minami3, Satoshi Nagamori3, Satoru Maruyama1, Sachiyo Murai1, Kazunari Tanabe2, and Nobuo Shinohara1

1Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan, 2Department of Urology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan, and 3Department of Urology, Hokkaido Cancer Center, Sapporo 003-0804, Japan

*For reprints and all correspondence: Takashige Abe, Department of Urology, Hokkaido University Graduate School of Medicine, North-15, West-7, North Ward, Sapporo 060-8638, Japan. E-mail: takataka@rf6.so-net.ne.jp

Received 14 May 2018; Editorial Decision 20 August 2018; Accepted 21 August 2018

Abstract

Objective: To assess the number of lymph nodes removed as a surrogate marker of the extent of lymph node dissection, and compare survival outcomes between laparoscopic radical nephroureterectomy (LRNU) and open radical nephroureterectomy (ORNU) in patients undergoing standardized lymph node dissection.

Methods: We retrospectively analyzed the data of 214 cTanyN0M0 patients undergoing radical NU with regional lymph node dissection according to the tumor location. The Kaplan–Meier method and Cox hazards model were utilized for survival analyses, including recurrence-free survival (RFS), cancer-specific survival (CSS) and overall survival (OS).

Results: A total of 114 patients underwent LRNU and 100 underwent ORNU. There was no significant difference in the pT stage, pN stage, or tumor grade, but distal ureteral tumors were more frequent in the LRNU group. The number of lymph nodes removed did not differ between the two groups [LRNU: 12 (median), ORNU: 11.5, P = 0.3852]. Lymph node metastasis was pathologically identified in 19 patients (8.9%). The 5-year RFS (ORNU: 71.7%, LRNU: 74%, P = 0.7829), CSS (77.8% and 80%, P = 0.8441) and OS (72.8, and 75.9%, P = 0.3456) did not differ between the two groups. In the sub-analysis of pT3/4 patients (n = 83), there were no significant differences in RFS, CSS, or OS between the two groups, although Kaplan–Meier survival curves were slightly better for those receiving ORNU. In the multivariate model, LRNU was not significantly correlated with a poorer RFS, CSS or OS.

Conclusion: Our data support the feasibility of lymph node dissection with a laparoscopic approach and the equivalent oncological outcome of LRNU compared with ORNU when regional
lymph node dissection is performed. However, LRNU should be performed after careful patient selection for advanced disease.

Key words: urothelial carcinoma, upper urinary tract, laparoscopic nephroureterectomy, open nephroureterectomy, lymph node dissection

Introduction

Based on early postoperative convalescence and a better cosmetic outcome, laparoscopic radical nephroureterectomy (LRNU) has now emerged as an alternative treatment method to open radical nephroureterectomy (ORNu) for patients with urothelial carcinoma (UC) of the upper urinary tract (UUT). A robot-assisted procedure has also been introduced, with acceptable short-term outcomes (1,2). So far, a number of studies have compared oncological outcomes, including disease recurrence and survival, between LRNU and ORNU. A recent meta-analysis (21 eligible studies) revealed that there were no significant differences in terms of the 2-year cancer-specific survival (CSS) rate, 5-year recurrence-free survival (RFS) rate or 5-year overall survival (OS) rate between the two approaches (3). On the other hand, Simone et al. reported in their prospective randomized study that patients undergoing ORNU showed a significantly more favorable cancer-specific or recurrence-free survival than those undergoing LRNU when matched for pT3 and high-grade disease (4).

Based on their observation, in the EAU guidelines 2017, invasive or large (T3/T4 and/or N+M+) tumors are considered to be contraindications for LRNU until proved otherwise (5). When interpreting the conflicting observations of previous studies, one potential drawback is regional lymph node dissection (LND) was frequently skipped (6,7), which may have caused node staging migration.

Aiming at accurate disease staging and considering potential therapeutic benefits, our group and the Tokyo Women’s Medical University group (TWMU) have been actively performing regional LND, and published several studies. Our group has favored LRNU (8,9) regardless of tumor location, whereas ORNU has been favored for patients with renal pelvic or upper ureteral tumors by TWMU (10,11). The aim of the present study was to compare the number of lymph nodes (LNs) removed as a surrogate for the dissection extent, and survival outcomes between LRNU and ORNU in patients who underwent standardized regional LND.

Patients and methods

This multi-institutional retrospective study was performed after approval from each institutional review board. Between 2000 and 2015, a total of 350 patients underwent radical nephroureterectomy with excision of the bladder cuff at Hokkaido University Hospital (n = 106) and Tokyo Women’s Medical University Hospital (n = 244). In order to homogenize the cohort, patients without regional LND (n = 90), with only LN sampling (n = 3), with neo-adjuvant chemotherapy (n = 17), with regional hemodialysis before surgery (n = 17), with clinical node disease preoperatively (n = 15), with a history of prior radical cystectomy for bladder cancer (n = 8), with bilateral disease (n = 7), with distant metastasis or an unknown distant status (n = 6), without cancer at the final pathology (n = 3), with metastatic disease from the esophagus or colon cancer (n = 2), with disease in a horse-shoe kidney (n = 2) or with a history of renal transplant surgery (n = 1), were excluded, and the remaining 179 patients were analyzed. Furthermore, we incorporated the 35 patients treated by LRNU plus regional LND for cTanyN0M0 without neo-adjuvant chemotherapy at Hokkaido Cancer Center between 2009 and 2015 who participated in our previously reported LN study (9). In total, 214 cTanyN0M0 patients undergoing either ORNU (n = 100) or LRNU (n = 114) with regional LND were included in the present analysis.

ORNu was performed via a retroperitoneal approach, according to a previously described procedure (12), and LRNU was performed via a four-port retroperitoneal approach or a four-port transperitoneal approach in conjunction with an open lower abdominal incision for specimen removal and bladder cuff resection. The surgical procedures were similar among the three hospitals. The template for LND was also previously reported (9) (13). Briefly, for right renal pelvic/upper ureter tumors (higher than the crossing of the common iliac artery), the right renal hilar, paracaval, retrocaval, and interaortocaval LNs were resected. For a left renal pelvic/upper ureteral tumor, the left renal hilar and paraaortic LNs were resected. In patients with renal pelvic/upper ureter tumors treated by LRNU, LND was performed laparoscopically. For tumors of the distal ureter, the common iliac, external iliac, internal iliac, and obturator LNs were resected via an open abdominal incision either by ORNU or LRNU. Since 2011 (Tokyo) and 2014 (Hokkaido group), presacral LNs have also been included among regional LNs.

Pathological staging was performed according to the TNM classification system. Tumor grading was assessed according to the 1973 WHO/International Society of Urologic Pathology (WHO/ISUP) consensus classification. Patients were followed according to the follow-up protocol for each site. In general, patients underwent lung and abdominal CT every 6 months for the first two years, with cystoscopy every 3 months. If disease relapse did not occur for two years after surgery, the follow-up interval was extended. The survival outcomes included recurrence-free survival (RFS), cancer-specific survival (CSS), and overall survival (OS). RFS was defined as the interval between the date of surgery and first documented disease recurrence or death. In the present study, intravesical recurrence was not defined as disease recurrence. CSS was defined as the interval between the dates of surgery and death from UC. Overall survival was evaluated from the dates of surgery to death from any cause.

For the present analysis, the upper ureter was defined as the part above the iliac crossing, and the distal ureter as that below the iliac crossing. Regarding the thoroughness of LND, it was reviewed using operative records and/or pathological reports. When all of the regional LNs were dissected, it was considered complete LND, whereas it was considered incomplete LND when the LN area did not include all of the regional area. As described previously, the presacral area had not been initially included among the regional LNs; therefore that area did not need to be included in the complete LND cohort for the present analyses.

Statistical analyses

The χ^2 and Mann–Whitney U tests were used to compare the characteristics between the two groups. The Kaplan–Meier method and
Cox hazards model were used to analyze survival data. Data entry into the multivariable analysis was set at a *P*-value < 0.05 in the univariate analysis. Statistical analysis was performed with JMP® Pro 12.01 (SAS Institute, Japan).

Results

Table 1 summarizes the patient characteristics by surgical approach. A total of 114 patients underwent LRNU and 100 underwent ORNU. Baseline characteristics were similar between the two groups, except for that those receiving LRNU had a more frequent history of bladder cancer (20 vs. 11%, respectively, *P* = 0.0212), more frequently had distal ureteral tumors (36 vs. 15%, respectively, *P* < 0.0001), and less frequently exhibited lymphovascular invasion (30 vs. 62%, respectively, *P* < 0.0001). LN metastasis was pathologically identified in 9% (19/214) of the patients. The operative time was longer in the LRNU group than in the ORNU group (ORNU, median 274 min; LRNU, 330 min, respectively, *P* = 0.0016).

A summary of LND is presented in Table 2. Overall, 85% (181/214) of the total cohort underwent complete LND. There was no

Table 1. Patient characteristics
Total, *n* = 214
Age, year
Sex
History of bladder cancer
Unknown
Tumor location
Number
Unknown
Operative time, minutes, *n* = 211
Adjuvant chemotherapy
Pathology
Size
Unknown
pT stage
Grade
Unknown
Lymphovascular invasion
Unknown
pN stage
Surgical margin
significant difference in the rate of performing complete LND between the two groups. In addition, no significant difference was noted in the number of nodes removed between the two groups. When examining only at patients with renal pelvic or upper ureteral tumors (n = 153), because laparoscopic LND was performed in the LRNU group, whereas LND was performed via an open incision in patients with distal ureteral tumors either in LRNU or ORNU, the number of nodes removed did not differ significantly between the two groups (LRNU, n = 69; median 12, ORNU, n = 84; median 12, range, 1–59, n = 69, P = 0.9692).

During the follow-up with a median of 41 months (interquartile range, 21–71), 48 patients developed disease relapse, 33 died due to cancer progression, and 47 died from any cause. In terms of initial relapse sites, distant recurrence was the most common after both procedures (ORNU, n = 9; LRNU, n = 17, respectively), following locoregional recurrence (n = 6, and n = 5, respectively) and synchronous recurrence at both distant and locoregional sites (n = 3, and n = 5, respectively). The recurrence site was unknown in the three patients who underwent ORNU. Fig. 1 shows the Kaplan–Meier estimates for RFS, CSS and OS stratified by surgical approach in the entire cohort. The estimated 5-year RFS (ORNU 71.7%, LRNU 74%, P = 0.7829), CSS (77.8 and 80%, respectively, P = 0.8441) and OS (72.8 and 75.9%, respectively, P = 0.3456) did not differ significantly between the ORNU and LRNU groups.

Table 2. Summary of lymph node dissection

	Total, n = 214	Open, n = 100	Lap, n = 114	P-value
Lymphadenectomy				
Complete	181 (85%)	87 (87%)	94 (82%)	0.3564
Incomplete	33 (15%)	13 (13%)	20 (18%)	
Node count, overall (n = 214)	median 11 (range, 1–59)	median 11.5 (range, 2–36), n = 100	median 12 (range, 1–59), n = 114	
Node count, renal pelvis or upper tumor (n = 153)	median 11 (range, 1–59)	median 12 (range, 1–59), n = 69		0.3852

Figure 1. Kaplan–Meier estimates for RFS, CSS and OS stratified by surgical approach in the entire cohort. The estimated 5-year RFS (ORNU 71.7%, LRNU 74%, P = 0.7829), CSS (77.8 and 80%, respectively, P = 0.8441) and OS (72.8 and 75.9%, respectively, P = 0.3456) did not differ significantly between the ORNU and LRNU groups.
between the two groups (Fig. 2). Table 3 shows the results of uni- and multivariate analyses for RFS, CSS, and OS in the entire cohort. In the univariate Cox proportional hazards model, LRNU was not associated with a poorer RFS, CSS or OS. Multivariate analyses revealed that both the pT3-4 stage and pN+ were independent adverse factors for both RFS and CSS, whereas the P-value of pN+ was marginal in terms of OS (P = 0.0642).

Fig. 3 shows the Kaplan–Meier estimates for RFS, CSS and OS stratified by surgical approach in the sub-analysis of pT3/4 patients (n = 83). The survival curves were higher for ORNU, although the differences were not significant between the two approaches in all three survival analyses. Table 4 shows the results of uni- and multivariate models for the pT3/4 patients. The multivariate model for OS revealed that the age, distal ureteral tumors, and pN+ were independent adverse factors, whereas pN+ was significant and distal ureteral tumors were marginal in the univariate model for RFS and CSS. After adjusting for the age, tumor location, and pN stage for CSS and OS, and tumor location and pN stage for RFS, LRNU continued to demonstrate no association with a poorer RFS, OS or CSS in pT3/4 patients (Table 5).

Discussion

In the present study, we compared the number of LNs removed and survival outcomes between patients treated with LRNU and those with ORNU. There was no significant difference in the rate of performing complete LND or number of nodes removed between the two groups. As LND was performed via an open incision for both LRNU and ORNU in patients with distal ureteral tumors, we performed a sub-analysis in which we compared the number of LNs resected only in patients with renal pelvic or upper ureteral tumors. Again, there was no significant difference in the number of LNs removed between the two methods, confirming the feasibility of laparoscopic LND. As described above, as TWMU favored ORNU for patients with renal pelvic or upper ureteral tumors based on their preference for open LND, we considered that patients undergoing LRNU more frequently had distal ureteral tumors. We have no clear explanation for why the patients who underwent LRNU had a more frequent history of bladder cancer and less frequently exhibited lymphovascular invasion.

In terms of operative time, it was almost one hour longer in the LRNU group than that in the ORNU group (ORNU, median 274 min; LRNU, 330 min, respectively, P = 0.0016). Data for postoperative complications were not fully collected in the present database. However, we previously observed that out of the 45 patients who underwent LRNU with LND, six patients developed minor complications, including pneumonia (n = 2), chylous leakage after dietary intake (n = 2) and miscellaneous events (n = 4). Although a 93-year-old male developed grade five gastrointestinal bleeding after aspiration pneumonia on the 45th postoperative day, we consider it to have been incidental, and not directly associated with LND. Overall, we believe that LRNU with LND can be safely performed.
| Table 3. Results of uni- and multivariate analyses for recurrence-free survival, cancer-specific survival, and overall survival in the entire cohort. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Recurrence-free survival | Cancer-specific survival | Overall survival |
| | Univariate analysis | P-value | Multivariate analysis | P-value | Univariate analysis | P-value | Multivariate analysis | P-value | Univariate analysis | P-value | Multivariate analysis | P-value |
| | Hazard ratio | (95% CI) |
| Age, year | Continuous | 1.017 | 0.2801 | 1.045 | 0.0282 | 1.051 | 0.0187 | 1.058 | 0.001 | 1.054 | 0.0046 |
| | | (0.987–1.051) | | (1.005–1.089) | | (1.008–1.098) | | (1.012–1.096) | | (1.016–1.094) | |
| Sex male / female | Male | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Female | 0.740 | 0.3547 | 0.836 | 0.6429 | 0.683 | 0.2534 | \(0.369–1.381\) | | \(0.368–1.738\) | | \(0.331–1.298\) |
| History of bladder cancer | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Yes or concurrent | 0.630 | 0.2985 | 0.551 | 0.2858 | 1.166 | 0.6975 | \(0.218–1.446\) | | \(0.132–1.547\) | | \(0.505–2.371\) |
| Tumor location | Renal pelvis | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Upper ureteral tumor | 1.020 | 0.9657 | 0.923 | 0.8824 | 0.821 | 0.6791 | \(0.380–2.319\) | | \(0.268–2.448\) | | \(0.277–1.964\) |
| | Distal ureteral tumor | 1.407 | 0.3023 | 1.522 | 0.7282 | 1.366 | 0.3546 | \(0.726–2.631\) | | \(0.498–2.461\) | | \(0.695–2.570\) |
| | Renal pelvis + ureter | 1.008 | 0.9939 | 5.55E-09 | 0.2592 | 1.219 | 0.8504 | \(0.0564–4.749\) | | \(0.0683–5.754\) | | \(0.0683–5.754\) |
| Number | Solitary | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Multiple | 1.620 | 0.1055 | 1.861 | 0.0854 | 1.986 | 0.0228 | \(0.901–2.880\) | | \(0.915–3.751\) | | \(1.102–3.565\) |
| Approach | Open | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Laparoscopic | 1.083 | 0.7835 | 0.934 | 0.8446 | 0.760 | 0.3487 | \(0.614–1.937\) | | \(0.471–1.879\) | | \(0.427–1.352\) |
| Adjuvant chemotherapy | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Yes | 2.378 | 0.0565 | 2.628 | 0.0763 | 1.850 | 0.2316 | \(0.974–4.983\) | | \(0.890–6.275\) | | \(0.637–4.283\) |
| Pathology | Pure urothelial carcinoma | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | Others | 1.831 | 0.4442 | 2.530 | 0.2645 | 1.820 | 0.4488 | \(0.299–5.929\) | | \(0.409–8.391\) | | \(0.297–5.909\) |
| Size | <1 cm | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | 1–3 cm | 1.515 | 0.3785 | 1.826 | 0.299 | 2.321 | 0.1251 | \(0.632–4.483\) | | \(0.620–7.782\) | | \(0.813–9.759\) |

Lap. nephroureterectomy with lymphadenectomy
	>3 cm (0.355–2.772)	0.8492	1.025 (0.319–4.539)	0.9691	1.581 (0.530–6.777)	0.4411
pT stage						
pTa-s	1	1	1	1	1	1
pT1	0.441 (0.0205–4.607)	0.4902	0.447 (0.0206–2.236)	0.5011	0.925 (0.0366–23.37)	0.9558
		(0.3202–23.37)		1.068 (0.0411–28.00)	0.9637	1.830 (0.482–8.680)
pT2	3.724 (0.899–25.00)	0.0711	3.796 (0.866–26.52)	0.0788	2.081 (0.199–44.81)	0.5377
		(0.866–26.52)		2.042 (0.183–46.35)	0.5617	0.998 (0.184–5.405)
pT3-4	12.50 (3.826–76.90)	<0.0001	9.355 (2.549–61.00)	0.0002	18.03 (2.109–219.3)	11.51
		(3.826–76.90)		(2.350–321.5)	0.0002	7.128 (2.561–29.63)
Grade						
Grade 1, 2	1	1	1	1	1	1
Grade 3	2.461 (1.360–4.668)	0.0026	0.889 (0.467–1.764)	0.7272	3.836 (1.804–9.015)	0.0003
		(1.360–4.668)		(1.804–9.015)	1.464 (0.658–3.616)	1.464
Lymphovascular invasion						
No	1	1	1	1	1	1
Yes	1.929 (1.084–3.506)	0.0253	1.162 (0.647–2.133)	0.6174	2.986 (1.449–6.602)	0.0027
		(1.084–3.506)		(1.449–6.602)	2.110 (0.988–4.839)	1.833
Complete LND	0.719 (0.371–1.532)	0.3723	0.630 (0.293–1.518)	0.2845	0.812 (0.413–1.758)	0.5777
Incomplete LND	1	1	1	1	1	1
pN stage						
pN0	1	1	1	1	1	1
pN+	7.843 (4.113–14.29)	<0.0001	3.447 (1.723–6.721)	0.0007	8.546 (3.955–17.43)	<0.0001
		(4.113–14.29)		(3.955–17.43)	2.982 (1.335–6.351)	9.826
Surgical margin						
pR0	1.280 (0.208–4.161)	0.7428	1.904 (0.308–6.324)	0.4214	2.107 (0.509–8.522)	0.2626
pR1	1	1	1	1	1	1

LND, lymph node dissection; CI, confidence interval.
Survival analyses revealed that LRNU was not associated with a poorer RFS, CSS or OS. In addition, LRNU continued to demonstrate no association with a poorer RFS, OS or CSS for the pT3/T4 patients after controlling for the other prognostic characteristics in the multivariate model, although the Kaplan–Meier survival curves were higher for the ORNU group in all three survival analyses. The Cox model analyses strengthened the importance of the pN stage as a prognostic factor, as it was a significant factor, not only in the total cohort, but also for pT3/T4 patients.

As described in section Introduction, the potential risk associated with minimally invasive extirpative surgery for UC, such as tumor seeding at the port site or unexpected tumor spread due to the pneumoperitoneum, has been of concern. For example, in their retrospective review of 383 patients undergoing open radical cystectomy (ORC) \((n = 120)\) or robot-assisted radical cystectomy (RARC) \((n = 263)\), Nguyen et al. observed that extrapelvic lymph node recurrence (ORC: 15% vs. RARC: 23%) and peritoneal carcinomatosis (ORC: 8% vs. RARC: 21%) were more frequent after RARC than after ORC, although RARC was not a risk factor for recurrence in the multivariate model \((14)\). In terms of UC of the UUT, Kim et al. recently reported in their retrospective study \((n = 371)\) that the 5-year OS and CSS rates were lower in the LRNU group than those in the ORNU group, and after stratifying their cohort by pathological stages, significant differences remained only among pT3/T4 disease patients \((15)\), although LND was not performed for most of their cohort. They concluded that LRNU should be performed for locally advanced UC of the UUT patients after careful consideration of its impact on survival. As mentioned above, although we did not observe any significant correlation with a poorer RFS, OS, or CSS in the pT3/T4 patients treated by LRNU, the Kaplan–Meier survival curves were higher in the ORNU group. Based on these observations, we also consider that LRNU should be performed after careful patient selection in the case of advanced disease. For example, considering the potential risk of tumor spillage during surgery due to renal pelvic rupture, we do not select LRNU for patients with severe hydronephrosis. If CT leads to suspicion of node metastasis, or perirenal or peri-ureteral fat invasion, we consider neo-adjuvant chemotherapy first before extirpative surgery. Surgeons should always consider resectability with an adequate surgical margin before surgery, and both skills and sufficient experience in manipulating around great vessels are required to complete laparoscopic retroperitoneal lymphadenectomy.

Regarding the adverse survival impact of the distal ureteral tumor location in pT3/T4 patients, our observation was consistent with previous studies. Tai et al. reported that patients with pT3 ureteral tumors had a poorer RFS than those with pT3 renal pelvis tumors \((5\text{-year RFS: 50 vs. 71\%, respectively, } P = 0.047)\) \((16)\). Park et al. also found that the ureteral tumor location had an adverse prognostic impact only in patients with pT3 disease \((17)\). As one hypothesis to explain the poorer outcome in patients with ureteral tumors, Yafi et al. stated that: ➊ the presence of a thinner layer of adventitia around the ureter, with an extensive plexus of blood vessels and lymphatics, may facilitate disease metastases, ➋ the smooth muscle layer of the ureter is thinner, leading to a more advanced

Figure 3. Kaplan–Meier estimates for RFS, CSS and OS stratified by surgical approach in the sub-analysis of pT3/4 patients \((n = 83)\). The survival curves were higher in the ORNU group, although there was no significant difference in RFS, CSS or OS between the two surgical methods.
Table 4. Results of uni- and multivariate models in the sub-analysis of pT3/4 patients (n = 83)

Variables	RFS Univariate analysis	CSS Univariate analysis	OS Univariate analysis	OS Multivariate analysis
	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value
Age, year	1.014 (0.978–1.053)	0.4617	1.038 (0.997–1.083)	0.0683
Sex male/female			1.050 (1.011–1.092)	0.0106
Male	1.000 (0.952–1.054)		1.058 (1.020–1.099)	0.0025
Female	0.653 (0.310–1.282)	0.2215	0.629 (0.261–1.369)	0.2502
			0.581 (0.257–1.96)	0.1447
History of bladder cancer			1.050 (1.011–1.092)	0.0106
No	1.000 (0.952–1.054)		1.058 (1.020–1.099)	0.0025
Yes or concurrent	1.656 (0.565–3.896)	0.3247	0.986 (0.235–2.811)	0.9817
Tumor location			1.480 (0.502–3.514)	0.441
Renal pelvis	1.000 (0.952–1.054)		1.050 (1.011–1.092)	0.0106
Upper ureteral tumor	0.951 (0.278–2.487)	0.9256	1.186 (0.277–5.336)	0.7897
Distal ureteral tumor	1.955 (0.902–4.013)	0.087	2.211 (0.936–4.889)	0.0692
Renal pelvis+ureter	0.821 (0.0458–3.920)	0.8422	6.00E-09	0.2238
Number			1.191 (0.0662–5.777)	0.8687
Solitary	1.421 (0.735–2.714)	0.291	1.542 (0.722–3.250)	0.2577
Multiple			1.743 (0.884–3.440)	0.1078
Approach	1.530 (0.808–2.939)	0.1908	1.387 (0.668–2.938)	0.3795
Lymphovascular invasion			1.513 (0.778–3.012)	0.2216
Pure urothelial carcinoma	1.114 (0.450–2.389)	0.799	1.118 (0.376–2.703)	0.8222
Others	0.710 (0.115–2.334)	0.6212	0.913 (0.147–3.057)	0.9001
Size			0.803 (0.130–2.655)	0.7557
< 1 cm	0.970 (0.363–3.355)	0.9568	2.202 (0.621–13.99)	0.2476
1-3 cm	0.464 (0.166–1.638)	0.2095	0.899 (0.241–5.812)	0.8914
> 3 cm	1.105 (0.535–2.214)	0.8883	1.688 (0.755–4.278)	0.2103
Grade			1.727 (0.818–4.082)	0.1576
Grade 1, 2				
Grade 1	1.591 (0.306–3.361)	0.1854	2.096 (0.931–5.336)	0.0749
LND			1.890 (0.912–4.294)	0.0885
Incomplete	0.786 (0.378–1.840)	0.5542	0.664 (0.297–1.683)	0.3646
Complete			0.643 (0.311–1.459)	0.2741
pN0 stage	3.093 (1.533–5.931)	0.0018	3.270 (1.487–6.873)	0.0041
pN+ stage			2.317 (1.085–4.645)	0.0311
Surgical margin			2.566 (1.190–5.218)	0.0177
pR0	1.026 (0.166–3.388)	0.9716	1.222 (0.197–4.085)	0.7898
pR1			1.017 (0.165–3.356)	0.982

RFS, recurrence-free survival; CSS, cancer-specific survival; OS, overall survival; CI, confidence interval.
Table 5. Multivariate analysis adjusted for surgical approach and other prognostic factors identified in the present study for pT3/4 patients (n = 83).

Tumor location	Hazard ratio (95% CI)	P-value
(a) Recurrence-free survival		
Renal pelvis	1	
Upper ureteral tumor	0.996 (0.280–2.811)	0.995
Distal ureteral tumor	1.761 (0.801–3.861)	0.1532
Renal pelvis+ureter	0.903 (0.493–4.645)	0.9209
Approach		
Open	1	
Laparoscopic	1.411 (0.695–2.935)	0.342
pN stage		
pN0	1	
pN+	3.105 (1.553–5.993)	0.0019
(b) Cancer-specific survival		
Age, year		
Continuous	1.045 (1.004–1.089)	0.0314
Tumor location		
Renal pelvis	1	
Upper ureteral tumor	1.131 (0.248–3.830)	0.8565
Distal ureteral tumor	2.540 (1.040–5.853)	0.0412
Renal pelvis+ureter	5.01E-09	0.2554
Approach		
Open	1	
Laparoscopic	1.188 (0.533–2.758)	0.6768
pN stage		
pN0	1	
pN+	3.188 (1.438–6.771)	0.0053
(c) Overall survival		
Age, year		
Continuous	1.057 (1.018–1.099)	0.0033
Tumor location		
Renal pelvis	1	
Upper ureteral tumor	1.040 (0.233–3.367)	0.952
Distal ureteral tumor	3.188 (1.449–6.801)	0.0047
Renal pelvis+ureter	1.200 (0.0651–6.293)	0.866
Approach		
Open	1	
Laparoscopic	1.168 (0.563–2.503)	0.6792
pN stage		
pN0	1	
pN+	2.519 (1.165–5.147)	0.0202

stage when minimal tumor invasion occurred, and in contrast, the renal pelvis has a thicker adventitia with associated abundant renal parenchyma that allowed for adequate surgical margins, which may provide a better oncological outcome (18).

In the present study, 92 patients developed intravesical recurrence during follow-up. As described in section Patients and methods, we did not include intravesical recurrence as an endpoint for recurrence-free survival analyses because our main interest was the impact of the laparoscopic procedure on survival after surgery. Consistent with previous studies demonstrating that intravesical recurrence did not influence disease-specific survival after radical nephroureterectomy (19,20), we also observed that intravesical recurrence did not negatively impact cancer-specific survival (patients with intravesical recurrence; n = 92, 5-year cancer-specific survival 79.25% vs. patients without intravesical recurrence; n = 122, 5-year cancer-specific survival 78.94%, log-rank test, P = 0.9293, data not shown). The probability of intravesical recurrence in the present cohort was 50.6% at two years after open nephroureterectomy and 38.0% at two years after laparoscopic nephroureterectomy in the total cohort (log-rank test, P = 0.0575, data not shown), and 50.4% and 38.1%, respectively, for the 177 patients without previous or concomitant bladder cancer (log-rank-test, P = 0.0784, data not shown).

Our study had several limitations. First, the data were retrospectively collected. Second, a centralized pathological review was not performed. Third, the cohort size was small, as patients were derived from only three institutions in Japan. Although we actively performed LND during the study period, 90 patients were excluded because of a lack of regional LND, due to the physicians’ decision based on the patients’ comorbidity and performance status. Our findings should be further validated in a larger cohort with standardized LND. We hope that the recent introduction of robot-assisted radical nephroureterectomy and the relatively high performance rate with LND in robotic series will make this possible in the near future (21). Fourth, the 16-year study period was subject to variations in practices and surgical expertise, which may have affected the survival outcomes. Fifth, as mentioned above, LND was performed via an open incision for patients with distal ureteral tumors in the LRNU group. Although the current study has several potential weaknesses, we believe our findings to be important.

Conclusions

Our data support the feasibility of lymph node dissection with a laparoscopic approach, and demonstrated that the oncological outcomes of LRNU and ORNU are equivalent when regional LND is performed. However, LRNU should be performed after careful patient selection for advanced disease.

Conflict of interest statement

The authors state that they have no conflicts of interest.

References

1. Aboumohamed AA, Krane LS, Herrell AK. Oncologic outcomes following robot-assisted laparoscopic nephroureterectomy with bladder cuff excision for upper tract urothelial carcinoma. J Urol 2015;194:1561–6.
2. Ambani SN, Weizer AZ, Wolf JS Jr., He C, Miller DC, Montgomery JS. Matched comparison of robotic vs laparoscopic nephroureterectomy: an initial experience. Urology 2014;83:345–9.
3. Ni S, Tao W, Chen Q, et al. Laparoscopic versus open nephroureterectomy for the treatment of upper urinary tract urothelial carcinoma: a systematic review and cumulative analysis of comparative studies. Eur Urol 2012;61:1142–53.
4. Simone G, Papalia R, Guaglianone S, et al. Laparoscopic versus open nephroureterectomy: perioperative and oncologic outcomes from a randomized prospective study. Eur Urol 2009;56:520–6.
5. Roupret M, Babjuk M, Comperat E, et al. European association of urology guidelines on upper urinary tract urothelial carcinoma: 2017 Update. Eur Urol 2018;73:111–22.
6. Walton TJ, Novara G, Matsumoto K, et al. Oncological outcomes after laparoscopic and open radical nephroureterectomy: results from an international cohort. BJU Int 2011;108:406–12.
7. Capitanio U, Shariat SF, Isbarn H, et al. Comparison of oncologic outcomes for open and laparoscopic nephroureterectomy: a multi-institutional analysis of 1249 cases. Eur Urol 2009;56:1–9.
8. Abe T, Harabayashi T, Shinhara N, et al. Outcome of regional lymph node dissection in conjunction with laparoscopic nephroureterectomy for
urothelial carcinoma of the upper urinary tract. *J Endourol* 2011;25:803–7.

9. Abe T, Takada N, Matsumoto R, et al. Outcome of regional lymphadenectomy in accordance with primary tumor location on laparoscopic nephroureterectomy for urothelial carcinoma of the upper urinary tract: a prospective study. *J Endourol* 2015;29:304–9.

10. Kondo T, Hashimoto Y, Kobayashi H, et al. Template-based lymphadenectomy in urothelial carcinoma of the upper urinary tract: impact on patient survival. *Int J Urol* 2010;17:448–54.

11. Kondo T, Hara I, Takagi T, et al. Template-based lymphadenectomy in urothelial carcinoma of the renal pelvis: a prospective study. *Int J Urol* 2014;21:453–9.

12. Sagalowsky AL, JT. Management of urothelial tumors of the renal pelvis and ureter. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. *Campbell-Walsh Urology*. 9th edn. New York: Saunders, 2007;1653–85.

13. Kondo T, Hara I, Takagi T, et al. Template-based lymphadenectomy reduces the risk of regional lymph node recurrence among patients with upper/middle ureteral cancer. *Int J Clin Oncol* 2017;22:145–52.

14. Nguyen DP, Al Hussein Al Awamlh B, Wu X, et al. Recurrence patterns after open and robot-assisted radical cystectomy for bladder cancer. *Eur Urol* 2015;68:399–405.

15. Kim HS, Ku JH, Jeong CW, Kwak C, Kim HH. Laparoscopic radical nephroureterectomy is associated with worse survival outcomes than open radical nephroureterectomy in patients with locally advanced upper tract urothelial carcinoma. *World J Urol* 2016;34:859–69.

16. Tai YS, Chen CH, Huang CY, Tai HC, Wang SM, Pu YS. The effect of tumor location on oncologic outcomes in patients with upper urinary tract urothelial carcinoma stratified by pathologic stage. *Urol Oncol* 2016;34:4.e19–25.

17. Park J, Ha SH, Min GE, et al. The protective role of renal parenchyma as a barrier to local tumor spread of upper tract transitional cell carcinoma and its impact on patient survival. *J Urol* 2009;182:894–9.

18. Yafi FA, Novara G, Shariat SF, et al. Impact of tumour location versus multifocality in patients with upper tract urothelial carcinoma treated with nephroureterectomy and bladder cuff excision: a homogeneous series without perioperative chemotherapy. *BJU Int* 2012;110:E7–13.

19. Xylinas E, Colin P, Audenet F, et al. Intravesical recurrence after radical nephroureterectomy for upper tract urothelial carcinomas: predictors and impact on subsequent oncological outcomes from a national multicenter study. *World J Urol* 2013;31:61–8.

20. Lee CH, Ku JY, Jeong CW, et al. Predictors for intravesical recurrence following radical nephroureterectomy for upper tract urothelial carcinoma: a national multicenter analysis. *Clin Genitourin Cancer* 2017;15:e1055–e61.

21. Lenis AT, Domín NM, Faiena I, et al. Role of surgical approach on lymph node dissection yield and survival in patients with upper tract urothelial carcinoma. *Urol Oncol* 2018;36:9.e1–9.