License Plate Recognition System Based on Color Coding Of License Plates

Jani Biju Babjan
S5 Information Technology, Government Engineering College, Barton Hill,
Thiruvananthapuram
janibiju@yahoo.co.in

Abstract
License Plate Recognition Systems are used to determine the license plate number of a vehicle. The current system mainly uses Optical Character Recognition to recognize the number plate. There are several problems to this system. Some of them include interchanging of several letters or numbers (letter ‘O’ with digit ‘0’), difficulty in localizing the license plate, high error rate, use of different fonts in license plates etc. So a new system to recognize the license plate number using color coding of license plates is proposed in this paper. Easier localization of license plate can be done by searching for the start or stop patterns of license plates. An eight segment display system along with traditional numbering with the first and last segments left for start or stop patterns is proposed in this paper. Practical applications include several areas under Internet of Things (IoT).

Keywords: License plate recognition, Color coding, Internet of Things

Introduction
The Automatic Number Plate Recognition (ANPR) system which is currently used makes use of Optical Character Recognition. There are several algorithms that are needed for the accurate working of this system. First the plate needs to be localized in the image. Then if the plate is angled, the skew needs to be adjusted. The image is normalized and adjusted for brightness and contrast. The characters are then segmented and optical character recognition is applied to get the number. But several problems are present. Any mistake in one of the algorithms can lead to several mistakes in the final result thereby reducing the accuracy of the system. These traditional algorithms rely heavily on the high contrast of the characters that appear on a number plate (black characters on white or yellow background)

So a new system, one which uses color coded license plates can be used for recognizing the license plate. The system first converts the license plate number which is in base-36 to base-255. For each number in base-255 scheme, there is a color which corresponds to the number. The color is then used to color the license plate. Refer the tables 1 and 2 for details of the scheme being used for the conversion.

A standard number plate that is used in India
There are eight segments present in the license plate. The first segment is reserved for the start pattern, segments two to seven hold the color code of the license plate number and the eighth segment holds the end pattern. The start and end patterns contain three bands of red, blue and green colors (with 255 as the value in the respective rgb column) respectively.

The major algorithms that are used in the system include template matching which localizes the plate, adjustment for angled plates and conversion between the number systems that are used to identify the plates. By using the color coding, the license plate numbers can be easily identified.

Methods Used

The system assumes a license plate number as a little endian base-36 number. Characters like space and hyphen are removed from the number. The two sections below discuss ways to generate the color code taking a license plate as input and recognizing the license plate number by taking an image containing the color code as input.

1. Generation of Color code

In order to generate the color code to be used in the vehicle, we give the license plate number of the vehicle as the input. The license plate number is considered to be a little endian base-36 number. First, the little endian base-36 number is converted into decimal. After conversion, the decimal number is converted to base-255 format. Then the base-255 format is used to generate the color code, according to the table-2. The procedure to generate the color code is given below.

Procedure:

1. Read the license plate number.
2. Convert the number to decimal considering it as a little endian base-36 number.
3. Now convert the decimal number to base-255 scheme, the value returned is an array.
4. Color the plate using the color corresponding to each of the numbers in the array.
5. Attach the start and stop patterns to the image.
6. Also write the number in the traditional way to the license plate.

The number is also written in the traditional method so that humans can also understand the number, in case it is found in an accident or on a crime scene.

2. Recognition of Color Code

The recognition of the color code which is present in an image is done by using template matching algorithms. Template matching is used in the image to find the position of the regions that mostly resemble the start/end patterns. Then, the rgb color composition of pixels in the region bounded by start/end patterns is found. Each segment of the code is identified using some approximation techniques for finding the length of a segment in the image and color value is obtained for all segments. The color values are then converted to their base-255 equivalent using the values in the table-2. Now we need to reverse the process used to generate a color code. The base-255 number is converted to decimal and then the decimal is converted back to base-36 to obtain the license plate number.
Results Obtained
1. Generating the color code

The following color codes were generated for the corresponding license plate numbers according to a program written in Python using Python Imaging Library (PIL). The number can be printed to the plate using a color that can be distinguished from the color of the blocks in the plate.

License Plate Number	Generated Color Code
KL29H5643	![Color Code](image1)
KL04Q9399	![Color Code](image2)
KA01MC949	![Color Code](image3)
PBX2384	![Color Code](image4)
SK01GO693	![Color Code](image5)

A completed license plate (along with the number) will appear as shown below. The plate is computer generated as the rest of the images. In this image white (hex 0xffffff) is used to print the number on the plate as it can be distinguished from the colors used in blocks.
2. Recognizing the color code

A simulator was created to obtain these results. The following images show the result after applying the template matching algorithm. These results were obtained by experimenting on computer generated images with Python and OpenCV library on a Windows 8 computer. The template matching algorithm is used to search for the start and stop patterns. Both are matched against the template that is shown below:

Template for matching the start and stop pattern

Resultant image after applying Template Matching

Resultant Image after applying template matching containing multiple codes
The results obtained after matching the template, reading the pixels and converting to the original license plate number is shown in the table below:

Image (Reduced in size)	Actual Resolution	Actual License Plate Number
(Originally Generated Image)	224 X 32 px	KL29H5643
(On a white background)	400 X 120 px	KL29H5643
(On a black background)	256 X 120 px	SK01GO693
(On a random image)	500 X 200 px	KL04Q9399
	400 X 200 px	PBX2384
		KA01MC949

Observations

The following observations were obtained after experimenting with the computer generated images using the simulator:
1. A high accuracy rate was observed in the case of computer generated images.
2. Using the methods specified in the simulator few of the errors that occurred were corrected
3. Pattern recognition can be used to identify even multiple codes in a single image and accurate results were obtained.
Advantages

The system has a few advantages over the traditional Automatic Number Plate Recognition (ANPR) systems that use Optical Character Recognition (OCR). They are listed below:

1. The system uses algorithms that take smaller time compared to the traditional ANPR systems that use OCR.
2. The current system has to process the image, convert it to grey-scale, adjust for contrast or brightness, identify the number plate in the picture using some segmentation techniques, extract the license plate, divide the characters to segments and finally apply OCR to get the result. Here only a pattern recognition (for start and end) and color look-up is needed to find the result.
3. No changes have to be made in the image.
4. Large number of number plates can be accommodated by the system, even the six segment code can be used to represent approximately 10^{14} numbers

Applications

The major application of the system comes under Internet of Things (IoT). Few of the practical applications of the system include:

1. Traffic Control and violations: The system can be used to identify vehicles that exceed a given speed limit, create an accident, identify stolen vehicles and detect vehicles parked in the wrong side.
2. Collection of toll or parking fees: The recognition system can be used to identify the vehicle and find the toll/parking fee which needs to be collected.
3. Targeted advertising: We can identify the vehicle, find the owner and give his preferences as the advertisement in the bill board.
4. Universal Database of Number plates: A universal database can be created to hold and easily look up the numbers
5. The color code can be extended to other objects as well as a code to identify the things. More data can be stored in the color code with the advent of better technologies.

Challenges

There are also some problems that the system needs to tackle. Some of them are listed below:

1. Tampering in the license plate: If the license plate was covered in say, dirt or some other material, the system fails to identify the number.
2. The current accuracy and cost of printing and photographic technologies may prevent the implementation of the system in a large scale.

Discussions And Future Work

This paper has presented a simple method for license plate recognition. Real time applications require a highly accurate and high speed camera, generation (or printing) of exact color to be used in the license plate etc. Real time application also requires a very quick processing of the image. There is also plan to include a parity check using one more segment. The system can also be extended to be a universal system that can recognize other products as well. This requires more expansion of the algorithms to generate the code.
References
1. S.Kranthi, K.Pranathi, A.Srisaila “Automatic Number Plate Recognition”, 2011
2. http://en.wikipedia.org/ “Template Matching”
3. http://en.wikipedia.org/ “Automatic Number Plate Recognition”

Conversion Tables
Base-36 to Decimal Values (Table -1)

Character	Value in base-36	Character	Value in base-36		
0	0	I/i	18		
1	1	J/j	19		
2	2	K/k	20		
3	3	L/l	21		
4	4	M/m	22		
5	5	N/n	23		
6	6	O/o	24		
7	7	P/p	25		
8	8	Q/q	26		
9	9	R/r	27		
A/a	10	S/s	28		
B/b	11	T/t	29		
C/c	12	U/u	30		
D/d	13	V/v	31		
E/e	14	W/w	32		
F/f	15	X/x	33		
G/g	16	Y/y	34		
H/h	17	Z/z	35		
Value	Color Code(Hex)	Value	Color Code(Hex)	Value	Color Code(Hex)
-------	----------------	-------	----------------	-------	----------------
0	0x000000	85	0x5fffaf	170	0xd75fd7
1	0x800000	86	0x5fffd7	171	0xd75fff
2	0x008000	87	0x5fffff	172	0xd78700
3	0x808000	88	0x870000	173	0xd7875f
4	0x000080	89	0x870005f	174	0xd78787
5	0x800080	90	0x870087	175	0xd787af
6	0x008080	91	0x8700af	176	0xd787d7
7	0xc0c0c0	92	0x8700d7	177	0xd787ff
8	0x808080	93	0x8700ff	178	0xd7a000
9	0xff0000	94	0x87f000	179	0xd7af5f
10	0x00ff00	95	0x87f005f	180	0xd7a087
11	0xffff00	96	0x87f087	181	0xd7aaf
12	0x0000ff	97	0x87fafa	182	0xd7af47
13	0xff00ff	98	0x87f707	183	0xd7aff
14	0x00ffff	99	0x87f7ff	184	0xd7d700
15	0xffffff	100	0x87f700	185	0xd7d75f
16	0x0f0f0f	101	0x87f75f	186	0xd7d787
17	0x00000f	102	0x87f877	187	0xd7d7af
18	0x000087	103	0x87f87a	188	0xd7d7af
19	0x0000af	104	0x87f7d7	189	0xd7d77f
20	0x0000d7	105	0x87f7ff	190	0xd7f000
21	0x0000ff	106	0x87f000	191	0xd7f505
22	0x005ff0	107	0x87f505	192	0xd7f877
23	0x005ff5	108	0x87f877	193	0xd7faff
24	0x005ff87	109	0x87f87a	194	0xd7f7d7
25	0x005f0af	110	0x87f7d7	195	0xd7f7f7
26	0x005f0d7	111	0x87f7af	196	0xff0000
27	0x005fff	112	0x87f7d700	197	0xff005f
28	0x008700	113	0x87f7d75f	198	0xff0087
29	0x00875f	114	0x87f7d87	199	0xff00af
30	0x008787	115	0x87f7d7af	200	0xff00d7
31	0x0087af	116	0x87f7d7d	201	0xff00ff
32	0x0087d7	117	0x87f7d7ff	202	0xff5000
33	0x0087ff	118	0x87f7ff00	203	0xff505f
34	0x00af00	119	0x87ff5f	204	0xff5f87
35	0x00af5f	120	0x87ff87	205	0xff5f5f
36	0x00af87	121	0x87ffafa	206	0xff5fd7
Row	Value1	Value2	Value3	Value4	Value5
-----	----------	--------	--------	--------	--------
37	0x00afaf	122	0x87fffd7	207	0xff5fff
38	0x00afd7	123	0x87ffff	208	0xff8700
39	0x00afff	124	0xaf0000	209	0xff875f
40	0x00d700	125	0xaf005f	210	0xff8787
41	0x00d75f	126	0xaf0087	211	0xff87af
42	0x00d787	127	0xaf00af	212	0xff87d7
43	0x00d7af	128	0xaf00d7	213	0xff87ff
44	0x00d7ff	129	0xaf00ff	214	0xffaf00
45	0x00ff00	130	0xaf5f00	215	0xffaf5f
46	0x00ff87	131	0xaf5f5f	216	0xffaf87
47	0x00ff5f	132	0xaf5f87	217	0xffafaf
48	0x00fffd7	133	0xaf5faf	218	0xffaf87
49	0x00ffaf	134	0xaf5fd7	219	0xffafaf
50	0x00fffd7	135	0xaf5ff	220	0xff7d00
51	0x00fffd7	136	0xaf8700	221	0xff7d75f
52	0x5f0000	137	0xaf875f	222	0xff7d87
53	0x5f005f	138	0xaf877f	223	0xff7d7af
54	0x5f0087	139	0xaf87af	224	0xff7d7d
55	0x5f00af	140	0xaf87d7	225	0xff7dff
56	0x5f00d7	141	0xaf87ff	226	0xff7d00
57	0x5f00ff	142	0xafaf00	227	0xff7dff
58	0x5f5f00	143	0xafaf5f	228	0xff7d87
59	0x5f5f5f	144	0xafaf87	229	0xff7d7f
60	0x5f5f87	145	0xafafaf	230	0xff7d7f
61	0x5f5faf	146	0xafaffd7	231	0xff7d7f
62	0x5f5fd7	147	0xafaf6f	232	0x080808
63	0x5f5fff	148	0xaffd00	233	0x121212
64	0x5f8700	149	0xaffd5f	234	0x1c1c1c
65	0x5f875f	150	0xaffd75f	235	0x262626
66	0x5f877f	151	0xaffd7af	236	0x303030
67	0x5f87af	152	0xaffd7d7	237	0x3a3a3a
68	0x5f87d7	153	0xaffd77f	238	0x444444
69	0x5f87ff	154	0xafff00	239	0x4e4e4e
70	0x5fa00	155	0xafff5f	240	0x585858
71	0x5fa5f	156	0xaf8787	241	0x606060
72	0x5fa87	157	0xafafaf	242	0x666666
73	0x5faaf	158	0xafaf7d	243	0x767676
74	0x5faff	159	0xafafff	244	0x808080
75	0x5faff	160	0xd70000	245	0x8a8a8a
76	0x5fd700	161	0xd7005f	246	0x949494
77	0x5fd75f	162	0xd70087	247	0x9e9e9e
---	-----------	----	--------	----	--------
78	0x5fd787	163	0xd700af	248	0xa8a8a8
79	0x5fd7af	164	0xd700d7	249	0xb2b2b2
80	0x5fd7d7	165	0xd700ff	250	0xbcbbc
81	0x5fd7ff	166	0xd75f00	251	0xc6c6c6
82	0xffff00	167	0xd75f5f	252	0xd0d0d0
83	0xffff5f	168	0xd75f87	253	0xdadada
84	0xffff87	169	0xd75faf	254	0xe4e4e4