LETTER

A new urban landscape in East–Southeast Asia, 2000–2010

A Schneider1, C M Mertes1, A J Tatem2,3, B Tan4, D Sulla-Menashe5, S J Graves6, N N Patel7, J A Horton1, A E Gaughan8, J T Rollo1, I H Schelly1, F R Stevens8 and A Dastur9

1 Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, and Department of Geography, University of Wisconsin-Madison, USA
2 Department of Geography and Environment, University of Southampton, UK
3 Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
4 NASA Goddard Space Flight Center/Science Systems and Applications Inc., Lanham, Maryland, USA
5 Department of Earth and Environment, Boston University, Boston, Massachusetts USA
6 School of Forest Resources and Conservation, University of Florida-Gainesville, USA
7 Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia, USA
8 Department of Geography and Geosciences, University of Louisville, Kentucky, USA
9 World Bank, Washington DC, USA

E-mail: aschneider4@wisc.edu

Keywords: urbanization, urban sprawl, land cover change, remote sensing, change detection, urban density, population density

Abstract

East–Southeast Asia is currently one of the fastest urbanizing regions in the world, with countries such as China climbing from 20 to 50% urbanized in just a few decades. By 2050, these countries are projected to add 1 billion people, with 90% of that growth occurring in cities. This population shift parallels an equally astounding amount of built-up land expansion. However, spatially-and temporally-detailed information on regional-scale changes in urban land or population distribution do not exist; previous efforts have been either sample-based, focused on one country, or drawn conclusions from datasets with substantial temporal/spatial mismatch and variability in urban definitions. Using consistent methodology, satellite imagery and census data for >1000 agglomerations in the East–Southeast Asian region, we show that urban land increased >22% between 2000 and 2010 (from 155 000 to 189 000 km2), an amount equivalent to the area of Taiwan, while urban populations climbed >31% (from 738 to 969 million). Although urban land expanded at unprecedented rates, urban populations grew more rapidly, resulting in increasing densities for the majority of urban agglomerations, including those in both more developed (Japan, South Korea) and industrializing nations (China, Vietnam, Indonesia). This result contrasts previous sample-based studies, which conclude that cities are universally declining in density. The patterns and rates of change uncovered by these datasets provide a unique record of the massive urban transition currently underway in East–Southeast Asia that is impacting local-regional climate, pollution levels, water quality/availability, arable land, as well as the livelihoods and vulnerability of populations in the region.

1. Introduction

We have entered the urban era: cities now form the basis of the human experience for the majority of the Earth’s population (UN 2012). Cities today must meet the needs of growing populations and expanding economies, while at the same time minimizing their environmental impacts (Grimm et al 2008, Montgomery 2008). Expansion of built-up land is often the most direct environmental impact associated with urban growth, with far-reaching implications for climate, hydrology, and biogeochemical cycles that extend beyond municipal boundaries (Seto et al 2010). While remote sensing has proven especially useful for characterizing broad-scale land changes, detailed monitoring of urban land use change remains costly and challenging due to the highly heterogeneous nature of cities, the spectral similarity between new urban land and other land cover types, and the lack of cloud-free data in locations where estimates are most needed (e.g. tropics, Mertes et al 2015). As a result, there has been little information on the building boom...
that is accompanying population growth in many developing countries (China, India, etc) other than case-study analysis of individual cities (Schneider and Woodcock 2008, Angel et al 2011), or country-level assessments (Liu et al 2005, Wang et al 2012). Comparing urban populations has also been notoriously difficult due to differences in census timing, data availability/quality, and most critically, the considerable variability in how cities are defined, whether by population threshold, functional area, or administrative boundaries (Cohen 2004). One of the few studies reporting transnational urban land and population trends concluded that cities are universally spreading out and declining in density (Angel et al 2005). While there is evidence to contradict this in East Asia (Murakami et al 2005, Bagan and Yamagata 2012), there has been no systematic way to compare trends across cities, nations, or regions.

To describe urban trajectories across East and Southeast Asia systematically, we characterize urban extent and urban expansion 2000–2010 using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations (Mertes et al 2015). In these maps, urban land refers to places dominated by the ‘built environment’, which includes all non-vegetative, human-constructed elements (e.g. roads, buildings) with >50% coverage of a landscape unit (here, a 250 m pixel). We synthesize this information with population density maps developed using demographic data at the finest administrative unit available and empirically-tested population-land cover relationship-based methods (Tatem et al 2007). To address the issue of comparability, we conduct our analysis of regional urbanization trends using the urban agglomeration as the unit of analysis. We perform a comparative analysis to understand within- and across-nation trends in East–Southeast Asia (figure 1, A1) recognizing that such a regional approach cannot account for each city’s circumstances or individual drivers/impacts. Our results likely produce a conservative estimate of urban change in the region, and may differ from ‘official’ statistics (World Bank 2015) as a result of necessary choices regarding definitions, spatial scale, and data sources. Our aim is not to replace national estimates, but to offer a consistent approach for regional comparability of all cities >100 000 in the region.

2. Background

Great strides have been made to map population distribution using consistent data and methods (Balk et al 2006, Tatem et al 2007), but they depict population as measured at one point in time, and at best adjust only for changing population growth rates at the country level. Similarly, urban maps from remote sensing data have been limited to either static

Figure 1. Maps of urban land extent and urban expansion for 13 of the 30 largest urban agglomerations in East–Southeast Asia. Agglomerations are labeled by largest city (see table A5 for a list of cities within each agglomeration). Note that the scale is held constant across all urban agglomerations.

10 East Asia includes China (including Hong Kong SAR, Macao SAR), Taiwan, Japan, Mongolia, North Korea, South Korea; Southeast Asia includes Brunei Darussalam, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Timor-Leste, Vietnam.
global maps that sacrifice detail to provide areal coverage (Potere et al. 2009), or local maps of metropolitan growth that forego coverage in favor of spatial detail (Seto et al. 2010). Moreover, of the many global urban maps now available (Elvidge et al. 2007, Schneider et al. 2009), none characterize changes in urban land.

Recent comparative work on urbanization has found a middle ground by focusing on local maps (typically 30 m resolution) for a sample of cities (Seto et al. 2011, Angel et al. 2012, Taubenbock et al. 2012, Schneider and Mertes 2014). These studies point to several key findings: (1) cities in developing countries are consistently smaller or more compact than those in developed nations (Huang et al. 2007, Schneider and Woodcock 2008); (2) developing country cities typically undergo some decrease in population density in the core during their development trajectory (Murakami et al. 2005); and (3) cities are declining in density (Angel et al. 2011, 2012).

Although they represent advances in our empirical understanding of urbanization, these studies (and their conclusions) suffer from several limitations. Many rely on a limited very city sample (Murakami et al. 2005, Taubenbock et al. 2012); most exclude small- and medium-sized cities (100 000–1 million) where the majority of new growth is taking place (UN 2012). Definitional issues also jeopardize comparability: nearly all utilize municipal boundaries to clip the city extent, making it nearly impossible to compare trends across places. In addition, administrative divisions often under-bound the built-up extent, so new growth in fringe areas is not captured. Finally, many studies rely only on population or remote sensing, failing to connect the two to provide a complete picture of urban trends meaningful for environmental assessment, land use planning, and regional policy implementation.

3. Methods

3.1. Satellite-based maps of urban expansion

To establish potential locations of urban land, the study extent was first established by synthesizing all contemporary city point data (table A1) with a c. 2000 map of urban extent developed from MODIS 500 m data (Schneider et al. 2009, 2010). The MODIS 500 m urban extent map has been shown to have the highest locational accuracy of available maps and a zero omission rate for cities globally (Potere et al. 2009). Where city points did not align with the MODIS map or vice versa, the locations were manually checked against Google Earth data and adjusted. The final study extent was created by categorizing the identified urban patches into small, medium, and large classes according to their spatial extent and population, and buffering by 5, 25, and 100 km respectively to include potential areas of urban and peri-urban growth (Webster 2002).

Urban expansion 2000–2010 was mapped in two steps, beginning with delineation of the c. 2010 urban extent. A probability surface of urban land was developed from three years of 500 m MODIS imagery (table A2) and training samples for urban and non-urban areas photo-interpreted using very high resolution (VHR) Google Earth imagery (1–4 m resolution). A separate probability surface based on vegetation characteristics of urban and non-urban areas was produced from 250 m MODIS enhanced vegetation index (EVI) data (Tan et al. 2011) and integrated with the 500 m probabilities according to Bayes’ Rule (Mertes et al. 2015).

To detect change, we assume all urban expansion 2000–2010 to be unidirectional and occur within the mapped 2010 urban extent. We again exploit EVI data in a multi-date composite technique (annual maximum for each year, 2001–2010) by stacking all images for classification with a boosted decision tree (Quinlan 1993) to map (a) stable urban areas; and (b) areas that were developed 2000–2010. This approach relies on the assumption that any conversion from a non-urban land cover to developed land is detectable through changes in vegetation content (Schneider et al. 2010, Mertes et al. 2015).

The final maps were assessed for accuracy using a two-tiered approach. The 2010 urban map was first assessed using a stratified random sample of 6528 sites 0.132 km² in size, and the maps of urban expansion were assessed using a separate random sample of 2086 sites (0.06 km², to align with the 250 m resolution). Test sites were assessed within Google Earth against VHR data in a double-blind assessment by a team of photo-interpretation analysts, and labeled as urban/ non-urban land (tier one), or urban land/urban expansion 2000–2010 (tier two) according to the >50% built-up threshold (note that the 50% threshold is used throughout to maintain consistency with previous urban remote sensing efforts). Overall accuracy measures for the maps were calculated by comparing the maps against the test sites. The results indicate that map accuracies for urban extent (tier one) range between a maximum of 93% to a minimum of 79% for each country, and for urban expansion (tier two), between 91% and 70%, confirming their suitability for this analysis (Mertes et al. 2015).

3.2. Population density maps

Human population census data and corresponding administrative boundaries at the finest level available were obtained from multiple recent censuses in each nation (table A3). If they did not align with the c. 2000 and 2010 time points, the population data were adjusted forward or backward using inter-censal growth rates and linear estimation methods. High resolution census data were then used to establish
population densities for each time point (2000, 2010) on a biome-by-biome basis for each land cover type in the region, following previous WorldPop (www.worldpop.org.uk) mapping approaches (Tatem et al 2007, Gaughan et al 2013). These population densities were then used as weights to distribute the population across the raster cells, an approach that has been shown to produce more accurate disaggregations than previous approaches that rely on disaggregation to very coarse data (nighttime lights data) or areal weighting alone (Linard et al 2010, 2013, Gaughan et al 2013). After synthesizing all population data with land cover information and built-up extent to map population density, we count only the population cells fully contained within the built-up area. With this approach, we avoid the problems common to urban population data, including the lack of data at disaggregated scales, country-dependent definitions and delineations of urban versus rural that lead to drastically different population estimates, and changes in census geographies that require adjustment so measures reflect true population growth/decline rather than differences due to changes in administrative boundaries (Cohen 2004).

3.3. Analysis
We defined an urban agglomeration as the extended area comprising the built-up area of a central place (i.e. a city) and any suburbs or small cities linked by continuous urban land (UN 2012). To delineate agglomerations for this analysis, we collected the most detailed administrative boundary data available (typically county or finer) for c. 2010, to reflect the most recent units used for governing. We then assigned any administrative unit containing part of the contiguous built-up area of the city to its agglomeration, so that the agglomeration boundary is made up of one or more official administrative units. This was repeated for each city >100 000 persons, resulting in 1036 agglomerations across 17 countries (figure A1). For each agglomeration, we estimated the built-up extent for 2000 and 2010 from the satellite-based maps, as well as the 2000 and 2010 urban population within the built-up extent from the population density maps. The 1036 agglomerations were then stratified into five categories (UN 2012) based on their 2010 agglomeration population: >10 million; 5–10 million; 1–5 million; 500 000–1 million; and 100 000–500 000.

To understand regional urbanization trends within the 30 largest agglomerations, we also conducted a separate analysis measuring urban expansion for all established cities within the administrative core, within the urban agglomeration defined by the built-up extent, and directly adjacent or near the urban agglomeration boundary (within 120 km of each agglomeration’s center, following distance recommendations from the peri-urbanization literature, Webster et al 2002). For this analysis, we followed convention in urban geography, and standardized the study extent for each small city using adaptive radial zones (5, 10, 15 km) based on 2010 population size (Dietzel et al 2005, Seto and Fragiakas 2005).

4. Results

4.1. Regional and country-level results
Across the region, the total net increase in urban land area was >34 000 km² from 2000 to 2010, expanding from 155 000 to 189 000 km². While urban land area increased >22%, urban populations climbed >31%, adding 231 million persons in just ten years (from 738 to 969 million). The rapid pace of population change is clear in the average rates of change for each country (table A4): cities in the region grew annually at 2.8%, with Malaysia, Vietnam, Cambodia, and Laos all observing rates well above this average (4.0–7.8%). In contrast, the rates of change for urban land average 2.0% annually, with only China, the Philippines, Cambodia, and Laos having rates above this level (2.2–3.2%).

The results suggest that urban population growth has outpaced land expansion, a trend we measure explicitly using urban density. Here we estimate persons per square kilometer of built-up land since the conventional measure, persons per square kilometer within an administrative region, does not account for the vastly different sizes of municipal boundaries. While the results show a great degree of variability (figure 2), there are two common trends across nations: (a) urban densities are high (mean 2010, 5850 persons/km²), and (b) urban densities increase 15–30% from 2000 to 2010, adding between 270 and 2020 persons/km² in ten years. Although on average, urban densities are decreasing in China (from 6150 to 5290 persons/km² across 677 cities), there is considerable variability here as well: roughly half of Chinese agglomerations are decreasing in density, while the remaining half witnessed no change or an increase in urban density, similar to other agglomerations in the region.

4.2. City-level results: the view from above
More than one-third of all urban land and urban population in East–Southeast Asia falls into 30 large agglomerations (figure 3). By 2010, the Pearl River Delta agglomeration climbed to >41 million inhabitants and 6970 km² of urban land, surpassing Tokyo (31 million persons, 5570 km² urban land) as the largest urban agglomeration on Earth. An additional 12 of the top agglomerations are located in China, including Shanghai and Beijing, with 3480 and 2720 km² of urban land, and populations of 24 and 16 million persons, respectively, in 2010. China also contains the agglomerations with the greatest urban land expansion, 2000–2010, with a median increase of 463 km², compared to a median of 217 km² for all 30 cities. The Chinese agglomerations have witnessed
significant population increases as well, adding a median 2.5 million persons to each large agglomeration during the last decade. Several large agglomerations outside of China have major population increases (Tokyo, Jakarta, Manila), but not surprisingly, none have the scale of new development witnessed in China.

The growth of these ’mega-agglomerations’ is not the whole story, however. The region has an additional 101 large agglomerations, each with populations between 1 and 5 million persons, totaling >207 million. Although rates of expansion in these areas are on par with the 30 large agglomerations (>3%), the average rates of population increase surpass those of the top 30, at >3.4%. These trends are also apparent in agglomerations 100 000–1 million: small cities in Myanmar, Indonesia, Vietnam and the Philippines, especially, have added population without much expansion (figure 4). Nearly all trajectories are headed in the same general direction, with an average increase of 970 persons/km² for the 2000–2010 period.

4.3. City-level results: governance and policy perspectives

While the agglomeration provides a consistent way to compare metropolitan areas since they are defined by built-up extent, many agglomerations are comprised of a large number of independently-governed cities. For instance, the Manila agglomeration has 17 cities in its administrative core (where resources and planning are concentrated) and another 15 cities on the outskirts. Alternatively, many large agglomerations have a small core area governed as one unit, with expansion that spills into the jurisdiction of nearby county-or city-level governments (e.g. Shanghai, Seoul, Hanoi).

To understand how cities within an agglomeration view and govern themselves, we measure urban expansion for all established cities within 120 km of the city core for the top 30 agglomerations. Here we delineate each core according to its 2010 municipal area, and standardize the size of each small city extent using adaptive radial zones corresponding to each city’s 2010 population.

On average, >60% of 2010 urban land and >71% of new development 2000–2010 are located outside the core administrative area, but within the urban agglomeration defined by this study (figure 5). The results also highlight three distinct urban typologies for large agglomerations: (1) a core surrounded by rapidly growing cities, with expansion rates that decline with distance (e.g. Hangzhou, Guangzhou, Chengdu, Jakarta); (2) a core with numerous nearby cities, but with limited growth due to geophysical factors (e.g. Manila, Bangkok, Kuala Lumpur); and (3) a

Figure 2. Country-and city-level urban densities in East–Southeast Asia. On average, the majority of urban agglomerations in the region are becoming more dense, as shown in the box plots for urban densities (population/km² of built-up land, 25th–75th percentiles) for 14 countries, 2000 and 2010 (not shown: Brunei, Mongolia, Timor-Leste). For comparison, the urban densities for 18 large agglomerations are included.

Figure 5. Typical urban typologies for large agglomerations: (1) a core surrounded by rapidly growing cities, with expansion rates that decline with distance (e.g. Hangzhou, Guangzhou, Chengdu, Jakarta); (2) a core with numerous nearby cities, but with limited growth due to geophysical factors (e.g. Manila, Bangkok, Kuala Lumpur); and (3) a
core with few nearby cities (Hanoi, Bangkok). Some of these latter areas are witnessing peri-urbanization (expansion up to 100 km from the core, Kontgis et al. 2014), but this trend may not be fully captured in satellite-based estimates or census data due to its small, patchy nature.

5. Discussion and conclusions

This research presents new evidence that East–Southeast Asia is undergoing unprecedented urbanization and urban expansion, coincident with well-established trends of rapid industrialization, economic growth, and globalization. These results were generated using directly comparable, spatially-detailed datasets derived from multiple sources of remote sensing and disaggregated census data, with close attention to how urban land, urban expansion, urban population and agglomeration boundaries were defined and operationalized. When the factors limiting comparative urban analysis are addressed, the results reveal that urban agglomerations across East Asia are experiencing increasing urban densities. While these trends are not surprising for some scholars and local experts, they do contradict established empirical work that shows—with similar attention to consistency in data and definitions but with results modeled using static c. 2000 urban maps—that cities are universally declining in density (Angel et al. 2011, 2012).

The trend toward increasing urban densities is clear in nearly all countries, and at multiple scales. At the country level, Japan and South Korea lead the region with highly urbanized populations (80–90%) spread across multiple large urban agglomerations covering 3–5% of each country’s land area. Although growth has tapered off in these countries, their aggregate urban densities are still climbing. On average, population growth rates for large, middle-income countries (China, Indonesia, the Philippines, Thailand) are high (3.5%) relative to their average rates of urban expansion (2.6%). Cities of all sizes are growing in these countries, with higher rates of population growth for small cities than for large agglomerations during the last decade. China is clearly a unique case, however. At the country level, Chinese cities appear to be decreasing in density, a result that is expected given the central government’s planning and policy initiatives focused on small cities outside major metropolitan areas (Lin 1999). Results at the city level reveal that half of all Chinese cities have urban densities that increase or remain unchanged.

East–Southeast Asia is also home to several low or low-middle income countries with 30% of their total populations living in urban areas, including Vietnam, Myanmar, Laos, and Cambodia. During the last decades, these countries have witnessed major shifts from predominantly subsistence agrarian economies to increasingly commercialized agriculture, leading to rapid urbanization of rural populations (Hall et al. 2009).

Figure 3. Amounts of (a) urban land and (b) urban population, 2000–2010, for 30 large urban agglomerations in East–Southeast Asia. The figures illustrate the 26 agglomerations with the largest 2010 populations (all >5 million), and four capital cities included for regional representation (Yangon, Phnom Penh, Pyongyang, Vientiane). Agglomerations are labeled by largest city (see table A5).
The rates of urban population growth at the country level average 4.6% annually, primarily due to the extraordinary growth of just a few large cities (>1 million). Ho Chi Minh City, Hanoi, Yangon, and Vientiane, for example, have all witnessed rapid population growth, adding an average 1.4 million persons, 2000–2010. The results here reveal limited urban expansion, though, which has led to an average increase in urban density of 870 persons/km².

Finally, this work also examines how differences in administrative boundaries and urban definitions impact how we characterize, monitor, and understand urban change. We defined 30 large agglomerations by contiguous urban land, but evaluated rates/amounts of growth within the core administrative area and for the individual cities comprising these agglomerations (figure 5). Most administrative cores contain multiple cities on average, while an additional 2–21 cities exist within the built-up area of the agglomeration, but outside the jurisdiction of the core. It is in these outer cities where the majority of urban growth is concentrated. From these results, we therefore conclude that cities as they are experienced on the ground (i.e. contiguous built-up regions) are often not the same as how they are governed. Given rising urban densities, continued expansion, and a lack of coordinated governance, the question for governments and planners becomes whether adequate services, infrastructure, housing, and employment are available or can be provided to incoming populations.

There are several potential sources of uncertainty in this study that should be noted. With respect to the remote sensing data, the 250 m pixel size combined with the population threshold of 100 000 makes it difficult to capture all small settlements. In China, Indonesia, and Vietnam, villages are spectrally distinct and sufficiently large (>1 km²), and disaggregated population data are available. Accordingly, they are well-mapped with our methods (figure 1). In Laos, Cambodia, and North Korea, villages are small and comprised

Figure 4. Mean urban land and urban population, 2000–2010, for agglomerations 100 000–5 million (not shown due to lack of cities in these size classes: Brunei, Cambodia, Laos, Mongolia, North Korea, Singapore, Thailand, Timor-Leste).
of local materials that are spectrally similar to surrounding land cover types. These countries have no reliable village population estimates, and consequently, the results may under-report urban land or growth. On average, the total land area and population of these settlements is a fraction of the urban extent and urban population in each country, and should therefore have a limited effect on interpreting the results of this study. Finally, the urban extent does not include low-density settlements (e.g. 30–40% built-up), although these areas may function as urban space. If we relax the 50% threshold, higher rates and amounts of urban land would be likely.

One additional area of uncertainty is related to the availability of population data. Locations with less-than-ideal data include Malaysia, Thailand, Laos, Myanmar, and North Korea (table A3); results for these countries should be considered in light of this bias. In addition, population estimates have greater uncertainty when the administrative unit is large relative to urban extent, and rural populations within the unit are dense (Hay et al 2005). In these areas (e.g. Indonesia), population densities may be overestimated. Finally, the approach here does not capture growth within existent urban areas, including redevelopment or vertical growth. The lack of within-city monitoring remains a critical limitation of both population data sources and remote sensing for land use planning. New datasets (crowd sourcing, social media, etc) and advances in radar/lidar have the potential to significantly change how we monitor urban change (Frolking et al 2013, Tsou et al 2013).

Urban growth has increased in scope, scale, and complexity in recent decades, and has become one of the most important challenges of the 21st century. The urban expansion and urban growth datasets11 presented here provide a valuable, practical, and consistent way to monitor a broad range of issues, including impacts to local-regional climate (Kaufmann et al 2007), pollution levels (Grimm et al 2008), water quality/availability (McDonald et al 2011), arable land (Lambin and Meyfroidt 2011) as well as the livelihoods and vulnerability of populations in the region (Solecki et al 2011). These datasets are unique in that they represent the first comprehensive mapping of urban expansion and growth for all cities >100 000 in East–Southeast Asia, and they also form the basis of ongoing work to examine land and population trends globally for all cities and agglomerations.

11 All datasets are publicly available at www.landcoverchange.com.
While uncertainties may always be present no matter the data source, spatially-and temporally-detailed maps of urban expansion and population growth based on the best available data are nevertheless critical for researchers, urban planners, land managers, and government officials interested in a sustainable urban future.

Acknowledgments

AS acknowledges funding support from the World Bank for preparation of datasets. AJT acknowledges funding support from the RAPIDD program of the Science and Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health, and is also supported by grants from the Bill and Melinda Gates Foundation (#49446, #1032350). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors also wish to thank Caitlin Kontgis, Mutlu Ozdogan, and four anonymous reviewers for their helpful comments on an earlier draft of this manuscript.

Appendix

Figure A1. The distribution of urban agglomerations assessed in this research, including (a) 131 agglomerations >1 mil, (b) 164 cities between 500,000 and 1 mil, and (c) 741 cities between 100,000 and 500,000 persons. The number of agglomerations in each population size category is shown by country in (d).

Table A1. City point and raster datasets used to define the study extent for satellite image processing of urban expansion, as well as to define the 1036 urban agglomerations used for analysis.

Location	Dataset	Producer	Citation	Notes
Global	GRUMP city points	CIESIN, IFPRI, CIAT	Center for International Earth Science Information Network (CIESIN),	Point dataset of 67,935 cities, towns and settlements.
			Columbia University, International Food Policy Research Institute (IFPRI),	
			World Bank, Centro Internacional de Agricultura Tropical (CIAT) 2004	
			Global Rural-Urban Mapping Project (GRUMP); Settlement points (2000)	
			http://sedac.ciesin.columbia.edu	
Table A1. (Continued.)

Location	Dataset	Producer	Citation	Notes
Global	Urban agglomerations with >750,000 inhabitants, 2011	UN Department of Economic and Social Affairs Population Division	United Nations (UN) Department of Economic and Social Affairs Population Division 2013 Urban agglomerations with >750,000 inhabitants in 2011 http://esa.un.org/unup/GIS-Files/gis_1.htm	Point dataset of 633 cities >750,000 persons.
Global	Universe of cities	Angel, Lincoln Institute of Land Policy	Angel S 2012 Planet of Cities (Cambridge, MA: Lincoln Institute of Land Policy Publications)	Point dataset of 3,943 cities >100,000 persons.
China	Chinese city point data	Chinese Academy of Sciences	Chinese Academy of Sciences 2011 City points Beijing, China	Point dataset of 664 cities.
Global	Google Earth populated places	Google	Google Earth Pro v7.1. 2013 Layers: populated places http://www.google.com/earth	City point location used to verify, geolocate, and update city points.
Global	MODIS 500 m map of global urban extent	University of Wisconsin-Madison	Schneider A, Friedl M, Potere D 2010 Mapping urban areas globally using MODIS 500m data: New methods and datasets based on urban ecoregions [Remote Sens. Environ](http://sage.wisc.edu)	Map of 88,578 urban patches >1 km² used to verify, geolocate, and update city points.

Table A2. Remote sensing data sources used to map urban extent and urban expansion, 2000-2010.

Location	Dataset	Producer	Citation	Spatial resolution
East Asia	MODIS 500 m nadir BRDF-adjusted reflectance, 7 spectral bands, 8-day composites (MCD43A2, MCD43A4)	NASA MODIS Land Team, Boston University	Schaaf C B et al 2002 First operational BRDF albedo nadir reflectance products from MODIS Remote Sens. Environ. [83](http://sage.wisc.edu)	500 m
East Asia	MODIS 250 m enhanced vegetation index 8-day annual and tiled products (MOD09Q1G_EVI)	NASA Goddard Space Flight Center	Gao F, Morissette J, Wolfe R, Ederer G, Pedelty J, Masuoka E, Myeneni R, Tan B, Nightingale J 2008 An algorithm to produce temporally and spatially continuous MODIS-LAI time series IEEE Geoscience Remote Sens. 55 60-64	250 m
Global	Training exemplar database	Boston University, University of Wisconsin-Madison	Friedl, M., et al. 2009 MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets Remote Sens. Environ. [14](http://sage.wisc.edu)	1-30 m
East Asia	Test sites for accuracy assessment	University of Wisconsin-Madison	Mertes C M, Schneider A, Sulla-Menashe D, Tatem A, Tan B 2014 Detecting change in urban areas at continental scales with MODIS data Remote Sens. Environ. in review	250-500 m

Acronyms: MODIS, Moderate Resolution Imaging Spectroradiometer, BRDF, bidirectional reflectance distribution function, NASA, National Aeronautics and Space Administration.
Table A3. Population data sources used to map population density, 2000-2010, for each country.

Country or region	Official name	Statistical agency	Link	Years of data available	Level of data
Cambodia	Kingdom of Cambodia	National Institute of Statistics, Cambodia	http://www.nis.gov.kh	1998, 2008	province
China	People’s Republic of China	National Bureau of Statistics, China	http://www.stats.gov.cn	2000, 2003, 2010	county, municipality
China Data Center, University of Michigan			http://chinadatcenter.org	2000, 2010	county
Hong Kong	Hong Kong Special Administrative Region, China	Census and Statistics Department, Hong Kong SAR, China	http://www.censstatd.gov.hk	2001, 2011	district
North Korea	Democratic People’s Republic of Korea	Central Bureau of Statistics, DPR Korea	http://www.geohive.com/cntry/northkorea.aspx	2005, 2008	province
Indonesia	Republic of Indonesia	Biro Pusat Statistik, Indonesia	http://www.bps.go.id	2000, 2003, 2010	province
Japan	Japan	Statistics Bureau, Management and Coordination Agency, Japan	http://www.stat.go.jp	2000, 2005, 2010	district
Laos	Lao People’s Democratic Republic	Lao Department of Statistics	http://www.nsc.gov.la	1995, 2005, 2009, 2011	province
Malaysia	Malaysia	Department of Statistics, Malaysia	http://www.statistics.gov.my	2000, 2005, 2010	district
Mongolia	Mongolia	National Statistical Office, Mongolia	http://www.nso.mn	2000, 2010	district
Myanmar	Republic of the Union of Myanmar	Department of Population, Myanmar	https://www.mnped.gov.mm	1983, 2002, 2004	district
Philippines	Republic of the Philippines	National Statistics Office, Philippines	http://www.census.gov.ph	2000, 2007, 2010	province, city, district
South Korea	Republic of Korea	National Statistical Office, Republic of Korea	http://kostat.go.kr	2000, 2005, 2010	province, city
Singapore	Republic of Singapore	Statistics Singapore	http://www.singstat.gov.sg	2000, 2010	region, district
Taiwan	Republic of China, Taiwan	Department of Household Registration Affairs, Taiwan	http://www.stat.gov.tw	2000, 2006, 2010	county
Thailand	Kingdom of Thailand	National Statistical Office, Thailand	http://www.nso.go.th	2000, 2010, 2009, 2011	province
Vietnam	Socialist Republic of Vietnam	General Statistical Office, Vietnam	http://www.gso.gov.vn	2000, 1999, 2009	province

* Maps of population density were produced for c 2000 and c 2010 using all available census data. Where data were not available, population data were adjusted forward or backward using inter-censal UN population growth rates (Tatem et al 2007, Linard et al 2013).

Table A4. Changes in urban land and urban population for agglomerations >100,000 in East-Southeast Asia.

| Area within administrative boundary | Urban land 2000 | Urban land 2010 | Urban population 2000 | Urban population 2010 | Average annual rate of change, urban land (%) | Average annual rate of change, urban population (%) | Ratio of urban land increase to urban population change (m²/persons) |
|------------------------------------|----------------|----------------|----------------------|----------------------|---|--------------------------------|--------------------------------|-------------------|
| China | 9,453,309.3 | 98,819.4 | 126,661.1 | 453,257,034 | 2.5 | 2.8 | 191:1 |
| Japan | 372,468.1 | 19,270.5 | 20,094.5 | 76,080,201 | 0.4 | 1.4 | 72:1 |
| Indonesia | 1,890,972.7 | 12,635.5 | 13,921.9 | 83,535,095 | 1.0 | 3.5 | 37:1 |
| Thailand | 514,093.0 | 4,616.1 | 5,365.6 | 15,451,438 | 1.5 | 2.6 | 167:1 |
| Malaysia | 329,424.2 | 4,644.3 | 5,364.4 | 11,566,137 | 1.3 | 4.0 | 40:1 |
| Myanmar | 328,385.3 | 4,200.9 | 5,098.2 | 22,854,276 | 2.0 | 4.0 | 82:1 |
| South | 100,229.2 | 2,835.9 | 3,232.4 | 24,958,293 | 1.3 | 1.3 | 120:1 |
| Philippines | 295,987.7 | 2,332.9 | 2,907.9 | 19,397,298 | 2.2 | 3.3 | 77:1 |
| Taiwan | 36,223.7 | 1,782.9 | 2,043.3 | 13,801,713 | 1.4 | 0.7 | 260:1 |
| Myanmar | 670,746.8 | 1,838.4 | 2,030.1 | 8,452,657 | 1.0 | 2.9 | 69:1 |
| North | 122,755.1 | 852.6 | 906.9 | 4,189,762 | 0.6 | 1.1 | 107:1 |
| Korea | 1,566,250.3 | 683.1 | 764.4 | 1,209,552 | 1.1 | 3.7 | 220:1 |
| Singapore | 755.4 | 337.3 | 403.5 | 3,412,239 | 1.8 | 3.0 | 76:1 |
Table A4. (Continued.)

Country	Area within administrative boundary (km²)	Urban land 2000 (km²)	Urban population 2000 (persons)	Urban land 2010 (km²)	Urban population 2010 (persons)	Average annual rate of change, urban land (%)	Average annual rate of change, urban population (%)	Ratio of urban land increase to urban population change (m²/pers)
Cambodia	181,354.0	218.3	290.9	1,195,233	1,806,264	2.9	4.2	119:1
Laos	229,878.0	162.0	222.6	296,091	629,370	3.2	7.8	182:1
Brunei	528.5	144.4	180.3	155,880	230,304	2.0	4.0	481:1
Timor-Leste	369.4	28.4	28.4	115,901	180,737	0.0	4.5	0:1
Total	16,092,832.9	155,230.1	189,307.1	738,415,036	968,624,426	2.0	2.8	148:1

* Urban extent maps produced at 250m resolution (Mertes et al. 2014). In these maps, pixels containing at least 50% constructed surfaces are considered urban.

* Population data were estimated from the WorldPop population distribution maps (Linard et al. 2013) for built-up areas within the urban expansion map.

* Administrative boundary data provided by GADM (2012).

* Agglomerations were defined by the administrative units corresponding to the contiguous built-up land area of cities over 100,000.

Table A5. List of independent cities comprising the 30 large agglomerations assessed in this research.

Rank	Agglomeration	Country	Cities, towns >100,000 included in agglomeration
1	Pearl River Delta	China	Conghua Guangzhou Luoyang Shunde Zhuhai
			Daling Heshan Nanhai Xinhui
			Dongguan Huiyang Pinghuang Xinhui
			Foshan Huizhou Qingyan Zengcheng
			Gaoming Jiangmen Sanshui Zhaoying
			Gaoyao Kaipingshun Zhongshan
2	Tokyo	Japan	Abiko Hachiogi Kaiwa Misato Tachikawa
			Ageo Hadano Kasukabe Mitaka Takasaki
			Akishima Higashikurume Kawagoe Musashino Tama
			Asaka Higashimurayama Nagareyama Toda
			Ashikaga Namasaki Narashino Tokorozawa
			Atsugi Hira Gaku Otsu Niizaka Tokyo
			Chiba Hoya Kasarazu Noda Tsuchiura
			Chigasaki Ichihara Kodaira Odawara Urayasu
			Chofu Ichikawa Koganei Ome Urayasu
			Ebina Iruma Kubunji Oshino Utsunomiya
			Fuchu Isehara Koshigaya Ota Yachiyo
			Fujimata Isesaki Kagamagakura Sagamihara Yamato
			Fukuyama Itazuki Machida Sakura Yokohama
			Fukhaya Kamagaya Maebashi Sayama Yokosuka
			Funabashi Kamakura Matsudo Saka Zama
3	Shanghai	China	Kunshan Shanghai TaiPing Wujiang
4	Beijing	China	Beijing Sanhe
5	Bangkok	Thailand	Bangkok Pak Kret Samut
			Khlong Prathat Prasat Prakan Prakan
			Luang Phra Nakhon Pathom Prakan Prakan
6	Osaka	Japan	Osaka Takatsuki
			Amagasaki Ibaraki Nishinomiya Tondabayashi
			Daito Itami Kishiwa Tondabayashi Nishinomiya
			Habikino Izumi Koyoto Sakai Uji
			Higashiosaka Kado Mutsuosa Takaichi
			Hirakata Kawachi Moriguchi Takamatsu

Note:
- All tables and figures are relevant to the context of urban expansion and population growth within large agglomerations. The data includes area within administrative boundaries, urban land and population for the years 2000 and 2010, along with average annual rates of change and ratios of urban land increase to urban population change. Administrative and population data sources are cited, and urban extent maps are produced at 250m resolution.
| Rank | Agglomeration | Country | Cities, towns > 100,000 included in agglomeration |
|------|--------------|---------|--|
| 7 | Nagoya | Japan | Anjo, Ise, Kuvana, Okazaki, Toyota |
| | | | Ginu, Kakamigahara, Matusaka, Seto, Tru |
| | | | Handa, Kariya, Nagoya, Suzuki, Yokkaichi |
| | | | Ichinomiya, Kasugai, Nishio, Tajimi |
| | | | Inazawa, Komaki, Ogaki, Tokai |
| | | | Gifu, Kakamigahara, Matusaka, Seto, Tru |
| | | | Hida, Kariya, Nagoya, Suzuki, Yokkaichi |
| | | | Ichinomiya, Kasugai, Nishio, Tajimi |
| | | | Inazawa, Komaki, Ogaki, Tokai |
| 8 | Kuala Lumpur | Malaysia| Ampang, Kuala Lumpur, Selayang Baru, Shah Alam, Ulu Kelang |
| | | | Klang, Petaling Jaya, Seremban, Subang Jaya |
| | | | Klun, Klang, Petaling Jaya, Seremban, Subang Jaya |
| 9 | Tianjin | China | Tianjin |
| 10 | Jakarta | Indonesia| Bekasi, Cimanggis, Depok, Sawangan |
| | | | Bogor, Ciomas, Jakarta, Serang |
| | | | Ciawi, Ciputat, Pondok Aren, Serpong |
| | | | Cibinong, Citeureup, Pondokgede, Tangerang |
| | | | Cibinong, Citeureup, Pondokgede, Tangerang |
| 11 | Hangzhou | China | Hangzhou, Keqiao, Shaoxing, Xiaoshan, Yuhang |
| | | | Hangzhou, Keqiao, Shaoxing, Xiaoshan, Yuhang |
| | | | Antipolo, Calamba, Makati, Muntinglupa, San Jose del Monte |
| | | | Bacoor, Caloocan, Malabon, Navotas, San Juan del Monte |
| | | | Bacoor, Caloocan, Malabon, Navotas, San Juan del Monte |
| | | | Baciuaq, Cavi, Malolos, Paranaque, Santa Rosa |
| | | | Baciuaq, Cavi, Malolos, Paranaque, Santa Rosa |
| | | | Binan, Dasmarin, Mandaluyong, Pasay, Tagig |
| | | | Binangongan, Imus, Marikina, Pasig, Taytay |
| 13 | Shantou | China | Anbu, Chaoyang, Denghai, Jieyang, Paning |
| | | | Caiing, Caohzhou, Fengxi, Paotai, Shantou |
| | | | Caiing, Caohzhou, Fengxi, Paotai, Shantou |
| 14 | Seoul | South Korea | Ansan, Koyang, Osan, Shihung, Uiwang |
| | | | Anyang, Kunpo, Puch'on, Songnarn, Suwon |
| | | | Hanam, Kuri, P'yong'ae, Songnarn, Suwon |
| | | | Hanam, Kuri, P'yong'ae, Songnarn, Suwon |
| | | | Inch'on, Kwangmyong, Seoul, Uijongbu |
| | | | Inch'on, Kwangmyong, Seoul, Uijongbu |
| 15 | Chengdu | China | Chengdu, Chongzhou, Guanghan |
| | | | Chengdu, Chongzhou, Guanghan |
| 16 | Shenyang | China | Fusun, Shenyang |
| 17 | Wuhan | China | Wuhan |
| 18 | Hanoi | Vietnam | Ha Dong, Hanoi |
| | | | Ha Dong, Hanoi |
| 19 | Singapore | Singapore-Malaysia | Singapore, Johor Bahru |
| | | | Singapore, Johor Bahru |
| 20 | Ho Chi Minh City | Vietnam | Bien Hoa, Ho Chi Minh City, Thu Daut Mot |
| 21 | Xian | China | X'ian, Xianyang |
| 22 | Surabaya | Indonesia | Gresik, Sidoarjo, Taman, Waru |
| | | | Gresik, Sidoarjo, Taman, Waru |
| 23 | Chongqing | China | Chongqing |
| 24 | Taipei | Taiwan, PRC | Chung ho, Hsintien, Pingchen, Tanshi, Yingko |
| | | | Chung ho, Hsintien, Pingchen, Tanshi, Yingko |
| | | | Chung ho, Hsintien, Pingchen, Tanshi, Yingko |
| | | | Chung ho, Hsintien, Pingchen, Tanshi, Yingko |
| 25 | Bandung | Indonesia | Bandung, Cinahai, Margahayu, Padalarang |
| | | | Bandung, Cinahai, Margahayu, Padalarang |
| 26 | Yangon | Myanmar | Yangon City |
| | | | Yangon City |
| 27 | Hong Kong | China | Jiulong, Sheung Shui, Tseun Wan |
| | | | Jiulong, Sheung Shui, Tseun Wan |
| | | | Kwai Chung, Tai Po, Tuen Mun |
| | | | Ma On Shan, Shin Wai, Xiangang |
| | | | Ma On Shan, Shin Wai, Xiangang |
| | | | Ma On Shan, Shin Wai, Xiangang |
| | | | Ma On Shan, Shin Wai, Xiangang |
| 28 | Phnom Penh | Cambodia | Phnom Penh |
| 29 | Pyongyang | North Korea | Pyongyang |
| | | | Pyongyang |
| 30 | Vientiane | Laos | Vientiane |
| | | | Vientiane |

- Rank was determined according to the 2010 agglomeration population estimated from the WorldPop population density maps produced in this work.
- Agglomerations were defined by the administrative units (GADM 2012) corresponding to the contiguous built-up land area of cities over 100,000.
- Cities within each agglomeration were compiled from all available city lists (table A1) and verified through local maps and urban planning documents.
References

Angel S 2012 Planet of Cities (Cambridge, MA: Lincoln Institute of Land Policy)

Angel S, Parent J and Civco D 2012 The fragmentation of urban landscapes: global evidence of a key attribute of the spatial structure of cities 1990–2000 Environ. Urban 24 249–83

Angel S, Parent J, Civco D, Blei A and Potere D 2011 The dimensions of urban expansion: estimates and projections for all countries, 2000–2050 Prog. Plan. 75 53–107

Angel S, Sheppard S C, Civco D L, Buckley R, Chabaeva A, Gitlin L, Kraely A, Parent J and Perlin M 2005 The dynamics of global urban expansion Transport and Urban Development Department Report (Washington DC: World Bank Publications)

Bagan H and Yamagata Y 2012 Landsat analysis of urban growth: how Tokyo became the world’s largest megacity during the last 40 years Remote Sens. Environ. 127 210–22

Balk D L, Deichmann U, Yetman G, Pozz F, Hay S I and Nelson A 2007 Determining global population distribution: methods, applications and data Global Mapping of Infectious Diseases: Methods, Examples, and Emerging Applications ed S Hay et al (London: Academic) pp 119–56

Cohen B 2004 Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts World Dev. 32 23–51

Dietz C, Herold M, Hemphill J and Clarke K 2005 Spatio-temporal dynamics in California’s central valley: empirical links to urban theory Int. J. Geogr. Inf. Sci. 19 175–95

Elvidge C, Tuttle B, Sutton P, Baugh K, Howard A, Milesi C, Bhaduri B and Nemani R 2007 Global distribution and density of constructed impervious surfaces Sensors 7 1962–79

Frolking S, Milliman T, Seto K and Friedl M 2012 A global footprint of macro-scale changes in urban structure from 1999–2009 Environ. Res. Lett. 8 024004

Gaughan A E, Stevens F, Linard C, Jia P and Tatem A 2013 High resolution population distribution maps for Southeast Asia in 2010 and 2015 PLoS One 8 e55882

Grimm N B, Foster D, Groffman P, Grove J, Hopkinson C, Liu J, Tian H, Liu M, Zhuang D, Melillo J and Zhang Z 2005 China’s changing landscape during the 1990s: large-scale land transformations estimated with satellite data Geophys. Res. Lett. 32 L02405

McDonald R I, Green P, Balk D, Fetke B, Ravenga C, Todd M and Montgomery M 2011 Urban growth, climate change, and freshwater availability Proc. Natl. Acad. Sci. USA 108 6312–7

Mertes C M, Schneider A, Sulla-Menashe D, Tatem A J and Tan B 2015 Recent changes in urban areas at continental scales with MODIS data Remote Sens. Environ. 158 331–47

Montgomery M 2008 The urban transformation of the developing world Science 319 761–4

Murakami A, Zain A, Takeuchi K, Tsunekawa A and Yokota S 2005 Trends in urbanization and patterns of land use in the Asian mega cities of Jakarta, Bangkok, and Metro Manila Landscape Urban Plan. 70 251–9

Potere D, Schneider A, Scholmo A and Civco D 2009 Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? Int. J. Remote Sens. 30 6531–58

Quinlan J R 1993 C4.5: Programs for Machine Learning (New York: Morgan Kaufmann)

Schneider A, Friedl M A and Potere D 2009 A new map of global urban extent from MODIS data Environ. Res. Lett. 4 044003

Schneider A, Friedl M A and Potere D 2010 Mapping urban areas globally using MODIS 500 m data Remote Sens. Environ. 114 1733–46

Schneider A and Mertes C 2014 Expansion and growth in Chinese cities, 1978–2010 Environ. Res. Lett. 9 024008

Schneider A and Woodcock C 2008 Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities Urban Stud. 45 659–92

Seto K C and Fragiakias M 2013 Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics Landscape Ecol. 20 871–88

Seto K C, Fragiakias M, Gurner B and Reilly M 2011 A meta-analysis of global urban land expansion PLoS One 6 e23777

Seto K C, Sanchez-Rodriguez R and Fragiakias M 2010 The new geography of contemporary urbanization and the environment Annu. Rev. Environ. Resour. 35 167–94

Solecki W, Leichenko R and O’Brien K 2011 Climate change adaptation strategies and disaster risk reduction in cities Curr. Opin. Environ. Sustain. 3 315–41

Tan B, Morissette J, Wolfe R, Gao F, Ederer G, Nightingale J and Pedelty J 2011 An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data IEEE J. Sel. Top. Appl. Earth Obs. 4 361–71

Tatem A J, Noor A M, von Haagen C, Di Gregorio A and Hay S 2007 High resolution settlement and population maps for low income nations: combining land cover and national census in East Africa PLoS One 2 e1298

Taubenbock H, Esch T, Felbier A, Wiesner M, Roth A and Dech S 2011 Urban Dynamics of East Asia Series (Cambridge, MA: Lincoln Institute of Land Policy)

Tan B, Morissette J, Wolfe R, Gao F, Ederer G, Nightingale J and Pedelty J 2011 An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data IEEE J. Sel. Top. Appl. Earth Obs. 4 361–71

United Nations, Department of Economic and Social Affairs, Population Division 2012 World Urbanization Prospects: The 2011 Revision No. ESA/P/WP. 224

Wang L et al 2012 China’s urban expansion from 1990 to 2010 determined with satellite remote sensing Chin. Sci. Bull. 57 2482–3

Webster D 2002 On the edge: shaping the future of peri-urban East Asia Asia/Pacific Research Discussion Paper, the Urban Dynamics of East Asia Series (Stanford, CA: Stanford University)

World Bank 2015 East Asia’s Changing Urban Landscape: Measuring a Decade of Spatial Growth (Washington DC: World Bank Publications)