Global proteomic analysis of two tick-borne emerging zoonotic agents: *Anaplasma phagocytophilum* and *Ehrlichia chaffeensis*

Minggun Lin, **Takane Kikuchi**, **Heather M. Brewer**, **Angela D. Norbeck** and **Yasuko Rikihisa**

1 Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA

INTRODUCTION

Anaplasma phagocytophilum and *Ehrlichia chaffeensis* are small (ca. 0.4 by 1.5 μm), pleomorphic gram-negative bacteria that belong to the family Anaplasmataceae in the order Rickettsiales, the class α-proteobacteria (Dumler et al., 2001; Rikihisa, 2010b). The infection of humans by *A. phagocytophilum* and *E. chaffeensis* causes human granulocytic anaplasmosis (HGA, first reported in 1994, formerly known as human granulocytic ehrlichiosis (HGE)) and human monocytic ehrlichiosis (HME, first reported in 1987), respectively (Maeda et al., 1987; Chen et al., 1994). HGA and HME are similar systemic febrile diseases characterized by fever, headache, myalgia, anorexia, and chills, and are frequently accompanied by leukopenia, thrombocytopenia, anemia, and elevations in serum hepatic aminotransferases (Paddock and Childs, 2003; Bakken and Dumler, 2008; Thomas et al., 2009). Neurological signs are more frequently reported with HME than HGA (Paddock and Childs, 2003). Although doxycycline is generally effective in treating human ehrlichioses, delayed therapy, the presence of underlying allergies or poor health, and immuno-suppression often lead to severe complications or death. As important life-threatening tick-borne emerging zoonoses, HGA and HME were designated as nationally notifiable diseases by US Centers for Disease Control and Prevention in 1998 (Gardner et al., 2003). Since then, reported cases have increased every year. During 2008, cases attributed to *A. phagocytophilum* and *E. chaffeensis* increased by 21 and 16% from 2007, respectively (Hall-Baker et al., 2010).

Anaplasma phagocytophilum and *E. chaffeensis* are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 *A. phagocytophilum* and 1,021 *E. chaffeensis* proteins, representing 89.3% and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as *A. phagocytophilum* p44 and *E. chaffeensis* P28/OMP-1. Among 113 *A. phagocytophilum* p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of *A. phagocytophilum* and *E. chaffeensis* proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligate intracellular pathogens.

Keywords: *Anaplasma phagocytophilum*, *Ehrlichia chaffeensis*, proteomic analysis, human granulocytic anaplasmosis, human monocytic ehrlichiosis, human leukocytes

Anaplasma phagocytophilum and **Ehrlichia chaffeensis** are obligatory intracellular α-proteobacteria with a life cycle that requires repeated transmission between mammalian hosts and tick vectors (Rikihisa, 1991, 2010b; Dumler et al., 2001). Once transmitted to mammals, these bacteria replicate in membrane-bound compartments inside the primary host immune defensive cells: granulocytes (*A. phagocytophilum*) or monocytes/macrophages (*E. chaffeensis*). Since culture isolation of these organisms in the 1990s (Dawson et al., 1991; Goodman et al., 1996), unique strategies employed by *A. phagocytophilum* and *E. chaffeensis* for their survival in hostile environment have begun to be unraveled, including hijacking host cell signaling pathways, altering vesicular trafficking, usurping nutritional and cytoskeletal components, and subverting several host innate immune responses (Carlyon and Fikrig, 2003, 2006; Carlyon et al., 2004; Sukumaran et al., 2005; Huang et al., 2010a; Rikihisa, 2010a; Sultana et al., 2010; Wakeel et al., 2010). The complete genome sequences of *A. phagocytophilum* (1,471,282 base pairs) and *E. chaffeensis* (1,175,764 bp), and detailed analyses of their protein-coding genes have proven a
great resource for studying these bacteria and the diseases they cause (Dunning Hotopp et al., 2006). These two species share approximately 500 genes; most of them encode proteins with homologies to those with known functions. However, approximately 470–580 genes are unique to each species (Dunning Hotopp et al., 2006), and approximately 45% of predicted open reading frames (ORFs) in the two genomes were annotated as uncharacterized “hypothetical proteins” or proteins without any functional assignment (Table 1). However, whether they really encode proteins and are actually expressed in living organisms remains largely unknown.

Owing to the recent technical advance in transcriptome and proteome analyses, a holistic view of the numerous expressed genes and proteins of an organism has become available. Whole genome transcriptome analysis of A. phagocytophilum in human HL-60 cells showed the expression of approximately 70% of the bacterial gene transcripts (Nelson et al., 2008). Proteomics studies based on 1-D and 2-D gel analyses of E. chaffeensis identified one-fourth of the total ORFs from human and tick cell-derived bacterial cultures (Singu et al., 2005; Seo et al., 2008). However, there are major difficulties in proteomic studies of obligatory intracellular bacteria; because a high-purity bacterial sample is not easily obtainable, and the presence of a large amount of host proteins reduces the sensitivity and lowers the identification scores of bacterial proteins (Li and Lostumbo, 2010). The development of more sensitive nano-liquid chromatography combined with tandem MS/MS (nano-LC–MS/MS)-based proteomic approach improves global protein analysis of obligatory intracellular bacteria, as low levels of proteins can be identified in samples mixed with a large amount of host proteins (Zimmer et al., 2006). Furthermore, label-free protein quantitation based on LC–MS peptide peak intensity information becomes possible due to the reproducibility and sensitivity of intensity data measurements, and multiple samples from different conditions can be compared directly without stable isotope labeling (Old et al., 2005; Zimmer et al., 2006; Shi et al., 2009).

Here, we present the first comprehensive proteomes of two human pathogens A. phagocytophilum and E. chaffeensis, their relative protein expression abundances, and the influence of infection with these two pathogens on human host protein expression using multidimensional nano-LC–MS/MS approaches developed at Pacific Northwest National Laboratory1 (Zimmer et al.,

Table 1 | Numbers of protein expression classified by functional categories.

Functional categories1	Anaplasma phagocytophilum	Ehrlichia chaffeensis				
	Total	Expressed	Not detected	Total	Expressed	Not detected
Amino acid biosynthesis	9	9	23	23		
Biosynthesis of cofactors, prosthetic groups, and carriers	64	64	3	61	61	
Cell envelope	159	156	3	49	49	
Cellular processes	29	29	29	29	29	
Central intermediary metabolism	2	2	3	3	3	
DNA metabolism	46	46	43	43	43	
Energy metabolism	87	87	83	83	83	
Fatty acid and phospholipid metabolism	18	18	19	19	19	
Mobile and extrachromosomal elements	6	6	4	4	4	
Protein fate	82	79	78	77	77	
Protein synthesis	106	105	106	106	106	
Purines, pyrimidines, nucleosides, and nucleotides	36	36	35	35	35	
Regulatory functions	9	9	11	11	11	
Transcription	21	21	20	20	20	
Transport and binding proteins	34	34	31	30	30	
Proteins with known functions	708	701 (99.0%)	7	595	593 (99.7%)	2
Proteins <100 AA	55	49 (89.1%)	34	32	32 (94.1%)	
Proteins <100 AA	475	475 (77.9%)	135	422	422 (83.7%)	82
“Hypothetical” proteins <100 AA	234	234 (63.8%)	161	161 (66.3%)		
Truncated ORFs3	39	36	7	6	6	
Summary	1357	1212 (89.3%)	145	1106	1021 (92.3%)	85
Disrupted ORFs (no AA translation)4	13	13	10	10	10	
Total ORF numbers	1370	1212	158	1116	1021	95

1Function categories are assigned by the JCVI Annotation Engine and available at JCVI Comprehensive Microbial Resource (http://cmr.jcvi.org).

2ORFs of unknown functions refer to hypothetical proteins and proteins without functions assigned.

3Truncated ORFs refer to truncated or frame-shifted proteins of known, characterized ORFs in the NCBI database.

4Disrupted ORFs refer to ORFs (except p44s in A. phagocytophilum) that have homologs to annotated ORFs in GenBank but contain nonsense mutations.
urea, thiourea, and dithiothreitol (DTT) at final concentrations.

Protein samples were denatured and reduced by adding zirconia/silica disruption beads (BioSpec Products, Bartlesville, OK, USA). The resulting suspension was transferred to a 2.0-mL digestion vial containing the insoluble protein fraction, was washed and re-added. The suspension was centrifuged at 355,000 × g at 4°C for 10 min to separate the protein lysates into two parts: soluble and insoluble protein fractions. The supernatant was trypsin-digested and cleaned up in the same fashion as in the global digest method and designated as soluble digest samples. The pellet after ultrafiltration, containing the insoluble protein fraction, was washed and resuspended in a denaturing solution (7 M urea, 2 M thiourea, 1% CHAPS, 10 mM DTT, 50 mM NH₄HCO₃, pH 7.8). Insoluble protein samples were digested as described above. Removal of salts and detergent was performed using a Discovery strong cation exchange (SCX) SPE column (Supelco). Peptides were concentrated, and the concentration measured as described above. All trypsin-digested peptides were snap frozen in liquid N₂ and stored at −80°C until proteomic analysis.

Mass Spectrometry and Data Analysis
In order to enhance proteome coverage, all peptide samples were further separated by SCX chromatography coupled offline with nano-LC–MS/MS analyses. Peptide mixtures from each proteome sample were fractionated into 35–70 fractions as previously described (Qian et al., 2005). A description of the instrumentation and specifics of the high-performance liquid chromatography (HPLC–MS/MS) and HPLC–MS instrumental arrangements and associated methods for each biological system have been described previously and are consistent for all experiments (Manes et al., 2008; Mottaz-Brewer et al., 2008). In brief, samples were loaded onto an in-house developed chromatography system that uses a 20-cm × 75-μm C18 reverse-phase column and ionized as they eluted from the column into a mass spectrometer using electrospray ionization. The liquid chromatography gradient was generated linearly from aqueous to organic over 100 min in acidic conditions. Typically, MS was performed in a linear trap quadrupole (LTQ; Thermo Fisher Scientific) ion trap mass spectrometer. Tandem MS (MS/MS) were collected using data-dependent settings on the top 10 ions from the precursor scan.

Tandem MS spectra (MS/MS) were matched to protein sequence files using the SEQUEST program and filtered with a combination of scores provided in the output files (Eng et al., 1994), which included the minimum threshold filter scores defined by Washburn et al. (2001), and an additional minimum discriminant score of 0.5 to reduce the false-positive identifications (Strittmatter et al., 2004). Only peptides passing these filters were populated into the initial accurate mass and time (AMT) tag database. The searches were performed using the annotated protein databases of A. phagocytophilum HZ (1,357 protein entries, GenBank Accession Number NC_007797) including newly annotated 113 A. phagocytophilum P44 proteins, E. chaffeensis Arkansas (1,106 protein entries, GenBank Accession Number NC_007799), and Homo sapiens IPI protein database (61,225 protein entries, IPI 2006, v3.36). Each bacterial and human peptide from infected host cells was identified and populated into the same AMT tag database.
QUANTITATIVE MASS SPECTROMETRIC ANALYSIS

Before running on the mass spectrometer, the total peptide mass was measured, and the sample was diluted to 1 μg/μL for injection. After the building of the initial AMT tag database, all samples were analyzed with a 9.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (Bruker Daltonics, Billerica, MA, USA) following the separation of peptides by reverse-phase capillary HPLC under identical conditions as described (Shi et al., 2006, 2009). Standard proteins were added before digestion and used to track the performance of the instruments. Five technical replicates for each sample were injected into the FTICR mass spectrometer. Relevant information, such as the elution time from the capillary LC column, the abundance of the signal (integrated area under the elution profile), and the monoisotopic mass (determined from charge state and the high accuracy m/z measurement) of each feature observed in the FTICR, was used to match the peptide identifications contained within the initial AMT tag database. These peptides, now identified and quantified, were used to infer the protein composition of the samples. Only peptides observed in at least three out of five of these technical replicates were used in data analysis, and all proteins were required to have at least three observed peptides to be included in the confident results. In addition, the number of peptides observed for each protein in a biological sample was divided by the total number of peptides determined from the same sample to give an estimate of relative abundance of each identified protein in the sample. The abundances for each peptide were then averaged across these runs before the ratio calculations.

DATA ANALYSIS AND PROTEOMIC DATABASE ONLINE ACCESS

Bacterial proteins were classified based on the functional role categories using JCVI Annotation Engine and Comprehensive Microbial Resource as described previously (Dunning Hotopp et al., 2006; Lin et al., 2009). Human proteins were classified based on gene ontology (GO) as annotated by the GO Consortium. All peptides and proteins identified from *A. phagocytophilum*, *E. chaffeensis*, and human HL-60 cells, together with the detailed analyses of protein expression profiles and quantitation results can be accessed and downloaded from the website.

RESULTS AND DISCUSSION

OVERVIEW OF *A. PHAGOCYTOPHILUM* AND *E. CHAFFEENSIS* PROTEINS IDENTIFIED BY PROTEOMICS

In order to identify and quantitate the comprehensive protein expression profiles of *A. phagocytophilum* and *E. chaffeensis*, 18 *A. phagocytophilum* protein samples and 14 *E. chaffeensis* samples were prepared from purified bacteria from infected HL-60 cells using three different protein extraction protocols as described; each contained approximately 1 mg of peptides after tryptic digestion and column clean-up. Approximately 250 MS runs for each bacterium from these samples were performed until no new peptides were detected (Figure A1 in Appendix). Positively identified peptides were populated into the AMT tag database, and two databases were constructed. The *A. phagocytophilum* database contained search results from 60 datasets using purified bacteria from infected cells and 189 datasets from *A. phagocytophilum*-infected cells, respectively. The database for *E. chaffeensis* contained 49 datasets from purified bacteria and 192 datasets associated with *E. chaffeensis*-infected host cells.

In protein samples from both *A. phagocytophilum* and *E. chaffeensis*-infected HL-60 cells, greater than 126,000 peptides were identified (Figure A1 in Appendix). Among these peptides, 44,080 matched to 1,212 *A. phagocytophilum* proteins, and 48,004 matched to 1,021 *E. chaffeensis* proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively (Table 1). Among these detected proteins, greater than 96% have more than one peptide match. For proteins with known functional categories assigned, nearly all of these proteins (99.0% from *A. phagocytophilum* and 99.7% from *E. chaffeensis*) were expressed in HL-60 cells, including enzymes required for metabolisms and proteins involved in pathogenesis and regulatory functions, such as outer membrane proteins, the type IV secretion system (T4SS), and two-component regulatory systems. Therefore, nearly all proteins with known functions are likely essential for the replication and survival of these two pathogens inside human host cells. These expression profiles in mammalian host also suggest that, although gene loss occurred in the family Anaplasmataceae as a result of reductive genome evolution (Blanc et al., 2007; Darby et al., 2007), these genes cannot be sacrificed from their genomes.

Among these currently identified bacterial proteins, some mRNAs or proteins have been reported previously, including 70% of *A. phagocytophilum* genes in HL-60 cells by whole genome transcriptome analysis (Nelson et al., 2008) and near one-fourth of *E. chaffeensis* proteins by 1-D and 2-D gel based proteomics studies (Singu et al., 2005; Seo et al., 2008). Dozens of surface-exposed proteins in both bacteria using NHS-SS-biotin-labeling of host cell-free, intact bacteria cultured in human host cells (Ge and Rikihisa, 2007a,b). All of these identified proteins were detected in the current proteomic analyses. In addition, several other bacterial proteins reported previously were also detected in this study. These proteins include outer membrane proteins P44 and P28/Omp-1 (Ohashi et al., 1998b; Unver et al., 2002; Zhi et al., 2004; Huang et al., 2007; Kumagai et al., 2008); transcriptional factors Tr1, ApxR, and EcxR (Wang et al., 2007; Cheng et al., 2008); three pairs of two-component regulatory system proteins in both bacteria (Cheng et al., 2006; Kumagai et al., 2006); the VirB/D4 T4S apparatus and substrates like AnkA and Ats-1 (Catunregli et al., 2000; Ohashi et al., 2002; Ito et al., 2007; Lin et al., 2007; Bao et al., 2009; Niu et al., 2010); *A. phagocytophilum* toxin A (AptA) protein and morulae proteins APH_0032/APH_1387 (Huang et al., 2010b,c; Sukumaran et al., 2011); and *E. chaffeensis* Ank200 and tandem repeat proteins Trp32/Trp47/Trp120 (Wakeel et al., 2009, 2010; Zhu et al., 2009; Luo et al., 2010).

EXPRESSION OF *A. PHAGOCYTOPHILUM* AND *E. CHAFFEENSIS* PROTEINS IN BIOSYNTHESIS PATHWAYS AND PHAGE COMPONENTS

Anaplasma phagocytophilum and *E. chaffeensis* have significantly higher percentages of their genomes involved in nucleotide biosynthesis, cofactor and vitamin biosynthesis, and protein synthesis than their closely related free-living γ-proteobacterium * Caulobacter crescentus* (Dunning Hotopp et al., 2006). Expression of enzymes...
involved in nucleotide, vitamin, and cofactor biosynthetic pathway in *A. phagocytophilum* and *E. chaffeensis*, suggests that they do not need to compete with human leukocytes for, and may even supply host cells with, essential vitamins and nucleotides. This has been proposed to occur between the obligatory intracellular bacterium *Wigglesworthia glossinidia* and its insect host, tsetse fly (Zientz et al., 2004). The protein synthesis category includes many essential genes, such as those encoding ribosomal proteins, tRNA synthetases, RNA modification enzymes, and translation factors. Almost all of these proteins were expressed in mammalian hosts, except for *A. phagocytophilum* ribosomal protein L36 (Table S1 in Supplementary Material). Previous studies have shown that ribosomal protein L36 is dispensable for *Escherichia coli* growth and protein synthesis (Ikegami et al., 2005), and the gene encoding ribosomal protein L36 was not identified in the closely related *Neorickettsia* spp (Lin et al., 2009), suggesting that L36 might not be necessary for members in the family Anaplasmataceae.

Anaplasma phagocytophilum and *E. chaffeensis* have a lower coding percentage for transporters compared to the free-living *C. crescentus* (Dunning Hotopp et al., 2006). Although nearly 100% of the proteins with known functions were expressed in HL-60 cells, few proteins involved in transport functions, like twin-arginine translocation protein TatA/E of *A. phagocytophilum*, and monovalent cation/proton antiporter MnhG/PhaG subunit family protein of *E. chaffeensis* were not detected in bacteria cultured in HL-60 cells (Tables S1 and S2 in Supplementary Material). Interestingly, although *A. phagocytophilum* and *E. chaffeensis* do not encode for intact prophage or transposable/mobile elements, a few phage core components (HK97-like portal, major capsid, and prohead protease) were identified scattered throughout their genomes, and their protein expressions were also confirmed by proteomics. The functions of these remnant phage components on bacterial infection of human hosts are unclear; however, some literature has suggested that they might be involved in lateral gene transfer, bacterial chromosome inversion, evolution, and virulence factors expression (Canchaya et al., 2003; Brussow et al., 2004).

EXPRESSION PROFILING OF *A. PHAGOCYTOSPHILUM* AND *E. CHAFFEENSIS*’ HYPOTHETICAL’ PROTEINS

Since approximately 45% of the predicted ORFs in the genomes encode conserved or uncharacterized “hypothetical” proteins (Table 1; Dunning Hotopp et al., 2006), whether they really encode proteins and whether these proteins are expressed in living organisms are largely unknown. Analysis of the expression profiles of these hypothetical proteins or proteins without known functions assigned showed that only 77.9% and 83.7% of them were expressed in *A. phagocytophilum* and *E. chaffeensis*, respectively (Table 1). The much lower expression ratio of these “hypothetical” genes compared to those of proteins with known functions assigned (near 100%), suggests that the expression of certain “hypothetical” proteins might be regulated in different host environments, like the arthropod vectors, and play critical roles in responses to host adaptation.

As suggested by Ochman (2002) and Skovgaard et al. (2001), a substantial fraction of hypothetical ORFs in bacterial genomes are short (under 300 nucleotides in length); therefore, many of them might be random stretches of DNA and do not actually encode proteins. Analysis of these expressed proteins with unknown functions showed that 50.7% of them in *A. phagocytophilum* and 61.8% in *E. chaffeensis* were greater than 100 amino acids (AA) in protein length (Tables S3 and S4 in Supplementary Material). However, for “hypothetical” proteins undetectable by proteomic analysis, 97.8% of them in *A. phagocytophilum* and 100% in *E. chaffeensis* were fewer than 100 AA (Table 2). As functional assignment to an ORF during genome annotation process is based on the homology or domain structure matches to known proteins or domains, proteins with known functions assigned are most likely biased toward long proteins (Skovgaard et al., 2001). This statement is probably true since among the “hypothetical” proteins, 60.2% in *A. phagocytophilum* and 48.2% in *E. chaffeensis* are fewer than 100 AA, whereas less than 8% of proteins with known functions are fewer than 100 AA (Table 1). The shorter protein length also reduces its possibility of being detected by proteomic analysis due to the smaller number of peptides after trypsin-treatment. However, our study showed that greater than 63% of the “hypothetical” proteins with fewer than 100 AA could be detected in both bacteria (Table 1). Therefore, further bioinformatics analyses of these expressed genes, combined with comprehensive protein expression profiles under different culturing or host environmental conditions, would help in the prediction of true “hypothetical” proteins.

EXPRESSION OF OVERLAPPING ORFS IN *A. PHAGOCYTOSPHILUM* AND *E. CHAFFEENSIS*

Overlapping genes are detected primarily in parasitic or symbiotic bacteria and are believed to be a consequence of the reduction of originally larger genomes (Fukuda et al., 2003; Blanc et al., 2007). Analyses of the *A. phagocytophilum* and *E. chaffeensis* genomes identified overlaps among protein-coding ORFs and between RNA- and protein-coding ORFs, which occurred either at different reading frames of the same strand or on the complementary strands. Proteomic data showed that many overlapping genes were indeed expressed by *A. phagocytophilum* and *E. chaffeensis* in infected human host cells (Figures A2 and A3 in Supplementary Material).

Organisms	*Anaplasma phagocytophilum*	*Ehrlichia chaffeensis*
Proteins with assigned functions	7	2
Protein length <100 AA	6	2
Proteins with unknown functions	135	82
Protein length <100 AA	132 (97.8%)	82 (100%)
Truncated ORFs	3	1
Protein length <100 AA	3	1
Total numbers of undetected ORFs	145	85
Numbers of protein <100 AA	128 (97.2%)	85 (100%)
Disrupted ORFs (no translation)	13	10

Table 2 | Classification of undetected proteins by functional categories and protein lengths.
Appendix). These ORFs include one pair each of completely overlapping protein-coding ORFs in *A. phagocytophilum* (APH_0143/APH_0144) and *E. chaffeensis* (ECH_0506/ECH_0507), one pair of overlapping ORFs between protein (ECH_0472) and 6SRNA1 genes (ECH_1158), and 10 out of 21 (A. *phagocytophilum*) or 4 out of 26 (E. *chaffeensis*) partial overlapping protein-coding ORFs (Figures A2 and A3 in Appendix). These data suggest that overlapping ORFs can actually be transcribed and translated into proteins in these organisms with reduced genome contents in order to increase their coding capacities.

EXPRESSION OF P44/MSP2 AND OMP-1 PROTEIN SUPERFAMILY IN A. PHAGOCYTOPHILUM AND E. CHAFEENSES

Despite the reduction in their genome sizes and significantly lower coding capacity for metabolism, transport, and regulatory functions, *A. phagocytophilum* and *E. chaffeensis* not only retained but expanded a pool of genes encoding outer membrane proteins (Dunning Hotopp et al., 2006). Most of these outer membrane proteins are members of Pfam PF01617 and constitute the OMP-1/MSP2/P44 family (Dunning Hotopp et al., 2006; Finn et al., 2010). Since *A. phagocytophilum* and *E. chaffeensis* cannot be transovarially transmitted in their arthropod vectors, and ticks must acquire these membrane proteins (Dunning Hotopp et al., 2006). A total of 113 of the family Anaplasmataceae, most of them encoding P44 outer membrane proteins belonging to OMP-1/MSP2/P44 family among members of the family Anaplasmataceae, most of them encoding P44 outer membrane proteins (Dunning Hotopp et al., 2006). A total of 113 annotated p44 loci longer than 60 bp in gene length and some smaller DNA fragments homologous to p44 gene family can be identified throughout the genome, which consists of greater than 5% of the total genome contents (Dunning Hotopp et al., 2006). The full-length p44s consist of a central hypervariable region of approximately 280 bp encoding a signature of four conserved AA sequences deduced from nearly all p44 genes (97.3%), including 86 silent p44 gene fragments and 2 degenerated p44 genes (Table 3).

Since the N- and C-regions flanking hypervariable domains are highly conserved among P44 proteins, one peptide identified by proteomic analysis might actually match to several P44s. Therefore, we further analyzed all peptide matches to P44 proteins and confirmed that 84 P44 proteins (74.3%) were expressed with at least one unique peptide match (Table 3; Table S5 in Supplementary Material). These results showed that silent p44 gene reserves distributed throughout the *A. phagocytophilum* genome can actually be recombined and expressed from the p44-18ES expression locus (Figure 1). In addition, the region near this expression locus showed greater numbers of identified peptides matched to P44 proteins encoded by either full-length p44 genes that can be expressed at their own genomic loci or can recombine into the expression locus p44-18ES (APH_1221). Truncated p44s are silent/reserve p44s less than 1,000 bp in length, encode the complete or a portion of the central hypervariable region, and have one or both of the conserved N- and C-regions. They may have alternative start and/or stop codons. Fragments of p44 have only a conserved region and no hypervariable region and are longer than 60 bp. It should be noted that smaller fragments can be identified throughout the genome. Degenerated p44 fragments are p44 truncations that are likely to be non-functional remnants of previous recombination events and contain nonsense mutations.

Table 3 | Expression profile of *Anaplasma phagocytophilum* P44 outer membrane proteins.

P44 proteins	Total numbers detected	All P44 with peptides detected	Expressed P44 w/unique
Full-length	22	22	19^2
P44 proteins			
Truncated	68	67^3	52
P44 fragments			
N- or C-Terminal	21	19^4	11
P44 fragments			
Degenerated	2	2	2
P44 fragments			
Total numbers	113	110 (97.3%)	84 (74.3%)

1Full-length p44 genes are longer than 1,000 bp, contain conserved start and stop codons, encode both of the conserved N- and C-regions and a central hypervariable region. These genes can be expressed at their respective current genomic loci or can recombine into the expression locus p44-18ES (APH_1221).

2Three P44s have peptides detected, but all of these peptides also matched to other P44s: P44-2b (shared with P44-2), P44-34b (shared with P44-34), P44-53b (shared with P44-53).

3Only P44-75 protein (APH_1122) has no peptide matches.

2Three P44 C-terminal fragments APH_1124 and APH_1399 were not detected.

Since the N- and C-regions flanking hypervariable domains are highly conserved among P44 proteins, one peptide identified by proteomic analysis might actually match to several P44s. Therefore, we further analyzed all peptide matches to P44 proteins and confirmed that 84 P44 proteins (74.3%) were expressed with at least one unique peptide match (Table 3; Table S5 in Supplementary Material). These results showed that silent p44 gene reserves distributed throughout the *A. phagocytophilum* genome can actually be recombined and expressed from the p44-18ES expression locus (Figure 1). In addition, the region near this expression locus showed greater numbers of identified peptides matched to P44 proteins encoded by either full-length p44 genes that can be expressed at their own genomic loci or can recombine into the expression locus p44-18ES (APH_1221). Truncated p44s are silent/reserve p44s less than 1,000 bp in length, encode the complete or a portion of the central hypervariable region, and have one or both of the conserved N- and C-regions. They may have alternative start and/or stop codons. Fragments of p44 have only a conserved region and no hypervariable region and are longer than 60 bp. It should be noted that smaller fragments can be identified throughout the genome. Degenerated p44 fragments are p44 truncations that are likely to be non-functional remnants of previous recombination events and contain nonsense mutations.
Ehrlichia chaffeensis has 22 paralogous tandemly arranged p28/omp-1 genes encoding immunodominant major outer membrane proteins (Ohashi et al., 1998a,b; Dunning Hotopp et al., 2006). Proteomics analyses showed that all these proteins and 27 other cell envelope proteins are expressed by E. chaffeensis in HL-60 cells (Table 1). Nineteen out of 22 P28/OMP-1 proteins have also been confirmed by proteomic identification of surface-exposed proteins of E. chaffeensis cultured in the human acute leukemia cell line THP-1 (Ge and Rikihisa, 2007b). Temporal transcript analyses showed that mRNA expression of 16 out of 22 p28/omp-1 genes was detected in the blood from acute to chronically infected dogs (over 56 days of infection; Unver et al., 2002). Using 22 synthetic antigenic peptides unique to each of the P28/OMP-1 proteins, sera from persistently infected dogs were reacted with all P28/OMP-1 family proteins (Zhang et al., 2004). These data suggest that P28/OMP-1 family proteins are not involved in immune evasion at the population level (Unver et al., 2002; Zhang et al., 2004).

Surface expression of porins that function as passive diffusion channels is required for small hydrophilic compounds to pass through the outer membranes of gram-negative bacteria (Nikaido and Vaara, 1985; Nikaido, 2003). Our previous studies have shown that both P44 and P28/Omp-1 have porin activities as measured by liposome swelling assay, allowing the diffusion of stachyose (Huang et al., 2007; Kumagai et al., 2008). Since the tricarboxylic acid (TCA) cycle in A. phagocytophilum and E. chaffeensis is incomplete (Dunning Hotopp et al., 2006), porin activity of P44 and P28/Omp-1 likely feeds the TCA cycle, and the differential expression of P44 or P28/Omp-1s might influence individual bacterial physiological activity (Huang et al., 2007; Kumagai et al., 2008).

QUANTITATIVE ANALYSES OF PROTEIN EXPRESSION PROFILES IN A. PHAGOCYTOPHILUM AND E. CHAFFEENSIS

Following the determination of global expression profiling of these intracellular bacteria, we further determined the relative abundance of A. phagocytophilum and E. chaffeensis proteins expressed in human host cells. Quantitative analyses of protein expression were determined by averaging individual peptide abundances for the matching protein in the entire pool of peptides identified. Although different proteins do not contain the same peptides and protein abundances are not directly comparable, the relative correlation to the total abundance still exists, especially with at least threefold difference between proteins (Old et al., 2005). Quantitative analyses identified 130 proteins from A. phagocytophilum and 116 from E. chaffeensis as having relative abundances greater than 1 (Table 4; Tables S6–S8 in Supplementary Material). Among them, the most abundant proteins detected are outer membrane proteins like A. phagocytophilum P44s and E. chaffeensis P28/Omp-1, RecF of A. phagocytophilum, chaperones like GroESL and DnaK involved in protein folding/stabilization, T4S apparatus, and enzymes involved in energy metabolism, transcription, protein synthesis, and biosynthesis of cofactors, nucleotides, and phospholipids (Tables S6–S8).

Table 4 | Quantitation analysis of proteins in high abundance classified by functional categories

Organisms	Anaplasma phagocytophilum	Ehrlichia chaffeensis
Transcription, amino acid biosynthesis, and protein synthesis		
Biosynthesis of cofactors and nucleotides	10	10
DNA replication, recombination, and repair	5	2
Energy metabolism	4	12
Protein fate	7	11
Regulatory functions	1	2
Adaptation and detoxification	2	3
Transport and binding proteins	2	0
Cell envelope	63	14
Hypothetical proteins	16	20
Total numbers	130	116

1Quantitative analysis identified 219 A. phagocytophilum and 255 E. chaffeensis proteins that have relative abundance values range from 0.17–14.5 and to 0.08–26.0, respectively (summarized in Tables S6–S8 in Supplementary Material). Proteins with relative abundance value of greater than 1 were chosen for this analysis. The rows highlighted in bold indicate the role categories that show greater than two-fold differences in numbers of abundant proteins between two organisms.
in Supplementary Material). Classification by functional role categories showed that *A. phagocytophilum* and *E. chaffeensis* have similar numbers of abundant proteins in all but three functional categories (Table 4, in bold font). Due to the expansion in P44 outer membrane family proteins, more proteins are expressed abundantly by *A. phagocytophilum* in the “Cell envelope” category. On the other hand, *E. chaffeensis* abundantly expresses more proteins involved in the categories including “Protein synthesis,” like ribosomal proteins and “Energy metabolism,” like electron transport chain proteins, probably because *E. chaffeensis* has additional ability to synthesize arginine and lysine but *A. phagocytophilum* does not (Dunning Hotopp et al., 2006). Interestingly, greater than 12% of these abundantly expressed proteins are hypothetical proteins or proteins with unknown functions (Table 4), suggesting that these proteins might be required for infecting human host cells and could be novel targets for the study of pathogenic mechanisms in human infection.

QUANTITATIVE ANALYSES OF UP- OR DOWN-REGULATED HUMAN PROTEINS IN *A. PHAGOCYTOPHILUM* AND *E. CHAFFEENSIS*-INFECTED HL-60 CELLS VS. UNINFECTED CELLS

As obligatory intracellular bacteria, the life cycles of *A. phagocytophilum* and *E. chaffeensis* are dependent on their mammalian hosts and are known to regulate or hijack host components for their survival (Rikihisa, 2010a,b). We, therefore determined the relative abundance of human proteins by comparing the LC–MS peptide peak intensity information of the same peptides from infected HL-60 cells to that from uninfected cells. A total of 48,054 human proteins were identified from HL-60 cells (Table S9 in Supplementary Material). Quantitative analyses of human proteins in infected vs. uninfected HL-60 cells showed that infection by *A. phagocytophilum* and *E. chaffeensis* up-regulated the expression of proteins involved mostly in vesicular trafficking and cytoskeleton components, protein tyrosine kinases, pro-survival proteins, and enzymes involved in metabolism and oxidative respiration (Table 5; Tables S10 and S11 in Supplementary Material). However, some proteins involved in host immune responses were down-regulated, including pattern recognition receptors like TLR1 and mannose receptor 2 (Table 6; Tables S12 and S13 in Supplementary Material).

Several human genes that were up- or down-regulated by infection with *A. phagocytophilum* or *E. chaffeensis* have been reported previously. Up-regulated genes in human neutrophils at early stage of *A. phagocytophilum* infection included those that promote actin polymerization (Sukumaran et al., 2005). Up-regulation of genes involved in iron metabolism like transferrin-receptor was detected in *A. phagocytophilum*-infected NB4 cell, a human promyelocytic leukemia cell line (Pedra et al., 2005), and *E. chaffeensis*-infected THP-1 cell, a human monocyctic leukemia cell line (Barnewall et al., 1999). The expression of histone deacetylase (HDAC) 1/2 was increased in *A. phagocytophilum*-infected THP-1 cells (Garcia-Garcia et al., 2009). Down-regulation of TLR2/4 mRNA and protein expression was reported in *E. chaffeensis*-infected human monocytes (Lin and Rikihisa, 2004). In addition, several reports have demonstrated the interactions between these up-regulated human proteins and bacterial proteins or activation of human proteins by bacterial infection. For example, the protein tyrosine kinase Fyn was shown to interact with *E. chaffeensis* TRP47 protein in THP-1 cells (Wakeel et al., 2009), whereas *A. phagocytophilum* induced actin phosphorylation by p21-activated kinase (PAK1) in Ixodes ticks (Sultana et al., 2010). *A. phagocytophilum*-containing morulae were colocalized with several

Table 5 | Up-regulated human proteins in infected vs. uninfected HL-60 cells by quantitative proteomics analysis

Functional role category	Anaplasma phagocytophilum-infected vs. uninfected HL-60 cells	Ehrlichia chaffeensis-Infected vs. Uninfected HL-60 cells
Cytoskeleton components	Keratin; Arp2/3 protein complex; α-actinin-4; galectin-9; plastin-2	Actin; vimentin; α-actinin-4; Arp2/3 protein complex; galectin-9; keratin; ciliary rootlet coiled-coil protein; kinesin-like protein KIF17; plectin 1 (intermediate filament binding protein); plastin-2
Vesicular trafficking (ARF, Rab/Rho GTPases)	ADP-ribosylation factor (ARF) 1/3/4/5; ARF GTase-activating protein GIT2; Rab 5/7/11/27; Rap1; Rho/Rac GEF 2; cell division cycle 42 (CCD42); transferrin-receptor protein 1; clathrin heavy chain; diaphanosus homolog (mDia) 1	ADP-ribosylation factor (ARF) 1/3/4/5; ARF GTase-activating protein GIT2; Rab 1/5/7/8/10/11/35; Rho-associated protein kinase 2; Rap1; Rho/Rac GEF 2; cell division cycle 42 (CCD42); STE20-like kinase; citron (Rho-interacting, ser/thr kinase 21); integrin-linked kinase; transferrin-receptor protein; clathrin heavy chain; mDia 1
Signal transduction (protein kinases and phosphatases)	Protein tyrosine kinase (Fyn/Lck); Ser/Thr-protein kinase PAK; P21-activated kinase (PAK) 2; casein kinase 2; sarcoplasmic/ endoplasmic reticulum calcium ATPase (SERCA); fibroblast growth factor receptor (FGFR) 2; histone deacetylase 1/2	Protein tyrosine kinase (Fyn/Lck); Ser/Thr-protein kinase PAK; P21-activated kinase PAK2; casein kinase 2; sarcoplasmic/ endoplasmic reticulum calcium ATPase (SERCA); Ca2+/calmodulin-dependent protein kinase; fibroblast growth factor receptor (FGFR) 2
Immune response	MHC class I antigen; Fc fragment of IgE gamma	MHC class I antigen; Fc fragment of IgE gamma
Metabolism	Enolase; adenine kinase; phosphofructokinase; pantothenate kinase (CoA Biosynthesis); cytochrome b5 reductase; cytochrome c oxidase; NAD(P) dependent steroid dehydrogenase	Phosphofructokinase; adenine kinase; pyruvate kinase; deoxyxycytidine kinase; NADH dehydrogenase; cytochrome b5 reductase; cytochrome c oxidase; manganese-superoxide dismutase (SOD)
Cell-cycle regulation	Cyclin-dependent kinase 20	Cyclin-dependent kinase 20; apoptosis inhibitor 5

1 Average abundance of human proteins was determined by comparing the LC–MS peptide peak intensity information of the same peptides from infected HL60 cells to that from uninfected cells. Proteins with ratios greater than 2 (816 A. phagocytophilum and 1053 E. chaffeensis proteins) were identified and summarized in Tables S10 and S11 in Supplementary Material. Only proteins relevant to critical pathways affected by bacterial infection or with functions characterized previously were listed in this summary table.
Table 6 | Down-regulated human proteins in infected vs. uninfected HL-60 cells by quantitative proteomics analysis.

Functional role category	Anaplasma phagocytophilum-infected vs. uninfected HL-60 cells	Ehrlichia chaffeensis-infected vs. Uninfected HL-60 cells
Cytoskeleton	Kinesin-like protein 2; coflin	Protein hook homolog
Immune response	Toll-like receptor (TLR) 1; macrophage mannose receptor 2	TLR-1; macrophage mannose receptor 2; oxidation
		resistance protein, complement control module
Signaling transduction	Protein tyrosine phosphatase isofrom 3	Protein tyrosine phosphatase (non-receptor type 7)
Vesicular trafficking	Rap GEF	Rap GEF
Pro-apoptosis	Bcl-XL binding protein	Pyrin-like protein

1Average abundance of human proteins was determined as described previously. Proteins with ratios less than 0.5 (343 A. phagocytophilum and 120 E. chaffeensis proteins) were identified and summarized in Tables S12 and S13 in Supplementary Material. Only proteins relevant to critical pathways affected by bacterial infection or with functions characterized previously were listed in this summary table.

Rab GTases, including Rab1 (Huang et al., 2010a), and E. chaffeensis-containing morulae were colocalized with Rab5 (Mott et al., 1999). Both A. phagocytophilum- and E. chaffeensis-containing morulae were colocalized with major histocompatibility complex (MHC) class I and II antigens (Mott et al., 1999). Several isoforms of sarcoplasmic/endo-plasmic reticulum calcium ATPase (SERCA) were up-regulated in A. phagocytophilum- and E. chaffeensis-infected HL-60 cells, suggesting proteins involved in the intracellular Ca²⁺ regulation like phospholipase C and transglutaminase shown in previous studies are critical in bacterial infection (Lin et al., 2002; de la Fuente et al., 2005).

There are several studies using microarray analyses to identify genes differentially regulated in response to A. phagocytophilum infection in human neutrophils and the promyelocytic leukemia cell lines NB4 and HL-60 cells at different infection stages (Borjesson et al., 2005; de la Fuente et al., 2005; Pedra et al., 2005; Sukumaran et al., 2005; Lee and Goodman, 2006; Galindo et al., 2008; Lee et al., 2008). These studies identified similar sets of differentially regulated genes involved in vesicular transport, cytoskeletal remodeling, signaling and communication events, cell-cycle and apoptosis regulation, and innate immunity. However, due to the differences in host cell types, efficiency of infection, post-infection time points, experimental designs, array platforms, databases used, and statistical analyses, a large portion of the genes are difficult to compare among these studies (Pedra et al., 2005; Lee et al., 2008). Since most cell functions are carried out by proteins, the comparison of proteomic data would reflect a more accurate state of cellular physiology and pathology. Nevertheless, combining these microarray and quantitative proteomic data would allow more comprehensive understanding of host cellular changes induced by infection with these pathogens. Our proteomic analyses reveal that infection with A. phagocytophilum or E. chaffeensis could modulate human host cell machinery to produce more energy, enhance vesicular transport, and activate cell signaling events involved in bacterial entry and proliferation. Further analyses of these up- and down-regulated human proteins will provide more information about the global regulation of host cells by infection with these intracellular pathogens.

CONCLUSION

The determination of bacterial proteomes is an important step in converting genetic information to protein function and cell biology. This study provides the first comprehensive proteomes of obligatory intracellular pathogens. A total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins are identified, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all proteins that have functions assigned are expressed in infected human hosts, including those involved in metabolism, pathogenesis, and regulation. Bacterial infection up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. The availability of these proteomic data will provide a wealth of information on the molecular mechanisms of bacterial pathogenesis and therefore will greatly facilitate the understanding of the biology of these ehrlichiosis agents and the signaling events between intracellular bacteria and their host cells.

ACKNOWLEDGMENTS

Proteomics analysis was performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RLO-1830. This research was funded by the National Institute of Allergy and Infectious Diseases (NIH/DHHS) through interagency agreement Y1-AI-4894-01 to PNNL, and synergized with NIH grants R01 AI030010 and R01 AI047885 to Yasuko Rikihisa.

SUPPLEMENTARY MATERIAL

Tables S1–S14 can be found online at http://www.frontiersin.org/Cellular_and_Infection_Microbiology/10.3389/fmicb.2011.00024/

REFERENCES

Bakken, J. S., and Dumler, S. (2008). Human granulocytic anaplasmosis. Infect. Dis. Clin. North Am. 22, 433–448.

Bao, W., Kumagai, Y., Niu, H., Yamaguchi, M., Miura, K., and Rikihisa, Y. (2009). Four VirB8 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J. Bacteriol. 191, 278–286.

Barnewall, R. E., Ohashi, N., and Rikihisa, Y. (1999). Ehrlichia chaffeensis and E. sennetsu, but not the human granulocytic ehrlichiosis agent, colocalize with transferrin receptor and up-regulate transferrin receptor mRNA by activating iron-responsive protein 1. Infect. Immun. 67, 2258–2265.

Blanc, G., Ogata, H., Robert, C., Audic, S., Suhre, K., Vestrin, G., Claverie, J. M., and Raoult, D. (2007). Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 3, e14. doi: 10.1371/journal.pgen.0030014
Borjeson, D. L., Kobayashi, S. D., Whitney, A. R., Voyich, J. M., Argue, C. M., and DeLeo, F. R. (2005). Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174, 6364–6372.

Brussow, H., Canchaya, C., and Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysozymic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602.

Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L., and Brussow, H. (2003). Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6, 417–424.

Carlyon, J. A., Abdel-Latif, D., Pypaert, M., Lacy, P., and Fikrig, E. (2004). Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to evade neutrophil-mediated killing during neutrophil infection. Infect. Immun. 72, 4772–4783.

Carlyon, J. A., and Fikrig, E. (2003). Invasion and survival strategies of Anaplasma phagocytophilum. Cell. Microbiol. 5, 743–754.

Carlyon, J. A., and Fikrig, E. (2006). Mechanisms of evasion of neutrophil killing by Anaplasma phagocytophilum. Curr. Opin. Hematol. 13, 28–33.

Caturegli, P., Asanovich, K. M., Walls, J. A., Carlyon, J. A., and Fikrig, E. (2006). Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J. Bacteriol. 189, 7819–7828.

Ge, Y., and Rikihisa, Y. (2007b). Surface-exposed proteins of Ehrlichia chaffeensis. Infect. Immun. 75, 3833–3841.

George, T. M., Nelson, C. V., Madigan, J. E., Dumen, J. S., Kurtti, T. J., and Munderloh, U. G. (1996). Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N. Engl. J. Med. 334, 209–215.

Halle-Baker, P., Enrique Nieves, J., Jaisjyos, R. A., Adams, D. A., Sharp, P., Anderson, W. J., Aponte, J., Aranas, A. E., Katz, S. B., Mayes, M., Wodajo, M. S., Onweh, D. H., Baille, J., and Park, M. (2010). Summary of notifiable diseases—United States, 2008. MMWR Morb. Mortal. Wkly. Rep. 57, 1–8.

Huang, B., Hubber, A., McDonough, J. A., Roy, C. R., Schedmore, M. A., and Carlyon, J. A. (2010a). The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell. Microbiol. 12, 801–817.

Huang, B., Troese, M. I., Howe, D., Ye, S., Sims, J. T., Heinen, R. A., Borjeson, D. L., and Carlyon, J. A. (2010b). Anaplasma phagocytophilum APH_0032 is expressed late during infection and localizes to the pathogen-occupied vacuolar membrane. Microbes Pathog. 49, 273–284.

Huang, B., Troese, M. I., Ye, S., Sims, J. T., Galloway, N. L., Borjeson, D. L., and Carlyon, J. A. (2010c). Anaplasma phagocytophilum APH_1387 is expressed throughout bacterial intracellular development and localizes to the pathogen-occupied vacuolar membrane. Infect. Immun. 78, 1864–1873.

Huang, H., Wang, X., Kikuchi, T., Kumagi, Y., and Rikihisa, Y. (2007). Proliferation of Anaplasma phagocytophilum outer membrane fraction and purified P44. J. Bacteriol. 189, 1998–2006.

Ildo, J., Carlson, A. C., and Kennedy, E. L. (2007). Anaplasma phagocytophilum AnkA is tyrosine phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell. Microbiol. 9, 1284–1296.

Ikegami, A., Nishiyama, K., Matsuyma, S., and Tokuda, H. (2005). Disruption of rpmJ encoding ribosomal protein L36 decreases the expression of secY upstream of the spc operon and inhibits its protein translocation in Escherichia coli. Biosci. Biotechnol. Biochem. 69, 1589–1602.

Kumagi, Y., Cheng, Z., Lin, M., and Rikihisa, Y. (2006). Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74, 5014–5022.

Lee, H. C., and Goodman, J. L. (2006). Anaplasma phagocytophilum causes global induction of antiapoptosis in human neutrophils. Genomics 88, 496–503.

Lee, H. C., Kioi, M., Han, J., Puri, R. K., and Goodman, J. L. (2008). Anaplasma phagocytophilum-induced gene expression in both human neutrophils and HL-60 cells. Genomics 92, 144–151.

Li, Q., and Lostumbo, G. (2010). Proteomic analyses of a variety of intracellular bacterial species infecting different host cell lines. Curr. Proteomics 7, 222–232.

Lin, M., den Dulk-Ras, A., Hooyaakas, P. J., and Rikihisa, Y. (2007). Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl1 to facilitate infection. Cell. Microbiol. 9, 2644–2657.

Lin, M., Zhang, C., Gibson, K., and Rikihisa, Y. (2009). Analysis of complete genome sequence of Neorickettsia risticii causative agent of Potomac horse fever. Nucleic Acids Res. 37, 6076–6091.

Lin, M., Zhu, M. X., and Rikihisa, Y. (2002). Rapid activation of protein tyrosine kinase and phospholipase C gamma2 and increase in cytosolic free calcium are required for Ehrlichia chaffeensis for...
internalization and growth in THP-1 cells. Infect. Immun. 70, 889–898.
Lin, Q., and Rikihisa, Y. (2005). Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect. Immun. 73, 5106–5114.
Lin, Q., Rikihisa, Y., Massung, R. F., Woldehiwet, Z., and Falco, R.C. (2004). Polymorphism and transcription at the p44-p44-1 genomic locus in Anaplasma phagocytophilum strains from diverse geographic regions. Infect. Immun. 72, 5574–5581.
Lin, Q., Rikihisa, Y., Ohashi, N., and Zhi, N. (2003). Mechanisms of variable p44 expression by Anaplasma phagocytophilum. Infect. Immun. 71, 5650–5661.
Lin, Q., Zhang, C., and Rikihisa, Y. (2006). Analysis of involvement of the RecF pathway in p44 recombination in Anaplasma phagocytophilum and in Eichetrichia coli by using a plasmid carrying the p44 expression and p44 donor loci. Infect. Immun. 74, 2052–2062.
Luo, T., Zhang, X., Nicholson, W. L., Zhu, B., and McBride, J. W. (2010). Molecular characterization of antibody epitopes of Ehrlichia chaffeensis ankyrin protein 200 and tandem repeat protein 47 and evaluation of synthetic immunodeterminants for serodiagnosis of human monocytic ehrlichiosis. Clin. Vaccine Immunol. 17, 87–97.
Maeda, K., Markowitz, N., Hawley, R. C., Ristic, M., Cox, D., and McDade, J. E. (1997). Human infection with Anaplasma centuri, a leukocytic Rickettsia. N. Engl. J. Med. 336, 853–856.
Marti, N. P., Estep, R. D., Mottaz, H. M., Moore, R. J., Clauss, T. R. W., Monroe, M. E., Du, X., Adkins, J. N., Wong, S. W., and Smith, R. D. (2008). Comparative proteomics of human monocytekoy and vaccinia intracellular mature and extracellularly enveloped virions. J. Proteome Res. 7, 960–968.
Mott, J., Barnewall, R. E., and Rikihisa, Y. (1999). Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect. Immun. 67, 1368–1378.
Mottaz-Brewer, H. M., Norbeck, A. D., Adkins, J. N., Manes, N. P., Ansong, C., Shi, L., Rikihisa, Y., Kikuchi, T., Wong, S. W., Estep, R. D., Heffron, F., Pasa-Tolic, L., and Smith, R. D. (2008). Optimization of proteomic sample preparation procedures for comprehensive protein characterization of pathogenic systems. J. Biomed. Tech. 19, 283–295.
Nelson, C. M., Herron, M. J., Felsheim, R. F., Schroeder, B. R., Grindle, S. M., Chavez, A. O., Kurtti, T. J., and Munderloh, U. G. (2008). Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9, 364. doi:10.1186/1471-2164-9-364
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656.
Nikaido, H., and Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32.
Niu, H., Koojak-Pavlovic, V., Rudel, T., and Rikihisa, Y. (2010). Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6, e1000774. doi:10.1371/journal.ppat.1000774.
Ochman, H. (2002). Distinguishing the ORFs from the ELFs: short bacterial genes and the annotation of genomes. Trends Genet. 18, 335–337.
Ohashi, N., Unver, A., Zhi, N., and Rikihisa, Y. (1998a). Cloning and characterization of multigens encoding the immunomodulind 30-kilodalton major outer membrane proteins of Ehrlichia chaffeensis and application of the recombinant protein for serodiagnosis. J. Clin. Microbiol. 36, 2671–2680.
Ohashi, N., Zhi, N., Zhang, Y., and Rikihisa, Y. (1998b). Immunomodular major outer membrane proteins of Ehrlichia chaffeensis are encoded by a polymorphic multigene family. Infect. Immun. 66, 132–139.
Ohashi, N., Zhi, N., Lin, Q., and Rikihisa, Y. (2002). Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun. 70, 2128–2138.
Old, W. M., Meyer-Arendt, K., Aveline, P., Pierce, K. G., Mendoza, A., Horowitz, H. W., and Hechemy, K. E. (1997). Ultrastructural and antigenic characterization of a granulocytic ehrlichiosis agent directly isolated and stably cultivated from a patient in New York state. J. Infect. Dis. 175, 210–213.
Seo, G. M., Cheng, C., Tomich, J., and Ganta, R. R. (2008). Total, membrane, and immunogenic proteomes of macrophage- and tick-derived Ehrlichia chaffeensis evaluated by liquid chromatography-tandem mass spectrometry and MALDI-TOF methods. Infect. Immun. 76, 4823–4832.
Shi, L., Adkins, J. N., Coleman, J. R., Schepmoes, A. A., Dohnkova, A., Mottaz-H.M., Norbeck, A.D., Purvine, S.O., Manes, N.P., Smallwood, H.S., Wang, H., Forbes, J., Gros, P., Uzzau, S., Rodland, K. D., Heffron, F., Smith, R. D., and Squeri, T.C. (2006). Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J. Biol. Chem. 281, 29131–29140.
Shi, L., Chowdhury, S. M., Smallwood, H.S., Yoon, H., Mottaz-Brewer, H. M., Norbeck, A.D., McDermott, J. E., Clauss, T. R., Heffron, F., Smith, R. D., and Adkins, J. N. (2009). Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect. Immun. 77, 3227–3233.
Singu, V., Liu, H., Cheng, C., and Ganta, R. R. (2005). Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect. Immun. 73, 79–87.
Skogwald, M., Jensen, L. J., Brunak, S., Ussery, D., and Krogh, A. (2001). On the total number of genes and their length distribution in complete microbial genomes. Trends Genet. 17, 425–428.
expressed p44 genes during the acute phase of *Anaplasma phagocytophilum* infection in horses. *Infect. Immun.* 72, 6852–6859.

Washburn, M. P., Wolters, D., and Yates, J. R. III. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. *Nat. Biotechnol.* 19, 242–247.

Zhang, J. Z., Guo, H., Winslow, G. M., and Yu, X. J. (2004). Expression of members of the 28-kilodalton major outer membrane protein family of *Ehrlichia chaffeensis* during persistent infection. *Infect. Immun.* 72, 4336–4343.

Zhi, N., Ohashi, N., Tajima, T., Mott, J., Stich, R. W., Grover, D., Telford, S. R. III, Lin, Q., and Rikihisa, Y. (2002). Transcript heterogeneity of the p44 multigene family in a human granulocytic ehrlichiosis agent transmitted by ticks. *Infect. Immun.* 70, 1175–1184.

Zhu, B., Nethery, K. A., Kuriakose, J. A., Wakeel, A., Zhang, X., and McBride, J. W. (2009). Nuclear translocated *Ehrlichia chaffeensis* ankyrin protein interacts with the mid a-stretch of host promoter and intronic Alu elements. *Infect. Immun.* 77, 4243–4255.

Zientz, E., Dandekar, T., and Gross, R. (2004). Metabolic interdependence of obligate intracellular bacteria and their insect hosts. *Microbiol. Mol. Biol. Rev.* 68, 745–770.

Zimmer, J. S., Monroe, M. E., Qian, W. J., and Smith, R. D. (2006). Advances in proteomics data analysis and display using an accurate mass and time tag approach. *Mass Spectrom. Rev.* 25, 450–482.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 19 December 2010; accepted: 31 January 2011; published online: 17 February 2011.
APPENDIX

FIGURE A1 | Mass tag accumulation trends. Two AMT tag databases were constructed for positively-identified peptides, with numbers of total peptides accumulated versus total numbers of MS/MS runs were plotted. More than 126,000 peptides each were identified in protein samples from A. phagocytophilum or E. chaffeensis, using both purified bacteria from infected cells or whole lysates from infected cells.

Description	Frame	Overlap	Start	Stop	
APH_0143	P44-81 outer membrane protein, truncation	1	204	147820	147850
APH_0144	P44 outer membrane protein, C-terminal fragment	1	204	147835	148038

Detection of peptides by proteomics: 1

APH_0143 (76 aa):
EYKTTLKSEPNTKFPTDISHEISNSSILRATCRSTIIYKTLSRQIIINTISNNPMVEATKSRDFRRELITQPSL

APH_0144 (67 aa):
MSYQLSPEISAAGFYHRVVGVDGYDDLPQAQRVLDDTSPAGRSKDTAIAFSMAYVGEFGVRF

1 Fonts in bold and red indicate peptide sequences detected by proteomics analysis.
Description	Frame	Overlap	Start	Stop	
APH_0063	hypothetical protein	3	49	70473	70634
APH_0064	transcription termination factor Rho	2	49	70586	71944
APH_0408	glutamyl-tRNA synthetase	-2	35	425393	426799
APH_0409	hypothetical protein	3	35	426765	426902
APH_0560	ribonucleoside-diphosphate reductase, beta subunit	3	50	588435	589406
APH_0561	putative thiol-disulfide oxidoreductase	1	50	589357	589989
APH_0640	hypothetical protein	2	50	663791	663901
APH_0641	hypothetical protein	-3	50	663852	664418
APH_0852	putative glutamine-dependent NAD(+) synthetase	3	40	904563	906365
APH_0853	hypothetical protein	-2	40	906326	906619
APH_1094	hypothetical protein	2	32	1157366	1157494
APH_1095	peptidase domain protein	3	32	1157463	1157687
APH_1140	hypothetical protein	-1	32	1201810	1201992
APH_1141	hypothetical protein	-2	32	1201961	1202059
APH_1171	conserved hypothetical protein	1	80	1239985	1240662
APH_1172	P44 outer membrane protein, C-terminal fragment	-2	80	1240583	1240819
APH_1235	hypothetical protein	1	70	1305649	1306053
APH_1236	hypothetical protein	3	70	1305984	1306127
APH_1237	hypothetical protein	-3	36	1306092	1306226
APH_1322	exodeoxyribonuclease VII, large subunit	-2	32	1389044	1390240
APH_1323	zinc finger-like domain protein	-3	32	390209	1390826

FIGURE A2 | Continued
Detection of peptides by proteomics:

APH_0063 (53 aa):
MRGASLEVSLIQCRFVYMLGSIQDLASSDCFELKVLCLVVARLGEKGRLFLV

APH_0064 (452 aa):
MCGLKVRKAPSAVAVEAETGSGEQRILNCELKQRSTGGELLAIAEELGVSNGVRGLQIEIFQMLVRKTVSYIGGAVGTVLQVPLDFGFLRLASEANVAYASDDIYASAGIKFKNLRTDGEIGEIRAPDGKERYFLVYKAYSNYTELGQRVYHVFDLIFYPEDRILLENCGQAGNKIDSMADUAIPALPGKQRALTVAPPRVKGTVSDIQHAIAVNHMPMLIVLIGERPERMGLRLSVKGEVTSSTFAPRYHQLAEIVETAPRMKVHEHEELLVLSDTRLRAYNEVMPPSGKVLTGVDNASNLQRPKRFFGARAIENGLSLTIATALETGSKMCDEVIFEFKGTCEIDEILRDIKADRIKYPAIDISKSTGREKDMIALLKVLWRRLLSAMDPEAMFLDKLMSKADNDDFFMNS

APH_0408 (468 aa):
MRVVTRAPSPGTGSLHGGARTALFNWLFAHHRKKGKLFLRREALDTRKCSSDVQVSVIIDDMSWGLQHGDIVQVQSSRAARRHAVARELVELGRAYRCYCEDENFQKLQEGSTGYFRYCPWHNSTGDLPNKYVRVLKSPENITFDLGVYQIVSSDKDSYIDMVIRSDGPTYLLAVVVDDMDHEITIRGSHDINTTVEQVLAEMMSWSPKKFHPLIDHENGAKLSRKNRAPGHEVEQGFLEACNLYRMGWSQYNKEISMEAEALSMDVGSVCSCLDKYLFLVLNHMYSGKSEAELDLLLPNLEKGLGRISEELLSRLSGLKIQVERALTLDALDSFLFVQDVINEPEAVETIQNSKKFLAELESSGIDPMWKKTHLSQIKFESKTRNLAMSDYHFLRASITGRQLQPNIQEVILEMIGQEMCNNLSAQE

APH_0409 (45 aa):
MSGDNVGLTVTAVDLLLIGNVGMVQKKTNSNALAGEKYYTET

APH_0560 (323 aa):
MSLDDAKPXYKFPDFYPAWADWLQLLQRHNVLPVEVPLADDVQDDKTMLSEKKNLVLQIFRFTQADIEVNNCMYMKHYSNIFRPTETCNMLSAFNSMETIHAAVSYLLTDITGIMEPEVQEYLFLGKEWKKKDYQMRFECECRQGRKHAKVLATLKVGATQGLQLASFAIRLNFQFQEMMKGGQIATASIARSDESHTDSIIILNFTFVHENGELWDDDLKQELYDACKVLMEDFDIFLALGDIVGSLACBEK FYRIRFANRRRLQHLLEPIYDAVENPLPWDEILIENGVHEINFENRVTYEARAATEGWFEAD

APH_0561 (210 aa):
MLELQREPGRKLRSNKLCTVAALLVLSCYAHAAEOVLQHRVQIEILPRVEKEVSQFVKSNKFLALDGTETLRLDIAQDRVCIVFVFAWPWNLDSVMLQLQGIRQVENLAAAKLDGTWVFPLISVDVGDVPKVLRAVSGYTLTLPMYIKHLEDFDVFVAITPLTLVRNKGEIKVRYGQWMNCTAVENELLSSVINQAOE

APH_0640 (36 aa):
MQIGLERQESDKWIDMHLVSFAIVKNQIFFAKAPEE

APH_0641 (188 aa):
MQRKRVQKLOPLGQLHESHKFKKRTPLSSTALSYTERETEKICKERNAQOYRCNIAFQKPTNNTSFVLRLEQOGRVSAIVMRKVT AHGMDOVPQRQAGTTKSSNEKDAFGRPGPGRKRTSAMSFLMKMLKLFFMMLLPFPMFCSNLVKGKLDQSRHKPTKTSRPRF SAILLLGSPRRKFGFSR

APH_0852 (600 aa):
MTFLSWKLQYNPVMAYNHSVCSERLACEASAGIDVLFRASYACGYYDKCAPLLSSGNLQLCNCHELASSISGSAIACIGGLAQDGVLEAIVLSIDGQNEKLYIELIPSSYNCALLKHELILGLRLALLLEEHHTSANQTHGAYQVNPTIDVLLVLLGRSVQSYSSLLSSNAAIMQHAFYILNYLIGGYSDFAFAGGLSHIDGINALLACEDARIEITATNSIVTCADGVPHAESEHIDSHNCTIGSASANLTLJADAPERTVSGTLQSTSHKQVQPNQGVSIGLESHTNASHQLKSTDKFLSLEALKLMSNMDWYQVQMLXALRDYKKSKSGFSALGGLSSGIDSALVAIAASDALGAEHWHFTMLRFHRDSQSVQSDAQLCAELLGHTEVEVSIEEAFCTCIESLKT YIDTPPNALENMQSRIRLYMIAINSANSSLLATHGKSELLTGYMLYGDTCGGYAPINNVYKTMKYLYDVLWKRNSIPANSL

FIGURE A2 | Continued
Proteomic analysis of human ehrlichiosis agents

Lin et al. Proteomic analysis of human ehrlichiosis agents

CRKM4VIPENIIKTAPSFLPNQTDQDLYEYKDLGILSLVDVFATREDIVLSGYTTEEDLVMLVKNKAFLDQVAPG

IRAK

APH_0853 (97 aa):
MLID9HAADFFCKI1CTFVKVAKRFSSVAEYLQIINTNLQPGARRSRKGMALESINRMTQFAYOQPTSRDGKIIQHSSSFVF
YDLAMSMPGAT

APH_1094 (42 aa):
MF4KSFLSLFPRVLCLYQKLFPMPQRKISORLIIENYHASGRG

APH_1095 (75 aa):
MRAlMLQGADENQKLYFLVLSDGCHQMLAHIDIGNYKLGDAIDDSLDEADKIECLLGQIRVVVIPMLRFFELQ

APH_1140 (60 aa):
MDCPALSSEARVTSGNYWLTALTPIGTAITASAAIDLEDNLYTFRSAITRNKSAFLMA

APH_1141 (32 aa):
MSYGALMQMAIVALSKAALP

APH_1171 (225 aa):
MRFGSIIFKIFGCVFPCAILLLTGTQMLRLQELKHIHMTSGAVPLPGDLQSNKYRQFGFIRTYRFVAFGRAGYFQ
QPMELTGRHLIINGQSEYAKIQIDQASMDQVSGTVCTISLSTKIGVVAANNAKLNHFWDIESMSKHIGVPEDCTIWGD
KTSLLDQLPNKMPQVRNDQRAITWYTLMNQGYFILRTRQQLRSQMPNE

APH_1172 (78 aa):
ICALHIDLCPRSVIIIINKAKTGVSRRYLVIPYACVGLGNNFGVVDGHILGYLVEVYCATAFIENKVNPLIS

APH_1235 (134 aa):
MKGKDSRERSTSSIRSSSDDRDSSDDSDDSRARSKHQPASDSSNSSLSEDSIESVRMLCEEYQKLSLKKSMREEISTAV
PTELRALIPLLASASDSSRKLQEWEWKTFMAILPMHPKQIVASTQ

APH_1236 (47 aa):
MGENIHGYVAYAENCGIDPRLGLAQETAQVAAQLTGRSCMMHSQ

APH_1237 (44 aa):
MKKESEEENCLEMGEMPGAMDLLQLQSIQKLHLTVHAPAAG

APH_1322 (398 aa):
MQVTLLRSFNIDPEFTVTTELQTLQRFMQETFYSIKVRGEISGLSRPNSGHVFYTLKDNSVINAACWNGTRLKVQCFDGEVV
CTGYSVQSYIVNLQINTMLLQYGAQLAMLALKLELQGVIASPARKKLPLPPTKIQIIGSTPQAVISDISISRVQKVRPSNV
VVVPQVQIQQRASSAVLGAIAKFGNSFAPDPMHIIVTARGGGSFEDLWPNDFFELEARTVAASKIPIVSAIGHETFIDIIYADILRA
STPTAAEVILPEKSLKAVASINEKFVRKVASFERNKMRQYRLRHLGIIGETEKLNLQKSRVALEYQKIRLYLLQVSSLRKRQY
LESLMQRLYYDSKILVSGAYIFRDEHEQIQISSVEALSTNNTIDITLKDQKRRAIII

APH_1323 (205aa):
MRVVCNTICASAVSTVAGTRPCKGKEVCSHCNTHWLMFPMENVSIIPSKGPGBKKEKVEKFWGKQLIQMIIFPLLFSSFSFQ
DFSRTFQKRYLRLEIDYTDSDIKLRRSGVEYLVHGDQMTMQIVRWWIIIINAEKFQVPOVRFTYDENQKSVF5KKEIDVYKNV
IKSKTGHFERIEVGYQSSANTVQVRAGNAEFF

FIGURE A2 | Expression of overlapping ORFs in A. phagocytophilum (A) Expression of complete overlapping protein-coding ORFs in A. phagocytophilum. (B) Expression of partial overlapping protein-coding ORFs in A. phagocytophilum. Peptide sequences detected by proteomics analysis were highlighted by bold and red fonts in amino acid sequences for these overlapping ORFs.
A

Description	Frame	Overlap	Start	Stop	
ECH_0506	hypothetical protein	-3	120	509421	509711
ECH_0507	hypothetical protein 2	2	120	509561	509680

Detection of peptides by proteomics:

ECH_0506 (96 aa):
MLQFKILSCKAIVLLLSMYSILCFQYNFYSQHNNKIYTSI1NNVFYSSKLLEFYFYTILNFITSKH
TIITKSTISHYKSHINLNTDFQRLN

ECH_0507 (39 aa):
MMSKIHYLKVKYRFYAGIFYKNSRESLNLTLGVEQ

B

Description	Frame	Overlap	Start	Stop
ECH_0472	hypothetical protein 3	81	450456	450590
ECH_1158	6SRNA1	81	450510	450671

Detection of peptides by proteomics:

ECH_0472 (44 aa):
MSYVTIELIGPLYVRIALGVSVLYVEVKLIPRLIFLGSCHC

1 Fonts in bold and red indicate peptide sequences detected by proteomics analysis.
Description	Frame	Overlap	Start	Stop	
ECH0086	hypothetical protein	-2	119	76895	77050
ECH0087	hypothetical protein	3	119	76932	78782
ECH0113	hypothetical protein	2	243	98684	101065
ECH0114	hypothetical protein	-2	243	100823	101191
ECH0253	hypothetical protein	-3	107	239628	240197
ECH0254	hypothetical protein	1	107	240091	240219
ECH0344	hypothetical protein	2	115	334856	335086
ECH0345	conserved hypothetical protein	-1	115	334972	335856

Detection of peptides by proteomics:

ECH_0086 (51 aa):

```
MSSASKDNSMLINDGSKFNILLNRGLVYLAIALRINILIPNYIKLHL
```

ECH_0087 (616 aa):

```
MLIMRMAIAEYRKPLIFSKILNDFSIPINLMESLEAEDILLKLDELGSVYYILMSLYDVSIG1QMDSSG
AIRERLKRVLDAIEQSNSDQSGAVGSQVSEIRERDRLKSAWAYQISNRVCRTLSALGNETLQGETDSN
ITQQSNLQRRLMFOYVIQAVEILADKLTAVVEGKSVPEQVSEYLSCTNESHSIAPDTSALVKYLST
TDDPQLTDLAYSIVKTIHMFKGNYKLDQGRNAMSYYAVNMCSPERQEFLCMIQPSIERYSVSVE
RNLMHYACAPMYNYQILKLVKNFAMTQQNCYGDTPHLMSYVFNVFAKILSSLYITYNITNENMA
LKTVVRDGLPSQMRERVMSIRRNDEALSKQLKAYDESVGYQLYLLTMPLRQIFEVRRNAGHTVYDIME
NASCNIGNERLEALIQDSFSQASSSLYDRCIDSHQHELCVNLCSNRVNVGKSYGHVLYTHYKRMYD
LISYKSEI5DSVMRCIKIENGRENNRYLMLVMMLCLVLNTLVLFKTRSLILGIEQGLYRSLFSAI
SVVVFYS1CVCIVYAKYVDVADKMLIIIEEYGARSILLSSHLDVQETDSQREG
```

ECH_0113 (793 aa):

```
MRTGIVGQVQEVQD1AGEEQEMPLSSLQQFQPNLHESCDQDI1KAIADERGVRGVTVKHKKKSPPVSKDMIRSDQ
LSTGTILLEDEYGRKKRRKSNKRKGPTGPLQVKVTVGZSNKDIASEQEMPLSSLQSLDLHESCDQDIVK
AEDRVRCTAVTEKRKRKSIPSKMIDGDSDLQSLGTIELKEDYGRKKRRKSNKRKGPTGPLQVKZGTVASANE
QDIAGEEQGPLSSHQLHSFESCDQINVKVEDKPVHVTVTREEKSNPVLEDNYKQDASHKHAVQGAVQQ
PSMCARQAHRKAVSVVESETKVDCTQKVRKVESECKNDVDTSVQHTAVSYVEKVKGSLDLDGTLLFID
LRTKTVSQQDLNSEYLQSAKSKVHAGQAVAQPMYAXAKVSSVEKAVKQEQKRQNSLAKTGAQCHQKNSYKAF
SKQNDVDSETLSASMQHTAVPGMVTPLNIIPARNHIVSFGTQKLGQYSLFVSSQVFMSYDVK1KMVMHMSYAYQILH
NTFVHNNQIVLKFIEQFLKKTSMFLKTLIKIGVQPDVARM1GNSXNCITLKHCASHYHDSIEIDE
ILIFYGTSSSFSEVSQQRHDVTDLKKNRTNVMFKLHDDSFSEVLSVCNFPGVMVSNKDEILKLCS
FVQLSICCQIAQMYHMLMKVYSAQDGKDYYAQCI светкакаKAGPKA1KDFMYRALLFGRCACNVNTRHLY
```

FIGURE A3 | Continued
FIGURE A3 | Expression of overlapping ORFs in *E. chaffeensis*. (A) Expression of complete overlapping protein-coding ORFs in *E. chaffeensis*. (B) Expression of overlapping RNA and protein-coding ORFs in *E. chaffeensis*. (C) Expression of partial overlapping proteincoding ORFs in *E. chaffeensis*. Peptide sequences detected by proteomics analysis were highlighted by bold and red fonts in amino acid sequences for these overlapping ORFs.