O Papel da Ecocardiografia sob Estresse na Detecção Precoce de Disfunção Diastólica em Pacientes com Doença Pulmonar Obstrutiva Crônica Não Grave

The Role of Stress Echocardiography in the Early Detection of Diastolic Dysfunction in Non-Severe Chronic Obstructive Pulmonary Disease Patients

Zheyna Cherneva¹ e Radostina Cherneva²

Medical Institute of the Ministry of Internal Affairs,¹ Sofia – Bulgária
Saint Sophia University Hospital of Pulmonary Diseases,² Sofia – Bulgária

Resumo

Fundamento: A dispneia por esforço é uma queixa comum de pacientes com insuficiência cardíaca com fração de ejeção preservada (ICFEP) e doença pulmonar obstrutiva crônica (DPOC). A ICFEP é comum na DPOC e é um fator de risco independente para a progressão e exacerbação da doença. A detecção precoce, portanto, tem grande relevância clínica.

Objetivos: O objetivo deste estudo foi detectar a frequência de ICFEP mascarada em pacientes com DPOC não grave com dispneia aos esforços, sem doença cardiovascular manifesta, e analisar a correlação entre ICFEP mascarada e os parâmetros do teste cardiopulmonar de exercício (TCPE).

Métodos: Aplicamos o TCPE em 104 pacientes com DPOC não grave com dispneia aos esforços, sem doença cardiovascular evidente. A ecocardiografia foi realizada antes e no pico do TCPE. Os valores de corte para disfunção diastólica ventricular esquerda e direita induzida por estresse (LVDD/RVDD) foram E/e’ >15; E/e’ >6, respectivamente. A análise de correlação foi feita entre os parâmetros do TCPE e o estresse E/d’. Valor de p<0,05 foi considerado significativo.

Resultados: 64% dos pacientes tinham LVDD induzida por estresse; 78% tinham RVDD induzida por estresse. Ambos os grupos com estresse LVDD e RVDD obtiveram carga menor, VO₂ e pulso de O₂ mais baixos, além de apresentarem redução na eficiência ventilatória (maiores inclinações de VE/VCO₂). Nenhum dos parâmetros do TCPE foram correlacionados com E/e’ LVDD/RVDD induzida por estresse.

Conclusão: Há uma alta prevalência de disfunção diastólica induzida por estresse em pacientes com DPOC não grave com dispneia aos esforços, sem doença cardiovascular evidente. Nenhum dos parâmetros do TCPE se correlaciona com E/e’ induzida por estresse. Isso demanda a realização de Ecocardiografia sob estresse por exercício (EES) e TCPE para detecção precoce e manejo adequado da ICFEP mascarada nesta população. (Arq Bras Cardiol. 2021; 116(2):259-265)

Palavras-chave: Ecocardiografia sob Estresse/métodos; Insuficiência Cardíaca Diastólica; Volume Sistólico; Doença Pulmonar Obstrutiva Crônica; Testes de Função Respiratória.

Abstract

Background: Exertional dyspnea is a common complaint of patients with heart failure with preserved ejection fraction (HFpEF) and chronic obstructive pulmonary disease (COPD). HFpEF is common in COPD and is an independent risk factor for disease progression and exacerbation. Early detection, therefore, has great clinical relevance.

Objectives: The aim of the study is to detect the frequency of masked HFpEF in non-severe COPD patients with exertional dyspnea, free of overt cardiovascular disease, and to analyze the correlation between masked HFpEF and the cardiopulmonary exercise testing (CPET) parameters.

Methods: We applied the CPET in 104 non-severe COPD patients with exertional dyspnea, free of overt cardiovascular disease. Echocardiography was performed before and at peak CPET. Cut-off values for stress-induced left and right ventricular diastolic dysfunction (LVDD/RVDD) were E/e’ >15; E/e’ >6, respectively. Correlation analysis was done between CPET parameters and stress E/e’. A p-value <0.05 was considered significant.

Correspondência: Zheyna Cherneva*•
Medical Institute of the Ministry of Internal Affairs – Cardiology - bul General Skobelev 78 Sofia 1000 – Bulgária
E-mail: jenicherneva@yahoo.com
Artigo recebido em 15/07/2019, revisado em 24/11/2019, aceito em 22/01/2020

DOI: https://doi.org/10.36660/abc.20190623
Introdução

As anormalidades cardiovasculares são comuns na doença pulmonar obstrutiva crônica (DPOC).1,2 A rigidez arterial está presente mesmo em pacientes com DPOC leve e sem doenças cardiovasculares. Trata-se de um fator de risco cardiovascular independente que contribui para o desenvolvimento de disfunção diastólica.3 Disneia e intolerância ao exercício são sintomas comuns da DPOC e disfunção diastólica.4 Estudos recentes com grandes coortes de pacientes identificaram um fenótipo cardiovascular em pacientes com DPOC que apresentam curso clínico e prognóstico diferentes.5 O diagnóstico e o manejo precoces são, portanto, muito importantes do ponto de vista clínico.

O teste cardiopulmonar de exercício (TCPE) pode distinguir disneia cardíaca e respiratória ou diminuição da atividade física.6-9 A combinação de ecocardiografia sob estresse por exercício (EES) e TCPE é uma abordagem confiável para identificar pacientes com insuficiência cardíaca mascarada pela fração de ejeção preservada (ICFEP). Além disso, os resultados das medições invasivas são comparáveis aos dados obtidos em estudos não invasivos durante o EES.10

Os objetivos de nosso estudo foram: 1) detectar a frequência de disfunção diastólica subclínica do ventrículo esquerdo (VE) e do ventrículo direito (VD) em pacientes com DPOC não grave sem doença cardiovascular; 2) estabelecer uma correlação entre exercício cardiopulmonar e os parâmetros ecocardiográficos para disfunção diastólica (E/e').

Materiais e métodos

Pacientes e protocolo de estudo

Este foi um estudo retrospectivo realizado com 224 pacientes ambulatoriais clinicamente estáveis com diagnóstico de DPOC no Hospital Universitário de Doenças Respiratórias “St. Sophia”, Sofia. Apenas 163 deles atenderam aos critérios de inclusão para DPOC não grave: volume expiratório forçado no primeiro segundo maior que 50% (VEF >50%). Todos os indivíduos apresentavam disneia aos esforços, mas um total de 104 pacientes (64 homens, 40 mulheres; idade média de 62,9±7,5 anos) foram considerados elegíveis, assumindo-se os critérios de exclusão. O período de recrutamento foi entre maio de 2017 e abril de 2018, e foi aprovado pelo Comitê de Ética local (protocolo 5/12.03.2018). Todos os participantes assinaram o termo de consentimento livre e esclarecido antes do início do estudo.

Foram considerados os seguintes critérios de exclusão: 1) fração de ejeção do ventrículo esquerdo (FEVE) <50%; 2) disfunção diastólica do ventrículo esquerdo em repouso superior ao primeiro grau; 3) achados ecocardiográficos sugerindo hipertensão pulmonar (pressão arterial pulmonar sistólica >36 mmHg, regurgitação tricúspide (RT), velocidade máxima do jato >2,8 m/s; 4) cardiopatia valvar; 5) cardiomiopatia documentada; 6) hipertensão grave não controlada (pressão arterial sistólica >180 mmHg e pressão arterial diastólica >90 mmHg); 7) fibrilação atrial ou arritmia ventricular maligna; 8) doença isquêmica do coração; 9) anemia; 10) diabetes mellitus; 11) câncer; 12) doença renal crônica (DRC); 13) cirurgia torácica ou abdominal recente; 14) exacerbação recente (nos últimos três meses); 15) mudança recente (nos últimos três meses) na terapia médica.

Procedimentos

Teste de função pulmonar

Todos os indivíduos foram submetidos a um exame clínico preliminar, incluindo radiografia de tórax, espirometria, eletrocardiografia e ecocardiografia. Os pacientes elegíveis para o estudo realizaram espirometria e teste ergométrico em Vyntus, teste cardiopulmonar de exercício (Carefusion, Alemanha), de acordo com as diretrizes da European Respiratory Society (ERS).11 Apenas pacientes com obstrução leve à moderada das vias aéreas (VEF > 50%) foram seleccionados.

Protocolo de teste de estresse – teste cardiopulmonar de exercício (TCPE)

Um protocolo em rampa contínua foi aplicado de acordo com diretrizes.8 Após dois minutos de pedalada sem carga (fase de repouso 0W), seguiu-se uma fase de aquecimento de três minutos (20W). A fase de teste incluiu incrementos de carga de 20W/2min. Os pacientes foram orientados a pedalar a 60 rotações por minuto.

Os gases expiratórios foram coletados respiração a respiração. O pico de VO₂ foi expresso como o maior valor médio de 30 segundos, obtido na última etapa do teste de esforço. Os valores de pico de VO₂ são expressos como -O₂ ml/kg/min. A eficiência ventilatória (EV/VCO₂) foi medida pelo método V-slope. O pico da razão de troca respiratória (pRTR) foi o maior valor médio de 30 segundos no último estágio do teste. RTR >1,10 ao final do teste EES-TCPE foi considerado como esforço máximo.
Métodos ecocardiográficos

Foram realizados ecocardiograma modo M, bidimensional com Doppler. Incidências apicais de quatro câmaras foram usadas para medir os volumes das câmaras com base na regra modificada de Simpson e a fração de ejeção do VE foi considerada preservada se > 50%. A análise da ecocardiografia Doppler tecidual foi realizada na dimensão septo-lateral do anel mitral e na dimensão lateral do anel tricúspide para avaliar as ondas sistólica (S) e diastólica miocárdica (E', A') do VE e VD. O valor E' foi usado como média das medições mediadas e laterais. O pico da razão E/e' > 15 foi considerado um marcador para disfunção diastólica ventricular esquerda induzida por estresse.

A função sistólica do ventrículo direito foi avaliada por meio da excursão sistólica do plano do anel tricúspide (TAPSE) e da velocidade de pico S do Doppler tecidual. A espessura da parede do ventrículo direito (EPVD) foi medida a partir do corte subcostal no eixo longo na extremidade do folheto tricúspide anterior ao final da diástole. A pressão pulmonar foi calculada diretamente pela amostra da insuflação tricúspide e indiretamente pelo tempo de aceleração (TA) do fluxo pulmonar. O índice de volume do átrio direito (IVAD) foi medido com o volume sistólico final do ventrículo direito pela regra modificada de Simpson. A disfunção diastólica do VD induzida por estresse foi considerada se a razão E/e' induzida por estresse fosse > 6. Todos os parâmetros foram medidos no final da expiração e três vezes durante diferentes ciclos cardíacos.

Análise estatística

Os dados demográficos e clínicos foram apresentados em estatística descritiva. O teste de Kolmogorov-Smirnov foi usado para explorar a normalidade da distribuição. As variáveis contínuas em cada grupo foram expressas como mediana e intervalo interquartil quando os dados não foram normalmente distribuídos, e como média ± desvio-padrão (DP) se a distribuição foi normal. Variáveis categóricas foram apresentadas em proporções. Os dados foram comparados entre pacientes com e sem DDVE, bem como entre pacientes com e sem DDVD. O teste t de Student não pareado foi usado para analisar variáveis contínuas normalmente distribuídas. O teste de Mann-Whitney-U foi usado em outros casos. Variáveis categóricas foram comparadas pelo teste de χ² ou exato de Fisher. A correlação de Spearman foi usada para avaliar a associação entre os parâmetros TCPE e a razão E/e' induzida por estresse nos ventrículos esquerdo e direito.

Em todos os casos, um valor de p inferior a 0,05 foi considerado significativo, conforme determinado pelas estatísticas do software SPSS® 13.0 (SPSS, Inc, Chicago, Ill).

Resultados

No grupo DPOC, 30% (32/104) dos pacientes apresentaram DDVE grau I em repouso; 14% (15/104) tinham DDVD grau I em repouso e apenas 3% (4/104) tinham tanto DDVE quanto DDVD em repouso. Após o TCPE, a ecocardiografia sob estresse estabeleceu que 64% (67/104) dos indivíduos tinham DDVE induzida por estresse e 78% (82/104) tinham DDVD induzida por estresse. Todos os pacientes com DDVE induzida por estresse também tinham DDVD induzida por estresse. Os dados demográficos e clínicos dos pacientes estão listados na Tabela 1. Os parâmetros ecocardiográficos dos pacientes estão apresentados na Tabela 2. Exceto para IVAD, EPVD, TA e pressão arterial pulmonar sistólica após carga, nenhuma outra diferença significativa foi encontrada entre os pacientes com e sem DDVE (Tabelas 1 e 2). Os resultados para pacientes com e sem DDVE foram semelhantes (Tabelas 1 e 2).

A capacidade de exercício foi reduzida em pacientes com DPOC com disfunção diastólica direita e esquerda induzida por estresse, em comparação com pacientes sem DPOC. Os pacientes DPOC-DDVD/DDVE alcançaram carga mais baixa, VO₂ e pulso de O₂ mais baixos. Tiveram um desempenho com inclinações de VM/ VCO₂ significativamente maiores (Tabela 1). Nenhum dos parâmetros TCPE foi associado à razão E/e' esquerda ou direita induzida por estresse (Tabela 3).

Discussão

Nossos principais achados foram: 1) 64% dos pacientes com DPOC não grave e dispneia aos esforços que estão livres de doença cardiovascular clinicamente evidente têm DDVE induzida por estresse; 1) 78% do mesmo grupo de pacientes têm DDVD induzida por estresse; 3) nenhum dos parâmetros TCPE foi correlacionado com a razão E/e' induzida por estresse no ventrículo esquerdo ou direito. Até onde sabemos, este é o primeiro estudo usando a combinação EES-TCPE em pacientes com DPOC não grave, dispneia aos esforços e livres de doenças cardiovasculares evidentes. Aumento da razão E/e' induzida por estresse > 15 do ventrículo esquerdo foi detectado em 64% deles; elevação induzida por estresse da razão E/e' > 6 no ventrículo direito foi encontrada em 78% dos casos. Não podemos comparar nossos dados com outros estudos de populações de pacientes com DPOC não grave porque a maioria deles relata a incidência de disfunção diastólica em repouso.15-17

Nedeljovic et al. realizaram EES em uma população de 87 pacientes hipertensos com dispneia aos esforços e função ventricular esquerda normal. Reportaram, em 9,2% dos pacientes, razão por estresse E/e' > 15.18 Kaiser et al. também investigaram uma população geral de 87 pacientes com dispneia aos esforços e relataram disfunção diastólica em 9% deles.19

A maior prevalência de disfunção diastólica de estresse que descrevemos em pacientes com DPOC confirma que a própria DPOC é um fator de risco cardiovascular.20,21 Rigidez arterial é uma característica da DPOC, independentemente do impacto do tabagismo. O estresse da parede ventricular observado durante a respiração também é relatado como um mecanismo fisiopatológico independente para a remodelação do VE em pacientes com DPOC leve sem patologia cardiovascular evidente.22 Tanto a rigidez arterial quanto o estresse da parede ventricular causam fibrose ventricular difusa em pacientes com DPOC.23,24

Em nosso estudo, pacientes com disfunção diastólica induzida por estresse (ambos DDVE e DDVD) atingem carga, VO₂ e pulso de O₂ mais baixos e apresentam desempenho em inclinações de VM/VCO₂ significativamente maiores.

Arq Bras Cardiol. 2021; 116(2):259-265
Tabela 1 – Características antropométricas e cardiopulmonares de pacientes com e sem DDVE e DDVD

Parâmetros TCPE	Pacientes sem DDVE por estresse (37)	Pacientes com DDVE por estresse (67)	Pacientes sem DDVD por estresse (22)	Pacientes com DDVD por estresse (82)
Idade, ano	60,44 ± 7,72	64,16 ± 6,97*	6,95±7,36	63,74±7,60*
Pacote, anos	21,16	44,23*	14,8	50,32*
Índice de massa corporal, kg/m²	27,21 (30,51±37,87)	27,96 (22,75-30,75)	28,00 (25,25-30,5)	26,52 (22,72-30,61)
Função respiratória				
CVF, l/min	2,06 (1,76-3,09)	3,48 (2,77-3,90)	2,05 (2,11-3,73)	2,21 (1,71-2,93)
FEV1, l/min	1,36 (1,14-1,75)	1,36 (1,14-1,75)	1,60 (1,15-2,42)	1,52 (1,14-1,75)
FEV1/CVF %	60,5 (46,91-67,47)	53,30 (45,76-66,55)	65,50 (54,81-68,82)	62,59 (46,57-66,79)
Equilíbrio ácido-base				
pO2, mmHg	68,60(63,4-71,8)	71,35 (64,7-74)	67,20 (63,56-71,68)	70,6 (63,2-74)
pCO2, mmHg	32,30 (30,1-35,37)	37,65 (32,5-40)	34,73 (31,27-39,21)	35,7 (32,5-40)
Saturação, %	94,9 (94,4-95,25)	95,00 (94,02-95,67)	94,75 (92,67-95,0)	95,00 (93,9-95,5)

*Nenhum dos parâmetros TCPE, no entanto, se correlaciona com a razão de estresse E/e’ (nem no VE nem no VD). Esses achados são semelhantes aos relatados na população em geral. Nadeljkovic et al. detectaram menor carga, menor consumo de oxigênio e menor eficiência ventilatória em pacientes hipertensos com dispneia aos esforços e DDVE induzida por estresse.18 Kaiser et al. descobriram aumento da reserva de frequência cardíaca e redução do pulso de oxigênio em uma população geral de pacientes com dispneia aos esforços.19 Guazzi et al. também estabeleceram uma associação entre disfunção diastólica (razão E/e’) e consumo ao pico de oxigênio, eficiência ventilatória e recuperação da frequência cardíaca.20 No grupo de pacientes com patologia cardiovascular evidente e ecocardiografia normal em repouso de Guazzi, a eficiência ventilatória se correlacionou melhor com o pico da razão E/e’ > 15. A vantagem clínica da relação VM/VCO2 como melhor preditor da razão por estresse E/e’ também foi confirmada nos pacientes com insuficiência cardíaca diastólica analisados por Nadeljkovic et al.4 Kaiser et al. não apoiam tais conclusões, enfatizando a importância do aumento da reserva da frequência cardíaca e da diminuição no pulso de oxigênio como preditores da razão por estresse E/e’ na população geral de pacientes com dispneia aos esforços e livres de doença cardiovascular evidente.19

Porque que os parâmetros TCPE podem ajudar no diagnóstico diferencial de dispneia na população em geral, bem como em pacientes com patologia cardiovascular diagnosticada.6-9 De acordo com nossos resultados, em pacientes com DPOC, esses não são parâmetros clínicos confiáveis que podem servir como preditores independentes de anormalidade cardiovascular e, portanto, não são aplicáveis no algoritmo de diagnóstico de disfunção diástólica mascarada.

Nossos achados corroboram a presença de comprometimento funcional em pacientes com DPOC grave com dispneia aos esforços e livres de doença cardiovascular evidente. O Doppler tecidual durante o exercício mostra a complexa interação coração-pulmão para um diagnóstico preciso de patologia cardíaca e, portanto, não são aplicáveis para detecção precoce de ICFEP. No grupo de pacientes com patologia cardiovascular evidente e ecocardiografia normal em repouso de Guazzi, a eficiência ventilatória se correlacionou melhor com o pico da razão E/e’ > 15. A vantagem clínica da relação VM/VCO2 como melhor preditor da razão por estresse E/e’ também foi confirmada nos pacientes com insuficiência cardíaca diastólica analisados por Nadeljkovic et al.4 Kaiser et al. não apoiam tais conclusões, enfatizando a importância do aumento da reserva da frequência cardíaca e da diminuição no pulso de oxigênio como preditores da razão por estresse E/e’ na população geral de pacientes com dispneia aos esforços e livres de doença cardiovascular evidente.19

Arq Bras Cardiol. 2021; 116(2):259-265
Tabela 2 – Parâmetros ecocardiográficos de pacientes com e sem DDVE e DDVD

Parâmetros estruturais do VE	Pacientes sem DDVE por estresse (37)	Pacientes com DDVE por estresse (67)	Pacientes sem DDVD por estresse (22)	Pacientes com DDVD por estresse (82)
FEVE, %, Simpson	63,50 (60-66)	60,00 (67-65)*	65,00 (60-66)	61,00 (67-65)*
Septo, mm	12,00 (11-13)	12,00 (11-13) *	12,00 (11-12,75)	12,00 (11-13) *
PW, mm	12,00 (11,75-12)	12,00 (11-13) *	12,00 (11,25-12,75)	12,00 (11-13) *
Parâmetros funcionais do VE em repouso				
Razão E/A	0,79 (0,75-0,85)	0,85 (0,76-1,20)*	0,78 (0,76-0,83)	0,84 (0,75-1,21)*
Razão média E/e'	6,66 (6,25-8,33)	6,97 (5,76-8,15)*	6,96 (6,27-8,33)	6,66 (5,63-8,1)
Parâmetros estruturais do VD				
IVAD, ml/m²	17,57 (16,07-19,97)	#22,66 (21,31-24,13)*	16,55 (15,81-17,54)	#22,27 (20,65-23,85)*
RWT, mm	5,00 (4,5-6,5)	#6,50 (6-7)*	5,00 (4,12-5,00)	#6,50 (6,00-7,00)*
TAPSE, mm	23,00 (22,00-26,00)	22,00 (21,00-23,00)*	23,00 (21,25-26,00)	22,00 (21-23,5)*
Parâmetros funcionais do VD em repouso				
Razão E/A	1,25 (0,8-1,5)	#1,73 (1,55-2,00)*	1,22 (0,88-1,37)	#1,71 (1,5-2,00)*
Razão média E/e'	8,07 (6,7-9,6)	#17,33 (15,71-8,46)*	8,12 (7,25-10)	#17,14 (14,66-18,39)*
Parâmetros estruturais do VE				
IVAD, ml/m²	17,57 (16,07-19,97)	#22,66 (21,31-24,13)*	16,55 (15,81-17,54)	#22,27 (20,65-23,85)*
RWT, mm	5,00 (4,5-6,5)	#6,50 (6-7)*	5,00 (4,12-5,00)	#6,50 (6,00-7,00)*
TAPSE, mm	23,00 (22,00-26,00)	22,00 (21,00-23,00)*	23,00 (21,25-26,00)	22,00 (21-23,5)*
Parâmetros funcionais do VD em repouso				
Razão E/A	0,83 (0,75-0,95)	0,69 (0,62-0,75)*	0,83 (0,76-1,16)	0,71 (0,66-0,83)*
Razão média E/e'	5,47 (4,56-5,69)	4,16 (3,33-5,00)*	5,47 (4,56-5,69)	4,54 (3,33-5,22)*
TA, msec	170 (163,75-180)	170 (160-180)*	170 (165-180)	170 (160-180)*
sPAP, mmHg	26,00 (25-26)	28,00 (25-30)*	25,00 (23-27)	28,00 (25-30)*
Parâmetros funcionais do VD em repouso				
Razão E/A	1,26 (1,09-1,48)	1,31 (1,18-1,49)*	1,28 (1,14-1,5)	1,37 (1,22-1,52)*
Razão média E/e'	6,21 (5,38-7,89)	10,83 (9,04-13,23)*	6,92 (5,46-8,00)	#11,25 (9,00-13,33)*
TA, msec	165(155-175)	#105 (85-110)*	162,5(155-170)	#110(85-115)*
sPAP, mmHg	32,00 (30-33,25)	#38,00 (36-42)*	32,00 (30-33,75)	#38,00 (35-40)*

** DDVE: disfunção diastólica do ventrículo esquerdo; DDVD: disfunção diastólica do ventrículo direito; FEVE: fração de ejeção do ventrículo esquerdo; IVAD: índice de volume do átrio direito; TAPSE: excursão sistólica do plano do anel tricúspide; p <0,05 entre pacientes com e sem DDVE; PW: parede posterior; SPAP: pressão arterial pulmonar sistólica; EPVD: espessura da parede do ventrículo direito; TA: tempo de aceleração. **p <0,05 entre pacientes com e sem DDVD.

Tabela 3 – Análise de correlação entre os parâmetros de teste de exercício respiratório e cardiopulmonar com a razão E/e' induzida por estresse para ventrículo esquerdo/ventrículo direito, respectivamente

Parâmetros	DDVE	DDVD
Pico de carga, W	0,02	0,03
Pico de VM, l/min	0,02	0,12
Pico de VO₂, ml/min/kg	0,12	0,03
RTR	0,06	0,12
Pico de pulso de O₂, ml/min/kg	0,10	0,11
Pico de inclinação VMVCO₂	0,35	0,02
CVF, l/min	0,28	0,10
FEV₁, l/min	0,01	0,04

** Teste U de Mann-Whitney; † Abreviaturas: DDVE: disfunção diastólica do ventrículo esquerdo; DDVD: disfunção diastólica do ventrículo direito; CVF: capacidade vital forçada; RTR: razão de troca respiratória; †p<0,05 entre pacientes com e sem DDVE; VMVCO₂: eficiência ventilatória; ††p<0,05 entre pacientes com e sem DDVD.**
Conclusão
Há uma alta prevalência de disfunção diastólica induzida por estresse em pacientes com DPOC não grave com dispneia, sem doença cardiovascular evidente. Nenhum dos parâmetros do TCPE se correlaciona com a razão E/e' induzida por estresse. Portanto, a realização do EES-TCPE é necessária para a detecção precoce e o manejo adequado da ICFEP mascarada nesta população.

Contribuição dos autores
Concepção e desenho da pesquisa, Obtenção de dados, Análise e interpretação dos dados, Análise estatística, Obtenção de financiamento, Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Cherneva Z, Cherneva R

Potencial conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.

Referências
1. Papaiannou A, Bartzikias K, Loukides S, Tsikrika S, Karakontaki F, Haniotou A, et al. Cardiopulmonary comorbidities in hospitalised DPOC patients: a determinant of future risk? Eur Respir J. 2015;46(3):846-9.
2. Müllerova H, Auši A, Erpu S, Mapel D. Cardiopulmonary comorbidity in COPD: systematic literature review. Chest. 2013;144(4):1163-78.
3. Barr RG, Bluemke DA, Ahmed FS, et al. Cardiopulmonary exercise test: background, applicability and clinical recommendations for cardiopulmonary exercise testing data interpretation. Arq Bras Cardiol. 2016;107(5):467-81.
4. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38.
5. Mitchell C, Rahko P, Blauwet L, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1-64.
6. Huang YS, Feng YC, Zhang J, Bai L, Huang W, Li M, et al. Impact of chronic obstructive pulmonary disease on left ventricular diastolic function in hospitalized elderly patients. Clin Interv Aging. 2014 Dec 19;10:81-7.
7. Caram P, Yusuf S, Li M, et al. Impact of chronic obstructive pulmonary diseases on left ventricular diastolic function in hospitalized elderly patients. Clin Interv Aging. 2014 Dec 19;10:81-7.
8. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38.
9. Mitchell C, Rahko P, Blauwet L, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1-64.
10. Huang YS, Feng YC, Zhang J, Bai L, Huang W, Li M, et al. Impact of chronic obstructive pulmonary disease on left ventricular diastolic function in hospitalized elderly patients. Clin Interv Aging. 2014 Dec 19;10:81-7.
11. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38.
12. Mitchell C, Rahko P, Blauwet L, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1-64.
13. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the Evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277-314.
14. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685-711.
15. Huang YS, Feng YC, Zhang J, Bai L, Huang W, Li M, et al. Impact of chronic obstructive pulmonary diseases on left ventricular diastolic function in hospitalized elderly patients. Clin Interv Aging. 2014 Dec 19;10:81-7.
16. Kubota Y, Asai K, Murai K, Tsukada YT, Hayashi H, Saito Y, et al. COPD as a determinant of future risk? Eur Respir J. 2015;46(3):846-9.
17. Mitchell C, Rahko P, Blauwet L, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1-64.
18. Huang YS, Feng YC, Zhang J, Bai L, Huang W, Li M, et al. Impact of chronic obstructive pulmonary disease on left ventricular diastolic function in hospitalized elderly patients. Clin Interv Aging. 2014 Dec 19;10:81-7.
19. Kaiser T, Datta D. Can Diastolic dysfunction be identified on cardiopulmonary exercise testing. Chest. 2017;152(4):A976.
20. Lucas-Ramos P, Izquierdo-Alonso JL, Rodriguez-Gonzalez Moro JM, Frances JF, Lozano PV, Bellón-Cano JM, et al. Chronic obstructive pulmonary disease as a cardiovascular risk factor. Results of a case-control study (CONSISTE study). Int J Chron Obstruct Pulmon Dis. 2012;7:679-86.

21. Fisk M, McEniery CM, Gale N, Mäki-Petäjä K, Forman JR, Munnery M, et al. Surrogate markers of cardiovascular risk and chronic obstructive pulmonary disease: a large case-controlled study. Hypertension. 2018;71(3):499-506.

22. Pelà G, Calzi M, Pinelli S, Roberta Andreoli, Nicola Sverzellati, Giuseppina Bertorelli, et al. Left ventricular structure and remodeling in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016 May 13;11:1015-22.

23. Neilan TG, Bakker JP, Sharma B, Owens R, Farhad H, Shah R, et al. T1 measurements for detection of expansion of the myocardial extracellular volume in chronic obstructive pulmonary disease. Can J Cardiol. 2014;30(12):1668-75.

24. Sabit R, Bolton CE, Fraser AG, Edwards JM, Edwards PH, Ionescu AA, et al. Sub-clinical left and right ventricular dysfunction in patients with COPD. Respir Med. 2010;104(8):1171-78.

25. Guazzi M, Myers J, Arena R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J Am Coll Cardiol. 2005;46(10):1883-90.