Design and Optimization of CPW-Fed Bow-Tie Slot Patch Antenna

C Malarvizhi1*, M Brenda2, S Baskar3, J Joselin Jey Sheela4
1Rajalakshmi Institute of Technology, Chennai, Tamil Nadu, India
2Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
3Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India
4R.M.K. Engineering College, Tiruvarur, Tamil Nadu, India
Email: *malarvizhi.c@ritchennai.edu.in

Abstract. In this article, a mirror edged bow tie slot antenna is modelled and fed by a CPW fed with a finite ground plane. This design is calculated and its material properties such as its substrate FR4 is utilized which is easily available and less cost of fabrication. The height of the substrate is 2.96mm, with εr=2. The operating frequency is set at 2.45GHz which is ISM frequency band of operation. The antenna was simulated using CST Microwave suite and its results are inferred. The resonating frequency is at 2.581 GHz. This antenna is used for Wi-Fi applications.

Keywords: Bow tie, CPW, FR4, Wi-Fi, CST Microwave.

1. Introduction
Since the term micro strip talks about the strip of the metallic is in μ- meter range it describes some popular antenna which is conformal and simple in planar structure[5]. It is used for communication between wide range in circuit board which consists of base substrate and radiating patch in line with the elements [1]. It has a trending features with gain, size constraint, radiation phenomenon with various genres [2]. In recent developments which is light weight design at higher frequencies in contract with substrate and patch height suitable for low profile and cascaded applications [3]. Bowtie antenna in recently presents a compact nature with different patch shapes, which is increases development in industrial product design and research worldwide [15] With a low side band lobe an effective technique that maintain for high gain antenna with low side lobes [4]. A fractal shape such as geometries such as self-similarity led to a multiband applications result in spaced approximation at a factor of 2 with a blended truncation on sides’ results in band advancement [6].

2. Design Formulation of Bow Tie Antenna
From Figure 1, [10] the dimension of antenna is at cm with angle of length depends on length and width of antenna which varies along with impedance network and resonating frequency [7]. The various models of design perspective are arranged in each categorization [8].

\[fr = \frac{Ck_{ua}}{2\pi Ter} \]

(1)
\[
fr = \frac{2c\sqrt{kmn} + \sqrt{mn + c^2}}{3a\sqrt{\varepsilon r}}
\]

(2)

Where
- \(fr\) - resonance frequency
- \(kmn\) - Modes that resonate
- \(m, n\) - Number of various modes
- \(c\) - Light velocity in free space.
- \(a\) - The length of the side of the bow tie strip

This expression is valid in a perfect magnetic wall surrounded by a triangular resonator. [12] The impact of a magnetic wall on the full recurrence can be remembered for an observational style for simple count [9].

Various suggestions can be made for how to adjust the exact face of a triangle microstrip antenna array that is not protected by a specific knowledge magnetic wall [11]. Several of the recommendations are related to supplanting the wall thickness with an off expression and keeping the dielectric substrate untouched, [14] resulting in TM10 mode characteristics and it’s given as.

At dominant mode:
\[
f_{10} = \frac{2c}{2fr\sqrt{\varepsilon r}}
\]

(3)

Its side length \(a = f_{10}\)
At effective length of side length is:
\[
a_{eff} = a + \frac{h}{\sqrt{\varepsilon r}}
\]

(4)

For \(mn\) mode, the resonant frequency is:
\[
f_{mn} = f_{10}\sqrt{m^2 + mn + n^2}
\]

(5)

3. Simulation and Experimental Results
The 2 dimensional top view and side view of the antenna is shown in Figure 2 and Figure 3. Design values are listed in Table 1. The graph of input impedance versus the frequency is shown in Figure 4. [13] The Figure 5 shows the graph of reflection coefficient and Figure 6 shows the smith chart of input.
impedance. The 2 dimensional polar plot and 3 dimensional gain plot of far field is shown in Figure 7 and Figure 8.

![Figure 2: 2D Top View](image)

![Figure 3: 2D Side View](image)

![Figure 4: Input Impedance V/S Frequency](image)

![Figure 5: Reflection Coefficient](image)
Table 1: Design values

Name	Description	Value
La	Arm length	37.08 mm
Wa	Arm width	27.61 mm
θ f	Flare angle	40°
Lp	Plate length	138.2 mm
Wp	Plate width	121.2 mm
Lg	CPW length	87.88 mm
Wgi	CPW inner width	6.353 mm
Wgo	CPW outer width	7.372 mm
εr	Relative permittivity	2
H	Substrate height	2.596 mm

Figure 6: Smith Chart - I/P impedance

Figure 7: Far filed - 2D polar plot
4. Conclusion
In this article, with the variation from 300 to 450, a bow tie cpw feeding antennas is built and further optimized, where 300 successful compromise results have been plotted and discussed at a higher gain of 15 dBi at a bandwidth ratio of 1:4. The simulated results can be further optimized at variation at length and width of bow tie such that it doesn't affect the parameters.

References
[1]. Dastranj, Aliakbar. "Modified end-fire bow-tie antenna fed by microstrip line for wideband communication systems." Journal of Electromagnetic Waves and Applications 32, no. 13 (2018): 1629-1643.
[2]. Abioghli, Mehdi, and Ramazan Ali Sadeghzadeh. "A new compact dual-band bow-tie microstrip Antenna for WLAN applications." IETE Journal of Research 59, no. 6 (2013): 693-697.
[3]. Hassan, E., Berggren, M., Scheiner, B., Michler, F., Weigel, R. and Lurz, F., 2019, January, Design of planar microstrip-to-waveguide transitions using topology optimization. In 2019 IEEE Radio and Wireless Symposium (RWS) (pp. 1-3). IEEE.
[4]. Brown, T.W., Xie, R. and Chambers, P., 2018. Frequency Dependence of Penetration through Gaps into Buildings at mm Wave.
[5]. Lee, N., Jeong, C., Kim, J. and Park, J., 2015, December. A new codebook structure for enhanced multi-user MIMO transmission in mmWave hybrid-beamforming system. In 2015 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.
[6]. Bagwari, Ashish, Geetam Singh Tomar, and JyotshanaBagwari, eds. Advanced Wireless Sensing Techniques for 5G Networks. CRC Press, 2018.
[7]. Mangal, Anu, M. A. Rizvi, and Shadab Pasha Khan. "5G Disruptive Technologies and Architecture." In Advanced Wireless Sensing Techniques for 5G Networks, pp. 3-17. Chapman and Hall/CRC, 2018.
[8]. Zhu, Lijia, Hongwei Wang, Hao Jin, and Guangli Yang. "A Novel High Efficiency Beam Steering Array for 5G Millimeter-Wave Communication Systems." In 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-3. IEEE, 2018.
[9]. Ichkov, Aleksandar, Vladimir Atanasovski, and LiljanaGavrilovska. "Hybrid access control with modified SINR association for future heterogeneous networks." arXiv preprint arXiv:1507.04271 (2015).
[10]. Mukherjee, A. and Saha, D., Road to 5G Wireless Systems: Challenges Ahead vis-à-vis Progress Made.
[11]. Chouhan, Rajendra Singh, Devendra Singh Mandloi, and Ankit Jain. "International Journal of Engineering Sciences & Research Technology",A Review on 5g Communication System Using Different Techniques.
[12]. Verma, R. K., Yadava, R. L., & Balodi, D. An Inset-Feed On-Chip Frequency Reconfigurable Patch Antenna Design with High Tuning Efficiency and Compatible Radome Structure for Broadband Wireless Applications.

[13]. Swarnalatha, S., Kumar, B. A., & Babu, B. S. DESIGN OF MULTIBAND MIMO ANTENNA FOR VARIOUS INDOOR APPLICATIONS.

[14]. Karoui, M. S., Ghariani, N., Lahiani, M., & Ghariani, H. (2021). A compact inexpensive UWB-modified elliptic antenna including a slotted ground plane for an indoor positioning system. Annals of Telecommunications, 1-12.

[15]. Arunmozhi, S. A., & Jemmima, V. B. E. A High Gain Ultra Wideband Array Antenna For Wireless Communication.