Identification of chemical compounds from agarwood hydrosol (Aquilaria malaccensis) fruits via LC-QTOF-MS/MS analysis

M A Azhar¹, N W A Rahman¹, M A A Aziz¹ and K M Isa²

¹Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
²Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pengajian Jejawi 3, Arau Perlis, Malaysia

E-mail: maizudin@ump.edu.my

Abstract. Gaharu hydrosol is being considered as a by-product produced during the hydrodistillation of resinous wood part of Aquilaria spp. Agarwood hydrosol was reported to possess many bioactive compounds that are beneficial for health. However, current studies on the chemical composition of agarwood hydrosol from the fruit part are still lacking. This research presents the untargeted chemical compound of agarwood hydrosol from Aquilaria malaccensis fruit (AF) via liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS) and comparison the active functional groups with industrial hydrosol grade using Fourier transform infrared (FTIR). Qualitative tandem LC-QTOF-MS/MS was utilised to identify compounds in the extracted sample. The data processing revealed the presence of 128 known compounds in the hydrosol from A. malaccensis fruit in negative ionization mode and only one chemical profile detected after switched to positive ionization mode. This result contains the retention times value of m/z [M - H-], [M + HCOO-], [M + H+] and similar database search hit identities of the 129 compounds detected during the LC-QTOFMS/MS analysis in Table A1 and A2.

1. Introduction
Nowadays, Agarwood is one of the typical plants that are highly in demand in the world [1]. Agarwood is a resin-impregnated heartwood of Aquilaria species from Thymelaeaceae family that encompasses about 15 species in tropical Asia [2]. Aquilaria malaccensis is one of the species that was found and grows in Malaysia. Agarwood and its essential oil have been used and known a long time ago to have medicinal properties and used in traditional medicine, pharmaceutical; incense in religious practice and mostly in perfume. Hashim et al. (2019) discussed on agarwood used as medicine in traditional practices as well as their pharmacologic pieces of evidence in modern science [3]. Several researchers reported that this plant contained more than 60 chemical compounds. Therefore, the presence of the bioactive compounds in Agarwood trees such as mangiferin, genkwanin 5-O-β-primeveroside and iriflophenone 3,5-C-β-diglucoside can be used as herbal supplement [4]. Among all the compounds, mangiferin has a wide range of pharmacological effects such as anti-HIV, antioxidant, antidiabetic and anticancer activity [5].
The standard extraction method for the extraction of essential oil from agarwood wood parts was hydrodistillation. In this process, by-product is produced known as hydrosol (distillate fraction), that is used in traditional medicine and aromatherapy. Hydrosol is made up of water-soluble non-volatile organic compounds and may contain a small amount of essential oil. Agarwood hydrosol is sold as health supplement in Malaysia, claimed to be used in cancer treatment [6]. Unfortunately, the literature on chemical profile in agarwood hydrosols and the use of hydrosol in human health from the fruit parts are scarce.

Thus, this study aimed to provide information about the chemical profiles in agarwood hydrosol from the fruit parts obtained by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS). This data can help researchers in herbal medicinal plant to design effective drug discovery assays for the discovery of new therapeutic applications of the compounds.

2. Materials and method
All the materials and method used in this study will be explained further in this section.

2.1 Materials and equipments used
The fresh fruits of agarwood species of A. malaccensis were obtained from Pahang. The fruits’ species were identified based on the comparison with reference specimens from the Forest Research Institute Malaysia Herbarium. The equipment used for hydrodistillation extraction process is Soxhlet extraction apparatus and mini rotary evaporator. Prior to the analysis, all samples were ground using Retsh Ultra Centrifugal Mill ZM 200. To characterize the sample, Vion IMS QTof 1.0 was used to quantify chemical compounds, and Nicolet iS50 FTIR Spectrometer was used to identify functional groups.

2.2 Sample preparation
The fruits were dried in the oven at 60°C for one day and ground into powder using the Retsh Ultra Centrifugal Mill ZM 200 to 0.5 cm to 1 cm. Then, 40g of ground sample was weighed and put inside a beaker for further soaking with 1L of distilled water for 7 days, at room temperature. The purpose of this process is to break the parenchyma cells so that it will facilitate the oil glands rupture and consequently easier to extract the hydrosol.

2.3 Hydrodistillation extraction process
For the extraction process, Soxhlet extraction apparatus and mini rotary evaporator were set up as in Figure 1(a) and (b), respectively. The ground fruits were placed inside the cellulose thimble before it was inserted into the extraction chamber. The experiment took place for 6 hours (24 cycles) at 100°C. Then, it was left for an hour to cool before the extracted sample was collected. Then, the process was continued to separate the extracted sample using a mini rotary evaporator at 80°C. Hydrosol sample were collected in the receiving flask while concentrated agarwood extracts remained in the evaporating flask. The parameters was selected based on literature.

2.4 Liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS)
The hydrosol sample from the mini rotary evaporator was analyzed using liquid chromatography quadrupole time of flight mass spectrometry of Vion IMS QTof 1.0 series liquid chromatography. Negative electrospray ionization (ESI-) and Positive electrospray ionization were set up to identify the compounds in the hydrosol sample. The analytical run was set at 20 minutes, and the flow profile of the mobile phase is shown in Table 1. Other parameters of the system are summarized in Table 2. The identification of the compounds present in hydrosol samples was performed by comparing with MS/MS spectra from literature and records from the METLIN database. The tentative identification of some derivatives was based on the fragmentation patterns of known compounds.
Table 1. Isocratic and gradient flow profiles of the mobile phase.

Time (min)	Flow Rate (mL/min)	Composition A [Water +0.1% Formic Acid (%)]	Composition B [Acetonitrile (%)]	Curve
0	0.5	99	1	Initial
0.5	0.5	99	1	6
16	0.5	65	35	6
18	0.5	0	100	1
20	0.5	99	1	1

Table 2. Parameters of the LC-QTOF-MS/MS system.

Acquisition Parameter	Source type	Scan	Collision energy	Set capillary	Source temperature	Desolvation temperature	Desolvation gas	Cone gas
Source type	Electrospray ionization	100-1000 m/z	4.00-45.00 eV	2.5kV	120 °C	550 °C	800 L/h	50 L/h
Ion polarity	Negative							
Positive		50-1000 m/z	4.00-40.00 eV					

2.5 Functional Group Analysis
All spectra were obtained using a Fourier Transform Infrared Spectroscopy (FTIR) with attenuated total reflectance on crystal and knob of the Nicole i50. Sample analysis was carried out in the spectral range 4000 to 400 cm⁻¹, and the signal was subjected to 32 scans at a resolution of 4.0 cm⁻¹.

3. Result and discussion

3.1 Chemical profiling of hydrosol from *A. malaccensis* fruit via LC-QTOF-MS/MS
Based on table A1 and table A2, negative ionization mode shows more detection of chemical compounds in Agarwood hydrosol compared to positive mode. These findings were in agreement with Steckel & Schlosser (2019), as negative ion mode (ES-) were importantly used for the characterisation of...
flavonoids (polyphenol), oligosaccharides, carboxylic acids, sulphonamides, oligonucleotides, and rarely peptides [7]. There are 128 active chemical compounds founds in negative ionization mode. In comparison, only one chemical compound can be found when the mode was switched to positive ionization mode.

Referring to the study by Kruve et al. (2014), ions in negative ionization mode were generated via deprotonation, adduct formation with anions or via simultaneous deprotonation and adduct formation with cations [8]. Based on figure 2, the results obtained revealed some important biomarkers such as Decaffeoylacteoside (m/z=461.1667; Rt=11.08 min), Moracin C (m/z=355.1180; Rt= 12.29 min), Eugenol (m/z= 209.0817 ; Rt= 13.81 min), Dendrocandin B (m/z= 527.1940; Rt=15.53 min) and Xanthohumol (m/z= 353.1384 ; Rt= 16.61 min). The results from the mass-to-charge ratio revealed that Moracin C (C_{19}H_{18}O_{4}) was one of the most abundant phenolics compounds with inherent cancer capacity and potent antibacterial activity. Khyade & Lonkar (2013) investigated the inhibitory effect of Moracin C on cell mouse skin tumorigenesis model. It was found that Moracin can be used in cancer treatment when double dosage of 12-O-tetradecanoylphorbol 13-acetate (TPA) has been applied [9]. Hence, the utilisation of Moracin C may open a new avenue in the treatment of tumorigenesis.

Moreover, the second most abundant phenolics constituent was Decaffeoylacteoside (C_{20}H_{30}O_{12}) with antioxidant capacity. Decaffeoylacteoside has been utilised in traditional Chinese medicine to reduce heat from blood and disintegrate agglomerate [10]. Eugenol (C_{10}H_{12}O_{2}) known as clove oil was widely used as a flavouring for foods, and as a herbal oil used topically to treat toothache. Eugenol is one of the phenolic compounds found in essential oils or hydrosol [11].

Another phenolic compound that was found in this study is Dendrocandin B (C_{27}H_{30}O_{8}). Mittraphab et al., (2016) reported that Dendrocandin B acts as a cell-killing agent against three human cancer cell lines, including MDA-231(Breast cancer cell line), HepG2 and HT-29 (Colorectal tumour cells) [12]. Hence, the cumulative of bioactivities of chemical profile found in these studies are primarily responsible for the numerous therapeutic functions. The result described from this investigation can be used for further studies into other nutraceutical or food applications of agarwood hydrosol from *Aquilaria malaccensis* fruits.

3.2 Functional Group Analysis

Result obtained via Fourier transform infrared spectroscopy illustrated that the hydrosol sample from the experiment has a similar peak with commercial agarwood hydrosol. The result also showed both sample present similar active functional groups; alcohol/phenol, alkyne, and amide I. Commonly, alcohol/phenol band group was characterised in the frequency range of 3600 cm⁻¹ to 3200 cm⁻¹ [13]. From the broad spectrum in figure 3, O-H bond which indicates the presence of alcohol/phenol band group was found in the concentrated experimental agarwood hydrosol and industrial-grade agarwood hydrosol, at a wavenumber of 3270.59 cm⁻¹ and 3272.60 cm⁻¹, respectively. Since both samples has strong H-bond, therefore the frequency becomes lower. The presence of the alcohol/phenols functional groups are significant to prove the existence of a phenolic compound inside the experimental hydrosol sample. This finding is in agreement with Khalil et al. (2013), where the phenolic compound in *Aquilaria malaccensis* leaves with the frequency of 3388 cm⁻¹ was detected. The C=O band of alkyne group frequency (2260 cm⁻¹ to 2100 cm⁻¹) was present in both commercial hydrosol sample and experimental hydrosol extract with the frequency of 2136.97 cm⁻¹ and 2137.04 cm⁻¹, respectively [14]. Amides bands were also found with N-H bending at frequency of 1650 cm⁻¹ -1560 cm⁻¹, identified in both leaves and hydrosol extracts with the frequency of 1635.08 cm⁻¹ and 1635.05 cm⁻¹, respectively. The presence of amide indicated the existence of protein inside the agarwood hydrosol sample.
Figure 2. LC-QTOF chromatogram (negative ionization mode) of hydrosol from agarwood fruit extracts (a) BPI plot (b) Confirmed phenolic compound.
Figure 3. Overlaid of FTIR spectra (a) commercialise agarwood hydrosol (b) experiment agarwood hydrosol (temperature 80°C).

4. Conclusion
The data obtained from liquid chromatography quadrupole time of flight mass spectrometry found 128 untargeted compounds (known compound) in negative ionization mode and only one chemical profile detected after switching to positive ionization mode. From this data, we conclude that agarwood hydrosols from A. malaccensis fruit possesses many bioactive compounds useful for health. Agarwood hydrosol and fruits could be new resources for bioactive compounds and can stand as a potential halal and safe ingredients for the development of food, nutraceutical and pharmaceutical as well as cosmeceutical products. This study can help researchers in designing fractionation and insulation for effective drug discovery assays for new therapeutic application from agarwood hydrosol.
Table A1. Chemical compounds detected in Agarwood hydrosol at temperature 80°C via negative mode LC-QTOF MS.

No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
1	Polydatin	C_{20}H_{22}O_{8}	390.1333	435.1315	1.8	8.89	188	+HCOO	199.06	0		
2	Decaffeoylacteoside	C_{20}H_{30}O_{12}	462.1739	461.1667	0.2	11.08	472	-H	198.79	0		
3	2-Hydroxy-5-methylhypnone	C_{9}H_{16}O_{2}	150.0684	195.0666	0.3	11.36	305	+HCOO	139.81	0		
4	Yakuchinone A	C_{20}H_{24}O_{3}	312.1735	357.1717	1.0	12.10	299	+HCOO	195.49	0		
5	Moracin C	C_{19}H_{18}O_{4}	310.1198	355.1180	-0.7	12.29	177	+HCOO	192.31	0		
6	2,7-Dihydroxy-3,5-dimethoxy-9,10-dihydrophenanthrene	C_{16}H_{16}O_{4}	272.1043	271.0970	-0.6	12.63	151	-H	166.47	0		
7	Gingerone	C_{11}H_{14}O_{3}	194.0941	193.0868	-0.2	13.78	258	-H	144.76	0		
8	Dihydroeugenol	C_{10}H_{14}O_{2}	166.0993	165.0921	0.0	13.80	1585	-H	145.09	0		
9	Eugenol	C_{10}H_{12}O_{2}	164.0835	209.0817	-0.2	13.81	4130	+HCOO	146.20	0		
10	Obtustyrene	C_{16}H_{16}O_{2}	240.1146	285.1128	-0.4	13.93	172	+HCOO	172.42	0		
11	Moscatilin	C_{17}H_{20}O_{5}	304.1302	349.1284	-0.9	14.63	115	+HCOO	181.48	0		
12	Eugenol	C_{10}H_{12}O_{2}	164.0836	209.0818	-0.2	14.67	210	+HCOO	146.85	0		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
----	---------------------------	----------	----------------------------	---------------	-----------------	-----------------------------	----------	---------	------------------	-----------------------		
13	Brazilin	C_{16}H_{14}O_{5}	286.0843	285.0770	-0.2	14.82	164	-H	171.39	1		
14	Blestriarene C	C_{30}H_{22}O_{6}	478.1408	523.1390	-0.8	15.50	196	+HCOO	216.71	0		
15	Dendrocandin B	C_{27}H_{30}O_{8}	482.1958	527.1940	1.7	15.53	445.29	+HCOO	219.77	11		
16	Dendrocandin B	C_{27}H_{30}O_{8}	482.1936	527.1918	-0.5	15.53	414.10	+HCOO	221.15	11		
17	Cistanoside H	C_{22}H_{32}O_{13}	504.1837	503.1764	-0.6	15.53	308	-H	212.43	10		
18	2-Hydroxy-5-methylhypnone	C_{9}H_{10}O_{2}	150.0681	149.0608	0.0	15.53	358	-H	135.22	0		
19	Blestrianol D	C_{29}H_{32}O_{5}	452.1632	497.1614	0.8	15.54	770	+HCOO	223.66	2		
20	2-Ethyl-4,5-dimethylphenol	C_{10}H_{14}O	150.1046	149.0974	0.2	15.54	1981	-H	137.54	0		
21	Eugenol	C_{10}H_{12}O_{2}	164.0837	163.0764	0.0	15.54	173	-H	139.24	1		
22	2-Ethyl-4,5-dimethylphenol	C_{10}H_{14}O	150.1047	149.0974	0.2	15.57	1019	-H	163.02	0		
23	Tran-Ferulaldehyde	C_{10}H_{10}O_{3}	178.0629	177.0556	-0.1	15.62	1383	-H	134.07	0		
24	Gingerone	C_{11}H_{10}O_{3}	194.0942	193.0869	-0.1	15.64	162.48	-H	143.49	1		
25	Aspidinol	C_{12}H_{16}O_{4}	224.1048	223.0975	-0.1	15.68	386	-H	154.25	0		
26	Stibostemin B	C_{15}H_{16}O_{2}	228.1157	273.1139	0.6	15.70	232	+HCOO	174.22	0		
27	Eugenol	C_{10}H_{12}O_{2}	164.0831	209.0813	-0.6	16.05	172	+HCOO	147.43	0		
28	Moracin C	C_{19}H_{16}O_{4}	310.1201	355.1183	-0.5	16.33	183	+HCOO	192.36	0		
29	Isomucronustyrene	C_{17}H_{16}O_{3}	270.1262	269.1189	0.6	16.45	104	-H	169.27	0		
30	Dendrocandin C	C_{16}H_{10}O_{5}	290.1141	289.1068	-1.4	16.47	153	-H	179.29	0		
31	2-Ethyl-4,5-dimethylphenol	C_{10}H_{14}O	150.1045	149.0973	0.1	16.52	526	-H	162.71	0		
32	2-Ethyl-4,5-dimethylphenol	C_{10}H_{14}O	150.1045	149.0972	0.0	16.53	717	-H	137.33	0		
33	Cishinokiresinol	C_{17}H_{16}O_{2}	252.1145	251.1072	-0.5	16.55	211	-H	162.78	0		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
----	--	-------------	----------------------------	------------------	------------------	-----------------------------	----------	------------------	------------------	-----------------------		
34	Flavanthrinin	C15H12O3	240.0784	239.0711	-0.2	16.56	1363	-H	153.47	2		
35	2-Octylphenol	C14H22O	206.1671	251.1653	0.0	16.57	106	+HCOO	165.18	2		
36	Efluosol	C17H16O2	252.1142	251.1069	-0.8	16.57	161	-H, +HCOO	154.92	2		
37	Moracin O	C19H14O5	326.1145	325.1072	-1.0	16.57	499	-H	180.15	3		
38	Eugenol	C10H12O2	164.0830	209.0812	-0.7	16.58	241	+HCOO	143.34	0		
39	3-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-propanone	C10H12O4	196.0728	195.0655	-0.7	16.58	88	-H	137.67	1		
40	Oxyphyllacinol	C20H26O3	314.1864	359.1846	-1.8	16.58	345	+HCOO	191.88	14		
41	Aspidinol	C12H16O4	224.1033	223.0960	-1.6	16.58	139	-H	149.26	3		
42	4'-Methylninosylvan	C15H14O2	226.0986	225.0914	-0.7	16.58	211	-H, +HCOO	152.83	0		
43	Shogaol	C17H24O3	276.1715	321.1697	-1.0	16.58	252	+HCOO	181.50	1		
44	Agrimol E	C33H38O12	626.2360	671.2342	-0.4	16.58	878	+HCOO	246.01	0		
45	Feralolide	C18H16O7	344.0899	343.0826	0.3	16.58	277	-H	177.72	2		
46	Yakuchinone A	C20H24O1	312.1745	311.1672	2.0	16.58	232	-H	175.74	1		
47	1-O-Methyl-3,5-O-dicaffeyquinic acid methyl ester	C27H28O12	544.1576	543.1503	-0.5	16.59	313	-H	219.20	4		
48	Obtustyrene	C16H16O2	240.1151	285.1133	0.1	16.59	241	+HCOO	170.52	0		
49	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C12H14O4	222.0894	221.0821	0.2	16.59	125	-H	147.45	1		
50	Cyclocurcumin	C21H20O6	368.1252	367.1179	-0.8	16.59	433	-H	190.15	9		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed retention time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
----	--	-----------	---------------------------	------------------	-----------------	------------------------------	----------	------------------	-------------------	---------------------		
51	Erianin	C_{18}H_{22}O_{5}	318.1457	317.1384	-1.1	16.59	640	-H	181.57	3		
52	Isoscoparone	C_{17}H_{18}O_{4}	286.1194	331.1176	-1.1	16.59	254	+HCOO, -H	187.29	6		
53	(±)-Vestitol	C_{16}H_{16}O_{3}	272.1051	271.0978	0.2	16.59	135	-H	161.81	3		
54	Agrimol D	C_{35}H_{42}O_{12}	654.2670	699.2652	-0.7	16.59	574	+HCOO	253.10	1		
55	Isoarundinin II	C_{22}H_{22}O_{4}	350.1499	349.1426	-2.0	16.60	687	-H	193.86	5		
56	tran-Ferulaldehyde	C_{10}H_{10}O_{3}	178.0632	177.0559	0.2	16.60	253	-H	135.58	0		
57	Obovatol	C_{18}H_{18}O_{3}	282.1242	327.1224	-1.4	16.60	502	+HCOO, -H	180.66	2		
58	Neosappanone A	C_{33}H_{28}O_{11}	600.1625	599.1552	0.0	16.60	615	-H	234.15	3		
59	6-Gingerol	C_{17}H_{16}O_{4}	294.1830	293.1757	0.1	16.60	472	-H	304.72	3		
60	Dendrobin A	C_{16}H_{18}O_{4}	274.1196	273.1123	-1.0	16.60	109	-H	165.45	4		
61	2,7-Dihydroxy-1-(p-hydroxybenzoyl)-4-methoxy-9,10-dihydrophenanthrene	C_{22}H_{18}O_{5}	362.1159	361.1086	0.5	16.60	420	-H	191.68	6		
62	Moscatilin	C_{17}H_{20}O_{3}	304.1322	303.1249	1.1	16.60	289	-H	175.16	4		
63	7-(4-Hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)-4E,6E-heptadecan-3-one	C_{20}H_{20}O_{4}	324.1349	323.1276	1.2	16.60	605	-H	183.65	3		
64	Euparin	C_{13}H_{12}O_{3}	216.0777	215.0704	-1.0	16.60	427	-H, +HCOO	147.65	0		
65	Dihydrosveratrol	C_{14}H_{14}O_{3}	230.0957	229.0884	1.4	16.61	174	-H	153.01	1		
66	Moracin C	C_{19}H_{18}O_{4}	310.1213	355.1195	0.8	16.61	1106	+HCOO	188.47	5		
67	Dendrocandin D	C_{17}H_{20}O_{3}	304.1299	303.1227	-1.1	16.61	129	-H	191.73	8		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
----	--	-----------------	----------------------------	--------------	------------------	-------------------------------	----------	---------------	-------------------	-----------------------		
68	Agrimol C	C_{36}H_{44}O_{12}	668.2842	713.2825	1.0	16.61	662	+HCOO	256.46	1		
69	4,7-Dihydroxy-1-(p-hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene	C_{22}H_{20}O_{4}	348.1361	347.1288	0.0	16.61	854	-H	187.27	9		
70	Xanthohumol	C_{21}H_{22}O_{5}	354.1457	353.1384	-1.0	16.61	1324	-H	191.03	17		
71	Bletilol C	C_{27}H_{26}O_{7}	462.1686	461.1613	0.7	16.62	1013	-H	210.33	18		
72	4,7-Dihydroxy-1-(p-hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene	C_{22}H_{20}O_{4}	348.1361	347.1288	-0.1	16.62	1494	-H, +HCOO	193.27	7		
73	2-Hydroxyphenylpropanol	C_{9}H_{12}O_{2}	152.0837	151.0764	-0.1	16.62	222	-H	139.22	0		
74	2,4-Dihydroxyacetophenone	C_{8}H_{8}O_{3}	152.0482	151.0409	0.9	16.62	87	-H	158.41	0		
75	6-Gingerdione	C_{17}H_{12}O_{4}	292.1682	291.1609	0.7	16.62	1144	-H	168.20	8		
76	2,6-Di-tert-butyl-4-hydroxytoluene	C_{15}H_{24}O_{3}	220.1830	265.1812	0.3	16.62	2754	+HCOO	165.19	1		
77	Polygoacetophenoside	C_{14}H_{18}O_{10}	346.0884	391.0866	-1.6	16.62	1867	+HCOO	186.75	3		
78	Isoarundinin II	C_{22}H_{22}O_{4}	350.1510	395.1492	-0.8	16.63	1092	+HCOO, -H	199.59	6		
79	Moracin H	C_{20}H_{18}O_{5}	338.1153	383.1135	-0.1	16.63	419	+HCOO, -H	191.22	22		
80	1,7-Bis(4-hydroxyphenyl)-hepta-4E,6E-dien-3-one	C_{19}H_{18}O_{3}	294.1239	293.1166	-1.7	16.63	135	-H	175.00	0		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Observed Total Fragments Found		
----	--------------------------------	---------	----------------------------	--------------	-----------------	-------------------------------	----------	---------	--------------------	---------------------------------		
81	Gigantol	C15H16O4	260.1041	259.0968	-0.8	16.64	230	-H	157.62	1		
82	Pseudoaspidin	C25H32O8	460.2079	459.2006	-1.8	16.64	599	-H	216.24	10		
83	6-Gingerol	C17H26O4	294.1830	293.1757	-0.1	16.65	367	-H	175.77	5		
84	Dendrocandin E	C15H16O5	276.0999	275.0926	0.1	16.65	386	-H	209.73	1		
85	2-Octylphenol	C14H22O	206.1672	205.1599	0.1	16.67	4473	-H, +HCOO	155.29	0		
86	Dihydrocurcumin	C21H22O6	370.1411	369.1338	-0.5	16.67	560	-H	192.01	15		
87	Yakuchinone B	C20H22O3	310.1566	355.1548	-0.3	16.67	2733	+HCOO	187.44	1		
88	2-Ethyl-4,5-dimethylphenol	C10H14O	150.1043	149.0970	-0.2	16.68	455	-H	147.32	0		
89	Dendrobina A	C16H18O4	274.1187	273.1114	-1.8	16.68	190	-H	168.70	1		
90	(3R)-Duartin	C18H20O6	332.1246	331.1173	-1.4	16.68	348	-H	178.51	1		
91	Shogaol	C17H24O3	276.1731	321.1713	0.5	16.69	576	+HCOO, -H	185.95	3		
92	Dihydroeugenol	C10H14O2	166.0989	165.0916	-0.5	16.69	83	-H	138.82	0		
93	Obovatol	C18H18O3	282.1255	327.1237	-0.1	16.70	461	+HCOO, -H	180.61	1		
94	Oxyphyllacinol	C20H26O3	314.1876	313.1803	-0.6	16.70	414	-H	199.99	7		
95	2-Octylphenol	C14H22O	206.1672	205.1599	0.1	16.70	96	-H	210.54	3		
96	(3R,4R)-3,4-trans-7,2',3'-tri-	C32H30O9	558.1877	603.1859	-1.3	16.70	993	+HCOO	237.57	4		
	hydroxy-4'-methoxy-4-(3R)-2',7'-											
	dihydroxy-4'-methoxy-isoflavan											
	-5'y-yl]-isoflavan											
97	Octahydrocurcumin	C21H28O6	376.1879	375.1807	-0.7	16.70	239	-H	313.90	2		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
-----	--	-------------	---------------------------	--------------------	------------------	-----------------------------	----------	---------	-------------------	-----------------------		
98	Dendrocandin C	C_{16}H_{18}O_{5}	290.1138	289.1065	-1.6	16.70	112	-H	193.63	1		
99	(3R,4R)-3,4-trans-7,2',3'-Trihydroxy-4'-methoxy-4-[(3R)-2',7-dihydroxy-4'-methoxyisoflavan-5'-yl]-isoflavan	C_{32}H_{30}O_{8}	542.1930	587.1912	-1.1	16.70	951	+HCOO	243.24	3		
100	Blestriairene B	C_{30}H_{24}O_{6}	480.1557	525.1539	-1.6	16.71	1053	+HCOO	221.97	8		
101	Mulberrofuran N	C_{25}H_{28}O_{4}	392.1972	437.1954	-1.9	16.71	1816	+HCOO	209.88	11		
102	5-O-Methylshanciguol	C_{29}H_{28}O_{5}	456.1920	501.1902	-1.7	16.71	560	+HCOO	217.58	3		
103	3'-O-Methylbrazilin	C_{17}H_{16}O_{5}	300.1015	299.0942	1.7	16.71	220	-H	164.66	5		
104	Blestrianol D	C_{29}H_{24}O_{5}	452.1641	497.1623	1.7	16.71	820	+HCOO	222.35	1		
105	2,7-Dihydroxy-1-{p-hydroxybenzoyl}4-methoxy-9,10-dihydrophenanthrene	C_{22}H_{18}O_{5}	362.1136	361.1063	-1.9	16.72	844	-H	185.95	5		
106	Decaffeoylacteoside	C_{20}H_{30}O_{12}	462.1724	507.1706	-1.3	16.72	372	+HCOO	215.63	15		
107	Kuwanon P	C_{34}H_{30}O_{9}	582.1879	627.1861	-1.1	16.73	698	+HCOO	244.10	4		
108	Mulberrofuran O	C_{39}H_{34}O_{9}	646.2192	691.2174	-1.1	16.73	383	+HCOO	260.97	0		
109	2-Octylphenol	C_{14}H_{22}O	206.1672	205.1600	0.2	16.74	627	-H	180.40	0		
110	1-Galloyl-β-D-glucose	C_{13}H_{16}O_{10}	332.0727	377.0709	-1.7	16.74	139	+HCOO	322.64	0		
111	Dihydrocurcumin	C_{21}H_{12}O_{2}	370.1426	369.1354	1.0	16.76	783	-H	188.93	3		
112	1-Galloyl-β-D-glucose	C_{13}H_{16}O_{10}	332.0726	377.0708	-1.8	16.76	1971	+HCOO	184.31	0		
113	Dihydroyreveratrol	C_{14}H_{14}O_{3}	230.0941	275.0923	-0.2	16.76	257	+HCOO	224.54	0		
114	Dihydrooxyresveratrol	C_{14}H_{14}O_{4}	246.0878	291.0860	-1.4	16.76	103	+HCOO	219.72	0		
115	6-Gingerol	C_{17}H_{26}O_{4}	294.1840	293.1767	0.9	16.77	134	-H	179.67	2		
No	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Adducts	Observed CCS (Å²)	Total Fragments Found		
-----	---	---------------	----------------------------	----------------	-----------------	-------------------------------	----------	----------------	-------------------	----------------------		
116	4,7-Dihydroxy-1-(p-hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene	C22H20O4	348.1374	393.1356	1.3	16.79	392	+HCOO	194.88	1		
117	Xanthohumol	C21H22O5	354.1465	353.1392	-0.3	16.80	838	-H	189.00	1		
118	4-(4’-Hydroxy-3,5’-dimethoxyphenyl)-3-buten-2-one	C12H14O4	222.0891	221.0818	-0.1	16.95	110	-H	149.91	0		
119	3,7-Dihydroxy-2,4-dimethoxyphenanthrene-3-O-glucoside	C22H24O9	432.1418	-431.1345	-0.3	17.07	267	-H	206.25	0		
120	7-(4-Hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)-4E,6E-heptadien-3-one	C20H20O4	324.1362	369.1344	0.0	17.22	366	+HCOO	201.51	0		
121	Isoarundinin II	C22H22O4	350.1505	349.1433	-1.3	17.32	93	-H	205.73	0		
122	Cyclocurcumin	C21H20O6	368.1261	367.1188	0.1	17.54	259	-H	196.17	0		
123	Chrysoptoxine	C18H22O5	318.1466	317.1393	-0.2	17.68	185	-H	183.91	0		
124	2-Octylphenol	C14H22O	206.1672	205.1600	0.2	17.83	165	-H	158.76	0		
125	2-Octylphenol	C14H22O	206.1668	205.1595	-0.3	18.62	287	-H	156.36	0		
126	Parvifloroside B	C29H36O15	624.2036	623.1963	-1.8	18.62	125	-H	258.61	0		
127	Cyclocurcumin	C21H20O6	368.1245	367.1172	-1.5	18.62	82	-H	199.66	1		
128	Octahydrocurcumin	C21H28O6	376.1888	375.1816	0.3	18.64	87	-H	196.86	7		
No.	Compound	Formula	Observed neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed Retention Time (min)	Response	Observed Adducts	Total Fragments Found	Observed CCS (Å²)	Adducts	Found Fragments
-----	----------------	---------	----------------------------	--------------	-----------------	---------------------------	----------	-----------------	----------------------	------------------	---------	-----------------
1	Caffeate 1	C9H8O4	180.0428	181.0500	0.5	16.61	149	+H	135.63	0		
References

[1] Yumi, Z-Y H, Erra, F R, Nur Aimi, A Z, & Nor Fadhillah, M A 2018 International Conference on Halal Innovation in Product and Services Songkhla, Thailand: International Institute for Halal research and Training (INHART) 61-63.

[2] Fazila, K N, & Halim, K K 2012 Journal of Tropical Forest Science 557-564.

[3] Hashim, Y Z-Y, Jamil, M A, Jamal, P, Zainurin, N A, & Azziz, S S 2019 Malaysian Journal of Fundamental and Applied Sciences, 15 842-846.

[4] Ito T, T, Kakino, M, Takawa, S, Watarai, T, Oyama, M, Maruyama, H, Inuma, M 2012 Journal of Nutritional Science and Vitaminology, 58 136-142.

[5] Hendra, R, Ahmad, S, Sukari, A, Shukor, M Y, & Oskoueian, E 2011 International journal of Molecular Sciences 12 3422-3431.

[6] Gameil, A H, Hashim, Y Z-Y, Zainurin, N A, Salleh, H M, & Abdullah, N S 2019 Malaysian Journal of Fundamental and Applied Sciences 15 761-766.

[7] Steckel, A, & Schlosser, G 2019 Molecules 24 1-11.

[8] Kruve, A, Kaupmees, K, Liigand, J, & Leito, I 2014 Analytical Chemistry 4822-4830.

[9] Khyade, V B, & Lonkar, U D 2013 Annals of Plant Sciences 02 (10) 412-419.

[10] Wagner, H, Bauer, R, Melchart, D, Xiao, P-G, & Staudinger, A 2004 Chromatographic Fingerprint Analysis of Herbal Medicines: Thin-layer and High Performance Liquid Chromatography of Chinese Drug. Germany: Springer Wien New York.

[11] Aldred, E M 2009 Phenols. In Pharmacology: A Handbook for Complementary Healthcare Professionals United Kingdom: Churchill Livingstone.

[12] Mittraphaba, A, Muangnoi, C, Likhitwitayahuwit, K, Rojsitthisak, P, & Sritularak, B 2016 Natural Product Communications 657-659.

[13] Jamahseri, N F, Rodhi, M N, Zulkarnain, N H, Husain, N C, & Masruddin, A F 2014 The Malaysian Journal of Analytical Sciences 18 (3) 683 - 689.

[14] Khalil, A S, Rahim, A A, Taha, K K, & Abdallah, K B 2013 Journal of Applied and Industrial Sciences, 1 (3) 78-88.

Acknowledgments
The researchers would like to extend their gratitude to Universiti Malaysia Pahang (UMP) for providing the grants for this study under the grant number RDU190398 and PGRS200356.