The efficacy and safety of acupuncture in women with primary dysmenorrhea
A systematic review and meta-analysis

Hye Lin Woo, KMD, Ha Je Ji, KMD, Yeon Kyoung Pak, KMD, Hojung Lee, Su Jeong Heo, KMD, PhD, Jin Moo Lee, KMD, PhD, Kyoung Sun Park, KMD, PhD.

Abstract
Background: This systematic review aimed to evaluate the current evidence regarding the efficacy and safety of acupuncture on primary dysmenorrhea.

Methods: Ten electronic databases were searched for relevant articles published before December 2017. This study included randomized controlled trials (RCTs) of women with primary dysmenorrhea; these RCTs compared acupuncture to no treatment, placebo, or medications, and measured menstrual pain intensity and its associated symptoms. Three independent reviewers participated in data extraction and assessment. The risk of bias in each article was assessed, and a meta-analysis was conducted according to the types of acupuncture. The results were expressed as mean difference (MD) or standardized mean difference (SMD) with 95% confidence intervals (CIs).

Results: This review included 60 RCTs; the meta-analysis included 49 RCTs. Most studies showed a low or unclear risk of bias. We found that compared to no treatment, manual acupuncture (MA) (SMD = −1.59, 95% CI [−2.12, −1.06]) and electro-acupuncture (EA) was more effective at reducing menstrual pain, and compared to nonsteroidal anti-inflammatory drugs (NSAIDs), MA (SMD = −0.63, 95% CI [−0.88, −0.37]) and warm acupuncture (WA) (SMD = −1.12, 95% CI [−1.81, −0.43]) were more effective at reducing menstrual pain. Some studies showed that the efficacy of acupuncture was maintained after a short-term follow-up.

Conclusion: The results of this study suggest that acupuncture might reduce menstrual pain and associated symptoms more effectively compared to no treatment or NSAIDs, and the efficacy could be maintained during a short-term follow-up period. Despite limitations due to the low quality and methodological restrictions of the included studies, acupuncture might be used as an effective and safe treatment for females with primary dysmenorrhea.

Abbreviations: AA = auricular acupuncture, AE = adverse event, CET = catgut embedding therapy, CI = confidence interval, CMSS = Cox menstrual symptom scale, EA = electroacupuncture, MA = manual acupuncture, MD = mean difference, MSS = menstrual symptom score, NRS = numeric rating score, NSAID = nonsteroidal anti-inflammatory drug, OC = oral contraceptive, PRISMA = Preferred Reporting Items for Systematic reviews and Meta-Analyses, RCT = randomized controlled trial, RR = risk ratio, RSS = Cox retrospective symptom scale, SD = standard deviations, SF-36 = 36-item short form health survey, SMD = standardized mean difference, SR = systematic review, STRICTA = STandards for Reporting Interventions in Clinical Trials of Acupuncture, TER = total effective rate, VAS = visual analog scale, VRS = seven-point verbal rating scale, WA = warm acupuncture.

Keywords: acupuncture, dysmenorrhea, meta-analysis, primary dysmenorrhea, systematic review

1. Introduction
Primary dysmenorrhea is defined as cramping pain during menstruation without any identifiable pelvic pathology, and it affects most women throughout the menstrual years. Many studies have reported that the prevalence of primary dysmenorrhea varied from approximately 50% to 90%, and 13% to 51% had to limit daily activities, such as school or work absenteeism. In the consensus guidelines of primary dysmenorrhea, nonsteroidal...
anti-inflammatory drugs (NSAIDs) and oral contraceptives (OCs) are recommended as first-line treatments. However, some patients did not experience pain reduction with NSAIDs and did experience side effects such as nausea, dyspepsia, headache, or drowsiness.[10,11] In addition, OCs may not be suitable for patients attempting to become pregnant, and might cause adverse effects such as nausea, vomiting, weight gain, or vaginal bleeding.[12,13]

Acupuncture, derived from China, is a therapeutic modality using the insertion of fine needles with the concepts of Yin and Yang and the circulation of qi. Acupuncture acts primarily by stimulating the nervous system, by local effects due to local antidromic axon reflexes, and by releasing opioid peptides and serotonin. Today, acupuncture is regarded as part of conventional medicine. It is no longer only “alternative medicine,” and it is used in Western medicine.[12] In particular, acupuncture has been widely used to alleviate diverse pains[13] including menstrual pain.

Many clinical trials had been conducted to show efficacy of acupuncture on menstrual pain, and 6 systematic reviews (SRs) have been previously conducted to evaluate the efficacy of acupuncture on primary dysmenorrhea.[14–19] However, the previous SRs included acupressure, the stimulation of acupoints without skin penetration,[14–19] which made the evaluation of acupuncture difficult. Some studies analyzed all types of acupuncture together,[14–17] which increased the heterogeneity. One latest study[19] included all the types of acupuncture except acupressure and analyzed the results separately, but it did not include newly published studies in 2017. Thus, we found it necessary to conduct a study with rigorous criteria that excluded acupressure and included all other types of acupuncture that penetrate the skin, such as embedding therapy, and to synthesize the data according to the type of acupuncture to reduce heterogeneity.

We conducted this study with these criteria to determine the efficacy and safety of acupuncture on primary dysmenorrhea.

2. Methods

2.1. Study registration

The protocol for this study was registered in PROSPERO: CRD42017069258.

2.2. Eligibility criteria

2.2.1. Types of studies. We included all randomized controlled trials (RCTs) that measured pain intensity and related outcomes to evaluate the efficacy of acupuncture in women with primary dysmenorrhea. Case studies, case series, noncontrolled trials, review articles, letters, conference papers, abstracts, and poster presentations were excluded. Studies not written in English, Chinese, or Korean were also excluded.

2.2.2. Types of participants. We included female patients of reproductive age suffering from primary dysmenorrhea. The definition of primary dysmenorrhea was based on cyclic pelvic pain during menstruation without any gynecological pathology such as endometriosis, adenomyosis, or uterine myoma. Patients with secondary dysmenorrhea or serious medical conditions were excluded.

2.2.3. Types of interventions. Manual acupuncture (MA), electroacupuncture (EA), auricular acupuncture (AA), and any other type of acupuncture using needle insertion were included in our study. Pharmacupuncture and acupressure were excluded. Other types of acupuncture that are rarely used in Korean clinical practice, such as eye acupuncture and floating acupuncture were also excluded. Types of control interventions included in our studies were no treatment, placebo acupuncture, and oral medications such as NSAIDs and OCs. Herbal medicines or other traditional medicine treatments used in the control group were excluded from our study.

2.2.4. Outcomes. The primary outcome was pain intensity after the intervention period as measured by any validated scale, such as the visual analog scale (VAS) or numeric rating score (NRS). The secondary outcomes were pain relief measured by total effective rate (TER) or improvement rate; related symptoms measured by the seven-point verbal rating scale (VRS), Cox menstrual symptom scale (CMSS), Cox retrospective symptom scale (RSS), or menstrual symptom score (MSS); quality of life as measured by the 36-item Short Form health survey (SF-36); pain intensity after a follow-up period; and adverse events (AEs).

2.3. Data sources

The following databases were searched for articles published from the database’s inception to December 2017: MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), Allied and Complementary Medicine Database (AMED), Citation Information by NII (CiNii), China National Knowledge Infrastructure (CNKI), Chinese Science and Technology Periodical Database (VIP), Wanfang, Oriental Medicine Advanced Searching Integrated System (OASIS), and the Korean Traditional Knowledge Portal (Korean TK). There was no language restriction. We used Medical Subject Heading (MeSH) terms and their synonyms, and modified the terms according to the strategy of each database. The search terms used are shown in Supplemental Search Terms List, http://links.lww.com/MD/C282.

2.4. Study selection

All studies found based on the search results were saved into EndNote; duplicated studies were excluded. After deleting the duplicates, 3 reviewers, WHL, HSJ, and LHJ, selected the relevant studies independently by title and abstract, and finally selected the included studies using the full text. Any disagreements were resolved by discussion among the 3 reviewers and an arbiter, PKS.

2.5. Data extraction

Three authors, WHL, HSJ, and LHJ, extracted data from the included studies according to the predetermined data forms. The following items were extracted: baseline demographics (journal, author, and year of publication); participants (sample size, sex, and age); intervention (type of acupuncture, periods, and frequency of treatment, and follow-up period); control; and outcome.

2.6. Risk of bias assessment

WHL, HSJ, and LHJ independently assessed the risk of bias for each included study using the following criteria from the Cochrane Handbook for Systematic Reviews of Interventions: random sequence generation; allocation concealment; blinding of participants and personnel; blinding of outcome assessment; incomplete outcome data; and selective reporting. We assessed these 6 criteria using “Low” (“L”), “Unclear” (“U”), and “High” (“H”) as a key for judgements. “Low” indicated a low risk of bias, “Unclear” indicated that the risk of bias was uncertain, and “High” indicated a high risk of bias. Disagreements were resolved by discussion among the 3 reviewers and an arbiter, Park KS.
2.7. Data synthesis

In our review, for studies using the same type of acupuncture, comparator, and outcome measures, the meta-analysis was performed using Review Manager software (RevMan v. 5.3). To assess the effect of acupuncture on primary dysmenorrhea, dichotomous data were analyzed using a risk ratio (RR) with 95% confidence intervals (CIs), and continuous data were analyzed using mean differences (MD) and 95% CIs or standardized mean differences (SMD) with 95% CIs if different scales were used. The chi-square and I^2 tests were used to assess statistical heterogeneity.[20] If $I^2 > 50\%$ or $P < .1$, we considered that there was substantial heterogeneity among the trials, and if $I^2 > 75\%$, we considered that there was serious heterogeneity. When serious heterogeneity was indicated, we found sources of heterogeneity by subgroup or sensitivity analysis. Subgroup analysis was conducted according to the treatment periods, and sensitivity analysis was done by excluding each heterogeneous trial. In case of substantial heterogeneity, a random effects model was used; otherwise, a fixed effects model was used to synthesize the data. However, if there were few studies for pooling, a fixed effects model was implemented because it is difficult to obtain a precise estimate of the between-studies variance.[21] If the number of the appropriate studies was only 1, or data were unsuitable for quantitative synthesis, descriptive synthesis of the findings was performed. If the number of studies for pooling was more than 10, publication bias was assessed using a funnel plot.[22]

3. Results

3.1. Study selection

A total of 4244 articles were screened, and 3962 were retrieved. The full texts of 282 studies were reviewed; 222 did not meet our inclusion criteria. Finally, 60 RCTs meeting our criteria were included. All studies were published between January 1987[23] and November 2017[24]. Forty-four studies were published in Chinese,[24-67] 15 in English,[11,23,68-80] and 1 in Korean.[81] Figure 1 shows a Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow of the study selection process.[82]

3.2. Study characteristics

3.2.1. Patients. A total of 3171 patients were treated with MA, EA, warm acupuncture (WA), AA, or catgut embedding therapy (CET); 2730 control patients received no treatment, placebo acupuncture, or oral medications. Of 60 trials, 55 were conducted in China (5653 patients),[24-71,73-79] and 1 each was conducted in America (22 patients),[23] Turkey (35 patients),[72] Australia (92 patients),[80] Thailand (52 patients),[11] and South Korea (47 patients),[81] respectively. The age range of the participants was 10 to 43 years. Table 1 summarizes the characteristics of the included studies.

3.2.2. Acupuncture interventions. Of 60 trials, 35 used MA,[11,23-27,28,29,31,33,37,41,43,44,49-52,57-64,66-70,73,77,80,81] 11
Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
			Manual acupuncture versus no treatment				
An et al[25]	China	EG: 23 ±3, CG: 23 ±3	MA (34)	No treatment (20)	3 cycles/None	OMSS	Not done
Bu et al[68]	China	EG: 19.7, CG: 19.7	MA (36)	No treatment (40)	3 cycles/3 months	OMSS	Done
Bu et al[27]	China	EG: 19.65, CG: 19.68	MA (35)	No treatment (40)	3 cycles/3 months	OMSS	Done
Bu et al[28]	China	EG: 19.6, CG: 19.6	MA (36)	No treatment (20)	3 cycles/None	OMSS	Done
Du et al[37]	China	EG: 18–27, CG: 18–26	MA (19)	No treatment (20)	3 cycles/None	OMSS	Done
Guo[33]	China	EG: 22.10 ±2.86, CG: 22.10 ±2.5	MA (60)	No treatment (30)	1 day/180 minutes	OMSS	Done
Li et al[37]	China	EG: 22.34 ±2.92, CG: 22.29 ±3.00	MA (190)	No treatment (186)	3 cycles/None	VAS	Done
Ma et al[41]	China	EG: 22.88, CG: 23.10	MA (34)	No treatment (20)	3 cycles/3 months	CMSS	Done
Ma et al[77]	China	16–35	MA (344)	No treatment (173)	3 cycles/None	CMSS	Done
Sun et al[49]	China	EG: 22 ±2.5, CG: 22 ±3	MA (40)	No treatment (20)	1 day/180 minutes	CMSS	Done
Wang et al[52]	China	EG: 22.10 ±2.83, CG: 22.11 ±2.50	MA (25)	No treatment (20)	1 day/180 minutes	CMSS	Done
Xu et al[58]	China	EG: 22 ±2.5, CG: 22 ±1	MA (48)	No treatment (48)	4 cycles/3 months	CMSS	Done
Xu et al[59]	China	EG: 23 ±1, CG: 23 ±1	MA (48)	No treatment (48)	5 cycles/3 months	CMSS	Done
Yu et al[60]	China	EG: 23 ±1, CG: 23 ±1	MA (48)	No treatment (48)	3 cycles/9 months	Monthly pain score, Improvement rate	Not done
Manual acupuncture versus placebo acupuncture							
Helms[23]	USA	28	MA (11)	PA (11)	3 cycles/9 months	Monthly pain score, Improvement rate	Not done
Smith et al[80]	Australia	19.2	MA (46)	PA (46)	3 cycles/6months	VAS, SF-36, AEs	Not done
Youn et al[81]	Korea	18–40	MA (25)	PA (22)	3 cycles/None	VAS, AEs	Not done
Manual acupuncture versus oral medications							
Chen and Tu[69]	China	14–43	MA (52)	NSAIDs (40)	3 cycles/None	NSAIDs	Done
Chen and Ju[70]	China	EG: 14–35, CG: 13–30	MA (30)	NSAIDs (30)	3 cycles/None	NSAIDs	Done
Fu[71]	China	13–35	MA (50)	NSAIDs (50)	3 cycles/None	NSAIDs	Done
Jiang[72]	China	EG: 19.35 ±4.33, CG: 20.55 ±4.51	MA (34)	NSAIDs (34)	3 cycles/None	NSAIDs	Done
Kiran et al[27]	Turkey	15–40	MA (11)	NSAIDs (24)	1 cycle/None	NSAIDs	Done
Li et al[28]	China	EG: 21.05 ±3.86, CG: 22.65 ±3.92	MA (20)	NSAIDs (20)	3 cycles/3 months	NSAIDs	Done
Ning[73]	China	EG: 16–37, CG: 17–35	MA (45)	NSAIDs (45)	3 cycles/None	NSAIDs	Done
Qiao et al[74]	China	16–30	MA (20)	NSAIDs (20)	3 cycles/None	NSAIDs	Done
Sriprasert et al[75]	Thailand	18–35	MA (27)	OCS (29)	3 cycles/None	OCS	Done
Wang[29]	China	EG: 18–21, CG: 18–23	MA (40)	NSAIDs (33)	3 cycles/None	NSAIDs	Done
Wang et al[31]	China	EG: 21 ±2, CG: 21 ±2	MA (30)	NSAIDs (30)	3 cycles/None	NSAIDs	Done
Xie[32]	China	29.6 ±4.8	MA (30)	NSAIDs (30)	3 cycles/3 months	NSAIDs	Done
Zhang and Hang[33]	China	EG: 18.7 ±5.27, CG: 20.1 ±6.39	MA (45)	NSAIDs (45)	3 cycles/None	NSAIDs	Done
Zhang[34]	China	22.5 ±3.5	MA (60)	NSAIDs (60)	3 cycles/3 months	NSAIDs	Done
Zhao[35]	China	EG: 22.6 ±2.4, CG: 24 ±8	MA (40)	NSAIDs (40)	3 cycles/None	NSAIDs	Done
Zhong and Xian[36]	China	EG: 22.4, CG: 23.2	MA (40)	NSAIDs (40)	3 cycles/None	NSAIDs	Done
Zhou[37]	China	16.73	MA (37)	NSAIDs (19)	3 cycles/None	NSAIDs	Done
Zhou et al[38]	China	EG: 22.9, CG: 22.6	MA (42)	NSAIDs (42)	3 cycles/None	NSAIDs	Done
Electroacupuncture versus no treatment							
Liu et al[39]	China	21.94 ±2.51	MA (49)	No treatment (48)	1 cycle/1 cycle	VAS, VRS, RSS, AEs	Not done
Mei et al[40]	China	15–30	MA (13)	No treatment (13)	1 cycle/1 cycle	VAS, VRS, AEs	Not done
Shi et al[41]	China	15–30	MA (10)	No treatment (11)	1 cycle/1 cycle	VAS, AEs	Done
Song et al[42]	China	EG: 22.1 ±2.2, CG: 22.8 ±2.7	MA (49)	No treatment (48)	1 cycle/1 cycle	VAS, RSS, AEs	Not done
Electroacupuncture versus placebo acupuncture							
Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
------------------------	---------	------------------------------	-----------------------------	--------------------------	-----------------------------	----------	---------------
Liu et al[73]	China	21.94 ± 2.51	EA (49)	PA (48)	1 cycle/1 cycle	VAS, VRS, RSS, AEs	Done
Liu et al[83]	China	15–30	EA (320)	PA (48)	1 day/None	VAS, VRS, AEs	Not done
Ma et al[75]	China	22.4 ± 2.8	EA (160)	PA (48)	1 cycle/1 cycle	VAS, VRS, AEs	Done
Lu et al[40]	China	NR	EA (14)	PA (11)	1 cycle/None	VAS	Done
Song et al[76]	China	15-30	EA (14)	PA (12)	1 day/None	VAS, VRS, AEs	Done
Ma et al[78]	China	22.4 ± 2.8	EA (23)	PA (11)	1 cycle/None	VAS, RSS, AEs	Not done
Song et al[47]	China	22.1 ± 2.2, RG: 22.5 ± 2.4	EA (163)	PA (164)	1 cycle/1 cycle	VAS, RSS, AEs	Not done

Electro-acupuncture versus NSAIDs

Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
Fang et al[30]	China	22 ± 2.7, RG: 22 ± 2.6	EA (31)	NSAIDs (25)	3 cycles/None	TER	Done
Wei[55]	China	14.0 ± 1.8, RG: 13.0 ± 2.3	EA (30)	NSAIDs (30)	3 cycles/None	VAS, TER	Done

Auricular acupuncture versus NSAIDs

Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
Li et al[38]	China	19.0 ± 0.5	AA (35)	NSAIDs (35)	3 cycles/None	VAS	Not done

Warm acupuncture versus NSAIDs

Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
Gu[32]	China	21.5 ± 1.0, RG: 21.3 ± 1.1	WA (25)	NSAIDs (30)	3 cycles/None	VAS, CMSS, TER	Done
Li[56]	China	18–38	WA (100)	NSAIDs (30)	3 cycles/3 months	TER	Done
Ma[42]	China	22 ± 5.3	WA (40)	NSAIDs (40)	3 cycles/2 months	TER	Done
Shi and Guo[46]	China	24.2 ± 2.20, RG: 24.6 ± 1.94	WA (22)	NSAIDs (22)	3 cycles/None	VAS, TER	Done
Wang[42]	China	13–35	WA (50)	NSAIDs (50)	3 cycles/None	TER	Done
Wang and Gao[46]	China	23.72 ± 2.09, RG: 23.00 ± 2.20	WA (25)	NSAIDs (25)	3 cycles/3 months	TER, AEs	Done
Wu et al[46]	China	21.5 ± 2.3	WA (30)	NSAIDs (30)	3 cycles/None	TER	Done
Zhong and Wei[46]	China	22.24 ± 3.12, RG: 20.36 ± 3.44	WA (33)	NSAIDs (31)	3 cycles/None	VAS, AEs	Done

Warm acupuncture with NSAIDs versus NSAIDs

Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
Kong[38]	China	17–25, RG: 18–25	WA+NSAIDs (60)	NSAIDs (40)	3 cycles/None	TER	Done
Li[54]	China	15–32	WA+NSAIDS (30)	NSAIDs (30)	3 cycles/None	TER	Done

Catgut embedding therapy versus NSAIDs

Study	Country	Mean age or age range, years	Experimental intervention (n)	Control intervention (n)	Treatment/Follow-up periods	Outcomes	Meta-analysis
Bi et al[39]	China	25.3 ± 3	CET (33)	Analgesics (35)	3 cycles/3 months	VAS, TER, MSS, SF-36	Done
Chen et al[40]	China	19.85 ± 2.12, RG: 19.79 ± 2.19	NSAIDs (43)	NSAIDs (43)	3 cycles/None	TER, AEs	Done

AA = auricular acupuncture, AE = adverse event, CET = catgut embedding therapy, OG = oral group, CMSS = Cox menstrual symptom scale, EA = electroacupuncture, EG = experimental group, MA = manual acupuncture, MSS = menstrual symptom score, NR = not reported, NRS = numeric rating score, NSAIDs = nonsteroidal anti-inflammatory drug, OCs = oral contraceptives, PA = placebo acupuncture, RSS = Cox retrospective symptom scale, SF-36 = 36-item Short Form health survey, TER = total effective rate, VAS = visual analog scale, VRS = seven-point verbal rating scale, WA = warm acupuncture.

* These studies had two comparison arms, that is, no treatment group and placebo acupuncture group.
used EA,[30,40,47,48,55,73–76,78,79] 11 used WA,[32,35,36,39,42,45,46,53,54,65] 1 used AA,[81] and 2 used CET.[26,71] The number of acupuncture used varied from 1 to 21. The most frequently used point was Sanyinjiao (SP6), followed by Guanyuan (CV4), Diji (SP8), Cialiao (BL32), Zusanli (ST36), Xuehai (SP10), Taichong (LR3), Zhongji (CV3), Shiqizhui (EX-B8), and Shenshu (BL23). The only point used in 9 trials that used EA was Sanyinjiao (SP6). Twenty-one trials used different acupoints or added acupoints based on traditional Chinese medicine patterns.[26,31,33,36,50,53,54,57,60] Treatment duration ranged from one day to 3 menstrual cycles; 25 trials included follow-ups.[23,24,26–28,33,36,42,45,47,49,50,52,54,57,60,62,66,67,70,71,80] which varied from 180 minutes to one year. The time of intervention started before menstruation started in 31 trials,[27–29,32,34,42,45,51,53–60,62,63,65,66,68,69,72] when menstruation started in 4 trials,[46,73,75,78] when pain occurred in 10 trials,[24,33,40,41,47–49,52,74] and continuous treatment except for menstrual periods in 6 trials.[11,23,26,39,71,75] De-qi sensation was performed in most trials, but 4 studies did not mention about De-qi sensation.[26,38,40,50] Additional interventions to acupuncture were included in 15 trials,[11,33,35,40,47,48,59,60,73–76,78,80] Table 2 shows the acupuncture points and treatment methods of the included studies based on STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) recommendations.[4] 3.2.3. Control interventions. Of the 35 trials that used MA, 14 compared MA to no treatment,[25,27–29,32,37,41,49,52,58–60,68,71] 3 compared MA to placebo acupuncture,[25,28,81] and 18 compared MA to oral medications.[11,23,24,34,43,44,45,51,57,61–64,66,67,69,70,72] Most of the medications were NSAIDs, and only 1 was an OC.[11] Of the 11 trials that used EA, 4 compared EA to nonacupoint EA (placebo EA), or no treatment,[47,73,75,78] 5 compared EA to nonacupoint EA,[40,48,74,75,79] and 2 compared EA to NSAIDs.[50,55] Of 11 trials that used WA,[32,35,36,39,42,45,46,53,54,65] 2 trials compared WA plus NSAIDs to NSAIDs,[35,39] and 9 trials compared WA to NSAIDs.[32,35,36,39,42,45,53,54,65] One trial compared AA to NSAIDs.[38] Two trials compared CET to NSAIDs.[26,71] All of the placebo controls used nonacupoint acupuncture, not sham acupuncture.

3.2.4. Outcome measures. Twenty-seven trials measured pain intensity using VAS,[25,27–29,32,37,41,49,52,58–60,68,71] 5 used VRS,[40,47,48,58,60,73,75,76] and 8 used RSS.[40,47,48,58,60,73,75,76] Thirty trials measured pain relief[23,24,26,30–32,34,36–39,42–46,50,51,53–56,61–64,66,67,69–71] Six trials measured overall menstruation symptoms using MSS.[24,26,44,55,71] Three trials measured the quality of life using SF-36.[11,26,80] Twelve trials reported AEs.[11,47,54,62,65,71,73,75,76,78,80,81] Finally, of 25 trials conducting follow-ups, 10 trials reported the pain intensity after an follow-up period,[23,26,33,45,52,57,59,73,80] which varied from 180 minutes to 9 months by study. Most studies reported various outcomes measuring dysmenorrhea and related symptoms.

3.3. Risk of bias

All 60 studies mentioned randomization. Twenty trials used random number tables,[23,24,26,33,38,43,44,49,51,52,54,57–61,65,67,71,80] 10 used a computer-generated sequence,[11,48,73–80] 5 used central random method,[26,29,37,40,41] and 1 used the draw method.[12] Three trials used the order of joining the study,[34,69,72] and the other 8 studies did not report the details of randomization. Sixteen studies reported appropriate allocation concealment[11,23,28,30,37,40,41,47,48,73–77,79,81] using computer programs, central telephone controls, sealed envelopes, or independent individual controls. It is difficult to achieve blinding to both participants and practitioners for the characteristics of study design in acupuncture intervention, but 14 studies mentioned efforts to minimize performance bias,[23,28,40,47,48,73–81] so we assessed the risk of bias as low. Twelve trials reported assessor blinding,[23,28,40,48,73–80] but most of the others did not report the details.

Most of the studies had no missing data, performed intention-to-treat (ITT) analysis, or had similar numbers and reasons of drop-outs. However, the details of drop-outs and withdrawals were not reported in 6 studies,[27,30,36,66,71,81] considered to be a high risk in reporting bias. Forty-nine studies reported all outcomes clearly as mentioned in protocol studies or methods,[11,23,25,27–28,37,39,41–46,48,49,56,62,72–74,78–80] and were assessed as a low risk of bias in selective reporting. Six studies reported the outcomes unclearly[46,67,68,76,83] and were assessed as an unclear risk of bias, and 5 studies did not report all outcomes as planned,[11,35,38,60,76,77] and were assessed as a high risk of bias. There was a low risk of other sources of bias based on lack of clear evidence. As shown in Figures 2 and 3, most of the studies included in this meta-analysis achieved a low or unclear risk of bias of the quality assessment items.

3.4. Data synthesis

3.4.1. Manual acupuncture

3.4.1.1. MA versus no treatment. VAS. Five studies,[11,34,49,52,58,59] were included in the meta-analysis to synthesize VAS data. As shown in Figure 4A, the pooled results showed serious heterogeneity ($I^2 = 98\%$). We conducted a subgroup analysis, and the pooled results showed that after treatment of 1 day, MA more effectively reduced primary dysmenorrhea than no treatment ($n = 210$, MD = -1.59; 95% CI $[-2.12, -1.06]$; P < 0.001, $I^2 = 60\%$).

VRS. One study[68] reported that after the treatment of 3 menstrual cycles, MA more effectively reduced primary dysmenorrhea than no treatment ($n = 96$, MD = -2.04; 95% CI $[-2.11, -1.97]$; P < 0.001).

CMSS for pain intensity. Six studies[27–29,41,68,77] were included in the meta-analysis to synthesize CMSS for pain intensity data. As shown in Figure 4B, after treatment of 3 menstrual cycles, MA more effectively reduced pain than no treatment ($n = 838$, MD = -7.08, 95% CI $[-8.53, -5.63]$, $P < 0.001$, $I^2 = 50\%$). Two studies[25,37] reported the subscales of CMSS for pain intensity; 1 study[25] reported the MA significantly reduced abdominal pain, and the other[37] reported that the MA significantly reduced extra bed time.

RSS. Two studies[58,60] were included for meta-analysis to synthesize RSS data. As shown in Figure 4C, after treatment of 3 menstrual cycles, MA more effectively reduced pain than no treatment ($n = 141$, MD = -10.47, 95% CI $[-10.74, -10.20]$, P < 0.001, $I^2 = 93\%$).

VAS after follow-up. Five studies[13,49,52,58,59] were included for meta-analysis to synthesize VAS after follow-up data. As shown in Figure 4D, the pooled results showed serious heterogeneity ($I^2 = 98\%$). We conducted a subgroup analysis, and after a 180-minute follow-up, MA was significantly more effective than no treatment ($n = 210$, MD = -1.22, 95% CI $[-1.53, -0.91]$, P < 0.001, $I^2 = 0\%$).
Table 2

Acupuncture interventions of the included studies based on STRICTA recommendations.

Study	Names of points (n)	Depth of insertion	De-qi response or needle stimulation	Number of treatment sessions	Frequency and duration sessions	Needle retention time	Additional interventions
An et al[25]	SP6, BL32, SP8, EX-B8 (7)	NR	De-qi	15 or 9	Once per day 3–7 days before menstruation started, or once per day for 3 days after menstrual pain appeared, 3 cycles.	30 min	None
Bu et al[68]	SP6, BL32, SP8, EX-B8 (7)	Depth based on "Science of Channels and Collaterals and Acupoints"	De-qi	3–7	Once per day 3–7 days before menstruation started, 3 cycles.	30 min	None
Bu[27]	EX-B8 (1)	0.5–1 cun	De-qi	9–21	Once per day 3–7 days before menstruation started until menstrual amount maximized, 3 cycles.	30 min	None
Chen and Tu[69]	SP6, SP8, SP10, LI4 (8)	NR	De-qi	15	Once per day 1–2 days before menstruation started for 5 days, 3 cycles.	1 h	None
Chen and Ju[70]	EX-B8 (1) or SP6, BL32, SP8, EX-B8 (7)	EX-B8: 0.5–1 cun	De-qi	9–21	Once per day 3–7 days before menstruation started, 3 cycles.	30–60 min	None
Chen et al[72]	HT7, KI3, ST36, ST30, CV2, CV4, PC6	NR	De-qi	21	Once per day for 7 days from 4 days before menstruation started, 3 cycles	30 min	None
Fu ke[31]	SP6, ST36, EX-CA1, CV4 + LR3, SP8 (Excess pattern) or SP10, BL17 (Deficiency pattern)	0.5–1 cun	De-qi	9	Once per day when menstrual pain appeared for 3 days, 3 cycles	30 min	None
Guo[33]	EX-B8 (1)	0.5–1 cun	De-qi	9	The day when menstrual pain appeared	20 or 30 min	None
Helms[23]	SP6, SP8, SP10, LI4 (8)	NR	De-qi	NR	Once per week, 3 cycles except during menstrual periods.	30–40 min	None
Jiang[34]	BL31, BL32, BL33, LR3, SP6, SP8, CV4, ST36 (15)	NR	De-qi	21	Once per day for 7 days from 4 days before menstruation started, 3 cycles	30 min	None
Kiran et al[72]	GT7, PO6, U4, U10, SP6, LR3, ST36, GB32, SP15, EX-CA1, CV4 (21)	NR	De-qi	9	Once per day when menstrual pain appeared	45 min	None
Li et al[35]	EX-B8 (1) or SP6, BL32, SP8, EX-B8 (7)	EX-B8: 0.5–1 cun	De-qi	15–21	Once per day from the first day when menstrual pain appeared to the third day of menstruation, 3 cycles	30 min	None
Ma et al[77]	EX-B8 (1) or SP6, BL32, EX-B8 (7)	EX-B8: 0.5–1 cun	De-qi	9	Once per day when menstrual pain appeared	30 min	None
Ma et al[78]	EX-B8 (1) or SP6, BL32, EX-B8 (7)	EX-B8: 0.5–1 cun	De-qi	9	Once per day when menstrual pain appeared	30 min	None
Ning[43]	BL32, SP6, CV4 (5)	0.5–1 cun	De-qi	NR	Once per day for 7 days from 4 days before menstruation started, 3 cycles	15 min	None
Qiao et al[44]	CV4, SP6, SP8, EX-B8 (6)	0.5–1 cun	De-qi	NR	Once per day when menstrual pain appeared	15 min	None
Smith et al[45]	SP4, ST29, CV3, BL32, SP8, SP10 (7) + LR3, SP6, LI4, CV5, BL32, SP10, CV6, SP8, SP4 (Stagnation of qi and blood) or ST36, CV4, CV6, BL7, SP8, BL20, BL32, (Deficiency of qi and blood) or, BL23, CV3, CV6, SP6, CV4, CV4, LU7, N6, ST36 (Stagnation of coldness) or GB4, LI1, LI2, ST25, BL32, ST40, SP9, ST28, SP6, BL22 (Stagnation of coldness)	0–2 cm	De-qi	21	Once per day for 7 days from 4 days before menstruation started, 3 cycles	30 min	None
		0.5–1 cun	De-qi	NR	Once per day when menstrual pain appeared	30 min	None
		0.5–1 cun	De-qi	9	Once per day when menstrual pain appeared	30 min	None
		0.5–1 cun	De-qi	9	Once per day when menstrual pain appeared	30 min	None
		0.5–1 cun	De-qi	9	Administration of OTCs or analgesics per patient's request.	30–40 min	None
Table 2 (continued).

Study	Names of points (n)	Depth of insertion	De-qi response or needle stimulation	Number of treatment sessions	Frequency and duration sessions	Needle retention time	Additional interventions
Sriprasert et al. [11]	CV6, CV3, SP6, SP6 (6)	De-qi	30 mm	30 min	Admit naproxen 250 mg 1 T unless pain alleviated.		
Sun et al. [49]	SP6 (2) or SP6, CV4 (3)	De-qi	9 + α	Once per day	None		
Wang [50]	CV6, CV3, CV4, SP10, SP6 (7) + CV12, BL23 (Deficiency or cold pattern) or BL18	De-qi	30 min	None			
Wang et al. [51]	SP6, CV4 (3)	De-qi	21 + α	Once per day	None		
Xie [57]	CV4, CV6, ST36, SP6 (7) + SP8, LR3 (Excess pattern) or BL17, ST10 (Deficiency pattern)	De-qi	9 + α	Once per day	None		
Xu et al. [59]	CV4, CV6, ST36, SP6 (7) + SP8, LR3 (Excess pattern) or BL17, ST10 (Deficiency pattern)	De-qi	9 + α	Once per day	None		
Zhang and Yang [60]	CV4, CV6, ST36, SP6 (7) + SP8, LR3 (Excess pattern) or BL17, ST10 (Deficiency pattern)	De-qi	9 + α	Once per day	None		
Zhang 2014 [61]	SP6, CV3, EX-CA1, etc. (5) + ST28, SP6 (Stagnation of coldness and dampness) or BL19 (Stagnation of qi and blood)	De-qi	30 min	None			
Zhao [63]	CV4, CV6, ST36, SP6 (7) + SP8, LR3 (Excess pattern) or BL17, ST10 (Deficiency pattern)	De-qi	15 + α	None			
Zhong and Xian [64]	CV6, BL32, SP10, SP6 (6) + ST29, CV3 (Stagnation of coldness and dampness) or CV4, BL19, ST6, BL23, KI6	De-qi	NR	None			

(continued)
Study	Names of points (n)	Depth of insertion	De-qi/response or needle stimulation	Number of treatment sessions	Frequency and duration sessions	Needle retention time	Additional interventions
Zhou et al.	(Deficiency of liver and kidney) or LR2, SP9 (Liver depression and heat-dampiness) BL32 (2) + CV4 (Deficiency pattern) or CV4, BL23 (Coldness pattern) or HT6, K10 (Heat pattern)	1.5 cun	De-qi	21 + a	Once per day from 7 days before menstruation started, 3 cycles	30 min	None
Zhou et al.	BL31, BL32, BL33, BL34 (4)	50–65 mm	De-qi	1	Once per day from 7 days before menstruation started, 3 cycles	30 min	None
Fang et al.	CV4, CV3, SP6, ST36 (6)	SP6, CV4, CV3: 0.5–1 cun ST36: 0.8–1 cun	De-qi, Electrical stimulation (frequency at 300–500/min, the highest intensity each participant could tolerate, connecting CV4 with CV3, ST36 with SP6)	15	Once per day for 3 days, 3 cycles	30 min	None
Liu et al.	SP6, the points 0.5cm apart from SP6 (4)	NR	De-qi, Electrical stimulation (2/100 Hz AC, the highest intensity each participant could tolerate)	3	Once per day 24 hours after menstruation started for 3 days, 1 cycle	30 min	Administration of aspirin if VAS ≥ 80 mm.
Liu et al.	SP6, the points 5mm proximal to SP6 (4)	25–40 mm	De-qi, Electrical stimulation (2/100 Hz AC, the highest intensity each participant could tolerate)	1	The day when menstrual pain appeared ≥ VAS 40 mm	30 min	Administration of aspirin unless pain alleviates.
Liu et al.	SP6, the points 0.5cm apart from SP6 (4)	10–30 mm	De-qi, Electrical stimulation (2/100 Hz AC, 0.5–1.6mA, the highest intensity each participant could tolerate)	3	Once per day when menstruation started for 3 days, 1 cycle	30 min	Administration of aspirin if VAS ≥ 80 mm.
Lu 2014	SP6, the points 2 mm apart from SP6 (4)	1–2 cun	De-qi, Electrical (2/100 Hz, the highest intensity each participant could tolerate)	1	The day when menstrual pain appeared ≥ VAS 40 mm	30 min	Administration of aspirin if VAS ≥ 80 mm.
Ma et al.	SP6, the points 2 mm upper from SP6 (4)	25–40 mm	De-qi, Electrical stimulation (2/100 Hz AC, the highest intensity each participant could tolerate)	3	Once per day for 3 days, 1 cycle	10 min for first session, 30 min for second and third sessions	Administration of aspirin if VAS ≥ 80 mm.
Shi et al.	SP6, the points 0.5cm proximal to SP6 (4)	1–1.2 cun	De-qi, Electrical stimulation (2/100 Hz AC, 0.5–1.6mA, the highest intensity each participant could tolerate)	3	Once per day for 3 days 24 hours after menstruation started, 1 cycle	30 min	Administration of aspirin if VAS ≥ 80 mm.
Shi et al.	SP6, the points 5mm proximal to SP6 (4)	25–40 mm	De-qi, Electrical stimulation (2/100 Hz AC, the highest intensity each participant could tolerate)	1	The first day when menstrual pain ≥ VAS 40 mm appeared	30 min	Administration of aspirin unless pain alleviates.
Song 2013	SP6, the points 2–5mm apart from SP6 (4)	25–30 mm	De-qi, Electrical stimulation (2/100 Hz AC, 0.5–1.6mA, the highest intensity each participant could tolerate)	3	Once per day for 3 days from the first day when menstrual pain ≥ VAS 40 mm appeared, 1 cycle	30 min	Administration of aspirin if VAS ≥ 80 mm.
Song et al.	SP6, the points 2–5mm apart from SP6 (4)	1–1.2 cun	De-qi, Electrical stimulation (2/100 Hz AC, the highest intensity each participant could tolerate)	3	Once per day for 3 days from the first day when menstrual pain appeared ≥ VAS 40 mm	30 min	Administration of aspirin if VAS ≥ 80 mm.
Wei et al.	ST25, CV3, CV4, GB25, BL23, BL27, BL28, SP6, etc. (14) + LR3, LI, SP10 (Stagnation of qi and blood), or SP6, SP9 (Stagnation of coldness and dampness)	NR	De-qi, Electrical stimulation (6 Hz AC, the highest intensity each participant could tolerate)	30	Once per day for 10 days from 7 days after menstruation started, 3 cycles	30 min	None
Auricular acupuncture	Internal genitals, Liver, Endocrine, Shenmen, etc. (4)	NR	NR	NR	7–10 days before menstruation started for 15 days, alternating between the left and right ear every 3 days, 3 cycles	3 days	None

(continued)
Study	Names of points (n)	Depth of insertion	De-qi response or needle stimulation	Number of treatment sessions	Frequency and duration sessions	Needle retention time	Additional interventions	
Gu [32]	SP6, CV3, CV6, etc. (4)	NR	De-qi	36	Once per day from 3 days before menstruation started to the third day after menstruation started, 3 cycles	NR	None	
Kong [32]	Stagnation of qi and blood: LR3, CV6, CV3, ST29, SP6, SP10, BL32 (12) Stagnation of coldness and dampness: U11, CV6, SP9, ST29, CV3, BL32 (10) Deficiency of kidney qi: SP6, SP6, CV4, BL23, KI3, BL32 (11)	NR	De-qi	15–21	Once per day 3 days before menstruation started for 5–7 days, 3 cycles	20 min	Oral administration of ibuprofen 1 T 3 times daily for 3 days before menstruation started.	
Li [34]	Stagnation of coldness and dampness: CV4, ST36, SP6 (5) Deficiency of liver and kidney CV4, CV6, SP6, ST36 (6) LR3, SP9 (4)	NR	De-qi	12–18	Once per day 3–5 days before menstruation started to the second day of menstruation started, 3 cycles	30 min	None	
Liu [34]	SP6, CV3, ST29, CV6, SP8 (8)	1.5–2 cun	De-qi	18	Once per day 2–3 before menstruation started for 6 days, 3 cycles	30 min	None	
Qin et al [34]	EX-CA1, CV4, CV3, CV6, SP6, ST36, U4, LR3, SP10, SP8, SP9 (19) CV6, CV4, SP6 (4)	0.5–1 cun	De-qi	3	Once per day 2 days before menstruation started for 10 days, 3 cycles	30 min	None	
Shi and Gu [34]	SP6, SP10, ST36, CV4, LR3 (9)	1 cun	De-qi	15	The first day of menstruation, 3 cycles	30 min	None	
Wang and Gao [34]	BL32 (2)	20–35 mm	De-qi	15	Once per day 5 days before menstruation started for 5 days, 3 cycles	NR	None	
Wu et al [34]	BL32, SP6 (4)	BL32: 1.5 cun SP6: 1 cun	De-qi	21	Once per day 7 days before menstruation started, 3 cycles	NR	None	
Zhong and Wei [34]	CV4, ST29, SP6 (4)	CVA, ST29: 1–2 cun SP6: 1–1.5 cun	De-qi	21	Once per day from 5 days before menstruation started to the second day of menstruation, 3 cycles	NR	None	
Catgut embedding therapy	Bl et al [34]	Before menstruation: CV4, EX-CA1, SP5, BL32 (7) After menstruation: BL23, BL18, BL20 (6) + BL17, ST25 (Stagnation of qi and blood), ST29 (Stagnation of coldness), K14, SP10 (Stagnation of dampness and heat), SP6 (Deficiency of liver and kidney), ST36 (Deficiency of qi and blood)	Deeply into subcutaneous fat layer	Removing needles with swirling to lead needle sensation	6	Twice per cycle (3 days before, 12–14 days after menstruation started), 3 cycles	NR	None
Chen et al [34]	SP6, BL32, CV6 (6) + BL23 (Stagnation of qi and blood) or BL18 (Stagnation of qi and blood) or ST36 (Deficiency of qi and blood)	Subcutaneous or muscular layer	NR	6	Twice per cycle (7 days before menstruation started, 10 days after menstruation finished), 3 cycles	NR	None	

AC = alternating current, NR = not reported, OC = oral contraceptive, STRICTA = Standards for Reporting Interventions in Clinical Trials of Acupuncture.
3.4.1.2. MA versus placebo acupuncture. Pain intensity. Three studies reported pain scores,[23,80,81] but data were unsuitable for pooling because the score systems of the studies were different from each other. One study[23] reported that MA lowered monthly pain score after treatment of 3 menstrual cycles (n = 22, MD = -70.67, 95% CI [−126.52, −14.82], P = .01) and another study[80] reported that MA lowered the pain score after treatment of 3 menstrual cycles without significant differences (n = 92, MD = -0.9, 95% CI [−1.8, 0.4], P = .21). The other study[81] also reported that there were no significant differences between groups after treatment of 3 menstrual cycles (n = 47).

Pain relief. One study[23] reported that after treatment of 3 menstrual cycles, MA provided a significant improvement in pain compared to placebo acupuncture (n = 22, RR = 2.50, 95% CI [1.12, 5.38], P < .05).

SF-36. One study[80] reported that after treatment of 3 menstrual cycles, there was no significant difference in all SF-36 subscales or both component scores between the 2 groups (n = 92, bodily pain MD = -6.1, 95% CI [−15.1, 2.8], P = .18; General health MD = 5.1, 95% CI [−3.0, 13.2], P = .22; Vitality MD = 3.2, 95% CI [−5.1, 11.6], P = .44; Social function MD = 1.1, 95% CI [−8.0, 10.3], P = .81; Role emotional MD = 2.2, 95% CI [−12.7, 17.1], P = .77; Mental health MD = 6.0, 95% CI [−1.7, 13.6], P = .13; Overall Physical Component MD = -2.3, 95% CI [−5.9, 1.2], P = .19; Overall Mental Component MD = 3.5, 95% CI [−1.1, 8.1], P = .71).

Pain intensity after follow-up. Two studies[23,80] reported this outcome. One study[23] reported MA maintained pain reduction until 9 months after the completion of treatment (n = 22, MD = -64.90, 95% CI [−122.11, −7.69], P < .03). The other[80] reported there were no significant differences between the groups after 3- and 9-month follow-up periods.

AEs. Two studies[80,81] reported there were no AEs.

3.4.1.3. MA versus oral medications. Pain intensity. Five studies[44,51,57,70,72] comparing MA to NSAIDs reported VAS, and 1 study[11] comparing MA to OCs reported a change in NRS. As shown in Figure 4F, the MA was significantly more effective at reducing pain than NSAIDs (n = 255, SMD = -0.63, 95% CI [−0.88, −0.37], P < .001, I² = 0%). Meanwhile, OCs were more effective than MA after treatment of 3 menstrual cycles (n = 52, MD = 1.58, 95% CI [0.36, 2.80], P < .01).

Pain relief. Fourteen studies[24,31,34,43,44,50,51,61–64,66,69,70] comparing MA to NSAIDs were included for meta-analysis to synthesize TER data. As shown in Figure 4F, MA provided significant pain relief compared to NSAIDs (n = 1,049, RR = 1.17, 95% CI [1.11, 1.22], P < .001, I² = 0%). The funnel plot of those studies did not show asymmetry. One study[67] reported pain relief as percentage using 6-Likert score, and also showed significant pain relief compared to NSAIDs (n = 84, RR = 2.97, 95% CI [1.75, 5.05], P < .01).

MSS. Three studies[24,44,51] comparing MA to NSAIDs reported MSS. As shown in Figure 4G, MA was significantly more effective at improving menstrual symptoms than NSAIDs after treatment of 3 menstrual cycles (n = 190, SMD = -0.53, 95% CI [−0.84, −0.23], P < .001, I² = 2%).

SF-36. One study[11] reported that there was no significance difference between the 2 groups after treatment of 3 menstrual cycles (n = 52, MD = -1.82, 95% CI [−9.36, 5.72], P = .64).

VAS after follow-up. One study[81] reported that after a 3-month follow-up, MA was significantly more effective than NSAIDs (n = 60, MD = -1.39, 95% CI [−2.65, −0.13], P < .05).

AEs. Two studies[11,62] reported AEs. One study[11] reported one case of regional discomfort or hemorrhage, 4 cases of headache or myalgia, and 1 case of fever in the MA group, which were all mild. Meanwhile, in the OCs group[11], 9 cases of abnormal uterine bleeding, 5 cases of headache or myalgia, 3 cases of weight gain, 2 cases of nausea or vomiting, and 1 case of breast bleeding were reported; they were all already known AEs of OCs and were not severe. The other study[62] reported 3 cases of elevated alanine transaminase (ALT), 2 cases of blurred vision, 3 cases of lumbar and leg pain, and 5 cases of others, which were predictable reactions, and soon disappeared.

3.4.2. Electroacupuncture. 3.4.2.1. EA versus no treatment. VAS. Four studies[47,73,76,78] reported that EA was significantly more effective at reducing pain than no treatment (n = 97, MD = -15.36, 95% CI [−22.16, −8.95], P < .001[73]; n = 26, MD = -23.19, 95% CI [−32.06, −14.33], P < .001[76]; n = 20, MD = -22.50, 95% CI [−31.70, −13.30], P < .005[78]; n = 97, P < .001; details of data not shown[47]). Data were unsuitable for pooling for means and SDs were not reported.

VRS. Two studies[73,76] reported that there was no significant difference between the groups. Data were unsuitable for pooling.
because they reported the results only in graphs, which made it hard to extract raw data. AEs. Four studies reported AEs, but one study showed 1 case of dizziness after EA.

3.4.2.2. EA versus placebo acupuncture. VAS. Nine studies were included in the meta-analysis because the other 3 did not provide SDs. As shown in Figure 5A, the VAS of the EA group was significantly lower than placebo group (n = 826, SMD = −0.32, 95% CI [−0.63, −0.01], P = .04, I² = 69%). Of the 3 studies included from meta-analysis, one study reported that EA was significantly more effective in reducing pain than the placebo group in cold-dampness stagnation after one session of treatment (n = 487, MD = −8.2, 95% CI [−13.5, −2.9], P < .005); in other types, there was no significant difference. Another study showed the same result after treatment of 1 menstrual cycle (n = 25, MD = −20.78, 95% CI [−29.82, −11.73], P < .001). The other RCT reported that there was no significant difference between the groups after treatment of 1 menstrual cycle (n = 97, details of data not shown).

VRS. Three studies reported VRS, but only 2 were included in the meta-analysis because the third did not provide SDs. As shown in Figure 5B, after treatment of 1 menstrual cycle, the VRS in the EA group was lower than the placebo group, but there was no significance (n = 347, MD = −0.20, 95% CI [−0.43, 0.03], P = .10, I² = 61%). The other study also reported a change of VRS in the EA group that was lower than the placebo group, but there was no significance (n = 322, reduction from 3.94 to 3.08 vs reduction 3.72 to 3.02).

VAS after follow-up. One study reported that after one-cycle follow-up, there were no significance differences between EA and PA groups (n = 322, MD = −1.40, 95% CI [−2.2, 0.7], P = .28). The other 2 studies also showed no significance in VAS (data not shown).

VAS after follow-up. One study reported that after one-cycle follow-up, there were no significance differences between EA and PA groups (n = 322, MD = −1.40, 95% CI [−2.2, 0.7], P = .28). The other 2 studies also showed no significance in VAS (data not shown).

VAS after follow-up. One study reported that after one-cycle follow-up, there were no significance differences between EA and PA groups (n = 322, MD = −1.40, 95% CI [−2.2, 0.7], P = .28). The other 2 studies also showed no significance in VAS (data not shown).

3.4.2.3. EA versus NSAIDs. VAS. One study reported that after treatment of 3 menstrual cycles, EA was significantly effective at reducing pain than NSAIDs (n = 60, MD = −1.40, 95% CI [−2.2, −0.59], P < .01).

Pain relief. Two studies reported TER, but as shown in Figure 5C, the pooled results showed no significant differences between the 2 groups (n = 140, RR = 1.80, 95% CI [0.99, 1.18], P = .09, I² = 0%).

3.4.3. Auricular acupuncture. AA versus NSAIDs. VAS. One study reported that after treatment of 3 menstrual cycles, there were no significant differences between the 2 groups (n = 70, MD = −0.20, 95% CI [−0.90, −0.50], P = .58).
Figure 4. Meta-analysis of the studies evaluating the effects of MA on primary dysmenorrhea. (A) MA vs no treatment, outcome: VAS. (B) MA vs no treatment, outcome: CMSS for pain intensity. (C) MA vs no treatment, outcome: RSS. (D) MA vs no treatment, outcome: VAS after follow-up. (E) MA vs NSAIDs, outcome: VAS. (F) MA vs NSAIDs, outcome: TER. (G) MA vs NSAIDs, outcome: MSS. CMSS = Cox menstrual symptom scale, MA = manual acupuncture, NSAID = nonsteroidal anti-inflammatory drug, MSS = menstrual symptom score, RSS = Cox retrospective symptom scale, TER = total effective rate, VAS = visual analog scale.

Figure 5. Meta-analysis of the studies evaluating the effects of EA on primary dysmenorrhea. (A) EA versus PA, outcome: VAS. (B) EA versus PA, outcome: VRS. (C) EA versus NSAIDs, outcome: TER. EA = electroacupuncture, IV = inverse variance, NSAIDs = nonsteroidal inflammatory drugs, NSAID = nonsteroidal anti-inflammatory drug, PA = placebo acupuncture, SD = standard deviations, TER = total effective rate, VAS = visual analog scale, VRS = seven-point verbal rating scale.
3.4.4. Warm acupuncture

3.4.4.1. WA versus NSAIDs. VAS.

Three studies\[32,46,65\] were included in the meta-analysis to synthesize VAS data. A meta-analysis of the 3 studies involving 178 participants was implemented, but the results showed serious heterogeneity (\(I^2=94\%\)). We conducted a sensitivity analysis by excluding the trial\[65\] with effect sizes largely different from the others. Statistical heterogeneity was reduced after exclusion. As shown in Figure 6A, with 2 remaining studies, the VAS of the WA group was significantly lower than NSAIDs group (n = 114, SMD = 1.12, 95% CI [1.81, 0.43], \(P = .002, I^2 = 66\%\)).

3.4.4.2. WA plus NSAIDs versus NSAIDs. TER.

Two studies\[35,39\] reported that WA adding on NSAIDs provided significant pain relief compared to only NSAIDs after treatment of 3 menstrual cycles (n = 160, RR = 1.28, 95% CI [1.12, 1.46], \(P < .001, I^2 = 0\%\)).

3.4.5. Catgut embedding therapy

3.4.5.1. CET versus NSAIDs. VAS.

One study\[26\] reported that CET was significantly more effective than NSAIDs after treatment of 3 menstrual cycles (n = 70, t = -2.70, \(P < .01\)).

3.4.5.2. CET versus NSAIDs. TER. Two studies\[35,39\] reported that WA adding on NSAIDs provided significant pain relief compared to only NSAIDs after treatment of 3 menstrual cycles (n = 160, RR = 1.28, 95% CI [1.12, 1.46], \(P < .001, I^2 = 0\%\)).

3.4.5.3. CET versus NSAIDs. MSS. Two studies\[26,71\] reported that CET effectively reduced menstrual symptoms compared to NSAIDs after treatment of 3 menstrual cycles with serious heterogeneity as shown in Figure 7B (n = 162, SMD = -1.57, 95% CI [-1.95, -1.19], \(P < .001, I^2 = 98\%\)).

AEs. Two studies\[54,65\] reported AEs. One study\[54\] reported 5 cases of nausea, vomiting, and fever in the NSAIDs group, and the other study\[63\] reported there were no AEs.

Figure 6.

Meta-analysis of the studies evaluating the effects of WA on primary dysmenorrhea. (A) WA vs NSAIDs, outcome: VAS. (B) WA vs NSAIDs, outcome: TER. (C) WA plus NSAIDs vs NSAIDs, outcome: TER. CI = confidence interval, IV = inverse variance, NSAIDs = nonsteroidal anti-inflammatory drugs, SD = standard deviations, TER = total effective rate, VAS = visual analog scale, WA = warm acupuncture.
VAS after follow-up. One study reported[26] that after a 3-month follow-up, CET was significantly more effective than NSAIDs (n = 70, t = 4.72, P < 0.01).

AEs. One study reported 6 cases of gastrointestinal discomforts, headache, dizziness, and insomnia in the NSAIDs group.

4. Discussion

4.1. Summary of the main results

This systematic review was aimed to summarize and evaluate acupuncture treatment to reduce menstrual pain and its associated symptoms. As a result, we suggest that acupuncture might have beneficial effects for improvement of dysmenorrhea and remain efficacious after short-term follow-up.

We conducted comparisons separately according to the characteristics of interventions and controls. MA was significantly more effective than no treatment, and NSAIDs for reduction of menstrual pain and its associated symptoms, and remained effective after a short-term follow-up compared to no treatment and NSAIDs. The MA-induced analgesic effect could be explained by C-fiber involvement during the practitioners' manipulation for the de-qi response.[85] However, no significant difference was observed between MA and placebo acupuncture or between MA and OCs. It was difficult to determine the superior effect of OCs compared to MA because there was only one relevant study.[11]

The results showed that EA was significantly more effective at reducing menstrual pain than no treatment,[47,73,76,78] placebo acupuncture,[40,48,73–76,78,79] but not effective at improving its associated symptoms.[47,73,76] The results comparing with NSAIDs were inconclusive due to the small sample size. The results showed WA might also relieve menstrual pain compared to NSAIDs alone. WA increases the circulation of qi and blood through the needle body during thermal heating. It provides analgesic effects by stimulating nerve transfer and relaxing uterine muscle spasms.[91]

CET might also be effective for primary dysmenorrhea. CET is a therapeutic modality based on acupuncture theory and continuous stimulation of acupoints with embedded thread, and its continuous stimulation prolongs the effects of acupuncture. In addition, the embedded thread gradually liquefies and is absorbed, and stimulates the points physically and chemically.[24] With this mechanism, CET might be considered to demonstrate analgesic effects and maintain the effects for short-term follow-up.

Severe AEs of acupuncture were not observed. Thirteen of the 60 studies reported AEs of acupuncture. Most of the reported AEs were regional pain or discomfort, hematoma, and dizziness. Those mentioned were mild, similar to previously known AEs.[92]

The applicability of acupuncture to primary dysmenorrhea in other settings is unclear. Fifty-seven of the trials were conducted in Asian countries: 55 in China, 1 in Thailand, and 1 in South Korea. The acupuncture practitioners might have different treatment skills according to the nations in which they were trained, and the participants might have different preconceptions and familiarity with acupuncture according their cultures.[89] In addition, the variability of the details of interventions and controls could make applicability unclear.

4.2. Strengths and limitations of this review

Six SRs which evaluate the efficacy of acupuncture on primary dysmenorrhea have previously been conducted,[14–19] and 2 of them were published in 2016[17] and 2019[19], respectively. However, there were some differences between these 2 SRs and
our review. They may arise from the different search strategies, inclusion criteria, and analysis methods. In particular, the Cochrane review analyzed 42 studies, just separating the treatment types into acupuncture and acupressure. Liu et al. review analyzed 23 studies with similar strategies to our review, did not include 10 trials newly published in 2017, and did not include other modalities of acupuncture such as WA or CET, frequently used in clinical fields. Our review included all types of acupuncture that stimulate acupoints by penetrating the skin, including CET, and synthesized data separately according to the characteristics of the interventions and controls.

Our study had some limitations, and those results mentioned above should be interpreted with caution. One was that most of the included trials achieved a low or unclear risk of bias. The unclear judgements appeared mostly in the domains of allocation concealment and blinding of participants/practitioners/outcome assessors, because the details were not described. The blinding of participants is critical for subjective outcomes such as pain, but blinding of both participants and practitioners was difficult due to the characteristics of acupuncture intervention. The other limitation was that there was substantial heterogeneity among the pooled trials. We tried to reduce the heterogeneity by synthesizing the data separately depending on the characteristics of the interventions and controls, subgroup analysis, and sensitivity analysis, but the unresolved heterogeneity in some cases still existed. We considered this heterogeneity derived from the small sample sizes in some outcomes and the methodological variations among the included studies. The methods of interventions varied in the frequency, duration of each session, selection of acupoints, and de-qi methods. The variations of controls also appeared in different components of NSAIDs. These variations could influence the results of the trials, and were considered to cause unresolved heterogeneity.

4.3. Implications of this review for practice and research

To provide convincing evidence of the efficacy of acupuncture for primary dysmenorrhea, future RCTs should adhere to rigorous standards assessing the risk of bias, such as conducting randomization allocation concealment and trying to avoid performance bias. In addition, those trials should be reported as STRICTA guidelines to clear the specific method of each intervention.

5. Conclusions

The results of this study suggest that acupuncture might reduce menstrual pain and associated symptoms more effectively compared with no treatment or NSAIDs, and the efficacy could be maintained during a short-term follow-up period. However, the efficacy of acupuncture compared to a placebo was not convincing. The safety of acupuncture appeared because a few mild AEs were reported. Our suggestions had limitations because the quality of the included RCTs was low, and methodological restriction existed in this study. More rigorously designed trials are required to confirm our findings.

Author contributions

Conceptualization: Hye Lin Woo, Hae Ri Ji, Yeon Kyoung Pak, Hojung Lee, Su Jeong Heo.

Data curation: Hye Lin Woo, Yeon Kyoung Pak, Hojung Lee, Su Jeong Heo.

Formal analysis: Hye Lin Woo.

Funding acquisition: Jin Moo Lee.

Methodology: Hye Lin Woo, Hae Ri Ji, Yeon Kyoung Pak, Hojung Lee, Su Jeong Heo, Kyoung Sun Park.

Project administration: Jin Moo Lee, Kyoung Sun Park.

Writing – original draft: Hye Lin Woo.

Writing – review & editing: Kyoung Sun Park.

References

[1] Dawood MY. Primary dysmenorrhea: advances in pathogenesis and management. Obstet Gynecol 2006;108:428–41.
[2] Weissman AM, Hartz AJ, Hansen MD, et al. The natural history of primary dysmenorrhea: a longitudinal study. BJOG 2004;111: 345–52.
[3] Hällen TI, Grbavac SL, Johnston PJ, et al. Primary dysmenorrhea in young Western Australian women: prevalence, impact, and knowledge of treatment. J Adolesc Health 1999;25:40–5.
[4] Ng TP, Tan NC, Wansaiichong GK. A prevalence study of dysmenorrhea in female residents aged 15–54 years in Clementi Town, Singapore. Ann Acad Med Singapore 1992;21:323–7.
[5] Harlow SD, Park M. A longitudinal study of risk factors for the occurrence, duration and severity of menstrual cramps in a cohort of college women. Br J Obstet Gynaecol 1996;103:1134–42.
[6] Wilson CA, Keye WRJr. A survey of adolescent dysmenorrhea and premenstrual symptom frequency. A model program for prevention, detection, and treatment. J Adolesc Health Care 1989;10:317–22.
[7] LeFebvre G, Pineau J, Anto V, et al. Primary dysmenorrhoea consensus guideline. J Obstet Gynaecol Can 2005;27:1117–46.
[8] Harel Z. Dysmenorrhea in adolescents and young adults: etiology and management. J Pediatr Adolesc Gynecol 2006;19:363–71.
[9] Luthe PM, Champaantera R. Dysmenorrhea. BMJ Clin Evid 2014;2014:0813.
[10] Wong CI, Farquhar C, Roberts H, et al. Oral contraceptive pill as treatment for primary dysmenorrhea. Cochrane Database Syst Rev 2009;2:CD002120.
[11] Sriprasert I, Suerungruang S, Athilarp P, et al. Efficacy of acupuncture versus combined oral contraceptive pill in treatment of moderate-to-severe dysmenorrhea: a randomized controlled trial. Evid Based Complement Alternat Med 2015;2015:735690.
[12] White A, Medicine EBoAi. Western medical acupuncture: a definition. Acupunct Med 2009;27:33.
[13] Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 2008;85:355–75.
[14] Yang H, Liu CZ, Chen X, et al. Systematic review of clinical trials of acupuncture-related therapies for primary dysmenorrhea. Acta Obstet Gynecol Scand 2008;87:1114–22.
[15] Chung YC, Chen HH, Yeh ML. Acupuncture stimulation intervention for people with primary dysmenorrhea: Systematic review and meta-analysis of randomized trials. Complement Ther Med 2012;20:353–63.
[16] Smith CA, Zhu X, He L, et al. Acupuncture for primary dysmenorrhea. Cochrane Database Syst Rev 2011;4:CD007834.
[17] Smith CA, Armour M, Zhu X, et al. Acupuncture for dysmenorrhea. Cochrane Database Syst Rev 2016;4:CD007834.
[18] Cho SH, Hwang EW. Acupuncture for primary dysmenorrhea: a systematic review. BJOG 2010;117:509–21.
[19] Liu T, Yu JN, Cao BY, et al. Acupuncture for primary dysmenorrhea: a meta-analysis of randomized controlled trials. Altern Ther Health Med 2017;23:AT5435.
[20] Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Vol. 4. 2011;John Wiley & Sons, Hoboken, New Jersey.
[21] Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 2010;1:97–111.
[22] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011;343:d4002.
[23] Helms JM. Acupuncture for the management of primary dysmenorrhea. Obstet Gynecol 1987;69:51–6. Available at: http://onlinelibrary.wiley.com/o/cochrane/clinical/articles/9990/CN-00045990/frame.html.
[24] Li PJ, Liu WW, Li JX. Clinical observation of 20 cases of primary dysmenorrhea treated by Dong Qi acupuncture. Hunan J Tradit Chin Med 2017;33:83–4.
[25] An Y, Du DQ, Gao SZ, et al. Clinical study on different intervention types of acupuncture for primary dysmenorrhea. Shanghai J Acupunct Moxibustion 2013;32:91–3.
[26] Bi Y, Shao X, Xuan L. Primary dysmenorrhea treated with staging acupuncture embedding therapy: a randomized controlled trial. Chin Acupunct Moxibustion 2014;34:111–9.

[27] Bu YQ. Observation on therapeutic effect of acupuncture at Shiqizhui (Extra) for primary dysmenorrhea at different time. Chin Acupunct Moxibustion 2011;31:110–2.

[28] Bu YQ, Hou WJ, Li YM, et al. Observation of the efficacy of acupuncture at single point and multiple points before menstruation on primary dysmenorrhea. J New Chin Med 2011;43:99–101.

[29] Du DQ, Gao SZ, Ma YX. Clinical research of primary dysmenorrhea with acupuncture at Shiquzhui (EX-B7) before menstruation. World J Integr Tradit West Med 2012;7:1073–5.

[30] Fang YJ, Han LB, Wang ZH. Clinical observation of 31 cases of primary dysmenorrhea treated by electroacupuncture. Chin J Ethnomed Ethnopharm 2015;24:158–9.

[31] Fu L. The clinical observation of the acupuncture treatment for primary dysmenorrhea 50 cases. J Clin Acupunct Moxibustion 2010;26:16–7.

[32] Gu LJ. Observation of the clinical efficacy of the combination of chinese and western medicine with warm acupuncture in treating primary dysmenorrhea. China Health Care Nutrit 2017;9:392–3.

[33] Guo ZP. Study of analgesic effect of acupuncture on Shiqizhui (ex-bh) point with different needle retaining time on primary dysmenorrhea. J Shandong Univ TCM 2015;39:322–4.

[34] Jiang LY. Clinical experience of 34 cases of primary dysmenorrhea treated with acupuncture. J Emerg Tradit Chin Med 2007;16:620–4.

[35] Kong Y-X. Observation on curative effect of 60 cases of primary dysmenorrhea treated by combination of TCM and Western Medicine. Health World 2014;10:155–6.

[36] Li Y. Warm acupuncture for 130 cases of primary dysmenorrhea. Shanghai J Acupunct Moxibustion 1998;19:1716–7. Available at: http://onlinelibrary.wiley.com/doi/10.1002/0028-2317/frame.html.

[37] Li ZF, An Y, Chen SZ, et al. Effect of acupuncture at single point and multiple points on extra bed time and combined use of drugs in patients with primary dysmenorrhea. J Clin Acupunct Moxibustion 2013;29:15–7.

[38] Li Z, Qu JH, Wang YZ, et al. Efficacy of press needles to the auricular point in treating primary dysmenorrhea of air force women soldiers. Med J Air Force 2017;33:306–7.

[39] Liu MZ. Observation on the curative effect of traditional chinese medicine acupuncture on primary dysmenorrhea. J Clin Med Liu 2017;4:2413–4.

[40] Lu K, Liu Y, Song CD. Efficacy of acupuncture at Sanyinjiao, Xuanzhong, and non-acupoints on primary dysmenorrhea with visual analogue scale. J Changchun Univ Tradit Chin Med 2011;27:375–7.

[41] Ma YX, Chen S, Sun YG, et al. Clinical study of primary dysmenorrhea treated by acupuncture at single point and multiple points. Shandong J Tradit Chin Med 2009;28:711–3.

[42] Ma HY. Clinical analysis of acupuncture treatment of primary dysmenorrhea due to cold coagulation and blood stasis. Chin J Woman Child Health Res 2016;27:207–8.

[43] Ning Y. Clinical observation on treating 34 cases of primary dysmenorrhea by acupuncture. Chin J Pred Med 2015;07:51–4.

[44] Qiao L, Qiao YY, Zhang WD, et al. The optimal selection of the treatment of primary dysmenorrhea by acupuncture and moxibustion. J External Ther Tradit Chin Med 2017;26:29–31.

[45] Qin X, Liu ZH, Gao XP, et al. 40 Cases of primary dysmenorrhea of qi stagnation and blood stasis type treated by warm acupuncture. Tradit Chin Med Res 2017;30:56–9.

[46] Shi ZH, Guo YJ. Immediate analgesic effect of warming needle moxibustion for primary dysmenorrhea. Classi Med Res 2017;6:1343–6.

[47] Song JS, Liu YQ, Liu CZ, et al. Cumulative analgesic effects of ea stimulation of sanyinjiao (sp 6) in primary dysmenorrhea patients: a multicenter randomized controlled clinical trial. Acupunct Res 2013;38:393–8.

[48] Song JS, Liu YQ, Liu CZ, et al. Cumulative analgesic effect of electroacupuncture at Sanyinjiao (SP6), Xuanzhong (GB39) and non-acupoint for primary dysmenorrhea. Shanghai J Acupunct Moxibustion 2015;34:487–92.

[49] Sun MS, Xue Z, Yu YP, et al. Clinical study on the real-time analgesic effect of acupuncture at Sanyinjiao (sp6) versus multiple points for primary dysmenorrhea. Shanghai J Acupunct Moxibustion 2015;34:1151–3.

[50] Wang CN. Curative effect of acupuncture on 40 cases of dysmenorrhea. J Shcuian Tradit Chin Med 2005;23:84–5.

[51] Wang HB, Zhao S, Sun N, et al. Efficacy observation on wrist-ankle needle for primary dysmenorrhea in undergraduates. Chin Acupunct Moxibustion 2013;15:996–9.

[52] Wang H, Zhang X, Yu YP, et al. Comparison of curative effect of acupuncture at Guanyuan and Shiquzhi on primary dysmenorrhea. J Tradit Chin Med 2015;35:114–7.

[53] Wang RH. Clinical observation of 50 cases of primary dysmenorrhea treated by warm acupuncture. World Latest Med Inform (Electronic Version) 2016;16:218–220.

[54] Wang XW, Gao Qq. Efficacy observation on warming-needle moxibusition and a non-Meridian point, on menstrual pain and uterine arterial blood flow, in primary dysmenorrhea patients. Pain Med 2010;11:1564–75.

[55] Ma YX, Ye XN, Liu CZ, et al. A clinical trial of acupuncture treatment of primary dysmenorrhea with cold coagulation and blood stasis. Int J Tradit Chin Med 2008;30:363–1363.
Shi GX, Liu CZ, Zhu J, et al. Effects of acupuncture at Sanyinjiao (SP6) on prostaglandin levels in primary dysmenorrhea patients. Clin J Pain 2011;27:238.

Shi GX, Li QQ, Liu CZ, et al. Effect of acupuncture on Deqi traits and pain intensity in primary dysmenorrhea: Analysis of data from a larger randomized controlled trial. BMC Complement Altern Med 2014;14:69.

Smith CA, Crowther CA, Petrucco O, et al. Acupuncture to treat primary dysmenorrhea in women: a randomized controlled trial. Evid Based Complement Alternat Med 2011;2011:Article ID: 612464.

Youn HM, Kim CH, Park JH, et al. Effect of acupuncture treatment on the primary dysmenorrhea: a study of single blind, sham acupuncture, randomized, controlled clinical trial. J Korean Acupunct Moxibustion Soc 2008;25:139–62.

Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.

Liu XX, Wang X, Deng Y. Efficacy observation on acupuncture combined with auricular point sticking treatment for primary dysmenorrhea. J Acupunct Tuina Sci 2013;11:262–4.

MacPherson H, Altman DG, Hammerschlag R, et al. Revised standards for reporting interventions in clinical trials of acupuncture (STRICTA): extending the CONSORT statement. J Evid Based Med 2010;3:140–55.

Zhao Z-Q. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 2008;85:355–75.

Ulett GA, Han S, Han JS. Electroacupuncture: mechanisms and clinical application. Biol Psychiatry 1998;44:129–38.

Cheng RS, Pomeranz B. Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms; endorphin and non-endorphin systems. Life Sci 1979;25:1957–62.

Stener-Victorin E, Waldenstrom U, Andersson SA, et al. Reduction of blood flow impedance in the uterine arteries of infertile women with electro-acupuncture. Hum Reprod 1996;11:1314–7.

Bishop FL, Lewith GT. Patients’ preconceptions of acupuncture: a qualitative study exploring the decisions patients make when seeking acupuncture. BMC Complement Altern Med 2013;13:102.

Lundeberg T, Lund I, Sing A, et al. Is placebo acupuncture what it is intended to be? Evid Based Complement Alternat Med 2011;2011:932407.

Zhang ZF, Wang HM. 31 cases of primary dysmenorrhea treated by acupuncture with moxibustion. Gansu J TCM 2010;23:38–9.

Ernst E, White AR. Prospective studies of the safety of acupuncture: a systematic review. Am J Med 2001;110:481–5.

Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.