ON THE CESÀRO AVERAGE OF THE NUMBERS THAT CAN BE WRITTEN AS SUM OF A PRIME AND TWO SQUARES OF PRIMES

MARCO CANTARINI

Abstract. Let $\Lambda(n)$ be the Von Mangoldt function and $r_{SP}(n) = \sum_{m_1 + m_2^2 + m_3^2 = n} \Lambda(m_1) \Lambda(m_2) \Lambda(m_3)$ be the counting function for the numbers that can be written as sum of a prime and two squares. Let N be a sufficiently large integer. We prove that
\[
\sum_{n \leq N} r_{SP}(n) \frac{(N-n)^k}{\Gamma(k+1)} = \frac{N^{k+2} \pi}{4 \Gamma(k+3)} + E(N,k)
\]
for $k > 3/2$, where $E(N,k)$ consists of lower order terms that are given in terms of k and sum over the non-trivial zeros of the Riemann zeta function.

1. Introduction

We continue the recent work of Languasco, Zaccagnini and the author on additive problems with prime summands. In [12] and [13] Languasco and Zaccagnini study the Cesàro weighted explicit formula for the Goldbach numbers (the integers that can be written as sum of two primes) and for the Hardy-Littlewood numbers (the integers that can be written as sum of a prime and a square). Recently [2] the author wrote a paper regarding the Cesàro average of the integers that can be written as sum of a prime and two squares. In a similar manner, we will study a Cesàro weighted explicit formula for the integers that can be written as sum of a prime and two squares of primes. We will obtain an asymptotic formula with a main term and more terms depending explicitly on the zeros of the Riemann zeta function. This technique allow us to obtain a large number of terms in our asymptotic but unfortunately the bound $k > 3/2$ seems to be very difficult to improve. We recall that, for $k = 0$, the Cesàro weights vanish so a result for $k \geq 0$ would allow us to get an asymptotic for the mean of $r_{SP}(n)$.

2010 Mathematics Subject Classification: Primary 11P32; Secondary 44A10, 33C10

Key words and phrases: Goldbach-type theorems, Laplace transforms, Cesàro average.
We let
\[r_{SP}(n) = \sum_{m_1 + m_2^2 + m_3^2 = n} \Lambda(m_1) \Lambda(m_2) \Lambda(m_3) \]
where \(\Lambda(n) \) is the Von Mangoldt function and

\[M_1(N, k) = \frac{N^{k+2} \pi}{4 \Gamma(k+3)} \]

\[M_2(N, k) = \frac{N^{k+1} \pi}{4} \sum_{\rho} \frac{N^{\rho} \Gamma(\rho)}{\Gamma(k+2+\rho)} - \frac{N^{k+3/2} \sqrt{\pi}}{2} \sum_{\rho} \frac{N^{\rho/2} \Gamma(\rho/2)}{\Gamma(k+5/2+\rho/2)} \]

\[M_3(N, k) = \frac{N^{k+1/2}}{2} \sum_{\rho_1} \sum_{\rho_2} N^{\rho_1+\rho_2/2} \frac{\Gamma(\rho_1) \Gamma(\rho_2/2)}{\Gamma(k+3/2+\rho_1+\rho_2/2)} \]

\[M_4(N, k) = \frac{N^k}{4} \sum_{\rho_1} \sum_{\rho_2} \sum_{\rho_3} N^{\rho_1+\rho_2+\rho_3/2} \frac{\Gamma(\rho_1) \Gamma(\rho_2/2)}{\Gamma(k+\rho_1+\rho_2/2+\rho_3/2)} \]

The main result of this paper is the following

Theorem 1. Let \(N \) be a sufficient large integer. We have

\[\sum_{n \leq N} r_{SP}(n) \frac{(N-n)^k}{\Gamma(k+1)} = M_1(N, k) + M_2(N, k) + M_3(N, k) + M_4(N, k) + O(N^{k+1}) \]

for \(k > 3/2 \), where \(\rho = \beta + i \gamma \), with or without subscripts, runs over the non-trivial zeros of the Riemann zeta function \(\zeta(s) \).

Note that an upper bound for \(M_i(N, k) \), \(i = 2, \ldots, 4 \) depends closely on \(\beta \). Let us define

\[\beta := \sup \{ \beta : \Re(\rho) = \beta \} . \]

We have that

\[M_2(N, k) \ll_k N^{k+3/2 + \beta/2} \]

\[M_3(N, k) \ll_k N^{k+1 + \beta} \]

\[M_4(N, k) \ll_k N^{k+2\beta} . \]

Note also that, if the Riemann hypothesis is true, then \(M_4(N, k) \) can be incorporated in the error term. The problem of representing an integer as sum of a prime and two prime squares is classical. Let

\[A = \{ n \in \mathbb{N} : n \equiv 1 \mod 2; n \not\equiv 1 \mod 3 \} ; \]

it is conjectured that every sufficiently large natural number \(n \in A \) is a sum of a prime and two prime squares. Many authors studied the cardinality \(E(N) \) of the set of integers \(n \leq N, n \in A \) that are not representable as a sum of prime and two squares of primes. We recall Hua [10], Schwarz [19], Leung-Liu [10], Wang [21], Wang-Meng [22], Li [17], Harman-Kumchev [9]. Zhao [24] proved that

\[E(N) \ll N^{1/3 + \varepsilon} \]

and so every integer \(n \in [1, N] \cap A \), with at most \(O(N^{1/3+\varepsilon}) \) exceptions, is a sum of a prime and two squares of primes. Letting

\[r(n) := \sum_{p_1 + p_2^2 + p_3^2 = n} \log(p_1) \log(p_2) \log(p_3) \]

Zhao also proved that an asymptotic formula for \(r(n) \) holds for \(n \in [1, N] \cap A \), with at most \(O(N^{1/3+\varepsilon}) \) exceptions. Similar averages of arithmetical functions are common in literature, see, e.g., Chandrasekharan - Narasimhan [3].
and Berndt [1] who built on earlier classical work. The method we will use in this additive problem is based on a formula due to Laplace [15], namely

\[
\frac{1}{2\pi i} \int_{(a)} v^{-s} e^v dv = \frac{1}{\Gamma(s)}
\]

with \(\text{Re}(s) > 0 \) and \(a > 0 \) (see, e.g., formula 5.4 (1) on page 238 of [5]), where the notation \(\int_{(a)} \) means \(\int_{a-i\infty}^{a+i\infty} \). As in [13], we combine this approach with line integrals with the classical methods dealing with infinite sum over primes and integers.

I thank A. Zaccagnini and A. Languasco for their contributions and the conversations on this topic. I also thank the referee, who pointed out further inaccuracies and suggested improvements in the presentation. This work is part of the Author’s Ph.D. thesis.

2. Preliminary definitions and Lemmas

Let \(z = a + iy, \ a > 0, \) let

\[
\widetilde{S}_1(z) = \sum_{m \geq 1} \Lambda(m) e^{-mz}
\]

\[
\widetilde{S}_2(z) = \sum_{m \geq 1} \Lambda(m) e^{-m^2z}
\]

and let us introduce the following

Lemma 2. Let \(z = a + iy, \ a > 0 \) and \(y \in \mathbb{R} \). Then

\[
\widetilde{S}_1(z) = \frac{1}{z} - \sum_{\rho} z^{-\rho} \Gamma(\rho) + E(a, y)
\]

where \(\rho = \beta + i\gamma \) runs over the non-trivial zeros of \(\zeta(s) \) and

\[
E(a, y) \ll |z|^{1/2} \begin{cases} 1, & |y| \leq a \\ 1 + \log^2(|y|/a), & |y| > a. \end{cases}
\]

(For a proof see Lemma 1 of [12]. The bound for \(E(a, y) \) has been corrected in [11]). So in particular, taking \(z = \frac{1}{N} + iy \) we have

\[
\left| \sum_{\rho} z^{-\rho} \Gamma(\rho) \right| = \left| \frac{1}{z} - \widetilde{S}(z) \right| + E \left(\frac{1}{N}, y \right) \ll N + \frac{1}{|z|} + |E \left(\frac{1}{N}, y \right)|
\]

\[
\ll \begin{cases} N, & |y| \leq 1/N \\ N + |z|^{1/2} \log^2(2N|y|), & |y| > 1/N. \end{cases}
\]

We now introduce the following

Lemma 3. Let \(z = a + iy, \ a > 0, \ y \in \mathbb{R} \) and \(\ell \) a fixed positive integer. Then

\[
\widetilde{S}_\ell(z) = \frac{\Gamma(1/\ell)}{\ell^{1/\ell}} - \frac{1}{\ell} \sum_{\rho} z^{-\rho/\ell} \Gamma \left(\frac{\rho}{\ell} \right) + E_\ell(a, y)
\]

where \(\rho = \beta + i\gamma \) runs over the non-trivial zeros of \(\zeta(s) \) and

\[
E_\ell(a, y) \ll \ell E(a, y).
\]

Proof. It is well known (see for example formula 5 of [14]) that, for \(\ell \in \mathbb{N}_0, \)

\[
\widetilde{S}_\ell(z) = \sum_{m \geq 1} \Lambda(m) e^{-m^{1/\ell}z}
\]

\[
= \frac{\Gamma(1/\ell)}{\ell^{1/\ell}} - \frac{1}{\ell} \sum_{\rho} z^{-\rho/\ell} \Gamma \left(\frac{\rho}{\ell} \right) - \frac{\zeta'}{\zeta}(0) - \frac{1}{2\pi \ell} \int_{(-1/2)} \frac{\zeta'}{\zeta}(\ell w) \Gamma(w) z^{-w} dw
\]
so, taking \(w = -\frac{1}{2} + it \), following the proof of the Lemma 1 in [12] and observing that
\[
\left| \frac{\zeta'}{\zeta} (\ell w) \right| \ll \ell \log (|t| + 2)
\]
we can conclude that we may estimate the integral in (13) exactly as in [12], so the claim follows. □

Now we have to recall that the Prime Number Theorem (PNT) is equivalent, via Lemma 2, to the statement
\[
(14) \quad \mathcal{S}_1 (a) \sim a^{-1}, \quad \text{when } a \to 0^+
\]
(see Lemma 9 of [8]) and from Lemma 3 we have
\[
(15) \quad \mathcal{S}_2 (a) \sim \frac{\sqrt{\pi}}{2a^{1/2}}, \quad \text{when } a \to 0^+.
\]
For our purposes it is important to introduce the Stirling approximation (see for example §4.42 of [20])
\[
|\Gamma (x + iy)| \sim 2\pi e^{-\pi |y|/2} |y|^{-x/2}
\]
uniformly for \(x \in [x_1, x_2] \), \(x_1 \) and \(x_2 \) fixed, as well as the identity
\[
(16) \quad |z^{-w}| = |z|^{-\text{Re}(w)} \exp (\text{Im}(w) \arctan (y/a)).
\]
We now quote Lemmas 2 and 3 from [12]:

Lemma 4. Let \(\beta + i \gamma \) run over the non-trivial zeros of the Riemann zeta function and let \(\alpha > 1 \) be a parameter. The series
\[
\sum_{\rho, \gamma > 0} \gamma^{\beta - 1/2} \int_1^\infty \exp (-\gamma \arctan (1/u)) \frac{du}{u^\alpha + \beta}
\]
converges provided that \(\alpha > 3/2 \). For \(\alpha \leq 3/2 \) the series does not converge. The result remains true if we insert in the integral a factor \(\log^c (u) \), for any fixed \(c \geq 0 \).

Lemma 5. Let \(\beta + i \gamma \) run over the non-trivial zeros of the Riemann zeta function, let \(z = a + iy \), \(a \in (0, 1) \), \(y \in \mathbb{R} \) and \(\alpha > 1 \). We have
\[
\sum_\rho |\gamma|^{\beta - 1/2} \int_{\mathbb{R}_1} \exp \left(\gamma \arctan \left(\frac{y}{a} \right) - \frac{\pi}{2} |\gamma| \right) \frac{dy}{|z|^\alpha + \beta} \ll_\alpha a^{-\alpha}
\]
where \(\mathbb{R}_1 = \{ y \in \mathbb{R} : \gamma y \leq 0 \} \) and \(\mathbb{R}_2 = \{ y \in [-a, a] : y \gamma > 0 \} \). The result remains true if we insert in the integral a factor \(\log^c \left(|y/a| \right) \), for any fixed \(c \geq 0 \).

Let us introduce another lemma

Lemma 6. Let \(\rho = \beta + i \gamma \) run over the non-trivial zeros of the Riemann zeta function, let \(z = \frac{1}{\ell} + iy \), where \(N > 1 \) is a natural number, \(y \in \mathbb{R} \), \(\ell \geq 1 \) an integer and \(\alpha > 3/2 \). We have
\[
\sum_\rho \left| \Gamma \left(\frac{\rho}{\ell} \right) \right| \int_{(1/N)} |e^{Nz}| \left| z^{-\rho/\ell} \right| |z|^{-\alpha} |dz| \ll_\alpha N^\alpha.
\]
Proof. Put \(a = \frac{1}{\ell N} \). Using the identity \([17], (18)\) and
\[
(18) \quad |z|^{-1} \simeq \begin{cases}
 a^{-1} & |y| \leq a, \\
 |y|^{-1} & |y| \geq a,
\end{cases}
\]
we get that the left hand side in the statement above is
\[
(19) \quad \sum_\rho |\gamma|^{\beta/\ell - 1/2} \int_\mathbb{R} \exp \left(\frac{\gamma}{\ell} \arctan \left(\frac{y}{a} \right) - \frac{\pi}{2} |\gamma| \right) \frac{dy}{|z|^\alpha + \beta/\ell}.
\]
The case \(\ell = 1 \) has already been discussed in Lemma 6 of [2]. For \(\ell > 1 \), observing Lemmas 2 and 3 of [12] and Lemma 6 [2], we can conclude that the presence of \(\ell \) does not alter the proofs. Hence using the same argument of Lemma 6 of [2] we have the convergence for \(\alpha > 3/2 \). □
3. **Setting**

From (6) and (7) it is not hard to see that
\[
\tilde{S}_1(z) \tilde{S}_2(z) = \sum_{m_1 \geq 1} \sum_{m_2 \geq 1} \sum_{m_3 \geq 1} \Lambda (m_1) \Lambda (m_2) \Lambda (m_3) e^{-(m_1 + m_2 + m_3)z} = \sum_{n \geq 1} r_{SP} (n) e^{-nz}
\]
so let \(z = a + iy \) and \(a > 0 \) and let us consider
\[
\frac{1}{2\pi i} \int_{(a)} e^{Nz^{-k-1}} \tilde{S}_1(z) \tilde{S}_2(z) \, dz = \frac{1}{2\pi i} \int_{(a)} e^{Nz^{-k-1}} \sum_{n \geq 1} r_{SP} (n) e^{-nz} \, dz.
\]
Now we prove that we can exchange the integral with the series. From (14) and (15) we have
\[
\sum_{n \geq 1} |r_{SP} (n) e^{-nz}| = \tilde{S}_1(a) \tilde{S}_2(a) \ll a^{-2}
\]
and hence
\[
\int_{(a)} |e^{Nz^{-k-1}}| |\tilde{S}_1(z) \tilde{S}_2(z)| \, dz \ll a^{-2} e^{Na} \left(\int_{-a}^a a^{-k-1} \, dy + 2 \int_{-\infty}^\infty y^{-k-1} \, dy \right) \ll k a^{-2-k} e^{Na}
\]
assuming \(k > 0 \), so we have that
\[
\sum_{n \leq N} r_{SP} (n) \frac{(N-n)^{k}}{\Gamma(k+1)} = \frac{1}{2\pi i} \int_{(a)} e^{Nz^{-k-1}} \tilde{S}_1(z) \tilde{S}_2(z) \, dz.
\]
Now from (8), (11), (14) and (15) and observing that, for \(\ell \geq 1 \),
\[
\frac{\Gamma(1/\ell)}{\ell z^{1/\ell}} - \frac{1}{\ell} \sum_{\rho} z^{-\rho/\ell} \Gamma \left(\frac{\rho}{\ell} \right) = \tilde{S}_\ell(z) - E_\ell(a, y) \ll a^{-1/\ell} + |E_\ell(a, y)|
\]
we have
\[
\tilde{S}_1(z) \tilde{S}_2(z) = \left(\frac{1}{z} - \sum_{\rho} z^{-\rho} \Gamma (\rho) + E_1(a, y) \right) \left(\frac{\sqrt{\pi}}{2 z^{1/2}} - \frac{1}{2} \sum_{\rho} z^{-\rho/2} \Gamma \left(\frac{\rho}{2} \right) + E_2(a, y) \right)^2
\]
\[
= \left(\frac{1}{z} - \sum_{\rho} z^{-\rho} \Gamma (\rho) \right) \left(\frac{\sqrt{\pi}}{2 z^{1/2}} - \frac{1}{2} \sum_{\rho} z^{-\rho/2} \Gamma \left(\frac{\rho}{2} \right) \right)^2 + O \left(|E_1(a, y)| a^{-1} + |E_1(a, y)| |E_2(a, y)| \right)
\]
(21)
\[
|E_2(a, y)|^2 a^{-3/2} \ll |E_2(a, y)|.
\]
(22)
Now let us consider \(l, m, r, s \geq 1 \) integers. From (9) and (12) we have that
\[
\int_{(a)} |e^{Nz^{-k-1}}| \, |E_1(a, y)| |E_m(a, y)|^r \, |dz|
\]
\[
\ll_{l,m,r,s} e^{Na} a^{-k-1+l \frac{r+s}{2}} \int_0^a dy + \int_a^\infty y^{-k-1+l \frac{r+s}{2}} \log^{2r+2s} \left(\frac{y}{a} \right) \, dy
\]
\[
\ll_{l,m,r,s} e^{Na} a^{-k-1+l \frac{r+s}{2}}
\]
assuming \(k > \frac{r+s}{2} \). We now have to deal with the terms in (21) and (22): taking \(a = 1/N \) we can observe that
\[
\int_{(1/N)} |e^{Nz^{-k-1}}| |E_2(1/N, y)|^2 |E_1(1/N, y)| \, |dz| \ll k N^{k-3/2},
\]
\[
N^{1/2} \int_{(1/N)} |e^{Nz^{-k-1}}| |E_2(1/N, y)| |E_1(1/N, y)| \, |dz| \ll N^{k-1/2},
\]

From \(\frac{N}{1/N} \) and hence the Cesàro average of \(r_{SP} \) can be broken down as
\[
\sum_{n \leq N} r_{SP}(n) \frac{(N-n)^k}{\Gamma(k+1)} = \frac{1}{2\pi i} \int_{(1/N)} e^{\frac{N}{z} - k-1} \left(\frac{1}{z} - \sum_{\rho} z^{-\rho} \Gamma(\rho) \right) \left(\frac{\sqrt{\pi}}{2z^{1/2}} - \frac{1}{2} \sum_{\rho} z^{-\rho/2} \Gamma \left(\frac{\rho}{2} \right) \right)^2 \, dz + O_k \left(N^{k+1} \right)
\]
\[
= \frac{1}{8i} \int_{(1/N)} e^{\frac{N}{z} - k-3} \, dz
\]
\[
+ \frac{1}{8i} \int_{(1/N)} e^{\frac{N}{z} - k-2} \sum_{\rho} z^{-\rho} \Gamma(\rho) \, dz
\]
\[
- \frac{1}{4\sqrt{\pi}} \int_{(1/N)} e^{\frac{N}{z} - k-5/2} \sum_{\rho} z^{-\rho/2} \Gamma(\rho) \, dz
\]
\[
+ \frac{1}{4\sqrt{\pi}} \int_{(1/N)} e^{\frac{N}{z} - k-3/2} \sum_{\rho_1, \rho_2} z^{-\rho_1/2} \Gamma(\rho_1) \sum_{\rho_2} z^{-\rho_2/2} \Gamma(\rho_2) \, dz
\]
\[
+ \frac{1}{8\pi i} \int_{(1/N)} e^{\frac{N}{z} - k-2} \sum_{\rho_1} z^{-\rho_1} \Gamma(\rho_1) \sum_{\rho_2} z^{-\rho_2} \Gamma(\rho_2) \, dz
\]
\[
- \frac{1}{8\pi i} \int_{(1/N)} e^{\frac{N}{z} - k-1} \sum_{\rho_1} z^{-\rho_1} \Gamma(\rho_1) \sum_{\rho_2} z^{-\rho_2} \Gamma(\rho_2) \sum_{\rho_3} z^{-\rho_3} \Gamma(\rho_3) \, dz
\]
\[
+ O_k \left(N^{k+1} \right)
\]
\[
= I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + O_k \left(N^{k+1} \right),
\]
say. In the next sections we will prove that \(I_1 = M_1(N,k) \), \(I_2 + I_3 = M_2(N,k) \), \(I_4 + I_5 = M_3(N,k) \) and \(I_6 = M_4(N,k) \).

4. Evaluation of \(I_1 \)

From \(I_1 \) we will find the main term. If we put \(Nz = s \) we get
\[
I_1 = \frac{1}{8i} \int_{(1/N)} e^{Nz} - k-3 \, dz = \frac{N^{k+2}}{8i} \int_{(1)} e^{s} - k-3 \, ds = \frac{N^{k+2} \pi}{4 \Gamma(k+3)}
\]
using (23). Then \(I_1 = M_1(N,k) \).

5. Evaluation of \(I_2 \) and \(I_3 \)

We have
\[
I_2 = \frac{1}{8i} \int_{(1/N)} e^{Nz} - k-2 \sum_{\rho} z^{-\rho} \Gamma(\rho) \, dz
\]
and
\[
I_3 = -\frac{1}{4\sqrt{\pi}i} \int_{(1/N)} e^{Nz} - k-5/2 \sum_{\rho} z^{-\rho/2} \Gamma(\rho) \, dz.
\]
We want to exchange the integral with the series, then we will prove the absolute convergence for a suitable choice of \(k \). Hence we have to study

\[
A_2 := \left| \sum_\rho \Gamma (\rho) \int_{(1/N)} e^{Nz} \left| z^{-k-2} \right| \left| z^{-\rho} \right| |dz|
\]

and

\[
A_3 := \left| \sum_\rho \Gamma \left(\frac{\rho}{2} \right) \int_{(1/N)} e^{Nz} \left| z^{-k-5/2} \right| \left| z^{-\rho/2} \right| |dz|
\]

and from Lemma 6 we have the convergence for \(k > -1/2 \) and \(k > -1 \) respectively. So we can switch the integral and the series and get

\[
I_2 = \frac{1}{8i} \sum_\rho \Gamma (\rho) \int_{(1/N)} e^{Nz} z^{-k-2-\rho} |dz| = \frac{N^{k+1}}{4} \sum_\rho N^\rho \frac{\Gamma (\rho)}{\Gamma (k+2+\rho)}
\]

and

\[
I_3 = -\frac{1}{4\sqrt{\pi} i} \sum_\rho \Gamma \left(\frac{\rho}{2} \right) \int_{(1/N)} e^{Nz} z^{-k-5/2-\rho/2} |dz| = -\frac{N^{k+3/2}}{2} \sum_\rho N^{\rho/2} \frac{\Gamma (\rho/2)}{\Gamma (k+5/2+\rho/2)}
\]

then \(I_2 + I_3 = M_2 (N, k) \).

6. Evaluation of \(I_4 \)

We have to evaluate

\[
I_4 = \frac{1}{4\sqrt{\pi} i} \int_{(1/N)} e^{Nz} z^{-k-3} \sum_{\rho_1} z^{-\rho_1} \Gamma (\rho_1) \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) |dz|.
\]

We want to switch the integral with two series so we will prove the absolute convergence of

\[
A_{4,1} := \sum_{\rho_1} \left| \Gamma (\rho_1) \right| \int_{(1/N)} e^{Nz} \left| z^{-k-3/2} \right| \left| z^{-\rho_1} \right| \left| \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) \right| |dz|
\]

and

\[
A_{4,2} := \sum_{\rho_1} \left| \Gamma (\rho_1) \right| \sum_{\rho_2} \left| \Gamma \left(\frac{\rho_2}{2} \right) \right| \int_{(1/N)} e^{Nz} \left| z^{-k-3/2} \right| \left| z^{-\rho_1} \right| \left| z^{-\rho_2/2} \right| |dz|.
\]

Now we have to introduce some notations, which is necessary since the evaluation of the integrals depends strictly on the sign of \(y \) and the sign of the imaginary part of \(\rho \). Assume that \(A_{m,n} := \int_{(1/N)} \ldots |dz| \). Hereafter we will use the symbol

\[
A_{m,n}^+ := \int_0^{1/N+\infty} \ldots |dz|
\]

and

\[
A_{m,n}^- := \int_0^{1/N-\infty} \ldots |dz|.
\]

From (11) we can see that

\[
\left| \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) \right| = \left| \tilde{S}_2 (z) - \frac{\sqrt{\pi}}{2 z^{1/2}} - E_2 (1/N, y) \right| \ll N^{1/2} + \frac{1}{|z|^{1/2}} + |E_2 (1/N, y)|
\]

(24)

(25)

\[
\ll \begin{cases} N, & |y| \leq 1/N \\ N + |z|^{1/2} \log^2 (2N |y|), & |y| > 1/N. \end{cases}
\]

(26)
Let us consider $y \leq 0$ and, recalling the notation $\rho_j = \beta_j + i\gamma_j$, the notation (25) and assuming $\gamma_1 > 0$ for symmetry, we have to study

$$A_{4,1}^- \ll \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_0^1 \exp \left(\gamma_1 \arctan (Ny) - \frac{\pi}{2} \gamma_1 \right) |z|^{k - 3/2 + 3 \beta_1} |dz| +$$

$$N \int_{-\infty}^{1/N} \exp \left(\gamma_1 \arctan (Ny) - \frac{\pi}{2} \gamma_1 \right) \frac{dy}{|y|^{k + 3/2 + \beta_1}} + \int_{-\infty}^{1/N} \exp \left(\gamma_1 \arctan (Ny) - \frac{\pi}{2} \gamma_1 \right) \log^2 (2N |y|) \frac{dy}{|y|^{k + 1 + \beta_1}} \ll_k N^{k + 5/2}$$

from Lemma 5, assuming that $\gamma > 0$. Note that we have to split the integral since, from (15) and (20), we have different evaluations if $|y| \leq 1/N$ or $|y| > 1/N$. Now let us consider $y > 0$. Recalling (24), we have to study

$$A_{4,1}^+ \ll N \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_0^{1/N} \exp \left(\gamma_1 \arctan (Ny) - \frac{\pi}{2} \gamma_1 \right) |z|^{k + 3/2 + \beta_1} |dz|$$

$$+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty \exp \left(\gamma_1 \arctan (Ny) - \frac{\pi}{2} \gamma_1 \right) N + \frac{y}{2} \gamma_1 \frac{dy}{|y|^{k + 3/2 + \beta_1}} = A_1 + A_2$$

say, and we have that

$$A_1 \ll_k N^{k + 5/2}$$

from Lemma 5 and

$$A_2 \ll N^{k + 5/2} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_1^\infty \frac{\exp \left(-\gamma_1 \arctan (1/u) \right)}{u^{k + 3/2 + \beta_1}} |du|$$

$$+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_1^\infty \frac{\exp \left(-\gamma_1 \arctan (1/u) \right) \log^2 (2u)}{u^{k + 1/2 + \beta_1}} |du| \ll_k N^{k + 5/2}$$

from Lemma 4, assuming $k > 1/2$. Now let us consider

$$A_{4,2} = \sum_{\rho_1} |\Gamma (\rho_1)| \sum_{\rho_2} |\Gamma \left(\frac{\rho_2}{2} \right)| \int_{(1/N)} |e^{Nz}| |z^{-k - 3/2}| |z^{-\rho_1}| |z^{-\rho_2/2}| |dz| .$$

By symmetry, it suffices to consider only the cases $\gamma_1, \gamma_2 > 0$ and $\gamma_1 > 0, \gamma_2 < 0$. As in (24) and (25) we have to introduce some new notations since the evaluation depends on the sign of the product $\gamma_1 \gamma_2$ and the sign of y. Hereafter we will use the symbol $B_{m,n}$ when we consider $A_{m,n}$ with the assumption $\gamma_1, \gamma_2 > 0$ and the symbol $C_{m,n}$ when we consider $A_{m,n}$ with the assumption $\gamma_1 > 0, \gamma_2 < 0$. Since

$$\arctan (Ny) - \frac{\pi}{2} \leq -\frac{\pi}{2}$$

and recalling (26), we have

$$B_{4,2}^- \ll \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2 - 2/1/2} \exp \left(\frac{\pi}{4} \gamma_2 \right) \left(\int_{-\infty}^0 \frac{dy}{|z|^{k - 3/2 + \beta_1 + \beta_2/2}} \right)$$

$$\ll_k N^{k + 2} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2 - 2/1/2} \exp \left(-\frac{\pi}{4} \gamma_2 \right) \ll_k N^{k + 2}.$$
say. If \(y \in (0, 1/N] \) we obviously have \(\arctan(Ny) - \frac{\pi}{2} \leq -\frac{\pi}{4} \) and so

\[
A_3 \ll_k \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{4} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2 / 2 - 1/2} \exp \left(-\frac{\pi}{8} \gamma_2 \right) \int_0^{1/N} N^{k + 3/2 + \beta_1 + \beta_2 / 2} dy \ll_k N^{k + 2}
\]

For \(A_4 \) we can see, following the proof of the Lemma 4, that we have

\[
A_4 \ll N^{k+1/2} \sum_{\rho_1: \gamma_1 > 0} N^{\beta_1 \gamma_1} \sum_{\rho_2: \gamma_2 > 0} N^{\beta_2 \gamma_2} \frac{1}{\gamma_1^{1/2} \gamma_2^{1/2}} \frac{1}{\gamma_1 + \gamma_2} \sum_{0 < \gamma_2 \leq \gamma_1} \log \frac{\gamma_1}{\gamma_2}
\]

and observing that

\[
\frac{\gamma_1^{\beta_2 / 2} \gamma_2^{\beta_2 / 2}}{2} \leq \left(\gamma_1 + \frac{\gamma_2}{2} \right)^{\beta_1 + \beta_2 / 2}
\]

we get

\[
A_4 \ll_k N^{k+1/2} \sum_{\rho_1: \gamma_1 > 0} \sum_{\rho_2: \gamma_2 > 0} N^{\beta_1 + \beta_2 / 2} \frac{1}{\gamma_1^{1/2} \gamma_2^{1/2}} \frac{1}{\gamma_1 + \gamma_2} \sum_{0 < \gamma_2 \leq \gamma_1} \log \frac{\gamma_1}{\gamma_2}
\]

and so we proved the convergence if \(k > 1/2 \) using the Riemann - Von Mangoldt formula. Let us consider the case \(\gamma_1 > 0, \gamma_2 < 0 \) (and so we will use the symbol \(C_{m,n} \)) and let \(y \leq 0 \). Using again (27) we have to study

\[
C_{4,2}^{-} \ll \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2 / 2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_2| \right) \exp \left(\frac{\pi |\gamma_2|}{4} \right) \int_{-\infty}^{0} \frac{1}{|z|^{k+3/2 + \beta_1 + \beta_2 / 2}} \left(\gamma_2 \arctan(Ny) - \pi |\gamma_2| \right) \, |dz|
\]

and using Lemma 4, Lemma 5 and the identity \(\arctan(x) + \arctan(1/x) = -\pi/2 \), \(x < 0 \) we have

\[
C_{4,2}^{-} \ll_k N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2 / 2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_2| \right) + \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2 / 2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_2| \right) \exp \left(-\frac{|\gamma_2|}{2} \arctan \left(\frac{N}{y} \right) \right) \int_{-\infty}^{-1/N} \frac{1}{|y|^{k+3/2 + \beta_1 + \beta_2 / 2}} \exp \left(-\frac{|\gamma_2|}{2} \arctan \left(\frac{N}{y} \right) \right) \, |dy|
\]

\[
\ll_k N^{k+3} + N^{k+2} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2 / 2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_2| \right) \exp \left(-\frac{|\gamma_2|}{2} \arctan \left(\frac{N}{y} \right) \right) \int_{1}^{\infty} \frac{1}{|y|^{k+3/2 + \beta_1 + \beta_2 / 2}} \exp \left(-\frac{|\gamma_2|}{2} \arctan \left(\frac{N}{y} \right) \right) \, |dy| \ll_k N^{k+3}
\]

for \(k > -1/2 \). If \(y > 0 \) we have essentially the same situation exchanging the role of \(\gamma_1 \) and \(\gamma_2 \). So we can switch the integral with the series and get

\[
I_4 = \frac{1}{4\sqrt{\pi t}} \sum_{\rho_1} \Gamma \left(\rho_1 \right) \sum_{\rho_2} \Gamma \left(\frac{\rho_2}{2} \right) \int_{(1/N)} e^{Nz} z^{-\gamma_1 - 3/2 - \rho_1 - \rho_2 / 2} \, |dz|
\]

\[
= \frac{N^{k+1/2} \sqrt{\pi}}{2} \sum_{\rho_1} \sum_{\rho_2} N^{\rho_1 + \rho_2 / 2} \frac{\Gamma \left(\rho_1 \right) \Gamma \left(\frac{\rho_2}{2} \right)}{\Gamma \left(k + 3/2 + \rho_1 + \rho_2 / 2 \right)}
\]
7. Evaluation of I_5

We have to evaluate

$$I_5 = \frac{1}{8\pi i} \int_{(1/N)} e^{Nz}z^{-k-2} \sum_{\rho_1} z^{-\rho_1/2} \Gamma \left(\frac{\rho_1}{2} \right) \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) \, dz$$

and we can see that the argument used in I_4 works also in this case since the presence of $\beta_1/2$ instead of β_1 does not alter the validity of the proof. So repeating the reasoning we can obtain the convergence for $k > 1/2$ and so

$$I_5 = \frac{1}{8\pi i} \sum_{\rho_1} \Gamma \left(\frac{\rho_1}{2} \right) \sum_{\rho_2} \Gamma \left(\frac{\rho_2}{2} \right) \int_{(1/N)} e^{Nz}z^{-k-2-\rho_1/2-\rho_2/2} \, dz$$

$$= \frac{N^{k+1}}{4} \sum_{\rho_1} \sum_{\rho_2} N^{\rho_1/2+\rho_2/2} \Gamma \left(\frac{\rho_1}{2} \right) \Gamma \left(\frac{\rho_2}{2} \right) \Gamma \left(\frac{\rho_1}{2} + \frac{\rho_2}{2} \right) \Gamma \left(k + 2 + \frac{\rho_1}{2} + \frac{\rho_2}{2} \right)$$

then $I_4 + I_5 = M_3(N, k)$.

8. Evaluation of I_6

We have to evaluate

$$I_6 = \frac{1}{8\pi i} \int_{(1/N)} e^{Nz}z^{-k-1} \sum_{\rho_1} z^{-\rho_1} \Gamma \left(\rho_1 \right) \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) \sum_{\rho_3} z^{-\rho_3/2} \Gamma \left(\frac{\rho_3}{2} \right) \, dz.$$

We want to switch the integral with three series, so we will prove the absolute convergence of

$$A_{6,1} := \sum_{\rho_1} \left| \Gamma \left(\rho_1 \right) \right| \int_{(1/N)} \left| e^{Nz} \right| \left| z^{-k-1} \right| \left| z^{-\rho_1} \right| \left| \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) \right| \left| \sum_{\rho_3} z^{-\rho_3/2} \Gamma \left(\frac{\rho_3}{2} \right) \right| \, dz,$$

$$A_{6,2} := \sum_{\rho_1} \left| \Gamma \left(\rho_1 \right) \right| \sum_{\rho_2} \left| \Gamma \left(\frac{\rho_2}{2} \right) \right| \int_{(1/N)} \left| e^{Nz} \right| \left| z^{-k-1} \right| \left| z^{-\rho_1} \right| \left| z^{-\rho_2/2} \right| \left| \sum_{\rho_3} z^{-\rho_3/2} \Gamma \left(\frac{\rho_3}{2} \right) \right| \, dz$$

and

$$A_{6,3} := \sum_{\rho_1} \left| \Gamma \left(\rho_1 \right) \right| \sum_{\rho_2} \left| \Gamma \left(\frac{\rho_2}{2} \right) \right| \sum_{\rho_3} \left| \Gamma \left(\frac{\rho_3}{2} \right) \right| \int_{(1/N)} \left| e^{Nz} \right| \left| z^{-k-1} \right| \left| z^{-\rho_1} \right| \left| z^{-\rho_2/2} \right| \left| z^{-\rho_3/2} \right| \, dz.$$

Let us consider

$$A_{6,1} = \sum_{\rho_1} \left| \Gamma \left(\rho_1 \right) \right| \int_{(1/N)} \left| e^{Nz} \right| \left| z^{-k-1} \right| \left| z^{-\rho_1} \right| \left| \sum_{\rho_2} z^{-\rho_2/2} \Gamma \left(\frac{\rho_2}{2} \right) \right| \left| \sum_{\rho_3} z^{-\rho_3/2} \Gamma \left(\frac{\rho_3}{2} \right) \right| \, dz,$$

and we assume, by symmetry, that $\gamma_1 > 0$. Let $y \leq 0$. From (27) and recalling the notation (25) we have that

$$A_{6,1} \ll N^{k+3} \sum_{\rho_1: \gamma_1 > 0} N^{\beta_1} \gamma_1^{-1/2} \exp \left(\frac{\pi}{2} \gamma_1 \right) \int_{-1/N}^{0} \exp (\gamma_1 \arctan (N |y|)) \, dy$$

$$+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \int_{-\infty}^{-1/N} |z|^{-k-1-\beta_1} \exp (\gamma_1 \arctan (N |y|)) \left(N + |z|^{1/2} \log^2 (2N |y|) \right)^2 \, dy$$

which is bounded by

$$A_{6,1} \ll N^{k+3} + N^2 \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \int_{-\infty}^{-1/N} |y|^{-k-1-\beta_1} \, dy$$

$$+ 2N \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \int_{-\infty}^{-1/N} |y|^{-k-1/2-\beta_1} \log^2 (2N |y|) \, dy$$

$$+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp \left(\frac{\pi}{2} \gamma_1 \right) \int_{-\infty}^{-1/N} |y|^{-k-\beta_1} \log^4 (2N |y|) \, dy \ll N^{k+3}.$$
for $k > 1$. Let $y > 0$. We have

$$A^+_{6,1} \ll N^2 \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_0^{1/N} \exp \left(\gamma_1 \arctan (N y) - \frac{\pi}{2} \gamma_1 \right) \frac{|dz|}{|z|^{k+1+\beta_1}}$$

$$+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty |z|^{-k-1-\beta_1} \exp \left(\gamma_1 \arctan (N y) - \frac{\pi}{2} \gamma_1 \right) \left(N + |z|^{1/2} \log^2 (2N |y|) \right)^2 dy.$$

From Lemma 5 we have

$$\sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_0^{1/N} \exp \left(\gamma_1 \arctan (N y) - \frac{\pi}{2} \gamma_1 \right) \frac{|dz|}{|z|^{k+1+\beta_1}} \ll_k N^{k+1}$$

for $k > 0$ so

$$A^+_{6,1} \ll N^{k+3} + \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty |z|^{-k-1-\beta_1} \exp \left(\gamma_1 \arctan (N y) - \frac{\pi}{2} \gamma_1 \right) \left(N + |z|^{1/2} \log (2N |y|) \right)^2 dy$$

$$\ll N^{k+3} + \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty \exp \left(\gamma_1 \arctan (N y) - \frac{\pi}{2} \gamma_1 \right) \frac{\log^2 (2N y)}{y^{k+1+\beta_1}} dy$$

$$+ 2N \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty \exp \left(\gamma_1 \arctan (N y) - \frac{\pi}{2} \gamma_1 \right) \exp \left(\gamma_1 \arctan \left(\frac{1}{u} \right) \right) \frac{\log^4 (2N y)}{y^{k+1+\beta_1}} dy$$

and using the well known identity

$$\arctan (x) - \frac{\pi}{2} = - \arctan \left(\frac{1}{x} \right), \ x > 0$$

and placing $Ny = u$ we get

$$A^+_{6,1} \ll N^{k+3} + N^{k+2} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty \exp \left(-\gamma_1 \arctan \left(\frac{1}{u} \right) \right) u^{-k-1-\beta_1} dy$$

$$+ 2N^{k+1/2} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty \exp \left(-\gamma_1 \arctan \left(\frac{1}{u} \right) \right) \frac{\log^2 (2u)}{u^{k+1/2+\beta_1}} dy$$

$$+ N^{k-1} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_{1/N}^\infty \exp \left(-\gamma_1 \arctan \left(\frac{1}{u} \right) \right) \frac{\log^4 (2u)}{u^{k+1+\beta_1}} dy \ll_k N^{k+3}$$

from Lemma 4, assuming $k > 3/2$. Now we have to study

$$A_{6,2} = \sum_{\rho_1} |\Gamma (\rho_1)| \sum_{\rho_2} \left| \frac{\beta_2}{2} \right| \int_{(1/N)} \left| \exp (\gamma_2 z) \right| \left| z^{-k-1} \right| \left| z^{-\rho_2/2} \right| \left| \sum_{\rho_3} z^{-\rho_3/2} \Gamma \left(\frac{\beta_3}{2} \right) \right| |dz|$$

and, by symmetry, we can consider the cases $\gamma_1, \gamma_2 > 0$ or $\gamma_1 > 0, \gamma_2 < 0$. Let $\gamma_1, \gamma_2 > 0$ and $y \leq 0$. From (27) we have

$$B_{6,2}^- \ll N \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2 - 1/2} \exp \left(-\frac{\pi}{4} \gamma_2 \right) \int_{-1/N}^0 \frac{|dz|}{|z|^{k+1+\beta_1+\beta_2/2}}$$

$$+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2 - 1/2} \exp \left(-\frac{\pi}{4} \gamma_2 \right) \int_{-\infty}^{-1/N} \frac{N + |y|^{1/2} \log^2 (2N |y|)}{|y|^{k+1+\beta_1+\beta_2/2}} dy |y|$$

$$\ll N^{k+3} + \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2 - 1/2} \exp \left(-\frac{\pi}{4} \gamma_2 \right) \int_{-\infty}^{-1/N} \frac{1}{|y|^{k+1+\beta_1+\beta_2/2}} dy |y|.$$
\[+ \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{1/2} \exp \left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{1/2} \exp \left(-\frac{\pi}{2} \gamma_2 \right) \int_{-\infty}^{-1/N} \frac{\log^2 (2N |y|)}{|y|^{k+1/2 + \beta_1 + \beta_2/2}} \quad |y| \ll k \quad N^{k+3} \]

for \(k > 1/2 \). Let \(y > 0 \), and so the symbol \(B_{6.2} \). We recall again that we have to split the integral for \(y \in (0, 1/N) \) and \(y \in (1/N, \infty) \) since, by (13) and (20), we have different estimation in these two set. We have that

\[B_{6.2}^+ \ll N \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{1/2} \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{1/2} \int_{1/N}^{1} \exp \left(\left(\gamma_1 + \frac{\gamma_2}{2} \right) \left(\arctan (Ny) - \frac{\pi}{2} \right) \right) \left(N + y^{1/2} \log^2 (2Ny) \right) \quad dy \]

which is bounded by

\[B_{6.2}^+ \ll N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{1/2} \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{1/2} \int_{1/N}^{1} \exp \left(\left(\gamma_1 + \frac{\gamma_2}{2} \right) \left(\arctan (Ny) - \frac{\pi}{2} \right) \right) \left(N + y^{1/2} \log^2 (2Ny) \right) \quad dy \]

and again from (28) and placing \(Ny = u \) we get

\[B_{6.2}^+ \ll N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{1/2} \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{1/2} \int_{1}^{\infty} \exp \left(-\frac{\gamma_1 + \frac{\gamma_2}{2}}{Ny} \right) \arctan \left(\frac{1}{Ny} \right) \log^2 (2u) \quad du \]

and from the proof of Lemma 4 we have

\[B_{6.2}^+ \ll_k N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{1/2} \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{1/2} \left(\gamma_1 + \frac{\gamma_2}{2} \right)^{-k+1/2 - \beta_1 - \beta_2/2} \]

and observing that

\[\gamma_1^{1/2} \left(\frac{\gamma_2}{2} \right)^{\beta_2/2} \leq \left(\gamma_1 + \frac{\gamma_2}{2} \right)^{\beta_1} \left(\gamma_1 + \frac{\gamma_2}{2} \right)^{\beta_2/2} = \left(\gamma_1 + \frac{\gamma_2}{2} \right)^{\beta_1 + \beta_2/2} \]

we get

\[B_{6.2}^+ \ll_k N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{1/2} \sum_{\rho_2: \gamma_2 > 0} \frac{1}{\gamma_1^{1/2} \gamma_2^{1/2} \left(\gamma_1 + \gamma_2 \right)^{k-1/2}} \]

\[\ll_k N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \frac{1}{\gamma_1^{1/2}} \sum_{\rho_2: 0 < \gamma_2 \leq \gamma_1} \frac{1}{\gamma_2^{1/2}} \]

\[\ll_k N^{k+3} \sum_{\rho_1: \gamma_1 > 0} \frac{\log \left(\gamma_1 \right)}{\gamma_1^{k-1/2}} \]

and so the convergence if \(k > 3/2 \). Let us assume that \(\gamma_1 > 0 \), \(\gamma_2 < 0 \) and \(y \leq 0 \). From (27) we have
\[+ N \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp\left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2/2-1/2} \int_{-\infty}^{-1/N} \frac{\exp\left(-\frac{|\gamma_2|}{2} \frac{\arctan(Ny + \frac{\pi}{2})}{2} \right)}{|z|^{k+1+\beta_1+\beta_2/2}} |dz| \]

\[+ \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp\left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2/2-1/2} \int_{-\infty}^{-1/N} \frac{\exp\left(-\frac{|\gamma_2|}{2} \frac{\arctan(Ny + \frac{\pi}{2})}{2} \right)}{|z|^{k+1/2+\beta_1+\beta_2/2}} |dz| \]

hence

\[C_{6,2} \ll N^{k+3/2} \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp\left(\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2/2-1/2} \exp\left(-\frac{\pi}{8} |\gamma_2| \right) \int_{1}^{\infty} \frac{\exp\left(-\frac{|\gamma_2|}{2} \frac{\arctan\left(\frac{\rho_2}{\gamma_2} \right)}{2} \right)}{u^{k+1+\beta_1+\beta_2/2}} du \]

\[+ N^{k+5/2} \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp\left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} |\gamma_2|^{\beta_2/2-1/2} \int_{1}^{\infty} \frac{\exp\left(-\frac{|\gamma_2|}{2} \frac{\arctan\left(\frac{\rho_2}{\gamma_2} \right)}{2} \right)}{u^{k+1/2+\beta_1+\beta_2/2}} du \ll N^{k+5/2} \]

for \(k > 1 \). If \(y > 0 \) we have essentially the same calculations exchanging the role of \(\gamma_1 \) and \(\gamma_2 \). So we have to consider

\[A_{6,3} = \sum_{\gamma_1 > 0} \sum_{\rho_2 \gamma_2 > 0} |\Gamma(\rho_1)| \sum_{\gamma_3 > 0} \sum_{\rho_3} |\Gamma(\rho_3)| \int_{(1/N)} |e^{Nz}| |z^{-k-1}| |z^{-\rho_1}| |z^{-\rho_2}| |z^{-\rho_3}| |dz|. \]

It is sufficient to consider the cases \(\gamma_i > 0 \), \(i = 1, 2, 3 \), \(\gamma_1, \gamma_2 > 0 \) and \(\gamma_3 < 0 \) and lastly \(\gamma_1 > 0 \), \(\gamma_2, \gamma_3 < 0 \). We will use the symbol \(D_{6,3} \) when we consider \(A_{6,3} \) with the assumption \(\gamma_i > 0 \), \(i = 1, 2, 3 \), the symbol \(E_{6,3} \) when we consider \(A_{6,3} \) with the assumption \(\gamma_1, \gamma_2 > 0 \) and \(\gamma_3 < 0 \) and \(F_{6,3} \) when we consider \(A_{6,3} \) with the assumption \(\gamma_1 > 0 \), \(\gamma_2, \gamma_3 < 0 \). From (27) we have

\[D_{6,3}^- \ll \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp\left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \exp\left(-\frac{\pi}{4} \gamma_2 \right) \sum_{\rho_3: \gamma_3 > 0} |\gamma_3|^{\beta_3/2-1/2} \exp\left(-\frac{\pi}{4} \gamma_3 \right) \]

\[\cdot \int_{-1/N}^{0} N^{k+1+\beta_1+\beta_2/2+\beta_3/2} dy \]

\[+ \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \exp\left(-\frac{\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \exp\left(-\frac{\pi}{4} \gamma_2 \right) \sum_{\rho_3: \gamma_3 > 0} |\gamma_3|^{\beta_3/2-1/2} \exp\left(-\frac{\pi}{4} \gamma_3 \right) \]

\[\cdot \int_{-1/N}^{1} |y|^{-k-1-\beta_1-\beta_2/2-\beta_3/2} dy \ll N^{k+2} \]

for \(k > 1 \). Let \(y > 0 \). We have

\[D_{6,3}^+ \ll \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \sum_{\rho_3: \gamma_3 > 0} |\gamma_3|^{\beta_3/2-1/2} \]

\[\cdot \int_{1/N}^{1} \exp\left(\left(\gamma_1 + \frac{\gamma_2}{2} + \frac{\gamma_3}{2} \right) \frac{\arctan(Ny - \frac{\pi}{2})}{2} \right) N^{k+1+\beta_1+\beta_2/2+\beta_3/2} dy \]

\[+ \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \sum_{\rho_3: \gamma_3 > 0} |\gamma_3|^{\beta_3/2-1/2} \int_{1/N}^{\infty} \exp\left(\left(\gamma_1 + \frac{\gamma_2}{2} + \frac{\gamma_3}{2} \right) \frac{\arctan(Ny - \frac{\pi}{2})}{2} \right) dy \]

\[\ll N^{k+2} \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \sum_{\rho_3: \gamma_3 > 0} |\gamma_3|^{\beta_3/2-1/2} \int_{1}^{\infty} \exp\left(-\left(\gamma_1 + \frac{\gamma_2}{2} + \frac{\gamma_3}{2} \right) \arctan\left(\frac{\rho_2}{\gamma_2} \right) \right) du \]

and from the proof of the Lemma 4 we get

\[D_{6,3}^+ \ll N^{k+2} \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \sum_{\rho_3: \gamma_3 > 0} \gamma_3^{\beta_3/2-1/2} \left(\gamma_1 + \frac{\gamma_2}{2} + \frac{\gamma_3}{2} \right)^{-k-\beta_1-\beta_2/2-\beta_3/2} \]

and

\[D_{6,3}^- \ll N^{k+2} \sum_{\gamma_1 > 0} \gamma_1^{\beta_1-1/2} \sum_{\rho_2: \gamma_2 > 0} |\gamma_2|^{\beta_2/2-1/2} \sum_{\rho_3: \gamma_3 > 0} |\gamma_3|^{\beta_3/2-1/2} \left(\gamma_1 + \frac{\gamma_2}{2} + \frac{\gamma_3}{2} \right)^{-k-\beta_1-\beta_2/2-\beta_3/2} \]
and observing that
\[
\frac{\gamma_1^{\beta_1} \gamma_2^{\beta_2/2} \gamma_3^{\beta_3/2}}{2} \leq \left(\gamma_1 + \frac{\gamma_2}{2} + \frac{\gamma_3}{2} \right)^{\beta_1 + \beta_2/2 + \beta_3/2}
\]
we get
\[
D_{6,3}^+ \ll_k N^{k+2} + N^{k+2} \sum_{\rho_1: \gamma_1 > 0} \sum_{\rho_2: \gamma_2 > 0} \sum_{\rho_3: \gamma_3 > 0} \frac{1}{\gamma_1^{1/2} \gamma_2^{1/2} \gamma_3^{1/2} \left(\gamma_1 + \frac{\rho_2}{2} + \frac{\rho_3}{2} \right)^k}
\]
and from AM-GM inequality we get
\[
D_{6,3}^+ \ll N^{k+2} + N^{k+2} \sum_{\rho_1: \gamma_1 > 0} \sum_{\rho_2: \gamma_2 > 0} \sum_{\rho_3: \gamma_3 > 0} \frac{1}{\gamma_1^{k/3+1/2} \gamma_2^{k/3+1/2} \gamma_3^{1/3}} \ll N^{k+2}
\]
for \(k > 3/2 \). Let \(\gamma_1, \gamma_2 > 0, \gamma_3 < 0 \) (and so the symbol \(E_{m,n} \)) and \(y \leq 0 \). From (27) we have
\[
E_{6,3}^- \ll \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(\frac{-\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2/2 - 1/2} \exp \left(\frac{-\pi}{4} \gamma_2 \right) \sum_{\rho_3: \gamma_3 < 0} \left| \gamma_3 \right|^{\beta_3/2 - 1/2} \frac{\exp \left(-\frac{|\gamma_3|}{4} \arctan \left(\frac{Ny}{\gamma_3} \right) + \frac{\pi}{4} \right)}{|z|^{k+1+\beta_1+\beta_2/2+\beta_3/2}} \bigg| dz \bigg| + \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(\frac{-\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 > 0} \gamma_2^{\beta_2/2 - 1/2} \exp \left(\frac{-\pi}{4} \gamma_2 \right) \sum_{\rho_3: \gamma_3 < 0} \left| \gamma_3 \right|^{\beta_3/2 - 1/2} \frac{\exp \left(-|\gamma_3| \arctan \left(\frac{1}{\gamma_3} \right) \right)}{|u|^{k+1+\beta_1+\beta_2/2+\beta_3/2}} \bigg| du \bigg| \ll N^{k+2}
\]
from the proof of Lemma 4, for \(k > 1/2 \). If \(y > 0 \) we have essentially the same calculations exchanging the role of \(\gamma_2 \) and \(\gamma_3 \). Let \(\gamma_2, \gamma_3 < 0 \, , \, \gamma_1 > 0 \) and \(y < 0 \). Recalling (25) we have
\[
F_{6,3}^- \ll \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(\frac{-\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} \gamma_2^{\beta_2/2 - 1/2} \sum_{\rho_3: \gamma_3 < 0} \left| \gamma_3 \right|^{\beta_3/2 - 1/2} \frac{\exp \left(-\frac{|\gamma_2|+|\gamma_3|}{2} \arctan \left(\frac{Ny}{\gamma_2} \right) + \frac{\pi}{4} \right)}{|z|^{k+1+\beta_1+\beta_2/2+\beta_3/2}} \bigg| dz \bigg| + \sum_{\rho_1: \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(\frac{-\pi}{2} \gamma_1 \right) \sum_{\rho_2: \gamma_2 < 0} \gamma_2^{\beta_2/2 - 1/2} \sum_{\rho_3: \gamma_3 < 0} \left| \gamma_3 \right|^{\beta_3/2 - 1/2} \frac{\exp \left(-|\gamma_2| \arctan \left(\frac{1}{\gamma_2} \right) \right)}{|u|^{k+1+\beta_1+\beta_2/2+\beta_3/2}} \bigg| du \bigg| \ll N^{k+2}
\]
\[
\ll N^{k+2} \sum_{\rho_2: \gamma_2 < 0} \sum_{\rho_3: \gamma_3 < 0} \left| \gamma_2 \right|^{\beta_2/2 - 1/2} \left| \gamma_3 \right|^{\beta_3/2 - 1/2} \left(\left| \gamma_2 \right| + \left| \gamma_3 \right| \right)^{-k-\beta_2/2-\beta_3/2} \ll N^{k+2}
\]
using Lemma 4, for $k > 1/2$. Let $y > 0$. Observing that $-\left(\frac{\gamma_2 + \gamma_1}{2}\right) (\arctan(Ny) + \frac{\pi}{2}) \leq \left(-\frac{\gamma_2 + \gamma_1}{2}\right) \frac{\pi}{2}$ we have

\[F_{k,3}^+ \ll \sum_{\rho_1, \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \exp \left(-\frac{\pi}{4} \gamma_1\right) \sum_{\rho_2, \gamma_2 < 0} |\gamma_2|^{\beta_2/2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_2|\right) \sum_{\rho_3, \gamma_3 < 0} |\gamma_3|^{\beta_3/2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_3|\right) \]

\[+ \sum_{\rho_1, \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \sum_{\rho_2, \gamma_2 < 0} |\gamma_2|^{\beta_2/2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_2|\right) \sum_{\rho_3, \gamma_3 < 0} |\gamma_3|^{\beta_3/2 - 1/2} \exp \left(-\frac{\pi}{8} |\gamma_3|\right) \]

\[\int_0^{1/N} \frac{dz}{|z|^{k+1+\beta_1+\beta_2/2+\beta_3/2}} \int_0^{1/N} \exp \left(\gamma_1 (\arctan(Ny) - \frac{\pi}{4})\right) dy \]

\[\ll N^{k+2} \sum_{\rho_1, \gamma_1 > 0} \gamma_1^{\beta_1 - 1/2} \int_1^{1/N} \frac{1}{|z|^{k+1+\beta_1}} \frac{dz}{dz} \ll N^{k+2} \]

from Lemma 4 for $k > 1/2$. Now we can exchange the integral with the series and get

\[I_6 = \frac{1}{8\pi i} \sum_{\rho_1} \Gamma (\rho_1) \sum_{\rho_2} \Gamma \left(\frac{\rho_2}{2}\right) \sum_{\rho_3} \Gamma \left(\frac{\rho_3}{2}\right) \int_{1/N} e^{Nz^2} e^{z^{-1} - \rho_1 - \rho_2/2 - \rho_3/2} dz \]

\[= \frac{N^k}{4} \sum_{\rho_1} \sum_{\rho_2} \sum_{\rho_3} \frac{N^{\rho_1+\rho_2+2+\rho_3/2} \Gamma (\rho_1) \Gamma \left(\frac{\rho_2}{2}\right) \Gamma \left(\frac{\rho_3}{2}\right)}{\Gamma (k + \rho_1 + \rho_2/2 + \rho_3/2)} \]

then $I_6 = M_4 (N, k)$.

REFERENCES

[1] B. C. Berndt, Identities Involving the Coefficients of a Class of Dirichlet series. VIII, Trans. Amer. Math. Soc. 201, (1975), 247-261.
[2] M. Cantarini, On the Cesàro average of the “Linnik numbers”, accepted on Acta Arithmetica.
[3] K. Chandrasekharan and R. Narasimhan, Hecke’s Functional Equation and Arithmetical Identities, Annals of Math. 74 (1961), 1-23.
[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1. New York: Krieger, 1981
[5] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms, Vol. I, McGraw-Hill, 1954.
[6] E. Freitag and R. Busam, Complex analysis, second ed., Springer-Verlag, 2009.
[7] G. H. Hardy and J. E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes, Acta Math. 41 (1916), 119–196.
[8] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70.
[9] G. Harman and A. Kumchev, On sums of squares of primes II, J. Number Theory, 130 (2010), 1969-2002.
[10] L. K. Hua, Some result in additive prime number theory, Quart. J. Math. Oxford, 9 (1938), 68-80.
[11] A. Languasco, Applications of some exponential sums on prime powers: a survey. Proceedings of the “Terzo Incontro Italiano di Teoria dei Numeri”, Scuola Normale Superiore, Pisa, 21-24 Settembre 2015, Rivista Matematica della Università di Parma, Vol. 7, Number 1 (2016), 19-37.
[12] A. Languasco and A. Zaccagnini, A Cesàro Average of Goldbach numbers, Forum Mathematicum 27 4 (2015), 1945–1960.
[13] A. Languasco and A. Zaccagnini, A Cesàro Average of Hardy-Littlewood numbers, J. Math. Anal. Appl. 401 (2013), 568-577.
[14] A. Languasco and A. Zaccagnini, Sum of one prime and two squares of primes in short intervals, J. Number Theory 159 (2016), 45–58 .
[15] P. S. Laplace, Théorie analytique des probabilités, Courcier, 1812.
[16] L. Leung and M. Liu, On generalized quadratic equations in three prime variables, Monatsh. Math., 115 (1993), 139-167.
[17] H. Li, Sums of one prime and two square primes, Acta Arith., 134 (2008), 1-9.
[18] Ju. V. Linnik, A new proof of the Goldbach-Vinogradov theorem, Rec. Math. [Mat. Sbornik] N.S. 19 (61) (1946), 3–8, (Russian).
[19] W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlkuboten. I. Darstellung hinreichend grosser Zahlen, J. Reine Angew. Math., 205 (1900/1901), 21-47.
[20] E. C. Titchmarsh, The Theory of Functions, second ed., Oxford U. P., 1988.
[21] M. Wang, On the sum of a prime and two prime squares, Acta Math. Sinica (Chin. Ser.), 47 (2004), 845-858.
[22] M. Wang and X. Meng, The exceptional set in the two prime squares and two prime problem, Acta Math. Sinica (Eng. Ser.), 22 (2006), 1329-1342.
[23] G. N. Watson, A Treatise on the Theory of Bessel Functions, second ed., Cambridge U. P., 1966.
[24] L. Zhao, The additive problem with one prime and two squares of primes, J. Number Theory, 135 (2014), 8-27.
Marco Cantarini
Università di Ferrara
Dipartimento di Matematica e Informatica
Via Machiavelli, 30
44121 Ferrara, Italy
email: cantarini_m@libero.it