Nonlinear Unknown Input Observability and Unknown Input Reconstruction: The General Analytical Solution

Agostino Martinelli

March 31, 2022

1A. Martinelli is with INRIA Rhone Alpes, Montbonnot, France e-mail: agostino.martinelli@inria.fr
Contents

1 Introduction

2 System Characterization and the problem of Observability
 2.1 Basic equations .. 6
 2.2 Reminders on basic algebraic operations 7
 2.3 A simple illustrative example 8
 2.4 Observable function ... 10
 2.5 Canonic systems and canonical form with respect to the unknown inputs ... 11
 2.6 The problem of Observability and the case without UI 12

3 Systems in Canonical Form: the Analytical Solution in the case of TI driftless systems with a single UI
 3.1 The solution .. 14
 3.1.1 Ingredients of the Solution 14
 3.2 Proof ... 16
 3.2.1 Intermediate technical results 18
 3.3 Application .. 22

4 Systems in Canonical Form: the Analytical Solution in the case of TV systems, in the presence of a drift, and multiple UIs
 4.1 The solution .. 24
 4.1.1 Ingredients of the Solution 24
 4.2 Proof ... 27
 4.2.1 Equivalence between Algorithm 4.1 and 4.4 28
 4.2.2 Intermediate technical results 31

5 Solution in the general non canonical case
 5.1 Unknown Input Extension (UIIE) 37
 5.1.1 Finite Unknown Input Extension 38
 5.1.2 Infinite Unknown Input Extension 38
 5.2 Implementations of Algorithm 4.1 and 4.4 on UIIE_{	ext{disc}} 40
 5.2.1 The codistributions $\Omega_{\text{i}}^{\infty}$ and their properties 41
 5.2.2 The codistributions $\mathcal{O}_{\text{i}}^{\infty}$ and their properties 42
 5.3 The complete solution ... 44
 5.3.1 System extensibility 44
 5.3.2 Description of Algorithm 5.5 45

6 Unknown input reconstruction
 6.1 Non-extensible systems and unknown input highest degree of reconstructability . 48
 6.2 Observability of the unknown inputs 48
 6.3 A framework for reconstructing the unknown inputs 49
Abstract

Observability is a fundamental structural property of any dynamic system and describes the possibility of reconstructing the state that characterizes the system from observing its inputs and outputs. Despite the huge effort made to study this property and to introduce analytical criteria able to check whether a dynamic system satisfies this property or not, there is no general analytical criterion to automatically check the state observability when the dynamics are also driven by unknown inputs. Here, we introduce the general analytical solution of this fundamental problem, often called the unknown input observability problem. This paper provides the general analytical solution of this problem, namely, it provides the systematic procedure, based on automatic computation (differentiation and matrix rank determination), that allows us to automatically check the state observability even in the presence of unknown inputs. A first solution of this problem was presented in the second part of the book: Observability: A New Theory Based on the Group of Invariance [45]. The solution presented by this paper completes the previous solution in [45]. In particular, the new solution exhaustively accounts for the systems that do not belong to the category of the systems that are canonic with respect to their unknown inputs. The new solution is also provided in the form of a new algorithm. A further novelty with respect to the algorithm provided in [45] consists of a new convergence criterion that holds in all the cases (the convergence criterion of the algorithm provided in [45] can fail in some cases). The analytical derivations largely exploit several new concepts and analytical results introduced in [45]. Finally, as a simple consequence of the results here obtained, we also provide the answer to the problem of unknown input reconstruction which is intimately related to the problem of state observability. We illustrate the implementation of the new algorithm by studying the observability properties of a nonlinear system in the framework of visual-inertial sensor fusion, whose dynamics are driven by two unknown inputs and one known input. In particular, for this system, we follow step by step the algorithm introduced by this paper, which solves the unknown input observability problem in the most general case.

Keywords: Nonlinear observability; Unknown Input Observability; Observability Rank Condition
Chapter 1

Introduction

Observability refers to the state that characterizes a dynamic system (e.g., if the system is an aerial drone, its state, under suitable conditions, can be its position and its orientation). A system is also characterized by one or more inputs, which drive its dynamics and one or more outputs (e.g., for the drone, the inputs could be the speeds of its rotators and the outputs the ones provided by an on-board monocular camera and/or a GPS). A state is observable if the knowledge of the system inputs and outputs, during a given time interval, allows us its determination.

The concept of observability was first introduced for linear systems [1, 2] and the analytic condition to check if a linear system satisfies this property has also been obtained. The nonlinear case is much more complex. First, this concept becomes local. Second, in general in the nonlinear case we can at most reconstruct the state only if we a priori know that it belongs to a given open set. In other words, by using the inputs and the outputs during an interval of time, we cannot distinguish, in general, states that are not close\footnote{This difference between the linear and the nonlinear case should not surprise. The observability concept is strongly related to the inverse function problem [3]. A nonlinear function, even when its Jacobian is nonsingular, can take the same value at two or more separated points and, consequently, cannot be inverted. Invertibility becomes a local property.}. This is the reason why, for nonlinear systems, the concept of weak local observability has been introduced [4]. In this paper, with the word observability we actually mean the concept of weak local observability, as defined in [4, 5] (definitions 8, 9, 10, 11, in [5]). Third, unlike the linear case, observability depends on the system inputs.

The analytic condition to check if a nonlinear system satisfies this property has also been introduced [4, 5, 6, 7]. It is known as the observability rank condition. The observability rank condition is a fundamental result that has extensively been used in many application domains, ranging from computer vision (e.g., [8]), robotics (e.g., [9, 10, 11]), calibration (e.g., [12]), mechanical engineering (e.g., [13]) up to biology (e.g., [14, 15, 16, 17, 18]) and chemistry (e.g., [19]). It has also been used in the context of estimation theory [20, 21, 22]. It is a simple systematic procedure that allows us to give an answer to the previous fundamental question, i.e., whether the state is observable or not. It is based on very simple systematic computation (differentiation and matrix rank determination) on the functions that describe the system. The observability rank condition can deal with any system, independently of its complexity and type of nonlinearity. It works automatically.

On the other hand, the observability rank condition presents an important limitation: it does not account for the presence of unknown inputs. This is a severe limitation. The dynamics of most real systems are driven by inputs that are usually unknown. This holds in robotics, in biology, in chemistry, in physics, in economics, etc. For instance, in the case of our drone, its dynamics could be driven also by the wind, which is in general unknown. The wind is a disturbance and acts on the dynamics as an (unknown) input. The problem of unknown input observability (i.e., the problem of obtaining the analytical and automatic criterion that extends the observability rank condition to the case when some of the inputs are unknown) was defined long time ago [23, 24] and remained unsolved for half a century. The control theory community has spent a huge effort to design observers for both linear and nonlinear systems in the presence of unknown inputs.
inputs, in many cases in the context of fault diagnosis, e.g., [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In some of the previous works, interesting conditions for the existence of an unknown input observer were introduced. On the other hand, these conditions have the following very strong impediments:

- They refer to a restricted class of systems. In particular, the considered systems are often characterized by linearity (or some specific type of nonlinearity) with respect to the state in some of the functions that characterize the dynamics and/or the system output. No condition refers to any type of nonlinearity in the aforementioned functions.

- They cannot be implemented automatically, i.e., by following a systematic procedure that does not require human intervention (e.g., by the usage of a simple code that adopts a symbolic computation tool). Most of these conditions are alternative definitions of the existence of a given observer, with limited interest from a practical point of view.

These limitations do not affect the observability rank condition in [4, 7]. However, as we mentioned, this condition cannot be used in the presence of unknown inputs. The solution of the unknown input observability problem is the extension of the observability rank condition to the unknown input case, i.e., the analytic condition able to provide the state observability in the presence of unknown inputs that does not encounter the two aforementioned limitations. Additionally, the condition must characterize the system observability and, in this sense, it will be more general than a condition that checks the existence of an unknown input observer that belongs to a special class of observers.

Recently, the unknown input observability problem has been approached by introducing an extended state that includes the original state together with the unknown inputs and their time derivatives up to a given order [41, 42, 43, 44]. All these works proposed automatic iterative algorithms able to study the observability properties of nonlinear systems driven by also unknown inputs. On the other hand, all these algorithms suffer from the following fundamental limitations:

- They do not converge, automatically. In particular, at each iterative step, the state is extended by including new time derivatives of the unknown inputs. Consequently, if the extended state is observable at a given step, convergence is achieved. However, if this were not the case, we can never exclude that, at a later step, the extended state becomes observable. Therefore, in the presence of unobservability, all these algorithms remain inconclusive.

- Due to the previous state augmentation, the computational burden becomes prohibitive after a few steps.

This paper provides the general analytical solution of the unknown input observability problem. The solution does not need to extend the state and, as a result, does not encounter the above limitations. It provides a complete answer to the problem of state observability. Specifically, these answers are automatically obtained by the usage of an algorithm that converges in a finite number of steps.

This paper is organized as follows. In chapter 2 we provide the general characterization of the systems here investigated, together with some reminders on basic algebraic operations. We also provide the new concepts of canonic system with respect to the unknown inputs and canonical form with respect to the unknown inputs (Definition 2.4 and Definition 2.5, respectively). Note that, the solution provided in [45] is based on the assumption that the system is canonic with respect to its unknown inputs. In this paper we provide the solution for any system (even not canonic and not even canonizable). Chapter 2 ends by discussing the problem of observability by referring to an elementary example and by providing the solution in absence of unknown input (Algorithm 2.1), i.e., the standard observability rank condition.

Chapters 3 and 4 provide the solution for systems that are in canonical form with respect to their unknown inputs. This is the solution of the same case dealt with in [45]. Chapter 3 refers to the case of driftless, time invariant systems with a single unknown input (from now on, the
simplified system), while Chapter 4 refers to the general (but canonic) case. The discussion of the simplified system is only given for educational purposes. Its solution is clearly a special case of the solution for the general canonic case.

The solution to the simplified system is given by Algorithm 3.1. This solution differs from the solution presented in [45] and [46], which is Algorithm 3.4. The convergence criterion of Algorithm 3.4 introduced in [46] does not hold always and the condition to characterize the systems for which the criterion does not hold (equation (31) in [46]) can be annoying for a practical use. In [47], some examples of simplified systems that violate the above condition (equation (31) in [46]) are shown. In addition, in [47], a new criterion for the convergence of Algorithm 3.4 is introduced. This new criterion holds always. In this paper, in Chapter 3, we introduce a criterion similar to the one presented in [47]. The advantage of our criterion, compared with the one introduced in [47], is that it allows us its extension to deal with the general canonic case. In other words, its validity is not limited to the simplified systems. Additionally, instead of Algorithm 3.4 we introduce a new algorithm (Algorithm 3.1), where the initialization step includes all the terms of Algorithm 3.4 that make the convergence criterion of Algorithm 3.4 non trivial. This is preferable for a practical implementation. In practice, thanks to this initialization step, the convergence criterion of Algorithm 3.1 is the same of the case without unknown inputs (i.e., Algorithm 2.1).

Chapter 4 extends all the aforementioned novelties to the general (but still canonic) case. The solution is now Algorithm 4.1, while the solution introduced in [45], is Algorithm 4.4. The convergence criterion provided in [45], which is based on the computation of the tensor T, does not hold always. In this paper, we provide the convergence criterion that holds in all the cases. Again, instead of Algorithm 4.4 we introduce a new algorithm (Algorithm 4.1), where the initialization step includes all the terms of Algorithm 4.4 that make the convergence criterion of Algorithm 4.4 non trivial.

In chapter 5 we remove the assumption that the system is in canonical form with respect to its unknown inputs. This chapter provides the automatic procedure that, in a finite number of steps, provides all the observability properties. This automatic procedure uses iteratively Algorithm 4.1 and it is Algorithm 5.5. This new algorithm is a fundamental result, not presented in [45]. To this regard, note that the Canonization procedure introduced in Appendix C of [45] can fail. It is incomplete and there are systems that are not canonizable. Algorithm 5.5 is the complete and automatic solution of the unknown input observability problem in the most general case. Surprisingly, it is simpler than the procedure given in Appendix C of [45]. Chapter 5 provides all the theoretical foundation for the analytical derivation of Algorithm 5.5 and all the steps to prove its validity and generality.

Chapter 6 provides a fundamental result that regards a problem strongly related with the problem of state observability in the presence of unknown inputs. This is the problem of unknown input reconstruction.

Chapter 7 illustrates the implementation of Algorithm 5.5 by studying the observability properties of a nonlinear system in the framework of visual-inertial sensor fusion. The dynamics of this system are driven by two unknown inputs and one known input and they are also characterized by a nonlinear drift. The system is not in canonical form with respect to its unknown inputs. However, by following the steps of Algorithm 5.5 it can be set in canonical form.

Chapter 8 provides our conclusion.

In summary, the novelties of the complete solution introduced by this paper, with respect to the solution given in [45], are:

1. Full characterization of the concept of canonicity with respect to the unknown inputs. This characterization, includes the following new fundamental definitions:
 - Definition of unknown input reconstructability matrix and unknown input degree of reconstructability (Definitions 2.2 and 2.3 respectively).
 - Definition of canonic system with respect to its unknown inputs and system in canonical form with respect to its unknown inputs (Definitions 2.4 and 2.5 respectively).

4In this case, the book does not even provide the analogue of Equation (31) in [46], i.e., the equation that characterizes the systems for which this criterion holds. It is erroneously said that the criterion always holds, with only the exception of the systems that meet the assumption of Lemma 8.11.
• Definition of unknown input highest degree of reconstructability (Definition 5.1).
• Definition of system canonizable with respect to its unknown inputs (Definition 5.2).
• Definition of non-extensible system (Definition 5.3).

2. Algorithm 5.5, which is the general solution that holds even in the non canonnic case and not even canonizable. In particular, when the system is not canonizable, Algorithm 5.5 returns a new system with the unknown input highest degree of reconstructability, together with the observability codistribution.

3. A new criterion of convergence of the solution in the canonic case. In particular, the criterion proposed in [45], which is based on the computation of the tensor \mathcal{T}, can fail. The new criterion here introduced, which extends the one introduced in [47] to the general case with drift, multiple unknown inputs and TV, holds always (and is even simpler). In addition, the algorithm that solves the problem is written in a new manner, where the initialization step includes all the terms of Algorithm 4.4 that make the convergence criterion of Algorithm 4.4 non trivial.
Chapter 2

System Characterization and the problem of Observability

2.1 Basic equations

A general characterization of a dynamic system, which includes the presence of known and unknown inputs, is given by the following equations:

$$
\begin{align*}
\dot{x} &= g^0(x, t) + \sum_{k=1}^{m_u} f_k(x, t) u_k + \sum_{j=1}^{m_w} g^j(x, t) w_j \\
y &= [h_1(x, t), \ldots, h_p(x, t)],
\end{align*}
$$

(2.1)

where:

- $x \in \mathcal{M}$ is the state and \(\mathcal{M} \) is a differential manifold of dimension \(n \).
- \(u_1, \ldots, u_{m_u} \) are the known inputs. They are \(m_u \) independent functions of time that can be assigned. In control theory they are called controls or control inputs.
- \(w_1, \ldots, w_{m_w} \) are the unknown inputs or disturbances. They are \(m_w \) independent functions of time. In particular, in this paper we assume that they are analytic functions of time.
- \(f^1, \ldots, f^{m_u}, g^0, g^1, \ldots, g^{m_w} \) are \(m_u + m_w + 1 \) vector fields, which are assumed to be smooth functions of \(x \) and \(t \) (the time).

The vector field \(g^0 \) is often called the drift since, when all the inputs vanish, the state evolution is still non-vanishing in the presence of \(g^0 \).

In many cases the system is time-invariant (from now on TI), namely it has not an explicit time-dependence and all the functions that appear in (2.1) do not depend explicitly on time. Nevertheless, we also account for an explicit time dependence to be as general as possible. From now on, we use the acronym TV to indicate a system with an explicit time-dependence (TV stands for Time-Variant). We also use the acronym UI to mean unknown input and UIO to mean unknown input observability.

Finally, we show that the characterization given in (2.1) is very general. In particular, we show that, apparently more general characterizations, can be easily transformed into the above characterization.

A first category of more general systems would also include the presence of the inputs in the output functions, i.e.,

$$
\begin{align*}
\dot{x} &= g^0(x, t) + \sum_{k=1}^{m_u} f_k(x, t) u_k + \sum_{j=1}^{m_w} g^j(x, t) w_j \\
y &= [h_1(x, t, u, w), \ldots, h_p(x, t, u, w)],
\end{align*}
$$

where \(u = [u_1, \ldots, u_{m_u}]^T \) and \(w = [w_1, \ldots, w_{m_w}]^T \). However, this case can be easily converted to (2.1) by including the inputs in the state and by considering the system driven by the new inputs \(\dot{u} \) and \(\dot{w} \).

A second category of more general systems would take into account for a general nonlinear dependence of the dynamics with respect to the inputs (both known and unknown). In accordance
with Equation \((2.1)\), this dependence is affine. This second category is characterized by the new dynamics:

\[
\dot{x} = f(x, t, u, w)
\]

Again, also this case can be easily converted to \((2.1)\) by including the inputs in the state and by considering the system driven by the new inputs \(\dot{u}\) and \(\dot{w}\).

2.2 Reminders on basic algebraic operations

In this section, we provide some basic algebraic operations that will be widely used in the rest of this paper.

We remind the reader of the Lie derivative operation and of some related fundamental properties. The Lie derivative evaluates the change of a tensor field along a given vector field. In this paper we only use this operation when the tensor field is a scalar (i.e., a tensor of rank 0), when it is a vector (i.e., a tensor of rank 1 and type \((0, 1)\)) and when it is a row vector, or covector (i.e., a tensor of rank 1 and type \((1, 0)\)). We use the following notation:

- We denote by \(\nabla\) the differential operator. If \(h(x)\) is a scalar field defined on the manifold \(M\), \(\nabla h = \frac{\partial}{\partial x} h\). This is evidently a row vector of dimension \(n\). Note that, in some cases we work in extended spaces that include the space of the states \((x)\) and some of the UIs together with their time derivatives up to a given order. In this paper, with the symbol \(\nabla\) we always mean the differential with respect to all the coordinates of the considered space. When we wish to consider the differential with respect to a given subset of coordinates, we adopt the symbol \(\partial^*\), where \(*\) stands for the considered subset of coordinates. For instance, if we work in the extended space that includes the original state \(x\) together with the unknown inputs \(w_1, \ldots, w_m\), the differential with respect to the original state alone (i.e., \(x\)) will be indicated by the symbol \(\partial_x = [\partial_{x_1}, \ldots, \partial_{x_n}]\) and, in this case, \(\nabla = [\partial_x, \partial_{w_1}, \ldots, \partial_{w_m}]\).

- Given a vector field \(f\) (defined on \(M\)), \(\mathcal{L}_f\) denotes the Lie derivative along \(f\). When applied to the scalar field \(h(x)\) we obtain the following new scalar field

\[
\mathcal{L}_f h \triangleq \nabla h \cdot f
\]

(the product of a row vector times a column vector is a scalar). When applied to the covector field \(\omega\), we obtain the covector field

\[
\mathcal{L}_f \omega \triangleq f^T \left(\frac{\partial \omega^T}{\partial x} \right)^T + \omega \frac{\partial f}{\partial x},
\]

where \(f^T\) is the transpose of \(f\) (i.e., a row vector) and \(\left(\frac{\partial \omega^T}{\partial x} \right)^T\) is the transpose of the Jacobian of \(\omega^T\), and it is an \(n \times n\) matrix. An important special case occurs when \(\omega\) is the differential of a scalar field, i.e., \(\omega = \nabla h\). In this case, the above equation simplifies as follows:

\[
\mathcal{L}_f \nabla h = \nabla \mathcal{L}_f h.
\]

Finally, when applied to a vector field, \(g\), we obtain the following new vector field:

\[
\mathcal{L}_f g \triangleq \frac{\partial g}{\partial x} f - \frac{\partial f}{\partial x} g = [f, g],
\]

where the parenthesis \([\cdot, \cdot]\) are called Lie brackets.

\(^1\)Note that, here, tensor is with respect to a coordinate change in our manifold \(M\). Later, the same concept of tensor will be referred to another group of transformations, which is the group of invariance of observability.
• In accordance with the control theory literature, we use the term *distribution* to denote the span\(^2\) of a set of \(d \leq n\) vector fields, \(\Delta = \text{span}\{f^1, f^2, \ldots, f^d\}\). It is basically a vector space that depends on \(x \in \mathcal{M}\).

• Similarly, we also use the term *codistribution* to denote the span of a set of \(s \leq n\) covector fields, \(\Omega = \text{span}\{\omega_1, \omega_2, \ldots, \omega_s\}\). Again, it is a vector space that depends on \(x \in \mathcal{M}\).

• Given the codistribution \(\Omega\) and a vector field \(f\), we set \(\mathcal{L}_f \Omega\) the span of all the covectors \(\mathcal{L}_f \omega\) for any \(\omega \in \Omega\).

• Given two vector spaces \(V_1\) and \(V_2\), \(V_1 + V_2\) is their sum, i.e., the span of all the generators of \(V_1\) and \(V_2\). When we have \(k (> 2)\) vector spaces \(V_1, \ldots, V_k\), we denote its sum in the compact notation \(\sum_{i=1}^{k} V_i\).

2.3 A simple illustrative example

We provide a simple example to illustrate the above concepts and to highlight the goal of this paper. We consider a wheeled robot that moves on a plane. By introducing on this plane a global frame, we can characterize the position and orientation of the robot by the three parameters \(x_R, y_R, \theta_R\) (see figure 2.1).

![Figure 2.1: Wheeled robot moving on a plane.](image)

Under the assumption of the unicycle constraint, these parameters satisfy the following dynamics equations (unicycle dynamics)

\[
\begin{align*}
\dot{x}_R &= v \cos \theta_R, \\
\dot{y}_R &= v \sin \theta_R, \\
\dot{\theta}_R &= \omega,
\end{align*}
\]

(2.3)

where \(v\) and \(\omega\) are the linear and the rotational robot speed, respectively. We assume that a landmark is placed at the origin of the global frame. In addition, our robot is equipped with a sensor that perceives the landmark and provides its bearing angle in the local frame (i.e., the angle \(\beta\) in figure 2.1). This angle \(\beta\) can be expressed in terms of the robot position and orientation. We have

\[
\beta = \pi - \theta_R + \text{atan2}(y_R, x_R).
\]

(2.4)

\(^2\)Note that, here, span is over the ring of the scalar functions which are smooth in \(\mathcal{M}\) (or in a given open set of \(\mathcal{M}\), when it is specified). In other words, any element of \(\Delta\) is a vector field, \(f\), that can be expressed as follows: \(f = \sum_{i=1}^{d} c_i(x) f^i\), with \(c_1(x), \ldots, c_d(x)\) scalar and smooth functions in \(\mathcal{M}\). When we work in a given extended space, the ring is extended accordingly.
This system is a special case of the systems characterized by (2.1). In particular:

- \(x = [x_R, y_R, \theta_R]^T \) is the state, it has dimension \(n = 3 \) and it belongs to the manifold \(\mathbb{R}^2 \times S^1 \).

- The vector \(g^0 = 0 \) is the zero 3-column vector.

- \(m_u = 2 \) and \(u_1 = v, u_2 = \omega \), \(f^1 = [\cos \theta_R, \sin \theta_R, 0]^T \) and \(f^2 = [0, 0, 1]^T \).

- \(m_w = 0 \).

- \(y \) is the output and has a single component \((p = 1) \), i.e., \(y = h(x) = \pi - \theta_R + \arctan 2(y_R, x_R) \).

We study the observability properties of this system by following an intuitive procedure. To check if the robot configuration \([x_R, y_R, \theta_R]^T \) is observable, we have to prove that it is possible to uniquely reconstruct the initial robot configuration by knowing the inputs and the outputs in a given time interval. When, at the initial time, the bearing angle \(\beta \) of the origin is available, the robot can be everywhere in the plane but, for each position, only one orientation provides the right bearing \(\beta \). In fig. 2.2, all the three positions \(A, B \) and \(C \) are compatible with the observation \(\beta \), provided that the robot orientation satisfies (2.4). In particular, the orientation is the same for \(A \) and \(B \) but not for \(C \).

Let us suppose that the robot moves according to the inputs \(v(t) \) and \(\omega(t) \). With the exception of the special motion consisting of a line passing by the origin, by only performing a further bearing observation it is possible to distinguish all the points belonging to the same line passing by the origin. In fig. 2.2, the two initial positions in \(A \) and \(B \) do not reproduce the same observations after the movement, i.e., \(\alpha \neq \gamma \) (note that the segments \(AA' \) and \(BB' \) have the same length, which is known thanks to the knowledge of the system inputs). On the other hand, all the initial positions whose distance from the origin is the same, cannot be distinguished independently of the chosen trajectory. In fig. 2.2, the two indicated trajectories provide the same bearing observations, at any time. Therefore, the dimension of the unobservable region is 1. In particular, we introduce the following transformation

\[
\begin{align*}
x_R &\rightarrow x'_R = \cos \gamma x_R - \sin \gamma y_R, \\
y_R &\rightarrow y'_R = \sin \gamma x_R + \cos \gamma y_R, \\
\theta_R &\rightarrow \theta'_R = \theta_R + \gamma,
\end{align*}
\tag{2.5}
\]

where \(\gamma \in [-\pi, \pi] \) is the parameter that defines the transformation. The system inputs and output at any time are compatible with all the trajectories that differ because the initial state was transformed as above.

We wonder what is possible to reconstruct. The answer is immediate. All the physical quantities that are invariant with respect to the transform given in (2.5). In other words, all the functions of the following two quantities:

\[
\begin{align*}
r &= r(x_R, y_R, \theta_R) = \sqrt{x_R^2 + y_R^2}, \\
\theta &= \theta(x_R, y_R, \theta_R) = \theta_R - \arctan 2(y_R, x_R),
\end{align*}
\tag{2.6}
\]

Now, we assume that the first input, \(v \), is unknown. In other words, we have \(m_u = m_w = 1 \) and \(g^1 \) coincides with \(f^1 \) in the previous case and, the new \(f^2 \) is the old \(f^2 \). We immediately remark that, in addition to the invariance given by (2.5), we have a new invariance, which is the scale. Indeed, both the known input (\(\omega \)) and the output (\(\beta \)) are angular measurements. The system has no source of metric information. Hence, the unobservable region is characterized by the further transformation

\[
\begin{align*}
x_R &\rightarrow x'_R = \lambda x_R, \\
y_R &\rightarrow y'_R = \lambda y_R, \\
\theta_R &\rightarrow \theta'_R = \theta_R,
\end{align*}
\tag{2.7}
\]

where \(\lambda \in \mathbb{R}^+ \) is the parameter that defines the transformation. In this case, we cannot reconstruct the distance \(r \) and we can only reconstruct any function of the only angle \(\theta \) in (2.6) since \(\theta \) is invariant both with respect to (2.5) and with respect to (2.7) \(\arctan 2(\lambda y_R, \lambda x_R) = \arctan 2(y_R, x_R), \) for any \(\lambda \in \mathbb{R}^+ \).
Figure 2.2: In (a), the three initial robot configurations are compatible with the same initial observation (β). In (b), the two initial positions (A and B) do not reproduce the same observations ($\alpha \neq \gamma$). In (c) the two indicated trajectories provide the same bearing observations at every time.

The above analysis was possible because the system is trivial: the state has dimension 3 and, both the dynamics and the output have a very simple expression. We wish to provide the analytic tool able to automatically perform such analysis, i.e., by following a systematic analytical procedure. Note that, in the absence of unknown inputs, this procedure is the observability rank condition introduced in [4] and summarized in Section 2.4. In the presence of a single unknown input and for driftless systems, the solution has very recently been obtained in [46]. Here, in Chapter 3, we provide a more efficient solution. Finally, in Chapters 4 and 5, we provide the general solution (i.e., for driftless systems, with multiple unknown inputs and that holds even in the case TV). All these analytical systematic procedures use the algebraic operations summarized in section 2.2.

2.4 Observable function

When the state is not observable, there are functions of the state that can be observable, i.e., functions for which we have the possibility of reconstructing the value that they take at the initial state. In the simple example discussed in section 2.3 when all the inputs are known, we found that we cannot reconstruct the initial state. However, we can reconstruct the initial value of all the functions that depend on the state only via the two quantities r and θ in (2.6). In other words, for this system all the observable functions are all the functions that depend on the state only via $r = \sqrt{x_R^2 + y_R^2}$ and $\theta = \theta_R - \arctan(2y_R, x_R)$ (e.g., a function of x_R and/or of θ_R is not an observable function). When the input v is unknown, we can reconstruct the initial value of the functions that only depend on θ. In this case, all the observable functions are all the functions that depend only on θ. The general definition of observable function is provided in [46], where Definition 2 defines the observation space in the presence of unknown inputs, starting from the concept of indistinguishability. An observable function is precisely an element of this function space. It is possible to define an observable function as follows:

Definition 2.1 (Observable Function). The scalar function $\theta(x)$ is observable at $x_0 \in \mathcal{M}$ if there exists an open neighbourhood B of x_0 such that, by knowing that $x_0 \in B$, it exists at least one choice of known inputs $u_1(t), \ldots, u_m(t)$ such that $\theta(x_0)$ can be obtained from the knowledge of the output $y(t)$ and the inputs $u_1(t), \ldots, u_m(t)$ on the time interval $[t_0, t_0 + T]$ for a given $T > 0$. In addition, $\theta(x)$ is observable on a given set $A \subseteq \mathcal{M}$, if it is observable at any $x \in A$.

This definition is the extension of the definition of state observability. Note that if we find n independent observable functions (i.e., n functions whose gradients are independent) the entire state is observable. More properties about the link of the above definition and the standard definition of state observability (based on the concept of indistinguishability) can be found in [46]. The observable codistribution, or observability codistribution, is the span of the differentials of all the observable functions. By construction, the dimension of this codistribution cannot exceed

3^3As we mentioned in the introduction, with observability we actually mean weak local observability.
the dimension of the state \((n)\). If the dimension of this codistribution is \(n\), every component of the state \(x\) is observable.

2.5 Canonic systems and canonical form with respect to the unknown inputs

We now introduce the new concepts of unknown input degree of reconstructability, canonic system with respect to its unknown inputs and canonical form with respect to the unknown inputs. This is obtained by introducing an important matrix that will be called the *Unknown Input Reconstructability Matrix* from a finite set of scalar functions.

Definition 2.2 (Unknown input reconstructability matrix). Given the \(k\) scalar functions of the state, \(\lambda_1(x), \ldots, \lambda_k(x)\), the unknown input reconstructability matrix from \(\lambda_1, \ldots, \lambda_k\) is defined as follows:

\[
RM(\lambda_1, \ldots, \lambda_k) \triangleq \begin{bmatrix}
\mathcal{L}_{g_1}^1 \lambda_1 & \mathcal{L}_{g_2}^1 \lambda_1 & \cdots & \mathcal{L}_{g_{mw}}^1 \lambda_1 \\
\mathcal{L}_{g_1}^2 \lambda_2 & \mathcal{L}_{g_2}^2 \lambda_2 & \cdots & \mathcal{L}_{g_{mw}}^2 \lambda_2 \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{L}_{g_1}^k \lambda_k & \mathcal{L}_{g_2}^k \lambda_k & \cdots & \mathcal{L}_{g_{mw}}^k \lambda_k
\end{bmatrix}
\tag{2.8}
\]

This matrix depends on \(x\) and, for TV systems, on \(t\). Based on this matrix, we introduce the following definition:

Definition 2.3 (Unknown input degree of reconstructability). Given the state that satisfies the dynamics in \((2.1)\), and the functions \(\lambda_1, \ldots, \lambda_k\), the unknown input degree of reconstructability from \(\lambda_1, \ldots, \lambda_k\) is the rank of \(RM(\lambda_1, \ldots, \lambda_k)\).

By construction, the unknown input degree of reconstructability from any set of functions cannot exceed \(m_w\). In addition, it depends in general on \(x\) and, for TV systems, also on \(t\).

Given the system characterized by \((2.1)\), we consider two special cases, depending on the set of functions \(\lambda_1, \ldots, \lambda_k\):

- This set of functions consists of the output functions, i.e., \(h_1, \ldots, h_p\).
- This set of functions consists of all the independent observable functions\(^4\).

In the first case, we refer to the *unknown input degree of reconstructability from the outputs*. In the second case, we omit to specify the functions and we refer to the *unknown input degree of reconstructability*. We introduce the following definition:

Definition 2.4 (Canonic system wrt the UIs). The system in \((2.1)\) is canonic with respect to the unknown inputs if its unknown input degree of reconstructability is \(m_w\).

Let us consider the systems for which the unknown input degree of reconstructability from the outputs is \(m_w\). Since the output functions are observable functions, these systems are canonic with respect to their unknown inputs. We say that these systems are in canonical form. In particular, we introduce the following definition:

Definition 2.5 (System in canonical form wrt the UIs). The system in \((2.1)\) is in canonical form with respect to the unknown inputs if its unknown input degree of reconstructability from the outputs is \(m_w\).

Let us consider a system that satisfies \((2.1)\). Its observability properties are the same of the new system defined as follows:

- It is characterized by the same state.
- The time evolution of the state is the same (i.e., it satisfies the first equation of \((2.1)\)).

\(^4\)Here, with independent we mean that their differentials with respect to the state are independent. Hence, we can have at most \(n\) independent observable functions (when there are \(n\) independent observable functions the entire state is evidently observable).
• The outputs are $h_1, \ldots, h_p, h_{p+1}$, where h_{p+1} is an observable function for the first system.

Indeed, if the function h_{p+1} is observable, its value can be reconstructed and, as a result, for the observability analysis, it can be set as an output of the system. For the simple example in Section 2.3, it is easy to realize that, when both the inputs are known, we can add to the single output $h_1 = \beta = \pi - \theta_R + \phi$, any function h_2 that depends on r and/or $\theta_R - \phi$. The observable codistribution of the resulting system remains the same (e.g., we can add $h_2 = r$). Hence, for any system that is canonic with respect to its unknown inputs there exists a system that shares the same observability properties and that is in canonical form with respect to its unknown inputs. However, for a canonic system that is not in canonical form, a set of observable functions that makes the reconstructability matrix full rank, is not necessarily available. One of the outcomes of Algorithm 5.5 is to automatically determine this set of functions.

Note that, as the rank of the matrix in (2.8) depends in general on x and, for TV systems, on t, all the above definitions are meant in a given open set where this rank takes the same value.

2.6 The problem of Observability and the case without UI

Given a dynamic system characterized by (2.1) the problem of observability is to obtain all the observable functions. In this paper we provide the general solution, which works automatically. In particular, we provide the algorithm that automatically computes a codistribution that includes the gradients of all the observable functions. From now on, we call this codistribution the observability codistribution. For educational purposes, instead of directly providing the algorithm that computes the observability codistribution in the most general case, we first provide the algorithm in some special cases, which correspond to the characterization given in (2.1) when some of the parameters take special values. In particular, we consider separately the following cases:

1. Absence of unknown inputs. This case is characterized by (2.1) when $m_w = 0$. The algorithm that computes the observability codistribution is Algorithm 2.1, given in this section.

2. System in canonical form, in accordance with Definition 2.5, TI, driftless, with a single UI and a single known input (g^0 equal to the zero column vector, $m_w = m_u = 1$ and all the functions in (2.1) time-independent). The algorithm that computes the observability codistribution is Algorithm 3.1, given in Chapter 3.

3. System in canonical form, in accordance with Definition 2.5, both TI and TV, characterized by a nonlinear drift, any number of known and unknown inputs. The algorithm that computes the observability codistribution is Algorithm 4.1, given in Chapter 4.

4. System characterized by a nonlinear drift, any number of known and unknown inputs, but not necessarily in canonical form with respect to the unknown inputs. The algorithm that computes the observability codistribution is Algorithm 5.5. This Algorithm also computes the observability codistribution when the system is not canonic with respect to its unknown inputs and not even canonizable. The analytical derivation is given in Chapter 5.

We denote by O the codistribution computed by the algorithms 2.1, 3.1, 4.1, and 5.5 respectively in the four above cases. The fact that O is the observability codistribution is expressed by the following Theorem:

Theorem 2.1. Let us consider a scalar function $\theta(x)$. If $\nabla \theta \in O$ at $x_0 \in M$ then the function $\theta(x)$ is observable at x_0. Conversely, if the function θ is observable on an open set $A \subseteq M$ then $\nabla \theta \in O$ in a dense set of A.

Proof. We distinguish the previous four cases.

• In the first case, the statement of the theorem is a well known result in the state of the art. It can be easily obtained starting from theorem 3.1 and theorem 3.11 in [4]. Its extension to the TV case is very simple and is available in [49] (it is also available in [45]).
• In the second case, the proof of the statement is given in Chapter 3, starting from the results given in [46] and in [45].

• In the third case, the proof of the statement is given in Chapter 4, starting from the results given in [45].

• In the fourth case, the proof of the statement is given in Chapter 5.

It is immediate to remark that, if the dimension of \(O \) is \(n \), every component of the state \(x \) is observable.

We conclude this section by providing the algorithm that computes \(O \) for TI systems and in the absence of UIs. This is Algorithm 2.1.

Algorithm 2.1 (Observable codistribution for TI nonlinear systems without unknown inputs).

\[
\begin{align*}
\Omega_0 &= \text{span}\{\nabla h_1, \ldots, \nabla h_p\} \\
\Omega_{k+1} &= \Omega_k + L_{g^0} \Omega_k + \sum_{i=1}^{m_u} L_{f_i} \Omega_k
\end{align*}
\]

The above algorithm converges at the smallest integer \(k \) such that \(\Omega_k = \Omega_{k-1} = O \). As the dimension of \(\Omega \) cannot exceed \(n \), this smallest integer cannot exceed \(n \).

We illustrate the use of this algorithm by referring to our illustrative example of section 2.3. We run Algorithm 2.1 to obtain \(O \). At the initialization we have:

\[
\Omega_0 = \text{span}\{\nabla h_1\} = \text{span}\left\{-\frac{y_R}{x_R^2 + y_R}, \frac{x_R}{x_R^2 + y_R}, -1 \right\}.
\]

By a direct computation we obtain that \(L_{f_1} h_1 = -1 \) and, at the next step, \(\Omega = \text{span}\{\nabla h_1, \nabla L_{f_1} h_1\} \) (i.e., the dimension of \(\Omega_1 \) is 2). At the next step, its dimension does not change and, consequently, the algorithm has converged. Therefore, \(O = \text{span}\{\nabla h_1, \nabla L_{f_1} h_1\} \). We compute the orthogonal distribution (i.e., the span of the vectors orthogonal to \(\nabla h_1 \) and \(\nabla L_{f_1} h_1 \), simultaneously). By a direct computation, we obtain: \(\Delta = (O)^\perp = \text{span}\{[-y_R, x_R, 1]^T\} \). It has dimension 1. From the expression of its generator \([-y_R, x_R, 1]^T\), we obtain the system invariance under the following infinitesimal transformation (\(\epsilon \) is an infinitesimal parameter):

\[
\begin{bmatrix}
x_R \\
y_R \\
\theta_R
\end{bmatrix} \rightarrow \begin{bmatrix}
x'_R \\
y'_R \\
\theta'_R
\end{bmatrix} = \begin{bmatrix}
x_R \\
y_R \\
\theta_R
\end{bmatrix} + \epsilon \begin{bmatrix}
-y_R \\
x_R \\
1
\end{bmatrix} \quad (2.9)
\]

(see [45, 48] where we introduce, in this context, the concept of continuous symmetry that is any killing vector of \(O \)). This is precisely the same invariance expressed by (2.5) in the limit \(\gamma \rightarrow \epsilon \) (the vector \([-y_R, x_R, 1]^T\) is the generator of the Lie algebra associated to the one parameter Lie group described by (2.5)).

The above procedure can be easily extended to cope with TV systems [45, 49]. Specifically, in Algorithm 2.1 we simply need to introduce the following substitution:

\[
L_{g^0} \rightarrow L_{g^0} + \frac{\partial}{\partial t} \Omega \quad (2.10)
\]

In the case of driftless systems, it means that, in the recursive step, we need to add the term \(+ \frac{\partial}{\partial t} \Omega \).
Chapter 3

Systems in Canonical Form: the Analytical Solution in the case of TI driftless systems with a single UI

In this and in the next chapter we provide the analytical and automatic procedure that builds, in a finite number of steps, all the observable functions for systems characterized by (2.1) and that are in canonical form with respect to their unknown inputs, according to Definition 2.5. In this chapter we provide the solution for driftless TI systems, with a single UI and a single known input. In other words, the systems studied in this chapter are characterized by the following equation:

\[
\begin{align*}
\dot{x} &= f(x)u + g(x)w \\
y &= [h_1(x), \ldots, h_p(x)],
\end{align*}
\]

which is (2.1) with \(m_w = m_u = 1\), \(f^1 = f\), \(g^1 = g\), \(g^0\) identically null, and all the functions time independent. Then, in Chapter 4 we relax all these restrictions. As we mentioned above, in these two chapters we assume that the systems are in canonical form with respect to their unknown inputs, according to Definition 2.5. The general solution, i.e., for systems neither in canonical form nor canonic, will be given in Chapter 5. The general solution uses, iteratively, the solution for systems in canonical form. This is the reason why we prefer to analyze this case before.

3.1 The solution

In the specific case of this chapter, i.e., when the system is characterized by (3.1), the fact that it is in canonical form means that there exists at least one output function among \(h_1, \ldots, h_p\) such that its Lie derivative along \(g\) does not vanish. We denote this function by \(h\). In addition, we denote by \(L_g^1\) its Lie derivative along \(g\),

\[L_g^1 = \mathcal{L}_g h.\]

The solution of this case was obtained in [45, 46] and is returned by a simple algorithm that automatically computes \(O\) (Algorithm 7.2 in [45]). However, in [45, 46], the criterion of convergence of this algorithm is not general. Here, we provide a new algorithm, for which the convergence criterion is trivial (it is the same of Algorithm 2.1). We denote by \(\hat{g}\) the following vector field in \(\mathcal{M}\):

\[\hat{g} = \frac{g}{L_g^1}.\]

14
The observable codistribution is constructed by Algorithm 3.1. We denote by \mathcal{O}_k the codistribution computed at the k^{th} step, instead of Ω_k which is used in Algorithm 7.2 in [45].

Algorithm 3.1.

\[\begin{align*}
\mathcal{O}_0 &= \hat{\mathcal{O}} + \text{span}\{\nabla h_1, \ldots, \nabla h_p\} \\
\mathcal{O}_{k+1} &= \mathcal{O}_k + L_f \mathcal{O}_k + L_g \mathcal{O}_k
\end{align*} \]

where $\hat{\mathcal{O}}$ is an integrable codistribution. Its computation can be performed automatically and is provided in Section 3.1.1. Algorithm 3.1 converges at the smallest k for which

\[\mathcal{O}_k = \mathcal{O}_{k-1}, \] (3.4)

precisely as Algorithm 2.1. As the dimension of \mathcal{O} cannot exceed n, this smallest integer cannot exceed n.

3.1.1 Ingredients of the Solution

The initialization step of Algorithm 3.1 (i.e., the computation of \mathcal{O}_0) requires the computation of the codistribution $\hat{\mathcal{O}}$. In this section, we define this codistribution and we provide the method to automatically compute it. It is based on the knowledge of two integers, denoted by s and r.

They are defined as follows:

- s is the smallest number of steps requested for the convergence of Algorithm 3.2 which computes the codistribution Ω^g. Note that s cannot exceed the state dimension, i.e., $s \leq n$.
- $r + 1$ is the smallest number of steps requested for the convergence of Algorithm 3.3 which computes the distribution Δ. Note that $r + 1$ cannot exceed the state dimension, i.e., $r \leq n - 1$.

The codistribution Ω^g

Ω^g is the smallest codistribution that includes ∇h and is invariant with respect to L_g. It is automatically constructed by Algorithm 3.2 which converges at the smallest integer s such that $\Omega^g_s = \Omega^g_{s-1}(= \Omega^g)$.

Algorithm 3.2 (Codistribution Ω^g).

\[\begin{align*}
\Omega^g_0 &= \text{span}\{\nabla h\} \\
\Omega^g_k &= \Omega^g_{k-1} + L_g \Omega^g_{k-1}
\end{align*} \]

Note that $s \leq n$. In addition, $\Omega^g = \text{span}\{\nabla h, \nabla L_g h, \ldots, \nabla L_g^{s-1} h\}$ and the functions $h, L_g h, \ldots, L_g^{s-1} h$ are called a basis of Ω^g (even if their gradients constitute, actually, a basis).

The computation of $\hat{\mathcal{O}}$ needs to know the value of s. This is automatically obtained by running Algorithm 3.2.

The distribution Δ

We introduce the following abstract operation:

Definition 3.1 (Autobracket). Given the vector field ϕ, we define its autobracket with respect to the system characterized by equation (3.1) the following vector field

\[[\phi] = \frac{[g, \phi]}{L_g^1}. \] (3.5)

Note that, in [45] and in [46] the same operation was defined by using $[\phi, g]$ instead of $[g, \phi]$ in [3.5].

We denote by

\[[\phi]^{(m)} \]

1A sign does not affect the observability properties
the vector field obtained by applying the autobracket repetitively \(m \) consecutive times, and

\[[\phi]^{(0)} = \phi. \]

We introduce the distribution \(\Delta \). It is the smallest distribution that includes \(f \) and is invariant under the autobracket operation.

Algorithm 3.3 (Distribution \(\Delta \)).
\[
\Delta_0 = \text{span} \{ f \} \\
\Delta_k = \Delta_{k-1} + [\Delta_{k-1}] \\
\text{with:} \\
\mathcal{D} \triangleq \sum_{v \in \Delta} \text{span} \{ [v] \}
\]

It is immediate to remark that, if \(v_1, \ldots, v_l \) is a basis of \(\Delta_{k-1} \), then \(v_1, \ldots, v_l, [v_1], \ldots, [v_l] \) is a set of generators of \(\Delta_{k-1} + [\Delta_{k-1}] \).

Algorithm 3.3 converges at the smallest integer \(k \) such that \(\Delta_k = \Delta_{k-1} (= \Delta) \). We set \(k = r + 1 \). A basis of \(\Delta \) is:

\[\phi_0 \triangleq f, \quad \phi_1 \triangleq [f], \quad \phi_2 \triangleq [f]^{(2)}, \quad \ldots, \quad \phi_r \triangleq [f]^{(r)} \]

Note that \(r \leq n-1 \). The computation of \(\tilde{O} \) needs to know the value of \(r \). This is automatically obtained by running Algorithm 3.3.

The codistribution \(\tilde{O} \)

We are ready to provide \(\tilde{O} \). It is:

\[\tilde{O} \triangleq \sum_{j=0}^{s+r} \text{span} \{ \nabla \mathcal{L}[f]^{(j)}h \} \quad (3.6) \]

3.2 Proof

In this section we prove that Algorithm 3.1 with \(\tilde{O} \) defined in (3.6), provides the observability codistribution for systems characterized by (3.1) and in canonical form with respect to the unknown input.

We start from the solution given in [45] and [46]. We know that the observability codistribution is computed by Algorithm 7.2 in [45], that is:

Algorithm 3.4 (Observability codistribution for TI driftless systems with a single UI).
\[
\Omega_0 = \text{span} \{ \nabla h_1, \ldots, \nabla h_p \} \\
\Omega_{k+1} = \Omega_k + \mathcal{L}f \Omega_k + \mathcal{L}g \Omega_k + \mathcal{L}[f]^{(k)} \nabla h
\]

Because of the last term at the recursive step, we cannot conclude that this algorithm converges. In particular, without this term, this algorithm would converge in at most \(n-1 \) steps, precisely as Algorithm 2.1.

The convergence of this algorithm is proved by the result stated by Theorem 3.1. More importantly, this result states that we can obtain the observability codistribution by directly running Algorithm 3.1 which converges at the smallest integer \(k \) such that \(\mathcal{O}_{k-1} = \mathcal{O}_k \) and this occurs in at most \(n-1 \) steps.

The proof of Theorem 3.1 is based on the result stated by Proposition 3.1. This is a technical result and it will be given, separately, in Section 3.2.1.

Finally, the proof of Theorem 3.1 requires the introduction of a new object, which will be denoted by \(\mathcal{C} \) and is defined as follows.

By construction, we have:

\[[\phi_r] \in \text{span} \{ \phi_0, \phi_1, \ldots, \phi_r \} \]

We introduce the following quantity \(\mathcal{C} \). It is characterized by two indices:
and it is implicitly defined by the following:

$$[\phi_k] = \sum_{m=0}^{r} C_{km} \phi_m, \quad k \leq r$$

(3.7)

We trivially have:

$$C_{km} = \delta_{k+1,m}, \quad k \leq r - 1$$

(3.8)

In other words, only the last row of C ($C_{r1}, C_{r2}, \ldots, C_{rr}$) is not trivial (in particular, the differential of any entry of C that does not belong to this row vanishes).

The following result proves that the codistribution O, which is automatically computed by Algorithm 3.1, is the observability codistribution.

Theorem 3.1. There exists \hat{k} such that, for any $k \geq \hat{k}$, $O \subseteq \Omega_k$. Conversely, for any k, $\Omega_k \subseteq O$.

Proof. Let us prove the first statement. From the $(k+1)$th step of Algorithm 3.4, we obtain that $L_{[f]^k} h \in \Omega_{k+1}$. From (3.6), we immediately obtain that

$$\tilde{O} \subseteq \Omega_{r+s+1}.$$

By comparing the recursive step of Algorithm 3.1 with the one of Algorithm 3.4, it is immediate to conclude that, for any integer $q \geq 0$:

$$O_q \subseteq \Omega_{r+s+1+q}$$

and, as Algorithm 3.1 converges in at most $n - 1$ steps to O, we conclude that:

$$O \subseteq \Omega_{r+s+n}$$

and this proves the first statement with $\hat{k} = r + s + n \leq 3n - 1$.

Let us prove the second statement. We must prove that, for any k, $\Omega_k \subseteq O$. We proceed by induction. It is true at $k = 0$ as $\Omega_0 \subseteq O_0 \subseteq O$.

Let us assume that

$$\Omega_p \subseteq O$$

We must prove that

$$\Omega_{p+1} \subseteq O$$

As O is invariant under \mathcal{L}_g and \mathcal{L}_f, we only need to prove that

$$\nabla \mathcal{L}_{[f]^{(p+1)}(h)} \in O$$

We distinguish the following two cases:

1. $p \leq r + s$.
2. $p \geq r + s + 1$.

The first case is trivial as $\nabla \mathcal{L}_{[f]^{(p)}(h)} \in O$.

Let us consider the second case. We set $p = r + s + l'$, with $l' \geq 1$, and we use Equation (3.20), with $l = s + l'$. We have:

$$\nabla \mathcal{L}_{[f]^{(p)}(h)} = \gamma_{p-r} \sum_{m=0}^{r} (\nabla \mathcal{C}_{rm}) \mathcal{L}_{\phi_m} \mathcal{L}_g^{s+l'-1} h \mod \Omega_p + \mathcal{L}_g \Omega_p$$

(3.9)

with $\gamma_{p-r} \neq 0$.

Let us denote by $t = s + l' - 1 \geq s$. We know that $\nabla \mathcal{C}^{t} h \in \Omega^g$ and, as a result,
\[\nabla L^i_g h = \sum_{i=1}^{s} c_i \nabla L^i_{g-1} h \]

with \(c_1, \ldots, c_s \) suitable scalar functions in the manifold \(\mathcal{M} \). We have:

\[\mathcal{L}_{\phi_m} L^i_g h = \nabla L^i_g h \cdot \phi_m = \left(\sum_{i=1}^{s} c_i \nabla L^i_{g-1} h \right) \cdot \phi_m = \sum_{i=1}^{s} c_i \mathcal{L}_{\phi_m} L^i_{g-1} h \]

We substitute in (3.9) and we obtain:

\[\nabla L[f] h = \gamma p - \sum_{m=0}^{r} (\nabla C_{rm}) \mathcal{L}_{\phi_m} L^i_{g-1} h \mod \Omega_p + \mathcal{L}_g \Omega_p \] \hspace{1cm} (3.10)

Now we use again Equation (3.20), with \(l = i \). We have:

\[\nabla L[f] h = \gamma_i \sum_{m=0}^{r} (\nabla C_{rm}) \mathcal{L}_{\phi_m} L^i_{g-1} h \mod \Omega_{r+i} + \mathcal{L}_g \Omega_{r+i} \]

As \(\gamma_i \neq 0 \) and \(\nabla L[f] h \in \Omega_{r+i+1} \), we have:

\[\sum_{m=0}^{r} (\nabla C_{rm}) \mathcal{L}_{\phi_m} L^i_{g-1} h \in \Omega_{r+i+1}, \]

and

\[\sum_{i=1}^{s} c_i \sum_{m=0}^{r} (\nabla C_{rm}) \mathcal{L}_{\phi_m} L^i_{g-1} h \in \Omega_{r+s+1}. \]

As \(p \geq r + s + 1 \), we have \(\Omega_{r+s+1} \subseteq \Omega_p \), and we obtain:

\[\sum_{i=1}^{s} c_i \sum_{m=0}^{r} (\nabla C_{rm}) \mathcal{L}_{\phi_m} L^i_{g-1} h \in \Omega_p. \]

By using this in (3.10), we obtain:

\[\nabla L[f] h \in \Omega_p + \mathcal{L}_g \Omega_p. \]

From the inductive assumption, we know that \(\Omega_p \subseteq \mathcal{O} \). In addition, \(\mathcal{O} \) is invariant under \(\mathcal{L}_g \).

Therefore, \(\nabla L[f] h \in \mathcal{O} \). \(\square \)

3.2.1 Intermediate technical results

The goal of this section is to prove the validity of Equation (3.20), which has been used several times in the proof of Theorem 3.1. To achieve this goal, we basically need to proceed along two directions:

- Generalize the quantities \(C \) by introducing the quantities \(C^q \), according to Equation (3.11), and obtaining the recursive law stated by Lemma 3.1.
- First proving the validity of Equation (3.15), which is more general than Equation (3.20). In particular, this latter is obtained from the former in a special setting.

We generalize the quantities \(C \) by introducing the quantities \(C^q \) (\(q \) being an integer), as follows:

\[[\phi_k]^q = \sum_m c_{km}^q \phi_m, \quad k \leq r \] \hspace{1cm} (3.11)

where \(\sum_m \) stands for \(\sum_{m=0}^{r} \). The validity of the above expression comes from the fact that \([\phi_k]^q \in \text{span} \{ \phi_0, \ldots, \phi_r \} \).

By construction,
\[C^1 = C \]

We have the following result:

Lemma 3.1. The following equation holds:

\[C^{l+1}_{km} = \mathcal{L}_g C^l_{km} + \sum_{m'} C^l_{km'} C_{m'm}, \quad (3.12) \]

and its differential expression:

\[\nabla C^{l+1}_{km} = \mathcal{L}_g \nabla C^l_{km} + \sum_{m'} \nabla C^l_{km'} C_{m'm} + \sum_{m'} C^l_{km'} \nabla C_{m'm} \quad (3.13) \]

Proof. By definition, we have:

\[[\phi_k]^{(l+1)} = \sum_m C^{l+1}_{km} \phi_m \quad (3.14) \]

On the other hand,

\[[\phi_k]^{(l+1)} = [\phi_k]^{(l)} = \left[\sum_m C_{km} \phi_m \right] = \sum_m (\mathcal{L}_g C^l_{km}) \phi_m + \sum_m C^l_{km} \phi_m = \sum_m (\mathcal{L}_g C^l_{km}) \phi_m + \sum_m C^l_{km} C_{m'm} \phi_m \]

By comparing with (3.14) we obtain (3.12) and, by differentiating, (3.13). \(\blacktriangleleft\)

Lemma 3.2. Given \(\phi_k \) \((k = 0, \ldots, r)\), for any integer \(l \geq 1 \), and any integer \(0 \leq j \leq l - 1 \), we have

\[\nabla L_{[\phi_k]}(l^r) h = \beta_{l,j} \sum \left(\nabla C_{km}^{l^{r-j}} \right) L_{\phi_m} L_{g}^{j} h \quad \text{mod} \quad \Omega_{r+l} + \mathcal{L}_g \Omega_{r+l} \quad (3.15) \]

with \(\beta_{l,j} \neq 0 \).

Proof. We proceed by induction on \(l \). Let us set \(l = 1 \). We only have \(j = 0 \). We have:

\[\nabla L_{[\phi_k]}(l^1) h = \nabla L_{\sum_{m} c_{km} \phi_m} h = \nabla \sum_{m} c_{km} \nabla L_{\phi_m} h = \sum_{m} c_{km} \nabla L_{\phi_m} h + \sum_{m} (\nabla C_{km}) \nabla L_{\phi_m} h \]

On the other hand, for \(m \leq r \)

\[\nabla L_{\phi_m} h \in \Omega_{r+1}, \]

Hence,

\[\nabla L_{[\phi_k]}(l^1) h = \sum_{m} (\nabla C_{km}) \nabla L_{\phi_m} h, \quad \text{mod} \quad \Omega_{r+1}, \]

which proves (3.15) when \(l = 1, j = 0 \) and \(\beta_{1,0} = 1 \neq 0 \).

Let us consider the recursive step. We assume that (3.15) holds at a given \(l = t^* > 1 \). We have:

\[\nabla L_{[\phi_k]}(l^{t^*}) h = \beta_{t^*,j} \sum \left(\nabla C_{km}^{l^{t^*-j}} \right) L_{\phi_m} L_{g}^{j} h \quad \text{mod} \quad \Omega_{r+t^*} + \mathcal{L}_g \Omega_{r+t^*} \quad (3.16) \]

for any \(j = 0, 1, \ldots, t^* - 1 \) and with \(\beta_{t^*,j} \neq 0 \). In addition, (3.15) holds at any \(l \leq t^* \) for any \(j \leq l - 1 \). In particular, it holds for any \(l \leq t^* \) and \(j = l - 1 \). Hence we also have:

\[\nabla L_{[\phi_k]}(l^l) h = \beta_{l,l-1} \sum \left(\nabla C_{km} \right) L_{\phi_m} L_{g}^{l-1} h \quad \text{mod} \quad \Omega_{r+l} + \mathcal{L}_g \Omega_{r+l} \quad (3.17) \]

for any \(l \leq t^* \) with \(\beta_{l,l-1} \neq 0 \).
We must prove the validity of (3.15) at \(l^* + 1 \) and for any \(j = 0, \ldots, l^* \), i.e.:

\[
\nabla L_{[\phi_k]^j} h = \beta_{l+1,j} \sum_m (\nabla C_{km}^{-j+1}) L_{\phi_m} \delta_j h \mod \Omega_{r+l^*+1} + L_g \Omega_{r+l^*+1} \tag{3.18}
\]

We proceed by induction on \(j \). Let us consider \(j = 0 \). We have:

\[
\nabla L_{[\phi_k]^j} h = \nabla L \sum_m C_{km}^{j+1} \phi_m h = \nabla \sum_m C_{km}^{j+1} L_{\phi_m} h = \sum_m (\nabla C_{km}^{j+1}) L_{\phi_m} h
\]

On the other hand, for \(m \leq r \)

\[
\sum_m C_{km}^{j+1} \nabla L_{\phi_m} h \in \Omega_{r+1} \subseteq \Omega_{r+l^*+1}.
\]

This proves the validity of (3.18) at \(j = 0 \) with \(\beta_{l^*+1,0} = 1 \).

Let us assume that (3.18) holds at a given \(j = j^* \leq l^* - 1 \). We must prove that it also holds at \(j = j^* + 1 \). We prove the equality, \(\mod \Omega_{r+l^*+1} + L_g \Omega_{r+l^*+1} \), of the two expressions at \(j^* \) and \(j^* + 1 \), namely, we must prove the following:

\[
\beta_{l^*+1,j} \sum_m (\nabla C_{km}^{-j+1}) L_{\phi_m} \delta_j h = \beta_{l^*+1,j^*+1} \sum_m (\nabla C_{km}^{-j}) L_{\phi_m} \delta_j g h \mod \Omega_{r+l^*+1} + L_g \Omega_{r+l^*+1}
\]

From the inductive assumption at \(j^* \) we know that \(\beta_{l^*+1,j^*} \neq 0 \). We denote \(\rho \triangleq \frac{\beta_{l^*+1,j^*+1}}{\beta_{l^*+1,j^*}} \).

As a result, we must prove:

\[
\sum_m (\nabla C_{km}^{-j+1}) L_{\phi_m} \delta_j h = \rho \sum_m (\nabla C_{km}^{-j}) L_{\phi_m} \delta_j g h \mod \Omega_{r+l^*+1} + L_g \Omega_{r+l^*+1}
\]

with \(\rho \neq 0 \).

We adopt the notation:

\[
\lambda \triangleq \delta_j g h, \quad C^- = C^{l^*-j^*}, \quad C^+ = C^{l^*-j^*+1}
\]

We must prove:

\[
\sum_m (\nabla C_{km}^+) L_{\phi_m} \lambda = \rho \sum_m (\nabla C_{km}^-) L_{\phi_m} \delta_j g \lambda \mod \Omega_{r+l^*+1} + L_g \Omega_{r+l^*+1} \tag{3.19}
\]

with \(\rho \neq 0 \).

From (3.13) we have:

\[
\nabla C_{km}^+ = \delta_j \nabla C_{km}^- + \sum_{m'} \nabla C_{km}^- C_{m'm} + \sum_{m'} C_{km}^- \nabla C_{m'm}
\]

We substitute in the above expression and we must prove:

\[
\sum_m \left(\delta_j \nabla C_{km}^- + \sum_{m'} \nabla C_{km}^- C_{m'm} + \sum_{m'} C_{km}^- \nabla C_{m'm} \right) L_{\phi_m} \lambda = \rho \sum_m (\nabla C_{km}^-) L_{\phi_m} \delta_j g \lambda \mod \Omega_{r+l^*+1} + L_g \Omega_{r+l^*+1}
\]

with \(\rho \neq 0 \).

Let us consider the first term on the left hand side.

\[
\sum_m (\delta_j \nabla C_{km}^-) L_{\phi_m} \lambda = \delta_j \left(\sum_m \nabla C_{km}^- L_{\phi_m} \lambda \right) - \sum_m \nabla C_{km}^- L_{\phi_m} \left(L_{\phi_m} \lambda \right)
\]
Note that $j^* \leq l^* - 1$. Hence, we are allowed to use (3.16) at $j = j^*$. In the new notation, it tells us that

$$\nabla \mathcal{L}_{[\phi_k]^*}, h = \beta_{l^*, j^*} \sum_m (\nabla C_{km}^-) \mathcal{L}_{\phi_m} \lambda \mod \Omega_{r+l^*} + \mathcal{L}\Omega_{r+l^*}$$

On the other hand,

$$\nabla \mathcal{L}_{[\phi_k]^*}, h \in \Omega_{k+l^* + 1} \subseteq \Omega_{r+l^* + 1}$$

As $\beta_{l^*, j^*} \neq 0$ we obtain:

$$\mathcal{L}_{\tilde{g}} \left(\sum_m \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda \right) \in \mathcal{L}\Omega_{r+l^* + 1}$$

and we have:

$$\sum_m \left(\mathcal{L}_{\tilde{g}} \nabla C_{km}^- + \sum_{m'} \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda + \sum_{m'} \mathcal{L}_{\phi_m} \lambda \right) \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda =$$

$$- \sum_m \nabla C_{km}^- \mathcal{L}_{\tilde{g}} (\mathcal{L}_{\phi_m} \lambda) + \sum_{m'm'} \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda + \sum_{m'm'} \mathcal{L}_{\phi_m} \lambda \mod \Omega_{r+l^* + 1} + \mathcal{L}_g \Omega_{r+l^* + 1}$$

Let us consider the last term of the above. We consider (3.17). It holds for any $l \leq l^*$. As $j^* \leq l^* - 1$, we are allowed to set $l = j^* + 1$. We have:

$$\nabla \mathcal{L}_{[\phi_k]^*}, h = \beta_{j^* + 1, j^*} \sum_m (\nabla C_{km}^-) \mathcal{L}_{\phi_m} \lambda \mod \Omega_{r+j^* + 1} + \mathcal{L}_g \Omega_{r+j^* + 1}$$

As $\beta_{j^* + 1, j^*} \neq 0$,

$$\sum_m \left(\nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda \right) \in \Omega_{r+j^* + 2}$$

As $j^* \leq l^* - 1$, this proves that:

$$\sum_m \left(\nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda \right) \in \Omega_{r+l^* + 1}$$

We have:

$$- \sum_m \nabla C_{km}^- \mathcal{L}_{\tilde{g}} (\mathcal{L}_{\phi_m} \lambda) + \sum_{m'm'} \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda + \sum_{m'm'} \mathcal{L}_{\phi_m} \lambda \mod \Omega_{r+l^* + 1}$$

We have

$$- \sum_m \nabla C_{km}^- \mathcal{L}_{\tilde{g}} (\mathcal{L}_{\phi_m} \lambda) + \sum_{m'm'} \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda = - \sum_m \nabla C_{km}^- \mathcal{L}_{\tilde{g}} (\mathcal{L}_{\phi_m} \lambda) + \sum_{m'm'} \nabla C_{km}^- \mathcal{L}_{\phi_m} \lambda$$

$$\sum_m \nabla C_{km}^- \left(\mathcal{L}_{\tilde{g}} (\mathcal{L}_{\phi_m} \lambda) + \sum_{m'm'} \mathcal{L}_{\phi_m} \lambda \right) = \sum_m \nabla C_{km}^- \left(- \frac{1}{L_g} \mathcal{L}_{\tilde{g}} \mathcal{L}_{\phi_m} \lambda + \mathcal{L}_{[\phi_k]} \lambda \right) =$$

$$\frac{1}{L_g} \sum_m \nabla C_{km}^- \left(- \mathcal{L}_{\tilde{g}} \mathcal{L}_{\phi_m} \lambda + \mathcal{L}_{[\phi_k]} \lambda \right) = - \frac{1}{L_g} \sum_m \nabla C_{km}^- \mathcal{L}_{\phi_m} \mathcal{L}_{\tilde{g}} \lambda,$$

which coincides with the right left side of (3.19) with $\rho = - \frac{1}{L_g} \neq 0$. ◀

We have the following fundamental result:
Proposition 3.1. For any integer \(l \geq 1 \), we have
\[
\nabla L_{[\phi_r]} h = \nabla L_{[f(r+i)]} h = \gamma_l \sum_{m=0}^{r} (\nabla C_{r m}) L_{\phi_m} \bar{L}_{g}^{-1} h \mod \Omega_{r+l} + \bar{L}_{g} \Omega_{r+l} \tag{3.20}
\]
with \(\gamma_l \neq 0 \).

Proof. The above equality is obtained from Lemma 3.2 with \(j = l - 1 \), \(k = r \), and \(\gamma_l = \beta_{l, l-1} \).
\[\blacktriangleleft\]

3.3 Application

We conclude this chapter by discussing our illustrative example introduced in section 2.3, when the linear speed \(v \) is unknown. Note that in [46] we provide the same example. On the other hand, in [46] we computed the observability codistribution by using Algorithm 3.4 and by using a criterion of convergence that does not hold always. Here, we use Algorithm 3.1 whose convergence criterion is the same as in the classical case (i.e., without unknown inputs).

As in [46], it is more convenient to adopt polar coordinates, in which the expression of the output becomes very simple (the result by using Cartesian coordinates would be the same but its derivation more laborious).

Our system will be characterized by the state (see Figure 2.1):
\[
x = [r, \phi, \theta_R]^T
\]
where \(r = \sqrt{x_R^2 + y_R^2} \), and \(\phi = \tan^{-1} \left(\frac{y_R}{x_R} \right) \)

Note that, in these coordinates, we compute the gradient by differentiating with respect to \(\rho \), \(\phi \) and \(\theta_R \). By using the dynamics in (2.3) we obtain the following dynamics:
\[
\begin{bmatrix}
\dot{r} \\
\dot{\phi} \\
\dot{\theta}_R \\
y
\end{bmatrix} =
\begin{bmatrix}
v \cos(\theta_R - \phi) \\
\frac{r}{2} \sin(\theta_R - \phi) \\
\omega \\
\phi - \theta_R
\end{bmatrix} =
\begin{bmatrix}
v \\
0 \\
0 \\
1
\end{bmatrix},
\nonumber
\tag{3.21}
\]

The preliminary step is obtained by comparing (3.21) with (3.1). We obtain: \(p = 1, w = v, u = \omega \),
\[
g(x) = \begin{bmatrix}
\frac{\cos(\theta_R - \phi)}{\sin(\theta_R - \phi)} \\
0 \\
0 \\
0
\end{bmatrix},
\quad f(x) = \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix},
\quad h(x) = \phi - \theta_R
\]
We compute the observable codistribution by running algorithm 3.1. We need, first of all, to compute \(L^1_g = L_g h \) and \(\hat{g} \). We have:
\[
L^1_g = -\frac{\sin(\phi - \theta_R)}{r},
\quad \hat{g}(x) = \begin{bmatrix}
-\frac{r \cos(\phi - \theta_R)}{\sin(\phi - \theta_R)} \\
0 \\
0
\end{bmatrix}.
\]

Then, we must compute the codistributions \(\tilde{O} \). We need to compute the two integers \(s \) and \(r \). Let us start by computing \(s \). We run Algorithm 3.2. We obtain \(\Omega^2_g = \Omega^1_g \). Hence, \(s = 2 \).

Let us compute \(r \). We run Algorithm 3.3 and we obtain: \(\Delta_3 = \Delta_2 \). Hence, \(r = 1 + 3 = 4 \) and \(r = 2 \).

We compute \(\tilde{O} \) by using (3.6). We need to compute \(\phi_0, \phi_1, \phi_2, \phi_3, \) and \(\phi_4 \). We obtain:
\[
\phi_0 = f = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix},
\quad \phi_1 = \begin{bmatrix}
r \cos(\phi - \theta_R) \\
0 \\
0
\end{bmatrix},
\quad \phi_2 = \begin{bmatrix}
r \cos(\phi - \theta_R) \\
0 \\
0
\end{bmatrix},
\quad \phi_3 = \begin{bmatrix}
-\frac{2r \cos(\phi - \theta_R)}{\sin(\phi - \theta_R)} \\
2 \sin^2(\phi - \theta_R) - 2 \\
\sin^2(\phi - \theta_R)
\end{bmatrix}.
\]
\[\phi_3 = \begin{bmatrix} \frac{6r - 4r \sin^2(\phi - \theta_R)}{\sin^2(\phi - \theta_R)} \\ \frac{2 \cos(\phi - \theta_R) + 4 \cos^3(\phi - \theta_R)}{\sin(\phi - \theta_R)} \\ 0 \end{bmatrix}, \quad \phi_4 = \begin{bmatrix} -\frac{8r \cos(\phi - \theta_R)(\cos(\phi - \theta_R)^2 + 2)}{\sin(\phi - \theta_R)} \\ \frac{8 \cos(2\phi - 2\theta_R) - 10 \cos(4\phi - 4\theta_R) - \cos(6\phi - 6\theta_R) + 10}{15 \cos(2\phi - 2\theta_R) - 6 \cos(4\phi - 4\theta_R) + \cos(6\phi - 6\theta_R) - 10} \\ 0 \end{bmatrix}. \]

Hence:

\[L_{\phi_0} h = -1, \quad L_{\phi_1} h = \frac{\cos(\phi - \theta_R)}{\sin(\phi - \theta_R)}, \quad L_{\phi_2} h = \frac{2 \sin^2(\phi - \theta_R) - 2}{\sin^2(\phi - \theta_R)}, \]

\[L_{\phi_3} h = \frac{2 \cos(\phi - \theta_R) + 4 \cos^3(\phi - \theta_R)}{\sin^3(\phi - \theta_R)}, \quad L_{\phi_4} h = \frac{8 \cos(2\phi - 2\theta_R) - 10 \cos(4\phi - 4\theta_R) - \cos(6\phi - 6\theta_R) + 10}{15 \cos(2\phi - 2\theta_R) - 6 \cos(4\phi - 4\theta_R) + \cos(6\phi - 6\theta_R) - 10}. \]

By computing their differential, it is immediate to obtain \(\tilde{O} \). We can verify that \(\tilde{O} \subseteq \text{span}\{\nabla h\} \). This concludes the initialization step of Algorithm 3.1. We obtain:

\[O_0 = \text{span}\{\nabla h\} = \text{span}\{[0, 1, -1]\}. \]

By executing the recursive step of Algorithm 3.1, we obtain \(O_1 = O_0 \) and we conclude that the algorithm has converged and the observability codistribution is:

\[O = \text{span}\{[0, 1, -1]\}. \]

Its orthogonal distribution is:

\[\langle O \rangle^\perp = \text{span}\{[0, 1, 1]^T, [1, 0, 0]^T\}. \]

It has dimension 2. The first generator, \([0, 1, 1]^T\), characterizes the system invariance described by the infinitesimal transformation in (2.9), but expressed in the polar coordinates. The second generator, \([1, 0, 0]^T\), characterizes the following invariance:

\[\begin{bmatrix} r \\ \phi \\ \theta_R \end{bmatrix} \rightarrow \begin{bmatrix} r' \\ \phi' \\ \theta'_R \end{bmatrix} = \begin{bmatrix} r \\ \phi \\ \theta_R \end{bmatrix} + \epsilon \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \quad (3.22) \]

This is precisely the same invariance expressed by (2.7) in the limit \(\lambda \rightarrow \epsilon \) and in the polar coordinates (the vector \([1, 0, 0]^T\) is the generator of the Lie algebra associated to the one parameter Lie group described by (2.7)).
Chapter 4

Systems in Canonical Form: the Analytical Solution in the case of TV systems, in the presence of a drift, and multiple UIs

In this chapter we provide the analytical and automatic procedure that builds, in a finite number of steps, all the observable functions for systems characterized by (2.1) and that are in canonical form with respect to their unknown inputs, according to Definition 2.5. With respect to Chapter 3, the solution is not limited to driftless systems with a single unknown input and a single known input and the functions in (2.1) can also explicitly depend on time.

4.1 The solution

We are dealing with systems in canonical form with respect to their unknown inputs. From Definition 2.2 and Definition 2.5, we know that we can extract from the output \(m_w \) functions, which we denote by \(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \), such that the reconstructability matrix is full rank. We set:

\[
\mu_{ij} = \mathcal{L}_g \tilde{h}_j, \quad i, j = 1, \ldots, m_w
\]

Note that, the above object (\(\mu \)) is characterized by two indices. On the other hand, these indices are unrelated to the dimension (\(n \)) of our manifold (\(M \)) and, consequently, they cannot be tensorial indices with respect to a coordinates’ change in \(M \). In addition, with respect to a coordinates’ change, \(\mu_{ij} \) behaves as a scalar field, for any \(i, j \). On the other hand, and this is the fundamental key to achieving a profound understanding, \(\mu \) is a two index tensor of type \((1, 1)\) with respect to a new group of transformations. This is the group of invariance of observability, introduced in [45] and denoted by \(SUIO \). Actually, the indices of the tensors associated to \(SUIO \) take \(m_w + 1 \) values. The extra value is set to 0 and, in the rest of this paper, we adopt the Einstein notation where, Latin indices take the values 1, 2, \ldots, \(m_w \) and Greek indices take the values 0, 1, 2, \ldots, \(m_w \) (the reader can find a brief summary of tensor calculus in the second chapter of [15]). The tensor \(\mu \) must be completed as follows:

\[
\mu^i_0 = 1, \quad \mu^0_0 = 0, \quad \mu^i_\gamma = \frac{\partial \tilde{h}_i}{\partial \gamma} + \mathcal{L}_g \tilde{h}_i, \quad i = 1, \ldots, m_w.
\]

We denote by \(\nu \) the inverse of \(\mu \). In other words, we have

\[
\mu^\alpha_\beta \nu^\beta_\gamma = \delta^\alpha_\gamma, \quad \alpha, \beta = 0, 1, \ldots, m_w,
\]

where \(\delta^\alpha_\beta \) is the delta Kronecker and, in accordance with the Einstein notation, the dummy Greek index \(\gamma \) is summed over \(\gamma = 0, 1, \ldots, m_w \). We have:
\[\nu^0 = 1, \nu^0 = 0, \nu^\beta = -\mu^\beta_k \nu^k, \nu^j \mu^k_j = \mu^j_k \nu^k = \delta^i_j. \]
(4.4)

As for Greek indices, when Latin indices are dummy, they imply a sum. For Latin indices the sum is over 1, \ldots, m_w (this is the case of \(k \) in the above equation). Since \(\nu \) is the inverse of a tensor field of type (1, 1) associated to \(SU_{\ell_1} \), it is a tensor of type (1, 1).

Note that, in our theory, we deal with two types of tensors, simultaneously. This because observability is invariant both with respect to a coordinates' change in \(\mathcal{M} \) and with respect to \(SU_{\ell_1} \). To avoid confusion, we use a matrix format for the tensors associated to a coordinates' change in \(\mathcal{M} \) and we use indices only for \(SU_{\ell_1} \). In this notation, \(g^{\alpha} \), for a given \(\alpha = 0, 1, \ldots, m_w \), is a vector (i.e., tensor of type (0, 1)) with respect to a coordinates' change and the component \(\alpha \) of a tensor of type (0, 1) with respect to \(SU_{\ell_1} \).

We set

\[\tilde{h}_0 = t, \]
(4.5)

where \(t \) is the time. \(\tilde{h}_\alpha \), for a given \(\alpha = 0, 1, \ldots, m_w \), is a scalar (i.e., tensor of type (0, 0)) with respect to a coordinates' change and the component \(\alpha \) of a tensor of type (1, 0) with respect to \(SU_{\ell_1} \).

We denote by \(\tilde{g}^\alpha \) the following vector fields in \(\mathcal{M} \):

\[\tilde{g}^\alpha = \nu^\beta \delta^\alpha, \quad \alpha = 0, 1, \ldots, m_w. \]
(4.6)

Since they are obtained by an index contraction of two tensor fields of \(SU_{\ell_1} \), \(\tilde{g}^\alpha \) is the component \(\alpha \) of a tensor of type (0, 1) with respect to \(SU_{\ell_1} \).

The observable codistribution is constructed by Algorithm \[A.1\]

Algorithm \[A.1\] (\(\mathcal{O} \) for systems characterized by (2.1), in canonical form with respect to the UIs).

\[
\begin{align*}
\mathcal{O}_k &= \tilde{\mathcal{O}} + \text{span} \{ \nabla h_1, \ldots, \nabla h_n \} \\
\mathcal{O}_{k+1} &= \mathcal{O}_k + \sum_{i=1}^{m_u} \mathcal{L}_f \mathcal{O}_k + \sum_{\beta=0}^{m_w} \mathcal{O}_{\tilde{g}^\beta} \mathcal{O}_k
\end{align*}
\]

where \(\tilde{\mathcal{O}} \) is an integrable codistribution. Its computation can be performed automatically and is provided in Section \[A.1.1\]. Algorithm \[A.1\] can be easily extended to cope with TV systems. Specifically, we simply need to introduce the following substitution at the first term in the sum at the recursive step (the term with \(\beta = 0 \)):

\[\mathcal{L}_{\tilde{g}^0} \rightarrow \mathcal{L}_{\tilde{g}^0} \triangleq \mathcal{L}_{\tilde{g}^0} + \frac{\partial}{\partial t}. \]
(4.7)

Algorithm \[A.1\] converges at the smallest \(k \) for which

\[\mathcal{O}_k = \mathcal{O}_{k-1} \]
(4.8)

and this occurs in at most \(n - m_w \) steps (note that the dimension of \(\mathcal{O}_0 \) is at least \(m_w \)). The limit codistribution will be denoted by \(\mathcal{O} \).

\[4.1.1 \] Ingredients of the Solution

The initialization step of Algorithm \[A.1\] (i.e., the computation of \(\mathcal{O}_0 \)) requires the computation of the codistribution \(\tilde{\mathcal{O}} \). In this section, we define this codistribution and we provide the method to automatically compute it. It is based on the knowledge of two integers, denoted by \(s \) and \(r \). They are defined as follows:

- \(s \) is the smallest number of steps requested for the convergence of Algorithm \[A.2\] which computes the codistribution \(\Omega^0 \). Note that \(s \leq n - m_w + 1 \).

- \(r + 1 \) is the smallest number of steps requested for the convergence of Algorithm \[A.3\] which computes the distribution \(\Delta \). Note that \(r \leq n - 1 \) (it is even \(r \leq n - \dim \{ \text{span} \{ f^1, \ldots, f^{m_w} \} \} \)).

\[^1 \] As we mentioned in the introduction, this is similar to what happens in the Standard Model of particle physics. Also in that case, two types of tensors coexist, simultaneously: tensors with respect to the global Poincaré symmetry and tensors with respect to the local \(SU(3) \times SU(2) \times U(1) \) gauge symmetry.
The codistribution Ω^g

Ω^g is the smallest codistribution that includes $\nabla \tilde{h}_1, \ldots, \nabla \tilde{h}_{m_w}$ and is invariant with respect to L_{g^β} ($\beta = 0, 1, \ldots, m_w$). It is automatically constructed by Algorithm 4.2 which converges at the smallest integer s such that $\Omega^g_k = \Omega^g_{k-1} (= \Omega^g)$.

Algorithm 4.2 (Codistribution Ω^g).

\[\Omega^g_0 = \sum_{j=1}^{m_w} \text{span} \left\{ \nabla \tilde{h}_j \right\} \]

\[\Omega^g_k = \Omega^g_{k-1} + \sum_{\beta=0}^{m_w} L_{g^\beta} \Omega^g_{k-1} \]

In the TV case, we simply need to replace: $L_{g^\beta} \to L_{g^\beta}$, which is defined in (4.7).

Note that $s \leq n - m_w + 1$. The computation of \mathcal{O} needs to know the value of s. This is automatically obtained by running Algorithm 4.2.

The distribution Δ

We introduce the following abstract operation:

Definition 4.1 (Autobracket). Given the quantity $\phi^{\alpha_1 \ldots \alpha_k}$, which is a vector field with respect to a change of coordinates in M and one component of a tensor of type $(0, k)$ with respect to SUIO, we define its autobracket with respect to the system characterized by equation (2.1) the following object:

\[[\phi^{\alpha_1 \ldots \alpha_k}]^{\alpha_{k+1}} = \nu^\beta_{\alpha_{k+1}} [g^\beta, \phi^{\alpha_1 \ldots \alpha_k}] + \nu_0^{\alpha_{k+1}} \frac{\partial \phi^{\alpha_1 \ldots \alpha_k}}{\partial t}, \]

where, the square brackets on the right hand side are the Lie brackets and the dummy Greek index β is summed over $\beta = 0, 1, \ldots, m_w$ (in accordance with the Einstein notation).

The output of this operation is still a vector field with respect to a coordinates’ change and one component of a tensor of type $(0, k + 1)$ with respect to SUIO. The autobracket increases by one the tensor rank with respect to SUIO.

Note that, in the case of driftless systems with a single UI (dealt with in Chapter 3), the tensor μ has only one non trivial component which is $\mu^1_1 = L^1_1$ and $\nu_1^1 = \frac{\partial}{\partial t}$. In addition, g^β becomes $\frac{\partial}{\partial t}$, which is the vector field in (3.3). Finally, the autobracket operation reduces to the Autobracket defined in Definition 3.1 (in this case, we do not have indices with respect to SUIO and, as it is shown in [15], this is because SUIO becomes an Abelian group).

We can apply the autobracket repetitively. We denote by $[\phi^{(\alpha_1 \ldots \alpha_m)}]$

the vector field obtained by applying the autobracket repetitively m consecutive times, first along α_1 and last along α_m (these operations are not commutative).

We introduce the distribution Δ. It is the smallest distribution that includes f^1, \ldots, f^{m_w} and is invariant under the autobracket operation.

Algorithm 4.3 (Distribution Δ).

\[\Delta_0 = \text{span} \{f^1, \ldots, f^{m_w}\} \]

\[\Delta_k = \Delta_{k-1} + \sum_{\beta} \left| \Delta_{k-1} \right|^{\beta} \]

with:

\[\left| \Delta \right|^{\beta} \triangleq \sum_{v \in \Delta} \text{span} \{[v]^{\beta}\}, \]

for any $\beta = 0, 1, \ldots, m_w$. It is immediate to remark that, if v_1, \ldots, v_l is a basis of Δ_{k-1}, then $v_1, \ldots, v_l, [v_1]^{\beta}, \ldots, [v_l]^{\beta}$ is a set of generators of $\Delta_{k-1} + \left| \Delta_{k-1} \right|^{\beta}$.

Algorithm 4.3 converges at the smallest integer k such that $\Delta_k = \Delta_{k-1} (= \Delta)$. We set $k = r + 1$. Note that $r \leq n - 1$ (it is even $r \leq n - \text{dim} \{\Delta_0\}$). The computation of \mathcal{O} needs to know the value of r. This is automatically obtained by running Algorithm 4.3.
The codistribution \tilde{O}

We are ready to provide \tilde{O}. It is:

$$\tilde{O} = \sum_{q=1}^{m_w} \sum_{j=0}^{r} \sum_{i=1}^{m_w} \sum_{i=1}^{m_w} \sum_{\alpha_1, \ldots, \alpha_j=1}^{m_w} \sum_{\alpha_1, \ldots, \alpha_j=1}^{m_w} \text{span} \left\{ \nabla L_{[f]}(\alpha_1, \ldots, \alpha_j) \tilde{h}_q \right\}$$ \hspace{1cm} (4.10)

where the sum $\sum_{\alpha_1, \ldots, \alpha_j}$ stands for $\sum_{\alpha_1=0}^{m_w} \ldots \sum_{\alpha_j=0}^{m_w}$

4.2 Proof

In this section we prove that Algorithm 4.1, with \tilde{O} defined in (4.10), provides the observability codistribution for systems characterized by (2.1) and in canonical form with respect to the unknown inputs.

We start from the solution given in [45]. We know that the observability codistribution is computed by Algorithm 8.2 in [45], that is:

Algorithm 4.4.

$$\Omega_0 = \text{span} \{ \nabla h_1, \ldots, \nabla h_p \}$$

$$\Omega_{k+1} = \Omega_k + \sum_{i=1}^{m_w} L_{f_i} \Omega_k + \sum_{j=0}^{r} \Omega_k + \sum_{q=1}^{m_w} \sum_{i=1}^{m_w} \sum_{\alpha_1, \ldots, \alpha_j=1}^{m_w} \sum_{\alpha_1, \ldots, \alpha_j=1}^{m_w} \text{span} \left\{ L_{[f]}(\alpha_1, \ldots, \alpha_j) \nabla \tilde{h}_q \right\}$$

Because of the last term at the recursive step, we cannot conclude that this algorithm converges. In particular, without this term, this algorithm would converge in at most $n - m_w$ steps, precisely as Algorithm 2.1.

The convergence of this algorithm is proved by the result stated by Theorem 4.1. More importantly, this result states that we can obtain the observability codistribution by directly running Algorithm 4.1, which converges at the smallest integer k such that $O_{k-1} = O_k$ and this occurs in at most $n - m_w$ steps.

The proof of Theorem 4.1 is based on the result stated by Proposition 4.1. This is a technical result and it will be given, separately, in Section 4.2.2.

Finally, the proof of Theorem 4.1 requires the introduction of two fundamental new ingredients:

- The set of generators ψ.
- The quantities C_{km}.

The set of generators ψ

We denote by ψ the vectors computed by Algorithm 4.3 before its convergence. Note that these vectors generate the entire distribution Δ and they will be not necessarily independent. They will be listed by using a double index $i (i,j)$. The first index is the index of the step of Algorithm 4.3. It takes the values $i = 0, 1, \ldots, r$. The second index lists all the vectors which are computed by Algorithm 4.3 when computing Δ_i. For this proof, we do not need to specify how we list these vectors. We only emphasize that at the initialization (computation of Δ_0) we have m_u vectors: $\psi(0,1) = f^1$, $\psi(0,2) = f^2$, \ldots, $\psi(0,m_u) = f^{m_u}$. In other words, the second index j_0 take the values 1, 2, \ldots, m_u. Then, when computing Δ_i, we have, for every $\psi_{(i-1,j_0-1)}$, $m_u + 1$ vectors with the first index equal to i (each of them is obtained by computing the bracket $[\psi_{i-1,j_0-1}]^a$, for $a = 1, 2, \ldots, m_u$). Therefore, the index j_i, take the values: 1, 2, \ldots, $(m_u+1)^i m_u$.

The vectors $\psi_k = \psi(k,j_k)$ for $k = 0, 1, \ldots, r$, generate the entire distribution Δ. However, they are not independent, in general.

The quantities C_{km}^α

We introduce the following quantities C. They are characterized by three indices:

C_{kz}^α
The lower indices \(k \) and \(z \) are double indices, as explained above \((k = (k, j), z = (z, j))\), with \(k, z = 0, 1, \ldots, r \). The upper index \(\alpha \) takes the \(m_w + 1 \) values: 0, 1, \ldots, \(m_w \). These quantities are implicitly defined by the following equation:

\[
[\psi_{k}]^\alpha = \sum_a C_a^{\alpha} \psi_a
\]

(4.11)

where \(\sum_a = \sum_{(z, j)} \) stands for \(\sum_{z=0}^{r} \sum_{j=1}^{(m_w+1)} \sum_{u=1}^{m_u} \sum_{v=1}^{m_v} \sum_{\alpha_1=0}^{m_u} \sum_{\alpha_2=0}^{m_v} \text{span} \left\{ L[f]^\alpha \right\} \in \Omega_{k+1} \). Indeed, the term at the left hand side of the above equation belongs to \(\Delta \) and can be expressed in terms of the set of vectors \(\psi \) (we remind the reader that \(\Delta \) is invariant under the autobracket operation, which is the operation \([\cdot]_\alpha\) at the left side of (4.11)). As the vectors \(\psi \) are not necessarily independent, the choice of \(C \) is not unique. When the index \(k = (k, j) \) is such that \(k < r \) we trivially choose \(C \) such that it selects the vector \(\psi \) with the first index incremented by one. For \(k = (r, j) \) the expression of \(C^\alpha \) is not trivial and provides \([\psi_{k}]^\alpha\) in terms of the vectors \(\psi_z \) with \(z = (z, j) \) and \(z = 0, 1, \ldots, r \). The choice is not unique, as the vectors are not independent. The result is independent of the choice (in other words, any choice can be done).

4.2.1 Equivalence between Algorithm 4.1 and 4.4

The following result proves that the codistribution \(O \), which is automatically computed by Algorithm 4.1, is the observability codistribution.

Theorem 4.1. There exists \(\hat{k} \) such that, for any \(k \geq \hat{k} \), \(O \subseteq \Omega_k \). Conversely, for any \(k \), \(\Omega_k \subseteq O \).

Proof. Let us prove the first statement. From the \((k+1)^{th}\) step of Algorithm 4.4, we obtain that \(\sum_{q=1}^{m_w} \sum_{i=1}^{m_u} \sum_{\alpha_1=0}^{m_u} \sum_{\alpha_2=0}^{m_v} \sum_{\alpha_k=0}^{m_k} \text{span} \left\{ L[f]^\alpha \right\} \in \Omega_{k+1} \). From (4.10), we immediately obtain that

\[\tilde{O} \subseteq \Omega_{r+s+1+1} \]

By comparing the recursive step of Algorithm 4.1 with the one of Algorithm 4.4, it is immediate to conclude that, for any integer \(v \geq 0 \):

\[O_v \subseteq \Omega_{r+s+1+v} \]

and, as Algorithm 4.1 converges in at most \(n - m_w \) steps to \(O \), we conclude that:

\[O \subseteq \Omega_{r+s+1+n-m_w} \]

and this proves the first statement with \(\hat{k} = r + s + 1 + n - m_w \leq 3n - 2m_w + 1 \).

Let us prove the second statement. We must prove that, for any \(k \), \(\Omega_k \subseteq O \). We proceed by induction. It is true at \(k = 0 \) as \(\Omega_0 \subseteq O_0 \subseteq O \).

Let us assume that \(\Omega_p \subseteq O \)

We must prove that \(\Omega_{p+1} \subseteq O \)

As \(O \) is invariant under \(L_{\tilde{g}^s} \) and \(L_{f^t} \), we only need to prove that

\[\nabla L_{[f^t]^\alpha 1 \cdots \alpha_p} \tilde{h}_q \in O \]

for any choice of \(\alpha_1, \ldots, \alpha_p = 0, 1, \ldots, m_w \), and every \(q = 1, \ldots, m_w \). We distinguish the following two cases:

1. \(p \leq r + s \)
2. \(p \geq r + s + 1 \).
The first case is trivial as $\nabla L_{[f]}^{(\alpha_1', \ldots, \alpha_p')} \tilde{h}_{q} \in \tilde{O} \subseteq O$.

Let us consider the second case. We start by remarking that, when $p \geq r + s + 1$ we have:

$$[f']^{(\alpha_1', \ldots, \alpha_p')} = [\psi_{(r,j_r)}]^{(\alpha_1', \ldots, \alpha_p')}$$

where j_r is such that $[f']^{(\alpha_1', \ldots, \alpha_p')} = \psi_{(r,j_r)}$.

We set $p = r + s + l'$, with $l' \geq 1$, and we use Equation (4.12), with $l = s + l'$, and $\alpha_1, \ldots, \alpha_l = \alpha_{r+1}, \ldots, \alpha_{p'}$. We have:

$$\nabla L_{[f]}^{(\alpha_1', \ldots, \alpha_p')} \tilde{h}_{q} = \nabla L_{[\psi_{(r,j_r)}]}^{(\alpha_{r+1}', \ldots, \alpha_{p'})} \tilde{h}_{q} =$$

$$\sum_{\beta(l-1)} M_{\beta_1 \ldots \beta_{l-1}}^{\alpha_{r+2}', \ldots, \alpha_p'} \sum_{z} \left(\nabla c_{\beta}^{(\alpha_{r+1}')}(r,j_r) \right) \nabla L_{\psi_{z}} \nabla L_{g^{p-r-1}} \ldots \nabla L_{g^{s} \tilde{h}_{q}}$$

where:

- The sum $\sum_{\beta(l-1)}$ is defined as follows:
 $$\sum_{\beta(l-1)} = \sum_{\beta_1=0}^{m_u} \sum_{\beta_2=0}^{m_u} \ldots \sum_{\beta_{l-1}=0}^{m_u}$$

- The sum \sum_{z} is defined as follows:
 $$\sum_{z} = \sum_{(z,j_z)} \sum_{z=0}^{r} \sum_{j_z=1}^{(m_u+1)^{t} m_u}$$

- M is a suitable multi-index object, which is non singular (i.e., it can be inverted with respect to all its indices).

- $L_{g^q} \Omega_{p}$ stands for $\sum_{\gamma=0}^{m_u} L_{g^q} \cdot \Omega_{p}$

The validity of the above result is proved in Section 4.2.2 (see Proposition 4.1).

Let us consider now the function $L_{g^{p-r-1}} \ldots \nabla L_{g^{1}} \tilde{h}_{q}$. Its differential belongs to Ω^q.

We denote by t the dimension of Ω^q and by $h_{1}^{q}, \ldots, h_{t}^{q}$ a basis of Ω^q, i.e.:

$$\Omega^{q} = \text{span} \{ \nabla h_{1}^{q}, \ldots, \nabla h_{t}^{q} \}$$

In addition, we choose these generators $(h_{1}^{q}, \ldots, h_{t}^{q})$ directly among the functions built by Algorithm 4.12. As a result,

$$\nabla L_{g^{p-r-1}} \ldots \nabla L_{g^{1}} \tilde{h}_{q} = \sum_{j=1}^{t} c_{j}^{q} \nabla h_{j}^{q} \quad (4.13)$$

with $c_{1}^{q}, \ldots, c_{t}^{q}$ suitable coefficients (scalar functions in the manifold \mathcal{M}). We have:

$$L_{\psi_{z}} \nabla L_{g^{p-r-1}} \ldots \nabla L_{g^{1}} \tilde{h}_{q} =$$

$$\nabla L_{g^{p-r-1}} \ldots \nabla L_{g^{1}} \tilde{h}_{q} \cdot \psi_{z} = \left(\sum_{j=1}^{t} c_{j}^{q} \nabla h_{j}^{q} \right) \cdot \psi_{z} = \sum_{j=1}^{t} c_{j}^{q} L_{\psi_{z}} h_{j}^{q} \quad (4.14)$$

By replacing this expression in (4.12) we obtain:

$$\nabla L_{[f]}^{(\alpha_1', \ldots, \alpha_p')} \tilde{h}_{q} =$$

$$\sum_{j=1}^{t} c_{j}^{q} \sum_{\beta(l-1)} M_{\beta_1 \ldots \beta_{l-1}}^{\alpha_{r+2}', \ldots, \alpha_p'} \sum_{z} \left(\nabla c_{\beta}^{(\alpha_{r+1}')}(r,j_r) \right) \nabla L_{\psi_{z}} \tilde{h}_{q} \mod \Omega_{p} + L_{g^q} \Omega_{p}$$

$$\quad \mod \Omega_{p} + L_{g^q} \Omega_{p}$$
Now we use again Equation (4.27) with $l = s$. We have:

\[
\nabla L_{[\psi]}^{(\alpha_1, \ldots, \alpha_s)} \tilde{h}_q = \sum_{\beta(s-1)} M_{\beta_1, \ldots, \beta_{s-1}} \sum_{z} (\nabla C_{rz}^{\alpha_1}) \mathcal{L}_{\psi} \mathcal{L}_{g^2} \mathcal{L}_{g^3} \ldots \mathcal{L}_{g^s} \tilde{h}_q
\]

\[
\text{mod } \Omega_{r+s} + \mathcal{L}_{g} \Omega_{r+s}
\]

We remark that

\[
\nabla L_{[\psi]}^{(\alpha_1, \ldots, \alpha_s)} \tilde{h}_q \in \Omega_{r+s+1}
\]

for any choice of $\alpha_1, \ldots, \alpha_s$ and q. In addition, because of the non singularity of M, we obtain that

\[
\sum_{z} (\nabla C_{rz}^{\alpha_1}) \mathcal{L}_{\psi} \mathcal{L}_{g^2} \mathcal{L}_{g^3} \ldots \mathcal{L}_{g^s} \tilde{h}_q \in \Omega_{r+s+1}
\]

for any choice of $\beta_1, \ldots, \beta_{s-1}$, q and α_1. On the other hand, the generators of $\Omega^g \left(\nabla h^q \right)$ are built by Algorithm 4.2 and they are the differentials of the functions that belong to the function space that includes the outputs (\tilde{h}_q) together with their Lie derivatives along g^3 of order that does not exceed $s - 1$. Therefore, by setting $\alpha_1 = \alpha_1' + 1$, we obtain:

\[
\sum_{z} (\nabla C_{rz}^{\alpha_1'}) \mathcal{L}_{\psi} \mathcal{L}_{g} \mathcal{L}_{g^3} \mathcal{L}_{g^4} \ldots \mathcal{L}_{g^s} \tilde{h}_q \in \Omega_{r+s+1}
\]

By using this in (4.15) and by knowing that $p \geq r + s + 1$, we immediately obtain that

\[
\nabla L_{[f]}^{(\alpha'_1, \ldots, \alpha'_p)} \tilde{h}_q \in \Omega_p + \mathcal{L}_{g} \Omega_p
\]

From the inductive assumption, we know that $\Omega_p \subseteq \mathcal{O}$. In addition, as \mathcal{O} is invariant under $\mathcal{L}_{g^0}, \mathcal{L}_{g^1}, \ldots, \mathcal{L}_{g^m}$, we have $\Omega_p + \mathcal{L}_{g} \Omega_p \subseteq \mathcal{O}$ and, consequently, $\nabla L_{[f]}^{(\alpha'_1, \ldots, \alpha'_p)} \tilde{h}_q \in \mathcal{O}$. ⊳
4.2.2 Intermediate technical results

The goal of this section is to prove the validity of Equation (4.27), which has been used twice in the proof of Theorem 4.1. To achieve this goal, we basically need to proceed along two directions:

- Introduce the quantities $C_{kz}^{(α_1, \ldots, α_l)}$, according to Equation (4.16), and obtaining the recursive law in (4.17) and (4.18).
- First proving the validity of Equation (4.21), which is more general than Equation (4.27). In particular, this latter is obtained from the former in a special setting.

We introduce the quantities $C_{kz}^{(α_1, \ldots, α_l)}$ by extending the quantities $C_{kz}^{(α)}$ in (4.11) to the case when the autobracket is applied repetitively multiple times. $C_{kz}^{(α_1, \ldots, α_l)}$ are implicitly defined by the following equation:

$$[ψ_k]^{(α_1, \ldots, α_l)} = \sum_z C_{kz}^{(α_1, \ldots, α_l)} ψ_z$$ (4.16)

where $\sum_z = \sum_{(z, j_z)}$ stands for $\sum_z \sum_{j_z=0}^r \sum_{z_j=1}^{(m_w+1)^r m_u}$, and the operation at the left side, $[\cdot]^{(α_1, \ldots, α_l)}$, is the multiple autobracket defined after Definition 4.1. As in the case of (4.11), the term at the left hand side of the above equation belongs to Δ and can be expressed in terms of the set of vectors $ψ$ (again, we remind the reader that Δ is invariant under the autobracket operation and the vectors $ψ$ generate the entire distribution). Equation (4.16) does not provide uniquely the quantities $C_{kz}^{(α_1, \ldots, α_l)}$. This because the vectors $ψ$ are not necessarily independent. On the other hand, it is possible to set them in such a way that they satisfy the following recursive law. The law is stated by the following Lemma:

Lemma 4.1. It is possible to set the quantities $C_{kz}^{(α_1, \ldots, α_l)}$ such that they satisfy the following recursive law:

$$C_{kz}^{(α_1, \ldots, α_l+1)} = \mathcal{L}_{g^{(α_l+1)}} C_{kz}^{(α_1, \ldots, α_l)} + \sum_{z'} C_{kz'}^{(α_1, \ldots, α_l)} C_{z'z}^{(α_l+1)}$$ (4.17)

and its differential form:

$$\nabla C_{kz}^{(α_1, \ldots, α_l+1)} = \mathcal{L}_{g^{(α_l+1)}} \nabla C_{kz}^{(α_1, \ldots, α_l)} + \sum_{z'} \nabla C_{kz'}^{(α_1, \ldots, α_l)} C_{z'z}^{(α_l+1)} + \sum_{z'} C_{kz'}^{(α_1, \ldots, α_l)} \nabla C_{z'z}^{(α_l+1)}$$ (4.18)

where $\sum_z = \sum_{(z, j_z)}$ stands for $\sum_z \sum_{j_z=0}^r \sum_{z_j=1}^{(m_w+1)^r m_u}$.

Proof. This proof needs the following equality, which is a property of the autobracket. Given a vector field $φ$ and a scalar field a, we have:

$$[aφ]^α = (\mathcal{L}_g a) φ + a[φ]^α$$ (4.19)

for any $α = 0, 1, \ldots, m_w$. This is obtained by a direct computation. We have:

$$[aφ]^α = \sum_{β=0}^{m_w} ν_β^a [g^β, aφ] = \sum_{β=0}^{m_w} ν_β^a [g^β, φ] + \sum_{β=0}^{m_w} (ν_β^a \mathcal{L}_g a) φ = a[φ]^α + (\mathcal{L}_g a) φ.$$

Now, let us prove the validity of (4.17). By definition we have:

$$[ψ_k]^{(α_1, \ldots, α_l, α_l+1)} = \sum_z C_{kz}^{(α_1, \ldots, α_l, α_l+1)} ψ_z$$ (4.20)

On the other hand,

$$[ψ_k]^{(α_1, \ldots, α_l, α_l+1)} = [ψ_k]^{(α_1, \ldots, α_l)} [α_l+1] = \sum_z [C_{kz}^{(α_1, \ldots, α_l)} ψ_z]^{α_l+1}$$
and, by using (4.19), we obtain
\[
\sum_{z} \left(L^{(j)}_{kz} \right) z^{(j)} \psi_{kz} + \sum_{z} C_{kz}^{(j)} \psi_{kz}^{(j+1)} = 0.
\]

We proceed by induction on \(l \). Let us set \(l = 1 \). We only have \(j = 0 \). We have:
\[
\nabla L_{[\psi_{k}]^{(j)}} h = \sum_{z} \nabla L_{[\psi_{k}]^{(j)}} = \sum_{z} \nabla (C_{kz}^{(j)}) \psi_{kz} h =
\]
\[
\sum_{z} C_{kz}^{(j)} \nabla \psi_{kz} h + \sum_{z} (\nabla C_{kz}^{(j)}) \psi_{kz} h.
\]

On the other hand,
\[
\nabla \psi_{kz} h \in \Omega_{r+1},
\]

Hence,
\[
\nabla L_{[\psi_{k}]^{(j)}} h = \sum_{z} (\nabla C_{kz}^{(j)}) \psi_{kz} h, \quad \text{mod} \ \Omega_{r+1},
\]

which proves (4.21) when \(l = 1 \), and \(j = 0 \).

Let us consider the recursive step. We assume that (4.21) holds at a given \(l = l^* > 1 \). We have:
\[
\nabla L_{[\psi_{k}]^{(j)}} h = \sum_{\beta(j)} M_{\beta(j)}^{(j)} \sum_{z} (\nabla C_{kz}^{(j)}) \psi_{kz} h \nabla L_{[\psi_{k}]^{(j)}} h =
\]
\[
\sum_{\beta(j)} \sum_{z} (\nabla C_{kz}^{(j)}) \psi_{kz} h \nabla L_{[\psi_{k}]^{(j)}} h \mod \Omega_{r+1} + \Omega_{r+1},
\]

for any \(j = 0, 1, \ldots, l^* - 1 \) and with \(M \) non singular. In addition, (4.21) holds at any \(l \leq l^* \) for any \(j \leq l - 1 \). In particular, it holds for any \(l \leq l^* \) and \(j = l - 1 \). Hence we also have:
\[\nabla L_{[\psi_k]^{(\alpha_1, \ldots, \alpha_j)}} h = \sum_{\beta(l+1)} M_{\beta_1, \ldots, \beta_l} \left(\nabla C_{kz}^{\alpha_1, \ldots, \alpha_j+1} \right) \nabla \psi \cdot L_{g^{j+1}} \left(\ldots L_{g^{j+1}} h \right) \quad \text{mod } \Omega_{r+1} + L_\beta \Omega_{r+1} \]

for any \(l \leq l^* \) with \(M \) non singular.

We must prove the validity of (4.21) at \(l^* + 1 \) and for any \(j = 0, \ldots, l^* \), i.e.:

\[\nabla L_{[\psi_k]^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})}} h = \sum_{\beta(j)} M_{\beta_1, \ldots, \beta_l} \left(\nabla C_{kz}^{\alpha_1, \ldots, \alpha_{l+1}} \right) \nabla \psi \cdot L_{g^{j+1}} \left(\ldots L_{g^{j+1}} h \right) \quad \text{mod } \Omega_{r+l+1} + L_\beta \Omega_{r+l+1} \]

for a suitable non singular \(M \).

We proceed by induction on \(j \). Let us consider \(j = 0 \). We have:

\[\nabla L_{[\psi_k]^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})}} h = \nabla L_{[\psi_k]^{(\alpha_1, \ldots, \alpha_l)}} h = \]

\[\sum_{\beta(l+1)} M_{\beta_1, \ldots, \beta_l} \left(\nabla C_{kz}^{\alpha_1, \ldots, \alpha_j+1} \right) \nabla \psi \cdot L_{g^{j+1}} \left(\ldots L_{g^{j+1}} h \right) \]

On the other hand,

\[\nabla \psi \cdot L_{g^{j+1}} h \in \Omega_{r+1} \subseteq \Omega_{r+l+1} + L_\beta \Omega_{r+l+1}, \]

Hence,

\[\nabla L_{[\psi_k]^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})}} h = \sum_{\beta(j)} M_{\beta_1, \ldots, \beta_l} \left(\nabla C_{kz}^{\alpha_1, \ldots, \alpha_{l+1}} \right) \nabla \psi \cdot L_{g^{j+1}} \left(\ldots L_{g^{j+1}} h \right) \quad \text{mod } \Omega_{r+l+1} + L_\beta \Omega_{r+l+1} \]

which proves (4.21) when \(l = l^* + 1 \), and \(j = 0 \).

Let us assume that (4.21) holds at a given \(j = j^* \leq l^* - 1 \).

We must prove:

\[\nabla L_{[\psi_k]^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})}} h = \sum_{\beta(j^*+1)} M_{\beta_1, \ldots, \beta_{j^*}, \beta_{j^*+1}} \left(\nabla C_{kz}^{\alpha_1, \ldots, \alpha_{j^*}+1} \right) \nabla \psi \cdot L_{g^{j^*+1}} \left(\ldots L_{g^{j^*+1}} h \right) \quad \text{mod } \Omega_{r+j^*+1} + L_\beta \Omega_{r+j^*+1} \]

We adopt the notation:

\[\lambda \triangleq L_{g^{j^*}} \ldots L_{g^{j^*+1}} h \]

\[C^- = C^{\alpha_1, \ldots, \alpha_{j^*}} \]

\[C^{+\alpha_1, \ldots, \alpha_{j^*}+1} = C^{\alpha_1, \ldots, \alpha_{j^*}+1, \alpha_{j^*}+1} \]

33
We have:

\[
\nabla L[\psi_k]^{(a_1,\ldots,a_{t^*+1})} h = \sum_{\beta(j^*)} M_{\beta_1,\ldots,\beta_{j^*}} (\nabla C_{\psi_k}^-) L_{\psi_k} \lambda \mod \Omega_{r+t^*+1} + L_{g} \Omega_{r+t^*+1}
\]

We must prove:

\[
\nabla L[\psi_k]^{(a_1,\ldots,a_{t^*+1})} h = \sum_{\beta(j^*)} M_{\beta_1,\ldots,\beta_{j^*}} (\nabla C_{\psi_k}^-) L_{\psi_k} L_{g} \alpha_{l^*+1} \lambda \mod \Omega_{r+t^*+1} + L_{g} \Omega_{r+t^*+1}
\]

From (4.18) we have:

\[
\nabla C_{\psi_k}^{(a_1,\ldots,a_{t^*+1})} = \nabla C_{\psi_k}^- = \sum_{z'} \nabla C_{kz}^- C_{z'z}^{a_{t^*+1}} + \sum_{z'} \nabla C_{z'z}^- C_{z'z}^{a_{t^*+1}}
\]

We substitute in (4.25) and we obtain:

\[
\nabla L[\psi_k]^{(a_1,\ldots,a_{t^*+1})} h = \sum_{\beta(j^*)} M_{\beta_1,\ldots,\beta_{j^*}} (\nabla C_{\psi_k}^-) L_{\psi_k} \lambda \mod \Omega_{r+t^*+1} + L_{g} \Omega_{r+t^*+1}
\]

Let us consider the first term on the right hand side.

\[
\sum_{\beta(j^*)} M_{\beta_1,\ldots,\beta_{j^*}} (\nabla C_{\psi_k}^-) L_{\psi_k} \lambda = \sum_{\beta(j^*)} M_{\beta_1,\ldots,\beta_{j^*}} \left[\sum_{z} (\nabla C_{\psi_k}^-) L_{\psi_k} \lambda \right]
\]

Note that \(j^* \leq l^* - 1\). Hence, we are allowed to use (4.22) at \(j = j^*\). In the new notation, it tells us that

\[
\nabla L[\psi_k]^{(a_1,\ldots,a_{l^*})} h = \sum_{\beta(j^*)} M_{\beta_1,\ldots,\beta_{j^*}} (\nabla C_{\psi_k}^-) L_{\psi_k} \lambda \mod \Omega_{r+t^*} + L_{g} \Omega_{r+t^*}
\]

On the other hand,

\[
\nabla L[\psi_k]^{(a_1,\ldots,a_{l^*})} h \in \Omega_{k+l^*+1} \subseteq \Omega_{r+t^*+1}
\]

and, from the invertibility of \(M\), it follows that

\[
\sum_{z} (\nabla C_{\psi_k}^-) L_{\psi_k} \lambda \in \Omega_{r+t^*+1}
\]
As a result,
\[
\sum_{\beta(j^*+1)} M_{\beta_1, \ldots, \beta_{j^*+1}}^{(j^*+1)} \sum_{z} \left(\nabla C_{kz}^{\alpha_{j^*+1}} \right) L_{\psi_{z}} = \mathcal{L}_{g^\gamma} \Omega_{r+1^*+1}
\]
and we have:
\[
\sum_{\beta(j^*)} M_{\beta_1, \ldots, \beta_{j^*}}^{(j^*)} \sum_{z} \left(\nabla C_{kz}^{\alpha_{j^*}} - \frac{1}{2} \nabla C_{kz}^{\alpha_{j^*+1}} \nabla C_{kz}^{\alpha_{j^*+1}} \right) L_{\psi_{z}} = \mathcal{L}_{g^\gamma} \Omega_{r+j^*+1}
\]
Let us consider the last term of the above. We consider \([4,23]\). It holds for any \(l \leq l^*\). As \(j^* \leq l^* - 1\), we are allowed to set \(l = j^* + 1\). We have:
\[
\nabla L_{[\psi_{k}]^{(\alpha_{1: \alpha_{j^*}})}} h = \sum_{\beta(j^*)} M_{\beta_1, \ldots, \beta_{j^*}}^{(j^*)} \sum_{z} \left(\nabla C_{kz}^{\alpha_{1}} \right) L_{\psi_{z}}
\]
\[
\mod \Omega_{r+j^*+1} + \mathcal{L}_{g^\gamma} \Omega_{r+j^*+1}
\]
Hence, from the invertibility of \(M\), it follows that
\[
\sum_{z} \left(\nabla C_{kz}^{\alpha_{1}} \right) L_{\psi_{z}} \in \Omega_{r+j^*+2}
\]
As \(j^* \leq l^* - 1\), this proves that:
\[
\sum_{z} \left(\nabla C_{kz}^{\alpha_{1}} \right) L_{\psi_{z}} \in \Omega_{r+1^*+1} \quad \forall \alpha_{1}
\]
We have:
\[
\sum_{\beta(j^*)} M_{\beta_1, \ldots, \beta_{j^*}}^{(j^*)} \sum_{z} \left(\nabla C_{kz}^{\alpha_{j^*}} \right) L_{\psi_{z}} = \mathcal{L}_{g^\gamma} \Omega_{r+j^*+1}
\]
\[
\mod \Omega_{r+j^*+1}
\]
We have:
\[
\sum_{z} \left(\nabla C_{kz}^{\alpha_{j^*+1}} \right) L_{\psi_{z}} = \mathcal{L}_{g^\gamma} \Omega_{r+j^*+1}
\]
\[
\mod \Omega_{r+j^*+1}
\]
\[
\sum_{\gamma=0}^{m_w} \sum_{z} \nabla C_k x \gamma^{l_{\gamma} - j + 1} (\mathcal{L}_{\psi_x} \mathcal{L}_{y^\gamma})
\]

Hence, (4.25) becomes:

\[
\nabla \mathcal{L}_{[\psi_x]}^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})} h = \\
\sum_{\beta(j^*)} M_{(\beta_1, \ldots, \beta_j^*)}^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})} \sum_{\gamma=0}^{m_w} \sum_{z} (-\nu^{\gamma^{l_{\gamma} - j + 1}}) \nabla C_k x (\mathcal{L}_{\psi_x} \mathcal{L}_{y^\gamma}) = \\
\sum_{\beta(j^*)} \sum_{\gamma=0}^{m_w} M_{(\beta_1, \ldots, \beta_j^*)}^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})} (-\nu^{\gamma^{l_{\gamma} - j + 1}}) \sum_{z} \nabla C_k x (\mathcal{L}_{\psi_x} \mathcal{L}_{y^\gamma})
\]

\[
\mod \Omega_{r+j^*+1} + \mathcal{L}_g \Omega_{r+j^*+1}
\]

which coincides with the right left side of (4.26) with the dummy index \(\gamma\) equal to the dummy index \(\beta_{j^*+1}\) in (4.26) and

\[
\sum_{\beta(j^*)} M_{(\beta_1, \ldots, \beta_j^*, \beta_{j^*+1})}^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})} = M_{(\beta_1, \ldots, \beta_j^*, \beta_{j^*+1})}^{(\alpha_1, \ldots, \alpha_l, \alpha_{l+1})} (-\nu^{\gamma^{l_{\gamma} - j + 1}}),
\]

which remains non singular as \(\nu\) is non singular. ◀

We have the following fundamental result:

Proposition 4.1. Given \(\psi_r (r = (r, j_r))\), for any integer \(l \geq 1\), and any set of integers \(\alpha_1, \ldots, \alpha_l\) that take the values \(0, 1, \ldots, m_w\), and any \(q = 1, \ldots, m_w\), we have:

\[
\nabla \mathcal{L}_{[\psi_x]}^{(\alpha_1, \ldots, \alpha_l)} \tilde{h}_q = (4.27) \\
\sum_{\beta(l-1)} M_{\beta_1, \ldots, \beta_{l-1}}^{(\alpha_1, \ldots, \alpha_l)} \sum_{z} (\nabla C_k x) \mathcal{L}_{\psi_x} \mathcal{L}_{g^{q_{l-1}} \ldots \mathcal{L}_{g^{q_1}}} \tilde{h}_q
\]

\[
\mod \Omega_{r+l} + \mathcal{L}_g \Omega_{r+l}
\]

with:

- \(M\) a suitable multi-index object, which is non singular (i.e., it can be inverted with respect to all its indices).
- \(\sum_{\beta(l-1)} \triangleq \sum_{\beta_1=0}^{m_w} \sum_{\beta_2=0}^{m_w} \cdots \sum_{\beta_{l-1}=0}^{m_w}\).
- \(\sum_{z} \triangleq \sum_{z,j}^{m_w} + 1 = \sum_{z=0}^{m_w}\).

Proof. The above equality is obtained from Lemma 4.2 with \(j = l - 1\) and \(k = r\). ◀
Chapter 5

Solution in the general non canonical case

Chapter 4 provides the solution of the UIO problem. On the other hand, to run the algorithm that provides the observability codistribution (Algorithm 4.1) the system must be in canonical form. In other words, in accordance with Definition 2.5, the output must include m_w functions, $\tilde{h}_1, \ldots, \tilde{h}_{m_w}$, such that the tensor μ defined in (4.1) is non singular (or, equivalently, its rank is equal to m_w). But this is a special case. We want to deal with the case where this is not possible (e.g., when $m_w > p$). In addition, we also want to deal with systems that are not canonic with respect to their unknown inputs. As we will see, in some cases, we can transform a non canonic system into a canonic system. We will call these systems canonizable. We also want to deal with the case where the system is not canonic and not even canonizable. In few words, we will deal with any system.

This chapter provides the automatic procedure that, in a finite number of steps, provides the observability codistribution in any case. This automatic procedure uses iteratively Algorithm 4.1 and it is Algorithm 5.5. Before providing this procedure, we need to introduce several new concepts.

5.1 Unknown Input Extension (\texttt{UIE})

The procedure introduced in this section generalizes the state augmentation adopted in many previous works (e.g., [41, 42, 43, 44]), where the state is extended by including all the unknown inputs and their time derivatives up to a given order. Here the inclusion of the unknown inputs is targeted, in the sense that we include only those necessary to make the system canonic, when this is possible, or to achieve the unknown input highest degree of reconstructability (see later Definition 5.1). As we will see, Algorithm 5.5 automatically selects which inputs must be included.

Let us start by characterizing a generic inclusion, i.e., where not necessarily all the inputs are included. Given the system in (2.1), we can characterize the same system by introducing an extended state that includes part of (or all) the unknown inputs, together with their time derivatives up to a given order. Without loss of generality, i.e., by reordering the unknown inputs, we assume that we include the last $d \leq m_w$ unknown inputs. In particular, we include w_{m_w-d+1} with its time derivatives up to the order k_1, w_{m_w-d+2} with its time derivatives up to the order k_2 and so on and so forth up to w_{m_w} and its time derivatives up to the order k_d. k_j is the highest order time derivative of w_{m_w-d+j} included in the state. By using the usual notation:

$$w_j^{(k)} \triangleq \frac{d^kw_j}{dt^k}$$

and

$$w_j^{(0)} \triangleq w_j$$

the extended state is:
The extended state is fully characterized by the \(d(\leq m_w)\) integers \(k_1, \ldots, k_d\). Each of them can take any non negative value. If a given \(k_j\) is equal to zero it means that the state only includes the unknown input \(w_{m_w-d+j}\) and no time derivatives of it. We call the system characterized by the above extended state an unknown input extension of the system in (2.1). Specifically, it is the \((k_1, k_2, \ldots, k_d)\) unknown input extension of the system in (2.1).

We will need the following two types of unknown input extensions:

1. **Finite** unknown input extension, when all the integers \((k_1, k_2, \ldots, k_d)\) take a finite value. In this case the unknown input extension will be denoted by \(\text{UIE}(k_1, k_2, \ldots, k_d)\).

2. **Infinite** unknown input extension, when all the integers \((k_1, k_2, \ldots, k_d)\) take an infinite value. In this case the unknown input extension will be denoted by \(\text{UIE}_{\infty}\).

The first case will be fundamental to introduce the concepts of unknown input highest degree of reconstructability and canonizable system with respect to its unknown inputs. The second case will be fundamental to obtain observable functions when the system is not in canonical form (or the system is even not canonic).

5.1.1 Finite Unknown Input Extension

Let us consider the system characterized by (2.1) and its \((k_1, k_2, \ldots, k_d)\) unknown input extension. We assume that all the integers \((k_1, k_2, \ldots, k_d)\) are finite numbers. The equations that characterize the new system, i.e., \(\text{UIE}(k_1, k_2, \ldots, k_d)\), read as follows:

\[
\begin{align*}
\dot{x}_d & = g_0^d + \sum_{i=1}^{m_w} f_i u_i + \sum_{j=1}^{m_w-d} g_j^d w_j + \sum_{j=1}^{d} c_j^d w_{m_w-d+j}^{(k_j+1)} \\
y & = [h_1, \ldots, h_p],
\end{align*}
\]

(5.2)

where:

\[
g_0^d \triangleq \begin{bmatrix}
g^0 + \sum_{j=m_w-d+1}^{m_w} g_j w_j \\
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

(5.3)
\[
\begin{align*}
& f_i^d \triangleq \begin{bmatrix} f_i^0 & 0_{k_1+1} & \cdots & 0_{k_d+1} \\
0_{k_1} & 0_{k_2} & \cdots & 0_{k_d} \\
\vdots & \vdots & \ddots & \vdots \\
0_{k_1} & 0_{k_2} & \cdots & 0_{k_d}
\end{bmatrix}, \quad i = 1, \ldots, m_u \\
& g_j^d \triangleq \begin{bmatrix} g_j^0 & 0_{k_1+1} & \cdots & 0_{k_d+1} \\
0_{k_1} & 0_{k_2} & \cdots & 0_{k_d} \\
\vdots & \vdots & \ddots & \vdots \\
0_{k_1} & 0_{k_2} & \cdots & 0_{k_d}
\end{bmatrix}, \quad j = 1, \ldots, m_w - d \\
& e_1^d \triangleq \begin{bmatrix} 0_n \\
0_{k_1} \\
1 \\
0_{k_2} \\
0 \\
\vdots \\
0_{k_d} \\
0
\end{bmatrix}, \quad e_2^d \triangleq \begin{bmatrix} 0_n \\
0_{k_1} \\
0 \\
0_{k_2} \\
1 \\
\vdots \\
0_{k_d} \\
0
\end{bmatrix}, \quad \ldots, \quad e_d^d \triangleq \begin{bmatrix} 0_n \\
0_{k_1} \\
0 \\
0_{k_2} \\
0 \\
\vdots \\
1 \\
0
\end{bmatrix},
\end{align*}
\]

and we denoted by \(0_K\) the \(K\)-dimensional zero column vector.

We remark that \(\text{UIE}(k_1, k_2, \ldots, k_d)\) has still \(m_u\) known inputs and \(m_w\) unknown inputs. However, while the \(m_u\) known inputs coincide with the original ones, only the first \(m_w - d\) unknown inputs coincide with the original ones. The last \(d\) unknown inputs of \(\text{UIE}(k_1, k_2, \ldots, k_d)\) are the time derivatives of a given order of the original unknown inputs. Specifically, the new \(j^{th}\) unknown input is \(w_{(m_w - d + j)}^{(j)}\) \((j = 1, \ldots, d)\). The state evolution depends on the known inputs via the vector fields \(f_i^d\), \((i = 1, \ldots, m_u)\), on the first \(m_w - d\) unknown inputs via the vector fields \(g_j^d\), \((j = 1, \ldots, m_w - d)\), and on the last \(d\) unknown inputs via the unit vectors \(e_j^d\), \((j = 1, \ldots, d)\).

Finally, we remark that only the vector field \(g_0^d\) depends on the new state elements.

We introduce the following definition, which extends Definition 2.3.

Definition 5.1 (UI Highest Degree of Reconstructability). Given the system in (2.1), the unknown input highest degree of reconstructability is the largest unknown input degree of reconstructability of all its finite unknown input extensions.

By construction, the unknown input highest degree of reconstructability cannot exceed \(m_w\).

We introduce the following last definition, which extends Definition 2.4.

Definition 5.2 (Canonizable System with respect to its UIs). The system in (2.1) is canonizable with respect to the unknown inputs if its unknown input highest degree of reconstructability is equal to \(m_w\).

In other words, the system is canonizable with respect to the unknown inputs if there exists a finite unknown input extension of it that is canon with respect to the unknown inputs.

5.1.2 Infinite Unknown Input Extension

An infinite unknown input extension of the system in (2.1) is obtained by including in the state \(d \leq m_w\) unknown inputs together with all their time derivatives. The state will be denoted by \(x_{d\infty}\), which is defined as follows:

\[
x_{d\infty} \triangleq [x^T, w_{d\infty}]
\]

with

\[
w_{d\infty} \triangleq \left[w^{(0)}_{m_w - d + 1}, w^{(1)}_{m_w - d + 1}, w^{(2)}_{m_w - d + 1}, \ldots, w^{(0)}_{m_w - d + 2}, w^{(1)}_{m_w - d + 2}, w^{(2)}_{m_w - d + 2}, \ldots, w^{(0)}_{m_w}, w^{(1)}_{m_w}, w^{(2)}_{m_w}, \ldots \right]
\]

The system is characterized by the following equations:
\[
\begin{bmatrix}
 \dot{x}_{d\infty} \\
 y
\end{bmatrix} =
\begin{bmatrix}
 g^0_{d\infty} + \sum_{i=1}^{m_u} f^i_{d\infty} u_i + \sum_{j=1}^{m_w-d} g^j_{d\infty} w_j \\
 [h_1, \ldots, h_p]
\end{bmatrix},
\]

where:

\[
\begin{bmatrix}
 g^0_{d\infty} \\
 f^i_{d\infty} \\
 g^j_{d\infty}
\end{bmatrix} \triangleq
\begin{bmatrix}
 g^0 + \sum_{j=m_u-d+1}^{m_u} w^j_{m_u-d+1} \\
 w^1_{m_u-d+1} \\
 w^2_{m_u-d+1} \\
 \vdots \\
 w^{(1)}_{m_w-d+2} \\
 w^{(2)}_{m_w-d+2} \\
 w^{(3)}_{m_w-d+2} \\
 \vdots \\
 w^{(1)}_{m_w} \\
 w^{(2)}_{m_w} \\
 w^{(3)}_{m_w} \\
 \vdots
\end{bmatrix}
\]

with \(i = 1, \ldots, m_u\), and \(j = 1, \ldots, m_w - d\).

5.2 Implementations of Algorithm 4.1 and 4.4 on \(\mathcal{UIE}_{d\infty}\)

Let us consider the system defined by (2.1) and let us suppose that its unknown input degree of reconstructability from all the available observable functions is \(m < m_w\). In addition, we denote by \(\tilde{h}_1, \ldots, \tilde{h}_{m}\) a set of \(m\) available observable functions such that the reconstructability matrix from them has rank equal to \(m\). Without loss of generality, we assume that the rank of the matrix that consists of the first \(m\) columns of the reconstructability matrix is \(m\) (this is general as it is always obtained by re-ordering the unknown inputs). We consider the infinite unknown input extension defined in Section 5.1.2 and denoted by \(\mathcal{UIE}_{d\infty}\), where we include in the state the remaining \(d = m_w - m\) unknown inputs together with their time derivatives up to any order.

As the state that characterizes \(\mathcal{UIE}_{d\infty}\) includes the last \(d\) unknown inputs with their time derivatives up to any order, we conjecture that, for the computation of the observability codistribution, this infinite inclusion makes the last \(d\) unknown inputs inactive. Hence, based on this conjecture, we introduce Algorithm 5.1 by considering \(\mathcal{UIE}_{d\infty}\) in canonical form with respect to the remaining \(m_u\) unknown inputs (Algorithm 5.1 is precisely the implementation of Algorithm 4.4 on \(\mathcal{UIE}_{d\infty}\) by ignoring the last \(d\) UIs). The proof of our above conjecture is expressed by Theorem 5.1, which is proved in Appendix A. The codistributions computed by Algorithm 5.1 will be denoted by \(\Omega_k^\infty\). Similarly, we introduce Algorithm 5.4 by implementing Algorithm 4.1
on $\mathcal{UL}_{d_{\infty}}$. The codistributions built by this algorithm will be denoted by Ω^∞_k. In this latter case, the proof of the conjecture is expressed by Theorem 5.2, which is proved in Appendix C.

Starting from the functions h_1, \ldots, h_m and the $m+1$ vector fields $\tilde{g}_0^\infty, g_{1\infty}, \ldots, g_{m\infty}$ in (5.7), we build the analogous of the tensor μ defined by (4.1) and (4.2). We denote it by $m\mu$. We set:

$$m\mu^j_i = \mathcal{L}_{\tilde{g}_0^\infty} h_j, \quad i, j = 1, \ldots, m \quad (5.8)$$

$$m\mu^0_0 = 1, \quad m\mu^i_0 = 0, \quad m\mu^i_j = \frac{\partial h_i}{\partial t} + \mathcal{L}_{\tilde{g}_0^\infty} h_i, \quad i = 1, \ldots, m. \quad (5.9)$$

We denote by $m\mu$ the inverse of $m\mu$, namely: $\sum_{\gamma=0}^m m\mu^\gamma_\alpha = \delta_\alpha^\gamma$ for any $\alpha, \beta = 0, 1, \ldots, m$.

We denote by $m\tilde{g}_\infty^\alpha$ the following vector fields:

$$m\tilde{g}_\infty^\alpha = \sum_{\beta=0}^m m\mu_\beta^\alpha \tilde{g}_\infty, \quad \alpha = 0, 1, \ldots, m. \quad (5.10)$$

We define the analogous of the Autobracket. In particular, we directly define the analogous of the vector fields $[f^i]^{(\alpha_1, \ldots, \alpha_k)}$, which appear at the recursive step of Algorithm 4.4. They are recursively defined as follows:

$$m[f^i_{d_{\infty}}]^{(\alpha_1, \ldots, \alpha_k-1, \alpha_k)} = \sum_{\beta=0}^m m\mu_\beta^\alpha \left[m[f^i_{d_{\infty}}]^{(\alpha_1, \ldots, \alpha_k-1)} \right] + \delta_\alpha^\gamma \frac{\partial m[f^i_{d_{\infty}}]^{(\alpha_1, \ldots, \alpha_k-1)}}{\partial t} \quad (5.11)$$

and all the indices $\alpha_1, \ldots, \alpha_k$ take the values among 0 and m.

5.2.1 The codistributions Ω^∞_k and their properties

The codistributions Ω^∞_k, $k = 0, 1, \ldots$, are obtained by running Algorithm 5.1.

Algorithm 5.1.

$\Omega^\infty_0 = \text{span} \{ \nabla h_1, \ldots, \nabla h_p \}$

$\Omega^\infty_{k+1} = \Omega^\infty_k + \sum_{i=1}^m \mathcal{L}_{f^i_{d_{\infty}}} \Omega^\infty_k + \sum_{\beta=0}^m \mathcal{L}_{m\tilde{g}_\infty^\beta} \Omega^\infty_k + \sum_{q=1}^m \sum_{i=1}^m \sum_{\alpha_1=0}^m \sum_{\alpha_2=0}^m \sum_{\alpha_4=0}^m \text{span} \left\{ \mathcal{L}_{m[f^i_{d_{\infty}}]^{(\alpha_1, \ldots, \alpha_k)}} \nabla h_q \right\}$

In this algorithm, all the operations that appear at the recursive step (the autobracket $m[f^i_{d_{\infty}}]^{(\alpha_1, \ldots, \alpha_k)}$, the Lie derivatives along $m\tilde{g}_\infty^\alpha$) are based on the new definitions given by Equations (4.1, 5.11). As a result, these operations can be executed when the system is not in canonical form. In particular, their execution, requires that m observable functions are available such that the reconstructability matrix from them has rank m (and this is precisely the case we are dealing with).

It holds the following result:

Theorem 5.1. Let us consider a scalar function $\theta(x)$ (i.e., of the only original state). If there exists an integer k such that $\nabla \theta \in \Omega^\infty_k$ at $x_0 \in \mathcal{M}$, then $\theta(x)$ is observable at x_0. Conversely, if $\theta(x)$ is observable on a given open set $\mathcal{A} \subseteq \mathcal{M}$, then there exists an integer k such that $\nabla \theta \in \Omega^\infty_k$ on a dense set of \mathcal{A}.

Proof. The proof is given in Appendix A.

This result allows us to use Algorithm 5.1 to build the observable codistribution of a system which is not in canonical form. We remark that the state that characterizes the system where we apply Algorithm 5.1 has infinite dimensions. As a result, this algorithm does not converge, in general. Note, however, that the computation of the codistribution at a given step k (i.e., Ω^∞_k) can be done by only including in the state the time derivatives of the last d unknown inputs up to the order $k-1$. This is due to the special structure of the vector fields in (5.7), which makes the functions computed by Algorithm 5.1 at the step k independent of the time derivatives of the unknown input of order larger than $k-1$. In other words, from a practical point of view, we could obtain Ω^∞_k by working with a finite unknown input extension. In our final procedure,
however, we do not compute Ω^∞_k but O^∞_k, defined in Section 5.2.2. Theorem 5.1 will be only used as an intermediate theoretical result to prove the validity of Theorem 5.2 in Section 5.2.2.

5.2.2 The codistributions O^∞_k and their properties

As in the case of the codistributions O^∞_k, $k = 0, 1, \ldots$, we would like to generate the codistributions O^∞_k, $k = 0, 1, \ldots$, by re-adapting Algorithm 4.1 based on the new definitions given by Equations (5.8)-(5.11). In addition, we wish to obtain for these codistributions the same result stated by Theorem 5.1.

As $\mathcal{UIE}_{d\infty}$ is characterized by an infinite dimension state, the initialization step, which includes the computation of O, can require infinite operations. In accordance with Equation (4.10), we need to compute all the terms that correspond to the sum on the index j, which runs from 0 up to $s + r$. The problem which arises stems from the fact that these integers can diverge (both s and r are only bounded by the state dimension, which is infinite in the specific case of $\mathcal{UIE}_{d\infty}$).

In Section 5.2.2, we show that, thanks to the special structure of the vector fields $f^1_{d\infty}, \ldots, f^m_{d\infty}, g^1_{d\infty}, g^2_{d\infty}, \ldots, g^m_{d\infty}$ in (5.7), the integer r is actually bounded by n, which is the dimension of x, i.e., the dimension of the original state. In particular, $r \leq n - 1$. In Section 5.2.2, we provide a new definition for the integer s and we denote it by s_x. In accordance with this new definition, also s_x is bounded by the dimension of the original state. Specifically, we have $s_x \leq n - m + 1$.

In Section 5.2.2, we provide the iterative algorithm that builds the codistributions O^∞_k. It is Algorithm 5.4. Its initialization step computes \tilde{O}^∞ by using s_x instead of s (see (5.13)). Finally, in Section 5.2.2, we provide the properties of the codistributions built by Algorithm 5.4. We show that, by using all the above definitions, we have the same results stated by Theorem 5.1 (i.e., Theorem 5.3).

Upper bound for the integer r

In the case of the system $\mathcal{UIE}_{d\infty}$, Algorithm 4.3 becomes Algorithm 5.2.

Algorithm 5.2.

\[\Delta_0 = \text{span} \{ f^1_{d\infty}, \ldots, f^m_{d\infty} \} \]

\[\Delta_k = \Delta_{k-1} + \sum_{\beta} \{ \Delta_{k-1} \}^2 \]

The autobracket at the recursive step is obtained by using the new definition in (5.11). We have the following result:

Proposition 5.1. Let us denote by $\phi_{d\infty}$ any vector field computed by Algorithm 5.2. The entries of $\phi_{d\infty}$, with index larger than n, are null.

Proof. See Appendix 5.

From the above result, it is immediate to realize that the dimension of Δ_k cannot exceed n. As a result, the condition that characterizes the convergence of Algorithm 5.2 (i.e., $\Delta_k = \Delta_{k-1}$) occurs in at most $n - 1$ steps. In other words, $k \leq n$. As $r = k - 1$ by definition, we obtain $r \leq n - 1$.

The new integer s_x and its upper bound

Let us apply Algorithm 4.2 to $\mathcal{UIE}_{d\infty}$ and let us denote by $x \Omega^g_k$ the span of all the differentials with respect to the original state x of all the functions computed by Algorithm 4.2 up to its k^{th} step. We obtain Algorithm 5.3.

Algorithm 5.3.

\[x \Omega^g_0 = \text{span} \{ \nabla \theta^1_k, \ldots, \nabla \theta^m_k \} \]

\[x \Omega^g_k = \text{span} \{ \nabla \theta^1_k, \ldots, \nabla \theta^m_k \} \]

Set $\nabla \theta^1_k, \ldots, \nabla \theta^m_k$ a basis of $x \Omega^g_k$.

\[x \Omega^g_k = \text{span} \{ \partial_x \theta^1_k, \ldots, \partial_x \theta^m_k \} \]
The integer D_k is the dimension of the codistribution Ω_k^∞. We define the integer s_x as the smallest integer such that

$$x^{\Omega_x^\infty} = x^{\Omega_x^\infty}_{s_x-1}$$

(5.12)

As the dimension of $x^{\Omega_x^\infty}$ cannot exceed n, we have $s_x \leq n - m + 1$. Note that, we cannot conclude that the condition in (5.12) ensures the convergence of the series of codistributions $x^{\Omega_x^\infty}$, $k = 0, 1, \ldots$. On the other hand, for the special system $\mathcal{UIE}_{d\infty}$, due to the special structure of the vector fields in (5.7) that characterize the dynamics, this is the case and will be proved in Appendix C.2 (Proposition C.1).

The algorithm that builds the codistributions \mathcal{O}_k^∞

The codistributions \mathcal{O}_k^∞, $k = 0, 1, \ldots$, are obtained by running Algorithm 5.4

Algorithm 5.4.

\[
\begin{align*}
\mathcal{O}_k^\infty &= \{\nabla h_1, \ldots, \nabla h_p\} + \tilde{\mathcal{O}}^\infty \\
\mathcal{O}_{k+1}^\infty &= \mathcal{O}_k^\infty + \sum_{i=1}^{m_u} \mathcal{L}_{f_i^{d\infty}} \mathcal{O}_k^\infty + \sum_{\beta=0}^{m} \mathcal{L}_{m_{d\infty}^\beta} \mathcal{O}_k^\infty
\end{align*}
\]

The vector fields $m_{d\infty}^\beta$, that appear at the recursive step, are obtained from Equations (5.8-5.10) and the codistribution $\tilde{\mathcal{O}}^\infty$ is obtained by using the integer r and the new integer s_x, i.e.:

$$\tilde{\mathcal{O}}^\infty \triangleq \sum_{q=1}^{m} \sum_{j=0}^{s_x+r} \sum_{\alpha_1, \ldots, \alpha_j} \sum_{i=1}^{m_u} \text{span} \left\{ \nabla \mathcal{L}_{m[f_i^{d\infty}]}^{(\alpha_1, \ldots, \alpha_j)} \hat{h}_q \right\}$$

(5.13)

where the autobracket $m[f_i^{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}$ is computed by using Equation (5.11). In (5.13) we must compute the autobracket of the vectors $f_1^{d\infty}, \ldots, f_m^{d\infty}$ up to the $r + s_x$ order. As $r \leq n - 1$ and $s_x \leq n - m + 1$, this order cannot exceed $2n - m$.

Properties of the codistributions \mathcal{O}_k^∞

We have exactly the same result that holds for the codistributions Ω_k^∞. We have:

Theorem 5.2. Let us consider a scalar function $\theta(x)$ (i.e., of the only original state). If there exists an integer k such that $\nabla \theta \in \mathcal{O}_k^\infty$ at $x_0 \in \mathcal{M}$, then $\theta(x)$ is observable at x_0. Conversely, if $\theta(x)$ is observable on a dense set $\mathcal{A} \subseteq \mathcal{M}$, then there exists an integer k such that $\nabla \theta \in \mathcal{O}_k^\infty$ on a dense set of \mathcal{A}.

Proof. The proof is given in Appendix C. □

This result is fundamental and will be adopted in our final procedure (Algorithm 5.5). If our system is not in canonical form (or even worse is neither canonic nor canonizable), we cannot run Algorithm 4.1. Let us suppose that its unknown input degree of reconstructability from all the available observable functions (at the beginning these are the output functions) is equal to $m < m_u$. We select the m observable functions that make the above degree equal to m and we denote them by $\hat{h}_1, \ldots, \hat{h}_m$. From them, we can build the quantities defined in (5.8, 5.11) and then we can run Algorithm 5.4. Theorem 5.2 ensures that this algorithm builds the entire observable codistribution. On the other hand, as the state that characterizes $\mathcal{UIE}_{d\infty}$ has infinite dimensions, this algorithm does not converge, in general. In the next section, we provide a final fundamental result that allows us to conclude that either this algorithm converges in at most $n - m$ steps (with n the dimension of the original state) or, in at most $n - m$ steps, it provides a new observable function able to increase the unknown input degree of reconstructability. In this latter case, if the new degree is equal to m_u, it means that the new system is now in canonical form and we can apply Algorithm 4.1. Otherwise, we repeat the above procedure, starting from a higher degree of reconstructability.
5.3 The complete solution

This section provides the general solution that allows us to obtain, in a finite number of steps, the entire observable codistribution for any system that satisfies (2.1). No further assumption is required. The system does not necessarily have to be in canonical form with respect to its unknown inputs and it can also be neither canonical nor canonizable.

The automatic procedure that builds the observable codistribution is Algorithm 5.5. Before providing and describing the procedure, we need a final theoretical result.

5.3.1 System extensibility

As we mentioned at the end of Section 5.2.2, when a system is not in canonical form, we cannot run Algorithm 4.1. We denote by \(\tilde{h}_1, \ldots, \tilde{h}_m \) (\(m \leq m_w \)) a set of available observable functions from which the unknown input degree of reconstructability is \(m \). They are such that the following condition holds:

\[
\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_m \right) \right) = m. \tag{5.14}
\]

Without loss of generality (i.e., by reordering the UIs) we assume that the submatrix obtained by considering the first \(m \) columns of \(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_m \right) \) has non vanishing determinant. We can run Algorithm 5.4. The condition that ensures its convergence is trivially:

\[
\mathcal{O}_k^\infty = \mathcal{O}_{k-1}^\infty
\]

Unfortunately, as the state has infinite dimensions, the smallest integer at which the above condition occurs is unbounded. We denote by \(\nabla h_k^\infty \) a generic generator of \(\mathcal{O}_k^\infty \). Note that Algorithm 5.4 automatically computes all these generators. We also denote by \(\partial_w \) the operator that includes all the derivatives with respect to the components of the state extension \(w_{d\infty} \) in (5.5). We introduce the following definition:

Definition 5.3. The system in (2.1) with reconstructability matrix of rank \(m < m_w \) is said non-extensible if, for any integer \(k \), \(\partial_w h_k^\infty \) vanishes for all the generators of \(\mathcal{O}_k^\infty \). In addition, it is said extensible if it is not non-extensible.

We have the following fundamental result.

Proposition 5.2. If the system is non-extensible, then Algorithm 5.4 converges in at most \(n - m \) steps. Conversely, if the system is extensible, then there exists a generator \(h_k^\infty \), which depends on a given component of \(w_{d\infty} \), with \(k \leq n - m + 1 \).

Proof. Let us prove the first statement. The convergence of Algorithm 5.4 is characterized by the condition \(\mathcal{O}_k^\infty = \mathcal{O}_{k-1}^\infty \). As no generator of \(\mathcal{O}_k^\infty \) depends on \(w_{d\infty} \) in (5.5), the dimension of \(\mathcal{O}_k^\infty \) cannot exceed \(n \). As a result, the condition that characterizes the convergence is attained in at most \(n - m \) steps. This proves the first statement.

Let us prove the second statement. We proceed by contradiction. Let us suppose that all the generators of \(\mathcal{O}_j^\infty \) are independent of \(w_{d\infty} \) when \(j \leq n - m + 1 \). By proceeding as in the proof of the first statement, we attain the condition that characterizes the convergence of Algorithm 5.4. We have \(\mathcal{O}_j^\infty = \mathcal{O}_{j-1}^\infty \), for some \(j \leq n - m + 1 \). As a result, \(\mathcal{O}_k^\infty = \mathcal{O}_{k-1}^\infty \) for any \(k \geq j - 1 \). But this means that the generators of \(\mathcal{O}_k^\infty \) are independent of \(w_{d\infty} \), namely the system is non-extensible, in contrast with the assumption of the second statement. \(\blacksquare \)

The above result ensures that, when we run Algorithm 5.4, we have one of the following two results, in at most \(n - m \) steps:

1. \textbf{(Non-extensible)} we attain the convergence, and, consequently, the observable codistribution.

2. \textbf{(Extensible)} we find a generator of \(\mathcal{O}_k^\infty \) \((h_k^\infty) \) that depends on at least one component of \(w_{d\infty} \).

\(^4\)At the beginning, this means that \(p \geq m \) and \(\tilde{h}_1, \ldots, \tilde{h}_m \) are \(m \) functions among the output functions, \(h_1, \ldots, h_p \).
In the first case, we have achieved our final goal. In the second case, we build a new unknown input extension of the original system (denoted by \(\Sigma \)) by proceeding as follows. We know that \(h_k^\infty \) depends on \(w_{d+\infty} \). Let us characterize a general dependency of \(h_k^\infty \) on \(w_{d+\infty} \). We denote by \(z \leq d \) the number of the original UIs that appear in \(h_k^\infty \). We can assume that \(h_k^\infty \) depends on \(w_{m_w-1}, w_{m_w-2}, \ldots, w_{m_w} \) (we re-order the last \(d \) original UIs). For each of them, \(h_k^\infty \) can depend directly on it and/or on a given time derivative of it. We denote by \(k_1, k_2, \ldots, k_z \) the highest orders time derivative of the corresponding original unknown inputs that appear in \(h_k^\infty \). We introduce the following unknown input extension:

Definition 5.4. Given \(h_k^\infty \), we set \(\Sigma \triangleq \Upsilon \mathcal{IE}(k_1, k_2, \ldots, k_z) \).

We have the following result:

Lemma 5.1. For the system \(\Sigma \), we have:

\[
\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_m, h_k^\infty \right) \right) = m + 1
\]

Proof. The proof is obtained by a direct computation. For \(\Sigma = \Upsilon \mathcal{IE}(k_1, k_2, \ldots, k_z) \), the reconstructability matrix from \(\tilde{h}_1, \ldots, \tilde{h}_m, h_k^\infty \) is:

\[
\begin{bmatrix}
\mathcal{L}_{g_1} \tilde{h}_1 & \mathcal{L}_{g_2} \tilde{h}_1 & \mathcal{L}_{g_{m_w-1}} \tilde{h}_1 & \mathcal{L}_{e_1} \tilde{h}_1 & \mathcal{L}_{e_2} \tilde{h}_1 \\
\mathcal{L}_{g_1} \tilde{h}_2 & \mathcal{L}_{g_2} \tilde{h}_2 & \mathcal{L}_{g_{m_w-1}} \tilde{h}_2 & \mathcal{L}_{e_1} \tilde{h}_2 & \mathcal{L}_{e_2} \tilde{h}_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathcal{L}_{g_1} \tilde{h}_{m} & \mathcal{L}_{g_2} \tilde{h}_{m} & \mathcal{L}_{g_{m_w-1}} \tilde{h}_{m} & \mathcal{L}_{e_1} \tilde{h}_{m} & \mathcal{L}_{e_2} \tilde{h}_{m} \\
\mathcal{L}_{g_1} h_k^\infty & \mathcal{L}_{g_2} h_k^\infty & \mathcal{L}_{g_{m_w-1}} h_k^\infty & \mathcal{L}_{e_1} h_k^\infty & \mathcal{L}_{e_2} h_k^\infty
\end{bmatrix}
\]

From (5.14) we know that the rank of the submatrix that consists of the first \(m \) rows of the above matrix is equal to \(m \). Let us consider the last row of the above matrix. By assumption, \(h_k^\infty \) depends on the time derivatives of order \(k_1, k_2, \ldots, k_z \) of the last \(z \) unknown inputs. As a result, the last \(z \) entries of this row do not vanish. Therefore, the rank of the above matrix is \(m + 1 \).

5.3.2 Description of Algorithm 5.5

We provide Algorithm 5.5 which builds, in a finite number of steps, the entire observable codistribution for any system that satisfies (2.1). These are its main features/outcomes:

- If the system is canonic, it finds a set of \(m_w \) observable functions, \(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \), such that

\[
\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \right) \right) = m_w.
\]

In this case, the above functions can be used to define the tensor \(\mu \) in (4.1) and, consequently, they allow us to run Algorithm 4.1.

- If the system is non canonic but it is canonizable, it returns a finite unknown input extension which is canonic.

- If the system is neither canonic nor canonizable, it returns an unknown input extension of the original system with the highest unknown input degree of reconstructability. In addition, it also provides the observable codistribution.
The procedure is iterative. At each step, it computes new scalar functions that are observable. At the beginning these functions are the output functions (i.e., \(h_1, \ldots, h_p \)).

The procedure consists of a main loop that contains a nested loop. The main loop terminates when one of the following two conditions is achieved:

1. \(m_w \) observable functions, \(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \), such that \(\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \right) \right) = m_w \), are found.

2. The entire observable codistribution is obtained

Let us denote by \(m \) the rank of the unknown input reconstructability matrix, at a given step of the main loop. The procedure obtains new observable functions, when they exist. This is obtained by introducing the new system, denoted by \(UIE_{d\infty} \). Hence, the procedure can obtain new observable functions by running Algorithm \ref{alg:5.4}. This is carried out by the nested loop. Because of the results stated by Proposition \ref{prop:5.2} and Lemma \ref{lem:5.1}, the nested loop terminates, in at most \(n - m \) steps, with one of the following outcomes:

1. Algorithm \ref{alg:5.4} converges (i.e., \(O_{\infty}^k = O_{\infty}^{k-1} \)), and the entire observable codistribution is obtained.

2. Algorithm \ref{alg:5.4} determines a new observable function such that the unknown input reconstructability matrix increases its rank by one.

In the first case, also the main loop terminates and we have achieved our goal because we have obtained the observable codistribution. In the second case, there are two possibilities depending on the new value of \(m \), that is the rank of the new unknown input reconstructability matrix:

1. \(m = m_w \).

2. \(m < m_w \).

In the first case, the main loop terminates and we can run Algorithm \ref{alg:5.1} to obtain the observable codistribution. In the second case, we skip to the next iterative step of the main loop. Since the rank of the unknown input reconstructibility matrix cannot exceed \(m_w \), the procedure converges in at most \(m_w - 1 \) steps of the main loop.

Algorithm 5.5.

Set \(m = \text{rank} \left(\mathcal{RM} \left(h_1, \ldots, h_p \right) \right) \).

Select \(\tilde{h}_1, \ldots, \tilde{h}_m \) from \(h_1, \ldots, h_p \) s.t. \(\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_m \right) \right) = m \).

Set \(\text{run_find_Extension} = \text{true} \).

while \(m < m_w \) **and** \(\text{run_find_Extension} \) **do**

Set \(\text{run_find_O} = \text{true} \).

Set \(d = m_w - m \) and build \(UIE_{d\infty} \).

while \(\text{run_find_O} \) **do**

This is the nested loop and consists of the implementation of Algorithm \ref{alg:5.4}.

Its \(k^{th} \) iteration returns the generators of \(O_{\infty}^k \).

\(\nabla h_{\infty}^k \) is a generic generator of \(O_{\infty}^k \).

if \(h_{\infty}^k \) contains component/s of \(w_{d\infty} \) **then**

Set \(\tilde{h}_{m + 1} \triangleq h_{\infty}^k \).

Reset the system as \(\Sigma \) in Definition \ref{def:5.4}.

Set \(m = m + 1 \).

Set \(\text{run_find_O} = \text{false} \).

else

if \(\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_m, h_{\infty}^k \right) \right) = m + 1 \) **then**

Set \(\tilde{h}_{m + 1} \triangleq h_{\infty}^k \).

Set \(m = m + 1 \).

Set \(\text{run_find_O} = \text{false} \).

end if
\[
\begin{align*}
\text{if } &O_k^\infty = O_{k-1}^\infty \text{ then} \\
\text{Set } &\text{run}_{\text{find}}O = \text{false} \\
\text{Set } &\text{run}_{\text{find}}\text{Extension} = \text{false} \\
\text{end if}
\end{align*}
\]

end while

if \text{run}_{\text{find}}\text{Extension} then

The system under consideration is set in canonical form.
This can be the original system or an unknown input extension.
Compute \(O \) by executing Algorithm 4.1.

else

The system is neither canonic nor canonizable. Algorithm 5.4 has converged.
Set \(O = O_k^\infty \)
end if

We conclude with the following remark. Lemma 5.1 ensures that, the dependence of \(h_k^\infty \)
on the extension \(w_{d\infty} \) in (5.5), allows us to introduce a finite unknown input extension (\(\Sigma = \text{UIE}(k_1, k_2, \ldots, k_z) \)) in Definition 5.4 for which the rank of the reconstructability matrix from
\(\hat{h}_1, \ldots, \hat{h}_m \) and \(h_k^\infty \) is \(m + 1 \). On the other hand, this is a sufficient condition that guarantees
the possibility of increasing such a rank. We cannot exclude the possibility that, there exists a
generator \(h_k^\infty \), which is independent of \(w_{d\infty} \), but still increases the rank of the reconstructability
matrix. Considering this possibility is convenient, as, if it occurs, we do not need to extend the
state and, consequently, we can reduce the computational load. In Algorithm 5.5, this possibility
is accounted by the second if in the nested loop.
Chapter 6

Unknown input reconstruction

In this section, we investigate the problem of reconstructing the unknown inputs. We start by providing a property (Proposition 6.1) that establishes the equivalence between non-extensible systems (Definition 5.3) and systems with unknown input highest degree of reconstructability (Definition 5.1). Then, Section 6.2 provides a new result that characterizes the observability of the unknown inputs (Theorem 6.1). Finally, based on the strategy adopted to prove this result, we discuss how to set up a possible framework to estimate a set of unknown inputs. This framework is suitable both in case Theorem 6.1 tells us that these unknown inputs are observable and in the case they are not.

6.1 Non-extensible systems and unknown input highest degree of reconstructability

Let us refer to the system in (2.1) and let us suppose that we have \(m < m_w \) observable functions, \(\tilde{h}_1, \ldots, \tilde{h}_m \), such that \(\text{rank} \left(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_m \right) \right) = m \).

We have the following result:

Proposition 6.1. The integer \(m \) is the unknown input highest degree of reconstructability if and only if the system is non-extensible.

Proof. \((\Rightarrow)\) We proceed by contradiction. If the system is extensible we find a function \(h_\infty(k) \) that depends on at least one component of \(w_\infty \). Lemma 5.1 proves that there exists a finite unknown input extension \((\text{UIE}(k_1, k_2, \ldots, k_z))\) with degree of reconstructability equal to \(m + 1 \). But this would mean that \(m \) is not the unknown input highest degree of reconstructability.

\((\Leftarrow)\) We know that, for any observable function, there exists an integer \(k \) such that its differential belongs to \(O_k^\infty \) (Theorem 5.2). Hence, the fact that the system is non-extensible means that all the observable functions are independent of all the components of \(w_\infty \). As a result, for any unknown input extension, the reconstructability matrix from any set of observable functions has a rank that cannot exceed \(m \). Therefore, \(m \) is the unknown input highest degree of reconstructability. ◀

6.2 Observability of the unknown inputs

Based on the results obtained for the state observability it is immediate to prove the following fundamental result:

Theorem 6.1. If a system is canonic with respect to its unknown inputs and its state is observable, then all the unknown inputs can be reconstructed.

Proof. Let us consider the system characterized by (2.1) and let us suppose that the state \(x \) is observable and that the system is canonic with respect to its unknown inputs. From the canonicity assumption, there exist \(m_w \) observable functions, \(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \), such that the reconstructability
matrix \(\mathcal{RM} \left(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \right) \) is non-singular or, in other words, the tensor \(\mu^j_i \) defined in (4.1) is non-singular. We consider the unknown input extension obtained by including in the state all the unknown inputs (without any time derivative). In other words, we are considering the system \(UIE(k_1, k_2, \ldots, k_{m_w}) \) with \(k_1 = k_2 = \ldots = k_{m_w} = 0 \). We use the following result from the state of the art. Given an observable function of the state \(x \), all the first order Lie derivatives of this function are observable functions for the above unknown input extension (see the first statement of Theorem A.1 in A.1, or Theorem 6.11 in [45] or Proposition 3 in [42]). Hence, we know that the \(m_w \) scalar functions obtained by computing the first order Lie derivative of \(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \) along \(g^0_{m_w} \) (which is the vector field in (5.3) for this specific unknown input extension) are observable functions or, in other words, their initial value can be reconstructed. We have:

\[
\mathcal{L}_{g^0_{m_w}} \tilde{h}_j = \mathcal{L}_{g^0} \tilde{h}_j + \sum_{i=1}^{m_w} \mathcal{L}_{g^0} \tilde{h}_j w_i = \mu^0_j + \sum_{i=1}^{m_w} \mu^i_j w_i
\]

for \(j = 1, \ldots, m_w \). This is a system of \(m_w \) linear equations in the \(m_w \) unknowns: \(w_1, \ldots, w_{m_w} \). As \(\mu \) is non-singular, we invert and we obtain:

\[
w_k = \sum_{l=1}^{m_w} \nu_k^l (\mathcal{L}_{g^0_{m_w}} \tilde{h}_l - \mu^0_l) \tag{6.2}
\]

Now we use the assumption that the state is observable. This means that we know all the components of the state at the initial time and, consequently, we know all the components of \(\nu \) and \(\mu \) at the initial time. Therefore, from the above equation we can also reconstruct the unknown inputs.

6.3 A framework for reconstructing the unknown inputs

Theorem 6.1 provides a sufficient condition to check the observability of the unknown inputs. On the other hand, it could be also important from a practical point of view, namely to set up a possible framework that allows us to estimate a set of unknown physical quantities. In the remainder of this section, we only provide a preliminary discussion about this idea.

Let us suppose that we want to estimate one or more time-varying quantities and that we are able to build a dynamic system in which these quantities drive its dynamics by acting as unknown inputs. Thanks to Algorithm 5.5, we can check whether the state that characterizes this system is observable or not. In the second case, as Algorithm 5.5 builds the observable codistribution \(O \), we can try to characterize our system by an observable state. Note that this step is non-trivial as it cannot be accomplished by a systematic/automatic procedure. Algorithm 5.5 provides an observable state automatically. However, for a complete description of our system, we need to express its dynamics only in terms of the components of the observable state and the system inputs. This step, not only cannot be accomplished automatically, but may also require a redefinition of the unknown inputs.

Let us suppose that we are able to obtain a description of our system in terms of an observable state. We have now the following two possibilities:

1. The system is canonic with respect to its unknown inputs or canonizable.
2. The system is neither canonic with respect to its unknown inputs nor canonizable.

In the first case, if the system is canonizable but not canonic, we need to find a system characterization that is canonic. This is automatically built by Algorithm 5.5. Hence, in the first case, we achieve automatically a proper system characterization that allows us to estimate the unknown inputs. The strategy to perform this estimation depends on the specific case. We only mention that, on the basis of the proof of Theorem 6.1 (and in particular equation (6.2)), in order to design a suitable strategy, it could be very useful to have a set of observable functions, \(\tilde{h}_1, \ldots, \tilde{h}_{m_w} \), that makes the system canonic. These are automatically generated by Algorithm 5.5.

\[\text{Note that this result is widely used to introduce the strategies proposed in [43, 44].}\]
In the second case, we cannot obtain the unknown inputs because we cannot invert equation (6.1), for any choice of observable functions. On the other hand, Algorithm 5.5 provides, in a finite number of steps, the unknown input extension with the highest degree of reconstructability. Let us denote it by \(m \). In addition, Algorithm 5.5 automatically builds a set of \(m \) observable functions, \(\tilde{h}_1, \ldots, \tilde{h}_m \), that makes the reconstructability matrix of rank \(m \). Equation (6.1) becomes:

\[
\mathcal{L}_{g_{m_w}} \tilde{h}_j = \mathcal{L}_{g_{\tilde{h}_j}} h_j + \sum_{i=1}^{m_w} \mathcal{L}_{g_{\tilde{h}_j}} h_i w_i
\]

(6.3)

for \(j = 1, \ldots, m \). This is a system of \(m < m_w \) linear equations in the \(m_w \) unknown inputs. We cannot obtain the unknown inputs as in the proof of Theorem 6.1. On the other hand, by using this linear system, we can easily obtain the linear combinations of \(w_1, \ldots, w_{m_w} \) that can be reconstructed.
Chapter 7

Applications

This section illustrates the implementation of Algorithm 5.5. We refer to the visual inertial sensor fusion problem. For the sake of clarity, we restrict our analysis to a 2D environment. The 3D case differs only in a more laborious calculation. We consider three variants of this sensor fusion problem depending on the available inertial signals. The description of these variants is given in Section 7.1. In Section 7.2, we use Algorithm 5.5 to obtain the observability properties. In particular, for one of the considered variants, we provide all the details of the computation, following, step by step, the implementation of Algorithm 5.5 (Section 7.2.2). Finally, in Section 7.3, we provide a concise study of the same observability problem by using the approach introduced in [42].

7.1 The system

We consider a rigid body (B) equipped with a visual sensor (V) and an inertial measurement unit (I). The body moves on a plane. A complete I measures the body acceleration and the angular speed. In 2D, the acceleration is a two-dimensional vector and the angular speed is a scalar. The visual sensor provides the bearing angle of the features in its own local frame. We assume that the V frame coincides with the I frame. We call this frame, the body frame. In addition, the inertial measurements are unbiased. Figure 7.1 depicts our system.

It is very convenient to work in polar coordinates. Hence, we define the state:

$$x = [r, \phi, v, \alpha, \theta]^T$$ (7.1)

where r and \(\phi \) characterize the body position, \(\theta \) its orientation (see Fig. 7.1 for an illustration), and \(v \) and \(\alpha \) the body speed in polar coordinates. In particular, \(v = \sqrt{v_x^2 + v_y^2} \) and \(\alpha = \arctan \left(\frac{v_y}{v_x} \right) \), where \([v_x, v_y]^T \) is the body speed in Cartesian coordinates. The dynamics are:

$$
\begin{bmatrix}
\dot{r} = v \cos(\alpha - \phi) \\
\dot{\phi} = \frac{v}{r} \sin(\alpha - \phi) \\
\dot{v} = A_x \cos(\alpha - \theta) + A_y \sin(\alpha - \theta) \\
\dot{\alpha} = -\frac{A_y}{v} \sin(\alpha - \theta) + \frac{A_y}{v} \cos(\alpha - \theta) \\
\dot{\theta} = \omega
\end{bmatrix}$$ (7.2)

where \([A_x, A_y]^T\) is the body acceleration in the body frame and \(\omega \) the angular speed. Without loss of generality, we assume that the feature is positioned at the origin of the global frame. The V sensor provides the angle \(\beta = \pi - \theta + \phi \). Hence, we can perform the observability analysis by using the output (we ignore \(\pi \)):

$$y = h(x) = \phi - \theta$$ (7.3)

We consider the following three variants, which differ in a different setting of the I sensor:

1. Variant 1: I provides the body acceleration \([A_x, A_y]^T\) and the angular speed (\(\omega \)).
2. Variant 2: \(\mathcal{I} \) consists of a single gyroscope that only provides the angular speed \((\omega) \).

3. Variant 3: \(\mathcal{I} \) consists of a single accelerometer that only provides the component of the acceleration along the \(x \)-axis of the body frame \((A_x) \).

7.2 State observability

We use Algorithm 5.5 to obtain the observability properties of our system. For the brevity sake, for Variant 3, we do not provide the details of the computation (which are similar to the ones for Variant 2) but only the result.

7.2.1 State observability for Variant 1

When \(A_x, A_y, \) and \(\omega \) are known, by comparing (7.2) and (7.3) with (2.1) we have: \(n = 5, m_u = 3, m_w = 0, p = 1, u_1 = \omega, u_2 = A_x, u_3 = A_y, \)

\[
\begin{align*}
g^0 &= \begin{bmatrix} v \cos(\alpha - \phi) \\ \frac{v}{r} \sin(\alpha - \phi) \\ 0 \\ 0 \\ 0 \end{bmatrix}, \\
f^1 &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \\
f^2 &= \begin{bmatrix} 0 \\ 0 \\ \cos(\alpha - \theta) \\ -\frac{1}{v} \sin(\alpha - \theta) \\ 0 \end{bmatrix}, \\
f^3 &= \begin{bmatrix} 0 \\ 0 \\ \sin(\alpha - \theta) \\ \frac{1}{v} \cos(\alpha - \theta) \\ 0 \end{bmatrix}
\end{align*}
\]

As all the inputs are known, we can compute the observable codistribution by using the standard observability rank condition, which is a special case of Algorithm 4.1 when \(m_w = 0 \).

We obtain, at the initialization, \(\mathcal{O}_0 = \text{span} \{ \nabla h \} = \text{span} \{ [0 \ 1 \ 0 \ 0 \ -1] \} \) (note that, when \(m_w = 0 \), the codistribution \(\mathcal{O} \) vanishes). Its dimension is equal to 1. At the first iterative step we obtain \(\mathcal{O}_1 = \text{span} \{ \nabla h, \nabla L_{g^0} h \} \) and its dimension is \(2 > 1 \). At the second iterative step
we obtain \(O_2 = \text{span} \{ \nabla h, \nabla \mathcal{L}_{g_0} h, \nabla \mathcal{L}_{g_0} \mathcal{L}_{g_0} h, \nabla \mathcal{L}_{f_2} \mathcal{L}_{g_0} h \} \) and its dimension is \(4 > 2 \). At the next step \(O_3 \) remains the same, meaning that the algorithm has converged. Therefore:

\[
O = O_2 = \text{span} \{ \nabla h, \nabla \mathcal{L}_{g_0} h, \nabla \mathcal{L}_{g_0} \mathcal{L}_{g_0} h, \nabla \mathcal{L}_{f_2} \mathcal{L}_{g_0} h \}
\]

We compute the orthogonal distribution. By a direct computation, we obtain:

\[
(O^\perp) = \text{span} \{ [0 1 0 1 1]^T \}.
\]

The generator of \((O^\perp)\) expresses the following invariance (\(\epsilon \) is an infinitesimal parameter):

\[
\begin{bmatrix}
 r \\
 \phi \\
 v \\
 \alpha \\
 \theta
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 r' \\
 \phi' \\
 v' \\
 \alpha' \\
 \theta'
\end{bmatrix}
= \begin{bmatrix}
 r \\
 \phi \\
 v \\
 \alpha \\
 \theta
\end{bmatrix}
+ \epsilon
\begin{bmatrix}
 0 \\
 1 \\
 0 \\
 1 \\
 1
\end{bmatrix},
\] (7.4)

which is an infinitesimal rotation about the vertical axis.

In conclusion, for this system (Variant 1), only the first and the third component of the state are observable (i.e., \(r \) and \(v \)), while the three remaining components, \(\phi, \alpha, \) and \(\theta \), are not. However, the difference between any two of these angles (e.g., \(\phi - \theta \), or \(\alpha - \theta \)) is observable.

7.2.2 State observability for Variant 2

When \(A_x, A_y \) are unknown and \(\omega \) is known, by comparing (7.2) and (7.3) with (2.1) we have:

\[
n = 5, \quad m_u = 1, \quad m_w = 2, \quad p = 1, \quad u_1 = \omega, \quad w_1 = A_x, \quad w_2 = A_y,
\]

\[
g^0 = \begin{bmatrix}
 v \cos(\alpha - \phi) \\
 v \sin(\alpha - \phi) \\
 0 \\
 0 \\
 0
\end{bmatrix}, \quad f^1 = \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 1
\end{bmatrix},
\]

\[
g^1 = \begin{bmatrix}
 0 \\
 0 \\
 \cos(\alpha - \theta) \\
 -\frac{1}{v} \sin(\alpha - \theta) \\
 0
\end{bmatrix}, \quad g^2 = \begin{bmatrix}
 0 \\
 0 \\
 \frac{1}{v} \cos(\alpha - \theta) \\
 \frac{1}{v} \cos(\alpha - \theta) \\
 0
\end{bmatrix}
\]

As \(p = 1 < 2 = m_w \) the system is certainly not in canonical form with respect to \(w_1 \) and \(w_2 \). We even do not know if it is canonic with respect to them. We apply Algorithm 5.5.

We obtain \(\mathcal{L}_{g_1} h = \mathcal{L}_{g_2} h = 0 \). As a result, \(\text{rank} (\mathcal{R}M(h)) = 0 \) and

\[
m = 0, \quad d = m_w - 0 = 2
\]

Hence, we build the system \(UIE_{2\infty} \) and we apply Algorithm 5.4.

\(UIE_{2\infty} \)

We follow the steps in section 5.1.2 to build this system. It is characterized by the following state:

\[
x_{2\infty} = [x^T, A_x, A_x^{(1)}, A_x^{(2)}, A_x^{(3)}, \ldots, A_y, A_y^{(1)}, A_y^{(2)}, A_y^{(3)}, \ldots]^T
\]

and the equations in (5.6) with:
Application of Algorithm 5.4 to $\mathcal{UIE}_{2\infty}$

In this special case ($m = 0$), the tensor $m^\mu = 0$ in (5.9) has the single component $0^0_0 = 1$, and, consequently, the same holds for its inverse 0^ν_0: we have $0^0_0 = 1$. In addition, we only have the vector field $0^0_2\infty$ in (5.10) and we have $0^0_2\infty = g^0_2\infty$. As a result, the steps of Algorithm 5.4 trivially consist of the computation of the Lie derivatives along the drift and the vector field that corresponds to the known input, i.e., the above $g^0_2\infty$ and $f^1_2\infty$. In addition, the initialization step is trivial because \tilde{O} vanishes. As a result, $O^\infty_0 = \text{span} \{\nabla h\}$.

At the first step we obtain:

$$O^\infty_1 = \text{span} \left\{\nabla h, \nabla \left(\mathcal{L}_{g^0_2\infty} h\right), \nabla \left(\mathcal{L}_{f^1_2\infty} h\right)\right\} = \text{span} \left\{\nabla h, \nabla \left(\frac{v}{r} \sin(\alpha - \phi)\right)\right\}$$

Both the generators are independent of $w_{2\infty}$. On the other hand, for the latter we have:

$$\text{rank} \left(\mathcal{RM} \left(\frac{v}{r} \sin(\alpha - \phi)\right)\right) = 1 > m = 0$$

In other words, we meet the condition stated by the second if in the nested loop. Hence, we set:

$$\tilde{h}_{m+1} = \tilde{h}_1 \triangleq \frac{v}{r} \sin(\alpha - \phi),$$

$$m = m + 1 = 1,$$

and we stop Algorithm 5.4 ($\text{run_find_O} = \text{false}$).

As $m = 1 < m_w = 2$ we repeat the iterative step in the main loop of Algorithm 5.5. We have now $d = m_w - m = 2 - 1 = 1$. We build $\mathcal{UIE}_{1\infty}$.

$\mathcal{UIE}_{1\infty}$

We follow the steps in section 5.1.2 to build this system. We obtain the state by including one of the two unknown inputs, together with all its time derivatives. We can choose any of them, as both the entries of $\mathcal{RM} \left(\frac{v}{r} \sin(\alpha - \phi)\right)$ do not vanish. We choose A_x and we have:

$$x_{1\infty} = [x^T, A_x, A_x^{(1)}, A_x^{(2)}, A_x^{(3)}, \ldots]^T$$

$\mathcal{UIE}_{1\infty}$ is characterized by this state and the equations in (5.6) with:

$$g^0_1 = \begin{bmatrix} g^0 + g^1 A_x \\ A_x^{(1)} \\ A_x^{(2)} \\ A_x^{(3)} \\ \vdots \end{bmatrix}, \quad f^1_1 = \begin{bmatrix} f^1 \\ 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}, \quad g^1_1 = \begin{bmatrix} g^2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
Application of Algorithm 5.4 to $UIE_{1\infty}$

We apply Algorithm 5.4 to $UIE_{1\infty}$ (nested loop in Algorithm 5.5). We have:

$$O_{\infty}^g = \text{span}\{\nabla h, \nabla \tilde{h}_1\} + \tilde{O}$$

To proceed, we need to compute \tilde{O}. This requires the computation of the integers r and s_x and the autobrackets of $f_{1\infty}^1$ up to the $(r + s_x)^{th}$ order. We need, first of all, to compute the tensor $m_{\mu} = 1_{\mu}$ in (5.8) and (5.9). We obtain: $1_{\mu}^0 = 1, 1_{\mu}^1 = 0, 1_{\mu}^2 = 1$. By computing its inverse we obtain: $1_{\nu}^0 = 1, 1_{\nu}^1 = 0, 1_{\nu}^2 = 0$

We start by computing the first order autobracket of $f_{1\infty}^1$. We obtain, for the former:

$$1_{[f_{1\infty}^1]}^0 =$$

$$\begin{bmatrix}
0 & 0 & 0 & \cos(\phi - \theta)(\sin(2\alpha - 2\phi)v^2 + A_x r \sin(\phi - \theta)) \\
0 & 0 & 0 & \frac{r \cos(\phi - \theta) v^2 + r A_x \sin(\phi - \theta)}{r \cos(\phi - \theta)} \\
0 & 0 & 0 & \frac{-A_x \cos(\phi - \theta)}{r \cos(\phi - \theta)} - \frac{\sin(\phi - \theta)(\sin(2\alpha - 2\phi)v^2 + A_x r \sin(\phi - \theta))}{r \cos(\phi - \theta)} \\
0 & 0 & 0 & \frac{-A_x \cos(\phi - \theta)}{r \cos(\phi - \theta)} - \frac{\sin(\phi - \theta)(\sin(2\alpha - 2\phi)v^2 + A_x r \sin(\phi - \theta))}{r \cos(\phi - \theta)} \\
0 & 0 & 0 & \frac{-A_x \cos(\phi - \theta)}{r \cos(\phi - \theta)} - \frac{\sin(\phi - \theta)(\sin(2\alpha - 2\phi)v^2 + A_x r \sin(\phi - \theta))}{r \cos(\phi - \theta)} \\
0 & 0 & 0 & 0
\end{bmatrix}$$

and $\mathcal{L}_{1_{[f_{1\infty}^1]}^0} \tilde{h}_1 = -\frac{2r A_x - v^2 \cos(\phi - 2\alpha + \theta) + v^2 \cos(2\alpha - 3\phi + \theta)}{2r^2 \cos(\phi - \theta)}$

The differential of the above function is one of the generator of \tilde{O}. As it depends on A_x, we meet the condition stated by the first \mathcal{L} in the nested loop. Hence, we set: $\tilde{h}_{m+1} = 0, \tilde{h}_2 = \frac{2r A_x - v^2 \cos(\phi - 2\alpha + \theta) + v^2 \cos(2\alpha - 3\phi + \theta)}{2r^2 \cos(\phi - \theta)}, m = m + 1 = 2 = m_w$.

Additionally, we reset the system as Σ in Definition 5.4 and we stop Algorithm 5.4 ($\text{run_find}_O = false$).

The new system Σ

The new system (Σ in Definition 5.4) is obtained starting from the dependency of the new function \tilde{h}_2 on $w_{2\infty}$. In this specific case, we have $z = 1$ and $k_{z} = 0$ (the function only depends on A_x and it is independent of any order time derivative of A_x). The new state is:

$$x = [r, \phi, v, \alpha, \theta, A_x]^T$$

Σ is characterized by a single known input (as the starting system), which is $u_1 = \omega$. It is also characterized by two unknown inputs. However, the second unknown input is now the first order time derivative of the first unknown input of the original system. In other words, $w_2 = A_x^{(1)} = \dot{A}_x$. The first unknown input coincides with the second unknown input of the original system, i.e., $w_1 = A_y$. The vector fields that characterize the state dynamics are:
The initialization consists of the computation of the following codistribution:

\[g^0 = \begin{bmatrix} v \cos(\alpha - \phi) \\ \frac{v}{r} \sin(\alpha - \phi) \\ A_x \cos(\alpha - \theta) \\ -\frac{A_x}{r} \sin(\alpha - \theta) \\ 0 \\ 0 \end{bmatrix}, \quad f^1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad g^2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}. \]

Finally, the nested loop returned \(m = 2 \), which is equal to \(m_w \). Therefore, also the main loop is stopped and we can run Algorithm 4.1 on the above system because it is in canonical form. In particular, we set its outputs as the original output and the two functions \(h_1 \) and \(h_2 \), namely:

\[h_1 = h = \phi - \theta, \quad h_2 = \tilde{h}_1 = \frac{v}{r} \sin(\alpha - \phi), \]

and

\[h_3 = \tilde{h}_2 = -\frac{2rA_x - v^2 \cos(\phi - 2\alpha + \theta) + v^2 \cos(2\alpha - 3\phi + \theta)}{2r^2 \cos(\phi - \theta)}. \]

Application of Algorithm 4.1 to the system in canonical form

The initialization consists of the computation of the following codistribution:

\[\mathcal{O}_0 = \text{span} \{ \nabla h_1, \nabla h_2, \nabla h_3 \} + \tilde{\mathcal{O}} \]

To proceed, we need to compute \(\tilde{\mathcal{O}} \). This requires the computation of the integers \(r \) and \(s \) and the autobrackets of \(f^1 \) up to the \((r+s)^{th}\) order. We need, first of all, to compute the tensor \(\mu \). We obtain:

\[\mu_0^1 = 1, \quad \mu_0^2 = 0, \quad \mu_0^3 = \frac{\sin(2\alpha - 2\phi)}{2}, \quad \mu_1^1 = \frac{\cos(\phi - \theta)}{r}, \quad \mu_1^2 = 0, \]

\[\mu_2^1 = \frac{1}{r \sin(\phi - \theta) + 1} \left[v^3 \cos(3\alpha - 3\phi) - v^3 \cos(\phi - 3\phi + 2\theta) - v^3 \cos(3\alpha - 5\phi + 2\theta) - r A_x \cos(3\alpha - 4\phi + 3\theta) + 3r A_x \cos(\alpha - \phi) \right], \quad \mu_2^3 = \frac{v \sin(\alpha - 3\phi + 2\theta) - v \sin(\alpha - 3\phi - 2\theta)}{r \cos(\phi - \theta)}, \quad \mu_2^4 = -\frac{1}{r \cos(\phi - \theta)}. \]

By computing its inverse, we obtain the tensor \(\nu \) (we do not provide its analytical expression, for the brevity sake).

We compute the integers \(s \) and \(r \) by running Algorithm 4.2 and Algorithm 4.3, respectively. We obtain \(s = r = 2 \). Finally, we use (4.10) to compute \(\tilde{\mathcal{O}} \). We have:

\[\mathcal{O}_0 = \text{span} \{ \nabla h_1, \nabla h_2, \nabla h_3, \nabla h_4 \} \]

The new generator, is \(h_4 = \frac{1}{r \cos(\phi - \theta)} \left[\sin(\phi - \theta)(2rA_x - v^2 \cos(\phi - 2\alpha + \theta) + v^2 \cos(2\alpha - 3\phi + \theta)) \right] - \cos(\phi - \theta)[v^2 \sin(\phi - 2\alpha + \theta) - v^2 \sin(2\alpha - 3\phi + \theta)]. \]

This concludes the initialization step. By running the recursive step of Algorithm 4.1 we obtain that

\[\mathcal{O}_1 = \mathcal{O}_0 \]

meaning that Algorithm 4.1 has converged and, the observable codistribution is:

\[\mathcal{O} = \text{span} \{ \nabla h_1, \nabla h_2, \nabla h_3, \nabla h_4 \}. \]

We compute the orthogonal distribution. By a direct computation, we obtain:

\[(\mathcal{O})^\perp = \text{span} \{ [0 1 0 1 0]^T, \quad [r 0 v 0 0 A_x]^T \}. \]
The first generator of \((O)^⊥\) expresses the same invariance found in the case discussed in section 7.2.1. This is the rotation around the vertical axis (see equation (7.4)). This fact is not surprising. By removing the accelerator we lose information and, consequently, all the degrees of unobservability remain.

The second generator expresses the following new invariance \((\epsilon)\) is an infinitesimal parameter):

\[
\begin{bmatrix}
 r \\
 \phi \\
 v \\
 \alpha \\
 \theta \\
 A_x
\end{bmatrix}
\to
\begin{bmatrix}
 r' \\
 \phi' \\
 v' \\
 \alpha' \\
 \theta' \\
 A'_x
\end{bmatrix}
=
\begin{bmatrix}
 r \\
 \phi \\
 v \\
 \alpha \\
 \theta \\
 A_x
\end{bmatrix}
+ \epsilon
\begin{bmatrix}
 r_0 \\
 v_0 \\
 0 \\
 0 \\
 0 \\
 A_x
\end{bmatrix},
\]

(7.5)

which is an infinitesimal scale transform. The presence of this new degree of unobservability is also not surprising. All the information is provided by the measurements that now only consist of angular measurements (the sensor \(V\) only provides the angle \(\beta\) in Fig. 7.1 and the sensor \(I\) only provides the angular speed). As a result, the system does not have any source of metric information.

In conclusion, for this system (Variant 2), no component of the state is observable. However, as for Variant 1, the difference between any two of the three angles \(\phi, \alpha, \text{ and } \theta\) (e.g., \(\phi - \theta\), or \(\alpha - \theta\)) is observable. In addition, regarding the metric quantities in the new state (i.e., \(r, v, \text{ and } A_x\)), the ratio between any two of them (e.g., \(\frac{v}{r}\), or \(\frac{A_x}{r}\)) is observable.

Note that, even if the above computation could seem laborious, it is automatic. In particular, it is carried out by a simple code that uses symbolic computation.

7.2.3 State observability for Variant 3

By running Algorithm 5.5, we obtain that the observable codistribution coincides with the one obtained in Section 7.2.1, i.e., in the case of a complete \(I\) (Variant 1). In other words, in this case, the system has a single degree of unobservability that is the system invariance against a rotation around the vertical axis.

7.3 Results obtained with the approach introduced in [42]

We study the same observability problem by using the approach proposed in [42]. It consists in the implementation of Algorithm A.1 in A.1. We emphasize that this algorithm does not converge alone. To understand what is the step after which the algorithm does not provide further information on the original state, we actually exploited our knowledge of all the observable functions. Specifically, we know that a choice of all the independent observable functions is \(\frac{v}{r}, \phi - \theta, \alpha - \theta\), for Variant 2, and \(v, r, \phi - \theta, \alpha - \theta\), for Variant 3 (see sections 7.2.2 and 7.2.3).

Table 7.1 provides the results obtained by running Algorithm A.1. The last column provides how many independent observable functions have the differential in \(\Omega_k\). We can see that, for both Variant 2 and 3, we achieve the totality (3 and 4) at the third step. We emphasize that, in order to obtain the values of this last column, we exploit some extra knowledge that is not obtained by using Algorithm A.1. Therefore, to get a complete answer with this approach, we are actually using the solution of the problem itself (which is the determination of all the observable functions). We also emphasize that the computation becomes prohibitive starting from the 8th step (the computation of \(\Omega_8\) takes almost 10 days by using the symbolic tool of MATLAB with the processor 3.1 GHz Intel Core i7). Finally, we highlight that the results obtained with this algorithm agree with the results obtained with Algorithm 5.5.

57
Table 7.1: Results from Algorithm A.1 for Variant 2 (V2) and Variant 3 (V3). The step (k) of the algorithm (1^{st} column), the dimension of the extended state (2^{nd} column), the dimension of Ω_k (3^{rd} column), the number of the components of the original state with differential in Ω_k (4^{th} column), the number of all the independent observable functions with differential in Ω_k (5^{th} column).

k	$\dim(x_{km_k})$	$\dim(\Omega_k)$	$\#\text{ states}$	$\#\text{ obs}$			
		V2	V3	V2	V3	V2	V3
0	5	1	1	0	0	1	1
1	7	2	2	0	0	1	1
2	9	3	4	0	1	1	2
3	11	5	7	0	2	3	4
4	13	8	9	0	2	3	4
Chapter 8

Conclusion

This paper provided the general analytical solution of a fundamental open problem introduced long time ago (in the middle of the 1960’s). The problem is the possibility of introducing an analytical and automatic test able to check the observability of the state that characterizes a system whose dynamics are also driven by inputs that are unknown. This is the extension of the well known Observability Rank Condition introduced in the 1970’s and that does not account for the presence of unknown inputs. This paper provided this extension. This problem arises in a large class of domains, ranging from mechanical engineering, robotics, computer vision, up to biology, chemistry and economics. Observability is a fundamental structural property of any dynamic system and describes the possibility of reconstructing the state that characterizes the system from observing its inputs and outputs. The dynamics of most real systems are driven by inputs that are usually unknown. Very surprisingly, the complexity of the solution here introduced is comparable to the complexity of the observability rank condition. Given any nonlinear system characterized by any type of nonlinearity, driven by both known and unknown inputs, the state observability is obtained automatically, i.e., by the usage of a very simple code that uses symbolic computation. This is a fundamental practical (and unexpected) advantage.

To obtain this solution, the paper used several important new concepts introduced very recently in [45]. Note that also in [45] a solution of the unknown input observability problem was introduced. The novelties of the complete solution introduced by this paper, with respect to the solution given in [45] are:

1. Full characterization of the concept of canonicity with respect to the unknown inputs, given in Chapter 2 and in the first part of Chapter 5.

2. Algorithm 5.5, which is the general solution that holds even in the non canonic case and not even canonizable. In particular, when the system is not canonizable, Algorithm 5.5 returns a new system with the unknown input highest degree of reconstructability, together with the observability codistribution.

3. A new criterion of convergence of the solution in the canonic case. In particular, the criterion proposed in [45], which is based on the computation of the tensor T, can fail. The new criterion here introduced, which extended the one introduced in [47] to the general case with drift, multiple unknown inputs and TV, holds always (and is even simpler). In addition, the algorithm that solves the problem was written in a new manner (see Algorithm 4.1), where the initialization step includes all the terms of Algorithm 4.4 that make the convergence criterion of Algorithm 4.4 non trivial.

Finally, as a simple consequence of the results here obtained, the paper provided the answer to the problem of unknown input reconstruction, which is intimately related to the problem of state observability.

The solution was illustrated with a simple application. We studied the observability properties of a nonlinear system in the framework of visual-inertial sensor fusion. The dynamics of this system are driven by two unknown inputs and one known input and they are also characterized by a nonlinear drift. The system is not in canonical form with respect to its unknown inputs. However, by following the steps of Algorithm 5.5 it was set in canonical form.
Appendix A

Proof of Theorem 5.1

The proof of this Theorem is complex. It will be divided into the following three steps:

1. A.1, where we remind the reader of four results in the state of the art, which hold for systems in canonical form with respect to their unknown inputs.

2. A.2, where we extend the above results to systems that are not in canonical form (and that could even be neither canonic nor canonizable).

3. A.3, where, based on the results obtained in A.2 we provide the final proof.

A.1 Basic results in the state of the art

The four results in the state of the art are Theorem A.1, Lemma A.1, Proposition A.1, and Proposition A.2 in this appendix

We consider a system that satisfies (2.1) and that is in canonical form with respect to its unknown inputs. We denote by $\tilde{h}_1, \ldots, \tilde{h}_m$ a set of observable functions, which are available, and such that the unknown input degree of reconstructability from them is m_w. We set up a special unknown input extension, where all the unknown inputs are included in the state, up to the same order. We denote this order by $k-1$. In other words, we are considering the system:

$UIE(k_1, k_2, \ldots, k_{m_w})$ with $k_1 = k_2 = \ldots = k_{m_w} = k-1$. The dimension of the state that characterizes this system (i.e., the state in (5.1)) is $n + km_w$. For simplicity we set: $G \triangleq g^0_{m_w}$, $F^i \triangleq f^i_{m_w} (i = 1, \ldots, m_w)$, where $g^0_{m_w}$ and $f^i_{m_w}$ are defined in (5.3) with $d = m_w$. Finally, we denote this unknown input extension by:

$UIE_{m_w k}$

Based on the results derived in [42, 43, 44], in [45] we introduced Algorithm 6.1, that is here Algorithm A.1

Algorithm A.1.

Set $k = 0$
Set $\Omega_k = \{\nabla h_1, \ldots, \nabla h_p\}$
loop
 Set $\Omega_k = [\Omega_k, \ 0_{m_w}]$
 Set $k = k + 1$ and the vectors G and F^i according to the new k
 Set $\Omega_k = \Omega_{k-1} + L_G \Omega_{k-1} + \sum_{i=1}^{m_w} L_{F^i} \Omega_{k-1}$
end loop

The first line in the loop, i.e., $\Omega_k = [\Omega_k, \ 0_{m_w}]$, consists in embedding the codistribution Ω_k in the new extended space (the one that also includes the new m_w axes, $w_1^{(k)}, \ldots, w_{m_w}^{(k)}$). In practice, each covector $\omega \in \Omega_k$ that is represented by a row-vector of dimension $n + km_w$ is extended as follows:

Note that these results are used in [45] to prove the validity of Algorithm 4.4, i.e., to prove that this algorithm computes the observable codistribution of systems in canonical form. We show this at end of A.1 (Remark A.1).
For a given k, the codistribution $\tilde{\Omega}_k$ contains mixed information on both the original initial state x_0 and the values that the unknown inputs (together with their time derivatives up to the $(k-1)^{\text{th}}$ order) take at the initial time.

Based on the derivations in [42, 43, 44], we have the following fundamental result:

Theorem A.1. All the functions of the extended state computed by Algorithm A.1 are observable (i.e., their value at the initial time can be reconstructed). In addition, let us consider a scalar function $\theta(x)$ (i.e., of the only original state). If there exists an integer k such that $\nabla \theta \in [\partial_x \theta, 0_{km,w}] \in \tilde{\Omega}_k$ at $x_0 \in M$, then $\theta(x)$ is observable at x_0. Conversely, if $\theta(x)$ is observable on a given open set $A \subseteq M$, then there exists an integer k such that $\nabla \theta \in \tilde{\Omega}_k$ on a dense set of A.

Proof. A proof of these statements can be found in Chapter 6 of [45]. The proof of their validity can also be found in the previous works [42, 43, 44]. ▶

The result stated by Theorem A.1 can be used to obtain the observability properties in the presence of unknown inputs (and this is exactly what was done in [42, 43, 44]). However, Algorithm A.1 has two strong limitations: (i) It does not converge, automatically, and (ii) its implementation is computationally very expensive (because of the state augmentation).

Let us consider the codistribution Ω_k generated by Algorithm 4.4. The codistribution $[\Omega_k, 0_{km,w}]$ consists of the covectors whose first n components are covectors in Ω_k and the last components are all zero. Additionally, $L^k_{m,w}$ is the codistribution that is the span of the Lie derivatives of $\nabla \tilde{h}_1, \ldots, \nabla \tilde{h}_{m,w}$ up to the order k along the vector G, which is the drift of the considered unknown input extension ($UIE_{m,w}$). We have:

$$L^k_{m,w} = \sum_{i=1}^{m_w} \sum_{j=1}^{k} \text{span}\left\{\mathcal{L}_G \nabla \tilde{h}_i\right\}$$

(A.1)

Finally, we introduce the following codistribution:

$$\tilde{\Omega}_k \triangleq [\Omega_k, 0_{km,w}] + L^k_{m,w}$$

In [45], we proved an important property (Lemma 8.3) that regards the above codistribution and that extends the result stated by Lemma 1 in [46], which holds in the driftless case with a single unknown input. Here, we provide a simple modification of Lemma 8.3 in [45]. We have:

Lemma A.1. Given a scalar function θ of the original state x, $\nabla \theta \in \Omega_k$ if and only if $\nabla \theta \in \tilde{\Omega}_k$.

Proof. This result immediately follows from Lemma 8.3 in [45]. ▶

In addition, it holds the following result:

Proposition A.1. For any integer k we have: $\Omega_k \subseteq \tilde{\Omega}_k$.

Proof. The proof of this statement is available in [45] (Proposition 8.7). ▶

Note that, for driftless system with a single unknown input ($m_w = 1$) the two codistributions in the statement of Proposition A.1 coincide, i.e.: $\Omega_k = \tilde{\Omega}_k, \forall k$. See Theorem 1 in [46]. In general, this is not the case and the inclusion holds (\subseteq).

We have the following result:

Proposition A.2. For any integer k, the codistribution $\tilde{\Omega}_k$ is observable.

Proof. The proof of this statement is available in [45] (Proposition 8.9). ▶

Remark A.1. The results stated by Theorem A.1, Lemma A.1, Proposition A.1, and Proposition A.2 allow us to build the entire observable codistribution of a system that is in canonical form, by using Algorithm A.1.
Proof. Proposition A.2 ensures that for any \(k \), \(\Omega_k \) is observable, because it is included in \(\tilde{\Omega}_k \), which is observable. On the other hand, it also holds the viceversa. If a function is observable on a given open set \(\mathcal{A} \), Theorem A.1 ensures that its differential belongs to \(\tilde{\Omega}_k \) for a given \(k \) and on a dense set of \(\mathcal{A} \). As a result, because of Proposition A.1, this differential certainly belongs to \(\tilde{\Omega}_k \). Finally, because of Lemma A.1, this differential belongs to \(\Omega_k \). ◼️

A.2 Extension to the non canonical case

Let us consider the codistributions \(\Omega^\infty_k \), \(k = 0, 1, \ldots \), obtained by running Algorithm 5.1. Note that these codistributions are integrable codistributions generated by the differentials of scalar functions of the original state \(x \) and the last \(d = m_w - m \) inputs together with their time derivatives up to the order \((k-1)^{th}\). In particular, it is important to remark that these functions are independent of the first \(m \) unknown inputs.

Now, starting from \(UIE_{d\infty} \), we set up a further unknown input extension. It consists of the extension of the system \(UIE_{d\infty} \) that includes in the state also the first \(m \) unknown inputs, together with their time derivatives up to the \((k-1)^{th}\) order (the same for all these first \(m \) unknown inputs). In practice, our final extended system includes the first \(m \) unknown inputs with their time derivatives up to the \((k-1)^{th}\) order and the last \(d = m_w - m \) inputs with their time derivatives up to any order. We denote this new unknown input extension by \(UIE_{mk,d\infty} \). In addition, we denote by \(G \) the drift of \(UIE_{mk,d\infty} \) and by \(F^1, \ldots, F^m \) the vector fields that correspond to the known inputs. By definition, we have:

\[
G \triangleq \begin{bmatrix}
g_{d\infty}^0 + \sum_{j=1}^{m} g_{d\infty}^j \bar{w}_j \\
\vdots \\
\bar{w}_1^{(k-1)} \\
0 \\
\bar{w}_2^{(1)} \\
\vdots \\
\bar{w}_2^{(k-1)} \\
0 \\
\vdots \\
\bar{w}_m^{(1)} \\
\vdots \\
\bar{w}_m^{(k-1)} \\
0
\end{bmatrix}, \quad F^i \triangleq \begin{bmatrix}
f_{d\infty}^i \\
0_{km}
\end{bmatrix}, i = 1, \ldots, m.
\]

In addition, we denote by \(\bar{w} \) the first \(m \) unknown inputs and by \(w \) the last \(d = m_w - m \) unknown inputs (i.e., the ones included in the state of \(UIE_{d\infty} \)). In other words:

\[
\bar{w} = [w_1, \ldots, w_m], \quad w = [w_{m+1}, \ldots, w_{m_w}]
\]

Finally, we use the capital \(W \) to include their time derivatives up to the \((k-1)^{th}\) order:

\[
W = [\bar{w}, \bar{w}^{(1)}, \ldots, \bar{w}^{(k-1)}], \quad W = [w, w^{(1)}, \ldots, w^{(k-1)}]
\] (A.2)

We define the analogous of the codistribution \(L_{m_w}^k \) defined in (A.1). In particular, for any integer \(z \leq k \), we define:

\[
L_{m}^z \triangleq \sum_{i=1}^{m} \sum_{j=1}^{z} \text{span} \left\{ \mathcal{L}_G \nabla \bar{h}_i \right\}
\] (A.3)

Finally, we introduce the following codistribution:

\[
\tilde{\Omega}_k^\infty \triangleq [\Omega_k^\infty, 0_{km}] + L_m^k
\]

The codistribution in (A.3) is observable because it belongs to \(\tilde{\Omega}_k \), once embedded in the extended space of \(UIE_{mk,d\infty} \).
We start by proving the following result, which extends Lemma [A.1] to the non canonical case.

Lemma A.2. Given a scalar function \(\theta \) of \(x \) and \(W \), \(\nabla \theta \in \Omega^\infty_k \) if and only if \(\nabla \theta \in \tilde{\Omega}^\infty_k \).

Proof. As \([\Omega^\infty_k, 0_m] \subseteq \tilde{\Omega}^\infty_k\), we only need to prove that, if \(\nabla \theta \in \tilde{\Omega}^\infty_k \), then \(\nabla \theta \in \Omega^\infty_k \). Let us suppose that \(\nabla \theta \in \Omega^\infty_k \). We have:
\[
\nabla \theta = \omega + \sum_{i=1}^{N} c_i \omega_i
\]
(4.1)
where \(\omega \in [\Omega^\infty_k, 0_m], \omega_1, \ldots, \omega_N \) are \(N \) covectors among the generators of \(L^\infty_m \) in [A.3], and \(c_1, \ldots, c_N \) are all non vanishing coefficients. We must prove that \(N = 0 \). We proceed by contradiction. Let us suppose that \(N \geq 1 \). We remark that the covector \(\omega \) has the last \(mk \) entries equal to zero. The same holds for \(\nabla \theta \). The covectors \(\omega_i \) consist of the Lie derivatives of \(\nabla h_1, \ldots, \nabla h_m \) along \(G \) up to the \(k \) order. Let us select the highest order Lie derivatives along \(G \) of \(\nabla h_1, \ldots, \nabla h_m \) that appear among \(\omega_1, \ldots, \omega_N \). Let us denote by \(j_1', \ldots, j_N' \) these highest orders. For a given \(\nabla h_i \), if no Lie derivative along \(G \) of it appears among \(\omega_1, \ldots, \omega_N \), we set \(j_i' = 0 \). Let us denote by \(j' \) the largest value among \(j_1', \ldots, j_N' \) (note that \(j' > 0 \) because \(j_i' = 0 \) means that \(N = 0 \)). We denote by \(j_1, \ldots, j_N \) all the \(t(\geq 1) \) highest orders that are equal to \(j' \). It is immediate to realize that \(L^j_g \nabla h_{m_1}, \ldots, L^j_g \nabla h_{m_t} \) are the only generators among the \(N \) generators of above that depend on the components of \(W \) with the highest order time derivative. In other words, they are the only generators that depend on \(w_1^{(j_1-1)}, \ldots, w_m^{(j_N-1)} \). By a direct computation, we can derive this dependency. We easily obtain that \(L^j_g \nabla h_{m_j} \) \((j = 1, \ldots, t) \) depends on them, by the following linear expression: \(\sum_{l=1}^{m} m^l_{j}, w_l^{(j'-1)} \). Let us back to (4.1). In the sum at the right side, the elements that contribute to the entries that correspond to \(w_1^{(j_1-1)}, \ldots, w_m^{(j_N-1)} \) can be regrouped in the following sum:
\[
\sum_{j=1}^{t} c_j^1 L^j_g \nabla h_{m_j}
\]
where \(c_j^1, \ldots, c_j^t \) are among \(c_1, \ldots, c_N \) and, consequently, they are all different from 0. We remark that the function \(c_j^1 L^j_g \nabla h_{m_j} + \ldots + c_j^t L^j_g \nabla h_{m_j} \) depends on \(w_1^{(j_1-1)}, \ldots, w_m^{(j_N-1)} \) as follows:
\[
\sum_{l=1}^{m} \sum_{j=1}^{t} c_j^l m^l_{j}, w_l^{(j'-1)}
\]
We also remark that it must exists at least one value of \(l \) such that
\[
\sum_{j=1}^{t} c_j^l m^l_{j}, w_l^{(j'-1)} \neq 0
\]
(If this is not true it means that the tensor \(m^l_{j} \) is singular). Hence, we obtain that \(\nabla \theta \) has at least one entry, among the last \(mk \) entries, different from zero and this is not possible.

The codistribution \(\tilde{\Omega}_k \) is an integrable codistribution that is generated by the differentials of scalar functions of \(x, W, \) and \(\tilde{W} \). We need to embed this codistribution in the extended space that also includes the axes that correspond to the time derivatives of \(w_{m+1}, \ldots, w_{m_k} \), from the order \(k^{th} \), up to any order. We denote this codistribution by \(\Omega^\infty_k \).

The extension of Proposition [A.1] is Proposition [A.3]. To obtain this extended result, we first need several properties. From now on, for the sake of simplicity, we consider the case of a single known input (i.e, \(m_u = 1 \)). The extension to multiple known inputs is trivial. We denote the vector field that corresponds to the known input by \(f = f^1 \) for the original system, by \(f_{d\infty} = f_{d\infty}^1 \) for \(U\mathcal{E}_{d\infty} \), and by \(F = F^1 \) for \(U\mathcal{E}_{d\infty} \).

Starting from \(F \), we build, for any integer \(z \leq k \), the vector field \([F]^{(z)} \), by computing, repetitively, the following Lie bracket:
\[
[F]^0 = F, \quad [F]^{(z)} = \left[G, [F]^{(z-1)} \right].
\]

We have the following property:

Lemma A.3. For any \(i = 1, \ldots, m \), and for any \(z \leq k \), we have:
\[
L_g \tilde{\Omega}^\infty_z + \text{span} L_{[F]^{(z)}} \nabla h_i = L_g \Omega^\infty_z + \text{span} L_{[F]} \nabla h_i
\]
Proof. The proof follows exactly the same steps of the proof of Lemma 7.3 in 15. The following property extends Lemma 8.4 in 15 to the non canonical case.

Lemma A.4. We have:

\[
[F](z) = \sum_{j=0}^{z} \sum_{m=0}^{m} \left[c^j_{\alpha_1, \ldots, \alpha_j} m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right], \quad (A.5)
\]

where the coefficients \(c^j_{\alpha_1, \ldots, \alpha_j}\) depend on \(x, W, W\) only through the functions that generate the codistribution \(L^\infty_m\). The autobracket \(\langle m \rangle\) that appears at the right hand side of \((A.5)\), is the one defined in \((5.17)\).

Proof. This can be proved by induction. For \(z = 0\), we have: \([F]^{(0)} = F = \left[f_{d\infty} 0_{km} \right]\).

Inductive step: Let us assume that

\[
[F]^{(z-1)} = \sum_{j=0}^{z-1} \sum_{m=0}^{m} \left[c^j_{\alpha_1, \ldots, \alpha_j} m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right],
\]

We have:

\[
[F]^{(z)} = [G], \quad [F]^{(z-1)} =
\]

\[
\sum_{j=0}^{z-1} \sum_{m=0}^{m} \left[G, c^j_{\alpha_1, \ldots, \alpha_j} m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] =
\]

\[
\sum_{j=0}^{z-1} \sum_{m=0}^{m} c^j_{\alpha_1, \ldots, \alpha_j} G, m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] + \quad (A.6)
\]

\[
\sum_{j=0}^{z-1} \sum_{m=0}^{m} \left[G, m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right]
\]

We directly compute the Lie bracket in the sum (note that \(m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}\) is independent of \(W\):

\[
\left[G, \left[m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] \right] =
\]

\[
\left[g^0_{\infty}, m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] + \sum_{j=1}^{m} \left[g^j_{\infty}, m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] w_j
\]

On the other hand, we have:

\[
L_G h_l = L_{g^0_{d\infty}} h_l + \sum_{j=1}^{m} L_{g^j_{d\infty}} h_l = m \mu_l^0 + \sum_{j=1}^{m} m \nu_l^j w_j
\]

By multiplying both members by \(m \nu_l^j\) and summing up over \(l = 1, \ldots, m\) we obtain:

\[
w_i = \sum_{l=1}^{m} \left\{ m \nu_l^j L_G h_l - m \nu_l^j m \mu_l^0 \right\} =
\]

\[
\sum_{l=1}^{m} m \nu_l^j L_G h_l + m \nu_l^0, \quad \forall i
\]

By substituting \((A.8)\) in \((A.7)\), we obtain:

\[
\left[g^0_{\infty}, m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] + \sum_{j=1}^{m} \left[g^j_{\infty}, m[f_{d\infty}]^{(\alpha_1, \ldots, \alpha_j)}_{0km} \right] w_j =
\]

64
\[m[f_{d\infty}]^{(\alpha_1,\ldots,\alpha_j,0)} + \sum_{l=1}^{m} m[f_{d\infty}]^{(\alpha_1,\ldots,\alpha_j,l)} \mathcal{L}_G\tilde{h}_l, \quad (A.9) \]

Let us consider the second term in (A.6). From the inductive assumption, any coefficient \(c^j_{\alpha_1,\ldots,\alpha_j} \) depends on \(x, W, \tilde{W} \) only through the functions that generate the codistribution \(L_{m-1}\infty \). As a result, we have:

\[\mathcal{L}_G c^j_{\alpha_1,\ldots,\alpha_j} = \sum_{l=1}^{m} \sum_{\alpha_1=1}^{\infty} \frac{\partial c^j_{\alpha_1,\ldots,\alpha_j}}{\partial (L^l_G\tilde{h}_l)} L_{G}^{l+1}\tilde{h}_l. \]

By substituting this equality and the one in (A.9) in (A.6), we obtain that also the coefficients \(c^j_{\alpha_1,\ldots,\alpha_j} \) that appear in the expression of (A.5) depend on \(x, W, \tilde{W} \) only through the functions that generate the codistribution \(L_{m}\infty \). ▶

From the previous result, it immediately follows the same property stated by Proposition 8.5 in [45], for the canonical case. We have:

Proposition A.3. For any scalar function of the original state, \(\theta(x) \), and any integer \(z \leq k \), we have:

\[\text{span} \{ \mathcal{L}_{[\mathcal{F}]^{(z)}} \nabla \theta \} + L_{m}^{\infty} \subseteq \left[\sum_{j=0}^{z} \sum_{l=1}^{m} \text{span} \{ \mathcal{L}_{m[f_{d\infty}]^{(\alpha_1,\ldots,\alpha_j)}} \nabla \theta \}, 0 \right] + L_{m}^{\infty}, \]

Proof. This is immediately obtained by computing \(\nabla \mathcal{L}_{[\mathcal{F}]^{(z)}} \theta \) and by using the expression of \([\mathcal{F}]^{(z)}\) in (A.5). ▶

The following property extends Lemma 8.6 in [45] to the non canonical case.

Proposition A.4. We have:

\[L_{m}^{\infty} + \mathcal{L}_G[\Omega_{-1}, 0] \subseteq L_{m}^{\infty} + \sum_{\alpha=0}^{m} \mathcal{L}_{m[g_{d\infty}^\alpha \Omega_{-1}, 0]}. \]

Proof. Let us consider a scalar function \(\theta(x, W) \) such that \(\nabla \theta \in \Omega_{-1} \). We have:

\[\mathcal{L}_G \theta = \mathcal{L}_{g_{d\infty}} \theta + \sum_{i=1}^{m} \mathcal{L}_{g_{d\infty}} \theta w_i, \]

and, by using (A.8), we have:

\[\mathcal{L}_G \theta = \mathcal{L}_{g_{d\infty}} \theta + \sum_{i=1}^{m} \mathcal{L}_{g_{d\infty}} \theta \left(\sum_{l=1}^{m} \nu^l \mathcal{L}_G \tilde{h}_l + \nu^0 \right), \]

and, by using (5.10), we obtain:

\[\mathcal{L}_G \theta = \mathcal{L}_{m[g_{d\infty}^\alpha \Omega_{-1}, 0]}. \]

from which the proof follows. ▶

We are finally ready to prove Proposition A.5, which is the extension of Proposition A.1 to the non canonical case.

Proposition A.5. For any integer \(k \) we have:

\[\Omega_{-1} \subseteq \tilde{\Omega}_{-1}^{\infty}. \]

\[\text{Note that, the above property actually holds for any function of } x \text{ and } W \text{ (the proof remains the same). However, we only need to use this result when } \theta \text{ is one of the functions } h_1, \ldots, h_m, \text{ which are all functions of the only original state } (x). \]
Proof. We proceed by induction.

By definition, $\overline{\Omega}_0^\infty = \overline{\Omega}_0^\infty$ since they are both the span of the differentials of the outputs.

Inductive step: Let us assume that $\overline{\Omega}_{k-1}^\infty \subseteq \overline{\Omega}_{k-1}^\infty$. We have: $\overline{\Omega}_k^\infty = \overline{\Omega}_{k-1}^\infty + L_m \overline{\Omega}_{k-1}^\infty + L_g \overline{\Omega}_{k-1}^\infty + L_{f_m} \overline{\Omega}_{k-1}^\infty \subseteq \overline{\Omega}_{k-1}^\infty + L_m \overline{\Omega}_{k-1}^\infty + L_g \overline{\Omega}_{k-1}^\infty = \overline{\Omega}_k^\infty$. On the other hand,

$$L_m \overline{\Omega}_k^\infty = \sum_{i=1}^m \sum_{j=1}^{k-1} \text{span} \left\{ L_m L_g^i \nabla \tilde{h}_i \right\}$$

The only terms of the above codistribution that are not necessarily in $\overline{\Omega}_{k-1}^\infty$ are $\sum_{i=1}^m \text{span} \left\{ L_m L_g^i \nabla \tilde{h}_i \right\}$. Hence, we have:

$$\overline{\Omega}_k^\infty \subseteq \overline{\Omega}_{k-1}^\infty + \sum_{i=1}^m \text{span} \left\{ L_m L_g^i \nabla \tilde{h}_i \right\} + L_g \overline{\Omega}_{k-1}^\infty$$

By using Lemma A.3 with $z = k - 1$, we obtain:

$$\overline{\Omega}_k^\infty \subseteq \overline{\Omega}_{k-1}^\infty + \sum_{i=1}^m \text{span} \left\{ L_m L_g^i \nabla \tilde{h}_i \right\} + L_g \overline{\Omega}_{k-1}^\infty$$

By using the induction assumption we obtain:

$$\overline{\Omega}_k^\infty \subseteq \left[\Omega_{k-1}^\infty, 0_{km} \right] + \sum_{i=1}^m \text{span} \left\{ L_m L_g^i \nabla \tilde{h}_i \right\} + L_g \left[\Omega_{k-1}^\infty, 0_{km} \right] + L_g \overline{\Omega}_{k-1}^\infty$$

By using Proposition A.3 with $z = k - 1$, we obtain:

$$\overline{\Omega}_k^\infty \subseteq \left[\Omega_{k-1}^\infty, 0_{km} \right] + \sum_{i=1}^m \text{span} \left\{ L_m [f_{m}]_{[\alpha_1, \ldots, \alpha_j]} \nabla \tilde{h}_i \right\}, 0_{km} \right] + L_g \left[\Omega_{k-1}^\infty, 0_{km} \right]$$

where, the last equality follows from the fact that all the other terms of the sum on j (i.e., the terms up to $k - 2$) are already included in $\overline{\Omega}_{k-1}^\infty$.

Finally, by using Proposition A.4 we obtain:

$$\overline{\Omega}_k^\infty \subseteq \left[\Omega_{k-1}^\infty, 0_{km} \right] + \sum_{i=1}^m \text{span} \left\{ L_m [f_{m}]_{[\alpha_1, \ldots, \alpha_{k-1}]} \nabla \tilde{h}_i \right\}, 0_{km} \right] + L_g \left[\Omega_{k-1}^\infty, 0_{km} \right].$$
The following result extends Lemma 8.8 in \cite{45} to the non canonical case and will be used in the proof of Proposition A.6.

Lemma A.5. Let us consider a scalar function $\lambda(x, \overline{w}, w)$ of the original state x and the unknown inputs w_1, \ldots, w_{m_w}. Let us assume that it has the following expression:

$$\lambda(x, \overline{w}, w) = \theta(x, w) + \sum_{i=1}^{m} \theta^i(x, w) \mathcal{L}_g \tilde{h}_i$$

with $\theta(x, w), \theta^1(x, w), \ldots, \theta^m(x, w)$ scalar functions of the original state and the last d unknown inputs.

If $\lambda(x, \overline{w}, w)$ is observable, then, all the $m + 1$ functions $\theta(x, w), \theta^1(x, w), \ldots, \theta^m(x, w)$ are observable.

Proof. This proof follows the same steps of the proof of Lemma 8.8 in \cite{45} with the following differences:

- The tensors μ and ν must be replaced by the tensors $m\mu$ and $m\nu$.
- The indices that in the proof of Lemma 8.8 in \cite{45} take values from 1 to m_w, here they take values from 1 to m.

Finally, the following property is the extension of Proposition 8.9 in \cite{45} (here, in the statement, we directly consider Ω^∞_k instead of $\tilde{\Omega}^\infty_k$).

Proposition A.6. For any integer k, the codistribution Ω^∞_k is observable.

Proof. We proceed by induction. By definition, Ω^∞_0 is the span of the differentials of the outputs, which are observable functions.

Inductive step: Let us assume that the codistribution Ω^∞_{k-1} is observable. We want to prove that also Ω^∞_k is observable. From Algorithm 5.1 we need to prove that the following codistributions are observable:

$$\mathcal{L}_{f_{dx}} \Omega^\infty_{k-1}, \mathcal{L}_{m[g_{dx}]} \Omega^\infty_{k-1}, \text{ span } \left\{ \mathcal{L}_{m[f_{dx}]}^{[\alpha_1, \ldots, \alpha_{k-1}]} \nabla \tilde{h}_i \right\}$$

\hspace{1cm} $\forall \alpha, \alpha_1, \ldots, \alpha_{k-1}, i$.

Since Ω^∞_{k-1} is observable, also $\mathcal{L}_{f_{dx}} \Omega^\infty_{k-1}$ is observable. Hence, $\mathcal{L}_{f_{dx}}[\Omega^\infty_{k-1}, 0_{km}]$ is observable and, consequently, we obtain that $\mathcal{L}_{f_{dx}} \Omega^\infty_{k-1}$ is observable.

We also have that $\mathcal{L}_g \Omega^\infty_{k-1}$ is observable and consequently, also $\mathcal{L}_g[\Omega^\infty_{k-1}, 0_{km}]$ is observable. Let us consider a function $\theta(x, W)$ such that $\nabla \theta \in \Omega^\infty_{k-1}$. We obtain that $\nabla \mathcal{L}_g \theta$ is observable. By using (A.10) and the result stated by Lemma A.5, we immediately obtain that the codistribution $\mathcal{L}_{m[g_{dx}]} \Omega^\infty_{k-1}$ is observable $\forall \alpha = 0, \ldots, m$.

It remains to show that also the codistribution $\text{ span } \left\{ \mathcal{L}_{m[f_{dx}]}^{[\alpha_1, \ldots, \alpha_{k-1}]} \nabla \tilde{h}_i \right\}$ is observable $\forall \alpha_1, \ldots, \alpha_{k-1}, i$.

To prove this, we start by remarking that, by applying \mathcal{L}_f and \mathcal{L}_g repetitively on the observable codistribution, starting from $[\Omega^\infty_{k-1}, 0_{km}]$ and by proceeding as before, we finally obtain an observable codistribution in the space of the original state and W, which is invariant under $\mathcal{L}_{m[g_{dx}]} (\forall \alpha)$ and $\mathcal{L}_{f_{dx}}$. It is possible to show that this codistribution is also invariant under $\mathcal{L}_{m[f_{dx}]}^{[\alpha_1, \ldots, \alpha_{k-2}]} (\forall \alpha_1, \ldots, \alpha_{k-2})$. This means that the function

$$\mathcal{L} \left[\begin{bmatrix} m[f_{dx}]^{[\alpha_1, \ldots, \alpha_{k-2}]}_{\alpha_{k-1}} \\ 0_{km} \end{bmatrix}, \varphi \right] \tilde{h}_i$$
is observable ∀i. Let us compute the above Lie bracket (for the brevity sake we set φ = ℓmf_{d∞}(α_1,...,α_{k-2})). We have:

\[
\begin{bmatrix}
φ \\
0_{km}
\end{bmatrix}, G = \begin{bmatrix}
[φ, g_{d∞}] \\
0_{km}
\end{bmatrix} + \sum_{i=1}^{m} \begin{bmatrix}
[φ, g_{d∞}]w_i \\
0_{km}
\end{bmatrix}
\]

By using (A.8) we obtain:

\[
= \begin{bmatrix}
[φ, g_{d∞}] + \sum_{i,j=1}^{m}[φ, g_{d∞}]((m)\nu_i^j \mathcal{L}_G \tilde{h_j} + (m)\nu_i^0) \\
0_{km}
\end{bmatrix} = \begin{bmatrix}
[φ]_0^0 + \sum_{j=1}^{m}[φ]^j \mathcal{L}_G \tilde{h_j} \\
0_{km}
\end{bmatrix}
\]

Hence we have:

\[
\mathcal{L}\begin{bmatrix}
ℓmf_{d∞}(α_1,...,α_{k-2}) \\
0_{km}
\end{bmatrix}, G \tilde{h_i} = \mathcal{L}_{m[f_{d∞}]\{α_1,...,α_{k-2},0\}} \tilde{h_i} + \sum_{j=1}^{m} \mathcal{L}_{m[f_{d∞}]\{α_1,...,α_{k-2},j\}} \tilde{h_i} \mathcal{L}_G \tilde{h_j}
\]

and the observability of \(\mathcal{L}_{m[f_{d∞}]\{α_1,...,α_{k-2},α_{k-1}\}} \nabla \tilde{h_i}, \forall α_1,...,α_{k-1},i\), follows from lemma A.5 ◀

A.3 The proof

We are now ready to prove the validity of Theorem 5.1. We actually prove a more general result, as we prove that the statement of the Theorem holds even when the function \(θ\) depends on \(W\) (defined in (A.2)).

Proof. Proposition A.6 ensures that, for any \(k\), \(Ω_k^∞\) is observable. As a result, any function \(θ = \theta(x, W)\) such that its differential belongs to \(Ω_k^∞\) for a given \(k\) is observable. On the other hand, it also holds the viceversa. If a function is observable on a given open set \(A\), Theorem A.1 ensures that its differential belongs to \(Ω_k^∞\) for a given \(k\) and on a dense set of \(A\). As a result, because of Proposition A.5, this differential certainly belongs to \(Ω_k^∞\). Finally, because of Lemma A.2, this differential belongs to \(Ω_k^∞\). ◀
Appendix B

Proof of Proposition 5.1

We proceed by induction. At the initialization step of Algorithm 4.3, we only have the vector fields $f_{i,\infty}^d$, $i = 1, \ldots, m_u$, in (5.7). All the components of these vectors, with index larger than n, vanish. Let us suppose that, at a given step k, all the generators of Δ_k satisfy this property. Let us denote a given generator by ϕ_k. We have:

$$\phi_k = \begin{bmatrix} \tilde{\phi}_k \\ 0 \\ 0 \\ \vdots \end{bmatrix} \quad (B.1)$$

where $\tilde{\phi}_k$ is a vector field with dimension n. We must prove that any generator of Δ_{k+1} has the same structure. In other words, we must prove that the autobracket $m[\phi_k]^{\alpha}$ has the same structure, for any $\alpha = 0, 1, \ldots, m$. From the definition of the autobracket $m[\cdot]$ given in (5.11), it suffices to prove that the vector fields,

$$[g^0_d, \phi_k], \quad [g^j_d, \phi_k], \quad j = 1, \ldots, m_w - d$$

with g^0_d and g^j_d in (5.7), satisfy the same property. Namely, the components of these vectors, with index larger than n, vanish, as for the vector in (B.1). This is obtained by an explicit computation of the Lie bracket, by using the structure of the vectors g^0_d and g^j_d. In particular, regarding $[g^j_d, \phi_k]$, for $j = 1, \ldots, m_w - d$, the result is immediate as the entries that exceed n, of both g^j_d and ϕ_k, vanish, and consequently also their Jacobian. Regarding $[g^0_d, \phi_k]$ we cannot say the same for g^0_d. On the other hand, the entries that exceed n are independent of the original state and, consequently, the product of the Jacobian of these entries by a vector with the structure in (B.1) vanishes.
Appendix C

Proof of Theorem 5.2

The proof of this theorem is obtained by using the result stated by Theorem 5.1 and by proving the following two properties:

1. For any integer \(k \), there exists an integer \(k_1 \) such that: \(O_k^\infty \subseteq \Omega_k^\infty \).
2. For any integer \(k \), there exists an integer \(k_2 \) such that: \(\Omega_k^\infty \subseteq O_k^\infty \).

Once these statements are proved, the proof of Theorem 5.2 is immediate. If \(\theta(x) \) is observable, because of Theorem 5.1, there exists an integer \(k \) such that \(\nabla \theta \in \Omega_k^\infty \). Because of the second property, \(\nabla \theta \in O_k^\infty \). Conversely, if \(\nabla \theta \in O_k^\infty \), because of the first property, \(\nabla \theta \in \Omega_k^\infty \) and, because of Theorem 5.1, \(\theta \) is observable.

In the rest of this appendix, we prove the two above properties.

C.1 Proof of the first property

From the \((k+1)\)th step of Algorithm 5.1, we obtain that

\[
\sum_{q=1}^{m} \sum_{i=1}^{m} \sum_{\alpha_1=0}^{m} \ldots \sum_{\alpha_k=0}^{m} \text{span} \{ L_{\{f_{\infty} \}^{\alpha_1, \ldots, \alpha_k}} \nabla h_q \} \in \Omega_{k+1}^\infty.
\]

From (5.13), we immediately obtain that

\(\tilde{\Omega}^\infty \subseteq \Omega_{r+s_x+1}^\infty \).

By comparing the recursive step of Algorithm 5.4 with the one of Algorithm 5.1 it is immediate to conclude that, for any integer \(k \):

\[
O_k^\infty \subseteq \Omega_{r+s_x+1+k}^\infty
\]

and we obtain the validity of this property with \(k_1 = r + s_x + 1 + k \leq k + 2n - m + 1 \)

C.2 Proof of the second property

We must prove that, for any \(k \), there exists always an integer \(k_2 \) such that \(\Omega_k^\infty \subseteq \Omega_{k_2}^\infty \). We proceed by induction. It is true at \(k = 0 \) as \(\Omega_0 \subseteq \Omega_0 \). Hence, \(k_2 = 0 \).

Let us assume that, for \(k = p \), there exists \(k_2 = k_p \) such that

\[
\Omega_p^\infty \subseteq \Omega_{k_p}^\infty
\]

We must prove that there exists an integer \(k_{p+1} \) such that:

\[
\Omega_{p+1}^\infty \subseteq \Omega_{k_{p+1}}^\infty
\]

From the inductive assumption we have
\[
\mathcal{L}_{m} \Omega_{p}^{\infty} \subseteq \mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{k_{p}}^{\infty}, \quad \beta = 0, 1, \ldots, m
\]

and

\[
\mathcal{L}_{f_{d_{\infty}}} \Omega_{p}^{\infty} \subseteq \mathcal{L}_{f_{d_{\infty}}} \hat{g}_{d_{\infty}}^{\beta} \Omega_{k_{p}}^{\infty}, \quad i = 1, \ldots, m_{u}.
\]

Hence, by setting \(k_{p+1} \geq k_{p} + 1\), from the recursive step of Algorithm 5.4, we obtain that

\[
\mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{p}^{\infty} \subseteq \mathcal{O}_{k_{p+1}}^{\infty},
\]

for any \(\beta = 0, \ldots, m\) and any \(i = 1, \ldots, m_{u}\). As a result, from the recursive step of Algorithm 5.1, it only remains to prove that

\[
\nabla \mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{p}^{\infty} \subseteq \mathcal{O}_{k_{p+1}}^{\infty}
\]

for any choice of \(\beta = 0, \ldots, m\) and any \(i = 1, \ldots, m_{u}\). In the rest of this appendix, we will show that it suffices to set \(k_{p+1} \geq k_{p} + 1\) in order to obtain the above condition.

We distinguish the following two cases:

1. \(p \leq r + s_{x}\).
2. \(p \geq r + s_{x} + 1\).

The first case is trivial as \(\nabla \mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{p}^{\infty} \subseteq \tilde{\mathcal{O}}_{0}\).

Let us consider the second case.

First of all, we introduce the same vector fields \(\psi\) and the quantities \(C_{\alpha k}^{\alpha_{k}}\) introduced in Section 4.2. In this case, they refer to the vectors generated by Algorithm 5.2 instead of Algorithm 4.3. We can obtain the same result derived in 4.2.2, i.e., the equality given in (4.27). In this case, the equality becomes:

\[
\nabla \mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{p}^{\infty} \subseteq \mathcal{O}_{k_{p+1}}^{\infty}
\]

where:

- The sum \(\sum_{\beta(l-1)}\) is defined as follows:

 \[
 \sum_{\beta(l-1)} \triangleq \sum_{\beta_{1}=0}^{m} \sum_{\beta_{2}=0}^{m} \cdots \sum_{\beta_{l-1}=0}^{m}
 \]

- The sum \(\sum_{\mathbf{z}}\) is defined as follows:

 \[
 \sum_{\mathbf{z}} = \sum_{(s,j)} \triangleq \sum_{s=0}^{r (m+1)^{s} m_{u}} \sum_{j_{1}=1}^{m_{u}}
 \]

- \(M\) is a suitable multi-index object, which is non singular (i.e., it can be inverted with respect to all its indices).

- \(\mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{p}^{\infty}\) stands for \(\sum_{\gamma=0}^{m} \mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\gamma} \Omega_{p}^{\infty}\)

- the mod at the end of Equation (C.1) means that the equality holds when the codistribution \(\Omega_{p}^{\infty} + \mathcal{L}_{m} \hat{g}_{d_{\infty}}^{\beta} \Omega_{p}^{\infty}\) is added on both sides.

71
The above equality holds for any integer l, any set of integers $\alpha_1, \ldots, \alpha_l$ that take values between 0 and m, and any g_1, \ldots, g_l.

We start by remarking that, when $p \geq r + s_x + 1$ we have:

$$m[j_d^\infty][\alpha_1', \ldots, \alpha_p'] = m[j_d^\infty][\alpha_1', \ldots, \alpha_m']$$

where j_r is such that $m[j_d^\infty][\alpha_1', \ldots, \alpha_r'] = \psi_{(r,j_r)}$.

We set $p = r + s_x + l'$, with $l' \geq 1$, and we use Equation (C.1), with $l = s_x + l'$, and $\alpha_1, \ldots, \alpha_1 = \alpha_{r+1}', \ldots, \alpha_p'$. We have:

$$\nabla L = m[j_d^\infty][\alpha_1', \ldots, \alpha_s'] \cdot \frac{\partial h_q}{\partial g_{\alpha_1}} = \nabla L \cdot m[j_d^\infty][\alpha_1', \ldots, \alpha_s'] \cdot \frac{\partial h_q}{\partial g_{\alpha_1}}$$

$$\sum_{z} M_{\beta_1, \ldots, \beta_{l-1}} \sum_{z} \left(\nabla L \cdot \frac{\partial h_q}{\partial g_{\alpha_1}} \right) \cdot \frac{\partial h_q}{\partial g_{\alpha_1}} = \mod \Omega_p^\infty + \mathcal{L} = \hat{\theta}_h^\infty \cdot \psi_{x} \quad \text{(C.2)}$$

Let us consider now the term:

$$\mathcal{L} \cdot \frac{\partial h_q}{\partial g_{\alpha_1}} = \left(\nabla L \cdot \frac{\partial h_q}{\partial g_{\alpha_1}} \right) \cdot \psi_{x}$$

with ψ_{x} the n-dimensional vector field that includes the first n components of ψ_{x}.

Algorithm 5.3 computes scalar functions, starting from h_1, \ldots, h_m, and by computing, at each step, the Lie derivatives of the functions computed at the previous step along g_{d_1}, \ldots, g_{d_m}. At each step k, it computes the codistributions Ω_p^∞ and ψ_{x}^∞. We set $\nabla \theta_k^1, \ldots, \nabla \theta_k^m$ a basis of Ω_k^∞. Note that all the functions $\theta_k^1, \ldots, \theta_k^m$ are automatically computed by the algorithm. Then, ψ_{x}^∞ is defined as the span of the differentials with respect to the only original state of these functions, i.e., $\psi_{x}^\infty = \span \{ \partial_x \theta_k^1, \ldots, \partial_x \theta_k^m \}$. We extract from $\partial_x \theta_k^1, \ldots, \partial_x \theta_k^m$ a basis of ψ_{x}^∞ and, without loss of generality (i.e., by reordering the above covectors), we assume that it consists of the first $D_k^x \leq D_k$ covectors. We have:

$$\psi_{x}^\infty = \span \{ \partial_x \theta_k^1, \ldots, \partial_x \theta_k^m \}$$

Note also that $D_k^x \leq n$.

The following result ensures that, by running Algorithm 5.3, we attain the limit codistribution ψ_{x}^∞, of the series ψ_{x}^∞, in a finite number of steps. In particular, at the smallest integer s_x that satisfies (5.12). As a result, $s_x \leq n$. This is a special property of the system $UE \mathcal{L} d_{\infty}$, due to the special structure of the vector fields g_{d_∞} in (5.7). In particular, thanks to their structure, we have the following commutative property, $\forall h$: $\mathcal{L} h = \partial_x \mathcal{L} h$, which does not hold, in general (the property that always holds is the above with ∇ instead of ∂_x). We have the following result:

Proposition C.1. Let us refer to the step s_x of Algorithm 5.3. For every scalar function θ, such that $\partial_x \theta \in \psi_{x}^\infty$, we have $\partial_x \mathcal{L} \partial_x \theta = \psi_{x}^\infty$, for any $\gamma = 0, 1, \ldots, m_w - d$.

72
Proof. For simplicity, we denote by D^x the dimension of $\Omega^g_{s_x}$ (instead of $D^x_{s_x}$) and by $\theta^1, \ldots, \theta^{D^x}$, a basis of $\Omega^g_{s_x}$ (instead of $\theta^1_{s_x}, \ldots, \theta^{D^x}_{s_x}$). In other words:

$$\Omega^g_{s_x} = \text{span} \left\{ \partial_x \theta^1, \ldots, \partial_x \theta^{D^x} \right\} = \Omega^g_{s_x-1}$$

The last equality follows from the definition of s_x by (5.12). Because of this, we also have:

$$\partial_x \mathcal{L}_{g_{d\infty}} \theta^i \in \Omega^g_{s_x},$$

for any $i = 1, \ldots, D^x$, and for any $\gamma = 0, 1, \ldots, m_w - d$.

By definition, we have:

$$\nabla \mathcal{L}_{g_{d\infty}} \theta = \left[\partial_x \mathcal{L}_{g_{d\infty}} \theta, \partial_w \mathcal{L}_{g_{d\infty}} \theta \right]$$

(C.4)

where ∂_w is the operator that includes all the partial derivatives with respect to the components of $w_{d\infty}$ in (5.5). On the other hand,

$$\nabla \mathcal{L}_{g_{d\infty}} \theta = \mathcal{L}_{g_{d\infty}} \nabla \theta = \mathcal{L}_{g_{d\infty}} \left[\partial_x \theta, \partial_w \theta \right]$$

As by assumption $\partial_x \theta \in \Omega^g_{s_x}$, we have:

$$\partial_x \theta = \sum_{j=1}^{D^x} b_j \partial_x \theta^j$$

with b_1, \ldots, b_{D^x} suitable coefficients (scalar functions of the extended state). Hence:

$$\nabla \mathcal{L}_{g_{d\infty}} \theta = \mathcal{L}_{g_{d\infty}} \sum_{j=1}^{D^x} b_j \partial_x \theta^j, \partial_w \theta$$

$$\mathcal{L}_{g_{d\infty}} \left(\sum_{j=1}^{D^x} b_j \partial_x \theta^j \right) \partial_w \theta + \sum_{j=1}^{D^x} \left[\partial_x \mathcal{L}_{g_{d\infty}} \theta^i, \partial_w \mathcal{L}_{g_{d\infty}} \theta \right] \nabla \theta^j$$

where $\theta^n = [0, \ldots, 0]$ and n is the dimension of the original state (x). We obtain:

$$\nabla \mathcal{L}_{g_{d\infty}} \theta =$$

$$\mathcal{L}_{g_{d\infty}} \left(\sum_{j=1}^{D^x} b_j \nabla \theta^j \right) - \sum_{j=1}^{D^x} \left[\partial_x \mathcal{L}_{g_{d\infty}} \theta^i, \partial_w \mathcal{L}_{g_{d\infty}} \theta \right] \nabla \theta^j$$

$$\mathcal{L}_{g_{d\infty}} \left(\sum_{j=1}^{D^x} b_j \partial_x \theta^j \right) \partial_w \theta + \sum_{j=1}^{D^x} \left[\partial_x \mathcal{L}_{g_{d\infty}} \theta^i, \partial_w \mathcal{L}_{g_{d\infty}} \theta \right] \nabla \theta^j$$

On the other hand, by assumption, $\partial_x \mathcal{L}_{g_{d\infty}} \theta^i \in \Omega^g_{s_x}$, i.e.:

$$\partial_x \mathcal{L}_{g_{d\infty}} \theta^i = \sum_{j=1}^{D^x} a^i_j \partial_x \theta^j$$

(C.5)
with $a^{i\gamma}_{ij}$ ($i, j = 1, \ldots, D^x$, and $\gamma = 0, \ldots, m_w - d$) suitable coefficients (scalar functions of the extended state). Hence:

$$
\nabla \mathcal{L}_{g_{d \infty}} \theta = \sum_{j=1}^{D^x} \left(\mathcal{L}_{g_{d \infty}} b_j \right) \nabla \theta^j + \sum_{i=1}^{D^x} b_i \left[\sum_{j=1}^{D^x} a^{i\gamma}_{ij} \partial_x \theta^j, \partial_w \mathcal{L}_{g_{d \infty}} \theta^i \right] +
$$

$$
\mathcal{L}_{g_{d \infty}} \left[\sum_{j=1}^{D^x} \left(\mathcal{L}_{g_{d \infty}} b_j + \sum_{i=1}^{D^x} b_i a^{i\gamma}_{ij} \right) \partial_x \theta^j, \sum_{j=1}^{D^x} \left(\mathcal{L}_{g_{d \infty}} b_j \right) \partial_w \theta^j + b_j \partial_w \mathcal{L}_{g_{d \infty}} \theta^j \right]
$$

$$
+ \mathcal{L}_{g_{d \infty}} \left[- \sum_{j=1}^{D^x} b_j \left[0^n, \partial_w \theta^j \right] + [0^n, \partial_w \theta] \right]
$$

Now, from the special structure of the vector fields $g_{d \infty}$ given in (5.7), for any $\gamma = 0, 1, \ldots, m$, we obtain that, for any covector in the extended space with the structure

$$
[l^n, w]
$$

the operator $\mathcal{L}_{g_{d \infty}}$ does not change this structure. Namely:

$$
\mathcal{L}_{g_{d \infty}} [l^n, w] = [l^n, w^*]
$$

for some w^*.

Therefore:

$$
\nabla \mathcal{L}_{g_{d \infty}} \theta = \sum_{j=1}^{D^x} c^j \partial_x \theta^j
$$

with

$$
c^j = \mathcal{L}_{g_{d \infty}} b_j + \sum_{i=1}^{D^x} b_i a^{i\gamma}_{ij}
$$

In other words, $\partial_x \mathcal{L}_{g_{d \infty}} \theta \in \mathbb{X} \Omega_{s_{d \infty}}^2$, for any $\gamma = 0, 1, \ldots, m_w - d$. ▶

Now, let us back to the term in (C.3). We have:

$$
\mathcal{L}_{\phi_x} \mathcal{L}_{g_{d \infty}}^{a_{p-r-1}} \cdots \mathcal{L}_{g_{d \infty}}^{a_{p}} \tilde{h}_q = \nabla \mathcal{L}_{g_{d \infty}}^{a_{p-r-1}} \cdots \mathcal{L}_{g_{d \infty}}^{a_{p}} \tilde{h}_q \cdot \psi =
$$

$$
\partial_x \mathcal{L}_{g_{d \infty}}^{a_{p-r-1}} \cdots \mathcal{L}_{g_{d \infty}}^{a_{p}} \tilde{h}_q \cdot \tilde{\psi} = \left(\sum_{j=1}^{D^x} c^j \partial_x \theta^j \right) \cdot \tilde{\psi} =
$$

$$
\left(\sum_{j=1}^{D^x} c^j \nabla \theta^j \right) \cdot \tilde{\psi} = \sum_{j=1}^{D^x} c^j \mathcal{L}_{\phi_x} \theta^j
$$

with c^j ($j = 1, \ldots, D^x$) suitable coefficients (scalar functions of the extended state). By replacing this expression in (C.2) we obtain:
\[\nabla L_{m[f_i]^{\alpha_1', \ldots, \alpha_p'}} \tilde{h}_q = \quad (C.6) \]

\[
\sum_{j=1}^{D^r} c_j \sum_{\beta(l-1)}^{M_{\beta_1, \ldots, \beta_{l-1}}} \sum_{\mathbf{z}} \left(\nabla L_{f_{(r,j)}} \right) \mathcal{L}_{\psi} \theta^j \mod \Omega_p^{\infty} + \mathcal{L} = \tilde{g}_{=\infty} \Omega_p^{\infty} \]

Now we use again Equation \((C.1) \) with \(l = s_x \). We have:

\[
\nabla L_{m[\psi_i]^{\alpha_1, \ldots, \alpha_{s_x}}} \tilde{h}_q = \sum_{\beta(s_x-1)}^{M_{\beta_1, \ldots, \beta_{s_x-1}}} \sum_{\mathbf{z}} \left(\nabla C_{\alpha_{r+1}} \right) \mathcal{L}_{\psi} \mathcal{L}_{g_{=\infty}} \mathcal{L}_{g_{=\infty}} \cdots \mathcal{L}_{g_{=\infty}} \tilde{h}_q \mod \Omega_r^{\infty} + \mathcal{L} = \tilde{g}_{=\infty} \Omega_r^{\infty} + s_x \]

We remark that

\[
\nabla L_{m[\psi_i]^{\alpha_1, \ldots, \alpha_{s_x}}} \tilde{h}_q \in \Omega_r^{\infty} + s_x + 1
\]

for any choice of \(\alpha_1, \ldots, \alpha_{s_x} \) and \(q \). In addition, because of the non singularity of \(M \), we obtain that

\[
\sum_{\mathbf{z}} \left(\nabla C_{\alpha_{r+1}} \right) \mathcal{L}_{\psi} \mathcal{L}_{g_{=\infty}} \mathcal{L}_{g_{=\infty}} \cdots \mathcal{L}_{g_{=\infty}} \tilde{h}_q \in \Omega_r^{\infty} + s_x + 1
\]

for any choice of \(\beta_1, \ldots, \beta_{s_x-1}, q \) and \(\alpha_1 \).

On the other hand, the generators of \(\tilde{\Omega}^\mathcal{P} \) (\(\nabla \theta^j \)) are built by Algorithm 5.3 and they are the differentials of the functions that belong to the function space that includes the outputs \(\tilde{h}_q \) together with their Lie derivatives along \(\tilde{g}_{=\infty} \) of order that does not exceed \(s_x - 1 \). Therefore, by setting \(\alpha_1 = \alpha_{r+1} \), we obtain:

\[
\sum_{\mathbf{z}} \left(\nabla C_{\alpha_{r+1}} \right) \mathcal{L}_{\psi} \theta^j \in \Omega_r^{\infty} + s_x + 1, \quad j = 1, \ldots, D^r.
\]

By using this in \((C.6) \) and by knowing that \(p \geq r + s_x + 1 \), we immediately obtain that

\[
\nabla L_{m[f_i]^{\alpha_1', \ldots, \alpha_p'}} \tilde{h}_q \in \Omega_p^{\infty} + \mathcal{L} = \tilde{g}_{=\infty} \Omega_p^{\infty}
\]

From the inductive assumption, we know that \(\Omega_p^{\infty} \subseteq \Omega_k^{\infty} \) and, as a result, \(\Omega_p^{\infty} + \mathcal{L} = \tilde{g}_{=\infty} \Omega_k^{\infty} \subseteq \Omega_k^{\infty} + \mathcal{L} = \tilde{g}_{=\infty} \Omega_k^{\infty} \). On the other hand, from the recursive step of Algorithm 5.4 (where we include the Lie derivatives along all the vector fields \(\tilde{g}_{=\infty}, \tilde{g}_{=\infty}, \tilde{g}_{=\infty}, \ldots, \tilde{g}_{=\infty} \)), we have \(\Omega_k^{\infty} + \mathcal{L} = \tilde{g}_{=\infty} \Omega_k^{\infty} \subseteq \Omega_{k+1}^{\infty} \) and, consequently, \(\nabla L_{m[f_i]^{\alpha_1', \ldots, \alpha_p'}} \tilde{h}_q \in \Omega_{k+1}^{\infty} \) as soon as we set \(k_p + 1 \geq k_p + 1 \).
Bibliography

[1] Kalman R. E., "On the General Theory of Control Systems", Proc. 1st Int. Cong. of IFAC, Moscow 1960 1481, Butterworth, London 1961.

[2] Kalman R. E., "Mathematical Description of Linear Dynamical Systems", SIAM J. Contr. 1963, 1, 152.

[3] Kahl Dominik, Wendland Philipp, Neidhardt Matthias, Weber Andreas, Kachischo, Maik, Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems, Phys. Rev. X, doi 10.1103/PhysRevX.9.041046, December 2019

[4] Hermann R. and Krener A.J., 1977, Nonlinear Controllability and Observability, Transaction On Automatic Control, AC-22(5): 728–740.

[5] Casti J. L., Recent developments and future perspectives in nonlinear system theory, SIAM Review, vol. 24, No. 3, July 1982.

[6] H.J. Sussman, Lie brackets, real analyticity, and geometric control In Differential Geometric Control Theory. Conference held at MTU (Houghton, MI, June 1982). R.W. Brockett, R.S. Millman, H.J. Sussman Eds. Progress in Mathematics 27. Birkhauser Boston/Basel/Stuttgart. 1- 116 (1983).

[7] Isidori A., Nonlinear Control Systems, 3rd ed., London, Springer Verlag, 1995.

[8] M. K. Paul and S. I. Roumeliotis, Alternating-stereo VINS: Observability analysis and performance evaluation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pages 4729–4737

[9] Joel A. Hesch, Dimitris G. Kottas, Sean L. Bowman, Stergios I. Roumeliotis, Camera-IMU-based Localization: Observability Analysis and Consistency Improvement, International Journal of Robotics Research, 2014, Vol 33(1) 182–201

[10] Fabrizio Schiano, Roberto Tron, The dynamic bearing observability matrix nonlinear observability and estimation for multi-agent systems, 2018 IEEE International Conference on Robotics and Automation

[11] Yulin Yang, Guoquan Huang, Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes, IEEE Transactions on Robotics, 2019 35(6), 1399–1418

[12] Chao X Guo, Stergios I Roumeliotis, IMU-RGBD camera 3D pose estimation and extrinsic calibration: Observability analysis and consistency improvement, 2013 IEEE International Conference on Robotics and Automation, 2935–2942

[13] Manolis N. Chatzis, Eleni N. Chatzi, Andrew W. Smyth, On the observability and identifiability of nonlinear structural and mechanical systems, Structural Control and Health Monitoring, Vol. 22, 574–593, 2015

[14] Alejandro F. Villaverde, Observability and Structural Identifiability of Nonlinear Biological Systems, Complexity, 2019, Special Issue on Computational Methods for Identification and Modelling of Complex Biological Systems
[15] J. III. DiStefano, Dynamic systems biology modeling and simulation, Academic Press, 2015.

[16] A. F. Villaverde and A. Barreiro, Identifiability of large nonlinear biochemical networks, MATCH - Communications in Mathematical and in Computer Chemistry, vol. 76, no. 2, pp. 259–296, 2016.

[17] O.-T. Chis, J. R. Banga, and E. Balsa-Canto, Structural identifiability of systems biology models: A critical comparison of methods, PLoS ONE, vol. 6, no. 11, 2011.

[18] H. Miao, X. Xia, A. S. Perelson, and H. Wu, On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Review, vol. 53, no. 1, pp. 3–39, 2011.

[19] Elias August 1, Antonis Papachristodoulou, A New Computational Tool for Establishing Model Parameter Identifiability, J Comput Biol. 2009, 16(6): 875–885.

[20] G. P. Huang, A. I. Mourikis and S. I. Roumeliotis, Observability-based Rules for Designing Consistent EKF SLAM Estimators, The International Journal of Robotics Research, 2010, 29(5), 502–528.

[21] G. P. Huang, A. I. Mourikis and S. I. Roumeliotis, A Quadratic-Complexity Observability-Constrained Unscented Kalman Filter for SLAM, in IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1226-1243, Oct. 2013.

[22] Alejandro F. Villaverde, Antonio Barreiro, and Antonis Papachristodoulou, Structural Identifiability of Dynamic Systems Biology Models, PLoS Comput Biol. 2016 Oct; 12(10).

[23] G. Basile and G. Marro. On the observability of linear, time invariant systems with unknown inputs. J. Optimization Theory Appl., 3:410–415, 1969.

[24] R. Guidorzi and G. Marro. On Wonham stabilizability condition in the synthesis of observers for unknown-input systems. Automatic Control, IEEE Transactions on, 16(5):499–500, oct 1971.

[25] S.H. Wang, E.J. Davison, P. Dorato Observing the states of systems with unmeasurable disturbance IEEE Transactions on Automatic Control, 20 (1975)

[26] S.P. Bhattacharyya Observer design for linear systems with unknown inputs IEEE Trans. on Aut. Control, 23 (1978)

[27] F. Yang, R.W. Wilde Observer for linear systems with unknown inputs IEEE Transactions on Automatic Control, 33 (7) (1988).

[28] Guan, Y., Saif, M. (1991). A novel approach to the design of unknown input observers. IEEE Transactions on Automatic Control, 36(5).

[29] M. Hou, P.C. MÅ¶ller Design of observers for linear systems with unknown inputs IEEE Transactions on Automatic Control, 37 (6) (1992).

[30] Darouach, M., Zasadzinski, M., Xu, S. J. (1994). Full-order observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 39(3)

[31] Koenig, D. and Mammar, S. (2001). Design of a class of reduced order unknown inputs nonlinear observer for fault diagnosis. In IEEE American Control Conference.

[32] C. De Persis, A. Isidori (2001). A geometric approach to nonlinear fault detection and isolation, IEEE Trans. Automatic Control, 46 (6), 853-865, 2001

[33] Q.P. Ha, H. Trinh State and input simultaneous estimation for a class of nonlinear systems Automatica, 40 (2004).

[34] Floquet, T., Barbot, J. (2004). A sliding mode approach of unknown input observers for linear systems. In 43rd IEEE conference on decision and control. Atlantis, Paradise Island, Bahamas. December.

77
[35] Chen, W. and Saif, M. (2006). Unknown input observer design for a class of nonlinear systems: an LMI approach. In IEEE American Control Conference.

[36] Floquet, T., Edwards, C., Spurgeon, S. (2007). On sliding mode observers for systems with unknown inputs. Int. J. Adapt. Control Signal Process Vol 21, no. 89, 638–656, 2007.

[37] J.-P. Barbot, M. Fliess, T. Floquet, ”An algebraic framework for the design of nonlinear observers with unknown inputs”, IEEE Conf. on Decision and Control, New-Orleans, 2007

[38] D. Koenig, B. Marx, D. Jacquet Unknown input observer for switched nonlinear discrete time descriptor system IEEE Transactions on Automatic Control, 53 (1) (2008).

[39] J.-P. Barbot, D. Boutat, T. Floquet ,"An observation algorithm for nonlinear systems with unknown inputs", Automatica, Vol. 45, Issue 8, August 2009, Pages 1970-1974

[40] H. Hammouri and Z. Tmar. Unknown input observer for state affine systems: A necessary and sufficient condition. Automatica, 46(2):271–278, 2010.

[41] F. A. W. Belo, P. Salaris, and A. Bicchi, 3 Known Landmarks are Enough for Solving Planar Bearing SLAM and Fully Reconstruct Unknown Inputs, IROS 2010, Taipei, Taiwan

[42] A. Martinelli. Extension of the Observability Rank Condition to Nonlinear Systems Driven by Unknown Inputs. 23th Mediterranean Conference on Control and Automation (MED), June, 2015. Torremolinos, Spain

[43] Maes, K., Chatzis, M., Lombaert, G., 2019. Observability of nonlinear systems with unmeasured inputs. Mech. Syst. Signal Process. 130, 378–394.

[44] Villaverde, A.F., Tsiantis, N., Banga, J.R., Full observability and estimation of unknown inputs, states, and parameters of nonlinear biological models. J. R. Soc. Interface 16, 2019

[45] A. Martinelli, Observability: A New Theory Based on the Group of Invariance, published by SIAM in Advances in Design and Control, 2020, ISBN: 978-1-61197-624-3.

[46] A. Martinelli, Nonlinear Unknown Input Observability: Extension of the Observability Rank Condition, IEEE Transactions on Automatic Control, Vol 64, No 1, pp 222–237

[47] M. A. Sarafrazi, U. Kotta and Z. Bartosiewicz, ”On the Stopping Criteria in Nonlinear Unknown Input Observability Condition,” in IEEE Transactions on Automatic Control, doi: 10.1109/TAC.2022.3160133.

[48] A. Martinelli, State Estimation Based on the Concept of Continuous Symmetry and Observability Analysis: the Case of Calibration, Transactions on Robotics, Vol. 27, No. 2, pp 239–255, April 2011

[49] A. Martinelli, Rank Conditions for Observability and Controllability for Time-varying Nonlinear Systems, https://arxiv.org/abs/2003.09721

[50] Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, 222 (2nd ed.), Springer, ISBN 978-3319134666