Differential Properties of Geometric Object

Aleks Kleyn

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
ABSTRACT. In this book, I explored differential equations for covariant and contravariant representations of group Lie in a vector space. In the transition to the tangent bundle of a differentiable manifold we obtain the theory of parallel transport of a geometric object.
Contents

Chapter 1. Introduction ... 5
1.1. About This Book ... 5
1.2. Conventions ... 5

Chapter 2. Differential Equations 7
2.1. Completely Integrable Systems 7
2.2. Linear Differential Operator 8
2.3. Complete System of Linear Partial Differential Equations 9
2.4. Essential Parameters in a Set of Functions 11

Chapter 3. Lie Group .. 15
3.1. Lie Group Composition 15
3.2. 1-Parameter Group ... 18
3.3. Right Shift .. 20
3.4. Left Shift .. 22
3.5. Relation between Algebras Lie \mathfrak{g} and \mathfrak{g}_r 24

Chapter 4. Representation of Lie Group 27
4.1. Representation of Lie Group 27
4.2. Algebraic Properties of Representation 28
4.3. Linear Representation of Lie Group 30
4.4. Algebraic Properties of Linear Representation 31

Chapter 5. Differential Properties of Geometric Object 33
5.1. Covariant Derivative 33
5.2. Lie Derivative ... 33

Chapter 6. References .. 35

Chapter 7. Index .. 36

Chapter 8. Special Symbols and Notations 37
CHAPTER 1

Introduction

1.1. About This Book

This book is based on the research project that I performed during my study in the Odessa university. I was very lucky that my teacher Gavrilenko Michail Leonidovich provided lectures "Lie Group and Lie Algebra". These lectures were based on the book [2]. Later on, I wrote down the equations of a Lie group for the particular case of the representation of the group GL in the vector space of geometric objects.

If we consider tangent bundle to the differentiable manifold, then movement from a fiber into fiber generates the continuous set of transformations. Combining the differential equations of this set of transformations and differential equations of the geometric object, we get the equation of parallel transport of the geometric object.

Subsequently, I replaced the group GL by an arbitrary Lie group. This is the form that I used to present theory in this book. Accordingly, chapters of the book have the following contents. Representation of a Lie group is closely connected with the theory of differential equations. In the chapter 2, I give a brief lecture of the theory of differential equations. I dedicated this lecture to completely integrable systems of differential equations. In the chapter 3, I write down the differential equations for a Lie group. I write down differential equations of the representation of Lie group in the chapter 4.

1.2. Conventions

(1) Without a doubt, the reader of my articles may have questions, comments, objections. I will appreciate any response.
CHAPTER 2

Differential Equations

2.1. Completely Integrable Systems

Consider a system of partial differential equations

\[
\frac{\partial \theta^\alpha}{\partial x^i} = \psi^\alpha_i(\theta^1, \ldots, \theta^m, x^1, \ldots, x^n) = \psi^\alpha_i(\theta, x)
\]

\[1 \leq \alpha \leq m \quad 1 \leq i \leq n \quad \theta^\alpha = \theta^\alpha(x^1, \ldots, x^n)
\]

This system is solved relative all partial derivatives and is equivalent to system of total differential equations

\[d\theta^\alpha = \psi^\alpha_i(\theta, x)dx^i\]

To find conditions of integrability we differentiate (2.1.1) with respect to \(x^j\).

\[
\frac{\partial^2 \theta^\alpha}{\partial x^j \partial x^i} = \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_i}{\partial \theta^\sigma} \frac{\partial \psi^\sigma_j}{\partial x^i} = \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_i}{\partial \theta^\sigma} \psi^\sigma_j
\]

\[
\frac{\partial^2 \theta^\alpha}{\partial x^j \partial x^i} = \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_i}{\partial \theta^\sigma} \psi^\sigma_j
\]

Because second derivative of continuous function does not depend on order of differentiation we expect that

\[(2.1.2) \quad \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_i}{\partial \theta^\sigma} \psi^\sigma_j = \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_i}{\partial \theta^\sigma} \psi^\sigma_j
\]

Definition 2.1.1. We call the system of differential equations (2.1.1) **completely integrable system** if condition (2.1.2) is satisfied identically.

Solution of completely integrable system (2.1.1) has Taylor expansion

\[(2.1.3) \quad \theta^\alpha = C^\alpha + \left(\frac{\partial \theta^\alpha}{\partial x^i}\right)_{x=x_0} (x^i - x_0^i) + \frac{1}{2} \left(\frac{\partial^2 \theta^\alpha}{\partial x^j \partial x^i}\right)_{x=x_0} (x^i - x_0^i)(x^j - x_0^j) + ...
\]

Here \(C^\alpha (1 \leq \alpha \leq m)\) are constants,

\[
\left(\frac{\partial \theta^\alpha}{\partial x^i}\right)_{x=x_0} = \psi^\alpha_i(C^1, \ldots, C^m, x_0^1, \ldots, x_0^n)
\]

We obtain the rest coefficients by differentiating of right part of (2.1.1) and substituting \(C^\alpha\) and \(x^i_0\). We tell about solution when expansion (2.1.3) converges. According to theorem by Caushi and Covalevskaya it has place when \(\psi^\alpha_i\) are analytical by all arguments.

\(^{2.1}\)I wrote this chapter under influence of [2]
For the vicinity of point \((x_1^0, ..., x_n^0)\) for which series \((2.1.3)\) are convergent we have a solution
\[
\theta^\alpha = \varphi^\alpha(x^1, ..., x^n, C^1, ..., C^m)
\]
determined by \(m\) constants.

It is possible that condition \((2.1.2)\) is not satisfied identically. Then system of differential equations \((2.1.1)\) is not completely integrable and equation \((2.1.2)\) puts constraints on functions \(\theta^\alpha\). Therefore functions \(\theta^\alpha\) satisfy \((2.1.1)\) and \((2.1.2)\). Assume that \((2.1.2)\) put \(S_1\) constraints. We differentiate them with respect to \(x_k\) and get new \(S_2\) equations. If these equations are not satisfied identically we can repeat this process soon.

Because we cannot have more than \(m\) constraints, this chain breaks. If system of differential equations \((2.1.1)\) has solution this solution satisfies all constraints, otherwise these constraints are conflicting.

Theorem 2.1.2. Necesssary and sufficient condition in order that system of differential equations \((2.1.1)\) has solution is existing of such \(N\) that \(S_1,...,S_N\) are algebraically compatible, and \(S_{N+1}\) is consequence of them. If we get \(p\) constraints then common solution depends on \(m-p\) arbitrary constants.

Proof. We proved that this condition is necessary. Now we show that this condition is sufficient. Assume we got \(p\) constraints
\[
\Phi^\gamma(\theta, x) = 0 \quad \gamma = 1, ..., p
\]
Because
\[
Rg \left\| \frac{\partial \Phi^\gamma}{\partial \theta^\alpha} \right\| = p
\]
we can express \(p\) variables \(\theta^\alpha\) through others using \((2.1.5)\). If we enumerate variables by right way we get
\[
\theta^\nu = \phi^\nu(\theta^{p+1}, ..., \theta^m, x) \quad \nu = 1, ..., p
\]
We substitute \((2.1.6)\) into \((2.1.1)\) and get
\[
\frac{\partial \theta^\alpha}{\partial x^i} = \psi^\alpha_i(\theta^{p+1}, ..., \theta^m, x^1, ..., x^n) \quad \alpha = p+1, ..., m
\]
The condition \((2.1.2)\) is satisfied. System of differential equations \((2.1.7)\) is completely integrable and has solution that depends on \(m-p\) arbitrary constants. First \(p\) equations are fulfilled because of \((2.1.6)\) when \(\theta^{p+1}, ..., \theta^m, x\) are solutions of \((2.1.7)\).

2.2. Linear Differential Operator

Let us have \(r\) differential operators
\[
(2.2.1) \quad X_a f = \xi^i_a \frac{\partial f}{\partial x^i}
\]
Operator \((2.2.1)\) is linear
\[
X_a(f + g) = X_a f + X_a g
\]
\[
X_a(\lambda f) = \lambda X_a f \quad \lambda = \text{const}
\]
The product of these operators has form

\[X_aX_b f = X_a(X_b f) = \xi^i_a \frac{\partial}{\partial x^i} \left(\xi^j_b \frac{\partial f}{\partial x^j} \right) \]

\[= \xi^i_a \frac{\partial \xi^j_b}{\partial x^i} \frac{\partial f}{\partial x^j} + \xi^i_a \xi^j_b \frac{\partial^2 f}{\partial x^j \partial x^i} = \]

\[= \frac{\partial f}{\partial x^j} X_a \xi^j_b + \xi^i_a \xi^j_b \frac{\partial^2 f}{\partial x^j \partial x^i} \]

We used (2.2.1) on the last step. This is not operator of type (2.2.1). However because second term is symmetric relative to \(a \) and \(b \) we can introduce commutator

\[(X_a, X_b)f = X_aX_b f - X_bX_a f = (X_a \xi^j_b - X_b \xi^j_a) \frac{\partial f}{\partial x^j} \]

This is linear operation and we call it Poisson brackets. Skew symmetry of this commutator follows from (2.2.2).

Simple calculation shows that

\[((X_a, X_b), X_c)f = ((X_a, X_b)\xi^j_c - X_c(X_a \xi^j_b - X_b \xi^j_a)) \frac{\partial f}{\partial x^j} = \]

\[= \left(\frac{\partial \xi^j_c}{\partial x^k} X_a \xi^k_b - \frac{\partial \xi^j_c}{\partial x^k} X_b \xi^k_a - \frac{\partial \xi^j_b}{\partial x^k} X_c \xi^k_a + \xi^p_a \xi^q_b \frac{\partial^2 \xi^j_c}{\partial x^p \partial x^q} + \frac{\partial \xi^j_b}{\partial x^k} X_c \xi^k_b + \xi^p_c \xi^q_b \frac{\partial^2 \xi^j_a}{\partial x^p \partial x^q} \right) \frac{\partial f}{\partial x^j} \]

If we change order of parameters we finally get equation

\[((X_a, X_b), X_c)f + ((X_b, X_c), X_a)f + ((X_c, X_a), X_b)f = 0 \]

(2.2.4) is Jacobi condition.

Theorem 2.2.1. Commutator of linear combination of operators

\[X'_a = \lambda^b_a X_b \]

where \(\lambda^b_a \) are functions of \(x \) expresses through these operators and their commutators

(2.2.5) \[(X'_a, X'_c)f = \mu^d_{ac} X_d f - \mu^d_{ca} X_d f + \lambda^b_a \lambda^d_c (X_b, X_d) f \]

Proof. Commutator has form

(2.2.6) \[(X'_a, X'_c)f = (\lambda^b_a X_b, \lambda^d_c X_d) f \]

\[= \lambda^b_a X_b (\lambda^d_c X_d f) - \lambda^d_c X_d (\lambda^b_a X_b f) \]

\[= \lambda^b_a X_b \lambda^d_c X_d f + \lambda^b_a \lambda^d_c X_b X_d f - \lambda^d_c X_d \lambda^b_a X_b f - \lambda^b_a \lambda^d_c X_b X_d f \]

(2.2.5) follows from (2.2.6) if we assume

\[\mu^d_{ac} = \lambda^b_a X_b \lambda^d_c \]

\[\square \]

2.3. Complete System of Linear Partial Differential Equations

Now we want to learn system of differential equations

(2.3.1) \[X_a f = 0 \quad X_a = \xi^i_a \frac{\partial}{\partial x^i} \quad 1 \leq i \leq n \quad 1 \leq a \leq r \]

We assume that

(2.3.2) \[\text{rank } \| \xi^i_a \| = r \leq n \]

This means that equations (2.3.1) are line independent.
If \(r = n \), the only solution is evidently \(f = \text{const} \). Statement that every solution of equations (2.3.1) is also solution of equation (2.3.3) follows from (2.2.2). If
\[
(X_a, X_b)f = 0
\]
where the \(\gamma \) are functions of \(x \), then system of differential equations (2.3.1) and (2.3.3) is equivalent to system of differential equations (2.3.1). We do not know in advance whether (2.3.3) set new constraints for (2.3.1). We adjoin to system of differential equations (2.3.1) those equations of system (2.3.3) which do not hold (2.3.4). We obtain \(s \) equations, \(s \geq r \). We repeat the same procedure for new system and obtain \(t \) equations, \(t \geq s \), and so on.

As result of the sequence of indicated actions we may get \(n \) equations. In this case the system of differential equations (2.3.1) has the only solution \(f = \text{const} \), because
\[
\frac{\partial f}{\partial x^i} = 0
\]
Otherwise we get \(u \) equations, \(u \leq n \), which hold condition (2.3.4). In this case obtained system of differential equations is called complete of order \(u \). Solution of the system of differential equations (2.3.1) is solution of complete system of differential equations.

Theorem 2.3.1. If system of differential equations (2.3.1) is a complete system, so also is
\[
X'_a f = \lambda^b_a X_b f = 0
\]
where \(\lambda \) are functions of \(x \)

Proof. From (2.3.4) it follows that the right-hand member of (2.2.5) is linear in \(X_a f \). According to (2.3.5), (2.3.6) \(X_a f \) is linear in operators \(X'_a f \). Therefore, we have from (2.2.5) expressions of the form (2.3.4), which proves the statement. \(\square \)

Since (2.3.2), there is no loss in generality in assuming that
\[
\det \| \lambda^b_a \| \neq 0 \quad 1 \leq a, b \leq r
\]
Hence we may solve system of differential equations (2.3.1) for \(\frac{\partial f}{\partial x^i} \), \(\ldots \), \(\frac{\partial f}{\partial x^r} \) and write the result in the form
\[
X'_a f = \frac{\partial f}{\partial x^a} + \psi^t_a \frac{\partial f}{\partial x^t} = 0 \quad a = 1, \ldots, r \quad t = r + 1, \ldots, n
\]
These equations are of the form (2.3.5) and, hence, form system of differential equations equivalent to system (2.3.1).

Complete system of differential equations expressed in the form (2.3.8) is called Jacobian.

Theorem 2.3.2. Complete system of differential equations (2.3.1) admits exactly \(n - r \) independent solutions.
2.4. Essential Parameters in a Set of Functions

Definition 2.4.1. Consider n functions

$$f^i(x^1, \ldots, x^n, a^1, \ldots, a^r), i = 1, \ldots, n$$

of variables x^1, \ldots, x^n and parameters a^1, \ldots, a^r. We assume that functions f^i are continuous in x^1, \ldots, x^n and a^1, \ldots, a^r. Also their derivatives up to any order are continuous. Parameters a^1, \ldots, a^r are called **essential parameters** unless there are functions A^1, \ldots, A^r of a^1, \ldots, a^r such that we have identically

$$f^i(x, a) = F^i(x, A)$$

\[\Box \]

Theorem 2.4.2. A necessary and sufficient condition that the r parameters a^r be essential is that the functions f^i do not satisfy an equation of the form

$$\phi^\alpha \frac{\partial f^i}{\partial a^\alpha} = 0$$

where $\phi^\alpha \neq 0$.

Proof. Assume that parameters a are not essential. Then there exist A such that (2.4.1) is satisfied and

$$\text{rank} \left(\frac{\partial A^\sigma}{\partial a^\alpha} \right) < r$$

Therefore there exist functions $\phi^\alpha(a) \neq 0$ such that

$$\phi^\alpha \frac{\partial A^\sigma}{\partial a^\alpha} = 0$$
Hence functions A^1, \ldots, A^{r-1} and any their function $\Phi(A)$ also satisfy (2.4.2). Functions F^i in (2.4.1) are example of function Φ. Therefore if f^i do not essentially depend on a^α they satisfy system (2.4.2).

Conversely, suppose that functions f^i satisfy equation (2.4.1) for some functions ϕ^α. This equation admits $r - 1$ independent solutions A^1, \ldots, A^{r-1} which are functions of a^α alone and any solution of (2.4.2) is function of A^1, \ldots, A^{r-1} and a^1, \ldots, a^r are not essential. □

Remark 2.4.3. From theorem 2.4.2, it follows that, if the functions f^i satisfy a complete system of s differential equations

(2.4.3) \[\phi^\alpha \frac{\partial f^i}{\partial a^\alpha} = 0 \quad \alpha = 1, \ldots, r \quad \sigma = 1, \ldots, s < r \]

then f^i are functions of x and of $r - s$ independent solutions of system (2.4.3), which are functions of the a, and consequently f^i are expressible in terms of $r - s$ essential parameters. □

We may interpret the system of equations (2.4.2) as system of linear equations for ϕ^α. From linear algebra, it follows, that solutions of system (2.4.3) form a vector space, and only in case of condition

(2.4.4) \[\mu_0 = \text{rank} \left(\frac{\partial f^i}{\partial a^\alpha} \right) = r \]

the system of linear equations (2.4.3) has the only solution $\phi^\alpha = 0$. Thus, from remark 2.4.3, it follows, that parameters are essential, if condition (2.4.4) is satisfied.

Suppose that $\mu_0 < r$. Differentiating the system of differential equations (2.4.2) with respect to the x^j, we have

(2.4.5) \[\phi^\alpha \frac{\partial f^i}{\partial a^\alpha} = 0 \quad \phi^\alpha \frac{\partial f^i}{\partial a^\alpha} = 0 \quad f^i_j = \frac{\partial f^i}{\partial x^j} \]

Let

(2.4.6) \[\mu_1 = \text{rank} \left(\frac{\partial f^i}{\partial a^\alpha} \frac{\partial f^i_j}{\partial a^\alpha} \right) \]

Evidently $\mu_1 \geq \mu_0$. If $\mu_1 = r$, the system of linear equations (2.4.5) admits the only solution $\phi^\alpha = 0$. Consequently the parameters are essential.

If we put

\[f^{j_1 \ldots j_s} = \frac{\partial^s f^i}{\partial x^{j_1} \ldots \partial x^{j_s}} \]

we have from (2.4.2) by repeated differentiation

(2.4.7) \[\phi^\alpha \frac{\partial f^{j_1 \ldots j_s}}{\partial a^\alpha} = 0 \]

We denote

(2.4.8) \[\mu_s = \text{rank} \left(\frac{\partial f^i}{\partial a^\alpha} \frac{\partial f^i_j}{\partial a^\alpha} \ldots \frac{\partial f^i_{j_1 \ldots j_s}}{\partial a^\alpha} \right) \]

We get thus a sequence of ranks

(2.4.9) \[\mu_0 \leq \mu_1 \leq \ldots \leq \mu_s \leq \ldots \leq r \]
Theorem 2.4.4. The number of essential parameters in terms of which the functions $f^i(x, a)$ are expressible is equal to the maximum number attained in the sequence (2.4.9).

Proof. If any μ_s is equal to r, $\phi^\alpha = 0$ and r parameters are essential.

Suppose that $\mu_{s-1} < r$ and $\mu_s = \mu_{s-1}$. From this statement, it follows that

$$\frac{\partial f^i_{j_1\ldots j_s}}{\partial a^\alpha} = \sum_{t<s} \lambda_{k_1\ldots k_t} \frac{\partial f^i_{k_1\ldots k_t}}{\partial a^\alpha}$$

Differentiating equation (2.4.10) with respect to x^p, we have

$$\frac{\partial f^i_{j_1\ldots j_s}}{\partial a^\alpha} = \sum_{t<s} \lambda_{k_1\ldots k_t} \frac{\partial f^i_{k_1\ldots k_t}}{\partial a^\alpha} + \sum_{t=s-1, u<s} \lambda_{k_1\ldots k_t} \chi_{k_1\ldots k_u} \frac{\partial f^i_{j_1\ldots j_s}}{\partial a^\alpha}$$

Therefore, $\mu_{s+1} = \mu_{s-1}$.

If $\mu_s < r$, the system of linear equations (2.4.2), (2.4.7) has rank μ_s, then $r-\mu_s$ of the functions ϕ^α may be chosen arbitrary and the others are then determined. Let $\phi^1, \ldots, \phi^{r-\mu_s}$ be functions of a but not the x. Then

$$\phi^\sigma = \chi^\sigma_{\rho} \phi^\rho \quad \rho = 1, \ldots, r-\mu_s \quad \sigma = r-\mu_s + 1, \ldots, r$$

where λ are functions of x and a. There are accordingly $r-\mu_s$ independent equations (2.4.2). The commutator of any two equations equated to 0 admits f^i as solution and hence it must be a linear combination of the given equations. Therefore, these equations form a complete system. Hence the functions are expressible in terms of μ_s essential parameters. \qed
CHAPTER 3

Lie Group

3.1. Lie Group Composition

Let G be an r-parameter Lie group with an operation

$$a_3^L = \varphi^L(a_1, a_2) \quad a_3 = a_1 a_2$$

and neutral element e.

All operators that we introduce below have relation to left and right shift representations and will have an additional index r or l telling us what kind of shift they describe.

First of all we introduce operators

$$A_r^K(a, b) = \frac{\partial \varphi^K(a, b)}{\partial b^L}$$

$$A_l^K(a, b) = \frac{\partial \varphi^K(a, b)}{\partial a^L}$$

as derivative of left and right shifts.

Theorem 3.1.1.

(3.1.4) $A_r(a, bc) A_r(b, c) = A_r(ab, c)$

(3.1.5) $A_l(ab, c) A_l(a, b) = A_l(a, bc)$

Proof. The operation is associative

$$a(bc) = (ab)c$$

Using chain rule we can find the derivatives of this equation

(3.1.7) $\frac{\partial a(bc)}{\partial bc} \frac{\partial bc}{\partial c} = \frac{\partial (ab)c}{\partial c}$

(3.1.8) $\frac{\partial a(bc)}{\partial a} = \frac{\partial (ab)c}{\partial ab} \frac{\partial ab}{\partial a}$

(3.1.4) follows from (3.1.7). (3.1.5) follows from (3.1.8).

Because $ae = a$ and $eb = b$ we get equations

(3.1.9) $A_l^K(a, e) = \delta^K_L$

(3.1.10) $A_r^K(e, b) = \delta^K_L$

Theorem 3.1.2. Operator $A_l(a, b)$ has the inverse operator $A_l(ab, b^{-1})$

(3.1.11) $A_l^{-1}(a, b) = A_l(ab, b^{-1})$

Operator $A_r(b, c)$ has the inverse operator $A_r(b^{-1}, bc)$

(3.1.12) $A_r^{-1}(b, c) = A_r(b^{-1}, bc)$
Proof. According (3.1.4) we get \((a = b^{-1})\)
\[(3.1.13) \quad A_r(b^{-1}, bc)A_r(b, c) = A_r(b^{-1}b, c) = A_r(e, c) = \delta\]
(3.1.12) follows from (3.1.13).

According (3.1.5) we get \((c = b^{-1})\)
\[(3.1.14) \quad A_l(ab, b^{-1})A_l(a, b) = A_l(ab, bb^{-1}) = A_l(a, e) = \delta\]
(3.1.11) follows from (3.1.14). \(\square\)

Theorem 3.1.3. Operators \(A_l(a, b)\) and \(A_r(a, b)\) are invertible.

Proof. This is consequence of theorem 3.1.2. \(\square\)

We introduce **Lie group basic operators**
\[
\begin{align*}
\psi_r^K(a) &= A_r^K(a, e) & \psi_r(a) &= A_r(a, e) \\
\psi_l^K(b) &= A_l^K(e, b) & \psi_l(b) &= A_l(e, b)
\end{align*}
\]
From (3.1.10) and (3.1.11) immediately follows that
\[
\begin{align*}
\psi_l^K(e) &= \delta^K_L \\
\psi_r^K(e) &= \delta^K_L
\end{align*}
\]
By definition basic operators linearly map the tangent plane \(T_eG\) into the tangent plane \(T_aG\).

Theorem 3.1.4. Operators \(\psi_l\) and \(\psi_r\) are invertible.

Proof. This is consequence of theorem 3.1.3 and definitions (3.1.16) and (3.1.15). \(\square\)

Because operators \(\psi_r\) and \(\psi_l\) have inverse operators we introduce operators
\[
\begin{align*}
\lambda_r(a) &= \psi_r^{-1}(a) \\
\lambda_l(a) &= \psi_l^{-1}(a)
\end{align*}
\]
which map \(T_aG \to T_eG\)

Theorem 3.1.5.
\[
\begin{align*}
(3.1.21) \quad \lambda_r(a) &= A_r(a^{-1}, a) \\
(3.1.22) \quad \lambda_l(a) &= A_l(a, a^{-1})
\end{align*}
\]
Proof. According (3.1.20), (3.1.16) and (3.1.11) we get
\[
\lambda_l(a) = A_l^{-1}(e, a) = A_l(a, a^{-1})
\]
This proves (3.1.22). According (3.1.19), (3.1.15) and (3.1.12) we get
\[
\lambda_r(a) = A_r^{-1}(a, e) = A_r(a^{-1}, a)
\]
This proves (3.1.21). \(\square\)

Theorem 3.1.6.
\[
\begin{align*}
(3.1.23) \quad A_r(a, b) &= \psi_r(ab)\lambda_r(b) \\
(3.1.24) \quad A_l(a, b) &= \psi_l(ab)\lambda_l(a)
\end{align*}
\]
PROOF. Assume $c = e$ in (3.1.4)

(3.1.25)
\[A_r(a, b)A_r(b, c) = A_r(ab, c) \]

From equations (3.1.15), (3.1.25), it follows that

(3.1.26)
\[A_r(a, b)\psi_r b = \psi_r(ab) \]

From (3.1.26) follows

(3.1.27)
\[A_r(a, b) = \psi_r(ab)\psi_r^{-1}(b) \]

(3.1.23) follows from (3.1.27) using (3.1.19).

Assume $a = e$ into (3.1.5)

(3.1.28)
\[A_l(b, c)A_l(e, b) = A_l(e, bc) \]

From equations (3.1.16), (3.1.28), it follows that

(3.1.29)
\[A_l(b, c)\psi_l b = \psi_l(bc) \]

From (3.1.29) follows

(3.1.30)
\[A_l(a, b) = \psi_l(ab)\psi_l^{-1}(a) \]

(3.1.24) follows from (3.1.30) using (3.1.20).

Theorem 3.1.7. The Lie group operation satisfies to differential equations

(3.1.31)
\[\frac{\partial \varphi^L_R}{\partial b} = \psi_r^L_T(ab)\lambda_r^T(b) \quad \frac{\partial ab}{\partial b} = \psi_r(ab)\lambda_r(b) \]

(3.1.32)
\[\frac{\partial \varphi^L_R}{\partial a} = \psi_l^L_T(ab)\lambda_l^T(a) \quad \frac{\partial ab}{\partial a} = \psi_l(ab)\lambda_l(a) \]

PROOF. (3.1.31) is consequence of (3.1.23) and (3.1.2). (3.1.32) is consequence of (3.1.24) and (3.1.3).

Theorem 3.1.8.

(3.1.33)
\[\frac{\partial a^{-1}}{\partial a} = -\psi_l(a^{-1})\lambda_r(a) \]

(3.1.34)
\[\frac{\partial a^{-1}}{\partial a} = -\psi_r(a^{-1})\lambda_l(a) \]

PROOF. Differentiating the equation $e = a^{-1}a$ with respect to a, we get the equation

\[0 = \frac{\partial a^{-1}}{\partial a} \frac{\partial a^{-1}}{\partial a} + \frac{\partial a^{-1}}{\partial a} = \]

\[= A_l(a^{-1}, a)\frac{\partial a^{-1}}{\partial a} + A_r(a^{-1}, a) \]

\[\frac{\partial a^{-1}}{\partial a} = -A_l^{-1}(a^{-1}, a)A_r(a^{-1}, a) \]

Using (3.1.21) and (3.1.22) we get

(3.1.35)
\[\frac{\partial a^{-1}}{\partial a} = -\lambda_l^{-1}(a^{-1})\lambda_r(a) \]

(3.1.33) follows from (3.1.35).
Differentiating the equation \(e = aa^{-1} \) with respect to \(a \), we get the equation
\[
0 = \frac{\partial a a^{-1}}{\partial a} + \frac{\partial a a^{-1}}{\partial a^{-1}} \frac{\partial a^{-1}}{\partial a} = A_l(a, a^{-1}) + A_r(a, a^{-1}) \frac{\partial a^{-1}}{\partial a} = -A^{-1}_r(a, a^{-1}) A_l(a, a^{-1})
\]
Using (3.1.21) and (3.1.22) we get
\[
(3.1.36) \quad \frac{\partial a^{-1}}{\partial a} = -\lambda r^{-1}(a^{-1}) \lambda_l(a)
\]
(3.1.34) follows from (3.1.36).

Theorem 3.1.9.
\[
(3.1.37) \quad \frac{\partial a^{-1} b}{\partial a} = -\psi_l(a^{-1} b) \psi^{-1}_l(a)
\]
\[
(3.1.38) \quad \frac{\partial b a^{-1}}{\partial a} = -\psi_r(b a^{-1}) \psi^{-1}_l(a)
\]

Proof. Using the chain rule and equations (3.1.24), (3.1.33) we get
\[
(3.1.39) \quad \frac{\partial a^{-1} b}{\partial a} = \frac{\partial a^{-1} b}{\partial a^{-1}} \frac{\partial a^{-1}}{\partial a} = -A_l(a^{-1}, b) \psi_l(a^{-1}) \lambda_r(a) = -\psi_l(a^{-1} b) \psi^{-1}_l(a) \psi_l(a^{-1}) \lambda_r(a)
\]
(3.1.37) follows from (3.1.39).

Using the chain rule and equations (3.1.23), (3.1.34) we get
\[
(3.1.40) \quad \frac{\partial b a^{-1}}{\partial a} = \frac{\partial b a^{-1}}{\partial a^{-1}} \frac{\partial a^{-1}}{\partial a} = -A_r(b, a^{-1}) \psi_r(a^{-1}) \lambda_l(a) = -\psi_r(b a^{-1}) \psi^{-1}_r(a) \psi_r(a^{-1}) \lambda_l(a)
\]
(3.1.38) follows from (3.1.40).

3.2. 1-Parameter Group

If the manifold of the group has the dimension 1, we have the group that depends on 1 parameter. In this case the operation on the group is just
\[
c = \varphi(a, b)
\]
where \(a, b, c \) are numbers. In this case our notation will be simplified. We have not operators but functions
\[
A_l(a, b) = \frac{\partial \varphi(a, b)}{\partial a}
\]
\[
A_r(a, b) = \frac{\partial \varphi(a, b)}{\partial b}
\]
which by the definition satisfy equations
\[
A_l(a, c) = 1
\]
As well we introduce basic functions
\[\psi_r(a) = A_r(a,e) \]
\[\psi_l(b) = A_l(e,b) \]
Functions \(\psi_r(a) \) and \(\psi_l(a) \) never turn to 0 and
\[\lambda_r(a) = \frac{1}{\psi_r(a)} \]
\[\lambda_l(a) = \frac{1}{\psi_l(a)} \]

Theorem 3.2.1. The operation on the 1-parameter Lie group satisfies to differential equations

\[
\frac{\partial \varphi(a,b)}{\partial b} = \frac{\psi_r(ab)}{\psi_r(b)}
\]

Proof. This is consequence of (3.1.31).

Theorem 3.2.2. On the 1-parameter group we can introduce such coordinate \(A \) that the operation \(\Phi \) on the group has form

\[
\Phi(A,B) = A + B
\]
and the identity of the group is \(E = 0 \).

Proof. We introduce a new variable \(A \) such that

\[
dA = \frac{da}{\psi_r(a)}
\]
Because \(\psi_r(a) \neq 0 \) 1-1 map \(A = F(a) \) and its inverse map \(a = f(A) \) exist. This means that if \(A = F(a) \), \(B = F(b) \), \(C = F(c) \) and \(c = \varphi(a,b) \) then there exist a function \(\Phi \) such that
\[
C = \Phi(A,B) = F(\varphi(a,b))
\]
Now we have derivative
\[
\frac{\partial \Phi(A,B)}{\partial B} = \frac{dC}{dc} \frac{\partial \varphi(a,b)}{\partial b} \frac{db}{dB}
\]
Using (3.2.3) and (3.2.1) we get
\[
\frac{\partial \Phi(A,B)}{\partial B} = \frac{1}{\psi_r(c)} \frac{\psi_r(c)}{\psi_r(b)} \psi_r(b) = 1
\]
Thus we have

\[
\Phi(A,B) = \xi(A) + B
\]
If we get the solution of equation (3.2.3) in the form
\[
A = \int_a^b \frac{da}{\psi_r(a)}
\]
then we see that the identity of group is \(A = 0 \). If we assume \(B = 0 \) in (3.2.4) we get

\[
\Phi(A,B) = \xi(A)
\]
(3.2.2) follows from (3.2.4) and (3.2.5)
3.3. Right Shift

For the right shift \([1\text{-}(2.4.14)]\) the system \((3.1.31)\) gets form

\[
\frac{\partial b^K}{\partial a^L} = \psi^{L}_r(b') \lambda^T_r(a)
\]

Functions \(b^K\) are solutions of the system \((3.3.1)\) and according to \([1\text{-}(2.4.14)]\) they depend on \(b^1, \ldots, b^n\) which we can assume as constants. Thus solution of the system \((3.3.1)\) depends on \(n\) arbitrary constants and therefore the system \((3.3.1)\) is completely integrable. Condition of its integrability has the form

\[
\frac{\partial \psi^L_r(b')}{\partial b^S} \frac{\partial b^S}{\partial a^R} \lambda^T_r(a) + \psi^L_r(b') \lambda^T_r(a) = 0
\]

\[
\frac{\partial \psi^L_r(b')}{\partial b^S} \frac{\partial b^S}{\partial a^R} \lambda^T_r(a) + \psi^L_r(b') \frac{\partial \lambda^T_r(a)}{\partial a^R} = 0
\]

Using \((3.3.1)\) we can write this condition in more simple form

\[
\frac{\partial \psi^L_r(b')}{\partial b^S} \psi^S_r(b') \lambda^T_r(a) + \psi^L_r(b') \lambda^T_r(a) = 0
\]

\[
\frac{\partial \psi^L_r(b')}{\partial b^S} \psi^S_r(b') = \frac{\partial \lambda^T_r(a)}{\partial a^R}
\]

Now we introduce \textbf{right structural constant of Lie algebra}

\[
C^U_{rV^T} = \psi^R_r(a) \psi^T_r(a) \left(\frac{\partial \lambda^T_r(a)}{\partial a^P} - \frac{\partial \lambda^R_r(a)}{\partial a^R} \right)
\]

Then we have

\[
\frac{\partial \psi^L_r(b')}{\partial b^S} = \psi^S_r(b') - \frac{\partial \psi^L_r(b')}{\partial \psi^S_r(b')} = C^U_{rV^T} \psi^L_r(b')
\]

If we differentiate this equation with respect to \(a^P\) we get

\[
\frac{\partial C^U_{rV^T}}{\partial a^P} \psi^L_r(b') = 0
\]

because \(\psi^L_r(b')\) does not depend on \(a\). At the same time \(\psi^L_r(b')\) are line independent because \(\det ||\psi^L_r|| \neq 0\). Therefore

\[
\frac{\partial C^U_{rV^T}}{\partial a^P} = 0
\]

and \(C^U_{rV^T}\) are constants. We call them \textbf{structural constants}. from \((3.3.2)\), it follows that

\[
C^U_{rV^T} \lambda^T_r(a) \lambda^R_r(a) = \frac{\partial \lambda^T_r(a)}{\partial a^R} - \frac{\partial \lambda^R_r(a)}{\partial a^P}
\]

We call \((3.3.4)\) \textbf{Maurer equation}.
Theorem 3.3.1. Vector fields defined by differential operator

\[X_rV = \psi_r^S(a) \frac{\partial}{\partial a^S} \]

are line independent and their commutator is

\[(X_rT, X_rV) = C^U_{TV} X_rU \]

Proof. Line independence of vector fields follows from theorem 3.1.4. Then we see that according to (3.3.3)

\[(X_rT, X_rV) = (X_rT\psi_r^D - X_rV\psi_r^D) \frac{\partial}{\partial a^D} = \]

\[= \left(\psi_r^T(a) \frac{\partial\psi_r^D(a)}{\partial a^D} - \psi_r^V(a) \frac{\partial\psi_r^D(a)}{\partial a^D} \right) \frac{\partial}{\partial a^D} = \]

\[= C^U_{TV} \psi_r^D(a) \frac{\partial}{\partial a^D} = C^U_{TV} X_rU \]

Let we have the homomorphism \(f : G_1 \rightarrow G \) of the 1-parameter Lie group \(G_1 \) into the group \(G \). Image of this group is the 1-parameter subgroup. If \(t \) is coordinate on the group \(G_1 \) we can write \(a = f(t) \) and find out differential equation for this subgroup. We assume in case of right shift that \(a = f(t_1) \), \(b = f(t_2) \), \(c = ab = f(t) \), \(t = t_1 + t_2 \). Then we have

\[\frac{dc^K}{dt} = \frac{\partial c^K}{\partial b^L} \frac{db^L}{dt} = \psi_r^K_T(c) \lambda_r^L_L(b) \frac{db^L}{dt}_2 \frac{dt_2}{dt} \]

\[\frac{dc^K}{dt} = \psi_r^K_T(c) \lambda_r^L_L(b) \frac{db^L}{dt}_2 \frac{dt_2}{dt} \]

Left part does not depend on \(t_2 \), therefore right part does not depend on \(t_2 \). We assume that

\[\lambda_r^L_L(b) \frac{db^L}{dt}_2 = \alpha^T \]

Thus we get system of differential equations

\[\frac{dc^K}{dt} = \psi_r^K_T(c) \alpha^T \]

Because \(\psi_r \) is derivative of right shift at identity of group this equation means that 1-parameter group is determined by vector \(\alpha^T \in T_eG \) and transfers this vector along 1-parameter group without change. We call this vector field right invariant vector field. We introduce vector product on \(T_eG \) as

\[[\alpha, \beta]^T = C^R_{RS} \alpha^R \beta^S \]

Space \(T_eG \) equipped by such operation becomes Lie algebra \(\mathfrak{g}_r \). We call it right defined Lie algebra of Lie group

Theorem 3.3.2. Space of right invariant vector fields has finite dimension equal of dimension of Lie group. It is Lie algebra with product equal to commutator of vector fields and this algebra is isomorphic to Lie algebra \(\mathfrak{g}_r \).
3. Lie Group

PROOF. It follows from (3.3.5) and (3.3.6) because \(\alpha^K\) and \(\beta^K\) are constants
\[
(X_rT\alpha^T, X_rV\beta^V) = (X_rT, X_rV)\alpha^T\beta^V =
\]
\[
= C_{TV}X_rU\alpha^T\beta^V = [\alpha, \beta]^U X_rU
\]
\[\square\]

3.4. Left Shift

For the left shift \([1]-(2.4.12)\) the system (3.1.32) gets form
\[
(3.4.1) \quad \frac{\partial b^K}{\partial a^L} = \psi_L^F(b')\lambda _T^L(a)
\]
Functions \(b^K\) are solutions of system (3.4.1) and according to \([1]-(2.4.12)\) they depend on \(b^1, ..., b^n\) which we can assume as constants. Thus solution of system (3.4.1) depends on \(n\) arbitrary constants and therefore the system (3.4.1) is completely integrable. Condition of its integrability has the form
\[
\frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b')\lambda _T^V(a) + \psi_L^T(b')\frac{\partial \lambda _T^V(a)}{\partial a^R} =
\]
\[
= \frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b')\lambda _T^V(a) + \psi_L^T(b')\frac{\partial \lambda _T^V(a)}{\partial a^R}
\]
Using (3.4.1) we can write this condition in more simple form
\[
\frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b')\lambda _T^V(a) + \psi_L^T(b')\frac{\partial \lambda _T^V(a)}{\partial a^R} =
\]
\[
= \frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b')\lambda _T^V(a) + \psi_L^T(b')\frac{\partial \lambda _T^V(a)}{\partial a^R}
\]
\[
\frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b') - \frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b') =
\]
\[
= \psi_L^T(b')\psi_V^P(a)\psi_V^R(a) \left(\frac{\partial \lambda _T^V(a)}{\partial a^P} - \frac{\partial \lambda _T^V(a)}{\partial a^R} \right)
\]
Now we introduce left structural constant of Lie algebra
\[
(3.4.2) \quad C_{TV}^U = \psi_V^R(a)\psi_T^P(a) \left(\frac{\partial \lambda _T^V(a)}{\partial a^P} - \frac{\partial \lambda _T^V(a)}{\partial a^R} \right)
\]
Then we have
\[
(3.4.3) \quad \frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b') - \frac{\partial \psi_L^F(b')}{\partial b^S} \psi_V^S(b') = C_{TV}^U\psi_U^L(b')
\]
If we differentiate this equation with respect to \(a^P\) we get
\[
\frac{\partial C_{TV}^U}{\partial a^P}\psi_U^L(b') = 0
\]
because \(\psi_U^L(b')\) does not depend on \(a\). At the same time \(\psi_U^L(b')\) are line independent because \(det||\psi_U^L|| \neq 0\). Therefore
\[
\frac{\partial C_{TV}^U}{\partial a^P} = 0
\]
and \(C_{TV}^U\) are constants. We call them structural constants. From (3.4.2), it follows that
\[
(3.4.4) \quad C_{TV}^U\lambda _T^V(a)\lambda _R^V(a) = \frac{\partial \lambda _T^V(a)}{\partial a^R} - \frac{\partial \lambda _T^V(a)}{\partial a^P}
\]
We call (3.4.4) Maurer equation.

Theorem 3.4.1. Vector fields defined by differential operator

\[X_V = \psi_V^S(a) \frac{\partial}{\partial a^S} \]

are line independent and their commutator is

\[(X_T, X_V) = C_T^V X_U \]

Proof. Line independence of vector fields follows theorem 3.1.4. Then we see that according to (3.4.3)

\[(X_T, X_V) = (X_T \psi_V^D - X_V \psi_T^D) \frac{\partial}{\partial a^D} = \]

\[= \left(\psi_T^P(a) \frac{\partial \psi_V^P(a)}{\partial a^P} - \psi_V^P(a) \frac{\partial \psi_T^P(a)}{\partial a^P} \right) \frac{\partial}{\partial a^D} = \]

\[= C_T^V \psi_V^D(a) \frac{\partial}{\partial a^D} = C_T^V X_U \]

\[\square \]

Let we have the homomorphism \(f : G_1 \to G \) of the 1-parameter Lie group \(G_1 \) into the group \(G \). Image of this group is the 1-parameter subgroup. If \(t \) is coordinate on the group \(G_1 \) we can write \(a = f(t) \) and find out differential equation for this subgroup. We assume in case of left shift that \(a = f(t_1), b = f(t_2), c = ab = f(t), t = t_1 + t_2 \). Then we have

\[\frac{dc^K}{dt} = \frac{\partial c^K}{\partial b^L} \frac{db^L}{dt} = \psi_T^K(c) \lambda_L^T(b) \frac{db^L}{dt} \frac{dt_2}{dt} \]

\[\frac{dc^K}{dt} = \psi_T^K(c) \lambda_L^T(b) \frac{db^L}{dt} \frac{dt_2}{dt} \]

Left part does not depend on \(t_2 \), therefore right part does not depend on \(t_2 \). We assume that

\[\lambda_L^T(b) \frac{db^L}{dt} = \alpha^T \]

Thus we get system of differential equations

\[\frac{dc^K}{dt} = \psi_T^K(c) \alpha^T \]

Because \(\psi_t \) is derivative of right shift at identity of group this equation means that 1-parameter group is determined by vector \(\alpha^T \in T_eG \) and transfers this vector along 1-parameter group without change. We call this vector field **left invariant vector field**. We introduce vector product on \(T_eG \) as

\[[\alpha, \beta]^T = C_T^S \alpha^R \beta^S \]

Space \(T_eG \) equipped by such operation becomes Lie algebra \(\mathfrak{g}_l \). We call it **left defined Lie algebra of Lie group**

Theorem 3.4.2. Space of right invariant vector fields has finite dimension equal of dimension of Lie group. It is Lie algebra with product equal to commutator of vector fields and this algebra is isomorphic to Lie algebra \(\mathfrak{g}_l \).
PROOF. It follows from (3.4.5) and (3.4.6) because \(\alpha^K \) and \(\beta^K \) are constants

\[
(X_IT\alpha^T, X_IV\beta^V) = (X_IT, X_IV)\alpha^T\beta^V =
\]

\[
=C_{IT}^{UV}X_{lU}\alpha^T\beta^V = [a, \beta]^U X_{lU}
\]

\[
\square
\]

3.5. Relation between Algebras Lie \(\mathfrak{g}_l \) and \(\mathfrak{g}_r \)

We defined two different algebras Lie on space \(T_eG \). Our goal now is to define relation between these algebras. We start to solve this problem from analysis of Taylor expansion of group operation.

Theorem 3.5.1. Up to second order of infinitesimal, structure of operation on group Lie

\[
(3.5.1) \quad \varphi^K(a, b) = a^K + b^K - e^K + I^K_{LM}(a^M - e^M)(b^L - e^L)
\]

where we introduce infinitesimal generators of group Lie

\[
I^K_{LM} = I^K_{LM} = I^K_{rML}
\]

PROOF. We can find Taylor expansion of product by both arguments. However like in sections 3.3 and 3.4 we can assume one argument as parameter and find Taylor expansion by another argument. In this case its coefficients will depend on former argument.

Thus according to (3.1.2) and (3.1.15), product in vicinity of \(a \in G \) has Taylor expansion relative \(b \)

\[
(3.5.2) \quad \varphi^K(a, b) = a^K + \psi^K_{rL}(a)(b^L - e^L) + o(b^L - e^L)
\]

\[
ab = a + \psi_r(a)(b - e) + o(b - e)
\]

where coefficients of expansion depend on \(a \). At the same time \(\psi_r(a) \) also has Taylor expansion in vicinity of \(e \)

\[
(3.5.3) \quad \psi^K_{rL}(a) = \delta^K_L + I^K_{LM}(a^M - e^M) + o(a^M - e^M)
\]

If we substitute (3.5.3) into (3.5.2) we get expansion

\[
(3.5.4) \quad \varphi^K(a, b) = a^K + (\delta^K_L + I^K_{LM}(a^M - e^M) + o(a^M - e^M))(b^L - e^L) + o(b^L - e^L)
\]

According (3.1.3) and (3.1.16), product in vicinity of \(b \in G \) has Taylor expansion relative \(a \)

\[
(3.5.5) \quad \varphi^K(a, b) = b^K + \psi^K_{lL}(b)(a^L - e^L) + o(a^L - e^L)
\]

\[
ab = b + \psi_l(b)(a - e) + o(a - e)
\]

where coefficients of expansion depend on \(b \). At the same time \(\psi_l(b) \) also has Taylor expansion in vicinity of \(e \)

\[
(3.5.6) \quad \psi^K_{lL}(b) = \delta^K_L + I^K_{LM}(b^M - e^M) + o(b^M - e^M)
\]

If we substitute (3.5.6) into (3.5.5) we get expansion

\[
(3.5.7) \quad \varphi^K(a, b) = b^K + (\delta^K_L + I^K_{LM}(b^M - e^M) + o(b^M - e^M))(a^L - e^L) + o(a^L - e^L)
\]
(3.5.4) and (3.5.7) are Tailor expansions of the same function and they should be coincide. Comparing them we see that \(I_{LM}^K = I_{ML}^K \). Then group Lie operation has Tailor expansion (3.5.1) \(\checkmark \)

Theorem 3.5.2. Up to second order of infinitesimal, structure of operation on group Lie

(3.5.8) \[\psi_{rL}^K(a) = \delta_L^K + I_{ML}^K(a^M - e^M) + o(a^M - e^M) \]

(3.5.9) \[\psi_{rL}^K(a) = \delta_L^K + I_{LM}^K(a^M - e^M) + o(a^M - e^M) \]

(3.5.10) \[\lambda_{rL}^K(a) = \delta_L^K - I_{LM}^K(a^M - e^M) + o(a^M - e^M) \]

(3.5.11) \[\lambda_{ML}^K(a) = \delta_L^K - I_{ML}^K(a^M - e^M) + o(a^M - e^M) \]

Proof. (3.5.8) and (3.5.9) follow from differentiating of (3.5.1) with respect to \(a \) or \(b \) and definitions (3.1.15) and (3.1.16).

Now we assume that \(\lambda_{rL}^K(a) \) has Tailor expansion

(3.5.12) \[\lambda_{rL}^K(a) = \delta_L^K + J_{LM}^K(a^M - e^M) + o(a^M - e^M) \]

Then substituting (3.5.12) and (3.5.8) into equation

\[\lambda_{rL}^K(a) \psi_{rL}^K(a) = \delta_M^K \]

we get up to order 1

\[(\delta_L^K + I_{NL}^K(a^N - e^N) + o(a^N - e^N)) (\delta_L^K + J_{MP}^L(a^P - e^P) + o(a^P - e^P)) = \delta_M^K \]

\[\delta_M^K + (J_{MN}^K + I_{NM}^K)(a^N - e^N) + o(a^P - e^P) = \delta_M^K \]

Therefore \(J_{MN}^K + I_{NM}^K = 0 \) and substituting \(J_{MN}^K \) into (3.5.12) we get (3.5.10).

The same way we can prove (3.5.11). \(\checkmark \)

The next theorem follows immediately from theorem 3.5.2.

Theorem 3.5.3.

(3.5.13) \[\frac{\partial \psi_{rL}^K(a)}{\partial a^M} \bigg|_{a=e} = I_{ML}^K \]

(3.5.14) \[\frac{\partial \psi_{rL}^K(a)}{\partial a^M} \bigg|_{a=e} = I_{LM}^K \]

(3.5.15) \[\frac{\partial \lambda_{rL}^K(a)}{\partial a^M} \bigg|_{a=e} = -I_{LM}^K \]

(3.5.16) \[\frac{\partial \lambda_{ML}^K(a)}{\partial a^M} \bigg|_{a=e} = -I_{ML}^K \]

On the base of theorem 3.5.3 we can get more detailed information about left and right group algebras Lie. Because definition (3.3.2) does not depend on \(a \) we can estimate it when \(a = e \). Using (3.1.17) and (3.5.16) we get

\[C_{rTV}^U = \delta_T^L \delta_V^R (-I_{RP}^U + I_{PR}^U) = I_{TV}^U - I_{VT}^U \]

Using (3.1.18) and (3.5.15) we get

\[C_{rTV}^U = \delta_T^L \delta_V^R (-I_{RP}^U + I_{PR}^U) = I_{VT}^U - I_{TV}^U \]

Therefore

\[C_{rTV}^U = -C_{lTV}^U \]
and algebras \(g_l \) and \(g_r \) are anti-isomorphic. Usually we assume that \(g_l \) is Lie algebra of Lie group and use notation

\[
C_{TV}^U = C_{TV}^U
\]

Let \(g = T_e G \) be Lie algebra of Lie group \(G \) with an operation

\[
\alpha_3^L = C_{MN}^L \alpha_1^M \alpha_2^N \quad \alpha_3 = C(\alpha_1, \alpha_2)
\]
CHAPTER 4

Representation of Lie Group

4.1. Representation of Lie Group

We will explore a representation of a Lie group in a continuous vector space. Let

\[v' = f(a)(v) \]
\[v'' = f(b)(v') = f(c)(v) \]

Let \(e \) be the basis of vector space \(M \). Then expansion of vector \(f(a)(v) \) has form

\[f(a)(v) = f_i(a)v_i \]

Theorem 4.1.1. Basis vector of representation of Lie group is defined by equation

\[\xi(v') = \beta(b,v') \frac{\partial f(b)(v')}{\partial b} \bigg|_{b=e} \]

\[\xi^a_L(v') = \beta^a_p(b,v') \frac{\partial f^p(b)(v')}{\partial b} \bigg|_{b=e} \]

where we introduced operator \(\beta(a,v) \) such that

\[\beta \frac{\partial f(a)(v)}{\partial a} = 1 \]

\[\beta^a_p \frac{\partial f^p(a)(v)}{\partial a} = \delta^a_b \]

Covariant representation of Lie group \(G \) in set \(M \)

\[c = ba \]

satisfies to the system of differential equations

\[\frac{\partial f(a)(v)}{\partial a} = \xi(v') \lambda_r(a) \frac{\partial f_i(a)(v)}{\partial a^M} = \xi^i_L(v') \lambda^r_L(a) \]

Contravariant representation of Lie group \(G \) in set \(M \)

\[c = ab \]

satisfies to the system of differential equations

\[\frac{\partial f(a)(v)}{\partial a} = \xi(v') \lambda_i(a) \frac{\partial f^i(a)(v)}{\partial a^M} = \xi^i_L(v') \lambda^i_L(a) \]

PROOF. We express \(b \) through \(a \) and \(c \) and differentiate the equation

\[f(c)(v) = f(b)(f(a)(v)) \]

\[^{4.1} \text{In the section [1]-2.4, we reviewed the general concept of representation of group.} \]

\[^{4.2} \text{See equations [1]-(2.4.1) and [1]-(2.4.5).} \]

27
with respect to \(a \)

\[
\frac{\partial \overline{f}(b)(\overline{v})}{\partial b} \frac{\partial b}{\partial a} + \frac{\partial \overline{f}(b)(\overline{v}')} {\partial a} = 0
\]

(4.1.7)

Left part does not depend on \(b \), so and right part does not depend on \(b \). We define right part when \(b = e \).

If the representation is covariant, then, from equations (4.1.3), (3.1.38), when \(ca^{-1} = e \), it follows that

(4.1.8) \[
\left. \frac{\partial b}{\partial a} \right|_{ca^{-1}=e} = \left. \frac{\partial (ca^{-1})}{\partial a} \right|_{ca^{-1}=e} = -\psi_r(ca^{-1}) \mid_{ca^{-1}=e} \psi_r^{-1}(a) = \lambda_l(a)
\]

Equation (4.1.4) follows from equations (4.1.1), (4.1.8), (4.1.7).

If the representation is contravariant, then, from equations (4.1.5), (3.1.19), when \(a^{-1}c = e \), it follows that

(4.1.9) \[
\left. \frac{\partial b}{\partial a} \right|_{a^{-1}=e} = \left. \frac{\partial (a^{-1}c)}{\partial a} \right|_{a^{-1}=e} = -\psi_l(a^{-1}c) \mid_{a^{-1}=e} \psi_l^{-1}(a) = \lambda_r(a)
\]

Equation (4.1.4) follows from equations (4.1.1), (4.1.9), (4.1.7). \(\square \)

Theorem 4.1.2. \(\xi \) is operator mapping algebra \(g \) to algebra of left-invariant vector fields on \(M \). Element \(\alpha \in g \) creates left-invariant vector field

\[
B^\alpha = \xi^a_M(u')^\alpha M
\]
on manifold \(M \).

Proof. \(\xi \) maps algebra Lie \(g \) into tangent plane of manifold. If \(\alpha \in g \) depends on parameter \(t \), we can write differential equation

\[
\frac{df}{dt} = \xi(u')\lambda_l(a)\lambda_r(a) \frac{da}{dt}
\]

If \(a \) is element of 1-parameter subgroup created by element \(\alpha \in g \), then it satisfies equation. Therefore using (3.1.19) we get

\[
\frac{du'}{dt} = \xi(u')\lambda_r(a)\psi_r(a)\alpha = \xi(u')\alpha
\]

\(\square \)

4.2. Algebraic Properties of Representation

Theorem 4.2.1. Let \(\overline{f}_1 \) be the representation of group \(G \) in vector space \(V_1 \). Let \(\overline{f}_2 \) be the representation of group \(G \) in vector space \(V_2 \). Let geometric object \(\overline{v} \) is tensor product of geometric objects \(\overline{v}_1 \in V_1 \) and \(\overline{v}_2 \in V_2 \)

(4.2.1) \[
\overline{f}(a)(\overline{v}_1 \otimes \overline{v}_2) = \overline{f}_1(a)(\overline{v}_1) \otimes \overline{f}_2(a)(\overline{v}_2)
\]

If representations \(\overline{f}_1 \) and \(\overline{f}_2 \) are covariant, then mapping \(\overline{f} \) is covariant representation of group \(G \) in vector space \(V = V_1 \otimes V_2 \). If representations \(\overline{f}_1 \) and \(\overline{f}_2 \) are contravariant, then mapping \(\overline{f} \) is contravariant representation of group \(G \) in vector space \(V = V_1 \otimes V_2 \). The representation \(\overline{f} \) is called tensor product of representations and

(4.2.2) \[
\overline{\xi} = \overline{\xi}_1 \otimes \overline{\xi}_2 = \overline{\xi}_1(\overline{v}_1) \otimes \overline{v}_2 + \overline{v}_1 \otimes \overline{\xi}_2(\overline{v}_2)
\]
4.2. Algebraic Properties of Representation

Proof. First of all let us show that we get new representation. If we apply transformations for \(a \in G \) and \(b \in G \) consequently then we have

\[
\mathcal{F}(a)(\mathcal{F}(b)(v_1 \otimes v_2)) = \mathcal{F}_1(a)(\mathcal{F}_1(b)v_1) \otimes \mathcal{F}_2(a)(\mathcal{F}_2(b)v_2)
\]

(4.2.3)

Such if \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are covariant presentations then from (4.2.3) it follow, that

\[
\mathcal{F}(a)(\mathcal{F}(b)(v_1 \otimes v_2)) = \mathcal{F}_1(ab)(v_1) \otimes \mathcal{F}_2(ab)(v_2)
\]

Therefore \(\mathcal{F} \) is also covariant representation. If \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are contravariant presentations then from (4.2.3) it follow, that

\[
\mathcal{F}(a)(\mathcal{F}(b)(v_1 \otimes v_2)) = \mathcal{F}_1(ba)(v_1) \otimes \mathcal{F}_2(ba)(v_2)
\]

Therefore \(\mathcal{F} \) is also contravariant representation.

Differentiating equation (4.2.1) with respect to \(a \) we get

\[
\frac{\partial \mathcal{F}}{\partial a} = \frac{\partial \mathcal{F}_1}{\partial a} \otimes \mathcal{F}_2 + \mathcal{F}_1 \otimes \frac{\partial \mathcal{F}_2}{\partial a}
\]

(4.2.4)

We get (4.2.2) from (4.2.4) by definition when \(a = e \).

Why this important that \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are of the same type? We see from (4.2.3) that if \(\mathcal{F}_1 \) is covariant representation and \(\mathcal{F}_2 \) is contravariant representation we cannot tell what should be in the right side of this equation: \(ab \) or \(ba \). We still have family of transformation depending on \(a \in G \). This dependence will be smooth and we can write down its derivative. However as we can see product of transformations from this family in general does not belong to this family.

Theorem 4.2.2. Let vector space \(V \) be direct sum of vector spaces \(V_1 \) and \(V_2 \)

\[
V = V_1 \oplus V_2
\]

Let \(\mathcal{F}_1 \) be the representation of group \(G \) in vector space \(V_1 \). Let \(\mathcal{F}_2 \) be the representation of group \(G \) in vector space \(V_2 \). Let geometric object \(\mathfrak{v} \) is direct sum of geometric objects \(\mathfrak{v}_1 \in V_1 \) and \(\mathfrak{v}_2 \in V_2 \).

\[
\mathcal{F}(a)(\mathfrak{v}_1 \oplus \mathfrak{v}_2) = \mathcal{F}_1(a)(\mathfrak{v}_1) \oplus \mathcal{F}_2(a)(\mathfrak{v}_2)
\]

(4.2.5)

If representations \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are covariant, then mapping \(\mathcal{F} \) is covariant representation of group \(G \) in vector space \(V = V_1 \oplus V_2 \). If representations \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are contravariant, then mapping \(\mathcal{F} \) is contravariant representation of group \(G \) in vector space \(V = V_1 \oplus V_2 \). The representation \(\mathcal{F} \) is called direct sum of representations and

\[
\mathcal{F}(\mathfrak{v}_1 \oplus \mathfrak{v}_2) = \begin{pmatrix} \mathcal{F}_1(\mathfrak{v}_1) & 0 \\ 0 & \mathcal{F}_2(\mathfrak{v}_2) \end{pmatrix}
\]

Proof. We can just get derivative of mapping (4.2.5).
4.3. Linear Representation of Lie Group

Theorem 4.3.1. In case of linear representation

\[v' = \mathcal{F}(a)(v) \quad f^i(a)(v) = f^i_j(a)v^j \]

basis vector of representation has form

\[\xi_i(v') = \mathcal{F}_i^j(a) v^j \]

where we introduce infinitesimal generators of representation

\[I^i_j = \frac{\partial f^i_j}{\partial a^M} \bigg|_{a=e} = \frac{\partial f}{\partial a} \bigg|_{a=e} \]

Proof. If we substitute

\[f^i(a)(v) = f^i_j(a)v^j \]

into (4.1.2), we get

\[\xi_i(v') = f^{-1}_{j k}(b) \frac{\partial f^k_j(b)}{\partial b^L} v^j \bigg|_{b=e} = I^i_j v^j \]

Theorem 4.3.2. Linear covariant representation satisfies to differential equations

\[\frac{\partial v^i}{\partial a^M} = I^i_j \lambda^L_{r M}(a) v^j \]

\[\frac{\partial f^i}{\partial a^M} = I^i_j f^j_k \lambda^L_{r M}(a) \]

\[\frac{\partial f}{\partial a} = I f \lambda_r(a) \]

Proof. (4.3.4) is corollary of (4.1.4) and (4.3.2). If we substitute (4.3.1) into (4.3.4), we get

\[\frac{\partial f^a}{\partial a^M} u^c = I_{a b}^r \lambda^L_{r M}(a) f^b_c u^c \]

(4.3.5) follows from this.

Theorem 4.3.3. Linear contravariant representation satisfies to differential equations

\[\frac{\partial u^i}{\partial a^M} = I^i_j u^j \lambda^L_{r M}(a) \]

\[\frac{\partial f^i}{\partial a^M} = I^i_j f^j_k \lambda^L_{r M}(a) \]

\[\frac{\partial f}{\partial a} = I f \lambda_l(a) \]

Proof. (4.3.6) is corollary of equations (4.1.6) and (4.3.2). If we substitute (4.3.1) into (4.3.6), we get

\[\frac{\partial f^a}{\partial a^M} u^c = I_{a b}^r \lambda^L_{r M}(a) f^b_c u^c \]

(4.3.7) follows from this.
4.4. Algebraic Properties of Linear Representation

Theorem 4.4.1. Let representations f_1 and f_2 are either both covariant or both contravariant. Let representation f be their tensor product. Then

\begin{equation}
I = I_1 \otimes E_2 + E_1 \otimes I_2
\end{equation}

Proof. Differentiating equation $f(a) = f_1(a) \otimes f_2(a)$ with respect to a we get

\begin{equation}
\frac{\partial f}{\partial a} = \frac{\partial f_1}{\partial a} \otimes f_2 + f_1 \otimes \frac{\partial f_2}{\partial a}
\end{equation}

We get (4.4.1) from (4.4.2) by definition when $a = e$. □

Theorem 4.4.2. If f is linear representation of group G in vector space M, then mapping $h(a) = f(a^{-1})$ is also linear representation of group G in vector space M

\begin{equation}
I_{h^{-1}} = -I_{f^{-1}}
\end{equation}

If f is linear covariant representation, then h is contravariant representation

\begin{equation}
\frac{\partial f^i}{\partial a^M} = I_{f^{-1}} f^i L^L_{M}(a) \quad \frac{\partial h^i}{\partial a^M} = -I_{f^{-1}} h^i L^L_{M}(a)
\end{equation}

If f is linear contravariant representation, then h is covariant representation

\begin{equation}
\frac{\partial f^i}{\partial a^M} = I_{f^{-1}} f^i L^L_{M}(a) \quad \frac{\partial h^i}{\partial a^M} = -I_{f^{-1}} h^i L^L_{M}(a)
\end{equation}

Proof. From the theorem [1]-2.4.10, it follows that h is covariant representation when f is contravariant. Similar way we prove the statement that h is contravariant representation when f is covariant. Since the transformation inverced to linear also is linear, than the representation h is also linear.

To prove the theorem we need to find infinitesimal generators of the representation h. According to the equation (4.3.3)

\begin{equation}
I_{h^{-1}} = \frac{\partial f^i}{\partial a^M} = \frac{\partial f^i(a^{-1})}{\partial a^M} \quad \frac{\partial f^i(a^{-1})}{\partial a^{-1} N} \quad \frac{\partial f^i(a)}{\partial a^{-1} N} \quad \frac{\partial f^i(a)}{\partial a^{-1} N}
\end{equation}

It is evident that

\begin{equation}
\frac{\partial f^i(a^{-1})}{\partial a^{-1} N} \quad \frac{\partial f^i(a)}{\partial a} = I_{f^{-1} N}
\end{equation}

From the equation (3.1.34), it follows that

\begin{equation}
\frac{\partial a^{-1} N}{\partial a M} \quad \frac{\partial a^{-1} N}{\partial a M} = -\psi_{1,K}(a^{-1}) \lambda_{r-M}(a) \quad \delta_{M} = -\delta_{M}
\end{equation}

The equation (4.4.3) follows from equations (4.4.6), (4.4.7), (4.4.8). □

Theorem 4.4.3. Let vector space V be direct sum of vector spaces V_1 and V_2

\begin{equation}
V = V_1 \oplus V_2
\end{equation}
Let representations of group G in vector spaces V_1 and V_2 are either both covariant or both contravariant. Then we can define representation of group G in vector space V and

$$I_P = \begin{pmatrix} I_{a_1}^{b_1} & 0 \\ 0 & I_{a_2}^{b_2} \end{pmatrix}$$

Proof. We can just get derivative of mapping

$$f(a)(v_1 \oplus v_2) = f_1^{a_1}(a)(v_1^{b_1} e_{a_1}) + f_2^{a_2}(a)(v_2^{b_2} e_{a_2})$$
CHAPTER 5

Differential Properties of Geometric Object

5.1. Covariant Derivative

We want to study how coordinates of the geometric object (4.3.1) change when we move along manifold. We assume that $GL(n)$ is the main group of transformations. Local basis has transformation

$$a^k_l = \delta^k_l + \Gamma^k_{lp} dx^p$$

Therefore

$$v'^\alpha = v^\beta (\delta^\alpha^\beta + \Gamma^\alpha_{\beta p}^l (\delta^k_l - \Gamma^k_{lp} dx^p - \delta^k_l))$$

If we introduce connection

$$
\Gamma^\alpha_{\beta p} = \Gamma^\beta_{\beta p} + \Gamma^\Gamma_{\beta k}^l v^\gamma
$$

then we get

$$Dv^\alpha = v'^\alpha - v^\alpha = -\Gamma^\alpha_{\beta p}^l v^\beta dx^p$$

This allows us to introduce covariant derivative

$$v^\alpha_{;k} = v^\alpha_{,k} + \Gamma^\alpha_{\beta k}^l v^\beta$$

Consider commutator of two derivatives

$$v^\alpha_{;kl} - v^\alpha_{;lk} = (\Gamma^\alpha_{\beta k}^l - \Gamma^\alpha_{\beta l}^k + \Gamma^\gamma_{\beta k}^l v^\gamma) v^\beta + \Gamma^\alpha_{\beta k}^l v^\beta$$

(5.1.1)

$$v^\alpha_{;kl} - v^\alpha_{;lk} = R^\alpha_{\beta lk} v^\beta - T_{kp}^\beta v^\alpha$$

5.2. Lie Derivative

Vector field ξ^k on manifold generates infinitesimal transformation

$$x'^k = x^k + \epsilon \xi^k$$

which leads to Lie derivative. Lie derivative tells us how the geometric object changes when we move along the vector field.

Consider the Lie derivative for geometric object (4.3.1). In this case we have transformation

$$a^k_l = \delta^k_l + \epsilon a^k_j$$
According to (4.3.2), the geometric object (4.3.1) has Lie derivative

\[L_\alpha v^\alpha = \frac{v^\alpha(x') - v^\alpha(x)}{\epsilon} = \frac{(v^\alpha + v^\alpha_\beta \epsilon a^\beta) - f^\alpha_\beta(a)v^\beta}{\epsilon} \]

\[= \frac{v^\alpha + v^\alpha_\beta \epsilon a^\beta - (\delta^\alpha_\beta + I^\alpha_\beta l(a^k_l - \delta^k_l))v^\beta}{\epsilon} \]

\[= \frac{v^\alpha + v^\alpha_\beta \epsilon a^\beta - v^\alpha - I^\alpha_\beta l(\delta^k_l + \epsilon a^k_l - \delta^k_l))v^\beta}{\epsilon} \]

\[= v^\alpha_\beta a^\beta - I^\alpha_\beta l a^k_l v^\beta \]

We can express this derivative through covariant derivative

\[L_\alpha v^\alpha = (v^\alpha_\beta - I^\alpha_\beta l (a^k_l - \Gamma^k_l \beta) - \Gamma^\alpha_\beta \epsilon a^\beta) - I^\alpha_\beta l (a^k_l - \Gamma^k_l \beta) v^\beta = \]

\[= v^\alpha_\beta a^\beta - I^\alpha_\beta l a^k_l v^\beta + I^\alpha_\beta l S_k l a^\beta v^\beta \]
CHAPTER 6

References

[1] Aleks Kleyn, Representation of \mathfrak{F}-Algebra,
eprint arXiv:0912.3315 (2009)
[2] Eisenhart, Continuous Groups of Transformations, Dover Publications,
New York, 1961
CHAPTER 7

Index

basis vector of representation of Lie group 27
complete system of linear partial differential equations 10
completely integrable system 7
direct sum of representations 29
essential parameters in a set of functions 11
infinitesimal generator 30
infinitesimal generators of group Lie 24
Jacobian complete system of differential equations 10
left defined Lie algebra of Lie group 23
left invariant vector field 23
left structural constant of Lie algebra 22
Lie derivative 33
Lie group basic operators 16
right defined Lie algebra of Lie group 21
right invariant vector field 21
right structural constant of Lie algebra 20
tensor product of representations 28
CHAPTER 8

Special Symbols and Notations

$A_{K}^{L}(a,b)$ derivative of left shift 15
$A_{L}(a,b)$ derivative of left shift in 1-
parameter Lie group 18
$A_{K}^{L}(a,b)$ 15
$A_{L}(a,b)$ 15
$A_{R}(a,b)$ derivative of right shift in 1-
parameter Lie group 18

$C_{U}^{V_{T}}$ left structural constant of Lie
algebra 22
$C_{R}^{V_{T}}$ right structural constant of Lie
algebra 20
ξ^{v} basis vector of representation of Lie
group 27
ξ^{v}_{L} coordinates of basis vector of
representation of Lie group 27

\mathfrak{g} algebra Lie of group Lie 26
\mathfrak{g}_{L} left defined algebra Lie of group Lie 23
\mathfrak{g}_{R} right defined algebra Lie of group Lie
21

I_{M}^{L} infinitesimal generator of
representation 30
I_{L}^{K} Lie group infinitesimal generators 24

T_{G} tangent plane to group G 16

$\lambda_{L}(a)$ inverse operator to operator ψ_{L} 16
$\lambda_{R}(a)$ inverse operator to operator ψ_{R} 16

$\psi_{N}^{L}(b)$ left basic operator of group Lie 16
$\psi_{L}(b)$ left basic operator of Lie
1-parameter group 19

$\psi_{N}^{R}(a)$ right basic operator of group Lie
16
$\psi_{R}(a)$ right basic operator of Lie
1-parameter group 19

$\varphi^{L}(a_{1},a_{2})$ Lie group composition law 15
Дифференциальные свойства геометрического объекта

Александр Клейн

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Аннотация. В книге рассмотрены дифференциальные уравнения для ковариантного и контравариантного представлений группы Ли в векторном пространстве. При переходе к касательному расслоению дифференцируемого многообразия мы получаем теорию параллельного переноса геометрического объекта.
Оглавление

Глава 1. Введение .. 5
 1.1. Об этой книге ... 5
 1.2. Соглашения .. 5

Глава 2. Дифференциальные уравнения 7
 2.1. Вполне интегрируемые системы 7
 2.2. Линейный дифференциальный оператор 9
 2.3. Полная система линейных дифференциальных уравнений в частных производных 10
 2.4. Существенные параметры семейства функций 11

Глава 3. Группа Ли ... 15
 3.1. Операция на группе Ли 15
 3.2. 1-параметрическая группа 18
 3.3. Правый сдвиг ... 20
 3.4. Левый сдвиг ... 22
 3.5. Отношение между алгебрами Ли g_l и g_r 24

Глава 4. Представление группы Ли 27
 4.1. Представление группы Ли 27
 4.2. Алгебраические свойства представления 29
 4.3. Линейное представление группы Ли 30
 4.4. Алгебраические свойства линейного представления ... 31

Глава 5. Дифференциальные свойства геометрического объекта 33
 5.1. Ковариантная производная 33
 5.2. Производная Ли ... 33

Глава 6. Список литературы 35

Глава 7. Предметный указатель 36

Глава 8. Специальные символы и обозначения 37
Глава 1

Введение

1.1. Об этой книге

Эта книга основана на дипломном проекте, написанном мною в одесском университете. Мне очень повезло, что мой преподаватель Гаврильченко Михаил Леонидович прочёл курс лекций "Группы и алгебры Ли". Эти лекции были основаны на книге [2]. Впоследствии я записал уравнения группы Ли для конкретного случая представления группы GL в векторном пространстве геометрических объектов.

Если мы рассмотрим касательное расслоение на дифференцируемом многообразии, то движение из слоя в слой порождает непрерывное семейство преобразований. Комбинируя дифференциальные уравнения этого семейства преобразований и дифференциальные уравнения геометрического объекта, мы получим уравнения параллельного переноса геометрического объекта.

Впоследствии группа GL была заменена на произвольную группу Ли. Именно в таком виде эта теория была включена в книгу. Соответственно этому главы книги имеют следующее содержание. Представление группы Ли тесно связано с теорией дифференциальных уравнений. В главе 2 дано краткое изложение теории дифференциальных уравнений, посвящённое вполне интегрируемым системам дифференциальных уравнений. В главе 3 я записываю дифференциальные уравнения для группы Ли. Дифференциальные уравнения представления группы Ли записаны в главе 4.

1.2. Соглашения

(1) Без сомнения, у читателя моих статей могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.
Глава 2

Дифференциальные уравнения

2.1. Вполне интегрируемые системы

Пусть нам дана система \(nm \) дифференциальных уравнений в частных производных

\[
\frac{\partial \theta^\alpha}{\partial x^i} = \psi^\alpha_i (\theta^1, ..., \theta^m, x^1, ..., x^n) = \psi^\alpha_i (\theta, x)
\]

\(1 \leq \alpha \leq m \quad 1 \leq i \leq n \quad \theta^\alpha = \theta^\alpha (x^1, ..., x^n) \)

Эта система разрешена относительно всех частных производных и эквивалентна системе уравнений в полных дифференциалах

\[
d\theta^\alpha = \psi^\alpha_i (\theta, x) dx^i
\]

Чтобы найти условия интегрируемости, мы дифференцируем (2.1.1) по \(x^j \).

\[
\frac{\partial^2 \theta^\alpha}{\partial x^j \partial x^i} = \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_j}{\partial \theta^\sigma} \frac{\partial \theta^\sigma}{\partial x^i}
= \frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_j}{\partial \theta^\sigma} \psi^\sigma_i
\]

Так как вторая производная непрерывной функции не зависит от порядка дифференцирования, мы ожидаем, что

\[
\frac{\partial \psi^\alpha_i}{\partial x^j} + \frac{\partial \psi^\alpha_j}{\partial \theta^\sigma} \psi^\sigma_i = \frac{\partial^2 \theta^\alpha}{\partial x^j \partial x^i} = \frac{\partial \psi^\alpha_j}{\partial \theta^\sigma} \psi^\sigma_i
\]

Определение 2.1.1. Мы называем систему дифференциальных уравнений (2.1.1) \textit{вполне интегрируемой системой}, если условие (2.1.2) удовлетворено тождественно. \(\square \)

Решение вполне интегрируемой системы (2.1.1) можно разложить в ряд Тейлора

\[
\theta^\alpha = C^\alpha + \left(\frac{\partial \theta^\alpha}{\partial x^i} \right)_{x=x_0} (x^i - x_0^i) + \frac{1}{2} \left(\frac{\partial^2 \theta^\alpha}{\partial x^i \partial x^j} \right)_{x=x_0} (x^i - x_0^i)(x^j - x_0^j) + ...
\]

Здесь \(C^\alpha \ (1 \leq \alpha \leq m) \) - константы,

\[
\left(\frac{\partial \theta^\alpha}{\partial x^i} \right)_{x=x_0} = \psi^\alpha_i (C^1, ..., C^m, x_0^1, ..., x_0^n)
\]

2\(^1\)Эта глава написана под влиянием [2]
Мы получим остальные коэффициенты дифференцированием правой части (2.1.1) и подстановкой C^α и x_0^α. Мы говорим о решении, когда ряд (2.1.3) сходится. Согласно теореме Коши и Ковалевской это справедливо, если ψ_{i}^α аналитичны по всем аргументам.

В окрестности точки $(x_1^0, ..., x_n^0)$, для которой ряд (2.1.3) сходится, мы имеем решение

$$\theta^\alpha = \varphi^\alpha(x^1, ..., x^n, C^1, ..., C^m)$$

определенное m константами.

Возможно, что условие (2.1.2) не удовлетворено тождественно. Тогда система дифференциальных уравнений (2.1.1) не является вполне интегрируемой и уравнение (2.1.2) накладывает ограничения на функции θ^α. Следовательно, функции θ^α удовлетворяют (2.1.1) и (2.1.2). Предположим, что (2.1.2) накладывает S_1 ограничений. Мы дифференцируем их по x^k и получим новые S_2 уравнений. Если эти уравнения не удовлетворены тождественно, мы можем повторить этот процесс снова.

Так как мы не можем иметь более чем m ограничений, эта цепь обрывается. Если система дифференциальных уравнений (2.1.1) имеет решение, это решение удовлетворяет всем ограничениям, в противном случае эти ограничения противоречивы.

Теорема 2.1.2. Необходимое и достаточное условие существования решения системы дифференциальных уравнений (2.1.1) - это существование такого N, что $S_1, ..., S_N$ алгебраически совместимы, и S_{N+1} является их следствием. Если мы получили p ограничений, то общее решение зависит от $m - p$ произвольных констант.

Доказательство. Мы доказали, что это условие необходимо. Теперь мы покажем, что это условие достаточно. Предположим, что мы получили p ограничений

$$\Phi^\gamma(\theta, x) = 0 \quad \gamma = 1, ..., p$$

Так как

$$Rg\left\|\frac{\partial \Phi^\gamma}{\partial \theta^\alpha}\right\| = p$$

мы можем выразить p переменных θ^α через остальные, пользуясь (2.1.5). Если мы правильно перенумеруем переменные, мы получим

$$\theta^\nu = \phi^\nu(\theta^{p+1}, ..., \theta^m, x) \quad \nu = 1, ..., p$$

Подставим (2.1.6) в (2.1.1) и приложим

$$\frac{\partial \theta^\alpha}{\partial x^i} = \psi_{i}^\alpha(\theta^{p+1}, ..., \theta^m, x^1, ..., x^n) \quad \alpha = p + 1, ..., m$$

Условие (2.1.2) удовлетворено. Система дифференциальных уравнений (2.1.1) вполне интегрируема и имеет решение, зависящее от $m - p$ произвольных констант. Первые p уравнения удовлетворены в силу (2.1.6), когда $\theta^{p+1}, ..., \theta^m, x$ являются решениями (2.1.7). □
2.2. Линейный дифференциальный оператор

Пусть даны r дифференциальных операторов

$$X_a f = \xi_a^i \frac{\partial f}{\partial x^i}$$

Оператор (2.2.1) линеен

$$X_a (f + g) = X_a f + X_a g$$

$$X_a (\lambda f) = \lambda X_a f \quad \lambda = \text{const}$$

Произведение этих операторов имеет вид

$$X_a X_b f = X_a (X_b f) = \xi_a^i \frac{\partial f}{\partial x^i} \left(\xi_b^j \frac{\partial f}{\partial x^j} \right)$$

$$= \xi_a^i \xi_b^j \frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial f}{\partial x^j} X_a \xi_b^j + \xi_a^i \xi_b^j \frac{\partial^2 f}{\partial x^i \partial x^j}$$

Мы использовали (2.2.1) на последнем шаге. Это не оператор вида (2.2.1). Однако так как второе слагаемое симметрично относительно a и b, мы можем определить коммутатор

$$X_a X_b = X_a X_b f - X_b X_a f = (X_a \xi_b^i - X_b \xi_a^i) \frac{\partial f}{\partial x^i}$$

Это линейная операция и мы зовём её скобкой Пуассона. Косая симметрия этого коммутатора следует из (2.2.2).

Простое вычисление показывает, что

$$((X_a, X_b), X_c) f = (X_a (X_b, X_c) f) - X_c (X_a, X_b) f = (X_a \xi_b^i - X_b \xi_a^i) \xi_c^j \frac{\partial f}{\partial x^i}$$

$$= \left(\frac{\partial \xi_c^j}{\partial x^k} X_a \xi_b^k - \frac{\partial \xi_b^j}{\partial x^k} X_a \xi_c^k - \frac{\partial \xi_a^j}{\partial x^k} X_b \xi_c^k + \xi_c^k \xi_b^j \frac{\partial^2 \xi_a^i}{\partial x^i \partial x^j} + \xi_c^j \xi_b^m \frac{\partial \xi_a^i}{\partial x^m \partial x^j} + \xi_c^j \xi_b^m \frac{\partial \xi_a^i}{\partial x^m \partial x^j} + \xi_c^k \xi_b^m \frac{\partial \xi_a^i}{\partial x^m \partial x^j} \right) \frac{\partial f}{\partial x^i}$$

Если мы изменяем порядок параметров, мы окончательно получим уравнение

$$((X_a, X_b), X_c) f + ((X_b, X_c), X_a) f + ((X_c, X_a), X_b) f = 0$$

(2.2.4) - это условие Якоби.

Теорема 2.2.1. Коммутатор линейной комбинации операторов

$$X'_a f = \lambda_a^b X_b$$

где λ_a^b - функция x, выражается через эти операторы и их коммутаторы

$$X'_a, X'_b = \mu^d_{ac} X_d f - \mu^d_{bd} X_d f + \lambda_a^d \lambda_c^b (X_b, X_a) f$$

Доказательство. Коммутатор имеет вид

$$X'_a, X'_b f = (\lambda_a^b X_b, \lambda_b^d X_d) f$$

$$= \lambda_a^b X_b \lambda_d^c X_d f - \lambda_b^d X_d \lambda_a^b X_b f$$

$$= \lambda_a^b X_b \lambda_d^c X_d f + \lambda_b^d X_d \lambda_a^b X_b f - \lambda_b^d X_d \lambda_b^d X_d f - \lambda_c^a \lambda_a^b X_d X_b f$$

(2.2.5) следует из (2.2.6), если положить

$$\mu^d_{ac} = \lambda_a^b X_b \lambda_c^d$$
2.3. Полная система линейных дифференциальных уравнений в частных производных

Теперь мы хотим изучить систему дифференциальных уравнений

\[(2.3.1) \quad X_a f = 0 \quad X_a = \xi_a \frac{\partial}{\partial x^i} \quad 1 \leq i \leq n \quad 1 \leq a \leq r\]

Мы положим, что

\[(2.3.2) \quad \text{rank} \|\xi_a\| = r \leq n\]

Это значит, что уравнения (2.3.1) линейно независимы.

Если \(r = n\), то, очевидно, единственное решение будет \(f = \text{const}\). Утверждение, что каждое решение уравнений (2.3.1) является также решением уравнения

\[(2.3.3) \quad (X_a, X_b)f = 0\]

следует из (2.2.2). Если

\[(2.3.4) \quad (X_a, X_b)f = \gamma_c X_c f\]

где \(\gamma\) - функции \(x\), то система дифференциальных уравнений (2.3.1) и (2.3.3) эквивалентна системе дифференциальных уравнений (2.3.1). Мы не можем знать заранее, накладывает ли (2.3.3) новые условия на (2.3.1). Присоединим к системе дифференциальных уравнений (2.3.1) те уравнения системы (2.3.3), для которых не справедливо (2.3.4). Получим \(s\) уравнений, \(s \geq r\). Для новой системы повторим тот же процесс, получим \(t\) уравнений, \(t \geq s\), и т. д..

В результате последовательности указанных действий мы можем получить \(n\) уравнений. В этом случае система дифференциальных уравнений (2.3.1) имеет единственное решение \(f = \text{const}\), так как

\[\frac{\partial f}{\partial x^i} = 0\]

В противном случае мы получим \(u\) уравнений, \(u \leq n\), для которых выполняется условие (2.3.4). В этом случае полученная система дифференциальных уравнений называется полной порядка \(u\). Решение системы дифференциальных уравнений (2.3.1) является решением полной системы дифференциальных уравнений.

Теорема 2.3.1. Если система дифференциальных уравнений (2.3.1) полна, то полна также система дифференциальных уравнений

\[(2.3.5) \quad X_a f = \lambda_b X_b f = 0\]

где \(\lambda\) функции \(x\)

\[(2.3.6) \quad \det \|\lambda_b\| \neq 0 \quad 1 \leq a, b \leq r\]

Доказательство. Из (2.3.4) следует, что правая сторона (2.2.5) линейна относительно \(X_a f\), которые в силу (2.3.5), (2.3.6) линейно выражается через операторы \(X_a f\). Следовательно, из (2.2.5) получим выражения вида (2.3.4), что и доказывает утверждение.
В силу (2.3.2), не нарушая общности, положим
\[(2.3.7) \quad \det \| \xi_{ia} \| \neq 0 \quad 1 \leq i, a \leq r\]
Следовательно, мы можем разрешить систему дифференциальных уравнений (2.3.1) относительно \(\frac{\partial f}{\partial x^a}, \ldots, \frac{\partial f}{\partial x^r} \) и записать результат в виде
\[(2.3.8) \quad X'_a f = \frac{\partial f}{\partial x^a} + \psi^t_a \frac{\partial f}{\partial x^t} = 0 \quad a = 1, \ldots, r \quad t = r + 1, \ldots, n\]
Эти уравнения имеют вид (2.3.5) и, следовательно, образуют систему дифференциальных уравнений, эквивалентную системе (2.3.1).
Полная система дифференциальных уравнений, представленная в виде (2.3.8), называется якобиевой.

Теорема 2.3.2. Полная система дифференциальных уравнений (2.3.1) имеет точно \(n - r \) независимых решений.

Доказательство. Аналогично равенству (2.3.4) мы имеем
\[(2.3.9) \quad (X'_a, X'_b)f = \gamma'_a_{bc} X'_c f\]
Из (2.2.2) и (2.3.8), следует, что
\[(2.3.10) \quad (X'_a, X'_b)f = (X_a \psi'_b - X_b \psi'_a) \frac{\partial f}{\partial x^t} \quad t = r + 1, \ldots, n\]
Так как \(\frac{\partial f}{\partial x^t}, \ldots, \frac{\partial f}{\partial x^r} \) не входят в (2.3.10), \(\gamma'_a_{bc} = 0 \). Следовательно, для полной системы в якобиевой форме
\[(X'_a, X'_b)f = 0\]
\[X_a \psi'_b - X_b \psi'_a = 0\]
\[(2.3.11) \quad \frac{\partial \psi'_p}{\partial x^a} + \psi'_p \frac{\partial \psi'_q}{\partial x^q} = \frac{\partial \psi'_p}{\partial x^b} + \psi'_p \frac{\partial \psi'_q}{\partial x^q} \quad a, b = 1, \ldots, r \quad p, q = r + 1, \ldots, n\]
Сравнивая (2.3.11) и (2.1.2), мы видим, что система дифференциальных уравнений
\[(2.3.12) \quad \frac{\partial x^p}{\partial x^a} = \psi'_p \quad a = 1, \ldots, r \quad p = r + 1, \ldots, n\]
вполне интегрируема. Согласно теореме 2.1.2 система дифференциальных уравнений (2.3.8), а следовательно, система дифференциальных уравнений (2.3.1) допускает \(n - r \) независимых решений, и более \(n - r \) независимых решений система дифференциальных уравнений (2.3.1) иметь не может. \(\square \)

2.4. Существенные параметры семейства функций

Определение 2.4.1. Пусть даны \(n \) функций
\[f_i(x^1, \ldots, x^n, a^1, \ldots, a^r), i = 1, \ldots, n\]
от переменных \(x^1, \ldots, x^n \) и от параметров \(a^1, \ldots, a^r \). Мы предполагаем, что функции \(f^i \) непрерывны по \(x^1, \ldots, x^n \) и \(a^1, \ldots, a^r \). Предполагается также, что непрерывны их производные любого порядка. Мы называем параметры \(a^1, \ldots, a^r \) существенными параметрами, если не существует функций \(A^1, \ldots, A^{r-1} \), зависящих только от \(a^1, \ldots, a^r \), таких, что имеются место тождества
\[(2.4.1) \quad f^i(x, a) = F^i(x, A)\]
\(\square \)
Теорема 2.4.2. Для того, чтобы \(r \) параметров \(a^\alpha \) были существенными, необходимо и достаточно, чтобы функции \(f^i \) не удовлетворяли никакому уравнению вида

\[
\phi^\alpha \frac{\partial f^i}{\partial a^\alpha} = 0
\]

где \(\phi^\alpha \neq 0 \).

Доказательство. Предположим, что параметры \(a \) не являются существенными. Тогда существуют \(A \) такие, что (2.4.1) удовлетворено и

\[
\text{rank} \left| \frac{\partial A^\sigma}{\partial a^\alpha} \right| < r
\]

Следовательно, существуют функции \(\phi^\alpha(a) \neq 0 \) такие, что

\[
\phi^\alpha \frac{\partial A^\sigma}{\partial a^\alpha} = 0
\]

Таким образом, функции \(A^1, ..., A^{r-1} \) и любая их функция \(\Phi(A) \) также удовлетворяют (2.4.2). Функции \(f^i \) в (2.4.1) являются примерами функций \(\Phi \). Следовательно, если \(f^i \) не зависят существенно от \(a^\alpha \), они удовлетворяют системе (2.4.2).

Обратно, положим, что функции \(f^i \) удовлетворяют уравнению (2.4.1) для некоторых функций \(\phi^\alpha \). Это уравнение имеет \(r - 1 \) независимых решения \(A^1, ..., A^{r-1} \), которые являются функциями одних \(a^\alpha \) и любое решение системы (2.4.2) является функцией \(A^1, ..., A^{r-1} \). Следовательно, каждая из функций \(f^i \) является функцией \(x^1, ..., x^n \) и \(A^1, ..., A^{r-1} \) и \(a^1, ..., a^r \) не являются существенными.

Замечание 2.4.3. Из теоремы 2.4.2 следует, что если функции \(f^i \) удовлетворяют полной системе \(s \) дифференциальных уравнений

\[
\phi^\sigma \frac{\partial f^i}{\partial a^\alpha} = 0 \quad \alpha = 1, ..., r \quad \sigma = 1, ..., s < r
\]

tо \(f^i \) являются функциями \(x \) и \(r - s \) независимых решений системы (2.4.3), являющихся функциями одних \(a \), и \(f^i \) выражаются, следовательно, через \(r - s \) существенных параметров.

Мы можем интерпретировать систему уравнений (2.4.2) как систему линейных уравнений относительно \(\phi^\alpha \). Из линейной алгебры следует, что решение системы (2.4.3) порождают векторное пространство, и только при условии

\[
\mu_0 = \text{rank} \left(\frac{\partial f^i}{\partial a^\alpha} \right) = r
\]

система линейных уравнений (2.4.3) имеет единственное решение \(\phi^\alpha = 0 \). Таким образом, из замечания 2.4.3 следует, что параметры существенны, если выполнено условие (2.4.4).

Допустим \(\mu_0 < r \). Дифференцируя систему дифференциальных уравнений (2.4.2) по \(x^j \), мы получим

\[
\phi^\alpha \frac{\partial f^i}{\partial a^\alpha} = 0 \quad \phi^\alpha \frac{\partial f^i}{\partial x^j} = 0 \quad f^i = \frac{\partial f^i}{\partial x^j}
\]
Пусть

\(\mu_1 = \text{rank} \left(\frac{\partial f_i}{\partial a_\alpha} \frac{\partial f_j}{\partial a_\alpha} \right) \)

Очевидно, что \(\mu_1 \geq \mu_0 \). Если \(\mu_1 = r \), то система линейных уравнений (2.4.5) допускает единственное решение \(\phi^\alpha = 0 \). Следовательно, параметры существенны.

Полагая

\[f_{j_1...j_s}^i = \frac{\partial^s f_i}{\partial x_{j_1}...\partial x_{j_s}} \]

последовательными дифференцированиями (2.4.2) получим

\(\phi^\alpha \frac{\partial f_{j_1...j_s}^i}{\partial a_\alpha} = 0 \)

Обозначим

\(\mu_s = \text{rank} \left(\frac{\partial f_i}{\partial a_\alpha} \frac{\partial f_i}{\partial a_\alpha} \ldots \frac{\partial f_{j_1...j_s}^i}{\partial a_\alpha} \right) \)

Таким образом мы получим последовательность рангов

\(\mu_0 \leq \mu_1 \leq \ldots \leq \mu_s \leq \ldots \leq r \)

Теорема 2.4.4. Число существенных параметров, через которые выражаются функции \(f_i(x, a) \), равно максимальному числу, содержащемуся в последовательности (2.4.9).

Доказательство. Если какое-нибудь \(\mu_s \) равно \(r \), то \(\phi^\alpha = 0 \) и \(r \) параметров существенны.

Предположим, \(\mu_{s-1} < r \) и \(\mu_s = \mu_{s-1} \). Из этого утверждения следует

\(\frac{\partial f_{j_1...j_s}^i}{\partial a_\alpha} = \sum_{t<s} \lambda_{k_1...k_t}^{j_1...j_s} \frac{\partial f_{1...p}^i}{\partial a_\alpha} \)

Дифференцирование равенства (2.4.10) по \(x^p \), мы получим

\[\frac{\partial f_{j_1...j_s}^i}{\partial a_\alpha} = \sum_{t<s} \lambda_{k_1...k_t}^{j_1...j_s} \frac{\partial f_{k_1...k_t}^i}{\partial a_\alpha} + \sum_{t=s-1, u<s} \lambda_{k_1...k_t}^{j_1...j_s} \lambda_{l_1...l_u}^{k_1...k_t} \frac{\partial f_{L_1...L_u}^i}{\partial a_\alpha} \]

Следовательно, \(\mu_{s+1} = \mu_{s-1} \).

Так как \(\mu_s < r \), и система линейных уравнений (2.4.2), (2.4.7) имеет ранг \(\mu_s \), то \(r - \mu_s \) из функций \(\phi^\alpha \) могут быть выбраны произвольно, причём остальные полностью определяются этим выбором. Возьмём \(\phi^{\sigma_1}, \ldots, \phi^{r-\mu_s} \) функциями одних только \(a \). Тогда

\[\phi^\sigma = \lambda^\rho_{\sigma} \phi^\rho \quad \rho = 1, \ldots, r - \mu_s \quad \sigma = r - \mu_s + 1, \ldots, r \]

где \(\lambda \)- функции от \(x \) и \(a \). Соответственно этому существует \(r - \mu_s \) независимых уравнений (2.4.2). Коммутатор любого двух из этих уравнений, приравненный 0, имеет \(f^i \) в качестве решений, поэтому он является линейной комбинацией данных уравнений. Следовательно, эти уравнения образуют полную систему.
Таким образом, данные функции выражаются через μ_s существенных параметров.
Группа Ли

3.1. Операция на группе Ли

Пусть G является r-параметрической группой Ли с операцией
\[a_3^L = \varphi^L(a_1, a_2) \quad a_3 = a_1 a_2 \]

и нейтральным элементом e.

Все операторы, которые мы определим ниже связаны с представлениями левого и правого сдвига и будут иметь дополнительный индекс r или l, говорящий нам, какой тип сдвига они описывают.

Сперва мы введём операторы
\[A_r^K(a, b) = \frac{\partial \varphi^K(a, b)}{\partial b^L} \]
\[A_l^K(a, b) = \frac{\partial \varphi^K(a, b)}{\partial a^L} \]
как производная левого и правого сдвигов.

Теорема 3.1.1.
(3.1.4) $A_r(a, bc)A_r(b, c) = A_r(ab, c)$
(3.1.5) $A_l(ab, c)A_l(a, b) = A_l(a, bc)$

ДОКАЗАТЕЛЬСТВО. Операция ассоциативна
(3.1.6) $a(bc) = (ab)c$

Пользуясь правилом дифференцирования сложной функции, мы можем найти производные этого равенства
\[\frac{\partial a(bc)}{\partial c} \frac{\partial c}{\partial a} = \frac{\partial(ab)c}{\partial a} \]
\[\frac{\partial a(bc)}{\partial a} \frac{\partial a}{\partial b} = \frac{\partial(ab)c}{\partial c} \]
(3.1.4) следует из (3.1.7). (3.1.5) следует из (3.1.8).

Так как $ae = a$ и $eb = b$, мы получаем равенства
\[A_l^K(a, e) = \delta_L^K \]
\[A_r^K(e, b) = \delta_L^K \]

Теорема 3.1.2. Оператор $A_l(a, b)$ имеет обратный оператор $A_l(ab, b^{-1})$
(3.1.11) $A_l^{-1}(a, b) = A_l(ab, b^{-1})$

Оператор $A_r(b, c)$ имеет обратный оператор $A_r(b^{-1}, bc)$
(3.1.12) $A_r^{-1}(b, c) = A_r(b^{-1}, bc)$
ДОКАЗАТЕЛЬСТВО. Согласно (3.1.4) мы имеем \((a = b^{-1})\)

(3.1.13) \(A_r(b^{-1}, bc)A_r(b, c) = A_r(b^{-1}b, c) = A_r(e, c) = \delta\)

(3.1.12) следует из (3.1.13).

Согласно (3.1.5) мы имеем \((c = b^{-1})\)

(3.1.14) \(A_l(ab, b^{-1})A_l(a, b) = A_l(ab, bb^{-1}) = A_l(a, e) = \delta\)

(3.1.11) следует из (3.1.14). □

Теорема 3.1.3. Операторы \(A_l(a, b)\) и \(A_r(a, b)\) обратимы.

ДОКАЗАТЕЛЬСТВО. Это следствие теоремы 3.1.2. □

Мы определим базовые операторы группы Ли

(3.1.15) \(\psi_r^K(a) = A_r^K(a, e)\) \(\psi_r(a) = A_r(a, e)\)

(3.1.16) \(\psi_l^K(b) = A_l^K(e, b)\) \(\psi_l(b) = A_l(e, b)\)

Из (3.1.9) и (3.1.10) немедленно следует, что

(3.1.17) \(\psi_l^K(e) = \delta^K_L\)

(3.1.18) \(\psi_r^K(e) = \delta^K_L\)

По определению базовые операторы линейно отображают касательную плоскость \(T_eG\) в касательную плоскость \(T_aG\).

Теорема 3.1.4. Операторы \(\psi_l\) и \(\psi_r\) обратимы.

ДОКАЗАТЕЛЬСТВО. Это следствие теоремы 3.1.3 и определений (3.1.16) и (3.1.15). □

Так как операторы \(\psi_r\) и \(\psi_l\) имеют обратные операторы мы определим операторы

(3.1.19) \(\lambda_r(a) = \psi_r^{-1}(a)\)

(3.1.20) \(\lambda_l(a) = \psi_l^{-1}(a)\)

которые отображают \(T_aG \rightarrow T_eG\)

Теорема 3.1.5.

(3.1.21) \(\lambda_r(a) = A_r(a^{-1}, a)\)

(3.1.22) \(\lambda_l(a) = A_l(a, a^{-1})\)

ДОКАЗАТЕЛЬСТВО. Согласно (3.1.20), (3.1.16) и (3.1.11) мы получим

\(\lambda_l(a) = A_l^{-1}(e, a) = A_l(a, a^{-1})\)

Это доказывает (3.1.22).

Согласно (3.1.19), (3.1.15) и (3.1.12) мы получим

\(\lambda_r(a) = A_r^{-1}(a, e) = A_r(a^{-1}, a)\)

Это доказывает (3.1.21). □

Теорема 3.1.6.

(3.1.23) \(A_r(a, b) = \psi_r(ab)\lambda_r(b)\)

(3.1.24) \(A_l(a, b) = \psi_l(ab)\lambda_l(a)\)
3.1. Операция на группе Ли

Доказательство. Положим \(c = e \) в (3.1.4)

(3.1.25) \[A_r(a, b)A_r(b, e) = A_r(ab, e) \]

Из равенств (3.1.15), (3.1.25) следует

(3.1.26) \[A_r(a, b)\psi_r(b) = \psi_r(ab) \]

Из (3.1.26) следует

(3.1.27) \[A_r(a, b) = \psi_r(ab)\psi_r^{-1}(b) \]

(3.1.28) \[A_l(b, c)A_l(e, b) = A_l(e, bc) \]

Из равенств (3.1.16), (3.1.28) следует

(3.1.29) \[A_l(b, c)\psi_l(b) = \psi_l(bc) \]

Из (3.1.29) следует

(3.1.30) \[A_l(a, b) = \psi_l(ab)\psi_l^{-1}(a) \]

(3.1.31) \[\frac{\partial \varphi^K(a,b)}{\partial b^K} = \psi_r^K(ab)\lambda_r^K(b) \]

(3.1.32) \[\frac{\partial \varphi^K(a,b)}{\partial a^K} = \psi_l^K(ab)\lambda_l^K(a) \]

Доказательство. (3.1.31) является следствием равенств (3.1.23) и (3.1.2).

(3.1.32) является следствием равенств (3.1.24) и (3.1.3).

Теорема 3.1.8. Операция группы Ли удовлетворяет дифференциальному уравнению

(3.1.33) \[\frac{\partial a^{-1}}{\partial a} = -\psi_l(a^{-1})\lambda_l(a) \]

(3.1.34) \[\frac{\partial a^{-1}}{\partial a} = -\psi_r(a^{-1})\lambda_r(a) \]

Доказательство. Дифференцируя равенство \(e = a^{-1}a \) по \(a \), мы получим равенство

\[
0 = \frac{\partial a^{-1}}{\partial a} \frac{\partial a^{-1}}{\partial a} + \frac{\partial a^{-1}}{\partial a} =
\]

\[
= A_l(a^{-1}, a) \frac{\partial a^{-1}}{\partial a} + A_r(a^{-1}, a)
\]

\[
\frac{\partial a^{-1}}{\partial a} = -A_l^{-1}(a^{-1}, a)A_r(a^{-1}, a)
\]

Пользуясь (3.1.21) и (3.1.22), мы получим

(3.1.35) \[\frac{\partial a^{-1}}{\partial a} = -\lambda_l^{-1}(a^{-1})\lambda_r(a) \]

(3.1.33) следует из (3.1.35).
Дифференцируя равенство \(e = aa^{-1} \) по \(a \), мы получим равенство

\[
0 = \frac{\partial aa^{-1}}{\partial a} + \frac{\partial aa^{-1}}{\partial a^{-1}} \frac{\partial a^{-1}}{\partial a} = A_l(a, a^{-1}) + A_r(a, a^{-1}) \frac{\partial a^{-1}}{\partial a} = -A_r^{-1}(a, a^{-1})A_l(a, a^{-1})
\]

Пользуясь (3.1.21) и (3.1.22) мы получим

(3.1.36)

\[
\frac{\partial a^{-1}}{\partial a} = -\lambda_r^{-1}(a^{-1})\lambda_l(a)
\]

(3.1.34) следует из (3.1.36). □

Теорема 3.1.9.

(3.1.37)

\[
\frac{\partial a^{-1}b}{\partial a} = -\psi_l(a^{-1}b)\psi_r^{-1}(a)
\]

(3.1.38)

\[
\frac{\partial ba^{-1}}{\partial a} = -\psi_r(ba^{-1})\psi_l^{-1}(a)
\]

Доказательство. Пользуясь правилом дифференцирования сложной функции и равенствами (3.1.24), (3.1.33), мы получим

\[
\frac{\partial a^{-1}b}{\partial a} = \frac{\partial a^{-1}b}{\partial a^{-1}} \frac{\partial a^{-1}}{\partial a} = -A_l(a^{-1}, b)\psi_l(a^{-1})\lambda_r(a)
\]

(3.1.37) следует из (3.1.39).

Пользуясь правилом дифференцирования сложной функции и равенствами (3.1.23), (3.1.34), мы получим

\[
\frac{\partial ba^{-1}}{\partial a} = \frac{\partial ba^{-1}}{\partial a^{-1}} \frac{\partial a^{-1}}{\partial a} = -A_r(b, a^{-1})\psi_r(a^{-1})\lambda_l(a)
\]

(3.1.38) следует из (3.1.40). □

3.2. 1-параметрическая группа

Если многообразие группы имеет размерность 1, мы имеем группу, зависящую от 1 параметра. В этом случае операція на группе имеет вид

\[
c = \varphi(a, b)
\]

где \(a, b, c \) - числа. В этом случае наша запись будет упрощена. Нам даны не операторы, а функции

\[
A_l(a, b) = \frac{\partial \varphi(a, b)}{\partial a}
\]

\[
A_r(a, b) = \frac{\partial \varphi(a, b)}{\partial b}
\]
3.2. 1-параметрическая группа

которые по определению удовлетворяют уравнению

\[A_{l}(a, e) = 1 \]
\[A_{r}(e, b) = 1 \]

Мы также определим базовую функцию

\[\psi_{r}(a) = A_{r}(a, e) \]
\[\psi_{l}(b) = A_{l}(e, b) \]

Функции \(\psi_{r}(a) \) и \(\psi_{l}(a) \) никогда не обращаются в 0 и

\[\lambda_{r}(a) = \frac{1}{\psi_{r}(a)} \]
\[\lambda_{l}(a) = \frac{1}{\psi_{l}(a)} \]

Теорема 3.2.1. Операция на 1-параметрической группе Ли удовлетворяет дифференциальным уравнениям

\[\frac{\partial \varphi(a, b)}{\partial b} = \frac{\psi_{r}(ab)}{\psi_{r}(b)} \]

Доказательство. Это следствие равенства (3.1.31).

Теорема 3.2.2. Мы можем определить координату \(A \) на 1-параметрической группе таким образом, что операция \(\Phi \) на группе имеет вид

\[\Phi(A, B) = A + B \]

и \(E = 0 \) - единица группы.

Доказательство. Мы определим новую переменную \(A \) таким образом, что

\[dA = \frac{da}{\psi_{r}(a)} \]

Так как \(\psi_{r}(a) \neq 0 \), существуют взаимнооднозначное отображение \(A = F(a) \) и его обратное отображение \(a = f(A) \). Это значит, что если \(A = F(a), B = F(b), C = F(c) \) и \(c = \varphi(a, b) \), то существует функция \(\Phi \) та всегда, что

\[C = \Phi(A, B) = F(\varphi(a, b)) \]

Мы получили производную

\[\frac{\partial \Phi(A, B)}{\partial B} = \frac{dC}{dc} \frac{\partial \varphi(a, b)}{\partial b} \frac{db}{dB} \]

Используя (3.2.3) и (3.2.1), мы получим

\[\frac{\partial \Phi(A, B)}{\partial B} = \frac{1}{\psi_{r}(c) \psi_{r}(b)} \psi_{r}(b) = 1 \]

Таким образом, мы получили

\[\Phi(A, B) = C + B \]

Если мы возьмём решение уравнения (3.2.3) в виде

\[A = \int_{a}^{\xi} \frac{da}{\psi_{r}(a)} \]
то мы увидим, что \(A = 0 \) - единица группы. Если мы положим \(B = 0 \) в (3.2.4), мы получим

(3.2.5) \[A = \xi(A) \]

(3.2.2) следует из (3.2.4) и (3.2.5) \[\square \]

3.3. Правый сдвиг

Для правого сдвига \([1]-(2.4.14)\) система (3.1.31) принимает вид

(3.3.1) \[\frac{\partial b^\prime}{\partial a^P} = \psi_{rU}^L(b') \lambda_{rV}^T(a) \]

Функции \(b^K \) являются решением системы (3.3.1) и согласно \([1]-(2.4.14)\) они зависят от \(b^1, ..., b^n \), которые мы можем предположить постоянными. Таким образом, решение системы (3.3.1) зависит от \(n \) произвольных констант и, следовательно, система (3.3.1) вполне интегрируема. Условие её интегрируемости имеет вид

\[
\frac{\partial \psi_{rU}^L(b')}{\partial b^S} \frac{\partial b^S}{\partial a^R} \lambda_{rV}^T(a) + \psi_{rU}^L(b') \frac{\partial \lambda_{rV}^T(a)}{\partial a^P} = 0
\]

Согласно (3.3.1), мы можем записать это условие в более простой форме

\[
\frac{\partial \psi_{rU}^L(b')}{\partial b^S} \psi_{rV}^S(b') \lambda_{rR}^V(a) + \psi_{rU}^L(b') \frac{\partial \lambda_{rR}^V(a)}{\partial a^P} = 0
\]

Мы определили **правые структурные константы алгебры Ли**

(3.3.2) \[C^U_{rVT} = \psi_{rV}^R(a) \psi_{rT}^P(a) \left(\frac{\partial \lambda_{rR}^U(a)}{\partial a^P} - \frac{\partial \lambda_{rL}^U(a)}{\partial a^R} \right) \]

Тогда мы получим

(3.3.3) \[\frac{\partial \psi_{rU}^L(b')}{\partial b^S} \psi_{rV}^S(b') - \frac{\partial \psi_{rV}^L(b')}{\partial b^S} \psi_{rT}^S(b') = C^U_{rVT} \psi_{rU}^L(b') \]

Если мы продифференцируем это равенство по \(a^P \), мы получим

\[\frac{\partial C^U_{rVT}}{\partial a^P} \psi_{rU}^L(b') = 0 \]

так как \(\psi_{rU}^L(b') \) не зависит от \(a \). В тоже время \(\psi_{rU}^L(b') \) линейно независимы, так как \(\det \| \psi_{rU}^L \| \neq 0 \). Следовательно,

\[\frac{\partial C^U_{rVT}}{\partial a^P} = 0 \]
и \(C_{rTV} \) являются константами. Мы называем их структурными константами. Из (3.3.2) следует, что

\[
(3.3.4) \quad C_{rTV}\lambda_{rR}(a)\lambda_{rR}(a) = \frac{\partial \lambda_{rR}(a)}{\partial a^R} - \frac{\partial \lambda_{rR}(a)}{\partial a^P}
\]

Мы называем (3.3.4) уравнением Маурера.

Теорема 3.3.1. Векторные поля, определённые дифференциальным оператором

\[
(3.3.5) \quad X_{rV} = \psi_{rV}^S(a) \frac{\partial}{\partial a^S}
\]

линейно независимы и их коммутатор имеет вид

\[
(X_{rT}, X_{rV}) = C_{rTV} X_{rU}
\]

Доказательство. Линейная независимость векторных полей следует из теоремы 3.1.4. Тогда мы видим, что согласно (3.3.3)

\[
(X_{rT}, X_{rV}) = (X_{rT} \psi_{rV}^D - X_{rV} \psi_{rT}^P) \frac{\partial}{\partial a^D} =
\]

\[
= \left(\psi_{rT}^P(a) \frac{\partial \psi_{rV}^D(a)}{\partial a^P} - \psi_{rV}^R(a) \frac{\partial \psi_{rT}^P(a)}{\partial a^R} \right) \frac{\partial}{\partial a^D} =
\]

\[
= C_{rTV} \psi_{rU}^P(a) \frac{\partial}{\partial a^U} = C_{rTV} X_{rU}
\]

\[\square\]

Пусть задан гомоморфизм \(f : G_1 \to G \) 1-параметрической группы Ли \(G_1 \) в группу \(G \). Образ этой группы является 1-параметрической подгруппой. Если \(t \) - координата на группе \(G_1 \), мы можем записать \(a = f(t) \) и найти дифференциальное уравнение для этой подгруппы. Мы положим в случае правого сдвига, что \(a = f(t_1), b = f(t_2), c = ab = f(t), t = t_1 + t_2 \). Тогда мы получим

\[
\frac{dc^K}{dt} = \frac{d\psi_{rT}^K}{dt} = \psi_{rT}^K(c) \lambda_{rL}(b) \frac{db^L}{dt_2}
\]

Левая часть не зависит от \(t_2 \), следовательно, правая часть не зависит от \(t_2 \). Мы положим, что

\[
\lambda_{rL}(b) \frac{db^L}{dt_2} = \alpha^T
\]

Таким образом, мы получим систему дифференциальных уравнений

\[
\frac{dc^K}{dt} = \psi_{rT}^K(c) \alpha^T
\]

Так как \(\psi_r \) - производная правого сдвига в единице группы, это равенство означает, что 1-параметрическая группа определена вектором \(\alpha^T \in T_eG \) и переносит этот вектор вдоль 1-параметрической группы без изменений. Мы называем это векторное поле **правоинвариантным векторным полем**. Мы определим векторное произведение \(T_e \) как

\[
(3.3.6) \quad [\alpha, \beta]^T = C_{rRS} \alpha^R \beta^S
\]
Пространство T_G, снабжённое такой операцией, становится алгеброй Ли \mathfrak{g}_r. Мы называем её определённой справа алгеброй Ли группы Ли.

Теорема 3.3.2. Пространство правовинvariantных векторных полей имеет конечную размерность, равную размерности группы Ли. Это алгебра Ли с произведением правых коммутаторов векторных полей и эта алгебра изоморфна алгебре Ли \mathfrak{g}_r.

Доказательство. Это следует из (3.3.5) и (3.3.6), так как α^K и β^K являются константами

$$(X_{rT}^T, X_{rV}\beta^V) = (X_{rT}, X_{rV})^T\beta^V =$$

$$= C_{rT}^U X_{rV}^T\beta^V = [\alpha, \beta]^U X_{rU}$$

\[\square\]

3.4. Левый сдвиг

Для левого сдвига $[1]-(2.4.12)$ система (3.1.32) принимает вид

(3.4.1) \[\frac{\partial b^K}{\partial a^L} = \psi^K_L(b')\lambda^T_L(a)\]

Функции b^K являются решением системы (3.4.1) и согласно $[1]-(2.4.12)$ они зависят от $b^1, ..., b^n$, которые мы можем предположить постоянными. Таким образом, решение системы (3.4.1) зависит от и произвольных констант и, следовательно, система (3.4.1) вполне интегрируема. Условие её интегрируемости имеет вид

\begin{align*}
\frac{\partial \psi^L_I(b')}{\partial b^S} & \frac{\partial b^S}{\partial a^R} \lambda^T_P(a) + \psi^L_I(b') \frac{\partial \lambda^T_P(a)}{\partial a^R} = \\
& = \frac{\partial \psi^L_I(b')}{\partial b^S} \frac{\partial b^S}{\partial a^P} \lambda^T_R(a) + \psi^L_I(b') \frac{\partial \lambda^T_R(a)}{\partial a^P},
\end{align*}

Согласно (3.4.1), мы можем записать это условие в более простой форме

\begin{align*}
\frac{\partial \psi^L_I(b')}{\partial b^S} \psi^S_V(b') \lambda^V_R(a) \lambda^T_P(a) + \psi^L_I(b') \frac{\partial \lambda^T_P(a)}{\partial a^R} = \\
& = \frac{\partial \psi^L_I(b')}{\partial b^S} \psi^S_V(b') \lambda^V_R(a) \lambda^T_R(a) + \psi^L_I(b') \frac{\partial \lambda^T_R(a)}{\partial a^P} \\
& = \psi^L_I(b') \psi^P_T(a) \psi^R_V(a) \left(\frac{\partial \lambda^V_R(a)}{\partial a^P} - \frac{\partial \lambda^T_R(a)}{\partial a^R} \right)
\end{align*}

Мы определим левые структурные константы алгебры Ли

(3.4.2) \[C^U_{VT} = \psi^R_V(a) \psi^P_T(a) \left(\frac{\partial \lambda^V_R(a)}{\partial a^P} - \frac{\partial \lambda^T_R(a)}{\partial a^R} \right)\]

Тогда мы получим

(3.4.3) \[\frac{\partial \psi^L_I(b')}{\partial b^S} \psi^S_V(b') - \frac{\partial \psi^L_I(b')}{\partial b^S} \psi^S_V(b') = C^U_{VT} \psi^P_U(b')\]

Если мы продифференцируем это равенство по a^P, мы получим
\[\frac{\partial C^U_{VT}}{\partial a^P} \psi^P_U(b') = 0\]
так как $\psi_L^T(b')$ не зависит от a. В тоже время $\psi_L^T(b')$ линейно независимы, так как $\det\|\psi_L^T\| \neq 0$. Следовательно,
\[
\frac{\partial C_{LV}^U}{\partial a^F} = 0
\]
и C_{LV}^U являются константами. Мы называем их структурными константами. Из (3.4.2) следует, что
\[
\psi_L^U(b')\text{линейно независимы, так как det} \psi_L^U \neq 0.
\]
Следовательно,
\[
\frac{\partial C_{LU}^V}{\partial a^P} = 0
\]
и C_{LU}^V являются константами. Мы называем их структурными константами. Из (3.4.2) следует, что
\[
C_{IV}^U = \frac{\partial \lambda_{rP}^T(a)}{\partial a^R} - \frac{\partial \lambda_{rP}^R(a)}{\partial a^F}
\]
Мы называем (3.4.4) уравнением Маурера.

Теорема 3.4.1. Векторные поля, определённые дифференциальным оператором

\[
X_{IV} = \psi_L^V(a) \frac{\partial}{\partial a^F}
\]
линейно независимы и коммутатор имеет вид
\[
(X_{IT}, X_{IV}) = C_{ITV}^U X_U
\]

Доказательство. Линейная независимость векторных полей следует из теоремы 3.1.4. Тогда мы видим, что согласно (3.4.3)
\[
(X_{IT}, X_{IV}) = (X_{IT} \psi_L^D - X_{IV} \psi_L^D) \frac{\partial}{\partial a^D} =
\]
\[
= (\psi_L^P(a) \frac{\partial \psi_L^D(a)}{\partial a^P} - \psi_L^R(a) \frac{\partial \psi_L^D(a)}{\partial a^R}) \frac{\partial}{\partial a^D} =
\]
\[
= C_{IV}^U \psi_L^D(a) \frac{\partial}{\partial a^D} = C_{IV}^U X_U
\]

Пусть задан гомоморфизм $f : G_1 \to G$ 1-параметрической группы Ли G_1 в группу G. Образ этой группы является 1-параметрической подгруппой. Если t - координата на группе G_1, мы можем записать $a = f(t)$ и найти дифференциальное уравнение для этой подгруппы. Мы положим в случае левого сдвига, что $a = f(t_1), b = f(t_2), c = ab = f(t), t = t_1 + t_2$. Тогда мы получим
\[
\frac{dc^K}{dt} = \frac{\partial c^K}{\partial b^L} \frac{db^L}{dt} = \psi_L^T(c) \frac{db^L}{dt} = \frac{dc^K}{dt} = \psi_L^T(c) \frac{db^L}{dt}
\]
Левая часть не зависит от t_2, следовательно, правая часть не зависит от t_2. Мы положим, что
\[
\lambda_L^T(b) \frac{db^L}{dt} = \alpha^T
\]
Таким образом, мы получим систему дифференциальных уравнений
\[
\frac{dc^K}{dt} = \psi_L^T(c) \alpha^T
\]
Так как ψ_L - производная правого сдвига в единице группы, это равенство означает, что 1-параметрическая группа определена вектором $\alpha^T \in T_0G$ и переносит этот вектор вдоль 1-параметрической группы без изменений. Мы называем
это векторное поле левоинвариантным векторным полем. Мы определяем векторное произведение T_e как

$[\alpha, \beta]^T = C^{T}_{RS} \alpha^R \beta^S$

Пространство $T_e G$, снабжённое такой операцией, становится алгеброй Ли \mathfrak{g}. Мы называем её определённой слева алгеброй Ли группы Ли

Теорема 3.4.2. Пространство правоинвариантных векторных полей имеет конечную размерность, равную размерности группы Ли. Это алгебра Ли с произведением равным коммутатору векторных полей и эта алгебра изоморфна алгебре Ли \mathfrak{g}.

Доказательство. Это следует из (3.4.5) и (3.4.6), так как α^{K} и β^{K} являются константами $X_{IT}^T, X_{IV}^T \beta^V = (X_{IT}, X_{IV})^T \beta^V = C_{T}^{U} X_{IU}^T \beta^V = [\alpha, \beta]^U X_{IU}$

3.5. Отношение между алгебрами Ли \mathfrak{g} и \mathfrak{g}_r

Мы определили две различные алгебры Ли на пространстве $T_e G$. Теперь наше задача - это определить отношение между этими алгебрами. Мы начнём решать эту задачу с анализа разложения Тейлора групповой операции.

Теорема 3.5.1. С точностью до бесконечно малых второго порядка, структура операции на группе Ли

$\varphi^K(a, b) = a^K + b^K - e^K + I_{LM}^K(a^M - e^M)(b^L - e^L)$

где мы определили инфинитезимальные образующие группы Ли

$I_{LM}^K = I_{LM}^K = I_{ML}^K$

Доказательство. Мы можем найти ряд Тейлора произведения по обоим аргументам. Однако подобно разделам 3.3 и 3.4, мы можем рассматривать один аргумент как параметр и найти ряд Тейлора по другому аргументу. В этом случае его коэффициенты будут зависеть от первого аргумента.

Таким образом, согласно (3.1.2) и (3.1.15), произведение в окрестности $a \in G$ имеет ряд Тейлора относительно b

$\varphi^K(a, b) = a^K + \psi_{r}^K(a)(b^L - e^L) + o(b^L - e^L)$

$ab = a + \psi_{r}(a)(b - e) + o(b - e)$

где коэффициенты разложения зависят от a. В тоже время $\psi_{r}(a)$ также имеет ряд Тейлора в окрестности e

$\psi_{r}^K(a) = \delta^K_{L} + I_{LM}^K(a^M - e^M) + o(a^M - e^M)$

Если мы подставим (3.5.3) в (3.5.2), мы получим разложение

$\varphi^K(a, b) = a^K + (\delta^K_{L} + I_{LM}^K(a^M - e^M) + o(a^M - e^M))(b^L - e^L) + o(b^L - e^L)$

(3.5.4) $\varphi^K(a, b) = a^K + b^K - e^K + I_{LM}^K(a^M - e^M)(b^L - e^L) + o(a^M - e^M, b^L - e^L)$

□
Согласно (3.1.3) и (3.1.16), произведение в окрестности \(b \in G \) имеет ряд Тейлора относительно \(a \)

\[
\varphi^K(a, b) = b^K + \psi^K_L(b)(a^L - e^L) + o(a^L - e^L)
\]

где коэффициенты разложения зависят от \(b \). В тоже время \(\psi_L(b) \) также имеет ряд Тейлора в окрестности \(e \)

\[
\psi^K_L(b) = \delta^K_L + I^K_{LM} (b^M - e^M) + o(b^M - e^M)
\]

Если мы подставим (3.5.6) в (3.5.5) мы получим разложение

\[
\varphi^K(a, b) = b^K + (\delta^K_L + I^K_{LM} (b^M - e^M)) (a^L - a^L) + o(a^L - e^L)
\]

(3.5.7) \(\varphi^K(a, b) = b^K + a^K - e^K + I^K_{LM} (b^M - e^M)) (a^L - e^L) + o(a^M - e^M, b^L - e^L) \)

(3.5.4) и (3.5.7) являются разложением в ряд Тейлора одной и той же функции и они должны совпадать. Сравнивая их, мы видим, что \(I^K_{LM} = I^K_{eM} \). Тогда операция группы Ли имеет ряд Тейлора (3.5.1) \(\square \)

Теорема 3.5.2. С точностью до бесконечно малых второго порядка, структура операции на группе \(\mathfrak{g} \)

\[
\psi^K_L(a) = \delta^K_L + I^K_{LM} (a^M - e^M) + o(a^M - e^M)
\]

(3.5.9)

(3.5.10)

(3.5.11)

Доказательство. (3.5.8) и (3.5.9) следуют из дифференцирования равенства (3.5.1) по \(a \) или \(b \) и определений (3.1.15) и (3.1.16).

Теперь мы положим, что \(\lambda^K_L(a) \) имеет ряд Тейлора

\[
\lambda^K_L(a) = \delta^K_L + J^K_{LM} (a^M - e^M) + o(a^M - e^M)
\]

Тогда подставляя (3.5.12) и (3.5.8) в уравнение

\[
\lambda^K_L(a) \psi^K_L(a) = \delta^K_M
\]

мы получим с точностью до порядка 1

\[
(\delta^K_L + J^K_{NL} (a^N - e^N) + o(a^N - e^N)) (\delta^K_M + J^K_{MP} (a^P - e^P) + o(a^P - e^P)) = \delta^K_M
\]

\[
\delta^K_M + (J^K_{MN} + J^K_{NM}) (a^N - e^N) + o(a^P - e^P) = \delta^K_M
\]

Следовательно, \(J^K_{MN} + J^K_{NM} = 0 \) и, подставляя \(J^K_{MN} \) в (3.5.12), мы получим (3.5.10).

Таким же образом, мы можем доказать (3.5.11). \(\square \)

Следующая теорема следует непосредственно из теоремы 3.5.2.
Теорема 3.5.3.

(3.5.13) \[\frac{\partial \psi^K_L(a)}{\partial a^M} \bigg|_{a=e} = I^K_{ML} \]

(3.5.14) \[\frac{\partial \psi^K_L(a)}{\partial a^M} \bigg|_{a=e} = I^K_{LM} \]

(3.5.15) \[\frac{\partial \lambda^K_L(a)}{\partial a^M} \bigg|_{a=e} = -I^K_{LM} \]

(3.5.16) \[\frac{\partial \lambda^K_L(a)}{\partial a^M} \bigg|_{a=e} = -I^K_{ML} \]

На основе теоремы 3.5.3 мы можем получить более детальную информацию о левой и правой группах алгебры Ли. Так как определение (3.3.2) не зависит от \(a \), мы можем оценить его, когда \(a = e \). Согласно (3.1.17) и (3.5.16), мы получим

\[C^U_{TV} = \delta^P_T \delta^R_V (-I^{RP}_U + I^{RP}_U) = I^U_{TV} - I^U_{VT} \]

Согласно (3.1.18) и (3.5.15), мы получим

\[C^U_{rTV} = \delta^P_T \delta^R_V (-I^{RP}_U + I^{RP}_U) = I^U_{VT} - I^U_{TV} \]

Следовательно,

\[C^U_{rTV} = -C^U_{lTV} \]

и алгебры \(g_l \) и \(g_r \) являются антиизоморфными. Обычно мы подразумеваем, что \(g_l \) является алгеброй Ли группы \(G \) и use notation

\[C^U_{TV} = C^U_{lTV} \]

Пусть \(g = T_eG \) является алгеброй Ли группы \(G \) с операцией

\[\alpha^L_3 = C^L_{MN} \alpha^M_1 \alpha^N_2 \quad \alpha_3 = C(\alpha_1, \alpha_2) \]
Глава 4

Представление группы Ли

4.1. Представление группы Ли

Мы будем рассматривать представление группы Ли в непрерывном векторном пространстве. Пусть

\[v' = f(a)(v) \]
\[v'' = f(b)(v') = f(c)(v') \]

Пусть \(v' \) - базис векторного пространства \(M \). Тогда разложение вектора \(f(a)(v) \) имеет вид

\[f(a)(v) = f_i(a)v_i \]

Теорема 4.1.1. Базовый вектор представления группы Ли определён равенством

\[\xi(v') = \beta(b, v') \frac{\partial f(b)(v')}{\partial b} \bigg|_{b=e} \]
\[\xi_j^p(v') = \beta_p(b, v') \frac{\partial f_p(b)(v')}{\partial b} \bigg|_{b=e} \]

где мы ввели оператор \(\beta(a, v) \) такой, что

\[\beta \frac{\partial f(a)(v)}{\partial a} = 1 \]
\[\beta_p^a \frac{\partial f_p(a)(v)}{\partial v^b} = \delta^a_b \]

Ковариантное представление группы Ли \(G \) в множестве \(M \)

\[c = ba \]

удовлетворяет системе дифференциальных уравнений

\[\frac{\partial f(a)(v)}{\partial a} = \xi(v')\lambda_r(a) \]
\[\frac{\partial f(a)(v)}{\partial a^M} = \xi^L_L(v')\lambda_r^L_M(a) \]

Контравариантное представление группы Ли \(G \) в множестве \(M \)

\[c = ab \]

удовлетворяет системе дифференциальных уравнений

\[\frac{\partial f(a)(v)}{\partial a} = \xi(v')\lambda_l(a) \]
\[\frac{\partial f(a)(v)}{\partial a^M} = \xi^L_L(v')\lambda_l^L_M(a) \]

4.1 В разделе [1]-2.4 мы рассмотрели общую концепцию представления группы.
ДОКАЗАТЕЛЬСТВО. Мы выразим \(b \) через \(a \) и \(c \) и продифференцируем равенство \(^{1,2}\)

\[
\mathcal{J}(c)(\mathcal{V}) = \mathcal{J}(b)(\mathcal{J}(a)(\mathcal{V}))
\]

по \(a \)

\[
\frac{\partial \mathcal{J}(b)(\mathcal{V})}{\partial a} \frac{\partial b}{\partial a} + \frac{\partial \mathcal{J}(b)(\mathcal{V})}{\partial \mathcal{V}} \frac{\partial \mathcal{V}}{\partial a} = 0
\]

(4.1.7)

Левая часть не зависит от \(b \), поэтому и правая часть не зависит от \(b \). Определим правую часть, когда \(b = e \).

Если представление ковариантно, то из равенств (4.1.3), (3.1.38), когда \(ca^{-1} = e \), следует, что

\[
\left. \frac{\partial b}{\partial a} \right|_{ca^{-1}=e} = \left. \frac{\partial ca^{-1}}{\partial a} \right|_{ca^{-1}=e} = - \psi_r(ca^{-1}) \frac{\psi^{-1}(a)}{\lambda_r(a)} = \lambda_i(a)
\]

Равенство (4.1.4) следует из равенств (4.1.1), (4.1.8), (4.1.7).

Если представление контравариантно, то из равенств (4.1.5), (3.1.37), когда \(a^{-1}c = e \), следует, что

\[
\left. \frac{\partial b}{\partial a} \right|_{a^{-1}c=e} = \left. \frac{\partial a^{-1}c}{\partial a} \right|_{a^{-1}c=e} = - \psi_l(a^{-1}c) \frac{\psi^{-1}(a)}{\lambda_r(a)} = \lambda_r(a)
\]

Равенство (4.1.4) следует из равенств (4.1.1), (4.1.9), (4.1.7).

Теорема 4.1.2. \(\xi \) - это оператор, отображающий алгебру \(g \) в алгебру лево-инвариантных векторных полей на \(M \). Элемент \(\alpha \in g \) порождает лево-инвариантное векторное поле

\[
B^\alpha = \xi_M(u')^\alpha
\]

на многообразии \(M \).

ДОКАЗАТЕЛЬСТВО. \(\xi \) отображает алгебру Ли \(g \) в касательную плоскость многообразия. Если \(\alpha \in g \) зависит от параметра \(t \), мы можем записать дифференциальное уравнение

\[
\frac{df}{dt} = \xi(u') \lambda_l(a) \lambda_r(\alpha) \frac{da}{dt}
\]

Если \(a \) принадлежит 1-параметрической подгруппе, порождённой элементом \(\alpha \in g \), то он удовлетворяет уравнению. Следовательно, пользуясь (3.1.19), мы получим

\[
\frac{du'}{dt} = \xi(u') \lambda_r(a) \psi_l(a) \alpha = \xi(u') \alpha
\]

\(^{1,2}\)Смотрите равенства [1]-(2.4.1) и [1]-(2.4.5).
4.2. Алгебраические свойства представления

Теорема 4.2.1. Пусть f_1 - представление группы G в векторном пространстве V_1. Пусть f_2 - представление группы G в векторном пространстве V_2. Пусть геометрический объект v является тензорным произведением геометрических объектов $v_1 \in V_1$ и $v_2 \in V_2$.

$$f_1(a)(v_1 \otimes v_2) = f_1(a)(v_1) \otimes f_2(a)(v_2)$$ (4.2.1)

Если представления f_1 и f_2 ковариантны, то отображение f - ковариантное представление группы G в векторном пространстве $V = V_1 \otimes V_2$. Если представления f_1 и f_2 контравариантны, то отображение f - контравариантное представление группы G в векторном пространстве $V = V_1 \otimes V_2$. Мы будем называть представление f тензорным произведением представлений f_1 и f_2.

Доказательство. Прежде всего покажем, что мы получили новое представление. Если мы применим преобразования для $a \in G$ и $b \in G$ последовательно, то мы имеем

$$f(a)(f(b)(v_1 \otimes v_2)) = f(a)(f_1(b)(v_1) \otimes f_2(b)(v_2))$$
$$= f_1(a)(f_1(b)(v_1)) \otimes f_2(a)(f_2(b)(v_2))$$ (4.2.3)

Так, если f_1 и f_2 ковариантные представления, то из (4.2.3) следует

$$f(a)(f(b)(v_1 \otimes v_2)) = f_1(ab)(v_1) \otimes f_2(ab)(v_2)$$
$$= f(ab)(v_1 \otimes v_2)$$

Следовательно, f тоже ковариантное представление. Если f_1 и f_2 контравариантные представления, то из (4.2.3) следует

$$f(a)(f(b)(v_1 \otimes v_2)) = f_1(ba)(v_1) \otimes f_2(ba)(v_2)$$
$$= f(ba)(v_1 \otimes v_2)$$

Следовательно, f тоже контравариантное представление.

Дифференцируя уравнение (4.2.1) по a, мы получим

$$\frac{\partial f}{\partial a} = \frac{\partial f_1}{\partial a} \otimes f_2 + f_1 \otimes \frac{\partial f_2}{\partial a}$$ (4.2.4)

Мы получим (4.2.2) из (4.2.4) по определению, когда $a = e$. □

Почему важно, чтобы f_1 и f_2 были одного и того же типа? Из (4.2.3) видно, что если f_1 ковариантное представление и f_2 контравариантное представление, мы не можем сказать, что должно быть в правой части этого равенства: ab или ba. Мы по прежнему имеем семейство преобразований, зависящих от $a \in G$. Эта зависимость будет непрерывной и мы можем записать её производную. Однако легко видеть, что произведение преобразований из этого семейства, вообще говоря, не принадлежит этому семейству.

Теорема 4.2.2. Пусть векторное пространство V является прямой суммой векторных пространств V_1 и V_2

$$V = V_1 \oplus V_2$$
Пусть \(T_1 \) - представление группы \(G \) в векторном пространстве \(V_1 \). Пусть \(T_2 \) - представление группы \(G \) в векторном пространстве \(V_2 \). Пусть геометрический объект \(v \) является прямой суммой геометрических объектов \(v_1 \in V_1 \) и \(v_2 \in V_2 \)

\[
T(a)(v_1 \oplus v_2) = T_1(a)(v_1) \oplus T_2(a)(v_2)
\]

Если представления \(T_1 \) и \(T_2 \) ковариантны, то отображение \(T \) - ковариантное представление группы \(G \) в векторном пространстве \(V = V_1 \oplus V_2 \). Если представления \(T_1 \) и \(T_2 \) контравариантны, то отображение \(T \) - контравариантное представление группы \(G \) в векторном пространстве \(V = V_1 \oplus V_2 \). Мы будем называть представление \(T \) прямой суммой представлений и

\[
\xi(v_1 \oplus v_2) = \begin{pmatrix}
\xi_1(v_1) & 0 \\
0 & \xi_2(v_2)
\end{pmatrix}
\]

Доказательство. Мы просто дифференцируем отображение \((4.2.5)\). \(\Box\)

4.3. Линейное представление группы Ли

Теорема 4.3.1. В случае линейного представления

\[
v' = T(a)(v) \quad f^i(a)(v) = f^i_\lambda(v)
\]

базовый вектор представления имеет вид

\[
\xi(a)(v) = \xi_b(v) \quad \xi^i_\lambda(v) = \xi^i_\lambda L v^j
\]

где мы определяем бесконечно малые образующие представления

\[
I^i_M = \frac{\partial f^i_j}{\partial a^M} \bigg|_{a=e} \quad I = \frac{\partial f}{\partial a} \bigg|_{a=e}
\]

Доказательство. Если мы подставим

\[
f^i(a)(v) = f^i_\lambda(v)
\]

в \((4.1.2)\), мы получим

\[
\xi^i_\lambda(v) = f^{-1}_k(b) \left. \frac{\partial f^k_i}{\partial b^L} v^j \right|_{b=e} = I^i_j L v^j
\]

\(\Box\)

Теорема 4.3.2. Линейное ковариантное представление удовлетворяет дифференциального уравнению

\[
\frac{\partial v^i}{\partial a^M} = I^i_j L \lambda^L_M(a) v^j
\]

\[
\frac{\partial f^i_j}{\partial a^M} = I^i_j f^i_k L \lambda^L_M(a)
\]

\[
\frac{\partial f}{\partial a} = I f \lambda_r(a)
\]
4.4. Алгебраические свойства линейного представления

Доказательство. (4.3.4) является следствием равенств (4.1.4) и (4.3.2). Если мы подставим (4.3.1) в (4.3.4), мы получим

\[\frac{\partial f^a}{\partial a^M} u^c = I^a_{bM} \lambda_M^L(a) f^b_c u^c \]

Отсюда следует (4.3.5).

\[| \]

Теорема 4.3.3. Линейное контравариантное представление удовлетворяет дифференциальному уравнению

(4.3.6) \[\frac{\partial u^i}{\partial a^M} = I^i_{jM} u^j \lambda_M^L(a) \]

(4.3.7) \[\frac{\partial f^i_k}{\partial a^M} = I^i_{jL} f^j_k \lambda_M^L(a) \]

Доказательство. (4.3.6) является следствием равенств (4.1.6) и (4.3.2). Если мы подставим (4.3.1) в (4.3.6), мы получим

\[\frac{\partial f^a}{\partial a^M} u^c = I^a_{bM} \lambda_M^L(a) f^b_c u^c \]

Отсюда следует (4.3.7).

\[| \]

4.4. Алгебраические свойства линейного представления

Теорема 4.4.1. Если представления \(f_1 \) и \(f_2 \) оба либо ковариантны, либо контравариантны и представление \(f \) является их тензорным произведением, то

(4.4.1) \[I = I_1 \otimes E_2 + E_1 \otimes I_2 \]

Доказательство. Дифференцируя равенство

\[f(a) = f_1(a) \otimes f_2(a) \]

по \(a \) мы получим

(4.4.2) \[\frac{\partial f}{\partial a} = \frac{\partial f_1}{\partial a} \otimes f_2 + f_1 \otimes \frac{\partial f_2}{\partial a} \]

Мы получим (4.4.1) из (4.4.2) по определению, когда \(a = e \).

\[| \]

Теорема 4.4.2. Если \(f \) - линейное представление группы \(G \) в векторном пространстве \(M \), то отображение \(h(a) = f(a^{-1}) \) также является линейным представлением группы \(G \) в векторном пространстве \(M \)

(4.4.3) \[I_{h^{-1}} = -I_{f^{-1}} \]

Если \(f \) - линейное ковариантное представление, то \(h \) - контравариантное представление

(4.4.4) \[\frac{\partial f^i_k}{\partial a^M} = I_{f^{-1}} f^i_{jL} h^j_k \lambda_M^L(a) \]

\[\frac{\partial h^i_k}{\partial a^M} = -I_{f^{-1}} f^i_{jL} h^j_k \lambda_M^L(a) \]

Если \(f \) - линейное контравариантное представление, то \(h \) - ковариантное представление

(4.4.5) \[\frac{\partial f^i_k}{\partial a^M} = I_{f^{-1}} f^i_{jL} h^j_k \lambda_M^L(a) \]

\[\frac{\partial h^i_k}{\partial a^M} = -I_{f^{-1}} f^i_{jL} h^j_k \lambda_M^L(a) \]
ДОКАЗАТЕЛЬСТВО. Утверждение, что \(h \) является ковариантым представлением, если \(f \) - контравариантное, следует из теоремы [1]-2.4.10. Аналогично доказывается утверждение, что \(h \) является контравариантым представлением, если \(f \) - ковариантым. Так как преобразование, обратное линейному, также является линейным, то представление \(h \) также является линейным.

Чтобы доказать теорему, мы должны найти бесконечно малые образующие представления \(h \). Согласно равенству (4.3.3)

\[
I_{h, j M} = \frac{\partial h_j^i(a)}{\partial a^M} \bigg|_{a=e} = \frac{\partial f_j^i(a^{-1})}{\partial a^M} \bigg|_{a=e} = \frac{\partial f_j^i(a^{-1})}{\partial a^{-1} N} \frac{\partial a^{-1} N}{\partial a^M} \bigg|_{a=e}
\]

Очевидно, что

\[
(4.4.7) \quad \frac{\partial f_j^i(a^{-1})}{\partial a^{-1} N} \bigg|_{a=e} = \frac{\partial f_j^i(a)}{\partial a^N} \bigg|_{a=e} = I_{f, j N}
\]

Из равенства (3.1.34) следует

\[
(4.4.8) \quad = \frac{\partial a^{-1} N}{\partial a^M} \bigg|_{a=e} = -\psi_{iK}^N(a^{-1})\lambda_{iM}^r(a)\bigg|_{a=e} = -\delta_{iM}^N
\]

Равенство (4.4.3) следует из равенств (4.4.6), (4.4.7), (4.4.8). □

Теорема 4.4.3. Пусть векторное пространство \(V \) является прямой суммой векторных пространств \(V_1 \) и \(V_2 \)

\[
V = V_1 \oplus V_2
\]

Пусть представления группы \(G \) в векторных пространствах \(V_1 \) и \(V_2 \) оба либо коварианты, либо контраварианты. Тогда определено представление группы \(G \) в векторном пространстве \(V \) у

\[
I_P = \begin{pmatrix} I_{1_{a_1 P}^{a_1}} & 0 \\ 0 & I_{2_{b_2 P}^{b_2}} \end{pmatrix}
\]

ДОКАЗАТЕЛЬСТВО. Для доказательства достаточно взять производную отображения

\[
f(a)(v_1 \oplus v_2) = f_{a_1}^{a_1}(a)(v_1^1 e_{a_1}) + f_{a_2}^{a_2}(a)(v_2^2 e_{a_2})
\]

□
Глава 5

Дифференциальные свойства геометрического объекта

5.1. Ковариантная производная

Мы хотим изучить как меняются координаты геометрического объекта (4.3.1), когда мы движемся вдоль многообразия. Мы предполагаем, что GL(n) - основная группа преобразований. Локальный базис имеет преобразование

\[a^k_i = \delta^k_i + \Gamma^k_{ip} dx^p \]

Следовательно,

\[v'^\alpha = v^\beta (\delta^\alpha_\beta + \Gamma^\alpha_{\beta p} dx^p - \delta^\alpha_i) \]

Если мы определим связность \(\Gamma^{\alpha}_{\beta p} = \Gamma^\alpha_{\beta p} \cdot \Gamma^\alpha_{lp} \)
то мы получим

\[Dv^\alpha = v'^\alpha - v^\alpha = -\Gamma^\alpha_{\beta p} v^\beta dx^p \]

Это позволяет определить ковариантную производную

\[v'^\alpha_{ik} = v^\alpha_{ik} + \Gamma^\alpha_{\beta p} v^\beta \]

Рассмотрим коммутатор двух производных

\[v'^\alpha_{ikl} - v'^\alpha_{lki} = v'^\alpha_{ikl} + \Gamma^\alpha_{\beta i} v^\beta - \Gamma^\alpha_{\beta k} v^\beta - v'^\alpha_{lki} - \Gamma^\alpha_{\beta k l} v^\beta + \Gamma^\alpha_{\beta k} v^\beta + \Gamma^\alpha_{\gamma l} v^\gamma - \Gamma^\alpha_{\gamma k} v^\gamma + \Gamma^\alpha_{\beta p} v^\beta \]

(5.1.1)

5.2. Производная Ли

Векторное поле \(\xi^k \) на многообразии порождает бесконечно малое преобразование

\[x'^k = x^k + \epsilon \xi^k \]

которое приводит к производной Ли. Производной Ли говорит нам как геометрический объект меняется, когда мы движемся вдоль векторного поля.

Рассмотрим производную Ли для геометрического объекта (4.3.1). В этом случае мы имеем преобразование

\[a^k_i = \delta^k_i + \epsilon a^k_i \]
Согласно (4.3.2) геометрический объект (4.3.1) имеет производную Ли

\[
\mathcal{L}_a v^\alpha = \frac{v^{\alpha}(x') - v^{\alpha}(x)}{\epsilon} = \frac{(v^{\alpha} + v^{\alpha}_p \epsilon a^p) - f^\alpha_\beta(a)v^\beta}{\epsilon}
\]

\[
= \frac{v^{\alpha} + v^{\alpha}_p \epsilon a^p - \epsilon (\delta^\alpha_\beta + I^\alpha_\beta \Gamma^k_{lp}a^p)}{\epsilon}
\]

\[
= v^{\alpha} + v^{\alpha}_p \epsilon a^p - v^{\alpha} - I^\alpha_\beta \Gamma^k_{lp}a^p = \epsilon
\]

Мы можем выразить эту производную через ковариантную производную

\[
\mathcal{L}_a v^\alpha = (v^{\alpha}_p - I^\alpha_\beta \Gamma^k_{lp}a^p - \Gamma^\alpha_\beta_\rho a^\rho - I^\alpha_\beta \Gamma^k_{lp}a^p)v^\beta = v^{\alpha}_p a^p - I^\alpha_\beta \Gamma^k_{lp}a^p v^\beta
\]
Глава 6

Список литературы

[1] Александр Клейн, Представление \mathfrak{g}-алгебры, eprint arXiv:0912.3315 (2010)
[2] Л. П. Эйзенхарт, Непрерывные группы преобразований, перевод с английского М. М. Постникова, М. Иностранная литература, 1947
Глава 7

Предметный указатель

базовый вектор представления группы Ли 27
базовый оператор группы Ли 16
бесконечно малый генератор 30
вполне интегрируемая система 7
инфинитезимальные образующие группы Ли 24
левоинвариантное векторное поле 24
левые структурные константы алгебры Ли 22
определённая слева алгебра Ли группы Ли 24
определённая справа алгебра Ли группы Ли 22
полная система линейных дифференциальных уравнений в частных производных 10
правоинвариантное векторное поле 21
правые структурные константы алгебры Ли 20
производная Ли 33
прямая сумма представлений 30
существенные параметры семейства функций 11
tензорное произведение представлений 29
якобиева полная система дифференциальных уравнений 11
Глава 8

Специальные символы и обозначения

Обозначение	Описание
$A_{l}^{K}(a,b)$	производная левого сдвига
$A_{l}(a,b)$	производная левого сдвига в 1-параметрической группе Ли
$A_{r}^{K}(a,b)$	производная правого сдвига
$A_{r}(a,b)$	производная правого сдвига в 1-параметрической группе Ли
$C_{l}^{V \rightarrow T}$	левые структурные константы алгебры Ли
$C_{r}^{V \rightarrow T}$	правые структурные константы алгебры Ли
ξ_{v}^{\prime}	базовый вектор представления группы Ли
$\xi_{v}^{\prime}\mathbf{U}^{T}$	координаты базового вектора представления группы Ли
g	алгебра Ли группы Ли
g_{l}	определённая слева алгебра Ли группы Ли
g_{r}	определённая справа алгебра Ли группы Ли
I_{LM}^{L}	инфинитезимальные образующие представления
I_{LM}^{R}	инфинитезимальные образующие группы Ли
$T_{a}G$	касательная плоскость к группе G
$\lambda_{l}(a)$	обратный оператор оператора ψ_{l}
$\lambda_{r}(a)$	обратный оператор оператора ψ_{r}
$\psi_{n}^{L}(b)$	левый базовый оператор группы Ли
$\varphi^{L}(a_1, a_2)$	операция на группе Ли

37