The study of chemical composition and pharmacological action of the alkaloid from plants of Lycoris Herb

Y B Ji¹², C Wei¹² and G S Xin¹²*
¹Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, 150076, China
²Engineering Research Center of natural antineoplastic drugs, Ministry of Education, Harbin, 150076, China
E-mail: 13766801150@163.com

Abstract. Recently, studies on Lycoris type alkaloids received the attention of scholars home and abroad. Lycoris type contains lots of alkaloids, it can be divided into seven types according to its molecular structure, including Lycorine, Crinine, Galanthamine, Tazettine, Narciclasine, Lycorenine, Homolycorine and Montanine. Researches have shown that Lycoris type possess multiple pharmacology activity, such as strong anti-tumor activity of human breast cancer cell (MCF-7), human leukemia cell(HL-60); and strong inhibition effect of flu virus, measles virus, polio virus and SARS virus; Besides, Lycorine type has strong anti-Acetylcholinesterase effect. In a word, Lycorine type, Lycoris type alkaloids carries multiple pharmacology effect and is a promising substance.

1. Introduction
Amaryllidaceae Lycoris Herb mainly produced in Asia, where China is a big country for Lycoris output, at present our country found about 17 species of Lycoris Herb[¹]. The study found that Lycoris herb rich in alkaloids chemical composition and Lycoris type alkaloids variety, diverse structures and pharmacological activities are widely. Currently found Lycorine type alkaloids has anti-tumor, anti-acetylcholinesterase, antibacterial and antiviral effect. In recent years, studies on Lycoris type alkaloids received the attention of scholars home and abroad. Reports on its pharmacological effects are common, but the lack of systems of classification of a Lycoris type alkaloids and pharmacological effects the summary.

2. Lycoris type alkaloids chemical composition
Lycoris herb are mainly distributed in Asia, there are 17 kinds of common Lycoris herb(table 1)[²]. There are many kinds for chemical composition of alkaloids. It can be divided into seven types according to its molecular structure, including Lycorine, Crinine, Galanthamine, Tazettine, Narciclasine, Lycorenine, Homolycorine and Montanine[³].

Table 1. Varieties of Lycoris Herb

Number	Species	Number	Species	Number	Species
1	L.anhuiensis.	7	L.squamigera.	13	L.radiata.
2	L.aurea.	8	L.shanxiensis.	14	L.haywardii.
3	L.incana.	9	L.straminea.	15	L.longituba.
4	L.caldweltii.	10	L.chinensis.	16	L.uncarnate
5	L.guangxiensis.	11	L.albiflora.	17	L转会ieren
6	L.sprengeri.	12	L.houdysheli.		

1st International Global on Renewable Energy and Development (IGRED 2017)
IOP Conf. Series: Earth and Environmental Science 100 (2017) 012045
doi:10.1088/1755-1315/100/1/012045
2.1. Lycoris type alkaloids
It isolated 17 Lycoris type alkaloids from Lycoris herb (figure 1), Lycorine (1) isolated from L. haywardii; 5,6-dehydrodihydrolycorine (2), dihydrolycorine (3) and 7-oxodihydrolycorine (4) isolated from L. haywardii [4-6]; galanthine (5) and Caranine (6) isolated from L. haywardii [7]; Ungminorine (7) isolated from L. haywardii [8-10]; Ungminorine N-oxide (8) isolated from L. incanata [11]; Hippadine (9) isolated from L. haywardii [14]; Pseudolycorine (10) and Norpluviine (11) isolated from L. haywardii [12]; lycoramine A (12) isolated from L. haywardii [11]; (-)-amarbellisine (14) isolated from L. longituba [16]; Pluviine (15) isolated from L. aurea [17]; LT1 (16) and Incartine (17) isolated from L. incanata [18].

2.2. Galanthamine type alkaloids
It isolated 14 Galanthamine alkaloids from Lycoris herb (figure 2), Galanthamine (18) isolated from L. haywardii [15]; Galanthamine N-oxide (19) isolated from L. incanata [11]; lycomarine (20) and Lycoramine N-oxide (21) and Sanguinine N-oxide (24) isolated from L. haywardii [4]; O-demethyllycoramine (22) isolated from L. aurea [16]; Sanguinine (23) isolated from L. sanguinea [12]; epi-galanthamine (25) isolated from L. squamigera [8]; Narwedine (26), Norgalanthamine (27) and N-allylnorgalanthamine (28) isolated from L. guangxiensis [10]; N-demethyllycoramine (29) isolated from L. haywardii [15]; Norsanguinine (30) and nortubanguniinem (31) isolated from L. sanguinea [27].

2.3. Crinine type or Hemanthamine type alkaloids
It isolated 10 Crinine type or Hemanthamine alkaloids from Lycoris herb (figure 3), 6β-acetoxycriamine (32) isolated from L. haywardii [6]; Crinine (33) L. guangxiensis [10] and 6β-hydroxycriamine (34) isolated from L. haywardii [6]; 6α-hydroxycriamine (35) and Macowine (39) isolated from L. longituba [19]; 11-hydroxyvittatine (36) isolated from L. haywardii [6]; Haemanthidine (37) isolated from L. haywardii [4,18]; Vittatine (38) isolated from L. haywardii [4,18]; O-demethylhaemanthamine (40) and haemanthamin (41) isolated from L. haywardii [19].

Figure 1. Lycoris type alkaloids
3. The pharmacological effects of Lycorine type alkaloids chemical composition

3.1. Anti-tumor effect
The chemical composition of Lycoris type alkaloids have anti-tumor activity, which Lycorine type, Crinine type alkaloids anti-tumor activity is particularly significant. The study found that Lycorine is Lycoris type alkaloid first isolated monomer components obtained from Lycoris, such as strong anti-tumor activity of human breast cancer cell (MCF-7), human leukemia cell (HL-60); and strong inhibition effect of flu virus, measles virus, polio virus and SARS virus [21-22]. Scholars of Lycorine antitumor mechanism depth study found Lycorine through the mitochondrial pathway, death receptor pathway and cell cycle arrest pathway inhibit tumor cell proliferation, in three ways to induce tumor cell apoptosis by triggering the mitochondrial pathway play a leading role [23]; Crinine, Crinamine and Haemantamine from Crinine type alkaloids has a good anti-tumor activity, including haemantamine has a strong inhibitory effect on human cervical cancer HeLa cells [24]; Narciclasine and Lycoricidine has inhibitory activity to the variety of human tumor cells [25].

3.2. Anti-acetylcholinesterase effect
Lycoris alkaloids chemical composition have anti-acetylcholinesterase (AchE) activity, among them, the activity of Galanthamine type and Lycorine type alkaloids are most significant [26]. The study found that Galanthamine and O-desmethyl galantamine from Galanthamine type alkaloids have anti-acetylcholinesterase (AchE) activity. Galantamine the performance of AchE inhibition is competitive reversible inhibition, the role of the IC50 is 1.9 μmol/L [27]; 1-O-acetyllycorine of Lycorine
type alkaloids has significant inhibitory activity and its intensity is equal to 2 times of Galanthamine, Lycorine of Lycoris type alkaloids, 1,2 diacetyl Lycorine anti-AchE activity is poor; In addition, the study also found that montanine of AchE showed some inhibition, the strength of galanthamine was slightly lower. Narciprimine and 6-Hydroxycrinamine also has anti-AchE activity.

3.3. Anti-bacterial and Anti-viral effect

The chemical composition of Lycoris type alkaloids have anti-bacterial activity, some scholars have found that Crinine type alkaloids with broad-spectrum antimicrobial activity, Crinine has inhibitory activity against Staphylococcus aureus; Crinine and ainarbellis ine have anti-E.coli activity; The hippeastrine of Lycoris type alkaloids has anti-Candida albicans activity; The chemical composition of Lycoris type alkaloids have anti-viral activity, Lycoris type alkaloids has inhibition effect of flu virus, measles virus, polio virus and SARS virus; Haemanthidine of Crinine alkaloids have anti-transcriptional activity effect on HIV-1 virus, Homolycorine of Lycoris type alkaloids and Colchicine of Tazettine alkaloids also have anti-transcriptional activity.

4. Conclusion

Lycoris Herb as Chinese traditional medicines, has the characteristics of wide distribution, abundant resources, Lycoris Herb rich in chemical composition, in recent years with development of chemical composition and pharmacological effects of Lycoris type alkaloids, increasing the quantity and types of alkaloids, constantly enrich the pharmacological action, but the majority of chemical composition research of Lycoris type alkaloids is still in the initial stage, pharmacological mechanism of action is not clear. Therefore, it is necessary to chemical composition of Lycoris type alkaloids, depth and systematic study of pharmacological mechanisms, provide a theoretical basis for the development of high efficiency and low toxicity of alkaloid chemicals to make Lycoris Herb better play its medicinal value.

Acknowledgments

This work was supported by Harbin municipal science and technology bureau project(2016RQQXJ124, 2016RAXXJ064); Innovation talent project of education department of heilongjiang province(UNPYSCT-2016181); Harbin University of Commerce graduate student innovation project(YJSCX2017-454HSD)

References

[1] Flora of China Editorial Committee of Chinese Academy of Sciences 1985 Flora of China (Beijing, The Science Publishing Company)
[2] Li Y W and Li D W 2007 Research progress of Lycoris Herb Subtropical Plant Science 2 73-6
[3] Wang H, Wang Y H and Chen L J 2012 Research progress of Lycoris type alkaloids Research and development of natural products 5 691-7
[4] Kihara M, Konishi K and Xu L 1991 Alkaloidal constituents of the flowers of Lycoris radiata Herb Chemical and pharmaceutical bulletin 39 1849-53
[5] Kobayashi S, Yuasa K and Imakura Y 1980 Isolation of O-Demethyllycoramine from Bulbs of Lycoris radiata Herb Chemical and pharmaceutical bulletin 28 3433-6
[6] Feng T, Wang Y Y and Su J 2011 Amaryllidaceae Alkaloids from Lycoris radiata Herb Helvetica Chimica Acta 94 178-83
[7] Kobayashi S, Takeda S and Ishikawa H 1976 Alkaloids of the Amaryllidaceae. A New Alkaloid, Sanguinine,from Lycoris sanguinea Maxim, var. Kiushiana Makino and Pretazettine from Lycoris radiata Herb Chemical and pharmaceutical bulletin 24 1537-43
[8] Hong S H and Ma G E 1964 Research Amaryllidaceae Alkaloids III. L.squamigera and two other alkaloids and new creatures L.squamigera Pharmaceutical Journal 11 1-14
[9] Kitajima M, Kinoshita E and Kogure N 2009 Two new alkaloids from bulbs of Lycoris squamigera Heterocycles 77 1389-96
[10] Li H Y, Ma GE and Xu Y 1987 Alkaloids of Lycoris guangxiensis Planta medica 53 259
[11] Kihara M, Lai W and Konishi K 1994 Isolation and structure elucidation of a novel alkaloid, incartine, a supposed biosynthetic intermediate Chemical and pharmaceutical bulletin 42 289-92
[12] Zhao Y Y, Liang Y Q and Chen Y 2011 Study on chemical constituents of L. longituba Chinese herbal medicines 34 1366-68
[13] Wang L, Yin Z Q and Cai Y 2010 Amaryllidaceae alkaloids from the bulbs of Lycoris radiata Biochimica Systematics and Ecology 38 444-6
[14] Kihara M, Xu L and Konishi K 1992 Incartine, a biosynthetic intermediate, from the flowers of Lycoris incarnata Heterocycles 34 1299-301
[15] Wang H., Wang, Y. H. and Zhao, R W 2011 Benzylphenethylamine alkaloids from the bulbs and flowers of Lycoris Chinese Herbal Medicines 3 60-3
[16] Noshita T, Miyashita H and Shimizu H 2002 Isolation of Hippadine from the Roots of Lycoris radiata Natural Medicines 56 216
[17] Uyeo S and Yanaihara N 1959 Phenolic alkaloids occurring in Lycoris radiata L. Chem. Soc 3 172-7
[18] Wang L, Zhang X Q and Yin Z Q 2009 Two New Amaryllidaceae Alkaloids from the Bulbs of Lycoris Chinese and pharmaceutical bulletin 57 610-1
[19] Liang Y Q, Feng B and Zhao X Z 2010 The alkaloids in L. longituba Natural Products Research and Development 22 241-4
[20] Keck G E, Wager T T and Rodriguez F D 1999 Journal of the American Chemical Society 121 5176-90
[21] Toriiizuka Y, Kinoshita E and Kogure N 2008 Bioorganic and medicinal chemistry 16 10182-9
[22] Yang Y, Huang S X and Zhao Y M 2005 Alkaloids from the Bulbs of Lycoris aurea Helvetica Chimica Acta 88 2550-3
[23] Kobayashi S, Satoh K and Numata A 1991 Alkaloid N-oxides from Lycoris sanguinea Phytochemistry 30 675-7
[24] Lopez S, Bastida J and Viladomat F 2002 Acetylcholinesterase inhibitory activity of some amaryllidaceae alkaloids and naringin, extracts Life Sci 71 2521-9
[25] Yang Y 2005 Master's thesis PLA Military Academy of Medical Sciences 42
[26] Jitsuno M, Yokosuka A and Hashimoto K 2011 Chemical constituents of Lycoris albiflora and their cytotoxic activities Natural product communication 6 187
[27] ZupQ I, Rethy B and Hohmann J 2009 Antitumor activity of alkaloids derived from amaryllidaceae species In Vivo 23 41-8
[28] Evidente A, Kireev A S and Jenkins A R 2009 Biological e-valuation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: discovery of novel leads for anticancer drug design Planta Med 75 501-7
[29] Ingrassia L 2008 Amaryllidaceae isocarbostyril alkaloids and their derivatives as promising antitumor agents Translat On-col 1 1-10kamoto J, Torii Y and Isogai Y 1968 Lycorcidinol and lycoricidine, new plant-growth regulators in the bulbs of Lycoris radiata Herb Chemical and pharmaceutical bulletin 16 1860
[30] Evidente A and Kornienko A 2009 Anticancer evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives Phytochem Rev 8 449-59
[31] Li S Y 2005 Identification of natural compounds with antiviral activities against SARS-associated coronavirus Antiviral Res 67 18-23
[32] Cedron J C, Gutierrez D and Flores N 2010 Synthesis and antiplasmodial activity of lycorine derivatives Bioorganic and Medicinal Chemistry 18 4694-701
[33] Liu J N, Yang Y J and Xu Y F Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication Virol J 8 448-52
[34] Szlavik L 2004 Alkaloids from Leucojum vernum and antiretroviral activity of amaryllidaceae alkaloids Planta Med 70 871-87
[35] Szlavik L, Gyuris A and Minarovits J 2004 Alkaloids from Leucojum vernum and antiretroviral...
activity of Amaryllidaceae alkaloids *Planta medica* **70** 871