RESEARCH ARTICLE

Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

Chung Thuy Ngo¹,², Fabien Aujoulat³, Francisco Veas¹, Estelle Jumas-Bilak³, Sylvie Manguin¹*

¹ Institut de Recherche pour le Développement (IRD), UMR-MD3, Faculté de Pharmacie, Montpellier, France, ² National Institute of Veterinary Research, Hanoi, Vietnam, ³ University Montpellier 1, UMR 5119 ECOSYM, Equipe Pathogènes et Environnements, Faculté de Pharmacie, Montpellier, France

* sylvie.manguin@ird.fr

Abstract

Background

Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.

Method

The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.

Results and Discussion

The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the
importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.

Conclusion
Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.

Introduction
Anopheles mosquitoes can be vectors of human pathogens responsible of infectious diseases such as malaria and lymphatic filariasis, which represent a great public health challenge in many tropical countries. In Vietnam, malaria remains the most important vector-borne parasitic disease with a higher prevalence in forested regions, in particular along the international borders with Cambodia. The goal of the National Malaria Control Program (NMCP) is to eliminate malaria by 2020 of the 63 provinces in the country. Presently 40 provinces have no local malaria transmission, 15 are in elimination phase and 8 in pre-elimination phase including those with hyper-endemic malaria foci [1].

Plasmodium falciparum, the parasite responsible for the majority of recorded malaria (63%) in Vietnam, followed by P. vivax (37%) may share the same Anopheles vector species with Wuchereria bancrofti, the nematode responsible for Bancroftian lymphatic filariasis (BLF), for which only limited information is available [2]. Many of these Anopheles vectors belong to sibling species complexes or taxonomic groups of closely related species with different degrees of involvement in the transmission of parasites. The inherent difficulties to differentiate these species morphologically [3,4] creates operational problems in providing targeted vector control for controlling the pathogens they carry [1].

The complex factors allowing the development of a pathogen to reach the infective stage in a mosquito are incompletely known. On the 539 described species of mosquitoes within the Anopheles genus [5], only 60 to 70 are capable of transmitting malaria and BLF [6,7]. In vector-parasite interactions, the mosquito gut represents the first point of contact between parasites ingested and the vector’s epithelial surfaces. In the midgut, where the parasites begin their life cycle, the tens of thousands of Plasmodium gametocytes that might be ingested by a mosquito, less than five oocysts might be produced [8]. The factors responsible for this drastic reduction are still poorly understood. Recent studies showed that one of these factors concerns the primordial role played by bacteria naturally present in the mosquito midgut [9–13]. There is a growing interest on bacterial biodiversity in Anopheles mosquitoes and particularly those based on the identification of bacteria that might be used for malaria transmission blocking based on bacterial genetic changes to deliver anti-parasite molecules or a paratransgenic approach to control [13–20].

Recent studies have been conducted to investigate bacterial species in field-collected Anopheles mosquitoes using culture-dependent and/or culture-independent approaches focusing on primary vector species only [14,15,21–23]. To date, no study has been conducted on natural bacteria diversity in Anopheles mosquitoes from Vietnam combining these two methodologies.
The objective of our study was to characterize bacteria in the abdomen of wild-caught Anopheles species collected in Dak Nong Province, Vietnam, using both culture-dependent and culture-independent (DNA fingerprint) methods.

Materials and Methods

Ethical statement

The specimens used in this study were provided by the Military Preventive Medicine Centre, Ho Chi Minh City (Vietnam) who organized the field study and obtained all necessary permits. The Vietnam People’s Army Department of Military Medicine approved the study. Mosquito collections were done with the approval of the head of each village and the owner and occupants of the houses where mosquitoes were collected. Mosquito collectors gave their consent and were diagnosed and treated free-of-charge in the event of a malaria episode during the study in accordance with the national drug policy of Vietnam.

Samples

Specimens belonging to 5 Anopheles species, including Anopheles barbumbrosus, An. crawfordi, An. dirus, An. maculatus and An. gigas, were collected from 6 sites located in Dak Ngo Commune, Tuy Duc District, Dak Nong Province, Vietnam (11°59’N 107°42’E—central Highlands). These Anopheles specimens were collected between November and December 2010 during 10 consecutive nights using several methods, including mechanical light traps, human-landing catches, cow-baited captures and resting collections [24].

Initial Anopheles mosquito identification was morphologically done in the field by sorting out each taxon. Specimens that belonged to the Dirus Complex or the Maculatus Group were individually identified to species level using the appropriate PCR-based method as described by Walton et al. [25,26]. Each individual was split in two paired sections, head-thorax for species identification and abdomen for bacteria analysis, and stored at -80°C until analyzed. One hundred abdomens of wild-caught females were used for the bacterial study.

Bacterial culture and DNA extraction

Anopheles abdomens were surface rinsed twice in sterilized DNA-free water, and each abdomen was thoroughly disrupted using a sterilized tissue crusher device in 150 μl of sterilized DNA-free water. Then, 10 μl of this suspension was spread on each prepared culture medium plate: blood sheep agar, R2A and Acetobacter agar. The inoculated agar plates were incubated at 30°C during 72 hrs and checked every 24 hrs for bacterial growth. Colonial morphotypes were differentiated and subcultured on a new agar plate and incubated at the primary plates to obtain pure isolates. The bacterial isolates were transferred to tryptic soy agar plate and incubated at 30°C during 24 hrs. Then, isolated colonies were suspended in purified DNA-free water until turbidity equal to McFarland N°5 (about 1.5 \(10^9\) bacteria/mL) was reached, boiled for 10 min and frozen at -20°C for raw DNA extraction. Each bacterial isolate were stored at -80°C in tryptic soy broth with 15% glycerol. Whole DNA was extracted from 100 μl of mosquito abdomen suspension using the Master Pure Gram Positive DNA purification kit as recommended by the supplier (Epicentre Biotechnologies, Madison, USA). The purified and raw DNAs were kept at -20°C before further analyses.

PCR

For PCR-TTGE experiments, the V2–V3 region of the 16S rRNA gene of bacteria was amplified using the primers HDA1/HDA2 [27]; HDA1: 5’-ACTC CTA CGG GAG GCA GCA GCA
GT-3', HDA2: 5'-GTA TTA CGG CTG CTG GCA-3'. A 40-bp clamp, named GC (5'-CGC CGG GGG GCC CGC GGG GGG GGG GCA CGG GGG G-3') flanked the 5' extremity of HDA1 [28] in order to form HDA1-GC. PCR was performed using an Eppendorf thermal cycler (Eppendorf, Le Pecq, France) and 0.5 ml tubes. The reaction mixture (50 μl) contained 2.5 units of Taq DNA Polymerase (FastStart High Fidelity PCR system, Roche, Meylan, France), 0.2 mM of dNTPs, 0.2 mM of each primer and 1 μl of abdomen content DNA in the appropriate reaction buffer. Thermal cycling conditions consisted of an initial denaturation step at 95°C for 2 min, then 35 cycles each consisting of denaturation at 95°C for 1 min, annealing at 62°C for 30 s and extension at 72°C for 1 min, with a final extension at 72°C for 7 min. A nearly complete 16S rRNA gene sequence was amplified with DNA from the bacterial isolates as template using the universal primers 27f [29] and 1492r, as described [30]. PCR amplifications were checked by DNA electrophoresis in 1.5% agarose gels containing ethidium bromide and visualized under ultraviolet light.

For the Anopheles specimens that did not show presence of bacteria, an ITS2-PCR was processed in order to verify that absence of microbiota detection was not due to failed DNA extraction. The protocol used a reaction mixture (25 μl) containing 5 μl of 5X PCR reaction buffer, 1.5 mM of MgCl₂, 0.5 units of Tfi DNA polymerase, 0.2 mM of dNTPs, 0.2 μM of each universal primer, ITS2A (5'-TGT GAA CTG CAG GAC ACA T-3') and ITS2B (5'-TAT GCT TAA ATT CAG GGG GT-3') and 3 μl of abdomen content DNA in the appropriate reaction buffer. Thermal cycling conditions consisted of an initial denaturation step at 94°C for 2 min, then 40 cycles each consisting of denaturation at 94°C for 30 s, annealing at 51°C for 30 s and extension at 72°C for 1 min, with a final extension at 72°C for 10 min.

Temporal Temperature Gel Electrophoresis

Temporal Temperature Gel Electrophoresis (TTGE) was performed using the DCode universal mutation detection system (Bio-Rad Laboratories, Marne-la-Coquette, France) in gels that were 16 cm × 16 cm by 1 mm. The gels (60 ml) were composed of 8% (wt/vol) acrylamide-bisacrylamide (37.5:1), 7 M urea, 60 ml of N,N,N',N'-tetramethylethylenediamine (TEMED), and 0.1% (wt/vol) ammonium persulfate. Gels were run with 1X Tris–acetate–EDTA buffer at pH 8.4. A volume of 5 μl of DNA was loaded on gel with 5 μl of in-house dye marker (saccharose 50%, Bromophenol Blue 0.1%) using capillary tips. Denaturing electrophoresis was performed at 46 V with a temperature ramp from 63°C to 70°C during 16 hrs (0.4°C/h), after a pre-migration of 15 min at 20 V. Gels were stained with ethidium bromide solution (5 μg/ml) for 20 min, washed with de-ionized water, viewed using a UV trans-illumination system (Vilbert-Lourmat, France) and photographed.

TTGE band sequencing and OTU affiliation

TTGE bands were excised and the DNA was eluted with 50 μl of elution buffer (EB) of the Qiaquick PCR purification kit (Qiagen, Courtabeuf, France) overnight at 37°C before PCR amplification with HDA1/HDA2 used without GC clamp. The reaction conditions were identical to those described above. PCR products were sequenced on an ABI 3730xl sequencer (Cogenics, Meylan, France). Each sequencing chromatograph was visually inspected and corrected. The sequences were analyzed by comparison with Genbank (http://www.ncbi.nlm.nih.gov/) and Ribosomal Databases Project 2 (RDPII) (http://rdp.cme.msu.edu/) using Basic Local Alignment Search Tool (BLAST) and Seqmatch programs, respectively. The sequence with the highest percentage was used for OTU affiliation. A sequence was affiliated to a species-level OTU when the percent of sequence similarity with the species type strain was above 99.0% [31]. This value is over the recognized cut-off value for the delineation of species [32], but warrants high
stringency for species-level OTU affiliation. Below 99.0%, the sequence is affiliated to the genus of the reference sequence with the highest percentage. When several species reference sequences match equally, affiliation was done to the genus level or to a group of species, if relevant. For example, sequence with 99.5% in similarity to both Aeromonas caviae and Aeromonas hydrophila was only assigned to the genus Aeromonas. The same rule was applied for the taxonomic level higher than the genus level. On each TTGE gel, about 50% of the bands were sequenced, the others being affiliated to an OTU by comparison of their migration distance with that of sequenced bands. The species richness was estimated by the determination of the crude Diversity Index (DI), corresponding to the number of different OTUs identified from each mosquito. Rarefaction analysis was carried out using the online program Analytic Rarefaction available at http://strata.uga.edu/software/Software.html.

Phylogeny

Sequences obtained herein and sequences selected from RDPII (http://rdp.cme.msu.edu) were used for phylogenetic analysis. Sequences were aligned using the ClustalW program. Maximum-likelihood (ML) analysis was performed using phylogenetic analysis at http://www.phylogeny.fr [33]. The general time-reversible (GTR) model plus gamma distribution and invariant sites was used as the best substitution model determined by Akaike criteria (Modeltest v3.7 software) [34]. ML bootstrap support was computed after 100 reiterations. The sequence of Chlamydia trachomatis HAR-13T (NR_025888) was used as outgroup sequence in order to place an artificial tree root.

Results and Discussion

Taxonomic diversity of bacteria in the abdomen of Anopheles adults caught in Dak Nong, Vietnam

From 100 Anopheles specimens belonging to 5 species, 83% showed the presence of bacteria in either PCR-TTGE or culture. Bacteria were not detected in 17 specimens (6 An. maculatus, 4 An. barbumbrosus, 3 An. dirus, 2 An. crawfordi, and 2 An. gigas). For these, an ITS2-PCR assay was performed showing that the absence of microbiota detection was not due to failed DNA extraction, but likely because of low bacterial inoculum under the threshold of detection by techniques used. The percentages of samples per Anopheles species that could not be analyzed for bacteria diversity were 21.4%, 30.8%, 13.0%, 16.2%, and 8.3% respectively. Bacteria diversity was analyzed in all positive samples. Detection of bacteria in 83% of tested samples lies between 15% of Anopheles mosquitoes from Kenya reported by Lindh et al. [15] and those reported by Boissière et al. [35] in which 100% of Anopheles gambiae in Cameroon were found with midgut bacteria using a pyrosequencing method.

The bacterial microbiota of 100 Anopheles abdomens, characterized by DNA fingerprinting and culture methods, found 47 bacterial OTUs belonging to 30 genera (Table 1) within 17 families in the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The diversity detected in this study was likely underestimated as suggested by the rarefaction curve presented in supplementary data. Twenty out of 30 genera belonged to Proteobacteria, which were present in 73% of the specimens tested (Table 1). This result is in accordance with those recently reported by Rani et al. [22], Djadid et al. [20] and Boissière et al. [35], who concluded that Proteobacteria was the dominant phylum in bacterial communities found in An. stephensi collected in India, An. stephensi and An. maculipennis from Iran, and An. gambiae from Cameroon, respectively. Moreover, the four bacterial phyla reported herein, have also been identified in Anopheles mosquitoes from Kenya [15], Iran [14,20], An. gambiae in Cameroon [35], and in
Table 1. Bacterial genera and OTUs in abdomens of *Anopheles* species collected in Vietnam.

Phyla	Genera, family or order / OTUs	An. Barbumbrosus (= 13)	An. crawfordi (= 12)	An. dirus (= 23)	An. gigas (= 24)	An. maculatus (= 28)	Total
Proteobacteria	Acetobacteraceae						
	Acinetobacter *A. junii*, Acinetobacter sp.	3	7	11	19	13	53
	Asaia **/A. spathodeae**						1
	Bartonella **/Bartonella sp.				1		1
	Coxiella (1)/Diplorickettsia massiliensis						1
	Cellvibrio /C. ostraviensis						1
	Enhydrobacter /Enhydrobacter, E. aerosaccus, Enhydrobacter sp.	1	2	1	4		4
	Enterobacter/E. aerogenes						2
	Hafnia /Hafnia paralvei						1
	Klebsiella /Klebsiella pneumoniae						1
	Serratia / Serratia sp.			1			2
	Tatumella /Tatumella sp.						1
	Thorsellia /Thorsellia anophelis						3
	Yersinia (1) /Yersinia sp.						2
	Moraxella /Moraxella osloensis						1
	Novosphingobium / Novosphingobium sp.						3
	Pseudomonas /P. aeruginosa, Pseudomonas sp.						2
	Sphingomonadaceae			7	6	2	15
	Sphingomonadales			6	7	13	13
	Sphingobium /Sphingobium spp.						1
	Sphingomonas /Sphingomonas sp.						1
	Stenotrophomonas /S. maltophilia, Stenotrophomonas sp.				2	2	4
	Xanthomonas ** (1) /Xanthomonas sp.						1
Firmicutes	Staphylococcus *S. pasteuri, S. sciuri, S. warneri*						1
	Bacillus **/Bacillus sp.						1
	Enterococcus /Enterococcus faecium						1
Actinobacteria	Brachybacterium **/ Brachybacterium spp.						1
	Brevibacterium **/Brevibacterium sp.						1
	Janibacter **/Janibacter sp.						1
	Leucobacter **/Leucobacter chromiresistens						1
	Microbacterium *Microbacterium sp., M. radiodurans, M. testaceum	2					2
	Micrococcaceae						1
Bacteroidetes	Chryseobacterium /Chryseobacterium sp.						1
	Flavobacteriaceae **						2
	Knoellia ** (1) /Knoellia sp.						1
Total				14	23	38	33

(Continued)
Genera or OTU newly identified in Anopheles mosquitoes according to the review by Manguin et al. [37] and the present study. Number of samples colonized for each genus or family/OTU per Anopheles species is shown in the case box.

* Genera or OTU revealed by both culture dependent and independent methods.
** Genera or OTU revealed only in culture pathway. (1) Genera or OTU newly identified in Anopheles mosquitoes according to the review by Manguin et al. [37] and the present study. Number of samples colonized for each genus or family/OTU per Anopheles species is shown in the case box.

Aedes aegypti, a vector of various viral pathogens [36], suggesting that at least a fraction of microbiota is common to different mosquito species and genera.

Within the Proteobacteria, the genus Acinetobacter was dominant and present in 53% of the samples, followed by Novosphingobium at 16% (Table 1). Acinetobacter was also the most common bacteria identified in An. gambiae collected in Cameroon [35], as well as other Anopheles species collected from Iran, India, Kenya and Mali [14,22,38]. The genus Novosphingobium (Family Sphingomonadaceae) contains numerous bacteria species known to be metabolically versatile and occupy different ecological niches [39–41]. Novosphingobium is a genus recently reported in Anopheles mosquitoes [42–45] and being the second most commonly encountered genus in the Anopheles from Vietnam, further study will be needed to investigate its association with the mosquito and host pathogens. Other members of Sphingomonadaceae accounted for 15% of our samples and included genera such as Sphingobium and Sphingomonas. This latter genus has also been detected in An. gambiae [18,35].

Beside these more prevalent genera, intermediate occurrence was observed for Staphylococcus (5%), Enhydrobacter and Thorsellia (4%), and Pseudomonas (3%). Thorsellia anophelis was found in 4 specimens belonging to An. crawfordi (n = 1) and An. gigas (n = 3) (Table 1). This bacteria was first isolated and described in 2006 as a new species from An. arabiensis [46], and has also been reported as the dominant bacterium in An. gambiae adults from Kenya [47]. Six genera (Brachybacterium, Enterobacter, Microbacterium, Serratia, Stenotrophomonas, and Xerovirga) displayed a lower prevalence rate with a presence in 2 individuals each, whereas the remaining 18 genera were detected in only one specimen (1%) from samples tested (Table 1). Among these minority genera, Chryseobacterium detected in An. barbumbrosus, has been reported in Anopheles from Kenya [23], larvae and adults from Iran [14], and from other aquatic animals (fish) and various habitats [48,49]. In fact, the latter studies indicated a direct link between the composition of gut microbiota in adult mosquitoes and the bacterial richness of the native aquatic source from which the hosts were derived [12,50].

Bacteria belonging to the family Enterobacteriaceae were identified from 10 specimens in 3 Anopheles species, An. crawfordi, An. dirus, and An. gigas (Table 1), belonging to seven genera including Enterobacter, Hafnia, Tatumella, Thorsellia, Serratia, Xerovirga, and Klebsiella. Within Enterobacteriaceae positive samples, one specimen of An. crawfordi was colonized with three enterobacterial genera, Serratia, Xerovirga and Klebsiella (data not shown). The genera Enterobacter [9,12,50] and Serratia [10,15,22,51] have been regarded as having a role in the development cycle of Plasmodium in Anopheles. Klebsiella has also been isolated in the midgut of An. gambiae collected from Kenya and Mali [38].

Four bacterial genera have been newly detected such as Coxiella, Xerovirga, Xanthomonas, and Knoellia (Table 1), not yet reported in Anopheles mosquitoes either from our previous work by Manguin et al. [37], or recent articles and reviews [42–45,52]. These results suggest that the bacterial diversity associated with Anopheles remains underestimated and that some individuals of Anopheles populations from Dak Nong, Vietnam displayed important and
interesting microbiota diversity. However, the number of different OTUs per specimen (range from 1 to 4) and the correspondant diversity index (DI) (range from 1.1 to 1.9) were relatively low (Table 1). Anopheles crawfordi microbiota displayed the highest bacterial diversity (DI = 1.9) but the diversity among the different Anopheles species did not differ significantly (p<0.05, Kruskal Wallis test) (Table 1). Rani et al. [22] observing midgut bacterial diversity of lab-reared and field-collected An. stephensi (both larvae and adults) from India, reported 53 bacterial genera from the midgut with biodiversity index values ranging from 2.75 to 3.49 for field-collected mosquitoes. Therefore, the biodiversity of microbiota in Anopheles mosquitoes is influenced by the environment where the mosquito was collected as demonstrated by Boissiere et al [35] with An. gambiae collected from different areas in Cameroon.

Comparison of cultivable and molecular microbiota diversity

Among the 100 specimens studied, 52 Anopheles were analyzed using both culture and 16S rRNA genes PCR-TTGE fingerprinting. The panel of culture media was chosen accordingly to the diversity previously described for Anopheles microbiota [15,35,37]. Only 13 samples (25%) produced positive cultures. No positive sample was found for the 3 An. dirus specimens. TTGE fingerprinting appeared a more suitable method for bacteria detection in the Anopheles abdomen as distinct TTGE patterns were observed in 26/52 (50%) samples. Culture-dependent and culture-independent methods gave congruent results in 38.5% of paired samples (4 positive and 17 negative samples). Twenty-two positive samples by PCR-TTGE were bacteria negative by culture whereas 9 positive samples by culture were undetectable by PCR-TTGE (data not shown).

A total of 28 bacterial strains were isolated and subjected to identification by 16S rRNA gene sequencing. The size of the sequences ranged between 900 and 1,000 bp allowing species-level affiliation in majority of cases. Affiliations into taxonomic levels (species, genus, family, and phylum) are given in Table 2. Microbacterium (Phylum Actinobacteria) present in 6 specimens was the dominant genus of cultivable bacteria in Anopheles sample abdomens, followed by Staphylococcus (Phylum Firmicutes) (5 isolates) and Brachybacterium (Phylum Actinobacteria) (4 isolates) (Table 2). These 3 predominant cultivable genera belong to Gram-positive bacterial phyla, mainly Actinobacteria (Fig. 1). A 16S rRNA gene sequences-based phylogeny was reconstructed. The ML tree in Fig. 2 showed the phylo-taxonomic position of the bacteria isolated in Anopheles. Several isolates were mostly related to uncultured clones and few of them were related to newly described bacterial species [53–57] (Fig. 2).

On the same 52 samples, 39 sequences obtained from TTGE bands showed bacteria classified into 13 OTUs of 11 genera belonging to 8 bacterial families. Out of 11 bacterial genera detected by the culture-independent method (Fig. 3), 7 (8 OTUs) belonged to Proteobacteria, a Gram-negative phylum that was also the dominant bacterial phylum detected by PCR-TTGE (Fig. 1).

Among the 20 bacterial genera detected from the 52 samples on which both culture and fingerprint methods were applied, there were only 3 common detected genera (Acinetobacter, Microbacterium, Staphylococcus), 9 and 8 genera were detected by either culture-dependent or culture-independent methods, respectively (Fig. 3), showing the importance of combining these two methods for increasing the detection efficiency of greater microbiota biodiversity. Discordance between culture-dependent and-independent methods is in accordance with Lindh et al. [15] who showed that PCR-based method did not retrieve the genera found with the culture methods conducted on midgut bacteria of two field-collected Anopheles species (An. gambiae and An. funestus) from Western Kenya. Herein, the discordances were observed at each taxonomic level, even at the phylum level, and particularly concerning Gram-negative
Table 2. Sequence analysis of bacterial isolates obtained from the abdomens of 5 wild-caught *Anopheles* species by culture-dependent method.

N°	Isolate	Sequence size (bp)	Identification	Phylum	Family	Nearest type species RDPII Species name/GenBank accession number/Identity	Closest relative RDPII GenBank accession number/Identity	Anopheles species	GenBank accession number
1	A190GS	1026	Bartonella sp.	Proteobacteria	Bartonellaceae	Bartonella rattaaustraliani/EU117749/0.855	EU979535/0.862	An. gigas	KP027793
2	A171GS	1014	Flavobacteriaceae	Bacteroidetes	Flavobacteriaceae	Emepobacter brevis/AM177497/0.588	DQ837638/0.746	An. barbumbrosus	KP027794
3	A225GS	991	Flavobacteriaceae	Bacteroidetes	Flavobacteriaceae	Wautesiella falsenii/AM084341/0.624/Weeksella virosa/AB681031	DQ129251/0.931	An. barbumbrosus	KP027795
4	A230GA	978	Microbacterium sp.	Actinobacteria	Microbacteriaceae	Microbacterium testaceum/X77445/0.910	HQ530521/0.965	An. gigas	KP027796
5	A230GS	982	Microbacterium sp.	Actinobacteria	Microbacteriaceae	Microbacterium testaceum/X77445/0.909	GQ250443/0.954	An. gigas	KP027797
6	A234GS	992	Knoellia sp.	Actinobacteria	Intrasporangiaceae	Knoellia sinensis/AJ294412/0.921	EF216369/0.937	An. barbumbrosus	KP027798
7	A2721GA	1001	Brevibacterium sp.	Actinobacteria	Brevibacteriaceae	Brevibacterium salitolerans/halotolerans/GU117109/0.866	FJ672800/0.979	An. crawfordi	KP027799
8	A2722GA	1017	Staphylococcus sciuri	Firmicutes	Staphylococcaceae	Staphylococcus sciuri/AJ421446/0.987	AB188210/0.987	An. crawfordi	KP027800
9	A2723GA	1017	Staphylococcus sciuri	Firmicutes	Staphylococcaceae	Staphylococcus sciuri/AJ421446/0.990	EU419917/0.990	An. crawfordi	KP027801
10	A272GS	994	Brachybacterium spp.	Actinobacteria	Dermabacteriaceae	Brachybacterium paraconglomeratum/meromerat/AJ415377/AB537169/0.960	JX948667/0.978	An. crawfordi	KP027802
11	A2771GA	1027	Asaia spathodeae	Proteobacteria	Acetobacteriaceae	Asaia spathodeae/AB511277/0.990	JN872497/0.990	An. crawfordi	KP027803
12	A2772GA	990	Acinetobacter sp.	Proteobacteria	Moraxellaceae	Acinetobacter guillouiae/X81659/0.969	GQ156870/0.976	An. crawfordi	KP027804
13	A2773GA	1023	Asaia spathodeae	Proteobacteria	Acetobacteriaceae	Asaia spathodeae/AB511277/0.996	JX445138/0.996	An. crawfordi	KP027805
14	A277GS	992	Acinetobacter sp.	Proteobacteria	Moraxellaceae	Acinetobacter guillouiae/X81659/0.971	GQ156853/0.983	An. crawfordi	KP027806
15	A219GA	1023	Staphylococcus warneri	Firmicutes	Staphylococcaceae	Staphylococcus warneri/L376030/0.986	FM872679/0.992	An. maculatus	KP027807
16	A16TSH	999	Janibacter sp.	Actinobacteria	Intrasporangiaceae	Janibacter terrae/AF176948/0.898	HM336504/0.960	An. maculatus	KP027808
17	A206R2A	1014	Bacillus sp.	Firmicutes	Bacillaceae	Bacillus simplex/AJ439078/0.982	AY965249/0.971	An. gigas	KP027809
18	A209GA	994	Staphylococcus warneri	Firmicutes	Staphylococcaceae	Staphylococcus warneri/L376030/0.987	FJ613579/0.994	An. gigas	KP027810

(Continued)
No	Isolate	Sequence size (bp)	Identification	Phylum	Family	Nearest type species RDPII Species name/GenBank accession number/Identity	Closest relative RDPII GenBank accession number/Identity	Anopheles species	GenBank accession number
19	A2561TSH	1012	Xanthomonas sp.	Proteobacteria	Xanthomonadaceae	Luteimonas aestuarii/EF660758/0.899	AY689031/0.995	An. barbumbrosus	KP027811
20	A2562TSH	1002	Microbacterium sp.	Actinobacteria	Microbacteriaceae	Microbacterium testaceum/X77445/0.963	JF198536/0.990	An. barbumbrosus	KP027812
21	A256GA	989	Microbacterium sp.	Actinobacteria	Microbacteriaceae	Microbacterium testaceum/X77445/0.945	JQ396561/0.985	An. barbumbrosus	KP027813
22	A256GTS	994	Microbacterium sp.	Actinobacteria	Microbacteriaceae	Microbacterium radiodurans/GQ329713/0.915	FJ444664/0.930	An. barbumbrosus	KP027814
23	A256R2A	990	Microbacterium sp.	Actinobacteria	Microbacteriaceae	Microbacterium testaceum/X77445/0.943	JQ396561/0.985	An. barbumbrosus	KP027815
24	A2451GA	988	Brachybacterium spp.	Actinobacteria	Dermabacteraceae	Brachybacterium conglomeratum/paraconglomeratum/AB537169/AJ415377/0.951	DQ643203/0.951	An. barbumbrosus	KP027816
25	A2452GA	991	Staphylococcus sciuri	Firmicutes	Staphylococcaceae	Staphylococcus sciuri/AJ414446/0.984	EU855191/0.985	An. barbumbrosus	KP027817
26	A245R2A	991	Brachybacterium spp.	Actinobacteria	Dermabacteraceae	Brachybacterium conglomeratum/paraconglomeratum/AJ415377/AB537169/0.977	EU086801/0.977	An. barbumbrosus	KP027818
27	A245TSH	992	Leucobacter chromiresistens	Actinobacteria	Microbacteriaceae	Leucobacter chromiresistens/GU390665/0.983	EU086807/0.989	An. barbumbrosus	KP027819
28	A2452GTS	998	Brachybacterium spp.	Actinobacteria	Dermabacteraceae	Brachybacterium conglomeratum/paraconglomeratum/AJ415377/AB537169/0.977	JF274910/0.989	An. barbumbrosus	KP027820
and Gram-positive phyla, containing bacteria differing in their peptidoglycan layer structure [58]. This peptidoglycan layer allows Gram-positive bacteria to be more stable to the lysis buffer reaction than Gram-negative bacteria [59]. This is particularly so for Actinobacteria because of an unusual cell envelope composition, characterized by the presence of a waxy cell envelope containing mycolic acids [60]. Despite the cell wall lysis method used enhanced Gram-positive lysis, we hypothesize that partial cell lysis before DNA extraction introduced a bias in favor of Gram-negative bacteria leading to an under-representation of Gram-positive phyla in the DNA-based approach. Finally, each approach of determining bacterial diversity presented potential biases, the non-cultivability of certain bacteria being the more obvious, but potential biases associated with molecular methods must also be considered. Previous results obtained by Next Generation Sequencing (NGS) and fingerprinting by TTGE show good correlation for the detection of majority OTUs in complex communities [37,61]. In the context of this descriptive study of the diversity of Anopheles microbiota in Vietnam, the detection of major populations and their variation is deemed a sufficient first step, but subsequent in-depth NGS should be done on the subset of parasite-associated and parasite-free mosquitoes.

For malaria control, many strategies have been implemented with varying success. The blocking of Plasmodium transmission, based on bacterial genetic changes to deliver molecules or as a paratransgenic approach, is a relatively new concept and strategy [62]. Several studies have been conducted on the characterization of the bacterial flora in the midgut of Anopheles
Fig 2. Maximum-likelihood phylogenetic tree showing the position of bacterial strains culture-isolated from abdomens of *Anopheles* species collected in Dak Nong, Vietnam. The horizontal lines show genetic distance. The numbers at the nodes are support values estimated with 100 bootstrap replicates. The scale bar indicates the number of substitutions per nucleotide position. *Chlamydia trachomatis* HAR-13T was used as the outgroup bacteria. The sequences of isolates are shown in bold, the closest sequences (red triangle) and the sequences of the closest species type strain (blue circle) are shown with their GenBank accession number and their annotation. More information on the sequences used is detailed in Table 2.

doi:10.1371/journal.pone.0118634.g002
to determine the bacterial candidate(s) for effectively blocking malaria transmission [19,63]. Several methods have been applied, including culture-dependent detection of bacteria based on colony isolation on solid medium, sometimes following enrichment in liquid medium and culture-independent methods based directly on molecular techniques. Some studies have relied on either culture-dependent [14,20] or culture-independent techniques [23,35], while others, as in our study, have favored the power of combining these two methods for evaluating the bacterial diversity Anopheles midguts (abdominal cavity) [15,22]. The molecular approach showed more sensitivity than plate culturing alone with bacteria detected in half of the samples (26 of 52 specimens), while only a quarter of the samples (13/52) were positive by culture methods. However, the sizes of the sequences obtained from TTGE products and some NGS were short (~200 bp) resulting in the lack of genetic information and thus impeding an accurate affiliation to the species taxonomic level [37]. The use of NGS could improve the length of DNA fragments to around 500 bp [64]. Culture is the classical approach to study bacterial communities and allows access to the complete 16S rRNA gene sequences from culture bacterial isolates and an accurate affiliation to the lowest taxonomic level [65]. It also provides advantages of using living bacteria for further functional investigations and experiments. Conversely, the culture-independent techniques allow the detection of bacteria that are difficult to develop on normal culture mediums or those requiring specific culture conditions for propagation such as anaerobic bacteria [66,67]. The combination of both methods thus allows the detection of a larger panel of bacteria diversity which is the first step in the investigation of those microbiota that might possibly be involved in interfering or preventing pathogen development in the

Fig 3. Bacterial genera detected in 52 wild-caught Anopheles mosquitoes using of culture-dependent (a) and culture-independent (b) methods, displayed by the number of positive samples in each Anopheles species. Out of 3 An. dirus analyzed, no specimen showed detectable bacteria. Number of genera detected per method such as 9 by culture-dependent (red characters), 8 by culture-independent (green characters) and 3 genera detected by both methods (blue characters).

doi:10.1371/journal.pone.0118634.g003
mosquito (e.g., Plasmodium sporogonic development in the Anopheles midgut) [38,68]. A better knowledge of the full array of bacteria and other microorganisms that coexist in mosquitoes is the first step to discovering the potential of new and novel methods of disease control.

Conclusion

Based on culture-dependent and culture-independent methods, we found Anopheles specimens from Dak Nong, Vietnam contained a great diversity of bacteria in their abdomen, including bacteria species previously implicated in influencing the development of malaria parasites in mosquitoes. As various microbiota might have significant ability for suppressing or preventing pathogen development in Anopheles mosquitoes and thus parasite transmission, the study of the midgut microbiota of Anopheles vectors must be promoted. This has become an even more pressing issue, as other forms of disease and vector control are under constant pressure and the need for new tools an urgent mandate. For example, the use of insecticides for vector control has been compromised because of high levels of resistance in numerous vector populations, or the development and spread of drug resistant parasites. This first study reporting the biodiversity of microbiota of Anopheles in Vietnam should lead to further study to better understand the disease-modulating role of specific bacteria isolated from wild mosquito populations for developing new approaches in controlling Anopheles vectors and malaria transmission in Vietnam.

Supporting Information

S1 Fig. Rarefaction curve showing the number of OTUs in relation to the number of sequences.
(TIFF)

S1 Dataset. Minimal dataset with the raw data.
(XLSX)

Acknowledgments

The authors are thankful to Isabelle Zorgniotti (Equipe Pathogènes et Environnements, UMR5119 ECOSYM, UM1, Faculté de Pharmacie, Montpellier) for her involvement in the DNA extraction and sequencing of cultured isolates. We also express our gratitude to Wasana Boonyuan (PhD student from Kasetsart University, Thailand) for her assistance on the ITS2-PCR at LIPMC, IRD, Montpellier. We address our acknowledgments to the Military Preventive Medicine Centre, Ho Chi Minh City (Vietnam) for providing us the Anopheles specimens. We are quite thankful to Michael J. Bangs for editing assistance.

Author Contributions

Conceived and designed the experiments: CTN SM EJB FV. Performed the experiments: CTN. Analyzed the data: CTN EJB FA SM. Contributed reagents/materials/analysis tools: CTN FA. Wrote the paper: CTN SM EJB FA FV.

References

1. Mekong Malaria III. Towards malaria elimination in the Greater Mekong Subregion. Southeast Asian J Trop Med Public Health. 2013; 44: 307.

2. WHO. World Malaria report. Geneva, Switzerland: World Health Organization. 2013; 284 p.
1. Garros C, Van Nguyen C, Trung HD, Van Bertel W, Coosemans M, Manguin S. Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex. Malar J. 2008; 7: 11. doi: 10.1186/1475-2875-7-11 PMID: 18190697

2. Manguin S, Garros C, Dusfou I, Harbach RE, Coosemans M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: an updated review. Infect Genet Evol. 2008; 8: 489–503. doi: 10.1016/j.meegid.2007.11.004 PMID: 18178531

3. Harbach RE. The phylogeny and classification of Anopheles. In: Manguin S, editor. Anopheles mosquitoes—New insights into malaria vectors. InTech Open Access Publisher ed. Rijeka, Croatia: InTech Open Access Publisher. 2013; pp. 3–55.

4. Manguin S, Bangs MJ, Pothisakom J, Chareonnvitraphap T. Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol. 2010; 10: 159–177. doi: 10.1016/j.meegid.2009.11.014 PMID: 19941975

5. Manguin S, Canavele P, Mouchet J, Coosemans M, Julvez J, Richard-Lenoble D, et al. Biodiversity of malaria in the world. Montrouge, France. 2008; 464 p.

6. Al-Olayan EM, Williams GT, Hurd H. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol. 2002; 32: 1133–1143. PMID: 12117496

7. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011; 332: 855–858. doi: 10.1126/science.1201618 PMID: 21566196

8. Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003; 40: 371–374. PMID: 12943119

9. Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009; 5: e1000423. doi: 10.1371/journal.ppat.1000423 PMID: 19424427

10. Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the Anopheles minimus complex. Malar J. 2008; 7: 11. doi: 10.1186/1475-2875-7-11 PMID: 18190697

11. Harbach RE. The phylogeny and classification of Anopheles. In: Manguin S, editor. Anopheles mosquitoes—New insights into malaria vectors. InTech Open Access Publisher ed. Rijeka, Croatia: InTech Open Access Publisher. 2013; pp. 3–55.

12. Manguin S, Bangs MJ, Pothisakom J, Chareonnvitraphap T. Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol. 2010; 10: 159–177. doi: 10.1016/j.meegid.2009.11.014 PMID: 19941975

13. Manguin S, Canavele P, Mouchet J, Coosemans M, Julvez J, Richard-Lenoble D, et al. Biodiversity of malaria in the world. Montrouge, France. 2008; 464 p.

14. Al-Olayan EM, Williams GT, Hurd H. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol. 2002; 32: 1133–1143. PMID: 12117496

15. Lindh JM, Terenius O, Faye I. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol. 2005; 71: 7217–7223. PMID: 16269761

16. Favia G, Ricci i, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A. 2012; 109: 9.

17. Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, et al. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012; 121: 129–134. doi: 10.1016/j.actatropica.2011.10.015 PMID: 22074685

18. Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011; 6: e24767. doi: 10.1371/journal.pone.0024767 PMID: 21957459

19. Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A. 2012; 109: 9.

20. Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, et al. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012; 121: 129–134. doi: 10.1016/j.actatropica.2011.10.015 PMID: 22074685

21. Lindh JM, Terenius O, Faye I. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol. 2005; 71: 7217–7223. PMID: 16269761

22. Favia G, Ricci i, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A. 2007; 104: 9047–9051. PMID: 17502606

23. Favia G, Ricci i, Marzorati M, Negri I, Alma A, Sacchi L, et al. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Med Biol. 2008; 627: 49–59. doi: 10.1007/978-0-387-78225-6_4 PMID: 18510013

24. Lindh JM, Berg-Karlson AK, Faye I. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop. 2008; 107: 242–250. doi: 10.1016/j.actatropica.2008.06.008 PMID: 18671931

25. Damiani C, Ricci i, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asia. Microb Ecol. 2010; 60: 644–654. doi: 10.1007/s00248-010-9704-8 PMID: 20571798

26. Djadid ND, Jazayeri H, Raz A, Favia G, Ricci i, Zakeri S. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One. 2011; 6: e28484. doi: 10.1371/journal.pone.0028484 PMID: 22163022

27. Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg. 1996; 54: 214–218. PMID: 8619451

28. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-
25. Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, et al. Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. J Med Vet Entomol. 1999; 13: 24–32. PMID: 10194746

26. Walton C, Somboon P, O'Loughlin SM, Zhang S, Harbach RE, Linton YM, et al. Genetic diversity and molecular identification of mosquito species in the Anopheles maculatus group using the ITS2 region of rDNA. Infect Genet Evol. 2007; 7: 93–102. PMID: 16782411

27. Roudiere L, Jacquot A, Marchandin H, Aujoulat F, Devine R, Zorgniotti I, et al. Optimized PCR-Temperature Gel Electrophoresis compared to cultivation to assess diversity of gut microbiota in mosquitoes. J Microbiol Methods. 2009; 79: 156–165. doi: 10.1016/j.mimet.2009.08.005 PMID: 19686785

28. Ogier JC, Son O, Gruss A, Tailliez P, Delacroix-Buchet A. Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol. 2002; 68: 3691–3701. PMID: 1217461

29. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 1985; 82: 6955–6959. PMID: 2413450

30. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992; 89: 5685–5689. PMID: 1608980

31. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol. 2000; 38: 3623–3630. PMID: 11015374

32. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994; 44: 846–849.

33. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008; 36: 465–469.

34. Posada D, Crandall KA. Selecting the best-fit model of nucleotide substitution. Syst Biol. 2001; 50: 580–601. PMID: 12116655

35. Boissiere A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012; 8: e1002742. doi: 10.1371/journal.ppat.1002742 PMID: 22693451

36. Gusmao DS, Santos AV, Marini DC, Bacci M Jr., Berbert-Molina MA, Lemos FJ. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010; 115: 275–281. doi: 10.1016/j.actatropica.2010.04.011 PMID: 20434424

37. Manguin S, Ngo CT, Tainchum K, Juntarajumnong W, Chareonviriyaphap T, Michon AL, et al. Bacterial biodiversity in midguts of Anopheles mosquitoes, malaria vectors in Southeast Asia. In: Manguin S, editor. New insights into malaria vectors. Rijeka, Croatia: InTech Open Access. 2013; pp. 549–576.

38. Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, et al. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol. 1998; 35: 222–226. PMID: 9615538

39. Xue D, Huang X. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paonia suffruticosa), World J Microbiol Biotechnol. 2013.

40. Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci Total Environ. 2013; 466–467C: 127–135.

41. Gan HM, Hudson AO, Rahman AY, Chan KG, Savka MA. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bio- mediation. BMC Genomics. 2013; 14: 431. doi: 10.1186/1471-2164-14-431 PMID: 23809012

42. Gendrin M, Christophides GK. The Anopheles mosquitoes microbiota and their impact on pathogen transmission. In: Manguin S, editor. Anopheles mosquitoes—New insights into malaria vectors. Rijeka, Croatia: InTech Open Access. 2013; pp. 525–548.
43. Villegas LM, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013; 6: 146. doi: 10.1186/1756-3305-6-146 PMID: 23688194

44. Minard G, Pimenta PF. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014; 109: 672–684. PMID: 25185007

45. Sharma P, Sharma S, Maunra RK, Das De T, Thomas T, Lata S, et al. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasit Vectors. 2014; 7: 235. doi: 10.1186/1756-3305-7-235 PMID: 24886293

46. Kompfer P, Lindh JM, Terenius O, Haghdoost S, Falsen E, Busse HJ, et al. Thorsellia anophelis nov., sp. nov., a new member of the Gammaproteobacteria. Int J Syst Evol Microbiol. 2006; 56: 335–338. PMID: 16449435

47. Briones AM, Shililiu J, Githure J, Novak R, Raskin L. Diversity and function of bacterial microbiota in the mosquito holo-

48. Bernardet JF, Vancanneyt M, Matte-Tailliez O, Grisez L, Tailliez P, Bizet C, et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol. 2005; 28: 640–660. PMID: 16156122

49. Michel C, Matte-Tailliez O, Kerouault B, Bernardet JF. Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol. 2005; 99: 323–332. PMID: 16033463

50. Azambuja P, García ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005; 21: 568–572. PMID: 16226491

51. Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep. 2013; 3: 1641. doi: 10.1038/srep01641 PMID: 23571408

52. Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci U S A. 2014; 111: 12498–12503. doi: 10.1073/pnas.1408888111 PMID: 25114252

53. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS, Yoon JH, et al. Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol. 2008; 46: 525–529. doi: 10.1007/s12275-008-0189-9 PMID: 18974953

54. Gundi VA, Taylor C, Raoult D, La Scola B. Bartonella rataustraliana sp. nov., Bartonella queenslandensis sp. nov. and Bartonella cooperensispansensis sp. nov., identified in Australian rats. Int J Syst Evol Microbiol. 2009; 59: 2956–2961. doi: 10.1099/ijom.0.002865-0 PMID: 19628592

55. Kommanee J, Tanasupawat S, Yukphan P, Malimas T, Muramatsu Y, Nakagawa Y, et al. Asaia spatho-deae sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. J Gen Appl Microbiol. 2010; 56: 81–87. PMID: 20339225

56. Zhang W, Zhu HH, Yuan M, Yao Q, Tang R, Lin M, et al. Microbacterium radiodurans sp. nov., a UV radiation-resistant bacterium isolated from soil. Int J Syst Evol Microbiol. 2010; 60: 2665–2670. doi: 10.1099/ijs.0.002780-0 PMID: 20615006

57. Sturm G, Jacobs J, Sproer C, Schumann P, Gescher J. Leucobacter chromiresistens sp. nov., a chro-

58. Bergey DH. Bergey’s manual of systematic bacteriology United-Stat and England. 1984;2648 p.

59. Brewster JD, Paoli GC. DNA extraction protocol for rapid PCR detection of pathogenic bacteria. Anal Biochem. 2013; 442: 107–109. doi: 10.1016/j.ab.2013.07.013 PMID: 23872000

60. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007; 71: 495–548. PMID: 17804669

61. Li W, Han L, Yu P, Ma C, Wu X, Moore JE, et al. Molecular characterization of skin microbiota between cancer cachexia patients and healthy volunteers. Microb Ecol. 2014; 67: 679–689. doi: 10.1007/s00248-013-0345-6 PMID: 24402361

62. Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS. Microbial control of malaria: biological warfare against the parasite and its vector. Acta Trop. 2012; 121: 71–84. doi: 10.1016/j.actatropica.2011.11.001 PMID: 22100545

63. Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008; 18: 1087–1088.
64. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012; 18: 1185–1193. doi:10.1111/1469-0691.12023 PMID: 23033984

65. Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996; 24: 3381–3391. PMID: 8811093

66. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004; 38: 525–552. PMID: 15568985

67. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004; 428: 7. PMID: 14999252

68. Pumpuni CB, Beier MS, Nataro JP, Guers LD, Davis JR. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. Exp Parasitol. 1993; 77: 195–199. PMID: 8375488