Synchronization of Fractional Chaotic Systems via Fractional-Order Adaptive Controller

S.H. Hosseinnia*, R. Ghaderi*, A. Ranjbar N.*, J. Sadati*, S. Momani**

* Noshirvani University of Technology, Faculty of Electrical and Computer Engineering, P.O. Box 47135-484, Babol, Iran, (a.ranjbar@nit.ac.ir) (h.hoseinnia@stu.nit.ac.ir)
** Department of Mathematics, Mutah University, P.O. Box: 7, Al-Karak, Jordan

Abstract: In this paper, an adaptive fractional controller has been designed to control chaotic systems. In fact, this controller is a fractional PID controller, which the coefficients will be tuned according to a proper adaptation mechanism. The adaptation law will be constructed from a sliding surface via gradient method. The adaptive fractional controller is implemented on a gyro system to signify the performance of the proposed technique.

Keywords: Fractional adaptive controller, Sliding-Mode Control, Fractional-order PID controller, gyro system, Chaos

1. INTRODUCTION

Fractional calculus is an old mathematical topic since 17th century. Although it has a long history, its applications to physics and engineering are just a recent focus of interest. Many systems are known to display fractional order dynamics, such as earthquake oscillation (He, 1998), Riccati (Odibat, and Momani, 2008; Cang et. al., 2007), wave equation (Jafari and Momani, 2007), and chaotic equations in control engineering (Ge and Ou, 2008). There is a new topic to investigate the control and dynamics of fractional order dynamical system. The behaviour of nonlinear chaotic systems when their models become fractional have widely been investigated (Li and Chen, 2004; Ahmad and Harb Ahmad, 2003; Ahmad et. al., 2007; Ahmad, 2005; Nimmo and Evans , 1999). Sensitive dependence on initial conditions is an important characteristic of chaotic systems. Therefore, chaotic systems are difficult to be synchronized or controlled. A chattering-free fuzzy sliding-mode control (FSMC) strategy for uncertain chaotic systems has been proposed in (Yau and Chen, 2006). In (Zhang et. al., 2004) the authors proposed an active sliding mode control method for synchronizing two chaotic systems perturbed by parametric uncertainty. An algorithm to determine parameters of the active sliding mode controller in synchronizing different chaotic systems has been studied by (Tavazoei and Haeri, 2007). In (Yau, 2004) an adaptive sliding mode controller is presented for a class of master–slave chaotic synchronization systems with uncertainties. In (Wang and Ge, 2001) backstepping control has been proposed to synchronize the chaotic systems. Even though, synchronization has been implemented in many chaotic systems with integer derivatives, but a few works are reported on factional order chaotic system. It is because; proof of stability of the fractional order is more complex than the system with integer order. In this paper, an adaptive fractional controller has been proposed as a novel idea to control systems with fractional order dynamic. This controller is in essence a PID controller but fractional characteristics. PID coefficients K_p, K_i and K_d will be updated according to a proper gradient-based adaptation mechanism. This paper is organized as follows: Primarily, the proposed fractional controller will be presented in section 2, to control such similar systems. The performance of the controller will be investigated when it is used to synchronize a gyro dynamic. Ultimately, the work will be concluded at section 4.

2. FRACTIONAL ADAPTIVE CONTROLLER DESIGN

The following model represents a chaotic system with fractional order dynamic:

$D^\alpha x_1 = x_2$

$D^\alpha x_2 = f(X,t)$

(1)
where, \(0 < q \leq 1\) and \(X = [x_1, x_2]^T\) is the state vector. Consider the model in (1) as a master. A secondary goal is to synchronize a usually simpler dynamic, called slave, to follow a known system, called Master. From point of view of the slave, function \(f(\cdot)\) in (1) is an unknown nonlinear function. From the adaptive fractional controller is shown in closed loop system together with the proposed synchronizing controller based adaptation mechanism to provide robust stability with more degree of freedom. Furthermore, the classic one \(\frac{1}{2}S^2\) form. From equation (11) by \(S\) yields:

\[
\dot{\bar{S}}_S = S[D^\alpha f(Y,t)+D^\alpha f(Y,t)+d(t)+u_{PID})-\bar{S}_S. \tag{12}
\]

Let us define the following equation:

\[
U_{PID} = D^\alpha (u_{PID}) \tag{13}
\]

PID coefficients will be obtained if one uses the gradient of the adaptation law (Chang, 2005), which are as follows:

\[
\dot{\bar{S}}_S = -\gamma S[D^\alpha(D^\alpha e_i(t)) + D^\alpha(D^\alpha e_i(t)) - \bar{S}_S]. \tag{14}
\]

Fig. 1: Schematic diagram of a synchronization mechanism

Supposed that PID controller is of the following form:

\[
u(t) = K_pD^\alpha e_i(t) + K_D D^\alpha e_i(t) + K_I D^\alpha e_i(t) \tag{3}
\]

It should be noted that the controller would be of the classic one if \(\alpha_1 = 0, \alpha_2 = -1, \alpha_3 = 1\).

The reason behind the selection is that this kind of controller is most popular in the literature. Furthermore, the fractional controller provides the stability with more degree of freedom (Tavazoei and Haeri, 2008). To have a fractional order, parameters are chosen as \(0 \leq \alpha_1 < 1\), \(-1 \leq \alpha_2 < -2\) and \(1 \leq \alpha_3 < 2\). Parameters of PID controller, i.e. \(K_p\), \(K_D\) and \(K_I\) will be updated via a proper gradient-based adaptation mechanism to provide a robust synchronizing controller (Chang, 2005). The following fractional order differential equation describes a follower dummy output state \(y_r\) by:

\[
D^\alpha y_r = D^\alpha x_1 + k_2 D^\alpha e_1 + k_3 e_2 \tag{4}
\]

The sliding surface will also be defined as the error between two outputs, which is as follows:

\[
S = y_2 - y_r. \tag{5}
\]

When the sliding mode is activated i.e. \(S = 0\), therefore we have:

\[
y_2 = y_r \tag{6}
\]

Since \(e_2 = x_2 - y_2\) and \(e_1 = \bar{S}_S\), replacing equation (6) in (4) immediately results as:

\[
D^\alpha e_1 + k_2 D^\alpha e_1 + k_3 e_2 = 0 \tag{7}
\]

Or in a state space format:

\[
\begin{bmatrix}
D^\alpha e_1 \\
D^\alpha e_2
\end{bmatrix} = -k_2 e_1 - k_3 e_2 \Rightarrow D^\alpha E = AE \tag{8}
\]

where, \(E = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}\) is the error vector. If gains \(k_1\) and \(k_2\) are properly chosen such that the stability condition in inequality \(\arg(eig(A)) > q\pi/2\) holds, therefore the error \(e_i(t)\) asymptotically tends to zero when \(t \to \infty\). Let us candidate the following function as a Lyapunov function in term of the sliding surface:

\[
V = \frac{1}{2} S^2 \tag{9}
\]

The sliding condition will be of the form:

\[
\dot{\bar{S}}_S = \frac{S[D^\alpha f(Y,t)+D^\alpha f(Y,t)+d(t)+u_{PID})-\bar{S}_S]}{\dot{S}_S} < 0 \tag{10}
\]

When equation (10) is met, unboundedness of the sliding surface will be guaranteed when time tends to infinity. This means \(S(t) \to \infty\) when \(t \to \infty\). The gradient search algorithm is calculated in the direction opposite to the energy flow. Moreover, it is quite intuitive to choose \(\frac{\partial S}{\partial e_i}\) as an error function. From equation (5) and using equation (2), we have:

\[
\frac{\partial S}{\partial e_i} = \frac{\partial S}{\partial e_i} - \bar{S}_S = D^\alpha(D^\alpha f(y_2)) - \bar{S}_S = D^\alpha(f(Y,t)+D^\alpha f(Y,t)+d(t)+u_{PID}) - \bar{S}_S. \tag{11}
\]

Pre multiplying both sides of equation (11) by \(S\) yields:

\[
\dot{\bar{S}}_S = S[D^\alpha f(Y,t)+D^\alpha f(Y,t)+d(t)+u_{PID})-\bar{S}_S]. \tag{12}
\]

Let us define the following equation:

\[
U_{PID} = D^\alpha (u_{PID}) \tag{13}
\]

PID coefficients will be obtained if one uses the gradient of the adaptation law (Chang, 2005), which are as follows:

\[
\frac{\partial S}{\partial K_p} = -\gamma S[D^\alpha f(Y,t)+D^\alpha f(Y,t)+d(t)+u_{PID})-\bar{S}_S]. \tag{14}
\]
The behavior has been studied by Chen (Chen, 2002), according to the study by Chen, dynamics of a symmetrical gyro with linear-plus-cubic damping of the angle θ can be expressed as (γ, 2008):

$$\ddot{\theta} + \gamma \frac{d}{dt} \dot{\theta}^2 \left(1 - \frac{\cos \theta}{\sin^2 \theta}\right) - b \sin \theta + c_1 \dot{\theta} + c_2 \ddot{\theta} = 0,$$

where, $\beta \sin(\alpha \theta)$ represents a parametric excitation, $c_1 \theta$ and $c_2 \dot{\theta}$ are linear and nonlinear damping terms, respectively, and $\gamma a^2 \frac{d}{dt} \dot{\theta}^2 - b \sin \theta$ is a nonlinear resilience force. Given the states $x_1 = \theta$, $x_2 = \dot{\theta}$, and $f(\theta, \dot{\theta}) = -a^2 \frac{d}{dt} \dot{\theta}^2 - c_1 \ddot{\theta} - c_2 \dot{\theta} + (b + \beta \sin(\alpha \theta)) \sin \theta$,

this system can be transformed into the following nominal state form:

$$\begin{align*}
\dot{\xi} &= x_2 \\
\dot{x}_2 &= f(x_1, x_2)
\end{align*}$$

This gyro system demonstrates complex dynamics. The behavior has been studied by Chen (Chen, 2002) for variety of β in the range $32 < \beta < 36$ and constant values of $a = 10$, $b = 1$, $c_1 = 0.5$, $c_2 = 0.05$ and $\alpha = 2$. Let us consider the fraction gyro dynamic in the following state space format:

$$\begin{align*}
D^q x_1 &= x_2 \\
D^q x_2 &= f(x_1, x_2)
\end{align*}$$

3. SYNCHRONIZATION OF UNCERTAIN FRACTIONAL GYRO SYSTEM

3.1 System description

Consider system (21) as a master, which is perturbed with such an uncertainty. A slave system may be defined as the following equation:

$$\begin{align*}
D^q y_1 &= y_2 \\
D^q y_2 &= f(y_1, y_2) + \Delta f(y_1, y_2) + d(t) + u(t)
\end{align*}$$

Initial conditions of master and slave states are intentionally defined differently as $x_1(0) = 1$, $x_2(0) = -1$, $y_1(0) = 1.6$ and $y_2(0) = 0.8$, respectively. In order to chose an uncertainty and disturbance, $\Delta f(y_1, y_2) = -0.1 \sin(y_1)$ and $d(t) = 0.2 \cos(\pi t)$ are assigned, respectively. Primarily setting of PID coefficients are chosen equal to $k_p = 1$, $k_i = 1$ and $k_d = 1$ and the learning rate has been selected as $\gamma = 1$. Furthermore k_1 and k_2 in (3) are selected as 0.5 and 1, respectively. Simulation results have shown in Figs. (3) to (6). In Fig. (3), synchronization of x_1, y_1 and x_2, y_2 are made perfect. The sliding surface and the control input are shown in Fig. (4) and (5) respectively, whereas Fig. (6) shows the synchronization error. It should be noted that the control signal, $u(t)$ has been activated in $t = 20 s$.

4. CONCLUSION

An adaptive fractional controller is proposed to synchronize a chaotic system. Coefficients and parameters of the controller are updated using a gradient-based adaptation mechanism. The controller has successfully been applied on the dynamic of fractional gyro system. The simulation results verify the significance of the proposed controller.
Fig. 3: Synchronization of Fractional gyro’s system

Fig. 4: Sliding surface

Fig. 5: The control signal
REFERENCES:
Ahmad W. M, Harb Ahmad M. (2003), On nonlinear control design for autonomous chaotic systems of integer and fractional orders, *Chaos, Solitons & Fractals, 18*, 693–701.
Ahmad W M, Reyad El-Khazali, Yousef Al-Assaf. (2004) Stabilization of generalized fractional order chaotic systems using state feedback control, *Chaos, Solitons & Fractals, 22*, 141–50.
Ahmad WM. (2005), Hyperchaos in fractional order nonlinear systems. *Chaos, Solitons & Fractals*, 26,1459–65.
Arena, P, R. Caponetto, L. Fortuna, D. Porto (1997), Chaos in a fractional order Duffing system, Proceedings ECCTD Budapest, 1259–1262.
Cang, J., Yue Tan, Hang Xu, Shi-Jun Liao (2007), Series solutions of non-linear Riccati differential equations with fractional order, *Chaos Solitons Fractals*, In Press.
Chang, W-D and J-J Yan (2005), Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, *Chaos Solitons Fractals*, 26(1), 167-175.
Chen, H.K. (2002), Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, *Journal of Sound and Vibration*, 255, 719–740.
Ge, Z-M, Chan-Yi Ou (2008), Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal, *Chaos, Solitons & Fractals*, 35(4), 705-717.
He, JH.(1998), Nonlinear oscillation with fractional derivative and its applications, *International Conference on Vibrating Engineering’98, Dalian, China*, 288–91.
Jafari, H., Shaher Momani (2007), Solving fractional diffusion and wave equations by modified homotopy perturbation method, *Physics Letter A*, 370(5-6), 388-396.
Li C, Chen G. (2004), Chaos in the fractional order Chen system and its control, *Chaos, Solitons & Fractals, 22*, 549–54.
Nimmo S, Evans AK. (1999), The effects of continuously varying the fractional differential order of chaotic nonlinear systems. *Chaos, Solitons & Fractals, 10*, 1111–8.
Odibat, Z., S. Momani (2008), Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, *Chaos, Solitons and Fractals*, 36(1), 167-174.
Tavazoei M. S. and M. Haeri (2007), Determination of active sliding mode controller parameters in synchronizing different chaotic systems, *Chaos, Solitons and Fractals, 32*, 583–591.
Tavazoei M. S. and M. Haeri (2008). Chaos control via a simple fractional-order controller *Physics Letters A*, 372(6), 798-80.
Wang C, Ge SS (2001), Adaptive synchronization of uncertain chaotic systems via backstepping design. *Chaos, Solitons & Fractals, 12*, 199–206.
Yau, H-T (2004), Design of adaptive sliding mode controller for chaos synchronization with uncertainties, *Chaos, Solitons and Fractals, 22*, 341–347.
Yau, H-T, Chieh-Li Chen (2006), Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems, *Chaos, Solitons and Fractals, 30*, 709–718.
Yau, H-T (2008), Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control, *Mechanical Systems and Signal Processing, 22(2)*, 408-418.
Zhang H, Xi-Kui Ma a,h, Wei-Zeng Liu (2004), Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, *Chaos, Solitons and Fractals, 21* 1249–125.

Fig. 6: Error of synchronization