Effect of vitamin D status on pharmacological treatment efficiency

Impact on cost-effective management in medicine

Elżbieta Karczmarewicz*, Edyta Czekuć-Kryśkiewicz and Paweł Płudowski

Department of Biochemistry and Experimental Medicine; The Children’s Memorial Health Institute; Warsaw, Poland

Keywords: tuberculosis, 25-hydroxyvitamin D, vitamin D deficiency, osteoporosis, chronic hepatitis C, multiple sclerosis, atopic dermatitis, epilepsy

Introduction

Understanding of vitamin D role in optimal health has expanded greatly in the past few years. Grant indicated¹ that increasing western Europeans’ serum 25(OH)D levels to at least 100 nmol/L all year could significantly reduce rates and economic burdens of several types of diseases whereas the reduction in healthcare expenditures was estimated to be 187,000 million Euro per year. The most important benefits would come for cancer, cardiovascular disease, diabetes mellitus, respiratory infections, dental/periodontal diseases and other. For these reasons the Polish consensus on vitamin D supplementation and standards were published on the beginning of 2010² and implemented into practice. However, data concerning epidemiology of vitamin D deficiency in Poland is still alarming. High prevalence of vitamin D deficiency has other economic burdens. It negatively affects effectiveness of expensive pharmacotherapies in infectious diseases (chronic hepatitis C, tuberculosis), osteoporosis, multiple sclerosis, epilepsy, Chronic Kidney Diseases and atopic dermatitis.

Epidemiology of Vitamin D Deficiency in Poland

Recent studies suggest that the prevalence of vitamin D deficiency is continuously increasing worldwide.³⁴ It is estimated that more than 1 billion people of all ages worldwide have serum 25(OH)D values < 75 nmol/L. The prevalence of both vitamin D deficiency [25(OH)D < 50 nmol/L] and insufficiency [50 nmol/L < 25(OH)D < 75 nmol/L] increased in 10–15 y from 22% to 33% (NHANES III 1988–1994) to 36% and 41% (NHANES 2001–2004) respectively. Recent surveys performed in Poland⁵–¹⁶ evidenced more frequent vitamin D deficiency in the Polish population than in the United States. Table 1 displays prevalence of serum 25-hydroxyvitamin D [25(OH)D] level of less than 50 nmol/L in the broad ages spectrum of Polish population.

At least 80% of the whole Polish population, including prepupal children and adolescents, adults and seniors, are vitamin D deficient, defined as 25(OH)D < 50 nmol/L. 83% of Polish newborns start their lives at the state of vitamin D deficiency because 78% of their mothers are also deficient. It was observed that treating patient vitamin D deficiency to vitamin D status serum 25(OH)D 75–100 nmol/L increased effectiveness of therapies in infectious diseases (chronic hepatitis C, tuberculosis), osteoporosis, multiple sclerosis, epilepsy, Chronic Kidney Diseases and atopic dermatitis. For these reasons doctors should take special attention to vitamin D status in patients suffering for these diseases properly implementing recent vitamin D recommendation.

*Correspondence to: Elżbieta Karczmarewicz; Email: e.karczmarewicz@czd.pl
Submitted: 12/05/12; Revised: 05/25/13; Accepted: 06/19/13
http://dx.doi.org/10.4161/derm.25531

Recent evidence suggests that vitamin D may impact on clinical outcomes and treatment response in some diseases. Therapeutic effects of vitamin D as adjunctive therapy to basic therapies were investigated.

Vitamin D supplementation and infectious diseases. The current body of evidence supports the view that vitamin D supplementation holds promises as risk-modifying intervention in tuberculosis (TB), influenza and viral upper respiratory illnesses. There has been a particular interest on the possible role of vitamin D supplementation as adjunctive therapy in settings of infection. A clear benefit of adjunctive vitamin D therapy in TB treatment, chronic hepatitis C (CHC) infection and acute lower respiratory infections (ALRI) was observed.

A clear benefit of adjunctive vitamin D therapy in TB treatment, chronic hepatitis C (CHC) infection and acute lower respiratory infections (ALRI) was observed.17-24 Randomized controlled studies showed that those patients who received vitamin D3 supplementation of 2000 IU/day, target- ing a 25(OH)D level > 80 nmol/L, in addition to Peg-IFN/RBV combination therapy, had higher rates of rapid virologic response (RVR; 44% vs. 17%, p < 0.001), complete early virologic response (cEVR; 94% vs. 48%, p < 0.001) and sustained virological response (SVR) (86% vs. 42%; OR 2.5, 95% CI 2.0–4.9, p < 0.001) in HCV-1 [36] and SVR (95% vs. 77%, p < 0.001) in HCV-2/3 infection compared with subjects treated with standard therapy. Moreover, recipients of vitamin D3 supplementation were less likely to relapse or non-respond to antiviral therapy. Similarly, a small retrospective study showed vitamin D3 supplementation improved SVR rate in the treatment of recurrent hepatitis C post liver transplantation (53.3% vs. 18.5%, p = 0.02).17-19 Logistic regression analysis identified vitamin D supplement [odds ratio (OR) 3.0, 95% CI 2.0–4.9] and the serum 25(OH)D levels (< 15 or > 15 ng/mL, OR 2.2,) as an independent predictor of viral response indicating that adding vitamin D3 to conventional Peg/RBV therapy significantly improved viral response.19

Lange20 reported that CYP27B1–1260 rs10877012 was an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes, but not in patients with favorable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D deficiency [25(OH)D < 20 ng/mL] during all seasons, but 25(OH)D serum levels were not associated with treatment outcomes. This study suggested a role of 1,25-dihydroxyvitamin D [1,25(OH)2D, calcitriol] produced in macrophages is important to enhance the therapeutic efficacy of medications to treat hepatitis C. However, the serum concentration of the 1,25-dihydroxyvitamin precursor, 25(OH)D was not a suitable predictor of treatment outcome in this study because its concentration was too low.

Chronic HCV infection is associated with extra-hepatic manifestations. Recent studies have suggested an immunomodulatory role for vitamin D during HCV infection. Terrier21 investigated the association between serum vitamin D status and the presence of HCV extra-hepatic manifestations. Eighty-four of 94 patients (89%) were vitamin D deficient or insufficient (≤ 30 ng/ml). Low 25(OH)D levels correlate with the presence of mixed cryoglobulinaemia and systemic vasculitis in chronic HCV infection. These findings suggest the potential multifaceted benefits of vitamin D supplementation in HCV-infected patients.

Low serum 25(OH)D level is associated with a high risk of developing active tuberculosis (TB). Sato22 investigated the relationships between serum 25(OH)D levels and clinical course of TB after standard therapy in hospitalized patients with TB. Confirmatory tests were performed using sputum smear and culture positivity tests for Mycobacterium tuberculosis. Drug sensitivity testing was performed for all the subjects and those not showing drug resistances for the first-line anti-TB drugs were included in the study. Thirty-eight patients were included in the study [25(OH)D levels 34.3 ± 14.8 nmol/L]. In 23 patients treated with the standard first-line 4-drug regimen serum 25(OH) D levels showed significant negative correlation with time taken to obtain 3 consecutive negative sputum smears or TB bacte- rial cultures and indicated that low serum 25(OH)D level was a good predictor of a prolonged clinical course in patients with active pulmonary TB. Gaanmaa23 examined the effect of vitamin D supplementation on tuberculin skin test (TST) conversion. This double-blind, placebo-controlled study was conducted in 120 Mongol schoolchildren [25(OH)D < 50 nmol/L]. Vitamin D supplementation (800 IU/day) for 6 mo had significant favorable effects on serum 25(OH)D concentrations and on growth in stature. A trend was seen toward fewer TST conversions in the vitamin D group.

Leis24 documented that in children ≤ 5 y old whose vitamin D intake was less than 80 IU/kg/d were greater than 4 times...
more likely to have ALRI compared with children with a vitamin D intake exceeding 80 IU/kg/day (OR 4.9, CI: 1.5, 16.4). Therefore increased vitamin D supplementation could prevent bronchiolitis and pneumonia the most common reasons for hospitalization in young children.

Vitamin D supplementation as adjunctive therapy in autoimmune diseases. In the Polish atopic dermatitis intervention study25 vitamin D supplementation of 2000 IU/day for 3 mo in deficient patients led to two-fold increase in 25(OH)D and two-fold decrease in disease symptoms (Table 2).

In Pierrot-Deseilligny observational, uncontrolled study26 vitamin D3 supplementation (3010 IU/day on average) was given for 29.1 ± 8.4 and 29.8 ± 10.1 mo during and before vitamin D supplementation, respectively. It was observed that vitamin D supplementation influenced the relapse rate. Every 10 nmol increase in 25(OH)D level was associated with a reduction in the relapse incidence rate ratio decreased as the 25(OH)D level increased up to 110 nmol/L. A plateau effect was observed beyond this limit.

Table 2. Vitamin D status affects atopic dermatitis presentation after 3 mo supplementation 2000 IU/day cholecalciferol (adapted from ref. 25)

	Before	x ± SD	After	x ± SD	p-value
SCORAD index	26–78	45.12 ± 16.07	10–49	25.70 ± 11.10	0.001
Extent %	10–80	30.35 ± 23.48	10–20	19.90 ± 18.64	0.01
Intensity	4–15	8.55 ± 2.85	2–9	4.05 ± 2.11	0.001
Erythema	0–3	1.3 ± 0.73	0–2	0.5 ± 0.76	0.01
Edema/papulation	1–3	1.35 ± 0.58	0–1	0.15 ± 0.36	0.001
Oozing/crust	0–2	0.6 ± 0.68	0	0	0.01
Excoriation	0–3	0.85 ± 0.67	0–2	0.2 ± 0.52	0.01
Lichenification	1–3	2.05 ± 0.82	1–3	1.9 ± 0.78	NS
Dryness	1–3	2.4 ± 0.75	1–3	2.0 ± 0.72	0.05
Subjective symptoms	2–18	7.80 ± 3.96	0–13	4.20 ± 3.08	0.001
Pruritus	1–10	5.50 ± 2.52	1–7	2.85 ± 1.92	0.001
Sleeplessness	0–8	2.25 ± 2.29	0–6	1.45 ± 1.66	0.05
Objective SCORAD	18–68	37.09 ± 15.17	9–44	20.85 ± 9.94	0.001
IgE level IU/ml	6.6–7100	1147.56 ± 1883.85	6.3–6150	994.86 ± 1680.71	0.001
Vitamin D level ng/ml	4.0–15.0	7.43 ± 3.34	5.01–23.87	13.05 ± 5.49	0.001

Vitamin D supplementation as adjunctive therapy in CKD. Extra-renal cells, such as parathyroid cells, smooth muscle cells, endothelial cells, pancreatic cells and immunomodulatory cells, contain the machinery to locally produce 1,25(OH)2D. This may explain the associations of adequate vitamin D status with lower chronic disease risk. Thus, the ability to maintain sufficient serum concentrations of 25(OH)D, the substrate for extra-renal 1α-hydroxylase for the local production of 1,25(OH)2D, is particularly important in CKD. Shroff27 verified the hypothesis in RCT study that ergocalciferol supplementation in 47 vitamin D deficient children with CKD stages 2–4 delayed the onset of secondary hyperparathyroidism. In this randomized, double-blinded, placebo-controlled study in children with CKD2–4 who had vitamin D deficiency (median follow-up was 12 mo) the time to development of hyperparathyroidism was significantly longer with ergocalciferol treatment compared with placebo (hazard ratio, 0.30; 95% confidence interval, 0.09–0.93, p = 0.05). With ergocalciferol treatment, normal 25(OH)D levels were achieved in all 8 children with CKD2, 8 of 11 children with CKD3, but not in the single patient with CKD4. 25(OH)D levels > 100 nmol/L were required to achieve normal levels of 1,25(OH)2D. Therefore ergocalciferol was an effective treatment that delayed the development of secondary hyperparathyroidism in children with CKD2–3. Alvarez28 documented that vitamin D3 (cholecalciferol) treatment reduced parathyroid hormone levels in 46 adult patients with early chronic kidney disease in 1 y RCT study. Subjects with early CKD (stages 2–3) were supplemented with oral vitamin D3 (vitamin D group; 50,000 IU/wk for 12 wk followed by 50,000 IU every other week for 40 wk). Serum 25(OH)D increased in the vitamin D group only [26.7 ± 6.8 to 42.8 ± 16.9 ng/mL] and remained elevated at 1 y. PTH decreased from baseline only in the vitamin D group (baseline: 89.1 ± 49.3 to 70.1 ± 24.8 pg/mL; p = 0.01) at 12 weeks, but values were not significantly different from baseline at 1 y. Blood pressure and FGF23 did not change in either group. Thus serum PTH levels improved after vitamin D3 treatment in adult CKD patients who had secondary hyperparathyroidism.

Vitamin D supplementation as adjunctive therapy in osteoporosis. Why only some osteoporotic patients maintain a positive response to prolonged bisphosphonate therapy is unknown. Carmel29 examined bisphosphonate response and its association...
with serum 25(OH)D level in a “real world” setting. Serum 25(OH)D level was strongly associated with maintaining bisphosphonate response arguing that vitamin D may be involved in optimizing prolonged bisphosphonate therapy. Postmenopausal women with low bone mineral density (BMD) treated with bisphosphonates were categorized. A favorable response to bisphosphonate therapy was seen in 47% patients. The definition of non-response to bisphosphonate therapy was based on the EUROFORS study, which identified patients for teriparatide therapy after “failing” anti-resorptive agents (median duration of bisphosphonate treatment was 36 mo). Non-response included any of the following: (1) T-score of < –3.0 at the lumbar spine, femoral neck, total hip, or trochanter despite > 24 mo of bisphosphonates therapy; (2) decrease of > 3.0% in BMD at the lumbar spine, bilateral femoral neck, total hip, or trochanter between the baseline and follow-up DEXA scans; (3) incident low-trauma fracture despite > 12 mo of bisphosphonate therapy. Patients with a mean 25(OH)D ≥ 33 ng/mL had a 4.5-fold greater odds of a favorable response. Patients with a mean 25(OH)D ≥ 33 ng/ml had a substantially greater likelihood of maintaining bisphosphonate response. The probability of inadequate response to bisphosphonate therapy measured as BMD increase was 4-fold higher in patients with 25(OH)D < 30 (OR, 4.42; 95% CI, 1.22–15.97, p = 0.02).30,31

In patients with vitamin D deficiency response to bisphosphonate therapy measured by bone turnover markers indicated that CTx decreased only by 48% in patient treated with alendronate in comparison to 61% in patient supplemented with cholecalciferol [0.266 mg/wk for 3 mo; final vitamin D status in comparison to 61% in patient supplemented with cholecalciferol [0.266 mg/wk for 3 mo; final vitamin D status

Bertoldo33 reported that serum 25(OH)D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. Body temperature and CRP decreased when vitamin D status was normalized.

In longitudinal clinical trial (40 individuals with severe chronic periodontitis) Bashutski34 evidenced that placebo patients with baseline vitamin D deficiency [serum 25(OH)D, 16–19 ng/mL] had significantly less clinical attachment loss (CAL) gain (-0.43 mm vs. 0.92 mm, p < 0.01) and probing depth (PPD) reduction (0.43 mm vs. 1.83 mm, p < 0.01) than vitamin-D-sufficient individuals. Vitamin D deficiency at the time of periodontal surgery negatively affects treatment outcomes for up to 1 y and indicated that vitamin D status may be critical for post-surgical healing. These data are supported by work of Hokugo35 who described increased prevalence of bisphosphonate-related osteonecrosis of the jaw with vitamin D deficiency in rats. Necrotic bone in the oral cavity has recently been reported in patients treated with nitrogen-containing bisphosphonates as part of their therapeutic regimen for multiple myeloma or metastatic cancers to bone. Similar to human patients, rat ONJ lesions prolonged the oral exposure of necrotic bone sequestra and were uniquely associated with pseudoepitheliomatous hyperplasia. It was suggested that the pathophysiologic mechanism(s) underpinning ONJ may involve the interaction between bisphosphonates and compromised vitamin D functions in the realm of skeletal homeostasis and innate immunity.

The important part of osteoporosis therapy is rehabilitation after fracture. Bischoff-Ferrari36 evaluated the effect of 800–2000 IU daily cholecalciferol and extended physiotherapy (PT) on complications after hip fracture. At baseline, 50.9% of participants had 25(OH)D levels of less than 12 ng/mL and 97.7% of less than 30 ng/mL. Extended PT was successful in reducing falls but not hospital readmissions, whereas cholecalciferol treatment, 2000 IU/d, was successful in reducing hospital readmission but not falls. Thus, the two strategies may be useful together because they address two different and important complications after hip fracture.

Vitamin D supplementation as adjunctive therapy in neurological disorders. Högberg37 evidenced amelioration of depression by vitamin D supplementation in Swedish adolescents. In 54 Swedish depressed adolescents increasing mean serum 25(OH)D from 41 nmol/L at baseline to 91 nmol/L after supplementation led to decreased symptoms of depression: well-being increased (p < 0.001) and there was a significant improvement in eight of the nine items: depressed feeling (p < 0.001), irritability (p < 0.05), tiredness (p < 0.001), mood swings (p < 0.01), sleep difficulties (p < 0.01), weakness (p < 0.01), ability to concentrate (p < 0.05) and pain (p < 0.05). Vitamin D supplementation alone has therapeutic effect in vitamin D deficient depressed patients.

Huang38 described patients with multiple areas of chronic pain and supplemented with vitamin D3 1200 IU daily [if serum 25(OH)D was 20 to 29 ng/mL] or 50,000 IU weekly [if serum 25(OH)D was < 20 ng/mL] improved their pain levels, sleep, and various aspects of QoL.

Khoraminya39 reported therapeutic effects of vitamin D3 (1500 IU/day) as adjunctive therapy to fluoxetine (20mg) in 42 patients with major depressive disorder. In the 8-week, double-blind, randomized, placebo-controlled trial depression severity based on Hamilton Depression Rating Scale HDRS and Beck Depression Inventory BDI decreased significantly after intervention, with a significant difference between the two groups—the vitamin D + fluoxetine combination was significantly better than fluoxetine alone from the 4th week of treatment.

The exact mechanism by which vitamin D exerts its beneficial effect in epilepsy is still to be explored. Vitamin D receptors as well as the 1α-hydroxylase, the enzyme that produces 1,25(OH)2D, are distributed widely in the brain.40 Vitamin D deficiency is known to be highly prevalent among epilepsy patients, but only one study, published nearly 40 y ago, documented that administration of vitamin D2 resulted in a seizure reduction of 30% on average.41 In small study of Hollo42 vitamin D3 supplementation (oral dose of 40,000–200,000 IU bolus in order to normalize vitamin D deficiency, and then a daily maintenance dose of 2000–2600 IU) results in improved seizure control in patients with pharmacoresistant epilepsy. Ten (of 13) patients showed decreased seizure numbers during the 90 d following treatment onset as compared with the baseline period. Among all patients, the median seizure reduction was 40%, and there was a non-significant tendency for patients with larger proportional elevation of 25(OH)D levels exhibiting a larger proportional reduction in seizure numbers. Median
serum 25(OH)D level at baseline was 11.8 ng/mL (range: 4.0–34.2 ng/mL) and rose close to the normal range in all patients (median: 38.0 ng/mL, range: 23.3–45.0 ng/mL).

Conclusions

There is a substantial and growing body of evidence indicating that the lower end of the adequate range is at least 80 nmol/L. It was evidenced that transferring patients from vitamin D deficiency to proper vitamin D status [75–100 nmol/L serum 25(OH)D] increase effectiveness of therapies in infectious diseases (chronic hepatitis C, tuberculosis), osteoporosis, multiple sclerosis, epilepsy, Chronic Kidney Diseases and atopic dermatitis. For these reasons doctors should take special attention to vitamin D status in patients suffering for these diseases properly implementing recent vitamin D recommendation.**

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Grant WB, Cross HS, Garland CF, Gorham ED, Moan J, Peterlik M, et al. Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Prog Biophys Mol Biol 2009; 99:164-13; PMID:19268496; http://dx.doi.org/10.1016/j.pbiomolbio.2009.02.003

2. Charzewska J, Chlebna-Sokół D, Czybicka A, Czechowska J, Dobrzańska A, Helwich E, et al. Zespół Ekspertów. [Prophylaxis of vitamin D deficiency - recommendations 2009]. Ginek Pol 2010; 81:149-53; PMID:20232716

3. Looker AC, Pfeiffer CM, Lacher DE, Schleicher RL, Picciano MF, Yetley EA. Serum 25-hydroxyvitamin D status of the US population: 1988-1994 compared with 2000. Am J Clin Nutr 2007; 88:1519-27; PMID:19064511; http://dx.doi.org/10.3945/ajcn.2007.26182

4. Ginde AA, Liu MC, Camargo CA Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988-2004. Arch Intern Med 2009; 169:626-32; PMID:19307527; http://dx.doi.org/10.1001/archinternmed.2009.8004

5. Chlebna-Sokół D, Golec J, Karalus J. Vitamin D supplementation in children and adolescents in Poland. Standardy Medyczne. Pediatria (Napoli) 2012; 9:701-4

6. Babińska E, Abramowicz P, Werpachowska I, et al. Potential associations between deficiencies of vitamin D and hypertension in adolescents: a pilot study. Standardy Medyczne. Pediatria (Napoli) 2012; 9:722

7. Walewicz-Sadłeka M, Grabiec M, Sadłek E, et al. Ocena stężenia 25(OH)D3 u pacjentów z raka liski i ich rodziców z pielęgnierom przeziernym. Standardy Medyczne. Pediatria (Napoli) 2012; 9:722

8. Czechowska J, Płudowski P, Dobrzańska A, Kryśkiewicz E, Karalus J, Gruszfeld A, et al. Impact of vitamin D supplementation on markers of bone mineral metabolism in term infants. Bone 2012; 51:781-6; PMID:22776138; http://dx.doi.org/10.1016/j.bone.2012.06.023

9. Czechowska J, Płudowski P, Dobrzańska A, Kryśkiewicz E, Karalus J, Gruszfeld A, et al. Wpływ suplementacji witaminą D na stężenie 25-hydroksywitaminy D u noworodków urodzonych o chronologicznym wieku 2000-2004. Am J Clin Nutr 2008; 88:1519-27; PMID:19307527; http://dx.doi.org/10.1001/archinternmed.2007.343

10. Pluta A, Karwacki A, Przybylska K, et al. Zasoby utraty witaminy D i markerów i noworodków w chwilie urodzenia w zależności od pory roku. Pol Tyg Lek (Wars) 1987; 42:254-6

11. Zmięsikowska MA, Kniec P, Waszak PM, et al. Vitamin D deficiency in population of pomeranian region of Poland. Standardy Medyczne. Pediatria (Napoli) 2012; 9:735

12. Napiórkowska L, Budielski T, Jakubyszyn K, Wierzyński A, Kowalska W, Hamzy V, Godowska D, Franek E. Prevalence of low vitamin D12H-treated vitamin D deficiency in urban population of elderly women in Poland. Pol Arch Med Wewn 2009; 119:699-708; PMID:19920791

13. Abu-Mouch S, Fierman Z, Jachovska J, Zeina AR, Assay N. Vitamin D supplementation improves sustained virologic response in chronic hepatitis C (genotype 1)-naive patients. World J Gastroenterol 2011; 17:5184-90; PMID:22225943; http://dx.doi.org/10.3748/wjg.v17.i47.5184

14. Bitetto D, Fabris C, Forini M, Pipan C, Fumolo E, Cusigh A, et al. Vitamin D supplementation improves response to antiviral treatment for recurrent hepatitis C. Transpl Int 2011; 24:43-50; PMID:20649944; http://dx.doi.org/10.1111/j.1432-2277.2010.01141.x

15. Nimer A, Mouch A, World J. Vitamin D improves viral response in hepatitis C genotype 2-3 naïve patients. World J Gastroenterol 2012; 18:800-5; PMID:22371640; http://dx.doi.org/10.3748/wjg.v18.i8.800

16. Lange CM, Billbert S, Kulyk Z, Burgisser P, Cerny A, Dufour JF, et al.; Swiss Hepatitis C Cohort Study Group. A genetic validation study reveals a role of vitamin D metabolism in the response to interferon-alfa-based therapy of chronic hepatitis C. PLoS One 2012; 7:e40159; PMID:22880188; http://dx.doi.org/10.1371/journal.pone.0040159

17. Terrier B, Jehan F, Manteau M, Geri G, Saadoun D, Séné D, et al. Low 25-hydroxyvitamin D serum levels correlate with the presence of extra-hepatic manifestations in chronic hepatitis C virus infection. Rheumatology (Oxford) 2012; 51:2083-90; PMID:22908327; http://dx.doi.org/10.1093/rheuma tology/kes209

18. Sato S, Tanino Y, Saito J, Nikaio T, Imokoshi Y, Fukushima A, et al. The relationship between 25-hydroxyvitamin D levels and treatment course of pulmonary tuberculosis. Respir Investig 2012; 50:40-5; PMID:22749249; http://dx.doi.org/10.1016/j.res inv.2012.05.002

19. Gamma A, Giovannucci E, Bloom BR, Fawzi WO, Burr W, Barbaart D, et al. Vitamin D, tuberculin skin test conversion, and latent tuberculosis in Mongolian school-age children: a randomized, double-blind, placebo-controlled feasibility trial. Am J Clin Nutr 2012; 96:591-6; PMID:22760656; http://dx.doi.org/10.3945/ajcn.112.1034967

20. Leis KS, McNally JD, Montgomery MR, et al. Vitamin D intake in young children with acute lower respiratory infection. [Epub ahead of print]. Am J Clin Nutr 2012; 96:767-9; http://dx.doi.org/10.3945/ajcn.112.1034967

21. Bartolledo E, Pancheri S, Zenari S, Boldini S, Giovannazi B, Zanatta M, et al. Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J Bone Miner Res 2010; 25:447-54; PMID:20200999; http://dx.doi.org/10.1002/jbmr.90819

22. Bashuk JS, Ether RM, Kinney JS, Benavides E, Maitra S, Braun TM, et al. The impact of vitamin D status on periodontal surgery outcomes. J Periodontol 2012; 83:1649-55; PMID:22880188; http://dx.doi.org/10.1902/jop.2012.11-4079

23. Hokoaga A, Christensen R, Chung EM, Seng UC, Felsenfeld AL, Sayre JW, et al. Increased prevalence of bisphosphate-related osteonecrosis of the jaw with vitamin D deficiency in rats. J Bone Miner Res 2010; 25:1337-49; PMID:20200938; http://dx.doi.org/10.1002/jbmr.2012
36. Bischoff-Ferrari HA, Dawson-Hughes B, Platz A, Orav EJ, Staehelin HB, Willett WC, et al. Effect of high-dosage cholecalciferol and extended physiotherapy on complications after hip fracture: a randomized controlled trial. Arch Intern Med 2010; 170:813-20; PMID:20458090; http://dx.doi.org/10.1001/archinternmed.2010.67

37. Högborg G, Gustafsson SA, Hallström T, Gustafsson T, Klawitter B, Petersson M. Depressed adolescents in a case-series were low in vitamin D and depression was ameliorated by vitamin D supplementation. Acta Paediatr 2012; 101:779-83; PMID:22372787; http://dx.doi.org/10.1111/j.1651-2227.2012.02655.x

38. Huang W, Shah S, Long Q, et al. Improvement of Pain, Sleep, and Quality of Life in Chronic Pain Patients With Vitamin D Supplementation. Clin J Pain 2012; In press; PMID:22699141.

39. Khorraminya N, Tehrani-Doost M, Jazayeri S, et al. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust N Z J Psychiatry 2012; In press; PMID:23693654.

40. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29:21-30; PMID:15589699; http://dx.doi.org/10.1016/j.jchemneu.2004.08.006

41. Christiansen C, Rediho P, Sjo O. “Anticonvulsant action” of vitamin D in epileptic patients? A controlled pilot study. Br Med J 1974; 2:258-9; PMID:4207965; http://dx.doi.org/10.1136/bmj.2.5913.258

42. Holló A, Clemens Z, Kamondi A, Lakatos P, Srúcs A. Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy Behav 2012; 24:154-9; PMID:22503468; http://dx.doi.org/10.1016/j.yebeh.2012.03.011

43. Holick MI, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al.; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96:1911-30; PMID:21646368; http://dx.doi.org/10.1210/jc.2011-0385