The effect of operational modes of diesel engines to emissions of nitrogen oxides

O P Lopatin
Department of thermal engines, automobiles and tractors, Vyatka State Agricultural Academy, 610017, Kirov, October prospect, 133, Russian Federation

E-mail: nirs_vsaa@mail.ru

Abstract. The levels of nitrogen oxides (NO\textsubscript{x}) emissions are presented depending on the operating modes of diesel engines, which determine on the one hand the existence of high temperatures in the cycle, at which there is intense nitrogen oxidation, and on the other hand, depending on the value of the excess air coefficient \(\alpha\), the excess of free oxygen for nitrogen oxidation.

Reducing the impact of motor transport on the environment is the most urgent and urgent task of modern society. The consequences of this impact are not only affecting our generation, but may also affect the future if we do not take serious measures to reduce or even eliminate the effects of the impact and the impact itself. Global problems of modern civilization-energy and environmental-are directly related to the development of internal combustion piston engines, as the main consumers of fuels of oil origin and sources of environmental pollution [1-6].

Figure 1. Nature of changes in NO\textsubscript{x} emissions taking into account the type of mixing.
Since internal combustion engines have found the widest distribution as a power unit of vehicles, it is natural that they should be characterized not only by high fuel efficiency, but also by the necessary environmental safety in accordance with current norms and regulations. It is obvious that improving environmental parameters is one of the main tasks of modern diesel construction [7-13].

The control of diesel emissions toxicity is regulated by the introduction of legal restrictions and the implementation of measures that ensure these restrictions. Legal restrictions on regulated harmful substances are established by regulatory documents (national and international standards), which also contain requirements and provisions for testing, the scope and validity of the standard, measuring instruments, rules for processing test results and properties of the fuels used [14-19]. Strict legal requirements, currently introduced in almost all developed countries of the world, provide for restrictions on concentrations in diesel combustion products of harmful components such as NOx, which pose the greatest danger to humans, flora and fauna [20-23].

![Figure 2](image.png)

Figure 2. The nature of changes in NOx, CH and CO emissions of diesel 8CHN16.5/17.0:
- n=1800 min\(^{-1}\);
- n=1300 min\(^{-1}\).

![Figure 3](image.png)

Figure 3. Specific NOx, CH and CO emissions of diesel 8CHN16.5/17.0:
- n=1800 min\(^{-1}\);
- n=1300 min\(^{-1}\).

The existence of a maximum of NOx emissions by load characteristic in the area of loads equal to \(N_r/N_{en}=75...87\%\) is associated with a combination of high temperature and a sufficient value of the excess air coefficient \(\alpha\) (figure 1).
Further increase in power is associated with the deterioration of the mixing conditions, a drop in the values of α and accompanied by a decrease in NO\textsubscript{x} emissions. Therefore, in some cases, for gas-turbine supercharged diesels, the maximum NO\textsubscript{x} emissions may almost coincide with the maximum load capacity [24-28].

The implicit existence of a maximum of NO\textsubscript{x} emissions by load characteristic can change NO\textsubscript{x} emissions, for example, when the charge air pressure reaches 0.203 MPa (figure 2).

Figure 2 shows that for a supercharged gas turbine diesel engine, there are no clearly defined NO\textsubscript{x} emission maxima in terms of load characteristics [29-31].

Figure 3 shows the specific NO\textsubscript{x}, CO and CH emissions of diesel 8CHN16.5/17.0. When the speed is increased, diesels tend to have higher levels of harmful emissions [32-34].

Figure 4 shows the levels of harmful emissions of diesel 6H13.0/14.0 with supercharged at \(p_c = 0.172 \) MPa.

Figure 5. Multi-parameter characteristics of diesels: a - KAMAZ-740; b - YAMZ-236.
Here, NO\textsubscript{x} emission maxima between loads of 60...80\% are observed. For constant-power engines with an external speed characteristic, NO\textsubscript{x} emissions decrease as the crankshaft speed increases from \(n_m\) to \(n_e\). Thus, NO\textsubscript{x} emissions from constant-power engines are reduced by external speed characteristics from 3.5 g/m\(^3\) at 1200 min\(^{-1}\) to 2.4 g/m\(^3\) at 1750 min\(^{-1}\) [35-38].

The most complete understanding of the impact of speed and load conditions on NO\textsubscript{x} emission levels can be obtained by reading the multi-parameter characteristics of diesels (figure 5, a, b).

Considering the multiparameter characteristics for KAMAZ-740 diesels (figure 5 a) and YAMZ-236 (figure 5 b), it is obvious that the zones of the greatest NO\textsubscript{x} emissions lie in the areas of \(p_e=0.3...0.5\) MPa at rotation speeds from 1500 min\(^{-1}\) and higher [39-42].

![Figure 6. Multi-parameter characteristics of diesels: a - A-01M; b - A-41.](image)

Comparison of multiparameter indicators of diesels A-01M (figure 6 a) and A-41 (figure 6 b) shows that for this type of diesels, the most dangerous modes, in terms of NOx emissions, are combinations of \(p_e=0.5...0.7\) MPa at speeds of more than 1500 min\(^{-1}\) [43-45].

However, the selection of the above-mentioned factors as fundamental in determining NO\textsubscript{x} concentration levels would not be correct, since their effect can be detected in combination with adjustments, fuels, combustion chamber geometry, environmental conditions, and so on [46-48].

References
[1] Fino D and Russo N 2011 Industrial and Engineering Chemistry Research 50(5) 3004-10
[2] Tsolakis A, Torbati R, Megaritis A and Abu-Jrai A 2010 Energy and Fuels 24(1) 302-8
[3] Likhanov V A and Lopatin O P 2018 IOP Conf. Series: Materials Science and Engineering 457 012011
[4] Abd-Elhady M S, Zornek T, Malayeri M R, Müller-Steinhagen H et al. 2011 International Journal of Heat and Mass Transfer 54(4) 838-46
[5] Abd-Elhady M S, Malayeri M R and Müller-Steinhagen H 2011 Fouling Heat Transfer Engineering 32(3-4) 248-57
[6] Likhanov V A and Lopatin O P 2019 Journal of Physics: Conf. Series 1399 055016
[7] Chuvashiev A N and Chuprakov A I 2019 Journal of Physics: Conf. Series 1399 055085
[8] Skryabin M L 2020 IOP Conf. Series: Earth and Environmental Science 421 072012
[9] Titak W, Szwaja S, Lukacs K et al 2015 Fuel 154 196-206
[10] Likhanov V A and Rossokhin A V 2018 *IOP Conf. Series: Materials Science and Engineering* **457** 012007
[11] Likhanov V A and Skryabin M L 2019 *IOP Conf. Series: Earth and Environmental Science* **315** 032045
[12] Kopeika A K, Golovko V V, Zolotko A N et al. 2015 *Journal of Engineering Physics and Thermophysics* **88**(4) 948-57
[13] Sun P, Chen C, Ye L and Wang J 2013 *ICMREE 2013 – Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment* (Chengdou) pp 228-31
[14] Likhanov V A and Lopatin O P 2019 *Journal of Physics: Conf. Series* **1399** 055026
[15] Guimarães A O, Machado F A L, Da Silva E C et al. 2012 *International Journal of Thermophysics* **33**(10-11) 1842-47
[16] Sanjidi A, Masjuki H H, Kalam M A et al. 2013 *Renewable and Sustainable Energy Reviews* **27** 664-82
[17] Likhanov V A, Lopatin O P and Yurlov A S 2019 *Journal of Physics: Conf. Series* **1399** 055026
[18] Meyer D D, Beker S A, Bücker F et al. 2014 *International Biodeterioration & Biodegradation* **95** 356-63
[19] Azizi Z, Tohidian T. Rahimpour M R et al. 2014 *Chemical Engineering and Processing* **82** 150-72
[20] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **421** 072018
[21] Torres-Jimenez E, Svoljsak-Jerman M, Gregorc A et al. 2010 *Energy and Fuels* **24**(3) 2002-9
[22] Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **421** 072019
[23] Hatanaka R R, Sequinel R, Gualtieri C E et al. 2013 *Talanta* **109** 191-6
[24] Sanli H, Canakci M, Alptekin E et al. 2015 *Fuel* **159** 179-87
[25] Likhanov V A and Lopatin O P 2017 *Thermal Engineering* **64**(12) 935-44
[26] Kozlov A N, Anfilatov A A and Chuvashev A N 2019 *Journal of Physics: Conf. Series* **1399** 055051
[27] Chuvashev A N, Chuprakov A I and Anfilatov A A 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012184
[28] Likhanov V A and Lopatin O P 2019 *Ecology and Industry of Russia* **23**(9) 60-5
[29] Skryabin M L and Likhanov V A 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012075
[30] Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012199
[31] Skryabin M L and Likhanov V A 2019 *Journal of Physics: Conference Series* **1399** 044063
[32] Likhanov V A and Lopatin O P 2018 *Ecology and Industry of Russia* **22**(10) 54-9
[33] Arat H T, Baltacioglu M K, Özcanlı M et al. 2016 *International Journal of Hydrogen Energy* **41**(19) 8354-63
[34] Marchuk A, Likhanov V A and Lopatin O P 2019 *Theoretical and Applied Ecology* **3** 080-6
[35] Torres-Jimenez E, Jerman M S, Gregorc A et al. 2011 *Fuel* **90**(2) 795-802
[36] Romanyuk V, Likhanov V A and Lopatin O P 2018 *Theoretical and Applied Ecology* **3** 27-32
[37] Likhanov V A and Rossokhin A V 2019 *Journal of Physics: Conf. Series* **1399** 044038
[38] Bauer C, Hofer J, Simons A, Althaus H-J and Del Duca A 2015 *Applied Energy* **157** 871-83
[39] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012202
[40] Lazarev E and Lomakin G 2014 *WIT Transactions on Ecology and the Environment* **190**(1) 677-83
[41] Likhanov V A, Lopatin O P and Yurlov A S 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012208
[42] Subramanian K A 2011 *Energy Conversion and Management* **52** 849-57
[43] James C and Szybist P 2010 *Energy* **35** 1658-64
[44] Likhanov V A and Rossokhin A V 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012208
734 012207
[45] Han K, Yang B, Zhao C et al. 2016 Experimental Thermal and Fluid Science 70 381-8
[46] Zhang S, Wu W, Lee C-F et al. SAE International Journal of Engines 9(1) 631-40
[47] Likhanov V A, Kozlov A N and Araslanov M I 2020 IOP Conf. Series: Materials Science and Engineering 734 012211
[48] Lang Y-H, Li G-L, Wang X-M and Peng P 2015 Marine Pollution Bulletin 90(1-2) 129-34