Evidence of Differential Effects of Vitamin D Receptor Variants on Epithelial Ovarian Cancer Risk by Predicted Vitamin D Status

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Prescott, Jennifer, Kimberly A. Bertrand, Brett M. Reid, Jennifer Permuth-Wey, Immaculata De Vivo, Daniel W. Cramer, Kathryn L. Terry, and Shelley S. Tworoger. 2014. “Evidence of Differential Effects of Vitamin D Receptor Variants on Epithelial Ovarian Cancer Risk by Predicted Vitamin D Status.” Frontiers in Oncology 4 [1]: 286. doi:10.3389/fonc.2014.00286. http://dx.doi.org/10.3389/fonc.2014.00286.

Published Version
doi:10.3389/fonc.2014.00286

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13454656

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Evidence of differential effects of vitamin D receptor variants on epithelial ovarian cancer risk by predicted vitamin D status

Jennifer Prescott1,2,*, Kimberly A. Bertrand1,2, Brett M. Reid4, Jennifer Permuth-Wey4, Immaculata De Vivo1,2,3, Daniel W. Cramer3,5, Kathryn L. Terry3,5 and Shelley S. Tworoger1,3

1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
2 Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
3 Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
4 Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
5 Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA

*Correspondence: Jennifer Prescott, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
*Corresponding author: nhjxp@channing.harvard.edu

Introduction: Experimental studies suggest vitamin D inhibits ovarian carcinogenesis. Yet, epidemiologic studies of ovarian cancer risk and lifestyle correlates of vitamin D status, plasma 25-hydroxyvitamin D [25(OH)D], or vitamin D receptor (VDR) variants have been inconsistent.

Objective: To evaluate VDR genetic associations by high vs. low predicted 25(OH)D, scores derived from known determinants of plasma 25(OH)D. To assess ovarian cancer associations with variants identified in genome-wide association studies (GWAS) of plasma 25(OH)D.

Methods: We genotyped up to seven VDR and eight 25(OH)D GWAS variants in the Nurses’ Health Studies (562 cases, 1,553 controls) and New England Case-Control study (1,821 cases, 1,870 controls). We estimated haplotype scores using expectation-maximization-based algorithms. We used unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CI). We combined study results using DerSimonian and Laird meta-analysis.

Results: Ovarian cancer risk increased per A allele of rs7975232 (VDR; OR = 1.12, 95% CI = 1.01–1.25) among all women. When stratified by predicted 25(OH)D, ovarian cancer was associated with rs731236 (VDR; per C allele OR = 1.31) and rs7975232 (OR = 1.38) among women with high predicted 25(OH)D, but not among women with low levels (P ≤ 0.009). We also observed heterogeneity by predicted 25(OH)D for the ovarian cancer association with VDR 3’ end haplotypes (P = 0.009). Of 25(OH)D-associated GWAS loci, rs7041 was associated with reduced ovarian cancer risk (per T allele OR = 0.92, 95% CI = 0.85-0.99), which did not differ by predicted 25(OH)D status.

Conclusion: Our study suggests an influence of VDR 3’ end variants on ovarian cancer risk may be observed in women with high predicted 25(OH)D, which remained even after taking multiple comparisons into consideration. Future studies are needed to confirm our results and explore further the relation between vitamin D exposure, genetic variants, and ovarian cancer risk.

Keywords: ovarian cancer, vitamin D, polymorphism, haplotype, heterogeneity
UV radiation exposure, dietary and/or supplemental vitamin D intake, predicted 25(OH)D scores, and plasma 25(OH)D levels have been inconsistent (17–30).

Genetic studies may provide another line of evidence for the vitamin D pathway in ovarian carcinogenesis. To date, nine ovarian cancer genetic susceptibility loci have been identified by four genome-wide association studies (GWAS) (31–34). While known vitamin D pathway genes do not appear to reside at these loci, the newly established variants explain a relatively small proportion of excess familial risk (34). Additional common susceptibility loci are likely to exist, but will require alternate approaches such as evaluating gene–environment interaction to discover these associations. Common polymorphisms in the VDR are suspected to either directly affect or be in linkage disequilibrium (LD) with variants that influence vitamin D signaling (35), which would alter the biological response to vitamin D at the cellular level. Of the VDR variants that have been most extensively studied, the rs228570 T allele [a.k.a. FokI restriction fragment length polymorphism (RFLP) “F” allele] creates a VDR protein that is three amino acids longer and less transcriptionally active than the protein product of the C allele (35). A recent meta-analysis including a total of 4,163 cases and 6,801 controls observed a significant 9% increase in ovarian cancer risk associated with each rs228570 T allele (36). While statistically significant associations with ovarian cancer risk were not observed in a meta-analysis for four other VDR variants, total sample sizes were smaller than that for rs228570, thus, reducing power to detect genetic associations (37). Additionally, vitamin D status of study participants may modify associations between VDR genetic variants and cancer risk (38–41), which has not yet been explored for ovarian cancer. Further, risk has not been assessed in relation to GWAS-identified variants linked to lower plasma 25-hydroxyvitamin D [25(OH)D] levels (42–44), a relatively stable indicator of vitamin D status (45).

To explore these gaps, we assessed whether associations between variants presumed to lower VDR bioactivity or contribute to vitamin D insufficiency, and ovarian cancer risk differed by predicted 25(OH)D status in a retrospective case–control study (New England Case–Control study, NECC) and two case–control studies nested within the prospective Nurses’ Health Study (NHS) and NHSII cohorts.

MATERIALS AND METHODS

STUDY POPULATIONS

The NHS is a prospective cohort study of 121,700 female registered nurses from 11 US states who were 30–55 years of age in 1976. NHSII began in 1989 and enrolled 116,430 female US registered nurses aged 25–42 from 14 US states. In both cohorts, biennial self-administered questionnaires gathered detailed information on lifestyle, menstrual and reproductive factors, and medical history since baseline. Blood samples were collected from a subset of 32,826 NHS participants in 1989–1990 and from 29,611 NHSII participants from 1996 to 1999. Among women who did not provide a blood sample, buccal cell samples were collected from 29,864 NHS women in 2000–2002 and 29,859 NHSII women in 2004–2006. Eligible cases consisted of women with biospecimen samples diagnosed with pathologically confirmed epithelial ovarian cancer within 4 years before sample collection up to June 1st of either 2009 (buccal cell) or 2011 (blood) in NHSII and 2010 (buccal cell) or 2012 (blood) in NHS with no prior cancer diagnosis except non-melanoma skin cancer. Controls were randomly selected from among women who had at least one ovary and were free of cancer (except non-melanoma skin cancer) up to and including the questionnaire cycle in which the case was diagnosed. Controls were matched to cases by cohort, biospecimen type, age (±1 month), and menopausal status at diagnosis. For participants with blood samples, controls were additionally matched to cases on post-menopausal hormone use (current vs. not current), menopausal status, month/year, time of day, and fasting status at blood collection. Completion of the self-administered questionnaire and submission of the biospecimen was considered to imply informed consent. The NHS and NHSII protocols were approved by the Institutional Review Board of Brigham and Women’s Hospital, Boston, MA, USA.

The NECC Study is a population-based study of ovarian cancer. Women residing in eastern Massachusetts or New Hampshire were recruited during three enrollment phases (Phase 1: 1992–1997, Phase 2: 1998–2002, and Phase 3: 2003–2008), corresponding to three funding periods, the details of which were reported previously (46, 47). Briefly, 3957 women (1,080 from Phase 1, 1,267 from Phase 2, and 1,610 from Phase 3) residing in eastern Massachusetts or New Hampshire with a diagnosis of incident ovarian cancer were identified from hospital tumor boards and statewide cancer registries. Of the 3,083 eligible women, 2,203 agreed to participate. Controls were identified through a combination of random digit dialing, town books, and drivers’ license lists. Exclusion criteria for controls included the inability to be contacted, history of bilateral oophorectomy, language barriers, or relocation outside of the study area. In Phase 1, 420 (72%) of eligible women identified by random digit dialing and 102 (51%) of eligible women identified through town books agreed to participate. In Phase 2 and 3, 4,366 potential controls were identified and 1,578 out of 2,940 eligible women (54%) agreed to participate. Controls were frequency matched to cases by age and study center. At enrollment, participants were asked to recall known and putative ovarian cancer risk factors that occurred ≥1 year prior to diagnosis (for case subjects) or enrollment (control subjects). Over 95% of enrolled participants provided a blood specimen. Each participant provided written informed consent. The Institutional Review Boards of Brigham and Women’s Hospital and Dartmouth Medical School, Hanover, NH, USA approved the study protocol.

PREDICTED 25(OH)D SCORES

We used covariate exposures reported closest to the time of blood collection in NHS and NHSII or at enrollment in NECC to calculate menopause-specific predicted 25(OH)D scores as previously described (20, 48). Briefly, multiple linear regression models to predict 25(OH)D levels within NHS and NHSII were developed and then validated in an independent sample of women with measured 25(OH)D levels (48). Based on these initial models, separate linear regression models were subsequently fit among 2,431 premenopausal and 3,101 postmenopausal women with measured 25(OH)D levels to create menopause-specific predictor scores (20). Predictors of plasma 25(OH)D levels were categorized as follows: race/ethnicity (white, black, Hispanic, Asian, and
We selected commonly studied Single nucleotide polymorphism (SNPs) within the VDR gene that either have known or hypothesized functional effects on VDR activity, expression, and/or cancer risk (35). Variants putatively associated with reduced VDR activity, expression, and/or cancer risk were designated as the risk alleles. The rs228570 T allele creates risk (35). Variants putatively associated with reduced VDR activity, expression, and/or cancer risk are most common. These haplotypes are in linkage disequilibrium with long and short polyA variable number of tandem repeat (VNTR) alleles (<0.1–4.9, 5–9.9, 10+ g/day), postmenopausal hormone use (never, past, current, unknown; for postmenopausal women only), and average annual UV-B flux based on state of residence (hereafter simply referred to as UV-B flux; <113, 113, >113 R-B units in NHS/NHSII; all NECC participants reside in states with UV-B flux <113 R-B units). Age (years), season of blood draw (Summer, Fall, Winter, and Spring), and laboratory batch were included in the regression models to account for known variation in 25(OH)D levels. We used the beta values of predictors from the appropriate score to calculate menopause-specific predicted 25(OH)D levels in NHS/NHSII. Similarly, we applied these NHS/NHSII-derived beta values as weights for each significant predictor to generate menopause-specific predicted 25(OH)D scores for NECC participants.

25-HYDROXYVITAMIN D PLASMA ASSAY

Existing plasma 25(OH)D levels were available for a subset of NHS and NHSII participants (N = 570), as described previously (52, 53). Briefly, case–control sets and samples from the same cohort were assayed together by radioimmunoassay and labeled to mask case–control status. The intra-assay coefficients of variation, based on blinded quality control replicates ranged from 8 to 10%.

STATISTICAL ANALYSIS

We used chi-square tests to assess Hardy–Weinberg equilibrium (HWE) among white controls within NHS/NHSII and NECC. Three of 15 SNPs (rs1989969, rs2060793, and rs739837) were out of HWE among white controls within NHS/NHSII and NECC. Review of screen shots for these plates revealed appropriate clustering and so rs1544410 was retained to generate VDR 3′ end haplotypes. The rs1544410 risk allele frequency (RAF) among NECC controls was similar to the RAF among NHS/NHSII controls and the HapMap Phase II + III, Release 28 Caucasian European (CEU) population (Table S1 in Supplementary Material).

We used unconditional logistic regression models adjusted for matching factors and race to calculate odds ratios (ORs) and 95% confidence intervals (CIs). For each SNP, gene dosage effects were modeled by assigning a value of 0, 1, or 2 to a genotype trend variable according to a participant’s number of risk alleles. We estimated frequencies of VDR 3′ end and GC haplotypes using expectation–maximization-based algorithms and imputed subject-specific expected haplotypes (54, 55) to provide tests of association for individual haplotypes, assuming additive inheritance models. VDR 3′ end haplotypes with estimated frequencies <5% were grouped. We derived estimated GC phenotypes based on GC haplotype scores and assigned
Table 1 | Age and selected age-standardized characteristics of ovarian cancer cases and controls by study populationa.

	NHS/NHSII (N = 1,553)	NECC (N = 1,870)		
Case	**Control**	**Case**	**Control**	
Age (years)b	55.0 (79)	55.0 (79)	52.4 (12.3)	52.3 (12.7)
Ever use of oral contraceptives, %	55	55	53	65
Duration of oral contraceptive use (months)c	49.3 (42.8)	54.4 (48.3)	56.0 (56.6)	66.6 (59.6)
Tubal ligation, %	13	21	13	20
Body mass index (kg/m²)	25.9 (5.9)	25.2 (4.7)	26.5 (6.3)	26.0 (5.6)
Total activity (hours/week)	3.5 (3.6)	3.4 (3.8)	3.1 (4.9)	3.3 (4.4)
Total vitamin D intake (IU/day)	382 (261)	381 (272)	412 (299)	417 (290)
Alcohol intake (grams/day)	5.9 (9.7)	6.3 (10.8)	6.8 (11.8)	6.7 (10.8)

aValues are means (SD) or percentages and are standardized to the age distribution of the study population.
bValue is not age-adjusted
cAmong women who ever used oral contraceptives.

25(OH)D binding affinity constants based on published estimates [Table 1 in Ref. (56)] to a trend variable. Risk allele counts from the four independent plasma 25(OH)D GWAS loci (rs4588, rs10741567, rs3829251, and rs6013897) were summed to generate a genetic risk score (GRS) of vitamin D insufficiency in NHS/NHSII. Unconditional logistic regression models estimated risk of ovarian cancer associated with the GRS. Linear regression models adjusted for age, cohort, race, and season of blood draw were used to estimate SNP and GRS associations with plasma 25(OH)D levels. Wald tests were used to calculate P values for trend.

Predicted 25(OH)D scores were dichotomized at the median values of menopause-specific control distributions in NHS/NHSII and NECC. Women missing predicted 25(OH)D values were excluded from stratified analyses and tests for interaction. Within each study, statistical tests for interaction by predicted 25(OH)D were performed by the Wald test using cross-product terms. DerSimonian and Laird random effects meta-analysis (57) was used to combine results from NHS/NHSII and NECC. Heterogeneity by study and by predicted 25(OH)D strata was calculated using the Q statistic. To calculate a global P value for statistical interaction of VDR 3′ end haplotypes by predicted 25(OH)D status, we pooled individual-level NHS/NHSII and NECC data, additionally adjusted for study and predicted 25(OH)D scores, and compared models with interaction terms to a model without interaction terms using the likelihood ratio test.

P values were based on two-sided tests and considered statistically significant at P < 0.05. All analyses were conducted using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA). Power calculations were performed using QUANTO (58).

RESULTS

A total of 2,383 (562 NHS/NHSII and 1,821 NECC) cases and 3,423 (1,553 NHS/NHSII and 1,870 NECC) controls were available for this analysis. Women ranged in age from 34 to 72 years in NHS/NHSII and from 18 to 79 years in NECC at the time of blood collection. As expected based on the matched designs, cases, and controls were of similar age within each study. On average, NHS/NHSII participants were slightly older than NECC participants at the time of blood collection. Within each study, cases had shorter mean duration of oral contraceptive use and were less likely to have had a tubal ligation than controls. BMI, total leisure-time physical activity, total vitamin D intake (food and supplemental sources), and alcohol consumption were similar between case and control groups. Total vitamin D intake was higher in NECC than in NHS/NHSII (Table 1).

Risk allele frequencies observed in our control groups were comparable to those in the CEU HapMap population (Table S1 in Supplementary Material). Genotyping success rates were ≥95% for all SNPs except rs7975232 in NHS/NHSII (93%) and rs2228570 in NECC (94%). Given high LD between rs1790349 and rs3829251 (r² = 0.79) at the NADSYN1/DHCR7 locus and between rs2282679 and rs4588 (r² = 0.95) at the GC locus among NHS/NHSII participants, we selected the SNP with the higher genotyping success rate for analysis (rs3829251 and rs4588). We did not observe significant heterogeneity in estimates between NHS/NHSII and NECC in the main effect meta-analysis of SNPs. Of the VDR SNPs assessed, we observed a significant 12% increased risk of ovarian cancer associated with each rs7975232 A allele (Table 2). A marginal association between rs2228570 and ovarian cancer risk was also observed (per T allele OR = 1.09, 95% CI = 1.00–1.19; Ptrend = 0.06). The GWAS-identified rs7041 T allele was significantly associated with reduced ovarian cancer risk (per allele OR = 0.92, 95% CI = 0.85–0.99; Ptrend = 0.03). We confirmed that the rs7041 T allele and the vitamin D insufficiency GRS were associated with reduced 25(OH)D levels (Ptrend = 0.005 and <0.0001, respectively) among the subset of NHS/NHSII participants with existing 25(OH)D measurements (N = 570). The vitamin D insufficiency GRS was not associated with ovarian cancer risk (data not shown).

We took advantage of the strong LD at the 3′ end of the VDR gene (35) to generate haplotype scores that may better capture the effect of an unknown functional variant. Three SNPs at the VDR 3′ end (rs1544410-rs7975232-rs731236) formed three common haplotypes and five haplotypes with frequencies <5% that were grouped into a “rare” haplotype variable. Ovarian cancer risk was not associated with the VDR 3′ end haplotypes compared to controls.
Table 2 | Association of ovarian cancer with VDR and 25(OH)D GWAS-identified SNPs in the Nurses’ Health Studies, and the New England Case–Control study.

SNP	Risk allele	Other allele	NHS/NHSII	NECC	Meta-analysis
			Per allele OR		
			(95% CI)a		
			P_trend		
			Per allele OR		
			(95% CI)b		
			P_trend		
			Per allele OR		
			(95% CI)c		
			P_trend		
			P_outd		

VITAMIN D RECEPTOR POLYMORPHISMS

SNP	Risk allele	Other allele	NHS/NHSII (P_trend)	NECC (P_trend)	Meta-analysis (P_trend)
rs11568820	G	A	1.05 (0.88–1.24)	0.61	0.90 (0.78–1.04)
					0.96 (0.83–1.12)
rs1544410	A	G	1.09 (0.95–1.25)	0.24	0.98 (0.89–1.08)
					1.02 (0.92–1.12)
rs2228570	T	C	1.09 (0.95–1.25)	0.24	1.09 (0.97–1.23)
					1.09 (1.00–1.19)
rs731236	C	T	1.12 (0.97–1.29)	0.13	1.02 (0.87–1.20)
					1.07 (0.96–1.20)
rs7975232	A	C	1.17 (1.02–1.36)	0.03	1.07 (0.92–1.25)
					1.12 (1.01–1.25)

25(OH)D GWAS LOCI

SNP	Risk allele	Other allele	NHS/NHSII (P_trend)	NECC (P_trend)	Meta-analysis (P_trend)
rs4588d	T	G	0.99 (0.85–1.15)	0.86	0.95 (0.85–1.05)
					0.96 (0.88–1.05)
rs7041	T	G	0.95 (0.83–1.01)	0.51	0.90 (0.82–0.99)
					0.92 (0.85–0.99)
rs10741657d	G	A	0.96 (0.84–1.11)	0.59	1.14 (1.01–1.30)
					1.05 (0.89–1.24)
rs3829251	A	G	0.86 (0.71–1.04)	0.13	–
					–
rs6013897	A	T	0.92 (0.77–1.09)	0.32	–
					–

Odds ratios (OR) and 95% confidence intervals (CI) estimated using unconditional logistic regression models adjusted for matching factors and race.

DerSimonian–Laird estimators for random effects models were used to combine results from the pooled Nurses’ Health Studies, and the New England Case–Control study datasets.

P-value for heterogeneity in estimates between studies.

rs2282679 was substituted for rs4588 (r² = 0.95) and rs2060793 was substituted for rs10741657 (r² = 0.88) in a subset of New England Case–Control study participants (950 cases and 1,052 controls) that were genotyped on the iCOGS array (33).

DISCUSSION

In this study, we examined whether the vitamin D status of individuals modifies genetic associations between VDR variants and ovarian cancer risk by predicted 25(OH)D was observed for the 3’ end haplotypes (P = 0.009; Table 5). For each A-A-C or G-A-T haplotype possessed by women with high predicted 25(OH)D levels, risk of ovarian cancer significantly increased ~40%. These associations were not observed among women with low predicted 25(OH)D. To determine whether a particular component of the predicted 25(OH)D score accounted for the heterogeneity, we tested effect modification of ovarian cancer associations with rs731236, rs7975232, and VDR 3’ end haplotypes by BMI (<25 vs. 25+ kg/m²), total vitamin D intake (below vs. above median), total leisure-time physical activity (below vs. above median), menopausal status and HT use (premenopausal, postmenopausal/never HT use, postmenopausal/past HT use, and postmenopausal/current HT use), and alcohol intake (below vs. above median). Except for heterogeneity in the rs731236 association with ovarian cancer risk by alcohol intake (P = 0.03), in which the increased risk was restricted to women with higher than the median alcohol intake, we did not observe significant effect modification by predicted 25(OH)D score components (data not shown). The GC rs7041 T allele was associated with reduced ovarian cancer risk among women with low predicted 25(OH)D (P_trend = 0.03), but the association was not significantly different from that of women with high predicted 25(OH)D (P_heterogeneity = 0.39; Table 4). Estimated GC phenotypes were not associated with ovarian cancer risk regardless of predicted 25(OH)D status (Table 5).

Evidence of effect modification by vitamin D exposure has been observed in prior studies of other cancers. Stronger genetic associations with prostate cancer risk were observed for VDR variants among men with vitamin D insufficiency or low sun exposure (38–40). In contrast, the Bsm1 B allele was somewhat more strongly associated with melanoma risk among participants with higher sun exposure (41). Therefore, we explored the relation between ovarian cancer and individual SNPs, VDR 3’ end haplotypes, and estimated GC phenotypes by predicted 25(OH)D strata. Among women with high (above the median) predicted 25(OH)D levels, we observed significant increased risk of ovarian cancer associated with VDR variants rs731236 (per allele C OR = 1.31, 95% CI = 1.11–1.55; P_trend = 0.002) and rs7975232 (per A allele OR = 1.38, 95% CI = 1.17–1.62; P_trend = 0.0002; Table 4). These SNPs were not associated with ovarian cancer risk among women with low predicted 25(OH)D levels (P_heterogeneity of 0.009 and 0.006, respectively). Similarly, heterogeneity in ovarian cancer risk by predicted 25(OH)D was observed for the VDR to the most common haplotype (G-C-T) in the meta-analysis of NHS/NHSII and NECC (Table 3).

GC SNPs rs7041 and rs4588 create amino acid substitutions at positions 416 and 420, respectively, resulting in three major VDBP isoforms (GC2, GC1s, and GC1f) that vary in binding affinity for vitamin D analogues (56). We confirmed that allelic combinations (“GC phenotypes”; see Table 3 footnote) estimated to have higher VDBP binding affinity were positively associated with plasma vitamin D analytes (56). We confirmed that allelic combinations of the predicted 25(OH)D score accounted for the heterogeneity, we tested effect modification of ovarian cancer associations with rs731236, rs7975232, and VDR 3’ end haplotypes by BMI (<25 vs. 25+ kg/m²), total vitamin D intake (below vs. above median), total leisure-time physical activity (below vs. above median), menopausal status and HT use (premenopausal, postmenopausal/never HT use, postmenopausal/past HT use, and postmenopausal/current HT use), and alcohol intake (below vs. above median). Except for heterogeneity in the rs731236 association with ovarian cancer risk by alcohol intake (P = 0.03), in which the increased risk was restricted to women with higher than the median alcohol intake, we did not observe significant effect modification by predicted 25(OH)D score components (data not shown). The GC rs7041 T allele was associated with reduced ovarian cancer risk among women with low predicted 25(OH)D (P_trend = 0.03), but the association was not significantly different from that of women with high predicted 25(OH)D (P_heterogeneity = 0.39; Table 4). Estimated GC phenotypes were not associated with ovarian cancer risk regardless of predicted 25(OH)D status (Table 5).
Table 3 | Risk of ovarian cancer associated with VDR 3′ end haplotype and GC phenotypes in the Nurses’ Health Studies, and the New England Case–Control study.

VDR rs1544410–rs7975232–rs731236 HAPLOTYPESa	GC PHENOTYPESb	OR (95% CI)c	OR (95% CI)d	OR (95% CI)e	Pmeta f
G-C-T	GC2-GC2	1.00 (ref)	1.00 (ref)	1.00 (ref)	
A-A-C	GC2-GC1s	1.07 (0.73–1.58)	1.00 (0.76–1.31)	1.02 (0.82–1.28)	0.77
G-A-T	GC2-GC1f	0.98 (0.60–1.60)	0.73 (0.52–1.03)	0.81 (0.61–1.07)	0.33
Rare	GC1-GC1f	1.13 (0.74–1.71)	0.98 (0.73–1.32)	1.03 (0.81–1.31)	0.60
	GC1-GC1f	0.83 (0.28–1.42)	0.89 (0.56–1.41)	0.82 (0.55–1.22)	0.47

^a Per haplotype (VDR) or per phenotype (GC) odds ratios (OR) and 95% confidence intervals (CI) estimated using unconditional logistic regression models adjusted for matching factors and race.

^b DerSimonian–Laird estimators for random effects models were used to combine results from the Nurses’ Health Studies, and the New England Case–Control study.

^c P-value for heterogeneity in estimates between studies.

^d NHS/NHSII sample size: 485 cases, 1,338 controls; NECC sample size: 575 cases, 810 controls.

^e GC phenotypes derived from haplotype scores of rs4588 and rs7041 (GC2 haplotype: T-T, GC1s haplotype: A-A, GC1f haplotype: T-T); in subset of NECC genotyped on the iCOGS array (34) phenotypes were derived from rs4588 and rs7041 (GC2 haplotype: C-T, GC1s haplotype: A-G, GC1f haplotype: A-T); in subset of NECC cases, 1,704 controls.

^f Rare haplotypes

^g VDR rs1544410–rs7975232–rs731236 HAPLOTYPES

^h GC PHENOTYPES

An experimental study demonstrated that 1,25(OH)D-stimulated VDR activity differed by naturally occurring rs2228570 genotype in peripheral blood mononuclear cells in vitro (62). The T allele exhibited a dose-dependent effect on the half-maximal activity of 1,25(OH)D, in which higher concentrations were required to obtain similar inhibition of cell proliferation. However, the polymorphism was not associated with maximal, 1,25(OH)D-mediated growth inhibition. 1,25(OH)D half-maximal and maximal growth inhibition did not differ by predicted 25(OH)D status. Since a substantial portion of the US and UK populations have insufficient vitamin D levels (59, 60), it may be difficult to observe genetic associations without considering the vitamin D status of women. The biologic implications of our results are not entirely clear as we observed heterogeneity by predicted 25(OH)D status for variants with unknown functional significance. VDR 3′ end haplotypes are in strong LD with regulatory elements in the 3′ UTR, which may alter VDR mRNA stability or translational activity. However, reported directions of association between 3′ end haplotypes and VDR expression and/or activity have been inconsistent, which may be due to tissue-specific regulation (35). Alternatively, the VDR 3′ variants could be in LD with variants influencing activity and/or expression of the VDR and neighboring genes in ovarian cells as well as potential vitamin D activation of the receptor may provide insight on the relation with ovarian cancer risk.

The T allele exhibited a dose-dependent effect on the half-maximal activity of 1,25(OH)D, in which higher concentrations were required to obtain similar inhibition of cell proliferation. However, the polymorphism was not associated with maximal, 1,25(OH)D-mediated growth inhibition. 1,25(OH)D half-maximal and maximal growth inhibition did not differ by predicted 25(OH)D status. Since a substantial portion of the US and UK populations have insufficient vitamin D levels (59, 60), it may be difficult to observe genetic associations without considering the vitamin D status of women. The biologic implications of our results are not entirely clear as we observed heterogeneity by predicted 25(OH)D status for variants with unknown functional significance. VDR 3′ end haplotypes are in strong LD with regulatory elements in the 3′ UTR, which may alter VDR mRNA stability or translational activity. However, reported directions of association between 3′ end haplotypes and VDR expression and/or activity have been inconsistent, which may be due to tissue-specific regulation (35). Alternatively, the VDR 3′ variants could be in LD with variants influencing activity and/or expression of the VDR and neighboring genes in ovarian cells as well as potential vitamin D activation of the receptor may provide insight on the relation with ovarian cancer risk.
Table 4 | Association of ovarian cancer with VDR and 25(OH)D GWAS-identified SNPs by predicted 25(OH)D statusa.

SNP	Risk allele	Other allele	Below median predicted 25(OH)D	Above median predicted 25(OH)D				
	Cases/controls	Per allele OR (95% CI)b	P_{trend}	Cases/controls	Per allele OR (95% CI)b	P_{trend}		
VITAMIN D RECEPTOR POLYMORPHISMS			b		b			
rs11568820	G	A	883/1,285	0.94 (0.79–1.13)	0.52	617/1,019	0.90 (0.75–1.09)	0.28
rs1544410	A	G	1,166/1,537	0.97 (0.86–1.08)	0.54	912/1,377	1.12 (0.94–1.33)	0.21
rs2228570	T	C	877/1,286	1.09 (0.91–1.29)	0.35	614/1,009	1.15 (0.99–1.33)	0.07
rs731236	C	T	549/935	0.94 (0.78–1.14)	0.56	472/894	1.31 (1.11–1.55)	0.002
rs7975232	A	C	520/885	0.98 (0.83–1.16)	0.82	481/848	1.38 (1.17–1.62)	0.0002
25(OH)D GWAS LOCI			b		b			
rs4588	T	G	1,088/1,504	0.97 (0.85–1.09)	0.58	863/1,342	0.93 (0.81–1.06)	0.29
rs7041	T	G	1,087/1,500	0.88 (0.79–0.99)	0.03	857/1,344	0.94 (0.83–1.07)	0.35
rs1074165	G	A	791/1,226	1.06 (0.77–1.47)d	0.71	552/1,965	0.99 (0.85–1.16)	0.90
rs3829251	A	G	269/692	0.81 (0.60–1.07)	0.14	198/549	0.98 (0.70–1.36)	0.88
rs6013897	A	T	268/694	1.00 (0.78–1.30)	0.98	198/546	0.89 (0.66–1.21)	0.46

a DerSimonian–Laird estimators for random effects models were used to combine results from the pooled Nurses’ Health Studies, and the New England Case–Control study datasets.

b Odds ratios (OR) and 95% confidence intervals (CI) estimated using unconditional logistic regression models adjusted for matching factors and race.

P-value for heterogeneity by predicted 25(OH)D levels.

rs2282679 was substituted for rs4588 ($r^2 = 0.95$) and rs2060793 was substituted for rs10741657 ($r^2 = 0.88$) in a subset of the New England Case–Control study participants (950 cases and 1,052 controls) genotyped on the iCOGS array (34).

$P < 0.05$ for test for heterogeneity between the Nurses’ Health Studies, and the New England Case–Control study estimates.

Estimates only available from the Nurses’ Health Studies.

We hypothesized that validated GWAS variants associated with lower plasma 25(OH)D levels would result in a lower lifetime average plasma 25(OH)D levels, increasing risk of ovarian cancer. Individual vitamin D insufficiency variants and the GRS were associated with plasma 25(OH)D in the expected direction among the subgroup of NHS/NHSII women with measured levels, but were not associated with ovarian cancer risk. Contrary to expectations, subgroup of women also remained significant using the less conservative False Discovery Rate procedure (65). Our analyses were aided by the predominantly white study populations, but lacked ancestry informative markers to control for potential population stratification. Further, our results may not be generalizable to non-white populations, particularly for VDBP isoforms, the frequencies of which are known to vary substantially by race (63).

Our study has several strengths and limitations. While our study benefited from a relatively large sample size for the main effects on at least a subset of examined SNPs, power to detect heterogeneity by predicted 25(OH)D status was generally limited. Moreover, the numerous hypotheses tested relating to SNP main effects, haplotypes, predicted 25(OH)D strata, and interactions increased the likelihood of observing false positive results. Even so, increased ovarian cancer risk associated with rs7975232 among this same subgroup of women also remained significant using the less conservative False Discovery Rate procedure (65). Our analyses were aided by the predominantly white study populations, but lacked ancestry informative markers to control for potential population stratification. Further, our results may not be generalizable to non-white populations, particularly for VDBP isoforms, the frequencies of which are known to vary substantially by race (63). Use of the questionnaire-based predicted 25(OH)D score made our large study feasible. In general, the heterogeneity observed by predicted 25(OH)D status did not appear to be driven by a single component of the score predicting 25(OH)D, but rather by the score in its entirety. However, we are unable to directly translate the predicted 25(OH)D score into absolute 25(OH)D levels. Future follow-up studies with measured plasma 25(OH)D levels on a larger study datasets.
Table 5 | Risk of ovarian cancer associated with VDR 3′ end haplotype and GC phenotypes by predicted 25(OH)D status.a

Haplotype	Below median predicted 25(OH)D	Above median predicted 25(OH)D	P_{het}^c
VDR rs1544410→rs7975232→rs731236 HAPLOTYPESd			
G-C-T	1.00 (ref)	1.00 (ref)	0.009
A-A-C	0.92 (0.73–1.14)	0.44 (1.16–1.71)	0.0005
G-A-T	1.02 (0.79–1.32)	0.89 (1.05–1.78)	0.02
Rare	0.87 (0.52–1.45)	0.59 (0.88–2.04)	0.18
GC PHENOTYPES			
GC2–GC2	1.00 (ref)	1.00 (ref)	
GC2–GC1s	1.38 (0.95–2.01)	0.87 (0.35–2.19)	
GC1s–GC1s	1.32 (0.96–1.82)	0.89 (0.63–1.26)	
GC2–GC1f	0.99 (0.67–1.47)	0.61 (0.39–0.96)	
GC1s–GC1f	1.15 (0.81–1.63)	1.09 (0.56–2.12)	
GC1f–GC1f	0.82 (0.38–1.76)	0.77 (0.40–1.47)	
P_{trend}	0.10	0.52	0.12

References

1. Saunders DE, Christensen C, Wappler NL, Schultz JF, Lawrence WD, Malviya VK, et al. Inhibition of c-myc in breast and ovarian carcinoma cells by 1,25-dihydroxyvitamin D3, retinoic acid and dexamethasone.

Acknowledgments

We would like to thank the participants and staff of the Nurses’ Health Studies for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. This work was supported by the National Institutes of Health (P01 CA87969, R01 CA49449, UM1 CA176726, R01 CA67262, R01 CA054419–10, and P01 CA105099). Dr. Terry was supported by a Department of Defense Career Development Award (W81XWH–10–1–0280). Dr. Bertrand was supported by the Simeon J. Fortin Charitable Foundation, Bank of America, N.A., Co-Trustee. We thank Dr. Sellers for the haplotype analysis in the US GWAS of ovarian cancer, supported by National Institutes of Health (R01 CA114343).

Supplementary Material

The Supplementary Material for this article can be found online at http://www.frontiersin.org/Journal/10.3389/fonc.2014.00286/abstract.
7. Saunders DE, Christensen C, Lawrence WD, Malviya VK, Malone JM, Williams JR, et al. Receptors for 1,25-dihydroxyvitamin D3 in gynecologic neoplasms. *Gynecol Oncol* (1992) 44(2):131–6. doi:10.1016/0090-8259(92)90028-H
8. Villena-Heinsen C, Meyberg R, Axt-Fliedner R, Reinmair K, Reichrath J, Friedrich M. Immunohistochemical analysis of 1,25-dihydroxyvitamin-D3 receptors, estrogen and progesterone receptors and Ki-67 in ovarian carcinoma. *Anticancer Res* (2002) 22(4):2261–7.
9. Thill M, Fischer D, Kelling K, Hoelien F, Dittmer C, Hornemann A, et al. Expression of vitamin D receptor (VDR), cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecalciferol (25(OH)2D3) and progestaglandin E2 (PGE2) serum level in ovarian cancer patients. *J Steroid Biochem Mol Biol* (2010) 121(1–2):387–90. doi:10.1016/j.jsbmb.2010.03.049
10. Friedrich M, Rafi L, Mitschel T, Tilgen W, Schmidt W, Reichrath J. Analysis of the vitamin D system in cervical carcinomas, breast cancer and ovarian cancer. *Recent Results Cancer Res* (2005) 164:239–46. doi:10.1007/3-642-55580-0_17
11. Anderson MG, Nakane M, Ruan X, Kroeger PE, Wu-Wong JR. Expression of vitamin D receptor (VDR), cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecalciferol (25(OH)2D3) and progestaglandin E2 (PGE2) serum level in ovarian cancer patients. *J Steroid Biochem Mol Biol* (2010) 121(1–2):387–90. doi:10.1016/j.jsbmb.2010.03.049
12. Anderson MG, Nakane M, Ruan X, Kroeger PE, Wu-Wong JR. Expression of vitamin D receptor (VDR), cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecalciferol (25(OH)2D3) and progestaglandin E2 (PGE2) serum level in ovarian cancer patients. *J Steroid Biochem Mol Biol* (2010) 121(1–2):387–90. doi:10.1016/j.jsbmb.2010.03.049
13. Salazar-Martinez E, Lazcano-Ponce EC, Gonzalez-Lira-Liga G, Escudero-De los Rios P, Hernandez-Avila M. Nutritional determinants of epithelial ovarian cancer risk: a case-control study in Mexico. *Oncology* (2002) 63(2):151–7. doi:10.1159/000063814
14. Genkininger JM, Hunter DJ, Spiegelman D, Anderson KE, Arslan A, Beeson WL, et al. Dairy products and ovarian cancer: a pooled analysis of 12 cohort studies. *Cancer Epidemiol Biomarkers Prev* (2006) 15(2):364–72. doi:10.1158/1055-9965.EPI-05-0484
15. Zheng W, Danforth KN, Tworoger SS, Goodman MT, Arslan AA, Patel AV, et al. Circulating 25-hydroxyvitamin D and risk of epithelial ovarian cancer: cohort consortium vitamin D pooling project of rarer cancers. *Am J Epidemiol* (2010) 172(1):70–80. doi:10.1093/aje/kwq118
16. Koralek DO, Bertone-Johnson ER, Leitzmann MF, Sturgeon SR, Lacey JV Jr, Prescott J, Bertrand KA, Poole EM, Rosner BA, Tworoger SS. Surrogates of long-term sun exposure, vitamin D and calcium on ovarian cancer risk: a prospective nested case-control study. *Eur J Cancer* (2010) 46(2):364–9. doi:10.1016/j.ejca.2010.05.019
17. Toriola AT, Surcel HM, Aghovansary C, Granvik K, Tuoimina P, Toniole P, et al. Serum 25-hydroxyvitamin D and the risk of ovarian cancer. *Eur J Cancer* (2010) 46(2):364–9. doi:10.1016/j.ejca.2010.05.019
18. Song H, Ramus SJ, Tyer J, Bolton KL, Gentry-Maharaj A, Wozniak E, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 2p22.2. *Nat Genet* (2009) 41(9):996–1000. doi:10.1038/ng.424
19. Geode EL, Chenevix-Trench G, Song H, Ramus SJ, Notaridou M, Lawson J, et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. *Nat Genet* (2010) 42(10):874–9. doi:10.1038/ng.668
20. Bolton KL, Tyer J, Song H, Ramus SJ, Notaridou M, Jones C, et al. Common variants at 19p13 are associated with susceptibility to ovarian cancer. *Nat Genet* (2010) 42(10):880–4. doi:10.1038/ng.666
21. Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Geode EL, Lawson J, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. *Nat Genet* (2013) 45(4):1–2. doi:10.1038/NG.3564
22. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. *Gene* (2004) 338(2):143–56. doi:10.1016/j.gene.2004.05.014
23. Xu H, Li S, Qiu JQ, Gao XL, Zhang P, Yang YX. The VDR gene FokI polymorphism and ovarian cancer risk. *Tumour Biol* (2013) 34(6):1309–16. doi:10.1007/s13277-013-1834-9
24. Liu Y, Li C, Chen P, Li X, Li M, Guo H, et al. Polymorphisms in the vitamin D receptor (VDR) and the risk of ovarian cancer: a meta-analysis. *PLoS One* (2013) 8(6):e66716. doi:10.1371/journal.pone.0066716
25. Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Hollis BW, Giovannucci E. Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 25-hydroxyvitamin D3, and prostate cancer risk. *Prostate* (2007) 67(9):911–23. doi:10.1002/pros.20570
26. Rukin NJ, Luscombe C, Moon S, Bodiwala D, Liu S, Saxby MF, et al. Prostate cancer susceptibility is mediated by interactions between exposure to ultraviolet radiation and polymorphisms in the S haplotype block of the vitamin D receptor gene. *Cancer Lett* (2007) 274(2):328–35. doi:10.1016/j.canlet.2006.05.012
27. Ahn J, Albanes D, Berndt SI, Peters U, Chatterjee N, Freedman ND, et al. Vitamin D-related genes, serum vitamin D concentrations and prostate cancer risk. *Carcinogenesis* (2009) 30(5):769–76. doi:10.1016/j.carcin.2009.04.0557
28. Mandelcorn-Monson R, Marrett L, Kricker A, Armstrong BK, Orlows I, Goumas C, et al. Sun exposure, vitamin D receptor polymorphisms FokI and BsmI and risk of multiple primary malignancies. *Cancer Epidemiol* (2011) 35(6):105–10. doi:10.1016/j.canep.2011.03.003
29. Wang TL, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. *Lancet* (2010) 376(9736):180–8. doi:10.1016/S0140-6736(10)60588-0
30. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. *Hum Mol Genet* (2010) 19(13):2739–45. doi:10.1093/hmg/ddq55
31. Lasky-Su J, Lange N, Brehm JM, Damask A, Soto-Quiros M, Avila L, et al. Genome-wide association analysis of circulating vitamin D levels in children with asthma. *Hum Genet* (2012) 131(9):495–505. doi:10.1007/s00439-012-1185-z
32. Adams JS, Clemens TL, Parrish JA, Holick MF. Vitamin-D synthesis and metabolism after ultraviolet irradiation of normal and vitamin-D-deficient subjects. *N Engl J Med* (1982) 306(12):722–5. doi:10.1056/NEJM198212023061206
33. Terry KL, De Vito I, Titus-Ernstoff L, Sluss PM, Cramer DW. Genetic variation in the progestosterone receptor gene and ovarian cancer risk. *Am J Epidemiol* (2005) 161(3):442–51. doi:10.1093/aje/kwi064
46. 46. Harris HR, Cramer DW, Vitonis AF, DePari M, Terry KL. Folate, vitamin B(6), vitamin B(12), methionine and alcohol intake in relation to ovarian cancer risk. Int J Cancer (2012) 131(4):E518–29. doi:10.1002/ijc.26455

47. Bertrand KA, Giovannucci E, Liu Y, Malpassi S, Eliassen AH, Wu K, et al. Determinants of plasma 25-hydroxyvitamin D and development of prediction models in three US cohorts. Br J Nutr (2012) 108(10):1889–96. doi:10.1017/S0007114511007409

48. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr (1997) 65(4 Suppl):1220S–8S.

49. John EM, Schwartz GG, Koo J, Wang W, Ingles SA. Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population. Am J Epidemiol (2007) 166(12):1409–19. doi:10.1093/aje/kwm259

50. Kidd LC, Paltoo DN, Wang S, Chen W, Akereyeni F, Issaci W, et al. Sequence variation within the 5′ regulatory regions of the vitamin D binding protein and receptor genes and prostate cancer risk. Prostate (2005) 64(3):272–82. doi:10.1002/pros.20024

51. Kraft P, Cox DG, Paynter RA, Hunter D, De Vivo I. Accounting for haplotype uncertainty in matched association studies: a comparison of simple and flexible techniques. Genet Epidemiol (2005) 28(3):261–72. doi:10.1002/gepi.20061

52. Holis BW. Quantitation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D by radioimmunoassay using radioiodinated tracers. Methods Enzymol (1997) 282:174–86. doi:10.1016/S0076-6879(97)82106-4

53. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG. Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered (2002) 53(2):79–91. doi:10.1159/0000057986

54. Kraft P, Cox DG, Paynter RA, Hunter D, De Vivo I. Accounting for haplotype uncertainty in matched association studies: a comparison of simple and flexible techniques. Genet Epidemiol (2005) 28(3):261–72. doi:10.1002/gepi.20061

55. Arnaud J, Constans J. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet (1993) 92(2):183–8. doi:10.1007/BF00219609

56. DeSimonean R, Laird N. Meta-analysis in clinical trials. Control Clin Trials (1986) 7(3):177–88. doi:10.1016/0197-2456(86)90406-2

57. Gauderman W, Morrison J. QUANTO 1.1: A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. (2006). Available from: http://hydra.usc.edu/gxE

58. Ginde AA, Liu MC, Camargo CA Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004. Arch Intern Med (2009) 169(6):626–32. doi:10.1001/archinte.2008.604

59. Prentice A. Vitamin D deficiency: a global perspective. Nutr Rev (2008) 66(10 Suppl 2):S53–64. doi:10.1111/j.1753-4887.2008.00110.x

60. Malinen M, Saramaki A, Ropponen A, Degenhardt T, Vaisanen S, Carlberg C. Distinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to Trichostatin A and Ipalpa, 25-dihydroxyvitamin D3. Nucleic Acids Res (2008) 36(1):121–32. doi:10.1093/nar/gkm913

61. Colin EM, Weel AE, Uitterlinden AG, Buurman CJ, Birkenhager JC, Pols HA, et al. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25-dihydroxyvitamin D3. Clin Endocrinol (Oxf) (2000) 52(2):211–6. doi:10.1046/j.1365-2265.2000.00909.x

62. Kamboh MI, Ferrell RE. Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations. Hum Genet (1986) 72(4):281–93. doi:10.1007/BF00299950

63. Tortolero-Luna G, Mitchell ME. The epidemiology of ovarian cancer. J Cell Biochem Suppl (1995) 23:200–7. doi:10.1002/jcb.240299927

64. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res (2001) 125(1–2):279–84. doi:10.1016/S0166-4328(01)00297-2

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 14 August 2014; paper pending published: 04 September 2014; accepted: 05 October 2014. This article was submitted to Cancer Epidemiology and Prevention, a section of the journal Frontiers in Oncology. Copyright © 2014 Prescott, Bertrand, Reid, Permuth-Wey, De Vivo, Cramer, Terry and Tworoger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.