Rediscovery of *Scleroderma anomalosporum* Baseia, B.D.B. Silva & M.P. Martín (Boletales, Basidiomycota) in the Brazilian Amazon: is the species now safe?

Almeida SO¹, Melanda GCS¹*, Ferreira RJ¹, Assis NM², Oliveira UM³ and Baseia IG¹,²

¹Departamento de Micologia, Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Av. Prof. Nelson Chaves, s/n, CEP: 50670-901, Recife, Pernambuco, Brasil
²Departamento de Botânica e Zooloqia, Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, CEP: 59072-970, Natal, Rio Grande do Norte, Brasil
³Centro Universitário São Lucas, R. Alexandre Guimarães, 1927, CEP: 76805-846, Porto Velho, Rondônia, Brasil

Almeida SO, Melanda GCS, Ferreira RJ, Assis NM, Oliveira UM, Baseia IG 2021 – Rediscovery of *Scleroderma anomalosporum* Baseia, B.D.B. Silva & M.P. Martín (Boletales, Basidiomycota) in the Brazilian Amazon: is the species now safe? Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 11(1), 364–372, Doi 10.5943/cream/11/1/27

Abstract

The year 2019 was marked by several fires in the Amazon Domain. Rondônia, a northern Brazilian state, is part of the Amazon Domain and is the country’s third most deforested state. Anthropic action has been reported in several cases as the main source of biological diversity reduction. Among gasteroid fungi, *Scleroderma camassuense* and *S. anomalosporum* were thought to be extinct, since the only known locality was submerged due to the construction of the Belo Monte Hydroelectric Power Plant. The present work registers the presence of *S. anomalosporum* in Porto Velho in Rondônia, providing taxonomic data, photographs and discussion about the rediscovery and its unfolding.

Key words – Biodiversity – Earthball – Gasteroid fungi – Neotropics – Taxonomy

Introduction

The Amazon Domain, composed of several biomes, is characterized by its huge size, covering almost 50% of the national territory. It is the home of the hydrographic basin that holds the largest volume of fresh water in the world and that concentrates 1/5 of all fresh water on earth (MMA 2007). According INPE (2019), between August 2018 to July 2019, the estimated value for the deforestation rate is 9,762 km². This value represents an increase of 29.54% in relation to the previous period, which was 7,536 km². Fonseca et al. (2020) registered 529 km² of deforestation recorded in the Legal Amazon only in April 2020, an increase of 171% in relation to April 2019, which represents the highest value in ten years.

According to the National Institute for Space Research (INPE), in 2019, the main outbreaks of fire in the Brazilian Amazon occurred between January and August, 83% higher than in the same period of the previous year, with over 72,000 outbreaks of fire. Mato Grosso do Sul (+ 256% outbreaks), Pará (+ 199%), Acre (+ 196%) and Rondônia (+ 190%) were the most affected states (INPE 2019).
A note published by the Amazon Environmental Research Institute (IPAM 2019), shows the relationship between burning and deforestation in the Amazon Domain, where Porto Velho in Rondônia state (RO) is listed as the third most deforested municipality, with 280 hectares. It is listed as the city with the fourth greatest number of outbreaks of fires, accounting for 3110 outbreaks from January to August 2019. It is thus the only state capital in the Amazon region to be among the 10 cities listed by INPE.

The Amazon is considered one of the largest reserves of biodiversity on the planet (MMA 2007). Approximately 44,000 species have already been recorded for the Amazon, including plants, mammals, birds, fishes, and fungi, most of which are concentrated in the Brazilian Amazon, according to The Nature Conservancy (TNC 2019). In recent years, several studies have contributed to new records and new species of fungi for the Amazon (Trierveiler-Pereira et al. 2009, Henkel et al. 2010, Alfredo et al. 2012a, b, 2017, Cabral et al. 2014, 2017, 2019, Smith et al. 2015, Baseia et al. 2016, Accioly et al. 2018, 2019, Assis et al. 2019, Jobim et al. 2019). However, for the Amazon, data on fungal diversity are still scarce and insufficient to estimate the biodiversity of this group. These data are important in order to develop protection and preservation measures.

The genus *Scleroderma* was described by Persoon in 1801 and has so far been recorded for tropical, subtropical and temperate regions, forming ectomycorrhizal associations (Guzmán et al. 2004, Kumla et al. 2013). This genus is currently allocated in the Boletales E.-J. Gilbert order (Hibbett et al. 2014) and divided into three sections based on basidiospore ornamentation and the presence or absence of connecting clamps: (1) *Reticulatae*, characterized by reticulated basidiospores, (2) *Scleroderma*, with echinulated basidiospores, (3) *Sclerangium*, presenting sub-reticulated basidiospores (Guzmán et al. 2013).

Eighteen *Scleroderma* species have been reported from Brazil, most of which have been observed in ectomycorrhizal associations with exotic plants such as *Pinus* spp. and *Eucalyptus* spp. (Hennings 1904, Viégas 1945, Rick 1961, Guzmán 1970, Bononi et al. 1981, Baseia & Milanez 2000, Giachini et al. 2000, Sobestiansky 2005, Meijer 2006, Drechsler-Santos et al. 2008, Gurgel et al. 2008, Cortez et al. 2011). However, *Scleroderma dunensis* B.D.B. Silva, Sulzbacher, Grebenc, Baseia & M.P. Martín, *S. minutisporum* Baseia, Alfredo & Cortez, *S. duciei* B.D.B. Silva, M.P. Martín & Baseia, *S. camassuense* M.P. Martín, Baseia & B.D.B. Silva and *S. anomalosporum* Baseia, B.D.B. Silva & M.P. Martín were found in native vegetation of the Amazon rainforest, the last latter two being considered extinct to date (Alfredo et al. 2012b, Baseia et al. 2016, Crous et al. 2016). Baseia et al. (2016) reported the likely extinction of *S. camassuense* and *S. anomalosporum*, as the collection site was submerged due to the construction of the Belo Monte Hydroelectric Power Plant and these species are not registered in other locations.

Amazonian biodiversity is threatened, largely due to the growth of agribusiness, illegal logging and high deforestation rates for these purposes or others (INPE 2019). Vast forested areas with potential for large amounts of biological diversity disappear every year, many of which were still unexplored by science. Thus, the present study aimed to record the rediscovery of a species of *Scleroderma* genus considered “extinct” in the Brazilian Amazon in an area not yet studied.

Materials & Methods

Study area

The study collection area was the Parque Natural Municipal de Porto Velho – RO (8°41’10.8"S 63°52’05.4"W). The Parque Natural is a preservation area located in the northern region of Porto Velho municipality, 15 km from the center of the capital. In the area, open ombrophilous forests predominate, with palm trees mainly of the species *Mauritia limnophila* Barb. Rodr., popularly known as “caranaí”. The area is cut by several streams and has trails that allow access to the interior of the forest (SMMM/PMPV 2012). The climate of the region is predominantly rainy, with the rainy season extending from October to April, followed by a well-defined dry season, with the driest months being June, July and August. The average temperature during the year is 24 to 26°C, with highs and lows between 17 and 36°C.
The collection area map (Fig. 1) was constructed in QGis 3.4, Geographic Coordinate Systems: Datum SIRGAS, 2000, with IBGE, 2017 (https://www.ibge.gov.br/geociencias/downloads-geociencias.html) and TerraBrasilis (http://terrabrasilis.dpi.inpe.br/downloads/) cartographic bases.

Fig. 1 – Re-collection area (rhombus) and initial collection (inverted triangle) of *Scleroderma anomalosporum*. The Brazilian Legal Amazon is outlined in a darker line and the collection states are filled in. Gray traces indicate deforestation from 1998 to 2019.

Collection and herborization

The collection was performed following pre-existing trails and entering the forest whenever necessary, following Baseia et al. (2014). The basidiome was photographed with a scale ruler, georeferenced and collected manually with the help of a penknife (used to remove the basidiome). The basidiome removed from the substrate was stored in a paper bag; the date, locality, collectors, substrate, habitat, geographic coordinates, and collector number were noted. The basidiome was sun-dried and deposited in UFRN-Fungos located in Natal, Brazil.

Morphological analysis

Macro and microscopic analysis of the dehydrated specimen followed the methodology of
Baseia et al. (2016), carried out at the Fungus Biology Laboratory of the Federal University of Rio Grande do Norte (UFRN). The macroscopic characteristics (color, dimensions and characteristics of the peridium, gleba and rhizomorphs) were observed with a Nikon SMZ 1500 stereoscopic microscope with a Nikon DS-Ri1 attached camera, and the color chart (Kornerup & Wanscher 1978) was used to determine the color.

Microscopic observations were performed using a Nikon DS-Ri1 optical microscope with an attached camera Nikon Eclipse Ni. Slides of the peridium layers and gleba were mounted in 5% KOH aqueous solution. The basidiospore statistics followed Bates (2004) and were written as follows: length (min) – length (max) × width (min) – width (max) [x = mean length ± standard deviation × mean width ± standard deviation; Qm = mean quotient of basidiospore length to width; n = number of randomly measured basidiospores].

Results

Taxonomy

Scleroderma anomalosporum Baseia, B.D.B. Silva & M.P. Martín

Mycobank number: MB 818095

Basidiomata epigeous, sessile, 25 mm height × 50–70 mm diam, with stellate dehiscence forming 7 irregular rays (Fig. 2a). Surface cracked, with small scales, reddish brown (8F6) to dark brown (8F4) with aggregate soil particles, especially in the basal portion (Fig. 2b). Basal mycelium forming aggregated rhizomorphs. Peridium 0.9–1.3 mm thickness, composed of three layers (Fig. 2b, d). Gleba when mature grayish brown (6E3), powdery, protected by grayish yellowish endoperidium (3C4–4C5).

Exoperidium composed of entangled, branched, septate, cylindrical hyphae, hyaline, 5.7–7.2 μm diam, thin walls (<1.0 μm thickness). Mesoperidium consisting of cylindrical hyphae, with rounded ends in some hyphae, branched, hyaline, 7.5–15.7 μm diam, thin walls (<1.0 μm thickness). Endoperidium consisting of intertwined, cylindrical, branched, hyaline to yellowish hyphae 3.4–7.9 μm diam, thick walls (>1.0 μm thickness). Basidiospores 4.7–6.4 × 4.3–6.2 μm (5.4 ± 0.5 × 5.1 ± 0.5; Qm= 1.05 ± 0.03; n = 30), globose to subglobose, hyaline to yellowish, smooth under light microscope (Fig. 2c).

Known distribution – Amazon rainforest.

Material examined – Brazil, Rondônia, Porto Velho, Parque Natural Municipal S8°41'46.0" W63°51'56.5", on clay soil covered by litter, 25 Feb 2019, S.O. Almeida, UFRN–Fungos 3275.

Notes – *Scleroderma anomalosporum* is characterized mainly by globose to subglobose, smooth basidiospores in light microscopy and peridium formed by three layers (Baseia et al. 2016). According to Guzmán (1970), smooth basidiospores occur only in immature basidiomata, with basidiospores becoming reticulated, subreticulate or equinulate at maturity. In the species discussed here, even in the developed basidiome the basidiospores were smooth, a characteristic not observed in other species of the genus.

Characteristics such as the peridium formed by three layers, size and absence of ornamentation of the basidiospores give support of the identification as *S. anomalosporum*, however the specimen described here has smaller expanded basidiome. These small variations in the dimensions of basidiome are acceptable, as a result of environmental physico-chemical conditions (humidity, availability of nutrients, shadow, species of plants, among others) that vary from one location to another.

The species *S. anomalosporum* is easily distinguished, based on morphological data, from the other species of *Scleroderma* that occur in Brazil, as we can see in Table 1. *Scleroderma tuberoideum* Speg. and *S. floridanum* Guzmán are not present in the table because they are not described morphologically in the works that registered them for Brazil, Bononi et al. (1981) and Giachini et al. (2000), respectively.
Table 1 Comparison of morphological characters used to delimit *Scleroderma anomalosporum* with other species of *Scleroderma* that occur in Brazil

Characters	Basidioma (diam. in mm)	Exoperidium (ornamentation)	Basidiospores (diam. in μm)	Basidiospores (ornamentation)	References
S. anomalosporum	Up to 115	Cracked, with small scales	4.7–6.4	Smooth	Present study
S. albidum Pat. & Trab.	Up to 39	Smooth, cracked, to squamous	8–17	Echinulate	Montagner et al. (2015)
S. areolatum Ehrenb.	(5–)10–40(–55)	Squamous	(10–)11–17 (–18)	Echinulate	Guzmán (1970)
S. citrinum Pers.	25–67	Smooth	9–12	Reticulate	Montagner et al. (2015)
S. verrucosum (Bull.) Pers.	(5–)10–30(–40)	Squamous	(7–) 8–11 (–23.7)	Thorns	Guzmán (1970)
S. camassuense M.P. Martín, Baseia & B.D.B. Silva	Up to 14	Scaly to squamous	6.4–8.0	Irregular reticulate	Baseia et al. (2016)
S. cepa Pers.	30–60	Squamous (large and irregular)	(7.5–) 8.8–12 (–13.6)	Echinulate	Guzmán (1970)
S. stellatum Berk.	25–45	Finely squamous	(5–) 6.4–7.2 (–8)	Finely squamous and subreticulate	Guzmán (1970)
S. duckei B.D.B. Silva, M.P. Martín & Baseia	Up to 20	Verrucose	5.7–7.1	Regularly grouped warts	Baseia et al. (2016)
S. bougheri Trappe, Castellano & Giachini	7–28	Felty to roughened	7.5–9(–11)	Thorns	Giachini et al. (2000)
S. bowista Fr. ≡ *S. verrucosum* subsp. *bovista* (Fr.) Šebek ≡ *S. fuscom* (Corda) E. Fisch.	20–30	Smooth	9–11	Echinulate and reticulate	Gurgel et al. (2008)
S. nitidum Berk.	15–30	Verrucose	11–12	Echinulate	Gurgel et al. (2008)
S. polyrhizum (J.F. Gmel.) Pers. ≡ *S. geaster* Fr.	20–40	Squamous	6–7	Echinulate	Baseia & Milanez (2000)
S. tenerum Berk. & M.A. Curtis	–	Squamous	12	Verrucosus	Rick (1961)
S. uruguayense (Guzmán) Guzmán ≡ *S. citrinum* var. *uruguayense* Guzmán	60–75	smooth to finely warty or finely scaly	(9.5–)11–14 (–16)	Echinulate and reticulate	Guzmán (1970)

Discussion

The collection analysed in the present study has the same characters as *Scleroderma anomalosporum*, which was recently described as new and possibly extinct because of human activities (Baseia et al. 2016). It was originally collected on March 28, 2015 on Camassú Island, Pará, at an approximately distance of 1,750 km from the Parque Natural Municipal de Porto Velho, where it was rediscovered on February 25, 2019 (Fig. 1). Despite being in different states, both sites belong to the Amazon Domain, which may indicate the wide dispersal area of the species, with the Madeira and Amazon Rivers as possible dispersing agents.

Rondônia state, as well as its capital Porto Velho, suffered in the year 2019 with severe fires, which are directly linked to the deforestation promoted by unbridled agricultural development. Figure 3 shows “thermal anomalies” and fires in the Porto Velho area, represented by red dots on NASA
images. Thermal anomalies indicate a fire outbreak or “any significant heat source”. Fig. 3a was taken on August 4, 2019 and Fig. 3b ten days later on August 14 (BBC 2019).

Although alarming, the work performed by Baseia et al. (2016) highlighted the importance of continued scientific investigation of the Amazon rainforest to identify new species records. The rediscovery of the species encourages to pay more attention to these environments, as they still are under heavy human pressure.

Fig. 2 – *Scleroderma anomalosporum*. a Basidioma in the field. b Overturned basidioma illustrating the exoperidium surface. b1 Basidioma section illustrating the peridium layers. c Basidiospores in optical microscope. d Peridium layers in optical microscope: exoperidium, mesoperidium and endoperidium from the outermost to the innermost layer (from top to bottom). d1 Exoperidium. d2 Mesoperidium. d3 Endoperidium. Scale Bars: a, b = 10 mm, b1 = 0.5 mm, c, d1, d2, d3 = 10 µm, d = 500 µm.

Fig. 3 – Map of fire outbreaks in the Porto Velho region. a August 4, 2019. b August 14, 2019. Source: BBC (2019).
Acknowledgements
The authors thank Pernambuco State Science and Technology Support Foundation (Fundação de Amparo à Ciência e a Tecnologia do Estado de Pernambuco – FACEPE) for the Master scholarship granted to S.O. Almeida; National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) for the doctoral scholarship to G.C.S. Melanda (process 140541/2018-7) and R.J. Ferreira, and Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES) for the doctoral scholarship to N.M. Assis.

References
Alfredo DS, Leite AG, Braga-Neto R, Baseia IG. 2012a – Two new Morganella species from the Brazilian Amazon rainforest. Mycosphere 3(1), 66–71.
Alfredo DS, Leite AG, Braga-Neto R, Cortez VG, Baseia IG. 2012b – Scleroderma minutisporum, a new earthball from the Amazon rainforest. Mycosphere 3(3), 294–299.
Alfredo DS, Baseia IG, Accioly T, Silva BDB et al. 2017 – Revision of species previously reported from Brazil under Morganella. Mycological Progress 16(10), 965–985.
Accioly T, Cruz RHSF, Assis NM, Ishikawa NK et al. 2018 – Amazonian bird’s nest fungi (Basidiomycota): Current knowledge and novelties on Cyathus species. Mycoscience 59, 331–342.
Accioly T, Sousa JO, Moreau P-A, Lécuru C et al. 2019 – Hidden fungal diversity from the Neotropics: Geastrum hirsutum, G. schweinitzii (Basidiomycota, Geastrales) and their allies. PLoS ONE 14(2), e0211388.
Assis NM, Freitas-Neto JF, Sousa JO, Barbosa FR, Baseia IG. 2019 – Geastrum hyalinum (Basidiomycota, Geastraceae), a new species from Brazilian Southern Amazon. Studies in Fungi. 4(1), 83–89.
Baseia IG, Milanez AI. 2000 – First record of Scleroderma polyrhizum Pers. (Gasteromycetes) from Brazil. Acta Botanica Brasilica 14(2), 181–184.
Baseia IG, Silva BDB, Cruz RHSF. 2014 – Fungos Gasteroides no Semiárido do Nordeste Brasileiro. Print Mídia, Rio Grande do Norte, Brasil.
Baseia IG, Silva BDB, Ishikawa NK, Soares JVC et al. 2016 – Discovery or extinction of New Scleroderma Species in Amazonia? PLoS ONE 11(12), e0167879.
BBC. 2019 – 10 mapas e imagens de satélite internacionais que mostram a dimensão das queimadas no Brasil. https://www.bbc.com/portuguese/brasil-49425444 (Accessed on Nov 21, 2019).
Bates ST. 2004 – Arizona members of the Geastraceae and Lycoperdaceae (Basidiomycota, Fungi). Master Thesis, Arizona State University, U.S.A.
Bononi VLR, Trufem SFB, Grandi RAP. 1981 – Fungos macroscópicos do Parque Estadual das Fontes do Ipiranga, São Paulo, Brasil, depositados no Herbário do Instituto de Botânica. Rickia 9, 37–53.
Cabral TS, Silva BDB, Ishikawa NK, Alfredo DS et al. 2014 – A new species and new records of gasteroid fungi (Basidiomycota) from Central Amazonia, Brazil. Phytotaxa 183(4), 239–253.
Cabral TS, Sousa JO, Silva BDB, Martín MP et al. 2017 – A remarkable new species of Geastrum with an elongated branched stipe. Mycoscience 58(5), 344–350.
Cabral TS, Silva BDB, Martín MP, Clement CR et al. 2019 – Behind the veil – exploring the diversity in Phallus indusiatus s.l. (Phallomycetidae, Basidiomycota). MycoKeys 58, 103–127.
Cortez VG, Baseia IG, Silveira RMB. 2011 – Gasteroid mycobiota of Rio Grande do Sul, Brazil: Boletales. Journal of Yeast and Fungal Research 2(4), 44–52.
Crous PW, Wingfield MJ, Richardson DM, Leroux JJ, Strasberg D, Edwards J, et al. 2016 – Fungal Planet description sheets: 400-468. Persoonia 36, 316–458.
Drechsler-Santos ER, Wartchow F, Baseia IG, Gibernoti TB, Cavalcanti MAQ. 2008 – Revision of the Herbarium URM I. Agaricomycetes from the semi-arid region of Brazil. Mycotaxon 104, 9–18.
Fonseca A, Cardoso D, Ribeiro J, Ferreira R et al. 2020 – Boletim do desmatamento da Amazônia Legal. SAD Imazon, Brazil. https://imazon.org.br/publicacoes/boletim-do-desmatamento-da-amazonia-legal-abril-2020-sad/ (Accessed on Apr 19, 2020).

Giacchi AJ, Oliveira VL, Castellano MA, Trappe JM. 2000 – Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92(6), 1166–1177.

Gurgel FE, Silva BDB, Baseia IG. 2008 – New records of Scleroderma from Northeastern Brazil. Mycotaxon 105, 399–405.

Guzmán G. 1970 – Monografia del gênero Scleroderma Pers. emend. Fr. (Fungi- Basidiomycetes). Darwiniana 16(1–2), 233–407.

Guzmán G, Cortés-Pérez G, Guzmán-Dávalos L, Ramírez-Guillén F, Sánchez-Jácome MR. 2013 – An emendation of Scleroderma, new records, and review of the known species in Mexico. Revista Mexicana de Biodiversidad 84, S173–S191.

Guzmán G, Ramírez-Guillén F, Miller Jr OK, Lodge DJ, Baroni TJ. 2004 – Scleroderma stellatum versus Scleroderma bermudense: the status of Scleroderma echinatum and the first record of Veligaster nitidum from the Virgin Islands. Mycologia 96(6), 1370–1379.

Henkel TW, Smith ME, Aime MC. 2010 – Guyanagaster, a new wood-decaying sequestrate fungal genus related to Armillaria (Physalacriaceae, Agaricales, Basidiomycota). American Journal of Botany 97(9), 1474–1484.

Hennings P. 1904 – Fungi Amazonici I. a cl. Ernesto Ule collecti. Hedwigia 43, 154–186.

Hibbett DS, Bauer R, Binder M, Giachini AJ et al. 2014 – Agaricomycetes. In: McLaughlin DJ, Spatafora JW (eds), Systematics and evolution. The Mycota VII, part A, 2nd ed., pp. 373–429. Springer-Verlag, Berlin, Germany.

INPE. 2019 – (Instituto Nacional de Pesquisas Espaciais) A estimativa da taxa de desmatamento por corte rasos para a Amazônia Legal em 2019 é de 9,762 km². http://www.inpe.br/noticias/noticia.php?Cod_Noticia=5294 (Accessed on Nov 18, 2019).

IPAM. 2019 – (Instituto de Pesquisa Ambiental da Amazônia) Nota técnica – Amazônia em chamas. https://ipam.org.br/bibliotecas/nota-tecnica-amazonia-em-chamas/ (Accessed on Nov 18, 2019).

Jobim K, Janusz B, Niezgoda P, Kozlowska A et al. 2019 – New sporocarpic taxa in the phylum Glomeromycota: Sclerocarpum amazonicum gen. et sp. nov. in the family Glomeraceae (Glomerales) and Diversispora sporocarpia sp. nov. in the Diversisporaceae (Diversisporales). Mycological Progress 18, 369–384.

Kornerup A, Wanscher JH. 1978 – Methuen handbook of colour. 3rd ed. Eyre Methuen, London.

Kumla J, Suwannarach N, Bussaban B, Lumyong S. 2013 – Scleroderma suthepense, a new ectomycorrhizal fungus from Thailand. Mycotaxon 123, 1–7.

Meijer AAR. 2006 – Preliminary list of the macromycetes from the Brazilian State of Paraná. Boletim do Museu Botânico Municipal (Curitiba) 68, 1–55.

MMA. 2007 – (Ministério do Meio Ambiente) Áreas Prioritárias para Conservação, Uso Sustentável e Repartição dos Benefícios da Biodiversidade Brasileira: atualização. Portaria MMA no 9, de 23 de janeiro de 2007. Secretaria de Biodiversidade e Florestas, Brasília.

Montagner DF, Coelho G, Silveira AO, Baldoni DB, Antonioli Z. 2015 – Morphological and molecular analyses in Scleroderma (Basidiomycota) associated with exotic forests in Pampa biome, southern Brazil. Mycosphere 6(3), 337–344.

Rick J. 1961 – Basidiomycetes Eubasidii no Rio Grande do Sul – Brasilia. Iheringia 9, 451–480.

Smith ME, Ames KR, Elliot TF, Obase K et al. 2015 – New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatissporus cyanescens gen. sp. nov. (Boletaceae, Boletales). IMA Fungus 6(2), 297–317.

SMMM/MPPV. 2012 – (Secretaria Municipal de Meio Ambiente da Prefeitura Municipal de Porto Velho, RO) Revisão do Plano de Manejo do Parque Natural Municipal de Porto Velho. ARC - Auditoria e Consultoria Empresarial Ltda. FISTER. Porto Velho, Brazil.

Sobestiansky G. 2005 – Contribution to a Macromycete survey of the states of Rio Grande do Sul and Santa Catarina in Brazil. – Brazilian Archives of Biology and Technology 48, 437–457.
Incêndios na Amazônia mostram a urgência necessária para apoio a iniciativas de conservação.
https://www.tnc.org.br/conecte-se/comunicacao/noticias/incendios-na-amazonia/ (Accessed on Nov 18, 2019).

Trierveiler-Pereira L, Gomes-Silva A, Baseia IG. 2009 – Notes on gasteroid fungi of the Brazilian Amazon rainforest. Mycotaxon 110, 73–80.
Viégas AP. 1945 – Alguns fungos do Brasil IX: Agaricales. Bragantia 5(9), 583–595.