INTRODUCTION

Early European settlers introduced the cat (*Felis catus*) into Australia and facilitated its spread inland from multiple points on the coastline (Abbott 2002). The subsequent establishment of feral cats was aided in no small part by the European rabbit (*Oryctolagus cuniculus*) which provided a reliable and abundant food source following its successful release in 1858. Cats eventually formed self-sustaining feral populations that now occur over all parts of the Australian mainland, Tasmania, and on many offshore islands (Dickman 1996). Feral cats hunt a wide range of prey species and have been implicated in the decline and extinction of many native mammal populations (Dickman 2009, Risbey et al. 1999, 2000). The economic cost of feral cats in Australia has been estimated at AUD$146 million annually, with the majority of this from their provision of a reliable and abundant food source following its successful release in 1858. Cats eventually formed self-sustaining feral populations that now occur over all parts of the Australian mainland, Tasmania, and on many offshore islands (Dickman 1996). Feral cats hunt a wide range of prey species and have been implicated in the decline and extinction of many native mammal populations (Dickman 2009, Risbey et al. 1999, 2000). The economic cost of feral cats in Australia has been estimated at AUD$146 million annually, with the majority of this from their impacts on native wildlife (McLeod 2004). Feral cats have been identified as posing a threat to 117 threatened native species, including mammals, birds, reptiles and plants, in the state of New South Wales (Coutts-Smith et al. 2007). Christensen and Burrows (1995) found that, even at low densities, cats caused the failure of reintroduction attempts for burrowing bettongs (*Bettongia lesueurii*) in the Gibson Desert. Densities of feral cats as low as 1/km² have caused the failure of both bettong and bilby reintroductions outside predator exclusion fencelines at Arid Recovery in South Australia (K. Moseby, Arid Recovery, pers. commun.).

Most research on feral cats in Australia has taken place in either the arid (e.g., Burrows et al. 2003, Moseby et al. 2009) or semi-arid regions (Edwards et al. 2001, Hilmer 2010, Jones and Coman 1982). No research has been undertaken on home range size or range overlap of feral cats in tall closed forests, despite the prevalence of cats in such habitats and their probably deleterious impacts on native species (May and Norton 1996).

Using GPS technology to collect data has resulted in the ability to collect much greater volumes of data per animal than was previously possible using standard Very High Frequency (VHF) radio telemetry techniques (Recio et al. 2010, Rodgers 2001). This increase in both the quantity and quality of data has allowed intra-home range movement patterns to be both seen and examined in detail for the first time (Dassault et al. 2001, Kliskey and Byrom 2001, Robley and Gormley 2010). Several alternative hypotheses have been put forward to describe observed patterns of movement. These include random walks, composite Brownian walks (Benhamou 2001), Levy walks (Viswanathan et al. 1996, 1999) and adaptive Levy walks (Reynolds 2009). Random walks have a uniform distribution of step lengths and turn angles while composite Brownian walks use a combination of step lengths drawn from two random walk distributions where one has a short mean step length and the other a longer mean step length (Benhamou 2007).

The Levy walk is characterised as multiple short distance movements interspersed with less frequent but longer range movements that result in a long-tailed power
law distribution - \(P(l) \sim l^{-\mu} \) with \(1 < \mu \leq 3 \), where \(l \) is the step length and \(\mu \) is the slope of the regression line of the log/log relationship between step length and frequency of occurrence. A Lévy style walk is apparent if \(1 \leq \mu \leq 3 \) with optimal foraging occurring when \(\mu = 2 \) (Viswanathan et al. 1996). Brownian motion becomes apparent when \(\mu > 3 \) (Bartumeus et al. 2005).

Identifying how an animal moves through its environment is of particular relevance in the study of invasive animals that are operating in novel environments and which, in the case of introduced predators, can cause devastating declines in naive native prey species (Burbidge and Manly 2002, Burbidge and McKenzie 1989). Knowledge of the home range sizes of feral cats, of how much the ranges overlap, and how the cats utilise their home ranges is essential for managing their impacts on threatened native species. It gives an indication of the intensity and spatial extent of control effort that is required, and can inform managers about the utility of specific methods such as where to deploy traps, baits, or other control measures.

METHODS

Study Area

Research took place in the Southern Ark Project area located in Far East Gippsland, Victoria, south-eastern Australia (37.34° S, 149.09° E) (Figure 1). Most of this 10,000-km² area comprises steep forested hills with small areas of cleared private land that are used for agriculture. Mean annual rainfall is 970 mm (Buckmaster 2011). Data used in this project were gathered between February 2007 and January 2010.

Feral Cat Capture

Feral cats were trapped using #1.5 and #3 Victor Soft Catch® rubber jaw traps (Woodstream Corporation, Lititz, PA; current manufacturer: Oneida Victor, Inc., Euclid, OH). Trap sets were baited with either meat (chicken or beef) or ‘Pongo’, an olfactory lure consisting of a blend of cat faeces, cat urine, and water (Algar et al. 2002). Captured feral cats were sedated and those over 2.7 kg fitted with either a GPS collar or standard VHF collar (SirTrack, Havelock North, New Zealand). GPS collars were tasked to take fixes at either a combination of 15-minute intervals and hourly intervals or at 6-hourly intervals. All cats were monitored using VHF telemetry. Re-trapping of feral cats occurred at the end of the expected battery life. Collars were also recovered from feral cats that died during the course of the study.

Data were downloaded using proprietary software from SirTrack and transformed to projected coordinates (UTM) using the DNRGarmin GPS Application (v. 5.03.0002) (Dept. of Natural Resources, St. Paul, MN) computer program. The GPS data contained an estimate

![Figure 1. Map of the study area. The broken line indicates the approximate western boundary of the Southern Ark project. Background GIS data layers were provided by the Victorian Department of Sustainability and Environment (DSE), Melbourne.](image)
of Horizontal Dilution of Precision (HDOP) for each fix (scale 1-100). Fixes with HDOP > 4 were removed from analyses because of the potentially lower level of precision achieved for these fixes (Moseby et al. 2009). The first seven days of GPS data for each cat were discarded from the movement pattern analyses to minimise bias from potential foot trauma incurred during trapping.

VHF Data
Each VHF fix for a feral cat was determined from at least 3 individual bearings taken within a 10-minute period. Compass bearings were adjusted from magnetic to grid system and entered into the Locate III Radio Telemetry Program (Pacer Computing, Tatamagouche, NS, Canada) to determine the location of the cat.

Data Analysis
Location data were analysed using ArcMap 9.2 (ESRI Inc) with Hawth’s Analysis Tools for ArcGIS (Beyer 2004) and Home Range Tools (Rodgers et al. 2007) plug-ins used to determine the home range and movement patterns for each cat. ArcView 3.2 (ESRI Inc., Redlands, CA) with the Home Range extension (Rodgers and Carr 1998) and the Animal Movement extension (Hooge and Eichenlaub 2000) were used to determine site fidelity, turn angle, and step length and to undertake home range bootstrap analyses. Data points where the time since the previous fix was outside the parameters of 15 min ± 1 min, 1 hour ± 1 min, or 6 hours ± 1 min were discarded from the analysis. Data for the cats with a 6 hourly GPS sampling interval were combined to provide larger data sets. Home ranges for each cat were calculated using the 100% Minimum Convex Polygon (MCP 100) estimator (Mohr 1947). Forays outside the home range were excluded from the analysis (Laver and Kelly 2008).

Movement Patterns
Step length data were arranged into histograms with 200-m intervals for the 6 and 1-hour sampling intervals and 100-m intervals for the 15-minute sampling intervals. The frequency of occurrence at each interval was used in the analyses. Final data analyses were undertaken in Statistica 7 (StatSoft Inc. 2004).

RESULTS
Twenty-two feral cats were captured during this study. Eleven were fitted with GPS collars and a further 6 with VHF-only collars. Three of the GPS collared cats died during the study and the collars were retrieved from their remains. A further 3 cats were successfully recaptured. Sufficient data to provide meaningful results were obtained from 8 cats with a total of 2,243 successful fixes obtained from the GPS collars.

All cats showed site fidelity and exhibited more constrained movements than each of 100 generated random walks (P<0.01). The home ranges of all cats used in these analyses reached asymptote.

Home Range
The MCP 100 home range varied from 53 to 816 ha with a mean male home range (± SE) of 455 ± 126 ha and mean female home range (± SE) of 105 ± 28 ha (Table 1).

Cat (sex)	Period tracked	Collar type	MPC 100* (ha)
Karen (F)	6 wks	GPS	141
Neil (M)	5 mths	GPS	410
Hans (M)	3 mths	GPS	370
Olof (M)	9 mths	GPS	816
Liz (F)	19 mths	VHF	166
Chris (M)	18 mths	VHF	226
Hayley (F)	11 mths	VHF	53
Danielle (F)	14 mths	VHF	60

| μ ≥ 3 | 455 ±126 |

* The home range area of the cat Sue did not reach asymptote; as a result, the volume and percentage of home range overlap is calculated based on the known home range area, rather than the full area.

Male home ranges were larger than female home ranges (Mann-Whitney U test Z = -2.3, U = 0, P = 0.02). Home ranges determined by GPS were not significantly different from those determined by VHF telemetry (Mann-Whitney U test Z = 1.7 U = 2, P = 0.08).

Home Range Overlap
Four of the cats that were tracked using VHF telemetry had home ranges that overlapped with a neighbouring feral cat (Table 2). The degree of overlap varied between cats with one female (Hayley) having her home range incorporated completely within that of a male (Chris). The home range of one female (Danielle) overlapped with that of the female Liz and with that of the male Chris. The home range of Liz also overlapped that of another adjoining female (Sue). No male: male range overlaps were found.

Movement Patterns
After removal of those data points falling outside the parameters detailed above, a total of 699 fixes at 6 hourly intervals, 326 fixes at hourly intervals, and 375 fixes at 15-minute intervals were used to determine movement patterns of the feral cats. A normal distribution of the step lengths and μ ≥ 3 that would be expected from simple Brownian motion were not apparent in the data. Instead,
regression of the log flavour relationship between step length and frequency showed the presence of a Lévy walk pattern - $P(l) \sim l^{\mu}$ - at each temporal scale (Table 3). Movement patterns at both hourly and 15-minute intervals indicated an optimal foraging patterns by feral cats - $\mu = 2.02$ and $\mu = 2.09$, respectively. At the 6 hourly sampling intervals, a Lévy walk pattern was still apparent but was less obvious than at the other sampling intervals.

DISCUSSION

Home Ranges and Overlaps

This is the first study of the home ranges of feral cats in tall closed forests in Australia using either VHF telemetry or GPS receivers. VHF telemetry has been used in other habitat types for feral cats (Molsher et al. 2005), while GPS collars have been utilised on other feral cat populations on islands (Dirk Hartog Island - Hilmer 2010, Johnston et al. 2010; and French Island – Johnston et al. 2008) and mainland sites (Alcoa Lease site, Anglesea, Victoria – Robley et al. 2008; and Arid Recovery, South Australia – Moseby et al. 2009).

Compared with other studies in Australia and New Zealand, the home ranges of feral cats in the tall closed forests were smaller than those of cats in the arid and alpine regions. This is due most likely to fewer or poorer quality food resources in these latter areas. Conversely, home ranges were larger than those of feral cats living on farmland or in grassland habitats where food resources are usually greater or accessibility to food is easier (Molsher et al. 2005).

Generally, felids are solitary animals and congregate in groups only when there are sufficient resources to eliminate the need to compete for food, shelter, and mates (Creel and Macdonald 1995). Feral cats tend towards group living when there are high levels of rich, clumped food resources such as rubbish tips that food resources there were insufficient to allow the kind of group living observed in cats at resource-rich sites such as rubbish tips, the observed overlaps in home ranges of the female cats we studied suggest that females in the tall forests of Far East Gippsland are tolerant of each other. If this is correct, females in the tall forest environment may be more tolerant of each other than has been reported in most other habitats. Such tolerance could be facilitated by the high structural complexity of the Gippsland forests, in the same way that high habitat complexity increases the ability of prey to escape detection by predators (Arthur et al. 2004, Sinclair et al. 1998). Complex habitat structures such as logs, litter, and varied densities of understorey cover could allow potentially intolerant females to avoid each other.

Movement Patterns

Lévy walk foraging patterns are found in many species in nature including micro-organisms (Levandowsky et al. 1988), honey bees, and moths (Reynolds et al. 2007a,b), marine animals (Sims et al. 2008), jackals (Atkinson et al. 2002), elephants (Dai et al. 2007), spider monkeys (Ramos-Fernandez et al. 2004), and human hunter-gatherers (Brown et al. 2007). A Lévy walk was apparent in all feral cats and at all sampling intervals in this study. Movement patterns at both hourly and 15 minute intervals indicated optimal searching patterns by feral cats - $\mu = 2.02$ and $\mu = 2.09$, respectively. At the 6 hourly sampling intervals, a Lévy walk pattern was still apparent in the movement patterns of feral cats but was less obvious than at the shorter sampling intervals. This indicates that this sampling period may be too great to detect searching patterns effectively, or that searching was interspersed with other activities such as rest that may have weakened the Lévy pattern.

The employment of Lévy style movement behaviour by predators optimises their chance of encountering prey items when prey are sparsely distributed across the landscape (Humphries et al. 2010, Viswanathan et al. 1996), while a Brownian (random) motion style searching pattern is more suited when prey are more abundant (Humphries et al. 2010). Invasive predators, such as feral cats, forage for diverse mammalian, avian, and reptilian prey items (Dickman 1996, Jones and Coman 1981, Triggs et al. 1984) that would not be distributed uniformly through the environment. The Lévy walk style of searching is also more advantageous if the predator is larger and faster than the prey item, while Brownian-style searches are more likely to increase encounter success when the target is larger and faster than the predator (Viswanathan et al. 2002). Feral cats prey on animals that are on the lower end of the Critical Weight Range (35 - 5500 g) (Burbidge and McKenzie 1989) and, in far eastern Victoria, generally take prey weighing less than themselves (Triggs et al. 1984).
CONCLUSION
Knowledge of home range size and overlap can assist in determining the amount and type of effort that is needed in a feral cat management program. Where there are large individual home ranges with little overlap, the density of animals is comparatively low. Conversely, where home ranges are small and overlapping, density of animals will be higher (Liberg et al. 2000). The home ranges calculated in this study were smaller than those found in the arid and semi-arid regions (e.g., Burrows et al. 2003, Edwards et al. 2001, Hilmer 2010). This, together with the high degree of home range overlap, indicates that a higher baiting intensity may be required to manage cats in tall forested habitats compared with that required in arid or semi-arid regions. Additionally, population management through trapping or shooting would require higher effort per unit area than is required for cats in arid regions. As feral cats employ a Lévy walk movement pattern when moving through their environment, placing management devices such as traps or baits in a uniform manner across the landscape is not required. The Lévy walk movement pattern optimises the chances of a feral cat encountering sparsely distributed prey items and hence would similarly increase the chance of the cat encountering a bait or other management device.

ACKNOWLEDGEMENTS
We thank Alex Diment, Hayley Pearson, Greg Cameron, Robyn Korn, and Eleena Wykes for their assistance in the field. We are indebted to Dave Algar for his guidance and advice on trapping feral cats. Funding was provided by the Invasive Animals Cooperative Research Centre. We thank Mike Braysher for feedback and comments on drafts of this manuscript. All trapping was approved by the Animal Ethics Committee at the University of Sydney (L04/8-2006/3/4457). Field work in Victoria was carried out in accordance with the National Parks Act 1975 and the Wildlife Act 2975 (permit 10003945) and under the Forests Act 1958 (Permit EGFMA-06-01).

LITERATURE CITED
Abbott, I. 2002. Origin and spread of the cat, Felis catus, on mainland Australia, with a discussion of the magnitude of its early impacts on native fauna. Wildl. Res. 29:51-74.
Algar, D. A., A. A. Burridge, and G. J. Angus. 2002. Cat eradication on Hermit Island, Montebello Islands, Western Australia. Occas. Paper, IUCN Species Survival Comm. 27:14-18.
Arthur, A. D., R. P. Pech, and C. R. Dickman. 2004. Habitat structure mediates the non-lethal effects of predation on enclosed populations of house mice. J. Anim. Ecol. 73:867-877.
Atkinson, R. P. D., C. J. D. Rhodes, W. Macdonald, and R. M. Anderson. 2002. Scale-free dynamics in the movement patterns of jackals. Oikos 98:134-140.
Bartumeus, F., M. G. E. da Luz, G. M. Viswanathan, and J. Catalan. 2005. Animal search strategies: A quantitative random-walk analysis. Ecology 86:3078-3087.
Benhamou, S. 2007. How many animals really do the Lévy walk? Ecology 88:1962-1969.
Beyer, H. L. 2004. Hawth’s analysis tools for ArcGIS. http://www.spatial ecology.com/htools.
Brown, C. T., L. S. Liebovitch, and R. Gledenon. 2007. Lévy flights in Dobe ju/’hoansi foraging patterns. Human Ecol. 35:129-138.
Buckmaster, A. J. 2011. Ecology of the feral cat (Felis catus) in the tall forests of Far East Gippsland. Ph.D. diss., University of Sydney, Sydney, Australia. 199 pp.
Burridge, A., and B. Manly. 2002. Mammal extinctions on Australian islands: Causes and conservation implications. J. Biogeogr. 29:465-473.
Burridge, A. A., and N. L. McKenzie. 1989. Patterns in the modern decline of Western Australia’s vertebrate fauna: Causes and conservation implications. Biol. Conserv. 50:143-198.
Burrows, N., D. Algar, A. Robinson, J. Sinagra, B. Ward, and G. Liddeelow. 2003. Controlling introduced predators in the Gibson Desert of Western Australia. J. Arid Environ. 55:691-713.
Christensen, P., and N. Burrows. 1995. Project desert dreaming: Experimental reintroduction of mammals to the Gibson Desert, Western Australia. Pp. 199-207 in: M. Serena (Ed.), Reintroduction Biology of Australian and New Zealand Fauna. Surrey Beatty & Sons Pty. Limited, Chipping Norton, NSW, Australia.
Coutts-Smith, A. J., P. S. Mahon, M. Letnic, and P. O. Downey. 2007. The threat posed by pest animals to biodiversity in New South Wales. Invasive Animals Cooperative Research Centre. Invasive Animals Cooperative Research Centre, University of Canberra, ACT, Australia. 113 pp. http://www.feral.org.au/wp-content/uploads/2010/03/NSWBiodiversity.pdf.
Creel, S., and D. Macdonald. 1995. Sociality, group size and reproductive suppression among carnivores. Adv. Study Behav. 24:203-257.
Dai, X., G. Shannon, R. SlotoW, B. Page, and K. Duffy. 2007. Short-duration daytime movements of a cow herd of African elephants. J. Mammal. 88:151-157.
Dassault, C., R. Courtois, J. Ouellet, and J. Hout. 2001. Influence of satellite geometry and differential correction on GPS location accuracy. Wildl. Soc. Bull. 29:171-179.
Denney, E. 2005. Ecology of free-living cats exploiting waste disposal sites: diet, morphometrics, population dynamics and population genetics. Ph.D. diss., University of Sydney, Sydney, Australia. 241 pp.
Denney, E., P. Yakovlevich, M. Eldridge, and C. Dickman. 2002. Social and genetic analysis of a population of free-living cats (Felis catus L.) exploiting a resource-rich habitat. Wildl. Res. 29:405-403.
Dickman, C. R. 1996. Overview of the impacts of feral cats on Australian fauna. Australian Nature Conservation Agency, Canberra, Australia. 92 pp.
Dickman, C. R. 2009. House cats as predators in the Australian environment: impacts and management. Human-Wildl. Conflicts 3:41-48.
Edwards, G. P., N. De Preu, B. J. Shakeshaft, I. V. Crealy, and R. M. Paltridge. 2001. Home range and movements of male feral cats (Felis catus) in a semiarid woodland environment in central Australia. Austral. Ecol. 26:93-101.
Hilmer, S. 2010. Ecophysiology of feral cats (Felis catus) in Australia. Ph.D. diss., Johann Wolfgang Goethe University, Frankfurt, Germany. 166 pp.

Hooge, P. N., and B. Eichenlaub. 2000. Animal movement extension to ArcView, Ver 2.0. Alaska Science Center, Biological Science Office, U.S. Geological Survey, Anchorage, AK.

Humphries, N. E., N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunschwiler, T. K. Doyle, J. D. R. Houghton, G. C. Hays, C. S. Jones, L. R. Noble, V. J. Wearmouth, E. J. Southall, and D. W. Sims. 2010. Environmental context explains Levy and Brownian movement patterns of marine predators. Nature 465:1066-1069.

Hutchings, S. 2003. The diet of feral house cats (Felis catus) at a regional rubbish tip, Victoria. Wildl. Res. 30:103-110.

Johnston, M. J., D. Algar, M. L. Onus, N. Hamilton, S. Hilmer, M. O’Donoghue, J. Morris, M. Lindeman, S. Robinson, T. Buckmaster, and L. Broome. 2008. Field trial of a new bait and toxicant for feral cat management on French Island, Victoria. P. 114 in: G. Saunders and C. Lane, Eds., Proc. 14th Australasian Vertebr. Pest Conf.

Johnston, M. J., D. Algar, M. L. Onus, N. Hamilton, S. Hilmer, B. Withnell, and F. Koch. 2010. A bait efficacy trial for the management of feral cats on Dirk Hartog Island. Arthur Rylah Inst. for Environmental Research Technical Report Series No. 205, Dept. of Sustainability and Environment, Victoria, WA, Australia. 42 pp.

Jones, E., and B. Coman. 1981. Ecology of the feral cat, Felis catus (L.), in south-eastern Australia. I. Diet. Austral. Wildl. Res. 8:537-547.

Jones, E., and B. Coman. 1982. Ecology of the feral cat, Felis catus (L.), in south-eastern Australia. III. Home range and population ecology in semiarid north-west Victoria. Austral. Wildl. Res. 9:409-420.

Kliskey, A. D., and A. E. Byrom. 2001. A GPS-assisted approach to measuring fine-scale foraging patterns of small mammals. Pp. 45-49 in: A. Sibblald and I. Gordon, (Eds.), Tracking Animals with GPS. Proceedings of an international conference held 12-13 March, Macaulay Land Use Institute, Aberdeen, Scotland, UK. http://www.macaulay.ac.uk/gps/gps_abstract_2001.pdf.

Laver, P. N., and M. J. Kelly. 2008. A critical review of home range studies. J. Wildl. Manage. 72:290-298.

Levandowsky, M., J. Klaffner, and B. S. White. 1988. Feeding and swimming behavior in grazing microzooplankton. J. Eukaryotic Microbiol. 35:243-246.

Liberg, O., M. Sandell, D. Pontier, and E. NataIi. 2000. Density, spatial organisation and reproductive tactics in the domestic cat and other felids. Pp. 119-147 in: D. C. Turner and P. Bateson (Eds.), The Domestic Cat: The Biology of its Behaviour, Second Ed., Cambridge University Press, Cambridge, UK.

Macdonald, D. W., N. Yamaguchi, and G. Kerry. 2000. Group-living in the domestic cat: Its sociobiology and epidemiology. Pp. 95-117 in: D. C. Turner and P. Bateson (Eds.), The Domestic Cat: The Biology of its Behaviour, Second Ed., Cambridge University Press, Cambridge, UK.

May, S., and T. Norton. 1996. Influence of fragmentation and disturbance on the potential impact of feral predators on native fauna in Australian forest ecosystems. Wildl. Res. 23:387-400.

McLeod, R. 2004. Counting the Cost: Impact of Invasive Animals in Australia, 2004. Cooperative Research Centre for Pest Animal Control, Canberra, Australia. 70 pp. http://www.gamecouncil.nsw.gov.au/docs/mcleod.pdf.

Mohr, C. O. 1947. Table of equivalent populations of North American small mammals. Am. Midl. Nat. 37:223-249.

Moolsr, R., C. Dickman, A. Newsome, and W. Muller. 2005. Home ranges of feral cats (Felis catus) in central-western New South Wales, Australia. Wildl. Res. 32:587-595.

Moseby, K. E., J. Stott, and H. Crisp. 2009. Movement patterns of feral predators in an arid environment – implications for control through poison baiting. Wildl. Res. 36:422-435.

Natoli, E., and E. De Vito. 1991. Agonistic behaviour, dominance rank and copulatory success in a large multi-male feral cat, Felis catus L., colony in central Rome. Anim. Behav. 42:227-241.

Ramos-Fernandez, G., J. L. Mateos, O. Miramontes, G. Cocho, H. Larralde, and B. Avala-Orozco. 2004. Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behav. Ecol. Sociobiol. 55:223-230.

Recio, M. R., R. Mathieu, R. Maloney, and P. J. Seddon. 2010. First results of feral cats (Felis catus) monitored with GPS collars in New Zealand. NZ J. Ecol. 34:288-296.

Reynolds, A. 2009. Lévy flight patterns are predicted to be an emergent property of a bumblebees’ foraging strategy. Behav. Ecol. Sociobiol. 64:19-23.

Reynolds, A. M., D. R. Reynolds, A. D. Smith, G. P. Svensson, and C. Lofstedt. 2007a. Appetitive flight patterns of male Agrotis segetum moths over landscape scales. J. Theor. Biol. 245:141-149.

Reynolds, A. M., A. D. Smith, D. R. Reynolds, N. L. Carreck, and J. L. Osborne. 2007b. Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J. Exper. Biol. 210:3763-3770.

Risley, D., M. Calver, and J. Short. 1999. The impact of cats and foxes on the small vertebrate fauna of Heirisson Prong, Western Australia. I. Exploring potential impact using diet analysis. Wildl. Res. 26:621-630.

Risley, D., M. Calver, J. Short, J. Bradley, and I. Wright. 2000. The impact of cats and foxes on the small vertebrate fauna of Heirisson Prong, Western Australia. II. A field experiment. Wildl. Res. 27:223-235.

Robley, A., and A. Gormley (EDITORS). 2010. Proceedings, Emerging Directions in the Analysis and Modelling of Animal Location Data Symposium. Arthur Rylah Research Institute and Victoria Government, Melbourne, Australia. 38 pp.

Robley, A., D. Ramsey, L. Woodford, M. Lindeman, M. J. Johnston, and D. Forsyth. 2008. Evaluation of detection methods and sampling designs used to determine the abundance of feral cats. Arthur Rylah Institute for Environmental Research Report, Technical Report Series No. 181, Heidelberg, Victoria, Australia. 19 pp.
RODGERS, A. R. 2001. Tracking animals with GPS: The first 10 years. Pp. 1-10 in: A. Sibblald and I. Gordon, (Eds.), Tracking Animals with GPS. Proceedings of an international conference held 12-13 March, Macaulay Land Use Institute, Aberdeen, Scotland, UK. http://www.macaulay.ac.uk/gps/gps_abstract_2001.pdf.

RODGERS, A. R., and A. P. CARR. 1998. HRE: The Home Range Extension for ArcView, v. 0.9. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay, ON, Canada.

RODGERS, A. R., A. P. CARR, H. L. BEYER, L. SMITH, and J. G. KIE. 2007. HRT: Home Range Tools for ArcGIS, v. 1.1. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay, ON, Canada.

SAY, L., D. PONITER, and E. NATOLI. 1999. High variation in multiple paternity of domestic cats (Felis catus L.) in relation to environmental conditions. Proc. Royal Soc. Lond. Series B Biol. Sci. 266:2071-2074.

SIMS, D. W., E. J. SOUTHALL, N. E. HUMPHRIES, G. C. HAYS, C. J. A. BRADSHAW, J. W. PITCHFORTH, A. JAMES, M. Z. AHMED, A. S. BRIERLEY, M. A. HINDELL, D. MORRITT, M. K. MUSYL, D. RIGTON, E. L. C. SHEPARD, V. J. WEARMOUTH, R. P. WILSON, M. J. WITT, and J. D. METCALFE. 2008. Scaling laws of marine predator search behaviour. Nature (Lond) 451:1098-1103.

SINCLAIR, A. R. E., R. P. PECH, C. R. DICKMAN, D. HIK, P. MAHON, and A. E. NEWSOME. 1998. Predicting effects of predation on conservation of endangered prey. Conserv. Biol. 12:564-575.

STATSOFT INC. 2004. STATISTICA v. 7. StatSoft, Inc., Tulsa, OK.

TRIGGS, B. E., H. BRUNNER, and J. CULLEN. 1984. The food of fox, dog and cat in Croajingalong National Park, southeastern Victoria. Austral. Wildl. Res. 11:491-499.

VISWANATHAN, G. M., V. AFANASIEV, S. V. BULDYREV, E. J. MURPHY, P. A. PRINCE, and H. E. STANLEY. 1996. Lévy flight search patterns of wandering albatrosses. Nature (Lond) 381:413-415.

VISWANATHAN, G. M., F. BARTUMEUS, S. V. BULDYREV, J. CATALAN, U. L. FULCO, S. HAVLIN, M. G. E. DA LUZ, M. L. LYRA, E. P. RAPOSO, and H. E. STANLEY. 2002. Lévy flight random searches in biological phenomena. Physica A: Statistical Mechanics Applicat. 314:208-213.

VISWANATHAN, G. M., S. V. BULDYREV, S. HAVLIN, M. G. E. DA LUZ, E. P. RAPOSO, and H. E. STANLEY. 1999. Optimizing the success of random searches. Nature (Lond) 401:911-914.