Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria.

SUPPORTING INFORMATION

Anne-Soisig Steunou, Marion Babot, Marie-Line Bourbon, Reem Tambosi, Durand Anne, Sylviane Liotenberg, Anja Krieger-Liszkay, Yoshiharu Yamaichi and Soufian Ouchane#

Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.

Address correspondence to: soufian.ouchane@i2bc.paris-saclay.fr and anne-soisig.steunou@i2bc.paris-saclay.fr Phone: (33)-169823137. Fax: (33)-169823230.
Figure S1: A 22 kDa protein is induced in the Cd2+-ATPase deficient mutants under respiration. Induction of SodB in *R. gelatinosus* wild-type (WT), *cadR* and *ΔcadA* strains with the increase of CdCl\textsubscript{2} concentration. Cells were grown under respiration. Total protein extracts from the same amount of cells (OD\textsubscript{680nm} = 1) were separated on 15% SDS-PAGE and analyzed by western blot using the His-Probe.
Figure S2: XseA is not required for menadione tolerance. A- Menadione disc-diffusion assay (as described in Experimental procedures) results showing the complementation by pBxseAsodB and pBsodB. pBTc: empty plasmid. B- sodB constructs used in this work. ΔsodB was used to generate the ΔsodB mutant. pB derivatives (pBxseAsodB and pBsodB) were used for complementations of ΔsodB strain.
Figure S3: Genetic organization of xseA sodB orfs. A- xseA-sodB gene fusion. xseA coding sequence is in blue and sodB in red. No stop codon was found between the two orfs. Putative promoters and transcripts and primers used in RT-PCR are indicated. B- Protein sequence of the fusion. The five His detected by the His-probe in SodB are shown in black and bold style. C-Analysis of sodB expression by RT-PCR. Total RNA from wild-type (WT) and ΔsodB strains grown under respiration was extracted according to (Steunou et al. 2004). 2 μg of total RNA was reverse transcribed with the superscript II (Invitrogen) using the specific sodB primer 348. 2 μl of the RT reaction was used for the PCR. We used either the primers 433 - 434 specific to xseA or the 347 - 348 primers specific to sodB. Both PCRs were positive showing the presence of the xseAsodB transcript (arrow). Genomic DNA and 16S rRNA were used for controls. This experiment suggested the presence of xseAsodB transcript but does not exclude the presence of an internal promoter upstream of sodB. Putative promoters are shown in gray.
Fig. S4 : **A**- Menadione disc-diffusion assay. Plates were incubated at 30 °C overnight either under photosynthetic (PS) or respiratory (RES) conditions.

B- Western blot analysis of WT, ΔsodB, ΔcadA, and ΔcadAsodB strains grown by photosynthesis with (50 µM) or without (-) cadmium, showing the induction of SodB

C- Effect of Cd²⁺ and menadione stress in ΔsodB, and ΔcadAsodB strains. Menadione disc-diffusion assay in plates supplemented or not with 25 mM CdCl₂. Plates were incubated at 30 °C overnight under aerobic respiration conditions. The simultaneous presence of Cd²⁺ and menadione is deleterious for the ΔcadAsodB hyper-sensitive strain.
Figure S5: Effect of Cu$^{2+}$ and menadione stress in the wild-type (WT), ΔsodB, copA$, and ΔsodBcopA$ strains. Menadione disc-diffusion assay in plates supplemented or not with 25 mM CuSO$_4$ (as described in Experimental procedures). Plates were incubated at 30 °C overnight under aerobic respiration conditions. The simultaneous presence of Cu$^{2+}$ and menadione is deleterious for the ΔsodBcopA$ hyper-sensitive strain.
Table SI: Bacterial strains and plasmids

Strains	Relevant characteristics	Source
E. coli		
JM109	el4 (McrA), recA1, endA1, gyra69, thi-1, hsdR17 (rk-mk+) supE44, recA1, Δ(lac-proAB) [F’traD36, proAB, lacIZΔM15](R·pir)	Stratagene
SM10 Δpir	SM10 Δpir / pEYY345	Laboratory Stock
bEYY1980	Wild type (WT), background of KEIO collection	(Baba et al, 2006)
BW25113	Wild type (WT), background of KEIO collection	(Baba et al, 2006)
copA	BW25113 copA::FRT::Km (copA::FRT::Km-FRT)	(Baba et al, 2006)
zntA	BW25113 zntA::FRT::Km (zntA::FRT::Km-FRT)	(Baba et al, 2006)
sodA	BW25113 sodA::FRT::Km (sodA::FRT::Km-FRT)	(Baba et al, 2006)
sodB	BW25113 sodB::FRT::Km (sodB::FRT::Km-FRT)	(Baba et al, 2006)
V. cholerae		
C6706	WT O1 El Tor; Sm'	(Cameron et al, 2008)
ΔcopA	C6706 Δvc2115 (copA)	This work
sodB	C6706 vc2045 (sodB::Tn)	(Cameron et al, 2008)
ΔcopAsodB	C6706 vc2045 (sodB::Tn) Δvc2115 (copA)	This work
P. aeruginosa		
PAO1	WT	(Jacobs et al, 2003)
PA3920	phoAbp01q1G01, Tc'	(Jacobs et al, 2003)
PA3690	phoAbp01q3B12	(Jacobs et al, 2003)
P. putida		
PNL-MK25	WT strain PNL-MK25	(Adaiikkalam & Swarup, 2007)
CEM1	Mini-Tn5::gfp inserted into (cueA) copA the copper-transporting ATPase in the wild-type strain ; Km'	(Adaiikkalam & Swarup, 2007)
B. subtilis		
l68	WT, trpC2	(Kunst et al, 1997)
CSP105	ΔcopA::spc'	(Chillappagari et al, 2010)
R. gelatinosus		
Strain S1	WT	(Uffen, 1976)
ΔsodB	sodB deleted strain (ΔsodB::Km)	This work
cadR	cadR inserted strain (cadR::Km)	This work
ΔcadA	cadA deleted strain (ΔcadA::Tp)	(Steunou et al, 2019)
copA	copA inserted strain (copA::Km)	(Azzouzi et al, 2013)
ΔcadAsodB	cadA (ΔcadA::Tp) and sodB (ΔsodB::Km) deleted strain	This work
ΔsodBcopA	copA (copA::Km) and sodB (sodB::Km) deleted strain	This work
Plasmids		
pGEM-T	Cloning vector (Ap')	Promega
pUC4K	Plasmid bearing the Km cartridge (Ap' Km')	Pharmacia
pBRR1MCS-3	(mob', Tc') expression vector	(Kovach et al, 1994)
pGsodB	pGEM-T + 1.7 kb PCR fragment containing sodB	This work
pGsodB::Km	Km cartridge cloned into mscI-stu1 site inactivating sodB	This work
pGxseAsodB	pGEM-T + 2.4kb PCR fragment containing xseAsodB gene	This work
pBxseAsodB	xseAsodB subcloned from pGxseAsodB digested by xcmI-saci into pBRR1MCS-3 at smaI and sacI sites	This work
pBsodB	0.8 kb deletion of xseA by digestion of pBxseAsodB with sacI and smal sites	This work
pEYY345	Allelic exchange plasmid for Δvc2115	This work
Ap^r, ampicillin resistant, Km^r, kanamycin resistant, Tp^r, trimethoprim resistant, Tc^r, tetracyclin resistant, spc^r, spectinomycin resistant.

Table SII: Primers used in this work

Primer	Sequence 5’ to 3’
RG347_SodB RTF	ACGTCGTGAACCTGAACAAC
RG348_SodB RTR	TCGATGTAATGCACTTCGTC
RG433_XseARTF	GAGAACTGCAACTCGTCGTC
RG434_XseARTR	ATGGAAGCCACACAGATCCT
RG345_SodBF	AGACCACATCACGCCTCG
RG346_sodBR	AGTAATTGCCTCTTTGTCT
RG369_xseA_F	GCCCGTGTATGATGACAG
RG370_sodB_R	CAACTGAGCCGACATTGTT
oYo848	CCGCATGCGATATCGAGCTCCCCTTTGTCAGCAGG
oYo849	ATTTGCGATTGCTGACCACCACGCAGCCTAAAGCAA
oYo850	TTGCTTTAGCGCTGCTGTGGTCAGCATTGCCAAT
oYo851	CGGATAACAAATTGTGGAATTCACCAGCGCTTTGTGTCTAGC

References:

Adaikkalam V, Swarup S (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. *Microbiology* 148: 2857-2867

Azzouzi A, Steunou AS, Durand A, Khalfaoui-Hassani B, Bourbon ML, Astier C, Bollivar DW, Ouchane S (2013) Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu²⁺-ATPase mutant *copA* of *Rubrivivax gelatinosus*. *Molecular microbiology* 88: 339-351

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Molecular systems biology* 2: 2006 0008

Cameron DE, Urbach JM, Mekalanos JJ (2008) A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. *Proceedings of the National Academy of Sciences of the United States of America* 105: 8736-8741

Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA, Miethke M (2010) Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in *Bacillus subtilis*. *Journal of bacteriology* 192: 2512-2524

Jacobs MA, Alwood A, Thaipsuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of *Pseudomonas aeruginosa*. *Proceedings of the National Academy of Sciences of the United States of America* 100: 14339-14344

Kovach ME, Phillips RW, Elzer PH, Roop II RM, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. *BioTechniques* 16: 800-802

Kunst F, et al (1997) The complete genome sequence of the gram-positive bacterium *Bacillus subtilis*. *Nature* 390: 249-256
Steunou AS, Durand A, Bourbon ML, Babot M, Liotenberg S, Ouchane S (2019) Cadmium and Copper Cross-tolerance. Cu+ alleviates Cd2+ toxicity, and both cations target the porphyrin biosynthesis pathway in Rubrivivax gelatinosus. Submitted

Uffen RL (1976) Anaerobic growth of a *Rhodopseudomonas* species in the dark with carbon monoxide as sole carbon and energy substrate. *Proc Natl Acad Sci USA* **73**: 3298-3302