Influence of pathogenic and atypical mycobacteria on immune status of guinea pigs

V. S. Boiko*, L. V. Kovalenko*, A. I. Zavgorodniy*, A. P. Paliy*, A. O. Bondarchuk**
* National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, Ukraine
** Kharkiv State Zooveterinary Academy, Kharkiv, Ukraine

Abstract. In recent years a diversity of researchings both native and foreign scientists has been devoted to the investigation of animal tuberculosis. However, there are a number of questions required more detailed studying and scientific justification. Among involved questions specific place is occupied by the problem of animal immunity in cases of infection by pathogenic and atypical mycobacteria. The aim of our work was to study the influence of pathogenic and atypical mycobacteria on the immune status of laboratory animals. The influence of pathogenic and atypical mycobacteria on the immune status of guinea pigs was studied by infecting them with a suspension from the bacterial mass of each individual mycobacterial culture (M. bovis, M. avium and M. fortuitum). The suspension was prepared at the rate of 1.0 mg / ml of sterile NaCl and injected subcutaneously into animals at a dose of 1.0 ml. Blood samples were taken on the 7th, 14th, 30th and 60th days after the injection of mycobacterial cultures to determine the most informative indicators of the immunological status of animals. Amount of neutrophils and phagocytic activity were determined in the blood of experimental animals. The total protein level was determined spectrophotometrically in the serum of guinea pigs, the level of circulating immune complexes (CIC) of average molecular weight – by the method of Grinevich & Alferov, seromukoida – by Weimer & Moshin. The data obtained that M. bovis caused the biggest growth in some cellular and humoral immunity indicate (the percentage of neutrophils by 28.6% and their phagocytic activity by 15.8%, the level of total protein is 76.13 g/l, circulating immune complexes 0.190 mg/ml and seromukoida per day 7 (0.099 mg/ml) on the 30th day after infection in comparison with animals of the control group. Animals infected with the culture of atypical mycobacteria M. fortuitum showed less noticeable changes in immunity, compared to animals infected with the pathogen of tuberculosis.

Keywords: mycobacteria; M. bovis; M. avium; M. fortuitum; immunobiological parameters; guinea pigs.
Mycobacterioses caused by atypical mycobacteria of *M. fortuitum*, the clinical manifestations of which are characterized by pneumonia and damage to the digestive tract (Okamori et al., 2018), are quite common among people. This type of mycobacterium is widespread in livestock farms in Ukraine, but it does not represent an epizootological risk for animal husbandry, but only predetermines the state of increased sensitivity to tuberculin and allergens from atypical mycobacteria (Kotlyar, 2016).

The aim of our work was to study the effect of pathogenic and atypical mycobacteria on the immune condition of laboratory animals.

Materials and methods

Experimental researches were carried out in the laboratory for the study of tuberculosis and the laboratory of clinical biochemistry of the National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”. The effect of pathogenic and atypical mycobacteria on the immune status of guinea pigs was studied by injecting them with a suspension from the bacterial mass of each individual mycobacterial culture *M. bovis* (strain Vallee), *M. avium* (strain IEKVM UAAN) and *M. fortuitum* (strain № 122). The suspension was prepared at the rate of 1.0 mg/ml of sterile NaCl and injected subcutaneously into animals at a dose of 1.0 ml. To research the most informative indicators of the immunological state of animals on the 7th, 14th, 30th and 60th days after the injection of mycobacterial cultures blood samples were taken. In the blood of experimental animals the amount of neutrophils and phagocytic activity were determined according to the methodological recommendations “Methods of researches markers of the functional state of the cells of peripheral blood and bone marrow of animals”. In the serum of guinea pigs the total protein level was determined spectrophotometrically, the level of circulating immune complexes (CIC) of average molecular weight – by the method of Grinevich and Allerov (1985), seromukoida – by Weimer and Moshin (1952).

Results

The results of conducted scientific experiments to determine the immunobiological parameters of experimental guinea pigs for infection with various types of mycobacteria are shown in Table 1.

For the analysis of data in the Table 1, two-way analysis of Fisher variance was used (the first one was the type of culture, the second one – time or age) with the help of “Two-way analysis of variance without repetition” due to “Data mining” ASP MS

Table 1. Immunological indicator of experimental guinea pigs

Cultures	Biomarkers of nonspecific immunity	Blood analysis through the days		
	7	14	30	60
Total protein, gr/l	78.23 ± 1.25	74.31 ± 2.03	76.13 ± 1.97	67.35 ± 2.31
Total protein, gr/l	73.54 ± 1.31	71.95 ± 1.97	69.11 ± 2.02	62.34 ± 1.85
CIC, mg/ml	0.161 ± 0.070	0.172 ± 0.060	0.190 ± 0.040	0.138 ± 0.050
CIC, mg/ml	0.144 ± 0.040	0.149 ± 0.070	0.167 ± 0.050	0.128 ± 0.040
Seromucoids, mg/ml	0.099 ± 0.012	0.097 ± 0.016	0.094 ± 0.024	0.091 ± 0.013
Seromucoids, mg/ml	0.096 ± 0.018	0.094 ± 0.021	0.095 ± 0.019	0.088 ± 0.022
Total protein, gr/l	75.24 ± 1.24	73.43 ± 2.15	72.52 ± 2.32	65.61 ± 1.85
Total protein, gr/l	73.54 ± 1.31	71.95 ± 1.97	69.11 ± 2.02	62.34 ± 1.85
CIC, mg/ml	0.132 ± 0.030	0.138 ± 0.050	0.161 ± 0.070	0.127 ± 0.050
CIC, mg/ml	0.121 ± 0.060	0.122 ± 0.070	0.121 ± 0.030	0.122 ± 0.050
Seromucoids, mg/ml	0.092 ± 0.013	0.091 ± 0.018	0.092 ± 0.015	0.092 ± 0.011
Seromucoids, mg/ml	0.096 ± 0.018	0.094 ± 0.021	0.095 ± 0.019	0.088 ± 0.022

Theoretical and Applied Veterinary Medicine ǀ Volume 7 ǀ Issue 2
The level of seromucoids, which belong to suppressor proteins, within 30 days of the research, was increased in all experimental groups of animals with the greatest distinction of 7.6% on the 7th day in the serum of guinea pigs infected with *M. bovis* against control. On the 60th day, an index decrease in the serum of animals of all groups was recorded with a maximum difference up to 6.5% in the group of guinea pigs infected with *M. fortuitum*.

One of the types of leukocytes that are involved in the protective reactions of the organism, in particular phagocytosis, are neutrophils. Consequently, the dynamic of changing in the number of neutrophils in the blood of laboratory animals infected with various types of mycobacteria was determined (Fig. 1).

The data submitted in the 1st Figure shows that under the influence of all three species of mycobacteria, a percentage increase of neutrophils in the blood of guinea pigs was recorded during a 30-day study with a maximum difference by 28.6% animals infected with *M. bovis* as compared with control. It is also important to note that on the 60th day the decrease of these cells by 10.7% in the blood of animals infected with *M. fortuitum* was observed, it might be connected to the increased destruction of neutrophils affected by the infection development.

Each neutrophil cell is capable for only one phagocytic event; therefore, their number reflects and agrees upon the data on phagocytic activity (Fig. 2).

The Figure 2 shows the percentage increase of phagocytic neutrophils activity in the blood of animals infected with all three types of mycobacteria studied in comparison with tested animals, but the greatest deviation by 15.8% on the 30th day was noted in the blood of animals affected by *M. bovis*. The increase number of active phagocytes in the blood, which retain a high phagocytic activity, indicates an increased immune response. During the latter stages of research, a 3.2% decrease of FA in the blood of animals that were infected with *M. fortuitum* was recorded. Reduction of FA might be connected to excessive formation of immature neutrophils in the bone marrow.

Discussion

Other studies have found that infection of cattle apart with such cultures as *M. bovis, M. tuberculosis* and *M. kansasii* also shows a different immune response of animals. The delayed-type hypersensitivity was revealed by inoculation of each culture of mycobacteria; however, the response to the injection of *M. bovis* and *M. tuberculosis* exceeded the response to infection with *M. kansasii*.

Specific responses were given by all animals due to injection of *M. tuberculosis* and *M. bovis* in 3 weeks after inoculation. After 6 weeks animals infected with *M. tuberculosis* had a decreased immune response, whereas animals with *M. bovis* remained the same. When inoculating *M. kansasii*, early initial antibody responses decreased 10 weeks after the start of the experiment. These results show that the immune response of animals is due to antigenic load, and not the development of the pathological process (Waters et al., 2010).

Various natural mechanisms of different macro organisms for inactivation of the pathogen of *M. tuberculosis* reported, which in turn causes the induction of adaptive immunity (Crevet et al., 2002).
Influence of pathogenic and atypical mycobacteria on immune status of guinea pigs

A detailed study of the immune response of the macro organism to its infection with various types of mycobacteria, including those with natural and artificial mutations, opens the way to the creation of effective vaccines (Blanco et al., 2012).

Conclusions

Comparative studies about the effect of the cultures *M. bovis*, *M. avium* and *M. fortuitum* on the immune status of guinea pigs indicate that *M. bovis*, the pathogen of tuberculosis, on the 30th day after infection, caused the animals the greatest increase in some indicators of cellular and humoral immunity (neutrophils by 28.6% and their phagocytic activity by 15.8%, the level of total protein was 76.13 g/l, circulating immune complexes 0.190 mg/ml and seromukoids per day 7 (0.099 mg/ml) in comparison with animals of the control group.

Animals infected with the culture of atypical mycobacteria *M. fortuitum* showed less noticeable changes in immunity, compared to animals infected with the pathogen of tuberculosis.

References

Canto Alarcon, G. J., Rubio Venegas, Y., Bojorquez Narvaez, L., Pizano Martinez, O. E., Garcia Casanova, L., Sosa Gallegos, S., Nava Vargas, A., Olivera Ramirez., A. M. & Milian Suazo, F. (2013). Efficacy of a Vaccine Formula against Tuberculosis in Cattle. PLoS ONE, 8(10), e76418.

Baranovsky, D. I., Getmanets, O. M. & Khokhlov, A. M. (2017). Biometry in MS Excel. Kharkiv. SPD FO Brovin O. V. (in Ukrainian).

Blanco, F.C., Soria, M., Gravisaco, M.J., Bianco, M.V., Meikle, V., Garbaccio, S., Vagnoni, L., Cataldi, A.A., & Bigi, F. (2012). Assessment of the immune responses induced in cattle after inoculation of a Mycobacterium bovis strain deleted in two mce2 genes, Journal of Biomedicine and Biotechnology, 1–8.

Borja, E., Borja, L. F., Prasad, R., Tunabuna, T., & Toribio, J.-A. L. M. L. (2018). A Retrospective study on Bovine tuberculosis in cattle on Fiji: study findings and stakeholder responses. Frontiers in Veterinary Science, 5.
Bouchez-Zacria, M., Courcoul, A., & Durand, B. (2018). The distribution of Bovine tuberculosis in cattle farms is linked to cattle trade and Badger-Mediated contact networks in South-Western France, 2007–2015. Frontiers in Veterinary Science, 5.

Van Crevel, R., Ottenhoff, T. H. M., & Van der Meer, J. W. M. (2002). Innate immunity to Mycobacterium tuberculosis. Clinical Microbiology Reviews, 15(2), 294–309.

Harris, K. A., Brunton, L., Brouwer, A., Garcia, M. P. R., Gibbens, J. C., Smith, N. H., & Upton, P. A. (2017). Bovine TB infection status in cattle in Great Britain in 2015. Veterinary Record, 180(7), 170–175.

Jenkins, A. O., Gormley, E., Gcebe, N., Fosgate, G. T., Conan, A., Aagaard, C., Michel, A. L. & Rutten, V. P. M. G. (2018). Cross reactive immune responses in cattle arising from exposure to Mycobacterium bovis and non-tuberculous mycobacteria. Preventive Veterinary Medicine, 152, 16–22.

King, H. C., Khera-Butler, T., James, P., Oakley, B. B., Erenso, G., Aseffa, A., Knight, R., Wellington, E. M., & Courtenay, O. (2017). Environmental reservoirs of pathogenic mycobacteria across the Ethiopian biogeographical landscape. PLOS ONE, 12(3), e0173811.

Kotlyar, A. (2016). Rasprostraneniey idej atipichnykh mikobakteriy v khozyaystvakh Ukrainy i ikh epizootologicheskoye znachenie [Distribution of atypical mycobacteria species in the farms of Ukraine and their epizootological significance]. Innovations in Agriculture: Problems and Prospects, 3(11), 100–103 (in Russian).

Krajewska, M., Lipiec, M., Zabost, A., Augustynowicz-Kopeć, E., & Szulowski, K. (2014). Bovine tuberculosis in a Wild Boar (Sus scrofa) in Poland. Journal of Wildlife Diseases, 50(4), 1001–1002.

Kubica, T., Agzamova, R., Wright, A., Rakishev, G., Rüsch-Gerdès, S., & Niemann, S. (2006). Mycobacterium bovis isolates with M. tuberculosis specific characteristics. Emerging Infectious Diseases, 12(5), 763–765.

Leite, C. Q. F., Anno, I. S., Leite, S. R. de A., Roxo, E., Morlock, G. P., & Cooksey, R. C. (2003). Isolation and identification of mycobacteria from livestock specimens and milk obtained in Brazil. Memórias Do Instituto Oswaldo Cruz, 98(3), 319–323.

Thoen, C. O., LoBue, P. A., & Enarson, D. A. (2014). Tuberculosis in animals and humans. Zoonotic Tuberculosis, 3–7.

More, S. J., & Good, M. (2015). Understanding and managing bTB risk: Perspectives from Ireland. Veterinary Microbiology, 176(3–4), 209–218.

Mutzalib, A. & Riddell, C. (1988). Epizootiology and pathology of avian tuberculosis in chickens in Saskatchewan, Canadian Veterinary Journal, 29(10), 840–842.

Okamori, S., Asakura, T., Nishimura, T., Tamizu, E., Ishii, M., Yoshida, M., Fukano, H., Hayashi, Y., Fujita, M., Hoshino, Y., Betsuyaku, T., & Hasegawa, N. (2018). Natural history of Mycobacterium fortuitum pulmonary infection presenting with migratory infiltrates: a case report with microbiological analysis. BMC Infectious Diseases, 18(1).

Paliy, A. P., Ishchenko, K. V., Marchenko, M. V., Paliy, A. P., & Dubin, R. A. (2018). Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukrainian Journal of Ecology, 8(1), 845–850.

Paliy, A., Zavgorodniy, A., Stegniy, B., & Gerilovych, A. (2015). A study of the efficiency of modern domestic disinfectants in the system of TB control activities. Agricultural Science and Practice, 2(2), 26–31.

Palmer, M. V. (2013). Mycobacterium bovis: characteristics of wildlife reservoir hosts. Transboundary and Emerging Diseases, 60, 1–13.

Plokhinsky, N. A. (1970). Biometrics. Moscow, MGU Publishing House (in Russian).

Waters, W. R., Whelan, A. O., Lyashchenko, K. P., Greenwald, R., Palmer, M. V., Harris, B. N., Hewinson, R. G., & Vordermeier, H. M. (2009). Immune responses in cattle inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii. Clinical and Vaccine Immunology, 17(2), 247–252.

Tkachenko, O. A. (2017). Minlyvist Mycobacterium bovis: monografija [Mycobacterium bovis variability: monograph]. Zhytomyr, Polissja (in Ukrainian).

Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorjeev, V. M., & Smirnov, A. M. (2013). Naukovi ta praktychni aspekty dezinfekttsiyi u veterynarnyi medytsyni [Scientific and practical aspects of disinfection in veterinary medicine]. Kharkiv, FOP Brovin O.V. (in Ukrainian).