Multipliers and Unicentral Leibniz Algebras

Erik Mainellis

Abstract

This paper details the Leibniz generalization of Lie-theoretic results from Peggy Batten’s 1993 dissertation. We first show that the multiplier of a Leibniz algebra is characterized by its second cohomology group with coefficients in the field. We then establish criteria for when the center of a cover maps onto the center of the algebra. Along the way, we obtain a collection of exact sequences and a brief theory of unicentral Leibniz algebras.

1 Introduction

In [1], Peggy Batten established Lie analogues of results concerning the multipliers and covers of groups. In the first chapter of [1], she proves that covers of Lie algebras are unique, a result which deviates from the group case. Batten also characterizes the multiplier in terms of a free presentation. In [3], the author proves the Leibniz analogue of this first chapter.

The aim of the present paper is to generalize Chapters 3 and 4 in [1] to Leibniz algebras. Given a central ideal of a Leibniz algebra L and a central L-module, we first construct a Hochschild-Serre type spectral sequence of low dimension. This sequence is used to characterize the multiplier $M(L)$ of L in terms of the second cohomology group $H^2(L,F)$. We then establish conditions for when the center of any cover maps onto the center of the algebra, i.e., for when $\omega(Z(E)) = Z(L)$, where E is a cover of L and $\omega : E \rightarrow L$ is a surjective homomorphism. These conditions are the special case of a four-part equivalence theorem that highlights an extension-theoretic crossroads of unicentral algebras, multipliers and covers, free presentations, and the second cohomology group of Leibniz algebras.

2 Preliminaries

Let F be a field. A Leibniz algebra L is an F-vector space equipped with a bilinear multiplication which satisfies the Leibniz identity $x(yz) = (xy)z + y(xz)$ for all $x, y, z \in L$. Let A and B be Leibniz algebras. An extension of A by B is a short exact sequence $0 \rightarrow A \xrightarrow{\sigma} L \xrightarrow{\pi} B \rightarrow 0$ such that σ and π are homomorphisms and L is a Leibniz algebra. One may assume that σ is the identity map, and we make this assumption throughout. An extension is called central if $A \subseteq Z(L)$. A section of an extension is a linear map $\mu : B \rightarrow L$ such that $\pi \circ \mu = \text{id}_B$.

For a Leibniz algebra L, a pair of Leibniz algebras (K, M) is called a defining pair for L if $L \cong K/M$ and $M \subseteq Z(K) \cap K'$. We say such a pair is a maximal defining pair if the dimension of K is maximal. In this case, K is called a cover for L and M is called the multiplier for L, denoted $M(L)$. It immediately follows that M is a unique Lie algebra since it is abelian, justifying $M(L)$ as being the multiplier of L. As in [1], $C(L)$ is used to denote the set of all pairs (J, λ) such that $\lambda : J \rightarrow L$ is a surjective homomorphism and $\ker \lambda \subseteq J' \cap Z(J)$. An element $(T, \tau) \in C(L)$ is called a universal element in $C(L)$ if, for any $(J, \lambda) \in C(L)$, there exists a homomorphism $\beta : T \rightarrow J$ such that $\lambda \circ \beta = \tau$.
As shown in [3], many results from Chapter 1 of [1] carry over to the Leibniz setting with few significant differences. One natural change is to consider algebras of the form $FR + RF$ as a replacement to the usual Lie product algebra $[F, R]$, which ensures a two-sided ideal for Leibniz algebras. A pair of dimension bounds are also notably different from the Lie case, but still ensure that both K and M have finite dimension. We now state the Leibniz version of the culminating result from the first chapter of [1], as proven in [3].

Theorem 2.1. Let L be a finite-dimensional Leibniz algebra and let $0 \to R \to F \to L \to 0$ be a free presentation of L. Let

$$B = \frac{R}{FR + RF}, \quad C = \frac{F}{FR + RF}, \quad D = \frac{F' \cap R}{FR + RF}.$$

Then:

1. All covers of L are isomorphic and have the form C/E where E is the complement to D in B.
2. The multiplier $M(L)$ of L is $D \cong B/E$.
3. The universal elements in $C(L)$ are the elements (K, λ) where K is a cover of L.

3 Cohomology

Consider a central extension $0 \to A \to L \to B \to 0$ and section $\mu : B \to L$. Define a bilinear form $f : B \times B \to A$ by $f(i, j) = \mu(i)\mu(j) - \mu(ij)$ for $i, j \in B$. By our work in [2], f is a 2-cocycle of Leibniz algebras, meaning that $f(i, jk) = f(ij, k) + f(j, ik)$ for all $i, j, k \in B$. Moreover, the image of f falls in A by exactness. Since we are only working with central extensions for this section, we drop the trivial φ and φ' maps of central factor systems and let $Z^2(B, A)$ denote the set of all 2-cocycles. As usual, $B^2(B, A)$ is used to denote the set of all 2-coboundaries, i.e. 2-cocycles f such that $f(i, j) = -\varepsilon(ij)$ for some linear transformation $\varepsilon : B \to A$. We next recall that any elements f and g in $Z^2(B, A)$ belong to equivalent extensions if and only if they differ by a linear map $\varepsilon : B \to A$, i.e. $f(i, j) - g(i, j) = -\varepsilon(ij)$ for all $i, j \in B$. In this case, we say f and g differ by a 2-coboundary. Therefore, extensions of A by B are equivalent if and only if they give rise to the same element of $H^2(B, A) = Z^2(B, A)/B^2(B, A)$, the second cohomology group of B with coefficients in A. Finally, the work in [2] guarantees that each element $\overline{f} \in H^2(B, A)$ gives rise to a central extension $0 \to A \to L \to B \to 0$ with section μ such that $f(i, j) = \mu(i)\mu(j) - \mu(ij)$.

3.1 Hochschild-Serre Spectral Sequence

Let H be a central ideal of a Leibniz algebra L and let $0 \to H \to L \xrightarrow{\beta} L/H \to 0$ be the natural central extension with section μ of β. Let A be a central L-module. The following theorem concerns a five-term cohomological sequence that we refer to as the Hochschild-Serre spectral sequence of low dimensions.

Theorem 3.1. The sequence

$$0 \to \text{Hom}(L/H, A) \xrightarrow{\text{Inf}_1} \text{Hom}(L, A) \xrightarrow{\text{Res}} \text{Hom}(H, A) \xrightarrow{\text{Tra}} \mathcal{H}^2(L/H, A) \xrightarrow{\text{Inf}_2} \mathcal{H}^2(L, A)$$

is exact.
Before proving exactness, we need to define the maps of this sequence and check that they make sense. The first inflation map $\text{Inf}_1 : \text{Hom}(L/H, A) \to \text{Hom}(L, A)$ is defined by $\text{Inf}_1(\chi) = \chi \circ \theta$ for any homomorphism $\chi : L/H \to A$. Next, the restriction mapping $\text{Res} : \text{Hom}(L, A) \to \text{Hom}(H, A)$ is defined by $\text{Res}(\pi) = \pi \circ \iota$ where $\iota : H \to L$ is the inclusion map. It is readily verified that Inf_1 and Res are well-defined and linear.

Third is the transgression map $\text{Tra} : \text{Hom}(H, A) \to \mathcal{H}^2(L/H, A)$. Let $f : L/H \times L/H \to H$ be defined by $f(x, y) = \mu(x)\mu(y) - \mu(xy)$ and consider $\chi \in \text{Hom}(H, A)$. Then $\chi \circ f \in \mathcal{Z}^2(L/H, A)$ since $\chi \circ f(x, y) = \chi \circ (\mu(x)\mu(y) - \mu(xy)) = \chi(0) = 0$ for all $x, y, z \in L$. If ν is another section of β, let $g(x, y) = \nu(x)\nu(y) - \nu(xy)$. Then f and g are cohomologous in $\mathcal{H}^2(L/H, H)$, which implies that there exists a linear transformation $\varepsilon : L/H \to H$ such that $f(x, y) - g(x, y) = -\varepsilon(xy)$. Clearly $\chi \circ \varepsilon : L/H \to A$ is also a linear transformation, and therefore $\chi \circ f$ and $\chi \circ g$ are cohomologous in $\mathcal{H}^2(L/H, A)$.

Letting $\chi = \chi \circ f$, we have shown that Tra is well-defined. It is straightforward to verify that Tra is linear.

Finally, let $\text{Inf}_2 : \mathcal{H}^2(L/H, A) \to \mathcal{H}^2(L, A)$ be defined by $\text{Inf}_2(f + \mathcal{B}^2(L/H, A)) = f' + \mathcal{B}^2(L, A)$, where $f'(x, y) = f(\beta(x), \beta(y))$ for $x, y \in L$ and $f \in \mathcal{Z}^2(L/H, A)$. It is straightforward to verify that Inf_2 is linear. To check that Inf_2 maps cocycles to cocycles, one computes

$$0 = f(\beta(x), \beta(y), \beta(z)) - f(\beta(x), \beta(y), \beta(z)) - f(\beta(y), \beta(x), \beta(z))$$

for all $x, y, z \in L$ since f is a 2-cocycle. Hence $f' \in \mathcal{Z}^2(L, A)$. To check that Inf_2 maps coboundaries to coboundaries, suppose $f \in \mathcal{B}^2(L/H, A)$. Then there exists a linear transformation $\varepsilon : L/H \to A$ such that $f(x, y) = -\varepsilon(xy)$ for $x, y \in L$. Note that $\beta(x) = x + H = x$ for any $x \in L$. Therefore $f'(x, y) = f(\beta(x), \beta(y)) = -\varepsilon \circ \beta(xy)$, yielding $f' \in \mathcal{B}^2(L, A)$.

Proof. Once again, we are concerned with the central extension $0 \to H \to L \xrightarrow{\beta} L/H \to 0$, a section μ of β, and a central L-module A. One has $f \in \mathcal{Z}^2(L/H, H)$ for $f(x, y) = \mu(x)\mu(y) - \mu(xy)$. To show exactness at $\text{Hom}(L/H, A)$, it suffices to show that Inf_1 is injective. Suppose $\text{Inf}_1(\chi) = 0$ for $\chi \in \text{Hom}(L/H, A)$. Then $\chi \circ \beta(x) = 0$ for all $x \in L$, which means that $\chi = 0$ since β is surjective.

To prove exactness at $\text{Hom}(L, A)$, first consider an element $\chi \in \text{Hom}(L/H, A)$. One computes $\text{Res}(\text{Inf}_1(\chi)) = \text{Res}(\chi \circ \beta) = \chi \circ \beta \circ \iota = 0$ since ι includes H into L and β sends elements of H to zero in L/H. Thus $\text{Im}(\text{Inf}_1) \subseteq \ker(\text{Res})$. Conversely, consider an element $\chi \in \ker(\text{Res})$. Then $\chi \circ \beta = 0$ implies that $H \subseteq \ker(\chi)$. By the fundamental theorem of homomorphisms, there exists $\hat{\chi} \in \text{Hom}(L/H, A)$ such that $\hat{\chi} \circ \bar{\beta} = \chi$. But $\text{Inf}_1(\hat{\chi}) = \bar{\chi} \circ \beta = \chi$. Hence $\ker(\text{Res}) \subseteq \text{Im}(\text{Inf}_1)$.

To show exactness at $\text{Hom}(H, A)$, first consider a map $\chi \in \text{Hom}(L, A)$. Then

$$\chi \circ f(x, y) = \chi \circ \mu(x)\chi \circ \mu(y) - \chi \circ \mu(xy)$$

by centrality, which implies that $\chi \circ f \in \mathcal{B}^2(L/H, A)$. Thus $\text{Tra}(\text{Res}(\chi)) = \text{Tra}(\chi \circ \theta) = \chi \circ \iota \circ f = 0$ and so $\text{Im}(\text{Res}) \subseteq \ker(\text{Tra})$. Conversely, let $\theta \in \text{Hom}(H, A)$ be such that $\text{Tra}(\theta) = \theta \circ f = 0$. Then $\theta \circ f \in \mathcal{B}^2(L/H, A)$ which implies that there exists a linear transformation $\varepsilon : L/H \to A$ such that $\theta \circ f(x, y) = -\varepsilon(xy)$. Let $x = \mu(x) + h_x$ and $y = \mu(y) + h_y$. Then $xy = \mu(xy) + h_{xy} = \mu(xy)\mu(y)$ implies that

$$\theta(h_{xy}) = \theta(\mu(xy))\mu(y) - \theta(\mu(y))h_x = \theta(\mu(xy)) + \varepsilon(xy) = -\varepsilon(xy). \quad (1)$$

Now let $\sigma(x) = \theta(h_x) + \varepsilon(x)$. Since $\text{Im} \sigma \subseteq A$, $\sigma(x)\sigma(y) = 0$ by centrality. By (1), $\sigma(xy) = \theta(h_{xy}) + \varepsilon(xy) = 0$. Hence $\sigma \in \text{Hom}(L, A)$ and $\sigma(h) = \theta(h) + \varepsilon(h + H) = \theta(h)$ for all $h \in H$, which means that $\text{Res}(\sigma) = \theta$ and thus $\ker(\text{Tra}) \subseteq \text{Im}(\text{Res})$.

3
To show exactness at $\mathcal{H}^2(L/H, A)$, first consider a map $\chi \in \text{Hom}(H, A)$. Then $\text{Tra}(\chi) = \chi \circ f$ where, as before, $f(x, y) = \mu(x)\mu(y) - \mu(xy)$ and $\chi \circ f \in Z^2(L/H, A)$. By definition of Inf_2,

$$\text{Inf}_2(\chi \circ f) = (\chi \circ f)'$$

where $(\chi \circ f)'(x, y) = \chi \circ f(x, y)$. We want to show that $(\chi \circ f)'$ is a coboundary in $\mathcal{H}^2(L, A)$. To this end, we once again consider $x = \mu(x) + h_x$ and $y = \mu(y) + h_y$ with product $xy = \mu(x)\mu(y) - \mu(xy)$. Then $\chi \circ f(x, y) = \chi(\mu(x)\mu(y) - \mu(xy)) = \chi(hxy)$. Define $\epsilon(x) = -\chi(h_x)$. Then $\epsilon : L \to A$ and is linear. One computes $\epsilon(xy) = -\chi(hxy) = -\chi \circ f(x, y) = -(\chi \circ f')(x, y)$ which implies that $(\chi \circ f)' \in B^2(L, A)$. Therefore $(\chi \circ f)' = 0$ and we have $\text{Im}(\text{Tra}) \subseteq \ker(\text{Inf}_2)$. Conversely, suppose $g \in Z^2(L/H, A)$ such that $\overline{g} \in \ker(\text{Inf}_2)$. Then $g(x, y) = g'(x, y) = -\epsilon(xy)$ for some linear $\epsilon : L \to A$. Since ϵ is linear, $\epsilon \circ f \in Z^2(L/H, A)$. As before, let $x = \mu(x) + h_x \in L$ with $xy = \mu(x)\mu(y)$ the product of two such elements. Then

$$g'(x, y) = g(x, y)
= -\epsilon(\mu(x)\mu(y))
= -\epsilon \circ f(x, y) - \epsilon \circ \mu(xy)$$

where $\epsilon \circ \mu : L/H \to A$. Thus $\overline{g} = -\overline{\epsilon \circ f} = -\text{Tra}(\epsilon)$ which implies that $\ker(\text{Inf}_2) \subseteq \text{Im}(\text{Tra})$. \qed

3.2 Relation of Multipliers and Cohomology

The objective of this section is to prove that the multiplier $M(L)$ of a finite-dimensional Leibniz algebra L is isomorphic to $\mathcal{H}^2(L, \mathbb{F})$, where \mathbb{F} is considered as a central L-module. The following results rely on our ability to invoke the Hochschild-Serre spectral sequence, and so the labor of Theorem 3.1 begins to pay off.

Theorem 3.2. Let Z be a central ideal in L. Then $L' \cap Z$ is isomorphic to the image of $\text{Hom}(Z, \mathbb{F})$ under the transgression map. In particular, if Tra is surjective, then $L' \cap Z \cong \mathcal{H}^2(L/Z, \mathbb{F})$.

Proof. Let $0 \to Z \to L \to L/Z \to 0$ be the natural exact sequence for a central ideal Z in L. Then the sequence $\text{Hom}(L, \mathbb{F}) \xrightarrow{\text{Res}} \text{Hom}(Z, \mathbb{F}) \xrightarrow{\text{Tra}} \mathcal{H}^2(L/Z, \mathbb{F})$ is exact by Theorem 3.1. Let J denote the set of all homomorphisms $\chi : Z \to \mathbb{F}$ such that χ can be extended to an element of $\text{Hom}(L, \mathbb{F})$. Then J is precisely the image of the restriction map in $\text{Hom}(Z, \mathbb{F})$, which is equal to the kernel of the transgression map by exactness. This means that $\text{Hom}(Z, \mathbb{F})/J \cong \text{Im}(\text{Tra})$ and thus it suffices to show that $\text{Hom}(Z, \mathbb{F})/J \cong L' \cap Z$.

Consider the natural restriction homomorphism $\text{Res}_2 : \text{Hom}(Z, \mathbb{F}) \to \text{Hom}(L' \cap Z, \mathbb{F})$. Since Z and $L' \cap Z$ are both abelian, Res_2 is surjective and $\text{Hom}(L' \cap Z, \mathbb{F})$ is the dual space of $L' \cap Z$. Therefore

$$\frac{\text{Hom}(Z, \mathbb{F})}{\ker(\text{Res}_2)} \cong \text{Hom}(L' \cap Z, \mathbb{F}) \cong L' \cap Z$$

and it remains to show that $J \cong \ker(\text{Res}_2)$. For one direction, consider an element $\chi \in J$ with extension $\hat{\chi} \in \text{Hom}(L, \mathbb{F})$. Then $L' \subseteq \ker \hat{\chi}$ since \mathbb{F} is abelian, which implies that $L' \cap Z \subseteq \ker \chi$. Thus $\chi \in \ker(\text{Res}_2)$ and we have $J \subseteq \ker(\text{Res}_2)$. Conversely, let $\chi \in \ker(\text{Res}_2)$. Then $\chi \in \text{Hom}(Z, \mathbb{F})$ is such that $L' \cap Z \subseteq \ker \chi$, which implies that χ induces a homomorphism $\hat{\chi}' : Z \to \mathbb{F}$.
defined by $\chi'(z + (L' \cap Z)) = \chi(z)$. Since

$$\frac{Z}{L' \cap Z} \cong \frac{Z + L'}{L'},$$

there exists a homomorphism

$$\chi^\prime : \frac{Z + L'}{L'} \to \mathbb{F}$$

defined by $\chi''(z + L') = \chi'(z + (L' \cap Z))$. But χ'' can be extended to a homomorphism $\chi''' : L/L' \to \mathbb{F}$ which is defined by $\chi'''(x + L') = \chi''(x + L')$ for all $x \in Z$. Since L/L' is abelian, χ''' can be extended to a homomorphism $\hat{\chi} : L \to \mathbb{F}$ which is defined by $\hat{\chi}(x) = \chi'''(x + L')$. Therefore $\chi \in J$ and the first statement holds. The second statement holds since Tra maps $\text{Hom}(Z, \mathbb{F})$ to $\mathcal{H}^2(L/Z, \mathbb{F})$.

Let L be a Leibniz algebra with free presentation $0 \to R \xrightarrow{\omega} F \xrightarrow{\phi} L \to 0$. The induced sequence

$$0 \to \frac{R}{FR + RF} \xrightarrow{F} \frac{F}{FR + RF} \to L \to 0$$

is a central extension since RF and FR are both contained in $FR + RF$. It is not unique, but has the following property.

Lemma 3.3. Let $0 \to A \to B \xrightarrow{\alpha} C \to 0$ be a central extension and $\alpha : L \to C$ be a homomorphism. Then there exists a homomorphism $\beta : F/(FR + RF) \to B$ such that

$$\begin{array}{ccc}
0 & \to & \frac{R}{FR + RF} \\
\downarrow{\gamma} & & \downarrow{\beta} \\
0 & \to & A \\
\downarrow{\alpha} & & \downarrow{\phi} \\
0 & \to & B & \xrightarrow{\phi} & C & \to 0
\end{array}$$

is commutative, where γ is the restriction of β to $R/(FR + RF)$.

Proof. Since F is free, there exists a homomorphism $\sigma : F \to B$ such that

$$\begin{array}{ccc}
F & \xrightarrow{\omega} & L \\
\downarrow{\sigma} & & \downarrow{\alpha} \\
B & \xrightarrow{\phi} & C
\end{array}$$

is commutative. Let $r \in R \subseteq F$. Then $\omega(r) = 0$ since $\ker \omega = R$. Therefore $0 = \alpha \circ \omega(r) = \phi \circ \sigma(r)$ and so $\sigma(R) \subseteq \ker \phi$. We want to show that $FR + RF \subseteq \ker \sigma$. If $x \in F$ and $r \in R$, then $\sigma(xr) = \sigma(x)\sigma(r) = 0$ and $\sigma(rx) = \sigma(r)\sigma(x) = 0$ since $\sigma(r) \in \ker \phi = A \subseteq Z(B)$. Now σ induces a homomorphism $\beta : F/(FR + RF) \to B$. The left diagram commutes since we may take $A \to B$ to be the inclusion map.

Lemma 3.4. Let $0 \to R \to F \to L \to 0$ be a free presentation of L and let A be a central L-module. Then the transgression map $\text{Tra} : \text{Hom}(R/(FR + RF), A) \to \mathcal{H}^2(L, A)$ associated with

$$0 \to \frac{R}{FR + RF} \xrightarrow{F} \frac{F}{FR + RF} \xrightarrow{\phi} L \to 0$$

is surjective.
Proof. Consider \(\overline{f} \in \mathcal{H}^2(L, A) \) and let \(0 \to A \to E \xrightarrow{\phi} L \to 0 \) be an associated central extension. By Lemma 3.3, there exists a homomorphism \(\theta \) such that

\[
\begin{array}{cccccc}
0 & \to & R_{FR+RF} & \to & F_{FR+RF} & \phi \\
\downarrow & & \downarrow & & \downarrow & \\
0 & \to & A & \to & E & \varphi \\
& & & & \downarrow & \\
& & & & \leftarrow & \\
& & & & id & \\
\end{array}
\]

is commutative and \(\gamma = \theta|_{R/(FR+RF)} \). Let \(\mu \) be a section of \(\phi \). Then \(\varphi \circ \theta \circ \mu = \phi \circ \mu = id_L \) and so \(\theta \circ \mu \) is a section of \(\varphi \). Let \(\lambda = \theta \circ \mu \) and define \(\beta(x, y) = \lambda(x)\lambda(y) - \lambda(xy) \). Then \(\beta \in \mathcal{Z}^2(L, A) \) and \(\beta \) is cohomologous with \(g \) since they are associated with the same extension. One computes

\[
\begin{align*}
\beta(x, y) &= \theta(\mu(x))\theta(\mu(y)) - \theta(\mu(xy)) \\
&= \theta(\mu(x)\mu(y) - \mu(xy)) \\
&= \gamma(\mu(x)\mu(y) - \mu(xy)) \\
&= \gamma(f(x, y))
\end{align*}
\]

where \(f(x, y) = \mu(x)\mu(y) - \mu(xy) \) and \(\gamma = \theta|_{R/(FR+RF)} \). Thus \(\text{Tra}(\gamma) = \overline{\gamma} = \overline{f} = \overline{\beta} = \overline{g} \). \(\square \)

Lemma 3.5. If \(C \subseteq A \) and \(C \subseteq B \), then \(A/C \cap B/C = (A \cap B)/C \).

Proof. Clearly \((A\cap B)/C \subseteq A/C \cap B/C \). Let \(x \in A/C \cap B/C \). Then \(x = a + c_1 = b + c_2 \) for \(a \in A \), \(b \in B \), and \(c_1, c_2 \in C \). Since \(C \subseteq B \), \(a = b + c_2 - c_1 \in B \), which implies that \(a \in A \cap B \). Then \(x = a + c \in (A \cap B)/C \) and so \(A/C \cap B/C \subseteq (A \cap B)/C \). \(\square \)

Theorem 3.6. Let \(L \) be a Leibniz algebra over a field \(\mathbb{F} \) and \(0 \to R \to F \to L \to 0 \) be a free presentation of \(L \). Then

\[
\mathcal{H}^2(L, \mathbb{F}) \cong F' \cap R_{FR+RF}.
\]

In particular, if \(L \) is finite-dimensional, then \(M(L) \cong \mathcal{H}^2(L, \mathbb{F}) \).

Proof. Let \(\overline{R} = R/(FR+RF) \) and \(\overline{F} = F/(FR+RF) \). Then \(0 \to \overline{R} \to \overline{F} \to L \to 0 \) is a central extension. By Lemma 3.4,

\[
\text{Tra} : \text{Hom}(\overline{R}, \mathbb{F}) \to \mathcal{H}^2(L, \mathbb{F})
\]

is surjective. By Theorem 3.2,

\[
\overline{F}' \cap \overline{R} \cong \mathcal{H}^2(\overline{F}/\overline{R}, \mathbb{F}) \cong \mathcal{H}^2(L, \mathbb{F}).
\]

By Lemma 3.5,

\[
\overline{F}' \cap \overline{R} \cong \frac{F'}{FR+RF} \cap \frac{R}{FR+RF} = \frac{F' \cap R}{FR+RF}.
\]

Therefore,

\[
M(L) = \frac{F' \cap R}{FR+RF} \cong \mathcal{H}^2(L, \mathbb{F})
\]

by the characterization of \(M(L) \) from Theorem 2.1. \(\square \)

Thus is the multiplier \(M(L) \) characterized by \(\mathcal{H}^2(L, \mathbb{F}) \). We have now proven the main result of Batten’s Chapter 3 for the Leibniz case. We conclude this section with the Leibniz analogue of a corollary which appears at the end of said chapter.
Corollary 3.7. For any cover \(E \) of \(L \) and any subalgebra \(A \) of \(E \) satisfying

1. \(A \subseteq Z(E) \cap E' \),
2. \(A \cong M(L) \),
3. \(L \cong E/A \),

the associated transgression map \(\text{Tra} : \text{Hom}(A, F) \to M(L) \) is bijective.

Proof. First note that \(0 \to A \to E \to L \to 0 \) is a central extension of \(L \). Invoking the Hochschild-Serre spectral sequence yields

\[
0 \to \text{Hom}(L, F) \xrightarrow{\text{Inf}_1} \text{Hom}(E, F) \xrightarrow{\text{Res}} \text{Hom}(A, F) \xrightarrow{\text{Tra}} \mathcal{H}^2(L, F) \xrightarrow{\text{Inf}_2} \mathcal{H}^2(E, F)
\]

with \(\text{Im}(\text{Res}) = \ker(\text{Tra}) \). Furthermore, any \(\theta \in \text{Hom}(E, F) \) yields \(\text{Res}(\theta) \in \text{Hom}(A, F) \). Now let \(a \in A \subseteq E' \). Then \(a = e_1e_2 \) for some \(e_1, e_2 \in E \) which implies that \(\text{Res}(\theta(a)) = \text{Res}(\theta(e_1)\theta(e_2)) = \text{Res}(0) = 0 \). Thus \(\text{Im}(\text{Res}) = 0 \), making \(\ker(\text{Tra}) = 0 \), and so \(\text{Tra} \) injective. Since \(\text{Hom}(A, F) \cong A \cong M(L) \), \(\text{Tra} \) is bijective. \(\square \)

4 Unicentral Leibniz Algebras

Let \(L \) be a Leibniz algebra. The objective of this section is to develop criteria for when the center of any cover of \(L \) maps onto the center of \(L \). One of these criteria will take the form of \(Z(L) \subseteq Z^*(L) \), where \(Z^*(L) \) denotes the intersection of all images \(\omega(Z(E)) \) such that \(0 \to \ker \omega \to E \xrightarrow{\omega} L \to 0 \) is a central extension of \(L \). It is easy to see that \(Z^*(L) \subseteq Z(L) \). We say a Leibniz algebra \(L \) is **unicentral** if \(Z(L) = Z^*(L) \). To prove our result, we will establish conditions for a more general central ideal \(Z \) in \(L \) before specializing to \(Z(L) \).

4.1 Sequences

We begin by extending our Hochschild-Serre sequence. Let \(Z \) be a central ideal in \(L \) and consider the natural central extension \(0 \to Z \to L \to L/Z \to 0 \). To define our \(\delta \) map, consider a cocycle \(f' \in Z^2(L, \mathbb{F}) \) and define two bilinear forms \(f_1' : L/L' \times Z \to \mathbb{F} \) and \(f_2' : Z \times L/L' \to \mathbb{F} \) by

\[
f_1''(x + L', z) = f'(x, z)
f_2''(z, x + L') = f'(z, x)
\]

for \(x \in L \) and \(z \in Z \). To check that they are well-defined, one computes

\[
f_1''(xy + L', z) = f'(xy, z)
= f'(x, yz) - f'(y, xz)
= 0
\]

and

\[
f_2''(z, xy + L') = f'(z, xy)
= f'(x, zy) - f(xz, y)
= 0
\]

since \(z \in Z(L) \). Hence \((f_1'', f_2'') \in \text{Bil}(L/L' \times Z, \mathbb{F}) \oplus \text{Bil}(Z \times L/L', \mathbb{F}) \cong L/L' \otimes Z \oplus Z \otimes L/L' \). Now consider a coboundary \(f' \in \mathcal{B}^2(L, \mathbb{F}) \). By definition, there exists a linear map \(\varepsilon : L \to \mathbb{F} \) such that \(f'(x, y) = -\varepsilon(xy) \). One computes \(f_1'(x + L', z) = f'(x, z) = -\varepsilon(xz) = 0 \) and \(f_2'(z, x + L') = f'(z, x) = -\varepsilon(zx) = 0 \) since \(z \in Z(L) \). Hence, a map \(\delta : f' + \mathcal{B}^2(L, \mathbb{F}) \to (f_1'', f_2'') \) is induced which is clearly linear since \(f' \), \(f_1'' \), and \(f_2'' \) are all in vector spaces of bilinear forms and the latter two are defined by \(f' \).

7
Theorem 4.1. Let Z be a central ideal of Leibniz algebra L. The sequence
\[\mathcal{H}^2(L/Z, \mathbb{F}) \xrightarrow{\text{Inf}} \mathcal{H}^2(L, \mathbb{F}) \xrightarrow{\delta} L/L' \otimes Z \oplus Z \otimes L/L' \]
is exact.

Proof. Let $f \in \mathcal{Z}^2(L/Z, \mathbb{F})$. Then $\text{Inf}(f + \mathcal{B}^2(L/Z, \mathbb{F})) = f' + \mathcal{B}^2(L, \mathbb{F})$ where f' is the cocycle defined by $f'(x, y) = f(x + Z, y + Z)$. We also have $\delta(f' + \mathcal{B}^2(L, \mathbb{F})) = (f''_1, f''_2)$ where, for all $x \in L$ and $z \in Z$,
\[f''_1(x + L', z) = f'(x, z) = f(x + Z, z + Z) = 0, \]
\[f''_2(z, x + L') = f'(z, x) = f(z + Z, x + Z) = 0, \]
which implies that $\delta(\text{Inf}(f + \mathcal{B}^2(L/Z, \mathbb{F}))) = (f''_1, f''_2) = (0, 0)$. Therefore $\text{Im}(\text{Inf}) \subseteq \text{ker} \delta$.

Conversely, suppose $f' \in \mathcal{Z}^2(L, \mathbb{F})$ is such that $\delta(f' + \mathcal{B}^2(L, \mathbb{F})) = (f''_1, f''_2) = (0, 0)$. Then, for all $x \in L$ and $z \in Z$, one has $0 = f''_1(x + L', z) = f'(x, z)$ and $0 = f''_2(z, x + L') = f'(z, x)$. Hence, for all $z, z' \in Z$ and $x, y \in L$, one computes
\[f'(x + z, y + z') = f'(x, y) + f''_1(x + L', z') + f''_2(z, y + L') + f''_1(z + L', z') \]
which yields a bilinear form $g : L/Z \times L/Z \to \mathbb{F}$, defined by $g(x + Z, y + Z) = f'(x, y)$, that is well-defined. Furthermore, $g \in \mathcal{Z}^2(L/Z, \mathbb{F})$ since f' is a cocycle. Thus $\text{Inf}(g + \mathcal{B}^2(L/Z, \mathbb{F})) = f' + \mathcal{B}^2(L, \mathbb{F})$ and so $\text{ker} \delta \subseteq \text{Im}(\text{Inf})$. \hfill \Box

Theorem 4.2. (Ganea Sequence) Let Z be a central ideal in a finite-dimensional Leibniz algebra L. Then the sequence
\[L/L' \otimes Z \oplus Z \otimes L/L' \to M(L) \to M(L/Z) \to L' \cap Z \to 0 \]
is exact.

Proof. Let F be a free Leibniz algebra such that $L = F/R$ and $Z = T/R$ for some ideals T and R of F. Since $Z \subseteq Z(L)$, one has $T/R \subseteq Z(F/R)$ and $FT + TF \subseteq R$. Inclusion maps $\beta : R \cap F' \to T \cap F'$ and $\gamma : T \cap F' \to T \cap (F' + R)$ induce homomorphisms
\[\frac{R \cap F'}{FR + RF} \xrightarrow{\beta} \frac{T \cap F'}{FT + TF} \xrightarrow{\gamma} \frac{T \cap (F' + R)}{R} \to 0. \]
Since $R \subseteq T$, one has
\[\frac{T \cap (F' + R)}{R} = \frac{(T + R) \cap (F' + R)}{R} \cong \frac{(T \cap F') + R}{R} \]
which implies that γ is surjective. By Theorem 211
\[M(L) \cong \frac{R \cap F'}{FR + RF} \quad \text{and} \quad M(L/Z) \cong \frac{T \cap F'}{FT + TF}. \]
Also
\[L' \cap Z \cong (F/R)' \cap (T/R) \cong \frac{F' + R}{R} \cap \frac{T}{R} \cong \frac{(F' + R) \cap T}{R}. \]
Therefore, the sequence $M(L/Z) \xrightarrow{\gamma} L' \cap Z \rightarrow 0$ is exact. Since
\[
\ker \gamma = \frac{(T \cap F') \cap R}{FT + TF} = \frac{R \cap F'}{FT + TF} = \text{Im } \beta,
\]
the sequence $M(L) \xrightarrow{\beta} M(L/Z) \xrightarrow{\gamma} L' \cap Z$ is exact.

It remains to show that $L/L' \otimes Z \oplus Z \otimes L/L' \rightarrow M(L) \xrightarrow{\beta} M(L/Z)$ is exact. Define a pair of maps
\[
\begin{align*}
\theta_1 : & \frac{F}{R + F'} \times \frac{T}{R} \rightarrow \frac{R \cap F'}{FR + RF'}, \\
\theta_2 : & \frac{T}{R} \times \frac{F}{R + F'} \rightarrow \frac{R \cap F'}{FR + RF'}
\end{align*}
\]
by $\theta_1(f + (R + F'), t + R) = ft + (FR + RF)$ and $\theta_2(t + R, f + (R + F')) = tf + (FR + RF)$. Both are bilinear because multiplication is bilinear. To check that θ_1 and θ_2 are well-defined, suppose $(f + (R + F'), t + R) = (f' + (R + F'), t' + R)$ for $t, t' \in T$ and $f, f' \in F$. Then $t - t' \in R$ and $f - f' \in R + F'$ which implies that $t = t' + r$ for $r \in R$ and $f = f' + x$ for $x \in R + F'$. One computes
\[
\begin{align*}
t f - t' f' &= (t' + r)(f' + x) - t' f' \\
&= t' x + r f' + r x
\end{align*}
\]
and
\[
\begin{align*}
f t - f' t' &= (f' + x)(t' + r) - f' t' \\
&= x t' + f' r + x r
\end{align*}
\]
which both fall in $FR + RF$ by the Leibniz identity and the fact that $FT + TF \subseteq R$. Thus θ_1 and θ_2 are well-defined, and so induce linear maps
\[
\begin{align*}
\overline{\theta}_1 : & \frac{F}{R + F'} \otimes \frac{T}{R} \rightarrow \frac{R \cap F'}{FR + RF'}, \\
\overline{\theta}_2 : & \frac{T}{R} \otimes \frac{F}{R + F'} \rightarrow \frac{R \cap F'}{FR + RF'}
\end{align*}
\]
These, in turn, yield a linear transformation
\[
\overline{\theta} : \frac{F}{R + F'} \otimes \frac{T}{R} \otimes \frac{T}{R} \otimes \frac{F}{R + F'} \rightarrow \frac{R \cap F'}{FR + RF'}
\]
defined by $\overline{\theta}(a, b) = \overline{\theta}_1(a) + \overline{\theta}_2(b)$. The image of $\overline{\theta}$ is
\[
\frac{FT + TF}{FR + RF}
\]
which is precisely equal to $\{x + (FR + RF) \mid x \in R \cap F', x \in FT + TF\} = \ker \beta$. Thus the sequence
\[
\frac{F}{R + F'} \otimes \frac{T}{R} \oplus \frac{T}{R} \otimes \frac{F}{R + F'} \cong L/L' \otimes Z \oplus Z \otimes L/L' \rightarrow \frac{R \cap F'}{FR + RF} \cong M(L)
\]
\[
\rightarrow \frac{F' \cap T}{FT + TF} \cong M(L/Z)
\]
is exact. \qed
Corollary 4.3. (Stallings Sequence) Let Z be a central ideal of a Leibniz algebra L. Then the following map is exact:

$$M(L) \to M(L/Z) \to Z \to L/L' \to \frac{L}{Z+L'} \to 0.$$

Proof. Let F be a free Leibniz algebra such that $L = F/R$ and $Z = T/R$ for ideals T and R of F. Then $FT + TF \subseteq R$ since $Z \subseteq Z(L)$. The inclusion maps $R \cap F' \to T \cap F' \to T \to F \to F'$ induce the following sequence of homomorphisms:

$$\frac{R \cap F'}{FR + RF} \xrightarrow{\beta} \frac{T \cap F'}{FT + TF} \xrightarrow{\theta} \frac{T}{R} \xrightarrow{\alpha} \frac{F}{R + F'} \xrightarrow{\omega} \frac{F}{T + F'} \xrightarrow{\gamma} 0$$

To prove exactness for our desired sequence, we make use of the following facts:

1. $M(L) \cong \frac{R \cap F'}{FR + RF}$,
2. $M(L/Z) \cong \frac{T \cap F'}{FT + TF}$,
3. $Z \cong T/R$,
4. $\frac{F}{R + F'} \cong L/L'$,
5. $\frac{F}{T + F'} = \frac{F}{T + F'} \cong \frac{(F/R)/(T + F'/R)}{R} \cong \frac{F}{T + (F'+R)/R} \cong \frac{L}{Z+L'}$.

Thus do the following equalities suffice for this proof:

i. $\ker \theta = \{x + (FT + TF) \mid x \in T \cap F', \ x \in R\} = \frac{R \cap (F')}{FT + TF} = \frac{FR + RF'}{FR + RF} = \text{Im } \beta$,

ii. $\ker \alpha = \{x + R \mid x \in T, \ x \in (R + F')\} = \frac{T \cap (R + F')}{R} = \frac{R + (T \cap F')}{R} = \text{Im } \theta$,

iii. $\ker \omega = \{x + (R + F') \mid x \in F, \ x \in (T + F')\} = \frac{F \cap (T + F')}{R + F'} = \frac{T + F'}{R + F'} = \text{Im } \alpha$,

iv. $\ker \gamma = \frac{F}{T + F'} = \text{Im } \omega$.

4.2 The Main Result

In the previous subsection, we defined maps δ and β that appeared in the extended Hochschild-Serre and Ganea sequences respectively. The latter of these is called the natural map. The following statements, two of which involve these maps, make up the conditions of our four-part theorem.

1. δ is the trivial map,
2. β is injective,
3. $M(L) \cong \frac{M(L/Z)}{L \cap Z}$,
4. $Z \subseteq Z^*(L)$.

The following pair of lemmas shows that the first three are equivalent.
Lemma 4.4. Let Z be a central ideal of finite-dimensional Leibniz algebra L and let $\delta : M(L) \to L/L' \otimes Z \oplus Z \otimes L/L'$ be as in Theorem 4.1. Then

$$M(L) \cong \frac{M(L/Z)}{L' \cap Z}$$

if and only if δ is the trivial map. Here we have identified $L' \cap Z$ with its image in $M(L/Z)$.

Proof. We invoke Theorems 3.1 and 3.1 yielding an exact sequence

$$0 \to \text{Hom}(L/Z, \mathbb{F})^{\text{Inf}_1} \to \text{Hom}(L, \mathbb{F})^{\text{Res}} \to \text{Hom}(Z, \mathbb{F})^{\text{Tra}} \to M(L/Z)^{\text{Inf}_2} \to M(L) \delta \to L/L' \otimes Z \oplus Z \otimes L/L'.$$

In one direction, suppose δ is the zero map. Then $M(L) \cong \ker \delta \cong \text{Im}(\text{Inf}_2)$. Since

$$\text{Im}(\text{Inf}_2) \cong \frac{M(L/Z)}{\ker(\text{Inf}_2)},$$

and $\ker(\text{Inf}_2) = \text{Im}(\text{Tra}) \cong L' \cap Z$ by Theorem 3.2 we have

$$M(L) \cong \frac{M(L/Z)}{L' \cap Z}.$$

Conversely, the isomorphism

$$M(L) \cong \frac{M(L/Z)}{L' \cap Z} \cong \frac{M(L/Z)}{\ker(\text{Inf}_2)} \cong \text{Im}(\text{Inf}_2) \cong \ker \delta$$

implies that δ is trivial.

Lemma 4.5. Let Z be a central ideal of a finite-dimensional Leibniz algebra L and let $\beta : M(L) \to M(L/Z)$ be as in Theorem 4.2. Then

$$M(L) \cong \frac{M(L/Z)}{L' \cap Z}$$

if and only if β is injective.

Proof. By Theorem 4.2 the sequence $M(L) \xrightarrow{\beta} M(L/Z) \xrightarrow{\alpha} L' \cap Z \xrightarrow{\omega} 0$ is exact. Suppose β is injective. Then $\ker \beta = 0$, which implies that

$$M(L) \cong \text{Im} \beta \cong \ker \alpha \cong \frac{M(L/Z)}{\text{Im} \alpha} = \frac{M(L/Z)}{\ker \omega} \cong \frac{M(L/Z)}{L' \cap Z}.$$

Conversely, the isomorphism

$$M(L) \cong \frac{M(L/Z)}{L' \cap Z} \cong \text{Im} \beta$$

implies that β is injective.

It remains to show that these conditions are equivalent to $Z \subseteq Z^*(L)$. This will lead to criteria for when $\omega(Z(E)) = Z(L)$, where E is any cover of L and $0 \to \ker \omega \to E \xrightarrow{\omega} L \to 0$ is a central extension. Such an extension is called a stem extension, i.e., a central extension $0 \to A \to B \to C \to 0$ for which $A \subseteq B'$.
Consider a free presentation $0 \to R \to F \xrightarrow{\pi} L \to 0$ of L and let \overline{X} denote the quotient algebra $\frac{X}{FR+RF}$ for any X such that $FR+RF \subseteq X \subseteq F$. Since $R = \ker \pi$ and $FR+RF \subseteq R$, π induces a homomorphism $\overline{\pi} : \overline{F} \to L$ such that the diagram

$$
\begin{array}{ccc}
F & \xrightarrow{\pi} & L \\
\downarrow & & \downarrow \\
\overline{F} & \xrightarrow{\overline{\pi}} & \overline{L}
\end{array}
$$

commutes. Since $R \subseteq Z(\overline{L})$, there exists a complement $\frac{S}{FR+RF}$ to $\frac{R}{FR+RF}$ such that $S \subseteq R \subseteq \ker \pi$ and $S \subseteq R \subseteq \ker \overline{\pi}$. Thus $\overline{\pi}$ induces a homomorphism $\pi_S : F/S \to L$ and a central extension $0 \to R/S \to F/S \xrightarrow{\pi_S} L \to 0$. This extension is stem since $R/S \cong \frac{R \cap E'}{FR+RF} = \ker \pi_S$ implies that F/S is a cover of L.

Lemma 4.6. For every free presentation $0 \to R \to F \xrightarrow{\pi} L \to 0$ of L and every central extension $0 \to \ker \omega \to E \xrightarrow{\omega} L \to 0$, one has $\overline{\pi}(Z(\overline{F})) \subseteq \omega(Z(E))$.

Proof. Since the identity map $\text{id} : L \to L$ is a homomorphism, we can invoke Lemma 3.13 yielding a homomorphism $\beta : \overline{F} \to E$ such that the diagram

$$
\begin{array}{ccc}
0 & \to & \frac{F}{FR+RF} \\
\gamma & \downarrow & \downarrow \beta \\
0 & \to & \frac{E}{FR+RF}
\end{array}
$$

is commutative (where γ is the restriction of β to \overline{F}).

Let $A = \ker \omega$. Our first claim is that $E = A + \beta(\overline{F})$. Indeed, let $e \in E$. Then $\omega(e) = \overline{\pi}(f)$ for some $f \in \overline{F}$, and so $\omega(e) = \omega \circ \beta(f)$ by diagram commutativity. This implies that $e - \beta(f) \in \ker \omega = A$, meaning $e - \beta(f) = a$ for some $a \in A$. Thus $e = a + \beta(f)$.

Our second claim is that $\beta(Z(\overline{F}))$ centralizes both A and $\beta(\overline{F})$. To see this, one first computes $\beta(Z(\overline{F}))\beta(\overline{F}) = \beta(Z(F)F) = \beta(0) = 0$ and $\beta(\overline{F})\beta(Z(\overline{F})) = \beta(FZ(\overline{F})) = \beta(0) = 0$. Next, we know that AE and EA are both zero, and so $A\beta(Z(\overline{F}))$ and $\beta(Z(\overline{F}))A$ are zero as well. But this implies that $\beta(Z(\overline{F}))$ centralizes E by the first claim. Hence $\beta(Z(\overline{F})) \subseteq Z(E)$ and $\omega \circ \beta(Z(\overline{F})) \subseteq \omega(Z(E))$, which yields $\overline{\pi}(Z(\overline{F})) \subseteq \omega(Z(E))$.

Theorem 4.7. For every free presentation $0 \to R \to F \xrightarrow{\pi} L \to 0$ of L and every stem extension $0 \to \ker \omega \to E \xrightarrow{\omega} L \to 0$, one has $Z^*(L) = \overline{\pi}(Z(\overline{F})) = \omega(Z(E))$.

Proof. By Lemma 4.6, $\overline{\pi}(Z(\overline{F}))$ is contained in $\omega'(Z(E'))$ for every central extension $0 \to \ker \omega' \to E' \xrightarrow{\omega'} L \to 0$. Thus $\overline{\pi}(Z(\overline{F})) \subseteq \omega(Z(E))$ for our stem extension. We also know that $Z^*(L)$ is the intersection of all images $\omega'(Z(E'))$, and that $\overline{\pi}(Z(\overline{F}))$ is one of these images since $0 \to \overline{R} \to \overline{F} \xrightarrow{\overline{\pi}} L \to 0$ is central. Therefore $\overline{\pi}(Z(\overline{F})) = Z^*(L)$. Since this equality holds for all F, we can assume that $0 \to R/S \to F/S \xrightarrow{\pi_S} L \to 0$ is a stem extension where S is defined as above. Since the cover F/S is unique up to isomorphism, it now suffices to show that $\pi_S(Z(F/S)) = \overline{\pi}(Z(\overline{F}))$.

Let T be the inverse image of $Z(F/S)$ in F and consider the commutative diagram

$$
\begin{array}{ccc}
F & \xrightarrow{\pi_S} & F/S \\
\downarrow & & \downarrow \\
\overline{F} & \xrightarrow{\overline{\pi}} & \overline{F/S}
\end{array}
$$

12
where all mappings are the natural ones. Then $\overline{T} = \pi_1(T)$ by definition and $\pi_2(\overline{T}) = \pi_2 \circ \pi_1(T) = \pi_3(T) = Z(F/S)$, yielding the diagram

$$
\begin{array}{ccc}
T & \xrightarrow{\pi_3} & Z(F/S) \\
\downarrow{\pi_1} & & \downarrow{\pi_2} \\
\overline{T} & \xrightarrow{\pi_3} & \pi_3(T) = Z(F/S)
\end{array}
$$

where all maps denote their restrictions. Now let $x \in Z(F)$. Then $\pi_2(x) \in Z(F/S)$, which implies that there exists $y \in T$ such that $\pi_3(y) = \pi_2(x)$. The resulting equality $\pi_2 \circ \pi_1(y) = \pi_2(x)$ yields an element $\pi_1(y) - x \in \ker\pi_2 = S \subseteq \overline{T}$, where $S \subseteq \overline{T}$ since $S \subseteq T$. Therefore $x \in \overline{T}$ and $Z(\overline{T}) \subseteq \overline{T}$. For the reverse inclusion, we first note that $T/S = Z(F/S)$, and so $FT + TF \subseteq S$. Thus $\overline{FT} + \overline{TF} \subseteq \overline{S}$. Also $\overline{FT} + \overline{TF} \subseteq \overline{R}$ since $\overline{S} \subseteq \overline{R}$ and $\overline{FT} + \overline{TF} \subseteq \overline{F}$ by definition. Hence $\overline{FT} + \overline{TF} \subseteq \overline{S} \cap (\overline{R} \cap \overline{F}) = 0$ which implies that $\overline{T} \subseteq Z(\overline{F})$ and thus $\overline{T} = Z(\overline{F})$. Thus, the commutative diagram

$$
\begin{array}{ccc}
F & \xrightarrow{\pi} & L \\
\downarrow{\pi} & & \downarrow{\pi} \\
F/S & \xrightarrow{\pi_2} & L/S
\end{array}
$$

yields the equality $\overline{\pi}(Z(F)) = \overline{\pi}(T) = \pi_3(T/S) = \pi_3(Z(F/S))$ by the definition of T. \hfill \Box

Lemma 4.8. Let Z be a central ideal of finite-dimensional Leibniz algebra L and let $\beta : M(L) \to M(L/Z)$ be as in Theorem 4.2. Then $Z \subseteq Z^*(L)$ if and only if β is injective.

Proof. In the proof of the Ganea sequence, we saw that $\ker\beta$ can be interpreted as $\overline{FT} + \overline{TF}$. If β is injective, then $\overline{FT} + \overline{TF} = 0$, which implies that $\overline{F} \subseteq Z(\overline{F})$. By the proof of Theorem 4.7, $Z \subseteq Z^*(L)$. Conversely, if $Z \subseteq Z^*(L)$, then $\overline{F} \subseteq Z(\overline{F})$, which implies that $\overline{FT} + \overline{TF} = 0$. Thus $\ker\beta = 0$ and β is injective. \hfill \Box

Theorem 4.9. Let Z be a central ideal of a finite-dimensional Leibniz algebra L and

$$
\delta : M(L) \to L/L' \otimes Z \oplus Z \otimes L/L'
$$

be as in Theorem 4.1. Then the following are equivalent:

1. δ is the trivial map,
2. the natural map β is injective,
3. $M(L) \cong M(L/Z)_{L/Z}$,
4. $Z \subseteq Z^*(L)$.

We conclude this section by narrowing our focus to when the conditions of Theorem 4.9 hold for $Z = Z(L)$.

Theorem 4.10. Let L be a Leibniz algebra and $Z(L)$ be the center of L. If $Z(L) \subseteq Z^*(L)$, then $\omega(Z(E)) = Z(L)$ for every stem extension $0 \to \ker\omega \to E \xrightarrow{\omega} L \to 0$.

Proof. By definition, $Z^*(L) \subseteq \omega(Z(E)) \subseteq Z(L)$ for any stem extension $0 \to \ker\omega \to E \xrightarrow{\omega} L \to 0$. By hypothesis, $Z(L) \subseteq Z^*(L)$. Therefore $Z^*(L) = \omega(Z(E)) = Z(L)$. \hfill \Box
Acknowledgements

The author would like to thank Ernest Stitzinger for the many helpful discussions.

References

[1] Batten, Peggy. “Covers and multipliers of Lie algebras,” Dissertation, North Carolina State University, 1993.

[2] Mainellis, Erik. “Nonabelian Extensions and Factor Systems for the Algebras of Loday.” 2021. arXiv:2105.00116 (to appear in *Communications in Algebra*).

[3] Rogers, Elyse. “Multipliers and covers of Leibniz algebras,” Dissertation, North Carolina State University, 2019.