Recombinant factor VIIa for variceal bleeding in liver cirrhosis: still only a hope

Xingshun Qi¹, Chun Ye², Xiaozhong Guo¹

¹Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
²Department of General Surgery, General Hospital of Shenyang Military Area, Shenyang, China

Submitted: 10 February 2015
Accepted: 6 April 2015

Arch Med Sci 2017; 13, 2: 496–499
DOI: https://doi.org/10.5114/aoms.2017.65331
Copyright © 2017 Termedia & Banach

At present, recombinant activated coagulation factor VII (rFVIIa) is approved for the treatment of hemophilia A and B [1, 2]. The use of rFVIIa may also be considered as an adjunctive treatment option for blunt trauma, post-partum hemorrhage, uncontrolled bleeding in surgical patients, and bleeding after cardiac surgery [3]. However, the use of rFVIIa for the treatment of upper gastrointestinal bleeding remains controversial, especially in cirrhotic patients. Several small-scale studies suggest that rFVIIa can effectively correct the coagulation status in patients with liver diseases without any severe adverse events, thereby decreasing the risk of bleeding related to percutaneous approaches, such as liver biopsy (Table I) [4–8]. On the other hand, rFVIIa can achieve hemostasis in patients with liver cirrhosis [9]. A small case series reported by Romero-Castro et al. analyzed the hemostatic efficacy of 4.8 mg rFVIIa in 8 cirrhotic patients with severe active bleeding from esophageal varices [7]. The rates of hemostasis, rebleeding, and mortality were 100% (8/8), 25% (2/8), and 50% (4/8), respectively. However, two multicenter, double-blinded, randomized controlled trials (RCTs) by Bosch et al. achieved negative results regarding the efficacy and safety of rFVIIa for the treatment of upper gastrointestinal bleeding (UGIB) in cirrhotic patients [10, 11].

In the first RCT, 245 cirrhotic patients with active UGIB requiring hospitalization and volume replacement therapy were randomized into the rFVIIa and placebo groups between April 2001 and April 2002 [10]. The source of UGIB was variceal in 66% of patients, non-variceal in 29%, and unknown in 5%. Among them, 118 patients treated with rFVIIa and 119 patients treated with placebo were finally analyzed for the primary outcome. A composite primary endpoint was composed of the failure to control acute bleeding within 24 h after the first dose of trial product, failure to prevent rebleeding between 24 h and 5 days, and death over a 5-day trial period. The overall analysis found that the primary endpoint was not significantly different between rFVIIa and placebo groups (14% (16/1180) vs. 16% (19/119), \(p = 0.72 \)). The subgroup analysis of a high-risk population (i.e., variceal bleeders with Child-Pugh class B-C) demonstrated that the rate of primary endpoint was significantly higher in the rFVIIa group than in the placebo group (8% (5/62) vs. 23% (15/64), \(p = 0.03 \)). Accordingly, it was concluded that rFVIIa might be effective for cirrhotic patients with variceal bleeding and Child-Pugh class B-C, but not for those with non-variceal UGIB and/or mild liver dysfunction.
Table 1. Use of rFVIIa to correct the coagulopathy

First author, journal (year)	Country	Study design	Target population	No. patients	Periods	Drugs	Efficacy	Safety
Bernstein, Gastroenterology (1997), full-text	Denmark	A preliminary, single-center dose-escalation trial	Cirrhotic patients with Child-Pugh B or C and a PT of ≥ 2 s above the upper limit of the reference value after an intramuscular injection of vitamin K	10	1995.2–1995.3	rFVIIa (5, 20, and 80 mg/kg)	The mean PT transiently corrected to normal in all three dosage groups	No adverse events
Ejlersen, Scand J Gastroenterol (2001), full-text	Denmark	A single-centre, open-label pilot trial	Patients with alcoholic liver diseases who had oesophageal variceal bleeding and a prolonged PT	10	NA	One intravenous injection of rFVIIa (80 mg/kg body weight)	Immediate bleeding control was obtained in all patients. PT normalized in all patients 30 min after injection of rFVIIa	No adverse events
Petersson, Hepatology (2001), abstract	Sweden	NA	Children with chronic liver disease; with life-threatening bleeding and failed conventional therapy in 7 patients (19 occasions) and prophylaxis before liver biopsy in 6 patients (9 occasions)	12	1999.5–2001.4	An intravenous bolus dose of 36–118 μg/kg or 54–163 μg/kg	All patients responded to the treatment with an effect on INR	No obvious adverse events
Jeffers, Gastroenterology (2002), full-text	USA	An open label pilot run-in (part I); and a multicenter, randomized, double-blind trial (part II)	Cirrhotic patients with Child-Pugh B or C, platelet count > 60,000/mm³; PT in the range of 3–15 s above normal, and before laparoscopic liver biopsy	71	NA	rFVIIa (5, 20, 80, and 120 g/kg body weight)	PT was corrected to normal levels (< 13.1 s) in the majority of patients	No adverse events related to rFVIIa
Sajjad, Dig Dis Sci (2009), full-text	USA	NA	Consecutive individuals with advanced disease-induced coagulopathy or a therapeutic-induced coagulopathy; the use of fresh-frozen plasma was deemed inappropriate	33	NA	A dose of 100 μg/kg of rFVIIa over 2 min	The mean PT was transiently corrected in these subjects	No severe adverse events

INR – international normalized ratio, NA – not available, PT – prothrombin time.
Based on the findings from the first RCT [10], the investigators selected the cirrhotic patients with Child-Pugh class B and C and variceal bleeding for the second RCT [11]. Between April 2004 and August 2006, a total of 256 subjects were randomized into the placebo (n = 85), 300 μg/kg rFVIIa (n = 85), and 600 μg/kg rFVIIa (n = 85) groups [11]. All of them had a Child-Pugh score of > 8 points (Child-Pugh B/C: 26%/74%). The primary endpoint was the treatment failure according to the Baveno II–IV criteria, including the failure to control acute bleeding within 24 h, failure to prevent clinically significant rebleeding, or death within 5 days. The rate of primary endpoint was similar between placebo and 600 μg/kg rFVIIa groups (23% (20/86) vs. 20% (17/85); odds ratio = 0.8, 95% confidence interval: 0.29–0.97, p = 0.04) [14]. Notably, the upper limit of the 95% confidence intervals was close to 1. In addition, only a fixed-effects model was employed according to the result of the χ² test for the heterogeneity (p = 0.12). But the value of I² = 59% might be neglected. As is well known, the choice of a fixed-effects or random-effects model often depends on the statistical significance of heterogeneity among studies. When p < 0.1 or I² > 50% is obtained, a random-effects model is considered appropriate. In addition, when a random-effects model is employed to update the meta-analysis, the statistical significance disappears (odds ratio = 0.35, 95% confidence interval: 0.06–2.00, p = 0.24) (Figure 1).

In conclusion, apart from its marginal efficacy in the treatment of variceal bleeding, we should never neglect that rFVIIa is too expensive and may increase thromboembolism without any significant survival benefits [18–20]. Accordingly, the use of rFVIIa may not be recommended in cirrhotic patients with acute variceal bleeding until positive findings from high-quality studies are reported in a selected population.

Based on the findings from the first RCT [10], the investigators selected the cirrhotic patients with Child-Pugh class B and C and variceal bleeding for the second RCT [11]. Between April 2004 and August 2006, a total of 256 subjects were randomized into the placebo (n = 85), 300 μg/kg rFVIIa (n = 85), and 600 μg/kg rFVIIa (n = 85) groups [11]. All of them had a Child-Pugh score of > 8 points (Child-Pugh B/C: 26%/74%). The primary endpoint was the treatment failure according to the Baveno II–IV criteria, including the failure to control acute bleeding within 24 h, failure to prevent clinically significant rebleeding, or death within 5 days. The rate of primary endpoint was similar between placebo and 600 μg/kg rFVIIa groups (23% (20/86) vs. 20% (17/85); odds ratio = 0.8, 95% confidence interval: 0.29–0.97, p = 0.04) [14]. Notably, the upper limit of the 95% confidence intervals was close to 1. In addition, only a fixed-effects model was employed according to the result of the χ² test for the heterogeneity (p = 0.12). But the value of I² = 59% might be neglected. As is well known, the choice of a fixed-effects or random-effects model often depends on the statistical significance of heterogeneity among studies. When p < 0.1 or I² > 50% is obtained, a random-effects model is considered appropriate. In addition, when a random-effects model is employed to update the meta-analysis, the statistical significance disappears (odds ratio = 0.35, 95% confidence interval: 0.06–2.00, p = 0.24) (Figure 1).

In conclusion, apart from its marginal efficacy in the treatment of variceal bleeding, we should never neglect that rFVIIa is too expensive and may increase thromboembolism without any significant survival benefits [18–20]. Accordingly, the use of rFVIIa may not be recommended in cirrhotic patients with acute variceal bleeding until positive findings from high-quality studies are reported in a selected population.

Figure 1. Forest plot of meta-analysis regarding the benefit of rFVIIa for the 5-day failure rate in cirrhotic patients with active variceal bleeding and a Child-Pugh score > 8 using a random-effects model

Study or subgroup	rFVIIa	Placebo	Weight (%)	Odds ratio (M-H, random, 95% CI)	Odds ratio (M-H, random, 95% CI)
AVHC 1288	1	11	8	16	32.5
AVHC 1533	28	170	20	86	67.5
Total (95% CI)	181	102	100	0.35 (0.06–2.00)	
Total events	29	28			

Heterogeneity: τ² = 1.05, χ² = 2.44, df = 1 (p = 0.12), I² = 59%

Test for overall effect: Z = 1.18 (p = 0.24)
Acknowledgments

The first two authors contributed equally to this work.

Conflict of interest

The authors declare no conflict of interest.

References

1. Dutta TK, Verma SP. Rational use of recombinant factor VIIa in clinical practice. Indian J Hematol Blood Transfus 2014; 30: 85-90.
2. Eshghi P, Mahdavi-Mazdeh M, Karimi M, Aghighi M, Haemophilic in the developing countries: the Iranian experience. Arch Med Sci 2010; 6: 83-9.
3. Vincent JL, Rossaint R, Riou B, Ozier Y, Zideman D, Sparn DR. Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding: a European perspective. Crit Care 2006; 10: R120.
4. Sajjad S, Garcia M, Malik A, George MM, Van Thiel DH. Use of recombinant factor VIIa to correct the coagulation status of individuals with advanced liver disease prior to a percutaneous liver biopsy. Dig Dis Sci 2009; 54: 1115-9.
5. Bernstein DE, Jeffers L, Erhardtsen E, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology 1997; 113: 1930-7.
6. Jeffers L, Chalasani N, Balart L, Pyrsopoulos N, Erhardt- sen E. Safety and efficacy of recombinant factor VIIa in patients with liver disease undergoing laparoscopic liver biopsy. Gastroenterology 2002; 123: 118-26.
7. Romero-Castro R, Jimenez-Saenz M, Pellicer-Bautista F, et al. Recombinant-activated factor VII as hemostatic therapy in eight cases of severe hemorrhage from esophageal varices. Clin Gastroenterol Hepatol 2004; 2: 78-84.
8. Pettersson M, Fisehler B, Petrini P, Schulman S, Hedner U, Nemeth A. Recombinant activated factor VII in children with liver disease and coagulopathy. A preliminary study. Hepatology 2001; 34: 531A.
9. Mannucci PM, Franchini M. Recombinant factor VIIa as haemostatic therapy in advanced liver disease. Blood Transfus 2013; 11: 487-90.
10. Bosch J, Thabut D, Bendtsen F, et al. Recombinant factor VIIa for upper gastrointestinal bleeding in patients with cirrhosis: a randomized, double-blind trial. Gastroenterology 2004; 127: 1123-30.
11. Bosch J, Thabut D, Albillos A, et al. Recombinant factor VIIa for variceal bleeding in patients with advanced cirrhosis: a randomized, controlled trial. Hepatology 2008; 47: 1604-14.
12. Marti-Carvajal AI, Karakitsiou DE, Salanti G. Human recombinant activated factor VII for upper gastrointestinal bleeding in patients with liver diseases. Cochrane Database Syst Rev 2012; 3: CD004887.
13. Marti-Carvajal AI, Salanti G, Marti-Carvajal Pt. Human recombinant activated factor VII for upper gastrointestinal bleeding in patients with liver diseases. Cochrane Database Syst Rev 2007; 1: CD004887.
14. Bendtsen F, D’Amico G, Rusch E, et al. Effect of recombinant factor VIIa on outcome of acute variceal bleeding: an individual patient based meta-analysis of two controlled trials. J Hepatol 2014; 61: 252-9.

Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicine: reporting of subgroup analyses in clinical trials. N Engl J Med 2007; 357: 2189-94.
16. Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ 2010; 340: c117.
17. Sun X, Ioannidis JP, Agoritsas T, Alba AC, Guyatt G. How to use a subgroup analysis: users’ guide to the medical literature. JAMA 2014; 311: 405-11.
18. Sozio MS, Chalasani N. Activated recombinant factor VIIa should not be used in patients with refractory variceal bleeding: it is mostly ineffective, is expensive, and may rarely cause serious adverse events. Hepatology 2014; 60: 1786-8.
19. Yank V, Tuohy CV, Logan AC, et al. Systematic review: benefits and harms of in-hospital use of recombinant factor VIIa for off-label indications. Ann Intern Med 2011; 154: 529-40.
20. Levi M, Levy JH, Andersen HF, Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med 2010; 363: 1791-800.