Bondarenko, Vitalij M.; Petravchuk, Anatoliy P.

Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables. (English) Zbl 1453.17014

Linear Algebra Appl. 568, 165-172 (2019).

Summary: Let \mathbb{F} be a field of characteristic zero. Let $W_n(\mathbb{F})$ be the Lie algebra of all \mathbb{F}-derivations with the Lie bracket $[D_1, D_2] := D_1D_2 - D_2D_1$ on the polynomial ring $\mathbb{F}[x_1, \ldots, x_n]$. The problem of classifying finite dimensional subalgebras of $W_n(\mathbb{F})$ was solved if $n \leq 2$ and $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$. We prove that this problem is wild if $n \geq 4$, which means that it contains the classical unsolved problem of classifying matrix pairs up to similarity. The structure of finite dimensional subalgebras of $W_n(\mathbb{F})$ is interesting since each derivation in case $\mathbb{F} = \mathbb{R}$ can be considered as a vector field with polynomial coefficients on the manifold \mathbb{R}^n.

MSC:

17B66 Lie algebras of vector fields and related (super) algebras
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
34C14 Symmetries, invariants of ordinary differential equations

Keywords:
nilpotent Lie algebra; wild problem; vector field; derivation

Full Text: DOI arXiv

References:

[1] Amaldi, U., Contributo all determinazione dei gruppi continui finiti dello spazio ordinario I, Giornale Mat. Battaglini Prog. Studi Univ. Ital., 39, 273-316, (1901) · Zbl 32.0674.03
[2] Amaldi, U., Contributo all determinazione dei gruppi continui finiti dello spazio ordinario II, Giornale Mat. Battaglini Prog. Studi Univ. Ital., 40, 105-141, (1902) · Zbl 33.0705.01
[3] Bavula, V. V., Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras, Izv. Math., 77, 1067-1104, (2013) · Zbl 1286.17022
[4] Belitskii, G.; Bondarenko, V. M.; Lipyanski, R.; Plachotnik, V. V.; Sergeichuk, V. V., The problems of classifying pairs of forms and local algebras with zero cube radical are wild, Linear Algebra Appl., 402, 135-142, (2005) · Zbl 1082.16025
[5] Belitskii, G. R.; Sergeichuk, V. V., Complexity of matrix problems, Linear Algebra Appl., 361, 203-222, (2003) · Zbl 1030.15011
[6] Donovan, P.; Freislich, M. R., Some evidence for an extension of the Brauer-Thrall conjecture, Sonderforschungsbereich Theor. Math., 40, 24-26, (1972)
[7] Doubrov, B., Three-dimensional homogeneous spaces with non-solvable transformation groups, (2017), available from
[8] Drozd, Ju. A., Tame and wild matrix problems, (Representations and Quadratic Forms, (1979), Akad. Nauk Ukrain. SSR, Inst. Mat.: Akad. Nauk Ukrain. SSR, Inst. Mat. Kiev). (Representations and Quadratic Forms, (1979), Akad. Nauk Ukrain. SSR, Inst. Mat.: Akad. Nauk Ukrain. SSR, Inst. Mat. Kiev), Amer. Math. Soc. Transl., 128, 31-55, (1986), (in Russian); English translation: · Zbl 0583.16022
[9] Drozd, Ju. A., Tame and wild matrix problems, (Representation Theory, II. Representation Theory, II, Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979. Representation Theory, II. Representation Theory, II, Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979, Lecture Notes in Math., vol. 832, (1980), Springer: Springer Berlin-New York), 242-258
[10] Futorny, V.; Grochow, J. A.; Sergeichuk, V. V., Wildness for tensors, Linear Algebra Appl., 566, 212-244, (2019) · Zbl 1447.16011
[11] Futorny, V.; Klimentchik, T.; Petravchuk, A. P.; Sergeichuk, V. V., Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras, Linear Algebra Appl., 530, 201-299, (2018) · Zbl 1374.15024
[12] Gabriel, P.; Nazarova, L. A.; Roiter, A. V.; Sergeichuk, V. V.; Vassilev, D., Tame and wild subspace problems, Ukrainian Math. J., 45, 335-372, (1993) · Zbl 0860.16010
[13] Gelfand, I. M.; Ponomarev, V. A., Remarks on the classification of a pair of commuting linear transformations in a finite dimensional space, Funct. Anal. Appl., 3, 325-326, (1969)
[14] González-López, A.; Kamran, N.; Olver, P. J., Lie algebras of vector fields in the real plane, Proc. Lond. Math. Soc. (3), 64, 2, 339-368, (1992) · Zbl 0752.17002
[15] de Oliveira, D. D.; Horn, R. A.; Klimchuk, T.; Sergeichuk, V. V., Remarks on the classification of a pair of commuting...
semilinear operators, Linear Algebra Appl., 436, 3362-3372, (2012) - Zbl 1260.15004

[16] Lie, S., Theorie der Transformationsgruppen, vol. 3, (1893), Teubner: Teubner Leipzig

[17] Petrvachuk, A. P.; Sysak, K. Ya., Lie algebras associated with modules over polynomial rings, Ukrainian Math. J., 69, 1433-1444, (2018)

[18] Sergeichuk, V. V., Canonical matrices for linear matrix problems, Linear Algebra Appl., 317, 53-102, (2000) - Zbl 0967.15007

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.