Program Repair for Hyperproperties

Borzoo Bonakdarpour and Bernd Finkbeiner

1 Iowa State University, USA, borzoo@iastate.edu
2 Saarland University, Germany, finkbeiner@cs.uni-saarland.de

Abstract. We study the repair problem for hyperproperties specified in the temporal logic HyperLTL. Hyperproperties are system properties that relate multiple computation traces. This class of properties includes information flow policies like noninterference and observational determinism. The repair problem is to find, for a given Kripke structure, a substructure that satisfies a given specification. We show that the repair problem is decidable for HyperLTL specifications and finite-state Kripke structures. We provide a detailed complexity analysis for different fragments of HyperLTL and different system types: tree-shaped, acyclic, and general Kripke structures.

1 Introduction

Information-flow security is concerned with the detection of unwanted flows of information from a set of variables deemed as secrets to another set of variables that are publicly observable. Information-flow security is foundational for some of the pillars of cybersecurity such as confidentiality, secrecy, and privacy. Information-flow properties belong to the class of hyperproperties [12], which generalize trace properties to sets of sets of traces. Trace properties are usually insufficient, because information-flow properties relate multiple executions. This also means that classic trace-based specification languages such as linear-time temporal logic (LTL) cannot be used directly to specify information-flow properties. HyperLTL [11] is an extension of LTL with trace variables and quantifiers. HyperLTL can express information-flow properties by simultaneously referring to multiple traces. For example, noninterference [28] between a secret input h and a public output o can be specified in HyperLTL by stating that, for all pairs of traces π and π', if the input is the same for all input variables I except h, then the output o must be the same at all times:

$$\forall \pi . \forall \pi'. \Box (\bigwedge_{i \in I \setminus \{h\}} i_\pi = i_{\pi'}) \Rightarrow \Box (o_\pi = o_{\pi'})$$

Another prominent example is generalized noninterference (GNI) [36], which can be expressed as the following HyperLTL formula:

$$\forall \pi . \forall \pi'. \exists \pi''. \Box (h_\pi = h_{\pi''}) \land \Box (o_{\pi'} = o_{\pi''})$$

The existential quantifier is needed to allow for nondeterminism. Generalized noninterference permits nondeterminism in the low-observable behavior, but...
stipulates that low-security outputs may not be altered by the injection of high-security inputs.

There has been a lot of recent progress in automatically verifying \cite{14,23–25} and monitoring \cite{2,8,9,21,22,29,39} HyperLTL specifications. The automatic construction of systems that satisfy a given set of information-flow properties is still, however, in its infancy. So far, the only known approach is bounded synthesis \cite{14,19}, which searches for an implementation up to a given bound on the number of states. While there has been some success in applying bounded synthesis to systems like the dining cryptographers \cite{10}, this approach does not yet scale to larger systems. The general synthesis problem (without the bound on the number of states) becomes undecidable as soon as the HyperLTL formula contains two universal quantifiers \cite{19}. A less complex type of synthesis is program repair, where, given a model K and a property φ, the goal is to construct a model K', such that (1) any execution of K' is also an execution of K, and (2) K' satisfies φ. A useful application of program repair is program sketching, where the developer provides a program with “holes” that are filled in by the synthesis algorithm \cite{38}. Filling a hole in a program sketch is a repair step that eliminates nondeterminism. While such a repair is guaranteed to preserve trace properties, it is well known that this is not the case in the context of information-flow security policies \cite{30}. In fact, this problem has not yet been studied in the context of hyperproperties.

In this paper, we study the problem of automated program repair of finite-state systems with respect to HyperLTL specifications. We provide a detailed analysis of the complexity of the repair problem for different shapes of the structure: we are interested in general, acyclic, and tree-shaped Kripke structures. The need for investigating the repair problem for tree-shaped and acyclic graphs stems from two reasons. First, many trace logs that can be used as a basis for example-based synthesis \cite{4} and repair are in the form of a simple linear collection of the traces seen so far. Or, for space efficiency, the traces are organized by common prefixes and assembled into a tree-shaped Kripke structure, or by common prefixes as well as suffixes assembled into an acyclic Kripke structure. The second reason is that tree-shaped and acyclic Kripke structures often occur as the natural representation of the state space of a protocol. For example, certain security protocols, such as authentication and session-based protocols (e.g., TLS, SSL, SIP) go through a finite sequence of phases, resulting in an acyclic Kripke structure.

Table 1 summarizes the contributions of this paper. It shows our results on the complexity of automated program repair with respect to different fragments of HyperLTL. The complexities are in the size of the Kripke structure. This system complexity is the most relevant complexity in practice, because the system tends to be much larger than the specification. Our results show that the shape of the Kripke structure plays a crucial role in the complexity of the repair problem:

– Trees. For trees, the complexity in the size of the Kripke structure does not go beyond NP. The problem for the alternation-free fragment and the fragment with one quantifier alternation where the leading quantifier is exis-
Table 1: Complexity of the HyperLTL repair problem in the size of the Kripke structure, where k is the number of quantifier alternations in the formula.

- **Acyclic graphs.** For acyclic Kripke structures, the complexity is NL-complete for the alternation-free fragment and the fragment with one quantifier alternation where the leading quantifier is existential. The complexity is in the level of the polynomial hierarchy that corresponds to the number of quantifier alternations.

- **General graphs.** For general Kripke structures, the complexity is NL-complete for the existential fragment and NP-complete for the universal fragment. The complexity is PSPACE-complete for the fragment with one quantifier alternation and ($k-1$)-EXPSPACE-complete in the number k of quantifier alternations.

We believe that the results of this paper provide the fundamental understanding of the repair problem for secure information flow and pave the way for further research on developing efficient and scalable techniques.

Organization The remainder of this paper is organized as follows. In Section 2, we review Kripke structures and HyperLTL. We present a detailed motivating example in Section 3. The formal statement of our repair problem is in Section 4. Section 5 presents our results on the complexity of repair for HyperLTL in the size of tree-shaped Kripke structures. Sections 6 and 7 present the results on
the complexity of repair in acyclic and general graphs, respectively. We discuss related work in Section 8. We conclude with a discussion of future work in Section 9. Detailed proofs are available in the full version of this paper.

2 Preliminaries

2.1 Kripke Structures

Let AP be a finite set of atomic propositions and $\Sigma = 2^{\text{AP}}$ be the alphabet. A letter is an element of Σ. A trace $t \in \Sigma^\omega$ over alphabet Σ is an infinite sequence of letters: $t = t(0)t(1)t(2)\ldots$

Definition 1. A Kripke structure is a tuple $K = \langle S, s_{\text{init}}, \delta, L \rangle$, where

− S is a finite set of states;
− $s_{\text{init}} \in S$ is the initial state;
− $\delta \subseteq S \times S$ is a transition relation, and
− $L : S \to \Sigma$ is a labeling function on the states of K.

We require that for each $s \in S$, there exists $s' \in S$, such that $(s, s') \in \delta$.

Figure 1 shows an example Kripke structure where $L(s_{\text{init}}) = \{a\}$, $L(s_3) = \{b\}$, etc. The size of the Kripke structure is the number of its states. The directed graph $F = \langle S, \delta \rangle$ is called the Kripke frame of the Kripke structure K. A loop in F is a finite sequence $s_0s_1\cdots s_n$, such that $(s_i, s_{i+1}) \in \delta$, for all $0 \leq i < n$, and $(s_n, s_0) \in \delta$. We call a Kripke frame acyclic, if the only loops are self-loops on otherwise terminal states, i.e., on states that have no other outgoing transition. See Fig. 1 for an example. Since Definition 1 does not allow terminal states, we only consider acyclic Kripke structures with such added self-loops.

We call a Kripke frame tree-shaped, or, in short, a tree, if every state s has a unique state s' with $(s', s) \in \delta$, except for the root node, which has no predecessor, and the leaf nodes, which, again because of Definition 1, additionally have a self-loop but no other outgoing transitions.

A path of a Kripke structure is an infinite sequence of states $s(0)s(1)\cdots \in S^\omega$, such that:

− $s(0) = s_{\text{init}}$, and
− $(s(i), s(i+1)) \in \delta$, for all $i \geq 0$.

A trace of a Kripke structure is a trace $t(0)t(1)t(2)\cdots \in \Sigma^\omega$, such that there exists a path $s(0)s(1)\cdots \in S^\omega$ with $t(i) = L(s(i))$ for all $i \geq 0$. We denote by $\text{Traces}(K, s)$ the set of all traces of K with paths that start in state $s \in S$.

![Fig. 1: An acyclic Kripke structure.](image-url)
In some cases, the system at hand is given as a tree-shaped or acyclic Kripke structure. Examples include session-based security protocols and space-efficient execution logs, because trees allow us to organize the traces according to common prefixes and acyclic graphs according to both common prefixes and common suffixes.

2.2 The Temporal Logic HyperLTL

HyperLTL [11] is an extension of linear-time temporal logic (LTL) for hyperproperties. The syntax of HyperLTL formulas is defined inductively by the following grammar:

$$\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid \phi$$

$$\phi ::= \text{true} \mid a_\pi \mid \neg \phi \mid \phi \lor \phi \mid \phi \text{ U } \phi \mid \bigcirc \phi$$

where $a \in \text{AP}$ is an atomic proposition and π is a trace variable from an infinite supply of variables \mathcal{V}. The Boolean connectives \neg and \lor have the usual meaning, U is the temporal until operator and \bigcirc is the temporal next operator. We also consider the usual derived Boolean connectives, such as \land, \Rightarrow, and \Leftrightarrow, and the derived temporal operators $\text{eventually } \bigcirc \varphi \equiv \text{true} \ U \varphi$ and $\text{globally } \Box \varphi \equiv \neg \bigcirc \neg \varphi$. The quantified formulas $\exists \pi$ and $\forall \pi$ are read as ‘along some trace π’ and ‘along all traces π’, respectively.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial mapping $\Pi : \mathcal{V} \rightarrow \Sigma^\omega$. The assignment with empty domain is denoted by Π_\emptyset. Given a trace assignment Π, a trace variable π, and a concrete trace $t \in \Sigma^\omega$, we denote by $\Pi[\pi \rightarrow t]$ the assignment that coincides with Π everywhere but at π, which is mapped to trace t. Furthermore, $\Pi[j, \infty]$ denotes the assignment mapping each trace π in Π’s domain to $\Pi(\pi)(j)\Pi(\pi)(j+1)\Pi(\pi)(j+2)\cdots$. The satisfaction of a HyperLTL formula φ over a trace assignment Π and a set of traces $T \subseteq \Sigma^\omega$, denoted by $T, \Pi \models \varphi$, is defined as follows:

$$T, \Pi \models a_\pi \text{ if and only if } a \in \Pi(\pi)(0),$$

$$T, \Pi \models \neg \psi \text{ if and only if } T, \Pi \not\models \psi,$$

$$T, \Pi \models \psi_1 \lor \psi_2 \text{ if and only if } T, \Pi \models \psi_1 \text{ or } T, \Pi \models \psi_2,$$

$$T, \Pi \models \bigcirc \psi \text{ if and only if } T, \Pi[1, \infty] \models \psi,$$

$$T, \Pi \models \psi_1 \ U \psi_2 \text{ if and only if } \exists i \geq 0 : T, \Pi[i, \infty] \models \psi_2 \land \forall j \in [0, i) : T, \Pi[j, \infty] \models \psi_1,$$

$$T, \Pi \models \exists \pi. \psi \text{ if and only if } \exists \pi \in T : T, \Pi[\pi \rightarrow t] \models \psi,$$

$$T, \Pi \models \forall \pi. \psi \text{ if and only if } \forall \pi \in T : T, \Pi[\pi \rightarrow t] \models \psi.$$

We say that a set T of traces satisfies a sentence φ, denoted by $T \models \varphi$, if $T, \Pi_\emptyset \models \varphi$. If the set T is generated by a Kripke structure K, we write $K \models \varphi$.

3 Motivating Example

A real-life example that demonstrates the importance of the problem under investigation in this paper is the information leak in the EDAS Conference Management System\(^3\), first reported in [2]. The system manages the review process

\(^3\)\url{http://www.edas.info}
for papers submitted to conferences. Throughout this process, authors can check on the status of their papers, but should not learn whether or not the paper has been accepted until official notifications are sent out. The system is correctly programmed to show status “Pending” before notification time and “Accept” or “Reject” afterwards. The leak (which has since then been fixed) occurred through another status display, which indicates whether or not the paper has been scheduled for presentation in a session of the conference. Since only accepted papers get scheduled to sessions, this allowed the authors to infer the status of their paper.

The problem is shown in Table 2. The first two rows show the output in the web interface for the authors regarding two papers submitted to a conference after their notification, where the first paper is accepted while the second is rejected. The last two rows show two other papers where the status is pending.

The internal decisions on notification (ntf), acceptance (dec), and session (ses), shown in the table with a gray background, are not part of the observable output and are added for the reader’s convenience. However, by comparing the rows for the two pending papers, the authors can observe that the Session column values are not the same. Thus, they can still deduce that the first paper is rejected and the second paper is accepted.

Paper	Internal Decisions	Output	Paper	Internal Decisions	Output
foo1	true true true	Accept	foo1	true true true	Accept
bar1	true false false	Reject	bar1	true false false	Reject
foo2	false false false	Pending	foo2	false false false	Pending
bar2	false true true	Pending	bar2	false true true	Pending

Table 2: Output with leak.

Paper	Internal Decisions	Output	Paper	Internal Decisions	Output
foo1	true true true	Accept	foo1	true true true	Accept
bar1	true false false	Reject	bar1	true false false	Reject
foo2	false false false	Pending	foo2	false false false	Pending
bar2	false true true	Pending	bar2	false true true	Pending

Table 3: Output without leak.
The information leak in the EDAS system has previously been addressed by adding a monitor that detects such leaks \cite{2,6}. Here, we instead eliminate the leak constructively. We use program sketching \cite{38} to automatically generate the code of our conference manager system. A program sketch expresses the high-level structure of an implementation, but leaves "holes" in place of the low-level details. In our approach, the holes in a sketch are interpreted as nondeterministic choices. The repair eliminates nondeterministic choices in such a way that the specification becomes satisfied.

Figure 2 shows a simple sketch for the EDAS example. The hole in the sketch (line 14) is indicated by the question mark in the if statement. The replacement for the hole determines how the value of the session output in the web interface for the authors is computed. We wish to repair the sketch so that whenever two computations both result in status = "Pending", the value of session is also the same. This requirement is expressed by the following HyperLTL formula:

\[\varphi = \forall \pi. \forall \pi'. \Box \left((\text{status} = "Pending")_\pi \land (\text{status} = "Pending")_{\pi'} \Rightarrow (\text{session}_\pi \Leftrightarrow \text{session}_{\pi'}) \right) \]

In this example, an incorrect repair would be to replace the hole in line 14 with ses, which would result in the output of Table 2. A correct repair would be to replace the hole with the Boolean condition ntf \land ses, which would result in the output of Table 3.

In the rest of the paper, we formally define the repair problem and study its complexity for different fragments of HyperLTL.

4 Problem Statement

The repair problem is the following decision problem. Let \(\mathcal{K} = (S, s_{init}, \delta, L) \) be a Kripke structure and \(\varphi \) be a closed HyperLTL formula. Does there exist a Kripke structure \(\mathcal{K}' = (S', s'_{init}, \delta', L') \) such that:

\begin{itemize}
 \item \(S' = S \),
 \item \(s'_{init} = s_{init} \),
 \item \(\delta' \subseteq \delta \),
 \item \(L' = L \), and
 \item \(\mathcal{K}' \models \varphi \).
\end{itemize}

In other words, the goal of the repair problem is to identify a Kripke structure \(\mathcal{K}' \), whose set of traces is a subset of the traces of \(\mathcal{K} \) that satisfies \(\varphi \). Note that since the witness to the decision problem is a Kripke structure, following Definition 1, it is implicitly implied that in \(\mathcal{K}' \), for every state \(s \in S' \), there exists a state \(s' \) such that \((s, s') \in \delta' \). In other words, the repair does not create a deadlock state.

We use the following notation to distinguish the different variations of the problem:
where

- PR is the program repair decision problem as described above;
- Fragment is one of the following for \(\varphi \):

 - We use regular expressions to denote the order and pattern of repetition of quantifiers. For example, \(E^*A^*\)-HyperLTL denotes the fragment, where an arbitrary (possibly zero) number of existential quantifiers is followed by an arbitrary (possibly zero) number of universal quantifiers. Also, \(AE^+\)-HyperLTL means a lead universal quantifier followed by one or more existential quantifiers. \(E^{\leq 1}A^*\)-HyperLTL denotes the fragment, where zero or one existential quantifier is followed by an arbitrary number of universal quantifiers.
 - \((EA)k\)-HyperLTL, for \(k \geq 0 \), denotes the fragment with \(k \) alternations and a lead existential quantifier, where \(k = 0 \) means an alternation-free formula with only existential quantifiers;
 - \((AE)k\)-HyperLTL, for \(k \geq 0 \), denotes the fragment with \(k \) alternations and a lead universal quantifier, where \(k = 0 \) means an alternation-free formula with only universal quantifiers,
 - HyperLTL is the full logic HyperLTL, and

- Frame Type is either tree, acyclic, or general.

5 Complexity of Repair for Tree-shaped Graphs

In this section, we analyze the complexity of the program repair problem for trees. This section is organized based on the rows in Table 1. We consider the following three HyperLTL fragments: (1) \(E^*A^* \), (2) \(AE^+ \), and (3) the full logic.

5.1 The \(E^*A^* \) Fragment

Our first result is that the repair problem for tree-shaped Kripke structures can be solved in logarithmic time in the size of the Kripke structure for the fragment with only one quantifier alternation where the leading quantifier is existential. This fragment is the least expensive to deal with in tree-shaped Kripke structures and, interestingly, the complexity is the same as for the model checking problem [6].

Theorem 1. PR\([E^*A^*-\text{HyperLTL, tree}]\) is L-complete in the size of the Kripke structure.

Proof. We note that the number of traces in a tree is bounded by the number of states, i.e., the size of the Kripke structure. The repair algorithm enumerates all possible assignments for the existential trace quantifiers, using, for each existential trace variable, a counter up to the number of traces, which requires only a
logarithmic number of bits in size of the Kripke structure. For each such assignment to the existential quantifiers, the algorithm steps through the assignments to the universal quantifiers, which again requires only a logarithmic number of bits in size of the Kripke structure. We consider only assignments with traces that have also been assigned to a existential quantifier. For each assignment of the trace variables, we verify the formula, which can be done in logarithmic space \[6\]. If the verification is affirmative for all assignments to the universal variables, then the repair consisting of the the traces assigned to the existential variables satisfies the formula.

In order to show completeness, we prove that the repair problem for the existential fragment is \(L\)-hard. The \(L\)-hardness for \(PR[\exists^*-\text{HyperLTL, tree}]\) and \(PR[\forall^*-\text{HyperLTL, tree}]\) follows from the \(L\)-hardness of ORD \[16\]. ORD is the graph-reachability problem for directed line graphs. Graph reachability from \(s\) to \(t\) can be checked with with the repair problems for \(\exists \pi\). \(\Box(s_\pi \land t_\pi)\) or \(\forall \pi. (s_\pi \land t_\pi)\).

5.2 The \(\mathbf{AE^*}\) Fragment

We now consider formulas with one quantifier alternation where the leading quantifier is universal. The type of leading quantifier has a significant impact on the complexity of the repair problem: the complexity jumps from \(L\)-completeness to \(P\)-completeness, although the model checking complexity for this fragment remains \(L\)-complete \[6\].

\textbf{Theorem 2.} \(PR[\mathbf{AE^*}\text{-HyperLTL, tree}]\) is \(P\)-complete in the size of the Kripke structure.

\textit{Proof sketch.} Membership to \(P\) can be shown by the following algorithm. For \(\varphi = \forall \pi_1, \exists \pi_2, \psi\), we begin by marking all the leaves. Then, in several rounds, we go through all marked leaves \(v_1\) and instantiate \(\pi_1\) with the trace leading to \(v_1\). We then again go through all marked leaves \(v_2\) and instantiate \(\pi_2\) with the trace leading to \(v_2\), and check \(\psi\) on the pair of traces. If the check is successful for some instantiation of \(\pi_2\), we leave \(v_1\) marked, otherwise we remove the mark. When no more marks can be removed, we eliminate all branches of the tree that are not marked. For additional existential quantifiers, the number of rounds will increase linearly.

For the lower bound, we reduce the \textit{Horn satisfiability} problem, which is \(P\)-hard, to the repair problem for \(\mathbf{AE^*}\) formulas. We first transform the given Horn formula to one that every clause consists of two negative and one positive literals. We map this Horn formula to a tree-shaped Kripke structure and a constant-size HyperLTL formula. For example, formula \((\neg x_1 \lor \neg x_2 \lor f) \land (\neg x_3 \lor \neg f \land x_4) \land (\neg x_2 \lor x_4 \land x_3)\) is mapped to the Kripke structure in Fig. 3.

The Kripke structure includes one branch for each clause of the given Horn formula, where the length of each branch is in logarithmic order of the number of variables in the Horn formula. We use atomic propositions \(neg_1\) and \(neg_2\) to indicate negative literals and \(pos\) for the positive literal. We also include...
propositions c and h to mark each clause with a bitsequence. That is, for each clause $\{\neg x_{n_1} \lor \neg x_{n_2} \lor x_p\}$, we label states of its branch by atomic proposition neg_1 according to the bitsequence of x_{n_1}, atomic proposition neg_2 according to the bitsequence of x_{n_2}, and atomic proposition pos according to the bitsequence of x_p. We reserve values 0 and $|X| - 1$ for \bot and \bot, respectively, where X is the set of variables of the Horn formula. Finally, we use the atomic proposition c to assign to each clause a number (represented as the bitsequence of valuations of c, starting with the lowest-valued bit; the position after the highest-level bit is marked by the occurrence of atomic proposition h, which does not appear anywhere else).

The HyperLTL formula enforces that (1) \top is assigned to true, (2) \bot is assigned to false, (3) all clauses are satisfied, and (4) if a positive literal l appears on some clause in the repaired Kripke structure, then all clauses with l must be preserved by the repair.

5.3 The Full Logic

We now turn to full HyperLTL. We first show that the repair problem is in NP.

Theorem 3. $\text{PR[HyperLTL, tree]}$ is in NP in the size of the Kripke structure.

Proof. We nondeterministically guess a solution \mathcal{K}' to the repair problem. Since determining whether or not $\mathcal{K}' \models \varphi$ can be solved in logarithmic space [6], the repair problem is in NP.

For the lower bound, the intuition is that an additional leading universal quantifier allows us to encode full Boolean satisfiability, instead of just Horn satisfiability as in the previous section. Interestingly, the model checking problem remains L-complete for this fragment [6].
Theorem 4. \(\text{PR[AAE-HyperLTL, tree]} \) is NP-hard in the size of the Kripke structure.

Proof sketch. We map an instance of the 3SAT problem to a Kripke structure and a HyperLTL formula. Figure 4 shows an example, where each clause in 3SAT is mapped to a distinct branch and each literal in the clause is mapped to a distinct sub-branch. We label positive and negative literals by pos and neg, respectively. Also, propositions c and h are used to mark the clauses with bitsequences in the same fashion as in the construction of proof of Theorem 2. The HyperLTL formula \(\varphi_{\text{map}} \) ensures that (1) at least one literal in each clause is true, (2) a literal is not assigned to two values, and (3) all clauses are preserved during repair:

\[
\varphi_{\text{map}} = \forall \pi_1. \forall \pi_2. \exists \pi_3. \left[\Box \left(\neg \text{pos}_{\pi_1} \lor \neg \text{neg}_{\pi_2} \right) \right] \land \\
\bigcirc \left[\left(c_{\pi_2} \land \neg c_{\pi_3} \land \bigcirc \left(c_{\pi_2} \leftrightarrow c_{\pi_3} \right) \bigcirc h_{\pi_2} \right) \lor \left(c_{\pi_2} \land \neg c_{\pi_3} \right) \bigcirc h_{\pi_2} \right]
\]

The answer to the 3SAT problem is affirmative if and only if a repair exists for the mapped Kripke structure with respect to formula \(\varphi_{\text{map}} \). □

Corollary 1. The following are NP-complete in the size of the Kripke structure: \(\text{PR[AE-HyperLTL, tree]} \), \(\text{PR[(EA)k-HyperLTL, tree]} \), \(\text{PR[(AE)k-HyperLTL, tree]} \), and \(\text{PR[HyperLTL, tree]} \).

6 Complexity of Repair for Acyclic Graphs

We now turn to acyclic graphs. Acyclic Kripke structures are of practical interest, because certain security protocols, in particular authentication algorithms, often consist of sequences of phases with no repetitions or loops. We develop our results first for the alternation-free fragment, then for formulas with quantifier alternation.

6.1 The Alternation-free Fragment

We start with the existential fragment. The complexity of the repair problem for this fragment is interestingly the same as the model checking problem.

Theorem 5. \(\text{PR[E*-HyperLTL, acyclic]} \) is NL-complete in the size of the Kripke structure.

Proof. For existential formulas, the repair problem is equivalent to the model checking problem. A given Kripke structure satisfies the formula iff it has a repair. If the formula is satisfied, the repair is simply the original Kripke structure. Since the model checking problem for existential formulas over acyclic graphs is NL-complete [6, Theorem 2], the same holds for the repair problem. □
Fig. 4: The Kripke structure for the 3SAT formula \((\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)\). The truth assignment \(x_1 = \text{true}, x_2 = \text{false}, x_3 = \text{false}, x_4 = \text{false}\) renders the tree with white branches, i.e., the grey branches are removed during repair.

We now switch to the universal fragment.

Theorem 6. PR\([A^*-\text{HyperLTL, acyclic}]\) and PR\([EA^*-\text{HyperLTL, acyclic}]\) is NL-complete in the size of the Kripke structure.

Proof. To solve the repair problem of a HyperLTL formula \(\varphi = \exists \pi. \forall \pi_1. \forall \pi_2 \ldots \forall \pi_m. \psi(\pi, \pi_1, \pi_2, \ldots, \pi_m)\) with at most one existential quantifier, which appears as the first quantifier, it suffices to find a single trace \(\pi\) that satisfies \(\psi(\pi, \pi, \ldots, \pi)\): suppose there exists a repair that satisfies \(\varphi\) and that has more than one path, then any repair that only preserves one of these paths also satisfies the universal formula \(\varphi\). For the upper bound, we nondeterministically guess a path for the trace \(\pi\) and remove all other paths. Since the length of the path is bounded by the size of the acyclic Kripke structure, we can guess the path using logarithmically many bits for a counter measuring the length of the path.

NL-hardness of PR\([A^*-\text{HyperLTL, acyclic}]\) follows from the NL-hardness of the graph-reachability problem for ordered graphs [34]. Ordered graphs are acyclic graphs with a vertex numbering that is a topological sorting of the vertices. We express graph reachability from vertex \(s\) to vertex \(t\) as the repair problem of the universal formula \(\forall \pi. \diamond (s_\pi \land \diamond t_\pi)\). \(\square\)
6.2 Formulas with Quantifier Alternation

Next, we consider formulas where the number of quantifier alternations is bounded by a constant k. We show that changing the frame structure from trees to acyclic graphs results in a significant increase in complexity (see Table 1). The complexity of the repair problem is similar to the model checking problem, with the repair problem being one level higher in the polynomial hierarchy (cf. [6]).

Theorem 7. For $k \geq 2$, $\text{PR}[(EA)k\text{-HyperLTL, acyclic}]$ is Σ^p_k-complete in the size of the Kripke structure. For $k \geq 1$, $\text{PR}[(AE)k\text{-HyperLTL, acyclic}]$ is Σ^p_{k+1}-complete in the size of the Kripke structure.

Proof sketch. For the upper bound, suppose that the first quantifier is existential. Since the Kripke structure is acyclic, the length of the traces is bounded by the number of states. We can thus nondeterministically guess the repair and the existentially quantified traces in polynomial time, and then verify the correctness of the guess by model checking the remaining formula, which has $k-1$ quantifier alternations and begins with a universal quantifier. The verification can be done in Π^p_{k-1} [6, Theorem 3]. Hence, the repair problem is in Σ^p_k. Analogously, if the first quantifier is universal, the model checking problem in Π^p_k and the repair problem in Σ^p_{k+1}.

We establish the lower bound via a reduction from the quantified Boolean formula (QBF) satisfiability problem [27]. The Kripke structure (see Fig. 5) contains a path for each clause, and a separate structure that consists of a sequence of diamond-shaped graphs, one for each variable. A path through the diamonds selects a truth value for each variable, by going right or left, respectively, at the branching point.

In our reduction, the quantifiers in the QBF instance are translated to trace quantifiers (one per alternation depth), resulting in a HyperLTL formula with k quantifier alternations and a leading existential quantifier. Note that, the outermost existential quantifiers are not translated to a quantifier, but instead resolved by the repair. For this reason, it suffices to build a HyperLTL formula with one less quantifier alternation than the original QBF instance. Also, in our mapping, we must make sure that the clauses and the diamonds for all variables except the outermost existential variables are not removed during the repair. Similar to the proof of Theorem 4, we add a counter to the clauses and add a constraint to the HyperLTL formula that ensures that all counter values are still present in the repair; for the diamonds of the variables, the valuations themselves form such a counter, and we add a constraint that ensures that all valuations for the variables (except for the outermost existential variables) are still present in the repair.

Finally, Theorem 7 implies that the repair problem for acyclic Kripke structures and HyperLTL formulas with an arbitrary number of quantifiers is in PSPACE.

Corollary 2. $\text{PR}[\text{HyperLTL, acyclic}]$ is in PSPACE in the size of the Kripke structure.
7 Complexity of Repair for General Graphs

In this section, we investigate the complexity of the repair problem for general graphs. We again begin with the alternation-free fragment and then continue with formulas with quantifier alternation.

7.1 The Alternation-free Fragment

We start with the existential fragment. Similar to the case of acyclic graphs, the repair problem can be solved with a model checking algorithm.

Theorem 8. PR[E*-HyperLTL, general] is NL-complete in the size of the Kripke structure.

Proof. Analogously to the proof of Theorem 5, we note that, for existential formulas, the repair problem is equivalent to the model checking problem. A given Kripke structure satisfies the formula if and only if it has a repair. If the formula is satisfied, the repair is simply the original Kripke structure. Since the model checking problem for existential formulas for general graphs is NL-complete [25], the same holds for the repair problem.

Unlike the case of acyclic graphs, the repair problem for the universal fragment is more expensive, although the model checking problem is NL-complete [6].

Theorem 9. PR[A*-HyperLTL, general] is NP-complete in the size of the Kripke structure.
Proof. For membership in NP, we nondeterministically guess a solution to the repair problem, and verify the correctness of the universally quantified Hyper-LTL formula against the solution in polynomial time in the size of the Kripke structure. NP-hardness follows from the NP-hardness of the repair problem for LTL [5].

7.2 Formulas with Quantifier Alternation

Next, we consider formulas where the number of quantifier alternations is bounded by a constant k. We show that changing the frame structure from acyclic to general graphs again results in a significant increase in complexity (see Table 1).

Theorem 10. PR[E^*A^*-HyperLTL, general] is in PSPACE in the size of the Kripke structure. PR[A^*E^*-HyperLTL, general] is PSPACE-complete in the size of the Kripke structure. For $k \geq 2$, PR[$(EA)^k$-HyperLTL, general] and PR[$(AE)^k$-HyperLTL, general] are $(k-1)$-EXPSPACE-complete in the size of the Kripke structure.

Proof idea. The claimed complexities are those of the model checking problem [37]. We prove that the repair problem has the same complexity as the model checking problem. To show the upper bound of PR[A^*E^*-HyperLTL, general], we enumerate, in PSPACE, all possible repairs, and then verify against the HyperLTL formula.

For the lower bounds, we modify the Kripke structure and the HyperLTL formula such that the only possible repair is the unchanged Kripke structure. After the modification, the repair problem thus has the same result as the model checking problem. The idea of the modification is to assign numbers to the successors of each state. We add extra states such that the traces that originate from these states correspond to all possible number sequences. Finally, the HyperLTL formula states that for each such number sequence there exists a corresponding trace in the original Kripke structure.

Finally, Theorem 10 implies that the repair problem for general Kripke structures and HyperLTL formulas with an arbitrary number of quantifiers is in NONELEMENTARY.

Corollary 3. PR[HyperLTL, general] is NONELEMENTARY in the size of the Kripke structure.

8 Related Work

There has been a lot of recent progress in automatically verifying [14, 23–25] and monitoring [2, 8, 9, 21, 22, 29, 39] HyperLTL specifications. HyperLTL is also supported by a growing set of tools, including the model checker MCHyper [14, 25], the satisfiability checkers EAHyper [20] and MGHyper [18], and the runtime monitoring tool RVHyper [21].

Directly related to the repair problem studied in this paper are the satisfiability and synthesis problems. The satisfiability problem for HyperLTL was
shown to be decidable for the $\exists^*\forall^*$ fragment and for any fragment that includes a $\forall\exists$ quantifier alternation [17]. The hierarchy of hyperlogics beyond HyperLTL has been studied in [13].

The synthesis problem was shown to be undecidable in general, and decidable for the \exists^* and $\exists^*\forall$ fragments. While the synthesis problem becomes, in general, undecidable as soon as there are two universal quantifiers, there is a special class of universal specifications, called the linear \forall^*-fragment, which is still decidable [19]. The linear \forall^*-fragment corresponds to the decidable distributed synthesis problems [26]. The bounded synthesis problem considers only systems up to a given bound on the number of states. Bounded synthesis from hyperproperties is studied in [14, 19]. Bounded synthesis has been successfully applied to small examples such as the dining cryptographers [10].

The problem of model checking hyperproperties for tree-shaped and acyclic graphs was studied in [6]. Earlier, a similar study of the impact of structural restrictions on the complexity of the model checking problem has also been carried out for LTL [33].

For LTL, the complexity of the repair problem was studied independently in [5, 15, 32] and subsequently in [7] for distributed programs. The repair problem is also related to supervisory control, where, for a given plant, a supervisor is constructed that selects an appropriate subset of the plant’s controllable actions to ensure that the resulting behavior is safe [31, 35, 40].

9 Conclusion and Future Work

In this paper, we have developed a detailed classification of the complexity of the repair problem for hyperproperties expressed in HyperLTL. We considered general, acyclic, and tree-shaped Kripke structures. We showed that for trees, the complexity of the repair problem in the size of the Kripke structure does not go beyond NP. The problem is complete for L, P, and NP for fragments with only one quantifier alternation, depending upon the outermost quantifiers. For acyclic Kripke structures, the complexity is in $PSPACE$ (in the level of the polynomial hierarchy that corresponds to the number of quantifier alternations). The problem is NL-complete for the alternation-free fragment. For general graphs, the problem is $NONELEMENTARY$ for an arbitrary number of quantifier alternations. For a bounded number k of alternations, the problem is $(k-1)-EXPSPACE$-complete. These results highlight a crucial insight to the repair problem compared to the corresponding model checking problem [6]. With the notable exception of trees, where the complexity of repair is NP-complete, compared to the L-completeness of model checking, the complexities of repair and model checking are largely aligned. This is mainly due to the fact that computing a repair can be done by identifying a candidate substructure, which is comparatively inexpensive, and then verifying its correctness.

The work in this paper opens many new avenues for further research. An immediate question left unanswered in this paper is the lower bound complexity for the $\exists^*\forall^*$ fragment in acyclic and general graphs. It would be interesting to see...
if the differences we observed for HyperLTL carry over to other hyperlogics (cf. [1, 11, 13, 24]). One could extend the results of this paper to the reactive setting, where the program interacts with the environment. And, finally, the ideas of this paper might help to extend popular synthesis techniques for general (infinite-state) programs, such as program sketching [38] and syntax-guided synthesis [3], to hyperproperties.

Acknowledgments

We would like to thank Sandeep Kulkrani, Reza Hajisheykhi (Michigan State University), and Shreya Agrawal (Google). The repair problem was originally inspired through our interaction with them. This work is sponsored in part by NSF SaTC Award 1813388. It was also supported by the German Research Foundation (DFG) as part of the Collaborative Research Center “Methods and Tools for Understanding and Controlling Privacy” (CRC 1223) and the Collaborative Research Center “Foundations of Perspicuous Software Systems” (TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES (No. 683300).

References

1. E. Ábrahám and B. Bonakdarpour. HyperPCTL: A temporal logic for probabilistic hyperproperties. In Proceedings of the 15th International Conference on Quantitative Evaluation of Systems QEST, pages 20–35, 2018.
2. S. Agrawal and B. Bonakdarpour. Runtime verification of k-safety hyperproperties in HyperLTL. In Proceedings of the IEEE 29th Computer Security Foundations (CSF), pages 239–252, 2016.
3. R. Alur, R. Bodík, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In Formal Methods in Computer-Aided Design (FMCAD), pages 1–8, 2013.
4. R. Alur and S. Tripakis. Automatic synthesis of distributed protocols. SIGACT News, 48(1):55–90, 2017.
5. B. Bonakdarpour, A. Ebnenasir, and S. S. Kulkarni. Complexity results in revising UNITY programs. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(1):1–28, January 2009.
6. B. Bonakdarpour and B. Finkbeiner. The complexity of monitoring hyperproperties. In Proceedings of the IEEE 31th Computer Security Foundations (CSF), pages 162–174, 2018.
7. B. Bonakdarpour and S. S. Kulkarni. Masking faults while providing bounded-time phased recovery. In International Symposium on Formal Methods (FM), pages 374–389, 2008.
8. B. Bonakdarpour, C. Sánchez, and G. Schneider. Monitoring hyperproperties by combining static analysis and runtime verification. In Proceedings of the 8th Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), pages 8–27, 2018.
9. N. Brett, U. Siddique, and B. Bonakdarpour. Rewriting-based runtime verification for alternation-free HyperLTL. In *Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)*, pages 77–93, 2017.

10. D. Chaum. Security without identification: Transaction systems to make big brother obsolete. *Commun. ACM*, 28(10):1030–1044, 1985.

11. M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and C. Sánchez. Temporal logics for hyperproperties. In *Proceedings of the 3rd Conference on Principles of Security and Trust (POST)*, pages 265–284, 2014.

12. M. R. Clarkson and F. B. Schneider. Hyperproperties. *Journal of Computer Security*, 18(6):1157–1210, 2010.

13. N. Coenen, B. Finkbeiner, C. Hahn, and J. Hofmann. The hierarchy of hyperlogics. In *34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)*, 2019.

14. N. Coenen, B. Finkbeiner, C. Sánchez, and L. Tentrup. Verifying hyperliveness. In Isil Dillig and Serdar Tasiran, editors, *Computer Aided Verification*, pages 121–139, Cham, 2019. Springer International Publishing.

15. A. Elmenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs: Possibilities and limitations. In *On Principles of Distributed Systems (OPODIS)*, pages 275–290, 2005.

16. K Etessami. Counting quantifiers, successor relations, and logarithmic space. *Journal of Computer and System Sciences*, 54(3):400–411, 1997.

17. B. Finkbeiner and C. Hahn. Deciding hyperproperties. In *Proceedings of the 27th International Conference on Concurrency Theory (CONCUR)*, pages 13:1–13:14, 2016.

18. B. Finkbeiner, C. Hahn, and T. Hans. MGHyper: Checking satisfiability of HyperLTL formulas beyond the $\exists^*\forall^*$ fragment. In Shuvendu K. Lahiri and Chao Wang, editors, *Automated Technology for Verification and Analysis*, pages 521–527, Cham, 2018. Springer International Publishing.

19. B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, and L. Tentrup. Synthesizing reactive systems from hyperproperties. In *Proceedings of the 30th International Conference on Computer Aided Verification (CAV)*, pages 289–306, 2018.

20. B. Finkbeiner, C. Hahn, and M. Stenger. EAHyper: Satisfiability, implication, and equivalence checking of hyperproperties. In *Proceedings of the 29th International Conference on Computer Aided Verification (CAV)*, pages 564–570, 2017.

21. B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup. RVHyper: A runtime verification tool for temporal hyperproperties. In *Proceedings of the 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)*, pages 194–200, 2018.

22. B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup. Monitoring hyperproperties. *Formal Methods in System Design*, Jun 2019.

23. B. Finkbeiner, C. Hahn, and H. Torfah. Model checking quantitative hyperproperties. In Hana Chockler and Georg Weissenbacher, editors, *Computer Aided Verification*, pages 144–163, Cham, 2018. Springer International Publishing.

24. B. Finkbeiner, Ch. Müller, H. Seidl, and E. Zălinescu. Verifying Security Policies in Multi-agent Workflows with Loops. In *Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS)*, pages 633–645, 2017.

25. B. Finkbeiner, M. N. Rabe, and C. Sánchez. Algorithms for model checking HyperLTL and HyperCTL*. In *Proceedings of the 27th International Conference on Computer Aided Verification (CAV)*, pages 30–48, 2015.
26. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proceedings of LICS, pages 321–330. IEEE Computer Society, 2005.
27. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.
28. J. A. Goguen and J. Meseguer. Security policies and security models. In Proceedings of the IEEE Symposium on Security and Privacy (S & P), pages 11–20, 1982.
29. C. Hahn, M. Stenger, and L. Tentrup. Constraint-based monitoring of hyper-properties. In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 115–131, Cham, 2019. Springer International Publishing.
30. J. Jacob. On the derivation of secure components. In Proceedings of the IEEE Symposium on Security and Privacy (S & P), page 242–247, 1989.
31. S. Jiang and R. Kumar. Supervisory control of discrete event systems with ctl\textast temporal logic specifications. SIAM Journal on Control and Optimization, 44(6):2079–2103, 2006.
32. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Computer Aided Verification (CAV), pages 226–238, 2005.
33. L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In Proceedings of the 22nd International Conference on Concurrency Theory (CONCUR), pages 419–433, 2011.
34. T. Lengauer and K.W. Wagner. The correlation between the complexities of the nonhierarchical and hierarchical versions of graph problems. Journal of Computer and System Sciences, 44(1):63 – 93, 1992.
35. F. Lin. Analysis and synthesis of discrete event systems using temporal logic. In Proceedings of the 1991 IEEE International Symposium on Intelligent Control, pages 140–145, Aug 1991.
36. D. McCullough. Noninterference and the composability of security properties. In Proc. IEEE Symposium on Security and Privacy, pages 177–186, April 1988.
37. M. N. Rabe. A Temporal Logic Approach to Information-flow Control. PhD thesis, Saarland University, 2016.
38. A. Solar-Lezama. Program sketching. Springer Journal on Software Tool for Technology Transfer STTT, 15(5-6):475–495, 2013.
39. S. Stucki, C. Sánchez, G. Schneider, and B. Bonakdarpour. Graybox monitoring of hyperproperties. In Proceedings of the 23rd International Symposium on Formal Methods (FM), 2019. To appear.
40. J. G. Thistle and W. M. Wonham. Control problems in a temporal logic framework. International Journal of Control, 44(4):943–976, 1986.