A Novel Shape Microstrip Patch Antenna for Bandwidth Optimization with Shorting Pin

Priyanka Jain1*, Raghvendra Sharma2 and Vandana Vikas Thakre2

1Department of ECE, Amity School of Engineering and Technology, Amity University Madhya Pradesh, Gwalior - 474020, Madhya Pradesh, India; Prija.Jain@Gmail.Com
2Department of ECE, Madhav Institute of Technology and Science, Gwalior - 474005, Madhya Pradesh, India; rsharma3@gwa.amity.edu, Vandanavt_19@Rediffmail.Com

Abstract

Objectives: The aim is to design a Microstrip Patch Antenna (MSA) for enhancement of bandwidth and improved outcome for return loss. The approach for dimension decrease is also a parameter for designing of this antenna. Method: A shorted pin, coaxial feed, Microstrip Patch Antenna (MSA) is used for wireless communication. The patch with U type slot, cut at corner and also shorted by shorting pin is the design of an antenna. For good efficiency proposed antenna’s design parameters are optimized by HFSS’s Optometric. Findings: The proposed antenna has a wide band frequency ranged from 1.4 GHz to 4 GHz with Bandwidth of 210 MHz and 250 MHz return loss of -11.45db and -20.50dB respectively. In this design HFSS (High Frequency Structure Simulator) software is used which is a FEM based electromagnetic solver. The parameteric analysis of return loss, gain and bandwidth is done in an extended form in the proposed antenna design. Application: This design is suitable for the function in wireless communication system and also for fabrication proposes design is very simple.

Keywords: Bandwidth, HFSS, Patch, Return Loss, WLAN

1. Introduction

Antenna plays an outstanding role in designing a private wireless communication device. A perfectly designed radiator makes promising a stable connection, and absolute terminal orientation. It also prevents enormous misuse of energy for the enhancement of efficiency. The requirement for innovative systems and services produced innovative and demanding handset requirements. Designers have faced challenging role for designing an antenna for the handset. The handset should be small, tough, impolring, multi-band, and with extensive battery life1. Wireless communications is developed very fast by this, the microstrip patch antennas are demanding gradually more, which removes its disadvantage day by day and also make its formation and design process progressively complex. Therefore the antenna design problem engrosses a huge number of parameter have a great result resting on the performance of the antenna2. The latest approach allowed the designer to set design goal and then make a aspirant “most advantageous” formation in a systematic and innovative approach. A new promising method is used for full-wave electromagnetic modelling is the combination of codes with optimization methods3. The MSA is considered among the shorting pin and U shaped slot in the projected antenna. To reduce the size of patch antenna there is an efficient way is the shorting pin on its boundary for a fixed frequency. For bandwidth enhancement of an E-shape patch antenna it should be working with the genetic algorithm together. Genetic algorithm works together with Finite Element software HFSS which optimize the structure of the antenna4. Bandwidth expands

*Author for correspondence
in this case from 6% of the un-optimized one to 16%. The antenna consist a single patch with a resonance frequency of 2.4 GHz and also shorting pin which is situated on the boundary of the patch. For excellent performance the Optimization of the radius of a patch and location of probe feed point from the centre patch is done. Genetic algorithms are hearty, stochastic-based hunt techniques, which can deal with the regular qualities of electromagnetic improvement, issues that are not promptly took care by other optimization strategy. The concept of the genetic algorithm, first dignified by Holland and extensive to functional optimization by De Jong, involves the use of optimal search strategy patterned after the Darwinian principle of natural assortment and development. In GA optimization, a set of testing solutions, or individuals, is chosen and then solved for an optimal solution, below the state of the fitness function. By way of different slots and shorting pin a rectangular microstrip patch antenna, the genetic algorithm is used to optimize in this paper. The factor of the antenna is compute by using Finite Element software, HFSS, of ANSOFT.

Table 1. Dimensions of the microstrip patch antenna

Variable	Value
Width of patch W	28mm
Length of patch L	33mm
Length of slit c1	12mm
Width of slit c2	3mm
Length of slot c3	4mm
Width of slot c4	2.5mm
Horizontal Length of U slot La	12mm
Vertical length of U slot Wb	14mm
Width of U slot Wc	4mm
Height of substrate	0.5mm
Permittivity of substrate	4.4

2. Design and Simulation Result

The present antenna is designed for a centre frequency of 2.4 GHz. The material for Substrate is used FR4 with relative permittivity of 4.4 with the width of 0.5 mm. The U-shaped slot patch antenna is designed with shorted pin for length and width of 28mm x 33mm. In patch dimension which are given in Table 1, there is a fractal shape by cutting the slits on its edge. The four sides of patch cut by a dimension 12mm*3mm slit for all sides this dimension is same. Similarly, there is a slot cut at its all four corners with dimension of 2.5mm*4mm which is given away here in the figure. The slot cut of U shape has the measurement for the horizontal length is 12mm and vertical length is 14mm with the width of 4mm.

Figure 1 and 2 shows the dimension of antenna image in software. Return loss of antenna design shown in the plot of the Figure 3. Bandwidth and return loss calculated as (203MHz, -16.72dB) from the plot at 2.4GHz respectively. Its good quality performance at 2.4GHz frequency is shown by the VSWR of the antenna in Figure 4 which is 1.93.
3. Optimization of Patch Antenna

The best possible result for the antenna is optimized it in a number of ways. The optimization of microstrip patch antenna is done by HFSS software. The Genetic algorithm procedure is used for optimization procedure. The algorithms proceed through the help of the following inputs

1. Maximum no of generations- 20
2. No. of parents -10
3. No. of individuals in the mating pool- 10
4. An individual crossover probability-1 variable crossover probability- 1

Table 2. Outcome of optimization of the microstrip patch antenna

Variation	Bandwidth	Length	Return loss	Width
1	230.664998321482MHz	19.209978637043mm	23.74466852	19.214636402748mm
2	421.442304757836MHz	23.480025635548mm	26.84453871	21.7107913449507mm
3	417.816705832087MHz	32.5370647297586mm	30.07553331	39.6142002624592mm
4	591.28391369355MHz	29.4966887417219mm	26.22827667	19.111438337516mm
5	364.909817804498MHz	34.9844050416578mm	17.12134159	42.819833973084mm
6	414.117862483596MHz	33.47874385815mm	21.6524247	35.2654957731864mm
7	296.279793694876MHz	19.586840187139mm	28.2471694	47.5018921475875mm
8	596.813867610706MHz	19.8773676289254mm	25.96743675	18.4104892117069mm
9	479.061256048518MHz	15.8867763298441mm	23.2231576	38.8195898312326mm
10	525.754570146794MHz	15.9397564622944mm	38.1909998	48.9904019287698mm
11	559.154026917325MHz	33.3873104037599mm	29.9839777	28.6185644093142mm
12	327.823725089267MHz	22.910916708396mm	24.66734825	38.8991515854366mm
13	347.148045289468MHz	36.5020294808802mm	15.13367107	20.7590716269417mm
14	381.328775902585MHz	34.7408736336033mm	38.95092624	28.881420331431mm
15	454.28020954009MHz	35.015167692096mm	43.20459609	46.5612506485183mm
16	276.906643879513MHz	32.283272049562mm	30.42985321	28.0394756920072mm
17	378.337961973937MHz	38.0289199027558mm	34.66521195	39.377592214728mm
18	428.949818414868MHz	37.0027771843623mm	31.71712394	22.4691457869198mm
19	439.64354380932MHz	39.4167912839137mm	22.67967772	43.2992187261574mm
20	334.25702686807MHz	28.173099487289mm	34.77965636	21.0209204382485mm
21	366.936246833705MHz	34.781884217277mm	38.61217078	29.9721213415937mm
22	287.5392258095MHz	31.5859859004486mm	35.81972716	39.190266103092mm
23	533.396404919584MHz	41.9060029908139mm	16.28653517	16.553367837035mm
24	537.791070284127MHz	15.749198891263mm	38.90972625	21.1246528519547mm
25	242.445142979217MHz	40.6994232001709mm	44.99725333	22.7823572496719mm
26	301.44352498215MHz	15.5945310831019mm	18.3756233	29.7646565147585mm
27	263.844721823786MHz	28.6609698782311mm	41.25904111	32.177649021424mm
28	222.986541337321MHz	35.6765648365734mm	19.9026521	45.10396130253mm
29	419.50327555162MHz	23.8295236060671mm	39.32538835	23.3644672994171mm
30	285.793633838923MHz	40.8771629993591mm	40.55223243	30.5723593859676mm
uniform mutation probability as 0.05 individual mutation probability - 1
5. Pareto front value -10
6. Next Generation parameters, i.e. the no of individuals - 5.

Optimization of the Length (L) and width (W) of microstrip patch antenna has been finished and respectively by the software the bandwidth and return loss too optimized for microstrip patch antenna. The end result of optimization is shown in Table 2.

3. Optimized Microstrip Patch Antenna Result and Analysis

In projected design the microstrip patch antenna has been optimized in all the feasible ways to obtain the finest results as given away in Table 2 and from this table at best result will be designed practically which is highlighted. Table 3 shows the dimension of re-designed optimized antenna. Figure 5 shows the software execution of the design.

Variable	Value
Width of patch W	15mm
Length of patch L	21mm
Length of slit c1	11.75mm
Width of slit c2	2 mm
Length of slot c3	3 mm
Width of slot c4	2 mm
Horizontal Length of U slot La	12mm
Vertical length of U slot Wb	12mm
Width of U slot Wc	1mm
Height of substrate	0.5mm
Permittivity of substrate	4.4

Table 4. Comparison of parameter in simple antenna and optimized microstrip patch antenna

Parameters	Antenna	Optimized antenna
Bandwidth (MHz)	203	210,250
Return loss	16.72	11.45, 20.50
VSWR	1.93	1.52, 1.71
Frequency range(GHz)	2.4	1.4-4

By the optimization the optimized return loss of the antenna is 11.45 at 1.45 GHz and 20.50 at 4GHz as shown in Figure 6 and also the bandwidth is completely extended as broadband and its range is 1.45 to 4 GHz. Figure 7 shows the VSWR of optimized antenna which is below 2 at both frequencies 1.45 and 4 GHz. Thus a smallest antenna is designed with a great practical performance, which is also shown in parameter comparison (Table 4).

4. Conclusion

The proposed manuscript design optimization technique for microstrip patch antenna which has a novel shape with ‘u’ type slot for broadband applications is triumphantly designed and examined. The MSA designed for enhancing the bandwidth and is optimized with genetic algorithm along with other parameters. A microstrip patch antenna designed for broadband application among
the frequency range of 1.45 to 4 GHz has been presented. The projected rectangular microstrip patch antenna provides high bandwidth of 36.59% and return loss up to 20.50dB. The simulated result shows good performance of designed antenna in practical platform and therefore it can be used in different broadband application such as missile, wireless, satellite, mobile communication and military applications.

5. Reference

1. Garg R, Bharti P, Bahl I. Microstrip antenna design hand-book. Boston London: Artech House; 2000. p. 1–817. PMid:10906249
2. Pozar DM. Microwave engineering. 2nd ed. New York: John Wiley and Sons; 1998.
3. Balanis CA. Antenna theory analysis and design. New York: John Wiley and Sons; 1997.
4. Sun S, Lu YH, La DS. Application of genetic algorithm in broadband microstrip design. Proceeding in Environmental Electromagnetics; 2009 Sep.
5. Miche K, Kucharski AA. Genetic algorithm optimization for multi band patch antenna design. Antenna and propagation, 1st European Conference; 2006 Nov.
6. Nurmantris D, Wijanto H, Nugroho BS. A pattern reconfigurable of circular short-circuited patch antenna based on genetic algorithm. 2014 2nd International Conference on Information and communication technology; 2014 May.
7. Johnson JM, Samii YR. Genetic algorithms in engineering electromagnetics. Antennas and Propagation Magazine. 1997 Aug; 39(4):7–21. https://doi.org/10.1109/74.632992
8. Goldberg D. Genetic algorithms in search, optimization and machine learning. New York: Addison-Wesley Longman Publishing; 1989.
9. Holland JH. Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press; 1975.
10. Jong KA. An analysis of the behavior of a class of genetic adaptive systems [Doctoral Dissertation]. University of Michigan, University Microfilms; 1975.
11. Rajaraman G, Anitha M, Mukerjee A, Sood K, Jyoti R. Dual-band, miniaturized, enhanced-gain patch antennas using differentially-loaded metastructures. Indian Journal of Science and Technology. 2015; 8(1):11–6. Crossref
12. Madhav BTP, Khan H, Kotamraju SK. Circularly polarized slotted aperture antenna with coplanar waveguide fed for broadband applications. Journal of Engineering Science and Technology; 2016 Feb; 11(2):267–77.