ON KÄHLER-EINSTEIN SURFACES WITH EDGE SINGULARITIES

LUCA FABRIZIO DI CERBO

ABSTRACT. In this paper we characterize logarithmic surfaces which admit Kähler-Einstein metrics with negative scalar curvature and small edge singularities along a normal crossing divisor.

CONTENTS

1. Introduction 1
2. Kähler-Einstein metrics with edge singularities as Kähler currents 2
3. On Kähler-Einstein surfaces with small edge singularities and negative scalar curvature 4
4. Geometric semi-positivity of twisted log-canonical bundles 6
5. Applications 8
References 11

1. INTRODUCTION

In a celebrated paper [27], S.-T. Yau solved the Calabi conjecture by studying complex Monge-Ampère equations on compact Kähler manifolds.

The solution of the Calabi conjecture provides a general existence theorem for Kähler-Einstein metrics of negative or zero scalar curvature (in the negative case, independently, T. Aubin [2]).

Since then, complex Monge-Ampère equations have been extensively studied. In particular, major developments in the theory of complex Monge-Ampère equations with singular right hand side have occurred, see for example [4], [20], [11]. As in the non-degenerate case, these analytical results provide very general existence theorems for singular Kähler-Einstein metrics. For more details, results and the connection with the theory of the minimal model see also [13] and the bibliography therein.

Such existence theorems, although extremely general, provide little control on the asymptotic behavior of the singular Kähler-Einstein metric near the degeneracy locus. This fact somehow limits many of the geometric applications.

In [25], G. Tian proposed to look for Kähler-Einstein metrics with cone singularities along a normal crossing divisor. Such metrics should still arise as solutions of certain singular complex Monge-Ampère equations, but because of the mild type of singularities developed by the associated Kähler-Einstein potentials one should be able to derive many interesting geometric consequences, see again [25].
In light of the recent advances and interest in the theory of Kähler-Einstein metrics with edge singularities [12], [7], [18], [1], we study the geometry of logarithmic surfaces which admit Kähler-Einstein metrics of negative scalar curvature and edge singularities of small cone angles along a normal crossing divisor.

The paper is organized as follows. In Section 2, we use the theory of Kähler currents to derive some generalities regarding the existence of Kähler-Einstein metrics with edge singularities. In Section 3, we show how the theory of semi-stable curves on algebraic surfaces developed by F. Sakai in [24] is relevant for the study of Kähler-Einstein metrics with edges on algebraic surfaces. Section 4 contains a proof of the geometric semi-positivity of certain twisted log-canonical bundles associated to a logarithmic surface. Finally, in Section 5, we show how the results in [7] and [18] can be used to classify logarithmic surfaces which admit negative Kähler-Einstein metrics with small edge singularities. Moreover, we briefly discuss the Chern-Weil approach, through Kähler-Einstein metrics with cone-edge singularities, to the logarithmic Bogomolov-Miyaoka-Yau inequality for surfaces of log-general type. Remarkably, this is intimately connected with the recent work of M. F. Atiyah and C. LeBrun in [1].

2. Kähler-Einstein metrics with edge singularities as Kähler currents

Let \overline{M} be a n-dimensional projective manifold and D a normal crossing divisor. Given the pair (\overline{M}, D), let us define the notion of a Kähler metric with edge singularities along D.

Let $\{D_i\}$ be the irreducible components of D and $\{\alpha_i\}$ a collection of positive numbers less than one and bigger than zero. A smooth Kähler metric $\hat{\omega}$ on $\overline{M} \setminus D$ is said to have edge singularities of cone angles $2\pi (1 - \alpha_i)$ along the D_i’s if for any point $p \in D$ there exist a coordinate neighborhood $(\Omega; z_1, ..., z_n)$ where $D|_{\Omega} = z_1 \cdot ... \cdot z_k = 0$ and a positive constant C such that

\begin{equation}
C^{-1} \omega_0 \leq \hat{\omega} \leq C \omega_0
\end{equation}

and a positive constant C such that

\begin{equation}
\omega_0 = \sqrt{-1} \left(\sum_{i=1}^{k} \frac{dz_i \wedge d\overline{z}_i}{|z_i|^{2\alpha_i}} + \sum_{i=k+1}^{n} dz_i \wedge d\overline{z}_i \right).
\end{equation}

Summarizing, from the Kähler geometry point of view on $\overline{M} \setminus D$ the smooth form $\hat{\omega}$ is simply an incomplete Kähler metric with finite volume. Because of the finite volume property, standard results in the theory of currents [10] imply that $\hat{\omega}$ can be regarded as a strictly positive closed real $(1,1)$-current on \overline{M}. In other words, $\hat{\omega}$ is a Kähler current on \overline{M} with singular support D.

We are now ready to introduce the definition of a Kähler-Einstein metric with edge singularities.

Definition 1 (Tian [25]). A Kähler current $\hat{\omega}$ with edges of cone angles $2\pi (1 - \alpha_i)$ along the D_i’s is called Kähler-Einstein with curvature λ if it satisfies the distributional equation

\begin{equation}
Ric_{\hat{\omega}} - \sum_i \alpha_i [D_i] = \lambda \hat{\omega}
\end{equation}
where by $[D]$ we indicate the current of integration along D.

In what follows, we will focus on the negatively curved case. Thus, let $\hat{\omega}$ be a Kähler-Einstein metrics with edge singularities as in 3 with $\lambda = -1$. By the Poincaré-Lelong formula [15], the current $-\text{Ric}_{\hat{\omega}} + \sum \alpha_i [D_i]$ represents the cohomology class of the \mathbb{R}-divisor $K_{\hat{\omega}} + \sum \alpha_i D_i$. Since by assumption $\hat{\omega}$ satisfies 3 with $\lambda = -1$, we have that the cohomology class of the \mathbb{R}-divisor $K_{\hat{\omega}} + \sum \alpha_i D_i$ can be represented by a Kähler current. By the structure of the pseudo-effective cone given in [9], we conclude that $K_{\hat{\omega}} + \sum \alpha_i D_i$ is a big \mathbb{R}-divisor.

Next, we want to show that $K_{\hat{\omega}} + \sum \alpha_i D_i$ has to be an ample \mathbb{R}-divisor. To this aim, recall that given a closed positive $(1,1)$-current T in \mathbb{C}^n one can define the Lelong numbers [15]. More precisely, let

$$\nu(T,r,x) = \frac{1}{(\pi r^2)^{n-1}} \int_{B(x,r)} T \wedge \omega^{n-1}$$

where ω is the standard Euclidean Kähler form. The Lelong number of T at x is then simply defined as

$$\nu(T,x) := \lim_{r \to 0} \nu(T,r,x).$$

The theory of positive currents, as developed by Lelong, Siu and others see for example [10], ensures that the definition given above makes sense and that furthermore it can be extended to currents on Kähler manifolds.

We are now interested in the computation of Lelong numbers of a Kähler current with edge singularities. For simplicity we treat the complex surface case only. The general case is completely analogous.

Let D^* denote the smooth part of the divisor D. Because of the quasi-isometric condition given in [1] for any $x \in D^*$ the computation of the Lelong numbers of $\hat{\omega}$ reduces to the evaluation of

$$\lim_{r \to 0} \int_{B(r)} \frac{1}{|z_1|^{2\alpha}} dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2.$$

Since

$$\int \frac{dr}{r^{2\alpha-1}} = \frac{1}{2(1-\alpha)} r^{2(1-\alpha)}$$

and $0 < \alpha < 1$, we conclude that $\nu(\hat{\omega}, x) = 0$ for any $x \in D^*$. Furthermore, the Lelong numbers are clearly zero outside the singular support of $\hat{\omega}$.

We are now ready to show that $\hat{\omega}$ represents an ample class. The idea is to apply the celebrated regularization result of Demailly [9].

For cohomological reasons, on a compact Kähler manifold, the Lelong numbers of a given positive current are bounded from above. Let us then choose a positive number c such that $\nu(\hat{\omega}, x) < c$ for any point $x \in \overline{M}$. Next, observe that there exists a smooth positive $(1,1)$-form γ such that $\hat{\omega} \geq \gamma$. Because of the choice of the number c, the regularizations $\{\hat{\omega}_{c,k}\}$ given in the main theorem of [9] are smooth over \overline{M} and satisfy

$$\hat{\omega}_{c,k} \geq \gamma - \mu_{c,k}$$

where $\{\mu_{c,k}\}$ is decreasing sequence of continuous functions converging pointwise to $\nu(\hat{\omega}, x)$, and $\overline{\omega}$ is a given background Kähler metric. As a result, given any
irreducible curve C on \overline{M}, we have

$$(\tilde{\omega}, C) = (\tilde{\omega}_{c,k}, C) = \int_{C^*} \tilde{\omega}_{c,k} \geq \int_{C^*} \gamma - \int_{C^*} \mu_{c,k} \mathcal{W}$$

where by C^* we denote the smooth part of C. Letting k go to infinity and applying

the dominated convergence theorem of Lebesgue, we conclude that $\tilde{\omega}$ represents a strictly nef class. By a Nakai-Moishezon type criterion for \mathbb{R}-divisors due to F. Campana and T. Peternell [8], we conclude that $K_{\overline{M}} + \sum \alpha_i D_i$ is indeed an ample \mathbb{R}-divisor.

Let us summarize these observations into a proposition.

Proposition 2.1. Let $\tilde{\omega}$ be a Kähler-Einstein metric with edge singularities as in \overline{M} with $\lambda = -1$, then the \mathbb{R}-divisor $K_{\overline{M}} + \sum \alpha_i D_i$ is ample.

An analogous proposition holds for Kähler-Einstein currents of positive scalar curvature.

Proposition 2.2. Let $\tilde{\omega}$ be a Kähler-Einstein metric with edge singularities as in \overline{M} with $\lambda = 1$, then the \mathbb{R}-divisor $-(K_{\overline{M}} + \sum \alpha_i D_i)$ is ample.

For the zero scalar curvature case the cohomological restrictions are obvious.

3. On Kähler-Einstein Surfaces with Small Edge Singularities and Negative Scalar Curvature

Let \overline{M} be a smooth projective surface. Let D be a reduced divisor having normal crossings on \overline{M}. The *logarithmic* canonical bundle associated to D is then defined as $\mathcal{L} = K_{\overline{M}} + D$, for details see [17]. Similarly, for any real number $\alpha \in (0,1]$ we define $\mathcal{L}_\alpha = K_{\overline{M}} + \alpha D$. Let us refer to the \mathcal{L}_α’s as *twisted* log-canonical bundles.

In Section 2, we have shown that if a pair (\overline{M}, D) admits a Kähler-Einstein metric with edge singularities of cone angle $2\pi(1 - \alpha)$ along D then the \mathbb{R}-divisor \mathcal{L}_α has to be ample, see Proposition 2.1. In this section we classify the pairs (\overline{M}, D) for which the corresponding \mathcal{L}_α’s are ample for all α close enough to one. Furthermore, we give an analogous classification result under the weaker requirement for \mathcal{L}_α to be big and nef for all α close enough to one. This more general classification result will be used in Section 4 and in the applications given in Section 5. Let us start with the following definitions, for details see [24].

Definition 2. Let \overline{M} be an algebraic surface and let D be a reduced normal crossing divisor. The pair (\overline{M}, D) is said to be D-minimal if there are no curves E in \overline{M} such that

$$E \simeq \mathbb{C}P^1, \quad E^2 = -1, \quad E \cdot D \leq 1.$$

Observe that if (\overline{M}, D) is D-minimal then \overline{M} need not be minimal.

Definition 3. The divisor D is called semi-stable if any smooth rational component in D intersects the other components of D at least in two points.

We can now prove the following lemma.

Lemma 3.1. If \mathcal{L}_α is big and nef for all values of α close enough to one, then the pair (\overline{M}, D) is D-minimal of log-general type with D a semi-stable curve.
Proof. Let us assume \(\mathcal{L}_\alpha \) to be big and nef for all values of \(\alpha \) close to one. Let consider the limit \(\mathcal{L}_\alpha \to \mathcal{L} \) as \(\alpha \) approaches one. By Kleiman’s theorem \([21]\), the closure of the ample cone is exactly the nef cone. In particular, the nef cone is closed and \(\mathcal{L} \) is necessarily nef. Let \(E \) be an irreducible component of \(D \), we then have

\[
\mathcal{L} \cdot E = 2p_a(E) - 2 + E(D - E)
\]

and since by construction \(\mathcal{L} \) is nef, we conclude that \(D \) is semi-stable. Moreover, the pair \((\overline{\mathcal{M}}, D)\) is \(D \)-minimal. Finally, it remains to show that \(\mathcal{L} \) is a big divisor. Since

\[
\mathcal{L} = \mathcal{L}_\alpha + (1 - \alpha)D
\]

and by assumption \(\mathcal{L}_\alpha \) is big, the result simply follows from the structure of the algebraic pseudo-effective cone \([21]\). \(\square \)

Conversely, we can prove the following.

Lemma 3.2. Let \((\overline{\mathcal{M}}, D)\) be a \(D \)-minimal semi-stable pair of log-general type, then \(\mathcal{L}_\alpha \) is big and nef for all values of \(\alpha \) close to one.

Proof. Since by assumption \(\mathcal{L} \) is big and the set of big \(\mathbb{R} \)-divisors forms an open convex cone, \(\mathcal{L}_\alpha \) is big for all values of \(\alpha \) close enough to one, see Corollary 2.24. in \([21]\).

It remains to understand the nefness properties of \(\mathcal{L}_\alpha \). Let \(E \) be an irreducible divisor in \(\overline{\mathcal{M}} \) and let us write

\[
\mathcal{L}_\alpha \cdot E = \mathcal{L} \cdot E + (\alpha - 1)D \cdot E.
\] (4)

Now, the semi-stability assumption on \(D \) combined with the \(D \)-minimality of \((\overline{\mathcal{M}}, D)\) imply that \(\mathcal{L} \) is nef. Thus, if \(E \) is such that \(\mathcal{L} \cdot E > 0 \), by making \(\alpha \) close enough to one we can always assume that \(\mathcal{L}_\alpha \cdot E > 0 \). The only curves we then need to consider are the ones such that \(\mathcal{L} \cdot E = 0 \). Thus, if \(E \) is irreducible and such that \(\mathcal{L} \cdot E = 0 \) we have the following cases:

- \(E \not\subseteq D, \ E \simeq \mathbb{C}P^1, \ E^2 = -2; \)
- \(E \subset D, \ E \) is an isolated component of \(D \) with \(p_a(E) = 1 \), or \(E \simeq \mathbb{C}P^1 \) and \(E \cdot (D - E) = 2. \)

Let us study first the case when \(E \) is an isolated component of \(D \). Observe that

\[
\mathcal{L} \cdot E = 2p_a(E) - 2 + D \cdot E - E^2
\]

so that if \(\mathcal{L} \cdot E = 0 \) and \(p_a(E) = 1 \) then \(D \cdot E = E^2 \). Since \(\mathcal{L}^2 > 0 \), by the Hodge index theorem we conclude that \(D \cdot E = E^2 < 0 \). By using \([4]\) we conclude that \(\mathcal{L}_\alpha \) dots positively with the isolated components of \(D \) with arithmetic genus equal to one.

Let now \(E \) be a \((-2)\)-curve not contained in the boundary divisor \(D \) such that \(\mathcal{L} \cdot E = 0 \). Since in this case \(D \cdot E = 0 \) we have

\[
\mathcal{L}_\alpha \cdot E = \mathcal{L} \cdot E + (\alpha - 1)D \cdot E = 0
\]

constantly in \(\alpha \).
Finally, let E be a smooth rational component of D such that $E \cdot (D - E) = 2$ and $\mathcal{L} \cdot E = 0$. Again by the Hodge index theorem we must have $E^2 < 0$. As a result

$$\mathcal{L}_\alpha \cdot E = (\alpha - 1)D \cdot E = (\alpha - 1)(2 + E^2) \geq 0$$

with equality iff E is a (-2)-curve. \hfill \Box

Combining Lemma 3.1 and 3.2 we have then proved the following theorem.

Theorem 3.3. The \mathbb{R}-divisor \mathcal{L}_α is big and nef for all values of α close enough to one iff the pair (\mathcal{M}, D) is D-minimal of log-general type with D a semi-stable curve.

Finally, we characterize when \mathcal{L}_α is ample for all values of α close to one.

Theorem 3.4. The \mathbb{R}-divisor \mathcal{L}_α is ample for all values of α close to one iff the pair (\mathcal{M}, D) is D-minimal of log-general type without interior rational (-2)-curves and D is a semi-stable curve without (-2)-rational curves intersecting the other components of D in just two points.

Proof. Let us assume \mathcal{L}_α to be ample for all values of α close to one. By Lemma 3.1 the pair (\mathcal{M}, D) is minimal of log-general type and D semi-stable. Finally, it is clear that the pair (\mathcal{M}, D) cannot contain rational (-2)-curves as above.

Conversely, if (\mathcal{M}, D) is as in statement, the ampleness of \mathcal{L}_α follows from the computations in Lemma 3.2 and the characterization of the amplitude for \mathbb{R}-divisors given in [8]. \hfill \Box

4. Geometric semi-positivity of twisted log-canonical bundles

In Section 3 we have shown that given a minimal semi-stable log-general pair (\mathcal{M}, D) there are obstructions for the \mathbb{R}-divisors \mathcal{L}_α to be ample for all α close enough to one. Nevertheless one expects good positivity properties for these \mathbb{R}-divisors.

Recall the following definition, see for example [14].

Definition 4. A line bundle L is called geometrically semi-positive if $c_1(L)$ can be represented by a smooth closed Hermitian $(1, 1)$-form which is everywhere positive semi-definite.

In this section we want to show that, given a minimal semi-stable log-general pair (\mathcal{M}, D), the associated \mathbb{R}-divisor \mathcal{L}_α is geometrically semi-positive for all values of α close enough to one. Moreover, we will precisely describe the locus where these \mathbb{R}-divisors fail to be ample.

The main tool used here will be a well-known theorem of Reider [23]. In fact, we apply this theorem to certain integer multiplies of \mathcal{L}_α where the parameter α is appropriately chosen to be rational and close enough to one.

Thus, let us start with \mathbb{Q}-divisors of the form

$$\mathcal{L}_{\alpha_n} = K_{\mathcal{M}} + \frac{(n - 2)}{n}D.$$

By clearing denominators we obtain

$$n\mathcal{L}_{\alpha_n} = 2K_{\mathcal{M}} + (n - 2)\mathcal{L} = K_{\mathcal{M}} + K_{\mathcal{M}} + (n - 2)\mathcal{L}.$$

(5)
By construction the pair (\bar{M}, D) is D-minimal of log-general type and D a semi-stable pair. The log-canonical bundle L is then big and nef. Furthermore, for n big enough by Theorem 3.3 the divisor $\bar{L}_n = K_{\bar{M}} + (n-2)L$ is big and nef.

Now, given a big and nef divisor L on \bar{M}, the theorem of Reider [23] provides a powerful tool for the study of the linear system $|K_{\bar{M}} + L|$. The idea is now to apply this theorem to the linear system associated to the divisor given in 5.

By letting n be big enough, we can always assume that $\bar{L}_n > 4$. By the theorem of Reider, we know that if $x \in \bar{M}$ is a base point of $|K_{\bar{M}} + L|$ then there exists an effective divisor C such that $x \in C$ and

$$\bar{L}_n \cdot C = 0, \quad C^2 = -1; \quad \bar{L}_n \cdot C = 1, \quad C^2 = 0.$$

For n big enough, the divisor C in (6) must satisfy $\bar{L} \cdot C = 0$. By the Hodge index theorem we then have $C^2 < 0$. This rules out the second possibility in (6). Regarding the remaining case, we argue as follows. Since $\bar{L} \cdot C = 0$, the divisor C must be connected. Furthermore, since $C^2 = -1$ it is easy to see that such a divisor must be reduced. But then we would have

$$K_{\bar{M}} \cdot C = 0, \quad C^2 = -1,$$

which contradicts the integrality of the arithmetic genus of C [15]. Concluding, for n big enough the linear system $|nL_{\alpha_n}|$ is base-point free. In other words, the Kodaira map

$$i_{|K_{\bar{M}} + \bar{L}_n|}: \bar{M} \rightarrow P^N$$

is everywhere defined for n big enough. We then have that L_{α_n} can be represented by a smooth closed Hermitian $(1,1)$-form which is everywhere positive semi-definite. Next, we want to understand the locus where L_{α_n} fails to be a Kähler class. Again this can be achieved by using Reider’s theorem. More precisely, for n big enough the only obstruction for the Kodaira map $i_{|K_{\bar{M}} + \bar{L}_n|}$ to be a local diffeomorphism onto its image is given by the existence of effective divisors C such that

$$\bar{L} \cdot C = 0, \quad K_{\bar{M}} \cdot C = 0, \quad C^2 = \{-1, -2\}.$$

These divisors are now easily classified. In fact, by using the reasoning given in the proof of Lemma 3.2 we conclude that that the only obstructions are given by the interior (-2)-curves and the boundary (-2)-curves in D intersecting the other components of D in two points only.

Proposition 4.1. Let (\bar{M}, D) be D-minimal of log-general type with D a semi-stable curve. There exists $\bar{\alpha} \in (0, 1)$ such that for any $\alpha \in [\bar{\alpha}, 1)$ then L_{α} can be represented by a smooth closed Hermitian $(1,1)$-form which is everywhere positive semi-definite and strictly positive outside the interior (-2)-curves and the boundary (-2)-curves intersecting the other components of D in just two points.

Proof. We have seen that, for n big enough, there exists a representative for L_{α_n} which is everywhere positive semi-definite and strictly positive outside the interior (-2)-curves and the boundary (-2)-curves in just two points. By Theorem 5.8. in [23] we know that L is semi-ample. We then have that L can be represented by a positive semi-definite smooth form. A simple computation now shows that, for any $\alpha \in [\alpha_n, 1)$, there exist strictly positive real numbers $\beta_1(\alpha)$ and $\beta_2(\alpha)$ such that

$$L_{\alpha} = \beta_1 L_{\alpha_n} + \beta_2 L.$$
By letting σ be equal to α_n, the proof is then complete. \hfill \Box

5. Applications

In this section, we apply the recent analytical advances in the theory of complex Monge-Ampère equations with degenerate right hand side \cite{8}, \cite{18} to classify logarithmic surfaces which admit Kähler-Einstein metrics with negative scalar curvature and small edge singularities.

As in Section 2, let D be a normal crossing divisor and let $\{D_i\}$ be its irreducible components. For all i, let denote by L_i the line bundle associated to D_i and let $\sigma_i \in H^0(M, \mathcal{O}_M(L_i))$ be a defining section for D_i. Finally, equip each of these line bundles with a Hermitian metric $\{(L_i, \| \cdot \|)\}$.

Thus, if we are interested in constructing singular negative Kähler-Einstein metrics on $M \setminus D$ with asymptotic behavior as in 2, given a Kähler class ω on \overline{M}, it is natural to consider the following singular complex Monge-Ampère equation

\begin{equation}
(\omega + \sqrt{-1} \partial \bar{\partial} \varphi)^n = e^{f + \varphi} \prod_i \frac{\omega^n}{\| \sigma_i \|^2 \alpha^n}
\end{equation}

whose right hand side is the volume form of an edge metric with cone angle $2\pi(1-\alpha)$.

In fact, if we assume \mathcal{L}_α to be ample by choosing $\omega \in [\mathcal{L}_\alpha]$ and f such that

\begin{equation}
\sqrt{-1}(\partial \bar{\partial} \log \omega^n - \sum_i \alpha_i \partial \bar{\partial} \log \| \sigma_i \|^2 + \partial \bar{\partial} f) = \omega
\end{equation}

if φ is a solution of \cite{7} smooth outside D, it is clear that ω_φ is a smooth Kähler-Einstein metric with negative scalar curvature on $\overline{M} \setminus D$.

Equations of the type given in \cite{7} where already studied in the fundamental paper of S.-T. Yau \cite{27}. The approach described in \cite{27} is through the study of non-singular ϵ-regularization of \cite{7}. More precisely, one tries to construct a solution of \cite{7} by studying the degeneration as $\epsilon \to 0$ of the solutions of ϵ-regularized equations of the form

\begin{equation}
(\omega + \sqrt{-1} \partial \bar{\partial} \varphi_\epsilon)^n = e^{f + \varphi_\epsilon} \prod_i \frac{\omega^n}{(\| \sigma_i \|^2 + \epsilon^2)\alpha^n},
\end{equation}

for more details see Section 8 in \cite{27}.

In \cite{20}, \cite{19}, S. Kołodziej using techniques coming from pluripotential theory, developed a very general existence, uniqueness and regularity theory for complex Monge-Ampère equations whose right hand side is a L^p-density for some $p > 1$. In particular, this very general theory can be applied to solve equations like \cite{7} for $\alpha \in (0, 1)$.

Finally, over the past year there has been a lot of progress towards the completion of Tian’s program \cite{25}. In fact R. Mazzeo, T. Jeffres and Y. Rubinstein in \cite{18}, building up on the work of S. Donaldson \cite{12}, appear to have completed this program in all dimensions, for all cone angles when D is an irreducible smooth divisor. Mazzeo-Rubinstein announced the resolution of this problem in the general case when D has simple normal crossings \cite{22}. These results make use of Rubinstein’s Ricci continuity method and Mazzeo’s edge calculus which in particular provides a fine asymptotic for the associated Kähler-Einstein potentials, for more details see \cite{18} and the bibliography therein. Moreover, they have existence theorems when $\mathcal{L}_\alpha \sim 0$ and $-\mathcal{L}_\alpha$ is ample. For related results see also the works of R. Berman \cite{5} and S. Brendle \cite{6}. Interestingly, by using an approach similar to the one suggested
by S.-T. Yau in [27], F. Campana, H. Guenancia, M. Păun in [7] were able to show the existence of a negatively curved Kähler-Einstein metric with edges along a normal crossing divisor D under the assumption that L is ample and $\alpha \in \left(\frac{1}{2}, 1\right)$. We now use their main existence result, Theorem A in [7] or alternatively Theorem 1.3. in [22], to prove the following.

Theorem 5.1. A logarithmic surface (\overline{M}, D) admits negative Kähler-Einstein metrics with edge singularities along D and cone angles $2\pi(1 - \alpha)$ for all values of α close enough to one iff (\overline{M}, D) is D-minimal, log-general, D is a semi-stable curve and there are no interior (-2)-curves or (-2)-curves in D which intersects the other components of D in two points only.

Proof. By Proposition 2.1, we know that if (\overline{M}, D) admits a negative Kähler-Einstein metric with edge singularities along D with cone angle $2\pi(1 - \alpha)$ then the associated twisted log-canonical bundle L_α has to be ample. Thus, if L_α is ample for all values of α close to one by Theorem 3.4 we conclude that (\overline{M}, D) is minimal, log-general, D is a semi-stable curve and there are not interior (-2)-curves or (-2)-curves in D which intersects the other components of D in just two points.

Conversely, if (\overline{M}, D) is as above by Theorem 3.4 we know that the L_α's are ample for all values of α close to one. Let us choose a Kähler class ω in $[L]$ and f as in [8] then by solving a singular complex Monge-Ampère equation of the form given in [7] see for example [20], [7], we can construct a negative Kähler-Einstein metric $\omega \phi$ on $\overline{M} \setminus D$. Now, since we are working with values of α close to one we can assume $\alpha \in \left(\frac{1}{2}, 1\right)$ and then applying Theorem A in [7] or Theorem 1.3. in [22] we conclude that $\omega \phi$ is indeed quasi-isometric to an edge Kähler metric near D. □

We conclude this section by discussing the Bogomolov-Miyaoka-Yau inequality for surfaces of log-general type. In [26], G. Tian and S.-T. Yau were able to prove, among many other things, that given a logarithmic surface (\overline{M}, D) for which L is big, nef and ample modulo D then the inequality

$$c_1^2(\Omega_{\overline{M}}^1(\log D)) \leq 3c_2(\Omega_{\overline{M}}^1(\log D))$$

holds. For the definition of the sheaf $\Omega_{\overline{M}}^1(\log D)$ and its basic properties we refer to Chapter 3 in [15]. As the reader can easily verify, if (\overline{M}, D) is log-general, D-minimal with D a semi-stable curve and there are not interior (-2)-curves then L is big, nef and ample modulo D. Following [25], one may try to prove [9] by deforming to zero the cone angle of a family ω_ϕ^ϵ of negative Kähler-Einstein metrics with edges singularities along D and apply a suitably modified Chern-Weil theory for this kind of incomplete metrics. The theory developed by Jeffress-Mazzeo-Rubinstein, see Theorem 2 in [18], provides a precise asymptotic for ω_ϕ near D. Remarkably, this asymptotic behavior appears to be exactly what is needed in order to develop a meaningful Chern-Weil theory in this context. In fact, Atiyah and LeBrun in [1] introduce the notion of Riemannian edge-cone metrics which are singular along smoothly embedded codimension two submanifolds and derive the analogues of the well-known Gauss-Bonnet and signature formulas for closed 4-manifolds. As the reader can easily verify, if the cone angle is sufficiently small, the singular Kähler-Einstein metrics constructed by Jeffress-Mazzeo-Rubinstein have cone-edge singularities in the sense of Atiyah-LeBrun. Again this follows from the deep analysis contained in Theorem 2. of [18]. Thus, let us show that this approach does indeed work when the boundary divisor D is smooth.
Proposition 5.2. Let \((\mathcal{M}, D)\) be D-minimal of log-general type without interior \((-2)\)-curves and let \(D\) be a smooth semi-stable curve. Then
\[
\begin{equation}
\label{eq:prop52}
c^2_1(\Omega^1_M(\log D)) \leq 3c_2(\Omega^1_M(\log D)).
\end{equation}
\]

Proof. By Theorem 3.4 if \((\mathcal{M}, D)\) is as in the statement then the twisted log-canonical bundle \(L_\alpha\) is ample for all values of \(\alpha\) close enough to one. By solving a singular Monge-Ampère equation as in [7], see again Theorem 2. in [18], one can construct a family of singular Kähler-Einstein metrics \(\omega^\alpha\) with negative scalar curvature and cone angles \(2\pi(1 - \alpha)\) along \(D\). For \(\alpha\) close enough to one, by Theorem 2.1. and Theorem 2.2. in [1] we know that
\[
\chi(M, \omega^\alpha) = \chi(M) - \alpha\chi(D), \quad \sigma(M, \omega^\alpha) = \sigma(M) - \frac{1}{3}\alpha(2 - \alpha)D^2
\]
where \(M = \mathcal{M} \setminus D\). For simplicity let us define
\[
\chi_\alpha = \chi(M, \omega^\alpha), \quad \sigma_\alpha = \sigma(M, \omega^\alpha).
\]
Now, observe that
\[
L^2_\alpha = 2\chi_\alpha + 3\sigma_\alpha = \frac{1}{4\pi^2} \int \left(2|W_+|^2 + \frac{s_\alpha^2}{24}\right) d\mu,
\]
where \(s, W_+\) and \(W_-\) are the scalar curvature, the self-dual and anti-self-dual Weyl curvatures of \(\omega^\alpha\). Since \(\omega^\alpha\) is a smooth Kähler metric on \(\mathcal{M} \setminus D\), a local computation shows the pointwise equality
\[
|W_+|^2 = \frac{s^2}{24}
\]
which therefore implies
\[
L^2_\alpha \leq 3\left(\frac{1}{4\pi^2} \int \frac{s^2}{24} d\mu\right) \leq \left(\frac{1}{4\pi^2} \int 2|W_-|^2 + \frac{s^2}{24} d\mu\right) = 3(2\chi_\alpha - 3\sigma_\alpha).
\]
By letting \(\alpha\) approach one, we conclude that
\[
\chi(\mathcal{M}) - \chi(D) \geq 3(\sigma(\mathcal{M}) - \frac{1}{3}D^2).
\]
Moreover, by using the fact that \((\mathcal{M}, D)\) is a logarithmic surface we have that
\[
K^2_{\mathcal{M}} = 2\chi(\mathcal{M}) + 3\sigma(\mathcal{M}), \quad \chi(D) = -K_{\mathcal{M}} \cdot D - D^2,
\]
which implies
\[
3(\chi(\mathcal{M}) - \chi(D)) \geq L^2.
\]
The final step is to show the equivalence of \eqref{eq:prop52} and \eqref{eq:prop52}. First, let us consider the short exact sequence of sheaves
\[
0 \longrightarrow \Omega^1_M \longrightarrow \Omega^1_M(\log D) \longrightarrow \mathcal{O}_D \longrightarrow 0;
\]
for more background see again Chapter 3 in [15]. By the Whitney product formula we have
\[
c(\Omega^1_M(\log D)) = c(\Omega^1_M) \cdot c(\mathcal{O}_D).
\]
Since \(D\) is reduced and effective, in order to compute \(c(\mathcal{O}_D)\) we can simply apply the Whitney product formula to the standard short exact sequence
\[
0 \longrightarrow \mathcal{O}_{\mathcal{M}}(-D) \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_D \longrightarrow 0.
\]
In conclusion, we obtain
\[c(\Omega^1_M(\log D)) = (1 + c_1(\Omega^1_M) + c_2(\Omega^1_M)) \cdot (1 + D + D^2) \]
which implies
\[c_1(\Omega^1_M(\log D)) = K_M + D = L \]
and with a slight abuse of notation
\[c_2(\Omega^1_M(\log D)) = c_2(\Omega^1_M) + K_M \cdot D + D^2 = \chi(M) - \chi(D). \]
This concludes the proof of \([\text{9}]\) when the boundary divisor \(D\) is smooth. \(\square\)

It would be extremely interesting to extend this argument in the case when \(D\) is reduced with normal crossing. The first problem is that, as shown in Theorem 5.1, not all pairs \((\overline{M}, D)\) for which \(L\) is big, nef and ample modulo \(D\) admit a 1-parameter family of negative Kähler-Einstein metrics with small edge singularities along \(D\). Nevertheless, combining Proposition 4.1 with Theorem 6.1. in \([11]\), one can still construct a 1-parameter family of negative Kähler-Einstein metrics \(\gamma^\alpha\) on \(\overline{M}\). More precisely, given a logarithmic surface \((\overline{M}, D)\) as in Proposition 4.1 and without interior \((-2)\)-curves, for any \(\alpha \in [\overline{\alpha}, 1)\) let \(\gamma^\alpha\) be a smooth semi-positive representative for the \(\mathbb{R}\)-cohomology class \([\mathcal{L}_\alpha]\). This smooth form is strictly positive outside the boundary \((-2)\)-curves intersecting the other components of \(D\) in two points only. Now, let \(\Omega\) be a smooth volume form on \(\overline{M}\) and consider the family of degenerate complex Monge-Ampère equations
\[(\gamma^\alpha + \sqrt{-1} \partial \overline{\partial} \varphi)^n = e^{f+\varphi} \frac{\Omega}{\prod_i \|\sigma_i\|^{2\alpha}} \]
for any \(\alpha \in [\overline{\alpha}, 1)\). By Theorem 6.1. in \([11]\), for a fixed \(\alpha\) this degenerate equation admits a unique solution \(\varphi \in L^\infty(\overline{M})\) which is smooth on \(\overline{M}\). Moreover, by appropriately choosing the function \(f\) in \([11]\) we can arrange \(\gamma^\alpha\) to be Einstein with negative scalar curvature on \(\overline{M}\). Thus, the remaining problem is to give a topological interpretation of the curvature integrals
\[\chi_\alpha = \chi(\overline{M}, \gamma^\alpha), \quad \sigma_\alpha = \sigma(\overline{M}, \gamma^\alpha). \]
Conjecturally, the same elegant formulas given in Theorem 2.1. and Theorem 2.2. of \([9]\) hold. The proof of \([9]\) should then follow as in the smooth boundary divisor case.

Concluding, a Chern-Weil approach to \([9]\) through deformations of negative Kähler-Einstein metrics with singularities along \(D\), has to rely on a generalization of the recent theory of M.F. Atiyah and C. LeBrun \([1]\) outside the realm of Riemannian metrics with pure cone-edge asymptotic.

Acknowledgements. I would like to thank Samuel Grushevsky, Thalia Jeffres, Blaine Lawson, Claude LeBrun and Mark Stern for useful discussions.

References
\begin{enumerate}
\item M. F. Atiyah, C. LeBrun, Curvature, Cones, and Characteristic Numbers. \textit{arXiv:1203.6389}, (2012).
\item T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes. \textit{Bull. Sci. Math 2}, (1978), 63-95.
\item W. Barth, K. Hulek, C. Peters, A. van de Ven, Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 4. Springer-Verlag, Berlin, 2004.
\end{enumerate}
[4] E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions. *Acta Math.* **149**, (1982), 1-40.

[5] F. Berman, A thermodinamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and and Kähler-Einstein metrics. *arXiv:1011.3976*, (2011).

[6] S. Brendle, Ricci flat Kähler metrics with edge singularities. *arXiv:1103.5454*, (2011).

[7] F. Campana, H. Guenancia, M. Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. *arXiv:1104.4879*, (2011).

[8] F. Campana, T. Peternell, Algebraicity of the ample cone of projective varieties. *J. Reine Angew. Math.* **407**, (1990), 160-166.

[9] J.-P. Demailly, Regularization of closed positive currents and intersection theory. *J. Alg. Geom.* **1**, (1992), 361-409.

[10] J.-P. Demailly, Complex analytic and differential geometry. www-fourier.ujf-grenoble.fr/de-mailly/lectures.html, 2001.

[11] J.-P. Demailly, N. Pali, Degenerate complex Monge-Ampère equations over compact Kähler manifolds. *Internat. J. Math* **180**, (2006), 69-117.

[12] S. K. Donaldson, Kähler metrics with cone singularities along a divisor. *arXiv:1102.1196*, (2010).

[13] F. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics. *J. Amer. Math. Soc.* **22**, (2009), 607-639.

[14] T. Fujita, On semipositive Line Bundles. *Proc. Japan Acad.,* **56**, Ser. A, (1980), 393-396.

[15] P. Griffiths, J. Harris, Principles of Algebraic Geometry. Pure and Applied Mathematics. *Wiley-Interscience*, New York, 1978.

[16] R. Hartshorne, Algebraic Geometry. *Springer-Verlag*, 1977.

[17] S. Iitaka, Algebraic Geometry. *Springer*, 1981.

[18] T. D. Jeffres, R. Mazzeo, Y. A. Rubinstein, Kähler-Einstein metrics with edge singularities. *arXiv:1105.5216*, (2011).

[19] S. Kołodziej, The complex Monge-Ampère Equation on Compact Kähler Manifolds. *Indiana Univ. Math. J.* **52**, (2003), 667-686.

[20] S. Kołodziej, The complex Monge-Ampère operator. *Acta Math.* **180**, (1998), 69-117.

[21] R. Lazarsfeld, Positivity in Algebraic Geometry I. *Springer*, 2004.

[22] R. Mazzeo, Y. A. Rubinstein, The Ricci continuity method for the complex Monge-Ampère equation, with applications to Kähler-Einstein edge metrics. *C. R. Acad. Paris, Ser I*, (2012), 1-5.

[23] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. *Ann. of Math.* **127**, (1988), 309-316.

[24] F. Sakai, Semi-Stable Curves on Algebraic Surfaces and Logarithmic Pluricanonical Maps. *Math. Ann.** 254**, (1980), 89-120.

[25] G. Tian, Kähler-Einstein metrics on algebraic manifolds, Trascendental methods in algebraic geometry (Cetraro 1994), Lecture notes in Math. 1646, Springer, Berlin, 1996.

[26] G. Tian, S.-T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Math Aspects of String Theory, edited by Yau, 574-628, *World Sci. Publishing Co. Singapore*, 1987.

[27] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. *Comm. Pure Appl. Math.* **31**, (1978), 339-411.

Mathematics Department, Duke University, Box 90320, Durham, NC 27708, USA

E-mail address: luca@math.duke.edu