Mass Shifts through Re-scattering

Ron S. Longacre

Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

In this note we present a model that can produce a mass shift in a resonance due to interference between a scattering amplitude and that amplitude having rescattering through the resonance.

1 Starting point

For the first part of this story we will define what a scattering cross section is. We will only consider in this work elastic scattering of pions. Two pions can scatter at a certain energy which we will call \(M_{\pi\pi} \). The differential cross section \(\sigma \) at a given \(M_{\pi\pi} \) is

\[
\frac{d\sigma}{d\phi d\theta} = \frac{1}{K^2} \left| \sum_\ell (2\ell + 1) T_\ell P_\ell(\cos(\theta)) \right|^2
\]

where \(\phi \) and \(\theta \) are the azimuthal and scattering angles, respectively. \(T_\ell \) is a complex scattering amplitude and \(\ell \) is the angular momentum. \(P_\ell \) is the Legendre polynomial, which is a function of \(\cos(\theta) \). \(K \) is the flux factor equal to the pion momentum in the center of mass. For this note we only consider \(\ell = 0 \) and \(\ell = 1 \). The \(T_0 \) and \(T_1 \) elastic scattering amplitudes are complex amplitudes described by one real number which is in units of angles. The form of the amplitude is

\[
T_\ell = e^{i\delta_\ell} \sin(\delta_\ell)
\]

We note that \(\delta \) depends on the value of \(\ell \) and \(M_{\pi\pi} \). We will use the \(\ell = 0 \) and \(\ell = 1 \) \(\delta \)'s given in [1].

\[^1\text{This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886}\]
2 Defining A

Let us consider two pions scattering in the final state of the heavy ion collision. The scattering will be either $\ell = 0$ or $\ell = 1$ partial waves. The $M_{\pi\pi}$ of the scattering di-pion system will depend on the probability of the phase space of the overlapping pions. The pions emerge from a close encounter in a defined quantum state with a random phase. We will call this amplitude A and note that the absolute value squared of the amplitude is proportional to the phase space overlap. The emerging pions can re-interact or re-scatter through the quantum state of the pions, which is a partial wave or a phase shift. We have amplitude A plus A times the re-scattering of pions through the phase shift consistent quantum state of A. The correct unitary way to describe this process is given by [2] equation (4.5)

$$T = \frac{V_1 U_1}{D_1} + \left(\frac{V_2 + \frac{D_{\rho \pi \pi}}{D_1}}{D_2 - \frac{D_{\rho \pi \pi}}{D_1}} \right) \left(U_2 + \frac{D_{\rho \pi \pi}}{D_1} \right)$$

(3)

In the above equation we have two terms, 1 and 2. The first term denoted by 1 is the $\pi\pi$ scattering through p-wave which will become the amplitude A mentioned above, where V is the incoming and U is the outgoing $\pi\pi$ system. The second term denoted by 2 is the direct production of the ρ meson with V being the production, the propagation being D and the decay being U. We see that there are terms D_{12} which involves a loop of pions between scattering pions and the formation of a ρ by the pions.

3 Final equation

The complete derivation is in the appendix. From the appendix we get two terms, one being the direct production of the ρ or $\pi\pi$ p-wave phase shift and the second being the ρ from re-scattering. The final equation number 21 has two important factors, one is two-body phase space and the other is a coefficient α. This coefficient is related to the real part of the $\pi\pi$ rescattering loop and is given by equation 14. When the pions rescatter or interact at a close distance or a point α has its maximum value of one. While if the pions rescatter or interact at a distance determined by the diffractive limit the value of α is zero.

In the equation 21 $|T|^2$ is the cross section for ρ production, where D is the direct production amplitude and A is the amplitude introduced above
for the re-scattering pions into the \(\rho \) meson. \(\delta \) is the \(\pi \pi \) phase shift \([1]\). \(q \) is the \(\pi \pi \) center of mass. At a given \(p_T \) and \(y \) bin, \(D \) will be a constant as a function of \(M_{\pi\pi} \). The \(\alpha \) factor is one for rescattering coming from a point source, but goes to zero when rescattering is diffractive. The dependence of \(A \) is calculated by the phase space overlap of di-pions added as four vectors and corrected for proper time, with the sum having the correct \(p_T \) and \(y \) for a given \(M_{\pi\pi} \).

Finally we must use the correct two body phase space. For a two body system of pions, phase space goes to an constant as \(M_{\pi\pi} \) goes to infinity. Let us choose this constant to be unity. Phase space which is denoted by PS is equal to

\[
PS = \frac{2qB_\ell(q/q_0)}{M_{\pi\pi}}
\]

where \(B_\ell \) is a Blatt-Weisskopf-barrier factor \([3]\) for \(\ell \) angular momentum quantum number. The \(q_0 \) is the momentum related to the range of interaction of the \(\pi\pi \) scattering. 1 fm is the usual interaction distance which implies that \(q_0 = 200 \text{ MeV/c} \). For the \(\rho \) meson \(\ell = 1 \) and \(B_1 = \frac{(q/q_0)^2}{(1+(q/q_0)^2)} \).

The phase space factor PS as a function of \(q \) near the \(\pi\pi \) threshold is given by \(q^{2\ell+1} \). Thus in the appendix we use \(q^{2\ell+1} \) for the factor PS except for equation 21 which is the final equation.

A Appendix

Starting with equation (4.5) from \([2]\)

\[
T = \frac{V_1U'_1}{D_1} + \frac{\left(V_2 + D_{12}U'_1\right)\left(U'_2 + D_{12}U'_1\right)}{D_2 - D^2_{12}}
\]

In order to have the correct threshold kinematics, we define

\[
U'_1 = U_1\sqrt{q^{2\ell+1}}
\]

\[
U'_2 = U_2\sqrt{q^{2\ell+1}}
\]

where \(q \) is the \(\pi\pi \) center of mass momentum and \(\ell \) is the value of the angular momentum. The amplitude \(A \) of the text is given by

\[
\frac{V_1U_1}{D_1} = A
\]
Thus we have

\[
\frac{V_1 U'_1}{D_1} = A \sqrt{q^{2\ell+1}}
\]

(9)

The phase shift for the \(\ell^{th}\) partial wave will be given by \(\delta_\ell\), where

\[
\frac{U'_2 U'_2}{D_2} = e^{i\delta_\ell} sin(\delta_\ell)
\]

(10)

The above equality is true if the \(D_1\) mode plays no role in the \(\pi\pi\) scattering in the \(\ell^{th}\) partial wave. But in the initial state there is a large production of \(D_1\). The \(U'\)'s are the basic coupling of the \(D\)'s to the \(\pi\pi\) system. In order to decouple \(D_1\) from the \(\pi\pi\) system \(U_1\) must go to zero. We can maintain a finite production of \(D_1\) if we define

\[
V_1 = \frac{1}{U_1}
\]

(11)

Thus the first term in the equation becomes

\[
\frac{V_1 U'_1}{D_1} = \frac{1}{U_1} \sqrt{q^{2\ell+1}} = \sqrt{q^{2\ell+1}} D_1 = A \sqrt{q^{2\ell+1}}
\]

(12)

The form of \(D_{12}\) is given by

\[
D_{12} = \alpha U_1 U_2 + i q^{2\ell+1} U_1 U_2
\]

(13)

\(D_{12}\) is the real and imaginary part of the two pion loop from state 1 to state 2. The \(U'\)'s are the \(\pi\pi\) couplings and the imaginary part goes to zero at the \(\pi\pi\) threshold. The \(\alpha\) factor is one for rescattering coming from a point source, but goes to zero when rescattering is diffractive. A simple form for \(\alpha\) is given by

\[
\alpha = (1.0 - \frac{r^2}{r_0^2})
\]

(14)

where \(r\) is the radius of rescattering in fermis and \(r_0\) is 1.0 fermi or the limiting range of the strong interaction. The second term of the first equation is

\[
\frac{\left(V_2 + \frac{D_{12} V_1}{D_1} \right) \left(U'_2 + \frac{D_{12} U'_1}{D_1} \right)}{D_2 - \frac{D_{12}^2}{D_1}}
\]

(15)
Rewriting

\[
\left(V_2 + \frac{a U_1 V_1}{D_1} + i q^{2\ell+1} \frac{U_2 V_1}{D_1} \right) \left(U_2' + \frac{D_1 U_1'}{D_1} \right) \frac{D_2 - \frac{D_1^2}{D_1}}{D_2}
\]

(16)

Let us make substitutions

\[
V_1 = \frac{1}{U_1}, U_2 = \frac{U_2'}{\sqrt{q^{2\ell+1} D_1}}, D_1 = A, D_{12} = 0
\]

(17)

The second term becomes

\[
\frac{\left(V_2 + \frac{a U_2'}{\sqrt{q^{2\ell+1}}} + i \sqrt{q^{2\ell+1}} A U_2' \right) U_2'}{D_2}
\]

(18)

The first term is

\[
\frac{V_1 U_1'}{D} = A \sqrt{q^{2\ell+1}}
\]

(19)

Adding the first and the second terms and substituting the phase shift,

\[
T = \frac{V_2}{U_2} \frac{e^{i\delta_\ell \sin(\delta_\ell)}}{\sqrt{q^{2\ell+1}}} + A \left(\frac{e^{i\delta_\ell \alpha \sin(\delta_\ell)}}{\sqrt{q^{2\ell+1}}} + \sqrt{q^{2\ell+1}} e^{i\delta_\ell \cos(\delta_\ell)} \right)
\]

(20)

The term with the factor \(\frac{V_2}{U_2} \) is the direct production of the di-pion system. We shall call this amplitude \(D \). The re-scattered amplitude is \(A \) and is modified by the di-pion phase shift. These two amplitudes have some random phase and are not coherent. Thus the cross section is

\[
|T|^2 = |D|^2 \frac{\sin^2(\delta_\ell)}{PS} + |A|^2 \frac{\alpha \sin(\delta_\ell) + PS \cos(\delta_\ell)}{PS}^2
\]

(21)

References

[1] G. Grayner et. al., Nucl. Phys. B 75 (1974) 189.

[2] R. Aaron and R. S. Longacre, Phys. Rev. D 24 (1981) 1207.

[3] F. von Hippel and C. Quigg, Phys. Rev. 5 (1972) 624.