New α-Glucosidase Inhibiting Anthracenone from the Barks of *Harungana madagascariensis* Lam.

Ismail B. Onajobi\(^a,b\), Achyut Adhikari\(^b\)*, Shabbir Hussain\(^b\), Kulsoom Javaid\(^b\), Obasola E. Fagade\(^c\) and I. A. Oladosu\(^d\)

\(^a\) Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria.

\(^b\) H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.

\(^c\) Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, Ibadan, Nigeria.

\(^d\) Department of Chemistry, University of Ibadan, Ibadan, Nigeria.

*achyutraj05@gmail.com

Abstract

Two new 10-hydroxy-9(10H)-anthracenone, madagascenone A (1) and B (2) were isolated from the barks of *Harungana madagascariensis* Lam. The structures of the compounds were determined by using 1D- and 2D- NMR and mass spectroscopic techniques. Both of the compounds showed an *in vitro* α-glucosidase inhibition with IC\(_{50}\) = 69.9±4.21 and 122.3±1.13 μM, respectively, more potent than the standard acarbose (IC\(_{50}\) = 840±1.23 μM).

Keywords: *Harungana madagascariensis*, madagascenone A and B, α-Glucosidase Inhibition
Table of Contents

Table/Figure	Description	Page
Table S1	13C- and 1H-NMR chemical shift values of compounds 1 and 2	3
Figure S1	Key HMBC correlations of compound 1 and 2	4
Figure S2	Key NOESY correlations of compounds 1 and 2	4
Figure S3	FAB ($^{-Ve}$) MS spectrum of compound 1	4
Figure S4	FAB ($^{+Ve}$) MS spectrum of compound 1	5
Figure S5	1H-NMR (500 MHz, MeOD) spectrum of compound 1	5
Figure S6	13C-NMR (125 MHz, MeOD) spectrum of compound 1	6
Figure S7	HSQC spectrum of compound 1	7
Figure S8	HMBC spectrum of compound 1	8
Figure S9	FAB ($^{-Ve}$) MS Spectrum of Compound 2	8
Figure S10	1H-NMR (500 MHz, CDCl$_3$) Spectrum of Compound 2	9
Figure S11	13C-NMR (150 MHz, CDCl$_3$) Spectrum of Compound 2	10
Figure S12	HSQC Spectrum of Compound 2	11
Figure S13	HMBC Spectrum of Compound 2	12
Table S1: 13C- and 1H-NMR chemical shift values of compounds 1 and 2 (ppm, MeOD and CDCl$_3$, 125 and 500 MHz), respectively.

C. No.	δC	δH(J, Hz)	δC	δH(J, Hz)
1	164.7	-	167.3	-
2	103.0	6.32 s	98.1	6.42 s
3	161.7	-	167.0	-
4	122.6	-	117.3	-
4a	148.6	-	137.1	-
5	119.8	6.77 s	129.4	-
6	141.2	-	147.9	-
7	132.2	-	119.9	6.83 s
8	161.7	-	161.1	-
8a	121.5	-	112.7	-
9	193.3	-	191.4	-
9a	113.7	-	108.5	-
10	61.7	5.84 s	61.8	5.80 s
10a	143.7	-	143.3	-
11	24.6	3.50 d (6.1)	27.2	3.35 d (6.2)
12	124.2	4.96 t (6.1)	122.9	5.03 t (6.2)
13	132.3	-	131.6	-
14	18.1	1.82 s	18.1	1.84 s
15	26.0	1.70 s	26.3	1.32 s
16	27.9	3.75 d (6.2)	29.7	3.08 dd (7.6, 15.7)
				3.75 dd (9.0, 15.7)
17	124.5	5.07 t (6.2)	94.8	4.57 dd (7.6, 9.0)
18	133.1	-	78.2	-
19	17.9	1.85 s	24.7	1.23 s
20	25.9	1.75 s	25.6	1.70 s
21	20.9	2.31 s	64.1	3.68 q (6.5)
22	-	-	15.2	1.34 t (6.5)
23	-	-	20.9	2.33 s
1-OH	-	12.39 s	-	12.26 s
8-OH	-	12.30 s	-	12.21 s
Figure S1: Key HMBC correlations of compound 1 and 2.

Figure S2: Key NOESY correlations of compounds 1 and 2.
Figure S3: FAB (Ve) MS spectrum of compound 1 (madagascanthranol A)

Figure S4: FAB (Ve) MS Spectrum of Compound 1
Figure S5: 1H-NMR (500 MHz, MeOD) spectrum of compound 1.
Figure S6: 13C-NMR (125 MHz, MeOD) spectrum of compound 1.
Figure S7: HSQC spectrum of compound 1.
Figure S8: HMBC spectrum of compound 1.

Figure S9: FAB (-Ve) MS spectrum of compound 2
Figure S10: 1H-NMR (500 MHz, CDCl$_3$) spectrum of compound 2.
Figure S11: 13C-NMR (150 MHz, CDCl$_3$) spectrum of compound 2.
Figure S12: HSQC spectrum of compound 2.
Figure S13: HMBC spectrum of compound 2.