Concentration Factors for 137Cs in Japanese Coastal Fish (1984—1990)

YUTAKA TATEDA1,3 and TAKU KOYANAGI2

1Central Research Institute of Electric Power Industry, Abiko Research Laboratory, 1646, Abiko, Abiko, Chiba 270-11, Japan
2Japan Atomic Industrial Forum, Jakarta Liaison Office, JL. Genderal Sudirman Kav, 10-11, Jakarta 10220, Indonesia
3Present address: International Atomic Energy Agency, Marine Environment Laboratory, B. P. No. 800, MC-98012, Monaco.

(Received, October 25, 1995)
(Revision received, March 12, 1996)
(Accepted, March 12, 1996)

Concentration factors/137Cs/Marine fish/Stable Cs/Japanese coastal waters

Concentration factors (CFs; Bq kg$^{-1}$ in wet fish muscle/Bq kg$^{-1}$ in filtered seawater) for 137Cs were determined in Japanese coastal fish collected from 1984 to 1990. 137Cs/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of 137Cs between marine fish and seawater. The geometric mean of CF in Japanese coastal fish was 52±4 (standard error of the mean), with values ranging from 14 to 133. 137Cs/Cs atom ratios both in marine fish and seawater indicate that the distribution of 137Cs was in equilibrium between fish muscle and seawater. Therefore, CF values obtained in the present study can be regarded as equilibrated. Our results show that the CFs for 137Cs in Japanese coastal fish were within the range of Japanese guidelines, but were below the recommended IAEA value.

INTRODUCTION

Concentration factors (CFs; 137Cs Bq kg$^{-1}$ in fish/137Cs Bq kg$^{-1}$ in filtered seawater) are used as a transfer parameters in assessments of the public dose from radioactivity in the marine environment. To derive a CF value, the concentration of 137Cs and stable Cs in some marine fish have previously been investigated1. Genellary, 137Cs concentrations were higher in fish muscle than in viscera2, and gave CFs of 43±12 (arithmetic mean and standard deviation)3. During 1963—1970, 137Cs atmospheric fallout peaked in 1963 and subsequently decreased. The 137Cs concentration in Japanese surface seawater also decreased, but the rate of decrease was slower than that of the atmospheric fallout3. During 1963—1970, 137Cs atmospheric fallout peaked in at 1963 and subsequently decreased. The 137Cs concentration in Japanese surface seawater also decreased, but the rate of decrease was slower than that of the atmospheric fallout3. The 137Cs concentration in fish muscle decreased in accordance with the reduction of 137Cs concentration in surface seawater and fallout3, but the 137Cs concentration has recently leveled off and has shown no significant regional variations4—10. The CF values for 137Cs, however, exhibited a wide range, from 4.5 to 2401,11—19. Some of these values were reported under the non-equilibrium conditions, except those reported by Suzuki et al. (1973)1 and Nakahara et al. (1980)18.
In this article, we report 137Cs and stable Cs concentration in 18 species of Japanese coastal fish in order to estimate the recent CF values of 137Cs in Japanese coastal fish. For seawater, we used the reported data of 137Cs and stable Cs in surface waters\(^{20}\). To demonstrate the equilibrium state of 137Cs distribution between fish and seawater, we studied not only the concentration of 137Cs, but also atom ratios of 137Cs/Cs (stable). To examine the equilibrium state, the comparison between specific activity (137Cs Bq kg\(^{-1}\)/Cs μg kg\(^{-1}\)) of fish muscle and seawater has been generally used in the past\(^{11}\). However, we used the atom ratios (atoms of 137Cs/atoms of stable Cs) rather than the specific activity. The reasoning for this has been described elsewhere\(^{20}\). Here we show that the atom ratio is preferable than the specific activity because of the accuracy in expressing the relation between 137Cs and Cs as a dimensionless unit. In environmental study of 129I, the atom ratios of 129I/127I is commonly used in expressing the relation of two nuclides\(^{22}\). Therefore, we use atom ratios of 137Cs/133Cs (stable) in this study. We have also compared our derived CF value with those recommended by IAEA\(^{23}\).

MATERIALS AND METHODS

From 1984 to 1990, fish samples were collected from selected coastal areas of Japan (Fig. 1).

![Fig. 1. Sampling locations in Japanese coastal waters. ● : Fish sample, □ : Seawater sample.](image)
Thirty two samples of fish, representing 18 species, were collected by set-net fishing. Fish samples were rinsed with clean seawater and muscle tissue was separated from viscera and hard tissues. Fish muscle was oven-dried for 24 hours at 110°C and ashed at 250°C and 450°C, for 24 hours and 48 hours, respectively.

The analytical procedures for 137Cs and stable Cs has been described elsewhere20,21,24. Hence, the procedure is only briefly described here; 137Cs in the ashed fish muscle (30 g) was separated radiochemically by the ammonium-molybdophosphate method and measured with a low-background gas-flow β-counter, which was calibrated with 137Cs standards. For neutron activation analysis of stable Cs in fish samples, ashed samples (from 300 to 500 mg) and reference standard for Cs were irradiated in the JRR-4 nuclear reactor at Japan Atomic Energy Research Institute, and γ-radioactivity of induced 134Cs was measured with a γ-ray spectrometer with Ge (Li) detector.

The concentration factor (CF) for 137Cs was calculated by dividing the concentration of 137Cs in wet fish muscle (Bq kg$^{-1}$) by the concentration in filtered seawater (Bq kg$^{-1}$)20,21. 137Cs concentration in seawater was expressed using units of Bq kg$^{-1}$ instead of Bq l$^{-1}$ in order to make the CF value a dimensionless unit23.

RESULTS

Data for 137Cs and stable Cs concentrations in fish muscle are shown in Table 1 together with 137Cs/Cs atom ratios and CF values for 137Cs. The 137Cs concentrations in fish muscle were ranged from 0.08 to 0.44 Bq kg$^{-1}$-wet. These values are similar to the range reported for Japanese coastal fishes collected during 1987—1990 (0.16—0.47 Bq kg$^{-1}$-wet)27. Stable Cs concentrations in fish muscle varied between 4.4 and 23 ng g$^{-1}$-wet, and were comparable to the reported values of 4.4 and 23 ng g$^{-1}$-wet for coastal species11,18,25.

The 137Cs and stable Cs concentrations in coastal waters and the 137Cs/Cs atom ratios in Japanese coastal waters during 1984—1990 were reported by Tateda and Koyanagi (1994)20 (Table 2). The 137Cs concentrations in filtered seawater were between 3.5 and 5.1 mBq l$^{-1}$ at study sites during 1984—1990. Variations of values between years were not significant. During the 1960s, 137Cs levels in Japanese coastal waters were within the range of 8.9—28 mBq l$^{-1}$1,26. These values are higher than those of today because of the higher atmospheric radioactive fallout during that period. During the 1970s and early 1980s, 137Cs level in seawater decreased to 3.2—6.3 mBq l$^{-1}$$^{27—29}$ due to the reduction in atmospheric radioactive fallout. Our results from the late 1980s showed lower 137Cs concentrations than those in the early 1980s. The only exception was the 137Cs level in seawater in 1986, corresponding to the Chernobyl accident, but the affected period was restricted to a few months5. The 137Cs release from nuclear facilities in Japan has been negligible. Therefore, the 137Cs concentration in Japanese coastal waters can be regarded as being almost unchanged during the present study period. The mean stable Cs concentrations in Japanese coastal waters was 0.29 μg l$^{-1}$ with a range of 0.24—0.34 μg l$^{-1}$, and the geometric mean value. As the reported stable Cs concentrations in seawater were within the range of 0.15—0.55 μg l$^{-1}$ 20,30, it is evident that the sites investi-
gated in this work had not been affected by riverine run-off or large inputs of land-derived substances, which can cause a variation of stable Cs concentration in seawater.

Since the ^{137}Cs levels in seawater and biological samples can be regarded as almost constant during 1984—1990\cite{20,24}, we used the data of ^{137}Cs levels in seawater and fish muscle as being representative of those levels during the present study period. By these data, we identify the

Species	Location	year	$^{137}\text{Cs}^{a)$ (Bq kg$^{-1}$-wet)}	Cs$^{b)$ (ng g$^{-1}$-wet)}	$^{137}\text{Cs}/\text{Cs}$ atom ratio ($\times 10^{-9}$)	Concentration factor
Siganus fuscensenns	Tsuyazaki	1986	0.19 ± 0.01	18 ± 1	3.2	43
Hexagrammos agurammus	Tsuyazaki	1986	0.23 ± 0.01	13 ± 1	5.4	52
Hexagrammos otakii	Katsuura	1985	0.2 ± 0.01	11 ± 1	5.5	44
Hexagrammos otakii	Katsuura	1986	0.29 ± 0.01	13 ± 1	6.8	65
Hexagrammos otakii	Hachinohe	1986	0.38 ± 0.01	14 ± 1	8.2	86
Hexagrammos otakii	Oshoro	1989	0.11 ± 0.01	7.1 ± 0.4	4.7	30
Hexagrammos otakii	Oshoro	1990	0.19 ± 0.01	11 ± 1	5.2	54
Hexagrammos otakii	Hachinohe	1990	0.26 ± 0.01	13 ± 1	6.1	73
Hexagrammos otakii	Hachinohe	1987	0.44 ± 0.01	23 ± 1	5.8	102
Pleurogrammus azonus	Oshoro	1986	0.31 ± 0.01	14 ± 1	6.7	70
Pleurogrammus azonus	Hachinohe	1986	0.4 ± 0.07	14 ± 1	8.7	91
Pleurogrammus azonus	Hachinohe	1987	0.37 ± 0.01	21 ± 1	5.3	88
Ditrema temmincki	Katsuura	1985	0.25 ± 0.01	11 ± 1	6.9	51
Ditrema temmincki	Katsuura	1986	0.27 ± 0.01	14 ± 1	5.8	61
Ditrema temmincki	Hachinohe	1986	0.27 ± 0.01	13 ± 1	6.3	61
Ditrema temmincki	Hachinohe	1987	0.06 ± 0.01	4.4 ± 0.2	4.1	14
Sebastes inermis	Katsuura	1985	0.31 ± 0.01	17 ± 1	5.5	69
Sebastes pachycephalus	Katsuura	1985	0.19 ± 0.01	8.8 ± 0.4	6.5	41
Sebastes marmoratus	Katsuura	1985	0.2 ± 0.01	15 ± 1	4.0	44
Sebastes baramenueke	Hachinohe	1986	0.24 ± 0.01	13 ± 1	5.6	54
Parapristipoma trilineatum	Katsuura	1985	0.19 ± 0.01	10 ± 1	5.8	41
Scombropis hoops	Katsuura	1986	0.59 ± 0.01	23 ± 1	7.8	133
Onchorhyncus keta	Hachinohe	1988	0.08 ± 0.01	10 ± 1	2.4	20
Kareius bicoloratus	Katsuura	1986	0.13 ± 0.01	9.4 ± 0.5	4.2	30
Limanda schlencki	Hachinohe	1986	0.32 ± 0.01	17 ± 1	5.7	72
Limanda yokohamae	Hachinohe	1987	0.19 ± 0.01	11 ± 1	5.2	45
Paralichthys olivaceus	Hachinohe	1986	0.22 ± 0.01	11 ± 1	6.1	50
Paralichthys olivaceus	Katsuura	1986	0.29 ± 0.01	15 ± 1	5.9	65
Paralichthys olivaceus	Hachinohe	1987	0.28 ± 0.01	16 ± 1	5.3	66
Paralichthys olivaceus	Hachinohe	1988	0.23 ± 0.01	12 ± 1	5.8	57
Hippoglossoides dubius	Hachinohe	1987	0.1 ± 0.01	12 ± 1	2.5	23
Microstomus achen	Hachinohe	1986	0.22 ± 0.01	11 ± 1	6.1	50

$^{a)$ measured value ± counting error
$^{b)$ measured value ± analytical error
The geometric mean and standard error for 137Cs/Cs atom ratios in environmental samples. Because the data distribution was proved to follow statistically the log-normal distribution. The geometric means of 137Cs/Cs atom ratios between seawater and fish showed no significant differences (Kolmogorov-Smirnov test, p<0.05). This result indicates that 137Cs distribution is equilibrated between filtered seawater and fish muscle. Suzuki et al. (1978) showed that 137Cs distribution reached an equilibrium state between seawater and fish muscle during 1963–1970. Our result is compatible with Suzuki et al.’s finding.

DISCUSSION

The CF values for 137Cs in coastal fish muscle studied here are shown in Table 1. These CF

Location	Year	137Cs (mBq l⁻¹)	Cs (μg l⁻¹)	137Cs/Cs atom ratio (×10⁻⁹)
Sakata	1984	5.1±0.2	0.29±0.01	5.3
Katsuurra	1984	5.0±0.3	0.25±0.01	6.9
Sado	1985	4.8±0.2	0.26±0.02	5.8
Tsuyazaki	1985	4.7±0.2	0.34±0.02	4.2
Rokkasho	1987	5.0±0.2	0.33±0.02	5.0
Tsuyazaki	1987	3.7±0.2	0.31±0.02	3.7
Oshoro	1989	4.2±0.2	0.30±0.02	4.6
Rokkasho	1989	3.6±0.2	0.33±0.02	3.6
Oshoro	1990	3.5±0.2	0.25±0.01	3.5
Rokkasho	1990	3.7±0.2	0.24±0.01	3.8

* a) measured value ± counting error
* b) measured value ± analytical error
values were derived from the seawater and fish data in the same year. However the ^{137}Cs concentrations in seawater in 1986 and 1988 were not obtained. Therefore we assumed, based on the expected exponential decrease of ^{137}Cs in seawaters24, that the ^{137}Cs concentration in seawater would be 4.5 (in 1986) and 4.1 (in 1988) mBq ℓ^{-1}. The CF values given in Table 1 were calculated by using a density of seawater of 1.025 kg ℓ^{-1}17,23. The cumulative percent of ^{137}Cs CFs in fish muscle is shown in Fig. 2. The data distribution of ^{137}Cs CFs is close to log-normal. However, the data sets showed three significantly different groups (Kolmogorov-Smirnov test, $p<0.05$). The geometric mean of CFs in the main group was 55 (± 2: standard errors of mean), and that of CF of the whole data set was 52 (± 4: standard errors of mean).

![Fig. 2. The cumulative of ^{137}Cs concentration factors in fish muscle.](image)

Many factors are known to affect the ^{137}Cs concentration factor in fish muscle. For example, the ^{137}Cs concentration at steady state is known to vary with body size31 and taxa14. Environmental factors also affect the concentration of ^{137}Cs in fish muscle: the brackish water species (e.g. Japanese sea perch \textit{Lateolabrax japonicus}) showed higher ^{137}Cs concentrations than other coastal species18. All the fish samples investigated in this study were adult, and all of the sampling sites were free from the effect of river run off. Therefore the different groups of ^{137}Cs CFs (Fig. 2) may be attributed to the difference in species17. However, the number of data for each species were not sufficient to draw the conclusion. The verification of this difference in CF group should be carefully analysed in future studies.

The ^{137}Cs CF in Japanese coastal edible fish in the late 1960s was 43 \pm 12 (arithmetic mean and standard deviation; on Bq kg$^{-1}$/Bq ℓ^{-1})11. This value can be converted to 43 \pm 5 (geometric mean and standard error of mean value, on Bq kg$^{-1}$/Bq kg$^{-1}$ base). Since the ratios of ($^{137}\text{Cs}/\text{Cs}$)$_{\text{fish}}$/$(^{137}\text{Cs}/\text{Cs})_{\text{seawater}}$ were within the range of 0.6 \sim 1.6, we can assume equilibration in distribution of ^{137}Cs between fish muscle and seawater. Statistically, there is a significant difference (Kolmogorov-Smirnov test, $p<0.05$) between the CF data presented here and those of Suzuki \textit{et al.}11. This difference is possibly due to the annual variation of ^{137}Cs fallout in 1960's,
which affected 137Cs levels in seawater1.

The IAEA23 recommended a value of 100 as a generalized CF for 137Cs in fish. This recommended value was confirmed by Steel17, who reported CF of 92 ± 43 (cod), 58 ± 17 (haddock), 39 ± 16 (plaice) and 150 ± 82 (whiting) (arithmetic mean and standard deviation) for North Sea fish collected from 1978 to 1985. These arithmetic means can be converted to geometric means 83 ± 6, 56 ± 3, 36 ± 2 and 127 ± 16 (standard error of mean value). Our results and Suzuki et al.'s1 findings showed somewhat smaller CF values than those of IAEA and Steel17. The most probable reason is the difference in radioecological environments between European coastal waters and Japanese coastal waters. The concentration of 137Cs in North European coastal waters is influenced by the 137Cs discharges from the Sellafield reprocessing plant into the Irish Sea32. This situation resulted in large annual variations of 137Cs concentrations in North Sea seawater, and affected the distribution of 137Cs in the adjacent sea areas33. In addition, the 137Cs in the seabed of Irish Sea is being remobilized and affects the 137Cs concentration in seawater34. For Japanese coastal fish, the recommended CFs value of 137Cs is 30 under authorization in the public dose assessment, both for the light-water nuclear power reactor (in the guidelines published by Japanese Atomic Energy Commission), and for the Tokai fuel reprocessing plant19. The results of our study show larger values than the guideline and authorized CFs. These CFs, however, were estimated under the consumption of “whole” fish by the public. Therefore, it is reasonable to suggest that the authorized CF value would smaller than our result because 137Cs is less concentrated in the viscera and in the bone of fish.

In conclusion, the 137Cs levels (137Cs/Cs atom ratio) in muscle of Japanese coastal fish almost leveled off during 1984—1990. The distribution of 137Cs between seawater and fish muscle reached an equilibrium state during the study period. The derived CF values for 137Cs in Japanese coastal fish showed three different groups, however the reason is unknown. The estimated 137Cs CFs for muscle of Japanese coastal fish gave the geometric mean value 52 ± 4 (standard error of mean value).

ACKNOWLEDGEMENTS

The authors would like to thank Miss Y. Sugita for assisting with sample analysis, the staffs of Hokkaido University, North Eastern Regional Fisheries Research Institute, Marine Ecological Research Institute and Kyushu University for collecting the fish and seawater samples. Dr. P. McDonald, Westlakes Research Institute, U. K. and Dr. M. Carroll IAEA Marine Environmental Laboratory, assisted us with the proofread of the manuscript for English usage. This research was granted by the Central Research Institute of the Electric Power Industry.

REFERENCES

1. Suzuki, Y. Nakahara, R. and Ueda, T. (1973) Caesium-137 contamination of marine fishes from the coasts of Japan. J. Rad. Res. 14: 382-391.
2. Nagaya, Y. Suzuki, Y. and Nakamura, K. (1990) 239,240Pu and 137Cs concentrations in some marine organisms, mostly from the Ibaraki and Aomori coasts, Japan, 1987–1989. Nippon Suisan Gakkaishi 56: 1559–1604.

3. Hirose, K. et al. (1987) Annual deposition of Sr-90, Cs-137 and Pu-239, 240 from the 1961–1980 nuclear explosions: A simple model. J. Meteorol. Soc. Jap. 65: 259–277.

4. NIRS. (1984) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 70: 21.

5. NIRS. (1985) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 74: 21.

6. NIRS. (1987) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 78: 17.

7. NIRS. (1988) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 82: 21.

8. NIRS. (1989) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 86: 21.

9. NIRS. (1990) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 92: 21.

10. NIRS. (1991) Radioactivity survey data in Japan. National Institute of Radiological Sciences. 94: 21.

11. Baptist, L. P. and Price, T. J. (1962) Accumulation and retention of 137Cs by marine fishes. Fish. Bull. U. S. Fish. Wildl. Serv. 206: 177–187.

12. Bryan, G. W. Preson, A. and Templeton, W. L. (1966) Accumulation of radionuclides by aquatic organisms of economic importance in the United Kingdom. In “Disposal of Radioactive Wastes into Seas, Oceans and Surface Waters”, IAEA pp. 623–637, IAEA, Vienna.

13. Pentreath, R. J. and Jefferies, D. F. (1971) The uptake of radionuclides by I-group plaice (Pleuronectes platessa) off the Cumberland coast, Irish Sea. J. Mar. Biol. Ass. U. K. 51: 963–976.

14. Jefferies, D. F. and Hewett, C. J. (1971) The accumulation and excretion of radioactive caesium by the plaice (Pleuronectes platessa) and the thornback ray (Raja clavata). J. Mar. Biol. Ass. U. K. 51: 411–422.

15. Jenkins, C. E. (1969) Radionuclide distribution in Pacific salmon. Health Phy. 17: 507–512.

16. Guimaraes, J. R. D. (1988) Experiments on radionuclide accumulation by fishes from the Angra Dos Reis Region of Brazil. IAEA Report No. IAEA-R-3441-F1988. 13 p.

17. Steel, A. K. (1991) Derived concentration factors for caesium-137 in edible species of North Sea fish. J. Rad. Res. 14: 382–391.

18. Nakahara, M. et al. (1980) Concentration factors of mesopelagic organisms. In “Marine Radioecology” NEA/OECD, pp. 323–334. NEA/OECD, Tokyo.

19. Kurabayashi, M. Fukuda, S. and Kurokawa, Y. (1980) Concentration factors of marine organisms used for the environmental dose assessment. In “Marine Radioecology”, NEA/OECD, pp. 335–345, NEA/OECD, Tokyo.

20. Tateda, Y. and Koyanagi, T. (1994) Concentration factors for Cs-137 in marine algae from Japanese coastal waters. J. Rad. Res. 35: 213–221.

21. Tateda, Y. (1995) Cs/K atom ratios in Japanese coastal marine biota. J. Fish. Sci. Soc. 117: 1157–1167.

22. Schink, D. R. et al. (1995) 129I in Gulf of Mexico waters. Earth Planet. Aci. Let. 135: 131–138.

23. IAEA (1985) Sediments Kds and Concentration Factors for Radionuclides in the Marine Environment. IAEA 73p. IAEA, Vienna.

24. Tateda, Y. and Misonou, J. (1991) The ecological half-life of Cs-137 in Japanese coastal marine biota. In “Radionuclides in the Study of Marine Processes”, Ed. P. J. Kershaw and D. S. Woodhead, pp. 340–349. Elsevier Applied Science, London.

25. Van As, D. Fourie, H. O. and Vleggaar, C. M. (1975) Trace element concentrations in marine organisms from the Cape West Coast. South African J. Sci. 71: 151–154.

26. Nagaya, Y. and Nakamura, K. (1970) A study on the vertical transport of 90Sr and 137Cs in the surface waters of the seas around Japan. J. Rad. Res. 11: 32–43.

27. Nagaya, Y. and Nakamura, K. (1981) Artificial radionuclides in the Western Northwest Pacific (I) 90Sr and 137Cs in the deep waters. J. Oceangr. Soc. Japan, 37: 135–144.

28. Nagaya, Y. and Nakamura, K. (1984) 239,240Pu, 137Cs and 90Sr in the Central North Pacific. J. Oceanogr. Soc. Japan. 40: 416–424.
29. Nagaya, Y. and Nakamura, K. (1987) Artificial radionuclides in the Western Northwest Pacific (II):
137Cs and 239,240Pu inventories in waters and sediment columns observed from 1980 to 1986. J.
Oceanogr. Soc. Japan. 43: 345–355.
30. Coughtrey, P. J. and Thorne, M. C. (1983) Radionuclide Distribution and Transport in Terrestrial and
Aquatic Ecosystems. Vol. I. Rotterdam, A. A. Balkema.
31. Morgan, F. (1964) The uptake of radioactivity by fish and shellfish. I. 134Caesium by whole animals. J.
Mar. Biol. Ass. U. K. 44: 259–271.
32. Jefferies, D. F. Steele, A. K. and Preston, A. (1982) Further studies on the distributions of 137Cs in
British coastal waters-I. Irish Sea. Deep-Sea Res. 29: 713–738.
33. Jefferies, D. F. and Steele, A. K. (1989) Observed and predicted concentrations of caesium-137 in
seawater of the Irish Sea 1970–1985. J. Environ. Radioactivity. 10: 173–189.
34. Hunt, J. G. and Kershaw, P. J. (1990) Remobilization of artificial radionuclides from sediment of the
Irish Sea. J. Radiol. Prot. 10: 147–151.