Discrete moduli for Type I compactifications

Arjan Keurentjes

LPTHE, Université Pierre et Marie Curie, Paris VI, Tour 16,
4 place Jussieu,
F-75252 Paris Cedex 05, France

Laboratoire de Physique Théorique de l’Ecole Normale Supérieure,
24 rue Lhomond,
F-75231 Paris Cedex 05, France

Abstract

We study type I compactification on a 4–torus, with a non-trivial discrete background RR 4–form field. By using string dualities and recent insights for gauge theories on tori, we find that a non-trivial background for the RR 4–form is correlated with $\text{Spin}(32)/\mathbb{Z}_2$ bundles that are described by a “non-trivial quadruple” of holonomies. We also briefly discuss other discrete moduli for the type I string, and variants of orientifold planes.

1 Introduction

The type I string can be regarded as an orientifold of the type IIB string. In this construction one introduces an $O9^-$ orientifold plane in the theory. This however causes a tadpole, and consistency requires that this is canceled by adding 32 D9 branes. The resulting theory has unoriented closed strings, while the D9-branes introduce an open string sector, leading to a theory with a gauge group that has as its manifest gauge group $O(32)$. Also a number of solitons survive the orientifold projection, leading to a spectrum with D1, D5 and D9 branes.

Interestingly, some unstable D-brane-anti-brane configurations of type IIB theory become stable under the orientifold projection: The tachyon arising from the string states connecting branes and anti-branes is projected out 1. Therefore, new non-BPS branes enter the theory. These non-perturbative objects introduce states in the theory, that transform in different representations of the gauge group than the states arising from the ordinary open string sector. It is argued that these fix the

1email address: arjan@lpthe.jussieu.fr
topology of the gauge group to $Spin(32)/\mathbb{Z}_2$, the gauge group of one of the heterotic theories \[2\]. Indeed, the existence of these non-perturbative states is crucial evidence for the conjecture that the type I and the $Spin(32)/\mathbb{Z}_2$ heterotic string are S-dual, and therefore in reality describe two limits of the same theory \[3\].

In type IIB supergravity, the low energy theory to the type IIB superstring, one encounters a variety of tensor fields, which couple to the extended objects in the theory \[4\]. Introducing the orientifold plane, many of these fields can no longer fluctuate because that would be incompatible with the orientifold projection. The fluctuating fields that survive the orientifold projection are in one-to-one correspondence with the BPS D-branes that appear in type I theory. The fields whose fluctuations are projected out are constrained to take constant values over all of space-time. That constant value does however not necessarily to be equal to zero. It is argued that, before the orientifold projection, these fields are $U(1)$ valued; the orientifold projection acts as inversion on the circle which is the group manifold, and therefore has two fixed points. One can therefore argue that $U(1)$ is broken to \mathbb{Z}_2. The fact that \mathbb{Z}_2 is a discrete group demonstrates that continuous fluctuations are no longer possible, but it leaves a possibility for non-trivial values for these background fields.

The relevant tensor fields are gauge fields, and the field strengths corresponding to them must vanish because of the constancy of the potentials. It is nevertheless possible to construct gauge invariant operators, that can have non-trivial values if space-time has compact submanifolds. Indeed, the tensor fields are n–forms, and integrating these over compact n–cycles gives us gauge invariant operators. For a 1–form such an operator would correspond to the standard definition of holonomy. For an n–form one has $(n-1)$ gerbe-holonomy.

A case which has by now been well studied is the possibility for the NS-NS 2–form field B_2 to have a non-trivial value over compact 2–cycles \[5\]. This gives a non-trivial phase to closed string world sheets that wrap around the relevant 2-cycle. Alternatively, one may cut up this world sheet and interpret it as (a collection of) open string world sheets. Reproducing the phase factor then places restrictions on the Chan-Paton bundle, and in fact one can show that the $Spin(32)/\mathbb{Z}_2$ bundle should be topologically non-trivial \[6\] (even when the 2-cycle is a 2–torus, and the bundle is flat \[4\]). Such bundles have “absence of vector structure” because states transforming in the vector representation of $Spin(32)$ cannot be consistently introduced in such a background. Of course, such states are argued to be absent in type I string theory, and the resulting compactification is consistent.

In the case that the 2–cycle is (topologically) a 2–torus it is possible to study the bundle \[8\], and consequently the type I string theory with such a bundle \[7\] in great detail (see also \[9\]). In contrast, there is little known about string compactifications with non-trivial backgrounds from the other discrete moduli.

In the present note we will consider the possibility of a non-trivial background from the RR 4–form. Unlike B_2, this does not appear in perturbative string theory,
but it should generate non-perturbative effects. It would be very interesting to de-
scribe compactification on general 4–cycles allowing one to turn on this background,
but we don’t know how to do this at present. For the special case of 4–tori, there
are however some recent developments, that make a study accessible. New insights
in constructing flat bundles on a 3–torus have revealed that the moduli space of
flat connections is much richer than previously thought [10, 11, 12]. Although this
research has not (yet) been extended to cover 4– and higher dimensional tori, there
are some partial results [10, 11, 12] that throw sufficient light on the theory we are
interested in, the Spin(32)/Z\(_2\) gauge theory appearing in the type I string. Armed
with these, and string dualities we will describe type I compactifications on a 4–
torus, with non-trivial background from the RR 4–form. On the 4-torus one can
of course also turn on a non-trivial NS-NS 2–form, and we will describe also these
compactifications.

2 D-branes in background NS-NS and RR-fields

We will briefly review some aspects of toroidal compactification with non-trivial
holonomy for the NS-NS 2–form, and point out some parallels and differences with
the case we are interested in, holonomy for the RR 4–form.

For the NS 2–form, it is convenient to first study its effect in generality, and only
afterwards introduce orientifold planes. A very simple way to study what happens
when one turns on a non-zero \(B_2\)-field over some 2-cycles of an \(n\)-torus is by using T-
duality. Under T-duality the metric and \(B_2\)-field moduli mix (see [15] for a review),
and the dual torus has angles different from the original one. Consider a square
2-torus, with an appropriately normalized \(B_2\)-field. Let there also be a D-brane
wrapping the 2-torus (possibly multiple times) and suppose there is a field strength
\(F_2\) present on the brane. Set

\[
\int_{T^2} B_2 = b; \quad \int_{T^2} F_2 = f.
\]

Let there be a single D-brane wrapping the 2-torus (possibly multiple times) Applying
a single T-duality, the dual torus becomes a skew one. The angle \(\phi\) between two
basis vectors for the lattice for this torus is given by \(\tan \phi = b\). The single D-brane
is dualized to a brane wrapping one cycle of the torus. This brane makes an angle
\(\psi\), given by \(\tan \psi = -f\) with the other cycle. Closure of the D-brane now translates
into the condition

\[
n(b + f) \in \mathbb{Z} \quad \text{for } n \in \mathbb{Z}.
\] \(\text{(1)}\)

The number \(n\) is appropriately interpreted as “wrapping number” of the D-brane.
This obviously implies that \(b + f\) is a rational number. Solutions with \(f = 0\)
exist if and only if \(b\) is a rational number. Assume this to be the case and let
m be the smallest integer such that $mb \in \mathbb{Z}$. Then a D-brane wrapping the dual torus m-times, with $\psi = 0$ describes the dual theory to a D-brane wrapping the original torus multiple times, which has on its world volume a gauge theory which is described by an $U(m)$ bundle with twisted boundary conditions. These boundary conditions break the $U(m)$ to $U(1)$, justifying in hindsight our ignoring of the non-Abelian interactions. As a side remark, we note that in the general case, where we wrap the brane multiple times and introduce a non-zero field strength, one can proceed by decomposing $U(m)$ as $(U(1) \times SU(m))/\mathbb{Z}_m$. One then uses twisted boundary conditions in $SU(m)$, and puts the field strength in the $U(1)$ factor. Again, this breaks the effective gauge group to $U(1)$, and our ignoring of the non-Abelian interactions is justified.

By T-duality the conclusions from the previous paragraph can be translated back to the original theory. When one wraps a brane over a 2–torus with non-trivial B_2-holonomy one should compensate for the effects by turning on a field strength on the brane, and/or wrapping the brane multiple times. The same conclusion can be reached from a more advanced argument. Consider a string world sheet ending on the D-brane, wrapped around a 2–cycle. In the path-integral there appears a phase-factor

$$\exp \left(i \int_{\Sigma} B + i \oint_{\partial \Sigma} A \right).$$

In [17] an additional factor was considered, coming from the Pfaffian of the Dirac operator on the world sheet, but this is not relevant to our present considerations. For reasons explained below, the total factor should be equal to unity. Of course $\oint_{\partial \Sigma} A$ can simply be converted into $\int_{\Sigma} F_2$. Then, trivializing the phase factor requires turning on an appropriate field strength, and/or wrapping the brane multiple times over the cycle. This extends the previous result to generic 2–cycles.

In a somewhat more specific context, the same argument was already used in [3]. Here type I theory on a K3 was considered, where the 2-cycles have the topology of spheres. Type I theory only allows B_2-fields that are multiples of $\frac{1}{2}$. Turning on a non-integer B_2-field is correlated with a choice of Chan-Paton bundle over the 2-cycle. To be precise, the bundle should be one without vector structure. The interpretation of the authors of [3] is that the correlation between B_2-field and Chan-Paton bundle is required by consistent coupling of closed strings to open strings. The anomaly of [17] can be interpreted in a similar way: trivializing the phase factor is necessary to couple the open strings ending on the D-brane to closed strings living in the bulk. If the factor cannot be trivialized, then the only option left is to remove the particular open string sector; in other words, to discard the possibility to wrap the brane around the 2-cycle. This truncation of the spectrum however may lead to other inconsistencies. For example, in the presence of orientifold planes D-branes are needed to ensure tadpole cancellation.

In this fashion the rank reduction in the case of toroidal compactification without
vector structure can be understood as follows. In type I theory on a torus a half-integer B_2-field gives a phase factor that can be canceled in two ways: One can turn on a non-zero gauge field strength, or wrap the D9-branes twice around the corresponding cycle. It is clear that wrapping twice gives a solution that is lower in energy than the turning on of a field strength. However, locally a twice wrapped D-brane is indistinguishable from two once wrapped D-branes. In particular, we need only 16 D9-branes to cancel the $O9$ tadpole, instead of the usual 32.

Absence of vector structure for a $Spin(32)/\mathbb{Z}_2$ bundle is measured by a characteristic class, a \mathbb{Z}_2-valued generalized Stieffel-Whitney class \tilde{w}_2. As the choice of bundle is correlated with the choice of B_2-field, it follows that one may identify the B_2-field with \tilde{w}_2. It is an interesting observation that discrete moduli for string theory are correlated with topological invariants of particular gauge bundles. There also appear to be suggestive links between the 3–form in M-theory, and the Chern-Simons 3–form associated to particular bundles [18] [14].

In this paper we wish to describe type I on a 4–torus with a RR 4–form field turned on. As we will see, a non-trivial RR 4–form field indeed results in reduction of the rank of the gauge group. This is however not due to multiply winding branes. Naïvely applying dualities to the reasoning of [17] seems to imply that also a RR 4–form flux has consequences for brane wrappings. This is not the case for the following reason: The NS-NS B_2-field couples to strings, and the reasoning of [17] is in terms of string world sheets. Dualizing the set-up, this says that the pullback of the RR 4–form field to any 3-brane world volume intersecting the D-brane must vanish. Type I theory however has no 3-branes, not even non-BPS ones [2]. Therefore we should expect the same number of once wrapped branes, regardless of whether the RR 4–form field is turned on or not. Why one nevertheless gets reduction of the rank will be explained in the next section.

Another interesting question is whether the discrete 4–form of type I theory can be identified with some topological invariant of the $Spin(32)/\mathbb{Z}_2$ bundle. A piece of evidence is the existence of flat non-trivial bundles that are intrinsically 4-dimensional [14]. In appendix D of this paper “non-trivial quadruples” were constructed, 4–tuples of group elements such that every subset of these 4 elements can be chosen on a maximal torus of the group, but not all four simultaneously. Such a 4–tuple can be used for a compactification on the 4-torus, by choosing the elements of the 4–tuple as holonomies.

Bundles over the 4–torus parametrized by such a 4–tuple are intrinsically 4-dimensional (as the bundle over every sub 3-torus is a standard compactification). One may speculate on the existence of a 4-dimensional topological invariant, distinguishing the compactification with a non-trivial quadruple form a trivial one. Unfortunately, such an invariant has not (yet) been constructed. This is to be contrasted with compactifications of gauge theories on lower dimensional tori, where the invariants classifying the bundles are understood, and do allow generalization.
to non-toroidal compactifications. We will argue that type I string theory has a
candidate for such an invariant, provided by the RR 4–form. We will show that
turning on this form reproduces the non-trivial quadruple of [11]. It is also possible
to combine non-zero expectation values for both the B_2-field and the RR 4–form,
leading to a “non-trivial quadruple without vector structure” as first encountered
in [14].

We note that the fact that we are not going to find multiply wrapped branes
can also be heuristically understood from the link to bundles in gauge theories.
Non-trivial quadruples in the sense of [11] only exist in (large enough) orthogonal
groups. When extending to “c-quadruples” (which we define extrapolating on the
definitions of [12], as 4–tuples of elements which commute up to elements of the
center of the simply connected cover of the group), it is possible to show that these
may also appear in theories with symplectic groups. Important however is, that it is
simple to show that they do not occur for the unitary groups. Translated to string
theory this suggests that the orientifold projection is essential to the effects of the
RR 4–form, at least in the context that we wish to study. Of course this makes the
effect of the RR 4–form in absence of an orientifold projection even less understood.

3 Identification via T-duality

Consider type I on a 4-torus, with possibly some B_2-fields, and possibly the RR
4–form turned on. There are, up to $SL(4, \mathbb{Z})$ transformations, three possibilities
for B_2-flux over the 4–torus, that can be distinguished as follows. Viewing B_2 as a
2–form with integer periods, one has the possibilities

$$B_2 = 0; \quad B_2 \neq 0, B_2^2 = 0; \quad B_2 \neq 0, B_2^2 \neq 0.$$ (3)

These are of course in precise correspondence with the topological choices for the
$Spin(32)/\mathbb{Z}_2$ bundle over the 4–torus [7].

On the 4–torus, a 4–form is invariant under $SL(4, \mathbb{Z})$ transformations (because it
has to be proportional to the volume form). Calling the 4–form C_4, there are 2
possibilities

$$C_4 = 0; \quad C_4 \neq 0.$$ (4)

Hence a priori there are 6 possibilities to consider.

Applying 4 T-dualities to the type I theory on the 4–torus gives us a IIB orientifold
on T^4/\mathbb{Z}_2 with 16 $O5$ planes at the fixed points of the \mathbb{Z}_2 action. The identities
of the $O5$-planes depend on the fluxes in the parent type I model. The 4 T-dualities
result in a B_2-field background that is identical to that of the parent model on T^4.

There are 2 possible discrete charges for $O5$ planes: its transverse space is $\mathbb{R}P^3$,
which has the following interesting cohomologies. There is a possibility for a discrete
charge for the NS-NS 2–form, as its class

\[[dB_2] = [H_3] \in \tilde{H}^3(\mathbb{RP}^3) = \mathbb{Z}_2. \] (5)

Another possibility is a discrete charge for the RR-scalar, as

\[[dC_0] = [G_1] \in \tilde{H}^1(\mathbb{RP}^3) = \mathbb{Z}_2. \] (6)

By these two \(\mathbb{Z}_2 \) charges, it is possible to distinguish 4 types of O5-planes which we will denote as \(O5^- \), \(O5^+ \), \(\tilde{O}5^- \) and \(\tilde{O}5^+ \). Here we follow the notation of [19], using the superscript + for planes with non-trivial NS-charge, and a tilde for planes with non-trivial RR charge. The D5 brane charges of these orientifold planes are \(-2\) for the \(O5^- \), \(-1\) for the \(\tilde{O}5^- \), and \(+2\) for the \(O5^+ \), \(\tilde{O}5^+ \). The difference in charge between \(O5^- \) and \(\tilde{O}5^- \) gives rise to the interpretation of the second as a bound state of an \(O5^- \) with a single D5-brane. The D5-brane charge of \(O5^+ \) and \(\tilde{O}5^+ \) is the same, and the two can presumably only be distinguished by non-perturbative effects. Nevertheless, we will find that both make a natural appearance.

The distribution of the NS-charges over the O5 planes in the IIB orientifold follows from the \(B_2 \)-fluxes in the original type I model[7]. The 3 cases give

\(B_2 \)-flux in type I on \(T^4 \)	\(B_2 = 0 \)	\(B_2 \neq 0 \), \(B_2^2 = 0 \)	\(B_2 \neq 0 \), \(B_2^2 \neq 0 \)
planes with non-trivial B-charge	0	4	6

In the case of 4 planes with non-trivial NS-charge, the intersection points of these 4 O5-planes are aligned within a 2-plane. In the case of 6 planes with non-trivial charges, the 6 planes are aligned in two 2-planes intersecting in a point, with a plane with trivial NS-charge at the intersection point.

The RR 4–form of the type I theory on the 4–torus results after 4 T-dualities in a constant RR scalar background for the IIB orientifold on \(T^4/\mathbb{Z}_2 \). This inevitably implies that all orientifold planes have the same RR-scalar charge, as it can be measured at any point near the O5-plane.

In a recent paper [20] also the possibility of gradients for the RR-scalar between O5-planes was considered. Such a gradient gives a non-zero field strength, and via coupling to gravity should modify the curvature of space-time. Solutions to the combined problem (solving the Einstein equations, for a space with some compact directions, and with appropriate symmetries such that the orientifold planes can be inserted) would be very interesting, but probably break some supersymmetry, and it seems unlikely that they are related to the type I string in a simple way. We will therefore discard this possibility.

The 6 possibilities for the duals to the type I string compactification on a 4-torus have the following configurations of O5-planes:
• All 16 planes are $O5^-$ planes. This is the trivial compactification, and there are 32 D5-branes, arranged in 16 pairs, giving a rank 16 gauge group.

• $4 \, O5^+$ planes and $12 \, O5^-$ planes. This is dual to the compactification without vector structure discussed in [7]. There are 8 pairs of D5-branes.

• $6 \, O5^+$ planes and $10 \, O5^-$ planes. This is another compactification that was briefly described in [7]. There are 4 pairs of D5-branes.

• All 16 planes are $\widetilde{O5}^-$ planes. This compactification is dual to a type I compactification with a non-trivial quadruple. It is trivial to reconstruct the holonomies for this case, and compare them with [11]. Note that there are 32 D5-branes, of which 16 form bound states with the $O5^-$ planes, while 16 others are arranged in pairs. Therefore the rank of the gauge group is 8, and, remarkably, it can actually be demonstrated that this orientifold is in the same moduli space as the one with $4 \, O5^+$ planes and $12 \, O5^-$ planes [14].

• $4 \, \widetilde{O5}^+$ planes and $12 \, \widetilde{O5}^-$ planes. This model only appeared previously briefly in [14]. It has 16 D-branes like the standard compactification without vector structure, of which 12 are bound to $O5^-$ planes, and 4 are arranged in pairs. Therefore the rank of the gauge group is only 2. In [14] it was conjectured to be dual to the type I compactification with a quadruple without vector structure. In the next section we will give compelling evidence for this duality by reconstructing the Wilson lines from this orientifold.

• The last model would have $6 \, \widetilde{O5}^+$ planes and $10 \, \widetilde{O5}^-$ planes. Now the tadpole can only be canceled by adding anti D5-branes in pairs, which should then annihilate with the single D-branes stuck to the $O5^-$ plane, resulting in a model where some of the $O5^-$ planes form bound states with an anti D5-brane. Actually, if this is a valid possibility, then it is impossible to tell which $O5^-$ planes have the anti D5-branes, because all possibilities can be realized. In fact, they should be realized, because by D5 brane-anti brane pair creation in the bulk, and letting these annihilate with branes and anti-branes bound to $O5^-$planes, the anti D5-brane can “jump” to other $O5^-$planes. The true ground state of the theory would then be a superposition of all possible configurations. We will not study this non-supersymmetric model further. Incidentally, we note that a model with $6 \, \widetilde{O5}^+$ planes and $10 \, \widetilde{O5}^-$ planes describes a perfectly sensible gauge bundle for $Spin(N \geq 40)$ gauge theory (compare with [16]). It is just the fact that the (perturbative) gauge group of type I is “not big enough” that leads to the subtleties mentioned.

For completeness we mention that there exist two more IIB orientifolds on T^4/\mathbb{Z}_2 (with 16 supersymmetries), both with $8 \, O5^+$ planes and $8 \, O5^-$ planes. It was noted
in [14, 21] that there already exist two geometrically inequivalent configurations for IIA on T^3/\mathbb{Z}_2 with 4 $O6^+$ and 4 $O6^-$ planes. Compactifying these on a circle and T-dualizing leads to two inequivalent configurations on T^4/\mathbb{Z}_2. It is clear however that for these cases we cannot add an RR-scalar background, as this would lead to tadpoles or supersymmetry breaking.

The existence of inequivalent theories with an equal number of Op^+ and Op^- planes allows an elegant explanation. In [7] it is argued that these theories have their origin in a special orientifold of IIB theory on a circle. Instead of orientifolding this theory straight away, the orientifold action Ω is combined with half a translation δ over the circle. Another, equivalent way of stating this is that it is IIB on a circle with a special holonomy around the circle [14]. Just like in the case compactifications of the “ordinary” orientifold, which leads to type I theory, compactifications of this “special” orientifold of type IIB theory allow a non-trivial background B_2 field, but it can only take two discrete values. Compactifying IIB on a circle, modded by $\delta \Omega$ on a further 2–torus, one has the choice of turning on a discrete B_2 field. Therefore in 7-d, there are 2 inequivalent theories, which after dualizing result in the 2 inequivalent IIA orientifolds with 4 $O6^+$ planes and 4 $O6^-$ planes. In the same fashion, one immediately sees that the IIA orientifold on T^5/\mathbb{Z}_2 with 16 $O4^+$ and 16 $O4^-$ allows 3 inequivalent geometries (from the 3 inequivalent choices of B_2-field, as in eq. (3)), the IIA orientifold on T^7/\mathbb{Z}_2 with 64 $O2^+$ and 64 $O2^-$ comes with 4 inequivalent geometries, and IIA on T^9/\mathbb{Z}_2 with 256 $O0^+$ and 256 $O0^-$ exists in 5 inequivalent geometries (more about this in [22]). We also note that these considerations make a non-perturbative equivalence of the different configurations with equal numbers of Op^+ and Op^-, mentioned in [14] but conjectured to be false, indeed highly unlikely.

In total, we have identified 7 orientifolds on T^4/\mathbb{Z}_2 preserving 16 supersymmetries (It can actually be shown that these are all maximally supersymmetric orientifolds with 16 $O5$-planes only [22]).

4 The model with $\widetilde{O5}^+$ planes

In this section we will take a closer look at the model on T^4/\mathbb{Z}_2 with 4 $\widetilde{O5}^+$ planes and 12 $\widetilde{O5}^-$ planes. This appears to be the only supersymmetric model in which $\widetilde{O5}^+$ planes quite naturally appear. \widetilde{Op}^+ planes with $p < 5$ have been studied before [19, 23, 24].

Our explanation for the appearance of the $\widetilde{O5}^+$ originates in the B_2 and C_4 holonomies appearing in the type I model. The NS-charge of the $\widetilde{O5}^+$ can also be confirmed by studying the low energy gauge theory, as it is supposed to lead to $Sp(n)$ gauge symmetry. The RR-charge can not be confirmed this way, as both $\widetilde{O5}^+$ and $O5^+$ lead to the same low energy gauge group, $Sp(n)$. But there is another piece of evidence that (we think) supports our assignment of charges.
In [14] the 2 models with 4 O^5+ planes and 12 O^5− planes, and 16 \tilde{O}^5− planes, where shown to be in the same moduli space. The most unambiguous way to show this is to translate both models to heterotic string theories, whose equivalence can be demonstrated exactly [14]. Another, less precise way to exhibit the close relationship between the two models is to compactify both on an additional 2–torus, and T-dualize along the 2 directions of this torus. This leads to IIB orientifolds on T^6/\mathbb{Z}_2 with 16 O^3+ planes and 48 O^5− planes, and another with 16 \tilde{O}^3− planes and 48 O^5− planes. These are dual to each other by S-duality of 4-d $N = 4$ supersymmetric gauge theories, which is realized as a \mathbb{Z}_2 involution on the component of the string moduli space that contains the CHL-string, as well as the above two models [25, 26, 14].

It is interesting to apply the same procedure to the model with 4 \tilde{O}^5+ planes and 12 \tilde{O}^5− planes. Compactification on a 2–torus, and applying T-dualities twice results in a model on T^6/\mathbb{Z}_2 with 4 \tilde{O}^5+ planes, 12 \tilde{O}^5− planes, 12 O^5+ planes and 36 O^5− planes. This model is self-dual under S-duality of 4-d $N = 4$ supersymmetric gauge theories! Indeed, in [14] this model was conjectured to be dual to the \mathbb{Z}_4 triple construction in the $E_8 \times E_8$ heterotic string. The component of the string moduli space that contains these theories is mapped to itself under the \mathbb{Z}_2 involution implied by S-duality of 4-d $N = 4$ theories. The self-duality under 4-d S-duality of the compactification to 4-d of the orientifold with 4 \tilde{O}^5+ planes and 12 \tilde{O}^5− planes is clearly consistent with the other proposed dualities.

Although in principle the RR-charges of the Op^+ planes could also be determined by studying the monopole spectrum in $d = 3$ [19], this is very subtle. The reason for this is that there are only 2 D-brane pairs present in the theory, and hence the only gauge groups one can get at Op^+ planes are $Sp(1)$ and $Sp(2)$. Therefore the groups of the monopole theory can only be $SO(5) = Sp(2)/\mathbb{Z}_2$ and $SO(3) = Sp(1)/\mathbb{Z}_2$. Hence, a determination of the gauge groups appearing in the S-dual theories is not enough, one really needs to study the topology of the gauge groups in detail. Together with the fact that in type I theory and its duals the topology of the gauge group is different from the one that is manifest in perturbation theory [2] (Note also the issues raised on the topology of the gauge group in [14]), the analysis appears to be very difficult, and not necessarily decisive. We will not attempt such an analysis here.

We will now reconstruct the same model in another way, which clarifies the duality to the \mathbb{Z}_4 triple in $E_8 \times E_8$ heterotic string theory.

We start again with type I string theory on a 4–torus. Start by turning on a Wilson line on the first circle which breaks the gauge group to a group that can be shown to be $(Spin(16) \times Spin(16))/\mathbb{Z}_2$ (see [14] for a discussion on the topology of subgroups in string theory). This group is the one that is often denoted as “$SO(16) \times SO(16)$”, for example in discussions on T-duality of heterotic theories. T-dualizing along this direction now leads to a model where one half of the D-branes is localized at $x_1 = 0$ and the other half is at $x_1 = \pi$ (in an obvious choice of
The point is that $Spin(16)/\mathbb{Z}_2$ allows various triples without vector structure \[12\]. There are 4 distinct possibilities. An example of the first kind combines 2 holonomies parametrizing absence of vector structure, while taking for the third holonomy the identity. By continuous deformations one can reach other models on the same component of the moduli space. The Chern-Simons invariant for these triples is integer \[12\]. This is the only triple without vector structure that is allowed in string theory \[14\]. The other ones are nevertheless useful as building blocks, as we will demonstrate.

A second example combines 2 holonomies parametrizing absence of vector structure, with a third holonomy corresponding to the non-trivial element of the center of $Spin(16)/\mathbb{Z}_2$. Again the rest of this component in the moduli space can be covered by continuous deformations. This component has Chern-Simons invariant equal to $\frac{1}{2}$ plus some integer, and we will not discuss it further.

The third and fourth example are more interesting. By choosing an appropriate Wilson line, it is possible to break $Spin(16)/\mathbb{Z}_2$ to $(SU(4) \times Spin(10))/\mathbb{Z}_4$ (with the \mathbb{Z}_4 acting diagonally on both factors). Choosing this element as our third holonomy, and two other holonomies that commute up to an element of order 4 in the \mathbb{Z}_4 that was divided out of $SU(4) \times Spin(10)$, one finds 3 holonomies that commute in $Spin(16)/\mathbb{Z}_2$. They do not commute when lifted to $Spin(16)$ and therefore define a triple without vector structure. There are basically two options (because there are 2 elements of order 4 in \mathbb{Z}_4) leading to Chern-Simons invariants of $\frac{1}{4}$ and $\frac{3}{4}$ up to integers. These models do allow an orientifold description, which was constructed in \[16\] (section 4.3.2).

Compactifications with non-integer Chern-Simons invariants are not allowed in consistent string theories \[14\]. Here however, we have the group $(Spin(16) \times Spin(16))/\mathbb{Z}_2$, which allows us to embed a triple without vector structure in each $Spin(16)$ factor. Choosing the triple with Chern-Simons invariant $\frac{1}{4}$ in one factor, and the triple with Chern-Simons $\frac{3}{4}$ in the other, all possible Chern-Simons invariants that can be defined over the 4–torus are integer, and these holonomies define a consistent string background. This also illustrates the equivalence of the present construction to the formulation of the $E_8 \times E_8 \otimes \mathbb{Z}_4$-triple theory, that appears in \[14\]. Finally, using the (inconsistent) orientifolds parametrizing the triple theories that were constructed in \[16\], one can trivially construct the (consistent) orientifold representation of the present quadruple without vector structure: We had half of our D-branes living at $x_1 = 0$ and one half at $x_1 = \pi$, and copying the orientifold description for the triple theories leads immediately to an orientifold on T^4/\mathbb{Z}_2 with 12 $\bar{O}5^-$ planes. Furthermore there are 4 planes that are either $\bar{O}5^+$ or $O5^+$ planes. This cannot be decided from an analysis of the gauge group, but we have given other evidence that these actually should be $\bar{O}5^+$ for a consistent string theory.

To complete this section, we will deduce the holonomies parametrized by the IIB
orientifold on T^4/\mathbb{Z}_2 with 4 $\widetilde{O}5^+$ and 12 $\widetilde{O}5^-$ planes. One can use the techniques described in [10]. We start by first defining some building blocks

\[
A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

(7)

\[
D(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}
\]

(8)

The holonomies can then be expressed in a relatively compact way as

\[
\Omega_1 = (A \oplus B \oplus C)^4 \oplus (D(\phi_1) \otimes A) \oplus (D(\psi_1) \otimes A)
\]

(9)

\[
\Omega_2 = (B \oplus A \oplus A)^4 \oplus (D(\phi_2) \otimes C) \oplus (D(\psi_2) \otimes C)
\]

(10)

\[
\Omega_3 = \text{diag}(1^{12}, (-1)^{12}) \oplus (D(\phi_3)^2) \oplus (D(\psi_3)^2)
\]

(11)

\[
\Omega_4 = \text{diag}(1^6, (-1)^6, 1^6, (-1)^6) \oplus (D(\phi_4)^2) \oplus (D(\psi_4)^2)
\]

(12)

The notation with superscripts indicates that the corresponding arguments have to be repeated. The arguments ϕ_i and ψ_i are the coordinates of the 2 pairs of D-branes on the orientifold, suitably normalized. The reader may verify that Ω_1 and Ω_2 anticommute, that all other combinations of holonomies commute, and that the eigenvalues of the holonomies coincide with the ones given for the heterotic $Spin(32)/\mathbb{Z}_2$ with a quadruple without vector structure as given in [14], translated to the vector representation of $Spin(32)$.

5 Other moduli ?

At least na"ively, the reasoning that leads to considering the possibility for non-trivial discrete NS 2–form and RR 4–form backgrounds in the type I string, seems to suggest still more possibilities for discrete moduli. In principle, one may also study type I theory on a sufficiently large torus, with non-trivial backgrounds for the RR 8–form and the NS 6–form. After applying T-dualities, this presumably leads to the additional variants for orientifold lines and points considered in [19] (compactifications with non-trivial NS 6–form background are currently under study [21]).

In view of the above it is natural to ask whether one can turn on a background for the RR-scalar. After T-dualities this would lead to RR p–form charges for $O(9-p)$ planes. These charges do not appear in [19]. This is because such fluxes would fill the whole transverse space to the orientifold plane, and in particular can not be studied with the cohomologies of the \mathbb{RP}^8-p that surrounds the Op-plane. This is not necessarily an obstruction to their existence, as the same problem exists for $O8^+$ and $O7^+$ planes, and can be overcome (see e.g. [7] [14]). Incidentally we note that
this may imply that Op planes with B_6 fluxes may exist in dimensions higher than 1.

At least in some cases it seems to be possible to make sense out of orientifold Op planes with C_{9-p}-flux (where C_{9-p} denotes a transverse RR $9-p$-form flux). The first example that comes to mind is by using type IIB S-duality on a $O7^+$ plane. In this case one can easily determine the charges, the tension and the gauge group associated to the resulting plane.

As a second example we consider C_1-flux for $O8$-planes. There exist variants of $O4$ planes and $O0$-points that carry a similar flux. When lifting these planes to M-theory, C_1 becomes a component of the metric. In particular, it can be demonstrated that the $O4$ and $O0$ lift to M-theory on $\mathbb{R}^4 \times (\mathbb{R}^5 \times S^1)/\mathbb{Z}_2$ and $\mathbb{R}^{0,1} \times (\mathbb{R}^9 \times S^1)/\mathbb{Z}_2$.

Here the \mathbb{Z}_2 acts as a shift on S^1 and as a reflection on R^n. In full analogy, an $O8$ with non-trivial C_1 charge should lift to M-theory on $\mathbb{R}^{8,1} \times (\mathbb{R}^1 \times S^1)/\mathbb{Z}_2$.

But in that case, this object is already known, as this description applies (locally) to M-theory on a Klein bottle $[28]$, and on a Möbius strip. Such an $O8$-plane would carry D8 brane charge 0.

A third (more speculative) example is provided by C_3-flux for $O6$ planes. In [14], M-theory on a K3 with background 3–form fluxes was considered. For a background \mathbb{Z}_2 valued 3–form flux, one needs an even number of frozen D_4 singularities. If one could split of a circular fiber, in such a way that pairs of D_4 singularities are located in the same fiber, then presumably the theory can be reduced to a IIA theory, with a 3–form flux background. Comparing various charges, the fiber with two D_4 singularities reduces to an object with D6 brane charge 12, and a non-trivial 3–form charge. Lifting a single object in IIA theory to two singularities may seem unusual, but the reader may wish to compare with the case of the $O6^-$ with 4 D6-branes on top, that lifts to two A_1 singularities.

There seems to be a pattern consisting of Op-planes, with Dp brane charge $16-2^{p-4}$, and RR $(9-p)$–form charge. Is it possible to have an $O9$ plane with these charges? For several reasons, this is problematic. First of all, such an $O9$-plane could be used to construct a new 10 dimensional open string theory with a rank 8 gauge group, but this theory is not known. Second, this theory would appear (via M-theory on the Möbius strip) to be a 10 dimensional limit of the CHL-string, but various arguments (see e.g. [29]) indicate that such a limit does not exist. This suggests that the discrete C_6 flux can only be defined on a manifold with compact directions. It would be interesting to investigate this possibility further.

A serious drawback of the previous considerations, is that we more or less “define” variants of orientifold planes by projections from non-perturbative descriptions (type
IIB $SL(2,\mathbb{Z})$ duality, M-theory). This is opposite to common practice, where the perturbative objects are well defined, and one tries to deduce the description in the strong-coupling regime. To some extent, the question is whether these variants of orientifold planes (and the ones introduced in [19]) are really sensible as string theory objects, or whether they only start to make sense in a more complete, non-perturbative description of string theory.

6 Conclusions

We have demonstrated that type I compactifications on a 4–torus with a non-trivial RR 4–form background field lead to theories with gauge groups of reduced rank. The RR 4–form was shown to be correlated with compactifications with “non-trivial quadruples” of holonomies. It is not known at present whether there exists a characterization of these bundles that extends to other 4 manifolds. For example, it would be very interesting to compactify type I theories on K3, or a Calabi-Yau manifold with 4–cycles, and turn on the discrete 4–form background, but at present we have no clue how to describe such compactifications.

In one of the present models, the $\tilde{O}5^+$ makes a natural appearance. The existence of this plane was deduced before, from an analysis of possible discrete charges, but it has not appeared thus far in an explicit model.

We briefly discussed some aspects of variants of orientifold planes. The fact that it appears to be much easier to define these objects from M-theory or using S-dualities in IIB theory, warrants the question whether they are really well defined in perturbative string theory. Instead it does not seem unlikely that only a non-perturbative description reveals all the properties of these planes.

Acknowledgements: We would like to thank J. de Boer, R. Dijkgraaf, A. Hanany, D. Morrison, and S. Sethi for helpful conversations. This work is partly supported by EU-contact HPRN-CT-2000-00122.

References

[1] A. Sen, JHEP9809 (1998) 023 [hep-th/9808141]; A. Sen, JHEP9810 (1998) 021 [hep-th/9809111].

[2] E. Witten, JHEP9812 (1998) 019 [hep-th/9810188].

[3] E. Witten, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124]; J. Polchinski and E. Witten, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169].

[4] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017].
[5] M. Bianchi, G. Pradisi and A. Sagnotti, Nucl. Phys. B 376 (1992) 365.

[6] A. Sen and S. Sethi, Nucl. Phys. B 499 (1997) 45 [hep-th/9703157].

[7] E. Witten, JHEP 9802 (1998) 006 [hep-th/9712028].

[8] C. Schweigert, Nucl. Phys. B 492 (1997) 743 [hep-th/9611092].

[9] Z. Kakushadze, Int. J. Mod. Phys. A 15 (2000) 3113 [hep-th/0001212].

[10] A. Keurentjes, JHEP 9905 (1999) 001 [hep-th/9901154]; A. Keurentjes, JHEP 9905 (1999) 014 [hep-th/9902186].

[11] V. G. Kac and A. V. Smilga, hep-th/9902029.

[12] A. Borel, R. Friedman and J. W. Morgan, math.gr/9907007.

[13] J. A. H. Keurentjes, hep-th/0007196.

[14] J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. R. Morrison and S. Sethi, hep-th/0103170.

[15] A. Giveon, M. Porrati and E. Rabinovici, Phys. Rept. 244 (1994) 77 [hep-th/9401139].

[16] A. Keurentjes, Nucl. Phys. B 589 (2000) 440 [hep-th/0004073].

[17] D. Freed and E. Witten, hep-th/9907189.

[18] D. Diaconescu, G. Moore and E. Witten, hep-th/0005090; D. Diaconescu, G. Moore and E. Witten, hep-th/0005091.

[19] A. Hanany and B. Kol, JHEP 0006 (2000) 013 [hep-th/0003025].

[20] Y. Hyakutake, Y. Imamura and S. Sugimoto, JHEP 0008 (2000) 043 [hep-th/0007012].

[21] O. Bergman, E. Gimon and S. Sugimoto, hep-th/0103183.

[22] A. Keurentjes, in preparation.

[23] K. Hori, Nucl. Phys. B 539 (1999) 35 [hep-th/9805141].

[24] E. G. Gimon, hep-th/9806226.

[25] S. Chaudhuri and J. Polchinski, Phys. Rev. D 52 (1995) 7168 [hep-th/9506048].

[26] A. Mikhailov, Nucl. Phys. B 534 (1998) 612 [hep-th/9806030].
[27] S. Sethi, private communication.

[28] A. Dabholkar and J. Park, Nucl. Phys. B 477 (1996) 701 [hep-th/9604178].