The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRBI*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRBI*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D.
TABLE 1. HLA-DRB1* and -DQB1* allele distribution

Allele/haplotype	Frequency (n = 88)	Frequency (n = 112)	p*	p*b
DRB1*030101	0.364c	0.147	3.6 × 10^-4	0.006
DRB1*040101	0.239	0.116	7.5 × 10^-3	0.120
DRB1*070101	0.068	0.214	1.8 × 10^-4	0.0003
DRB1*090101	0.028	0.000	0.023	0.362
DRB1*100101	0.023	0.063	0.051	0.816
DRB1*110101	0.028	0.107	1.7 × 10^-3	0.027
DQB1*0201	0.426	0.290	0.054	0.377
DQB1*030101	0.097	0.201	0.001	0.007
DQB1*0302	0.216	0.094	0.002	0.012
DQB1*060101	0.080	0.179	0.006	0.041
DQB1*060201	0.287	0.065	<0.001	<0.001
DQB1*070101	0.184	0.073	0.001	0.010
DQB1*070201	0.068	0.177	0.002	0.015
DQB1*110101	0.023	0.097	0.005	0.036

a Determined by Fisher’s exact test; boldface indicates significant differences.

b P is the corrected P value for the number of alleles tested, calculated using the Bonferroni method.

MATERIALS AND METHODS

Subjects. The study subjects comprised 88 unrelated T1D patients (44 males and 44 females; mean age, 16.4 ± 7.7 years). The diagnosis of T1D was based on clinical features and laboratory data. All T1D patients were ketosis prone, lacked endogenous insulin secretion, and were dependent on insulin for controlling hyperglycemia. T1D patients were not obese, were free of any concomitant complications, and were not receiving additional treatment at the time of blood collection. Patients with other forms of diabetes (latent autoimmune diabetes of adults, maturity onset diabetes of the young, or type 2 diabetes) were excluded. Control subjects consisted of 112 university students and healthy children (65 males and 47 females; age, 26.2 ± 5.8 years) who had normal glucose tolerance and no family history of TID or other autoimmune diseases. All patients and control subjects were Tunisian Arabs, were from central Tunisia, and were asked to sign a consent form according to the study protocol, and all institutional ethics requirements were met.

HLA-DRB1 and -DQB1 genotyping. HLA-DRB1- and -DQB1 gene alleles were analyzed using the PCR sequence-specific-primer (SSP) technique, using the MicroTaq SSP Generic HLA Class II (DRB/DQB) DNA Typing kit (lot 05A), according to the manufacturer’s specifications (One Lambda, Thousand Oaks, CA). PCR products were analyzed on ethidium bromide-stained agarose gels. HLA allele nomenclature was as previously reported (15). In total, 16 DRB1 and 7 DQB1 alleles were tested.

Autoantibody screening. IA-2 and GAD-65 autoantibodies were measured at the time of initial diagnosis for T1D patients. Serum samples were obtained from all participants and were stored as small aliquots at or below −40°C. Anti-IA-2 and anti-GAD-65 antibodies were measured on two separate occasions by enzyme-linked immunosorbent assay (ELISA) (Kronus Inc., Boone, ID). Cutoff values for antibody positivity were based on the 99th percentile of antibody levels obtained in nondiabetic controls. The results were expressed as antibody titer (arbitrary units [AU]/ml) or as the percent antibody positive out of the total.

Statistical analysis. Statistical analysis was performed on SPSS v. 17.0 (SPSS Inc., Chicago, IL). Allele frequencies were determined by the gene-counting method, using HLAStat 2000 software, and haplotype frequencies were determined by the maximum-likelihood method. P values were corrected for the number of different alleles or haplotypes tested (Pc) using the Bonferroni inequality method [Pc = 1 − (1 − P)k]. Data were expressed as P values, odds ratios (OR), and 95% confidence intervals (CI) between patients and controls. The Spearman correlation coefficient was used to determine correlation between the level of autoantibodies and HLA alleles and haplotypes. Antibody titers were expressed as mean ± standard deviation (SD); differences between cases and controls were made using a two-tailed Student t test. Logistic regression analysis was performed in order to determine the OR and 95% CI associated with TID risk, taking the controls as the reference group. Statistical significance was set at a P value of <0.05.

RESULTS

HLA allele and haplotype frequencies. Significant DRB1 allelic differences were seen between T1D patients and controls. These comprised DRB1*030101 (Pc = 0.006), which was higher, and DRB1*070101 (Pc = 0.003) and DRB1*110101 (Pc = 0.027), which were lower among patients (Table 1). Similarly, significant DQB1 allelic differences were seen at the DQB1 locus, which comprised DQB1*0302 (Pc = 0.012), which was higher, and DQB1*030101 (Pc = 0.007) and DQB1*060101 (Pc = 0.041), which were lower among patients than among control subjects (Table 1). In addition, the frequencies of DRB1*030101/DQB1*0201 (Pc < 0.001) and DRB1*040101/DQB1*0302 (Pc = 0.010) were higher, while those of DRB1*070101/DQB1*0201 (Pc = 0.015) and DRB1*110101/DQB1*030101 (Pc = 0.036) were lower in T1D patients than in control subjects, thereby conferring TID susceptibility and protection, respectively, on these haplotypes (Table 1).

Correlation studies. We examined the functional attributes of HLA alleles and haplotypes on autoantibody levels among T1D patients. Table 2 summarizes the correlation between the level of autoantibodies and HLA alleles and haplotypes among T1D patients positive for a specific allele and haplotype; patients negative for that allele or haplotype served as controls. Anti-GAD levels were positively correlated with the DRB1*030101 allele (r² = 0.378; P < 0.001) and the DRB1*030101/DQB1*0201 (r² = 0.572; P < 0.001) and DRB1*040101/DQB1*0302 (r² = 0.284; P = 0.001) haplotypes. Anti-GAD titers were negatively associated with the protective DRB1*070101 (r² = −0.322; P = 0.001), DRB1*110101 (r² = −0.345; P < 0.001), and DQB1*030101 (r² = −0.294; P = 0.002) alleles, along with the DRB1*070101/DQB1*0201 (r² = −0.328; P = 0.001) and DRB1*110101/DQB1*030101 (r² = −0.346; P = 0.001) haplotypes. In compar-

TABLE 2. Correlation studies

Allele/haplotype	Anti-GAD	Anti-I2		
	p²	p	p²	p
Allelesa				
DRB1*030101	0.378	6.5 × 10^-5	0.074	0.563
DRB1*040101	0.122	0.211	0.219	0.084
DRB1*070101	−0.322	0.001	−0.185	0.148
DRB1*110101	−0.345	3.2 × 10^-4	−0.329	0.009
DQB1*030101	−0.294	0.002	−0.220	0.083
DQB1*060101	−0.129	0.189	−0.009	0.945
DQB1*0302	0.284	0.003	0.312	0.013
DQB1*030101	0.034	0.009	0.343	0.006

a Spearman correlation coefficient.
b Only alleles and haplotypes significantly associated with altered risk of TIDM in Tunisians (7).

Boldface indicates statistical significance.
ison, anti-IA-2 levels were positively correlated only with the DRB1*040101/DQB1*0302 (r² = 0.312; P = 0.013) haplotype but were negatively correlated with the DRB1*110101 allele (r² = -0.329; P = 0.009) and the DRB1*110101/DQB1*030101 (r² = -0.343; P = 0.006) haplotype.

Anti-GAD and anti-IA-2 antibody titers. The results in Table 3 show that the mean anti-GAD antibody titers were higher in TID patients positive for the DRB1*030101 allele (P < 0.001) and the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes. Mean anti-GAD antibody titers were lower in carriers of the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and in the DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*0201 (P = 0.001) haplotypes. In comparison, mean anti-IA-2 antibody titers were higher in TID patients positive for the DRB1*040101 (P = 0.007) allele and the DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in carriers of the DRB1*110101 (P = 0.010) and DRB1*110101 (P < 0.001) alleles and the DRB1*110101/ DQB1*030101 (P = 0.025) haplotype.

Regression analysis. The selective association of DRB1 and DQB1 alleles and haplotypes with altered anti-GAD and anti-IA-2 elevated antibody titers were confirmed by regression analysis after controlling for potential covariates. Multinomial regression analysis confirmed the positive association of the DRB1*030101 allele and the DRB1*030101/DQB1*0201 haplotype and the negative association of the DRB1*110101 and DQB1*030101 alleles and the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes with altered anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers (Table 4).

DISCUSSION

TID is an organ-specific autoimmune disease resulting in T cell-mediated destruction of pancreatic β islet cells. TID is also distinguished by the presence of a number of autoantigens (3, 6, 12, 27). GAD and IA-2 are two of the major and best-characterized autoantigens. Several studies have demonstrated that HLA-DQ and -DR alleles influence TID susceptibility (1, 20, 21, 29), and TID-predisposing or -protective HLA-DQ and -DR alleles were identified (1, 29). Apart from the regulation of the autoreactive T cell repertoire by susceptible and protective HLA molecules, presentation of autoantigenic peptides by specific HLA molecules or induction of regulatory T cells (Treg) explains, at least in part, the modulatory capacity of HLA variants on the overall TID risk (8).

This study is the first report on the association of HLA class II alleles and haplotypes and antibody titers with TID in Tunisia. We previously demonstrated that the contribution of HLA haplotypes to T1DM genetic susceptibility among Tuni- sians depends on specific HLA class II haplotypes (29). The results showed that anti-GAD antibody levels were higher in DRB1*030101 allele carriers, in agreement with recent findings in the Saudi population (14) but in partial agreement with an earlier study on Taiwanese subjects, in which anti-GAD positivity was associated with DR3 and DR4 (4). These differences are likely attributable to racial differences in the contribution of HLA class II alleles and haplotypes to TID pathogenesis (2, 8, 11). Our study demonstrated that the prevalence and increased titer of anti-GAD antibodies are associated with

Table 3. Antibody titers in HLA class II alleles and haplotypes

Allele/haplotype	TID 30.90 (± 24.52)	Normal 21.89 (± 20.49)	Z	P
DRB1*030101	73.10 ± 59.51	28.16 ± 17.08	3.87	<0.001
DRB1*040101	64.83 ± 52.68	52.93 ± 40.52	1.26	0.209
DRB1*070101	37.34 ± 21.42	60.08 ± 31.45	-3.30	0.001
DRB1*110101	11.24 ± 4.35	58.62 ± 43.92	-3.51	<0.001
DQB1*030101	17.22 ± 14.03	56.79 ± 39.74	-3.01	0.001
DQB1*030201	26.68 ± 24.27	53.22 ± 49.19	-1.32	0.331
DQB1*030101/DQB1*0201	114.72 ± 42.99	24.09 ± 25.39	2.77	<0.001
DQB1*040101/DQB1*0302	111.29 ± 49.97	52.12 ± 38.92	0.786	0.007
DQB1*040101/DQB1*0302	19.34 ± 15.36	60.24 ± 56.90	-3.24	0.001
DQB1*110101/DQB1*030101	17.32 ± 15.56	98.30 ± 50.10	-3.25	0.001

Note: Positive, patients carrying the specific allele/haplotype; negative, other patients; Z, Z score. The values are means ± SD antibody titers (AU/ml); differences in antibody titers between the patient groups were determined using a two-tailed Student t test.

Allele/haplotype	Antibodies	Z	P
DRB1*030101	Anti-GAD	3.87	<0.001
DRB1*040101	Anti-GAD	1.26	0.209
DRB1*070101	Anti-GAD	-3.30	0.001
DRB1*110101	Anti-GAD	-3.51	<0.001
DQB1*030101	Anti-GAD	-3.01	0.001
DQB1*030201	Anti-GAD	-1.32	0.331
DQB1*030101/DQB1*0201	Anti-GAD	2.77	<0.001
DQB1*040101/DQB1*0302	Anti-GAD	0.786	0.007
DQB1*040101/DQB1*0302	Anti-GAD	-3.24	0.001
DQB1*110101/DQB1*030101	Anti-GAD	-3.25	0.001

Table 4. Matched odds ratios associated with antibody titers in class II alleles and haplotypes

Allele/haplotype	Anti-GAD	Anti-IA2
DRB1*030101	aOR (95% CI)	aOR (95% CI)
DRB1*040101	5.23 (2.21–12.40)	1.37 (0.60–3.09)
DRB1*070101	1.52 (0.61–3.78)	2.00 (0.91–2.81)
DQB1*030101	0.93 (0.31–2.70)	0.424 (0.21–1.70)
DQB1*030201	0.75 (0.66–0.86)	0.269 (0.13–0.58)
DQB1*030101	0.21 (0.07–0.67)	0.424 (0.21–1.70)
DQB1*040101	0.14 (0.04–0.46)	0.144 (0.03–0.47)
DQB1*040101	15.76 (5.83–42.57)	1.51 (0.87–2.64)
DQB1*030101	0.21 (0.07–0.67)	0.168 (0.08–0.34)
DQB1*030201	0.75 (0.66–0.86)	0.380 (0.20–0.77)

Note: Only alleles and haplotypes significantly associated with altered risk of T1DM in Tunisians (7).

Boldface indicates statistical significance.
CD4+ T cells present on antigen-presenting cells have critical roles for the activation of helper cell reactivity. HLA class II molecules expressed on antigen-presenting cells contribute to susceptibility to T1D, and it is likely that anti-GAD positivity and IA-2 positivity may progress toward tissue destruction or protection (17, 30). The genetic modifiers of susceptibility, which are also attributed to HLA molecules, the dominant genetic association with T1D is that primary mechanistic influence by biasing or adding to the specific subtype of DR4 present on the same haplotype (30). It is tempting to speculate that this is based on the selection of specific dominating epitopes favored during disease progression (12, 21, 30). Other genetic modifiers of susceptibility, which are also attributed to HLA molecules, the dominant protection conferred by HLA-DQ alleles, may also have a primary mechanistic influence by biasing or adding to the specific epitope recognition cascade (12, 17, 30).

In this way, T1D can be viewed as a disease of epitope selection and immunological focusing, whereby autoimmunity may progress toward tissue destruction or protection (17, 30). While specific HLA alleles and haplotypes clearly impact susceptibility to T1D, it is likely that anti-GAD positivity and T1D-susceptible locus HLA types translate into increased T cell reactivity. HLA class II molecules expressed on antigen-presenting cells have critical roles for the activation of helper T cells (mainly CD4+ T cells) and may influence antibody status in the periphery. This was highlighted by the findings of Itoh et al., in which HLA DR9/X-positive T1D patients had significantly higher numbers of GAD-reactive IFN-γ-producing T cells than those with other loci (9).

HLA polymorphism affects autoimmune responses according to the binding capacities of antigenic peptides, and the repertoire of T cell receptors of reactive T cells (25) and different HLA-DR/DQ molecules might have different binding affinities to disease-associated peptides (18). These facts may explain our results showing unique and different HLA associations with autoantibodies from the Caucasian populations. In conclusion, our study of TIDM among Tunisians reveals that both GAD and IA-2 antibodies and the HLA-DR and -DQ alleles are critical in determining the risk for the disease.

REFERENCES

1. Al-Jenaifi, F. A., et al. 2005. Contribution of selective HLA-DRB1/DQB1 alleles and haplotypes to the genetic susceptibility of type 1 diabetes among Lebanese and Bahraini Arabs. J. Clin. Endocrinol. Metab. 90:5104–5109.

2. Bach, J. F. 1988. Autoimmunity in insulin dependent diabetes mellitus. Clin. Exp. Immunol. 72:1–8.

3. Banga, J. P., et al. 2004. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type 1 diabetic patient. Clin. Exp. Immunol. 135:74–84.

4. Chuang, L.-M., et al. 1997. Anti-GAD65 autoantibody in Taiwanese patients with insulin-dependent diabetes mellitus: effect of HLA on anti-GAD65 positivity and clinical characteristics. Clin. Endocrinol. 47:455–461.

5. Decozech, K., et al. 2005. Combined positivity for HLA DQ2/DQ2 and IA-2 antibodies defines population at high risk of developing type 1 diabetes. Diabetologia 48:867–874.

6. Giuliani, L., et al. 2009. Detection of GAD65 autoreactive T-cells by HLA class I tetramers in type 1 diabetic patients. J. Biomed. Biotechnol. 2009: 576219.

7. Graham, J., et al. 2002. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 51:1346–1355.

8. Harfouch-Hamoud, E., et al. 1999. Identification of peptides from autoantigens GAD65 and IA-2 that bind to HLA class II molecules predisposing to or protecting from type 1 diabetes. Diabetes 48:1937–1947.

9. Itoh, A., et al. 2004. GAD-reactive T cells were mainly detected in autoimmune-related type 1 diabetic patients with HLA DR9. Ann. N. Y. Acad. Sci. 1037:9–10.

10. Kordonouri, O., et al. 2010. Genetic risk markers related to diabetes-associated autoantibodies in young patients with type 1 diabetes in Berlin, Germany. Exp. Clin. Endocrinol. Diabetes 118:245–249.

11. Kukko, M., et al. 2003. Signs of beta-cell autoimmunity and HLA defined diabetes susceptibility in the Finnish population: the sib cohort from the Type 1 Diabetes Prediction and Prevention Study. Diabetologia 46:65–70.

12. Lan, M. S., J. Lu, Y. Goto, and A. L. Notkins. 1994. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 13:505–514.

13. Mäkinen, A., T. Härkönen, J. Ilenen, M. Knip, and the Finnish Pediatric Diabetes Register. 2008. Characterization of the humoral immune response to islet antigen 2 in children with newly diagnosed type 1 diabetes. Eur. J. Endocrinol. 159:19–26.

14. Manan, H., A. M. Angham, and A. Sitelbanat. 2010. Genetic and diabetic autoimmune markers in Saudi children with type 1 diabetes. Hum. Immunol. 71:1238–1242.

15. Marsh, S. G., et al. 2010. Nomenclature for factors of the HLA system. 2010. Tissue Antigens 75:291–455.

16. Monti, P., et al. 2007. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J. Immunol. 178:5785–5792.

17. Nepom, G. T. 2003. Conversations with G. J. Autoimmun. 20:195–198.

18. Nishimura, Y., et al. 1998. Peptide-based molecular analysis of HLA class II-associated susceptibility to autoimmune disease. Int. Rev. Immunol. 17:123–139.

19. Palmer, J. P., et al. 1983. Insulin antibodies in insulin-dependent diabetes mellitus before insulin treatment. Science 222:1337–1339.

20. Park, Y., et al. 2004. Differential expression of nonislet autoimmunity: comparison of Korean and U.S. patients with type 1 diabetes. Ann. N. Y. Acad. Sci. 1037:69–73.

21. Park, Y., et al. 2000. Common susceptibility and transmission pattern of HLA DRB1-DQB1 haplotypes to Korean and Caucasian patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 85:4538–4542.

22. Park, Y., R. D. Tait, E. Kawasaki, M. Rowley, and I. R. Mackay. 2010. Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:469–471.

23. Parry, C. S., and B. R. Brooks. 2008. A new model defines the minimal set of polymorphism in HLA-DQ and -DR that determines susceptibility and resistance to autoimmune diabetes. Biol. Direct. 3:42.

24. Qu, H.-Q., and C. Polychronakos. 2009. The effect of the MHC locus on autoantibodies in type 1 diabetes. J. Med. Genet. 46:389–401.

25. Quarsten, H., et al. 1998. The P9 pocket of HLA-DQ2 (non-Aspbeta57) has no particular preference for negatively charged anchor residues found in other type 1 diabetes-predisposing non-Aspbeta57 MHC class II molecules. Int. Immunol. 10:1229–1236.

26. Reijonen, H., J. F. Elliott, P. van Endert, and G. Nepom. 1999. Differential presentation of glutamic acid decarboxylase 65 (GAD65) T cell epitopes among HLA-DRB1*0401-positive individuals. J. Immunol. 163:1674–1681.

27. Sabbah, E., et al. 2000. Genetic, autoimmune, and clinical characteristics of childhood- and adult-onset type 1 diabetes. Diabetes Care 23:1326–1332.

28. Sabbah, E., et al. 1999. Diabetes-associated autoantibodies in relation to clinical characteristics and natural course in children with newly diagnosed type 1 diabetes. J. Clin. Endocrinol. Metab. 84:1534–1539.

29. Stayoussf, M., et al. 2009. Autoimmune type 1 diabetes genetic susceptibility encoded by human leukocyte antigen DRB1 and DQB1 genes in Tunisia. Clin. Vaccine Immunol. 16:1146–1150.

30. Stolpe-Czepfening, K. W., et al. 1995. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc. Natl. Acad. Sci. U. S. A. 92:11935–11939.