Another Type of Weakly Closed sets on Semi α-Regular

A. THIRIPURAM

Department of Mathematics, Jeppiaar Engineering College Chennai (India)
Corresponding Author Email: thiripuram82@gmail.com
http://dx.doi.org/10.22147/jusps-A/290903

Acceptance Date 11th August, 2017, Online Publication Date 2nd September, 2017

Abstract

In this paper we introduce and study the new class of closed sets called semi-α-regular weakly closed (briefly $s\alpha rw$-closed) set in the topological spaces. This new class of set lies between the class of α-closed sets and the class of generalised semi closed sets. We study the fundamental properties of this class of sets.

Key words: Semi-closed set, α-closed sets, rw-closed, arw-closed set, gs-closed set, $s\alpha rw$-closed set and topological space.

2010 Mathematics Classification: 54A05, 54A10

1. Introduction

In 1970 Levine10, first introduced the concept of generalized closed (briefly g-closed) sets were defined and investigated. Regular open sets and rw-open sets have been introduced and investigated by Stone16 and Benchalli3 respectively. Levine10,11, Sundaram and Sheik john17 and many mathematicians have been, introduced and investigated semi open sets, generalized closed sets, regular semi open sets, o-closed sets, semi generalized closed sets, weakly generalized closed sets, strongly generalized closed sets, generalized pre-regular closed sets, regular generalized closed sets, and generalized α-generalized closed sets respectively. Maki \textit{et.al.}12,13 introduced and studied generalized α-closed sets and α-generalized closed sets. S.S. Benchalli \textit{et.al.}3 studied $o\alpha$-closed sets in topological spaces. Recently, R. S. Wali and Mendalgeri20,22 introduced and studied the concepts of α-regular w-closed (briefly arw-closed) sets in topological spaces. In this paper we define new generalization of closed set called Semi α regular weakly closed (briefly $s\alpha rw$-closed) set which lies between α-closed set and gs-closed set. Also we study their fundamental properties.

2. Preliminaries:

\textit{Definition 2.1 :} A subset A of X, is called \textbf{semi-open} set11 if $A \subseteq \text{cl}(\text{int}(A))$ and \textbf{semi-closed set} if
A subset A of X, is called pre-open set if $A \subseteq \text{int} \,(\text{cl}(A))$ and pre-closed set if $\text{cl}(\text{int}(A)) \subseteq A$.

Definition 2.2: A subset A of X, is called α-open set if $A \subseteq \text{int} \,(\text{cl}(A))$ and α -closed set if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$.

Definition 2.4: A subset A of X, is called semi-pre open set if $\beta \text{-open}[1]$ if $A \subseteq \text{cl} \,(\text{int}(\text{cl}(A)))$ and a semi-pre closed set if $\beta \text{-closed})$ if $\text{int}(\text{cl}(\text{int}(A))) \subseteq A$.

Definition 2.5: A subset A of X, is called regular open set if $A = \text{int}(\text{cl}(A))$ and a regular closed set if $A = \text{cl}(\text{int}(A))$.

Definition 2.7: A subset A of X, is called Regular semi open set if there is a regular open set U such that $U \subseteq A \subseteq \text{cl}(U)$.

Definition 2.8: A subset A of a topological space (X, τ) is called 1. α-generalized closed set (briefly α-g-closed) if $\alpha \text{-cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. Regular generalized closed set (briefly rg-closed) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
3. Generalized semi-pre closed set (briefly gsp-closed) if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
4. $\omega\alpha$- closed set if $\alpha \text{-cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is ω-open in X.
5. Generalized $\omega\alpha$-closed set (briefly αrw-closed) set if $\alpha \text{-cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\omega\alpha$-open in X.
6. Generalized regular closed (briefly gr-closed) set if $\text{rcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
7. α-regular weakly closed (briefly αrw-closed)set if $\alpha \text{-cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-rw-open in X.

The complement of the above mentioned closed sets are their open sets.

3. weakly-closed sets in terms of Semi α-regular :

Definition 3.1: A subset A of X is called a semi α- regular weakly closed set (briefly srw-closed set) if $\text{Scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X. We denote the collection of all srw-closed sets in X by $\text{srw}(X)$.

Theorem 3.2: Every α-closed set in X is srw-closed set but converse is not true.

Proof: Let A be α-closed set in X. Let U be any α-open set in X s.t $A \subseteq U$. Since A is α-closed, we have $\text{Scl}(A) = A \subseteq U$, and $\text{Scl}(A) \subseteq U$. Hence A is srw-closed set in X.

Example 3.3: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then the set $A = \{b, d\}$ is srw-closed set but not α-closed in X.

Theorem 3.4: Every srw-closed set is gs-closed set in X but converse is not true.

Proof: Let A be srw -closed set in X. Let U be any open set in X s.t $A \subseteq U$. Since every open set is $\omega\alpha$-open set and A is srw-closed set, we have $\text{Scl}(A) \subseteq U$, $\text{Scl}(A) \subseteq U$, U is open in X. Hence A is gs-closed set in X.

Example 3.5: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then the set $A = \{b\}$ is gs closed set but not srw -closed set in X.

Remark 3.6: The Union of two srw - closed subsets of X need not be srw -closed set in X.

Example 3.7: Let $X = \{a, b, c, d\}$ be with topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{a\}$ and $B = \{b, c\}$ be two srw -closed subsets of X. But $A \cup B = \{a, b, c\}$ which is not contained in srw -closed set in X. Hence union of two srw -closed sets is not srw -closed set in X.

Remark 3.8: The intersection of two srw -closed sets in X is generally not an srw -closed set in X.
Example 3.9: Let $X = \{a, b, c, d\}$ be with topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{b, c\}$ and $B = \{b, d\}$ be two srw-closed subsets of X. But $A \cap B = \{b\}$ which is not contained in srw-closed set in X. Hence intersection of two srw-closed sets is not srw-closed set in X.

Theorem 3.10: If a subset A of topological space X is an srw-closed set in X then $S\text{Cl}(A) - A$ does not contain any non empty r_ω-closed set in X.

Proof: Let A be srw-closed set in X and suppose F be a non empty r_ω-closed subset of $S\text{Cl}(A) - A$. $F \subseteq S\text{Cl}(A) - A \Rightarrow F \subseteq S\text{Cl}(A) \cap (X - A) \Rightarrow F \subseteq X - F$ and $X - F$ is ro-open set and A is an srw-closed set, $S\text{Cl}(A) \subseteq X - F \Rightarrow F \subseteq X - S\text{Cl}(A)$ -- (1) & $F \subseteq X - A \Rightarrow A \subseteq X - F$ and $X - F$ is ro-open set in X. However the converse of the above theorem need not be true as seen from the following example.

Example 3.11: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ then the set $A = \{b, c\}$ does not contain non empty r_ω-closed set in X, but A is not srw-closed set in X.

4. Characterisation of is srw-closed set:

Theorem 4.1: If A is regular open and agr-closed then A is srw-closed set in X.

Proof: Let A be regular open and agr-closed in X, Let U be any ro-open set in X s.t. $A \subseteq U$ Since A is regular open and agr-closed in X, by definition, $S\text{Cl}(A) \subseteq A$ then $S\text{Cl}(A) \subseteq A \subseteq U$ Hence A is srw-closed set in X.

Remark 4.2: If A is both regular open and srw-closed, then A need not be agr-closed in general as seen from the following example.

Example 4.3: Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{b, c\}$ is both regular open and srw-closed but not agr closed in X.

Theorem 4.4: If A is ω-open and ωag-closed then A is srw-closed set in X.

Proof: Let A be ω-open and ωag-closed in X, Let U be any ro-open set in X s.t. $A \subseteq U$. Since A is ω-open and ωag-closed in X, by definition, $S\text{Cl}(A) \subseteq A$ then $S\text{Cl}(A) \subseteq A \subseteq U$. Hence A is srw-closed set in X.

Remark 4.5: If A is both ω-open and srw-closed, then A need not be ωag-closed in general, as seen from the following example.

Example 4.6: Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{a\}$ is both ω-open and srw-closed but not ωag-closed in X.

Theorem 4.7: If A is open and αg-closed then A is srw-closed set in X.

Proof: Let A be open and αg-closed in X, Let U be any ro-open set in X s.t. $A \subseteq U$. Since A is open and αg-closed in X, by definition, $\text{Cl}(\text{int}(A)) \subseteq A$ then $\text{Cl}(\text{int}(\text{Cl}(A))) \subseteq A \subseteq U$. Hence A is srw-closed set in X.

Remark 4.8: If A is both open and srw-closed, then A need not be αg-closed in general, as seen from the following example.

Example 4.9: Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{b, c\}$ is both open and srw-closed but not αg-closed in X.

Theorem 4.10: If A is regular open and rgw-closed then A is srw-closed set in X.

Proof: Let A be regular open and rgw-closed in X, Let U be any ro-open set in X s.t. $A \subseteq U$. Since A is regular open and rgw-closed in X, by definition, $\text{Cl}(\text{int}(A)) \subseteq A$ then $\text{Cl}(\text{int}(\text{Cl}(A))) \subseteq A \subset U$. Hence A is srw-closed set in X.

Remark 4.11: If A is both regular open and srw-closed, then A need not be rgw-closed in general, as seen from the following example.

Example 4.12: Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{a\}$ is both regular open and srw-closed but not rgw-closed in X.
Remark 4.13: If A is both open and s\alpha rw -closed, then A need not be wg - closed in general, as seen from the following example.

Example 4.14: Let X={a, b, c, d} with the topology \(\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \). Let A={b,c} is both open and s\alpha rw-closed but not wg-closed in X.

Remark 4.15: If A is both open and s\alpha rw -closed, then A need not be gp - closed in general, as seen from the following example.

Example 4.16: Let X={a, b, c, d} with the topology \(\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \). Let A={b, c} is both open and s\alpha rw-closed but not gp-closed in X.

Theorem 4.17: If a subset A of a topological space X in both regular open and s\alpha rw -closed then it is \alpha-closed.

Proof: Suppose a subset A of a topological space X is regular open and s\alpha rw-closed, As every regular open is ro-open. Now A \subseteq A then definition of s\alpha rw-closed, SCl(A) \subseteq A and also A \subseteq SCl(A) then SCl(A)=A. Hence A is \alpha-closed.

Theorem 4.18: If a subset A of a topological space X is both regular semi open and gprw-closed then it is s\alpha rw-closed.

Proof: Let A be an regular semi open and gprw-closed set in X. Let A \subseteq U and U be ro-open in X. Now A \subseteq A by hypothesis pcl(A) \subseteq A then we know that pcl(A) \subseteq Scl(A) \subseteq A, hence Scl(A) \subseteq U therefore A is s\alpha rw-closed set in X.

Remark 4.19: If A is both regular semi open and s\alpha rw -closed, then A need not be gprw - closed in general, as seen from the following example.

Example 4.20: Let X={a, b, c, d} with the topology \(\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \). Let A={b,c} is both regular semi open and s\alpha rw-closed but not gprw-closed in X.

Theorem 4.21: If a subset A of a topological space X is both regular semi open and rgw-closed then it is s\alpha rw-closed.

Proof: Let A be an regular semi open and rgw-closed set in X. Let A \subseteq U and U be ro-open in X. Now A \subseteq A by hypothesis cl(int(A)) \subseteq A then we know that cl(int(A)) \subseteq cl(int(cl(A))) \subseteq A, hence Scl(A) \subseteq U therefore A is s\alpha rw-closed set in X.

Remark 4.22: If A is both regular semi open and s\alpha rw-closed, then A need not be rgw - closed in general, as seen from the following example.

Example 4.23: Let X={a, b, c, d} with the topology \(\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \). Let A={b,c} is both regular semi open and s\alpha rw-closed but not rgw-closed in X.

Conclusion

In the present work, a new class of sets called s\alpha rw -Closed sets in Topological spaces is introduced and some of their properties are studied. This new class of sets widens the scope to do further research in the areas like Bitopological Spaces, Soft topological spaces and Fuzzy Topological Spaces.

References

1. Andrijevic D., Semi-preopen sets, Mat. Vesnik., 38(1), 24-32 (1986).
2. Benchalli S. S., Patil P. G. & Nalwad P.N, Generalized \omega\alpha-Closed sets is Topological Spaces, J. of new results in science, 7, 7-19 (2014).
3. Benchalli S. S., Patil P. G. and Rayanagaudar T. D., \omega\alpha-Closed sets is Topological Spaces, The Global. J. Appl. Math. and Math. Sci., 2, 53-63 (2009).
4. Bhattacharya S., on generalized regular closed sets, Int J. Contemp. Math science Vol. 6, 145-152 (2011).
5. Cameron D.E., Properties of s-closed spaces, Proc. Amer. Math. Soc. 72, 581-586 (1978).
6. Dontchev J. and Noiri T., Quasi-normal spaces and ng-closed sets, Acta Math. Hungar. 89(3), 211–219 (2000).
7. Dontchev J., On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16, 35-48 (1995).
8. Gnanambal Y., On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3), 351-360 (1997).
9. Njastad O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965).
10. Levine N., Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2), 89-96 (1970).
11. Levine N., Semi-open sets and semi-continuity in topological spaces, 70, 36-41 (1963).
12. Maki H., Devi and R. & Balachandran K., Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15, 51-63 (1994).
13. Maki H., Devi and R. & Balachandran K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. part- III 42, 13–21 (1993).
14. Mashhour A.S., Abd El-Monsef M.E. and El-Deeb S.N., On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53 (1982).
15. Palaniappan N. and Rao K.C., Regular generalized closed sets, Kyungpook, Math. J., 33(2), 211-219 (1993).
16. Stone M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 374-481 (1937).
17. Sundaram P. and Sheik John M., On w-closed sets in topology, Acta Ciencia Indica 4, 389-439 (2000).
18. Vadivel. A and Mohanarao Navuluri., Regular weakly closed sets in ideal topological spaces, International Journal of Pure and Applied Mathematics, Vol. 86 No. 4, 607-619 (2013).
19. Veera Kumar M. K. R. S., On α-generalized regular closed sets, Indian J. of Math, 44(2), 165-181 (2002).
20. Wali R. S. and Mendalgeri P. S., On Regular w-closed sets in topological spaces, Int. J. of Mathematics Archive-5(10), 68-76 (2014).
21. Wali R. S. and Basayya B Mathad, Semi Regular Weakly open Sets in Topological Spaces, International Journal of Mathematics Trends and Technology, Vol. 37 No.1, 41-46, (2016).
22. Wali. R.S. and Basayya B. Mathad, Semi Regular Weakly closed sets in Topological Space, International Journal of Mathematical Archive-7(6), 91-97 (2016).