On a multiplicative order of Gauss periods and related questions
Roman Popovych
December 19, 2010

Abstract. We obtain explicit lower bounds on multiplicative order of elements that have more general form than finite field Gauss period. In a partial case of Gauss period this bound improves the previous bound of O.Ahmadi, I.E.Shparlinski and J.F.Voloch

1 Introduction

A problem of constructing primitive element for the given finite field is notoriously difficult in computational number theory. That is why one considers less restrictive question: to find an element with large order. It is sufficient in this case to obtain a lower bound of the order.

Such question in particular arises in concern with primality proving AKS algorithm. This unconditional, deterministic polynomial-time algorithm for proving primality of integer \(n\) was presented by M.Agrawal, N.Kayal and N.Saxena in [1].

The idea of AKS consists in the following: to choose small integer \(r\) with specific properties and to show that the set of elements \(\theta+a\), \(a=1,\ldots, \left\lfloor \sqrt{r \log n} \right\rfloor\) generates large enough subgroup in the multiplicative group of the finite field \(\mathbb{Z}_p[x]/h(x)\) where \(\theta\) is a coset of \(x\), \(p\) is a prime divisor of \(n\), \(h(x)\) is an irreducible divisor of \(r\)-th cyclotomic polynomial \(\Phi_r(x) = C_r(x) = x^{r-1}+x^{r-2}+\ldots+x+1\). Usually in AKS implementation \(r\) is prime and \(h(x) = \Phi_r(x)\).

The fastest known deterministic version of AKS runs in \((\log n)^{6+o(1)}\) time, the fastest randomized version – in \((\log n)^{4+o(1)}\) time [6]. If given in [1, p.791] conjecture were true, this would improve a complexity of AKS to \(O(\log n)^{3+o(1)}\). The conjecture means that the element \(\theta-1\) generates large enough subgroup.

We denote \(F_q\) finite field with \(q\) elements where \(q\) is a power of prime number \(p\). Let \(r=2s+1\) be a prime number coprime with \(q\). Let \(q\) be a primitive root modulo \(r\), that is a multiplicative order of \(q\) modulo \(r\) equals to \(r-1\).

Set \(F_q(\theta) = F_{q^{-1}} = F_q[x]/\Phi_r(x)\) where \(\theta = x (\mod \Phi_r(x))\), \(\theta\) generates an extension \(F_q(\theta) = F_{q^{-1}}\). It is clear that \(\theta' = 1\). The element \(\theta + \theta^{-1}\) is called a Gauss period of type \(((r-1)/2,2)\). It allows to construct normal base [2].

\(<u_1,\ldots, u_k>\) denotes a group generated by elements \(u_1,\ldots, u_k\). \(p_2(n)\) denotes the highest power of 2 dividing integer \(n\).

A partition of integer \(C\) consists of such non-negative integers \(u_1,\ldots, u_C\) that \(\sum_{j=1}^{C} ju_j = C\). \(U(C)\) denotes a number of partitions of \(C\). \(U(C,d)\) denotes a number of such partitions \(u_1,\ldots, u_C\) of \(C\).
for which \(u_1, \ldots, u_C \leq d \). \(Q(C,d) \) denotes a number of such partitions \(u_1, \ldots, u_C \) of \(C \) for which \(u_1, \ldots, u_C \neq 0 \mod d \).

It is shown in [2] that a multiplicative order of Gauss period \(\theta + \theta^{-1} \) which generates normal base over finite field is at least \(U((r-3)/2,p-1) \).

We generalize this result and show that for any integer \(e \), any integer \(f \) coprime with \(r \), any non-zero element \(a \) in the field \(F_q \) the multiplicative order of the element \(\theta^e(\theta^f + a) \) in the field \(F_q(\theta) \) is at least \(U(r-2,p-1) \). In particular, a multiplicative order of the element \(\theta + \theta^{-1} = \theta^{-1}(\theta^2 + 1) \) is at least \(U(r-2,p-1) \). This bound improves the previous bound of O.Ahmadi, I.E.Shparlinski and J.F.Voloch given in [2]. We show that if \(a \neq 1,-1 \) then a multiplicative order of element \(\theta^e(\theta^f + a) \) is least \(\lceil U((r-3)/2,p-1) \rceil^2/2 \). We also prove that an order of subgroup \(\langle \theta + \theta^{-1}, (a \theta + 1)(\theta + a)^{-1} \rangle \) is at least \(\lceil U((r-2,p-1) U((r-3)/2,p-1)) \rceil^2/2 \) and construct a generator of this cyclic subgroup.

We also give explicit lower bounds for the multiplicative order of the elements using results from [3,7].

A construction of large order elements in the case \(q \equiv 1 \mod r \) (\(r \) is not primitive modulo \(r \)) is given in [5]. Overview of some alternative constructions of large order elements in a finite field can be found in [4].

2 Multiplicative orders of finite field elements

Theorem 1. Let \(q \) be a power of prime number \(p \), \(r=2s+1 \) be a prime number coprime with \(q \), \(q \) be a primitive root modulo \(r \), \(\theta \) generates an extension \(F_q(\theta) = F_{q^{r-1}} \), \(e \) be any integer, \(f \) be any integer coprime with \(r \), \(a \) be any non-zero element in the finite field \(F_q \). Then

(a) element \(\theta^e(\theta^f + a) \) has a multiplicative order at least \(U(r-2,p-1) \)

(b) if \(a \neq 1,-1 \) then element \(\theta^e(\theta^f + a) \) has a multiplicative order at least \(\lceil U((r-3)/2,p-1) \rceil^2/2 \)

Proof. (a) Let us consider automorphism of the field \(F_q(\theta) \) which takes \(\theta \) to \(\theta^f \). Since the automorphism sends element \(\theta^e(\theta + a) \) to element \(\theta^e(\theta^f + a) \), where \(g \equiv ef^{-1} \mod r \), multiplicative orders of these elements coincide. Hence, it is sufficient to prove that element of the form \(\theta^e(\theta + a) \) has a multiplicative order at least \(U(r-2,p-1) \).

Since \(q \) is primitive modulo \(r \), then for each \(j=1,\ldots,r-2 \) exists such integer \(\alpha_j \) that \(q^{\alpha_j} \equiv j \mod r \). Then \(q^{\alpha_j} \)-th powers of element \(\theta^e(\theta + a) \) which are equal to

\[
\left(\theta^e(\theta + a)\right)^{\alpha_j} = \theta^{e\alpha_j} (\theta^{\alpha_j} + a) = \theta^{\alpha_j}(\theta^j + a)
\]
belong to group $\langle \theta^e (\theta + a) \rangle$. We consider the following products
\[
\prod_{j=1}^{r-2} [\theta^j (\theta^j + a)]^{u_j}, \text{ where } \sum_{j=1}^{r-2} j u_j = r - 2, 0 \leq u_1, \ldots, u_{r-2} \leq p - 1,
\]
which also belong to the group, and show that a number of such products equals to $U(r - 2, p - 1)$.

Let partitions (u_1, \ldots, u_{r-2}) and (v_1, \ldots, v_{r-2}) of integer $r-2$, where it part appears no more than $p-1$ times, be different, but the correspondent products coincide:
\[
\prod_{j=1}^{r-2} [\theta^j (\theta^j + a)]^{u_j} = \prod_{j=1}^{r-2} [\theta^j (\theta^j + a)]^{v_j}
\]
Then we have from (1):
\[
\theta^{\sum_{j=1}^{r-2} j u_j} \prod_{j=1}^{r-2} (\theta^j + a)^{u_j} = \theta^{\sum_{j=1}^{r-2} j v_j} \prod_{j=1}^{r-2} (\theta^j + a)^{v_j}
\]
\[
\prod_{j=1}^{r-2} (\theta^j + a)^{u_j} = \prod_{j=1}^{r-2} (\theta^j + a)^{v_j}
\]
(2)

Since the characteristic polynomial of θ is the polynomial $\Phi_r(x)$ we obtain
\[
\prod_{j=1}^{r-2} (x^j + a)^{u_j} = \prod_{j=1}^{r-2} (x^j + a)^{v_j}
\]
(3)

As there are polynomials of degree $r-2<\deg \Phi_r(x)$ from left and right side in equality (3) then these polynomials coincide as polynomials over F_q.

Let k be the smallest integer for which $u_k \neq v_k$. Without loss of generality suppose $u_k > v_k$. After removing from (3) common factors we obtain
\[
(x^k + a)^{u_k - v_k} \prod_{j=1}^{r-2} (x^j + a)^{u_j} = \prod_{j=1}^{r-2} (x^j + a)^{v_j}
\]
(4)

Then there is the term $(u_k - v_k) a^{u_k - v_k - 1} a^{\sum_{j=1}^{k-2} u_j} x^k$ in the polynomial in the left side of (4) with minimal non-trivial power of x. Since $0 < u_k, v_k < p - 1$, $u_k \neq v_k$, $a \neq 0$, the term is non-zero. And all terms with non-trivial power of x in the polynomial in the right side have a power higher than k - a contradiction.

(b) Order of a multiplicative group of the field F_q^{r-1} equals to $q^{r-1} - 1 = (q^{(r-1)/2} - 1)(q^{(r-1)/2} + 1)$. The factors $q^{(r-1)/2} - 1$ and $q^{(r-1)/2} + 1$ have the greatest common divisor 2 since their sum equals to $2q^{(r-1)/2}$.

Subgroup H of the group generated by element $\theta^e (\theta + a)$ contains subgroup H_1 generated by element
\[
v = [\theta^e (\theta + a)]^{q^{r-1}/2 - 1} = \theta^{q^{r-1}/2} (\theta^{q^{r-1}/2} + a)(\theta + a)^{-1} = \theta^e (\theta^{q^{r-1}/2} + a)(\theta + a)^{-1} = \theta^{(r+1)} (a \theta + 1)(\theta + a)^{-1}
\]
and subgroup H_2 generated by element
\[w = [\theta'(\theta+a)]^{q(r-1)/2+1} = \theta^{q(r-1)/2}(\theta^{r-1} + a)(\theta + a) = \theta^{q(r-1)/2} \] (note that since \(q \) is primitive modulo \(r \) and \(r \) is prime, then \(q^{-1} = 1 \mod r \), a \(q^{(r-1)/2} = -1 \mod r \)).

Element \([\theta'(\theta+a)]^{q(r-1)/2-1}\) has order that divides \(q^{(r-1)/2}+1 \), and element \([\theta'(\theta+a)]^{q(r-1)/2+1}\) has order that divides \(q^{(r-1)/2}-1 \).

Let us consider element \(z = \begin{cases} v^2w & \text{if } \rho_2(q^{-1/2} - 1) = 2 \\ vw^2 & \text{if } \rho_2(q^{-1/2} + 1) = 2 \end{cases} \)

If \(\rho_2(q^{-1/2} - 1) = 2 \) then orders of elements \(v^2 \) and \(w \) are coprime. If \(\rho_2(q^{-1/2} + 1) = 2 \) then orders of elements \(v \) and \(w^2 \) are coprime. In both cases an order of element \(z \) is a product of orders of \(v \) and \(w \) divided by 2.

Element \(w = \theta^{r+1}(a\theta+1)(\theta+a) \) generates subgroup \(H_2 \) of order at least \(U((r-3)/2,p-1) \).

Indeed, elements \(\theta^{-2(r+1)}(a\theta^2+1)(\theta^2+a) \), \(\ldots \), \(\theta^{-(r-3)/2(r+1)}(a\theta^{(r-3)/2}+1)(\theta^{(r-3)/2}+a) \) belong to subgroup \(H_2 \).

We consider products of the powers

\[
\prod_{j=1}^{(r-3)/2} [\theta^{-j}(a\theta^j + 1)(\theta^j + a)]^{uj}_j, \text{ where } \sum_{j=1}^{(r-3)/2} j u_j = (r-3)/2, 0 \leq u_1, \ldots, u_{r-2} \leq p-1, \]

which also belong to the subgroup, and show that a number of such products equals to \(U((r-3)/2, p-1) \).

Let partitions \((u_1, \ldots, u_{r-2})\) and \((v_1, \ldots, v_{r-2})\) of integer \((r-3)/2\), where it part appears no more than \(p-1 \) times, be different, but the correspondent products coincide:

\[
\prod_{j=1}^{(r-3)/2} [\theta^{-j}(a\theta^j + 1)(\theta^j + a)]^{uj}_j = \prod_{j=1}^{(r-3)/2} [\theta^{-j}(a\theta^j + 1)(\theta^j + a)]^{vj}_j \quad (5)
\]

Then we have from (5):

\[
\theta^{-(r+1) \sum_{j=1}^{(r-3)/2} j u_j (r-3)/2} \prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)]^{uj}_j = \theta^{-(r+1) \sum_{j=1}^{(r-3)/2} j v_j (r-3)/2} \prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)]^{vj}_j
\]

\[
\prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)]^{uj}_j = \prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)]^{vj}_j \quad (6)
\]

Then we can write

\[
\prod_{j=1}^{(r-3)/2} [(ax^j + 1)(x^j + a)]^{uj}_j = \prod_{j=1}^{(r-3)/2} [(ax^j + 1)(x^j + a)]^{vj}_j \quad (7)
\]

There are polynomials of degree \(r-3 < \deg \Phi(x) \) from left and right side in equality (7).
Let k be the smallest integer for which $u_k \neq v_k$. Without loss of generality suppose $u_k > v_k$.

After removing from (7) common factors we obtain

\[
[(ax^k + 1)(x^k + a)]^{(r-3)/2} \prod_{j=k+1}^{r-3/2} [(ax^j + 1)(x^j + a)]^{u_j} = \prod_{j=k+1}^{r-3/2} [(ax^j + 1)(x^j + a)]^{v_j}
\]

\[
[ax^{2k} + (a^2 + 1)x^k + a]^{(r-3)/2} \prod_{j=k+1}^{r-3/2} [(ax^j + 1)(x^j + a)]^{u_j} = \prod_{j=k+1}^{r-3/2} [(ax^j + 1)(x^j + a)]^{v_j}
\] (8)

Then there is the term $(u_k - v_k)(a^2 + 1)a^{u_k - v_k - 1}a^{r-3/2}x^k$ in the polynomial in the left side of (8) with minimal non-trivial power of x. Since $0 < u_k, v_k < p - 1$, $u_k \neq v_k$, $a \neq 0, 1, -1$, the term is non-zero.

And all terms with non-trivial power of x in the polynomial in the right side have a power higher than k - a contradiction.

Element $v = \theta^{-(r+1)}(a\theta + 1)(\theta + a)^{-1}$ generates subgroup H_1 of order at least $U((r-3)/2, p-1)$.

Indeed, elements $\theta^{-(r+1)}(a\theta + 1)(\theta + a)^{-1}, \ldots, \theta^{-(r-3)/2(r+1)}(a\theta^{(r-3)/2} + 1)(\theta^{(r-3)/2} + a)^{-1}$ belong to subgroup H_1.

We consider products of the powers

\[
\prod_{j=1}^{(r-3)/2} [\theta^{-(r+1)}(a\theta + 1)(\theta + a)^{-1}]^{u_j}
\]

\[
\prod_{j=1}^{(r-3)/2} [\theta^{-(r+1)}(a\theta + 1)(\theta + a)^{-1}]^{v_j}
\]

where $\sum_{j=1}^{(r-3)/2} j u_j = (r-3)/2$, $0 \leq u_1, \ldots, u_{r-2} \leq p - 1$, which also belong to the subgroup, and show that a number of such products equals to $U((r-3)/2, p-1)$.

Let partitions (u_1, \ldots, u_{r-2}) and (v_1, \ldots, v_{r-2}) of integer $(r-3)/2$, where it part appears no more than $p-1$ times, be different, but the correspondent products coincide:

\[
\prod_{j=1}^{(r-3)/2} [\theta^{-(r+1)}(a\theta + 1)(\theta + a)^{-1}]^{u_j} = \prod_{j=1}^{(r-3)/2} [\theta^{-(r+1)}(a\theta + 1)(\theta + a)^{-1}]^{v_j}
\] (9)

Then we have from (9):

\[
\theta^{-(r+1)} \prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)^{-1}]^{u_j} = \theta^{-(r+1)} \prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)^{-1}]^{v_j}
\]

\[
\prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)^{-1}]^{u_j} = \prod_{j=1}^{(r-3)/2} [(a\theta^j + 1)(\theta^j + a)^{-1}]^{v_j}
\] (10)

Then we obtain

\[
\prod_{j=1}^{(r-3)/2} [(ax^j + 1)(x^j + a)^{-1}]^{u_j} = \prod_{j=1}^{(r-3)/2} [(ax^j + 1)(x^j + a)^{-1}]^{v_j}
\] (11)

There are polynomials of degree $r-3 < \deg \Phi_r(x)$ from left and right side in equality (11).
Let \(k \) be the smallest integer for which \(u_k \neq v_k \). Without loss of generality suppose \(u_k > v_k \). After removing from (11) common factors we obtain
\[
\prod \prod_{j=k+1}^{(r-3)/2} \frac{(x^j + 1)(x^j + a)^{y-j}}{u_k - x^j} = \prod \prod_{j=k+1}^{(r-3)/2} \frac{(x^j + 1)(x^j + a)^{y-j}}{v_k - x^j}.
\]

Let us denote absolute term for \(\prod \prod_{j=k+1}^{(r-3)/2} (x^j + 1)(x^j + a)^{y-j} \) by \(c \), and absolute term for \(\prod \prod_{j=k+1}^{(r-3)/2} (x^j + 1)(x^j + a)^{y-j} \) by \(d \). It is clear that \(c \neq 0 \), \(d \neq 0 \). Since absolute terms from left and from right in (12) must be equal, we have \(c = a^{u_k - v_k} d \). Since coefficients near \(x^k \) from left and from right in (12) must be equal, we have \(c(u_k - v_k)a = d(u_k - v_k)a^{u_k - v_k - 1} \). Then \(a^2 = 1 \) - a contradiction.

Hence, order of element \(\theta^r(\theta + a) \) is at least \(\lfloor U(r-3)/2, p-1) \rfloor^2/2 \).

Remark 1. Element \(\theta + \theta^{-1} \) belongs to the subfield \(F_{q^{(r-1)/2}} \) of the field \(F_q(\theta) = F_{q^{r-1}} \).

Corollary 2. Element \(\theta + \theta^{-1} \) has a multiplicative order at least \(U(r-2, p-1) \) and this order is a divisor of \(q^{(r-1)/2} - 1 \)

Proof. A fact that a multiplicative order of element \(\theta + \theta^{-1} \) is at least \(U(r-2, p-1) \) follows from the theorem 1, (a). Since
\[
(\theta + \theta^{-1})^{q^{(r-1)/2} - 1} = (\theta^{q^{(r-1)/2} + 1} + \theta^{-q^{(r-1)/2}})(\theta + \theta^{-1})^{-1} = (\theta^{-1} + \theta)(\theta + \theta^{-1})^{-1} = 1
\]
an order of element \(\theta + \theta^{-1} \) is a divisor of \(q^{(r-1)/2} - 1 \).

Corollary 3. If \(a \neq 1, -1 \) then element
\[
z = \begin{cases}
(\theta + \theta^{-1})^2(a\theta + 1)(\theta + a)^{-1} & \text{if } \rho_2(q^{(r-1)/2} - 1) = 2 \\
(\theta + \theta^{-1})(a\theta + 1)(\theta + a)^{-1} & \text{if } \rho_2(q^{(r-1)/2} + 1) = 2
\end{cases}
\]
has a multiplicative order at least \(\lfloor U(r-2, p-1) U((r-3)/2, p-1)/2 \rfloor \)

Proof. According to corollary 2 element \(\theta + \theta^{-1} \) has order that divides \(q^{(r-1)/2} - 1 \) and generates subgroup of order at least \(U(r-2, p-1) \), element \((\theta + \theta^{-1})^2 \) has order that divides \(q^{(r-1)/2} - 1 \) and generates subgroup of order at least \(U(r-2, p-1)/2 \). According to proof of the theorem 1, (b) element \((a\theta + 1)(\theta + a)^{-1} \) has order that divides \(q^{(r-1)/2} + 1 \) and generates subgroup of order at least \(U((r-3)/2, p-1) \), element \([(a\theta + 1)(\theta + a)^{-1}]^2 \) has order that divides \(q^{(r-1)/2} + 1 \) and generates subgroup of order at least \(U((r-3)/2, p-1)/2 \).
\[
\text{If } \rho_2(q^{(r-1)/2}-1)=2 \text{ then orders of elements } (\theta + \theta^{-1})^2 \text{ and } (a\theta + 1)(\theta + a)^{-1} \text{ are coprime.}
\]
\[
\text{If } \rho_2(q^{(r-1)/2}+1)=2 \text{ then orders of elements } \theta + \theta^{-1} \text{ and } [(a\theta + 1)(\theta + a)^{-1}]^2 \text{ are coprime.}
\]

Both in the first and in the second case an order of element \(z \) is a product of orders of its factors.

3 Explicit lower bounds on multiplicative orders

We use some known estimates from [3,7] to derive explicit lower bounds on the multiplicative order of the elements \(\theta^r(\theta^r + a) \) and \(z \).

According to [3, corollary 1.3(Glaisher)] the following equality is true:

\[
U(n,d-1) = Q(n,d)
\]

We consider two different cases.

Case 1) \(r-3 \geq 2p^2 \), that is \(r \) is big comparatively to \(p \).

In this case the following corollary holds. Note that \(2.5 \approx \pi \sqrt{2/3} \).

Corollary 4. Let \(r-3 \geq 2p^2 \), \(e \) be any integer, \(f \) be any integer coprime with \(r \), \(a \in F_q \) be any non-zero element. Then

(a) element \(\theta^r(\theta^r + a) \) in the extension field \(F_q(\theta) \) has a multiplicative order larger than

\[
\left(\frac{p(p-1)}{160(r-2)} \right)^{\sqrt{p}} \exp \left(2.5 \sqrt{(1-\frac{1}{p})(r-2)} \right)
\]

(b) if \(a \neq 1,-1 \) then element \(\theta^r(\theta^r + a) \) has a multiplicative order larger than

\[
\frac{1}{2} \left(\frac{p(p-1)}{80(r-3)} \right)^{2\sqrt{p}} \exp \left(2.5 \sqrt{\frac{2}{(1-\frac{1}{p})(r-3)}} \right)
\]

(c) if \(a \neq 1,-1 \) then element

\[
\rho_2(q^{(r-1)/2}-1) = 2 \quad \rho_2(q^{(r-1)/2}+1) = 2
\]

has a multiplicative order larger than

\[
\frac{1}{2} \left(\frac{p(p-1)}{80(r-3)} \right)^{\sqrt{p}} \exp \left(2.5 \frac{\sqrt{2}}{2} \sqrt{(1-\frac{1}{p})(r-3)} \right)
\]

Proof.

(a) According to [7, theorem 5.1] the following inequality holds for \(n \geq d^2 \)

\[
Q(n,d) > \left(\frac{d(d-1)}{160n} \right)^{\sqrt{n}} \exp \left(2.5 \sqrt{(1-\frac{1}{d})n} \right)
\]

\[
(14)
\]
According to theorem 1, equality (13) and inequality (14) we have for $r-2\geq p^2$:

$$ord(\theta^r(\theta^f + a)) \geq U(r-2, p-1) = Q(r-2, p) > \left(\frac{p(p-1)}{160(r-2)}\right)^{\sqrt{p}} \exp\left(2.5 \sqrt{1 - \frac{1}{p}(r-2)}\right)$$

(b) Analogous to proof of (a) using [7,theorem 5.1], theorem, equality (13) and inequality (14).
Note that if $r-3\geq 2p^2$ then $r-2\geq p^2$.

(c) Analogous to proof of (a) using [2,theorem 5.1], theorem, equality (13) and inequality (14).

Case 2) $r-2p$, that is r is the same magnitude as p or small comparatively to p.
In this case the following corollary holds.

Corollary 5. Let $r-2<r$, e be any integer, f be any integer coprime with r, $a \in F_q$ be any non-zero element. Then

(a) element $\theta^r(\theta^f + a)$ in the extension field $F_q(\theta)$ has a multiplicative order larger than

$$\exp\left(\frac{2.5\sqrt{r-2}}{13(r-2)}\right)$$

(b) if $a\neq 1,-1$ then element $\theta^r(\theta^f + a)$ has a multiplicative order larger than

$$\frac{2\exp\left(2.5\sqrt{2\sqrt{r-3}}\right)}{169(r-3)^2}$$

(c) if $a\neq 1,-1$ then element $z = \left[(\theta + \theta^{-1})^2(a\theta + 1)(\theta + a)^{-1}\right.\left.\text{if } \rho_2(q^{(r-1)/2} - 1) = 2\right]$

$$\left.\left[(\theta + \theta^{-1})[(a\theta + 1)(\theta + a)]^2\right.\text{if } \rho_2(q^{(r-1)/2} + 1) = 2\right]$$

has a multiplicative order larger than

$$\exp\left(\frac{2.5(1+\sqrt{2}/2)\sqrt{r-3}}{169(r-2)(r-3)}\right)$$

Proof.

(a) If $n<p$ then $U(n,p-1)=U(n)$. According to [7,theorem 4.2] the following inequality holds for $n<d$

$$U(n) > \frac{\exp(2.5\sqrt{n})}{13n} \quad (15)$$

According to theorem 1, equality 13 and inequality (15) we have for $r-2<p$:

$$ord(\theta^r(\theta^f + a)) \geq U(r-2, p-1) = U(r-2) > \frac{\exp(2.5\sqrt{r-2})}{13(r-2)}$$

(b) Analogous to proof of (a) using [7,theorem 4.2], theorem, equality (13) and inequality (15).
Note that if $r-2<p$ then $(r-3)/2<p$.

(c) Analogous to proof of (a) using [7,theorem 4.2], theorem, equality (13) and inequality (15).
Remark 2. Element $θ^r(θ^f+a)$ asymptotically has a multiplicative order larger than
\[\exp(2.5\sqrt[r]{r}) = 12.18^{\sqrt[r]{r}}. \]

If $a≠1,-1$ then element $θ^r(θ^f+a)$ asymptotically has a multiplicative order larger than
\[\exp(2.5\sqrt[2r]{r}) = 33.95^{\sqrt[2r]{r}}. \]

If $a≠1,-1$ then element
\[z = \begin{cases}
(\theta + \theta^{-1})^2(a \theta + 1)(\theta + a)^{-1} & \text{if } \rho_2(q^{(r-1)/2} - 1) = 2 \\
(\theta + \theta^{-1})[(a \theta + 1)(\theta + a)^{-1}]^2 & \text{if } \rho_2(q^{(r-1)/2} + 1) = 2
\end{cases} \]
asymptotically has a multiplicative order larger than
\[\exp\left(2.5(1 + \frac{\sqrt{2}}{2})\sqrt[r]{r}\right) = 70.1^{\sqrt[r]{r}} \]

4 Examples

Let us denote lower bounds for orders of elements $θ^r(θ^f+1)$, $θ^r(θ^f+a)$,
\[z = \begin{cases}
(\theta + \theta^{-1})^2(a \theta + 1)(\theta + a)^{-1} & \text{if } \rho_2(q^{(r-1)/2} - 1) = 2 \\
(\theta + \theta^{-1})[(a \theta + 1)(\theta + a)^{-1}]^2 & \text{if } \rho_2(q^{(r-1)/2} + 1) = 2
\end{cases} \]
by z_1, z_2, z_3 respectively.
Logarithms of $|Fq^r|$, 1 and of z_1, z_2, z_3 in examples 1-4 are given in the table.

Example 1
$q=p=5$, $r=257$ – prime number, element 5 is primitive modulo 257 and $Fq^r = F_{5256}$. Since $r-3≥2p^2$
we have case 1 in this example.

Example 2
$q=p=3$, $r=401$ – prime number, element 3 is primitive modulo 401 and $Fq^r = F_{3400}$. Since $r-3≥2p^2$
we have case 1 in this example.

Example 3
$q=p=11$, $r=1009$ – prime number, element $q =11$ is primitive modulo $r=1009$ and $Fq^r = F_{111008}$.
Since $r-3≥2p^2$ we have case 1 in this example.

Example 4
$q=p=107$, $r=97$ – prime number, element $q =107$ is primitive modulo $r=97$ and $Fq^r = F_{10796}$. Since
$r-2<p$ we have case 2 in this example.
Table

| Q | r | $\log_2|F_{q+1}^*|$ | \log_2z_1 | \log_2z_2 | \log_2z_3 |
|---|----|------------------|-----------|-----------|-----------|
| 1 | 5 | 257 | 594.41 | 26.93 | 27.03 | 64.43 |
| 2 | 3 | 401 | 634 | 35.65 | 39.22 | 77.86 |
| 3 | 11 | 1009 | 3487.1 | 74.24 | 90.13 | 153.64 |
| 4 | 107| 97 | 647.18 | 24.71 | 28.71 | 38.89 |

References

[1] M. Agrawal, N. Kayal, N. Saxena, *PRIMES is in P*, Annals of Mathematics, 160 (2), 2004, pp.781–793.

[2] O. Ahmadi, I. E. Shparlinski, J. F. Voloch, *Multiplicative order of Gauss periods*, Intern. J. Number Theory, 6 (4), 2010, pp.877-882.

[3] G.E. Andrews, *The theory of partitions*, Addison- Wesley, 1976.

[4] J. F. Burkhart et al., *Finite field elements of high order arising from modular curves*, Designs, Codes and Cryptography, 51 (3), 2009, pp.301-314.

[5] Q. Cheng, *On the construction of finite field elements of large order*, Finite fields and Their Appl., 11 (3), 2005, pp. 358-366.

[6] A. Granville, *It is easy to determine whether a given integer is prime*, Bull. of the Amer. Math. Soc., 42 (1), 2005, pp. 3-38.

[7] A. Maroti, *On elementary lower bounds for the partition function*, Integers: Electronic J.Comb.Number Theory, 3:A10 , 2003.

Department of Computer Technologies,
National University Lviv Politechnika,
Bandery Str.,12, 79013, Lviv, Ukraine
e-mail: popovych@polynet.lviv.ua