Complete Weight Enumerators of Generalized Doubly-Even Self-Dual Codes

Gabriele Nebe*, H.-G. Quebbemann†, E. M. Rains‡ and N. J. A. Sloane§

ABSTRACT For any q which is a power of 2 we describe a finite subgroup of $GL_q(\mathbb{C})$ under which the complete weight enumerators of generalized doubly-even self-dual codes over \mathbb{F}_q are invariant. An explicit description of the invariant ring and some applications to extremality of such codes are obtained in the case $q = 4$.

1 Introduction

In 1970 Gleason [5] described a finite complex linear group of degree q under which the complete weight enumerators of self-dual codes over \mathbb{F}_q are invariant. While for odd q this group is a double or quadruple cover of $SL_2(\mathbb{F}_q)$, for even $q \geq 4$ it is solvable of order $4q^2(q-1)$ (compare [6]). For even q it is only when $q = 2$ that the seemingly exceptional type of doubly-even self-dual binary codes leads to a larger group.

In this paper we study a generalization of doubly-even codes to the non-binary case which was introduced in [11]. A linear code of length n over \mathbb{F}_q is called doubly-even if all of its words are annihilated by the first and the second elementary symmetric polynomials in n variables. For $q = 2$ this condition is actually equivalent to the usual one on weights modulo 4, but for $q \geq 4$ it does not restrict the Hamming weight over \mathbb{F}_q. (For odd q the condition just means that the code is self-orthogonal and its dual contains the all-ones word; however here we consider only characteristic 2.) Extended Reed-Solomon codes of rate $\frac{1}{2}$ are known to be examples of doubly-even self-dual codes. For $q = 4^e$ another interesting class of examples is given by the extended quadratic-residue codes of lengths divisible by 4.

* Abteilung Reine Mathematik, Universität Ulm, 89069 Ulm, Germany, nebe@mathematik.uni-ulm.de
† Fachbereich Mathematik, Universität Oldenburg, 26111 Oldenburg, Germany, quebbemann@mathematik.uni-oldenburg.de
‡ Mathematics Department, University of California Davis, Davis, CA 95616, USA, rains@math.ucdavis.edu
§ Information Sciences Research, AT&T Shannon Labs, Florham Park, NJ 07932-0971, USA, njas@research.att.com
We find (Theorems 11 and 16) that the complete weight enumerators of doubly-even self-dual codes over \(\mathbb{F}_q, q = 2^f \), are invariants for the same type of Clifford-Weil group that for odd primes \(q \) has been discussed in [12], Section 7.9. More precisely, the group has a normal subgroup of order \(4q^2 \) or \(8q^2 \) (depending on whether \(f \) is even or odd) such that the quotient is \(\text{SL}_2(\mathbb{F}_q) \). Over \(\mathbb{F}_4 \) the invariant ring is still simple enough to be described explicitly. Namely, the subring of Frobenius-invariant elements is generated by the algebraically independent weight enumerators of the four extended quadratic-residue codes of lengths 4, 8, 12 and 20, and the complete invariant ring is a free module of rank 2 over this subring; the fifth (not Frobenius-invariant) basic generator has degree 40. In the final section we use this result to find the maximal Hamming distance of doubly-even self-dual quaternary codes up through length 24. Over the field \(\mathbb{F}_4 \), doubly-even codes coincide with what are called “Type II” codes in [4].

The invariant ring considered here is always generated by weight enumerators. This property holds even for Clifford-Weil groups associated with multiple weight enumerators, for which a direct proof in the binary case was given in [8]. The general case can be found in [9], where still more general types of codes are also included.

2 Doubly even codes

In this section we generalize the notion of doubly-even binary codes to arbitrary finite fields of characteristic 2 (see [11]).

Let \(\mathbb{F} := \mathbb{F}_{2^f} \) denote the field with \(2^f \) elements. A code \(C \subseteq \mathbb{F}^n \) is an \(\mathbb{F} \)-linear subspace of \(\mathbb{F}^n \). If \(c \in \mathbb{F}^n \) then the \(i \)-th coordinate of \(c \) is denoted by \(c_i \). The dual code to a code \(C \subseteq \mathbb{F}^n \) is defined to be

\[
C^\perp := \{ v \in \mathbb{F}^n | \sum_{i=1}^n c_i v_i = 0 \text{ for all } c \in C \}.
\]

\(C \) is called self-orthogonal if \(C \subset C^\perp \), and self-dual if \(C = C^\perp \).

Definition 1 A code \(C \subseteq \mathbb{F}^n \) is doubly-even if

\[
\sum_{i=1}^n c_i = \sum_{i<j} c_i c_j = 0
\]

for all \(c \in C \).

Remark 2 An alternative definition can be obtained as follows. There is a unique unramified extension \(\mathbb{F} \) of the 2-adic integers with the property that
\(\hat{F}/2\hat{F} \cong F; \) moreover, the map \(x \mapsto x^2 \) induces a well-defined map \(\hat{F}/2\hat{F} \to \hat{F}/4\hat{F} \), and thus a map (also written as \(x \mapsto x^2 \)) from \(F \to \hat{F}/4\hat{F} \). The above condition is then equivalent to requiring that \(\sum_i v_i^2 = 0 \in \hat{F}/4\hat{F} \) for all \(v \in C \).

Doubly-even codes are self-orthogonal. This follows from the identity

\[
\sum_{i<j} (c_i + c'_i)(c_j + c'_j) = \sum_{i<j} c_i c_j + \sum_{i<j} c'_i c'_j + \sum_{i=1}^n c_i \sum_{i=1}^n c'_i - \sum_{i=1}^n c_i c'_i.
\]

Note that Hamming distances in a doubly-even code are not necessarily even:

Example 3 Let \(\omega \in \mathbb{F}_4 \) be a primitive cube root of unity. Then the code \(Q_4 \leq \mathbb{F}_4^4 \) with generator matrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & \omega & \omega^2
\end{pmatrix}
\]

is a doubly-even self-dual code over \(\mathbb{F}_4 \).

Let \(B = (b_1, \ldots, b_f) \) be an \(\mathbb{F}_2 \)-basis of \(F \) such that \(\tau(b_i b_j) = \delta_{ij} \) for all \(i, j = 1, \ldots, f \), where \(\tau \) denotes the trace of \(F \) over \(\mathbb{F}_2 \). Then \(B \) is called a self-complementary (or trace-orthogonal) basis of \(F \) (cf. [10], [11], [15]). Using such a basis we identify \(F \) with \(\mathbb{F}_2^f \) and define

\[
\varphi : \mathbb{F} \to \mathbb{Z}/4\mathbb{Z}, \quad \varphi(\sum_{i=1}^f a_i b_i) := \text{wt}(a_1, \ldots, a_f) + 4\mathbb{Z}
\]

to be the weight modulo 4. Since \(\tau(b_i) = \tau(b_i^2) = 1 \), we have

\[
\varphi(a) + 2\mathbb{Z} = \tau(a)
\]

and (considering \(2\tau \) as a map onto \(2\mathbb{Z}/4\mathbb{Z} \))

\[
\varphi(a + a') = \varphi(a) + \varphi(a') + 2\tau(aa')
\]

for all \(a, a' \in \mathbb{F} \). More generally,

\[
\varphi\left(\sum_{i=1}^n c_i\right) = \sum_{i=1}^n \varphi(c_i) + 2\tau\left(\sum_{i<j}^n c_i c_j\right).
\]

We extend \(\varphi \) to a quadratic function

\[
\phi : \mathbb{F}^n \to \mathbb{Z}/4\mathbb{Z}, \quad \phi(c) := \sum_{i=1}^n \varphi(c_i).
\]

Proposition 4 A code \(C \leq \mathbb{F}^n \) is doubly-even if and only if \(\phi(C) = \{0\} \).
Proof. For \(r \in \mathbb{F}, c \in \mathbb{F}^n, \)
\[
\phi(rc) = \varphi\left(\sum_{i=1}^{n} rc_i\right) - 2\tau\left(\sum_{i<j} r^2 c_i c_j\right).
\]

This equation in particular shows that \(\phi(C) = \{0\} \) if \(C \) is doubly-even. Conversely, if \(\phi(C) = \{0\} \) then the same equation shows that \(\tau(r \sum_{i=1}^{n} c_i) = \varphi(\sum_{i=1}^{n} rc_i) + 2\mathbb{Z} = 0 \) for all \(r \in \mathbb{F}, c \in C \). Since the trace bilinear form is non-degenerate, this implies that \(\sum_{i=1}^{n} c_i = 0 \) for all \(c \in C \). The same equality then implies that \(\tau(r^2 \sum_{i<j} c_i c_j) = 0 \) for all \(r \in \mathbb{F} \) and \(c \in C \). The mapping \(r \mapsto r^2 \) is an automorphism of \(\mathbb{F} \), so again the non-degeneracy of the trace bilinear form yields \(\sum_{i<j} c_i c_j = 0 \) for all \(c \in C \). \(\square \)

Corollary 5 Let \(\mathbb{F}^n < F \) be identified with \(\mathbb{F}_2^n \) via a self-complementary basis. Then a doubly-even code \(C \subseteq \mathbb{F}^n \) becomes a doubly-even binary code \(C_{\mathbb{F}_2} \subseteq \mathbb{F}_2^n \).

Remark 6 Let \(C \subseteq \mathbb{F}^n \) be a doubly-even code. Then \(1 := (1, \ldots, 1) \in C^\perp \). Hence if \(C \) is self-dual then \(4 \) divides \(n \).

In the following remark we use the fact that the length of a doubly-even self-dual binary code is divisible by 8.

Remark 7 If \(f \equiv 1 \pmod{2} \) then the length of a doubly-even self-dual code over \(\mathbb{F} \) is divisible by 8. If \(f \equiv 0 \pmod{2} \) then \(\mathbb{F} \otimes_{\mathbb{F}_4} Q_4 \) is a doubly-even self-dual code over \(\mathbb{F} \) of length \(4 \).

More general examples of doubly-even self-dual codes are provided by extended quadratic-residue codes (see \[7\]). Let \(p \) be an odd prime and let \(\zeta \) be a primitive \(p \)-th root of unity in an extension field \(\tilde{\mathbb{F}} \) of \(\mathbb{F}_2 \). Let
\[
g := \prod_{a \in (\mathbb{F}_p)^2} (X - \zeta^a) \in \tilde{\mathbb{F}}[X]
\]
where \(a \) runs through the non-zero squares in \(\mathbb{F}_p \). Then \(g \in \mathbb{F}_4[X] \) divides \(X^p - 1 \), and \(g \) lies in \(\mathbb{F}_2[X] \) if \(g \) is fixed under the Frobenius automorphism \(z \mapsto z^2 \), i.e. if \(2 \) is a square in \(\mathbb{F}_p \), or equivalently by quadratic reciprocity if \(p \equiv \pm 1 \pmod{8} \). Assuming \(f \) to be even if \(p \equiv \pm 3 \pmod{8} \), we define the quadratic-residue code \(QR(\mathbb{F}, p) \leq \mathbb{F}_p \) to be the cyclic code of length \(p \) with generator polynomial \(g \). Then \(\dim(QR(\mathbb{F}, p)) = p - \deg(g) = \frac{p+1}{2} \), which is also the dimension of the extended code \(QR(\mathbb{F}, p) \leq \mathbb{F}_{p+1} \).

From \[7\] pages 490, 508] together with Proposition 4 we obtain the following (the case \(\mathbb{F} = \mathbb{F}_4 \) was given in \[4\] Proposition 4.1]):

Proposition 8 Let \(p \) be a prime, \(p \equiv 3 \pmod{4} \). Then the extended quadratic-
residue code $\overline{QR}(F, p)$ is a doubly-even self-dual code.

3 Complete weight enumerators and invariant rings

In this section we define the action of a group of \mathbb{C}-algebra automorphisms on the polynomial ring $\mathbb{C}[x_a \mid a \in F]$ such that the complete weight enumerators of doubly-even self-dual codes are invariant under this group.

Definition 9 Let $C \leq F^n$ be a code. Then

$$cwe(C) := \sum_{c \in C} \prod_{i=1}^n x_{c_i} \in \mathbb{C}[x_a \mid a \in F]$$

is the complete weight enumerator of C.

For an element $r \in F$ let m_r and d_r be the \mathbb{C}-algebra endomorphisms of $\mathbb{C}[x_a \mid a \in F]$ defined by

$$m_r(x_a) := x_{ar}, \quad d_r(x_a) := i^{\varphi(ar)} x_a \quad \text{for all } a \in F,$$

where $i = \sqrt{-1}$ and $\varphi : F \to \mathbb{Z}/4\mathbb{Z}$ is defined as above via a fixed self-complementary basis. We also have the MacWilliams transformation h defined by

$$h(x_a) := 2^{-f/2} \sum_{b \in F} (-1)^{\varphi(ab)} x_b \text{ for all } a \in F.$$

Definition 10 The group

$$G_f := \langle h, m_r, d_r \mid 0 \neq r \in F \rangle$$

is called the associated Clifford-Weil group.

Gleason ([5]) observed that the complete weight enumerator of a self-dual code C remains invariant under the transformations h and m_r. If C is doubly-even, then $cwe(C)$ is invariant also under each d_r (Proposition [4]). Therefore we have the following theorem.

Theorem 11 The complete weight enumerator of a doubly-even self-dual code over F lies in the invariant ring

$$\text{Inv}(G_f) := \{ p \in \mathbb{C}[x_a \mid a \in F] \mid pg = p \text{ for all } g \in G_f \}.$$

By the general theory developed in [9] one finds that a converse to Theorem [14] also holds:
Theorem 12 The invariant ring of G_f is generated by complete weight enumerators of doubly-even self-dual codes over \mathbb{F}.

In the case $f = 1$ Gleason obtained the more precise information

$$\text{Inv}(G_1) = \mathbb{C}[\text{cwe}(\mathcal{H}_8), \text{cwe}(G_{24})]$$

where \mathcal{H}_8 and G_{24} denote the extended Hamming code of length 8 and the extended Golay code of length 24 over \mathbb{F}_2.

In general, the Galois group

$$\Gamma_f := \text{Gal}(\mathbb{F}/\mathbb{F}_2)$$

acts on $\text{Inv}(G_f)$ by $\gamma(x_a) := x_{a^\gamma}$ for all $a \in \mathbb{F}, \gamma \in \Gamma_f$. Let $\text{Inv}(G_f, \Gamma_f)$ denote the ring of Γ_f-invariant polynomials in $\text{Inv}(G_f)$.

Theorem 13

$$\text{Inv}(G_2, \Gamma_2) = \mathbb{C}[\text{cwe}(Q_4), \text{cwe}(Q_8), \text{cwe}(Q_{12}), \text{cwe}(Q_{20})]$$

where Q_{p+1} denotes the extended quadratic-residue code of length $p + 1$ over \mathbb{F}_4 (see Proposition 8). The invariant ring of G_2 is a free module of rank 2 over $\text{Inv}(G_2, \Gamma_2)$:

$$\text{Inv}(G_2) = \text{Inv}(G_2, \Gamma_2) \oplus \text{Inv}(G_2, \Gamma_2)p_{40}$$

where p_{40} is a homogeneous polynomial of degree 40 which is not invariant under Γ_2.

Proof. Computation shows that $\langle G_2, \Gamma_2 \rangle$ is a complex reflection group of order $2^3 \cdot 5$ (Number 29 in [13]) and G_2 is a subgroup of index 2 with Molien series

$$\frac{1 + t^{40}}{(1 - t^4)(1 - t^8)(1 - t^{12})(1 - t^{20})}.$$

By Proposition 8 the codes Q_i ($i = 4, 8, 12, 20$) are doubly-even self-dual codes over \mathbb{F}_4. Their complete weight enumerators (which are Γ_2-invariant) are algebraically independent elements in the invariant ring of G_2 as one shows by an explicit computation of their Jacobi matrix. Therefore these polynomials generate the algebra $\text{Inv}(G_2, \Gamma_2)$. □

By Theorem 12 we have the following corollary.

Corollary 14 There is a doubly-even self-dual code C over \mathbb{F}_4 of length 40 such that $\text{cwe}(C)$ is not Galois invariant.

A code with this property was recently constructed in [2].
For $f > 2$ the following example shows that we cannot hope to find an explicit description of the invariant rings of the above type.

Example 15 The Molien series of G_3 is N/D, where

$$D = (1 - t^8)^2(1 - t^{16})^2(1 - t^{24})^2(1 - t^{56})(1 - t^{72})$$

and $N(t) = M(t) + M(t^{-1})t^{216}$ with

$$M = 1 + 5t^{16} + 77t^{24} + 300t^{32} + 908t^{40} + 2139t^{48} + 3808t^{56} + 5864t^{64} + 8257t^{72} + 10456t^{80} + 12504t^{88} + 14294t^{96} + 15115t^{104}.$$

The Molien series of $\langle G_3, \Gamma_3 \rangle$ is $(L(t) + L(t^{-1})t^{216})/D$, where D is as above and

$$L = 1 + 3t^{16} + 29t^{24} + 100t^{32} + 298t^{40} + 707t^{48} + 1268t^{56} + 1958t^{64} + 2753t^{72} + 3482t^{80} + 4166t^{88} + 4766t^{96} + 5045t^{104}.$$

4 The structure of the Clifford-Weil groups G_f

In this section we establish the following theorem.

Theorem 16 The structure of the Clifford-Weil groups G_f is given by

$$G_f \cong Z.(\mathbb{F} \oplus \mathbb{F}).\text{SL}_2(\mathbb{F})$$

where $Z \cong \mathbb{Z}/4\mathbb{Z}$ if f is even, and $Z \cong \mathbb{Z}/8\mathbb{Z}$ if f is odd.

To prove this theorem, we first construct a normal subgroup $N_f \leq G_f$ with $N_f \cong \mathbb{Z}/4\mathbb{Z}2_1^{1+2f}$, the central product of an extraspecial group of order 2^{1+2f} with the cyclic group of order 4. The image of the homomorphism $G_f/N_f \to \text{Out}(N_f)$ is isomorphic to $\text{SL}_2(\mathbb{F})$ and the kernel consists of scalar matrices only.

Let $q_r := (d_r^2)^{h} = hd_r^2 h$ and

$$N_f := \langle d_r^2, q_r, i\text{id} \mid r \in \mathbb{F} \rangle.$$

Using the fact that $(-1)^{\varphi(b)} = (-1)^{\tau(b)}$ for all $b \in \mathbb{F}$, we find that

$$d_r^2(x_a) = (-1)^{\tau(ar)}x_a, \quad q_r(x_a) = x_{a+r}.$$

For the chosen self-complementary basis (b_1, \ldots, b_f), q_{b_j} commutes with $d_{b_k}^2$ if $j \neq k$ and the commutator of q_{b_j} and $d_{b_j}^2$ is $-\text{id}$. From this we have:
Remark 17 The group \(N_f \) is isomorphic to a central product of an extraspecial group \(\langle q, b_j \mid j = 1, \ldots, f \rangle \cong 2^{1+2f} \) with the center \(Z(N_f) \cong \mathbb{Z}/4\mathbb{Z} \).

The representation of \(N_f \) on the vector space \(\bigoplus_{a \in \mathbb{F}} \mathbb{C}x_a \) of dimension \(2^f \) is the unique irreducible representation of \(N_f \) such that \(t \in \mathbb{Z}/4\mathbb{Z} \) acts as multiplication by \(i^t \).

Concerning the action of \(G_f \) on \(N_f \) we have

\[
m_a d_r^2 m_a^{-1} = d_{a^{-1}r}^2, \quad m_a q_r m_a^{-1} = q_{ar}, \quad \text{for all } a, r \in \mathbb{F}^*.
\]

Since \(m_a \) conjugates \(d_r \) to \(d_{a^{-1}r} \) it suffices to calculate the action of \(d_1 \):

\[
d_1 d_r^2 d_1^{-1} = d_r^2, \quad d_1 q_r d_1^{-1} = i^c(r) q_r d_r^2, \quad \text{for all } r \in \mathbb{F}.
\]

This proves

Lemma 18 The image of the homomorphism \(G_f \to \text{Aut}(N_f/Z(N_f)) \) is isomorphic to \(\text{SL}_2(\mathbb{F}) \) via

\[
h \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad m_a \mapsto \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \quad d_1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Elementary calculations or explicit knowledge of the automorphism group of \(N_f \) (see [14]) show that the kernel of the above homomorphism is \(N_f C_{G_f}(N_f) = N_f(G_f \cap \mathbb{C}^* \text{id}) \). It remains to find the center of \(G_f \), which by the calculations above contains \(\text{id} \). If \(f \) is even, then \(\text{cwe}(\mathbb{Q}_4 \otimes \mathbb{F}_4, \mathbb{F}) \) is an invariant of degree 4 of \(G_f \), so the center is isomorphic to \(\mathbb{Z}/4\mathbb{Z} \) in this case. To prove the theorem, it remains to construct an element \(\zeta_8 \text{id} \in G_f \) if \(f \) is odd, where \(\zeta_8 \in \mathbb{C}^* \) is a primitive 8-th root of unity.

Lemma 19 If \(f \) is odd, then \(\langle (hd_1)^3 \rangle = \langle \zeta_8 \text{id} \rangle \).

Proof \((hd_1)^3 \) acts trivially on \(N_f/Z(N_f) \). Explicit calculation shows that \((hd_1)^3 \) commutes with each generator of \(N_f \), hence acts as a scalar. We find that

\[
(hd_1)^3(x_0) = \frac{1}{\sqrt{|\mathbb{F}|}} \frac{1}{|\mathbb{F}|} \sum_{b, c \in \mathbb{F}} i^{\varphi(c+b)} (-1)^{\tau(c)} x_0.
\]

The right hand side is an 8-th root of unity times \(x_0 \). If \(f \) is odd, then \(\sqrt{2} \) is mentioned, which implies that this is a primitive 8-th root of unity. \(\square \)
5 Extremal codes

Let $C \leq \mathbb{F}^n$ be a code. The complete weight enumerator $\text{cwe}(C) \in \mathbb{C}[x_a \mid a \in \mathbb{F}]$ may be used to obtain information about the Hamming weight enumerator, which is the polynomial in a single variable x obtained from $\text{cwe}(C)$ by substituting $x_0 \mapsto 1$ and $x_a \mapsto x$ for all $a \neq 0$.

Remark 20 (a) If $\mathbb{F}' \leq \mathbb{F}$ is a subfield of \mathbb{F} and $e = [\mathbb{F} : \mathbb{F}']$, then C becomes a code $C_{\mathbb{F}'}$ of length en over \mathbb{F}' by identifying \mathbb{F} with \mathbb{F}'^e with respect to a self-complementary basis (b_1, \ldots, b_e). If $a = \sum_{i=1}^e a_i b_i$ with $a_i \in \mathbb{F}'$, then the complete weight enumerator of $C_{\mathbb{F}'}$ is obtained from $\text{cwe}(C)$ by replacing x_a by $\prod_{i=1}^e x_{a_i}$.

(b) We may also construct a code C' of length n over \mathbb{F}' from C by taking the \mathbb{F}'-rational points:

$$C' := \{ c \in C \mid c_i \in \mathbb{F}' \text{ for all } i = 1, \ldots, n \}.$$

The dimension of C' is at most the dimension of C, and the complete weight enumerator of C' is found by the substitution $x_a \mapsto 0$ if $a \notin \mathbb{F}'$. C' is called the \mathbb{F}'-rational subcode of C.

As an application of Theorem 13 we have the following result. Note that the results for lengths $n \leq 20$ also follow from the classification of doubly-even self-dual codes in [4], [3] and [1], and the bound for length 20 can be deduced from [4, Cor. 3.4].

Theorem 21 Let $\mathbb{F} := \mathbb{F}_4$. The maximal Hamming distance $d = d(C)$ of a doubly-even self-dual code $C \leq \mathbb{F}^n$ is as given in the following table:

n	4	8	12	16	20	24
d	3	4	6	6	8	8

For $n = 4$ and 8, the quadratic-residue codes Q_4 resp. Q_8 are the unique codes C of length n with $d(C) = 3$ resp. $d(C) = 4$.

Proof. Let $p \in \mathbb{C}[x_0, x_1, x_\omega, x_{\omega^2}]_{n}^{G_2}$, a homogeneous polynomial of degree n. If p is the complete weight enumerator of a code C with $d(C) \geq d$, then the following conditions must be satisfied.

a) All coefficients in p are nonnegative integers.

b) The coefficients of $x_0^a x_1^b x_\omega^c x_{\omega^2}^d$ with $b > 0$ are divisible by 3.

c) $p(1, 1, 1, 1) = 2^n$.

d) $p(1, 1, 0, 0) = 2^m$ for some $m \leq n/2$.

e) $p(1, x, x, x) - 1$ is divisible by x^d.

One easily sees that Q_4 is the unique doubly-even self-dual code over \mathbb{F} of length 4. If C is such a code of length 8 with $d(C) \geq 4$, then $\text{cwe}(C)$ is uniquely determined by condition e). In particular the \mathbb{F}_2-rational subcode of C has dimension 4 and is a doubly-even self-dual binary code of length 8. Hence $C = \mathcal{H}_8 \otimes \mathbb{F} = Q_8$. If $C \leq \mathbb{F}^{12}$ is a doubly-even self-dual code with $d(C) \geq 6$, then again $\text{cwe}(C) = \text{cwe}(Q_{12})$ is uniquely determined by condition e), moreover Q_{12} has minimal distance 6.

For $n = 16$, there is a unique polynomial $p(x_0, x_1, x, x, x, x, x) \in \mathbb{C}[x_0, x_1, x, x, x, x, x]$ such that $p(1, x, x, x) \equiv 1 + ax^7 \pmod{x^8}$. This polynomial p has negative coefficients. Therefore the doubly-even self-dual codes $C \leq \mathbb{F}^{16}$ satisfy $d(C) \leq 6$. There are two candidates for polynomials p satisfying the five conditions above with $d = 6$. The rational subcode has either dimension 2 or 4 and all words $\neq 0, 1$ are of weight 8. One easily constructs such a code C from the code Q_{20}, by taking those elements of Q_{20} that have 0 in four fixed coordinates, omitting these 4 coordinates to get a code of length 16, adjoining the all-ones vector and then a vector of the form $(1^8, 0^8)$ from the dual code. $C_{\mathbb{F}_2} \leq \mathbb{F}_2^{32}$ is isomorphic to the extended binary quadratic-residue code and the rational subcode of C is 2-dimensional.

For $n = 20$ we similarly find four candidates for complete weight enumerators satisfying a) - e) above with $d = 8$ (where the dimension of the rational subcode is 1, 3, 5 or 7). None of these satisfies e) with $d > 8$. The code Q_{20} has minimal weight 8 and its rational subcode is $\{0, 1\}$. For $n = 24$, the code $Q_{24} = \mathbb{F}_4 \otimes G_{24}$ has $d(C) = 8$. To see that this is best possible let $p \in \mathbb{C}[x_0, x_1, x, x, x, x, x]_{24}$ satisfy (b) and (e) above with $d = 9$. Then $p = p_0 + ah_1 + bh_2$, for suitable p_0, h_1, h_2 with $h_1(1, x, x, x) \equiv 0 \pmod{x^9}$, $p_0(1, x, x, x) \equiv 1 \pmod{x^9}$ and $a, b \in \mathbb{Z}$. Explicit calculations then show that $p_0(1, 1, 0, 0), h_1(1, 1, 0, 0)$ and $h_2(1, 1, 0, 0)$ are all divisible by 3. Therefore $p(1, 1, 0, 0)$ is not a power of 2, hence p does not satisfy condition d).

\begin{acknowledgment}
We thank O. Jahn for computations in connection with Theorem 13 at an early stage of this work. We also thank the referees for their comments.
\end{acknowledgment}

\section*{References}

[1] K. Betsumiya, On the classification of Type II codes over \mathbb{F}_{2^r} with binary length 32, preprint, 2002.

[2] K. Betsumiya and Y. J. Choie, Codes over \mathbb{F}_4, Jacobi forms and Hilbert-Siegel modular forms over $\mathbb{Q}(\sqrt{5})$, preprint, 2002.
K. Betsumiya, T. A. Gulliver, M. Harada and A. Munemasa, On type II codes over \mathbb{F}_4, *IEEE Trans. Inform. Theory* **47**, (2001), 2242–2248.

P. Gaborit, V. S. Pless, P. Solé and A. O. L. Atkin, Type II codes over \mathbb{F}_4, *Finite Fields Applic.* **8** (2002), 171-183.

A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, in *Actes, Congrès International de Mathématiques (Nice, 1970)*, Gauthiers-Villars, Paris, 1971, Vol. 3, pp. 211–215.

M. Klemm, Eine Invarianzgruppe für die vollständige Gewichtsfunktion selbstdualer Codes, *Archiv Math.* **53** (1989), 332-336.

F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, North-Holland, Amsterdam, 1977.

G. Nebe, E. M. Rains and N. J. A. Sloane, The invariants of the Clifford groups, *Designs, Codes Cryptography* **24** (2001), 99–121.

G. Nebe, E. M. Rains and N. J. A. Sloane, *Self-Dual Codes and Invariant Theory*, book in preparation.

G. Pasquier, Binary self-dual codes construction from self-dual codes over a Galois field \mathbb{F}_{2^m}, in *Combinatorial Mathematics (Luminy, 1981)*, ed. C. Berge et al., Annals Discrete Math. **17** (1983), 519–526.

H.-G. Quebbemann, On even codes, *Discrete Math.* **98** (1991), 29–34.

E. M. Rains and N. J. A. Sloane, *Self-dual codes* in *Handbook of Coding Theory*, ed. V. Pless and W. C. Huffman, Elsevier, Amsterdam, 1998, pp. 177–294.

G. C. Shephard and J. A. Todd, Finite unitary reflection groups, *Canad. J. Math.* **6** (1954), 274-304.

D. L. Winter, The automorphism group of an extraspecial p-group, *Rocky Mtn. J. Math.* **2** (1972), 159–168.

J. Wolfmann, A class of doubly even self-dual binary codes, *Discrete Math.* **56** (1985), 299–303.