Review Article

Phospholipase C-related catalytically inactive protein can regulate obesity, a state of peripheral inflammation

Yosuke Yamawakia, Kana Ouea,b, Satomi Shirawachia, Satoshi Asanoa, Kae Haradaa, Takashi Kanematsua,*

aDepartment of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
bDepartment of Dental Anesthesiology, Division of Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan

Received 27 March 2016; received in revised form 23 May 2016; accepted 6 June 2016

KEYWORDS
Brown adipocyte; Energy expenditure; Inflammation; Lipolysis; Obesity; White adipocyte

Summary Obesity is defined as abnormal or excessive fat accumulation. Chronic inflammation in fat influences the development of obesity-related diseases. Many reports state that obesity increases the risk of morbidity in many diseases, including hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, stroke, sleep apnea, and breast, prostate and colon cancers, leading to increased mortality. Obesity is also associated with chronic neuropathologic conditions such as depression and Alzheimer’s disease. However, there is strong evidence that weight loss reduces these risks, by limiting blood pressure and improving levels of serum triglycerides, total cholesterol, low-density lipoprotein (LDL)-cholesterol, and high-density lipoprotein (HDL)-cholesterol. Prevention and control of obesity is complex, and requires a multifaceted approach. The elucidation of molecular mechanisms driving fat metabolism (adipogenesis and lipolysis) aims at developing clinical treatments to control obesity. We recently reported a new regulatory mechanism in fat metabolism: a protein phosphatase binding protein, phospholipase C-related catalytically inactive protein (PRIP), regulates lipolysis in white adipocytes and heat production in brown adipocytes via phosphoregulation. Deficiency of PRIP in mice led to reduced fat accumulation and increased energy expenditure, resulting in a lean phenotype. Here, we evaluate PRIP as a new therapeutic target for the control of obesity.

© 2016 The Author(s). Published by Elsevier Ltd on behalf of Japanese Association for Dental Science. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Tel.: +81 82 257 5642; fax: +81 82 257 5644.
E-mail address: tkanema2@hiroshima-u.ac.jp (T. Kanematsu).

http://dx.doi.org/10.1016/j.jdsr.2016.06.001
1882-7616/© 2016 The Author(s). Published by Elsevier Ltd on behalf of Japanese Association for Dental Science. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The World Health Organization points out that obesity is currently one of the most blatantly visible, yet most neglected, public health problem. If immediate action is not taken, millions will suffer from an array of serious health disorders linked to obesity [1]. Recent studies have demonstrated that obesity is associated with some of the cellular mechanisms of inflammation and overproduction of proinflammatory cytokines. The pathological conditions of adipose tissue under hypertrophy (cell size increase) and hyperplasia (cell number increase) are low-grade and chronic inflammation may lead to the development of various co-morbidities, such as hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, stroke, and cancers [2, 3].

Inflammation is a physiological response necessary to restore homeostasis altered by diverse stimuli; however, an excessive inflammatory response or a chronically established inflammation state can cause systemic deleterious effects. For instance, periodontal disease is a source of chronic inflammation and was found to play a causative or contributory role in the pathogenesis of systemic diseases [4]. Furthermore, epidemiological studies have recently shown high co-morbidity between mental illness and peripheral chronic inflammatory diseases, including obesity and periodontitis [2–4]. Therefore, the control of inflammation in peripheral organ diseases is paramount for the protection and promotion of human health.

Adipose tissues are an insidious source of inflammation in morbid obesity. We have elucidated a new regulatory mechanism in lipid and energy metabolism within adipocytes to control obesity. Phospholipase C-related catalytically inactive protein (PRIP), a new functional molecule in lipolysis, is involved in a triacylglycerol (TAG) degradation pathway via intracellular phosphoregulation. Here, we discuss the regulation of TAG hydrolysis via PRIP.

2. Fat metabolism in adipocytes

2.1. Regulation of fat metabolism

There are two types of adipose tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which have antagonistic functions [5]. WAT is the major energy storage component in higher eukaryotes. The primary purposes of this tissue are synthesis and storage of TAG in periods of energy excess, and hydrolysis of TAG to generate fatty acids for use by other organs during periods of energy deprivation. In contrast, BAT directly dissipates the chemical energy contained in fatty acids as heat via uncoupling protein 1 (UCP1) as a defense against cold and excessive feeding (Fig. 1). Understanding of molecular mechanisms driving adipocyte-specific TAG synthesis and hydrolysis, and/or governing energy expenditure in brown adipocytes is critical to explain the development of obesity.

2.2. Activation of lipolysis by catecholamine signaling

Although TAG synthesis occurs in multiple tissues, TAG lipolysis during periods of energy demand predominantly occurs in adipose tissues. The hydrolytic action by lipases in WAT is rapid, and free fatty acids (FFAs) are supplied to other organs to meet the energy requirements of the organism [6]. The TAG degradation process is regulated by several molecules, including anti-comparative gene identification 58 (CGI-58), perilipin (lipid droplet-associated protein), and the lipolytic enzymes, adipocyte triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoacylglycerol lipase (MGL). These lipolytic enzymes and modulators promote the hydrolysis of TAG, resulting in the formation of FFAs and glycerol in adipocytes (Fig. 1).

The intracellular degradation of TAG is catalyzed by a cascade of lipolytic enzymes (Fig. 2). Under basal condition, at the surface of lipid droplets, perilipin, a master lipolysis regulator of stored TAG, sequesters CGI-58, a coactivator protein of ATGL [7]. This prevents sequential hydrolysis of stored TAG. Under starvation conditions, sympathetic nerves are activated, which initiates adipose lipolysis. Catabolic hormone adrenaline, a catecholamine, binds to β-adrenergic receptors on adipocyte plasma membrane and triggers a G protein-mediated cascade that activates adenylate cyclase, which itself increases levels of cAMP and activates protein kinase A (PKA). PKA phosphorylates perilipin at multiple sites. Subsequently, CGI-58 is released from perilipin, associates with, and fully activates ATGL.
This ATGL hydrolyzes TAG into diacylglycerol (DAG). The activated PKA also phosphorylates HSL, located in the cytosol. Phosphorylated HSL is translocated from the cytosol to the surfaces of intracellular lipid droplets and is tethered on the lipid droplets by the phosphorylated perilipin. Subsequently, activated (phosphorylated) HSL hydrolyzes DAG into monoacylglycerol, followed by degradation into a FFA and glycerol by MGL in the final step of lipolysis. FFAs are released into the blood stream, where they bind to albumin for transport to surrounding tissues requiring energy. Glycerol is also transported into the bloodstream and is absorbed by the liver or kidneys, where it is converted to glycerol 3-phosphate by the enzyme glycerol kinase.

Perilipin is phosphorylated at multiple sites by PKA, a process essential for the translocation of HSL to lipid droplets. Furthermore, this response corresponds to the phosphorylation of HSL and the acceleration of lipolysis promoted by the sympathetic nervous system in adipocytes. HSL can be phosphorylated at least on five serine residues (563, 565, 600, 659, and 660 of the rat sequence) in vitro [7]. Ser-563, Ser-659, and Ser-660 are the major PKA phosphorylation sites responsible for activating HSL. Dephosphorylation of HSL and perilipin by protein phosphatases can also play an important role in the regulation of lipolysis.

2.3. Inhibition of lipolysis by insulin receptor signaling

Insulin, the major anabolic hormone, can restrain lipolysis and promote fat storage in adipose tissues during the postprandial period. Protein phosphatases are involved in the antilipolytic effect of insulin. Insulin receptor tyrosine kinase phosphorylates insulin receptor substrate (IRS)-1, which recruits and activates phosphoinositide 3-kinase (PI3K) leading to the production of phosphatidylinositol-3,4,5-triphosphate (PIP3). AKT (also known as protein kinase B) is recruited onto the membrane by binding with PIP3 via its pleckstrin homology domain, and is subsequently phosphorylated and activated by PDK1. AKT thus phosphorylates two important targets, phosphodiesterase 3B [8] and protein phosphatases (protein phosphatase 1, protein phosphatase 2A, and protein phosphatase 2C) [9,10], to allow the down-regulation of lipolysis. Consequently, lipolysis in adipocytes is attenuated. In addition, insulin signaling-independent dephosphorylation of HSL and perilipin may be involved in the inactivation of lipolysis after activation of the sympathetic nervous system; however, this mechanism has not yet been elucidated.

3. A new molecule for the regulation of lipolysis in adipocytes

3.1. Identification of PRIP

PRIP was originally purified as an inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] binding protein from the cytosol fraction of the rat brain, but has since been isolated from the membrane fraction of the brain [11,12]. PRIP has similar domain organization to phospholipase C-δ1 [13,14], but lacks the enzymatic activity of phospholipase C [15] (Fig. 3). There are two isoforms in mammals; PRIP1, expressed mainly in the brain, and PRIP2, ubiquitously expressed [16,17]. Both PRIPs are expressed in white and brown adipose tissues [18,19].

Experiments exploring a PRIP binding partner revealed that PRIP can bind to PP1 and PP2A [20—25], Ins(1,4,5)P3 and inositol lipids [11,12,26—28], gamma aminobutyric acid type A receptor-associated protein (GABARAP) [29—33], β subunit of GABA receptor [21], and phosphorylated AKT [34]. After verifying the relationship between PRIP and these binding partners using PRIP-KO mice, we elucidated the role of PRIP in cells; PRIP is involved in Ins(1,4,5)P3/Ca2+ signaling [35,36], dephosphoregulation of...
intracellular signaling molecules [18,19,21,22], intracellular trafficking of GABA_a receptors or insulin secretory vesicles [29,30,33,37–40], and regulation of autophagy [31,32].

3.2. Lean phenotype of Prip-KO mice

Studies in Prip-null knockout (Prip-KO) mice have confirmed the importance of this molecule in the lipolysis of TAG [18,19]. Regular diet (RD)-fed Prip-KO mice exhibited a lean phenotype with smaller WAT in size and weight. The Prip-KO mice showed slightly more food intake than wild-type mice. The serum cholesterol and TAG levels were significantly increased in Prip-KO mice compared with wild-type control mice. However, ectopic lipid accumulation was not observed in the liver of Prip-KO mice. In high-fat diet (HFD)-feeding experiments, Prip-KO mice showed less body weight increase, and their body weight at 20 weeks of age was lower than that of wild-type controls. The Prip-KO mice obviously displayed leanness with small-sized WAT. These results allowed associating the lean phenotype of Prip-KO mice with the alteration of fat metabolism in adipocytes.

3.3. PRIP and protein phosphatase regulate adrenaline-induced lipolysis in adipocytes

Our investigations showed that phosphorylation of HSL and perilipin in RD-fed Prip-KO WAT was upregulated under both non-fasting and fasting conditions compared with wild-type mice. In response to adrenaline stimulation, or under starvation conditions, the cytosolic protein PRIP was translocated to lipid droplets in mouse white adipocytes; in the meantime, levels of PP1 and PP2A, which bind to PRIP, were increased in the lipid droplet fractions (Fig. 2). Consistently, after adrenaline stimulation, time-dependent dephosphorylation change of HSL was observed in wild-type adipocytes, but not in Prip-KO adipocytes. From these findings, we proposed a model of PRIP-mediated phosphorylation of lipolysis in adipocytes (Fig. 2). Once starvation or stress signals trigger the activation of PKA in adipocytes, HSL is phosphorylated, translocated to lipid droplets, and activates hydrolysis of lipids. The signal also induces the translocation of PRIP and protein phosphatase complex to lipid droplets, which promotes the dephosphorylation of HSL and attenuates lipolysis. These sequential events yield a sharp transient activation of lipolysis to provide a fine-tuning of catabolic hormonal regulation in adipocytes.

3.4. PRIP regulates energy metabolism

Compared to wild-type mice, HFD-fed Prip-KO mice showed more moderate body weight increase, greater glucose tolerance, and higher insulin sensitivity. This underscored a protection mechanism against HFD-induced obesity in Prip-KO mice [19]. Histological analyses showed that ectopic lipid accumulation in the liver was strongly decreased in HFD-fed Prip-KO mice. Consistently, energy expenditure and
4. Chronic peripheral inflammation is a risk factor for mental illness

Obesity is a chronic inflammatory state that originates locally in adipose tissues as a consequence of excessive fat deposition, and is later reflected in increased systemic circulating levels of proinflammatory proteins. Markers of abdominal obesity (e.g., waist circumference) seem to be strongly associated with inflammatory markers, and a reduction in the adipose tissue mass reduces the ability of adipose tissues to produce proinflammatory cytokines, TNF-α, IL-6, IL-8, and leptin [48–50]. Dental diseases such as periodontitis are also associated with high levels of systemic inflammation [51], a significant predictor of inflammatory illnesses, such as cardiovascular disease [52,53] and diabetes [54]. Moreover, many studies show that peripheral chronic inflammation increases the risk of mental illness [3,4]. Depressive patients have high concentration of proinflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) in blood [55].

In animal models using rodents, systemic inflammation induces ‘‘depression-like behavior’’ such as anhedonia, reduced appetite, helplessness, apathy, and social withdrawal [56]. We and other groups showed that peripheral injection of lipopolysaccharide induced anorexia via the increase of hypothalamic IL-1β and IL-6 [57,58]. The circulating proinflammatory cytokines can enter the central nervous system in areas where the blood–brain barrier is incomplete, or can be transported into the brain tissues by carrier-mediated mechanisms across the blood–brain barrier. Therefore, proinflammatory cytokines in peripheral blood stream communicate with the brain and cause the activation of microglia and astrocytes. In the case of microglia, TNF-α activated indoleamine 2,3-dioxygenase, an enzyme enabling the production of kynurenine from tryptophan, the origin of serotonin [57]. This resulted in decreasing the serotonin synthesis pathway and promoting kynurenine production, itself further metabolized into quinolinic acid. Quinolinic acid is an N-methyl-D-aspartate (NMDA) receptor agonist, which induces depression-like behavior. Therefore, peripheral inflammation, mediated by obesity or oral infectious diseases, induces the decrease of serotonin and the increase of neurotoxic quinolinic acid, potentially causing mental illness. Therefore, the control of peripheral inflammation is crucial for maintaining a healthy life.

5. Conclusion

We recently defined PRIP as a new modulator within the lipolysis pathway, which negatively regulates the phosphorylation of perilipin and HSL in WAT, and can also regulate thermogenesis in BAT via fatty acid production. Importantly, deficiency of PRIP in mice exhibited anti-obesity phenotypes. Therefore, PRIP represents a potential therapeutic target for the control of obesity. Since anti-obesity therapy can reduce the risks of many serious health disorders...
including hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, and mental disorders, further comprehensive studies of PRIP signaling will contribute to the development of new therapeutic targets aimed at tackling excess body fat accumulation to ensure a healthy life.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

Our works have been supported by KAKENHI from Japan Society for the Promotion of Science (Grant numbers: 15K19731 to Y.Y., 15H06433 to K.O., and 26670809 to T.K.).

References

[1] World Health Organization. http://www.who.int/nutrition/topics/obesity/en/. Controlling the global obesity epidemic.

[2] Rodriguez-Hernández H, Simalent-Mendía LE, Rodríguez-Ramírez G, Reyes-Romero MA. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol 2013;2013:678159.

[3] Emanuela F, Grazia M, Marco de R, Maria Paola L, Giorgio F, Marco B. Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab 2012;2012:476380.

[4] Berk M, Williams LJ, Jacka FN, O’Neill A, Pasco JA, Moylan S, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013;11:200.

[5] Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013;19:1252–63.

[6] Ahmadian M, Duncan RE, Sul HS. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab 2009;20:424–8.

[7] Lampionis AD, Roodakis E, Voutsinas GE, Stravopoulos DJ. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 2011;477:1–11.

[8] Wijkander J, Landström TR, Manganiello V, Belfrage P, Degerman E. Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endocrinology 1998;139:219–27.

[9] Rosilla L, Begum N. Protein phosphatase-1 and insulin action. Mol Cell Biochem 1998;182:49–58.

[10] Olsson H, Belfrage P. The regulatory and basal phosphorylation sites of hormone-sensitive lipase are dephosphorylated by protein phosphatase-1, 2A and 2C but not by protein phosphatase-2B. Eur J Biochem 1987;168:399–405.

[11] Kanematsu T, Takeya H, Watanabe Y, Ozaki S, Yoshida M, Koga T, et al. Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol. J Biol Chem 1992;267:6518–25.

[12] Yoshida M, Kanematsu T, Watanabe Y, Koga T, Ozaki S, Iwanaga S, et al. D-myO-inositol 1,4,5-trisphosphate-binding proteins in rat brain membranes. J Biochem 1994;115:973–80.

[13] Yagisawa H, Hirata M, Kanematsu T, Watanabe Y, Ozaki S, Sakuma K, et al. Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ. J Biol Chem 1994;269:20179–88.

[14] Kanematsu T, Misumi Y, Watanabe Y, Ozaki S, Koga T, Iwanaga S, et al. A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-δ1. Biochem J 1996;313:319–25.

[15] Kanematsu T, Yoshimura K, Hidaka K, Takeuchi H, Katan M, Hirata M. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity. Eur J Biochem 2000;267:2731–7.

[16] Matsuda M, Kanematsu T, Takeuchi H, Kukita T, Hirata M. Localization of a novel inositol 1,4,5-trisphosphate binding protein, p130 in rat brain. Neurosci Lett 1998;257:97–100.

[17] Uji A, Matsuda M, Kukita T, Maeda K, Kanematsu T, Hirata M. Molecules interacting with PRIP-2, a novel Ins(1,4,5)P3 binding protein type 2: comparison with PRIP-1. Life Sci 2002;72:443–53.

[18] Okumura T, Harada K, Oue K, Zhang J, Asano S, Hayashuchi M, et al. Phospholipase C-related catalytically inactive protein (PRIP) regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase. PLoS One 2014;9:e100559.

[19] Oue K, Zhang J, Harada-Hada K, Asano S, Yamawaki Y, Hayashuchi M, et al. Phospholipase C-related catalytically inactive protein is a new modulator of thermogenesis promoted by β-adrenergic receptors in brown adipocytes. J Biol Chem 2016;291:4185–96.

[20] Yoshimura K, Takeuchi H, Sato O, Hidaka K, Doira N, Terunuma M, et al. Interaction of p130 with, and consequent inhibition of, the catalytic subunit of protein phosphatase 1α. J Biol Chem 2001;276:17908–13.

[21] Terunuma M, Jang IS, Ha SH, Kittler JT, Kanematsu T, Jovanovic JN, et al. GABA_B receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci 2002;24:7074–84.

[22] Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, et al. Modulation of GABA_B receptor phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem 2006;281:22180–9.

[23] Yanagihara S, Terunuma M, Koyano K, Kanematsu T, Ho Ryu S, Hirata M. Protein phosphatase regulation by PRIP, a PLC-related catalytically inactive protein implications in the phospho-modulation of the GABA_B receptor. Adv Enzyme Regul 2006;46:203–22.

[24] Kanematsu T, Fuji M, Mizokami A, Kittler JT, Nabekura J, Moss SJ, et al. Phospholipase C-related inactive protein is implicated in the constitutive internalization of GABA_B receptors mediated by clathrin and AP2 adaptor complex. J Neurochem 2007;101:898–905.

[25] Sugiyama G, Takeuchi H, Nagano K, Gao J, Ohyama Y, Mori Y, et al. Regulated interaction of protein phosphatase 1 and protein phosphatase 2A with phospholipase C-related but catalytically inactive protein. Biochemistry 2012;51:3394–403.

[26] Takeuchi H, Kanematsu T, Misumi Y, Yaakob HB, Yagisawa H, Ikehara Y, et al. Localization of a high-affinity inositol 1,4,5,6-tetrakisphosphate/inositol 1,4,5,6-tetrakisphosphate binding domain to the pleckstrin homology module of a new 130kDa protein: characterization of the determinants of structural specificity. Biochem J 1996;318:561–8.

[27] Takeuchi H, Kanematsu T, Misumi Y, Sakane F, Konishi H, Kikkawa U, et al. Distinct specificity in the binding of inositol phosphates by pleckstrin homology domains of pleckstrin, RAC-protein kinase, dilauroylglycerol kinase and a new 130kDa protein. Biochim Biophys Acta 1997;1359:275–85.

[28] Gao J, Takeuchi H, Zhang Z, Fuji M, Kanematsu T, Hirata M. Binding of phospholipase C-related but catalytically inactive protein to phosphatidylinositol 4,5-bisphosphate via the PH domain. Cell Signal 2009;21:1180–6.

[29] Kanematsu T, Jang IS, Yamaguchi T, Nagahama H, Yoshimura K, Hidaka K, et al. Role of the PLC-related, catalytically inactive protein p130 in GABA_B receptor function. EMBO J 2002;21:1004–11.
[30] Mizokami A, Kanematsu T, Ishibashi H, Yamaguchi T, Tanida I, Takenaka K, et al. Phospholipase C-related inactive protein is involved in trafficking of gamma2 subunit-containing GABA_A receptors to the cell surface. J Neurosci 2007;27:1692–701.

[31] Umebayashi H, Mizokami A, Matsuda M, Harada K, Takeuchi H, Tanida I, et al. Phospholipase C-related catalytically inactive protein, a novel microtubule-associated protein 1 light chain 3-binding protein, negatively regulates autophagosome formation. Biochem Biophys Res Commun 2013;432:268–74.

[32] Harada-Hada K, Harada H, Katoh F, Hisatsune J, Tanida I, Ogawa M, et al. Phospholipase C-related catalytically inactive protein participates in the autophagic elimination of Staphylococcus aureus infecting mouse embryonic fibroblasts. PLoS One 2014;9:e89828.

[33] Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, et al. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open 2014;3:463–74.

[34] Fujii M, Kanematsu T, Ishibashi H, Fukami K, Takenawa T, Nakayama KI, et al. Phospholipase C-related but catalytically inactive protein is required for insulin-induced cell surface expression of gamma-aminobutyric acid type A receptors. J Biol Chem 2010;285:4837–46.

[35] Takeuchi H, Oike M, Paterson HF, Allen V, Kanematsu T, Ito Y, et al. Inhibition of Ca²⁺ signaling by p130, a phospholipase-C-related catalytically inactive protein: critical role of the p130 pleckstrin homology domain. Biochem J 2000;349:357–68.

[36] Harada K, Takeuchi H, Oike M, Matsuda M, Kanematsu T, Yagisawa H, et al. Role of PRIP-1, a novel Ins(1,4,5)P₃ binding protein, in Ins(1,4,5)P₃-mediated Ca²⁺ signaling. J Cell Physiol 2005;202:422–33.

[37] Mizokami A, Tanaka H, Ishibashi H, Umebayashi H, Fukami K, Takenawa T, et al. GABA_A receptor subunit alteration-dependent diazepam insensitivity in the cerebellum of phospholipase C-related inactive protein knockout mice. J Neurochem 2010;114:302–10.

[38] Kitayama T, Morita K, Sultana R, Kikushige N, Migita K, Ueno S, et al. Phospholipase C-related but catalytically inactive protein modulates pain behavior in a neuropathic pain model in mice. Mol Pain 2013;9:23.

[39] Toyoda H, Saito M, Sato H, Tanaka T, Ogawa T, Yatani H, et al. Enhanced desensitization followed by unusual resensitization in GABA_A receptors in phospholipase C-related catalytically inactive protein-1/2 double-knockout mice. Pflugers Arch 2015;467:267–84.

[40] Toyoda H, Saito M, Sato H, Kawano T, Kawakami S, Yatani H, et al. Enhanced lateral inhibition in the barrel cortex by deletion of phospholipase C-related catalytically inactive protein-1/2 in mice. Pflugers Arch 2015;467:1445–56.

[41] van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009;360:1500–8.

[42] Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–25.

[43] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277–359.

[44] Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012;151:400–13.

[45] Mottillo EP, Bloch AE, Leff T, Granneman JG. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 2012;287:25038–48.

[46] Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998;92:829–39.

[47] Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 2004;24:3057–67.

[48] de Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc 2012;71:332–8.

[49] Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res Clin Pract 2005;69:29–35.

[50] Arvidsson E, Viguerie N, Andersson I, Verdich C, Langin D, Arner P. Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women. Diabetes 2004;53:1966–71.

[51] Amir S, Gokce N, Morgan S, Loukideli M, Van Dyke TE, Vita JA. Periodontal disease is associated with brachial artery endothelial dysfunction and systemic inflammation. Arterioscler Thromb Vasc Biol 2003;23:1245–9.

[52] Kinane DF, Lowe GD. How periodontal disease may contribute to cardiovascular disease. Periodontology 2000;23:121–6.

[53] Humphrey LL, Fu R, Buckley DJ, Freeman M, Helfand M. Periodontal disease and coronary heart disease incidence: a systematic review and metaanalysis. J Gen Intern Med 2008;23:2079–86.

[54] Saremi A, Nelson RG, Tulloch-Reid M, Hanson RL, Sievers ML, Taylor GW, et al. Periodontal disease and mortality in type 2 diabetes. Diabetes Care 2005;28:27–32.

[55] Nishida A, Hisaoka K, Zenso H, Uchitomi Y, Morinobu S, Yamawaki S. Antidepressant drugs and cytokines in mood disorders. Int Immunopharmacol 2002;2:1619–26.

[56] Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008;9:46–56.

[57] Jang PG, Namkoong C, Kang GM, Hur MW, Kim SW, Kim GH, et al. NF-kappaB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia. J Biol Chem 2010;28:9706–15.

[58] Yamawaki Y, Kimura H, Hosoi T, Ozawa K. MyD88 plays a key role in LPS-induced Stat3 activation in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2010;298:R403–10.