Recovery of Black Hole Mass from a Single Quasinormal Mode

Gunther Uhlmann1,2, Yiran Wang3

1 Department of Mathematics, University of Washington, Seattle, USA. E-mail: gunther@math.washington.edu
2 Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
3 Department of Mathematics, Emory University, Atlanta, USA. E-mail: yiran.wang@emory.edu

Abstract: We study the determination of the mass of a de Sitter–Schwarzschild black hole from one quasinormal mode. We prove a local uniqueness result with a Hölder type stability estimate.

1. Introduction

The possibility of inferring black hole parameters from quasinormal modes (QNMs) has been explored in the physics literature, see Section 9 of the review paper [2]. For example, for slowly rotating black holes, Detweiler showed by numerical calculation in [7] that the QNM nearest to the real axis (called the fundamental QNM) is an injective function of the black hole parameters. Later, Echeverria in [10] investigated the stability issue. Since the success of gravitational wave interferometers, the topic has gained increasing attention, see e.g. [3]. One particular motivation for the study is to verify the black hole no hair theorem for which two QNMs are needed: one QNM is used to recover the black hole parameter and another QNM is used to test the theorem. We refer to [2, Section 9.7] for a review and [17] for the state of the art. Despite some convincing evidence, it seems that the theoretical justification is not complete. For example, most of the analysis in the literature is done for the fundamental modes corresponding to small spherical harmonic indices. However, it is generally not known which modes are excited and are extractable from the actual black hole ring down signals, see [2,3]. In this short note, we aim to provide a mathematical justification of the recovery of black hole parameters from a single QNM.

We consider the model of a non-rotating de Sitter–Schwarzschild black hole \((M, g_{dS})\):

\[
M = \mathbb{R}_t \times X^\circ, \quad X = (r_{bH}, r_{sI}) \times S^2 \\
g_{dS} = \alpha^2 dt^2 - \alpha^{-2} dr^2 - r^2 dw^2
\]

(1)
where dw^2 denotes the standard metric on S^2 and

$$\alpha = \left(1 - \frac{2m}{r} - \frac{1}{3} \Lambda r^2 \right)^{\frac{1}{2}}. \quad (2)$$

Here, $m > 0$ is the mass of the black hole and $\Lambda > 0$ is the cosmological constant. They satisfy $0 < 9m^2 \Lambda < 1$. r_{bH}, r_{sI} are the two positive roots of $\alpha(r) = 0$ which corresponds to horizons. Throughout the note, we assume that Λ is known. Consider the d’Alembertian on (M, g_{ds}):

$$\Box_M = \alpha^{-2}(D_t^2 - \alpha^2 r^{-2} D_r (r^2 \alpha^2) D_r - \alpha^2 r^{-2} \Delta_{S^2}) \quad (3)$$

where $D_t = -i \partial_t$ and Δ_{S^2} the positive Laplacian on S^2. The stationary scattering is governed by the operator

$$\Delta_X = \alpha^2 r^{-2} D_r (r^2 \alpha^2) D_r + \alpha^2 r^{-2} \Delta_{S^2}, \quad (4)$$

see [21]. On $L^2(X; \Omega)$ with measure $\Omega = \alpha^{-2} r^2 dw$, Δ_X is an essentially self-adjoint, non-negative operator, see [19]. Consider the resolvent

$$R_X(\lambda) = (\Delta_X - \lambda^2)^{-1}. \quad (5)$$

Here, we use λ^2 as the spectral parameter and take $\text{Im} \lambda \geq 0$ to be the physical plane such that $R_X(\lambda)$ is bounded on $L^2(X; \Omega)$ for $\text{Im} \lambda >> 0$, according to the spectral theorem. Sá Barreto and Zworski demonstrated in [21, Proposition 2.1] that $R_X(\lambda)$ has a meromorphic continuation as operators from $C_0^\infty(X)$ to $C^\infty(X)$ from $\text{Im} \lambda \geq 0$ to \mathbb{C} with poles of finite rank. The poles of $R_X(\lambda)$ are called resonances. The fact that they are equivalent to the quasinormal modes defined by using Zerilli’s equation (see e.g. [5,6]) is discussed in [21], see also [4,19].

We set $\emptyset = (0, 1/(3\sqrt{\Lambda}))$. For $m \in \emptyset$, we denote the set of resonances by $R(m)$. Below, $Q(m)$ is a discrete set of $i(-\infty, 0] \cap R(m)$ defined in (22). Our main result is:

Theorem 1.1. Let $\Lambda > 0$ and $m \in \emptyset$. For any $\lambda \in R(m) \setminus (Q(m) \cup -i\sqrt{\Lambda/3N})$, there exists $\delta > 0$ (depending on λ) such that for any $\tilde{m} \in \emptyset$ with $|\tilde{m} - m| < \delta$, if $\lambda \in R(\tilde{m})$ then $m = \tilde{m}$. Moreover, if $\lambda \in R(\tilde{m}) \setminus (Q(\tilde{m}) + -i\sqrt{\Lambda/3N})$ is sufficiently close to λ, then

$$|\tilde{m} - m| \leq C(\tilde{\lambda} - \lambda)^{1/N}$$

for some $C > 0$ and $N \in \mathbb{N}$ depending on λ.

We note that a discrete set of $i(-\infty, 0]$ is excluded from the theorem due to the following reasons. First, there is the possibility that some resonances cannot be used to determine the mass. We call λ a trivial resonance if $\lambda \in R(m)$ for all $m \in \emptyset$. For example, 0 is a trivial resonance, see [19]. Thanks to a recent work [14] (see also [13]), we know that for $m \wedge 0$, the set $R(m)$ converges to $-i\sqrt{\Lambda/3N} \cup \{0\}$. So these are the only possible trivial resonances. The numerical study [14, Fig. 6(b)] seems to indicate that such points except 0 are not trivial, but this remains to be proved rigorously. Second, our method does not apply to the resonances in $Q(m)$, see Sect. 5. However, we point out that all these points are purely imaginary and they seem to be less relevant in practical cases, see for instance [17].

We also remark that for recovering black hole parameters, it is common to use only one or a few QNMs. This is very different from the usual inverse spectral/resonance problem for which the whole set $R(m)$ is used to determine the parameters. In fact, there
is a large literature on the distribution of resonances in the high energy regime, by which we mean resonances λ with $|\text{Re}\,\lambda| >> 1$. For example, Theorem in [21] states that there exists $K > 0$, $\theta > 0$ such that for any $C > 0$ there is an injective map \tilde{b} from the set of pseudo-poles

$$\left(\pm l \pm \frac{1}{2} - \frac{i}{2}(k + \frac{1}{2}) \right) \frac{(1 - 9\Lambda m^2)^{\frac{1}{2}}}{3^{3/2}m}$$

to $\mathcal{R}(m, \Lambda)$ such that all the poles in

$$\Omega_C = \{ \lambda : \text{Im} \, \lambda > -C, |\lambda| > K, \text{Im} \, \lambda > -\theta |\text{Re} \, \lambda| \}$$

are in the image of \tilde{b} and for $\tilde{b}(\mu) \in \Omega_C$, we have $\tilde{b}(\mu) - \mu \to 0$ as $|\mu| \to \infty$. See Fig. 1.

By looking at the sequence of resonances for large l, k, one recovers m. Similar results exist for rotating black holes, see for example [8].

Our proof of the theorem is based on an analytic perturbation argument, by observing that the coefficients of the operator Δ_X are analytic functions in m. There are some resonance perturbation theories, see for instance Agmon [1], Howland [15], which are developed upon perturbation theory for eigenvalues, see for example [20]. Here, we use that Δ_X has asymptotically hyperbolic structure near the two horizons to construct a parametrix modulo a trace-class error term, following Mazzeo and Melrose [18]. We then use the Fredholm determinant and its analyticity in m to finish the proof. This approach has the benefit of not relying on the spherical symmetry of the black hole metric. For example, one can add general metric or potential perturbations with suitable decay at the horizons and obtain similar results to Theorem 1.1.

The note is organized as follows. We begin in Sect. 2 with a scattering problem to demonstrate the possibility of recovering parameters from a single resonance. In Sect. 3, we discuss the asymptotically hyperbolic structure and the analyticity. We construct the resolvent in Sect. 4 and finish the proof in Sect. 5.
2. An Example: The Potential Barrier

In this section, we give an example of a scattering system depending on one parameter, for which a single resonance recovers the parameter. The example was actually used by Chandrasekhar and Detweiler in [6] to illustrate the concept of quasinormal modes.

Consider

\[u''(x) - V(x)u(x) + \sigma^2 u(x) = 0, \quad x \in \mathbb{R} \]

where \(\sigma \) is constant and \(V \) is the rectangular barrier

\[V(x) = \begin{cases}
1, & x \in [-L, L] \\
0, & \text{otherwise.}
\end{cases} \]

See Fig. 2. Note that the potential is characterized by \(L \). In this case, the scattering resonances can be defined as the poles of the scattering matrix. It is a standard exercise in scattering theory to find the scattering matrix. Let us look at a wave traveling to the right, hitting the potential and getting reflected and transmitted. In this case, the solution looks like

\[u_R(x) = \begin{cases}
e^{i\sigma x} + re^{-i\sigma x}, x < -L \\
te^{i\sigma x}, x > L
\end{cases} \]

Here, \(r \) is the reflection coefficient and \(t \) is the transmission coefficient. Similarly, we can consider a wave traveling to the left of the form

\[u_L(x) = \begin{cases}
'te^{-i\sigma x}, x < -L \\
e^{-i\sigma x} + r'e^{i\sigma x}, x > L
\end{cases} \]

with \(r', t' \) the reflection, transmission coefficient respectively. The scattering matrix is

\[S = \begin{pmatrix} t & r \\
r' & t' \end{pmatrix}. \]

By matching the solution and its derivatives at \(x = L, -L \), we can find the coefficients as

\[r = r' = \frac{e^{-2i\sigma L + 2iqL} - e^{-2i\sigma L - 2iqL}}{K}, \]

\[t = t' = e^{-2i\sigma L - 2iqL} + r \frac{q + \sigma}{q - \sigma} e^{-2iqL} \]

where

\[K = \frac{q + \sigma}{q - \sigma} e^{-2iqL} - \frac{q - \sigma}{q + \sigma} e^{2iqL}. \]

Thus, the resonances are solutions of \(K = 0 \) or equivalently

\[\left(\frac{q + \sigma}{q - \sigma} \right)^2 = e^{4i\sigma L} \]

(6)

where \(q^2 = \sigma^2 - 1 \). Suppose we have \(\sigma \) such that \(\text{Im} \ q \neq 0 \). Then we can take modulus of (6) to find \(L \) as

\[L = -\frac{1}{2 \text{Im} \ q} \ln \left| \frac{q + \sigma}{q - \sigma} \right| . \]

(7)
This shows that one can recover L from one resonance.

Now we provide a numerical verification. We compute resonances using a Matlab code from [16] and identify L using (7). It is important to note that the code from [16] does not calculate resonances by solving (7). Take $L = 1.3$. The potential and resonances are plotted in Fig. 2. The numerical values of the four resonances nearest to the origin with positive real parts are

$$
\lambda_1 = 1.2127 - 0.4432i, \quad \lambda_2 = 2.2120 - 1.1135i,
$$

$$
\lambda_3 = 3.4242 - 1.4810i, \quad \lambda_4 = 4.6501 - 1.7230i.
$$

Using any of these resonances in (7), we find $L = 1.3$ with a 10^{-4} error.

3. The Asymptotically Hyperbolic Structure and Analyticity

It is known that Δ_X in (4) can be essentially viewed as perturbed Laplacians associated with some asymptotically hyperbolic metrics near ∂X. We follow the presentation in [19]. Let X be a compact manifold of dimension $n + 1$ with boundary ∂X. Let ρ be a boundary defining function such that $\rho > 0$ in X, $\rho = 0$ at ∂X, $d\rho \neq 0$ at ∂X. A metric g on X is called conformally compact if $G = \rho^2 g$ is a non-degenerate Riemannian metric on the closure \overline{X}. If in addition $|d\rho|^2_G|_{\partial X} = K$ is constant, the metric g is called asymptotically hyperbolic. In this case, the sectional curvature approaches $-K$ along any curve towards ∂X, see [18, Lemma (2.5)]. There is a normal form of the metric near
\(\partial X \), see e.g. Graham [11]. In particular, there is a choice of boundary defining function \(x \) such that in a neighborhood \(U = [0, \epsilon) \times Y, Y \subset \partial X \) of \(p \in \partial X \), we can use local coordinates \((x, y), y \in Y \) and get

\[
g = \frac{dx^2 + h(x, y, dy)}{x^2}. \tag{8}
\]

Now we consider \(\Delta_X \) in (12) on \(X \). We define

\[
\beta = \frac{d\alpha^2}{2} = \frac{m}{r^2} - \frac{\Lambda}{3} r.
\]

We see that \(\beta \) is a smooth function of \(r \) on \([r_{bH}, r_{sI}]\) and analytic in \(m \in \mathbb{O} \). We set \(\beta_{bH} = \beta(r_{bH}) > 0, \beta_{sI} = \beta(r_{sI}) < 0 \). Here, we recall that

\[
r_{bH} = \operatorname{Im}(\sqrt{1 - (3m\sqrt{\Lambda})^2 + i3m\sqrt{\Lambda}})^{1/3}/\sqrt{\Lambda},
\]

\[
r_{sI} = \operatorname{Im}(-\sqrt{1 - (3m\sqrt{\Lambda})^2 + i3m\sqrt{\Lambda}})^{1/3}/\sqrt{\Lambda},
\]

see page 6 of [21]. Thus \(\beta_{sI}, \beta_{bH} \) are both analytic functions of \(m \in \mathbb{O} \). Now we write (4) as

\[
\Delta_X = \beta r^{-2} \alpha D_\alpha(\beta r^2 \alpha D_\alpha) + \alpha^2 r^{-2} \Delta_{S^2}. \tag{10}
\]

For convenience, we denote \(\partial X = \partial X_{sI} \cup \partial X_{bH} \) with

\[
\partial X_{sI} = \{r_{sI}\} \times S^2, \quad \partial X_{bH} = \{r_{bH}\} \times S^2.
\]

Note that \(\alpha \) only vanishes at \(\partial X \). We let \(\rho \) be a boundary defining function defined through

\[
\alpha = 2r_{bH} \rho \beta_{bH} \rho \text{ near } r = r_{bH}
\]

and

\[
\alpha = 2r_{sI} \rho \beta_{sI} \rho \text{ near } r = r_{sI}.
\]

(11)

Here, the smooth structure on \(X \) is changed. Before, \(r - r_{bH} \) is a smooth boundary defining function near \(\partial X_{bH} \) but now we think of \((r - r_{bH})^2\) as a smooth boundary defining function, see [21, Section 2]. By using \(\rho \), (10) becomes

\[
\Delta_X = \beta r^{-2} \rho D_\rho(\beta r^2 \rho D_\rho) + 4\rho^2 \beta_{bH}^2 r_{bH}^{-2} r^{-2} \Delta_{S^2} \text{ near } \partial X_{bH},
\]

\[
\Delta_X = \beta r^{-2} \rho D_\rho(\beta r^2 \rho D_\rho) + 4\rho^2 \beta_{sI}^2 r_{sI}^{-2} r^{-2} \Delta_{S^2} \text{ near } \partial X_{sI}.
\]

(12)

Let \(g_{bH} \) be the metric defined in a neighborhood of \(\partial X_{bH} \) given by

\[
g_{bH} = \frac{d\rho^2}{\beta^2 \rho^2} + \frac{r^2}{(2\beta_{bH} r_{bH})^2} \frac{dw^2}{\rho^2}. \tag{13}
\]

and let \(g_{sI} \) be the metric defined in a neighborhood of \(\partial X_{sI} \) given by

\[
g_{sI} = \frac{d\rho^2}{\beta^2 \rho^2} + \frac{r^2}{(2\beta_{sI} r_{sI})^2} \frac{dw^2}{\rho^2}. \tag{14}
\]

These can be viewed as metric perturbations of the hyperbolic metrics

\[
g_{bH,0} = \frac{4dz^2}{\beta_{bH}^2 (1 - |z|^2)} \quad g_{sI,0} = \frac{4dz^2}{\beta_{sI}^2 (1 - |z|^2)}
\]
on $\mathbb{B}^3 = \{ z \in \mathbb{R}^3 : |z| \leq 1 \}$ with constant negative sectional curvature $-\beta_{bH}^2$ and $-\beta_{sI}^2$ respectively. Here, $(1 - |z|^2)^{\frac{1}{2}}$ is the boundary defining function. Also, g_{bH}, g_{sI} are even asymptotically hyperbolic metrics as defined in Guillarmou [12].

After some calculation, see [19, Proposition 8.1], we conclude that there are two smooth functions W_{bH}, W_{sI} such that

$$
\alpha \Delta_X \alpha^{-1} = \rho \Delta_X \rho^{-1} = \Delta_{g_{bH}} + \rho^2 W_{bH} - \beta_{bH}^2, \text{ near } \partial X_{bH},
$$

$$
\alpha \Delta_X \alpha^{-1} = \rho \Delta_X \rho^{-1} = \Delta_{g_{sI}} + \rho^2 W_{sI} - \beta_{sI}^2, \text{ near } \partial X_{sI}.
$$

This shows the asymptotically hyperbolic structure of $\alpha \Delta_X \alpha^{-1}$ near ∂X.

Consider the dependency of the operator $\alpha \Delta_X \alpha^{-1}$ on m. Note that the manifold X varies when varying m. We change the notation from X to $X(m)$. The dependency can be fixed by transforming $X(m)$ to a fixed reference manifold. Let $\mathcal{X} = (1, 2) \times S^2$ and let

$$
\Psi : \mathcal{X} \rightarrow X(m)
$$

be a diffeomorphism defined by $(s, w) = \Psi(s, w) = (\psi(s), w)$ with

$$
\psi(s) = (s - 1)r_{sI} + (2 - s)r_{bH}.
$$

Note that Ψ extends smoothly to $\mathcal{X} \rightarrow \mathcal{X}(m)$. Since r_{bH}, r_{sI} are analytic functions of $m \in \mathcal{O}$, ψ and Ψ are also analytic in $m \in \mathcal{O}$. Now, the pull back $\rho^* = \psi^*(\rho)$ is a family of smooth boundary defining functions for $\partial \mathcal{X}$. To see their dependency on m, we write (2) as

$$
\alpha = \sqrt{\Lambda/3}(r - r_{bH})^{\frac{1}{2}}(r - r_{sI})^{\frac{1}{2}}(r - r_0)^{\frac{1}{2}}
$$

where r_{bH}, r_{sI} are two positive roots of $\alpha = 0$ and r_0 is the third negative root. Using (11) and on \mathcal{X} near ∂X_{bH}, we have

$$
\rho^* = \frac{\sqrt{\Lambda/3}(r - r_{bH})^{\frac{1}{2}}(r - r_{sI})^{\frac{1}{2}}(r - r_0)^{\frac{1}{2}}}{2\beta_{bH}r_{bH}}
$$

$$
= \frac{\sqrt{\Lambda/3}(r_{sI} - r_{bH})(s - 1)^{\frac{1}{2}}(2 - s)^{\frac{1}{2}}((s - 1)r_{sI} + (2 - s)r_{bH} - r_0)^{\frac{1}{2}}}{2\beta_{bH}r_{bH}}
$$

$$
= (s - 1)^{\frac{1}{2}}A_{bH}(s, m)
$$

where $A_{bH}(s, m)$ is defined through the last two lines. It is clear that A_{bH} is smooth in s. Since $(s - 1)r_{sI} + (2 - s)r_{bH} - r_0 > 0$ for $s \in [1, 2]$, we see that A_{bH}, hence ρ^*, is analytic in $m \in \mathcal{O}$. Near ∂X_{sI}, we have a similar form

$$
\rho^* = (2 - s)^{\frac{1}{2}}A_{sI}(s, m).
$$

From (13), (14), we see that the pull-back of the metrics are

$$
\Psi^* g_{bH} = \frac{(d\rho^*)^2}{(r_{sI} - r_{bH})^2(\beta^*)^2(\rho^*)^2} + \frac{[(s - 1)r_{sI} + (2 - s)r_{bH}]^2}{(2\beta_{bH}r_{bH})^2(\rho^*)^2} \frac{dw^2}{(\rho^*)^2}
$$

$$
\Psi^* g_{sI} = \frac{(d\rho^*)^2}{(r_{sI} - r_{bH})^2(\beta^*)^2(\rho^*)^2} + \frac{[(s - 1)r_{sI} + (2 - s)r_{bH}]^2}{(2\beta_{sI}r_{sI})^2(\rho^*)^2} \frac{dw^2}{(\rho^*)^2}
$$

near $\partial X_{bH}, \partial X_{sI}$ respectively. Here, $\beta^* = \psi^*(\beta)$.

Let $\mathcal{V}_0(\mathcal{X})$ be the Lie algebra of smooth vector fields on \mathcal{X} vanishing at $\partial \mathcal{X}$. In local coordinates (x, y) near $\partial \mathcal{X}$ with x being the boundary defining function, $\mathcal{V}_0(\mathcal{X})$ is generated by $x \partial_x, x \partial_y$. For $\kappa \in \mathbb{N}$, the space of 0-differential operators of order κ on \mathcal{X}, denoted by $\text{Diff}_0^\kappa(\mathcal{X})$, is generated by up to κ-fold products of vector fields in $\mathcal{V}_0(\mathcal{X})$. From the analyticity of the diffeomorphism Ψ in m, we see that the pull-back of $\alpha \Delta \chi \alpha^{-1}$ to \mathcal{X} is a differential operator on \mathcal{X} with coefficients analytic in m. To see that it belongs to $\text{Diff}_0^2(\mathcal{X})$ with coefficients analytic in $m \in \mathcal{O}$, we consider $\alpha \Delta \chi \alpha^{-1}$ near $\partial \mathcal{X}$ for example near $s = 1$. We change the boundary defining function from γ to $\gamma = (s - 1)^{1/2}$ so $\rho^s = \gamma A_{bH}(\gamma^2, m)$. Then the metric in (18) becomes

$$\Psi^* g_{bH} = \frac{(1 + \partial_\gamma A_{bH}(d\gamma)^2)}{(r_{sI} - r_{bH})^2(\beta^s)^2 A_{bH}^2 \gamma^2} + \frac{[s - 1] r_{sI} + (2 - s) r_{bH}]^2}{(2 \beta^s r_{bH})^2 A_{bH}^2} \frac{dw^2}{\gamma^2}$$

which is a family of Riemannian metrics on \mathcal{X} analytic in m.

4. The Resolvent Construction

We obtain an approximation of $R_X(\lambda)$ in (5) following Mazzeo–Melrose [18]. In fact, we will find the resolvent of $\alpha \Delta \chi \alpha^{-1}$ on \mathcal{X}. We will be using operators acting on half densities on \mathcal{X}. For convenience, we introduce an auxiliary Riemannian metric g_X on \mathcal{X} which equals g_{bH}, g_{sI} near $\partial \mathcal{X}_{bH}, \partial \mathcal{X}_{sI}$ respectively. Such a metric can be obtained by gluing g_{bH}, g_{sI} near $\partial \mathcal{X}$ and some Riemannian metric in the interior of \mathcal{X}. The choice is clearly not unique and its dependency on m is not important. We use g_X to trivialize the (zero) one-density bundle Ω_0, that is we take Ω_0 to be the volume form $|dg_X|$. The half-density bundle is $\Omega_{0, 1}^1$. Let x be a boundary defining function such that in local coordinates $(x, y), x \geq 0, y \in \mathbb{S}^2$ near $\partial \mathcal{X}$, g_X is expressed in form of (8). In these coordinates,

$$\Omega^\frac{1}{2}_0 = H(x, y) \frac{dx \, dy}{x}$$

for some smooth function H. Now we consider $\alpha \Delta \chi \alpha^{-1}$ acting on smooth sections $C^\infty(\mathcal{X}; \Omega_{0, 1}^\frac{1}{2})$ in the following way:

$$\alpha \Delta \chi \alpha^{-1}(u \Omega^\frac{1}{2}_0) = (\alpha \Delta \chi \alpha^{-1} u) \Omega^\frac{1}{2}_0.$$

The resolvent $R_a(\lambda) = (\alpha \Delta \chi \alpha^{-1} - \lambda^2)^{-1}$ acts on $\Omega^\frac{1}{2}_0$ in the same way.

The parametrix is constructed on the 0-double space of $\mathcal{X} \times \mathcal{X}$ as in [18]. Let $\text{Diag} = \{(z, z) \in \mathcal{X} \times \mathcal{X}\}$ be the diagonal of $\mathcal{X} \times \mathcal{X}$. Let $\partial \text{Diag} = \text{Diag} \cap (\partial \mathcal{X} \times \partial \mathcal{X})$ which has two (disjoint) connected components. As a set, the 0-double space is

$$\mathcal{X} \times_0 \mathcal{X} = (\mathcal{X} \times \mathcal{X}) \setminus \partial \text{Diag} \sqcup S_{++}(\partial \text{Diag})$$

where $S_{++}(\partial \text{Diag})$ denotes the inward pointing spherical bundle of $T^*_\partial\text{Diag} (\mathcal{X} \times \mathcal{X})$. Let

$$\beta_0 : \mathcal{X} \times_0 \mathcal{X} \rightarrow \mathcal{X} \times \mathcal{X}$$

be the blow-down map. Then $\mathcal{X} \times_0 \mathcal{X}$ is equipped with a topology and smooth structure of a manifold with corners for which β_0 is smooth. The manifold $\mathcal{X} \times_0 \mathcal{X}$ has the following boundary hyper-surfaces: the left and right faces $L = \beta_0^{-1}(\partial \mathcal{X} \times \mathcal{X})$, $R = \beta_0^{-1}(\mathcal{X} \times \partial \mathcal{X})$, $R = \beta_0^{-1}(\partial \mathcal{X} \times \partial \mathcal{X})$, $L = \beta_0^{-1}(\partial \mathcal{X} \times \partial \mathcal{X})$, $R = \beta_0^{-1}(\partial \mathcal{X} \times \partial \mathcal{X})$. [932]
Below, we let $\rho = \rho_{sI}$ near ∂X_{sI} and $\rho = \rho_{bH}$ near ∂X_{bH}. We have the following result.

Now we introduce spaces of operators on $X \times_0 X$. First, let $\mathcal{K}_0^s(X) \subset \mathcal{D}'(X \times_0 X; \Omega^1_0)$ be the space of distributional sections of the bundle Ω^1_0 which are conormal to Diag_0 and vanish to infinite order at L, R. Here, it is understood that Ω^1_0 denotes the half-density bundle lifted from the one on $X \times X$ by β_0. The corresponding class of pseudo-differential operators is denoted by $\Psi^s_0(X, \Omega^1_0)$. Next, let \mathcal{V}_b be the space of smooth vector fields on $X \times_0 X$ which are tangent to each of the boundary faces L, R, Ω. Let $\rho, \cdot = L_{bH}, L_{sI}, R_{bH}, R_{sI}, \Omega$ be boundary defining functions. We set

$$A^{a,b,c,d}(X \times_0 X) = \{ u \in \mathcal{D}'(X \times_0 X) : V_1 \cdots V_k u \in \rho^a_{L_{bH}} \rho^b_{R_{bH}} \rho^c_{L_{sI}} \rho^d_{R_{sI}} L^{\infty}(X \times_0 X), V_i \in \mathcal{V}_b, i = 1, 2, \cdots, k, \forall k \geq 0 \}. \tag{20}$$

Then define

$$\mathcal{K}_0^{-\infty,a,b,c,d}(X \times_0 X) = A^{a,b,c,d}(X \times_0 X) \otimes C^{\infty}(X \times_0 X; \Omega^1_0).$$

Finally, define

$$\mathcal{K}_0^{\infty,a,b,c,d}(X) = \mathcal{K}_0^{-\infty,a,b,c,d}(X \times_0 X) + \mathcal{K}_0^s(X).$$

Then we let $\Psi_0^{\infty,a,b,c,d}(X)$ be the space of operators on X whose Schwartz kernel when lifted to $X \times_0 X$ belongs to $\mathcal{K}_0^{\infty,a,b,c,d}(X)$.

Below, we let $\rho \in C^{\infty}(X)$ be such that $\rho = \rho_{sI}$ near ∂X_{sI} and $\rho = \rho_{bH}$ near $\partial X_{bH}. We have the following result.

$\beta_0^{-1}(X \times \partial X)$, and the front face $\ff = \beta_0^{-1}(\text{Diag})$. Since $\partial X = \partial X_{bH} \cup \partial X_{sI}$ where the asymptotic behavior of the resolvent is different at each connected component, it is convenient to introduce

$$L_{bH} = \beta_0^{-1}(\partial X_{bH} \times X), \quad L_{sI} = \beta_0^{-1}(\partial X_{sI} \times X),$$

so $L = L_{bH} \cup L_{sI}, R = R_{bH} \cup R_{sI}$, see Fig. 3. The lifted diagonal is denoted by $\text{Diag}_0 = \beta_0^{-1}(\text{Diag} \setminus \partial \text{Diag})$. $X \times_0 X$ has co-dimension two corners at the intersection of two of the boundary faces L, R, \ff and co-dimension three corners given by the intersection of all the three faces. See Fig. 3.
Proposition 4.1. There is a family of operators \(M(\lambda, m) \in \Psi_0^{-2, a, a, b, b}(\mathcal{X}) \) with
\[
a = 1 + \frac{\lambda}{\beta_{bH}} i, \quad b = 1 + \frac{\lambda}{|\beta_{sI}|} i,
\]
analytic in \(m \in \mathcal{O} \) and holomorphic in \(\lambda \in \mathbb{C} \setminus \Omega(m) \) with
\[
\Omega(m) \doteq \frac{-i}{\beta_{bH}} \mathbb{N} \cup \frac{-i}{|\beta_{sI}|} \mathbb{N} \cup \{0\}
\]
such that
\[
(\alpha \Delta_\mathcal{X} \alpha^{-1} - \lambda^2) M(\lambda, m) = \Id + E(\lambda, m).
\]
Here, \(E(\lambda, m) \in \rho_{bH}^{\infty} \Psi_0^{-\infty, \infty, a, \infty, b}(\mathcal{X}) \) is trace class on \(\rho^1 L^2(\mathcal{X}) \) for \(l > 1 - \min(\Re a, \Re b) \). Moreover, its Schwarz kernel is holomorphic in \(\lambda \in \mathbb{C} \setminus \Omega(m) \), and analytic in \(m \in \mathcal{O} \).

Proof. For fixed \(m \), the construction of \(M(\lambda, m) \) and \(E(\lambda, m) \) and their holomorphy in \(\lambda \) is essentially contained in Proposition (7.4) of [18], which applies to the Laplacian of asymptotically hyperbolic metrics. As argued in Proposition 2.2 of [21], the result applies to \(\alpha/Delta_1 \). By rescaling the operator, we find the set \(Q \) belongs to \(\Psi_1 \) and \(\mathcal{O} \). Acting between weighted \(\mathcal{X} \) and \(\mathcal{X}_sI \), the construction in [18] produces \(M(\lambda, m) \). For the meromorphic properties in \(\lambda \), it suffices to consider the operators near \(\partial X_{bH}, \partial X_{sI} \) respectively. Write \(g_{bH} = \rho^{-2} h_{bH} \). From [18, Theorem (7.1)], see also [12, Theorem 1.1], we know that the resolvent of
\[
|d\rho|^2_{2} \Delta_{g_{bH}} + \zeta (\zeta - 2)
\]
belongs to \(\Psi_0^{-2, \zeta, \zeta}(\mathcal{X}) \) and is meromorphic in \(\zeta \) with poles at \(\frac{-i}{\beta_{bH}} \mathbb{N} \cup \{0\} \). Here, we followed [18] and used a different spectral parameter \(\zeta \). Near \(\partial X_{bH}, -|d\rho|^2_{2} \) approaches \(-\beta_{bH}^2 \). Comparing (24) with (12), we get
\[
\beta_{bH}^2 \zeta (\zeta - 2) = -\lambda^2 - \beta_{bH}^2
\]
which gives \(\zeta = 1 + i\lambda/\beta_{bH} \). This gives \(a \), and \(b = 1 + i\lambda/|\beta_{sI}| \) can be found in the same way near \(\partial X_{sI} \). The set \(\Omega(m) \) comes from the poles of the resolvent of
\[
\beta_{bH}^{-2} \Delta_0 - \lambda^2 \text{ and } \beta_{sI}^{-2} \Delta_0 - \lambda^2
\]
acting between weighted \(C^\infty \) spaces on \(\mathbb{B}^3 \), see Lemma (6.15) of [18] for the precise statement. Here, \(\Delta_0 \) denotes the positive Laplacian of the standard hyperbolic metric. By rescaling the operator, we find the set \(\Omega(m) \).

Finally, we consider the mapping properties of \(E(\lambda, m) \). We recall a result [18, Lemma (5.24)] that the push forward of the space \(\rho_{bH}^{\infty} K_0^{-\infty, a, b, c, d}(\mathcal{X} \times_0 \mathcal{X}) \) is
\[
\mathcal{A}^{a, b, c, d}_0(\mathcal{X} \times \mathcal{X}; \Omega_0^{\frac{1}{2}} \otimes \Omega_0^{\frac{1}{2}}) = \bigcap_p \tau^p \mathcal{A}^{a, b, c, d}(\mathcal{X} \times \mathcal{X}), \quad \tau^2 = |y - y'|^2 + \rho^2 + (\rho')^2
\]
with \(\mathcal{A}^{a, b, c, d}(\mathcal{X} \times \mathcal{X}) \) defined similarly to (20). Let \(K_E(z, z') \) be the Schwarz kernel of \(E \). As \(E \in \rho_{bH}^{\infty} \Psi_0^{-\infty, \infty, a, \infty, b}(\mathcal{X}) \), we have the estimate
\[
|\rho^{-1}(z) K_E(z, z', \lambda, m) \rho^1(z')| \leq C \rho^{1 + \min(\Re a, \Re b)}(z')
\]
for some $C > 0$. By applying Schur’s lemma more precisely Lemma 6.2 of [19], we conclude that $E(\lambda, m)$ is bounded on $\rho^l L^2$ for $l > 1 - \min(\text{Re } a, \text{Re } b)$. To see $E(\lambda, m)$ is trace class on $\rho^l L^2$, we write

$$K_E(z, z, \lambda, m) = \rho^N \rho^a \rho^b F_N(z, \lambda, m)$$

where $F_N \in C^\infty(\overline{X})$ is analytic in $m \in \emptyset$. The integral $\int_X |K_E(z, z)|dg_X(z)$ is finite for N large so E is of trace class.

5. Proof of Theorem 1.1

We apply the resolvent to (23) to get

$$M(\lambda, m) = R_\alpha(\lambda)(\text{Id} + E(\lambda, m)).$$

Since $E(\lambda, m)$ is compact on $x^1 L^2(X)$, using the analytic Fredholm theorem, we see that for any $m \in \emptyset$, $(\text{Id} + E(\lambda, m))^{-1}$ is a family of bounded operators on $x^1 L^2(X)$, meromorphic in $\lambda \in \mathbb{C}\setminus \mathbb{Q}(m)$. The poles are the resonances.

We use the determinant of $\text{Id} + E$ to analyze the poles. We recall that if A is a trace class operator on a Hilbert space \mathcal{H} with eigenvalues $\lambda_k, k = 1, 2, \cdots$ with $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq 0$, then the Fredholm determinant $\det(\text{Id} + A) = \prod_{k=1}^{\infty} (1 + \lambda_k)$. See [9, Appendix B]. Also, $\text{Id} + A$ is invertible if and only if $\det(\text{Id} + A)$ is non-zero, see [9, Proposition B.28]. Therefore, the set of resonances of $R_\alpha(\lambda)$ is contained in the zero set of

$$K(\lambda, m) = \det(\text{Id} + E(\lambda, m)).$$

Using the argument at the end of [9, Section B.5], we conclude that $K(\lambda, m)$ is a function holomorphic in $\lambda \in \mathbb{C}\setminus \mathbb{Q}(m)$, and analytic in $m \in \emptyset$.

Now we suppose λ_0 is a resonance so $K(\lambda_0, m) = 0$. By the analyticity in m, either $K(\lambda_0, m)$ is identically zero for all m which means λ_0 is a resonance for all $m \in \emptyset$, or m is the only (discrete) zero locally. For the first alternative, we can apply Theorem 1.1 of [13] (with zero angular momentum) to conclude that the trivial resonances must be contained in $-i\sqrt{\text{Re } a} \mathbb{N} \cup \{0\}$. This proves the first assertion of Theorem 1.1.

For the stability, we write $K(\lambda, m) = (m - m_0)^N f(\lambda, m)$ for some $N \geq 0$ and f analytic in m with $f(\lambda_0, m_0) \neq 0$. Now we set $t = (m - m_0)^N$ and get

$$K(\lambda, t) = K(\lambda, m) = tf(\lambda, m_0 + t^{1/N}).$$

We see that

$$\partial_t K(\lambda, t)|_{t=0} = f(\lambda, m_0) \neq 0.$$

Using the implicit function theorem, we get that $t = g(\lambda)$ is differentiable in a neighborhood of λ_0. Thus, $|t| \leq C|\lambda - \widetilde{\lambda}|$ which implies

$$|m - \widetilde{m}| \leq C|\lambda - \widetilde{\lambda}|^{1/N}.$$

This completes the proof of the Theorem 1.1.

Acknowledgement The authors thank Peter Hintz for his thorough reading of a previous version of the manuscript and for making very useful comments. They also thank an anonymous referee for many helpful suggestions, especially for pointing out that our main theorem can be improved by using results in [13,14]. GU is partly supported by NSF, a Simons Fellowship, a Walker Family Endowed Professorship at UW and a Si-Yuan Professorship at IAS, HKUST. YW is supported by NSF under Grant DMS-2205266.
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

1. Agmon, S.: A perturbation theory of resonances. Commun. Pure Appl. Math. 51(11–12), 1255–1309 (1998)
2. Berti, E., Cardoso, V., Starinets, A.: Quasinormal modes of black holes and black branes. Class. Quantum Gravity 26(16), 163001 (2009)
3. Berti, E., Cardoso, V., Will, C.: Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73(6), 064030 (2006)
4. Bony, J.-F., Häfner, D.: Decay and non-decay of the local energy for the wave equation on the de Sitter–Schwarzschild metric. Commun. Math. Phys. 282(3), 697–719 (2008)
5. Chandrasekhar, S.: The Mathematical Theory of Black Holes. The International Series of Monographs on Physics, vol. 69. Clarendon Press, Oxford (1983)
6. Chandrasekhar, S., Detweiler, S.: The quasi-normal modes of the Schwarzschild black hole. Proc. R. Soc. Lond. A Math. Phys. Sci. 344(1639), 441–452 (1975)
7. Detweiler, S.: Black holes and gravitational waves. III–the resonant frequencies of rotating holes. Astrophys. J. 239, 292–295 (1980)
8. Dyatlov, S.: Asymptotic Distribution of Quasi-Normal Modes for Kerr-de Sitter Black Holes. Annales Henri Poincaré. Vol. 13. No. 5. SP Birkhäuser Verlag, Basel (2012)
9. Dyatlov, S., Zworski, M.: Mathematical Theory of Scattering Resonances, vol. 200. American Mathematical Soc, New York (2019)
10. Echeverria, F.: Gravitational-wave measurements of the mass and angular momentum of a black hole. Phys. Rev. D 40(10), 3194 (1989)
11. Graham, R.: Volume and area renormalizations for conformally compact einstein metrics. In: Proceedings of the 19th Winter School. Circolo Matematico di Palermo (2000)
12. Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005)
13. Hintz, P.: Mode stability and shallow quasinormal modes of Kerr-de Sitter black holes away from extremality. arXiv:2112.14431 (2021)
14. Hintz, P., Xie, Y.: Quasinormal modes of small Schwarzschild-de Sitter black holes. J. Math. Phys. 63(1), 011509 (2022)
15. Howland, J.: Puiseux series for resonances at an embedded eigenvalue. Pac. J. Math. 55(1), 157–176 (1974)
16. https://www.cs.cornell.edu/bindel/cims/resonant1d/
17. Isi, M., Giesler, M., Farr, W., Scheel, M., Teukolsky, S.: Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 123(11), 111102 (2019)
18. Mazzeo, R., Melrose, R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)
19. Melrose, R., Sá Barreto, A., Vasy, A.: Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces. Commun. Partial Differ. Equ. 39(3), 452–511 (2014)
20. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic, New York (1978)
21. Sá Barreto, A., Zworski, M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4(1), 103–121 (1997)

Communicated by S. Dyatlov