Which Pomeron survives at LHC energies?

A. Lengyel and Z. Tarics

Institute of Electron Physics, Uzhgorod, 88017, Ukraine
alexander-lengyel@rambler.ru
tarics1@rambler.ru

Abstract

An eikonalized elastic proton-proton and proton-antiproton scattering amplitude $F(s, t)$, based on the suggestion of a finite sum of ladder diagrams, calculated from QCD and the number of s-channel gluon rungs and correspondingly the powers of logarithms in total cross section depends on available increasing energy. Explicit expressions for total cross section involving three and four rungs (four and five prongs) with $\ln^3(s)$ and $\ln^4(s)$ as highest terms, respectively) are fitted to the all available proton-proton and proton-antiproton total cross section data. Predictions for pp total cross section at LHC energy are given and compared with prediction of several Regge-models including possible hard Pomeron contribution.

1 Introduction

The renewed interest in high-energy soft interactions is largely triggered by the recent LHC measurements by the TOTEM [1] measurements of pp scattering. The accessible energies offer new possibilities to check the basic theoretical concepts, such as unitarity and the properties of the (multy) Pomeron exchanges.

In the present paper we develop further and calculate the effects coming from the inclusion of both a ”soft” and ”hard” Pomeron, the Pomeron being a finite sum of reggeized gluon ladders, different from the ”QCD Pomeron”, which is an infinite sum of such ladders [2, 3, 4], resulting in the so-called supercritical behavior of the total cross section. In that approach, the main contribution to the inelastic amplitude and to the absorptive part of the elastic amplitude in the forward direction arises from the multi-Regge kinematics in the limit $s \to \infty$ in leading logarithmic approximation. In the next-to-leading logarithmic approximation, corrections require also the contribution from the quasi-multi-Regge kinematics [5]. Hence, the subenergies between
neighboring s-channel gluons must be large enough to remain in the Regge
domain. At finite total energies, this implies that the amplitude is rep-resented by a finite sum of N terms [6], where N increases like ln s, rather
than by the solution of the BFKL integral equation [2, 3, 4]. The interest
in the first few terms of the series is related to the fact that the energies
reached by the present accelerators are not high enough to accommodate for
a large number of s-channel gluons that eventually hadronize and give rise
to clusters of secondary particles [7]. Consequently, one can expand the
"supercritical" Pomeron \(\sim s^{\alpha_{p}(0)} \) in powers of ln(s).

In Ref. [6] a model for the Pomeron at \(t = 0 \) based on the idea of a finite
sum of ladder diagrams in QCD was suggested. According to the idea of that
paper, the number of s-channel gluon rungs and correspondingly the powers
of logarithms in the forward scattering amplitude depends on the phase space
(energy) available, i.e. as energy increases, progressively new prongs with
additional gluon rungs in the s-channel open. Explicit expressions for the
total cross section involving two and three rungs or, alternatively, three and
four prongs (with ln\(^2\)(s) and ln\(^3\)(s) as highest terms, respectively) were fitted
to the proton-proton and proton-antiproton total cross section data in the
accelerator region. In a related paper [8] the Pomeron was considered as a
finite series of ladder diagrams, including one gluon rung besides the Low-
Nussinov "Born term" [9] and resulting in a constant plus logarithmic term
in the total cross section. With a sub-leading Regge term added, good fits
to pp and pp total as well as differential cross section were obtained in [8].
There is considered the opening channels (in s) as threshold effects, the
relevant prongs being separated in rapidity by ln \(s_0 \), \(s_0 \) being a parameter
related to the average subenergy in the ladder. Within the "finite gluon
ladder approach" to the Pomeron (see [6] and references therein), several
options are possible. In Ref. [6] a system of interconnected equations was
solved with several free parameters, including the value of \(s_0 \), that determine
the opening of each threshold (prong). In that paper finite gluon ladders
were calculated from QCD, where the important dynamical information is
contained in \(\rho \) of Eq. (7) of that paper, including ln s terms multiplied by the
QCD running constant \(\alpha_s \) constraining the interconnection between various
powers of the logarithms in the total cross section. In [10] an unitariza-
tion procedure was also included: the QCD-inspired amplitude was treated as a
Born term, subject to a subsequent unitarization procedure.

In present paper we use the abovementioned "finite gluon ladder ap-
proach" to the unitarized QCD-inspired amplitude of [10] and calculate the
values of \(pp \) total cross section at LHC energy 7 and 14 TeV for several possible \(s_0 \). For the sake of completeness, we compare the \(pp \) total cross section resulting from this model with those from popular alternatives, such as: exponential, double logarithmic form and the DL two-Pomeron model [11]. Fits to the \(pp \) and \(p\bar{p} \) data is performed from \(\sqrt{s} = 5 \text{GeV} \) up to highest energy data [1], [12].

2 Total cross sections from a finite sum of gluon ladders

Following [6], we write the Pomeron contribution to the total cross section in the form

\[
\sigma_t^{(P)}(s) = \sum_{i=0}^{N} f_i \theta(s - s_i^0) \theta(s_i^{i+1} - s),
\]

(1)

where

\[
f_i = \sum_{j=0}^{i} a_{ij} L^j,
\]

(2)

\(s_0 \) is the prong threshold, \(\theta(x) \) is the step function and \(L \equiv \ln(s) \). Here and in the following, by \(s \) and \(s_0 \) respectively, \(s/(1 \text{GeV}^2) \) and \(s_0/(1 \text{GeV}^2) \) are implied. The main assumption in Eq. (1) is that the widths of the rapidity gaps \(\ln(s_0) \) are the same along the ladder. The functions \(f_i \) are polynomials in \(L \) of degree \(i \), corresponding to finite gluon ladder diagrams in QCD, where each power of the logarithm collects all the relevant diagrams. When \(s \) increases and reaches a new threshold, a new prong opens adding a new power in \(L \). In the energy region between two neighboring thresholds, the corresponding \(f_i \), given in Eq. (1), is supposed to represent adequately the total cross section.

In Eq. (1) the sum over \(N \) is a finite one, since \(N \) is proportional to \(\ln(s) \), where \(s \) is the present squared c.m. energy. Hence, this model is quite different from the "canonical" approach [2], where, in the limit \(s \to \infty \), the infinite sum of the leading logarithmic contributions gives rise to an integral equation for the amplitude.

To make the idea clear, we first describe the mechanism in the case of three gaps (two rungs). In this case

\[
f_0(s) = a_{00}
\]

(3)
for
\[s \leq s_0, \]
\[f_1(s) = a_{10} + a_{11}L \]
\[\text{for} \]
\[s_0 \leq s \leq s_0^2, \]
\[f_2(s) = a_{20} + a_{21}L + a_{22}L^2 \]
\[\text{for} \]
\[s_0^2 \leq s \leq s_0^3, \]

By imposing the requirement of continuity (of the cross section and of its first derivative) one constrains the parameters.

The same procedure can be repeated for any number of gaps.

Notice that the values of the parameters depend on the energy range of the fitting procedure. For example, the values of the parameters in \(f_0 \) is fitted in "its" range, i.e. for \(s \leq s_0 \), will get modified in \(f_1 \) with the higher energy data and correspondingly higher order diagrams included.

As a first attempt, only three rapidity gaps, that correspond to two gluon rungs in the ladder were considered [6]. Fits to the \(p\bar{p} \) and \(pp \) data were performed up to the highest energy Tevatron data 1.8 TeV. The value of the rapidity gap turned out to be \(\sqrt{s_0} \approx 12 \text{ GeV} \), i.e. the value for which the energy range considered is covered with equal rapidity gaps uniformly.

3 Fit with the Unitarized QCD-inspired Pomeron

From the theoretical point of view, the phenomenological model of Section 2 corresponds to the explicit evaluation in QCD of gluonic ladders with an increasing number of s-channel gluons. This correspondence is far from literal since each term of the BFKL series takes into account only the dominant logarithm in the limit \(s \to \infty \). In the following we give concrete expressions for the forward high energy scattering amplitudes for hadrons in the form of an expansion in powers of large logarithms in the leading logarithmic approximation.

We start from known results obtained in paper [3] where an explicit expression for the total cross section for hadron-hadron scattering has been
obtained. In the high energy limit, it is convenient to introduce the Mellin
transform of the amplitude
\[
\mathcal{A}(\omega, t) = \int_0^\infty d\tilde{s} \tilde{s}^{\omega-1} \frac{\text{Im}_s \mathcal{A}(s, t)}{s}, \quad \tilde{s} = \frac{s}{m^2}. \tag{9}
\]

To obtain the total cross section of proton-proton scattering it was used [10] the ansatz of Ref. [13] for the impact factor of a hadron in terms of its
form factor \(\Phi(q^2) \):
\[
\Phi_0(k) = ak^2 e^{-bk^2}, \tag{10}
\]
as a result
\[
\sigma_t(s) = \frac{\pi a^2}{2c} \left\{ 1 + 2(\ln 2)\rho + \left[\frac{\pi^2}{12} + 2(\ln 2)^2 \right] \rho^2 + \frac{1}{3} \left[\frac{\pi^2}{2}(\ln 2) + 4(\ln 2)^3 - \frac{3}{4}\zeta(3) \right] \rho^3 + \ldots \right\}, \tag{11}
\]
where \(\rho \) defined as
\[
\rho = \frac{3\alpha_s}{\pi} \ln \tilde{s} \tag{12}
\]
and \(\zeta(3) \) is the Riemann’s Zeta function \(\zeta(3) \approx 1.202 \).
This approach was used [10] to predict the total cross section and ratio of
real part of elastic amplitude to it imaginary part at LHC energy. The strong
coupling \(\alpha_s \) is assumed to be frozen at a suitable scale set, for example, by
the external particles.

Now we proceed with a fit and predictions with another Pomeron contri-
bution corresponding to four rungs:
\[
\sigma_t = (\pi a^2/(2b))[1 + c_1 \rho + c_2 \rho^2 + (c_3/3)\rho^3 + (c_4/12)\rho^4 + \ldots], \tag{13}
\]
where
\[
c_1 = 2(\ln 2), \quad c_2 = \frac{\pi^2}{12} + 2(\ln 2)^2, \\
c_3 = 3,8511 \text{ and } c_4 = 10,145.
\]
Apart the calculations of the total cross section involving fits of a variety of Pomeron models, it is interesting to estimate the value of s_0, a basic parameter in the finite series of QCD diagrams. Each set is 'active' in its rapidity gap, i.e. the parameters a_{ij} in (2) should be fitted in each energy interval separately and relevant solutions should match by imposing continuity of the total cross section and of its first derivative. Here we present the result of a fits to the existing experimental data (including the new LHC data [1]) and predict the values of the total cross section at the next LHC energy with the unitarized contribution of the explicit BFKL iteration. As will be seen below, the values of s_0 are quite constrained by the fits.

First of all, in the framework of our approach we must put $\sqrt{s_0} > 5$ GeV. As a convenient minimal value of rapidity gap we chosen $\sqrt{s_0} = 6.8$ GeV, where in estimating $\sigma_{\text{tot}}(pp)$ we are restricted by the maximal power $\ln^4(s)$. From the experimental data $\sqrt{s_0} \leq 24$ GeV, one expects a high-quality description of the total cross section with the Pomeron contribution of Eq. (3), including relevant secondary Regge-pole terms. To cover the whole fitted range, we choose the interval 10.9 GeV $\leq \sqrt{s_0} \leq 24$ GeV, where four gaps are sufficient to estimate of total cross section at the maximal LHC energy.

$$f_3(s) = a_{30} + a_{31}L + a_{32}L^2 + a_{33}L^3$$

(14)

for

$$s_0^3 \leq s \leq s_0^4.$$ (15)

For the remaining part of the studied region 6.8 GeV $\leq \sqrt{s_0} \leq 10.9$ GeV it is necessary to take into account five gaps to estimate the total cross section at the LHC.

$$f_4(s) = a_{40} + a_{41}L + a_{42}L^2 + a_{43}L^3 + a_{44}L^4.$$

(16)

for

$$s_0^4 \leq s \leq s_0^5.$$ (17)

Below we perform such calculations in the framework of the eikonal formalism and compare the results with the experimental data. We start from Eq.(13) for the pp and $\bar{p}p$ total cross section. Supplying that expressing with an exponential t-dependence, we get the elastic scattering amplitude:

$$F_{\text{Born}}(s,t) = A(-i\tilde{s})^{1+\alpha't} \times$$

$$[a_0 + a_1\gamma\ln(-i\tilde{s}) + a_2\gamma^2\ln^2(-i\tilde{s}) + a_3\gamma^3\ln^3(-i\tilde{s})]e^{Bt},$$ (18)
where α' and B are fitting parameters, γ determined as (12) and

$$a_0 = 1 + \frac{\pi^2}{4}\left(\frac{\pi^2}{12} + 2 \ln^2 2\right)\gamma^2,$$

$$a_1 = \frac{\pi^2}{4}\left[\frac{\pi^2}{2} \ln 2 + 4 \ln^3 2 - \frac{3}{4} \zeta(3)\right]\gamma^2 + 2 \ln 2,$$

$$a_2 = \frac{\pi^2}{12} + 2 \ln^2 2,$$

$$a_3 = \frac{1}{3}\left[\frac{\pi^2}{2} \ln 2 + 4 \ln^3 2 - \frac{3}{4} \zeta(3)\right].$$

$$A = -\frac{a_2^2}{8c}. \quad (19)$$

In the eikonalization procedure we follow Ref. [14], according to which the Pomeron amplitude

$$F_P(s, t) = is \int_0^\infty b db J_0(b\sqrt{-t})\left(1 - e^{i\chi(b, s)}\right), \quad (20)$$

where J_0 is the Bessel function of zeroth order and the eikonal χ is

$$\chi(s, b) = \frac{1}{s} \int_0^\infty \sqrt{-td\sqrt{-t}} I_0(b\sqrt{-t}) F_{\text{Born}}(s, t). \quad (21)$$

Inserting the expression for the Pomeron into Eq. (21) and expanding the exponential in (20), one find for the eikonalized Pomeron amplitude

$$F_P = 2is\xi \sum_{k=1}^\infty \frac{1}{kk!} \left(-\frac{\xi}{\mu}\right)^{k-1} e^{\mu t/k}. \quad (22)$$

The corresponding forward Pomeron amplitude is

$$F_P(s, t = 0) = 2is\mu[C + \ln(\xi/\mu) + E_1(\xi/\mu)], \quad (23)$$

where

$$\mu = B + \alpha' \ln(-i\tilde{s}); \quad (24)$$

$$\xi = \frac{A}{2m^2}(\xi_0 + \xi_1 + \xi_2 + \xi_3), \quad (25)$$

and

$$\xi_0 = a_0, \quad \xi_1 = a_1 \gamma \ln(-i\tilde{s}), \quad (26)$$
Figure 1: Total $\bar{p}p$ (upper curve) and pp cross sections from the uniratized (eikon-alized) version of the model. The vertical lines correspond to boundaries of rapidity gaps.

$$\xi_2 = a_2 \gamma^2 \ln^2(-i\tilde{s}), \quad \xi_3 = a_3 \gamma^3 \ln^3(-i\tilde{s}),$$

where $C = 0.577216$ is the Euler constant and E_1 is the asymptotic form of the first order exponential integral:

$$E_1 = \frac{\exp(-\xi/\mu)}{\xi/\mu} \left[1 - \frac{1}{\xi/\mu} + \frac{2}{(\xi/\mu)^2} - \frac{6}{(\xi/\mu)^3} + \ldots \right].$$

For the case of four rungs, the Born amplitude is

$$F_{\text{Born}}(s, t) = A(-i\tilde{s})^{1+\alpha'}[a_0 + a_1 \gamma \ln(-i\tilde{s}) + a_2 \gamma^2 \ln^2(-i\tilde{s}) +$$

$$+ a_3 \gamma^3 \ln^3(-i\tilde{s}) + a_4 \gamma^4 \ln^4(-i\tilde{s})]e^{Bt},$$

where

$$a_0 = 1 + \left(\frac{\pi \gamma}{2}\right)^2 \left(\frac{\pi^2}{12} + 2 \ln^2 2\right) + 5c_4 \left(\frac{\pi \gamma}{2}\right)^4,$$
\[
\begin{aligned}
 a_1 &= \frac{\pi^2}{4} \left[\frac{\pi^2}{2} \ln 2 + 4 \ln^3 2 - \frac{3}{4} \zeta(3) \right] \gamma^2 + 2 \ln 2, \\
 a_2 &= \frac{3\pi^2}{2} c_4 \gamma^2 + \frac{\pi^2}{12} + 2 \ln 2, \\
 a_3 &= \frac{1}{3} \left[\frac{\pi^2}{2} \ln 2 + 4 \ln^3 2 - \frac{3}{4} \zeta(3) \right], \\
 a_4 &= \frac{1}{12} c_4 \gamma^4
\end{aligned}
\]

where \(A, \mu \) and \(\gamma \) are the same.

\[
\xi = \frac{A}{2m^2}(\xi_0 + \xi_1 + \xi_2 + \xi_3 + \xi_4),
\]

and

\[
\begin{aligned}
 \xi_0 &= a_0; \\
 \xi_1 &= a_1 \gamma \ln(-i\bar{s}); \\
 \xi_2 &= a_2 \gamma^2 \ln^2(-i\bar{s}); \\
 \xi_3 &= a_3 \gamma^3 \ln^3(-i\bar{s}); \\
 \xi_4 &= a_4 \gamma^4 \ln^4(-i\bar{s}).
\end{aligned}
\]

The obtained eikonalized Pomeron terms are appended by a contributions from secondary reggeons, \(\rho \) and \(\omega \):

\[
F_R^\pm (s, t = 0) = g_s \bar{s}^{\alpha_s (0)} \pm ig_\omega \bar{s}^{\alpha_\omega (0)},
\]

where the \(+\)\((-\)) sign corresponds to \(\bar{p}p(pp) \) scattering, the resulting forward amplitude being

\[
F_{pp}^- (s, t = 0) = F_{pp} (s, t = 0) + F_R^\pm (s, t = 0).
\]

For the total cross section the norm

\[
\sigma = \frac{4\pi}{s} Im F_{pp}^- (s, t = 0)
\]

was used.

Consider in more detail the fitting procedure in the approach with different numbers of rungs (power of log's). In the case of 3 rungs, for values \(\sqrt{s_0} \) within the interval 10.9 GeV - 24 GeV the whole range of the data
$5 \text{ GeV} \leq \sqrt{s}$ is covered. We have chosen the parameters $B = 0.116$ and $\alpha' = 0.134 \ [10]$.

The parameters of secondary reggeons are the same for whole fitted experimental data region. Notice that in this approach for the Pomeron contribution there is only one free parameter in every separate interval. Therefore, for its determination, in principle, it is sufficient to have one experimental point. In our case this condition is fulfilled.

To estimate s_0 in the remaining part of the whole investigated region $6.8 \text{ GeV} \leq \sqrt{s_0} \leq 10.9 \text{ GeV}$, we added the new LHC [1] data as well as the less reliable cosmic-ray data [15]. In our calculations s_0 is not a free parameter. Instead, we have performed a series of fits and have chosen a value s_0 for the cases where $\chi^2/dof \approx 1$. We find, that this condition is valid in the whole interval $6.8 \text{ GeV} \leq \sqrt{s_0} \leq 10.9 \text{ GeV}$, where α_s is rather small ≈ 0.08 and the prediction of total cross section at 7 TeV LHC energy crosses the experimental value within the error bars. In case three rungs, however, the predicted value is unacceptable low. In table 1. and fig 1. two of the best fits for $s_0 = 49 \text{ GeV}^2$ and $s_0 = 121 \text{ GeV}^2$ are quoted. Throughout this paper we chosen the fits with $(\chi^2/dof) \leq 1.0$.

4 $\sigma_{tot}(s)$ fits for different Pomeron models

Here we repeat our previous fit [10] limiting ourselves by 163 data points on pp and $\bar{p}p$ total cross-sections in the range $5 \text{ GeV} \leq \sqrt{s} \leq 1.8 \text{ TeV}$ [12], however adding the new LHC experimental point at 7 TeV with the results and predictions for pp total cross section at the LHC energies quoted in Table 2. For the completeness and comparison we performed also the fits of known Regge-models with different the Pomerons used. The variety of the Pomeron-models [16] for the total cross section, can be distributed to three groups:

Tripole Pomeron

$$ImF_p (s, t = 0) = a_0 + a_1 ln^2 (\tilde{s}), \quad (33)$$

Supercritical soft Pomeron

$$ImF_p (s, t = 0) = a_0 + a_1 \tilde{s}^{\alpha_s}. \quad (34)$$

To this end we have added the two-component Donnachie-Landshoff Pomeron model [11]

$$ImF_p (s, t = 0) = a_0 + a_1 \tilde{s}^{\alpha_s} + a_2 \tilde{s}^{\alpha_h}. \quad (35)$$
Table 1: Values of the fitted parameters and calculated total cross sections at the LHC energies. A in the (18) for different i rung

Parameter	3 rungs		4 rungs	
	value	error	value	error
A_0	3.61	1.11	4.83	0.25
A_1	1.77	0.92	3.44	0.25
A_2	1.06	0.64	2.63	0.26
A_3	0.59	0.46	2.09	0.27
A_4	-	-	1.66	0.27
α_s	0.145	0.049	0.084	0.007
g_f	-6.17	0.53	-7.67	0.32
$\alpha_f(0)$	0.681	0.028	0.633	0.011
g_ω	3.61	0.17	3.72	0.18
$\alpha_\omega(0)$	0.463	0.015	0.452	0.015
s_0, GeV^2	121.0	-	49.0	-
$\sigma(pp), mb$				
7 TeV	92.2	1.5	94.8	1.5
14 TeV	102.6	2.1	106.6	1.9
The hard Pomeron contribution to the pp- and $\bar{p}p$- total cross section is much smaller than the soft one and it is hard to determine it directly. However, as it was shown in [17], the data for the total cross section and for real part of elastic amplitude indicate the presence of a hard Pomeron in πp and $K p$ elastic scattering at $t = 0$, compatible with that observed in deep inelastic scattering. The inclusion of these two Pomerons, together with use of the integral dispersion relation and subleading Reggeons, leads to a successful description of all hadron and photon scattering on proton data for $5 \text{ GeV} \leq s \leq 100 \text{ GeV}$ [17]. The two-Pomeron approach is also compatible with pp and $\bar{p}p$ data, provided one unitarizes it at high energies. It was found that the contribution of the hard Pomeron relative to the soft one is $0.17/55$ (see Tab. 4. in [17]). In the last case we eikonalized the Pomeron terms (see the previous part).

For the soft and hard Pomeron, the eikonalized contribution has the form

$$\xi = \xi_0 + \xi_1 + \xi_2,$$

with

$$\xi_0 = a_0, \quad \xi_1 = a_1 (-\tilde{s})^{\delta_s},$$

corresponding to to the soft Pomeron and

$$\xi_2 = a_2 (-\tilde{s})^{\delta_h}$$

corresponding to the hard one, where $\delta_s = 0.08$ and $\delta_h = 0.45$ [17]. To perform the fit we need to include the contributions from secondary reggeons, ρ and ω. [30]. The normalization of the total cross section is the same as in the previous section [32]. Fits of all models to pp and $\bar{p}p$ total cross section data were performed in the range $5 \text{ GeV} \leq \sqrt{s} \leq 7 \text{ TeV}$, the quality of fit being $\chi^2/dof \leq 1.0$. The results along with the expected values for the total cross section at maximal LHC energy are quoted in Table 2.

All calculated values fit the new experimental data [11] and predict almost the same values at next LHC energy except the unitarized two-pomeron model, which predict the value exceeding 120 mb.
Table 2: Prediction of Pomeron models for total cross section at LHC energies

\sqrt{s}, TeV	$\sigma_{\text{tot}}(pp), \text{mb}$
7	98.4 ± 0.9
	110.4 ± 0.7
14	98.7 ± 0.9
	111.8 ± 1.0
tripole	101.8 ± 1.4
	120.1 ± 1.7
soft	96.5 ± 0.5
	107.6 ± 0.6
sof+hard	94.9 ± 1.3
	105.7 ± 1.3
QCD, 2 rungs	96.8 ± 1.3
	107.1 ± 1.5
QCD, 3 rungs	96.8 ± 1.3
	107.1 ± 1.5
QCD, 4 rungs	96.8 ± 1.3
	107.1 ± 1.5

5 Conclusions

Our main goal was an adequate picture of the Pomeron exchange at $t = 0$. In our opinion, it is neither an infinite sum of gluon ladders as in the BFKL approach [2, 3, 4], nor its power expansion. In fact, the finite series - call it "threshold approach" - considered in Sec. 2. and 4. and in the previous papers [6], realizes a non-trivial dynamical balance between the total reaction energy and the subenergies equally partitioned between the multiperipheral ladders.

The role and the value of the width of the gap s_0, is an important physical parameter, independent of the model presented above. We have fitted it and obtained the value which exceeds our previous estimates [6]. Another goal of the present investigation was the prediction of the proton-proton total cross section at the maximal LHC energy with several Regge- and QCD-inspired Pomeron models. We checked the traditional Regge-models as well as the controversial case of the hard Pomeron. In this case we predict the largest value for the total cross section, $\approx 120 \text{ mb}$ (see also [15]). All model fits give values of $\sigma(s)$ compatible with the experiment at 7 TeV within the error bars and consequently cannot be ruled out.

Acknowledgments

This work was done in the framework of the Hungarian Academy of Sciences Fellowship for Transfrontiery Hungarian Science. We thank V. Bitev, L. Jenkovszky, and E. Kuraev and for discussions and valuable collaboration.
References

[1] TOTEM Collaboration G.Antchev et al. Europhys.Lett 96 21002 (2011).

[2] E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)].

[3] Ya.Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

[4] L.N. Lipatov, Zh. Eksp. Teor. Fiz. 90, 1536 (1986) [Sov. Phys. JETP 63, 904 (1986)].

[5] V.S. Fadin, L.N. Lipatov, Phys. Lett. B429, 127 (1998) and references therein.

[6] R. Fiore, L.L. Jenkovszky, A.I. Lengyel, F. Paccanoni, A. Papa, arXiv: hep-ph/0002100 9; R. Fiore, L. Jenkovszky, E. Kuraev, A. Lengyel, F. Paccanoni, and A. Papa, Phys. Rev. D 63 056010 (2001).

[7] A. Achilli, R. Godbole, A. Grau, and Y.N. Srivastava, QCD Mini-Jet Contribution to the Total Cross-Section, hep-ph/0907.0949; R.M. Godbole, A. Grau, G. Pancheri, and Y.N. Srivastava, QCD and Total Cross-Sections: Photons and Hadrons, hep-ph/0812.4705.

[8] M.B. Gay Ducaty, M.V.T. Machado. Phys.Rev. B 63, 094018 (2001).

[9] F.E. Low, Phys. Rev. D12 (1975) 163; S. Nussinov, Phys. Rev. Lett. 34, 1286 (1975).

[10] R. Fiore, L. Jenkovszky, E. Kuraev, A. Lengyel and Z. Tarics, Phys. Rev. D 81 056001 (2010), hep-ph/090160.

[11] A. Donnachie and P.V. Landshoff, Phys. Lett. B123, 345 (1983); Nucl. Phys. B267, 690 (1986); Elastic scattering at LHC, hep-ph/1112.2485v1.

[12] See, http://www.ppds.ihep.su:8001/hadron.html

[13] E. Levin and M. Ryskin , Sov. J. Nucl. Phys. 34, 619 (1981); Phys. Rep. 189, 267 (1990).

[14] P. Kroll, Fortschritte d. Physik, 24 565 (1976).
[15] M. Honda et al., Phys. Rev. Lett. 70, 525 (1993).

[16] J. R. Cudell, V. Ezhela, K. Kang, S. Lugovsky, N. Tkachenko, Phys. Rev. D61, 034019 (2000). Degeneracy of the

[17] J. R. Cudell, E. Martynov, O. Selyugin, A. Lengyel, Phys. Lett. B 587, 78 (2004).

[18] O. V. Selyugin and J. R. Cudell. DESY-PROC-2007-02 (2006) 260-266.