Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Preparation of IgG imprinted polymers by metal-free visible-light-induced ATRP and its application in biosensor

Ru Bai, Yue Sun *, Mengyuan Zhao, Zhen Han, Juntong Zhang, Yuze Sun, Wenjing Dong, Siyu Li

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China

ARTICLE INFO

Keywords:
Metal-free visible-light-induced ATRP
Molecular imprinted polymers
Immunoglobulin G
Electrochemical biosensor

ABSTRACT

Immunoglobulin G (IgG) is related to the occurrence of many diseases, such as measles and inflammatory. In this paper, IgG imprinted polymers (IgGIPs) were fabricated on the surface of nano Au/nano Ni modified Au electrode (IgGIPs/AuNCs/NiNCs/Au) via metal-free visible-light-induced atom transfer radical polymerization (MVIA TRP). The IgGIPs were prepared by IgG conjugated with fluorescein isothiocyanate (FITC-IgG) as both a template and a photocatalyst. After the templates were removed, the photocatalysts (FITC) would not remain in the polymer and avoided all the effect of catalysts on the electrode. The fabricated electrodes were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Under the optimized conditions, IgGIPs/AuNCs/NiNCs/Au was prepared and used as an electrochemical biosensor. The biosensor could be successfully applied for the determination of IgG by differential pulse voltammetry (DPV) measurement. The results showed that the proposed biosensor displayed a broader linear range and a lower detection limit for IgG determination when it was compared to those similar IgG sensors. The linear range from \(1.0 \times 10^{-8}\) mg L\(^{-1}\) to \(1.0 \times 10^{-1}\) mg L\(^{-1}\) was obtained with a low detection limit (LOD) of \(2.0 \times 10^{-8}\) mg L\(^{-1}\) (S/N = 3). Briefly, the biosensor in this study introduced an easy and non-toxic method for IgG determination and also provided a progressive approach for designing protein imprinted polymers.

1. Introduction

Immunoglobulin G (IgG) is the most important antibody for the mammal with antiviral, neutralizing virus, antibacterial and immunomodulatory functions, and it is always closely related to the occurrence of many diseases, such as measles, inflammatory, primary and secondary immuno-deficiencies [1–9]. At present, the detection of IgG antibody in blood is also one of the crucial methods to determine the infection of COVID-19 [10]. Accurate determination of trace IgG plays an essential role in clinical detection as well as in basic medical research. Common ways for IgG detection are enzyme-linked immunosorbent assay (ELISA) [11], fluoroimmunoassays [12], electrochemical immunosensor [3] and chemiluminescence immunoassays [13]. However, these methods usually need antibody, which is difficult to prepare, purify and preserve. These drawbacks prompt researchers to explore better stability and low-cost methods for IgG detection.

Molecular imprinted polymers are generally considered to be substitutes of natural antibodies [14–17], which are synthesized by forming a polymer network around the template. When the template is removed, chemically and spatially complementary voids (imprints) are left in the polymer network that are capable of recombining the template [18]. To date, the imprinting technique of small molecules has been well-established [19–21], while there are still some difficulties for the successful imprinting of proteins. The large molecular weight and the slow mass transfer rate of the protein result in the bad recognition of imprinted polymers. Aiming at overcoming these problems, scientists have proposed surface imprinting, that is, limit all binding sites to the accessible surfaces for removal and binding of proteins [22]. Normally, surface imprinting needs a thin polymer layer on the surface of the carrier, thus it puts forward higher request to the preparation technology of polymers.

“Living”/controlled atom transfer radical polymerization (ATRP) is one of the most efficient techniques for synthesis of polymers with tunable molecular weights, low dispersities, defined chemical composition and complex architecture [23–25], and is also an important technique for designing and preparing protein imprinted polymers. For example, Yildirim et al. [26] designed myoglobin imprinted polymer films on silicon wafers by surface-initiated ATRP. Narapravatphong et al.

* Corresponding author.
E-mail address: yuesun@lnnu.edu.cn (Y. Sun).

https://doi.org/10.1016/j.talanta.2021.122160
Received 17 July 2020; Received in revised form 22 January 2021; Accepted 26 January 2021
Available online 29 January 2021
0039-9140/© 2021 Elsevier B.V. All rights reserved.
2.3. Preparation of IgGIPs/AuNCs/NiNCs/Au

The synthesis of IgGIPs/AuNCs/NiNCs/Au was illustrated in Fig. 1. AuNCs/NiNCs/Au was firstly prepared according to the method reported previously [36]. The as-prepared thiol initiator, which was synthesized based on literature [37], was immobilized on the surface of AuNCs/NiNCs/Au as reported early [38]. Then the monomer (AM, 1.2500 g), cross-linker (MBA, 0.8516 g), template (IgG, 0.0020 g; FITC-IgG, 4 μL) and TEA (0.25 mL) were dissolved in PBS (pH 7.4, 18.75 mL). After purging with nitrogen for 10 min, the initiator modified electrode was inserted into the solution and illuminated under visible light for 6 h to conduct the polymerization on the surface of AuNCs/NiNCs/Au electrode.

IgG template was removed from the electrode by soaking in 10% (v/v) 2-propanol solution containing 10 g/L SDS for 1 h and assisted by electric potential of −0.6 V [39]. After washing with PBS three times, the AuNCs/NiNCs/Au modified with IgGIPs (IgGIPs/AuNCs/NiNCs/Au) was obtained.

The non-imprinted polymers modified electrode (NIPs/AuNCs/NiNCs/Au) was synthesized by the same method without mouse IgG and replacing FITC-IgG with fluorescein.

2.4. Determination of IgG

The determination of IgG by IgGIPs/AuNCs/NiNCs/Au electrode was studied by measuring the intensity of the peak current of a redox probe by DPV method using PBS (pH 7.0) containing 0.1 M KCl and 5 mM [Fe (CN)₆]³⁻/⁴⁻ as electrolyte. For this, the DPV of [Fe(CN)₆]³⁻/⁴⁻ redox probe was firstly recorded by prepared IgGIPs sensor from 0.00 to 0.45 V with an increment potential of 4 mV, amplitude of 50 mV, a pulse width of 0.2 s and a pulse period of 0.5 s. Then this sensor was incubated in IgG solution for 5 min and rinsed three times with PBS solution, it was placed in electrolyte and the corresponding DPV of [Fe(CN)₆]³⁻/⁴⁻ was recorded again. Quantitative analysis of IgG was done based on the signal response (ΔI), which was the difference of the peak current of redox probe in the absence and presence of template IgG.

3. Results and discussion

3.1. Characterization of IgGIPs/AuNCs/NiNCs/Au

The surface of the modified electrode was observed by SEM and shown in Fig. 2. As could be seen, AuNCs/NiNCs/Au showed flowers structure with a diameter of about 300 nm (Fig. 2A and D). After the polymerization, polymers/AuNCs/NiNCs/Au (Fig. 2B) and IgGIPs/AuNCs/NiNCs/Au (Fig. 2C) had the similar morphology with AuNCs/NiNCs/Au (Fig. 2A) at low magnification. When they were observed at high magnification, obvious differences could be seen. A blurred edge appeared on the surface of AuNCs/NiNCs/Au electrode due to the formation of a polymer film (Fig. 2E), while a porous topology appeared on the surface of IgGIPs/AuNCs/NiNCs/Au in Fig. 2F, which could be attributed to the imprinted structures formed by the elution of IgG from polymers/AuNCs/NiNCs/Au.

CV and EIS were used to efficiently indicate the changes on the electrode surface after each modification step. Fig. 3A demonstrated the results of CV characterization. It could be clearly seen that there was an approximately reversible redox peak of [Fe(CN)₆]³⁻/⁴⁻ probe at the bare
Au (Fig. 3A curve 1), showing the conducting nature of bare electrode [40]. Decoration of nano Au/nano Ni on the surface of bare gold increased evidently the peak current (Fig. 3A curve 2), indicating nanomaterials enlarged the effective electrode surface area and raised electron transfer rate [36]. For polymers/AuNCs/NiNCs/Au electrode (Fig. 3A curve 3), the diffusion of the \([\text{Fe(CN)}_6]^{3-/4-}\) probe to the electrode surface was difficult due to the high resistance and poor electron transfer ability of the compact membrane. As a result, the CV peak current decreased significantly. After removing the mouse IgG, the peak current was sharply enhanced (Fig. 3A curve 4), which may be attributed to the imprinted holes, making the \([\text{Fe(CN)}_6]^{3-/4-}\) probe easier to diffuse to the electrode surface.

The effect of periodical light-on-off on MVL ATRP catalyzed by FITC-IgG was investigated by DPV in PBS (pH 7.0) containing 5 mM \([\text{Fe(CN)}_6]^{3-/4-}\) and 0.1 M KCl. Polymers/AuNCs/NiNCs/Au electrode prepared at different time was used as a working electrode. As displayed in Fig. 4, DPV peak current was declining when the light was switched on (0–1, 2–3, 4–5, 6–7 h), which indicated the formation of polymers on the bare Au electrode. It was evident that introduction of nano Au/nano Ni improved the conductivity and enlarged surface area of the electrode (Fig. 3B curve 2), resulting in the lower \(R_{\text{ct}}\) [36]. By formation of polymers onto the AuNCs/NiNCs/Au surface (Fig. 3B curve 3), \(R_{\text{ct}}\) became significantly larger due to the inertness of polymers. After removing the IgG (Fig. 3B curve 4), \(R_{\text{ct}}\) became smaller than that of polymers/AuNCs/NiNCs/Au, suggesting that the imprinted holes appeared on IgGIPs/AuNCs/NiNCs/Au, facilitating the proximity of \([\text{Fe(CN)}_6]^{3-/4-}\) probe.

Fig. 3B showed the EIS of stepwise modified electrodes, of which the results were consistent with those from CV tests. Bare Au electrode revealed a small semicircle domain (Fig. 3B curve 1), implying a low \(R_{\text{ct}}\) on the bare Au electrode. It was evident that introduction of nano Au/nano Ni improved the conductivity and enlarged surface area of the electrode (Fig. 3A curve 2), indicating nanomaterials enlarged the effective electrode surface area and raised electron transfer rate [36]. For polymers/AuNCs/NiNCs/Au electrode (Fig. 3A curve 3), the diffusion of the \([\text{Fe(CN)}_6]^{3-/4-}\) probe to the electrode surface was difficult due to the high resistance and poor electron transfer ability of the compact membrane. As a result, the CV peak current decreased significantly. After removing the mouse IgG, the peak current was sharply enhanced (Fig. 3A curve 4), which may be attributed to the imprinted holes, making the \([\text{Fe(CN)}_6]^{3-/4-}\) probe easier to diffuse to the electrode surface.

The effect of periodical light-on-off on MVL ATRP catalyzed by FITC-IgG was investigated by DPV in PBS (pH 7.0) containing 5 mM \([\text{Fe(CN)}_6]^{3-/4-}\) and 0.1 M KCl. Polymers/AuNCs/NiNCs/Au electrode prepared at different time was used as a working electrode. As displayed in Fig. 4, DPV peak current was declining when the light was switched on (0–1, 2–3, 4–5, 6–7 h), which indicated the formation of polymers on the
The surface chemical composition of polymers was determined by XPS, and the results were illustrated in Fig. 5. Polymers/AuNCs/NiNCs/Au exhibited O 1s, N 1s, C 1s, Au 4f and Br 3d signals (Fig. 5A), which binding energy were showed at 531.3 eV, 399.6 eV, 285.3 eV, 84.2 eV and 70.1 eV, respectively [41,42]. The Br 3d signal confirmed the successful implementation of MVL ATRP [41]. The inset in Fig. 5A was the fine XPS of S 2p at 161.3 eV. Since S element was from FITC, indicating the successful polymerization catalyzed by FITC-IgG. Fig. 5B was the XPS spectrum of IgGIPs/AuNCs/NiNCs/Au. The peaks of O 1s, N 1s, C 1s, Au 4f and Br 3d showed the binding energy at the similar position with polymers/AuNCs/NiNCs/Au. Compared with Fig. 5A, the disappearance of S 2p binding energy proved the complete removal of FITC from IgGIPs, and would avoid all the effect of FITC on the IgGIPs/AuNCs/NiNCs/Au sensor.

3.2. Optimization of polymerization conditions

The typical conditions such as the ratio of monomer to cross-linker, illumination time, which were important parameters in the experiment and affected the sensing performance of IgGIPs/AuNCs/NiNCs/Au biosensor, were investigated by electrochemical method.

To find the better performance, five IgGIPs/AuNCs/NiNCs/Au electrodes with different ratios of AM to MBA (0.8:1, 1.6:1, 3.2:1, 6.4:1, 12.8:1) were prepared to detect serial concentration of mouse IgG. The sensitivity results of the electrodes were shown in Fig. 6 A. It was seen that lower sensitivity was obtained when the mole ratio was lower than 3.2:1, which could be attributed that the number of AM was too little to form enough binding sites for the protein to enter imprinted holes [43]. When the ratio of AM to MBA was higher than 3.2:1, sensitivity of IgGIPs/AuNCs/NiNCs/Au dropped dramatically, it may be because decreasing cross-linking increased the spatial fluctuations in the recognition sites and hence reduced binding efficiency [44]. Therefore, the ratio of 3.2:1 was chosen as the optimal mole ratio of AM to MBA in the experiment.

The influence of illumination time on IgGIPs/AuNCs/NiNCs/Au was evaluated by CV. As showed in Fig. 6 B, anodic peak current of IgGIPs/AuNCs/NiNCs/Au dropped sharply with the illumination time increasing from 1 to 5 h. When illumination time was higher than 5 h, there was small change in CV peak current. Therefore, illumination time of 5 h was used in subsequent experiments.

3.3. Responses of the IgGIPs/AuNCs/NiNCs/Au toward IgG

IgGIPs/AuNCs/NiNCs/Au could be used as an electrochemical biosensor to detect mouse IgG by DPV. Under the optimized conditions, IgGIPs/AuNCs/NiNCs/Au was prepared and incubated in various concentrations of freshly prepared IgG solution for 5 min. The experimental
results were displayed in Fig. 7. It was easy to see that the DPV peak current decreased with the increasing concentration of IgG (Fig. 7A), which may be because that proteins rebound the recognition sites via their complementary spatial structure and appropriate size, thus blocked the $[\text{Fe(CN)}_6]^{3-/4-}$ probe from reaching the electrode surface [45,46]. The calibration curve in Fig. 7B showed a good linear relationship between the signal response (ΔI) and logarithm of the IgG concentrations in the range of 1.0×10^6 to 1.0×10^1 mg L$^{-1}$.

From the figure, the linear relationship equation was $\Delta I (\mu A) = 4.0 \log C (\text{mg} \cdot \text{L}^{-1}) + 36.5 (R^2 = 0.997)$, and the detection limit (LOD) of 2.0×10^8 mg L$^{-1}$ could be estimated ($S/N = 3$).

When the performance of IgGIPs/AuNCs/NiNCs/Au electrode was compared with sensors for mouse IgG detection including surface plasmon resonance (SPR), electrochemical ELISA, surface-enhanced Raman spectroscopy (SERS) immunoassay and other electrochemical methods (as shown in Table 1), it could be seen that the prepared biosensor had lower detection limit and larger linear range.

3.4. Selectivity, repeatability and reproducibility of IgGIPs/AuNCs/ NiNCs/Au

Selectivity of IgGIPs/AuNCs/NiNCs/Au toward IgG was investigated by using different proteins as interferents by DPV. Fig. 8 showed the signal response (ΔI) of IgGIPs/AuNCs/NiNCs/Au to the same concentration (10^{-4} mg L$^{-1}$) of IgG, HSA, Hb, Mb, IgM and IgA. Among these, the electrode showed the highest signal response (29.3 \pm 0.7 μA) for IgG compared to HSA (1.4 \pm 0.3 μA), Hb (2.1 \pm 1.2 μA), Mb (1.7 \pm 1.2 μA), IgM (1.3 \pm 0.3 μA) and IgA (1.3 \pm 0.3 μA), which indicated that the shape and size of IgG matched the imprinted “holes” of IgGIPs [51]. In contrast, the signal response (ΔI) of the NIPs were relatively low because there were no imprinted sites in them.

Also, the imprinted polymer efficiency (IE = $\Delta I_{\text{IgGIPs}} / \Delta I_{\text{NIPs}}$) was used to further evaluate the selectivity [52], where ΔI_{IgGIPs} and ΔI_{NIPs} were the signal response of IgGIPs/AuNCs/NiNCs/Au and NIPs/AuNCs/NiNCs/Au, respectively. From Fig. 8, the IE values of IgG, HSA, Hb, Mb, IgM and IgA were 11.9, 1.2, 1.1, 1.4, 1.2 and 1.2, respectively. The largest IE suggested the satisfactory selectivity of IgGIPs/AuNCs/NiNCs/Au towards IgG.
The repeatability of the imprinted biosensor was conducted by measuring the DPV response of 10^4 mg L\(^{-1}\) IgG solution for 3 times using a single electrode. The relative standard deviation (RSD) of 3.6% for IgG concentration was observed, which showed that IgGIPs/AuNCs/NiNCs/Au had good repeatability. To investigate the reproducibility of IgGIPs/AuNCs/NiNCs/Au, three biosensors were fabricated with the same procedure to determine 10^4 mg L\(^{-1}\) IgG solution. The RSD for determination of IgG concentration was 2.3%, suggesting that the IgGIPs/AuNCs/NiNCs/Au electrode had good reproducibility.

3.5. Application in real samples

Real samples analysis was carried out using standard addition method according to the literatures [3,53]. The purchased mouse IgG sample (serum) was diluted to 1.0 \times 10^4 mg L\(^{-1}\) and spiked diluted.

Table 1

Comparison of some performance of the IgGIPs/AuNCs/NiNCs/Au and reported works for the determination of mouse IgG.

Materials	Method	Linear range	Detection limit	Refs.
SPR biosensor based on AgNCs/chitosan composite	Surface plasmon resonance (SPR)	6.0 \times 10^1 - 4.0 \times 10^3	6.0 \times 10^{-1}	[47]
Two iridium oxide electrodes patterned on a glass substrate	Electrochemical ELISA	5.0 \times 10^{-5} - 5.0 \times 10^{-3}	2.0 \times 10^{-4}	[48]
Antigen-assembled gold nanoparticles	Surface-enhanced Raman spectroscopy (SERS)	5.0 \times 10^{-5} - 5.0 \times 10^{-3}	1.9 \times 10^{-4}	[49]
HRP-based electrochemical immunosensors	Linear sweep voltammetry	1.0 \times 10^{-4} - 1.0 \times 10^{-2}	1.0 \times 10^{-4}	[50]
IgGIPs/AuNCs/NiNCs/Au	DPV	1.0 \times 10^{-8} - 1.0 \times 10^{-4}	2.0 \times 10^{-8}	This work

The repeatability of the imprinted biosensor was conducted by measuring the DPV response of 10^{-4} mg L\(^{-1}\) IgG solution for 3 times using a single electrode. The relative standard deviation (RSD) of 3.6% for IgG concentration was observed, which showed that IgGIPs/AuNCs/NiNCs/Au had good repeatability. To investigate the reproducibility of IgGIPs/AuNCs/NiNCs/Au, three biosensors were fabricated with the same procedure to determine 10^{-4} mg L\(^{-1}\) IgG solution. The RSD for determination of IgG concentration was 2.3%, suggesting that the IgGIPs/AuNCs/NiNCs/Au electrode had good reproducibility.

Table 2

Determination of mouse IgG in Real Samples (n = 3).

Analyte	Content (mg L\(^{-1}\))	Added (mg L\(^{-1}\))	Found (mg L\(^{-1}\))	Recovery (%)	RSD (%)
mouse	1.0 \times 10^{-4}	1.0 \times 10^{-4}	2.0 \times 10^{-4}	99.8	3.8
IgG	2.0 \times 10^{-4}	3.0 \times 10^{-4}	102.5	4.1	
	5.0 \times 10^{-4}	6.2 \times 10^{-4}	104.8	2.6	
with different concentrations of IgG solution of 1.0×10^{-4}, 2.0×10^{-4} and 5.0×10^{-4} mg L$^{-1}$. The obtained recovery was 99.8, 102.5 and 104.8%, respectively. The results in Table 2 indicated that IgGIPs/AuNCs/NiNCs/Au could be used for quantitative detection of mouse IgG in real samples.

4. Conclusion

This work described a novel electrochemical imprinted biosensor (IgGIPs/AuNCs/NiNCs/Au) for highly selective and sensitive detection of mouse IgG. The imprinted polymers (IgGIPs) were successfully prepared via MVL ATRP with FITC-IgG as both a template and a photocatalyst. After the templates were removed, the photocatalysts (FITC) would not remain in the polymer and avoided all the effect of them on the biosensor. The biosensor was firstly examined by CV, EIS, SEM and XPS. Then the ratio of monomer to cross-linker and illumination time were selected to optimally fabricate the IgGIPs. Finally, the biosensor was successfully applied for the determination of mouse IgG by DPV measurement. The linear range was from 1.0×10^{-6} to 1.0×10^{-3} mg L$^{-1}$ with a detection limit of 2.0×10^{-8} mg L$^{-1}$ ($S/N = 3$). The results of experiments showed that the presented biosensor displayed a broader linear range and a lower detection limit for IgG determination when it was compared to those similar sensors.

Credit statement

Ru Bai : Data curation, Writing- Original draft preparation; Yue Sun : Conceptualization, Methodology; Mengyuan Zhao : Data curation, Writing- Original draft preparation; Zhen Han : Formal analysis, Writing- Reviewing and Editing; Juntong Zhang : Formal analysis, Writing- Reviewing and Editing; Yuye Sun : Validation, Writing-Reviewing and Editing; Wenjing Dong : Validation, Writing- Reviewing and Editing; Siyu Li : Validation, Writing-Reviewing and Editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Authors gratefully acknowledge the financial support from the Science Research Project of Education Department of Liaoning Province (No. 1Q2019022), Liaoning BaiQianWan Talents Program (No. 2020R921109), High-end Research Incubation Scheme of Liaoning Normal University (GD20L001), the National Natural Science Foundation of China (No. 21304041) and the Innovative Training Program of College Students in Liaoning Normal University (No. 201910162515, 202010165158).

References

[1] A.C. Russell, M. Simonove, M.T. Garcia, M. Novokmet, Y. Wang, I. Rudan, H. Campbell, G. Lau, M.G. Thomas, W. Wang, The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease, Glycobiology 27 (2017) 501–510.

[2] R. Ma, X. Sun, W. H. Jin, Y. Shi, Improved surface imprinting based on simplified mass transfer process for the selective extraction of IgG, J. Mater. Chem. B 5 (2017) 7512–7518.

[3] Y. Yang, Q. Liu, Y. Liu, Z. Li, Y. Li, P. Wang, D. Zhang, Z. Zhao, Y. Liu, Y. Dong, An ultrasensitive sandwich-type electrochemical immunoassay based on functionalized mesoporous carbon for IgG detection, RSC Adv. 6 (2016) 31824–31830.

[4] Y. Maki, R. Okamoto, M. Izumi, T. Murase, Y. Kajihara, Semisynthesis of intact complex-type trisialyl oligosaccharides from a biantennary oligosaccharide isolated from a natural source by selective chemical and enzymatic glycosylation, J. Am. Chem. Soc. 138 (2016) 3461–3468.

[5] P.F. Jensen, G. Comamala, M.B. Trelle, J.B. Madsen, T.J. Jorgensen, K.D. Rand, Removal of N-linked glycosylation at acidic pH by PNGase A facilitates hydrogen/
Y. Sun, M. Zhao, Y. Liu, L. Fu, S. Li, Y. Yang, Preparation of erythromycin imprinted polymer by metal-free visible-light–induced ATRP and its application in sensor, J. Solid State Electrochem. 23 (2018) 583–590.

Y. Sun, H. Du, Y. Deng, Y. Lan, C. Feng, Preparation of polyanilamide via surface-initiated electrochemical-mediated atom transfer radical polymerization (Si-eATRP) for Pb2+ sensing, J. Solid State Electrochem. 20 (2015) 105–113.

Y. Sun, H. Du, Y. Lan, W. Wang, Y. Liang, C. Feng, M. Yang, Preparation of hemoglobin (Hb) imprinted polymer by Hb catalyzed eATRP and its application in biosensor, Biosens. Bioelectron. 77 (2016) 894–900.

Y. Sun, Y. Lan, L. Yang, F. Kong, H. Du, C. Feng, Preparation of hemoglobin imprinted polymers based on graphene and protein removal assisted by electric potential, RSC Adv. 6 (2016) 61897–61905.

K. Ghahbari, M. Roushani, A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen, Sensor. Actuat. B Chem. 258 (2018) 1066–1071.

Y. Yang, X. Liu, G. Ye, S. Zhu, Z. Wang, X. Huo, K. Matyjaszewski, Y. Lu, J. Chen, Metal-free photoinduced electron transfer–atom transfer radical polymerization integrated with bioinspired polydopamine chemistry as a green strategy for surface engineering of magnetic nanoparticles, ACS Appl. Mater. Interfaces 9 (2017) 13637–13646.

G. Maduraiveeran, R. Rasik, M. Sasidharan, W. Jin, Bimetallic gold–nickel nanoparticles as a sensitive amperometric sensing platform for acetaminophen in human serum, J. Electroanal. Chem. 808 (2018) 259–265.

W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, J. Huang, Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin, Biosens. Bioelectron. 38 (2012) 163–169.

M. Zayats, M. Kanswar, M. Ostermeier, P.C. Searson, Molecular imprinting of maltose binding protein: tuning protein recognition at the molecular level, Macromolecules 44 (2011) 3966–3972.