Oxygen sorption-desorption properties and order–disorder transitions on La–Sr–Co–Fe perovskite-type oxides

Tomoya KANEKO¹, Kohei NOSUE¹, Tomoki UCHIYAMA², Masaru NAGANO¹, Naoki ANKEI¹, Kazutaka KAMITANI³ and Maiko NISHIBORI¹‡

¹Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816–8580, Japan
²Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679–5198, Japan
³Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816–8580, Japan

The oxygen non-stoichiometry (δ) and structural properties of a brownmillerite-type oxide of La₀.₁Sr₀.₉Co₀.₉–Fe₀.₁O₃–δ (LSCF1991) during oxygen sorption/desorption were investigated by simultaneously applying a temperature-programmed technique and high-temperature X-ray diffraction. The structural changes of perovskite-type (P-type) to brownmillerite-type (B-type) and B-type to P-type occurred within limited p(O₂) ranges, and a B-type phase-stable region was observed in the presence of oxygen at high temperature. Moreover, P-type LSCF1991 changed into B-type LSCF1991 through tetragonal P-type LSCF1991 as an intermediate phase. B-type LSCF1991 showed repeating structural changes with a certain limited p(O₂), which is 0.5% < p(O₂) < 1.0%, whereas such changes could not be observed at p(O₂) > 1.0%. These behaviors correspond with the temperature programmed desorption of oxygen profiles, as well as the amount of lattice oxygen (3–δ). The p(O₂) dependence of the structural change will provide a basis for a further investigation into the durability of an oxygen-permeated membrane by predicting the strain across the membrane under practical conditions.

Key-words : Perovskite-type oxide, Oxygen permeation, Phase transition, Partial pressure of oxygen

1. Introduction

La₁₋ₓSrₓCo₁₋ₓFeₓO₃₋δ perovskite-type oxides (referred to as LSCF) are promising materials as solid oxide fuel cell cathodes, oxygen permeation membranes, and catalysts.¹–⁵ Their oxygen non-stoichiometry (δ) and crystalline structure are ones of the most important parameters in determining such properties of perovskites. Therefore, the relations of δ on the structure and temperature of perovskites have been reported in many studies. In addition, another parameter, the partial pressure of oxygen p(O₂), is also important when applying LSCF materials under practical conditions. For example, oxygen-permeated membranes are clearly exposed to a wide range of p(O₂) in daily start-stop or cyclic operations. Nevertheless, there have been few reports on the p(O₂) dependence of δ and the crystalline structure against the temperature because of a difficulty in the precise control of p(O₂).⁵,⁶,⁷

We previously reported the oxygen desorption properties of La₀.₁Sr₀.₉Co₀.₉Fe₀.₁O₃₋δ (LSCF1991) under varying p(O₂) conditions using a home-made fixed-bed flow reactor equipped with an yttria-stabilized Zirconia (YSZ) oxygen sensor as a detector.⁸ The results showed that β oxygen desorption was closely related to the oxygen vacancy order–disorder transitions from perovskite-type (P-type) to brownmillerite-type (B-type) phases. However, backward transitions from B-type to P-type phases have yet to be examined in detail. In this study, the p(O₂) dependence of the oxygen sorption/desorption properties during a structural change from B-type to P-type LSCF1991 was investigated to provide guidance for the material design under practical conditions.

2. Material and methods

The chemical composition was fixed at LSCF1991. P-type LSCF1991 was obtained through final calcination at 1,050°C for 5 h using the nitrates of the constituent metals as the starting chemicals. Next, B-type LSCF1991 prepared through the annealing of P-type LSCF1991 under a N₂ atmosphere.

The oxygen sorption/desorption behavior of B-type LSCF1991 was examined through the temperature-programmed desorption of oxygen (O₂-TPD), which was conducted using a home-made fixed-bed flow reactor equipped with a YSZ oxygen sensor as a detector.⁹ To
obtain the B-type LSCF1991, a sample of P-type LSCF1991 (200 mg) was fixed in a quartz tube and annealed in N₂ [p(O₂) of 41 ppm] at 700°C for 30 min. After cooling to below 50°C under a N₂ stream, the ambient gas was switched to x %O₂ in N₂ (x = 0–21) with a gas flow rate of 100 mL min⁻¹. The sample was then heated to 950°C at a rate of 10°C min⁻¹. The amount of oxygen sorbed/desorbed into/from LSCF1991 was extracted based on the area of the TPD profile. The detailed information on this measurement system was shown in our previous study.⁶ The crystalline structure and change in lattice parameter were measured using an X-ray diffractometer with elevated temperature (HT-XRD, Cu-Kα radiation, Ultima IV, Rigaku Corporation). The effluent gas p(O₂) was monitored using a commercial oxygen sensor (TB-FI YSZ, Daiichinekkei Co., Ltd.). The gas flow rate was set to 250 mL min⁻¹. To clarify the detailed structural changes between P- and B-type LSCF1991, HT-XRD measurements using synchrotron radiation under operando conditions (operando SR-XRD) were also conducted at BL19B2 in SPring-8, Japan. The measurements were conducted using an incident X-ray energy of 12.4 keV and a 2θ scanning range of 10 to 100° at an incident X-ray angle of 3°, under a N₂ stream [p(O₂) of 41 ppm] of 300 mL min⁻¹ into a 32 mL unsealed cell. Furthermore, both P- and B-type LSCF1991 oxygen contents (3–δ) at room temperature (R.T.) were quantified using an iodometry method proposed by Conder et al.⁹

3. Results and discussion

Figure 1(a) shows the oxygen sorption/desorption profiles of B-type LSCF1991 given based on the difference in oxygen partial pressure between influent and effluent gases under various amounts of p(O₂). The positive and negative signals indicate oxygen desorption and sorption, respectively. In a N₂ atmosphere [including O₂ as a p(O₂) impurity of 41 ppm], B-type LSCF1991 showed no sorption/desorption except for an extremely small amount of desorption appearing at above 750°C caused by a reduction of Co ions from 3+ to 2+.¹⁰ Because the samples were pre-treated in N₂, the oxygen will not sorb/desorb under an exceedingly small p(O₂). In contrast to N₂, the negative Δp(O₂) signal, associated with the oxygen sorption, was observed at a p(O₂) of larger than 0.5% at 50–445°C. This sorption peak was shifted to a lower temperature as p(O₂) increased. Owing to an oxygen desorption pretreatment, the oxygen stoichiometry in the solid phase of B-type LSCF1991 is far from at equilibrium using the gas phase. Note that the profiles were obtained under “temperature-programmed” conditions, and we suppose that a solid and gas cannot equilibrate “perfectly”. This large difference in oxygen chemical potential between a solid and gas resulted in a driving force of the oxygen sorption.¹¹ Therefore, a p(O₂) of 1.5%, which was expected to have the largest chemical potential gradient, exhibited the lowest peak temperature and the highest sorption rate.

Desorption started at 360–425°C depending on p(O₂).

Interestingly, both desorption and re-sorption peaks were observed on only a p(O₂) of 0.50–0.98%. No desorption/sorption peaks of higher than 1.25% could be found on p(O₂). The desorption peak temperatures (Tdes) ranged from 555 to 635°C, whereas the re-sorption temperatures (Tre-sor) were located at higher than 790°C. The difference between Tdes and Tre-sor decreased as p(O₂) increased. This suggests that these positive and negative peaks will disappear by canceling each other out when Tdes equals Tre-sor at a certain p(O₂). This assumption is evidenced by the profiles of p(O₂) of 1.25 and 1.50% in that no peaks exist from 550 to 820°C.

The above-mentioned p(O₂) dependence of the sorption/desorption behaviors can be understood by examining the oxygen stoichiometry in the solid phase. Figure 1(b) shows the lattice oxygen (3–δ) changes under various values of p(O₂), which were derived from the profiles in Fig. 1(a). The 3–δ of the as-prepared B- and P-type LSCF1991 was 2.48 and 2.76, respectively, as determined through iodometry. As might be expected, 3–δ in a N₂ atmosphere maintained a constant value of 2.48 despite the elevated temperature. Although 3–δ under the existence of O₂ increased with the temperature, it decreased at approx-

![Figure 1](image-url)
imately 350–450°C. Above this temperature, the plateau region appeared for a $p(O_2)$ of 0.50–0.98% from 650 to 700°C with a rapid decrease of δ to 2.5. The plateau in the oxygen stoichiometry (δ of approximately 2.5) denotes the formation of a stable crystal structure such as a B-type phase. After the plateau region, δ increases again owing to the oxygen re-sorption. This behavior seems to be different from the $p(O_2)$ of 1.25 and 1.50%, which showed a constant decrease of δ across the temperature range. To confirm these complicated behaviors of δ, we investigated the change in the crystal structure.

Figure 2 shows X-ray diffraction (XRD) patterns of LSCF1991 before and after annealing in N2 measured at ambient temperature. The diffraction patterns of the B-type phase associated with the oxygen-vacancy ordered structure are also illustrated in Fig. 2. The crystal symmetries were indexed using a cubic P-type phase and orthorhombic B-type phase for before and after annealing, respectively, as reported in the literature. The maximum peak of both P- and B-type phases appeared at approximately 32° in 2θ. Hence, diffraction patterns within the 2θ range of 31–34° are focused upon in the following discussion.

Figure 3 shows the variation in high-temperature XRD peaks of B-type LSCF1991 under a certain $p(O_2)$. In a N2 atmosphere, no structural changes will occur except for a structural change from B-type to P-type phases at over 900°C. This seems to be the re-sorption of oxygen because $p(O_2)$ was relatively higher in the HT-XRD measurement (700 ppm) than in the O2-TPD measurement (41 ppm). The shift in diffraction peaks to a lower angle mainly originated from the pure thermal expansion of the crystal lattice, which was caused by anharmonicity of the interatomic potential. In a $p(O_2)$ of 0.5%, the diffraction peaks showed a three-staged change with an elevated temperature. This structural change can be explained through the change in δ shown in Fig. 1(b). The first change is observed at 450°C and indicates the phase transition from a B-type to P-type phase, which is caused by oxygen sorption. However, this P-type phase returned to a B-type phase at 600°C by desorbing the oxygen (second transition). From 650 to 800°C, the B-type phase was stable, which corresponds to the plateau region of δ shown in Fig. 1(b). Finally, the structural change from a B-type to P-type phase was observed at 850°C owing to the re-sorption of oxygen. In a $p(O_2)$ of 1.0%, the change in the diffraction peaks can also be explained similar to that in a $p(O_2)$ of 0.5%, although it includes some peaks that are neither of an orthorhombic B-type nor cubic P-type phase. In a $p(O_2)$ of 1.5% and air, the diffraction patterns no longer change after the structural phase transition of B-type to P-type.

These results suggest that the second (P-type to B-type) and third (B-type to P-type) transitions were caused within

Fig. 2. XRD patterns of LSCF1991 before (top) and after annealing (bottom) in N2. Lattice constants (a, c) and the crystal structure are also shown.

Fig. 3. Variation in high-temperature XRD peaks of B-type LSCF1991 under $p(O_2)$ of 0.07% (in N2) to 21% (in air).
a limited $p(O_2)$ range, which has yet to be reported elsewhere. In connection with the results from Fig. 1(b), we successfully found a stable region of the B-type phase with δ of approximately 2.5 under the existence of oxygen at high temperature.

In contrast, these HT-XRD results included some peaks which are neither an orthorhombic B-type nor a cubic P-type phase between the structural change in the P-type and B-type phases. They are clear under a $p(O_2)$ of 1.0%, and very likely exist in another $p(O_2)$ on N$_2$ annealed (B-type phase) LSCF1991. Then, to confirm whether this unidentified phase appears only for a B-type phase, the same investigation was conducted in air-annealed (P-type phase) LSCF1991. **Figures 4(a) and 4(b) show O$_2$-TPD and HT-XRD patterns of air-annealed LSCF1991 under a N$_2$ stream.**

The first oxygen desorption from 200 to 400°C does not affect the LSCF1991 phase. The following desorption from 400 to 600°C changes the P-type into a B-type phase. Here, uncertain peaks can be found at 500°C. The left peak is located at a lower angle than that of 550°C, although the peaks shift to a higher angle because of thermal expansion. Then, the peaks at 500°C can indicate the same phase as the unidentified phase shown in the B-type phase.

To clarify the detailed structural changes between P- and B-type LSCF1991, an operando SR-XRD measurement was also conducted in air-annealed LSCF1991 with a P-type structure. **Figures 5(a)–5(c) show synchrotron XRD patterns of P-type LSCF1991 under a N$_2$ stream into the unsealed cell, which $p(O_2)$ of exhaust gas was estimated \approx0.1%. At 300°C, a single peak from cubic P-type LSCF1991 200 can be observed. As shown in Fig. 5(c), the diffraction peak splits at 400–450°C, and completely different peaks appear at above 600°C, which correspond to 004 and 220 reflections of B-type LSCF1991. However, the diffraction peaks appearing at 400–450°C correspond to neither P-type nor B-type LSCF1991. According to the previous report on SrCoO$_3$, which has a close compo-

Fig. 4. P-type LSCF1991: (a) O$_2$-TPD profile under $p(O_2)$ of 0.004% (in N$_2$) and (b) HT-XRD peaks under $p(O_2)$ of 0.07% (in N$_2$).

Fig. 5. (a) Operando synchrotron XRD patterns of P-type LSCF1991 under exhaust $p(O_2)$ of \approx0.1%, (b) enlarged view around P-type 110 diffraction peak, and (c) enlarged view around P-type 200 diffraction peak.
sition to LSCF1991, it was indicated that SrCoO$_{3.4}$ changes the crystalline structure from a cubic P-type phase ($3-\delta = 3.0$) into an orthorhombic B-type phase ($2.5 < 3-\delta < 2.75$) through a tetragonal P-type phase ($2.875 < 3-\delta < 3.0$) as an intermediate phase. Therefore, this suggests that P-type LSCF1991 can also change into B-type LSCF1991 through tetragonal P-type LSCF1991 as an intermediate. Although we were unable to conduct a refined analysis from these operando SR-XRD results owing to the use of a qualitative method with a 2θ scan, we believe that the unidentified diffraction peaks at 400–450°C indicate an intermediate phase of LSCF1991.

Figure 6 shows the temperature dependence of the change ratio of the lattice constant ($\Delta a/a_0$) evaluated using HT-XRD. The change ratio of the lattice constant ($\Delta a/a_0$) was calculated as follows:

$$\Delta a/a_0[\%] = 100 \times [a(T) - a_0]/a_0$$

where $a(T)$ and a_0 indicate the lattice constant at a temperature of T°C and 50°C, respectively. The monotonic increase in the change ratio of the lattice constant was found for all values of $p(O_2)$ with an elevated temperature, indicating that the thermal expansion mainly dominates the increase in the crystal lattice. The rapid increase of $\Delta a/a_0$ corresponds to the structural change of a P- to B-type phase. However, the change ratio of the lattice constant in a $p(O_2)$ of 0.5% showed a rapid three-fold increase in $\Delta a/a_0$. This suggests that the structure of LSCF1991 changes repeatedly in a $p(O_2)$ of 0.5%.

4. Conclusion

In conclusion, we investigated the $p(O_2)$ dependence of the oxygen sorption/desorption properties during the structural change of B-type to P-type LSCF1991 and revealed two facts regarding LSCF1991. First, an intermediate phase exists between the P-type and B-type LSCF1991. Second, B-type LSCF1991 showed repeating structural changes within a certain limited $p(O_2)$, which is $0.5% < p(O_2) < 1.0%$, although this was not observed at $p(O_2) > 1.0%$. These behaviors correspond with the O$_2$-TPD profiles as well as the amount of lattice oxygen ($3-\delta$). The oxygen permeation membrane is exposed within a wide range of $p(O_2)$, which is covered by the present study. The $p(O_2)$ dependence of the structural change could provide a basis for further examining the durability of the oxygen permeation membrane by predicting the strain across it under practical conditions.

Acknowledgement We would like to thank Dr. T. Watanabe of JASRI for the useful discussion and technical support. The SR-XRD measurements were conducted at BL19B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no. 2016B1882). This work was partially supported by the Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References
1) J. Xie, Y. W. Ju and T. Ishihara, Solid State Ionics, 249–250, 177–183 (2013).
2) Y. Teraoka, H. M. Zhang, S. Furukawa and N. Yamazoe, Chem. Lett., 11, 1743–1746 (1985).
3) A. J. Ma, S. Z. Wang, C. Liu, H. Xian, Q. Ding, L. Guo, M. Meng, Y. S. Tang, N. Tsubaki, J. Zhang, L. R. Zheng and X. G. Li, Appl. Catal. B-Environ., 146, 24–34 (2014).
4) G. Ethcegoyen, T. Chartier, A. Julian and P. Del-Gallo, J. Membrane Sci., 268, 86–95 (2006).
5) A. Chrzan, J. Karczewski, M. Gazda, D. Szymczewska and P. Jasinski, J. Eur. Ceram. Soc., 37, 3559–3564 (2017).
6) M. Kuhn, Y. Fukuda, S. Hashimoto, K. Sato, K. Yashiro and J. Mizusaki, J. Electrochem. Soc., 160, 34–42 (2013).
7) M. G. Sahini, J. R. Tolchard, K. Wiik and T. Grande, Dalton Trans., 44, 10875–10881 (2015).
8) M. Nishihori, N. Ankei, T. Uchiyama, K. Kamitani, K. Kato and Y. Teraoka, Chem. Lett., 44, 357–359 (2015).
9) K. Conder, E. Pomiakushima, A. Soldatov and E. Mitberg, Mater. Res. Bull., 40, 257–263 (2005).
10) Y. Teraoka, M. Yoshimura, N. Yamazoe and T. Seiyama, Chem. Lett., 13, 893–896 (1984).
11) S. McIntosh, J. F. Vente, W. G. Hajie, D. H. A. Blank and H. J. M. Bouwmeester, Solid State Ionics, 177, 1737–1742 (2006).
12) L. Qiu, T. H. Lee, L. M. Liu, Y. L. Yang and A. J. Jacobson, Solid State Ionics, 76, 321–329 (1995).
13) Z. H. Yang and Y. S. Lin, Solid State Ionics, 176, 89–96 (2005).
14) A. Nemudry, P. Rudolf and R. Schöllhorn, Chem. Mater., 8, 2232–2238 (1996).