Measurement of the solar ^{8}B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector

G. Bellini,1 J. Benziger,2 S. Bonetti,1 M. Buizza Avanzini,1 B. Caccianiga,1 L. Cadonati,3 F. Calaprice,4 C. Carraro,5 A. Chavarria,4 A. Chepurnov, F. Dalmiki-Veress,4 D. D’Angeolo,5 S. Davini,5 H. de Kerret,7 A. Derbin,8 A. Etenko,9 K. Fomenko,10 D. Franco,1 C. Galbiati,4 S. Gazzana,11 C. Ghiano,11 M. Giammarchi,1 M. Goeger-Neff,12 A. Goretti,4 E. Guardincerri,5 S. Hardy,13 Aldo Ianni,11 Andrea Ianni,4 M. Joyce,13 G. Korga,11 D. Kryn,7 M. Laubenstein,11 M. Leung,4 T. Lewke,12 E. Litvinovich,9 B. Loer,4 P. Lombardi,1 L. Ludhova,1 I. Machulin,9 S. Manecki,13 W. Maneschg,14 G. Manuzio,14 Q. Meindl,12 E. Meroni,1 L. Miramonti,1 M. Misiaszek,15,11 D. Montanari,11,4 V. Muratova,8 L. Oberauer,12 M. Obolensky,7 F. Ortiz,16 M. Pallavicini,5 L. Papp,11 L. Perasso,1 S. Perasso,5 A. Pocar,3 R.S. Raghavan,13 G. Ranucci,1 A. Razeto,11 A. Re,1 P. Riso,5 A. Romani,16 D. Rountree,13 A. Sabelnikov,9 R. Saldanha,4 C. Salvo,5 S. Schönert,14 H. Simgen,14 M. Skorokhvatov,9 O. Smirnov,10 A. Sotnikov,10 S. Sukhotin,9 Y. Suvorov,1,9 R. Tartaglia,11 G. Testera,5 D. Vignaud,7 R.B. Vogelaar,13 F. von Feilitzsch,12 J. Winter,12 M. Wojcik,15 A. Wright,4 M. Wurm,12 J. Xu,4 O. Zavatarelli,5 and G. Zuzel14 (Borexino Collaboration)

1 Dipartimento di Fisica, Università degli Studi e INFN, 20133 Milano, Italy
2 Chemical Engineering Department, Princeton University, Princeton, NJ 08544, USA
3 Physics Department, University of Massachusetts, Amherst, MA 01003, USA
4 Physics Department, Princeton University, Princeton, NJ 08544, USA
5 Dipartimento di Fisica, Università e INFN, Genova 16146, Italy
6 Institute of Nuclear Physics, Lomonosov Moscow State University, 119899, Moscow, Russia
7 Laboratoire AstroParticule et Cosmologie, 75231 Paris cedex 13, France
8 St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia
9 GKSS Rutherford Institute, 123182 Moscow, Russia
10 Joint Institute for Nuclear Research, 141980 Dubna, Russia
11 INFN Laboratori Nazionali del Gran Sasso, SS 17 bis Km 18+910, 67010 Assergi (AQ), Italy
12 Physik Department, Technische Universität München, 85747 Garching, Germany
13 Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
14 Max-Planck-Institut für Kernphysik, 69029 Heidelberg, Germany
15 M. Smoluchowski Institute of Physics, Jagiellonian University, 30595 Krakow, Poland
16 Dipartimento di Chimica, Università e INFN, 06123 Perugia, Italy

(Dated: May 7, 2010)

We report the measurement of $\nu-e$ elastic scattering from ^{8}B solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran Sasso (Italy). The rate of solar neutrino-induced electron scattering events above this energy in Borexino is $2.4 \pm 0.10 \text{(stat)} \pm 0.008 \text{(syst)} \text{cpd/100 t}$, which corresponds to $\Phi_{\text{B}} = 2.4 \pm 0.4 \pm 0.1 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$, in good agreement with measurements from SNO and SuperKamiokande. Assuming the ^{8}B neutrino flux predicted by the high metallicity Standard Solar Model, the average ^{8}B ν_{e} survival probability above 3 MeV is measured to be 0.29 ± 0.10. The survival probabilities for ^{7}Be and ^{8}B neutrinos as measured by Borexino differ by 1.9σ. These results are consistent with the prediction of the MSW-LMA solution of a transition in the solar ν_{e} survival probability $P_{\nu_{e}}$ between the low energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation regimes.

PACS numbers: 14.60.St, 26.65.+t, 95.55.Vj, 29.40.Mc

INTRODUCTION

Solar ^{8}B-neutrino spectroscopy has been so far performed by the water Čerenkov detectors KamiokaNDE, SuperKamiokaNDE, and SNO [1-4]. The first two experiments used elastic $\nu-e$ scattering for the detection of neutrinos, whereas SNO also exploited nuclear reaction channels on deuterium with heavy water as target. These experiments provided robust spectral measurements with ~ 5 MeV threshold or higher for scattered electrons; a recent SNO analysis reached a 3.5 MeV threshold [5].

We report the first observation of solar ^{8}B-neutrinos with a liquid scintillator detector, performed by the Borexino experiment [2, 7] via elastic $\nu-e$ scattering. Borexino is the first experiment to succeed in suppressing all major backgrounds, above the $2.614 \text{MeV} \gamma$ from the decay of ^{208}Tl, to a rate below that of electron scatterings from solar neutrinos. This allows to reduce the energy threshold for scattered electrons by ^{8}B solar neutrinos to 3 MeV, the lowest ever reported for the electron scattering channel. To facilitate a comparison to the results of SuperKamiokaNDE [3] and SNO D_2O phase [4], we also report the measured ^{8}B neutrino interaction rate with 5 MeV threshold.

Since Borexino also detected low energy solar ^{7}Be neutrino
EXPERIMENTAL APPARATUS AND ENERGY THRESHOLD

The Borexino detector is located at the underground Laboratori Nazionali del Gran Sasso (LNGS) in central Italy, at a depth of 3600 m.w.e.. Solar neutrinos are detected in Borexino exclusively via elastic ν_e scattering in a liquid scintillator. The active target consists of 278 t of pseudocumene (PC, 1,2,4-trimethylbenzene), doped with 1.5 g/l of PPO (2,5-diphenyloxazole, a fluorescent dye). The scintillator is contained in a thin (125 μm) nylon vessel of 4.25 m nominal radius, and is shielded by two concentric PC buffers (323 and 567 t) doped with 5.0 g/l of a scintillation light quencher (dimethylphthalate). Scintillator and buffers are contained in a Stainless Steel Sphere (SSS) with a diameter of 13.7 m and the scintillation light is detected via 2212 $8''$ photomultiplier tubes (PMTs) uniformly distributed on the inner surface of the SSS. The two PC buffers are separated by a second thin nylon membrane to prevent diffusion of the radon emanated by the PMTs and by the stainless steel of the sphere into the scintillator. The SSS is enclosed in a 18.0 m diameter, 16.9 m high domed Water Tank (WT), containing 2100 t of ultra-pure water as an additional shielding against external gamma- and neutron background. 208 $8''$ PMTs in the WT detect the Čerenkov light produced by muons in the water shield, serving as a highly efficient muon veto. A complete description of the Borexino detector can be found in Ref. [6].

Scintillator detectors, with their high light yield, are sensitive to lower energy events than Čerenkov detectors. In this analysis, the 3 MeV energy threshold is imposed mainly by the 2.614 MeV γ-rays from the decay of 208TI (232Th chain, Q=5.001 MeV) in the PMTs and in the SSS and by the finite energy resolution of the detector: a tail of 2.6 MeV γ events leaks at higher energies, along with a very small percentage of combined γ’s from 214Bi (218U chain, Q=3.272 MeV). The 3 MeV energy threshold eliminates sample contamination from such events.

Potential background sources above 3 MeV include the radioactive decays of residual 214Bi and 208TI within the liquid scintillator, decays of cosmogenic isotopes (see Table 1 later), high energy γ-rays from neutron capture, and cosmic muons. No background from α decays is expected at these energies, since the light quenching of α’s in organic liquid scintillators reduces their visible energy in the electron-equivalent scale below 1 MeV. A measurement of 8B neutrinos with a 3 MeV energy threshold is contingent upon high radiopurity of the scintillator target. 238U and 232Th concentrations in the Borexino scintillator have been measured at $(1.6\pm0.1)\times10^{-17}$ g/g and $(6.8\pm1.5)\times10^{-18}$ g/g, respectively, and record low levels of backgrounds in the energy range 0.2-5.0 MeV have been reported [6, 9]. The dominant background in the energy range of interest for solar 8B neutrinos originates from spallation processes of high energy cosmic muons. This paper demonstrates that, thanks to the LNGS depth and the Borexino muon veto system, cosmogenic background can be reduced below the rate of interaction of 8B neutrinos, thus allowing the neutrino rate to be measured.

ENERGY AND POSITION RESPONSE OF THE DETECTOR AND ASSOCIATED SYSTEMATICS

We tuned the response of energy and position reconstruction algorithms with a dedicated calibration campaign. We used an off-axis source insertion system designed to position radioactive and/or luminous sources at several locations throughout the detector active target. The source position can be measured with a set of stereoscopic cameras installed on the SSS with an uncertainty of ± 2 cm in x, y, and z [14] (± 3.5 cm in radius).

As explained above, Borexino has a unique sensitivity to electron scattering from low energy solar neutrinos, thanks to its unmatched record on background below the natural radioactivity barrier. To preserve this capability, the off-axis source insertion system was designed to respect stringent limits on leak tightness and cleanliness of the mechanics in contact with the liquid scintillator. A detailed description of the technique used for the calibration and for the position reconstruction in Borexino is in preparation.

Energy Scale

Calibration of the energy scale allows to establish with high confidence the energy threshold for the 8B neutrino analysis and the error in its determination, and to calibrate the energy scale to allow the energy spectrum of the electrons scattered by 8B neutrinos to be determined. Distortions of the energy scale are due to physical effects (quenching), geometrical effects (light collection), and to the electronics, which was designed for optimal performance in the low-energy range of 7Be neutrinos, in a regime where a single photoelectron is expected for each PMT. At higher energies, the electronics response to multiple photoelectron hits on a single channel is not linear. For each triggered channel, the charge from photoelectrons in a 80 ns gate is integrated and recorded, but photoelectrons in the following 65 ns dead time window are lost. The resulting fraction
of lost charge increases with energy and can reach \(\sim 10\% \) at \(\sim 10 \) MeV. Moreover, the number of detected photoelectrons depends on the event position in the active volume, due to differences in PMT coverage. For an accurate determination of the energy scale, the dominant non-linearities have been reproduced with a Monte Carlo simulation and with calibration measurements.

To avoid contamination during calibration, \(\beta \) sources were not put in direct contact with the scintillator. Instead, we calibrated the response of the detector with encapsulated \(\gamma \) sources. The scintillation induced by \(\gamma \)-rays is due to the ionizing tracks of the secondary electrons, thus, the two energy scales are closely related.

Establishing a correlation between the \(\beta \) and \(\gamma \) energy scales required extensive simulations with the Geant4 Monte Carlo code. Geant4 was based on Geant4\[15, 16\] and simulates in detail all of the detector component, and includes scintillation, \(\epsilon \)erenkov photon production, absorption and scattering of light in the scintillator and in the buffer, as well as the PMT response. Each secondary electron in a \(\gamma \)-induced Compton electron cascade is affected by energy-dependent ionization quenching, which amplifies the distortion in the \(\gamma \) energy scale. The quenching effect is modeled with the Birks formalism\[17\]. A second package, BxElec, simulates in detail the response of the electronics. Finally, Monte Carlo data are processed by the same reconstruction code used for real data. A detailed description of the Monte Carlo codes and of the energy reconstruction algorithm is in preparation.

To calibrate the detector energy response to \(^8 \)B neutrinos, we used an \(^{241}\)Am\(^9\)Be neutron source positioned at the center of the detector and at several positions at 3 m radius. Neutron capture on \(^1\)H and on \(^{12}\)C in the scintillator results in the emission of \(\gamma \)-rays from the 2.223 MeV and 4.945 MeV excited states, respectively. In addition, neutron capture on the stainless steel of the insertion system produces \(\gamma \)-rays from the 7.631 MeV (\(^{56}\)Fe) and 9.298 MeV (\(^{54}\)Fe) excited states. We validate the Monte Carlo code by simulating the four \(\gamma \)-rays in both the positions. In Figure 1 we show the results of the calibration of the \(\gamma \)-equivalent energy scale in the detector center. Monte Carlo simulations reproduce \(\gamma \) peak positions and resolutions at \(\sigma_1 = 1\% \) precision in the detector center (as shown in Figure 1), and at \(\sigma_2 = 4\% \) precision at 3 m from the detector’s center. Assuming the same accuracy for the \(\beta \)-equivalent energy scale, we extrapolate it by simulating electrons uniformly distributed in the scintillator, and then selecting those with reconstructed position within the fiducial volume. The error on the energy scale is obtained with a linear interpolation from \(\sigma_1 \) in the detector center to \(\sigma_2 \) at 3 m, along the radius. The \(\beta \)-equivalent energy scale, in the energy region above 2 MeV, can be parametrized as:

\[
N = a \cdot E + b, \quad (1)
\]

where \(N \) is the number of photoelectrons (p.e.) detected by the PMTs, \(a=459\pm11\) p.e./MeV and \(b=115\pm38\) p.e. The non-zero intercept \(b \) is related to the fact that this description is valid only in this energy range and that the overall relation between \(N \) and \(E \) is non linear.

The anticipated 3 MeV (5 MeV) energy threshold for the \(^8 \)B analysis corresponds to 1494 p.e. (2413 p.e.) within a 3 m radial distance from the center of the detector. The uncertainty associated to the 3 MeV (5 MeV) energy threshold is obtained by propagating the errors of Eq.\[1\] and is equal to 51 p.e. (68 p.e.).

Vertex Reconstruction

The positions of scintillation events are reconstructed with a photon time-of-flight method. We computed with Geant4 a probability density function (PDF) for the time of transit of photons from their emission point to their detection as photoelectron signals in the electronics chain. We refined the PDF with data collected in the calibration campaign. Event coordinates \((x_0, y_0, z_0) \) and time \((t_0) \) are obtained by minimizing:

\[
\mathcal{L}(x_0, y_0, z_0, t_0) = \prod_i \text{PDF} \left(t_i - t_0 - \frac{d_{0,i} \cdot n_{\text{eff}}}{c} \right) \quad (2)
\]

where the index \(i \) runs over the triggered PMTs, \(t_i \) is the time of arrival of the photoelectron on the \(i^{\text{th}} \) electronic channel, and \(d_{0,i} \) is the distance from the event position and the \(i^{\text{th}} \) PMT. \(n_{\text{eff}} \) is an empirically-determined effective index of refraction to account for any other effect that is not accounted for in the reconstruction algorithm but impacts the distribution of PMT hit times, both in the optics (e.g. Rayleigh scattering) and the electronics (e.g. multiple photoelectron occupancy).
The Borexino electronics records the time of each detected photoelectron introducing a dead time of 145 ns after each hit for each individual channel. Therefore, the timing distribution is biased at high energy, where multiple photoelectrons are detected by each channel, and the position reconstruction is energy dependent. To measure this effect, we deployed the 241Am9Be neutron source at the six cardinal points of the sphere defining the fiducial volume, i.e., those points lying on axis through the center of the detector, with off-center coordinates from the set $x=\pm3$ m, $y=\pm3$ m, and $z=\pm3$ m. The recoiled proton from neutron scattering allows us to study the reconstructed position as function of the collected charge up to ~5000 p.e. Figure 2 shows the ratio of measured versus nominal position of the 241Am9Be source. This data was used to define the fiducial volume $R_{\text{nom}}<3$ m. The non-homogeneous distribution of live PMTs, in particular the large deficit of live PMTs in the bottom hemisphere [6], is responsible for the different spatial response at mirrored positions about the $x-y$ plane. Thus, as shown in Figure 2, two radial functions have been defined for positive and negative z positions.

After all post-calibration improvements to the event reconstruction algorithm, typical resolution in the event position reconstruction is 13 ± 2 cm in x and y, and 14 ± 2 cm in z at the relatively high 214Bi energies. The spatial resolution is expected to scale as $1/\sqrt{N}$ where N is the number of triggered PMTs, and this was confirmed by determining the 14C spatial resolution to be 41 ± 6 cm (1σ) at 140 keV [6, 9]. Systematic deviations of reconstructed positions from the nominal source position are due to the 3.5 cm accuracy of the CCD cameras in the determination of the calibration source position, and in 1.6 cm introduced by the energy dependency. The overall systematics are within 3.8 cm throughout the 3 m-radius fiducial volume.

8B-NEUTRINO FLUX

We report our results for the rate of electron scattering above 3 MeV from 8B neutrino interactions in the active target. We also report the result above the threshold of 5 MeV to facilitate the comparison with results reported by SNO [4] and SuperKamiokande phase-I [3] at the same threshold. This energy range is unaffected by the scintillator intrinsic background, since the light quenching effect reduces the visible energy of 208Tl ($Q=5.001$ MeV) from 232Th contamination in the scintillator below the energy threshold of 5 MeV.

The analysis in this paper is based on 488 live days of data acquisition, between July 15, 2007 and August 23, 2009, with a target mass of 100 t, defined by a fiducial volume cut of radius 3 m. The total exposure, after applying all the analysis cuts listed in the next section, is 345.3 days.

Muon Rejection

The cosmic muon rate at LNGS is $1.16\pm0.03 m^{-2}hr^{-1}$ with an average energy of $320\pm4_{\text{stat}}\pm11_{\text{sys}} GeV$ [18]. Each day, ~4300 muons deposit energy in Borexino’s inner detector. Depending on deposited energy and track length, there is a small but non-zero chance that a cosmic muon induces a number of photoelectrons comparable to the multi-MeV electron scatterings of interest for this analysis, and is mistaken for a point-like scintillation event. A measurement of the neutrino interaction rate in Borexino requires high performance rejection of muon events and an accurate estimate of the muon tagging efficiency.

As mentioned earlier, the Borexino WT is instrumented with 208 PMTs to serve as a muon veto. If an Inner Detector (ID) event coincides in time with an Outer Detector (OD) trigger (i.e., more than 6 PMTs in the WT are hit within a 150 ns window), the event is tagged as muon and rejected. However, the OD efficiency is not unity and depends on the direction of the incoming cosmic muon.

In addition, we perform pulse-shape discrimination on the hit time distribution of inner detector PMTs, since for track-like events, like muons, such distribution generally extends to longer times than for point-like events, like β-decays and $\nu-e$ scattering. We exclude muons from the event sample in the energy range of interest ($3.0-16.3$ MeV, or 1413–6743 p.e.) by imposing the following requirements (ID cuts):

- The peak of the reconstructed hits time distribution, with respect to the first hit, is between 0 ns and 30 ns.
- The mean value of the reconstructed hits time distribution, with respect to the first hit, is between 0 ns and 100 ns.

The efficiency of the selection cuts was evaluated on a sample of 2,170,207 events, identified by the OD as muons. Only 22 of these events, a fraction of $(1.0\pm0.2)\times10^{-5}$, survive the ID cuts in the energy and spatial region of interest,
and are tagged as possible scintillation events.

We do not have an absolute value for the OD muon veto efficiency, but we estimate it to be larger than 99%, from G4Bx simulations. The residual muon rate, due to the combined inefficiency of the two tagging systems, taking into account the fact that the two detectors are independent, is $(4.5 \pm 0.9) \times 10^{-3}$ muons/day/100t, or $(3.5 \pm 0.8) \times 10^{-3}$ muons/day/100t above 5 MeV.

Cosmogenic Background Rejection

Fast cosmogenic veto

Table I presents a list of expected cosmogenic isotopes produced by muons in Borexino. The short-lived cosmogenics ($\tau < 2$ s), as well as the γ-ray capture on 12C, are rejected by a 6.5 s cut after each muon, with a 29.2% fractional dead time. Figure 3 shows the time distribution of events following a muon. The data is well fit by three exponentials with characteristic times of 0.031±0.002 s (12B), 0.25±0.21 s (8He, 6C, 9Li), 1.01±0.36 s (8B, 6He, 8Li), in good agreement with the lifetimes of the short-lived isotopes (see Table I). From the fit we estimate the production rates of these cosmogenic isotopes in Borexino. We conclude that rejection of events in a 6.5 s window following every muon crossing the SSS reduces the residual contamination of the short lived isotopes to $(1.7 \pm 0.2) \times 10^{-3}$ cpd/100 t ($(1.3 \pm 0.2) \times 10^{-3}$ cpd/100 t above 5 MeV).

The expected rates (R) quoted in Table I are obtained by scaling the production rates (R^0) measured by KamLAND [19] with:

$$ R = R^0 \left(\frac{E_\mu}{E^0_\mu} \right)^\alpha \frac{\Phi_\mu}{\Phi^0_\mu}, $$

where E_μ and Φ_μ are the Borexino mean muon energy (320±4,stat ± 11sys, GeV) and flux (1.16±0.03 m$^{-2}$ hr$^{-1}$), as measured by MACRO [18], and E^0_μ (260±4 GeV) and Φ^0_μ (5.37±0.41 m$^{-2}$ hr$^{-1}$) are the corresponding KamLAND values. α is a scaling factor to relate cosmogenic production rate at different mean energies of the incoming muon flux; it is obtained in Ref. [19] by fitting the production yield of each isotope, simulated by FLUKA, as a function of muon beam energy. Overall, Borexino data results are in agreement with the values quoted in Table I within 15%.

Neutron rejection

The cosmogenic background in Borexino includes decays of radioactive isotopes due to spallation processes on the 12C nuclei in the scintillator, as well as the γ-rays from the capture of neutrons that are common by-products of such processes. The capture time for neutrons in the Borexino scintillator has been measured to be $256.0 \pm 0.4 \mu$s, using a neutron calibration source, and the energy of the dominant γ-rays from neutron capture on 1H at 2.223 MeV is below the energy threshold of the present analysis. On the other hand, the 4.9 MeV γ-rays from neutron captures on 12C is a potential background for this analysis. The rate is estimated by scaling the cosmogenic neutron capture rate on 1H by the fraction of captures on 12C with respect to the total, measured with the 241Am9Be neutron source. The neutron capture rate on 12C is 0.86 ± 0.01 cpd/100 t.

The fast cosmogenic veto, described in the Fast Cosmogenic Veto section, rejects neutrons produced in the scintillator or in the buffer by muon spallation with 99.99% efficiency. To reject neutrons produced in water, a second 2 ms veto is applied after each muon crossing the Water Tank only. The rejection efficiency for neutrons produced in water is 0.9996. The overall survival neutron rate in the energy range of interest and in the fiducial volume is $(8.6 \pm 0.1) \times 10^{-3}$ cpd/100 t.

10C identification and subtraction

A separate treatment is required for long-lived ($\tau > 2$ s) cosmogenic isotopes. Since 7Be ($\tau = 76.9$d, Q-value=0.9 MeV) and 11C ($\tau = 29.4$min, Q-value=2.0 MeV) are below the energy threshold, we focus on 10C and 11Be.

Taking into account the energy response of Borexino, the fraction of the 10C energy spectrum above 3 MeV is 1.2%. When 10C is produced in association with a neutron, 10C candidates are tagged by the three-fold coincidence with the parent muon and subsequent neutron capture in the scintillator [20]. The efficiency of the Borexino electronics...
in detecting at least one neutron soon after a muon has been estimated to be 94\% by two parallel (1-channel and 8-channel) DAQ systems that digitize data for 2 ms after every OD trigger at 500 MHz. The rate of muons associated with at least 1 neutron, measured by the Borexino electronics, is ~67 cpd. Thus, to reject 10C from the analysis we exclude all data within a 120 s window after a $\mu + n$ coincidence and within a 0.8 m distance from the neutron capture point. The efficiency of this cut is 0.74\pm 0.11, for a 0.16\% dead time. A time profile analysis of events tagged by this veto above 2.0 MeV returns a characteristic time of 30\pm 4 s, consistent with the lifetime of 10C, and a total 10C rate of (0.50\pm 0.13) cpd/100 t, in production channels with neutron emission. Thus, the residual 10C contamination from neutron-producing channels above 3 MeV is (6.0\pm 0.2) \times 10^{-3} cpd/100 t.

The dominant neutron-less 10C production reaction is 12C(p,t)10C. We extrapolated its rate by scaling the 12C(p,d)11C production rate [20, 21], by the ratio between the 12C(p,d)11C and 12C(p,t)10C cross sections measured in Ref. [22]. The 12C(p,t)10C rate is (0.6\pm 1.8) \times 10^{-3} cpd/100 t. The residual background above 3 MeV from 10C is 2.2 \times 10^{-3} cpd/100 t.

The overall 10C rate above 3 MeV, (6.6\pm 1.8) \times 10^{-3} cpd/100 t, agrees with the expected one, quoted in Table I.

In Table I: Expected muon-induced contaminants with Q-value > 3 MeV in Borexino. The expected rate is obtained by extrapolating the recently released data by the KamLAND Collaboration [19] in accordance with the empirical law defined in Eq. 4.

Isotopes	τ [MeV]	$\frac{Q}{Q_{\gamma}}$	Decay	Expected Rate [cpd/100 t]	Fraction Expected Rate > 3 MeV [cpd/100 t]	Measured Rate > 3 MeV [cpd/100 t]	
7B	0.03 s	13.4	β^-	1.41 \pm 0.04	0.886	1.25 \pm 0.03	1.48 \pm 0.06
9He	0.17 s	10.6	β^-	0.026 \pm 0.012	0.898		
9C	0.19 s	16.5	β^+	0.096 \pm 0.031	0.965	(1.8 \pm 0.3) \times 10^{-1}	(1.7 \pm 0.5) \times 10^{-1}
8Li	0.26 s	13.6	β^-	0.071 \pm 0.005	0.932		
8B	1.11 s	18.0	β^+	0.273 \pm 0.062	0.938		
6He	1.17 s	3.5	β^-	NA	0.009	(6.0 \pm 0.8) \times 10^{-1}	(5.1 \pm 0.7) \times 10^{-1}
8Li	1.21 s	16.0	β^-	0.40 \pm 0.077	0.875		
10C	27.8 s	3.6	β^+	0.54 \pm 0.04	0.012	(6.5 \pm 0.5) \times 10^{-3}	(6.6 \pm 1.8) \times 10^{-3}
11Be	19.9 s	11.5	β^-	0.035 \pm 0.006	0.902	(3.2 \pm 0.5) \times 10^{-2}	(3.6 \pm 3.5) \times 10^{-2}

Figure 4 shows the time profile of events within 240 s after a muon and within 2 m from its track in the entire Borexino active volume (278 t). The distribution has been fit to the three decay exponentials as in Figure 3 plus the 11Be component, with fixed mean-lives.

The 3MeV energy threshold is set by the 2.614 MeV γ-rays from the β-decay of 208Tl, due to radioactive contamination in the PMTs and in the SSS. Above 3 MeV, the sources of radioactive background include the radioactive decays of residual 211Bi (235U chain, $Q=3.272$ MeV) and 208Tl (232Th chain, $Q=5.001$ MeV) in the liquid scintillator. The fiducial volume cut is very effective against the 208Tl and 211Bi background due to 222Rn and 220Rn emanated from the nylon vessel, as well as residual external γ-ray background. In Figure 5 the radial distribution of all scintillation events above 3 MeV has been fit to a model which takes into account the three sources of backgrounds: a uniform distribution in the detector for internal events, a delta-function centered on the vessel radius for the point-
like radioactive background in the nylon, and an exponential for external γ-ray background. All the three components are convoluted with the detector response function. From this radial analysis we conclude that within the fiducial volume there is a small contribution of events from surface contamination and the exterior of $(6.4\pm0.2)\times10^{-3}$ cpd/100 t ($(3\pm11)\times10^{-6}$ cpd/100 t) for events above 3 MeV (5 MeV).

214Bi contamination

The suppression of 214Bi from 238U contamination in the FV relies on the 214Bi-214Po delayed coincidence ($\tau = 237 \mu$s). We look for coincidences in time between 20 μs and 1.4 ms ($\epsilon = 0.91$) with a spatial separation < 1.5 m ($\epsilon = 1$) and Gatti parameter, a pulse shape discrimination estimator introduced in Ref. [6, 23], larger than -0.008 ($\epsilon = 1$) within the fiducial volume throughout the entire data set. The 214Po α-decays are selected in the 0.3–1.2 MeV ($\epsilon = 1$) energy range. The remaining contribution of 214Bi to the ν-e scattering sample is negligible ($1.1\pm0.4)\times10^{-4}$ cpd/100 t.

Amongst the daughters of 232Th naturally present in the scintillator, 208Tl decays are the only ones which contribute background above 3 MeV. The parent of 208Tl is 212Bi α-decays into 208Tl with a branching ratio of 36% and a lifetime of $\tau = 4.47$ min. In the second channel with branching ratio 64%, 212Bi β-decays into 212Po with a lifetime of $\tau = 431$ ns. We estimate the 208Tl rate from the fast 212Bi-212Po coincidences. 212Bi-212Po events are selected in a time window between 400 and 1300 ns, with an efficiency of 0.35, and requiring a maximum spatial distance between the two events of 1 m ($\epsilon = 1$). 212Bi and 212Po are selected in [20–1200] p.e. ($\epsilon = 1$) and [420–580] p.e. ($\epsilon = 0.93$) energy regions, respectively. The 212Po-α quenched energy is estimated from the 210Po and 214Po peaks, optimal signatures for the α-quenching calibration. We found 21 212Bi-212Po coincidences in the entire data set, within the FV. Accounting for the efficiency of the selection cuts and the branching ratios of the 212Bi decays, this corresponds to a 208Tl contamination in our neutrino sample of 29 \pm 7 events, or a $(8.4\pm2.0)\times10^{-5}$ cpd/100 t rate.

A summary of the analysis sequence described above is shown in Table III. The energy spectrum of the final sample, compared with simulated spectra of 8B neutrinos and of each residual background component listed in Table III is shown in Figure 6.

NEUTRINO INTERACTION RATES AND ELECTRON SCATTERING SPECTRUM

The mean value for 8B neutrinos in the sample above 3 MeV (5 MeV) is 75 ± 13 (46 \pm 8) counts.

The dominant sources of systematic errors are the determinations of the energy threshold and of the fiducial mass,

Background	Rate [10^{-3} cpd/100 t]
Muons	4.5 ± 0.9
Neutrinos	0.86 ± 0.01
External background	64 ± 2
Fast cosmogenic	17 ± 2
Tl	840 ± 20
214Bi	1.1 ± 0.4
208Tl	320 ± 60
Total	1270 ± 63

Table III: Residual rates of background components after the data selection cuts above 3 and 5 MeV.
and with E\textgreater{}5 MeV:

\[0.134 \pm 0.022(\text{stat})^{+0.008}_{-0.007}(\text{syst}) \text{ cpd/100 t} \]

The total systematic errors are shown in Table IV.

The resulting count rate with E\textgreater{}3 MeV is:

\[0.217 \pm 0.038(\text{stat})^{+0.008}_{-0.008}(\text{syst}) \text{ cpd/100 t} \]

and with E\textgreater{}5 MeV:

\[0.134 \pm 0.022(\text{stat})^{+0.008}_{-0.007}(\text{syst}) \text{ cpd/100 t} \]

The energy spectrum after all cuts and residual background subtraction (red dots) to Monte Carlo simulations (blue line). The expected electron recoil spectrum from oscillated ⁸B interactions, with amplitude from the Standard Solar Models BPS09(GS98) (high metallicity) and BPS09(AGS05) (low metallicity), and from the MSW-LMA neutrino oscillation model.

Solar ⁸B Neutrino Flux and Neutrino Oscillation Parameters

The equivalent unoscillated ⁸B neutrino flux, derived from the electron scattering rate above 5 MeV (Table V), is \((2.7 \pm 0.4_{\text{stat}} \pm 0.2_{\text{syst}}) \times 10^{6} \text{ cm}^{-2}\text{s}^{-1} \), in good agreement with the SuperKamiokande and SNO D₂O measurements with the same threshold, as reported in Table VI. The corresponding value above 3 MeV, is \((2.4 \pm 0.4_{\text{stat}} \pm 0.1_{\text{syst}}) \times 10^{6} \text{ cm}^{-2}\text{s}^{-1} \). The expected value for the case of no neutrino oscillations, including the theoretical uncertainty on the ⁸B flux from the Standard Solar Model \([11-13] \), is \((5.88 \pm 0.65) \times 10^{6} \text{ cm}^{-2}\text{s}^{-1} \) and, therefore, solar \(\nu_{e} \) disappearance is confirmed at 4.2σ.

To define the neutrino electron survival probability \(P_{ee} \) averaged in the energy range of interest, we define the measured recoiled electron rate \(R \), through the convolution:

\[R = \int_{T_{c} > T_{0}} dT_{c} \int_{-\infty}^{+\infty} dt \left(\frac{dr}{dt}(t) \cdot g(t - T_{c}) \right) \]

(4)

between the detector energy response \(g \), assumed gaussian, with a resolution depending on the energy, and differential rate:

\[\frac{dr}{dT_{c}}(T_{c}) = \int_{E_{\nu} > E_{0}} dE_{\nu} \left(P_{ee} \cdot \Psi_{e} + (1 - P_{ee}) \cdot \Psi_{\mu-\tau} \right) \]

(5)

with:

\[\Psi_{e} = \frac{d\sigma}{dT_{c}}(E_{\nu}, T_{c}) \cdot N_{e} \cdot \frac{d\Phi_{e}}{dE_{\nu}}(E_{\nu}) \]

(6)

and:

\[\Psi_{\mu-\tau} = \frac{d\sigma}{dT_{c}}(E_{\nu}, T_{c}) \cdot N_{\nu} \cdot \frac{d\Phi_{\nu}}{dE_{\nu}}(E_{\nu}) \]
in the high energy, matter enhanced-regions. Borexino al-
target, neutrinos in the low energy, vacuum dominated- and
the first experiment to detect in real time, and in the same
between the two survival probabilities is 1.9
neutrinos, at the energy of 0.862 MeV [9]. The distance
pep
bly,
stringent test of the difference in
energy neutrinos predicted by the MSW-LMA theory: as-
\[\Delta m^2 = 7.69 \times 10^{-5} \text{ eV}^2 \text{ and } \tan^2 \theta = 0.45 \text{ [24]}. \]

Dots represent the Borexino results from 7Be and 8B measurements. The error bars include also the theoretical uncertainty of the expected flux from the Standard Solar Model BPS09(GS98).

Figure 8: Electron neutrino survival probability as function of the neutrino energy, evaluated for the 8B neutrino source assuming the BPS09(GS98) Standard Solar Model [11–13] and the oscillation parameters from the MSW-LMA solution $\Delta m^2 = 7.69 \times 10^{-5} \text{ eV}^2$ and $\tan^2 \theta = 0.45$ [24]. Dots represent the Borexino results from 7Be and 8B measurements. The error bars include also the theoretical uncertainty of the expected flux from the Standard Solar Model BPS09(GS98).

\[
\Psi_{\mu,\tau} = \frac{d\sigma_{\mu,\tau}(E_\nu, T_e)}{dE_\nu} \cdot N_e, \cdot \frac{d\Phi_e}{dE_\nu},
\]

where T_e and E_ν are the electron and neutrino energies, and $\sigma_{\mu,\tau}$ are the electron-neutrino cross sections.

Using the above equation, we obtain $\bar{P}_{ee} = 0.29 \pm 0.10$ at the mean energy of 8.9 MeV for 8B neutrinos. Borexino is the first experiment to detect in real time, and in the same target, neutrinos in the low energy, vacuum dominated- and in the high energy, matter enhanced-regions. Borexino already reported a survival probability of 0.56 ± 0.10 for 7Be neutrinos, at the energy of 0.862 MeV [9].

The distance between the two survival probabilities is 1.9σ.

Future precision measurements of 7Be and 8B (and possibly, pep) neutrinos in Borexino could provide an even more stringent test of the difference in P_{ee} for low- and high-energy neutrinos predicted by the MSW-LMA theory: assuming other 4 years of data taking, and to reduce the overall uncertainty on 7Be neutrino rate at 5%, the distance between the two survival probabilities can be improved at 3 σ.

We are grateful to F. Vissani and F. Villante for useful discussions and comments. The Borexino program was made possible by funding from INFN (Italy), NSF (U.S., PHY-0802646, PHY-0802114, PHY-0902140), BMBF, DFG and MPG (Germany), Rosnauka (Russia), MNiSW (Poland).

We acknowledge the generous support of the Laboratori Nazionali del Gran Sasso (LNGS). This work was partially supported by PRIN 2007 protocol 2007JR4STW.

Table V: Measured event rates in Borexino and comparison with the expected theoretical flux in the BPS09(GS98) MSW-LMA scenario [11].

Rate [cpd/100 t]	3.0–16.3 MeV	5.0–16.3 MeV
Φ_{ee}^{ES} [106 cm$^{-2}$ s$^{-1}$]	0.22±0.04±0.01	0.13±0.02±0.01
$\Phi_{ee}^{ES}/\Phi_{ee}^{B}$	0.88±0.19	1.08±0.23

Table VI: Results on 8B solar neutrino flux from elastic scattering, normalized under the assumption of the no-oscillation scenario reported by SuperKamiokaNDE, SNO, and Borexino.

Threshold $[\text{MeV}]$	Φ_{ee}^{ES} [10^6 cm$^{-2}$ s$^{-1}$]	
SuperKamiokaNDE I [3]	5.0	2.35±0.02±0.08
SuperKamiokaNDE II [2]	7.0	2.38±0.05±0.16
SNO D$_2$O [4]	5.0	2.39±0.24±0.12
SNO Salt Phase [25]	5.5	2.35±0.22±0.15
SNO Prop. Counter [26]	6.0	1.77±0.24±0.09
Borexino	3.0	2.4±0.4±0.1
Borexino	5.0	2.7±0.4±0.2

[1] K.S. Hirata et al. (KamiokaNDE Collaboration), Phys. Rev. Lett. 63, 16 (1989).
[2] J.P. Cravens et al (SuperKamiokaNDE Collaboration), Phys. Rev. D 76, 032002 (2008).
[3] J. Hosaka et al. (SuperKamiokaNDE Collaboration), Phys. Rev. D 73, 112001 (2006).
[4] B. Aharmim et al. (SNO Collaboration), Phys. Rev. C 75, 045502 (2007).
[5] B. Aharmim et al. (SNO Collaboration), arXiv:0910.2984v1 (2009).
[6] G. Alimonti et al. (Borexino Collaboration), Nucl. Instrum. Methods Phys. Res. A 600, 568 (2009).
[7] G. Alimonti et al., (Borexino Collaboration), Nucl. Instrum. Methods Phys. Res. A 609, 58-78 (2009).
[8] C. Arpesella et al. (Borexino Collaboration), Phys. Lett. B 658, 101 (2008).
[9] C. Arpesella et al. (Borexino Collaboration), Phys. Rev. Lett. 101, 091302, (2008).
[10] S.P. Mikheev and A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985); L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); P.C. de Holanda and A.Yu. Smirnov, JCAP 0302, 001 (2003).
[11] J.N. Bahcall, A.M. Serenelli, and S. Basu, Astrophys. J. Suppl. 165, 400 (2006).
[12] C. Pena-Garay, A.M. Serenelli: arXiv:0811.2424 (2008).
[13] A. Serenelli, arXiv:0910.3690 (2009).
[14] H.O. Back, PhD thesis, Virginia Tech, Blacksburg, VA, USA (2004).
[15] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A, 506, 250 (2003).
[16] J. S. Allison et al., IEEE Trans. Nucl. Sci. 53, No. 1, 270 (2006).
[17] J.B. Birks, Proc. Phys. Soc. A64 874 (1951).
[18] M. Ambrosio et al. (MACRO Collaboration), Astropart. Phys. **10**, 11 (1999); S.P. Ahlen et al. (MACRO Collaboration), Phys. Lett. B **249**, 149 (1990).

[19] S. Abe et al. (KamLAND Collaboration), arXiv:0907.0066 (2009).

[20] C. Galbiati et al., Phys. Rev. C **71**, 055805 (2005).

[21] C. Galbiati and J. F. Beacom, Phys. Rev. C **72**, 025807 (2005).

[22] M. Yasue et al., J. Phys. Soc. Japan **42**, 367 (1977).

[23] H.O. Back et al. (Borexino Collaboration) Nucl. Instrum. Methods Phys. Res. A **584**, 98 (2008).

[24] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, arXiv:0806.2649 (2008).

[25] B. Aharmim et al. (SNO Collaboration), Phys. Rev. C **72**, 055502 (2005).

[26] B. Aharmim et al. (SNO Collaboration), Phys. Rev. Lett. **101**, 111301 (2008).

[27] J. Bahcall et al., Phys. Rev. C, **54**, 411 (1996).