Complete genome sequence of *Granulicella mallensis* type strain MP5ACTX8^T, an acidobacterium from tundra soil

Suman R. Rawat¹, Minna K. Männistö², Valentin Starovoytov³, Lynne Goodwin⁴, Matt Nolan⁵ Loren J. Hauser⁶, Miriam Land⁶, Karen Walston Davenport⁴, Tanja Woyke⁵ and Max M. Häggblom¹*

¹ Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey USA
² Finnish Forest Research Institute, Rovaniemi, Finland
³ Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
⁴ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁵ DOE Joint Genome Institute, Walnut Creek, California, USA
⁶ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

*Corresponding author: Max M Häggblom (haggblom@sebs.rutgers.edu)

Keywords: cold adapted, acidophile, tundra soil, *Acidobacteria*

Granulicella mallensis MP5ACTX8^T is a novel species of the genus *Granulicella* in subdivision 1 of *Acidobacteria*. *G. mallensis* is of ecological interest being a member of the dominant soil bacterial community active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. *G. mallensis* is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates. These include gene modules encoding the carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides including plant based carbon polymers. The genome of *Granulicella mallensis* MP5ACTX8^T consists of a single replicon of 6,237,577 base pairs (bp) with 4,907 protein-coding genes and 53 RNA genes.

Introduction

Strain MP5ACTX8^T (= ATCC BAA-1857^T = DSM 23137^T), is the type strain of the species *Granulicella mallensis* [1]. The genus *Granulicella*, in subdivision 1 of *Acidobacteria*, was first described by Pankratov et al. in 2010 [2]. *Granulicella mallensis* (mal.len’ sis. N. L. fem. adj. mallensis; pertaining to its isolation from soil of Malla Nature Reserve, Kilpisjärvi, Finland; 69°01’N, 20°50’E) was described along with other species of the genus *Granulicella* isolated from tundra soil [1] and is one of the two with sequenced genomes, out of eight validly described *Granulicella* species.

Acidobacteria is one of the most ubiquitous bacterial phyla found in diverse habitats and is abundant in most soil environments [3,4] including Arctic tundra soils [5,6]. *Acidobacteria* are phylogenetically and physiologically diverse [7] represented by 26 phylogenetic subdivisions [8] of which only subdivisions 1, 3, 4, 8, and 10 are defined by taxonomically characterized representatives. To date, subdivision 1 is comprised of eight genera: *Acidobacterium* [9], *Terriglobus* [10,11], *Edaphobacter* [12], *Granulicella* [1,2], *Acidipila* [13], *Telmatobacter* [14], *Acidicapsa* [15] and *Bryocella* [16]. Subdivision 3, 4 and 10 include only one genus each, namely *Bryobacter* [17], *Blastocatella* [18] and *Thermotomaculum* [19], respectively, while subdivision 8 includes three genera; *Holophaga* [20], *Geothrix* [21] and *Acanthopleuribacter* [22]. Three species, ‘*Candidatus* Koribacter versatilis’ [23], ‘*Candidatus* Solibacter usitatus’ [23] and ‘*Candidatus* Chloracidobacterium thermophilum’ [24] have been described as ‘*Candidatus*’ taxa. *Acidobacteria* are relatively difficult to cultivate with slow growth.
Granulicella mallensis type strain MP5ACTX8T

Classification and features

Within the genus *Granulicella*, eight species are described with validly published names: *G. mallensis* MP5ACTX8T, *G. tundricola* MP5ACTX9T, *G. arctica* MP5ACTX2T and *G. sapmiensis* S6CTX5AT isolated from Arctic tundra soil [1]; and *G. paludicola* OB1010T, *G. pectinivorans* TPB6011T, *G. rosea* TP01014T and *G. aggregans* TPB6028T isolated from sphagnum peat bogs [3]. Strain MP5ACTX8T showed 95.5 -96.1% 16S rRNA gene sequence identity to tundra soil strains, *G. tundricola* MP5ACTX9T (95.5%), *G. sapmiensis* S6CTX5AT (96.2%) and *G. arctica* MP5ACTX2T (96.1%) and 94.6 -97.4% to *G. rosea* TP01014T (96.4%), *G. aggregans* TPB6028T (96.0%), *G. pectinivorans* TPB6011T (96.1%), *G. paludicola* OB1010T (96.5%) and *G. paludicola* LCBR1 (97.4%). Phylogenetic analysis based on the 16S rRNA gene of taxonomically classified strains of family *Acidobacteriaceae* placed *G. paludicola* type strain OB1010T as the closest taxonomically classified relative of *G. mallensis* MP5ACTX8T (Figure 1).

Figure 1. Phylogenetic tree highlighting the position of *G. mallensis* MP5ACTX8 (shown in bold) relative to the other type strains within SD1 *Acidobacteria*. The maximum likelihood tree was inferred from 1,361 aligned positions of the 16S rRNA gene sequences and derived based on the Tamura-Nei model using MEGA 5 [41]. Bootstrap values >50 (expressed as percentages of 1,000 replicates) are shown at branch points. Bar: 0.02 substitutions per nucleotide position. The corresponding GenBank accession numbers are displayed in parentheses. Strains whose genomes have been sequenced, are marked with an asterisk: *G. mallensis* MP5ACTX8 (CP003130), *G. tundricola* MP5ACTX9 (CP002480), *T. saanensis* SP1PR4 (CP002467), *T. roseus* KB63 (CP003379) and *A. capsulatum* ATCC 51196 (CP001472). *Bryobacter aggregatus* MPL3 (AM162405) in SD3 *Acidobacteria* was used as an outgroup.
Table 1. Classification and general features of *G. mallensis* strain MP5ACTX8\(^{T}\) according to the MIGS recommendations [32]

MIGS ID	Property	Term	Evidence code\(^a\)	
	Domain	*Bacteria*	TAS [33]	
	Phylum	*Acidobacteria*	TAS [34,35]	
	Class	*Acidobacteria*	TAS [36,37]	
	Order	*Acidobacteriales*	TAS [36,38]	
	Family	*Acidobacteriaceae*	TAS [34,39]	
	Genus	*Granulicella*	TAS [1,2]	
	Species	*Granulicella mallensis*	TAS [1]	
	Type strain:	MP5ACTX8\(^{T}\) (= ATCC BAA-1857\(^{T}\) = DSM 23137\(^{T}\))		
	Gram stain	negative	TAS [1]	
	Cell shape	rod	TAS [1]	
	Motility	non-motile	TAS [1]	
	Sporulation	not reported	NAS	
	Temperature range	4–28 °C	TAS [1]	
	Optimum temperature	24–27 °C	TAS [1]	
	pH range	3.5–6.5	TAS [1]	
	Optimum pH	5	TAS [1]	
	Carbon source	D-glucose, maltose, D-fructose, D-galactose, lactose, lactulose, D-mannose, D-ribose, raffinose, sucrose, trehalose, cellobiose, D-xylose, glucuronate	TAS [1]	
	MIGS-6	Habitat	terrestrial	TAS [1]
	MIGS-6.3	Salinity	Growth with up to 1.5% NaCl	TAS [1]
	MIGS-22	Oxygen requirement	aerobic	TAS [1]
	MIGS-15	Biotic relationship	free-living	TAS [1]
	MIGS-14	Pathogenicity	non-pathogenic	NAS
	MIGS-4	Geographic location	Arctic-alpine tundra, Finland	TAS [1]
	MIGS-5	Sample collection	2006	TAS [1]
	MIGS-4.1	Latitude	69°01’N,	TAS [1]
	MIGS-4.2	Longitude	20°50’E	TAS [1]
	MIGS-4.4	Altitude	700 m	TAS [1]

\(^a\)Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [40].

http://standardsingenomics.org
Morphology and physiology

G. mallensis grows on R2 medium (Difco) at pH 3.5–6.5 (optimum pH 5) and at +4 to +28 °C (optimum 24–27 °C) [1]. On R2 agar, strain MP5ACTX8T forms opaque white mucoid colonies with a diameter of approximately 1 mm. Cells are Gram-negative, non-motile, aerobic rods, approximately 0.5–0.7 mm wide and 0.6–1.3 mm long. Growth observed with up to 1.5% NaCl (w/v) (Table 1). The cell-wall structure in ultrathin sections of electron micrographs of cells of MP5ACTX8T is shown in Figure 2.

G. mallensis utilizes D-glucose, maltose, cellobiose, D-fructose, D-galactose, lactose, lactulose, D-mannose, D-ribose, raffinose, sucrose, trehalose, D-xylene, N-acetyl-D-glucosamine, glucuronate, glutamate, melezitose and salicin, but does not utilize D-arabinose, acetate, formate, pyruvate, malate, mannitol, D- or L-alanine, D-glycine, L-leucine, L-ornithine, gluconic acid, aspartate, dulcitol, butyrate, caproate, valerate, lactate, oxalate, propionate, fumarate, adonitol, methanol, ethanol, succinate, D-sorbitol or myoinositol, when grown using VL55 mineral medium with 100 mg yeast extract l⁻¹. *G. mallensis* hydrolyzes aesculin, starch, pectin, laminarin and lichenan, but not gelatin, cellulose, xylan, sodium alginate, pullulan, chitosan or chitin on R2 medium. Strains show positive reaction for acid and alkaline phosphatases, leucine arylamidase, a-chymotrypsin, naphthol-AS-BI-phosphohydrolase, α- and β-galactosidases, α- and β-glucosidases, N-acetyl-β-glucosaminidase, β-glucuronidase, trypsin and valine arylamidase, but negative for α-fucosidase, α-mannosidase, esterase (C4 and C8), lipase (C14) and cystine arylamidase. Strain MP5ACTX8T reduces nitrate to nitrite. Strain MP5ACTX8T is resistant to the antibiotics erythromycin, chloramphenicol, neomycin, rifampicin, streptomycin, gentamicin, polymyxin B and penicillin, but susceptible to ampicillin, kanamycin, tetracycline, lincomycin, novobiocin and bacitracin [1].

Chemotaxonomy

The major cellular fatty acids in *G. mallensis* are iso-C₁₅:₀ (45.3%), C₁₆:₁ω₇c (28.7%), iso-C₁₃:₀ (8.3%) and C₁₆:₀ (8.9%). The cellular fatty acid compositions of strain MP5ACTX8T were relatively similar to that of other *Granulicella* strains with fatty acids iso-C₁₅:₀ and C₁₆:₁ω₇c being most abundant in all strains. Strain MP5ACTX8T contains MK-8 as the major quinone.

Genome sequencing and annotation

Genome project history

G. mallensis strain MP5ACTX8T was selected for sequencing in 2009 by the DOE Joint Genome Institute (JGI) community sequencing program. The Quality Draft (QD) assembly and annotation were completed on December 26, 2010. The complete genome was made available on Dec. 1, 2011. The genome project is deposited in the Genomes Online Database (GOLD) [42] and the complete genome sequence of strain MP5ACTX8T is deposited in GenBank (CP003130). Table 2 presents the project information and its association with MIGS version 2.0 [32].

Growth conditions and genomic DNA extraction

G. mallensis MP5ACTX8T was cultivated on R2 medium as previously described [1]. Genomic DNA (gDNA) of high sequencing quality was isolated using a modified CTAB method and evaluated according to the Quality Control (QC) guidelines provided by the DOE Joint Genome Institute [43].

Figure 2. Electron micrograph of *G. mallensis* MP5ACTX8T.
Table 2. Project information.

MIGS ID	Property	Term
MIGS 31	Finishing quality	Finished
MIGS-28	Libraries used	Three libraries, an Illumina GAii shotgun library (GSGY), a 454 Titanium standard library (GSXT, GWTA) and a paired end 454 (GSFP) library
MIGS 29	Sequencing platforms	454 Titanium standard, 454 Paired End, Illumina
MIGS 31.2	Fold coverage	18.5× (454), 213× (Illumina)
MIGS 30	Assemblers	Newbler, VELVET, PHRAP
MIGS 32	Gene calling method	Prodigal, GenePRIMP
	Locus Tag	AciX8
	Genbank ID	CP003130.1
	GenBank Date of Release	December 1, 2011
	GOLD ID	Gc02349
	BIOPROJECT	PRJNA49957, PRJNA47903
	Project relevance	Environmental, Biogeochemical cycling of Carbon, Biotechnological, GEBA

Genome sequencing and assembly

The finished genome of *G. mallensis* MP5ACTX8T (JGI ID 4088692) was generated at the DOE Joint genome Institute (JGI) using a combination of Illumina [44] and 454 technologies [45]. For this genome, an Illumina GAii shotgun library which generated 59,701,420 reads totaling 4537.3 Mb, a 454 Titanium standard library which generated 136,708 reads and a paired end 454 library with an average insert size of 10.3 kb which generated 157,336 reads totaling 172.0 Mb of 454 data, were constructed and sequenced. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI website [43]. The 454 Titanium standard data and the 454 paired end data were assembled with Newbler, version 2.3. Illumina sequencing data was assembled with Velvet, version 0.7.63 [46]. The 454 Newbler consensus shreds, the Illumina Velvet consensus shreds and the read pairs in the 454 paired end library were integrated using parallel phrap, version SPS - 4.24 (High Performance Software, LLC) [47]. The software Consed [48] was used in the finishing process. The Phred/Phrap/Consed software package [49] was used for sequence assembly and quality assessment in the subsequent finishing process. Illumina data was used to correct potential base errors and increase consensus quality using the software Polisher developed at JGI (Alla Lapidus, unpublished). Possible misassemblies were corrected using gapResolution (Cliff Han, unpublished), Dupfinisher [50] or sequencing cloned bridging PCR fragments with sub-cloning. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR (J-F Cheng, unpublished) primer walks. The final assembly is based on 74.2 Mb of 454 data which provides an average 18.5× coverage and 1318.5 Mb of Illumina data which provides an average 213× coverage of the genome.

Granulicella mallensis type strain MP5ACTX8T

Genome annotation

Genes were identified using Prodigal [51] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [52]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COGs [53,54], and InterPro. These data sources were combined to assert a product description for each predicted protein. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [55], RNAMMer [56], Rfam [57], TMHMM [58], and signalP [59]. Additional gene prediction analysis and functional annotation were performed within the Integrated Microbial Genomes Expert Review (IMG-ER) platform [60].

Genome properties

The genome consists of one circular chromosome of 6,211,694 bp in size with a GC content of 57.8 mol% and consists of 53 RNA genes (Figure 3 and Table 3). Of the 4,960 predicted genes, 4,907 are protein-coding genes (CDSs) and 90 are pseudogenes. Of the total CDSs, 70.5% represent COG functional categories and 16% consist of signal peptides. The distribution of genes into COG functional categories is presented in Figure 3 and Table 4.

Table 3. Genome statistics

Attribute	Value	% of Total
Genome size (bp)	6,237,577	100
DNA coding region (bp)	5,499,388	88.2
DNA G+C content (bp)	3612173	57.9
DNA scaffolds	1	100
Total genes	4,960	100
Protein coding genes	4,907	98.9
RNA genes	53	1.3
Pseudo genes	90	1.8
Genes in internal clusters	2,679	54
Genes with function prediction	3,511	70.8
Genes assigned to COGs	3,496	70.5
Genes with Pfam domains	3,754	75.7
Genes with signal peptides	797	16.1
Genes with transmembrane helices	1,291	26.0
CRISPR repeats	0	-

The total is based on either the size of the genome in base pairs or the protein coding genes in the annotated genome.
Figure 3. Circular representation of the chromosome of *G. mallensis* MP5ACTX8\(^T\) displaying relevant genome features. From outside to center; Genes on forward strand (color by COG categories), genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content and GC skew.
Granulicella mallensis type strain MP5ACTX8T

Code	Value	%age	Description
J	167	4.32	Translation, ribosomal structure and biogenesis
A	2	0.05	RNA processing and modification
K	332	8.58	Transcription
L	156	4.03	Replication, recombination and repair
B	1	0.03	Chromatin structure and dynamics
D	27	0.7	Cell cycle control, Cell division, chromosome partitioning
Y	0.0	0.0	Nuclear structure
V	76	1.96	Defense mechanisms
T	139	3.59	Signal transduction mechanisms
M	322	8.32	Cell wall/membrane biogenesis
N	17	0.44	Cell motility
Z	0.0	0.0	Cytoskeleton
W	0.0	0.0	Extracellular structures
U	79	2.04	Intracellular trafficking and secretion
O	123	3.18	Posttranslational modification, protein turnover, chaperones
C	193	4.99	Energy production and conversion
G	355	9.18	Carbohydrate transport and metabolism
E	258	6.67	Amino acid transport and metabolism
F	76	1.96	Nucleotide transport and metabolism
H	155	4.01	Coenzyme transport and metabolism
I	164	4.24	Lipid transport and metabolism
P	157	4.06	Inorganic ion transport and metabolism
Q	125	3.23	Secondary metabolites biosynthesis, transport and catabolism
R	527	13.62	General function prediction only
S	418	10.8	Function unknown
-	1,464	29.52	Not in COGs

The total is based on the total number of protein coding genes in the genome.
Discussion

Granulicella mallensis type strain MP5ACTX8^T has the largest genome size of 6.2 Mbp. among the three tundra soil strains of subdivision 1 Acidobacteria [28]. Genome analysis of Granulicella mallensis identified a high abundance of genes assigned to COG functional categories for transport and metabolism of carbohydrates (9.1%) and amino acids (6.7%) and involved in cell envelope biogenesis (8.3%) and transcription (8.6%). Further genome analysis revealed an abundance of gene modules encoding for functional activities within the carbohydrate-active enzymes (CAZy) family [61] involved in breakdown, utilization and biosynthesis of carbohydrates. G. mallensis hydrolyzed complex carbon polymers, including CMC, pectin, lichenin, laminarin and starch, and utilized sugars such as cellobiose, D-mannose, D-xylose, D-trehalose. This parallels genome predictions for CDSs encoding for enzymes such as cellulases, pectinases, alginate lyases, trehalase and amylases. In addition, the G. mallensis genome contained a cluster of genes in the neighborhood of the cellulose synthase gene (bcsAB) which included cellulase (bscZ) (endoglucanase Y) of family GH8, cellulose synthase operon protein (bcsC) and a cellulose synthase operon protein (yhjQ) involved in cellulose biosynthesis. Detailed comparative genome analysis of G. mallensis MP5ACTX8^T with other Acidobacteria strains for which finished genomes were available is reported in Rawat et al. [28]. The data thus suggests that G. mallensis is involved in hydrolysis, the utilization of stored carbohydrates, and in the biosynthesis of exopolysaccharides from organic matter and plant based polymers in the soil. Therefore, we infer that strain G. mallensis may be central to carbon cycling processes in arctic and boreal soil ecosystems.

Acknowledgements
The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy Under Contract No. DE-AC02-05CH11231. This work was funded in part by the Academy of Finland and the New Jersey Agricultural Experiment Station.

References

1. Männistö MK, Rawat S, Starovoytov V, Häggblom MM. Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella sapmiensis sp. nov. and Granulicella tundricola sp. nov., novel Acidobacteria from tundra soil of Northern Finland. Int J Syst Evol Microbiol 2012; 62:2097-2106. PubMed http://dx.doi.org/10.1099/ijs.0.031864-0

2. Pankratov TA, Dedysn SN. Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 2010; 60:2951-2959. PubMed http://dx.doi.org/10.1099/ijs.0.021824-0

3. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 2006; 72:1719-1728. PubMed http://dx.doi.org/10.1128/AEM.72.3.1719-1728.2006

4. Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology 2007; 88:1354-1364. PubMed http://dx.doi.org/10.1890/05-1839

5. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 2010; 12:1842-1854. PubMed http://dx.doi.org/10.1111/j.1462-2920.2010.02189.x

6. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 2010; 12:2998-3006. PubMed http://dx.doi.org/10.1111/j.1462-2920.2010.02277.x

7. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 2009; 3:442-453. PubMed http://dx.doi.org/10.1038/ismej.2008.127

8. Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum.
Granulicella mallensis type strain MP5ACTX8T

Appl Environ Microbiol 2007; 73:3113-3116. PubMed http://dx.doi.org/10.1128/AEM.02012-06

9. Kishimoto N, Kosako Y, Tano T. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemooorganotrophic bacterium containing men-aquinone from acidic mineral environment. Curr Microbiol 1991; 22:1-7. http://dx.doi.org/10.1007/BF02106205

10. Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 2007; 73:2708-2717. PubMed http://dx.doi.org/10.1128/AEM.02140-06

11. Männistö MK, Rawat SR, Starovoytov V, Häggblom MM. Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 2011; 61:1823-1828. PubMed http://dx.doi.org/10.1099/ijs.0.026005-0

12. Koch IH, Gich F, Dunfield PF, Overmann J. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 2008; 58:1114-1122. PubMed http://dx.doi.org/10.1099/ijs.0.65303-0

13. Okamura K, Kawai A, Yamada T, Hiraishi A. Acidipila rosea gen. nov., sp. nov., an acidophilic chemooorganotrophic bacterium belonging to the phylum Acidobacteria. FEMS Microbiol Lett 2011; 317:138-142. PubMed http://dx.doi.org/10.1111/j.1574-6968.2011.02224.x

14. Pankratov TA, Kirsanova LA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 2007; 73:2708-2717. PubMed http://dx.doi.org/10.1128/AEM.02140-06

15. Kulichevskaya IS, Kostina LA, Valášková V, Rijpstra IC, Sinninghe Damsté JS, de Boer W, Dedysz SN. Acidipaca borealis gen. nov., sp. nov. and A. ligni sp. nov., two novel subdivision 1 Acidobacteria from sphagnum peat and decaying wood. Int J Syst Evol Microbiol 2012; 62:1512-1520. PubMed http://dx.doi.org/10.1099/ijs.0.034819-0

16. Dedysz SN, Kulichevskaya IS, Serkebaeva YM, Mityaeva MA, Sorokin VV, Suzina NE, Rijpstra WI, Damste JS. Bryocella elongata gen. nov., sp. nov., a novel member of Subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 2012; 62:654-664. PubMed http://dx.doi.org/10.1099/ijs.0.031898-0

17. Kulichevskaya IS, Suzina NE, Liesack W, Dedysz SN. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemooorganotroph from subdivision 3 of the Acidobacteria. Int J Syst Evol Microbiol 2010; 60:301-306. PubMed http://dx.doi.org/10.1099/ijs.0.013250-0

18. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semi-arid savanna soil – The first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 2013; 36:82-89. PubMed http://dx.doi.org/10.1016/j.syapm.2012.11.002

19. Izumi H, Nunoura T, Miyazaki M, Mino S, Toki T, Takai K, Sako Y, Sawabe T, Nakagawa S. Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. Extremophiles 2012; 16:245-253. PubMed http://dx.doi.org/10.1007/s00792-011-0425-9

20. Liesack W, Bak F, Krefte JU, Stackebrandt E. Holophaga foetida gen.nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 1994; 162:85-90. PubMed http://dx.doi.org/10.1007/BF00264378

21. Coates JD, Ellis DJ, Gaw CV, Lovley DR. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon contaminated aquifer. Int J Syst Bacteriol 1999; 49:1615-1622. PubMed http://dx.doi.org/10.1099/00207713-49-4-1615

22. Fukunaga Y, Kurahashi M, Yanagi K, Yokota A, Harayama S. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int J Syst Evol Microbiol 2008; 58:2597-2601. PubMed http://dx.doi.org/10.1099/ijs.0.05589-0

23. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ
24. Bryant DA, Amaya M, Garcia Costas AMG, Maresca JA, Chew AGM, Klett CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 2007; 317:523-526. PubMed http://dx.doi.org/10.1126/science.1143236

25. Männistö MK, Tiirila M, Häggblom MM. Microbial communities in Arctic fjelds of Finnish Lapland are stable but highly pH dependent. FEMS Microbiol Ecol 2007; 59:452-465. PubMed http://dx.doi.org/10.1111/j.1574-6941.2006.00232.x

26. Sait M, Davis KE, Janssen PH. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 2006; 72:1852-1857. PubMed http://dx.doi.org/10.1128/AEM.72.3.1852-1857.2006

27. Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol 2011; 77:586-596. PubMed http://dx.doi.org/10.1128/AEM.00880-10

28. Rawat SR, Männistö MK, Bromberg Y, Häggblom MM. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 2012; 82:341-355. PubMed http://dx.doi.org/10.1111/j.1574-6941.2012.01381.x

29. Rawat S, Männistö MK, Starovoytov V, Goodwin L, Nolan M, Hauser L, Land M, Davenport KW, Woyke T, Häggblom MM. Complete genome sequence of Terriglobus saanensis strain SP1PR4T, an Acidobacteria from tundra soil. Stand Genomic Sci 2012; 7:59-69. PubMed http://dx.doi.org/10.4056/sigs.3036810

30. Männistö MK, Tiirila M, Häggblom MM. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil. Microb Ecol 2009; 58:621-631. PubMed http://dx.doi.org/10.1007/s00248-009-9516-x

31. Männistö MK, Kurhela E, Tiirila M, Häggblom MM. Acidobacteria dominate the active bacterial communities of sub-Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiol Ecol 2013; 84:47-59. PubMed http://dx.doi.org/10.1111/1574-6941.12035

32. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Anguoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

33. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

34. Validation List No. 143. Int J Syst Evol Microbiol 2012; 62:1-4. http://dx.doi.org/10.1099/ijis.0.039487-0

35. Thrash JC, Coates JD. Phylum XVII. Acidobacteria phylog. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 725.

36. Judicial Commission of the International Committee on Systematics of Prokaryotes. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobiunm, respectively. Opinion 79. Int J Syst Evol Microbiol 2005; 55:517-518. PubMed http://dx.doi.org/10.1099/ijs.0.63548-0

37. Cavalier-Smith T. The neomuran origin of archaeabacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 2002; 52:7-76. PubMed

38. Ludwig W, Euzéby J, Whitman WG. Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacters, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglophi, and Gemmatimonadetes. http://www.bergeys.org/outlines/Bergeys_Vol_4_Outline.pdf. Taxonomic Outline 2008.
Granulicella mallensis type strain MP5ACTX8T

39. Thrash JC, Coates JD. Family I. Acidobacteriaceae fam. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 728.

40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evo 2011; 28:2731-2739. PubMed http://dx.doi.org/10.1093/molbev/msr121

42. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2007; 36:D475-D479. PubMed http://dx.doi.org/10.1093/nar/gkm884

43. DOE Joint Genome Institute. http://www.jgi.doe.gov.

44. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433-438. PubMed http://dx.doi.org/10.1517/14622416.5.4.433

45. Margulies M, Egholm M, Altman WE. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376-380. PubMed

46. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821-829. PubMed http://dx.doi.org/10.1101/gr.074492.107

47. Ewing B, Hillier L, Wendl MC, Green P. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8:175-185. PubMed http://dx.doi.org/10.1101/gr.8.3.175

48. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998; 8:195-202. PubMed http://dx.doi.org/10.1101/gr.8.3.195

49. The Phred/Phrap/Consed software package. http://www.phrap.com

50. Han CS, Chain P. Finishing repeat regions automatically with Dupfinisher CSREA Press. In: Arabnia AR, Valafar H, editors. Proceedings of the 2006 international conference on bioinformatics & computational biology; 2006; June 26-29. CSREA Press. p 141-146.

51. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119

52. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455-457. PubMed http://dx.doi.org/10.1038/nmeth.1457

53. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278:631-637. PubMed http://dx.doi.org/10.1126/science.278.5338.631

54. Clusters of Orthologous Groups. http://www.ncbi.nlm.nih.gov/COG.

55. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955-964. PubMed

56. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100-3108. PubMed http://dx.doi.org/10.1093/nar/gkm160

57. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res 2003; 31:439-441. PubMed http://dx.doi.org/10.1093/nar/gkg006

58. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567-580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315

59. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783-795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028

60. Markowitz VM, Mavromatis K, Ivanova N, Chen IM, Chu K, Kyrpides N. Expert Review of Functional Annotations for Microbial Genomes. Bioinformatics 2009; 25:2271-2278. PubMed http://dx.doi.org/10.1093/bioinformatics/btp393

61. Carbohydrate-active enzymes. http://www.cazy.org