RATIONALITY OF ADMISSIBLE AFFINE VERTEX ALGEBRAS
IN THE CATEGORY \mathcal{O}

TOMOYUKI ARAKAWA

Abstract. We study the vertex algebras associated with modular invariant representations of affine Kac-Moody algebras at fractional levels, whose simple highest weight modules are classified by Joseph’s characteristic varieties. We show that an irreducible highest weight representation of a non-twisted affine Kac-Moody algebra at an admissible level k is a module over the associated simple affine vertex algebra if and only if it is an admissible representation whose integral root system is isomorphic to that of the vertex algebra itself. This in particular proves the conjecture of Adamović and Milas [AM] on the rationality of admissible affine vertex algebras in the category \mathcal{O}.

1. Introduction

Let \mathfrak{g} be a complex simple Lie algebra, $\hat{\mathfrak{g}}$ the non-twisted affine Kac-Moody algebra associated with \mathfrak{g}, $V^k(\mathfrak{g})$ the universal affine vertex algebra associated with \mathfrak{g} at a non-critical level k, $L(k\Lambda_0)$ the unique simple quotient of $V^k(\mathfrak{g})$. The simple affine vertex algebra $L(k\Lambda_0)$ is called admissible if it is isomorphic to an admissible representation $[KW1]$ as a $\hat{\mathfrak{g}}$-module. The purpose of this article is to classify simple modules over admissible affine vertex algebras.

By a well-known result of Zhu [Zhu], there is a one-to-one correspondence between positively graded simple modules over a graded vertex algebra V and simple $A(V)$-modules, where $A(V)$ is Zhu’s algebra of V. In the case that V is an affine vertex algebra $L(k\Lambda_0)$, we have

$$ A(L(k\Lambda_0)) \cong U(\mathfrak{g})/J_k $$

for some two sided-ideal J_k of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}. Since a simple $U(\mathfrak{g})$-module M is an $A(L(k\Lambda_0))$-module if and only if the annihilating ideal of M in $U(\mathfrak{g})$ contains J_k, our problem amounts to classify the primitive ideals of $U(\mathfrak{g})$ containing J_k. Because any primitive ideal of $U(\mathfrak{g})$ is the annihilating ideal of a highest weight representation of \mathfrak{g} [Duf], it suffices to classify simple highest weight representations of $A(L(k\Lambda_0))$, or equivalently, to classify simple $L(k\Lambda_0)$-modules in the category \mathcal{O} of $\hat{\mathfrak{g}}$.

Let $L(\lambda)$ be the irreducible highest weight representation of $\hat{\mathfrak{g}}$ with highest weight λ.

Main Theorem. Let k be an admissible number, λ a weight of $\hat{\mathfrak{g}}$ of level k. Then $L(\lambda)$ is a module over $L(k\Lambda_0)$ if and only if it is an admissible representation whose

2000 Mathematics Subject Classification. 17B69, 17B67, 17B08, 17B55.
This work is partially supported by the JSPS Grant-in-Aid for Scientific Research (B) No. 20340007 and JSPS Grant-in-Aid for Challenging Exploratory Research No. 23654006.

1 A complex number k is called admissible if $L(k\Lambda_0)$ is an admissible representation.
integral root system is isomorphic to that of $L(k\Lambda_0)$. In particular the conjecture of Adamović and Milas [AM] Conjecture 3.5.7] holds, that is, any $L(k\Lambda_0)$-module in the category \mathcal{O} of $\hat{\mathfrak{g}}$ is completely reducible.

Main Theorem has been proved in some special cases: for type $C^{(1)}_\ell$ admissible half integer levels by Adamović [Ada]; for $\hat{\mathfrak{sl}}_2$ by Adamović and Milas [AM], Dong, Li and Mason [DLM] and Feigin and Malikov [FeM]; for type $A^{(1)}_\ell$, $B^{(1)}_\ell$ admissible half integer levels by Perše [Per1, Per2]; for type $G^{(2)}_2$ admissible one-third integer levels by Axtell and Lee [AL] and Axtell [Axt1]. These works are based on the explicit computation of the singular vector of $V^k(\mathfrak{g})$ which generates the maximal ideal. Our method in this article is completely different.

Let us explain the outline of the proof of Main Theorem briefly. By (1) simple highest weight $L(k\Lambda_0)$-modules are classified by Joseph’s characteristic variety [Jos] $V(J_k)$ of J_k, which is a Zariski closed subset of the dual \mathfrak{h}^* of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}. We deduce the “if” part of Main Theorem from a result of Frenkel and Malikov [FrM], which states that every G-integrable admissible representation at level k is a module over $L(k\Lambda_0)$, together with an affine analogue of the Duflo-Joseph Lemma (Lemma 2.3) for characteristic varieties. We prove the “only if” part of Main Theorem by reducing to the $\hat{\mathfrak{sl}}_2$-cases [AM] using the semi-infinite restriction functor $H_\infty + (m_i[t, t^{-1}], ?)$ studied in [A3], where m_i is the nilradical of a minimal parabolic subalgebra of \mathfrak{g}, see §4.1 for the details.

It should be mentioned that there is another variety naturally associated with $A(L(k\Lambda_0))$, that is, the zero set $V(\text{gr} J_k)$ of the associated graded ideal $\text{gr} J_k$ of $\mathbb{C}[\mathfrak{g}^*]$. We have a surjection

\[(2) \quad R_{L(k\Lambda_0)} \twoheadrightarrow \text{gr} A(L(k\Lambda_0)) = \mathbb{C}[\mathfrak{g}^*]/\text{gr} J_k\]

of Poisson algebras, where $R_{L(k\Lambda_0)}$ is Zhu’s C_2-algebra of $L(k\Lambda_0)$, see [ALY] Proposition 3.3. Hence $V(\text{gr} J_k)$ is contained in the associated variety $A1 X_{L(k\Lambda_0)} = \text{Specm} R_{L(k\Lambda_0)}$. Although (2) is not an isomorphism in general, in a subsequent paper [A4] we prove the following:

Theorem 1.1. Let k be an admissible number, with $k + h^\vee = p/q$, $p, q \in \mathbb{N}$, $(p, q) = 1$. Then (2) induces the isomorphism of varieties

$$V(\text{gr} J_k) \cong X_{L(k\Lambda_0)}.$$

Namely [A2], we have

$$V(\text{gr} J_k) \cong \begin{cases} \{x \in \mathfrak{g}; (\text{ad} x)^{2q} = 0\} & \text{if } (r^\vee, q) = 1, \\ \{x \in \mathfrak{g}; \pi_{\theta_s}(x)^{2q/r^\vee} = 0\} & \text{if } (r^\vee, q) = r^\vee, \end{cases}$$

which is an irreducible G-invariant subvariety of $\mathfrak{g}^* \cong \mathfrak{g}$. Here r^\vee is the lacing number of \mathfrak{g}, θ_s is the highest short root of \mathfrak{g} and π_{θ_s} is the irreducible finite-dimensional representation of \mathfrak{g} with highest weight θ_s.
Although they themselves are not rational in the usual sense3 it has been conjectured \cite{FKW, KW2} that admissible affine vertex algebras produce rational W-algebras in many cases by the method of the (generalized) quantum Drinfeld-Sokolov reduction. Exploiting the result in this article in a subsequent paper \cite{A4} we prove the rationality of all the minimal series principal W-algebras \cite{FKW}.

Acknowledgments. Some part of this work was done while the author was visiting Weizmann Institute, Israel, in May 2011, Emmy Noether Center in Erlangen, Germany in June 2011, Isaac Newton Institute for Mathematical Sciences, UK, in 2011, The University of Manchester, University of Birmingham, The University of Edinburgh, Lancaster University, York University, UK, in November 2011, Academia Sinica, Taiwan, in December 2011. He is grateful to those institutes for their hospitality.

2. Affine vertex algebras and Joseph’s characteristic varieties

Let \mathfrak{g} be a complex simple Lie algebra of rank l. Fix a triangular decomposition

$$\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+,\,$$

with a Cartan subalgebra \mathfrak{h} of \mathfrak{g}. We will often identify \mathfrak{h} with \mathfrak{h}^* using the normalized invariant bilinear form $(\cdot | \cdot)$ of \mathfrak{g}. Let Δ, Δ_+, Δ_-, $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ be the sets of the roots, positive roots, negative roots, and simple roots of \mathfrak{g}, respectively. Also, let θ be the highest root of \mathfrak{g}, θ_+ the highest short root, ρ the half sum of the positive roots, $W = \langle s_\alpha; \alpha \in \Delta \rangle \subset \text{Aut} \mathfrak{h}^*$ the Weyl group of \mathfrak{g}. Here $s_\alpha(\lambda) = \lambda - \langle \lambda, \alpha^\vee \rangle \alpha$, $\alpha^\vee = 2\alpha/(\alpha | \alpha)$. We set $s_i = s_{\alpha_i}$ for $i = 1, \ldots, l$. Let $w \circ \lambda = w(\lambda + \rho) - \rho$ for $w \in W$, $\lambda \in \mathfrak{h}^*$.

Denote by \mathcal{O}^θ the Bernstein-Gelfand-Gelfand category \mathcal{O} of \mathfrak{g}, by L^g_λ the irreducible highest weight representation of \mathfrak{g} with highest weight $\lambda \in \mathfrak{h}^*$.

Set $U(\mathfrak{g})_0 := \{ u \in U(\mathfrak{g}); [h, u] = 0 \text{ for all } h \in \mathfrak{h}\}$, and let

$$\Upsilon: U(\mathfrak{g})_0 \rightarrow U(\mathfrak{h})$$

be the restriction of the projection $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (\mathfrak{n}_- U(\mathfrak{g}) + U(\mathfrak{g}) \mathfrak{n}_+) \rightarrow U(\mathfrak{h})$ to $U(\mathfrak{g})_0$. One knows that Υ is an algebra homomorphism.

For a two-sided ideal I of $U(\mathfrak{g})$, the characteristic variety \cite{Jos} (without the ρ-shift) of I is defined as

$$\mathcal{V}(I) = \{ \lambda \in \mathfrak{h}^*; p(\lambda) = 0 \text{ for all } p \in \Upsilon(I_0) \},$$

where $I_0 = I \cap U(\mathfrak{g})_0$. We have

$$\lambda \in \mathcal{V}(I) \iff \text{IL}_\lambda^g = 0.\,$$

Therefore $\mathcal{V}(I)$ classifies simple $U(\mathfrak{g})/I$-module in the category \mathcal{O}^θ.

The following fact is useful for us.

Lemma 2.1 (\cite[Jos Lemma 2]{Jos}). Let I be a two-sided ideal of $U(\mathfrak{g})$, $\lambda \in \mathcal{V}(I)$. Suppose that $\langle \lambda + \rho, \alpha^\vee_i \rangle \notin \mathbb{N}$ for $\alpha_i \in \Pi$. Then $s_i \circ \lambda \in \mathcal{V}(I)$.

3However Main Theorem implies that admissible affine vertex algebras are rational in the sense of \cite{DLM}. Also, the fact \cite{A2} that $X_{E(A_1)}$ is contained in the nilpotent cone of \mathfrak{g} implies that they are C_2-cofinite in the sense of \cite{DLM}.
Let
\[
\hat{g} = g[t, t^{-1}] \oplus \mathbb{C}K
\]
be the affine Kac-Moody algebra associated with \(g \) as in Introduction. The commutation relations of \(\hat{g} \) are given by
\[
[x^m, y^n] = [x, y]t^{m+n} + m(x)y\delta_{m+n,0}K, \quad [K, \hat{g}] = 0
\]
for \(x, y \in \hat{g}, m, n \in \mathbb{Z} \). Let
\[
\hat{g} = \hat{n}_- \oplus \hat{h} \oplus \hat{n}_+
\]
be the triangular decomposition of \(\hat{g} \), where \(\hat{n}_- = n_- \oplus g[t]t^{-1} \), \(\hat{h} = h \oplus \mathbb{C}K \), \(\hat{n}_+ = n_+ \oplus g[t] \). Let \(\hat{h}^* = h^* \oplus \mathbb{C}\Lambda_0 \) be the dual of \(\hat{h} \), where \(\Lambda_0(K) = 1, \Lambda_0(h) = 0 \). For \(\lambda \in \hat{h}^* \), denote by \(\check{\lambda} \in h^* \) the restriction of \(\lambda \) to \(h \).

Let \(\hat{\Lambda}^{re} \) be the set of real roots \(\hat{\lambda} \) in the dual \(h^* = \hat{h}^* \oplus \mathbb{C}\delta \) of the extended Cartan subalgebra \(\hat{h} \), \(\hat{\Lambda}^{re} \) the set of positive real roots, \(\hat{\Pi} = \{\alpha_0, \alpha_1, \ldots, \alpha_l\} \) the set of simple roots of \(\hat{g} \), where \(\alpha_0 = -\theta + \delta \).

Let \(\hat{W} = W \rtimes Q^\vee \), the Weyl group of \(\hat{g} \), which is generated by \(s_0, s_1, \ldots, s_l \). Here \(Q^\vee = \sum_{\alpha \in \Delta} \mathbb{Z}\alpha^\vee \), the coroot lattice of \(g \), and \(s_0 \) is the reflection corresponding to \(\alpha_0 \). Let \(\hat{W} = W \rtimes P^\vee \), the extended Weyl group of \(\hat{g} \), where \(P^\vee \) is the coweight lattice of \(\hat{g} \). We have
\[
\hat{W} = \hat{W}_+ \rtimes \hat{W}_-,
\]
where \(\hat{W}_+ \) is the subgroup of \(\hat{W} \) consisting of elements which fix the set \(\hat{\Pi} \).

For \(k \in \mathbb{C} \), let \(U_k(\hat{g}) \) be the quotient of the universal enveloping algebra \(U(\hat{g}) \) by the ideal generated by \(K - k \) id. Denote by \(U_k(\hat{g})_\Delta \), the subspace of \(U_k(\hat{g}) \) spanned by elements \((x_1t^{n_1}) \ldots (x_rt^{n_r}) \) with \(\sum_i n_i = -\Delta, x_i \in \hat{g} \). This gives a \(\mathbb{Z} \)-grading on \(U_k(\hat{g}) \): \(U_k(\hat{g}) = \bigoplus_{\Delta \in \mathbb{Z}} U_k(\hat{g})_\Delta \). Define
\[
U_k(\hat{g}) = \bigoplus_{\Delta \in \mathbb{Z}} U_k(\hat{g})_\Delta, \quad U_k(\hat{g}) = \lim_{\longrightarrow \mathbb{N}} U_k(\hat{g})/ \sum_{r > N} U_k(\hat{g})_{r-\Delta} U_k(\hat{g})_{-r}.
\]
Then \(U_k(\hat{g}) \) is a compatible degreewise complete topological algebra in the sense of [MNT]. Let \(U_k(\hat{g})_{\text{fin}} \) be the dense subalgebra of \(U_k(\hat{g}) \) consisting of \(\text{ad} \hat{g} \)-finite vectors.

For \(k \in \mathbb{C} \), let \(V^k(\hat{g}) \) be the universal affine vertex algebra associated with \(\hat{g} \) at level \(k \) as in Introduction. By definition,
\[
V^k(\hat{g}) = U(\hat{g}) \otimes_{U(g[t]) \oplus \mathbb{C}K} \mathbb{C}_k
\]
as a \(\hat{g} \)-module, where \(\mathbb{C}_k \) is the one-dimensional representation of \(g[t] \oplus \mathbb{C}K \) on which \(g[t] \) acts trivially and \(K \) acts as a multiplication by \(k \). The space \(V^k(\hat{g}) \) is equipped with the natural vertex algebra structure (see [Kac, FBZ]). One knows [FZ] that there is a natural isomorphism
\[
\mathcal{U}(V^k(\hat{g})) \cong U_k(\hat{g})
\]
of compatible degreewise complete topological algebras, where \(\mathcal{U}(V) \) denotes the current algebra [FZ] of \(V \). Since
\[
A(V) \cong \mathcal{U}(V)_0 / \sum_{\Delta > 0} \mathcal{U}(V)_\Delta \mathcal{U}(V)_{-\Delta}
\]
(\[FZ\][\text{NT}]), where \(\overline{M}\) denotes the closure of \(M\), \([\text{H}]\) induces an algebra isomorphism \(A(V^k(\mathfrak{g})) \cong U(\mathfrak{g})\).

Here \(A(V)\) denotes Zhu’s algebra for a graded vertex algebra \(V\) as in Introduction. We will identify \(A(V^k(\mathfrak{g}))\) with \(U(\mathfrak{g})\) using this isomorphism. Also, it follows from \([\text{H}]\) that a \(V^k(\mathfrak{g})\)-module is the same as a smooth \(\hat{\mathfrak{g}}\)-module at level \(k\). Here a \(\hat{\mathfrak{g}}\)-module \(M\) is called smooth if \((xt^m)m = 0\) for any \(x \in \hat{\mathfrak{g}},\ m \in M\) and a sufficiently large \(n\).

We assume that the level \(k\) be non-critical, that is, \(k \neq -h^\vee\), where \(h^\vee\) is the dual Coxeter number of \(\mathfrak{g}\). The vertex algebra \(V^k(\mathfrak{g})\) is conformal by the Sugawara construction; let

\[L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} = Y(\omega, z),\]

where \(\omega = \frac{1}{2(k+n-1)} \sum_{i=1}^{\dim \mathfrak{g}} x_i t^{-1} x^i 1\), \(\{x_i\}\) is a basis of \(\mathfrak{g}\), \(\{x^i\}\) is the dual basis, and \(1 = 1 \otimes 1 \in V^k(\mathfrak{g})\).

Let \(\mathcal{O}_k\) be the full subcategory of \(\hat{\mathfrak{g}}\)-modules consisting of objects \(M\) on which

1. \(K\) acts as the multiplication by \(k\),
2. \(L_0\) acts locally finitely,
3. \(\hat{\mathfrak{n}}_+\) acts locally nilpotently,
4. \(\mathfrak{h}\) acts semisimply.

Then \(\mathcal{O}_k\) can be considered as a full subcategory of the category of \(V^k(\mathfrak{g})\)-modules. We regard an object \(M \in \mathcal{O}_k\) a semisimple \(\hat{\mathfrak{h}}\)-module by letting \(D\) act on \(M\) as the semisimplification of the operator \(-L_0\). Let \(L(\lambda)\) be the irreducible highest weight representation of \(\hat{\mathfrak{g}}\) with highest weight \(\lambda\).

Let \(N_k\) be the maximal ideal of \(V^k(\mathfrak{g})\). The simple quotient

\[L(k\Lambda_0) := V^k(\mathfrak{g})/N_k\]

is called the (simple) affine vertex algebra associated with \(\mathfrak{g}\) at level \(k\). A \(V^k(\mathfrak{g})\)-module \(M\) is a \(L(k\Lambda_0)\)-module if and only if the field \(Y(a, z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}\) annihilates \(M\) for any \(a \in N_k\).

For a vertex algebra \(V\) let \(L(V)\) denote Borcherd’s Lie algebra associated with \(V\). Then the current algebra \(\mathcal{U}(V)\) of \(V\) is a quotient of a degree completion of the enveloping algebra \(U(L(V))\) of \(L(V)\), see \([\text{MNT}]\) for the details. As \(N_k\) is an ideal of \(V^k(\mathfrak{g})\) the image \(L(N_k)\) of \(N_k\) in \(L(V^k(\mathfrak{g}))\) is an ideal. Let \(\mathfrak{J}_k = \bigoplus_{\Delta}(\mathfrak{J}_k)^\Delta\) be the degreewise closure of the ideal of \(\mathfrak{U}_k(\hat{\mathfrak{g}})\) generated by the image of \(L(N_k)\). Then

\[\mathcal{U}(L(k\Lambda_0)) \cong \mathfrak{U}_k(\hat{\mathfrak{g}})/\mathfrak{J}_k,\quad \mathcal{U}(L(k\Lambda_0)^\Delta) \cong \mathfrak{U}_k(\hat{\mathfrak{g}})^\Delta/(\mathfrak{J}_k)^\Delta.\]

Set \(\mathfrak{J}_k^{\text{fin}} = \mathfrak{J}_k \cap \mathcal{U}(\mathfrak{g})^{\text{fin}}, (\mathfrak{J}_k^{\text{fin}})^\Delta = \mathfrak{J}_k^{\text{fin}} \cap \mathfrak{U}_k(\hat{\mathfrak{g}})^\Delta\). Because \(\mathfrak{J}_k\) is topologically generated by the image of \(L(N_k)\) which consists of \(\text{ad} \hat{\mathfrak{g}}\)-finite vectors we have

\[(6)\quad \mathfrak{J}_k M = 0 \iff \mathfrak{J}_k^{\text{fin}} M = 0\]

for a \(V^k(\mathfrak{g})\)-module \(M\). Let \(J_k\) be the image of \((\mathfrak{J}_k^{\text{fin}})_0\) under the projection \(\mathfrak{U}_k(\hat{\mathfrak{g}})_0 \to U(\mathfrak{g})\). Then we have

\[(7)\quad A(L(k\Lambda_0)) \cong U(\mathfrak{g})/J_k.\]

The following is a direct consequence of \([\text{K}]\) and Zhu’s theorem \([\text{Zhu}]\).

Proposition 2.2. For a weight \(\lambda \in \hat{\mathfrak{h}}^\vee\) of level \(k\), \(L(\lambda)\) is a module over \(L(k\Lambda_0)\) if and only if \(\bar{\lambda} \in \mathcal{V}(J_k)\).
For a subspace M of $\mathcal{U}_k(\hat{\mathfrak{g}})$, let \overline{M} denote the the degreewise closure of M. We have
\begin{equation}
\mathcal{U}_k(\hat{\mathfrak{g}}) = U(\mathfrak{h}) \oplus \overline{\mathcal{U}_k(\hat{\mathfrak{g}}) + \mathcal{U}_k(\hat{\mathfrak{g}})\mathfrak{n}_+},
\end{equation}
Let
\[\tilde{\Upsilon} : \mathcal{U}_k(\hat{\mathfrak{g}}) \to U(\mathfrak{h}) \]
be the projection with respect to the decomposition $\mathcal{U}_k(\hat{\mathfrak{g}})$. We have
\begin{equation}
\Upsilon(J_k) = \tilde{\Upsilon}(\lambda^{fin}_k).
\end{equation}

Lemma 2.3. Let $\lambda \in \hat{\mathfrak{h}}^*$ be a weight of level k such that $\bar{\lambda} \in \mathcal{V}(J_k)$. Suppose that $\langle \lambda + \tilde{\rho}, \alpha_\gamma^\vee \rangle \not\in \mathbb{N}$ for $\alpha_\gamma \in \hat{\Pi}$. Then $s_i \circ \lambda \in \mathcal{V}(J_k)$.

Proof. The case $i = 1, \ldots, l$ is the statement of Lemma 2.1. So let $i = 0$. Let $\mathfrak{sl}_2(\mathbb{C}) = \text{span}_\mathbb{C}\{e_0, f_0, h_0\} \subset \hat{\mathfrak{g}}$ be the copy of $\mathfrak{sl}_2(\mathbb{C})$, where e_0 and f_0 are root vectors of root α_0 and $-\alpha_0$, respectively. Set
\[\hat{\mathfrak{p}}^{(i)} = \mathfrak{sl}_2(\mathbb{C}) + (\mathfrak{h} \oplus \mathfrak{n}_+) = \hat{\mathfrak{p}} \oplus \hat{\mathfrak{m}}, \]
the minimal parabolic subalgebra of $\hat{\mathfrak{g}}$, where $\hat{\mathfrak{p}} = \mathfrak{sl}_2(\mathbb{C}) + \mathfrak{h}_0^n$ is its Levi subalgebra with the orthogonal complement $\hat{\mathfrak{p}}^\perp$ of $\mathfrak{C}h_0$ in $\hat{\mathfrak{h}}$, and $\hat{\mathfrak{m}}$ its nilradical. Denote by \mathfrak{m}_- the opposite subalgebra of \mathfrak{m} so that $\hat{\mathfrak{g}} = \mathfrak{m}_- \oplus \hat{\mathfrak{m}} \oplus \mathfrak{m}_+$. We have
\[\mathcal{U}_k(\hat{\mathfrak{g}}) = \mathcal{U}_k(\hat{\mathfrak{p}}) \oplus (\mathfrak{m}_- \mathcal{U}_k(\hat{\mathfrak{g}}) \oplus \mathcal{U}_k(\hat{\mathfrak{g}})\mathfrak{m}), \]
where $\mathcal{U}_k(\hat{\mathfrak{p}}) = U(\hat{\mathfrak{p}})/(K - k)U(\hat{\mathfrak{p}})$.

Let $\tilde{\Upsilon}^{(i)} : \mathcal{U}_k(\hat{\mathfrak{g}}) \to \mathcal{U}_k(\hat{\mathfrak{p}})$ be the projection with respect to this decomposition, and set
\[I := \tilde{\Upsilon}^{(i)}(\lambda^{fin}_k). \]
By (9), we have
\[\Upsilon(J_k) = \gamma^{(i)}(I), \]
where $\gamma^{(i)} : U(\hat{\mathfrak{p}}) \to U(\mathfrak{h})$ is the projection defined by the decomposition $U_k(\hat{\mathfrak{p}}) = U(\mathfrak{h}) \oplus (f_0U(k_0) + U(l)e_0)$.

Since it is a direct sum of finite-dimensional $\mathfrak{ad}\hat{\mathfrak{p}}$-submodules, the two-sides ideal I is generated by the vectors of the form
\[e_0^kb_k \quad \text{with } k \in \mathbb{Z}, \; b_k \in Z_0, \]
where Z_0 is the subalgebra of $U(\hat{\mathfrak{p}})$ generated by the quadratic Casimir element $\Omega_0 \in U(\mathfrak{sl}_2(\mathbb{C}))$ and \mathfrak{h}_0^n.

Now one can apply the argument of [Jos, Lemma 2] to obtain the assertion. \(\square\)

Lemma 2.4. Let $\lambda \in \hat{\mathfrak{h}}^*$ be a weight of level k such that $\bar{\lambda} \in \mathcal{V}(J_k)$, and let $w \in \hat{\mathcal{W}}$. Suppose that $\lambda + \tilde{\rho}, \alpha^\vee \not\in \mathbb{N}$ for all $\alpha \in \Delta^{re}_+ \cap w^{-1}(\Delta^{re})$. Then $w \circ \lambda \in \mathcal{V}(J_k)$.

Proof. The assertion follows from Lemma 2.3 in the case that $w \in \hat{\mathcal{W}}$. But one knows from [L3, §3] that if $L(\lambda)$ is a $L(k\Lambda_0)$-module then so is $L(\pi \circ \lambda)$ for $\pi \in \hat{\mathcal{W}}$. This completes the proof. \(\square\)
3. **Kac-Wakimoto Admissible representations**

For \(\lambda \in \hat{\mathfrak{h}}^* \), let \(\hat{\Delta}(\lambda) \) and \(\hat{W}(\lambda) \) be its integral root system and its integral Weyl group, respectively:

\[
\hat{\Delta}(\lambda) = \{ \alpha \in \hat{\Delta}^r; \langle \lambda + \hat{\rho}, \alpha^\vee \rangle \in \mathbb{Z} \}, \quad \hat{W}(\lambda) = \langle s_\alpha; \alpha \in \hat{\Delta}(\lambda) \rangle.
\]

Let \(\hat{\Delta}(\lambda)_+ = \hat{\Delta}(\lambda) \cap \hat{\Delta}^r_+ \), the set of positive root of \(\hat{\Delta}(\lambda) \) and \(\Pi(\lambda) \subset \hat{\Delta}(\lambda)_+ \), the set of simple roots.

A weight \(\lambda \in \hat{\mathfrak{h}}^* \) is called *admissible* if

(i) \(\lambda \) is regular dominant, that is, \(\langle \lambda + \hat{\rho}, \alpha^\vee \rangle \notin \{0, -1, -2, \ldots \} \),

(ii) \(\mathbb{Q}\hat{\Delta}(\lambda) = \mathbb{Q}\hat{\Delta}^r \).

An admissible number (for \(\hat{\mathfrak{g}} \)) is a complex number \(k \) such that \(k\Lambda_0 \) is admissible.

Proposition 3.1 ([KW1] [KW2]). A complex number \(k \) is admissible if and only if

\[
k + h^\vee = \frac{p}{q} \quad \text{with } p, q \in \mathbb{N}, \ (p, q) = 1, \ p \geq \begin{cases} h^\vee & \text{if } (r^\vee, q) = 1, \\ \frac{h}{r} & \text{if } (r^\vee, q) = r^\vee, \end{cases}
\]

where \(h \) is the the Coxeter number of \(\mathfrak{g} \) and \(r^\vee \) is the lacing number of \(\mathfrak{g} \), that is, the maximal number of the edges in the Dynkin diagram of \(\mathfrak{g} \). If this is the case we have \(\Pi(k\Lambda_0) = \{ \alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_l \} \), where

\[
\alpha_0 = \begin{cases} -\theta + q\delta & \text{if } (r^\vee, q) = 1, \\ -\theta + \frac{p}{r}\delta & \text{if } (r^\vee, q) = r^\vee. \end{cases}
\]

For an admissible number \(k \) let \(Pr_k \) be the set of admissible weights \(\lambda \) such that \(\hat{\Delta}(\lambda) \cong \hat{\Delta}(k\Lambda_0) \) as root systems. Set

\[
Pr_k^+ = Pr_k \cap \hat{P}_k,
\]

where

\[
\hat{P}_k = \{ \lambda \in \hat{\mathfrak{h}}^*; \lambda(K) = k, \ \langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z} \ \text{for all } i = 1, \ldots, l \}.
\]

Then [KW1]

\[
(10) \quad Pr_k^+ = \begin{cases} \{ \lambda \in \hat{P}_k^+; \langle \lambda, \alpha_i^\vee \rangle \geq 0 \ \text{for } i = 1, \ldots, l, \ \langle \lambda, \theta \rangle \leq p - h^\vee \} & \text{if } (r^\vee, q) = 1, \\ \{ \lambda \in \hat{P}_k^+; \langle \lambda, \alpha_i^\vee \rangle \geq 0 \ \text{for } i = 1, \ldots, l, \ \langle \lambda, \theta_s^\vee \rangle \leq p - h \} & \text{if } (r^\vee, q) = r^\vee, \end{cases}
\]

and we have

\[
(11) \quad Pr_k = \bigcup_{y \in \hat{W}} \text{Pr}_{k,y}, \quad \text{Pr}_{k,y} := y \circ Pr_k^+.
\]

Recall the following important result [MF] (see also [FM]).

Theorem 3.2 ([MF]). Let \(k \) be an admissible number and \(\lambda \in Pr_k^+ \). Then \(L(\lambda) \) is a module over \(L(k\Lambda_0) \).

Proof of the “if part” of Main Theorem. Let \(\lambda \in Pr_{k,y} \). The condition \(y(\hat{\Delta}(k\Lambda_0)) \subset \hat{\Delta}^r_+ \) implies that \(\langle \lambda + \rho, \alpha^\vee \rangle \notin \mathbb{Z} \) for all \(\alpha \in \hat{\Delta}^r_+ \cap y^{-1}(\hat{\Delta}^r) \). Hence the assertion follows from Proposition 2.2, Lemma 2.3 and Theorem 4.2.

□
4. Semi-infinite restriction functors

Let \(\{ e_i, h_i, f_i; i = 1, \ldots, l \} \) be a set of Chevalley generators of \(\mathfrak{g} \). For \(i = 1, \ldots, l \), let \(\mathfrak{p}_i \) be the minimal parabolic subalgebra \(\mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathfrak{n} \) of \(\mathfrak{g} \), \(\mathfrak{l}_i \) its Levi subalgebra, \(\mathfrak{m}_i \) its nil-radical. We have

\[
\mathfrak{p}_i = \mathfrak{l}_i \oplus \mathfrak{m}_i, \quad \mathfrak{l}_i = \mathfrak{sl}_2^{(i)} + \mathfrak{h},
\]

where \(\mathfrak{sl}_2^{(i)} \) is the copy of \(\mathfrak{sl}_2 \) spanned by \(e_i, h_i \) and \(f_i \).

Let

\[
\mathfrak{L}_i = \mathfrak{m}[t, t^{-1}] \subset \mathfrak{g},
\]

\[
\hat{\mathfrak{sl}}_2^{(i)} = \mathfrak{sl}_2^{(i)}[t, t^{-1}] \oplus \mathbb{C} K_i \subset \mathfrak{g}, \quad \text{where} \quad K_i = \frac{2}{(\alpha_i|\alpha_i)} K.
\]

For an object \(M \) of \(\mathcal{O}_k \), we shall consider the semi-infinite \(\mathfrak{L}_i \)-cohomology

\[
H^{\mathfrak{L}_i}_i(Lm_i, M) \quad \text{with coefficient in} \quad M.
\]

This is defined by Feigin’s standard complex \((C^*(Lm_i, M), d) \) \(\text{[Fe]} \): \(H^{\mathfrak{L}_i}_i(Lm_i, M) = H^i(C^*(Lm_i, M), d) \). The extended Cartan subalgebra \(\mathfrak{h} \) acts naturally on the space \(C^*(Lm_i, M) \) and we have the weight space decomposition

\[
C^*(Lm_i, M) = \bigoplus_{\lambda \in h^*} C^*(Lm_i, M)_\lambda,
\]

where \(C^*(Lm_i, M)_\lambda \) is the weight space of weight \(\lambda \). Because the action of \(\mathfrak{h} \) commutes with that of \(d \) we have

\[
H^{\mathfrak{L}_i}_i(Lm_i, M) = \bigoplus_{\lambda \in h^*} H^{\mathfrak{L}_i}_i(Lm_i, M)_\lambda
\]

where \(H^{\mathfrak{L}_i}_i(Lm_i, M)_\lambda \) is the cohomology of the subcomplex \(C^*(Lm_i, M)_\lambda \).

If \(M \) is an object of \(\mathcal{O}_k \) of \(\mathfrak{g} \) then \(H^{\mathfrak{L}_i}_i(Lm^{(i)}, M) \), \(p \in \mathbb{Z} \), is naturally a module over \(\hat{\mathfrak{sl}}_2^{(i)} \) on which \(\mathfrak{h} \) acts as a multiplication by \(k_i \), where

\[
k_i + 2 = \frac{2}{(\alpha_i|\alpha_i)} (k + h^\vee),
\]

see e.g. \(\text{[HT]} \). In particular if \(k + h^\vee = p/q \) then

\[
k_i + 2 = \begin{cases}
\frac{p}{q} & \text{if } \alpha_i \text{ is a long root,} \\
\frac{-p}{q} & \text{if } \alpha_i \text{ is a short root.}
\end{cases}
\]

Therefore if \(k \) is an admissible number for \(\mathfrak{g} \), then \(k_i \) is an admissible number for \(\hat{\mathfrak{sl}}_2^{(i)} \).

Let \(\hat{\mathfrak{h}}_i = \mathbb{C} h_i \oplus \mathbb{C} K_i \), the Cartan subalgebra of \(\hat{\mathfrak{sl}}_2^{(i)} \). For \(\lambda \in \hat{h}^* \), define \(\lambda^{(i)} \in \hat{h}^*_i \) by

\[
\lambda^{(i)}(h_i) = \lambda(h_i), \quad \lambda^{(i)}(K_i) = k_i
\]

Then a vector in \(H^{\mathfrak{L}_i}_i(Lm_i, M) \) has the weight \(\lambda^{(i)} \) as a module over \(\hat{\mathfrak{sl}}_2^{(i)} \).

For \(M \in \mathcal{O}_k \) let

\[
M_{[d]} = \{ m \in M; Dm = L_0 m \}.
\]

Note that each \(M_{[d]} \) is a \(\mathfrak{g} \)-submodule of \(M \). Similarly, set \(C^*(Lm_i, M)_{[d]} = \{ c \in C(Lm_i, M); Dm = dm \} \). Then \(C^*(Lm_i, M)_{[d]} \) is a subcomplex of \(C^*(Lm_i, M) \) and we have

\[
H^{\mathfrak{L}_i}_i(Lm_i, M) = \bigoplus_{d \in \mathbb{C}} H^{\mathfrak{L}_i}_i(Lm_i, M)_{[d]},
\]
where $H^\oplus_{\bullet}(Lm_i, M)_{[d]}$ is the cohomology of the subcomplex $C^\bullet(Lm_i, M)_{[d]}$.

Lemma 4.1. Let $M \in \mathcal{O}_k$ such that $M = \bigoplus_{d \leq d_0} M_{[d]}$, $M_{d_0} \neq 0$. Then $H^\oplus_{\bullet}(Lm_i, M) = \bigoplus_{d \leq d_0} H^\oplus_{\bullet}(Lm_i, M)_{[d]}$ and

$$H^\oplus_{\bullet+p}(Lm_i, M)_{[d]} \cong \begin{cases} H^p(m, M_{[d_0]}) & \text{if } p \geq 0, \\ 0 & \text{otherwise}, \end{cases}$$

where $H^\bullet(m, M_{[d_0]})$ denotes the (usual) Lie algebra m_i-cohomology with coefficient in $M_{[d_0]}$.

Proof. The assertion follows by observing that $C^\bullet(Lm_i, M)_{[d_0]} = M_{[d_0]} \otimes \wedge^\bullet(m_i)$ and the restriction of the differential to $C^\bullet(Lm_i, M)_{[d_0]}$ coincides with the differential of the Chevalley complex for calculating $H^\bullet(m, M_{[d_0]})$. \square

Theorem 4.2 (\[K\lambda\]). Let k be an admissible number. If M is a module over $L(k\Lambda_0)$ then $H^\oplus_{\bullet+p}(Lm_i, M)_{[d]}$, $p \in \mathbb{Z}$, is a direct sum of irreducible admissible representations of \mathfrak{sl}_2 of level k_i.

Lemma 4.3. Let k be an admissible number and suppose that $L(\lambda)$ is module over $L(k\Lambda_0)$. Then $\lambda^{(i)}$ is an admissible weight for \mathfrak{sl}_2 for all $i = 1, \ldots, l$.

Proof. By Lemma 4.1 $H^\oplus_{\bullet+0}(Lm_i, L(\lambda)) = \bigoplus_{d \leq \lambda(D)} H^\oplus_{\bullet+0}(Lm_i, L(\lambda))_{[d]}$ and

$$H^\oplus_{\bullet+0}(Lm_i, L(\lambda))_{[\lambda(D)]} = H^\oplus_{\bullet+0}(Lm_i, L(\lambda))_{[\lambda(D)]} \cong \mathbb{C}.$$

Hence by Theorem 4.2 $H^\oplus_{\bullet+0}(Lm_i, L(\lambda))_{[\lambda]}$ must generate an irreducible admissible representation of $\mathfrak{sl}_2^{(i)}$ with highest weight $\lambda^{(i)}$. This completes the proof. \square

Proposition 4.4. Suppose that $L(\lambda)$ is a $L(k\Lambda_0)$-module. Then $\hat{\Delta}(\lambda) \cong \hat{\Delta}(k\Lambda_0)$.

Proof. By Lemma 4.3 $\langle \lambda + \rho, \alpha_i^+ \rangle \in \frac{2}{(\alpha_i | \alpha_i)} \mathbb{Z}$ for all $i = 1, \ldots, l$. It follows that there exists $n_i \in \mathbb{Z}$ for each $i = 1, \ldots, l$ such that $\alpha_i + n_i \delta \in \hat{\Delta}(\lambda)$. Hence (13) there exists $n_\alpha \in \mathbb{Z}$ for each $\alpha \in \Delta$ such that $\alpha + n_\alpha \delta \in \hat{\Delta}(\lambda)$.

This implies that $\mathbb{Q}\hat{\Delta}(\lambda) = \mathbb{Q}\hat{\Delta}^{rc}$. Therefore $\mathbf{KW1}$ $\hat{\Delta}(\lambda)$ is isomorphic to the integral root system of some admissible weight of level k. By the classification of admissible weights $\mathbf{KW1}$ and the property (13) it follows that $\hat{\Delta}(\lambda)$ must be isomorphic to $\hat{\Delta}(k\Lambda_0)$. \square

Proposition 4.5. Let $\lambda \in \hat{\mathcal{P}}_k$ and suppose that $L(\lambda)$ is a module over $L(k\Lambda_0)$. Then $L(\lambda)$ is admissible.

Proof. First, it follows that $\langle \lambda, \alpha_i^+ \rangle \geq 0$ for $i = 1, \ldots, l$ from Lemma 4.3 Therefore the \mathfrak{g}-submodule L^\bullet_{λ} generated by the highest weight vector of $L(\lambda)$ is finite-dimensional. By $\mathbf{K\cos}$ we have

$$H^i(m, L^\bullet_{\lambda}) \cong \bigoplus_{w \in W^{(1)}} L^i_{w\circ \lambda}.$$
as L_i-modules, where L_{μ}^i is the irreducible highest weight representation of L_i with highest weight μ and

$$W^{(i)} = \{ w \in W; w^{-1}(\alpha_i) \in \Delta_+ \}.$$

Therefore

$$H_{\hat{\Delta} + p} (L_{\mu}, L(\lambda))_{(\lambda(D))} \cong \bigoplus_{w \in W^{(i)}} L_{w \circ \lambda}^i$$

by Lemma 4.4. In particular

(14)

$(w \circ \lambda)^{(i)}$ must be an admissible weight for \hat{sl}_2 for all $w \in W^{(i)}$, $i = 1, \ldots, l$.

Now first consider the case that $(r^\vee, q) = 1$. Let α_i be any simple long root of \mathfrak{g}. Then there exists $w \in W$ such that $\theta = w^{-1}(\alpha_i)$. By (10), (12) and (14),

$$p - 2 \geq \langle w \circ \lambda, \alpha_i^\vee \rangle = \langle w(\lambda + p), \alpha_i^\vee \rangle - 1 = \langle \lambda + p, \theta \rangle - 1 = \langle \lambda, \theta \rangle + h^\vee - 1 - 1.$$

Therefore $\langle \lambda, \theta \rangle \leq p - h^\vee$, and hence $\lambda \in Pr_k^+$ by (10).

Next consider the case that $(r^\vee, q) = r^\vee$. Let α_i be any simple short root of \mathfrak{g}. Then there exists $w \in W$ such that $\theta = w^{-1}(\alpha_i)$. By (10), (12) and (14),

$$p - 2 \geq \langle w \circ \lambda, \alpha_i^\vee \rangle = \langle w(\lambda + p), \alpha_i^\vee \rangle - 1 = \langle \lambda + p, \theta_s^\vee \rangle - 1 = \langle \lambda, \theta_s^\vee \rangle + h - 1 - 1.$$

Therefore $\langle \lambda, \theta_s^\vee \rangle \leq p - h$, and hence $\lambda \in Pr_k^+$.

Proof of the “only if” part of Main Theorem. Suppose that $L(\lambda)$ is module over $L(k\Lambda_0)$. By Proposition 4.4, $\hat{\Delta}(\lambda) \cong \hat{\Delta}(k\Lambda_0)$. Therefore by [KW] there exists an element $\mu \in \hat{P}_k$ and $y \in \hat{W}$ such that $\hat{\Delta}(\mu) = \hat{\Delta}(k\Lambda_0)$, $y(\hat{\Delta}(\mu)) \subset \hat{\Delta}_{\mu}^{re}$ and $\lambda = y \circ \mu$. It follows from Lemma 2.8 that $L(\mu)$ is also a module over $L(k\Lambda_0)$. Hence μ must be an admissible weight by Proposition 4.5 and therefore, so is λ. This completes the “only if” part of Main Theorem.

The conjecture of Adamović and Milas [AM] Conjecture 3.5.7] now follows immediately from the fact that $\text{Ext}^1_{\hat{G}} (L(\lambda), L(\mu)) = 0$ for any admissible weights λ, μ of level k since they are regular dominant weights.

Remark 4.6. In fact it is known by [GK] Theorem 0.2] that $\text{Ext}^1_{\hat{G}} (L(\lambda), L(\mu)) = 0$ for any (not necessarily distinct) admissible weights λ, μ.

References

[A] Dražen Adamović. Some rational vertex algebras. Glas. Mat. Ser. III, 29(49)(1):25–40, 1994.

[AL] Jonathan D. Axtell and Kyu-Hwan Lee. Vertex operator algebras associated to type G affine Lie algebras. J. Algebra, 337:195–223, 2011.

[ALY] T. Arakawa, C. H. Lam, and H. Yamada. Zhu’s algebra and C_2-algebra of parafermion vertex operator algebras. arXiv:1207.3909[math.QA].

[AM] Dražen Adamović and Antun Milas. Vertex operator algebras associated to modular invariant representations for $A_1^{(1)}$. Math. Res. Lett., 2(5):563–575, 1995.

[A1] Tomoyuki Arakawa. A remark on the C_2 cofiniteness condition on vertex algebras. Math. Z., 270(1-2):559–575, 2012.

[A2] Tomoyuki Arakawa. Associated varieties of modules over Kac-Moody algebras and C_2-cofiniteness of W-algebras. 1004.1554v2.

[A3] T. Arakawa. Two-sided BGG resolutions of admissible representations. arXiv:1207.4276[math.QA].
RATIONALITY OF ADMISSIBLE AFFINE VERTEX ALGEBRAS IN THE CATEGORY O

[A4] T. Arakawa. Rationality of W-algebras; principal nilpotent cases. arXiv:1211.7124[math.QA].

[Axt1] Jonathan Axtell. Vertex operator algebras associated to type G affine Lie algebras II. arXiv:1112.6289v1.

[DLM] Chongying Dong, Haisheng Li, and Geoffrey Mason. Vertex operator algebras associated to admissible representations of \hat{sl}_2. Comm. Math. Phys., 184(1):65–93, 1997.

[Duf] Michel Duflo. Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple. Ann. of Math. (2), 105(1):107–120, 1977.

[FBZ] Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2004.

[Fe] B. L. Feigin. Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Uspekhi Mat. Nauk, 39(2(236)):195–196, 1984.

[FKW] Edward Frenkel, Victor Kac, and Minoru Wakimoto. Characters and fusion rules for W-algebras via quantized Drinfel’d-Sokolov reduction. Comm. Math. Phys., 147(2):295–328, 1992.

[FrM] Boris Feigin and Fyodor Malikov. Modular functor and representation theory of \hat{sl}_2 at a rational level. In Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), volume 202 of Contemp. Math., pages 357–405, Providence, RI, 1997. Amer. Math. Soc.

[Kac] Victor Kac. Vertex algebras for beginners, volume 10 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 1998.

[Kos] Bertram Kostant. Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2), 74:329–387, 1961.

[KW1] V. G. Kac and M. Wakimoto. Classification of modular invariant representations of affine algebras. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), volume 7 of Adv. Ser. Math. Phys., pages 138–177. World Sci. Publ., Teaneck, NJ, 1989.

[KW2] Victor G. Kac and Minoru Wakimoto. On rationality of W-algebras. Transform. Groups, 13(3-4):671–713, 2008.

[MNT] Atsushi Matsuo, Kiyokazu Nagatomo, and Akhiro Tsuchiya. Quasi-finite algebras graded by Hamiltonian and vertex operator algebras. In Moonshine: the first quarter century and beyond, volume 372 of London Math. Soc. Lecture Note Ser., pages 282–329. Cambridge Univ. Press, Cambridge, 2010.

[NZ] Yongchang Zhu. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., 9(1):237–302, 1996.
RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502
JAPAN
E-mail address: arakawa@kurims.kyoto-u.ac.jp