A MODEL STRUCTURE ON \textbf{Cat}\textsubscript{Top}

AMRANI ILIAS

Abstract. In this article, we construct a cofibrantly generated Quillen model structure on the category of small topological categories \textbf{Cat}\textsubscript{Top}. It is Quillen equivalent to the Joyal model structure of \((\infty, 1)\)-categories and the Bergner model structure on \textbf{Cat}\textsubscript{sSet}.

INTRODUCTION

In the section \cite{1} we construct a Quillen model structure on the category of small topological categories \textbf{Cat}\textsubscript{Top} \cite{1}. The main advantage is the fact that all objects in \textbf{Cat}\textsubscript{Top} are fibrant. We show that this model structure is Quillen equivalent to the model structure on the category of small simplicial categories \textbf{Cat}\textsubscript{sSet} defined in \cite{3}.

Why we are interested on topological categories? In \cite{8}, it is shown that any model category \textbf{M} is naturally enriched over \textbf{sSet} or \textbf{Top}. The enrichment gives us a higher homotopical information about \textbf{M}.

In the topological setting, the cohomology theories are defined directly from the mapping space in the model category of topological spectra. Our future goal is to define algebraic \(K\)-theory \cite{2} for a larger class of categories.

1. CATEGORY OF SMALL TOPOLOGICAL CATEGORIES.

In this article, the category of weakly Hausdorff compactly generated topological spaces will be denoted by \textbf{Top} which is simplicial monoidal model category. Before to start the main theorem of this section we will introduce some notations and definitions.

A topological category is a category enriched over \textbf{Top}. The Category of all (small) topological categories is denoted by \textbf{Cat}\textsubscript{Top}. The morphisms in \textbf{Cat}\textsubscript{Top} are the enriched functors. It is complete and cocomplete category.

\textbf{Theorem 1.1.} \cite{1} The category \textbf{Cat}\textsubscript{Top} admit a cofibrantly generated model structure defined as follows. The weak equivalences \(F : C \rightarrow D\) satisfy the following conditions.

WT1 : The morphism \(\text{Map}_C(a, b) \rightarrow \text{Map}_D(Fa, Fb)\) is a weak equivalence in the category \textbf{Top}.

WT2 : The induced morphism \(\pi_0 F : \pi_0 C \rightarrow \pi_0 D\) is a categorical equivalence in \textbf{Cat}.

\textit{Date:} April 30, 2011.

\textit{2000 Mathematics Subject Classification.} Primary 55, 18.

\textit{Key words and phrases.} Model Categories, \(\infty\)-categories.
The fibrations are the morphisms $F : C \to D$ which satisfy:

FT1: The morphism $\text{Map}_C(a, b) \to \text{Map}_D(Fa, Fb)$ is a fibration in Top.

FT2: For each objects a and b in C, and a weak equivalence of homotopy $e : F(a) \to b$ in D, there exists an object a_1 in C and a weak homotopy equivalence $d : a \to a_1$ in C such that $Fd = e$.

More over, the set I of generating cofibrations is given by:

CT1: $|U\partial\Delta^n| \to |U\Delta^n|$, for $n \geq 0$.

CT2: $\emptyset \to \{x\}$, where \emptyset is the empty topological category and $\{x\}$ is the category with one object and one morphism.

The set J of generating acyclic cofibrations is given by:

ACT1: $|U\Lambda^n_i| \to |U\Delta^n|$, for $0 \leq n$ and $0 \leq i \leq n$.

ACT2: $\{x\} \to |H|$ where $\{H\}$ as defined in [3].

Remark 1.2. All objects in Cat_{Top} are fibrant.

2. Proof of the main theorem

We start by a useful lemma which gives us conditions to transfer a model structure by adjunction.

Lemma 2.1. [13, proposition 3.4.1] Let an adjunction

$$\begin{eqnarray*}
M & \xrightarrow{G} & C \\
\xleftarrow{F} & & \xleftarrow{F} \end{eqnarray*}$$

where M is cofibrantly generated model category, with I generating cofibrations and J generating trivial cofibrations. We pose

(1) W The class of morphisms in C such the image by F is a weak equivalence in M.

(2) F The class of morphisms in C such the image by F is a fibration in M.

We suppose that the following conditions are verified:

(1) The domain of $G(i)$ are small with respect to $G(I)$ for all $i \in I$ and the domains of $G(j)$ are small with respect to $G(J)$ for all $j \in J$.

(2) The functor F commutes with directed colimits i.e.,

$$F\text{colim}(\lambda \to C) = \text{colim}F(\lambda \to C).$$

(3) Every transfinite composition of weak equivalences in M is a weak equivalence.

(4) The pushout of $G(j)$ by any morphism f in C is in W.

Then C form a model category with weak equivalences (resp. fibrations) W (resp. F). More over it is cofibrantly generated with generating cofibrations $G(I)$ and generating trivial cofibrations $G(J)$.

We prove the main theorem using [24]

Lemma 2.2. The pushout of $|UA^n_i| \to |U\Delta^n|$ by a morphism $F : |UA^n_i| \to D$ is a weak equivalence.

Proof. See [5, 6] \qed

Lemma 2.3. The pushout of $\{x\} \to |H|$ by $\{x\} \to C$ is a weak equivalence for all $C \in \text{Cat}_{\text{Top}}$.

Proof. Let \mathcal{O} the set of objects of \mathbf{C} without the object \{x\} touched by the morphism \{x\} \to \mathbf{C}. We note by x, y objects of $|\mathcal{H}|$. The goal is to prove that h defined in the following pushout is a weak equivalence

$$
\begin{array}{c}
\{x\} \to \\
\downarrow \\
|\mathcal{H}| \to \\
\end{array}
\xrightarrow{h}
\begin{array}{c}
\mathbf{C} \\
\downarrow \\
\mathbf{D} \\
\end{array}
$$

Observe that there is an other double pushout

$$
\begin{array}{c}
\{x\} \sqcup \mathcal{O} \\
\downarrow \\
\mathbf{C} \\
\end{array}
\xrightarrow{i}
\begin{array}{c}
\{x, y\} \sqcup \mathcal{O} \\
\downarrow \\
\mathbf{C} \sqcup \{y\} \\
\end{array}
\xrightarrow{h'}
\begin{array}{c}
|\mathcal{H}| \sqcup \mathcal{O} \\
\downarrow \\
\mathbf{D}. \\
\end{array}
$$

Which is a consequence of:

$$
|\mathcal{H}| \sqcup \mathcal{O} \bigsqcup_{\mathcal{O} \sqcup \{x, y\}} \mathbf{C} \sqcup \{y\} = |\mathcal{H}| \bigsqcup_{\{x, y\}} \mathbf{C} \sqcup \{y\} = |\mathcal{H}| \bigsqcup_{\{y\}} \mathbf{C} = \mathbf{D}.
$$

The morphism h' is a natural extension of h, i.e., $h' \circ i = h$.

On the other hand, the counity $c : |\text{sing}\mathbf{C}| \to \mathbf{C}$ is a weak equivalence. Consider the following pushout in $\mathbf{Cat}_{\text{sSet}}$:

$$
\begin{array}{c}
\{x\} \sqcup \mathcal{O} \\
\downarrow \\
\text{sing}\mathbf{C} \\
\end{array}
\xrightarrow{i}
\begin{array}{c}
\{x, y\} \sqcup \mathcal{O} \\
\downarrow \\
\text{sing}(\mathbf{C} \sqcup \{y\}) \\
\end{array}
\xrightarrow{f'}
\begin{array}{c}
\mathcal{H} \sqcup \mathcal{O} \\
\downarrow \\
\mathbf{D}'. \\
\end{array}
$$

Since $\mathbf{Cat}_{\text{sSet}}$ is a model category, we have that $f = f' \circ i$ is a weak equivalence. Consequently $|f|$ is a weak equivalence in $\mathbf{Cat}_{\text{Top}}$.

As before f' is an extension of f.

Using the fact that the functor $| - |$ commutes with colimits, the diagram of the following double pushout permit to conclude:

$$
\begin{array}{c}
|\text{sing}\mathbf{C}| \\
\downarrow \\
\mathbf{C} \\
\end{array}
\xrightarrow{\sim}
\begin{array}{c}
\{x, y\} \sqcup \mathcal{O} \\
\downarrow \\
|\text{sing}(\mathbf{C} \sqcup \{y\})| \\
\end{array}
\xrightarrow{c}
\begin{array}{c}
\mathbf{C} \sqcup \{y\} \\
\downarrow \\
\mathbf{C} \sqcup \{y\} \\
\end{array}
\xrightarrow{h'}
\begin{array}{c}
|\mathcal{H}| \sqcup \mathcal{O} \\
\downarrow \\
|h'| \\
\end{array}
\xrightarrow{m}
\begin{array}{c}
|\mathbf{D}'| \\
\downarrow \\
\mathbf{D}. \\
\end{array}
$$
In Fact,

\[m : D = (|\mathcal{H}| \sqcup O) \star \text{sing}(C \sqcup \{y\}) \rightarrow (|\mathcal{H}| \sqcup O) \star (C \sqcup \{y\}) = D' \]

is a weak equivalence by 5.8. We have seen that \(|f|\) is a weak equivalence, so by the property "2 out of 3" we conclude that \(h\) is a weak equivalence. \(\square\)

Lemma 2.4. The functor \(\text{sing}\) commutes with directed colimits.

Proof. Let \(\lambda\) be an ordinal and let

\[C = \text{colim}_\lambda C_\lambda, \]

a directed colimit in \(\text{Cat}_{\text{Top}}\). If \(a'\) and \(b'\) are two objects in \(C\), then by definition, there exists an index \(t\) such that they are represented by \(a, b \in C_t\), and \(\text{Map}_{C_t}(a', b')\) is a colimit of the following diagram:

\[\text{Map}_{C_t}(a, b) \rightarrow \cdots \text{Map}_{C_s}(a_s, b_s) \rightarrow \text{Map}_{C_{s+1}}(a_{s+1}, b_{s+1}) \rightarrow \cdots, \]

where \(C_{a,b}^t\) is a full subcategory of \(C_t\) with only two objects \(a, b\). Since the functor \(\text{Ob} : \text{Cat} \rightarrow \text{Set}\) and the functor \(\text{sing} : \text{Top} \rightarrow \text{sSet}\) commute with directed colimits, we have that \(\text{sing} : \text{Cat}_{\text{Top}} \rightarrow \text{Cat}_{\text{sSet}}\) commutes with directed colimits. \(\square\)

Lemma 2.5. The objects \(|U\Lambda^n|\), \(|U\Delta^n|\) and \(|\mathcal{H}|\) are small in \(\text{Cat}_{\text{Top}}\).

Proof. It is a consequence of the fact that \(U\Lambda^n\), \(U\Delta^n\), \(\mathcal{H}\) are small in \(\text{Cat}_{\text{sSet}}\) and \(\text{sing} : \text{Cat}_{\text{Top}} \rightarrow \text{Cat}_{\text{sSet}}\) commutes with directed colimits. \(\square\)

Lemma 2.6. The transfinite composition of weak equivalences in \(\text{Cat}_{\text{sSet}}\) is a weak equivalence.

Proof. It is a consequence that the transfinite composition of weak equivalences in \(\text{sSet}\) and \(\text{Cat}\) is a weak equivalence. Note that \(\pi_0 : \text{Cat}_{\text{sSet}} \rightarrow \text{Cat}\) commutes with colimits because it admits a right adjoint: the Forgetful functor which correspond to each topological enriched category \(\mathbf{C}\) an trivially enriched category i.e., we forget the topology of \(\mathbf{C}\). \(\square\)

Corollary 2.7. The category \(\text{Cat}_{\text{Top}}\) is a cofibrantly generated model category Quillen equivalent to \(\text{Cat}_{\text{sSet}}\).

3. Graphs and Categories

In this paragraph, we define an adjunction between \(\text{Cat}_{\text{Top}}\) and the categories of enriched graphs on \(\text{Top}\). This adjunction is constructed in the particular case where the set of objects is fixed. We will denote \(\mathcal{O} = \text{Cat}_{\text{Top}}\) the category of small enriched categories over \(\text{Top}\) with fixed set of objects \(\mathcal{O}\), the morphisms are those functors which are identities on objects. By the same way, we define the category of small graphs enriched over \(\text{Top}\) by \(\mathcal{O} = \text{Graph}_{\text{Top}}\) with a fixed set of vertices \(\mathcal{O}\) There exists an adjunction between \(\mathcal{O} = \text{Cat}_{\text{Top}}\) and \(\mathcal{O} = \text{Graph}_{\text{Top}}\) given by the forgetful functor and the free functor. Before starting, we define the free functor between graphs and categories. First we study the case where \(\mathcal{O}\) is a set with one element.

Lemma 3.1. There exists a right adjoint to the forgetful functor \(U : \text{Mon} \rightarrow \text{Top}\) where \(\text{Mon}\) is the category of topological monoids.
Proof. Let X in \textbf{Top}, we define

$$L(X) = * \sqcup X \sqcup (X \times X) \sqcup (X \times X \times X) \sqcup \ldots;$$

it is a functor from \textbf{Top} to topological monoids.

It is easy to see that $L: \textbf{Top} \to \textbf{Mon}$ is a well defined functor. In fact, it is the desired functor. Let M be a topological monoids, a morphism of monoid $L(X) \to M$ is given by a morphism of non pointed topological spaces $X \to U(M).$ This morphism extends in an unique way in a morphism of monoids if we consider the following morphisms in \textbf{Top}:

$$X \times X \cdots \times X \to M \times M \cdots \times M \to M.$$

We conclude that:

$$\text{hom}_{\textbf{Top}}(X, U(M)) = \text{hom}_{\textbf{Mon}}(L(X), M).$$

□

For a generalization of the precedent adjunction to an adjunction between $\textbf{O} - \text{Cat}_{\textbf{Top}}$ and $\textbf{O} - \text{Graph}_{\textbf{Top}}$, we do ass follow: We pose \textbf{O} the trivial category with set of object \textbf{O}. For each graph Γ in $\textbf{O} - \text{Graph}_{\textbf{Top}}$ we define the set of the following categories indexed by a pair of element $a, b \in \textbf{O}$

$$\Gamma_{a,b}(c,d) = \begin{cases} \Gamma(c,d) & \text{if } c = a \neq b = d \\ L(\Gamma(c,d)) & \text{if } a = c = b = d \\ \emptyset & \text{if } c \neq d \text{ and } a \neq c \land b \neq d \\ * = id & \text{else} \end{cases}$$

Let Γ a graph in $\textbf{O} - \text{Graph}_{\textbf{Top}}$, we define the free category induced by the graph as a free product in the category $\textbf{O} - \text{Cat}_{\textbf{Top}}$ of all categories of the form $\Gamma_{a,b}$, more precisely

$$L(\Gamma) = \ast_{(a,b)\in \textbf{O} \times \textbf{O}} \Gamma_{a,b}.$$

By the free product, we mean the following colimit in $\textbf{Cat}_{\textbf{Top}}$:

$$\text{colim}_{(a,b)\in \textbf{O} \times \textbf{O}} \Gamma_{a,b}.$$

4. Realization

Let \textbf{M} be a simplicial model category (i.e., tensored and cotensored in a suitable way). The category $[\Delta^{op}, \textbf{M}]$ is a model category with Reedy model structure (cf [7]) where the weak equivalences are defined degrewise.

Definition 4.1. The realization functor

$$| - |: [\Delta^{op}, \textbf{M}] \to \textbf{M}$$

is defined as follow:

$$\bigcup_{\phi: [n] \to [m]} M_m \otimes \Delta^n \xrightarrow{d_0} \bigcup_{[n]} M_n \otimes \Delta^n \xrightarrow{d_1} |M_*|$$

\(\alpha d_0 = \phi^* \otimes id\) and \(d_1 = id \otimes \phi\).

Lemma 4.2. Since \textbf{M} is a simplicial category, the functor $| - |$ admit a right adjoint:

$$(-)^\Delta: \textbf{M} \to [\Delta^{op}, \textbf{M}]: M \mapsto M^\Delta.$$
Lemma 4.3. [7, VII, proposition 3.6] Let M a simplicial model category and $[\Delta^{op}, M]$ a Reedy model category, then the realization functor

$$| - | : [\Delta^{op}, M] \to M$$

is a left Quillen functor.

Now, we specify to $M = \text{Top}$. In this particular case, $[\Delta^{op}, \text{Top}]$ is a monoidal category (the monoidal structure is defined degree wise form the monoidal structure of Top). So, the realization functor $| - | : [\Delta^{op}, \text{Top}] \to \text{Top}$ commutes with the monoidal product (cf [6], chapitre X, proposition 1.3).

Corollary 4.4. The realization functor $| - | : [\Delta^{op}, \text{Top}] \to \text{Top}$ preserve the homotopy equivalences.

In the practice, the lemma 4.3 is difficult to use. It is quite-difficult to show that an object in $[\Delta^{op}, M]$ is Reedy cofibrant. In l’appendice A of [12], Segal gives us an alternative solution in the particular case of $[\Delta^{op}, \text{Top}]$.

Lemma 4.5. There exist a functor $|| - || : [\Delta^{op}, \text{Top}] \to \text{Top}$, called good realization with the following properties:

1. Let $f_\bullet : X_\bullet \to Y_\bullet$ a morphism in $[\Delta^{op}, \text{Top}]$ such that if $f_n : X_n \to Y_n$ is a weak equivalence for all $n \in \mathbb{N}$, then $||f_\bullet|| : ||X_\bullet|| \to ||Y_\bullet||$ is a weak equivalence in Top;

2. There exists a natural transformation $N : || - || \to | - |$, with the property that for all good simplicial topological space X_\bullet, the natural morphism:

$$N_{X_\bullet} : ||X_\bullet|| \to |X_\bullet|$$

is a weak equivalence in Top;

3. The natural morphism $||X_\bullet \times Y_\bullet|| \to ||X_\bullet|| \times ||Y_\bullet||$ is a weak equivalence in Top.

For the details we refer to [12].

Lemma 4.6. There exists an endofunctor $\tau : [\Delta^{op}, \text{Top}] \to [\Delta^{op}, \text{Top}]$ and a natural transformation $Q : \tau \to \text{id}$ with the following properties:

1. τX_\bullet is a good simplicial topological space for all $X_\bullet \in [\Delta^{op}, \text{Top}]$;

2. The natural morphism $Q_n : \tau_n(X_\bullet) \to X_n$ is a weak equivalence for all $n \in \mathbb{N}$;

3. The natural morphism $||X_\bullet|| \to |\tau(X_\bullet)||$ is a weak equivalence;

4. Finally, we have $\tau_0(X_\bullet) = X_0$.

Corollary 4.7. Let $f_\bullet : X_\bullet \to Y_\bullet$ a morphism in $[\Delta^{op}, \text{Top}]$, such that f_n is a weak equivalence for all n, then

$$|\tau(f_\bullet)| : |\tau(X_\bullet)| \to |\tau(Y_\bullet)|$$

is a weak equivalence of topological spaces.

Proof. It is a direct consequence from 4.5 and 4.6.

We can see the functor τ as kind of cofibrant replacement. It is useful to know how to describe the functor τ.
Definition 4.8. [12]. Appendice A] Let A_\bullet a simplicial topological space and σ a subset of $\{1, \ldots, n\}$. We pose:

1. $A_{n,i} = s_i A_n$.
2. $A_{n,\sigma} = \cap_{i \in \sigma} A_{n,i}$.
3. $\tau_n(A_\bullet)$ is a union of all subsets $[0,1]^\sigma \times A_{n,\sigma}$ of $[0,1]^n \times A_n$.

The morphism $\tau(A_\bullet) \to A_\bullet$ collapses $[0,1]^\sigma$ and inject $A_{n,\sigma}$ in A_n.

Lemma 4.9. The functor τ sends homotopy equivalences to homotopy equivalences.

Proof. Let $h : X_\bullet \times [0, 1] \to Y_\bullet$ be a homotopy between t and s. By definition of τ, we have

$$\tau_n(X_\bullet \times [0,1]) = \bigcup_{\sigma \in \{1, \ldots, n\}} [0,1]^\sigma \times (X_\bullet \times [0,1])_{n,\sigma}$$

$$= \bigcup_{\sigma \in \{1, \ldots, n\}} ([0,1]^\sigma \times X_{n,\sigma} \times [0,1])$$

$$= (\bigcup_{\sigma \in \{1, \ldots, n\}} [0,1]^\sigma \times X_{n,\sigma}) \times [0,1]$$

$$= \tau_n(X_\bullet) \times [0,1].$$

Consequently $\tau(h) : \tau(X_\bullet) \times [0,1] \to \tau(Y_\bullet)$ is a homotopy between $\tau(t)$ and $\tau(s)$. □

Definition 4.10. a strong section $f : X \to Y$ is a continues application $i : Y \to X$ such that $f \circ i = id_Y$ and such that there exists a homotopy between $i \circ f$ and id_X which fix Y.

Corollary 4.11. The functor τ preserve strong sections.

Proof. It is a consequence of the lemma 4.9 and that τ is a functor so it preserves the identities. □

Corollary 4.12. If X is a constant simplicial topological space, then $Q_X : \tau(X) \to X$ admit a strong section.

Proof. The section $i : X \to \tau(X)$ is induced by the identity on X. To show that it is a strong section, it is suffisant to see that $\tau_n(X) = [0,1]^n \times X$ by definition. □

5. Pushouts in \textbf{Cat}_V

We define and compute some (simple) pushouts in the category of small enriched categories $\mathbf{V} - \textbf{Cat}$. In our example \mathbf{V} is the category \mathbf{sSet} or \mathbf{Top}. For more details see ([11], A.3.2).

Definition 5.1. Let $U : \mathbf{V} \to \textbf{Cat}_V$ be a functor defined as follow:

For each object $S \in \mathbf{V}$, $U(S)$ is the enriched category with two objects x and y such that $\text{Map}_{U(S)}(x, y) = S$.

Let $f : S \to T$ be a morphism in \mathbf{V} and C an enriched category on \mathbf{V}. We want to describe explicitly the following pushout diagram:
It is enough clear that the objects of \mathbf{C} and \mathbf{D} are the same. The difficult part is to define $\text{Map}_\mathbf{D}$.

Let $w, z \in \mathbf{C}$ and define the following sequence of objects in \mathbf{V}:

- $M^0_C = \text{Map}_\mathbf{C}(w, z)$.
- $M^1_C = \text{Map}_\mathbf{C}(y, z) \times T \times \text{Map}_\mathbf{C}(w, x)$.
- $M^2_C = \text{Map}_\mathbf{C}(y, z) \times T \times \text{Map}_\mathbf{C}(y, x) \times T \times \text{Map}_\mathbf{C}(w, x)$.

...

More generally, an object of M^k_C is given by a finite sequence of the form

$$(\sigma_0, \tau_1, \sigma_1, \tau_2, \ldots, \tau_k, \sigma_k)$$

where $\sigma_0 \in \text{Map}_\mathbf{C}(y, z)$, $\sigma_k \in \text{Map}_\mathbf{C}(w, x)$, $\sigma_i \in \text{Map}(y, x)$ for $0 < i < k$, and $\tau_i \in T$ for $0 < i \leq k$.

We define $\text{Map}_\mathbf{D}(w, z)$ as a quotient $\bigsqcup_k M^k_C$ relative to the following relations:

$$(\sigma_0, \tau_1, \ldots, \sigma_k) \sim (\sigma_0, \tau_1, \ldots, \tau_{j-1}, \sigma_{j-1} \circ h(\tau_j) \circ \sigma_j, \tau_{j+1}, \ldots, \sigma_k),$$

when τ_j is an element of $S \subset T$.

The category \mathbf{D} is equipped with the following associative composition:

$$(\sigma_0, \tau_1, \ldots, \tau_k, \sigma_k) \circ (\sigma'_0, \tau'_1, \ldots, \tau'_i) = (\sigma_0, \tau_1, \ldots, \tau_k, \sigma_k \circ \sigma'_0, \tau'_1, \ldots, \tau'_i).$$

Observe that there is a natural filtration on $\text{Map}_\mathbf{D}(w, z)$:

$$\text{Map}_\mathbf{D}(w, z) = \text{Map}_\mathbf{D}(w, z)^0 \subset \text{Map}_\mathbf{D}(w, z)^1 \subset \ldots$$

where $\text{Map}_\mathbf{D}(w, z)^k$ is defined as image of $\bigsqcup_{0 \leq i \leq k} M^i_C$ in $\text{Map}_\mathbf{D}(w, z)$ and

$$\bigsqcup_k \text{Map}_\mathbf{D}(w, z)^k = \text{Map}_\mathbf{D}(w, z).$$

The most important fact is that $\text{Map}_\mathbf{D}(w, z)^k \subset \text{Map}_\mathbf{D}(w, z)^{k+1}$ is constructed as pushout of the inclusion: $N^{k+1}_C \subset M^{k+1}_C$, where N^{k+1}_C is a subobject of M^{k+1}_C of $(2m + 1)$-tuples $(\sigma_0, \tau_1, \ldots, \sigma_m)$ such that $\tau_i \in S$ for at least one i.

5.1. Monads. The main goal of this section is to generalize the section 2 de l’article [5] to the categories enriched over Top.

Every adjunction define a monad and a comonad. We are interested on the particular adjunction

$$\mathcal{O} \dashv \text{Graph}_{\text{Top}} \xrightarrow{L} \mathcal{O} \dashv \text{Cat}_{\text{Top}}$$

We have a monad $T = UL$ and a comonad $F = LU$. The multiplication on T is denoted by $\mu : TT \to T$ and the unity $\eta : id \to T$, the comultiplication by $\psi : F \to FF$ and finally the counity by $\phi : F \to id$. The $T-$algebras are exactly those graphs which have a structure of a category (composition).
Notation 5.2. The category of small categories enriched over \mathbf{Top} and with fixed set of objects \mathcal{O} is noted by $\mathcal{O} - \mathbf{Cat}_{\text{Top}}$. We note by $\mathcal{O} - \mathbf{sCat}_{\text{Top}}$ the category of presheaves $[\Delta^{op}, \mathcal{O} - \mathbf{Cat}_{\text{Top}}]$ and $\mathcal{O} - \mathbf{sGraph}_{\text{Top}}$ the category of presheaves $[\Delta^{op}, \mathcal{O} - \mathbf{Graph}_{\text{Top}}]$. If we note $[\Delta^{op}, \mathbf{Top}]$ by $s\mathbf{Top}$ then we have $\mathcal{O} - \mathbf{sCat}_{\text{Top}} = \mathcal{O} - \mathbf{Cat}_{s\mathbf{Top}}$, and $\mathcal{O} - \mathbf{sGraph}_{\text{Top}} = \mathcal{O} - \mathbf{Graph}_{s\mathbf{Top}}$.

5.1.1. Simplicial resolution. Let C be an object of $\mathcal{O} - \mathbf{Cat}_{\text{Top}}$. We define the iterated composition of F by:

$$F^k = F \circ F \cdots \circ F.$$

The comonad F gives us a simplicial resolution C (cf [5]) defined as follow:

$$F_k C = F^{k+1} C,$$

With faces and degeneracies:

$$F_k C \xrightarrow{d_i = F^i \phi^{k-1}} F_{k-1} C$$

$$F_k C \xrightarrow{s_i = F^i \psi^{k-1}} F_{k+1} C$$

The category of compactly generated spaces \mathbf{Top} is a simplicial model category (tensted and cotensored over $s\mathbf{Set}$) So we have:

1. In $\mathcal{O} - \mathbf{sCat}_{\text{Top}}$ we have the morphism $f : F_{\bullet} C \to C$, where C is sow as a constant object in $\mathcal{O} - \mathbf{sCat}_{\text{Top}}$ and $t f_k = \phi^{k+1}$.
2. The morphism f admit a section $i : C \to F_{\bullet} C$ in the category $\mathbf{Graph}_{s\mathbf{Top}}$. The section i is induced by the unity of the monad T i.e., $\eta_{UC} : UC \to ULUC$.
3. The adjunction $[\Delta^{op}, \mathbf{Top}] \xrightarrow{(-)^{\Delta}} \mathbf{Top}$, induce the following adjunction $\mathcal{O} - \mathbf{Cat}_{s\mathbf{Top}} \xrightarrow{(-)^{\Delta}} \mathcal{O} - \mathbf{Cat}_{\text{Top}}$, since the realization functor is monoidal.
4. The realization of the morphism f in $\mathcal{O} - \mathbf{sCat}_{\text{Top}}$ induce a weak equivalence i.e., $[f] : \mathbf{Map}_{F_{\bullet} C}(a, b) \to \mathbf{Map}_{C}(a, b)$ is a weak equivalence in \mathbf{Top} for all $a, b \in \mathcal{O}$.

Remark 5.3. The realization functor $| - |$ does not ”see” the category structure, but only the graph structure.
More generally, for all \(C, D \) in \(\mathcal{O} - \mathbf{Cat}_{\text{Top}} \) the following morphism:

\[
F_a(C) \ast D \longrightarrow C \ast D
\]

admit a strong section \(C \ast D \to F_a(C) \ast D \) in the category \(\mathcal{O} - \mathbf{sGraph}_{\text{Top}} \). In fact, The category \(\mathcal{O} - \mathbf{Graph}_{\text{Top}} \) is monoidal (nonsymmetric) with monoidal product \(\times_{\mathcal{O}} \) which is a generalization of \(([10], II, 7)\). A topologically enriched category is a monoid with respect to this monoidal product. The free product \(C \ast D \) is constructed in \(\mathcal{O} - \mathbf{Graph}_{\text{Top}} \) as

\[
\mathcal{O}^c \sqcup_{\mathcal{O}} C \sqcup_{\mathcal{O}} D \sqcup_{\mathcal{O}} \left(C' \times_{\mathcal{O}} C' \right) \sqcup_{\mathcal{O}} \left(D' \times_{\mathcal{O}} D' \right) \sqcup_{\mathcal{O}} \left(C' \times_{\mathcal{O}} D' \right) \sqcup_{\mathcal{O}} \left(D' \times_{\mathcal{O}} C' \right) \ldots
\]

where \(C' \) (resp. \(D' \)) is a correspondent graph of \(C \) (resp. \(D \)) without identities and \(\mathcal{O}^c \) is the trivial category obtained from the set \(\mathcal{O} \). So \(C \ast D \to F_a(C) \ast D \) is induced by the section \(i : C \to F_a(C) \) and \(id : D \to D \). consequently the morphism

\[
\text{Map}_{C \ast D}(a, b) \to \text{Map}_{F_a(C) \ast D}(a, b) = \text{Map}_{F_a(C) \ast D}(a, b)
\]

is a weak equivalence in \(\mathbf{Top} \) for all objects \(a, b \in \mathcal{O} \).

Lemma 5.4. Let \(C \to D \) a weak equivalence in \(\mathcal{O} - \mathbf{Cat}_{\text{Top}} \) and let \(\Gamma \) a graph in \(\mathcal{O} - \mathbf{Graph}_{\text{Top}} \), the the induced morphism :

\[
L(\Gamma) \ast C \to L(\Gamma) \ast D
\]

is a weak equivalence in the category \(\mathcal{O} - \mathbf{Cat}_{\text{Top}} \).

Proof. It is enough to prove that \(C' = L(\Gamma)_{a,b} \ast C \to L(\Gamma)_{a,b} \ast D = D' \) is an equivalence for all \((a, b) \in \mathcal{O} \times \mathcal{O} \). If \(a \neq b \), it is a direct consequence of the lemma [5.6] where we replace \(S \) by \(\emptyset \) and \(T \) by \(X \). So \(\text{Map}_{C'}(w, z) = \bigsqcup_k M^k_C \) and respectively \(\text{Map}_{D'}(w, z) = \bigsqcup_k M^k_D \). But \(M^k_C \) is equivalent to \(M^k_D \) since \(C \) is equivalent to \(D \). We conclude that \(\text{Map}_{C'}(w, z) \) is equivalent to \(\text{Map}_{D'}(w, z) \).

If \(a = b \), we note the edges from \(a \) to \(a \) of the graph \(\Gamma \) by \(X \). Then we use the precedent case if we remark that \(C' = L(\Gamma)_{a,a} \ast C \) is simply the following pushout:

\[
\begin{array}{ccc}
U(\emptyset) & \xrightarrow{f} & C \\
\downarrow{g} & & \downarrow{h} \\
U(X) & \xrightarrow{\alpha} & C'
\end{array}
\]

The morphism \(f \) send the two objects of \(U(\emptyset) \) to \(a \in C \), so, by the lemma [5.6] we have that \(L(\Gamma)_{a,a} \ast C \to L(\Gamma)_{a,a} \ast D \) is a weak equivalence. consequently \(L(\Gamma) \ast C \to L(\Gamma) \ast D \) is a weak equivalence by a possibly transfinite composition of weak equivalences. \(\square \)

Lemma 5.5. Let \(i : X \to Y \) an inclusion and a weak equivalence of topological spaces and \(i(X) \) closed in \(Y \) such that there exists a homotopy \(H : Y \times [0, 1] \to Y \) which verify the following conditions:

1. \(H(-, 0) = id_Y \)
2. \(H(i(x), t) = i(x) \) for all \(x \in X \).
3. \(H(-, 1) = s \) with \(s \circ i = id_X \).
then the morphism g of the pushout:

$$
\begin{array}{ccc}
X & \overset{\psi}{\longrightarrow} & Z \\
\downarrow{s} & & \downarrow{g} \\
Y & \xrightarrow{\alpha} & D
\end{array}
$$

is a weak equivalence.

Proof. We remind that $D = Y \cup_X Z$. To simplify notation be denote the image of $y \in Y$ in D by y, respectively z for the image of $z \in Z$ in D.

Since i admit a retraction, g admit also a retraction noted by s' and induced by s. It means that we have an inclusion of Z in D via g because of $s' \circ g = \text{id}_Z$. In fact, $s' : D \rightarrow Z$ is defined as follow:

1. $s'(z) = z$ for $z \in Z$.
2. $s'(y) = s(y)$ for $y \in Y$.

This new section s' is well defined by $s'(\psi(x)) = \psi(x)$ and $s'(i(x)) = i(x)$ but in D we have $i(x) = \psi(x)$ for all $x \in X$. We resume the situation in the following diagram

$$
\begin{array}{ccc}
X & \overset{\psi}{\longrightarrow} & Z \\
\downarrow{s} & & \downarrow{g} \\
Y & \xrightarrow{\alpha} & Y \cup_X Z
\end{array}
$$

$$
\begin{array}{c}
\xrightarrow{\alpha}
\end{array}

\begin{array}{c}
\xrightarrow{id}
\end{array}

\begin{array}{c}
\xleftarrow{\psi \circ s}
\end{array}

\begin{array}{c}
\xrightleftharpoons{\psi \circ s}
\end{array}

\begin{array}{c}
Z
\end{array}
$$

We construct the homotopy $H' : D \times [0,1] \rightarrow D$ as follow:

1. $H'(-,0) = \text{id}_D$.
2. $H'(z,t) = z$ if z is in Z.
3. $H'(y,t) = H(y,t)$ for all y in Y.

This homotopy is well defined. In fact, it is enough to prove that the gluing operation is well define. We have $\psi(x) = i(x)$ in D, then $H'(i(x),t) = H(i(x),t) = i(x)$ by definition, on the other hand $H'(\psi(x),t) = \psi(x)$. Since $i(X)$ is closed in Y, then $i(X)$ is closed in D. We conclude that H' is well defined. More over $H'(y,0) = H(y,0) = y$ and so $H'(-,0)$ is the identity.

By simple computation of $H'(-,1) : D \rightarrow D$ we have that $H'(z,1) = z$ for all $z \in Z$ and $H'(y,1) = H(y,1) = s(y)$ for all $y \in Y$. So, $H'(-,1) = s'$. That means the morphism $s' : D \rightarrow Z \subset D$ is a weak equivalence since it is homotopic to the identity. Consequently g est aussi is a homotopy equivalence because $s' \circ g = \text{id}$.

\[\square\]

Lemma 5.6. With the precedent notation of graphs if we pose $f : S = |\Delta^n| \rightarrow T = |\Delta^n|$, then, $\text{Map}_C(w,z) \subset \text{Map}_D(w,z)$ is a weak equivalence $\forall w, z \in C$.

Proof. We remind here that $\mathbf{V} = \text{Top}$. Since all objects in Top are fibrant, so f admit a section s. On the other hand, the inclusion $N^{k+1}_C \subset M^{k+1}_C$ is a weak
equivalence and admit also a section. We will do the demonstration for the case
$k = 2$. We use the following notations:

\[(5.1) \quad A_0 = \text{Map}_C(y, z) \times S \times \text{Map}_C(y, x) \times S \times \text{Map}_C(w, x)\]
\[(5.2) \quad A_1 = \text{Map}_C(y, z) \times S \times \text{Map}_C(y, x) \times T \times \text{Map}_C(w, x)\]
\[(5.3) \quad A_2 = \text{Map}_C(y, z) \times T \times \text{Map}_C(y, x) \times S \times \text{Map}_C(w, x)\]

The evident inclusions are weak equivalences which admit sections induced by s
$A_0 \to A_i$, $i = 1, 2$.

We define the complement of N^2_C, which consist on tuples (a, s_1, b, s_2, c) in
$\text{Map}_C(y, z) \times T \times \text{Map}_C(y, x) \times T \times \text{Map}_C(w, x)$ such that $s_1, s_2 \notin S$. We
will do our argument in low dimension $n = 1$, the rest is similar. The space
$T \times S \cup S \times T$ is a gluing of two intervals $[0, 1]$ at the point 0 and $T \times T$
is simply $[0, 1] \times [0, 1]$. If we pose $f : X = T \times S \cup S \times T \to T \times T = Y$, we are
exactly in the situation of the lemma 5.5 i.e., there exist a homotopy between X and Y
which is identity map on X. If we rewrite N^2_C by

$N^2_C = A_1 \bigcup_{A_0} A_2 = X \times \text{Map}_C(y, z) \times \text{Map}_C(y, x) \times \text{Map}_C(w, x),$

and M^2_C by

$M^2_C = Y \times \text{Map}_C(y, z) \times \text{Map}_C(y, x) \times \text{Map}_C(w, x),$

The the induced morphism $N^2_C \to M^2_C$ verify the condition of the lemma 5.5.
Consequently, the pushout of $N^2_C \subset M^2_C$ by $N^2_C \to \text{Map}_D(w, z)^1$ is also a weak
equivalence. Which means that the inclusion $\text{Map}_D(w, z)^1 \subset \text{Map}_D(w, z)^2$ is a
weak equivalence. By the same argument we prove the statement for all k and use
the fact that a transfinite composition of weak equivalences is a weak equivalence. So

$\text{Map}_C(y, z) \cdot \cdot \cdot \subset \text{Map}_D(w, z)^k \subset \text{Map}_D(w, z)^{k+1} \cdot \cdot \cdot \subset \text{Map}_D(w, z)$

is a weak equivalence. \hfill \qed

Corollary 5.7. Let M in $\mathcal{O} - \text{Cat}_{\text{Top}}$, then $F_i M \ast C \to F_i M \ast D$
is a weak equivalence in $\mathcal{O} - \text{Cat}_{\text{Top}}$ for all $0 \leq i$.

Proof. It is enough to see that $F = LU$ and applied the lemma 5.4 by putting
$\Gamma = UM.$ \hfill \qed

Lemma 5.8. Let C, D and M in $\mathcal{O} - \text{Cat}_{\text{Top}}$, and $C \to D$ a weak equivalence.
Then

$M \ast C \to M \ast D$

is a weak equivalence.

Proof. We have seen by 5.7 that

$h_i : F_i(M) \ast C \to F_i(M) \ast D$
A model structure on Cat_{Top}

is a weak equivalence for all $0 \leq i$. Consider the following commutative diagram in $\mathcal{O} - \mathbf{Graph}_{s\text{Top}}$:

\[\begin{array}{ccc}
\tau(F_\bullet(M \star C)) & \xrightarrow{\tau(h_\bullet)} & \tau(F_\bullet(M \star D)) \\
\downarrow{\tau(t)} & & \downarrow{\tau(s)} \\
F_\bullet(M \star C) & \xrightarrow{h_\bullet} & F_\bullet(M \star D) \\
\downarrow{\tau(h)} & & \downarrow{g} \\
M \star C & \xrightarrow{h} & M \star D
\end{array} \]

The morphism t and s are homotopy equivalences. By 4.4, the morphisms $|t|$ and $|s|$ are also homotopy equivalences (of underlying graphs). The morphisms $\tau(t)$ and $\tau(s)$ are homotopy equivalences by 4.11. And by 4.4, the morphisms $|\tau(t)|$ and $|\tau(s)|$ are homotopy equivalences.

The morphism $|\tau(h_\bullet)|$ is a weak equivalence 4.7. By the property "2 out of 3" $|\tau(h)|$ is a weak equivalence.

The morphisms f and g are homotopy equivalences by 4.12. So $|f|$ and $|g|$ are also homotopy equivalences by 4.4.

We conclude by the property "2 out of 3" that $|h|$ is a weak equivalence and so h is a weak equivalence.

\[\square \]

6. ∞-categories (quasi-categories)

In the mathematical literature, there are many models for ∞-categories, for example the enriched categories on Kan complexes $[3]$, The categories enriched over Top as we saw before, and the the quasi-categories defined by Joyal. More precisely Joyal constructed a new model structure on $s\text{Set}$, voir $[9]$, where the fibrant object are by definition quasi-categories (∞-categories). We introduce the notion of quasi-groupode which generalize the notion of groupoids in the classical setting of categories. We remind also the definition of coherent nerve for the enriched categories on $s\text{Set}$ and Top.

Definition 6.1. Une quasi-category is a simplicial set X which has a lifting property for all $0 < i < n$:

\[
\begin{array}{ccc}
\Lambda^n_i & \xrightarrow{\vee} & X \\
\downarrow & & \downarrow \\
\Delta^n & \xrightarrow{\exists} & \bullet
\end{array}
\]

It is important to remark that the condition $0 < i < n$ codify the law composition up to homotopy. Sometimes, we will call such simplicial complexes by weak Kan complexes. For example, if C is a classical category, then the nerve $N_\bullet C$ is a quasi-category with an additional property: The lifting, is in fact, unique (cf $[11]$,
proposition 1.1.2.2). More over a simplicial set is isomorphic to the nerve of a category \(C \) if and only if the lifting exists and it is unique.

Lemma 6.2. A category \(C \) is a groupoid iff \(N \bullet C \) is a Kan complex.

Proof. If \(C \) is a groupoid, then \(N \bullet C \) admit a lifting with respect to \(\Lambda^n_0 \rightarrow \Delta^n \) and \(\Lambda^n_0 \rightarrow \Delta^n \) simply because all arrows in \(C \) are invertible. So \(N \bullet C \) is a Kan complex. If \(N \bullet C \) is a Kan complex, we have a lifting with respect to \(\Lambda^2_0 \rightarrow \Delta^2 \). That means, every diagram in \(C \)

\[
\begin{array}{ccc}
 f & \quad & x \\
 \downarrow g & & \downarrow \text{id} \\
 y & \quad & x
\end{array}
\]

can be completed by a unique arrow \(f : y \rightarrow x \), so \(g \) is right invertible. We show that \(g \) is left invertible using the lifting property with respect to \(\Lambda^2_0 \rightarrow \Delta^2 \). So \(C \) is a groupoid. \(\square\)

The precedent lemma suggest us a definition for an \(\infty \)-groupode.

Definition 6.3. An \(\infty \)-category (quasi-category) \(X \) is an \(\infty \)-groupoid (quasi-groupoid) if it is a Kan complex.

Example 6.4. Let \(Y \) be a topological space, the simplicial set \(\text{sing} Y \) is a Kan complex. So we can see every topological space as an \(\infty \)-groupoid.

Theorem 6.5. [9] (section 6.3) The category \(\text{sSet} \) admit a model structure where

- the cofibrations are the monomorphisms,
- the fibrant objects are the quasi-categories,
- the fibrations are the pseudo-fibrations and the weak equivalences are the categorical equivalences.

This is a cartesian closed model structure. This new structure is noted by \((\text{sSet}, Q) \).

We don’t know if the this new model structure is cofibrantly generated! We will explain later what we mean by categorical equivalences, but we don’t describe explicitly the pseudo-fibration. For each quasi-category \(X \) (fibrant object in \((\text{sSet}, Q) \)), we can associate its homotopy category (in a classical sens) noted \(\text{Ho} X \). This theory was developed by Joyal, see for example [9].

7. Some Quillen adjunctions

In this paragraph, we describe different Quillen adjunction between \(\text{sSet} \rightarrow \text{Cat} \), \((\text{sSet}, Q) \) and \((\text{sSet}, K) \).

7.1. \(\text{sSet} \rightarrow \text{Cat} \) vs \((\text{sSet}, Q) \).

The first adjunction is described in details in [11]. We start by some analogies between classical categories and simplicial sets.

\[\text{sSet} \xrightarrow{\tau} \text{Cat}, \]

The right adjoint is the nerve and the left adjoint associate to each simplicial set its fundamental category. Note that this adjunction is not a Quillen adjunction for the two known model structure on \(\text{Cat} \) (Thomason structure and Joyal structure). We remind the nerve functor is fully faithful and \(\tau N \bullet = \text{id} \). The basic idea is to "extend" this adjunction to an adjunction between \((\text{sSet}, Q) \) and the category \(\text{Cat}_{\text{sSet}} \). If we use the standard nerve for the enriched categories on simplicial
sets, by remembering only the 0-simplices, the we lose all the higher homotopical information. Because of that, we use an other strategy. First we define a left adjoint as follow

\[\Xi : (\text{sSet}, Q) \to \text{sSet} - \text{Cat} \]

On \(\Delta^n \), then we apply the left Kan extension.

Definition 7.1. [11] (1.1.5.1) The enriched category \(\Xi(\Delta^n) \) has as objects the 0-simplices of \(\Delta^n \), and

\[\Xi(\Delta^n)(i,j) = \begin{cases} N \cdot P_{i,j} & \text{if } i \leq j \\ \emptyset & \text{if } i > j \end{cases} \]

Where \(P_{i,j} \) is the set partially ordered by inclusion:

\[\{ I \subseteq J : (i, j) \in I \land (\forall k \in I)[i \leq k \leq j] \} \].

Definition 7.2. The right adjoint to the functor \(\Xi \) is called the coherent nerve and noted by \(\tilde{N}_* \). It is defined by the following formula:

\[\tilde{N}_n C = \text{hom}_{\text{sSet}}(\tilde{\Delta}^n, C) := \text{hom}_{\text{sSet} - \text{Cat}}(\Xi(\Delta^n), C) \].

Now, we can define the categorical equivalences used in the model structure \((\text{sSet}, Q) \). We call a morphism of simplicial sets \(f : X \to Y \) an equivalence if \(\Xi(f) : \Xi(X) \to \Xi(Y) \) is an equivalence of enriched categories, i.e., if \(\text{Map}_{\text{set}}(a, b) \to \text{Map}_{\text{set}}(\Xi(f)a, \Xi(f)b) \) is a weak equivalence of simplicial sets for all \(a, b \) and \(\pi_0 \Xi(f) : \pi_0 \Xi(X) \to \pi_0 \Xi(Y) \) is an equivalence of classical categories.

Theorem 7.3. The following adjunction is a Quillen equivalence between the Joyal model structure \((\text{sSet}, Q) \) [9], and the model category on \(\text{Cat}_{\text{sSet}} \) defined in [3]

\[\text{sSet} \xrightarrow{\Xi} \text{sSet} - \text{Cat} \]

For the proof we refer to [11] theorem 2.2.5.1.

Corollary 7.4. Let \(C \) an enriched category on Kan complexes, then the counity

\[\Xi\tilde{N}_* C \to C \]

is a weak equivalence of enriched categories.

7.2. \((\text{sSet}, Q) \) vs \((\text{sSet}, K) \)

In this paragraph, we describe the Quillen adjunction Between Joyal model structure on simplicial sets and the classical model structure on \(\text{sSet} \) which we note by \((\text{sSet}, K) \), \(K \) for Kan complexes.

Definition 7.5. The functor \(k : \Delta \to \text{sSet} \) is defined by \(k[n] = \tilde{\Delta}^n \) for all \(n \geq \), where \(\tilde{\Delta}^n \) is the nerve of the free groupoid generated by the category \([n] \). If \(X \) is a simplicial set, we define the functor \(k^! : \text{sSet} \to \text{sSet} \) by:

\[k^!(X)_n = \text{hom}_{\text{sSet}}(\tilde{\Delta}^n, X) \].

The functor \(k^! \) has a left adjoint \(k_! \) which is the left Kan extension of \(k \). From the inclusion \(\Delta^n \subset \tilde{\Delta}^n \) we obtain, for all \(n \), a set morphism \(k^!(X)_n \to X_n \) which is \(n \)-level of a simplicial morphism \(\beta_X : k^!(X) \to X \). More precisely, \(\beta : k^! \to id \) is a natural transformation. Dually, we define a natural transformation \(\alpha : id \to k_! \).
Theorem 7.6. The adjoint functors

\[(\text{sSet}, \text{Kan}) \overset{k_!}{\longrightarrow} (\text{sSet}, \text{Q}) \]

is a Quillen adjunction. Moreover, \(\alpha_X : X \to k_!(X)\) is an equivalence for each \(X\).

Proof. For the proof, see ([9], 6.22). \(\square\)

7.3. \(\infty\)-groupoids. In this paragraph, we define a notion of groupoid for categories enriched on simplicial sets or topological spaces, Which we compare with the notion of \(\infty\)-groupoid defined for quasi-categories.

Definition 7.7. An enriched category \(C\) on \(\text{sSet}\) (or \(\text{Top}\)) is an \(\infty\)-groupode if \(\pi_0 C\) is a groupoid in the classical sense of categories. If \(C\) is enriched on \(\text{sSet}\) (\(\text{Top}\)), the \(\infty\)-groupoid \(C'\) associated to \(C\) is a fibred product in \(\text{Cat}_{\text{sSet}}\) (or \(\text{Cat}_{\text{Top}}\)):

\[
C' = \text{iso} \pi_0 C \times_{\pi_0 C} C \xrightarrow{k_!} \text{iso} \pi_0 C \xrightarrow{\alpha} \pi_0 C.
\]

We remark that the functor \(\pi_0 : \text{Cat}_{\text{sSet}} \to \text{Cat}\) is a left adjoint, so it does not commute with limits in general. But the evident projection \(pr : \pi_0 C' \to \text{iso} \pi_0 C\) is an isomorphism. In fact, if \(w_1\) and \(w_2\) are weak equivalences in \(\text{Map}_C(a, b)\) and \(h\) is a homotopy between them (i.e. \(\text{un 1-simplex in } \text{Map}_C(a, b)\) such that the borders are \(w_1, w_2\) Then \(h\) is also a homotopy in \(\text{Map}_C'(a, b)\) This prove that the projection \(pr\) is fully faithful. the essential surjectivity of \(pr\) est evident.

We note by \(G\) the functor which associate to \(C\) its \(\infty\)-groupoid \(C'\). The full subcategory of \(\text{Cat}_{\text{sSet}}\) of \(\infty\)-groupoids is noted by \(\text{Grp}_{\text{sSet}}\).

Lemma 7.8. The functor \(G : \text{sSet} \to \text{Grp}_{\text{sSet}}\) is the right adjoint of the inclusion, i.e.,

\[
\text{hom}_{\text{Grp}_{\text{sSet}}}(C, GD) = \text{hom}_{\text{Cat}_{\text{sSet}}}(C, D)
\]

\(\forall C \in \text{Grp}_{\text{sSet}}\) and \(D \in \text{Cat}_{\text{sSet}}\).

Remark 7.9. We can do the same thing for \(\text{Cat}_{\text{Top}}\).

Proof. Let \(C\) be an \(\infty\)-groupoid and let \(D \in \text{sSet} \to \text{Cat}\). A morphism \(f : C \to D\) define in a unique way an adjoint morphism \(g : C \to GD\) given by the universal map

\[
\begin{array}{ccc}
C & \xrightarrow{\exists! g} & GD \\
\downarrow q & & \downarrow \phi \\
\pi_0 C & \xrightarrow{\pi_0 f} & \pi_0 D \\
\pi_0 f \end{array}
\]

The morphism \(\phi = \pi_0 f \circ q\) exists and make the diagram commuting, since \(C\) is an \(\infty\)-groupoid. \(\square\)
Let \([n]'\) denote the groupoid freely generated by the category \([n]\). An example of \(\infty\)-groupoid is the category \(\Xi k\Delta^n\). In fact, \(\Xi k\Delta^n = \Xi N\bullet [n]' \to [n]'\) is a weak categorical equivalence and \([n]'\) is fibrant. Since \([n]'\) is a groupoid groupoid, then \(\pi_0\Xi k\Delta^n\) is also a groupoid.

Lemma 7.10. Let \(C\) a fibrant category enriched on \(sSet\), then \(k!\tilde{\Xi}_\bullet C = k!\tilde{\Xi}_\bullet C'\), where \(C'\) is an \(\infty\)-groupoid associated to \(C\).

Proof. Using the precedent adjunctions, we have for all \(n \geq 0\)

\[
(k!\tilde{\Xi}_\bullet C)_n = \text{hom}_{sSet}(\Delta^n, k!\tilde{\Xi}_\bullet C)
\]

(7.1)

\[
= \text{hom}_{sSet}(k\Delta^n, \tilde{\Xi}_\bullet C)
\]

(7.2)

\[
= \text{hom}_{sSet-\text{Cat}}(\Xi k\Delta^n, C)
\]

(7.3)

But \(\Xi k\Delta^n\) is an \(\infty\)-groupoid, so

\[
\text{hom}_{sSet-\text{Cat}}(\Xi k\Delta^n, C) = \text{hom}_{sSet-\text{Grp}}(\Xi k\Delta^n, C')
\]

(7.4)

\[
= \text{hom}_{sSet-\text{Cat}}(\Xi k\Delta^n, C')
\]

(7.5)

\[
= \text{hom}_{sSet}(\Delta^n, k!\tilde{\Xi}_\bullet C')
\]

(7.6)

\[
= (k!\tilde{\Xi}_\bullet C')_n
\]

(7.7)

we conclude that \(k!\tilde{\Xi}_\bullet C' = k!\tilde{\Xi}_\bullet C\).

Definition 7.11. In Bergner’s model structure on \(\text{Cat}_{sSet}\) a morphism \(F : C \to D\) is a fibration if

1. \(\text{Map}_C(a, b) \to \text{Map}_D(Fa, Fb)\) is a fibration of simplicial sets for all \(a, b \in C\).
2. \(F\) has a lifting property of weak equivalences, i.e. it is Grothendieck fibration for weak equivalences.

Corollary 7.12. Let \(C'\) the \(\infty\)-groupoid associated to the enriched category \(C\) over Kan complexes (or \(\text{Top}\)), then

\[
\tilde{\Xi}_\bullet C' \to \text{iso } \pi_0 C
\]

pseudo-fibration (cf. [9]) in \((sSet, Q)\).

Proof. Remark that if \(C\) is fibrant, then \(C \to \pi_0 C\) is a fibration. The Bergner’s model structure is right proper so \(C' \to \text{iso } \pi_0 C\) is also a fibration. Moreover, the groupoid iso \(\pi_0 C\) is fibrant, and so \(C'\) is. Consequently \(\tilde{\Xi}_\bullet C' \to \text{iso } \pi_0 C\) is a pseudo-fibration in the category \((sSet, Q)\), so a pseudo fibration between quasi-categories.

But the category \(\pi_0 C\) is a ”constant” simplicial category, so \(\text{iso } \pi_0 C = \text{iso } \pi_0 C\). We conclude that \(\tilde{\Xi}_\bullet C' \to \text{iso } \pi_0 C\) is a pseudo-fibration between quasi-category and a Kan complex, see [9].

Let \(X\) a quasi-category, Joyal defined the homotopy category \(\text{Ho}(X)\) which is a category in the classical sens. The 0-simplexes of \(X\) form the set of objects of \(\text{Ho}(X)\) and the 1-simplexes (modulo the homotopy equivalence) form the morphisms of \(\text{Ho}(X)\). An 1-simplex in \(X\) is called an weak equivalence if it is represented in \(\text{Ho}(X)\) by an isomorphism.
Definition 7.13. Let $p : X \to Y$ a morphism between quasi-categories, and let w a 1-simplex in X, then p is called conservative if:

\[p(w) \text{ a weak equivalence in } Y \Rightarrow w \text{ a weak equivalence in } X. \]

Lemma 7.14. ([9], 4.30) Let $p : X \to Y$ a morphism between quasi-categories, such that p is a pseudo-fibration and conservative. If Y is a Kan complex, then X is.

Lemma 7.15. Let $C \in \text{Cat}_{\text{sSet}}$ fibrant, then $\tilde{N}C'$ is a Kan complex, where C' is the ∞-groupoid associated to C.

Proof. We have seen by the corollary 7.12 that if C is fibrant, then $\tilde{N}_*C' \to N_!\pi_0C$ is a pseudo-fibration between quasi-categories, and $N_!\pi_0C$ is a Kan complex. We must verify that the morphism is conservative, which is an evident fact because all 0-simplices of $\text{Map}_{\tilde{Q}}(a, b)$ are weak equivalences by definition. By the lemma 7.14, we conclude that \tilde{N}_*C' is a Kan complex.

In [9] (Theorem 4.19), Joyal construct an adjunction between Kan complexes and quasi-categories. If we note by Kan the full subcategory of sSet of Kan complexes, and by QCat the full subcategory of sSet of quasi-categories, then the inclusion $\text{Kan} \subset \text{QCat}$ admit a right adjoint noted by J. The functor can be interpreted as follows: for each quasi-category X, $J(X)$ is the quasi-groupoid associated to X, and if X is a Kan complex, then $J(X) = X$.

Lemma 7.16. Let X a quasi-category (a fibrant object) in (sSet, Q). The natural transformation $\beta_X : k^!(X) \to X$ is factored by $\beta_X : k^!(X) \to J(X) \subset X$. Moreover, $\beta_X : k^!(X) \to J(X)$ is a trivial Kan fibration.

Proof. See [9], proposition 6.26.

Corollary 7.17. Let a fibrante category $C \in \text{Cat}_{\text{sSet}}$, and GC the associated ∞-groupoid. Then $k!\tilde{N}_*(C) \to \tilde{N}_*(GC)$ is a trivial Kan fibration.

Proof. Since C is fibrant, we have seen that $k!\tilde{N}_*(C) = k!\tilde{N}_*(GC)$, and by the precedent lemma $k!\tilde{N}_*(GC) \to J(\tilde{N}_*(GC))$ is a trivial Kan fibration. But $\tilde{N}_*(GC)$ is a Kan complex, since GC is a fibrant ∞-groupoid, so $J(\tilde{N}_*(GC)) = \tilde{N}_*(GC)$.

Now, we can see the analogy between $\tilde{N}_!\pi_0$ in the case of classical categories and the functor $k!\tilde{N}_*$ in the case of enriched categories over sSet. In fact, if C is a classical category, then the functor iso sends C to its associated groupoid GC and so $N_!\pi_0C = N_!\pi_0GC$. If C is a category enriched over Kan complexes, (i.e., C is fibrant in Bergner’s model structure), then the simplicial set $k!N_*C$ is equivalent to \tilde{N}_*GC by the corollary 7.17.

8. MAPPING SPACE

The goal of this section is to describe the mapping space of the model category Cat_{Top}. Before making progress in this direction, we need some introduction to different model on sSet.

Notation 8.1. We will note the category of simplicial sets with Kan model structure by (sSet, K). The Joyal model structure of quasi-categories will be noted by (sSet, Q).
Theorem 8.2. Let a Quillen adjunction of Quillen model categories:

\[
\begin{array}{c}
C \\ \pi_0 C \\
\end{array} \xrightarrow{\sim} \begin{array}{c}
D \\ \pi_0 D \\
\end{array}
\]

The there is a natural isomorphism

\[\text{map}_C(a, RFb) \to \text{map}_D(LGa, b)\]

in Ho(sSet)

8.1. Mapping space in \text{Cat}_{\text{Top}} and \text{Cat}_{sSet}. In this paragraph, we compute \text{map} for the model categories \text{Cat}_{sSet} and \text{Cat}_{\text{Top}}.

Suppose that \(C\) is a small enriched category on \(\text{Top}\). We define the coherent nerve of \(C\) by \(\widetilde{N}_\bullet\text{sing}C\), and we define the corresponding \(\infty\)-groupoid \(C'\) by

\[GC = \text{iso} \pi_0 C \times_{\pi_0 C} C \xrightarrow{\sim} C\]

By applying the functor sing to this diagram, we obtain also a pullback diagram since sing is a right adjoint. We note that \(\text{sing} \pi_0 C = \pi_0 \text{sing} C = \pi_0 C\) and \(\text{sing iso} \pi_0 C = \text{iso} \pi_0 C = \text{iso} \pi_0 \text{sing} C\)

\[G\text{ sing } C = \text{sing}(\text{iso} \pi_0 C \times_{\pi_0 C} C) \xrightarrow{\sim} \text{sing } C\]

We conclude that

\[\text{sing } GC = G\text{ sing } C.\]

More over \(k^!\widetilde{N}_\bullet\text{ sing } C\) is weak equivalent to \(\widetilde{N}_\bullet\text{ sing } GC\). The homotopy type of the mapping space \(\text{map}_{\text{Cat}_{\text{Top}}}(\ast, C)\) is computed easily using the theorem 8.2 and the adjunction

\[
sSet \xrightarrow{\Xi k^!} \text{Cat}_{sSet}.\]

We conclude that for every (fibrant) small category enriched on \(sSet\), we have the following isomorphism in Ho(sSet)

\[k^!\widetilde{N}_\bullet C \sim \text{map}_{sSet}(\ast, k^!\widetilde{N}_\bullet C) \sim \text{map}_{\text{Cat}_{sSet}}(\ast, C)\]

and by the same way, if \(D\) is a small category enriched on \(\text{Top}\), then

\[\text{map}_{\text{Cat}_{\text{Top}}}(\ast, D) \sim k^!\widetilde{N}_\bullet\text{sing } D.\]

by the corollary 7.17, we conclude that

\[\text{map}_{\text{Cat}_{sSet}}(\ast, C) \sim \widetilde{N}_\bullet GC.\]

et

\[\text{map}_{\text{Cat}_{\text{Top}}}(\ast, D) \sim \widetilde{N}_\bullet G\text{sing } D.\]
In the classical setting of Cat, we know that $\text{map}_\text{Cat}(A, B) \sim N^* \text{iso} \text{HOM}_\text{Cat}(A, B)$. If A is the terminal category \ast, then $\text{map}_\text{Cat}(\ast, B) \sim N^* \text{iso} B$. More generally, we have that:

$$\text{map}_\text{Cat}(\ast, B) \sim N^* \text{iso} B.$$

where Map is the right adjoint functor to the cartesian product in sSet. Now, the similarity between Cat and Cat_{sSet} is evident.

9. Localization

In this paragraph, we show how to construct localization for a topological category with respect to a morphism or a set of morphisms. In the classical setting of small categories, we know how to define the localization in a functorial way. The idea is quite simple: let $C \in \text{Cat}$ and f a morphism in C, we want to define a functor $C \rightarrow L_f C$ and having the following universal property: if $F : C \rightarrow D$ is a functor such that $F(f)$ is an isomorphism in D then there is a unique factorization of F as $C \rightarrow L_f C \rightarrow D$.

Notation 9.1. In this section, the category with two objects x and y and with one non-trivial morphism from x to y will be denoted A.

The category with the same objects x and y and an isomorphism from x to y (resp. from y to x) will be denoted B.

Lemma 9.2. The category $L_f C$ is isomorphic to following pushout in Cat:

$$
\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow{\text{inc}} & & \downarrow{\text{s}} \\
B & \rightarrow & M
\end{array}
$$

where inc is the evident inclusion and f sends the unique arrow in A to the morphism f in C.

Proof. Suppose that we have a functor $F : C \rightarrow D$ such that the morphism f is sent to an isomorphism. It induce a functor from $B \rightarrow D$. By the pushout property we have a unique functor from M to D which factors the functor F. So $L_f C$ is isomorphic to M.

Corollary 9.3. For any set S of morphism in C the category $L_S C$ exist and it is unique up to isomorphism.

Now, we are interested for the same construction in the enriched setting Cat_{Top}.

The main difference with the classical case is the existence, we will construct a functorial model for the localization up to homotopy.

Notation 9.4. We denote by A^h the topological category $|\Xi_k(A)|$ and by B^h the category $|\Xi_kB|$.

Choosing a morphism f in a topological category C we want to construct a category $L_f C$ with the following property: given a morphism $F : C \rightarrow D$ in Cat_{Top} such that $F(f)$ is a weak equivalence in D then F is factored (unique up to homotopy) as $C \rightarrow L_f C \rightarrow D$.
Lemma 9.5. The category $L_f C$ could be taken as following pushout in Cat_Top:

$$
\begin{array}{ccc}
A^h & \xrightarrow{f} & C \\
\downarrow\text{inc} & & \downarrow i \\
B^h & \xrightarrow{j} & M
\end{array}
$$

More over $\pi_0 C \rightarrow L_{\pi_0 f} \pi_0 C$ is a localization in Cat.

Proof. First, we note that the inclusion inc is a cofibration in Cat_Top. The functor $A^h \rightarrow C$ is constructed as follow: Let $A \rightarrow C$ which sends the only nontrivial morphism of A to $f \in C$. It induces a map of simplicial sets $N_* A \rightarrow \tilde{N}_* \text{sing} C$ and by adjunction a functor $|\Xi N_* A| \rightarrow C$ which is the functor noted $f : A^h \rightarrow C$ in the diagram. The functor $\text{inc} : A^h \rightarrow B^h$ is induced by the functor $\text{inc} : A \rightarrow B$.

Now suppose that we have a functor $C \rightarrow D$ which sends f to a weak equivalence in D. The induced functor $A^h \rightarrow D$ factors by $A^h \rightarrow GD \rightarrow D$ where GD is the associated groupoid of D as seen in previews section.

Consider the diagram:

$$
\begin{array}{ccc}
A^h & \rightarrow & GD \\
\downarrow\text{inc} & & \downarrow i \\
B^h & \rightarrow & \ast
\end{array}
$$

and using the adjunctions we have a corresponding diagram in sSet

$$
\begin{array}{ccc}
N_* A & \rightarrow & \tilde{N}_* \text{sing} GD \\
\downarrow\text{inc'} & & \downarrow i' \\
N_* B & \rightarrow & \ast
\end{array}
$$

But now $\text{sing} GD$ is a Kan complex see [1, 15] and inc' is a trivial cofibration in sSet, so there exist a lifting (not unique) $N_* B \rightarrow \text{sing} GD$. By adjunction we have a lifting $B^h \rightarrow GD \rightarrow D$. So we can define unique morphism (up to homotopy) $M \rightarrow D$ and any functor $C \rightarrow D$ as before factors (uniquely up to homotopy) by $C \rightarrow M \rightarrow D$. So a functorial model for $L_f C$ is M and the localisation map $C \rightarrow L_f C$ is a cofibration and in fact an inclusion of enriched categories. □

Corollary 9.6. For any set S of morphism in a topological category C, the topological category $L_S C$ exist and it is unique up to homotopy. More over the localization map $C \rightarrow L_S C$ is a cofibration.

References

[1] I. Amrani. Categories simpliciales enrichies et k-theorie de waldhausen. PhD thesis, 2010.
[2] I. Amrani. Model structure the category of strict (symmetric) monoidal enriched categories. in preparation, 2011.
[3] J.E. Bergner. A model category structure on the category of simplicial categories. Transactions-American Mathematical Society, 359(5):2043, 2007.
[4] W.G. Dwyer and K. Hess. Long knots and maps between operads. Arxiv preprint arXiv:1006.0874, 2010.
[5] W.G. Dwyer and D.M. Kan. Simplicial localizations of categories. J. Pure Appl. Algebra, 17(3):267–284, 1980.
[6] AD Elmendorf, I. Kriz, MA Mandell, JP May, and M. Cole. *Rings, modules, and algebras in stable homotopy theory*. American Mathematical Society, 2007.

[7] P.G. Goerss and JF Jardine. *Simplicial homotopy theory*. Birkhauser, 1999.

[8] M. Hovey. Model categories. *Mathematical Surveys and Monographs*, 63, 1999.

[9] A. Joyal. Advanced course on simplicial methods in higher categories. CRM, 2008.

[10] S. Mac Lane. Categories for the working mathematician. *Graduate Texts in Mathematics*, 1969.

[11] J. Lurie. Higher topos theory. *Arxiv preprint math.CT/0608040*, 2006.

[12] G. Segal. Categories and cohomology theories. *Topology*, 13(3):293–312, 1974.

[13] K. Worytkiewicz, K. Hess, P.E. Parent, and A. Tonks. A model structure a la Thomason on 2-Cat. *J. Pure Appl. Algebra*, 208(1):205–236, 2007.

Department of Mathematics, Masaryk University, Czech republic

E-mail address: iliaseamranifedotov@gmail.com