Epidermal Growth Factor Receptor Inhibition Attenuates Liver Fibrosis and Development of Hepatocellular Carcinoma

Bryan C. Fuchs, Yujin Hoshida, Tsutomu Fujii, Lan Wei, Suguru Yamada, Gregory Y. Lauwers, Christopher M. McGinn, Danielle K. DePeralta, Xintong Chen, Toshihiko Kuroda, Michael Lanuti, Anthony D. Schmitt, Supriya Gupta, Andrew Crenshaw, Robert Onofrio, Bradley Taylor, Wendy Winckler, Nabeel Bardeesy, Peter Caravan, Todd R. Golub, and Kenneth K. Tanabe

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and due to its poor prognosis it is the third leading cause of cancer-related death. In the United States, HCC is the most rapidly increasing cause of cancer-related mortality. While the cause of HCC is multifactorial, the common pathway for the vast majority of cases is cirrhosis. Cirrhosis is estimated to affect 1-2% of the world’s population. Nearly one million people die from cirrhosis worldwide each year, and the annual

Hepatocellular carcinoma (HCC) is the most rapidly increasing cause of cancer-related mortality in the United States. Because of the lack of viable treatment options for HCC, prevention in high-risk patients has been proposed as an alternative strategy. The main risk factor for HCC is cirrhosis and several lines of evidence implicate epidermal growth factor (EGF) in the progression of cirrhosis and development of HCC. We therefore examined the effects of the EGF receptor (EGFR) inhibitor erlotinib on liver fibrogenesis and hepatocellular transformation in three different animal models of progressive cirrhosis: a rat model induced by repeated, low-dose injections of diethylnitrosamine (DEN), a mouse model induced by carbon tetrachloride (CCl4), and a rat model induced by bile duct ligation (BDL). Erlotinib reduced EGFR phosphorylation in hepatic stellate cells (HSC) and reduced the total number of activated HSC. Erlotinib also decreased hepatocyte proliferation and liver injury. Consistent with all these findings, pharmacological inhibition of EGFR signaling effectively prevented the progression of cirrhosis and regressed fibrosis in some animals. Moreover, by alleviating the underlying liver disease, erlotinib blocked the development of HCC and its therapeutic efficacy could be monitored with a previously reported gene expression signature predictive of HCC risk in human cirrhosis patients.

Conclusion: These data suggest that EGFR inhibition using Food and Drug Administration-approved inhibitors provides a promising therapeutic approach for reduction of fibrogenesis and prevention of HCC in high-risk cirrhosis patients who can be identified and monitored by gene expression signatures. (HEPATOLOGY 2014;59:1577-1590)
The cost for caring for complications of cirrhosis in the United States alone is estimated to be $4 billion. The major clinical consequences of cirrhosis are impaired liver function, portal hypertension, impaired cognitive function, and development of HCC, all of which increase the risk of death. Given the lack of successful treatment options for HCC, new strategies for the prevention of HCC by slowing the natural history of liver fibrosis and cirrhosis are urgently needed.4

Epidermal growth factor (EGF) plays a role in both cirrhosis and HCC. EGF expression in the liver increases during cirrhosis.5 EGF is also a key member of a 186-gene signature predictive of progressive cirrhosis, HCC development, and death in patients with cirrhosis.6,7 In addition, a polymorphism in the human EGF gene that leads to increased EGF expression is associated with increased fibrosis and cirrhosis progression8,9 and elevated risk of developing HCC in patients with cirrhosis.10 Finally, transgenic mice with liver-specific overexpression of EGF rapidly develop HCC.11

We report here that the small-molecule EGF receptor (EGFR) inhibitor erlotinib inhibits the activation of myofibroblastic hepatic stellate cells (HSC), prevents the progression of cirrhosis, regresses fibrosis in some animals, and blocks subsequent development of HCC in rodent models.

Materials and Methods

For details, please see the Supporting Information.

Animal Models. Animals received humane care according to the criteria outlined in the “Guide for the Care and Use of Laboratory Animals” of the National Academy of Sciences. All animals were maintained in accordance with the guidelines of the Massachusetts General Hospital Subcommittee on Research Animal Care. Animals were treated as described in the Supporting Information.

Primary Rat HSC Isolation. HSC were isolated and cultured as described in the Supporting Information.

Histology, Immunohistochemistry, Immunofluorescence, and Hydroxyproline Analysis. Formalin-fixed samples were embedded in paraffin, cut into 5-μm-thick sections, stained, and analyzed as described in the Supporting Information.

Liver Function Tests. A cardiac terminal blood withdrawal was performed at the time of sacrifice and serum was isolated and analyzed as described in the Supporting Information.

Hydroxyproline Analysis and Western Blotting. Hydroxyproline analysis and western blot analysis are described in the Supporting Information.

Microarray Analysis. Genome-wide gene expression profiling for the rats and mice was performed using RatRef-12 and Mouse Ref-8 Expression BeadChip microarrays, respectively (Illumina, San Diego, CA) as described in the Supporting Information.

Statistical Analysis. An unpaired two-tailed t test was used to compare differences in body weights, liver weights, liver function tests, number of tumors, hydroxyproline levels, western blot densitometry, and quantifications of Sirius red and Ki67 stainings. Differences in Ishak scores were assessed by a Kruskal-Wallis test followed by post-hoc Dunn-Holland-Wolfe in the diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) studies and by a Mann-Whitney test in the bile duct ligation (BDL) study. Fisher’s exact test was used to assess differences in tumor size.

Results

Erlotinib Inhibits DEN-Induced Rat Liver Fibrosis. In order to test the hypothesis that EGFR blockade would ameliorate cirrhosis progression and prevent HCC, we evaluated the EGFR tyrosine kinase inhibitor erlotinib in animal models of chronic liver disease. Repeated injections of low-dose DEN (50 mg/kg weekly) in rats causes progressive liver fibrosis and cirrhosis followed by HCC.12,13 We used the scoring scale for fibrosis/cirrhosis described by Ishak14 that ranges from 1 (minimal fibrosis) to 6 (cirrhosis)
Erlotinib Inhibits CCl₄-Induced Mouse Liver Fibrosis. We also tested the effects of erlotinib on fibrogenesis in the well-characterized CCl₄ mouse model. Mice injured with CCl₄ by oral gavage reliably develop liver fibrosis after 18 weeks.¹⁵ Treatment with erlotinib (either 2 or 5 mg/kg) beginning at 13 weeks inhibited fibrogenesis as indicated by Sirius red staining (Fig. 3A). Trichrome stains were scored and mice receiving 2 mg/kg erlotinib had median week 18 Ishak scores of 1.0 (IQR 0.0-2.5), while mice receiving 5 mg/kg erlotinib had median week 18 Ishak scores of 1.0 (IQR 0.0-2.0). Both groups were significantly improved compared to vehicle-treated controls (median week 18 Ishak score 3.0, IQR 2.3-3.8; P < 0.05; Fig. 3B). Erlotinib was further shown to reduce collagen levels in Sirius red-stained sections (P < 0.01; Fig. 3C) and also by hydroxyproline analysis (P < 0.05; Fig. 3E).

Both DEN-injured rats and CCl₄-injured mice represent models of parenchymal liver fibrosis.¹⁶ DEN and CCl₄ are primarily metabolized and activated by cytochrome P450 2E1 (CYP2E1)¹⁷,¹⁸ and thus erlotinib could inhibit disease progression in these models by inhibiting the expression of CYP2E1. However, we observed that, whereas DEN and CCl₄ injury alone significantly decreased the expression of CYP2E1, treatment with erlotinib slightly increased its expression (Supporting Fig. 3) as well as the expression of several other CYPs and drug-metabolizing enzymes (Supporting Table 2).

Erlotinib Inhibits BDL-Induced Rat Liver Fibrosis. Next, we examined the effects of erlotinib on biliary fibrosis induced by BDL in rats. BDL caused liver fibrosis that progressed to liver cirrhosis within a few weeks. Treatment with 2 mg/kg erlotinib beginning at
Fig. 1. Erlotinib inhibits DEN-induced cirrhosis in rats. Male Wistar rats received PBS (−) or DEN (+) for 18 weeks. DEN-injured rats received vehicle control (−) or erlotinib (0.5 (+) or 2 mg/kg (++) during weeks 13-18. (A) Representative rat livers at the time of sacrifice. (B) Representative trichrome staining of FFPE liver tissue (magnification 100×). (C) Trichrome stains were scored by the method of Ishak. Collagen levels were (D) morphometrically quantified from Sirius red-stained sections or (E) assessed by hydroxproline analysis. (F) Serum levels (n = 4 for all groups) of ALP, ALT, AST, TBIL, Alb, and Glu. ###P < 0.01 compared to PBS, *P < 0.05 and **P < 0.01 compared to DEN-injured.
4 days after the BDL inhibited fibrogenesis as indicated by Sirius red staining (Fig. 4A). In addition, BDL caused a significant increase in liver weight which was partly attenuated by erlotinib (P < 0.01; Fig. 4B). Trichrome stains were scored and rats receiving 2 mg/kg erlotinib had median day 21 Ishak scores of 4.0 (IQR 3.0-4.0), which were significantly improved compared to vehicle-treated controls (median day 21 Ishak score 5.0, IQR 4.0-6.0; P < 0.01; Fig. 4C). Consistent with the Ishak scores, erlotinib was shown to reduce collagen levels in both Sirius red-stained sections (P < 0.01; Fig. 4D) and by hydroxyproline analysis (P < 0.05; Fig. 4E). Similar to the DEN model, erlotinib only had slight effects on liver injury after BDL, but again significantly (P < 0.01) increased serum Glu levels (Fig. 4F).

Erlotinib Reverses a Human Cirrhosis Poor-Prognosis Gene Signature. Interestingly, while a recent study has demonstrated that rodent models in response to a variety of stimuli poorly mimic genomic immunological responses in humans,19 we found that deregulation of liver fibrosis/cirrhosis-related molecular pathways in several rodent models of chronic liver disease did resemble human cirrhosis (Supporting Fig. 4). The DEN rat model constantly showed a more similar pattern to human cirrhosis compared to these other models.

We also evaluated the DEN rat model of cirrhosis using a previously reported 186-gene expression signature predictive of liver cirrhosis progression and risk of HCC.6,7 This signature consists of 73 poor-prognosis-correlated genes and 113 good-prognosis-correlated genes expressed in cirrhotic liver tissue (Supporting Table 3). We observed that the poor-prognosis genes were already significantly induced by 8 weeks of DEN injury, and the good-prognosis genes were down-regulated over time (Supporting Fig. 5). When compared to the other rodent models of chronic liver disease, the DEN rat model better reproduces this human cirrhosis gene signature as well (Supporting Table 4).

In response to erlotinib, expression of the poor-prognosis genes decreased, while expression of the good-prognosis genes increased, both in a dose-dependent fashion (false discovery rate [FDR] = 0.002 and <0.001, respectively; Fig. 5A,B). Similar effects of erlotinib were observed in CCl4-injured mice (Supporting Fig. 6). We also observed that erlotinib inhibited the expression of several known profibrogenic genes that were up-regulated in response to DEN (Fig. 5C). These results correlate well with the gross and histopathological observations demonstrating inhibition of cirrhosis in response to erlotinib. In addition, the 186-gene signature may serve as a useful biomarker of erlotinib response.

Erlotinib Inhibits EGFR Signaling in DEN-Treated Rats. EGF expression normally increases over time in DEN-injured rats,20 and we observed an increase in several other EGFR ligands as well (Supporting Fig. 7). Consistently, we observed an increase in the ratio of phospho-EGFR/total EGFR and a decrease in total EGFR levels in nontumor-bearing
Liver (Fig. 6A,B). These findings are consistent with ligand-mediated receptor endocytosis that occurs following activation of the pathway. The level of p44/42 mitogen-activated protein kinase (ERK) activation in the liver of DEN-injured rats correlated with proliferation as assessed by proliferating cell nuclear antigen (PCNA) expression (Fig. 6A,B). DEN-induced EGF pathway activation is also evidenced by two separate and independently defined gene-expression signatures of experimental EGF pathway activation (Supporting Fig. 8). These data provide multiple lines of evidence of EGFR activation in DEN-injured rat cirrhosis, similar to that observed in human cirrhosis.
To establish that EGFR, the principal target of erlotinib, was inhibited in treated animals, we performed western blot analysis to examine EGFR signaling in DEN-injured livers. Erlotinib significantly inhibited EGFR activation in the nontumoral liver tissue as indicated by decreased levels of phospho-EGFR as well as increased levels of total EGFR—a known feedback response to EGFR inhibition (Fig. 6C,D). EGF pathway activation signatures that were enriched in DEN-injured livers were also significantly down-regulated in response to erlotinib (Supporting Fig. 8). Further, erlotinib decreased ERK activation and PCNA in the nontumoral tissue (Fig. 6C,D).

EGFR expression varies between the different cell populations in the liver with high expression observed...
in hepatocytes and HSC but relatively little expression in Kupffer cells. EGFR is known to be an important regulator of hepatocyte regeneration, and upon treatment with erlotinib we noticed decreased phospho-EGFR in regenerating nodules (Fig. 6E). Interestingly, we also observed decreased phospho-EGFR staining in cells located within the fibrotic bands, which might represent HSC. Consistently, Ki67 staining showed decreased proliferation of these same two cell populations (Fig. 6E,F).

Erlotinib Treatment Is Associated With Decreased HSC Activation. In all three animal models, erlotinib reduced liver injury, which is one potential mechanism by which fibrosis progression is inhibited. We also investigated the effects of erlotinib on EGFR activation in HSC. Myofibroblastic HSC play a critical role in promoting liver fibrogenesis and express platelet-derived growth factor receptor-beta (PDGFR-β) and alpha-smooth muscle actin (α-SMA), which thus serve as markers of the activated state. We observed that DEN injury increased HSC activation over time as assessed by α-SMA staining (Fig. 7A), and that the sites of α-SMA staining localized to sites of collagen deposition, consistent with the causal role of HSC in liver fibrosis.

EGF is a known soluble mediator involved in HSC activation, and HSC are activated by EGF signaling. We assessed the phosphorylation of EGFR in activated HSC through dual immunofluorescence staining with several well-established HSC markers including α-SMA, desmin, and glial fibrillary acidic protein (GFAP). While very little expression of phospho-EGFR was observed in phosphate-buffered saline (PBS) control livers (Fig. 7B), the levels increased in the DEN-injured livers and colocalized with HSC markers in cells surrounding the portal tracts and within the collagen bands (Fig. 7B). This colocalization was similar to that observed in human cirrhotic livers (Supporting Fig. 9).

Erlotinib significantly decreased the activation of HSC in a dose-dependent fashion in DEN-injured rats, CCl4-injured mice, and BDL rats as assessed by α-SMA expression (Fig. 7C; Supporting Figs. 6 and 10). In liver sections from DEN-injured rats that received 2 mg/kg erlotinib, phospho-EGFR staining was mostly absent, and even though residual staining of HSC markers was observed, these markers no longer colocalized with the very low levels of phospho-EGFR (Fig. 7B).

Data from *in vitro* experiments with HSC reveal similar findings. EGF expression was observed in isolated, enriched populations of primary rat HSC only after they had been activated in culture as assessed by the expression of PDGFR-β and α-SMA (Fig. 7D). In addition, treatment of these activated primary HSC with EGF increases phospho-EGFR, decreases total EGFR and increases phospho-ERK, consistent with the DEN rat tissue western blots (Fig. 7E). Similar results were also seen after EGF treatment of the human HSC cell line TWNT-4 (Supporting Fig. 9). Importantly, erlotinib significantly suppressed the expression of α-SMA and α1(I) procollagen in TWNT-4 cells (Supporting Fig. 9) consistent with a role of EGF inhibition in reducing HSC activation.

Erlotinib Inhibits HCC Development. We observed that DEN injury caused a loss of total body
weight with an elevated ratio of liver weight to body weight as a consequence of the development of well-differentiated HCCs (17 HCCs on average per animal compared to 0 in controls; \(P < 0.001 \); Supporting Fig. 1). HCCs were observed only in cirrhotic livers, as is most commonly seen in humans.

A predicted consequence of the anticirrhotic effect of EGFR inhibition is that erlotinib treatment would also abrogate HCC development in cirrhosis. As predicted, erlotinib treatment significantly decreased the number of HCC tumors detectable after 18 weeks of DEN injury. Control animals harbored 20.4 ± 5.5 tumors, whereas erlotinib at 2 mg/kg and 0.5 mg/kg harbored only 5.0 ± 2.2 (75% reduction) and 10.4 ± 3.8 tumors (49% reduction), respectively (\(P < 0.01 \) for each dose; Fig. 8A). Consistent with this

Fig. 6. Erlotinib decreases EGFR signaling. (A) Representative western blot analysis performed on nontumoral surrounding liver tissue lysates from every PBS and DEN animal and (B) quantification of these blots. \#\(P < 0.05 \) or ##\(P < 0.01 \) compared to PBS at the same time point. (C) Representative western blot analysis performed on every DEN-injured animal after treatment with vehicle (Control) or erlotinib 0.5 mg/kg or erlotinib 2 mg/kg and (D) quantification of these blots. *\(P < 0.05 \) or **\(P < 0.01 \) compared to DEN-injured. (E) Representative photomicrographs of liver sections from PBS and DEN-injured animals after treatment with vehicle (Control) or erlotinib 2 mg/kg that were stained for phospho-EGFR (magnification 40×) or Ki67 (magnification 200×). (F) Ki67 stainings were quantified. ##\(P < 0.01 \) compared to PBS, **\(P < 0.01 \) compared to DEN-injured.
finding, liver weights of rats treated with 2 mg/kg erlotinib were reduced by 24% \((P < 0.05) \), while liver weights of rats treated with 0.5 mg/kg erlotinib were reduced by 15% \((P = 0.15) \) (Fig. 8B).

Whereas EGFR inhibition in the nontumoral liver tissue was clearly observed (Fig. 4D; Supporting Fig. 8), no effect of erlotinib on EGFR signaling was seen within HCCs themselves (Fig. 8C,D), and no effect of erlotinib on the EGF pathway activation gene signatures was seen in RNA isolated from tumors (Supporting Fig. 8). In addition, tumors that developed in both DEN-injured and erlotinib-treated animals were pathologically similar (Fig. 8E), and there were no significant differences in global gene expression (data not shown). In addition, no differences were observed in Ki67 staining of tumors from rats treated with erlotinib or vehicle (Fig. 8E). Further, while the number of large tumors (defined as >8 mm diameter, the 75th percentile) was similar in DEN-injured and erlotinib-treated animals, the number of smaller tumors was dramatically decreased in the erlotinib animals (Fig. 8F). These results suggest that erlotinib inhibits initiation of new liver neoplasms rather than suppresses growth of the lesions already present by the time erlotinib was started.

Discussion

The results of our investigation tie together several important observations. The first is that gene expression analyses have demonstrated that the EGF pathway
is associated with progression of cirrhosis to mortality. Likewise, in cirrhosis patients the level of EGF mRNA expression in the cirrhotic tissues is associated with poor survival, whereas tumoral EGF expression in these same patients is not associated with survival (Supporting Fig. 11). Second, HSC play a pivotal role in hepatic fibrogenesis, and EGFR signaling has been shown to activate these cells. Third, polymorphism...
studies10 and transgenic mouse models11 have implicated EGF in hepatocellular transformation to HCC. Nonetheless, a common pathway to HCC is by way of progressive cirrhosis, and thus, effective strategies that limit or even regress hepatic fibrogenesis are expected to reduce the frequency of HCC.

Given the strong evidence implicating EGF and EGFR in these processes, there is a strong rationale to test an EGFR inhibitor for its ability to inhibit hepatic fibrogenesis and hepatocellular transformation. We observed that the FDA-approved EGFR inhibitor erlotinib, used at doses equivalent to or less than those used in humans, significantly reduced fibrogenesis in three separate animal models. Our results suggest that these models are similar with respect to fibrosis resolution but clearly differences do exist with respect to liver injury. Liver injury is more severe in the CCl\textsubscript{4} model and this may be attributable to species differences, the different chemicals themselves, or the three times per week dosing with CCl\textsubscript{4} as opposed to once a week dosing with DEN. To examine this further, we used gene set enrichment analysis (GSEA) to evaluate in the DEN-injured rats and CCl\textsubscript{4}-injured mice the effect of erlotinib on genes associated with lipopolysaccharide (LPS)-induced liver injury of HSC.28 Interestingly, genes suppressed by LPS were reexpressed in response to erlotinib in CCl\textsubscript{4} mice (normalized enrichment score [NES] = −1.42, FDR = 0.066), whereas no such enrichment was observed in DEN rats (NES = 0.86, FDR = 0.67). This further supports our data indicating that erlotinib suppresses liver injury more significantly in CCl\textsubscript{4} mice.

A further rationale for clinical evaluation of EGFR inhibition comes from studies demonstrating that EGFR is a cofactor important for hepatitis C virus (HCV) entry into cells.29 EGF accelerates HCV entry, and EGFR tyrosine kinase inhibitors—including erlotinib—have substantial antiviral activity. Given the prevalence of chronic HCV infection as a source of hepatic fibrosis and cirrhosis, these observations suggest that EGFR inhibition could be a new approach to simultaneously reduce fibrotic damage previously caused by the virus and treat HCV infection.

We observed that several EGFR ligands were increased in the DEN, CCl\textsubscript{4}, and BDL models and that treatment with erlotinib generally reduced their expression. Interestingly, EGFR ligands could have conflicting roles in liver fibrogenesis, as amphiregulin (AREG) has been shown to promote liver fibrosis,30 whereas heparin-binding EGF-like growth factor (HB-EGF) suppresses liver fibrosis.31 The relative importance of each of these ligands in liver disease will need to be elucidated in future studies especially given recent findings that EGFR ligands also play a role in HCC acquired resistance to sorafenib.32

Another small-molecule EGFR inhibitor, gefitinib, has been previously shown to reduce the number of HCC nodules, but that effect was attributed to the antineoplastic effect of EGFR inhibition on the tumors themselves.13 No investigation was reported on the effect of gefitinib on liver injury, fibrogenesis, or synthetic function. In contrast, we observed a marked impact in the surrounding nontumoral liver tissue, but no effect of erlotinib within HCC tumors. Our analyses indicate that the effect of EGFR inhibition with erlotinib is purely on the surrounding liver, thereby reducing the risk of malignant transformation (the “field effect”) rather than a direct antineoplastic effect on tumors. The observed reduction in small tumors after erlotinib treatment rather than an effect on the growth of existing tumors is consistent with the ability of erlotinib to suppress the initiation of HCC tumors.

Indeed, our recent studies in predicting HCC survival suggest that nontumoral liver gene expression profiles are more predictive of clinical outcome than the profiles of the tumors themselves.6,7 We also note that the therapeutic benefit of EGFR inhibition in the treatment of established HCC is modest at best; only a minority of patients treated with erlotinib exhibited disease control.33,34 These clinical results are consistent with our observation that the most dramatic effects of EGFR blockade are on the prevention of fibrosis and cirrhosis, the principal risk factors for the development of HCC.

One potential problem with the design of antifibrotic and/or HCC prevention clinical trials is the lack of a sensitive way to assess treatment efficacy, as changes in liver biopsy histology might only occur after long periods and are also prone to considerable sampling error.35 We observed that the poor-prognosis cirrhosis gene signature was completely induced in DEN-injured livers before there were any notable changes in liver function tests or liver histology, and that it was reversed in response to erlotinib. Therefore,
this poor-prognosis cirrhosis signature may be useful not only for the early detection of liver fibrosis and hepatocellular transformation-associated events but also for monitoring therapeutic efficacy of chemoprevention agents.

The details of the mechanisms by which erlotinib reduces liver injury, fibrogenesis, and HCC development remain to be worked out. Several different cell populations in the liver express EGFR and may each play contributory and interactive roles. It could be that erlotinib reduces the proliferation of hepatocytes, as indicated by Ki67 staining, and this directly prevents neoplastic transformation and indirectly prevents HSC activation through paracrine signaling. Consistent with this, erlotinib decreased the expression of several profibrogenic factors. However, our data also demonstrates that EGFR is activated in HSC and therefore erlotinib could directly inhibit HSC activation while at the same time reducing paracrine signals that stimulate hepatocyte proliferation. We suspect that both of these mechanisms are operant, and plan to examine the relative importance of hepatocytes and HSC on the efficacy of erlotinib in follow-up studies using cell-specific targeting and genetic models. Regardless, our results in three different preclinical models of liver fibrosis suggest that EGFR is an important mediator of disease progression.

To our knowledge, this is the first demonstration that EGFR inhibition regresses liver fibrosis. The results reported here have immediate and important clinical translational implications for both hepatic fibrosis and HCC. Cirrhosis exerts an enormous toll on human health worldwide, and there is great need for interventions to slow or even regress disease progression. As for HCC, identification of high-risk populations suitable for screening and chemoprevention has been proposed as the most efficient strategy to abrogate HCC-related mortality. And such high-risk populations within patients with early-stage cirrhosis may be more effectively identified with \(EGFR \) genotype and/or liver gene expression profiles in combination with clinical and pathologic parameters. The present studies support the evaluation of EGFR inhibitors in clinical trials of cirrhosis patients at high risk of progression and HCC development.

Acknowledgment: The authors thank Scott Friedman and Young-Min Lee (Mount Sinai School of Medicine, New York, NY) for helpful advice on staining of HSC.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.
2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011;365:1118-1127.
3. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008;371:838-851.
4. Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 2012;56:769-775.
5. Komuev LS, Feren A, Jones AL, Fedor E. Expression of epidermal growth factor and its receptor in cirrhotic liver disease. J Histochem Cytochem 2000;48:821-830.
6. Hoshida Y, Villanueva A, Sangiovanni A, Sole M, Hur C, Andersson KL, et al. Prognostic gene-expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology 2013;144:1024-1030.
7. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008;359:1995-2004.
8. Falieri E, Cmer S, Fabris C, Bitetto D, Cussigh A, Fornariere E, et al. Association between the epidermal growth factor \(\text{rs4444903} \) G/G genotype and advanced fibrosis at a young age in chronic hepatitis C. Cytochrome 2012;57:68-73.
9. Cmer S, Fabris C, Fatrovich G, Falieri E, Bitetto D, Cussigh A, et al. Carriage of the \(\text{EGF rs4444903 A} \) G functional polymorphism associates with disease progression in chronic HBV infection. Clin Exp Immunol 2012;167:296-302.
10. Tanabe KK, Lemoine A, Finkelstein DM, Kawasaki H, Fujii T, Chung RT, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 2008;299:53-60.
11. Tonjes RR, Lohler J, O’Sullivan JF, Kay GF, Schmidt GH, Dalmans W, et al. Autocrine mitogen IgEGF cooperates with c-myc or with the Hes locus during hepatocarcinogenesis in transgenic mice. Oncogene 1995;10:765-768.
12. Lee TY, Kim KT, Han SY. Expression of ErbB receptor proteins and TGF-alpha during diethylamino-N-oxide-induced hepatocarcinogenesis in the rat liver. Korean J Hepatol 2007;13:70-80.
13. Schiffer E, Housset C, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. HEPATOLOGY 2005;41:307-314.
14. Ishak KG. Chronic hepatitis: morphology and nomenclature. Mod Pathol 1994;7:690-713.
15. Fuji T, Fuchs BC, Yamada S, Lauwers GY, Kulu Y, Goodwin JM, et al. Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epithelial growth factor. BMC Gastroenterol 2010;10:79.
16. Hoshida Y, Fuchs BC, Tanabe KK. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges. Curr Cancer Drug Targets 2012;12:1129-1159.
17. Kang JS, Wanibuchi H, Morimura K, Gonzalez FJ, Fukushima S. Role of CYP2E1 in diethylamino-N-oxide-induced hepatocarcinogenesis in vivo. Cancer Res 2007;67:11141-11146.
18. Wong FW, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 1998;153:109-118.
19. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013;110:3507-3512.
20. Kuriyama S, Yokoyma F, Ioue H, Takano J, Ogawa M, Kita Y, et al. Sequential assessment of the intrahepatic expression of epidermal growth factor and transforming growth factor-beta1 in hepatobipogene- sis of a rat cirrhosis model. Int J Mol Med 2007;19:317-324.
21. Sorkin A, Goh K. Endocytosis and intracellular trafficking of Erbs. Exp Cell Res 2009;315:683-696.
22. Berasain C, Perugorria MJ, Latasa MU, Castillo J, Goni S, Santamaria M, et al. The epithelial growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med 2009;234:713-725.
23. Natarajan A, Wagner B, Sibilla M. The EGFR receptor is required for efficient liver regeneration. Proc Natl Acad Sci U S A 2007;104:17081-17086.
24. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655-1669.
25. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88:125-172.
26. Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yamamura U, Holthaus K, et al. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 2003;124:147-159.
27. Sommerfeld A, Reinehr R, Haussinger D. Bile acid-induced epidermal growth factor receptor activation in quiescent rat hepatic stellate cells can trigger both proliferation and apoptosis. J Biol Chem 2009;284:22173-22183.
28. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007;13:1324-1332.
29. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 2011;17:589-595.
30. Perugorria MJ, Latasa MU, Nicou A, Cartagena-Lirola H, Castillo J, Goni S, et al. The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. HEPATOLOGY 2008;48:1251-1261.
31. Huang G, Besner GE, Brigstock DR. Heparin-binding epidermal growth factor-like growth factor suppresses experimental liver fibrosis in mice. Lab Invest 2012;92:703-712.
32. Blivet-Van Egelpoel MJ, Chettouh H, Fartoux L, Aoudadjane I, Barbu V, Rey G, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol 2012;57:108-115.
33. Philip PA, Mahoney MR, Almner C, Thomas J, Pitot HC, Kim G, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005;23:6657-6663.
34. Thomas MB, Chadha R, Glover K, Wang X, Morris J, Brown T, et al. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 2007;110:1059-1067.
35. Popov Y, Schuppan D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. HEPATOLOGY 2009;50:1294-1306.
36. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003;362:1907-1917.
37. Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology 2009;136:138-148.