Essential oil from Piperaceae as a potential for biopesticide agents: a review

1Abdullah, N.A., 1,2Zain, W.Z.W.M., 1Hamid, N.A. and 1Ramli, N.W.
1Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM), Cawangan Melaka, Kampus Jasin, Merlimau, Melaka
2Pejabat Program Pra Pendidikan Tinggi UiTM, Universiti Teknologi MARA (UiTM) Shah Alam, 40450, Shah Alam, Selangor

1. Introduction

Piperaceae or piper is famous and widely known around the world. Pepper was originated from Ghat Barat and Malabar in western India. It was brought to Malaya (Malaysia) through the port of Melaka by the Portuguese centuries ago. It then became the main product traded in the port of the states of Johor and Singapore. Later on, the cultivation for pepper crop expanded to Sarawak and it became Sarawak’s main export product. This crop comes from a large family in flowering plants. The order Piperales represented the largest basal angiosperm that has been distributed worldwide. This order consists of three species, Piper, Peperomica, and Aristolochia. Piperaceae contains about 3,600 species roughly. These species are the ones that were currently accepted in the 13 genera. The pepper’s vast majority can be found within the two main genera, Piper and Peperomia. The most known species is Piper nigrum or black pepper which produced peppercorns that are used as spices all over the world. In Malaysia, there were a few well-known species that are usually cultivated in places such as Kuching, Semenggok Perak, Semenggok Emas and many more. There were also many well-known species in other producing countries such as Belantung (Indonesia), Karimunda (India), Djambi (Indonesia) and Bangka (Indonesia) (Mah, 2017). Thus, the aim for this review was to reveal the properties of the Piperaceae species to be used as potential biopesticide along with its chemical compounds which have been proven to be responsible for each of the properties stated.

2. Ethnomedicinal uses of Piperaceae

Out of all the various species, Piper nigrum L. or known as black pepper has a prominent position and this species was acknowledged as the “King of Spices”. It has many functional uses in traditional food formulations, perfumery, kitchen, and even beauty care. Besides that, pepper was also used for its medicinal properties. Black pepper has been used in the Asian folk
medicine and the Indian Ayurvedic System of medicine, the folklore medicine of Latin America since many years ago (Tu et al., 2015). Pepper was also reported that it has been used in folk medicine to treat several ailments (Wan Salleh et al., 2014). Table 1 shows some of the species along with their traditional uses. Most of the species contain antioxidant activities which can be used to fight against fever, asthma, coughs, diarrhoea and many more. Based on previous reports, there were only a few studies on the chemical compounds of Piperaceae which can be used as bio-pesticides.

Table 1. List of pepper and their traditional uses (Wan Salleh et al., 2014).

Species	Traditional uses
Piper caninum	Chewing, hoarseness, flavour, throat ache, antiseptic
Piper lanatum	Malaria, toothache, rheumatism, deworming, fever, influenza, ulcer
Piper abbreviatum	Splenomegaly, stimulant, carminative, coughs & colds, flatulence
Piper aborescens	Rheumatism, antiplatelet aggregation, cytotoxic
Piper porphyrophyllum	Leprosy, abdominal pain, skin disease, postpartum treatment, bone pain
Piper erecticaule	No reports
Piper ribesioides	Asthma, diarrhoea, abdominal pain, flavour, alleviate chest congestion, treat urticaria
Piper miniatum	Spice, food flavour, food natural preservative, antibacterial
Piper stylosum	Vegetables, seasoning, poultice/decoction, confinement
Piper majusculum	No reports

3. **Bio-pesticide**

Bio-pesticide is an alternative to synthetic pesticides. It produces the same effects the chemical pesticides but it is made from naturally occurring formulations to control pests through non-toxic mechanisms and in an eco-friendlier manner (Kumar and Singh, 2015). Bio-pesticide was derived from plants, animals, bacteria as well as minerals that were used for pest control (Kachhawa, 2017; Lengai and Muthomi, 2018). It is included in the strategy used in Integrated Pest Management or IPM to control pest and disease and it has been proven to be successfully reduced the usage of chemical pesticides in the field (Krishnen et al., 2016).

3.1 **Essential oil**

Essential oils (EOs) can be classified into volatile, semi-volatile and non-volatile compounds depending on their nature (Eslahi et al., 2017). EOs are antimicrobials that occurs naturally where it can be found in many plants and it has shown to be effective in many applications by lowering the growth and survival capabilities of microorganisms (Calo et al., 2015). It plays many important in a plant’s defence system against herbivores and pathogens. EOs’ synthesis and accumulation were associated with secretory structures such as oil cells, secretory ducts or cavities, glandular trichomes, resin ducts (Pavela and Benelli, 2016; Morsy, 2017).

Essential oils have been known for their biological properties such as insecticidal, ovicidal, nematicidal, bactericidal and fungicidal effects against pests and pathogens that were very important in the agricultural yield including having positive effects on inflammatory processes, cardiovascular diseases, oxidative diseases, analgesic, anti-inflammatory activities (Isman et al., 2011; Andrés et al., 2012; González-Coloma et al., 2013; Pacheco et al., 2016; Santana et al., 2016; Andres et al., 2017; Eslahi et al., 2017). Essential oils can be categorized into terpenoids and phenylpropanoids. Terpenoids are the major constituents for EOs. It consists of monoterpenes and sesquiterpenes of low molecular weight while phenylpropanoids have a lesser extent (Regnault-Roger et al., 2012; Roman and Benelli, 2016).

Essential oils are being used as bio-pesticide because of its various biological activities against different insects, pest and pathogen. Table 2 below shows some of the species in the family of Piperaceae, type of insect or pathogen tested, chemical component extracted, properties identified, and the results observed. As we can see from the table, Gram-positive bacteria
were effective when it was against essential oils. In order for the essential oils to be effective towards the microorganisms tested, the concentration must be taken into consideration (Premachandra et al., 2014). According to Premachandra (2014), the findings on leaf extract from *Piper betle* L., has a high potency of nemato-toxic activity which can be directly related to the concentration of the leaf extract. In simple language, the higher the dose, the better the efficacy of the extract. The results demonstrated that the essential oils and plant parts showed significant bioactivity properties which can be used against various diseases as preventive agents. Based on previous studies, it is concluded that single compounds such as 1,8-cineole, myrcene, α-pinene, β-pinene and camphor are commonly found in essential oils associated with biological properties such as antifungal activity. However, the compound mentioned are absent in *Piper abbreviatum*, *Piper erecticaule* and *Piper lanatum* which proves that the antifungal activity does not depend solely on the compounds present but also the synergistic, antagonistic or additive effects of the compounds itself (Salleh et al., 2011; Salleh et al., 2014).

A high content of monoterpeno hydrocarbons may be the reason why the essential oils lack activity against the microbial strains tested. Moreover, study shows essential oils that have a high content of oxygenated monoterpenes displayed stronger antifungal properties (Salleh et al., 2012). The essential oils are weak when it is tested for antifungal property due to the small number of oxygenated monoterpenes.

The phenol, apioil and dillapiole compounds show their potential as insecticidal against several insects and also major insect pest in food crop such as termites. This is a good and important finding to maximise the uses of essential oil extracted from Piperaceae. The essential oil extracted from the plant is very limited. However, the Piperaceae essential oil shows high potential in controlling pests in a food crop with low amount which is good to be commercialised worldwide as a biopesticide.

4. Conclusion and Recommendation

The usage of chemical pesticides has caused many adverse toxic effects. One of the major concerns nowadays is the pollution and contamination of soil because of the excessive use of chemicals which can cause environmental pollution at both manufacturing and application sites. In addition to that, it causes many health and environmental problems, affected many factors such as survival range of life cycle stages, reduce reproductive capacity, changes host suitability for parasitizing and predation, reduces the emergence of parasitoids and also causes mortality. The search for alternatives to chemical pesticides has become a priority. Sustainable method to overcome this problem has become a great challenge, especially to smallholders. Thus, bio-pesticides have been invented with the help of technologies. Bio-pesticides have become one of the alternatives chosen although it does not reach the desired level of use yet. This alternative had received many positive interests to replace the synthetic pesticides which are very suitable for integrated pest management (IPM) and organic farming. The potential group of bio-pesticides were represented by EO which was known to possess many biological activities including controlling pests and repellent properties. During this globalisation era, the concept of returning to “roots” is starting to become more famous. Scientific research also proved that plants such as Piperaceae can be used as bio-pesticide. Based on Table 2, mosquitoes can be controlled by using five species of Piper which *Piper betle* L., *Piper dilatatun, Piper aff. Hispidum*, and *Piper sanctificlis* due to the presence of phenol, chavicol, apioil, trans-caryophyllene, p-cymene and limonene. Besides, *Escherichia coli* and *Staphylococcus aureus* can be controlled by using EO from *Piper nigrum* which contains β-caryophyllene and limonene, and piperine respectively while *Xanthomonas oryzae* pv. *Orzaza* and *Pseudomonas fuscovaginae* can be controlled using secondary metabolite presence in *Piper sarmentosum* such as 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- (DDMP);octanamide, N,N-dimethyl;3-(4-methoxyphenyl) propionic acid. Moreover, brown planthopper and leaf folder pathogen can be controlled using *Piper divaricatum* which contains eugenol and methyl-eugenol. *Piper guineense* contains sesquiterpene β-sesquiphellandrene and linalool which possessed many biological activities. Being exposed to many pest and diseases ensures plants produce resistance mechanisms such as secondary metabolites to protect themselves. *Piper aduncum* L. exhibit potential insecticidal activity against caterpillar soybean looper (*Chrysodeixis includes Walker*) through ingestion. *Piper nigrum* was the most researched species because *Piper nigrum* is the most abundant species in this genus. Thus, more research should be done on the chemical compounds of the other species of *Piper* in order to carry out comparative studies with emphasis on the mechanisms, to publish and to organize a workshop where new findings are presented and control methods are critically analysed in relation to the feedback from farmers.
Species	Pathogen / Pest	Compounds	Properties	Result	References
P. nigrum	- Staphylococcus aureus	β-caryophyllene; limonene	Antimicrobial	Gram-positive bacteria were more sensitive than gram-negative bacteria. The inhibition zones measured were between 8 to 10 mm and the minimum inhibitory concentrations was greater than 600ppm. Gram-negative bacteria showed inhibition zones between 8 to 12.5 mm and a minimum inhibitory concentration of 6 ppm.	Teneva et al. (2016)
	- Escherichia coli				
	- Escherichia coli				
	- Salmonella sp.				
	- Proteus vulgaris G.				
	- Staphylococcus aureus	α-Pinene; δ-3-carene; Limonene; Sabinene; B-caryophyllene	Antimicrobial	The essential oil from black pepper is tested against Gram-positive bacteria and the inhibition zones are as follow: *Bacillus subtilis*-23.9±0.58 mm; *Staphylococcus aureus*-19.2±1.5 mm. While the inhibition zones for gram-negative bacteria is *Escherichia coli*-21.6±1.2 mm and fungi (*Candida albicans*) exhibited the largest inhibition zones which is between 18.3±0.58 mm. The essential oil were shown to have the listed components as major components and it showed an inhibitory activity against food-borne pathogens.	Nashwa et al. (2017)
	- Bacillus subtilis				
	- Pseudomonas aeruginosa				
	- Escherichia coli				
	- Aspergillus flavus				
	- Candida albicans				
P. nigrum	- Staphylococcus aureus	Piperine	Antimicrobial	The gram-positive bacteria were determined to be the most effective against the piperine compound compared to gram-negative bacteria. The gram-negative bacteria were less susceptible to black pepper.	Shityakov et al., 2019
	- Bacillus cereus				
	- Streptococcus faecalis				
	- Pseudomonas aeruginosa				
	- Salmonella enterica ser. Typhi				
	- Escherichia coli				
Meloidogyne incognita	Phenol		Nematicidal	Root infestations in form of gall formation, egg production and second-stage juvenile population densities of the nematode were reduced in the meanwhile, the growth of the tomato plants also being enhanced.	Premachandra et al. (2014)
Piper betle L.	*Aedes aegypti* (larvae)	Liston	Insecticidal	The insect is shown to be susceptible to *Piper betle* L. extract.	Vasantha-Srinivasan et al. (2017)
Xanthomonas oryzae pv. oryzae	4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- (DDMP); octanamide, N,N-dimethyl; 3-(4-methoxyphenyl) propionic acid	Antibacterial	The methanol extracts of both leaves and fruits of *Piper sarmentosum* were effective against both pathogen stated at a low concentration, 25 mg ml⁻¹.	Syed Abd Rahman et al. (2014)	
Pseudomonas fuscovaginae					
Species	Pathogen / Pest	Compounds	Properties	Result	References
--------------------------	-----------------	--	------------------	--	---
Piper dilatatum	Termites	Apiol; Trans-caryophyllene; Spathulenol; γ-cadinene	Insecticidal; larvicydial; phytotoxic	Essential oils from the species stated showed strong antifeedant and phytotoxic effects. Essential oil from *Piper dilatatum* was the most effective antifeedant among the four species. Essential oils from *Piper divaricatum* showed strong herbicidal potential on *Lodiam perenne*. While, essential oil from *Piper aff. hispidum* reduced the root growth of *Lactuca sativa*.	Silva et al. (2014); Jaramillo et al. (2019)
Piper divaricatum	Mosquito	Eugenol; δ-3-Carene; Limonene; ß-pinene; ß-caryophyllene	Insecticidal	The essential oils from the species stated showed strong antifeedant and phytotoxic effects. Essential oil from *Piper divaricatum* was the most effective antifeedant among the four species.	Jaramillo - Colorado et al. (2019)
Piper aff. Hispidum	Mosquito	ß-phellandrene; Methyl eugenol; ß-caryophyllene; ß-eudesmol; γ-elemene; p-cymene; Limonene; ß-pinene; Neo-linalool	Insecticidal	Essential oils from *Piper aff. Hispidum* showed strong herbicidal potential on *Lodiam perenne*. While, essential oil from *Piper aff. hispidum* reduced the root growth of *Lactuca sativa*.	Jaramillo - Colorado et al. (2019)
Piper sanctifelicis	Mosquito	ß-phellandrene; Limonene; ß-pinene; Neo-linalool	Insecticidal	Essential oils from *Piper sanctifelicis* showed strong herbicidal potential on *Lodiam perenne*. While, essential oil from *Piper aff. hispidum* reduced the root growth of *Lactuca sativa*.	Jaramillo - Colorado et al. (2019)
Piper aduncum L.	Chrysodeixis includes Walker	Dillapiole; Myristic; Z-carpan	Insecticidal	The mortality rate reached 90% for the highest concentration for the first 24 hr after application. There is no significant differences until the end of the life cycle of the insect for topical application. This showed that the essential oil from this species can be used as a potential insectical to control this insect through ingestion.	Sanini et al. (2017)
Piper arborescens	Staphylococcus aureus - Bacillus subtilis - Pseudomonas aeruginosa - Pseudomonas putida - Escherichia coli - Candida albicans - Aspergillus niger	Leaves oil: β-phellandrene; Methyl eugenol; ß-caryophyllene	Antimicrobial	Results for leaves oil showed significant antimicrobial activity towards *Staphylococcus aureus* and *Aspergillus niger*. Sems oil showed antimicrobial activity towards gram-positive bacteria which is *Pseudomonas aeruginosa* and fungi which is *Aspergillus niger*.	Salleh et al. (2016)
Table 2 (cont.). List of different Piper species, chemical compound and its properties.

Species	Pathogen / Pest	Compounds	Properties	Result	References
Piper caninum	- Bacillus subtilis	Safrole;			
- Staphylococcus aureus | Antimicrobial | The essential oils from leaves and stems exhibited strong activity against gram-positive and gram-negative bacteria strains. But it showed weak activity towards fungal strains. | Salleh et al. (2011) |
| | - Pseudomonas aeruginosa | β-caryophyllene;
- Pseudomonas putida | | | |
| | - Escherichia coli | β-pinene;
- Candida albicans | | | |
| | - Aspergillus niger | Germacrene D | | | |
| Piper abbreviatum| - Bacillus cereus | Spathulenol;
- Staphylococcus faecalis | Antimicrobial | Essential oils from the three species exhibited weak activity against gram-positive bacteria. Essential oil from Piper erecticaule showed the best activity against Aspergillus niger and followed by Piper lanatum oil. | Salleh et al. (2014) |
| | - Enterococcus faecalis | (E)-nerolidol;
- Escherichia coli | | | |
| | - Pseudomonas putida | β-caryophyllene; | | | |
| | | Spathulenol | | | |
| Piper erecticaule| - Klebsiella pneumoniae | β-caryophyllene; | | Both oils showed weak activity towards Pseudomonas aeruginosa and Escherichia coli. Bacillus subtilis was also tested against leaf oil and it exhibited weak activity towards the microorganism. For fungi, both stem and leaf oils also exhibited weak antifungal activity against Aspergillus niger. This is due to the small amount of oxygenated monoterpenes. | Salleh et al. (2012) |
| | - Aspergillus niger | Stem Oil | | | |
| | - Candida albicans | Leaf Oil | | | |
| | - Saccharomyces cerevisiae | β-caryophyllene;
- Borneol;
- β-caryophyllene;
- α-amorphene | Antimicrobial | | |
| | - Escherichia coli | α-pinene;
- Sabinene; | | | |
| | - Candida albicans | β-selinene;
- Limonene | | | |
| | - Aspergillus niger | Limonene | | | |
| | | α-phellandrene;
- Linalool; | | | |
| | | Limonene | | | |
| | | α-pinene | | | |
| Species | Pathogen / Pest | Compounds | Properties | Result | References |
|-----------------------|--------------------------|----------------------------------|--------------------|--|--------------------------------|
| *Piper stylosum* | - Bacillus subtilis | Aromadendrene; Sabinene; β-caryophyllene | Antimicrobial | The essential oils showed strong antimicrobial activity. Essential oil from *Piper ribesioides* showed strong activity against *Bacillus cereus* and *Staphylococcus aureus*. | Salleh et al. (2014) |
| | - Bacillus cereus | | | | |
| | - Staphylococcus aureus | | | | |
| | - Klebsiella pneumonia | β-caryophyllene; Camphene; δ-cadinene | | | |
| | - Candida albicans | | | | |
| | - Candida neoformens | | | | |
| | - Saccharomyces cerevisiae| | | | |
| *Piper ribesioides* | - Staphylococcus aureus | Bicyclogermacrene; α-copaene; β-phellandrene | Antibacterial | Both oils showed moderate activity against gram-positive and gram-negative bacteria. | Salleh et al., 2012 |
| | - Bacillus subtilis | | | | |
| | - Pseudomonas aeruginosa | | | | |
| | - Pseudomonas putida | | | | |
| | - Escherichia coli | | | | |
| *Piper porphyrophyllum* N.E. Br. | - Staphylococcus aureus | Leaf oil | Antibacterial | Both oils showed moderate activity against gram-positive and gram-negative bacteria. | Salleh et al., 2012 |
| | - Bacillus subtilis | | | | |
| | - Pseudomonas aeruginosa | | | | |
| | - Pseudomonas putida | | | | |
| | - Escherichia coli | Stem oil; Sabinene; Bicyclogermacrene; α-copaene | Antibacterial | Both oils showed moderate activity against gram-positive and gram-negative bacteria. | Salleh et al., 2012 |
References

Abdullah, Q.M. and Abdalla, W.E. (2018). Black pepper fruit (Piper nigrum L.) as antibacterial agent: A mini-review. *Journal of Bacteriology and Mycology: Open Access*, 6(2), 141-145. https://doi.org/10.15406/jbmoa.2018.06.00192

Andres, M.F., Rossa, G.E., Cassel, E., Vargas, R.M., Santana, O., Diaz, C.E. and Gonzalez-Coloma, A. (2017). Biocidal effects of *Piper hispidinervu* (Piperaceae) essential oil and synergism among its main components. *Food and Chemical Toxicology*, 109(2), 1086-1092. https://doi.org/10.1016/j.fct.2017.04.017

Bagheri, H., Abdul Manap, M. and Solati, Z. (2014). Antioxidant activity of *Piper nigrum* L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. *Talanta*, 12, 220-228. https://doi.org/10.1016/j.talanta.2014.01.007

Calo, J.R., Crandall, P.G., O'Bryan, C.A. and Ricke, S.C. (2015). Essential oils as antimicrobials in food systems - A review. *Food Control*, 54, 111-119. https://doi.org/10.1016/j.foodcont.2014.12.040

Camorro, E.R., Zambon, S.N., Morales, W.G., Sequeira, A.F. and Velasco, G.A. (2012). Study of the chemical composition of essential oils by gas chromatography. In Salih, B. (Ed). Gas Chromatography in Plant Science, Wine Technology and Some Specific Applications, p. 307-324. Rijeka, Croatia: Intech.

Damalas, C.A. and Koutroubas, S.D. (2018). Current Status and Recent Developments in Biopesticide Use. *Agriculture*, 8(1), 13. https://doi.org/10.3390/ agriculture8010013

Dhakal, R. and Singh, D.N. (2019). Biopesticides: A Key to Sustainable Agriculture. *International Journal of Pure and Applied Bioscience*, 7(3), 391-396. https://doi.org/10.18782/2320-7051.7034

Eslahi, H., Fahimi, N. and Sardarian, A.R. (2017). Chemical Composition of Essential Oils. In *Essential Oils in Food Processing: Chemistry, Safety and Applications*, 119-171. https://doi.org/10.1002/9781119149392.ch4

Jaramillo-Colorado, B.E., Pino-Benitez, N. and Gonzalez-Coloma, A. (2019). Volatile composition and biocidal (antifeedant and phytotoxic) activity of the essential oils of four Piperaceae species from Choco-Colombia. *Industrial Crop and Products*, 138(4), 111463. https://doi.org/10.1016/j.indcrop.2019.06.026

Kachhawa, D. (2017). Microorganisms as a biopesticides. *Journal of Entomology and Zoology Studies*, 5(3), 468-473.

Keong, M.S. (2017). Bright future for Sarawak pepper. Retrieved 25 September, 2019, from The Star Online website: https://www.thестar.com.my/news/ nation/2017/10/25/malaysia-aims-to-be-worlds-top-supplier-of-the-premium-king-of-spices

Krishnen, G., Mohd. Noor, M.R., Jack, A. and Haron, S. (2016). Research, Development and Commercialisation of Agriculturally Important Microorganisms in Malaysia. In Singh, H., Sarma, B. and Keswani, C. (Eds). Agriculturally Important Microorganisms, p. 149-166. Singapore: Springer. https://doi.org/10.1007/978-981-10-2576-1_9

Kumar, S. and Singh, A. (2015). Biopesticides: Present Status and the Future Prospects. *Journal of Fertilizers and Pesticides*, 6(2), 1000e129. https://doi.org/10.4172/2471-2728.1000e129

Kumari, K.A., Kumar, K.N. and Rao, C.N. (2014). Adverse Effects of Chemical Fertilizers and Pesticides an Human Health and Environment. *Journal of Chemical and Pharmaceutical Sciences*, 3, 150-151.

Lengai, G.M. and Muthomi, J.W. (2018). Biopesticides and Their Role in Sustainable Agricultural Production. *Journal of Biosciences and Medicines*, 6 (6), 7-41. https://doi.org/10.4236/jbm.2018.66002

Liang, Z.L. and Guo, X.J. (2015). Comparative Study on Antioxidant Activity of Essential Oil from White and Black Pepper. *European Journal of Food Science and Technology*, 3(3), 10-16.

Maksymiv, I. (2015). Pesticides: benefits and hazards. *Journal of Vasyl Stefanyk Precarpathian National University*, 2(1), 70-76. https://doi.org/10.15330/jpnu.2.1.70-76

Mehrotra, S., Kumar, S., Zahid, M. and Garg, M. (2017). Biopesticides. In Singh, R.L. (Ed). *Pesticides an Human Health and Environment*, p. 149-151. Singapore: Springer.

Mgbuehuru, E., Trjonen, T., Vuorela, H. and Holm, Y. (2017). Bioactive compounds from medicinal plants: focus on Piper species. *South African Journal of Botany*, 12, 54-69. https://doi.org/10.1016/j.sajb.2017.05.007

Morsy, N.F. (2017). Chemical Structure, Quality Indices and Bioactivity of Essential Oil Constituents. In *Aromatic and Medicinal Plants*. IntechOpen. https://doi.org/10.5772/66231

Mossa, A.-T.H. (2016). Green pesticides: Essential Oils as Biopesticides in Insect-Pest Management. *Journal of Environmental Science and Technology*, 9(5), 354-378. https://doi.org/10.3923/jest.2016.354.378

Myszka, K., Schmidt, M.T., Majcher, M., Juzwa, W. and...
Czaczky, K. (2017). β-Caryophyllene-Rich Pepper Essential Oils Suppress Spoilage Activity of Pseudomonas Fluorescens KM06 in Fresh-Cut Lettuce. *Food Science and Technology, 83*, 118-126. https://doi.org/10.1016/j.wlt.2017.05.012

Nashwa, F.M. and Abd El-Salam, E.A. (2017). Antimicrobial and Antiproliferative Activities of Black Pepper (*Piper nigrum* L.) Essential Oil and Oleoresin. *Journal of Essential Oil Bearing Plants, 20*(3), 779-790. https://doi.org/10.1080/0972060X.2017.1341342

Ndakidemi, B., Mtei, K. and Ndakidemi, P.A. (2016). Impacts of Synthetic and Botanical Pesticides on Beneficial Insects. *Agricultural Science, 7*(6), 364-372. https://doi.org/10.4236/as.2016.76038

Ngo, Q.M., Cao, T.Q., Hoang, L.S., Ha, M.T., Woo, M.H. and Min, B.S. (2018). Cytotoxic Activity of Alkaloids from the Fruits of *Piper nigrum*. *Natural Product Communications, 13*(11), 1467-1469. https://doi.org/10.1177/1934578X1801301114

Oyemitan, I.A., Olayera, O.A., Alab, A., Abbas, L.A., Elusiyian, C.A., Oyedeji, A.O. and Akanmu, M.A. (2015). Psychoneuropharmacological Activities and Chemical Composition of Essential Oil of Fresh Fruits of *Piper guineense* (Piperaceae) in Mice. *Journal of Ethnopharmacology*, 166, 240-249. https://doi.org/10.1016/j.jep.2015.03.004

Pavela, R. and Benelli, G. (2016). Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. *Trends in Plant Science, 21*(12), 1000-1007. https://doi.org/10.1016/j.tpls.2016.10.005

Premachandra, W.D., Mampitiyarachchi, H. and Ebssa, L. (2014). Nemato-toxic potential of Betel (*Piper betle* L.) (Piperaceae) leaf. *Crop protection, 65*, 1-5. https://doi.org/10.1016/j.crophpro.2014.06.004

Regnault-Roger, C., Vincent, C. and Arnason, J.T. (2012). Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. *Annual Review of Entomology, 57*, 405-24. https://doi.org/10.1146/annurev-ento-120710-100554

Salleh, W., Ahmad, F. and Khong, H.Y. (2014). Chemical composition of *Piper stylosum* Miq. and *Piper ribesoides* Wall. Essential Oils, and their Antioxidant, Antimicrobial and Tyrosinase Inhibition Activities. *Boletin Latinoamericano y del Caribe de, 13*(5), 488-497.

Salleh, W., Ahmad, F. and Khong, H.Y. (2014). Chemical Compositions and Antimicrobial Activity of the Essential Oils of *Piper abbreviatum*, *Piper erecticaule* and *Piper lanatum* (Piperaceae). *Natural Product Communications, 9*(12), 1795-1798. https://doi.org/10.1177/1934578X1400901235

Salleh, W., Ahmad, F. and Khong, H.Y. (2016). Essential Oil Compositions and Antimicrobial Activity of *Piper arborescens* Roxb. *Marmara Pharmaceutical Journal, 20*(2), 111-115. https://doi.org/10.12991/mpj.20162071871

Salleh, W., Ahmad, F., Khong, H.Y. and Sirat, H.M. (2011). Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of *Piper canarium* Blume. *International Journal of Molecular Sciences, 12*(11), 7720-7731. https://doi.org/10.3390/ijms12117720

Salleh, W., Ahmad, F., Khong, H.Y. and Sirat, H.M. (2012). Chemical Compositions, Antioxidant and Antimicrobial Activity of the Essential Oils of *Piper officinarum* (Piperaceae). *Natural Product Communications, 7*(12), 1659-1662. https://doi.org/10.1177/1934578X1200701229

Salleh, W., Ahmad, F., Sirat, H.M. and Khong, H.Y. (2012). Chemical Compositions and Antibacterial Activity of the Leaf and Stem Oils of *Piper porphyrophyllyum* (Lindl.) N.E. Br. *EXCLI Journal, 1*, 399-406.

Sanini, C., Massarolli, A., Krinski, D. and Butnaru, A.R. (2017). Essential Oil of Spiked Pepper, *Piper aduncum* L. (Piperaceae), for the Control of Caterpillar Soybean Looper, *Chrysodeixis includens* Walker (Lepidoptera: Noctuidae). *Brazilian Journal of Botany, 40*(2), 399-404. https://doi.org/10.1007/s40415-017-0363-6

Santana, A.I., Vila, R., Canigueral, S. and Gupta, M.P. (2016). Chemical Composition and Biological Activity of Essential Oils from Different Species of Piper from Panama. *Planta Medica, 82*(11), 986-991. https://doi.org/10.1055/s-0042-108060

Shityakov, S., Bigdelian, E., Hussein, A.A., Hussain, M.B., Tripathi, Y.C., Khan, M.U. and Shariati, M.A. (2019). Phytochemical and Pharmacological Attributes of Piperine: A Bioactive Ingredient of Black Pepper. *European Journal of Medicinal Chemistry, 176*, 149-161. https://doi.org/10.1016/j.ejmech.2019.04.002

Silva, J.K.R.D., Silva, J.R.A, Nascimento, S.B., Da Luz, S.F.M., Meireles, E.N., Alves, C.N., Ramos, A.R. and Maia, J.G.S. (2014). Antifungal Activity and Computational Study of Constituents from *Piper divaricatum* Essential Oil against *Fusarium* Infection in Black Pepper. *Molecules, 19*(11), 17926-17942. https://doi.org/10.3390/molecules191117926

Syed Ab Rahman, S.F., Sijam, K. and Omar, D. (2014). Chemical Composition of *Piper sarmentosum* Exracts and Antibacterial Activity against the Plant Pathogenic Bacteria *Pseudomonas Fuscovaginiae* and *Xanthomonas oryzae* pv. oryzae. *Journal of
Plant Diseases and Protection, 121(6), 237-242. https://doi.org/10.1007/BF03356518

Teneva, D., Denkova, Z., Goranov, B., Denkova, R., Kostov, G., Atanasova, T. and Merdzhanov, P. (2016). Chemical Composition and Antimicrobial Activity of Essential Oils from Black Pepper, Cumin, Coriander and Cardamom against some Pathogenic Microorganisms. Food Technology, XX (2), 39-52. https://doi.org/10.1515/aucft-2016-0014

Trivedi, M.N., Khemani, A., Vachhani, U.D., Shah, C.P. and Santani, D.D. (2011). Pharmacognostic, Phytochemical Analysis and Antimicrobial Activity of two Piper Species. International Journal of Comprehensive Pharmacy, 2(7), 1-4.

University of Hawaii Botany Department. (2006). Retrieved from Vascular Plant Family access page: http://www.botany.hawaii.edu/faculty/carr/pfamilies.htm

Untachai, J., Dodgson, W., Srifa, A. and Dodgson, J.L. (2018). In-Vitro Antibacterial Activities of Selected Traditional Plants. Journal of Pure and Applied Microbiology, 12, 265-277. https://doi.org/10.22207/JPAM.12.1.31

Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsakar, A., Thanigaivel, A., Edwin, E.S., Selin-Rani, S., Chellappandian, M., Pradeepa, V., Lija-Escaline, J., Kalaivani, K., Hunter, W.B., Duraipandiyan, V. and Al-Dhabi, N.A. (2017). Comparative Analysis of Mosquito (Diptera: Culicidae: Aedes aegypti Liston) Responses to the Insecticide Temephos and Plant Derived Essential Oil derived from Piper betle L. Ecotoxicology and Environmental Safety, 139, 439-446. https://doi.org/10.1016/j.ecoenv.2017.01.026

Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankarl, A., Thanigaivel, A., Chellappandial, M., Edwin, E.S.,Selin-Rani, S., Kalaivani, K., Hunter, W.B., Duraipandiyan, V., Al-Dhabi, N.A. (2017). Acute Toxicity of Chemical Pesticides and Plant-Derived Essential Oil on the Behavior and Development of Earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environmental Science and Pollution Research International, 25(11), 10371-10382. https://doi.org/10.1007/s11356-017-9236-6

Voris, D.G.d.R.V., Dias, L.D.S., Lima, J.A., Lima, K.D.S.C., Lima,J.B.P. and Lima, A.L.D.S. (2018). Evaluation of Larvicidal, Adulticidal, and Anticholinesterase Activities of Essential Oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr., and Myristica fragrans Houtt. against Zika Virus Vectors. Environmental Science and Pollution Research International, 25(23), 22541-22551. https://doi.org/10.1007/s11356-018-2362-y

Wan Ismail, W.H., Jaafar, A.A. and Che Mohd Ramli, N.K. (2013). Pepper. Jengka, Pahang: Unit Penerbitan Universiti Teknologi MARA.

Wan Salleh, W.M., Hashim, N.A., Ahmad, F. and Yen, K.H. (2014). Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia. Advanced Pharmaceutical Bulletin, 4(2), 527-531.

Tu, Y., Zhong, Y., Du, H., Luo, W., Wen, Y., Li, Q., Zhu, C. and Li, Y. (2015). Anticholinesterases and Antioxidant Alkamides from Piper nigrum Fruits. National Product Research, 30(17), 1945-1949. https://doi.org/10.1080/14786419.2015.1089243

Zarubová, L., Kourimska, L., Zouhar, M., Novy, P., Douda, O. and Skuhrovec, J. (2014). Botanical Pesticides and their Human Health Safety on the example of Citrus sinensis Essential Oil and Oulema melanopus under Laboratory Conditions. Acta Agriculture Scandinavica, Section B - Soil and Plant Science, 65(1), 89-93. https://doi.org/10.1080/09064710.2014.959556