One-loop $\mathcal{N} = 8$ supergravity amplitudes from MHV diagrams

Adele Nasti and Gabriele Travaglini

Centre for Research in String Theory, Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK

E-mail: a.nasti@qmul.ac.uk and g.travaglini@qmul.ac.uk

Received 18 September 2007
Published 21 November 2007
Online at stacks.iop.org/CQG/24/6071

Abstract
We discuss the calculation of one-loop amplitudes in $\mathcal{N} = 8$ supergravity using MHV diagrams. In this approach, one-loop amplitudes are expressed as sums of MHV diagrams, which incorporate large numbers of Feynman diagrams. In contrast to MHV amplitudes of gluons in Yang–Mills, tree-level MHV amplitudes of gravitons are not holomorphic in the spinor variables. In order to extend these amplitudes off shell, and use them as vertices to build loops, we introduce certain shifts for the spinor variables associated with the loop momenta. Using this off-shell prescription, we rederive in a compact way the four- and five-point MHV amplitudes of gravitons at one loop, in complete agreement with known results. We also discuss the case of one-loop MHV amplitudes with an arbitrary number of gravitons.

PACS numbers: 11.15.Bt, 05.65.+e

(Some figures in this article are in colour only in the electronic version)
old and new amplitudes at tree level were computed in \cite{4–7}, also with fermions and scalars on the external legs.

A key ingredient of the CSW approach is the introduction of an off-shell continuation of the Parke–Taylor formula for the MHV amplitude of gluons, which is necessary in order to lift the amplitude to a full-fledged vertex. This off-shell continuation, which we will discuss in the following sections, is based on a decomposition of momenta identical to that used in lightcone quantization of Yang–Mills, where a generic momentum L is written as $L = l + \zeta \eta$. Here $\eta_{\alpha\dot{\alpha}} := \eta_{\alpha} \tilde{\eta}^{\dot{\alpha}}$ is an arbitrary null vector determining a lightlike direction, and l is also null. This resemblance is not accidental—indeed, it was shown in \cite{8} (see also \cite{9}) that a particular change of variables in the lightcone Yang–Mills path integral leads to a new action for the theory with an infinite number of MHV vertices. Mansfield used the holomorphicity of the MHV amplitudes of gluons to argue that the new vertices are precisely given by the Parke–Taylor formula continued off shell as proposed in \cite{3}. This was also checked explicitly for the four- and five-point vertices in \cite{10}. The same off-shell prescription was also recently seen to emerge from twistor actions in an axial gauge in \cite{11}.

Although initially limited to Yang–Mills theory, progress has also been made in other theories, specifically in gravity. This includes applications of the Britto–Cachazo–Feng (BCF) recursion relation \cite{12, 13} to amplitudes of gravitons \cite{14–17} and (generalized) unitarity \cite{18, 19}.

An important step was made in \cite{26}, where MHV rules for tree-level gravity amplitudes were formulated. The strategy followed in that paper was to determine these MHV rules as a special case of a BCF recursion relation, following the insight of \cite{28} for Yang–Mills theory. For example, consider the calculation of a next-to-MHV amplitude. By introducing shifts for the antiholomorphic spinors associated with the negative-helicity gluons, one obtains recursive diagrams immediately matching those of the CSW rules \cite{28}. Moreover, since gluon MHV amplitudes are holomorphic in the spinor variables, these shifts are to all effects invisible in the gluon MHV vertex. Finally, the spinor associated with the internal leg joining the two vertices as dictated by the BCF recursion relation is nothing but that introduced in the CSW prescription. A similar picture emerged in gravity \cite{26}, with the noticeable difference that graviton MHV amplitudes depend explicitly upon antiholomorphic spinors, hence the precise form of the shifts of \cite{28} is very relevant. We note in passing that these shifts break the reality condition $\bar{\lambda} = \pm \lambda^*$, thereby leading naturally to a formulation of (tree-level) MHV rules in a complexified Minkowski space. The new tree-level MHV rules of \cite{26} were successfully used to derive explicit expressions for several amplitudes in general relativity.

At the quantum level, the first applications of MHV rules were considered in \cite{29}, where the infinite sequence of one-loop MHV amplitude in $\mathcal{N} = 4$ super Yang–Mills was rederived using MHV diagrams (see \cite{30} for a review). One of the main points of \cite{29} is the derivation of an expression for the loop integration measure, to be reviewed in section 2, which made explicit the physical interpretation of the calculation as well as its relation to the unitarity-based approach of Bern \textit{et al} \cite{31, 32}. This integration measure turned out to be the product of a two-particle Lorentz-invariant phase-space (LIPS) measure and a dispersive measure. In brief, one could summarize the essence of the method by saying that, first, the LIPS integration computes the discontinuity of the amplitude, and then the dispersion integral reconstructs the full amplitude from its cuts. In \cite{33}, it was shown using the local character of MHV vertices and the Feynman tree theorem \cite{34, 35} that one-loop Yang–Mills amplitudes calculated using

\footnote{In particular, in \cite{19} (see also \cite{18, 20}) the interesting hypothesis that one-loop $\mathcal{N} = 8$ supergravity amplitudes can be expanded in terms of scalar box functions was only suggested. This hints at the possibility that $\mathcal{N} = 8$ supergravity, similarly to $\mathcal{N} = 4$ super Yang–Mills, is ultraviolet finite in four dimensions \cite{19, 21–25}.}

\footnote{Earlier attempts at determining off-shell continuations of the gravity MHV amplitudes can be found in \cite{6, 27}.}
MHV diagrams are independent of the choice of the reference spinor η_{α}, and that, in the presence of supersymmetry, the correct collinear and soft singularities are reproduced, lending strong support to the correctness of the method at one loop. Other applications of the method include the infinite sequence of MHV amplitudes in $\mathcal{N} = 1$ super Yang–Mills \cite{36, 37} and the cut-constructible part of the same amplitudes in pure Yang–Mills \cite{38}, as well as the recent calculations \cite{39–41} of Higgs plus multi-gluon scattering amplitudes at one loop using the ϕ-MHV rules introduced in \cite{42} and further discussed in \cite{43}. Amplitudes in non-supersymmetric Yang–Mills were also recently studied in \cite{44–46}, where derivations of the finite all-minus and all-plus gluon amplitudes were presented.

In this paper, we will discuss the MHV diagram calculation of the simplest one-loop amplitudes in gravity, namely the MHV amplitudes of gravitons in maximally supersymmetric $\mathcal{N} = 8$ supergravity\(^3\). The four-point amplitude was first obtained from the $\alpha' \to 0$ limit of a string theory calculation in \cite{47}, and then rederived in \cite{48} with the string-based method of \cite{49}, and also using unitarity. The infinite sequence of MHV amplitudes was later obtained in \cite{50}\(^4\). In the following, we will show that the MHV diagram method allows us to calculate MHV amplitudes in an efficient way, by summing a very small number of MHV diagrams. Similarly to the Yang–Mills case, the amplitudes are expressed as a phase-space integral followed by a dispersion integration, which reconstructs the full amplitudes from their cuts.

By construction, two-particle cuts and generalized cuts of a generic one-loop gravity amplitude obtained using an MHV-diagram-based approach automatically agree with those of the correct amplitude, in complete similarity to the Yang–Mills case (see the discussion in section 4 of \cite{33}). As in Yang–Mills, the crux of the problem consists in determining the off-shell continuation of the spinors associated with the loop legs, which will affect the rational terms in the amplitude; this off-shell continuation should be such that the final result is independent of the particular choice of the reference vector η, which is naturally introduced in the method. This is an important test which should be passed by any proposal for an MHV diagrammatic method.

We will suggest an off-shell continuation of the gravity MHV amplitudes which has precisely the effect of removing any unwanted η-dependence in the final result of the MHV diagram calculation, which correctly reproduces the known expression for the four-point MHV amplitude at one loop. Our prescription for the off-shell continuation, discussed in section 2, is based on the introduction of certain shifts for the anti-holomorphic spinors associated with the internal (loop) legs. This prescription is unique and has the advantage of preserving momentum conservation at each MHV vertex (in a sense to be fully specified in section 2). The mechanism at the heart of the cancellation of η-dependence is that of the ‘box reconstruction’ found in \cite{29}, where a generic two-mass easy box function is derived from summing over dispersion integrals of the four cuts of the function (the s- and t-channel cuts, and the cuts corresponding to the two massive corners). Each of the four terms separately contains η-dependent terms, but these cancel out when these terms are added. In section 3, we apply our off-shell continuation to calculate in detail the four-point MHV amplitude of gravitons at one loop. Section 4 illustrates the calculation for the case of five gravitons. Finally, we present our conclusions in section 5, where we outline the procedure to perform a calculation with an arbitrary number of external gravitons. Some technical details of the calculations are discussed in the appendices.

\(^3\) In this theory, scattering amplitudes of gravitons having all with the same helicity, or all but one, vanish identically as a consequence of supersymmetry.

\(^4\) See \cite{51} for a nice review on gravity amplitudes and their properties.
2. Off-shell continuation of gravity MHV amplitudes and shifts

The main goal of this section is to discuss (and determine) a certain off-shell continuation of the MHV amplitude of gravitons which we will use as an MHV vertex. We will shortly see that, compared to the Yang–Mills case, peculiar features arise in gravity, where the expression of the MHV amplitudes of gravitons contains both holomorphic and anti-holomorphic spinors.

We start by considering the decomposition of a generic internal (possibly loop) momentum L which is commonly used in applications of the MHV diagram method,

$$L = l + z\eta,$$ \hspace{1cm} (2.1)

Here η is a fixed, arbitrary null vector and z is a real number; furthermore, $l^2 = 0$. We focus on a generic MHV diagram contributing to the one-loop MHV amplitude of gravitons, see figure 1. Using the parametrization (2.1), momentum conservation in the loop, $L_2 - L_1 + P_L = 0$, can be rewritten as

$$P_L + l_2 - l_1 - z\eta = 0,$$ \hspace{1cm} (2.2)

where

$$z := z_1 - z_2,$$ \hspace{1cm} (2.3)

and P_L is the sum of the momenta on the left-hand side of the diagram.

The usual CSW off-shell prescription for calculating tree-level [3] and one-loop [29] amplitudes from MHV diagrams in Yang–Mills consists in decomposing any internal (off-shell) momentum L as in (2.1), and using the holomorphic spinor l_α associated with the null momentum $l_\dot{\alpha} = l_\alpha$ in the expression of the MHV vertices. In Yang–Mills, this prescription has been shown to work for a variety of cases at tree- [4–7] and one-loop level [29, 33, 36–38, 44]. Moreover, Mansfield showed in [8] that it arises naturally in the framework of the lightcone quantization of Yang–Mills theory, from which MHV rules are obtained via a particular change of variables in the functional integral\(^5\).

Using l_1 and l_2 in the expressions of the vertices in place of the loop momenta L_1 and L_2 has the consequence of effectively ‘breaking’ momentum conservation at each vertex\(^6\)—the momenta which are inserted in the expression of each MHV vertex do not sum to zero, as $l_2 - l_1 + P_L = z\eta \neq 0$. Interestingly, for tree-level Yang–Mills it was shown in [28] that momentum conservation can formally be reinstated by appropriately shifting the anti-holomorphic spinors of the momenta of the external negative-helicity particles. These shifts do not affect the Parke–Taylor expressions of the MHV vertices, as these only contain holomorphic spinors—they are invisible.

\(^5\) Very recent discussions of the specific issues arising when applying the MHV method to the loop level in non-supersymmetric theories can be found in [44–46].

\(^6\) This effective violation of momentum conservation was already observed and discussed in section 2 of [14].
The situation in gravity is quite different. The infinite sequence of MHV amplitudes of gravitons was found by Berends, Giele and Kuijf in [53] and is given by an expression which contains both holomorphic and anti-holomorphic spinors (for a number of external gravitons larger than three). The new formula for the n-point graviton scattering amplitude found in [14] also contains holomorphic as well as anti-holomorphic spinors. Thus, it appears necessary to introduce a prescription for an off-shell continuation of anti-holomorphic spinors \tilde{l}_α related to the loop momenta. We look for this prescription in a way which allows us to solve a potential ambiguity which we now discuss.

We begin by observing that, a priori, several expressions for the same tree-level gravity MHV amplitude can be presented. For example, different realizations of the KLT relations [56] may be used, or different forms of the BCF recursion relations (two of which were considered in [14, 15]). Upon making use of spinor identities and, crucially, of momentum conservation, one would discover that these different-looking expressions for the amplitudes are actually identical. However, without momentum conservation in place, these expressions are no longer equal. We conclude that if we do not maintain momentum conservation at each MHV vertex, we would face an ambiguity in selecting a specific form for the graviton MHV vertex—the expressions obtained by simply using the spinors l_α and \tilde{l}_α obtained from the null vectors $l_i = L_i - z_i$ as in the Yang–Mills case, would in fact be different. Not surprisingly, the difference between any such two expressions amounts to η-dependent terms; stated differently, the expressions for the amplitudes naively continued off-shell would present us with spurious η-dependence. This ambiguity does not arise in the Yang–Mills case, where there is a preferred, holomorphic expression for the MHV amplitude of gluons, given by the Parke–Taylor formula.

We propose to resolve the ambiguity arising in the gravity case by resorting to certain shifts in the loop momenta, to be determined shortly, which have the effect of reinstating momentum conservation, in a way possibly reminiscent of the tree-level gravity MHV rules of [26]. As we shall see, these shifts determine a specific prescription for the off-shell continuation of the spinors associated with the loop legs.

Specifically, our procedure consists in interpreting the term $-z\eta$ in (2.2) as generated by a shift on the anti-holomorphic spinors of the loop momenta in the off-shell continuation of the MHV amplitudes. Absorbing this extra term into the definition of shifted momenta \tilde{L}_1 and \tilde{L}_2 allows us to preserve momentum conservation at each vertex also off shell. Indeed, we now write momentum conservation as

$$P_L + \tilde{L}_2 - \tilde{L}_1 = 0.$$ \hfill (2.4)

The hatted loop momenta are defined by a shift in the anti-holomorphic spinors,

$$\tilde{L}_{1\alpha\dot{\alpha}} = l_{1\alpha} \tilde{\tilde{l}}_{1\dot{\alpha}}, \quad \tilde{L}_{2\alpha\dot{\alpha}} = l_{2\alpha} \tilde{\tilde{l}}_{2\dot{\alpha}}.$$ \hfill (2.5)

We find that the form of the shifts is natural and unique. Solving for the anti-holomorphic spinors \tilde{L}_1 and \tilde{L}_2, one gets\(^7\)

$$\tilde{\tilde{l}}_1 = \tilde{l}_1 - z \frac{\langle l_2 \eta \rangle}{\langle l_1 l_2 \rangle} \tilde{\eta}, \quad \tilde{\tilde{l}}_2 = \tilde{l}_2 - z \frac{\langle l_1 \eta \rangle}{\langle l_1 l_2 \rangle} \tilde{\eta}. \hfill (2.6)$$

It is easy to check that the contribution of the shifts is

$$l_{2\alpha} \tilde{\tilde{l}}_{2\dot{\alpha}} - l_{1\alpha} \tilde{\tilde{l}}_{1\dot{\alpha}} = -z \eta \alpha \tilde{\eta} \dot{\alpha}, \hfill (2.7)$$

where we have used the Schouten identity ($\langle l_1 \eta \rangle \langle l_2 \dot{\eta} \rangle - \langle l_2 \eta \rangle \langle l_1 \dot{\eta} \rangle) / \langle l_1 l_2 \rangle = \eta \alpha$.

\(^7\) Note that the off-shell prescription for the holomorphic spinors $l_{1\alpha}$ and $l_{2\alpha}$ is the usual CSW prescription.
Our prescription (2.6) will then consist in replacing all the anti-holomorphic spinor variables associated with loop momenta with the corresponding shifted spinors. For example, the spinor bracket $[i_2 l_1]$ becomes

$$[\hat{i}_2 \hat{l}_1] = [i_2 l_1] - 2\pi P_L \cdot \eta (l_1 l_2).$$

(2.8)

Note also that

$$s_{l_1 - l_2} := (\hat{l}_2 - \hat{l}_1)^2 = -(l_1 l_2)[\hat{i}_2 \hat{l}_1] = P_L^2.$$

(2.9)

A few comments are now in order:

1. In [28], a derivation of tree-level MHV rules in Yang–Mills was discussed which makes use of shifts in the momenta of external legs. This approach was used in [26], where a long sought-after derivation of tree-level gravity MHV rules was presented. We differ from the approach of [26, 28] in that we shift the momenta of the (off-shell) loop legs rather than the external momenta. It would clearly be interesting to find a first principle derivation of the shifts (2.6), perhaps from an action-based approach, along the lines of [8], as well as to relate our shifts to those employed at tree level in [26].

2. Our procedure of shifting the loop momenta in order to preserve momentum conservation off shell can also be applied to MHV diagrams in Yang–Mills. Indeed, using the Parke–Taylor expression for the MHV vertices would result in these shifts being invisible. We would like to point out that, in principle, one could use different expressions even for an MHV gluon scattering amplitude, possibly containing anti-holomorphic spinors. Had one chosen this second (unnecessarily complicated) path, our prescription (2.6) for shifts in anti-holomorphic spinors would guarantee that the non-holomorphic form of the vertex would always boil down to the Parke–Taylor form. Clearly, having to deal with holomorphic vertices, as in Yang–Mills, is a great simplification. The importance of holomorphicity of the MHV amplitudes is further appreciated in Mansfield’s derivation [8] of tree-level MHV rules in Yang–Mills.

In the following section, we will test the ideas discussed earlier in a one-loop calculation in $\mathcal{N} = 8$ supergravity, specifically that of a four-point MHV scattering amplitude of gravitons. We will then consider applications to amplitudes with arbitrary number of external particles.

3. Four-point MHV amplitude at one loop with MHV diagrams

In this section, we will rederive the known expression for the four-point MHV scattering amplitude of gravitons $\mathcal{M}(1^-2^+3^-4^+) \; \text{using MHV rules.}$ As in the Yang–Mills case, we will have to sum over all possible MHV diagrams, i.e. diagrams such that all the vertices have the MHV helicity configuration. Moreover, we will also sum over all possible internal helicity assignments, and over the particle species which can run in the loop. Specifically, we will focus on $\mathcal{N} = 8$ supergravity, where all the one-loop amplitudes are believed to be expressible as sums of box functions only [18–20]. In this case, the result of [47, 48] is

$$\mathcal{M}^{N=8}_{1\text{-loop}} = \mathcal{M}^{\text{tree}} [u F(1234) + t F(1243) + s F(1324)],$$

(3.1)

where $\mathcal{M}^{\text{tree}}$ is the four-point MHV amplitude, and $F(ijkl)$ are zero-mass box functions with external, cyclically ordered null momenta i, j, k and l. The kinematical invariants s, t, u are defined as $s := (k_1 + k_2)^2, t := (k_2 + k_3)^2, u := (k_1 + k_3)^2 = -s - t$. We will see in our MHV diagrams approach that each box function appearing in (3.1) will emerge by summing over appropriate dispersion integrals of two-particle phase-space integrals, similarly to the Yang–Mills case [29]. The result we will find is in complete agreement with the known expression found in [47, 48].
One-loop $N = 8$ supergravity amplitudes from MHV diagrams

3.1. MHV diagrams in the s-, t- and u-channels

We start by computing the MHV diagram in figure 2. This diagram has a nontrivial s-channel cut, hence we will refer to it as to the ‘s-channel MHV diagram’. Its expression is given by

$$\mathcal{M}_s = \int d\mu_{k_1+k_2} A(1^-2^-l_1^-l_2^+),$$

(3.2)

The integration measure $d\mu_{P_L}$ is [29]

$$d\mu_{P_L} = \frac{d^4L_1}{L_1^{+i\epsilon}} \frac{d^4L_2}{L_2^{+i\epsilon}} \delta(PL-L_1+P_L),$$

(3.3)

where, for the specific case of (3.2), we have $P_L = k_1 + k_2$. Note the hats in (3.2), which stand for the shifts defined in (2.6). These shifts are such to preserve momentum conservation off shell, hence we can use any of the (now equivalent) forms of MHV amplitudes of gravitons as off-shell vertices. We choose the expression for the four-graviton MHV amplitude obtained by applying the KLT relation (C.2), thus getting

$$\mathcal{M}(1^-2^-l_1^-l_2^+) = -is_{12}A(1^-2^-l_1^-l_2^+),$$

(3.4)

$$\mathcal{M}(l_1^-l_2^+3^+4^+) = -is_{12}A(l_1^-l_2^+3^+4^+),$$

(3.5)

where A’s are Yang–Mills amplitudes. We need not shift the l’s appearing inside the gauge theory amplitudes, as these are holomorphic in the spinor variables.

Using the Parke–Taylor formula for the MHV amplitudes and the result (2.9), the s-channel MHV diagram gives

$$\mathcal{M}_s = \frac{(12)^8}{(2)^2(34)^2} x^2 \int d\mu_{k_1+k_2} \frac{\langle l_1 l_2 \rangle^4}{\langle 1l_1 \rangle \langle 2l_1 \rangle \langle 3l_1 \rangle \langle 4l_1 \rangle \langle 1l_2 \rangle \langle 2l_2 \rangle \langle 3l_2 \rangle \langle 4l_2 \rangle}.$$
two-particle cut, we will call them t-channel and u-channel MHV diagram, respectively. For these diagrams, all particles in the $\mathcal{N} = 8$ supergravity multiplet can run in the loop, and moreover we will have to sum over the two possible internal helicity assignments. Using supersymmetric Ward identities \cite{54, 55} it is possible to write this sum over contributions from all particles running in the loop as the contribution arising from a scalar loop times a purely holomorphic quantity $\rho_{\mathcal{N}=8}$ \cite{48}, where
\begin{equation}
\rho_{\mathcal{N}=8} := \frac{(12)^8(l_1 l_2)^8}{((1l_2)(2l_1)(l_1 l_2))^4}.
\tag{3.7}
\end{equation}
It is then easy to check that the results in the t- and u-channels are exactly the same as the s-channel, with the appropriate relabelling of the external legs (apart from the overall factor $(12)^8$). For example, in the t-channel we find
\begin{equation}
\mathcal{M}_t = -\frac{(12)^8}{(23)^2(41)^2} t^2 \int d\mu k_1 k_2 k_3 k_4 l_1 l_2 (l_1 l_2)^4.
\tag{3.8}
\end{equation}
Making use of momentum conservation, it is immediate to see that the prefactors of (3.6) and (3.8) are identical, $s^2/((12)(34))^2 = t^2/((23)(41))^2$.

We will discuss the specific evaluation of the s-channel MHV diagram (3.6) and the t- and u-channel diagrams in section 3.3. Before doing so, we would like to first write the expressions of the remaining MHV diagrams, which have a null two-particle cut.

\subsection*{3.2. Diagrams with null two-particle cut}

In the unitarity-based approach of BDDK, diagrams with a null two-particle cut are of course irrelevant, as they do not have a discontinuity. However in the MHV diagram method we have to consider them \cite{29, 37, 38}. As also observed in the calculation of the gauge theory amplitudes considered in those papers, we will see that these diagrams give rise to contributions proportional to dispersion integrals of (one-mass or zero-mass) boxes in a channel with null momentum. For generic choices of η the contribution of these diagrams is non-vanishing, and important in order to achieve the cancellation of η-dependent terms. For specific, natural choices of η \cite{29}, one can see that these diagrams actually vanish by themselves; see appendix A for a discussion of this point.

To be specific, let us consider the diagram with particles 1, 2 and 3 on the left, and particle 4 on the right (see figure 4). The remaining three diagrams (with particle 4 replaced by particles 1, 2 and 3, respectively) are obtained by relabelling the external particles and summing over the particles running in the loop, when required.

The action of the shifts (2.6) allows us to preserve momentum conservation off shell in the form
\begin{equation}
k_1 + k_2 + k_3 + \hat{l}_2 - \hat{l}_1 = 0
\tag{3.9}
\end{equation}
on the left and
\[k_4 - \hat{I}_2 + \hat{I}_1 = 0 \tag{3.10} \]
on the right. Equations (3.9) and (3.10) again imply that global momentum conservation \(\sum_{i=1}^{4} k_i = 0 \) is also preserved.

The expression for the diagram in figure 4 is given by
\[\mathcal{M}_{ijkl} = \int d\mu_{k_i} \mathcal{M}(1 - 2 - 3^4)\mathcal{M}(l_1 - l_2 - 4^*). \tag{3.11} \]

In order to obtain an expression for the five-point tree-level vertex entering (3.11), we apply the KLT relation (C.3), whereas for the three-point vertex we simply use (C.1). Thus, we get
\[\mathcal{M}_{ijkl} = \int d\mu_{k_i} \left[s_{12} s_{43} A(1 - 2 - 3^4) + s_{13} s_{24} A(1 - 3 - 2^4) - \right. \]
\[\left. + s_{14} s_{23} A(1 - 4 - 2^4) \right] A(1 - l_1 - l_2 - 4^*), \tag{3.12} \]
where the vector \(\hat{I}_2 \) is shifted.

We can now rewrite (3.12) as
\[\mathcal{M}_{ijkl} = \frac{(12)^8}{(12)(13)(32)} \int d\mu_{k_i} \left[\frac{(l_1 l_2)^5}{(l_1 l_2)} \right] \tag{3.13} \]
Note that apparently (3.13) contains unphysical double poles in \((4l_1) \) and \((4l_2) \), generated by the presence of the three-point vertex \([A(1 - l_1 - l_2 - 4^*)]^2 \) in (3.12). What we are going to show is that thanks to momentum conservation—now always preserved in terms of the shifted momenta—these double poles disappear. Furthermore, we will show that the integrand has exactly the same form as that in (3.6), obtained from diagrams with a two-particle cut.

We start by factorizing out of the integrand (3.13) the quantity
\[Q = \frac{(l_1 l_2)^4}{\prod_{j=1}^{4} (l_j l_j)}. \tag{3.14} \]

We are then left with
\[\frac{(12)^8}{(12)(13)(32)} \left[(13)[21][2l_2][l_2] - (12)[31][3l_2][l_2] \right] \frac{(l_1 l_2)}{(l_1 l_1)(l_2 l_2)}. \tag{3.15} \]
By using momentum conservation (3.10) on the right-hand side MHV vertex, we can rewrite (3.15) as
\[\frac{(12)^8}{(12)(13)(32)} \left[(13)[21][34] \frac{(2l_2)}{(4l_2)} - (12)[23][24] \frac{(3l_2)}{(4l_2)} \right]. \tag{3.16} \]
Using momentum conservation \(\sum_{i=1}^{4} k_i = 0 \) in the form
\[(3l_2)[31] = -(4l_2)[41] - (2l_2)[21], \tag{3.17} \]
we get
\[\frac{(12)^8}{(12)(13)(32)} \left[(12)[24][41] + ((13)[34] + (12)[24])2l_2 \right] \frac{(2l_2)}{(4l_2)} = \frac{(12)^8}{(12)(13)(32)} (12)[24][41]. \tag{3.18} \]
The surprise is that the coefficient (3.18) is actually the negative of the prefactor which multiplies the integral in the expression (3.6) for the MHV diagrams corresponding to the s-channel. We can thus rewrite (3.13) as

$$M_{k_1} = \frac{(12)8}{(12)^2(34)^2} s^2 \int d\mu_{k_1} \frac{\langle l_1 l_2 \rangle^4}{(1l_1)(2l_1)(3l_1)(4l_1)(1l_2)(2l_2)(3l_2)(4l_2)},$$

(3.19)

which is the opposite of the right-hand side of (3.6)—except for the integration measure $d\mu_{k_1}$ appearing in (3.19), which is different from that in (3.6) (as the momentum flowing in the cut is different). As we shall see in the following section, the relative minus sign found in (3.19) compared to (3.6) is precisely needed in order to reconstruct box functions from summing dispersive integrals (see (3.57)), one for each cut, as it was found in [29].

3.3. Explicit evaluation of the one-loop MHV diagrams

In the previous sections, we have encountered a peculiarity of the gravity calculation, namely the fact that the expression for the integrand of each MHV diagram contributing to the four-point graviton MHV amplitude turns out to be the same—compare, for example, (3.6), (3.8), (3.19), which correspond to the s, t- and k_2-channel MHV diagram, respectively. Therefore, we will focus on the expression of a generic contribution of these MHV diagrams, for example, from (3.6),

$$M = \frac{(12)8}{(12)^2(34)^2} s^2 \int d\mu_{Pl} \frac{\langle l_1 l_2 \rangle^4}{(1l_1)(2l_1)(3l_1)(4l_1)(1l_2)(2l_2)(3l_2)(4l_2)},$$

(3.20)

and perform the relevant phase-space and dispersion integrals.

In order to evaluate (3.20), we need to perform the PV reduction of the phase-space integral of the quantity Q defined in (3.14). To carry out this reduction efficiently, we use the trick of performing certain auxiliary shifts, which allow us to decompose (3.14) in partial fractions. Each term produced in this way will then have a very simple PV reduction.

First, we write Q as

$$Q := \langle l_1 l_2 \rangle^4 XY,$$

(3.21)

where

$$X = \frac{1}{\prod_{i=1}^4 (il_2)},$$

(3.22)

$$Y = \frac{1}{\prod_{i=1}^4 (il_1)},$$

(3.23)

and perform the following auxiliary shift:

$$\tilde{\lambda}_{l_2} = \lambda_{l_2} + \omega \lambda_{l_1},$$

(3.24)

on the quantity X in (3.22) (we will later apply the same procedure on Y). We call \tilde{X} the corresponding shifted quantity,

$$\tilde{X} = \frac{1}{\prod_{i=1}^4 ((il_2) + \omega (il_1))}.$$

(3.25)

Next, we decompose \tilde{X} in partial fractions, and finally set $\omega = 0$. After using the Schouten identity, we find that X can be recast as

$$X = \frac{1}{\langle l_1 l_2 \rangle^3} \sum_{i=1}^4 \frac{\langle il_1 \rangle^3}{\prod_{m \neq i} (im) \langle il_2 \rangle}.$$

(3.26)
One can proceed in a similar way for Y defined in (3.23), and, in conclusion, (3.14) is re-expressed as

$$Q = \sum_{i,j=1}^{4} \frac{1}{\prod_{m \neq i} (i m)} \frac{1}{\prod_{l \neq j} (j l)} \frac{\langle ii \rangle^{3} \langle ji \rangle^{3}}{\langle ji \rangle^{2} \langle ii \rangle}.$$

We now set

$$Q = \sum_{i,j=1}^{4} \frac{1}{\prod_{m \neq i} (i m)} \frac{1}{\prod_{l \neq j} (j l)} K,$$

where

$$K := \frac{\langle ii \rangle^{3} \langle ji \rangle^{3}}{\langle ji \rangle^{3}},$$

and substitute the Schouten identity for the factor $\langle ii \rangle^{2} \langle ji \rangle^{2}$ in K. By multiplying for appropriate anti-holomorphic inner products (of unshifted spinors), we are able to reduce K to the sum of three terms as follows:

$$K = \frac{\langle [l_2 P_{L;i}]^2 (j l_2 P_{L;i})^2 \rangle}{\langle [l_2 P_{L;i}]^2 \rangle^2} + 2 \langle ij \rangle \frac{\langle [l_2 P_{L;i}]^2 \rangle}{\langle [l_2 P_{L;i}]^2 \rangle} + \langle ji \rangle^2 R(ji),$$

where

$$P_{L;i} := P_{L} - z \eta,$$

and z is defined in (2.3). The first term in (3.30) gives two-tensor bubble integrals, the second linear bubbles, and the third term generates the usual R-function, familiar from the Yang–Mills case. This is defined by

$$R(ji) = \frac{\langle ji \rangle \langle ii \rangle}{\langle ji \rangle \langle ji \rangle}.$$

We can then decompose the R-function as

$$R(ji) = \frac{2(i j)(i l_2) + (i l_2)(i j)}{(i j)^2(i l_2 + j)^2} = -1 + \frac{1}{2} \left[\frac{P_{L;i}}{l_2^2} - \frac{P_{L;i}}{l_1^2} \right] + \frac{2(i P_{L;i})(j P_{L;i}) - P_{L;i}^2(i j)}{4(l_2)(l_1)}. $$

The phase-space integral of the first term on the right-hand side of (3.33) corresponds to a scalar bubble, whereas the second and the third one correspond to triangles; finally, the phase-space integral of the last term in (3.33) gives rise to a box function. The last term is usually called $R_{\text{eff}}(ji)$,

$$R_{\text{eff}}(ji) := \frac{N(P_{L;i})}{(i j)^2(i l_2 + j)^2},$$

where

$$N(P_{L;i}) := -2(i P_{L;i})(j P_{L;i}) + P_{L;i}^2(i j).$$

We now show the cancellation of bubbles and triangles, which leaves us just with box functions.

To start with, we pick all contributions to (the phase-space integral of) (3.28) corresponding to scalar, linear and two-tensor bubbles, which we identify using (3.30). These are given by

$$Q_{\text{bubbles}} = \sum_{i,j=1}^{4} \frac{1}{\prod_{m \neq i} (i m)} \frac{1}{\prod_{l \neq j} (j l)} \left[\frac{\langle [l_2 P_{L;i}]^2 (j l_2 P_{L;i})^2 \rangle}{\langle [l_2 P_{L;i}]^2 \rangle^2} + 2 \langle ij \rangle \frac{\langle [l_2 P_{L;i}]^2 \rangle}{\langle [l_2 P_{L;i}]^2 \rangle} - \langle ij \rangle^2 \right].$$

(3.36)
Explicitly, the phase-space integrals of linear and two-tensor bubbles are given by

\[I^\mu = \int \mathcal{L} \mathcal{I} \mathcal{P} \mathcal{S} (l_2^2, -l_1^2; P_{L; z}) l_2^\mu = -\frac{1}{2} P_{L; z}^\mu \] (3.37)

and

\[I^{\mu\nu} = \int \mathcal{L} \mathcal{I} \mathcal{P} \mathcal{S} (l_2^2, -l_1^2; P_{L; z}) l_2^\mu l_2^\nu = \frac{1}{3} \left[P_{L; z}^{\mu} P_{L; z}^{\nu} - \frac{1}{4} \eta^{\mu\nu} P_{L; z}^2 \right]. \] (3.38)

Thus, we find that the bubble contributions arising from (3.36) give a result proportional to

\[C = \sum_{i,j=1}^4 \frac{(ij)^2}{\prod_{m \neq i} (im) \prod_{j \neq i} (jl)}. \] (3.39)

Using the Schouten identity, it is immediate to show that \(C = 0 \). We remark that the previous expression vanishes also for a fixed value of \(i \).

We now move on to consider the triangle contributions. From (3.28) and (3.33), we get

\[Q_{\text{triangles}} = \sum_{i,j=1}^4 \frac{1}{\prod_{m \neq i} (im) \prod_{j \neq i} (jl)} \left[\frac{P_{L; i} - P_{L; j}}{l_2^i} - \frac{P_{L; j} - P_{L; i}}{l_1^i} \right]. \] (3.40)

We observe that the combination

\[\int \mathcal{L} \mathcal{I} \mathcal{P} \mathcal{S} \left[\frac{P_{L; z}^j}{l_1^j} - \frac{P_{L; z}^i}{l_2^i} \right] = -\frac{4\pi \lambda}{\epsilon} \] (3.41)

is independent of \(i \) and \(j \), hence we can bring the corresponding term in (3.40) outside the summation, obtaining again a contribution proportional to the coefficient (3.39), which vanishes; this proves the cancellation of triangles. We conclude that each one-loop MHV diagram is written just in terms of box functions, and is explicitly given by

\[\mathcal{M} = -\frac{(12)!}{(12)^2 (34)!} s^2 \int \mathcal{d} \mu_{P_k} \sum_{i \neq j} \frac{(ij)^2}{\prod_{m \neq i} (im) \prod_{j \neq i} (jl)} \frac{N(P_{L; z})}{(l_1 - j)^2(l_2 + i)^2}. \] (3.42)

We remind that \(P_k \) is the sum of the (outgoing) momenta in the left-hand side MHV vertex. To get the full amplitude at one loop we will then have to sum over all possible MHV diagrams.

The next task consists in performing the loop integration. To do this, we follow steps similar to those discussed in [29], namely:

1. We rewrite the integration measure as the product of a Lorentz-invariant phase-space measure and an integration over the \(z \)-variables (one for each loop momentum) introduced by the off-shell continuation\(^8\).

\[\mathcal{d} \mu_{P_L} := \frac{d^4 L_1}{L_1^2} \frac{d^4 L_2}{L_2^2} \delta^{(4)}(L_2 - L_1 + P_L) \frac{dz_1}{z_1} \frac{dz_2}{z_2} \mathcal{L} \mathcal{I} \mathcal{P} \mathcal{S}(l_2^2, -l_1^2; P_{L; z}). \] (3.43)

2. We change variables from \((z_1, z_2)\) to \((z, z')\), where \(z' := z_1 + z_2 \) and \(z \) is defined in (2.3), and perform a trivial contour integration over \(z' \).

3. We use dimensional regularization on the phase-space integral of the boxes,

\[\mathcal{P} = \int \mathcal{d}^D \mathcal{L} \mathcal{I} \mathcal{P} \mathcal{S}(l_2^2, -l_1^2; P_L) \frac{N(P_L)}{(l_1 - j)^2(l_2 + i)^2}. \] (3.44)

\(^8\) Up to a common constant, which will not be needed in the following.

\(^9\) In this and the following formulae, the appropriate \(i \varepsilon \) prescriptions are understood. These have been extensively discussed in section 5 of [33].
This evaluates to all orders in ϵ to

$$P = \frac{\pi^{\frac{3}{2} - \epsilon}}{\Gamma\left(\frac{1}{2} - \epsilon\right)} \frac{1}{\epsilon} \left| \frac{P^2}{4} \right|^{\frac{1}{2} - \epsilon} \, \mathcal{F}_1\left(1, -\epsilon, 1 - \epsilon, aP^2_L\right), \tag{3.45}$$

where

$$a := \frac{P^2 + Q^2 - s - t}{P^2 Q^2 - st}. \tag{3.46}$$

The phase-space integral in (3.45) is computing a particular discontinuity of the box diagram represented in figure 5, with $p = i$ and $q = j$, where the cut momentum is P_L.

(4) We perform the final z-integral by defining the new variable

$$s' := P^2_{Lz} = P^2_L - 2zP_L \cdot \eta. \tag{3.47}$$

One notes that [29]

$$\frac{dz}{z} = \frac{ds'}{s' - P^2}. \tag{3.48}$$

hence the z-integral leads to a dispersion integral in the P^2_L-channel. At this point, we select a specific value for η, namely we choose it to be equal to the momentum of particles j or i^{10}. Specifically, performing the phase-space integration and the dispersive integral for a box in the P^2_L-channel, we get

$$\int d\mu_P \frac{N(P_{Lz})}{(l_1 - j)^2(l_2 + i)^2} = -\frac{c_{\Gamma}}{\epsilon^2} \frac{(-P^2_L)^{s'}}{2} \mathcal{F}_1\left(1, -\epsilon, 1 - \epsilon, aP^2_L\right)$$

$$:= F_{P^2_L}(p, P, q, Q), \tag{3.49}$$

where

$$c_{\Gamma} := \frac{\Gamma(1 + \epsilon)\Gamma^2(1 - \epsilon)}{(4\pi)^{2 - \epsilon}\Gamma(1 - 2\epsilon)}. \tag{3.50}$$

10 These natural choices of η, discussed in section 5 of [29], are reviewed in appendix A.
The subscript P_L refers to the dispersive channel in which (3.49) is evaluated; the arguments of F_{PL}^2 correspond to the ordering of the external legs of the box function.

We can rewrite (3.42) as

$$
\mathcal{M} = -2 \frac{(12)^8}{(12)^2(34)^2} r^2 \int d\mu \rho \sum_{i,j} \frac{\langle i j \rangle^2}{\prod_{m \neq i} \langle m i \rangle \prod_{l \neq j} \langle j l \rangle (l_1 - j)^2 (l_2 + j)^2} N(P_{L,z})
$$

or, in terms of the R_{eff}-functions introduced in (3.34),

$$
\mathcal{M} = -2 \frac{(12)^8}{(12)^2(34)^2} r^2 \int d\mu \rho \left[\frac{R_{eff}(13) + R_{eff}(24)}{(12)(14)(32)(34)} + \frac{R_{eff}(23) + R_{eff}(14)}{(12)(13)(42)(43)} \right]
$$

For the sake of definiteness, we now specify the PV reduction we have performed to the aP phase-space integrals, one encounters two distinct cases: either the quantity $\eta = 1$ or $\eta = 2$. Prior to the dispersive integration, this box has three nontrivial cuts: $s_z = (k_1 - z\eta)^2$, $t_z = (k_2 - z\eta)^2$ and $Q_z^2 = (k_3 + k_4 + z\eta)^2$. Using (3.45) to perform the phase-space integrals, one encounters two distinct cases: either the quantity $aP_{L,z}^2$ is finite but $P_{L,z}^2 \to 0$ ($P_{L,z}$ is the momentum flowing in the cut); or $aP_{L,z}^2 \to \infty$. It is then easy to see that in both cases the corresponding contribution vanishes\(^\text{11}\). The conclusion is that such boxes can be discarded altogether. For the same reason these diagrams were discarded in the Yang–Mills case.

Next, we consider the s-channel MHV diagram. In this case, the second term in (3.52) gives contribution to vanishing boxes like that depicted in figure 6, the first and last terms instead give the contribution:

$$
\mathcal{M}^{tree}[u F_{s}(1234) + s F_{s}(1324)].
$$

Similarly, for the u-channel we obtain

$$
\mathcal{M}^{tree}[s F_{u}(1324) + t F_{u}(1243)].
$$

Again the subscript indicates the channel in which the dispersion integral is performed ($s := s_{12}$) and

$$
\mathcal{M}^{tree} := \frac{(12)^8}{(13)(14)(23)(24)(34)^2}
$$

is the tree-level four-graviton MHV scattering amplitude.

The last two terms in (3.52) give a contribution to particular box diagrams, where one of the external legs happens to have a vanishing momentum. In principle, these boxes are reconstructed, as all the others, by summing over dispersion integrals in their cuts (note that in this case there is one cut missing, corresponding to the η^2-channel). However, one can see that these box diagrams give a vanishing contribution already at the level of phase-space integrals, when η is chosen, for each box, in exactly the same way as in the Yang–Mills calculation of [29]. For example, consider the box diagram in figure 6, for which these natural choices are $\eta = k_1$ or $\eta = k_2$. Prior to the dispersive integration, this box has three nontrivial cuts: $s_z = (k_1 - z\eta)^2$, $t_z = (k_2 - z\eta)^2$ and $Q_z^2 = (k_3 + k_4 + z\eta)^2$. Using (3.45) to perform the phase-space integrals, one encounters two distinct cases: either the quantity $aP_{L,z}^2$ is finite but $P_{L,z}^2 \to 0$ ($P_{L,z}$ is the momentum flowing in the cut); or $aP_{L,z}^2 \to \infty$. It is then easy to see that in both cases the corresponding contribution vanishes\(^\text{11}\). The conclusion is that such boxes can be discarded altogether. For the same reason these diagrams were discarded in the Yang–Mills case.

Next, we consider the t-channel MHV diagram. In this case, the second term in (3.52) gives contribution to vanishing boxes like that depicted in figure 6, the first and last terms instead give the contribution:

$$
\mathcal{M}^{tree}[t F_{t}(1234) + s F_{t}(1324)].
$$

11 In the second case, we make use of the identity $z F_{1}(-\epsilon, 1 - \epsilon, z) = (1 - z)^\epsilon z F_{1}(-\epsilon, 1 - \epsilon, 1 - \epsilon, \frac{1}{1 - z})$.
One-loop $\mathcal{N} = 8$ supergravity amplitudes from MHV diagrams

As in the Yang–Mills case, we have to sum over all possible MHV diagrams. In particular, we will also have to include the k_1^2, k_2^3, k_3^2 and k_4^2-channel MHV diagrams. In section 3.2, we have seen that, prior to the phase-space and dispersive integration, these diagrams produce expressions identical up to a sign to those in the s-, t- and u-channels. Hence, they will give rise to dispersion integrals of the same cut-boxes found in those channels, this time in their P^2- and Q^2-cuts. They appear with the same coefficient, but opposite sign. We can thus collect dispersive integrals in different channels of the same box function, which appear with the same coefficient, and use the result proven in [29]

$$F = F_s + F_t - F_{P^2} - F_{Q^2}, \quad (3.57)$$

in order to reconstruct each box function from the four dispersion integrals in its s-, t-, P^2-, and Q^2-channels12. For completeness, we quote from [33] the all orders in ϵ expression for a generic two-mass easy box function,

$$F = -\frac{c_T}{\epsilon^2} \left[\left(\frac{-s}{\mu^2} \right)^{-\epsilon} 2 F_1 (1, -\epsilon, 1 - \epsilon, a s) + \left(\frac{-l}{\mu^2} \right)^{-\epsilon} 2 F_1 (1, -\epsilon, 1 - \epsilon, a t) - \left(\frac{-P^2}{\mu^2} \right)^{-\epsilon} 2 F_1 (1, -\epsilon, 1 - \epsilon, a P^2) - \left(\frac{-Q^2}{\mu^2} \right)^{-\epsilon} 2 F_1 (1, -\epsilon, 1 - \epsilon, a Q^2) \right], \quad (3.58)$$

where c_T is defined in (3.50).

As an example, we discuss in more detail how the box $F(1324)$ (depicted in figure 7) is reconstructed. Due to the degeneracy related to the particular case of four particles, both the R-functions $R(12)$ and $R(34)$ give contributions to this box (see the third term in the result (3.52))13. Let us focus on the contribution from the function $R(12)$, corresponding to the box in figure 7. This box function gets contributions from MHV diagrams in the channels $u = s_{13}, t = s_{32}, k_1^2$ and k_2^2. They all appear with the same coefficient, given by the third

12 Note that in (3.57), the subscript refers to the channels of the box function itself (which are different for each box).

13 This box is reconstructed as a two-mass easy box with massless legs given by the entries of the R-function; in the specific four-particle case, the massive legs of the two-mass easy function are, of course, also massless.
term in (3.52), the last two contributions having opposite signs, as shown (we note that for all the others diagrams this term in the result gives contribution to vanishing boxes, as the one in figure 6). These four contributions to the box $F(1324)$ correspond to its cuts in the $s = s_{13}$, $t = s_{32}$, $P^2 = k_2^2$ and $Q^2 = k_4^2$-channels. By summing over these four dispersion integrals using (3.57), we immediately reconstruct the box function $F(1324)$, which appears with a coefficient

$$M_{\text{tree}}(1-2-3+4) = M_{\text{tree}}(1-2-3+4) [u F(1234) + t F(1243) + s F(1324)].$$

This is in complete agreement with the result of [48] found using the unitarity-based method.

4. Five-point amplitudes

We would like to discuss how the previous calculations can be extended to the case of scattering amplitudes with more than four particles. To be specific, we consider the five-point MHV amplitude of gravitons $M_{\text{MHV}}(1-2-3-4-5)$. Clearly, increasing the number of external particles leads to an increase in the algebraic complexity of the problem. However, the same basic procedure discussed in the four-particle case can be applied; in particular, we observe that the shifts (2.6) can be used for any number of external particles. This set of shifts allows one to use any on-shell technique of reduction of the integrand. In appendix B we propose a reduction technique alternative to that used in this and in section 3, which can easily be applied to the case of an arbitrary number of external particles.

We now consider the MHV diagrams contributing to the five-particle MHV amplitude. We start by computing the MHV diagrams which have a non-null two-particle cut. First, consider the diagram pictured in figure 8. Its expression is given by

$$M_{1(123)(45)} = \int d\mu_{\mathcal{R}} \mathcal{M}(1-2-3+l_1^+ l_2^-) \mathcal{M}(l_1^- - l_2^- 4+5).$$

![Figure 7. The box function $F(1324)$, appearing in the four-point amplitude (3.60).](image)
where \(d\mu P \) is given by (3.3) and \(P_{123} := k_1 + k_2 + k_3 \). We make use of the off-shell continuation for the anti-holomorphic spinors of the loop momenta given by (2.6), which guarantees momentum conservation off shell irrespectively of the number of the particles in the vertex, as the shifts act only on the two loop legs.

In order to evaluate (4.1), we need expressions for the four- and five-point tree-level gravity MHV vertices; these can be obtained by using the KLT relations (C.2) and (C.3). Thus, we find

\[
\mathcal{A}(1^+ 2^- 3^+ 4^+ 5^-) = \frac{1}{\mathcal{N}} \int d\mu P_{123} \left[\frac{\langle l_3 l_5 \rangle \langle l_4 l_5 \rangle}{\langle l_1 l_2 \rangle} \right] \left[\mathcal{A}(1^+ 2^- 3^+ 4^+ 5^-) \right],
\]

where \(\mathcal{A} \) are Yang–Mills amplitudes. Plugging the Parke–Taylor formula for the Yang–Mills MHV amplitudes appearing in (4.2), we get

\[
\mathcal{A}_{1\text{-loop}}^{(13)\{45\}} = \frac{(12)^8}{(12)(13)(23)(45)^2} \int d\mu P_{123} s_{j_{1,2},1} \left[\langle 13 \rangle [21] [l_2] [l_3] - \langle 12 \rangle [31] [l_2] [l_2] \right]
\]

\[
\times \left[\langle l_1 l_2 \rangle \langle l_3 l_4 \rangle \langle l_2 l_3 \rangle \right] = \frac{(12)^8}{(12)(13)(23)(45)^2} \int d\mu P_{123} s_{j_{1,2},1} \left[\langle 13 \rangle [21] [l_2] [l_3] - \langle 12 \rangle [31] [l_2] [l_2] \right]
\]

With shifted spinors defined as in (2.6), momentum conservation is expressed as

\[k_1 + k_2 + k_3 + l_2 = 0. \]

This allows us to rewrite

\[\langle l_1 l_2 \rangle [l_2] [l_3] = - \langle l_1 l_2 \rangle [l_2] [l_3], \]

and similarly for the term in the first line of (4.4) containing \([l_2] [l_2] \). As in (2.9), we can also write \(s_{j_{1,2},1} = P_{123}^2 \). Next, using relations such as (4.6), the dependence on the shifted momenta can be completely eliminated. Each of the four terms generated in this way will be of the same form as (3.6), but now with different labels of the particles. Equation (4.4) then becomes

\[
\mathcal{A}_{1\text{-loop}}^{(13)\{45\}} = \frac{(12)^8}{(12)(13)(23)(45)^2} \int d\mu P_{123} P_{123}^2 \left[\langle 13 \rangle [21] \right] \left[\langle l_1 l_2 \rangle [l_2] [l_2] \right] + \left[\langle 13 \rangle [21] \right] \left[\langle l_1 l_2 \rangle [l_2] [l_2] \right] + \left[\langle 13 \rangle [21] \right] \left[\langle l_1 l_2 \rangle [l_2] [l_2] \right] + \left[\langle 13 \rangle [21] \right] \left[\langle l_1 l_2 \rangle [l_2] [l_2] \right] = 0.
\]

where, similarly to (3.14), the \(Q \)-functions are defined as

\[Q = \frac{\langle l_1 l_2 \rangle [l_2] [l_2]}{\prod_j \langle j l_2 \rangle \prod_j \langle j l_2 \rangle}. \]
Next, we decompose the integrand in (4.7) in partial fractions, in order to allow for a simple PV reduction, as done earlier in the four-particle case. It is easy to see that the outcome of this procedure is a sum of four terms, each of which has the same form as (3.27). Specifically, the box function contributions are

\[
\mathcal{M}_{\text{box}} = \langle 12 \rangle^8 \langle 12 \rangle^2 \langle 23 \rangle^2 \langle 45 \rangle^2 \langle 14 \rangle \langle 15 \rangle \langle 34 \rangle \langle 35 \rangle \langle 45 \rangle^2 \langle 12 \rangle^4 \langle 23 \rangle^2 \langle 45 \rangle^2 \langle 14 \rangle \langle 15 \rangle \langle 34 \rangle \langle 35 \rangle \langle 45 \rangle^2.
\]

Performing integrations in (4.9) using the result (3.49), we see that the various terms appearing in (4.9) give \(p_{123}^2 \)-channel dispersion integrals of cut-boxes. A similar procedure will be followed for all the remaining MHV diagrams. One then sums over all MHV diagrams, collecting contributions to the same box function arising from the different diagrams.

As an example, let us focus on the reconstruction of the box integral in figure 9. One needs to sum the three contributions from the function \(R(31) \) in the first three terms of (4.9), and the contribution from the function \(R(13) \) in the second term of (4.9). These will appear with a coefficient

\[
\sum_{i,j} \langle ij \rangle^2 \prod_{m \neq i} \langle im \rangle \prod_{l \neq j} \langle jl \rangle (l_1 - j)(l_2 + i)^2.
\]

which is precisely what expected from the result derived in [50].

\[14\] This function is nothing but the integrand of (3.42).

\[15\] In order to match our result to that in [50], one should remember the relation between the box functions \(F_{123(45)}^2 = s_{12523}^2 T_{123(45)}^2 \).
One-loop $\mathcal{N} = 8$ supergravity amplitudes from MHV diagrams

Next, we see that the functions $R(23)$ in the first term of (4.9), and the function $R(32)$ in the third one contribute to the box function $F(213(45))$. By summing the two coefficients, we find that this box integral appears with a coefficient

$$\frac{\langle 12 \rangle^8}{\langle 12 \rangle^2 \langle 13 \rangle^2 \langle 24 \rangle \langle 25 \rangle \langle 34 \rangle \langle 35 \rangle \langle 45 \rangle^2}. \quad (4.12)$$

Note that this result is obtained from (4.11) by simply permuting particles 1 and 2.

Following this procedure, we can determine all the coefficients of the integral functions contributing to the final result. We remark that contributions from MHV diagrams in the null-cuts should also be considered. In appendix A we argue, following [29], that specific choices of η allow us to completely discard such diagrams, exactly in the same way as in the four-particle case. By summing the contributions from all MHV diagrams, we finally get the five-point graviton scattering amplitude

$$\mathcal{A}_{11} = \langle 12 \rangle^8 \left[h(1, [2, 3]) h(3, [4, 5]) \right] \frac{\langle 12 \rangle \langle 12 \rangle^2 \langle 15 \rangle \langle 14 \rangle \langle 24 \rangle \langle 25 \rangle \langle 34 \rangle \langle 35 \rangle \langle 45 \rangle^2}{\langle 12 \rangle^2 \langle 13 \rangle^2 \langle 24 \rangle \langle 25 \rangle \langle 34 \rangle \langle 35 \rangle \langle 45 \rangle^2} + \text{perms}, \quad (4.13)$$

where the functions h, introduced in [50], are defined by

$$h(a, [1], b) = \frac{1}{\langle a \rangle^2 \langle 1b \rangle^2} \quad (4.14)$$

and

$$h(a, [1, 2], b) = \frac{\langle 12 \rangle}{\langle 12 \rangle \langle a \rangle^2 \langle 1b \rangle^2 \langle 2b \rangle^2} \quad (4.15)$$

Our result (4.13) is in precise agreement with that of [50] found using the unitarity-based approach, thus lending strong support to the correctness of the MHV method for gravity at one loop.

5. General procedure for n-point amplitudes and conclusions

Finally, we outline a step-by-step procedure which can be applied to deal with MHV diagrams corresponding to MHV amplitudes with an arbitrary number of particles.

The building blocks of the new set of diagrammatic rules are gravity MHV amplitudes, appropriately continued to off-shell vertices. MHV amplitudes of gravitons are not holomorphic in the spinor variables, hence in section 2 we have supplied a prescription for associating spinors—specifically the anti-holomorphic spinors—to the loop momenta. This prescription is defined by certain shifts (2.6), which we rewrite here for convenience:

$$\tilde{l}_1 = l_1 - \frac{\eta}{\langle l_1 l_2 \rangle} \tilde{l}_2, \quad \tilde{l}_2 = l_2 - \frac{\eta}{\langle l_1 l_2 \rangle} l_1. \quad (5.1)$$

These shifts are engineered in such a way to preserve momentum conservation at the MHV vertices, and therefore give us the possibility of choosing as MHV vertex any of the equivalent forms of the tree-level amplitudes. The calculation of a one-loop MHV amplitude with an arbitrary number of external legs is a straightforward generalization of the four- and five-graviton cases discussed earlier, and proceeds along the following steps:

1. Write the expressions for all relevant MHV diagrams, using tree-level MHV vertices with shifted loop momenta given by (2.6). The expression for these vertices can be obtained by, e.g., applying the appropriate KLT relations. When required, sum over the particles of the supermultiplet which can run in the loop.
(2) If a diagram has a null two-particle cut, one applies momentum conservation of the three-point amplitude in order to cancel the presence of unphysical double poles. Our calculations (and similar ones in Yang–Mills [29, 37, 38]) show that these diagrams give a zero contribution upon choosing the gauge in an appropriate way; thus they can be discarded (see appendix A for a discussion of this point).

(3) Use momentum conservation (with the shifts in place) in order to eliminate any dependence on shifted momenta. Once the integral is expressed entirely in terms of unshifted quantities, one can apply any reduction technique in order to produce an expansion in terms of boxes and, possibly, bubbles and triangles (which in $\mathcal{N} = 8$ should cancel [19]).

(4) Perform the dispersive integrations as in section 3.3, sum contributions from all MHV diagrams which can be built from MHV vertices, and finally reconstruct each box as a sum of four dispersion integrals—in its s-, t-, P^2- and Q^2-channels, using (3.57).

Clearly, it would be desirable to derive our prescription to continue off shell the loop momenta from first principles. In particular, it would be very interesting to find a derivation of the MHV diagram method in gravity similar to that of [8, 9], by performing an appropriate change of variables which would map the lightcone gravity action of [57] into an infinite sum of vertices, local in lightcone time, each with the MHV helicity structure. It would also be interesting if the MHV diagram description for gravity could be related, at least heuristically, to twistor string formulations of supergravity theories, such as those considered in [58]. We also note that using the same shifts as in (5.1), one should be able to perform a calculation of one-loop MHV amplitudes of gravitons in theories with less supersymmetry. For pure gravity, rational terms in the amplitudes are not a priori correctly reproduced by the MHV diagram method, similarly to non-supersymmetric Yang–Mills. For instance, pure gravity has an infinite sequence of all-plus graviton amplitudes which are finite and rational. As for the all-plus gluon amplitudes in non-supersymmetric Yang–Mills theory, it is conceivable that the all-plus graviton amplitudes arise in the MHV diagram method through violations of the S-matrix equivalence theorem in dimensional regularization [45], or from four-dimensional helicity-violating counterterms as in [46].

Acknowledgments

It is a pleasure to thank James Bedford, Paul Heslop, Costas Zoubos and especially Andi Brandhuber and Bill Spence for discussions. The work of GT is supported by an EPSRC Advanced Fellowship EP/C544242/1 and by an EPSRC Standard Research Grant EP/C544250/1.

Appendix A. Comments on diagrams with null cuts

In this appendix, we would like to reconsider the contributions to the MHV amplitudes arising from MHV diagrams with a null two-particle cut.

An example is the MHV diagram in figure A1, contributing to the five-point MHV amplitude discussed in section 4. The expression for this diagram is

$$M^{1-\text{loop}} = \int d\mu_5, \ M(-\hat{l}_1^{-1}1^{-2}3^{-3}4^{+})M(-\hat{l}_1^{-1}-\hat{l}_2^{-1}5^{+}).$$ \hspace{1cm} (A.1)

Using KLT relations for six- (C.4) and for three-graviton amplitudes (C.1), we can write (A.1) as a sum of two terms plus permutations of the particles $\mathcal{P}(123)$. Similarly to section 3.2,
momentum conservation $k_5 - \hat{l}_2 + \hat{l}_1 = 0$ allows us to prove easily the cancellation of unphysical double poles appearing because of the presence of a three-point graviton vertex. Furthermore, all the dependence on hatted quantities can be eliminated using momentum conservation in the form

$$\langle l_1|l_2|l_3 i \rangle = \langle l_5|5 i \rangle,$$

$$\langle l_2|l_1|\hat{l}_1 j \rangle = -\langle l_5|5 j \rangle.$$ \hspace{1cm} (A.2)

Following this procedure, the starting expression (A.1) is decomposed into a sum of terms, on which one easily applies PV reduction techniques. Similarly to the four-point case, one can see that only box functions in null cuts are produced.

The remark we would like to make now is that such terms actually vanish with appropriate choices of the null reference vector η, as observed in the Yang–Mills case in [29]. The same choice of η has been used in [36–38] in deriving gluon amplitudes in Yang–Mills theory, and recently in [39–41] in deriving one-loop ϕ-MHV amplitudes, i.e. amplitudes with gluons in an MHV helicity configuration and a complex scalar ϕ coupled to the gluons via the interaction $\phi \text{Tr} F_{\mu\nu}F^{\mu\nu}$.

In [29], it was found how a generic two-mass easy box function is reconstructed by summing over four dispersion integrals, as in (3.57). These dispersion integrals are performed in the four channels s, t, P^2 and Q^2 of the box function. As explained in that paper, the evaluation of these integrals is greatly facilitated by choosing the reference vector η appearing in (2.1) to be one of the two massless momenta, p and q, of the box function (see figure 5 for the labelling of the momenta in a generic two-mass easy box). By performing this choice, one finds that the contribution of a single dispersion integral of a cut-box in a generic cut s_{cut} is proportional, to all orders in the dimensional regularization parameter ϵ, to [33]

$$\frac{c_f}{\epsilon^3} (-s_{\text{cut}})^{-\epsilon} 2F_1(1, -\epsilon, 1 - \epsilon, a s_{\text{cut}}),$$ \hspace{1cm} (A.3)

where c_f is defined in (3.50) and a is defined in (3.46). In the four-point box function, one obviously has $P^2 = Q^2 = 0$. Using (A.3), it is then immediate to see that the dispersion integrals in these two channels vanish because of the presence of the factor $(-s_{\text{cut}})^{-\epsilon}$. Therefore, when summing over all the possible MHV diagrams, it is in fact enough to consider only the MHV diagrams with non-vanishing cuts.

Finally, we note that for arbitrary choices of η, this would no longer be true; the MHV diagrams in null channels would be important to restore η-independence in the final expressions of one-loop amplitudes.

As a side remark, it instructive to apply the above comments to rederive with MHV diagrams, almost instantly, the expression to all orders in the dimensional regularization parameter, ϵ, of the one-loop four-gluon amplitude in $\mathcal{N} = 4$ super Yang–Mills. In this case, the result comes from summing two dispersion integrals, namely those in the $s = (k_1 + k_2)^2$
and in the $t = (k_2 + k_3)^2$ channels; indeed, the specific choices of η mentioned above allow us to discard the MHV diagrams with null two-particle cut. In the four-particle case, the expression for a in (3.46) simplifies to $a|_{p^2 = q^2 = 0} = 1/s + 1/t$. One then quickly obtains, to all orders in ϵ [33],

$$A^{1-\text{loop}} = 2A^{\text{tree}} \frac{c_{\Gamma}}{\epsilon^2} \left[(-s)^{-2\epsilon} F_1 \left(1, -\epsilon, 1 - \epsilon, 1 + \frac{s}{t} \right) + (-t)^{-2\epsilon} F_1 \left(1, -\epsilon, 1 - \epsilon, 1 + \frac{t}{s} \right) \right].$$

(A.4)

Equation (A.4) agrees with the known result [47].

Appendix B. Reduction technique of the R-functions

In dealing with expressions of gravity amplitudes derived using the MHV diagram method, one often encounters products of ‘R-functions’, where

$$R(ij) = \frac{\langle il_2 \rangle \langle jl_1 \rangle}{\langle il_1 \rangle \langle jl_2 \rangle}.$$ \hfill (B.1)

The appearance of products of these functions is related to the structure of tree-level gravity amplitudes, which can be expressed, using KLT relations, as sums of products of two Yang–Mills amplitudes. Here, we would like to discuss how to reduce products of R-functions to sums of R-functions and bubbles.

To begin with, we observe some useful properties of these functions:

$$R(ab)R(ba) = 1,$$ \hfill (B.2)

$$R(ab)R(cd) = R(ad)R(cb) \Rightarrow R(ab)R(da) = R(db).$$ \hfill (B.3)

Let us now consider a generic product $R(ij)R(hk)$ with $i \neq j \neq h \neq k$,

$$R(ij)R(hk) = \frac{\langle il_2 \rangle \langle jl_1 \rangle \langle hl_2 \rangle \langle kl_1 \rangle \langle hl_1 \rangle \langle kl_2 \rangle \langle kl_1 \rangle \langle kl_2 \rangle}{\langle il_1 \rangle \langle jl_2 \rangle \langle hl_1 \rangle \langle kl_2 \rangle}.$$ \hfill (B.4)

Using Schouten’s identity in the form

$$\langle al \rangle \langle bl \rangle = \langle ac \rangle \langle cl \rangle + \langle ba \rangle \langle bc \rangle \langle cl \rangle,$$ \hfill (B.5)

one can separate contributions from different poles. Applying this to the two ratios $(\langle kl_1 \rangle / (\langle il_1 \rangle \langle hl_1 \rangle))$ and $(\langle hl_2 \rangle / (\langle jl_2 \rangle \langle kl_2 \rangle))$, we get

$$R(ij)R(hk) = \frac{\langle ik \rangle \langle jh \rangle}{\langle ih \rangle \langle jk \rangle} R(ij) + \frac{\langle hj \rangle}{\langle ih \rangle \langle jk \rangle} \left[\frac{\mathcal{K}(ij)}{\mathcal{K}(hk)} + \frac{\mathcal{K}(ij)}{\mathcal{K}(jh)} + \frac{\mathcal{K}(ij)}{\mathcal{K}(ki)} \right],$$ \hfill (B.6)

where we have defined

$$\mathcal{K}(ij) := \langle il_2 \rangle \langle jl_1 \rangle.$$ \hfill (B.7)

Note that $R(ij)$ can be expressed in terms of \mathcal{K}_{ij} as

$$R(ij) = \frac{\mathcal{K}(ij)}{\mathcal{K}(ji)}.$$ \hfill (B.8)

We can use again the same decomposition on a generic term

$$\frac{\mathcal{K}(ij)}{\mathcal{K}(hk)} = \frac{\langle il_2 \rangle \langle jl_1 \rangle \langle hl_2 \rangle \langle kl_1 \rangle \langle hl_1 \rangle \langle kl_2 \rangle}{\langle hl_2 \rangle \langle kl_1 \rangle \langle hl_1 \rangle \langle kl_2 \rangle}.$$ \hfill (B.9)
to get
\[
\frac{K(ij)}{K(hk)} = \frac{(jk)(hi)}{(kh)(hk)} R(kh) + \frac{1}{(kh)(hk)} \left[(jh)(ik) + (jh)(hi) \frac{(kl_2)}{(l_2 h)} + (kj)(ik) \frac{(hi)}{(kl_1)} \right].
\]
(B.10)

By substituting this expression into (B.6), we see that we are left with a bubble plus the sum of \(R \)-functions. Using the Schouten identity, we arrive at the final result
\[
R(ij)R(hk) = -1 + \frac{(hk)(ij)}{(ih)(jk)} [R(hj) + R(ij)] + \frac{(jk)(ih)}{(jk)(hk)} [R(ij) + R(hk)].
\]
(B.11)

This formula allows us to perform immediately PV reductions of \(R \)-functions. Further reducing the \(R \)-functions as usual (3.33), we are then left with bubbles, triangles and boxes.

Appendix C. KLT relations

For completeness, in this appendix we include the field theory limit expressions of the KLT relations [56] for the case of four-, five- and six-point amplitudes. These are

\[
\mathcal{M}(1, 2, 3) = -iA(1, 2, 3)A(1, 2, 3),
\]
(C.1)

\[
\mathcal{M}(1, 2, 3, 4) = -is_{12}A(1, 2, 3, 4)A(1, 2, 4, 3),
\]
(C.2)

\[
\mathcal{M}(1, 2, 3, 4, 5) = is_{12}s_{34}A(1, 2, 3, 4, 5)A(2, 1, 4, 3, 5)
+ is_{13}s_{24}A(1, 3, 2, 4, 5)A(3, 1, 4, 2, 5),
\]
(C.3)

\[
\mathcal{M}(1, 2, 3, 4, 5, 6) = -is_{12}s_{34}A(1, 2, 3, 4, 5, 6)[s_{35}A(2, 1, 5, 3, 4, 6)
+ (s_{34} + s_{35})A(2, 1, 5, 4, 3, 6)] + \mathcal{P}(2, 3, 4).
\]
(C.4)

In these formulae, \(\mathcal{M}(A) \) denotes a tree-level gravity (Yang–Mills, colour-ordered) amplitude, \(s_{ij} := (k_i + k_j)^2 \), and \(\mathcal{P}(2, 3, 4) \) stands for permutations of \((2, 3, 4) \). The form of KLT relations for a generic number of particles can be found in [50].

References

[1] Witten E 2004 Perturbative gauge theory as a string theory in twistor space Commun. Math. Phys. 252 189 (Preprint hep-th/0312171)
[2] Cachazo F and Svrček P 2005 Lectures on twistor strings and perturbative Yang–Mills theory PoS RTN2005 004 (Preprint hep-th/0504194)
[3] Cachazo F, Svrček P and Witten E 2004 MHV vertices and tree amplitudes in gauge theory J. High Energy Phys. JHEP09(2004)006 (Preprint hep-th/0403047)
[4] Georgiou G and Khoze V V 2004 Tree amplitudes in gauge theory as scalar MHV diagrams J. High Energy Phys. JHEP05(2004)070 (Preprint hep-th/0404072)
[5] Wu J B and Zhu C J 2004 MHV vertices and fermionic scattering amplitudes in gauge theory with quarks and gluinos J. High Energy Phys. JHEP09(2004)063 (Preprint hep-th/0406146)
[6] Wu J B and Zhu C J 2004 MHV vertices and scattering amplitudes in gauge theory J. High Energy Phys. JHEP07(2004)032 (Preprint hep-th/0406085)
[7] Georgiou G, Glover E W N and Khoze V V 2004 Non-MHV tree amplitudes in gauge theory J. High Energy Phys. JHEP07(2004)048 (Preprint hep-th/0407027)
[8] Mansfield P 2006 The Lagrangian origin of MHV rules J. High Energy Phys. JHEP03(2006)037 (Preprint hep-th/0511264)
[9] Gorsky A and Rosly A 2006 From Yang–Mills Lagrangian to MHV diagrams J. High Energy Phys. JHEP01(2006)101 (Preprint hep-th/0510111)
[10] Little J H and Morris T R 2006 Structure of the MHV-rules Lagrangian J. High Energy Phys. JHEP08(2006)003 (Preprint hep-th/0605121)
[11] Boels R, Mason L and Skinner D 2007 From twistor actions to MHV diagrams Phys. Lett. B 648 90 (Preprint hep-th/0702035)
[12] Britto R, Cachazo F and Feng B 2005 New recursion relations for tree amplitudes of gluons Nucl. Phys. B 715 499 (Preprint hep-th/0412308)
[13] Britto R, Cachazo F, Feng B and Witten E 2005 Direct proof of tree-level recursion relation in Yang–Mills theory Phys. Rev. Lett. 94 181602 (Preprint hep-th/0501052)
[14] Bedford J, Brandhuber A, Spence B and Travaglini G 2005 A recursion relation for gravity amplitudes Nucl. Phys. B 721 98 (Preprint hep-th/0502146)
[15] Cachazo F and Svrček P 2005 Tree level recursion relations in general relativity Preprint hep-th/0502160
[16] Brandhuber A, McNamara S, Spence B and Travaglini G 2007 Recursion relations for one-loop gravity amplitudes J. High Energy Phys. JHEP03(2007)029 (Preprint hep-th/0701187)
[17] Benincasa P, Boucher-Veronneau C and Cachazo F 2007 Taming tree amplitudes in general relativity Preprint hep-th/0702032
[18] Bjerrum-Bohr N E J, Dunbar D C and Ita H 2005 Six-point one-loop
[19] Bern Z, Bjerrum-Bohr N E J and Dunbar D C 2005 Inherited twistor-space structure of gravity loop amplitudes J. High Energy Phys. JHEP01(2006)053 (Preprint hep-th/0506117)
[20] Green M B, Russo J G and Vanhove P 2006 Non-renormalisation conditions in type II string theory and maximal supergravity Preprint hep-th/0610299
[21] Bern Z, Dixon L J and Roiban R 2006 Is N = 8 supergravity NMHV amplitudes and their IR behaviour Phys. Lett. B 621 183 (Preprint hep-th/0503102)
[22] Bern Z, Carrasco J J, Dixon L J, Johansson H, Kosower D A and Roiban R 2007 Three-loop superfiniteness of N = 8 supergravity Preprint hep-th/0702112
[23] Chalmers G 2000 On the finiteness of N = 8 quantum supergravity Preprint hep-th/0008162
[24] Bjerrum-Bohr N E J, Dunbar D C, Ita H, Perkins W B and Risager K 2006 The no-triangle hypothesis for N = 8 supergravity J. High Energy Phys. JHEP12(2006)072 (Preprint hep-th/0610043)
[25] Bern Z, Bjerrum-Bohr N E J and Dunbar D C 2005 Inherited twistor-space structure of gravity loop amplitudes J. High Energy Phys. JHEP05(2005)056 (Preprint hep-th/0501137)
[26] Green M B, Russo J G and Vanhove P 2006 Non-renormalisation conditions in type II string theory and maximal supergravity Preprint hep-th/0611086
[27] Bern Z, Dixon L J and Roiban R 2006 Is N = 8 supergravity ultraviolet finite? Preprint hep-th/0611086
[28] Green M B, Russo J G and Vanhove P 2006 Ultraviolet properties of maximal supergravity Preprint hep-th/0611273
[29] Bern Z, Carrasco J J, Dixon L J, Johansson H, Kosower D A and Roiban R 2007 Three-loop superfiniteness of N = 8 supergravity Preprint hep-th/0702112
[30] Chalmers G 2000 On the finiteness of N = 8 quantum supergravity Preprint hep-th/0008162
[31] Bedford J, Brandhuber A, Spence B and Travaglini G 2005 One-loop gauge theory amplitudes in
[32] Brandhuber A and Travaglini G 2006 From trees to loops and back J. High Energy Phys. JHEP01(2006)053 (Preprint hep-th/0501253)
[33] Feynman R P 1963 Quantum theory of gravitation Acta Phys. Polon. 24 697
[34] Feynman R P 1972 Closed loop and tree diagrams Magic Without Magic ed J R Klauder (San Francisco, CA: Freeman) pp 355–75
[35] Feynman R P 2000 Selected Papers of Richard Feynman ed L M Brown (Singapore: World Scientific) pp 867–87
[36] Quigley C and Rozali M 2005 One-loop MHV amplitudes in supersymmetric gauge theories J. High Energy Phys. JHEP01(2005)053 (Preprint hep-th/0410278)
[37] Bedford J, Brandhuber A, Spence B and Travaglini G 2005 A twistor approach to one-loop amplitudes in N = 1 supersymmetric Yang–Mills theory Nucl. Phys. B 706 100 (Preprint hep-th/0410280)
[38] Bedford J, Brandhuber A, Spence B and Travaglini G 2005 Non-supersymmetric loop amplitudes and MHV vertices Nucl. Phys. B 712 59 (Preprint hep-th/0412108)
[39] Badger S D and Glover E W N 2006 One-loop helicity amplitudes for H → gluons: the all-minus configuration Nucl. Phys. Proc. Suppl. 160 71 (Preprint hep-ph/0607139)
[40] Badger S D, Glover E W N and Risager K 2007 One-loop phi-MHV amplitudes using the unitarity bootstrap Preprint 0704.3914
[41] Badger S D, Glover E W N and Risager K 2007 Higgs amplitudes from twistor inspired methods Preprint 0705.0264
One-loop $\mathcal{N} = 8$ supergravity amplitudes from MHV diagrams

[42] Dixon L J, Glover E W N and Khoze V V 2004 MHV rules for Higgs plus multi-gluon amplitudes J. High Energy Phys. JHEP12(2004)015 (Preprint hep-th/0411092)

[43] Badger S D, Glover E W N and Khoze V V 2005 MHV rules for Higgs plus multi-parton amplitudes J. High Energy Phys. JHEP03(2005)023 (Preprint hep-th/0412275)

[44] Brandhuber A, Spence B and Travaglini G 2002 Amplitudes in pure Yang–Mills and MHV diagrams J. High Energy Phys. JHEP02(2002)88 (Preprint hep-th/0612007)

[45] Ettle J H, Fu C H, Fudger J P, Mansfield P R W and Morris T R 2007 S-matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV Lagrangian Preprint hep-th/0703286

[46] Brandhuber A, Spence B, Travaglini G and Zoubos K 2007 One-loop MHV rules and pure Yang–Mills Preprint 0704.0245

[47] Green M B, Schwarz J H and Brink L 1982 $N = 4$ Yang–Mills and $N = 8$ supergravity as limits of string theories Nucl. Phys. B 198 474

[48] Dunbar D C and Norridge P S 1995 Calculation of graviton scattering amplitudes using string based methods Nucl. Phys. B 433 181 (Preprint hep-th/9408014)

[49] Bern Z and Kosower D A 1992 The computation of loop amplitudes in gauge theories Nucl. Phys. B 379 451

[50] Bern Z, Dixon L J, Perelstein M and Rozowsky J S 1999 Multi-leg one-loop gravity amplitudes from gauge theory Nucl. Phys. B 546 423 (Preprint hep-th/9811140)

[51] Bern Z 2002 Perturbative quantum gravity and its relation to gauge theory Living Rev. Rel. 5 5 (Preprint gr-qc/0206071)

[52] Kosower D A 2005 Next-to-maximal helicity violating amplitudes in gauge theory Phys. Rev. D 71 045007 (Preprint hep-th/0406175)

[53] Berends F A, Giele W T and Kuijf H 1988 On relations between multi-gluon and multigraviton scattering Phys. Lett. B 211 91

[54] Mangano M L and Parke S J 1991 Multiparton amplitudes in gauge theories Phys. Rep. 200 301 (Preprint hep-th/0009223)

[55] Grisaru M T, Pendleton H N and van Nieuwenhuizen P 1977 Supergravity and the S matrix Phys. Rev. D 15 996

[56] Kawai H, Lewellen D C and Tye S H H 1986 A relation between tree amplitudes of closed and open strings Nucl. Phys. B 269 1

[57] Scherk J and Schwarz J H 1975 Gravitation in the light—cone gauge Gen. Rel. Grav. 6 537

[58] Abou-nejd M, Hull C M and Mason L J 2006 Einstein supergravity and new twistor string theories Preprint hep-th/0606272