Lymph Node Involvement and the Clinical Stage as Predictors of the Survival of Patients With Adenoid Cystic Carcinoma of the Head and Neck: A Systematic Review and Meta-Analysis

Mazin Alsarraj 1, Sami M. Alshehri 2, Abdulrahman Qattan 2, Abdelelah Mofti 3, Lana Waziger 2, Sumayiah Bukhari 2, Aisha Shamsaldin 2, Rahaf Rajab 2

Abstract

In the treatment of various patients, the presence of lymphovascular invasion is a prognostic determinant, often taken into account by surgeons and oncologists. The exact frequency and prognostic impacts of this microscopic event in adenoid cystic carcinoma (ACC) patients are, however, not clear. This systematic review and meta-analysis aimed to investigate the lymph node involvement and the clinical stage of cancer as predictors of ACC prognosis. A systematic search was conducted covering a number of databases, including PubMed, Science Direct, Google Scholar, Web of Science, and EBSCO. A total of three studies were included in this analysis, with 591 participants, 247 of whom were males. Lymph node involvement and clinical stage were demonstrated as significant bad prognosis factors among ACC patients (HR = 1.48, 95% CI, 1.00, 1.96; P<0.0001). We found that lymph node involvement and clinical stage of the cancer are both significant predictors of bad prognosis of ACC.

Introduction And Background

Adenoid cystic carcinoma (ACC) is a rare malignant tumor that affects major and minor salivary glands, lacrimal glands, ceruminous glands, and, occasionally, cervix, breast, and lung [1]. It accounts for fewer than 1% of all head and neck malignancies and 10% of all salivary gland neoplasms [2,3]. ACC occurs more often in the minor salivary glands than in the major salivary glands that are dispersed throughout the submucosa of the nasal cavity, paranasal sinuses, and oral pharynx, larynx, trachea, lungs, and middle ear cavity [2-5]. The paranasal sinus is the most common site of minor salivary gland involvement [1,6,7]. ACC is responsible for 5% to 15% of all malignant tumors of the nasal cavity and paranasal sinuses [8].

ACC of the nasal cavity and paranasal sinuses is a slowly progressive and relentless tumor that tends to recur locally and metastasize distantly [9,10]. Recurrence and metastasis can occur even decades after treatment of the primary tumor [11]. The steadfastness of this tumor is partially attributable to its ability to extend through submucosal and fibrous tissue planes around the primary site and its tendency for perineural spread along major and minor nerves [5,12]. Therefore, treatment of ACC of the nasal cavity and paranasal sinuses is highly challenging, with current therapy limited to surgery and/or radiation, and no reliable chemotherapeutic options available for long-term disease control [13,14].

Because of the slow and persistent clinical course of ACC of the nasal cavity and paranasal sinuses, on initial evaluation, most patients have advanced disease, which makes the treatment more difficult [15]. Therefore, it is essential to identify the prevalence of disease to detect the patient during the early stage and start treatment early. According to many studies, ACC of the nasal cavity and paranasal sinuses is more prevalent in middle-aged adults; however, a demographic analysis presented that most patients were diagnosed in the sixth decade or later [16-18]. Most previous studies conducted on ACC of nasal cavity and paranasal sinuses identified determinants of outcomes for ACC, including stage, cervical lymph node metastases, margin status, perineural invasion, and minor salivary gland site of origin, although further investigations are needed to identify the prevalence of ACC in the nasal cavity and paranasal sinuses [19,20-23]. Our study aims to estimate the risk of developing ACC based on lymph node involvement and the clinical stage of the tumor.

Review

Materials and methods

Study Design and Duration

How to cite this article

Alsarraj M, Alshehri S M, Qattan A, et al. (October 27, 2022) Lymph Node Involvement and the Clinical Stage as Predictors of the Survival of Patients With Adenoid Cystic Carcinoma of the Head and Neck: A Systematic Review and Meta-Analysis. Cureus 14(10): e30780. DOI 10.7759/cureus.30780
This is a systematic review and meta-analysis that was carried out during October 1-20, 2021. Our study focused on examining lymph node involvement and clinical stage as risk factors for ACC in the published literature.

Search Strategy

A systematic search was conducted covering a number of databases, including PubMed, Science Direct, Google Scholar, Web of Science, and EBSCO. The search was confined to articles published in the English language and tailored for each database. The following terms have been used in our search: “ACC”, “Adenoid cystic carcinoma”, “lymph node involvement”, “lymph node metastasis”, “LN metastasis”, “clinical stage”, “Cancer staging”, “risk factor”, and “liability”, “survival rate”. Only full texts, accessible articles, human trials, and English articles were chosen. Table 1 shows the selection criteria.

Inclusion criteria	Exclusion criteria
Prospective studies	Studies conducted in languages other than English
Studies reporting results covering the impact of lymph node involvement and/or clinical stage of adenoid cystic carcinoma	Inaccessible studies
In vivo studies	Retrospective studies
	Case reports and case series

TABLE 1: Selection criteria

Data Extraction

Rayyan (Qatar Computing Research Institute, Doha) was used throughout the selection process to identify duplicates and remove them and, in addition, to choose our included articles following the inclusion and the exclusion criteria [24]. We started with assessing titles for compatibility, followed by examining abstracts, and finally, full-text review. A data extraction sheet was created to pool the data from the included articles. The sheet included titles, authors, study year, study design, population type, participants’ number, age range and mean, number and percentage of male participants, cancer stage, and lymph node involvement. We overcame any disagreement through debate and discussion.

Risk of Bias Assessment

The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the included studies through quantitative data synthesis [25].

Strategy for Data Synthesis

Data collected through the Excel sheet (Microsoft, Redmond) was used to generate the qualitative overview of the included studies. A qualitative synthesis of the pooled data was carried out regardless of the viability of the present meta-analyses. Only studies that included numerical results about the involvement of lymph nodes and the clinical stage of ACC were excluded.

Qualitative data synthesis for the condition of interest was performed using Review Manager software (Cochrane Collaboration, UK). The lymph node metastasis and clinical stage as risk factors for ACC were evaluated using random-effect meta-analysis. Heterogeneity was assessed using the I-square test, and publication bias was estimated through funnel plot and funnel plot symmetry.

Results

Search Results

A total of 276 articles have been retrieved using our systematic search, of which 46 duplicates were removed using Rayyan, and 230 studies were enrolled for title screening; of those 134 were excluded. The remaining 96 studies underwent abstract and full-text screening leaving only three studies to be included. Reasons for exclusion were irrelevant analyses, wrong outcome, wrong population, or unavailable data on the risk of developing ACC in the case of nodal involvement and depending on the clinical stage of cancer. Figure / illustrates the selection process.
Characteristics of the Included Studies

This systematic review and meta-analysis included three studies with 591 participants, 247 of whom were males. Their age ranged between 18 and 86 years. The three studies were prospective studies: one from France, another from Switzerland, and the third from Korea. The observation time ranged from 30 to 160 months. Table 2 describes the characteristics of included studies.

Study Description	Study Design	Country	Total Participants	Mean Age	Males (%)	Condition	Treatment/observation time (months)
A prospective multicentre REFCOR study of 470 cases of head and neck Adenoid cystic carcinoma: epidemiology and prognostic factors [26]	Prospective study	France	470	54	41%	Adenoid cystic carcinoma	39
Clinical outcomes of head and neck adenoid cystic carcinoma patients treated with pencil beam-scanning proton therapy [27]	Prospective study	Switzerland	35	45.4	54.3%	Adenoid cystic carcinoma	30
Long-term treatment outcomes and prognostic features in adenoid cystic carcinoma of the head and neck [28]	Prospective study	Korea	86 (median)	50	43%	Adenoid cystic carcinoma	160.44 months (median)

TABLE 2: Summary of the characteristics of the included studies

Lymph Node Involvement and Clinical Stage as Risk Factors for ACC

Three studies investigated the incidence of ACC in the presence of nodal involvement and the association with the clinical stage. Lymph node involvement and clinical stage have been demonstrated as significant factors increasing the risk of death among ACC patients (HR = 1.48, 95% CI, 1.00, 1.96; P<0.0001). Significant heterogeneity between the studies was not detected (I^2=0%; P=0.74; Figure 2).
FIGURE 2: Forest plot of the effect of lymph node involvement and clinical stage of cancer on the development of adenoid cystic carcinoma

The red box represents the quantitative value of each entry. The black diamond symbol represents the pooled effect estimate with confidence intervals.

Studies included [26,28,29].

Publication Bias

Visual observation of the funnel plot reveals an asymmetrical distribution of lymph node involvement and clinical stage as potential risk factors for ACC (Figure 3).

FIGURE 3: Funnel plot of publication bias detection

Circles represent plotted data from each entry on the funnel plot.

Discussion

In this systematic review and meta-analysis, we investigated lymph node involvement and the clinical stage of cancer as prognostic factors for ACC. The results have shown, however, that both are predictors of bad prognosis in the case of ACC. The strength of the study stems from its uniqueness and meticulously designed systematic search. Our results, however, should be interpreted carefully because of the lack of available data concerning the topic and the few numbers of studies involved.

ACC has been extensively studied in previous studies that supported the claim that lymph node involvement and the clinical stage of cancer have bad prognostic effects on ACC [29,30]. A number of studies have shown that a microscopic finding is associated with poorer clinical behaviors, such as prostate, bladder, lung, and kidney cancers, as well as other malignant salivary glands diseases, such as myoepithelial carcinoma and ex pleomorphic adenoma carcinoma [31-34].
Tang et al. found an independent prognostic determinant for the lymphovascular invasion in ACC [35]. Oplatek et al. showed a significant association with recurrence [21]. While these results point to a more aggressive condition associated with lymphovascular invasions, none of the available studies describe the lymphovascular invasion in ACC as its main objective, which is always the secondary finding.

Thus, few authors have studied the association between lymphovascular invasion and clinicopathological parameters while some did not check on the original slides, and none used ancillary techniques for the better identification of lymphovascular invasions, such as immune histochemistry. Moreover, because we do not know what types of vessels are invaded, either blood or lymphatic vessels, the profile of tumor emboli has not been well described. Nor have the vessel’s morphological characteristics been described. An original study is, therefore, necessary in order to assess the prognostic potential of lymphovascular invasion.

The small sample size used and the short follow-up time described for most of the studies are other constraints in the available studies. Moreover, multivariate statistical analysis has not always been conducted, and, consequently, it remains unclear whether lymphovascular invasion is a significant predictor once other significant variables such as tumor grade are controlled. The heterogeneity for the meta-analysis nevertheless showed that there were very low variables between studies, and the results were reliable.

Conclusions

In addition to the prognostic significance of lymphovascular invasion and the clinical stage of cancer, several methodological limitations of the studies available were also demonstrated by the current systematic evaluation and meta-analysis, for patients affected by ACC of the head and neck. Therefore, we understand that future studies should determine how frequently and prognostically, by using immunomarkers towards the blood and lymphatic vessels, the infiltration of both types of the vessels would be of equal importance as well as the frequency of the lymphovascular invasion when only regular hematoxylin and eosin stains are misidentified.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

The authors’ responsibilities were as follows: Mazin Alsarraj (MA), Sami M. Alshehri (SMA), and Abdulrahman Qattan (AQ) participated in establishing the research questions and analytic framework. MA and SMA conducted the literature search and identified and selected the studies. Abdelelah Mofti and AQ participated in establishing the research questions and analytic framework. MA, SMA, and AQ conducted the manuscript. Aisha Shamsaldin and Rahaf Rajab revised the manuscript. All authors reviewed and approved the final version of the article.

References

1. Coca-Pelaz A, Rodrigo JP, Bradley PJ, et al.: Adenoid cystic carcinoma of the head and neck - an update. Oral Oncol. 2015, 51:652-61. 10.1016/j.oraloncology.2015.04.005
2. Kim KH, Sung MW, Chung PS, Rhee CS, Park CJ, Kim WH: Adenoid cystic carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 1994, 120:721-6. 10.1001/archotol.1994.01880310027006
3. Haddad A, Enepekides DJ, Manolidis S, Black M: Adenoid cystic carcinoma of the head and neck: a clinicopathologic study of 37 cases. J Otolaryngol. 1995, 24:201-5.
4. Kessler AT, Bhatt AA: Review of the major and minor salivary glands, part 1: anatomy, infectious, and inflammatory processes. J Clin Imaging Sci. 2018, 8:47. 10.4103/jcis.JCIS_45_18
5. Grossman RI, Yousem DM: Extramuscosal diseases of the head and neck. Neuroradiology, 3rd Edition, the Requisites. Mosby-Year Book, St. Louis, MO; 1994. 413-46.
6. Spiro RH, Huvos AG, Strong EW: Adenoid cystic carcinoma of salivary origin: a clinicopathologic study of 242 cases. Am J Surg. 1974, 128:512-20. 10.1016/0002-9610(74)90265-7
7. Miller RH, Calcaterra TC: Adenoid cystic carcinoma of the nose, paranasal sinuses, and palate. Arch Otolaryngol. 1980, 106:424-6. 10.1001/archotol.1980.00790310048012
8. Kim GE, Park HC, Keum KC, et al.: Adenoid cystic carcinoma of the maxillary antrum. Am J Otolaryngol. 1999, 20:77-84. 10.1016/S0196-0709(99)00015-7
9. Vikram B, Strong EW, Shah JP, Spiro RH: Radiation therapy in adenoid-cystic carcinoma. Int J Radiat Oncol Biol Phys. 1984, 10:221-3. 10.1016/0360-3016(84)90007-5
10. Tran L, Sidrys J, Horton D, Sadeghi A, Parker RG: Malignant salivary gland tumors of the paranasal sinuses and nasal cavity. The UCLA experience. Am J Clin Oncol. 1989, 12:387-92. 10.1097/00000421-198910000-00005
11. Fordice J, Kershaw C, El-Naggar A, Goepfert H: Adenoid cystic carcinoma of the head and neck: predictors of morbidity and mortality. Arch Otolaryngol Head Neck Surg. 1999, 125:149-52. 10.1001/archotol.125.2.149

12. Goepfert H, Luna MA, Lindberg RD, White AR: Malignant salivary gland tumors of the paranasal sinuses and nasal cavity. Arch Otolaryngol. 1985, 115:662-8. 10.1001/archotol.1985.000214002805

13. Bradley PF: Adenoid cystic carcinoma of the head and neck: a review. Curr Opin Otolaryngol Head Neck Surg. 2004, 12:127-32. 10.1097/00002084-200404000-00015

14. Liu J, Shao C, Tan ML, Mu D, Ferris RL, Ha PK: Molecular biology of adenoid cystic carcinoma. Head Neck. 2012, 34:1665-77. 10.1002/hed.21849

15. Naficy S, Disher MJ, Elcamalo RM: Adenoid cystic carcinoma of the paranasal sinuses. Am J Rhinol. 1999, 13:511-4. 10.2500/109668999782102872

16. Gondikar SM, Gadball AR, Chole R, Parikh BV: Adenoid cystic carcinoma: a rare clinical entity and literature review. Oral Oncol. 2011, 47:231-6. 10.1016/j.oraloncology.2011.01.009

17. Dantas AN, de Morais EF, Macedo RA, Tinóco JM, Morais M: Clinicopathological characteristics and perineural invasion in adenoid cystic carcinoma: a systematic review. Braz J Otorhinolaryngol. 2015, 81:329-35. 10.1016/j.bjorl.2014.07.016

18. Turnier JH, Reh DD: Incidence and survival in patients with sinonasal cancer: a historical analysis of population-based data. Head Neck. 2012, 34:877-85. 10.1002/hed.21850

19. Khan AJ, DiGiovanna MP, Ross DA, Sasaki CT, Carter D, Son YH, Haffty BG: Adenoid cystic carcinoma: a retrospective clinical review. Int J Cancer. 2001, 96:149-58. 10.1002/ijc.1013

20. Marcinow A, Ozzer E, Teknos T, et al.: Clinicopathologic predictors of recurrence and overall survival in adenoid cystic carcinoma of the head and neck: a single institutional experience at a tertiary care center. Head Neck. 2014, 36:1705-11. 10.1002/hed.23523

21. Oplatke A, Ozzer E, Agraval A, Bapna S, Schuller DE: Patterns of recurrence and survival of head and neck adenoid cystic carcinoma after definitive resection. Laryngoscope. 2010, 120:665-70. 10.1002/lary.20684

22. Huang M, Ma D, Sun K, Yu G, Guo C, Gao F: Factors influencing survival rate in adenoid cystic carcinoma of the salivary glands. Int J Oral Maxillofac Surg. 1997, 26:455-9. 10.1016/S0901-5027(97)80008-2

23. Norberg-Spaak L, Dardick I, Ledin T: Adenoid cystic carcinoma: use of cell proliferation, BCL-2 expression, histologic grade, and clinical stage as predictors of clinical outcome. Head Neck. 2000, 22:489-97. 10.1002/1097-0547(200008)22:5<489::AID-HED8>3.0.CO;2-X

24. Ouazzani M, Hamamdy H, Fedorowicz Z, Elmagarmid A: Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016, 5:210. 10.1186/s13643-016-0384-4

25. Wells GA, Shea B, O’Connell D, Peterson JE, Welch V, Losos M, Tugwell P: The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. [Online]. 2014, 7950924.

26. Atallah S, Casiraghi G, Fahidy N, et al.: A prospective multicentre REFCOR study of 470 cases of head and neck adenoid cystic carcinoma: epidemiology and prognostic factors. Eur J Cancer. 2020, 130:241-9. 10.1016/j.ejca.2020.01.023

27. Ko YH, Lee MA, Hong YS, et al.: Prognostic factors affecting the clinical outcome of adenoid cystic carcinoma of the head and neck. Jpn J Clin Oncol. 2007, 37:805-11. 10.1093/jjco/hym119

28. Kim SS, Kim SM, Kim MJ, Lee JH: Long-term treatment outcomes and prognostic features in adenoid cystic carcinoma of the head and neck. J Maxillofac Surg Med Pathol. 2015, 27:337-43. 10.1016/j.jajoms.2014.09.011

29. Pelak MJ, Walser M, Bachtiari B, et al.: Clinical outcomes of head and neck adenoid cystic carcinoma patients treated with pencil beam-scanning proton therapy. Oral Oncol. 2020, 107:104752. 10.1016/j.oraloncology.2020.104752

30. Bhayani MK, Yener M, El-Naggar A, Garden A, Hanna EY, Weber RS, Kupferman ME: Prognosis and risk factors for early-stage adenoid cystic carcinoma of the major salivary glands. Cancer. 2012, 118:2872-8. 10.1002/cncr.26549

31. Galiabovitch E, Hovens CM, Peters JS, et al.: Routinely reported ‘equivocal’ lymphovascular invasion in prostatectomy specimens is associated with adverse outcomes. BJU Int. 2017, 119:567-72. 10.1111/bju.13594

32. Ramnuttal M, Aamelfot C, Helgeland L, Akslen LA: Vascular invasion is an adverse prognostic factor in resected non-small-cell lung cancer. APMS. 2017, 125:197-206. 10.1111/apm.12652

33. Van Poppel H, Vandendriessche H, Boel K, et al.: Microscopic vascular invasion is the most relevant prognosticator after radical nephrectomy for clinically nonmetastatic renal cell carcinoma. J Urol. 1997, 158:45-9. 10.1016/S0022-5347(97)00013-3

34. Katahi N, Gomez D, Klimstra DS, Carlson DL, Lee N, Ghoseein R: Prognostic factors of recurrence in salivary carcinoma ex pleomorphic adenoma, with emphasis on the carcinoma histologic subtype: a clinicopathologic study of 43 cases. Hum Pathol. 2010, 41:927-34. 10.1016/j.humpath.2009.12.011

35. Tang QL, Fan S, Li HG, et al.: Expression of Cyrl1 in primary salivary adenoid cystic carcinoma and its relation to Ki-67 and prognosis. Oral Oncol. 2011, 47:565-70. 10.1016/j.oraloncology.2011.02.022