Formulation and evaluation of Acyclovir microparticles for Ocular Delivery

Shekhar Singh, Anil Middha, Randhir Singh Dahiya

School of Pharmacy, OPJS University, Churu, Rajasthan, India
College of Pharmacy, MMU, Ambala, Haryana, India

The objective of the present work was to formulate and evaluate microparticles of Acyclovir and produced sustained drug delivery for ocular delivery. In this 9 batches (A1-C3) of acyclovir microparticle was prepared with ethyl cellulose, PVA and other ingredients by solvent evaporation technique. The prepared microparticles were evaluated for different parameters i.e % Drug yield, % Drug entrapment, Surface morphology, Zeta potential and in-vitro drug release for 24hrs in phosphate buffer 7.4 and simulated tear fluid. The best batch was performed stability studies for 6 months. The research concluded that Acyclovir microparticles could be a alternative for conventional dosage formand other phytochemical in herbs.

Keywords:
Acyclovir, Microparticles, Ocular delivery

Introduction:

Microparticles are particles between 0.1 and 100 μm in size. Commercially available microparticles are available in a wide variety of materials, including ceramics, glass, polymers, and metals. Microparticles encountered in daily life include pollen, sand, dust, flour, and powdered sugar. Microparticles have a much larger surface-to-volume ratio than at the macroscale, and thus their behavior can be quite different. For example, metal microparticles can be explosive in air. Microspheres are spherical microparticles, and are used where consistent and predictable particle surface area is important. Microparticulate drug delivery system is one of the processes to provide the sustained & controlled delivery of drug to long periods of time. They are small particles of solids or small droplets of liquids surrounded by walls of natural & synthetic polymer films of varying thickness & degree of permeability acting as a release rate controlling substance. Microparticles are small [0.2-5um], loded microspheres of natural or synthetic polymers. Microparticles were initially developed as carriers for vaccines and anticancer drug. [1]

Material and Method

Acyclovir was acquired as a gift sample from Archerchem, Mumbai, India. All other ingredients were of laboratory grades (Ethyl cellulose, PVA).

Compatibility Studies

The compatibility studies were carried out, by adopting IR spectroscopy with reference to the pure drug alone and its combination with chosen ingredients.

FTIR analysis

The drug-polymer compatibility was studied by FTIR (Shimadzu IR Affinity-1) spectroscopy. The mixture of individual drug and potassium bromide was ground intoa finepowderusingmortarPestleandthencompressedintoaKBrdis csinahydraulic press at a pressure of 75Kg/cm². Each KBr disc was scanned 45 times at a resolution of 2 cm⁻¹. The characteristic peaks were recorded in the case of each drug individually.
Formulation design
Acyclovir was studied for physicochemical characteristics. Microparticles of Acyclovir were produced, by employing technology. Various ingredients were selected, for Acyclovir, formulation design of Microparticles as represented in the Table no 1.

Preparation of Drug loaded Microparticles
Acyclovir were micronized by adopting solvent evaporation technique. Drug loaded Microparticles of Acyclovir, were prepared individually by using single emulsion solvent evaporation method. Drug and polymer in different proportions were weighed and co-dissolved at room temperature in to a mixture of ethanol and dichloromethane (2:1%v/v) with magnetic stirring. This was slowly poured (drop wise) into the dispersion medium consisting of 20 ml of 1% (w/v) aqueous PVA and 1.5% (w/v) span 80,during sonication by means of probe sonicator for 2h on the ice bath. Afterwards, the system was put on magnetic stirrer over night for complete evaporation of organic solvents. The prepared suspension was centrifuged at 1,500 rpm for 1hourinthepresence of 5% mannitol (cryoprotectant). The supernatant was removed and these diment was freeze dried for 48h for further analysis. The obtained particles, with each drug, were kept in dehydrated conditions.[2]

Evaluation of Microparticles
The Microparticles produced with each drug i.e. Acyclovir, was evaluated for various parameters i.e. %yield, entrapment efficiency, determination of particle size & Zeta potential, surface morphology, in-vitro drug release, release kinetics and stability studies.

Percentage yield (%yield)
The yield values were calculated as the weight of the Microparticles recovered from each batch divided by total weight of drug and polymer used in the preparation of the particular batch[3].

\[
\% \text{ Yield} = \left(\frac{\text{Weight of microparticles obtained}}{\text{Weight of drug + polymer}} \right) \times 100
\]

Determination of drug entrapment efficiency
The formulations were dissolved in a minimum quantity of methanol individually and centrifuged at 1,500 rpm for 20 minutes. These dements were separated and upper layers were filtered, suitably diluted and analyzed spectrophotometrically at respective wavelengths. Each experiment was repeated in triplicate. Percentage drug entrapment, for each class of Microparticles, was determined by the following formula:

\[
\text{E. E.} = \left(\frac{\text{Amount of drug actually present in microparticles}}{\text{Amount of drug actually used}} \right) \times 100
\]

Particle size and zeta-potential
The mean particle size of drug-loaded Microparticles and zeta potential of Acyclovir was determined by a Malvern Zeta sizer nanozs (Malvern instrument ltd).

Surface morphology
Surface morphology was determined by scanning electron microscopy of Microparticles. It determined whether particles had a uniform shapes or not and whether they were uniformly/ununiformly distributed. It also confirmed the obtained particle size in each case.[4].

In-vitro drug release from Drug-loaded Microparticles
Drug-loaded Microparticles obtained with Acyclovir was suspended in pH 7.4 phosphate buffer in a glass vial which was placed in a mechanical shaking bath (100cycles/min) at the temperature adjusted to 37°C. At selected time intervals sample was removed and replaced with fresh buffer medium. Each withdrawn sample was then centrifuged at15000 rpm (Acyclovir microparticles) and supernatant was analyzed using UV spectrophotometry.[5]

Accelerated Stability studies
The selected (optimized) formulation, in each case, was packed in amber-colored bottles which were tightly plugged with cotton and capped. These were then stored at 400 ±20°C / 75% ±5% RH for 6 months and evaluated ,for its physical appearance & drug contents at specified intervals of time.[6-7]

Result and Discussion
Compatibly Studies

FTIR analysis
Fig. 1: FTIR spectra of Acyclovir (pure drug)

Fig. 2: FTIR spectra of Ethyl cellulose

Fig. 3: FTIR spectra of Acyclovir and Ethyl cellulose
Formulation Design

Table 1: Formulation design of Microparticles of Acyclovir

Formulation Code	Drug (mg)	Polymer (Ethyl cellulose) (mg)	PVA (%)	Dichloromethane (ml)	Ethanol (ml)	Span80 (1.5 %µl)
A1	100	100	1	5	10	100
A2	100	200	1	5	15	100
A3	100	300	1	5	20	100
B1	100	100	2	5	10	100
B2	100	200	2	5	15	100
B3	100	300	2	5	20	100
C1	100	100	3	5	10	100
C2	100	200	3	5	15	100
C3	100	300	3	5	20	100

Percentage yield: The maximum percentage yield was found to be 55.8% with batch C3 (Acyclovir), while minimum of 35.12% with batch A1 (Acyclovir).

Table 2: Percentage yield of Acyclovir Microparticles (batches A1- C3)

Microparticulate Batches	Total amount of Ingredient (mg)	Practical yield (mg)	Percentage yield (%)
A1	200	70.24	35.12
A2	300	135.8	45.2
A3	400	216.3	54.0
B1	200	73.2	36.6
B2	300	147.3	49.1
B3	400	219	54.75
C3	200	75.6	37.8
C2	300	149.2	49.74
C3	400	223.2	55.8
Drug entrapment efficiency: The % drug entrapment of Acyclovir microparticles (batches A1-C3) was determined. It ranged between (53.23%-62.37%) respectively.

Table3: Percentage drug entrapment of Acyclovir Microparticles (batches A1- C3)

Microparticulate Batches	% Drug content
A1	53.23
A2	56.42
A3	60.19
B1	54.55
B2	57.31
B3	61.65
C1	55.21
C2	58.15
C3	62.37
Particle size analysis: The analysis was performed for all nine batches prepared with Acyclovir. The mean diameters of particles for all batches were found in the range of 164-198 nm.

Table 4: Particle size analysis of Acyclovir Microparticles (batches A1-C3)

S. No.	Microparticulate Batches	Mean particle size (µm)
1	A1	166
2	A2	174
3	A3	195
4	B1	164
5	B2	172
6	B3	191
7	C1	170
8	C2	178
9	C3	198
Zeta potential: The zeta potential of Acyclovir (batch A₁-C₃) was determined. It ranged between \((-7.45\text{ to } -20.80\text{ mV})\) respectively.

Table 5: Zeta potential analyses of Acyclovir Microparticles (batches A₁-C₃)

S. No	Microparticulate Batches	Zeta Potential Mean (mV)
1	A₁	-7.45
2	A₂	-12.30
3	A₃	-14.66
4	B₁	-13.49
5	B₂	-15.85
6	B₃	-14.80
7	C₁	-19.80
8	C₂	-20.80
9	C₃	-16.89
In-vitro dissolution studies

Table 6: *In–vitro* comparative release study of Acyclovir Microparticles (batches A₁-C₃) in pH 7.4 phosphate buffer

Time (hr.)	A₁	A₂	A₃	B₁	B₂	B₃	C₁	C₂	C₃
0	0	0	0	0	0	0	0	0	0
2	25.369	23.147	21.756	18.256	17.925	16.482	15.254	13.346	11.321
4	40.215	38.542	37.418	35.627	33.625	32.246	31.634	29.674	26.249
6	56.254	53.874	53.691	52.368	50.045	49.857	48.659	47.123	45.371
8	65.258	64.254	63.201	62.526	61.258	60.324	59.624	58.321	57.136
10	74.658	73.628	72.364	70.025	69.357	67.208	66.358	65.159	64.268
12	79.365	77.218	76.354	75.42	73.201	72.135	71.25	70.243	69.31
14	82.654	81.625	80.693	78.651	77.269	75.249	74.125	72.049	71.428
16	85.125	84.357	83.651	82.367	81.561	80.234	78.687	76.254	75.365
18	87.209	86.951	84.502	83.259	82.349	81.136	80.695	78.153	77.016
20	89.561	88.692	86.36	85.208	84.159	83.902	82.348	81.715	80.242
22	92.657	91.258	90.321	89.361	88.795	87.462	86.168	85.134	84.139
24	94.368	93.625	92.354	91.935	91.458	90.845	89.894	89.151	88.654

Fig. 7: Comparative % drug release of Acyclovir microparticles (batches A₁- C₃) in pH 7.4 phosphate buffer.
Table 7: *In–vitro* comparative release study of Acyclovir Microparticles (batches A1-C3) in simulated tear fluid

Time (hr.)	A1	A2	A3	B1	B2	B3	C1	C2	C3
0	0	0	0	0	0	0	0	0	0
2	24.264	22.954	20.444	17.138	16.065	15.055	13.523	12.302	11.575
4	39.624	37.856	36.295	34.852	32.631	31.249	29.326	27.255	25.366
6	56.357	54.217	52.361	51.741	49.413	47.368	46.652	44.042	43.333
8	64.128	63.163	62.049	61.652	60.523	59.387	58.915	57.384	56.626
10	73.026	72.825	71.387	69.963	68.748	67.808	65.348	64.971	62.236
12	78.354	77.209	76.629	74.987	73.965	72.634	71.267	70.263	69.864
14	81.247	80.145	79.123	77.348	76.142	74.562	73.625	72.485	71.961
16	84.569	83.276	82.349	81.921	80.146	79.125	77.325	75.106	74.527
18	86.327	85.329	84.278	82.654	81.795	80.121	78.967	77.685	76.354
20	88.315	86.32	85.147	84.557	83.624	82.209	81.324	80.369	78.051
22	91.052	90.021	89.304	88.344	87.657	86.666	85.743	84.694	83.256
24	93.154	92.192	91.682	90.322	89.202	88.303	87.691	86.208	85.382

Fig. 8: Comparative % drug release of Acyclovir Microparticles (batches A1-C3) in simulated tear fluid
Accelerated Stability studies

Table 8: Stability data of Acyclovir microparticle A1 batch in simulated tear fluid

Time (hr)	0 days	60 days	120 days	180 days
0	0	0	0	0
2	24.264	24.112	24.056	23.888
4	39.624	39.254	39.106	38.754
6	56.357	56.221	56.187	56.024
8	64.128	64.028	63.864	63.784
10	73.026	72.981	72.686	72.545
12	78.354	78.112	77.898	77.696
14	81.247	81.102	81.025	80.689
16	84.569	84.205	84.068	83.753
18	86.327	86.153	85.878	85.698
20	88.315	88.121	87.877	87.712
22	91.052	90.988	90.875	90.568
24	93.154	93.089	92.785	92.622

Fig. 9: Comparative release profile of Acyclovir Microparticles batch A1 on stability studies
Conclusion
In the Present study the Acyclovir microparticles were evaluated for different parameters i.e % Drug yield, % Drug entrapment, Surface morphology, Zeta potential and in-vitro drug release for 24hrs in phosphate buffer 7.4 and simulated tear fluid. The latter revealed that A1 batch from the nine formulations shows maximum sustained release (93.154%) in 24 hr. The A1 batch was performed for stability studies for 6 months. The research, reference characterized that acyclovir microparticles could be alternative than conventional dosage for sustained action in ocular delivery.

References

1. Takalea.A., Banerjee SK., Gadhavem.V., Gaikwadd.D, Microparticles In Drug Delivery System: A Review, International Journal of Institutional Pharmacy and Life sciences 2012;2(2):349-359.
2. Huang Yuan, XuXuefan, Xiang Qingyu, He Zhiyao, Liu Yuchua, Zhou Dan, “Crystalline drug aconitine-loaded poly (d,L-lactide-co glycolide) nanoparticles preparation and in vitro release”, The Pharmaceutical society of Japan, 2010;130: 409-418.
3. Patel PareshN., PatelL.J, and Patel J.K. “Development and testing of novel Temoxifen citrate loaded chitosan nanoparticles using ionic gelation method "Der Pharmacia Sinica", 2011;2(4):17-25.
4. Das swarmali, Sureshk. Preeti. “Drug delivery to eye: Special reference to nanoparticles” International Journal of Drug Delivery, 2010;2: 12-21.
5. Agnihotri M. Sagar, Vavia, R. Pradeep. “Diclofenac-loaded biopolymeric nano suspensions for ophthalmic application”. Nanomedicine: nanotechnology, biology, and medicine, 2009;5:90-95.
6. Bhambere Deepak S; Deshmukh NarendraV; DoijadRajendraC;SomapurCandGojeArjun;PatelKareeshmaS. “Colloidal drug delivery of biodegradable poly (lactide-coglycolide) (PLGA) injectable nanoparticles for anti cancer drug” Int. J. Drug Dev. & Res., 2010;2(4):681-689.
7. ICH Q1A (R) guidelines: “Stability testing of New Drug Substance and Product”, (2003),1-18.