Cell algebra structure on generalized Schur algebras

Robert May
Department of Mathematics and Computer Science
Longwood University
201 High Street, Farmville, VA 23909
rmay@longwood.edu
January 18, 2016

1 Introduction

A family of “generalized Schur algebras” were first introduced in [6] and [2]. In [3] the left and right generalized Schur algebras were shown to be “double coset algebras”. In [2] and [5] a stratification of these algebras was given leading to a parameterization, in most cases, of their irreducible representations. In this paper we obtain cell algebra structures for these algebras in the sense of [4]. (The Cell algebras of [4] coincide with the standardly based algebras previously introduced by Du and Rui in [8].) The properties of cell algebras combined with the parameterization of the irreducible representations leads to a more concrete description of all these irreducibles. In certain cases these algebras are shown to be quasi-hereditary.

In section 2 we review the definition and properties of cell algebras as presented in [4]. In section 3 we describe the cell bases found in [4] for a family of semigroups including the full transformation semigroups T_r and the rook semigroups R_r. In section 4 we give cell bases for the left and right generalized Schur algebras corresponding to these semigroups. Finally, in section 5 we use the cell algebra structure to describe the irreducible representations of these algebras and to determine when they are quasi-hereditary.

2 Cell algebra structures

In this section we review, without proofs, the definition and properties of cell algebras as presented in [4]. (These algebras were previously studied as “standardly based algebras” by Du and Rui in [8].) Let R be a commutative integral domain with unit 1 and let A be an associative, unital R-algebra. Let Λ be a finite set with a partial order \leq and for each $\lambda \in \Lambda$ let $L(\lambda), R(\lambda)$
be finite sets of “left indices” and “right indices”. Assume that for each $\lambda \in \Lambda$, $s \in L(\lambda)$, and $t \in R(\lambda)$ there is an element $sC_t^\lambda \in A$ such that the map $(\lambda, s, t) \mapsto sC_t^\lambda$ is injective and

$$C = \{sC_t^\lambda : \lambda \in \Lambda, s \in L(\lambda), t \in R(\lambda)\}$$

is a free R-basis for A. Define R-submodules of A by

$$A^\lambda = R \cdot \text{span of } \{sC_t^\mu : \mu \in \Lambda, \mu \geq \lambda, s \in L(\mu), t \in R(\mu)\}$$

and

$$\hat{A}^\lambda = R \cdot \text{span of } \{sC_t^\mu : \mu \in \Lambda, \mu > \lambda, s \in L(\mu), t \in R(\mu)\}.$$

Definition 2.1. Given A, Λ, C, A is a cell algebra with poset Λ and cell basis C if

1. For any $a \in A, \lambda \in \Lambda$, and $s, s' \in L(\lambda)$, there exists $r_L = r_L(a, \lambda, s, s') \in R$ such that, for any $t \in R(\lambda)$, $a \cdot sC_t^\lambda = \sum_{s' \in L(\lambda)} r_L \cdot sC_t^\lambda \mod \hat{A}^\lambda$, and

2. For any $a \in A, \lambda \in \Lambda$, and $t, t' \in R(\lambda)$, there exists $r_R = r_R(a, \lambda, t, t') \in R$ such that, for any $s \in L(\lambda)$, $sC_t^\lambda \cdot a = \sum_{t' \in R(\lambda)} r_R \cdot sC_{t'}^\lambda \mod \hat{A}^\lambda$.

Consider a fixed cell algebra A with poset Λ and cell basis C.

Lemma 2.1.

(a) A^λ and \hat{A}^λ are two sided ideals in A for any $\lambda \in \Lambda$.

(b) For $\lambda \in \Lambda, t, t' \in R(\lambda), s, s' \in L(\lambda)$, $r_L(s, s'C_t^\lambda, \lambda, s, s') = r_R(s, s'C_{t'}^\lambda, \lambda, t, t')$.

(c) Given $\lambda \in \Lambda, t \in R(\lambda), s \in L(\lambda)$, there exists $r_{st} \in R$ such that for any $s' \in L(\lambda), t' \in R(\lambda)$ we have $sC_t^\lambda \cdot s'C_{t'}^\lambda = r_{st} \cdot s'C_{t'}^\lambda \mod \hat{A}^\lambda$. In fact $r_{st} = r_L(s, s'C_t^\lambda, \lambda, s, s') = r_R(s, s'C_{t'}^\lambda, \lambda, t, t')$.

By lemma 2.1 part (a), A/\hat{A}^λ is a unital R-algebra and $A^\lambda/\hat{A}^\lambda$ is a two sided ideal in A/\hat{A}^λ. Observe that as an R-module $A^\lambda/\hat{A}^\lambda$ is free with a basis $\{sC_t^\lambda + \hat{A}^\lambda : s \in L(\lambda), t \in R(\lambda)\}$.

For a fixed $t \in R(\lambda)$, define LC_t^λ as the free R-submodule of $A^\lambda/\hat{A}^\lambda$ with basis $\{sC_t^\lambda + \hat{A}^\lambda : s \in L(\lambda)\}$. By property (i), LC_t^λ is a left A-module and $LC_t^\lambda \cong LC_{t'}^\lambda$ as left A-modules for any $t, t' \in R(\lambda)$. Evidently, as left A-modules we have $A^\lambda/\hat{A}^\lambda \cong \bigoplus_{t \in R(\lambda)} LC_t^\lambda$.

Definition 2.2. The left cell module for λ is the left A-module LC_t^λ defined as follows: Take the free R-module with a basis $\{sC_t^\lambda : s \in L(\lambda)\}$ and define the left action of A by $a \cdot sC_t^\lambda = \sum_{s' \in L(\lambda)} r_L(a, \lambda, s, s') s'C_t^\lambda$ for $a \in A$. 2
For any \(t \in R(\lambda) \), \(sC^\lambda \mapsto sC^\lambda_t + \hat{A}^\lambda \) gives a left \(A \)-module isomorphism \(\phi_t : _L^C^\lambda \rightarrow _L^C^\lambda_t \). Then \(_A^\lambda/_A^\hat{A}^\lambda \cong \bigoplus_{t \in R(\lambda)} _L^C^\lambda_t \) is isomorphic to the direct sum of \(|R(\lambda)| \) copies of \(_L^C^\lambda \).

In a parallel way, for a fixed \(s \in L(\lambda) \), define \(sC_R^\lambda \) as the free \(R \)-module with basis \(\{ sC^\lambda_t + \hat{A}^\lambda : t \in R(\lambda) \} \), an \(R \)-submodule of \(_A^\lambda/_A^\hat{A}^\lambda \). By property (ii), \(sC_R^\lambda \) is a right \(A \)-module and \(sC_R^\lambda \cong sC^\lambda,R \) as right \(A \)-modules for any \(s, s' \in L(\lambda) \). As right \(A \)-modules we have \(_A^\lambda/_A^\hat{A}^\lambda \cong \bigoplus_{s \in L(\lambda)} sC^\lambda,R \).

Definition 2.3. The right cell module for \(\lambda \) is the right \(A \)-module \(C_R^\lambda \) defined as follows: Take the free \(R \)-module with a basis \(\{ C^\lambda_t : t \in R(\lambda) \} \) and define the right action of \(A \) by \(C^\lambda_t : a = \sum_{t' \in R(\lambda)} r_R(a, \lambda, t, t') C^\lambda_{t'} \) for \(a \in A \).

For any \(s \in L(\lambda) \), \(C^\lambda_t \mapsto sC^\lambda_t + \hat{A}^\lambda \) gives a right \(A \)-module isomorphism \(\phi : C_R^\lambda \rightarrow sC^\lambda,R \). Then \(_A^\lambda/_A^\hat{A}^\lambda \cong \bigoplus_{s \in L(\lambda)} sC^\lambda,R \) is isomorphic to the direct sum of \(|L(\lambda)| \) copies of \(C^\lambda,R \).

For each \(\lambda \in \Lambda \) there is an \(R \)-bilinear map \(\langle , \rangle : C^\lambda_R \times _L^C^\lambda \rightarrow R \) defined on basis elements by \(\langle C^\lambda_t, sC^\lambda \rangle = r_{st} \), where \(r_{st} \in R \) is as given in lemma 2.1.

Definition 2.4. The right \(C_R^\lambda \) radical is

\[
\text{rad} \left(C_R^\lambda \right) = \{ x \in C_R^\lambda : \langle x, y \rangle = 0 \text{ for all } y \in _L^C^\lambda \}.
\]

The left \(_L^C^\lambda \) radical is

\[
\text{rad} \left(_L^C^\lambda \right) = \{ y \in _L^C^\lambda : \langle x, y \rangle = 0 \text{ for all } x \in C_R^\lambda \}.
\]

The radical \(\text{rad} \left(C_R^\lambda \right) \) is a right \(A \)-submodule of \(C_R^\lambda \) and \(\text{rad} \left(_L^C^\lambda \right) \) is a left \(A \)-submodule of \(_L^C^\lambda \).

Definition 2.5. \(D_R^\lambda = \frac{C_R^\lambda}{\text{rad} \left(C_R^\lambda \right)} \) and \(D_C^\lambda = \frac{_L^C^\lambda}{\text{rad} \left(_L^C^\lambda \right)} \).

Then \(D_R^\lambda \) is a right \(A \)-module and \(_L^C^\lambda \) is a left \(A \)-module. The following lemma follows at once from the definitions.

Lemma 2.2. The following conditions are equivalent:

(i) \(D_R^\lambda = 0 \);

(ii) \(\text{rad} \left(C_R^\lambda \right) = C_R^\lambda \);

(iii) \(\langle x, y \rangle = 0 \) for all \(x \in C_R^\lambda, y \in _L^C^\lambda \);

(iv) \(\text{rad} \left(_L^C^\lambda \right) = _L^C^\lambda \); and

(v) \(_L^C^\lambda = 0 \).

Definition 2.6. \(\Lambda_0 = \{ \lambda \in \Lambda : \langle x, y \rangle \neq 0 \text{ for some } x \in C_R^\lambda, y \in _L^C^\lambda \} \).

Evidently, \(\Lambda_0 \supseteq \Lambda_0 \iff D_R^\lambda \neq 0 \iff _L^C^\lambda \neq 0 \).

When \(R = k \) is a field, one can characterize the irreducible modules in a cell algebra in terms of the set \(\Lambda_0 \).

Proposition 2.1. Let \(R = k \) be a field and take \(\lambda \in \Lambda_0 \). Then
(a) \(D^\lambda_R \) is an irreducible right \(A \)-module.
(b) \(\text{rad} \left(C^\lambda_R \right) \) is the unique maximal right submodule in \(C^\lambda_R \).
(c) \(L^\lambda \) is an irreducible left \(A \)-module.
(d) \(\text{rad} \left(L^C^\lambda \right) \) is the unique maximal left submodule in \(L^C^\lambda \).

The modules \(\{ D^\lambda_R : \lambda \in \Lambda \}_0 \) are shown to be absolutely irreducible and pairwise inequivalent and similarly for \(\{ L^\lambda : \lambda \in \Lambda \}_0 \).

A major result of [4] is the following:

Theorem 2.1. Assume \(R = k \) is a field. Then \(\{ D^\mu_R : \mu \in \Lambda \}_0 \) is a complete set of pairwise inequivalent irreducible right \(A \)-modules and \(\{ L^\mu : \mu \in \Lambda \}_0 \) is a complete set of pairwise inequivalent irreducible left \(A \)-modules.

In [4] it the following result is also obtained:

Corollary 2.1. If \(\Lambda = \Lambda _0 \), then \(A \) is quasi-hereditary.

3 Cell bases for certain monoid algebras

In this section we review (again omitting most of the proofs) the cellbases given in [4] for the monoid algebras \(R[M] \) corresponding to a class of monoids \(M \) containing the full transformation semigroups \(T_r \) and the rook monoids \(R_r \).

Some of the notation and results will be needed in the next section on generalized Schur algebras.

Let \(\bar{\tau}_r = \{ 1, 2, \ldots, r \} \) and let \(\tau_r \) be the monoid of all maps \(\alpha : \bar{\tau}_r \cup \{ 0 \} \to \bar{\tau}_r \cup \{ 0 \} \) such that \(\alpha (0) = 0 \). Note that \(\tau_r \) can be identified with the partial transformation semigroup \(\mathcal{PT}_r \) of all “partial maps” of \(\bar{\tau}_r \) to itself. The full transformation semigroup \(\mathcal{T}_r \) of all maps \(\bar{\tau}_r \to \bar{\tau}_r \) can be identified with the submonoid of \(\tau_r \) consisting of maps with \(\alpha^{-1} (0) = 0 \). The rook monoid \(R_r \) can be identified with the submonoid of \(\tau_r \) consisting of maps such that \(\alpha^{-1} (i) \) has at most one element for each \(i \in \bar{\tau}_r \). With these identifications, the symmetric group \(S_r \) is the intersection \(\mathcal{T}_r \cap R_r \).

Let \(M \) be any monoid contained in \(\tau_r \) and containing \(S_r \). Let \(R \) be a commutative domain with unit \(1 \) and let \(R[M] \) be the monoid algebra over \(R \). We will describe a cell basis for \(R[M] \).

For \(\alpha \in M \), the index of \(\alpha \) is the number of nonzero elements in the image of \(\alpha \), index \((\alpha) = |\text{image}(\alpha) - \{0\}| \). Let \(I (M) \subseteq \bar{\tau}_r \cup \{ 0 \} \) be the set of indices of elements in \(M \), that is,

\[
I (M) = \{ i : \exists \alpha \in M \text{ with index} (\alpha) = i \}.
\]

For \(i \in \bar{\tau}_r \), let \(\Lambda (i) \) be the set of all (integer) partitions of \(i \). Let \(\Lambda (0) \) be a set with one element \(\lambda_0 \). Then define \(\Lambda = \bigcup_{i \in I (M)} \Lambda (i) \). For \(\lambda \in \Lambda \) define the index \(i (\lambda) \) to be the integer such that \(\lambda \in \Lambda (i (\lambda)) \). Finally, define a partial order on \(\Lambda \) by

\[
\lambda \succeq \mu \iff i (\lambda) < i (\mu) \text{ or } i (\lambda) = i (\mu) \text{ and } \lambda \succeq \mu
\]
where \succeq is the usual dominance relation on partitions.

To define the sets $L(\lambda)$ and $R(\lambda)$ we need some preliminaries. First, for $i \in \bar{\tau} \cup \{0\}$ let $C(i, r)$ be the collection of all i-sets of elements in $\bar{\tau}$, that is, $C(i, r) = \{C = \{c_1, c_2, \ldots, c_i\} : 1 \leq c_1 < c_2 < \cdots < c_i \leq r\}$. $(C(0, r)$ contains one element, the empty set.) For any $C \in C(i, r)$, define a map $\phi_C : i \cup \{0\} \rightarrow \bar{\tau} \cup \{0\}$ by $\phi_C(j) = c_j$ for $j \in i$, $\phi_C(0) = 0$.

Next, choose any ordering of the 2^n subsets of $\bar{\tau}$ and label these subsets d_j so that $d_1 < d_2 < \cdots < d_{2^n}$. Let $D(i, r)$ be the collection of sets of i nonempty, pairwise disjoint subsets of $\bar{\tau}$, that is,

$$D(i, r) = \{\{d_{a_1}, d_{a_2}, \cdots, d_{a_k}\} : d_{a_j} \neq \emptyset, d_{a_j} \cap d_{a_k} = \emptyset \text{ and } d_{a_j} < d_{a_k} \text{ for } j < k\}.$$

$(D(0, r)$ also contains one element, the empty set.) For any $D \in D(i, r)$ define a map $\psi_D : \bar{\tau} \cup \{0\} \rightarrow \bar{i} \cup \{0\}$ by $\psi_D(x) = j$ for $x \in d_{a_j}$, $\psi_D(x) = 0$ when $x \notin d_{a_j}$ for any j.

Regard an element σ in the symmetric group S_i as a mapping $\sigma : i \cup \{0\} \rightarrow i \cup \{0\}$ such that $\sigma(0) = 0$. Then for any $\sigma \in S_i$, $C \in C(i, r)$, $D \in D(i, r)$, define an element $\alpha = \alpha(\sigma, C, D) \in \bar{\tau}$ by $\alpha = \phi_C \circ \sigma \circ \phi_D$. Then $\alpha(\sigma, C, D)$ has index i. Note that $\alpha(x) = \{c_{\sigma(j)}(x) \in D_{a_j} \text{ if } x \in D_{a_j}, 0 \text{ if } x \notin D_{a_j} \text{ for any } j\}$.

Lemma 3.1. For any $\alpha \in \bar{\tau}$, of index i, there exist unique $\sigma_\alpha \in S_i$, $C_\alpha \in C(i, r)$, $D_\alpha \in D(i, r)$ such that $\alpha = \phi_{C_\alpha} \circ \sigma_\alpha \circ \phi_{D_\alpha}$.

Notice that S_τ acts on the left on $C(i, r)$: for $C = \{c_1, c_2, \cdots, c_i\} \in C(i, r)$ and $\sigma \in S_\tau$, let $\sigma C = \{\sigma c_1, \sigma c_2, \cdots, \sigma c_i\}$.

Lemma 3.2. Given $C, C' \in C(i, r)$ and $\pi \in S_i$, there exists a $\sigma \in S_\tau$ such that $C' = \sigma C$ and $\sigma \circ \phi_C = \phi_{C'} \circ \pi$.

Given $C \in C(i, r)$, $D \in D(i, r)$, let $A(C, D)$ be the free R-submodule of $R[\bar{\tau}]$ with basis $\{\alpha \in \tau : C_\alpha = C, D_\alpha = D\}$. Note that if $i = 0$, then $C(0, r) = D(0, r) = \{0\}$, a set with one element. $A(0, 0)$ is then one dimensional with basis z, where z is the zero map such that $z(j) = 0$ for all $j \in \bar{\tau} \cup \{0\}$. Evidently, as an R-module

$$R[\bar{\tau}] = \bigoplus_{i \in \tau \cup \{0\}} \bigoplus_{C \in C(i, r), D \in D(i, r)} A(C, D).$$

Lemma 3.3. Suppose that for $D \in D(i, r)$ there exists an $\alpha \in M$ with $D_\alpha = D$. Then $A(C, D) \cap R[M] = A(C, D)$ for every $C \in C(i, r)$.

Define $D(M, i, r) = \{D \in D(i, r) : \exists \alpha \in M$ with $D_\alpha = D\}$. Then as an R-module, $R[M] = \bigoplus_{i \in \tau \cup \{0\}} \bigoplus_{C \in C(i, r), D \in D(M, i, r)} A(C, D)$ by lemma 3.3. So choosing a basis for each free R-module $A(C, D)$, $C \in C(i, r)$, $D \in D(M, i, r)$ will give a basis for $R[M]$.

Definition 3.1. For $C \in C(i, r)$, $D \in D(i, r)$, $i > 0$, define a map of R-modules $H_{C,D} : R[S_i] \rightarrow A(C, D)$ by $H_{C,D}(\sigma) = \phi_C \circ \sigma \circ \psi_D$.

5
By lemma 3.1, \(H_{C,D} \) is well-defined and is a bijection between free \(R \)-modules. So any basis for \(R [\mathfrak{S}_i] \) transfers to a basis for \(A (C, D) \). Let \(B_i = \{ s C^\lambda_i : \lambda \in \Lambda (i) , s , t \ \text{standard} \ \lambda \ \text{tableaux} \} \) be the standard Murphy cellular basis for the cellular algebra \(R [\mathfrak{S}_i] \) \(\text{(See e.g. [11] or [7]).} \) Then \(\{ H_{C,D} (s C^\lambda_i) : s C^\lambda_i \in B_i \} \) is a basis for \(A (C, D) \).

We can now finally define our index sets \(L (\lambda) \) and \(R (\lambda) \). Given \(\lambda \in \Lambda (i) , i \in I (M) , i > 0 \), define

\[
L (\lambda) = \{ (C, s) : C \in C (i, r) , s \ \text{a standard} \ \lambda \ \text{tableau} \}
\]

and

\[
R (\lambda) = \{ (D, t) : D \in D (M, i, r) , t \ \text{a standard} \ \lambda \ \text{tableau} \}.
\]

Then for any \(\lambda \in \Lambda , (C, s) \in L (\lambda) , (D, t) \in R (\lambda) \) define

\[
(C, s) C^\lambda_{(D, t)} = H_{C,D} (s C^\lambda_i) \in A (C, D) \subseteq R [M].
\]

If \(0 \in I (M) \), that is, if the zero map \(z \) such that \(z (j) = 0 \) for all \(j \in \overline{r} \cup \{ 0 \} \) is in \(M \), we define \(\Lambda (0) \) to have a single element \(\lambda_0 \) and define \(L (\lambda_0) = R (\lambda_0) = \{ 0 \} \) each to be sets containing one element, \(\emptyset \). Then define \(\emptyset C^\lambda_0 = z \). The set

\[
\{ (C, s) C^\lambda_{(D, t)} : \lambda \in \Lambda , (C, s) \in L (\lambda) , (D, t) \in R (\lambda) \}
\]

is a union of the bases for the various direct summands \(A (C, D) \) and is therefore a basis for the free \(R \)-module \(R [M] \). We will show that it is a cell-basis for \(R [M] \).

Write \(A_i \) for the cellular algebra \(R [\mathfrak{S}_i] \) and \(\hat{A}_i^\lambda \) for the two sided ideal in \(R [\mathfrak{S}_i] \) spanned by \(\{ s C^\mu_i : \mu > \lambda \} \). The following observation will be useful. Recall that \(\hat{A}^\lambda \) is the \(R \)-submodule of \(R [M] \) spanned by \(\{ (C, s) C^\mu_{(D, t)} : \mu > \lambda \} \).

Lemma 3.4. For any \(C \in C (i, r) , D \in D (i, r) \) and \(\lambda \in \Lambda (i) \), \(H_{C,D} (\hat{A}_i^\lambda) \subseteq \hat{A}^\lambda \).

Lemma 3.5. For \(\alpha \in M \), \(C \in C (i, r) \), suppose \(C' = \alpha (C) \in C (i, r) \). Then there exists \(\rho \in \mathfrak{S}_i \) such that \(\alpha \circ \phi_C = \phi_{C'} \circ \rho \).

Lemma 3.6. For \(\alpha \in M \), \(D = \{ d_j : j \in \overline{i} \} \in D (i, r) \), suppose that \(\alpha^{-1} (d_j) \neq \emptyset \) for all \(j \), so that \(D' = \{ \alpha^{-1} (d_j) : j \in \overline{i} \} \in D (i, r) \). Then there exists \(\rho \in \mathfrak{S}_i \) such that \(\psi_D \circ \alpha = \rho \circ \psi_{D'} \). Furthermore, if \(D \in D (M, i, r) \), then \(D' \in D (M, i, r) \).

Proposition 3.1. \(C = \{ (C, s) C^\lambda_{(D, t)} : \lambda \in \Lambda , (C, s) \in L (\lambda) , (D, t) \in R (\lambda) \} \) is a cell basis for \(A = R [M] \).

For \(\lambda \in \Lambda \), the right cell module \(C^\lambda_R \) is a right \(A \)-module and a free \(R \)-module with basis \(\{ C^\lambda_{(D, t)} : (D, t) \in R (\lambda) \} \), while the left cell module \(L C^\lambda \) is a left \(A \)-module and a free \(R \)-module with basis \(\{ (C, s) C^\lambda : (C, s) \in L (\lambda) \} \). The
bracket for A is an R-bilinear map $\langle -, - \rangle : C^A_R \times L^A \to R$ defined on basis elements by $\langle C^A_{(D,t)}, (c,s)C^A \rangle = r_{(c,s),(D,t)} \in R$ where $(c',s')(C^A_{(D,t)})^*\cdot (c,s)C^A_{(D',t')} = r_{(c,s),(D,t)} \cdot (c',s')C^A_{(D',t')}$ mod \bar{A}^A.

Lemma 3.7. Assume $C, C' \in C(i, r), D, D' \in D(i, r)$ and $x, y \in R(\mathfrak{S}_i)$. Then

(a) If $\rho = \psi_D \circ \phi_C : \bar{i} \to \bar{i}$ is not bijective, then $H_{C',D}(x) \cdot H_{C,D'}(y) \in J_{i-1}$.

(b) If $\rho = \psi_D \circ \phi_C : \bar{i} \to \bar{i}$ is bijective, then for any $\pi \in \mathfrak{S}_i$, $H_{C',D}(x) \cdot H_{C,D'}(\pi y) = H_{C',D'}(x \rho \pi y)$.

Lemma 3.8. Let $i \in J(M)$, $\lambda \in \Lambda (i)$, $(C, s) \in L(\lambda)$, and $(D, t) \in R(\lambda)$. Then

(a) If $\rho = \psi_D \circ \phi_C : \bar{i} \to \bar{i}$ is not bijective, $\langle C^A_{(D,t)}, (c,s)C^A \rangle = 0$.

(b) If $\rho = \psi_D \circ \phi_C : \bar{i} \to \bar{i}$ is bijective, then for any $\pi \in \mathfrak{S}_i$,

$$\langle C^A_{(D,t)}, \pi' \cdot (c,s)C^A \rangle = \langle C^A_i, \rho \pi \cdot sC^A \rangle_i.$$

Here $\langle - , - \rangle$ is the bracket in the cellular algebra $R[\mathfrak{S}_i]$ and $\pi' = H_{C,D'}(\pi)$ for any $D' \in D(M, i, r)$ such that $\psi_{D'} \circ \phi_C = \text{id} : \bar{i} \to i$.

Recall that the radical, $\text{rad}(C^A_R)$, of a right cell module is the right A-module given by $\text{rad}(C^A_R) = \{ x \in C^A_R : \langle x, y \rangle = 0 \text{ for all } y \in L^A \}$.

Proposition 3.2. Let $i \in I(M)$, $\lambda \in \Lambda (i)$. Then $\text{rad}(C^A_R) = C^A_R$ in A if and only if $\text{rad}(C^A) = C^A$ in A_i.

Proof. Assume first that $\text{rad}(C^A) = C^A$ in A_i, so $\langle x, y \rangle_i = 0$ for all x, y. To show $\text{rad}(C^A_R) = C^A_R$ it suffices to show that $\langle C^A_{(D,t)}, (c,s)C^A \rangle = 0$ for any $(D, t) \in R(\lambda), (C, s) \in L(\lambda)$. If $\rho = \psi_D \circ \phi_C : \bar{i} \to \bar{i}$ is not bijective, lemma 3.8(a) gives $\langle C^A_{(D,t)}, (c,s)C^A \rangle = 0$. If $\rho = \psi_D \circ \phi_C : \bar{i} \to \bar{i}$ is bijective, take π in lemma 3.8(b) to be the identity so that $\pi'(c,s)C^A = (c,s)C^A$. Then by lemma 3.8(b), $\langle C^A_{(D,t)}, (c,s)C^A \rangle = \langle C^A_{(D,t)}, \pi' \cdot (c,s)C^A \rangle = \langle C_i^A, \rho \pi \cdot sC^A \rangle_i = 0$.

Now assume $\text{rad}(C^A_R) = C^A_R$ in A, so $\langle x, y \rangle = 0$ for any $x \in C^A_R, y \in L^A$. To show $\text{rad}(C^A) = C^A$ in A_i, it suffices to show that $\langle C_i^A, sC^A \rangle_i = 0$ for any i, s. Take any $D \in D(M, i, r)$ and choose $C \in C(i, r)$ such that $\rho = \psi_D \circ \phi_C$ is bijective. Then apply lemma 3.8(b) with $\pi = \rho^{-1}$ to get $\langle C_i^A, sC^A \rangle_i = \langle C^A_{(D,t)}, \pi' \cdot (c,s)C^A \rangle = 0$.

Note: In the special case when $0 \in I(M)$, so $\Lambda (0) = \{ \lambda_0 \} \subseteq \Lambda$, the cell modules $C^A_{R'}, LC^A_{\lambda_0}$ are one dimensional with generators $C^A_{\emptyset, 0} \cdot gC^A_{\lambda_0}$ and $\langle C^A_{\emptyset, 0} \cdot gC^A_{\lambda_0} \rangle = 1$ (since $z \cdot z = z$ where $z = gC^A_{\emptyset, 0} : j \mapsto 0$ for all $j \in i \cup \{0\}$). Then $\text{rad}(C^A_{R'}) = 0$.

7
4 Generalized Schur algebras

For a monoid M as in section 3 and a domain R, a “generalized Schur algebra”, $S(M, R)$, was defined in [3] and [2]. This algebra is isomorphic to $R \otimes A^Z$ where A^Z is a certain “Z-form”. As shown in [3], there are actually two relevant Z-forms, the left and right generalized Schur algebras $LGS(M, G) = A^Z_L$ and $RGS(M, G) = A^Z_R$, corresponding to the monoid M and the family of subgroups $G = \{G_{\mu} : \mu \in \Lambda(r,n)\}$. Here $\Lambda(r,n)$ is the set of all compositions of r with n parts, G_{μ} is the “Young subgroup” corresponding to $\mu \in \Lambda(r,n)$, and we will always assume $n \geq r$. We sketch the description of these two algebras; for details see [3].

For compositions $\mu, \nu \in \Lambda(r,n)$, let $^{\mu}A^{\nu}$ be the \mathbb{Z}-submodule of $A = \mathbb{Z}[M]$ which is invariant under the action of G_{μ} on the left and G_{ν} on the right. Let μM_ν be the set of double cosets of the form $G_{\mu}mG_{\nu}$, $m \in M$. For $D \in \mu M_\nu$, define $X(D) = \sum m \in \mathbb{Z}[M]$. Then $^{\mu}A^{\nu}$ is a free \mathbb{Z}-module with basis $\{X(D) : D \in \mu M_\nu\}$. Let $\tilde{A} = \bigoplus_{\mu, \nu \in \Lambda(r,n)}^{\mu}A^{\nu}$, the direct sum of disjoint copies of submodules of A. Then \tilde{A} is a free \mathbb{Z}-module with basis $\{b_D = X(D) : D \in \mu M_\mu, \mu, \nu \in \Lambda(r,n)\}$. Notice that if $D_1 \in \mu M_\mu$, $D_2 \in \nu M_\nu$, then the product $X(D_1)X(D_2)$ (defined in A) is invariant under multiplication by G_{μ} on the left and by G_{ν} on the right, i.e., $X(D_1)X(D_2) \in ^{\mu}A^{\nu}$. It is therefore a \mathbb{Z}-linear combination of $\{X(D) : D \in \mu M_\mu\}$: $X(D_1)X(D_2) = \sum_{D \in \mu M_\mu} a(D_1, D_2, D)X(D)$, with coefficients $a(D_1, D_2, D) \in \mathbb{Z}$. Then an associative, bilinear product on \tilde{A} is defined on the basis elements $b_{D_i} = X(D_i)$ corresponding to $D_1 \in \mu M_\mu$, $D_2 \in \nu M_\nu$ by

$$b_{D_1}b_{D_2} = \begin{cases} \sum_{D \in \nu M_\nu} a(D_1, D_2, D)b_D & \text{if } \nu = \rho \\ 0 & \text{if } \nu \neq \rho \end{cases}.$$

\tilde{A} with this multiplication fails (in general) to have an identity. To obtain the \mathbb{Z}-forms A^Z_L and A^Z_R, which are \mathbb{Z}-algebras with identity, we define new “left” and “right” products, \ast_L and \ast_R on \tilde{A}.

For $D \in \mu M_\mu$, let $n_L(D)$ be the number of elements in any left G_{μ}-coset $C \subseteq D$. Then the product \ast_L is defined on the basis elements $b_{D_i} = X(D_i)$ corresponding to $D_1 \in \mu M_\mu$, $D_2 \in \nu M_\nu$ by

$$b_{D_1} \ast_L b_{D_2} = \begin{cases} \sum_{D \in \nu M_\nu} \frac{n_L(D)}{n_L(D_1) n_L(D_2)} a(D_1, D_2, D)b_D & \text{if } \nu = \rho \\ 0 & \text{if } \nu \neq \rho \end{cases}.$$

Similarly, for $D \in \mu M_\nu$, let $n_R(D)$ be the number of elements in any right G_{ν}-coset $C \subseteq D$. Then the product \ast_R is defined on the basis elements $b_{D_i} =
for the individual submodules O be the corresponding Young subgroup.

We will obtain a cell basis for $\bar{\Lambda}(\pi)$ for orbits $O\subseteq A^R_{\mu}$ in A^R_{μ} that both of these algebras, and the associated generalized Schur algebras $R \otimes A^L_{\mu}$ and $R \otimes A^R_{\mu}$ for any domain R, have cell bases and are cell algebras.

We use the notation and definitions of section 3. For a composition $\mu \in \Lambda(r,n)$, \mathfrak{S}_μ acts on the left on $C(i,r)$: if $C = \{c_1, c_2, \cdots, c_i\} \in C(i,r)$ and $\sigma \in \mathfrak{S}_\mu$ define $\sigma C = \{\sigma c_1, \cdots, \sigma c_i\}$. Then write $O(\mu, C) = \{\rho C : \rho \in \mathfrak{S}_\mu\}$ for the orbit of $C \subseteq C(i,r)$ under \mathfrak{S}_μ. Similarly, for a composition $\nu \in \Lambda(r,n)$, \mathfrak{S}_ν acts on the right on $D(M,i,r)$ for $D = \{d_1, d_2, \cdots, d_i\} \in D(M,i,r)$ and $\pi \in \mathfrak{S}_\nu$.

Then write $O(\nu, D) = \{D \pi : \pi \in \mathfrak{S}_\nu\}$ for the orbit of $D \subseteq D(M,i,r)$ under \mathfrak{S}_ν.

Any double coset $D \in \mathfrak{S}_\mu \alpha \mathfrak{S}_\nu = \mu M_{\nu}$ has a well defined index i since any $\beta \in D$ has the same index as α. We also have $O(\mu, C_\beta) = O(\mu, C_{\alpha})$ for any $\beta \in D$, so D has a well defined orbit $O(\mu, D) = O(\mu, C_{\alpha})$ for the action of \mathfrak{S}_μ on $C(i,r)$. Similarly, D has a well defined orbit $O(\nu, D) = O(\nu, D_{\alpha})$ for the action of \mathfrak{S}_ν on $D(M,i,r)$.

Let $O_{\mu, C(i,r)}$ be the set of orbits for the action of \mathfrak{S}_μ on $C(i,r)$ so $C(i,r) = \bigcup_{O \in O_{\mu, C(i,r)}} O$. Similarly, let $O_{\nu, D(M,i,r)}$ be the set of orbits for the action of \mathfrak{S}_ν on $D(M,i,r)$ so $D(M,i,r) = \bigcup_{O \in O_{\nu, D(M,i,r)}} O$.

Finally, for $(O_{\mu, O_{\nu}}) \in O(\mu, \nu, M, i)$ define a collection of double cosets

$$M(O_{\mu, O_{\nu}}) = \{D \in \mu M_{\nu} : \text{index}(D) = i, O(\mu, D) = O_{\mu}, O(\nu, D) = O_{\nu}\}.$$ Then for orbits $O_{\mu} \in O_{\mu, C(i,r)}, O_{\nu} \in O_{\nu, D(M,i,r)}$ define $O_{\nu} A^{O_{\nu}}$ to be the free module with basis $\{X(D) : D \in M(O_{\mu, O_{\nu}})\}$. Evidently

$$O_{\nu} A^{O_{\nu}} = \bigoplus_{i \in I(M)} \bigoplus_{(O_{\mu}, O_{\nu}) \in O(\mu, \nu, M, i)} O_{\nu} A^{O_{\nu}}.$$ We will obtain a cell basis for $\bar{A} = \bigoplus_{\mu, \nu \in \Lambda(r,n)} \mu^* A^{\nu}$ by taking the union of bases for the individual submodules $O_{\mu} A^{O_{\nu}}$.

For $\mu \in \Lambda(r,n)$ and $C \subseteq C(i,r)$ let $\mu(C) \in \Lambda(i,n)$ be the composition of i obtained as follows: if b^μ_j, $j \in \bar{n}$, is the jth block of μ, then the jth block of $\mu(C)$ is given by $b^{\mu_j}_{C}(\mu) = \phi^{-1}_{C}(b^\mu_j)$, $j \in \bar{n}$. Notice that $\mu(C)_{j} = |b^\mu_j \cap C|$, the number of the i elements in C which lie in the jth block of μ. Since elements of \mathfrak{S}_μ preserve the blocks of μ (by definition), the composition $\mu(C)$ depends only on the orbit $O(\mu, C)$, that is, $\mu(\rho C) = \mu(C)$ for any $\rho \in \mathfrak{S}_\mu$. Let $\mathfrak{S}_{\mu}(C) \subseteq \mathfrak{S}_i$ be the corresponding Young subgroup.
Lemma 4.1. Given $C \in C(i, r)$ and $\rho \in \mathfrak{S}_\mu$, let $\rho C \in O(\mu, C)$ be the image of C under ρ. Then there exists a unique $\rho C \in \mathfrak{S}_\mu(\nu)$ such that $\rho \cdot \phi_C = \phi_{\rho C} \cdot \rho C$. Conversely, given any $\rho C \in \mathfrak{S}_\mu(\nu)$ and any $\rho C \in O(\mu, C)$, there exists a $\rho' \in \mathfrak{S}_\mu$ such that $\rho' \cdot \phi_C = \phi_{\rho C} \cdot \rho_C$ and $\rho' C = \rho C \in O(\mu, C)$.

Proof. $\rho \cdot \phi_C$ and $\phi_{\rho C}$ both map $\overline{1}$ one to one onto ρC. So define $\rho C \in \mathfrak{S}_i$ by letting $\rho_C(k)$ be the unique element in $\phi_{\rho C}^{-1}[\rho \cdot \phi_C(k)]$. Then ρC is the unique element in \mathfrak{S}_i such that $\rho \cdot \phi_C = \phi_{\rho C} \cdot \rho_C$, and we need only prove that $\rho C \in \mathfrak{S}_\mu(\nu)$. So suppose j is in the kth $\mathfrak{S}_\mu(\nu)$ block $b_k^{(\mu)}$. We must show that $\rho C(j) \in b_k^{(\mu)}(\nu)$. But $j \in b_k^{(\mu)}(\nu) \Rightarrow \phi_C(j) \in b_k^{(\mu)} \Rightarrow \rho \cdot \phi_C(j) \in b_k^{(\mu)}$ (since $\rho \in \mathfrak{S}_\mu$). Then $\phi_{\rho C} \cdot \rho C(j) \in b_k^{(\mu)}$ which implies $\rho C(j) \in b_k^{(\mu)}$. But $\mu(\rho C) = \mu(C)$, so $\rho C(j) \in b_k^{(\mu)}$ as desired.

Now consider an element $\nu \in \Lambda(r, n)$, \mathfrak{S}_ν acts on the right on P_r: if $S \in P_r$ and $\pi \in \mathfrak{S}_\nu$, then $S \pi = \pi^{-1}(S) = \{\pi^{-1} \{s\} : s \in S\} \in P_r$. Choose a total order on the orbits of \mathfrak{S}_ν acting on P_r and then label the orbits O_i so that $O_1 < O_2 < \cdots < O_{N_\nu}$, where N_ν is the number of orbits. Then choose a total order of all the subsets in P_r which is compatible with the ordering of the \mathfrak{S}_ν orbits: $S_{a_1} \in O_{a_1}$ and $O_{a_1} < O_{a_2} \Rightarrow S_{a_1} < S_{a_2}$. We label the subsets S_i so that $S_1 < S_2 < \cdots < S_{2r}$.

Now consider an element $D \in D(M, i, r)$. D consists of i sets in P_r, so $D = \{\{S_{a_1} < S_{a_2} < \cdots < S_{a_i}\} \}$. Define a composition $\nu(D) \in \Lambda(i, N_\nu)$ by $\nu(D)_j = |D \cap O_j|$, $j = 1, 2, \cdots, N_\nu$. Then S_{a_k}, S_{a_l} are in the same orbit O_j if and only if k, l are in the same block of the composition $\nu(D)$, $k, l \in b_j^{(\nu)}$. \mathfrak{S}_ν acts on the right on $D(M, i, r)$: For $\pi \in \mathfrak{S}_\nu, D \pi = \{S_{a_j} \pi : j \in i\} = \{\pi^{-1}[S_{a_j}] : j \in i\} \in D(M, i, r)$. Since by definition \mathfrak{S}_ν preserves orbits, $|D \pi \cap O_j| = |D \pi \cap O_j|$ for any $\pi \in \mathfrak{S}_\nu$. So the composition $\nu(D \pi) = \nu(D)$ depends only on the orbit $O(\nu, D)$ of D under the action of \mathfrak{S}_ν. Let $\mathfrak{S}_{\nu(D)} \subseteq \mathfrak{S}_i$ be the corresponding Young subgroup.

Lemma 4.2. Given $D \in D(M, i, r)$ and $\pi \in \mathfrak{S}_\nu$, let $D \pi \in O(\nu, D)$ be the image of D under π. Then there exists a unique $\pi D \in \mathfrak{S}_{\nu(D)}$ such that $\psi_D \cdot \pi = \pi D \cdot \psi_{\pi D}$. Conversely, given any $\pi D \in \mathfrak{S}_{\nu(D)}$ and any $D \pi \in O(\nu, D)$, there exists a $\pi' \in \mathfrak{S}_\nu$ such that $\psi_D \cdot \pi' = \pi_D \cdot \psi_{\pi D}$ and $D \pi' = D \pi \in O(\nu, D)$.

Proof. Let $D = \{S_{a_1} < S_{a_2} < \cdots < S_{a_i}\}$, so $D \pi = \{\pi^{-1}(S_{a_j}) : j \in i\}$. Arrange the sets in $D \pi$ in order and define $k(j) \in i$ such that $\pi^{-1}(S_{a_j})$ is the $k(j)$th set in the sequence. Then $\psi_D \cdot \pi$ maps elements in $\pi^{-1}(S_{a_j})$ to j, while $\psi_{\pi D}$ maps elements in $\pi^{-1}(S_{a_j})$ to $k(j)$. Define $\pi D \in \mathfrak{S}_i$ by $\pi_D(k(j)) = j, j \in i$. Then π_D is the unique element in \mathfrak{S}_i such that $\psi_D \cdot \pi = \pi_D \cdot \psi_{\pi D}$, and it remains to show that $\pi_D \in \mathfrak{S}_{\nu(D)}$. For this, we must show that j and $k(j)$ are always in the same block of the composition $\nu(D)$. But $D \pi$ and D contain the same
number of subsets in each orbit of \(\mathcal{S}_\nu \). So if \(S_{a_j} \) and \(\pi^{-1}(S_{a_j}) \) are both in the \(l \)th orbit of \(\mathcal{S}_\nu \), then their indices \(j \) and \(k(j) \) are both in the \(l \)th block of \(\nu(D) \).

Now take any \(\pi_D \in \mathcal{S}_\nu(D) \) and any \(D\pi \in O(\nu, D) \). Recall that \(\bar{r} \supseteq \bigcup_{k \in \bar{r}} \pi^{-1}(S_{a_k}) \) and that the sets \(\pi^{-1}(S_{a_k}) \) are pairwise disjoint, so we can define a \(\pi' \in \mathcal{S}_r \) by defining \(\pi' \big| \pi^{-1}(S_{a_k}) \) for each \(k \). Suppose \(k \) is in the \(j \)th block of \(\nu(D) \). Then both \((\psi_D)^{-1}(k) = S_{a_k} \) and \((\pi_D \cdot \psi_D)^{-1}(k) = \pi^{-1}(S_{a_m(k)}) \) (for some \(m(k) \)) are in the \(j \)th orbit of \(\mathcal{S}_\nu \). Define \(\pi' \in \mathcal{S}_r \) by \(\pi' \big| (\pi^{-1}(S_{a_m(k)})) = \sigma_k \big| (\pi^{-1}(S_{a_m(k)})) \) where \(\sigma_k \in \mathcal{S}_\nu \) maps \(\pi^{-1}(S_{a_m(k)}) \) one to one onto \(S_{a_k} \). Then \((\psi_D \cdot \pi')^{-1}(k) = (\pi')^{-1}(\psi_D^{-1}(k)) = (\pi')^{-1}(S_{a_k}) = \pi^{-1}(S_{a_m(k)}) = (\pi_D \cdot \psi_D)^{-1}(k) \) for all \(k \). So \(\psi_D \cdot \pi' = \pi_D \cdot \psi_D \pi \) and it remains to show that \(\pi' \in \mathcal{S}_\nu \). It suffices to show that if \(l \) is in the \(j \)th block of \(\nu \) then \(\pi'(l) \) is also in the \(j \)th block. But any \(l \) is in a unique \(\pi^{-1}(S_{a_k}) \), so \(\pi'(l) = \sigma_k(l) \) is in fact in the \(j \)th block since \(\sigma_k \in \mathcal{S}_\nu \).

Consider compositions \(\mu, \nu \in \Lambda(r, n) \) and an element \(\alpha \in M \) of index \(i \). There exist unique \(\sigma_\alpha \in \mathcal{S}_r \), \(C_\alpha \in C(i, r) \), \(D_\alpha \in D(M, i, r) \) such that \(\alpha = \phi_{C_\alpha} \circ \sigma_\alpha \circ \psi_{D_\alpha} \). For \(C = \rho C_\alpha \in O(\mu, C_\alpha) \), define

\[
\phi_C \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_\alpha} = \{ \phi_C \cdot \kappa \cdot \sigma_\alpha \circ \psi_{D_\alpha} : \kappa \in \mathcal{S}_{\nu(C)} \} \subseteq M.
\]

Similarly, for \(D = D_\alpha \pi \in O(\nu, D_\alpha) \), define

\[
\phi_{C_\alpha} \circ \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_D = \{ \phi_{C_\alpha} \circ \sigma_\alpha \cdot \gamma \cdot \psi_D : \gamma \in \mathcal{S}_{\nu(D)} \}.
\]

Finally, for \(C \in O(\mu, C_\alpha) \), \(D \in O(\nu, D_\alpha) \), define

\[
\phi_C \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_D = \{ \phi_C \cdot \kappa \cdot \sigma_\alpha \cdot \gamma \cdot \psi_D : \kappa \in \mathcal{S}_{\nu(C)}, \gamma \in \mathcal{S}_{\nu(D)} \}.
\]

Proposition 4.1. For compositions \(\mu, \nu \in \Lambda(r, n) \) and an element \(\alpha = \phi_{C_\alpha} \circ \sigma_\alpha \circ \psi_{D_\alpha} \in M \) of index \(i \),

(a) For \(C_1, C_2, C \in O(\mu, C_\alpha), D_1, D_2, D \in O(\nu, D_\alpha) \),

\[
(\phi_{C_1} \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_1}) \cap (\phi_{C_2} \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_1}) = \emptyset
\]

unless \(C_1 = C_2 \) and \(D_1 = D_2 \). The double coset \(\mathcal{S}_{\mu, \alpha} \mathcal{S}_{\nu} \) is a disjoint union

\[
\mathcal{S}_{\mu, \alpha} \mathcal{S}_{\nu} = \bigcup_{C \in O(\mu, C_\alpha), D \in O(\nu, D_\alpha)} \phi_C \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_\alpha}.
\]

(b) For \(C_1, C_2 \in O(\mu, C_\alpha) \),

\[
(\phi_{C_1} \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_1}) \cap (\phi_{C_2} \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_1}) = \emptyset
\]

unless \(C_1 = C_2 \).

\[
\mathcal{S}_{\mu, \alpha} = \bigcup_{C \in O(\mu, C_\alpha)} \phi_C \cdot \mathcal{S}_{\nu(C)} \cdot \sigma_\alpha \circ \psi_{D_\alpha},
\]

a disjoint union.
(c) For \(D_1, D_2 \in O(\nu, D_\alpha) \),
\[
(\phi_{C_\alpha} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_{D_1}) \cap (\phi_{C_\alpha} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_{D_2}) = \emptyset
\]
unless \(D_1 = D_2 \).

\[
\alpha \mathcal{S}_\nu = \bigcup_{D \in O(\nu, D_\alpha)} \phi_{C_\alpha} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \circ \psi_D,
\]
a disjoint union.

Proof. For part (a), if
\[
\beta \in (\phi_{C_1} \cdot \mathcal{S}_{\mu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_{D_1}) \cap (\phi_{C_2} \cdot \mathcal{S}_{\mu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_{D_1})
\]
then \(C_1 = C_\beta = C_2 \) and \(D_1 = D_\beta = D_2 \), so
\[
(\phi_{C_1} \cdot \mathcal{S}_{\mu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_{D_1}) \cap (\phi_{C_2} \cdot \mathcal{S}_{\mu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_{D_1}) = \emptyset
\]
unless \(C_1 = C_2 \) and \(D_1 = D_2 \).

If \(\beta \in \mathcal{S}_\mu \alpha \mathcal{S}_\nu \), then \(\beta = \rho \circ \phi_{C_\alpha} \circ \sigma_\alpha \circ \psi_{D_\alpha} \circ \pi \) for some \(\rho \in \mathcal{S}_\mu \), \(\pi \in \mathcal{S}_\nu \).

By lemmas 4.1 and 4.2 there exist \(\rho C_\alpha \in \mathcal{S}_{\mu(C)} \), \(\pi D \in \mathcal{S}_{\nu(D)} \) such that
\[
\beta = \phi_{\rho C_\alpha} \circ \rho C_\alpha \circ \pi D \circ \psi_{D_\alpha} \circ \pi \in \phi_{\rho C_\alpha} \cdot \mathcal{S}_{\mu(C)} \circ \sigma_\alpha \circ \mathcal{S}_{\nu(D)} \circ \psi_{D_\alpha} \circ \pi .
\]
So \(\mathcal{S}_\mu \alpha \mathcal{S}_\nu \subseteq \bigcup_{C \in O(\mu, C_\alpha), D \in O(\nu, D_\alpha)} \phi_{C} \cdot \mathcal{S}_{\mu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_D \). On the other hand, if
\[
\beta = \phi_{\rho C_\alpha} \circ \rho C_\alpha \circ \pi D \circ \psi_{D_\alpha} \circ \pi \in \phi_{\rho C_\alpha} \cdot \mathcal{S}_{\mu(C)} \circ \sigma_\alpha \circ \mathcal{S}_{\nu(D)} \circ \psi_{D_\alpha} \circ \pi ,
\]
then by lemmas 4.1 and 4.2 there exist \(\rho' \in \mathcal{S}_\mu \), \(\pi' \in \mathcal{S}_\nu \) such that
\[
\beta = \rho' \circ \phi_{C_\alpha} \circ \sigma_\alpha \circ \psi_{D_\alpha} \circ \pi' = \rho' \alpha \pi' \in \mathcal{S}_\mu \alpha \mathcal{S}_\nu .
\]
So
\[
\bigcup_{C \in O(\mu, C_\alpha), D \in O(\nu, D_\alpha)} \phi_{C} \cdot \mathcal{S}_{\mu(C)} \cdot \sigma_\alpha \cdot \mathcal{S}_{\nu(D)} \cdot \psi_D \subseteq \mathcal{S}_\mu \alpha \mathcal{S}_\nu ,
\]
completing the proof of part (a).

(b) follows from (a) by taking \(D_1 = D_2 = D_\alpha \) and \(\nu \) to be the composition \(\nu_i = 1 \), \(\forall i \), so \(\mathcal{S}_\nu = \mathcal{S}_{\nu(D)} = \{1\} \). Similarly, (c) follows from (a) by taking \(C_1 = C_2 = C_\alpha \) and \(\mu \) to be the composition \(\mu \alpha = 1 \), \(\forall i \), so \(\mathcal{S}_\mu = \mathcal{S}_{\mu(C)} = \{1\} \).

Any double coset \(D = \mathcal{S}_\mu \alpha \mathcal{S}_\nu \in \mu M_\nu \) has a well defined index \(i \) since any \(\beta \in D \) has the same index as \(\alpha \). We also have \(O(\mu, C_\beta) = O(\mu, C_\alpha) \) for any \(\beta \in D \), so \(D \) has a well defined orbit \(O(\mu, D) = O(\mu, D_\alpha) \) for the action of \(\mathcal{S}_\mu \) on \(C \). There is also a well defined composition \(\mu(D) \) and a Young subgroup \(\mathcal{S}_{\mu(D)} \) where \(\mu(D) = \mu(C) \) for any \(C \in O(\mu, D) \). Both \(\mu(D) \) and \(\mathcal{S}_{\mu(D)} \) depend only on the orbit \(O(\mu, D) \). For a double coset \(D = \mathcal{S}_\mu \alpha \mathcal{S}_\nu \in \mu M_\nu \), a left coset
\[
C \subseteq \mathcal{S}_\mu \alpha \mathcal{S}_\nu \text{ has the form } C = \mathcal{S}_\mu \alpha \cdot \pi = \bigcup_{C \in O(\mu, C_\alpha)} \phi_{C} \cdot \mathcal{S}_{\mu(C_\alpha)} \cdot \sigma_\alpha \circ \psi_{D_\alpha} \circ \pi
\]
for some $\pi \in S_\nu$, where the union is disjoint by proposition 4.1. Then $n_L(D) = |C| = |O(\mu, C_\alpha)| \cdot |SSt(\mu(C_\alpha))| = |O(\mu, D)| \cdot |SSt(\mu(D))|$, which depends only on the orbit $O_\mu = O(\mu, D) = O(\mu, C_\alpha)$. So we can define $n_L(O_\mu) = n_L(D)$ for any D with $O_\mu = O(\mu, D)$.

Similarly, D has a well defined orbit $O(\nu, D) = O(\nu, D_\nu)$ for the action of $SSt(\nu)$ on $D(M, i, \nu)$ and there are a composition $\nu(D)$ and a Young subgroup $SSt(\nu(D))$ where $\nu(D) = \nu(D)$ for any $D \in O(\nu(D))$. Then $\nu(D), SSt(\nu(D))$, and $n_R(D) = |O(\nu, D)| \cdot |SSt(\nu(D))|$ depend only on the orbit $O(\nu, D)$ and we can define $n_R(O_\nu) = n_R(D)$ for any D with $O_\nu = O(\nu, D)$.

Given an orbit pair $(O_\mu, O_\nu) \in O(\mu, \nu, M, i)$, define compositions $\mu(O_\mu)$ and $\nu(O_\nu)$ of i and corresponding Young subgroups $SSt(\mu(O_\mu)), SSt(\nu(O_\nu))$, where $\mu(O_\mu) = \mu(C)$ for any $C \in O_\mu$ and $\nu(O_\nu) = \nu(D)$ for any $D \in O_\nu$. If $\mu(O_\mu)B^{\nu(O_\nu)} \subseteq Z[SSt(\nu)]$ is the Z-submodule of $B = Z[SSt(\nu)]$ which is invariant under the action of $SSt(\mu(O_\mu))$ on the left and $SSt(\nu(O_\nu))$ on the right, then $\mu(O_\mu)B^{\nu(O_\nu)}$ is a free Z-module with basis $\{X(\nu(O_\nu)| \tau SSt(\nu(O_\nu)) : \tau \in SSt(\nu)\}$. Define a Z-linear map $\Phi(O_\mu, O_\nu): \mu(O_\mu)B^{\nu(O_\nu)} \to O_\nu A^{O_\nu}$ by

$$\Phi(O_\mu, O_\nu)(x) = \sum_{C \in O_\mu} \sum_{D \in O_\nu} \phi_C \circ x \circ \psi_D.$$

By proposition 4.1, $\Phi(O_\mu, O_\nu)$ is an isomorphism of free Z-modules taking the basis elements $X(\nu(O_\nu)| \tau SSt(\nu(O_\nu))$ for $\mu(O_\mu)B^{\nu(O_\nu)}$ one to one onto the basis elements $X(\nu(O_\nu)| \tau SSt(\nu(O_\nu))$ for $O_\nu A^{O_\nu}$ where $\alpha = \phi_C \circ \sigma \circ \psi_D$ for any $C \in O_\mu, D \in O_\nu$.

Now as a Z-module, $\mu(O_\mu)B^{\nu(O_\nu)}$ can be identified with a direct summand of the standard Schur algebra $S^Z(\nu, M)$. The standard cellular basis for the Schur algebra $S^Z(\nu, M)$ then yields a basis $\{s C \lambda \}$ for $\mu(O_\mu)B^{\nu(O_\nu)}$, where λ is a partition of ν, S is a semistandard λ tableau of type $\mu(O_\mu)$ and T is a semistandard λ tableau of type $\nu(O_\nu)$. Then $\{\Phi(O_\mu, O_\nu)(s C \lambda)\}$ gives a basis $B(O_\mu, O_\nu)$ for $O_\nu A^{O_\nu}$. These piece together to give a basis for A which turns out to be a cell basis for A_L or A_R.

Let $\Lambda = \bigcup_{i \in I(M)} \Lambda(i)$ with the same partial order as for the cell algebra $Z[M]$ of section 7. For $\nu \in \Lambda(i) \subseteq \Lambda$ define

$$L(\lambda) = \{O_\mu, S : \mu \in \Lambda(i, \nu), O_\mu \in O(\mu, C(i, r)), S \in SSt(\lambda, \mu(O_\mu))\}$$

where $SSt(\lambda, \mu(O_\mu))$ is the set of semistandard λ tableaux of type $\mu(O_\mu)$ and define

$$R(\lambda) = \{O_\nu, T : \nu \in \Lambda(i, \nu), O_\nu \in O(\nu, D(M, i, r)), T \in SSt(\lambda, \nu(O_\nu))\}$$

where $SSt(\lambda, \nu(O_\nu))$ is the set of semistandard λ tableaux of type $\nu(O_\nu)$. Then for $\lambda \in \Lambda, O_\nu, S \in L(\lambda), (O_\nu, T) \in R(\lambda)$, define $(O_\nu, S)C^\lambda_{\nu(T)} = \Phi(O_\mu, O_\nu)(s C^\lambda)$. As just mentioned, elements of this type provide a Z-basis for each direct summand $O_\nu A^{O_\nu}$ and hence for all of A.

Note that if M contains the zero map z where $z(j) = 0$ for all j, then Λ contains the empty partition λ^0 of index 0. For any partitions μ, ν the double
Lemma 4.4. Let $\mathbf{S}_\mu \mathbf{S}_\nu = \{ z \} \subseteq \mu A^{\nu}$. $C(0,r) = D(M,0,r) = \emptyset$, so for each partition there is one orbit O_μ or O_ν. Then $L(\lambda^0)$ contains one element (O_μ, \emptyset) for each partition μ, and similarly for $R(\lambda^0)$. Then for each pair of partitions μ, ν our basis contains an element $(O_\mu, \emptyset) C^\lambda_{(O_\mu, \emptyset)} = z \in \mu A^{\nu}$.

We now show that the basis just described is a cell basis. We first check that these basis elements have the left and right cell algebra properties (i) and (ii) for the “ordinary” product in \bar{A}. We then check that the properties also hold for the products $*_L$ and $*_R$ in A^2 and A^R.

Notice that each basis element $(O_\mu, S) C^\lambda_{(O_\mu, T)}$ for \bar{A} is a sum of basis elements in the cell algebra $A = \mathbb{Z}[M]$ of section 7 of the form $C_{s,t} C^\lambda_{t,D}$ for the same λ (where s, t are standard tableaux of type S, T, $C \in O_\mu$, $D \in O_\nu$). As in section 7, let A^1, \bar{A}^1 be the ideals in the cell algebra $A = \mathbb{Z}[M]$ and let \bar{A}^1, \bar{A}^1 be the corresponding submodules of \bar{A} (spanned by basis elements $(O_\mu, S) C^\lambda_{(O_\mu, T)}$ with $\kappa \geq \lambda$ or $\kappa > \lambda$ respectively). Then $\bar{A}^1 \cap \mu A^{\nu} = \bar{A}^1 \cap \mu A^{\nu}$ for any λ, μ, ν.

Lemma 4.3. Let $(O_{\mu_1}, S_1) C^\lambda_{(O_{\mu_1}, T_1)} \in O_{\mu_1} A^{O_{\nu_1}}$ for $i = 1, 2$. Then in $\bar{A}, (O_{\mu_1}, S_1) C^\lambda_{(O_{\mu_1}, T_1)}$ \((O_{\mu_2}, s_2) C^\lambda_{(O_{\mu_2}, T_2)} \sum_{\mu', S'} r \cdot (O_{\nu'}, S') C^\lambda_{(O_{\nu'}, T')} \mod \bar{A}^2 \) where the coefficients $r \in \mathbb{Z}$ are independent of O_{ν_2} and T_2.

Proof. Write $(O_{\mu_2}, s_2) C^\lambda_{(O_{\mu_2}, T_2)}$ as a sum of terms $C_{s,t} C^\lambda_{t,D}$ where t is a standard tableau of type T and $D \in O_{\nu_2}$. Then using property (i) for the cell algebra A, we have $(O_{\mu_1}, S_1) C^\lambda_{(O_{\mu_1}, T_1)} \cdot (O_{\mu_2}, s_2) C^\lambda_{(O_{\mu_2}, T_2)} = \sum_{\mu', S'} r \cdot C_{s,t} C^\lambda_{t,D} \mod \bar{A}^2$ where the coefficients r are independent of D and t and therefore of O_{ν_2} and T_2. Also $(O_{\mu_1}, S_1) C^\lambda_{(O_{\mu_1}, T_1)} \cdot (O_{\mu_2}, s_2) C^\lambda_{(O_{\mu_2}, T_2)} \in \mu_1 A^{\nu_2}$. So the terms $C_{s,t} C^\lambda_{t,D}$ must regroup into a linear combination of terms of the form $(O_{\nu'}, S') C^\lambda_{(O_{\nu'}, T')}$. Then using $\bar{A}^1 \cap \mu_1 A^{\nu_2} = \bar{A}^1 \cap \mu_1 A^{\nu_2}$ gives the result. \[\square\]

Since the $(O_\mu, S) C^\lambda_{(O_\mu, T)}$ form a basis for \bar{A}, linearity gives the following corollary.

Corollary 4.1. For any $x \in \bar{A}$,

$$x \cdot (O_\mu, S) C^\lambda_{(O_\mu, T)} = \sum_{\mu', S'} r \cdot (O_{\nu'}, S') C^\lambda_{(O_\nu', T')} \mod \bar{A}^1$$

where $r = r(x, \mu, S, \mu', S')$ is independent of O_{ν}, T.

Similar arguments give the following results.

Lemma 4.4. Let $(O_{\mu_1}, S_1) C^\lambda_{(O_{\mu_1}, T_1)} \in O_{\mu_1} A^{O_{\nu_1}}$ for $i = 1, 2$. Then in $\bar{A}, (O_{\mu_1}, S_1) C^\lambda_{(O_{\mu_1}, T_1)}$ \((O_{\mu_2}, s_2) C^\lambda_{(O_{\mu_2}, T_2)} \sum_{\nu', T'} r \cdot (O_{\nu'}, S_{\nu'}) C^\lambda_{(O_{\nu'}, T')} \mod \bar{A}^1 \) where the coefficients $r \in \mathbb{Z}$ are independent of O_{μ_1} and S_1.
Corollary 4.2. For any $x \in \hat{A}$,

$$(O_{\mu}, S)^C_{\lambda} (O_{\nu}, T) \cdot x = \sum_{\nu', T'} r \cdot (O_{\mu}, S)^C_{\lambda} (O_{\nu'}, T') \mod \hat{A}^\lambda$$

where $r = r(x, \nu, T, \nu', T')$ is independent of O_{μ}, S.

We now transfer our results to A^2_L and A^2_R. We need the following lemma.

Lemma 4.5. Let $B = \cup B(O_{\mu}, O_{\nu})$ be a basis for \hat{A} where each $B(O_{\mu}, O_{\nu})$ is a basis for the direct summand $O_{\nu}A^{O_{\nu}}$. For $b \in B(O_{\mu}, O_{\nu})$ define $n_L(b) = n_L(O_{\mu})$ and $n_R(b) = n_R(O_{\nu})$. Assume that $b_1 b_2 = \sum_{b \in B} c(b_1, b_2, b) b$ with structure constants $c(b_1, b_2, b) \in \mathbb{Z}$ (using the “ordinary” product in \hat{A}). Then $b_1 *_L b_2 = \sum_{b \in B} n_L(b_1)n_L(b_2) c(b_1, b_2, b)$ and $b_1 *_R b_2 = \sum_{b \in B} n_R(b_1)n_R(b_2) c(b_1, b_2, b)$.

Proof. The result is true by definition for the standard basis $\{b_D = X(D)\}$. Each $b \in B(O_{\mu}, O_{\nu})$ is a linear combination of standard basis vectors $b_D \in B(O_{\mu}, O_{\nu})$ and each $b_D \in O_{\nu}A^{O_{\nu}}$ is a linear combination of the new $b \in B(O_{\mu}, O_{\nu})$. Then since the values $n_L(b), n_R(b)$ depend only on the orbits O_{μ}, O_{ν}, the result for the new basis follows by linearity. \(\square\)

Lemma 4.6. Let $(O_{\mu_i}, S_i)^C_{\lambda} (O_{\nu_i}, T_i) \in O_{\nu_i}A^{O_{\nu_i}}$ for $i = 1, 2$. Assume $\nu_1 = \mu_2$.

(a) In A^2_L,

$$(O_{\mu_1}, S_1)^C_{\lambda_1} (O_{\nu_2}, T_1) *_L (O_{\mu_2}, S_2)^C_{\lambda_2} (O_{\nu_2}, T_2) = \sum_{\mu', S'} r \cdot (O_{\mu'}, S')^C_{\lambda_2} (O_{\nu_2}, T_2) \mod \hat{A}^{\lambda_2}$$

where the coefficients $r \in \mathbb{Z}$ are independent of O_{ν_2} and T_2.

(b) In A^2_L,

$$(O_{\mu_1}, S_1)^C_{\lambda_1} (O_{\nu_2}, T_1) *_L (O_{\mu_2}, S_2)^C_{\lambda_2} (O_{\nu_2}, T_2) = \sum_{\mu', S'} r \cdot (O_{\mu_1}, S_1)^C_{\lambda_2} (O_{\nu_2}, T_2) \mod \hat{A}^{\lambda_2}$$

where the coefficients $r \in \mathbb{Z}$ are independent of O_{μ_1} and S_1.

(c) In A^2_R,

$$(O_{\mu_1}, S_1)^C_{\lambda_1} (O_{\nu_2}, T_1) *_R (O_{\mu_2}, S_2)^C_{\lambda_2} (O_{\nu_2}, T_2) = \sum_{\mu', S'} r \cdot (O_{\mu_1}, S_1)^C_{\lambda_2} (O_{\nu_2}, T_2) \mod \hat{A}^{\lambda_2}$$

where the coefficients $r \in \mathbb{Z}$ are independent of O_{ν_2} and T_2.

(d) In A^2_R,

$$(O_{\mu_1}, S_1)^C_{\lambda_1} (O_{\nu_2}, T_1) *_R (O_{\mu_2}, S_2)^C_{\lambda_2} (O_{\nu_2}, T_2) = \sum_{\mu', S'} r \cdot (O_{\mu_1}, S_1)^C_{\lambda_2} (O_{\nu_2}, T_2) \mod \hat{A}^{\lambda_1}$$

where the coefficients $r \in \mathbb{Z}$ are independent of O_{μ_1} and S_1. 15
Proof. Notice that a basis element \(b = (O_{\nu}, S)C_{\lambda}^{\mu}(O_{\nu}, T) \) is in \(O_{\nu}A_{\nu} \), so in the notation of lemma 4.6, we have \(n_L(b) = n_L(O_{\mu}) \), \(n_R(b) = n_R(O_{\nu}) \).

For part (a), lemma 4.3 gives

\[
(O_{\nu_1}, S_1)C_{\lambda_1}^{\mu_1}(O_{\nu_1}, T_1) \cdot (O_{\nu_2}, S_2)C_{\lambda_2}^{\mu_2}(O_{\nu_2}, T_2) = \sum_{\mu', S'} r' \cdot (O_{\nu'}, S')C_{\lambda_2}^{\mu_2}(O_{\nu_2}, T_2) \mod \hat{A}^{\lambda_2}
\]

where the coefficients \(r' \in \mathbb{Z} \) are independent of \(O_{\nu_2} \) and \(T_2 \). Then lemma 4.5 gives

\[
\sum_{\mu', S'} \frac{n_L(O_{\mu})}{n_L(O_{\mu_1})} \cdot \frac{n_L(O_{\mu_2})}{n_L(O_{\mu_2})} \cdot r' \cdot (O_{\nu_1}, S_1)C_{\lambda_1}^{\mu_1}(O_{\nu_1}, T_1) \mod \hat{A}^{\lambda_1}
\]

where the coefficients \(r' \in \mathbb{Z} \) are independent of \(O_{\mu_1} \) and \(S_1 \). Then lemma 4.5 gives

\[
\sum_{\nu', T'} \frac{n_L(O_{\nu_1})}{n_L(O_{\nu_2})} \cdot \frac{n_L(O_{\nu_2})}{n_L(O_{\nu_2})} \cdot r' \cdot (O_{\nu_1}, S_1)C_{\lambda_1}^{\mu_1}(O_{\nu_1}, T_1) \mod \hat{A}^{\lambda_1}
\]

Then \(r = \frac{n_L(O_{\nu_1})}{n_L(O_{\nu_2})} \cdot \frac{1}{n_L(O_{\nu_2})} \cdot r' \) is independent of \(O_{\mu_1} \) and \(S_1 \) and the result (b) follows.

Parts (c) and (d) are proved similarly.

Proposition 4.2. \(\left\{ (O_{\nu}, S)C_{\lambda}^{\mu}(O_{\nu}, T) \right\} \) is a cell basis for both \(A_{\mathbb{Z}}^{\mathbb{Z}} \) and \(A_{R}^{\mathbb{Z}} \), which are therefore cell algebras.

Proof. We have shown the \(\left\{ (O_{\nu}, S)C_{\lambda}^{\mu}(O_{\nu}, T) \right\} \) form a basis and the multiplication rules (i) and (ii) for a cell algebra then follow at once by linearity from lemma 4.6.

Corollary 4.3. For any domain \(R \), the left and right generalized Schur algebras \(LGS_R(M, G) = R \otimes \mathbb{Z} A_{\mathbb{Z}}^{\mathbb{Z}} \) and \(RGS_R(M, G) = R \otimes \mathbb{Z} A_{R}^{\mathbb{Z}} \) are cell algebras with a cell basis \(\left\{ (O_{\nu}, S)C_{\lambda}^{\mu}(O_{\nu}, T) \right\} \).
5 Irreducible modules for generalized Schur algebras

The cell basis \(\{ (O_{\nu}, S) C_{(O_{\nu}, T)}^\lambda \} \) for the cell algebra \(A_L^\mathbb{Z} \) or \(A_R^\mathbb{Z} \) found above depends on the choice of an ordering of the orbits of \(\mathfrak{S}_\nu \) acting on \(P_r \), and of an ordering of the subsets in \(P_r \) compatible with the ordering of the orbits. We now choose orderings which will simplify the calculations of the brackets in these cell algebras.

For \(d \in P_r \), \(|d| = i \), define an increasing string of \(i \) integers, \(s(d) \), to be the \(i \) elements of \(d \) arranged in ascending order. Then define a non-decreasing string of \(i \) of positive integers, \(s(\nu, d) \), by replacing each \(x \in s(d) \) by \(b(x) \), where \(x \) is in the \(b(x)^{th} \) block \(b_{\nu}(x) \) of the composition \(\mathfrak{S}_\nu \). Finally, define a string of \(r \) non-negative integers, \(\bar{s}(\nu, d) \), by adding \(r - i \) zeroes to the end of \(s(\nu, d) \). Note that \(\bar{s}(\nu, d) \) depends only on the \(\mathfrak{S}_\nu \)-orbit of \(d \). In fact, \(\bar{s}(\nu, d) = \bar{s}(\nu, d') \iff d, d' \) are in the same \(\mathfrak{S}_\nu \)-orbit. We then get a total ordering of the \(\mathfrak{S}_\nu \)-orbits by ordering the corresponding strings \(\bar{s}(\nu, d) \) lexicographically: if \(\bar{s}(\nu, d) \) represents the \(j \)th element of the string, then \(\bar{s}(\nu, d)_{j} < \bar{s}(\nu, d')_{j} \) for some \(J \) between 1 and \(r \) we have \(\bar{s}(\nu, d)_{j} = \bar{s}(\nu, d')_{j} \) for all \(j < J \), while \(\bar{s}(\nu, d)_{J} < \bar{s}(\nu, d')_{J} \).

We then define our order on \(P_r \) by: \(d < d' \) if (1) \(\bar{s}(\nu, d) < \bar{s}(\nu, d') \) or (2) \(\bar{s}(\nu, d) = \bar{s}(\nu, d') \) (so \(d, d' \) are in the same \(\mathfrak{S}_\nu \)-orbit) and \(s(d) < s(d') \) in lexicographical order.

Note the following special cases of our ordering:

The smallest set in \(P_r \) is the empty set \(\emptyset \).

If \(\{a\}, \{b\} \) are one element sets in \(P_r \), then \(\{a\} < \{b\} \iff a < b \).

If \(\{a\}, d \in P_r \) and \(d \) has more than one element with smallest element \(b \), then \(\{a\} < d \) if the \(\nu \)-block containing \(a \) is less than the \(\nu \)-block containing \(b \), while \(\{a\} > d \) if the \(\nu \)-block containing \(a \) is greater than the \(\nu \)-block containing \(b \).

We will assume our cell bases are chosen with respect to these orderings.

In this section we assume that \(R = k \) is a field. We will write \(S_L(M, k) \) for the left generalized Schur algebra \(LGS_k(M, \mathbb{G}) = k \otimes A_L^\mathbb{Z} \) and \(S_R(M, k) \) for the right generalized Schur algebra \(RGS_k(M, \mathbb{G}) = k \otimes A_R^\mathbb{Z} \). For either of these algebras, if \(\lambda \in \Lambda \) then \(\lambda \in \Lambda (i, n) \) for some \(i \) with \(i \leq r \leq n \). Recall that in these cell algebras \(\Lambda_0 \) is the subset of \(\Lambda \) consisting of \(\lambda \) for which the bracket \(\langle O_{\nu}, S^\lambda, C_{(O_{\nu}, T)}^\lambda \rangle \) is not identically zero. By corollary 2.1, there is one isomorphism class of irreducible modules for each \(\lambda \in \Lambda_0 \). We will determine \(\Lambda_0 \) when \(M = T_r \) or when \(M \) contains the rook monoid \(\mathfrak{R}_r \).

Theorem 5.1. Let \(k \) be a field of characteristic 0 and let \(M = T_r \). Then \(\Lambda_0 = \Lambda \) for both \(S_L(\tau_r, k) \) and \(S_R(\tau_r, k) \). Both \(S_L(\tau_r, k) \) and \(S_R(\tau_r, k) \) are quasi-hereditary algebras.

Proof. Take any \(\lambda \in \Lambda \) with index(\(\lambda \)) = \(i > 0 \). Let \(k \) be the largest index such that \(\lambda_k > 0 \), so \(\lambda_j = 0 \), \(j > k \). Let \(\mu \) be the partition of \(r \) where

\[
\mu_j = \begin{cases}
\lambda_j & \text{if } j \leq k \\
1 & \text{if } j = k + 1, k + 2, \ldots, k + (r - i)
\end{cases}
\]
Let $C = \{1, 2, \cdots, i\}$. Then $\mu(C) = \lambda \in \Lambda(i, n)$. Let S be the semistandard λ-tableau of type $\mu(C)$ where $S_{j,l} = j$, for $1 \leq l \leq \lambda_j$, $j = 1, 2, \cdots, k$. There is only one standard λ-tableau of type S, namely $s = id$, the identity in \mathcal{S}_i,

The orbit $O(C, \mu) = \{C\}$, so $\#O(C, \mu) = 1$. Also, $\phi_C : l \rightarrow \bar{l}$ is the identity $\phi_C(j) = j$, $j = 1, 2, \cdots, i$.

Next let $D = \{\{1\}, \{2\}, \cdots, \{i - 1\}, \{i, i + 1, i + 2, \cdots, r\}\}$. Then $\mu(D) \in \Lambda(i, n)$ is given by

$$
\mu(D)_j = \begin{cases}
\lambda_j & \text{if } j < k \\
\lambda_k - 1 & \text{if } j = k \\
1 & \text{if } j = k + 1 \\
0 & \text{if } j > k + 1.
\end{cases}
$$

Let T be the semistandard λ-tableau of type $\mu(D)$ where

$$
T_{j,l} = \begin{cases}
j & \text{for } 1 \leq l \leq \lambda_j, j = 1, 2, \cdots, k - 1 \\
k & \text{for } 1 \leq l \leq \lambda_k - 1, j = k \\
k + 1 & \text{for } l = \lambda_k, j = k.
\end{cases}
$$

There is only one standard λ-tableau of type T, namely $t = id$, the identity in \mathcal{S}_i. Let b^k_μ be the kth block in the partition μ. For $a \in b^k_\mu$, define $D_a = \{\{1\}, \{2\}, \cdots, \{i - 1\}, \{i\}, \{a, i + 1, i + 2, \cdots, r\}\} - \{\{a\}\}$. Then the orbit $O(D, \mu) = \{D_a : a \in b^k_\mu\}$ and $\#O(D, \mu) = |b^k_\mu| = \mu_k = \lambda_k$. Also $\psi_{D_a} : \bar{l} \rightarrow \bar{i}$ is given by

$$
\psi_{D_a}(j) = \begin{cases}
j & \text{if } j < a \\
j - 1 & \text{if } a < j \leq i \\
i & \text{if } j = a \text{ or } j > i.
\end{cases}
$$

Then $\psi_{D_a} \circ \phi_C : l \rightarrow \bar{l}$ is a cyclic permutation $\sigma_a = (a, i, i - 1, i - 2, \cdots, a + 1) \in \mathcal{S}_\lambda$.

We have $SC^\lambda_T = SC^\lambda_T = id \cdot r_\lambda \cdot id = r_\lambda$, so

$$
SC^\lambda_T \circ \psi_{D_a} \circ \phi_C \circ SC^\lambda_T = r_\lambda \cdot \sigma_a \cdot r_\lambda = r_\lambda \cdot r_\lambda = o(\mathcal{S}_\lambda) r_\lambda.
$$

Then writing $b =_{O(C, \mu), S} C^\lambda_{O(D, \mu), T} = \phi_C \cdot SC^\lambda_T \cdot \sum_{a \in b^k_\mu} \psi_{D_a}$, compute

$$
b \cdot b = \phi_C \cdot SC^\lambda_T \cdot \sum_{a \in b^k_\mu} \psi_{D_a} \cdot \phi_C \cdot SC^\lambda_T \cdot \sum_{a \in b^k_\mu} \psi_{D_a}
$$

$$
= \lambda_k \cdot \phi_C \cdot o(\mathcal{S}_\lambda) \cdot r_\lambda \cdot \sum_{a \in b^k_\mu} \psi_{D_a}
$$

$$
= \lambda_k \cdot o(\mathcal{S}_\lambda) \cdot b.
$$

Then

$$
b *_L b = \lambda_k \cdot o(\mathcal{S}_\lambda) \cdot \frac{n_L(b)}{n_L(b) n_L(b)} \cdot b = \lambda_k \cdot o(\mathcal{S}_\lambda) \cdot \frac{1}{n_L(b)} \cdot b = \lambda_k \cdot b.
$$
where
\[n_L(b) = n_L(O(C, \mu)) = \#O(C, \mu) \cdot o(\mathfrak{g}_{\mu(C)}) = 1 \cdot o(\mathfrak{g}_{\lambda}). \]

Similarly,
\[b \ast_R b = \lambda_k \cdot o(\mathfrak{g}_{\lambda}) \cdot \frac{n_R(b)}{n_R(b)} \cdot b = \lambda_k \cdot o(\mathfrak{g}_{\lambda}) \cdot \frac{1}{n_R(b)} \cdot b = \lambda_k \cdot b \]

where
\[n_R(b) = n_R(O(D, \mu)) = \#O(D, \mu) \cdot o(\mathfrak{g}_{\mu(D)}) = \lambda_k \cdot o(\mathfrak{g}_{\lambda})/\lambda_k. \]

Then computing the bracket (in either \(S_L(\tau, k) \) or \(S_R(\tau, k) \)) we find that
\[\left\langle C^\lambda_{O(D, \mu)} \cdot T \cdot o(C, \mu), S^\lambda \right\rangle = \lambda_k \neq 0 \]
(since characteristic of \(k \) is 0). So \(\lambda \in \Lambda_0 \).

By corollary \(2.1 \) a cell algebra with \(\Lambda_0 = \Lambda \) is quasi-hereditary, so the proof is complete.

Now assume \(k \) is a field of characteristic \(p > 0 \). For a partition \(\lambda \in \Lambda(i), \; 1 \leq i \leq r \), define an integer \(k(p, \lambda) \geq 0 \) to be the highest power of \(p \) which divides \(\lambda_j \) for every \(j \). (So for all \(j, \; p^{k(p, \lambda)}(p \lambda_j) \) while for at least one \(j, \; p^{k(p, \lambda)+1} \) does not divide \(\lambda_j \).) Then define \(\Lambda_p = \{ \lambda \in \Lambda : p^{k(p, \lambda)} \) divides \(r - i \) for \(i = \text{index}(\lambda) \} \).

Lemma 5.1. For a field \(k \) of characteristic \(p \) and the cell algebra \(S_R(\mathcal{T}_r, k) \), \(\Lambda_p \subseteq \Lambda_0 \).

Proof. Take any \(\lambda \in \Lambda_p \) of index \(i \). Let \(m \) be the lowest nonzero row of \(\lambda \), that is, assume \(\lambda_m > 0 \), \(\lambda_j = 0 \) for \(j > m \). Put \(k = k(p, \lambda) \). Let \(a \) be the lowest row (i.e., largest integer) such that \(p^{k+1} \) does not divide \(\lambda_a \). Since \(\lambda \in \Lambda_p \), \(p^k \) divides \(r - i \), so \(q = (r - i)/p^k \) is an integer. Define a composition \(\mu \) of \(r \) by splitting off the last \(p^k \) elements of row \(a \) of \(\lambda \) and then adding \(q \) additional rows of size \(p^k \):

\[
\mu_j = \begin{cases}
\lambda_j & \text{if } j < a \\
\lambda_a - p^k & \text{if } j = a \\
p^k & \text{if } j = a + 1 \\
\lambda_{a+l} & \text{if } j = a + l + 1 \text{ for } l = 1, 2, \cdots, m - a \\
p^k & \text{if } j = m + 1 + l \text{ for } l = 1, 2, \cdots, q
\end{cases}
\]

Let \(C = \{1, 2, \cdots, i\} \). Then a composition of \(i \) is given by \(\mu(C)_j = \mu_j, \; 1 \leq j \leq m + 1 \). Let \(S \) be the semistandard \(\lambda \)-tableau of type \(\mu(C) \) where

\[
S_{j,l} = \begin{cases}
j & \text{for } 1 \leq l \leq \lambda_j, \; j < a \\
a & \text{for } 1 \leq l \leq \lambda_a - p^k, \; j = a \\
a + 1 & \text{for } \lambda_a - p^k < l \leq \lambda_a, \; j = a \\
j + 1 & \text{for } 1 \leq l \leq \lambda_j, \; a < j \leq m .
\end{cases}
\]

There is only one standard \(\lambda \)-tableau of type \(S \), namely \(s = \text{id} \), the identity in \(\mathfrak{S}_i \). The orbit \(O(C, \mu) = \{C\} \), so \(\#O(C, \mu) = 1 \). Also, \(\phi_C : i \rightarrow \bar{r} \) is the identity \(\phi_C(j) = j, \; j = 1, 2, \cdots, i \).
Now define $D \in D(i, \tau, r)$ as follows: D contains $i - p^k$ single elements sets, one set $\{l\}$ for each entry l in rows 1 through a or rows $a + 2$ through $m + 1$ of μ. D also contains p^k sets with $q + 1$ entries: for $1 \leq j \leq p^k$, the j set D_j contains the jth entry in row $a + 1$ and in each of the last q rows of μ. As a composition of i, $\mu(D) = \mu(C)$, so we can take $T = S$ as a semistandard λ-tableau of type $\mu(D)$. Then again there is only one standard λ-tableau of type T, namely $t = \text{id}$, the identity in S. To define the orbit space $O(D, \mu)$, let $\mathfrak{S}_{\mu_{m+1+j}} \subseteq \mathfrak{S}_\mu$ be the group of permutations of row $m + 1 + j$ of μ. For each $1 \leq j \leq q$, $\mathfrak{S}_{\mu_{m+1+j}} \cong \mathfrak{S}_{p^k}$. Let $G = \prod_{j=1}^{\mu} \mathfrak{S}_{\mu_{m+1+j}} \subseteq \mathfrak{S}_\mu$ and for $\sigma \in G$ let $D_\sigma = D \sigma \in D(i, \tau, r)$. Then $O(D, \mu) = \{D_\sigma : \sigma \in G\}$. Then $\#O(D, \mu) = o(G) = o\left(\mathfrak{S}_{p^k}\right)^{q} = (p^k)^{q}.$

Notice that with our choice of an ordering of the subsets of r, we get $\psi_{D_\sigma}(j) = j, 1 \leq j \leq i$, for any $\sigma \in G$. Then $\psi_{D_\sigma} \circ \phi_C = \text{id}$, the identity mapping $i \rightarrow i$. We have $S C^\lambda_D \cdot S C^\lambda_D = \text{id} \cdot r_\lambda \cdot \text{id} = r_\lambda$, so

$$SC^\lambda_D \circ \psi_{D_\sigma} \circ \phi_C \circ SC^\lambda_D = r_\lambda \cdot \text{id} \cdot r_\lambda = r_\lambda \cdot r_\lambda = o(\mathfrak{S}_\lambda) \cdot r_\lambda.$$

Then writing $b = O(C, \mu), S \cdot C^\lambda_{O(D, \mu), T} = \phi_C \circ S C^\lambda_D \cdot \sum_{\sigma \in G} \psi_{D_\sigma}$, compute

$$b \cdot b = \phi_C \cdot S C^\lambda_D \cdot \sum_{\sigma \in G} \psi_{D_\sigma} \cdot \phi_C \cdot S C^\lambda_D \cdot \sum_{\sigma \in G} \psi_{D_\sigma}
= o(G) \cdot \phi_C \cdot o(\mathfrak{S}_\lambda) \cdot r_\lambda \cdot \sum_{\sigma \in G} \psi_{D_\sigma}
= o(G) \cdot o(\mathfrak{S}_\lambda) \cdot b.$$

Then

$$b * R b = o(G) \cdot o(\mathfrak{S}_\lambda) \cdot \frac{n_R(b)}{n_R(b) n_R(b)} \cdot b
= o(G) \cdot o(\mathfrak{S}_\lambda) \cdot \frac{1}{n_R(b)} \cdot b
= \frac{o(G) \cdot o(\mathfrak{S}_\lambda)}{\#O(D, \mu) \cdot o(\mathfrak{S}_{\mu(D)})} \cdot b$$

where $n_R(b) = n_R(O(D, \mu)) = \#O(D, \mu) \cdot o(\mathfrak{S}_{\mu(D)})$. Since $\#O(D, \mu) = o(G)$ and $\frac{o(\mathfrak{S}_{\mu(D)})}{o(\mathfrak{S}_{\mu(D)})} = \frac{\lambda_a}{(\lambda_a - p^k)p^k} = \left(\begin{array}{c}
\lambda_a \\
p^k
\end{array}\right)$, we get $b * R b = \left(\begin{array}{c}
\lambda_a \\
p^k
\end{array}\right) \cdot b$.

Computing the bracket gives $\left(S^\lambda_{O(D, \mu), T} \cdot O(C, \mu), S C^\lambda_D\right) = \left(\begin{array}{c}
\lambda_a \\
p^k
\end{array}\right)$. Since p^k divides λ_a but p^{k+1} does not, it is easily checked that $\left(\begin{array}{c}
\lambda_a \\
p^k
\end{array}\right)$ is not congruent to 0 mod p. So the bracket is not identically zero in $S_R(\tau_\tau, k)$ and $\lambda \in \Lambda_0$ as desired.

We claim that in fact $\Lambda_p = \Lambda_0$, that is, that every irreducible representation of $S_R(\tau_\tau, k)$ corresponds to some $\lambda \in \Lambda_p$. In [2] or [4], a parameterization
of the isomorphism classes of irreducible representations of $S_R(T_r,k)$ is given. There is one isomorphism class corresponding to the following set of data: i) a set of nonnegative integers $s_m, s_{m+1}, \ldots, s_M$ with $s_m > 0, m \geq 0$ such that $r = s_mp^m + s_{m+1}p^{m+1} + \cdots + s_Mp^M$, ii) a p-restricted partition of s_i for each $m < i \leq M$, and iii) a p-restricted partition of i for some integer $1 \leq i \leq s_m$. (The index of the corresponding irreducible is $r - (s_m - i)p^m$.) We will show that each such set of data corresponds with a unique element $\lambda \in \Lambda_p$, so that the number of isomorphism classes is less than or equal to $\#\Lambda_p$. But we know that the number of isomorphism classes is $\#\Lambda_0$ and by the lemma $\Lambda_p \subseteq \Lambda_0$. So we must have $\Lambda_p = \Lambda_0$.

We will need a certain “decomposition” operation on partitions. For any integer $n > 0$, let λ be a partition of n with R non-zero parts, $\lambda_1 + \lambda_2 + \cdots + \lambda_R = n$. For $1 \leq i \leq R$ define the row length differences $\Delta_i = \lambda_i - \lambda_{i+1}$. Then define an integer $k(\lambda) \geq 0$ to be the highest power of p which is less than or equal to at least one Δ_i. Then we can find nonnegative integers q_i, r_i such that $\Delta_i = q_ip^{k(\lambda)} + r_i$ where each $r_i < p^{k(\lambda)}$, each $q_i < p$, and at least one $q_i > 0$. Define $s(\lambda) = \sum_{i=1}^{R} i \cdot q_i$. We will construct a p-restricted partition of $s(\lambda)$ and a partition λ of $n - s(\lambda)p^{k(\lambda)}$ with $k(\lambda) < k(\lambda')$. Notice that there are $\Delta_i = q_ip^{k(\lambda)} + r_i$ columns of height i in λ. We break λ into two partitions λ_q, λ_r by placing $q_ip^{k(\lambda)}$ columns of height i in the first partition and r_i columns of height i in the second. Then λ_q is a partition of $i \cdot q_ip^{k(\lambda)} = s(\lambda)p^{k(\lambda)}$ with row differences $q_ip^{k(\lambda)}$. By replacing each set of $p^{k(\lambda)}$ consecutive boxes in a row of λ_q by a single box, we obtain a partition of $s(\lambda)$ with row differences $q_i < p$, i.e., a p-restricted partition of $s(\lambda)$. The second partition λ_r is a partition of $n - s(\lambda)p^{k(\lambda)}$ with row differences $r_i < p^{k(\lambda)}$. Then $k(\lambda_r) < k(\lambda)$ and we take $\lambda = \lambda_r$.

We can now replace λ with λ_r and iterate the construction until we reach a case when all r_i are 0. The result is a sequence of nonnegative integers $s_m, s_{m+1}, \ldots, s_M$ with $s_m > 0, m \geq 0$ such that $n = s_mp^m + s_{m+1}p^{m+1} + \cdots + s_Mp^M$ and a p-restricted partition of s_i for each $m \leq i \leq M$. By replacing each box in the partition of s_i by a row of p^i boxes and then joining the resulting partitions (taking the union of the boxes in each row of each partition) we recover uniquely the original partition λ of n. Notice that $k(p, \lambda) = m$.

Now take any isomorphism class of irreducible $S_R(T_r,k)$ modules and consider the unique corresponding data i) nonnegative integers $s_m, s_{m+1}, \ldots, s_M$ with $s_m > 0$ such that $r = s_mp^m + s_{m+1}p^{m+1} + \cdots + s_Mp^M$, ii) a p-restricted partition of s_i for each $m < i \leq M$, and iii) a p-restricted partition of s'_m for some integer $1 \leq s'_m \leq s_m$.

Then $s'_mp^m + s_{m+1}p^{m+1} + \cdots + s_Mp^M = r - (s_m - s'_m)p^m$, so our construction gives a unique partition λ of $r - (s_m - s'_m)p^m$ with $k(p, \lambda) = m$. Then $p^{k(p, \lambda)} = p^m$ divides $r - \text{index}(\lambda) = r - (r - (s_m - s'_m)p^m) = (s_m - s'_m)p^m$, so $\lambda \in \Lambda_p$.

So the number of isomorphism classes is $\leq \#\Lambda_p$ as desired.

As remarked above, this proves the following result.

Theorem 5.2. If k is a field of characteristic p, then $\Lambda_p = \Lambda_0$ in $S_R(T_r,k)$. 21
Corollary 5.1. If k is a field of characteristic p and $r = ap^j$ for $1 \leq a < p$ and some $l = 0, 1, 2, \cdots$, then $S_R(T_r, k)$ is quasi-hereditary.

Proof. By corollary 2.1 we must show that $\Lambda = \Lambda_0$, that is, that any $\lambda \in \Lambda$ is actually in $\Lambda_p = \Lambda_0$. So suppose λ is a partition of i for some $0 < i \leq r$. Put $k = k(p, \lambda)$. Since p^k divides λ_j for every j, p^k divides $i = \sum \lambda_j$, say $i = bp^k$ for some $b > 0$. Now $bp^k = i \leq r = ap^j < p^{j+1}$ (since $a < p$), so $k \leq l$. Then $r - i = ap^j - bp^k = (ap^{j-k} - b)p^k$, so p^k divides $r - i$ and $\lambda \in \Lambda_p$ as desired. □

Now consider $S_R(T_r, k)$ for characteristic p. Define

$$\Lambda_{L,p} = \{ \lambda \in \Lambda : p \text{ does not divide } \lambda_j \text{ for at least one } j \} \cup \Lambda(r).$$

Lemma 5.2. For a field k of characteristic p and the cell algebra $S_L(T_r, k)$, $\Lambda_{L,p} \subseteq \Lambda_0$.

Proof. First suppose $\lambda \in \Lambda(r)$, a partition of maximal index r. Then take $\mu = \lambda$ as a composition of r and let $C = \{1, \cdots, r\}$. Then $\mu(C) = \mu = \lambda$ and a semistandard λ-tableau S of type $\mu(C)$ is given by $S_{j,l} = j$, $1 \leq l \leq j$. There is only one standard λ-tableau of type S, namely $s = id$, the identity in S. The orbit $O(C, \mu) = \{C\}$, so $\#O(C, \mu) = 1$. Also, $\phi_C : \tilde{r} \rightarrow \tilde{r}$ is the identity $\phi_C(j) = j, j = 1, 2, \cdots, r$.

Define $D \in D(r, r, r)$ by $D = \{\{1\}, \{2\}, \cdots, \{r\}\}$. As a composition of r, $\mu(D) = \mu(C) = \lambda$, so we can take $T = S$ as a semistandard λ-tableau of type $\mu(D)$. Then again there is only one standard λ-tableau of type T, namely $t = id$, the identity in S.

We have $O(D, \mu) = \{D\}$, $\#O(D, \mu) = 1$, $\psi_D(j) = j, 1 \leq j \leq r$. Then $\psi_D \circ \phi_C = id : \tilde{r} \rightarrow \tilde{r}$. We have $sC^\lambda_T = sC^\lambda_T = id \cdot r_\lambda \cdot id = r_\lambda$, so $sC^\lambda_T \circ \psi_D \circ \phi_C = sC^\lambda_T = r_\lambda \cdot id = r_\lambda \cdot r_\lambda = o(\tilde{S}) \cdot r_\lambda$. Then writing $b = o(C, \mu) \cdot sC^\lambda_T \cdot \psi_D$, compute $b \cdot b = \phi_C \cdot sC^\lambda_T \cdot \psi_D \cdot \phi_C \cdot sC^\lambda_T \cdot \psi_D = \phi_C \cdot o(\tilde{S}) \cdot r_\lambda \cdot r_\lambda = o(\tilde{S}) \cdot b$. Then $b \ast_L b = o(\tilde{S}) \cdot \frac{n_L(b)}{n_L(b)_{\mu(L)}} \cdot b = o(\tilde{S}) \cdot \frac{1}{n_L(b)} \cdot b = \#O(C, \mu) \cdot o(\tilde{S}) \cdot b$ where $n_L(b) = n_L(O(C, \mu)) = \#O(C, \mu) \cdot o(\tilde{S}) \cdot b$. Since $\#O(C, \mu) = 1$ and $o(\tilde{S}) = o(\tilde{S})$, we get $b \ast_L b = b$. Computing the bracket gives $\langle C^\lambda_{O(D, \mu)} \cdot O(C, \mu) \cdot sC^\lambda_T \rangle = 1 \neq 0$. So the bracket is not identically zero in $S_L(S, k)$ and $\lambda \in \Lambda_0$ as desired.

Now take any $\lambda \in \Lambda_{L,p}$ of index $i < r$. Let m be the lowest nonzero row of λ, that is, assume $\lambda_m > 0, \lambda_j = 0$ for $j > m$. Let a be the largest integer such that p does not divide λ_a. Define a composition μ of r by splitting off the last element of row a of λ and also adding $r - i$ additional rows of length 1:

$$\mu_j = \begin{cases}
\lambda_j & \text{if } j < a \\
\lambda_a - 1 & \text{if } j = a \\
1 & \text{if } j = a + 1 \\
\lambda_{j-1} & \text{if } a + 2 \leq j \leq m + 1 \\
1 & \text{if } m + 2 \leq j \leq (m + 1) + (r - i) .
\end{cases}$$
Let $C = \{1, 2, \ldots, i\}$. Then a composition of i is given by $\mu(C)_j = \mu_j$, $1 \leq j \leq m + 1$. Let S be the semistandard λ-tableau of type $\mu(C)$ where

$$S_{j,l} = \begin{cases}
 j & \text{for } 1 \leq l \leq \lambda_j, \ j < a \\
 a & \text{for } 1 \leq l \leq \lambda_a - 1, \ j = a \\
 a + 1 & \text{for } l = \lambda_a, \ j = a \\
 j + 1 & \text{for } 1 \leq l \leq \lambda_j, \ a < j \leq m .
\end{cases}$$

There is only one standard λ-tableau of type S, namely $s = \text{id}$, the identity in S_t. The orbit $O(C, \mu) = \{C\}$, so $\# O(C, \mu) = 1$. Also, $\phi_C : i \rightarrow \tilde{i}$ is the identity in S_t.

Now define $D \in D(i, \tau, r)$ as follows: Let x be the last element in row λ_a, that is, $x = \lambda_1 + \lambda_2 + \cdots + \lambda_a$. D contains $i - 1$ single elements sets, one set $\{l\}$ for every $1 \leq l \leq i$ except $l = x$. D also contains one set with $r - i + 1$ elements: $\{x, i + 1, i + 2, \ldots, r\}$. As a composition of i, $\mu(D) = \mu(C)$, so we can take $T = S$ as a semistandard λ-tableau of type $\mu(D)$. Then again there is only one standard λ-tableau of type T, namely $t = id$, the identity in S_t.

We have $O(D, \mu) = \{D\}$, $\# O(D, \mu) = 1$, $\psi_D(j) = \begin{cases}
 j & \text{if } 1 \leq j \leq i \\
 x & \text{if } j > i .
\end{cases}$

Then $\psi_D \circ \phi_C = \text{id} : i \rightarrow \tilde{i}$. We have $sC_\lambda^\lambda = sC_\lambda^\lambda = \text{id} \cdot r_\lambda \cdot \text{id} = r_\lambda$, $sC_\lambda^\lambda \circ \psi_D \circ \phi_C \circ sC_\lambda^\lambda = r_\lambda \cdot \text{id} \cdot r_\lambda = r_\lambda \cdot r_\lambda = o(\bar{S}_\lambda) r_\lambda$. Then writing $b = O(C, \mu), sC_\lambda^\lambda = o(\bar{S}_\lambda) r_\lambda \cdot \psi_D$, compute

$$b \cdot b = \phi_C \cdot sC_\lambda^\lambda \cdot \psi_D \cdot \phi_C \cdot sC_\lambda^\lambda \cdot \psi_D$$

$$= \phi_C \cdot o(\bar{S}_\lambda) r_\lambda \cdot \psi_D$$

$$= o(\bar{S}_\lambda) \cdot b .$$

Then

$$b \ast_L b = o(\bar{S}_\lambda) \cdot \frac{n_L(b)}{n_L(b) n_L(b)} \cdot b = o(\bar{S}_\lambda) \cdot \frac{1}{n_L(b)} .$$

$$= \frac{o(\bar{S}_\lambda)}{\# O(C, \mu) o(\bar{S}_\mu(C))} .$$

where $n_L(b) = n_L(O(C, \mu)) = \# O(C, \mu) \cdot o(\bar{S}_\mu(C))$. Since $\# O(C, \mu) = 1$ and $\frac{o(\bar{S}_\lambda)}{o(\bar{S}_\mu(C))} = \frac{\lambda_a}{\mu_a}$, we get $b \ast_L b = \lambda_a \cdot b$.

Computing the bracket gives $\langle C_\lambda^\lambda o(C, \mu), O(C, \mu), sC_\lambda^\lambda \rangle = \lambda_a$. Since p does not divide λ_a (by definition), $\lambda_a \neq 0$ in k. So the bracket is not identically zero in $S_L(T_r, k)$ and $\lambda \in \Lambda_0$ as desired.

We claim that $\Lambda_{L,p} = \Lambda_0$, that is, that every irreducible representation of $S_L(T_r, k)$ corresponds to some $\lambda \in \Lambda_{L,p}$. [4] gives the following parameterization of the isomorphism classes of irreducible representations of $S_L(T_r, k)$. There is one isomorphism class corresponding to the following set of data: i) a set of nonnegative integers $s_m, s_{m+1}, \ldots, s_M$ with $m \geq 0$, $s_m > 0$ such that $r = s_m p^m + s_{m+1} p^{m+1} + \cdots + s_M p^M$, ii) a p-restricted partition of s_i for each

23
Consider first a set of data for the case $k > p$. Then we have $r = s_m p + s_{m+1} p^{m+1} + \cdots + s_M p^M$ and a p-restricted partition of s_m for all m. So by the construction preceding theorem 5.2 there is a unique partition λ of index r corresponding to the data, and since the index of λ is r we have $\lambda \in \Lambda_{L,p}$. Next consider a set of data for the case $m = 0$. Putting $s'_0 = i$ we have $s_0' + s_1 p^1 + \cdots + s_M p^M = r - (s_0 - s'_0)$ with p-restricted partitions of $s'_0 = i$ and all $s_i, i > 0$. The result is a unique partition λ of $r - (s_0 - i)$ with $k(p, \lambda) = m = 0$. But $k(p, \lambda) = 0$ means that at least one row length λ_j of λ is not divisible by $p^{(p-\lambda)+1} = p$, that is, that $\lambda \in \Lambda_{L,p}$. So corresponding to each set of data there is a unique element $\lambda \in \Lambda_{L,p}$ as desired. As remarked above, this proves the following theorem.

Theorem 5.3. If k is a field of characteristic p, then $\Lambda_{L,p} = \Lambda_0$ in $S_L(T_r, k)$.

Notice that if $p \geq r$ then $\Lambda_0 = \Lambda_{L,p} = \Lambda$ and $S_L(T_r, k)$ is quasi-hereditary. However, when $r > p$ we have $\Lambda_0 = \Lambda_{L,p} \neq \Lambda$ and $S_L(T_r, k)$ is not quasi-hereditary for the given poset structure Λ.

Now consider the case when M contains the rook monoid \mathcal{R}_r.

Theorem 5.4. Assume M contains the rook monoid \mathcal{R}_r. Then for any field k, $\Lambda_0 = \Lambda$ for both cell algebras $S_L(M, k)$ and $S_R(M, k)$. Both $S_L(M, k)$ and $S_R(M, k)$ are quasi-hereditary.

Remark: If M is just the rook monoid, $M = \mathcal{R}_r$, then $S_L(M, k)$ and $S_R(M, k)$ are both actually cellular algebras and are anti-isomorphic as algebras.

Proof. Take any partition λ of i, $0 \leq i \leq r$. We must show that $\lambda \in \Lambda_0$. Let $m \geq 0$ be the smallest integer such that $\lambda_j = 0$ for $j > m$. Define a composition μ of r by adding $r - i$ rows of length 1 to λ. So

$$
\mu_j = \begin{cases}
\lambda_j & \text{if } j \leq m \\
1 & \text{if } m + 1 \leq j \leq m + r - i \\
0 & \text{if } j > m + r - i.
\end{cases}
$$

Let $C = \{1, 2, \ldots, i\}$. Then $\mu(C) = \lambda$. Let S be the semistandard λ-tableau of type $\mu(C)$ where $S_{j,l} = j, 1 \leq l \leq \lambda_j, 1 \leq j \leq m$. There is only one standard λ-tableau of type S, namely $s = id$, the identity in S_i. The orbit $O(C, \mu) = \{C\}$, so $\# O(C, \mu) = 1$. Also, $\phi_C : i \mapsto r$ is the identity $\phi_C(j) = j, j = 1, 2, \ldots, i$.

Define $D \in D(i, r)$ by $D = \{\{j\} : 1 \leq j \leq i\}$. M contains the rook monoid \mathcal{R}_r, so it contains the map $\alpha : r \cup 0 \to r \cup 0$ given by $\alpha(j) = \begin{cases} j & \text{if } 1 \leq j \leq i \\
0 & \text{if } j > i
\end{cases}$.

24
Then \(D = D_\alpha \in D(i, M, r) \). As a composition of \(i, \mu(D) = \mu(C) = \lambda \), so we can take \(T = S \) as a standard \(\lambda \)-tableau of type \(\mu(D) \). Then again there is only one standard \(\lambda \)-tableau of type \(T \), namely \(t = id \), the identity in \(S_\lambda \).

We have \(O(D, \mu) = \{ \{ D \} \} \), \(\#O(D, \mu) = 1 \), \(\psi_D(j) = \begin{cases} j & \text{if } 1 \leq j \leq i \\ 0 & \text{if } j > i \end{cases} \). Then \(\psi_D \circ \phi_C = id : \tilde{i} \to \tilde{i} \).

We have \(sC_T^\lambda = sC_t^\lambda = id \cdot r_\lambda \cdot id = r_\lambda \), so \(sC_T^\lambda \circ \psi_D \circ \phi_C \circ sC_T^\lambda = r_\lambda \cdot id \cdot r_\lambda = r_\lambda \cdot r_\lambda = o(S_\lambda) \cdot r_\lambda \). Then writing \(b = \phi_{C(\mu)} \cdot sC_T^\lambda \circ \psi_D \circ \phi_C \cdot sC_T^\lambda = \phi_C \cdot sC_T^\lambda \cdot \psi_D = \phi_C \cdot o(S_\lambda) \cdot r_\lambda \cdot \psi_D = o(S_\lambda) \cdot b \).

Then \(b \ast_L b = o(S_\lambda) \cdot \frac{1}{\#O(C, \mu) \cdot \#O(D, \mu)} \cdot b \) where \(n_L(b) = n_L(O(C, \mu)) = \#O(C, \mu) \cdot o(S_{\mu(C)}) \). Since \(\#O(C, \mu) = 1 \) and \(S_\lambda = S_{\mu(C)} \), we get \(b \ast_L b = b \).

Computing the bracket in \(S_L(M, k) \) gives \(\left\langle C_T^\lambda(O(D, \mu), T) : O(C, \mu), sC_T^\lambda \right\rangle \neq 0 \). So the bracket is not identically zero in \(S_L(M, k) \) and \(\lambda \in \Lambda_0 \) as desired.

Similarly, \(b \ast_R b = o(S_\lambda) \cdot \frac{1}{\#O(D, \mu) \cdot \#O(C, \mu)} \cdot b \) where \(n_R(b) = n_R(O(D, \mu)) = \#O(D, \mu) \cdot o(S_{\mu(D)}) \). Since \(\#O(D, \mu) = 1 \) and \(S_\lambda = S_{\mu(D)} \), we get \(b \ast_R b = b \).

Computing the bracket in \(S_R(M, k) \) again gives \(\left\langle C_T^\lambda(O(D, \mu), T) : O(C, \mu), sC_T^\lambda \right\rangle = 1 \neq 0 \). So the bracket is not identically zero in \(S_R(M, k) \) and \(\lambda \in \Lambda_0 \) as desired.

By corollary 2.1 cell algebras with \(\Lambda_0 = \Lambda \) are quasi-hereditary. \(\square \)

References

[1] Graham, J.J. and Lehrer, G.I., Cellular algebras, Invent. Math. 123(1996) 1-34.

[2] May, Robert, Representations of certain generalized Schur algebras, J. Algebra 333(2011)180-201.

[3] May, Robert, Double coset algebras, J. Pure Appl. Algebra 218(2014)2081-2095.

[4] May, Robert, Cell algebras, J. Algebra 425(2015)107-132

[5] May, Robert, Generalized Schur algebras, [arXiv:1601.01711v2].

[6] May, Robert and Abrams, William, A generalization of the Schur algebra to \(k[\tau_r] \). J. Algebra 295(2006) 524 - 542.

[7] Mathas, Andrew, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, American Mathematical Society, Providence, 1999.

[8] Du, J. and Rui, H., Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc. 350(8) (1998) 3207-3235.

25