A Mixture of Chicken Viscera, Housefly Larvae and Spirulina Waste as Replacement of Fishmeal in Nile Tilapia (Oreochromis niloticus) Diets

Cayen Sédro Alofa1,* and Youssouf Abou1

1University of Abomey-Calavi, Faculty of Sciences and Technics, Department of Zoology, Laboratory of Ecology and Aquatics Ecosystems Management, 01 PO Box 526 Cotonou, Benin.

Abstract
This research investigated different blends of spirulina waste (SW), chicken viscera meal (CVM) and housefly maggot meal (HMM) as alternative protein sources on growth performance, feed utilization and body composition of Oreochromis niloticus fingerlings. Triplicate groups of male fish (initial mean weight, 6.09±0.5g) were fed a commercial feed Skretting (SK), fish meal (FM) based-diet D0 (30%FM), diet D1 (FM+SW+HMM), diet D2 (FM+SW+CVM), diet D3 (FM+HMM+CVM) and diet D4 (SW+HMM+CVM) for 84 days. Diets were isonitrogenous (35% crude protein) and isoenergetic (19 KJ/g gross energy). No effects were found on survival rate and body protein content of fish fed experimental diets. Specific growth rate, weight gain, feed conversion ratio and protein efficiency ratio (PER) of fish fed D0 and SK did not differ significantly from those fed diet D3. These parameters were significantly lower in fish fed the other diets (P<0.05). Feed intake significantly decreased in fish fed diet D1 and D2 while PER obtained did not differ than those fed control diets. The higher profit index was recorded in the tested diets and the lower in the control diets. The results of this study indicate that fishmeal level for O. niloticus could be reduced to 5 % by inclusion of CVM and HMM in combination.

Introduction
Diets are one of the major cost variables for most aquaculture species, representing up to 70% of the total production cost (Tacon & Metian, 2015). Fish meal is used as a major protein and considered the most desirable animal protein ingredient in fish diets because of its high protein content, balanced amino acid profiles, essential fatty acids, high digestibility and palatability, attractants and many growth factors (Médale & Kaushik, 2009). Due to the high cost of fish meal, limited availability and other considerations, there is interest in the partial or total replacement of this ingredient with less expensive animal and plant protein meals, without adversely affecting growth and health of cultured species (Hardy, 1996). It is consequently essential to introduce alternative protein sources, to ensure the prospective growth of this sector. Effective substitution of fishmeal by alternatives protein would minimize both the full reliance on fishmeal as raw material and its high cost. Several researchers reported the use of plant by-product as dietary protein source either alone or in combination with other feed ingredients in formulating the fish diets. Plant by-product sources have been extensively studied as partial or total fish meal replacements in fish feeds. A major drawback in the use of plant proteins is the presence of anti-nutritional factors in fish culture (Gatlin et al., 2007). They are deficient in one or more essential amino acids (NRC, 1993). However, the use of some food processing techniques reduces the effect of anti-nutritive factors (Fapohunda, 2012). The essential amino acid compositions of alternative protein sources for fish are generally not comparable with that of fish meal. (Agbo et al., 2015). Moreover, most of the single animal ingredient were inadequate to totally replace fishmeal
One readily available and renewable ingredient is chicken viscera, which is a by-product of the poultry processing industry that is rich in protein (35.2 %) and contains a favourable profile of indispensable amino acids for fish production (Giri et al., 2010; Alofa & Abou, 2020). Its lower price makes it an ideal candidate for replacing fishmeal (FM) in aquafeeds (Thompson et al., 2010). Another sustainable oncoming is to convert organic waste into high nutritive value biomass such as insect larvae. Insect meal contains approximately 44.0–49.0% crude protein and good digestibility; these make it a precious protein source (Henry et al., 2015). The potential of using of chicken viscera and maggot meals as dietary protein sources have been tested singly in a wide range of fish species (Giri et al., 2010; Tabinda et al., 2013; Wang et al., 2017; Alofa et al., 2020; Alofa & Abou, 2020).

On the other hand, *Spirulina platensis* is a microalga rich in protein (60–70 % in dry matter), essential amino acids, vitamins, minerals, essential fatty acids (linoleic acid, α-linolenic acid, and palmitic acid), and antioxidant pigments, such as β-carotene, xanthophylls, zeaxanthin, echinonone and cryptoxanthin (Abdel-Tawwab & Ahmad, 2009; Teimouri et al., 2013). Besides to its well nutrient content, it is involved in the modulation of the immune response (Takeuchi et al., 2002), physiological activity, stress response and disease resistance (Güroy et al., 2011). The effects of whole spirulina meal on growth performance, feed intake and nutrient utilization have been investigated for many fish species (Takeuchi et al., 2002; Palmegiano et al., 2005; Palmegiano et al., 2008). Because the cost of spirulina is not competitive with other protein sources (Palmegiano et al., 2005), its waste can be used with other ingredients in an aquafeed formulation. However, the use of spirulina waste in the diet of *O. niloticus* induces the poorest growth, due to the decrease in feed intake observed in this fish (Alofa et al., 2020). Commercial aquafeed formulations use a mixture of alternative protein sources to substitute fishmeal with balanced amino acid profile, yet most of the studies assessing these ingredients singly to replace fishmeal (Gatlin et al., 2007). Varying degrees of the hit has been reached when trying to replace fishmeal protein with plant or animal protein sources in Nile tilapia. When combined with alternative protein sources, poultry by-products meal has been shown to completely replace FM in juvenile tilapia diets without adverse effects on growth (El-Sayed, 1998). Using a mixture of several animal or plant protein ingredients, to substitute fishmeal in fish feed has been demonstrated successfully (Guo et al., 2007; Adewolu et al., 2010).

Oreochromis niloticus has many attributes, these include fast growth, tolerance to a wide range of environmental conditions, resistance to stress and diseases, ability to reproduce in captivity and short generation time and feeding on low trophic levels and acceptance of artificial feeds immediately after yolk-sac absorption, that make them an ideal candidate for aquaculture, especially in developing countries (Bhujeil, 2014). Several studies successfully determined the possibility of dietary fishmeal replacement by maggots meal, chicken viscera or spirulina separately in diets for Nile tilapia (Wang et al., 2017; Alofa & Abou, 2020; Alofa et al., 2020). However, the use of a combination of spirulina waste with other animal proteins as an alternative protein source in diets for this species has previously not been reported. Thus, the current experiment was carried out to evaluate the effect of replacing fishmeal by animal protein (housely maggot and chicken viscera) mixture with spirulina waste on growth performance, feed utilization and whole-body composition of *O. niloticus* fingerlings.

Materials and Methods

Experimental Procedure and Fish Source

This experiment was conducted at the Experimental Fish farming Unit of Laboratory of Ecology and Aquatic Ecosystems Management at the University of Abomey-Calavi, Benin. Fish were reared in concrete tanks (diameter= 1.2 m; volume = 1000 L) in an outdoor recirculation system.

All male populations of tilapia were obtained from a fish rearing farm (“Dieu Exauce”, Tori Avamé, Benin). They were acclimated for one week before being randomly distributed into eighteen concrete tanks (six treatments in triplicate) with 50 fish per tank. Each diet was randomly attributed to triplicate groups of monosex male *O. niloticus* (6.09±0.5 g). Fish were hand-fed thrice a day (09:00 h, 13:00 h and 17:00 h) to apparent satiation and the amount of feed consumed recorded for each tank. The uneaten feed was collected 1 h after feeding, dried and weighed, in order to evaluate the real feed intake. Water was pumped to each tank at a rate of 4 L per minute from biofilter with a capacity of 5 m³. The photoperiod was 12 hours dark and 12 hours light (7:30 - 19:30 h) during experiment and tanks were covered two-thirds of their surface by racks to prevent algal development. Dead fish, if any, were removed from each tank and recorded. Every two weeks, fish were counted and weighed, tanks were cleaned of faeces and the half of rearing water was exchanged.

Ingredients and Formulation of the Diets

Housefly *Musca domestica* larvae were produced from chicken viscera substrates as described by Alofa and Abou (2020) and refrigerated at −20 °C. Then, they were dried in an oven (Memmert UN160 Plus) at 60°C.
before being ground to a homogeneous size and stored in a refrigerator at -4°C before proximate analysis. Fishmeal was made by sun-drying *Sardinella* sp during three days before being ground. *Sardinella* sp were purchased from Dantokpa market. Spirulina (*Spirulina platensis*) wastes were provided by Spirulina Production Unit of the Regional Institute for Development and Health (SPU/RIDH), located at Pahou (Ouidah, Benin). These wastes were generated from the production and packaging process of spirulina. Blood meal was obtained following the procedures described by Alofa et al. (2016). The rest of the ingredients such as corn bran, soybean meal, cottonseed meal, palm oil and salt were purchased from local market in Abomey-Calavi.

Five isonitrogenous (35% crude protein) and isocalorics (19 kJ.g⁻¹) diets were formulated using different combinations of spirulina waste (SW), housefly maggot meal (HMM) and chicken viscera meal (CVM) as protein sources for this experiment. Commercial diet Skretting was also used as a reference diet. Chemical composition of dietary protein sources used for diet formulation is shown in Table 1.

Fish meal was substituted with different combinations of SW, CVM and HMM at 83.33 % and 100% of total protein. Diets were denoted SK (commercial diet Skretting), D₀ (fishmeal based-diet), D₁ (5% FM + 10% SW + 25% HMM), D₂ (5% FM + 10% SW+ 28% CVM), D₃ (5% FM + 20% HMM + 20% CVM) and D₄ (5% SW + 20% HMM + 20% CVM). Blood meal, soybean meal, cottonseed meal and corn bran levels were adjusted accordingly. Dietary protein, lipid and gross energy were adjusted to satisfy the nutritional requirement of Nile tilapia (Jobling, 2012). Formulation, proximate composition and amino acids contents of the experimental diets are presented in Tables 2 and 3 respectively. Amino acids were estimated based on the amino acid proximate composition of the ingredients used in the formulation of the experimental diets. Prices of different ingredients used in the formulation of experimental diets are shown in Table 2.

All dry ingredients were ground using a hammer mill. Salt (mineral) and oil were added to the dry ingredients and were thoroughly mixed with warm water before being pelleted into sizes of 3 mm diameter using a pelleting machine (Bosch MFW3640A). The pellets were then sun-dried for 48 h and later stored in the refrigerator (4 °C) until use.

Table 1. Analysed biochemical composition (% dry matter) of ingredients used for diet formulation

Protein sources	Dry matter	Crude protein	Crude fat	Ash
Sardinella sp Fishmeal	92.0	66.0	7.9	15.8
Chicken viscera meal	90.9	35.2	22.0	6.3
Spirulina wastes	91.5	46.3	6.7	10.0
Maggot meal	92.7	48.8	21.0	6.3
Soybean oilcake	94.8	30.0	13.2	3.7
Cottonseed oilcake	90.0	40.5	7.0	8.0
Blood meal	90.9	71.9	1.7	6.4

Calculations

At the end of the experiment, fish were weighed and their total body length was also recorded individually. Survival rate (SR), specific growth rate (SGR), percent weight gain (PWG), feed conversion ratio (FCR), protein efficiency ratio (PER), condition factor (CF), feed intake (FI), yield, production, incidence cost (IC) and profit index (PI) were evaluated through the following formulae:

\[
\text{Survival rate (SR, \%)} = \frac{\text{final number of fish}}{\text{initial number of fish}} \times 100
\]

\[
\text{Percent weight gain (PWG, \%)} = \frac{\text{final weight} - \text{initial weight}}{\text{initial body weight}} \times 100
\]

\[
\text{Daily weight gain (DWG, g/day)} = \frac{\text{final weight} - \text{initial body weight}}{\text{initial body weight}}
\]

\[
\text{Specific Growth Rate (SGR, \%)} = \frac{\ln(\text{final weight}) - \ln(\text{initial weight})}{\text{rearing period in days}} \times 100
\]

\[
\text{Feed intake (FI, g/fish)} = \frac{\text{total amount of the dry feed consumed}}{\text{number of fish}}
\]

\[
\text{Feed Conversion Ratio (FCR)} = \frac{\text{total dry feed consumed (g)}}{\text{body weight gain (g)}}
\]

\[
\text{Protein efficiency ratio (PER)} = \frac{\text{body weight gain (g)}}{\text{protein intake (g)}}
\]

\[
\text{Fulton’s Condition Factor (CF)} = \frac{\text{final body weight (g)}}{\text{final body length (cm)}}
\]

\[
\text{Yield (kg/m}^2\text{)} = \frac{\text{final biomass per tank (kg) - initial biomass per tank (kg)}}{\text{volume (m}^3\text{)}}
\]

\[
\text{Production (kg/m}^3\text{/year)} = \frac{\text{Yield} \times 365 \text{ days}}{\text{rearing period (days)}}
\]

\[
\text{Incidence of cost (IC)} = \frac{\text{Cost of feed}}{\text{kilogram of fish produced}}
\]

\[
\text{Profit Index (PI)} = \frac{\text{Price of fish produced}}{\text{Price of feed consumed}}
\]

Monitoring of Water Quality Parameters

Parameters such as temperature (°C), pH, dissolved oxygen (mg/L), salinity (psu), conductivity (µS/cm) and total dissolved solids (mg/L) were...
measured weekly at a depth of 10 cm with a multiparameter (Hanna HI 9829, v1.04 USA). These parameters were checked three times biweekly. Water samples were taken inside the tanks and nitrate-N, and nitrite-N were measured once weekly with a DR 6000 spectrophotometer (Hach, Loveland, Co, USA).

Sampling for Fish Whole Body Proximate

The initial sample of twenty fish was randomly selected and stored at -20°C for whole body composition analysis. At the end of the experiment, the total fish number from each tank were counted and individual body length and weight were measured to calculate Fulton’ Condition factor (Nash et al., 2006). Ten fish from each tank were randomly selected for analysis of the whole body composition. Fish were oven-dried, finely grounded, and homogenized prior to analysis.

Table 2. Formulation and proximate composition of the experimental diets (SK : commercial diet Skretting, D0: 30% FM -Control diet, D1: 5%FM + 10%SW +25%MM, D2: 5%FM+10% SW +28% CVM, D3: 5%FM+20% CVM+20% MM, D4: 10% SW+20% CVM+20% MM) for Nile tilapia *O. niloticus*

Experimental diets	Prices	SK	D0	D1	D2	D3	D4
Ingredients g 100 g⁻¹							
Sardinella sp fishmeal	2.17	–	30	5	5	5	–
Spirulina waste	0.42	–	10	10	–	5	5
Housefly maggot meal	0.43	–	25	–	20	20	20
Chicken viscera meal	0.26	–	–	28	20	20	20
Blood meal	0.21	–	7	7	7	7	7
Corn bran	0.26	–	24	14	18	14	14
Soybean meal	0.65	–	15	18	15	17	17
Cottonseed meal	0.32	–	11	15	12	14	14
Palm oil	1.34	–	2	2	2	2	2
Salt (NaCl)	0.42	–	1	1	1	1	1

Proximate composition

	SK	D0	D1	D2	D3	D4
Dry matter (%)	–	90.18	90.11	88.95	89.98	89.92
Crude protein (%)	35	35.89	35.6	35.16	35.61	35.47
Crude lipid (%)	9	8.29	11.71	13.21	14.3	14.15
Carbohydrates (%)	–	47.77	46.16	42.18	41.87	42.21
Ash (%)	6.5	8.04	6.52	9.44	8.20	8.16
Gross Energy (kJ g⁻¹)	–	20.00	21.00	20.80	21.29	21.26
Diet cost (US$, kg⁻¹)	1.84	0.98	0.56	0.53	0.54	0.46

a. Gross energy was calculated using the factors of 23.7 kJ g⁻¹, 39.5 kJ g⁻¹ and 17.2 kJ g⁻¹ protein, lipids and carbohydrates respectively (Guillaume et al., 1999).
b. Prices in US$, 1 US$= 599.05 FCFA at present. Including

Table 3. Calculated essential amino acid (EAA) contents of the experimental diets (% of dietary protein)

Essential amino acids	Requirement (% of dietary protein)⁴	Experimental diets
Arginine	4.20	D3: 5.92, D4: 5.98
Histidine	1.72	D3: 2.56, D4: 2.58
Isoleucine	3.11	D3: 3.17, D4: 3.47
Leucine	3.39	D3: 6.50, D4: 6.87
Lysine	5.12	D3: 5.34, D4: 5.25
Methionine	2.68	D3: 2.11, D4: 2.13
Phenylalanine	3.75	D3: 5.66, D4: 5.53
Threonine	3.75	D3: 3.38, D4: 3.70
Tryptophan	1.00	D3: 0.97, D4: 0.98
Valine	2.80	D3: 4.33, D4: 4.64

* Essential amino acids requirements of Nile tilapia *O. niloticus* according

Biochemical Analysis

Proximate composition of ingredients, experimental diets and fish samples were determined according to standard procedures (AOAC, 2005). Dry matter was measured by drying samples in an oven (Memmert UN160 Plus) at 105°C for 24 h. Ash was determined by incineration at 550°C in a furnace (Nabertherm LT/SW) for 16 h. Crude protein was determined by using the Kjeldahl method and estimated by multiplying nitrogen by 6.25. Crude lipid content in samples was determined by Soxhlet method.

Statistical Analysis

Data are presented as mean±standard deviation (SD). The analyses were performed using Statistical Package for Social Sciences (SPSS IBM version 21 for windows v8.1, Chicago, Illinois, USA). The growth,
nutrient utilization and biochemical composition values were analyzed using one-way analysis of variance (ANOVA 1). The Tukey’s multiple range test was used to compare differences among treatment means. Prior analysis, homogeneity of variance was determined using the Hartley statistical test. The differences were considered significant at P<0.05.

Results

Water Quality

Water quality parameters values during the feeding experiment are presented in Table 4. The water temperature ranged from 29.88±0.68 to 30.36±1.49 °C, pH from 6.65±0.30 to 6.82±0.30; dissolved oxygen from 3.54±0.67 to 3.74±0.80 mg.L⁻¹; conductivity from 179.79±9.08 to 185.65±8.66 μS/cm; total dissolved solid from 92.50±46.85 to 94.02±45.27 ppm; salinity from 0.08±0.039 to 0.08±0.040 mg.L⁻¹; nitrate from 2.23±0.38 to 2.73±0.35 mg.L⁻¹ and nitrite from 0.03±0.006 to 0.04±0.004 mg.L⁻¹. No significant differences were observed in these parameters.

Survival Rate and Growth Performance

Culture performance of the fish are summarized on Table 5. The biweekly change in average fish body weight from beginning to the end of this trial is shown in Figure 1. Over the experimental period, survival ranged from 89.29 % to 96.43 % among treatments (Table 5). This parameter was not affected by treatments. Fish fed SK and D0 weighed 83.65±2.55 and 80.96±3.54 g at the end of the feeding experiment, and had a feed conversion ratio of 1.2 to 1.24 during feeding trial. Weight gain of Nile tilapia fed the animal blend diet D4 (1224.5 %) at the 83 % replacement level was statistically similar to those of fish fed the control diets SK and D0 (1273.5 and 1229.4 %, respectively), but final weight (66.68±1.48 g), specific growth rate (2.85±0.03 % per day) and daily weight gain (0.72±0.02 g. days⁻¹) of fish fed the diet with 100 % replacement fishmeal (Diet D2) were significantly lower (P<0.05). As shown in Figure 1, compared to control diet D0 and Skrettig, fish fed diet D4 showed similar average weight growth pattern during feeding trial. However, the others experimental diets showed significant decrease in SGR and FBW. Mixture of animal protein sources (housefly larvae and chicken viscera) with spirulina waste-based diets did not affect fish condition factor (1.80±0.04 - 1.97±0.05).

Growth performance in fish fed the experimental diets D1 and D4 was significantly lower than those fed the control diet SK and D0 in many responses (P<0.05). Fish fed the SW and CVM combination diets (diet D4) showed significantly lower daily weight gain and specific growth rate values than fish fed the control diets and not significantly differed from values of fish fed the SW and HMM blend (diet D4) at the same dietary level.

Table 4. Water quality parameters (±SE) in O. niloticus rearing tanks during the experimental period

Variables	Treatments					
	SK	D0	D1	D2	D3	D4
pH	6.69±0.25	6.65±0.30	6.66±0.33	6.78±0.47	6.82±0.30	6.75±0.50
Temperature (°C)	29.88±0.68	30.08±0.72	29.88±0.78	30.10±0.70	29.97±0.72	30.36±1.49
Dissolved oxygen (mg.L⁻¹)	3.54±0.59	3.58±0.71	3.56±0.81	3.54±0.67	3.52±0.74	3.74±0.80
Conductivity (μS.cm⁻¹)	180.77±83.58	185.65±86.56	183.03±87.20	181.38±86.90	179.64±89.08	183.02±82.46
TDS (mg/L)	93.69±45.15	94.69±45.19	94.02±45.27	93.60±45.96	92.50±46.85	93.31±42.29
Salinity (psu)	0.08±0.036	0.08±0.039	0.08±0.040	0.08±0.040	0.08±0.040	0.08±0.038
Nitrites NO3 N (mg.L⁻¹)	1.92±0.11	1.94±0.21	1.96±0.18	1.90±0.26	1.98±0.18	1.92±0.24
Nitrites NO2 N (mg.L⁻¹)	0.04±0.01	0.03±0.01	0.04±0.01	0.03±0.01	0.03±0.01	0.04±0.01

Table 5. Growth performance, survival rate and feed utilization of juvenile Nile tilapia fed with six experimental diets for 12 weeks

Parameters	Dietary treatments					
	SK	D0	D1	D2	D3	D4
Average final weight (g)	83.65±2.55	80.96±3.54	60.43±1.98	71.13±2.43	80.66±2.97	66.68±1.48
Survival rate (%)	92.86±3.37	95.24±3.37	95.24±3.37	89.29±5.05	96.43±1.68	91.67±1.68
Specific growth rate (%)	3.12±0.04	3.08±0.05	2.73±0.04	2.93±0.04	3.08±0.04	2.85±0.03
Daily weight gain (g)	0.92±0.03	0.89±0.04	0.65±0.05	0.77±0.03	0.89±0.04	0.72±0.02
Percent weigh gain (%)	1273.5±41.9	1229.4±58.1	892.2±32.6	1068.0±39.8	1224.5±48.7	994.8±24.2
Fulton’s condition factor K	1.84±0.01	1.97±0.05	1.85±0.08	1.86±0.05	1.90±0.10	1.84±0.04
Yield (kg.m⁻³)	3.01±0.22	2.99±0.26	2.16±0.16	2.41±0.24	3.01±0.06	2.31±0.10
Production (kg.m⁻³.year⁻¹)	13.07±0.95	12.97±1.11	9.40±0.72	10.49±1.05	13.08±2.8	10.05±0.45
Feed intake (g. fish⁻¹)	92.32±6.62	92.26±6.66	64.58±13.53	78.88±19.41	92.40±6.50	88.02±44.6
Feed conversion ratio	1.20±0.04	1.24±0.05	1.20±0.01	1.23±0.01	1.24±0.04	1.47±0.04
Protein efficiency ratio	2.39±0.09	2.31±0.10	2.39±0.03	2.33±0.01	2.30±0.07	1.95±0.05

*Values are represented as triplicate mean±SE, with 50 fish in each replicate. Different superscripts within a row indicate significant differences among means (P<0.05). Initial weight=6.09±0.5 g
Feed Utilization

Results obtained for feed utilization are shown in Table 5. Feed intake differed between the groups and was significantly lower in fish fed diets D1 and D2 compared to those fed with other diets. FCR ranged between 1.20 and 1.47. Feed conversion ratio and protein efficiency ratio of fish fed D4 (100% FM replacement) were also affected (P<0.05), compared to fish fed the control diets. The significantly lowest protein efficiency ratio (1.95±0.05) was observed in diet D4. There were no significant differences in protein efficiency ratio between the other treatments (2.30±0.07 – 2.39±0.09). Fish fed diet D1, D2 and D3 performed equally well in terms of FCR compared with fish fed the control diets (D0 and SK). The higher FCR (1.47) and lower PER (1.95) were observed in the fish fed diet without fishmeal D4.

Profitability Analysis and Carcass Composition

As shown in Table 6, using of combination of SW, CVM and HMM in O. niloticus diets ensued in decrease of feed cost (0.46 - 0.56 US$.kg⁻¹) and incidence cost (0.30 - 0.32 US$.kg⁻¹) as well as increase profit index. The maximum reduction incidence cost was reached with fishmeal free diet. Fish fed with D4 showed significantly higher profit index (3.28) than that of control groups SK and D0.

Table 7 presents the whole-body composition of the fish. Dry matter (range : 92.26-94.77 %) and crude protein (range : 58.95-60.80 %) of fish fed all diets were not significantly different. Lipid deposition (range : 28.23-32.89 %) in fish fed CVM diets is significantly higher, whereas ash content (11.67-30.41 %) decreased (P<0.05). Increasing levels of animal protein sources resulted in higher lipid content in the fish carcass.

Discussion

Water quality parameters were maintained within the range recommended by Delong et al. (2009) for O. niloticus. There was no difference in survival and condition factor in the present study for any dietary treatments, which ranged from 89.29 to 96.43 % and 1.80 and 1.97 respectively among treatments. This is similar to what has been reported in same species (Suloma et al., 2014; Khalifa et al., 2018). The trend of survival rate recorded in this investigation is similar to that reported for O. niloticus (Obirikorang et al., 2015; Kubiriza et al., 2018). The high survival rate shows that O. niloticus fed each diet were in good health and mortality recorded during the trial could be attributed to stress due to physical handling.

Housefly maggot meal (HMM) and chicken viscera meal (CVM) used in the present work had a crude protein content of 48.8 % and 35.2 % respectively. These contents are similar to the values previously reported for these alternative protein sources (Giri et al., 2010; Oké et al., 2016). The analysis of the proximate composition of housefly larvae produced from chicken viscera substrate reveals a higher protein content than SW and CVM but lower than Sardinella fishmeal and higher in crude fat content than either SW or FM (Table 1). Here, monosex male population was used. Males are better than females due to their fast-growth rate, better

Figure 1. Changes in body weight (g) of Nile tilapia fingerlings fed the experimental diets for 12 weeks.
feed conversion ratio and relatively higher survival rate (Angienda et al., 2010; Omasaki et al., 2017). According to the results obtained in this study, the use of chicken viscera meal and housefly maggot produced from this by-product can partially replace *Sardinella* sp FM in diets for monosex Nile tilapia without affecting growth performance, the feed conversion and protein efficiency ratios. The results of the current study show that fish fed diet D3 containing chicken viscera and housefly maggot meal (ratio 1:1) had a growth performance similar to those fed control diets. Similar results have been reported by Burr et al. (2012) who observed that fishmeal levels could be reduced from 53 % to 10 % without a reduction in growth performance when mixtures of animal and plant protein sources were used in rainbow trout Oncorhynchus mykiss diets. Moreover, about 50% fishmeal was replaced by a mixture of rendered animal protein (feather, chicken offal and maggot meals, 4:3:2) in African catfish Clarias gariepinus diets without affecting growth (Adewolu et al., 2010). Guo et al. (2007) reported that the combination of rendered animal protein ingredients can replace most of the fishmeal in practical diets for cuneate drum Nibea micththioides. Previous study indicated dietary fish meal for Nile tilapia could be reduced to 10% by incorporating housefly maggot singly (Alofa et al., 2020). Feed combination is mostly recommended as they induce better performance than when a single feed is used alone, so mixture accommodate a complementary blending of nutrients including amino acids (Santiago & Lovell, 1988). Growth is strongly related to feed intake and the ability of the fish to use ingested feed (Carter et al., 2001). In this trial, the control groups showed feed intake levels higher than those of D1 groups, and the effects of lower feed intake in the latter dietary treatments resulted in the lower specific growth rates. *O. niloticus* is apt to use effectively cyanobacteria due to its omnivorous nature (Ibrahim et al., 2013). Curiously, when spirulina waste is used in combination with CVM (D1) or HMM (D2), it caused a negative effect on feed intake. Diets were not readily accepted by fish fed diets D1 and D2, showing that there were problems relating to the palatability of spirulina waste supplemented diets, except for total fishmeal replacement diet D4, in which fish showed a relative acceptance. No publications on feeding spirulina waste to fish could be found. Nonetheless, the inclusion of microalgae such as the green algae *Desmochloris* sp derived from biofuel by-product, *Spirulina maxima* and *S. platensis* did not produce detrimental effects on fish growth in hybrid red tilapia Oreochromis mossambicus × *O. niloticus* (Ungsetaphand et al., 2010; Garcia-Ortega et al., 2015; Sarker et al., 2016) and others species (Palmegiano et al., 2005; Güroy et al., 2012). On the contrary, the inclusion of whole spirulina meal in diets resulted in improved growth performance feed efficiency and digestibility for several species including yellowtail cichlid *Pseudotropheus acei* (Güroy et al., 2012), Nile tilapia *O. niloticus* (Sarker et al., 2016; Velasquez et al., 2016) and rainbow trout (Teimouri et al., 2013). Thus, the poor results obtained for the SW diet can be related to poor feed intake. In addition, feeds were offered ad libitum, palatability was adversely affected by spirulina wastes inclusion in diets, which might be because of the non-supplementation of amino acids. This difference can be explained by the low palatability of SW. However, reduced feed intake and low palatability were observed in Atlantic cod Gadus morhua fed diets containing algae mixture (Walker and Berlingsky, 2011).

Feeding the least fishmeal diets is most important in fish rearing industry (Wang et al., 2008). Total replacement of fish meal by the mixture of animal and algae protein sources (diet D4) reduced weight gain and feed utilization parameters. This observation is in line with that of Burr et al. (2012) who showed that there was an inverse relationship between growth

Table 6. Summary of cost benefit analysis of Nile tilapia fed the test diets

Diets	SK	D0	D1	D2	D3	D4
Parameters						
Feed cost (US$kg⁻¹)	1.98	0.98	0.56	0.53	0.54	0.46
Cost of feed intake (US$)	7.25±0.78⁹	4.47±0.19⁹	1.89±0.17¹	2.10±0.22¹	2.62±0.14¹	1.93±0.13¹
Cost of fish produced (US$)	8.24±0.60³	8.18±0.70³	5.93±0.4⁵	6.62±0.66⁶	8.25±0.17³	6.33±0.29⁶
Incidence cost	0.88±0.03³	0.55±0.024³	0.32±0.004³	0.32±0.002³	0.32±0.010³	0.30±0.007³
Profit index	1.14±0.04⁶	1.83±0.08³	3.14±0.04³	3.15±0.02³	3.15±0.10³	3.28±0.08³

Different superscripts within a row indicate significant differences among means (P<0.05)

Table 7. Whole-body composition of *O. niloticus* fed the six experimental diets containing different combinations of chicken viscera, housefly maggot meal and spirulina waste (SK, commercial diet Skreting SK; D0, control diet containing 30% FM; D1, FM+SW+HMM; D2, FM+SW+CVM; D3, FM+HMM+CVM; D4, SW+CVM+HMM)

Parameter	Initial	D0	D1	D2	D3	D4	
Dry matter	94.61±0.00	92.60±2.94	92.26±0.13	93.54±2.77	94.69±1.68	94.13±1.21	94.77±0.64
Crude protein	58.95±0.46	59.49±0.67	59.12±0.89	60.80±1.32	60.23±1.04	59.33±1.01	58.77±1.42
Crude fat	11.89±0.78	28.23±1.22³	29.95±0.08⁴	26.54±0.21³	29.83±0.20³	32.89±0.53³	33.54±1.12⁴
Ash	24.15±0.00	30.41±0.60⁵	15.61±0.24⁴	14.77±0.64⁵	14.32±2.96⁴	11.67±3.24⁴	19.80±0.07³

Different superscripts within a row indicate significant differences among means (P<0.05)
performance and total substitution of fish meal by soy protein concentrate combined with corn gluten and poultry by-products meal in rainbow trout diet. Total replacement fishmeal by soy protein concentrate in Paralichthys olivaceus diet decreased growth performance (Tushe et al., 2012). In most investigations, *O. niloticus* fed diets containing a single alternative protein source or combination of protein sources shown decreased growth at high levels of replacement except when the practical diets contained 10-20 % fishmeal (Obirikorang et al., 2015; Khalifa et al., 2018; Kubiriza et al., 2018). This could be associated with differences between amino acid profile and availability of alternative protein sources and fishmeal and the deficiency of other essential nutrients at some plant protein sources. Nevertheless, a combination of poultry meal, wheat flour, and corn protein concentrate proteins could completely replace fishmeal in diets for post-smolt Atlantic salmon *Salmo salar* (Davidson et al., 2016). Moreover, soy concentrate could be completely replaced FM in *O. niloticus* fingerlings diet (Ribeiro et al., 2016). Heralth et al. (2016) indicated that distillers’ dried grains with solubles were the best choice for fishmeal-free diet for *O. niloticus* juveniles (4.0–4.5 g).

The FCR observed in the current study ranged between 1.2 and 1.47. These values are similar to those observed in the experiment of Ogello et al. (2017) (1.22-2.17) and Hossain et al. (2002) (0.96-1.42) on tilapia in warm water recirculating system but for higher than those observed by Herath et al. (2016) under similar conditions. Mridha et al. (2017) obtained higher values of FCR for *O. niloticus* reared in a rain-fed rice–fish ecosystem for 120 days. The same trend was observed in juveniles of *O. niloticus* reared in tanks (1.37–2.34) during 86 days (Silva et al., 2015; Ribeiro et al., 2016). The FCR (1.22) values obtained with chicken viscera meal and maggot meal mixture D3 is best than those reported by El-Sayed (1998) (1.86 - 2.48), which were obtained by using singly or combination of meat and bone meal, blood meal and poultry by-products meal. Except for fish fed diet D3 (100% fishmeal replacement), protein efficiency ratio values in all experimental diets were higher than 2.00. This indicates efficient utilization of dietary protein.

The study shows that FM can be greatly reduced using a mixture of chicken viscera meal and maggot meal in diets for Nile tilapia with no significant effects on fish growth and body composition. These results contribute to the tilapia nutrition to enhance the sustainability of fish feeds by using a combination of animal protein sources ingredients. Fish fed the control diets showed lower crude lipid and ash contents in carcass than fish fed the experimental diets. This corroborates the results of previous studies on the cunate drum (Guo et al., 2007; Wang et al., 2006) and grouper *Epinephelus coioides* (Milliamena, 2002). Considering that body lipid content did significantly differ between fish fed control diets and experimental diets, it is speculated that replacing fishmeal with a mixture of CVM and HMM might negatively affect the digestive function of the gut of Nile tilapia. This could also be explained by the lipid content of these animal protein sources, used for diet formulation.

Economic analysis of using a mixture of SW, CVM and HMM as a fishmeal substitute was equally undertaken. The interest of using alternative protein sources in *O. niloticus* diets does not depend perforce in their nutrient profile but in their availability and low costs (Goda et al., 2007). In this experiment, the economic analysis of these unconventional protein sources shows that these protein sources were more economical compared with fishmeal. Of all the experimental diets, the incidence cost (the price of feed per kg of fish produced) was highest in the commercial diet SK (0.88) followed to fishmeal based-diet D0 (0.55). Using chicken viscera and housefly maggot meal in *O. niloticus* diets ensued in the decrease of feed cost as well as increase profit index (3.14-3.28 versus 1.14-1.83 with control diets). This is due to the low production cost of chicken viscera and maggot meals which is approximately 88 and 80 % of the cost of *Sardinella sp* fishmeal, respectively.

Finally, this study demonstrated that diet containing a combination of 20% chicken viscera meal and 20% housefly maggot meal with only 5 % fishmeal resulted in comparable Nile tilapia growth compared to a commercial feed and fishmeal-based diet. Thus, the inclusion of fishmeal in the diet of *O. niloticus* is reduced from 30 to 5 % using a combination of chicken viscera and housefly maggots. We suggest these ingredients as an appropriate alternative for marine fishmeal in the sustainable production of Nile tilapia, for ensuring the food security of the most vulnerable populations in Benin.

Acknowledgements

This study was partially supported by the Institute of Food Security, Faculty of Agronomic Sciences, University of Abomey-Calavi under the NICHE Project BEN-176. Alofa CS benefited from the grant by the Ministry of Higher Education and Scientific Research of the Republic of Benin through the “PhD Students Support Program”.

References

Abdel-Tawwab, M., & Ahmad, H.M. (2009). Live *Spirulina platensis* (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, *Oreochromis niloticus* (L.), challenged with pathogenic *Aeromonas hydrophila*, *Aquaculture Research*, 40, 1037-1046. https://doi.org/10.1111/j.1365-2109.2009.02195.x

Adewolu, M.A., Ikenweive, N.B., & Mulero, S.M. (2010). Evaluation of an animal protein mixture as a replacement for fishmeal in practical diets for fingerlings of *Clarias gariepinus* (Burchell, 1822). *The Israeli Journal of Aquaculture–Bamidgeh*, 62, 237-244.
Agbo, N.W., Madalla, N. & Jauncey, K. (2015). Mixtures of oilseed meals as dietary protein sources in diets of juvenile Nile tilapia (Oreochromis niloticus L.), Journal of Science and Technology, 35 (3), 11-24.

Alofa, C.S., & Abou, Y. (2020). A comparison between chicken viscera and housefly maggots cultured from this by-products for Nile tilapia diets: Growth Performance, Feed Utilization and Whole Body Composition. Asian Journal of Fisheries and Aquatic Research, 5(3), 1-12. https://doi.org/10.9734/ajfar/2019/v5s30007

Alofa, C.S., Adite, A., & Abou, Y. (2020). Evaluation of Spirulina (Spirulina platensis) wastes and live housefly (Musca domestica) larvae as dietary protein sources in diets of Oreochromis niloticus (Linnaeus 1758) fingerlings. Aquatic Research, 3(1), 24-35. https://doi.org/10.3153/AR20003

Alofa, C.S., Oke V., & Abou, Y. (2016). Effect of replacement of fish meal with broiler chicken viscera on growth, feed utilization and production of African catfish Clarias gariepinus (Burchell, 1822). International Journal of Fisheries and Aquatic Studies, 4(6), 182-186.

Angianda, P., Aketch, B., & Waindi, E. (2010). Development of all-male fingerlings by heat treatment and the genetic mechanism of heat induced sex determination in Nile tilapia (Oreochromis niloticus L.). International Journal of Biological Sciences, 6, 38-42. doi.org/10.5281/zenodo.1328738

AOAC. (2005). Official Methods of Analysis (18th ed.). Gaithersburg, MD: Association of Official Analytical Chemists.

Bhujel, R.C. (2014). A manual for tilapia business. CABI Norworthy Way Wallingford Oxfordshire OX10 8DE UK, 199 pp.

Burr, G.S., Wolters, W.R., Barrows, F.T., & Hardy, R.W. (2012). Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss) and early or late stage juvenile Atlantic salmon (Salmo salar) Aquaculture 334-337, 110-116. https://doi.org/10.1016/j.aquaculture.2011.12.044

Carter, C., Houlihan, D., Kiessling A., Médale F., & Jobling, M. (2001). Physiological effects of feeding. Food intake in fish, 297-331. https://doi.org/10.1007/9780470999516.ch13

Davidson, J., Barrows F.T., Kenney, PB., Good, C., Schroyer, K., & Summerfelt, ST. (2016). Effects of feeding a fishmeal-free versus a fishmeal-based diet on post-smolt Atlantic salmon Salmo salar performance, water quality, and waste production in recirculation aquaculture systems. Aquacultural Engineering, 74, 38-51. https://doi.org/10.1016/j.aquaeng.2016.05.004

DeLong, D., Losordo, T.M., & Rakocy, J. (2009). Tank culture of tilapia. United States Department of Agriculture, Cooperative State Research, Education and Extension Services, 1-8.

El-Sayed, A.F.M. (1998). Total replacement of fish meal with animal protein sources in Nile tilapia. Aquaculture Research, 29, 275-280. https://doi.org/10.1046/j.1365-2109.1998.00199.x

Fapohunda, O.O. (2012). Evaluation of processed soybean meal in the feeding of Clarias gariepinus fingerlings. Journal of animal science advances, 2(2), 244-249.

Garcia-Ortega, A., Martinez, S.L., Sarnoski P.J., Gonsalves D., & Wall M.M. (2015). Use of biofuel by-products from green algae Desmodesmus sp and diatom Nannofrustulum sp in diets for Nile tilapia Oreochromis niloticus. Journal of Aquaculture Engineering and Fisheries Research, 1, 144-154. https://doi.org/10.3153/jaefr15016

Gatlin, D.M., Barrows F.T., Brown, P.K., Dabrowski, T.G., Gaylord, R.W., Hardy, E., ... Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds : a review. Aquaculture Research, 38, 551-579. https://doi.org/10.1111/j.1365-2109.2007.01704.x

Giri, S.S., Sahoo, S.K., & Mohanty, S.N. (2010). Replacement of by-catch fishmeal with dried chicken visceral meal in extruded feeds : effect on growth, nutrient utilisation and carcass composition of catfish Clarias batrachus (Linn.) fingerlings. Aquaculture International, 18, 539-544. https://doi.org/10.1007/s10499-009-9265-3

Goda, A.M., El-Haroun, E.R., & Kabir, C.M.A. (2007). Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell, 1822) reared in concrete tanks. Aquaculture Research, 38, 279-287. https://doi.org/10.1111/j.1365-2109.2007.01663.x

Guillaume, J., Kaushik, S.J., Bergot, P., & Metailer, R. (1999). Nutrition et alimentation des poissons et crustacés. INRA-FREMRE éditions, Paris, 489 pp.

Guo, J., Wang, Y. & Bureau, D.P. (2007). Inclusion of rendered animal ingredients as fishmeal substitutes in practical diets for cuneate drum, Nibea micchioides (Chu, Lo et Wu). Aquaculture Nutrition, 13, 81-87. https://doi.org/10.1111/j.1365-2095.2007.00456.x

Güroy, B., Sahin, İ., Mantoglu, S. & Kayali, S. (2012). Spirulina as a natural carotenoisoid source on growth, pigmentation and reproductive performance of yellowtail cichlid Pseudotropheus acei. Aquaculture International, 20, 869-878. https://doi.org/10.1007/s10499-012-9512-x

Güroy, D., Güroy, B., Merrifield, D.L., Ergün, S., Tekinay, A.A. & Yigit, M. (2011). Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period. Journal of Animal Physiology and Animal Nutrition, 95, 320-327. https://doi.org/10.1111/j.1439-0396.2010.01057.x

Hardy, R. (1996). Alternate protein sources for salmon and trout diets. Animal Feed Science and Technology, 59 (1), 71-80. https://doi.org/10.1016/0377-8401(95)00888-8

Henry, M., Gasco, L., Piccolo, G. & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish : Past and future. Animal Feed Science and Technology, 203, 1-22.

Herath, S.S., Haga, Y. & Satoh, S. (2016). Potential use of corn co-products in fishmeal-free diets for juvenile Nile tilapia Oreochromis niloticus. Fisheries Science, 82, 811-818. https://doi.org/10.1007/s12562-016-1008-6

Hossain, M.A., Focken, U., Becker, K. (2002). Nutritional evaluation of dhaincha (Sesbania aculeata) seeds as dietary protein source for tilapia Oreochromis niloticus. Aquaculture Research, 33, 653-662.

Ibrahim M.D., Mohamed, F., & Ibrahim, M.A. (2013). The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. Journal of Agricultural Science, 5 (6), 1916-9752. https://doi.org/10.5539/jas.v5n6p109

Jobling, M. (2012). Fish in aquaculture environments. In: Huntington, F, Jobling M, Kadri S. Editors. Aquaculture and behavior. Wiley-Blackwell, Oxford. https://doi.org/10.1002/9781444354614
Khalifa, N.S.A., Belal, I.E.H., El-Tarabily, K.A., Tariq, S., & Kassab, A.A. (2018). Evaluation of replacing fish meal with corn protein concentrate in Nile tilapia Oreochromis niloticus fingerlings commercial diet. Aquaculture Nutrition, 24 (1), 143-152. https://doi.org/10.1111/anu.12542

Kubiriza, G.K., Akol, A.M., Arnason, I.O., Sigurgeirsson, S., Snorrason, T., Tómasson, and Thorarinsdottir, H. (2018). Practical feeds for juvenile Nile tilapia (Oreochromis niloticus) prepared by replacing Rastriareobala argentea fishmeal with freshwater shrimp (Caridina nilotica) and mung bean (Vigna radiata) meals. Aquaculture Nutrition, 24 (1), 94-101. https://doi.org/10.1111/anu.12537

Luo, Z., Li, X.Q., Wang, W.M., Tan, X.Y. & Liu, X. (2011). Partial replacement of fish meal by a mixture of soybean meal and rapeseed meal in practical diets for juvenile Chinese mitten crab Erriocheir sinensis : effects on growth performance and in vivo digestibility. Aquaculture Research, 42, 1615-1622. https://doi.org/10.1111/j.1365-2120.2010.02751.x

Médale, F. & Kaushik, S. (2009). Les sources protéiques dans les aliments pour les poissons d’élevage. Cahiers Agricultures, 18(2), 103-111. https://doi.org/10.1684/agr.2009.0279

Milliamena, O.M. (2002). Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture, 204, 75-84. https://doi.org/10.1016/s0044-8486(01)00629-9

Mridha, M.A.R., Hossain, M.A., Azad Shah A.K.M., Nahiduzzaman, M. & Uddin, M.S. (2017). Effects of supplementary feeds with different protein levels on growth and economic performances of Nile tilapia (Oreochromis niloticus) cultured in a rain-fed rice–fish ecosystem. Journal of Applied Aquaculture, 29 (2), 152-166. https://doi.org/10.1080/10454438.2016.1278067

Nash, R.D.M., Valencia, A.H. & Geffen, A.J. (2006). The origin of Fulton’s condition factor - setting the record straight. Fisheries, 31, 236-238.

NRC (National Research Council). 1993. Nutrient requirements of fish. Washington, D.C.: National Academy Press.

NRC (National Research Council). 2011. Nutrient Requirements of Fish and Shrimp. National Academy Press, Washington, D.C., 367p.

Obirikorang, K.A., Amisah, S., Agbo, N.W., Adjei-Boateng, D., Adjei, N.G. & Skov, P.V. (2015). Evaluation of locally-available agro-industrial byproducts as partial replacements to fishmeal in diets for Nile tilapia (Oreochromis niloticus) production in Ghana. Journal of Animal and Nutrition, 1 (1) : 1-9. https://doi.org/10.21767/2572-5459.100002

Ogello, E.O., Kembenya, E.M., Githukia, C.M., Aera, C.N., Munguti, J.M. & Nyamweya, C.S. (2017). Substitution of fish meal with sunflower seed meal in diets for Nile tilapia (Oreochromis niloticus L.) reared in earthen ponds, Journal of Applied Aquaculture, 27 (1), 1-19. https://doi.org/10.1080/10454438.2016.1275074

Oké, V., Odontan O.H. & Abou, Y. (2016). Chicken viscera meal as a main component in diet for African catfish Clarias gariepinus (Burchell 1822) reared in earthen ponds. Journal of Food and Nutrition Research, 4 (12), 799-805. https://doi.org/10.12692/jinb.v6i4.411

Omasaki, K., Iassone, K. & Komena, H. (2017). Optimization of Nile tilapia breeding schemes for monosex culture conditions in smallholder production systems, Aquaculture, 481 (1), 8-15. https://doi.org/10.1016/j.aquaculture.2017.08.004

Palmegiano, G.B., Agradi, E., Formeris, G., Fai, F., Gasco, L., Rigamonti, E., ... & Zoccarato, I. (2005). Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baerii). Aquaculture Research, 36, 188-195. https://doi.org/10.1111/j.1365-2109.2005.01209.x

Palmegiano, G.B., Gai, F., Daprà, F., Gasco, L., Pazzaglia, M. & Peiretti, P.G. (2008). Effects of Spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) fingerlings Aquaculture Research, 39, 587-5950. https://doi.org/10.1111/j.1365-2109.2008.01914.x

Ribeiro, M.J.P., Vidotti, R.M., Ferreira, L.A. & Gonçalves, G.S. (2016). Evaluation of soy protein concentrate and meat and bone meal as a replacement for fish meal in the diet of Nile tilapia fingerlings. Journal Of The World Aquaculture Society, 47 (3): 369-375. https://doi.org/10.1111/jwas.12281

Santiago, C.B. & Lovell, R.T. (1988). Amino acid requirement for growth of Nile tilapia. Journal of Nutrition, 118, 1540-1546. https://doi.org/10.1093/jn/118.12.1540

Sarker, P.K., Gamble, M.M., Kelson, S. & Kapuscinski, A.R. (2016). Nile Tilapia (Oreochromis niloticus) show high digestibility of lipids and fatty acids from marine Schizochytrium sp and of protein and essential amino acids from freshwater Spirulina sp feed ingredients. Aquaculture nutrition, 22 (1) 109-119. https://doi.org/10.1111/anu.12230

Silva, D.M., Valente, L.M.P., Sousa-Pinto, I., Pereira, R., Pires, M.A., Seixas, F. & Rema, P. (2015). Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. Journal of Applied Phycolology, 7, 4, 1671-1680. https://doi.org/10.1007/s10811-014-0453-9

Suloma, A., El-Husseiny, O.M., Hassane, M.I., Mabroke, R.S. & El-Haroun, E.R. (2014). Complementary responses between hydrolyzed feather meal, fish meal and soybean meal without amino acid supplementation in Nile tilapia Oreochromis niloticus diets, Aquaculture International, 22 (4), 1377-1390.

Tabinda, A.B., Ghazala, R., Yasar, A. & Ashraf, M. (2013). Utilization of chicken intestine as an alternative protein source in the diet for fingerlings of Cirrhinus mrigala. The Journal of Animal & Plant Sciences, 23(6), 1603-1608.

Tacon, A.G.J. & Jackson, AJ. (1985). Utilisation of conventional and unconventional protein sources in practical fish feeds. In: Nutrition and Feeding in Fish (eds C.B. Cowey, A.M. Mackie & J.G. Bell). Academic Press, London. pp. 119–145. https://doi.org/10.1080/23308249.2014.987209

Tacon, A.G.J., & Metian, M. (2015). Feed Matters : Satisfying the Feed Demand of Aquaculture, Aquaculture, 23 (1), 1-10.

Takeuchi, T.J., Lu, G., Yoshizaki, Y., & Sato, S. (2002). Effect on the growth and body composition of juvenile tilapia Oreochromis niloticus fed raw Spirulina platensis. Fisheries Science, 68, 34-40. https://doi.org/10.1046/j.1342-2812.2002.00386.x

Teimouri, M., Amirkolaie, A.K., & Yeganeh, S. (2013). The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, 396-399, 14-
19. https://doi.org/10.1016/j.aquaculture.2013.02.009
Thompson, K.R., Velasquez, A., Patterson, J.T., Metts, L.S., Webster, C.D., Brady, Y.J., & Ostrand, S.L. (2012). Evaluation of plant and animal protein sources as partial or total replacement of fish meal in diets for Nile tilapia fry and juvenile stages. *North American Journal of Aquaculture* 74: 365-375. https://doi.org/10.1080/15222055.2012.675999

Tusche, K., Arning, S., Wuertz, S., Susenbeth, A. & Schulz, C. (2012). Wheat gluten and potato protein concentrate-promising protein sources for organic farming of rainbow trout (*Oncorhynchus mykiss*). *Aquaculture*, 344–349, 120–125. https://doi.org/10.1016/j.aquaculture.2012.03.009

Ungsetaphand, T., Peerapornpisal, Y., Whangchai, N. & Sardsud, U. (2010). Effect of feeding *Spirulina platensis* on growth and carcass composition of hybrid red tilapia (*Oreochromis mossambicus × O. niloticus*). *Maejo International Journal of Science and Technology*, 4, 331-336. https://doi.org/10.1007/s10811-015-0661-y

Velasquez, S.F., Chan, M.A., Abisado, R.G., Traifalgar, R.F.M., Tayamen, M.M., Maliwat, G.C.F. & Ragaza, J.A. (2016). Dietary *Spirulina* (*Arthrospira platensis*) replacement enhances performance of juvenile Nile tilapia (*Oreochromis niloticus*) *Journal of Applied Phycology*, 28 (2), 1023-1030. https://doi.org/10.1111/anu.12466

Walker, A.B. & Berlinsky, D.L. (2011). Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. *North American Journal of Aquaculture*, 73, 76-83.

Wang, L., Li, J., Jin, J., Zhu, F., Roffeis, M. & Zhang, X. (2017). A comprehensive evaluation of replacing fishmeal with housefly (*Musca domestica*) maggot meal in the diet of Nile tilapia (*Oreochromis niloticus*): Growth performance, flesh quality, innate immunity and water environment. *Aquaculture Nutrition*, 23 (5), 983-993. https://doi.org/10.1111/anu.12466

Wang, Y., Li, K., Han, H., Zheng, Z. & Bureau, D.P. (2008). Potential of using a blend of rendered animal protein ingredients to replace fishmeal in practical diets for malabar grouper (*Epinephelus malabaricus*). *Aquaculture*, 281, 113-117. https://doi.org/10.1016/j.aquaculture.2008.03.033

Wang, Y., Guo, J. & Bureau, D.P. (2006). Replacement of fish meal with rendered animal ingredients in feeds for cuneate drum (*Nibea miclhthioides*). *Aquaculture*, 252, 476-483. https://doi.org/10.1016/j.aquaculture.2005.07.018