A global approach to top-quark flavor-changing interactions

Gauthier Durieux,1,2 Fabio Maltoni,2 and Cen Zhang3

1Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA
2Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
3Department of Physics, Brookhaven National Laboratory, Upton, NY, 11973, USA

We adopt a fully gauge-invariant effective-field-theory approach for parametrizing top-quark flavor-changing-neutral-current interactions. It allows for a global interpretation of experimental constraints (or measurements) and the systematic treatment of higher-order quantum corrections. We discuss some recent results obtained at next-to-leading order accuracy in QCD and perform, at that order, a first global analysis of a subset of the available experimental limits in terms of effective operator coefficients. We encourage experimental collaborations to adopt this approach and extend the analysis by using all information they have prime access to.

I. INTRODUCTION

The wealth of top quarks produced at the LHC has moved top physics to a precision era. Detailed information on the top couplings, their strengths as well as Lorentz structures, has been collected and possible deviations are being constrained. In addition, interactions that are absent or suppressed in the Standard Model (SM) become more and more accessible. Among these, top-quark flavor-changing-neutral-current interactions (FCNCs) play a special role. Highly suppressed by the Glashow-Iliopoulos-Maiani mechanism, the SM predicts them to be negligible. Branching ratios for top FCNC decays are notably of the order of $10^{-12} - 10^{-15}$ [1–3] in the SM. Any evidence for such processes would thus immediately point to new physics. In addition, the recent discovery of a scalar particle closely resembling the SM Higgs boson [4, 5] has made Higgs-mediated FCNCs experimentally searchable.

A wide variety of limits have been set on top-quark FCNC interactions, see, e.g., Ref. [6]. Single top $p\bar{p} \rightarrow t$ production has been searched at the Tevatron by CDF [7] and at the LHC by ATLAS [8, 9] while D0 [10, 11] and CMS [12] considered the $p\bar{p} \rightarrow tj$ production mode. In addition, CMS also searched for single top production in association with a photon [13] or a charged lepton pair [14]. At LEP2, $e^+e^- \rightarrow tj$ has been investigated for by all four groups [15–19] while, at HERA, the single top $e^- p \rightarrow e^- t$ production has been considered by ZEUS [20, 21] and H1 [22–24]. The FCNC decay processes, $t \rightarrow j\ell^+\ell^-$ and $t \rightarrow j\gamma$, have also been studied, at the Tevatron by CDF [25–27] and D0 [28], and at the LHC by ATLAS [29–31] and CMS [32, 33]. Finally, $t \rightarrow jh$ has been constrained by CMS [34] that combined the leptonic $WW^*, \tau\tau$, ZZ^* and $\gamma\gamma$ channels while ATLAS used the last (and most sensitive) one only [35, 36].

The effective field theory (EFT) [37–39] is a particularly relevant framework for parametrizing new physics and has been used in many top-quark FCNC studies [40–54]. It does not only incorporate all possible effects of new heavy physics in a model-independent way, but also order them and allows to consistently take into account higher-order quantum corrections. Leading-order (LO) predictions are actually insufficient when an accurate interpretation of observables in terms of theory parameters is aimed at. QCD corrections in top-decay processes [55–60] typically amount to approximately 10%, while they can reach between 30% and 80% in production processes [61–65]. The running and mixing of operator coefficients should also be taken into account. While an EFT description in principle requires a complete basis of operators to be used, neglecting some of them may appear consistent when only lowest order estimates of specific processes are considered. The next-to-leading-order (NLO) counterterms as well as the renormalization-group (RG) running and mixings of operator coefficients however clearly reveal the unnatural and inconsistent character of neglecting some operators. A proper EFT description of new physics should necessarily be global. Currently, however, the limits obtained by experimental collaborations almost always assume one single FCNC interaction is present at the time.

The aim of this paper is to outline a general strategy for studying top-quark interactions in the context of an EFT, starting from the case of top-quark FCNC processes. Our main points can be summarized as follows:

- The widely used formalism that relies on dimension-four and five operators in the electroweak (EW) broken phase is inadequate from several respects.
- Calculations of FCNC processes can now be performed (in most cases already automatically) in the EFT framework at NLO in QCD. Some new NLO results for four-fermion operator contributions are provided here for the first time.
- A consistent analysis should be global, i.e., consider all operators contributing to a given process. For such an approach to be successful a sufficiently large (and complete) set of observables should be identified. We show that for FCNC interactions involving the top-quark this is already close to be
possible with the current measurements and suggest a minimal set of observables accessible at the LHC to complete the set.

The paper is organized as follows. Section III discusses the operators mixing effects at NLO in QCD and demonstrates the need for a global approach. We show some NLO results for single top production processes in Section IV, including both two- and four-fermion operators. A first global analysis incorporating the most sensitive experimental searches is finally carried out in Section V.

II. EFFECTIVE FIELD THEORY

In this section, we present the effective operators relevant for a NLO description of top-quark FCNC processes, highlighting the insufficiencies of the dimension-four and five operators formalism.

A. Fully gauge-invariant operators

Assuming the full standard model $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry as well as baryon and lepton number conservations, the first beyond-the-standard-model operators O_i constructed with standard-model fields only arise at dimension six. Restricting our EFT description to this level, the Lagrangian can be written [67]:

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{C_i}{\Lambda^2} O_i,$$

where C_i are dimensionless coefficients and Λ is a mass scale. We will use the operator basis and notations of Ref. [68], which includes 59 independent dimension-six operators. Our choice of operator normalization follows Ref. [60].

Amongst the ones contributing (up to NLO in QCD) to top-quark FCNC processes, different categories can be distinguished. We first consider operators involving exactly two quarks. Their Lorentz structures can be used to separate three sub-classes: vector, scalar, and tensor operators. Omitting indices for clarity (notably flavor ones) and denoting the fermionic flavor-generic gauge eigenstates by q, u, d, l and e, they are:

$$O_{\rho q} = \frac{y_t^2}{2} \bar{q} \gamma^\mu q \, \phi_i \vec{D}_\mu \phi, \quad O_{\rho u} = \frac{y_t^2}{2} \bar{u} \gamma^\mu u \, \phi_i \vec{D}_\mu \phi,$$

$$O_{u \phi} = -y_t^3 \, \bar{q} u \, \phi \, (\phi^\dagger \varphi - \varphi^2/2),$$

$$O_{u B} = y_t g_Y \, \bar{q} \sigma^{\mu \nu} u \, \varphi \, B_{\mu \nu},$$

$$O_{u W} = y_t g_W \, \bar{q} \sigma^{\mu \nu} \tau^I u \, \varphi \, W^\mu_{\nu I},$$

$$O_{u G} = y_t g_s \, \bar{q} \sigma^{\mu \nu} T^A u \, \varphi \, C_{\mu \nu}^A,$$

with $\vec{D}_\mu^{(I)} = (\gamma^\mu - i \gamma^\mu A^I) \delta^{(I)} \phi$ and $\varphi \equiv i \tau^2 \varphi^* \equiv \varepsilon \varphi^*$. Out of the $O_{\rho q}^\pm \equiv O_{\rho q}^1 \pm O_{\rho q}^3$ operators, only $O_{\rho q}^1$ contributes to FCNC processes in the up sector. We note that the vector contributions to the tqZ vertices arising from $O_{\rho q}$ and $O_{\rho u}$, and the tensor ones arising from $O_{u B}$ and $O_{u W}$ have not been both simultaneously considered in experimental searches so far. Next we consider operators involving two quarks and two leptons:

$$O_{l q}^1 \equiv \bar{l} \gamma^\mu q, \quad O_{l q}^3 \equiv \bar{l} \gamma^\mu \tau^I q,$$

$$O_{u e} = \bar{u} \gamma^\mu \tau^I e, \quad O_{u q} = \bar{u} \gamma^\mu e,$$

$$O_{l e q u} = \bar{l} e \varepsilon \bar{q} u,$$

$$O_{l e q u} = \bar{l} \sigma_{\mu \nu} e \varepsilon \bar{q} u.$$

It is useful to introduce the $O_{l q}^\pm \equiv O_{l q}^1 \pm O_{l q}^3$ combinations. $O_{l q}^+ \pm$ contains the interactions of two up-type quarks with two charged leptons (or, of two down-type quarks with two neutrinos) while $O_{l q}^-$ notably gives rise to interactions between two up-type quarks and two neutrinos (or, two down-type quarks and two charged leptons). Finally, there are four-quark operators. The complete basis has been discussed in Ref. [69]. Here we use the basis of Ref. [68] in which there are no tensor operators:

$$O_{q q} = \bar{q} \gamma^\mu q \, \bar{q} \gamma^\mu q, \quad O_{q d} = \bar{q} \gamma^\mu T^A q \, \bar{d} \gamma^\mu T^A d,$$

$$O_{u u} = \bar{u} \gamma^\mu u \, \bar{u} \gamma^\mu u, \quad O_{u d} = \bar{u} \gamma^\mu T^A u \, \bar{d} \gamma^\mu T^A d,$$

$$O_{q q u d} = \bar{q} u \, \bar{q} d, \quad O_{q d u d} = \bar{q} T^A u \, \bar{q} T^A d.$$

The Hermitian conjugates of scalar and tensor operators need to be added to those three lists of two- and four-fermion operators while the imposed Hermiticity, $C_{\alpha b} = \{ C_{\alpha a} \}^*, \alpha \neq b$, of vector operator coefficients ensures the reality of the effective Lagrangian.

The gauge invariance of the SM could only be imposed on fermionic gauge eigenstates. Observations, however, are related to mass eigenstates. Rotating one basis to the other is therefore required for all practical purposes. Neither the gauge-eigenstates operator coefficients, nor the unitary rotation matrices appearing in Yukawa singular-value decompositions are measurable. Physical operator coefficients and CKM as well as PMNS mixing matrix elements are. By removing unphysical rotation matrices, we choose the gauge-eigenstates to be expressed in terms

\[1\] See Ref. [66] for an EFT discussion of the baryon-number-violating interactions of the top quark.
of physical eigenstates as
\[q \equiv (u_L, V_{\text{CKM}} d_L)^T, \quad u \equiv u_R, \quad d \equiv d_R, \]
\[l \equiv (V_{\text{PMNS}} u_L, e_L)^T, \quad e \equiv e_R. \]

The physical operator coefficients involving left-handed up- and down-type quarks are then related through the CKM matrix. For instance, in the \(O^{(2)}_{qu} \) case,
\[q \gamma^\mu C^{(a3)}_{\gamma qu} q = \bar{u}_L \gamma^\mu C^{(a3)}_{\gamma qu} u_L \]
\[+ \bar{d}_L \gamma^\mu [V^3_{\text{CKM}} C^{(a3)}_{\gamma qu} V_{\text{CKM}}] d_L. \]

Similarly, the coefficients of operators involving left-handed charged leptons and neutrinos are related to each other through the PMNS matrix.

Putting quark flavor indices between brackets, there are 10 independent complex coefficients, for either \(a = 1 \) or \(2 \), in the two-quark category:
\[C^{(a3)}_{\gamma qu}, C^{(a3)}_{\gamma qu}, C^{(a3)}_{\gamma qu}, C^{(a3)}_{\gamma qu} \]
\[C^{(a3)}_{\gamma qu} \to C^{(a3)}_{\gamma qu} \]

Without distinguishing the lepton flavors (all diagonal and non-diagonal combinations should in principle be considered independently), there are 9 operators, for either \(a = 1 \) or \(2 \), in the two-quark–two-lepton category:
\[C^{(a3)}_{\gamma qu} \to C^{(a3)}_{\gamma qu} \]

Finally, for each allowed combination of \(a, b, c \in \{1, 2\} \), there are 11 independent four-quark coefficients leading to top FCNC processes:
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]
\[C^{(a3, bc)}_{\gamma qu} \to C^{(a3, bc)}_{\gamma qu} \]

Four-fermion operators have been overlooked in most analyses.

\[B. \quad \text{Dimension-four and five operators} \]

Beside the fully gauge-invariant effective field theory that will be exploited here, different theoretical frameworks have been used in the literature to describe top-quark flavor-changing neutral currents in a model-independent way.

A very common approach is the anomalous coupling one. Its main advantage is that of being close to the Feynman rules definition and so, of easy use. It is, however, not a well defined quantum field theory where constraints set by symmetries and radiative corrections can be taken into account systematically. Such an approach is therefore not suitable for the purpose of a global analysis at next-to-leading order in QCD.

Second, an effective-field-theory description of top-quark FCNCs in the electroweak broken phase [43, 70] has been widely used. It is based on an effective Lagrangian containing dimension-four and five operators that only satisfy Lorentz and \(SU(3)_C \times U(1)_E \) gauge symmetries. This broken-phase effective Lagrangian reads
\[\mathcal{L}_{\text{eff}}^{4,5} = - \frac{g_W}{2c_W} \bar{t}_q \left(v_{\text{eff}} \left(v_{\text{eff}} - a_{\text{eff}} v_{\text{eff}} \right) q \right) Z_{\mu} \]
\[- \frac{g_W}{2 \sqrt{2}} g_{q t} \bar{t}_q \left(g_{q t} g + g_{q t} g_{\gamma} \right) t \ h \]
\[- \frac{g_W}{2c_W} \bar{t}_q \left(f_{t q} + i h_{t q} \gamma_5 \right) q \ A_{\mu \nu} \]
\[- g_{q t} \frac{\Lambda}{\Lambda} \bar{t}_q \left(f_{t q} + i h_{t q} \gamma_5 \right) q \ Z_{\mu \nu} \]
\[- \frac{g_{q t}}{\Lambda} \bar{t}_q \left(f_{t q} + i h_{t q} \gamma_5 \right) q \ G_{\mu \nu} \]
\[+ \text{h.c.} \]

where \(q = u \) or \(c \) and \(c_W \equiv \cos \theta_W \). The \(\kappa_{t q} \) and \(g_{q t} \) coefficients are real and positive, while the complex \(\left(v_{\text{eff}}^t, a_{\text{eff}}^t, f_{t q}, h_{t q} \right) \) and \(\left(g_{q t}^u, g_{q t}^d \right) \) pairs satisfy: \(|f_{t q}|^2 + |h_{t q}|^2 = 1 \) and \(|g_{q t}^u|^2 + |g_{q t}^d|^2 = 1 \).

Without further constraint on its parameters, such an effective Lagrangian may be understood as more general than the fully gauge-invariant one. In other words, new physics is not assumed to preserve the electroweak \(SU(2)_L \times U(1)_Y \) gauge symmetry. Such a construction turns out to be way too general as it would require many coefficients to be extremely small or correlated with each other in order to reproduce measurements. This is at variance with the full \(SU(3)_C \times SU(2)_L \times U(1)_Y \) symmetry that naturally accounts for all observations made so far. For example, with full gauge invariance imposed, flavor-changing neutral currents only occur at the loop or non-renormalizable level.

In this work, we assume that new physics preserves the full standard-model gauge invariance, at least approximately, in the energy range probed by the LHC. The Lagrangian of Eq. (3) may then be seen as a practical reparametrization of the \(SU(3)_C \times SU(2)_L \times U(1)_Y \)-invariant operators presented in the previous section. Its
couplings are then tacitly understood as expressions of the fully gauge-invariant operator coefficients, the SM parameters and the scale Λ:

$$-\frac{g_W}{2c_W} \left\langle \overline{t}_q \gamma^\mu t \sigma_{\mu\nu} \right\rangle = -\frac{e}{2 s_W c_W} \frac{m_t^2}{\Lambda^2} \left[C_{\varphi^u}^{(a+3)*} \pm C_{\varphi^d}^{-(a+3)*} \right],$$

$$-\frac{g_W}{2\sqrt{2}} g_{dG} \left\langle \overline{g_t} g_q \gamma^\mu \right\rangle = -\frac{2m_t}{\Lambda^2} \left[C_{\varphi^u}^{(a+3)} + C_{\varphi^d}^{(3a)} \right],$$

$$-\frac{e}{\Lambda} \left\langle \overline{t}_q \gamma^\mu t \right\rangle = e \frac{m_t}{\Lambda^2} \left[(C_{\varphi^u}^{3a}) + (C_{\varphi^d}^{3a}) \right],$$

$$-\frac{g_W}{2c_W} \left\langle \overline{f}_q \gamma^\mu f_t \right\rangle = -\frac{e}{s_W c_W} \frac{m_t}{\Lambda^2} \left[(s_W C_{\varphi^u}^{(3aB)} - c_W C_{\varphi^u}^{(3a)}) \right],$$

$$-g_s \left\langle \overline{f}_q \gamma^\mu f_t \right\rangle = g_s \frac{m_t}{\Lambda} \left[C_{\varphi^u}^{(3a)} \right].$$

Such a reparametrization has, however, intrinsic limitations and to some extent can lead to misconceptions. Let us list a few specific reasons.

First, the broken-phase effective Lagrangian displayed as in Eq. (3) hides the actual scaling of each contribution. It does not make explicit that FCNC operators do not appear at the renormalizable level, and therefore it does not account for the experimental lack of evidence of the corresponding effects. Such hierarchies this Lagrangian displays are moreover misleading as all tree-level FCNC effects actually first appear at dimension six.

Second, some operators contributing at the same-order as those appearing in Eq. (3) are not included. Namely, a $\sigma_{\mu\nu} T^A q h \bar{G}^A$ operator actually contributes to $t \bar{h}$ production at hadron colliders at the same order as $\sigma_{\mu\nu} T^A q H$ (see Fig. 1a). This is trivially seen when the full gauge invariance is restored as both contributions then arise from the same dimension-six O_{uG} operator.

A complete basis should also include four-fermion operators. These are also of dimension six and can be related to two-fermion operators through the equations of motion (EOM). Such contact interactions could arise, for instance, in the presence of a heavy mediator coupling to two fermionic currents. They have unduly been neglected in experimental searches, Ref. [18] excepted. They could for example contribute to processes such as $t \rightarrow j \ell^+ \ell^-$, $pp \rightarrow t \bar{t}$, and $e^+ e^- \rightarrow t \bar{t}$ (Fig. 1b) and $e^+ p \rightarrow e^- t$. Trying to use the equations of motion to trade them all for two-fermion operators involving more covariant derivatives is in fact vain. Those involving vector or tensor fermionic bilinears which are not flavor diagonal would not appear in any of the EOM (non-flavor-diagonal scalar bilinears, on the other hand, are present in the equations of motion for the Higgs field). In many interesting leading-order processes and in all next-to-leading order ones, the off-shell character of the particles involved in an effective operator also precludes the use of EOM that could render irrelevant some operators containing derivatives. In Fig. 1 some examples of processes proceeding through the exchange of off-shell particles are provided. All dominant effects of heavy new physics can therefore only be guaranteed to be modeled by an effective theory if four-fermion operators are included.

Third, by writing an effective theory in the electroweak broken phase without making explicit the expressions of the couplings in terms of the fully gauge-invariant operator coefficients, one can easily overlook correlations between operators. The $\sigma_{\mu\nu} T^A q h \bar{G}^A$ and $\sigma_{\mu\nu} T^A q C_{\mu\nu}$ interactions that derive from the same dimension-six O_{uG} operator already provided an obvious example. Such kind of full correlation due to the presence, in φ, of a physical Higgs particle and a vacuum expectation value occurs only above the electroweak symmetry breaking scale in processes involving an external Higgs particle or when taking loop-level contributions into account. Another type of correlation comes from the fact that left-handed down- and up-type quarks belong to a single gauge-eigenstate doublet. Operator coefficients measurable in B-meson physics are actually related to those relevant to top-quark physics through equalities like Eq. (2) that involve V_{CKM}. A truly global analysis should take advantage of all types of correlations and use several

![Figure 1](image-url)
processes in which a closed set of operators contributes through different combinations. Only by doing this, is it possible to disentangle the effects coming from each of them.

III. MIXINGS

At NLO in QCD, dimension-six operators may mix with each other. In other words, the renormalization of an operator may involve several others. Because of quantum effects, the very definition of operator coefficients actually depends on the renormalization scheme and scale. RG mixings imply that a coefficient defined at one scale is actually a combination of many others at a different scale. The information about the RG flow,

$$\frac{dC_i(\mu)}{d\ln \mu} = \gamma_{ij} C_j(\mu), \quad (4)$$

is encoded in the anomalous dimension matrix γ_{ij} which has been computed recently for the full set of dimension-six operators [71–74] (see also Ref. [60] for a specific discussion of the anomalous dimensions of flavor-changing top-quark operators).

At a high scale, a full theory may justify specific values for operators coefficients. In particular, some of them may be negligible. However, after the RG evolution down to lower scales, mixing might lead to a significant increase for operators coefficients. In particular, some of them will provide counterterms regularizing UV divergences, the very definition of operator coefficients actually depends on the renormalization group equations and evolve all available bounds to a common scale where a global analysis can then be carried out.

A. Renormalization patterns

The mutual renormalizations of operator coefficients entails that, at next-to-leading order (and beyond), some operators will provide counterterms regularizing UV divergent diagrams involving other ones. As an example, let us consider the Yukawa operator $t\gamma_i^W$. It is then transparent that $t\gamma_i^W$, that is not renormalized by uG_{α}, operators are not zero.

Note that, due to current conservation, the coefficients of the vector O_{uG} and O_{uW} operators are not renormalized.

At the energies currently probed by experiments, it is thus unnatural to assume only one or two operator coefficients are nonzero. One should a priori include all operators contributing at a given order. Then, to constrain operator coefficients consistently, one should use the renormalization group equations and evolve all available bounds to a common scale where a global analysis can then be carried out.

The first term corresponds to the running of $C_{\alpha}(\mu)$ itself, while the second one is a mixing from $C_{\alpha}(\mu)$ to $C_{\alpha}(\mu)$ formally of order α_s which will cancel the UV divergences from the fourth diagram (and of diagrams not shown in Fig. 2). On the other hand, $C_{\alpha}(\mu)$ is not renormalized by $C_{\alpha}(\mu)$:

$$\frac{dC_{\alpha}(\mu)}{d\ln \mu} = \frac{\alpha_s}{3\pi} C_{\alpha}(\mu) \quad \text{at order } \alpha_s.$$
FIG. 2: Representative \(u g \to tZ \) diagrams involving \(O_{uG} \) (black dot) and \(O_{uW} \) (gray square) operators, at leading-order (first two) and next-to-leading order order (last two diagrams). The UV divergence of the fourth diagram involving \(O_{uG} \) is regularized by a counterterm of \(O_{uW} \) form.

FIG. 3: Representative diagrams for \(t \to u \gamma, qZ, qh \) at leading and next-to-leading orders. The gray square represents a contribution from the \(O_{uW} \) weak-dipole operator, while the black dot represents a contribution from the \(O_{uG} \) color-dipole operator.

FIG. 4: The tree-level exchange of a heavy flavor-changing \(Z' \) would generate four-fermion effective operators. Such operators have been overlooked in many experimental searches.

IV. FCNC PROCESSES AT NLO IN QCD

In order to demonstrate the feasibility of an EFT treatment of top-quark FCNC processes that is NLO accurate in QCD, we discuss two specific cases. First, we consider top-quark decay processes and the—often overlooked—contributions of two-quark–two-lepton operators. Secondly, some NLO results merged with parton shower are presented for single top produced in association with a photon, \(Z \) or Higgs bosons.

For numerical results, here and in what follows, we use: \(m_t = 172.5 \) GeV, \(\alpha^{-1} = 127.9 \), \(\alpha_s = 0.10767 \), \(\sin^2 \theta_W = 0.2337 \), \(m_Z = 91.1876 \) GeV and \(\Gamma_Z = 2.4952 \) GeV. Unless otherwise specified, we set \(\Lambda = 1 \) TeV.

A. Two-quark–two-lepton operators in top decay

As stressed before, two-quark–two-lepton operators have been overlooked in top-quark FCNC searches at the LHC even though they contribute to \(pp \to t \ell^+ \ell^- \), \(t \to j \ell^+ \ell^- \) or \(e^+ e^- \to tj \) processes (see Fig. 1b). As they are potentially tree-level generated, for instance from the exchange of a heavy \(Z' \) (see Fig. 4), those operators may even have coefficients larger than those of two-quark operators.

Complete results at NLO in QCD for top-quark FCNC decays through two-quark and two-quark–two-lepton operators can be found in Ref. [60]. Here, we focus on the specific \(t \to j \ell^+ \ell^- \) process. The two-quark operators contribute through the exchange of a (virtual) photon or \(Z \) while the two-quark–two-lepton operators lead to three-body decays. The first half of Table II presents the numerical contributions of each operator coefficient to the partial decay width. As light-fermion masses have
be observed, its proportion in each of those ranges of lepton invariant masses would bring information about its nature. As the off-peak region contains less Drell-Yan background, a better sensitivity may actually be obtained on two-quark–two-lepton operators coefficients.

Similarly, one may use angular distributions to disentangle the contributions of vector, scalar and tensor operators, as done in Ref. [27]. In Ref. [60], the Z helicity fractions were also computed at NLO in QCD as function of operators coefficients. Taking into account differential decay rates should therefore allow to disentangle all types of operators. Since identifying final-state up- and charm-quark jets can only be done with a limited efficiency, one should rely on production processes and take benefit of the widely different parton distribution functions of u’s and c’s to discriminate between both contributions.

B. Single top production

Single top production associated with a neutral gauge boson, γ, Z, or the scalar boson h can bring useful information on top-quark FCNC [41, 43, 50–55]. As illustrated in Fig. 6 and Fig. 7, O_{uG} already contributes at leading order to pp → tγ or pp → tZ and pp → th. Following the general strategy outlined in Ref. [75], all two-quark operators have been implemented in the FeynRules/MADGRAPH5_AMC@NLO simulation chain [76–78] which permits automated NLO computations in QCD, including matching to parton shower. The details of this implementation are discussed elsewhere [79].

A m_{t\ell} dependent reweighing can also be used to obtain, from two-quark operator results, the NLO-accurate contributions of vector (and scalar) two-quark–two-lepton operators. Such operators have not yet been implemented in MADGRAPH5_AMC@NLO. Fig. 8 compares e^+e^- → t\ell + \ell\ell production cross sections through a two-quark and a two-quark–two-lepton operator, as well as through their interference. The bounds deriving from a combination of LEP2 results [15] are also shown.
\[
\Gamma_{\ell^{-}\ell^{+}\ell^{-}}^{\text{on-peak}} / 10^{-5} \text{ GeV} \times (\Lambda/1 \text{ TeV})^4 =
\]

\[
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\begin{pmatrix}
+0.29 & -0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.29 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.18 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.016i & -0.25 & -0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.029 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
\end{pmatrix}
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\]

\[
\begin{pmatrix}
+0.029 & -0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.29 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.18 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.016i & -0.25 & -0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.029 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
\end{pmatrix}
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\]

\[
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\begin{pmatrix}
+0.029 & -0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.29 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.18 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.016i & -0.25 & -0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.029 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
\end{pmatrix}
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\]

\[
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\begin{pmatrix}
+0.029 & -0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.035 & -0.23i & -0.19 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.29 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.18 & -0.11i & -0.33 + 0.38i & 0.026 - 0.0025i
\\
+0.016i & -0.25 & -0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
-0.029 & -0.12 & -0.8 & -7 & -8 & -7 & -8
\\
+0.028 & +0.18i & -0.25 + 0.087i & -0.14 & -0.30i & +0.00064 + 0.023i
\\
\end{pmatrix}
\begin{pmatrix}
C_{lq}^{(a+3)}
\\
C_{eq}^{(a+3)}
\\
C_{\nu q}^{(a+3)}
\\
C_{uB}^{(a+3)}
\\
C_{uW}^{(a+3)}
\\
C_{uG}^{(a+3)}
\end{pmatrix}
\]

TABLE II: Contributions of each FCNC operator coefficient to the $t \rightarrow j \ell^+ \ell^-$ partial width (for one single species of massless quark and charged leptons) [60]. The subscripts indicate the relative correction brought by the NLO contribution in QCD (a dash stresses the absence of leading order contribution). Off-shell Z factors are included to all orders. In the on-peak + off-peak case, a 15 GeV cut has been applied on the invariant mass of the two leptons, to avoid the divergence of the $t \rightarrow j \gamma^* \rightarrow j \ell^+ \ell^-$ contribution. In the on-peak case, $m_{\ell\ell} \in [78, 102]$ GeV is required.
In Fig. 9 the contributions of the same two operators, \(O_{\varphi u} \) and \(O_{eu} \), to \(pp \to t\ell\ell \) at \(\sqrt{s} = 13 \text{ TeV} \) are shown. In those figures, the uncertainty bands are obtained from factorization and renormalization scale variations between \(m_t/2 \) and \(2m_t \) as the anomalous dimensions of vector operators vanish.

V. A FIRST GLOBAL ANALYSIS

In this section we illustrate the feasibility of a global approach to top-quark FCNC interactions. For the sake of illustration and simplicity, we only consider the most constraining observables. This suffices to set significant bounds on all two-quark operators listed previously as well as on a subset of the two-quark–two-lepton ones. Four-fermion operators featuring two leptons of different generations or a pair of taus would remain unconstrained due to the absence of experimental searches while those with two muons are only loosely bound due to the lack of off-Z-peak constraint in \(t \to j \ell^+\ell^- \) searches. LEP2 data, however, effectively constrains operators containing an electron pair.

Currently, for either \(j = u \) or \(c \), the most constraining 95% CL bounds on the top-quark branching ratios are:

\[
\begin{align*}
\text{Br}(t \to j e^+ e^-) &+ \text{Br}(t \to j \mu^+ \mu^-) \lesssim 0.0017\% \quad [32],^2 \\
\text{Br}(t \to j \gamma \gamma) &< 3.2\% \quad [25], \\
\text{Br}(t \to j \gamma) &< 0.0016\% \quad [34].^3
\end{align*}
\]

(Top and anti-top branching fractions are assumed identical by the experimental collaborations.) The first limit is actually applicable for lepton invariant masses close to \(m_Z \): \(m_{\ell\ell} \in [78, 102] \text{ GeV} \). The CMS Collaboration actually interprets it as a bound on \(\text{Br}(t \to j Z) \) even though four-fermion operator contributions cannot in general be neglected. Similarly, the third limit is obtained for \(m_{\gamma\gamma} \in [120, 130] \text{ GeV} \) and interpreted as a bound on \(\text{Br}(t \to ch) \) while the contributions of \(u th \) and \(u(c) c\gamma \) interactions should in principle also be taken into account. Furthermore, a limit on the single top production cross section \([8]\):

\[
\sigma(pp \to t) + \sigma(pp \to \bar{t}) < 2.5 \text{ pb} \quad \text{at } \sqrt{s} = 8 \text{ TeV}
\]

2 Those two figures are obtained using \(\text{Br}(Z \to t\ell\ell) = 3.37\% [80] \) as well as the CMS limit on \(\text{Br}(t \to j Z) < 0.05\% \) which combines the \(e^+ e^- \) and \(\mu^+ \mu^- \) channels. They may therefore be slightly underestimated and do not account for the difference in efficiency of these two channels.

3 The limit on \(\text{Br}(t \to ch) < 0.69\% \) and the assumed \(\text{Br}(h \to \gamma\gamma) = 0.23\% \) both quoted in Table 4 have been used.
is converted by the ATLAS Collaboration into the BR($t \rightarrow ug$) < 0.0031% and BR($t \rightarrow cg$) < 0.016% bounds on top-quark FCNC branching fractions when a tug or a tgc vertex are respectively assumed to provide the only contributions to the above cross section. Similarly, the

$$\sigma(ug \rightarrow t\gamma) + \sigma(ug \rightarrow t\bar{\gamma})$$

+ 0.778 \left[\sigma(cg \rightarrow t\gamma) + \sigma(cg \rightarrow t\bar{\gamma}) \right] < 0.0670 \text{ pb at } \sqrt{s_{pp}} = 8 \text{ TeV},$$

bound obtained by the CMS Collaboration [13] for $p_{T\gamma} > 30$ GeV is translated into the BR($t \rightarrow u\gamma$) < 0.0108% and BR($t \rightarrow c\gamma$) < 0.132% limits by taking into account either ut\gamma or ct\gamma contributions only (the ut\gamma and ct\gamma contributions are notably assumed vanishing). Finally, a LEP2 combination [15] implies

$$\sigma(e^+ e^- \rightarrow tj + \bar{t}j) < 176 \text{ fb at } \sqrt{s} = 207 \text{ GeV}$$

for $m_t = 172.5 \text{ GeV}$.

A. $t \rightarrow j \ell^+ \ell^-$

Let us first consider the top decay to a pair of charged leptons and a jet. It is mainly sensitive to operators inducing a $t \rightarrow j Z$ decay. At leading order, the rate for this process can be expressed as a sum of four squared terms corresponding to final states of different polarizations ($q_L Z_0$, $q_R Z_0$, $q_L Z_-$ and $q_R Z_+$):

$$\Gamma_{t \rightarrow jZ} = \frac{am_t^2}{48\pi s_W^2 c_W^2} \sum_{a=1,2} \left\{ \frac{1}{2x} C_{\varphi u}^{(a+3)} + 2x \left(s_W C_{uB}^{(a)} - c_W C_{uW}^{(a+3)} \right)^2 \right\}$$

where $a = 1$ or 2. At that order, the dependence on the O_{uG} operator coefficients is generated. It has, however, little overall effect given the tight constraints of C_{uG} that arise from $pp \rightarrow t, \bar{t}$ searches.

B. $pp \rightarrow t, \bar{t}$

The most sensitive of the single-top production limits constrains the C_{uG} coefficients alone, provided the four-quark operator contributions in the experimental acceptance are neglected. Using the NLO result:

$$\Gamma_{t \rightarrow jj} = B \Gamma_t \left(\frac{1 \text{ TeV}}{\Lambda} \right)^4 \sum_{a=1,2} \left(|C_{uG}^{(a)}|^2 + |C_{uG}^{(3a)}|^2 \right),$$

with $B \equiv 0.0186$ and a fixed value for the top width $\Gamma_t = 1.32 \text{ GeV}$, we recast the interpretation made in Ref. [8] to obtain the bound on the operator coefficient combination actually probed in $pp \rightarrow t + t$:

$$\frac{1}{B_u} |C_{uG}^{(13)}|^2 + |C_{uG}^{(31)}|^2$$

$$+ \frac{1}{B_c} |C_{uG}^{(23)}|^2 + |C_{uG}^{(32)}|^2 < \frac{1}{B} \left(\frac{\Lambda}{1 \text{ TeV}} \right)^4$$

where $BR(t \rightarrow ug) < 0.0031% \equiv B_u$ and BR($t \rightarrow cg$) < 0.016% \equiv B_c are the limits set assuming one single contribution from either $a = 1$ or $a = 2$. Fixing $\Lambda = 1 \text{ TeV}$, the following —strong— constraints are obtained on the coefficient moduli:

$C_{uG}^{(a)}$	$C_{uG}^{(3a)}$	
0.041	0.093	8.4
8.4		
2.2		
12		
3.8		
11		
1.7		

where the red allowed range applies to up-quark operator coefficients ($a = 1$) and blue ranges to charm-quark ones ($a = 2$).

Actually, at this stage, all operator coefficients but the C_{uG} ones are already constrained, sometimes poorly though. Most notably, the $t \rightarrow j \ell^+ \ell^-$ observable is primarily sensitive to the $s_W O_{uB} - c_W O_{uW}$ linear combinations that contains the tensorial Z interactions, while $O_{uB} + O_{uW}$ contains the photon ones. The absence of experimental bound outside the on-Z-peak region for $m_{\ell\ell}$ also renders the two-quark–two-lepton operators very loosely constrained. Quantitatively with the two observables just described, the limits that arise on the moduli of the operator coefficients are:

$$\left| C_{lt}^{(a+3)} \right|, \left| C_{lu}^{(a+3)} \right|$$

$$\left| C_{eq}^{(a+3)} \right|, \left| C_{eu}^{(a+3)} \right|$$

$$\left| C_{\varphi u}^{(a+3)} \right|, \left| C_{uB}^{(a+3)} \right|, \left| C_{uW}^{(a+3)} \right|$$

$$\left| C_{uB}^{(3a)} \right|, \left| C_{uW}^{(3a)} \right|$$

$$\left| C_{lequ}^{(a)} \right|, \left| C_{lequ}^{(3a)} \right|$$

$C_{lt}^{(a+3)}$	$C_{lu}^{(a+3)}$	$C_{eq}^{(a+3)}$	$C_{eu}^{(a+3)}$	$C_{\varphi u}^{(a+3)}$	$C_{uB}^{(a+3)}$	$C_{uW}^{(a+3)}$	$C_{uB}^{(3a)}$	$C_{uW}^{(3a)}$	$C_{lequ}^{(a)}$	$C_{lequ}^{(3a)}$
8.4	8.4									
2.2										
12										
3.8										
11										
1.7										

4 This expression is obtained from the bounds on the NLO cross sections times W leptonic branching fraction (we took $\text{BR}(W \rightarrow \ell\nu) = 5 \times 10^{-8}$% [80]) provided by the CMS Collaboration.
where the white marks indicate the bounds that would have been obtained out of our global picture, by assuming that all coefficients but the constrained one vanish. Among those limits, only the ones applying to $|C_{e\gamma}^\pm|$ or $|C_{\nu\mu}|$ will not improve much in what follows.

\[C \text{Br(J)} \text{photon. The CDF Collaboration still currently sets achieved through top-quark FCNC processes involving a photon. The CDF Collaboration still currently sets the best limit on the top decay to a photon and a jet: Br}(t \to j\gamma) < 3.2\% \text{[25]. The corresponding leading-order decay rate writes:} \]
\[\Gamma_{t\to j\gamma} = \frac{\alpha m_t^5}{\Lambda^4} \sum_{a=1,2} \left(|C_{uB}^{(a3)} + C_{uW}^{(a3)}|^2 + |C_{uB}^{(3a)} + C_{uW}^{(3a)}|^2 \right). \]

At order $O(\alpha_s)$, a cut on the photon energy and jet-photon separation is required to avoid the soft-collinear divergence. For $(E_{\gamma,j}, p_{\gamma,j})$ the quadri-momenta of the photon and quark jet in the top rest frame, we take:
\[1 - p_{\gamma} \cdot p_j/E_{\gamma}p_j > 0.2, \]
\[E_{\gamma} > 20 \text{ GeV}. \]

With these cuts the CDF constraint reads
\[\sum_{a=1,2} \left\{ |0.71 C_{uB}^{(a3)} + 0.71 C_{uW}^{(a3)} - 0.036 C_{uG}^{(a3)}|^2 \right\} < 19.6 \times \frac{3.2\%}{Br(t\to j\gamma)} \frac{\Gamma_t}{1.32 \text{ GeV}} \left(\frac{\Lambda}{1 \text{ TeV}} \right)^4. \]

A much stronger constraint on $C_{uB} + C_{uW}$ is actually obtained by considering the bound set in Ref. [13] on single top production in association with a photon of transverse momentum $p_T > 30 \text{ GeV}$. Taking into account the relative efficiency obtained by CMS for up-glue and charm-glue initial states and NLO results in QCD for $\sigma(pp \to t\gamma + \bar{t}\gamma)$ at $\sqrt{s} = 8 \text{ TeV}$ obtained with the implementation of Ref. [79] in aMC@NLO [78] we get:

\[
\begin{pmatrix}
C_{uB}^{(13)} \\
C_{uW}^{(13)} \\
C_{uG}^{(13)}
\end{pmatrix}
\begin{pmatrix}
0.46 & 0.93 & 0.2 \\
0.46 & 0.2 \\
1.9
\end{pmatrix}
\begin{pmatrix}
C_{uB}^{(13)} \\
C_{uW}^{(13)} \\
C_{uG}^{(13)}
\end{pmatrix}
\]

\[+ (13) \leftrightarrow (31) \]

\[
\begin{pmatrix}
C_{uB}^{(23)} \\
C_{uW}^{(23)} \\
C_{uG}^{(23)}
\end{pmatrix}
\begin{pmatrix}
0.047 & 0.095 & 0.017 \\
0.047 & 0.017 \\
0.33
\end{pmatrix}
\begin{pmatrix}
C_{uB}^{(23)} \\
C_{uW}^{(23)} \\
C_{uG}^{(23)}
\end{pmatrix}
\]

\[+ 0.78 (23) \leftrightarrow (32) \]
\[< 0.067 (\Lambda/1 \text{ TeV})^4 \]

With this observable taken into account, the limits on C_{uB} and C_{uW} improve dramatically. Indirectly, the bound on two-quark–two-lepton operators that interfere with those in $t \to j \ell^+\ell^-$ also improve slightly:
\[|C_{tq}^{(a+3)}| \text{ or } |C_{tu}^{(a+3)}| \text{ [15]} \]
\[|C_{e\gamma}^{(a+3)}| \text{ or } |C_{e}\nu| \text{ [15]} \]
\[|C_{uB}^{(a3)}| \text{ or } |C_{uB}^{(3a)}| \]
\[|C_{uW}^{(a3)}| \text{ or } |C_{uW}^{(3a)}| \]

A. $e^+e^- \to t\bar{t}$, $t\bar{t}$

Without an off-Z-peak constraint on $t \to j \ell^+\ell^-$, one cannot do better for the two-quark–two-lepton operators involving muons. However, the limit set at LEP on $e^+e^- \to t\bar{t}$ [15] gives a powerful handle on the two-quark–two-lepton operators involving electrons. The next-to-leading order expression for $\sigma(e^+e^- \to t\bar{t})$ at $\sqrt{s} = 207 \text{ GeV}$ is provided in Table III. As can be seen from Fig. 8, the bound set at this center-of-mass energy is the most constraining one. We do not attempt a combination of the bounds set at different center-of-mass energies that could only be naive given the lack of published statistical information.

\[\text{FIG. 10: Complementarity of the } t \to j \ell^+\ell^- \text{ and } pp \to t\gamma, \bar{t}\gamma \text{ limits in the } C_{uB} - C_{uW} \text{ plane. The } C_{uG} \text{ coefficients are constrained to satisfy the bounds set by the } pp \to t, \bar{t} \text{ searches. The dark gray and red allowed regions apply for } a = 1 \text{ while the blue intersection shows the constraint for } a = 2. \text{ The same limits apply to either the real or the imaginary parts of the operator coefficients.} \]
\[
\sigma^{\gamma^*\gamma \rightarrow tj}_{\text{NLO}} \times (\Lambda/1 \text{ TeV})^4 =
\]
\[
\begin{pmatrix}
C_{tq}^{-(a+3)} & C_{e\phi}^{-(a+3)} & C_{uB}^{-(a+3)} & C_{uW}^{-(a+3)} & C_{uG}^{-(a+3)} \\
+52 & 0 & +52 & +52 & +52 \\
+24\% & +24\% & +24\% & +24\% & +24\% \\
\end{pmatrix}
\]

\[+ \text{Re} \begin{pmatrix}
C_{tq}^{-(a+3)} & C_{e\phi}^{-(a+3)} & C_{uB}^{-(a+3)} & C_{uW}^{-(a+3)} & C_{uG}^{-(a+3)} \\
+52 & 0 & +52 & +52 & +52 \\
+24\% & +24\% & +24\% & +24\% & +24\% \\
\end{pmatrix}
\]

\[+ 33 \left| C_{tq}^{-(a+3)} \right|^2 + |C_{e\phi}^{-(a+3)}|^2 + 370 \left| C_{tq}^{-(a+3)} \right|^2 + |C_{e\phi}^{-(a+3)}|^2 \]

TABLE III: NLO expression for the \(e^+ e^- \rightarrow tj \) cross section in fb, including full \(\Gamma_Z \) dependence, for either \(a = 1 \) or 2 (light quark and electron masses are neglected). For \(e^+ e^- \rightarrow tj \) the two complex matrices should be conjugated.

As the experimental constraint is set on \(tj \) plus \(\bar{t}j \) production, the imaginary prefactors provided here at leading-order only have no effect on our limits. Identical bounds therefore apply to the real and imaginary parts of each operator coefficients. The \(C_{tq}^{-(a+3)} \) prefactors are obtained fully analytically (see Appendix A) while the other ones, from the aMC@NLO implementation of Ref. [79] either directly, for two-fermion operators, or after reweighing, for four-fermion ones.

The complementarity of the LEP limit with the \(t \rightarrow j e^+ e^- \) one for constraining simultaneously two- and four-fermion operators is illustrated in Fig. 11.

E. \(t \rightarrow j \gamma \gamma \)

Finally, the \(C_{u\phi} \) coefficients can be bound using the \(t \rightarrow j \gamma \gamma \) search presented in Ref. [34]. As mentioned before, the interpretation the CMS Collaboration overlooks a dependence in the flavor-changing \(t\gamma q \) couplings. Imposing \(m_{\gamma \gamma} \in [120, 130] \text{ GeV} \) and \(m_{\gamma j} > 10 \text{ GeV} \) with \(m_h = 125 \text{ GeV} \) and \(Br(h \rightarrow \gamma \gamma) = 0.23\% \), we get:

\[\Gamma^{\text{con-h-peak}}_{t \rightarrow j \gamma \gamma} = 1.09 \times 10^{-6} \text{ GeV} \quad (1 \text{ TeV}/\Lambda)^4\]

\[\sum_{a=1,2} \left\{ \left| C_{u\phi}^{(a+3)} \right|^2 + \left| C_{w\phi}^{(a+3)} \right|^2 \right\} + 0.37 \left(\left| C_{uB}^{(a+3)} + C_{uW}^{(a+3)} \right|^2 + \left| C_{uB}^{(a+3)} + C_{uW}^{(a+3)} \right|^2 \right) \]

at leading order, with the interference between the \(C_{uB} + C_{uW} \) and the \(C_{u\phi} \) contributions neglected. However, given the bounds set previously on \(C_{uB} + C_{uW} \) and the relatively mild constraint on \(t \rightarrow j \gamma \gamma \), those \(t\gamma q \) contributions have no significant impact on the global limits we set. We therefore consider the following NLO [81]

FIG. 11: Complementarity of the \(e^+ e^- \rightarrow t \bar{j} \) limits for constraining two- and four-fermion operators. The operator coefficients not shown in this plane are constrained to satisfy the bound of Fig. 12. The dark gray and red allowed regions apply for \(a = 1 \) while the light gray and blue ones for \(a = 2 \). The same limits apply to either the real or the imaginary parts of the operator coefficients.
constraint instead:
\[\sum_{a=1,2} \left\{ |0.9997 C^{(a3)}_{u\phi} - 0.0243 C^{(a3)}_{uG}|^2 + |0.9997 C^{(3a)}_{u\phi} - 0.0243 C^{(3a)}_{uG}|^2 \right\} < 12.8 \times 0.69/Br_{t\gamma\gamma}^W + 0.23/Br_{h\gamma\gamma}^W \times 1.32 \text{ GeV} \times \left(\frac{\Lambda}{1 \text{ TeV}} \right)^4. \]

Unfortunately, a statistical combination of the 95% CL bounds derived in this section is not possible with the published information. We can only require those constraints to be simultaneously satisfied. The results of this procedure are shown in Fig. 12.

VI. CONCLUSIONS

A fully gauge-invariant effective field theory allows the consistent, global and accurate interpretation of new-physics searches in terms of well-defined theoretical parameters. Our global analysis at NLO in QCD of the most constraining limits on top-quark FCNC operators provides a proof-of-principle of feasibility of this program.

In particular, we have stressed the importance of considering simultaneously all contributions arising at dimension-six in the standard-model effective theory, four-fermion operators included. Separating on-Z-peak and off-Z-peak lepton invariant mass regions in \(t \to j \ell^+\ell^- \) searches would allow to better constrain two-quark–two-lepton operators, especially the ones involving a muon pair. Distinguishing the lepton channels would permit to bound accurately different operators. In general, efficiencies for each contribution and fiducial limits should be made public. Angular distributions —helicity fractions notably— would provide additional separation power between operators of different Lorentz structures. The effort devoted to the searches of top-quark FCNC production processes should be pursued further as they probe higher energy scales than decays. In particular, an update of the limit on \(pp \to t \ell^-\ell^+ \) and a search for \(pp \to th \) would probably improve significantly the constraints presented here. Ultimately, the publication of the statistical information from which the limits derive would allow for a more appropriate combination of the constraints coming from different observables.

In this work, we have moved the first steps towards a global approach to the determination of the top-quark couplings in the context of an effective field theory by considering the case of FCNC interactions at NLO in QCD. The same approach can be extended to flavor-conserving and charged-current interactions. The impact of indirect constraints arising from \(B \) mesons, electroweak or Higgs data could (and should) also be considered. In this respect the effective field theory provides a unique framework where all information coming from different measurements and observables can be consistently, accurately and precisely combined to set bounds on new physics.

ACKNOWLEDGEMENTS

We would like to thank Mojtaba Najafabadi, Reza Goldouzian and Andrea Giannanco for details about the analysis of Ref. [13]. This work has been performed in the framework of the ERC grant 291377 “LHCTheory” and of the FP7 Marie Curie Initial Training Network MCnetITN (PITN-GA-2012-315877). C. Z. has been supported by the IISN “Fundamental interactions” convention 4.4517.08, and by US Department of Energy under Grant DE-AC02-98CH10886. G. D. is a Research Fellow of the FNRS, Belgium, and of the Belgian American Education Foundation, USA.

Appendix A: NLO corrections to \(e^+e^- \to tj \)

NLO cross sections for \(e^+e^- \to tj \) can be written as

\[\sigma^{\text{NLO}} = \sigma^{\text{LO}} \left[1 + \frac{\alpha_s(\mu)}{\pi} \delta(x, \mu) \right] \]

where \(\mu \) is the renormalization scale, and \(x = m_t/\sqrt{s} \). The quantum corrections \(\delta \) depend on the Lorentz structure of the quark current. We obtain, for a vector current,
\[\delta(x, \mu) = \frac{1}{3(1-x^2)(2+x^2)} \left[6 - 9x^2 - 5x^4 + \frac{4x^2}{1-x^2} (5x^4 - 4x^2 - 5) \log(x) - 2 (1-x^2) (5x^2 + 4) \log(1-x^2) + 8 (1-x^2) (2+x^2) (\log(x) \log(1-x^2) + Li_2(x^2)) \right], \]

for a scalar current,
\[\delta(x, \mu) = \frac{1}{3} \left[-6 \log \left(\frac{x}{\mu^2} \right) + 17 + 8x^2 \log(1-x^2) + 2 (2x^2 - 5) \log(1-x^2) + 8 \log(x) \log(1-x^2) + 8Li_2(x^2) \right], \]

and, finally, for a tensor current,
\[\delta(x, \mu) = \frac{1}{9(1-x^2)(1+2x^2)} \left[6 (1-x^2) (1+2x^2) \left(\log \left(\frac{x}{\mu^2} \right) + 4 \log(x) \log(1-x^2) + 4Li_2(x^2) \right) + 24 \frac{5x^6 - 7x^4 + x^2}{1-x^2} \log(x) - 6 (1-x^2) (1+8x^2) \log(1-x^2) - 32x^4 + 13x^2 + 7 \right]. \]

[1] B. Mele, S. Petrarca, and A. Soddu, A New evaluation of the $t \rightarrow cH$ decay width in the standard model, Phys.Lett. B345, 401 (1998), arXiv:hep-ph/9805498.
[2] G. Eilam, J. Hewett, and A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models, Phys.Rev. D44, 1473 (1991).
[3] J. Aguilar-Saavedra and B. Nobre, Rare top decays $t \rightarrow c\gamma, t \rightarrow cg$ and CRM unitarity, Phys.Lett. B553, 251 (2003), arXiv:hep-ph/0210360.
[4] G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.Lett. B716, 1 (2012), arXiv:1207.7214 [hep-ex].
[5] S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys.Lett. B716, 30 (2012), arXiv:1207.7235 [hep-ex].
[6] K. Olive et al. (Particle Data Group), Review of Particle Physics, Chin.Phys. C38, 090001 (2014).
[7] T. Aaltonen et al. (CDF Collaboration), Search for top-quark production via flavor-changing neutral currents in $W+1$ jet events at CDF, Phys.Rev.Lett. 102, 151801 (2009), arXiv:0812.3400 [hep-ex].
[8] ATLAS Collaboration, Search for single top-quark production via FCNC in strong interaction in $\sqrt{s} = 8$ TeV ATLAS data, ATLAS-CONF-2013-063 (2013).
[9] G. Aad et al. (ATLAS Collaboration), Search for FCNC single top-quark production at $\sqrt{s} = 7$ TeV with the ATLAS detector, Phys.Lett. B712, 351 (2012), arXiv:1203.0529 [hep-ex].
[10] V. M. Abazov et al. (D0 Collaboration), Search for flavor changing neutral currents via quark-gluon couplings in single top quark production using 2.3 fb$^{-1}$ of pp collisions, Phys.Lett. B693, 81 (2010), arXiv:1006.3575 [hep-ex].
[11] V. Abazov et al. (D0 Collaboration), Search for production of single top quarks via tgc and tag flavor-changing neutral current couplings, Phys.Rev.Lett. 99, 191802 (2007), arXiv:hep-ex/0702005 [HEP-EX].
[12] CMS Collaboration, Search for anomalous Wtb couplings and top FCNC in t-channel single-top-quark events, CMS-PAS-TOP-14-007 (2014).
[13] CMS Collaboration, Search for anomalous single top quark production in association with a photon, CMS-PAS-TOP-14-003 (2014).
[14] CMS Collaboration, Search for Flavour Changing Neutral Currents in single top events, CMS-PAS-TOP-12-021 (2013).
[15] LEP Exotica Working Group, Search for single top production via flavour changing neutral currents: preliminary combined results of the LEP experiments, LEP-Exotica-WG-2001-01 (2001).
[16] G. Abbiendi et al. (OPAL Collaboration), Search for single top quark production at LEP-2, Phys.Lett. B521, 181 (2001), arXiv:hep-ex/0110009.
[17] A. Heister et al. (ALEPH Collaboration), Search for single top production in e^+e^- collisions at $\sqrt{s} = 209$-GeV, Phys.Lett. B543, 173 (2002), arXiv:hep-ex/0206070.
[18] P. Achard et al. (L3 Collaboration), Search for single top production at LEP, Phys.Lett. B549, 290 (2002), arXiv:hep-ex/0210041.
[19] J. Abdallah et al. (DELPHI Collaboration), Search for single top production via FCNC at LEP at $\sqrt{s} = 189$-GeV to 208-GeV, Phys.Lett. B590, 21 (2004), arXiv:hep-ex/0404014.
[20] H. Abramowicz et al. (ZEUS Collaboration), Search for single-top production in ep collisions at HERA, Phys.Lett. B708, 27 (2012), arXiv:1111.3901 [hep-ex].
[21] S. Chekanov et al. (ZEUS Collaboration), Search for single top production in ep collisions at HERA, Phys.Lett. B559, 153 (2003), arXiv:hep-ex/0302010.
[22] H. Collaboration (H1 Collaboration), Search for single top production in e^+p collisions at HERA, https://www-h1.desy.de/psfiles/confpap/EPS2001/
J. Aguilar-Saavedra and G. Branco, Search for Flavor Changing Neutral Current Decays of the Top Quark in pp Collisions at 8 TeV, JHEP 1209, 139 (2012), arXiv:1206.0257 [hep-ex].

T. Aaltonen et al. (CDF Collaboration), Search for Flavor Changing Neutral Current Decay $t \rightarrow Zq$ in pp Collisions at $\sqrt{s} = 1.96$ TeV, Phys.Rev.Lett. 101, 192002 (2008), arXiv:0805.2109 [hep-ex].

T. Aaltonen et al. (CDF Collaboration), Search for the Neutral Top Quark Decay $t \rightarrow Zc$ Using Ratio of Z-Boson + 4 Jets to W-Boson + 4 Jets Production, Phys.Rev. D80, 052001 (2009), arXiv:0905.0277 [hep-ex].

V. M. Abazov et al. (D0 Collaboration), Search for Flavor Changing Neutral Currents in Decays of top quarks, Phys.Lett. B701, 313 (2011), arXiv:1103.4574 [hep-ex].

G. Aad et al. (ATLAS Collaboration), A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at $\sqrt{s} = 7$ TeV, JHEP 1209, 139 (2012), arXiv:1206.0257 [hep-ex].

ATLAS Collaboration, A search for Flavour Changing Neutral Currents in Top Quark Decays $t \rightarrow Zc$ at 7 TeV in 0.70 fb$^{-1}$ of pp collision data collected with the ATLAS Detector, ATLAS-CONF-2011-154 (2011).

ATLAS Collaboration, Search for FCNC top quark processes at 7 TeV with the ATLAS detector, ATLAS-CONF-2011-061 (2011).

S. Chatrchyan et al. (CMS Collaboration), Search for flavor-changing neutral currents in top-quark decays $t \rightarrow Zq$ in pp collisions at $\sqrt{s} = 8$ TeV, Phys.Rev.Lett. 112, 171802 (2014), arXiv:1312.4194 [hep-ex].

S. Chatrchyan et al. (CMS Collaboration), Search for flavor changing neutral currents in top quark decays at 7 TeV, Phys.Lett. B718, 1252 (2013), arXiv:1208.0957 [hep-ex].

CMS Collaboration, Combined multilepton and diphoton limit on $t \rightarrow cH$, CMS-PAS-HIG-13-034 (2014).

ATLAS Collaboration, Search for flavor-changing neutral currents in $t \rightarrow cH$, with $H \rightarrow \gamma\gamma$, and limit on the tch coupling, ATLAS-CONF-2013-081 (2013).

G. Aad et al. (ATLAS Collaboration), Search for top quark decays $t \rightarrow qH$ with $H \rightarrow \gamma\gamma$ using the ATLAS detector, JHEP 1406, 008 (2014), arXiv:1403.6293 [hep-ex].

S. Weinberg, Phenomenological Lagrangians, Physica A96, 327 (1979).

S. Weinberg, Effective Gauge Theories, Phys.Lett. B91, 51 (1980).

H. Georgi, Effective field theory, Ann.Rev.Nucl.Part.Sci. 43, 209 (1993).

S. Bar-Shalom and J. Wudka, Flavor changing single top quark production channels at e^+e^- colliders in the effective Lagrangian description, Phys.Rev. D60, 094016 (1999), arXiv:hep-ph/9905407.

J. Aguilar-Saavedra and G. Branco, Probing top flavor changing neutral scalar couplings at the CERN LHC, Phys.Lett. B495, 347 (2000), arXiv:hep-ph/0004190.

A. Cordero-Cid, M. Perez, G. Tavares-Velasco, and J. Toscano, Effective Lagrangian approach to Higgs-mediated FCNC top quark decays, Phys.Rev. D70, 074003 (2004), arXiv:hep-ph/0407127.

J. Aguilar-Saavedra, Top flavor-changing neutral interactions: Theoretical expectations and experimental detection, Acta Phys.Polon. B35, 2695 (2004), arXiv:hep-ph/0409342.

P. Ferreira, O. Oliveira, and R. Santos, Flavor changing strong interaction effects on top quark physics at the LHC, Phys.Rev. D73, 034011 (2006), arXiv:hep-ph/0510087.

P. Ferreira and R. Santos, Strong flavor changing effective operator contributions to single top quark production, Phys.Rev. D73, 054025 (2006), arXiv:hep-ph/0601078.

P. Ferreira and R. Santos, Contributions from dimension six strong flavor changing operators to $t \rightarrow t'$ anti-t, t plus gauge boson, and t plus Higgs boson production at the LHC, Phys.Rev. D74, 014006 (2006), arXiv:hep-ph/0604144.

R. B. Guedes, Flavour Changing at Colliders in the Effective Theory Approach, (2008), arXiv:0811.2136 [hep-ph].

P. Ferreira, R. Guedes, and R. Santos, Combined effects of strong and electroweak FCNC effective operators in top quark physics at the CERN LHC, Phys.Rev. D77, 114008 (2008), arXiv:0802.2075 [hep-ph].

R. Coimbra, P. Ferreira, R. Guedes, O. Oliveira, A. Onofre, et al., Dimension six FCNC operators and top production at the LHC, Phys.Rev. D79, 014006 (2009), arXiv:0811.1743 [hep-ph].

C. Kao, H.-Y. Cheng, W.-S. Hou, and J. Sayre, Top Decays with Flavor Changing Neutral Higgs Interactions at the LHC, Phys.Lett. B716, 225 (2012), arXiv:1112.1707 [hep-ph].

D. Atwood, S. K. Gupta, and A. Soni, Constraining the flavor changing Higgs couplings to the top-quark at the LHC, JHEP 1410, 57 (2014), arXiv:1305.2427 [hep-ph].

J.-L. Agram, J. Andrea, E. Conte, B. Fuks, D. Gelé, et al., Probing top anomalous couplings at the LHC with trilepton signatures in the single top mode, Phys.Lett. B725, 123 (2013), arXiv:1304.5551 [hep-ph].

S. Khatibi and M. M. Najafabadi, Probing the Anomalous FCNC Interactions in Top-Higgs Final State and Charge Ratio Approach, Phys.Rev. D89, 054011 (2014), arXiv:1402.3073 [hep-ph].

A. Greljo, J. F. Kamenik, and J. Kopp, Disentangling Flavor Violation in the Top-Higgs Sector at the LHC, JHEP 1407, 046 (2014), arXiv:1404.1278 [hep-ph].

N. Kidonakis and A. Belyaev, FCNC top quark production via anomalous tqV couplings beyond leading order, JHEP 0312, 004 (2003), arXiv:hep-ph/0310299.

J. J. Zhang, C. S. Li, J. Gao, H. Zhang, Z. Li, et al., Next-to-leading order QCD corrections to the top quark decay via model-independent FCNC couplings, Phys.Rev.Lett. 102, 072001 (2009), arXiv:0810.3889 [hep-ph].

J. Drobnak, S. Fahjer, and J. F. Kamenik, Flavor Changing Neutral Coupling Mediated Radiative Top Quark Decays at Next-to-Leading Order in QCD, Phys.Rev.Lett. 104, 252001 (2010), arXiv:1004.0620 [hep-ph].

J. Drobnak, S. Fahjer, and J. F. Kamenik, QCD Corrections to Flavor Changing Neutral Coupling Mediated Rare Top Quark Decays, Phys.Rev. D82, 073016 (2010), arXiv:1007.2551 [hep-ph].
