Diabetes Mellitus: An Overview and Management with Herbs

Ghazala Shaheen¹, Iqra Fatima¹, Raessa Noor¹, Muhammad Younus², M. Sajid-Ur-Rehman², Saira Ghaffar¹, Shafqat Rasool¹, Farah Zafar¹ and Mohsin Abbas Khan¹

¹Department of Eastern Medicine, University College of Conventional Medicines, The Islamia University of Bahawalpur, Pakistan.
²Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. Author GS designed the study and wrote the protocols. Author IF wrote the first draft. Author RN analyzed the study and results. Authors MY, MSUR, SG, FZ and MAK managed the literature searches. Author SR performed statistical analysis. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i28A31509
Editor(s):
(1) Dr. Juan Carlos Troiano, University of Buenos Aires, Argentina.
Reviewers:
(1) Liao, Nanyang Technological University (NTU), Singapore.
(2) Abdulrahman Al_Malki, KAU, Saudi Arabia.
Complete Peer review History: http://www.sdiarticle4.com/review-history/67793

Received 22 February 2021
Accepted 28 April 2021
Published 03 May 2021

ABSTRACT

Diabetes mellitus (DM) could be a typical disturbed throughout the globe. As of late, there are changed sorts of examinations and overview works region units considered. The individuals’ Republic of Pakistan is that the place where there is magnificence while the common plants have selective meditative ayurvedic movement against inside emission Subordinate Diabetic Mellitus (IDDM) and Non-Insulin Subordinate Diabetic Mellitus (NIDDM). Among a few meds furthermore distinctive different meds, numerous herbs are praised to fix and the board diabetes; to boot they need no aspect impacts inside the prior some of the years, there must be an exponential development inside the arena of prescription then increasing quality each inside creating including created nations owing to their common source and fewer feature impacts during this audit work, we will in general essentially observe some potential plants therapeutic medication movement in the Individuals’ Republic of Pakistan. A far-reaching audit of this paper is preliminary to a rundown of

*Corresponding author: E-mail: Ghazala.shaheen@iub.edu.pk;
the plants with hostile to diabetic and associated valuable impacts beginning from entirely unexpected parts of the world. History indicated that meditative plants are utilized in old recuperating around the world for an all-inclusive chance to manage diabetes; here is frequently because of such herbs must manifestation characteristics moreover distinctive valuable features, while announced into logical writing. This effort increased this since quite a while ago run analyzers for extra exploration of the potential utilization of meditative plants having therapeutic medication potential just as indication action, inward emission mimetic movement, and cancer prevention agent action.

Keywords: Diabetes mellitus; restorative plants; metabolic confusion; cell reinforcement action; hypoglycemic movement; and antidiabetic action.

1. INTRODUCTION

1.1 Causes, Indications, and Signs

An unwellness portrayed by the ‘an excessive amount of expulsion of pee’ discovers its place in days of yore through Egyptian original copies subjective investigation back to 1500 B.C [1]. Indian doctors alluded to as it madhumeha (‘nectar pee’) because of it pulled in ants. The customary Indian MD, Sushruta, and along these lines the doctor Charkas (400–500 A.D.) were prepared to decide the 2 sorts, later to be named kind I and sort II polygenic disorder [2,3]. doctor (980–1037 A.D.), the decent Persian MD, inside the Group of medications not exclusively referenced unusual appetency and found diabetic gangrene anyway also devised a blend of seeds (lupine, fenugreek, zedoary) as a panacea [4]. The term Mellitus (Latin, ‘sweet like nectar’) was authored by a people Top health spokesperson, John Hrolf in 1798, to separate this polygenic issue from the inverse polygenic issue (insipidus) inside which the water was tasteless [5].

1.2 Pathophysiology

In 1869, Paul Langerhans, at that point matured twenty-two and managing on his clinical scholarly degree, known the cells that came to be alluded to as the ‘islets of Langerhans’ [6]. yet the name inner emission for the discharges of the islets (Latin, insula = island) that may cut down glucose levels, was instituted exclusively in 1909 and 1910, on an individual premise by Precious stone State Mayer and Schaefer, severally [7,8]. In 1889, von Mering and mathematician, once probing mutts, found that evacuation of the exocrine organ diode to polygenic disorder [9]. In 1921, Banting, Best, and Collip, working in Macleod’s research center, ligated the channel, perpetrating the annihilation of the secreter exocrine organ while deeding the islets unblemished. In their rich creature tests, by abuse canine inside emission concentrates to turn around inspired polygenic issue, they for the last time built up that the insufficiency of inward discharge was the purpose for polygenic turmoil [10]. (DM) could be an incessant disturbed. DM could be a developing neurotic state, in each created and immature territories. DM is portrayed by ceaseless indication and disturbence of sugars, lipids, and macromolecule digestion. This outcome from the inward discharge opposition or imperfections in inner emission or each [11].

Diabetes is that the fourth driving purpose for death in most created nations [12] with West Pakistan directly positioning at the seventh situation inside the rundown of countries with significant weight of Diabetes Mellitus and it's relied upon to go to a fourth-place [13] if blessing condition proceeds.

1.3 Modifications in Classification of Diabetes Mellitus

There are unit sorts of Diabetes Mellitus. Type 1, type 2, “other specific forms,” and gestational diabetes are the four types of diabetes mellitus defined by the current classification scheme.

Type 1: Autonomous emission subordinate DM (IDDM)

Type 1 results from machine invulnerable pulverization of exocrine organ islet's cell with outright loss of interior discharge emission.

Type 2: Non-insulin subordinate DM (NIDDM)

Type two outcomes from a blend of inside discharge opposition and interior emission fluid body substance abandons.
1.4 Other Specific Types

Diabetes mellitus types with different identified etiologies are grouped together in a classification called "other specific types."

This category includes people with: Genetic defects of beta-cell function, Genetic defects in insulin action, Diseases of the exocrine pancreas such as pancreatitis, trauma/pancreatectomy, neoplasia.

1.5 Gestational Diabetes

Gestational diabetes mellitus (GDM) is an operational classification (rather than a pathophysiologic condition) for people who experience diabetes during pregnancy. Gestational diabetes mellitus is described as type 1 diabetes mellitus that develops during pregnancy or undiagnosed asymptomatic type 2 diabetes mellitus that is discovered during pregnancy [14,15].

1.6 Prevalence

Significant rises in diabetes prevalence have been observed in nearly all areas of world, with 415 million people worldwide now living with diabetes [16]. The commonness of Set 1 and Set-2 Diabetes Mellitus hints expanding global anyway the predominance of Set-2 is ascending undeniably also quickly [17]. This unpropitious increment of polygenic issue pervasiveness is anticipated to happen because of populace maturing, unfortunate eating regimen, corpulence, inert way and smoking [18] predictable with a review in West Pakistan, predominance of as of late analyzed polygenic issue moved 5.1% in men and 6.2% in young ladies in urban zones and 5.0% in men and 4.8% in young ladies in country zones. Impeded aldohexose resistance inside the urban versus the agrarian regions were 6.3% in men and 14.2% in young ladies against 6.9% in men and 10.9% in young ladies, individually [19].

The hypoglycemic movement has been accounted for in a few plants all through the most recent twenty centuries. Homegrown prescriptions go about as antimetabolites accordingly their instrument of activity is very surprising from that of inside emission their viability impedes the trackway of oxidation of unsaturated fats the decrease of liver creature starch actuates hypoglycemia [20].

1.7 Complications of Diabetes

Acute diabetes complications such as hyperglycemic hyperosmolar condition (HHS), diabetic ketoacidosis (DKA), lactic acidosis, and hypoglycemia are largely preventable, but they still account for a high rate of morbidity and mortality among diabetics, as well as a substantial portion of the high cost of diabetes treatment. When compared to people without diabetes, people with diabetes have a higher risk of tuberculosis, serious gram-positive infections, hospital-acquired postoperative infections, urinary tract infections (UTIs), and tropical diseases.

A research body indicates that people with diabetes are more likely to suffer from major depressive disorder, eating disorders (especially in female adolescents with type 1 diabetes), anxiety, severe mental illness (e.g. schizophrenia), dementia, and a variety of impairment domains, such as mobility loss and decreased instrumental activities of daily life [21].

Diabetes should be managed on proper time if not so than it can affect other body organs, mortality and morbidity rate is also increased and produce various complications which are given below (US NDCI).

- Heart disease and stroke
- Erection problems
- Erectile dysfunction
- Bladder control problems for women
- Nervedamage due to diabetes: Diabetic Neuropathies
- Eye Disease: Diabetic Retinopathy
- Low blood glucose : Hypoglycemia
- Gastroparesis: Stomach nerve damage
- Kidney failure
- Kidney disease
- Urologic and sexual problems of diabetes

1.8 Gastrointestinal Complaints

Usually diabetic patients complaint that they have gastrointestinal problem because gastrointestinal symptoms and glucose control are closely related. Gastric and small intestinal motility impaired with hyperglycemia (high glucose level), which is possible through gastrointestinal peptide secretion, by altering serum osmolality and vagal cholinergic neural inhibition. In glucose metabolism posprandial alteration may rise due to diabetic gastroparesis which is gastrointestinal motility disorder. In
result of gastrointestinal disorders which occurs due to diabetes effect negatively on complications by diabetes, diabetic control and eventually end on survival. Life of diabetic patients is very much affected by gastrointestinal symptoms, especially in Type 2 of diabetes [22].

1.9 Effects on Joint Mobility
Joint mobility is also affected by diabetes mellitus. Diabetic cheiroarthopathy is also known as Limited joint mobility (Greek word “cheiros” means hand). On hands dorsal side skin becomes tight and thick, passive extension of joints is reduced due to which interphalangeal and metacarpophalangeal joints are not straightened fully. Cheiroarthopathy can be observed clinically when two palms are kept together and wrists are maximally flexed but fingers are not completely straighten [23].

1.10 Cholesterol Metabolism
Cholesterol metabolism is also affected by diabetes and mostly diabetic patients have more chances of atherosclerosis. Various studies on cholesterol metabolism shown that cholesterol balance (13.5 V/S 11.0mg/kg per day) (P<0.05), plasma triglycerides (251 V/S 50mg/dL, p<0.05), fecal bile acid excretion (415 V/S 261mg/day, p<0.05), bile acid pool size (3150 V/S 1950mg, p<0.05) and fasting plasma cholesterol (193 V/S 160mg/dL, p<0.05) were lower during normal concentration of glucose than during uncontrolled hyperglycemia in the blood on insulin therapy. Higher levels of cholesterol synthesis and hyperglycemia lipid plasma is mainly responsible for higher occurrence of atherosclerosis in diabetics [24].

1.11 Carpal Tunnel Syndrome
CTS (Carpal tunnel syndrome) is characterized by paraesthesia over cutaneous median nerve index distribution, lateral half and middle of ring fingers and thumb, which is very much worse at night. Diabetic neuropathy, median nerve compression within the carpal tunnel are two things which can show symptoms of CTS individually or with the combination of both. Chances of CTS in diabetic patients are almost 11-16% [25].

1.12 Abnormal Cardiac and Skeletal Muscle Energy Metabolism
In each normal adult heart, lactate, free fatty acids and glucose for ATP production are metabolized in mitochondria. In diabetic heart, lactate and glucose oxidation is reduced and oxidation of fatty acids is enhanced which increases required of oxygen for ATP production. A study named as positron emission tomographic was done on patients of diabetes which showed that the rates of fluorodeoxyglucose uptake and the rates of myocardial blood flow resting are reduced and in these patients phosphate metabolism is of cardiac high energy. In patients of diabetes oxidation, transport of glucose trans membrane and blood flow of skeletal muscle is reduced. Type 2 patients have less exercise tolerance, which is connected with microvascular disease and decreased sugar control. But it is not still clear that limited exercise tolerance in Type 2 patients is connected with metabolism of abnormal skeletal muscle energy [26].

1.13 Amyotrophy
This disease is different from other types of diabetic neuropathy, it is a disabling illness. Muscles become wasted and weak. There is diffuse, asymmetrical loss of tendon jerks and proximal lower limb muscular pain. Girdle of shoulder can also become affected. Patients of Type 2 plus old age has more chances of diabetic amyotrophy. 40% of body mass can be decreased due to this problem which is as serious weight loss and mortality can occur too [27].

1.14 Effects of Exercise on Glycemic Control
Exercise is very much essential for each human being and in case of diabetes is the best physical activity with low cost, aerobic, cardiovascular benefits and non-pharmacological nature [28]. Type 2 patients needs to do exercise to reduce weight and to maintain glucose level. Glycosylated haemoglobin is decreased due to exercise which directly reduces the diabetic complications risk [29].

1.14.1 How dietary section control the blood glucose
Amino acid dietary supplements maintain glucose homeostasis through different mechanism. Either by lowering amino acid levels in the blood or by increasing protein anabolism. Due to ability to increase muscle protein and storage of glucose in insulin sensitive tissues, amino acid dietary supplements show major part in glucose control [30,31]. In term of dietary
quality, insoluble and partially fermentable cereal-based fibre has the greatest connection to a decreased risk of developing DM [32,33]. Diet high in soluble/fermentable fiber, such as fruits and vegetables, have also been found to be protective. In addition to the amount of fiber in the diet, the food matrix of carbohydrate-rich food tends to have an effect on glycemic and insulinemic responses. Particularly, soluble fiber has been shown to change the physical shape, texture, and viscosity of test of food [34,35] influencing carbohydrate digestion and absorption rates, which is expressed in postprandial glucose and insulin response [36,37].

1.14.2 Some restorative plants with antidiabetic and related advantages in Pakistan

1.14.2.1 Allium cepa

It has a place with family Liliaceae. Its normal name is an onion. The bulb of a piece of onion plant has counter diabetic action [38]. Onion plant has quercetin, flavonoids, galactose, glucose, mannose, cycloalkane and Sulfur compounds [39]. It controlled the movement of aldohexose six catalysts [40] once, 50gm of onion juice was orally managed post-nourishment aldohexose volume was greatly measured [41].

1.14.2.2 Asparagus racemosus

It has a place with family Liliaceae. Its local name is sat mooli. Principle compound constituents of asparagus racemosus region unit endocrine saponins. Iso flavones, asparagine, racemol, polysaccharides nutrient A, B, C, E, metallic component, and folic acids region unit blessing inside the roots [42].The root concentrates of the Asparagus racemosus have insulin tropic movement [43].

1.14.2.3 Brassica nigra

It has a place with the Brassicaceae family. Its local name is Brassica nigra. The seed of a piece of mustard was utilized for hostile to the diabetic outcome. By giving 200 mg/kg weight of watery concentrate during one period in diabetic creature possess the capacity into decreasing this movement concerning forbearance fluid body substance aldohexose level, any place the untreated group of restraint fluid body substance aldohexose level stays higher worth. Glycosylated Hb and fluid body substance lipids level were in this manner less whenever contrasted with rewarded and untreated creatures [44].

1.14.2.4 Catharanthus roseus

It has a place with the Apocynaceae family. The sugar level is diminished with the herb in diabetic hares and in this way, the method of activity of the dynamic mixes is intervening through hypoglycemic operator discharge expanding from the beta cells of Langerhans [45]

1.14.2.5 Allium sativum

It has a place with family Alliaceae. Reducing the glucose level and antihyperglycemic movement occurred reportable among five Allium sativum. The bulb of a piece of the plant should antidiabetic sedate outcomes [46]. Allicin has sulfur-containing synthesis offer meaningful indication movement as a result of duplicated in viscous digestion and hypoglycemic operator emission from beta cells. Synthetic gathering cysteine sulfuroxide is that this forerunner of allicin and garlic oil that gives this inhibitor movement [47,48].

1.14.2.6 Aloe vera

It has a place with family Liliaceae. Aloe is utilized to manifest results. This dynamic constituent of this plant along with Pseudoprototinosaponin AllI and prototinosaponins AllI [49] important utilization about those components are aldohexose take-up moreover hypoglycemic specialist delivered toward glycogenolysis or gluconeogenesis pathway [50].

1.14.2.7 Capsicum frutescens

It has a place with family Solanaceae. Capsicum frutescens is utilized during insulin tropic movement slightly than side effect into sort a couple of polygenic issue model of rodents and increment fluid body substance hypoglycemic operator focus in high-fat eating regimen [51].

1.14.2.8 Terminalia chebula

It has a place with a family Combretaceae. The seed and organic product a piece of Terminalia chebula were utilized in the antidiabetic sedate outcome. Concentrates region unit found in fluid and chloroform. Optional issue incorporates Shikimic, Gallic, Triacantanoic, immersed
unsaturated fat, β-sitosterol, and Daucosterol. Work on diminishing this aldohexose level [52,53].

1.14.2.9 Cinnamon zeylanicum
It has a place with family Lauraceae. Cinnamaldehyde means that this essential dynamic component of Cinnamon zeylanicum, which goes about being Partner in Nursing expanding level of insulin discharged. The different fundamental action of cinnamaldehyde is an insulinotropic result as a result of aldohexose take-up duplicated through the aldohexose transporter translocation [54].

1.14.2.10 Curcuma longa
It has a place with family Zingiberaceae. Curcuma longa play out many kinds of antidiabetic tranquilize result alike a side effect also plays a major outcome in PPAR gamma initiation [55].

1.14.2.11 Tamarindus indica
It has a place with family Caesalpiniaceae. Fluid concentrate of bean tree once regulated in delicate diabetic or extreme diabetic, it gives any vital antidiabetic medicate movement including the weakening of side effect and hyperlipidemia [56].

1.14.2.12 Amaranthus esculentus
It has a place with family Amaranthaceae. The entire piece of variety Amaranthus esculentus held utilized within helpful outcomes in antidiabetic medicate characteristics. The first work of that plant is lessening the aldohexose level [57]. Different most imperative action exists increment hypoglycemic specialist discharge [58].

1.14.2.13 Hordeum vulgare
It has a place with family Gramineae. The germinant products of normal grain perform side effect and hyperinsulinemic impacts in non-insulin subordinate diabetic Mellitus [59,60].

1.14.2.14 Cuminum nigrum
It has a place with the Apiaceae family. Flavonoid is that the essential dynamic part of a variety of Cuminum nigrum that begins side effect result from each in customary and alloxan-diabetic hares [61]. As a possible antidiabetic sedate specialist, it raised hypoglycemic operator affectability and advances AMPK enactment [62].

1.14.2.15 Swertia chirality
Swertia chirality has a place with the Gentianaceae family. It extensively duplicated the plasma hypoglycemic operator and diminished glucose [63]. Single articulated organization of swerchirinto rodents produced diminishing glucose by checked exhaustion of natural compound fuchsin recolored beta granules [64].

1.14.2.16 Eugenia jambolana
It has a place with the Asteraceae family. Organic products, mash, and Seed were utilized in the antidiabetic sedate outcome. Fluid and ethanolic extricate obtained. Essential elements of this plant along with being little glucose and supermolecule increased aldohexose resistance action [65,66].

1.14.2.17 Azadirachta-indica
It has a place with family Meliaceae. Commonly called Azadirachta indica. It's a tree local to East Pakistan, India, Sri Lanka, Malaysia, and Pakistan, developing in hot and semi-tropical districts. The petal half goes about as a vigorous antidiabetic sedate specialist of particles kind. Fluid concentrate and spirituous concentrate were going about as a major side effect of action in a high portion [67]. This plant moreover has some potential action along with hostile to bacterial, antiprotozoal, defensive, hepatoprotective and inhibitor impacts [68].

1.14.2.18 Ocimum sanctum
It has a place with family Lamiaceae. It is unremarkably called Tulsi, found in East Pakistan. Since history, this plant is thought for its restorative attributes. This fluid concentrate of blades gives the vital movement of reduction in glucose level in each customary and alloxan evoked diabetic rodents [69]. It moreover works as a rebate of forbearance sugar, uronic corrosive, all-out sterol, indication and hypolipidemic in diabetic rodents [70]. Primary another impacts along with inhibitor, antibacterial medication, antifungal, antiviral, antiasthmatic, antistress, antitumor, stomachic antiulcer action, antimutagenic and immunostimulant exercises [71].
S/No	Parts used	The botanical name of plants	Family	Mechanism of Antidiabetic effect	References
1	Bulb	*Allium cepa*	Liliaceae	Inhibited the movement of glucose 6 phosphatase and HMG-Co A reductase	[66,67,68,69]
2	Root	*Asparagus*		Have insulin tropic activity	[70]
3	Leaf	*Aloe vera*		Glucose take-up and insulin discharged against glycogenolysis or gluconeogenesis pathway	[71,72]
4	Kernel	*Brassica nigra*	Brassicaceae	Possess the capacity of lessening the action of fasting serum glucose level	[73]
5	Full plant	*Catharanthus Roseus*	Apocynaceae	The blood glucose level is diminished by *Catharanthus Roseus*	[74]
6	Nub	*Allium sativum*	Alliaceae	The globe of this plant has an antidiabetic effect.	[75,76,77]
7	Fruit	*Capsicum frutescens*	Solanaceae	Increase serum insulin fixation in high-fat diet	[78]
8	Seed and Fruit	*Terminalia Chebula*	Combretaceae	Act by diminishing the glucose level	[79,80]
9	Bark	*Cinnamomum zeylanicum*	Lauraceae	Insulinotropic impact because of glucose take-up expanded through the glucose transporter translocation	[81,82]
10	Bark	*Curcuma longa*	Zingiberaceae	Perform different sorts of antidiabetic action as hypoglycemic activity	[83]
11	Leaf	*Tamarindus Indica*	Caesalpiniaceae	Shows some significant antidiabetic action with constriction of hyperglycemia and hyperlipidemia	[84]
12	Whole Plant	*Amaranthus esculentus*	Amaranthaceae	Reducing the glucose level	[85,86]
13	Fruit	*Hordeum vulgare*	Gramineae	Perform hypoglycemic and hyperinsulinemic impacts in non-insulin subordinate diabetic Mellitus	[87]
14	Leaf	*Cuminum nigrum*	Apiaceae	Increased insulin affectability and advances AMPK Activation	[88,89]
15	Leaf and Fruit	*Swertia chirayita*	Gentianaceae	Increased plasma insulin and decreased blood sugar	[90,91]
16	Fruit, mash and Seed	*Eugenia Jambolana*	Asteraceae	Increased glucose resistance activity	[92,93]
17	Leaf and bark	*Azadirachta indica*	Meliaceae	Has some potential action including against bacterial, antimalarial, anti-fertility, hepatoprotective and cancer prevention agent impacts	[94,95]
18	Whole Plant	*Ocimum sanctum*	Lamiaceae	Decreased in glucose level	[96,97,98]
19	Leaf and Fruit	*Mangifera indica*	Anacardiaceae	Shows solid hypoglycemic activity	[99]
1.14.2.19 Mangifera indica

It has a place with family Anacardiaceae. Mangifera indica assumes a significant job in antidiabetic medicate impacts. The fluid concentrate of this plant originates a decline in sugar level, anyway it doesn't become Partner in Nursing result on streptozotocin-induced diabetic mice underneath indistinguishable conditions thought about therewith of an oral portion of chlorpropamide, it shows tough side effect movement [72].

2. DISCUSSION

Diabetes might be a genuine vexed. This sort of infection is brought about by small starch, fat, and supermolecule digestion, corpulence; emission irregulation. Besides, uncontrolled polygenic issue winds up in a few constant difficulties like visual weakness, cardiovascular sickness, and kidney disappointment, and so on at the present inside the popular science polygenic turmoil is as of present method of lessening the hyperglycemic movement by medicinal plants details [100,101]. This follows as old remedy becomes held with the US from yesteryear including it's against it that this farming populace depends. Subsequently, rewarding diabetes with plant inferred intensifies that square measure open and doesn't require toilsome pharmaceutical combination shows up amazingly captivating. The nearness of bioactive synthetic compounds is mainly chargeable for this antidiabetic medicate activity. Be that as it may, a few diverse dynamic operators got from plants haven't been very much described a lot of examinations ought to be administrated to check the system of activity of energizing plants with the antidiabetic sedate outcome.

3. CONCLUSION

Plants are the valuable source for discovering alternative treatments for human illnesses but a small percentage of plants examined for diabetes have been included in vivo studies and clinical trials. The plants mentioned in this paper had significant anti-diabetic properties. As a result, it seems that doctors will use these plants, at least as alternative therapeutics, in conjunction with conventional hypoglycemic medications to improve diabetic patient management.

Allium cepa, Aloe vera, Curcuma longa and Capsicum frutescens are most common plants which are also used in our food too. These plants should be used in the diet for the management of diabetes mellitus. Also, extensive in vivo studies and clinical trials should be carried out on these medicinal plants to isolate potent antidiabetic drug.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. MacCracken J, Hoel D. From ants to analogs: Puzzles and promises in diabetes management. Postgrad Med. 1997;101:138–40,143–5,149–50. [PubMed] [Google Scholar]
2. Tipton MC. Susruta of India, an unrecognized contributor to the history of exercise physiology. J Appl Physiol. 2008;108:1553–6. [PubMed] [Google Scholar]
3. Frank LL. Diabetes mellitus in the texts of old Hindu medicine (Charaka, Susruta, Vagbhata) Am J Gastroenterol. 1957;27:76–95. [PubMed] [Google Scholar]
4. Dobson M. Experiments and observations on the urine in diabetes. Med Obs Inq. 1776;5:298–316. [Google Scholar]
5. MacCracken J, Hoel D. From ants to analogs: Puzzles and promises in diabetes management. Postgrad Med. 1997;101:138–40,143–5,149–50. [PubMed] [Google Scholar]
6. Sakula A. Paul Langerhans (1847–1888): A centenary tribute. J R Soc Med. 1988;81:414–5. [PMC free article] [PubMed] [Google Scholar]
7. Schaefer E. An introduction to the study of the endocrine glands and internal secretions. Palo Alto, California: Stanford University. 1914;84:86. [Google Scholar]
8. De Meyer J. Action de la secretion interne du pancreas sur different organes et en
Particulier sur la sécrétion rénale. Arch Fisiol. 1909;7:96–9.
[Google Scholar]

9. Von Mehring J, Minkowski O. Diabetes mellitus Nach Pankreasexstirpation. Arch Exp Pathol Pharmaco1890;26:371–87.
DOI: 10.1007/BF01831214 [CrossRef] [Google Scholar]

10. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus: A preliminary report. CMAJ. 1922;12:141–6. [PMC free article] [PubMed] [Google Scholar]

11. Diabetes facts. The prevalence of diabetes has reached epidemic proportions; 2010. Available: http://www.world diabetes foundation.org/composite-35.htm [Cited 2010 July 18].

12. International Diabetic Federation Diabetes; 2006. Available: http://www.idf.org/webdata/docs/background_dis_final.pdf [Cited 2010 July 18].

13. Khwaja AK, Fatmi Z, Soomro WB, Khwaja NK. Risk factors for cardiovascular disease in school children: A pilot study. J Pak Med Assoc. 2003;53:396-400.

14. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci. 200;82:1336-1345.

15. Vats V, Grover JK, Rathi SS. Evaluation of ant hyperglycemic and hypoglycemic effect of Trigonella foenumgraecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats. J Ethnopharmacol. 2002;79: 95-100.

16. Rai V, Iyer U, Mani UV. Effect of tulsi (Ocimum sanctum) leaf powder supplementation on blood sugar levels, serum lipids, and tissue lipids in diabetic rats. Plant Food for Human Nutrition. 1997;50:9-16.

17. Diabetes facts. The prevalence of diabetes has reached epidemic proportions; 2010. [Cited cited 2010 July18]. Available: http://www.world diabetes foundation.org/composite-35.htm. 2

18. WHO global strategy on diet, physical activity and health diabetes; 2010. [Cited cited 2010 July 19]. Available: http://www.who.int/dietphysiaclactivity/publications/facts/diabetes/en/

19. Aziz S, Noorulain W, Zaidi UR, Hossain K, Siddiqui IA. Prevalence of overweight and obesity among children and adolescents of affluent schools in Karachi. J Pak Med Assoc. 2009;59:35-38.

20. Yusuf M, Chaudhury JU, Whab MA, Begum J. In: Medicinal plants of Bangladesh; 1994.

21. Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alteration in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004;90:155-160.

22. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78:250–258.

23. Juvenile KR, Salmenkallio-Marttila M, Lyly M, Liukkonen KH, Lehteenmaki L, Laaksonen D. E, et al. Semisolid meal enriched in oat bran decreases plasma glucose and insulin levels, but does not change gastrointestinal peptide responses or short-term appetite in healthy subjects. Nutr. Metab. Cardiovasc Dis. 2011;21:748–756.

24. Karhunen LJ, Juvenile KR, Flander SM, Liukkonen KH, Lehteenmaki L, Silaoaho M, et al. A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J. Nutr. 2010;140:737–744.

25. Mathew PT, Augusti KT. Hypoglycemic effects of onion, Allium cepa Linn, on diabetes mellitus - a preliminary report. Ind J PhysiolPharmacol. 1975;19:213-220.

26. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. Insulin secretory actions of extracts of Asparagus racemosus root in the perfused pancreas, isolated islets, and clonal pancreatic beta-cells. J Endocrinol. 2007;192(1):159-168.

27. Anand P, Murali KY, Tandon V, Chandra R, Murthy PS. Preliminary studies on the antihyperglycemic effect of aqueous extract of Brassica nigra (L.) Koch in streptozotocin-induced diabetic rats. Indian J Exp Biol. 2007;45:696-701.

28. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. Insulin secretory actions of extracts of Asparagus racemosus root in the perfused pancreas, isolated islets, and clonal pancreatic beta-cells. J Endocrinol. 2007;192(1):159-168.
29. Nammi S, Boini MK, Lodagala SD, Behara RB. The juice of fresh leaves of *Catharanthus roseus* Linn reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med. 2003;2:3-4.

30. Aderibigbe AO, Emudianughe TS, Lawal BA. Evaluation of the antidiabetic action of *Mangifera indica* in mice. Phytother Res. 2001;15:456-458.

31. UK. Prospective diabetes study group. Perspectives in Diabetes. U.K. Prospective Diabetes Study 16. Overview of 6 years' therapy of type 2 diabetes: a progressive disease. Diabetes 1995;44:1249-1258.

32. Moller DE. New drug targets for type 2 diabetes and metabolic syndrome. Nature. 2001;414:821-827.

33. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.

34. National diabetes data group. Diabetes in America. 2d ed. Bethesda, Md.: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, NIH publication no. 1995-951468.

35. OgurtsovaK, da Rocha Fernandes JD, Huang Y, et al. IDFDiabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

36. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: A review of current evidence. Diabetologia. 2019;62(1):3-16.

37. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85:4481–4490.

38. Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Chittagong Bangladesh.

39. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma A. An analytical review of plants for anti-diabetic activity with their phytoconstituent and mechanism of action. Int J Pharm Sci Res 2010;1(1):29-46. Available: http://www.sigmaaldrich.com

40. Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ. ~ 111 ~ Antihyperglycemic effect of some edible plants. J Ethnopharmacol. 1995;48:25-32.

41. Mathew PT, Augusti KT. Hypoglycemic effects of onion, *Allium cepa* Linn, on diabetes mellitus- a preliminary report. Ind J PhysiolPharmacol. 1975;19:213-217. Available: http://www.researchgate.net

42. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. Insulin secretory actions of extracts of *Asparagus racemosus*root in the perfused pancreas, isolated islets, and clonal pancreatic beta-cells. J Endocrinol. 2007;192(1):159-168.

43. Anand P, Murali KY, Tandon V, Chandra R, Murthy PS. Preliminary studies on the antihyperglycemic effect of aqueous extract of *Brassica nigra* (L.) Koch in streptozotocin-induced diabetic rats. Indian J Exp Biol. 2007;45:696-701.

44. Nammi S, Boini MK, Lodagala SD, Behara RB. The juice of fresh leaves of *Catharanthus roseus* Linn reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med. 2003;2:3-4.

45. Uhan AC, Sharma PK, Srivastava P, Kumar N, Duehe R. Plants having potential antidiabetic activity: A review. Der Pharm Lett. 2010;2(3):369-387.

46. Bnouham M, Ziyayat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with the potential antidiabetic activity-a review. Der Pharm Lett. 2010;2(3):369-387.

47. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A, Devasagayam T. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin BiochemNutr. 2007;40(3):163-173.

48. Bnouham M, Ziyayat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with a potential antidiabetic activity-a review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab. 2006;14:1-25.

49. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A, Devasagayam T. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin BiochemNutr. 2007;40(3):163-173.

50. Singh LW. Traditional medicinal plants of Manipur as Antidiabetics. J Med Plant Res. 2011;5(5):677-687.

51. Islam MS, Choi H. Dietary red chili (*Capsicum frutescens* L.) is insulinotropic rather than hypoglycemic in the type 2 diabetes model of rats. Phytother Res 2008;22(8):1025-1029.
induced diabetic rabbits. Annals NutMetabol. 2005b;49:407-413.

52. Andrade-Cetto A, Martinez-Zurita E, Wiedenfeld H. Hypoglycemic effect of Malema depress set root on streptozotocin-diabetic rats. Ethnopharmacol. 2005;100:319:322.

53. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in Streptozotocin-induced diabetic rats. Singapore Med J. 2006;47:670-675.

54. Ojewole JA. Antinociceptive, anti-inflammatory, and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. Ethnopharmacol. 2005a;99:13-19.

55. Fr’ode TS, Medeiros YS. Animal models to test drugs with potential antidiabetic activity. J Ethnopharmacol. 2008;115:173-183.

56. Vikrant A, Sharma R. A review on fruits having anti-diabetic potential. Journal of Chemical and Pharmaceutical Research. J Chem Pharm Res. 2011;3(2):204-212.

57. Rao NK, Nammi S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz seeds in streptozotocin-induced diabetic rats. BMC Complement Alternat Med. 2006;6:17.

58. Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic key mice. Biol Pharm Bull. 2005;28:937-939.

59. Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Terminalia chebula indica. Biol Pharm Bull. 2005;28:1172-1176.

60. Gupta RK, Kesari AN, Murthy PS, Chandra R, Tandon V, Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol. 2005a;99:75-81.

61. Makheswari MU, Sudarsananam D. Database on Antidiabetic indigenous plants of Tamil Nadu, India. IntJ Pharma Sci Res. 2012;3(2):287-293.

62. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duehne R. Plants having potential antidiabetic activity: A review. Der Pharm Lett. 2010;2(3):369-387.

63. Grover JK, Yadav S, Vats V. Medicinal plants of India with antidiabetic potential. J Ethnopharmacol. 2002;81(1):81-100.

64. Bnouham M, Ziyyat A, Mekhfi H, Tahrir A, Legssyer A. Medicinal plants with a potential antidiabetic activity-a review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab. 2006;14:1-25.

65. Waheed A, Mian GA, Ahmad SI. Clinical investigation of the hypoglycemic effect of seeds of Azadirachta-Indica in type-2 (NIDDM) diabetes mellitus. Pak J Pharm Sci. 2006;19:322-325.

66. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica).Curr Sci. 2002;82:1336-1345.

67. Vats V, Grover JK, Rathi SS. Evaluation of ant hyperglycemic and hypoglycemic effect of TrigonellafoenumgraecumLinn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats. J Ethnopharmacol. 2002;79:95-100.

68. Rai V, Iyer U, Mani UV. Effect of Tulsi (Ocimumsanctum) leaf powder supplementation on blood sugar levels, serum lipids, and tissue lipids in diabetic rats. Plant Food for Human Nutrition. 1997;50(9):16.

69. Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alteration in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004;90:155-160.

70. Aderibigbe AO, Emudianughe TS, Lawal BA. Evaluation of the antidiabetic action of Mangifera indica in mice. Phytother Res. 2001;15:456-458.

71. UK. Prospective diabetes study group. Perspectives in Diabetes. U.K. Prospective diabetes study group. 2001;16:456-458.

72. Moller DE. New drug targets for type 2 diabetes and metabolic syndrome. Nature. 2001;418:821-827.

73. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma A. An analytical review of plants for anti-diabetic activity with their phytoconstituent and mechanism of action. Int J Pharm Sci Res. 2010;1(1):29-46.

74. Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ. Antihyperglycemic
effect of some edible plants. J Ethnopharmacol. 1995;48:25-32.
75. Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypo Hpiadeic effects of S-methyl cysteine sulfoxide, Isolated from Allium cepa Linn. Ind J Biochem Biophys. 1995;32:49-54.
76. Mathew PT, Augusti KT. Hypoglycemic effects of onion, Allium cepa Linn, on diabetes mellitus- a preliminary report. Ind J Physiol Pharmacol. 1975;19:213-217.
77. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. Insulin secretory actions of extracts of Asparagus racemosus root in the perfused pancreas, isolated islets, and clonal pancreatic beta-cells. J Endocrinol. 2007;192(1):159
78. Bnouham M, Ziyyat A, Mekhfi H, Tahir A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab. 2006;14:1-25.
79. Singh LW. Traditional medicinal plants of Manipur as antidiabetics. J Med Plant Res. 2011;5(5):677-687,168,53.
80. Anand P, Murali KY, Tandon V, Chandra R, Murthy PS. Preliminary studies on the antihyperglycemic effect of aqueous extract of Brassica nigra (L.) Koch in streptozotocin-induced diabetic rats. Indian J Exp Bioi. 2007;45:696-701.
81. Nammi S, Boini MK, Lodagala SD, Behara RB. The juice of fresh leaves of Catharanthus roseus Linn reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med. 2003;2:3-4.
82. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duee R. Plants having potential antidiabetic activity: a review. Der Pharm Lett. 2010;2(3):369-387.
83. Bnouham M, Ziyyat A, Mekhfi H, Tahir A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab. 2006;14:1-25.
84. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A, Devasagayam T. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin BiochemNutr. 2007;40(3):163-173.
85. Islam MS, Choi H. Dietary red chili (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in the type 2 diabetes model of rats. Phytother Res. 2008;22(8):1025-1029.
86. Vikrant A, Sharma R. A review on fruits having anti-diabetic potential. Journal of Chemical and Pharmaceutical Research. J Chem Pharm Res. 2011;3(2):204-212.
87. Rao NK, Nammi S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz seeds in streptozotocin-induced diabetic rats. BMC Complement Alternat Med. 2006;6:17.
88. Ahmad M, Akhtar MS, Malik T, Gilani AH. Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds. Phytother Res. 2000;14:103-106.
89. Kang C, Kim E. Synergistic effect of curcumin and insulin on muscle cell glucose metabolism. Food Chem Toxicol. 2010;48:2366-2373.
90. Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic key mice. Biol Pharm Bull. 2005;28:937-939.
91. Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biopharm Bull. 2005;28:1172-1176.
92. Gupta RK, Kesar AN, Murthy PS, Chandra R, Tandon V, Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol. 2005a;99:75-81.
93. Frode TS, Medeiros YS. Animal models to test drugs with potential antidiabetic activity. J Ethnopharmacol. 2008;115:173-183.
94. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duee R. Plants having potential antidiabetic activity: a review. Der Pharm Lett. 2010;2(3):369-387.
95. Ahmad M, Akhtar MS, Malik T, Gilani AH. Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds. Phytother Res. 2000;14:103-106.
96. Kang C, Kim E. Synergistic effect of curcumin and insulin on muscle cell glucose metabolism. Food Chem Toxicol. 2010;48:2366-2373.
97. Grover JK, Yadav S, Vats V. Medicinal plants of India with antidiabetic potential. J Ethnopharmacol. 2002;81(1):81-100.
98. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab. 2006;14:1-25.

99. Sharma SB, Nasir A, Prabhu KM, Murthy PS. Anti hyperglycemic effect of the fruit-pulp of *Eugenia jambolana* in experimental diabetes mellitus. J Ethnopharmacol. 2006;104:367-373.

100. Ravi K, Rajasekaran S, Subramanian S. Antihyperlipidemic effect of *Eugenia jambolana* seed kernel on streptozotocin-induced diabetes in rats. Food Chem Toxicol. 2005;43:1433-1439.

101. Waheed A, Miana GA, Ahmad SI. Clinical investigation of the hypoglycemic effect of seeds of *Azadirachta-Indica* in type-2 (NIDDM) diabetes mellitus. Pak J Pharm Sci. 2006;19:322-325.