Mutations in the MOV10L1 ATP Hydrolysis Motif Cause piRNA Biogenesis Failure and Male Sterility in Mice

Qi Fu, Radha Raman Pandey, N. Adrian Leu, Ramesh S. Pillai, and P. Jeremy Wang

Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
Department of Molecular Biology, University of Geneva, Geneva, Switzerland

ABSTRACT

Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs. piRNAs protect the genome integrity of the germ line by silencing active transposable elements and are essential for germ cell development. Most piRNA pathway proteins are evolutionarily conserved. MOV10L1, a testis-specific RNA helicase, binds to piRNA precursors and is a master regulator of piRNA biogenesis in mouse. Here we report that mutation of the MOV10L1 ATP hydrolysis site leads to depletion of piRNAs on Piwi proteins, de-repression of transposable elements, and conglomeration of piRNA pathway proteins into polar granules. The Mov10l1 mutant mice exhibit meiotic arrest and male sterility. Our results show that mutation of the MOV10L1 ATP hydrolysis site perturbs piRNA biogenesis.

INTRODUCTION

Piwi-interacting RNAs (piRNAs) are a unique class of small noncoding RNAs (nucleotides [nt] 23–31) with a preference for a 5′ uridine nucleotide. piRNAs are expressed predominantly in the germ line of metazoan species including Caenorhabditis elegans, Drosophila, zebrafish, and mouse [1–6]. piRNAs associate with Piwi proteins and guide Piwi proteins to cleave and silence active transposable elements (TE) [7]. piRNAs are also required for proper germ cell development and fertility [7]. In mouse, piRNAs are required only for spermatogenesis [8, 9]. Two populations of piRNAs are generated during mouse spermatogenesis, pre-pachytene piRNAs and pachytene piRNAs.

Pre-pachytene piRNAs are enriched in TE-derived sequences and associate with the Piwi proteins MILI (gene symbol: Piwili) and MIWI2 (Piwi4) in gonocytes and spermatogonia [10–12]. Most pre-pachytene piRNAs are expressed prenatally in gonocytes. Pre-pachytene piRNAs are required for DNA methylation and repression of the retrotransposons LINE1 and IAP [10–15]. Loss of pre-pachytene piRNA biogenesis/loading onto Piwi proteins results in meiotic arrest at the zygote stage of meiosis I [13, 16–23]. It is generally accepted that derepression of TE causes massive DNA damage in spermatocytes, which activates the meiotic checkpoint and thus meiotic arrest in spermatocytes [24, 25].

Pachytene piRNAs are expressed postnatally in pachytene spermatocytes and round spermatids. They associate with the Piwi proteins MILI and MIWI (Piwi1) and constitute 95% of known piRNAs [4, 5, 26]. Most pachytene piRNAs are derived from intergenic regions [4, 5, 26]. The precise functions of pachytene piRNAs are still unclear. Recent studies have implicated pachytene piRNAs in the cleavage of meiotic and postmeiotic messenger RNAs [27–29]. Although pachytene piRNAs are not enriched for TE-derived sequences, MILI-bound and MIWI-bound pachytene piRNAs are required to silence LINE1 elements in pachytene spermatocytes and in round spermatids, respectively [5, 30, 31]. Loss of pachytene piRNA biogenesis/loading onto Piwi proteins results in round spermatid arrest [32, 33].

Studies of mammalian piRNAs have provided a framework for how piRNAs are generated and have identified a plethora of components in the piRNA pathway; however, many of the mechanisms involved remain unclear. Most components of the piRNA pathway are compartmentalized in nuages, electron-dense compartments in the cytoplasm of germ cells [16, 22, 34–36]. piRNA pathway components localize to two distinct, adjacent nuages in fetal germ cells, the pi-body and piP-body [35]. In spermatogonia and spermatocytes, the piRNA pathway is compartmentalized in the nuages localized among mitochondrial clusters, collectively termed the intermitochondrial cement [34]. In postmeiotic germ cells, the piRNA pathway components are compartmentalized in a large single nuage termed the chromatoid body [36]. Pre-pachytene and pachytene piRNAs are initially generated through primary biogenesis. During primary biogenesis, piRNA precursor transcripts are cleaved by the endonuclease PLD6 and loaded onto MILI and MIWI as piRNA intermediates [7, 37–39]. Like mature piRNAs, piRNA intermediates also contain a preference for a 5′ uridine nucleotide [39]. In the final steps of primary biogenesis, PNLDC1, a 3′–5′ exonuclease termed Trimmer, interacts with TDRKH/Papi to trim piRNA intermediates at their 3′ ends [40, 41]. Trimmed piRNAs are 2′-O-methylated at their 3′ ends by HENMT1 [42]. Additionally, repeat-derivated pre-pachytene piRNAs are amplified through the ping-pong cycle [12]. The pre-pachytene piRNAs guide MILI to cleave complementary RNA transcripts that are loaded onto either MILI or MIWI2 and processed to generate antisense (secondary) piRNAs [15]. Secondary piRNAs contain a signature adenosine at the 10th nucleotide [12]. MILI-bound secondary piRNAs cleave complementary RNA transcripts to amplify the initial piRNAs [15]. MIWI2-bound secondary piRNAs guide MIWI2 into the nucleus where MIWI2 is
hypothesized to recruit DNA methylation machinery to silence active LINE1 elements [11–13].

MOV10L1 is a testis-specific RNA helicase required for both pre-pachytene and pachytene piRNA biogenesis [16, 33]. MOV10L1 interacts with MILI, MIWI, and TDRD1 and directly binds to piRNA precursors near regions with a high propensity to form secondary structures such as G-quadruplexes [16, 43]. MOV10L1 binding to piRNA precursors precedes the loading of precursors onto MILI and MIWI [43]. Postnatal deletion of Mov10l1 resulted in an accumulation of pachytene piRNA precursors [33]. A mouse knockin mutant containing a point mutation in the conserved ATP binding motif of the MOV10L1 RNA helicase domain also exhibited an accumulation of pre-pachytene piRNA precursors [43]. These studies support the function of MOV10L1 as an RNA helicase during primary biogenesis to recognize and resolve secondary structures within piRNA precursors, allowing the piRNA precursor to be processed into piRNA intermediates. To further explore the requirement for MOV10L1 RNA helicase activity in piRNA biogenesis, we generated a mouse knockin mutant containing mutations in the conserved ATP hydrolysis motif of the MOV10L1 RNA helicase domain. Analysis of this mouse model shows that the ATP-binding activity of MOV10L1 is not sufficient for piRNA biogenesis and that mutations in its ATP hydrolysis site also abolish piRNA biogenesis.

MATERIALS AND METHODS

Mouse Breeding

Mice were housed in a barrier vivarium, monitored daily and under veterinarian care by the attending veterinarians from University Laboratory Animal Resources at the University of Pennsylvania. All experimental protocols were approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania.

Generation of the Mov10l1 DE888AA Knockin Allele

The 7.4-kb targeting construct contains a neomycin selection cassette (1.87-kb) flanked by left (2.88-kb) and right arms (2.65-kb) homologous to exons 18–22 of Mov10l1. The left arm contains mutations from GAC GAG (aspartic acid-containing a BAC clone (RP23-269F24) by high-fidelity PCR. Codons 888 and 889 (exon 20) of Mov10l1 were changed to GAG antibodies were previously validated by Western blot analyses [16]. For

Western blot analysis, testicular protein lysates were subjected to 8% SDS-PAGE, blotted, and probed with antibodies.

Histology and Immunofluorescence

For histology, testes were fixed in Bouin solution overnight, dehydrated in a series of ethanol washes, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Anti-MOV10L1 (affinity purified, 1:5 dilution), anti-MILI (1:100 dilution; Abcam), anti-MIWI2 (1:500 dilution), anti-LINE1 ORF1p (1:1000 dilution), and anti-IAP GAG (1:5000 dilution) were used as primary antibodies for immunofluorescent staining. Immunofluorescence was performed using frozen sections of testes fixed in 4% paraformaldehyde for 3 h at 4°C. Sections were blocked for 1 h at room temperature with a buffer containing 10% goat serum. Sections were then incubated with the primary antibody for 1 h at 37°C. The blot was washed three times and incubated with a fluorescent secondary antibody (Vector Laboratories) (1:100 dilution) for 1 h at room 37°C. Sections were washed three times. DNA was stained with 4',6-diamidino-2-phenylindole (DAPI).

Immunoprecipitation and Detection of piRNAs

Affinity-purified anti-MILI [45] and anti-MIWI2 (crude serum from rabbit) [46] were bound to protein G-Sepharose 4 Fast Flow beads (GE Healthcare) and used to purify MILI and MIWI2 complexes from embryonic mouse testis extracts (50 mM Tris, pH 8, 150 mM NaCl, 5 mM MgCl2, 10% glycerol, 1 mM dithiothreitol [DTT], 0.5% sodium deoxycholate [Sigma], 1% Triton X-100, 1 tablet of complete protease inhibitor [Roche] per 5 ml, 2 mM vanadyl ribonucleoside complex [Sigma]). After five washes (10 mM Tris, pH 8, 150 mM NaCl, 0.05% [v/v] nonyl phenoxypolyethoxylethanol [NP-40]), the retained proteins in RNA complexes were digested by proteinase K (42°C, 30 min), and finally associated RNA were isolated by phenol chloroform extraction and precipitated in ethanol. To visualize RNAs, they were dephosphorylated with rAPid alkaline phosphatase (recombiant bovine phosphatase; Roche) and 5'-end labeled with [γ-32P]ATP with T4 polynucleotide kinase (Thermo Scientific). The labeled RNAs were resolved by 15% (w/ v) urea-PAGE. Gels were exposed to Phosphor Storage screens (GE Health) and scanned (Typhoon scanner, GE Health).

Analysis of Mov10l1 and Actb Expression

Total RNA was extracted from testes using Trizol reagent (Invitrogen), treated with DNase I (Invitrogen), and reverse transcribed to cDNA, using M-MLV reverse transcriptase (Promega) according to the manufacturer’s instructions. Mov10l1 expression was assayed by PCR with the primers GAAAGACGTGGACTATATACCGGG and CCTCACCCTCATGGAA GATGAGAG. Actb expression was assayed by PCR with the primers GGCTGACATCAAGAGAAGCT and CTTGTATCTCTAGTGCTAGG.

RESULTS

Generation of a Mov10l1 Knockin Allele Harboring Mutations in the MOV10L1 ATP Hydrolysis Motif

MOV10L1 is a member of the Superfamily I of DNA/RNA helicases [43, 49]. The RNA helicase activity of this superfamily is dependent on their ATP binding and ATP hydrolysis activities. Mutation of conserved residues in the ATP hydrolysis site of UPF1, one of the closest homologs of MOV10L1, ablated UPF1 RNA helicase activity [50], UPF1 is required for nonsense-mediated decay. Intriguingly, dissociation of the UPF1:RNA complex depends on ATP binding but not ATP hydrolysis. The MOV10L1 RNA helicase domain is located at its C-terminal region and contains two RecA-like domains (Fig. 1A) [51]. The first RecA-like domain harbors Walker A (ATP binding) and Walker B (ATP-hydrolysis) motifs [49]. The RNA helicase activity of this protein is lost when the Walker A and B motifs are mutated [49]. To examine the requirement for MOV10L1 ATP hydrolysis activity during piRNA biogenesis, we generated a Mov10l1 knockin allele by mutating two conserved residues (DE888AA) within the ATP hydrolysis motif of the Mov10l1 RNA helicase domain (Fig. 1B) [43, 50]. The Mov10l1−/− mice were viable and fertile, suggesting that the mutation is not dominant negative. We examined the expression of MILI and MOV10L1 in the testes of Mov10l1−/−
and \textit{Mov10l1}^{KI/KI} mice at embryonic and various postnatal stages of development (Fig. 1C). Both the MILI and MOV10L1 proteins were present in testes from \textit{Mov10l1}^{KI/+} mice at all ages. MILI was readily detectable in the testes of \textit{Mov10l1}^{KI/KI} mice from Embryonic Day 16.5 (E16.5) through Postnatal Day 10 and were still detectable at Days 14 and 18. Mutant MOV10L1 protein was present in the testes of \textit{Mov10l1}^{KI/KI} mice at E16.5 but at a reduced level compared to the testes of \textit{Mov10l1}^{KI/+} mice (Fig. 1C). However, mutant MOV10L1 protein was not detected in the testes of \textit{Mov10l1}^{KI/KI} mice at Postnatal Day 6 and beyond (Fig. 1C). We also examined \textit{Mov10l1} transcript in the testes of 10-day-old \textit{Mov10l1}^{KI/+} and \textit{Mov10l1}^{KI/KI} mice. The \textit{Mov10l1} transcript level in \textit{Mov10l1}^{KI/KI} mice was comparable to that in \textit{Mov10l1}^{KI/+} mice (Fig. 1D).

These results show that the MOV10L1 mutant protein was present in embryonic germ cells but reduced in postnatal \textit{Mov10l1}^{KI/KI} germ cells, likely due to decreased protein stability.

\textbf{Mov10l1}^{KI/KI} \textbf{Males Exhibit Meiotic Arrest and Sterility}

\textit{Mov10l1}^{KI/KI} mice were viable with no apparent gross abnormalities. The fertility of \textit{Mov10l1}^{KI/KI} mice was sexually dimorphic: males were sterile, but females were fertile. The body weight of 6-wk-old \textit{Mov10l1}^{KI/KI} mice (21 ± 0.9 g) was similar to that of their heterozygous littermates (22.21 ± 1.9 g) ($P = 0.1$). However, the testis weight of 6-wk-old \textit{Mov10l1}^{KI/KI} mice (58 ± 5 mg) was 37% of that of their heterozygous littermates (155 ± 14 mg) ($P = 0.001$, Student \textit{t}-test) (Fig. 2A).
mutant suggest that the ATP hydrolysis activity of MOV10L1 may also be required for spermatogenesis. Alternatively, the spermatogenic defect in this mutant could be caused by reduced MOV10L1 protein levels.

Piwi Proteins Are Depleted of piRNAs in Mov10l1^{KI/KI} Embryonic Germ Cells

Meiotic arrest occurs as a result of a loss of pre-pachytene piRNAs. To determine whether mutation in the MOV10L1 ATP hydrolysis site affects the piRNA pathway, we assayed the loading of pre-pachytene piRNAs onto MIWI and MIWI2 in the testes from E16.5 Mov10l1^{KI/+} and Mov10l1^{KI/KI} embryos. MIWI- and MIWI2-bound piRNAs are 26-nucleotide (nt) and 28-nt long, respectively [12]. MIWI- and MIWI2-bound piRNAs were present in E16.5 Mov10l1^{KI/+} testes but absent in Mov10l1^{KI/KI} testes (Fig. 3). This result suggests that the MOV10L1 ATP hydrolysis activity may be required for biogenesis or loading of pre-pachytene piRNAs. However, we cannot exclude the possibility that the failure in biogenesis or loading of pre-pachytene piRNAs might be caused by reduced MOV10L1 protein levels.

In the Mov10l1^{KI/KI} testes, MILI was associated with small RNA species, one of which was 26 nt long (Fig. 3). The 26-nt band and larger RNA species were absent in the MIWI2 immunoprecipitation in the mutant. Deep sequencing of the RNAs associated with MILI in the Mov10l1^{KI/KI} testes showed that these RNAs seemed to be random sequences; that is, they were neither piRNAs nor micro-RNAs. One possible explanation is that MILI, in the absence of its natural RNA substrate (piRNAs), simply binds to RNAs in a nonspecific manner.

De-repression of IAP and LINE1 Retrotransposons in Embryonic and Postnatal Mov10l1^{KI/KI} Germ Cells

We examined histology of testes from adult Mov10l1^{KI/+} and Mov10l1^{KI/KI} mice to determine the effect of the Mov10l1 ATP hydrolysis mutation on germ cell development. Spermatogenesis proceeded normally in the seminiferous tubules of Mov10l1^{KI/+} mice (Fig. 2B). However, seminiferous tubules in Mov10l1^{KI/KI} testes lacked any germ cells beyond the zygote stage of meiosis I, showing that spermatogenesis is blocked in meiosis in the mutant males (Fig. 2C). Intriguingly, spermatocytes exhibited two types of nuclear morphology: one with strongly stained and condensed nuclei (Fig. 2C, arrowheads) and the other with loose and enlarged nuclei (Fig. 2C, arrows). In this new Mov10l1 knockin mutant, the ATP binding site was intact (Fig. 1A). Therefore, results from this

FIG. 2. Meiotic arrest in Mov10l1^{KI/KI} mice. A) Dramatic size reduction of testis from 6-wk-old Mov10l1^{KI/KI} mice. B and C) Histology of testes from 8-wk-old Mov10l1^{KI/+} and Mov10l1^{KI/KI} mice. Two types of spermatocytes are present in the Mov10l1^{KI/KI} seminiferous tubules, indicated by arrowheads and arrows respectively. ES, elongating spermatids; RS, round spermatids; Spc, spermatocytes. Bars = 50 μm.
Polar Congregation of piRNA Pathway Proteins in Embryonic Mov10l1^{KI/KI} Gonocytes

We next examined the localization of piRNA pathway proteins in E16.5 Mov10l1^{KI/KI} testes. Pre-pachytene piRNAs are required to shuttle MIWI2 from the cytoplasm into the nucleus. In Mili^{−/−} mice, piRNAs are not loaded onto MIWI2, and MIWI2 is excluded from the nucleus [12]. Nuclear exclusion of MIWI2 is common in other piRNA pathway mutants [8, 9]. We examined the subcellular localization of MIWI2 in testes from E16.5 Mov10l1^{KI/+} and Mov10l1^{KI/KI} embryos. As expected, MIWI2 localized predominantly to the nucleus of gonocytes in Mov10l1^{KI/+} embryos, but was present only in the cytoplasm of gonocytes in Mov10l1^{KI/KI} embryos (Fig. 6, A and B). Additionally, MIWI2 congregated in a polar granule in the cytoplasm of gonocytes in Mov10l1^{KI/KI} embryos (Fig. 6B). We then examined the localization of two other components (MILI and MOV10L1) in the piRNA pathway to determine if their localization was also affected in the E16.5 testes. MILI and MOV10L1 localized diffusely throughout the cytoplasm of Mov10l1^{KI/+} gonocytes, but MILI and mutant MOV10L1 localized to one pole in the cytoplasm of Mov10l1^{KI/KI} gonocytes in mice. These results show that localization of components of the piRNA pathway protein components is severely altered in embryonic Mov10l1^{KI/KI} gonocytes.
antibodies against MIWI2 (required for piRNA biogenesis [43]. Study of the site knockin mutant shows that the ATP-binding activity is arrest, and male sterility. Previous study of the ATP-binding of piRNAs, de-repression of transposable elements, meiotic mouse mutants exhibited the same phenotypes, loss Mov10l1 the MOV10L1 ATP-binding motif [16, 43]. These three MOV10L1 was deleted, and a point mutation was made in previously generated, in which the RNA helicase domain of Mov10l1 levels. Two additional possibility that the defects might be caused by reduced protein mutant protein was reduced, we could not exclude the hydrolysis motif. However, as the abundance of MOV10L1 defects in embryonic germ cells could be attributed to the loss of pre-pachytene piRNAs. The MOV10L1 mutant protein was not detected in postnatal testes from Mov10l1 mice with the mutation of two conserved residues in its ATP hydrolysis motif. In contrast, MILI was still expressed in early postnatal Mov10l1 KI/KI testes. Therefore, it is unlikely that piRNA biogenesis is required for the stability of piRNA pathway proteins. Rather, the two residues (DE) that were mutated in the Mov10l1 ATP hydrolysis site may be critical for MOV10L1 protein stability in postnatal testes. Intriguingly, the truncated MOV10L1 protein lacking part of the RNA helicase domain (including the DE residues) was present in postnatal testes from the previously generated mutant mice [16].

Polar congregation of piRNA pathway proteins has also been observed in other piRNA pathway mutants including Pld6, Tdrd1, Ddx4, and Ngn3-Cre;Mov10l1 conditional mutant mice [18, 33, 34]. The polar congregation of piRNA pathway proteins in mutant germ cells is accompanied by abnormal formation/disappearance of nuages, and aggregation of mitochondria in Pld6 and Ngn-Cre;Mov10l1 mutants [18, 33, 34]. Both the nuage and the mitochondria are crucial to piRNA biogenesis. Although some piRNA pathway proteins such as MILI, TDRD1, MVH, and MOV10L1 are compartmentalized in the nuage, other piRNA pathway proteins including PLD6, PNLDC1, and TDRKH are mitochondrial proteins [8, 23, 40, 54]. The intricate interplay between nuage and mitochondria in piRNA biogenesis remains to be elucidated.

DISCUSSION

Here we examined the role of MOV10L1 ATP hydrolysis activity in piRNA biogenesis by using a genetic approach. Mutations in the MOV10L1 ATP hydrolysis motif resulted in a loss of pre-pachytene piRNAs. The MOVL1 mutant protein was present in embryonic germ cells. Therefore, the molecular defects in embryonic germ cells could be attributed to the mutation of two conserved residues in the MOV10L1 ATP hydrolysis motif. However, as the abundance of MOV10L1 mutant protein was reduced, we could not exclude the possibility that the defects might be caused by reduced protein levels. Two additional Mov10l1 mouse mutants were previously generated, in which the RNA helicase domain of MOV10L1 was deleted, and a point mutation was made in the MOV10L1 ATP-binding motif [16, 43]. These three Mov10l1 mouse mutants exhibited the same phenotypes, loss of piRNAs, de-repression of transposable elements, meiotic arrest, and male sterility. Previous study of the ATP-binding site knockin mutant shows that the ATP-binding activity is required for piRNA biogenesis [43]. Study of the Mov10l1 ATP hydrolysis knockin mutant generated here suggests that ATP binding may not be sufficient for piRNA biogenesis and that ATP hydrolysis may also be required. We hypothesize that ATP hydrolysis may provide the energy necessary for MOV10L1 to resolve secondary structures such as G-quadruplexes in the piRNA precursors.

The mutant MOV10L1 protein was not detected in postnatal testes from Mov10l1 KI/KI mice with the mutation of two conserved residues in its ATP hydrolysis motif. In contrast, MILI was still expressed in early postnatal Mov10l1 KI/KI testes. Therefore, it is unlikely that piRNA biogenesis is required for the stability of piRNA pathway proteins. Rather, the two residues (DE) that were mutated in the Mov10l1 ATP hydrolysis site may be critical for MOV10L1 protein stability in postnatal testes. Intriguingly, the truncated MOV10L1 protein lacking part of the RNA helicase domain (including the DE residues) was present in postnatal testes from the previously generated mutant mice [16].

ACKNOWLEDGMENT

We thank J. Martinez and G. Hannon for MIWI2 antibody; S. L. Martin and A. Bortvin forLINE1 ORF1p antibody; B.R. Cullen for IAP GAG antibody; and R. Sachidanandam for help with sequence analysis.

REFERENCES

1. Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D, Jr, Luo S, et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008; 31:67–78.
2. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 2005; 19:1288–1293.
3. Aravin AA, Naumova NM, Tulin AV, Vagn VG, Rozovsky YM, Gvozdev VA. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 2001; 11:1017–1027.
4. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006; 442:203–207.
5. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442:199–202.
6. Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006; 20:1709–1714.
7. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12:246–258.
8. Pillai RS. Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54:78–92.
9. Fu Q, Wang PI. Mammalian piRNAs: Biogenesis, function, and mysteries. Stemparmatogen 2014; 4:287889.
10. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007; 316:744–747.
11. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Tokotoki Y, Toyoda A, Ikawa M, Ikawa M, Aoi M, Asada N, Kojima K, Yamaguchi Y, Hira TW, Hata K, Li E, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 2008; 22:908–917.

FIG. 6. piRNA pathway proteins form polar conglomeration in embryonic Mov10l1 KI/KI gonocytes. Sections of testes from E16.5 Mov10l1 KI/KI, and Mov10l1 KI/KI embryos were immunostained with antibodies against MIWI2 (A and B), MOV10L1 (C and D), and MILI (E and F). DNA was stained with DAPI. Bar = 50 μm.
12. Aravin AA, Sachidanandam R, Bourc'h D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 2008; 31:785–799.

13. Carmell MA, Girard A, van de Kant HJ, Bourc'h D, Bestor TH, de Rooij DG, Hannon GJ. MIW2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007; 12:503–514.

14. Pezic D, Manakov SA, Sachidanandam R, Aravin AA; piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev 2014; 28:1410–1428.

15. De Fazio S, Bartonicek N, Di Giacomo M, Ahrens-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 2011; 480:259–263.

16. Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA, McLaughlin KJ, Stark A, Sachidanandam R, Pillai RS. Miwi catalysis is required for retrotransposon silencing during late spermiogenesis. Cell Res 2014; 24:680–700.

17. van der Heijden GW, Bortvin A. Transient relaxation of transposon epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing in the male germline. Development 2004; 131:839–849.

18. Tanaka SS, Toyooka Y, Akasu R, Kato Y, Tong D, Noc N, Nakano T, et al. MITOPEL is a mitochondrial protein essential for piRNA formation and piRNA biogenesis in the mouse germline. Dev Cell 2011; 20:364–375.

19. Kuramochi-Miyagawa S, Kimura H, Iijiri TW, Isobe T, Aravin AA, Girard A, van de Kant HJ, Bourc'h D, Schaefer C, Pezic D, Toth KF, Hannon GJ, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012; 491:279–283.

20. Nemishus M, Ishizu H, Saika K, Fukuhara S, Kamatani MK, Bonnefond L, Matsumoto N, Nishizawa T, Nakagawa K, Aoki J, Ishtiani R, Siomi H, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012; 491:284–287.

21. Martin SL, Branciforte D. Synchronous expression of LINE-1 RNA and transposon repression in meiosis. Dev Cell 2009; 18:255–297.

22. Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011; 142:195–209.

23. Soper SF, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, et al. piRNA pathway is linked to de novo DNA methylation in mice. Mol Cell 2008; 31:785–799.

24. van der Heijden GW, Bortvin A. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci U S A 2010; 107:11841–11846.

25. Yang F, Wang PJ. Multiple LINEs of retrotransposon silencing during adult spermatogenesis. Genes Dev 2015; 29:1032–1044.

26. Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA, McLaughlin KJ, Stark A, Pezic D, Manakov SA, Sachidanandam R, Aravin AA, Wang PJ. piRNA pathway and piRNA-mediated cleavage targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev 2014; 28:1410–1428.

27. Aravin AA, van de Heijden GW, Casnadea J, Vagin VV, Hannon GJ, Bortvin A. Cytoplasmic compartmentalization of the fetal piRNA pathway in mouse. PLoS Genet 2009; 5:e1000764.

28. Di Giacomo M, Comazzetto S, Sampath SC, Sampath SC, O’Carroll D. The TDRD9-MIW2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell 2009; 17:775–787.

29. Goh WS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell DW, Chen R, Fu XD, Liu MF, He SMIWI. and piRNA-mediated cleavage initiates the burst of piRNA production during early meiosis in mouse [Epub ahead of print 5 March 2016 as DOI: 10.1016/j.semcdb.2016.03.001].

30. Deng W, Miwi, Lin H. A murine homolog of Piwi encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002; 2:819–830.

31. Zhang K, Wang PJ. Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 2012; 8:e1003038.

32. Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noc T, Nakatsuji N. Tdrd11/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Nat Acad Sci U S A 2006; 103:15894–15899.

33. Aravin AA, Pezic D, Manakov SA, Sachidanandam R, Pillai RS, Vagin VV, Hannon GJ, Bortvin A. Cytoplasmic compartmentalization of the fetal piRNA pathway in mouse. PLoS Genet 2009; 5:e1000764.

34. Zheng K, Miwi, Fu XD, Lin H. A murine homolog of Piwi encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002; 2:819–830.