Diagnosing Basal Cell Carcinoma of the Vulva: A Case Report and Review of the Literature

Justin C. Rudd 1, 2, Changzhao Li 2, Rasam Hajiannasab 2, Jimmy Khandalavala 3, Poonam Sharma 2

1. Department of Biomedical Sciences, Creighton University, Omaha, USA 2. Department of Pathology, Creighton University, Omaha, USA 3. Department of Obstetrics and Gynecology, Creighton University, Omaha, USA

Corresponding author: Justin C. Rudd, justinrudd@creighton.edu

Abstract

Basal cell carcinoma (BCC) is a highly prevalent epidermal neoplasm that most commonly occurs in regions of sun-exposed skin, though rare cases arise in sun-protected areas. BCCs of the vulva account for a small fraction of cases and can be mistaken for other cutaneous genital pathologies on clinical examination. Here we report a case of vulvar BCC that presented as a firm, tender bilateral lesion of the mons pubis and was diagnosed by histopathology and immunostaining for classical BCC markers.

Introduction

Basal cell carcinoma (BCC), a malignancy of epidermal keratinocytes, is the most prevalent human cancer, with more than three million cases reported in the U.S. every year [1]. It is estimated that only 1-2% of these BCCs involve the vulvar epidermis [2-5]. While BCCs have an excellent prognosis and metastasize infrequently [4], local tissue damage caused by vulvar BCCs can impart significant physical discomfort, cosmetic distress, and impair sexual function. Variable gross presentation of these vulvar lesions frequently leads to improper diagnosis and delayed biopsy [3]. Upon biopsy, these lesions may be easily diagnosed both through histopathology using H&E staining and immunohistochemical detection of BCC markers. Wide local excision of vulvar BCCs is typically curative, though Mohs micrographic surgery (MMS) may be more successful in preventing local recurrence. In this report, we highlight the common clinical and histopathological presentation of this rare BCC type in order to facilitate initial diagnosis and expedient removal.

Case Presentation

A 51-year-old (G3P2012) female patient presented to the clinic with vaginal itching, irritation, and a tearing sensation near the top of the vaginal area that had been present for one year. She reported that her physical discomfort had waxed and waned over that time but had worsened over the last several months. She denied excessive vaginal odor, general pelvic pain, fever, or chills and had no concerns for sexually transmitted infection. She stated that her discomfort was worsened by physical activity and moisture upon daily swimming. Physical examination revealed a 1.5 cm firm bilateral vulvar lesion with shallow red ulcerations at the lower mons pubis.

An initial 3 mm Keyes punch (Miltex Instruments-Integra LifeSciences, Princeton, NJ, USA) biopsy of the lesion was performed and sent for both virologic and pathologic testing. Herpes simplex virus 1 and 2 (HSV1/2) testing by polymerase chain reaction (PCR) was negative. Microscopically, hematoxylin and eosin (H&E) staining showed both papillary and reticular dermal nests composed of hyperchromatic keratinocytes with peripheral cell palisading (Figure 1).
FIGURE 1: H&E staining of biopsy specimen.

In the 4× image (left), keratinocyte nests can be observed in the papillary (red arrowhead) and reticular (white arrowhead) dermis. In the 40× image (right), peripheral palisading cells (red arrowheads) are evident in a dermal keratinocyte nest. H&E: hematoxylin and eosin.

Keratinocyte nests showed uniform membranous immunohistochemistry (IHC) for epithelial cell adhesion molecule (EPCAM/BER-EP4) and diffuse cytoplasmic staining for B-cell lymphoma 2 (BCL2) (Figure 2). These histopathologic findings confirmed the diagnosis of superficial and nodular type vulvar BCC.

Because the tumor was present at the peripheral margins of the initial biopsy, the patient returned for a wider excision of the lesion. Intraoperative findings revealed two distinct lesions; one 1 cm × 0.5 cm lesion on the right mons superior to the clitoral hood and one 3 mm × 3 mm lesion on the left side of the mons. An excision biopsy of the lesion involving the right mons was sent for histopathology, which confirmed superficial and nodular BCC with an estimated invasive depth of 1.6-2 mm. Additionally, the tumor was present at the superior margin and was 0.5 mm from the inferior margin, and 1.8 mm from the deep margin. No perineural or lymphovascular invasion was observed. Additional IHC was performed on the excisional biopsy specimen and showed patchy positive p16 signal in keratinocyte nests and no epithelial membrane antigen (EMA) signal in these cells (Figure 3). This immunoprofile supported the diagnosis of vulvar BCC. A punch biopsy of the small lesion on the left mons showed a benign capillary hemangioma.
FIGURE 2: Immunohistochemical staining of biopsy specimen.

Immunohistochemical staining of the biopsy specimen revealed patchy positive p16 signal, diffuse BER/EP-4 and BCL-2 positivity, and no EMA signal. BCL-2: B-cell lymphoma 2, EMA: epithelial membrane antigen.

Discussion

While BCC is the most prevalent human cancer, most lesions develop on sun-exposed skin, and less than 1% of cases arise from the vulvar epidermis. Although the etiology of BCC in sun-protected areas like the vulva is poorly understood, animal models suggest that patched 1 (PTCH1) mutant hair follicle stem cells can give rise to BCC in the absence of ultraviolet (UV) irradiation [6,7]. This suggests that mutations in Sonic hedgehog (Shh) pathway components derived from non-UV insults, like chronic inflammation or exposure to arsenic or ionizing radiation, may be able to drive BCC development in sun-protected areas. Alternatively, hereditary Shh pathway mutations, like those observed in Gorlin’s syndrome, may underlie non-UV-related BCCs. Evidence of pre-existing inflammatory conditions, environmental mutagen exposure, and underlying hereditary genodermatoses in vulvar BCCs is currently sparse [3-5], although this may be due to infrequent reporting. Deep targeted sequencing of known BCC driver genes in BCC tissue derived from sun-protected sites could help identify signatures of the exogenous or endogenous mutational processes that produce these rare tumors.

In addition to their poorly defined etiology, vulvar BCCs are challenging to diagnose clinically, owing both to non-specific clinical symptoms such as pain, pruritus and inflammation as seen in our patient, and the variable physical appearance of the lesion itself [4]. It is not uncommon for vulvar BCC to be initially misdiagnosed as either a general inflammatory skin condition such as psoriasis or dermatitis [3], or as an unrelated neoplastic disease like human papillomavirus (HPV)-associated squamous cell carcinoma (SCC), lichen sclerosis, or extramammary Paget disease [8].

Efforts to improve initial diagnosis have included database mining to generate a typical clinical presentation and the utilization of advanced imaging techniques during an assessment. A recent query of the surveillance, epidemiology, and end results (SEER) database found that among instances of vulvar BCC where the primary site was specified (n=347), the labia majora accounted for nearly 90% of the cases [5]. This preference for localization on the labia majora was also validated in a recent case series [9]. These cases predominantly affect elderly (median age 73-74) Caucasian women, and the mean tumor size is <2.0 cm
relationships or activities that could appear to have influenced the submitted work. All authors declare the following:

Human subjects: Consent was obtained or waived by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. About basal and squamous cell skin cancer. (2021). Accessed: December 20, 2021: https://www.cancer.org/cancer/basal-and-squamous-cell-skin-cancer/about/key-statistics.html.

2. Mulvany N, Foster Silver D, Tolgay Ocal I, Bahalola E: Vulvar basal cell carcinoma: two unusual presentations and review of the literature. Gynecol Oncol. 2002, 85:532–7. 10.1006/gyno.2001.6382

3. Mulvany NI, Rayon M, Allen DG: Basal cell carcinoma of the vulva: a case series. Pathology. 2012, 44:528-33. 10.1097/PAT.0b013e328357a001

4. Renati S, Henderson C, Aluko A, Burgin S: Basal cell carcinoma of the vulva: a case report and systematic
review of the literature. Int J Dermatol. 2019; 58:892-902. 10.1111/ijd.14307
5. Chen X, Hou Y, Chen C, Jiang G: Basal cell carcinoma of the external genitalia: a population-based analysis. Front Oncol. 2020; 10:615533. 10.3389/fonc.2020.615533
6. Peterson SC, Eberl M, Vagnozzi AN, et al.: Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015; 16:400-12. 10.1016/j.stem.2015.02.006
7. Eberl M, Mangelberger D, Swanson JB, et al.: Tumor architecture and notch signaling modulate drug response in basal cell carcinoma. Cancer Cell. 2018; 33:229-45. 10.1016/j.ccell.2017.12.015
8. de Giorgi V, Salvini C, Massi D, Rapaport MR, Carli P: Vulvar basal cell carcinoma: retrospective study and review of literature. Gynecol Oncol. 2005; 97:192-4. 10.1016/j.ygyno.2004.12.008
9. Flipo R, Bani MA, Rejaibi S, Talhi N, Sastre-Garau X: Vulvar basal cell carcinoma: clinical and histopathologic features. Int J Gynecol Pathol. 2022; 41:86-92. 10.1097/PGP.0000000000000771
10. Dobrosavljevic Vukojevic D, Djurisic I, Lukic S, Kastratovic-Kotlica B, Vukievic I: Dermatoscopy in vulvar basal cell carcinoma. J Eur Acad Dermatol Venereol. 2017; 31:e180. 10.1111/jdv.13895
11. de Giorgi V, Massi D, Mannone F, et al.: Dermoscopy in vulvar basal cell carcinoma. Arch Dermatol. 2007; 143:426-7. 10.1001/archderm.143.3.426
12. Cinotti E, Tonini G, Perrot JL, Habouigt C, Luzi S, Rubegni P: Dermoscopic and reflectance confocal microscopy features of two cases of vulvar basal cell carcinoma. Dermatol Prat Concept. 2018; 8:68-71. 10.5826/dpc.0801a17
13. Crowson AN: Basal cell carcinoma: biology, morphology and clinical implications. Mod Pathol. 2006; 19:127-47. 10.1038/modpathol.3800512
14. Abdelbaqi M, Shackelford RE, Quigley BC, Hakam A: Concurrent Paget’s disease and basal cell carcinoma of the vulva; a case report. Int J Clin Exp Pathol. 2012; 5:592-5.
15. García-de-la-Fuente MR, Santacana M, Vilandrè F, Pujol RM, Gari E, Casanova JM: Vulvar basal cell carcinomas: four case reports with immunohistochemical study. J Cutan Med Surg. 2017; 21:457-9. 10.1177/1203475417712498
16. Elwood H, Kim J, Yemelyanova A, Ronnett BM, Taube JM: Basal cell carcinomas of the vulva: high-risk human papillomavirus DNA detection, p16 and BerEP4 expression. Am J Surg Pathol. 2014; 38;542-7. 10.1097/PAS.0000000000000143
17. Sinha K, Abdul-Wahab A, Calonje E, Craythorne E, Lewis FM: Basal cell carcinoma of the vulva: treatment with Mohs micrographic surgery. Clin Exp Dermatol. 2019; 44;651-5. 10.1111/ced.13881