Supporting Information

Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products
Sebastian Junker, Raquel Roldan, Henk-Jan Joosten, Pere Clapés, and Wolf-Dieter Fessner*

anie_201804831_sm_miscellaneous_information.pdf
Author Contributions

W.F. Conceptualization: Lead; Funding acquisition: Lead; Project administration: Lead; Supervision: Lead; Visualization: Equal; Writing – original draft: Equal; Writing – review & editing: Equal
S.J. Investigation: Lead; Methodology: Lead; Validation: Lead; Visualization: Equal; Writing – original draft: Equal; Writing – review & editing: Equal
R.R. Investigation: Supporting; Methodology: Supporting
H.J. Investigation: Supporting; Methodology: Supporting; Software: Lead; Writing – review & editing: Supporting
P.C. Conceptualization: Supporting; Funding acquisition: Supporting; Project administration: Supporting; Supervision: Supporting; Writing – original draft: Supporting; Writing – review & editing: Supporting.
Section	Page
1. Materials	4
2. General procedure for mutagenesis and transformation	4
3. Correlated mutation analysis using 3DM	6
4. Site directed mutagenesis and library creation	9
5. Cell growth	10
6. TLC screening of FSA D6H/N28L and D6H/N28T against D6H	11
7. TLC screening of N28X libraries	12
7.1 Screening of 96-well plates by thin layer chromatography	12
7.2 Screening of single-site FSA D6L/N28X library	12
7.3 Screening of single-site FSA D6E/N28X library	13
7.4 Screening of single-site FSA D6H/N28X library	14
8. TLC screening of double-site FSA D6X/T26X library	15
8.1 Primary screening for activity against acetone	15
8.2 Rescreening	17
8.3 Screening with n-butanal	18
9. Sequencing results from the D6X/N28X library screenings	19
10. High performance TLC screening with acetone and propanal	21
11. High performance TLC analysis for propanal self aldolization	23
12. High performance TLC analysis for acetone and isopentanal	25
13. Synthesis and NMR spectroscopic analysis	27
13.1 Synthesis of (R)-4-hydroxyhexan-2-one	27
13.2 Synthesis of (R)-4-hydroxy-6-methylheptan-2-one	28
13.3 Synthesis of (2R,3R)-2-methylpentane-1,3-diol	29
13.4 Synthesis of (3R)-2-methylpentane-1,3-diol	30
13.5 Synthesis of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane	31
13.6 Synthesis of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane	33
13.7 Synthesis of (4R,5R)-5-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane	35
13.8 Synthesis of (4R)-5-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane with FSA	37
13.9 Synthesis of racemic 4-hydroxyhexan-2-one	38
14. GC Analysis	39
14.1 Relative activity of different FSA variants in the formation of 4-hydroxyhexan-2-one	39
14.2 Enantioselectivity of FSA D6E in the synthesis of 4-hydroxyhexan-2-one	40
14.3 Substrate selectivity of FSA variants by GC analysis	42
14.4 Kinetic analysis of propanal/butanal homoaldolization by FSA variant D6A/T26L	45
15. GC-MS	46
15.1 GC-MS (EI) analysis of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane	46
15.2 GC-MS (EI) analysis (EI) of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane	47
15.3 GC-MS (EI) analysis of (4R,5R)-5-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane	48
16. D-F6P assay for inhibitor identification	49
17. References	50

Author Contributions 50
1 Materials

Media components and all chemical reagents were purchased from Sigma-Aldrich and used without purification, except for aldehydes, which were freshly purified by distillation prior to use. Organic solvents were of analytical grade. HPTLC analysis was performed on silica gel F254 plates (Merck) using a CAMAG Automatic TLC Sampler 4 and CAMAG TLC Scanner 4. Screening consumables (96-well microtiter plates, acetate foil, pipette tips) were purchased from Sarstedt. Plates were incubated in an Infors Ecotron shaker. Synthetic oligonucleotides were purchased from Sigma-Aldrich. Triose phosphate isomerase/glycerol-3-phosphate dehydrogenase (mix from rabbit muscle) and NADH were purchased from Sigma-Aldrich. Proteinase K (Tritirachium album) came from Serva. Antibiotics, acrylamide-bisacrylamide and buffer components were from Carl Roth. Milli-Q grade water was used for preparations of buffers, whereas other assay solutions were obtained from an Arium Pro Ultrapure Water Purification System (Sartorius Stedim Biotech). Bacterial strains, oligonucleotides and plasmids used in this study are listed in Table 1. The plasmid pET16b fsa containing the FSA gene for expression (gene code, fsa, formerly termed mipB [1]) was constructed using routine cloning procedures. Gene sequencing was performed by GATC Biotech AG. Protein concentration was determined according to the Bradford method using commercial reagent (Carl Roth).

2 General procedure for mutagenesis and transformation

Mutagenesis of d-Fructose-6-phosphate aldolase (fsa) was performed by using the QuikChange site-directed mutagenesis kit (Agilent), using the plasmids pET16b fsa or pQE40 fsa as template. The specific combination of oligonucleotides and templates used are compiled in Table 1. Competent cells of E. coli XL10 (Agilent) were used for transformation and plasmid preparation, and E. coli strain BL21 (DE3) [2] was used for protein expression. Plasmid DNA was isolated using the GenElute™ HP Plasmid Miniprep Kit (Sigma-Aldrich). The expected mutations in the gene sequence were confirmed by DNA sequencing.

Plasmids	Relevant genetic characteristics	Origin
pQE40	Prs, Ampr, ColE1 ori	Quiagen
pQE40 fsa D6E	fsa D6E gene cloned in pQE40	This study
pQE40 fsa D6H	fsa D6H gene cloned in pQE40	This study
pQE40 fsa D6H/N28D	fsa D6H/N28D gene cloned in pQE40	This study
pQE40 fsa D6H/N28L	fsa D6H/N28L gene cloned in pQE40	This study
pQE40 fsa D6H/N28T	fsa D6H/N28T gene cloned in pQE40	This study
pQE40 fsa D6H/N28X	fsa D6H/N28X gene cloned in pQE40	This study
pQE40 fsa D6H/N28X	fsa D6H/N28X gene cloned in pQE40	This study
pET16b	Pr7, Ampr, pBR322ori	Novagen
------------	----------------------	------------------
pET16b fsa D6A	fsa D6A gene cloned in pET16b	This study
pET16b fsa D6A/T26I	fsa D6A/T26I gene cloned in pET16b	This study
pET16b fsa D6L	fsa D6L gene cloned in pET16b	This study
pET16b fsa D6L/N28X	fsa D6L/N28X gene cloned in pET16b	This study
pET16b fsa D6X/T26X	fsa D6X/N28X gene cloned in pET16b	This study
Strains	Relevant genotype	Origin
XL10 Gold	TetrD(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB lacIqZD7M15 Tn10 (Tet) Amy Cam]	Agilent
Bl21 (DE3)	fhuA2 [lon] ompT gal (λ DE3) [dcm] ΔhsdS λ DE3 = λ sdamHo ΔEcoRI- B int::(lacI::PlacUV5::T7 gene1) i21 Δnin5	New England BioLabs

Oligonucleotides

Oligonucleotide sequences (5’ → 3’)	Origin
D6L forward	This study
D6L reverse	This study
D6A reverse	This study
D6A forward	This study
D6E forward	This study
D6E reverse	This study
D6X reverse	This study
D6X forward	This study
T26X reverse	This study
T26X forward	This study
T261I forward	This study
T261 reverse	This study
N28X reverse	This study
N28X forward	This study
N28T forward	This study
N28T reverse	This study
N28L forward	This study
N28L reverse	This study
N28D forward	This study
N28D reverse	This study
3 Correlated mutation analysis using 3DM

The 3DM database was created for the aldolase superfamily by first superpositioning of all published aldolase structures to determine a common core of structurally equivalent positions, followed by subfamily alignment of all protein sequences with >30% sequence identity, then merging all subfamilies into a fully aligned database according to their core residue positions. The database was interrogated for correlated mutations for the D6 and T26 sites, separately for collections containing (1) all aldolases, (2) all FSA-type enzymes, (3) all enzymes comprising a mechanistic water molecule for nucleophile activation/Schiff-base formation and release, and (4) all enzymes having a Schiff-base forming K78 residue.

Table: CMA scores for positions 6 and 32

%	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
A	0.11	0.43	0.00	0.11	0.39	0.10	0	3.83	0	2.03	0.06	0.02	0.01	0	0.09	0.02	7.19	0.00	0.33	
C	0	0	0.03	0.27	0	0	0	0	0.00	0	0.10	0.00	0.00	0	0.06	0	0.00	0.06	0.01	
D	0.04	0.02	0.01	0.01	0.00	0.01	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.01	0.01	0.01	
E	0.00	0	0.01	0.01	0.00	0.01	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0	0.01	0.01	0.01	
F	0.02	0.01	0	0	0.02	0.02	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0	0.01	0.02	0.00	
G	0.01	0.00	0.00	0.02	0	0.00	0	0.02	0	5.13	0.00	0	0.00	0.01	3.57	0	0.01	0.01	0.01	
H	0	0	0	0.00	0	0	0	0	0	0.00	0	0	0	0	0	0	0	0	0	
I	0.00	0	0.00	2.35	0	0	0	0	0	0.00	0	0.06	0.01	0	0	0.12	0	0.00	0.01	
J	0	0.00	0	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
K	0	0.00	0	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
L	0.00	0	0.00	0	0.00	0	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0	0.01	0.03	0.00
M	0	0.01	0	0.00	0	0	0	0	0.00	0	0	0.00	0	0	0	0.06	0	0.00	0.00	
N	1.75	0.04	0.14	0.23	0	1.11	0.08	0.09	0	0.00	0.00	0.07	0.35	0.01	0.06	0.30	0.05	0.00	0.00	
P	2.31	0.16	0.32	2.01	0.75	0.03	0	1.60	0.01	1.73	1.74	0.10	0	0	0.44	0.10	2.07	0	0.01	
Q	0	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R	0	0.00	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S	0.02	0.36	0	0.00	0	0.02	0	0.00	0	0	0	0	0.02	0.02	0.00	0	0	0	0	
T	0.23	6.55	0.02	12.43	0.02	0.01	0	0.01	0.00	0.03	0.17	0.00	0	0.05	0.00	0.01	0.02	0.06	0.08	
V	0.02	0.02	0.03	12.73	0	0.00	0	0.19	0.01	0.08	0.00	0.00	0	0.09	0.00	0.00	0.01	0.01	0.04	0.00
W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Y	0.26	0	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CMA score for positions 6 and 32 is: 0.00

This graph shows the occurrences of amino acid couples of positions 6 and 32

%	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y	
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
D	0.02	0.16	0.04	0	0	0	0.05	0.02	0.02	0.02	0.02	0.02	0	0	0.02	0.02	0.09	98.26	0.02	0	0
E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
F	0	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
G	0	0	0	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
H	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
K	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Figure 1. Correlation analysis for positions 6 and 32 (3DM core numbering corresponding to D6 and T26 in FSA from *E. coli*) using the 3DM aldolase database. A) Full aldolase dataset; B) FSA subset; C) FSA enzymes featuring a catalytic water triade; D) all sequences featuring a lysine residue at position 78.
4 Site directed mutagenesis and library creation

The mutant *fsa* D6A was obtained using pET16b *fsa* as templates with the mutagenesis primers FSA D6A. BL21 (DE3) cells were transformed with this plasmid to heal the plasmid nicks. One of the colonies was cultivated in LB media overnight for plasmid isolation. The mutant *fsa* D6A/T26I was obtained using this pET16b *fsa* D6A as templates in a new PCR with the mutagenesis primers FSA T26I. The mutant *fsa* D6L was obtained using pET16b *fsa* as templates and the mutagenesis primers FSA D6L.

The library D6L/N28X was created with the N28X primer mixture and pET16b *fsa* D6L as template. The library D6E/N28X was created with the N28X primer mixture and pQE40 *fsa* D6E as template. The library D6H/N28X was created with the N28X primer mixture and pQE40 *fsa* D6H[3] as template. The variants D6H/N28D, D6H/N28L and D6H/N28T were created with the N28D, N28L or N28T primer mixtures and pQE40 *fsa* D6H[3] as template.

To create the D6X/T26X double site library pET16b *fsa* was used as a template in a PCR reaction with the D6X primer mixture. XL10 Gold cells were transformed with the resulting mix to heal the plasmid nicks and grown in LB media. From the mixed culture plasmid DNA was isolated to be used as a template in a second PCR reaction with the T26X primer mixture. The resulting plasmid mixture was sequenced for confirmation of the mutagenesis (Figure 1.) and used to transform BL21 (DE3) cells to create the final library.

![Electropherogram](image)

Figure 2. Electropherogram of the *fsa* D6X/T26X plasmid mix. Codon triplets are marked with a grey rectangle, the corresponding amino acids and their numbering is listed underneath. Mutated triplets are marked with an orange rectangle.
5 Cell growth

96-well master plate creation

E. coli strain BL21 (DE3) was transformed with the plasmid mixture and spreaded on an agar plate. The colonies were picked into a 96-well plate and grown in LB media (130 µL/well) at 30 °C for 18 h at 230 rpm. The media was mixed with glycerol (15 %) to create a master plate which was stored at -80 °C.

96-well protein expression to create a screening plate

A fresh 96-deepwell plate with LB-medium (950 µl/well) was inoculated from the master plate and incubated at 30 °C and 230 rpm for 18 h. The cells were centrifuged (2540 × g for 30 min), the supernatant was discarded, and cells resuspended in LB media (950 µL/well) containing IPTG (0.5 mM) at 2500 rpm. After 18 h incubation at 30 °C (230 rpm), cells were harvested (2540 × g for 30 min) and suspended in TEA buffer (50 mM, pH 8.5, 500 µL/well).

Cell growth in Eppendorf vials

In an Eppendorf vial (2 mL) LB media (1.6 mL) was inoculated with BL21 (DE3) cells containing the appropriate expression plasmid and cultivated for 18 h at 37 °C. After centrifugation (16000 × g, 30 sec) the cell pellets were resuspended in LB media (1.6 mL) containing IPTG (0.5 mM). The vials were incubated for 6 h (37 °C) and then centrifuged (16000 × g, 30 sec).

Cell growth in shake flasks

E. coli strain BL21 (DE3) was transformed with the appropriate expression plasmid. Cells were grown in auto induction media[4] (AI; 4 L) containing ampicillin (100 mg L⁻¹) for 20 h at 37 °C. Cells were harvested, suspended in TEA buffer (300 mL, 50 mM, pH 8.5) and centrifuged (2540 × g for 30 min). The cell pellet was resuspended in TEA buffer (200 mL, 50 mM, pH 8.5) and then lyophilized.

Protein expression and purification for preparative use

For expression of the FSA wt and the mutant proteins E. coli strain BL21 (DE3) was transformed with the corresponding plasmids. Cells were grown in AI medium (4 L) containing ampicillin (100 mg L⁻¹) for 22 h at 37 °C. Cells were harvested by centrifugation (2254 × g, 30 min) and suspended in 200 mL buffer solution (50 mM TEA, pH 8.5 for synthesis; 50 mM GlyGly, pH 7.0 for inhibition studies) containing lysozyme (1600 kU). Cell suspension was frozen at -20 °C. After thawing up to room temperature DNAse (800 U) and DTT (2 mM) were added. After incubation for 0.5-1 h cellular debris was removed by centrifugation (2540 × g for 30 min). The clear supernatant was purified by heat-shock treatment (70 °C, 30 min) followed by centrifugation (16000 × g for 10 min). The supernatant was separated and lyophilized.
6 TLC screening of FSA D6H/N28L and D6H/N28T against D6H

The cells grown in an Eppendorf vial were resuspended in TEA buffer (0.5 mL, 50 mM, pH 8.0) and mixed with a stock solution of acetone and propanal for final concentrations of 1230 mM and 75 mM.

Figure 3. Exemplary TLC screening of variants D6H/N28T and D6H/N28L against D6H and FSA wt as positive controls with acetone and propanal, TLC development with DCM/MeOH, 15:1. Staining with anisaldehyde solution.[5]

Figure 4. Exemplary TLC screening of variant D6H/N28D with acetone and propanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution.
7 TLC screening of N28X libraries

7.1 Screening of 96-well plates by thin layer chromatography

The cell suspensions in the 96-well screening plate were mixed with a stock solution of acetone and propanal for final concentrations of 1230 mM and 75 mM. After incubation for 6 h (37 °C, 1200 rpm) samples of 2.3 µL from each well were removed and analysed by TLC (EtOAc/cyclohexane, 1:1). Staining was performed with anisaldehyde solution.

7.2 Screening of single-site FSA D6L/N28X library

Figure 5. TLC screening of the D6L/N28X library with acetone and propanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution. All positive wells contain FSA (D6L/N28); weak spots caused by mixed cultures.
7.3 Screening of single-site FSA D6E/N28X library

Figure 6. TLC screening of the D6E/N28X library with acetone and propanal, TLC development with cyclo-hexane/EtOAc, 1:1. Staining with anisaldehyde solution. All positive wells contain FSA (D6E/N28); weak spots caused by mixed cultures.
7.4 Screening of single-site FSA D6H/N28X library

Figure 7. TLC screening of the D6H/N28X library with acetone and propanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution. All positive wells contain FSA (D6H/N28); weak spots caused by mixed cultures.
8 TLC screening of double-site FSA D6X/T26X library

8.1 Primary screening for activity against acetone

The cell suspensions in the 96-well screening plate were mixed with a stock solution of acetone and propanal for final concentrations of 1230 mM and 75 mM. After incubation for 6 h (37 °C, 1200 rpm) samples of 2.3 µL from each well were removed and analysed by TLC (CHCl₃/MeOH, 15:1). Staining was performed with anisaldehyde solution.

Figure 8. TLC screening of the D6X/T26X library with acetone and propanal, TLC development with CHCl₃/MeOH, 1:15. Staining with anisaldehyde solution. Variants with green rectangles were picked for the rescreening master plate; variants with orange rectangles were sequenced but accidentally not included for rescreening.
Figure 9. TLC screening of the D6X/T26X library with acetone and propanal, TLC development with CHCl₃/MeOH, 1:15. Staining with anisaldehyde solution. Variants with green rectangles were picked for the rescreening master plate; the variant with orange rectangles were sequenced but accidentally not continued for rescreening (duplicate entries).

All the variants marked in green were collected from the master plates to create a new rescreening master plate. From this master hit plate new screening plates were produced.
8.2 Rescreening

The cell suspensions in the 96-well hit plate were mixed with a stock solution of acetone and propanal for final concentrations of 1230 mM and 75 mM. After incubation for 6 h (37 °C, 1200 rpm) samples of 2.3 µL from each well were removed and analysed by TLC (EtOAc/cyclohexane, 1:1). Staining was performed with anisaldehyde solution.

Figure 10. TLC screening of the D6X/T26X library with acetone and propanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution.
8.3 Screening with \(n \)-butanal

The cell suspensions in the 96-well hit plate were mixed with \(n \)-butanal for a final concentration of 110 mM. After incubation for 6 h (rt, 1200 rpm) samples of 2.3 \(\mu \)L from each well were removed and analysed by TLC (EtOAc/cyclohexane, 1:1). Staining was performed with anisaldehyde solution.

Figure 11. TLC screening of the D6X/T26X library with \(n \)-butanal. TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution.
Sequencing results from the D6X/N28X library screenings

Table 2. Mutations collected in the rescreening hit plate of the D6X/T26X library

position	mutation D6X/T26X	position	mutation D6X/T26X	position	mutation D6X/T26X
A01	D6E	C09	D6V	F05	D6E
A02	D6H	C10	D6P	F06	D6A
A03[a]	mix	C11	D6E	F07	D6E
A04	D6L	C12	D6E	F08	D6H
A05	D6L	D01	D6A	F09	D6A
A06	D6H	D02	D6A	F10	D6V
A07	D6P	D03	wt	F11	D6A
A08	D6H	D04	D6L	F12	D6A
A09	D6V	D05	D6L	G01	D6A
A10	D6A	D06	D6A	G02	D6L
A11	D6L	D07	wt	G03	wt
A12	D6L	D08	Wt	G04	D6H
B01	D6Q	D09	D6A	G05	D6H
B02	D6H	D10	D6A	G06	D6V
B03	D6L	D11	D6A	G07	D6A
B04	D6A	D12	D6P	G08	D6E
B05	D6E	E01	D6Q	G09	D6A
B06	D6E	E02	Wt	G10	D6A
B07	D6V	E03	D6V	G11	D6V
B08	D6H	E04	D6E	G12	D6V
B09	D6A	E05	D6A	H01	D6H
B10	D6E	E06	D6H	H02	D6P
B11[b]	wt	E07	D6V	H03	D6A
B12	D6L	E08	wt	H04	D6H
C01	D6H	E09	D6E	H05	D6V
C02	D6A	E10	D6A	H06	D6E
C03	D6L	E11	D6A	H07	D6L
C04	D6V	E12	D6P	H08	D6V
C05	D6A	F01	D6E	H09	D6A
C06	D6L	F02	wt	H10	D6A
C07	D6E	F03	D6L	H11	D6A
C08	D6A	F04	D6L	H12	D6Q

[a] = mixture of variants;
[b] = false positive (FSA wt);
[c] = start codon mutated.
Color code for variants: green selective for 4-hydroxyhexan-2-one, blue for 3-hydroxy-2-methylpentanal, black non-selective, red inactive.

All unique positive mutants were collected in one 96-well master plate to build the hit library for subsequent screenings.
Table 3. Mutations collected in the hit library master plate

Line position	A	B	C	D	E	F
1	D6Q/T26L	D6Q/T26L	D6A/T26A	D6P/T26I	D6H	D6A/T26A
2	D6H/T26L	D6H/T26L	D6L	D6L	wt	wt
3	D6L/T26L	D6L/T26L	D6V/T26L	D6V/T26L		
4	D6A/T26V	D6A/T26V	D6E/T26A	D6E/T26A		
5	D6E	D6E	D6A	D6A		
6	D6E/T26L	D6E/T26L	D6V/T26V	D6V/T26V		
7	D6V/T26A	D6V/T26A	T26V	T26V		
8	D6E	D6H	D6L/T26A	D6L/T26A		
9	D6A/T26L	D6A/T26L	T26L	T26L		
10	D6E/T26V	D6E/T26V	D6A/T26I	D6A/T26I		
11	D6L/T26V	D6H/T26A	D6P/T26L	D6P/T26L		
12	D6H/T26A	D6L/T26V	D6Q/T26I	D6Q/T26I		
High performance TLC screening with acetone and propanal

The cell suspensions in the 96-well hit plate were mixed with a stock solution of acetone and propanal for final concentrations of 1230 mM and 75 mM. After incubation for 6 h (37 °C, 1200 rpm) cells were centrifuged (2250 × g, 30 min) and samples of 50 µL/well were transferred to a new plate and mixed with 50 µL MeOH per well. After shaking (1200 rpm) for 20 sec, the plate was centrifuged (2250 × g, 30 min). A sample from the liquid phase of each well (4 µL) was sprayed with 6 mm band width on TLC plates, which were developed with EtOAc/cyclohexane (1:1, v/v). Staining was performed by dipping into an anisaldehyde reagent solution followed by heating in an oven at 110 °C for 90 sec. Plates were densitometrically analysed at 600 nm using the CAMAG-Scanner.

Figure 12. HPTLC screening of the D6X/T26X hit library with acetone and propanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution.
Table 4. Densitometric analysis at 600 nm

Lane A	Mutation	Color density	Lane C	Mutation	Color density
1	D6Q/T26L	1806	1	D6A/T26A	23472
2	D6H/T26L	2329	2	D6L	26092
3	D6L/T26L	2578	3	D6V/T26L	6992
4	D6A/T26V	6619	4	D6E/T26A	25200
5	D6E	13941	5	D6A	27249
6	D6E/T26L	5473	6	D6V/T26V	2807
7	D6V/T26A	13201	7	T26V	11198
8	D6H	14976	8	D6L/T26A	21022
9	D6A/T26L	3557	9	T26L	8155
10	D6E/T26V	5671	10	D6A/T26I	3585
11	D6L/T26V	6246	11	D6P/T26L	1373
12	D6H/T26A	13333	12	D6Q/T26I	3928

Analysis from rescreening

Position	mutation	Color density at R_f 0.1	Density difference % related to D6E
A5	D6E	15168	100
A8	D6H	16830	111
F2	wt	3924	26
D2	D6L	18365	121
D5	D6A	15150	100
A7	D6V/T26A	9083	60
A12	D6H/T26A	7489	49
C1	D6A/T26A	16521	109
D4	D6E/T26A	3799	25
D7	T26V	604	4
D8	D6L/T26A	5500	36
High performance TLC analysis for propanal self aldolization

The cell suspensions in the 96-well hit plate were mixed with propanal for a final concentration of 75 mM. After incubation for 6 h (37 °C, 1200 rpm) cells were centrifuged (2250 × g, 30 min) and samples of 50 μL/well were transferred to a new plate and mixed with 50 μL MeOH per well. After shaking (1200 rpm) for 20 sec, the plate was centrifuged (2250 × g, 30 min). A sample from the liquid phase of each well (4 μL) was sprayed with 6 mm band width on TLC plates, which were developed with EtOAc/cyclohexane (1:1, v/v). Staining was performed by dipping into an anisaldehyde reagent solution followed by heating in an oven at 110 °C for 90 sec. Plates were densitometrically analysed at 615 nm using the CAMAG-Scanner.

Figure 13. HPTLC screening of the D6X/T26X hit library with propanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution.
Table 5. Densitometrical analysis at 615 nm

Line A	Mutation	Color density	Line C	Mutation	Color density
1	D6Q/T26L	10168	1	D6A/T26A	12428
2	D6H/T26L	7092	2	D6L	2012
3	D6L/T26L	2385	3	D6V/T26L	6550
4	D6A/T26V	10373	4	D6E/T26A	12337
5	D6E	5563	5	D6A	8854
6	D6E/T26L	10249	6	D6V/T26V	223
7	D6V/T26A	7608	7	T26V	5250
8	D6H	682	8	D6L/T26A	1079
9	D6A/T26L	1066	9	T26L	7117
10	D6E/T26V	5852	10	D6A/T26I	5792
11	D6L/T26V	643	11	D6P/T26L	4402
12	D6H/T26A	11431	12	D6Q/T26I	6309

Analysis from rescreening

position	Mutation	Color density	Density % relative to DERA F200I
A1	D6Q/T26L	10366	103
A6	D6E/T26L	9937	99
A12	D6H/T26A	8708	87
C1	D6A/T26A	13584	136
C4	D6E/T26A	14817	148
F1	D6P/T26I	10674	107
F2	wt	1095	11
H3	DERA F200I	10016	100
A8	D6H	840	8
A4	D6A/T26V	14025	140
High performance TLC analysis for acetone and isopentanal

The cell suspensions in the 96-well hit plate were mixed with acetone and isopentanal for final concentrations of 1230 mM and 75 mM, respectively. After incubation for 6 h (37 °C, 1200 rpm) cells were centrifuged (2250 × g, 30 min) and samples of 50 µL/well were transferred to a new plate and mixed with 50 µL MeOH per well. After shaking (1200 rpm) for 20 sec, the plate was centrifuged (2250 × g, 30 min). A sample from the liquid phase of each well (4 µL) was sprayed with 6 mm band width on TLC plates, which were developed with EtOAc/cyclohexane (1:1, v/v). Staining was performed by dipping into an anisaldehyde reagent solution followed by heating in an oven at 110 °C for 90 sec. Plates were densitometrically analysed at 450 nm using the CAMAG-Scanner.

Figure 14. HPTLC screening of the D6X/T26X hit library with acetone and isopentanal, TLC development with cyclohexane/EtOAc, 1:1. Staining with anisaldehyde solution.
Table 6. Densitrometrical analysis at 450 nm

Line B	Mutation	Color density	Line C	Mutation	Color density
1	D6Q/T26L	510	1	D6A/T26A	2505
2	D6H/T26L	432	2	D6L	12757
3	D6L/T26L	1013	3	D6V/T26L	547
4	D6A/T26V	2416	4	D6E/T26A	6398
5	D6E	8534	5	D6A	7422
6	D6E/T26L	2811	6	D6V/T26V	352
7	D6V/T26A	6472	7	T26V	5000
8	D6H	17840	8	D6L/T26A	3196
9	D6A/T26L	917	9	T26L	3044
10	D6E/T26V	4424	10	D6A/T26I	706
11	D6H/T26A	5770	11	D6P/T26L	321
12	D6L/T26V	2455	12	D6Q/T26I	3193

Analysis from rescreening

position	Mutation	Color density	Density % relative to D6H
E2	wt	5633	23
F1	D6A/T26A	2505	10
F2	wt	7060	29
C2	D6L	21882	89
A8	D6H	24484	100
A5	D6E	13834	57
C5	D6A	9717	40
A7	D6V/T26A	7238	30
13 Synthesis and NMR spectroscopic analysis

13.1 Synthesis of (R)-4-hydroxyhexan-2-one

In the reaction vessel lyophilized whole cells of *E. coli* BL21, previously cultivated for expression of FSA D6E (250 mg, equivalent to 15 mg of pure FSA) were suspended in PBS buffer (15 mL, pH 7.0). Acetone (4 mL, 54.5 mmol), freshly distilled propanal (1 mL, 13.9 mmol), and DTT (2 mM) were added. The suspension was shaken on a rotary shaker at 21 °C for 4 days, then centrifuged at 3087 × g for 20 min. The supernatant was extracted with diethyl ether (3 x 20 mL), and the combined organic layers were dried over MgSO₄, filtered, and the solvent evaporated under vacuum. The oily residue containing almost pure product (550 mg, 33.9%) was analyzed by NMR spectroscopy.

![Figure 15. 1H NMR spectrum of (R)-4-hydroxyhexan-2-one from acetone and propanal by FSA D6E catalysis](image)

1H NMR (300 MHz, MeOD): δ = 1.05 (t, 3H, J₆,₅ = 7.5 Hz, H-6), 1.58 (m, 2H, H-5), 2.29 (s, 3H, H-1), 2.68 (d, 2H, J₃,₄ = 6.4 Hz, H-3), 4.06 (tt, 1H, H-4). 13C NMR (75 MHz, MeOD): δ = 10.24 (C-6), 30.80 (C-1), 30.93 (C-5), 51.23 (C-3), 70.05 (C-4), 210.80 (C-2).
13.2 Synthesis of (R)-4-hydroxy-6-methylheptan-2-one

In the reaction vessel lyophilized whole cells of *E. coli* BL21, previously cultivated for expression of FSA D6E (191 mg, equivalent to 11 mg of pure FSA) were suspended in PBS buffer (15 mL, pH 7.0). Acetone (4 mL, 54.5 mmol), freshly distilled isopentanal (1 mL, 9.3 mmol), and DTT (2 mM) were added. The suspension was shaken on a rotary shaker at 21 °C for 4 days, then centrifuged at 3087 × g for 20 min. The supernatant was extracted with diethyl ether (3 x 20 mL), and the combined organic layers were dried over MgSO₄, filtered, and the solvent evaporated under vacuum. The oily residue, containing almost pure product (284 mg, 21.2%), was analyzed by NMR spectroscopy.

![Figure 16. 1H NMR spectrum of (R)-4-hydroxy-6-methylheptan-2-one from acetone and isovaleraldehyde](image)

1H NMR (300 MHz, CDCl₃): \(\delta = 0.87 \) (d, 6H, \(J_{6,1'7} = 6.6 \) Hz, H-1’/7), 1.09 (ddd, 1H, \(J_{5a,5b} = 13.7, J_{4,5b} = 4.4, J_{3b,6} = 8.6 \) Hz, H-5b), 1.42 (dd, 1H, \(J_{5a,5b} = 13.7, J_{4,5a} = 9.0, J_{3a,6} = 5.5 \) Hz, H-5a), 1.74 (m, 1H, H-6), 2.13 (s, 3H, H-1), 2.47 (dd, 2H, \(J_{3a,3b} = 17.6, J_{3a,4} = 8.4 \) Hz, H-3a), 2.57 (dd, 2H, \(J_{3a,3b} = 17.6, J_{3b,4} = 3.6 \) Hz, H-3b), 4.08 (dddd, 1H, \(J_{4,5a} = 8.9 \) Hz, H-4). 13C NMR (75 MHz, CDCl₃): \(\delta = 22.06 \) (C-6), 23.35 and 24.39 (C-7/1’), 30.84 (C-1), 45.58 (C-5), 50.57 (C-3), 65.69 (C-4), 210.15 (C-2).
13.3 Synthesis of (2R,3R)-2-methylpentane-1,3-diol

The enzyme catalyst FSA D6A/T26I (35 mg) was dissolved in triethanolamine buffer (100 mL; 50 mM, pH 7.4) containing DTT (2 mM). After addition of freshly distilled propanal (1500 µL, 20.9 mmol) the vessel was stoppered and reaction mixture stirred at 20 °C for 3 days. Then CaCl₂ solution was added (1 mM final concentration) followed by proteinase K (51 U)⁶, and the pH adjusted to 7.0 using sat. aq NaHCO₃ solution. This mixture was incubated at 55 °C for 2 h during which the turbid solution became clear. The product was extracted with ethyl acetate (4 × 60 mL) with TLC control. The combined organic layers were dried (MgSO₄), filtered, and the solvent evaporated at 40 °C under vacuum. The oily residue was purified by silica column chromatography using cyclohexane–ethyl acetate (3:1) as eluent. The aldehyde (1 eq) was dissolved in MeOH (1.4 mL per mmol aldehyde) and treated portion wise with NaBH₄ (1.5 eq per mmol) with stirring at room temperature. After 2 h, 2 volumes of brine were added and a solid precipitated. The mixture was slowly treated with deionized water until the turbidity disappeared (ca. 4 mL/mL MeOH). The solution was extracted with ethyl acetate (6 × 20 mL; TLC control). The combined organic phases were dried (MgSO₄), filtered and concentrated under vacuum at 40 °C to give 130 mg pure product (10.6 %).

Figure 17. ¹H NMR spectrum of (2R,3R)-2-methylpentane-1,3-diol

¹H NMR (300 MHz, CDCl₃): δ = 0.79 (d, 3H, J = 7.05 Hz, H-5), 0.84 (t, 3H, J = 7.45 Hz, H-2'), 1.35 (m, 2H, H-4), 1.65 (m, 1H, H-2), 3.50 (m, 2H, H-3), 3.58 (m, 1H, H-1), 3.96 (brs, 2H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 9.90 (C-5), 10.57 (C-2'), 26.71 (C-4), 38.75 (C-2), 66.19 (C-1), 74.96 (C-3).
13.4 Synthesis of (3R)-2-methylpentane-1,3-diol

The enzyme catalyst FSA D6A/T26L (15 mg) was dissolved in triethanolamine buffer (200 mL, 50 mM, pH 7.4) containing DTT (2 mM). After addition of freshly distilled propanal (1.6 g, 27.89 mmol) the vessel was stoppered and reaction mixture stirred at 20 °C for 3 days. Work-up was performed as above to furnish the aldol product as an oily residue. The residue was dissolved in alkaline buffer (pH 9.0), allowed to stand for 10 min, and then reduced with NaBH₄ and worked up as above. The yellow oily residue gave the title compound (7.7 %) as a mixture of diastereoisomers, which was analyzed by NMR spectroscopy. The ratio of (2R,3R) to (2S,3R) or syn/anti was found to be ca. 1:2.

![Figure 18. 1H NMR spectrum of (3R)-2-methylpentane-1,3-diol](image)

(2R,3R)-2-methylpentane-1,3-diol

1H-NMR (300 MHz, CDCl₃): δ = 0.88 (m, 6H, H-1, H-5), 1.43 (m, 2H, H-4), 1.72 (m, 1H, H-2), 3.54 (m, 1H, H-3), 3.7-4.06 (m, 2H, H-1).

(2S,3R)-2-methylpentane-1,3-diol

1H-NMR (300 MHz, CDCl₃): δ = 0.88 (m, 6H, H-1, H-5), 1.43 (m, 2H, H-4), 1.95 (m, 1H, H-2), 3.7-4.06 (m, 3H, H-1, H-3).
13.5 Synthesis of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane

A sample of the diol was taken up in dry acetone (2.5 mL) followed by addition of dimethoxypropane (2.5 mL). To this was added molecular sieves (250 mg; 3 Å) and a catalytic quantity of p-TosOH. The vessel was closed with a septum and stirred at 20 °C for 2.5 h. After addition of satd NaHCO₃ solution (2.5 mL) the mixture was extracted using diethyl ether (3 × 5 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated under vacuum to furnish the acetal as an oil (300 mg, 29.9 %).

![Figure 19. 1H NMR spectrum of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane](image)

1H-NMR (300 MHz, CDCl₃/C₆D₆ 7:3): δ = 1.54 (t, 3H, J₃',₄' = 7.4 Hz, H-4'), 1.73 (d, 3H, J₅,₅' = 6.8 Hz, H-5'), 1.83 (m, 1H, H-5), 1.95 (ddq, 1H, H-3'a), 2.03 (s, 3H, H-1'), 2.14 (s, 3H, H-2'), 2.20 (ddt, 1H, J₃',₄' = 7.4 Hz, H-3'b), 4.16 (dd, J₅,₆b = 1.66 Hz, J₆a,₆b = 11.40 Hz, 1H, H-6a), 4.32 (ddd, 1H, J = 2.5, 3.5, 7.7 Hz, H-4), 4.56 (dd, J₅,₆a = 2.8, J₆a,₆b = 11.40 Hz, 1H, H-6b). 13C-NMR (75 MHz, CDCl₃/C₆D₆ 7:3): δ = 9.56 (C-4'), 10.33 (C-5'), 18.87 (C-1'), 29.81 (C-3'), 29.80 (C-2'), 31.31 (C-5), 66.65 (C-6), 72.82 (C-4), 98.22 (C-2).
Figure 20. NOESY spectrum of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane shows a coupling between H-4 and H-5 proving their syn configuration.
13.6 Synthesis of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane

The crude diastereomeric mixture of (3R)-2-methylpentane-1,3-diol synthetized above (1570 mg, 13.29 mmol) was taken up in dry acetone (38 mL) followed by addition of dimethoxypropane (38 mL). To this was added molecular sieves (7 g; 3 Å) and a catalytic quantity of p-TosOH. The vessel was closed with a septum and stirred at 20 °C for 2.5 h. After addition of satd NaHCO₃ solution (38 mL) the mixture was extracted with diethyl ether (3 × 80 mL).[7] The combined organic phases were dried (MgSO₄), filtered and concentrated under vacuum to furnish the acetal as an oil (384 mg, 18.2 %).

Figure 21. 1H NMR spectrum of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane

(4R,5S)-4-ethyl-2,2,5-trimethyl-1,3-dioxane (anti, major constituent)

1H-NMR (300 MHz, CDCl₃): $\delta = 0.72$ (d, 3H, $J_{5,5'} = 6.7$ Hz, H-5'), 0.90 (t, 3H, $J_{3',4'} = 7.4$ Hz, H-4'), 1.32 (m, 1H, H-3'a), 1.37 (s, 3H, H-1'), 1.40 (s, 3H, H-2'), 1.46 (m, 1H, H-3'b), 3.35 (ddd, $J = 2.7$, 8.0, 10.4 Hz, 1H, H-4), 3.46 (dd, 1H, $J_{6a,6b} = J_{5,6b} = 11.3$ Hz, H-6b), 3.66 (dd, $J_{6a,6b} = 11.6$, $J_{5,6a} = 5.1$ Hz, 1H, H-6a). 13C-NMR (75 MHz, CDCl₃): $\delta = 9.39$ (C-4'), 12.81 (C-5'), 19.31 (C-1'), 24.58 (C-3'), 25.91 (C-2'), 33.69 (C-5), 66.25 (C-6), 76.26 (C-4), 98.23 (C-2).
Published NMR spectra for the (4R,5S)-configured acetal prove the assignments.

Figure 22. Comparison of 1H NMR spectra for diastereomeric acetonides. a) Published spectrum for (4R,5S)-4-ethyl-2,2,5-trimethyl-1,3-dioxane; b) published spectrum for diastereomeric mixture of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane; c) spectrum of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane from FSA-catalyzed enzymatic synthesis.
13.7 Synthesis of \((4R,5R)-5\)-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane

The enzyme catalyst FSA D6A/T26L (35 mg) was dissolved in triethanolamine buffer (100 mL; 50 mM, pH 7.4) containing DTT (2 mM). After addition of freshly distilled butanal (400 µL, 20.9 mmol) the vessel was stoppered and reaction mixture stirred at 20 °C for 3 days. Then CaCl₂ solution was added (1 mM final concentration) followed by proteinase K (51 U), and the pH adjusted to 7.0 using satd aq NaHCO₃ solution. This mixture was incubated at 55 °C for 2 h during which the turbid solution became clear. The product was extracted using ethyl acetate (4 x 60 mL) with TLC control. The combined organic layers were dried (MgSO₄), filtered, and the solvent evaporated at 40 °C under vacuum. The oily residue was purified by silica column chromatography using cyclohexane–ethyl acetate (3:1) as eluent to give pure product (90 mg, 26.9%).

For stereochemical analysis, the aldehyde (1 eq) was dissolved in MeOH (1.4 mL per mmol aldehyde) and treated portion wise with NaBH₄ (1.5 eq per mmol) with stirring at room temperature. Work-up and acetal protection using dimethoxypropane in acetone with acid catalysis was essentially performed as above. Extraction of product was performed using cyclohexane, and purification was achieved by silica gel column chromatography (ethyl acetate–cyclohexane 1:10).
Figure 23. 1H NMR spectrum of (4R,5R)-5-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane

1H-NMR (300 MHz, CDCl$_3$/C$_6$D$_6$ 7:3): $\delta = 1.31$ (t, 6H, $J = 7.5$ Hz, H-5',-7'), 1.36 (m, 1H, $J = 10.5$ Hz, H-5), 1.66 (m, 2H, H-4a',-6a'), 1.72-1.85 (m, 2H, H-4b',-6b'), 1.77 (s, 3H, H-1'), 1.78 (s, 3H, H-2'), 1.90 (m, 1H, H-3a'), 2.12 (m, 1H, $J = 3.3$ Hz, H-3b'), 4.17 (dd, 1H, $J_{5,6a} = 1.75$ Hz, $J_{6a,6b} = 11.75$ Hz, H-6a), 4.24 (m, 2H, H-4, -6b). 13C-NMR (300 MHz, CDCl$_3$): $\delta = 12.06$ (C-7'), 14.06 (C-5'), 16.15 (C-4'), 18.83 (C-6'), 19.15 (C-1'), 29.79 (C-2'), 34.88 (C-3'), 39.11 (C-5), 62.63 (C-6), 71.94 (C-4), 98.44 (C-2). **ESI-MS**: m/z [M]$^+$ calculated for C$_{11}$H$_{22}$O$_2$ 186.1614, found 186.1617.
13.8 Synthesis of (4R)-5-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane with FSA

The diastereomer mixture was created by epimerization of C5 using base treatment of the aldol product in solution as above, followed by standard reduction and acetal protection (yield 93 mg, 73.5 %).

Figure 24. 1H NMR spectrum of diastereomeric mixture of (4R)-5-ethyl-2,2-dimethyl-4-propyl-1,3-dioxane
13.9 Synthesis of racemic 4-hydroxyhexan-2-one

A gas washing bottle was filled with propanal (12 mL), then connected to a second gas washing bottle filled with acetone (94 mL) and methanolic KOH solution (1 M, 6 mL) at –5 °C. A gentle stream of nitrogen was passed through the propanal bottle in order to slowly carry the aldehyde over into the acetone solution. When the propanal had completely evaporated, a solution of oxalic acid (300 mg in 10 mL MeOH, 2.38 mmol) was added to the reaction mixture for neutralization, upon which potassium oxalate precipitated. After filtration, remaining acetone was evaporated under vacuum. The remaining liquid was distilled at 10 mbar to give a mixture of 4-hydroxyhexan-2-one and 4-hydroxy-4-methylpentan-2-one (from self-aldol addition of acetone), which was used as a GC reference sample without further purification.

Figure 25. 1H NMR spectrum of 4-hydroxyhexan-2-one and 4-hydroxy-4-methylpentan-2-one

1H-NMR (300 MHz, CDCl$_3$): $\delta = 0.89$ (t, 3H, J(6/5) = 7.5 Hz, H-6), 1.37-1.48 (m, 2H, $J = 7.4; 2.0$ Hz, H-5), 2.12 (s, 3H, H-1), 2.52 (d, 2H, H-3), 3.91 (m, 1H, H-4). 13C-NMR (75 MHz, CDCl$_3$): $\delta = 9.80$ (C-6), 29.39 (C-1), 30.76 (C-5), 49.65 (C-3), 68.90 (C-4), 209.87 (C-2).
14 GC Analysis

14.1 Relative activity of different FSA variants in the formation of 4-hydroxyhexan-2-one

The *fsa* mutants D6L, D6L/T26A, D6A and D6E from the hit library were cultivated in 1.6 mL LB media (18 h, 30 °C, 900 rpm). After centrifugation (16000 × g, 30 sec) the cell pellets were resuspended in 1.6 mL LB media containing IPTG (0.5 mM) and incubated for 6 h (37 °C, 900 rpm). The cells were collected by centrifugation (16000 × g, 30 sec) and resuspended in TEA buffer (2 mL, 50 mM, pH 8.3), then propanal (40 mM) and acetone (680 mM) were added and the mixtures were incubated at room temperature. After periods of 40, 90 and 140 min the cells were removed by centrifugation (16000 × g, 30 sec) and an aliquot of the reaction volume (100 µL) was mixed with MeOH (900 µL). After 5 min this mixture was again centrifuged (16000 × g, 30 sec) and analyzed by GC.

![Graph showing relative activity of different FSA variants](image)

Figure 26. Relative activity of different FSA variants in the production of 4-hydroxyhexan-2-one

FSA variant	Relative activity in production of 4-hydroxyhexan-2-one in %
D6L	160
D6A	155
D6E	100
D6L/T26A	116

Table 7. Relative activity of different FSA variants in the production of 4-hydroxyhexan-2-one
14.2 Enantioselectivity of FSA D6E in the synthesis of 4-hydroxyhexan-2-one

Analytical samples of enzymatically prepared (4R)-hydroxyhexan-2-one and of racemic 4-hydroxyhexan-2-one (mixture with 4-hydroxy-4-methylpentan-2-one) and were dissolved in MeOH (1 µL each in 999 µL MeOH) and analysed by GC on a chiral stationary column.

Parameters	Value
Injector temperature:	230 °C
Detector temperature:	230 °C
Start temperature	80 °C
Final temperature:	230 °C
Isothermal phase	none
Temperature gradient	4 °C min⁻¹
Detector:	Flame ionization detector
Column:	Rt-βDEXsa™ (Restek), 0.25 mm x 30 m
GC device	GC 8000 Series FIONS Instrument
Carrier gas:	Nitrogen

Figure 27. GC analysis of racemic 4-hydroxyhexan-2-one (Rt: 19 min), mixture with 4-hydroxy-4-methylpentan-2-one (Rt: 15.4 min)
Figure 28. GC analysis of enzymatically produced (4R)-hydroxyhexan-2-one (Rt: 19 min)
14.3 Substrate selectivity of FSA variants by GC analysis

Cells grown in an Eppendorf vial for expression of the appropriate FSA variant were resuspended in TEA buffer (0.5 mL, 50 mM, pH 8.3) and mixed with a stock solution of acetone and propanal for final concentrations of 680 mM and 40 mM, respectively. After incubation at 37 °C (1 h, 900 rpm), the suspension was centrifuged (16000 × g, 30 sec) and an aliquot of the supernatant (100 µL) was diluted with MeOH (900 µL). After 5 min this solution was centrifuged (16000 × g, 30 sec) and analysed by GC.

Parameters	Values
Injector temperature:	200 °C
Detector temperature:	230 °C
Start temperature:	100 °C
Isothermal phase:	2 min
Final temperature:	200 °C
Temperature gradient:	20 °C min⁻¹
Detector:	Flame ionization detector
Column:	Rt-βDEXsa™ (Restek), 0.25 mm x 30 m
GC device	GC 8000 Series FISONS Instrument
Carrier gas:	Nitrogen
Figure 29. GC analysis of the FSA D6L catalyzed reaction with acetone and propanal after 1 h reaction time at 37° C.

Figure 30. GC analysis of the FSA D6H/T26L catalyzed reaction with acetone and propanal after 1 h reaction time at 37° C.
Table 8. Product analysis by GC for reactions catalyzed by different FSA variants with acetone and propanal\(^\text{[a]}\)

Variant	\(T_R\) of the GC area [min]	Selectivity	\(\text{ratio of 3.40/3.97}\)	\(\text{ratio of 3.97/3.40}\)	
		variant	area integrals (*10^3)		
D6L	3.40	510	27	18.27	0.05
D6H	3.97	229	7	28.78	0.03
D6L/T26A		198	11	17.04	0.06
D6L/T26V		75	14	5.12	0.20
D6A/T26L		45	376	0.12	8.27
D6E/T26L		79	335	0.24	4.21
T26L		64	257	0.25	3.98
D6H/T26L		23	234	0.10	10.09
D6P/T26I		30	212	0.14	7.03
D6E		191	200	0.95	1.05
D6A/T26I		15	181	0.09	11.60
D6P/T26L		14	158	0.09	10.63
D6A/T26A		21	158	0.13	7.52
D6V T26L		43	120	0.36	2.76
D6E/T26V		35	117	0.30	3.32
T26V		29	107	0.27	3.66
D6Q T26I		1	92	0	1.87
wt		23	14	1.66	0.60

[a] Color code: \textbf{blue} = selective for 3-hydroxy-2-methylpentanal, \textbf{green} = selective for 4-hydroxyhexan-2-one
14.4 Kinetic analysis of propanal / butanal homoaldolization by FSA variant D6A/T26L

Lyophilized FSA D6A/T26L (21 mg) was dissolved in 200 mL of TEA buffer (50 mM, pH 7.4) containing DTT (2 mM). The solution was divided into two equal portions; one was charged with propanal (1.6 mL, 223 mM), the other with n-butanal (2.0 mL, 221 mM). Both reaction mixtures were gently stirred at room temperature. At certain intervals, samples (100 µL) were withdrawn from each vessel, diluted with MeOH (900 µL), centrifuged and analyzed for product formation by GC.

Table 9. GC analysis of kinetic profiles for FSA catalyzed homoaldolization of propanal and butanal

Time [min]	GC area 4	GC area 12
0	0	0
128	214079	72395
229	334092	116938
1405	449323	170611
1778	445468	354952
2865	481846	427084
3215	482494	462616
4269	568304	463417

Figure 31. Kinetic profiles for conversion of propanal and butanal catalyzed by FSA variant D6A/T26L.
15 GC-MS

15.1 GC-MS (EI) analysis of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane

(4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane, produced with D6A/T26L was solved in MeOH (1 µl in 999 µl MeOH) and analysed through GC on a chiral column.

Figure 31. GC-MS analysis of (4R,5R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane produced with FSA D6A/T26L
15.2 GC-MS (EI) analysis (EI) of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane

An unpurified sample of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane (also containing the mixed acetal (E)-(1-methoxy-1-methylethoxy)-2-methyl-pent-2-ene) was dissolved in MeOH (1 μL in 999 μL MeOH) and analysed by GC on a chiral column.

Figure 32. GC-MS analysis (EI) of (4R)-4-ethyl-2,2,5-trimethyl-1,3-dioxane. The peak shown in dark color corresponds to the mixed acetal (E)-(1-methoxy-1-methylethoxy)-2-methyl-pent-2-ene).
15.3 GC-MS (EI) analysis of \((4R,5R)-5\text{-ethyl}-2,2\text{-dimethyl-4-propyl-1,3-dioxane}\)

\((4R,5R)\)-4-Ethyl-2,2,5-trimethyl-1,3-dioxane, produced by catalysis with D6A/T26L, was dissolved in MeOH (1 µL in 999 µL MeOH) and analysed by GC on a chiral stationary column.

Figure 33. GC-MS analysis of \((4R,5R)-5\text{-ethyl}-2,2\text{-dimethyl-4-propyl-1,3-dioxane}\) produced with FSA D6A/T26L
D-F6P assay for inhibitor identification

Assay components D-F6P (30 mM), NADH (125 mM), triosephosphate isomerase (13.45-38.4 U mL\(^{-1}\)) and glycerol-3-phosphate-dehydrogenase (1.45-3.82 U mL\(^{-1}\)) were dissolved in GlyGly buffer (50 mM, pH 7.0) in a 1 mL cuvette at room temperature. Absorbance change was monitored at 340 nm. After 60 sec equilibration FSA wt (175 µg mL\(^{-1}\)) was added and monitoring was continued. After another 140 sec potential effectors were added (Table 9) and the measurement continued.

Compound	Assay concentration [mM]	Residual activity [%]
Acetoin	10	95
Pyruvate	10	91
Isobutyraldehyde	10	90
Acetone	40	87
L-Glyceraldehyde	10	65
Hydroxyacetone	40	57
3-Hydroxypropanal	10	48
Dihydroxyacetone	40	47
Propanal	10	42
Formaldehyde	10	40
Acetaldehyde	10	18

Figure 34. Influence of different ketones on the FSA activity
Figure 35. Influence of different aldehydes on the FSA activity

17 References

[1] M. Schürmann, G. A. Sprenger, *J. Biol. Chem.* 2001, 276, 11055-11061.

[2] D. Hanahan, *J. Mol. Biol.* 1983, 166, 557-580.

[3] R. Roldan, I. Sanchez-Moreno, T. Scheidt, V. Helaine, M. Lemaire, T. Parella, P. Clapes, W.-D. Fessner, C. Guerard-Helaine, *Chem. Eur. J.* 2017, 23, 5005-5009.

[4] F. W. Studier, *Protein Express. Purif.* 2005, 41, 207-234.

[5] M. C. Pirrung, *The Synthetic Organic Chemists' Companion*, John Wiley & Sons, Inc., 2007.

[6] G. E. Jeromin, M. Bertau, *Bioorganikum. Praktikum der Biokatalyse*, Wiley-VCH, Weinheim, 2005.

[7] M. Hackh, M. Muller, S. Ludeke, *Chem. Eur. J.* 2013, 19, 8922-8928.

[8] M. Rale, S. Schneider, G. A. Sprenger, A. K. Samland, W.-D. Fessner, *Chem. Eur. J.* 2011, 17, 2623-2632.

18 Author Contributions

S. J. Investigation: Lead; Methodology: Lead; Validation: Lead; Visualization: Equal; Writing—original draft: Equal; Writing—review & editing: Equal

R. R. Investigation: Supporting

H. J. Investigation: Supporting

P. C. Conceptualization: Supporting

W.-D. F. Conceptualization: Lead; Funding acquisition: Lead; Project administration: Lead; Supervision: Lead; Visualization: Equal; Writing—original draft: Equal; Writing—review & editing: Equal.