Bachelor groups in primate multilevel society facilitate gene flow across fragmented habitats

Yu-Li Li,†, Lu Wang,†, Jin-Wei Wu, Xin-Ping Ye, Paul A. Garber, Ying Yan, Jia-Hui Liu, Bao-Guo Li,*, Xiao-Guang Qi,*

†Shaanxi Key Laboratory for Animal Conservation, College of Life Science, Northwest University, Xi’an, 710069, China; College of Life Science, Shaanxi Normal University, Xi’an, 710119, China; Anthropology Department, University of Illinois, Urbana, Illinois, 61801, USA; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Science, Kunming, 650223, China.

†These authors contributed equally to this work

*Address correspondence to Xiao-Guang Qi, E-mail: qixg@nwu.edu.cn, Bao-Guo Li, E-mail: baoguoli@nwu.edu.cn

Handling editors: Zhi-Yun Jia

Received on 31 October 2019; accepted on 10 February 2020

Abstract

In the face of ongoing habitat fragmentation, many primate species have experienced reduced gene flow resulting in a reduction of genetic diversity, population bottlenecks and inbreeding depression, including golden snub-nosed monkeys Rhinopithecus roxellana. Golden snub-nosed monkeys live in a multilevel society composed of several one male harem units that aggregate to form a cohesive breeding band, which is followed by one or more bachelor groups composed of juvenile, subadult, and adult male members. In this research we examine the continuous landscape resistance surface, the genetic diversity and patterns of gene flow among four isolated breeding bands and one all-male band in the Qinling Mountains, China. Landscape surface modeling suggested that the human activities and ecological factors severely limit the movement of individuals among breeding bands. Although these conditions are expected to result in reduced gene flow, reduced genetic diversity, and an increased opportunity for a genetic bottleneck, based on population genetic analyses of 13 microsatellite loci from 188 individuals inhabiting four isolated breeding bands and one all-male band,
we found high levels of genetic diversity but low levels of genetic divergence, as well as high rates of gene flow between males residing in the all-male band and each of the four breeding bands. Our results indicate that the movement of bachelor males across the landscape, along with their association with several different breeding bands, appears to provide a mechanism for promoting gene flows and maintaining genetic diversity that may counteract the otherwise isolating effects of habitat fragmentation.

Keywords: all-male band, gene flow, male dispersal, multilevel society, Rhinopithecus roxellana, social organization

In natural populations, genetic diversity is maintained by persistent migration, interbreeding avoidance and genetic fusion (Barrett and Schluter 2008; Orr 2005). However, with extensive human activities, natural habitats have become fragmented into small isolated units (Pfeifer et al. 2017), resulting in the formation of insular subpopulations of individual animal species (Coltman 2005; Liu et al. 2009). Such situations restrict the movement of individuals across populations (Lande 1993), leading to the increased risk of inbreeding depression and the occurrence of genetic bottlenecks (Charlesworth and Willis 2009; Hedrick and Garcia-Dorado 2016; Trewick et al. 2017). Notable examples include the gray wolf Canis lupus (Leonard et al. 2005), the northern elephant seal Mirounga angustirostris (Weber et al. 2000), the moose Alces alces (Broders et al. 1999), and several species of nonhuman primate. At present, some 60% of the 504 living primate species are listed as Vulnerable, Endangered, or Critically Endangered and over 75% of all primate populations are in decline (Estrada et al. 2017). In most cases, population decline has resulted in a marked decrease in genetic diversity. However, there remain a small number of primate species, that despite a recent reduction in population size, maintain relatively high genetic diversity in the face of habitat fragmentation (Quéméré et al. 2010; Swedell 2011).

Several common factors associated with social, behavioral, and biological adaptability appear to enable these “resilient” species to persist and maintain genetic diversity in highly fragmented and human disturbed habitats (Arseneau et al. 2015; Parrish and Edelstein-Keshet 1999; Silk 2007). Among primates, a small number of taxa including hamadryas baboons Papio hamadryas, geladas Theropithecus gelada, Guinea baboons Papio papio, Yunnan snub-nosed monkeys Rhinopithecus bieti, black snub-nosed monkeys R. strykeri, Guizhou snub-nosed monkeys R. brelichi, golden snub-nosed monkeys R. roxellana, and possibly humans have evolved a modular or tiered multilevel society (Dyble et al. 2016; Goffe et al. 2016; Grueter et al. 2017). A multilevel society is characterized by several independent social and breeding units nested within a larger community that can number several hundred individuals (Shultz et al. 2011; Xiang et al. 2014). As the utilization of space and resources can be optimized by the joint actions of individuals who live in groups, group members may acquire multiple benefits beyond those obtain by solitarily
individuals (Dyble et al. 2015; Dyble et al. 2016; Macfarlan et al. 2014; van Cise et al. 2017). Thereby, animal species with multilevel society usually develop such flexibility to overcome ecological challenges and may avoid inbreeding risk (Grueter et al. 2017; Kirkpatrick and Grueter 2010; Schreier and Swedell 2012). However, studies on the evolutionary and social mechanisms of the maintenance of genetic diversity for multilevel society, remain limited.

Golden snub-nosed monkeys, represent an Endangered species of Asian colobine or leaf-eating primate that was once widely distributed across central and southern China (Li et al. 2003). Today, however, they exist in only three isolated mountainous regions in in central and northwest China (Minshan, Shennongjia and Qinling Mountains) (Fang et al. 2018; Li et al. 2002; Long and Richardson 2008). Golden snub-nosed monkeys exhibit a special social organization described as a modular or the multilevel society, which is composed of four levels: the unit, band, herd and troop (Grueter et al. 2012; Qi et al. 2010; Qi et al. 2014; Ren et al. 2018). The most basic level of golden snub-nosed monkey social organization is formed by one adult male, multiple adult females, subadult females, juveniles and infants, and is called a one male unit or harem (Grueter and van Schaik 2010; Qi et al. 2009; Zhao et al. 2016). Several one male units feed, forage, rest, and travel together and form a breeding band (Qi et al. 2009). Bachelor males, including juveniles, subadults, and adults aggregate into an all-male unit (Qi et al. 2017). Several all-male units may form an all-male band that shadows multiple breeding bands (Qi et al. 2014; Qi et al. 2017). The all-male band consists of males waiting for reproductive opportunities and former breeding males whose one male unit has been taken over by another male (Qi et al. 2017). The breeding bands and their associated all-male band together form a herd that occasionally interacts with other independent bands or herds to form a large troop (Qi et al. 2014).

The population of golden snub-nosed monkeys inhabiting the Qinling Mountains, exploit a region of high biodiversity that has been environmentally altered by extensive human exploitation and ecological damage (Oates et al. 1994). An expanding lumber industry and the conversion of natural forest to agricultural and farm land during the last century have resulted in unprecedented reduction and fragmentation of suitable habitat for several important animal and plant species (Li et al. 2002; Long and Richardson 2008). In recent years, a large number of roads, expressways and high-speed railways have been constructed in the area. Due to both ecological and anthropogenic resistance, populations of the giant panda Ailuropoda melanoleuca and the golden takin Budorcas taxicolor have become isolated into small and fragmented subpopulations in the Qinling Mountains (Zeng et al. 2005; Zhang et al. 2006). These same anthropogenic disturbances have affected range size, quality and connectivity of the natural habitats for the 39 troops of snub-nosed monkeys that remain in the Qinling Mountains (Li et al. 2000). However, a recent study indicated that the genetic diversity and effective population size of R. roxellana in the Qinling Mountain has not significantly decreased (Huang et al. 2016). Two other studies have hypothesized that the transfer of adult males among different breeding
bands is likely to play a critical role in promoting genetic exchanges between otherwise highly fragmented populations (Huang et al. 2017; Qi et al. 2014), implying that the evolution and adaptive function of a multilevel society, including the existence of an all-male band, serves to provide a reservoir of genetically distinct adult males that can increase gene flow under conditions of habitat fragmentation.

In the present study, we test the hypothesis that despite living in highly fragmented habitats, the multilevel society of golden snub-nosed monkeys facilitates the movement of bachelor males across otherwise semi-isolated modular social units resulting in a system of dynamic gene exchange and the maintenance of genetic diversity. We accomplish this by presenting genetic evidence that bachelor males from different natal breeding bands commonly transfer into the all-male band, resulting in an opportunity for gene flow and high levels of genetic diversity between isolated subpopulations within this multilevel society. By linking the evolution of this specialized social system with male reproductive strategies that function to promote gene flow, this research offers new insights into the benefits of group living.

Materials and Methods

Study group and Genetic sampling

Our research site is located on the northern slope of the Qinling Mountains in the Zhouzhi National Nature Reserve, China (ZNNR, 108°14’ - 108°18’ E, 33°45’ - 33°50’ N, Figure 1A). The region has a temperate climate and ranges in elevation from 1,400 to 2,890 m in elevation a.s.l. The annual average temperature is 10.7 °C, and the annual average rainfall is 894 mm (Li et al. 2000).

There were four breeding bands and one all-male band in the study area during our study (Li et al. 2000). The HSG breeding band (HSG-BB) and the GTS breeding band (GTS-BB) from the East Ridge Troop, and the GNG breeding band (GNG-BB) and the DJF breeding band (DJF-BB) from the West Ridge Troop. The two troops are separated by the Nancha River. The GNG all-male band (GNG-AMB) principally shadowed the GNG-BB, but had occasional contact with the other three breeding bands. Due to the difficulty associated with following the monkeys across steep cliffs and mountainous terrain, it took one and a half years to collect fecal and hair samples used for genetic analysis (December 2014 to March 2016).

The four breeding bands analyzed in this study varied in size and compositions. There were 15 one-male units in the GNG-BB, 12 one-male units in the DJF-BB, 11 one-male units in the HSG-BB and 10 one-male units in the GTS-BB. The size, age and sex composition of each breeding bands and the all-male band are reported in Table 1. The
GNG-AMB, which was composed of 12 adult, 14 sub-adult and 14 juvenile males, travelled independently, but maintained a close spatial association to the GNG-BB, resulting in a high degree of social affinity and spatial overlap. The GNG herd was habituated to the presence of researchers and had been provisioned for more than twenty years. Thus, we were able to maintain close proximity to the monkeys and identify each individual based on pelage color, body size, sex and idiosyncratic physical traits. The monkeys were categorized into four age/sex classes (Qi et al. 2014; Qi et al. 2009), including adult males and females (adult males reach maturity at 7 years of age and adult females reach maturity at 5 years of age), sub-adults (females are subadults at age 3-4 and males are subadults from ages 5-7 years old), juveniles (females aged from 1-3 and males aged 1-5), and infants (less than 12 months) (Qi et al. 2009).

Both fecal and hair samples were collected from all individuals in the GNG-AMB, including 12 adults, 14 sub-adults and 14 juveniles, as well from 72 adults in the GNG-BB (15 males and 57 females). Because the monkeys in the remaining three breeding bands were not habituated, we were able only to collect fecal samples from unidentified individuals.

Fresh fecal samples were stored in DETs (20% DMSO, 0.25 M sodium-EDTA, 100 mM Tris·HCl, pH 7.5, and NaCl to saturation) solution at -20°C. A stick with adhesive tape was used to collect hair samples. It was made from an 80 x 6 cm wooden board covered with glue and baited with a fruit reward. In the process of grabbing the fruit, hair from the monkey’s hand and arm adhered to the glue. The collected samples were then stored in silica gel and then dried at room temperature.

Molecular methods

Follicle DNA was extracted with proteinase K digestion (Shenggon, Shanghai) in a PCR compatible buffer, whereas fecal DNA was extracted using QIAamp DNA Stool Mini Kits (Qiagen, German). All DNA samples were amplified at 19 tetra-nucleotide microsatellite loci (please see Table S1) in an ABI Veriti Thermal Cycler with the following processes: 95 °C for 5 min, followed by 30 cycles (94 °C for 30s, 55-60 °C for 45s, 72 °C for 45 s), and 72 °C for 10 min. PCR products were segregated with an ABI PRISM 3100 Genetic Analyser, and their sizes relative to the internal size standard (ROX-labeled HD 400) were determined with GENEMAPPER V3.7 (Applied Biosystems). Homozygous genotypes were confirmed by five independent replicates, which were observed and repeated in at least three separate reactions (Taberlet et al. 1996). Replicates were detected by POLYRELATEDNESS V1.6 (Huang et al. 2016) and excluded from subsequent analyses. To avoid the possibility of analyzing the same individual twice, a probability of identity analysis was carried out using the software Cervus V3.0.7 (Kalinowski et al. 2010). In addition, for each locus, if the samples of missing data occupied more than 20% of all samples, this locus was discarded. Furthermore, to prevent
genotyping errors, such as false alleles, scoring errors and allelic dropouts, the software MICRO-CHECKER V2.2.3 (van Oosterhout et al. 2010) was employed.

Genetic diversity

Statistical analysis of genetic diversity included observed and expected heterozygosity, polymorphic information content, allelic richness, and Wright’s inbreeding coefficient at each locus for each band – and was calculated with GENALEX V6.5 (Peakall et al. 2003). We performed a Hardy-Weinberg equilibrium (HWE) test for each band at each locus with Fisher’s exact tests in GENEPOP V4.3 (Rousset 2008). Significance thresholds were adjusted for multiple tests by sequential Bonferroni procedures (Rice 1989).

We employed three methods to test the presence of a bottleneck within each breeding band and the GNG-AMB. The first method was based on deviations of allele frequencies in the calculations of heterozygosity, where we used signed-test and two-tailed Wilcoxon test in Bottleneck V1.2.02 (Piry et al. 1999). We considered two types of mutation models: (i) a two-phase model (TPM) with 95% stepwise mutations and a variance of 12, and (ii) a stepwise mutation model (SMM with iteration number set to 1,000). The second method involved calculating the GW coefficient (Garza and Williamson 2001) in ARLEQUIN V3.6 (Excoffier and Lischer 2010). Finally, we performed an effective population size change estimation, which was inferred with Bayesian computation by the DIYABC v2.0 software (Jean-Marie et al. 2008).

Population structure

To evaluate the significance of genetic differentiation, the pairwise F_{ST} between the four golden snub-nosed monkey breeding bands was calculated with 100,000 permutations using ARLEQUIN V3.6 (Excoffier and Lischer 2010). Significance levels were assessed via permutation tests, where the number of steps in the Markov chain was set to 100,000, and the number of burn-in steps was set to 10,000. Nei’s standard genetic distances D (Nei 1972) were calculated in GENALEX V6.5 (Peakall et al. 2003). We performed a hierarchical cluster analysis based on genetic differentiation and genetic distance using the UPGMA method (unweighted pair group method with arithmetic mean).

In addition, the common model of Isolation by distance (IBD) was examined using the Mantel test implemented in the program GENALEX V6.5 (Peakall and Smouse 2012). Generally, Nei’s genetic distance and the geographic distance were used as input, and their correlation significance was assessed by conducting 1000 permutations.
A Bayesian cluster analysis was performed using STRUCTURE V2.3.4 (Pritchard et al. 2000) to examine population genetic structure. This method estimates the likelihoods of various numbers of genetically distinct groups (K) in the samples by assigning individuals into one or more groups in a manner that minimizes each group’s deviation from Hardy-Weinberg equilibrium. The program was run for K from 1 to 5 under the admixture model with correlated allele frequencies. For each run, we used 700,000 MCMC cycles, following 100,000 burn-in cycles. Ten replications were performed for each K, to test whether the number of iterations was sufficient. We set the iteration number from 700,000 MCMC cycles to 800,000, and we found that the Log likelihood value was saturated (P = 0.43, likelihood ratio test, towards the mean value of Ln likelihood values derived from both iteration numbers of 700,000 and 800,000). Thus, our saturation analysis showed that the number of iterations was sufficient. The optimal K was estimated according to Evanno et al’s the delta K (ΔK) method (Evanno et al, 2005). The evaluation of the appropriate K is presented in the Supporting Information, Figure S1).

Population assignment

Population assignment was to calculate the log likelihood for each individual, with allele frequencies of the respective population (Paetkau et al. 2010). Individuals were assigned to the population with the highest likelihood, which is an effective technique to identify the natal population among individuals. We calculated the posterior probabilities for each individual that originated from the four different breeding bands with the Bayes equation:

\[
\Pr(P_j|G_i) \propto \Pr(G_i|P_j) \Pr(P_j),
\]

where \(G_i\) is the genotypes vector of \(i\)th individual, and \(P_j\) is the \(j\)th breeding band, \(\Pr(P_j)\) is the number of individuals in \(P_j\) out of all breeding bands, and \(\Pr(G_i|P_j)\) is the probability of sampling an individual with a genotypes vector equal to \(G_i\) within \(P_j\); \(\Pr(G_i|P_j)\) can be obtained by taking the product of the genotypic frequencies across all loci:

\[
\Pr(G_i|P_j) = \prod_k \Pr(G_{ik}|P_j),
\]

where \(G_{ik}\) is the genotype of \(i\)th individual at \(j\)th locus, \(\Pr(G_{ik}|P_j)\) is the frequency of \(G_{ik}\) in \(P_j\):

\[
\Pr(G_{ik}|P_j) = \begin{cases}
 p_{ijka} & \text{if } G_{ik} \text{ is homozygous,} \\
 2p_{ijka}p_{ijkb} & \text{if } G_{ik} \text{ is heterozygous.}
\end{cases}
\]

Where \(a\) and \(b\) are the alleles within \(G_{ik}\), and \(p_{ijka}\), and \(p_{ijkb}\) are their frequencies in \(P_j\), respectively. For each individual, the breeding band with the highest posterior probability was considered to be the natal band of this individual. We used Chi-Squared goodness-of-fit tests to assess whether the distribution of individual origin was in accord with expectation, where the expected values were proportional to \(\Pr(P_j)\). We used the Originated Probability Coefficient (OPC) to describe the probable percentage of individuals from different origins within a breeding band.
Gene flow among bands

Gene flow among different bands was assessed using MIGRATE V3.1 (Beerli 2006). The amount and direction of gene flow were estimated from microsatellite genotypes by calculating mutation-scaled effective population size \(\theta \) (four times the effective population size multiplied by the mutation rate of per site in each generation), and mutation-scaled migration rate \(M \) (migration rate divided by mutation rate). Based on the continuous Brownian motion model, we implemented a pre-run with \(F_{ST} \) values to obtain the prior setting of \(\theta \) and \(M \). Five independent MCMC chains with 5,000,000 generations were used. We sampled every 100 steps under a constant mutation model, discarding the first 1,000,000 records as burn-in. The mode and 95% of the highest posterior density were estimated after checking for convergence.

Landscape resistance surface

We calculated the continuous landscape resistance surface to identify the degree to which local landscape elements limited the distribution or movement of \(R. \ roxellana \) within the study area. We modeled landscape resistance as a function of four landscape variables deemed to be potentially important for the species (unpublished data): elevation, distance to human disturbances, distance to rivers, and the enhanced vegetation index (EVI), as shown in Figure 3. Each landscape variable’s grid cell resistance value was assigned based on the frequency of species occurrence from the analysis of radio-tracking data of \(R. \ roxellana \) (unpublished data; see File S2). We assumed that all landscape variables had equal effects on the ranging and distribution of golden snub-nosed monkeys. Then the landscape resistance values were estimated as the averaged resistance values of all landscape variables, ranging from one (least resistance to movement) to 100 (greatest barrier to movement). All maps were processed in ArcGIS v10.2 (ESRI, 2010).

Results

Microsatellite dataset and Genetic diversity

We analyzed 19 microsatellites from 188 golden snub-nosed monkeys residing in four breeding bands and one all male band (sample sizes of each band are reported in Table 1). Details of these loci are presented in Supporting Information, Table S1. In the case of four loci (D19S248, D6S1036, D6S1040 and P115), samples of missing data accounted for
more than 20% of all samples (Supporting Information, Table S1), and thus these loci were discarded from our analysis. The MICRO-CHECKER analysis indicated that null alleles were likely present at loci D10S676 and D7S2204 across the GNG-AMB and the DJF-BB, respectively (Supporting Information, Table S2). We therefore removed these two loci from subsequent analyses. As for the remaining 13 highly polymorphic loci, the largest multi-locus probability of identity (PID) was 4.34E-09, and therefore our data set contained no identical samples. In addition, the Hardy–Weinberg equilibrium (HWE) test found no evidence of linkage disequilibrium (Supporting Information, Table S1).

Summary statistics for the genetic diversity analyses and genetic diversity indices can be found in Table 1. Genetic variability among the five bands was generally moderate, with the number of alleles per locus ranging from 3.15 to 3.92 (average = 3.50). The observed heterozygosity ranged from 0.513 to 0.573, with an average of 0.5556. The expected heterozygosity \(H_e\) ranged from 0.50 to 0.574 (average = 0.535). The polymorphism information content (PIC) ranged from 0.506 to 0.582 (average = 0.542), and the allelic richness for the five bands ranged from 2.15 to 2.46 (average = 2.31). Values of Wright’s inbreeding coefficient \(F_{IS}\) showed that the effects of inbreeding in the DJF-BB were relatively stronger than found in the other bands. In general, the effect of inbreeding among all five bands was weak.

Based on microsatellite data, we found no evidence that a genetic of bottlenecks had formed in any of the four breeding bands (Table 2; none of the sign or Wilcoxon tests suggested excess heterozygosity or deficiency in either SMM or TPM mutation models). The lowest \(P\) value is 0.108 (Wilcoxon test with TPM model in HSG-BB). \(GW\) coefficients of all bands exceeded the empirical value of 0.68 (Garza and Williamson 2001), and the lowest \(GW\) coefficient was 0.872 ± 0.220 (HSG-BB). Inferring population history with Bayesian computation similarly indicated no evidence that a genetic bottleneck had occurred in any of the four breeding bands (Supporting Information, Table S3).

Population structure

The matrices and dendrograms representing genetic relationships and identifying the strength of \(F_{ST}\) and \(D\) are presented in Figure 1B. The results of pairwise \(F_{ST}\) revealed relatively low genetic divergence among each of five bands \((F_{ST} < 0.10)\), and the permutation test between each pair of bands (breeding and all male) was significant \((P < 0.05)\). Nei’s standard genetic distance ranged from 0.031 to 0.122; the largest distance was between the DJF-BB and the GTS-BB. \(F_{ST}\) and Nei’s \(D\) between the GNG-AMB and the GNG-BB was lower than between all other band pairs. Finally, our Mantel test analysis showed a significant correlation between geographic and genetic distance among all five bands \((r = 0.902, P = 0.019)\) (Figure S1).

Bayesian cluster results documented high levels of admixture among the two putative genetic clusters, with the
Evanno’s ΔK method indicating that the approximate K was maximized at $K = 2$ (Figure S2). The cluster results among these 5 bands are shown in Figure 1C (results for $K = 3$, 4 and 5 also are shown for comparison). In addition, we found similar genetic compositions between individuals in the GNG-AMB and the GNG-BB, indicating substantive gene flow between these two modular social units has occurred. Although allele frequencies in the other three breeding bands (DJF-BB, HSG-BB and GTS-BB) were significantly different from that of the GNG-AMB, Bayesian cluster revealed that DJF-BB, HSG-BB, DJF-BB, and GNG-AMB shared partial common genetic compositions, indicating gene flow has occurred between the all-male band and these three breeding bands (Figure 1C).

Population assignment

Population assignment analysis demonstrated that the members of the GNG-AMB originated unevenly from the four breeding bands (Figure 2A, $\chi^2 = 18.0$, $df = 3$, $P < 0.001$). The Originated Probability Coefficient (OPC) revealed that approximately half of the individuals came from the GNG-BB (OPC$_{\text{GNG-BB}} = 0.450$), with the remaining males in the GNG-AMB originating from the DJF-BB, HSG-BB and GTS-BB (OPC$_{\text{DJF-BB}} = 0.375$ vs. OPC$_{\text{HSG-BB}} = 0.150$ vs. OPC$_{\text{GTS-BB}} = 0.025$).

Gene flow among bands

The MIGRATE analysis revealed the existence of highly asymmetric gene flow between the GNG-AMB and the four breeding bands (θ and M are significantly greater than zero) (Figure 2B). The θ value was highest in the GNG-AMB. Allele movement between the GNG-AMB and the GNG-BB was higher than between the GNG-BB and the other three breeding bands. The M value is not especially noteworthy for the comparison between the GNG-AMB and the breeding bands ($M_{\text{GNG-BB}} > M_{\text{GTS-BB}} > M_{\text{HSG-BB}} > M_{\text{DJF-BB}}$). However, variation in the rate of gene migration from the breeding bands to the GNG-AMB was apparently greater.

Landscape resistance surface

The continuous landscape resistance surface modeling suggests that the construction of roads, farms and villages, along with natural ecological barriers (river, high elevations) highly restrict the distribution and patterns of habitats utilization of golden snub-nosed monkeys (Figure 3). As shown in Figure 3, the habitats occupied by each of the four breeding bands of golden snub-nosed monkeys were highly fragmented. Recent anthropogenic changes (roads, farms and villages)
Li et al.: Primate socialization facilitates gene flow
to the landscape appear to have permanently isolated the GNG-BB and the HSG-BB, and rivers and high mountains have, over some extended period of time, served as effective barriers severely limiting the ability of individuals from the GNG-BB to transfer into the DJF-BB or the GTS-BB.

Discussion

In the present study, we examined genetic diversity, gene flow and population assignment in an Endangered species of nonhuman primate, the golden snub-nosed monkey, that inhabits a highly anthropogenically disturbed and fragmented mountainous habitat in central China. We combined genetic data with continuous landscape resistance surface modeling to study the degree to which human activities and ecological factors restrict the immigration of individuals among breeding bands. In addition, we examined whether the all-male band, which represents an important component of the snub-nosed monkey multilevel social system serves to promote gene exchanges and maintain genetic diversity across otherwise isolated breeding bands.

The continuous landscape resistance surface modeling indicated that ecological/anthropogenic resistance severs as a filter limiting the ability of individuals to migrate directly between the four studied breeding bands, leading to a negative effect on the individual transfer among the four breeding bands. This is supported by satellite telemetry data of GPS collared golden snub-nosed monkeys indicating that each studied breeding band inhabited a distinct range or territory that only minimally overlapped with other breeding bands, resulting in limited opportunities for individuals to transfer (Qi et al. 2014). Moreover, human constructed barriers such as rivers, villages, logging roads and farmlands have limited the ability of breeding bands to freely move across this fragment landscape for decades or hundreds of years (Wang et al. 2014). We therefore expected this would result in low population-level genetic diversity and high population-level genetic differentiation across breeding bands (Huang et al. 2016). For example, the Xiaowangjian forest lumbering station was established in this area in 1978, with the formation of a logging road in the area occupied by the East Ridge Troop (HSG-BB and GTS-BB) (Li et al. 2000). This road is frequently used by both the logging industry and local traffic, particularly farmers, and represents a barrier to the free movement of each of the four breeding bands. Although these barriers are not completely impenetrable, their impact may increase the costs of individual transfer among the studied breeding bands (Bester-van der Merwe et al. 2011; Robson and Blouindemers 2013; Greenwood 1980; Ehrlen and Eriksson 2000). Moreover, the topography of the Qinling Mountains, which is dominated by high altitude temperate forest habitats, and open areas of fragmented and cleared forests containing villages and agricultural fields, as well as the threat of domesticated animals such as dogs may greatly increase the risks
and decrease the opportunities for successful dispersal (Wang et al. 2014). Either enhanced mortality risk reduce the occurrence of successful transfer, or individual are choose not to disperse due to such cost (Lin and Batzli 2004). Thus, the expected result is reduced gene flow, reduced genetic diversity, and an increased opportunity for a genetic bottleneck.

However, we found no evidence of genetic bottlenecks, high levels of genetic diversity, low levels of genetic divergence or similar genetic backgrounds in golden snub-nosed monkeys. Population structure results showed that K =2 was the most probable number of genetic clusters, indicating that the five isolated bands could be divided to two genetically distinct population, implying high levels of admixture and high levels of gene flow among these bands. This, along with the results of MIGRATE V3.1 software indicated the possibility of high levels of gene flow between the all-male band and all breeding bands. Population assignment analysis showed that the GNG-AMB was comprised of bachelor males who originated from each of four breeding bands, indicating the possibility of gene flow among these bands. Overall, all these evidences confirmed persistent gene flow among the breeding bands, as well as between the all-male band and each of the breeding bands.

Gene flows are likely to be the result of the movement of bachelor males among the study bands promoting genetic diversity. Mating strategies adopted by bachelor male golden snub-nosed monkeys include periodic attempts to takeover a one male unit and usurp the leader or breeding male position, attracting adult females to leave their one male unit, or engaging in sneaky copulations with harem females (Patzelt et al. 2014; Qi et al. 2014; Qi et al. 2020; Smith et al. 2017). Bachelor male movements include young sexually immature males who migrated from their natal breeding band into the all-male band (primary transfer) (Chang et al. 2014; Huang et al. 2017; Yao et al. 2011); fully adult males who transferred from the all-male band back into their natal breeding band or to a neighboring breeding band and successfully take over an existing one-male unit, or sexually mature males who leave the all-male band in attempt to attract harem females to form a new one-male unit (breeding transfer); fully adult males who formed a temporary consort relationship with one-male unit females (temporary transfer) and older adult males who had left their previous breeding band and rejoined the all-male band after losing their residential position as an one-male unit leader male (Grueter et al. 2017). The dynamic movements of bachelor males into and out of the all-male band and breeding bands contributes to multidirectional gene flow that serves to maintain a high level of genetic diversity otherwise across semi-isolated populations. The results support the hypothesis that bachelor males residing in an all-male band can effectively mitigate inbreeding depression across fragmented landscapes.
Acknowledgments

We thank Zhouzhi National Nature Reserve for the permission of this study. We thank Zhi-Pang Huang, Kun Bian, and Qi Li from NWU for their assistance in genetic sample. We thank Prof. Ruliang Pan, Dr. Kang Huang and Dr. Shi-Yi Tang for their contributions to the early draft of this manuscript. We appreciate the reviewers’ advice to improve this article. The study was funded by the National Natural Science Foundation of China (31730104 and 31622053), the Promotional project for Innovation team, the Department of Science and Technology of Shaanxi Prov. China (2018TD-017), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31020000), and the National Key Programme of Research and Development, Ministry of Science and Technology of China (2016YFC0503200).

Author Contributions

X-G Q conceived and designed the study. Y-L L performed the experiments. Y-L L wrote the paper. L W and P-A G revised the paper. X-P Y and J-W W reanalyzed the genetic data. B-G L provided the experimental materials. All authors provided input for the paper and approved the final version.

Ethical standards

All research protocols reported here adhere to the regulatory requirements and were approved by the animal care committee of the Wildlife Protection Society of China (SL-2012-42). The genetic sampling received the clearance from, and complied with the protocols approved by, the specialist committee of the State Forestry Administration of China (SFA-LHXZ-2012-2788), and Chinese Academy of Science.

References

Arseneau TJM, Taucher AL, van Schaik CP, Willems EP, 2015. Male monkeys fight in between-group conflicts as protective parents and reluctant recruits. Animal Behaviour 110:39–50.

Barrett RDH, Schluter D, 2008. Adaptation from standing genetic variation. Trends in Ecology & Evolution 23:38–44.

Beerli P, 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345.

Bester-van der Merwe AE, Roodt-Wilding R, Volckaert FAM, D’Amato ME, 2011. Historical isolation and hydrodynamically
Li et al.: Primate socialization facilitates gene flow
constrained gene flow in declining populations of the South-African abalone Haliotis midae. Conservation Genetics 12:543–555.

Broders HG, Mahoney SP, Montecvecchi WA, Davidson WS, 1999. Population genetic structure and the effect of founder events on the genetic variability of moose Alces alces in Canada. Molecular Ecology 8:1309–1315.

Chang ZF, Yang BH, Vigilant L, Liu ZJ, Ren BP et al., 2014. Evidence of male-biased dispersal in the endangered Sichuan snub-nosed monkey Rhinopithecus roxellana. American Journal of Primatology 76:72–83.

Charlesworth D, Willis JH, 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10:783–796.

Coltman DW, 2005. Differentiation by dispersal. Nature 433:23–24.

Dyble M, Salali GD, Chaudhary N, Page A, Smith D et al., 2015. Sex equality can explain the unique social structure of hunter-gatherer bands. Science 348:796–798.

Dyble M, Thompson J, Smith D, Salali Gul D, Chaudhary N et al., 2016. Networks of food sharing reveal the functional significance of multilevel sociality in two hunter-gatherer groups. Current Biology 26:2017–2021.

Ehrlen J, Eriksson O, 2000. Dispersal limitation and patch occupancy in forest herbs. Ecology 81:1667–1674.

Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E et al., 2017. Impending extinction crisis of the world’s primates: Why primates matter. Science Advances 3:e1600946.

Evanno G, Regnaut S, Goudet S, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620.

Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under linux and windows. Molecular Ecology Resources 10:564–567.

Fang G, Li M, Liu XJ, Guo WJ, Jiang YT, et al., 2018. Preliminary report on Sichuan golden snub-nosed monkeys Rhinopithecus roxellana roxellana at Laohegou Nature Reserve, Sichuan, China. Sci Rep 8:16183.

Garza JC, Williamson EG, 2001. Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10:305–318.

Goffe AS, Zinner D, Fischer J, 2016. Sex and friendship in a multilevel society: Behavioural patterns and associations between female and male guinea baboons. Behavioral Ecology and Sociobiology 70:323–336.

Greenwood PJ, 1980. Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28:1140–1162.

Grueter CC, Chapais B, Zinner D, 2012. Evolution of multilevel social systems in nonhuman primates and humans. International Journal of Primatology 33:1002–1037.

Grueter CC, Qi XG, Li BG, Li M, 2017. Multilevel societies. Current Biology 27:R984–R986.

Grueter CC, van Schaik CP, 2010. Evolutionary determinants of modular societies in colobines. Behavioral Ecology 21:63–71.
Hedrick PW, Garcia-Dorado A, 2016. Understanding inbreeding depression, purging, and genetic rescue. *Trends in Ecology & Evolution* **31**:940–952.

Huang K, Guo ST, Cushman SA, Dunn DW, Qi XG et al., 2016. Population structure of the golden snub-nosed monkey *Rhinopithecus roxellana* in the Qinling Mountains, central China. *Integrative Zoology* **11**:350–360.

Huang K, Ritland K, Dunn DW, Qi XG, Guo ST et al., 2016. Estimating relatedness in the presence of null alleles. *Genetics* **202**:247–260.

Huang ZP, Bian K, Liu Y, Pan RL, Qi XG et al., 2017. Male dispersal pattern in golden snub-nosed monkey *Rhinopithecus roxellana* in Qinling Mountains and its conservation implication. *Scientific Reports* **7**:46217.

Jean-Marie C, Filipe S, Beaumont MA, Robert CP, Jean-Michel M et al., 2008. Inferring population history with DIY ABC: A user-friendly approach to Approximate Bayesian computation. *Bioinformatics* **24**:2713–2719.

Kalinowski ST, Taper ML, Marshall TC, 2010. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. *Molecular Ecology* **16**:1099–1106.

Kirkpatrick RC, Grueter CC, 2010. Snub-nosed monkeys: Multilevel societies across varied environments. *Evolutionary Anthropology* **19**:98–113.

Lande R, 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. *The American Naturalist* **142**:911–927.

Leonard JA, Vilà C, Wayne RK, 2005. Legacy lost: Genetic variability and population size of extirpated us grey wolves *Canis lupus*. *Molecular Ecology* **14**:9–17.

Li BG, Chen C, Ji WH, Ren BP, 2000. Seasonal home range changes of the Sichuan snub-nosed monkey *Rhinopithecus roxellana* in the Qinling Mountains of China. *Folia Primatologica* **71**:375–386.

Li BG, Jia ZY, Pan RL, Ren BP, 2003. Changes in distribution of the snub–nosed monkey in China. In: Marsh LK ed. *Primates in Fragments: Ecology and conservation*. New York: Kluwer Academic/Plenum Press, 29–51.

Li BG, Pan RL, Oxnard CE, 2002. Extinction of snub-nosed monkeys in China during the past 400 years. *International Journal of Primatology* **23**:1227–1244.

Lin YK, Batzli GO, 2004. Emigration to new habitats by voles: The cost of dispersal paradox. *Animal Behaviour* **68**:367–372.

Liu ZJ, Ren BP, Wu RD, Zhao L, Hao YL et al., 2009. The effect of landscape features on population genetic structure in Yunnan snub-nosed monkeys *Rhinopithecus bieti* implies an anthropogenic genetic discontinuity. *Molecular Ecology* **18**:3831–3846.

Long YC, Richardson M, 2008. *Rhinopithecus roxellana*. IUCN Red List of Threatened Species.

Macfarlan SJ, Walker RS, Flinn MV, Chagnon NA, 2014. Lethal coalitionary aggression and long–term alliance formation among yanomamö men. *Proceedings of the National Academy of Sciences* **111**:16662–16669.
Li et al.: Primate socialization facilitates gene flow

Nei M, 1972. Genetic distance between populations. *The American Naturalist* **106**:283–292.

Oates JF, Davies AG, Delson E, 1994. The diversity of living colobines. In: Davies AG, Oates JF eds. *Colobine Monkeys: Their Ecology, Behaviour and Evolution*. Cambridge: Cambridge University Press, 45–73.

Orr HA, 2005. The genetic theory of adaptation: A brief history. *Nature Reviews Genetics* **6**:119–127.

Paetkau D, Slade R, Burden M, Estoup A, 2010. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. *Molecular Ecology* **13**:55–65.

Parrish JK, Edelstein-Keshet L, 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. *Science* **284**:99–101.

Patzelt A, Kopp GH, Ndao I, Kalbitzer U, Zinner D et al., 2014. Male tolerance and male-male bonds in a multilevel primate society. *Proceedings of the National Academy of Sciences* **111**:14740–14745.

Peakall R, Ruibal M, Lindenmayer DB, Tonsor S, 2003. Spatial autocorrelation analysis offers new insights into gene flow in the australian bush rat *Rattus fuscipes*. *Evolution* **57**:1182–1195.

Peakall R, Smouse PE, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. *Bioinformatics* **28**:2537–2539.

Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR et al., 2017. Creation of forest edges has a global impact on forest vertebrates. *Nature* **551**:187–191.

Piry S, Luikart G, Cornuet JM, 1999. Bottle neck: A computer program for detecting recent reductions in the effective size using allele frequency data. *Journal of Heredity* **90**:502–503.

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. *Genetics* **155**:945–959.

Qi XG, Garber PA, Ji WH, Huang ZP, Huang K et al., 2014. Satellite telemetry and social modeling offer new insights into the origin of primate multilevel societies. *Nature Communications* **5**:5296.

Qi XG, Grueter CC, Fang G, Huang PZ, Zhang J et al., 2020. Multilevel societies facilitate infanticide avoidance through increased extrapair matings. *Animal Behaviour*:https://doi.org/10.1016/j.anbehav.2019.12.014.

Qi XG, Huang K, Fang G, Grueter CC, Dunn DW et al., 2017. Male cooperation for breeding opportunities contributes to the evolution of multilevel societies. *Proceedings of the Royal Society B* **284**:20171480.

Qi XG, Li BG, Garber PA, Ji WH, Watanabe K, 2009. Social dynamics of the golden snub-nosed monkey *Rhinopithecus roxellana*: Female transfer and one-male unit succession. *American Journal of Primatology* **71**:670–679.

Qi XG, Zhang P, Li BG, Watanabe K, 2010. The diversity of polygynous social systems among multi-level societies in non-human primates. *Acta Theriologica Sinica* **30**:322–338.

Quéméré E, Crouau-Roy B, Rabarivola C, Louis Jr EE, Chikhi L, 2010. Landscape genetics of an endangered lemur *Propithecus*
Li et al.: Primate socialization facilitates gene flow

tattersalli within its entire fragmented range. *Molecular Ecology* **19**:1606–1621.

Ren Y, Huang K, Guo ST, Pan RL, Derek DW et al., 2018. Kinship promotes affiliative behaviors in a monkey. *Current Zoology* **64**:441–447.

Rice WR, 1989. Analyzing tables of statistical tests. *Evolution* **43**:223–225.

Robson LE, Blouindemers G, 2013. Eastern hognose snakes *Heterodon platirhinos* avoid crossing paved roads, but not unpaved roads. *Copeia* **2013**:507–511.

Rousset F, 2008. Genepop’007: A complete re-implementation of the genepop software for windows and linux. *Molecular Ecology Resources* **8**:103–106.

Schreier AL, Swedell L, 2012. Ecology and sociality in a multilevel society: Ecological determinants of spatial cohesion in hamadryas baboons. *American Journal of Physical Anthropology* **148**:580–588.

Shultz S, Opie C, Atkinson QD, 2011. Stepwise evolution of stable sociality in primates. *Nature* **479**:219–222.

Silk JB, 2007. The adaptive value of sociality in mammalian groups. *Philosophical Transactions of the Royal Society B: Biological Sciences* **362**:539–559.

Smith D, Schlaepfer P, Major K, Dyble M, Page AE et al., 2017. Cooperation and the evolution of hunter-gatherer storytelling. *Nature Communications* **8**:1853.

Swedell L, 2011. African papionins: Diversity of social organization and ecological flexibility. In: Campbell CI, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM eds. *Primates in Perspective*. New York: Oxford University Press, 241–277.

Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V et al., 1996. Reliable genotyping of samples with very low DNA quantities using pcr. *Nucleic Acids Research* **24**:3189–3194.

Trewick SA, Pilkington S, Shepherd LD, Gibb GC, Morgan-Richards M, 2017. Closing the gap: Avian lineage splits at a young, narrow seaway imply a protracted history of mixed population response. *Molecular Ecology* **26**:5752–5772.

van Cise AM, Martien KK, Mahaffy SD, Baird RW, Webster DL et al., 2017. Familial social structure and socially driven genetic differentiation in hawaiian short-finned pilot whales. *Molecular Ecology* **26**:6730–6741.

van Oosterhout C, Hutchinson WF, Wills DP, Shipley PS, 2010. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Resources* **4**:535–538.

Wang CL, Wang XW, Qi XG, Guo ST, Zhao HT et al., 2014. Influence of human activities on the historical and current distribution of Sichuan snub-nosed monkeys in the Qinling Mountains, China. *Folia Primatologica* **85**:343–357.

Weber D, Stewart BS, Garza JC, Lehman N, 2000. An empirical genetic assessment of the severity of the northern elephant seal population bottleneck. *Current Biology* **10**:1287–1290.

Xiang ZF, Yang BH, Yu Y, Yao H, Grueter CC et al., 2014. Males collectively defend their one-male units against bachelor males in...
Li et al.: Primate socialization facilitates gene flow

a multi-level primate society. *American Journal of Primatology* **76**:609–617.

Yao H, Liu XC, Stanford C, Yang JY, Huang TP et al., 2011. Male dispersal in a provisioned multilevel group of *Rhinopithecus roxellana* in Shennongjia Nature Reserve, China. *American Journal of Primatology* **73**:1280–1288.

Zeng ZG, Gong HS, Song YL, Miao T, 2005. A new distribution record of Sichuan takin *Budorcas taxicolor tibetana* in Qinling Mountains in Shaanxi, China. *Acta Zoologica Sinica* **51**:743–747.

Zhang Z, Zhang S, Wei F, Wang H, Ming LI et al., 2006. Translocation and discussion on reintroduction of captive giant panda. *Acta Theriologica Sinica* **26**:292–299.

Zhao HT, Wang XW, Li JX, Zhang J, Wang CL et al., 2016. Postconflict behavior among *Rhinopithecus roxellana* leader males in the Qinling Mountains, China. *Current Zoology* **62**:33–37.
Table 1. Genetic diversity of five bands among *R. roxellana* multi-level society

Band	Longitude (°E)	Latitude (°N)	Population size	Sample size	Genetic diversity*	F_{IS}				
					Nm	PIC	Ar	H_O	H_E	
GNG-AMB	108.278	33.798	40	40	3.92	0.560	2.34	0.565	0.553	-0.026
GNG-BB	108.270	33.812	130	38	3.54	0.552	2.32	0.565	0.545	-0.030
DJF-BB	108.233	33.805	100	36	3.92	0.582	2.46	0.573	0.574	-0.009
HSG-BB	108.312	33.813	90	43	3.39	0.506	2.15	0.513	0.500	-0.034
GTS-BB	108.337	33.850	70	31	3.15	0.510	2.28	0.563	0.502	-0.126

*Five genetic diversity indices were presented, i.e. number of alleles (Nm), polymorphism information content (PIC), allelic richness (Ar), observed heterozygosity (H_O), and expected heterozygosity (H_E). F_{IS} denotes the Wright’s inbreeding coefficient.

Table 2. Bottleneck effect tests of one all-male band and four breeding bands

Band	Sign text	Wilcoxon test			
	TPM	SMM	TPM	SMM	$M \pm SD$
GNG-AMB	0.507	0.505	0.473	0.580	0.914±0.144
GNG-BB	0.129	0.141	0.122	0.153	0.889±0.162
DJF-BB	0.560	0.567	0.170	0.368	0.876±0.156
HSG-BB	0.471	0.470	0.108	0.318	0.872±0.220
GTS-BB	0.494	0.521	0.153	0.188	0.877±0.178

TPM denotes two-phase model, SMM denotes step-wise mutation model, M is the Garza & Williamson’s (2001) coefficient. No results were significant.
Li et al.: Primate socialization facilitates gene flow

Figure 1. (A) Study location of the four isolated breeding bands and the all-male band (bachelor group) of *R. roxellana* in the Qinling Mountains, China. BB: breeding band; AMB: all-male band. (B) A heatmap of genetic differentiation among bachelor groups and four breeding bands. Color brightness in each cell denotes the value of the pair-wise genetic differentiation index. Two clusters represent the genetic relationships among five bands that constructed by UPGMA. Dendrograms in the left and top were built based on Wright's F_{ST} and Nei's standard genetic distance respectively, which are illustrated in the lower and upper triangular matrix of the heatmap. (C) STRUCTURE Bayesian clustering revealed that the five isolated social bands of snub-nosed monkeys had a lower divergence and high levels of admixture under fragmented habitats, which implies a potential gene flow. The clustering was built under assumption of LOCPRIORI, non-admixture model and independent allele frequencies.
Figure 2. (A) The posterior probability based on population assignment reveals individual exchange among four different bands and the bachelor group. Each box represents a social band. Each bar within the box represents a sampled individual from the band. Genetic characters of each band were estimated by unique allele frequencies, and marked by a corresponding color. The percentage of each color within the bar denotes the posterior probability of the individual origin. (B) Gene flow among the four breeding bands and GNG-AMB. The levels of gene flow are represented by θ and M value estimated by MIGRATE. $\theta(4Ne\mu)$: mutation-scaled effective population size. $M(m/\mu)$: mutation-scaled migration rate; where m is the migration rate and μ is the mutation rate. The blue curves show gene flow from the breeding bands to the all-male band, whereas the green curves show the opposite gene flow from the all-male band to breeding band. The widths and the numbers beside the curves denote M values.
Figure 3. Satellite result of continuous landscape resistance surface. Color ranging from green and red suggests the resistance value caused by ecological factors and human activities. The red color suggests high resistance value, and green suggests that the monkeys can move freely in these areas. The result confirms that geographical factors would resist the monkeys to immigrate between breeding bands with the fragmented habitats.
Supporting Information

File S1: GENEPOP genotype file

File S2: Resistance values of landscape variables

Table S1: Microsatellite marker information

Table S2: Characteristics of Chakraborty null allele estimates via MICROCHECKER software.

Table S3: The population size change inferred with Bayesian computation by the DIYABC v2.0 software.

Figure S1: Correlation of geographic distance and genetic distance among 5 bands of *R. roxellana*.

Figure S2: Presentation of appropriate K estimated from the population structure analysis using Delta K approaches.