A proteomic analysis of *Curcuma comosa* Roxb. rhizomes

Apaporn Boonmee¹, Chantragan Srisomsap², Daranee Chokchaicharnnankit², Aphichart Karnchanatat³ and Polkit Sangvanich¹*

Abstract

Background: The similarly in plant physiology and the difficulty of plant classification, in some medicinal plant species, especially plants of the Zingiberaceae family, are a major problem for pharmacologists, leading to mistaken use. To overcome this problem, the proteomic base method was used to study protein profiles of the plant model, *Curcuma comosa* Roxb., which is a member of the Zingiberaceae and has been used in traditional Thai medicine as an anti-inflammatory agent for the treatment of postpartum uterine bleeding.

Results: Due to the complexity of protein extraction from this plant, microscale solution-phase isoelectric focusing (MicroSol-IEF) was used to enrich and improve the separation of *Curcuma comosa* rhizomes phenol-soluble proteins, prior to resolving and analyzing by two-dimensional polyacrylamide gel electrophoresis and identification by tandem mass spectrometry. The protein patterns showed a high abundance of protein spots in the acidic range, including three lectin proteins. The metabolic and defense enzymes, such as superoxide dismutase (SOD) and ascorbate peroxidase, that are associated with antioxidant activity, were mainly found in the basic region. Furthermore, cysteine protease was found in this plant, as had been previously reported in other Zingiberaceae plants.

Conclusion: This report presents the protein profiles of the ginger plant, *Curcuma comosa*. Several interesting proteins were identified in this plant that may be used as a protein marker and aid in identifying plants of the Zingiberaceae family.

Keywords: *Curcuma comosa* Roxb, Proteomic, MicroSol-IEF, Zoom-IEF, Lectin, Superoxide dismutase

Background

Plants in Zingiberaceae family are widely distributed in many countries of Southeast Asia. In Thailand at least two-hundred species of Zingiberaceous plants are found and these include members of various genera, such as Alpinia, Amomum, Curcuma, Etlingera, Kaempferia, and Zingiber [1]. Zingiberaceous plants have been widely used in traditional medicine, as well as a food flavoring and spice agents. Many studies have focused on the bioactive small organic compounds from these plants and have supported the traditional medicinal use of the plant extracts, such as curcumin [2], sesquiterpene [3-5], and various essential oils [6-8], flavonoids and phenolic compounds [9,10]. In addition, the biologically active proteins reported from Zingiberaceae plants include, antifungal proteins from *Zinger officinalis* [11] and antioxidant proteins from *C. longa* [12] and *C. zedoaria* [13]. Interestingly, the lectins were also found in many species of this Zingiberaceous plants. The lectins or agglutinin proteins, a class of carbohydrate-binding non-immune origin proteins, have been used as tools in analytical biochemistry [14,15] including in medical applications, such as drug delivery [16], blood typing [17] and potential antineoplastic drugs [18], amongst others. Their actual physiological functions are likely to be in the defense against phytophagous predators (mostly insects) and phytopathogenic microorganisms [19,20]. These plant lectins have been found in a variety of plant species, including the ginger family where, for example, the mannose-binding lectin cDNA, *Z. officinale* agglutinin (ZOA) [21], was cloned from the rhizomes of *Z.
officinale. According to the similarity of DNA sequences between ZOA and two other lectins, that is *Galanthus nivalis* agglutinin (GNA) from the snowdrop, which is highly toxic to sap-sucking insects, and *Gastrodia elata* antifungal protein (GEAFP), belonging to Orchidaceae lectins, ZOA may have defense based activities along the same lines as these two proteins. Hemagglutination activity was previously determined to be present in fifteen *Curcuma* plant species when assaying the crude rhizomal protein extract against rabbit erythrocytes [22], and this array of lectin-like activity positive plants included *C. xanthorrhiza*, which is closely related to *C. comosa*. Certainly, purified lectins have been reported in a few Zingiberaceae plants. A 32.4 kDa lectin enriched from *C. amarissima* Roscoe [23] revealed a growth-inhibitory activity against three plant pathogenic fungi (*Fusarium oxysporum*, *Exserohilum turicicum* and *Colecrototrichum cassicola*), and showed in vitro cytotoxicity against the BT474 breast cancer cell line. A thermostable lectin of 41.7 kDa isolated from *Kaempferia parviflora* [24] showed hemagglutination activity against several different erythrocyte sources, with the strongest activity observed against rabbit red blood cells.

However, most plants in this family have very similar botanical characteristics and this makes it very difficult to clearly identify each species. The mistaken identifica-
tion of medicinal plant materials is a serious problem for both manufacturers of traditional medicine products and researchers. There are a few methods to distinguish each species of plant, such as botanical characteristics by specialized taxonomists or DNA sequence based methods (e.g. establishing molecular operational taxonomic units with conversion to species by sequence identity to known species in the NCBI database). However, although the latter method is tissue and developmental stage independent, it is time consuming and complicated (due to the problem of discrimination of variety/cultivar polymorphism versus cryptic or sibling species).

Recently, proteomic tools have been used to identify types or isolates in many organisms [25-27] so this technique may be the one of the choices for the classification of Zingiberaceous plants. Of course, with no current baseline database it is far from clear how much the proteome for a specific tissue (e.g. rhizome) may vary within a species due to local genetics (cultivars) or cultivation conditions compared to between species, and so how useful this approach could be, but nevertheless under such a scenario it could still be used for following specific cultivars/cultivation conditions for quality control checking of any given cultivar. Thus, the aim of this report was to perform a preliminary study of the phenol-soluble protein profile from *C. comosa* as an initial model plant from the Zingiberaceae family.

Because in traditional Thai medicine, the rhizome is generally the part of the plant that is most wildly use and because a higher amount of protein is present in rhizome than in other parts, the protein database study in bulbous plants and those from *Curcuma* are usually used the rhizomes, respectively. For this reason, we selected *C. comosa*, an herb with large rhizome, as the model Zingiberaceae plant for proteomic study. *C. comosa*, commonly known as Waan Chak Mod Look in Thai, has been used as a traditional medicine for the treatment of postpartum uterine inflammation, perimenopausal bleeding and hemorrhoids. The isolated compounds from this plant have been reported to display various biological properties, such as estrogenic [28], anti-inflammatory [29], choleoretic [30], antioxidant [31] and nematocidal [32] activities. However, the protein profile from this plant has not been reported. Therefore, the proteomic analysis of the rhizomes of *C. comosa* is expected to be useful for both establishing the potential of protein fingerprints in Zingiberaceae family and for the investigation of its specific proteins in a high throughput manner.

Methods

Protein extraction

Fresh rhizomes of *C. comosa* purchased from a local market in Bangkok, Thailand. A voucher specimen (BFK. No. 97298) is deposited at The Forest Herbarium (BFK), Royal Forest Department, Bangkok, Thailand. Grind fresh tissue of this plant to a powder with liquid nitrogen in a mortar and pestle. Base on *C. longa* pro-
toemic [33], there are some interference compounds need to remove. Therefore the use of selection extrac-
tion method and buffer for *C. comosa* was similar with *C. longa* with slightly modification. Briefly, the plant pow-
der (5 g) was extracted by suspension in 20 mL of extraction buffer (0.5 M Tris, 30 mM HCl, 0.1 M KCl, 0.7 M sucrose and 1% (v/v) β-mercaptoethanol) for 30 min at 4°C, whereupon the supernatant was then collected by centrifugation at 4,000 × g for 10 min. The precipitate was extracted twice in extraction buffer and the pooled extracts were then extracted with a 1:5 (v/v) ratio of water-saturated phenol at 4°C for 60 min. After phase separation the phenol phase was then harvested and proteins were precipitated from the phenol phase by the addition of a four-volume of 0.1 M ammonium acetate in methanol and left overnight at -20°C. The resulting phenol-soluble protein pellet was collected by centrifugation at 4,000 × g for 10 min, resuspended in cold water with sonication for 3 min and then precipi-
tated again in nine volumes of cold acetone at -20°C for 2 h and centrifuged at 4,000 × g for 10 min. The protein pellet was air-dried to remove the acetone. The amount of protein in each sample was determined by the Bradford assay [34].
Microscale solution-phase isoelectric focusing (MicroSol-IEF) of the protein extract
Aliquot protein (3 mg) from the isolated proteins (115.5 mg) were dissolved in 0.2 mL of solubilization buffer (7.7 M urea, 2.2 M thiourea and 4.4% (v/v) CHAPS) and then 20 μL of 100 mM iodoacetamide (IAA) was added, mixed and incubated in the dark for 30 min at room temperature. After this incubation, the proteins were then precipitated by the addition of four volumes of cold acetone and harvested by centrifugation, as described above. The protein pellet was resuspended in solubilization buffer and supplemented with 10 mM dithiothreitol (DTT), 0.8% (w/v) ampholine and trace amount of bromophenol blue (The final concentration of protein was approximate 1.5 mg/mL). The Zoom-IEF fractionator (Invitrogen, Carlsbad, CA, USA) was assembled with three disks (pH 3.0, pH 5.4 and pH 10.0). The protein solution (0.65 mL) was loaded between disk pH 3.0-5.4 and pH 5.4-10.0 and focused at 100 V for 20 min, followed by 200 V for 80 min and finally 600 V for 80 min. After separation by Zoom-IEF, the protein solution was kept at 4°C for further analysis.

Two-dimensional polyacrylamide gel electrophoresis (2-DE)
The protein samples (200 μg) were loaded onto immobilized pH gradient (IPG) gel strips (GE Healthcare, Biosciences, Uppsala, Sweden) and left overnight at room temperature. The first dimension was performed on a Pharmacia LKB Multiphor II system at 7,000 Vh. After electrofocusing, the IPG strips were reduced in equilibration buffer (50 mM Tris-HCl buffer, pH 6.8, 6 M urea, 1% (w/v) sodium dodecyl sulfate (SDS), 30% (v/v) glycerol) containing 1% (w/v) DTT and were alkylated with equilibration buffer containing 2.5% (w/v) IAA. After equilibration, the IPG strips were analyzed in the second-dimension on a SDS polyacrylamide gel (15% (w/v) acrylamide resolving gel) performed in a Hoefer system. Coomassie Brilliant Blue R-250 staining was used to visualize the protein bands.

Tryptic in-gel digestion
The protein spots were cut out from the gel and the coomassie blue removed using 0.1 M NH₄HCO₃ in 50% (v/v) acetonitrile until the gel pieces were colorless. After drying of the gel pieces by Speed Vacuum, the gels were dried in a Speed Vacuum. Next a trypsin solution (0.05 M Tris-HCl buffer pH 8.5, 0.1 μg/μL trypsin in 1% (v/v) acetic acid, 10% (v/v) ACN and 1 mM CaCl₂) was added to the gel pieces and incubated at 37°C overnight. Thereafter, the solution was collected and the gels were extracted three times with 2% (v/v) trifluoroacetic acid, 0.05 M Tris-HCl buffer pH 8.5 containing 1 mM CaCl₂ and 2.5% (v/v) formic acid in acetonitrile respectively. The solutions were pooled and dried by Speed Vacuum.

Protein identification by tandem mass spectrometry
The tryptic peptides were analyzed by using LC/MS/MS, a capillary LC system (Waters) coupled to a Q-TOF mass spectrometer (Micromass, Manchester, UK). The database search was performed with ProteinLynx screening. The Mascot http://www.matrixscience.com/search_form_select.html and the Peaks search tools http://www.bioinfoc.com:8080/peaksonline/login.jsp were used for samples where proteins were not found by the ProteinLynx screening. Some proteins were interpreted amino acid sequences using the De novo sequencing tool in Masslynx or the Auto De novo sequencing tool in Peaks online 2.0 and then searched by MS BLAST against the NCBI database http://dove.embl-heidelberg.de/Blast2/msblast.html.

Results and Discussion
Sample extraction and 2-D IEF-SDS-PAGE profile
The presence of some substances in plant tissues, such as polysaccharides, lipids, lignins, pigments and phenolic compounds, can interfere with the sample preparation for proteomic analysis. To reduce these compounds a phenol extraction followed by methanol/ammonium acetate precipitation was performed in the protein preparation. At the beginning of protein study, the proteins from C. comosa rhizomes were run on 2-D IEF-SDS-PAGE using a pH 3 - 10 linear IEF strip (Figure 1A). However, the proteomic pattern showed a high intensity of poorly resolved spots in the acidic region and a low intensity of spots in the basic region, which is somewhat similar to the previously reported protein patterns of C. longa [33]. Therefore, to improve the protein separation, a narrow range linear IEF strip of pH 3.9-5.1 was used (Figure 1B). However, even though some proteins in the acidic region were better resolved, it was still difficult to impossible to identify unique spots. To overcome this problem and enrich the low abundance proteins in the basic region, the effective way is to prefractionate sample. There are several techniques for protein prefractionation such as gel chromatography, selective solubilization, sub cellular fractionation and isoelectrofocusing (IEF) which is the one of mostly successful due to its highly resolution and compatibility with subsequent 2DE analysis. Recently, microscale solution-phase isoelectric focusing (MicroSol-IEF) [35,36] was developed for protein prefractionation. The commercial device
based on this approach is known as ZOOM IEF Fractio-
nator (Invitrogen Corp). The protein will be fractionated
and trapped in a multichannel of this chamber depends
on their pI values. This technique has been successfully
used to separate many types of complexity sample for
instance human plasma and serum [37], mouse brain
proteins [38] etc. For this reason, we designed to use
MicroSol IEF approach to improve protein separation in
our study. The crude proteins were focused in two pH
ranges; the acidic region (pH 3-5.4) and the basic region
(pH range 5.4-10). The resolution of the protein
patterns obtained following 2-D IEF-SDS-PAGE resolu-
tion of these two protein ranges were greatly improved
(Figure 2).

Protein Identification
One hundred and eighty-three spots (70 spots from the
acidic region and 113 spots from the basic region) were
identified with the aid of the ImageMaster 2D Platinum
7.0 software (GE Healthcare Bio-Sciences). The darkest
stained eighty spots in the 2D gel pattern (43 from the
acidic region and 37 from the basic region, as shown by
numbered circles in Figure 2) were chosen for identifica-
tion by tryptic in-gel digestion and LC/MS/MS. Unfortu-
nately, thirty-eight (23 (~53%) from the acidic region and
15 (~40%) from the basic region) of these 80 spots could
not be identified because of the limitations of existing pro-
tein sequences in plant protein database. The putatively
identified proteins (Table 1) were grouped according to
Table 1 Phenol-soluble proteins identified from 2-D (IEF-SDS-PAGE) gels of the acidic (pH 3-5.4; spot nos. A2- 40 in figure 2) and basic (pH 5.4-10; spot nos. B4-37 in figure 2) region proteins from C. comosa rhizomes, as analyzed by LC/MS/MS

Spot	Uniprot ID	Protein name	Organism	Sequence coverage (%)	Peptides matched	Theoretical MW (Da)	pI	Function
A2	Q40687	Guanine nucleotide-binding protein subunit beta	Oryza sativa	3	1	41,726	7.13	Protein signaling
A3	Q9FNA6	Genomic DNA, chromosome S, P1 clone	Arabidopsis thaliana	6	1	60,231	5.56	Unknown
A5	P32033	Protein ycf2	Cuscuta reflexa	7	1	234,393	9.25	ATP binding
A8	Q64637	Cytochrome P450 76C2	Arabidopsis thaliana	3	2	57,221	6.50	Oxidoreductase
A7	Q9MAZ0	Nonclathrin coat protein	Zea mays	6	1	19,928	4.81	Protein transport
A9	P30182	DNA topoisomerase 2	Arabidopsis thaliana	2	2	164,005	7.25	ATP binding
A11	Q62BQS	Hypothetical protein	Oryza sativa	7	1	15,105	11.6	Unknown
A12	Q9ZPH2	Monothiol glutaredoxin-S17	Arabidopsis thaliana	3	1	53,082	5.01	Electron carrier
A13	P27898	Myb-related protein P	Zea mays	2	1	43,729	10.1	Transcription
A16	A95AC0	Predicted protein	Physcomitrella patens subsp patens	4	1	17,421	5.28	Unknown
A17	Q9LDOQ8	Similarity to proton pump interactor	Arabidopsis thaliana	1	1	58,552	5.66	Unknown
A18	Q2QMO0	Type IIB DNA topoisomerase family protein	Oryza sativa	1	1	55,342	5.62	DNA/ATP binding
A19	Q9LVF9	Vesicle transport v-SNARE 13	Arabidopsis thaliana	4	1	25,026	9.41	Protein transport
A20	Q5I2RO	minus agglutinin (SAD1)	Chlamydomonas incerta	1	2	404,525	6.08	Defense
A25	QXGEZ3	NADH dehydrogenase subunit F	Gymnosteris parvula	2	1	37,892	9.74	Oxidoreductase
A27	Q6V8L5	Lectin	Typhonium divaricatum	12	4	20,250	9.17	Defense
A31	Q63RH1	Basic beta-1,3-glucanase	Capsicum annuum	6	1	17,521	11.3	Metabolism
A28	O49565	Putative F-box protein At4g21240	Arabidopsis thaliana	2	1	48,377	5.83	Unknown
A34	Q41625	Mannose-binding lectin precursor	Tulipa hybrid cultivar	13	4	19,556	5.60	Defense
A40	Q0ZJZ4	ATP-dependent Clp protease proteolytic subunit	Vitis vinifera	5	1	22,060	4.75	Proteolysis
B4	P93262	Phosphoglucomutase	Mesembryanthemum crystallinum	2	1	63,446	5.87	Metabolism
B5	Q94C18	Glycine-rich protein	Solanum lycopersicum	2	1	23,420	5.88	Unknown
B6	Q1PCD2	glucose 6 phosphate isomerase	Solanum lycopersicum	5	2	62,739	6.56	Metabolism
B7	Q8LB00	enolase	Musa acuminata	21	2	15,864	7.83	Metabolism
B8	Q66H19	UDP glucose pyrophosphorylase	Arachis hypogaea	22	3	16,851	7.30	Metabolism
B9	Q859B8	UGPase PC	Pyrus pyrifolia	3	1	50,719	5.90	Metabolism
B10	B2X0E6	glyceraldehyde 3 phosphate dehydrogenase	Mallotus nesophilus	47	2	32,795	5.96	Metabolism
B11	Q5PY03	glyceraldehyde 3 phosphate dehydrogenase	Musa acuminata	2	1	35,974	6.20	Metabolism
B12	Q2XQF4	glyceraldehyde 3 phosphate dehydrogenase	Elaeis guineensis	8	2	32,135	7.42	Metabolism
B13	P34922	glyceraldehyde 3 phosphate dehydrogenase	Pisum sativum	9	3	36,586	6.63	Metabolism
B14	A5JE17	glyceraldehyde 3 phosphate dehydrogenase	Zehneria keayana	13	1	7,001	9.87	Metabolism
B15	P84733	Putative cytochrome c oxidase subunit II PS17	Pinus strobus	50	1	33,265	7.42	Unknown
B16	Q82450	branched chain alpha keto acid decarboxylase	Arabidopsis thaliana	2	1	38,709	6.27	Oxidoreductase
B17	Q5ILG5	cysteine protease gp3a	Zingiber officinale	4	4	52,062	6.17	Peptidase
B18	Q01H20	Predicted ATPase (ISS)	Ostreococcus tauri	1	1	57,490	5.84	ATP binding
their functions, derived from the annotated function of the homologous protein(s) hits in the database search. Most (just over one quarter) of the identified proteins were annotated as being involved in metabolic pathways whereas other proteins (in decreasing order of prevalence) were involved in defense/stress response, unknown functions, oxidoreductase/electron carrier, ATP/DNA binding, proteolysis/peptidase, transport/signaling and transcription (Figure 3).

In the acidic region, three mannose-binding lectins with an observed mass range of 14.4 - 17 kDa (spots A20, A27 and A34) were found. Note, however, that the predicted (theoretical) mass of the homologous proteins used to identify these spots are slightly higher for A27 and A34 (19.5 and 20.3 kDa, respectively) but significantly so for A20 with a predicted mass of 404 kDa. A mannose binding lectin with a molecular mass of 13.4 kDa was also isolated from *C. zedoary* [39]. In addition, six homologous lectin proteins of various molecular masses (8.84-32.8 kDa) were found in *C. aromatica* [40]. Most of them are mannose binding lectins. With respect to high throughput protein identification, agglutinin was also found to be present in the *C. longa* 2-D IEF-SDS-PAGE protein profile [33] at around 14.4 kDa in the acidic region (pI~4.6) which is similar to spot 27 here.

Eleven of the putatively identified proteins from the basic region (Figure 2B) in the 2-D protein pattern were likely to be involved in plant metabolism. Enolase, a ubiquitous enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate in the glycolytic pathway, was identified as spot B7. Endochitinase, an enzyme that belongs to the glycosyl hydrolase family and is involved in carbohydrate metabolism and chitin degradation, was present in spot B37. Glyceraldehyde 3 phosphate dehydrogenase, an enzyme that catalyzes the conversion of glyceraldehyde 3 phosphate to D-glycerate 1,3-bisphosphate in the sixth step of glycolysis, was identified as spots B10-14. Four other glycogenesis proteins, phosphoglucomutase, glucose-6-phosphate isomerase, UDP glucose pyrophosphorylase and UGPase, were identified in spots B4, B6, B8 and B9 respectively. Interestingly, two antioxidant proteins were found in the basic region. Superoxide dismutase (SOD), a class of enzymes that catalyzes the conversion of glyceroldehyde 3 phosphate to D-glycerate 1,3-bisphosphate in the sixth step of glycolysis, was identified as spots B10-14. Four other glycogenesis proteins, phosphoglucomutase, glucose-6-phosphate isomerase, UDP glucose pyrophosphorylase and UGPase, were identified in spots B4, B6, B8 and B9 respectively. Interestingly, two antioxidant proteins were found in the basic region. Superoxide dismutase (SOD), a class of enzymes that convert the reactive superoxide radical into oxygen and hydrogen peroxide, was identified in spot B24. This result is in accord with the recent report

Table 1 Phenol-soluble proteins identified from 2-D (IEF-SDS-PAGE) gels of the acidic (pH 3-5.4; spot nos. A2-40 in figure 2) and basic (pH 5.4-10; spot nos. B4-37 in figure 2) region proteins from *C. comosa* rhizomes, as analyzed by LC/MS/MS (Continued)

Spot	Accession	Protein Name	Mass/PI	Functions
B19	P25251	cysteine protease COT44	36,277	Peptidase
B21	Q9FE01	L-ascorbate peroxidase 2	27,101	Stress/Defense
B23	Q15651	Heat shock protein 16.9C	14,376	Stress
B24	O22373	Superoxide dismutase [Cu-Zn]	15,279	Stress/Defense
B33	Q8LEA2	Gibberellin 2-beta-dioxygenase 1	26,709	Oxidoreductase
B34	Q94443	BES1/BZR1 homolog protein 2	34,174	Transcription
B37	Q09023	Endochitinase CH25 precursor	34,793	Metabolism

Figure 3 Functional distribution of the 42 putatively identified phenol-soluble proteins (see Table 1) expressed in *C. comosa* rhizomes. Protein functions are ascribed from that which was annotated in the database to the likely hit (homolog) found by peptide mapping of the tryptic fragments.
of an antioxidant activity and the isolation of a SOD homologue from *C. comosa* [41]. Indeed, SOD homologues have also been reported in other Zingiberaceae plant species, such as *C. longa* [12] and *C. zedoaria Roscoe* [13]. Their current biotechnological application has mainly been in cosmetic products to reduce free radical levels that otherwise cause skin damage [42]. Ascorbate peroxidase, an enzyme that detoxifies peroxides by using ascorbate as the substrate, was found as spot B21. The main function of this enzyme is control the hydrogen peroxide concentration in cells. The discovery of these two antioxidant enzymes may suggest some benefit for *C. comosa* for the natural product based cosmetic industry, but this will depend upon their relative specific activity or ease of enrichment. Moreover putative cysteine proteases were identified as spots B17 and B19 at molecular weigh about 20.1 kDa and 14.4 kDa respectively. This enzyme family plays a role in plant growth, development and senescence. Most plant cysteine proteases belong to the papain and legumain families. Recently this enzyme family was reported from three members of the ginger family, in *C. longa* [43], *C. aromatica* [40] and Z. *offinale* Roscoe [44], and this ginger protease is used as a food improver and anti-inflammatory agent. Founding cysteine protease in four members of Zingiberaceae plant, *C. comosa*, *C. longa*, *C. aromatica* and Z. *offinale* at difference molecular weigh and pl position, the ginger cysteine protease might be a protein marker to classify specific species in this family in the future.

Conclusion

The protein profile of *C. comosa* was improved by separation by microscale solution-phase isoelectrofocusing, and identified in part by using high throughput two-dimensional IEF-SDS-PAGE together with tandem mass spectrometry. Some proteins were identified as lectins and antioxidant proteins, which appears to be related with their activity and cysteine proteases that are also found in other Zingiberaceae plant species.

Acknowledgements

The authors thank the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Programme (Grant No. PhD/0224/2548), the 90th Anniversary of Chulalongkorn University, Bangkok, 10330, Thailand. The authors thank the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Programme (Grant No. PHD/0224/2548), the 90th Anniversary of Chulalongkorn University, Bangkok, 10330, Thailand. The authors thank the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Programme (Grant No. PHD/0224/2548), the 90th Anniversary of Chulalongkorn University, Bangkok, 10330, Thailand.

Author details

1Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. 2Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand. 3Research Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

Authors’ contributions

BA carried out the whole project experiment and drafted the manuscript. SR participated in the design of the study and mass spectroscopy and drafted the manuscript. CD carried out in mass spectroscopy. KA participated in drafted the manuscript and coordination. SP participated in the design of the study and mass spectroscopy and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

1. Sirivugsa P. Thai Zingiberaceae: Species diversity and their uses. Pure Appl Chem 1998, 70:211-2118.
2. Shehazad A, Wahid F, Lee YS. Curcumin in Cancer Chemoprevention: Molecular Targets, Pharmacokinetics, Bioavailability, and Clinical Trials. Arch Pharm Chem Life Sci 2010, 1-11.
3. Sun XY, Zheng YP, Lin OH, Zhang H, Zhao F, Yuan CS. Potential anti-cancer activities of Furandione, a Sesquiterpene from Curcuma wenyujin. Am J Chin Med 2009, 37:589-596.
4. Kim M, Miyamoto S, Yaisi Y, Oyama T, Murakami A, Tanaka T. Z. zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice. Int J Cancer 2009, 124:264-271.
5. Makabe H, Maru N, Kusabara A, Kamo T, Hirota M. Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 2006, 20:680-685.
6. Chopra IC, Jamwal KS, Khajuria BN. Pharmacological action of some common essential oil-bearing plants used in indigenous medicine. I. Pharmacological action of Acorus calamus, Curcumia zedoaria, Xanthoxylum alatum and Angelica archangelica. Indian J Med Res 1954, 42:381-384.
7. Kojima H, Yanai T, Toyota A. Essential oil constituents from Japanese and Indian *Curcuma aromatica* rhizomes. Planta Med 1998, 64:380-381.
8. Lai EY, Chyau CC, Mau JL, Chen CC, Lai YJ, Shih CF, Lin LL. Antimicrobial activity and cytotoxicity of the essential oil of *Curcuma zedoaria*. Am J Chin Med 2004, 32:281-290.
9. Kundu JK, Na HK, Suth YJ. Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum Nutr 2009, 61:182-192.
10. Ghasemzadeh A, Jaafar HZ, Rahmat A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysian young ginger (*Zingiber officinale Roscoe*). Molecules 2010, 15:4324-4333.
11. Wang H, Ng TB. An antifungal protein from ginger rhizomes. Biochem Biophys Res Commun 2005, 336:100-104.
12. Kochhar S, Kochhar VK. Identification and characterization of a super-stable Cu-Zn SOD from leaves of turmeric (*Curcuma longa L*). Planta 2008, 228:307-318.
13. Loc NHT, Diem DT, Dinh DH, Huong DT, Kim TG, Yang MS. Isolation and characterization of antioxidation enzymes from cells of *Zedoaria* (*Curcuma zedoaria Roscoe*) cultured in a 5-L bioreactor. Mol Biotechnol 2009, 38:81-87.
14. Franco Fraguas L, Carlson J, Lonnberg M. Lectin affinity chromatography as a tool to differentiate endogenous and recombinant erythropoietins. J Chromatogr A 2008, 1212:82-88.
15. Smetana K Jr, Andre S. Mammalian lectin as tool in glycochemistry and histochemistry with relevance for diagnostic procedure. Methods Mol Biol 2008, 418:171-186.
16. Smart JD. Lectin-mediated drug delivery in the oral cavity. Adv Drug Deliv Rev 2004, 56:481-489.
17. Rüdiger H, Gabius HJ. Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconjugate J 2001, 18:589-613.
18. Liu B, Ban H, Bao J. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett 2010, 287:1-12.
19. Chrisepil MJ, Rakheil NV. Lectins, lectin genes, and their role in plant defense. Plant Cell 1991, 3:1-9.
20. Damme EJM. Plant Lectins as Part of the Plant Defense System Against Insects. In Induced Plant Resistance to Herbivory. Edited by: Schaller A. Springer Netherlands, 2008:285-307.

21. Chen Z, Kai G, Liu X, Lin J, Sun X, Tang K. cDNA cloning and characterization of a mannose-binding lectin from Zingiber officinale Roxsc. (ginger) rhizomes. J Biosci 2005, 30:213-220.

22. Sangvanich P, Kaenthip S, Srisomsap C, Thiptara P, Petson A, Boonmee A, Sivati J. Hemagglutinating activity of Curcuma plants. Fitoterapia 2007, 78:29-31.

23. Kheere N, Sangvanich P, Puzhong S, Kamchanat A. Antifungal and antiproliferative activities of lectins from the rhizomes of Curcuma amarnassima Roxsc. Appt Biochem Biotechnol 2010, 162:912-925.

24. Konkumnerd W, Kamchanat A, Sangvanich P. A thermostable lectin from the rhizomes of Kaempferia parviflora. J Sci Food Agric 2010, 90:1920-1925.

25. Christopher JS, Ross CS, Alex S, Aiqun N, Jaswinder SS, Susan RW, Robert CB. Proteomic Classification of Pancreatic Adenocarcinoma Tissue Using Protein Chip Technology. Gastroenterology 2006, 130:1670-1678.

26. Dworzanski JP, Deshpande SV, Chen R, Jabbour RE, Snyder AP, Wick CH, Li L. Mass Spectrometry-Based Proteomics Combined with Bioinformatic Tools for Bacterial Classification. J Proteome Res 2005, 5:76-87.

27. Pepe T, Ceruso M, Carpentieri A, Ventrone I, Amoresaso A, Anastasio A. Proteomics analysis for the identification of three species of Thunnus. Vet Res Commun 2010, 34:153-155.

28. Winuthayanon W, Sukien K, Boonchird C, Chuncharunee A, Ponglikitmongkol M, Suksamrarn A, Piaychatuansawat P. Estronomic activity of diacylheptanoids from Curcuma comosa Roxb. Requires metabolic activation. J Agric Food Chem 2009, 57:840-845.

29. Sodsai A, Piaychatuansawat P, Sophasan S, Suksamrarn A, Vongakul M. Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Inter Immunopharmacol 2008, 34:524-531.

30. Piaychatuansawat P, Teeratagalpisal N, Torskulkao C, Suksamrarn A. Hypolipidemic effect of Curcuma comosa in mice. Artery 1997, 22:233-241.

31. Niumakul S, Hirunsaie A, Wattanapayakul S, Jansuwanti N, Prapanupun K. An antioxidative and cytotoxic substance extracted from Curcuma comosa Roxb. J Thai Traditional Medicine 2007, 5:24-29.

32. Jurgens TM, Frazer EG, Schaeffer JM, Jones TE, Zink DL, Borris RP, Nanakorn W, Beck HT, Balick MJ. Novel nematocidal agents from Curcuma comosa. J Nat Prod 1994, 57:230-235.

33. Chokchaichamnankrit D, Subhabasantorn P, Panichthamankul NM, Sivati J, Sangvanich P, Srisomsap C. Proteomic Alterations During Dormant Period of Curcuma Longa Rhizomes. J Proteomics Bioinform 2009, 2:380-387.

34. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.

35. Zuo X, Speicher DW. Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics 2002, 2:38-68.

36. Zuo X, Lee K, Ali-Khan N, Speicher DW. Protein Profiling by Microscale Solution Isoelectrofocusing (MicroSol-IEF). John Wiley & Sons 2001.

37. Echan LA, Tang HY, Ali-Khan N, Lee K, Speicher DW. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005, 5:3392-3399.

38. Myung JK, Lubec G. Use of Solution-IEF-Fractionation Leads to Separation of 2673 Mouse Brain Proteins Including 255 Hydrophobic Structures. J Proteome Res 2006, 5:1267-1275.

39. Thiptara P, Sangvanich P, Mathch M, Petson A. Mannose-binding lectin from Curcuma zedoaria Rosc. J Plant Biol 2007, 50:167-173.

40. Thiptara P, Petson A, Roengsrunam S, Sangvanich P. Hemagglutinating activity and corresponding putative sequence identity from Curcuma aromatica rhizome. J Sci Food Agric 2008, 88:1025-1034.

41. Boonmee A, Srisomsap C, Kamchanat A, Sangvanich P. An antioxidant protein in Curcuma comosa Roxb. Rhizomes. Food Chem 2011, 124:476-480.

42. Chistian Dhill J, Lekd-Omar Donjela. The basis of topical superoxide dismutase antipruritic activity, Acta Dermato-Venereol 2009, 17:25-39.

43. Nagarathnam R, Rengasamy A, Balasubramanian R. Purification and properties of cysteine protease from rhizomes of Curcuma longa (Linn.). J Sci Food Agric 2010, 90:97-105.