Telescopers for differential forms with one parameter

Shaoshi Chen1, Ruyong Feng1, Ziming Li1,
Michael F. Singer2, Stephen Watt3

1 KLMM, AMSS, Chinese Academy of Sciences, China
2 North Carolina State University, USA
3 University of Waterloo, Canada

Parallel telecopers introduced in \cite{1} can be regarded as telecopers for differential 1-forms. In this talk, we generalize the results in \cite{1} into differential p-forms. Precisely, let

$$\omega = \sum_{i_1, \ldots, i_p} f_{i_1, \ldots, i_p} \, dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_p}$$

be a differential p-form, where f_{i_1, \ldots, i_p} is D-finite over $k(x_1, \cdots, x_N, t)$. A nonzero operator $L \in k(t)[\partial]$ is called a telescope for ω if $L(\omega) = d\eta$ for some differential $p-1$-form η. We present a sufficient and necessary condition for a given differential p-form having a telescope and develop an algorithm to compute a telescope if it exists. We also give an algorithm to decide whether a given differential p-form has a telescope or not.

Keywords

telecope, differential form.

References

[1] R. Feng; S. Chen; Z. Li; M. F. Singer, Parallel Telescoping and Parametrized Picard-Vessiot Theory. \textit{Proc. ISSAC2014}, July 23-25, Kobe, Japan, 99-104, ACM Press, 2014.