Combining Ability for Plant and Fruit Traits of Interspecific Blueberry Progenies on Mineral Soil

W.A. Erb1, A.D. Draper2, and G.J. Galletta3
U.S. Department of Agriculture, Agricultural Research Service, Fruit Laboratory, Beltsville, MD 20705

H.J. Swartz3
Department of Horticulture, University of Maryland, College Park, MD 20742

Additional index words. Vaccinium corymbosum, V. ashei, V. myrtilloides, V. atrococcum, V. darrowi, V. myrsinites, V. angustifolium, interspecific hybrids, fruit breeding

Abstract. Data from a four-parent diallel, involving one highbush (Vaccinium corymbosum L.) clone and three interspecific hybrids grown on mineral soil unamended with organic matter, were analyzed to determine combining ability effects for six traits: plant size, berry size, the number of days between flowering and fruiting (# DBF&F), the ratio of total fruit weight to canopy volume (TFW : CYV), days to fruit ripe, and yield. General combining ability effects were significant for all characters tested, except yield and berry size in 1984. Specific combining ability effects were significant for plant size in 1983, #DBF&F in 1984, TFW: CYV in 1984, and berry size in 1985. Vigorous and productive highbush cultivars can be developed for mineral soils by using the interspecific clones from this study and their selected recombinant to combine the genes for plant vigor with the high-quality fruit traits of highbush cultivars.

Highbush blueberries are produced in a wide range of climatic conditions but generally are limited to well-drained, moist, acidic soils high in organic matter. Production is possible on mineral (upland) soils if amended by the addition of sulfur, peatmoss, irrigation, and mulch. These strict soil requirements limit the areas for highbush production or increase management costs when blueberries are grown on upland soils that are low in organic matter. The addition of organic matter to mineral soils for blueberry production can account for almost 45% of planting costs (Fowler et al., 1981). Rabbiteye and lowbush blueberry plants are also vigorous and productive on well-drained, high-organic soils, and on upland soils low in organic matter, they are more vigorous than highbush blueberry plants (Chandler et al., 1985b; Korcak, 1986; Korcak et al., 1982). In addition, other blueberry species, such as Vaccinium myrsinites, V. atrococcum, and V. darrowi, have been observed growing on mineral soils and are considered potential sources for upland soil adaptation (Galletta, 1975). Selection on acidic, well-drained, sandy organic soils for the past 80 years and the small germplasm pool from which present highbush cultivars descended probably are responsible for the narrow soil adaptation of most of these cultivars. Only two cytoplasms are present in 48 of the most popular cultivars (Hancock and Krebs, 1986). Genetic improvement of highbush blueberries for upland soil adaptability is the best way to increase production on mineral soils because neither fertilization nor peatmoss incorporation influence growth on a mineral soil as much as the genetic composition of the plant (Korcak, 1986). Blueberry breeders now are developing highbush cultivars adapted to upland soils by using the considerable genetic variability present in Vaccinium. With the genetic bridges now existing between ploidy levels (Chandler et al., 1985a), the major steps to genetic advancement are the identification of important traits and determination of the inheritance of these traits.

This study was designed to examine combining ability effects for both plant and fruit traits in interspecific hybrid blueberry seedlings developing on mineral soil unamended with organic matter. Information from this Study will allow evaluation of one species and three interspecific hybrid clones for transfer of traits important for plant growth and fruit production. Our research continued work started by Chandler et al. (1985b) by using their four-parent diallel.

Materials and Methods

The mature blueberry plants used were established in the field in 1982, as a four-parent (G362, US226, US75, and JU11) (Table 1) diallel set of crosses and three additional crosses involving JU64 (JU64 x G362, JU64 x JU11 and G362 x JU64), on a Galestown fine sandy loam reddish-brown soil (0.7% organic matter) at Beltsville, Md. The soil pH was lowered with S to 4.2 before planting and no organic matter was added at any time.

A randomized complete-block design with 10 blocks was used. Each block consisted of progeny plots of 10 seedlings spaced...
0.5 m within and 1.0 m between rows and parental plots containing two clones of each parent. In 1983 and 1984, all the parent and progeny plots in the field were evaluated. In 1985, only the parents and seedlings from the plots of one set of F1 plants from the four-parent diallel plus the plots of G362 x JU64 and JU64 x JU11 were evaluated.

The plants were fertilized in 1982 with 25 kg N/ha (1.87 g N/plant) applied as (NH4)2SO4 and watered periodically with overhead sprinklers. The field received no fertilizer in 1983, but was irrigated, and weeds were controlled by cultivation and herbicide. In both 1984 and 1985, 28 kg N/ha, 12.3 kg P/ha, and 23.3 kg K/ha were applied in mid-May and 23 kg N/ha of (NH4)2SO4 in early July. Total nutrients added per plant in 1984 and 1985 were 4.65 g N, 1.2 g P, and 2.3 g K. The plants were drip-irrigated using a 8-mil twin-wall lateral with holes punched every 30 cm. In 1985, soil tension was monitored with tensiometers. Four blocks of the field were irrigated when the soil tension reached 0.03 to 0.04 MPa at a depth of 15 cm, and the remaining six blocks were irrigated when soil tension reached 0.08 to 0.09 MPa at a depth of 25 cm. After a stress period, plants were irrigated for 8 to 12 hr to bring soil tension to 0 MPa.

In Fall 1983, 1984, and 1985, plant size was determined by calculating CYV from height, width, and breadth measurements of all the parent plants and a random sample of at least three seedlings per progeny plot. These CYV values were converted to DIF by subtracting the previous year’s CYV from the current year. Data on fruiting traits were collected in 1984 and 1985: DFR, TFW, BS, and TFW : CYV. In 1984, data were also recorded for days to flower, so #DBF&F could be determined. DFR was determined by recording the number of days from 1 Jan. to ripen 50% of the fruit. TFW was the weight of all the fruit on a plant when 50% of the fruit was ripe. BS was determined by weighing 10 randomly selected ripe berries. Days to flower was recorded as the number of days from 1 Jan. for 50% bloom.

Data for 1983 and 1984 were subjected to a complete diallel analysis using the Schaffer and Usanis (1969) computer program; F ratios and GCA and SCA effects were calculated according to Griffing’s method 3, model I analysis (Griffing, 1956). Diallel analysis was performed on the 1985 data in a similar manner, except that Griffing’s method 4, model I analysis for a half-diallel was used (Griffing, 1956).

Results and Discussion

No maternal or reciprocal effects were found in 1983 and 1984, so a half-diallel design was chosen for 1985. The GCA x location effects in 1985 were not significant; thus, the data from the wet and dry sides of the field were combined. GCA was highly significant for DIF and TFW : CYV in all years analyzed (Table 2). SCA was highly significant for DIF and significant for TFW : CYV 84. JU11 was the highest in GCA effects for DIF 83 and 84, and for TFW : CYV 84, and US75 was second in DIF 85 (Table 3). US226 was the highest and G362 was second in GCA effects for TFW : CYV 84 and 85. Because only three progenies of JU64 were present in the field and data was only collected from two of these in 1985, a reliable estimate of GCA could not be determined, but data presented in Table 4 indicate that JU64 can transmit mineral soil tolerance to its offspring. The progeny means of JU11 x US75, JU64 x JU11, and G362 x JU11 for DIF 85 and G362 x JU64 for TFW : CYV (Table 4) were significantly higher than the parental means, indicating either heterosis for these traits or a difference resulting from seed vs. clonal propagation.

JU11 is a hybrid of two upland-soil-adapted species (V. ashei and V. atrococcum) (Galletta, 1975; Lyrene and Sherman, 1980), and US75 is descended from one upland-soil-adapted species (V. darrowi Camp) (Galletta, 1975; Lyrene and Sherman, 1980). JU64 and US226 are from the cross of two upland-soil-adapted species, but they and their progenies did not produce large plants on this mineral soil. Undoubtedly, this outcome is due partly to JU64 being a product of two lowbush species (V. myrsinites Lamark and V. angustifolium Aiton) (attainable height for lowbush is <0.5 m) (Galletta, 1975) and US226 originating from the cross of a lowbush and highbush species (V. myrtillus and V. atrococcum, respectively) (attainable height for a half-high is 0.5 to 1.0 m) (Galletta, 1975). This height discrepancy was partly compensated for by analyzing DIF. In the case of G362, genes for plant height are not a complicating factor because it is a highbush type (V. corymbosum L.) and produces a smaller DIF than US75, a lowbush (V. darrowi) and highbush (V. corymbosum) cross. In a study of five blueberry interspecific progenies evaluated in three upland soils and one traditional blueberry organic sand (3% organic matter and 95% sand), Korcak (1986) reported that there was a tendency for growth of progenies in the mineral soils to increase as the amount of V. corymbosum in their parentage decreased. This trend was not as apparent in our data because of the complication due to the height effect.

The significant GCA for DIF and TFW : CYV demonstrates that genetic variability exists for mineral soil adaptability and that selection should result in genetic improvement for these traits. Because GCA was higher than SCA, these traits are probably governed primarily by additive gene action; therefore, parental performance should predict hybrid progeny performance. The significant SCA estimates indicate that, for certain traits, a large sample of seedlings from particular crosses should be screened to identify the individuals with the best combination of GCA and SCA. Heritability estimates could not be obtained using the GCA and SCA effects because the analytical method presumed a fixed model (Griffing’s model 1). In addition, interpretation of the gene action associated with these traits is limited to the parents and progeny used and can not be extrapolated to the population level. However, we hypothesize that other geno-

Trait	Year	Source	MS	F
DIF 1983	GCA	423 x 10^4	8.10**	
DIF 1984	GCA	421 x 10^4	8.45**	
DIF 1985	GCA	157 x 10^4	26.66**	
TFW : CYV	GCA	731 x 10^3	13.30**	
TFW : CYV	GCA	194 x 10^4	3.54**	
DFR 1984	GCA	6447	8.85**	
DFR 1985	#DBF&F	4101	233.80**	
BS 1985	SC	194	94.00**	
	SC	67	32.13**	

NS, **Nonsignificant or significant at P = 0.01 or 0.0.5, respective y.
Table 3. Estimates of GCA effects for DIF in 1983, 1984, and 1985, TFW : CYV in 1984 and 1985, #DBF&F in 1984, BS in 1985, and DFR in 1984 and 1985 and SCA effects for DIF in 1983, TFW : CYV in 1984, #DBF&F in 1984, and BS in 1985.

Parent	DIF 83	DIF 84	DIF 85	TFW : CYV 84	TFW : CYV 85	#DBF&F 84	BS 85	DFR 84	DFR 85
JU11	-115	13.7	-3.6	22.4	20.6				
US75	-180	-5.4	2.3	-6.6	-2.9				
G362	-108	-5.9	2.8	-6.6	-2.9				
US226	244	301	-4.3	-1.7	-13.1	-11.9			
se*	98	123	4.6	1.8	7.9	7.2			

Standard error of the difference between two effects.

Table 4. DIF, TFW : CYV, TFW, and BS means for parental clones and interspecific hybrid progenies grown on a mineral soil in 1985.

Trait	Entry	N°	DIF (m²)	TFW : CYV (g.m⁻²)	TFW (g)	BS (g/10 berries)
JU11 x US75	10	1.03	465 de	618 ab	8.7 f	
JU64 x JU11	9	0.92	369 de	428 bcde	5.2 i	
G362 x JU11	10	0.88	614 ede	907 ab	9.6 ef	
US75	10	0.61	168 e	133 de	17.0 c	
JU11	10	0.59	1373 bcd	946 a	9.2 f	
JU11 x US226	10	0.50	1027 bcd	573 abc	8.0 fg	
G362 x US75	10	0.43	705 ede	451 bcd	18.6 b	
US75 x US226	10	0.35	779 bde	457 bcd	10.8 de	
G362 x JU64	10	0.22	1990 a	743 ab	9.4 ef	
JU64	10	0.22	927 bcd	197 ede	5.4 hi	
US226 x G362	10	0.19	1193 b	339 bcd	11.2 d	
G362	10	0.15	991 bcd	151 de	23.3 a	
US226	5	0.10	483 de	36 e	6.8 gb	

*Either the number of progeny plots per cross or the number of parental clones sampled.

Mean separation by Duncan’s multiple range test, P = 0.05.

The yearly combining abilities for the fruiting traits show that TFW 84, TFW 85, and BS 84 had nonsignificant GCA and SCA values (Table 2). GCA was highly significant for DFR 84, DFR 85, #DBF&F 84, and BS 85; SCA was highly significant for BS 85 and significant for #DBF&F 84. US226 was lower in GCA for DFR 84 and 85 than G362 and JU11 (Table 3). G362 and JU75 were highest in GCA for BS 85 and only JU11 was highest in #DBF&F. In other inheritance studies with blueberries, BS (Darrow et al., 1939; Draper and Scott, 1969; Edwards et al., 1974; Finn and Luby, 1986), DFR (Darrow et al., 1939; Finn and Luby, 1986; Lyrene, 1983), and #DBF&F (Draper et al., 1982; Finn and Luby, 1986; Lyrene, 1983) were all found to be highly heritable. Large fruit size was found not to be associated with low yield, and small fruit size was reported to be dominant (Draper et al., 1982; Finn and Luby, 1986). These relationships might be the case for only V. corymbosum and V. angustifolium species or interspecific hybrid populations. We found that US75 had large fruit and low yield (Table 4). Fia-4B, one of the parents of US75, has small fruit and low yield, while the other parent, ‘Bluecrop’, has large fruit and high yield. No heterosis for BS occurred (Table 4) and G362 x JU64 was the only progeny that had a higher mean for TFW than its parents.

The highly significant GCA for DIF, TFW : CYV, and the fruiting traits indicate that genetic diversity for upland soil tolerance is present and heritable in the Vaccinium clones used in this study. The traits necessary for vigorous growth and high productivity on mineral soils are present in the germplasm examined in this study. US75 was second in GCA for almost all the traits evaluated, and we conclude that it has the best combination of genes for breeding upland-soil-adapted plants. US75 can also be used to breed for a shortened interval between flowering and fruiting. High TFW : CYV, the major trait lacking in US75, can be transferred in crosses to US226 and JU64. In addition, US226 was identified as a source for earliness on a mineral soil. JU11 was the best parent for transfer of plant vigor and this increased vigor should be useable after one or two additional backcrosses to a tetraploid. The low yield and vigor of G362 on this mineral soil does not reduce its potential as a
genetic source of productivity, especially if combined with US75, JUll, or JU64. Some of the seedlings from the crosses of G362 x US75, US75 x US226, and US226 x G362 with commercial potential have been selected and propagated for advance testing. Because GCA was higher than SCA for DIF and all fruiting traits except TFW, a recurrent selection program to develop vigorous and productive highbush blueberry cultivars for mineral soils, unamended with organic matter, should be effective by using the genetic material from this study and other related species material.

Literature Cited

Chandler, C. K., A.D. Draper, and G.J. Galletta. 1985a. Crossability of a diverse group of polyploid blueberry interspecific hybrids. J. Amer. Soc. Hort. Sci. 110:878-881.

Chandler, C. K., A.D. Draper, G.J. Galletta, and J.C. Bouwkamp. 1985b. Combining ability of blueberry interspecific hybrids for growth on upland soil. HortScience 20:257–258.

Darrow, G. M., J.H. Clark, and E.B. Morrow. 1939. The inheritance of certain characters in the cultivated blueberry. Proc. Amer. Soc. Hort. Sci. 37:611-616.

Draper, A. D., G.J. Galletta, and J.R. Ballington. 1982. Breeding methods for improving southern tetraploid blueberries. J. Amer. Soc. Hort. Sci. 107:106-109.

Draper, A.D. and D.H. Scott. 1969. Fruit size inheritance in highbush blueberries, Vaccinium australe Small. J. Amer. Soc. Hort. Sci. 94:417-418.

Edwards, T. W., Jr., W.B. Sherman, and R.H. Sharpe. 1974. Evaluation and inheritance of fruit color, size, scar, firmness, and plant vigor in blueberry. HortScience 9:20-22.

Finn, C.E. and J.J. Luby. 1986. Inheritance of fruit development interval and fruit size in blueberry progenies. J. Amer. Soc. Hort. Sci. 111:784-788.

Fowler, S. R., W.L. Bateman, and J.M. Spiers. 1981. Costs and returns for small-acreage blueberry production in the Mid-Gulf Region. Mississippi Agr. and For. Expt. Sta. Res. Rpt. 6 (12), Mississippi State Univ., Poplarville.

Galletta, G.J. 1975. Blueberries and cranberries, p. 154-196. In: J. Janick and J.N. Moore (eds.). Advances in fruit breeding. Purdue Univ. Press, West Lafayette, Ind.

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Austral. J. Biol. Sci. 9:463-493.

Hancock, J. and S. Krebs. 1986. Cytoplasm of highbush blueberry cultivars. Fruit Varieties J. 40:49-50.

Korcak, R.F. 1986. Adaptability of blueberry species to various soil types. I. Growth and initial fruiting. J. Amer. Soc. Hort. Sci. 111:816-821.

Korcak, R. F., G.J. Galletta, and A.D. Draper. 1982. Response of blueberry seedlings to a range of soil types. J. Amer. Soc. Hort. Sci. 107:1153-1160.

Lyrene, P.M. 1983. Components of ripening in rabbiteye blueberry. HortScience 18:221-223.

Lyrene, P.M. and W.B. Sherman. 1980. Horticultural characteristics of native Vaccinium darrowii, V. elliotti, V. fuscatum, and V. myrsinites in Alachua County, Florida. J. Amer. Soc. Hort. Sci. 105:393-396.

Schaffer, H.E. and R.A. Usanis. 1969. General least square analysis of diallel experiment: A computer program diallel. North Carolina State Univ. Genetics Dept. Rpt. 1.