Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

Learning from combination HIV prevention programmes to face COVID-19 emerging pandemic

Ricardo Palacios1 Augusto Mathias2
ricardo.palacios@sbutatan.gov.br

1 Instituto Butantan, Clinical Trials and Pharmacovigilance Center, São Paulo, Brazil, 2 Universidade de São Paulo, School of Medicine, Department of Preventive Medicine, São Paulo, Brazil

Resumen

Antes de que una vacuna contra el SARS-CoV-2 esté disponible, son necesarias varias medidas para controlar la pandemia de COVID-19. Análogamente, en ausencia de una vacuna disponible, los Programas Combinados de Prevención del VIH han consolidado una gran experiencia de intervenciones biomédicas, conductuales y estructurales adecuadas para varios entornos epidemiológicos. La adaptación de tales experiencias puede organizar respuestas a medio y largo plazo para enfrentar COVID-19.

Abstract

Before a vaccine against SARS-CoV-2 became available, several measures to control COVID-19 pandemic are necessary. Analogously, in the absence of an available vaccine, Combination HIV Prevention Programmes have consolidated a large experience of biomedical, behavioral and structural interventions suitable for several epidemiological settings. Adaptation of such experiences can organize mid-term and long-term responses to face COVID-19.

Contribución del estudio

1) ¿Por qué se realizó este estudio?
Desde el descubrimiento hasta el proceso de la inmunización real para proteger a las poblaciones contra el COVID-19, puede tardar varios meses o incluso años. Proponemos explorar varias alternativas para organizar las medidas preventivas y adaptar nuestra vida, nuestro comportamiento y las estructuras a esta nueva realidad

2) ¿Cuáles fueron los resultados más relevantes del estudio?
Proponemos utilizar los programas combinados de prevención del VIH como modelo para organizar las medidas de prevención del COVID-19, en ausencia de una vacuna como una opción adecuada. Hasta ahora, no disponemos de una vacuna contra el VIH eficaz. No obstante, hemos aprendido mucho sobre cómo prevenir el VIH y hemos alcanzado importantes logros. Proponer Programas de Prevención Combinados de COVID-19 es una alternativa para enfrentar esta situación pandémica hasta que obtengamos una vacuna segura y efectiva para la población.

3) ¿Qué aportan estos resultados?
Esperamos que las autoridades de salud puedan utilizar este enfoque y establecer programas combinados de prevención de COVID-19 para entornos epidemiológicos locales. En un editorial de Science, publicado el mismo día que nuestro artículo, los autores abogan por este enfoque. Nuestro manuscrito da un paso adelante al proporcionar ejemplos sobre cómo este enfoque se puede transferir del VIH al COVID-19.
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

Introducción

La aparición de la pandemia de COVID-19 ha supuesto una carga de enfermedad sin precedentes para los sistemas de salud. El crecimiento exponencial de la tasa de infección y la demanda de cuidados intensivos en cortos periodos de tiempo exigieron estrategias más agresivas para disminuir la transmisión. Las medidas implementadas para disminuir el número reproductivo (R) de la infección por SARS-CoV-2 permiten distribuir la cantidad de casos que requieren atención médica en un período más largo. Este efecto, conocido como "aplanamiento de la curva", se puede lograr mediante la implementación de un control riguroso en las interacciones sociales que causan un gran impacto en el comportamiento individual y colectivo de las comunidades, y por extensión en la actividad económica.

En un artículo esclarecedor titulado "Coronavirus: El martillo y la danza", Tomás Pueyo concluyó que las estrategias de supresión, “El martillo” para golpear la R, son críticas para ganar tiempo para enfrentar la pandemia de COVID-19. Este tiempo es valioso para aumentar la capacidad de atención médica, refinar los enfoques terapéuticos y probar tratamientos y vacunas. Cuando las restricciones severas controlan el brote, “la danza” con la R comienza. En esta fase, las medidas apuntan a mantener la R lo suficientemente baja como para tener un número de casos manejable para los sistemas de salud (Fig. 1). “La danza” seguirá dando un tiempo adicional para obtener mejores soluciones terapéuticas y para el control de la pandemia, como la inmunización.

En las últimas cuatro décadas, el mundo aprendió a implementar “la danza” con el VIH. A pesar de que la búsqueda de una vacuna aún no ha tenido éxito, el tiempo y los recursos han producido un amplio espectro de tecnologías biomédicas, así como la comprensión de los comportamientos de los componentes de la enfermedad, en el marco de una estructura habilitadora que representa la combinación actual de programas de prevención del VIH.

Este artículo tiene como objetivo revisar los componentes de esta estrategia para evaluar si se pueden adaptar a la pandemia actual de COVID-19.

Definición de un programa combinado de prevención

El Programa Conjunto de las Naciones Unidas sobre el VIH / SIDA (ONUSIDA), El Grupo de Referencia de Prevención declaró en 2009 la siguiente definición:

Los programas de prevención combinados son "programas basados en derechos, basados en evidencia y de la propia comunidad que utilizan una combinación de intervenciones biomédicas, conductuales y estructurales, priorizadas para satisfacer las necesidades actuales de prevención del VIH en individuos y en las comunidades particulares, a fin de tener mayor impacto sostenido en la reducción de nuevas infecciones. Los programas de prevención combinados bien diseñados se adaptan cuidadosamente a las necesidades y condiciones nacionales y locales; concentran los recursos en la combinación de las acciones programáticas y políticas necesarias para abordar tanto los riesgos inmediatos como la vulnerabilidad subyacente; y están cuidadosamente planeados y gestionados para operar de manera sinérgica y consistente en múltiples niveles (por ejemplo, individual, comunidad, sociedad) y durante un periodo de tiempo adecuado. Movilizan recursos comunitarios, del sector privado, gubernamentales y globales en una empresa colectiva; requieren y benefician de una mejor asociación y coordinación; e incorporan mecanismos de aprendizaje, desarrollo de capacidades y flexibilidad para permitir la mejor continúa y la adaptación al entorno cambiante".

Colocando el COVID-19 en lugar de VIH en la definición mencionada anteriormente puede proporcionar un adecuado programa multinivel para enfrentar la magnitud sin precedentes de esta nueva pandemia. Además, esta definición reconoce los derechos humanos, la ciencia y la comunidad como la base de un programa exitoso.

No existe un diseño “único” para los programas de prevención combinada. La disponibilidad y la oferta de varios métodos preventivos hacen posible que los individuos combinen estrategias biomédicas y de comportamiento en el marco de intervenciones estructurales sensibles a las...
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

especificidades de los individuos y las comunidades. El éxito del programa no dependerá solo de las acciones aisladas de los individuos, las comunidades o los gobiernos, sino también de las acciones combinadas en todos los niveles. Cada programa de prevención combinada cubre tres áreas principales: área biomédica, área conductual y área estructural. En la Tabla 1 se presentan ejemplos de estrategias en estas áreas y se detallan a continuación.

Área biomédica

Las intervenciones biomédicas están basadas en métodos clínicos y médicos. Pueden ser farmacológicos o no farmacológicos y dependen del uso de tecnologías duras. Este tipo de intervenciones requiere garantizar el acceso a los suministros, así como la adhesión individual y comunitaria a la tecnología.

Barreras físicas para prevenir la infección

Las personas con infecciones asintomáticas u oligosintomáticas pueden transmitir virus en contacto con personas susceptibles. En la medida en que esas infecciones no sean aparentes, los individuos susceptibles no pueden distinguir entre individuos infectados y no infectados en las interacciones. Por este motivo y como regla general, todas las personas deben considerarse como una fuente potencial de infección y deben implementarse barreras físicas para evitar la propagación del virus entre las personas.

El uso universal del condón es una piedra angular de la prevención del VIH desde las estrategias de prevención anteriores. El uso del condón se promueve ampliamente y ponerlo a disposición es una actividad clave en la prevención del VIH. Se recomienda a todas las personas que usen o soliciten el uso del condón, y que aprendan su uso apropiado, incluso cuando usar con lubricante también ayuda para reducir riesgos adicionales.

La transmisión de individuos asintomáticos y pre-sintomáticos se ha identificado en grupos de COVID-19. Aproximadamente 80% de las fuentes de infección por SARS-CoV-2 son individuos asintomáticos y pueden transmitir el virus a individuos susceptibles a gran escala. Pero, la eficacia empírica de las máscarillas (tapabocas) en la prevención de la propagación del SARS-CoV-2 aún son limitadas. Los beneficios potenciales ponderados por los Centros de Control y Prevención de Enfermedades (CDC) de los Estados Unidos conducen a una recomendación en el uso de máscarillas independientemente de la presencia

![Figure 1. “The Hammer and The Dance”: phases to face COVID-19 pandemic. Adapted from Pueyo T 2](image-url)
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19.

de síntomas, en áreas con transmisión comunitaria significativa desde abril 2020, para crear una barrera física. La protección para evitar contraer infecciones requiere de un equipo de protección personal específico. Luego, el uso de mascarillas no profesionales está destinado principalmente como una medida altruista para proteger al resto de la comunidad, en lugar de proteger a la persona que usa la máscara, dado si una persona infectada asintomática / presintomática no es consciente de esa condición. Este mensaje debe transmitirse a la comunidad para enfatizar que las personas con mayor probabilidad de tener una infección asintomática se adhieren a esta medida y evitar el descrédito de la medida si alguien que usa la máscara se infecta.

Identificando individuos asintomáticos infectados capaces de transmitir la infección.

Las personas asintomáticas generalmente no acuden activamente a los servicios de salud para el diagnóstico. No obstante, si se identifican esas personas, las medidas adicionales para evitar la propagación y controlar las complicaciones tempranas debido a la infección pueden disminuir la transmisión y la morbilidad.

La oferta activa de pruebas rápidas de VIH permite un tratamiento más temprano que conduce a disminuir la transmisión y evitar la progresión al SIDA. Las tecnologías actuales han puesto a disposición pruebas de venta libre y campañas de pruebas comunitarias basadas en pares. Alemania y Corea del Sur implementaron una política de pruebas masivas para el SARS-CoV-2, en contraste con otros países que restringen las pruebas solo a casos sintomáticos o graves. Esta estrategia permite medidas adicionales en aquellas personas identificadas como infectadas, incluyendo cuarentena y monitoreo de la salud. Las pruebas masivas y la identificación de individuos asintomáticos y presintomáticos representan una parte considerable del éxito de esos países para enfrentar el COVID-19.

Medidas profilácticas en caso de exposición potencial

Área	Objetivo	Estrategia en VIH	Estrategia en COVID-19
Intervenciones biomédicas con métodos clínicos y médicos.	Barreras físicas para prevenir la infección.	Condomes y lubricantes	Uso de máscaras y equipo de protección personal.
	Identificar individuos asintomáticos infectados capaces de transmitir la infección.	Pruebas de masa (serología)	Pruebas de masa (RT-PCR)
	Meidas profilácticas en caso de exposición potencial.	PREP y PEP	Lavarse las manos y limpiar objetos con exposición potencial.
	Identificar individuos que es poco probable que transmitan infecciones.	Indetectable = No transmisible (carga viral del VIH en individuos infectados)	Pruebas de serología
	Tratamiento de afecciones médicas subyacentes asociadas a un mayor riesgo.	STI diagnostico y tratamiento	Tratamiento de diabetes mellitus, enfermedad pulmonar crónica y enfermedad cardiovascular y otras comorbilidades
Intervenciones conductuales que promueven comportamientos saludables.	Reducción del riesgo en posibles interacciones entre individuos susceptibles e infectados.	Prácticas de serosorting y reducción de daños sexuales.	Aislamiento, cuarentena, distanciamiento social y medidas de contención comunitaria.
	Proporcionar bases para cambios de comportamiento y campañas de marketing social.	Educación sexual integral y campañas para promover el uso de métodos de prevención.	Educación integral en bases científicas para apoyar las medidas de prevención de COVID-19 y campañas para promover el uso de métodos de prevención.
Intervenciones estructurales que promueven un entorno propicio.	Identificación y acciones sobre poblaciones clave y vulnerables.	Evitar la marginación y políticas específicas para poblaciones vulnerables.	Medidas para mejorar las condiciones de vida de las personas mayores y las minorías y políticas de bienestar social para reducir la desigualdad.
	Protección general de las poblaciones.	Acceso universal a la prevención, diagnóstico y tratamiento del VIH.	Asistencia financiera a hogares y empresas afectadas.

Tabla 1. Ejemplos de estrategias para un programa de prevención combinado en VIH y COVID-19

Colombia Médica | http://doi.org/10.25100/cm.v50i4.4276
Los eventos con exposición potencial a un patógeno no siempre se pueden evitar. Pero la exposición no conduce a la infección en todos los casos. Los determinantes de la infección incluyen la dosis del patógeno durante la exposición y el contacto del patógeno con células susceptibles a la infección. Las medidas profilácticas para cambiar estos determinantes se pueden usar antes o después de la exposición. En este ítem, el enfoque está en el uso de sustancias químicas utilizadas como medidas profilácticas farmacológicas o no farmacológicas.

El uso de profilaxis relacionada con la exposición al VIH tuvo hitos: ase uso en accidentes laborales en trabajadores de la salud y para prevenir la transmisión del VIH de madre a hijo. En ambos casos, el uso de medicamentos antirretrovirales fue exitoso para disminuir los eventos de infección temprana después de una posible exposición. Con base a esos hallazgos, el uso de antirretrovirales se extendió después de una posible exposición sexual al VIH, inicialmente como profilaxis post-exposición (PEP) y luego como profilaxis pre-exposición (PrEP). El uso profiláctico de medicamentos antirretrovirales está ampliamente incorporado a los programas de prevención del VIH en todo el mundo.

Hasta ahora, no se ha informado que ningún medicamento haya demostrado tener un potente efecto antiviral en ensayos clínicos contra el SARS-CoV-2. Pero la reutilización de medicamentos aprobados para otras indicaciones puede proporcionar una forma más rápida para un tratamiento y, eventualmente, volverse adecuada para la profilaxis. Mientras tanto, se puede usar otra medida profiláctica para destruir partículas virales antes de que puedan entrar en contacto con células susceptibles. El SARS-CoV-2, como otros virus respiratorios, puede permanecer viable en fómites durante varias horas, e incluso días, y puede ponerse en contacto con las mucosas a través de la mano de un individuo en contacto con fómites infectados. El uso de sustancias químicas, como jabón y desinfectantes a base de alcohol, para limpiar las manos puede evitar una infección efectiva en una persona con exposición en un área contaminada. En mayor medida, las superficies en contacto con individuos susceptibles deben desinfectarse para evitar la exposición.

Identificando individuos que es poco probable que transmitan infecciones.

Es posible que los individuos que, para controlar o recuperarse de la infección, puedan bloquear la cadena de transmisión, no tengan que tomar otras medidas preventivas, es decir, barreras físicas. Entonces, la identificación de un individuo como incapaz de transmitir puede ofrecer ganancias secundarias significativas.

Las personas que viven con el VIH han sufrido discriminación porque otras personas temían contraer la infección durante la interacción. Luego, cuando los estudios demostraron que las parejas sexuales de personas que viven con el VIH en terapia antirretroviral efectiva con reducción de la carga viral por debajo de los niveles de detección no tenían infección después de una posible exposición, el lema “Indetectable = No transmisible” fue acuñado. Esta evidencia científica alivió en parte la discriminación y el sufrimiento de muchas personas que viven con el VIH.

En el caso de COVID-19, algunos investigadores han propuesto el uso de pruebas serológicas para determinar quién ya tenía infección y adquirió inmunidad contra el SARS-CoV-2. Los “certificados de inmunidad” de aquellos que no pueden contraer o transmitir la infección podrían regresar al trabajo de manera segura. Este tipo de propuestas todavía está limitado por el conocimiento restringido sobre la inmunidad a medio y largo plazo después de la infección por SARS-CoV-2. En el coronavirus humano 229E, la infección experimental se produjo solo en voluntarios con niveles bajos de IgA nasal e IgG en suero, lo que significa que se requieren altos niveles de anticuerpos para obtener protección. La decadencia de anticuerpos está bien documentada después de la infección por SARS-CoV-1 en un periodo de seguimiento de 3 años y en pacientes después de 34 meses después de la infección por MERS-CoV. En un modelo animal, la reinfección de MERS-CoV solo fue posible en ausencia de anticuerpos neutralizantes. Esos resultados son signos de advertencia para tener cuidado al establecer parámetros para declarar a un individuo como inmune a una nueva infección por SARS-CoV-2 y establecer políticas sobre esta base.
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

Tratamiento de afecciones médicas subyacentes asociadas a un mayor riesgo

Las condiciones del huésped pueden afectar la historia natural de la infección, ya sea al aumentar el riesgo de infectividad o la progresión a una enfermedad grave. Luego, controlar o eliminar esas enfermedades subyacentes puede disminuir los riesgos de infección o morbilidad.

La inflamación genital en las infecciones de transmisión sexual puede aumentar el riesgo de transmisión del VIH, luego la identificación y el tratamiento de esas infecciones pueden ofrecer un beneficio adicional para esos pacientes.34,35

El SARS-CoV-2 no tiene asociación con condiciones subyacentes en términos de infección, sino en caso de gravedad. Además de la edad avanzada, la diabetes mellitus, la enfermedad pulmonar crónica, las enfermedades cardiovasculares y otras comorbilidades son más frecuentes entre los pacientes con COVID-19 grave.36 El desequilibrio en la regulación negativa del receptor ACE2 asociado a esas afecciones puede ser una forma mecanicista de explicar dicha gravedad.37 Por otro lado, los pacientes con reserva funcional deficiente o con condiciones basales inestables están en peor posición para resistir las lesiones relacionadas con la infección. Entonces, mejorar las condiciones subyacentes podría disminuir el riesgo de COVID-19 grave en caso de infección.38

Área de comportamiento

Promover comportamientos saludables es una tecnología suave con enfoque en comportamientos y elecciones individuales. Sin embargo, tales elecciones no solo dependen de la libre voluntad del individuo, sino de varias restricciones externas fuera del control del individuo. Luego, muchas de estas intervenciones conductuales tienen medidas complementarias para modificar factores externos e incentivar la elección deseada, ya sea creando restricciones o rompiendo barreras.

Reducción del riesgo en posibles interacciones entre individuos susceptibles e infectados

En ausencia de inmunidad adquirida, una de las formas más efectivas para disminuir el número reproductivo de una infección es reducir las oportunidades de transmisión. La discriminación entre individuos infectados y susceptibles es un desafío debido a la limitación para evaluar de manera oportuna a los individuos infectados asintomáticos y presintomáticos. Los cambios de comportamiento deberían afectar todas las interacciones entre individuos relacionados con las formas de transmisión.

La serodiscriminación es una de las estrategias de comportamiento basadas en la segregación documentada en VIH. Eso es restringir las opciones de pareja sexual solo a aquellos con el mismo estado serológico, es decir, una persona que vive con el VIH limitará las relaciones sexuales a otras personas que viven con el VIH. Otra estrategia para reducir el riesgo de transmisión del VIH es cambiar el comportamiento durante las relaciones sexuales, es decir, las prácticas sexuales no penetrantes.39-42

El control de las infecciones respiratorias virales es más difícil porque la transmisión es posible con una interacción limitada. Se requieren las medidas más extremas para la contención de esos casos. Ese fue el caso del brote de SARS en 2003. La cuarentena centenaria, que significa el aislamiento completo de las personas infectadas y sus contactos, fue establecida por las autoridades de salud para contener el brote de SARS.43 Este precedente fue útil para permitir el mismo tipo de medidas cuando surgió COVID-19. Una ampliación de las medidas desde el aislamiento hasta la cuarentena, luego el distanciamiento social y, finalmente, la contención de la comunidad (también conocida como bloqueo) se volvió esencial para enfrentar el brote de COVID-19.44 La aplicación de este conjunto de métodos para restringir la interacción entre individuos susceptibles e infectados representa una posibilidad creciente de interrumpir la transmisión y también grados de interrupción de la vida social y económica. La resistencia a adherirse a este conjunto de medidas es directamente proporcional a la magnitud de dicha interrupción. Las autoridades chinas implementaron este tipo de medidas a un nivel sin precedentes en la historia. Esta prueba de concepto fue un éxito notable capaz de agotar a las
personas susceptibles para frenar el número reproductivo. El número reproductivo básico del SARS-CoV-2 \(R_0 \) se calculó en 5.7 (IC 95% [3.8-8.9]), lo que significa que un individuo infectado puede transmitir la infección a cerca de otros 6 individuos, además de que muchos de ellos son asintomáticos. Tal alto \(R_0 \) explica la necesidad de disminuir la interacción social para disminuir la tasa de transmisión. Uno de los mayores desafíos en la prevención de COVID-19 para los próximos meses es encontrar herramientas para ajustar este tipo de medidas. Las consecuencias para la salud social y mental, así como la profundización de las desigualdades e injusticias son predecibles como resultado de las interrupciones en las actividades sociales y económicas. El repertorio de restricciones y cambios en la vida diaria y laboral es extenso y su impacto está sujeto a un intenso modelo matemático para guiar a las autoridades. La mayoría de los modelos se basan en la dinámica clásica SIR (Susceptible / Infectado / Removido), pero si la inmunidad al SARS-CoV-2 disminuye como ocurrió después de infecciones con otros coronavirus, esos modelos pueden fallar a mediano plazo para predecir el efecto de las restricciones relajantes a las interacciones sociales. Se necesitan con urgencia datos adicionales sobre el monitoreo del efecto de las medidas y la historia natural de la infección por SARS-CoV-2 para alimentar modelos matemáticos.

Proporcionando bases para cambios de comportamiento y campañas de marketing social.

De la misma manera que los proveedores de atención médica necesitan educar a una persona laica con un nuevo diagnóstico para promover comportamientos saludables, las sociedades requieren aprender sobre las razones para cambiar los comportamientos. El liderazgo generalmente se transmite en las autoridades de salud con el apoyo de agencias multilaterales, como la Organización Mundial de la Salud, y sociedades científicas e instituciones académicas. Las comunidades deben identificar fácilmente fuentes confiables y recibir mensajes culturalmente apropiados para garantizar el éxito.

Hay una larga historia en acciones educativas en VIH / SIDA, incluyendo historia natural de enfermedades, modos de transmisión, diagnóstico, tratamiento y métodos de prevención. Las estrategias incluyeron el uso de los medios de comunicación, acciones específicas en poblaciones y escuelas clave y actividades organizadas por centros comunitarios, entre otros.

Los informes sobre las actividades educativas de la comunidad en COVID-19 siguen siendo limitados, a pesar de las campañas masivas y la cobertura de los medios ha sido intensa desde el comienzo de los brotes. El monitoreo de la percepción del riesgo a través de la investigación cualitativa puede guiar a las autoridades para modular el mensaje. Crear confianza en las autoridades mediante información transparente y confiable es también un dominio importante para entregar aportes al público para apoyar los cambios de comportamiento. Las redes sociales están adquiriendo un papel fundamental como medio de comunicación en los últimos años. El compromiso al comienzo del COVID-19 en China estuvo relacionado con medidas gubernamentales, así como con la desconfianza relacionada con los escándalos. La comunicación proactiva y el monitoreo de este nuevo entorno son desafíos a seguir en esta pandemia.

Área estructural

La implementación de intervenciones biomédicas y conductuales requiere un entorno propicio para hacerlas factibles. Dicho entorno solo es posible a través de cambios estructurales acordados por las fuerzas sociales, incluidos el gobierno, los cuerpos legislativos, la administración de justicia, el sector privado y la sociedad civil.

Identificación y acciones sobre poblaciones clave y vulnerables.

Las poblaciones clave son aquellas de mayor riesgo independientemente de la presentación de la epidemia en un territorio o el contexto local. Las poblaciones vulnerables son las que tienen un mayor riesgo en el contexto específico de un entorno epidémico que no se ven afectadas por igual en otros entornos. La identificación de poblaciones clave y vulnerables es relevante para determinar los enfoques a diferentes niveles.
En el VIH, se identifican cinco poblaciones clave: 1) hombres que tienen relaciones sexuales con hombres, 2) personas que se inyectan drogas, 3) personas en cárceles y otros entornos cerrados, 4) trabajadores sexuales y 5) personas transgénero. Esas poblaciones son más propensas a la marginación y la discriminación. Las políticas para obtener un reconocimiento efectivo de los derechos humanos los sacan del margen y permiten un enfoque eficiente de los sistemas de salud y protección social. En entornos específicos de un país, se identifican poblaciones vulnerables, es decir, mujeres adolescentes en algunos países africanos. El estudio HPTN 068 encontró que la baja asistencia escolar en adolescentes femeninas se asoció con un mayor riesgo de adquirir el VIH en Sudáfrica. Por lo tanto, la asistencia escolar podría ser una herramienta para disminuir la incidencia del VIH en esos entornos.

En COVID-19, las poblaciones clave fueron evidentes desde los primeros informes. Las personas mayores y aquellos con afecciones médicas subyacentes tienen una mayor mortalidad en diferentes entornos epidemiológicos. Como consecuencia, las inquietudes sobre el modo de vida de las personas mayores crearon conciencia sobre acciones específicas para abordar esta población clave. Las poblaciones vulnerables para COVID-19 en países como Estados Unidos incluyen minorías con una desventaja considerable para comprender la nueva enfermedad y cómo prepararse. También puede ocurrir una situación análoga en otros países con protección social limitada y desigualdad importante. Un mayor impacto de se espera enfermedad en poblaciones socialmente desfavorecidas. Las políticas específicas para mejorar el bienestar social pueden aliviar ese impacto.

Protección general de las poblaciones

Algunas medidas preventivas importantes solo son posibles en el marco de órdenes de arresto más allá de las poblaciones clave y vulnerables. Dichas protecciones suelen ser establecidas por los gobiernos e implica la movilización de una gran cantidad de recursos.

El acceso generalizado y sin restricciones a toda la población para el diagnóstico y tratamiento del VIH, independientemente de la cobertura del seguro de salud para otras afecciones médicas, es la base de la estrategia 90-90-90 lanzada por ONUSIDA en 2014. El objetivo propuesto de esta estrategia es alcanzar para 2020 90% de las personas infectadas con VIH diagnosticadas, el 90% de ellas en tratamiento antirretroviral y el 90% de ellas con carga viral indetectable. El acceso al diagnóstico permite la identificación de personas asintomáticas y el acceso al tratamiento cambia su estado para que sea poco probable que transmita la infección. Esta ambiciosa estrategia permite la implementación exitosa de intervenciones biomédicas.

En COVID-19, la restricción a la interacción social detuvo varias actividades económicas y condujo a la recesión. Por lo tanto, los gobiernos tienen el desafío de aplanar dos curvas simultáneas: la pandemia y las curvas de recesión. Además, solo los gobiernos pueden presionar para tomar medidas para proteger vidas a través del distanciamiento social y proporcionar asistencia financiera a los hogares y empresas afectados durante la interrupción de algunas actividades económicas. Las medidas a medio y largo plazo pueden afectar a varios sectores de la economía dependiendo de las actividades de recolección. Esos sectores podrían enfrentar la reformulación del modelo de negocio y la adaptación para sobrevivir. Sin el apoyo financiero y legal adecuado del gobierno, el distanciamiento social no es sostenible.

Conclusión

La búsqueda de una vacuna contra el VIH comenzó en la década de 1980 y hasta ahora ningún producto tenía licencia. Mientras tanto, las medidas preventivas han alcanzado un éxito notable actualmente consolidado en los Programas Combinados de Prevención del VIH. Las vacunas contra el SARS-CoV-2 son la forma más esperanzadora de tener una medida que cambie el juego para controlar la pandemia actual. Muchas iniciativas están en marcha, sin embargo, esos candidatos tienen riesgos de superar y están a meses de obtener la licencia. Las vacunas eventualmente autorizadas para protegerse contra COVID-19 podrían necesitar...
tiempo adicional para ser accesibles debido a limitaciones de fabricación⁹. Luego, es hora de aprender a realizar una larga “Danza” con el número reproductivo del SARS-CoV-2. Hay muchas otras intervenciones además de las mencionadas como ejemplos. Cada entorno epidemiológico debe construir, monitorear y revisar la mejor combinación de intervenciones. Pero en todos los casos, se requiere un fuerte compromiso de las personas, las comunidades, la sociedad civil y las autoridades para controlar estas continuas pandemias, VIH / SIDA y COVID-19.

Referencias

1. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020; 395(10228):931-4. Doi:10.1016/S0140-6736(20)30567-5

2. Pueyo T. Coronavirus: the hammer and the dance medium; 2020. Cited: 5 April 2020. Available from: https://medium.com/@tomaspueyo/coronavirus-the-hammer-and-the-dance-be9337092b56

3. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010; 363(27):2587-99. doi: 10.1056/NEJMoa1011205.

4. Bryant J, Baxter L, Hird S. Non-occupational postexposure prophylaxis for HIV: A systematic review. Health Technology Assessment. 2009; 13(14): 1-60. doi: 10.3310/hta13140.

5. Nilo F. Gerenciamiento de riesgo en tiempos de nuevas tecnologías de prevención na perspectiva de derechos humanos. Bol ABIA. 2015; 60:8-18.

6. UNAIDS. Combination HIV Prevention: tailoring and coordinating biomedical, behavioural and structural strategies to reduce new HIV infections. Unaids; 2010

7. UNAIDS. Combination HIV prevention: tailoring and coordinating biomedical, behavioural and structural strategies 10 to reduce new HIV infections. UNAIDS: Switzerland; 2010. Available from: http://www.unaids.org/sites/default/files/media_asset/JC2007_Combination_Prevention_paper_en_0.pdf

8. PAHO; WHO; UNAIDS. HIV Prevention in the spotlight: An analysis from the perspective of the health sector in Latin America and the Caribbean; 2017. Washington: PAHO, WHO, UNAIDS. p. 88. Available at: http://iris.paho.org/xmlui/bitstream/handle/123456789/34381/9789275119792-eng.pdf?sequence=6&isAllowed=y

9. Thienkrua W, Todd CS, Chaikummao S, Sukwicha W, Yafant S, Tippanont N, et al. Lubricant use among men who have sex with men reporting anal intercourse in Bangkok, Thailand: impact of HIV status and implications for prevention. j homosex. 2016; 63(4): 507-21. Doi: 10.1080/00918369.2015.1088319

10. Gorbach PM, Manhart LE, Hess KL, Stoner BP, Martin DH, Holmes KK. Anal intercourse among young heterosexuals in three sexually transmitted disease clinics in the united states. Sex Transm Dis. 2009; 36(4): 193-198. Doi: 10.1097/OLQ.0b013e3181901ccf

11. Carlos JA, Bingham TA, Stueve A, Lauby J, Ayala G, Millett GA, et al. The role of peer support on condom use among Black and Latino MSM in three urban areas. AIDS Educ Prev. 2010; 22(5): 430-444. Doi: 10.1521/aeap.2010.22.5.430

12. Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility - king county, Washington, March 2020. Morb Mortal Wkly Rep. 2020; 69(13):377-81.
13. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020; 368(6490): 489-493. Doi: 10.1126/science.abb3221

14. Liu X, Zhang S. COVID-19: Face masks and human-to-human transmission. Influenza Other Respi Viruses. 2020; ahead of print. Doi: 10.1111/irv.12740.

15. Centers for Disease Control and Prevention. Recommendation regarding the use of cloth face coverings, especially in areas of significant community-based transmission; 2020. Cited: 6 April 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover.html

16. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinpour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493-505. Doi: 10.1056/NEJMoa1105243

17. Lightfoot MA, Campbell CK, Moss N, Treves-Kagan S, Agnew E, Kang Dufour M-S, et al. Using a Social Network Strategy to Distribute HIV Self-Test Kits to African American and Latino MSM. JAIDS J Acquir Immune Defic Syndr. 2018; 79(1):38-45. Doi: 10.1097/QAI.0000000000001726

18. Choko AT, Nanfuka M, Birungi T, Taasi G, Kisembo P, Helleringer S. A pilot trial of the peer-based distribution of HIV self-test kits among fishermen in Bulisa, Uganda. Larson BA, organizador. PLoS One. 2018;13(11):e0208191. Doi: 10.1371/journal.pone.0208191

19. Cohen J, Kupferschmidt K. Mass testing, school closings, lockdowns: Countries pick tactics in ‘war’ against coronavirus. In: Coronavirus: Research, Commentary, and News. Science; 2020. Available from: https://www.sciencemag.org/news/2020/03/mass-testing-school-closings-lockdowns-countries-pick-tactics-war-against-coronavirus. Doi: 10.1126/science.abb7733

20. Ford N, Venter F, Irvine C, Beanland RL, Shubber Z. Starter packs versus full prescription of antiretroviral drugs for postexposure prophylaxis: a systematic review. Clin Infect Dis. 2015; 60(suppl 3): S182-6. Doi: 10.1093/cid/civ093

21. Beanland RLL, Irvine CMM, Green K. End Users’ views and preferences on prescribing and taking postexposure prophylaxis for prevention of HIV: methods to support World Health Organization guideline development. Clin Infect Dis. 2015; 60(suppl 3): S191-5. Doi: 10.1093/cid/civ070

22. Kaplan JE, Dominguez K, Jobarteh K, Spira TJ. Postexposure prophylaxis against human immunodeficiency virus (HIV): new guidelines from the WHO: a perspective. Clin Infect Dis. 2015;60(suppl_3):S196-9. Doi: 10.1093/cid/civ087

23. Fonner VA, Dalglish SL, Kennedy CE, Baggaley R, Reilly KR, Koechlin FM, et al. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. AIDS. 2016;30(12):1973-83. Doi: 10.1097/QAD.0000000000001145

24. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382:1564-1567 DOI: 10.1056/NEJMcm2004973

25. Centers for Disease Control and Prevention. Interim recommendations for U.S. households with suspected or confirmed coronavirus disease 2019 (COVID-19). CDC; 2020. Cited: 10 April 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html

26. Dieffenbach CW. Universal voluntary testing and treatment for prevention of HIV transmission. JAMA. 2009;301(22):2380. Doi: 10.1001/jama.2009.828

27. Eisinger RW, Dieffenbach CW, Fauci AS. HIV Viral Load and Transmissibility of HIV Infection: Undetectable Equals Untransmittable. JAMA. 2019; 321(5): 451-452. Doi: 10.1001/jama.2018.21167

28. York A. Undetectable equals untransmittable. Nat Rev Microbiol. 2019;17(7):399. Doi: 10.1038/s41579-019-0215-4
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

29. Eichenberger R, Hagenthmann R, Savage D, Stadelmann D, Torgler B. Certified corona-immunity as a resource and strategy to cope with pandemic costs. Cent Res Econ Manag Arts; 2020. Available from: https://www.frankfurt-school.de/en/dam/jcr:a8d60407-eb9e-440d-90e4-b24b16ab66ae/Certified Corona-Immunity as a resource and strategy.pdf

30. Callow KA, Parry HF, Sergeant M, Tyrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemic Infect. 1990;105(2):435-46. Doi: 10.1017/S0950268800048019

31. Cao W-C, Liu W, Zhang P-H, Zhang F, Richards JH. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007;357(11):1162-3. Doi: 10.1056/NEJMct070348

32. Payne DC, Iblin I, Rha B, Alqasrawi S, Haddadin A, Al Nsour M, et al. Persistence of antibodies against middle east respiratory syndrome coronavirus. Emerg Infect Dis. 2016; 22(10): 1824-6. Doi: 10.3201/eid2210.160706

33. Houser K V, Broadbelt AJ, Grethebeck L, Vogel L, Lamirande EW, Sutton T, et al. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog. 2017;13(8):e1006565. Doi: 10.1371/journal.ppat.1006565

34. Gray RH, Wawer MJ. Reassessing the hypothesis on STI control for HIV prevention. Lancet. 2008;371(9630):2064-5. Doi: 10.1016/S0140-6736(08)60896-X

35. Hayes R, Watson-Jones D, Celum C, van de Wijgert J, Wasserheit J. Treatment of sexually transmitted infections for HIV prevention: end of the road or new beginning? AIDS. 2010;24(Suppl 4):S15-26. Doi: 10.1097/01.aids.0000390704.35642.47

36. CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States. MMWR Morb Mortal Wkly Rep. 2020; 69(13):382-6. Doi: 10.15585/mmwr.mm6913e2

37. Cheng H, Wang Y, Wang G-Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020; ahead of print. Doi: 10.1002/jmv.25785

38. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020. doi: 10.1001/jamacardio.2020.

39. Flowers P. Gay Men and HIV/AIDS Risk Management. Heal An Interdiscip J Soc Study Heal Illn Med. 2001;5(1):50-75. Doi: 10.1177/136345930100500103

40. Parsons JT, Schrimshaw EW, Wolitski RJ, Halkitis PN, Purcell DW, Hoff CC, et al. Sexual harm reduction practices of HIV-seropositive gay and bisexual men: serosorting, strategic positioning, and withdrawal before ejaculation. AIDS. 2005;19(Supplement 1): S13-25. Doi: 10.1097/01.aids.0000167348.15750.9a

41. Perrusi A, Franch M. CARNE COM CARNE Gestão do risco e HIV/Aids em casais sorodiscordantes no Estado da Paraíba. Rev Ciências Sociais Política Trab. 2012;2(37):179-200.

42. Donovan B. The repertoire of human efforts to avoid sexually transmissible diseases: past and present. Part 2: Strategies used during or after sex. Sex Transm Infect. 2000;76(2):88-93. Doi: 10.1136/sti.76.2.88

43. Mandavilli A. SARS epidemic unmasks age-old quarantine conundrum. Nat Med. 2003;9(5):487. Doi: 10.1038/nm0503-487

44. Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med. 2020;27(2):taaa020. doi: 10.1093/jtm/taaa020.

45. Maier BF, Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020; eabb4557. Doi: 10.1126/science.abb4557
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

46. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health. 2020; doi: 10.1016/S2468-2667(20)30080-1

47. Sanches S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome Coronavirus 2. Emerg Infect Dis. 2020;26(7): ahead of print. Doi: 10.3201/eid2607.200282

48. Nelson KM, Pantalone DW, Carey MP. Sexual health education for adolescent males who are interested in sex with males: an investigation of experiences, preferences, and needs. J Adolesc Health. 2019;64(1):36-42. Doi: 10.1016/j.jadohealth.2018.07.015

49. Basthi A, Parker R, Terto V. Myth vs. reality: evaluating the brazilian response to HIV in 2016. Rio de Janeiro, Brazil: ABIA; 2016. Available from: http://gapwatch.org/wp-content/uploads/2016/07/Myth-vs-Reality_BRAZIL-HIV_2006.pdf

50. Ayres JRCM. Práticas educativas e prevenção de HIV/AIDS: lições aprendidas e desafios atuais. Interface-Comunicação Saúde Educ. 2002;6:11-24. Doi: 10.1590/S1414-32832002000200002

51. Vermund SH, Van Lith LM, Holtgrave D. Strategic Roles for Health Communication in Combination HIV Prevention and Care Programs. JAIDS J Acquir Immune Defic Syndr. 2014;66:S237-40. Doi: 10.1097/QAI.0000000000000244

52. Vermund SH, Malliaieu EC, Van Lith LM, Struthers HE. Health Communication and the HIV Continuum of Care. JAIDS J Acquir Immune Defic Syndr. 2017;74:S1-4. Doi: 10.1097/QAI.0000000000001211

53. Lohiniva A-L, Sane J, Sibenberg K, Puumalainen T, Salminen M. Understanding coronavirus disease (COVID-19) risk perceptions among the public to enhance risk communication efforts: a practical approach for outbreaks, Finland, February 2020. Eurosurveillance. 2020;25(13). Doi: 10.2807/1560-7917.ES.2020.25.13.2000317

54. Zhu Y, Fu K-W, Grépin KA, Liang H, Fung IC-H. Limited early warnings and public attention to COVID-19 in China, January-February, 2020: a longitudinal cohort of randomly sampled Weibo users. Disaster Med Public Health Prep. 2020; doi: 10.1017/dmp.2020.68

55. World Health Organization. Consolidated guidelines on HIV prevention, diagnosis, treatment and care for key populations. 2014;184. Available from: https://extranet.who.int/rhl/guidelines/consolidated-guidelines-hiv-prevention-diagnosis-treatment-and-care-key-populations

56. Harcourt C, O&aposapos;Connor J, Egger S, Fairley CK, Wand H, Chen MY, et al. The decriminalisation of prostitution is associated with better coverage of health promotion programs for sex workers. Aust N Z J Public Health. 2010;34(5):482-6. Doi: 10.1111/j.1753-6405.2010.00594.x

57. Laar A, DeBruin D. Key populations and human rights in the context of HIV services rendition in Ghana. BMC Int Health Hum Rights. 2017;17(1):20. Doi: 10.1186/s12914-017-0129-z

58. Pettifor A, MacPhail C, Hughes JP, Selin A, Wang J, Gómez-Olivé FX, et al. The effect of a conditional cash transfer on HIV incidence in young women in rural South Africa (HPTN 068): a phase 3, randomised controlled trial. Lancet Glob Heal. 2016;4(12):e978-88. Doi: 10.1016/S2214-109X(16)30253-4

59. Dudley JP, Lee NT. Disparities in Age-Specific Morbidity and Mortality from SARS-CoV-2 in China and the Republic of Korea. Clin Infect Dis. 2020; doi: 10.1101/2020.03.24.20042598

60. Lloyd-Sherlock P, Ebrahim S, Geffen L, McKee M. Bearing the brunt of covid-19: older people in low and middle income countries. BMJ. 2020;368:m1052. Doi: 10.1136/bmj.m1052

61. Gardner W, States D, Bagley N. The Coronavirus and the risks to the elderly in long-term care. J Aging Soc Policy. 2020; 1-6. Doi: 10.1080/08959420.2020.1750543
Aprender de los programas combinados de prevención del VIH para enfrentar la pandemia emergente COVID-19

62. Wolf MS, Serper M, Opsasnick L, O’Conor RM, Curtis LM, Benavente JY, et al. Awareness, attitudes, and actions related to COVID-19 among adults with chronic conditions at the onset of the u.s. outbreak: a cross-sectional survey. Ann Intern Med. 2020; doi: 10.7326/M20-1239

63. Ahmed F, Ahmed N, Pissarides C, Stiglitz J. Why inequality could spread COVID-19. Lancet Public Heal. 2020; doi: 10.1016/S2468-2667(20)30085-2

64. UNAIDS UNP on H. 90-90-90 An ambitious treatment target to help end the AIDS epidemic; 2014. Available from: http://www.UnaidsOrg/Sites/Default/Files/Media_Asset/90-90-90_EnglO0Pd

65. Gourinchas P-O. Flattening the pandemic and recession curves. In: Baldwin R, di Mauro BW (organizadores). Mitigating the COVID economic crisis: act fast and do whatever it takes. London: CEPR Press; 2020. p. 31-9. Available from: https://voxeu.org/content/mitigating-covid-economic-crisis-act-fast-and-do-whatever-it-takes

66. Baldwin R, di Mauro BW. Mitigating the COVID economic crisis: act fast and do whatever it takes. London: CEPR Press; 2020. 219 p. Available from: https://voxeu.org/content/mitigating-covid-economic-crisis-act-fast-and-do-whatever-it-takes

67. Vekemans J, Snow W, Fast PE, Baggaley R, Chinyenze K, Friede MH, et al. HIV immunoprophylaxis: preparing the pathway from proof of concept to policy decision and use. Lancet HIV. 2020;7(2):e141-8. Doi: 10.1016/S2352-3018(19)30294-2

68. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020; doi: 10.1038/d41573-020-00073-5

69. Khamsi R. If a coronavirus vaccine arrives, can the world make enough? Nature; 2020; Available at: http://www.nature.com/articles/d41586-020-01063-8