Salvinorin A Administration after Global Cerebral Hypoxia/Ischemia Preserves Cerebrovascular Autoregulation via Kappa Opioid Receptor in Piglets

Zhenhong Wang1,2, Nan Ma1, John Riley1, William M. Armstead1*, Renyu Liu1*
1 Department of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China

Abstract

Background: Cerebral hypoxia/ischemia (HI) is not uncommon during the perinatal period. If occurring, it can result in severe neurologic disabilities that persist throughout life. Salvinorin A, a non-opioid Kappa opioid receptors (KOR) selective agonist, has the potential to address this devastating situation. We have demonstrated that salvinorin A administration before HI, preserves pial artery autoregulatory function through both the KOR and extracellular signal-regulated kinases (ERK) pathways. In the present study, we tested the hypothesis that administration of salvinorin A after HI could preserve cerebral autoregulation via KOR and ERK pathway.

Methodology/Principal Findings: The response of the pial artery to hypercapnia, hypotension and isoproterenol were monitored before and 1 hour after HI in piglets equipped with a cranial window. Four groups of drug administration were performed after HI. The control group had DMSO (1 μl/kg, i.v.) administrated immediately after HI. Two salvinorin A treated groups had salvinorin A (10 μg/kg, i.v.) administrated immediately and 30 min after HI, respectively. The 4th group had salvinorin A and the KOR antagonist norbinaltorphimine (Nor-BIN, 1 μM topical) co-administrated 0 min after HI (n = 5). The dilation responses of the pial artery to hypercapnia and hypotension were impaired after global HI and were preserved with salvinorin A administration immediately or 30 min after HI. The preservation of autoregulation was abolished when nor-BIN was administered. Levels of phosphor-ERK (pERK)/ERK in the cerebrospinal fluid (CSF) were measured before and 1 hour after HI. After HI, the pERK/ERK levels significantly increased in both DMSO control group and salvinorin A and nor-BIN co-administration group. The elevated levels of pERK/ERK were not observed with salvinorin A only groups.

Conclusions: Salvinorin A administration 0 and 30 min after HI preserves autoregulation of pial artery to hypercapnia and hypotension via kappa opioid receptor and ERK pathway.

Introduction

The neuronal death and behavioral dysfunction caused by hypoxia/ischemia (HI) induced brain injury is not uncommon during the perinatal period. Worldwide, 23% of all new birth deaths are associated with asphyxia and 30% of children who’s births involved moderate hypoxic–ischemic encephalopathy (HIE) may develop mental retardation, learning difficulties, and other disabilities [1]. Unfortunately, there is no medication available to manage this devastating situation.

Kappa opioid receptors (KOR), a subfamily of inhibitory regulatory G-protein coupled receptors, are known to be integral to cerebral neuroprotection in cell and animal models [2,3,4]. Treatment with KOR agonists prolongs animal survival rates after cerebral ischemia [5]. It reduces the neuronal necrosis region [6] and infarction induced by cerebral ischemia [7], and it improves the motor and memory functions after cerebral ischemia [8]. Downstream of the KOR response, extracellular signal-related kinase (ERK) signaling is believed to contribute to the subsequent neuron damage and cell death [9,10] as the level of ERK activity is upregulated in the cerebrospinal fluid (CSF) after HI [11].

KOR agonists cause dilation of cerebral vessels [12], a key feature required to maintain cerebral autoregulation and reduce brain injury from ischemia. After ischemia, cerebral autoregulation is impaired, resulting in decreased cerebral blood flow and neuron death [13,14,15]. We have demonstrated in a piglet model that administration of salvinorin A before global HI preserved the autoregulation of the cerebral artery, an important mechanism for the preservation of neuronal integrity [16]. In the current study, we hypothesized and tested whether administration of salvinorin A after HI could preserve cerebral autoregulation via the KOR and ERK pathway.
Results

Salvinorin A Preserves Pial Artery Autoregulation to Hypercapnia after Global Cerebral HI

As shown in figure 1, the small pial artery dilated in response to two levels of hypercapnia before HI (presented as baselines). The dilatation responses to hypercapnia were blunted after HI when DMSO was administrated immediately at the end of HI (p<0.01 as compared with the baselines before HI). Administration of salvinorin A (10 µg/kg), immediately or 30 min after HI, preserved the dilation responses of pial artery to hypercapnia. Such responses were abolished completely when salvinorin A and norbinaltorphimine (Norbin) were co-administrated 30 min after HI (ps<0.01 as compared with baselines before HI). Similar observations were obtained in pial arterioles (data not shown).

Salvinorin A Preserves Pial Artery Autoregulation to Hypotension after Global Cerebral HI

Similar to the result of hypotension, the small pial artery dilated in response to two levels of hypotension before HI hypercapnia (presented as baselines, figure 2) before HI. The dilatation responses were blunted after HI when DMSO was administrated immediately at the end of HI (p<0.01 as compared with the baselines before HI). Administration of salvinorin A (10 µg/kg), immediately or 30 min after HI, preserved the dilation responses of pial artery to hypotension. Such responses to hypotension were abolished when salvinorin A and Norbin were co-administrated 30 min after HI (ps<0.01 as compared with the baselines). Similar observations were obtained in pial arterioles.

Pial Artery Responses to Isoproterenol Remain Unchanged in all Sets of Experiments

As a positive control, pial artery responses to isoproterenol (indicated in figure 3) were measured and no change was observed among all groups before and after HI.

ERK Signaling is Involved in the Preservation Effects of Salvinorin A

The ERK activities are quantified as the ratio of pERK/ERK levels in CSF. The ERK activity data in groups without salvinorin effects (DMSO group and SA+Norbin group; renamed as DMSO+Nornin group) are combined. As indicated in figure 4, the ERK activity in groups without salvinorin increased significantly 60 min after HI (p<0.05 as compared with pre-HI baseline). The ERK activity of salvinorin A administration groups reduced to the baseline level.

Discussion

There are three new findings from this study. First, administration of salvinorin A instantly or 30 minutes after HI preserves the pial artery dilation response to hypercapnia and hypotension. Second, the preservation effects of salvinorin A were blunted KOR antagonist, nor-BIN. And third, salvinorin A blocked the increase of CSF ERK activity after HI.
Salvinorin A as a Novel Medication

The Problem of Cerebral HI and the Potential Role of KOR Agonist

Both birth asphyxia and pediatric ischemic stroke are the common complications of childbirth. Perinatal HI, occurring in both these complications, can induce severe and permanent neuropsychological deficits, including delayed cognitive and behavioral development, mental retardation, cerebral palsy, and epilepsy, which is devastating for the patients, the families, and society [17,18]. Unfortunately, there is no medication available for effective perinatal HI management. Hypothermia is the only treatment for HIE to reduce negative complications. But it is not widely accepted in clinical practice or recommended to combine with pharmacologic agents [19]. Recombinant tissue type plasminogen activator (t-PA), a FDA approved treatment for acute ischemic stroke, showed adverse effects including increased stroke infarct volume in mice subjected to induced stroke [20] and impaired cerebral hemodynamics [21].

The neuroprotective effects of KOR agonists have been demonstrated in other ischemia animal models. For example, KOR agonist BRL 52537 and CI-977 reduces cortical damages, autoregulation of the pial artery to hypercapnia and hypotension contributes to worsened outcome in the setting of ischemic stroke [32].

Salvinorin A Protects Brain Hypoxia/Ischemia

The Role of ERK Signaling

ERK signaling stimulated by cerebral ischemia/reperfusion is a crucial pathway for HI injury [33]. We have demonstrated that ERK activity increases after HI [34] and the increase relates to neuronal impairment of HI [35,36], and inhibition of such an increase is associated with neuroprotective responses against ischemia [36,37,38,39], which may be associated with the reduction in apoptosis [36]. In the present study, HI induced increases in the CSF ERK activities were blocked by salvinorin A, which promoted protection of cerebral autoregulation post insult. It is worth noting that the role of ERK signaling in HI may be different before and after HI insult. Activation of ERK signaling may be related to the protective effects of preconditioning. Upregulating ERK signaling induced by preconditioning reduces neuronal apoptosis in stroke [40] and activation of ERK signaling in the hippocampus after sublethal ischemia correlates with neuroprotection induced by preconditioning [41]. Our previously published work demonstrating that pre-injury administration of salvinorin A is protective of the impairment of cerebral autoregulation post insult is consistent with these observations [16].

Limitations

One major limitation of the present study is that more time points should be adopted to reflect the effective time window of salvinorin A administration. Future studies will be needed to demonstrate the protective effects of salvinorin A on neurological function and to elucidate the molecular mechanism for protection induced by salvinorin.

Conclusions

Salvinorin A administration 0 and 30 min after HI preserves autoregulation of the pial artery to hypercapnia and hypotension via KOR and the ERK pathway in a piglet model.

Materials and Methods

Salvinorin A (purity ≥98%) was obtained from ChromaDex, Inc. (Irvine, CA, USA). Isoproterenol (ISO), nor-binaltorphimine; IA: Salvinorin A. doi:10.1371/journal.pone.0041724.g004

Figure 4. Salvinorin A administration blocked the elevated CSF ERK activity observed 1 h after HI. The ration of pERK/ERK at 1 hour after HI in the control groups (n = 10, DMSO and nor-BIN groups) increased significantly compared with the baseline. The baseline for all the groups are pulled together (n = 20) and the data from DMSO and nor-BIN groups were pulled together and presented as DMSO+Norbin (n = 10) to increase the power of the statistical analysis because of some large variances were observed. The elevated ERK activities were abolished in the groups with salvinorin A administrated immediately (n = 5) or 30 min (n = 5) after HI. Norbin: norbinaltorphimine; SA: Salvinorin A. doi:10.1371/journal.pone.0041724.g004

The Problem of Cerebral HI and the Potential Role of KOR Agonist

Both birth asphyxia and pediatric ischemic stroke are the common complications of childbirth. Perinatal HI, occurring in both these complications, can induce severe and permanent neuropsychological deficits, including delayed cognitive and behavioral development, mental retardation, cerebral palsy, and epilepsy, which is devastating for the patients, the families, and society [17,18]. Unfortunately, there is no medication available for effective perinatal HI management. Hypothermia is the only treatment for HIE to reduce negative complications. But it is not widely accepted in clinical practice or recommended to combine with pharmacologic agents [19]. Recombinant tissue type plasminogen activator (t-PA), a FDA approved treatment for acute ischemic stroke, showed adverse effects including increased stroke infarct volume in mice subjected to induced stroke [20] and impaired cerebral hemodynamics [21].

The neuroprotective effects of KOR agonists have been demonstrated in other ischemia animal models. For example, KOR agonist BRL 52537 and CI-977 reduces cortical damages, autoregulation of the pial artery to hypercapnia and hypotension contributes to worsened outcome in the setting of ischemic stroke [32].

The Role of ERK Signaling

ERK signaling stimulated by cerebral ischemia/reperfusion is a crucial pathway for HI injury [33]. We have demonstrated that ERK activity increases after HI [34] and the increase relates to neuronal impairment of HI [35,36], and inhibition of such an increase is associated with neuroprotective responses against ischemia [36,37,38,39], which may be associated with the reduction in apoptosis [36]. In the present study, HI induced increases in the CSF ERK activities were blocked by salvinorin A, which promoted protection of cerebral autoregulation post insult. It is worth noting that the role of ERK signaling in HI may be different before and after HI insult. Activation of ERK signaling may be related to the protective effects of preconditioning. Upregulating ERK signaling induced by preconditioning reduces neuronal apoptosis in stroke [40] and activation of ERK signaling in the hippocampus after sublethal ischemia correlates with neuroprotection induced by preconditioning [41]. Our previously published work demonstrating that pre-injury administration of salvinorin A is protective of the impairment of cerebral autoregulation post insult is consistent with these observations [16].

Limitations

One major limitation of the present study is that more time points should be adopted to reflect the effective time window of salvinorin A administration. Future studies will be needed to demonstrate the protective effects of salvinorin A on neurological function and to elucidate the molecular mechanism for protection induced by salvinorin.

Conclusions

Salvinorin A administration 0 and 30 min after HI preserves autoregulation of the pial artery to hypercapnia and hypotension via KOR and the ERK pathway in a piglet model.

Materials and Methods

Salvinorin A (purity ≥98%) was obtained from ChromaDex, Inc. (Irvine, CA, USA). Isoproterenol (ISO), nor-binaltorphimine; IA: Salvinorin A. doi:10.1371/journal.pone.0041724.g004

Figure 4. Salvinorin A administration blocked the elevated CSF ERK activity observed 1 h after HI. The ration of pERK/ERK at 1 hour after HI in the control groups (n = 10, DMSO and nor-BIN groups) increased significantly compared with the baseline. The baseline for all the groups are pulled together (n = 20) and the data from DMSO and nor-BIN groups were pulled together and presented as DMSO+Norbin (n = 10) to increase the power of the statistical analysis because of some large variances were observed. The elevated ERK activities were abolished in the groups with salvinorin A administrated immediately (n = 5) or 30 min (n = 5) after HI. Norbin: norbinaltorphimine; SA: Salvinorin A. doi:10.1371/journal.pone.0041724.g004
(Nor-BIN) were obtained from Sigma-Aldrich (MO, St. Louis, MO, USA). All other chemicals (reagent grade) were obtained from Sigma as well.

Animal and Surgery for Closed Cranial Window

Newborn pigs (1–5 days old, 1.2–1.5 kg) of both sexes were used in this study. The animal experimental protocol was approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania. As described previously [16], isoflurane (1 to 2 minimum alveolar concentration) was initially used for anesthesia induction, followed by ≥ chloralose (30–50 mg/kg supplemented with 5 mg/kg/hr intravenously) for maintenance of anesthesia. After tracheotomy, the animals were initially ventilated with room air and kept warm with heating pads to maintain the rectal temperature at 37–39°C. Bilateral femoral arteries were catheterized to monitor the blood pressure, blood gas tensions and pH. The femoral vein was catheterized for medication administration. A closed cranial window, consisting of a steel ring with a glass cover slip, connecting to 3 ports, was placed for direct pial artery visualization and diameter measurement. Small pial arteries (120 to 160 μm) and arterioles (50 to 70 μm) were identified under a microscope, visualized on a monitor connected to the microscope, and measured via a video microsclaler (model VPA 550, For-A-Corp., Los Angeles, CA). The ports attached to the cranial window ring fit 17-gauge hypodermic needles for CSF sampling, washout, and drug administration. Cortical periarachnoid CSF was collected at baseline and 60 min after HI for ERK activity analysis.

HI Induction

Hypoxia was induced for 10 minutes by switching room air to N₂ for ventilation, followed by reoxygenation to room air. Global cerebral ischemia was then induced by infusing saline through a hollow bolt in the cranium to maintain intracranial pressure higher than the mean blood pressure for 20 min. Global cerebral ischemia is confirmed when the blood flow in pial arteries were stopped visible on the monitor connected to the microscope over the cranial window. In order to avoid Cushing response (arterial pressure rising dramatically because of high intracranial pressure), blood was withdrawn when necessary to maintain the mean arterial blood pressure below 100 mmHg. The blood was returned via femoral vein at the end of ischemia.

Drug Treatments

Four groups of i.v. drug administration were performed after HI (n = 5 in each group): (1) DMSO group: with DMSO (vehicle of salvinorin A) 1 μl/kg administrated immediately after HI; (2) SA 0 min group: with salvinorin A (1 μg/μl in DMSO) 10 μg/kg immediately after HI; (3) SA 30 min group: with salvinorin A (1 μg/μl in DMSO) 10 μg/kg 30 min after HI; (4) SA+Norbin group: with salvinorin A (10 μg/kg) and nor-BIN (1 μM, topically injected through one port of cranial windows) immediately after HI.

Pial Artery Responses

Pial artery responses to hypercapnia, hypotension and isoproterenol (10 nM, 1 μM) were obtained before HI and 60 minutes after HI as previously described [16]. Isoproterenol was used as a positive control since it is a short acting agent and its vascular dilatation effect in such model is well established in our lab. Two levels of hypercapnia (PaCO₂ of 50 to 60 mmHg for low level, 70 to 80 mmHg for high level) were produced by inhalation of high concentration CO₂ mixture gas (10% CO₂; 21% O₂; 69% N₂). Two levels of hypotension were produced by the rapid withdrawal of either 3–8 or 10–15 ml/Kg blood from the femoral artery to induce moderate and severe hypotension (25% decrease in mean blood pressure as moderate and 45% decrease as severe). Such decreases in blood pressure were maintained constantly for 10 min by withdrawal or reinfusion of additional blood.

ERK Activity Measurement

ERK activity were then determined from frozen CSF samples described above. The levels of pERK and ERK were measured by ELISA kits (Enzo Life Sciences International, Inc., Plymouth Meeting, PA).

Statistical Analysis

The data of pial artery diameter were analyzed by repeated-measures ANOVA followed by Bonferroni method as post hoc tests. One way ANOVA was used to compare the ERK activity changes (quantified as the ratio of pERK over ERK) in each group before and 60 min after HI and in the groups with or without salvinorin A administration. The baseline data were excluded in the repeated-measures analysis (Graph Pad Prism version 5.02). An alpha level of P<0.05 was considered significant in all statistical tests. Values are represented as means ± standard error.

Acknowledgments

The authors thank the technical support from Jin Xi, MS at the Department of Anesthesiology and Critical Care at the Perelman School of Medicine at the University of Pennsylvania and the English editing from Mr. Mark Boyer.

Author Contributions

Conceived and designed the experiments: ZW WA RL. Performed the experiments: ZW JR WA RL. Analyzed the data: ZW NM JR WA RL. Contributed reagents/materials/analysis tools: WA RL. Wrote the paper: ZW NM WA RL.

References

1. Sanders RD, Manning HJ, Robertson NJ, Ma D, Edwards AD, et al. (2010) Preconditioning and postischemic therapies for perinatal hypoxic-ischemic injury at term. Anesthesiology 113: 233–249.
2. Zeynalov E, Nemoto M, Hurn PD, Koehler RC, Bhardwaj A (2006) Neuroprotective effect of selective kappa opioid receptor agonist is gender specific and linked to reduced neuronal nitric oxide. J Cereb Blood Flow Metab 26: 414–420.
3. Zhao P, Huang Y, Zuo Z (2006) Opioid preconditioning induces opioid receptor-dependent delayed neuroprotection against ischemia in rats. J Neurogutmed Exp Neural 65: 945–952.
4. Su DS, Wang ZH, Zheng YJ, Zhao YH, Wang XR (2007) Dose-dependent neuroprotection of delta opioid peptide [D-Ala²,D-Leu⁵] enkephalin in neuronal death and retarded behavior induced by forebrain ischemia in rats. Neurosci Lett 423: 113–117.
5. Baskin DS, Hosobuchi Y, Loh HH, Lee NM (1984) Dynorphin (1–13) improves survival in cats with focal cerebral ischaemia. Nature 312: 551–552.
6. Hall ED, Pazara KE (1988) Quantitative analysis of effects of kappa-opioid agonists on postischemic hippocampal CA1 neuronal necrosis in gerbils. Stroke 19: 1006–1012.
7. Gogal T, Toung TJ, Kirsch JR, Traystman RJ, Koehler RC, et al. (2003) Neuroprotective kappa-opioid receptor agonist BRL 52357 attenuates ischemia-evoked nitrergic oxide production in vivo in rats. Stroke 34: 1533–1538.
8. Zhang Z, Chen TY, Kirsch JR, Toung TJ, Traystman RJ, et al. (2003) Kappa-opioid receptor selectivity for ischemic neuroprotection with BRL 52357 in rats. Anesth Analg 97: 1776–1783.
9. Yang L, Wang H, Shah K, Karamyan VT, Abruscato TJ (2011) Opioid receptor agonists reduce brain edema in stroke. Brain Research 1383: 307–316.
Salvinorina A Protects Brain Hypoxia/Ischemia

10. Charron C, Mesnier C, Plamondon H (2008) Neuroprotection and functional recovery conferred by administration of kappa- and delta 1-opioid agonists in a rat model of global ischemia. Physiol behav 93: 502–511.

11. Melief EJ, Miyatake M, Carroll FL, Beguin C, Carlezon WA, et al. (2011) Duration of action of a broad range of selective kappa-opioid receptor antagonists is positively correlated with c-Jun N-terminal kinase-1 activation. Mol pharmaco 80: 920–929.

12. Su D, Riley J, Kriessling WJ, Armstead WM, Liu R (2011) Salvinorin A produces cerebrovasodilatation through activation of nitric oxide synthase, kappa receptor, and adenosine triphosphate-sensitive potassium channel. Anesthesiology 114: 374–579.

13. Reinhard M, Rutsch S, Lambeck J, Wihler C, Czosnyka M, et al. (2012) Dynamic cerebral autoregulation associates with infract size and outcome after ischemic stroke. Acta Neurol Scand 125: 156–62.

14. Eames PJ, Blake MJ, Dawson SL, Panerai RB, Potter JF (2002) Dynamic cerebral autoregulation and heat to beat blood pressure control are impaired in acute ischemic stroke. J Neurol Neurosurg Psychiatry 72: 467–472.

15. Dawson SL, Panerai RB, Potter JF (2003) Serial changes in static and dynamic cerebral autoregulation after acute ischemic stroke. Cerebrovasc Dis 16: 69–75.

16. Su D, Riley J, Armstead WM, Liu R (2012) Salvinorin A Pretreatment Preserves Cerebrovascular Autoregulation After Brain Hypoxia/Ischemic Injury via Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase in Pajets. Anesth Analg 114: 200–204.

17. Hurvitz E, Warschansky S, Berg M, Tsai S (2004) Long-term functional outcome of pediatric stroke survivors. Top Stroke Rehabil 11: 51–59.

18. Blom I, De Schryver EL, Kappelle LJ, Rinkel GJ, Jennekens-Schinkel A, et al. (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7: 59–64.

19. Yan F, Roth BL (2004) Salvinorin A: a novel and highly selective kappa-opioid receptor agonist. Life Sci 75: 2615–2619.

20. Braida D, Capurro V, Zani A, Rubino T, Viganò D, et al. (2009) Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 157: 844–853.

21. Armstead W, Cines DB, Bdeir K, Kulikovskaya I, Stein SC, et al. (2008) iPaP impairs cerebrovasodilatation after hypoxia/ischemia through LRP and ERK MAPK. Brain Res 1213: 121–131.

22. Yang X, Wang H, Xu L, Rozanski DJ, Sugawara T, et al. (2003) Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. J Pharmacol Exp Ther 304: 172–178.

23. Jeong S, Kim SJ, Jeong C, Lee S, Jeong H, et al. (2012) Neuroprotective effects of remifentanil against transient focal cerebral ischemia in rats. J Neurosurg Anesthesiol 24: 51–57.

24. Maddahian A, Amsar S, Chen Q, Edvinsson L (2011) Blockade of the MEK/ERK pathway with a rat inhibitor prevents activation of pro-inflammability mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 31: 144–154.

25. Roth BL, Baner K, Westenmper R, Siertd B, Rice KC, et al. (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opoid selective agonist. Proc Natl Acad Sci U S A 99: 11934–11939.

26. Mowry M, Mosher M, Beiret W (2003) Acute physiologic and chronic histologic changes in rats and mice exposed to the unique hallucinogen salvinorin A. J Psychoactive Drugs 35: 379–382.

27. Burleson ER, Prunziano TE, Deng H, Ras S, Kreek MJ (2009) Unconditioned behavioral effects of the powerful kappa-opioid hallucinogen salvinorin A in nonhuman primates: fast onset and entry into cerebrospinal fluid. J Pharmacol Exp Ther 328: 588–597.

28. Vasquez-Gonzalez E, Zhao Y, Liu B, Schiffer W, Sheva C, Carter P, et al. (2008) Pharmacokinetics of the potent hallucinogen, salvinorin A in primates parallels the rapid onset and short duration of effects in humans. NeuroImage 41: 1044–1050.

29. Teksin ZS, Lee J, Nenieboka NN, Othman AA, Upreti VV, et al. (2009) Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a potent hallucinogen. Eur J Pharm Biopharm 72: 471–477.

30. Hurvitz E, Warschansky S, Berg M, Tsai S (2004) Long-term functional outcome of pediatric stroke survivors. Top Stroke Rehabil 11: 51–59.

31. Butelman ER, Prisinzano TE, Deng H, Ras S, Kreek MJ (2009) Unconditioned behavioral effects of the powerful kappa-opioid hallucinogen salvinorin A in nonhuman primates: fast onset and entry into cerebrospinal fluid. J Pharmacol Exp Ther 328: 588–597.

32. Vasquez-Gonzalez E, Zhao Y, Liu B, Schiffer W, Sheva C, Carter P, et al. (2008) Pharmacokinetics of the potent hallucinogen, salvinorin A in primates parallels the rapid onset and short duration of effects in humans. NeuroImage 41: 1044–1050.

33. Teksin ZS, Lee J, Nenieboka NN, Othman AA, Upreti VV, et al. (2009) Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a potent hallucinogen. Eur J Pharm Biopharm 72: 471–477.

34. Armstead W, Cines DB, Bdeir K, Kulikovskaya I, Stein SC, et al. (2008) iPaP impairs cerebrovasodilatation after hypoxia/ischemia through LRP and ERK MAPK. Brain Res 1213: 121–131.

35. Park EM, Joh TH, Volpe BT, Cho CK, Song G, et al. (2004) A neuroprotective role of extracellular signal-regulated kinase in N-acetyl-O-methylamphetamine-treated hippocampal neurons after exposure to in vitro and in vivo ischemia. Neuroscience 123: 147–154.

36. Wang X, Wang H, Xu L, Rozanski DJ, Sugawara T, et al. (2003) Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. J Pharmacol Exp Ther 304: 172–178.

37. Jeong S, Kim SJ, Jeong C, Lee S, Jeong H, et al. (2012) Neuroprotective effects of remifentanil against transient focal cerebral ischemia in rats. J Neurosurg Anesthesiol 24: 51–57.

38. Maddahian A, Amsar S, Chen Q, Edvinsson L (2011) Blockade of the MEK/ERK pathway with a rat inhibitor prevents activation of pro-inflammability mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 31: 144–154.

39. Alessandrini A, Namura S, Moskowitz MA, Bonventre JV (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci U S A 96: 12866–12869.

40. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, et al. (2010) Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166: 1091–1100.

41. Choi JS, Kim HY, Cha JH, Lee MY (2006) Ischemic preconditioning-induced activation of ERK1/2 in the rat hippocampus. Neurosci Lett 409: 167–191.