A Comparison of Cornell and Sokolow–Lyon Electrocardiographic Criteria for Left Ventricular Hypertrophy in Korean Patients

Jin Kyu Park, MD1, Jeong Hun Shin, MD1, Seok Hwan Kim, MD2, Young-Hyo Lim, MD1, Kyung-Soo Kim, MD1, Soon Gil Kim, MD2, Jeong Hyun Kim, MD1, Heon Gil Lim, MD1, and Jinho Shin, MD1

1Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, 2Division of Cardiology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea

Background and Objectives: Electrocardiography (ECG) is a cost-effective and useful method for diagnosing left ventricular hypertrophy (LVH) in a large-scale study or in clinical practice. Among ECG criteria, the Cornell product (Cor P) and Sokolow-Lyon criteria were adopted by the European Society of Hypertension-European Society of Cardiology Guidelines but have different performances among races. The aim of this study was to compare the diagnostic performance of two voltage criteria in Korean patients.

Subjects and Methods: Electrocardiography and echocardiographic LV mass of 332 (159 male, 173 female) consecutive patients were analyzed. Cornell voltage criteria and the Cor P were compared with Sokolow-Lyon voltage (Sok V) and the Sokolow-Lyon product (Sok P). The sensitivities and specificities were estimated using a receiver-operating characteristics (ROC) curve in relation to the LVH diagnosis. The sensitivities and revised cut-off values were derived at specificity levels of 90, 95, and 100%.

Results: The Cornell-based criteria generally showed better performance than that of the Sok V criteria and Sok P in the area under the ROC curve analysis. The revised cut-off values for the Cornell voltage criteria (20 and 16 mm for males and females, respectively) showed an improved sensitivity (19.7 and 30.3% for males and females, respectively), with a high specificity of 95%.

Conclusion: The Cornell-based criteria had better performance than that of the Sokolow-Lyon criteria in both Korean men and women. However, revised cut-off values are needed to improve accuracy. (Korean Circ J 2012;42:606-613)

KEY WORDS: Electrocardiography; Echocardiography; Hypertrophy, left ventricular; Sensitivity and specificity.
The Institutional Review Board of Hanyang University Seoul Hospital approved this study protocol (IRB No. 2011-440). Informed consent was not required by the Board, because this was a retrospective study.

http://dx.doi.org/10.4070/kcj.2012.42.9.606
Results

Demographic characteristics, electrocardiography measurements, and echocardiography values

Mean ages were 51.75±14.12 years for males and 54.63±13.17 years for females (p=0.055) and more males were included than females (11.3% vs. 4%, p=0.013) (Table 1). Mean body mass index (BMI) was not different (25.07±3.36 vs. 24.60±3.77 kg/m², p=0.237) and the distribution of BMI was similar (p=0.358), but mean BSA was significantly different (1.81±0.15 vs. 1.59±0.12 m², p<0.001) in males and females, respectively. No significant difference was observed in the prevalence of hypertension, diabetes mellitus, blood pressure, or heart rate between genders. Males had significantly higher mean ECG measurements than those of female for all criteria, including QRS duration, except the Cor P, for which females had significantly higher means (p<0.01). Mean LVM/BSA was higher in males than that in females (115.23±27.83 vs. 101.89±25.08 g/m², p<0.001).

Table 1. Demographic characteristics and comparisons of electrocardiographic measurements and echocardiographic values in males and females

	Male (n=159)	Female (n=173)	p
Age (years)	51.75±14.12	54.63±13.17	0.055
<35 years, n (%)	18 (11.3)	7 (4)	0.013
Height (cm)	168.38±7.01	156.02±5.81	<0.001
Weight (kg)	25.07±3.36	24.60±3.77	0.237
BMI (kg/m²)			
Underweight (<18.5) (%)	1 (0.6)	4 (2.3)	0.358
Normal (18.5-24.9) (%)	85 (53.3)	105 (60.7)	
Overweight (25-29.9) (%)	64 (40.3)	48 (27.7)	
Obese (≥30) (%)	9 (5.7)	16 (9.2)	
BSA (m²)	1.81±0.15	1.59±0.12	<0.001
Hypertension, n (%)	80 (50.3)	86 (49.7)	0.913
Diabetes mellitus, n (%)	22 (13.8)	22 (12.7)	0.872
SBP (mm Hg)	130.77±18.07	129.96±17.71	0.681
DBP (mm Hg)	84.56±12.36	83.17±12.31	0.307
HR (beats/min)	68.40±13.11	69.41±11.40	0.452
Sok V (mm)	25.10±6.70	22.75±7.29	0.002
Cor V (mm)	13.57±5.33	11.62±5.14	0.001
QRS duration (ms)	102.13±9.82	92.79±8.03	<0.001
Sok P (mm×ms)	2574.23±784.73	2116.93±731.27	<0.001
Cor P (mm×ms)	1400.79±605.48	1832.07±563.85	<0.001
LVM/BSA (g/m²)	115.23±27.83	101.89±25.08	<0.001
LVM/height² (g/m²²)	51.47±14.87	49.16±14.07	0.147
Prevalence of LVH			
By LVM/BSA, n (%)	71 (44.7)	93 (53.8)	0.101
By LVM/height² (g/m²²)	86 (54.1)	99 (57.2)	0.582

BMI: body mass index, BSA: body surface area, SBP: systolic blood pressure, DBP: diastolic blood pressure, HR: heart rate, Sok V: Sokolow-Lyon voltage, Cor V: Cornell voltage, Sok P: Sokolow-Lyon product, Cor P: Cornell product, LVM/BSA: left ventricular mass index by BSA, LVM/height²: left ventricular mass index by height², LVH: left ventricular hypertrophy

Table 2. Correlation coefficient (r) between electrocardiographic criteria and LVM/BSA and LVM/height² in males and females

	LVM/BSA	LVM/height²		
	r	p	r	p
Male				
Sok V	0.284	<0.001	0.269	<0.01
Cor V	0.391	<0.001	0.376	<0.001
Sok P	0.316	<0.001	0.270	<0.01
Cor P	0.394	<0.001	0.361	<0.001
Female				
Sok V*	0.248	<0.01	0.217*	<0.01
Cor V*	0.465	<0.001	0.507*	<0.001
Sok P*	0.271	<0.001	0.234*	<0.01
Cor P*	0.448	<0.001	0.470*	<0.001

*p<0.01 vs. Cor V, †p<0.01 vs. Cor P, LVM/BSA: left ventricular mass index by body surface area, LVM/height²: left ventricular mass index by height², Sok V: Sokolow-Lyon voltage, Cor V: Cornell voltage, Sok P: Sokolow-Lyon product, Cor P: Cornell product
but that of LVM/height$^{2.7}$ was not different (51.47±14.87 vs. 49.16±14.07 g/m$^{2.7}$, $p=0.147$). No difference in the prevalence of LVH by the two LVMI was observed between genders (LVM/BSA; $p=0.101$, LVM/height$^{2.7}$; $p=0.582$).

Correlation between the four electrocardiography criteria and the two type indexed Left ventricular masses

All four ECG criteria were significantly correlated with the two types of LVMI (r values, 0.217-0.507, $p<0.01$) (Table 2). Cor V and Cor P had a higher correlation coefficient than that of Sok V and Sok P in both genders, but this result was significant only in females. The product of QRS duration and voltage tended to improve the correlation in Sok V, but this result was not significant.

Comparison of the performance of the four electrocardiography criteria using receiver operating characteristic curves and conventional cut-off values

Comparison of the AUC showed that the Cor V and Cor P had higher AUCs than those of Sok V or Sok P in both genders (Fig. 1). Cor V had the highest AUC in both genders (AUC in LVM/BSA: 0.648 in males and 0.735 in females, $p<0.001$; AUC in LVM/height$^{2.7}$: 0.687 in males and 0.782 in females, $p<0.001$).

In pairwise comparisons of AUC for each criterion, AUC of the Sok V and that of Cor V were considerably different for LVM/height$^{2.7}$ but not for LVM/BSA (males: difference between areas=0.042, $p=0.484$ for LVM/BSA; difference between areas=0.120, $p=0.041$ for LVM/height$^{2.7}$, females: difference between areas=0.098, $p=0.066$ for LVM/BSA; difference between areas=0.138, $p=0.007$ for LVM/height$^{2.7}$). However, the difference in AUC between the Sok P and Cor P.
was significant only in females for LVM/height\(^{2.7}\) (difference between areas=0.080, \(p=0.050\) for LVM/BSA; difference between areas=0.026, \(p=0.038\) in LVM/height\(^{2.7}\)). No significant difference was observed between Sok V and Sok P as well as between Cor V and Cor P except in female cases for LVM/height\(^{2.7}\) (difference between areas=0.026, \(p=0.038\) in LVM/height\(^{2.7}\)). The sensitivities for the conventional cut-off values were generally low, particularly in males using Cor V and Cor P (1.2-1.4% and 9.3-9.9%, respectively) and in females using Sok V and Sok P (7.1-7.5% and 8.1-8.6%, respectively) (Table 3). The test-negative likelihood ratio ranged from 0.82 to 0.99 due to the low sensitivities of the four LVH criteria.

Discussion

Several Korean studies have investigated the performance of ECG criteria for LVH, and they have been conducted to improve ECG criteria for assessing LVH.\(^{18-21}\) But, the performance of the Cornell-based criteria has never been studied in Korea. Among various ECG criteria, voltage criteria are most convenient and they do not demand a PC-based analysis. Moreover, the Cornell-based criteria have

Table 3. Sensitivities and specificities at conventional cut-off values for diagnosing echocardiographic LVH

	LVM/BSA		LVM/height\(^{2.7}\)		
	Sensitivity (%)	Specificity (%)	LR+	LR-	
Male					
Sok V	11.3	95.5	2.48	0.93	
Cor V	1.4	100	-	0.99	
Sok P	21.1	93.2	3.10	0.85	
Cor P	9.9	96.6	2.89	0.93	
Female					
Sok V	7.5	98.7	6.02	0.94	
Cor V	9.7	100	-	0.90	
Sok P	8.6	98.7	6.88	0.93	
Cor P	19.4	95	3.87	0.85	

LVM/BSA: left ventricular mass index by body surface area, LVM/height\(^{2.7}\): left ventricular mass index by height\(^{2.7}\), Sok V: Sokolow-Lyon voltage, Cor V: Cornell voltage, Sok P: Sokolow-Lyon product, Cor P: Cornell product, LR+: likelihood ratio of a positive test, LR-: likelihood ratio of a negative test

Table 4. The sensitivities and revised cut-off values at specificity levels of 90, 95, and 100% for diagnosing echocardiographic left ventricular hypertrophy

	LVM/BSA		LVM/height\(^{2.7}\)			
	Sensitivity (%)	Cut-off value (mm or mm×ms)	Sensitivity (%)	Cut-off value (mm or mm×ms)		
Male						
Sok V	26.8	11.3	4.2	29.9	34.2	43.9
Cor V	22.5	19.7	4.2	18.4	19.7	24.1
Sok P	28.2	21.1	7	3106.5	3385.5	4565.6
Cor P	23.9	16.9	4.2	1965.5	2134	2819.7
Female						
Sok V	29	18.3	4.3	27.6	30	37.7
Cor V	38.7	22.6	11.8	14.2	17	19.5
Sok P	28	21.5	8.6	2603.7	2735.4	3468.4
Cor P	35.5	29	10.8	2175	2270	2646

LVM/BSA: left ventricular mass index by body surface area, LVM/height\(^{2.7}\): left ventricular mass index by height\(^{2.7}\), Sok V: Sokolow-Lyon voltage, Cor V: Cornell voltage, Sok P: Sokolow-Lyon product, Cor P: Cornell product, LR+: likelihood ratio of a positive test, LR-: likelihood ratio of a negative test
been recently used and recommended in large-scale studies. Xie and Wang used the Cornell-based criteria to assess LVH in Chinese patients with hypertension, and their performance tended to be better than that of other criteria. Rodrigues et al. showed that Cor V had a closer association with LVM and better performance in the analysis of AUC of ROC than that of Sok V, as we demonstrated in this study. However, pairwise comparisons were not conducted in those studies. Comparing only the AUC may be insufficient to precisely determine ECG criteria performance. In this study, the difference between each AUC was analyzed to determine whether it was statistically significant and to measure the performance of the ECG criteria.

The main finding of this study was that Cor V performed better than Sok V in the correlation with the two LVMIs, the AUC of the ROC in both genders, and in pairwise comparisons of LVM/height. Another interesting finding was that with revised cut-off values under a fixed specificity of 95%, the Cor V also showed better sensitivity than that of any other criteria.

Noble et al. analyzed vector cardiographic changes induced by LVH to explain such better performance of Cor V. The increased LVM orients the electric forces horizontally (corresponding to the RaVL) and posteriorly (corresponding to the SV 3). Furthermore, the V 3 lead is closer to the LV and is probably less influenced by variations in the distance between the myocardium and the leads. Considering this better performance of the Cor V with revised gender-specific cut-off values, we can postulate that gender-specific criteria are still useful in Korean subjects even though reliable cut-off values are not yet available. Revised gender-specific cut-off values are also strongly supported by the finding that Cor V sensitivity at conventional cut-off values was too low to be applied to Koreans. However, further studies are needed to confirm the clinical usefulness of gender-specific cut-off values in Korean subjects.

We observed gender differences in the performance of the ECG criteria. Although Cor V had better performance than that of Sok V in both genders, the sensitivity of Cor V in females was stronger than that in males. Previous studies have shown that gender may influence ECG criteria sensitivity and this could affect the ECG performance for LVH. Barrios et al. suggested that there are pathophysiologival differences between genders regarding establishing and developing LVH. In the LIFE study, there were more female patients with ECG-LVH by Cor P than that of males.

In contrast with LVM/BSA, mean LVM/height in our study was not significantly different between genders, which was consistent with a previous study. A better correlation between the Cornell-based criteria and the two types of LVM, regardless of gender, was also found in a previous study. We expect that LVM/height to be a similar clinical value for Korean subjects. Further study may be needed to determine whether index-specific cut-off values are clinically useful to predict LVH.

Revised cut-off values of the Cor V (20 mm in males and 16 mm in females) improved the sensitivity in both genders by up to 30.3%. This tendency was also found in a previous study. However, revised Cor V cut-off values in males were lower than those in previous studies, and although the mean Cor V values were significantly different in males and females, the differences were not apparent (13.57±5.33 vs. 11.62±5.14 mm, p=0.001). These findings suggest that a gender difference in the cut-off values for Koreans may be smaller than that of conventional cut-off values. But, because conventional Cor V cut-off values were obtained from a sample of young normotensive individuals in whom the magnitude of ECG voltage was significantly different between genders, relatively older subjects in our study may have biased the cut-off values. Theoretically, the compositional changes in myocardial fibrosis, which are potentially complicated by hypertension, may have reduced the correlation between electrical voltage and LVM. Therefore, further study in representative young subjects showing clear differences between genders is needed to set reasonable gender-specific cut-off values.

Some limitations were noteworthy in this study. Because we used data from patients, generalizing our findings may be limited to a patient population in which the prevalence of hypertension and diabetes mellitus is somewhat different from that of the general population. The age distribution may have been different from that of the general population (there were fewer young females than young males). However, test characteristics such as sensitivity and the likelihood ratios are indispensable in situations such as hypertension, diabetes, and the elderly in real world situations. A small number of obese patients also participated in this study, and obesity may affect LVH. Therefore, we used LVM/height as LVM besides LVM/BSA, which is obesity-independent. Additionally, as some of the patients were previously on pharmacological treatment, this may have affected the results. Therefore, this study may not be sufficient to generalize to all Koreans. Although the Cor V sensitivities improved with the revised cut-off values, they were not satisfactory because of the low sensitivity of the voltage criteria. The accuracy of ECG criteria for diagnosing LVH is not enough. A scoring system such as the Romhilt-Estes or Perugia scores may improve sensitivity, but they could diminish specificity and may not be useful for a large population. Furthermore, none of the more sophisticated indices is clearly superior to the voltage criteria. Therefore, the ECG criteria cannot be considered a “SpPin” (specific, positive, in) test for the diagnosis of LVH in patients with hypertension and the clinician should assess the cost effectiveness of different diagnostic strategies.

In conclusion, the gender-specific Cor V had better overall performance in Korean subjects. Because conventional Cor V cut-off
values may not be appropriate for the total Korean population, we suggest revised CorV cut-off values of 20 mm for males and 16 mm for females. A further examination of the general population may be necessary to acquire more accurate cut-off values.

References

1. Bluemke DA, Kronmal RA, Lima JA, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) Study. J Am Coll Cardiol 2008;52:2148-55.

2. Sundström J, Lind L, Arnlöv J, Zethelius B, Andrén B, Lithell HO. Electrocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation 2001;103:2346-51.

3. Hancock EW, Deai BJ, Mirvis DM, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology, the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol 2009;53:992-1002.

4. Molloy TJ, Okin PM, Devereux RB, Kligfield P. Electrocardiographic detection of left ventricular hypertrophy by the simple QRS voltage-duration product. J Am Coll Cardiol 1992;20:1180-6.

5. Truong QA, Ptaszek LM, Charipar EM, et al. Performance of electrocardiographic criteria for left ventricular hypertrophy as compared with cardiac computed tomography: from the Rule Out Myocardial Infarction Using Computer Assisted Tomography Trial. J Hypertens 2010;28:1959-67.

6. Rodrigues SL, D’Angelo L, Pereira AC, Krieger JE, Mill JG. Revision of the Sokolow-Lyon–Rapaport and Cornell voltage criteria for left ventricular hypertrophy. Arq Bras Cardiol 2008;90:46-53.

7. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995–1003.

8. Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: the Losartan Intervention for Endpoint reduction in Hypertension (LIFE) Study. Circulation 2003;108:684-90.

9. Mancia G, De Backer G, Dominiczak A, et al. 2007 guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2007;25:1105-87.

10. Okin PM, Wright JT, Nieminen MS, et al. Ethnic differences in electrocardiographic criteria for left ventricular hypertrophy: the LIFE Study. Losartan Intervention For Endpoint. Am J Hypertens 2002;15:663–71.

11. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 1949;37:161-86.

12. Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings. Circulation 1987;75:565–72.

13. Alfakih K, Walters K, Jones T, Ridgway J, Hall AS, Sivananthan M. New gender-specific partition values for ECG criteria of left ventricular hypertrophy: recalibration against cardiac MRI. Hypertension 2004;44:175-9.

14. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978;58:1072-83.

15. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-8.

16. De Simone G, Kizer JR, Chinali M, et al. Normalization for body size and population-attributable risk of left ventricular hypertrophy: the Strong Heart Study. Am J Hypertens 2005;18(2 Pt 1):191-6.

17. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.

18. Hotelling H. The selection of variates for use in prediction with some comments on the general problem of nuisance parameters. Ann Math Statist 1940;11:271-83.

19. Pewsner D, Juni P, Egger M, Battaglia M, Sundström J, Bachmann LM. Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review. BMJ 2007;335:711.

20. Pewsner D, Battaglia M, Minder C, Marx A, Bucher HC, Egger M. Ruling a diagnosis in or out with “SpPIn” and “SnNOut”: a note of caution. BMJ 2004;329:209–13.

21. Lee YW. Electrocardiographic diagnosis of left ventricular hypertrophy by scoring system. Korean Circ J 1997;7:1-8.

22. Xie L, Wang Z. Correlation between echocardiographic left ventricular mass index and electrocardiographic variables used in left ventricular hypertrophy criteria in Chinese hypertensive patients. Hellenic J Cardiol 2010;51:391–401.

23. Noble LM, Humphrey SB, Monaghan GB. Left ventricular hypertrophy in left bundle branch block. J Electrocardiol 1984;17:157–60.

24. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Dahlöf B. Baseline characteristics in relation to electrocardiographic left ventricular hypertrophy in hypertensive patients: the Losartan Intervention for Endpoint Reduction (LIFE) in Hypertension Study. The Life Study Investigators. Hypertension 2000;36:766-73.

25. Barrios V, Escobar C, Calderón A, et al. Gender differences in the diagnosis and treatment of left ventricular hypertrophy detected by different electrocardiographic criteria: findings from the SARA Study. Heart Vessels 2010;25:51-6.

26. Hense HW, Gneiting B, Muscholl M, et al. The associations of body size and body composition with left ventricular mass: impacts for indexation in adults. J Am Coll Cardiol 1998;32:451-7.
27. Schillaci G, Verdecchia P, Borgioni C, et al. Improved electrocardiographic diagnosis of left ventricular hypertrophy. Am J Cardiol 1994; 74:714-9.
28. Devereux RB, Casale PN, Eisenberg RR, Miller DH, Kligfield P. Electrocardiographic detection of left ventricular hypertrophy using echocardiographic determination of left ventricular mass as the reference standard. Comparison of standard criteria, computer diagnosis and physician interpretation. J Am Coll Cardiol 1984;3:82-7.
29. Casale PN, Devereux RB, Kligfield P, et al. Electrocardiographic detection of left ventricular hypertrophy: development and prospective validation of improved criteria. J Am Coll Cardiol 1985;6:572-80.
30. Verdecchia P, Dovellini EV, Gorini M, et al. Comparison of electrocardiographic criteria for diagnosis of left ventricular hypertrophy in hypertension: the MAVI Study. Ital Heart J 2000;1:207-15.