Letter

An application of the orthogonal matching pursuit algorithm in space-time adaptive processing

Anna Ślesicka 1 and Adam Kawalec 2,*

1 Institute of Radioelectronics, Faculty of Electronics, Military University of Technology; adam.kawalec@wat.edu.pl
2 Institute of Radioelectronics, Faculty of Electronics, Military University of Technology; anna.slesicka@wat.edu.pl
* Correspondence: Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland

Received: date; Accepted: date; Published: date

Abstract: The article presents a new space-time adaptive processing (STAP) method for target detection in a heterogeneous and non-stationary environment. In paper it was proved that it is possible to estimate the clutter covariance matrix (CCM) in STAP by using the MIMO radar geometry model and the orthogonal matching pursuit (OMP) algorithm. For the estimation of spatio-temporal spectrum of clutter and target, a model of joint sparse recovery was established. As a result, clutter suppression and target detection in a heterogeneous environment will be achieved. In addition, the proposed method uses a single snapshot of the radar data cube, which eliminates the need for access to all training cells.

Keywords: Space-time adaptive processing; STAP; sparse representation; MIMO radar; orthogonal matching pursuit algorithm; clutter covariance matrix

1. Introduction

STAP is an effective method for airborne radar system to suppress clutter and detect targets. Currently, many scientists studying the possibility of using the STAP technique are trying to answer the question of how to accurately estimate the key in the entire STAP processing algorithm, the CCM.

Classic, statistical STAP algorithms suppress clutter by estimating the CCM, which is based on the data contained in the training cells surrounding the range cell under test. Unfortunately, the clutter occurring in a real environment are heterogeneous. Hence, the data contained in the training cells do not reflect the statistical properties of clutter. In addition, such algorithms require a large number of independent and identically distributed training cells, which is also difficult to fulfill [1-3].

In connection with the above, a lot of research is conducted to develop a method for estimating the CCM in a heterogeneous environment. A serious of effective methods are proposed, mainly including direct data domain (D3) methods [4-6], the compensation methods of non-side looking geometry [7-8], knowledge-aided (KA) methods [9-10] and the sparse recovery (SR) methods [11-17].

Currently, the most advanced efforts are carried out to obtain the method of estimating the CCM by the use of a sparse recovery method with prior target information. It has been demonstrated by using a small number of training cells or in some cases one and by using the sparsity of clutter in the spatio-temporal domain that high resolution of the spatio-temporal clutter spectrum can be obtained followed by accurate estimation of the CCM.

In articles [12-13], sparse recovery methods are proposed for estimating the CCM, which directly uses the data contained in the test cell. As a result of this work, the accuracy of the
estimation of the CCM was improved, and the performance of clutter suppression and target detection was enhanced.

This article proved that it is possible to estimate the CCM by using the MIMO radar geometry model and the OMP algorithm. This configuration in combination with properly selected system and environment parameters allowed to obtain very good results and help to understand the approach. As a result, clutter suppression and target detection in a heterogeneous environment will be achieved. In addition, the proposed method uses a single snapshot of the radar data cube, which eliminates the need for access to all training cells.

The spatio-temporal clutter spectrum estimation problem is expressed as the joint sparse recovery problem under a sparse complete basis. The OMP algorithm was used to estimate the spatio-temporal clutter spectrum. The use of the OMP algorithm seems to be easier in practice than other methods, e.g. M-FOCUSS, hence this solution was adopted as optimal. Finally, the estimated CCM is used to determine the weight vector, which causes clutter suppression and target detection.

Compared with the existing methods, the proposed method allows for a more accurate estimation of the CCM and better performance of clutter suppression, as evidenced by the conducted experimental experiments and numerical calculations.

2. Model of system geometry and model of signal

A MIMO radar with a linear uniformly array (ULA) mounted on an aircraft flying at altitude H with a constant speed of V is considered. In the figure 1 was shown the considered geometry of the MIMO radar system. The system consists of N receivers spaced apart by d_R and M transmitters spaced apart by $d_T = \alpha d_R$, where α is a specific factor. In each transmitter, K pulses are transmitted with a pulse repetition frequency of f_R. θ_p is the angle between the antenna array and the direction of flight of the platform. It was assumed that the platform velocity vector is perfectly aligned with the antenna array axis vector, hence $\theta_p = 0$. It was assumed that the transmitted signals from different transmitters are independent and coherent.

![Geometry of the MIMO radar system under consideration.](image)

Considering that the clutter echo data of the range test cell are the superposition of the echoes of multiple discrete clutter patches on the range cell, the normalized Doppler frequency and the normalized spatial frequency of the ith clutter patch are expressed as [18]:

$$f_{di} = \frac{2V}{\lambda R} \cos(\phi_i) \cos(\theta_i - \theta_p),$$ \hspace{1cm} (1)

$$f_{si} = \frac{d_R}{\lambda} \cos(\phi_i) \cos(\theta_i),$$ \hspace{1cm} (2)

where λ is the wavelength, ϕ_i is the elevation angle and θ_i is the azimuth angle. Doppler frequency is related to the relative velocity relationship between a target or individual clutter patches. Spatial frequency shows the phenomenon of time difference between the arrival of signals from target or
individual clutter patches to individual radar system antennas. Thus, the received echo signal by the
nth element of the array corresponding to the mth transmitter and the kth pulse can be represented
as [18]

\[x_{m,n,k} = I_{m,n,k} + T_{m,n,k} + n_{m,n,k}. \]

(3)

\[I_{m,n,k} = \sum_{i=1}^{N_c} \delta_i e^{j2\pi[(\alpha(m-1)+(n-1))f_{st}+(k-1)f_{dt}]}, \]

(4)

\[T_{m,n,k} = \delta_i e^{j2\pi[(\alpha(m-1)+(n-1))f_{st}+(k-1)f_{dt}]}, \]

(5)

\[\alpha = \frac{d_r}{d_e}. \]

(6)

where \(i=1,2,..N_c \) denotes the number of discrete clutter patches, \(f_{st} \) and \(f_{dt} \) are the normalized Doppler
frequency and normalized spatial frequency of the target, \(\alpha \) denotes the ratio of the distance between
the transmitting antennas and the distance between the receiving antennas, \(\delta_i \) is the reflection
coefficient of the ith clutter patch, \(\delta_i \) is the reflection coefficient of the target, \(n_{m,n,k} \) denotes noise.

By collating the received echo of the mth transmitted waveform for all receivers and pulses, it
was received

\[x_m = [x_{m,1,1}, x_{m,2,1} \ldots, x_{m,N,k}]^T = I_m + T_m + n_m. \]

(7)

\[I_m = \sum_{i=1}^{N_c} \beta_{i,m} S(f_{di}, f_{si}), \]

(8)

\[T_m = \beta_{i,m} S(f_{di}, f_{si}), \]

(9)

\[\beta_{i,m} = e^{j2\pi \alpha(m-1)f_{st}}, \]

(10)

\[\beta_{i,m} = e^{j2\pi \alpha(m-1)f_{st}}, \]

(11)

where \(\beta_{i,m} \) is the reflection coefficient of the target corresponding to the mth transmitted signal, \(\beta_{i,m} \) is
the reflection coefficient of the ith clutter patch corresponding to the mth transmitted signal, \(n_m \) is a
received noise. \(S(f_{di}, f_{si}) \) and \(S(f_{di}, f_{si}) \) are the space-time steering vector of the ith clutter patch and
the target, which can be represented as [18]

\[S(f_{di}, f_{si}) = \begin{bmatrix} 1 \\ \vdots \\ e^{j2\pi f_{di}(K-1)} \end{bmatrix} \otimes \begin{bmatrix} 1 \\ \vdots \\ e^{j2\pi f_{si}(N-1)} \end{bmatrix}, \]

(12)

\[S(f_{di}, f_{si}) = \begin{bmatrix} 1 \\ \vdots \\ e^{j2\pi f_{di}(K-1)} \end{bmatrix} \otimes \begin{bmatrix} 1 \\ \vdots \\ e^{j2\pi f_{si}(N-1)} \end{bmatrix}. \]

(13)

where \(\otimes \) denotes the Kronecker product.

3. Joint sparse recovery model

For the estimation of spatio-temporal spectrum of clutter and target, a model of joint sparse
recovery was established. The problem of spatio-temporal spectrum estimation was expressed as a
problem of optimization of joint sparse recovery based on a complete basis of steering vector.

Due to the above, the plane of normalized Doppler frequency and normalized spatial frequency
was divided into a grid with the dimension \(K_d \times N_d \), so as to obtain a denser coverage of the analyzed
range cell. To perform high-resolution spectrum estimation, \(K_d \) and \(N_d \) values should satisfy the
dependence \(K_d \times N_d >> NK \).

Therefore, the data received by the radar corresponding to a specific range cell can be expressed
as [19]

\[x_m = \Psi y_m + n_m. \]

(14)
where γ_m is the clutter and target spatio-temporal spectrum of the range cell under tests and the space-time sparsifying dictionary can be constructed as

$$\Psi = [S(f_{dt}, f_{sl}), \ldots, S(f_{dp}, f_{sq}), \ldots, S(f_{dk}, f_{sn})].$$

where $p = 1, 2, \ldots, K_d$, $q=1,2,\ldots, N_c$. $S(f_{wp}, f_{wq})$ denotes the space-time steering vector of the (p-q)-th Doppler and spatial frequency pair:

$$S(f_{dp}, f_{sq}) = \begin{bmatrix} 1 \\ \vdots \\ e^{j2\pi f_{dp}(K-1)} \end{bmatrix} \otimes \begin{bmatrix} 1 \\ \vdots \\ e^{j2\pi f_{sq}(N-1)} \end{bmatrix},$$

To analyze the sparsity of γ_m, the equation (14) can be written as [19]:

$$x_m = \Phi B_m + \beta_{t,m} S(f_{dt}, f_{st}) + n_m,$$

where

$$\Phi = [S(f_{dt}, f_{st}), S(f_{dp}, f_{st}), \ldots, S(f_{dk}, f_{sn})],$$

$$B_m = \begin{bmatrix} \beta_{1,m} \\ \beta_{2,m} \\ \vdots \\ \beta_{N_{c},m} \end{bmatrix},$$

According to Brennan’s rule, the rank of the clutter covariance matrix (R_c) is a measure of the minimum number of adaptive degrees of freedom necessary for a STAP processor:

$$\text{rank}(R_c) = N + (M - 1) \frac{2V}{d_k d_t},$$

According to Ward [17], where the Brennan rule regarding the system degree of freedom, including clutter, has been described and analyzed, it can be concluded that the clutter can be represented by the space-time steering vectors, which is spanned by $Q = \text{rank}(\Phi)$ clutter subspace in Φ. Therefore, equation (17) can be rewritten as

$$x_m = V_m \varepsilon_m + \beta_{t,m} S(f_{dt}, f_{st}) + n_m,$$

where V_m is a matrix constructed by the space-time steering vectors selected from the matrix Φ and ε_m is the corresponding reflection coefficient vector:

$$\varepsilon_m = [\sigma_{m,1}, \sigma_{m,2}, \ldots, \sigma_{m,Q}]^T,$$

The equation (21) indicates that the received data x_m of the mth transmitted signal can be represented by space-time steering vectors covering the clutter subspace and the target. So the spectrum γ_m can be expressed by steering vectors from the dictionary Ψ. Accordingly, the γ_m spectrum can be obtained by solving the following optimization problem [18]

$$\min \| \gamma_m \|_0,$$

s.t. $\| x_m - \Psi \gamma_m \|_2 \leq \epsilon,$

where $\| \cdot \|_0$ denotes the u-norm of matrix or vector, ϵ is a constant determined by noise, s.t. denotes such that. As shown in article [18], for any transmitted signal m^* ($m^* \neq m$), echo data can be expressed as

$$x_{m^*} = \Phi D B_{m^*} + e^{j2\pi a(m^*-m)f_{st}} \beta_{t,m^*} S(f_{dt}, f_{st}) + n_{m^*},$$
where

\[D = \text{diag}\{e^{i2\pi\alpha(m_*-m)f_{st}}, \ldots, e^{i2\pi\alpha(m_*-m)f_{stNc}}\}, \]

(26)

 diag[\cdot] represents a diagonal matrix. Due to the fact that the degree of matrix \(\Phi \) is equal to the degree of matrix \(\Phi D \), equation (25) can be written as

\[x_{m_*}' = V_{m_*}z_{m_*}' + e^{i2\pi\alpha(m_*-m)f_{st}}\beta_{t,m_*}S(f_{dt}, f_{st}) + n_{m_*}, \]

(27)

From the equations (21) and (25) it is known that \(\gamma_{m_*} \) and \(\gamma_m \) have the same clutter subspace and target signal model, which indicates the corresponding sparse structure of these vectors. Finally, the sparse echo data recovery model was established as

\[X = \Psi Y + N, \]

(28)

where

\[Y = [y_1, y_2, \ldots, y_M], \]

(29)

\[N = [n_1, n_2, \ldots, n_M], \]

(30)

\[X = [x_1, x_2, \ldots, x_M], \]

(31)

4. Application of sparse recovery algorithms

M-FOCCUS algorithm and OMP algorithm, which are a typical joint sparse recovery algorithms, are used to solve the equation (28) to estimate the spatio-temporal spectrum of clutter and target [19-21].

The estimation of \(Y \) with M-FOCCUS algorithm and OMP algorithm is equivalent to solving the following convex optimization problem [19]:

\[\min \| Y \|_{u,v}, \]

(32)

\[\text{s.t.} \quad \| X - \Psi Y \|_F \leq \Sigma, \]

(33)

where \(\| Y \|_{u,v} = \| Y_{1}^{T} \|_{u,0} + \ldots + \| Y_{r}^{T} \|_{u,0} + \ldots + \| Y_{MK}^{T} \|_{u,0} \) denotes the \(L_{u,v} \) norm of \(Y \), \(Y_r \) is \(r \)th element of \(Y \), \(u = 2, v \leq 1 \). \(\| \cdot \|_F \) denotes the Frobenius norm of matrix, \(\Sigma \) is a constant determined by noise. The \(L_{2,1} \) norm of \(Y \) is the sum of the Euclidean norms of the columns of the matrix:

\[\| Y \|_{2,1} = \sum_{j=1}^{m} \| y_j \|_2, \]

(34)

The individual steps of the M-FOCCUS algorithm and OMP algorithm to solve equation (28) was included in Appendix A and Appendix B, respectively.

5. Definition of clutter plus noise covariance matrix and weight vector

As a result of determining the spectrum \(Y \) through a sparse recovery algorithm, the clutter plus noise covariance matrix (CNCM) \(\bar{R}_{SR} \) can be calculated by [19]

\[\bar{R}_{SR} = \sum_{p=1}^{Kd} \sum_{q=1}^{NK} |\gamma^*(p,q)|^2 S(f_{dp}, f_{sq}) S^H(f_{dp}, f_{sq}) + \sigma^2 I_{NK}, \]

(35)

\[(p,q) \in \Omega(f_{dt}, f_{st}). \]

(36)
where \(p = 1, 2, \ldots, K \), \(q = 1, 2, \ldots, N \), \(\mathbf{Y}_d^* \) is a column vector obtained by taking 2-norm of each row vector of \(\mathbf{Y}_d \). \(\sigma^2 \) denotes power of noise, \(\mathbf{I}_{NK} \) is a \(NK \times NK \) identity matrix.

The possible Doppler frequency range of the target, which is determined by previously known information about the target is given as

\[
\Omega(f_{st}, f_{dt}) = \{(p, q) | |f_{dp} - f_{dt}| \leq \delta_d & |f_{sq} - f_{st}| \leq \delta_s\},
\]

(37)

System tolerances regarding Doppler frequency uncertainty and spatial frequency of the target are given as

\[
\delta_d = \mu_d \Delta_d, \\
\delta_s = \mu_s \Delta_s,
\]

(38)

(39)

\(\Delta_d \) and \(\Delta_s \) are the resolution unit sizes specified by \(K_d \) and \(N_s \). \(\mu_d \) and \(\mu_s \) are appropriate constants defined to prevent self-canceling of the target.

If the CNCM has been determined from equation (35), the optimal weight vector of the STAP processor can be determined by [19]

\[
\mathbf{w}_{SR} = \tilde{\mathbf{R}}_{SR}^{-1}\mathbf{S}(f_{dt}, f_{st}),
\]

(40)

where \(\mu \) is the specified constant.

6. Simulation results

The paragraph presents simulation results to show the effectiveness of the proposed STAP method. Simulation parameters are listed in Table 1, which refer to the standard parameters set in [20].

Parameter	Value
number of transmitters of MIMO radar	18
number of receivers of MIMO radar	8
number of pulses	8
wavelength	0.23 m
distance between transmitters	0.115 m
distance between receivers	0.115 m
distance between elements of the antenna array	0.115 m
flight altitude of the platform	5 km
velocity of the platform	250 m/s
pulse repetition frequency	4347.8 Hz
normalized Doppler frequency of target	0.2
normalized spatial frequency of target	0.2
clutter to noise ratio	30 dB
signal to noise ratio	10 dB

6.1. Performance of spatio-temporal spectrum estimation and target detection

First, the performance of the proposed method using the OMP algorithm was shown and analyzed. The maximum number of iterations was 500. The units of Doppler and spatial frequency
resolution are both equal to \(N_s = N_d = 60 \). The algorithm specifies \(\mu_s = \mu_d = 4 \). The following drawings are provided to confirm the performance of the proposed method for determining the CCM based on the OMP algorithm.

![Spatio-temporal clutter spectrum before and after STAP processing](image1)

Figure 2. Space-time spectrum of clutter before and after STAP processing – 2D charts.

Figure 2 shows space-time spectrum of clutter before and after STAP processing in 2D charts. It shows the values of signals received by the MIMO radar array on the space-time plane. On the left chart, a yellow area is drawn along the diagonal of the graph. According to the literature on the subject of research, this means the so-called clutter ridge, whose graphic interpretation is shown in the figure 3. In the right chart, it can be seen that the algorithm correctly detected the target located at the intersection of two straight lines, for a normalized Doppler frequency of \(f_d = 0.2 \) and a normalized spatial frequency also of \(f_s = 0.2 \), respectively.

The following figure graphically depicts the interpretations of the clutter ridge. Clutter ridge is a constant value for given radar and environment parameters and depends directly on the speed of movement of the flying platform and inversely on the distance between the antennas and the pulses repetition frequency.

![Clutter ridge in angular-Doppler plane](image2)

Figure 3. Clutter ridge in angular-Doppler plane: a) clutter patches are symmetrical, b) clutter can cover a target [23].

Figure 4 shows space-time spectrum of clutter before and after STAP processing in 3D chart. It is easy to see that clutter occurs in every distance cell. It is related to the movement of the flying platform and the non-zero value of the Doppler frequency shift between the platform and stationary field objects. On the left chart was shown clutter ridge for simulation parameters. The proposed
algorithm successfully removed the simulated clutter and allowed the detection of an object obscured by clutter.

Figure 4. Space-time spectrum of clutter before and after STAP processing – 3D charts.

A very important feature of the proposed STAP algorithm is the precise detection of objects. Another simulation was carried out for the same parameters. Figure 5 shows the values of signals received by the MIMO radar array as a function of range after the first pulse. At this stage, the received signals form a data cube of three dimensions (number of distance cells x number of pulses x number of antennas), which has not yet been processed by the newly developed STAP algorithm. Therefore, the radar cannot indicate the location of the object against the background of strong clutter. As you can easily see, the radar erroneously indicates that the object is 1000 m away from the radar.

Figure 5. Values of signals received by the MIMO radar array as a function of range before STAP processing.

Figure 6 shows the values of signals received by the MIMO radar array as a function of range after the first pulse. However, this time, the raw data was subjected to STAP processing by implementing the proposed STAP algorithm in the MATLAB environment. As you can easily see, the radar correctly indicates that the object is approximately 1900 m from the radar in a straight line.
6.2. Performance of clutter suppression

In the paragraph compared and analyzed the proposed STAP method in terms of clutter suppression performance based on the improvement factor IF, where IF is defined as the signal-to-noise ratio at the output to the signal to noise at the input of STAP processor [21].

Figure 7 shows the performance of clutter suppression for both of the sparse recovery algorithms used. Considering the practical implementation and the standard parameter set [22], for the OMP algorithm better clutter suppression can be obtained compared to the same STAP processing, but using the MFOCUSS algorithm. This is due to the fact that the indentation of the IF curve in figure 5 is narrower and reaches higher values. The use of the MFOCUSS algorithm in STAP processing, as well as its comparison with the methods described in articles [12-13] was the subject of publication consideration [19].

7. Conclusions
The paper presents a new STAP processing method for target detection in a heterogeneous and non-stationary environment. The new method has been experimentally verified. The case of using MIMO radar on a flying platform was modeled and the OMP algorithm was used to determine the spatio-temporal clutter spectrum. The new method uses a single snapshot of the MIMO radar data cube radar. This allowed to solve the problem of access to a large number of training cells and the non-stationary clutter in a heterogeneous environment, which in total significantly hinders the use of STAP processing in practice.

The paper alleges the analysis of the joint sparsity of echo data in the time and space domain in the MIMO on-board radar. Theoretical analysis and simulation results show that the proposed method can obtain a more accurate spatio-temporal spectrum estimation and have better clutter suppression performance than existing STAP methods using joint sparsity echo data and the MFOCUSS algorithm [12-13, 19]. In addition, the OMP method is less computationally complex than the MFOCUSS method.

In summary, it has been proved in this paper that it is possible to estimate the STAP clutter covariance matrix by using the MIMO radar geometry model and OMP algorithm. The authors are aware of the lack of practical verification of the proposed algorithm, however, this will be the perspective of future research.

Author Contributions: Methodology, A. Ślesicka, A. Kawalec; software, A. Ślesicka; formal analysis, A. Kawalec; investigation, A. Ślesicka, A. Kawalec; writing—review and editing, A. Ślesicka. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A: Application of M-FOCCUS algorithm

The individual steps of the M-FOCCUS algorithm $(u = 2, v = 1)$ to solve equation (28) are as follows [19-21]:

1. Initialization of the algorithm – setting initial variables. It was assumed that:

\[Y_0 = \Psi^H X, \]

\[C_0 = \begin{bmatrix} C_{0,1} \\ \vdots \\ C_{0,i} \\ \vdots \\ C_{0,N_s K_d} \end{bmatrix}, \]

\[C_{0,i} = \sqrt{\sum_{j=1}^{M} |Y_{0,i}(j)|^2}, \]

where \(Y_{0,i}, i=1,2,...,N_s K_d \) denotes \(i \)th row of \(Y_0 \), \(Y_{0,i}(j) \) denotes \(j \)th element of \(Y_{0,i}, j=1,2,...,M \).

2. Calculation of the weight matrix \(W \):

\[W_t = \begin{bmatrix} |C_{t-1,1}| & 0 & 0 & 0 \\ 0 & |C_{t-1,2}| & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & |C_{t-1,N_s K_d}| \end{bmatrix}, \]

while the other elements of the weight matrix are zeros. \(W_t \) denotes the \(t \)th \((t=1,2,...,t_{\text{max}})\) iteration weight matrix \(W \), \(t_{\text{max}} \) denotes maximum number of iterations, \(C_{t-1} \) denotes the \((t-1)\)th iteration value of \(C \).

3. Iteration loop:

\[Y_t = W_t (\Psi W_t)^\dagger X, \]
where \(\mathbf{Y}_t \) and \(\mathbf{C}_t \) represent tth iteration value of \(\mathbf{Y} \) and \(\mathbf{C} \) respectively, \(\mathbf{Y}_{wu} \) \(i=1,2,..., N_{Kd} \) is ith row of \(\mathbf{Y}_u \). \(\mathbf{Y}_{wu}(j) \) is jth element of \(\mathbf{Y}_{wu} \). \(^{10}\) denotes the matrix pseudo-inverse.

4. Condition to stop iteration:

If the convergence condition is met and the maximum number of iterations has been reached, the iteration is stopped and the calculation result is \(\mathbf{Y}_0 = \mathbf{Y}_t \). Otherwise, return to step 2.

Appendix B: Application of OMP algorithm

The orthogonal matching pursuit algorithm is a method of analyzing signals that involves finding a representation of an input signal in a large set of arbitrarily selected functions. Searching such a set, called a dictionary, to find the optimal match is characterized by high computational complexity, it is called NP-hard problem. In 1993, Mallat and Zhang proposed a sub-optimal, greedy iterative algorithm as a solution to the problem.

The main advantage of OMP is the possibility of using a redundant dictionary, which allows for very flexible parameterization of the structures contained in the signal. When decomposing, choose the base functions whose characteristics best match the characteristics of the signal being analyzed. However, the dictionary can be composed freely. The choice of dictionary function is determined by the external knowledge of the decomposed signal.

The individual steps of the OMP algorithm to solve equation (28) are as follows [21]:

1. Initialization of the algorithm – setting initial variables. It was assumed that:

\[
\mathbf{r}^0 = \mathbf{X},
\]

\[
\mathbf{Y}^0 = 0,
\]

\[
\Gamma^0 = \emptyset,
\]

where \(\mathbf{r} \) indicates an approximation error, \(\Gamma^0 \) denotes the selected set of dictionary atoms and \(\mathbf{Y}^0 \) is the wanted spectrum.

2. Iteration loop consists of 8 consecutive steps:

1: \(\mathbf{g}^n = \phi^\top \mathbf{r}^{n-1} \),

2: \(i^n = \arg \max |\mathbf{g}_i^n| \),

3: \(\Gamma^n = \Gamma^{n-1} \cup i^n \),

4: \(\mathbf{p}_{\Gamma^n} = \Psi_{\Gamma^n}^\top \mathbf{r}^{n-1} \),

5: \(\mathbf{c}^n = \mathbf{d}_{\Gamma^n} \mathbf{p}_{\Gamma^n} \),

6: \(\mathbf{a}^n = \frac{\langle \mathbf{r}^n, \mathbf{c}^n \rangle}{\|\mathbf{c}^n\|^2} \).
where ϕ^T indicates the transposition of a normalized dictionary Ψ, p_{r_0} is a new direction, d_{r_0} is the given column vector of the dictionary Ψ.

The OMP algorithm in the first step selects from the dictionary ϕ^T the given atom r^n best matched to the X vector, i.e. giving the largest value of the scalar product with the X vector. In each subsequent step, the atoms are analogously matched to the residue r^{n-1}, remaining after subtracting the result of the previous iteration, and the residue r^n is determined. The atom is selected from the dictionary in each iteration step, it meets the obvious condition $i^n = \arg\max | g_{i^n}^n |$.

3. Condition to stop iteration:

$$\|r^n\|_2 \leq \varepsilon,$$

If the convergence condition is satisfied for the assumed ε, the iteration is stopped and the result of the calculation is P_{r_0}. Otherwise, return to step 2.

References

1. Dong R.; Zheng B., Direct Data Domain STAP Algorithm for Airborne Radar Application. IEEE 2001.
2. Sarkar T. K.; Koh J.; Adve R.; Schneible R. A.; Wicks M.; Choi S.; Salazar-Palma M., A pragmatic Approach to Adaptive Antennas. IEEE Antennas and Propagation 2000, Volume 42, No. 2, pp. 39-55.
3. Burintramart S.; Sarkar T. K.; Zhang Y.; Wicks M., Performance comparison between statistical-based and direct data domain STAPs. Digital Signal Processing 2007, Volume 17, no. 4, pp. 737–755.
4. Carlo J.T.; Sarkar T. K.; Wicks M., A Least Squares Multiple Constraint Direct Data Domain Approach for STAP. Radar Conference 2003, pp. 431-438.
5. Li M.; Sun G.; He Z., Direct Data Domain STAP Based on Atomic Norm Minimization. IEEE Radar Conference 2019.
6. Adve R.S.; Hale T.B.; Wicks M., A Two Stage Hybrid Space-Time Adaptive Processing Algorithm. Proc. Of the 1999 IEEE Radar Conf., pp. 279-284.
7. Choi W.; Sarkar T. K., Wang H., Mokole E. L., Adaptive processing using real weights based on a direct data domain least squares approach. IEEE Transactions on Antennas and Propagation 2006, Volume 54, no. 1, pp. 182–191.
8. Sun K.; Meng Y.; Wang Y.; Wang X., Direct data domain STAP using sparse representation of clutter spectrum. Signal Processing 2011, Volume 91, no. 9, pp. 2222–2236.
9. Jeon H.; Chung Y.; Chung W., Clutter covariance matrix estimation using weight vectors in Knowledge-aided STAP. IET Electronics Letters 2017, pp. 560-562.
10. Peng H.; Sun Y.; Xiaopeng Y., Robust knowledge-aided sparse recovery STAP method for non-homogeneity clutter suppression. The Journal of Engineering 2019, No. 20, pp. 6373-6376.
11. Satyabrata S., Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar. IEEE Journal of Selected Topics in Signal Processing 2015, No. 9(8), pp.1510-1523.
12. Ma Z.; Liu Y.; Meng H., Jointly sparse recovery of multiple snapshots in STAP. IEEE Radar Conference 2013.
13. Yang Z.; Li X.; Wang H., Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity. IET Signal Processing 2016, No. 10(2), pp. 150-161.
14. Duan K.; Wang Z.; Xie W., Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Processing 2017, No. 11(5), pp. 544-553.
15. Guo Y.; Liao G.; Feng W., Sparse representation-based algorithm for airborne radar in beam-space post-Doppler reduced-dimension space-time adaptive processing. IEEE Access 2017, No. 5, pp. 5896-5903.
16. Zhang W., Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments. IEEE Trans. on Aerospace and Electronics Systems 2019.
17. Ward J., Space-time adaptive processing for airborne radar, Lincoln Lab., Massachusetts Inst. Technol., Lexington, MA, USA, Tech. Rep. 1015, Dec. 1994.
18. Feng W.; Zhang Y., MMV-JSR based STAP method using MIMO radar. *IEICE Communications Express* 2016, Volume 5, No. 6, pp.163-168.

19. Chen J.; Huo X., Theoretical results on sparse representations of multiple-measurement vectors. *IEEE Trans. on Signal Processing* 2006, No. 54, pp. 4634–4643.

20. Knee P., *Sparse representations for Radar with MATLAB. Examples*, Morgan & Claypool, 2012.

21. Le Caillec J. M., Górski T., Sicot G., Kawalec A., Theoretical Performance Of Space-Time Adaptive Processing For Ship Detection by High-Frequency Surface Wave Radars. *IEEE Journal of Oceanic Engineering* 2018, Volume 43, No. 1.

22. Klemm, R., *Principles of Space-Time Adaptive Processing*, 3rd ed., The Institution of Engineering and Technology, London, UK, 2006.

23. Zhang, W., He, Z., Li, H., Space time adaptive processing based on sparse recovery and clutter reconstructing. *IET Radar, Sonar & Navigation*, Vol. 13, Issue: 5, 2019.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).