Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a Feature Selector

Chen Du1,2, Chunheng Wang1, Cunzhao Shi1, Baihua Xiao1
1Institute of Automation, Chinese Academy of Sciences(CASIA)
2University of Chinese Academy of Sciences(UCAS)
\{duchen2016, chunheng.wang, cunzhao.shi, baihua.xiao\}@ia.ac.cn

Abstract

Different layers of deep convolutional neural networks (CNN) can encode different-level information. High-layer features always contain more semantic information, and low-layer features contain more detail information. However, low-layer features suffer from the background clutter and semantic ambiguity. During visual recognition, the feature combination of the low-layer and high-level features plays an important role in context modulation. Directly combining the high-layer and low-layer features, the background clutter and semantic ambiguity may be caused due to the introduction of detailed information. In this paper, we propose a general network architecture to concatenate CNN features of different layers in a simple and effective way, called Selective Feature Connection Mechanism (SFCM). Low level features are selectively linked to high-level features with a feature selector which is generated by high-level features. The proposed connection mechanism can effectively overcome the above-mentioned drawbacks. We demonstrate the effectiveness, superiority, and universal applicability of this method on many challenging computer vision tasks, such as image classification, scene text detection, and image-to-image translation.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have achieved great success on a variety of computer vision tasks, such as image classification\cite{23}, semantic segmentation\cite{29, 14}, and object detection\cite{12, 33, 27, 32, 7}. Although convolutional networks have already existed for a long time\cite{24}, their success was limited due to the available training set and the parameter sizes in networks. In recent years, the improvements in computer hardware and network structure have enabled the training of deep CNNs, and CNN has achieved better performance than handcraft features\cite{1, 9, 31, 30} on many tasks\cite{8, 11}.

The study of network architectures has gained a lot of attention in recent years. Over the past years many techniques have been developed. GoogLeNet\cite{38, 39} uses an Inception module which concatenates feature-maps produced by filters of different sizes. The architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million\cite{23} to 4 million. The main contribution of VGGNet\cite{36} is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. However, increasing network depth does not work by simply stacking layers together. Deep networks are hard to train because of the notorious problem of vanishing/exploding gradients, and adding more layers to a suitably deep model may lead to higher training error. In view of the difficult training in a DNN, Highway Networks\cite{37} provided a means to effectively train end-to-end networks with more than 100 layers using bypassing paths along with gating units. The bypassing paths are presumed to be the key factor that eases the training of these very deep networks. The ResNets\cite{15} further supports this point, in which pure identity mappings are used as bypassing paths. By utilizing residual blocks frame-
works, ResNets have achieved impressive, record-breaking performance on many challenging image recognition, localization, and detection tasks. Furthermore, these pretrained CNN features on the ImageNet dataset[10] have been transferred to other datasets to achieve remarkable results.

In order to understand why the CNNs frameworks perform so well, [69] introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Actually, feature maps of different layers extract information of different levels from input image[49]. The dimensions of low-layer features tends to response the patches with similar simple patterns and with more ambiguity. The feature maps of higher layers care more about semantic information but less detail information about image, since higher layers are closer to the last layer with category labels. Combining high-level information with low-level information effectively can improve the performance of CNNs in many computer vision tasks. The U-Net[34], which combines the low-layer features and high-level features directly, works with very few training images and yields more precise segmentations. The EAST[50] adopt the idea from U-shape, merging feature maps gradually, to detect word regions of which the sizes vary tremendously. For many image translation problems, there is a great deal of low-level information shared between the input and output, and it would be desirable to shuttle this information directly across the net. Pix2pix[17] is proposed to add skip connections for the generator to circumvent the information bottleneck. DenseNets[16] improve the flow of information and gradients throughout the network, which can also be seen as combining the low-layer features and high-level features. The FPN(Feature Pyramid Network)[25] develops a top-down architecture with lateral connections to build high-level semantic feature maps at all scales. This architecture shows significant improvement as a generic feature extractor in several applications.

As shown in Fig.1 during visual recognition, the feature combination of the low-layer and high-level features plays an important role in context modulation. When observing a horse in a big image, we will pay more attention to the area that represent the detail of horse. And in the human visual recognition system, high-level features play an important role to generate an attention map for selectively combining the low-layer features. But all these feature combining methods[34][16][26] just combine the low-layer features and high-level features directly, which is not in accordance with the biological fact.

In this paper, we propose a general network architecture to concatenate CNN features of different layers in a simple and effective way, called Selective Feature Connection Mechanism (SFCM). Inspired by the human visual recognition mechanism, low level features are selectively linked to high-level features with an feature selector which is generated by high-level features. Fig.2 shows an example of low-layer features selected for further use by an feature selector which is generated by high-level features. We demonstrate the effectiveness, superiority, and universal applicability of this method on many challenging computer vision tasks, such as image classification, scene text detection, and image-to-image translation.

Our main contributions are as follows:

- We propose the SFCM, a general network architecture to concatenate CNN features of different layers in a simple and effective way. Different layers of deep ConvNet can encode different-level information. High-layer features always contain more semantic information, and low-layer features contain more detail information. However, low-layer features suffer from the background clutter and semantic ambiguity. The SFCM can be used in many existing frameworks to achieve better performance as it can combine high-resolution maps with low-level features without harm the semantic representation capacity of high-layer features.

- We give two connection modes (direct connection and residual connection) to implement our SFCM. Both modes are effective and light weights. They add small amount of parameters and computation for the feature selector learning. They can be embed into any existing deep CNNs based methods and the feature selector can be easily trained end-to-end with standard backpropagation.

- The proposed SFCM was tested on many challenging computer vision tasks, such as image classification, scene text detection, and image-to-image translation. The output form of these tasks, Label-Output in classification, Coordinate-Regression in detection and Image-Output in image-to-image translation, contains all output types in visual tasks. The experimental results show that our SFCM can be used in many existing frameworks to achieve better performance. In addition, our SFCM can be embed into any existing state-of-the-art method model.

2. Related Work

Network Architecture for improving NN performance. There are many notable network architecture innovations which have yielded competitive results. The Network in Network[25] structure includes micro multi-layer perceptrons into the filters of convolutional layers to extract more complicated features. Spatial Transformer Networks[13] is proposed to give neural networks the ability to actively spatially transform feature maps.
introduce deformable convolution and deformable RoI pooling to enhance the transformation modeling capability of CNNs. In [44], Deeply-Fused Nets (DFNs) were proposed to improve information flow by combining intermediate layers of different base networks.

Methods using multiple layers. A number of recent approaches improve detection and segmentation by using different layers in a ConvNet. The U-Net[34], which combines the low-layer features and high-level features directly, works with very few training images and yields more precise segmentations. FCN[29] sums partial scores for each category over multiple scales to compute semantic segmentations. HyperNet[21], ParseNet[28], and ION[2] concatenate features of multiple layers before computing predictions, which is equivalent to summing transformed features. SSD[27] and MS-CNN[4] predict objects at multiple layers of the feature hierarchy without combining features or scores. The FPN(Feature Pyramid Network)[26] develops a topdown architecture with lateral connections to build high-level semantic feature maps at all scales. But all these feature combining methods just combine or use the low-layer features and high-level features directly, they have not consider the selectivity of high level features to low level features when the low-layer features are combined to the high-layer features.

Attention mechanism. Recently, attention mechanisms have been widely applied in different areas[13 47 48]. Similar to human visual processing, attention-based models tend to selectively focus on the meaningful object. Vaswani et.al. [41] propose the self-attention method for machine translation. A self-attention module computes the response at a position in a sequence by attending to all positions and taking their weighted average in an embedding space. Based on the recent work of soft attention[5 18], the Residual Attention Network[43] is composed of multiple attention modules which generate attention-aware features. The attention aware features from different modules change adaptively as layers going deeper.

3. Method

3.1. Selective Feature Connection Mechanism

In the existing features concatenation methods, feature maps obtained from different layers are combined directly. As shown in Fig.3, the combined features:

\[
O = [X, Y]
\]

(1)

where \(X \in \mathbb{R}^{H \times W \times C_1}\) donotes the low-layer feature map. \(C_1\) is the number of channels, \(W\) and \(H\) denote the width and height. \(Y \in \mathbb{R}^{H \times W \times C_2}\) is the high-level features of a ConvNet. \(O \in \mathbb{R}^{H \times W \times (C_1 + C_2)}\) is the combined features.

However, direct concatenation can not sufficiently apply the complementary information of high-layer and low-layer features. High-layer features can represent semantic information of an image and low-layer features contain more detail information. When directly combining the high-layer and low-layer features, the background clutter and semantic ambiguity may be caused due to the introduction of detailed information.

Inspired by the attention mechanism and recent advances in the deep neural network, we propose the SFCM. We assign attention scores for each local position on the low-layer feature map which indicates the importance of the low-layer features. As shown in Fig.4, the attention scores \(M\) are learned by \(C_2 \times 1 \times 1 \times 1\) convolutional filters.
Figure 3. Low-layer and high-layer features in CNN are combined directly.

\[M = W_g * Y \] \hspace{1cm} (2)

where "*" denotes a convolution operation. \(W_g \) is the learned weight matrices, which is implemented as \(1 \times 1 \) convolution.

In order to ensure the non-negative of the feature selector, we subsequently use the softmax normalization on \(M \) to get feature selector \(S \):

\[S_{i,j} = \frac{\exp(M_{i,j})}{\sum_{i=1}^{W} \sum_{j=1}^{H} \exp(M_{i,j})} \] \hspace{1cm} (3)

In this equation, \(S \in \mathbb{R}^{H \times W \times 1} \), and \(S_{i,j} \) is the score at position \((i, j)\).

The feature selector is learned to indicate the importance of the low-layer features. Thus, more noteworthy features in lower-layer can be screened out by multiplying the feature selector with the low-layer features. We denote the value in \(X \) corresponding to channel \(c \) and spatial location \((i, j)\) as \(X_{i,j,c} \). Thus, the new lower-layer features \(X^s \) is given by

\[X^s_{i,j,c} = S_{i,j} \times X_{i,j,c} \] \hspace{1cm} (4)

Then the new lower-layer features are used to connect with higher-layer features.

3.2. Adding SFCM To Deep ConvNets

We give two connection modes to add our method to a deep ConvNets, direct connection and residual connection[13][45]. Fig 4 shows the building block that constructs our SFCM. **Direct connection:** In the direct connection, as shown in Fig 4 (a), \(X^s \), given in Eq.(3), is concatenated to the higher level features \(Y \):

\[O = [X^s, Y] \] \hspace{1cm} (5)

Residual connection: As exemplify in Fig 4 (b), the selective feature connection method can also be incorporated into many existing architectures in the form of residuals.

We further multiply \(X^s \) by a scale parameter \(W_g \) and add back the lower-layer features \(X \):

\[X' = W_g \times X^s + X \] \hspace{1cm} (6)

where \(X^s \) is given in Eq.(3) and "+X" denotes a residual connection.

The residual connection allows us to insert the Selective Feature Connection block into any pre-trained model, without breaking its initial behavior. In the residual connection, \(X' \) is concatenated to the higher level features \(Y \):

\[O = [X', Y] \] \hspace{1cm} (7)

3.3. Discussion

We discuss why the SFCM is efficient by visualizing the feature layer of the network and the feature selector in SFCM, and then we discuss what exactly learned of the feature selector and how the SFCM works on improving state-of-art model performance. Fig 2 shows an example of low-layer features selected for further use by a feature selector which is generated by high-level features. As shown in Fig 2 the "Feature selector" can learn to enhance the area of foreground and suppress the area of background. With the SFCM, most of the pixels in the low level feature map...
are suppressed, so it can achieve better performance as it can combine high-resolution maps with low-level features without harm the semantic representation capacity of light-layer features and add more detail features of the foreground to further increase the representation ability of features.

4. Experiments

We perform experiments on a variety of tasks, like image classification, scene text detection, and image-to-image translation, to explore the effectiveness and universality of our SFCM. The output forms of these tasks, Label-Output in classification, Coordinate-Regression in detection and Image-Output in image-to-image translation, contain all output types in computer vision tasks, so the experiments can prove the generality of our method.

4.1. Image classification:

Datasets: The effect of SFCM in image classification is tested on the CIFAR-10 and CIFAR-100 datasets [22]. The two CIFAR datasets [15] consist of colored natural images with 3232 pixels. CIFAR-10 (C10) consists of images drawn from 10 and CIFAR-100 (C100) from 100 classes. The training and test sets contain 50,000 and 10,000 images respectively, and we hold out 5,000 training images as a validation set. We adopt a standard data augmentation scheme (mirroring/shifting) that is widely used for these two datasets [22, 15, 25]. We denote this data augmentation scheme by a + mark at the end of the dataset name (e.g., C10+). For preprocessing, we normalize the data using the channel means and standard deviations. For the final run we use all 50,000 training images and report the final test error at the end of training.

Base Network: We adopt the DenseNet [16] as the base model and change the dense block to include the SFCM. Fig. 5 (a) shows a dense block in DenseNet. A dense block with SFCM is shown in Fig. 5 (b). Our focus is on the behaviors of a deep networks with SFCM, but not on pushing the state-of-the-art results, so we intentionally use the simplest architectures in the DenseNet (three dense blocks, \(k = 12 \), depth = 40).

All the networks are trained end-to-end using stochastic gradient descent (SGD) and batch size 64 for 300 epochs. The initial learning rate is set to 0.1, and it divided by 10 at 50% and 75% of the total number of training epochs.

Result Discussion: Table 1 evaluates the effect of SFCM on DenseNet. When using the proposed SFCM in the first dense block, the error rates of 6.28% with direct connection and 6.21% with residual connection are both lower than that of 7.00% achieved by the DenseNet without SFCM achieves on CIFAR-10 dataset. And the experimental results clearly shows that:

- The accuracy is steadily improved when more layers use the proposed SFCM. When changing all the three dense blocks with the SFCM, the error drops to 5.62% which is close to 20% lower than the baseline.

- Both the direct connection and residual connection significantly improve the accuracy of classification. The error rates of direct and residual connections on both CIFAR-10 and CIFAR-100 are both significantly lower than that of the DenseNet. This suggest that the SFCM can improve the representation learning ability of CNN models.

- Residual connection is more effective on existing architectures, as the selective feature connection method does not change the existing architectures in the form of residuals.

4.2. Scene text detection

We further verify the effectiveness of our method in scene text detection. Scene text detection is challenging due to text may exist in natural images with arbitrary size and orientation. The core of text detection is the design of features to distinguish text from backgrounds. Merging feature maps of different layers should be possible to improve the performance of detecting text in vary size.

Datasets: We use the ICDAR 2015 Incidental Text datasets [19] and the COCO-Text [42] to test the effect of SFCM on Scene text detection. The ICDAR 2015 Incidental Text datasets issues from the Challenge 4 of the ICDAR 2015 Robust Reading Competition. It includes 1000 training images and 500 testing images. These images are taken by Google Glass in an incidental way. Therefore text in the
Table 1. Error rates(%) on CIFAR datasets. "+" indicates standard data augmentation (translation and/or mirroring). The "Direct Connection" refers to use the proposed SFCM in the Direct Connection mode. The error rates of direct and residual connections on CIFAR-10 and CIFAR-100 are both significantly lower than that of the DenseNet. Residual connection is more effective on existing architectures, as the selective feature connection method does not change the existing architectures in the form of residuals.

Method	Direct Connection	Residual Connection						
	C10	C10+	C100	C100+	C10	C10+	C100	C100+
DenseNet(baseline)	7.00	5.24	27.55	24.42	7.00	5.24	27.55	24.42
The first dense block with SFCM	6.28	4.26	25.72	22.17	6.21	4.21	24.94	23.26
The first two dense blocks with SFCM	6.10	4.02	24.37	20.79	5.93	3.94	23.76	20.51
All dense blocks with SFCM	5.92	3.81	22.96	19.31	5.62	3.73	22.18	19.27

Table 2. Results on ICDAR 2015 Challenge 4 Incidental Scene Text Localization task and COCO-Text. * This baseline is provided by the published model by EAST.

Method	ICDAR2015	COCO-Text				
	Recall	Precision	F-score	Recall	Precision	F-score
EAST-ResNet(baseline)	0.7722	0.8464	0.8076	0.3240	0.5039	0.3945
EAST with SFCM	0.7916	0.8687	0.8254	0.3928	0.5416	0.4554

4.3. Image-to-image translation

Image-to-image translation is one of the image generation tasks aiming to translate an input image into a corresponding output image. A defining feature of image-to-image translation problems is that they map a high resolution input grid to a high resolution output grid. Combining high-level semantic information with low-level detail information effectively can significantly improve the performance of the translation tasks. We use the pix2pix(cGAN)[17] as the base model to test the effect of
SFCM. This model solves the image generation task that the input and output differ in surface appearance, but both are renderings of the same underlying structure. We test the method on two tasks and datasets:

1. Semantic labels to photo, trained on the Cityscapes dataset[6]
2. Architectural labels to photo, trained on CMP Facades[40]

We use the FCN-score[17] to evaluate the performance of our SFCM. Quantitative evaluation of generative models is known to be challenging, recent works [46, 35] have tried using pre-trained semantic classifiers to measure the discriminability of the generated stimuli as a pseudo-metric. The intuition is that if the generated images are realistic, classifiers trained on real images will be able to classify the synthesized image correctly as well. To this end, we adopt the popular FCN-8s[29] architecture for semantic segmentation, and train it on the cityscapes dataset. We then score synthesized photos by the classification accuracy against the labels these photos were synthesized from.

Table 3 evaluates the effect of SFCM on cGAN. The cGAN with SFCM outperforms the original cGAN. Some results are shown in Fig[8]. The resolution of the images translated by the pix2pix is low and the image edges are illegible. With the SFCM, images translated by the pix2pix show much higher quality especially in details. This suggests that the SFCM has learned a more effective way to combine high-level semantic information with low-level detail information in the training of neural network model.

5. Conclusion and Future Work

We have presented the SFCM, a general network architecture to concatenate CNN features of different layers, and given two connection modes, direct connection and residual connection, to use this architecture. With our SFCM, low level features are selectively linked to high-level features with an attention map which is generated by high-level fea-

Table 3. Segmentation accuracy for the Cityscapes labels ↔ photos task. The cGAN with SFCM outperform the original cGAN[17].

Method	Per-pixel acc.	Per-class acc.	Class IOU
cGAN (baseline)	0.66	0.23	0.17
cGAN with SFCM	**0.71**	**0.24**	**0.17**
Ground truth	0.80	0.26	0.21

![Figure 7. Some results on images in ICDAR-15 dataset. (a) Result of EAST-ResNet (baseline). (b) Result of EAST-ResNet with SFCM.](image1)

![Figure 8. Some results on the image-to-image translation tasks. The pix2pix model with the SFCM results in much higher quality results, especially in details. (a) Example results on the Cityscapes dataset. (b) Example results on CMP Facades.](image2)
tures. Experiments show that our method is effective and generic on a variety of tasks, including image classification, scene text detection, and image-to-image translation. Thus, it provides a practical solution for research and applications to use multi-layer CNN Features more effectively.

References

[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European conference on computer vision, pages 404–417. Springer, 2006.

[2] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2874–2883, 2016.

[3] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge 2010, 2010.

[4] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified multi-scale deep convolutional neural network for fast object detection. In European Conference on Computer Vision, pages 354–370. Springer, 2016.

[5] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3640–3649, 2016.

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3213–3223, 2016.

[7] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks. In Advances in neural information processing systems, pages 379–387, 2016.

[8] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolutional networks. CoRR, abs/1703.06211, 1(2):3, 2017.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[11] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303–338, 2010.

[12] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015.

[13] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Draw: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference on, pages 2980–2988. IEEE, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In CVPR, volume 1, page 3, 2017.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. arXiv preprint, 2017.

[18] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Advances in neural information processing systems, pages 2017–2025, 2015.

[19] D. Karatzas, L. Gomez-Bigorda, A. Nicolau, S. Ghosh, A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu, et al. Icdar 2015 competition on robust reading. In Document Analysis and Recognition (ICDAR), 2015 13th International Conference on, pages 1156–1160. IEEE, 2015.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[21] T. Kong, A. Yao, Y. Chen, and F. Sun. Hypernet: Towards accurate region proposal generation and joint object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 845–853, 2016.

[22] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[25] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.

[26] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie. Feature pyramid networks for object detection. In CVPR, volume 1, page 4, 2017.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016.

[28] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better. arXiv preprint arXiv:1506.04579, 2015.

[29] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015.

[30] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110, 2004.
[31] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In *European conference on computer vision*, pages 143–156. Springer, 2010.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 779–788, 2016.

[33] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In *Advances in neural information processing systems*, pages 91–99, 2015.

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pages 234–241. Springer, 2015.

[35] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In *Advances in Neural Information Processing Systems*, pages 2234–2242, 2016.

[36] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.

[37] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. *arXiv preprint arXiv:1505.00387*, 2015.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1–9, 2015.

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2818–2826, 2016.

[40] R. Tyleček and R. Šára. Spatial pattern templates for recognition of objects with regular structure. In *German Conference on Pattern Recognition*, pages 364–374. Springer, 2013.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, pages 5998–6008, 2017.

[42] A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie. Coco-text: Dataset and benchmark for text detection and recognition in natural images. *arXiv preprint arXiv:1601.07140*, 2016.

[43] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang. Residual attention network for image classification. *arXiv preprint arXiv:1704.06904*, 2017.

[44] J. Wang, Z. Wei, T. Zhang, and W. Zeng. Deeply-fused nets. *arXiv preprint arXiv:1605.07716*, 2016.

[45] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

[46] X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In *European Conference on Computer Vision*, pages 318–335. Springer, 2016.

[47] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In *International conference on machine learning*, pages 2048–2057, 2015.

[48] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 21–29, 2016.

[49] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In *European conference on computer vision*, pages 818–833. Springer, 2014.

[50] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang. East: an efficient and accurate scene text detector. In *Proc. CVPR*, pages 2642–2651, 2017.