Lack of association of –863C/A (rs1800630) polymorphism of tumor necrosis factor-α gene with rheumatoid arthritis

Tayyaba Sadaf1, Peter John1, Attya Bhatti1, Javaid M. Malik2

1Department of Health Care Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
2Arthritis Research Center, Rahmat Noor Clinic, Rawalpindi, Pakistan

Submitted: 31 October 2016
Accepted: 2 February 2017

Arch Med Sci 2019; 15, 2: 531–536
DOI: https://doi.org/10.5114/aoms.2018.76946
Copyright © 2018 Termedia & Banach

Abstract

Introduction: Mutifunctional pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) has been implicated in a variety of inflammatory diseases including rheumatoid arthritis (RA). TNF-α polymorphisms are mostly located in its promoter region and play a significant role in disease susceptibility and severity. We therefore sought to investigate TNFA –863C/A (rs1800630) polymorphism association with RA activity in our Pakistani study group.

Material and methods: A total of 268 human subjects were enrolled. Among them, 134 were RA patients and 134 were controls. In this study the physical parameters of RA patients were collected, and the disease activity was measured by DAS28. The genotypes were determined following the allele-specific PCR along with the pre-requisite internal amplification controls. Subsequently, data were analyzed statistically for any significant association including χ²/Fisher’s exact test using GraphPad prism 6 software.

Results: We found that the TNF-α –863 C/A (rs1800630) variant was not differentially segregated between cases and controls in either genotype frequency, with χ² of 2.771 and a p-value of 0.2502, or allele frequency, with χ² of 2.741 and a p-value of 0.0978, with an odds ratio (95% CI) of 0.7490 (0.5317–1.055).

Conclusions: The lack of positive association of TNF-α –863 (rs1800630) polymorphism in our study group implies that TNF-α –863 polymorphism is not a susceptible marker to RA and cannot serve as a genetic factor for screening RA patients in Pakistan. There might be other factors that may influence disease susceptibility. However, further investigations on additional larger and multi-regional population samples are required to determine the consequences of genetic variations for disease prognosis.

Key words: rheumatoid arthritis, polymorphism, tumor necrosis factor-alpha, association study.

Introduction

Among several inflammatory autoimmune disorders rheumatoid arthritis (RA) is one of the most common, characterized by synovial membrane inflammation and immune cell-mediated joint destruction. It primarily affects the joints, resulting in painful swollen joints to severe polyarthritis with progressive articular cartilage destruction. The world-
wide prevalence of RA is about 0.24% [1]. According to Cross et al., RA continues to remain a source of modest global infirmity, with serious consequences in affected individuals. Collected data from studies suggested that the disease occurrence is inconsistent in different racial groups [2]. In Pakistan, disease prevalence is still unspecified, but it has been perceived that it is more common in the country’s northern parts than the southern part [3]. It depends on the combination of various environmental as well as a number of genetic factors [4]. It has also been observed that RA occurs in individuals having multiple common genetic factors and these genetic risk factors are expected with 60% heritability [5]. Multiple genetic risk factors of various candidate genes incline the patient towards disease susceptibility by the development of different clinical symptoms following exposure to unknown environmental factors [6]. Microsatellite mapping across the HLA region suggested that a nearby class III region possibly contributes to disease susceptibility or severity [7–9]. Evidence emphasized that within the class III region the tumor necrosis factor-α (TNF-α) gene is a major candidate for RA [10].

Single nucleotide polymorphisms (SNPs) in the promoter regions are likely to have a potential to cause differential expression of proteins and possibly have an association with disease [11]. TNF gene promoter polymorphisms may influence the transcriptional activity by transforming the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12]. Single nucleotide polymorphisms (SNPs) in the promoter regions are likely to have a potential to cause differential expression of proteins and possibly have an association with disease [11]. TNF gene promoter polymorphisms may influence the transcriptional activity by transforming the transcription factor binding site [12]. Various SNPs have been reported for the TNF gene promoter region. Among them SNP at –863 position is involved in NF-κB binding affecting the transcription factor binding site [12].

Material and methods

The study included 268 human subjects. Among them 134 individuals were patients with RA and 134 individuals were ethnically matched controls. In this study, the physical parameters of the RA patients in a Pakistani population were assessed to investigate any association of these clinical features with the patients. The percentage of males and females and the average age of all the included individuals in the study were calculated for the analysis of SNP. All the included patients were diagnosed by a rheumatologist from Rehmat Noor Clinic, Rawalpindi, working in collaboration with our institution.

Inclusion criteria: patients included in this study fulfilled the American College of Rheumatology (ACR) criteria 2011 for RA diagnosis and classification. Exclusion criteria: individuals overlapping with any other rheumatic or autoimmune disease were excluded from the study. To diagnose RA different inflammatory markers including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (anti-CCP) were used. Anti-CCP of all the patients was analyzed by the fully automated chemiluminescent immunoassay system COBAS ELECSYS 411. Reference values used for detection of markers were: anti-CCP (negative < 17 U/ml; positive > 17 U/ml), RF (up to 20 IU/ml), C-reactive protein (normal range < 6 mg/l), ESR (normal range for males: 0–9 mm; for females: 0–15 mm).

Research was carried out in compliance with the Helsinki Declaration. Written informed consent was obtained from the entire study group. The study was approved by the ethical committee of the Institutional Review Board (IRB) of ASAB-NUST.

Clinical features of RA patients and healthy individuals collected are shown in Table I.

Table I. Clinical characteristics of patients (n = 134)

Features	Cases (%)
Disease duration:	
6 months < × < 2 years	29
2 years < × < 4 years	15
× > 4 years	56
Age of onset:	
< 20 years	7
20–40 years	55
> 40 years	40
Disease severity:	
Severe	45
Moderate	32
Minor	9
Remission	14
Lack of association of –863C/A (rs1800630) polymorphism of tumor necrosis factor-α gene with rheumatoid arthritis

Table II. Distribution of TNF-α –863C/A (rs1800630) genotypes and alleles in cases and controls

Genotypes/allele	Frequency distribution	\(\chi^2 \) statistics				
	Rheumatoid arthritis	Controls				
	Frequency	%	Frequency	%	\(\chi^2 \)	P-value
CC						
	48	35.82	37	27.61	2.771	0.2502*
CA						
	65	48.50	68	50.74		
AA						
	21	15.67	29	21.64		
C						
	161	60.07	142	52.99	2.741	0.0978*
A						
	107	39.93	126	47.01		

When comparing CC, CA and AA genotypes, \(p \)-value = 0.2502 and \(\chi^2 = 2.771 \). When comparing C and A alleles, \(p \)-value = 0.0978 and \(\chi^2 = 2.741 \). ns – non-significant where \(p \)-value < 0.05 was considered statistically significant.

Figure 1. Distribution of different genotypes and alleles of TNF-α gene promoter –863C/A (rs1800630) polymorphism among our study groups (cases and controls). A - \(p = 0.2502 \) with \(\chi^2 = 2.771 \); B - \(p = 0.0978 \) with \(\chi^2 = 2.741 \). Calculation using \(\chi^2 \)/Fisher exact test shows no statistically significant difference.

Design of primers

SNP selected for the association study was located in the promoter region of the TNF-α gene. The sequence of the TNF-α promoter region was taken from National Centre for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) with the accession number rs1800630. Forward and reverse primers for SNP were then manually designed and their properties were calculated by the oligonucleotide properties calculator OligoCalc [18]. The specificity was checked on Primer-BLAST. One common forward (TNF-F-5’TGTGTGTGTGGAGTGAGAA3’) and two reverse (TNF-R1-5’TCTACATGGCCCTGTCTTGAAGG3’ and TNF-R2-5’TCTACATGGCCCTGTCTTGAAGG3’) primers resulting in a 389 bp fragment were designed for studying the TNFA –863A>C polymorphism. The prerequisite Internal Amplification Control forward (IAC-F-5’ATGGTCTTAGTATAGCTTGCTTGT3’) and reverse (IAC-R-5’TGCAGATACCATCATCCGTGCTTGAAGG3’) primers resulting in a 144 bp fragment were also designed considering β-globin as the standard in order to validate the reaction.

Genotyping

The RA patients and healthy individuals were examined for the occurrence of the polymorphism by allele specific ARMS-PCR. Denatured DNA templates at 95°C for 5 min were hybridized with primers at 54°C for 45 s, subsequently amplified in a 96-well thermocycler 2,720 (Applied Biosystems) with 35 cycles of PCR. The PCR product and loading dye (0.25% bromophenol blue in 40% sucrose solution) was mixed carefully for loading the mixture in the wells of 2% (w/v) agarose gel. The gel
was ethidium bromide stained. After running gel electrophoresis at 120 V in 1XTBE buffer for about 0.5 h, the gel was analyzed on the Dolphin-Doc plus gel documentation system (Watech). Length of the PCR product was determined by comparing the PCR product size with a 50 bp DNA ladder.

Statistical analysis

Data were statistically examined for any association of a variant with disease by GraphPad Prism 6 software. Hardy-Weinberg equilibrium (HWE) of genotypes was confirmed by the χ^2 test (1 df). All binominal variables were assessed by χ^2/Fisher exact test for association analysis of the variant with disease in our study group. To estimate the degree of association of each allele, the odds ratio (OR) and its 95% confidence interval (CI) were calculated.

Results

The study included a total of 268 individuals. In the case group 86.86% were female and 13.14% were male, with a mean age of 44.15 ±12.21 years, and in the control group 80.59% were female and 19.40% were male, with a mean age of 35.74 ±7.1 years. Out of 134 patients, 58 (43.3%) individuals were >45 years of age while 76 (56.7%) patients were ≤45 years of age. All the 134 patients were positive for the anti-CCP test and 133 patients were positive for the RF factor. In the case group 86.86% were female and 13.14% were male, with a mean age of 35.7 ±7.1 years. Out of 134 patients, 58 (43.3%) individuals were >45 years of age while 76 (56.7%) patients were ≤45 years of age. All the 134 patients were positive for the anti-CCP test and 133 patients were positive for the RF factor.

All possible allele combinations distributed in our subjects were studied. The allele counting method for TNF-α –863C/A (rs1800630) was employed to compute the allele and genotype frequencies, and the polymorphism was verified for any deviation from Hardy-Weinberg equilibrium (HWE). Both sets were suitable for auxiliary examination and association studies. The p-value estimated for RA patients’ was 0.8968 with $\chi^2 = 0.02$, while the p-value was 0.8299 with $\chi^2 = 0.05$ for the control group. Genotype and allele frequency distribution calculated and matched with the frequency of arbitrary healthy people (Figure 1). The value of association was found to be 2.771 with the probability of error (p-value) of 0.2502 (Table II). Allele frequency distribution considered using two-tailed analysis shows no substantial difference between cases and controls with the odds ratio (95% CI) of 0.7490 (0.5317–1.055).

Discussion

Rheumatoid arthritis is an inflammatory autoimmune disease affecting humans throughout the world that causes joint inflammation, swelling, and pain. A wide variety of factors together with environmental and genetic elements contribute to the disease pathogenesis and progression. Genetic scanning indicated a strong genetic component [19], revealing that there is more than one region that is linked to the disease [20–22]. Cumulative studies also counsel that patients whose genetic history includes several common elements are more susceptible to RA. Genetic susceptibility contributed by these genetic risk elements or alleles was estimated to be approximately 30% [23]. According to our investigation in a Pakistani populace the rate of occurrence of RA is higher in females than in males. In our study, we found that a higher percentage of females (86.86%) were affected than males (13.14%), which is consistent with findings from Taiwan [24] and a North Indian cohort [25], implying that gender may have a substantial consequence for RA susceptibility. Studies show that promoter regions of RA candidate genes are extremely polymorphic, which has been accompanied with disease susceptibility as well as severity in different populations [26]. Among them, TNF-α plays a central role in disease pathogenesis, increased levels having been reported in inflamed joints [27]. High genetic variability with several SNPs has been determined in the promoter area of the TNF-α gene [28]. These SNPs could possibly alter transcription factor binding sites, affecting promoter activity and ultimately leading to altered mRNA and protein levels [29]. TNF-α is biologically active in two distinctly different forms, i.e., soluble form (sTNF) and transmembrane form (tmTNF). Both forms are specified for their roles; sTNF has an imperative, perhaps the dominant role in the inflammatory response, while tmTNF plays a fundamental role in maintaining innate immunity against infections [30]. It is a multifunctional pro-inflammatory cytokine that is involved in different pathological processes including autoimmunity and neurodegenerative diseases [31].

Studies have focused on the association of TNF-α gene polymorphisms with RA. The role of TNF-α in pathogenesis of autoimmune diseases has been discussed in a number of studies [11, 32]. Despite some contradictory views, so far available data reveal that the variants of the TNF gene have the potential for disease progression and could act as potential genetic risk factors [33, 34]. Despite this, auxiliary studies are needed to ascertain whether the formerly recognized TNF-α gene promoter variations act as potential markers of RA. TNF-α gene polymorphisms variants have been found associated with several autoimmune diseases [35–37], inflammatory arthritis like psoriatic arthritis (PsA) [38–41], juvenile rheumatoid arthritis [42], and systemic juvenile rheumatoid arthritis [43]. In some studies, TNF-α promoter variants were found with aggressive disease [44]. According to Skoog et al., TNF-α –863 variant rs1800630 was found to be associated with...
the disease severity. A SNP at position –863 is involved in NF-κB binding affecting the transcriptional regulation [13]. Tumor necrosis factor –863A allele lessens the NF-κB p50/p50 binding that directs the enhanced TNF production in human monocytes [12]. Moreover, some studies found a positive association of TNF –863A allele and RA outcome [14]. In HLA-DR4+ individuals, TNF –863A is found to be prognostic for severe joint disease [14]. In our study the frequency of allele distribution at position –863 of TNF-α was comparable with a North Indian population in a previous report [15], but different from that of Udalova et al. [12]. TNF-α –863A allele frequency distribution revealed no significant difference between our study groups when our RA patients (39.93%) were compared with the control group (47.01%) with p-values of 0.0978 and 0.7490 (95% CI: 0.5317–1.055), which is consistent with the North Indian population with no association of TNF-α –863 with the disease. Results with lack of a positive association were also consistent with the findings of Ugilaloro et al. [45]. In our study groups, TNF-α –863A minor allele frequency was comparable with Japanese data [46]. Our data do not support the TNF-α –863A allele as a genetic component contributing to RA disease susceptibility in our population as the distribution of the TNF-α –863A allele was not different between the study groups. However, these allelic polymorphisms explain comparatively incomplete clinical intervention as RA implicates multiple genes. Thus, to describe the relationship of TNF-α alleles with RA, independent larger population study validation is required to confirm the association.

In conclusion, in our study group, the TNF-α –863A allele was not found to be a genetic risk susceptibility element in RA progression. Nonetheless, information related to TNF promoter variants is imperative to gain a better insight into RA genetics. However, in order to endorse and extend the results, further investigations on larger populations are required.

Acknowledgments

This research was supported by Higher Education Commission (HEC) Pakistan.

Conflict of interest

The authors declare no conflict of interest.

References

1. Cross M, Smith E, Hoy D, et al. The global burden of rheumatoid arthritis: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 2014; 73: 1316-22.
2. Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 2005; 4: 130-6.
3. Farooqi A, Gibson T. Prevalence of the major rheumatic disorders in the adult population of north Pakistan. Br J Rheumatol 1998; 37: 491-5.
4. Klareeskog L, Padyukov L, Rönnelid J, Alfredsson L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 2006; 18: 650-5.
5. Bogovich AB, Carlton VE, Honigberg LA, et al. A mis-sense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330-7.
6. Pavlik A, Herczyńska M, Kurzawski M, et al. IL-1βeta, IL-6, and TNF gene polymorphisms do not affect the treatment outcome of rheumatoid arthritis patients with leflunomide. Pharmacol Rep 2009; 61: 281-7.
7. Ota M, Katsuyama Y, Kimura A, et al. A second susceptibility gene for developing rheumatoid arthritis in the human MHC is localized within a 70-kb interval telomeric of the TNF genes in the HLA class III region. Genomics 2001; 71: 263-70.
8. Zanelli E, Jones G, Pascual M, et al. The telomeric part of the HLA region predisposes to rheumatoid arthritis independently of the class II loci. Hum Immunol 2001; 62: 75–84.
9. Jawaeheer D, Li W, Graham RR, et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Arthritis Care Res 2002; 48: 199-206.
10. Fonseca JE, Cavaleiro J, Teles J, et al. Contribution for new genetic markers of rheumatoid arthritis activity and severity: sequencing of the tumor necrosis factor-alpha gene promoter. Arthritis Res Ther 2007; 9: R37.
11. Bayley JP, Ottenhoff TH, Verweij CL. Is there a future for TNF promoter polymorphisms? Genes Immun 2004; 5: 315-29.
12. Udalova IA, Richardson A, Denys A, et al. Functional consequences of a polymorphism affecting NF-kappaB p50-p50 binding to the TNF promoter region. Mol Cell Biol 2000; 20: 9113-9.
13. Skoog T, van’t Hoof FM, Kallin B, et al. A common functional polymorphism (C → A substitution at position-863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha. Hum Mol Genet 1999; 8: 1443-9.
14. Udalova IA, Richardson A, Ackerman H, Wordsworth P, Kwiatkowski D. Association of accelerated erosive rheumatoid arthritis with a polymorphism that alters NF-kappaB binding to the TNF promoter region. Rheumatology (Oxford) 2002; 41: 830-1.
15. Gambhir D, Lawrence A, Aggarwal A, Misra R, Mandal SK, Naik S. Association of tumor necrosis factor alpha and IL-10 promoter polymorphisms with rheumatoid arthritis in North Indian population. Rheumatol Int 2010; 30: 1211-7.
16. John P, Bhatti A, ul Ain N, Iqbal T, Sadaf T, Malik JM. Case-control study of vitamin D receptor gene polymorphism in Pakistani rheumatoid arthritis patients. Rev Bras Reumatol Engl Ed 2017; 57: 633-6.
17. Sadaf T, John P, Bhatti A, et al. Lack of tumor necrosis factor alpha gene polymorphism-857c/t (rs1799724) association in Pakistani rheumatoid arthritis patients. Int J Rheum Dis 2016; 19: 1119-25.
18. Kibble WA. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 2007; 35 (Suppl 2): W43-6.
19. MacGregor AI, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid
arthritis using data from twins. Arthritis Rheum 2000; 43: 30-7.
20. Jawaher D, Seldin MF, Amos CI, et al. Screening the gene
 for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multi-
 case families. Arthritis Rheum 2003; 48: 906-16.
21. Mackay K, Eyre S, Myerscough A, et al. Whole-genome
 linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom.
 Arthritis Rheum 2002; 46: 632-9.
22. Fisher SA, Lanchbury JS, Lewis CM. Meta-analysis of four
 rheumatoid arthritis genome-wide linkage studies: con-
 firmation of a susceptibility locus on chromosome 16.
 Arthritis Rheum 2003; 48: 1200-6.
23. Vries ND, Tijssen H, Riel PL, Putte LB. Reshaping the shared epitope hypothesis: HLA-associated risk for
 rheumatoid arthritis is encoded by amino acid substitu-
 tions at positions 67-74 of the HLA-DRB1 molecule.
 Arthritis Rheum 2002; 46: 921-8.
24. Yen JH, Chen CJ, Tsai WC, et al. Tumor necrosis factor
 promoter polymorphisms in patients with rheumatoid
 arthritis in Taiwan. J Rheumatol 2001; 28: 1788-92.
25. Rains P, Matharoo K, Kumar A, Sarangal P, Sharma R, Bhanwer AJ. Association of tumor necrosis factor-alpha –308 G>A polymorphism with rheumatoid arthritis in two north Indian cohorts. Arch Rheumatol 2014; 29: 241-9.
26. Fonseca JE, Cavaleiro J, Teles I, et al. Contribution for new
 genetic markers of rheumatoid arthritis activity and se-
 verity: sequencing of the tumor necrosis factor-alpha
 gene promoter. Arthritis Res Ther 2007; 9: R37.
27. Kirkham BW, Lassere MN, Edmonds JB et al. Synovial
 membrane cytokine expression is predictive of joint
damage progression in rheumatoid arthritis: a two-year
 prospective study (the DAMAGE study cohort). Arthritis
 Rheum 2006; 54: 1122-31.
28. Richardson A, Sisay-Joof F, Ackerman H, et al. Nucleotide
 diversity of the TNF gene region in an African village.
 Genes Immum 2001; 2: 343-8.
29. Bayley JP, Ottenhoff TH, Verweij CL. Is there a future for
 TNF promoter polymorphisms? Genes Immun 2004; 5: 315-29.
30. Lis K, Kuzawinska Q, Baklowiec-Ikska E. Tumor necrosis
 factor inhibitors – state of knowledge. Arch Med Sci
 2010; 11: 1175-85.
31. Zheng X, Zhou J, Xia Y. The role of TNF-alpha in regulat-
ing ketamine-induced hippocampal neurotoxicity. Arch
 Med Sci 2015; 11: 1296-302.
32. El-Tahan RR, Ghoneim AM, El-Mashad N. TNF-alpha
 gene polymorphisms and expression. Springerplus
 2016; 5: 1508.
33. De Vries N, Tak PP. The response to anti-TNF-alpha
 treatment: gene regulation at the bedside. Rheumatol-
 ogy (Oxford) 2005; 44: 705-7.
34. Fonseca JE, Carvalho T, Cruz M, et al. Polymorphism at
 position –308 of the tumour necrosis factor α gene and
 rheumatoid arthritis pharmacogenetics. Ann Rheum
 Dis 2005; 64: 793-4.
35. Sashio H, Tamura K, Ito R, et al. Polymorphisms of the TNF
 gene and the TNF receptor superfamily member 1B gene
 are associated with susceptibility to ulcerative colitis and
 Crohn’s disease, respectively. Immunogenetics 2002; 53:
 1020-7.
36. Li H, Groop L, Nilsson A, Weng J, Tuomi T. A combination of
 human leukocyte antigen DQB1*02 and the tumor
 necrosis factor alpha promoter G308A polymorphism
 predisposes to an insulin-deficient phenotype in pa-
 tients with type 2 diabetes. J Clin Endocrinol Metab
 2003; 88: 2767-74.
37. Correa PA, Gomez LM, Cadena J, Anaya JM. Autoimmu-
 nity and tuberculosis. Opposite association with TNF
 polymorphism. J Rheumatol 2005; 32: 219-24.
38. Höhler T, Grossmann S, Stradmann-Bellinghausen B, et al.
 Differential association of polymorphisms in the TNF-
 alapha region with psoriatic arthritis but not psoriasis. Ann
 Rheum Dis 2002; 61: 213-8.
39. Balding J, Kane D, Livingstone W, et al. Cytokine gene
 polymorphisms: association with psoriatic arthritis
 susceptibility and severity. Arthritis Rheum 2003; 48:
 1408-13.
40. Rahman P, Siannis F, Butt C, et al. TNFalpha polymor-
 phisms and risk of psoriatic arthritis. Ann Rheum Dis
 2006; 65: 919-23.
41. Murdaca G, Guilli R, Spanò F, et al. TNF-alpha gene polymor-
 phisms: association with disease susceptibility and re-
 sponse to anti-TNF-alpha treatment in psoriatic arthritis.
 J Invest Dermatol 2014; 134: 2503-9.
42. Jiménez-Morales S, Velázquez-Cruz R, Ramírez-Bello J,
et al. Tumor necrosis factor-alpha is a common genetic-
 ic risk factor for asthma, juvenile rheumatoid arthritis,
 and systemic lupus erythematosus in a Mexican pediat-
 ric population. Hum Immunol 2009; 70: 251-6.
43. Modesto C, Patiño-García A, Sotillo-Piñeiro E, et al. TNF-
 alpha promoter gene polymorphisms in Spanish chil-
 dren with persistent oligoarticular and systemic-onset
 juvenile idiopathic arthritis. Scand J Rheumatol 2005;
 34: 451-4.
44. González S, Rodrigo L, Martínez-Borra J, et al. TNF-alpha
 -308A promoter polymorphism is associated with en-
 hanced TNF-alpha production and inflammatory activity
 in Crohn’s patients with fistulizing disease. Am J Gastro-
 enterol 2003; 98: 1101-6.
45. Ugliarolo AM, Turbay D, Pesavento PA, et al. Identifica-
 tion of three new single nucleotide polymorphisms in
 the human tumor necrosis factor-alpha gene promoter.
 Tissue Antigens 1998; 52: 359-67.
46. Seki N, Kamizono S, Yamada A, et al. Polymorphisms in
 the TNF gene promoter. J Rheumatol 2005; 32: 219-24.
47. Correa PA, Gomez LM, Cadena J, Anaya JM. Autoimmu-
 nity and tuberculosis. Opposite association with TNF
 polymorphism. J Rheumatol 2005; 32: 219-24.