Ternary CE$_2$Ba$_2$ (E = As, Sb) Clusters: New Pentaatomic Planar Tetracoordinate Carbon Species with 18 Valence Electrons

Fang-Lin Liu · Jin-Chang Guo

Received: 25 March 2022 / Accepted: 15 July 2022 / Published online: 26 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

18-valence-electron (ve) rule is one important guide for us to design planar tetracoordinate carbon (ptC) species. Using the “polarization of ligands” strategy, the new pentaatomic ptC species CE$_2$Ba$_2$ (E = As, Sb) with 18 ve are designed in this work. Computer structural searches and high-level calculations reveal that the ptC CE$_2$Ba$_2$ (E = As, Sb) species are global minima (GMs) on the potential energy surfaces, whose C center is coordinated by the interspaced E and Ba atoms. CE$_2$Ba$_2$ (E = As, Sb) are also kinetically stable. Chemical bonding analyses reveal that the ptC core is stabilized by two localized C-E σ bonds, one delocalized five-center two-electron (5c-2e) σ bond and one delocalized 5c-2e π bond. One π and three σ bonds collectively conform to the 8-electron counting, which determines the stability of ptC CE$_2$Ba$_2$ (E = As, Sb) species. Interestingly, the delocalized 2π and 2σ electrons render the ptC systems π/σ double aromaticity. Additional 10 electrons contribute to peripheral lone pairs of E and E-Ba bonding.

Keywords Planar tetracoordinate carbons (ptCs) · 18ve counting · Pentaatomic cluster · Global minimum · Aromaticity

Introduction

Exploring the bonding capacity of carbon beyond the classical tetrahedral concept, has been a interesting and challenging subject in chemistry for decades. Compared with the tetrahedral configuration, planar tetracoordinate carbon (ptC) structure is unstable with the higher energy in most cases. In 1968, Monkhorst proposed a ptC configuration as transition state in the interconversion of enantiomers[1]. Just 2 years later, Hoffmann et al. put forward the ingenious strategies to stabilize the ptC systems, based on the deep bonding analyses for a hypothetical planar D_{4h} CH$_4$[2]. Since Schleyer and coworkers predicted the first ptC local minimum (1,1-dilithiocyclopropane) in 1976[3], a variety of ptC, planar pentacoordinate carbon (ppC), and planar hexacoordinate carbon (p6C) species were theoretically designed/predicted or experimentally observed in gaseous phase using anion photoelectron spectroscopy, which each possesses 17 or 18ve[23–27]. According to the isoelectronic principle, the ptC clusters, CE$_4$$_2^-$ (E = Al, Ga, In, Ti), CGa$_2$Si$^-$, and CAL$_3$E (E = P, As, Sb, Bi), were theoretically predicted[28–30]. However, 18ve counting is
not a prerequisite. Indeed, several pTC species have been reported, which go beyond the 18-electron rule[31–36]. Anyway, 18ve counting is still a nice guide to design some new pTC species. Very recently, using the “polarization of ligands” strategy, Merino and coworkers predicted a series of pTC clusters with 18ve, which can be formulated as M_mCE_2^p ($E =$ S-Te, $M =$ Li-Cs, $m =$ 2, 3 and $p = m-2$)[15]. Now, the open question is: Is there any undiscovered pentaatomic pTC clusters with 18ve? The answer seems to be “yes.”

Herein, we have tried to find the correct combination towards a pTC system as the global minimum. Based on the “polarization of ligands” strategy, the pTC CE_2M_2 ($E =$ N-Bi; $M =$ Be-Ba) species can be considered. However, only pTC CE_2Ba_2 ($E =$ As, Sb) clusters with 18ve are the global mimima at the density functional theory (DFT) level. As we all know, DFT method is reliable for theoretical design [37–41]. CE_2Ba_2 ($E =$ As, Sb) possess the perfect rhombus structures with D_{2h} symmetry, whose pTC center is coordinated in-plane by the interspaced E and Ba atoms. The pTC CE_2Ba_2 ($E =$ As, Sb) clusters are established as the global mimima (GMs) via unbiased computer searches. Bonding analyses indicate that the pTC core in cluster 1/2, has one π and three σ bonds, collectively conforming to the “octet rule.” The octet rule (eight-electron rule) seems to be universally applicable for the pTC clusters. Peripheral lone pairs (LPs) and E-Ba bonding in cluster 1/2 involves 10 electrons. The results obtained in this work will complete the series of the pentaatomic pTC species with the 18ve. It is further confirmed that “polarization of ligands” is an effective strategy for expanding pTC clusters.

Methods

The GM structural searches for CE_2Ba_2 ($E =$ As, Sb) clusters were carried out using the Coalescence Kick (CK) algorithm[42–44] at the PBE0/Lanl2DZ level[45]. A total of 4000 points (2000 singlets and 2000 triplets) were explored on the potential energy surface for each species. Low-lying candidate structures were subsequently reoptimized at PBE0-D3/def2-TZVPP level[46, 47]. Vibrational frequency analyses were done at the same levels to ascertain their nature as true minima. In addition, the identified GM structures and four low-lying isomers were also optimized at the B3LYP-D3/def2-TZVPP level[48, 49]. To refine the energetics, single-point CCSD(T)[50–52] calculations were performed for top five structures at their PBE0-D3/def2-TZVPP and B3LYP-D3/def2-TZVPP geometries.

To get the data of Wiberg bond indices (WBIs) and natural atomic charges of the CE_2Ba_2 ($E =$ As, Sb) clusters, we performed the natural bond orbital (NBO)[53] analyses at the PBE0-D3/def2-TZVPP level. Canonical

![Scheme 1](image)
molecular orbital (CMO) and adaptive natural density partitioning (AdNDP)[54] analyses were done to explore the bonding characteristics. Nucleus-independent chemical shifts (NICSs)[55] were calculated at PBE0/def2-TZVPP, to quantitatively probe the π and σ aromaticity. The orbital compositions were analyzed by the Multiwfn program[56]. All calculations of electronic structures were done by the Gaussian 09 package[57]. Molecular structures, canonical molecular orbitals (CMOs), and AdNDP bonding patterns were visualized using the CYLview and Molekel programs [58, 59].

Results and discussion

Design of ptC CE2Ba2 (E = As, Sb)

CA142− is the most representative pentaatomic cluster with 18ve, which possesses perfect D4h symmetry. As shown in Scheme 1, using “polarization of ligands” strategy, we can obtain three ptC CE2M2 series, based on different degree of polarization of ligands. Some of ptC CE2M2 (E = C, Si, Ge, Sn, Pb; M = B, Al, Ga, In, Tl) clusters have been reported, such as CSi2Al2, CGe2Al2, CSi2Ga2, and CGe2Ga2. Very recently, the ptC CE2M2 (E = S, Se, Te; M = Li, Na, K, Rb, Cs) clusters were investigated systematically by Merino et al.[15], which are all true ptC GMs on their potential energy surfaces. It should be noted that the degree of polarization of ligands in (a) is smallest, while that of (c) is biggest. Here, we attempted to stabilize ptC by using a combination of nitrogen group elements and alkaline earth metal atoms as ligands. Thus, an interesting issue arises: Are the ptC CE2M2 (E = N, P, As, Sb, Bi; M = Be, Mg, Ca, Sr, Ba) clusters GMs? To answer above question, two major computational efforts have been made. The first effort is to examine ptC CE2M2 (E = N, P, As, Sb, Bi; M = Be, Mg, Ca, Sr, Ba) clusters, which adopt D2h and C2v structures as true minima. As shown in Table S1, there are 12 ptC species are minima without the imaginary frequencies, which include C2v CN2M2 (M = Be, Mg), D2h CE2M2 (E = P, As; M = Sr, Ba), and D2h CE2M2 (E = Sb, Bi; M = Ca, Sr, Ba).

As depicted in Fig.S1, the WBIC-Be and WBIC-Mg are only 0.09 and 0.03, respectively, indicating there is little covalent bonding between C and Be/Mg in CN2M2 (M = Be, Mg). In addition, both C and Be/Mg carried the positive charges (C +0.42/ +0.38 |e|, Be +0.67 |e|, Mg +0.79 |e|), suggesting there are only Coulomb repulsion between them. Thus, the C

![Fig. 1 Optimized global minimum (GM) structures 1, 2 of CE2Ba2 (E = As, Sb) clusters at the PBE0-D3/def2-TZVPP level. Bond distances (in Å), Wiberg bond indices (WBIs; blue color), and natural atomic charges (in |e|; red color) are shown](image)
atoms in CN₂M₂ (M = Be, Mg) are hardly to be considered as the true ptCs. The second effort is to perform the GM searches. For D₂h CE₂M₂ (E = P, As; M = Sr, Ba) and D₂h CE₂M₂ (E = Sb, Bi; M = Ca, Sr, Ba), the systematic isomers searches and high-level calculations indicate that only ptC CE₂Ba₂ (E = As, Sb) are true GMs.

Structures and stability

The optimized GM structures 1, 2 of CE₂Ba₂ (E = As, Sb) at PBE0-D3/def2-TZVPP level are shown in Fig. 1. The four low-lying isomers (nB−nD) are depicted in Fig. 2, along with their relative energies at the single-point CCSD(T)/def2-TZVPP level with zero-point energy (ZPE) corrections at PBE0-D3. Cartesian coordinates for top five lowest lying structures are listed in Table S2 (ESI†). The GM clusters 1, 2 are 4.85 and 19.50 kJ·mol⁻¹ more stable than their closest competitors, respectively. In terms of energetics, CSb₂Ba₂ is particularly well defined on its potential energy surfaces. The GM structures and low-lying isomers contain a tetracoordinate carbon center, except isomer 2E (Fig. 2).

As depicted in Fig. 1, the C-As bond distance in 1 is 1.84 Å, while the C-Ba distance is 2.49 Å. Although C-As/C-Ba bonding is polar, the C-As/C-Ba single bond has an upper bound of 1.96/2.71 Å based on covalent atomic radii[60]. Therefore, the C-As bonding in 1 is quite strong, probably greater than single bond. interestingly, the As-Ba bonding is also substantial and being close to a half bond. Wiberg bond indices (WBIs) and natural population analysis (NPA) charges offer valuable bonding information. The WBI data for clusters 1, 2 are also shown in Fig. 1. For CE₂Ba₂ (1), the C center has robust bonding with its coordinating As ligands (WBIs: 1.34), which possesses the partial double bond properties. The C-Ba link has relatively small WBIs (0.36). For the periphery, 1 has substantial E-Ba bonding (WBIs: 0.48), which is close to...
half a bond. In terms of NPA charges, the C center carries a negative charge of -1.54|e| for 1, while the Ba, As ligands possess the charge of $+1.16$ and -0.39|e|, respectively, due to the difference of electronegativity. The WBIs and NPA charges in 2 are similar with those of 1, there are only a few minor differences.

Global searches of the potential energy surfaces of CE$_2$Ba$_2$ (E = As, Sb) indicate that ptC structures 1 and 2 as the GM structures have good thermodynamic stabilities (Fig. 2). For experimental characterization, the dynamic stability of clusters is as important as the thermodynamic stability. To probe the dynamic stability of CE$_2$Ba$_2$ (E = As, Sb) (1 and 2), Born–Oppenheimer molecular dynamics (BOMD) simulations[61] were performed at the PBE0/def2-SVP level, for 50 ps at room temperature (300 K). The root-mean-square deviations (RMSDs) during these BOMD simulations are the reliable evaluation indicators for the kinetic stability. As depicted in Fig. 3, the average RMSDs of clusters 1, 2 are relatively small (0.31 and 0.20 Å), suggesting that the ptC CE$_2$Ba$_2$ (E = As, Sb) clusters possess good kinetic stabilities, being robust against decomposition or isomerization.

Chemical bonding and aromaticity

To elucidate the stability of ptC CE$_2$Ba$_2$ (E = As, Sb) clusters, it is essential to perform chemical bonding analyses. Since the essence of bonding is similar in ptC CE$_2$Ba$_2$ (E = As, Sb) species (1, 2), herein, we only use 1 as an example. The CAs$_2$Ba$_2$ cluster has 18 valence electrons. All the occupied CMOs and their compositions of CE$_2$Ba$_2$ (E = As, Sb) are shown in Table S3-S4.

AdNDP is an important analysis approach for chemical bonding, which is an ingenious extension of NBO method. AdNDP analyses recovers typical Lewis bonding elements (LPs and two-center two-electron (2c-2e) bonds) and novel delocalized nc-2e ($n \geq 3$) bonds. As shown in Fig. 4, the AdNDP analyses provide a relatively simple and intuitive bonding picture for the ptC CAs$_2$Ba$_2$ cluster. Figure 4(a) shows that there are two lone pairs (LPs) of two As atoms. As Fig. 4(b) shown, there is one three-center two-electron (3c-2e) As-C-As π bond, with $\text{ON} = 1.80 \text{|e|}$, which is one non-bonding orbital in nature, because there is no contributions of C. In other words, it contributes little to the stability of the system. On the periphery of the cluster,
there are two Ba-As-Ba (3c-2e) σ bonds, with ON = 2.00 |e| (Fig. 4(c)). The ptC CAS₂Ba₂ (1) cluster has a relatively rigid peripheral E₂Ba₂ ring, which is interconnected via two 3c-2e Ba-E-Ba σ bonds. As a comparison, there is only one delocalized 4c-2e σ bond for the peripheral Al₄ ring in CAI₄²⁻. As shown in Fig. 4(d), there are two localized C-As (2c-2e) σ bonds and one delocalized 5c-2e σ bond. In addition, there is one 5c-2e π bond, with ON = 2.00 |e|, as shown in Fig. 4(e).

Interestingly, the Ba atoms participate in global π framework via their 5d AOs (by 4%). Although the most important contribution is from As-C-As, the contribution of two Ba atoms seems to be cannot be neglected. Thus, one delocalized π bond together with one σ bond rendered the ptC clusters 2π/2σ double aromaticity, following the (4n+2) Hückel rule.

As shown in Fig. S2, cluster 2 has similar bonding patterns with 1, three σ and one π bonds around the ptC core.

As depicted in Fig. 5, the π/σ double aromaticity of ptC clusters 1, 2 is independently confirmed via the NICS calculations. Systems with negative NICS values are considered aromatic. All NICS(1) (from −7.06 to −15.50 ppm) and NICS(0) (−6.53 and −9.18 ppm) are negative at PBE0/def2-TZVPP, which are calculated at 1 Å above the ptC center, and above 1/0 Å of the center of a C-E-Ba triangle. The NICS values suggest that ptC clusters 1, 2 truly possess π and σ double aromaticity, in line with bonding analyses.

In order to facilitate future experimental characterization, the IR spectrums of the ptC clusters 1 and 2 were simulated theoretically at the PBE0-D3/def2-TZVPP level (see Fig. S3). As shown in Fig. S3, the absorption peak at 493 cm⁻¹ of CAS₂Ba₂ (1), mainly originates from C-Ba anti-symmetry stretching vibration. The peak at 989 cm⁻¹ originates from its anti-symmetry C-As stretching vibration. The other absorption peaks are mainly generated by coupled vibrations. The calculated IR spectra of CSb₂Ba₂ turned out to be similar with CAS₂Ba₂. All absorption peaks of CSb₂Ba₂ are redshifted slightly, due to the large mass number of Sb.

Conclusions

We have designed two planar tetracoordinate carbon (ptC) clusters, CE₂Ba₂ (E = As, Sb), which are GMs via unbiased structural searches and high-level quantum chemical calculations. Chemical bonding analyses suggest that the ptC CE₂Ba₂ (E = As, Sb) clusters have one π and three σ bonds around the ptC core, which make the carbon center conform to the octet rule. Additional ten electrons contribute to peripheral lone pairs of E and E-Ba bonding. One delocalized π bond together with one delocalized σ bond endow the 2π and 2σ double aromaticity. The bonding pattern is ideal for these ternary ptC clusters, justifying their 18-electron counting.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00894-022-05229-1.

Author contribution Fang-Lin Liu: all calculations, data analysis, and manuscript preparation. Jin-Chang Guo: supervision, manuscript preparation, conceiving the problem, data analysis, and correction.

Funding This work was supported by the National Natural Science Foundation of China (22173053 and 21873058).

Code availability No new codes have been created. Existing codes were utilized and quoted correctly.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Monkhorst HJ (1968) Activation energy for interconversion of enantiomers containing an asymmetric carbon atom without breaking bonds. Chem Commun 1111–1112. https://doi.org/10.1039/C19680001111
13. Nar or tetrahedral? A ternary 17-electron Sieber Collin JB, Dill JD, Jemmis ED, Apeloig Y hexacoordinate carbons: a global minimum structure. Angew Phys 14:14760–14763. https://doi.org/10.1002/1608-1209(2015)02433-V

14. Siebert W, Gunale A (1999) Compounds containing a planar-tetraatomic carbon atom as analogues of planar methane. Chem Soc Rev 28:367–371. https://doi.org/10.1039/A801225C

15. Keese R (2006) Carbon flatland: planar tetraatomic carbon and fenestrenes. Chem Rev 106:4748–4808. https://doi.org/10.1021/cr050545h

16. Merino G, Mendez-Rojas MA, Vela A, Heine T (2007) Recent advances in planar tetraatomic carbon chemistry. J Comput Chem 28:362–372. https://doi.org/10.1002/jcc.20515

17. Yang LM, Ganz E, Chen Z, Wang ZX, Pr S (2015) Four decades of the chemistry of planar hypercoordinate compounds. Angew Chem Int Ed 54:9468–9501. https://doi.org/10.1002/anie.201410407

18. Wang ZX, Schleyer PrV (2001) Construction principles of “hyparenes”: families of molecules with planar pentacoordinate carbons. Science 292: 2465–2469. https://www.sciencemag.org https://doi.org/10.1126/science.1060000

19. Pei Y, An W, Ito K, Pr S, Zeng XC (2008) Planar pentacoordinate carbon in CaLi3+: a global minimum. J Am Chem Soc 130:10394–10400. https://doi.org/10.1021/ja803365x

20. Vassilev-Galindo V, Pan S, Donald KJ, Merino G (2018) Planar pentacoordinate carbons. Nat Rev Chem 2:0214. https://doi.org/10.1038/s41570-018-0114

21. Guo JC, Feny J, Barroso J, Merino G, Zhai HJ (2020) Planar- tetrahalides? A ternary 17-electron CBe4H8+ cluster with planar pentacoordinate carbon. Chem Commun 56:8305–8308. https://doi.org/10.1039/D0CC02973D

22. Exner K, and Schleyer PrV (2000) Planar hexacoordinate carbon: a viable possibility. Science 290:1937–1940. https://www.sciencemag.org https://doi.org/10.1126/science.290.5498.1937

23. Wu YB, Duan Y, Lu G, Lu HG, Yang P, Schleyer PrV, Merino G, Isals R, Wang ZX (2012) D3h CN, Ce4Be1+ and CO, Li4+: viable planar hexacoordinate carbon prototypes. Phys Chem Chem Phys 14:14760–14763. https://doi.org/10.1039/C2CP41822C

24. Leyva-Parra L, Diego L, Inostroza D, Yañez O, Pumachagua-Huertas R, Barroso J, Vázquez-Espinal A, Merino G, Tiznad W (2021) Planar hypercoordinate carbons in alkali metal decorated CE2+, and CE2− dianions. Chem Eur J 27:16701–16706. https://doi.org/10.1002/chem.202102864

25. Pancharatna PD, Mendez-Rojas MA, Merino G, Vela A, Hoffmann R (2004) Planar tetraatomic carbon in extended systems. J Am Chem Soc 126:15309–15315. https://doi.org/10.1021/ja046045r

26. Li Y, Liao Y, Chen Z (2014) Be4C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew Chem Int Ed 53:7248–7252. https://doi.org/10.1002/anie.201403833

27. Wang Y, Li F, Li Y, Chen Z (2016) Semi-metallic Be4C, monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio. Nat Commun 7:11488. https://doi.org/10.1038/ncomms11488

28. Liu C, Zhu H, Ye X, Yan X (2017) Prediction of a new BeC monolayer with perfectly planar tetraatomic carbon. Nanoscale 9:5854–5858. https://doi.org/10.1039/C7NR00762K

29. Wang Y, Li Y, Chen Z (2020) Planar hypercoordinate motifs in two-dimensional materials. Acc Chem Res 53:887–895. https://doi.org/10.1021/acs.accounts.0c00025

30. PrV S, Boldyrev AI (1991) A new, general strategy for achieving planar tetraatomic geometries for carbon and other second row periodic elements. J Chem Soc Chem Commun 21:1536–1538. https://doi.org/10.1039/C99100001536

31. Boldyrev AI, Simons J (1998) Tetraatomic planar carbon in pentaatomic molecules. J Am Chem Soc 120:7967–7972. https://doi.org/10.1021/ja981236u

32. Xi X, Wang LS, Boldyrev AI, Simons J (1999) Tetraatomic planar carbon in the AI2C4 anion. A combined photoelectron spectroscopy and ab initio study. J Am Chem Soc 121:6033–6038. https://doi.org/10.1021/ja9901204

33. Wang LS, Boldyrev AI, Li X, Simons J (2000) Experimental observation of pentaatomic tetraatomic planar carbon-containing molecules. J Am Chem Soc 122:7681–7687. https://doi.org/10.1021/ja993081b

34. Xi X, Zhang HF, Wang LS, Gieske GD, Boldyrev AI (2000) Pentaatomic tetraatomic planar carbon, [CA1H]+: a new structural unit and its salt complexes. Angew Chem Int Ed 39:3630–3632. https://doi.org/10.1002/1521-3773(20001016)39:20%C3%60::%AID-ANIE360%3;e3.CO2-R

35. Xi X, Wang LS, Cannon NA, Boldyrev AI (2002) Electronic structure and chemical bonding in nonstoichiometric molecules: AI3C5 (X=C, Si, Ge). A photoelectron spectroscopy and ab initio study. J Chem Phys 116:1330–1338. https://doi.org/10.1063/1.1429652

36. Xu J, Zhang X, Yu S, Ding YH, Bowen KH (2017) Identifying the hydrogenated planar tetraatomic carbon: a combined experimental and theoretical study of CaLi4H and CaLi4H.−. J Phys Chem Lett 8:2263–2267. https://doi.org/10.1021/acs.jpclett.7b00732

37. Castro AC, Audiffred M, Mercero JM, Ugalde JM, Mendez-Rojas MA, Merino G (2012) Planar tetraatomic carbon in CE2− (E=Al–Ti) clusters. Chem Phys Lett 519−520:29–33. https://doi.org/10.1016/j.cplett.2011.10.030

38. Zhou K (2013) Theoretical studies on the pentaatomic planar tetraatomic carbon molecules Ca3Si and Ca3Si2−. Comput Theor Chem 1009:30–34. https://doi.org/10.1016/j.comptc.2012.12.024

39. Cui ZH, Ding YH, Caballlos JL, Osorio E, Isras R, Restrepo A, Merino G (2015) Planar tetraatomic carbons with a double bond in CA1E clusters. Phys Chem Chem Phys 17:8769–8775. https://doi.org/10.1039/C5CP0707D

40. Cui ZH, Contreras M, Ding YH, Merino G (2011) Planar tetraatomic carbon versus planar tetraatomic boron: the case of CB4 and its cation. J Am Chem Soc 133:13228–13231. https://doi.org/10.1021/ja103682a

41. Guo JY, Chai HY, Duan Q, Qin JM, Shen XD, Jiang DY, Hou JH, Yan B, Li ZR, Gu FL, Li QS (2016) Planar tetraatomic carbon species CA1E with 12- valence-electrons. Phys Chem Chem Phys 18:4589–4593. https://doi.org/10.1039/C5CP06081H

42. Guo JC, Feny L, Zhai HJ (2018) Ternary CBe4Au2 cluster: a 16-electron system with quasi-planar tetraatomic carbon. Phys Chem Chem Phys 20:6299–6306. https://doi.org/10.1039/C7CP08420J

43. Zheng HF, Yu S, Hu TD, Xu J, Ding YH (2018) CA1X (X = B/Al/Ga/In/TI) with 16 valence electrons: can planar tetraatomic carbon be stable? Phys Chem Chem Phys 20:26266–26272. https://doi.org/10.1039/C8CP04774J

44. Guo JC, Feny L, Dong C, Zhai HJ (2019) Ternary 12-electron CBe4X2+ (X = H, Li, Na, Cu, Ag) clusters: planar tetraatomic carbons and superalkaline cations. Phys Chem Chem Phys 21:22048–22056. https://doi.org/10.1039/C9CP04437J

45. Guo JC, Feny L, Zhai HJ (2020) Planar tetraatomic carbon molecules with 14 valence electrons: examples of CBe4Mn−2.
