New results of 116Cd double β decay study with 116CdWO$_4$ scintillators

F.A. Danevich, A.Sh. Georgadze, V.V. Kobychev, B.N. Kropivyansky, A.S. Nikolaiko, O.A. Ponkratenko, V.I. Tretyak, S.Yu. Zdesenko, Yu.G. Zdesenko

Institute for Nuclear Research, MSP 03680 Kiev, Ukraine

P.G. Bizzeti, T.F. Fazzini, P.R. Maurenzig

Dip. di Fisica, Universitá di Firenze and INFN, 50125 Firenze, Italy

(March 30, 2022)

A new phase of a 116Cd double β decay experiment is in progress in the Solotvina Underground Laboratory. Four enriched 116CdWO$_4$ scintillators with total mass of 339 g are used in a set up, whose active shield is made of 15 natural CdWO$_4$ crystals (20.6 kg). The background rate in the energy interval 2.5–3.2 MeV is 0.03 counts/yr-kg-keV. The half-life for $2\nu2\beta$ decay of 116Cd is measured as $T_{1/2}(2\nu) = 2.6 \pm 0.1(\text{stat})^{+0.7}_{-0.4}(\text{syst}) \times 10^{19}$ yr. The $T_{1/2}$ limits for neutrinoless 2β decay of 116Cd are set at $T_{1/2} \geq 0.7(2.5) \times 10^{23}$ yr at 90%(68%) C.L. for transition to ground state of 116Sn, while for decays to the first 2^+_1 and second 0^+_1 excited levels of 116Sn at $T_{1/2} \geq 1.3(4.8) \times 10^{22}$ yr and $\geq 0.7(2.4) \times 10^{22}$ yr with 90%(68%) C.L., respectively. For $0\nu2\beta$ decay with emission of one or two Majorons, the limits are $T_{1/2}(0\nu M1) \geq 3.7(5.8) \times 10^{21}$ yr and $T_{1/2}(0\nu M2) \geq 5.9(9.4) \times 10^{20}$ yr at 90%(68%) C.L. Restrictions on the value of the neutrino mass, right-handed admixtures in the weak interaction, and the neutrino-Majoron coupling constant are derived as: $m_\nu \leq 2.6(1.4)$ eV, $\eta \leq 3.9 \times 10^{-8}$, $\lambda \leq 3.4 \times 10^{-6}$, and $g_M \leq 12(9.5) \times 10^{-5}$ at 90%(68%) C.L., respectively.

23.40.–s, 15.80.Mz, 12.60.–i

*Corresponding author: zdesenko@kinr.kiev.ua
I. INTRODUCTION

Neutrinoless (0ν) double β decay is forbidden in the Standard Model (SM) since it violates lepton number (L) conservation. However many extensions of the SM incorporate L violating interactions and thus could lead to the $0\nu2\beta$ decay \[1,2\]. Currently, besides conventional neutrino (ν) exchange mechanism, there are many other possibilities to trigger this process \[2\]. In that sense neutrinoless 2β decay has a great conceptual importance due to the strong Schechter-Valle theorem \[3\] obtained in a gauge theory of the weak interaction that a non-vanishing $0\nu2\beta$ decay rate requires neutrino to be massive Majorana particle, independent of which mechanism induces it. Therefore, at present $0\nu2\beta$ decay is considered as a very powerful test of new physical effects beyond the SM, and even the absence of this process – at the present level of sensitivity – would help to restrict or narrow this wide choice of theoretical models. At the same time $0\nu2\beta$ decay is very important in the light of the measured deficit of the atmospheric neutrinos flux \[4,5\] and the result of the LSND accelerator experiment \[4,6\], which could be explained by means of the neutrino oscillations requiring in turn nonzero neutrino masses (m_ν). However oscillation experiments are sensitive to neutrino mass difference, while measured $0\nu2\beta$ decay rate can give the absolute value of the m_ν scale, and hence provide a crucial test of m_ν models.

Despite of numerous attempts to observe $0\nu2\beta$ decay from 1948 up to present days \[1\] this process still remains unobserved. The highest $T_{1/2}(0\nu)$ limits were set in direct experiments with several nuclides: $T_{1/2} \geq 10^{22}$ yr for ^{82}Se \[7\], ^{100}Mo \[8\], ^{116}Cd \[9\]; $T_{1/2} \geq 10^{23}$ yr for ^{130}Te \[10\] and ^{136}Xe \[11\]; and $T_{1/2} \geq 10^{25}$ yr for ^{76}Ge \[12,13\].

With the aim to enlarge the number of 2β decay candidate nuclides studied at a sensitivity comparable with that for ^{76}Ge and ^{136}Xe (neutrino mass limit of 0.5–2 eV), cadmium tungstate crystal scintillators, enriched in ^{116}Cd to 83%, were developed and exploited in ^{116}Cd research \[14,9\]. The measurements were carried out in the Solotvina Underground Laboratory in a salt mine 430 m underground (\simeq1000 m w. e.) \[15\]. In the first phase of the experiment only one $^{116}\text{CdWO}_4$ crystal (15.2 cm3) was used. It was viewed by a photomultiplier tube (PMT)
through a light-guide 51 cm long and placed inside a plastic scintillator (⌀38×115 cm) which served as veto counter. A passive shield of high purity (HP) copper (5 cm), lead (23 cm) and polyethylene (16 cm) surrounded the plastic counter. The background rate in the energy range 2.7–2.9 MeV \(Q_{2\beta}=2805\) keV [16] was equal \(\approx 0.6\) counts/yr·kg·keV. With 19175 h statistics the half-life limit for \(0\nu2\beta\) decay of \(^{116}\)Cd was set as \(T_{1/2}(0\nu) \geq 3.2\times10^{22}\) yr (90% C.L.) [9], which corresponds to the restriction on the neutrino mass \(m_\nu \leq 3.9\) eV [17]. Limits on \(0\nu2\beta\) decay with emission of one (M1) or two (M2) Majorons were obtained too: \(T_{1/2}(0\nu M1) \geq 1.2\times10^{21}\) yr and \(T_{1/2}(0\nu M2) \geq 2.6\times10^{20}\) yr (90% C.L.) [18].

In the present paper new and advanced results of \(^{116}\)Cd research obtained with the help of an upgraded apparatus are described.

II. NEW SET-UP WITH FOUR \(^{116}\)CDWO\(_4\) DETECTORS

A. Set-up and measurements

In order to enhance the sensitivity of the \(^{116}\)Cd experiment, the following improvements were scheduled: increase of the number of \(^{116}\)Cd nuclei, reduction of the background and improvement of the data taking and processing [9]. With this aim the new set-up with four enriched \(^{116}\)CdWO\(_4\) crystals (total mass 339 g) has been mounted in the Solotvina Laboratory in August 1998. All materials used in the installation were previously tested and selected for low radioactive impurities in order to reduce their contributions to background.

In the new apparatus, a scheme of which is shown in fig. 1, four enriched crystals are viewed by the PMT (EMI9390) through one light-guide 10 cm in diameter and 55 cm long, which is composed of two glued parts: quartz 25 cm long and plastic scintillator (Bicron BC-412) 30 cm long. The \(^{116}\)CdWO\(_4\) crystals are surrounded by an active shield made of 15 natural CdWO\(_4\) scintillators of large volume (\(\approx 200\) cm\(^3\) each) with total mass of 20.6 kg. Due to the high purity of the CdWO\(_4\) crystals [19] and their large density (\(\approx 8\) g/cm\(^3\)) this active shield reduces background effectively. The veto crystals are viewed – by a low background PMT (⌀17 cm) – through an active plastic light-guide (⌀17×49 cm). In turn the whole array
of CdWO$_4$ counters is placed inside an additional active shield made of polystyrene-based plastic scintillator with dimensions $40 \times 40 \times 95$ cm. Thus, together with both active light-guides (connected with enriched and natural crystals on opposite sides), a complete 4π active shield of the main 116CdWO$_4$ detectors is provided.

The outer passive shield consists of HP copper (thickness 3–6 cm), lead (22.5–30 cm) and polyethylene (16 cm). Two plastic scintillators ($120 \times 130 \times 3$ cm) are installed above the passive shield to provide a cosmic muons veto. Because air in the Solotvina Laboratory can be contaminated by radon (at the level ≤ 30 Bq/m3) the set-up is isolated carefully against air penetration. All cavities inside the shield are filled up by pieces of plexiglass, and HP Cu shield is sealed with the help of silicon glue and enclosed inside a tight mylar envelope.

The new event-by-event data acquisition is based on two IBM personal computers (PC) and a CAMAC crate with electronic units. For each event the following information is stored on the hard disc of the first computer: the amplitude (energy) of a signal, its arrival time and the following additional tags: the coincidence between different detectors; the signal of radio-noise detection system; triggers for light emitting diode (LED) and pulse shape digitizer. The second computer records the pulse shape of the 116CdWO$_4$ scintillators in the energy range 0.25–5 MeV. This complementary system is developed on the basis of a fast 12 bit ADC (Analog Devices AD9022) and is connected with computer by parallel digital I/O board (PC-DIO-24 from National Instruments) [22]. Two PC-DIO-24 boards are used to link both computers and establish – with the help of proper software – a one-to-one correspondence between the pulse shape data recorded by the second computer and the information stored in the first PC.

The energy scale and resolution of the main detector – four enriched crystals taken as a whole – were determined in the measurements with different sources (22Na, 40K, 60Co, 137Cs, 207Bi, 226Ra, 232Th and 241Am). The energy dependence of the resolution can be expressed (for the energy above 50 keV) as $FWHM(keV) = \sqrt{-226 + 16.6E + 6.42 \times 10^{-3}E^2}$, where energy E is in keV. For instance, the resolution ($FWHM$) was equal to 14.5% at 1064 keV and 11% at 2615 keV. The full energy peaks are well fitted in the energy region 0.06–2.6 MeV by a Gaussian function with typical value $\chi^2 = 0.8–1.9$. Moreover, the calibration spectra of the
232Th source were simulated with the help of GEANT3.21 package 23 and event generator DECAY4 24 (the last defines initial kinematics of the events). The simulated 232Th spectra are in good agreement with the measured ones confirming the assumption of a Gaussian peak shape. In particular for the 2615 keV peak of 208Tl – which is close to the 2β decay energy of 116Cd – the value of $\chi^2 = 1.3$.

Also, the relative light yield for for α particles as compared with that for electrons (α/β ratio) and energy resolution were measured with α sources and corrected by using time-amplitude analysis (see below) as following: $\alpha/\beta = 0.15(1) + 7 \times 10^{-6} E_{\alpha}$ and $FWHM_{\alpha}(\text{keV}) = 0.053 E_{\alpha}$ (E_{α} is in keV). The routine calibration is carried out weekly with a 207Bi source (570, 1064 and 1770 keV) and once per two weeks with 232Th (2615 keV). The dead time of the spectrometer and data acquisition is monitored permanently with the help of an LED optically connected with the main PMT. The actual dead time value is $\approx 4.2\%$ ($\approx 3\%$ is owing to random coincidence between the main and shield detectors; $\approx 1.2\%$ is caused by miscounts of the data acquisition).

The background spectrum measured during 4629 h in the new installation with four 116CdWO$_4$ crystals is given in fig. 2, where the old data obtained with one 116CdWO$_4$ crystal of 121 g are also shown for comparison. As it is visible from this figure, the background is decreased in the whole energy range, except for the β spectrum of 113Cd ($Q_{\beta} = 316$ keV), whose abundance in 116CdWO$_4$ crystals is $\approx 2\%$ 14. In the energy region 2.5–3.2 MeV – where the peak of $0\nu2\beta$ decay of 116Cd is expected – the background rate is reduced to a value of 0.03 counts/yr·kg·keV (only 4 events in the energy window 2.5–3.2 MeV were detected during 4629 h), twenty times lower than in the previous set-up. It is achieved, first, due to improvement of passive and active shield, and secondly, as a result of data processing advance (time-amplitude and pulse-shape analysis), which are described below.

B. Time-amplitude analysis of the data

The energy and arrival time of each event can be used for analysis and selection of some decay chains in 232Th, 235U and 238U families (see f. e. ref. 11,14). As an example (important
in the following for the background rejection in the energy range of $0\nu2\beta$ decay), we consider here in detail the time-amplitude analysis of the following sequence of α decays from 232Th family: 220Rn ($Q_\alpha = 6.40$ MeV, $T_{1/2} = 55.6$ s) $\rightarrow ^{216}$Po ($Q_\alpha = 6.91$ MeV, $T_{1/2} = 0.145$ s) $\rightarrow ^{212}$Pb. Because the energy of α particles from 220Rn decay corresponds to $\simeq 1.2$ MeV in β/γ scale of 116CdWO$_4$ detector, the events in the energy region 0.7–1.8 MeV were used as triggers. Then all events (within 0.9–1.9 MeV) following the triggers in the time interval 10–1000 ms (containing 94.5% of 216Po decays) were selected. The spectra of the 220Rn and 216Po α decays obtained in this way from data – as well as the distribution of the time intervals between the first and second events – are presented in fig. 3. It is evident from this figure that the selected spectra and time distribution are in an excellent agreement with those expected from α particles of 220Rn and 216Po. Using these results and taking into account the efficiency of the time-amplitude analysis and the number of accidental coincidences (3 pairs from 218 selected), the determined activity of 228Th (232Th family) inside the 116CdWO$_4$ crystals is as low as 38(3) μBq/kg.

The same technique was applied to the sequence of α decays from the 235U family: 223Ra ($Q_\alpha = 5.98$ MeV, $T_{1/2} = 11.44$ d) $\rightarrow ^{219}$Rn ($Q_\alpha = 6.95$ MeV, $T_{1/2} = 3.96$ s) $\rightarrow ^{215}$Po ($Q_\alpha = 7.53$ MeV, $T_{1/2} = 1.78$ ms) $\rightarrow ^{211}$Pb. For the fast couple (219Rn $\rightarrow ^{215}$Po) all events within 0.8–1.8 MeV were used as triggers, while a time interval 1–10 ms (65.7% of 215Po decays) and an energy window 0.9–2.0 MeV were set for the second events. The obtained α peaks correspond to an activity of 5.5(14) μBq/kg for the 227Ac impurity in the crystals.

As regard the 226Ra chain (238U family) the following sequence of β and α decays was analyzed: 214Bi ($Q_\beta = 3.27$ MeV, $T_{1/2} = 19.9$ m) $\rightarrow ^{214}$Po ($Q_\alpha = 7.83$ MeV, $T_{1/2} = 164.3$ μs) $\rightarrow ^{210}$Pb. For the first and second events the energy threshold was equal 0.1 MeV, and a time interval of 100–1000 μs (64.1% of 214Po decays) was used. While the obtained spectrum of the first pulses agrees with the model of the β decay of 214Bi, and the distribution of the time intervals between the first and second events can be fitted by an exponent with $T_{1/2} = 140^{+30}_{-20}$ μs (in reasonable agreement with the 214Po half-life value), the spectrum of the second events is continuous, contrary to the anticipated α peak of 214Po. Probably, part of this continuous dis-
tribution can be explained by 226Ra contamination of the materials neighboring the 116CdWO$_4$ crystals (optical grease, teflon, Mylar, radon in air), while another part is caused by 226Ra decays in the crystals. Under such an assumption activity limits for 226Ra contaminations are derived as $\leq 0.13(3)$ Bq/kg for optical grease, ≤ 8 mBq/kg for teflon, $\leq 1.8 \mu$Bq/dm2 for Mylar, and $\leq 5 \mu$Bq/kg for 116CdWO$_4$, whose values do not contradict bounds obtained earlier \[18\].

To prove these assumptions, the events belonging to the 214Bi \rightarrow 214Po \rightarrow 210Pb chain were independently searched for in the time window of 5–88 μs (28.9% of 214Po decays) with the help of pulse shape analysis (see below). For both events the energy threshold was ≈ 0.3 MeV. The result obtained (226Ra activity in the 116CdWO$_4$ crystals $\leq 14 \mu$Bq/kg) is similar to that of the time-amplitude analysis.

Finally, all couples of events found for 232Th, 235U and 238U families as described above were eliminated from the measured data.

C. Pulse-shape discrimination

The pulse shape of the 116CdWO$_4$ scintillators in the energy region of 0.25–5 MeV is digitized by a 12 bit ADC and stored in 2048 channels with 50 ns channel’s width. Due to different shapes of scintillation signal for various kinds of sources\[1\] (α particles, protons, γ quanta and cosmic muons were investigated), the pulse-shape (PS) discrimination method based on the optimal digital filter \[20\] was developed and clear discrimination between γ rays (electrons) and α particles was achieved \[22\].

The pulse shapes of enriched crystals were measured for α particles with an 241Am source and for γ rays with 60Co, 137Cs, 207Bi and 232Th sources in the special calibration runs\[2\]. To

\[1\]It is known, that scintillation efficiency and pulse shape of inorganic crystals depend on the local density of the energy released, hence allowing to identify the incoming radiation (see e. g. ref. \[20,21\]).

\[2\]Because γ rays interact with matter by mean of the energy transfer to electrons, it was assumed that pulse shapes for electrons and γ-s are the same. This statement was proved in the measurement
provide an analytic description of the α or γ signals $f_\alpha(t)$ and $f_\gamma(t)$ the pulse shape resulting from the average of a large number of individual events has been fitted with the sum of three (for α particles) or two (for γ-s) exponents, giving the reference pulse shapes $\overline{f}_\alpha(t)$ and $\overline{f}_\gamma(t)$ (see for more details ref. [22]). In the data processing the digital filter is applied to each experimental signal $f(t)$ with aim to obtain the numerical characteristic of its shape (shape indicator, SI) defined as:

$$SI = \sum_k f(t_k) \cdot P(t_k - t_o),$$

where the sum is over all time bins (from $k = 1$ to $k = 2048$), $f(t_k)$ is the digitized amplitude of a given signal (normalized to its area) at the time t_k. The weight function $P(t_k - t_o)$ is determined as:

$$P(t) = \frac{f_\alpha(t) - f_\gamma(t)}{f_\alpha(t) + f_\gamma(t)},$$

and t_o is the time origin of the signal. The measured with sources SI distributions are well described by a Gaussian functions, whose mean values and standard deviations σ_α and σ_γ have a slight energy dependence3. For 0.9 MeV γ quanta $SI_\gamma = 18 \pm 3$, while for 4.8 MeV α particles $SI_\alpha = 29.0 \pm 3.6$. It allows us to determine the efficiency of the PS event selection for the different chosen intervals of SI values ($\pm \sigma$, $\pm 2\sigma$, etc.).

The PS selection technique ensures the very important possibility to discriminate “illegal” events: double pulses, α events, etc., and thus to suppress background. An example of a double pulse is shown in fig. 4a. Value of the shape indicator for the full signal is $SI = -47$; for the first pulse $SI_1 = 18.4$ (hence it corresponds to γ or β particle), for the second pulse $SI_2 = 37.4$ (α particle). The energy release is 1.97 MeV, and without PS analysis it would be a candidate event for $2\nu2\beta$ decay of ^{116}Cd. Since the shape indicator characterizes the full signal, it is also useful to examine the pulse front edge. For example, it was found that at least 99% of ”pure” γ events (measured with calibration ^{232}Th source) satisfy the following restriction on pulse rise time:

$$\Delta t(\mu\text{s}) \leq 1.24 - \Delta t(\mu\text{s}) \leq 1.24 -$$

with conversion electrons of ^{207}Bi by using the signal of the thin plastic scintillator (placed between source and detector) as signature of the electron hitting the $^{116}\text{CdWO}_4$ crystal.

3For the γ-s (300–3200 keV) $SI_\gamma = 18.09 - (4.5 \times 10^{-5} E_\gamma)$, $\sigma_\gamma = 2.61 - (4.7 \times 10^{-4} E_\gamma) + 707/E_\gamma$, while for the α particles (4000–6000 keV) $SI_\alpha = 29.0$, $\sigma_\alpha = 5.11 - (5.52 \times 10^{-4} E_\alpha) + 5520/E_\alpha$. Here all variables are dimensionless (E_γ and E_α are expressed in keV).
$0.5E_\gamma + 0.078E_\gamma^2$, where E_γ is dimensionless variable expressed in MeV. Hence, this filter was applied to the background data, and all events, which do not pass the test, were excluded from the residual β/γ spectrum.

The results of PS analysis of the data are presented in fig. 5. The initial (without PS selection) spectrum of the 116CdWO$_4$ scintillators in the energy region 1.2–4 MeV – collected during 4629 h in anticoincidence with active shield – is depicted in fig. 5a, while the spectrum after PS selection of the β/γ events, whose SI lie in the interval $SI_\gamma - 3.0\sigma_\gamma \leq SI \leq SI_\gamma + 2.4\sigma_\gamma$ and $\Delta t (\mu s) \leq 1.24 - 0.5E_\gamma + 0.078E_\gamma^2$ (98% of β/γ events), is shown in fig. 5b. From these figures the background reduction due to pulse-shape analysis is evident. Further, fig. 5c represents the difference between spectra in fig. 5a and 5b. These events, at least for the energy above 2 MeV, can be produced by 228Th activity from the intrinsic contamination of the 116CdWO$_4$ crystals (measured by the time-amplitude analysis as described above). Indeed, two decays in the fast chain 212Bi ($Q_\beta = 2.25$ MeV) \rightarrow 212Po ($Q_\alpha = 8.95$ MeV, $T_{1/2} = 0.3$ μs) \rightarrow 208Pb can not be time resolved in the CdWO$_4$ scintillator (with an exponential decay time $\simeq 15$ μs [22]) and will result in one event. The example of such an event – recorded by the PS acquisition system – is depicted in fig. 5b. To determine the residual activity of 228Th in the crystals, the response function of 116CdWO$_4$ detectors for the 212Bi \rightarrow 212Po \rightarrow 208Pb chain was simulated with the help of GEANT3.21 code and event generator DECAY4. The simulated function is shown in fig. 5c, from which one can see that the high energy part of the experimental spectrum is well reproduced ($\chi^2 = 1.3$) by the expected response for 212Bi \rightarrow 212Po \rightarrow 208Pb decays4. Corresponding activity of 228Th inside the 116CdWO$_4$ crystals, deduced from the fit in the 1.9–3.7 MeV energy region, is 37(4) μBq/kg, that is in a good agreement with the value determined by the time-amplitude analysis of the chain 220Rn \rightarrow 216Po \rightarrow 212Pb. Besides, the front edge analysis of 80 events with the energy 2.0–4.2 MeV ($SI \geq SI_\gamma + 2.54\sigma_\gamma; \Delta t \geq 0.2$ μs) was fulfilled and the half-life derived from the average time delay between the first and second

4The rest of spectrum below 1.9 MeV (fig. 5c) can be explained as high energy tail of the PS selected α particles (see fig. 3).
part of the signal (see fig. 4b) is $T_{1/2} = 0.31(6) \, \mu s$, in agreement with the 212Po table value $T_{1/2} = 0.299(2) \, \mu s$ [23].

Fig. 6 represents the spectrum after PS selection of the background events, whose SI lie in the interval $SI\gamma + 2.4\sigma_\gamma < SI < SI_\alpha + 2.4\sigma_\alpha$ ($\approx 90\%$ of α events). The obtained distribution with maximum at 0.95 MeV is well reproduced by the model, which includes all α particles from chains in 232Th and 238U families. The total α activity of the 116CdWO$_4$ crystals deduced from fig. 6 is $1.4(3) \, \text{mBq/kg}$. This value can be adjusted with the activities determined by the time-amplitude analysis under usual (for crystals) assumption that secular radioactive equilibriums in some chains of 232Th and 238U families (like, f. e. 230Th \rightarrow 226Ra chain) are broken.

III. RESULTS AND DISCUSSION

A. Two-neutrino double beta decay of 116Cd

To determine the half-life of two-neutrino 2β decay of 116Cd, the background in the energy interval 900–2900 keV was simulated with the help of GEANT3.21 package and event generator DECAY4. In addition to 116Cd two neutrino 2β decay distribution, only three components shown in fig. 2 were used to build up the background model: 40K contamination of the enriched and natural CdWO$_4$ scintillators, whose activity limits of less than 4 mBq/kg were established earlier [13], and external γ background caused by 232Th and 238U contamination of the PMTs (one PMT for 116CdWO$_4$ crystals; one for CdWO$_4$; two for plastic active shield) [1]. This simple background model describes experimental data in the chosen energy interval 900–2900 keV reasonably well ($\chi^2 = 1.3$) and gives the following results: the activities of 40K inside the enriched and natural CdWO$_4$ crystals are equal 0.8(2) and 2.1(3) mBq/kg, respectively; the half-life of two-neutrino 2β decay of 116Cd is $T_{1/2}(2\nu) = 2.6(1) \times 10^{19} \, \text{yr}$ (only statistical uncertainties are

5The radioactive impurities of all PMTs used in the installation were previously measured by R&D low background set-up as (0.4–2.2) Bq/PMT and (0.1–0.2) Bq/PMT for 226Ra and 228Th activity, respectively [18].
given, while systematical errors are pointed below).

Taking advantage of the high statistics in our experiment (approximately 3600 events of ^{116}Cd two neutrino 2β decay are contained within the interval 900–2900 keV), we can prove our model with the help of experimental $2\nu2\beta$ decay Kurie plot: $K(\varepsilon) = [S(\varepsilon)/\{(\varepsilon^4 + 10\varepsilon^3 + 40\varepsilon^2 + 60\varepsilon + 30)\varepsilon\}]^{1/5}$, where S is the number of events with the energy ε (in electron mass units) in the experimental spectrum after background subtraction. For the real $2\nu2\beta$ decay events such a Kurie plot should be the straight line $K(\varepsilon) \sim (Q_{2\beta} - \varepsilon)$, where $Q_{2\beta}$ is the 2β energy release. From fig. 7, where our experimental Kurie plot is depicted, one can see that in the region 1.1–2.4 MeV it is well fitted by the straight line with $Q_{2\beta} = 2790(87)$ keV (table value is $Q_{2\beta} = 2805(4)$ keV). To take into account the energy resolution of the detector the experimental spectrum was also fitted by the convolution of the theoretical $2\nu2\beta$ distribution $\rho(\varepsilon) = A \cdot \varepsilon(\varepsilon^4 + 10\varepsilon^3 + 40\varepsilon^2 + 60\varepsilon + 30) \cdot (Q_{2\beta} - \varepsilon)^5$ with the detector resolution function (Gaussian with $FWHM$ determined as described above) with A and $Q_{2\beta}$ values as free parameters. This fit in the energy region 1.2–2.8 MeV yields a very similar value $Q_{2\beta} = 2779(52)$ keV and an A corresponding to $T_{1/2}(2\nu) = 2.5(3) \times 10^{19}$ yr, thus justifying our assumption that experimental data in the region above 1.2 MeV are related mainly with ^{116}Cd two neutrino 2β decay. In fact, a signal to background ratio deduced from our data is 4:1 for the energy interval 1.2–2.9 MeV, and 15:1 for the energy range 1.6–2.9 MeV, which are higher than those reached up-to-date in other 2β decay experiments [1,2].

To estimate systematical uncertainties of the measured half-life, different origins of errors were taken into account, whose contributions are listed in Table I. The final value is equal to:

$$T_{1/2}(2\nu) = 2.6 \pm 0.1\,(\text{stat})^{+0.7}_{-0.4}\,(\text{syst}) \times 10^{19} \text{ yr.}$$

Our result is in agreement with those measured earlier ($T_{1/2}(2\nu) = 2.6^{+0.9}_{-0.5} \times 10^{19} \text{ yr}$ [26] and $T_{1/2}(2\nu) = 2.7^{+0.5}_{-0.4}(\text{stat})^{+0.9}_{-0.6}\,(\text{syst}) \times 10^{19} \text{ yr}$ [14]) and disagrees to some extent with the value $T_{1/2}(2\nu) = 3.75 \pm 0.35(\text{stat}) \pm 0.21(\text{syst}) \times 10^{19} \text{ yr}$ from ref. [27].

6Note, that in [27] the quite small detection efficiency (1.73%) was calculated by the Monte Carlo
B. New limits for $0\nu 2\beta$ decay of 116Cd to ground state of 116Sn

To estimate the half-life limit for the neutrinoless decay mode, a simple background model was used. In fact, in the $0\nu 2\beta$ decay energy region only three background contributions are important: (i) external γ background from U/Th contamination of the PMTs; (ii) tail of the $2\nu 2\beta$ decay spectrum; and (iii) internal background distribution expected from the 212Bi \rightarrow 212Po \rightarrow 208Pb decay (228Th chain). As it was shown above, two decays in the fast chain 212Bi \rightarrow 212Po \rightarrow 208Pb really create the background in the region of $0\nu 2\beta$ decay (see fig. 5c). For the activity of 228Th inside the 116CdWO$_4$ crystals two values were obtained: 38(3) μBq/kg (time-amplitude method) and 37(4) μBq/kg (pulse-shape analysis). Hence, in the limit of statistical errors, we do not find an indication of a failure for the rejection of α pulses by our PS analysis.

The high energy part of the experimental spectrum of the 116CdWO$_4$ crystals measured in anticoincidence with the shielding detectors and after the time-amplitude and pulse-shape selection is shown in fig. 8. The peak of $0\nu 2\beta$ decay is absent, thus from the data we obtain a lower limit of the half-life: $\text{lim } T_{1/2} = \text{ln} 2 \cdot N \cdot \eta \cdot t / \text{lim } S$, where $N = 4.66 \times 10^{23}$ is number of 116Cd nuclei, t is the measuring time ($t = 4629$ h), η is the total detection efficiency for $0\nu 2\beta$ decay, and $\text{lim } S$ is the number of events in the peak which can be excluded with a given confidence level. The value of the detection efficiency $\eta_{MC} = 0.83$ was calculated by the DECAY4 and GEANT3.21 codes, while the efficiency of the PS analysis $\eta_{PS} = 0.98$ was determined as described above, thus the total efficiency $\eta = \eta_{MC} \cdot \eta_{PS} = 0.81$. To obtain the value of $\text{lim } S$, the part of the spectrum in the 1.9–3.8 MeV region was fitted by the sum of the simulated $0\nu 2\beta$ peak and three background functions (external γ rays from PMT-s contamination; contribution from 212Bi \rightarrow 212Po \rightarrow 208Pb intrinsic chain; and $2\nu 2\beta$ decay tail). This fit gives the value of $S = -1.1 \pm 1.2$ counts, which corresponds – in accordance with Feldman-Cousins procedure for results close to the edge of physically accepted area [28] recommended by the Particle Data Group (PDG) [24] – to a $\text{lim } S = 0.9(0.3)$ counts with 90%(68%) C.L., and subsequently to method without experimental test, thus perhaps systematical error could be higher than quoted value.
$T_{1/2}(0\nu2\beta) \geq 1.5(4.6) \times 10^{23}$ yr at 90%(68%) C.L. However, because of the low statistics in the energy range where the effect is expected, the obtained values can be cross-checked in a more simple and explicit way. Indeed, in the energy interval 2.6–3.1 MeV (containing 91% of $0\nu2\beta$ peak) there is only one measured event, while the background expected on the basis of the GEANT simulation, in the same energy region is $3.2^{+2.1}_{-1.1}$ counts (1.9 ± 0.7 events from PMT contamination; 0.4 ± 0.1 events from $2\nu2\beta$ distribution; $0.9^{+2}_{-0.9}$ counts from mentioned $^{212}{\text{Bi}} \rightarrow ^{212}{\text{Po}} \rightarrow ^{208}{\text{Pb}}$ chain). Following the PDG recommendation $[29,28]$ we can derive from these numbers the excluded limit as $\text{lim } S = 1.8(0.5)$ with 90%(68%) C.L., which leads to $T_{1/2}(0\nu2\beta) \geq 0.7(2.5) \times 10^{23}$ yr at 90%(68%) C.L. confirming the previous estimate. Finally, the following values were accepted as conservative half-life limits for neutrinoless 2β decay of $^{116}{\text{Cd}}$:

$$T_{1/2}(0\nu2\beta) \geq 0.7(2.5) \times 10^{23} \text{ yr}, \quad 90\%(68\%) \text{ C.L.}$$

Using calculations $[17]$, one can obtain restrictions on the neutrino mass and right-handed admixtures in the weak interaction: $m_\nu \leq 3.0 \text{ eV}, \eta \leq 3.9 \times 10^{-8}, \lambda \leq 3.4 \times 10^{-6}$ at 90% C.L., and neglecting right-handed contribution $m_\nu \leq 2.6(1.4) \text{ eV at 90}\% (68%) \text{ C.L.}$ On the basis of calculations $[27]$ we get a similar result: $m_\nu \leq 2.4(1.3) \text{ eV at 90\%(68\%) C.L.}$ In accordance with ref. $[30]$ the value of the R-parity violating parameter of minimal SUSY standard model is restricted by our $T_{1/2}$ limit to $\epsilon \leq 8.8(6.4) \times 10^{-4}$ at 90%(68%) C.L. (calculations $[31]$ give more stringent restrictions: $\epsilon \leq 3.4(2.4) \times 10^{-4}$).

C. The bounds on $0\nu2\beta$ decay of $^{116}{\text{Cd}}$ to excited levels of $^{116}{\text{Sn}}$

Not only ground state (g.s.) but also excited levels of $^{116}{\text{Sn}}$ with $E_{\text{lev}} \leq Q_{2\beta}$ can be populated in $0\nu2\beta$ decay of $^{116}{\text{Cd}}$. In this case one or several γ quanta, conversion electrons and/or e^+e^- pairs will be emitted in a deexcitation process, in addition to two electrons emitted in 2β decay. The response functions of $^{116}{\text{CdWO}}_4$ detectors for $0\nu2\beta$ decay to the first and second excited levels of $^{116}{\text{Sn}}$ (2^+_1 with $E_{\text{lev}} = 1294 \text{ keV}$ and 0^+_1 with $E_{\text{lev}} = 1757 \text{ keV}$) were simulated with the help of GEANT3.21 and DECAY4 codes. The full absorption of all emitted
particles should result in the peak with $E = Q_{2\beta}$ (practically the same peak as it is expected for the $0\nu2\beta$ decay of 116Cd to the g.s. of 116Sn). Calculated full peak efficiencies are: $\eta(2^+_1) = 0.14$ and $\eta(0^+_1) = 0.07$. These numbers and the value of $\lim S = 1.8(0.5)$ with 90%(68%) C.L. (determined for the g.s.\rightarrowg.s. transition) give the following restrictions on half-lives of 116Cd neutrinoless 2β decay to excited levels of 116Sn:

$$T_{1/2}(\text{g.s.} \rightarrow 2^+_1) \geq 1.3(4.8) \times 10^{22} \text{ yr}, \quad 90%(68%) \text{ C.L.},$$

$$T_{1/2}(\text{g.s.} \rightarrow 0^+_1) \geq 0.7(2.4) \times 10^{22} \text{ yr}, \quad 90%(68%) \text{ C.L.}$$

D. Neutrinoless 2β decay with Majoron(s) emission

The procedure to obtain half-life limits for $0\nu2\beta$ decay with one (two) Majoron(s) emission was carried out in two steps as follows. First, because in the measured spectrum contributions of 40K are negligible above the energy 1.6 MeV, the data were fitted in the energy region 1.6–2.8 MeV for $0\nu M1$ mode (1.6–2.6 MeV for $0\nu M2$) by using only three theoretical distributions: γ background from measured PMT-s contamination (226Ra and 232Th chains) and two neutrino 2β decay of 116Cd, as background, and $0\nu2\beta$ decay with one (two) Majoron(s) emission, as effect. With this simple model the χ^2 value was equal to 1.1 both for $0\nu M1$ and $0\nu M2$ fits. As a result, the number of events under a theoretical $0\nu M1$ curve was determined as 9 ± 21, giving no statistical evidence for the effect. It leads to an upper limit of $41(26)$ events at 90%(68%) C.L., that together with an efficiency value $\eta = 0.905$ corresponds to the half-life limit $T_{1/2}(0\nu M1) \geq 3.7(5.9) \times 10^{21} \text{ yr}$. A similar procedure for $0\nu2\beta$ decay with two Majorons emission gives $T_{1/2}(0\nu M2) \geq 5.9(9.4) \times 10^{20} \text{ yr}$ at 90%(68%) C.L. The part of the experimental spectrum and theoretical $0\nu M1$ and $0\nu M2$ distributions with half-lives equal to these limits are shown in fig. 8. On one hand, the obtained results can be treated as conservative because the accepted background model consists of only two origins, the external background from U/Th contamination of the PMT and $2\nu2\beta$ decay distribution, while in the energy region of interest some other sources of background, such as the mentioned 212Bi \rightarrow^{212}Po \rightarrow^{208}Pb chain contribution from the intrinsic impurities of the crystals, could enlarge the $0\nu M1$ and $0\nu M2$
limits. On the other hand, the uncertainty of the $2\nu 2\beta$ decay half-life of 116Cd could lead to the overestimated value of the $0\nu M1$ bound. To avoid the last possibility we have estimated the $T_{1/2}(0\nu M1)$ limit in a more explicit way. With this aim the energy interval 2.5–2.8 MeV – where the tail of $2\nu 2\beta$ decay distribution is practically zero (see fig. 8) – was used as the most sensitive region for the $0\nu M1$ double β decay search. In this energy interval the number of measured counts is 3, while the expected contribution (in the same energy range) from the PMT contamination is 3.2 ± 1.0 events and from $2\nu 2\beta$ decay is 1.5 ± 0.5 events, thus the total expected background is 4.7 ± 1.1 counts. Following the PDG recommendation [29,28] we can derive from these numbers the excluded limit for the effect being sought as 3.0 events with 90% C.L. Taking into account that the interval 2.5–2.8 MeV contains 8.9% of full $0\nu M1$ curve, it yields a limit of $T_{1/2}(0\nu M1) \geq 4.5 \times 10^{21}$ yr (90% C.L.), confirming the preceding estimate:

$$T_{1/2}(0\nu M1) \geq 3.7(5.9) \times 10^{21} \text{ yr, } 90\%(68\%) \text{ C.L.},$$

$$T_{1/2}(0\nu M2) \geq 5.9(9.4) \times 10^{20} \text{ yr, } 90\%(68\%) \text{ C.L.}$$

Both present half-life limits are more stringent than those established in our previous measurement during 19986 h [18] and in the NEMO experiment [27].

The probability of neutrinoless 2β decay with Majoron emission can be expressed as:

$$\{T_{1/2}(0\nu M1)\}^{-1} = <g_M>^2 \cdot |\text{NME}|^2 \cdot G,$$

where $<g_M>$ is the effective Majoron-neutrino coupling constant, NME is the nuclear matrix element and G is the kinematical factor. Using our result $T_{1/2}(0\nu M1) \geq 3.7(5.9) \times 10^{21}$ yr and values of G and NME calculated in the QRPA model with proton-neutron pairing [32] we obtain $g_M \leq 12(9.5) \times 10^{-5}$ (on the basis on calculation [27]) with 90%(68%) C.L., which is one of the best restriction up-to-date obtained in the direct 2β decay experiments [1].

IV. CONCLUSION

The search for 116Cd double β decay with enriched 116CdWO$_4$ scintillators has entered in a new phase. The set-up with four 116CdWO$_4$ crystals (339 g) is running since October 1998. Improved passive shield, new active shield made of fifteen CdWO$_4$ crystals (total mass 20.6
kg), as well as time-amplitude and pulse-shape analysis of the data result in the reduction of the background rate in the 2.5–3.2 MeV region to 0.03 counts/yr·kg·keV. This reduction, together with an about threefold increase in the number of 116Cd nuclei, leads to the substantial sensitivity enhancement of the 116Cd experiment by more than one order of magnitude. Due to that the neutrino mass limit of $m_{\nu} \leq 2.6(1.4)$ eV at 90%(68%) C.L. was set after the first 4629 h run.

In August 1999 one of our 116CdWO$_4$ crystals was annealed at high temperature, and its light output was increased by $\approx 13\%$. The PMT of the main 116CdWO$_4$ detectors was changed by the special low background EMI tube (5 inches in diameter) with the RbCs photocathode, whose spectral response better fits the CdWO$_4$ scintillation light. As a result, the spectroscopic parameters of four crystals taken as a whole were improved. In particular, the energy resolution of the main detector is now 11.4% at 1064 keV and 8.6% at 2615 keV (comparing with those before this upgrading: 14.5% and 11%). Besides, the PS discrimination ability of the detector was improved too, as it is visible from fig. 9, where the SI distribution of the measured background events – before and after the last upgrading – is depicted. It is expected that after approximately 5 years of measurements the half-life limit $T_{1/2}(0\nu 2\beta) \geq 4 \times 10^{23}$ yr will be reached which corresponds to $m_{\nu} \leq 1.2$ eV. The bounds on neutrinoless 2β decay with Majorons emission and 2β transitions to the excited levels of 116Sn would be improved too.

ACKNOWLEDGMENTS

The authors express their gratitude to M. Bini and O. Vihliy for their efforts to develop and test new data acquisition system for the experiment.

[1] M. Moe and P. Vogel, Ann. Rev. Nucl. Part. Sci. 44 (1994) 247;

V.I. Tretyak and Yu.G. Zdesenko, At. Data Nucl. Data Tables 61 (1995) 43.
[2] H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953;
 J. Suhonen and O. Civitarese, Phys. Rep. 300 (1998) 123;
 A. Faessler and F. Simkovic, J. Phys. G: Nucl. Part. Phys. 24 (1998) 2139.

[3] J. Schechter and J.W.F. Valle, Phys. Rev. D 25 (1982) 2951.

[4] Proceedings of Neutrino'98: Nucl. Phys. B (Proc. Suppl.) 77 (1999).

[5] Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1562.

[6] C. Athanassopoulos et al., Phys. Rev. Lett. 77 (1996) 3082;
 D.H. White et al., Nucl. Phys. B (Proc. Suppl.) 70 (1999) 207.

[7] S.R. Elliot et al., Phys. Rev. C 46 (1992) 1535.

[8] N. Kudomi et al., Nucl. Phys. A 629 (1998) 527c.

[9] F.A. Danevich et al., Nucl. Phys. B (Proc. Suppl.) 70 (1999) 246.

[10] A. Alessandrello et al., Phys. Lett. B 433 (1998) 156.

[11] R. Luescher et al., Phys. Lett. B 434 (1998) 407.

[12] L. Baudis et al., Phys. Rev. Lett. 83 (1999) 41.

[13] C.E. Aalseth et al., Phys. Rev. C 59 (1999) 2108.

[14] F.A. Danevich et al., Phys. Lett. B 344 (1995) 72;
 A.Sh. Georgadze et al., Phys. At. Nucl. 58 (1995) 1093.

[15] Yu.G. Zdesenko et al., Proc. 2 Int. Symp. Underground Phys., Baksan Valley, 1987 – Moscow, Nauka, 1988, p. 291.

[16] G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995) 409.

[17] A. Staudt et al., Europhys. Lett. 13 (1990) 31.

[18] F.A. Danevich et al., Nucl. Phys. A 643 (1998) 317.
[19] A.Sh. Georgadze et al., Instr. Exp. Technique 39 (1996) 191;
 S.Ph. Burachas et al., Nucl. Instrum. Meth. A 369 (1996) 164.

[20] E. Gatti, F. De Martini, Nuclear Electronics 2, IAEA, Vienna, 1962, p. 265.

[21] J.C. Barton et al., Nucl. Instrum. Meth. A 443 (2000) 277.

[22] T. Fazzini et al., Nucl. Instrum. Meth. A 410 (1998) 213.

[23] GEANT. CERN Program Library Long Write-up W5013, CERN, 1994.

[24] O.A. Ponkratenko et al., Proc. of the Int. Conference on Non-accelerator new physics NANP’99,
 Dubna, Russia, June 28 – July 3, 1999, to be published in Phys. At. Nucl.

[25] R.B. Firestone, ”Table of Isotopes”, ed. by V.S. Shirley, 8th ed. (John Wiley & Sons, N.Y., 1996).

[26] H. Ejiri et al., J. Phys. Soc. Japan 64 (1995) 339.

[27] R. Arnold et al., Z. Phys. C 72 (1996) 239.

[28] G.J. Feldman, R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

[29] Particle Data Group, ”Review of Particle Physics”, Eur. Phys. J. C 3 (1998) 1.

[30] M. Hirsch et al., Phys. Rev. D 53 (1996) 1329.

[31] A. Faessler et al., Phys. Rev. D 58 (1998) 115004.

[32] M. Hirsch et al., Phys. Lett. B 372 (1996) 8.
FIG. 1. The scheme of the new set up with four 116CdWO$_4$ detectors.
FIG. 2. Background spectrum of 116CdWO$_4$ detectors (339 g) measured in the set up with four enriched crystals during 4629 h (solid histogram). The old data obtained with one 116CdWO$_4$ crystal (121 g; 19986 h) is shown for comparison (thin histogram; the data are normalized to 4629 h and mass of the new detector). The background components used for fit in the energy region 900 – 2900 keV: (a) $2\nu2\beta$ decay of 116Cd (fit value is $T_{1/2}(2\nu) = 2.6(1) \times 10^{19}$ yr); (b) 40K inside the 116CdWO$_4$ detector (activity value from the fit is 0.8(2) mBq/kg); (c) 40K in the shielding CdWO$_4$ crystals (fit value is 2.1(3) mBq/kg); (d) 226Ra and 232Th contamination of PMTs.
FIG. 3. The energy spectra of the first (a) and second (b) α particles from the 220Rn \rightarrow 216Po \rightarrow 212Pb chain selected by time-amplitude analysis from 116CdWO$_4$ data. Their equivalent energies in the β/γ energy scale are near 5 times smaller because the relative light yield for α particles as compared with that for electrons (α/β ratio) is ≈ 0.2. (c) Time distribution between the first and second events together with exponential fit ($T_{1/2} = 0.15(1)$ s, while the table value is $T_{1/2} = 0.145(2)$ s [24]).
FIG. 4. (a) Example of a double pulse with total energy 1.97 MeV. The shape indicators for the full signal and separately for its first and second parts are $SI_\Sigma = -47$; $SI_1 = 18.4$ (close to SI_γ) and $SI_2 = 37.4$ (close to SI_α). Most probably, this is the couple of successive decays 214Bi (β) \rightarrow 214Po (α; $T_{1/2} = 164.3 \mu s$) \rightarrow 210Pb. (b) Probable event of the chain 212Bi (β) \rightarrow 212Po (α; $T_{1/2} = 0.3 \mu s$) \rightarrow 208Pb.
FIG. 5. (a) Initial spectrum of 116CdWO$_4$ crystals (339 g, 4629 h) in anticoincidence with shielding detectors without pulse-shape discrimination; (b) PS selected β/γ events (see text); (c) the difference between spectra in fig. 5a and 5b together with the fit by the response function for 212Bi \rightarrow 212Po \rightarrow 208Pb decay chain. The fit value is $37(4)$ μBq/kg for 228Th activity inside 116CdWO$_4$ crystals.
FIG. 6. Spectrum after PS selection of the background events, whose SI lies in the interval $SI_\gamma + 2.4\sigma_\gamma < SI < SI_\alpha + 2.4\sigma_\alpha$ (it contains $\approx 90\%$ of all α events). The model distribution (smooth line) includes all α-particles from chains in 232Th and 238U families. The total α activity of the 116CdWO$_4$ crystals is derived as $1.4(3)$ mBq/kg.
FIG. 7. The $2\nu 2\beta$ decay Kurie plot and its fit by the straight line in 1100–2400 keV region.

$Q_{2\beta} = 2790 \pm 87$ keV
FIG. 8. Part of experimental spectrum of the 116CdWO$_4$ detectors measured during 4629 h (histogram) together with the fit from $2\nu2\beta$ contribution ($T_{1/2} = 2.6\times10^{19}$ y). The smooth curves $0\nu2\beta$M1 and $0\nu2\beta$M2 are excluded with 90% C.L. distributions of 0νM1 and 0νM2 decay of 116Cd with $T_{1/2} = 3.7\times10^{21}$ y and $T_{1/2} = 5.9\times10^{20}$ y, respectively. In the insert the expected peak from $0\nu2\beta$ decay with $T_{1/2}(0\nu) = 1.0\times10^{22}$ y is shown together with the excluded (90% C.L.) distribution (solid histogram) with $T_{1/2}(0\nu) = 7.0\times10^{22}$ y.
FIG. 9. Shape indicator (SI) distributions, which represent the PS discrimination ability of the 116CdWO$_4$ detectors: (a) for background events (0.8–1.2 MeV) collected during 4629 h before the last upgrading; (b) for background events (0.8–1.2 MeV) measured during 2734 h after the last upgrading.
TABLE I. Different origins of the systematical uncertainties and their contributions to the half-life value of 116Cd two neutrino 2β decay

Origin of the systematical error	Value range	Contribution to $T_{1/2}(2\nu)$ value, 10^{19}yr
Live measuring time	96^{+2}_{-8} %	$+0.05, -0.2$
Efficiency of PS analysis	98^{+1}_{-8} %	$+0.05, -0.3$
Detection efficiency of $2\nu2\beta$ decay (GEANT model uncertainty)	96 ± 4%	±0.1
90Sr–90Y impurity in 116CdWO$_4$	≤0.17 mBq/kg	$+0.5$
234mPa impurity in 116CdWO$_4$	≤0.19 mBq/kg	$+0.3$