Black-White Divergence in the Relation of White Blood Cell Count to Metabolic Syndrome in Preadolescents, Adolescents and Young Adults: The Bogalusa Heart Study

Wei Chen, MD, PhD, Sathanur R Srinivasan, PhD, Jihua Xu, MD, Gerald S Berenson. MD

Tulane Center for Cardiovascular Health, Department of Epidemiology, Tulane University, New Orleans, LA

Running Head: White Blood Cells and Metabolic Syndrome

Correspondence & Reprints:
Gerald S. Berenson, M.D.
Email: berenson@tulane.edu

Submitted 30 March 2010 and accepted 19 August 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective. To examine the association between white blood cell (WBC) count and metabolic syndrome (MetS) by growth periods in black versus white individuals in the general population.

Research design and methods. The study cohort consisted of 4184 black and white preadolescents, adolescents and adults. In this cohort, 743 adults were followed 8.1-20.8 years longitudinally.

Results. White versus black subjects had a significantly higher WBC count in all age groups. WBC count was associated with more MetS components in whites than in blacks. Mean values of WBC increased significantly with increasing number of MetS components with adverse levels in adolescents and adults, with a stronger trend in whites. WBC count was longitudinally associated with MetS in whites only (p<0.001).

Conclusions. The findings on the association between higher WBC count and MetS beginning in childhood, particularly in white, underscore a potentially mechanistic link between systemic inflammation, MetS and cardiovascular risk.

Epidemiologic and clinical studies have shown that white blood cell (WBC) count, an important cellular marker of systemic inflammation, is associated with coronary heart disease, type2 diabetes and multiple components of metabolic syndrome (MetS), including obesity, insulin resistance, hypertension and dyslipidemia (1-4). The objective of the present study is to examine the association between WBC count and MetS by age groups, cross-sectionally and longitudinally, in black versus white asymptomatic individuals enrolled in the Bogalusa Heart Study.

RESEARCH DESIGN AND METHODS

Study cohort. Two cross-sectional surveys of children aged 4-17 years in 1988-93 and two surveys of young adults aged 18-38 years in 1988-96 were conducted for cardiovascular risk factors, including WBC count. Individuals who had a WBC count outside the clinical normal range (below 2,000 cells/µL or above 12,000 cells/µL) were excluded from analyses to remove influence of acute bacterial infection and other medical disorders. Subjects who were taking medications for hypertension, diabetes and/or dyslipidemia or had missing values for any of the MetS risk variables were also excluded. The final sample size for the current cross-sectional analysis was 1137 preadolescents (ages 4-11 years), 1542 adolescents (ages 12-17 years) and 1503 adults (ages 18-38 years). In this cohort, a subset of 743 adults was followed 8.1-20.8 years with a mean follow-up period of 12.7 years.

Statistical methods. BMI (in children), waist circumference (in adults), HDL cholesterol, fasting triglycerides and fasting glucose were selected as MetS components. In cross-sectional analysis of preadolescents, adolescents and adults, the sex- and age-specific top quartiles (bottom quartile for HDL cholesterol) were used to define the adverse levels of the MetS components by race groups because widely accepted cutoff values are not available for preadolescents and adolescents. In the longitudinal adult cohort, the National Cholesterol Education
Program (NCEP) Adult Treatment Panel III (ATPIII) cutoffs were used to define the adverse levels. Pearson correlation was used to assess the association of WBC count with the MetS components, adjusting for age, sex and smoking (for adults). The difference in the correlation coefficients between race groups was tested by Fisher’s Z-test.

RESULTS

White versus black subjects had a significantly higher WBC count among preadolescents (6472 vs 5927 cells/µL, \(p<0.001 \)), adolescents (6270 vs 5697 cells/µL, \(p<0.001 \)) and adults (6496 vs 6037 cells/µL, \(p<0.001 \)). The racial differences in prevalence of MetS were significant in preadolescents (whites versus blacks: 18.5% vs 12.9%, \(p<0.05 \)) and in adults (14.5% vs 19.2%, \(p<0.05 \)), but not in adolescents (15.2% vs 14.3%, \(p>0.05 \)). Mean values of WBC increased significantly with the increasing number of MetS components with adverse levels in adolescents (\(p<0.001 \) in whites, \(p=0.040 \) in blacks) and adults (\(p<0.001 \) in whites, \(p=0.015 \) in blacks). Table 1 shows Pearson correlation coefficients of WBC count with MetS risk variables by race and age groups, adjusting for age sex and smoking (for adults), in cross-sectional and longitudinal analyses. In general, WBC was associated with more MetS variables in whites than in blacks, especially among adults, in both cross-sectional and longitudinal analyses. Furthermore, in the longitudinal analyses, the mean values of baseline WBC count increased significantly with the increasing number of MetS components with adverse levels at follow-up in whites (\(p<0.001 \)), but not in blacks (\(p=0.137 \)).

CONCLUSIONS

The present study demonstrated a pronounced black-white difference in the relationship between WBC count and MetS risk variables in children and young adults in both cross-sectional and longitudinal analyses. CARDIA study investigated correlates of leukocyte count in 4981 black and white young adults aged 18-30 years which were similar to the age range of the present study cohort; however, the data were not analyzed separately by race groups (5). In ARIC study, the associations of WBC count with sociodemographic and cardiovascular risk factors were examined in 4832 white and 1830 black nonsmokers aged 45-64 years; this cross-sectional analysis did not show black-white difference in the associations for most of the risk factors (6). Therefore, the findings of the black-white contrasts in the present study need confirmation, particularly in populations of similar ages.

In the present study, WBC count was significantly lower in blacks than in whites; this racial difference persisted in childhood into adulthood. This observation is consistent with reports from other studies (5-7). However, levels of C-reactive protein, another biomarker of inflammation, were found to be significantly higher in blacks than in whites in our previous report in a cohort from the same community (8). Although blacks have higher prevalence rates of type 2 diabetes and cardiovascular disease (9), studies, including ours, in both children and adults showed lower prevalence of MetS in blacks (10-12). It is proposed that the ethnic differences in triglycerides and high-density lipoprotein cholesterol levels lead to underdiagnosis of MetS in blacks (12). In the cross-sectional analysis of the present study, the prevalence of MetS was found to be lower in black preadolescents but higher in black adults than their white counterparts. Taken together, the pathophysiological mechanisms underlying the association
between WBC count and MetS in ethnic groups may be divergent and need to be elucidated.

Author Contributions. C.W. generated conception and design, reviewed literature, analyzed data and wrote manuscript; S.R.S. interpreted data, contributed to discussion and, reviewed/edited manuscript; J.X., determined biochemical data. G.S.B. generated conception and design, and reviewed/edited manuscript.

ACKNOWLEDGMENTS
This study was supported by grants HD-061437 and HD-062783 from the National Institute of Child Health and Human Development, 0855082E from American Heart Association, 546145G1 from Tulane University, and AG-16592 from the National Institute on Aging.

Author(s) has no potential conflicts of interest.

REFERENCES
1. Madjid M, Awan I, Willerson JT, Casscells SW: Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol 2004;44:1945-1956
2. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004;27:813-823
3. Kim JA, Choi YS, Hong JI, Kim SH, Jung HH, Kim SM: Association of metabolic syndrome with white blood cell subtype and red blood cells. Endocr J 2006;53:133-139
4. Bardini G, Dicembrini I, Cresci B, Rotella CM: Inflammation markers and metabolic characteristics of subjects with 1-h plasma glucose levels. Diabetes Care 2010;33:411-413
5. Friedman GD, Tekawa I, Grimm RH, Manolio T, Shannon SG, Sidney S: The leucocyte count: correlates and relationship to coronary risk factors: the CARDIA study. Int J Epidemiol 1990;19(4):889-893
6. Nieto FJ, Szklo M, Folsom AR, Rock R, Mercuri M: Leukocyte count correlates in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol 1992;136(5):525-537
7. Shaper AG, Lewis P: Genetic neutropenia in people of African origin. Lancet 1971;2:1021-1023
8. Patel DA, Srinivasan SR, Xu JH, Li S, Chen W, Berenson GS: Distribution and metabolic syndrome correlates of plasma C-reactive protein in biracial (black-white) younger adults: The Bogalusa Heart Study. Metabolism 2006;55:699-705
9. Grundy SM: Metabolic syndrome pandemic. Atheroscler Thromb Vasc Biol 2008;28:629-636
10. Chen W, Bao W, Begum S, Elkasabany A, Srinivasan SR, Berenson GS: Age-related patterns of the clustering of cardiovascular risk variables of syndrome X from childhood to young adulthood in a population made up of black and white subjects: the Bogalusa Heart Study. Diabetes 2000;49:1042-1048
11. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB: The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2003;163:427-436
12. Sumner AE: Ethnic differences in triglyceride levels and high-density lipoprotein lead to underdiagnosis of the metabolic syndrome in black children and adults. J Pediatr 2009;155:Suppl 7:e7-11

Table 1. Pearson correlation coefficients of white blood cell count with metabolic syndrome variables by age groups and race, adjusting for age, sex, and smoking (for adults)

Cross-sectional Analysis	Preadolescents (4-11 years)	Adolescents (12-17 years)	Adults (18-38 years)			
	Whites (n=712)	Blacks (n=425)	Whites (n=902)	Blacks (n=642)	Whites (n=1082)	Blacks (n=421)
BMI	0.104**	0.017	0.159***	0.115**	0.219***	0.133**
Waist circumference			0.214***	0.112*		
Systolic BP	0.095*	0.107*	0.082*	0.018	0.144***	0.032†
Diastolic BP	0.022	0.048	0.065	-0.017	0.136***	-0.028‡
Glucose	-0.081*	-0.085	-0.051	-0.139***	-0.012	0.002
Log-insulin	0.072	0.042	0.105**	-0.030‡	0.237***	0.097†
Log-HOMA-IR	0.051	-0.018	0.052	-0.041	0.192***	0.083
HDL cholesterol	-0.088*	-0.084	-0.109**	-0.032	-0.076*	-0.032
Log-triglycerides	0.115**	0.149**	0.179***	0.140***	0.305***	0.122†
Heart rate	0.156***	0.082	0.141***	0.152***	0.104**	0.127**
Uric acid	0.046	0.033	0.096**	0.071	0.148***	0.062

Longitudinal Analysis	Baseline (n=538)	Follow-up (n=538)		
	Whites (n=205)	Blacks (n=205)	Whites (n=538)	Blacks (n=538)
BMI	0.180***	0.039	0.221***	0.086
Waist circumference	0.197***	0.005†	0.224***	0.028†
Systolic BP	0.139**	0.055	0.134**	0.190**
Diastolic BP	0.134**	-0.016	0.121**	0.241***
Glucose	-0.059	0.006	0.079	0.021
HDL cholesterol	-0.075	0.050	-0.129**	0.009
Log-triglycerides	0.163***	0.092	0.171***	0.071
Heart rate	0.111**	0.061	0.097*	0.090
Uric acid	0.134**	0.034	0.119**	0.007

BMI=body mass index; BP=blood pressure; HOMA-IR=homeostasis model assessment of insulin resistance; HDL=high-density lipoprotein
Different from zero: * p<0.05; ** P<0.01; *** P<0.001
Racial difference: † p<0.05; ‡ p<0.01