The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most of the PT and RC approaches are static and monofunctional, which can only provide heating or cooling respectively under sunlight or darkness. Herein, a spectrally self-adaptive absorber/emitter (SSA/E) with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 μm) was developed for the dynamic combination of PT and RC, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. The as-fabricated SSA/E not only can be heated to ∼170°C above ambient temperature under sunshine but also be cooled to 20°C below ambient temperature, and thermal modeling captures the high energy harvesting efficiency of the SSA/E, enabling new technological capabilities.

Significance

The sun (∼6,000 K) and outer space (∼3 K) are two natural energy resources for humans. However, most of the approaches of energy harvesting from the sun and rejecting energy to outer space are achieved independently using absorbers and emitters with static spectral properties. Herein, a spectrally self-adaptive structure with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 μm) is experimentally demonstrated to achieve diurnal solar thermal and nocturnal radiative cooling efficiently. The experiment shows that the proposed structure not only can be heated to 185°C in diurnal mode but also can be cooled to −12°C in nocturnal mode. This work opens new possibilities for continuously efficient energy harvesting utilizing the sun and the universe.
monofunctional, which can only provide heating or cooling under sunlight or darkness. Therefore, the dynamical integration of PT and RC for continuously efficient heat and cool harvesting is a new topic for the energy exploitation of the sun and outer space. The tunable combination of PT and RC hybrid utilization has been recently proposed, but mechanical methods such as switching (e.g., flip action) a PT absorber and an RC emitter manually (34) or changing the optical properties of the materials through extra force stimuli (35) are preferred.

Herein, a smart strategy for the dynamic combination of daytime PT and nighttime RC is proposed, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. A spectrally self-adaptive absorber/emitter (SSA/E) with solar absorption of over 0.8 and emissivity modulation capability of regulating from broadband emissivity of 0.25 within the mid-infrared (MIR) region to the selective high emissivity of 0.75 within the atmospheric window (47) is designed and fabricated for the proof of the concept. Outdoor thermal experimental results demonstrate that the SSA/E can be heated to ~170 °C above ambient temperature in the daytime PT mode and passively cooled to ~20 °C below ambient temperature in the nighttime RC mode. Moreover, the heat and cool energy gains of the SSA/E system are respectively predicted to be 78% and 103% larger than those of the reference system that combines static and monofunctional PT absorber and RC emitter.

Results and Discussion

Design and Preparation of the SSA/E. A concept of dynamic integration of PT and RC is proposed and shown in Fig. 1A. During the daytime, the material works like a PT absorber with strong solar absorption and low thermal emissivity in the MIR region. At night, the material emits like a selective RC emitter with unity emissivity within the atmospheric window. Thus, the material can absorb photons through the PT process for solar thermal conversion under sunlight and simultaneously achieve passive cooling at night through the RC process. An SSA/E with a multilayer structure (Fig. 1B) is designed and fabricated in accordance with the above-mentioned spectral requirements for the smart integration of PT and RC. A 200-nm-thick vanadium dioxide (VO₂) film is deposited on a 2-inch-diameter/500-μm-thick aluminum oxide (Al₂O₃) wafer, with a 50-μm-thick Al₂O₃ film coated on the top surface of the VO₂ film. In addition, a 200-nm-thick metallic aluminum (Al) film is deposited on the back side of the Al₂O₃ wafer. The VO₂ film is essential for the smart integration of PT and RC because it is optically lossy due to a small bandgap of ~0.6 eV (36) and it can modulate thermal emissivity because of the intrinsic phase transition behavior (37–39). The thick Al₂O₃ wafer not only serves as a substrate for thin-film growth but is also responsible for strong thermal emission due to its selective high emissivity in the atmospheric window (SI Appendix, Fig. S1). Moreover, the back Al film is intended to enhance the optical length of the light in the SSA/E and improve its solar absorption, and the thin Al₂O₃ thin film acts as an antireflective layer.

Scanning electron microscopy (SEM) and surface morphology testing are conducted to characterize the layered structure of the SSA/E, and the results are shown in Fig. 1B and SI Appendix, Fig. S2. Besides, the phase transition behavior and quality of the fabricated VO₂ film are also characterized since this film is essential for the tunable spectral selectivity
management of the SSA/E. First, the temperature-dependent Raman spectra testing (Fig. 1C, Left) shows the existing variations of the sharp Raman peaks during the heating and cooling process, which clearly reflects the reversible metal–insulator transition (MIT) behavior of the VO$_2$ film. Second, the hysteresis behavior with a sharp resistance variation of up to four orders of magnitude is observed during the resistance measurement (Fig. 1C, Right), indicating the high quality of the deposited VO$_2$ film on the sapphire wafer. Notably, the differential curves in the inset reveal that the critical temperatures (T_c) of the fabricated VO$_2$ film are \sim67.9 °C and 63.7 °C for the heating and cooling loops, respectively, which is remarkably consistent with the reported results of the pure VO$_2$ epitaxial film (37). Third, a high-quality, uniform, and epitaxial VO$_2$ thin film is also fully evidenced by the resistance distribution (SI Appendix, Fig. S3), X-ray diffraction (XRD) characterization (SI Appendix, Fig. S4), aberration-corrected scanning transmission electron microscope (STEM) (SI Appendix, Fig. S5), and X-ray absorption near-edge spectroscopy (XANES) characterization (SI Appendix, Fig. S6).

The working principle of the SSA/E for the smart integration of PT and RC is illustrated in Fig. 1D. During the day, the SSA/E will be heated up by solar power due to its solar absorption, and the thermal emissivity of the SSA/E will decrease to a low level when the SSA/E temperature is higher than the critical temperature of the VO$_2$ film; this is because the VO$_2$ film successfully converts from insulating to metallic phase. Consequently, the SSA/E absorbs like a PT absorber with high solar absorption and low emissivity, which improves the performance of solar thermal collection. At night, the temperature of the SSA/E decreases below the critical temperature of the VO$_2$ film due to the absence of sunlight, thus inducing a phase change of the VO$_2$ film from metallic to insulating phase, resulting in the emissivity improvement of the SSA/E within the atmospheric window that is the main channel for passive RC. The SSA/E then switches off the low emissive mode and becomes an RC emitter, leading to the passive cooling effect and a further temperature reduction. Overall, the smart integration of PT and RC based on the SSA/E entirely depends on the temperature of the SSA/E, and no extra energy is required for the emissivity switching process.

Optical Properties of the SSA/E Device. The temperature-dependent optical properties of the SSA/E are measured to evaluate its potential for the smart integration of PT and RC. It is found that the fabricated SSA/E exhibits strong absorptivity within the solar radiation band (Fig. 2A) due to the intrinsic light absorptivity of the VO$_2$ and the antireflection structure of the SSA/E. Specifically, the AM1.5 spectrum weighted solar absorptivity of the SSA/E increases from 0.83 to 0.89 when the temperature of the SSA/E increases from 20 °C (below T_c) to 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%. Importantly, a dramatic regulation effect of the thermal emissivity is observed in Fig. 2B. The SSA/E emits like a selective RC emitter with an averaged emissivity of 0.75 within the atmospheric window when the temperature of the SSA/E is below the T_c (i.e., 34 °C; Fig. 2B, Inset), which is a good feature for the RC process. However, the SSA/E changes to a surface with low emissivity (i.e., highly reflective) whose average is 0.25 within the MIR region when the temperature of the SSA/E increases above 80 °C (above T_c), corresponding to an enhancement of nearly 7.2%.
high emissions within the atmospheric window when the temperature of the SSA/E is lower than \(T_c \), which was suitable for the nighttime RC mode to reject energy to outer space. When \(T > T_c \), the VO\(_2\) layer converted to the metallic rutile phase, resulting in a large emissivity drop of the SSA/E. Coupled with the solar absorption, the SSA/E can realize efficient PT mode under sunlight.

Thermal Performance Demonstration of the SSA/E. An outdoor experiment was conducted on a clear autumn day in Urumqi, China (43°50′N, 87°35′E) to explore the thermal performance of the SSA/E under realistic weather conditions. A vacuum chamber (Fig. 3A and SI Appendix, Fig. S7) coupled with a multispectral ZnS window is applied as the main experimental apparatus, and the SSA/E is fixed in the vacuum chamber with hollow quartz pegs (SI Appendix, Fig. S7). The chamber pressure is maintained at the magnitude level of \(10^{-4} \) Pa to maximally suppress the parasitic heat transfer process between the SSA/E and ambient air by convection. The hollow quartz peg support and infrared-reflective aluminum radiation shields (SI Appendix, Fig. S8) below the SSA/E are respectively applied to reduce the conduction and radiation heat loss through the backside. Moreover, a multispectral ZnS window with the double-sided antireflection coating is fabricated for the efficient integration of PT and RC modes based on the work of ref. 40, which not only exhibits high transparency in the solar irradiation band and atmospheric window band (SI Appendix, Fig. S9) but also provides mechanical support for the high-vacuum environment.

The SSA/E is exposed to the sky from a building roof throughout a 24-h day–night cycle and its stagnation temperature is shown in Fig. 3B. The recorded temperature of the vacuum chamber, ambient air, and solar irradiance are provided as references. The relative humidity approximately ranges from 40 to 70% during the night testing period and is within 27 to 49% during daytime testing. The curves show that the temperature of the SSA/E under darkness decreases and reaches an equilibrium state quickly after the SSA/E is exposed to the sky (shortly after 6:20 PM). At night, the temperature of the SSA/E is approximately \(-12^\circ C\), which is \(-20^\circ C\) below the ambient air temperature (Fig. 3B and C), indicating that the SSA/E can achieve an efficient subambient cooling phenomenon under the RC mode. When the sun rises (\(\approx 10:00\) AM), the SSA/E is heated up by the sunlight due to its strong solar absorption, and its temperature rapidly increases. Notably, a sudden change in the SSA/E temperature curve given in Fig. 3B. Inset is observed, while the increased rate of solar irradiation is unchanged. This finding indicates that this turning point corresponds to the spectra regulation process of the SSA/E induced by the phase transition of the VO\(_2\) film. Since the solar absorptivity of the SSA/E is enhanced and the thermal emissivity is suppressed after spectral regulation, the SSA/E can be applied for efficient solar thermal collection. During the diurnal testing, the peak solar irradiation is \(\approx 800\) W m\(^{-2}\) over the entire day, and the stagnation temperature of the SSA/E can reach \(\approx 185^\circ C\) (\(\approx 170^\circ C\) above the ambient air temperature), which is much greater than those of demonstrations (80 °C in ref. 41

Fig. 3. Experimental demonstration of the SSA/E for heating and cooling. (A) Photo of the experimental apparatus, which mainly includes a vacuum chamber and a multispectral ZnS window. (B) Twenty-four-hour continuous measurement of the steady-state temperature of the SSA/E in Urumqi. (Inset) The MIT transition process of the SSA/E, which indicates the emissivity modulation process. The temperature of the SSA/E (red), the outer surface of the vacuum chamber (blue), the ambient air (gray), and the solar irradiance (yellow, right axis) are presented. (C) Comparison of the experimental results with the theoretical predictions during nighttime (Upper) and daytime (Lower). At night, the gray band is the simulated result considering different parasitic heat loss processes. In the day, the circled area represents the critical temperature zone and two simulation lines correspond to the spectral properties of the SSA/E under PT and RC modes.
and 18 °C in ref. 35) for the integration of PT and RC in the previously published papers. At sunset, the solar collection capability of the SSA/E degrades, resulting in a decrease in the device temperature, and then the SSA/E switches to RC mode under darkness.

A theoretical model (SI Appendix, Fig. S10 and section 1) for the SSA/E is further developed to predict its thermal performance. The predicted stagnation temperatures of the SSA/E under PT and RC modes both agree well with the measured data (Fig. 3C). The theoretically predicted temperatures are mainly determined by the spectral characteristics of the SSA/E, which is closely related to the optical constant variations of the VO₂ film before and after the MIT transition. The result also shows that two clear turning points around the critical temperature of the VO₂ film are reflected by the sudden temperature change of the SSA/E (Fig. 3C, Lower), further confirming that the switching between PT and RC modes is mainly attributed to the phase transition of the VO₂ film. Accordingly, controlling the T_c value of the VO₂ film [atomic doping (38)] can further modulate the SSA/E performance within a controllable temperature range, showing considerable potential for energy applications in different situations (winter/summer or cold zone/warm zone). Furthermore, the thermal performance comparison between the SSA/E with the near-perfect spectrum and near-blackbody is performed (SI Appendix, Fig. S11). The comparison results show that the proposed tunable and selective spectrum has better PT and RC performance than the blackbody with the static and broadband emissive property.

Energy Harvesting Potential of the SSA/E Device.

The proposed SSA/E can absorb solar thermal energy using the PT mode under sunshine and harvest subambient cooling using RC under darkness. Herein, 1-d heat and cool energy gains of the SSA/E system based on the validated theoretical model in summer (Fig. 4A) and winter (Fig. 4B) of Beijing and Urumqi, China and San Francisco, CA are compared. Moreover, a reference system that combines static and monofunctional subambient RC emitters (18) and selective PT absorbers (42) is selected for comparison. Considering the integration of the SSA/E system and reference systems into the building with the same installation area for heat and cool energy harvesting, the areas of the PT absorber, RC emitter, and SSA/E device are assumed to be 1 × 1, 1 × 1, and 2 × 1 m², respectively. During the simulation, the temperature for solar thermal collection is set as 70 °C and the temperature for RC is set as 5 °C below the local ambient temperature.

Fig. 4 shows that the SSA/E system has the potential to obtain more energy than the reference system. For instance, the heat and cool energy gains of the SSA/E system in summer in Beijing are ~78% and 103% higher than those of the reference system, respectively, and similar results are also reflected in the summer in Urumqi and San Francisco. For winter conditions, as shown in Fig. 4B, the RC capacities of the SSA/E and reference systems substantially increase due to the dry environmental conditions, and the energy gains of the SSA/E system are still much higher than those of the reference system. Taking solar thermal collection as an example, the thermal energy collected by the SSA/E system is 8.02 MJ in Beijing, which is 66% higher than that obtained by the reference system. Even in San Francisco, where the solar irradiance resource is relatively limited, the collected thermal energy of the SSA/E system can still reach 7.73 MJ within 1 d, which is 76% higher than the thermal energy obtained by the reference system (4.39 MJ). The above analysis indicates that the SSA/E system yields relatively better performance than the reference system combining static PT absorber and RC emitter with a single function. Notably, effectively using the collected heat and cool energy is also key for the development of the SSA/E and tunable thermal management strategy. Currently, using an energy storage strategy for renewable techniques has been recognized as a promising method to improve the overall efficiency of renewable energy and reduce the consumption of fossil energy (43), corresponding to greenhouse emission reduction, especially for thermal and cool energy storage due to the developed techniques with cost-effective investment. Thus, the SSA/E can be effectively applied to harvest energy from the hot sun and reject energy to the cold universe by coupling with the energy storage strategy, achieving a continuously efficient and near-passive system for energy harvesting.

Conclusions

The smart and dynamic integration of daytime PT and nighttime RC is proposed for continuously efficient energy harvesting from the sun and rejecting energy to the universe. An SSA/E with a multiplayer structure of Al₂O₃/VO₂/Al₂O₃/Al is optically designed and fabricated for the proof of the concept. The SSA/E strongly absorbs sunlight with an AM1.5 spectra weighted solar absorption of over 0.8 and emits with an emissivity regulation property, which ranges from broadband emissivity of 0.25 within the MIR band to the selective high emissivity of 0.75 within the atmospheric window. The outdoor experimental testing demonstrates that the SSA/E can be
heated to ~170 °C above the ambient temperature in the daytime PT mode and passively cooled to ~20 °C below the ambient temperature in the nighttime RC mode, thereby showing the switchable macroscopical function of solar heating and subambient RC. Theoretical prediction also shows that the heat and cool energy gains of the SSA/E system are 78% and 103% larger than those of the reference system combining static and monofunctional PT absorber and RC emitter. In summary, this work provides alternative thinking to dynamically explore the thermodynamics potential of the hot sun and the cold universe based on the smart integration of PT and RC, enabling new technological capabilities.

Materials and Methods

Design and Preparation of the SSA/E. The optical properties of the SSA/E are calculated using the transfer matrix method. The reflective indexes of Al and Al2O3 are obtained from refs. 44. The reflective index of V2O5 is obtained from ref. 45. During the fabrication, a 200-nm V2O5 (020) epitaxial film is grown on a 2-inch Al2O3 (0001) crystal slice with a thickness of 500 μm by radio frequency (rf) plasma-assisted oxide molecular beam epitaxy (OMBE) equipment. During deposition, the substrate temperature is maintained at 550 °C. The metallic vanadium Maxwell is evaporated by an e-beam evaporator, and atomic oxygen flux is generated by an rf-plasma cavity. The film growth rate is calibrated by a quartz-crystal oscillator (thickness monitor) to be ~0.1 Å/s. Additional details regarding the V2O5 film preparation by the OMBE technique were previously reported (46). After V2O5 film deposition, a 50-nm Al2O3 film is coated on the top surface by rf-magnetron sputtering deposition (LAB 18; Kurt J. Lesker). The 2-inch Al2O3 (0001) crystal slice with a thickness of 500 μm is obtained from ref. 44. The reflective indexes of Al and Al2O3 are reported (46). After VO2 deposition, the substrate temperature is maintained at 550 °C with a variable-temperature sample stage. During the measurements, the temperature sweeping rate is set at 0.1 K/s. The resistance distribution on the 2-inch film is measured using the thermoelectric potential of the hot sun and the cold universe.

Characterization. The optical and thermal properties of SSA/E are characterized by high-resolution XRD (XSTM) and Fourier transform infrared (FTIR) spectrometer (IFS 66v/S; Bruker) for wavelength regions of 0.3 to 2.5 μm and 3 to 25 μm, respectively. The UV-VIS-NIR spectrophotometer is equipped with an absolute specular reflectance attachment. The FTIR spectrometer uses a gold film as a reflectance standard whose reflectivity is taken to be unity across the wavelength region of 3 to 25 μm for reflectivity measurement. A schematic of the variable temperature MIR reflectivity measurement is shown in SI Appendix, Fig. S1. The accuracy of the temperature control unit is ±0.5 °C, and the measurement is started when the temperature has been stabilized for 10 min. Then, the spectral absorptivity (α(λ)) was determined by

\[\alpha(\lambda) = 1 - \rho(\lambda), \]

where \(\rho(\lambda) \) is the spectral reflectivity. Notably, the spectral transmissivity of the SSA/E is zero because a 200-nm-thick Al film is deposited on the back side of the SSA/E.

Optical Characterizations. The spectrophotometric performance of the SSA/E is measured by an ultraviolet-visible near-infrared (UV-VIS-NIR) spectrophotometer (SolidSpec-3700UV, Shimadzu) and Fourier transform infrared (FTIR) spectrometer (IFS 66vS; Bruker) for wavelength regions of 0.3 to 2.5 μm and 3 to 25 μm, respectively. The UV-VIS-NIR spectrophotometer is equipped with an absolute specular reflectance attachment. The FTIR spectrometer uses a gold film as a reflectance standard whose reflectivity is taken to be unity across the wavelength region of 3 to 25 μm for reflectivity measurement. A schematic of the variable temperature MIR reflectivity measurement is shown in SI Appendix, Fig. S1. The accuracy of the temperature control unit is ±0.5 °C, and the measurement is started when the temperature has been stabilized for 10 min. Then, the spectral absorptivity (α(λ)) was determined by

\[\alpha(\lambda) = 1 - \rho(\lambda), \]

where \(\rho(\lambda) \) is the spectral reflectivity. Notably, the spectral transmissivity of the SSA/E is zero because a 200-nm-thick Al film is deposited on the back side of the SSA/E.

Data Availability. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. This research is sponsored by the National Science Foundation of China (52130601, 52106276, 51776193, and 11574279), the Youth Innovation Promotion Association, Chinese Academy of Sciences, the Fundamental Research Funds for the Central Universities (108-4115100092), and the research center for multi-energy complementation and conversion. We thank Dr. Dongsheng Jiao, Mikhail A. Kats, Wei Wei (1), Wei Wei (2), Jie Tian, and Chenghao Wan for their help on this study. This work was partially conducted at the University of Science and Technology of China Center for Micro and Nanoscale Research and Fabrication. The approved beamtime on the XMCD beamline (BL12B) and the infrared spectrophotometer/microspectroscopy beamline (BL01B) at the National Synchrotron Radiation Laboratory of Hefei are also appreciated.

1. T. Andre, “Renewables 2020 global status report” (Renewable Energy Policy Network for the 21st Century [REN21], 2020).
2. US Department of Energy, Heating and cooling. https://www.energy.gov/energysaver/heating-and-cooling. Accessed 8 December 2019.
3. S. Buddhhi, P. Santhanan, S. Fan, Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl. Acad. Sci. U.S.A. 115, E5609-E5615 (2018).
4. W. Li, S. Buddhhi, S. Fan, Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 84 (2020).
5. Y. Li et al., Scalable all-carbon nanofilms as highly efficient and thermally stable selective solar absorbers. Nature Energy 4, 103947 (2019).
6. A. Al-Rubol, L. Rebula, P. Costa, L. G. Vieira, Multi-layer solar selective absorber coatings based on WO3/Nb2O5/WO3/Nb2O5/SiO2 for high temperature applications. Sol. Energy Mater. Sol. Cells 186, 308–309 (2018).
7. K. Cui et al., Tuning–carbon nanotube composite photonic crystals as thermally stable selective absorbers and emitters for thermophotovoltaics. Adv. Energy Mater. 8, 1801471 (2018).
8. I. Celavnik, N. Jovanev, K. Jussak, Two-dimensional tungsten photonic crystals as selective thermal emitters. Appl. Phys. Lett. 92, 193101 (2008).
9. Y. Li et al., Efficient, scalable, and high-temperature selective solar absorbers based on hybrid strategy plasmonic metasurfaces (Solar RRL 8/2018). Sol. RRL 2, 1807196 (2018).
10. K. T. Lin, H. Lin, T. Yang, S. Jia, Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020).
11. B. Zhao, M. Hu, X. Xu, N. Chen, G. Pei, Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019).
12. W. Li, S. Fan, Radiative cooling: Harvesting the coldness of the universe. Opt. Photonics News 30, 32 (2019).
13. S. Fan, A. Raman, Metamaterials for radiative cooling. Nat. Sci. Rev. 5, 132–133 (2018).
14. D. Zhao et al., Radiative cooling: Fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019).
15. E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).
16. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
17. L. Zhu, A. P. Raman, S. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. U.S.A. 112, 12282–12287 (2015).
18. T. Li et al., A radiative cooling structural material. Science 364, 760–763 (2019).
19. J. Mandal, Y. Yang, N. Yu, A. P. Raman, Paints as a scalable and effective radiative cooling technology for buildings. Joule 4, 1350–1356 (2020).
20. X. Li et al., Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Reports Phys. Sci. 1, 100221 (2020).
21. X. Li, J. J. Peoples, P. Yao, X. Ruan, Ultrahigh BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13, 21733–21739 (2021).
22. Y. Zhai et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
23. M. M. Hossian, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015).
24. X. Zhang, Metamaterials for perpetual cooling at large scales. Science 355, 1023–1024 (2017).
25. D. S. Park, et al., “Evaluation of the nightcool nocturnal radiation cooling concept: Annual performance assessment in scale test buildings” (US DOE Office of Energy Efficiency and Renewable Energy, 2008).
26. D. Zhao et al., Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).
27. E. A. Goldstein, A. P. Raman, S. Fan, Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017).
28. L. Cai et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019).
29. P.-C. Hsu et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).
30. W. Li, Y. Shi, Z. Chen, S. Fan, Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).
31. M. Zhou et al., Vapor condensation with daytime radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 118, e2019292118 (2021).
32. A. P. Raman, W. Li, S. Fan, Generating light from darkness. Joule 3, 2679–2686 (2019).
33. B. Zhao, G. Pei, A. P. Raman, Modeling and optimization of radiative cooling based thermoelectric generators. Appl. Phys. Lett. 117, 163903 (2020).
34. J. Liu et al., Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature. Energy Convers. Manage. 205, 112395 (2020).
35. H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cai, Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32, e2000870 (2020).
36. S. Lee et al., Electronic structure and insulating gap in epitaxial VO2 polymorphs. APL Mater. 3, 126109 (2015).
37. S. Chen et al., Gate-controlled VO2 phase transition for high-performance smart windows. Sci. Adv. 5, eaav815 (2019).
38. Y. Ke et al., Adaptive thermochromic windows from active plasmonic elastomers. Joule 3, 858–871 (2019).
39. M. M. Qazilbash et al., Mott transition in VO2 revealed by infrared spectroscopy and nanoimaging. Science 318, 1750–1753 (2007).
40. X. Au, J. Liu, M. Hu, B. Zhao, G. Pei, A rigid spectral selective cover for integrated solar heating and radiative sky cooling system. Sol. Energy Mater. Sol. Cells 230, 111270 (2021).
41. Z. Chen, L. Zhu, W. Li, S. Fan, Simultaneously and synergistically harvest energy from the sun and outer space. Joule 3, 101–110 (2019).
42. L. Zhao et al., Harnessing heat beyond 200 °C from unconcentrated sunlight with nonevacuated transparent aerogels. ACS Nano 13, 7508–7516 (2019).
43. Z. Ding, W. Wu, M. Leung, Advanced/hybrid thermal energy storage technology: Material, cycle, system and perspective. Renew. Sustain. Energy Rev. 145, 111088 (2021).
44. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
45. M. A. Kats et al., Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012).
46. L. L. Fan et al., Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy. Appl. Phys. Lett. 103, 131914 (2013).
47. National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: ASTM G-173. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. Accessed 9 September 2019.
48. University of Chicago, MODTRAN infrared light in the atmosphere. http://climatemodels.uchicago.edu/modtran/. Accessed 9 September 2019.