Improved Time Training with Accuracy of Batch Back Propagation Algorithm Via Dynamic Learning Rate and Dynamic Momentum Factor

Mohammed Sarhan Al_Duais, Fatma Susilawati. Mohamad
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia

ABSTRACT

The main problem of batch back propagation (BBP) algorithm is slow training and there are several parameters needs to be adjusted manually, also suffers from saturation training. The learning rate and momentum factor are significant parameters for increasing the efficiency of the (BBP). In this study, we created a new dynamic function of each learning rate and momentum factor. We present the DBBPLM algorithm, which trains with a dynamic function for each the learning rate and momentum factor. A Sigmoid function used as activation function. The XOR problem, balance, breast cancer and iris dataset were used as benchmarks for testing the effects of the dynamic DBBPLM algorithm. All the experiments were performed on Matlab 2012 a. The stop training was determined ten power -5. From the experimental results, the DBBPLM algorithm provides superior performance in terms of training, and faster training with higher accuracy compared to the BBP algorithm and with existing works.

1. INTRODUCTION

The batch BP algorithm is commonly used in many applications including robotics, automation, and weight changes in ANNs [1]. The BP algorithm has led to tremendous breakthroughs in applications involving multilayer perceptions [2]. Gradient descent is commonly used to adjust the weight using a change the error training; however, this approach is not guaranteed to find the global minimum error [3]. The BBP algorithm is accurate in terms of training [4]. The batch BP algorithm is a new style for updating weight, it is widely used in training algorithms as it is accurate for training [5]. It utilizes the gradient descent, which does not ensure to reach the global minimum error because it may result in leading the local minimum [6,7]. Despite the training rate and momentum factor being significant parameters for controlling the updated weight, it is difficult to select the best valueduring training [8]. Generally, there are two techniques for selecting the values for each training rate and momentum factor. The first is set to be a small constant value from interval [1], the second the selected series value from [9]. The learning rate should be sufficiently large to allow for escaping the local minimum [10]. But the biggest value leads to fast training with oscillation error training. To ensure a Suitable learning BP algorithm, the learning rate must be small [11]. Another requirements for speeding up of the batch BP algorithm is adaptive training rate and momentum factor together [12]. The main problem of BBP algorithm, is slow training, or stuck training around the local minimum and suffers from saturation training [13]. In addition problem of the BP algorithm, several parameters need to be adjusted manually, such as learning rate and momentum factor [14].

Keywords:
Accuracy training
Batch Back-propagation algorithm
Dynamic learning rate
Dynamic momentum factor
Speed up Training

Corresponding Author:
Mohammed Sarhan Al_Duais
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia. Email: sarhan2w@gmail.com

Copyright © 2018 Institute of Advanced Engineering and Science. All rights reserved.

Journal homepage: http://iaescore.com/journals/index.php/IJAI
Current work for solving the slow training of the BBP algorithm is through adapting of a some significant parameters, such as learning rate and momentum factor. For these cases many studies has been done such as [15] improved the BP algorithm through two techniques, the training rate and momentum factor, the values of training rate were fixed at different values. The idea of this study is to set the value of training rate to be large initially, and then to look at the value of error after iteration. If the error is increased, the fit produced changes the value of training rate multiplied by less than one and then recalculated in the original direction. If the iteration error can be reduced, the fit produced changes the value of training rate by multiplied by a constant greater than one, the next iteration is calculated continuously. In [16] compare several techniques for improved BP algorithm. The BP algorithm with adaptive learning rate and momentum factor gave superior accuracy training at 1000 epochs. In [17] modifying the training rate and momentum. The value of the training rate selected depends on the ratio between the new error and the previous error training. The simulation results show an optimization of the training speed and an oscillation reduction duration training. In [18], created dynamic training that consists of multi-steps. The value of the learning rate and momentum factor are set as manual value. From the experimental results, the improved algorithm was overall efficient, both in visual effect and quality.

The remaining portion of this paper is organized as follows: Section 2 is the materials and method; Section 3 is created the dynamic parameters; Section 4, is experimental results; Section 5 discussion to validate the performance of the improved algorithm; Section 6, evaluate the performance of improve DBBP algorithm. Finally, Section 7 the conclusions.

2. MATERIALS AND METHOD

This kind of this research belongs to the heuristic method. This method is includes the learning rate and momentum factor. To investigate the aims of this study there are many steps as follows.

2.1. Data set

The data set is very important for verification to improve the BBP algorithm. In this study, all data are taken from UCI Machine Learning Repository through the link https://archive.ics.uci.edu/ml/index.html. All real dataset change to become normalization dataset between [0,1]. All data set divided in to two set training set and testing set.

2.2. Neural Network Model

We propose an ANN model, which consist of three-layer neural network that has an input, hidden, and output layer. The input layer is considered to be \(\{ x_1, x_2, x_i \} \), which represents the nodes; the nodes depend on the types or attributes of the data. The hidden layer is made of two layers with four nodes. Whereas the \(L_h \) and \(L_L \) are the first and second layer respectively. The output layer \(Y_r \) is made of one layer with one neuron. Three basis, two of them are used in the hidden and one in the output layer, which is denoted by \(u_{0j}, v_{0k} \) and \(w_{0r} \). \(v_{hj} \) is the weight between neuron h from hidden layer \(L_h \) and neuron j from the hidden layer \(L_L \). \(u_{ih} \) is the weight between neuron \(i \) in the input layer and neuron h in the hidden layer. Finally, the sigmoid function is employed as an activation function.

3. CREATED THE DYNAMIC LEARNING RATE AND MOMENTUM FACTOR

The weight update between neuron k from the output layer and neuron j from the hidden layer is as follows:

\[
w_{jk}(t + 1) = w_{jk}(t) + \gamma \Delta w_{jk}(t) + \mu \Delta w_{jk}(t - 1)
\]

(1)

Where \(\Delta w_{jk}(t) \) is a weight change the weight is updated for each epoch in Equation 1. Speed up training depends on a parameter that affects the updating of the weight. Before going to create the dynamic function for learning rate and momentum factor. The exponential is monotone function, we can create the learning rate as boundary function as follows
\[\gamma_{\text{dynamic}} = e^{(k + \sin 2E)} \]

(2)

from above the dynamic learning rate \(\gamma_{\text{dynamic}} \). In this case the property of function exponential depend on of the value of \(k + \sin 2e \). \(\sin e \) is the boundary function on defining set of \(e \) (error training) also \(\sin e \) has a boundary as \(-1 \leq \sin e \leq 1 \quad \forall e \in [0,1] \). The Equation 2, is bounded function. The weight updated under effected boundary of learning rate. To get smooth training and avoid inflation in the gross weight of the added values for momentum factor, the fitting producer through creating dynamic momentum factor and implicate the \(\gamma_{\text{dynamic}} \). Depend above we can created the dynamic momentum factor as follow:

\[\mu_{\text{dynamic}} = \sin(e[(Y_r(1-Y_r)] + \zeta) + \sin(\frac{1}{e^{(k + \sin 2E)})} \]

(3)

Where the \(\zeta \) is the penalty, the \(\mu_{\text{dynamic}} \) is boundary function. Insert the Equation 2 and 3 into Equation 1, then the weight is updated between any layer as below

\[w_r(t+1) = w_r(t) - e^{(k + \sin 2E)} \Delta w_r(t) + \sin(e[(Y_r(1-Y_r)] + \zeta) + \sin(\frac{1}{e^{(k + \sin 2E)})} \Delta w_r(t-1) \]

(4)

The weighted updated under effected under dynamic learning rate and momentum factor

3.1. Dynamic batch Back propagation (DBBPLM) algorithm

Update Weight Phase, the weights are adjusted simultaneously, as follows

For each output layer \((j=0,1,2,\ldots p; r=1,\ldots,m)\), \(Y_r\) the out put at neuron \(r\), the second layer

\[w_r(t+1) = \Delta w_r(t) - e^{(k + \sin 2E)} \delta_{rj} L_{rj} + [\sin(e[(Y_r(1-Y_r)] + \zeta) + \sin(\frac{1}{e^{(k + \sin 2E)})} \Delta w_r(t-1) \]

(5)

For bias

\[w_{r0}(t+1) = w_{r0}(t) - e^{(k + \sin 2E)} \delta_{r0} + [\sin(e[(Y_r(1-Y_r)] + \zeta) + \sin(\frac{1}{e^{(k + \sin 2E)})} \Delta w_{r0}(t-1) \]

(6)

For each hidden layer \(\hat{h} \) \(i=0,\ldots,n; \ h=1,\ldots,q \)

\[u_{ih}(t+1) = u_{ih}(t) - e^{(k + \sin 2E)} \delta_{ih} x_i + [\sin(e[(Y_r(1-Y_r)] + \zeta) + \sin(\frac{1}{e^{(k + \sin 2E)})} \Delta u_{ih}(t-1) \]

(7)

For bias

\[u_{i0}(t+1) = u_{i0}(t) - e^{(k + \sin 2E)} \delta_{i0} + [\sin(e[(Y_r(1-Y_r)] + \zeta) + \sin(\frac{1}{e^{(k + \sin 2E)})} \Delta u_{i0}(t-1) \]

(8)

4. EXPERIMENTAL RESULTS

We calculate the accuracy of training as follows \[19\], Accuracy (%) = \[\frac{1-\text{absolute}(T_i-O_i)}{\text{UP} - \text{LW}} \] * 100

where UP=1 and LW=0 are the upper bound and lower bound of the activation function.

4.1. Experiment result of the DBBPLM algorithm with XOR problem

The DBBPLM algorithm is training under effected dynamic learning rate and momentum factor which created in each Equation 2 and 3. Ten experiments has been done and then take the average of time, epoch and accuracy. The result recorded in the Table 1.
Table 1. Average the Performance of DBBPLM algorithm with XOR

	First structure		Second structure			
Ex	Time-sec	Epoch	Accuracy Training	Time-sec	Epoch	Accuracy Training
Av	1.9569	2741	0.9834	1.6267	2832	0.9858
S.D	0.19802	0	0	0.120328	0	0

From Table 1, for first structure the average training time is t=1.9569 seconds with 2741 epoch. For second structures the average time training is t=1.6267 seconds, with 2832 epoch. No more different between both structures for accuracy training. The accuracy training is very high for both sturacture. The curve of the training is shown in the following Figure 1.

![Figure 1. Curve Training of Dynamic algorithm with XOR](image)

4.2. Experiment result of the BBP algorithm with XOR problem

The BBP algorithm is training with manual value for each learning rate and momentum factor from [0,1]. Eight value for each learning rate and momentum factor were used. The experiment results is recorded in the Table 2.

Table 2. Average Performance of BBP algorithm with XOR

	First structure		Second structure		
γ	µ	Time-sec	Epoch	Time-sec	Epoch
Av	2351.98525	178229	2172.49575	502622	
S.D	2472.541353	142055.6465	2596.868029	499421.8464	

From Table 2, for first structure the average training time is 2351.98525seconds with178229 epoch. For the second structure, the average training time 2172.49575 second with502622 epoch. The S.D for both structure is greater than one.

4.3. Experiments result of the DBBPLM algorithm with Balance- Training set

We implement the DBBPLM algorithm using balance-training set. The experiments results is tabulation in the Table 3. From Table 3, for first structure the average training time is 2.6034 seconds with 45 epochs. For second structure the average training time is 3.0148 seconds with epoch is 85 epochs. Both structures gave high accuracy training. The average S.D of time for both structures are less than one. The curve of the training is shown in the Figure 2.
The training curve of (b) started with flat-spot training, while the curve of training in (a), started without flat spot. The curve (a) attend to the global minimum around 35 epochs, while the curve (b) attend to the global minimum after spend 80 epochs. Also each curve (a) and (b) have different time for training to reach the global minimum.

| Table 3. Average the Performance of DBBPLM algorithm with balance- training set |
|---------------------------------|---------------------------------|
| | First structure | second structure |
| Ex | Time-sec | Epoch | Accuracy Training | Time-sec | Epoch | Accuracy Training |
| Av | 2.6034 | 45 | 0.99996 | 3.0148 | 85 | 0.986 |
| S.D | 0.55041 | -2.842E-14 | 4.898E-05 | 0.67703 | 0 | 0 |

Figure 2. Training curve of the BP algorithm with balance- train

4.3.1. Experiments of the batch BP algorithm with Balance- Training set

Several value for each γ and μ were used from [0,1]. The experiments results are tabulated in Table 4

| Table 4. Performance of batch BP algorithm with balance- train set set |
|--|---------------------------------|
| | First structure | Second structure |
| Values of γ and μ | Time-sec | Epoch | Time-sec | Epoch |
| Av | 1066.545 | 3416 | 443.0475 | 4834 |
| S.D | 2025.956102 | 3577.965095 | 327.7748629 | 3431.437717 |

From Table 4, for first structure, the average of time is 1066.545 ≈ 1067 s with average epoch is 3416, while the second structure the average of time training is 443.0475 ≈ 443 s with 4838 epoch.

4.3.2. Experiments result of the DBBPLM algorithm with Balance- Testing set

The experiments result is tabulated in the Table 5.

Table 5. Average the Performance of DBBPLM with Balance- Testing set
First structure
Ex Time-sec
Av 4.6975
S.D 0.7695144

From Table 5, for first structure the average training time is 4.6975 seconds at an average epoch of is 92epoch. For second structure the average training time is 4.4850 seconds at an average epoch of is 104
epoch. Both structures gave high accuracy training. The average S.D of time for both structures are nearest to zero. Both structures gave high accuracy training. The curve of training shown in Figure 3.

![Figure 3. Curve Training of the DBBLM algorithm for Balance-Testing set](image)

4.3.2. Experiments result of the batch BP algorithm with Balance-Testing set

We run the batch BP algorithm with several manual value, and used the balance-testing set. The experiments result recoded in the Table 6.

Values of	First structure	Second structure		
\(y \)	Time-sec	Epoch	Time-sec	Epoch
Av	2351.596	8672	1811.0055	19096
S.D	2377.327	9175.25381	2043.02911	17835.4912

From Table 6, for first structure the average time training is 2351.596 second with 8672 epoch. For second structure the average time is 1811.0055 seconds with 19096 epoch.

4.3.3. Experiments DBBLM algorithm with Breast-Training set

We will run the DBBLM algorithm, the experience results are given in the Table 7.

Values of	First structure	Second structure				
Ex	Time-sec	Epoch	Accuracy Training	Time-sec	Epoch	Accuracy Training
Av	2.356	62	0.999	2.3034	59	0.9982
S.D	0.10709621	0	0	0.10685335	0	0

From Table 7, easily can see performance of DBBPLM algorithm. Both the structures the average of the training time is very short. The average S.D of time for both structures are nearest to zero.
4.3.4. Experiments result of the BBP algorithm with Breast -Training set

We used 374 patterns for training set. The results are shown in the Table 8. From Table 8 for first structure the average time training is 1547.8075 second with 12430 epochs whil second structure the average time is 1361.486667seconds with 15953.

Values of	First structure	Second structure
γ	1547.8075	1361.486667
μ	12430	15953

Table 8. Performance of BBP algorithm with Breast-Training set

4.3.5. Experiments DBBPLM algorithm with Breast-Testing set

From Table 9, the dynamic training rate and momentum factor helps the DBBPLM algorithm for reducing the time training. Both the structures, the average of the training time is very short. For first structure the average time is 0.8448seconds with average 33 epochs, while the second structure the average time is 1.6177with average 61 epochs.

Values of	First structure	Second structure
Ex	0.844	0.987
S.D	1.1102E-16	0.09217488

Table 9. Average the performance of DBBPLM algorithm with Breast-Testing set

4.3.6. Experiments results of BBP algorithm with Breast-Testing set

We used 251 patterns for testing the performance of BBP algorithm. The experments result is tabulated in the Table 10.

Values of	First structure	Second structure
γ	1741.017714	1920.984143
μ	17785.42857	10709

Table 10. Performance of BBP algorithm with Breast-Testing set
Form the Table 10, the range of the training time for both structure is $100.3120 \leq t \leq 6300$ seconds and $60.1670 \leq t \leq 4560$ seconds, this means the range of time training is widely time training.

5. DISCUSSION TO VALIDATE THE PERFORMANCE OF IMPROVED ALGORITHM

To validate the efficiency of the improved algorithm, through compare the performance of the DBBPML algorithm with the performance of the batchBP algorithm based on certain criteria. We calculate the speed up training using the following formula [20]:

$$\text{Speed up} = \frac{\text{Execution time of BP algorithm}}{\text{Execution time of BDBPML algorithm}}$$

5.1. Processing Time of DBBPLM Algorithm Versus the BBP Algorithm for with different Structure

To validate the improved algorithm or DBBPML algorithm, we compare the performance between the DBBPLM algorithm and the BBP algorithm. The speed-up obtained in training is shown in Table 11.

| Table 11. Speed up the DBBPLM algorithm versus BBP with different structure |
|-----------------|-----------------|-------------------|-----------------|------------------|-----------------|
| | First structure | | Second structure | | |
| | DBBPLM algorithm | BBP algorithm | Speed up Rate (BBP/DBBPLM) | DBBPLM algorithm | BBP algorithm | Speed up Rate (BBP/DBBPLM) |
| XOR | AV time - sc | AV time - sc | 1201.893 | 1.627 | 2172.495 | 1335.523 |
| Balance Training | 2.6034 | 1066.545 | 409.674 | 3.015 | 443.047 | 146.958 |
| Balance Testing | 4.6975 | 2301.596 | 489.9619 | 4.591 | 1756.005 | 382.522 |
| Breast Training | 2.356 | 1547.808 | 656.9641 | 2.303 | 1361.487 | 591.0771 |
| Breast Testing | 0.844 | 1741.018 | 2062.817 | 1.618 | 1900.984 | 1175.115 |

From Table 11, it is evident that the dynamic algorithm provides superior performance over the BBP algorithm for all datasets with both structure. However for first structure, the DBBPLM algorithm is $2062.817 \approx 2063$ times faster than the BBP algorithm at maximum training, and also the DBBPLM algorithm is $405.738 \approx 406$ times faster than the BBP algorithm at minimum training. For second structure The DBBPLM algorithm is $1335.523 \approx 1336$ times faster than the BBP algorithm at maximum training, and also the DBBPLM algorithm is $146.958 \approx 147$ times faster than the BBP algorithm at minimum training.

6. EVALUATION OF THE PERFORMANCE OF IMPROVED BATCH BP ALGORITHM

To evaluated the performances of the improved algorithm or DBBPML algorithm for speeding up training which presented in this study. The performances of the DBBPML algorithm are compared to previous research works [13][16]. The performance of the improve algorithm which proposed in this study gives superior performance than exists works.

7. CONCLUSION

This paper introduced the DBBPLM algorithm, which trains by a dynamic function for each the learning rate and momentum factor. This function influences on the weight for each hidden layer and output layer. From experiments resulting the DBBPLM algorithm gives superior training than BBP algorithm for all data set, with both structure. One of the main advantages of the dynamic training is that it reduces the training time and reduces the error training, number of epochs and enhancement the accuracy of the training. The performance of DBBPML algorithm which presented in this study gave superior performance compare with exists work.

REFERENCES
[1] R.Kalaivani, K.Sudhagar K, Lakshmi P. Neural Network based Vibration Control for Vehicle Active Suspension System. Indian Journal of Science and Technology. 9(1), 2016.
[2] P.Moallem. Improving Back-Propagation VIA an efficient Combination of A Saturation Suppression Method. Neural Network World. 20(2), 2010.
[3] I.V Kamble, D R Pangavhane, & T.P Singh, Improving the Performance of Back-Propagation Training Algorithm by Using ANN. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 9(1), 187-192, 2015.

Improved Time Training With Accuracy of Batch Back Propagation... (Mohammed Sarhan Al_Duais)
Multi layer perception type artificial neural network based traffic control. Indian Journal of Science and Technology, 9(5), 2016.

R. Kalaiyani, K. Sudhagar, P. Lakshmi, Neural Network based Vibration Control for Vehicle Active Suspension System. Indian Journal of Science and Technology, 9(1), 2016.

M. S. Al_Duais, & F. S. Mohamad, A Review on Enhancements to Speed up Training of the Batch Back Propagation Algorithm. Indian Journal of Science and Technology, 9(46), 1-10, 2016.

J.M.Rizwan, PN.Krishnan, R.Karthikeyan, SR.Kumar. Multi layer perception type artificial neural network based traffic control. Indian Journal of Science and Technology, 9(5), 2016.

R. Kalaivani, K. Sudhagar, P. Lakshmi, Neural Network based Vibration Control for Vehicle Active Suspension System. Indian Journal of Science and Technology, 9(1), 2016.

M. S. Al_Duais, & F. S. Mohamad, A Review on Enhancements to Speed up Training of the Batch Back Propagation Algorithm. Indian Journal of Science and Technology, 9(46), 1-10, 2016.

Q. Abbas, F. Ahmad, M. Imran, Variable learning rate based modification in backpropagation algorithm (MBPA) of artificial neural network for data classification. Science International, 28(3), 2369-2378, 2016.

R. Kalaivani, K. Sudhagar, P. Lakshmi, Neural Network based Vibration Control for Vehicle Active Suspension System. Indian Journal of Science and Technology, 9(1), 2016.

M. S. Al_Duais, & F. S. Mohamad, A Review on Enhancements to Speed up Training of the Batch Back Propagation Algorithm. Indian Journal of Science and Technology, 9(46), 1-10, 2016.

Q. Abbas, F. Ahmad, M. Imran, Variable learning rate based modification in backpropagation algorithm (MBPA) of artificial neural network for data classification. Science International, 28(3), 2369-2378, 2016.

Wu SX, Luo DL, Zhou ZW, Cai JH, Shi YX. A kind of BP neural network algorithm based on grey interval. Expert Systems with Applications, 53, 106-1016, 2016.

Q. Abbas, F. Ahmad, M. Imran, Variable learning rate based modification in backpropagation algorithm (MBPA) of artificial neural network for data classification. Science International, 28(3), 2369-2378, 2016.

Wu SX, Luo DL, Zhou ZW, Cai JH, Shi YX. A kind of BP neural network algorithm based on grey interval. Expert Systems with Applications, 53, 106-1016, 2016.

Q. Abbas, F. Ahmad, M. Imran, Variable learning rate based modification in backpropagation algorithm (MBPA) of artificial neural network for data classification. Science International, 28(3), 2369-2378, 2016.

Wu SX, Luo DL, Zhou ZW, Cai JH, Shi YX. A kind of BP neural network algorithm based on grey interval. Expert Systems with Applications, 53, 106-1016, 2016.

Q. Abbas, F. Ahmad, M. Imran, Variable learning rate based modification in backpropagation algorithm (MBPA) of artificial neural network for data classification. Science International, 28(3), 2369-2378, 2016.