Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy
Thanigaimalai Pillaiyar* and Stefan Laufer*

Cite This: https://doi.org/10.1021/acs.jmedchem.1c00335

Abstract: The global coronavirus disease-19 (COVID-19) has affected more than 140 million and killed more than 3 million people worldwide as of April 20, 2021. The novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as an etiological agent for COVID-19. Several kinases have been proposed as possible mediators of multiple viral infections, including life-threatening coronaviruses like SARS-CoV-1, Middle East syndrome coronavirus (MERS-CoV), and SARS-CoV-2. Viral infections hijack abundant cell signaling pathways, resulting in drastic phosphorylation rewiring in the host and viral proteins. Some kinases play a significant role throughout the viral infection cycle (entry, replication, assembly, and egress), and several of them are involved in the virus-induced hyper-inflammatory response that leads to cytokine storm, acute respiratory distress syndrome (ARDS), organ injury, and death. Here, we highlight kinases that are associated with coronavirus infections and their inhibitors with antiviral and potentially anti-inflammatory, cytokine-suppressive, or antifibrotic activity.

1. Introduction
The coronavirus disease-19 (COVID-19) pandemic is a potentially fatal respiratory infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).1 SARS-CoV-2 first appeared in previously unexposed human populations in late 2019 in Wuhan, China, from an undisclosed source. Subsequently, the virus rapidly spread worldwide with a high transmission efficacy.2,3 According to the latest data, as of April 20, 2021, the virus has affected more than 140 million people, and deaths have surpassed more than 3 million.4 The unprecedented efforts from health care workers, industry, and academic scientists have resulted in a wide variety of vaccines, several of which have recently been authorized and recommended for use in controlling the SARS-CoV-2 spread around the world. The U.S. Food and Drug Administration (FDA) approved remdesivir in October for use in adult and pediatric patients aged 12 and up with COVID-19 who need hospitalization. However, the WHO has not recommended the use of remdesivir irrespective of the seriousness of the disorder, as there is no evidence that it improves survival and other outcomes in hospitalized patients. Moreover, the WHO recommends that seriously ill COVID-19 patients receive systemic corticosteroid medication (e.g., 6 mg dexamethasone daily) for 7–10 days but that nonsevere COVID-19 patients should not receive this treatment. Antibodies like bamlanivimab and etesevimab, which have been approved by the FDA, are only for emergency use in patients with mild to severe COVID-19. However, they were not approved for patients who are hospitalized or need oxygen therapy due to COVID-19.5,6 Monoclonal antibodies can be associated with poorer outcomes in hospitalized COVID-19 patients who require oxygen or mechanical ventilation. As a result, treatment options for human coronavirus (HCoV) diseases are limited, and experts expect that the virus will survive for a longer period.

It is essential to comprehend the coronavirus’s basic features and life cycle to develop potential antiviral therapeutics. Coronaviruses are enveloped, positive-sense RNA viruses with the world’s largest viral RNA genome (~26–32 kilobases)7 that comprises about 30 000 nucleotides. So far, seven human coronaviruses have been discovered, and they are classified into four main genera (α, β, γ, and δ) under the family Coronaviridae:8 α-CoVs are (i) HCoV-229E and (ii) HCoV-OC43, and β-CoVs are (iii) HCoV-HKU1, (iv) HCoV-NL63, (v) SARS-CoV-1, (vi) MERS-CoV, and (vii) SARS-CoV-2 (Figure 1).9,10 Of the three last-mentioned β-coronaviruses,
SARS-CoV-1 and MERS-CoV are mostly concerned with nosocomial transmission, while SARS-CoV-2 is commonly transmitted in the population. The basic structure of a coronavirus is illustrated in Figure 1. SARS-CoV-1, the etiological agent of SARS that first appeared in 2002-2003, caused 8096 infections with a 10% fatality rate.11,12 MERS-CoV, which emerged from its zoonotic reservoir in 2012, affected a total of 2574 individuals, including 885 associated deaths (fatality rate = 34.4%) as of March 2021.13−15 The new SARS-CoV-2 continues to spread incredibly rapidly, and it has had an unprecedented effect on individuals and the global economy, as many governments have imposed travel restrictions, social distancing, and quarantine measurements.

As the name indicates, the genome organization of SARS-CoV-2 shares a high degree of similarity to that of the previously known SARS-CoV-1 (79% genetic similarity),16 SARS-related CoVs that reside in bats (genetic similarity of up to 98%), and to a lesser extent MERS-CoV (genetic similarity of up to 50%).16 Most coronaviruses have a four-step life cycle: entry, replication, assembly, and release (Figure 2).7,17 At the molecular level, (i) the spike protein-host receptor, which is responsible for the viral entry, (ii) proteases such as the main protease (Mpro) and the papain-like protease (PLpro) required for the proteolytic cleavage of viral proteins, which are required for viral replication and the assembly of the viral particles, and (iii) the RNA-dependent RNA polymerase (RdRp), which is critical for the multiplication of the genome of viral RNA, are considered to be very important biochemical events in the virus life cycle. Targeting any of these processes could become an important therapeutic approach that can directly invade the virus in coronavirus-associated diseases.18

2. The Role of Kinases in SARS-CoV Infection and Their Potential as Therapeutic Targets

SARS-CoV-2 mainly interacts with the respiratory system and induces dry cough, fever, fatigue, sore throat, and shortness of breath.19,20 However, in serious circumstances, it can cause acute respiratory distress syndrome (ARDS) (Figure 2), a virus-driven hyperinflammatory reaction that is one of COVID-19’s leading causes of mortality. The cytokine storm, which is caused by the release of proinflammatory cytokines, is the most prominent feature of ARDS. Some of the cytokines include interleukin (IL)-2, IL-6, IL-7, granulocyte-colony stimulating factor (GM-CSF), TNF-α, interferon-γ inducible protein 10, macrophage inflammatory protein 1-α (MIP-1α), and monocyte chemoattractant protein-1 (MCP-1).9,21−25 This virulent
inflammatory immune response contributes to ARDS, respiratory failure, organ failure affecting the heart, liver, kidney, and central nervous system (CNS), and death from severe infection.

Of all the host resources, cellular kinases can play a part in various stages of the virus’s life cycle. Numerous kinases have been suggested as potential mediators of different virus infections. Several kinases have been suggested as possible mediators of multiple viral infections, including life-threatening coronaviruses like SARS-CoV-1, MERS-CoV, and SARS-CoV-2 (Table 1). For the replication of the murine coronavirus HCoV-229E and other unrelated viruses, activation of p38 MAPK and c-Jun N terminal kinases (JNK1/2) is needed. Studies revealed that p38 is implicated in the phosphorylation of the initial translation factor eIF4E, which plays a crucial role in the translation of viral mRNAs and subsequent production of infection of murine CoV (mCoV). The p38 MAPK/ERK signaling pathway has been employed in the entry and production of the influenza A and Ebola viruses.
Many kinases also play a role in the progression of symptoms like pneumonia, inflammation, and fibrosis that are linked to CoV infections.27,39,46 Kinases respond to and regulate the synthesis of potentially harmful cytokines (IL-6, IL-10, and TNF) and proteins associated with inflammation and pulmonary fibrosis induction (such as the proinflammatory cytokine TGF-\(\beta\)).47,48 Therefore, kinase inhibitors can have direct antiviral effects and anti-inflammatory, cytokine-suppressive, and antifibrotic activities, all of which may be useful in the fight against respiratory viral infections (Figure 3). Indeed, several kinase inhibitors are currently being tested in clinical trials for COVID-19 therapy.

Several reviews have been published that illustrate the function of cellular kinases in a variety of viral infections. Raghuvanshi and Bharate discussed how kinase inhibitors have direct antiviral effects and anti-inflammatory, cytokine-suppressive, and antifibrotic activities, all of which may be useful in the fight against respiratory viral infections (Figure 3). Indeed, several kinase inhibitors are currently being tested in clinical trials for COVID-19 therapy.

Several reviews have been published that illustrate the function of cellular kinases in a variety of viral infections. Raghuvanshi and Bharate discussed how kinase inhibitors have direct antiviral effects and anti-inflammatory, cytokine-suppressive, and antifibrotic activities, all of which may be useful in the fight against respiratory viral infections (Figure 3). Indeed, several kinase inhibitors are currently being tested in clinical trials for COVID-19 therapy.

Figure 4. Abl tyrosine kinase and Src kinase inhibitors as antiviral agents (imatinib: SARS-CoV-1, EC\textsubscript{50} 9.823 \(\mu\)M, MERS-CoV, EC\textsubscript{50} 2.100 \(\mu\)M;58 dasatinib: SARS-CoV-1, EC\textsubscript{50} 17.689 \(\mu\)M, MERS-CoV, EC\textsubscript{50} 5.468 \(\mu\)M).58

3. KINASE INHIBITORS AS POTENTIAL ANTIVIRAL AGENTS

3.1. Inhibitors Targeting Abl and Src Kinases. Abl kinases are ubiquitous signaling kinases that play a role in cell proliferation, adhesion, and stress response. They are housekeeping proteins in all cell types. Several experiments have shown that Abl kinases are involved in various stages of the viral life cycle in viruses, including the Ebola virus,54,55 coxsackievirus,56 and vaccinia virus.57 Abl kinases, which are involved in viral entry and replication, have recently been identified as possible therapeutic targets for coronavirus diseases.

Dyall et al. screened approved or experimental drug libraries to identify potential therapeutics against SARS-CoV-1 and MERS-CoV.58 This led to the development of three kinase signaling pathway inhibitors: imatinib, dasatinib, and nilotinib. Imatinib and dasatinib were active against SARS-CoV-1 and MERS-CoV, while nilotinib was only active against SARS-CoV-1 (Figure 4). Both imatinib (4-[(4-methylpiperazin-1-yl)-methyl]-N-(4-methyl-3-[[4-(pyridin-3-yl)pyrimidin-2-yl]-phenyl]benzamide) and dasatinib (N-(2-chloro-6-methyl-phenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperaziny]-2-methyl-4-pyrimidinyl]amino]-5-thiazolecarboxamide monohydrate) inhibit SARS-CoV-1 and MERS-CoV with EC\textsubscript{50} values of 2.1–17.6 \(\mu\)M, though SARS-CoV-1 appeared to be sensitive to these kinase inhibitors as well. Dasatinib, for example, inhibited SARS-CoV-1 with a low micromolar EC\textsubscript{50} of 2.1 \(\mu\)M, while the EC\textsubscript{50} for inhibiting MERS-CoV was 5.4 \(\mu\)M. Imatinib, instead, needed a high concentration (EC\textsubscript{50} 9.23 \(\mu\)M) to inhibit SARS-CoV-1, despite having been confirmed to inhibit the Ebola virus, coxsackievirus B, and vaccinia virus with concentrations in the same range.4,58

Imatinib is an orally available Abl kinase inhibitor for chronic myeloid leukemia (CML) treatment.39 Dasatinib is an orally available, second generation Abl kinase inhibitor for CML and acute lymphoblastic leukemia (ALL).50

Nilotinib (4-methyl-N-([3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl]-3-[4-pyridin-3-ylpyrimidin-2-yl]-amino)benzamide), a structural analogy to imatinib, has been used to treat CML. It inhibited the SARS-CoV-1 replication in the micromolar range without compromising cell cytotoxicity but not significantly inhibiting the MERS-CoV (only 39%
inhibition). In Abl-expressing cells, nilotinib, rather than imatinib, effectively blocked Abl activity and proliferation.41,60–63

In the subsequent study, imatinib was discovered to be effective in preventing viral infection in its early stages for SARS-CoV-1 and MERS-CoV.64 It blocked viral entry and replication by preventing virions from fusing at the endosomal membrane. Further insights into mechanistic studies revealed the SARS-CoV-1 and MERS-CoV to rely on Abl2 kinase activity for viral entry but not on Abl1 kinase: inhibition of Abl2 kinase by imatinib blocks viral entry. Imatinib was previously found to inhibit the Ebola virus, poxvirus, and coronavirus.40,54,56

SH2 and SH3 domains in Abl2 kinase hold the protein in a dormant state.42 Since the substrate binds to either the SH2 or the SH3 domain, Abl2 may turn from its inactive to active state.42 Adenosine triphosphate (ATP) binding at the catalytic site and corresponding kinase activity are allowed by Abl2’s open, active conformation. It has been proposed that coronavirus infection increases Abl2 substrate binding, allowing Abl2 into an active state and phosphorylate downstream targets.65 Imatinib inhibited the kinases activity of Abl2 by preventing the phosphorylation of proteins in cells.

Since SARS-CoV-1 and SARS-CoV-2 have a high degree of genome sequence identity (80%), imatinib is predicted to inhibit SARS-CoV-2 as well. Zhao et al. utilized pseudotyped viruses with SARS-CoV-2 spike protein to study imatinib’s anti-SARS-CoV-2 activity in Caco-2 cells.66 At concentrations up to 10 μM, imatinib, on the other hand, did not affect SARS-CoV-2 entry or infection. This result supports the weak activity of imatinib in inhibiting SARS-CoV-1 replication in Vero cells (EC50 of 9.85 μM).58

Severe COVID-19 is characterized by ARDS triggered by enhanced proinflammatory cytokine production. Imatinib has immunomodulatory effects46,68 and inhibits cytokine receptor signaling (PDGFR, c-Kit, and CSF1R), potentially suppressing cytokine storms. As a result of its immunomodulatory effects, imatinib may display clinical benefits for COVID-19.

In contrast to Zhao et al., a recent preprint reported imatinib to effectively inhibit SARS-CoV-2 replication with an IC50 value of 130 nM.69 However, it was toxic in concentrations between 25 and 3.2 μM. For both SARS-CoV-1 and MERS-CoV virus fusion inhibition, imatinib’s antiviral efficacy was the same. Furthermore, imatinib binds to the SARS-CoV-2 spike protein’s receptor-binding domain (RBD) with a 2.32 μM affinity, meaning that imatinib did not specifically inhibit the SARS-CoV-2 RBD/ACE2 interaction. As a result, imatinib inhibited both cellular tyrosine kinase and viral fusion, preventing viral replication. Indeed, three clinical trials investigating the therapeutic efficacy of imatinib in COVID-19 patients are currently underway: NCT04394416 (The Netherlands), and NCT04357613 (France).

Galmerti et al. reported tyrosine kinase inhibitors (TKIs) to play a protective role against SARS-CoV-2 in patients with Ph+ ALL and CML.68 In Ph+ ALL and CML Italian cohorts, they found just a few cases of COVID-19. According to the evidence, the use of TKIs may be to account for the low infection rate. It was interesting to see that during treatment of patients with TKIs, such as imatinib or nilotinib, several “proimmune” genes such as CD28 and IFN-γ were induced, whereas the expression of anti-immune genes such as ARG-1, CEACAM1, and FUT4 was reduced.

The entry of the virus, which includes receptor binding, S glycoprotein modification, and proteolysis, is the first step in viral replication. Cathepsin L and the transmembrane serine protease 2 (TTSP) TMPRSS2 are playing crucial roles in viral entry. Cathepsin L mediates the proteolysis,70 while TMPRSS2 helps in the CoV S glycoprotein cleavage to enter the host cells.71 It was discovered that inhibiting cathepsin L prevented SARS-CoV-1 infection and that using a mixture of EST (a cathepsin inhibitor) and camostat (a serine protease inhibitor, Figure 4) prevented viral entry and replication completely. The study indicated that imatinib inhibits the functionality or action of TMPRSS2.72 On the other hand, Abl and ARG kinases have been linked to promoting the production of the endosomal protease cathepsin L in cancer cells.73 Thus, inhibiting cathepsin L in the context of viral replication by targeting these kinases may be a promising strategy.

3.2. Src Family Kinases. Src family kinases (SFKs), crucial modulators of signal transduction, are nonreceptor tyrosine kinases with nine members in the family: Src, Yes, Fyn, Fgr, Lck, Hck, Blk, Lyn, and Yrk. They control a variety of cellular signaling pathways that stimulate cell survival and motility. SFKs are important in the life cycle of a variety of viruses.73 Src kinases were involved in the vaccinia virus replication via activation of Abl kinases linked to virus actin-based motility. Different SFKs like Lyn, Fyn, c-Src, and Csk (dengue virus),44–70 hepatitis C virus (HCV)71), and c-Yes (West Nile virus [WNV])72 were implicated in the replication of the Flaviviridae family. De Wispelaere et al. reported that dasatinib and saracatinib (N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methyl-1-piperazinyl)-ethoxy]-5-[(tetrahydro-2H-pyran-4-yl)oxy]-4-quinoxalinamine) (Figure 4) inhibited the assembly of the dengue virus.76 The antiviral activity of these agents contributed to inhibiting SFKs, especially c-Src and Fyn. Saracatinib is a Phase III investigational dual kinase inhibitor that inhibits both Src and Bcr-Abl tyrosine kinases.

Shin et al. discovered that saracatinib inhibited MERS-CoV in Huh-7 cells at an early stage of its life cycle (EC50 of 2.9 M, CC50 of >50 μM).44 The authors hypothesized that saracatinib could inhibit MERS-CoV by inhibiting SFK signaling pathways. In a subsequent study, they identified the targets of saracatinib as Lyn and Fyn through a siRNA knock-down study. The study also showed that knocking out Lyn and Fyn resulted in a substantial reduction in viral load, implying that these kinases are needed for effective MERS-CoV replication. In Huh-7 cells, however, knockdown of Yes had little effect on MERS-CoV replication. The coadministration of saracatinib with gemcitabine (Figure 4), a chemotherapy medication for different types of cancers, showed a synergistic effect. Saracatinib also demonstrated broad antiviral activity against HCoV-229E and HCoV-OC43, with EC50 values of 2.4 and 5.1 μM, respectively.44

Sfc family kinases have also been shown to be potential molecular targets for HCV and dengue virus infection and replication. Kumar et al. discovered that the Src kinase (Csk) is a critical host kinase in dengue virus replication.75 Dengue virus RNA levels were suppressed when Csk expression was knocked down by siRNA or inhibitor, and dengue infection was greatly reduced when cells lacked Src kinases (Fyn, Src, and Yes). This data indicates that Src kinases are crucial players in dengue virus replication and assembly. Csk was identified to be hyperphosphorylated during virus infection, and inhibiting protein kinase A (PKA) prevented viral replication, implying that PKA phosphorylation of Csk is involved in the dengue virus life cycle. Chu and Yang discovered that the inhibition of Csk by dasatinib exhibits a potent inhibitory effect on dengue virus
Mechanistic studies demonstrated that dasatinib prevents the formation of infectious virus particles. Saracatinib and dasatinib were identified as effective agents against the dengue virus, and both of them targeted Fyn for RNA replication.\(^6\) The genetic knock-down study of Yes was found to prevent viral infection through inhibiting AP-mediated replication.\(^7\) Baricitinib (2 or 4 mg once daily) rendered it superior as an antiviral agent. In vitro studies demonstrated baricitinib’s antiviral properties, and therapy with baricitinib boosted the clinical results of COVID-19 patients. Baricitinib reduced the SARS-CoV-2 viral load by 30–40% in primary human liver spheroids at 400 and 500 nM concentrations, indicating antiviral activity.\(^8\) In human clinical trials with eFFECTive agents against the ecti-viral action against dengue and ebolaviruses in cultured cells.\(^7\) Sunitinib (N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide) and erlotinib (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine) for structures, see Figure 5) potentially suppressed AAK1 and GAK and showed antiviral activity.\(^8\) The gene silencing of AAK1 and GAK demonstrated their crucial role in viral entry and infection.\(^8\) Sunitinib and erlotinib were found to prevent viral infection through inhibiting AP-mediated intracellular membrane trafficking by AAK1 and GAK at the molecular level.\(^8\) In murine models of dengue and ebolaviruses, the drug combination sunitinib/erlotinib has been shown to minimize morbidity and mortality.\(^7\) However, the dosage required for inhibiting AAK1 and GAK by sunitinib and erlotinib would be much higher in COVID-19 patients.\(^8\) Sunitinib is an approved multitargeted kinase inhibitor used for renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor (GIST) treatment. Erlotinib is an EGFR tyrosine kinase inhibitor, which has been licensed by the FDA for the treatment of metastatic non-small cell lung cancer (NSCLC) and pancreatic cancer. Erlotinib is one of the World Health Organization’s Essential Medicines. Baricitinib (2-[1-ethylsulfonyl-3-[4-(7H-pyrrolo[2,3-d]-pyrimidin-4-yl]pyrazol-1-yl]azetidin-3-yl]acetonitrile) has recently been suggested as a promising inhibitor of SARS-CoV-2 activity (Figure S).\(^8\) Indeed, baricitinib showed a promising result for ARDS in COVID-19. In November 2020, the FDA approved baricitinib for emergency use authorization (EUA) status for COVID-19 care in hospitalized patients in combination with remdesivir.\(^8\) Baricitinib is an inhibitor of Janus kinase-1 (JAK-1) and JAK-2, and it has been licensed for treating rheumatoid arthritis and myelofibrosis.\(^8\) ACE2 has several regulators, among which AAK1 and G-associated kinase (GAK) are known for clathrin-mediated endocytosis. The mode of action of baricitinib on viral entry and controlling ARDS are indicated in Figure 6. Baricitinib not only reduced the ARDS in patients but also interrupted the passage and intracellular assembly of SARS-CoV-2 into the target cells by inhibiting the AAK1 signaling. Furthermore, the clinical dose of baricitinib (2 or 4 mg once daily) rendered it superior as an antiviral agent. In vitro studies demonstrated baricitinib’s antiviral properties, and therapy with baricitinib boosted the clinical results of COVID-19 patients. Baricitinib reduced the SARS-CoV-2 viral load by 30–40% in primary human liver spheroids at 400 and 500 nM concentrations, indicating antiviral activity.\(^9\) In human clinical trials with effectiveness in rheumatoid arthritis (RA) patients, baricitinib had a high oral bioavailability (79%) and was well tolerated.\(^9\) Furthermore, baricitinib is a unique candidate for the treatment of COVID-19 because of its favorable side-effect profile, low plasma protein binding, and negligible involvement with CYP enzymes. Baricitinib’s possible role in the treatment of COVID-19 patients has recently been highlighted. The study examined the safety and effectiveness of baricitinib in COVID-19 patients and found that it provided substantial clinical improvement with no infections or side effects 2 weeks after treatment. These findings indicated that using baricitinib for a brief period (1–2 weeks) was the best way to mitigate viral replication and an abnormal host inflammatory response when on the therapeutic dosage. Another study demonstrated baricitinib as a potential drug to reduce systematic inflammation caused by SARS-CoV-2 infection in rhesus macaques.\(^9\) Inflammation was minimized in animals given baricitinib. More specifically, baricitinib-treated animals had a rapid and potent inhibition of inflammation-related cytokines and chemokines. These data indicated the beneficial role of baricitinib as a potential candidate for the management of inflammation induced by SARS-CoV-2 infection.

The antiviral effect of baricitinib is being studied in several clinical trials either alone or combined with other antivirals for COVID-19 (https://clinicaltrials.gov/ct2/results?cond=Baricitinib) (see Table 2). The anti-SARS-CoV actions of baricitinib in conjunction with remdesivir are being studied in the Adaptive COVID-19 Treatment Trial (ACTT-2; NCT04401579). The FDA approved this combination in November 2020 for emergency use in hospitalized COVID/19 patients who need oxygen.\(^9\) Baricitinib is being studied as a monotherapy in the COV-BARRIER trial (NCT04421027). Also, baricitinib is proposed to interrupt the passage and intracellular assembly of SARS-CoV-2 into the target cells mediated by the ACE2 receptor.\(^9\)

3.4. AXL Kinase Inhibitors. AXL, a tyrosine kinase on the cell surface, controls cell replication, growth, differentiation, and immunity.\(^9\) Upon activation by its ligands such as vitamin-K-dependent protein growth-arrest-specific gene 6 (GAS 6), AXL stimulates various downstream signaling pathways that

Figure 5. NAK family inhibitors (sunitinib,\(^8\) erlotinib,\(^8\) and baricitinib\(^8\)) and AXL kinase inhibitor (gilteritinib: SARS-CoV-2, IC\(_{50}\) of 0.807 μM)\(^8\) for the treatment of coronavirus infection.
include RAS/ERK, PI3K-AKT-mTOR, MEK-ERK, NF-κB, JAK/STAT, and p38.99

For the Zika virus102 and the Ebola virus,103 AXL has been confirmed to serve as a viral entry factor/immune modulator. AXL a has crucial role in the relationship between the virus and the host. AXL facilitated virus entry and modulated the antiviral state of human Sertoli cells during Zika virus infection.7 AXL inhibition led to decreased suppressor of the cytokine signaling-1 (SOCS1) and SOCS3 proteins, increased expression of IFNγ, and reduced replication. In a recently published study, the authors discovered that AXL interacts with the SARS-CoV-2 S glycoprotein on the host cell membrane, allowing the virus to enter the cell.104 SARS-CoV-2 virus entry into pulmonary and bronchial epithelial cells was substantially reduced when AXL was knocked down in H1299 and A549 cells, indicating that AXL is needed for SARS-CoV-2 virus entry.

Recently, gilteritinib (6-ethyl-3-[3-methoxy-4-[4-(4-methyl-piperazin-1-yl)piperidin-1-yl]anilino]-5-(oxan-4-ylamino)-pyrazine-2-carboxamide) (Figure 5) was reported to inhibit the replication of SARS-CoV-2 with an IC50 value of 0.807 μM in cellular assays.39 The inhibition of AXL kinase, which is upstream of p38, led to gilteritinib’s anti-SARS-CoV-2 replication function. The use of bemcentinib, an AXL inhibitor, in the RECOVERY COVID-19 trial in the United Kingdom, backs up this argument. Gilteritinib is a tyrosine kinase inhibitor105 that has been licensed for the treatment of AML.

3.5. EGFR Signaling Pathway Inhibitors

The epidermal growth factor receptor (EGFR) is a prototypical tyrosine kinase (RTK) receptor. Activation of the EGFR signaling pathway

Figure 6. Baricitinib inhibits JAK1 and thereby prevents SARS-CoV-2 entry and ARD.

Table 2. List of Baricitinib Clinical Trials for the Treatment of COVID-19

clinical trial identifier and use	primary end point
NCT04345289, Phase III: Baricitinib, sarilumab, hydroxychloroquine (HQ), convalescent plasma, intravenous and subcutaneous placebo, or oral placebo were both included in this study	mortality due to any cause or the need for intrusive respiratory support
NCT04390464, Phase IV: baricitinib and ruxolitinib	composite end point’s time to occurrence: death, artificial breathing, ECMO, cardiovascular organ support, or renal failure
NCT04101579, Phase III: baricitinib + remdesivir compared with remdesivir alone	time to recovery
NCT04321993; (i) lopinavir/ritonavir; (ii) HQ; (iii) baricitinib; and (iv) sarilumab are the four arms of the study	clinical status of subject at day 15
NCT04456764, Observational: baricitinib or onartuzumab	mortality for all causes
NCT04320277, Phase III: baricitinib	percent of patients who need ICU admission
NCT0446147, HQ in combination with baricitinib, imatinib, or lopinavir/ritonavir	time to clinical improvement
NCT0446147, Phase II: baricitinib + HQ + imatinib, or lopinavir/ritonavir in the early stages	composite of death and mechanical ventilation
NCT04466206, Observational: relevant treatments, such as baricitinib, although not limited to it	need of invasive mechanical ventilation
NCT04493051, Phase II: baricitinib	Baricitinib’s safety (Phase II) and effectiveness (Phase II and III)
NCT0440232, Phase II/III: baricitinib	percentage of patients who need invasive mechanical ventilation or who die response to treatment: absence of moderate to severe oxygenation impairment
NCT0473044, Phase II: baricitinib	mortality due to any cause or the need for intrusive respiratory support
NCT04199798, Phase II: baricitinib	composite of death and mechanical ventilation
NCT04185614, Phase II/III: baricitinib + lopinavir/ritonavir	need of invasive mechanical ventilation
NCT04393051, Phase II: baricitinib	Baricitinib’s safety (Phase II) and effectiveness (Phase II and III)
NCT0440232, Phase II/III: baricitinib	percentage of patients who need invasive mechanical ventilation or who die response to treatment: absence of moderate to severe oxygenation impairment
NCT0473044, Phase II: baricitinib	mortality due to any cause or the need for intrusive respiratory support
NCT04199798, Phase II: baricitinib	composite of death and mechanical ventilation
NCT04185614, Phase II/III: baricitinib + lopinavir/ritonavir	need of invasive mechanical ventilation
NCT04362943, Observational: baricitinib or anakinra	mortality due to any cause or the need for intrusive respiratory support
NCT04365764, Observational: specific therapies, such as baricitinib, but not limited to it	composite of death and mechanical ventilation
NCT04320277, Phase III: baricitinib	time to clinical improvement
NCT0446147, Phase II: baricitinib + HQ + imatinib, or lopinavir/ritonavir	composite of death and mechanical ventilation
NCT04466206, Observational: relevant treatments, such as baricitinib, although not limited to it	need of invasive mechanical ventilation
NCT04362943, Observational: baricitinib or anakinra	mortality due to any cause or the need for intrusive respiratory support
NCT04365764, Observational: specific therapies, such as baricitinib, but not limited to it	time to clinical improvement
NCT04320277, Phase III: baricitinib	composite of death and mechanical ventilation
NCT0446147, Phase II: baricitinib + HQ + imatinib, or lopinavir/ritonavir	need of invasive mechanical ventilation
NCT04466206, Observational: relevant treatments, such as baricitinib, although not limited to it	time to clinical improvement
NCT04362943, Observational: baricitinib or anakinra	mortality due to any cause or the need for intrusive respiratory support
NCT04365764, Observational: specific therapies, such as baricitinib, but not limited to it	time to clinical improvement

For the Zika virus102 and the Ebola virus,103 AXL has been confirmed to serve as a viral entry factor/immune modulator. AXL a has crucial role in the relationship between the virus and the host. AXL facilitated virus entry and modulated the antiviral state of human Sertoli cells during Zika virus infection.7 AXL inhibition led to decreased suppressor of the cytokine signaling-1 (SOCS1) and SOCS3 proteins, increased expression of IFNγ, and reduced replication. In a recently published study, the authors discovered that AXL interacts with the SARS-CoV-2 S glycoprotein on the host cell membrane, allowing the virus to enter the cell.104 SARS-CoV-2 virus entry into pulmonary and bronchial epithelial cells was substantially reduced when AXL
influences a range of cell functions, including cell proliferation, survival, growth, and development. The EGFR signaling pathway has been identified as one of the crucial players in cancer pathogenesis and has also been linked to various viruses, such as the spread and mortality of the vaccinia virus and the process of entry for influenza A, HCV, and Epstein–Barr viruses.

EGFR is a cofactor for HCV entry into human host cells. Activation of EGFR signaling leads to suppressed interferon signaling in respiratory virus diseases (influenza and rhinovirus). A loss of functional STAT1 has been associated with the upregulation of EGFR, which may indirectly activate STAT3 constitutively. As a result, targeting EGFR as an approach to managing COVID-19 could be a viable option. A synergized antiviral reaction against HCV was observed when a possible EGFR inhibitor, erlotinib, was combined with IFN-1 therapy. The reduction of IFN1-induced STAT3 by enhancing SOCS3 expression was the mode of the action of erlotinib.

Osimertinib (N-(2-[(2-(dimethylamino)ethyl)(methyl)amino]-4-methoxy-5-[(4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl)amino]phenyl)prop-2-enamide) was reported to be an effective inhibitor of SARS-CoV-2 S protein (EC50 3.98 μM) (Figure 7). It rescued 60% of the SARS-CoV-2 cytopathogenic effect (CPE), though cytotoxicity limited the therapeutic window. Osimertinib is an EGFR inhibitor that has been approved for the treatment of NSCLC.
3.6. PI3K/Akt/mTOR Pathway Inhibitors. GFRs integrate and regulate several signaling processes inside the cell. GFR signaling (1) activates the RAF/MEK/ERK MAPK signaling cascade and (2) incorporates (via phosphatidylinositol 3-kinase [PI3K] protein kinase B [AKT]) into mTORC1 signaling to control proliferation. Klann et al. recently confirmed that many EGFR inhibitors inhibited the replication of SARS-CoV-2.115 They used the colon epithelial cell line Caco-2, which is extremely permissive for the virus, to create a SARS-CoV-2-infected in vitro cell culture model.116,117 The cellular phosphoprotein networks revealed extensive cellular signaling pathway rearrangements after infection with SARS-CoV-2, especially GFR signaling. Pictilisib (IC_{50} 2.58 \mu M), a PI3K inhibitor, and omipalisib (IC_{50} 0.014 \mu M), a dual PI3K/mTOR inhibitor, inhibited viral replication in cells115 (Figure 7).

Sorafenib (IC_{50} 4.85 \mu M) and RO5126766 (IC_{50} 0.6 \mu M), a dual RAF/MEK inhibitor, both blocked viral replication (Figure 7). During infection and viral replication, both compounds blocked cytopathic effects. Lonaﬁnib, a RAS inhibitor, inhibited the replication of SARS-CoV-2 (IC_{50} value of 4.99 \mu M) (Figure 7). Antiviral activity of these drugs was reported in U937 cells infected with SARS-CoV-2 at clinically achievable concentrations,118–123 highlighting the importance of GFR signaling during SARS-CoV-2 infection. Before the MERS-CoV infection, cells treated with sorafenib, a RAF kinase inhibitor approved for primary kidney cancer treatment, demonstrated good inhibition of the early phases of replication. EGFR-mediated STAT3 activation is controlled by the RAS/RAF/MAPK and PI3K pathways, and inhibition of these pathways will potentiate IFN-1 and anti-SARS-CoV-2 activity in a synergistic manner. GFR signaling is also implicated in SARS-CoV-1-induced ﬁbrosis.107,109,115,116,124,125 An inhibitor, omipalisib, has been shown to slow ﬁbrosis development in patients with idiopathic pulmonary ﬁbrosis, which may be related to the deregulation of GFR signaling pathways in coronavirus patients’ lung ﬁbrosis.126

Several unrelated viruses activate the PI3K/Akt/mTOR pathway to enhance their replication.127 For example, HCV124,129 and WNV utilize this pathway in their life cycle and control apoptosis. Everolimus (12-(dihydroxy-12-[2(R)-1-[(1S,3R,4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]-propan-2-yl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxo-4-azatricyclo[30.3.1.0]{16,24,26,28}-tetraene-2,3,10,14,20-pentone) (Figure 7), an approved mTOR inhibitor, inhibited the replication of SARS-CoV-2 (IC_{50} < 0.08 \mu M) (Vero E6), IC_{50} 0.032 \mu M (A549-ACE2);125 apilimod, SARS-CoV-2: EC_{50} 2.16 \mu M.133

Figure 8. CDK inhibitors as antiviral agents. Dinaciclib: SARS-CoV-2, IC_{50} 0.127 \mu M (Vero E6), IC_{50} 0.032 \mu M (A549-ACE2);135 apilimod, SARS-CoV-2: EC_{50} 2.16 \mu M.133
the activity of the G1-phase CDK4.\(^{336}\) Several CDK inhibitors such as dinaciclib (an inhibitor of CDK1/2/5/9, Phase III), seliciclib (an inhibitor of CDK2/5, Phase II), alvocidip (an inhibitor of CDK9, Phase II), and PHA-690509 (CDK2 inhibitor, Phase I) displayed a broad spectral antiviral activity against HIV-1,\(^{337,338}\) in influenza A virus,\(^{339}\) and Zika (for structures, see Figure 8).\(^{340}\)

Alvocidip (2-(2-chlorophenyl)-5,7-dihydroxy-8-[(3S,4R)-3-hydroxy-1-methyl-4-piperidinyl]-4-chromone) (Figure 8), a flavonoid alkoaid CDK9 kinase inhibitor and commonly known as flavopiridol, showed activity against influenza A virus, in which CDK9 mediated the activity of RdRP.\(^{338}\) Palbociclib (6-acetyl-8-cyclopentyl-5-methyl-2-[(5-1-piperazinyl)-2-pyridinyl]amino]pyrido[2,3-d]pyrimidin-7(8H)-one) (Figure 8), a licensed inhibitor of CDK4/6, was able to inhibit HSV-1, and HSV-1 replication in vitro, possibly through a blockade of cellular protein phosphorylation.\(^{341}\)

SARS-CoV-2 significantly reduced CDK1/2 behaviors during infection, resulting in an S/G2 phase arrest, close to infectious bronchitis virus (IBV),\(^{342,343}\) and other RNA viruses,\(^{344,345}\) according to a recent report. This indicates that the SARS-CoV-2 virus can control the cell cycle to boost the viral life cycle.\(^{146}\) Dinaciclib is being tested in clinical studies for different types of variety of cancer. Recently, dinaciclib has shown strong anti-SARS-CoV-2 activity.\(^{339}\) The antiviral activity of dinaciclib in two cell lines (Vero E6 and A549-ACE2 cells) infected with SARS-CoV-2 showed IC\(_{50}\) 0.127 \(\mu\)M and IC\(_{50}\) 0.032 \(\mu\)M, respectively.\(^{339}\) The phosphatidylinositol enzyme activities of PIK3CQ, PLCB3, and PIKFYVE were also highlighted in the same study showing that the required balance of phosphatidylinositol species may play a role.

The pharmacological inhibition of PIKFYVE, an FYVE finger-containing phosphoinositide kinase, by its inhibitor apilimod \((N\,-\,(E\,-\,(3\,-\text{-methylphenyl})\,\text{methyleneamino})\,-\,6\,-\text{morpholin-4-yl-2-(2-pyridin-2-ylethoxy)pyrimidin-4-amine})\) (Figure 8) exhibited strong anti-SARS-CoV-2 activity in two cell lines (Vero E6, IC\(_{50}\) < 0.08 \(\mu\)M; A549-ACE2, IC\(_{50}\) 0.007 \(\mu\)M). Apilimod was first discovered as an inhibitor of IL-12 and IL-23, but it was recently repurposed for Ebola and Lassa virus fever.\(^{147,148}\)

Interestingly, abemaciclib \((N\,-\,(5\,-\,(4\,-\text{-ethyl-1-piperazinyl})\,-\text{methyl})\,-\,2\,-\text{pyridinyl})\,-\,5\,-\text{fluoro-4-}[4\,-\text{fluoro-2-methyl-1-(1-methyl-1H-benzoimidazol-6-yl)-2-pyrimidinamine})\) (Figure 8) showed specific inhibition of SARS-CoV-2 S \((\text{EC}_{50}\) in Calu3 cell lines).\(^{341}\) The SARS-CoV-2 CPE was reduced by 60% using this compound.\(^{339}\) Abemaciclib is a selective CDK4/6 inhibitor that has been used for the treatment of metastatic breast cancer.\(^{330,331}\) In general, CDK inhibitors block viral genome replication in host cells as part of their antiviral mechanism of action.\(^{3}\) Abemaciclib, on the other hand, inhibits coronavirus CPE by blocking cell entry, meaning that this compound may be optimized as an active SARS-CoV-2 entry inhibitor.

3.8. Casein Kinase 2 Inhibitors. Casein kinase 2 (CK2/CSNK2) regulates various cellular processes and is essential for the life cycle of several unrelated viruses such as vesicular stomatitis virus (VSV), HIV, HCV, human papillomavirus (HPV), and HSV-1.\(^{342,345}\) Recent shreds of evidence suggest that CK2 is involved in various mechanisms to downregulate the potential of cells to generate IFN-1 in response to viral infection.\(^{344}\) Thus, the pharmacological intervention of CK2 has been considered a potential strategy for antiviral treatment. CK2 is involved in the development of actin tails during vaccinia infection, which allows the virus to travel efficiently from cell to cell.\(^{335}\) The inhibition of CK2 by its selective inhibitor TBBz (at 8.0 \(\mu\)M concentration) impaired the vaccinia virus spread and actin tail formation. According to a recent analysis, the SARS-CoV-2 nucleocapsid (N) directly targets CK2, and they both colocalize at the filopodia protrusions, which may be essential for virus egress and rapid cell-to-cell spread.\(^{39}\)

The inhibition of CK2 by silmitasertib \((5\,-\,(3\,-\text{-chlorophenyl})\,-\text{benzo[c][2,6]naphthyridine-8-carboxylic acid})\) displayed robust antiviral activity \((\text{IC}_{50}\) 1.28 \(\mu\)M) (Figure 9), suggesting the significant role of CK2 in the life cycle of SARS-CoV-2. Silmitasertib is being tested in clinical and preclinical trials to treat cholangiocarcinoma and other cancers. Recently, Phase II clinical studies of silmitasertib have been initiated for the management of COVID-19 (https://www.scienceboard.net/index.aspx?sec=sup&sub=can&pg=dis&itemID=16455).

The recent clinical trial of intravenous CIGB-325 (formerly known as CIGB-300), a peptidic inhibitor of CK2, in patients with COVID-19 (https://covid-19.cochrane.org/studies/crs-13844822, code: IG/CGB300I/CV/2001) investigated the function of CK2 in coronavirus infection.\(^{336}\) Twenty patients were randomly allocated to receive either CIGB-325 (2.5 mg/kg/day for 5 days) plus standard-of-care (10 patients) or standard-of-care alone (10 patients). In COVID-19 patients with pneumonia on day 7 received a mixture of CIGB-325 and standard-of-care enhanced chest computed tomography (CT). This study proposed that inhibiting CK2 could be a good way to treat COVID-19.

For the treatment of COVID-19, a significant number of CK2 inhibitors must be investigated. For example, quercetin and enzymatically modified isoquercitrin (EMIQ) have been suggested as potential candidates.\(^{344,345}\)

4. KINASE PATHWAY INHIBITORS AS ANTI-INFLAMMATORY, CYTOKINE-SUPPRESSIVE, OR ANTIFIBROTIC AGENTS IN COVID-19

4.1. Inhibitors of the p38 MAPK Signaling Pathway. The p38 MAPK signaling pathway is activated by various factors, such as environmental stress, pathogenic infection, and proinflammatory cytokines, and is involved in cell differentiation, apoptosis, and autophagy. Several pathogenic viruses, including SARS-CoV-1, DENV, and IBA activate the p38 MAPK, which results in unregulated inflammatory responses linked to serious diseases. Therefore, the p38 MAPK pathway

![Figure 9. CK2 inhibitors for SARS-CoV-2 (silmitasertib: IC\(_{50}\) 1.28 \(\mu\)M),\(^{39}\) vaccinia virus (4,5,6,7-tetabromo-1H-benzimidazole (TBBz)),\(^{347}\) and quercetin.](image-url)
could be used to regulate proinflammatory cytokine production caused by multiple viral infections.158-160 The reason for death in COVID-19 patients mainly occurs due to the overwhelming inflammatory effect that leads to ARDS and myocarditis.161 The p38 MAPK pathway has previously been linked to the inflammatory response in animal models of acute lung injury and myocarditis.160,163 The p38 MAPK pathway is activated, which enhances the synthesis of cytokines including IL-6, TNF-\(\alpha\), and IFN-\(\gamma\).164 Therefore, it has been proposed that the upregulation of the p38 MAPK pathway may be one of the causes of inflammatory injury in SARS-CoV-2 patients.

SARS-CoV-2 uses ACE2 to enter host cells, much as SARS-CoV-1 did.165 Studies revealed that, following SARS-CoV-1 infection, ACE2 expression is reduced in lungs, leading to disruption of the renin-angiotensin system.166 ACE2 transforms angiotensin II (Ang1-8) to angiotensin I (Ang1-7), which activates the Mas receptor and induces the anti-inflammatory, antiproliferogenic, antifibrogenic, and vasodilation effects by downregulation of p38 MAPK activation (Figure 10).167 Angiotensin II activation of p38 MAPK, on the other hand, indicates proinflammatory, provasoconstrictive, and prothrombotic action. The p38 MAPK network is complicated, and it interacts with several signaling pathways and proinflammatory cytokines that cause ARDS and organ damage in SARS-CoV-1 and SARS-CoV-2 patients.168-170

It has been proposed that the viral entry suppresses the ACE2 activity to produce Ang1-7, leading to an increased expression of inflammatory responses by activating the p38 MAPK pathway in the lungs and heart. Additionally, p38 MAPK activation...
upregulates ADAM17, reducing the supply of ACE2 activity even further. Therefore, ACE2 inhibitors or ACE blockers that balance the renin-angiotensin system may be useful for COVID-19 management.157 Indeed, proinflammatory AngII levels were linearly correlated with the degree of lung damage and viral load in a recent study of COVID-19 patients, implying a RAS deficiency in the pathogenesis of COVID-19.172,173 Bouhaddou et al. recently investigated whether the p38 MAPK pathway was involved in the formation of cytokines in SARS-CoV-2-infected ACE2-A549 cells that were treated with the p38 inhibitor SB203580 (4-(4-fluorophenyl)-2-(4-methyl-sulfinylphenyl)-5-(4-pyridyl)-imidazole, Figure 11).39 In a dose-dependent way, the inhibitor reduced the mRNA of cytokines such as IL-6, TNF, and others that were elevated during infection. Interestingly, this p38 inhibition led to reducing SARS-CoV-2 replication without significant cellular cytotoxicity. In an ELISA study of supernatant cells, SB203580 inhibited the expression of IL-6, CXCL8, CCL20, and CCL2. An anti-SARS-CoV-2 N protein antibody-based assay confirmed SB203580s inhibitory activity in viral reduction. They also reported that SARS-CoV-2 infection caused cell cycle arrest between the S and G2 phases, implying that p38 activity and cell cycle arrest are systematically related during infection. At a 10 μM concentration, SB203580 prevented MERS-CoV by 45% through p38/MAPK.32 SB203580 showed antiviral activity against HCoV-229E and, at 4 μM concentration, reduced the viral RNA by ~60%.32

In ACE2-A549 cells, the MAPK signaling pathway dependency of SARS-CoV-2 infection was investigated during viral infection. Bouhaddou et al. found that SARS-CoV-2 infection promotes different p38 MAPK signals in ACE2-A549 cells.39 Effective viral inhibitory activities were identified for gilteritinib (IC\textsubscript{50} 0.807 μM), AXL inhibitor;39 ralimetinib (IC\textsubscript{50} 0.873 μM), MAPK11 (p38α) and MAPK14 (p38β) inhibitor;39 MAPK13-IN-1 (IC\textsubscript{50} 4.63 μM), MAPK13 (p38-δ) inhibitor;39 and ARRY-797 (IC\textsubscript{50} 0.913 μM), an inhibitor of MAPK14. 20(S)-Ginsenoside is a plant-derived glycoside that inhibits MAPK. It has antiviral activity against mCoV in vitro, with an IC\textsubscript{50} of 10 μM. 20(S)-Ginsenoside inhibits mCoV by suppressing the p38/JNK/MAPK signaling pathway.174

The presence of another small molecule AXL inhibitor, bemcentinib, in the RECOVERY COVID-19 Phase II clinical trial COVID-19 patients backed up gilteritinib’s antiviral efficacy.175 Bemcentinib was previously reported to show potent antiviral activity against Ebola and Zika virus in preclinical studies.176,177 Ralimetinib is being tested in Phase II clinical trials for ovarian cancer,178 and ARRY-797 is being tested in Phase III clinical trials for cardiomyopathy, a degenerative cardiovascular disease.

Some previous reports revealed that p38 is directly involved in the replication of respiratory viruses like SARS-CoV-1 and H5N1.179–181 p38 MAPK signaling induces the receptor-mediated endocytosis for the viral entry,182 and its activation is also employed in the endocytosis of ACE2.183–185 These findings indicated that SARS-CoV-2 may use a related mechanism to activate p38 MAPK directly. Indeed, SARS-CoV-2 triggered p38 MAPK in vitro, according to a recent report.186 Treatment of SARS-CoV-1 infected mice with a p38 inhibitor resulted in an 80% survival rate in the treatment community relative to the control group in a preclinical trial (0%).160
4.2. JAK-STAT Signaling Pathway Inhibitors. When cells detect a viral attack, they activate numerous downstream interferon regulatory factors, which cause IFN-1, IFN-II, and IFN-III to be generated. IFNs attach to receptors on nearby cells, signaling them to be on the lookout for a viral threat. This IFN receptor engagement activates various members of Janus kinases and the signal transducers and activators of transcriptions (JAK-STAT) signaling pathway families. The JAK-STAT signaling pathway is one of the main regulatory cell signaling cascades for many cytokines and growth factors. The nonreceptor JAK family includes JAK1, JAK2, JAK3, and tyrosine kinase 2 (Tyk2) proteins. The STAT family comprises STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. The JAK-STAT signaling cascade regulates cell growth and differentiation, oxidative stress, and immune modulation, among other biological functions (Figure 12).

The JAK-STAT signaling pathway has been unraveled in many DNA and RNA viruses. The interaction of HCV protein with JAK1 through its proline-rich motif is necessary for the development of infectious viruses, indicating that JAK1’s function in the HCV life cycle is critical. The JAK-STAT signaling pathway is one of the main regulatory cell signaling cascades for many cytokines and growth factors. The nonreceptor JAK family includes JAK1, JAK2, JAK3, and tyrosine kinase 2 (Tyk2) proteins. The STAT family comprises STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. The JAK-STAT signaling cascade regulates cell growth and differentiation, oxidative stress, and immune modulation, among other biological functions (Figure 12).

The JAK-STAT signaling pathway has been unraveled in many DNA and RNA viruses. The interaction of HCV protein with JAK1 through its proline-rich motif is necessary for the development of infectious viruses, indicating that JAK1’s function in the HCV life cycle is critical. The JAK-STAT signaling pathway is crucial for the HIV replication via the stimulation of IL-2 by T cells activation in T-lymphocytes. Coronavirus utilizes a variety of mechanisms to hamper IFN production and response. For example, SARS-CoV-1 NSP1 and ORF6 are the main factors that utilize multiplication to measure IFN production and response. As a result, the antiviral JAK1-STAT1 signaling pathway response is inhibited while STAT3 is activated in a compensating manner. STAT3 is a receptor for a harmful IL-6 to stimulate TGF-1, which may show a crucial role in pulmonary fibrosis development observed in COVID-19 patients.

Several studies have shown that, in patients with serious COVID-19 infection, the level of cytokines is elevated. These include IL-1, IL-2, L-6, IL-7, IL-10, TNF-α, granulocyte colony-stimulating hormone, interferon-inducible protein-1α, MCP-1, and MIP-1α. Cytokines have crucial roles in ARDS development, leading to multiple organ failure and even death in patients with COVID-19. This suggests that blocking the cytokine storm through the JAK-STAT signaling cascade may be a potential approach to enhance COVID-19 clinical management techniques currently in use. Indeed, several clinical trials are underway investigating JAK-STAT signaling pathway inhibitors in patients with COVID-19. Inflammation-related disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis are all treated with JAK inhibitors. Selected examples are ruxolitinib, baricitinib, tofacitinib, fedratinib, occlacitinib, and upatacitinib.

The preservation of JAK1-STAT1 function is one of the first considerations in treating SARS-CoV-2 infection (Figure 13). The virus works by delaying an antiviral reaction while hijacking cellular processes for multiplication. If the infection is identified early, however, using IFN-1 to stimulate JAK1 for the antiviral response may be a viable approach. On the other hand, a delay in IFN-1 treatment would fail to suppress the viral infection and induce cytokines, leading to fatal pneumonia. Since the upper respiratory tract is the main site for viral replication, mucosal therapies of IFN-1 were suggested as a way of preventing SARS-CoV-2. Meng et al. found that using IFN-1 nasal drops in combination with thymosin 1, an immune stimulator, prevented symptoms in over 500 high-risk healthcare...
workers who came into contact with SARS-CoV-2 affected patients with COVID-19 pneumonia. Studies have suggested that the H2-mediated antiviral effect could reduce the mortality rate of patients with COVID-19. For example, histamine antagonists may promote the STAT1 activation and IFN response. Indeed, the administration of famotidine (Figure 14), a histamine H2 receptor blocker, was correlated with a 2-fold decrease in clinical worsening leading to intubation or death in COVID-19 patients. However, it did not show any direct antiviral activity in vitro in Vero E6 cells, although computational studies suggested that famotidine could directly bind to the SARS-CoV-2 NSP5.

Ivermectin is an antiparasitic and antiviral drug with a wide range of action. It showed antiviral activity against distinct positive-sense single-strand RNA viruses, which include SARS-CoV-2. With an IC50 of 2.2–2.8 μM, ivermectin (Figure 14) inhibited SARS-CoV-2 in the cellular study, making it a possible candidate for the COVID-19 drug repurposing approach. Authors claimed that ivermectin blocked the nuclear transport of viral proteins mediated by KPNA/KPNB1. On the other hand, ivermectin inhibits STAT3 and IL-6 production by inhibiting p21 activated kinase (PAK1), an oncogenic serine-threonine kinase.

Aberrantly activated STAT3 can also be controlled by regulation of endogenous inhibitor PIA3. Some inhibitors like curcumin and resveratrol have shown to be promising in suppressing the constitutive activity of STAT3 through upregulation of PIA3. However, they did not show any effect in any randomized, placebo-controlled clinical trials, although both have been widely used for many indications.

Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperdin-1-yl]-3-oxopropanenitrile) (Figure 15) is an orally available JAK inhibitor that is approved as an anti-inflammatory agent to treat RA, an autoimmune disease. It inhibits JAK3 and TYK2 (Figure 13) with an EC50 of less than 5 nM, suppressing inflammatory cytokines like IL-2, IL-4, IL-6, and IL-7 that are linked to RA. Tofacitinib has a decent pharmacokinetic profile, with 74% oral bioavailability and a half-life of 2.3–3.1 h. In RA patients, tofacitinib showed a consistent safety profile and efficacy. However, there is a risk of herpes zoster, cellulitis infections, and thrombosis with the use of tofacitinib.

The study suggested that tofacitinib therapy can be continued in patients suffering from SARS-CoV-2, but it was not shown that tofacitinib helped patients recover from COVID-19 in this situation. Several clinical trials have been started to see how it will help with COVID-19 (see, for example, in Table 3). Another report proposed the selective JAK2 inhibitor fedratinib (N-tert-butyl-3-[5-methyl-2-[4-(2-pyrrolidin-1-yl-ethoxy)-phenylamino]-pyrimidin-4-ylamino]-benzenesulfonamide) (Figures 13 and 15) that has been accepted for myelofibrosis as a possible candidate in COVID-19 management to suppress TH17-associated cytokine activation.
Table 3. Clinical Trials of Tofacitinib for the Management of COVID-19

clinical trial identifier and use	primary end point
NCT04412252, Phase II: tofacitinib	using an ordinal scale to assess clinical condition
NCT04390061, Phase II: tofacitinib plus hydroxychloroquine versus hydroxychloroquine	mechanical graft-versus-host disease
NCT04415151, Phase II: tofacitinib	disease severity
NCT0432042, Phase II: tofacitinib	rates of artificial ventilation, ICU entry, mortality, and adverse events in patients

TH17 type responses are mediated by several cytokines linked to extreme COVID-19 patients, and TH17 cells themselves produce IL-17 and GM-CSF. It was found that murine TH17 cells treated with fedratinib showed decreased expression of IL-17, and therefore, this can be promising to prevent the outcomes of TH17-associated cytokine storm in COVID-19 patients.

Ruxolitinib ((3R)-3-cyclopropyl-3-[4-(7H-pyrrolo[2,3-d]-pyrimidin-4-yl)pyrazol-1-yl]propanenitrile) (Figures 13 and 15), is an orally available medication that suppresses the elevated levels of cytokine production associated with myelofibrosis, polycythemia vera, and acute graft-versus-host disease. Ruxolitinib was demonstrated to inhibit HIV-1 virus replication in lymphocytes and macrophages by suppressing a range of cytokines like IL-β, IL-2, IL-5, IL-6, IL-7, IL-13, IL-15, and IFNG. In peripheral blood mononuclear cells, it inhibits the phosphorylation of STAT3 by IL-6 and the development of monocyte chemoattractant protein-1.218 In animal studies, oral administration of ruxolitinib was found to be involved in cytokine suppression. The antiviral potency of ruxolitinib also proved to be effective against Epstein–Barr (EBV) infection.219,220 Mechanistically, ruxolitinib inhibited the EBV-infected proliferation and reduced cytokines by inhibition of STAT3.221,222 Since ruxolitinib is a powerful candidate for the diseases associated with the hyperimmune syndrome, its efficacy has been employed in COVID-19 patients. As a result, when compared to the control group, patients who obtained ruxolitinib plus standard of care had a quicker clinical development and no major side effects.223 At least 20 clinical trials evaluating the effectiveness of ruxolitinib in patients with COVID-19 are currently underway. Few studies published results revealing its potential to overcome ARD in patients.224

COVID-19 patients have been reported to be vulnerable to bacterial infections.225 Since the JAK-STAT pathway mediates signal transduction of type 1 IFNs and is also a player in suppressing virus replication and infection at the early stages, JAK inhibitors in treating COVID-19 patients may have an elevated risk of bacterial infections.227,228 Inhibition of the JAK signaling pathway can thus result in suppression of the antiviral responses mediated by type 1 IFNs through the JAK-STAT pathway. Indeed, some experiments demonstrated that patients taking JAK inhibitors have a higher risk of infection.228,229

The most frequent side effects identified in patients treated with ruxolitinib and baricitinib, respectively, were urinary tract infections and upper respiratory tract infections. JAK inhibitors have also been linked to an increased risk of viral infections, such as herpes virus reactivation infection.232 A recent study reported the development of hematologic toxicity in the treatment of ruxolitinib in two patients with COVID-19: one developed soft-tissue infection, and the other one developed an infection associated with herpes labialis. These severe drug reactions led to the suspension of the ruxolitinib treatment in both cases.233 While type 1 IFNs play an important role in the antibacterial and antiviral responses, their role in coronavirus infections has yet to be fully understood.

In animal models of MERS-CoV infection, type 1 IFNs were shown to be useful during the early stages of infection in some trials. However, it was not advantageous in the later stages because it raised the risk of death.234 Another research study found that IFNα and type II IFN (TNF) signaling were elevated in patients with SARS-CoV-1 infection who experienced hypoxemia and died but lower in those who survived after a comparatively mild SARS illness.235

The SARS-CoV-2 infection resulted in low IFN expression but substantially improved chemotactic and inflammatory responses, including CCL2, CCL8, IL-6, IL-1 β, and IL1RA, according to a recent review. SARS-CoV-2 infection in patients inhibits IFN-mediated immune cell recruitment and promotion of IFN-stimulated genes.236

The SARS-CoV-2 entry receptor ACE is also an interferon-stimulated gene (ISG) that is primarily expressed in human airway epithelial cells.237 All of these findings led to the suggestion that further research is needed to classify IFNs in response to SARS-CoV-2 infection, implying that the COVID-19 control strategy targeting JAK inhibition can still be used. It is also possible that selective JAK2 inhibition (e.g., fedratinib) or JAK2 and JAK3 inhibition (e.g., tofacitinib) will be advantageous since they would not interfere with JAK-type 1 IFN-mediated antiviral and bactericidal immunity.238,239

4.3. The Signaling Pathway of Glycogen Synthase Kinase 3 (GSK-3). Glycogen synthase kinase 3 exists in GSK-3α and GSK-3β isoforms. The kinase domains of the isoforms have a high degree of sequence similarity (98%) between them.240 It plays a role in metabolism, inflammatory reaction, and modulation of innate immunity.241 Therefore, targeting GSK-3 has been linked to treating various diseases like diabetes, neurodegenerative disorders, different types of cancer, and bipolar disorders.242

GSK-3 can mediate the expression of other genes by transcription factors, including c-Jun, CREB, STAT3, C/EBP, NFAT, NF-B, and p53. IL-1, IL-16,243 IL-17, IL-18,244 IL-23,245 IL-12, and IFN-γ246 chemokines IL-8,244 C–C motif chemokine ligands 2,246 3, 4 and 12,247 and C–X–C motif chemokine ligands 1, 2, 5, and 10248 are all positive regulators of GSK-3.

In comparison to the MAPK, PI3K, PKC, and Wnt/-catenin signaling pathways, GSK 3 is a lesser-known signaling pathway in the virology field. Recent research suggests that GSK-3 can play a crucial role in viral replication, replication, and pathogenesis.249,250 Also, GSK-3 activation is linked to a reduction in host immunity and antioxidant response. The GSK-3-associated signals have been employed in the entry, replication, and egress of various unrelated viruses.251 GSK-3 has been reported to be involved in the phosphorylation of occludin at Ser341, which enhances the binding and entry of HCV.252,253 GSK-3β, a substrate for AKT, has been identified as one of the host factors in influenza virus entry.254,255 The overexpression of GSK-3β has been associated with HCV entry.256 In HIV-1 infected T cells and monocytic cell lines, the upregulation of GSK-3β has been identified.257 Coxsackievirus B3 (CVB3) infection induced GSK-3 expression in HeLa cell lines and a mouse model, resulting in virus-driven cytopathic effects and apoptosis.258

GSK-3 has been investigated as a possible mediator of HCV virion assembly and release. As a result, blocking GSK-3
Drug (Brand Name)	Status	Kinases as Targets	Original Use	Repurposing Benefits in Viral Infections
Imatinib (Gleevec)	FDA approved	Abl (Abl-1, Abl-2) kinase	Chronic myeloid leukemia	SARS-CoV-1,58 MERS-CoV58 SARS-CoV-2,58 ebolavirus,58 poxvirus,58 coronaviruses10 antiviral, anti-inflammatory, immunomodulatory/cytokine suppression, antifibrotic
Dasatinib (Sprycel)	FDA approved	Abl (Abl-1, Abl-2) kinase, SFKs (FYN, SRC, YES), CSK	Chronic myeloid leukemia	SARS-CoV-1,58 MERS-CoV165 dengue virus165 antiviral, anti-inflammatory, cytokine suppression, antifibrotic
Nilotinib (Tasigna)	FDA approved	Abl (Abl-1, Abl-2) kinase	Chronic myeloid leukemia, idioopathic pulmonary fibrosis	SARS-CoV-1,58 MERS-CoV168 dengue virus168 MERS-CoV168 hCoV-229E,168 hCoV-OC43168 antiviral, antifibrotic
Sunitinib (Sutent)	FDA approved	AAK1, AXL, GAK, JAK1, KIT	Renal cell carcinoma, gastrointestinal stromal tumor (GIST), non-small cell lung cancer (NSCLC) and pancreatic cancer	Dengue and ebolaviruses antiviral, anti-inflammatory, cytokine suppression, antifibrotic
Erlotinib (Tarceva)	FDA approved	EGFR tyrosine kinase, GAK, Abl1	Non-small cell lung cancer (NSCLC), and pancreatic cancer	Dengue and ebolaviruses antiviral, anti-inflammatory, cytokine suppression, antifibrotic
Baricitinib (Olumiant)	FDA approved	Jak1, Jak2, Tyk1	Rheumatoid arthritis	SARS-CoV-258,58 antiviral, anticytokine, anti-inflammatory
Gilteritinib (Xospata)	FDA approved	AXL kinase	Acute myeloid leukemia	SARS-CoV-290 antiviral
Bemcentinib	Experimental (Phase II) drug	AXL kinase	Acute myeloid leukemia	SARS-CoV-290,175 Ebola and Zika viruses175,176 antiviral
Osimertinib (Tagrisso)	FDA approved	EGFR	Non-Small Cell Lung Cancer (NSCLC)	SARS-CoV-2113 antiviral, anticytokine
Pictilisib	Experimental (Phase I) drug	PI3K/mTOR	Breast cancer, relapsed or refractory chronic lymphocytic leukemia	SARS-CoV-2113 antiviral
Ompalalisib	Experimental (Phase III) drug	PI3K/mTOR	Cancer and idiopathic pulmonary fibrosis	SARS-CoV-2115 antiviral, antifibrotic
Sorafenib (Nexavar)	FDA approved	VEGFR, PDGF, RAF kinases	Renal cell carcinoma, hepatocellular carcinoma, thyroid cancer	SARS-CoV-2115 antiviral
ROS126766	An experimental (Phase I) drug	RAF/MEK	Solid tumors or multiple myeloma	SARS-CoV-2299 antiviral
Lonafarnib (Zokinvy)	FDA approved	Ras GFR signaling	Hutchinson-Gilford progeria syndrome	SARS-CoV-2114 antiviral
Leflunomide (Arava)	FDA approved	Akt	Rheumatoid arthritis and psoriatic arthritis.	HIV-1, herpes simplex virus antiviral
Seliciclib	Experimental (Phase II) drug	CDK1/2/5/9	Different types of cancer	Influenza A virus188 SARS-CoV-219 antiviral
Alvocidib	Experimental (Phase II) drug	CDK9	Acute myeloid leukemia	Influenza A virus188 antiviral, anti-inflammatory
Palbociclib (Ibrance)	FDA approved	CDK4/6	Breast cancer	HSV-1191 antiviral
PHA-690509	Experimental (Phase I) drug	CDK2	Cancer	ZIKAV8 antiviral
Apilimod	Experimental (Phase I) drug	PIKfyve	B-cell non-Hodgkin lymphoma	Ebola virus, Lassa virus, SARS-CoV-2189 antiviral, anti-inflammatory
Abemaciclib (Verzenio)	FDA approved	CDK4/6	Metastatic breast cancer	SARS-CoV-2113 antiviral
TBBz	FDA approved	CDK2	Cancer	Vaccinia virus135 antiviral
Simitasertib	Orphan drug status by FDA	CDK2	Cholangiocarcinoma (bile duct cancer)	SARS-CoV-228 antiviral, anti-inflammatory
CIGB-325	Experimental drug	CDK2	Cancer	SARS-CoV-2156 antiviral, anti-inflammatory
Inhibiting GSK-3 with small molecules has been shown to prevent the process. In HIV-1-infected macrophages or cell lines, inhibiting GSK-3 decreased viral replication, according to another study. In Huh 7.5 cells, inhibition of GSK-3β led to a reduction of both replication and viral particle production of HCV but for hepatitis E virus (HEV). The increased GSK-3β-Ser9 phosphorylation has been linked to the replication of the HBV, indicating a beneficial effect of GSK-3β inhibition for HBV replication. GSK-3 phosphorylation of assembly protein precursor, a protein involved in the organization and maturation of cytomegalovirus, is required.

One of the most important structural proteins in coronaviruses, nucleocapsid-protein N, is strongly conserved across organisms. Protein N has a variety of roles in the viral life cycle, the most important of which is packing the virus’s genomic RNA into the protective coating. The N protein of SARS-CoV-1 hijacks the host immune system for virus progeny and related diseases to spread. GSK-3 has been linked to SARS-CoV-1 N phosphorylation on a serine residue, which is necessary for viral replication. As a result, it acts as a viral life cycle regulator. The host translational machinery is also inhibited by phosphorylation of N protein, which interferes with antiviral response signaling. Inhibition of GSK 3 in cells infected with SARS-CoV-1 resulted in the prevention of SARS-CoV-1 N phosphorylation, and, as a result, the viral replication was impaired.

The GSK-3 selective inhibitors LiCl and kenpaullone (9-bromo-7,12-dihydro-indolo[3,2-d][1]-benzazepin-6 (SH)-one) (Figure 16) reduced viral titer and cytopathic effects in Vero E6 cells infected with SARS-CoV-1 without affecting cell viability. According to this study, this kinase’s phosphorylation is closely linked to viral replication. The nitro analogue alsterpaullone potently inhibits the replication of HIV-1 with an IC₅₀ value of 150 nM in virus-infected cells. Lithium, a GSK-3 inhibitor, has been used to treat mood and bipolar conditions in patients. In porcine cells, lithium chloride therapy helped to cure a transmissible gastroenteritis coronavirus infection. In avian cells, lithium chloride treatment protects against the bronchitis virus by blocking the synthesis of genomic and subgenomic RNA while leaving the host translation pathways unaffected. A recent study showed the potential antiviral activity of thiadiazolidinone tideglibus (Figure 16) against SARS-CoV-2 MPro activity. Tideglibus (NP031112, NP-12) is a non-ATP-competitive, irreversible GSK-3 inhibitor that has recently been shown to have an IC₅₀ of 1.5 μM in inhibiting SARS-CoV-2 MPro.

The SARS-CoV-1 N protein has a high degree of resemblance to the SARS-CoV-2 N protein, and both proteins have conserved serine residues (Ser189 and Ser207), according to the sequence analysis. Thus, the serine residues in SARS-CoV-2 are predicted to be phosphorylated by GSK-3 in the same way as they are in SARS-CoV-1. CoV’s key protease, which is necessary for viral replication and transcription, is also inhibited by GSK-3 inhibition.

T cell proliferation and activity are believed to be negatively regulated by GSK-3. Indeed, inhibiting GSK-3 with molecules like SB415286 improved the adaptive CD8+ cytolytic cell (CTL) role significantly. This effect is essential for the production of cytolytic effectors such as granzyme B, perforin, and interferon-γ in CD8+ cells. GSK-3 has an impact on CD4+ T cells, which are essential for the growth of cytokine release syndrome (CRS) in the more extreme COVID-19 cases. Inhibiting GSK-3 with small molecules has been shown to cause CD4+ T cells to produce the suppressive cytokine IL-10, which can help to reduce CRS in severe disease.
and autoimmune disorders, IL-10 suppresses the immune response and prevents tissue damage.\(^{280}\) In addition, inhibiting GSK-3 stimulates the development of natural killer cells,\(^{281}\) which are innate immune system effector cells that help to control infection.\(^{282}\) Based on the findings, inhibiting GSK-3 may be a promising therapeutic strategy for preventing SARS-CoV-2 infection by reducing viral replication and enhancing the immune response to the virus, as seen in Figure 17.

5. CONCLUSIONS AND PERSPECTIVES

The novel human SARS-CoV-2 is a causative agent for COVID-19 that has emerged in the human population. For the treatment of COVID-19, several antiviral agents are being tested in clinical trials as single agents or conjunction with other therapies. Many inhibitors targeting kinases have direct antiviral effects, targeting essential virus-associated proteins and proteins that play a role in the production of COVID-19 symptoms such as pneumonia-like infection, ARDS, cytokine storm, systemic inflammation, and fibrosis.

The summary of kinase inhibitors, their original use, and their repurposing for viral diseases, including COVID-19, are outlined in Table 4. Several of these kinase inhibitors are already approved, and some are being clinically investigated in Phase I–III trials for various diseases. However, adverse effects and pharmacokinetic properties of kinases inhibitors need to be considered, when repurposing them for the treatment of COVID-19. For example, some drugs need long-term dosing to achieve the required pharmacological concentrations and exert their effect, which may not be a suitable option to treat the symptoms associated with COVID-19 as immediate treatment is required for the affected patients. Likewise, treatment of kinase inhibitors associated with a series of side effects or that could decrease immune responses at the beginning of the viral life cycle (e.g., inhibitors that interrupt type 1 IFNs-JAK1, see section 4.2) would pose a challenge for patients infected with COVID-19.

In a murine model of the vaccinia virus, imatinib, an inhibitor of Abl tyrosine kinase, effectively decreased viral load, dissemination, and mortality. However, it did not protect the mice from the infection.\(^{45}\) This raises the issue concerning its efficacy in governing the viral infection in vivo. In animal models of other viral infections, such as SARS-CoV-2, it is crucial to investigate the antiviral efficacy and safety profile of drugs that target Abl and Src.

Combination therapy in the context of COVID-19 will have significant therapeutic advantages, as this technique has previously been seen to be effective in the treatment of life-threatening diseases including HIV-related AIDS. As a result, antivirals (ribavirin, ritonavir-lopinavir, remdesivir) combined with kinase inhibitors (sunitinib, erlotinib, sorafenib, imatinib, gilteritinib, osimertinib, osimertinib) or kinase inhibitors that target both virus-related proteins and proteins associated with pulmonary health would be beneficial.

One of the effective therapeutic techniques in the control of the COVID-19 pandemic may be to target the JAK-STAT signaling pathway. This signaling pathway mediates a hyper-immune activation by proinflammatory cytokines that leads to ARD, organ damage, and ultimately death in COVID-19 patients. Therefore, the approach that allows the repurposing of already FDA-approved and experimental drugs targeting the
JAK-STAT signaling pathway would be potentially beneficial. Additionally, drugs that selectively target JAK2, JAK3, or JAK2/3 would be a potential treatment option concerning the suppression of cytokines, and at the same time, they would not interrupt IFN-JAK1-mediated antiviral and antibacterial immunity in patients infected with COVID-19 (Figure 13). On the other hand, bacterial infections can be a risk factor for using JAK-STAT pathway inhibitors for COVID-19 because JAK inhibitors inhibit IFN type 1 IFNs, which are formed in response to bacterial infections, and thus can prevent viral replication and infection. However, selective inhibitors that target JAK2/JAK3 can still be repositioned for COVID-19 treatment as they would not interact with JAK-1.

AUTHOR INFORMATION

Corresponding Authors

Thanigaimalai Pillaiyar – Institute of Pharmacy, Pharmaceutical/Medical Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; orcid.org/0000-0001-5575-8896; Phone: +49 7071 2977458; Email: thanigaimalai.pillaiyar@uni-tuebingen.de

Stefan Laufer – Institute of Pharmacy, Pharmaceutical/Medical Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; orcid.org/0000-0001-6952-1486; Phone: +49 7071 2972459; Email: stefan.laufer@uni-tuebingen.de

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jmedchem.1c00335

Notes

The authors declare no competing financial interest.

Biographies

Thanigaimalai Pillaiyar obtained his Ph.D. in Medicinal Chemistry (2011) under the supervision of Prof. Sang-Hun Jung, South Korea. As a Japanese Society for the Promotion of Science (JSPS) postdoctoral fellow (2011-2013) with Prof. Yoshio Hayashi, Japan, he focused on the development of SARS-CoV-1 MMP inhibitors. He awarded an Alexander von Humboldt postdoctoral fellowship (AvH) (2013-2015) with Prof. Christa E. Müller, Germany, where he involved in the development of GPCR modulators. He was a visiting scientist at the Prof. Steven V. Ley's Laboratory, University of Cambridge. Currently, he is working as an independent junior research group leader and establishing a research group at the Tuebingen Center for Academic Drug Discovery, University of Tübingen. His research interests include medicinal chemistry of GPCRs, synthetic organic chemistry, and dual SARS-CoV-2 MMP-kinase inhibitors.

Stefan Laufer studied Pharmacy and completed his Ph.D. at Regensburg University. After postdoctoral research in Frankfurt, he took a position in the pharmaceutical industry but maintained lectureships at Frankfurt and later at Mainz University, where he finished his habilitation in 1997. Since 1999, he has been full professor (chair) for pharmaceutical and medicinal chemistry at Tübingen University. He is cofounder/spokesman of ICEPHA (Interfaculty Center for Pharmacogenomics and Pharma Research), TüCAD2 (Tübingen Center for Academic Drug Discovery), and cofounder of the two startups CAIR Biosciences and Heparogenix. Three compounds from his lab made it first into man. His research interests are protein kinase inhibitors and eicosanoid modulators.

ACKNOWLEDGMENTS

T.P. and S.L. thank Ms. Kristine Schmidt for language proofreading. TüCAD2 is funded by the Federal Ministry of Education and Research (BMBF) and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments.

ABBREVIATIONS USED

Abl, Abelson tyrosine kinase; ALL, acute lymphoblastic leukemia; ARDS, acute respiratory distress syndrome; AAK1, adaptor protein-associated kinase 1; ACE2, angiotensin-converting enzyme 2; ATP, adenosine triphosphate; BMP2K, BMP-2-inducible kinase; CML, chronic myeloid leukemia; CREB, cAMP response element-binding protein; CDK, cyclin-dependent kinases; CKII, casein kinase 2; CNS, central nervous system; CoV, coronavirus; COVID-19, coronavirus disease-19; CVB, coxsackievirus B; CPE, cytopathic effects; EGFR, epidermal growth factor receptor; GAK, cyclin G-associated kinase; GIST, gastrointestinal stromal tumor; GM-CSF, granulocyte-colony stimulating factor; GSK-3, glycogen synthase kinase; herpes simplex virus; HCV, hepatitis C virus; HPV, human papillomavirus; HCoV, human coronavirus; HSV, herpes simplex virus; HKU, Hong Kong University; HIV, human immunodeficiency virus; IL, interleukin; IFN, interferon; IBV, infectious bronchitis virus; JAK, Janus kinase; M pro, main protease; mTORC, mammalian target of rapamycin complex; MERS-COV, Middle East respiratory syndrome; MAPK, mitogen-activated protein kinase; MPSK1, myristoylated and palmitoylated serine/threonine kinase 1; NAK, numb-associated kinase; SARS, severe acute respiratory syndrome; NSCLC, non-small cell lung cancer; NSP, nonstructural protein; NF-κB, nuclear factor “kappa-light-chain-enhancer” of activated B-cell; PL pro, papain-like protease; P13K, phosphatidylinositol 3-kinase; PDGF, platelet-derived growth factor receptors; PK, protein kinase; RBD, receptor-binding domain; RNA, ribonucleic acid; RCC, renal cell carcinoma; RdRp, RNA dependent RNA polymerase; STAT, signal transducer and activator of transcription; siRNA, small interfering ribonucleic acid; SOCS, suppressor of the cytokine signaling; SFKs, Src family kinases; TNF, tumor necrosis factor; TKI, tyrosine kinase inhibitors; TTSP, type II transmembrane serine protease; VCV, vesicular stomatitis virus; WHO, World Health Organization

REFERENCES

(1) Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. Y.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* 2020, 579, 270–273.

(2) Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zhong, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z. A new coronavirus associated with human respiratory disease in China. *Nature* 2020, 579, 265–269.

(3) Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Ni, P.; Zhou, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. *N. Engl. J. Med.* 2020, 382, 727–733.

(4) Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and...
coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924.

(5) WHO Coronavirus (COVID-19) Dashboard; World Health Organization. https://covid19.who.int/ (accessed 2020-12-26).

(6) Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19; U.S. Food and Drug Administration. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (accessed 2021-02-09).

(7) Pillayar, T.; Wendt, L.; Manickam, M.; Easwaran, M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med. Res. Rev. 2021, 41, 72–135.

(8) Pillayar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discovery Today 2020, 25, 668–688.

(9) Guo, Y. R.; Cao, Q. D.; Hong, Z. S.; Tan, Y. Y.; Chen, S. D.; Jin, H. J.; Tan, K. S.; Wang, D. Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Med. Res. 2020, 7, 11.

(10) Yin, Y.; Wunderink, R. G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirrology 2018, 23, 130–137.

(11) Pillayar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S. H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem. 2016, 59, 6595–628.

(12) Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. https://www.who.int/csr/sars/country/table2004_04_21/en/ (as of 31 December 2003).

(13) Anthony, S. J.; Johnson, C. K.; Greig, D. J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A. L.; Joly, D. O.; Wolfe, N. D.; Daxaz, P.; Kareish, W.; Lipkin, W. I.; Morse, S. S.; PREDICT consortium; Mazet, J. A. K.; Goldstein, T. Global patterns in coronavirus diversity. Virus Evol. 2017, 3 (1), No. vex012.

(14) Pillayar, T.; Manickam, M.; Jung, S. H. Middle East respiratory syndrome-coronavirus (MERS-CoV): An updated overview and pharmacotherapeutics. Med. Chem. 2015, 5, 361–372.

(15) http://www.emwo.who.int/health-topics/mers-cov/mers-outbreaks-2019.html (as of March 2021).

(16) Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, D.; Song, Y.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Lu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W. J.; Wang, D.; Xu, W.; Holmes, E. C.; Gao, G. F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus. Lancet 2020, 395, 565–574.

(17) Kumar, K.; Lupoli, T. J. Exploiting existing molecular scaffolds for long-term COVID treatment. ACS Med. Chem. Lett. 2020, 11, 1357–1360.

(18) McKee, D. L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. J. Gen. Virol. 2001, 82, 137–146.

(19) Attaway, A. H.; Schraga, R. G.; Bhimel, M.; Hatipoğlu, U. Severe covid-19 pneumonia: Pathogenesis and clinical management. BMJ 2021, 372, No. n436.

(20) Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92, 424–432.

(21) Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Nie, J.; Wang, G.; Jiang, R.; Gao, H.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.

(22) Zhang, C.; Wu, Z.; Li, J.; Zhao, H.; Wang, G. Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents 2020, 55, 105954.
Ott, M.; Saez-Rodriguez, J.; ten Oever, B. R.; Mullins, R. D.; Fischer, E. R.; Kochs, G.; Grosse, R.; García-Sastre, A.; Vignuzzi, M.; Johnson, J. R.; Shokat, K. M.; Swaney, D. L.; Beltrao, P.; Krogan, N. J. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 2020, 182, 685–712.

(40) Reeves, P. M.; Smith, S. K.; Olson, V. A.; Thorne, S. H.; Bornmann, W.; Damon, I. K.; Kalman, D. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and Src family tyrosine kinases. J. Virol. 2011, 85, 21–31.

(41) Olivieri, A.; Manzione, L. Dasatinib: A new step in molecular target therapy. Ann. Oncol. 2007, 18 (Suppl 6), No. v424.

(42) Bradley, W. D.; Koleske, A. J. Regulation of cell migration and morphogenesis by Abl-family kinases: Emerging mechanisms and physiological contexts. J. Cell Sci. 2009, 122, 3441–3454.

(43) Kindrachuk, J.; Orb, K.; Hart, B. T.; Mazur, S.; Holbrook, M. R.; Frieman, M. B.; Traynor, D.; Johnson, R. F.; Dytt, J.; Kuhn, J. H.; Olinger, G. G.; Hensley, L. E.; Jahrling, P. B. Antiviral potential of ERK/kinase domain-like in neuronal cell death induced by the human neuroinvasive coronavirus OC43. J. Virol. 2003, 77, 6018–6022.

(44) Shin, J. S.; Jung, E.; Kim, M.; Baric, R. S.; Deininger, M. W. Imatinib is not a potential anti-SARS-CoV-2 drug. Front. Oncol. 2020, 10, 1428.

(45) Raghuvanshi, R.; Bharate, S. B. Recent developments in the use of kinase inhibitors for management of viral Infections. J. Med. Chem. 2021, DOI: 10.1021/acs.jmedchem.0c01467.

(50) Ludwig, S.; Plantz, O.; Pleschka, S.; Wolff, T. Influenza-virus-induced signaling cascades: Targets for antiviral therapy? Trends Mol. Med. 2003, 9, 46–52.

(51) Plantz, O. Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res. 2013, 98, 457–468.

(52) Meineke, R.; Rimmelzwaan, G. F.; Elbahesh, H. Influenza virus infections and cellular viruses. Viruses 2019, 11, 711.

(53) Schor, S.; Einav, S. Repurposing of kinase inhibitors as broadspectrum antiviral drugs. DNA Cell Biol. 2018, 37, 63–69.

(54) Garcia, M.; Cooper, A.; Shi, W.; Bornmann, W.; Carion, R.; Kalman, D.; Nabel, G. J. Productive replication of Ebola virus is regulated by the c-ABL tyrosine kinase. Sci. Transl. Med. 2012, 4, 123ra24.

(55) Kouznetsova, J.; Sun, W.; Martinez-Romero, C.; Tawa, G.; Shinn, P.; Chen, C. Z.; Schimmer, A.; Sanderson, P.; McKew, J. C.; Zheng, W.; Garcia-Sastre, A. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerging Infect. Microbes Infect. 2014, 3, 1–7.

(56) Coyne, C. B.; Bergelson, J. M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006, 124, 119–131.

(57) Newsome, T. P.; Weisswange, I.; Frischknecht, F.; Way, M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell. Microbiol. 2006, 8, 233–241.

(58) Dyll, J.; Coleman, C. M.; Hart, B. J.; Venkataratnam, T.; Holbrook, M. R.; Kindrachuk, J.; Johnson, R. F.; Olinger, G. G.; Jr., Jahrling, P. B.; Laidual, M.; Johansen, L. M.; Lear-Rooney, C. M.; Glass, P. J.; Hensley, L. E.; Frieman, M. B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014, 58, 4885–4893.

(59) Kalmanti, L.; Saussele, S.; Lauseker, M.; Muller, C. M.; Dietz, C. T.; Heinrich, L.; Hanfstein, B.; Proetel, U.; Fabarius, A.; Krause, S. W.; Rinaldetti, S.; Dengler, J.; Falge, C.; Oppliger-Leibundgut, E.; Burchert, A.; Neubauer, A.; Kanz, L.; Stegelmann, F.; Pfreundschuh, M.; Speicher, K.; Scheid, C.; Pfirrmann, M.; Hochhaus, A.; Hasford, J.; Hehlmann, R. Safety and efficacy of imatinib in CML over a period of 10 years: Data from the randomized CML-study IV. Leukemia 2015, 29, 1123–1132.

(60) O’Hare, T.; Walters, D. K.; Stoffregen, E. P.; Sherbenou, D. W.; Heinrich, M. C.; Deininger, M. W.; Druker, B. J. Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib. Clin. Cancer Res. 2005, 11, 6978–6983.

(61) Manley, P.; Cowan-Jacob, S.; Mestan, J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim. Biophys. Acta, Proteins Proteomics 2005, 1754, 3–13.

(62) Jabbour, E.; Cortes, J.; Kantarjian, H. Nilotinib for the treatment of chronic myeloid leukemia: An evidence-based review. Core Evidence 2010, 4, 207–213.

(63) Breccia, M.; Alimena, G. Nilotinib: A second-generation tyrosine kinase inhibitor for chronic myeloid leukemia. Leuk. Res. 2010, 34, 129–134.

(64) Colicelli, J. ABL tyrosine kinases: Evolution of function, regulation, and specificity. Sci. Signaling 2010, 3, No. re6.

(65) Tokarski, J. S.; Newitt, J. A.; Chang, C. Y.; Cheng, J. D.; Wittekind, M.; Kiefer, S. E.; Kish, K.; Lee, F. Y.; Borzilleri, R.; Lombardo, L. J.; Xie, D.; Zhang, Y.; Klei, H. E. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006, 66, 5790–5797.

(66) Zhao, H.; Mendenhall, M.; Deininger, M. W. Imatinib is not a potent anti-SARS-CoV-2 drug. Leukemia 2020, 34, 3085–3087.

(67) Grimminger, F.; Sermuly, R. T.; Ghofrani, H. A. Targeting nonmalignant disorders with tyrosine kinase inhibitors. Nat. Rev. Drug Discovery 2010, 9, 956–970.

(68) Mohly, M.; Blaise, D.; Olive, D.; Gaugler, B. Imatinib: The narrow line between immune tolerance and activation. Trends Mol. Med. 2005, 11, 397–402.

(69) Mulgaonkar, N.; Wang, H.; Mallawarachchi, S.; Fernando, S.; Martina, B.; Ruzek, D. Bcr-Abl tyrosine kinase inhibitor imatinib as a potential drug for COVID-19. bioRxiv, August 18, 2020, ver. 1. DOI: 10.1101/2020.06.18.158196.

(70) Simmons, G.; Gosalia, D. N.; Rennekamp, A. J.; Reeves, J. D.; Diamond, S. L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11876–11881.

(71) Shirato, K.; Kawase, M.; Matsuyama, S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 2013, 87, 12552–12561.

(72) Tripathi, R.; Fiore, L. S.; Richards, D. L.; Yang, Y.; Liu, J.; Wang, C.; Plattner, R. Abl and Arg mediate catechol catepin secretion to facilitate melanoma invasion and metastasis. Sci. Signaling 2018, 11 (518), eaao0422.

(73) Pagano, M. A.; Tibaldi, E.; Palu, G.; Brunati, A. M. Viral proteins and Src family kinases: Mechanisms of pathogenicity from a ‘liason dangereuse’. World J. Virol. 2013, 2, 71–78.

(74) Chu, J. J.; Yang, P. L. c-Src protein kinase inhibitors block assembly and maturation of dengue virus. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3520–3525.

(75) Kumar, R.; Agrawal, T.; Khan, N. A.; Nakayama, Y.; Medigeshi, G. R. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication. Sci. Rep. 2016, 6, 30490.
(108) Kung, C.-P.; Meckes, D. G.; Raab-Traub, N. Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCA. J. Virol. 2011, 85, 4399–4408.

(109) Zhu, L.; Lee, P. K.; Lee, W. M.; Zhao, Y.; Yu, D.; Chen, Y. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am. J. Respir. Cell Mol. Biol. 2009, 40, 610–619.

(110) Eierhoff, T.; Hrinicus, E. R.; Rescher, U.; Ludwig, S.; Ehrhardt, C. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog. 2010, 6, e1001099.

(111) Lüpperberger, J.; Zeisel, M. B.; Xiao, F.; Thumann, C.; Fofana, I.; Zona, L.; Davis, C.; Mee, C.; Turek, M.; Gorke, S.; Royer, C.; Fischer, B.; Zahid, M. N.; Lavillette, D.; Fresquet, J.; Cosset, F. L.; Rothenberg, S. M.; Pietschmann, T.; Patel, A. H.; Pessaux, P.; Doffoël, M.; Rafflesberger, V.; Poh, O.; McKeating, J. A.; Brino, L.; Baumert, T. F. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 2011, 17, 589–595.

(112) Ueki, I. F.; Min-Oo, G.; Kalinowski, A.; Ballon-Landa, E.; Lanier, L. L.; Nadal, J. A.; Koff, J. L. Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon and antiviral defense in airway epithelium. J. Exp. Med. 2013, 210, 1929–1936.

(113) Chen, C. Z.; Xu, M.; Pradhan, M.; Gornkhov, K.; Petersen, J.; Straus, M. R.; Zhu, W.; Shinn, P.; Guo, H.; Shen, M.; Klumpp-Thomas, C.; Michael, S. G.; Zimmerberg, J.; Zheng, W.; Whittaker, G. R. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol. Transl. Sci. 2020, 3, 1165–1175.

(114) Ramalingam, S. S.; Vansteenkiste, J.; Planchar, D.; Cho, B. C.; Gray, J. E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewsakulyong, B.; Shah, R.; Cobo, M.; Lee, K. H.; Cheema, P.; Tiseo, G.; Julis, N.; Martini, R.; Miettinen, A.; Vortmeyer, A. O.; Tabernero, J.; Martí, R.; Posas, F.; Ballana, E.; Esté, J. A. Cell cycle control and tumor suppressor CDK2 by adenovirus-induced cyclin E. PLoS One 2013, 8, e57340.

(115) Venkataraman, T.; Frieri, M. B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res. 2017, 143, 142–150.

(116) Venkataraman, T.; Coleman, C.; Frieri, M. Overactive EGFR signaling leads to increased fibrosis after SARS-CoV infection. J. Virol. 2017, 91, e00182–17.

(117) Buchkovich, N. J.; Yu, Y.; Zampieri, C. A.; Alwine, J. C. The TOR network of viruses: Effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat. Rev. Microbiol. 2008, 6, 266–275.

(118) Mannová, P.; Beretta, L. Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: Control of cell survival and viral replication. J. Virol. 2005, 79, 8742–8749.

(119) Shives, K. D.; Beatman, E. L.; Chamanian, M.; O’Brien, C.; Hobson-Peters, J.; Beckham, J. D. West Nile virus induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J. Virol. 2014, 88, 9458–9471.

(120) Waldman, W. J.; Knight, D. A.; Blinder, L.; Shen, J.; Lurain, N. S.; Miller, D. M.; Sedmak, D. D.; Williams, J. W.; Chong, A. S. Inhibition of cytomegalovirus in vitro and in vivo by the experimental kinase inhibitor, in patients with advanced solid tumor malignancies. Clin. Cancer Res. 2008, 14, 595–605.

(121) Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D. J.; Ingianti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; Pérez, E.; Uszkoreit, J.; Pleufjer, J.; Sachsenberg, T.; Yilmaz, S.; Tiwary, S.; Cox, J.; Audain, E.; Walzer, M.; Jarnuczak, A. F.; Ternent, T.; Brazma, A.; Vizcaíno, J. A. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450.

(122) Sarker, D.; Ang, J. E.; Baird, R.; Kristeleit, R.; Shah, K.; Moreno, V.; Clarke, P. A.; Raynaud, F. I.; Levy, G.; Ware, J. A.; Mazina, K.; Lin, R.; Wu, J.; Fredrickson, J.; Spoerke, J. M.; Lackner, M. R.; Yan, Y.; Friedman, L. S.; Kaye, S. B.; Derynck, M. K.; Workman, P.; de Bono, J. S. First-in-human Phase I trial of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 2015, 21, 77–86.

(123) Pleshcha, S.; Wolf, T.; Ehrhardt, C.; Hobom, G.; Planz, O.; Rapp, U. R.; Ludwig, S. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat. Cell Biol. 2001, 3, 301–305.

(124) Ternent, T.; Brazma, A.; Vizcaíno, J. A. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450.
boosting the type 1 interferon response to viruses and promoting cardiovascular health. Med. Hypotheses 2020, 142, 109880.

(155) Alvarez, D. E.; Agaisse, H. Casein kinase 2 regulates vaccinia virus actin tail formation. Virology 2012, 423, 143–151.

(156) Cruz, L. R.; Baladron, I.; Rittoule, A.; Díaz, P. A.; Valenzuela, C.; Santana, R.; Vazquez, M. M.; García, A.; Chacon, D.; Thompson, D.; Perera, G.; González, A.; Reyes, R.; Torres, L.; Perez, J.; Valdiz, Y.; Rodríguez, R.; Vazquez-Bloomquist, D. M.; Bovales, M.; Ramón, A. C.; Pérez, G. V.; Guillén, G.; Múzio, V.; Perera, Y.; Perea, S. E. ATENEA-Co-300 Group. Treatment with an anti-c2 synthetic peptide improves clinical response in COVID-19 patients with pneumonia. A randomized and controlled clinical trial. ACS Pharmacol. Transl. Sci. 2021, 4, 206.

(157) Colunga Biancatelli, R. M. L.; Berrill, M.; Catravas, D. J.; Marik, P. E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related Disease (COVID-19). Front. Immunol. 2020, 11, 1451.

(158) Fu, Y.; Yip, A.; Sehay, P. G.; Blasco, F.; Shi, P.-Y.; Hervé, M. Modulation of inflammation and pathogenesis during dengue virus infection by p38 MAPK inhibitor SB203580. Antiviral Res. 2014, 110, 151–157.

(159) Growcott, E. J.; Bamba, D.; Galarneau, J. R.; Leonard, V. H. J.; Schul, W.; Stein, D.; Osborne, C. S. The effect of P38 MAP kinase inhibition in a mouse model of influenza. J. Med. Microbiol. 2018, 67, 452–462.

(160) Jiménez-Guadéñio, J. M.; Nieto-Torres, J. L.; DeDiego, M. L.; Regla-Nava, J. A.; Fernandez-Delgado, R.; Carstao-Rodriguez, C.; Enjuanes, L. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014, 10, No. e1004320.

(161) Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 1294–1297.

(162) Fang, W.; Cai, S. X.; Wang, C. L.; Sun, X. X.; Li, K.; Yan, X. W.; Sun, Y. B.; Sun, X. Z.; Gu, C. K.; Dai, M. Y.; Wang, H. M.; Zhou, Z. Modulation of mitogen-activated protein kinase attenuates sepsis-induced acute lung injury in acute respiratory distress syndrome rats. Mol. Med. Rep. 2017, 16, 9652–9658.

(163) Ma, X. L.; Kumar, S.; Gao, F.; Louden, C. S.; Lopez, B. L.; Christoper, T. A.; Wang, C.; Lee, J. C.; Feuerstein, G. Z.; Yue, T. L. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 1999, 99, 1685–1691.

(164) Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005, 15, 11–18.

(165) Ghebreali, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J. C.; Turner, A.; Raij, Z.; Raizada, M. K.; Grant, M. B.; Oudit, G. Y. Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ. Res. 2020, 126, 1456.

(166) Imai, Y.; Kuba, K.; Neely, G. G.; Yahaghi-Balhamali, R.; Perkman, T.; van Loo, G.; Ermolaeva, M.; Veldhuizen, R.; Leung, Y. H.; Wang, H.; Liu, H.; Sun, Y.; Pasparakis, M.; Kopf, M.; Mech, C.; Bavari, S.; Peiris, J. S.; Slusky, A. S.; Akira, S.; Hultquist, M.; Holmdahl, R.; Nicholls, J.; Jiang, C.; Binder, C. J.; Penninger, J. M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008, 133, 235–249.

(167) Park, J. K.; Fischer, R.; Dechend, R.; Shagdarsuren, E.; Gapeljuk, A.; Wellner, M.; Meiners, S.; Gratze, P.; Al-Saadi, N.; Feldt, S.; Fiebeler, A.; Madwed, J. B.; Schirdewan, A.; Haller, H.; Luft, F. C.; Bavari, S.; Peiris, J. S.; Slutsky, A.; Akira, S.; Hultquist, M.; Holmdahl, R.; Nicholls, J.; Jiang, C.; Binder, C. J.; Penninger, J. M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008, 133, 235–249.

(168) Yang, P.; Gu, H.; Zhao, Z.; Wang, W.; Cao, B.; Lai, C.; Yang, X.; Zhang, L.; Duan, Y.; Zhang, S.; Chen, W.; Zhou, W.; Cai, M.; Penninger, J. M.; Jiang, C.; Wang, X. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci. Rep. 2015, 4, 7027.

(169) Crowley, S. D.; Rudemiller, N. P. Immunologic effects of the renin-angiotensin system. J. Am. Soc. Nephrol. 2017, 28, 1350–1361.
Rg3 isomers against gamma herpes virus through inhibition of p38- and

Liu, P. P.; Li, H. Association of inpatient use of angiotensin converting

Mao, W.; Liu, L.; Yan, Y.; Liu, M.; Chen, M.; Zhang, X. J.; Wang, X.;

Q.; Tan, R.; Wang, J.; Li, Y.; Liu, Y.; Xu, J.; Zhou, C.; Jiang, C.; Li, P.; Li, H. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. *Circ. Res.* 2020, 126, 1671–1681.

173) Liu, Y.; Yang, Y.; Zhang, C.; Huang, F.; Wang, F.; Yuan, J.; Wang, Z.; Li, J.; Li, J.; Feng, C.; Zhang, Z.; Wang, L.; Peng, L.; Chen, L.; Qiu, W.; Zhang, Y.; Zhuo, T.; Tan, S.; Yin, L.; Xu, J.; Zhou, C.; Jiang, C.; Liu, L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. *Sci. China: Life Sci.* 2020, 63, 364–374.

174) Kang, S.; Song, M. J.; Min, H. Antiviral activity of ginsenoside Rg3 isomers against gamma herpes virus through inhibition of p38- and JNK-associated pathways. *J. Funct. Foods* 2018, 40, 219–228.

175) BerGenBio’s bemcetinib selected to be fast-tracked as potential treatment for covid-19 through new national UK government clinical trial initiative; Cision, https://www.prnewswire.co.uk/news-release/bergenbio-s-bemcetinib-selected-to-be-fast-tracked-as-potential-treatment-for-covid-19-through-new-national-uk-government-clinical-trial-initiative-849232914.html (retrieved 2020-04-29).

176) Dowall, S.; Bewley, K.; Watson, R.; Vasan, S.; Ghosh, C.; Konai, M.; Gaudes, G.; Lorenz, J.; Long, J.; Barclay, W.; Garcia-Dorivial, L.; Hiscox, J.; Bosworth, A.; Taylor, I.; Easterbrook, L.; Pitman, J.; Summers, S.; Chan-Pensley, J.; Funnel, S.; Vipond, J.; Charlton, S.; Haldar, J.; Hewson, R.; Carroll, M. Antiviral screening of multiple compounds against Ebola virus. *Viruses* 2016, 8, 277.

177) Meerents, L.; Labeau, A.; Deijarnac, O.; Cipiriani, S.; Singaliga, L.; Bonnet-Madin, L.; Le Charpentier, T.; Hafirassou, M. L.; Bonnet-Madin, L.; Le Charpentier, T.; Hafirassou, M. L.; Tabibiazar, R.; Gressens, P.; Schwartz, O.; Amara, A. Axel mediates ZIKVA virus entry in human glioblastoma cells and modulates innate immune responses. *Cell Rep.* 2017, 18, 324.

178) Patnaik, A.; Haluska, P.; Tolcher, A. W.; Erlichman, C.; Papadopoulos, K. P.; Lensing, J. L.; Beerman, M.; Molina, J. R.; Rasco, D. W.; Arcos, R. R.; Kelly, C. S.; Wijayawardana, S. R.; Zhang, X.; Stancato, L. F.; Bell, R.; Shi, P.; Kulahtaiwel, P.; Pitou, C.; Mulle, L. B.; Farrington, D. L.; Chan, E. M.; Goetz, M. A. First-in-human Phase I study of the oral p38 MAPK inhibitor, Ralimetinib (LY222880 Dimesylate), in patients with advanced cancer. *Clin. Cancer Res.* 2016, 22, 1095–1102.

179) Hale, B. G.; Jackson, D.; Chen, Y. H.; Lamb, R. A.; Randall, R. E. Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. *Proc. Natl. Acad. Sci. U. S. A.* 2006, 103, 14194–14199.

180) Kopecky-Bromberg, S. A.; Martinez-Sobrido, L.; Palese, P. 7a Protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. *J. Virol.* 2006, 80, 785–793.

181) Börgeling, Y.; Schmolke, M.; Viemann, D.; Nordhoff, C.; Roth, J.; Ludwig, S. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. *J. Biol. Chem.* 2014, 289, 13–27.

182) Marchant, D.; Singhera, G. K.; Utokaparch, S.; Hackett, T. L.; Boyd, J. H.; Luo, Z.; Si, X.; Dorscheid, D. R.; McManus, B. M.; Hegele, R. G. Toll-like receptor 4-mediated activation of p38 mitogen-activated protein kinase is a determinant of respiratory virus entry and tropism. *J. Virol.* 2010, 84, 11359–11373.

183) Xiao, L.; Haack, K. K.; Zucker, I. H. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal regulated kinase 1/2 signaling. *Am. J. Physiol. Cell Physiol.* 2013, 304, C1073–1079.

184) Deshotes, M. R.; Xia, H.; Srimula, S.; Lazartigues, E.; Filipceanu, C. M. Angiotensin-II mediates ACE2 internalization and degradation through an angiotensin-II type I receptor-dependent mechanism. *Hypertension* 2014, 64, 1368–1375.

185) Koka, V.; Huang, X. R.; Chung, A. C.K.; Wang, W.; Truong, L. D.; Lan, H. Y. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/ p38 MAP kinase pathway. *Am. J. Pathol.* 2008, 172, 1174–1183.

186) Ma, Q.; Pan, W.; Li, R.; Liu, B.; Li, C.; Xie, Y.; Wang, Z.; Zhao, J.; Jiang, H.; Huang, J.; Shi, Y.; Dai, J.; Zheng, K.; Li, X.; Yang, Z. Capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. *Pharmacol. Res.* 2020, 158, 104850.

187) Park, A.; Iwasaki, A. Type I and type III interferons-induction, signaling, evasion, and application to combat COVID-19. *Cell Host Microbe* 2020, 27, 870–878.

188) Villarino, A. V.; Kanno, Y.; Ferdinand, J. R.; O’Shea, J. J. Mechanisms of Jak/STAT signaling in immunity and disease. *J. Immunol.* 2015, 194, 21–27.

189) Lee, C. Interaction of hepatitis C virus core protein with janus kinase is required for efficient production of infectious viruses. *Biomol. Ther.* 2013, 21, 97–106.

190) Matsuyama, T.; Kubli, S. P.; Yoshinaka, S. K.; Pfeffer, K.; Mak, T. W. An aberrant STAT pathway is central to COVID-19. *Cell Death Differ.* 2020, 27, 3209–3225.

191) Xiong, Y.; Liu, Y.; Cao, L.; Wang, D.; Guo, M.; Jiang, A.; Guo, D.; Hu, W.; Yang, J.; Tang, Z.; Wu, H.; Lin, Y.; Zhang, M.; Zhang, Q.; Shi, M.; Liu, Y.; Zhou, Y.; Lan, K.; Chen, Y. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. *Emerging Microbes Infect.* 2020, 9, 761–770.

192) Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. *Semin. Immunopathol.* 2017, 39, 529–539.

193) Feldmann, M.; Maini, R. N.; Woody, J. N.; Holgate, S. T.; Winter, G.; Rowland, M.; Richards, D.; Russell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. *Lancet* 2020, 395, 1407–1409.

194) Luo, W.; Li, Y. X.; Jiang, L. J.; Chen, Q.; Wang, T.; Ye, D. W. Targeting JAK STAT signaling to control cytokine release syndrome in COVID-19. *Trends Pharmacol. Sci.* 2020, 41, 531–543.

195) Ingraham, N. E.; Lotfi-Emran, S.; Thilen, B. K.; Techar, K.; Morris, R. S.; Holtan, S. G.; Dudley, R. A.; Tignanelli, C. J. Immunomodulation in COVID-19. *Lancet Respir. Med.* 2020, 8, 544–546.

196) Seif, F.; Azami, H.; Khoshmirsafr, M.; Kamali, M.; Mohsenzadegan, M.; Pornour, M.; Mansouri, D. JAK inhibition as a new treatment strategy for patients with COVID-19. *Int. Arch. Allergy Immunol.* 2020, 201, 91–98.

197) Convertino, I.; Tucci, M.; Ferraro, S.; Valdiserra, G.; Cappello, E.; Focosi, D.; Blandizzi, C. Exploring pharmacological approaches for managing cytokine storm associated with pneumonia and acute respiratory distress syndrome in COVID-19 patients. *Crit. Care* 2020, 24, 331.

198) Mascarenhas, J.; Hoffman, R. Ruxolitinib: The first FDA approved therapy for the treatment of myelofibrosis. *Clin. Cancer Res.* 2012, 18, 3008–3014.

199) Mulard, A. FDA approves Eli Lilly’s Baricitinib. *Nat. Rev. Drug Discovery* 2018, 17, 460.
proinflammatory cytokine and chemokine gene expression in astrocytes: Differential signaling mechanisms of TLRL3-induced IP-10 and IL-8 gene expression. *Glia* **2006**, *53*, 248–256.

(249) Zhou, H.; Wang, H.; Ni, M.; Yue, S.; Yue, Y.; Buusutil, R. W.; Kupiec-Weglicki, J. W.; Lu, L.; Wang, X.; Zhai, Y. Glycogen synthase kinase-3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation. *J. Hepatol.* **2018**, *69*, 99–109.

(250) Khan, K. A.; Dö, F.; Marineau, A.; Doyon, P.; Clément, J. F.; Woodgett, J. R.; Doble, B. W.; Servant, M. J. Fine-tuning of the RIG-I-like receptor/interferon regulatory factor 3-dependent antiviral innate immune response by the glycogen synthase kinase 3β/beta-catenin pathway. *Mol. Cell. Biol.* **2015**, *35*, 3029–3043.

(251) Alfhili, M. A.; Alesughayyir, J.; McCubrey, J. A.; Akula, S. M. GSK-3β-associated signaling is crucial to virus infection of cells. *Biochim. Biophys. Acta, Mol. Cell Res.* **2020**, *1867*, 118767.

(252) Oka, K.; Ichikawa-Tomikawa, N.; Saito, A. C.; Watabe, T.; Sugimoto, K.; Fujita, D.; Ono, C.; Fukuhara, T.; Matsuura, Y.; Ohira, H.; Chiba, H. A novel occludin-targeting monoclonal antibody prevents hepatitis C virus infection in vitro. *Oncotarget* **2018**, *9*, 16588–16598.

(253) Butt, A. M.; Deng, F.; Nasrahuli, I.; Tahir, S.; Idrees, M.; Tong, Y.; Lu, J. Computational identification of interplay between phosphorylation and O-beta-glycosylation of human occludin as potential mechanism to impair hepatitis C virus entry. *Infect. Genet. Evol.* **2012**, *12*, 1235–1245.

(254) Müller, K. H.; Kakkola, L.; Nagaraj, A. A.; Chelsov, A. V.; Anastasia, M.; Kainov, D. E. Emerging cellular targets for influenza antiviral agents. *Trends Pharmacol. Sci.* **2012**, *33*, 89–99.

(255) Hirata, N.; Sizu, F.; Matsuda-Lennikov, M.; Edamura, T.; Bala, J.; Noguchi, M. Inhibition of Akt kinase activity suppresses entry and replication of influenza virus. *Biochem. Biophys. Res. Commun.* **2014**, *450*, 891–898.

(256) Saleh, M.; Rüschenbaum, S.; Welsch, C.; Zeuzem, S.; Moradpour, D.; Gouttenoire, J.; Lange, C. M. Glycogen synthase kinase-3β enhances hepatitis C virus replication by supporting miR-122. *Front. Microbiol.* **2018**, *9*, 2949.

(257) Guendel, I.; Jordanski, S.; Van Dyne, R.; Kehn-Hall, K.; Saifuddin, M.; Das, R.; Jaworski, E.; Sampey, G. C.; Senina, S.; Shultz, L.; Narayan, A.; Chen, H.; Lepene, B.; Zeng, C.; Kashanchi, F. Novel neuroprotective GSK-3β inhibitor restricts tat-mediated HIV-1 replication. *J. Virol.* **2014**, *88*, 1189–1208.

(258) Yuan, J.; Zhang, J.; Wong, B. W.; Si, X.; Wong, J.; Yang, D.; Luo, H. Inhibition of glycogen synthase kinase-3β suppresses cossackivirus-induced cytopathic effect and apoptosis via stabilization of beta-catenin. *Cell Death Differ.* **2005**, *12*, 1097–1106.

(259) Sarhan, M. A.; Abdel-Hakeem, M. S.; Mason, A. L.; Tyrrell, D. L.; Houghton, M. Glycogen synthase kinase-3β inhibitors prevent hepatitis C virus release/assembly through perturbation of lipid metabolism. *Sci. Rep.* **2017**, *7*, 2495.

(260) Kehn-Hall, K.; Guendel, I.; Carpio, L.; Skalsounis, L.; Meijer, L.; Al-Harthi, L.; Steiner, J. P.; Nath, A.; Kutsch, O.; Kashanchi, F. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK-3β inhibitors. *Virology* **2011**, *415*, 56–68.

(261) Saleh, M.; Rüschenbaum, S.; Welsch, C.; Zeuzem, S.; Moradpour, D.; Gouttenoire, J.; Lange, C. M. Glycogen synthase kinase-3β enhances hepatitis C virus replication by supporting miR-122. *Front. Microbiol.* **2018**, *9*, 2949.

(262) Chin, R.; Earnest-Silveira, L.; Koeberlein, B.; Franz, S.; Zentgraf, H.; Dong, X.; Gowans, E.; Bock, C.-T.; Torresi, J. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: Factors contributing to hepatocarcinogenesis. *J. Hepatol.* **2007**, *47*, 325–337.

(263) Piracha, Z. Z.; Kwon, H.; Saeed, U.; Kim, J.; Jung, J.; Chwae, Y. J.; Park, S.; Shin, H. J.; Kim, S. Sirtuin 2 isoform 1 enhances hepatitis B virus RNA transcription and DNA synthesis through the AKT/GSK-3beta/beta-catenin signaling pathway. *J. Virol.* **2018**, *92*, No. e00955-18.

(264) Tatman, J. D.; Preston, V. G.; Nicholson, P.; Elliott, R. M.; Rixon, F. J. Assembly of herpes simplex virus type 1 capsids using a novel GSK-3β/beta-catenin signaling pathway. *J. Virol.* **2011**, *85*, 1097–1106.

(265) Sarhan, M. A.; Abdel-Hakeem, M. S.; Mason, A. L.; Tyrrell, D. L.; Houghton, M. Glycogen synthase kinase-3β inhibitors prevent hepatitis C virus release/assembly through perturbation of lipid metabolism. *Sci. Rep.* **2017**, *7*, 2495.

(266) Chinn, R.; Earnest-Silveira, L.; Koebel, B.; Franz, S.; Zentgraf, H.; Dong, X.; Gowans, E.; Bock, C.-T.; Torresi, J. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: Factors contributing to hepatocarcinogenesis. *J. Hepatol.* **2007**, *47*, 325–337.

(267) Piracha, Z. Z.; Kwon, H.; Saeed, U.; Kim, J.; Jung, J.; Chwae, Y. J.; Park, S.; Shin, H. J.; Kim, S. Sirtuin 2 isoform 1 enhances hepatitis B virus RNA transcription and DNA synthesis through the AKT/GSK-3beta/beta-catenin signaling pathway. *J. Virol.* **2018**, *92*, No. e00955-18.

(268) Tatman, J. D.; Preston, V. G.; Nicholson, P.; Elliott, R. M.; Rixon, F. J. Assembly of herpes simplex virus type 1 capsids using a novel GSK-3β/beta-catenin signaling pathway. *J. Virol.* **2011**, *85*, 1097–1106.
panel of recombinant baculoviruses. *J. Gen. Virol.* **1994**, *75* (Pt 5), 1101−1113.

(265) Casaday, R. J.; Bailey, J. R.; Kalb, S. R.; Brignole, E. J.; Loveland, A. N.; Cotter, R. J.; Gibson, W. Assembly protein precursor (pUL80.5 homolog) of simian cytomegalovirus is phosphorylated at a glycogen synthase kinase 3 site and its downstream "priming" site: Phosphorylation affects interactions of protein with itself and with major capsid protein. *J. Virol.* **2004**, *78*, 13501−13511.

(266) Wu, C. H.; Yeh, S. H.; Tsay, Y. G.; Shieh, Y. H.; Kao, C. L.; Chen, Y. S.; Wang, S. H.; Kuo, T. J.; Chen, D. S.; Chen, P. J. Glycogen synthase kinase 3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. *J. Biol. Chem.* **2009**, *284*, 5229−5239.

(267) Wu, C. H.; Chen, P. J.; Yeh, S. H. Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. *Cell Host Microbe* **2014**, *16*, 462−472.

(268) Mizutani, T.; Fukushi, S.; Izuka, D.; Inanami, O.; Kuwabara, M.; Takashima, H.; Yanagawa, H.; Sajo, M.; Kuranne, J.; Morikawa, S. Inhibition of cell proliferation by SARS-CoV infection in Vero E6 cells. *FEMS Immunol. Med. Microbiol.* **2006**, *46*, 236−243.

(269) Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L. W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. *Nature* **2020**, *582*, 289−293.

(270) De Souza, A.; Tavora, P. A.; Mahalingam, D.; Munster, P. N.; Safran, H. P.; El-Deiry, W. S.; Carneiro, B. A. Commentary: GSK-3 Inhibition as a therapeutic approach against SARS-CoV-2: Dual benefit of inhibiting viral replication while potentiating the immune response. *Front. Immunol.* **2020**, *11*, 595289.

(271) Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G. F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. *Proc. Natl. Acad. Sci. U. S. A.* **2003**, *100*, 13190−13195.

(272) Patel, P.; Woodgett, J. R. Glycogen synthase kinase 3: A kinase for all pathways? *Curr. Top. Dev. Biol.* **2017**, *123*, 277−302.

(273) Taylor, A.; Harker, J. A.; Chanhtong, K.; Stevenson, P. G.; Zuniga, E. I.; Rudd, C. E. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+)-cytolytic T cell responses. *Immunity 2016*, *44*, 274−286.

(274) Ohteki, T.; Parsons, M.; Zakarian, A.; Jones, R. G.; Nguyen, L. T.; Woodgett, J. R.; Ohashi, P. S. Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. *J. Exp. Med.* **2000**, *192*, 99−104.

(275) Krueger, J.; Rudd, C. E. Two strings in one bow: PD-1 negatively regulates via co-receptor CD28 on T cells. *Immunity 2017*, *46*, 529−531.

(276) Taylor, A.; Rothstein, D.; Rudd, C. E. Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. *Cancer Res.* **2018**, *78*, 706−717.

(277) Taylor, A.; Rudd, C. E. Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8(+) cytotoxic T-cells: Implications for anti-PD-1 immunotherapy. *Front. Immunol.* **2017**, *8*, 1653.

(278) Rudd, C. E.; Chanhtong, K.; Taylor, A. Small molecule inhibition of GSK-3 specifically inhibits the transcription of inhibitory co-receptor LAG-3 for enhanced anti-tumor 1 immunity. *Cell Rep.* **2020**, *30*, 2075−2082.

(279) Hill, E. V.; Ng, T. H.; Burton, B. R.; Oakley, C. M.; Malik, K.; Wraith, D. C. Glycogen synthase kinase 3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. *Eur. J. Immunol.* **2015**, *45*, 1103−1115.

(280) Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. *Nat. Rev. Immunol.* **2010**, *10*, 170−181.

(281) Cichocki, F.; Valamehr, B.; Bjordahl, R.; Zhang, B.; Rezner, B.; Rogers, P.; Gaidarova, S.; Moreno, S.; Tuininga, K.; Dougherty, P.; McCullar, V.; Howard, P.; Sarhan, D.; Taras, E.; Schlums, H.; Abbot, S.; Shoemaker, D.; Bryceson, Y. T.; Blazar, B. R.; Wolchko, S.; Cooley, S.; Miller, J. S. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. *Cancer Res.* **2017**, *77*, 5664−5675.

(282) Lam, V. C.; Lanier, L. L. NK cells in host responses to viral infections. *Curr. Opin. Immunol.* **2017**, *44*, 43−51.