The association of secondary hyperparathyroidism and myocardial damages in hemodialysis end-stage renal disease patients: assessed by cardiovascular magnetic resonance native T1 mapping

Huayan Xu1,2†, Wanlin Peng3†, Zhigang Yang3†, Yi Zhang3, Chunchao Xia3, Zhenlin Li3, Rong Xu1,2 and Yingkun Guo1,2*†

Abstract
Background: Secondary hyperparathyroidism is a common complication of end-stage renal disease (ESRD), which may be associated with cardiovascular diseases. Thus, this study aimed to explore myocardial damage using non-contrast cardiovascular magnetic resonance (CMR) in ESRD patients undergoing hemodialysis and further investigate its relationship with parathyroid hormone (PTH) toxicity.

Methods: Seventy-two adult ESRD patients receiving regular hemodialysis and 30 healthy subjects underwent CMR examination. Continuous CMR cine sections from the mitral valve level to the left ventricular (LV) apex in the short-axis plane, cine series of vertical two-chamber long-axis plane, and horizontal four-chamber plane were acquired. Native T1 mapping was obtained using modified Look-Locker inversion recovery (MOLLI) sequences. Native T1 values and myocardial strain were analyzed. Immunoreactive parathyroid hormone (iPTH) was obtained from all enrolled patients.

Results: Forty (55.6%) hemodialysis ESRD patients were found to have increased iPTH levels. LV ejection fraction (LVEF) of both ESRD patients with targeted and increased iPTH levels was decreased compared with healthy subjects (55.9 ± 12.0% vs. 65.0 ± 4.5%; 51.7 ± 12.8 vs. 65.0 ± 4.5%, both P < 0.05). The mean peak radial strain (PRS), peak circumferential strain (PCS), and peak longitudinal strain (PLS) were lowest in ESRD patients with increased iPTH; however, no significant difference was observed among these three groups. Segmentally, from base to apex, the native T1 of ESRD patients with increased iPTH levels tended to be higher than those with targeted iPTH and healthy subjects (all P < 0.05). In ESRD patients with targeted iPTH, both native T1 of basal and middle segments were significantly higher than normal subjects (basal, 1304 ± 41 ms vs. 1238 ± 36 ms, P = 0.001; middle, 1300 ± 43 ms vs. 1242 ± 50 ms, P < 0.001). Comparing global native T1 values in the three groups, ESRD patients with targeted and increased iPTH

*Correspondence: gykpanda@163.com
†Huayan Xu and Wanlin Peng are equal contributors.
‡Zhigang Yang and Yingkun Guo are the co-corresponding authors.
1 Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Ren min Road, Chengdu 610041, Sichuan, China
2 Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Ren min Road, Chengdu 610041, Sichuan, China

© The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
level showed increased native T1 (1305 ± 41 ms vs. 1251 ± 49 ms, P = 0.001; 1334 ± 40 ms vs. 1251 ± 49 ms, P < 0.001, respectively). Native T1 values of the basal segment and global native T1 were moderately associated with iPTH (r = 0.4, P < 0.001; r = 0.5, P < 0.001). Multiple linear regression analysis showed that global native T1 values (beta = 1.0, P = 0.01) were independently associated with iPTH.

Conclusions: Elevated iPTH level was associated with and was an independent risk factor for myocardial damage in ESRD patients undergoing maintenance hemodialysis.

Trial registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.aspx) ChiCTR-DND-17012976, 13/12/2017, retrospectively registered.

Keywords: Secondary hyperparathyroidism, End stage renal disease, Native T1 mapping, Cardiovascular magnetic resonance

Background
Secondary hyperparathyroidism is a common complication of end-stage renal disease (ESRD) with maintenance hemodialysis, which begins in the earlier stages of chronic renal insufficiency and is shown to be deteriorated with declining renal function. Hyperphosphatemia, hypocalcemia, decreased calcium, and vitamin D receptor expression, 1,25-dihydroxyvitamin D3 deficiency, and parathyroid hormone (PTH) resistance may partly play a role in the secondary hyperparathyroidism pathogenesis [1]. Previous studies have indicated that hyperparathyroid disorders, including primary and secondary hyperparathyroidism, are risk factors for cardiovascular morbidity and mortality [2, 3]. Hagström et al. demonstrated that high PTH levels can predict nonischemic heart failure (HF), and higher plasma parathyroid levels were significantly correlated with the advanced New York Heart Association (NYHA) level [5]. Meanwhile, plasma PTH level may have a positive value in the diagnostic criteria of HF [6, 7]. Several mechanisms may contribute to HF in high PTH circumstances, such as specific vascular endothelial dysfunction promotion and atherosclerosis-induced cardiac ischemia, or direct detrimental myocardial effects such as myocyte hypertrophy and fibrosis [5]. Some prior studies have deduced the association between elevated PTH levels and myocardial damage or even HF in patients with chronic renal insufficiency by investigating the B-type natriuretic peptide level, NYHA, myocardial infarction, or HF history, or in animal models. However, no direct evidence was acquired to prove a relationship between prolonged exposure to elevated PTH and myocardial damage measured by noninvasive imaging methods such as cardiovascular magnetic resonance (CMR). Myocardial edema, diffused myocardial fibrosis, and left ventricular (LV) deformation may be key pathogenesis of ESRD-related myocardial fibrosis [8–12]. Thus, novel imaging biomarkers that can reliably and precisely measure pathological cardiac changes that are strongly linked to cardiac outcomes are needed. CMR late gadolinium enhancement (LGE) is a common imaging marker for evaluating myocardial fibrosis. However, gadolinium-based CMR contrast agents may cause complication of nephrogenic systemic fibrosis in patients with ESRD [13]. Hence, gadolinium is relative contraindicated for ESRD patients [14]. CMR native T1 mapping is a novel and non-contrast technique that can quantitatively measure myocardial fibrosis or myocardial edema [14], and myocardial strain by tissue tracking can reflect LV deformation, which may provide direct evaluation tools to assess the myocardial damage in ESRD patients. Therefore, this research was to explore cardiac involvement by examining CMR native T1 mapping and myocardial strain and further investigate the relationship between uremic myocardiopathy and PTH toxicity in ESRD hemodialysis patients.

Methods
Study subjects
A total of 100 adult ESRD hemodialysis patients were prospectively recruited from September 2017 to July 2019. The inclusion criteria of ESRD patients were deteriorating renal function or kidney damage for more than 3 months and stage 5 chronic kidney disease (CKD) with an estimated glomerular filtration rate (eGFR) of < 15 mL/min/1.73 m² [15]. The exclusion criteria included a clinical history of diabetes and primary hypertension-induced ESRD (n = 8), presence of echocardiography and clinical history demonstrating congenital cardiac disease or primary cardiomyopathy (n = 0), X-ray angiography verified coronary artery disease (n = 5); incomplete CMR T1 mapping data (n = 3), and poor CMR images (including poor cine images, n = 4; poor T1 mapping images, n = 8) and those patients with contradictions of CMR (n = 0). After exclusion, 72 ESRD patients were enrolled. All patients with ESRD underwent hemodialysis regularly (twice weekly). All CMR scans were performed the day before dialysis. In addition, we enrolled 30 healthy individuals who had no chronic systemic diseases, diabetes mellitus, hypertension, any cardiovascular diseases, family history of cardiovascular disease, or all causes of renal
diseases. All patients and healthy controls underwent CMR imaging.

Fasting venous blood from patients with ESRD was drawn for routine blood examination, biochemical indicators, and uremic toxins. The eGFR of each ESRD patient was calculated with serum creatinine using the CKD-Epidemiology Collaboration equation [16]. All patients were treated symptomatically. Correction of hypocalcemia and hyperphosphatemia was performed if hypocalcemia and hyperphosphatemia occurred. Active vitamin D was used to reduce PTH appropriately. Immuno-reactive PTH (iPTH) was also obtained using the Allegro method. ESRD patients were classified into two groups by reaching the therapy target of iPTH or not. The therapeutic plasma iPTH target is 150–300 pg/mL according to the Kidney Disease Improving Global Outcomes (KDIGO) guidelines [17]. Thus, ESRD patients were divided into patients with targeted (iPTH < 300 pg/mL) and increased iPTH (iPTH > 300 pg/mL) cohorts.

CMR protocol

All patients were imaged supine on a 3 T CMR scanner (Skyra, Siemens Healthineers, Erlangen, Germany) with an 18-element body phased array coil. Electrocardiogram (ECG) and breath-hold triggers were required for each patient to acquire high-quality images. Stacks of retrospectively gated cine balanced steady state precession (bSSFP) sequences (temporal resolution 43 ms, TR 39.1 ms, TE 1.4 ms, slice thickness 8.0 mm, field-of-view 280.4 × 340.0 174 × 208, flip angle 60°) from the base to apex were obtained in the short-axis (SAx) plane as well as the cine series of vertical two-chamber long-axis plane and horizontal four-chamber plane. Native T1 mapping was performed by using a modified Look-Locker inversion recovery (MOLLI) sequences, the scanning model of native T1 MOLLI sequence was 5(3)3 (TE 1.1 ms, TR 346.6 ms, field of view 306.6 × 360.0 218 × 256, slice thickness 5.00 mm, flip angle 35°), and B0 shimming (targeted cardiac mode) was used to minimize the off-resonance artifacts. The basal, middle, and apical SAx slices were all acquired [19]. Then we manually draw the endo- and epicardial borders on the grayscale images as close to the myocardium layer as possible to avoid the effect of blood pool or epicardial and pericardial fat. Global native T1 values across the slices were also automatically generated after the native T1 values of basal, middle, and apical segments were all acquired [19].

Reproducibility of myocardial strain and native T1 value

To assess intraobserver and interobserver variabilities, data from 25 cases were randomly selected from both healthy and ESRD subjects. Intraobserver variability was assessed by comparing the myocardial strain parameters and native T1 measured by the same observer after an interval of 2 weeks between measurements. The inter-observer variability was obtained by two independently experienced and double-blinded observers.

Statistical analysis

All statistical analyses were performed using SPSS (version 21.0, Statistical Package for the Social Sciences, International Business Machines, Inc., Armonk, New York, USA) or GraphPad Prism (version 7.00, Graph-Pad Software, La Jolla, California, USA). The Shapiro–Wilk test was used to examine the normality of data. Data was presented as the mean±SD or median (quartile), which refers to the normality result. The Mann–Whitney U test and independent t-test were used to compare the characteristics between the healthy and ESRD groups according
to the data’s characteristics. Comparisons among multiple groups were performed by one-way analysis of variance with post hoc Bonferroni correction. Bivariate correlations were calculated using the Pearson or Spearman method as appropriate. Multiple linear regression was performed to detect the CMR correlates of iPTH in myocardial damage. The reproducibility of myocardial strain and native T1 was assessed using the intraclass correlation coefficient (ICC). Two-tailed P < 0.05 were considered statistically significant.

Results

Baseline characteristics of ESRD patients

The demographic and biochemical indicators of the 72 ESRD patients and 30 healthy controls are shown in Table 1 with no significant differences found in age, sex, height, and weight (all P > 0.05). The duration of renal insufficiency in the ESRD patients was 12–228 months, and the hemodialysis time was 9–228 months. A total of 10 (13.9%) polycystic kidney disease, 52 (72.2%) primary glomerular nephropathy, 4 (5.6%) vasculitis, and 6 (8.3%)
genitourinary tuberculosis accounted for the major ESRD causes.

Biochemical results are listed in Table 2. Uremic toxins, such as creatinine and urea, in both ESRD patients with targeted and increased iPTH levels were both increased when compared with the normal ranges; however, no difference was found between the two groups. The eGFR of ESRD patients representing the renal glomerular filtration capacity is extremely lower than that of the normal reference. Thirty-two (44.4%) ESRD patients had reduced calcium and increased magnesium levels compared to the normal reference. Furthermore, 35 (48.6%) patients had serum phosphorus abnormality. The iPTH range is 44–2964 (mean, 547 ± 577). Moreover, 32 (44.4%) patients were found to have targeted iPTH (normal range 150–300 pg/mL), and 40 (55.6%) ESRD patients still had increased iPTH levels. However, no difference in the biochemical results, such as hemoglobin, hematocrit, uremic toxins, eGFR, Ca²⁺, and Mg²⁺, were found between ESRD patients with targeted and increased iPTH. Otherwise, all ESRD patients were orally administered calcium acetate management.

Table 1 Basal characteristics of healthy and end-stage renal disease (ESRD) hemodialysis patients with targeted and with increased immunoreactive parathyroid hormone (iPTH)

	Healthy subjects (n = 30)	ESRD with targeted iPTH (n = 32)	ESRD with increased iPTH (n = 40)	P
Age (years)	48.1 ± 11.6	58.2 ± 13.9	57.4 ± 15.0	0.06
Gender (Male, n)	12 (40.0%)	12 (37.5%)	15 (37.5%)	0.54
Height (cm)	152.8 ± 7.9	154.8 ± 23.1	156.5 ± 6.5	0.41
Weight (kg)	53.6 ± 6.6	50.3 ± 3.2	53.3 ± 9.6	0.47
Heart rate (beats/min)	71 ± 9	81 ± 12	78 ± 13	0.08
Duration of dialysis (M)	N/A	12–132	9–228	0.06
Duration of renal insufficiency (M)	N/A	12–156	12–228	0.06
Systolic BP	N/A	136 ± 26	142 ± 20	0.34
Diastolic BP	N/A	82 ± 13	89 ± 17	0.24
Causes of ESRD				
Polycystic kidney disease (n, %)	N/A	4 (12.5%)	6 (15.0%)	N/A
Primary glomerular nephropathy (n, %)	N/A	23 (44.3%)	29 (55.8%)	N/A
Vasculitis (n, %)	N/A	1 (3.1%)	3 (7.5%)	N/A
Genitourinary tuberculosis (n, %)	N/A	2 (6.3%)	4 (10.0%)	N/A

Values are mean ± SD or n (%)

M months, BP blood pressure, ESRD End-stage renal disease, CKD chronic kidney disease, iPTH immunoreactive parathyroid hormone

Table 2 The biochemical results

	ESRD with targeted iPTH (n = 32)	ESRD with increased iPTH (n = 40)	P
Hemoglobin (g/L) (n range 110–160)	96 ± 13	98 ± 10	0.64
Hematocrit (%) (normal range 37–54)	0.3 ± 0.1	0.3 ± 0.1	0.17
eGFR (mL/min per 1.732 m²) (normal range 80–120)	6 ± 2	5 ± 3	0.25
Creatinine (umol/l) (normal range 53.0–140.0)	1020 ± 1658	849 ± 303	0.51
Uric acid (umol/L) (normal range 240–490)	412 ± 120	397 ± 113	0.47
Urea (mmol/L) (normal range 3–8)	21 ± 7	23 ± 9	0.38
iPTH (pg/mL) (normal range 150–300)	188 ± 71	832 ± 642	0.00
Calcium (mmol/L) (normal range 2.1–2.7)	2.1 ± 0.2	2.2 ± 0.3	0.80
Magnesium (mmol/L) (normal range 0.7–1.0)	1.0 ± 0.1	1.0 ± 0.1	0.89
Serum phosphorus (mmol/L) (normal range 1.5–2.1)	1.5 ± 0.5	1.8 ± 0.6	0.06

Values are mean ± SD

iPTH immunoreactive parathyroid hormone, eGFR estimated glomerular filtration rate
LV function, myocardial strain and native T1 value of ESRD with targeted iPTH and with increased iPTH

	Normal subjects (n = 30)	ESRD with targeted iPTH (n = 32)	ESRD with increased iPTH (n = 40)
LV function			
EF (%)	65.0 ± 4.5	55.9 ± 12.0*	51.7 ± 12.8*
EDV (mL)	117 ± 31	128 ± 44	134 ± 50
ESV (mL)	45 ± 13	60 ± 44	69 ± 47*
SV (mL)	79 ± 17	67 ± 18	65 ± 18
LV mass (g)	52 ± 17	85 ± 31*	90 ± 32*
EDV/BSA (mL/mm²)	72.3 ± 20.1	83.3 ± 26.4	84.8 ± 36.3
ESV/BSA (mL/mm²)	260.0 ± 5.5	38.9 ± 26.4	43.8 ± 34.4*
SV/BSA (mL/m²)	48.6 ± 11.2	44.2 ± 11.6	40.3 ± 10.9*
Mass/BSA (g/m²)	32.2 ± 11.4	54.4 ± 190*	56.3 ± 190*
Myocardial strain parameters			
PRS	43.0 ± 9.8	43.2 ± 14.9	37.6 ± 15.7
PCS	− 18.3 ± 2.1	− 17.8 ± 4.2	− 16.8 ± 5.0
PLS	− 16.5 ± 2.4	− 15.7 ± 3.7	− 14.8 ± 4.4
Native T1 value			
Basal segment	1238 ± 36	1304 ± 41*	1330 ± 43*#
Middle segment	1242 ± 50	1300 ± 43*	1323 ± 43*#
Apical segment	1280 ± 65	1339 ± 86	1360 ± 74*
Global	1251 ± 49	1305 ± 41*	1334 ± 40*#

Comparison of myocardial damages assessed using CMR

For LV function (Table 3), the LVEF of both ESRD patients with targeted and increased iPTH was found to be decreased comparing with that in healthy subjects (56 ± 12% vs. 65 ± 5%; 52 ± 13 vs. 65 ± 5%, both P < 0.05). Although no significant difference was found between ESRD patients with targeted and increased iPTH cohorts, the LVEF in patients with increased iPTH tended to be lower than those with targeted iPTH. For other LV function parameters, only the LVESV of ESRD patients with increased iPTH was enlarged. LVEDV and SV did not differ significantly between the healthy and the two ESRD groups. LV parameters indexed to the body surface area showed the same tendency. For myocardial strain (Table 3), the mean PRS, PCS, and PLS were lowest in ESRD patients with increased iPTH levels. Nevertheless, no significant differences were observed among the three groups. For native T1 mapping assessing myocardial damage (Fig. 3), segmental and global native T1 values were assessed and compared. Segmentally, from the basal to apical segment, the native T1 values of ESRD patients with increased iPTH tended to be higher than those with targeted iPTH and healthy individuals (all P < 0.05). In ESRD patients with targeted iPTH, the native T1 of the basal and middle segments were significantly higher than that in the normal subjects (1304 ± 41 ms vs. 1238 ± 36 ms; 1300 ± 43 ms vs. 1242 ± 50 ms, both P < 0.001), and the apical segment native T1 values had no difference in both normal and ESRD patients with targeted iPTH individuals. Comparing the global native T1 values in the three groups, ESRD patients with targeted and increased iPTH showed increased native T1 values (1305 ± 41 ms vs. 1251 ± 49 ms, P = 0.001; 1334 ± 40 ms vs. 1251 ± 49 ms, both P < 0.001). Meanwhile, ESRD patients with increased iPTH levels were also higher than the targeted iPTH ones for the global native T1 values (1334 ± 40 ms vs. 1305 ± 41 ms, P = 0.01).

The independent myocardial damage factors associated with iPTH

The correlation coefficients of iPTH for secondary hyperparathyroidism evaluation are presented in Table 4. LVEF was negatively correlated with iPTH (r = −0.3, P = 0.01), while LVEDV and LVESV were positively correlated with iPTH (r = 0.2, P = 0.04; r = 0.3, P = 0.003, respectively). From the myocardial deformation aspect, both PRS and PCS were significantly correlated with iPTH (r = −0.2, P = 0.04; r = 0.2, P = 0.04). By analyzing the segmental and global native T1, we found that the native T1 of the basal segment (r = 0.4, P < 0.001) and the global native...
T1 (r = 0.5, P < 0.001) were moderately associated with iPTH, while the native T1 of the middle segment (r = 0.4, \(P = 0.001 \)) showed mild correlation. Multiple linear regression analysis showed that the native T1 of global hearts (beta = 1.0, \(P = 0.01 \)) were independently associated with iPTH, whereas myocardial strain parameters demonstrated no independent relationship with iPTH after multiple linear regression analysis.

Discussion

As a worldwide public health problem due to its association with multiple comorbidities, CKD is highly associated with cardiovascular events, mortality, and high medical cost burden [19]. CKD morbidity ranged from 8 to 16% in the population [20]. Projections from the
Global Health Observatory suggest that the CKD mortality rate will continue to increase from 12.2 to 14 deaths per 100,000 people by the year 2030 [21]. Although several studies on various populations have reported that low eGFR and high uremic toxicity factors are associated with cardiovascular diseases, cardiovascular mortality was still about twice higher in patients with stage 3 CKD and three times higher with stage 4 CKD. Additionally, the risk of HF is approximately doubled in patients with eGFR < 60 mL/min/1.73 m² [22–24]. Cardiovascular mortality is estimated to be significantly higher in people with an eGFR < 60 mL/min/1.73 m² [22]. Cardiovascular risks cause most of the deaths in ESRD patients with severe renal deficiency. Multiple risk factors account for cardiovascular disease in CKD patients. In patients with severe CKD, besides the traditional risk factors such as hypertension, dyslipidemia, Na⁺ overload, Ca²⁺ and serum phosphorus abnormalities, and chronic inflammation, cardiovascular disease in CKD may also be driven by specific risk factors including anemia and malnutrition, hormonal imbalances, soft tissue calcification, erythropoietin resistance, renal replacement therapy (RRT)-related electrolyte imbalance, and high PTH level. In all the risk factors, secondary hyperparathyroidism has been linked with mineral bone disorders as well as increased cardiovascular mortality, which may be critical factors for uremic cardiomyopathy. PTH influences LV function in chronic hemodialysis patients, and plasma PTH reduction is beneficial to the uremic heart [25].

Table 4 CMR correlates of iPTH by bivariate correlation analysis and multiple linear regression

	Bivariate correlation	Multiple linear regression	
	R	Beta	P
LV function parameters			
EF (%)	−0.3*	−0.1	0.73
EDV (mL)	0.2*	0.2	0.72
ESV (mL)	0.3*	0.02	0.97
SV (mL)	0.02	N/A	N/A
Myocardial strain parameters			
PRS (%)	−0.2*	0.3	0.28
PCS (%)	0.2*	0.1	0.42
PLS (%)	0.2	N/A	N/A
Native T1 values			
Basal segment (ms)	0.4*	−0.02	0.92
Middle segment (ms)	0.4*	−0.5	0.09
Apical segment (ms)	0.2	N/A	N/A
Global (ms)	0.5*	1.0	0.01

All abbreviations were the same as Tables 1–3

*P < 0.05

The iPTH of 32 patients was within the normal range. Ca²⁺ and serum phosphorus abnormalities were also found in the ESRD cohort. The iPTH was found to be associated with an increased cardiovascular events through a meta-analysis [27]. PTH may contribute to four major cardiovascular effects, including contractile disturbance, cardiomyocyte hypertrophy, and cardiac interstitial fibrotic and vasodilator effects. Although only the animal model by parathyroidectomy and invasive pathological examination demonstrated these correlations, very little detail and direct evidence about the inner connection of increased PTH and cardiac changes by non-invasive methods in CKD patients have been previously demonstrated.

In our study, iPTH levels in ESRD patients were much higher than the normal range. Ca²⁺ and serum phosphorus abnormalities were also found in the ESRD cohort. The iPTH of 32 patients was within the normal range by routine calcitriol and hemodynamic dialysis therapy. We found that LVEF was decreased, but still preserved in ESRD patients with either targeted iPTH or increased iPTH levels. Although no myocardial strain deterioration was detected in both ESRD cohorts, on normal iPTH, native T1 of the basal and middle segments in the LV were significantly increased. The global T1 in subjects with both targeted and increased iPTH was higher than that in normal subjects, which may lead to the assumption that myocardial tissue deterioration happens prior to myocardial deformation. Previous studies have reported LV mechanical dysynchrony and microvascular dysfunction detected by single-photon emission computed tomography (SPECT), and regadenoson SPECT myocardial perfusion imaging also provided a significant prognostic value in ESRD patients [28–31]. However, SPECT, especially regadenoson SPECT, has some limitations due to the utilization of vasodilators and contrast in ESRD patients with reduced clearance and longer exposure to the drug and contrast [32]. For the CMR technique, some studies have shown that native T1 assessed by CMR acquires samples from the longitudinal magnetization perturbation and extracts the real myocardial T1 without gadolinium contrast [33, 34]. Thus, native T1 mapping is currently explored as a relatively precise diagnostic modality in a wide range of heart diseases, including diffuse myocardial tissue lesions, such as ESRD patients [33]. Conversely, gadolinium increases the risk of nephrogenic systemic fibrosis making non-contrast native T1 mapping more suitable for CKD patients.
Increased native T1 account for a few characterizing tissues, such as edema, inflammation, and fibrosis, affecting the interstitial space [35]. Many studies have demonstrated that native T1 has shown an important prognostic significance in discriminating disease, especially in those with diffuse myocardial damage [36]. Thus, compared with SPECT, native T1 may provide more information, for instance edema, inflammation, or fibrosis, besides the myocardial blood flow, and non-utilization of contrast is safer for ESRD patients.

CKD contributing to decreased cardiac function, cardiac hypertrophy, and increased risk of adverse cardiovascular events is referred to as chronic renocardiac syndrome. Diffuse interstitial edema, inflammation, and fibrosis always occur in CKD patients, which can manifest as increased native myocardial T1 times [37]. We found that native T1 values were higher in patients with targeted and increased iPTH, and increased iPTH values seem more serious. Interestingly, native T1 mapping detecting myocardial damage was significantly associated with and demonstrated to be significant correlates of iPTH in this study, indicating that myocardial damage does exist in ESRD patients. Moreover, secondary hyperparathyroidism may indeed contribute to uremic myocardial changes. This result was consistent with the previous results of animal experiments on the increased PTH-induced cardiac fibrosis [38, 39]. Additionally, 40 patients presented with persistently high iPTH levels, revealing that treatment with conventional hemodialysis and medications seems limited. Meanwhile, the severity of secondary hyperparathyroidism increases with the decline in renal function. iPTH levels > 50 pg/mL in patients with CKD stages 3 and 4 are associated with an escalating combined risk of death or RRT [40]. In ESRD patients with targeted iPTH, native T1 is also increased. Thus, early and dynamic detection of myocardial damage by noninvasive imaging tools and early treatment of secondary hyperparathyroidism are particularly important.

Limitations
Although this research has demonstrated that increased iPTH levels were associated with myocardial damage in ESRD patients evaluated by CMR native T1, some limitations still exist. First, all enrolled patients in this study had ESRD and lacked the effect of iPTH on the myocardium in early-stage CKD. Second, we could not acquire an endocardial biopsy. Thus, direct association of native T1 with histologic abnormalities is lacking. Since several studies have demonstrated that native T1 plays a critical role in measuring myocardial edema and fibrosis [34], T2 mapping for the detection of edema may be further analyzed to elucidate the pathology behind increased T1 values, whether it is due to edema or fibrosis. In addition, no significant difference in myocardial damage was found in both ESRD groups and the normal group; however, the PRS of ESRD patients with targeted iPTH was found to be slightly increased, while the other parameters showed a decreasing tendency. Since multiple factors may cause the different appearance of myocardial strain in ESRD patients [41], studies with large sample sizes and different stages of CKD are needed to further explore the evolution progress of myocardial strain.

Conclusions
Myocardial damage was found to be increased in ESRD patients with both normal and increased iPTH levels following conventional therapy. In addition, consistently high iPTH levels may be independently associated with myocardial damage in ESRD patients.

Abbreviations
bSSFP: Balanced steady state free precession; CKD: Chronic kidney disease; CMR: Cardiovascular magnetic resonance; ECG: Electrocardiogram; EDV: End-diastolic volume; eGFR: Estimated glomerular filtration rate; ESRD: End-stage renal disease; ESV: End-systolic volume; HF: Heart failure; iPTH: Immunoreactive parathyroid hormone; KDIGO: Kidney Disease Improving Global Outcomes; LGE: Late gadolinium enhancement; LV: Left ventricle/left ventricular; LVEDV: Left ventricular end-diastolic volume; LVEF: Left ventricular ejection fraction; LVESV: Left ventricular end-systolic volume; MOLLI: Modified Look-Locker inversion recovery; NYHA: New York Heart Association; PCS: Peak circumferential strain; PL: Peak longitudinal strain; PRL: Peak radial strain; PTH: Parathyroid hormone; RRT: Renal replacement therapy; SAX: Short axis; SPECT: Single photon emission computed tomography; SV: Stroke volume.

Acknowledgements
Not applicable.

Authors’ contributions
HYX and WLP participated in the study design, contributed to CMR imaging and data analysis and interpretation, statistical analysis, and drafted the main manuscript. ZGY contributed to study design, editing and review of the manuscript. YZ carried out CMR data acquisition, and performed LV function, myocardial strain, native T1 analysis and interpretation. CCX and ZLL contributed to the CMR data acquisition, image quality controlling; RX participated in the quantitative data analysis and figure preparation. YKG participated in the whole study design, contributed to quality control of data and algorithms, and editing and review of the manuscript. All authors read and approved the final manuscript.

Funding
The study was supported by the following findings: The National Natural Science Foundation of China (Grant Nos. 81771887, 81901712 and 81771897), Universal Application Project of Health Commission of Sichuan Province (Grant No. 19PJ071).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The ethics committees of our hospitals (Ethics Committee of Clinical Trials and Biomedicine in the West China Hospital of Sichuan University and the Ethics Committee of Clinical Trials and Biomedicine in the West China Second University Hospital of Sichuan University) all approved this research (Ethics approval NO.2016.4.146). All patients agreed to participate in this study and the written informed consent was acquired from the enrolled subjects before the examination.
Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Ren min Road, Chengdu 610041, Sichuan, China. 2 Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Ren min Road, Chengdu 610041, Sichuan, China. 3 Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu 610041, Sichuan, China.

Received: 10 March 2020 Accepted: 26 January 2021
Published online: 11 March 2021

References
1. Boer DIH. The Severity of Secondary Hyperparathyroidism in chronic renal insufficiency is GFR-dependent, race-dependent, and associated with cardiovascular disease. J Am Soc Nephrol. 2002;13(11):2762–9.
2. Slinin Y, Foley RN, Collins AJ. Calcium, phosphorus, parathyroid hormone and cardiovascular disease in hemodialysis patients: the usrs study waves 1, 3 and 4 study. J Am Soc Nephrol. 2005;16:1788–93.
3. Van Ballegooijen AJ, Reinders I, Visser M, Brouwer IA. Parathyroid hormone and cardiovascular disease events: a systematic review and meta-analysis of prospective studies. Am J Heart. 2013;165:655–64.
4. Hayatoglu A, King B, Matusiaka K, Coresh J, Astor BC, Woodward M, Levey A, de Jong PE, Crainiceanu CM, Nelson RG, Knowler WC, Ishani A, Neaton J, Svendsen K, Mann JF, Yusuf S, Teo KK, Gao P, Nelson RG, Knowler WC, Bihl HJ, Joosten H, Kleeferstria N, Groenier KH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, Manley T. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.
5. Kottgen A, Russell SD, Loehr LR, Cnaimegna CM, Rosamond WD, Chang PP, Chambless LE, Coresh J. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.
6. van Ballegooijen AJ, Reinders I, Visser M, Brouwer IA. Parathyroid hormone and cardiovascular disease events: a systematic review and meta-analysis of prospective studies. Am J Heart. 2013;165:655–64.
7. Hayatoglu A, King B, Matusiaka K, Coresh J, Astor BC, Woodward M, Levey A, de Jong PE, Crainiceanu CM, Nelson RG, Knowler WC, Ishani A, Neaton J, Svendsen K, Mann JF, Yusuf S, Teo KK, Gao P, Nelson RG, Knowler WC, Bihl HJ, Joosten H, Kleeferstria N, Groenier KH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, Manley T. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.
8. Kottgen A, Russell SD, Loehr LR, Cnaimegna CM, Rosamond WD, Chang PP, Chambless LE, Coresh J. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.
9. van Ballegooijen AJ, Reinders I, Visser M, Brouwer IA. Parathyroid hormone and cardiovascular disease events: a systematic review and meta-analysis of prospective studies. Am J Heart. 2013;165:655–64.
10. Hayatoglu A, King B, Matusiaka K, Coresh J, Astor BC, Woodward M, Levey A, de Jong PE, Crainiceanu CM, Nelson RG, Knowler WC, Ishani A, Neaton J, Svendsen K, Mann JF, Yusuf S, Teo KK, Gao P, Nelson RG, Knowler WC, Bihl HJ, Joosten H, Kleeferstria N, Groenier KH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, Manley T. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.
11. Kottgen A, Russell SD, Loehr LR, Cnaimegna CM, Rosamond WD, Chang PP, Chambless LE, Coresh J. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.
12. van Ballegooijen AJ, Reinders I, Visser M, Brouwer IA. Parathyroid hormone and cardiovascular disease events: a systematic review and meta-analysis of prospective studies. Am J Heart. 2013;165:655–64.
13. Hayatoglu A, King B, Matusiaka K, Coresh J, Astor BC, Woodward M, Levey A, de Jong PE, Crainiceanu CM, Nelson RG, Knowler WC, Ishani A, Neaton J, Svendsen K, Mann JF, Yusuf S, Teo KK, Gao P, Nelson RG, Knowler WC, Bihl HJ, Joosten H, Kleeferstria N, Groenier KH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, Manley T. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.
14. Kottgen A, Russell SD, Loehr LR, Cnaimegna CM, Rosamond WD, Chang PP, Chambless LE, Coresh J. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.
15. van Ballegooijen AJ, Reinders I, Visser M, Brouwer IA. Parathyroid hormone and cardiovascular disease events: a systematic review and meta-analysis of prospective studies. Am J Heart. 2013;165:655–64.
16. Hayatoglu A, King B, Matusiaka K, Coresh J, Astor BC, Woodward M, Levey A, de Jong PE, Crainiceanu CM, Nelson RG, Knowler WC, Ishani A, Neaton J, Svendsen K, Mann JF, Yusuf S, Teo KK, Gao P, Nelson RG, Knowler WC, Bihl HJ, Joosten H, Kleeferstria N, Groenier KH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, Manley T. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.
17. Kottgen A, Russell SD, Loehr LR, Cnaimegna CM, Rosamond WD, Chang PP, Chambless LE, Coresh J. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.
35. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2.
36. Moon JC, Treibel TA, Schelbert EB. T1 Mapping for diffuse myocardial fibrosis. J Am Coll Cardiol. 2013;62(14):1288–9.
37. Hayer MK, Radhakrishnan A, Price AW, Baig S, Liu B, Ferro C, Captur G, Townend JN, Moon JC, Edwards NC, Steeds RP. Early effects of kidney transplantation on the heart. A cardiac magnetic resonance multi-parametric study. Int J Cardiol. 2019;293:272–7.
38. Amann K, Ritz E, West G, Klaus G, Mall G. A role of parathyroid hormone for the activation of cardiac fibroblasts in uremia. J Am Soc Nephrol. 1994;4(10):1814–9.
39. Lekawanvijit S. Cardiotoxicity of uremic toxins: a driver of cardiorenal syndrome. Toxins (Basel). 2018;10(9):352.
40. Asche CV, Marx SE, Kim J, et al. Impact of elevated intact parathyroid hormone on mortality and renal disease progression in patients with chronic kidney disease stages 3 and 4. Curr Med Res Opin. 2012;28(9):1527.
41. Liu YW, Su CT, Huang YY, et al. Left ventricular systolic strain in chronic kidney disease and hemodialysis patients. Am J Nephrol. 2011;33(1):84–90.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.