First Japanese Specimen-based Records of *Sardinella gibbosa* (Teleostei: Clupeiformes: Clupeidae) from Okinawa Island

Harutaka Hata¹,³ and Hiroyuki Motomura²

¹ Center for Molecular Biodiversity Research, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0001, Japan
E-mail: k2795502@kadai.jp
² The Kagoshima University Museum, 1-21-30 Korimoto, Kagoshima 890-0065, Japan
E-mail: motomura@kaum.kagoshima-u.ac.jp
³ Corresponding author

(Received 22 February 2021; Accepted 17 May 2021)

Eighteen specimens of *Sardinella gibbosa* (Bleeker, 1849) collected from Okinawa Island, Ryukyu Islands, Japan represent the first Japanese specimen-based records of the species. All specimens conformed closely to the diagnosis of *S. gibbosa*, having the caudal fin uniformly pale, a black spot on the dorsal-fin origin, body scales with centrally discontinuous striae, 26–31 + 50–57 = 77–88 gill rakers on the first gill arch, and 18 or 19 + 14 or 15 = 32–34 keeled scutes along the body ventral surface. In addition, some previous Japanese records of unidentified clupeoid fishes are reviewed.

Key Words: *Sardinella aurita*, *Sardinella lemuru*, *Clupea immaculata*, Ryukyu Islands, sardine.

Introduction

Sardinella Valenciennes, 1847 is a circumtropical genus of marine, brackish and/or fresh water sardines (Clupeidae) (Whitehead 1985; Munroe et al. 1999; Stern et al. 2017). In their review of Japanese *Sardinella*, Aonuma and Yagishita (2013) reported three species, *Sardinella lemuru* Bleeker, 1853 [currently regarded as a junior synonym of *Sardinella aurita* Valenciennes, 1847 (Stern et al. 2017)], *Sardinella melanura* (Cuvier, 1829), and *Sardinella zunasi* (Bleeker, 1854). Subsequently, Hata and Motomura (2019a, c) described two new congeneric species, *Sardinella electra* Hata and Motomura, 2019 and *Sardinella alcyone* Hata and Motomura, 2019, based on specimens collected from the Ryukyu Islands (specimens from southern Taiwan were also used for the latter species), bringing to five the number of species of *Sardinella* recorded from Japanese waters, supported by voucher specimens. Although the photographed individual caught from Okinawa Island shown by Miura (2012) is presumably identified as *Sardinella gibbosa* (Bleeker, 1849), the specimen was not retained. However, Yoshigou (2007, 2014), Torii et al. (2011), and Uehara et al. (2015) all reported additional unidentified species of *Sardinella* from the Ryukyu Islands, indicating a need for further investigation of Japanese species.

Eighteen specimens collected from Nakagusuku Bay, Okinawa Island, and deposited in the Okinawa Churashima Foundation Research Center were identified as *Sa. gibbosa*, previously reported from the Indo-West Pacific north to Taiwan (Whitehead 1985; Munroe et al. 1999; Stern et al. 2016; Hata 2019). Described in detail herein, the specimens represent the first voucher specimen supported Japanese records and northernmost record of the species in the Pacific Ocean. Additionally, some previous Japanese records of unidentified clupeoid fishes are reviewed.

Materials and Methods

Counts and proportional measurements, expressed as percentages of standard length (SL) or head length (HL: measured from snout tip to most posterior point of opercle, without membranous structure), followed Stern et al. (2016). Snout length was measured from the snout tip to anterior margin of eye, and interorbital width was measured above the pupil centers. All measurements being made with digital calipers to the nearest 0.1 mm. The specimens examined in the present study are deposited at the Okinawa Churashima Foundation Research Center (OCF/URM).

Taxonomic accounts

Sardinella gibbosa (Bleeker, 1849)
[English name: Goldstripe Sardinella; new standard Japanese name: Nankai-sappa]
(Fig. 1; Tables 1, 2)

Material examined. 18 specimens, 111.2–142.4 mm SL: URM-P 6388, 142.4 mm SL, Nakagusuku Bay, Okinawa Island, Ryukyu Islands, Japan, 28 December 1982, set net; URM-P 8673, 137.7 mm SL, URM-P 8674, 137.1 mm SL, URM-P 8675, 116.3 mm SL, Nakagusuku Bay, 25 April 1984, set net; URM-P 32851, 137.8 mm SL, Tsuken Island, located within Nakagusuku Bay, 23 March 1990, set net; URM-P 44674, 128.9 mm SL, URM-P 44675, 117.8 mm SL, URM-P 44676, 124.0 mm SL, URM-P 44677, 118.4 mm SL, URM-P...
Counts and measurements given in Tables 1 and 2, respectively. Body rather elongate, laterally compressed, deepest at dorsal-fin origin. Dorsal profile gently elevated from snout tip to dorsal-fin origin, thereafter gradually lowering to uppermost point of caudal-fin base. Ventral profile lowering from lower-jaw tip to just below pectoral fin, thereafter nearly straight to anus, before gently rising to lowermost point of caudal-fin base. Ventral edge of body covered with 32–34 keeled scutes from isthmus to anus. Pectoral-fin insertion slightly anterior to posteriormost point of opercle, below level of snout tip. Dorsal, ventral, and posterior margins of pectoral fin nearly straight; posterior tip of fin pointed, not reaching pelvic-fin insertion. Uppermost fin ray of pectoral fin not extended as filament. Pelvic-fin insertion below base of seventh to tenth dorsal-fin ray. Posterior tip of depressed pelvic fin not reaching anus.

Dorsal-fin origin posterior to posterior tip of pectoral fin. Anterior margin of dorsal fin elevated from fin origin to fourth ray tip; middle portion of dorsal-fin margin slightly concave. Posteriormost dorsal-fin ray not filamentous. Anus situated just anterior to anal-fin origin. Anal-fin origin posterior to posterior end of dorsal-fin base. Two posteriormost anal-fin rays enlarged. Caudal fin forked, posterior tips of both lobes pointed. Dorsal and ventral margins of both lobes of caudal fin nearly straight. Snout tip pointed, slightly behind tip of lower jaw. Eye large, round, covered with adipose eyelid, positioned laterally on head dorsal to horizontal through pectoral-fin insertion, visible in dorsal view. Pupil round. Interorbital space flat. Orbit elliptical. Nostrils close to each other, anterior to orbit. Mouth terminal, small, posterior tip of maxilla slightly short of or just below anterior margin of pupil. Ventral margin of maxilla with small uni-serial teeth. Premaxilla and hypomaxilla without teeth. First supramaxilla elongate. Second supramaxilla paddle-shaped, symmetrical. Posterior ramus of lower jaw elevated. Posterior margins of preopercle, subopercle and opercle convex, rounded, without serrations. Pseudobranchial filaments present, exposed. Two fleshy outgrowths on posterior margins on gill opening; a single large papilla on ventral margin. Gill rakers long, slender, with numerous asperities on anterior and posterior faces. Scales cycloid, thin, decidu-
ous, those on lateral body surface with several centrally discontinuous vertical striae, posteriorly somewhat fimbriated (Fig. 2). Predorsal scales paired. No elongate wing-like scales present beneath normal paired scales. No scales on head and most fins; a broad triangular sheath of scales on caudal fin.

Color of preserved specimens: Dorsum to upper part of lateral surface of body dark brown. Lower part of lateral surface and ventral surface of body uniformly silver or pale brown. Several narrow longitudinal stripes on upper part of body. Pectoral, pelvic, and anal fins semitransparent, pale, without melanophores except for uppermost pectoral-fin ray. Dorsal and caudal fins uniformly pale, melanophores scattered along fin rays. Dark blotch on dorsal-fin origin (Fig. 1J). Melanophores densely scattered on tips of both jaws.

Distribution. *Sardinella gibbosa* is widely distributed in the Indo-West Pacific from the east coast of Africa (including the eastern Mediterranean Sea as invasive species) to northern Australia and the Ryukyu Islands (Whitehead 1985; Munroe et al. 1999; Matsumuna 2011, 2013, 2018; Miura 2012; Stern et al. 2015, 2016; Hata 2017a, 2019; this study). In Japan, the species is known only from Nakagusuku Bay, southeastern Okinawa Island, Ryukyu Islands (Miura 2012; this study).

Identification. The specimens collected from Okinawa Island were assigned to the genus *Sardinella* as defined by Whitehead (1985) and Munroe et al. (1999), having the abdomen covered with prominently keeled scutes, paired predorsal scales, a symmetrical second supramaxilla, toothless hypo-maxilla, two posteriormost anal-fin rays enlarged, the dorsal fin without filamentous rays, and two fleshy outgrowths on the hind margin of the gill opening. Moreover, they conformed to *Sa. gibbosa*, having the following combination of characters that closely matched the diagnostic features given by Whitehead (1985), Munroe et al. (1999), and Stern et al. (2016): caudal fin uniformly pale, without distinct blotch on posterior tips of both lobes; black spot on dorsal-fin origin; striae on scales on lateral surface of body.

Table 1. Counts of specimens of *Sardinella gibbosa*.

	This study	“Putative neotype” in Whitehead et al. (1966)	Stern et al. (2016)
	Okinawa Island, Japan	BMNH 1867.11.28.46	Western Pacific Ocean
n=18	111.2–142.4	148.6	102.9–136.4
Standard length (mm)	Modes	Modes	Modes
Dorsal-fin rays (unbranched)	4	25	17–20
Dorsal-fin rays (branched)	14–16	26	19
Dorsal-fin rays (total)	18–20	24	17–20
Anal-fin rays (unbranched)	3	17	19
Anal-fin rays (branched)	15–18	14	19
Anal-fin rays (total)	18–21	17	19
Pectoral-fin rays (unbranched)	1	1	1
Pectoral-fin rays (branched)	14–15	14	13
Pectoral-fin rays (total)	15–16	14	15
Pelvic-fin rays (unbranched)	1	1	1
Pelvic-fin rays (branched)	7	7	7
Gill rakers on 1st gill arch (upper)	26–31	27	23–37
Gill rakers on 1st gill arch (lower)	50–57	55	42–69
Gill rakers on 1st gill arch (total)	77–88	81	77
Gill rakers on 2nd gill arch (upper)	24–29	26	24
Gill rakers on 2nd gill arch (lower)	50–60	56	53
Gill rakers on 2nd gill arch (total)	74–87	83	77
Gill rakers on 3rd gill arch (upper)	23–28	25	24
Gill rakers on 3rd gill arch (lower)	37–48	40	44
Gill rakers on 3rd gill arch (total)	60–74	65	68
Gill rakers on 4th gill arch (upper)	21–24	22	21
Gill rakers on 4th gill arch (lower)	29–34	29	30
Gill rakers on 4th gill arch (total)	50–58	52	51
Gill rakers on posterior face of 3rd gill arch	18–24	21	20
Prepelvic scutes	18–19	18	17–19
Postpelvic scutes	14–15	16	14–15
Total scutes	32–34	32	34
Scale rows in longitudinal series	38–41	39	14
Pseudobranchial filaments	17–23	19	14–21
Abdominal vertebrae	29–32	31	17
Caudal vertebrae	15–17	17	17
Total vertebrae	46–49	47	47
interrupted in the center; 26−31+50−57=77–88 gill rakers on first gill arch; and 18 or 19+14 or 15=32–34 keeled scutes along the body ventral surface. In particular, their meristic and morphometric characters generally matched those given by Stern et al. (2016) for western Pacific Sa. gibbosa, although they slightly differed from Stern et al.'s (2016) specimens in having slightly higher total ray counts for the anal and pectoral fins, generally more pseudobranchial filaments (18–21, 15–16, and 17–23 vs. 17–20, 14–15, and 14–21), and a slightly narrower body (22.8–26.2% SL vs. 23.8–29.8%). Because ranges of anal- and pectoral-fin ray numbers greater than five and three, respectively, have been reported in congeneric species (Stern et al. 2016; Hata and Motomura 2019a–d), the pseudobranchial filament and body depth differences are considered as interspecific variations only.

Although Sa. gibbosa closely resembles Sardinella goni Stern, Rinkevich, and Goren, 2016 (recorded only from Boracay Island, Philippines), the two species sharing body scales with discontinuous vertical striae, a black spot on the dorsal-fin origin and caudal fin without black blotch, and almost identical numbers of gill rakers on the first gill arch, the former has 14 or 15 postpelvic scutes (vs. 13 in S. goni; Stern et al. 2016). Although Kishinouye (1908). Although Whitehead (1985) regarded C. immaculata as a junior synonym of C. gibbosa, Bleeker, 1849, and Sa. gibbosa, based on examination of the syntypes of H. dollfusi. In addition, Hata and Motomura (2019d) regarded Clupea jussieu as a nomen dubium, leaving Sp. tembang, C. immaculata, H. dollfusi, F. dactylolepis, and Sa. taiwanensis as junior synonyms of Sa. gibbosa. Subsequently, Stern et al. (2015, 2016) regarded Harangula dollfusi Chabanaud, 1933, believed to be a junior synonym of Sardinella albella (Valenciennes, 1847) by Whitehead (1985), as a junior synonym of Sa. gibbosa, based on examination of the syntypes of H. dollfusi. In addition, Hata and Motomura (2019d) regarded Clupea jussieu as a nomen dubium, leaving Sp. tembang, C. immaculata, H. dollfusi, F. dactylolepis, and Sa. taiwanensis as junior synonyms of Sa. gibbosa.

One of these, C. immaculata, was described by Kishinouye (1908). Although Whitehead (1985) regarded C. immaculata as a junior synonym of Sa. gibbosa, this was questioned by Aonuma and Yagishita (2013). Although Kishinouye (1908) stated that he collected one specimen each from Saga, Japan, Swatow, Guangdong, China, and Xiamen,

Table 2. Morphometrics of specimens of Sardinella gibbosa.

Standard length (mm; SL)	This study	"Putative neotype" in Whitehead et al. (1966)	Western Pacific Ocean	
Okinawa Island, Japan	n=18	BMNH 1867.11.28.46	n=42	
As % SL		111.2–142.4	148.6	102.9–136.4
Head length (HL)		21.7–23.7	23.8	21.5–23.7
Body depth		22.8–26.2	25.8	23.8–29.8
Pre-dorsal fin length		42.7–44.8	44.5	40.9–44.8
Snout tip to pectoral-fin insertion		22.2–25.6	25.9	27.1
Snout tip to pelvic-fin insertion		48.5–51.2	50.6	49.3
Snout tip to anal-fin origin		75.7–79.2	78.9	76.8
Dorsal-fin base length		13.1–14.6	13.4	
Anal-fin base length		14.6–16.2	15.6	
As % HL		41.8–45.5	42.9	41.0–45.5
Interorbital width		13.0–21.1	17.2	20.2–24.2
Snout length		28.3–31.3	30.1	28.2–33.9
Maxilla length		39.3–41.9	39.2	38.1–43.8
Eye diameter		25.9–29.3	26.0	25.6–30.5

Hata and Motomura (2016) pointed that Bleeker (1849) gave no size range or number of specimens, which or how many specimens belonged to the type series of the nominal species being uncertain. They indicated BMNH 1867.11.28.46, a specimen collected from Makassar, as "putative neotype" of C. gibbosa Bleeker, 1849. Subsequently, Stern et al. (2016), treated the BMNH specimen as the neotype of the nominal species. However, a formal designation was not provided by Whitehead et al. (1966) or Stern et al. (2016); therefore, the neotype designation failed to meet the full mandatory requirements listed under Article 75.3.1 of the Code. The formal neotype designation is needed if taxonomic confusion related to Sa. gibbosa is found in the future.

Whitehead (1985), who reviewed the genus Sardinella, considered Clupanodon jussieu Lacepède, 1803, Spratella tembang Bleeker, 1851, Clupea immaculata Kishinouye, 1908, Fimbriclupea dactylolepis Whitley, 1940, and Sardinella taiwanensis Raja and Hiyama, 1969 to all be junior synonyms of Sa. gibbosa. Subsequently, Stern et al. (2015, 2016) regarded Harangula dollfusi Chabanaud, 1933, believed to be a junior synonym of Sardinella albella (Valenciennes, 1847) by Whitehead (1985), as a junior synonym of Sa. gibbosa, based on examination of the syntypes of H. dollfusi. In addition, Hata and Motomura (2019d) regarded Clupea jussieu as a nomen dubium, leaving Sp. tembang, C. immaculata, H. dollfusi, F. dactylolepis, and Sa. taiwanensis as junior synonyms of Sa. gibbosa.
Fujian, China, his description of *C. immaculata* included meristics without value ranges, suggesting that the description was based only on a single specimen. However, it is unknown which specimen the description was based on. Unfortunately, the type specimens of *C. immaculata* have since been lost (Wongratana 1980; Fricke et al. 2021; this study). In fact, Kishinouye’s (1908) characters of *C. immaculata* generally matched those of *Sardinella gibbosa* shown in Whitehead (1985), Munroe et al. (1999), and Stern et al. (2015, 2016), as well as the Okinawan specimens examined here: dorsal-fin rays 17, pectoral-fin rays 15, pelvic-fin rays 8, abdomen covered with 19+14 scutes, and dorsal-fin origin nearer to snout tip than caudal-fin base. However, *Sa. gibbosa* has at no time been recorded from temperate Japanese waters, including Saga (northern coast of Kyushu), one of the type localities of *C. immaculata* although intensive ichthyofaunal surveys have been carried out in Japanese waters (Aonuma and Yagishita 2013; Motomura 2020).

On the other hand, the abovementioned characters of *C. immaculata* also match those of *Sardinella aurita* Valenci-
ennies, 1847, except the pelvic-fin ray count [8 in Kishinouye (1908)’s *C. immaculata* vs. 9 in *Sa. aurita* (Whitehead 1985; Munroe et al. 1999; Stern et al. 2017)]. Furthermore, *Sa. aurita* has been frequently reported from southern Japan, including the northern coast of Kyushu (frequently reported as *Sa. lemaru* Bleeker, 1853) [e.g., Omori 2007; Kagoshima City Aquarium Foundation 2008, 2018; Hasegawa 2011; Hata and Motomura 2011, 2017; Kadowaki et al. 2015; Kuragai 2016; Tashiro et al. 2017; Hata 2017b, 2018a, b, 2020; Funaki and Saitoh 2018; Kobayashi 2019; Nakashimada and Hibino 2020; Hata and Koeda 2020: fig. 2]. Judging from these facts, Kishinouye’s (1908) specimen from Saga was probably *Sa. aurita*. To confirm the taxonomic status of *C. immaculata*, more researches are needed.

Previous records of *Sa. gibbosa* from Japan. As mentioned above, a number of unidentified species of *Sardinella* has been reported from Japan. In addition, *C. exile* Kishinouye, 1911 was described as a new species, based on specimens collected from Chichi-jima Island, Ogasawara Islands, Japan. In the original description of the species, Kishinouye (1911) stated that it was the most abundant clupeoid fish in the Ogasawara Islands. As with *C. immaculata*, no type specimens of *C. exile* exist (Wongratana 1980; Fricke et al. 2021; this study). Subsequently, Matsubara (1955) treated *C. exile* as a junior synonym of *Sardinella jussieu* (Lacepède, 1803), a nominal species regarded as a nomen dubium by Hata and Motomura (2019d). *Clupea exile* was not treated by Whitehead (1985) in his taxonomic review of the family Clupeidae and the taxonomic status of the nominal species is unknown. Aonuma and Yagishita (2013) similarly excluded *C. exile* in their review of Japanese clupeoids, due to the lack of detailed information on the species. However, the vertebral count of *C. exile* described by Kishinouye (1911) was significantly lower than in specimens of *Sa. gibbosa* examined here (40 vs. 46–49; Table 1). Therefore, *C. exile* is clearly not synonymous with *Sa. gibbosa*. In fact, Yoshigou (2002) suggested that *C. exile* is a junior synonym of *Herklotzicthys quadrimalculatus* (Rüppell, 1837), based on the correspondence of characters of *C. exile*, shown by Kishinouye (1911), and specimens of *H. quadrimalculatus* collected from the Ogasawara Islands, reported by Yoshigou (2002). To clarify the taxonomic status of *C. exile*, further consideration of closely related genera is necessar.

Aoyagi (1941) reported three clupeoid specimens (54.7–60.2 mm SL) collected from Miyako Island, Japan, as *Sardinella sindensis* (Day, 1878), although the species is considered to be distributed only in the northwestern Indian Ocean, from the Gulf of Aden to the western coast of India (Whitehead 1985). Subsequently, Matsubara (1955) reported the following diagnostic characters of *Sa. sindensis* sensu Aoyagi (1941): pelvic fin with eight fin rays, black spot on dorsal-fin origin, lower gill rakers on first gill arch 58–62, body depth 3 to 4 times (approx. 25–33.3%) in SL, and eye diameter 3.5 to 4 times (approx. 25–28.6%) in head length. Although the pelvic-fin ray count, dorsal-fin marking, and eye diameter to head length ratio of *Sa. sindensis* given by Matsubara (1955) closely matched those of Okinawa specimens of *Sa. gibbosa* presented here, the gill-raker counts and body depth in SL ratio were quite different. Accordingly, *Sa. sindensis* sensu Aoyagi (1941) is not considered to be *Sa. gibbosa*, although its possible identity as *Sa. albellia* or *Sa. alcyone* cannot be discounted, due to their similar lower gill-raker counts and deeper body (counts of lower gill rakers on first gill arch 47–64 in *Sa. albellia* in 63.9–130.0 mm SL specimens, 67–72 in *Sa. alcyone* in 66.6–109.8 mm SL specimens; body depth 28.8–33.8% SL in *Sa. albellia*, 26.4–36.8% in *Sa. alcyone*) (Stern et al. 2016; Hata and Motomura 2019c). It should be noted, however, that the northern distribution limit of *Sa. albellia* in the Pacific Ocean is Taiwan, the species not having been recorded from Japanese waters (Whitehead 1985; Munroe et al. 1999; Stern et al. 2016; Hata 2019). Miura (2012) reported an unidentified photograph of a sardine from Sakagusuku Bay, southern coast of Okinawa Island, where specimens of *Sa. gibbosa* examined in the present study were collected, as “sappa-zoku-no-isshu-2” (meaning *Sardinella* sp. 2 in Japanese), noting that the species was rarely caught in Sakagusuku Bay. Although the specimen photographed is here presumably identified as *Sa. gibbosa* due to its elongated body, this identification cannot be validated as no voucher specimens have been retained in Miura (2012). Consequently, the specimens described here represent the first records of *Sa. gibbosa* from Japanese waters, with Sakagusuku Bay, Okinawa Island being confirmed as the northern distribution limit of the species.

Because no Japanese name has previously been applied to specimens of *Sa. gibbosa*, the new standard Japanese name “Nankai-sappa” is herein proposed for the species (based on URM-P 4462; Figs 1F, 2), "nankai" meaning "southern sea"; in reference to the primarily tropical distribution of the species, and "sappa" being the Japanese name for the genus *Sardinella*.

Comparative material examined. BMNH 1867.11.28.46, Makassar, Indonesia; listed as “putative neotype of *Clupea gibbosa*” in Whitehead et al. (1966) (see “Taxonomic status of *Clupea immaculata* Kishinouye, 1908”).

Acknowledgements

We are especially grateful to O. Crimmen, J. Maclaine, and D. Nicholson (BMNH) and K. Miyamoto and T. Yoshino (OCF) for opportunities to examine specimens. We also thank G. Hardy (Ngunguru, New Zealand) for reading the manuscript and providing help with English. This study was supported in part by the Sasakawa Scientific Research Grant from the Japan Science Society (28-745); a Grant-in-Aid from the Japan Society for the Promotion of Science for JSPS Fellows (DC2: 29-6652); JSPS KAKENHI Grant Numbers 19K23691, JP23580259, JP26450265, 20H03311, and 21H03651; the JSPS Core-to-Core Program: B Asia-Africa Science Platforms; the “Biological Properties of Biodiversity Hotspots in Japan” project of the National Museum of Nature and Science, Tsukuba, Japan; and “Establishment of Glocal Research and Education Network in the Amami Islands” project of Kagoshima University adopted by the Min-
istry of Education, Culture, Sports, Science and Technology, Japan.

References

Aonuma, Y. and Yagishita, N. 2013. Clupeidae. Pp. 297–301, 1811–1812. In: Nakabo, T. (Ed.) Fishes of Japan with Pictorial Keys to the Species Third Edition. Tokai University Press, Hadano. [In Japanese]

Aoyagi, H. 1941. Note on the fishes of the Ryukyu Islands V. The marine fishes of Miyako Islands. Transactions of the Biogeographical Society of Japan 3: 287–302, pl. 19.

Bleeker, P. 1849. A contribution to the knowledge of the ichthyological fauna of Celebes. Journal of the Indian Archipelago and Eastern Asia (Singapore) 3: 65–74.

Bleeker, P. 1851. Nieuwe bijdrage tot de kennis der ichthyologische fauna van Celebes. Natuurkundig Tijdschrift voor Nederlandsch Indië 2: 209–224.

Fricke, R., Eschmeyer, W. N., and van der Laan, R. (Eds) 2021. Eschmeyer’s catalog of fishes: genera, species, references. Available at http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. (11 February 2021).

Funaki, O. and Saitho, M. 2018. *Sardinella lemura* Bleeker, 1853 fished in Kanagawa Prefecture. Bulletin of Kanagawa Prefectural Fisheries Technical Center 9: 5–8. [In Japanese]

Hasegawa, M. 2011. [Identification of unfamiliar fishes]. Hekisui 134: 9. [In Japanese]

Hata, H. 2017a. *Sardinella gibbosa* (Bleeker 1849). P. 41. In: Motomura, H., Alama, U. B., Muto, N., Babaran, R. P., and Ishikawa, S. (Eds) Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines. The Kagoshima University Museum, Kagoshima, University of the Philippines Visayas, Iloilo and Research Institute for Humanity and Nature, Kyoto.

Hata, H. 2017b. Clupeidae. Pp. 36–41. In: Iwatsubo, H. and Motomura, H. (Eds) Field Guide to Fishes of Kagoshima Bay in Southern Kyushu, Japan. Kagoshima Museum of Aquatic Biodiversity, Kagoshima and the Kagoshima University Museum, Kagoshima. [In Japanese]

Hata, H. 2018a. *Sardinella lemura* Bleeker, 1853. P. 75. In: Koeda, K., Hata, H., Yamada, M., and Motomura, H. (Eds) Field Guide to Fishes Landed at Uchinoura Fishing Port, Kagoshima, Japan. The Kagoshima University Museum, Kagoshima. [In Japanese]

Hata, H. 2018b. *Sardinella lemura* Bleeker, 1853. P. 38. In: Kimura, S., Imamura, H., Nguyen, V. Q., and Pham, T. D. (Eds) *Fishes of Ha Long Bay, the Natural World Heritage Site in Northern Vietnam*. Fisheries Research Laboratory, Mie University, Shima.

Hata, H. 2019. Family Clupeidae. Pp. 212–224. In: Koeda, K. and Ho, H.-C. (Eds) *Fishes of Southern Taiwan*. National Museum of Marine Biology & Aquarium, Pingtung.

Hata, H. 2020. *Sardinella aurita* Valenciennes, 1847. P. 85. In: Koeda, K., Hata, H., Yamada, M., and Motomura, H. (Eds) *Fishes from Markets in Osumi Peninsula*, Kagoshima, Japan. The Kagoshima University Museum, Kagoshima. [In Japanese]

Hata, H. and Koeda, K. 2020. Second records of *Sardinella aurita* (Clupeiformes: Clupeidae) from Shikoku, southern Japan. Kuroshio Biosphere 17: 8–17.

Hata, H. and Motomura, H. 2011. Clupeiform fishes of Kagoshima Prefecture, southern Japan. Nature of Kagoshima 37: 49–62. [In Japanese]

Hata, H. and Motomura, H. 2017. First record of *Sardinella lemura* (Clupeiformes: Clupeidae) from Kochi Prefecture, southern Japan and comments on the species’ distribution in Japanese waters. Bulletin of Shikoku Institution of Natural History 10: 41–46. [In Japanese]

Hata, H. and Motomura, H. 2019a. A new species of sardine, *Sardinella electra* (Teleostei: Clupeiformes: Clupeidae), from the Ryukyu Islands, Japan. Zootaxa 4565: 274–280.

Hata, H. and Motomura, H. 2019b. A new species of sardine, *Sardinella pacifica* (Teleostei: Clupeiformes: Clupeidae), from the Philippines. ZooKeys 829: 75–83.

Hata, H. and Motomura, H. 2019c. *Sardinella alycone* (Teleostei: Clupeiformes: Clupeidae), a new sardine from the northwestern Pacific. Zootaxa 4702: 19–25.

Hata, H. and Motomura, H. 2019d. Validity of *Sardinella dayi* Regan 1917 and redescriptions of *Sardinella jussieui* (Valenciennes 1847) (Teleostei: Clupeiformes: Clupeidae). Ichthyological Research doi: 10.1007/s10722-019-00722-9 (17 December 2019), 67: 287–293 (27 April 2020).

ICZN [International Commission on Zoological Nomenclature]. 1999. *International Code of Zoological Nomenclature. Fourth Edition*. International Trust for Zoological Nomenclature, London, xxix + 1306 pp.

Kaburagi, K. 2016. Angling Fishes of Tanega-shima Island. Tamashidasha, Nishinoo-mote, 157 pp. [In Japanese]

Kadowaki, S., Yamaguchi, Y., and Nagata, N. 2015. Fish species caught in the fixed nets set at the adjoining sea of Kuroshima-island, Sasebo. Transaction of Nagasaki Biological Society 76: 57–61. [In Japanese]

Kagoshima City Aquarium Foundation. 2008. *Fishes Collected with Set Nets in Kagoshima and Confirmed by Kagoshima City Aquarium*. Kagoshima City Aquarium Foundation, Kagoshima, 260 pp. [In Japanese]

Kagoshima City Aquarium Foundation. 2018. *Fishes Collected with Set Nets in Kagoshima and Confirmed by Kagoshima City Aquarium*. Second Edition. Kagoshima City Aquarium Foundation, Kagoshima, 335 pp. [In Japanese]

Kishinouye, K. 1908. Notes on the natural history of the sardine (*Clupea melanosticta* Schl.) Journal of the Imperial Fisheries Bureau 14: 71–105, pls 13–21. [In Japanese]

Kishinouye, K. 1911. Description of the clupeid fishes from Ogasawara or Bonin Islands. Journal of the college of Agriculture, Imperial University Tokyo 2: 383–386, pl. 30.

Kobayashi, Y. 2019. *Sardinella lemura*. Pp. 66–67. In: Murase, A., Miki, R., Wada, M., and Senou, H. (Eds) *Coastal and Market Fishes Around Kadogawa Bay, Northern Part of Miyazaki Prefecture, Southern Japan*. Nobeoka Marine Science Station, Field Science Center, University of Miyazaki, Nobeoka. [In Japanese]

Matsubara, K. 1955. *Fish Morphology and Hierarchy. Parts I–III*. Ishizaki Shoten, Tokyo, xi+1605 pp., 135 pls. [In Japanese]

Matsunuma, M. 2011. *Sardinella gibbosa* (Bleeker, 1849). P. 40. In: Matsunuma, M., Motomura, H., Matsuura, K., Shazili, N. A. M., and Ambak M. A. (Eds) *Fishes of Terengganu, East Coast of Malaya Peninsula, Malaysia*. National Museum of Nature and Science, Tsukuba, Universiti Malaysia Terengganu, Terengganu, and Kagoshima University, Kagoshima.

Matsunuma, M. 2013. *Sardinella gibbosa* (Bleeker, 1849). P. 38. In: Yoshida, T., Motomura, H., Mushikasinthorn, P., and Matsuura, K. (Eds) *Fishes of Northern Gulf of Thailand*. National Museum of Nature and Science, Tsukuba, Research Institute for Humanity and Nature, Kyoto, and Kagoshima University, Kagoshima.

Matsunuma, M. 2018. *Sardinella gibbosa* (Bleeker, 1849). P. 37. In: Kimura, S., Imamura, H., Quan, N. V., and Duong, P. T. (Eds) *Fishes of Ha Long Bay, the World Natural Heritage Site in Northern Vietnam*. Fisheries Research Laboratory, Mie University, Shima.

Miura, N. 2012. *Churasuami Ichiba Zukin, Chinen Ichiba no Sakana tachi* [Fishes at Chinen Market, Okinawa]. Wave Kikaku, Yonabaru, 140 pp. [In Japanese]

Motomura, H. 2020. *List of Japan’s All Fish Species. Current Standard
Munroe, T. A., Wongratana, T., and Nizinski, M. S. 1999. Order Clupeiformes. Clupeidae. Herrings (also, sardines, sprat, pilchard, and menhaden). Pp. 1775–1821. In: Carpenter, K. E. and Niem V. H. (Eds) FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Vol. 3. Botoid Fishes, Chimaeras and Bony Fishes Pt. 1 (Elopidae to Linophrynidae). FAO, Rome.

Nakashimada, M. and Hibino, Y. 2020. First records of Sardinella aurita (Clupeiformes: Clupeidae) collected from Genkai-nada Sea of Fukuoka Prefecture, Japan. Nature of Kagoshima 47: 117–119. [In Japanese]

Omori, J. 2007. Sardinella lemuru Bleeker, 1853. Kagoshima University Museum Newsletter 16: 8. [In Japanese]

Stern, N., Douek, J., Goren, M., and Rinkevich, B. 2017. With no gap to mind: a shallow genealogy within the world’s most widespread small pelagic fish. Ecography 40: 1–13.

Stern, N., Rinkevich, B., and Goren, M. 2015. First record of the Goldstripe sardinella—Sardinella gibbosa (Bleeker, 1849) in the Mediterranean Sea and confirmation for its presence in the Red Sea. BioInvasions Records 4: 47–51.

Stern, N., Rinkevich, B., and Goren, M. 2016. Integrative approach revises the frequently misidentified species of Sardinella (Clupeidae) of the Indo-West Pacific Ocean. Journal of Fish Biology 89: 2282–2305.

Tashiro, F., Suzuki, K., Ueno, Y., Funakoshi, Y., Ikeuchi, S., Miyazu Energy Research Center Aquarium, and Kai, Y. 2017. Biogeographic and taxonomic notes regarding the diversity of fish in the Sea of Japan. Taxa, Proceedings of the Japanese Society of Systematic Zoology 42: 22–40. [In Japanese]

Torii, T., Shione, H., Kato, K., Sugiura, Y., Kurokawa, T., Oono, M., Oshiro, T., and Arakaki, T. 2011. Effects of river mouth closure on fish fauna in tidal river areas. Ecology and Civil Engineering 13: 123–139.

Uehara, M., Uhta, I., and Ebisawa, A. 2015. Current status of clupeoid fisheries caught in Okinawan waters. Annual Report of Okinawa Prefectural Fisheries Research and Extension Center 75: 42–48. [In Japanese]

Whitehead, P. J. P. 1985. FAO species catalogue, vol. 7. Clupeoid fishes of the world (suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1 Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis No. 125 7: 1–303.

Whitehead, P. J. P., Boeseman, M., and Wheeler, A. C. 1966. The types of Bleeker’s Indo-Pacific elopoid and clupeoid fishes. Zoologische Verhandelingen (Leiden) 84: 1–152.

Wongratana, T. 1980. Systematics of Clupeoid Fishes of the Indo-Pacific Region. Ph. D. thesis, University of London. 432 pp., 334 pls, 126 figs, 17 tables.

Yoshigou, H. 2002. Inland water fishes, shrimps and crabs of the Chichi-jima and Haha-jima Islands, Ogasawara (Bonin) Islands, Japan, with notes for inland water fish fauna of subtropical islands. Miscellaneous reports of Hiwa Museum for Natural History 41: 1–30, pls 1–5. [In Japanese]

Yoshigou, H. 2007. Inland water fishes of the Kume Island, Ryukyu Islands, Japan. Miscellaneous Reports of the Hiwa Museum for Natural History 48: 25–51. [In Japanese]

Yoshigou, H. 2014. Inland water fishes from the Ryukyus. Fauna Ryukyuana 9: 1–153. [In Japanese]