Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp

David P. Minde1, Madelon M. Maurice2, Stefan G. D. Rüdiger1*

1 Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, 2 Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands

Abstract

The biophysical stability is an important parameter for protein activity both in vivo and in vitro. Here we propose a method to analyse thermal melting of protein domains in lysates: Fast parallel proteolysis (FASTpp). Combining unfolding by a temperature gradient in a thermal cycler with simultaneous proteolytic cleavage of the unfolded state, we probed stability of single domains in lysates. We validated FASTpp on proteins from 10 kDa to 240 kDa and monitored stabilisation and coupled folding and binding upon interaction with small-molecule ligands. Within a total reaction time of approximately 1 min, we probed subtle stability differences of point mutations with high sensitivity and in agreement with data obtained by intrinsic protein fluorescence. We anticipate a wide range of applications of FASTpp in biomedicine and protein engineering as it requires only standard laboratory equipment.

Introduction

Protein function and activity depends on their structure and stability. Protein structure and stability are affected by various factors, such as the specific cellular environment or binding to particular ligands. For instance, some proteins need the presence of specific metals or small-molecule or protein ligands to get sufficiently stabilised to perform their biological function. Binding proteins may induce structure in proteins that lack structure in isolation such as intrinsically disordered proteins (IDPs).

Various powerful assays probe structure and stability of proteins. In vivo methods using purified protein include spectroscopic methods such as Circular Dichroism for secondary structure analysis, intrinsic fluorescence for tertiary structure analysis and NMR for residue-specific information. Thermal methods such as Differential Scanning Calorimetry (DSC) and Isothermal Titration Calorimetry (ITC) quantitatively determine protein stability and interactions by monitoring changes of enthalpy and entropy. Several strategies probe biophysical parameters in vivo or ex vivo, such as in vivo folding sensors using fluorescent proteins or fluorescent small-molecule tags or ex vivo pulse proteolysis [1–3].

Inspired by the versatility of proteolysis as a label-free method, we aimed at developing a fast and broadly applicable proteolytic assay that probes thermal protein melting. This approach is fundamentally different from pulse proteolysis. Based on these considerations, we propose a fast parallel proteolysis (FASTpp)

assay to monitor thermal unfolding of proteins ranging from 10 to 240 kDa and varying in secondary to quaternary structure. FASTpp detected stability alterations due to ligand binding and point mutations. Moreover, FASTpp can probe biophysical protein stability in cell lysates for biomedical screenings without genetic manipulation.

Results

FASTpp to assay protein stability

The unfolding temperature of a protein serves as an intuitive indicator for protein stability. Events that affect stability also affect the unfolding temperature [6,7]. Mutations that compromise protein structure shift, for instance, the point of thermal unfolding to lower temperatures while ligands that recognise the folded but not the unfolded state shift the thermal unfolding temperature to higher values [8–10] (Fig. 1A). A thermostable protease that readily cuts the unfolded but not the folded part of a protein could be used to determine the folded fraction over a wide temperature range.

Based on these considerations, we propose a fast parallel proteolysis (FASTpp) assay to determine biophysical protein stability. The principle of the method is the parallel exposure of samples of the protein of choice to a range of different temperatures, in the presence of the thermostable protease. If we choose temperatures just above and below the specific melting temperature of the protein, the temperature-dependent changes of the degradation pattern are readout for the stability of the protein. The precision of the method depends on the precise control of the
FASTpp assay. The representation of the termocycler indicates the C, addition of EDTA.

Temperatures may occur upon destabilisation of the protein by, for example, cancer mutations. A, Proteins can be probed for protein stability by measuring the thermal unfolding transition in the presence of a protease. The folded state resists protease digestion while the unfolded state is readily digested on the same timescale. The thermal unfolding transition of a protein may be shifted to higher temperatures by addition of a ligand of the folded state. A shift to lower transition temperatures may influence the (absolute) values determined by this assay. These variables are instrument dependent, but automation ensures that all samples are reproducibly treated under identical conditions. We employed a Bio-Rad C1000 thermal cycler for which \( t_h \) is e.g. 20 s for heating a sample of 10 μL from 4°C to 60°C and \( t_c \) is e.g. 40 s for cooling a sample of 10 μL from 60°C to 4°C. The C1000 cycler generates a gradient spanning a temperature difference of up to 24°C in one block, which allows parallel screening of a sufficiently large temperature range for a broad range of proteins.

**Figure 1.** FASTpp combines automated temperature control and quantitatively characterised proteolysis to unveil protein interactions and stability. A, Protein stability can be probed by measuring the thermal unfolding transition in the presence of a protease. The folded state resists protease digestion while the unfolded state is readily digested on the same timescale. The thermal unfolding transition of a protein may be shifted to higher temperatures by addition of a ligand of the folded state. A shift to lower transition temperatures may occur upon destabilisation of the protein by, for instance, cancer mutations. B, Temperatures are controlled automatically using a standard gradient PCR setup. A mastermix of sample and protease is prepared on ice or in a cold room at 4°C. C, Scheme of all seven processing steps of the FASTpp assay. The representation of the termocycler indicates the automated steps of the FASTpp protocol, the gel indicates the final analysis by SDS-PAGE (T, temperature; \( \Delta T \), change of temperature; x-y°C, melting temperature gradient).

doi:10.1371/journal.pone.0046147.g001

**Thermolysin is suitable for FASTpp**

To validate this approach, we needed to identify a suitable protease to determine its cleavage rate over a broad temperature range, establish its specificity for the unfolded state and test it on a range of protein folds. We considered TL suitable due to several key features: (i) TL is thermostable up to 80°C [11]. (ii) TL preferentially cuts near exposed hydrophobic, bulky and aromatic amino acids, specifically Phe, Leu, Ala, Val and Ile [4,5]. The preference of TL for large hydrophobic and aromatic residues ensures specificity of FASTpp. Folded proteins bury most of these amino acids inside in their hydrophobic core. Only upon unfolding, these residues are exposed and digested by TL. (iii) TL is stable over a wide pH range from 5.5 to 9 [12], it remains active in the presence of high concentrations of chaotropic reagents such as 8 M urea [1] and in the presence of EDTA-free protease inhibitors cocktails. (iv) TL is instantly inhibited by addition of EDTA, which removes TL’s essential Ca\(^{2+}\) ion [13].

As a first step we needed to validate the activity of TL under the conditions of the FASTpp experiment. We tested the temperature dependence of the proteolysis rate of TL using the unfolded peptide ABZ-Ala-Gly-Leu-Ala-NBA as established fluorogenic model substrate [1]. The fluorescence of this peptide increases upon cleavage by TL. We monitored the reaction from 20 to 80°C and for 3 to 6 nM and obtained the intrinsic rates by fitting the resulting curves to pseudo first-order kinetics as outlined in the methods section (Fig. 2) [1]. The linearly extrapolated rates varied from 1.4 to 2 s⁻¹ at a TL concentration of 0.1 g/L, for instance 0.01 g/L TL digest 1.5 μM ABZ-Ala-Gly-Leu-Ala-NBA between 33°C and 80°C within 6 s. Remarkably, TL displayed nearly constant thermal activity over this range, rendering it suitable for FASTpp without adjusting the protease concentration for each temperature. TL’s broad permissible temperature range suffices to analyse unfolding of most folded domains.

**FASTpp reveals presence of the folded state**

We further tested to which extent TL specifically cleaves unfolded protein chains. We investigated cytochrome C as a model substrate for TL’s activity and specificity for unfolded proteins. Cytochrome C can be specifically obtained in two soluble

heating time \( t_h \), the period for which the protein is exposed to the maximum temperature (melting time; \( t_m \)) and the subsequent cooling down period \( t_c \) (Fig. 1B).

Our assay consists of the following steps (Fig. 1C): 1. Sample preparation of the protein of interest at 4°C. 2. Addition of protease. 3. Heating time \( t_h \) during which several aliquots of the same sample are heated up in parallel. Each aliquot reaches a specific maximal temperature; for instance the lowest sample 35°C and the highest 42°C. 4. Melting time \( t_m \) during which aliquots are kept at defined maximum temperatures of the gradient for defined times. 5. Cooling time \( t_c \) of the protein samples down to 4°C. 6. Stopping proteolysis by EDTA. 7. Analysis of the reaction products by SDS-PAGE. The steps 3–6 run in a thermal cycler with gradient control to ensure precision and reproducibility. Variations of \( t_h \) and \( t_c \) may influence the (absolute) values determined by this assay. These variables are instrument dependent, but automation ensures that all samples are reproducibly treated under identical conditions. We employed a Bio-Rad C1000 thermal cycler for which \( t_h \) is e.g. 20 s for heating a sample of 10 μL from 4°C to 60°C and \( t_c \) is e.g. 40 s for cooling a sample of 10 μL from 60°C to 4°C. The C1000 cycler generates a gradient spanning a temperature difference of up to 24°C in one block, which allows parallel screening of a sufficiently large temperature range for a broad range of proteins.

**Figure 1.** FASTpp combines automated temperature control and quantitatively characterised proteolysis to unveil protein interactions and stability. A, Protein stability can be probed by measuring the thermal unfolding transition in the presence of a protease. B, Temperatures are controlled automatically using a standard gradient PCR setup. C, Scheme of all seven processing steps of the FASTpp assay. The representation of the termocycler indicates the automated steps of the FASTpp protocol, the gel indicates the final analysis by SDS-PAGE (T, temperature; \( \Delta T \), change of temperature; x-y°C, melting temperature gradient).

doi:10.1371/journal.pone.0046147.g001
states: either unfolded without heme or folded in the presence of heme [14,15]. We tested whether we could distinguish both forms of cytochrome C by FASTpp. TL cleaved unfolded apo cytochrome C already at 4°C whereas folded, heme-bound cytochrome C was TL-resistant up to 60°C, in agreement with earlier studies [14] (Fig. 3A, B). TL digested specifically the unfolded but not the folded protein. We concluded that TL is a suitable protease for FASTpp.

**FASTpp is insensitive to variation of TL concentration**

To refine the experimental parameters, we selected Maltose Binding Protein (MBP) as a substrate for FASTpp because it is structurally well-characterised and folds both in the presence and absence of ligand. We first probed the influence of TL concentration over four orders of magnitude on the apparent thermal melting temperature of MBP using a gradient of 50°C to 70°C and constant $t_m$ (6 s) [16]. At the lowest TL concentration of 0.001 g/L, no detectable cleavage of MBP occurred (Fig. 4A). From 0.01 to 1 g/L TL (340 nM –34 μM), we observed loss of thermal proteolysis resistance at 59°C (Fig. 4B-D). Assuming comparable cleavage kinetics of the model peptide substrate and unfolded protein, we expected a minimal required cleavage time of approximately 6 s at 0.01 g/L TL to quench the unfolded fraction of protein under these conditions. Our TL titration results validated this theoretical prediction. Interestingly, at 0.01 g/L TL, we detected unfolding and concomitant cleavage of MBP at a temperature of 61°C. An uncut MBP band however remained at temperatures from 63°C to 70°C. We suspect kinetic competition between aggregation and cleavage at higher temperatures, which may protect MBP from complete cleavage because hydrophilic residues typically self-interact within aggregates. We chose a TL standard concentration of 0.1 g/L (3.4 μM) for further experiments.

**Kinetic protein stability can be probed by FASTpp at variable $t_m$**

We now investigated how the apparent thermal unfolding transition in FASTpp is affected by $t_m$. For this we varied $t_m$ from 6 s to 600 s. In parallel with a step-wise increase in $t_m$, MBP digestion started at successively lower temperature. For instance at $t_m = 6$ s, the unfolding occurred at 60°C while increasing $t_m$ to 600 s lowered the unfolding temperature to 49°C (Fig. 5A–C). Because all assay parameters are kept constant except for $t_m$, we can monitor kinetic stability with this assay. Proteins are “kinetically-stable” under conditions where the unfolding is slow relative to the measurement time. For instance, MBP is kinetically-stable at 40°C and kinetically-unstable at 60°C for all $t_m$ values we analysed.

**Ligand stabilisation can be revealed by FASTpp**

To test the suitability of FASTpp to detect effects of ligand binding on biophysical protein stability, we analysed the influence of MBP’s ligand maltose. Using a temperature range from 50 to 70°C at constant $t_m = 6$ s, apo MBP became susceptible to proteolysis at 58°C whereas maltose bound MBP resisted degradation up to 70°C (Fig. 6 A, B). We compared these FASTpp data to determining MBP’s thermostability by intrinsic protein fluorescence. We observed onset of unfolding at 40°C for MBP-maltose and at 30°C for apo MBP, significantly lower absolute values compared to the FASTpp results (Fig. 6 A, B, E). This is possibly a result of the lower rate of temperature increase in the fluorescence experiment compared to the FASTpp experiment. The total heating time was several hours for fluorescence as compared with less than a minute in FASTpp.

An alternative other explanation for discrepancies of the absolute values of thermal unfolding temperatures in both experiments...
could be the different contribution of secondary and tertiary structure: Fluorescence is sensitive to changes in the vicinity of tryptophanes, (i.e. typically in the core of folded proteins) and proteolysis can occur both upon loss of surface-exposed secondary structure elements or the complete tertiary structure. The stabilising effect of the maltose ligand on MBP, however, was approximately 10°C in both experiments. We therefore conclude, that FASTpp agrees qualitatively with fluorescence temperature dependence analysis about the stabilising effect of maltose on MBP (Fig. 6E). We conclude that FASTpp is suitable to monitor stability changes in whole cell lysates.

BSA thermostability is not affected by maltose

To exclude unspecific protein stabilisation by maltose, we monitored the stability of the non-maltose-binding protein BSA in the presence and absence of maltose. Maltose did not change the thermal unfolding transition of BSA in a buffer with reducing redox potential between 4°C and 59°C (Fig. 7A, B). This corroborates our conclusion that FASTpp detects specific ligand stabilisation effects.

FASTpp determines protein stability in lysate

To test whether FASTpp is also suitable to assay protein stability in lysates, we compared the in vitro stability of MBP to the ex vivo stability of E. coli lysate overexpressing MBP. MBP resists proteolysis in lysate up to 59°C (Fig. 6C). From 61°C to 70°C, the apo MBP band intensity was nearly lost. In contrast, MBP’s proteolytic resistance persisted up to 70°C in presence of 5 mM maltose ligand (Fig. 6D). Both for purified protein and lysate samples, maltose addition increases the unfolding temperature by more than 10°C. Interestingly, when compared with purified MBP, the apo MBP lysate displays a sudden unfolding transition between 59°C and 61°C while purified MBP has a much broader unfolding range between 50°C and 58°C. Lysate stabilised MBP without addition of maltose ligand. Since lysates are complex mixtures we assume that the balance of all (presumably mostly weak and transient) interactions determines the differences between biophysical stability of protein in lysates compared to experiments with purified proteins in more diluted solutions of isolated proteins [14,17–21]. We conclude that FASTpp is suitable to monitor stability changes in whole cell lysates.
Large protein assemblies can be analysed with FASTpp

To investigate if FASTpp is also applicable to larger proteins, we tested the 240 kDa, tetrameric Pyruvate Kinase (PK). We used a temperature range from 55 to 65°C. The protein becomes susceptible to proteolysis at 59°C (Fig. 8A, B). Surprisingly, approximately 10% of the initial PK band intensity remains at higher temperatures up to 65°C. We suspect, therefore, that thermal aggregation competes with protein cleavage above this temperature. Also, another cleavage-resistant 34 kDa fragment appears above 60°C, which might be either a more stable domain or a rapidly aggregating domain, which was protected from cleavage. We conclude that FASTpp is applicable to large multiprotein assemblies.

FASTpp detects stability differences of point mutants

As a test case for stability discrimination of point mutants, we compared three evolved Sortase A variants that have been selected for enhanced transpeptidase kinetics: Sortase A triplemutant (3×M), Sortase A tetramutant (4×M), Sortase A pentamutant (5×M) [22].

Figure 6. FASTpp can detect ligand effect on purified protein and in complex mixtures. A, FASTpp of purified MBP. Unfolding was observed above 58°C. B, FASTpp of purified MBP plus 5 mM maltose. Unfolding was not observed up to 70°C. C, FASTpp proteolysis of MBP overexpression lysate. Unfolding was observed above 59°C. D, FASTpp of MBP overexpression lysate plus 5 mM maltose. Unfolding was not observed up to 70°C. E, Fluorescence melting curves of MBP. MBP melted in absence of a ligand between 30°C and 40°C. In presence of 5 mM maltose, unfolding was observed between 40°C and 50°C.
doi:10.1371/journal.pone.0046147.g006

Figure 7. Maltose does not stabilise a control substrate that has no known maltose-binding activity. A, FASTpp of BSA in absence of maltose. BSA was completely digested at temperatures from 62°C to 70°C after a gradual unfolding transition over a range of temperatures from 51 to 59°C. B, FASTpp of BSA in presence of 5 mM maltose. BSA was completely digested at temperatures from 62°C to 70°C after a gradual unfolding transition over a range of temperatures from 51 to 59°C.
doi:10.1371/journal.pone.0046147.g007
First, we analysed these variants by FASTpp. To achieve an accurate relative quantification, we made use of the strong infrared fluorescence enhancement of Coommassie dyes upon protein binding [23]. Upon quantification, we obtained the following order of stability: $3 \times 6M$ and $4 \times 6M$ are equally stable with a transition starting above 40°C; the $5 \times 6M$ variant displayed a less cooperative thermal unfolding transition consistent with an entropically broadened transition (Fig. 9B). Significantly more residual protein remained above 50°C for this protein variant.

Second, we used intrinsic fluorescence to probe stability differences. The variants $3 \times M$ and $4 \times M$ behaved very similar in this assay with non-linear fluorescence decay above a $T_u$ of 40°C, while $5 \times M$ appeared to be slightly more stable with linear decrease continuing up to a $T_u$ of 43°C (Fig. 9A). We can only achieve a qualitative validation of our FASTpp data by comparison to fluorescence data due to several physical differences between the two assays: 1. Heating times (hours in fluorescence, minutes in FASTpp) 2. Fluorescence measures in equilibrium until unfolding and aggregation start while FASTpp constantly removes unfolded protein from the equilibrium – an effect that increases with $t_{mp}$. The results of FASTpp agree qualitatively with intrinsic fluorescence analysis of Sortase A variants. We conclude that FASTpp is sufficiently sensitive to detect subtle stability differences caused by point mutations.

**FASTpp is applicable to a wide range of protein folds**

To reconcile our data in structural terms, we assessed the structure elements of the proteins analysed by FASTpp and compare these with our metapredictions of structural disorder using the PONDR-Fit algorithm in a simplified dichotomic representation discriminating well-structured/ordered and disordered regions (Fig. 10) [24]. A broad range of folds compatible with the assay: all $\alpha$-helical, $\alpha/\beta$ and mostly $\beta$-sheet [25–28]. BSA is an example for a mostly $\alpha$-helical protein containing multiple disulfide bonds. Also cytochrome C in the presence of heme as well as MBP contain a large $\alpha$-helical fraction while cytochrome C in the absence of ligand was previously reported to be largely devoid of structure [14]. Pyruvate kinase forms a 240 kDa complex with somewhat higher $\beta$-sheet content [28]. The mostly $\beta$-sheet Sortase A protein was amenable to FASTpp analysis as well. This comparison of folds suggests that most folded domains without large internal disordered linkers may be amenable to analysis by FASTpp. Conversely, proteins containing large internal disordered regions are expected to be cleaved by default – unless they fold for instance by a coupled folding and binding process.

![Figure 8](https://example.com/figure8.png)

**Figure 8. Ligand-dependent stability of a 240 kDa protein can be probed by FASTpp.** A, Pyruvate kinase (PK) FASTpp. PK was resistant from 4°C to 58°C. A gradual decrease in the band intensity at higher temperatures indicates unfolding. Over a broad range of even higher temperatures, a small fraction of protease-resistant species persists (that likely represent aggregates formed rapidly upon unfolding). B, FASTpp of PK in presence of 5 mM ATP. PK was resistant against TL digestion from 4°C to 59.6°C. Already at 60.4°C, nearly complete digestion was observed.

![Figure 9](https://example.com/figure9.png)

**Figure 9. Missense mutation effects on protein stability can be probed by FASTpp.** A, Intrinsic fluorescence temperature dependence of three Sortase A variants. $3 \times M$ is triplemutant, $4 \times M$ is tetramutant, $5 \times M$ is pentamutant. B, FASTpp of the same three Sortase A variants as in A. doi:10.1371/journal.pone.0046147.g009
mechanism in vivo [29]. Accurate disorder predictions for water-soluble proteins such as PONDR-Fit might therefore be useful to preselect suitable candidate proteins for FASTpp assays and guide the data interpretation.

Discussion

We established FASTpp as a biophysical tool to monitor structural protein stability for both isolated proteins and in lysate. We observed high intrinsic protease activity over a large temperature range from physiological temperatures to 80°C in agreement with previous related studies [11,30,31]. An even more thermostable TL variant may extend FASTpp to extremely thermostable substrates [32].

We investigated possible applications of FASTpp for interactions of a folded protein with ligand in either presence or absence of cellular lysate. We obtained an about 10°C higher temperature of unfolding for the ligand saturated MBP in both cases. This agrees qualitatively with previous DSC studies, where MBP unfolded at 55°C and 65°C in maltose-bound form at a heating rate of 1°C/min [16]. It also agrees qualitatively with our data obtained by intrinsic protein fluorescence. The differences of absolute values are likely due to different timescales of heating and the fact that unfolded protein is removed from the equilibrium in the FASTpp assay. Presence of lysate had a stabilising effect on apo MBP as monitored by FASTpp while in case of RNAse H stability analysis by Pulse Proteolysis, diluted lysate did not affect the protein stability, possibly due to dilution by urea [1].

Can we determine absolute thermal melting points (Tm) of proteins by FASTpp? The determination of absolute Tm values requires equilibrium conditions, which can be achieved in particular by calorimetric methods [11]. In FASTpp, the unfolding temperature values depend on the experimental conditions such as temperature range, heating rates, protein concentration and protease susceptibility of the protein of interest. While this prohibits determination of absolute Tm values, FASTpp accurately determines the relative stability. This allows the precise relative stability analysis of point mutations, ligand binding and different environments including cell lysates [33–40].

What method should be chosen for which application? Fluorescence is widely used due to its high sensitivity and in many cases sufficient intrinsic label concentrations of either naturally occurring tryptophan or genetically engineered fluorescent tags [6,7,41,42]. FASTpp is a useful complementation to fluorescence-based assays in cases where intrinsic labels are below detection levels or genetic manipulation is not possible. The specific advantage of FASTpp, however, is its ability to analyse protein stability at low concentrations and in complex solutions, such as lysates and primary patient samples. Specific antibodies allow stability analysis by FASTpp of cell or tissue-derived samples.
odyssey scanner (liCor); specific fluorescence enhancement of amounts were quantified by coommassie fluorescence in an performed in a c1000 thermal cycler (Biorad) and protein for purified proteins and 5 mM DTT for cytosolic proteins. cell biology and biomedical research.

fastpp and the specificity, robustness and speed of the method, less experimental time.

Considering the broad range of folds that can be analysed by fastpp and the specificity, robustness and speed of the method, we anticipate a broad range of future applications. Minimal sample preparation requirements and use of standard molecular biological techniques allow applications in protein engineering, cell biology and biomedical research.

Methods

Ethics statement

n/A.

Thermal Proteolysis

We prepared a 5 g/L stock solutions of TL (Sigma) as described earlier [1]. The proteolysis assay buffer contained 10 mM CaCl2, 20 mM sodium phosphate buffer at pH 7.2 and 150 mM NaCl for purified proteins and 5 mM DTT for cytosolic proteins. Protein concentrations were between 0.15–1 g/L. Digestion was performed in a c1000 thermal cycler (Biorad) and protein amounts were quantified by coommassie fluorescence in an Odyssey scanner (LiCor); specific fluorescence enhancement of coommassie upon binding to protein was measured and the integrated fluorescence intensity per protein band was compared to the corresponding two-fold dilution series of undigested proteins of known concentration to fit the parameters of a second-order polynomial describing the dependence of fluorescence on protein concentration [23].

Determination of the temperature dependence of the intrinsic proteolysis rate of TL

We determined temperature dependence of TL activity analogous to a previous approach for monitoring urea dependence of TL activity [1]. Briefly, we used 6 nM and 3 nM TL to cleave a fluorigenic model substrate (ABZ-Ala-Gly-Leu-Ala-NBA) to monitor the reaction by fluorescence dequenching of this substrate at various temperatures. For quantification we used a pseudo-first-order kinetic model that assumes a constant concentration of the catalyst (TL) over the course of the experiment and full accessibility of the substrate. As fluorescence increases relative to the extent of dequench, we fitted the intrinsic rate by using the formula:

\[ F = F_0 (F_{\text{max}} - F_0) \left(1 - e^{(-kt)}\right) \]

F is fluorescence, \( F_0 \) is the initial fluorescence, \( F_{\text{max}} \) is the fluorescence after complete cleavage and \( k \) is the intrinsic rate of proteolysis at the specific enzyme concentration used, \( t \) is the observation time. We fitted the data using Gnuplot.

Acknowledgments

We are grateful to Ineke Braakman for continuous support and comments on the manuscript. We thank students of the course Biophysics of Utrecht University for help with the cytochrome C experiments. We thank Mathijs Kol and Joost Holthuis for the His-c-MBP overexpression lyase, Martijn Koorengel for purified apo-Cytochrome C and David Liu and Brent Dorr for providing plasmids encoding the evolved sortases.

Author Contributions

Conceived and designed the experiments: DPM MMM SGDR. Performed the experiments: DPM. Analyzed the data: DPM MMM SGDR. Wrote the paper: DPM MMM SGDR.

References

1. Park C, Marqusee S (2005) Pulse proteolysis: A simple method for quantitative determination of protein stability and ligand binding. Nat Methods 2(3): 207–212. 10.1038/nmeth746.
2. Cabantous S, Pedelaq JD, Mark BL, Naranjo C, Tervulliger TC, et al. (2005) Recent advances in GFP folding reporter and split-GFP soluble reporter technologies. application to improving the folding and solubility of recalcitrant proteins from mycobacterium tuberculosis. J Struct Funct Genomics 6(2–3): 113–119. 10.1007/s12159-005-5247-5.
3. Ignotova Z, Giersch LM (2009) A method for direct measurement of protein stability in vivo. Methods Mol Biol 490: 165–178.
4. Desmazaead MJ, Bermier JH (1971) Specificity of the nuclear protease produced by microcosmos caeseticystis. Eur J Biochem 19(1): 51–55.
5. Bark SJ, Mason N, Yates JR 3rd, Szudaq G (2001) High-temperature protein mass mapping using a thermophilic protease. J Am Chem Soc 123(8): 1774–1775.
6. Rüdiger S, Freund SM, Veprintsev DB, Fersht AR (2002) CRINEPT-TROSY NMR, reveals p53 core domain bound in an unfolded form to the chaperone Hsp90. Proc Natl Acad Sci U S A 99(17): 11095–90.
7. Mayer S, Ru¨diger S, Ang HC, Joerger AC, Fersht AR (2007) Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro. J Mol Biol 372(1): 268–276. 10.1016/j.jmb.2007.06.044.
8. Bullock AN, Henckel J, Fersht AR (2000) Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: Definition of mutant states for rescue in cancer therapy. Oncogene 19(10): 1245–56.
9. Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, et al. (2002) A peptide that binds and stabilizes p53 core domain: Chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci U S A 99(2): 937–42.
10. Hoelen H, Kleiren B, Schmid A, Richardson J, Charitou P, et al. (2010) The primary folding defect and rescue of DeltaFS08 CFTR emerge during translation of the mutant domain. PLoS One 5(11): e15458. 10.1371/journal.pone.0015458.
11. Sanchez-Reizu JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1998) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27(5): 1593–1595.
12. Kunugi S, Hirohara H, Ise N (1982) pH and temperature dependences of thermolysin catalysis. catalytic role of zinc-coordinated water. Eur J Biochem 124(1): 157–163.
13. Velman OR, Vriend G, Berendsen HJ, Van den Burg B, Verena G, et al. (1998) A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases. Biochemistry 37(15): 5312–5319. 10.1021/bi872597n.
14. Daltrop O, Allen JW, Willis AC, Ferguson SJ (2002) In vitro formation of a c- type cytochrome. Proc Natl Acad Sci U S A 99(12): 7872–7876. 10.1073/pnas.132259099.
15. Denel RA, Jordi W, Lambrecht V, van Damme H, Hovius R, et al. (1989) Differential interactions of apo- and holocytchrome C with acidic membrane lipids in model systems and the implications for their import into mitochondria. J Biol Chem 264(7): 3988–3997.
24. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR- 

23. Luo S, Wehr NB, Levine RL (2006) Quantitation of protein on gels and blots by 

22. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond- 

21. Li C, Charlton LM, Lakkavaram A, Seagle C, Wang G, et al. (2008) Differential 

20. Reckel S, Lopez JJ, Lohr F, Glaubitz C, Dotsch V (2012) In-cell solid-state NMR 

19. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, et al. (2009) High-resolution 

18. Miklos AC, Li C, Sharaf NG, Pielak GJ (2010) Volume exclusion and soft 

17. Wang Q, Zhuravleva A, Giersch LM (2011) Exploring weak, transient protein- 

16. Novokhanny V, Ingham K (1997) Thermodynamics of maltose binding protein 

unfolding. Protein Sci 6(1): 141–146. 10.1002/pro.5560060116. 

15. Williams R, Holyoak T, McDonald G, Gui C, Fenton AW (2006) Differentiating 

25. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458(7234): 106–109. 10.1038/nature07839. 

26. Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight 

27. Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH (1994) Structure 

28. Larsen TM, Laughlin LT, Li C, Sharaf NG, Pielak GJ (2010) Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J Biol Chem 272(17): 11152–11156. 

29. Tsvetkov P, Myers N, Moscovitz O, Sharon M, Prilusky J, et al. (2012) Thermo- 

30. Kudryashova EV, Mozharov VV, Balny C (1998) Catalytic activity of 

31. Tur-Arlandis G, Rodriguez-Larrea D, Bartra-Molero B, Sanchez-Ruiz JM (2010) Proteolytic scanning calorimetry: A novel methodology that probes the fundamental features of protein kinetic stability. Biophys J 98(6): L12–4. 10.1016/j.bpj.2009.11.029. 

32. Mansfield J, Vered G, Djokstra BW, Velman OR, Van den Burg B, et al. (1997) 

33. Ahmad B, Chen Y, Lapihus LJ (2012) Aggregation of alpha-synuclein is 

34. Novokhatny V, Ingham K (1997) Thermodynamics of maltose binding protein 

35. Minde DP, Anvarian Z, Ru¨diger SG, Maurice MM (2011) Messing up disorder: How do missense mutations in the tumor suppressor protein APC lead to cancer? Mol Cancer 10: 101. 10.1186/1476-4598-10-101. 

36. Gershenson A, Giersch LM (2011) Protein folding in the cell: Challenges and 

37. Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, et al. (1997) 

38. McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the 

39. Minton AP (2001) The influence of macromolecular crowding and macromo- 

40. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured 

41. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green 

42. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67: 509– 

43. Cancer Target Discovery and Development Network, Schreiber SL, Shamji AF, 

44. Noutsou M, Duarte AM, Anvarian Z, Didenko T, Minde DP, et al. (2011) 

45. Minde DP, Anvarian Z, Ru¨diger SG, Maurice MM (2011) Messing up disorder: 

46. Dyson H,Weight PE (2002) Coupling of folding and binding for unstructured 

47. Tien RF (1996) The green fluorescent protein. Annu Rev Biochem 67: 509– 

48. Fast Proteolysis Assay FASTpp