ROTATION TOPOLOGICAL FACTORS OF MINIMAL
Z^d-ACTIONS ON THE CANTOR SET

MARIA ISABEL CORTEZ, JEAN-MARC Gambaudo AND ALEJANDRO MAASS

Abstract. In this paper we study conditions under which a free minimal Z^d-action on the Cantor set is a topological extension of the action of d rotations, either on the product T^d of d 1-tori or on a single 1-torus T^1. We extend the notion of linearly recurrent systems defined for Z-actions on the Cantor set to Z^d-actions and we derive in this more general setting, a necessary and sufficient condition, which involves a natural combinatorial data associated with the action, allowing the existence of a rotation topological factor of one these two types.

1. Introduction

Let (X, A) be a Z^d-action (by homeomorphisms) on a compact metric space X. The action is free if $A(\bar{n}, x) = x$ for some $\bar{n} \in Z^d$ and $x \in X$ implies $\bar{n} = 0$ and is minimal if the orbit of any point $x \in X$, $O_A(x) = \{A(\bar{n}, x) : \bar{n} \in Z^d\}$, is dense in X.

The simplest non trivial examples of free minimal Z^d-actions on a compact metric space are given by “rotation-type” actions on compact topological groups. This type of factors play a central role in topological dynamics of Z^d-actions since in particular they determine weak mixing property through the existence of continuous eigenvalues. In this paper, we focus on two kinds of “rotation-type” factors that we describe now.

- First consider the Z^d-action generated by d rotations on the product d-torus $T^d = \mathbb{R}^d/Z^d = T^1 \times \cdots \times T^1$, each rotation acting on T^1. More precisely, take $\bar{\theta} = (\theta_1, \ldots, \theta_d) \in \mathbb{R}^d$ and let $A^d_{\bar{\theta}} : Z^d \times T^d \to T^d$ be the map defined by:

$$A^d_{\bar{\theta}}(\bar{n}, x) = x + [\bar{n}, \bar{\theta}] \mod Z^d,$$

for $\bar{n} = (n_1, \ldots, n_d) \in Z^d$, $x \in T^d$ and where $[\bar{n}, \bar{\theta}] = (n_1 \cdot \theta_1, \ldots, n_d \cdot \theta_d)$. This construction yields a minimal Z^d-action $(O^d, A^d_{\bar{\theta}})$ on the closure O^d of the orbit of 0 in the d-torus T^d. When the coordinates of $\bar{\theta}$ are rationally independent, the set O^d is the d-torus T^d and the action is free.

- The same $\bar{\theta}$ can be used to define a Z^d-action on T^1. Consider the map $A^1_{\bar{\theta}} : Z^d \times T^1 \to T^1$ given by

$$A^1_{\bar{\theta}}(\bar{n}, t) = t + \langle \bar{n}, \bar{\theta} \rangle \mod Z,$$

where $\langle \cdot, \cdot \rangle$ is the usual inner product in \mathbb{R}^d. The Z^d-action $(O^1, A^1_{\bar{\theta}})$ on the closure O^1 of the orbit of 0 in the 1-torus T^1 is again minimal. When
the coordinates of \(\bar{\theta} \) are independent on \(Q \), the set \(\mathbb{O}^1 \) is the 1-torus \(T^1 \) and the action is free.

Assume \(X \) is a Cantor set, i.e., it has a countable basis of closed and open (clopen) sets and has no isolated points (or equivalently, it is a totally disconnected compact metric space with no isolated points).

The main question we address in this paper is to determine whether a free minimal \(\mathbb{Z}^d \)-action \(\mathcal{A} \) on the Cantor set \(X \) is an extension of an action of type \((\mathbb{O}^d, \mathcal{A}_d^\theta)\) or \((\mathbb{O}^1, \mathcal{A}_1^\bar{\theta})\) for some \(\bar{\theta} \in \mathbb{R}^d \).

Notice that a complete combinatorial answer to this question is given in [BDM] in the particular case when the dimension \(d = 1 \) and when the free minimal \(\mathbb{Z} \)-action is linearly recurrent. The linear recurrence of a given \(\mathbb{Z} \)-action is a property that involves the combinatorics of return times associated with a nested sequence of clopen sets (for further references on linearly recurrent \(\mathbb{Z} \)-actions see [CDHM], [Du1] and [Du2]).

The notion of return time to a clopen set can be generalized to \(\mathbb{Z}^d \)-actions when \(d \geq 2 \). In this case, the combinatorics of the return times associated with a nested sequence of clopen sets inherits a richer structure than in the case \(d = 1 \). However, as for \(d = 1 \), there exists a natural definition of linearly recurrent \(\mathbb{Z}^d \)-action. These generalizations are developed in Section 2 which is devoted to the combinatorics of return times (for further references on the structure of return times associated with a \(\mathbb{Z}^d \)-action see [BG] where the hierarchical ideas used in this paper are introduced, see also [S] and [SW] for related topics).

This combinatorial approach allows us to derive a necessary condition on the action to be an extension of an action of one of the two rotations described above. In the case of a linearly recurrent action this condition is sufficient. This result is given in Section 3 (Theorem 3.1) together with its proof.

2. Combinatorics of return times

Let us start this section with some general considerations.

Let \(\mathbb{R}^d \) be the Euclidean \(d \)-space and \(\| - \| \) its Euclidean norm. Consider two positive numbers \(r \) and \(R \). An \((r, R)\)-Delone set is a subset \(\mathcal{D} \) of the \(d \)-space \(\mathbb{R}^d \) equipped with the Euclidean norm \(\| - \| \), which satisfies the following two properties:

(i) *Uniformly Discrete:* each open ball with radius \(r \) in \(\mathbb{R}^d \) contains at most one point in \(\mathcal{D} \);

(ii) *Relatively Dense:* each open ball with radius \(R \) contains at least one point in \(\mathcal{D} \).

When the constants \(r \) and \(R \) are not explicitly used, we will say in short *Delone set* for an \((r, R)\)-Delone set. We refer to [LP] for a more detailed approach of the theory of Delone sets.

A patch of a Delone set \(\mathcal{D} \) is a finite subset of \(\mathcal{D} \). A Delone set is of *finite type* if for each \(M > 0 \), there exist only finitely many patches in \(\mathcal{D} \) of diameter smaller than \(M \) up to translation. Finally, a Delone set of finite type is repetitive if for each patch \(P \) in \(\mathcal{D} \), there exists \(M > 0 \) such that each ball with radius \(M \) in \(\mathbb{R}^d \) contains a translated copy of \(P \) in \(\mathcal{D} \).

Let \(x \) be a point of a Delone set \(\mathcal{D} \). The *Voronoi cell* \(V_x \) associated with \(x \) is the convex closed set in \(\mathbb{R}^d \) defined by:
The set of return vectors associated with D is a cover of \mathbb{R}^d. We say that two points x and x' in D are neighbors if $V_x \cap V_{x'} \neq \emptyset$.

The set of return vectors associated with D is defined by:

$$\mathcal{D} = \{ x - y : (x, y) \in D \times D \}.$$

Lemma 2.1. Let D be a Delone set of finite type. Then, there exists a finite collection \mathcal{F} of vectors in \mathcal{D} such that:

- any vector in \mathcal{D} is a linear combination with non negative integer coefficients of vectors in \mathcal{F}.

Proof. When D is a Delone set of finite type, the set of vectors

$$\mathcal{F} = \bigcup_{(x,x') \in D \times D, (x,x') \text{ neighbors}} (x - x')$$

is finite, satisfies $\mathcal{F} = -\mathcal{F}$ and clearly any vector in \mathcal{D} is a linear combination with non negative integer coefficients of vectors in \mathcal{F}. \qed

Given such a set \mathcal{F}, we can define the \mathcal{F}-distance $d_{\mathcal{F}}(x,x')$ as the minimal number of vectors in \mathcal{F} (counted with multiplicity) needed to write $x - x'$ for $x,x' \in D$. The \mathcal{F}-diameter of a patch P, denoted by $diam_{\mathcal{F}}(P)$, is the maximal \mathcal{F}-distance of pair of points in D.

Consider now a free minimal \mathbb{Z}^d-action A on the Cantor set X. Let C be a clopen set in X and y a point in C. The set of return times of the orbit of y in C is defined by

$$\mathcal{R}_C(y) = \{ \bar{n} \in \mathbb{Z}^d : A(\bar{n}, y) \in C \}.$$

Proposition 2.2. The set of return times $\mathcal{R}_C(y)$ is a repetitive Delone set of finite type in \mathbb{Z}^d. Furthermore, if y and y' are two points in C, the sets $\mathcal{R}_C(y)$ and $\mathcal{R}_C(y')$ have the same patches up to translation.

Proof. \bullet $\mathcal{R}_C(y)$ is a Delone set of finite type.

The minimality of the action implies that the orbit of any point in X visits C. For each $x \in X$ consider $\bar{n}_x \in \mathbb{Z}^d$ be such that $A(\bar{n}_x, x)$ is in C. Since C is open, there exists a small neighborhood U_x of x such that for any x' in U_x we also have $A(\bar{n}_x, x') \in C$. Therefore $\{ U_x : x \in X \}$ is a cover of X. Since X is compact, we can extract a finite cover $\{ U_{x_i} : i \in I \}$. Let us choose $R > \max_{i \in I} \| \bar{n}_{x_i} \|$. It is clear that any ball with radius R in \mathbb{R}^d intersects $\mathcal{R}_C(y)$. Thus, $\mathcal{R}_C(y)$ is relatively dense. Since it is a subset of \mathbb{Z}^d, it is a Delone set of finite type.

\bullet $\mathcal{R}_C(y)$ is repetitive1.

Consider a patch P in $\mathcal{R}_C(y)$, choose \bar{n}_0 in P and let $z = A(\bar{n}_0, y) \in C$. Choose now a clopen set C_z containing z, small enough so that for any z' in C_z, $A(\bar{n} - \bar{n}_0, z')$ is in C for each \bar{n} in P. The set $\mathcal{R}_{C_z}(z)$ is relatively dense, let R_1 be its R-constant. Let M stand for the diameter of P and let us prove that any ball with radius $R_1 + M$

1The proof that minimality implies repetitivity is classical and works in a more general situation. However, for sake of completeness, we fix it here for our specific context.
in \mathbb{R}^d contains a translation of the patch P. Indeed, given such a ball B, choose an element $\bar{m} \in \mathcal{R}_c(z)$ in the corresponding centered sub-ball of radius R_1, then by construction $\bar{m} + P$ belongs to $\mathcal{R}_c(y)$ and to the ball B.

- $\mathcal{R}_c(y)$ and $\mathcal{R}_c(y')$ have the same patches up to translation.

Let P be a patch of $\mathcal{R}_c(y)$ and \bar{n}_0 be a point in P. The minimality of the action implies that the orbit of y' accumulates on $z = A(\bar{n}_0, y)$. This means that there exists $\bar{n}_1 \in \mathbb{Z}^d$ such that $A(\bar{n}_1 + \bar{n} - \bar{n}_0, y')$ is in \mathcal{C} when \bar{n} is in P. Thus a translation of the patch P is in $\mathcal{R}_c(y')$.

\[\mathcal{R}_c = \mathcal{R}_c(y) - \mathcal{R}_c(y) = \{ \bar{n} - \bar{m} : (\bar{n}, \bar{m}) \in \mathcal{R}_c(y) \times \mathcal{R}_c(y) \}. \]

The fact that for any pair of points y and y' in \mathcal{C}, the patches of $\mathcal{R}_c(y)$ and $\mathcal{R}_c(y')$ fit up to translation, implies that \mathcal{R}_c does not depend on y in \mathcal{C}, as suggested by the notation. Lemma 2.4 and Proposition 2.2 yield the following corollary.

Corollary 2.3. There exists in \mathcal{R}_c a finite collection of vectors \mathcal{F}_c such that:

- $\mathcal{F}_c = -\mathcal{F}_c$;
- any vector in \mathcal{R}_c is a linear combination with non negative integer coefficients of vectors in \mathcal{F}_c.

Such a set \mathcal{F}_c is called a set of first return vectors associated with \mathcal{C}.

Now we shall construct a combinatorial data associated to a \mathbb{Z}^d-action. Let x be a point in X and consider a sequence of nested clopen sets $X = C_0 \supseteq C_1 \supseteq \cdots \supseteq C_n$ such that

\[\bigcap_{n \geq 0} C_n = \{ x \}. \]

Consider also the associated sets of return times $\mathcal{R}_{C_n}(x)$, of return vectors \mathcal{R}_{C_n} and of first return vectors \mathcal{F}_{C_n} that we denote respectively (in short) by $\mathcal{R}_n(x)$, \mathcal{R}_n and \mathcal{F}_n.

Proposition 2.4. For each $n \geq 0$, there exist a constant $k(n) > 0$ and a partition of $\mathcal{R}_n(x)$ in disjoint patches $\{ \mathcal{P}_n(m) \}_{m \in \mathcal{R}_{n+1}(x)}$ such that, for each $\bar{m} \in \mathcal{R}_{n+1}(x)$:

1. $\mathcal{P}_n(\bar{m}) \cap \mathcal{R}_{n+1}(x) = \{ \bar{m} \}$;
2. $\text{diam}_{\mathcal{F}_n}(\mathcal{P}_n(\bar{m})) \leq k(n)$.

Proof. For any point \bar{m} in $\mathcal{R}_{n+1}(x)$ consider its Voronoi cell $\mathcal{V}_{\bar{m},n+1}$. The intersection of this Voronoi cell with $\mathcal{R}_n(x)$ defines a patch $\mathcal{P}_n(\bar{m})$ which intersects $\mathcal{R}_{n+1}(x)$ at \bar{m}. It may occasionally happen that a point \bar{l} in $\mathcal{R}_n(x)$ belongs to more than one Voronoi cell $\mathcal{V}_{\bar{m},n+1}$. In this case, we make an arbitrary choice to exclude the point \bar{l} from all the patches it belongs to but one. This surgery done, the collection of patches $\{ \mathcal{P}_n(\bar{m}) \}_{m \in \mathcal{R}_{n+1}(x)}$ realizes a partition of $\mathcal{R}_n(x)$. Furthermore, since $\mathcal{R}_{n+1}(x)$ and $\mathcal{R}_n(x)$ are repetitive Delone sets, the Euclidean diameters of the cells $\mathcal{V}_{\bar{m},n+1}$ are bounded independently of \bar{m}, and thus their \mathcal{F}_n-diameters are bounded independently of \bar{m}. \[\square\]
The data \((\bar{x}, \{c_n\}_{n \geq 0}), \{(\bar{m}_n)\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\) is called a combinatorial data associated with the action \((X, \mathcal{A})\).

We remark that Proposition 2.4 does not require any condition on the nested sequence of clopen sets. By forgetting some \(c_n\)'s in the sequence, it is always possible to insure the following two extra properties for the combinatorial data:

(iii) for each \(n \geq 0\) and for each \(\bar{m} \in \mathcal{R}_{n+1}(x)\)
\[
\bar{F}_n \subseteq \mathcal{P}_n(\bar{m}) - \mathcal{P}_n(\bar{m});
\]

(iv) for each \(n \geq 0\) and for each \(\bar{m} \in \mathcal{R}_{n+2}(x)\), all the patches \(\mathcal{P}_n(\bar{m})\) are identical up to translation.

In this case, we say that the combinatorial data
\[
(\bar{x}, \{c_n\}_{n \geq 0}) \text{, } \{(\bar{m}_n)\}_{\bar{m} \in \mathcal{R}_{n+1}(x)} \text{, } \{\bar{F}_n\}_{n \geq 0}
\]
is well distributed.

Let \(m\) and \(n\) be two integers such that \(0 \leq n \leq m\), and let \(\bar{p}\) be a point in \(\mathcal{R}_m(x)\).

We denote by \(\mathcal{P}_n^m(\bar{p})\) the patch in \(\mathcal{R}_n(x)\) defined recursively by:
\[
\mathcal{P}_n^m(\bar{p}) = \mathcal{P}_{n-1}(\bar{p});
\]
and
\[
\mathcal{P}_n^m(\bar{p}) = \bigcup_{\bar{q} \in \mathcal{P}_{n+1}^m(\bar{p})} \mathcal{P}_n(\bar{q});
\]
We adopt the convention \(\mathcal{P}_0^m(\bar{p}) = \{\bar{p}\}\). The proof of the following result is plain.

Corollary 2.5. For any \(n_0 \geq 0\) and any \(\bar{p}\) in \(\mathcal{R}_{n_0}(x)\), there exists a unique \(m_0 \geq n_0\) and a unique sequence \(\{\bar{p}_l\}_{0 \leq l \leq m_0 - n_0}\) of points in \(\mathbb{Z}^d\) such that:

- \(m_0\) is the smallest \(m \geq n_0\) for which \(\bar{p} \in \mathcal{P}_m^0(0)\);
- \(\bar{p}_0 = 0\);
- \(\bar{p}_l \in \mathcal{P}_{m_0-l}(\bar{p}_{l-1})\) and \(\bar{p} \in \mathcal{P}_{m_0-l}(\bar{p}_l)\) for all \(1 \leq l \leq m_0 - n_0\);
- \(\bar{p}_{m_0-n_0} = \bar{p}\).

When the constant \(k(n)\) in Proposition 2.4 is bounded independently on \(n\), we say that the free minimal \(\mathbb{Z}^d\)-action \(\mathcal{A}\) on the Cantor set \(X\) is linearly recurrent. In this case, the combinatorial data \((\bar{x}, \{c_n\}_{n \geq 0}), \{(\bar{m}_n)\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\) is said adapted to the action.

3. Main results

To each vector \(\bar{\theta}\) in \(\mathbb{R}^d\) we associate the linear maps \(c^l_{\bar{\theta}} \in \mathcal{L}(\mathbb{Z}^d, \mathbb{R}^l)\) and \(c^d_{\bar{\theta}} \in \mathcal{L}(\mathbb{Z}^d, \mathbb{R}^d)\) defined by
\[
c^l_{\bar{\theta}}(\bar{p}) = <\bar{\theta}, \bar{p}> \mod \mathbb{Z} \quad \text{and} \quad c^d_{\bar{\theta}}(\bar{p}) = [\bar{\theta}, \bar{p}] \mod \mathbb{Z}^d
\]
for each \(\bar{p}\) in \(\mathbb{Z}^d\).

Consider a minimal free \(\mathbb{Z}^d\)-action \((X, \mathcal{A})\) on the Cantor set \(X\) and a combinatorial data \((\bar{x}, \{c_n\}_{n \geq 0}), \{(\bar{m}_n)\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\) associated with this action.

For any \(n \geq 0\) and any \(\bar{\theta} \in \mathbb{R}^d\) we define the \(\bar{\theta}\)-length of \(\bar{F}_n\) of dimension 1 and \(d\) respectively by:
\[
l^1_{n,\bar{\theta}} = \max_{r_n \in \bar{F}_n} |||c^{l}_{\bar{\theta}}(r_n)||| \quad \text{and} \quad l^d_{n,\bar{\theta}} = \max_{r_n \in \bar{F}_n} |||c^{d}_{\bar{\theta}}(r_n)|||
\]
where $||| \cdot |||$ stands for the Euclidean distance to 0 on the k-torus, $\mathbb{T}^k = \mathbb{R}^k / \mathbb{Z}^k$, $k = 1, d$. The following theorem is the main result of this paper.

Theorem 3.1. Let (X, A) be a free minimal \mathbb{Z}^d-action on the Cantor set X, $(x, \{C_n\}_{n \geq 0}, \{\{P_n(\tilde{m})\}_{m \in R_{n+1}(x)}\}_{n \geq 0}, \{\bar{F}_n\}_{n \geq 0})$ be an associated combinatorial data and $k = 1$ or $k = d$.

(i) Assume that for some $\bar{\theta} \in \mathbb{R}^d$, (X, A) is an extension of the action $(\mathcal{O}^k, A^k_{\bar{\theta}})$. Assume furthermore that the combinatorial data is well distributed. Then the series $\sum_{n \geq 0} l^k_{n, \bar{\theta}}$ converges.

(ii) Conversely assume that the action is linearly recurrent, that the combinatorial data is adapted to the action and that, for some $\bar{\theta} \in \mathbb{R}^d$, the series $\sum_{n \geq 0} l^k_{n, \bar{\theta}}$ converges. Then (X, A) is an extension of the action $(\mathcal{O}^k, A^k_{\bar{\theta}})$.

Remark 1: In the particular case when the \mathbb{Z}^d-action A is the product of d linearly recurrent \mathbb{Z}-actions on X, Theorem 3.1 for $k = d$ is a direct corollary of its $d = 1$ version proved in [BDM].

Remark 2: The lie group structure of \mathbb{T}^k allows us to construct a continuous surjective map $\phi : \mathbb{T}^d \to \mathbb{T}^k$ defined by $\phi(\alpha_1, \ldots, \alpha_d) = \alpha_1 + \cdots + \alpha_d$. Assume that $h : (X, A) \to (\mathcal{O}^d, A^d_{\bar{\theta}})$ is an extension, then the map $\phi \circ h : (X, A) \to (\mathcal{O}^k, A^k_{\bar{\theta}})$ is also an extension. This is coherent with the fact that the convergence of the series $\sum_{n \geq 0} l^d_{n, \bar{\theta}}$ implies the convergence of the series $\sum_{n \geq 0} l^k_{n, \bar{\theta}}$.

Proof of Theorem 3.1. The proofs of both assertions of Theorem 3.1 for $k = 1$ or $k = d$ follow the same scheme and will be gathered in a single demonstration. Let $<< \cdot, \cdot >>$ stand for $[\cdot, \cdot] \mod \mathbb{Z}^d$ when $k = d$ and for $\langle \cdot, \cdot \rangle \mod \mathbb{Z}$ when $k = 1$.

(i) Assume that the free minimal \mathbb{Z}^d-action (X, A) is an extension of the action $A^k_{\bar{\theta}}$ on the closure \bar{O}^k of the orbit of the point 0 in the k-torus \mathbb{T}^k for some $\bar{\theta} \in \mathbb{R}^d$.

Let us denote by $h : X \to \bar{O}^k$ the extension. Choose a well distributed associated combinatorial data

$$(x, \{C_n\}_{n \geq 0}, \{\{P_n(\tilde{m})\}_{m \in R_{n+1}(x)}\}_{n \geq 0}, \{\bar{F}_n\}_{n \geq 0})$$

and fix $h(x) = 0 \in \mathbb{T}^k$.

For each $n \geq 0$ let v_n be the first return vector in \bar{F}_n such that:

$$l^k_{n, \bar{\theta}} = \max_{u_n \in \bar{F}_n} |||c^k_{\bar{\theta}}(u_n)||| = |||c^k_{\bar{\theta}}(v_n)|||.$$

The following observation is a direct consequence of the continuity of h.

Lemma 3.1. The quantity $l^k_{n, \bar{\theta}}$ goes to 0 as n goes to ∞. Furthermore, for each $\epsilon > 0$ there exists $N > 0$ such that for any pair of points $\langle \tilde{n}, \tilde{m} \rangle$ in $R_N(x) \times R_N(x)$, we have:

$$|||h(A(\tilde{n}, x)) - h(A(\tilde{m}, x))||| \leq \epsilon.$$
Rotation factors of minimal \mathbb{Z}^d-actions on the Cantor set

Let $S_{\epsilon_1, \ldots, \epsilon_k} = \{(x_1, \ldots, x_k) \in B : x_i \cdot \epsilon_i \geq 0, \forall i \in \{1, \ldots, k\}\}.$

Let $I_{\epsilon_1, \ldots, \epsilon_k}$ be the set of integers n such that $c^k_n(v_n)$ is in $S_{\epsilon_1, \ldots, \epsilon_k}$ and let us prove that the series $\sum_{n \in I_{\epsilon_1, \ldots, \epsilon_k}} t^k_{n, \bar{\theta}}$ converges. Actually, we only need to prove that the series $\sum_{n \in I_{\epsilon_1, \ldots, \epsilon_k}} t^k_{n, \bar{\theta}}$ converges, a similar proof works for the other cases. This sum can be split into two parts:

$$\sum_{n \in I_{\epsilon_1, \ldots, \epsilon_k}} t^k_{n, \bar{\theta}} = \sum_{n \in I_{\epsilon_1, \ldots, \epsilon_k}, \text{even}} t^k_{n, \bar{\theta}} + \sum_{n \in I_{\epsilon_1, \ldots, \epsilon_k}, \text{odd}} t^k_{n, \bar{\theta}}.$$

Here again we only need to prove that the series $\sum_{n \in I_{\epsilon_1, \ldots, \epsilon_k}, \text{even}} t^k_{n, \bar{\theta}}$ converges, a similar proof works also for the case where n is odd. Observe that we are assuming $I_{\epsilon_1, \ldots, \epsilon_k}$ is infinite.

The proof splits in five steps:

Step 1: Fix an even integer N_0 big enough in $I_{\epsilon_1, \ldots, \epsilon_k}$, and let $N < n_1 < n_2 < \cdots < n_1 < N_0$ be the ordered sequence of even integers bigger than N that belong to $I_{\epsilon_1, \ldots, \epsilon_k}$.

Step 2: Consider two points \bar{m}_1 and \bar{p}_1 in $\mathcal{R}_{n_1}(x)$ such that

$$v_{n_1} = \bar{p}_1 - \bar{m}_1.$$

Since the combinatorial data is well distributed, the two patches $\mathcal{P}_{n_2} (\bar{m}_1)$ and $\mathcal{P}_{n_2} (\bar{p}_1)$ are identical up to translation and there exists a pair of points (\bar{m}_2', \bar{m}_2) in $\mathcal{P}_{n_2} (\bar{m}_1) \times \mathcal{P}_{n_2} (\bar{m}_1)$ such that

$$v_{n_2} = \bar{m}_2' - \bar{m}_2.$$

We define \bar{p}_2 in $\mathcal{P}_{n_2} (\bar{p}_1)$ by $\bar{p}_2 - \bar{p}_1 = \bar{m}_2' - \bar{m}_1 + v_{n_2}$. We have:

$$\bar{p}_2 - \bar{m}_2 = v_{n_1} + v_{n_2}.$$

Step 3: Since the combinatorial data is well distributed, the two patches $\mathcal{P}_{n_3} (\bar{m}_2)$ and $\mathcal{P}_{n_3} (\bar{p}_2)$ are identical up to translation and there exists a pair of points (\bar{m}_3', \bar{m}_3) in $\mathcal{P}_{n_3} (\bar{m}_2) \times \mathcal{P}_{n_2} (\bar{m}_2)$ such that

$$v_{n_3} = \bar{m}_3' - \bar{m}_3.$$

We define \bar{p}_3 in $\mathcal{P}_{n_3} (\bar{p}_2)$ by $\bar{p}_3 - \bar{p}_2 = \bar{m}_3' - \bar{m}_2 + v_{n_3}$. We have:

$$\bar{p}_3 - \bar{m}_3 = v_{n_1} + v_{n_2} + v_{n_3}.$$

Step 4: We iterate this construction until we get the points \bar{m}_l and \bar{p}_l which satisfy:

$$\bar{p}_l - \bar{m}_l = \sum_{j=1}^{l} v_{n_j}.$$
Step 5: We have:
\[
||h(A(\bar{p}_l, x)) - h(A(\bar{m}_l, x))|| = ||<\sum_{j=1}^l v_{n_j}, \bar{\theta}>>||
\]
\[
= ||\sum_{j=1}^l c_k^j(v_{n_j})||
\]
Since \bar{p}_l and \bar{m}_l are in $R_N(x)$, Lemma 3.1 implies that:
\[
||\sum_{j=1}^l c_k^j(v_{n_j})|| \leq \epsilon.
\]
Let $\pi: B \to B'$ be the canonical isometric identification of the ball B with the open ball B' in the Euclidean space \mathbb{R}^d centered at 0 with radius $\sqrt{k}/2$. Through this identification, it is clear that for all x in B: $||x|| = ||\pi(x)||$. Moreover, for any pair of points x, x' in $S_{1,...,1}$ such that $x + x'$ is also in $S_{1,...,1}$, we have: $\pi(x + x') = \pi(x) + \pi(x')$. It follows that
\[
||\sum_{j=1}^l c_k^j(v_{n_j})|| = ||\sum_{j=1}^l \pi(c_k^j(v_{n_j}))||.
\]
Finally, since for $1 \leq j \leq l$, $c_k^j(v_{n_j})$ is in $S_{1,...,1}$, we have:
\[
\sum_{j=1}^l ||\pi(c_k^j(v_{n_j}))|| \leq 1/\sqrt{k} \cdot \sum_{j=1}^l ||\pi(c_k^j(v_{n_j}))||,
\]
which implies
\[
\sum_{N \leq n, n \in I_{1,...,1}, \text{even}} \sum_{k=0}^l t_{n,\theta}^k \leq 1/\sqrt{k} \cdot \epsilon.
\]
This insures that the series $\sum_{n \in I_{1,...,1}, \text{even}} t_{n,\theta}^k$ converges, and consequently the series $\sum_{n \geq 0} t_{n,\theta}^k$ converges too.

(ii) Let (X, A) be a linearly recurrent \mathbb{Z}^d-action on the Cantor set X. Assume that the combinatorial data is adapted to the action and that the series of $\bar{\theta}$-lengths $\sum_{n \geq 0} t_{n,\theta}^k$ converges for some $\bar{\theta}$ in \mathbb{R}^d. Fix $\epsilon > 0$ and choose $n_0 \in \mathbb{N}$ big enough so that
\[
\sum_{n \geq n_0} t_{n,\theta}^k < \epsilon.
\]
Let us define the map h on the \mathbb{Z}^d-orbit of x by,
\[
h(A(\bar{n}, x)) = <\bar{n}, \bar{\theta}>= A_\bar{\theta}(\bar{n}, 0)
\]
for each \bar{n} in \mathbb{Z}^d. In order to prove that the map h extends to a continuous map on the closure \mathbb{Q}^k of the orbit of 0 in \mathbb{T}^k, it is enough to prove that h is uniformly continuous, which follows from the continuity of h at x. Consider a point \bar{p} in $R_{n_0}(x)$ and apply Corollary 2.5. There exists a unique $m_0 \geq n_0$ and a unique sequence $\{\bar{p}_l\}_{0 \leq l \leq m_0 - n_0}$ of points in \mathbb{Z}^d such that:
Rotation factors of minimal Z^d-actions on the Cantor set

- m_0 is the smallest $m \geq n_0$ for which $\bar{p} \in P_{m_0}^n(0)$;
- $\bar{p}_0 = 0$;
- $\bar{p}_l \in P_{m_0-l}(\bar{p}_{l-1})$ and $\bar{p} \in P_{m_0-l}(\bar{p}_l)$, $\forall 1 \leq l \leq m_0 - n_0$;
- $\bar{p}_{m_0-n_0} = \bar{p}$.

Let us write:

$$h(A(\bar{p}, x)) = \sum_{l=1}^{m_0-n_0} (h(A(\bar{p}_l, x)) - h(A(\bar{p}_{l-1}, x))).$$

For any $1 \leq l \leq m_0 - n_0$ both points \bar{p}_l and \bar{p}_{l-1} are in $P_{m_0-l}(\bar{p}_{l-1})$. Consequently there exists a collection $\{v_{m_0-l,i}\}_{1 \leq i \leq q(m_0-l)}$ of vectors in $\mathcal{F}_{m_0-l}(\bar{p}_{l-1})$ such that:

- $q(m_0 - l) \leq k(m_0 - l)$;
- the sequence of points $\{\bar{p}_{l-1,i}\}_{0 \leq i \leq q(m_0-l)}$ defined by:
 - $\bar{p}_{l-1,0} = \bar{p}_{l-1}$;
 - $\bar{p}_{l-1,i} = \bar{p}_{l-1,i-1} + v_{m_0-l,i}$ for $1 \leq i \leq q(m_0-l)$;
 - $\bar{p}_{l-1,q(m_0-l)} = \bar{p}_l$;
 - belongs to $R_{m_0-l}(x)$.

This yields

$$h(A(\bar{p}, x)) = \sum_{l=1}^{m_0-n_0} \sum_{i=1}^{q(m_0-l)} (h(A(\bar{p}_{l-1,i}, x)) - h(A(\bar{p}_{l-1,i-1}, x))).$$

Now we use the fact that the action is linearly recurrent and that the combinatorial data is adapted to this action. We denote by L a uniform upper bound for the sequence $\{k(n)\}_{n \geq 0}$. We get,

$$||h(A(\bar{p}, x))|| \leq L \cdot \sum_{i=1}^{m_0-n_0} y_{m_0-l,\delta}^k \leq L \cdot \sum_{n=n_0}^{\infty} y_{n,\delta}^k \leq \epsilon.$$

This proves the continuity of h at x.

Acknowledgments. All authors acknowledge financial support from ECOS-Conicyt grant C03-E03. The third author thanks also support from Programa Iniciativa Científica Milenio P01-005 and FONDECYT 1010447.

References

[BG] R. Benedetti, J.M. Gambaudo, *On the dynamics of G-solenoids. Applications to Delone sets*, Ergodic Theory and Dynamical Systems **23**, No 3, (2003) 673-691.

[BDM] X. Bressaud, F. Durand, A. Maass, *Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems*, preprint (2003).

[CDHM] M. I. Cortez, F. Durand, B. Host, A. Maass, *Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems*, J. of the London Math. Soc. **67**, No 3, (2003) 790-804.

[Du1] F. Durand, *Linearly recurrent subshifts have a finite number of non-periodic subshift factors*, Ergodic Theory and Dynamical Systems **20**, No 4, (2000) 1061-1078.

[Du2] F. Durand, *Corrigendum and addendum to: Linearly recurrent subshifts have a finite number of non-periodic subshift factors*, Ergodic Theory and Dynamical Systems **23**, No 2, (2003) 663-669.

[LP] J. C. Lagarias, P. A. B. Pleasants, *Repetitive Delone sets and quasicrystals*, Ergodic Theory and Dynamical Systems **23**, No 3, (2003) 831-867.

[S] L. Sadun, *Tiling spaces are inverse limits*, J. Math. Phys. **44**, No 11, (2003) 5410-5414.

[SW] L. Sadun, R. F. Williams, *Tiling spaces are Cantor fiber bundles*, Ergodic Theory and Dynamical Systems. **23**, No 1, (2003) 307-316.
