The impact of maternal genetic merit and country of origin on ewe reproductive performance, lambing performance and ewe survival

N. Fetherstone*, ‡, N. McHugh†, T. M. Boland‡ and F. M. McGovern*

*Teagasc, Animal & Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland, H65 R718

†Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996

‡School of Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland, D04 V1W8

Acknowledgements

The authors would like to acknowledge funding of this research project provided through the Department of Agriculture, Food and the Marine Research Stimulus MULTIREPRO (16/S/696). The authors are also grateful for the support and data made available by Sheep Ireland and are especially thankful to Henry Walsh and all the staff and students at Teagasc Athenry for their contributions.

Corresponding author: Nicola Fetherstone. Email: nicola.fetherstone@teagasc.ie
Abstract

The objective of this study was to investigate the impact of the ewe’s maternal genetic merit and country of origin (New Zealand or Ireland) on ewe reproductive, lambing and productivity traits. The study was performed over a four year period (2016 to 2019) and consisted of three genetic groups: high maternal genetic merit New Zealand (NZ), high maternal genetic merit Irish (High Irish) and low maternal genetic merit Irish (Low Irish) ewes. Each group contained 30 Suffolk and 30 Texel ewes, selected based on the respective national maternal genetic indexes; i.e. either the New Zealand Maternal Worth (New Zealand group) or the €uro-star Replacement index (Irish groups). The impact of maternal genetic merit on reproductive traits such as litter size; lambing traits such as gestation length, birth weight, lambing difficulty, mothering ability, and productivity traits such as the number of lambs born and weaned were analyzed using linear mixed models. For binary traits, the impact of maternal genetic merit on reproductive traits such as conception to first AI service; lambing traits such as dystocia, perinatal lamb mortality and productivity traits such as ewe survival were analyzed using logistic regression. New Zealand ewes outperformed Low Irish ewes for conception to first AI (P<0.05) and litter size (P=0.05). Irish ewes were more likely to suffer from dystocia (6.84 (High Irish) and 8.25 (Low Irish) times) compared to NZ ewes (P<0.001); birth weight and perinatal mortality did not differ between groups (P>0.05). Lambs born from NZ ewes were 4.67 (95% CI: 1.89 to 11.55; P<0.001) and 6.54 (95% CI: 2.56 to 16.71; P<0.001) times more likely to stand up and suckle unassisted relative to lambs born from High or Low Irish ewes, respectively. New Zealand and High Irish ewes had a greater number of lambs born and weaned throughout the duration of the study compared to their Low Irish counterparts (P<0.001). New Zealand ewes tended to be more likely to survive from one year to the next compared to Low Irish ewes (P=0.07). Irish ewes of high maternal genetic merit outperformed their Low counterparts in total number of lambs born.
and weaned per ewe, but performance did not differ across other traits investigated. This highlights the importance of continuous development of the Irish maternal sheep index to ensure favourable improvements in reproductive, lambing and productivity traits at farm level. Overall, results demonstrate the suitability of NZ genetics in an Irish production system.

Keywords
Breeding, genetics, index, production, sheep
Implications

The widespread use of animals of high maternal genetic merit, regardless of their country of origin, may positively impact ewe reproductive, lambing and productivity performance, therefore having the potential to increase national productivity, efficiency and profitability if the use of high maternal genetic merit animals was implemented through a widespread national breeding program.
Introduction

Genetic indexes provide producers with a valuable tool to make more informed breeding decisions which can result in increased farm productivity and profitability as demonstrated within the Irish dairy industry (Ramsbottom et al., 2011). However, validation of genetic indexes is vitally important to increase farmers’ confidence in breeding programs as well as demonstrating that genetic progress is achievable. Controlled experiments of animals of divergent genetic merit across both cattle (McCabe et al., 2017; O’Sullivan et al., 2020) and sheep (Lewis et al., 1996; Marquez et al., 2013) have shown that genetic evaluations are reflected in differences in phenotypic animal performance. However, for sheep studies, a greater focus has been placed on terminal traits rather than maternal traits. To date, the national maternal sheep breeding objective in Ireland; the Euro-star Replacement index (Bohan et al., 2019), has not been validated against other international evaluation systems.

The New Zealand sheep production system is broadly similar to that of Ireland, with both operating a predominately grass based, seasonal and export focused system, albeit with New Zealand operating a more extensive system. The similarities in both production systems are reflected in both the traits and the relative emphasis placed on these traits included in both the New Zealand and Irish maternal genetic indexes (Santos et al., 2015). However, as reported by Santos et al. (2015), the genetic progress in the Irish maternal sheep index has been slow (€0.28/lamb per year) compared to the corresponding gains reported in New Zealand (€1.16/lamb per year). To date however, Irish and New Zealand sheep of high maternal genetic merit have not been compared in a common environment. The objective of the study was to investigate the effect of maternal genetic merit on ewe reproductive, lambing and productivity traits across animals divergent in their maternal genetic merit from two countries of origin, New Zealand and Ireland.
Materials and methods

Study design

This study was performed over a four year period (2016 to 2019) at Teagasc, Animal and Grassland Research centre, Mellows Campus, Athenry, Co. Galway, Ireland (53.288024 latitude, 8.778380 longitude). All procedures were conducted under approval from the Teagasc Animal Ethics Committee on experimental animal use (TAEC56-2014) and the Health Protection Regulation Authority (AE19132 / P039) in accordance with the Cruelty to Animals Act 1876 and the European Communities Regulations, 1994.

Three genetic groups of ewes, balanced for breed and age, were established, containing 60 New Zealand ewes of high maternal genetic merit (NZ), 60 Irish ewes of high maternal genetic merit (High Irish) and 60 Irish ewes of low maternal genetic merit (Low Irish). A cohort of New Zealand animals selected based on the New Zealand Maternal Worth Index were imported to Ireland in 2013 and 2014 ahead of the commencement of this study with mating in October 2015; these animals represented those ranked within the top 40% across breed for maternal genetic merit (Byrne et al., 2012) and were selected from six progressive flocks that achieved the equivalent genetic gain of €0.18 under the New Zealand Maternal Worth Index as previously discussed by Fetherstone et al. (2021). Irish ewes were selected based on their genetic merit at the time of entry into the study for the Irish maternal genetic index for sheep; i.e. the €uro-star Replacement index (Bohan et al., 2019). The High Irish and Low Irish ewes represented the top and bottom 20% of animals for maternal genetic merit within their breed, respectively. Each genetic group consisted of 30 purebred Suffolk and 30 purebred Texel ewes. All ewes remained in their allocated genetic group for the duration of their productive life. Any ewe that was removed from the genetic group during the study due
to health issues or ewe mortality were immediately replaced by another ewe that was of similar genetic merit, breed, parity, rearing type or litter size. In total, 350 ewes formed part of the trial across the four year period. The average maternal genetic merit value; i.e. the Irish Euro-star Replacement index, at the start the study was €0.06 ± 0.741, €1.04 ± 0.617 and -€0.68 ± 0.729 for the NZ, High Irish and Low Irish genetic groups, respectively.

Experimental design

In autumn of each year, each ewe (experimental unit) was oestrus synchronized and mated via laparoscopic artificial insemination (AI). The total cohort of ewes were randomly divided into two groups, balanced for maternal genetic merit, breed and age, and inseminated one week apart. All ewes were bred within maternal genetic merit group and within breed. Rams were introduced to ewes for two repeat cycles following AI, where all trial ewes were mated within 21 days from the day of AI. In early December each year, ewes were housed indoors. Winter shearing was carried out at housing and all ewes were ultrasound pregnancy scanned between 80 and 90 days post AI. All ewes received grass silage *ad-libitum*, while concentrate supplementation was provided based on silage quality and ewe energy requirements according to litter size (Alderman and Cottrill, 1996) from eight weeks prior to the predicted lambing date. Lambing commenced in the last week of February each year. Post-partum, ewes were individually penned for 48 hours to encourage ewe-lamb bonding, thereafter ewes and lambs were turned out onto a Perennial ryegrass (*Lolium perenne*) and white clover (*Trifolium repens*) sward at a stocking rate of 12 ewes per ha. A rotational grazing system was operated where target pre-grazing heights range from 7 to 9 cm. Post grazing heights were 3.1 cm for the first rotation, and 4.1 cm thereafter. The maximum number of lambs reared per ewe was 2, for ewes with a litter size of ≥3, excess lambs were removed and placed into an artificial rearing unit or cross fostered onto another ewe within
the same genetic merit group. All genetic merit groups grazed separate farm lots throughout the grazing season.

Description of critical methods

Reproductive performance

Conception rate to first AI service (binary trait) was defined as whether or not a ewe was confirmed in lamb to AI. Ewe barren rate (binary trait) was defined as whether or not a ewe was pregnancy scanned in lamb after AI and two repeat cycles. Pregnancy scan rate was defined as the number of foetuses scanned per ewe including barren ewes. Litter size was defined as the number of lambs born per ewe excluding barren ewes. Ewe survival (binary trait) was defined as whether or not a ewe that was bred in one year was retained for breeding the following year.

Lambing performance

Within the first 24 h post-partum all lambs were weighed using a portable weighing scales, sexed, tagged and linked to their genetic dam; litter size, date and time of birth were also recorded. Gestation length (days) was calculated as the difference between the date of conception and the date of lambing. Lambing difficulty was scored on a scale of 1 to 4, where 1 = lambed without assistance, 2 = slight assistance, 3 = manual delivery and 4 = considerable difficulty or veterinary assistance. Lambing difficulty was also dichotomized into lambing dystocia (binary trait) whereby ewes with considerable difficulty or veterinary assistance were coded separately to all other scores. Litter vigor was recorded on a two point scale (Annett et al., 2012), where 1 = the litter required no assistance to suckle, and 2 = the litter required assistance to suckle. Mothering ability was scored on how easily the ewe followed the lamb(s), using a scale of 1 to 3 (Earle et al., 2017), where 1 = always follows lambs, 2 =
stands well back from lambs, and 3 = leaves lambs. Perinatal lamb mortality was defined as whether or not the lamb survived for the first 24 hours after birth.

Productivity

The total number of lambs born per ewe (alive and dead) and weaned (~100 days post-partum) per ewe over the duration of the study (four years) were calculated as an approximation for the ewe’s productive life.

The statistical analysis of the results

The effect of maternal genetic merit (NZ, High Irish or Low Irish) on reproduction traits (pregnancy scan and litter size), lambing traits (gestation length, lambing difficulty, mothering ability and birth weight) and ewe productivity traits (total number of lambs born and weaned) were analyzed using a linear mixed model in PROC Mixed (SAS Inst. Inc., Cary, NC), with maternal genetic merit, ewe breed, ewe parity, sire of the lamb, date or week of trait measurement included as fixed effects. For lambing traits, birth type and sex of the lamb were also included as fixed effects where appropriate. For ewe productivity traits, maternal genetic merit, ewe breed, sire of the lamb and the ewe’s total number of lambing events over the duration of the study were included as fixed effects. Across all traits sire of the ewe was included as a random effect and year was included as a repeated effect where appropriate.

For the binary traits of conception to first AI service, barren rate, ewe survival, lamb dystocia, litter vigor and perinatal lamb mortality, the log of the odds were modelled using logistic regression in PROC GENMOD (SAS Inst. Inc., Cary, NC), with maternal genetic merit, ewe breed, ewe parity and date or week and year of trait measurement included as fixed effects. For lambing traits and for ewe survival, birth type was also included as a fixed
effect. Birth weight and sex of the lamb were included as fixed effects for perinatal lamb mortality. Across all binary traits odds ratios were calculated as the exponent of the model solutions.

Results

Reproductive performance

Conception rates to first AI service presented as raw means were 82%, 80% and 74% for NZ, High Irish and Low Irish, respectively. New Zealand ewes were 2.86 times (95% CI: 1.22 to 6.73; P<0.05) more likely to hold to first AI service compared to Low Irish ewes (Table 1); High Irish did not differ from either NZ or Low Irish ewes (P>0.05). Barren rates after AI and two repeat cycles did not differ (P>0.05) and averaged 7.1%, 6.8% and 7.8% for NZ, High Irish and Low Irish, respectively. Overall pregnancy scan rates did not differ between the three genetic groups (P>0.05, Table 2). However, ewes within the NZ genetic group had a greater litter size than the Low Irish ewes (P=0.05, Table 2). Across the four experimental years, ewes were present for an average of 2.5 lambing events. Ewes of New Zealand origin tended to be more likely to survive in the flock from one year to the next compared to Low Irish ewes (P=0.07, Table 1).

Lambing performance

Ewe maternal genetic merit did not impact on lamb birth weight (P>0.05, Table 2). Gestation length, which averaged 148.2 ± 0.17 days across the three genetic groups did not differ by ewe maternal genetic merit (P>0.05, Table 2). Lambing difficulty scores were similar across the three groups (P>0.05, Table 2). Ewes of Irish origin, irrespective of maternal genetic merit, were more likely to suffer from dystocia (6.84 and 8.25 times for High and Low,
respectively) compared to NZ ewes (P<0.001, Table 1) and averaged 12.7%, 24.0% and 24.5% (raw means) for the NZ, High Irish and Low Irish genetic groups, respectively.

Overall, lambs born from NZ ewes were 4.67 (95% CI: 1.89 to 11.55; P<0.001) and 6.54 (95% CI: 2.56 to 16.71; P<0.001) times more likely to successfully stand and suckle the ewe without assistance, than lambs born from High Irish or Low Irish ewes, respectively (Table 1). Mothering ability did not differ by genetic group (P>0.05). The likelihood of lamb mortality occurring within the first 24 h post-partum, did not differ between the three genetic groups (P>0.05).

Productivity

When the total number of lambs born per ewe over the four experimental years was combined, the NZ and High Irish ewes gave birth to more lambs per ewe compared to the Low Irish group (P<0.001, Fig. 1). New Zealand and High Irish ewes also weaned a greater total number of lambs over the four year study (3.41 and 3.33 lambs per ewe, respectively), compared to the Low Irish ewes (2.98 lambs per ewe; P<0.001, Fig. 1).

Discussion

Genetics plays a substantial role in accelerating farm production gains. The benefit of using animals of high genetic merit has been quantified across beef (McHugh et al., 2014), dairy (Ramsbottom et al., 2011) and sheep (Marquez et al., 2013). For this reason, the authors hypothesized that animals of high genetic merit, whether of New Zealand or Irish origin, would achieve greater maternal performance than the animals of low genetic merit. However, results from the current study deviated from expectation, in that high genetic merit ewes of Irish origin did not always outperform their low Irish counterparts, albeit differences were
detected in the total number of lambs born and weaned. The establishment of the Irish national sheep breeding program, has initiated commercial farmers within the Irish sheep industry to seek change as they attempt to increase production gains, with an estimated 13% of breeding rams sourced from progressive pedigree breeders (Fetherstone et al., 2021). New Zealand have previously reported greater genetic gains relative to those achieved in Ireland (Santos et al., 2015), which prompted the comparison of high maternal genetic merit animals from New Zealand and Ireland within the same production system. This study helps to determine if Irish genetics are lagging, surpassing or reaching similar rates of genetic gain to those achievable through the use of New Zealand genetics.

Differences in reproductive efficiency including conception to first AI service and litter size are reported in this study. Farrell et al. (2020) discussed the impact of a high rate of ewe wastage on overall farm profitability in New Zealand, where ewe wastage was defined as ewes that were culled up to six years of age or any mature ewe deaths. Ewe wastage is mainly driven by poor ewe reproductive performance (Cranston et al., 2017) and the importance of a minimal number of barren ewes within the flock at pregnancy scanning was demonstrated by Annett et al. (2011), who reported that they account for 40.8% of ewes culled per year, albeit in hill sheep flocks. Ewe barren rates did not differ between any of the genetic groups in this study (P > 0.05) and were similar to the rates reported by Conington et al. (2004), although ewes within this study were mated via laparoscopic AI. Conception to first AI service rates within this study are in line with those reported previously by Hill et al. (1998) who also used fresh semen via laparoscopic AI and achieved an 82.2% conception rate; rates comparable to this study.

Number of lambs reared per ewe joined has been highlighted as a key driver of farm efficiency and profitability (Keady et al., 2009; Bohan et al., 2016; Farrell et al., 2020). Pregnancy scan rates and litter size observed in the current study were similar to those
previously reported in Ireland (Bohan et al., 2016; Earle et al., 2017), but greater than
reported in previous New Zealand studies (Morris and Kenyon (2014); DeNicolo et al.
(2008), albeit across different breeds to those used in the present study.

Litter size increased by 23 lambs born per 100 NZ ewes lambed in comparison to the Low
Irish ewes (P=0.05), which is not unsurprising given the greater response to selection in
number of lambs born in the New Zealand maternal genetic index compared to the Irish
maternal genetic index (Santos et al., 2015). These results demonstrate potential to increase
these rates further within New Zealand where the national average for the number of lambs
weaned per ewe joined is currently 1.30 lambs (Beef + Lamb New Zealand Economic
Service, 2020) similar to that achieved on some of Ireland’s most profitable flocks (1.32
lambs per ewe joined) as reported by Kilcline et al. (2015).

Lambing difficulty, litter vigor and ewe mothering ability have all been identified as the main
contributors to the largest requirement of labour input during the lambing period (O’Brien,
2020). Although overall lambing difficulty scores did not differ across the three genetic
groups, when transformed into a binary trait, i.e. dystocia, Irish ewes, regardless of maternal
genetic merit, were more likely to suffer from dystocia than their New Zealand counterparts
(P<0.001). This was partly attributed to the Low Irish ewes being 4.49 times more likely to
suffer from lamb mal-presentation at birth (P<0.001) and the High Irish ewes being 4.09
times more likely to have oversized lambs (P<0.05), compared to the NZ ewes (results not
shown). Overall lambing difficulty scores were considerably higher than expected in
comparison to those reported previously by McHugh et al. (2020) and could be attributed to
the differences in the breed composition used in both studies. Differences in lamb birth
weight were not detected between the three genetic groups (P>0.05) and were greater than
previously reported for Irish purebred lambs by McHugh et al. (2020) where raw means were
presented as 5.12 kg, 5.41 kg and 5.35 kg for NZ, High Irish and Low Irish, respectively. The
proportion of lambs that sucked independently was considerably less than reported by Matheson et al. (2011), who allowed more time for lambs to stand and suckle before offering assistance compared to the current study. The average percentage of litters that required assistance to suckle was 53.6%, 63.3% and 67.1%, within the NZ, High Irish and Low Irish groups respectively. Differences in dystocia and litter vigor between New Zealand and Irish ewes may be attributed to the fact that the vast majority of producers in New Zealand operate an extensive, outdoor lambing system where through natural selection, behavior may have adapted to result in a more easy-care system with minimal intervention at lambing (Fisher and Mellort, 2002). In comparison, Bohan et al. (2017) previously demonstrated the more intensive lambing system operated in Ireland whereby 83% of Irish producers lamb indoors. It should also be noted that birth weight is not included as a goal trait in either the Irish or New Zealand index. Maternal genetic merit had no impact on ewe mothering ability in this study, although scores were similar to those reported by Earle et al. (2017). The average perinatal lamb mortality rates were 7.2%, 8.2% and 9.5% for NZ, High Irish and Low Irish lambs, respectively and did not differ between genetic groups but had a similar prevalence to those reported for single lambs by Morris et al. (2000).

Ewe survival is a major factor contributing to replacement costs. Currently, the average replacement rate in Ireland is 22.4% (Bohan et al., 2017), contributing to a high cost per kg of lamb produced on many Irish farms whereby the cost of a replacement ewe joining the flock at 18 months is equivalent to 25% of the value of lamb carcass output that is produced in her lifetime (Keady, 2020). While replacement rate nationally in New Zealand ranges between 20% and 30%, a large proportion of these are recognized as annual ewe wastage, where premature death or culling of ewes prior to the end of their productive lifespan occurs (Farrell et al., 2020), albeit subjected to harsher environmental factors in late pregnancy, i.e. outdoor lambing, in comparison to a predominately indoor lambing system in Ireland.
Unexpectedly due to the higher replacement rates reported previously in New Zealand, ewes of New Zealand origin tended to survive longer in the flock as part of this study compared to the Low Irish ewes (P=0.07), demonstrating their suitability in the Irish environment.

As previously mentioned, the number of lambs born is a key driver of performance and profitability. The significant focus on number of lambs born within the Irish and New Zealand genetic indexes indicates that there is still potential to increase number of lambs born within the industry (Amer and Bodin, 2006; McHugh, 2016; Bohan et al., 2019). However, the ability of ewes to successfully rear their lambs (i.e. the difference between number of lambs born and weaned) is not always reported. The artificial rearing, cross-fostering and mortality of lambs between birth and weaning can impact profitability, increase production costs and increase labour demand at a time of year when it is at a premium. While NZ ewes conceived and delivered the greatest amount of lambs on an annual basis, the total number of lambs born and weaned by NZ ewes was similar to the number achieved by High Irish ewes when analyzed over the period of the four year study. As expected NZ and High Irish ewes weaned a greater amount of lambs than the Low Irish ewes. Dillon et al. (2019) highlighted that the Irish national annual weaning rate, at 1.3 lambs per ewe joined, has remained static for over 40 years. The difference of 0.1 lambs per generation between ewes of high and low genetic merit in this study demonstrate that the national weaning rate could potentially be increased in a permanent and cumulative manner, through the use of superior genetics, regardless of country of origin, by generating replacement ewes of greater productivity potential.

Irish ewes within this study were selected for their divergence on the Irish maternal genetic index which incorporates a range of traits including: reproduction, lambing, growth, carcass and health traits with a different relative emphasis attributed to each trait (Bohan et al., 2019). Therefore, although it was hypothesized that Irish ewes of high genetic merit would
achieve greater maternal performance than ewes of low genetic merit, an investigation of the individual EBVs for the various traits was required to illustrate whether differences in animal performance at an individual trait level were expected. Lamb survival and the number of lambs born per ewe have a large relative emphasis (8.98% and 18.19%, respectively) in the Irish maternal genetic index, compared to traits such as lambing difficulty (5.20% emphasis; Bohan et al., 2019). Therefore, it was anticipated that differences would be detected in animal performance for traits including lamb survival and the number of lambs born in comparison to lambing difficulty. Potentially greater differences could have been detected if more ewes were included within the study or the study was repeated over a larger number of years. Differences between the individual trait EBVs of Irish ewes of high and low genetic merit and the actual phenotypic divergence between the corresponding traits in this study were broadly as expected. For example, the difference at the EBV level for number of lambs born between the High and Low Irish genetic groups was 0.04; the corresponding phenotypic difference observed in this study was 0.03 lambs born per ewe. In fact based on the individual EBVs greater divergence is anticipated based on growth traits such as weaning and slaughter weight between the Irish High and Low groups rather than for the maternal traits investigated in the present study. Other performance traits such as ewe survival, lamb birthweight and ewe mothering ability reported within this study are currently not included in the Irish maternal genetic index, therefore, overall performance and EBVs cannot be compared at this time. In addition it should be highlighted that the accuracy levels associated with the Irish maternal genetic index are still relatively low (ranged from 34% to 43% for the three genetic groups), which can result in changes to the overall indexes and ranking of animals. In fact over the course of the study only 26% and 52% of ewes remained ranked within the top and bottom 20% for maternal genetic merit, respectively. This could in part be attributed to continuous development of the Irish maternal genetic index including the
incorporation of new traits, namely dagginess and lameness (O’Brien et al., 2017) and the introduction of across breed genomic evaluations (Pabiou et al., 2019).

Conclusion

Results from this study provide a detailed comparison of the reproductive, lambing and productivity for ewes of New Zealand and Irish origin and of high and low maternal genetic merit, which can be used in order to increase subsequent on-farm productivity through educated decision making. Results demonstrate the suitability of New Zealand genetics within an Irish production system and show New Zealand ewes to be at least similar, if not superior to their High Irish counterparts for all traits recorded. New Zealand ewes had superior reproductive and lambing performance for many traits including litter size, conception to first AI service, dystocia and litter vigor, compared to low maternal genetic merit animals. Although differences between the High Irish and Low Irish ewes were not evident within many traits, the number of lambs born and weaned when accumulated over the four experimental years demonstrated the benefit of selecting towards animals of high maternal genetic merit over time and the potential for both farmers and the national sheep industry as a whole to increase output via the number of lambs produced and traded each year.
Ethics approval

Not applicable

Data and model availability statement

The data and models reported within this study is available from the corresponding author upon reasonable request.

Author ORCIDs

N Fetherstone https://orcid.org/0000-0001-5892-575X

N McHugh https://orcid.org/0000-0002-3105-8796

TM Boland https://orcid.org/0000-0002-7433-130X

FM McGovern https://orcid.org/0000-0003-4471-5078

Author contributions

NF, NMH and FMG conceptualized and designed the study. NF and FMG carried out trial work. NF and NMH performed the statistical analysis. NF wrote the first draft manuscript. NF, NMH, FMG and TMB reviewed and collaborated to complete the draft of the manuscript. All authors read and approved the final manuscript.

Declaration of interest

The authors declare that they have no competing interests.
Literature cited

Alderman, G., and B. Cottrill. 1996. Energy and protein requirements of ruminants. Acribia, SA.

Amer, P., and L. Bodin. 2006. Quantitative genetic selection for twinning rate in ewes

Annett, R., A. Carson, L. Dawson, D. Irwin, A. Gordon, and D. Kilpatrick. 2011. Comparison of the longevity and lifetime performance of Scottish Blackface ewes and their crosses within hill sheep flocks. Animal: an international journal of animal bioscience 5(3):347.

Annett, R., N. Gault, and C. Breen. 2012. Research to develop a more sustainable lamb supply chain. Agri-Food and Biosciences Institute, Agriculture, Food and Environmental Science Division, Hillsborough UK <http://www. afbini. gov. uk/sustainablelambreportdec2012. pdf

Beef + Lamb New Zealand Economic Service. 2020. Sheep and Beef Farm Survey - Performance Indicators Per Farm Analysis.

Bohan, A., L. Shalloo, P. Creighton, D. Berry, T. Boland, A. O’Brien, T. Pabiou, E. Wall, K. McDermott, and N. McHugh. 2019. Deriving economic values for national sheep breeding objectives using a bio-economic model. Livestock Science 227:44-54.

Bohan, A., L. Shalloo, P. Creighton, T. Boland, and N. McHugh. 2017. A survey of management practices and flock performance and their association with flock size and ewe breed type on Irish sheep farms. The Journal of Agricultural Science 155(8):1332-1341.

Bohan, A., L. Shalloo, B. Malcolm, C. Ho, P. Creighton, T. Boland, and N. McHugh. 2016. Description and validation of the teagasc lamb production model. Agricultural Systems 148:124-134.

Byrne, T., C. Ludemann, P. Amer, and M. Young. 2012. Broadening breeding objectives for maternal and terminal sheep. Livestock Science 144(1-2):20-36.

Conington, J., S. Bishop, A. Waterhouse, and G. Simm. 2004. A bioeconomic approach to derive economic values for pasture-based sheep genetic improvement programs. Journal of animal science 82(5):1290-1304.

Cranston, L., A. Ridler, A. Greer, and P. Kenyon. 2017. Sheep production, Livestock Production in New Zealand. Massey University Press Auckland, New Zealand.

DeNicolo, G., S. Morris, P. Kenyon, and P. Morel. 2008. A comparison of two lamb production systems in New Zealand. New Zealand Journal of Agricultural Research 51(3):365-375.

Earle, E., N. McHugh, T. Boland, and P. Creighton. 2017. Effect of ewe prolificacy potential and stocking rate on ewe and lamb performance in a grass-based lamb production system. Journal of Animal Science 95(1):154-164.

Farrell, L., P. Kenyon, P. Tozer, T. Ramlan, and L. Cranston. 2020. Quantifying sheep enterprise profitability with varying flock replacement rates, lambing rates, and breeding strategies in New Zealand. Agricultural Systems 184:102888.

Fetherstone, N., N. McHugh, T. Boland, and F. McGovern. 2020. Genetic and economic benefits of foreign sire contributions to a domestic sheep industry; including an Ireland-New Zealand case study. Genetics Selection Evolution doi: 10.1186/s12711-020-00594-y.

Bohan, A., L. Shalloo, P. Creighton, T. Boland, and N. McHugh. 2017. A survey of management practices and flock performance and their association with flock size and...
and ewe breed type on Irish sheep farms. The Journal of Agricultural Science 155(8):1332.

Fetherstone, N., F. S. Hely, N. McHugh, F. M. McGovern, and P. R. Amer. 2021. Genetic and economic benefits of foreign sire contributions to a domestic sheep industry; including an Ireland-New Zealand case study. Genetics Selection Evolution 53(1):1-15.

Fisher, M., and D. Mellort. 2002. The welfare implications of shepherding during lambing in extensive New Zealand farming systems. Animal welfare 11(2):157-170.

Hill, J., J. Thompson, and N. Perkins. 1998. Factors affecting pregnancy rates following laparoscopic insemination of 28,447 Merino ewes under commercial conditions: a survey. Theriogenology 49(4):697-709.

Keady, T. 2020. Breeding from ewe lambs—An opportunity to increase flock profitability. Keady, T., J. P. Hanrahan, and S. Flanagan. 2009. An evaluation of two grassland-based systems of mid-season prime lamb production using prolific ewes of two genotypes. Irish Journal of Agricultural and Food Research:87-101.

Kilcline, K., C. O’Donoghue, T. Hennessy, and S. Hynes. 2015. Systems Approach to the Economic Impact of Technical Performance in the Sheep Sector.

Lewis, R., G. Simm, W. Dingwall, and S. Murphy. 1996. Selection for lean growth in terminal sire sheep to produce leaner crossbred progeny.

Marquez, G. C., W. Haresign, M. H. Davies, R. Roehe, L. Bünger, G. Simm, and R. M. Lewis. 2013. Index selection in terminal sires improves lamb performance at finishing. Journal of Animal Science 91(1):38-43.

Matheson, S., J. Rooke, K. McIlvaney, M. Jack, S. Ison, L. Bünger, and C. Dwyer. 2011. Development and validation of on-farm behavioural scoring systems to assess birth assistance and lamb vigour. Animal: an international journal of animal bioscience 5(5):776.

McCabe, S., N. McHugh, and R. Prendiville. 2017. Evaluation of production efficiencies among primiparous suckler cows of diverse genetic index at pasture. Advances in Animal Biosciences 8(s1):s55-s59.

McHugh, N. 2016. Euro-Star Genetic Indexes for Sheep Sheep Ireland.

McHugh, N., A. Cromie, R. Evans, and D. P. Berry. 2014. Validation of national genetic evaluations for maternal beef cattle traits using Irish field data. Journal of Animal Science 92(4):1423-1432.

McHugh, N., T. Pabiou, E. Wall, K. McDermott, and D. Berry. 2020. Considerable potential exists to improve lambing performance traits in sheep through breeding. Livestock Science:104007.

Morris, C., S. Hickey, and J. Clarke. 2000. Genetic and environmental factors affecting lamb survival at birth and through to weaning. New Zealand Journal of Agricultural Research 43(4):515-524.

Morris, S., and P. Kenyon. 2014. Intensive sheep and beef production from pasture—A New Zealand perspective of concerns, opportunities and challenges. Meat science 98(3):330-335.

O’Brien, A. 2020. Making life easier at the busiest time: The potential to breed for greater lamb vigour and better mothering ability. In: S. Ireland (ed.). O'Sullivan, M., S. Butler, K. Pierce, M. Crowe, K. O’Sullivan, R. Fitzgerald, and F. Buckley. 2020. Reproductive efficiency and survival of Holstein-Friesian cows of divergent
Economic Breeding Index, evaluated under seasonal calving pasture-based management. Journal of Dairy Science 103(2):1685-1700.

O’Brien, A., N. McHugh, E. Wall, T. Pabiou, K. McDermott, S. Randles, S. Fair, and D. Berry. 2017. Genetic parameters for lameness, mastitis and dagginess in a multi-breed sheep population. animal 11(6):911-919.

Pabiou, T., E. Wall, K. McDermott, C. Long, and A. O’Brien. 2019. Across-breed genomic evaluation for meat sheep in Ireland. In: EAAP, Ghent, Belgium. p 225.

Ramsbottom, G., A. Cromie, B. Horan, and D. Berry. 2011. Relationship between dairy cow genetic merit and profit on commercial spring calving dairy farms.

Santos, B., N. McHugh, T. Byrne, D. Berry, and P. Amer. 2015. Comparison of breeding objectives across countries with application to sheep indexes in New Zealand and Ireland. Journal of Animal Breeding and Genetics 132(2):144-154.
Fig. 1: The effect of ewe maternal genetic merit (High New Zealand (NZ), High Irish, Low Irish) on the total number of lambs recorded per ewe at birth (born) and at weaning (weaned), accumulated over the four years of the study.
Tables

Table 1. Odds ratios (OR; 95% confidence interval (CI) in parentheses) with associated P value for annual reproductive and lambing traits by ewe maternal genetic merit* (High New Zealand (NZ), High Irish, Low Irish).

Variable	Class contrast	OR (95% CI)	P-value
Reproductive traits			
Conception to first AI service, per year			
NZ vs High Irish	1.66 (0.67 – 4.08)	NS	
NZ vs Low Irish	2.86 (1.22 – 6.73)	0.01	
High Irish vs Low Irish	1.73 (0.73 – 4.08)	NS	
Ewe survival, per year			
NZ vs High Irish	1.78 (0.75 – 4.24)	NS	
NZ vs Low Irish	2.24 (0.94 – 5.37)	0.07	
High Irish vs Low Irish	1.23 (0.54 – 2.94)	NS	
Lambing traits			
Dystocia, per lambing	High Irish vs NZ	6.84 (2.28 – 20.54)	<0.001
Low Irish vs NZ	8.25 (2.75 – 24.73)	<0.001	
Low Irish vs High Irish	1.21 (0.49 – 2.98)	NS	
Litter Vigor, per lambing	NZ vs High Irish	4.67 (1.89 – 11.55)	<0.001
Comparison	Ratio	95% CI	P-value
--------------------	-------------	-------------	---------
NZ vs Low Irish	6.54	(2.56 – 16.71)	<0.001
High Irish vs Low Irish	1.40	(0.52 – 3.75)	NS

NS=Not Significant (P > 0.05), * Where the reference category was the first class listed.
Table 2. The effect of ewe maternal genetic merit (High New Zealand (NZ), High Irish, Low Irish) on annual reproductive and lambing performance traits (least square means and standard error in parenthesis).

Ewe maternal genetic merit	NZ	High Irish	Low Irish	P-value
Pregnancy scan rate, lambs scanned per ewe per year	1.84 (0.048)	1.62 (0.049)	1.59 (0.049)	NS
Litter size, lambs born per ewe lambing	1.96a (0.050)	1.76ab	1.73b (0.50)	0.05
Gestation length, days	147.9 (0.20)	148.2 (0.20)	148.4 (0.20)	NS
Birth weight, kg	5.11 (0.084)	5.27 (0.080)	5.10 (0.082)	NS
Lambing difficulty	2.09 (0.083)	2.61 (0.077)	2.65 (0.081)	NS
Ewe mothering ability	1.26 (0.038)	1.32 (0.037)	1.33 (0.037)	NS

a,b Within a row, means without a common superscript differ (P ≤ 0.05).
NS=Not Significant (P>0.05).
