Protective Role of Raf-1 in *Salmonella*-induced Macrophage Apoptosis

By Veronika Jesenberger,* Katarzyna J. Procyk,* Jochen Rüth,* Martin Schreiber,* Hans-Christian Theussl,‡ Erwin F. Wagner,‡ and Manuela Baccarini*

From the *Department of Cell and Microbiology, Institute of Microbiology and Genetics, and the ‡Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria

Abstract

Invasive *Salmonella* induces macrophage apoptosis via the activation of caspase-1 by the bacterial protein SipB. Here we show that infection of macrophages with *Salmonella* causes the activation and degradation of Raf-1, an important intermediate in macrophage proliferation and activation. Raf-1 degradation is SipB- and caspase-1–dependent, and is prevented by proteasome inhibitors. To study the functional significance of Raf-1 in this process, the *c-raf-1* gene was inactivated by Cre-*loxP*-mediated recombination in vivo. Macrophages lacking *c-raf-1* are hypersensitive towards pathogen-induced apoptosis. Surprisingly, activation of the antiapoptotic mitogen-activated protein kinase kinase (MEK)/extracellular signal–regulated kinase (ERK) and nuclear factor κB pathways is normal in Raf-1–deficient macrophages, and mitochondrial fragility is not increased. Instead, pathogen-mediated activation of caspase-1 is enhanced selectively, implying that Raf-1 antagonizes stimulus-induced caspase-1 activation and apoptosis.

Key words: serine/threonine kinase • cell death • bacteria • proteases • monocytes/macrophages

Introduction

Salmonellae are facultative intracellular pathogens that cause a variety of enteric diseases, ranging from self-limiting gastroenteritis (mainly due to *Salmonella typhimurium*) to the more severe systemic typhoid fever (caused by *Salmonella typhi*). After consumption of contaminated food or water, *Salmonella* reach the intestine and adhere to specialized epithelial cells (M cells). *Salmonella* exploits the host signal transduction cascades to induce the formation of membrane ruffles at the contact point between the bacterium and host cell, and is ultimately taken up in large vacuoles (1). Once the infected M cells are destroyed, the bacteria reach the mesenteric lymph follicles and are confronted by the host’s macrophages.

For *Salmonella*, and for many other facultative intracellular pathogens, surviving this encounter is the key to a successful infection. Invasive *Salmonella* can persist within the macrophages in spacious vacuoles, which do not acquire lysosomal markers and may represent a relatively safe intra-

1Abbreviations used in this paper: ERK, extracellular signal–regulated kinase; ES, embryonic stem; floxed, flanked by *loxP* sites; HMF, heavy membrane fraction; IAP, inhibitor of apoptosis; JNK, c-Jun NH2-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK or ERK kinase; m.o.t, multiplicity of infection; NF, nuclear factor; poly I:C, polyinosinic:cytidylic acid; Q/W, quenching/washing solution; RT, room temperature; SPI, *Salmonella* pathogenicity island; wt, wild-type.
bacterial proteins interact directly with eukaryotic signal transducers to activate signaling pathways of host epithelial cells (14). A functional type III secretion system is a prerequisite for the activation of the mitogen-activated protein kinase (MAPK) subgroups extracellular signal-regulated kinase (ERK), c-Jun NH$_2$-terminal kinase (JNK), and p38, and for the production of proinflammatory cytokines by epithelial cells infected with *Salmonella* (15).

The molecular mechanisms operating during the interaction of *Salmonella typhimurium* with macrophages are less well characterized than those accompanying epithelial cell invasion. The SPI-1–encoded protein SipB has been shown to bind to and activates caspase-1, thereby causing apoptosis (16). Furthermore, we have previously addressed the question of *Salmonella*–mediated ERK (17) and JNK stimulation (18). In both cases, the mechanisms of activation used by the pathogen differed radically from those operating in epithelial cells and were not dependent on the function of the SPI-1–encoded type III secretion system (17, 18).

The Raf-1 kinase plays a key role in relaying proliferation signals but has been also implicated in inflammatory signaling induced by LPS (19, 20). Furthermore, depending on the cell type and the stimulus used, Raf-1 can exert a proapoptotic (21–23) or an antiapoptotic function (24–29). During infection with apoptosis-inducing *Salmonella*, Raf-1 degradation is a consequence of apoptosis induction, but kinase activation is not. Remarkably, Raf-1–deficient macrophages are hypersensitive towards pathogen-induced apoptosis, and this hypersensitivity correlates with enhanced caspase-1 activation. These data imply that Raf-1 activation upon infection with invasive *Salmonella* is part of the defensive response of the cells to the pathogen, and demonstrate for the first time that the Raf-1 kinase plays a role in antagonizing caspase-1 activation during pathogen-induced apoptosis.

Materials and Methods

Bacteria. *S. typhimurium* strains SR11, SL1344, LT2 (wild-type [wt]), SB111 (*inuA*–), and SB169 (*sipB*–) were grown in 5 ml Luria-Bertani broth (1% Bacto Tryptone, 0.5% yeast extract, and 1% sodium chloride) at 37°C overnight for 16–20 h under agitation. To obtain highly invasive bacteria, overnight cultures were diluted to an OD$_{600}$ of 0.02 in 50 ml TYP broth (1.6% Bacto Tryptone, 1.6% yeast extract, 0.5% sodium chloride, 0.25% dipotassium phosphate) and incubated for 5 h under agitation (8).

Conditional Inactivation of the c-raf-1 Gene. A genomic DNA clone corresponding to *c-raf-1* was isolated from a 129/Sv mouse genomic λ fix library. A 8.5-kb 5′-XbaI/BglII-3′ fragment containing exon 3 and surrounding sequences was used to assemble the targeting construct in pBSIISK$^+$. loxP sites were inserted as double-stranded oligonucleotides in the HindIII site 3′ of exon 3 and in the BamHI site 5′ of exon 3. The loxP oligonucleotide 3′ of exon 3 contains a PstI site that serves as a marker for the floxed (flanked by loxP site) allele. A Neo/TK cassette containing an upstream loxP site was excised from plasmid pGHI and cloned into an XbaI-HindIII site contained in the loxP site 5′ of exon 3. E14.1 embryonic stem (ES) cells grown on γ-irradiated embryonic fibroblasts were transfected with AscI-linearized targeting vector and selected with 0.2 mg/ml G418. Homologous recombinants (c-raf-1$^{+/loxNeotk}$) were obtained with a frequency of 1 in 35, as detected by nested PCR and Southern blot analysis. Positive clones were transfected with a plasmid expressing the Cre recombinase (30). Cre expression led to the deletion of either the floxed exon 3 or the floxed Neo/TK cassette, or both. The latter two were enriched by negative selection with gancyclovir. Two clones harboring the floxed exon 3 (c-raf-1$^{lox/lox}$) were injected into C57BL/6 blastocyst-stage embryos and transferred to pseudopregnant B6CBAF1 mice for further development. Chimeric mice were mated to C57BL/6 animals and agouti offspring were genotyped. Germine transmission of the floxed allele was detected either by Southern blot or PCR analysis of tail DNA. c-raf-1$^{lox/lox}$ mice were mated to mice expressing Cre under the control of the inducible Mx1 promoter (31).

Cell Culture and Infection. Bone marrow–derived macrophages were isolated from Mx-Cre; Raf$^{lox/lox}$ mice and Raf$^{lox/lox}$ mice after induction of Cre expression by polyinosin:cytidylic acid (pol I:C) treatment in vivo (400 μg intraperitoneally, every other day; three injections total) or from caspase-1–deficient (32) and wt C57BL/6 mice. 2 days after the last injection, the bone marrow cells were collected and cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% FCS and 20% L-conditioned medium as a source of CSF-1 for 1 wk. Confluent cells (∼5 × 106 cells per 100-mm-diameter tissue culture dish) were cultured for 16–20 h in medium without CSF-1 and then infected with bacterial cultures. A multiplicity of infection (moi; bacteria per macrophage) of 25 was used unless indicated otherwise. MAPK or ERK kinase (MEK) activation was inhibited by overnight pretreatment with 50 μM PD98059 (Calbiochem). Proteasome function was inhibited by pretreatment with 10 μM MG-115 and MG-132 for 90 min (Calbiochem).

Cell Lysis, Immunoprecipitation, and Western Blot Analysis. Cells from one 100-mm–diameter cell culture dish were washed twice with PBS and lysed in 300 μl solubilization buffer (10 mM Tris–HCl, pH 7.0, 50 mM sodium chloride, 30 mM sodium pyrophosphate, 1% Triton X-100). Insoluble material was removed by centrifugation at 20,000 g for 30 min before immunoprecipitation. A rabbit polyclonal antiserum raised against a COOH-terminal peptide of v-raf (SP63, CTTLTSRPLPVF) was used to immunoprecipitate Raf-1. Immunocomplexes were collected after incubation with Protein A–Sepharose beads (Sigma–Aldrich). For Western blot analysis, cell lysates (30 μg/lane) were separated by SDS-PAGE and transferred onto nitrocellulose membranes. After 1 h blocking in TTBS (10 mM Tris–HCl, pH 8.0, 150 mM sodium chloride, 0.1% Tween 20) supplemented with 5% milk powder, the membranes were probed with the appropriate primary antibodies (CSF-1R, rabbit serum generated against GST-CSF-1R [1-313] fusion protein; actin, caspase-1, -2, -3, and IκB, all from Santa Cruz Biotechnology, Inc.; caspase-8, Chemicon; cytochrome-c, BD PharMingen; cytochrome-c-oxidase-subunit IV, Molecular Probes; MEK-1 and panErk, Transduction Laboratories; and Raf-1 kinase domain [33]) diluted in 1% BSA [fraction V, Sigma–Aldrich] in TTBS before incubation with peroxidase-conjugated secondary antibodies and detection by an enhanced chemiluminescence system (Pierce Chemical Co.).

Nuclear Extract Preparation and Electrophoretic Mobility Shift Assay. Nuclear extracts were prepared as described previously (34). In brief, 2 × 106 cells, either untreated or infected with *S. typhimurium*, were washed twice with PBS and resuspended in...
400 μl of buffer A (10 mM Hepes, pH 7.8, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM dithiothreitol, and 1 mM PMSF). After incubation on ice for 5 min, NP-40 was added to a final concentration of 0.6%. Nuclei were pelleted and the cytoplasmic proteins were carefully removed. The nuclei were then resuspended in buffer C (20 mM Hepes, pH 7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, and 1 mM PMSF). After 30 min at 4°C, the samples were centrifuged and the nuclear proteins in the supernatant were transferred to a fresh vial. 10 μg of nuclear extract was incubated with an end-labeled, double-stranded NF-κB-specific oligonucleotide probe (5-AAT-TCCGCTTGGAAATTCCCCGAGCG-3). As specificity controls, extracts were incubated with unlabeled wt or mutated (5-AGCTTAGATTTTACTTTCCGAGAGGA-3) probe before the addition of labeled oligo. The binding reaction was performed in a total of 20 μl of binding buffer (5 mM Hepes, pH 7.9, 50 mM KCl, 0.5 mM dithiothreitol, 1 μg poly [dI:dC], and 10% glycerol) for 20 min at room temperature (RT). After incubation, samples were fractionated on a 5% polyacrylamide gel and visualized by autoradiography.

Subcellular Fractionation. Cells were scraped in Mito buffer (250 mM sucrose, 20 mM Hepes, 10 mM KCl, 1.5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, 10 mM PMSF, 1× protease inhibitor cocktail [Boehringer]). After incubation on ice for 30 min, cells were disrupted at 4°C in a 1-ml syringe fitted with a 25G hypodermic needle (15 strokes). Nuclei and unbroken cells were removed by centrifugation at 700 g for 5 min at 4°C. Supernatants were then further centrifuged at 13,000 g for 20 min at 4°C. The resulting pellet was defined as the heavy membrane fraction (HMF).

Chromatin Staining. 3 × 10⁵ macrophages were seeded on a coverslip in a well of a 6-well cell culture dish. Chromatin condensation in infected macrophages was determined by staining with 0.5 μg/ml 4’,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for 1 min. Cells were washed twice with PBS and fixed with 3% formaldehyde in PBS (10 min at RT). Coverslips were mounted in 20% Mowiol (Sigma-Aldrich) in PBS. Chromatin condensation was assessed in randomly chosen areas of the sample by independent experimenters (300–500 cells/sample).

Mitochondrial and Raf-1 Staining. 3 × 10⁵ macrophages were seeded on a coverslip in a well of a 6-well cell culture dish. Mitochondria were stained with 50 nM Chloromethyl-X-Rosamine (CM-X-ROS, Mitotracker red; Molecular Probes) for 10 min, a potential-sensitive fluorochrome that withstands fixation and permeabilization of cells (35). After infection, cells were permeabilized with 0.01% Triton X-100 (Pierce Chemical Co.) for 1 min and fixed in 4% paraformaldehyde. Fixed cells were washed with quenching/washing solution (Q/W: 50 mM NH₄Cl, 10 mM Pipes, pH 6.8, 150 mM NaCl, 5 mM EGTA, 5 mM glucose, 5 mM MgCl₂) and incubated with primary Raf-1 antibodies (anti-

Figure 1. Activation of Raf-1 by Salmonella requires the type III secretion system, but is not a consequence of apoptosis. (A) Quiescent control (+/+, black bar) or caspase-1–deficient bone marrow-derived macrophages (casp-1−/−, white bars) were infected with wt Salmonella in the late logarithmic (wt late log) or in the stationary phase (wt stat) of growth, or with the invasion-defective invA− and sipB− strains. Different wt strains perform identically in this assay; therefore, only one representative wt has been included. 25 min after infection, cells were stained with DAPI to reveal chromatin condensation. The percentage of cells containing condensed chromatin was determined by microscopical examination of triplicate samples. (B) Quiescent macrophages were infected with late logarithmic phase (late log, ■) or stationary phase (stat, □) wt bacteria. (C and D) Macrophages were infected with invA− (□ in C) or sipB− (□ in D) mutants and with the corresponding wt strains, all in late logarithmic phase. The kinase activity of Raf-1 immunoprecipitates prepared at different times after infection (moi 25) was measured in a coupled assay. The results are expressed as cpm incorporated into the substrate. The standard deviation was <5% in all cases and has therefore been omitted. The amount of Raf-1 contained in the immunoprecipitates was determined by immunoblotting.
SP63, anti–NH₂-terminal, and anti-kinase domain, respectively) in blocking solution (2% gelatin, 0.3% Triton X-100 in Q/W) for 60 min at RT. Cells were then washed in Q/W solution and incubated with fluorescein-conjugated secondary antibody (Alexa 488) in blocking solution for 60 min at RT. Cells were washed with Q/W solution, mounted (ProLong Antifade kit; Molecular Probes), and examined by confocal microscopy.

Assay of Raf Kinase Activity. Raf-1 kinase activity was measured as the ability of immunoisolated Raf-1 to activate recombinant MEK-1 in coupled assay using myelin basic protein as the endpoint of the assay (36).

Results

Raf-1 Activation by Salmonella Involves the Type III Secretion System, but Is Not a Consequence of Apoptosis. A functional SPI-1–encoded type III secretion system is essential for the ability of Salmonella to induce apoptosis. Salmonella grown to stationary phase (8), invA⁻ (lacking an essential membrane component of the type III secretion apparatus) and sipB⁻ mutants are incapable of doing so (Fig. 1 A). SipB causes apoptosis by binding to caspase-1 (16). Consistently, primary bone marrow–derived macrophages from caspase-1–deficient mice fail to undergo apoptosis within the 30 min of infection with wt Salmonella (Fig. 1 A).

To explore the connection between Raf-1 activation and apoptosis induction, we infected primary macrophages with invasive and noninvasive Salmonellae and compared their ability to activate Raf-1. Infection of quiescent primary bone marrow–derived macrophages with wt Salmonella in the late logarithmic phase of growth (invasive) caused moderate Raf-1 activation. However, wt bacteria in the stationary phase (noninvasive) were incapable to do so. Several different wt strains (SR11, SL1344, and LT2) behaved in identical manner (data not shown). Consistent with an involvement of the SPI-1–encoded type III secretion system in Salmonella-induced Raf-1 activation, the invA⁻ bacteria in the late logarithmic phase did not stimulate the Raf-1 kinase, and caused a slight, but reproducible decrease in its basal activity (Fig. 1 B). In contrast, the sipB⁻ mutant activated Raf-1 with identical kinetics and to identical extents as wt Salmonella (Fig. 1 C). The amount of immunoprecipitated Raf-1 decreased during the late phase of infection with invasive wt, but not with noninvasive wt or with the invA⁻ or sipB⁻ strain. From these results, we can conclude that SipB is not required for early Raf-1 activation, and that the decline in Raf-1 activation 20 min after infection is not attributable to the degradation of the protein. Therefore, Raf-1 activation is not a consequence of apoptosis.

Raf-1 Is Degraded in a Caspase-1–dependent Manner during Salmonella-induced Apoptosis. Next we investigated if the decrease in the amount of Raf-1 observed during the late phases of infection was dependent on caspase-1, and whether it was a reflection of the general demise of the cell undergoing apoptosis or rather a specific phenomenon involving this kinase selectively. Triton X-100 extracts from control (+/+) or caspase-1–deficient macrophages infected with Salmonella were immunoblotted with a Raf-1 antiserum. The amount of kinase was progressively reduced in +/- macrophages starting from 5 min after infection with invasive Salmonella, but remained constant throughout infection with a sipB⁻ mutant (Fig. 2 A) or of caspase-1–deficient macrophages with wt bacteria (Fig. 2 B). In contrast to Raf-1, the amount of MEK (data not shown) or ERK remained constant throughout infection. Thus, Salmonella induced caspase-1–dependent degradation of Raf-1, but not of MEK or ERK (Fig. 2 A and B).

Salmonella-mediated Raf-1 Degradation Can Be Prevented by Proteasome Inhibitors. Loss of Raf-1 from the Triton X-100 soluble fraction was paralleled initially by an increase
in Triton X-100 insoluble Raf-1 (Fig. 2 C). Accumulation in the Triton X-100 insoluble fraction is a general feature associated with protein ubiquitinylation, which normally precedes proteasome-mediated degradation. To gain some insight into the mechanism of Raf-1 degradation, we treated macrophages with the proteasome inhibitors MG115 and MG132 before infection with invasive Salmonella. Both inhibitors efficiently stabilized Raf-1, as did the caspase inhibitor Z-VAD-fmk. The proteasome inhibitors, but not the caspase inhibitor, caused the appearance of higher molecular forms of Raf-1, particularly in the Triton X-100 insoluble fraction of lysates, probably because of Raf-1 ubiquitinylation (Fig. 2 D). None of the inhibitors had any effect on the amount or solubility of Raf-1 in uninfected cells.

Conditional Inactivation of Raf-1 in Bone Marrow Cells. Disruption of the c-raf-1 gene is embryonic lethal at midgestation and is accompanied by fetal liver apoptosis (unpublished observations). To obtain Raf-1–deficient macrophages, conditional inactivation of the c-raf-1 gene was achieved by the insertion ofloxP sites cloned 5′ and 3′ of exon 3. A selection cassette (a neomycin resistance gene for positive selection and the thymidine kinase gene of herpes virus for negative selection) was positioned between twoloxP sites upstream of the floxed exon 3 (Fig. 3 A). The mutation was introduced into ES cells by homologous recombination. After transient Cre expression, ES cell clones in which the Neo/TK gene cassette, but not exon 3, had been excised were identified by Southern blot analysis (Fig. 3 B). Germline–transmitting chimeras were obtained and bred to C57Bl/6 mice. Mice homozygous for the c-raf-1 flox allele were phenotypically indistinguishable from wt animals. To allow inducible inactivation of Raf-1, c-raf-1 flox mice were crossed to mice expressing the Cre recombinase under the control of the Mx1 promoter (31). Injection of mice with poly I:C resulted in the efficient deletion of the floxed exon 3 in liver (data not shown) and bone marrow (Fig. 3 C, c-raf-1 ΔA). Macrophages derived from these

Figure 3. Conditional targeting of the mouse c-raf-1 gene. (A) Schematic representation of the conditional targeting of the c-raf-1 gene. Genomic, genomic locus before recombination; floxNeoTK, homologously recombined targeting vector; flox, targeted locus after Cre-mediated removal of the Neo/TK cassette; and c-raf-1Δ, c-raf-1 locus deleted in bone marrow cells after in vivo induction of Mx-Cre.loxP sites (†) were inserted 5′ and 3′ of exon 3 of the c-raf-1 gene. Selection markers (a neomycin resistance gene for positive selection and the thymidine kinase gene of herpes virus for negative selection) were positioned between twoloxP sites upstream of the floxed exon 3. The PstI sites delimiting the fragments obtained by digesting the genomic and mutated c-raf-1 alleles are marked. The PstI site upstream of the 3′loxP site was introduced with the targeting vector and serves as a marker for the floxed allele. (B) Southern blot analysis of PstI-digested genomic DNA from targeted ES cell clones after transient Cre expression. The probe used is shown in black in A. The Neo/TK gene cassette was excised by transiently expressing Cre. Excision was confirmed by Southern blot analysis with a Neo/TK probe (data not shown). (C) Southern blot analysis of PstI-digested genomic DNA isolated from bone marrow cells derived from c-raf-1 flox/flox;Mx-Cre mice and from c-raf-1 ΔA littermates after induction of Mx-Cre in vivo. Genomic DNA from a c-raf-1 flox−/− animal was used to mark the position of the c-raf-1 alleles. (D) Western blot analysis of whole cell lysates from bone marrow–derived macrophages. Macrophages derived from c-raf-1 flox/flox;Mx-Cre+ mice and from c-raf-1ΔA littermates treated in vivo with poly I:C were infected with invasive Salmonella (moi 25) for 20 min. The amount of Raf-1 in whole cell lysates was determined by immunoblotting.
bone marrow cells were devoid of Raf-1 protein, as shown
by Western blot analysis, while poly I:C treatment of c-raf-
flox/flox animals that did not carry the Mx-Cre transgene did
not have any effect on Raf-1 expression (Fig. 3 D).

Raf-1–deficient Macrophages Are More Sensitive Than WT Cells to Salmonella-induced Apoptosis. To determine
whether activated Raf-1 functions as a pro- or antiapoptotic
molecule in the context of Salmonella-induced cell death,
we infected c-raf-1$^{\Delta\Delta}$ and c-raf-1$^{\text{flox/flox}}$ macrophages with different
amounts of bacteria and compared the number of
cells undergoing apoptosis. The c-raf-1$^{\Delta\Delta}$ macrophages
proved more sensitive to pathogen-mediated apoptosis than
c-raf-1$^{\text{flox/flox}}$ cells at all moi investigated (Fig. 4, A and B).
In addition, apoptosis proceeded with faster kinetics in c-raf-1$^{\Delta\Delta}$
macrophages than in c-raf-1$^{\text{flox/flox}}$ cells (Fig. 4 C). However,
infection with wt Salmonella in stationary phase, with
invA$^{-}$ or with sipB$^{-}$ bacteria, failed to induce apoptosis in
c-raf-1$^{\Delta\Delta}$ macrophages, and these cells were not more sus-
ceptible than c-raf-1$^{\text{flox/flox}}$ cells to cell death induced by Listeria
monocytogenes, a process resembling delayed necrosis (reference
37, data not shown). Thus, Raf-1 plays a specific
protective role in Salmonella–induced macrophage apoptosis.

The ERK Cascade Is Not a Downstream Target of Raf-1 in
Salmonella-infected Macrophages and Does Not Play a Protective
Role in Pathogen-mediated Apoptosis. Unlike Raf-1, ERK
activation occurred normally in the ERK cascade by Salmonella.
However, it is still formally possible that wt and invasion-deficient
bacteria use distinct signal transduction pathways to stimu-
late ERKs, and that Raf-1 is involved in ERK activation
by invasive bacteria selectively. To investigate this, we
monitored ERK activation in c-raf-1$^{\text{flox/flox}}$ and c-raf-1$^{\Delta\Delta}$
bone marrow–derived macrophages infected with wt or
invA$^{-}$ Salmonella. ERK activation occurred normally in the
Raf–1–deficient cells (Fig. 5 B). These results show that
Raf-1 is not essential for ERK activation in Salmonella-
infected macrophages. Consequently, the protective effect
of Raf-1 against pathogen-mediated apoptosis is not medi-
ated via this pathway.

**Antiapoptotic effects ascribed directly or indirectly to
ERK activation have been described (38, 39). To ascertain
whether or not the ERK cascade had any protective effect
on pathogen-mediated apoptosis independently of Raf-1,**
we treated c-raf-1$^{\text{flox/flox}}$ macrophages with the MEK-1 inhi-
bitor PD98059 before infection with invasive bacteria.
Although it successfully abrogated ERK activation by Sal-
onella (Fig. 5 C), the MEK inhibitor had no effect on
pathogen-mediated macrophage apoptosis (Fig. 5 D).

NF-κB Is Not a Downstream Target of Raf-1 in Salmonella-
infected Macrophages. A further downstream target of Raf-1
implicated in protection from apoptosis is the transcrip-
tion factor NF-κB (40). Raf-1 activates NF-κB by induc-
ing IkB phosphorylation and degradation. This pathway is
distinct from MEK and ERK activation but involves
MEKK-1 upstream of the IκB kinase complex (41). Infec-
tion of macrophages with invasive Salmonella caused rapid
IkB degradation, whose extent and kinetics were identical
in c-raf-1$^{\text{flox/flox}}$ and c-raf-1$^{\Delta\Delta}$ macrophages (Fig. 6 A). In addi-
tion, infection with *Salmonella* resulted in the rapid stim-
ulation of NF-κB binding activity in nuclear extracts from
cells of both genotypes (Fig. 6 B).

Thus, Raf-1 is not essential for phosphorylation-induced
IkB degradation or NF-κB binding in *Salmonella*-infected
macrophages.
Lack of Involvement of the Mitochondria in the Antiapoptotic Effect of Raf-1. The Raf kinases have been proposed to modulate mitochondrial integrity by regulating the activity of Bcl-2 family members (26, 27, 29). Stimulus-induced translocation of the Raf-1 kinase to the mitochondrial compartment, which would bring it in the proximity of the putative substrates, has been postulated based on biochemical fractionation experiments (27, 42). We addressed the question of mitochondrial translocation of Raf-1 in Salmonella-infected macrophages by biochemical fractionation and confocal microscopy. Biochemical fractionation showed that a significant portion (5–10% in different experiments) of Raf-1 could be recovered from the HMF of macrophages, commonly referred to as “mitochondria-enriched.” In addition, the amount of Raf-1 in this fraction increased after infection with invasive Salmonella (Fig. 7 A). The presence of Raf-1 in the HMF has been previously taken as an indication of the mitochondrial localization of this protein. This fraction contained mitochondrial proteins such as cox-IV and cytochrome c, and was completely devoid of cytosolic proteins such as caspase-3. However, it also contained the glycosylated form of the CSF-1 receptor, and was therefore contaminated with plasma membrane proteins (possibly from portions of the membrane as-

Figure 5. ERKs are activated independently of Raf-1 in Salmonella-infected macrophages, and ERK inhibition does not affect Salmonella-induced apoptosis. (A) Primary macrophages were infected with invasive Salmonella or with an invA− mutant. At different times after infection, the presence of the phosphorylated, active forms of ERK (p-ERK) was detected by immunoblotting. An anti-ERK immunoblot is shown as a loading control. (B) c-raf-1fl/fl and c-raf-1−/− macrophages were infected with invasive Salmonella or with an invA− mutant. The amount of phosphorylated ERK in whole cell lysates was determined after 20 min of infection. (C and D) c-raf-1fl/fl macrophages were either left untreated or treated with 50 μM MEK inhibitor PD98059 overnight before infection with invasive Salmonella. (C) The amount of phosphorylated ERK in whole cell lysates was determined after 20 min of infection. An anti-MEK immunoblot is shown as a loading control. (D) The percentage of cells containing condensed chromatin 25 min after infection with invasive Salmonella at the indicated mois was determined by microscopical examination of triplicate samples. Black bars, untreated macrophages; white bars, macrophages treated with the MEK inhibitor PD98059 before infection. UT, untreated.

Figure 6. IκB degradation and NF-κB binding activity are normal in Raf-1–deficient, Salmonella-infected macrophages. c-raf-1fl/fl and c-raf-1−/− macrophages were infected with invasive Salmonella. (A) The amount of IκB or the loading control actin in whole cell lysates was determined by immunoblotting at different times after infection. (B) NF-κB binding activity in nuclear extract was determined by EMSA; in lanes C and Cm, NF-κB binding of nuclear extracts from Salmonella-infected c-raf-1fl/fl macrophages for 10 min was competed with an excess unlabeled wt (C) or mutated oligos (Cm).
associated with the cytoskeleton). Thus, in spite of the enrichment for mitochondria, the HMF obtained by this method is not pure (Fig. 7 B). We used confocal microscopy to confirm or dispute Raf-1 mitochondrial localization by an independent method. Confocal analysis of macrophages stained with a Raf-1 antiserum showed a punctuate Raf-1 pattern, but did not reveal any colocalization with living mitochondria (visualized with Mitotracker red). Treatment with invasive Salmonella for 10 (data not shown) and 15 min did not alter Raf-1 localization (Fig. 7 C). The same results were obtained with antibodies directed against three different domains of the molecule. Raf-1 knockout macrophages were used to control for specificity.

Failure to detect mitochondrial localization of Raf-1 might be because of technical reasons; alternatively, localization might be extremely transient and therefore elusive. In an attempt to assess whether mitochondrial function was altered in knockout cells, we assayed cytochrome c release from wt and Raf-1-deficient macrophages. Rapid Salmonella-mediated apoptosis did not lead to any appreciable cytochrome c release in c-raf-1^{fl暴/flox} or in c-raf-1^{D/D} macrophages (data not shown). Thus, the apoptotic phenotype of Raf-1-deficient macrophages cannot be ascribed to mitochondrial fragility.

Salmonella-induced Caspase-1 Activation Is Increased Raf-1-deficient Macrophages. To investigate whether the ablation of Raf-1 had any effect on caspase-1, c-raf-1^{fl暴/flox} and c-raf-1^{D/D} macrophages were infected with invasive Salmonella. Caspase-1 activation was monitored by immunoblotting with an antiserum that recognizes the long subunit of the active enzyme (p20). p20 appeared with faster kinetics and in larger amounts in Raf-1-deficient macrophages than in c-raf-1^{fl暴/flox} controls. In contrast, the kinetics and strength of caspase-2 activation were indistinguishable. Cleavage (and therefore activation) of the zymogens procaspase-3 and -8 did not occur during rapid Salmonella-induced apoptosis in c-raf-1^{fl暴/flox} or c-raf-1^{D/D} macrophages (Fig. 8).

Discussion

The interaction of Salmonella with the host’s macrophages is an important event in the early phases of infection. Still, the signaling steps taking place during this interaction are largely unknown. In this paper, we show that Raf-1 is the only kinase of the MAPK pathway to be selectively acti-

Figure 7. Enhanced recovery of Raf-1 in the HMF of macrophages infected with invasive Salmonella. (A) Primary macrophages were infected with invasive Salmonella or with an invA^2 mutant in the late log phase. 15 min after infections, the cells were homogenized and the HMF was obtained by differential centrifugation. The amount of Raf-1 and cox-IV present in 5 μg of the HMF was determined by immunoblotting. (B) Distribution of cellular proteins between the HMF and the supernatant of untreated macrophages. HMF and supernatant derived from 2 × 10^6 cells were immunoblotted with antisera directed against mitochondrial (cox-IV, cytochrome c), cytosolic (caspase-3, ERK, MEK, and Raf-1), and plasma membrane proteins (CSF-1 receptor). (C) Lack of colocalization of Raf-1 immunostaining with mitochondria in confocal microscopy. The mitochondria were stained with Mitotracker Red before infection of the macrophages with invasive Salmonella. At the indicated times, cells were preextracted, fixed, and stained with a monoclonal antibody against the NH2 terminus of Raf-1 (green).
activated and degraded by apoptosis-inducing Salmonella. Furthermore, conditional inactivation of Raf-1 in macrophages showed that these cells are more sensitive towards Salmonella-mediated apoptosis, implying that Raf-1 has a protective function in this process. This hypersensitivity correlates with, and is probably attributable to, an increase in caspase-1 activation.

Raf-1 Is the Only Kinase of the MAPK Pathway Whose Activation Requires the Type III Secretion System. Macrophages activate Raf-1 in response to several different stimuli, notably LPS (19, 20, 43). It was therefore somewhat surprising that infection with invA− Salmonella actually decreased Raf-1 activity. Distinct reactions to soluble and particulate LPS have been observed before; notably, soluble LPS is more efficient in eliciting cellular responses (44). In the specific context of MAPK cascades, our own work has shown that LPS is likely to be the major determinant of ERK activation (17). In contrast, Salmonella stimulates JNKs by a mechanism distinct from LPS, but in this case the type III secretion apparatus is not involved (18, 45). Thus, Raf-1 is the first example of a signal transducer whose activation by Salmonella in macrophages requires the type III system. Interestingly, a sipB mutant was still able to cause Raf-1 activation. Consistent with this, activation of Raf-1 is normal in caspase-1–deficient macrophages that lack the only target of SipB identified so far in macrophages (data not shown). sipB mutants are noninvasive (46). They are able to secrete proteins in culture media (46), but cannot transfer them into cultured epithelial cells (47). Therefore, SipB may function as a translocase. If SipB does perform this function in macrophages, it is possible that Raf-1 activation does not need translocation of a Salmonella protein into the cell; activation may be engendered either by the recognition of a structural component of the secretion system (needle complex) or by a protein secreted into the medium. Alternatively, a yet unidentified protein whose translocation does not require SipB might be responsible for Raf-1 activation.

Raf-1 and Salmonella-mediated Apoptosis. The sipB− Salmonella mutants and the caspase-1–deficient macrophages allowed us to discriminate among three events that follow macrophage infection by Salmonella: Raf-1 activa-

![Figure 8](image). **Increased caspase-1 activation by invasive Salmonella in Raf-1–deficient macrophages.** c-raf-1 flox/flox or c-raf-1−/− primary bone marrow–derived macrophages were infected with invasive Salmonella (moi 25). At the indicated times after infection, cells were lysed and the activation state of caspase-1, -2, -8, and -3 was analyzed by immunoblotting.
between Mitotracker red (used to stain living mitochondria) and the Raf-1 signal. Consistent with this result, A-Raf, but not Raf-1, can be visualized associated with mitochondria by immunogold staining followed by transmission electron microscopy (61). In addition, c-raf-1Δ cells did not show increased mitochondrial damage (as measured by cytochrome c release) after exposure to invasive Salmonella.

The experiments discussed above rule out MEK/ERK and NF-κB as downstream effectors, and mitochondrial integrity as the target of the antiapoptotic function of Raf-1 in Salmonella-infected macrophages. The only parameters altered in the Raf-1–deficient macrophages were the kinetics and strength of caspase-1 activation. This suggests that the kinase is somehow able to restrain the activation of this protease. Interestingly, lack of Raf-1 did not have any effect on the kinetics or extent of caspase-2 cleavage, which becomes activated slightly earlier than caspase-1 and participates in its activation (62). Cleavage of the zymogens pro-caspase-3 and –8, which are not activated in the course of rapid Salmonella-mediated apoptosis, did not occur in Raf-1–deficient cells. These data indicate that Raf-1 acts via a specific mechanism targeting caspase-1 selectively, and not by simply restraining caspase activation in general. This is remarkable in light of the fact that caspase-1 is needed to initiate proteosome-dependent Raf-1 degradation during apoptosis. Thus, the relationship between Raf-1 and caspase-1 is reciprocal, with the protease directing the degradation of the kinase that restrains its activation. At present, we do not know how Raf-1 controls caspase-1. It is possible that Raf-1, or one of its unknown downstream effectors, directly modifies this protease. Phosphorylation of human caspase-9 by the antiapoptotic kinase protein kinase B has been shown to inhibit protease activity (63). Alternatively, Raf-1 might directly or indirectly modulate the expression or activity of natural caspase inhibitors such as the IAPs (64). A specific caspase-1 inhibitor, ICEBERG, has been recently described (65). Also in this context, genetic evidence in Drosophila shows that activated D-Ras and D-Raf can inhibit apoptosis by antagonizing Hid (66, 67), whose recently cloned human orthologues have been shown to antagonize IAPs (68, 69). Raf-1–deficient cells generated by conditional gene inactivation will be an invaluable tool in future studies aimed at identifying the mechanism underlying the antiapoptotic function of Raf-1.

We thank Dr. Jorge E. Galan (Yale University, New Haven, CT) for the gift of the sigB Salmonella strain. We are indebted to Lucia Kucerova and Zvenislava Husak (Baccarini laboratory) for maintaining the Mx-Cre/Rafα/flox colony; Karin Paia and Lukas Huber (Research Institute of Molecular Pathology) for help with confocal microscopy; Rainer de Martin for providing the NF-κB oligos; Thomas Decker and Pavel Kovarik (Vienna Biocenter); Michael Naumann (Max-Planck-Institute for Infection Biology, Berlin, Germany); and Philippe Sansonetti (Institute Pasteur, Paris, France) for critically reading this manuscript.

This work was supported by Austrian Research Fund grants P13252-MOB and P-12279-MOB (to M. Baccarini). V. Jeneberger was the recipient of a fellowship from the Austrian Academy of Sciences.
16. Hersh, D., D.M. Monack, M.R. Smith, N. Ghorii, S. Falkow, and A. Zychlinsky. 1999. The salmonella invasive SipB induces macrophage apoptosis by binding to caspase-1. *Proc. Natl. Acad. Sci. USA.* 5:2396–2401.

17. Procyk, K.J., P. Kovarik, A. von Gabain, and M. Baccarini. 1999. *Salmonella typhimurium* and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates. *Infect. Immun.* 3:1011–1017.

18. Procyk, K.J., M.R. Rippo, R. Testi, F. Hoffmann, P.J. Parker, and M. Baccarini. 1999. Distinct mechanisms target stress and extracellular signal-activated kinase 1 and Jun N-terminal kinase during infection of macrophages with salmonella. *J. Immunol.* 9:4924–4930.

19. Reimann, T., D. Buscher, R.A. Hipskind, S. Kautwald, M.L. Lohmann-Matthes, and M. Baccarini. 1994. Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1β and the TNF-α genes. *J. Immunol.* 12:5740–5749.

20. Hambleton, J., M. McMahon, and A.L. DeFranco. 1998. Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events. *J. Exp. Med.* 1:147–154.

21. Kauffmann-Zeh, A., P. Rodriguez-Viciana, E. Ulrich, C. Gilbert, P. Coffer, J. Downward, and G. Evan. 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. *Nature.* 661:544–548.

22. Basu, S., S. Bayoumy, Y. Zhang, J. Lozano, and R. Kolesnick. 1998. BAD enables ceramide to signal apoptosis via Ras and Raf-1. *J. Biol. Chem.* 46:30419–30426.

23. Blagosklonny, M.V., P. Giannakakou, W.S. el-Deiry, D.G. Kingstone, P.I. Higgs, L. Neckers, and T. Fojo. 1997. Raf-1/mitogen-activated protein kinase, MAP kinase kinase, and Raf. *Methods Enzymol.* 35:2396–2401.

24. Lau, Q.C., S. Brusselbach, and R. Muller. 1998. Abrogation of c-Raf expression induces apoptosis in tumor cells. *Oncogene.* 14:1899–1902.

25. Wang, H.G., T. Miyashita, S. Takayama, T. Sato, T. Torigoe, S. Krajewski, S. Tanaka, L. Hovey III, J. Troppmair, U.R. Rapp, et al. 1994. Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase. *Oncogene.* 9:2751–2756.

26. Basu, S., P. Brunet, Y. Zhang, L. Tjernberg, L. Hovey III, J. Troppmair, U.R. Rapp, and P. Cohen. 1996. Raf constitutively activates the extracellular signal-regulated kinase cascade in human promyelocytic leukemia cells. *Proc. Natl. Acad. Sci. USA.* 93:1103–1112.

27. Bartoli, G., P. Coffer, J. Downward, and G. Evan. 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. *Nature.* 661:544–548.

28. Le Gall, M., J.C. Chambard, J.P. Breitmayer, D. Grall, J. Pouyssegur, and E. Van Obberghen-Schilling. 2000. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. *Mol. Biol. Cell.* 3:457–467.

29. Deng, X., P. Ruivo, B. Carr, and W.S. May, Jr. 2000. Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. *Proc. Natl. Acad. Sci. USA.* 4:1578–1583.

30. Foo, S.Y., and G.P. Nolan. 1999. NF-κB to the rescue: RELs, apoptosis and cellular transformation. *Trends Genet.* 6:229–235.

31. Baumann, B., C.K. Weber, J. Troppmair, S. Whiteside, A. Israel, U.R. Rapp, and T. Wirth. 2000. Raf induces NF-κB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. *Proc. Natl. Acad. Sci. USA.* 9:4615–4620.

32. Nanduri, A., M. Huber, and D.Y. Thomas. 1999. Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool. *J. Biol. Chem.* 50:35719–35724.

33. Buscher, D., R.A. Hipskind, S. Kautwald, T. Reimann, and M. Baccarini. 1995. Ras-dependent and independent pathways target the mitogen-activated protein kinase network in macrophages. *Mol. Cell. Biol.* 1:466–475.

34. Leeson, M.C., and D.C. Morrison. 1994. Induction of proinflammatory responses in human monocytes by particulate and soluble forms of lipopolysaccharide. *Shock.* 4:235–245.

35. Procyk, K.J., M.R. Rippo, R. Testi, F. Hoffmann, P.J. Parker, and M. Baccarini. 2000. Lipopolysaccharide induces Jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase Cζ and phosphatidylycholine-dependent phospholipase C. *Blood.* 7:2592–2598.

36. Kaniga, K., S. Tucker, D. Trollinger, and J.E. Galan. 1995. Homologs of the Shigella IpkB and IpC invasions are required for...
for *Salmonella typhimurium* entry into cultured epithelial cells. *J. Bacteriol.* 14:3965–3971.

47. Collazo, C.M., and J.E. Galan. 1997. The invasion-associated type III system of *Salmonella typhimurium* directs the translocation of Sip proteins into the host cell. *Mol. Microbiol.* 4:747–756.

48. Zhivotovsky, B., D.H. Burgess, D.M. Vanags, and S. Orrenius. 1997. Involvement of cellular proteolytic machinery in apoptosis. *Biochem. Biophys. Res. Commun.* 241:481–488.

49. Hirsch, T., B. Dallaporta, N. Zamzami, S.A. Susin, L. Ravanaghi, I. Marzo, C. Brenner, and G. Kroemer. 1998. Proapoptotic activation occurs at an early, premitochondrial step of thymocyte apoptosis. *J. Immunol.* 1:35–40.

50. Knepper-Nicolai, B., J. Savill, and S.B. Brown. 1998. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. *J. Biol. Chem.* 273:30530–30536.

51. Yang, Y., S. Fang, J.P. Jensen, A.M. Weissman, and J.D. Ashwell. 2000. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. *Science.* 5467:874–877.

52. He, H., X.M. Qi, J. Grossmann, and C.W. Distelhorst. 1998. c-Fos degradation by the proteasome. An early, Bcl-2-regulated step in apoptosis. *J. Biol. Chem.* 273:25015–25019.

53. Dummeler, S., K. Breitschopf, J. Haendeler, and A.M. Zeiher. 1999. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteosome pathway. *J. Exp. Med.* 11:1815–1822.

54. Breitschopf, K., A.M. Zeiher, and S. Dummeler. 2000. Ubiquitin-mediated degradation of the proapoptotic active form of Bid: a functional consequence on apoptosis induction. *J. Biol. Chem.* 275:21648–21652.

55. Widmann, C., P. Gervins, N.L. Johnson, M.B. Jarpe, and G.L. Johnson. 1998. MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. *Mol. Cell. Biol.* 4:2416–2429.

56. Cardone, M.H., G.S. Salvesen, C. Widmann, G. Johnson, and S.M. Frisch. 1997. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. *Cell.* 2:315–323.

57. Emoto, Y., Y. Manome, G. Meinhardt, H. Kisaki, S. Khambata, M. Robertson, T. Ghaem, W.W. Wengtle, and L.P. Wengle. 2000. Isoform-specific localization of A-RAF in mitochondria. *Cell.* 3:319–329.

58. Rudel, T., and G.M. Bokoch. 1997. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. *Science.* 5318:1571–1574.

59. Widmann, C., S. Gibson, and G.L. Johnson. 1998. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. *J. Biol. Chem.* 12:7141–7147.

60. Krautwald, S., D. Buscher, V. Humer, S. Buder, and M. Baccarini. 1996. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway. *Mol. Cell. Biol.* 5:5955–5963.

61. Yuryev, A., M. Ono, S.A. Goff, F. Macaluso, and L.P. Wengle. 2000. Isoform-specific localization of A-RAF in mitochondria. *Mol. Cell. Biol.* 13:4870–4878.

62. Jesenberger, V., K.J. Procyk, J. Yuan, S. Reipert, and M. Baccarini. 2000. *Salmonella*-induced caspase-2 activation in macrophages. A novel mechanism in pathogen-mediated apoptosis. *J. Exp. Med.* 1:1035–1046.

63. Cardone, M.H., N. Roy, H.R. Stennicke, G.S. Salvesen, T.F. Franke, E. Stambridge, S. Frisch, and J.C. Reed. 1998. Regulation of cell death protease caspase-9 by phosphorylation. *Science.* 5392:1318–1321.

64. Deveraux, Q.L., and J.C. Reed. 1999. IAP family proteins—suppressors of apoptosis. *Genes Dev.* 3:239–252.

65. Humke, E.W., S.K. Shriver, M.A. Starovasnik, W.J. Fairbrother, and V.M. Dixat. 2000. ICEBERG: a novel inhibitor of interleukin-1β generation. *Cell.* 1:99–111.

66. Bergmann, A., J. Agapite, K. McCall, and H. Steller. 1998. The *Drosophila* gene hid is a direct molecular target of Ras-dependent survival signaling. *Cell.* 3:331–341.

67. Kurada, P., and K. White. 1998. Ras promotes cell survival in *Drosophila* by downregulating *hid* expression. *Cell.* 3:319–329.

68. Du, C., M. Fang, Y. Li, L. Li, and X. Wang. 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. *Cell.* 1:33–42.

69. Verhagen, A.M., P.G. Ekert, M. Pakusch, J. Silke, L.M. Connolly, G.E. Reid, R.L. Moritz, R.J. Simpson, and D.L. Vaux. 2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. *Cell.* 1:43–53.