Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19

DOI:
10.5194/nhess-21-3439-2021

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Baldassarre, G. D., Mondino, E., Rusca, M., Giudice, E. D., Mård, J., Ridolfi, E., Scolobig, A., & Raffetti, E. (2021). Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19. Natural Hazards and Earth System Sciences, 21(11), 3439-3447. https://doi.org/10.5194/nhess-21-3439-2021

Published in:
Natural Hazards and Earth System Sciences

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19

Giuliano Di Baldassarre1,8, Elena Mondino1, Maria Rusca1, Emanuele Del Giudice2, Johanna Mård1, Elena Ridolfi1, Anna Scolobig3,4, and Elena Raffetti5

1Centre of Natural Hazards and Disaster Science, Department of Earth Sciences, Uppsala University, Uppsala, Sweden
2Psychiatry Northwest, Region Stockholm, Stockholm, Sweden
3Environmental Governance and Territorial Development Institute, University of Geneva, Geneva, Switzerland
4International Institute for Applied Systems Analysis (IIASA), Vienna, Austria
5Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
8Invited contribution by Giuliano Di Baldassarre, recipient of the EGU Plinius Medal 2021.

Correspondence: Giuliano Di Baldassarre (giuliano.dibaldassarre@geo.uu.se)

Received: 17 June 2021 – Discussion started: 22 June 2021
Revised: 7 October 2021 – Accepted: 8 October 2021 – Published: 12 November 2021

1 Introduction

The COVID-19 pandemic is a global concern (Hsiang et al., 2020; Baker et al., 2020). In addition to infections and fatalities (Scudellari, 2020), indirect effects of the ongoing pandemic include severe economic crises, increasing poverty, and exacerbating social inequalities (Nicola et al., 2020; Burki, 2020). Moreover, a deterioration of mental health has been observed among the general population (Sher, 2020), with stress- and trauma-related disorders (Thakur and Jain, 2020), mood disorders (Mucci et al., 2020), and domestic violence (Mazza et al., 2020). School closures affected up to 1.6 billion students worldwide (UNESCO, 2020). Prolonged school closure is believed to have had negative impacts on the well-being and education of children and on child labor, teenage pregnancies, and persisting socioeconomic and gender disparities, as well as on society at large (Lee, 2020; UNESCO, 2020).

Concurrently, humanity is facing climate change. Storms, floods, droughts, and wildfires severely affect many countries around the world with increasing frequency or severity (Balch et al., 2020; IPCC, 2012). In 2019, more than 11,000 scientists declared “clearly and unequivocally that planet Earth is facing a climate emergency” (Ripple et al., 2020). The United Nations Office for Disaster Risk Reduction recently published an updated report about the human cost of disasters (UNDRR, 2021), showing that “extreme
weather events have come to dominate the disaster landscape in the 21st century” (UNDRR, 2021). Furthermore, media coverage of climate issues has increased in many regions of the world over the past years (Hopke, 2020).

The severe impacts of global crises, such as COVID-19 and climate change, have plausibly influenced how people characterize and assess multiple hazards. At the same time, the occurrence of these global crises provides a window of opportunity for change in terms of reducing vulnerabilities while promoting physical, mental, and social well-being (Brundiers and Eakin, 2018; Adger et al., 2013; Blumenthal et al., 2020). Thus, understanding public risk perception can contribute to develop policy for desired social transformations, including the protection and improvement of public health, disaster risk reduction, and climate change adaptation (Aerts et al., 2018; Bucheker et al., 2013; Dryhurst et al., 2020; Erev et al., 2020; Lee et al., 2015; Marquart-Pyatt et al., 2014; Poortinga et al., 2019; Schneider et al., 2021; Slovic, 1987a; Smith and Mayer, 2018; White et al., 1978; Bubeck et al., 2012).

A large body of research has shown that the way in which people think about risk depends on emotional, cognitive and cultural factors (van der Linden, 2017) along with levels of media coverage (Kasprowicz et al., 2016), trust (Terpstra, 2011), knowledge (Mondino et al., 2020b), and experience (Wachinger et al., 2013). A direct experience of an event, in particular, provides an illustration of the threat and demonstrates its potential for future risk (Wachinger et al., 2013). Thus, disasters and crises often influence public risk perception, as many people internalize the experienced event as a more likely and impactful risk in the future. A critical role in this process can be played by the availability heuristic (Tversky and Kahneman, 1973; Pachur et al., 2012; Sunstein, 2006), as people tend to assess risks based on the ease with which examples of harm come to mind.

In this paper, we compare public perceptions of multiple hazards in Italy and Sweden during the COVID-19 pandemic and explore whether the availability heuristic can explain cross-country differences. To this end, we integrate information about the occurrence of hazardous events with the results of two nationwide surveys. These included more than 4000 participants and were conducted in two different phases of the COVID-19 pandemic corresponding to low (August 2020) and high (November 2020) levels of infection rates in both countries. Similarities and differences between Italy and Sweden allow us to investigate the role played by experience. The way in which people think about epidemics, for example, is expected to have been substantially influenced by COVID-19, which has severely affected both countries but to which the Italian and Swedish authorities responded differently.

2 Data and methods

2.1 Occurrence of disasters

To consistently compare the occurrence of disasters in Italy and Sweden, we used the global archive EM-DAT developed by the Centre for Research on the Epidemiology of Disasters (EM-DAT, 2021). A given event is recorded as a disaster into the EM-DAT database only if at least one of the following criteria is fulfilled: (i) 10 or more casualties, (ii) 100 or more people affected, (iii) declaration of a state of emergency, and (iv) a call for international assistance.

The EM-DAT database is one of the world’s most comprehensive disaster databases, and a recent study showed its data were consistent with insurance group Munich Re’s NatCatSERVICE database (Formetta and Feyen, 2019), but it is nonetheless subject to limitations. There is some missing information (Voss and Wagner, 2010), and there are spatial discrepancies resulting from changes in political boundaries (Gall et al., 2009). Yet, the former issue is mainly related to data before the 1970s, which were not considered in our analysis, while the latter issue does not affect Italy and Sweden as their political boundaries have remained unchanged. Moreover, EM-DAT does not capture minor events that can be extremely frequent, such as wildfires in Sweden. For all these reasons, information about the occurrence of disasters was used only to qualitatively contrast the risk landscapes in Sweden and Italy.

2.2 National surveys of public risk perception

To assess public risk perceptions in Italy and Sweden, we performed two nationwide surveys on 5–19 August and 9–25 November 2020 (Mondino et al., 2020a). These periods correspond to two different phases of the COVID-19 pandemic with low and high levels of infection rates and excess mortality, as depicted in Fig. 1.

The two national samples used in the (cross-sectional) surveys are considered representative of the Swedish and Italian populations (Mondino et al., 2020a). A total of 4154 individuals participated in August 2020 (2033 in Italy and 2121 in Sweden) and 4168 in November 2020 (2004 in Italy and 2164 in Sweden). Respondents were informed that the participation was voluntary and that they consented to participate in the study by completing the survey. Our survey was carried out in accordance with the ethical standards set by the European Union under Horizon 2020 (EU General Data Protection Regulation and FAIR data management), and it was approved by the Italian Research Ethics and Bioethics Committee and the Swedish Ethical Review Authority.

In addition to climate change and epidemics, our survey considered natural hazards directly or indirectly related to climate change (wildfires, floods, and droughts) or with the ongoing COVID-19 pandemic (domestic violence and economic crises). To investigate the influence of the availabil-
COVID-19 pandemic. Based on this, we then compare pub-

In this section, we first present the contrasting landscapes of risk in Italy and Sweden by describing the recent occurrence and impact of multiple hazards, including the ongoing COVID-19 pandemic. Based on this, we then compare pub-

2.3 Data analysis

In this study, we focused on three main variables: (a) likelihood, (b) impact, and (c) experience. They were derived from the responses to the three following questions: (a) how likely do you think it is that you will be directly involved in [hazard]? (b) How much damage do you think [hazard] can cause to yourself? (c) Have you ever experienced [hazard]? Each question was asked in relation to each hazard considered here: epidemics, floods, droughts, wildfires, earthquakes, terrorist attacks, domestic violence, economic crises, and climate change. Responses were given on a 1-to-5 scale for the first two questions (a, b), while a dichotomic yes–no response was used for the last question (c).

For each hazard, national averages of the perceived likelihood and impact were computed from the responses to the first two questions (a, b), while the proportion of people (%) that experienced each type of hazard was derived as a ratio between the number of yes responses to the last question (c) and the total number of responses. In addition to national averages, we also considered demographic information provided by the participants – including their age, gender, and political orientation – and explored its role in explaining public perceptions of multiple hazards. Since this study deals with multiple hazards of different nature, we kept the methods as simple as possible (e.g., graphical analyses of average values) for the sake of robustness. More complex models or regression analyses will be used for future studies focusing on specific hazards.

3 Results

In this section, we first present the contrasting landscapes of risk in Italy and Sweden by describing the recent occurrence and impact of multiple hazards, including the ongoing COVID-19 pandemic. Based on this, we then compare pub-

3.1 Multiple hazards in Italy and Sweden

To compare the risk landscapes in the two countries, we contrasted the number of hazardous events that turned into disasters in Italy and Sweden, according to the global dataset EM-DAT (EM-DAT, 2021). Figure 2 shows that Italy was affected by numerous disasters associated with natural hazards (see also e.g., Salvati et al., 2016), while Sweden suffered only a few disasters. In the most recent decade (2010–2019), both countries experienced weather-related disasters. Yet, Italy was severely hit by earthquakes, droughts, and flood events, whereas Sweden experienced a catastrophic wildfire (Fig. 2).

Both countries have been severely affected by COVID-19 (Fig. 1). According to the world mortality database (Karlin-sky and Kobak, 2021), Italy and Sweden recorded an excess mortality in 2020 of 15.4 % and 6.9 % respectively. Governmental responses to the pandemic have been different. Italy was the first European country to introduce a national lockdown, which lasted for over 2 months. The Italian response has been primarily driven by its government via decrees that have introduced (or lifted) stringent national policy responses (Paterlini, 2020), including prolonged school closures. In contrast, Sweden drew worldwide attention for its less re-

Lastly, we examined two additional hazards that have af-

https://doi.org/10.5194/nhess-21-3439-2021

Nat. Hazards Earth Syst. Sci., 21, 3439–3447, 2021
3.2 Public risk perception

To compare public perceptions of multiple hazards in Italy and Sweden, we examine the national averages of perceived likelihood and impact resulting from the two surveys in August and November 2020 (Fig. 3). We found that people in both countries ranked epidemics as one of the most likely hazards. This can be attributed to the salience of the ongoing pandemic and its severe impact in both countries. This outcome is also consistent with recent studies (Dryhurst et al., 2020) that found high levels of epidemic risk perceptions in European countries, including Italy and Sweden. In both countries, public concerns about epidemics increased in the period between August and November 2020 (Fig. 3) plausibly due to the higher levels of infection rates and excess mortality (Fig. 1).

Overall, epidemics are perceived as less likely but more impactful in Italy compared to Sweden (Fig. 3). As mentioned, Italy responded to COVID-19 with more stringent measures, which have plausibly increased public concerns about the potential negative impact of epidemics. Moreover, the case fatality rate (i.e., deaths per lab-confirmed cases) has been substantially higher (about double) in Italy compared to Sweden throughout the ongoing pandemic (Johns Hopkins Coronavirus Research Centre, 2021). In terms of indirect effects of COVID-19, Fig. 3 shows that economic crises are perceived as both more likely and more impactful in Italy compared to Sweden, which is in line with the fact that Italy’s economy was more severely affected by the pandemic.

One striking result is that people in both countries are seriously concerned about climate change. Indeed, high levels of public concern were also illustrated by several people taking part in the Fridays For Future movement in both countries in the months before the pandemic, i.e., late 2019. This outcome can be partly explained by the occurrence of climate-related events that turned into disasters: storms in both countries, as well as recent wildfires in Sweden and numerous floods and droughts in Italy (Fig. 2). Yet, media are integral to the political environment (Anderson, 2019; Hopke, 2020), which is known to play a major role in climate change perceptions (Marquart-Pyatt et al., 2014). As such, these public concerns can also be attributed to media that have increasingly associated the occurrence of extreme weather events with climate change (Hopke, 2020).
Furthermore, we found that people in Sweden perceive wildfires as more likely compared to Italy, while people in Italy perceive floods and droughts as more likely and more impactful compared to Sweden. These results show that public perceptions are consistent with the occurrences of these types of disasters in the two countries, especially the most recent ones: wildfires in Sweden and floods and droughts in Italy (Fig. 2). In the period between August and November 2020, the levels of risk perception with respect to wildfires and droughts have slightly reduced in both countries. This can be explained by the seasonality of these two hazards, which typically occur in summer. Moreover, we found that the perceived likelihood of floods has increased in Italy and attribute this to the occurrence of flooding events (including Venice and the river Po) in October 2020.

Previous studies showed that public concerns are often very high in the aftermath of a disaster (Slovic, 2000). Yet, they tend to decline and fade away over time (Fanta et al., 2019; Di Baldassarre et al., 2017). Public risk perceptions about terrorist attacks are a case in point. We found that public concerns about terrorism are relatively low in Italy (Fig. 3), where no major events have occurred in the last decade. Instead, people in Sweden perceive terrorism as the most impactful threat (Fig. 3) as a deadly terrorist attack occurred in 2017. In both countries, the perceived likelihood of terrorist attack increased in the period analyzed here. The availability heuristic offers one plausible explanation, as two deadly attacks occurred in Europe only a few days before the start of our second survey: the first one in Nice (France) on 29 October 2020 (three fatalities) and the second one in Vienna on 2 November 2020 (five fatalities).

3.3 The role of experience

These results suggest a plausible association between the occurrence of hazardous events and public risk perceptions. To further explore the role of experience in explaining public perceptions of multiple hazards, we relate the proportion of people who have indicated in the survey that they have experienced each hazard (dichotomic responses yes or no) with the proportion of people who perceived it as likely, i.e., perceived likelihood/impact no less than 4 on a 1-to-5 scale (Fig. 4). Figure 4 shows that perceived likelihood is associated with experience in both countries. The correlation coefficients are relatively high in both Italy (0.89 in August 2020 and 0.85 in November 2020) and Sweden (0.90 in August 2020 and 0.91 in November 2020).

By exploring the role of sociodemographic factors (i.e., gender, age, and political orientation), we found that being male and older, along with having center-right or right political orientation, was generally associated with a lower perceived likelihood and impact of multiple hazards (Figs. S1–S3 in the Supplement). The only exception was a higher perceived impact of epidemics among the elderly, hugely affected in the ongoing pandemic. These outcomes are in line with the risk perception literature in terms of gender (Galasso et al., 2020; Gustafsson, 1998), age (Weber, 2016), and political orientation (Marquart-Pyatt et al., 2014). Yet, despite these differences in the absolute values of perceived likelihood and impact, the way in which multiple hazards are ranked remains similar across sociodemographic factors (Supplement). Rankings are primarily driven by experience. We interpret this outcome by the major role played by the availability heuristic in explaining cross-country dif-
ferences in the way in which people perceive and rank multiple hazards.

4 Discussion and conclusions

Over the past decade, scholars in natural hazards have raised the importance of exploring consecutive and multiple risks to inform policies of disaster risk reduction (Ward et al., 2020; de Ruiter et al., 2020). In this context, we found that the availability heuristic is an effective analytical lens to explain cross-country differences in terms of public perceptions of multiple hazards and how they change over time. The recent experience of an event is a key determinant of the way in which people assess multiple hazards (Figs. 3 and 4). Yet, the availability heuristic does not operate in an emotional, social, and cultural vacuum. Risk perception also depends on how experience is internalized. Cultural predispositions and social influences also play a role. Indeed, we found that while cross-country differences in the ranking of multiple hazards are primarily explained by experience, the magnitude of concerns depends on sociodemographic factors including age, gender, and political orientation (Supplement).

To provide a richer interpretation of our results, we also placed the results of our survey into a global perspective. Public risk perceptions in Italy and Sweden were compared with two recent surveys about perceptions of (i) scientists from the global change research community, collected in the 2020 Future Earth’s Survey (Garschagen et al., 2020), and (ii) decision makers around the world, described in the 2020 Global Risks Report by the World Economic Forum (World Economic Forum, 2020). Figure 5 shows that the relative ranking of perceived likelihood is the same for people in Italy and Sweden, decision makers, and scientists: climate change (first), epidemics (second), and terrorist attacks (third). This result is fascinating because it shows a countertrend. Indeed, risk perception research has been grounded on the assumption that there are major differences between risk judgments of scientists and lay people and that these differences are not due to ignorance among the public but are often driven by different concerns (Slovic, 1987; Slovic and Weber, 2002; Starr, 1969). For instance, by reviewing studies of climate change perceptions in 2010, Weber (2010) stated that “citizens’ perceptions of the importance and severity of climate change do not seem to match those of most climate scientists”.

Notwithstanding the ongoing pandemic and significant differences in the perception of multiple hazards, people in both Italy and Sweden are highly concerned about climate change, and they rank it as the most likely threat. Moreover, these high public concerns are close to climate change perceptions of scientists and decision makers. Concurrently, COVID-19 and climate change can be seen as global crises caused by the unsustainability of human activities (Horton and Horton, 2020). They have similar underlying causes, and by addressing them, a number of synergies and co-benefits can be generated, as discussed in the 2020 report of the Lancet Countdown on health and climate change (Watts et al., 2020). Hence, the convergence of people, decision makers, and scientists has the potential to provide public pressure for, as well as public acceptance of, new investments and policy change for promoting public health while reducing vulnerabilities to climatic hazards.

Code availability. The script to read, process, and visualize survey data is freely available at https://github.com/elenamondino/nationwide_survey (Mondino, 2021). Information on the packages used is listed in the same repository.

Data availability. The survey datasets used in this article are available open access on Zenodo, together with the survey form in English, Swedish, and Italian and a metadata file (https://doi.org/10.5281/zenodo.5653322; Mondino et al., 2021).

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/nhess-21-3439-2021-supplement.

Author contributions. GDB originally conceived the study. EM, JM, ERi, MR, and GDB designed the two nationwide surveys. GDB, EM and ERa analyzed the results of the surveys, and AS contributed to the interpretation of the results in terms of risk perception. ERa contributed to the analysis of the impact of COVID-19, and EDG and JM contributed to the analysis of the response to COVID-19. GDB wrote the first draft of the paper, to which all authors contributed. All authors revised the final manuscript.
Competing interests. The contact author has declared that neither they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements. This research received funding by the European Research Council (ERC) within the project HydroSocialExtremes: Uncovering the Mutual Shaping of Hydrological Extremes and Society, consolidator grant no. 771678, H2020 Excellent Science.

Financial support. This research has been supported by the European Research Council, H2020 (project HydroSocialExtremes, consolidator grant no. 771678).

Review statement. This paper was edited by David J. Peres and reviewed by two anonymous referees.

References

Adger, W. N., Quinn, T., Lorenzoni, I., Murphy, C., and Sweeney, J.: Changing social contracts in climate-change adaptation, Nat. Clim. Change, 3, 330–333, https://doi.org/10.1038/nclimate1751, 2013.

Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., and Kunreuther, H.: Integrating human behaviour dynamics into flood disaster risk assessment, Nat. Clim. Change, 8, 193–199, https://doi.org/10.1038/s41558-018-0085-1, 2018.

Anderson, A.: Media, culture and the environment, Routledge, London, 246 pp., https://doi.org/10.4324/9781315046419, 2019.

Baker, R. E., Park, S. W., Yang, W., Vecchi, G. A., Metcalf, C. J. E., and Grenfell, B. T.: The impact of COVID-19 non-pharmaceutical interventions on the future dynamics of endemic infections, P. Natl. Acad. Sci. USA, 117, 30547–30553, https://doi.org/10.1073/pnas.2013182117, 2020.

Balch, J. K., Iglesias, V., Braswell, A. E., Rossi, M. W., Joseph, M. B., Mahood, A. L., Shrum, T. R., White, C. T., Scholl, V. M., McGuire, B., Karban, C., Buckland, M., and Travis, W. R.: Social-Environmental Extremes: Rethinking Extraordinary Events as Outcomes of Interacting Biophysical and Social Systems, Earth’s Future, 8, e2019EF001319, https://doi.org/10.1029/2019EF001319, 2020.

Blumenthal, D., Fowler, E. J., Abrams, M., and Collins, S. R.: Covid-19 – Implications for the Health Care System, New Engl. J. Med., 383, 1483–1488, https://doi.org/10.1056/NEJMsb2021088, 2020.

Brundiers, K. and Eakin, H. C.: Leveraging post-disasterwindows of opportunity for change towards sustainability: A framework, Sustainability, 10, 1390, https://doi.org/10.3390/su10051390, 2018.

Bubelck, P., Botzen, W. J. W., and Aerts, J. C. J. H.: A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior, Risk Anal., 32, 1481–1495, https://doi.org/10.1111/j.1539-6924.2011.01783.x, 2012.

Buachecker, M., Salvini, G., Di Baldassarre, G., Semenzin, E., Maidl, E., and Marcomini, A.: The role of risk perception in making flood risk management more effective, Nat. Hazards Earth Syst. Sci., 13, 3013–3030, https://doi.org/10.5194/nhess-13-3013-2013, 2013.

Burki, T.: The indirect impact of COVID-19 on women, Lancet, 20, 904–905, https://doi.org/10.1016/S1473-3099(20)30568-5, 2020.

de Ruiter, M. C., Couasnon, A., Homberg, M. J. C. van den, Daniell, J. E., Gill, J. C., and Ward, P. J.: Why we can no longer ignore consecutive disasters, Earth’s Future, 8, e2019EF001425, https://doi.org/10.1029/2019EF001425, 2020.

Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dyn., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.

Dryhurst, S., Schneider, C. R., Kerr, J., Freeman, A. L. J., Recchia, G., van der Bles, A. M., Spiegelhalter, D., and van der Linden, S.: Risk perceptions of COVID-19 around the world, J. Risk. Res., 23, 1006, https://doi.org/10.1080/13669877.2020.1758193, 2020.

EM-DAT: The CRED/OFDA International Disaster Database, available at: https://www.emdat.be/, last access: 8 November 2021.

Erev, I., Plonsky, O., and Roth, Y.: Complacency, panic, and the value of gentle rule enforcement in addressing pandemics, Nat. Hum. Behav., 4, 1095–1097, https://doi.org/10.1038/s41562-020-00939-z, 2020.

Fanta, V., Šálek, M., and Sklenicka, P.: How long do floods throughout the millennium remain in the collective memory?, Nat. Commun., 10, 1105, https://doi.org/10.1038/s41467-019-09102-3, 2019.

Formetta, G. and Feyen, L.: Empirical evidence of declining global vulnerability to climate-related hazards, Global Environ. Change, 57, 101920, https://doi.org/10.1016/j.gloenvcha.2019.05.004, 2019.

Galasso, V., Pons, V., Profta, P., Becher, M., Brouard, S., and Foulcault, M.: Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries, P. Natl. Acad. Sci. USA, 117, 27285–27291, https://doi.org/10.1073/pnas.2012502117, 2020.

Gall, M., Borden, K. A., and Cutter, S. L.: When Do Losses Count?: Six Fallacies of Natural Hazards Loss Data, B. Am. Meteorol. Soc., 90, 799–810, https://doi.org/10.1175/2008BAMS2721.1, 2009.

Garschagen, M., Wood, S. L. R., Garard, J., Ivanova, M., and Luers, A.: Too Big to Ignore: Global Risk Perception Gaps Between Scientists and Business Leaders, Earth’s Future, 8, 1–5, https://doi.org/10.1029/2020EF001498, 2020.

Gustafsson, P. E.: Gender Differences in Risk Perception: Theoretical and Methodological Perspectives, Risk. Anal., 18, 805–811, https://doi.org/10.1111/j.1539-6924.1998.tb01123.x, 1998.

Hopke, J. E.: Connecting Extreme Heat Events to Climate Change: Media Coverage of Heat Waves and Wildfires, Environ. Commun., 14, 492–508, https://doi.org/10.1080/17524032.2019.1687537, 2020.

https://doi.org/10.5194/nhess-21-3439-2021 Nat. Hazards Earth Syst. Sci., 21, 3439–3447, 2021
Horton, B. and Horton, P.: COVID-19 and the Climate Emergency: Do Common Origins and Solutions Reside in the Global Agrifood System?, One Earth, 3, 20–22, https://doi.org/10.1016/j.oneear.2020.06.006, 2020.

Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckmiller, H., Huang, L. Y., Hultgren, A., Krasovich, E., Lau, P., Lee, J., Rolf, E., Tseng, J., and Wu, T.: The effect of large-scale anti-contagion policies on the COVID-19 pandemic, Nature, 584, 262–267, https://doi.org/10.1038/s41586-020-2404-8, 2020.

IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation – IPCC, 2012, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, p. 582, 2012.

ISTAT: Le richieste di aiuto durante la pandemia, available at: https://www.istat.it/it/archivio/257704, last access: 25 May 2021.

Johns Hopkins Coronavirus Research Centre: https://coronavirus.jhu.edu/, last access: 8 November 2021.

Karlinsky, A. and Kobak, D.: Tracking mortality across countries during the COVID-19 pandemic with the World Mortality Dataset, Elife, 10, e69336, https://doi.org/10.7554/eLife.69336, 2021.

Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., Emel, J., Goble, R., Kasperson, J. X., and Ratick, S.: The social amplification of risk: A conceptual framework, Percept. Risk, 8, 232–245, 2016.

Kavaliunas, A., Oca, P., Mumper, J., Lindfeldt, I., and Kylhlstedt, M.: Swedish policy analysis for Covid-19, Health Policy Technol., 9, 598–612, https://doi.org/10.1016/j.hjpt.2020.08.009, 2020.

Lee, J.: Mental health effects of school closures during COVID-19, Lancet, 4, 421, https://doi.org/10.1016/S2352-4642(20)30109-7, 2020.

Lee, T. M., Markowitz, E. M., Howe, P. D., Ko, C. Y., and Leiserson, A. A.: Predictors of public climate change awareness and risk perception around the world, Nat. Clim. Change, 5, 1014–1020, https://doi.org/10.1038/nclimate2728, 2015.

Lundin, R., Armocida, B., Sdao, P., Pisani, S., Mariani, I., Veltri, A., and Lazznerini, M.: Gender-based violence during the COVID-19 pandemic response in Italy, J. Glob. Health, 10, 020359, https://doi.org/10.7189/jogh.10.020359, 2020.

Marquart-Pyatt, S. T., McCright, A. M., Dietz, T., and Dunlap, R. E.: Politics eclipses climate extremes for climate change perceptions, Global Environ. Change, 29, 246–257, https://doi.org/10.1016/j.gloenvcha.2014.10.004, 2014.

Mazza, M., Marano, G., Lai, C., Janiri, L., and Sani, G.: Danger in danger: Interpersonal violence during COVID-19 quarantine, Psychiat. Res., 289, 1–3, https://doi.org/10.1016/j.psychres.2020.113046, 2020.

Mondino, E.: nationwide_survey, GitHub [code], https://github.com/elenamondino/nationwide_survey, last access: 10 November 2021.

Mondino, E., Di Baldassarre, G., Mård, J., Ridolfi, E., and Rusca, M.: Public perceptions of multiple risks during the COVID-19 pandemic in Italy and Sweden, Scient. Data, 7, 434, https://doi.org/10.1038/s41597-020-00778-7, 2020a.

Mondino, E., Di Baldassarre, G., Mård, J., Ridolfi, E., and Rusca, M.: The role of experience and different sources of knowledge in shaping flood risk awareness, Water, 12, 2130, https://doi.org/10.3390/W12082130, 2020b.

Mucci, F., Mucci, N., and Diolauiui, F.: Lockdown and isolation: Psychological aspects of covid-19 pandemic in the general population, Clin. Neuropsych., 17, 63–64, https://doi.org/10.36131/CN20200205, 2020.

Nicola, M., Alsaif, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., and Agha, R.: The socio-economic implications of the coronavirus pandemic (COVID-19): A review, Int. J. Surg., 78, 185–193, https://doi.org/10.1016/j.ijjsu.2020.04.018, 2020.

Pachur, T., Hertwig, R., and Steinmann, F.: How do people judge risks: Availability heuristic, affect heuristic, or both?, J. Exp. Psychol.: Appl., 18, 314–330, https://doi.org/10.1037/a0028279, 2012.

Paterlini, M.: On the front lines of coronavirus: the Italian response to covid-19, BMJ, 368, m1065, https://doi.org/10.1136/bmj.m1065, 2020.

Poortinga, W., Whitmarsh, L., Steg, L., Böhm, G., and Fisher, S.: Climate change perceptions and their individual-level determinants: A cross-European analysis, Global Environ. Change, 55, 25–35, https://doi.org/10.1016/j.gloenvcha.2019.01.007, 2019.

Ripple, W. J., C, E., Newsome, T. M., Barnard, P., and Moomaw, W. R.: World Scientists’ Warning of a Climate Emergency, BioScience, 70, 8–12, https://doi.org/10.1093/biosci/biz088, 2020.

Salvati, P., Pernice, U., Bianchi, C., Marchesi, I., Fiorucci, F., and Guzzetti, F.: Communication strategies to address geohydrological risks: the POLARIS web initiative in Italy, Nat. Hazards Earth Syst. Sci., 16, 1487–1497, https://doi.org/10.5194/nhess-16-1487-2016, 2016.

Schneider, C. R., Dryhurst, S., Kerr, J., Freeman, A. L. J., Recchia, G., Spiegelhalter, D., and Linden, S. van der: COVID-19 risk perception: a longitudinal analysis of its predictors and associations with health protective behaviours in the United Kingdom, J. Ris. Res., 24, 294–313, https://doi.org/10.1080/13669877.2021.1890637, 2021.

Scudellari, M.: How the pandemic might play out in 2021 and beyond, Nature, 584, 22–25, https://doi.org/10.1038/d41586-020-02278-5, 2020.

Sher, L.: Psychiatric disorders and suicide in the COVID-19 era, QJM, 113, 527–528, https://doi.org/10.1093/qjmed/hca204, 2020.

Slovic, P.: Perception of risk, Science, 236, 280–285, https://doi.org/10.1126/science.3563507, 1987.

Slovic, P.: The perception of risk, Earthscan Publications, London, Sterling, VA, 2000.

Slovic, P. and Weber, E.: Perception of risk posed by extreme events. Paper presented at Risk Management Strategies in an Uncertain World Conference, Palisades, NY, 12–13 April 2002.
tion in 35 countries, Global Environ. Change, 49, 140–153, https://doi.org/10.1016/j.gloenvcha.2018.02.014, 2018.

Starr, C.: Social Benefit versus Technological Risk, Science, 165, 1232–1238, 1969.

Sunstein, C. R.: The availability heuristic, intuitive cost-benefit analysis, and climate change, Climatic Change, 77, 195–210, https://doi.org/10.1007/s10584-006-9073-y, 2006.

Terpstra, T.: Emotions, Trust, and Perceived Risk: Affective and Cognitive Routes to Flood Preparedness Behavior, Risk. Anal., 31, 1658–1675, https://doi.org/10.1111/j.1539-6924.2011.01616.x, 2011.

Thakur, V. and Jain, A.: COVID 2019-suicides: A global psychological pandemic, Brain Behav. Immun., 88, 952–953, https://doi.org/10.1016/j.bbi.2020.04.062, 2020.

Tversky, A. and Kahneman, D.: Availability: A heuristic for judging frequency and probability, Cognit. Psychol., 5, 207–232, https://doi.org/10.1016/0010-0285(73)90033-9, 1973.

UN: Statement attributable to the Spokesman for the Secretary-General on Attack in Stockholm, Sweden; available at: https://www.un.org/sg/en/content/sg/statement/2017-04-07/statement-attributable-spokesman-secretary-general-attack-stockholm, last access: 21 September 2020.

UNDRR: The human cost of disasters: an overview of the last 20 years (2000–2019), available at: https://www.unreddr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019, last access: 10 November 2021.

UNESCO: School closures caused by Coronavirus (Covid-19), available at: https://en.unesco.org/covid19/educationresponse, last access: 5 October 2020.

van der Linden, S.: Determinants and Measurement of Climate Change Risk Perception, Worry, and Concern, in: Oxford Research Encyclopedia of Climate Science, edited by: Nisbet, M., Oxford University Press, Oxford, UK, 1–49, https://doi.org/10.1093/acrefore/9780190228620.013.318, 2017.

Voss, M. and Wagner, K.: Learning from (small) disasters, Nat. Hazards, 55, 657–669, https://doi.org/10.1007/s11069-010-9498-5, 2010.

Wachinger, G., Renn, O., Begg, C., and Kuhllicke, C.: The risk perception paradox-implications for governance and communication of natural hazards, Risk. Anal., 33, 1049–1065, https://doi.org/10.1111/j.1539-6924.2012.01942.x, 2013.