Connection between the elastic G_{E_p}/G_{M_p} and $P \to \Delta$ form factors.

Paul Stoler

Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180

(Dated: October 11, 2002)

It is suggested that the falloff in Q^2 of the $P \to \Delta$ magnetic form factor G_M^* is related to the recently observed falloff of the elastic electric form factor G_{E_p}/G_{M_p}. Calculation is carried out in the framework of a GPD model whose parameters are determined by fitting the elastic form factors F_{1p} and F_{2p} and isospin invariance. When applied to the $P \to \Delta$ transition with no additional parameters, the shape of G_{M}^* is found to exhibit the requisite falloff with Q^2.

The $P \to \Delta(1232)$ form factor G_M^* exhibits a more rapid decrease with respect to Q^2 than is typically observed in other baryons 1_2, such as G_{M_p} in elastic scattering from a proton, or $A_{1/2}$ in the transition $P \to S_{11}(1535)$. A recent Jefferson Lab (JLab) measurement 3 finds that the ratio G_{E_p}/G_{M_p} for elastic scattering falls with Q^2 more rapidly than previously expected. This has given rise to much theoretical activity 4_5 to attempt to understand the underlying physics. In this note it is suggested that this behavior in G_{E_p}/G_{M_p} is related to that of G_M^*.

As a basis it is assumed that the form factor is dominated by soft mechanisms, and a GPD-handbag approach 6_7_8 is utilized. Form factors are the zero'th moments of the GPDs with skewedness $\xi = 0$. For elastic scattering, the Dirac and Pauli form factors are given by

$$F_1(t) = \int_{-1}^{1} \sum_q H^q(x, \xi, t) dx$$

$$F_2(t) = \int_{-1}^{1} \sum_q E^q(x, \xi, t) dx$$

where q signifies flavors. In the following, with $\xi=0$, for brevity the GPD’s are denoted $H^q(x, t) \equiv H^q(x, 0, t)$, and $E^q(x, t) \equiv E^q(x, 0, t)$.

Resonance transition form factors access components of the GPDs which are not accessed in elastic scattering. The $N \to \Delta$ form factors are related to isovector components of the GPDs $^9_{10}$:

$$2G_M^* = \int_{-1}^{1} \sum_q H^q_M(x, t) dx$$

$$2G_E^* = \int_{-1}^{1} \sum_q H^q_E(x, t) dx$$

$$2G_C^* = \int_{-1}^{1} \sum_q H^q_C(x, t) dx$$

where G_M^*, G_E^* and G_C^* are magnetic, electric and Coulomb transition form factors 11, and H_M^q, H_E^q, and H_C^q are isovector GPDs, which can be related to elastic GPDs in the large N_c chiral limit through isospin rotations. Analogous relationships can be obtained for the $N \to S_{11}$ and other transitions. Here, the connection between GPDs involved in the elastic and $N \to \Delta$ form factors is explored to obtain the connection between the Q^2 dependence of the G_{E_p} and G_M^*.

In refs. $^6_{10}$ it is noted that, in the large N_c limit, assuming chiral and isospin symmetry the GPDs for the $P \to \Delta(1232)$ transition are expected to be isovector components of the elastic GPDs, given by

$$H_M^{(IV)} = \frac{2}{\sqrt{3}} E_M^{(IV)} = \frac{2}{\sqrt{3}} (E_u - E_d, 1)$$

E_u and E_d are the GPD’s for the u and d quarks respectively. Thus the $P \to \Delta$ form factor should be obtainable by analysis of the Pauli form factor F_{2p} (eq.2). The Dirac and Pauli form factors, F_{1p} and F_{2p}, are related to the measured Sachs form factors G_{M_p} and G_{E_p} by

$$F_{1p}(Q^2) = \frac{1}{\tau + 1} (\tau G_{M_p}(Q^2) + G_{E_p}(Q^2))$$

$$F_{2p}(Q^2) = \frac{1}{\kappa(\tau + 1)} (G_{M_p}(Q^2) - G_{E_p}(Q^2))$$

with $\tau = Q^2/4M_p$. To obtain E_u and E_d, needed for eq. 6 the available data for G_{M_p} and the recent JLab data 9 on G_{E_p}/G_{M_p} were fit, as reported in ref. 12, using a parameterization of the GPDs such as in $^{13}_{14}_{15}_{16}$.

The specific functional form for $H_P(x, t)$ and $E_P(x, t)$ is a Gaussian plus small power law shape in $-t (\equiv Q^2)$ to account for the high the measured form factors at very high Q^2.

$$H_P(x, t) = f(x) \exp(\bar{x}t/4x\lambda_H) + \cdots$$

$$E_P(x, t) = k(x) \exp(\bar{x}t/4x\lambda_E) + \cdots,$$

in which $\bar{x} \equiv 1 - x$, and \cdots indicates the addition of small power components added in ref. 12 to account for

*Electronic address: stoler@rpi.edu
higher Q^2 contributions to the form factors. The conditions at $Q^2=0$ are $H(x,0) = e_u f_u(x) + e_d f_d(x)$ and
$E(x,0) = k_u(x) + k_d(x)$. Here, $f_u(x)$ and $f_d(x)$ are
the u and d valence quark distribution functions mea-
sured in DIS. The functions $k_u(x)$ and $k_d(x)$ are not
obtainable from DIS. Following ref. [15] the form used
was $k_q(x) \propto \sqrt{1-x} f^q(x)$, with normalization obtained
employing isospin symmetry, and by requiring the proton
and neutron form factors to have their known values near
$Q^2=0$, that is $F_{1p}(0) = 1$, $F_{2p}(0) = 1.79$, $F_{1n}(0) = 0$, $F_{2n}(0) = -1.91$. This gives

$$F_{2u}(0) \equiv \kappa_u = \int k_u(x) dx = 1.67$$

$$F_{2d}(0) \equiv \kappa_d = \int k_d(x) dx = -2.03$$

and

$$F_{1u}(0) = \int e_u f_u(x) dx = 2/3$$

$$F_{1d}(0) = \int e_d f_d(x) dx = 1/3$$

Adequate fits to G_{Mp} and G_{Ep}/G_{Mp}, or equivalently F_{1p}
and F_{2p}/F_{1p}, were obtained with $\lambda_H = 0.76$ GeV/c and
$\lambda_E = 0.67$ GeV/c. The results are shown in figs. [1] and [2].

The resulting E^p_{1} and E^p_{2} were inserted into eq. 4 to
 obtain an estimate for G^*_M. At $Q^2=0$ one gets $G^*_M(0) = 2.14$, which is somewhat lower than the experimental
value of $G^*_M(0) \sim 3$. Such a disagreement is not surpris-
ing [4] [10], given the very approximate nature of eq. 4.
The obtained G^*_M was overall renormalized to take this
ratio into account, and the result is shown in fig. 5.

The similar shapes of the curves in figs. 2 and 3 can be
ascribed to their connection via eq. 6. This can be under-
stood by the observation that F_2 is nearly all isovector
spin-flip, as is the G^*_M. However, the difference in the
mass of the $\Delta(1232)$ and the nucleon, which is a mea-
sure of the SU3 symmetry breaking, and the fact that
F_1 also has an isovector component would make the ob-
served non-negligible differences in the normalization not

![Figure 1](image1.png)

Fig. 1: Dirac form factor $F_{1p}(Q^2)$ relative to the dipole
$G_D = 1/(1 + Q^2/0.71)^2$. The data are extracted using the
recent JLab. data [3] for G_{Ep}/G_{Mp}, and a recent reevaluation
[20] of SLAC data of G_{Mp} [15] [10]. The curve is the result of the fit as discussed in the text.

![Figure 2](image2.png)

Fig. 2: The Pauli form factor $F_2/1.79F_D$ relative to the
dipole $F_D = 1/(1 + Q^2/0.71)^2$. The data are extracted using
the recent JLab. data [3] for F_{2p}/F_{1p}, multiplied by the fit
curve for F_{2p}/F_{1p} shown in fig. 1. The curve is the result of the simultaneous fit to the G_{Ep}/G_{Mp} and G_{Mp} data as discussed
in the text and fig. 1.

The similar shapes of the curves in figs. 2 and 3 can be
ascribed to their connection via eq. 4. This can be under-
stood by the observation that F_2 is nearly all isovector
spin-flip, as is the G^*_M. However, the difference in the
mass of the $\Delta(1232)$ and the nucleon, which is a mea-
sure of the SU3 symmetry breaking, and the fact that
F_1 also has an isovector component would make the ob-
served non-negligible differences in the normalization not

![Figure 3](image3.png)

Fig. 3: The $N \rightarrow \Delta$ magnetic form factor $G^*_M(Q^2)/3Q_D$
relative to the dipole $G_D = 1/(1 + Q^2/0.71)^2$.
The data are a compendium of world data by ref. [21]. The curve is the result of the procedures discussed in the text.

Acknowledgments: The author thanks G.A. Miller,
A.V. Radyushkin and M. Vanderhaeghen for helpful discussions. The work was partially supported by the National Science Foundation.

[1] P. Stoler, *Physics Reports* **226**, 103 (1993).
[2] V.V. Frolov et al., *Phys. Rev. Lett.* **82**, 45 (1999).
[3] M.K. Jones et al., *Phys. Rev. Lett.* **84**, 1398 (2000); O. Gayou et al. *Phys. Rev.* **C64**, 038202 (2001).
[4] G.A. Miller and M.R. Frank, *Phys. Rev.* **C65**, 065205 (2002); G.A. Miller, *Phys. Rev.* **C66**, 03220(R) (2002).
[5] J.P. Ralston and P. Jain, Proceedings of the Workshop on Exclusive Processes at High Momentum Transfer, A. Radyushkin and P. Stoler, eds., World Scientific, Singapore, 105; VII International Conference on the Intersections of Particle and Nuclear Physics (Quebec City 2000). Z. Parsehand W. Marciano, eds., American Institute of Physics, (2000).
[6] X. Ji, *Phys. Rev. Lett.* **78**, 610 (1997).
[7] A.V. Radyushkin, *Phys. Lett.* **B380**, 417 (1996); *Phys. Rev.* **D56**, 5524 (1997).
[8] J. Collins, L. Frankfurt, and M. Strikman, *Phys. Rev.* **D56**, 2982 (1997).
[9] L.L. Frankfurt et al., *Phys. Rev. Lett.* **84**, 2589 (2000).
[10] K. Goek, M.V. Polyakov, and M. Vanderhaeghen, *Prog. Part. Nucl. Phys.* **47**, 401,2001 (2001).
[11] H.F. Jones and M.D. Scadron, *Annals of Physics* **81**, 1 (1979).
[12] P. Stoler, *Phys. Rev.* **D65**, 053013 (2002).
[13] A.V. Radyushkin, *Phys. Rev.* **D58**, 114008 (1998).
[14] M. Diehl, Th. Feldmann, R. Jakob and P. Kroll, *Eur. Phys. C8*, 409 (1999); M. Diehl, Th. Feldmann, R. Jakob and P. Kroll, *Nucl. Phys. B596*, 33 (2001), Erratum-ibid. *B605*, 647 (2001).
[15] A. Afanasev, E-print: hep-ph/9910565.
[16] M. Burkardt, Proceedings of the Workshop on Exclusive Processes at High Momentum Transfer, A. Radyushkin and P. Stoler, eds., World Scientific, Singapore, 99 (2003), and references within.
[17] E.J. Brash et al., *Phys. Rev.* **C65**, 051001(R) (2002).
[18] R.G. Arnold et al., *Phys. Rev. Lett.* **57**, 174 (1986).
[19] L. Andivahis et al., *Phys. Rev.* **D50**, 5491 (1994).
[20] E.J. Brash et al., *Phys. Rev.* **C65**, 051001(R) (2002).
[21] S.S. Kamalov and S.N. Yang, *Phys. Rev. Lett.* **83**, 4494 (1999).