Diversity of Groundwater Crustaceans in Wells in Various Geologic Formations of Southern Poland

Agnieszka Pociecha 1,*, Maciej Karpowicz 2, Tadeusz Namiotko 3, Elżbieta Dumnicka 1 and Joanna Galas 1

1 Institute of Nature Conservation, Polish Academy of Sciences, Adam Mickiewicz 33, 31-120 Kraków, Poland; dumnicka@iop.krakow.pl (E.D.); galas@iop.krakow.pl (J.G.)
2 Department of Hydrobiology, Faculty of Biology, University of Białystok, Ciolkowskiego 1J, 15-245 Białystok, Poland; m.karpowicz@uwb.edu.pl
3 Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; tadeusz.namiotko@ug.edu.pl
* Correspondence: pociecha@iop.krakow.pl

Abstract: Data on Crustacea from underground waters accessed through wells are limited in Poland. A recent study was undertaken to determine diversity and factors influencing the crustacean communities inhabiting wells drilled in three bedrocks, Jurassic limestone, Cretaceous marls and flysch. A total of 23 crustacean species and subspecies were recorded belonging to Copepoda, Ostracoda, Amphipoda and Bathynellacea. Only four species of low abundance, however, were stygobionts. Our studies showed that abundance and species number of Copepoda and Ostracoda were affected by bedrock geology (with higher abundances and species richness in wells of Cretaceous marls), and in the case of copepods, also by sampling season. Furthermore, this paper lists all species of Crustacea recorded from inland groundwater habitats of Poland based published over the last 133 years. The most species-rich group was Copepoda with 43 representatives (four stygobites), followed by Ostracoda and Amphipoda with a total of 37 and 12 species, respectively (each with nine stygobites). In addition, two species of Isopoda (one stygobite) and one Bathynellid appear in the checklist. The checklist identifies geographical (and environmental) gaps which require further research.

Keywords: copepods; ostracods; subterranean crustacean checklist; ecology

1. Introduction

The subterranean aquatic environment represented by cave waters, dug or drilled wells, interstitial waters and hypotelminorheal [1] is the habitat of a range of invertebrates. Among them, crustaceans approximate the largest number of stygobiontic species [1–3] often accompanied by epigean species.

Wells are a source of drinking water in African countries which is why their fauna has been frequently studied and contains numerous stygobiontic Crustacea [4]. In European countries, studies on crustacean fauna were undertaken in dug wells in former Czechoslovakia [5–7], in boreholes in Germany [8] and in both types in Ireland [9].

In Poland, studies on aquatic subterranean crustaceans started in wells, when Wrześniowski [10] described *Niphargus tatrensis* and Jaworowski [11] published the results of his invertebrate investigations in Kraków and Lvov.

More recently, other researchers from Poland studied particular crustacean groups in this habitat: Isopoda [12,13], Copepoda [14–20] and Ostracoda [21–28]. The Amphipoda of wells (beside Wrześniowski [10]) were studied by Haeckel [29], Micherdziński [30] and Skalski [31,32] who also summarised the state of knowledge concerning the distribution of this group in Poland [33–35]. Studies on more than one crustacean group in wells are rare [36,37]. The mentioned studies were restricted to one region of Poland and to single
wells, and the knowledge on crustaceans inhabiting subterranean waters in Polish wells therefore remained poor (except for the genus Niphargus—see Dumnicka and Galas—[38]).

In rural areas situated in southern Poland, there are numerous old dug wells, mainly unused presently. Access to them gives the possibility to study subterranean aquatic invertebrates in regions of different geological character, even in areas without caves. During the macroinvertebrate studies from 26 wells in southern Poland, only one crustacean species Niphargus tatrensis was determined [3].

The biodiversity of groundwater in Poland remains poorly known compared to that of freshwater surface habitats, so the aim of our studies, conducted in 2010–2016 was to fill this gap in information on the diversity of crustaceans inhabiting groundwater. We also tested the hypothesis that geological bedrock type (Jurassic limestone, Carpathian flysch and Cretaceous marls) in which wells were dug as well as the sampling season (month) influence abundance, diversity and composition of crustacean assemblages.

2. Materials and Methods
2.1. Study Area

Our study included 33 wells distributed in three geologically different regions viz. (1) the Jurassic limestone area of the Kraków-Częstochowa Upland (14 wells in Szklary and Witkowice villages), (2) the Cretaceous marls of the Miechów Upland (7 wells in Prandocin village) and (3) the flysch areas of the Pogórze Wiśnickie foothills (7 wells in Kawec) and the Beskid Mały mountains (5 wells in Jaszczurowa village) (Figure 1, Table 1).

Bedrock includes flysch rocks of the Carpathians (1), Jurassic limestone sedimentary rocks (2), Cretaceous marls (3) and other sedimentary rocks of various ages (4). The dots (5) indicate villages with the sampled wells.

![Figure 1. The study area with locations of villages where the studied wells are situated.](image)

Localization	Coordinates	Geology Type	No of Studied Wells	Dates of Samplings	Depth (m)
Szklary (Sz)	50°10' N; 19°42' E	Jurassic limestone	7	June, August, October 2010	1.5–20
Witkowice (Wi)	50°10' N; 19°94' E	Jurassic limestone	7	May, July, October 2012	4.5–20
Jaszczurowa (Ja)	49°47' N; 19°30' E	Carpathian flysch	5	June, August, November 2012	1–4
Kawec (Ka)	49°84' N; 20°22' E	Carpathian flysch	7	May, July, October 2013	1.9–12.5
Prandocin (Pr)	50°15' N; 20°06' E	Cretaceous marls	7	May, August 2016	6–14

Table 1. Localization of villages with data on the sampled wells.
2.2. Sampling and Measurements of Water Properties

Samples of invertebrate fauna and water for chemical analyses were collected from 5–7 wells in each of the five particular regions (33 wells in total, see Figure 1) in 2010–2016 (Table 1). In each locality, wells were sampled seasonally three times a year (from May to November), except for wells in the Prandocin village where samples were taken on two occasions (Table 1). Thus, the sampling effort included a total 92 samples. The depth of the studied wells differed in particular regions ranging from 1.5 to 20 m. Only in the Jaszczurowa village were all studied wells relatively shallow, i.e., not exceeding 4 m (Table 1). Most of the studied wells were located in agricultural areas in small farms where non-intensive farming methods were used. Except for wells in the Witkowice village, they were all situated in gardens. The water in the studied wells is not drinking water, farmers use the water from the wells for garden watering and irrigation, which causes fluctuations in the water level, and some of them are not used at all.

Methods used for analyses of physical and chemical water feature analyses of the investigated wells have been described in Dumnicka et al. [3]. The results of studies on benthic invertebrates other than Crustacea (Copepoda and Ostracoda) from the same wells have already been published [3], while the data on plankton samples from wells from the area of Jaszczurowa village were presented as a conference poster [39].

Qualitative samples of Copepoda were taken by a plankton net (50 µm mesh size), using vertical hauls from the well bottom. Benthic samples were taken by an Ekman sampler (20 × 20 cm) and filtered through 0.3-mm net mesh. All samples were preserved in 4% formaldehyde, and fauna was determined using selected keys: for Copepoda e.g., [18,40–42] and Ostracoda [23,43–45]. Prior to the identification, ostracods (intact complete specimens with limbs as well as empty carapaces and valves) were rinsed in water, transferred to 96% ethanol and then analysed following Namiotko et al. [46]. Investigated specimens were identified to the species or the lowest possible taxonomic level (genus).

2.3. Statistical Analyses

To evaluate if the sampling effort was sufficient to represent biodiversity of the crustacean assemblages in the studied area, we performed accumulation curves of the observed and estimated species number by the Chao 1 index using PRIMER 7 software [47].

Other statistical analyses were performed with XLSTAT Ecology (Addinsoft). We used two-way unbalanced ANOVA to determine (i) the effect of physical and chemical variables, and (ii) geology with sampling season (month) on the Copepoda and Ostracoda communities (abundance, number of species). We used the same approach to test the effect of the above factors on the dominant species/genus. To find out if the two or more variables, and their interaction, provide the same amount of information we used Type I SS (sum of squares). For pairwise differences between means, we used Tukey’s HSD (honestly significantly different) test. The most important differences were presented by box plots with basic descriptive statistics. The samples without Copepoda and Ostracoda were excluded from the statistical analysis.

3. Results

3.1. Physical and Chemical Water Properties of the Studied Wells

Water of the wells was circumneutral to alkaline, and mean values ranged from 7.0 in the Ka wells to 7.5 in the Sz wells. The other parameters of water such as conductivity, Ca\(^{2+}\), NO\(_3^-\), O\(_2\), SO\(_4^{2-}\) and Cl\(^-\) in the studied wells differed strongly (Figure 2). The mean value of conductivity in Jurassic limestone varied from 606 to 1006 µS/cm, in flysch regions from 286 to 706 µS/cm, and in Cretaceous marls 917 µS/cm. The mean values of calcium concentrations in Jurassic limestone and Cretaceous marls areas were higher than in flysch areas, though in water in Ka wells this parameter reached high concentration values. The mean oxygen concentration was high in all wells in Pr, whereas in Wi it was mostly relatively low (Figure 2). In the remaining regions, the mean value of this parameter varied from well to well e.g., in Sz from 9.76 in well no 6 to 3.36 in well no 3 whereas in Ja
from 8.27 in well no 1 to 0.96 in Well No. 4. Similar fluctuations were observed for nitrates, especially in the water of Wi wells (Figure 2), with the lowest values recorded in the flysch area. Chloride concentrations were low and constant in Ja, while most variable in Wi (Figure 2). In Pr and Ja, the content of sulphates was leveled but in Pr it was relatively high while and in Ja, low. In the remaining three villages the values of this parameter varied strongly. Polluted wells influenced by anthropogenic factor occurred in several studied regions, but most often in Wi and Pr.

3.2. Crustaceans in the Studied Wells

A total of 23 crustacean taxa of the ranks of species and subspecies were recorded (some were left in open nomenclature). They belonged to Copepoda, Ostracoda, Amphipoda and Bathynellacea. Although the accumulation plot of the observed species number did not reach asymptotic levelling-off (Figure 3), the total observed crustacean species richness was 73.5% of the species number estimated by the Chao 1 index (mean ± standard deviation SD = 32.7 ± 10.27).

In the studied wells, 13 copepod taxa were stated. Cyclopoida were represented by ten taxa of the species group (Table 2). Only three species were most abundant: Diacyclops bisetosus (from 7 to 34 individuals in the wells of Sz and Pr villages), Acanthocyclops vernalis (from 1 to 24 ind.-Ja, Pr), and Megacyclops viridis (from 1 to 15 ind.-Ja) and these species were also the most frequent. Only three Harpacticoida species were determined including stygobiontic species Elaphoidella elaphoides. In four wells, only cyclopoid nauplii and/or
copepodites was identified, and in one well, only harpacticoid copepodites were presented (Table 2).

Altogether, eight species of Ostracoda were recorded during this survey (Table 2, Cryptocandona sp. is considered to represent juveniles of Cryptocandona matris), of which three (and the mentioned Cryptocandona sp.) remained in open nomenclature due to a poor preservation state and/or juvenile stage preventing certain identification. Cryptocandona matris (including Cryptocandona sp.) and Typhlocypris cf. eremita (both belonging to family Candonidae) can be regarded as stygobiontic species. The latter species and Cavernocypris subterranea were the most common, both with records from five wells, while six other species were found only in one well. The maximum number of species reported in a single well (Ka6) was four (C. matris, Cyclocypris ovum, Cypria ophtalmica and Fabaeformiscandona brevicornis), whereas the most abundant ostracod samples were taken from Pr wells.

Among amphipods, singular specimens of Niphargus tatrensis were found in two wells. Finally, one species of bathynellaceans, Bathynella natans, was recorded in the Prandocin wells (Table 2).

Table 2. Crustacea recorded in the studied wells.

Crustacean Groups	Order	Taxa and Life Stages of Invertebrates	Wells
Copepoda	Cyclopoida	nauplii Cyclopoida	+
		copepodids Cyclopoida	+
		Acanthocyclops kieferi (Chappuis, 1925)	+
		Acanthocyclops vernalis (Fischer, 1853)	+
		Acanthocyclops robustus (Sars G.O., 1863)	+
		Diacyclops sp.	+
		Diacyclops bisetosus (Rehberg, 1880)	+
		Diacyclops crassicauda (Sars G.O., 1863)	+
		Diacyclops crassicauda brachycerca (Kiefer, 1927)	+
		Megacyclops viridis (Jurine, 1820)	+
		Paracyclops imminutus Kiefer 1929	+
		Tyrocypris prasina (Fischer, 1860)	+
Harpacticoida		copepodids Harpacticoida	+
		Elaphoidella elaphoides (Chappuis, 1923)	+
		Elaphoidella cf. elaphoides	+
		Mesocira sp. (Schmell, 1894)	+
Ostracoda		Cavernocypris subterranea (Wolf, 1920)	+
		Cryptocandona sp.	+
		Cyclocypris ovum (Jurine, 1820)	+
		Cyclocypris cf. seriis (Koch, 1838)	+
		Cypria ophtalmica (Jurine, 1820)	+
		Fabaeformiscandona brevicornis (Klie, 1925)	+
		Potamocypris cf. pellida Alm, 1914	+
		Typhlocypris cf. eremita (Vejdovsky, 1882)	+
Bathynellacea		Bathynella natans Vejdovsky, 1882	+
Amphipoda		Niphargus tatrensis Wrześniowski, 1888	+
Sum of taxa		4	4

+ —presence taxon confirmation.

3.3. Statistical Analyses

The physical and chemical variables did not significantly affect the abundance of Copepoda (F = 0.63; p = 0.81) and Ostracoda (F = 1.57; p = 0.22), as well as the number of Copepoda (F = 0.96; p = 0.54) and Ostracoda species (F = 2.56; p = 0.06). The abundance of dominant Copepoda and Ostracoda species also was not significantly affected by water properties. Only the abundance of the Acanthocyclops species was affected by these variables (F = 11.3; p < 0.0001). The Type I SS analysis indicated that Acanthocyclops abundance was affected by temperature (p < 0.0001), phosphates (p < 0.0001), nitrates (p < 0.0001), dissolved oxygen (p = 0.003), electrical conductivity (p = 0.022), and sulphates (p = 0.048).

We found that both the geology and the sampling season (month) significantly affected the abundance of Copepoda (F = 4.15; p = 0.0003) and Ostracoda (F = 5.54; p < 0.001), number
of species of Copepoda (F = 3.58; \(p = 0.001 \)) and Ostracoda (F = 5.72; \(p < 0.001 \)), as well as the abundance of dominant species (Figures 4 and 5). Only Ostracoda abundance (Figure 4B) and number of species (Figure 4D) were not affected by months. Copepoda highest abundance (Figure 4A) and number of species (Figure 4C) were found in September. The Cretaceous marls and Carpathian flysch had a higher abundance of Copepoda, and a higher number of species than Jurassic limestone (Figure 5A,C). Ostracoda had the highest abundance and number of species in Cretaceous marls (Figure 5B,D).

Figure 3. Species accumulation plot based on all 92 studied samples. Closed circles—number of observed species, open circles—number of estimated species by the Chao 1 index.

Figure 4. Monthly differences in Copepoda abundance (A), Ostracoda abundance (B), number of Copepoda species (C), number of Ostracoda species (D) in the studied wells. The different letters (a, b) above the box plots denote significantly different values at \(p < 0.05 \) and the same letters denote no statistically significant differences. The limits of the boxes are the first and third quartiles, crosses represent the means, central horizontal bars are the medians, points above or below are outliers, and the whiskers represented min and max.
The geology and months also significantly affected the abundance of dominant species/genus. *Diacyclops* was affected by months ($p = 0.001$) and geology ($p = 0.044$), with the highest abundance in September and Cretaceous marls. *Megacyclops viridis* was affected by geology ($p = 0.031$) with the highest abundance in Carpathian flysch. We did not find a significant effect of geology and month on the abundance of *Acanthocyclops* genus. Concerning ostracods, *Cavernocypris subterranea* and *Typhlocypris cf. eremita* abundances were significantly affected by the geology ($p < 0.0001$) with the highest abundance of both species in Cretaceous marls.
3.4. Crustacea in Subterranean Waters of Poland—State of Current Knowledge

The literature concerning Crustacea recorded from subterranean waters (including caves, wells and interstitial waters) of Poland is limited. Since Wrześniowski’s classic work [10], in which two amphipod species new to science (Niphargus tatrensis and Synurella tenebrarum) were described, 38 papers have been published on subterranean Crustacea fauna of Poland (Table 3). Among all crustaceans (95 taxa) found in caves, wells and interstitial (inland) waters in Poland, only 24 taxa are stygobionts (nine Amphipoda; one Isopoda; four Copepoda; nine Ostracoda and one Bathynellid) (Table 3).

Based on the literature, the occurrences of crustaceans in subterranean waters of Poland were classified in Table 3 by habitat types (caves, wells and inland interstitial waters). The most diverse fauna was found in wells (59 taxa), then in interstitial waters (44) and in caves (31). Among Ostracoda, unfortunately for seven taxa there are no data available on habitat type and region where they were found (Table 3).

Table 3. List of Crustacean species recorded from subterranean aquatic habitats in Poland along with the data on ecology (subterranean habitat type) and geographical distribution (regions according to Catalogus Faunae Poloniae). Abbreviations of geographic names: Mts—mountains; Upl.—upland; Low.—lowland.

Group/Taxa	Habitat (No of Object)	Region	References		
	Caves	Wells	Interstitial		
AMPHIPODA					
Crangonyx paxi	1			Sudety Mts	[48]
Gammarus balcanicus		1		Pieniny Mts	[30]
Gammarus fossarum Koch, 1836		1		Beskid Zach. Mts	[30]
Gammarus pules polonensis Karaman and Pinkoter, 1977		+		Wielkopolsko-Kujawska Low.	[49]
Niphargus aquilex # (?) Schiödte, 1856		11		Malopolska Upl.	[36]
Niphargus casimiriensis # Skalski, 1980				Kraków-Wieluń Upl., Malopolska Upl., Bieszczady Mts, Tatra Mts, Pogórze Wiśnickie foothills,	[36]
Niphargus leopoliensis #* Jaworowski, 1893				see [38], orginal data	
Niphargus tatrensis #* Wrześniowski, 1888	13			Kraków-Wieluń Upl., Malopolska Upl., Bieszczady Mts, Tatra Mts, Pogórze Wiśnickie foothills,	[38]
Niphargellus arndti # (Schellenberg, 1933)		3		Sudety Mts	[48,50,51]
Synurella ambulans (Müller, 1846)				Małopolska Upl.	[52]
Synurella coeca # Dobreanu and Manolache, 1951		4		Malopolska Upl.	[36]
Synurella tenebrarum # (Wrześniowski, 1888)		+		Beskid Zach. Mts	[10]
BATHYNELLACEA					
Bathynella natans # Vejdovsky, 1882		5		Sudety Mts, Beskid Zach. Mts, Miechów Upl.	[13], orginal data
ISOPoda					
Asellus aquaticus (L.)	2	8		Kraków-Wieluń Upl., Malopolska Upl., Świętokrzyskie Mts, Beskid Wsch. Mts	[12,37,53,54]
Prorbellus sarsii # (Remy, 1948)	5	1		Beskid Zach. Mts	[13]
COPEPODA CYCLOPODA					
Acanthocyclus kieferi (Chappeix, 1925)	7	3	1	Kraków-Wieluń Upl., Malopolska Upl., Świętokrzyskie Mts, Sudety Mts, Beskid Zach. Mts, Pieniny Mts, Tatra Mts	[20], orginal data
Acanthocyclus renatus # Kiefer, 1936		+	1	Malopolska Upl.	[14]
Acanthocyclus robustus (Sars G.O.,1863)	4	2	1	Sudety Mts, Kraków-Wieluń Upl., Malopolska Upl., Pieniny Mts	[20,55], orginal data
Acanthocyclus venustus (Norman and Scott, 1906)	3	1	2	Kraków-Wieluń Upl., Malopolska Upl.	[20]
Acanthocyclus vernalis (Fischer, 1853)		4	1	Malopolska Upl., Upper Silesia, Beskid Masy	[14,20], orginal data
Cyclops ahrensen (Sars G.O.,1863)	1			Tatra Mts	[20]
Cyclops behater Kozlinski, 1933		1		Tatra Mts	[20]
Cyclops pulchellus Koch, 1838 1)		2		Kraków-Wieluń Upl., Malopolska Upl., Upper Silesia	[15,17]
Cyclops strenuus Fischer, 1851				Kraków-Wieluń Upl., Malopolska Upl.	[20]
Cyclops vicinus Uljanin, 1875				Kraków-Wieluń Upl.	[14]
Diaicyclus sp.				Kraków-Wieluń Upl.	[orginal data]
Diaicyclus abyssicus (Lilljeborg, 1901)	1			Upper Silesia, Malopolska Upl.	[20]
Diaicyclus bicuspitudus (Claus, 1857)	7	2	2	Kraków-Wieluń Upl., Malopska Upl., Lubelska Upl., Pieniny Mts	[14,15,20,37,54]
Diaicyclus bidens (Rehberg, 1880)		2	1	Kraków-Wieluń Upl., Malopolska Upl.	[17], orginal data
Diaicyclus clandestinus # (Yeatman, 1964) 2)	1			Uppper Silesia, Tatra Mts	[20,56]
Diaicyclus crassicaudus (Sars G.O., 1863)	1	+		Malopolska Upl., Kraków-Wieluń Upl.	[14,20,37], orginal data
Table 3. Cont.

Group/Taxa	Habitat (No of Object)	Region	References	
Diacyclops crassicaudus brachycephalus (Kiefer, 1897)	1	Caves	[orginal data]	
Diacyclops disjunctus (Thallwitz, 1927) (91)	2	Wells	[57]	
Diacyclops largetoides (Lilljeborg, 1901)	5	Interstitial Waters	[15,20]	
Diacyclops largetoides (Sars G.O., 1863)	1	Upper Silesia, Malopolska Upl.	[15]	
Diacyclops minutus (Sars G.O., 1863)	1	Upper Silesia, Malopolska Upl.	[20]	
Eucyclops macrurus (Lilljeborg, 1901)	1	Upper Silesia, Malopolska Upl.	[14,20]	
Eucyclops serrulatus (Fischer, 1851)	2	3	[14,15,20]	
Eucyclops spirator (Lilljeborg, 1901)	1	Malopolska Upl.	[14]	
Eucyclops macrurus (Lilljeborg, 1901)	5	1	Upper Silesia, Krakow-Wieluń Upl., Beskid Zach., Beskid Maly	[20]
Macrocyclus albicus (Jurine, 1820)	1	1	Malopolska Upl., Lubelska Upl., Sudety Mts	[14,17,20]
Macrocyclus fuscs (Jurine, 1820)	1	Malopolska Upl.	[14]	
Megacyclops gigas (Claus,1857)	1	Malopolska Upl.	[20]	
Megacyclops viridis (Jurine, 1820)	4	2	Krakow-Wieluń Upl., Malopolska Upl., Sudety Mts, Beskid Maly	[14,20,54,57]
Metacyclops sp.	1	Krakow-Wieluń Upl.	[55]	
Paracyclops affinis (Sars G.O., 1863)	1	Krakow-Wieluń Upl., Malopolska Upl.	[20,37]	
Paracyclops fimbriatus (Fischer, 1853)	1	Beskid Zach. Mts	[15,17,37]	
Paracyclops immittius Kiefer 1929	1	Beskid Maly	[orginal data]	
Paracyclops popei (Rehberg, 1880)	2	2	Krakow-Wieluń, Malopolska Upl., Beskid Zach. Mts	[20]
Thermocyclops crassus (Fischer, 1853)	2	Sudest, Beskid Zach. Mts, Małopolska Upl.	[20]	
Tropocyclops praecoxus (Fischer, 1860)	1	Malopolska Upl.	[orginal data]	
Caves				
HARPACTICOIDA				
Athelgilla variegata (Mrazek, 1893)	1	1	Malopolska Upl.	[15]
Bryocamptus caspoides (Schmel, 1893)	1	Malopolska Upl.	[20]	
Bryocamptus dacicus (Chappuis, 1853)	2	Malopolska Upl.	[58]	
Bryocamptus echinatus (Mrazek, 1893)	1	Malopolska Upl.	[58]	
Bryocamptus typlophos (Mrazek, 1893)	1	Sudety Mts	[57]	
Canthocamptus microstaphylus (Wolf, 1909)	1	1	Malopolska Upl., Lubelska Upl.	[19]
Canthocamptus staphylurus (Jurine, 1820)	1	Malopolska Upl., Lubelska Upl.	[19]	
Elephoidella elaphoides # (Chappuis, 1924)	1	Podlasie Low., Malopolska Upl.	[18,58]	
Eucyclops serrulatus (Fischer, 1860)	1	Pogórze Wiśnickie foothills	[orginal data]	
Eutheca antarctica (Mrazek, 1929)	1	Wielkopolsko-Kujawsko Low.	[57]	
Mesochra sp. (Schmel, 1894)	1	Małopolska Upl.	[orginal data]	
OSTRACODA				
Bradleistrandesia reticulata (Zaddach, 1844) (1)	no details on habitats	no details on habitats	[24]	
Candona candida (O.F. Müller, 1776)	+	+	Krakow-Wieluń Upl., Sudety Mts, Beskid Zach. Mts, Beskid Zach. Mts, Bieszczady Mts, Malopolska Upl., Wielkopolsko-Kujawsko Low.	[24,26,36,60,61]
Cavernocypris sabitranus (Wolf, 1919)	+, 2	+	Sudety Mts, Beskid Zach. Mts, Bieszczady Mts, Malopolska Upl., Wielkopolsko-Kujawsko Low.	[24,26,60,61], [orginal data]
Cryptocandona sp.	1	Pogórze Wiśnickie foothills	[orginal data]	
Cryptocandona matrix # (Syvula, 1976)	+	+	Malopolska Upl., Beskid Zach. Mts, Beskid Zach. Mts, Beskid Zach. Mts, Bieszczady Mts, Malopolska Upl., Wielkopolsko-Kujawsko Low.	[23,25,27,36,86], [orginal data]
Cryptocandona rectula (Alm, 1914)	+	+	Sudety Mts, other sites	[24,27,60,61]
Cryptocandona varul Kaufmann, 1900	+	+	Sudety Mts, Beskid Zach., Tatra Mts	[24,27,60,61]
Cyclocypris ovum (Jurine, 1820)	1	no details on habitats	Pogórze Wiśnickie foothills	[24], [orginal data]
Cyclocypris serenae (Koch, 1838)	no details on habitats	no details on habitats	[24]	
Cyclocypris cf. serena (Koch, 1838)	1	Krakow-Wieluń Upl.	[orginal data]	
Cyclopis ophthalmitica (Jurine, 1820)	+	+	Sudety Mts, Beskid Zach. Mts, Wielkopolsko-Kujawsko Low.	[24], [orginal data]
Cyclopis reautea Brutstein, 1928	+	no details on sites	[24]	
Cypridea strepsigna (Brady and Robertson, 1870)	+	no details on sites	[24]	
Eucyclops pigna (Fischer, 1851)	+	no details on sites	[24]	
Fabauromercandona brevicornis (Kle, 1929) (5)	+	+	Sudety Mts, Beskid Zach. Mts, Beskid Zach. Mts, Wielkopolsko-Kujawsko Low.	[22,24,25,26]
Fabauromercandona brevicornis (Kle, 1929) (5)	1	no details on sites	[24], [orginal data]	
Fabauromercandona latens # (Kle, 1940)	+	+	Sudety Mts, Beskid Zach. Mts, Beskid Zach. Mts, Wielkopolsko-Kujawsko Low.	[22,24]
Table 3. Cont.

Group/Taxa	Habitat (No of Object)	Region	References	
	Caves	Wells	Interstitial Waters	
Fabaformiscandona wegelini #		+	Sudety Mts, Beskid Zach. Mts, Małopolska Upl., Wielkopolsko-Kujawska Low., Lublin Upl. [22,24,36]	
Herpetocypris sp.	no details on habitats	no details on habitats	[24]	
Ilyocypris brasiliensis Sars, 1890		+	no details on sites	[24]
Limnocythere insignita (Baird, 1843)		+	no details on sites	[24]
Mixtacladona sp. #	+	+	Malopolska Upl.	[24,36]
Nannocandona faba Ekmian, 1914	+	+	Sudety Mts	[24]
Nannocandona stygia # Sywula, 1976	+	+	Sudety Mts, Beskid Zach. Mts.	[23,24]
Neglecandona lindneri (Petkovski, 1969)	no details on habitats	no details on sites	[24]	
Neglecandona neglecta (Sars, 1887)		+	no details on sites	[24]
Notodromas monacha (O.F. Müller, 1776)	no details on habitats	no details on sites	[24]	
Physocypris kraepelini G.W. Muller, 1903 (7)		+	no details on sites	[24]
Potamocypris fulva (pallida) (Brady, 1868)	+	+	Malopolska Upl.	[original data]
Potamocypris cl. pallida (Brady, 1914)	1	+	no details on sites, except Kraków-Wieluń Upl.	[24,26]
Potamocypris zscholkei (Kaufman, 1900) (9)		+	Malopolska Upl., Kraków-Wieluń Upl., Sudety Mts, Beskid Zach. Mts	[21,22,24–26,36]
Pseudocandona albigens (Brady, 1864) (9)		+	Malopolska Upl., Kraków-Wieluń Upl., Sudety Mts, Beskid Zach. Mts	[21,22,24–26,36]
Pseudocandona compressa (Koch, 1838)		+	no details on sites	[24]
Pseudocandona mira # (Sywula, 1976)	+	+	no details on other sites	[24,60]
Pseudocandona sarsi (Hartwig, 1899)	+	+	Malopolska Upl., Kraków-Wieluń Upl., Sudety Mts, Beskid Zach. Mts	[24,37,54,60]
Pseudocandona semicogaster (Schafer, 1934)	no details on habitats	no details on sites	[24]	
Pseudocandona trifluctuata (Sywula, 1974)		+	Sudety Mts, Beskid Zach. Mts.	[24]
Tiphlocypris emerita # * (Vejdovsky, 1882)		+	Sudety Mts, Malopolska Upl., Wielkopolsko-Kujawska Low., Beskid Zach. Mts.	[24,36], Sywula-pers. notes
Tiphlocypris cl. emerita (Vejdovsky, 1882)		2	Kraków-Wieluń Upl., Malopolska Upl., Sudety Mts, Beskid Zach. Mts, Lublin Upl.	[original data]
Tiphlocypris szeci # (Farkas, 1958)			no details on sites	[24,36]

#—presence taxon confirmation. #—stygobiontic species. *—for stygobionts only: found also in surface waters. !—found in peat bog forest Reservoirs 1, 2, and 3—“original” names of species used in cited papers. (1)—C. pulchella Koch, 1838 is currently regarded as nomen dubium; in the past some carcinologists used this name as a senior synonym of Dacrycylops bisugatus (Clausi, 1857). (2)—as Diacyclops cladestinus (Kiefer, 1926) in [56]. (3)—as Diacyclops languidus disjunctus (Thallwitz, 1927) in [57]. (4)—as Cypricercus affinis (Fischer, 1851) in [24]. (5)—as Candona hertzogi beskidana (Sywula 1974) in [22,24,25,28]. (6)—as Candona limnocrenica (Sywula 1971) in [24]. (7)—as Physocypris fadereti (Dubovsky 1926) in [24]. (8)—as Potamocypris foxi (Sywula 1972) in [24,26], P. wolfi (Breinh 1920) in [24]. (9)—as Candona parallela (G.W. Muller) 1900 in [21,22,24–26,36].

4. Discussion

The subterranean fauna dwells in underground waters such as caves, interstitial waters, wells, as well as other man-made subterranean habitats such as adits, shafts or mines. It also occurs in springs [3].

Although several samples did not yield any crustaceans, the results suggest that the sampling effort was adequate to represent crustacean communities in the wells. The recorded 23 (sub-)species of Crustacea in the wells amounted to 73.5% of the estimated species richness (Figure 3), a value within the range (50–75%) which Heck et al. [62] consider an adequate approximation.

The values of physical and chemical parameters of water in wells located in different bedrocks (including flysch rocks of the Carpathians, Jurassic limestone sedimentary rocks and Cretaceous marls) differed. The mean values from wells located in Jurassic limestone (SZ, Wi) and cretaceous marls (Pr) bedrock were usually similar, but wells located on flysch bedrock (Ja, Ka) had mostly lower means that may be related to lower mineralization. It should be emphasized that the water in the studied wells was neutral to slightly alkaline. The increased levels of nitrates, chlorides and sulfates in some wells indicate a significant human impact on the quality of the groundwater. Similar results concerning quality of groundwater were observed earlier in two regions, in the Kraków-Częstochowa upland [63,64].

Water 2021, 13, 2193
and in the Wiśnickie foothill [65,66]. In regions where polluted wells predominate, the species richness and abundance of the crustacean fauna is much smaller [3].

The copepod stygobiont *Elaphoidella elaphoides*, previously was found only in wells in the villages of Ogrodniczki and Ciasne in Poland (Uplands of the Podlaskie Plain) [18,58]. In Europe, this stygobiont is widely distributed in underground waters, including caves, hyporheic and phreatic waters and often occurs in epigean waters as well [18].

Two stygobiontic ostracod species, *Cryptocandona matris* in Kawec and *Typhlocypris* cf. *eremita* occurred in Szklary and Prandocin wells. The former species was originally described by Sywula [23] from a well at Cisna village in the Bieszczady Mts. and further recorded in wells and interstitial habitats of the Lublin Upland and Carpathian Mountains (in Poland) (Table 3) and in north-eastern Romania [27]. *Typhlocypris eremita* is the type and the most-widespread species of the genus, occurring in groundwaters of Central and South-Eastern Europe [46], mainly as all-female (parthenogenetic) populations. As the male genital morphology offers better characteristics than that of female on which to define the species in the genus *Typhlocypris*, it is not unlikely that some of recorded populations could represent different species, as documented by Iepure et al. [67]. Thus, a re-examination of records identified as *Typhlocypris eremita* is required to better understand the extent of variation of this and closely related species. In Poland, *T. eremita* is known mostly from an area south of the maximum limit of the Vistulian glaciation, with the most significant exception of two surface-water sites in the Vistula fens in northern Poland (Table 3). These are the northern-most localities of this species, which were most probably reached by this species via the alluvial groundwaters of the Vistula River [68,69].

The amphipod stygobiont *Niphargus tatrensis* previously was reported from the wells situated in the Kraków-Częstochowa upland [3], and is common in southern Poland [38]. It was found in the Prandocin well (Pogórze Wiśnickie foothill) and is the first record of this species from this region. Other species of crustaceans found in the studied wells were non-obligate groundwater inhabitants occurring mainly in surface inland waters. Considering ostracods, all the remaining non-stygobite species collected during this study, have been already recorded in groundwaters of Poland [24] (Table 3). Two of these, *Cavernocypris subterranea* and *Fabaeformiscandona brevicornis* may qualify as stygophiles or crenobionts, as they inhabit both groundwaters and surface waters associated with springs [24,44].

Statistical analyzes showed that the species richness and abundance of crustacean fauna in the studied wells depended especially on the bedrock in which the wells are located, and not on the measured chemical and physical parameters of water. For Ostracoda growth and survival may be greatly affected by the solute composition and concentration of major ions in water. In waters depleted in calcium and magnesium ostracod shell calcification at moulting may be disturbed, resulting in development of not fully calcified, soft carapaces [70]. It seems that wells localized in the geological formation of the Cretaceous marls and characterized by the highest average calcium concentration in water, proved to represent the habitat successful for ostracoda populations. Ostracods in the Prandocin wells had indeed the highest abundances and species richness. The low abundance and number of copepods species in Jurassic wells could be influenced by pollution of some of them (especially in Wi). Results based on various groups of benthic fauna (excluding microcrustaceans) studied in the wells located in the flysch and limestone regions showed that the parameters of water chemistry related to the pollution and depth of the studied wells influenced the diversity, composition and abundance of the fauna [3]. However, it was possible that other constrains, including water properties (including that not measured during this survey) and/or sediment type and some biological factors might also play important role in determining the demonstrated differences in crustacean alpha diversity and abundances between subterranean waters of the studied geological formations. Groundwater invertebrates in Poland have been studied from different perspectives, including a focus on regions, habitats and finding stygobiontic species. The south of Poland is the best studied region, the north is the weakest. In Poland, up to now among the total species number of crustaceans (95 taxa) found in groundwater (caves, wells and interstitial
waters), only 24 obligate stygobiont species were recorded (nine species of amphipods, one bathynellacean, one isopod, four copepods and nine ostracods) (Table 3). The most diverse groups are copepods and ostracods. Most stygobionts have a narrow range, so the risk of species extinction is particularly high in the face of the increase in multiple anthropogenic pressures [71,72]. Our study showed that the literature concerning Polish crustacean fauna from subterranean waters (including stygobiont species) is still limited and thus provides an opportunity for further study. Especially the crustaceans fauna in interstitial water has been weakly studied, resulting in a small number of species known from this habitat. Knowledge on the diversity of faunal communities that live in wells can be used to monitor, protect, and manage the environment and can be useful for public health by indicating local water pollution.

Author Contributions: Conceptualization, A.P. and E.D.; investigation, E.D. and J.G.; laboratory analyses, A.P., M.K. and T.N.; software, M.K. and T.N.; writing—original draft preparation, A.P., M.K., T.N.; writing—review and editing, A.P., T.N., J.G. and E.D.; visualization, A.P. and M.K.; supervision, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by subvention of Institute of Nature Conservation, Polish Academy of Sciences (A.P., E.D., J.G.) and partly by the internal grant of the University of Gdansk No. 531-D090-D818-21 attributed to T.N.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments: We would like to thank Hanna Kuciel and Andrzej Kalemba for their help with drawing works. We extend our thanks to Henri Dumont for the assistance in language editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gibert, J.; Culver, D.C. Assessing and conserving groundwater biodiversity: An introduction. *Freshw. Biol.* 2009, 54, 639–648. [CrossRef]

2. Sket, B. High biodiversity in hypogean waters and its endangerment-the situation in Slovenia, the Dinaric karst, and Europe. *Crustaceana* 1999, 72, 767–779. [CrossRef]

3. Dumnicka, E.; Galas, J.; Krodkiewska, M. Patterns of benthic fauna distribution in wells: The role of anthropogenic impact and geology. *Vadose Zone J.* 2017, 16, 1–9. [CrossRef]

4. Kayo, R.T.; Mormonier, P.; Togouet, S.H.Z.; Nola, M.; Piscart, C. An annotated checklist of freshwater Stygobiontic crustaceans of Africa and Madagascar. *Crustaceana* 1912, 85, 1613–1631.

5. Reháčková, V. Well-water organisms of Prague. *Rozpr. Česk. Akad. Věd.* 1953, 63, 1–35.

6. Kulhavý, V. Beitrag zur Kenntnis der Crustaceenfauna tschechoslowakischer Grundgewässer. *Vestn. Cesk. Spol. Zool.* 1960, 24, 287–306.

7. Terek, J.; Brázda, J. Fauna of wells outside settlements on Východoslovenská nížina (Czechoslovakia). *Biologia* 1986, 41, 971–979.

8. Hahn, H.J.; Fuchs, A. Distribution patterns of groundwater communities cross aquifer types in south-western Germany. *Freshw. Biol.* 2009, 54, 848–860. [CrossRef]

9. Arnscheidt, J.; Hahn, H.J.; Fuchs, A. Aquatic subterranean Crustacea in Ireland: Results and new records from a pilot study. *Cave Karst Sci.* 2008, 35, 53–58.

10. Wrzesiński, A. O trzech kiełżach podziemnych. *Pamiętnik Fizyogr.* 1888, 8, 221–330.

11. Jaworowski, A. Fauna studzienna miast Krakowa i Lwowa. *Spraw. Kom. Fizyograf. AU W Krakowie* 1893, 28, 29–48.

12. Skalski, A.W. Oślicka *Asellus aquaticus* (L.) (Isopoda) w wodach podziemnych południowej Polski. *V Rocz. Muz. Okręgowego W Częstochowie Przyr.* 1981, 2, 85–88.

13. Sywula, T. *Bathynella natans* Vejdovsky, 1882 i *Proasellus slavus* (Remy, 1948), nowe dla Polski podziemne skorupiaki. *Prz. Zool.* 1989, 33, 77–82.

14. Tabacki, A. Widłonogi (Copepoda) rzeki Grabi (część faunażystyczna). *Zesz. Nauk. Univ. Łódź, seria II, Nauki Mat.-Przyr.* 1971, 44, 31–52.

15. Tabacki, A. Widłonogi (Copepoda) wód studziennych okolic Sulejowa koło Łodzi. *Acta Univ. Łódz. Zeszyty Naukowe UL. Nauki Mat-Przyr. Ser. II* 1980, 33, 123–128.
16. Wróblewski, A.; Sywula, T. Copepoda-Widłonogi. In Checklist of animals of Poland; Razowski, J., Ed.; ISEZ PAN: Kraków, Poland, 1997; pp. 158–164.
17. Czaja, M. Widłonogi Copepoda Cyclopoidea Ojcowskiego Parku Narodowego. Master’s Thesis, University of Gdansk, Gdansk, Poland, 1999.
18. Karpowicz, M. New data to the knowledge on the Harpacticoida (Crustacea, Copepoda) fauna in Poland. Fragm. Faun. 2016, 59, 87–98.
19. Kur, J. Zmienność Populacyjna Widłonogów Copepoda w Wodach Podziemnych Południowej Polski. Praca Doktorska; IOP Publishing: Kraków, Poland, 2012.
20. Kur, J.; Mioduchowska, M.; Kilikowska, A. Distribution of cyclopoid copepods in different subterranean habitats (southern Poland). Oecanol. Hydrobiol. Stud. 2020, 49, 255–266. [CrossRef]
21. Sywula, T. The ostracods (Ostracoda) of the River Raba and of certain aquatic environments connected with it. Acta Hydrobiol. 1974, 16, 255–277.
22. Sywula, T. Notes on Ostracoda. XIV. Interesting species from the basin of the River Raba (South Poland). Ann. Zool. 1974, 32, 59–73.
23. Sywula, T. New species of Ostracoda (Crustacea) from subterranean waters of Poland. Bull Acad. Pol. Sci. Ser. Sci. Biol. Cl II 1976, 24, 271–278.
24. Sywula, T. Mażoraczki (Ostracoda) wód podziemnych Polski. V Rocznik Muzeum Okręgowego W Częstochowie Przyroda 1981, 2, 89–96.
25. Sywula, T. Skorupiaki (Crustacea) Bieszczady (z wyjątkiem Małacostraca). Monogr. Bieszcz. 2000, 7, 49–54.
26. Skalski, A.W. Flora i fauna jaskiń Węzyny Krakusowsko-Częstochowskiej. I Sympozjum Jurajskie Człowiek i środowisko naturalne Wężyny Krakusowsko-Częstochowskiej. Dąbrowa Górnicza 5-6 V; Dąbrowa Górnicza: Silesia, Poland, 1992; Volume 1993, pp. 145–187.
27. Baltanás, A.; Namiotko, T.; Danielopol, D.L. Biogeography and disparity within the genus Cryptocandona (Crustacea, Ostracoda). Vie Et Milieu Life Environ. 2000, 50, 297–310.
28. Sywula, T.; Jedryczkowski, W.B. Skorupiaki (Crustacea). In Flora i Fauna Pienin; Razowski, J., Ed.; Monografie Pienińskie: Krościenko, Poland, 2000; pp. 107–110.
29. Von Haeckel, K. Niphargus aquilex im Odergebiet. Zool. Anz. 1907, 32, 430–431.
30. Micherdziński, W. Kielce rodzaju Gammarus FABRICIUS (Amphipoda) w wodach Polski. Acta Zool. Crac. 1959, 4, 527–637.
31. Skalski, A.W. Niphargus casimiriensis sp.n., a new species of hypogeous amphipod from Poland (Crustacea, Niphargidae). Acta Hydrobiol. 1980, 22, 217–227.
32. Skalski, A.W. Niphargus leopoliensis Jaworowski, 1983 (Amphipoda) in Poland. Przegląd Zool. 1980, 24, 97–101.
33. Skalski, A.W. The hypogeous gammarids in Poland (Crustacea, Amphipoda, Gammaridae). Acta Hydrobiol. 1970, 12, 431–437.
34. Skalski, A.W. Distribution des Amphipodes souterrains en Pologne, avec notes sur la variabilité du Niphargus tatrensis Wrześniowski. In Proceedings of the Actes du Ier Colloque International sur le genre Niphargus, Verona, Italy, 15–19 April 1969.
35. Skalski, A.W. Podziemne obunogi (Amphipoda) w wodach Polski. V Rocznik Muzeum Okręgowego W Częstochowie. Przyroda 1981, 2, 61–83.
36. Skalski, A.W. Groundwater fauna of the Małopolska Gap of the Vistula. Pol. Arch. Hydrobiol. 1982, 29, 387–404.
37. Konopacka, A.; Jazdowski, K. Groundwater crustaceans of the wells in the Grabia river system (Central Poland). In Proceedings of the 2nd European Crustacean Conference, Liege, Belgium, 2–4 September 1996.
38. Dumnicka, E.; Galas, J. An overview of stygobiotic invertebrates of Poland based on published data. Subterr. Biol. 2017, 23, 1–18. [CrossRef]
39. Karpowicz, M.; Paciecha, A.; Hołyńska, M.; Dumnicka, E.; Galas, J. Groundwater copepods from Carpathian flysch in south Poland. In Proceedings of the III Krajowa Konferencja Zooplanktonowa, Szczecinek, Poland, 20–22 June 2018.
40. Janetzky, W.; Enderle, R.; Noodt, W. New or rare species of Diacyclops Kiefer, 1927 (Copepoda, Cyclopoida) from different groundwater habitats in Italy. Hydrobiologia 1987, 148, 103–114. [CrossRef]
41. Sywula, T. Mażoraczki Ostracoda; PWN: Warszawa-Poznań, Poland, 1974.
42. Meisch, C. Freshwater Ostracoda of Western and Central Europe; Spektrum Akademischer: Heidelberg, Germany, 2000.
43. Namiotko, T.; Danielopol, D.L.; Meisch, C.; Gross, M.; Mori, N. Redefinition of the genus Typhlocypris Vejdosky, 1882 (Ostracoda, Candoniidae). Crustacaea 2014, 87, 952–984. [CrossRef] [PubMed]
44. Karaman, G.S.; Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen Tot De Dierkunde 1977, 47, 1–97. [CrossRef]
50. Hajduk, Z.; Ogorzałek, A. *Niphargellus arndti* (Schellenberg, 1933) z jaskini Kontaktowej koło Kletna. *Acta Univ. Wratislav. 3. Stud. Geogr.* 1978, 24, 155–157.

51. Lorenc, M.W.; Chlebicki, A.; Szumska, E. Mieszkańcy dawnych wyrobisk kopalni złota w Złotym Stoku. In *Proceedings of the Materiały 37 Sympozjum Speleologicznego, Wojcieszów, Poland*, 24–26 October 2003.

52. Konopacka, A.; Sobocińska, V. Uwagi na temat występowania skorupiaka *Synurella ambulans* (Müll.) (*Amphipoda, Crangonyctidae*) w Polsce. *Przegl. Zool.* 1992, 32, 123–131.

53. Dumnicka, E.; Wojtan, K. Faune aquatique de la grotte Chelosiowa Jama (Montagnes Świętokrzyskie, Pologne Centrale). *Mém. Biospéol.* 1994, 21, 53–56.

54. Dumnicka, E.; Galas, J.; Karlikowska, J.; Szoñber, N. Temporary co-existence of aquatic and terrestrial invertebrates in shallow periodically flooded and frozen cave. *Biologia* 2015, 70, 1201–1209. [CrossRef]

55. Dumnicka, E.; Wojtan, K. Differences between cave water ecological systems in the Kraków—Częstochowa Upland. *Stygologia* 1990, 5, 241–247.

56. Chodorowska, W.; Chodorowski, A. Ugrupowania fauny wodnej w jaskiniach tatrzanskich. *Speleologia II* 1960, 1, 57–62.

57. Stammer, H.J. Die Höhlenfauna des Glazer Schneeberges. 8. Die Wasserfauna der Schneeberghöhlen. *Beitrage Zur Biologie Des Glatzer Schneeberges* 1936, 2, 199–214.

58. Konopacka, A. *Studnie Okolic Rzeki Grabi*; University of Lodz: Lodz, Poland, 1993; Unpublished work.

59. Jakubisiak, S. Materiały do fauny skorupiaków widłonogich (*Copepoda*) z rodziny *Harpacticidae* w Poznań i na Pomorzu. *Spraw. Komisji Fizjograf. P AU* 1931, 65, 31–65.

60. Klie, W. *Candona latens*, ein neuer Muschelkrebs aus dem Grundwasser von Mittelfranken. *Zool. Anz.* 1940, 131, 101–104.

61. Klie, W. Zur Kenntnis der Ostracodenarten *Candona eremita* (Vejdovsky) und *Candona reducta* Alm. *Mitteilungen über Höhlen Und Karstforschung* 1940, 1, 24–29.

62. Heck, K.L.; van Belle, G.; Simberloff, D. Explicit calculation of the rarefaction curves diversity measurement and the determination of sufficient sample size. *Ecology* 1975, 56, 1459–1461. [CrossRef]

63. Rózkoński, J. Transformations in chemical composition of karst water in the southern part of the Krakow upland (Rudawa and Pradoń drainage areas). *Kras Speol.* 1996, 1, 1–106.

64. Rózkoński, J. *Groundwaters of Carbonate Formations in the Southern Part of Jura Krakowsko-Częstochowska and Problems with Their Protection*; University of Silesia: Katowice, Poland, 2006.

65. Ellis, J.; Dottridge, J. Nitrate contamination of shallow groundwater in the Carpathian foothills (southern Poland). *Prec. Geogr. 1998*, 103, 147–157.

66. Żelazny, M. Biogenic Compounds in Precipitation Water, Streamwater and Groundwater in Catchments with Different Land Uses in the Wiśnickie Foothills, Southern Poland. *Inst. of Geogr. and Spatial Manage; Jagiellonian University: Krakow, Poland*, 2005.

67. Iepure, S.; Namiotko, T.; Danielopol, D.L. Evolutionary aspects within the species group *Pseudocandona eremita* (Vejdovsky) (*Ostracoda, Candonidae*). *Hydrobiologia* 2007, 585, 159–180. [CrossRef]

68. Namiotko, T. *Ostracoda (Crustacea) of Żuławy Wiślane (Vistula Fen Country, Northern Poland).* *Acta Zool. Crac.* 1990, 33, 459–484.

69. Namiotko, T.; Sywula, T. Zgrupowanie skorupiaków (*Crustacea*) rowów melioracyjnych koło Szymankowa na Żuławach Wiślanych. *Zesz. Nauk. Uniw. Gdański Biologia* 1993, 10, 159–162.

70. Mesquita-Joanes, F.; Viehberg, F.; Smith, A.J. The biology and ecology of ostracods. In *Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Science Series*; Horne, D.J., Holmes, J.A., Rodriguez-Lazaro, J., Viehberg, F.A., Eds.; Elsevier Science Publishing: Amsterdam, The Netherlands, 2012; Volume 17, pp. 15–35.

71. Malard, F.; Plenet, S.; Gibert, J. The use of invertebrates in ground water monitoring: A rising research field. *Groundw. Monit. Remedi.* 1996, 16, 103–113. [CrossRef]

72. Danielopol, D.L.; Griebler, C.; Gunatilaka, A.; Notenboom, J. Present state and future prospects for groundwater ecosystems. *Environ. Conserv.* 2003, 30, 104–130. [CrossRef]