Allelic lineages of the ficolin genes (FCNs) are passed from ancestral to descendant primates

Hummelshøj, Tina; Nissen, Janna; Munthe-Fog, Lea; Koch, Claus; Bertelsen, Mads Frost; Garred, Peter

Published in:
P L o S One

DOI:
10.1371/journal.pone.0028187

Publication date:
2011

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Hummelshøj, T., Nissen, J., Munthe-Fog, L., Koch, C., Bertelsen, M. F., & Garred, P. (2011). Allelic lineages of the ficolin genes (FCNs) are passed from ancestral to descendant primates. P L o S One, 6(12), e28187. https://doi.org/10.1371/journal.pone.0028187
Allelic Lineages of the Ficolin Genes (FCNs) Are Passed from Ancestral to Descendant Primates

Tina Hummelshøj, Janna Nissen, Lea Munthe-Fog, Claus Koch, Mads Frost Bertelsen, Peter Garred

Introduction

The ficolins are pattern recognition molecules of importance for innate immunity [1]. Their key function is to bind carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate species suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.
The FCN genes have been identified in a number of species such as mice, rats, chickens, pigs, hedgehogs, frogs and in the invertebrate ascidians. Rodents express only two ficolins designated ficolin-A and ficolin-B. Recently, it was suggested that the mouse fcbn gene is the orthologue to the human FCN1 gene whereas the mouse fcdn gene more likely seems to be a parologue to the mouse fcbn gene, as the human FCN2 gene is the paralogue to the human FCN1 gene [14,15]. Searches in databases and phylogenetic tree analyses have demonstrated that ficolin precursor molecules have gone through expansions involving independent duplication events in the different branches of the evolutionary tree [15,16].

Phylogenetic analysis suggests that the mammal FCN3 gene branched out by gene duplication in early vertebrate evolution [15,16]. Based on this, the origin of ficolin-3 goes back to the evolutionary stage before the divergence of frogs. Nevertheless, in mice and rats the FCN3 gene is found as a pseudogene containing several stop codons [14]. So far, no orthologue to the human ficolin-2 or ficolin-3 molecules has been described in other species.

Here we describe the characterization of the FCN genes in a number of non-human primate species and demonstrate for the first time the ficolin-2 and ficolin-3 structure in sera outside the human situation in different primate species. Moreover, we provide strong evidence that allelic lineages of the FCN genes may have been past during evolution.

Results

The primate FCN genes

The exons and intron-exon boundaries of the FCN1, FCN2 and FCN3 genes were sequenced on genomic DNA from the following higher and lower primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. Alignment data of FCN1, FCN2 and FCN3 nucleotide sequences are shown in figures 1, 2, 3, respectively. Alignment data of ficolin-1, ficolin-2 and ficolin-3 protein sequences are shown in figures 4, 5, 6, respectively. Positions of all the DNA variations among each species are counted in relation to the human FCN1, FCN2 or FCN3 translation start site with the A nucleotide of ATG being nucleotide position (nt) +1. Data of discovered variations are given in table 1A (ficolin-1), table 2A (ficolin-2) and table 3A (ficolin-3). All these variations were observed in more than one individual or observed as heterozygote sequences indicating a true genetic variation. Deviations from the published reference sequences are given in tables 1, 2, 3B. In these nucleotide positions we could not confirm the allele given by the published reference sequences are given in tables 1, 2, 3B. In these investigations the nucleotide &alleles (figure 7A). Allele 2 is similar to the human and other primates in the region of exon 2 whereas the allele 1 has an insert of 19 nucleotides between the human nt+1504 and +1505 (figure 7B). This insertion causes a reading frame shift, which further causes a premature AMB-stop codon to arise in nt+1514. Furthermore, in exon 8 a nucleotide (nt+6647) is deleted in both alleles of the common marmoset FCN1 gene, which make the amino acid sequence shift in the reading frame compared to the human gene (figure 7C). However, two downstream deletions at nt+6687 and +6693 revert the sequence into correct reading frame. In total these three variations alter 15 amino acids of the FCN2 domain.

Additionally, eight nucleotides are deleted in the N-terminal region of exon 9 (nt+7965–7972) and 15 nucleotides are deleted in the C-terminal region of exon 9 (nt+7986–8000) (figure 7C). This alters the reading frame and gives rise to a premature OPA-stop codon.

Gene variations in FCN2

A total of 19 DNA variations were identified in the coding region of FCN2 whereof ten were found in exon 6 (table 2A). Several non-synonymous variations were found in chimpanzee: Val149Met, Phe155Leu; orangutan: Arg103His, Thr161Ala; rhesus macaque: Gly72Arg, Val149Met, Ala185Thr, Gln217Lys, Ser253Asn, Met260Ile; cynomolgus macaque: Val149Met, Val227Ala and common marmoset: Thr161Ala. Of these the Ala185Thr variation in exon 6 of the rhesus macaque has previously been described in humans (rs55860122).

Several variations occurred in more than one primate specie, this included the variation in n+84/Ala28Ala found in both the chimpanzee and the baboon; the variation in n+4962/Val149Met found in the chimpanzee, the rhesus macaque and the cynomolgus macaque and finally the variation in n+4998/Thr161Ala found in the orangutan and the common marmoset.

Gene variations in FCN3

A total of six amino acid substituting variations were identified in the coding region of FCN3 (table 3A). These non-synonymous variations were found in the gorilla: Gly217Ser and in the
	A	T	C	G	R	H	K	M	S	W
Human	A	T	G	G	A	C	T	G	A	C
Chimpanzee	A	T	A	T	G	A	C	T	G	A
Orangutan	T	A	T	A	T	G	A	C	T	G
Rhesus macaque	A	G	T	C	M	A	C	T	G	A
Cyto macaque	A	G	T	C	M	A	C	T	G	A
Baboon	T	T	C	A	A	A	A	A	A	A
Marmoset	A	T	A	C	A	A	A	A	A	A
	G	A	C	A	A	A	A	A	A	A
Human	A	T	C	G	A	C	T	G	A	C
Chimpanzee	A	T	A	T	G	A	C	T	G	A
Orangutan	T	A	T	A	T	G	A	C	T	G
Rhesus macaque	A	G	T	C	M	A	C	T	G	A
Cyto macaque	A	G	T	C	M	A	C	T	G	A
Baboon	T	T	C	A	A	A	A	A	A	A
Marmoset	A	T	A	C	A	A	A	A	A	A
	G	A	C	A	A	A	A	A	A	A

Figure 1. Alignment of the FCN1 nucleotide sequences. Hum REF is the human reference sequence containing the major alleles. Gene variation among a species is given by R (A or G), Y (C or T), K (G or T), M (A or C), S (G or C) or W (A or T). doi:10.1371/journal.pone.0028187.g001
Figure 2. Alignment of the FCN2 nucleotide sequences.

Hum REF is the human reference sequence containing the major alleles. Gene variation among a species is given by R (A or G), Y (C or T), K (G or T), M (A or C), S (G or C) or W (A or T).

Table:

Species	45	60	90	105	120	135	150	165	180
Human	A	A	A	A	A	A	A	A	A
Chimpanzee	T	A	T	A	T	A	T	A	T
Gorilla	T	T	T	T	T	T	T	T	T
Orangutan	T	T	T	T	T	T	T	T	T
Rh. macaque	T	T	T	T	T	T	T	T	T
Baboon	T	T	T	T	T	T	T	T	T
Narceot	T	T	T	T	T	T	T	T	T

doi:10.1371/journal.pone.0028187.g002
cynomolgus macaque: Gly72Ser, Thr125Met, Asp235Gly, Gly251Ser and Ala256Gly. The human FCN3 gene variation, +51G>A/Gly17Gly (rs56088921), where G is the major allele in humans, is found as an A nucleotide in the rhesus macaque, the cynomolgus macaque and the baboon (figure 3). The other investigated primate species had a G nucleotide located in this position. Reference sequence disagreements were only observed in the chimpanzee and the rhesus macaque (table 3B).

Figure 3. Alignment of the FCN3 nucleotide sequences. Hum REF is the human reference sequence containing the major alleles. Gene variation among a species is given by R (A or G), Y (C or T), K (G or T), M (A or C), S (G or C) or W (A or T).

doi:10.1371/journal.pone.0028187.g003

cynomolgus macaque: Gly72Ser, Thr125Met, Asp235Gly, Gly251Ser and Ala256Gly. The human FCN3 gene variation, +51G>A/Gly17Gly (rs56088921), where G is the major allele in humans, is found as an A nucleotide in the rhesus macaque, the cynomolgus macaque and the baboon (figure 3). The other investigated primate species had a G nucleotide located in this position. Reference sequence disagreements were only observed in the chimpanzee and the rhesus macaque (table 3B).
Phylogenetic analysis

The entire amino acid sequences of the ficolins from all primates investigated were aligned and constructed into neighbouring joining trees. Based on several output files, representative phylogenetic trees were constructed. The phylogenetic trees reflect the expected relationship between human and primates (figure 8).

Amino acid variability

The amino acid variability among the investigated species was estimated by calculating the Shannon entropy which is a mathematical tool to estimate variability [17]. Values below 2 are considered as conserved residues and the value 0 indicate that only one amino acid is represented at that position. The Shannon analysis revealed that the ficolins were generally highly conserved.
Ficolin-3

Figure 6. Alignment of the ficolin-3 protein sequences. Hum REF is the human reference sequence containing the major alleles. Gene variation among a species is given by an X.
doi:10.1371/journal.pone.0028187.g006

Oligomeric structure of primate ficolin-2 and ficolin-3

Serum ficolin-2 was detected in the following higher and lower primate species: chimpanzee, gibbon, baboon, cotton top tamarin, black and white ruffed lemur and golden-headed lion tamarin. The primates showed an identical banding pattern compared to the human protein at both reduced and non-reduced conditions (figure 10A). The monomer band for the black and white ruffed lemur and the golden-headed lion tamarin were not detected under reduced condition probably due to inadequately protein content or decreased cross-species specificity of the antibodies used for detection. Furthermore, we observed that some of the investigated chimpanzees had a weak extra band located just above the monomers, probably caused by different glycosylation of the monomers.

Serum ficolin-3 was detected in the following higher and lower primate species: chimpanzee, gibbon, baboon, cotton top tamarin, black and white ruffed lemur and black-handed spider monkey. The protein bands of the chimpanzee ficolin-3 was weak on western blot compared to the human and the other primates indicating that chimpanzees have a lower ficolin-3 serum concentration than all the investigated primate species. The banding pattern of serum ficolin-3 in higher and lower primate species was similar to human ficolin-3 (figure 10B). A slightly lower molecule weight of the oligomers was observed for the baboon and the cotton top tamarin.

Ficolin-2 and ficolin-3 serum concentrations in chimpanzees

In order to determine the serum concentrations of ficolin-2 and ficolin-3 in chimpanzees a sandwich ELISA was performed on serum from different chimpanzees using anti-human antibodies. Anti-ficolin-2 (FCN216/FCN219) or anti-ficolin-3 (FCN334/FCN334) monoclonal antibodies were used as coating and detection antibodies for ficolin-2 or ficolin-3, respectively. Whole serum was used as a source for ficolins. The ficolin-2 serum concentration was measured in serum from eight chimpanzees and ranged from 0.6–6.8 µg/ml with a mean serum concentration of 3.7 µg/ml (figure 11A). The ficolin-3 serum concentration was measured in serum from eight chimpanzees and ranged from 0.3–2.5 µg/ml with a mean serum concentration of 1.1 µg/ml (figure 11B).

Discussion

This is the first report of the FCN genes in non-human primate species. The FCN1, FCN2 and FCN3 genes were investigated for DNA variations in samples from the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. As in humans, the FCN genes of the investigated primate species were found to be polymorphic and several novel variations in all three FCN genes within each primate species were found. Several variations compared with the reference sequences were observed in all three FCN genes which might reflect inter-individual variations.

Non-synonymous variations in the coding region may be critical for the function and structure of the protein. They may introduce stop codons or frame shifts that lead to defective or truncated proteins. The post-translational modifications, intramolecular interactions and the three-dimensional structures could also be affected. When comparing the non-synonymous variations found in the human FCN genes with the primate FCN genes a striking similarity in the locations is observed (figure 12). Most of the non-synonymous variations are clustered in the FBG domain in the FCN genes and may thus affect ficolins affinity or specificity of carbohydrate binding to microorganisms. During evolution the FBG domain may have co-evolved with microorganisms and modification of the FBG domain could give rise to a broader diversity against different microorganisms.
Several non-synonymous variations were found in the collagen-like domain of *FCN1* in the primate species, which is not observed to the same degree in the *FCN2* or *FCN3* genes (figure 12). Furthermore, the Shannon entropy analysis indicates higher amino acid viability of ficolin-1 compared to the other ficolins. In the chimpanzee the non-synonymous *FCN1* variation Arg93Gln situated in exon 4 encoding the collagen-like region, has previous been described in human as a common variation with an allele frequency of 0.07 (rs56345770) in the Mozambique population and an allele frequency of 0.09 in the population from Ghana [18]. Furthermore, this variation was also detected in the Japanese population with a lower allele frequency of 0.01. Non-synonymous variation situated in the collagen-like domain may influence the interaction with the MASPs, which are responsible for activating the lectin pathway of the complement system. Whether these variations in the collagen-like domain affect the MASPs binding to ficolin-1 remain to be elucidated. These variations could also prevent the correct folding of the oligomers, causing protein instability, reduced protein concentration and/or reduced binding capacity towards ligands due to incomplete oligomerization.

In the signal peptide of *FCN1* a novel non-synonymous variation Glu2Lys was found in the cynomolgus macaque that might affect the secretion of the protein. In the FBG domain six new non-synonymous variations were detected (figure 12). Non-synonymous variation situated in the FBG domain may affect the affinity and specificity of the carbohydrate binding towards microorganisms.

SS number	Nt pos	H-ref	P-ref	Var	Exon	AA change
Cynomolgus macaque 410999239	+4	G	G	A	1	Glu2Lys
Cynomolgus macaque 410999243	+1433	G	G	A	2	Glu42Glu
Rhesus macaque 410999810	+1478	C	C	T	2	Pro57Pro
Rhesus macaque 410999812	+1509	G	A	G	2	Ile68Val
Rhesus macaque 410999815	+1510	T	T	C	2	Ile68Ala
Baboon 411633418	+1521	A	A	G	2	Arg72Gly
Chimpanzee 410998762	+3458	G	G	A	4	Arg93Gln
Cynomolgus macaque 410999245	+3462	A	A	C	4	Gly94Gly
Marmoset 411633438	+3487	G	G	A	4	Gly103Arg
Cynomolgus macaque 410999247	+4785	A	A	C	6	Thr133Pro
Cynomolgus macaque 410999249	+4787	C	C	T	6	Thr133Thr
Cynomolgus macaque 410999251	+4810	C	T	C	6	Leu141Pro
Rhesus macaque 410999817	+5272	A	A	G	7	Met162Val
Rhesus macaque 410999819	+5283	T	C	T	7	Ser165Ser
Cynomolgus macaque 410999252	+5283	T	C	T	7	Ser165Ser
Rhesus macaque 410999821	+5332	C	C	T	7	Arg182Trp
Orangutan 411000703	+5355	G	G	A	7	Gly189Gly
Orangutan 411000733	+6684	T	T	C	8	Ala226Ala
Rhesus macaque 410999822	+6684	T	T	C	8	Ala226Ala
Rhesus macaque 410999824	+6685	G	G	A	8	Gly227Ser
Orangutan 411633412	+6708	T	T	G	8	Leu234Leu
Orangutan 411000734	+6726	C	C	T	8	Val240Val
Orangutan 411000736	+7839	C	C	T	9	Thr249Met
Cynomolgus macaque 410999254	+8020	G	A	C	9	Ala309Ala
Orangutan 411000738	+8035	T	C	T	9	Tyr314Tyr
Gorilla 41099518	+2	T	N	C	1	Met1Thr
Orangutan 411000741	+1451	C	dC	C	2	Thr48Thr
Orangutan 411000743	+1472	G	dG	G	2	Gly55Gly
Marmoset 411633439	+6650	A	G	T	8	Ala2155Ser

SS: NCBI submission number, **Nt pos:** nucleotide position, **H-ref:** human reference sequence, **P-ref:** primate reference sequence, **Var:** variation detected, **AA change:** amino acid change. The non-synonymous variations are highlighted in bold.

(A) Genetic variations identified in the *FCN1* gene. (B) Disagreement with the reference sequence in the *FCN1* gene.

doi:10.1371/journal.pone.0028187.t001
found as an alanine residue in the orangutan, the rhesus macaque, the cynomolgus macaque and the baboon. This may change the binding pocket and thus interfere with ligand binding.

The initiating codon methionine (ATG) of the gorilla FCN1 gene was found to be located in residue 8 with respect to the human sequence. This variant affects the signal peptide by a reduction of 7 amino acids and whether the secretion of the protein is affected remains to be investigated.

A significantly different allele of the FCN1 gene was detected in the common marmoset. This novel allele (named allele 1) carries an insert of 19 nucleotides resulting in an altered amino acid composition in the N-terminal region of the molecule spanning from nt+1504 to a premature stop codon in nt+1514 thus giving rise to a putative truncated form of ficolin-1. Individuals heterozygous for this variant allele may have a lower ficolin-1 concentration compared to individuals with the “normal” allele and homozygous individuals may likely have a significantly altered ficolin-1 molecule that even may be non-functional. Moreover, the FBG domain of both common marmoset FCN1 alleles lack several nucleotides compared to the human sequence affecting 25 amino acids. The functional effect of these differences in the FGB domain of the common marmoset ficolin-1 molecule remains to be elucidated.

Table 2. Variation in the FCN2 gene.

(A)	SS number	Nt pos	H-ref	P-ref	Var	Exon	AA change
Rhesus Macaque	411021567	+48	G	G	T	1	Leu16Leu
Chimpanzee	411018865	+84	G	G	A	1	Ala28Ala
Baboon	411633428	+84	G	G	A	1	Ala28Ala
Rhesus Macaque	411021569	+1818	G	G	C	2	Gly72Arg
Orangutan	411020623	+4424	G	G	A	5	Arg103His
Chimpanzee	411018867	+4962	G	G	A	6	Val149Met
Rhesus Macaque	411021571	+4962	G	G	A	6	Val149Met
Cynomolgus Macaque	411019266	+4962	G	G	A	6	Val149Met
Marmoset	411633440	+4967	T	C	T	6	Asp150Asp
Cynomolgus Macaque	411019268	+4973	T	C	T	6	Ser152Ser
Chimpanzee	411018869	+4982	C	C	A	6	Phe155Leu
Orangutan	411020624	+4998	A	A	G	6	Thr161Ala
Marmoset	411633441	+4998	A	G	A	6	Ala161Thr
Marmoset	411633442	+5003	C	C	T	6	Tyr162Tyr
Rhesus Macaque	411021573	+5048	T	C	T	6	Asn177Asn
Baboon	411633429	+5060	C	C	T	6	His181His
Marmoset	411633443	+5060	C	C	T	6	His181His
Marmoset	411633444	+5069	C	C	T	6	Thr184Thr
Rhesus Macaque	411021575	+5070	G	G	A	6	Ala185Thr
Orangutan	411020627	+5688	C	C	T	7	Ala213Ala
Rhesus Macaque	411021577	+5698	G	G	A	7	Glu217Lys
Cynomolgus Macaque	411019269	+5729	T	T	C	7	Val227Ala
Rhesus Macaque	411021581	+6410	A	G	A	8	Ser253Asn
Rhesus Macaque	411021583	+6432	G	G	A	8	Met260Le

(B)	SS number	Nt pos	H-ref	P-ref	Var	Exon	AA change
Rhesus Macaque	411021584	+84	G	A	G	1	Ala28Ala
Chimpanzee	411018872	+3940	C	T	C	4	Leu97Pro
Rhesus Macaque	411021586	+4947	G	A	G	6	Ile144Val
Gorilla	411019539	+4962	G	N	G	6	Val149Val
Orangutan	411020629	+5023	G	A	G	6	Gln169Arg
Marmoset	411633445	+5045	G	A	G	6	Gly176Gly
Marmoset	411633446	+5073	C	A	C	6	Arg186Arg
Orangutan	411020631	+5644-5645	-	G	-	7	Asp200Asp
Chimpanzee	411018874	+6478	A	G	A	8	Asp276Asn

SS: NCBI submission number, Nt pos: nucleotide position, H-ref: human reference sequence, P-ref: primate reference sequence, Var: variation detected, AA change: amino acid change. The non-synonymous variations are highlighted in bold.

(A) Genetic variations identified in the FCN2 gene. (B) Disagreement with the reference sequence in the FCN2 gene.
doi:10.1371/journal.pone.0028187.t002
Several novel non-synonymous variations were found in the FCN2 gene in the investigated primate species. The Ala185Thr variation detected in the rhesus macaque has previously been described in human in the Japanese population (rs55860122) with a frequency of 0.01 [18]. Interestingly, the non-synonymous variation Val149Met occurred in more than one primate species, namely in the chimpanzee, the rhesus macaque and the cynomolgus macaque. Additionally, the Thr161Ala was found in both the orangutan and marmoset. The crystal structure of the FBG domain of the ficolin-2 and its interactions with ligands has been described [20] showing that the amino acid Thr161 (Thr136 in Garlatti et al. [20]) since their nomenclature does not contain the signal peptide of 25 amino acids) is located in the S3 binding site and that the amino acids is involved in the interaction with GalNAc, acetylcholine and curdlan. This variation, Thr161Ala, may likely affect the interaction with ligands.

The crystal structure of ficolin-2 also indicates that Van der Waals contact is established between Phe114 and Gln164 (Phe89 and Gln139 in Garlatti et al. [20]). The baboon contained an arginine in residue 164 instead of a glutamine and may interfere with the inter proteomer interfaces of ficolin-2. Furthermore, the Asn253 (Asn228 in Garlatti et al. [20]) is involved in the Ca$^{2+}$ coordination and the common marmosot contains a histidine in this residue, which might affect the interaction with Ca$^{2+}$ and thereby affect the Ca$^{2+}$-dependent ligand binding.

A synonymous FCN2 variation A +5060C>T/His181His was found in the baboon and the common marmoset. This variation was previously detected in the human samples from Argentina, Japan, Denmark and Ghana (rs34789496) with an allele frequency of 0.19, 0.14, 0.03 and 0.01, respectively [18].

Moreover, the human synonymous variation in nt+177G>A/Gly54Gly (rs55865317) is found as an A nucleotide in the common marmoset but not in the rest of the investigated primate species which has a G nucleotide in this position. This may indicate that the A to G nucleotide exchange may have arisen after the branching of the marmoset lineage.

An intact and highly conserved FCN3 gene was found in all the investigated primate species. Nevertheless, in mice and rats the FCN3 gene has been identified as a pseudogene and it is reasonable to assume that the gene-inactivation has arisen after the branching of the rodent lineages [14–16]. As for human, the primate FCN3 genes contained only few genetic variations in contrast to the FCN1 and FCN2 genes. Only six different variations were found, which were distributed between the gorilla: Gly217Ser and the cynomolgus macaque: Gly72Ser, Thr125Met, Asp235Gly, Gly251Ser and Ala256Gly. Why the FCN3 gene of the cynomolgus macaque was found to be more polymorphic than the rest of the investigated primates remains speculative. In human FCN3, a synonymous variation is described in nt+51G>A/Gly17Gly (rs55865317). This variation was not found as a mutation in any of the investigated species, however, the +51 nucleotide is found as an A in the rhesus macaque, the cynomolgus macaque and the baboon. The rest of the investigated primate species all had a G nucleotide located in this position, indicating that this variation has arisen after the branching of the primate lineages.

The phylogenetic relationship between the primate ficolins was analyzed by neighbouring joining trees created from the entire proteins sequences. For all tree ficolins, the sequences from human, gorilla and chimpanzee formed a tight cluster supported by high bootstrap percentages. Also the baboon, rhesus macaque and cynomolgus macaque sequences formed tight clusters. When analyzing the amino acid variability among the primate ficolins, the Shannon entropy indicated a general high conservation between the investigated species. However, ficolin-1 and ficolin-2 tend to be more variable than ficolin-3.

Few FCN polymorphisms were not exclusive for one species. This could be compatible with the notion that a number of founder individuals are carrying genetic information over the species barriers and that allelic lineages may be passed from ancestral to descendant species. This phenomenon is well described in the major histocompatibility complex system as so-called trans-species polymorphisms [21]. However, it cannot be excluded that our observation is due to convergent evolution although this does not seem to be very likely based on our phylogenetic tree analysis and nucleotide alignment data.

It was not possible to collect serum samples from all sequenced primate species. Nevertheless, we obtained serum samples from the following primate species: chimpanzee, gibbon, baboon, cotton top tamarin, golden-headed lion tamarin, black and white ruffled lemur and black-handed spider monkey. All the assays performed on primate serum were optimised on human serum using anti-human ficolin antibodies. However, the antibodies also reacted against primate ficolins, compatible with the sequence data that non-human primate and human ficolins are very homologous.
Ficolin-1 is found in very low concentration in human serum [6,7]. Due to the low quantities of non-human primate serum available for this investigation and the lack of a reliable specific anti-ficolin-1 antibody we were not able to analyse the oligomeric structure and serum concentration of ficolin-1 in this study. However, all primate species investigated had detectable ficolin-2 protein in their sera when analyzing serum on SDS-PAGE followed by western blotting. The banding pattern of ficolin-2 was

![Image of domain organisation of the human and marmoset FCN1 genes (A).](image)

Two alleles of marmosets FCN1 were identified. Exons are indicated with black vertical lines. Variations are indicated with blue boxes. Ex: exon, NS AA: non-synonymous amino acid, nt: nucleotide.

Figure 7. Illustration of the domain organisation of the human and marmoset FCN1 genes (A). Two alleles of marmosets FCN1 were identified. Exons are indicated with black vertical lines. Variations are indicated with blue boxes. Ex: exon, NS AA: non-synonymous amino acid, nt: nucleotide. Alignment of nucleotide/protein sequences of exon 2 of the two FCN1 marmoset alleles (B). The marmoset allele 1 sequence has an insertion of 19 nucleotides between nt +1504–1505, which causes a reading frame shift, and subsequently gives rise to a premature stop codon in nt +1514. Alignment of nucleotide/protein sequences of exon 8 and exon 9 of the human and marmoset FCN1 genes (C). In exon 8 a nucleotide is deleted in nt +6647, which makes the sequence go out of reading frame. In nt +6687 and +6693 a nucleotide is deleted making the sequence go back into reading frame. These deletions change 15 amino acids in the FBG domain before it goes into reading frame again. In exon 9 eight nucleotides are deleted in nt +7965–7972 and moreover 15 nucleotides are deleted in nt +7986–8000, which causes a reading frame shift and give rise to a premature stop codon, making the ficolin-1 polypeptide ten amino acid shorter in the FBG domain than the human polypeptide.

doi:10.1371/journal.pone.0028187.g007
similar with the human ficolin-2 protein, under both reduced and non-reduced conditions. The ficolin-2 serum concentration was measured in serum samples from eight chimpanzees and was found in a mean concentration of 3.7 mg/ml. These findings are in agreement with the human ficolin-2 serum concentration with a mean concentration of 5.0 mg/ml [8]. In humans, the ficolin-2 concentration vary considerably among individuals and different polymorphisms in the promoter region have been described to decrease or increase the ficolin-2 concentration [9]. Whether the same is true for the chimpanzee remains to be established and will require both mapping of the promoter region of the FCN2 gene as well as more chimpanzee individuals than those available for this study.

Until now, ficolin-3 has only been purified and characterized from humans. Serum samples from the primate species investigated were analysed on SDS-PAGE subjected to western blot. The investigated primate species all had detectable ficolin-3. All the primate species showed similar banding pattern when compared to human ficolin-3 protein under both reduced and non-reduced conditions. The ficolin-3 concentration in serum was analyzed in eight different chimpanzees and was found with a mean concentration of 1.1 μg/ml compared to a mean concentration of 25 μg/ml in the human situation [11]. The low ficolin-3 concentration observed in the chimpanzee could be a result of different circumstances. Although the chimpanzee FCN3 gene is highly homologues to the human FCN3 gene, having only four different amino acids (residue 94, 190, 225, and 295) in the mature protein the use of monoclonal antibodies may affect the ELISA results. However in SDS-PAGE/westen blot experiments, which also indicated a low ficolin-3 concentration, ficolin-3 was immunoprecipitated using a pool of anti-human-ficolin-3 antibodies and ficolin-3 was detected in western blot using a polyclonal anti-human-ficolin-3. Thus the mean ficolin-3 level in the investigated chimpanzees seems to be low when compared to humans. However, in the human situation the ficolin-3 level varies more than twenty fold from around 3 μg/ml to around 60 μg/ml among healthy individuals [11]. Thus, it could be that we detected a portion of the chimpanzees with relatively low ficolin-3 concentrations. The inter-individual variation in ficolin-3 concentration in humans cannot be accounted by any known regulatory variation in the promoter of human FCN3 gene [11], but a rare deletion in exon 5 in the human FCN3 gene decrease the serum concentration in heterozygous individuals with about 50% whereas homozygous individuals containing the deletion do not have any ficolin-3 protein [22]. Homozygosity for this deletion has been shown to be associated with immunodeficiency and severe necrotising enterocolitis in premature infants [22,23]. This variation was not detected in the chimpanzees.

Taken together, this is the first time that ficolin-2 and ficolin-3 as proteins have been demonstrated outside the human species. Ficolin-2 and ficolin-3 from the investigated non-human primates showed the same characteristic oligomeric structure as seen in humans. Moreover, non-human primate FCN genes harbour polymorphisms that may be detrimental for the proteins in the homozygous situation. Finally a few polymorphisms were not specie specific, which suggests the existence of trans-species polymorphisms in the FCN system as has been documented in the past for the major histocompatibility complex system.

Materials and Methods

Primate samples

Primate DNA derived from two chimpanzees (Pan troglodytes verus), one gorilla (Gorilla gorilla), two orangutans (Pongo pygmaeus), four rhesus macaques (Macaca mulatta), four cynomolagus macaques (Macaca fascicularis), two baboons (Papio hamadryas) and two common marmosets (Callithrix jacchus) was obtained from commercially available American Tissue Typing Collection cell lines (Manassas, VA, USA).

Freshly drawn serum from chimpanzees (n = 8), white handed gibbon (n = 1), hamadryas baboon (n = 1), cotton top tamarin (n = 1), black and white ruffed lemur (n = 1) and black-handled spider monkey (n = 1), which were frozen at −80°C until testing,
DNase was obtained from the Center for Zoo and Wild Animal Health, Copenhagen Zoo, Copenhagen, Denmark.

DNA sequencing of the FCN genes in primate species

Sequencing was performed as previously described [9]. Briefly, exons and intron-exon boundaries of the **FCN1**, **FCN2** and **FCN3** genes were sequenced using a single primer set, with a T7 tagged (5’-taatacgactcactataggg-3’) forward primer (DNA-Technology, Aarhus, Denmark) (table 4). Each PCR amplification reaction contained: 0.4 μl genomic DNA, 0.5 μM of each primer set, 1.7 mM MgCl2, 0.7 μM dNTP, and 0.25 U Platinum Taq DNA polymerase (Invitrogen, Taastrup, Denmark) at following cycling parameters: 2 min92°C, 30 cycles (30 s94°C, 30 s62°C, 60 s72°C), 5 min72°C. PCR products were sequenced using ABI BigDye cycle sequencing terminator kit (Applied Biosystems, Foster City, CA, USA) with 1 μM 5’ biotinylated T7 sequence primers. Following product purification with streptavidin sepharose beads (GE Healthcare, Brondby, Denmark) sequence analysis were performed on the ABI Prism 3130xl Genetic Analyzer (Applied Biosystems). The obtained DNA sequence was aligned using BioEdit software version 7.0.9.0 and DNA polymorphisms were visually confirmed by sequence electropherograms. Reference sequences for chimpanzee, orangutan, rhesus macaque and common marmoset were from the UCSC Genome Bioinformatics Site (http://genome.ucsc.edu) and reference sequence for the gorilla was from the Ensemble database (http://www.ensembl.org). No reference sequences were found for the cynomolgus macaque or the baboon. Thus we used the sequence of the rhesus macaque as reference. The following reference sequence were used: chimpanzee ficolin-1 (chr9:135043171–135051929), chimpanzee ficolin-2 (chr9:135013642–135020717), chimpanzee ficolin-3 (chr1:27605614–27612861), gorilla ficolin-1 (5995:42,607–52,194), gorilla ficolin-2 (5995:16,214–22,737), gorilla ficolin-3 (8428:57,060–62,627), orangutan ficolin-1 (chr9_random:3714–14502), orangutan ficolin-2 (chr9_random:12729926–12729962), orangutan ficolin-3 (chr1:202975217–202981008), rhesus ficolin-1 (chr15:3378237–3386312), rhesus ficolin-2 (chr15:3408984–3415856), rhesus ficolin-3 (chr1:30042434–30048405), common marmoset ficolin-1 (7611:78205–86501), common marmoset ficolin-2 (7611:45249–50085) and common marmoset ficolin-3 (1709:299350–303226).

Phylogenetic analysis

The entire amino acid sequences of the ficolins from all primates investigated were aligned in the program BioEdit using ClustalW with default settings. The ficolin alignments were analyzed by the MEGA5 [M3b4] software to generate a
neighbouring joining tree. The neighbouring joining was bootstrapped 500 times. Based on several output files representative phylogenetic trees were constructed.

Amino acid variability

The amino acid variability was estimated by calculating the Shannon entropy which is a mathematical tool to estimate variability [24]. For a multiple protein sequence alignment, the Shannon entropy (H) for every position is as follows:

$$H = - \sum_{i=1}^{M} P_i \log_2 P_i$$

Where P_i is the fraction of residues of amino acid type i and M is the number of amino acid types (20). H ranges from 0 (if only one amino acid is present at that position) to 3 (if all amino acids are different in that position). Typically, positions with $H > 2.0$ are

![Amino acid variability diagram](image)

Figure 10. Oligomerization pattern of primate ficolin-2 and ficolin-3 was evaluated by SDS-PAGE subjected to western blot. Samples were analysed by SDS-PAGE on 3–8% Tris-acetate gels under non-reduced and reduced conditions subjected to western blot and detected with (A) mono- and polyclonal anti-ficolin-2 or (B) mono- and polyclonal anti-ficolin-3. Arrows show the multimers and monomers of the ficolins.
doi:10.1371/journal.pone.0028187.g010

![Amino acid variability diagram](image)

Figure 11. Individual serum concentrations of ficolin-2 (A) and ficolin-3 (B) were measured in eight chimpanzees. Horizontal lines indicate means.
doi:10.1371/journal.pone.0028187.g011
Figure 12. Location of the non-synonymous variants in the FCN genes. Illustration of the domain organisation of the FCN1, FCN2 and FCN3 genes. Genetic variations are indicated with coloured dots where each species has its own colour. If the variation has previously been described in human it is indicated with a black dot. The amino acid positions of the genetic variations are shown below the genes.

doi:10.1371/journal.pone.0028187.g012

The Ficolins in Primates

PLoS ONE | www.plosone.org 15 December 2011 | Volume 6 | Issue 12 | e28187

considered variable, whereas those with H<2 are considered conserved. Highly conserved positions are those with H<1.0 [17]. Shannon values were calculated using the PVS (Protein Variability Server, Universidad Complutense de Madrid).

The oligomeric structure of ficolin-2 and ficolin-3 in primate species

Serum ficolin-2 and ficolin-3 were immunoprecipitated using Pan Mouse Dynabeads (Invitrogen, Taastrup, Denmark) pre-incubated with mouse monoclonal anti-ficolin-2 antibodies (FCN216 and FCN219) or anti-ficolin-3 antibodies (FCN309 and FCN313). Following pre-incubation the beads were washed twice in 1× PBS with 0.05% Tween 20 (PBS-T) and serum samples were added and incubated at room temperature for 1 hour. After thoroughly washing of the beads with PBS-T the samples were diluted in LDS-buffer with or without reducing agent and heated for 5 minutes at 90°C. The samples were loaded on NuPAGE 3–8% Tris-acetate gels with Tris-Acetate SDS running buffer and subsequently the separated proteins were blotted onto nitrocellulose membranes using the XCell II Mimi-Cell blot apparatus, NuPAGE transfer buffer and Hybond ECL nitrocellulose membrane. Following blocking for 1 hour with 5% skim milk solution in PBS-T, ficolin-2 and ficolin-3 were detected using biotinylated antibodies (FCN219, FCN106 or FCN334) respectively. After incubation with streptavidin-horseradish peroxidase (GE Healthcare, Brondby, Denmark) bands was visualized using Supersignal West Femto Maximum Sensitivity substrate (Pierce Biotechnology, Rockford, IL, USA).

Determination of ficolin-2 and ficolin-3 serum concentration in chimpanzees

Ficolin-2 and ficolin-3 serum concentrations were measured in eight different chimpanzees using ficolin-2 and ficolin-3 specific ELISAs as previously described [8,11]. Briefly, microtiter plates (Maxisorb, Nunc, Roskilde, Denmark) were coated with anti-ficolin-2 or anti-ficolin-3 monoclonal antibody (FCN216 or FCN334) in PBS. As calibration curve a normal human serum pool with known concentration of ficolin-2 and ficolin-3 was used. Samples were diluted 1:25 and 1:50 or 1:64 and 1:640 in triplicates in PBS-T and incubated three hours at 37°C. Bound ficolin were detected using biotinylated anti-ficolin-2 or ficolin-3 monoclonal antibody (FCN219 or FCN334) and subsequently Streptavidin-HRP (GE Healthcare, Brondby, Denmark). Plates were developed with OPD substrate solution containing H₂O₂ and terminated with 5 M H₂SO₄. The optical density was measured at OD 490 nm.

Ethics

No specific permit was needed for this study, which was undertaken using banked serum obtained during routine work in the animal collection of Copenhagen Zoo. As part of the medical management of the collection, blood is drawn for chemistry panels and complete blood counts as well as serological screening in conjunction with internal and external animal transfers, as well as during clinical examinations. As part of this protocol - and in understanding of and compliance with Danish Law – an aliquot of serum is routinely banked for epidemiological follow-up or for studies such as this. The blood was drawn from anaesthetized animals and no additional venipuncture was required.
Table 4. FCN1, FCN2 and FCN3 primers.

Exon	Forward primer* (5'-3')	Reverse primer (5'-3')	Ch	Go	Or	Rm	Cm	Ba	Ma	
FCN1	Exon 1	CTGTGGCACAAGGCGAGAG	CATCTCTCAGAGGAGATGTGC	X	X					X
	Exon 1	GGAAACATCTGTAGACCTTTTGGAGATGACC	CGAGTGTCA GTGAGTGGGG	X	X					X
	Exon 2	GACCAAGGCCAACAGCAG	TGCCCCAATCTGCAGATCCCA	X						
	Exon 2	GAAAACCTCCTTGGCAGCGC	AGTTTCAAAGAGAGCACAGGCC	X	X	X				
	Exon 3	TGCGGCAAGATCTTTCAGGG	CGAGTCTCA GTATGTTGCG	X	X					
	Exon 3	CAGAGCTTTGAACACTTGGG	CTCGAGCTCAGCTACTAGGCC	X	X	X				
	Exon 4	CACCACATTGAGACCTGG	CCAACAGGCTCAGATTGAC	X	X					
	Exon 4	CACACCTGTTGAGATCTGGG	CTCAGCGGAGAGATGGCAAG	X						
	Exon 5	GTGCCCAACTCTGCTCAGCG	X							
	Exon 5	GAAAGCTCTGGGTCAGGAG	ATATAGAGACTTCCAGAGATGTG	X						
	Exon 6	AGTCTCTGCTGGTCCGC	X							
	Exon 6	GAGGCTCTTGGCTGTCGCC	X							
	Exon 7	AGCTGGGACGCTTGGCC	X							
	Exon 7	GGCCTGCTGCTGGCCTCGC	X							
	Exon 8	CCTGCTGCTGCTGGCCTCGC	X							
	Exon 8	GAGACCTGTGGGTCAGGAG	X							
	Exon 9	GCGCCTGCTGCTGGCCTCGC	X							
FCN2	Exon 1	GAAATGGGACTGTTAGGAAGAGGAG	X	X	X					
	Exon 1	GAAAGCTCTGCGAGATCTGCTG	X							
	Exon 2	AGATGCCCTTACGTAGTGAGT	X	X	X					
	Exon 2	GACGACAGGTGCTTCAAGTGAGT	X							
	Exon 3	AGTACACGCGCCAAGCCTCC	X	X	X					
	Exon 3	AATTCAGCAGGGTGCCCTCC	X	X	X					
	Exon 4	CTGTGGGACGTCGGGCCCTG	X	X	X					
	Exon 4	GCTCTGCTGCTGGCCTCGC	X	X	X					
	Exon 5	CGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 5	GCTGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 6	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 6	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 7	GCAGACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 7	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 8	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 8	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 9	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 9	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 10	GACGCTGCTGCTGGCCTCGC	X	X	X					
	Exon 10	GACGCTGCTGCTGGCCTCGC	X	X	X					

The Ficolins in Primates

PLoS ONE | www.plosone.org 16 December 2011 | Volume 6 | Issue 12 | e28187
Table 4. Cont.

Exon	Forward primer* (5′-3′)	Reverse primer (5′-3′)	Ch	Go	Or	Rm	Cm	Ba	Ma
Exon 4	TATGGAAAGCTGGGAGAGAG	TGTTGGGAGGGGCTTGGCC	X						
Exon 4	GAAGATTTTGAGAAAGAGCC	TGTTGGGAGGGGCTTGGCC	X	X					
Exon 4	GACGGAAGCTGGGAGAGAG	TGTTGGGAGGGGCTTGGCC							
Exon 5	GAAATACCTGGCGACCAC	CTCCTGTGGGCTCTGGCTC	X	X	X	X			
Exon 5	GAAATACCTGGCTGGCC	GCAAGCGGGGGAAGTGCAC							
Exon 6	CTCACAGTCTCTCTGANCT	CAGAGAGCAGACAGATAACC	X	X	X	X	X		
Exon 7	GTTACTCTGTCCATCTGG	ACAGAGAGCAGACATGACC	X	X	X	X			
Exon 8	ATTATATCCCAAGAAGTGAG	GGAAGCAAGAGAGAGTG	X	X	X	X	X		

Ch: chimpanzee, Go: gorilla, Or: orangutan, Rm: rhesus macaque, Cm: cynomolgus macaque, Ba: baboon, Ma: marmoset.

*containing a 5′ T7-sequence (5′-taatacgactcactataggg-3′).

doi:10.1371/journal.pone.0028187.t004

Acknowledgments

The authors wish to thank Mss Vibeke Witved and Sandra Færch for excellent technical assistance.

References

1. Endo Y, Matsushita M, Fujita T (2011) The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 43: 705–712.
2. Lu J, Tay PN, Kon OL, Reid KB (1996) Human ficolin: cDNA cloning, demonstration of peripheral blood leukocytes as the major site of synthesis and assignment of the gene to chromosome 9. Biochem J 313: 473–478.
3. Liu Y, Endo Y, Iwaki D, Nakata M, Matsushita M, et al. (2005) Human m-ficolin is a secretory protein that activates the lectin complement pathway. J Immunol 175: 3159–3156.
4. Rorvig S, Honore C, Larson L, Ohlsson C, Pedersen CC, et al. (2009) Ficolin-1 is present in a highly mobilizable subset of human neutrophil granules and associates with the cell surface after stimulation with FMLP. J Leukoc Biol 86: 1439–1449.
5. Lu J, Le Y, Kon OL, Chan J, Lee SH (1996) Biosynthesis of human ficolin, an Escherichia coli-binding protein, by monocytes: comparison with the synthesis of two macrophage-specific proteins, C1q and the mannose receptor. Immunology 89: 299–294.
6. Honore C, Rorvig S, Munthe-Fog L, Hummelshoj T, Madsen HO, et al. (2008) The innate pattern recognition molecule Ficolin-1 is secreted by monocytes/macrophages and is circulating in human plasma. Mol Immunol 45: 2782–2789.
7. Wittenborn T, Thiel S, Jensen L, Nielsen HJ, Jensenius JC (2010) Characteristics and biological variations of M-ficolin, a pattern recognition molecule, in plasma. J Innate Immun 2: 167–180.
8. Munthe-Fog I, Hummelshoj T, Hansen BE, Koch C, Madsen HO, et al. (2007) The impact of FCN2 polymorphisms and haplotypes on the Ficolin-2 serum levels. Scand J Immunol 65: 383–392.
9. Hummelshoj T, Munthe-Fog L, Hansen HO, Fujiy M, Matsushita M, et al. (2005) Polymorphisms in the FCN2 gene determine serum variation and function of Ficolin-2. Hum Mol Genet 14: 1653–1658.
10. Hummelshoj T, Munthe-Fog L, Hansen HO, Sim RB, Garred P (2008) Comparative study of the human ficolins reveals unique features of Ficolin-3 (Hakata antigen). Mol Immunol 45: 1623–1632.
11. Munthe-Fog L, Hummelshoj T, Ma YJ, Hansen BE, Koch C, et al. (2008) Characterization of a polymorphism in the coding sequence of FCN3 resulting in a Ficolin-3 (Hakata antigen) deficiency state. Mol Immunol 45: 2660–2666.
12. Endo Y, Sato Y, Matsushita M, Fujita T (1996) Cloning and characterization of the human lectin P35 gene and its related gene. Genomics 36: 515–521.
13. Gout E, Garlatti V, Smith DF, Lacroix MM, Dunestre-Peard C, et al. (2010) Carbohydrate recognition properties of human ficolins: Glycan array screening reveals the sialic acid binding specificity of M-ficolin. J Biol Chem 285: 6612–6622.
14. Endo Y, Liu Y, Kanno K, Takahashi M, Matsushita M, et al. (2004) Identification of the mouse H-ficolin gene as a pseudogene and orthology between mouse ficolins A/B and human L-/M-ficolins. Genomics 84: 737–744.
15. Garred P, Honore C, Ma YJ, Rorvig S, Cowland JB, et al. (2010) The genetics of ficolins. J Innate Immun 2: 3–16.
16. Kakinuma Y, Endo Y, Takahashi M, Nakata M, Matsushita M, et al. (2003) Molecular cloning and characterization of novel ficolins from Xenopus laevis. Immunogenetics 55: 39–57.
17. Stewart JJ, Lee CY, Ibrahim S, Watts P, Shlomchik M, et al. (1997) A Shannon entropy analysis of immunoglobulin and T cell receptor. Mol Immunol 34: 1067–1082.
18. Hummelshoj T, Munthe-Fog L, Madsen HO, Garred P (2008) Functional SNPs in the human ficolin (FCN) genes reveal distinct geographical patterns. Mol Immunol 45: 2508–2520.
19. Garlatti V, Martin L, Gout E, Reiser JB, Fujita T, et al. (2007) Structural basis for innate immune sensing by M-ficolin and its control by a pH-dependent conformational switch. J Biol Chem 282: 33814–33820.
20. Garlatti V, Belloy N, Martin L, Lacroix M, Matsushita M, et al. (2007) Structural insights into the innate immune recognition specificities of L- and H-ficolins. EMBO J 26: 623–633.
21. Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41: 281–304.
22. Munthe-Fog L, Hummelshoj T, Honore C, Madsen HO, Permin H, et al. (2009) Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency. N Engl J Med 360: 2637–2644.
23. Schlaphab L, Thiel S, Kesler U, Ammann RA, Aebi C, et al. (2011) Congenital H-ficolin deficiency in premature infants with severe necrotizing enterocolitis. Gut 60: 1430–1439.
24. Shannon CE (1948) A mathematical theory of communication. Bell System Tech J 27: 379–656.

Author Contributions

Conceived and designed the experiments: TH, JN, LM-F, PG. Performed the experiments: TH, JN, LM-F, CK, MFB, PG. Analyzed the data: TH, JN, LM-F, CK, MFB, PG. Contributed reagents/materials/analysis tools: TH, JN, LM-F, CK, MFB, PG. Wrote the paper: TH, JN, LM-F, CK, MFB, PG.

PLoS ONE | www.plosone.org 17 December 2011 | Volume 6 | Issue 12 | e28187