PRODUCTS OF CYCLOTOMIC POLYNOMIALS ON UNIT CIRCLE

BARTŁOMIEJ BZDĘGA

ABSTRACT. We present a method to deal with the values of polynomials of type \(P(z) = \prod_{d \in D} (1 - z^d)^{j_d} \) on the unit circle. We use it to improve the known bounds on various measures of coefficients of cyclotomic and similar polynomials.

1. Introduction and earlier results

Let \(\Phi_n(z) = \sum_m a_n(m) z^m \) be the \(n \)th cyclotomic polynomial, where we assume that \(n \) is odd and square free. Then the order of \(\Phi_n \) is the number \(\omega(n) \) of prime divisors of \(n \). Put
\[
A_n = \max_m |a_n(m)|, \quad S_n = \sum_m |a_n(m)|, \quad Q_n = \sum_m a_n(m)^2, \quad L_n = \max_{|z|=1} |\Phi_n(z)|.
\]

We have \(\deg \Phi_n = \varphi(n) \leq n \), so these quantities are bounded by the inequalities
\[
L_n/n \leq S_n/n \leq \sqrt{Q_n/n} \leq A_n.
\]

The author [2, 4] proved that for \(n = p_1 p_2 \ldots p_k \), \(p_1 < p_2 < \ldots < p_k \) we have
\[
(c + \epsilon_k)^{2k} \leq \sup_{\omega(n) = k} \frac{L_n/n}{M_n} \leq \frac{A_n}{M_n} \leq (C + \epsilon_k)^{2k},
\]
where \(c \approx 0.71 \), \(C \approx 0.95 \), \(M_n = \prod_{j=1}^{k-2} p_j^{2k-j-1} \) and \(\epsilon_k \to 0 \) for \(k \to \infty \). Moreover \(M_n \) gives the optimal order, i.e. it cannot be replaced by any smaller (in lexicographical sense) product of powers of prime factors of \(n \).

Below we give a review of results for cyclotomic polynomials of order a most 3, where we assume \(p < q < r \).

For a cyclotomic polynomial of order 1 obviously \(A_p = 1 \) and \(S_p = L_p = Q_p = p \).

For binary cyclotomic polynomials A.Migotti [10] proved that \(A_{pq} = 1 \). L.Carlitz [6] obtained \(S_{pq} = Q_{pq} = 2p^*q^* - 1 < \frac{1}{2} pq \), where \(p^* \in \{1, 2, \ldots, q-1\} \) and \(q^* \in \{1, 2, \ldots, p-1\} \).

2010 Mathematics Subject Classification. 11B83, 11C08.

Key words and phrases. cyclotomic polynomial, binary cyclotomic polynomial, ternary cyclotomic polynomial, Beiter conjecture, unit circle, jump one property, relatives of cyclotomic polynomials.
1) is the inverse of \(p \) modulo \(q \) and \(q^* \) is defined similarly. The author [4] found such \(p \) and \(q \) that \(L_{pq} \geq \left(\frac{4}{\pi^2} - \epsilon \right) pq \), but no upper bound for \(L_{pq} \) has been known so far.

For ternary cyclotomic polynomials G.Bachman [1] proved that \(A_{pqr} \leq \frac{3}{4} p \). There is a conjecture of Y.Gallot and P.Moree [8] that \(A_{pqr} \leq \frac{3}{4} p \) and it is known that the constant \(\frac{2}{3} \) cannot be smaller. The author [2] proved that \(S_{pqr} \leq \frac{16}{32} p^2 q r \) and if the conjecture \(A_{pqr} \leq \frac{3}{4} p \) is true, then \(S_{pqr} \leq \frac{4}{9} p^2 q r \). Furthermore the author [4] proved that \(L_{pqr} \geq \left(\frac{8}{3} \pi^2 - \epsilon \right) p^2 q r \). No upper bound for \(L_{pqr} \) and almost nothing about \(Q_{pqr} \) has been known so far.

2. Main results

As we mentioned in the previous section, \(M_n \) gives the optimal order for \(A_n, S_n/n, \sqrt{Q(n)/n} \) and \(L_n/n \). We define the following constants:

\[
B_k = \limsup_{p_1 \to \infty} \frac{A_n}{M_n}, \quad B_k^\Sigma = \limsup_{p_1 \to \infty} \frac{S_n/n}{M_n},
\]

\[
B_k^\square = \limsup_{p_1 \to \infty} \frac{\sqrt{Q(n)/n}}{M_n}, \quad B_k^\circ = \limsup_{p_1 \to \infty} \frac{L_n/n}{M_n},
\]

where \(\limsup \) is taken over all \(n = p_1 p_2 \ldots p_k \) with \(p_1 < p_2 < \ldots < p_k \). Clearly, \(B_k^\circ \leq B_k^\Sigma \leq B_k^\square \leq B_k \) for \(k > 0 \). We prove the following theorems.

Theorem 1. For binary cyclotomic polynomials \(B_2^\circ = \frac{4}{\pi^2} \).

Theorem 2. For ternary cyclotomic polynomials:

(i) \(B_3^\circ = \frac{1}{\pi^2} \),

(ii) \(\sqrt{3/2}/\pi^2 \leq B_3^\Sigma \leq \sqrt{1/12} \).

(iii) \(B_3^\Sigma < 0.2731 \).

An upper bound on \(Q_{pqr} \) is given later by Theorem 13.

Summarizing, the known results for cyclotomic polynomials of order 2 are:

\[
B_2^\circ = \frac{4}{\pi^2}, \quad B_2^\Sigma = \frac{1}{2}, \quad B_2^\square = \frac{\sqrt{2}}{2}, \quad B_2 = 1,
\]

and for order 3 we have:

\[
B_3^\circ = \frac{1}{\pi^2} \leq B_3^\Sigma \leq 0.2731, \quad \sqrt{3/2}/\pi^2 \leq B_3^\square \leq \sqrt{1/12} < \frac{2}{3} \leq B_3 \leq \frac{3}{4}.
\]

These theorems allow us to improve the bound on \(B_k \) from [2].

Theorem 3. For \(n = p_1 p_2 \ldots p_k \) we have

\[
B_k \leq (C + \epsilon_k)^{2k} M_n,
\]

where \(C < 0.859125 \) and \(\epsilon_k \to 0 \) with \(k \to \infty \).
Additionally we use our methods to estimate the number

$$J_{pqr} = \sum_k |a_{pqr}(k) - a_{pqr}(k - 1)|$$

of jumps of ternary cyclotomic coefficients studied by the author \[3\] and Camburu, Ciolan, Luca, Moree and Shparlinski \[5\].

Theorem 4. For some constant c we have $J_{pqr} \leq cpqrU^2$, where $U = \max\{u_{qr}, u_{rp}, u_{pq}\}$, $u_{pq} = u_{qp} = 1$ and q^* is the inverse of q modulo p, etc.

At the end we prove the following result for the so-called relatives of cyclotomic polynomials, i.e. polynomials of form

$$P_n(z) = \prod_{d \in D} (1 - z^d)^{j_d},$$

where $n = p_1 p_2 \ldots p_k$, introduced in \[9\] by Liu.

Theorem 5. Let

$$L(k) = \sup_{\omega(n) = k} \max_{|z| = 1} \frac{|P_n(z)|}{n}.$$

Then $\log L(k) \geq \frac{\log 2}{2} k^2 + O(k \log k)$.

In \[9\] was proved that $\log M(k) = \frac{\log 2}{2} k^2 + O(k \log k)$, where $M(k)$ is maximal absolute value of a coefficient of P_n with $\omega(n) = k$, so in fact in Theorem 5 we have equality. Theorem 5 gives a constructive and a bit simpler proof of the lower bound $\log M(k) \geq \frac{\log 2}{2} k^2 + O(k \log k)$.

3. Preliminaries

In this section we introduce additional notation used in the paper and we present the main ideas of the proofs.

Let $P(z) = \prod_{d \in D} (1 - z^d)^{j_d}$ be a polynomial with integers j_d (not necessarily positive) and $\text{lcm}(D) = n = p_1 p_2 \ldots p_k$, where $2 < p_1 < p_2 < \ldots < p_k$ are primes. We are interested in the values of $|P(z)|$ for $|z| = 1$, so let $z = e^{2\pi ix}$. We have $|1 - z^d| = 2s(dx)$, where $s(x) = |\sin(\pi x)|$. Therefore

$$F(x) := |P(z)| = 2^{\Sigma_d j_d} \prod_d s(dx)^{j_d}.$$

We can only consider $x \in [-1/2, 1/2)$, because $F(x) = F(x + 1)$. Let $x = \frac{N + t}{n}$, where $|N| < n/2$ is an integer and $t \in [-1/2, 1/2)$. by the Chinese remainder theorem we can uniquely write $N = N_{a_1, a_2, \ldots, a_k}$, where $N \equiv a_i \pmod{p_i}$ and $|a_i| < p_i/2$ for $i = 1, 2, \ldots, k$. This substitution will allow us to deal with some expressions of form $s(dx)$ quite easily.
In order to estimate the sum \(Q \) of squares of coefficients of \(P \) we use the Parseval identity

\[
Q = \int_{-1/2}^{1/2} |P(e^{2\pi i x})|^2 dx = \int_{-1/2}^{1/2} F(x)^2 dx = \frac{1}{n} \sum_{a_1, a_2, \ldots, a_k} I_{a_1, a_2, \ldots, a_k},
\]

where

\[
I_{a_1, a_2, \ldots, a_k} = \int_{-1/2}^{1/2} F \left(\frac{N_{a_1, a_2, \ldots, a_k} + t}{n} \right)^2 dt
\]

and the sum is over all \(|a_i| < p_i/2, i = 1, 2, \ldots, k\).

Throughout the paper we use the notation

\[
s(x) = |\sin(\pi x)|, \quad s_d(x) = s(x/d).
\]

We also use the following asymptotic notation: \(f(n) \ll g(n) \) if there exists an absolute constant \(c \) such that \(f(n) < cg(n) \) and \(f(n) \lesssim g(n) \) if \(f(n) \leq (1 + o(1))g(n) \).

The following lemmas are crucial in the proofs in the next sections.

Lemma 6. Let \(n = p_1 p_2 \ldots p_k, N = N_{a_1, a_2, \ldots, a_k} \) and \(x = \frac{N + t}{n} \). Then

(i) \(s(nx) = s(t) \),

(ii) \(s((n/p_i)x) = s_{p_i}(a_i + t) \),

(iii) \(s\left((n/p_i p_j)x\right) = s_{p_i p_j}(a_j a_i p_i^* + a_i + t) = s_{p_i}(a_i - a_j) p_j p_i^* + a_j + t \),

where \(p_i^* \) is the inverse of \(p_i \) modulo \(p_j \) and \(p_j^* \) is the inverse of \(p_j \) modulo \(p_i \).

Proof. Parts (i) and (ii) are trivial. For (iii) note that

\[N \equiv a_i p_j p_i^* + a_j p_i p_i^* \equiv a_i (1 - p_i p_i^*) + a_j p_i p_i^* = (a_i - a_j) p_i p_i^* + a_i \pmod{p_i p_j}. \]

\[\square \]

Lemma 7. Let \(N, n \) and \(x \) be the numbers defined in Lemma 6. Let \(p_1 = \min\{p_1, p_2, \ldots, p_k\} \). If \(p_1 \to \infty \), then the following holds.

(i) \[\frac{|a_i + t|}{p_i} \ll s((n/p_i)x) \ll \frac{|a_i + t|}{p_i}. \]

(ii) If \(|a_i| < p_i^{1-\varepsilon}\) then \(s((n/p_i)x) \sim \pi \frac{|a_i + t|}{p_i} \).

(iii) For \(a_i = a_j \) we have \(s((n/p_i p_j)x) \ll \frac{1}{\max\{p_i, p_j\}} \).

(iv) If \(|a_i|, |a_j| < p_i^{1-\varepsilon}\) and \(a_i \neq a_j \) then \(s((n/p_i p_j)x) \sim s_{p_i}(a_j - a_i) p_j p_i^* \).

Proof. Parts (i) and (ii) follow easily from the properties of the sine function.

To prove (iii), note that by Lemma 6 we have

\[s((n/p_i p_j)x) = s_{p_i p_j}(a_i + t) \ll \min\{p_i, p_j\} = \frac{1}{p_i p_j} = \frac{1}{\max\{p_i, p_j\}}. \]

For the last part note that \(s_{p_i p_j}(a_i - a_j) p_j p_i^* \gg \frac{1}{p_i} \) and \(\frac{a_i + t}{p_i p_j} \ll \frac{1}{p_i^{1+\varepsilon}}. \]

\[\square \]
The following fact is easy and we omit its proof.

Proposition 8. We have $s(px)/s(x) \leq p$ and $s(px)s(qx)/s(x) \leq \min\{p, q\}$.

Let

$$F_n(x) = |\Phi_n(e^{2\pi ix})|.$$

To work with Φ_n on the unit circle we use the following formula obtained in [4].

Proposition 9. For $n > 1$ we have $F_n(x) = \prod_{d|n} s(dx)^{\mu(n/d)}$.

4. Warm up: binary polynomials

Proof of Theorem 1. By the results from [4] we already know that for all $\epsilon > 0$ there exist p and q such that $L_{pq} \geq (\frac{4}{\pi^2} - \epsilon)pq$. Therefore in order to prove Theorem 1 it is enough to show that $L_{pq} \lessapprox \frac{4}{\pi^2}$ with $p = \min\{p, q\} \to \infty$.

Let $2 < p < q$ and $F = F_{pq}$. Like explained in the previous section, every $x \in [-1/2, 1/2)$ can be uniquely expressed as $x = \frac{N_{a,b} + t}{pq}$ with $|a| < p/2$ and $|b| < q/2$. Let $N = N_{a,b}$.

By Proposition 9 and Lemma 6 we have

$$F(x) = s(t)s_{pq}(N + t) = \frac{s(t) s_{pq}(N + t)}{s_p(a + t)s_q(b + t)}.$$

Now we use Lemma 7 and Proposition 8 to estimate $F(x)$. We consider three cases.

Case 1. $a = b = 0$. Then $N = 0$ and $F(x) \ll 1$.

Case 2. $a, b \neq 0$. Then

$$F(x) \lessapprox \frac{s(t)}{s_p(a + t)s_q(b + t)} \ll \frac{pq}{|ab|}.$$

If $|a| > p^{1-\epsilon}$ or $|b| > p^{1-\epsilon}$ then $F(x) \ll pq$. Otherwise

$$F(x) \lessapprox \frac{pq}{\pi^2} \cdot s(t) \frac{1}{|a + t| \cdot |b + t|} \leq \frac{4}{\pi^2} pq.$$

Case 3. $a \neq 0$ and $b = 0$ (or reverse, which is analogous). For $|a| > p^{1-\epsilon}$ we have $F(x) \lessapprox \frac{pq}{|a|} < pq$. If $|a| \leq p^{1-\epsilon}$, then

$$F(x) \lessapprox \frac{pq}{\pi^2} \cdot \frac{s(t)}{|t| \cdot |a + t|} \leq \frac{pq}{\pi^2} \cdot \frac{s(t)}{|t| \cdot (1 - |t|)} \leq \frac{4}{\pi^2} pq$$

by elementary computations.

Recall that $L_{pq} = \max_x F(x)$, so the proof is done. \qed
Let us add that the inequality $L_{pq} \leq \frac{4}{\pi}pq$ is not true in general. For example, let us fix p, choose $q \equiv -2 \pmod{p}$ and $x = \frac{pq - q - 1}{2pq}$. Then by using the expansion of $\sin x$ we obtain

$$\frac{F(x)}{pq} \to \frac{4}{\pi^2} + \frac{2\pi^2 - 3}{6\pi^2} p^{-2} + O(p^{-4})$$

with $q \to \infty$.

It justifies the assumption $p_1 \to \infty$ in the definition of B_k^0.

5. Ternary polynomials: maximum on circle

In this section we prove part (i) of Theorem 2. It is an instant consequence of Lemmas 10 and 11 below.

Let $2 < p < q < r$, $F = F_{pqr}$ and $N = N_{a,b,c}$, $|a| < p/2$, $|b| < q/2$, $|c| < r/2$.

Lemma 10. Let $x = \frac{N_{a,b,c} + t}{pq}$.

(i) If $a = b = c = 0$ then $F_{pqr}(x) \ll 1$.

(ii) If $a = b = 0$ and $c \neq 0$ then

$$F_{pqr}(x) \ll \begin{cases} 1, & \text{for } |dpq| < r/2, \\ r^2/|d| \ll pqr, & \text{for } |dpq| > r/2, \end{cases}$$

where $|d| < r/2$ and $dpq \equiv c \pmod{r}$.

The analogous bound holds for any permutation of (p,q,r) and the appropriate permutation of (a,b,c).

(iii) For $b = c \neq 0$ we have

$$F_{pqr}(x) \ll \begin{cases} pqr/ab^2, & \text{for } a = 0, \\ pqr/|ab^2|, & \text{for } a \neq 0, \end{cases}$$

As in the previous case, this bound has its symmetric versions.

(iv) For distinct a, b, c we have $F_{pqr}(x) \lesssim \frac{1}{p^2} p^2 qr$ with $p = \min\{p, q, r\} \to \infty$.

Proof. By Proposition 9 and Lemma 6 we have

$$F_{pqr}(x) = \frac{s(t)s_{qr}(N + t)s_{rp}(N + t)s_{pq}(N + t)}{s_{pqr}(N + t)s_{p}(a + t)s_{q}(b + t)s_{r}(c + t)}.$$

We deal with all parts separately. As for the binary case, we write F instead of F_{pqr}. Part (i) is trivial. In the remaining parts we often use Lemmas 6 and 7 and Proposition 8.

Part (ii). Let p' and q' be the inverses of p and q modulo r. Obviously $d \neq 0$.

Then

$$F(x) = \frac{s(t)s_{pq}(t)}{s_{p}(t)s_{q}(t)} \cdot \frac{s_{qr}(cpp' + t)s_{rp}(cpp' + t)s_{pq}(cppq'q' + t)s_{r}(c + t)}{s_{pqr}(cppq'q' + t)s_{r}(c + t)} \ll \frac{s_{r}(dp)s_{r}(dq)}{s_{r}(dpq)s_{r}(d')}.$$
Now it is clear that if $|dpq| < r/2$ then $F_{pqr}(x) \ll 1$. For all d we have

$$F(x) \ll \frac{1}{(1/r)(|d|/r)} = r^2/|d|.$$

Similarly we deal with cases symmetric to this one.

Part (iii). For $a = 0$ we have

$$F(x) \ll pqr \frac{\min\{q, r\}}{|bc| \max\{q, r\}} < \frac{pqr}{|bc|}.$$

If $a \neq 0$, then we use the bound $s(t)/s_p(a+t) \ll p/|a|$ instead of $s(t)/s_p(0+t) \leq p$.

Part (iv). We have

$$F(x) \leq p \cdot \frac{s(t)}{s_p(a+t)s_q(b+t)s_r(c+t)}.$$

Because at most one of a, b, c equals 0, the quotient above is well defined, as we may replace $t = 0$ by $t \to 0$ if necessary. If $\max\{|a|, |b|, |c|\} > p^{1-\epsilon}$, then $F(x) \ll p^{2+\epsilon}qr$, so let $|a|, |b|, |c| \leq p^{1-\epsilon}$. In this case

$$F(x) \leq \frac{p^2qr}{\pi^3} \cdot \frac{s(t)}{|a+t| \cdot |b+t| \cdot |c+t|}.$$

By elementary computations, the last quotient is maximal for $\{a, b, c\} = \{-1, 0, 1\}$ and $t \to 0$. The limit equals π, which completes the proof.

The following Lemma gives an explicit example of p, q, r for which L_{pqr} is large.

Lemma 11. Let $q \equiv r \equiv 2 \pmod{p}$, $r \equiv \frac{-4}{p-1} \pmod{q}$, $N = r \cdot \frac{p-1}{2} + 1$ and $x = \frac{N}{pqr}$. Then $F_{pqr}(x) \sim \frac{1}{\pi^2} p^2 qr$ with $p \to \infty$ and $\frac{q}{p} \to \infty$.

Proof. We have $N \equiv 0 \pmod{p}$, $N \equiv -1 \pmod{q}$ and $N \equiv 1 \pmod{r}$, so

$$F(x) \sim \frac{pqr}{\pi^2} \cdot \frac{s_{qr}(N)}{s_{pqr}(N)} \cdot \frac{s_{pq}(N)}{s_{pqr}(N)}.$$

Taking $q/p \to \infty$ we obtain $s_{pr}(N) \to 1$ and by Lemma 7, $s_{pq}(N) \sim s_{pq}(qq^*) \sim 1$. Finally

$$s_{qr}(N)/s_{pqr}(N) \sim s(p/2q)/s(1/2q) \sim p$$

with $q/p \to \infty$.

□
6. TERNARY POLYNOMIALS: SUM OF SQUARES

In this section we derive an upper bound on \(Q_{pqr} \) and use it to prove the second part of Theorem 2. As mentioned in Preliminaries,

\[
Q_{pqr} = \frac{1}{pqr} \sum_{|a|<p/q; |b|<q/2; |c|<r/2} I_{a,b,c},
\]

where

\[
I_{a,b,c} = \int_{-1/2}^{1/2} F \left(\frac{N_{a,b,c} + t}{pqr} \right)^2 dt.
\]

First we deal with some specific triples \((a, b, c)\).

Lemma 12. We have

(i) \(I_{0,0,0} \ll 1 \),

(ii) \(\sum_{c \neq 0} I_{0,0,c} \ll (pqr)^2 \), similarly for \(I_{0,b,0} \) and \(I_{a,0,0} \),

(iii) \(\sum_{b \neq 0} I_{a,b,b} \ll (pqr)^2 \), similarly for \(I_{a,b,a} \) and \(I_{a,a,c} \),

(iv) \(\sum_{\max\{a,b,c\} > p^{1-\epsilon}} I_{a,b,c} \ll p^3 q^2 r^2 \).

Proof. For (i) – (iii) we use the analogous parts of Lemma 10. Part (i) is again trivial.

Part (ii). By Lemma 10

\[
\sum_{c \neq 0} I_{0,0,c} \ll \frac{r^2}{p^2 q^2} + r^4 \sum_{d > r/pq} \frac{1}{d^2} \ll (pqr)^2,
\]

where we used the known fact that \(\sum_{k \geq n} \frac{1}{k^2} \ll \frac{1}{n} \).

Part (iii). Using the bounds from (iii) of Lemma 10 we obtain

\[
\sum_{b \neq 0} I_{a,b,b} \ll (pqr)^2 \sum_{b \neq 0} \frac{1}{b^4} + (pqr)^2 \sum_{a,b \neq 0} \frac{1}{a^2 b^4} \ll (pqr)^2.
\]

Part (iv). By the previous cases, we may consider only distinct \(a, b, c \). For such triples we have

\[
F(x) \ll \frac{p^2 qr \cdot s(t)}{|a+t| \cdot |b+t| \cdot |c+t|}
\]

which yields

\[
\sum_{c > p^{1-\epsilon}} I_{a,b,c} \ll p^4 q^2 r^2 \sum_{c > p^{1-\epsilon}} \frac{1}{c^2} \sum_{a,b \neq (0,0)} \int_{-1/2}^{1/2} \left(\frac{s(t)}{|a+t| \cdot |b+t|} \right)^2 dt
\]

\[
\ll p^4 q^2 r^2 \sum_{c > p^{1-\epsilon}} \frac{1}{c^2} \ll p^{3+\epsilon} q^2 r^2.
\]

It completes the proof of the last part. \(\square \)

Now we are ready to prove the following theorem.
Theorem 13. Let \(x = \frac{1}{p} \min\{q', p - q'\} \) and \(y = \frac{1}{p} \min\{r', p - r'\} \), where \(q' \) and \(r' \) are the inverses of \(q \) and \(r \) modulo \(p \). Without loss of generality we assume that \(x \leq y \). Then

\[
\frac{Q_{pqr}}{p^3qr} \lesssim \frac{1}{6} P(x, y) + \frac{1}{12} f(x, y),
\]

where

\[
P(x, y) = 2x - 11x^2 + 26x^3 - 17x^4 - 5y^2 + 18y^3 - 17y^4 \\
+ 12xy - 24x^2 y - 12xy^2 + 24x^2 y^2, \\
f(x, y) = \{2x + y\}^2(1 - \{2x + y\})^2 + \{2x - y\}^2(1 - \{2x - y\})^2 \\
+ \{2y + x\}^2(1 - \{2y + x\})^2 + \{2y - x\}^2(1 - \{2y - x\})^2
\]

and \(\{\cdot\} \) denotes the fractional part of given real number.

Proof. By Lemma 12 we may focus on distinct \(a, b, c \leq p^{1-\epsilon} \). By Lemma 6 and 7

\[
F\left(\frac{N + t}{pqr}\right) \lesssim \frac{p^2 qr}{\pi^3} \frac{s(t)s((a-b)x)s((a-c)y)}{|a + t| \cdot |b + t| \cdot |c + t|}.
\]

By Lemma 12 and then by the substitution \(m = a - b, n = a - c \) and \(u = a + t \), we obtain

\[
\frac{Q_{pqr}}{p^3qr} \lesssim \pi^{-6} \sum_{a, b, c} s((a - b)x)^2 s((a - c)y)^2 \int_{-1/2}^{1/2} \left(\frac{s(t)}{(a + t)(b + t)(c + t)} \right)^2 dt
\]

\[
\sim \pi^{-6} \sum_{m, n \neq 0; m \neq n} s(mx)^2 s(ny)^2 \int_{-\infty}^{+\infty} \left(\frac{s(u)}{u(u - m)(u - n)} \right)^2 du.
\]

Computing of the integral is a routine; it equals

\[
\pi^2 \left(\frac{1}{m^2 n^2} + \frac{1}{m^2 (m - n)^2} + \frac{1}{n^2 (m - n)^2} \right).
\]

After reorganizing the variables \(m \) and \(n \) we arrive at the following asymptotic bound on \(Q_{pqr}/p^3qr \):

\[
\pi^{-4} \sum_{m, n \neq 0; m \neq n} \frac{s(mx)^2 s(ny)^2 + s(mx)^2 s((m + n)x)^2 + s((m + n)x)^2 s(ny)^2}{m^2 n^2}.
\]

We may express this bound as \(S_1 - S_2 \), where \(S_1 \) runs over all \(m, n \neq 0 \) and \(S_2 \) runs over \(m = n \neq 0 \), i.e.

\[
S_1 = \pi^{-4} \sum_{m, n \neq 0} \frac{(\ldots)}{m^2 n^2}, \quad S_2 = \pi^{-4} \sum_{n \neq 0} \frac{(\ldots)}{n^4}.
\]

Recall that the \(k \)th Bernoulli polynomial is

\[
B_k(x) = \sum_{j=0}^{k} \binom{k}{j} b_{k-j} x^j,
\]
where \(k > 0 \), and \(b_j \) are the Bernoulli numbers. Particularly

\[
B_2(x) = x^2 - x + \frac{1}{6}, \quad B_4(x) = x^4 - 2x^3 + x^2 - \frac{1}{30}.
\]

The Fourier series of \(B_k(x) \) is given by

\[
B_k(x) = -\frac{k!}{(2\pi i)^k} \sum_{j \neq 0} e^{2\pi ijx} j^k
\]

for \(0 \leq x \leq 1 \) and \(k \geq 2 \).

Let \(e(x) = e^{2\pi ix} \). After some straightforward computations we obtain

\[
S_1 = \frac{1}{16\pi^4} \sum_{m,n \neq 0} \frac{1}{m^2 n^2} \left(12 - 8e(mx) - 8e(ny) \\
+ 4e(mx + ny) - 4e(ny + mx) - 4e(mx + ny) \\
+ 2e(m(y + x) + ny) + 2e(m(y - x) + ny) \\
+ 2e(mx + n(y + x)) + 2e(mx + n(y - x)) \right).
\]

Now we use the equality

\[
\sum_{m,n \neq 0} \frac{e(mu + nv)}{m^2 n^2} = 4\pi^4 B_2(\{u\}) B_2(\{v\}).
\]

Notice that \(0 < x \leq y < \frac{1}{2} \), so we obtain

\[
S_1 = 3B_2(0)^2 - 2B_2(x)B_2(0) - 2B_2(y)B_2(0) + B_2(x)B_2(y) \\
- B_2(x)^2 - B_2(y)^2 + \frac{1}{2} B_2(y + x)B_2(y) + \frac{1}{2} B_2(y - x)B_2(y) \\
+ \frac{1}{2} B_2(x)B_2(y + x) + \frac{1}{2} B_2(x)B_2(y - x).
\]

After some elementary calculations we have

\[
S_1 = \frac{1}{3} x + 2xy - x^2 + x^3 - 2xy^2 - 3x^2y + 3x^2y^2.
\]

It remains to simplify

\[
S_2 = \frac{1}{16\pi^4} \sum_{n \neq 0} \frac{1}{n^4} \left(12 - 8e(nx) - 8e(ny) + 2e(n(y + x)) + 2e(n(y - x)) \\
- 4e(2nx) - 4e(2ny) + 2e(n(2y - x)) \\
+ 2e(n(2y + x)) + 2e(n(2x - y)) + 2e(n(2x + y)) \right).
\]

We use the equality

\[
\sum_{n \neq 0} \frac{e(nu)}{n^4} = -\frac{2}{3} \pi^4 B_4(\{u\}).
\]
By $0 < x \leq y < \frac{1}{2}$ we have

$$
S_2 = -\frac{1}{2}B_4(0) + \frac{1}{3}B_4(x) + \frac{1}{3}B_4(y) + \frac{1}{6}B_4(2x) + \frac{1}{6}B_4(2y)
- \frac{1}{12}B_4(y + x) - \frac{1}{12}B_4(y - x)
- \frac{1}{12}(B_4(2y - x) + B_4(2y + x)) + B_4(2x - y) + B_4(2x + y))
.$$

By elementary computations

$$
S_2 = \frac{17}{6}x^4 + \frac{17}{6}y^4 - \frac{10}{3}x^3 - 3y^3 + \frac{5}{6}x^2 - \frac{5}{6}y^2 - x^2y^2 + x^2y - \frac{1}{12}f(x, y).
$$

Since $\frac{Q_{pqr}}{p^{3qr}} \preceq S_1 - S_2$, we obtain the assertion of Theorem 13 by verifying the value of $S_1 - S_2$. □

Proof of Theorem 2(ii). By Theorem 13, for the upper bound it is enough to prove that $f(x, y) \leq \frac{1}{4}$ and $P(x, y) \leq \frac{3}{8}$. The first inequality is obvious.

As for the second one, note that

$$
\frac{\partial P(x, y)}{\partial x} = (2 + 12y) + (-22 - 48y^2)x + 78x^2 - 68x^3
\geq 2 + 12x - 34x + 78x^2 - 68x^3 = 2 - 22x + 78x^2 - 68x^3 \geq 0
$$

for $0 < x \leq y < \frac{1}{2}$. Furthermore

$$
\frac{\partial P(y, y)}{\partial y} = 2 - 8y + 24y^2 - 30y^3 \geq 0
$$

for $0 < y < \frac{1}{2}$. Thus

$$
P(x, y) \leq P(y, y) \leq P(1/2, 1/2) = 3/8.
$$

In order to prove the lower bound, we again use the polynomial Φ_{pqr} with $q \equiv r \equiv 2 \pmod{p}$ and $r \equiv -4 \pmod{q}$. We have $N_{a,a-1,a+1} = r \cdot \frac{p-1}{2} + 1 + a$ for $|a| < p/2$ and

$$
q_{pqr}(N_{a,a-1,a+1} + t)/s_{qr}(N_{a,a-1,a+1} + t) \sim p
$$

with $q/p \to \infty$. Moreover,

$$
s_{rp}(N_{a,a-1,a+1} + t) \sim 1, \quad s_{pq}(N_{a,a-1,a+1} + t) \sim 1
$$

with $p \to \infty$. Therefore for $|a| < p^{1-\epsilon}$ we have

$$
I_{a,a-1,a+1} \sim \frac{p^3qr}{\pi^6} \int_{-1/2}^{1/2} \left(\frac{s(t)}{(a + t)(a - 1 + t)(a + 1 + t)} \right)^2 dt.
$$

Thus

$$
\frac{Q_{pqr}}{p^3qr} \gtrsim \frac{1}{\pi^6} \int_{-\infty}^{+\infty} \left(\frac{s(x)}{x(x-1)(x+1)} \right)^2 dx = \frac{3}{2\pi^4},
$$

which completes the proof. □
7. Ternary polynomials: sum of absolute values

Proof of Theorem 2(iii). Let $\Phi_{pqr}(x) = \sum_{n} a(n)x^n$. Put $a = \frac{S_{pqr}}{p^qr}$, $m = \frac{A_{pqr}}{p}$ and $|a(n)|/p = a + r_n$. Clearly, $\sum_{n} r_n = 0$. Then

$$\frac{1}{12} \geq \frac{Q_{pqr}}{p^qr} = \frac{1}{pq} \sum_{n} (a + r_n)^2 = a^2 + \frac{1}{pqr} \sum_{n} r_n^2.$$ We will estimate the sum $R = \sum_{n} r_n^2$ from below. Note that $|a(n) - a(n - qr)| \leq 1$ and $|a(n) - a(n - qr)| \leq 2$, because

$$(1 - x^{qr})\Phi_{pqr}(x) = (1 - x^r)(1 + x + \ldots + x^{q-1})\Phi_{qr}(x^p).$$

The underbraced polynomial is flat because every two nonzero consecutive coefficients of Φ_{qr} are ±1 and ±1. Therefore we may consider a continuous function $f : [0, 1] \to [0, m]$ satisfying $a + r_n = f(n/pqr)$. Moreover, $f(0) = f(1) = 0$ and $|f(x) - f(y)| \leq 2|x - y|$ for $x, y \in [0, 1]$. For $p \to \infty$ we have

$$\int_{0}^{1} f(x)dx \sim a, \quad \int_{0}^{1} (f(x) - a)^2dx \sim R.$$ The value of R is minimal for the function

$$f(x) = \begin{cases} 2x, & \text{for } 0 \leq x \leq m/2, \\ m, & \text{for } m/2 \leq x \leq 1 - m/2, \\ 2(1 - x), & \text{for } 1 - m/2 \leq x \leq 1, \end{cases}$$

where the optimal m equals $1 - \sqrt{1 - 2a}$ (note that we already know that $a < 1/2$). So we have

$$\int_{0}^{1} (f(x) - a)^2dx = \frac{2}{3}m^3 + (m - a)^2 + am^2.$$ We need to solve the system

$$\begin{cases} m = 1 - \sqrt{1 - 2a}, \\ \frac{1}{12} \geq a^2 - \frac{2}{3}m^3 + (m - a)^2 + am^2. \end{cases}$$

By numerical computations, the solution is

$$a \leq 0.273099 \ldots < 0.2731$$

and the proof is done. \hfill \square

8. General case

Let us recall the following lemma from [2].

Lemma 14. Let $p_1 < p_2 < \ldots < p_k$ be primes and $n = p_1p_2\ldots p_k$. Then

$$\Phi_n(x) = f_n(x) \cdot \prod_{j=1}^{k-2} \prod_{i=j+2}^{k} \Phi_{p_1\ldots p_j}(x^{p_j+2\ldots p_k/p_1}).$$
where \(f_n \) is a formal power series satisfying \(f_n(x) = (1 - x^n) \prod_{i=1}^{k} (1 - x^{n/p_i}) / \prod_{i=1}^{k} (1 - x^{n/p_i}) \).

Let \(f^*_n \) be the polynomial of degree smaller than \(n \), satisfying \(f^*_n(x) \equiv f_n(x) \pmod{x^n} \). In the same paper the author proved that for \(k \geq 2 \) the height of \(f^*_n \) does not exceed \(\left(\frac{k-2}{|k/2|-1} \right) \). Here we prove the following bound.

Lemma 15. The sum of absolute values of coefficients of \(f^*_n \) is \(\lesssim \frac{2^{k-1}n}{k!} \) with \(p_1 = \min\{p_1, p_2, \ldots, p_k\} \to \infty \).

Proof. We have

\[
\begin{align*}
f^*_n(x) &\equiv \prod_{i=2}^{k} (1 - x^{n/p_i}) \sum_{\alpha_1, \ldots, \alpha_k \geq 0} x^{\alpha_1 n/p_1 + \cdots + \alpha_k n/p_k} \pmod{x^n}.
\end{align*}
\]

The product has the sum of absolute values of coefficients not greater than \(2^{k-1} \). Let \(p_1 \to \infty \). Then the sum of coefficients of \(\sum x^{\alpha_1 n/p_1 + \cdots} \) with exponents smaller than \(n \) equals asymptotically the volume of simplex on vertices

\[
(p_1, 0, \ldots, 0), (0, p_2, 0, \ldots, 0), \ldots, (0, \ldots, 0, p_k).
\]

It equals \(\frac{n}{k!} \). \(\square \)

Proof of Theorem By Lemma \([14]\) we have

\[
S_{p_1 \ldots p_k} \leq \frac{2^{k-1}p_1 \cdots p_k}{k!} \prod_{j=1}^{k-2} S_{p_1 \ldots p_j}^{k-j-1}.
\]

By the inequality \(S_n \leq nM_n \mathcal{B}(\omega(n)) \) with \(\min\{p : p \mid n\} \to \infty \), after some calculations we obtain

\[
\mathcal{B}_k^{\Sigma} \leq \frac{2^{k-1}}{k!} \prod_{j=1}^{k-2} (\mathcal{B}_j^{\Sigma})^{k-j-1}
\]

for \(k \geq 3 \). Put \(b_k = \mathcal{B}_k^{\Sigma} \) for \(k = 1, 2, 3 \) and \(b_k = \frac{2^{k-1}}{k!} \prod_{j=1}^{k-2} b_j^{k-j-1} \) for \(k > 3 \). Then clearly \(\mathcal{B}_k^{\Sigma} \leq b_k \). For \(k \geq 6 \) we have

\[
\frac{b_k / b_{k-1}}{b_{k-1} / b_{k-2}} = \frac{k - 1}{k} b_{k-2},
\]

so \(b_k = \frac{k-1}{k} b_{k-1}^2 \). Furthermore,

\[
C := \lim_{k \to \infty} b_k^{2^{-k}} = b_5^{1/32} \prod_{k=6}^{\infty} \left(\frac{k - 1}{k} \right)^{2^{-k}},
\]

where \(b_5 = \frac{3^4}{30} \cdot b_3 \cdot b_2^2 \cdot b_1^3 = b_3/30 = \mathcal{B}_5^{\Sigma} / 30 \). Based on Theorem \([2]\) and some numerical computations we conclude that \(C < 0.859125 \).
Now by Lemma 14 and the bound \((k-2)\binom{k-2}{\lfloor k/2 \rfloor - 1}\) on the height of \(f_n^*\) we have
\[
\mathcal{B}_k \leq \left(\frac{k-2}{\lfloor k/2 \rfloor - 1} \right) \prod_{j=1}^{k-2} (\mathcal{B}_j^\Sigma)^{k-j-1} < 2^{k-1} \prod_{j=1}^{k-2} b_j^{k-j-1} = k!b_k,
\]
so by verifying that \(\lim_{k \to \infty} (k!)^{-k} = 1\) we complete the proof. \(\square\)

9. JUMPS OF TERNARY CYCLOMOTIC COEFFICIENTS

Proof of Theorem 4. In the proof we do not assume that \(p < q < r\). Let
\[
F(x) = \left| (1 - z) \Phi_{pqr}(z) \right|,
\]
where \(z = e^{2\pi ix}\). We have
\[
J = \frac{1}{pqr} \sum_{|a| < p/2; |b| < q/2; |c| < r/2} I_{a,b,c},
\]
where \(I_{a,b,c} = \int_{-1/2}^{1/2} F \left(\frac{N_{a,b,c} + t}{pqr} \right)^2 dt\). Now we need to consider some cases. We omit details, as the computations are similar to those in the proofs of Lemma 12 and Theorem 13.

Case 1. \(a = b = c = 0\). We have \(I_{0,0,0} \ll (pqr)^{-2}\).

Case 2. \(b = c = 0\) and \(a \neq 0\). Then \(F(x) \ll p/a\), so \(\sum_{a \neq 0} I_{a,0,0} \ll p^2\). Similarly we deal with two symmetric cases.

Case 3. \(b \neq c \neq 0\). Then \(f(x) \ll \frac{p}{ab}\) and \(\sum_{a,b \neq 0} I_{a,b,b} \ll p^2\)

Case 4. \(a, b \neq 0\), \(a \neq b\) and \(c = 0\). Then
\[
f(x) \ll \frac{pqr}{ab} s((a-b)u_{pq}) s(a_{upq}) s(b_{upr}).
\]
Now, depending on \(a\) and \(b\), we use different bounds on \(s(au)\), \(s(bu)\) and \(s((a-b)u)\). The number \(n\) we determine later. For \(|a| \leq n\) we use \(s(au) \ll |a|u\) and for \(a > n\) we use \(s(au) \leq 1\). Similarly for \(b\) and \(a - b\). We have
\[
\sum_{0 < |a|, |b| \leq n} I_{a,b,0} \ll (pqr)^2 U^6 \sum_{0 < |a|, |b| \leq n} (a-b)^2 \ll (pqr)^2 U^6 n^4,
\]
\[
\sum_{0 < |a| \leq n < |b|} I_{a,b,0} \ll (pqr)^2 U^2 \sum_{0 < |a| \leq n < |b|} \frac{1}{b^2} \ll (pqr)^2 U^2,
\]
\[
\sum_{|a|, |b| > n} I_{a,b,0} \ll (pqr)^2 \sum_{|a|, |b| > n} \frac{1}{a^2 b^2} \ll \frac{(pqr)^2}{n^2}.
\]
The case of the sum \(\sum_{0 < |b| \leq n < |a|} I_{a,b,0}\) is analogous to the second sum above. The optimal choice of \(n\) is \(1/U\). Then we have
\[
\sum_{|a| < p/2; |b| < q/2} I_{a,b,0} \ll (pqr)^2 U^2.
\]
Case 5. It remains to consider distinct $a, b, c \neq 0$. We have

$$f(x) \ll \frac{pq}{abc} s((a - b)u_{pq}) s((b - c)u_{qr}) s((c - a)u_{rp}).$$

Each case is symmetric to one of the following.

$$\sum_{0 < |a|, |b|, |c| \leq n} I_{a,b,c} \ll (pqr)^2 U^6 \sum_{0 < |a|, |b|, |c| \leq n} \frac{(a - b)^2 (b - c)^2 (c - a)^2}{a^2 b^2 c^2},$$

$$\ll (pqr)^2 U^6 n^4,$$

$$\sum_{0 < |a|, |b| \leq n < |c|} I_{a,b,c} \ll (pqr)^2 U^2 \sum_{0 < |a|, |b| \leq n < |c|} \frac{(a - b)^2}{a^2 b^2 c^2} \ll (pqr)^2 U^2,$$

$$\sum_{|a|, |b| > n; |c| > 0} I_{a,b,c} \ll (pqr)^2 \sum_{|a|, |b| > n; |c| > 0} \frac{1}{a^2 b^2 c^2} \ll \frac{(pqr)^2}{n^2}.$$

Note that the obtained bounds are the same as in the previous case, so again we have

$$\sum_{a,b,c \neq 0} I_{a,b,c} \ll (pqr)^2 U^2$$

as desired.

To complete the proof, note that $\max \{p, q, r\}^2 = o(1)(pqr)^2 U^2.$ ∎

10. RELATIVES OF CYCLOTOMIC POLYNOMIALS

Proof of Theorem. We consider primes $p_1 < p_2 < \ldots < p_k$ with $p_1 \to \infty$, satisfying the congruences

$$p_j \equiv 2(j - i) \pmod{p_i} \quad \text{for all } 1 \leq i < j \leq k.$$

The existence of such primes is guaranteed by the Chinese remainder theorem and Dirichlet’s theorem on primes in arithmetic progressions. Put $N = N_1, N_2, \ldots, N_k$ and $x = \frac{N - 1}{n}$. By Lemma 6 we have

$$F(z) = |P_n(x)| = 2^{k-1} \frac{s(1/2)}{s(p_1)} \prod_{1 \leq i < j \leq k} s_{p_ip_j}(N - 1/2) \prod_{i=1}^k s_{p_i}(i - 1/2).$$

By using Lemma 7 we obtain $s_{p_i}(i - 1/2) \sim \frac{2^{i-1}}{p_i}$ and

$$s_{p_ip_j}(N - 1/2) \sim s_{p_ip_j}((i - j)p_j p_i^*),$$

where $p_j p_i^* = (p_j(p_i - 1)/2) = 1$. It gives

$$F(x) \sim \frac{2^{k-1} n}{\pi^k(2k - 1)!!} = n \cdot 2^{k^2/2 + O(k \log k)},$$

which completes the proof. ∎

ACKNOWLEDGEMENTS

The author is partially supported by the NCN grant no. 2012/07/D/ST1/02111.
References

[1] G. Bachman, *On the coefficients of ternary cyclotomic polynomials*, J. Number Theory 100 (2003), 104–116.

[2] B. Bzdęga, *On the height of cyclotomic polynomials*, Acta Arith. 152 (2012), 349–359.

[3] B. Bzdęga, *Jumps of ternary cyclotomic coefficients*, Acta Arith. 163 (2014), 203–213.

[4] B. Bzdęga, *On a generalization of Beiter Conjecture*, Acta Arith. 173 (2016), 133–140.

[5] O. Camburu, E. Ciolan, F. Luca, P. Moree, I. Shparlinski, *Cyclotomic coefficients: gaps and jumps*, J. Number Theory 163 (2016), 211–237.

[6] L. Carlitz, *The number of terms in the cyclotomic polynomial $F_{pq}(x)$*, Amer. Math. Monthly 73 (1966), 979–981.

[7] Y. Gallot, P. Moree, *Neighboring ternary cyclotomic coefficients differ by at most one*, J. Ramanujan Math. Soc. 24 (2009), 235–248.

[8] Y. Gallot, P. Moree, *Ternary cyclotomic polynomials having a large coefficient*, J. Reine Angew. Math. 632 (2009), 105–125.

[9] R. I. Liu, *Coefficients of a relative of cyclotomic polynomials*, Acta Arith. 165 (2014), 301–325.

[10] A. Migotti, *Aur Theorie der Kreisteilungsgleichung*, Z. B. der Math.-Naturwiss. Classe der Kaiserlichen Akademie der Wissenschaften, Wien, 87 (1883), 7–14.

Adam Mickiewicz University, Faculty of Mathematics and Computer Sciences, 61-614 Poznań, Poland
E-mail address: exul@amu.edu.pl