Introducing Fermat Sequences

R W Wibowo1,2

1Astronomy Department, Institut Teknologi Bandung, Bandung, Indonesia
2European Southern Observatory, Santiago, Chile
E-mail: ridlo.w.wibowo@gmail.com

Abstract. This paper focuses on simple observation of Fermat’s factorization method (FFM) applied on the first 5×10^6 odd number. The number of iteration used in the FFM is related to the factor that the method found for each odd number. A new collection of sequences or sets of numbers (we called it Fermat-d sequences) can be generated based on the factor that we found using this method. For example, the first member (Fermat-1) in this collection of sequences is odd prime number sequence, which has factor–of course–of 1 and has highest number of iteration in the FFM, which is \simhalf of the number itself. The next member of these sequences (Fermat-3, Fermat-5, and so on) are always start from d^2, continue with arithmetic progression of $2d$, but, with additional ‘random jumps’ related to the prime number distribution. We present the first exploration of these new sequences (not registered in oeis.org yet) and the beauty of the location of these sequences in the Ulams and Sacks spiral.

1. Fermat’s factorization

An odd integer N can always be represented by the difference between two square of integers (equation 1), a and b for instance. This property is used in Fermat’s factorization method to find the factors: c and d which are also odd integers,

$$N = a^2 - b^2 = (a+b)(a-b) = c \cdot d. \quad (1)$$

Other relation can also be derived: $a = (c+d)/2$ and $b = (c-d)/2$.

This method starts from ceiling the square root value of the number, $a = \lceil \sqrt{N} \rceil$. Iteration of $a += 1$ is then carried out until we find its pair, $b = a^2 - N$, to be a perfect square [2]. We will get figure 1 if we plot the number of iteration needed to find the factor of odd integers using this method. I found this graph in 2013 when I play with this method in a homework from a Computational Science class, yet at that time I can not explain this graph immediately and not too interested on the subject. Lately, I understand how this plot produced and also I found that the sequences resulted from this method is interesting.

FFM is efficient if c/d is close to 1. One example is if N an odd square, then this method only needs 0 step. On the other hand, it requires a considerable number of trials when c/d is much larger than 1. The most extreme case would be if N is a large prime number. FFM will spend $(N+1)/2 - \lceil \sqrt{N} \rceil$ steps to finish the procedure. This is not efficient to perform a primality test ($O(N)$ steps). In general, the required total number of steps (k) can be approximated by

$$k = a_{\text{found}} - \lceil \sqrt{N} \rceil \approx \frac{(c+d)}{2} - \sqrt{N} = \frac{(\sqrt{c} - \sqrt{d})^2}{2} = \frac{(\sqrt{N} - d)^2}{2d}. \quad (2)$$
Evidently, when $N \gg d$, the number of steps in this method becomes
\[k \approx \frac{N}{2d}. \] (3)

Equation (3) explain the “line” structures in figure 1.

Now, we can try to solve quadratic equation in equation (2),
\[
\begin{align*}
0 & \approx d^2 - 2(\sqrt{N} + k)d + N \\
c \text{ and } d & \approx \left(\sqrt{N} + k\right) \pm \left(\sqrt{2\sqrt{N}k + k^2}\right)
\end{align*}
\] (4)

Two terms in the parenthesis are a and b. Equation (4) gives us bounds and relation between the odd number N, factors (c and d), and the number of iteration in Fermat’s method. If $k = 0$, N is a perfect square. Next, if c differs less than $\approx (4N)^{1/4}$ from $\lceil \sqrt{N} \rceil$, the method requires only 1 step (independent from how large is N).

Figure 1. Number of iteration (k) in FFM for each odd number N. Each point are colored based on the factor of d found using FFM. For $d = 1$ (black), all the member are odd prime number; the next color are for $d = 3, 5, 7, 9, 11, \ldots$. As N become larger, the trend $k \approx N/2d$ appear in this plot.

If we make a sequence from number of steps k needed to factorize odd integers using Fermat’s method, we will get,
\[a(n) = (0), 0, 0, 1, 0, 2, 3, 0, 4, 5, 0, 7, 0, 0, 9, 10, 1, 0, 12, 1, 14, 15, 0, 17, 0, \ldots \]

This sequence is similar to A078753 [1]; the only difference is that it starts from $N = 3$ and the early step before any increment of a is included as the first iteration.
2. Fermat Sequences

If we divide the odd integers based on the factor d that the Fermat’s method found (i.e. coloring in figure 1), we can make several sequences of number. I will call it Fermat sequences, and more specifically Fermat-d sequences ($F[d]$, d is odd number). Several member of these sequences are listed below:

$$F[1] = (1), 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, \ldots$$

$$F[3] = 9, 15, 21, 27, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, \ldots$$

$$F[5] = 25, 35, 45, 55, 65, 75, 85, 95, 115, 125, 145, 155, 185, 205, 215, 235, 265, \ldots$$

$$F[7] = 49, 63, 77, 91, 105, 119, 133, 147, 161, 175, 203, 217, 245, 259, 287, 301, \ldots$$

$$F[9] = 81, 99, 117, 135, 153, 171, 189, 207, 243, 261, 279, 333, 369, 387, 423, \ldots$$

$$F[11] = 121, 143, 165, 187, 209, 231, 253, 275, 297, 319, 341, 363, 385, 407, 451, \ldots$$

$$F[13] = 169, 195, 221, 247, 273, 299, 325, 351, 377, 403, 429, 455, 481, 507, 533, \ldots$$

These Fermat-d sequences always start from d^2. Each of the Fermat-d sequence progress with an arithmetic progression of $2d$, except for $F[1]$ which are odd primes. Pseudo-Fermat sequences are sequences with formula:

$$\text{Pseudo–}F[d](i) = d^2 + 2d \cdot i = d(d + 2i) \quad d = 3, 5, 7, 9, \ldots \quad i = 0, 1, 2, 3, \ldots \quad (5)$$

Fermat-d sequences ($d > 1$) follow this formula, however some of the terms are missing and appear in other sequences, e.g. 45 and 75 are missing from $F[3]$ but appear in $F[5]$, 63 appear in $F[7]$, 81 appear in $F[9]$, and so on. Generally, the missing terms are non-semiprime numbers; especially for Fermat-d when d is prime.

We can also say that these d-sequence are product of odd number d and odd number equal or greater than d, but missing some of the terms. In that sense, we can look for the behavior of these sequences in multiplication table of odd number like shown in figure 2. Odd integers are union of Fermat-d sequences. From the multiplication table we can see the the missing terms on each Fermat-d sequences seems in the similar (and related) to the Fermat-1 or prime number distribution.

3. Discussion

3.1. Other Factorization method

As seen from the plot in figure 1, Fermat’s factorization method are effective if the factors c and d are near \sqrt{N}. For some big odd integer N, if the number of iteration $k \geq N/6$, then N must be prime number (we can stop the iteration) [11].

High number of iteration are needed not only for prime numbers, but also for composite number which has 2 factors: a very big and a very small number (early Fermat-d sequences). Therefore, the easiest way to improve this method is by combining it with trial division of some small terms of prime numbers. In the figure 1 by simply doing trial division of 3, we can exclude a numbers which are member of Fermat-3 sequence from the Fermat’s core iteration; in which if we use original Fermat’s method it will need a large number of iteration. The question is how many terms we need to do trial division to make this method more efficient to factorize an odd number N? To design an efficient algorithm for large number factorization, we always need to consider how fast the elementary operation can be carried out in a computer, e.g. addition, subtraction, multiplication, division and the extraction of a square root.

In addition to do trial division, we can also make a better method by making larger and “smarter jump” (not by increment of 1). Other useful trick is by multiplying N with some rational number u, in hope that uN is a product of two nearby integers, and then gcd(uN, N)
Figure 2. Multiplication table of odd numbers. Fermat-d are listed as columns with blue color. Fermat-1 are all odd prime numbers, Fermat-3 are multiple of 3 with \(N \geq 3 \), Fermat-5 are multiple of 5 with \(N \geq 5 \), and so on. The ‘missing terms’ are the one with white color. The position of the missing terms has ‘rows structure’. The missing terms are appear in previous row.

may be taken to obtain the factorization of \(N \) (see Lehman’s factoring method [3]). The fundamental ideas of FFM are the basis of the best-known algorithms for factoring large semiprimes: quadratic sieve and general number field sieve [1]. The relation between Fermat-d sequences and these methods will be not discussed here.

3.2. Prime counting function

Prime-counting function is the function counting the number of prime numbers less than or equal to some real number \(x \). It is denoted by \(\pi(x) \). From prime number theorem (PNT), it is
Figure 3. Prime counting together with ‘Fermat-d’ counting in log-log plot. Black for prime number (Fermat-1), asymptotic to logarithmic integral function; rainbow color for other Fermat-d sequences. It seems that the distribution of each Fermat-d sequences is similar to the prime number distribution (Fermat-1).

said that the distribution of prime number is asymptotic to the logarithmic integral,

$$\lim_{x \to \infty} \pi(x) \approx \text{Li}(x) = \int_2^x \frac{1}{\ln t} \, dt.$$

We can make a plot of counting function not only for prime number, but also for each Fermat-d sequences. By counting the number of member of sequence below a value (x), we will get a plot like in figure 3. It seems that as N getting bigger, the counting function of Fermat-d sequences producing a similar distribution as of the primes number (Fermat-1, see figure 3).
4. New Ulam and Sacks spiral

Started by Stanislaw Ulam[6], we can make a graphical depiction of the set of prime numbers by writing the positive integers in a square spiral and specially marking the prime numbers. However, in this work, I also add odd composite numbers and marking it with different color for each Fermat-d sequences (figure 4).

By writing non-negative integers on a ribbon and roll it up with zero at the center and arrange it so that all the perfect squares line up in a row on the right side, we can also generate other graphical depiction called Sacks spiral [5]. The position of Fermat-d sequences on Sacks spiral also presented in figure 5. Prime numbers are like atoms in the world of numbers. Nevertheless, in this new spiral, numbers are like stars in our Galaxy and prime numbers are like the missing matter[1]. Some rainbow pattern or lines can be seen in both Ulam and Sacks spiral. They are consist of odd composite numbers in the form of $N^2 - n^2$, where n are non-negative integers. These lines are the same lines observed by Robert Sacks, called S-curve (see numberspiral.com). The central part of the spiral are dominated by the member of lower index Fermat-d sequences, hence the color is redder in this region.

Figure 4. Fermat sequences plotted on Ulam spiral. Black circle are for prime numbers (original Ulam Spiral; Fermat-1 sequence, together with 2, but excluding 1). Rainbow color circles are for other Fermat-d sequences started from Fermat-3 (in red). The white spaces are for even numbers.

Acknowledgments

This work is mainly done in free time (sometimes not) during author’s PhD life, which is supported by ESO studentship and Voucher ITB scholarship.

1 Video of Ulam and Sacks spiral based on Fermat-d sequences.
Figure 5. Fermat sequences plotted on Sacks spiral. Same configuration with figure 4. A curve from prime-generating formula discovered by Euler in 1772 is marked. ‘Rainbow’ curves found in this spiral are in the form of $N^2 - n^2$ (see S-curve in numberspiral.com).

References

[1] Crandall R and Pomerance C 2005 Prime Numbers: A Computational Perspective 2nd ed (Springer-Verlag, New York).
[2] Hardy G H and Wright E M 1960 An Introduction to the Theory of Numbers 4th ed (Oxford Univ. Press, London).
[3] Lehman R Sherman 1974 Mathematics of Computation 28 637 - 646.
[4] OEIS Foundation Inc 2018 The On-Line Encyclopedia of Integer Sequences http://oeis.org/A078753.
[5] Sacks R 2003-2007 web site published online at: http://www.numberspiral.com/ by Robert Sacks.
[6] Stein M L, Ulam S M and Wells M B 1964 American Mathematical Monthly 71(6) 516 - 520.