Finite-Alphabet MMSE Equalization for All-Digital Massive MU-MIMO mmWave Communication

Oscar Castañeda, Sven Jacobsson, Giuseppe Durisi, Tom Goldstein, and Christoph Studer

Abstract—We propose finite-alphabet equalization, a new paradigm that restricts the entries of the spatial equalization matrix to low-resolution numbers, enabling high-throughput, low-power, and low-cost hardware implementations. To minimize the performance loss of this paradigm, we introduce FAME, short for finite-alphabet minimum-mean-square error (MMSE) equalization, which is able to significantly outperform a naïve quantization of the linear MMSE matrix. We develop efficient algorithms to approximately solve the NP-hard FAME problem and showcase that near-optimal performance can be achieved with equalization coefficients quantized to only 1–3 bits for massive multi-user multiple-input multiple-output (MU-MIMO) millimeter-wave (mmWave) systems. We provide very-large scale integration (VLSI) results that demonstrate a reduction in equalization power and area by at least a factor of \(3.9 \times 5.8 \times\), respectively.

Index Terms—Millimeter wave (mmWave), massive multi-user MIMO, spatial equalization, minimum-mean-square error (MMSE), quantization, hardware implementation.

I. INTRODUCTION

FUTURE wireless systems are expected to deliver even higher data-rates within the already crowded frequency spectrum. Emerging technologies, such as millimeter-wave (mmWave) communication [1], [2] and massive multi-user multiple-input multiple-output (MU-MIMO) [3], [4], have risen as promising candidates to provide such high data-rates. The abundance of available bandwidth at mmWave frequencies, combined with the fine-grained beamforming capabilities provided by massive MU-MIMO, enables high-throughput communication to multiple user equipments (UEs) in the same time-frequency resource. However, the presence of hundreds of antennas at the basestation (BS), each receiving a wideband signal, necessitates sophisticated radio frequency (RF) and digital baseband processing circuitry. As a result, circuit power consumption and system costs may increase significantly, which may hamper the success of this technology.

To reduce power consumption, the literature has largely focused on multi-antenna mmWave architectures that rely on hybrid analog-digital solutions [5]–[7]. Albeit energy efficient, such architectures have limited multiplexing capabilities as they are only capable of simultaneously combining signals coming from a restricted number of directions [7]–[10]; this key limitation may result in a reduced spectral efficiency. An emerging alternative is the use of all-digital BS architectures [11]–[13]. While it is commonly believed that all-digital BS designs would be energy inefficient, it has been shown recently that the power consumption of the RF and data-conversion elements in an all-digital BS is comparable to that of hybrid solutions, provided that the resolution of the data converters at the BS is suitably reduced [10], [12]. The power consumption and system costs of baseband processing for all-digital BS architectures is, however, largely unexplored.

A. The Case for Efficient Spatial Equalization

Spatial equalization in the uplink (UEs transmit to BS) is among the most power- and throughput-critical tasks in all-digital BS architectures. The purpose of spatial equalization is to collect the signals from all \(U\) UEs at the \(B\) BS antennas, while suppressing inter-UE interference. Mathematically, spatial equalization amounts to one or multiple \(B \times B\) matrix-vector multiplications involving a \(U \times B\) equalization matrix and the \(B\)-dimensional received vector. These multiplications need to be performed on a per-baseband-sample basis (at the sample rate of the analog-to-digital converters). Unfortunately, for a BS with \(B = 256\) antennas serving \(U = 16\) UEs, a conventional matrix-vector-product circuit operating at 2 G vectors/s consumes over 28 W and occupies more than 128 mm\(^2\) when implemented in 28 nm CMOS (see Section V for the details). If more BS antennas and/or more UEs are considered, circuit power and area increase even further. Clearly, more efficient spatial equalization circuitry is necessary for all-digital BS architectures operating at mmWave frequencies in order to minimize power consumption and silicon area (which translate to system costs), while achieving high spectral efficiency.

The matrix-vector products required for spatial equalization involve multiplications and additions, where the hardware multipliers dominate power and area. The area and delay of a hardware multiplier scales with \(O(mn)\) and \(O(\log \max\{m, n\})\), respectively.
respectively, where m and n are the number of bits of each operand $[13]$. As a consequence, circuit area, delay, and power consumption (which is roughly proportional to circuit area) of a matrix-vector-product engine can be minimized by using a low number of bits to represent both operands. The literature has extensively explored the efficacy of low-resolution data converters at the BS antennas of massive MU-MIMO systems $[7, 10–12, 15–17]$. Depending on the scenario, 3 to 8 bits were shown to achieve near-optimal spectral efficiency $[10, 12, 15–17]$. Such methods reduce the precision of one of the operands (i.e., that of the received vector) in a matrix-vector product. However, the coefficients of the equalization matrix (the other operand) are typically left at relatively high precision, e.g., 10 to 12 bits $[18, 19]$.

B. Contributions

To reduce power consumption and implementation costs of spatial equalization, we propose to coarsely quantize the coefficients of spatial equalization matrices, a paradigm that we call finite-alphabet equalization. We emphasize that, in contrast to approaches that use low-resolution analog-to-digital converters (ADCs) to quantize the received vector to be equalized $[7, 10–12, 15–17]$, finite-alphabet equalization intends to coarsely quantize the entries of the spatial equalization matrix. Although a straightforward concept, it turns out that obtaining low-resolution finite-alphabet equalization matrices that achieve high spectral efficiency is a hard problem. Figure 1 illustrates this claim for a case where the coefficients of a spatial equalization matrix are quantized using 1 bit per real and imaginary part. A naïve quantization of the linear minimum mean-square error (L-MMSE) equalization matrix to 1-bit leads to a finite-alphabet L-MMSE (FL-MMSE) equalizer, which, as we can see from Figure 1, suffers from a high error floor. To combat this problem, we propose finite-alphabet minimum mean-square error equalization (FAME), which leads to an NP-hard optimization problem that can be solved approximately (and efficiently) using forward-backward splitting (FBS). We refer to the resulting method as FAME-FBS. As shown in Figure 1 using FAME-FBS results in a substantially improved error rate compared to FL-MMSE equalization.

The main contributions of this paper are summarized as follows. We propose a specific finite-alphabet equalization-matrix structure that enables one to reduce the complexity of a $U \times B$ matrix-vector product by using $U \times B$ low-resolution coefficients, while still being able to deliver a performance similar to conventional, high-resolution spatial equalization matrices. We derive the so-called FAME problem, whose solution leads to finite-alphabet equalization matrices that minimize the post-equalization mean-square error (MSE). We propose a range of algorithms that approximate the NP-hard FAME problem—some of these algorithms achieve excellent performance even for 1-bit resolution; some require very low complexity. We present simulation results for line-of-sight (LoS) and non-LoS mmWave channel models, which demonstrate the efficacy of FAME in terms of error-vector magnitude (EVM), beamforming capabilities, and uncoded bit error-rate (BER). Finally, we implement reference finite-alphabet equalization circuits for different number of bits in 28 nm CMOS to demonstrate the effectiveness of FAME in practice.

C. Notation

Matrices and column vectors are represented with uppercase and lowercase boldface letters, respectively. The Hermitian transpose and the Frobenius norm of a matrix A are denoted by A^H and $\|A\|_F$, respectively. The real part of a complex-valued matrix A is $\Re\{A\}$ and the imaginary part is $\Im\{A\}$. The $M \times M$ identity matrix is denoted by I_M. The kth entry and the ℓ_2-norm of a vector a are a_k and $\|a\|_2$, respectively; the entry-wise complex conjugate is denoted by a^*. The kth standard basis vector is represented by e_k. The signum function $\operatorname{sgn}(\cdot)$ is defined as $\operatorname{sgn}(a) = +1$ for $a \geq 0$ and $\operatorname{sgn}(a) = -1$ for $a < 0$ and is applied entry-wise to vectors. We use \EuScript{S}_{+} to denote expectation with respect to the random vector x. The set \EuScript{S}_{+} contains all positive semidefinite matrices, and the set \mathbb{R}_{+} contains all the non-negative real numbers.

D. Paper Outline

The rest of the paper is organized as follows. Section II introduces the system model and summarizes the basics of L-MMSE equalization. Section III proposes the FAME problem and presents numerical experiments. Section IV develops low-complexity algorithms that approximate the NP-hard FAME problem. Section V shows hardware implementation results. We conclude in Section VI. Proofs and complexity counts are relegated to the appendices.

II. SYSTEM MODEL AND L-MMSE EQUALIZATION

We now introduce the system model considered in this work and briefly introduce the essentials of L-MMSE equalization.

A. System Model

We focus on the uplink of a massive MU-MIMO system with B BS antennas and $U \leq B$ single-antenna UEs, as illustrated
in Figure 2. We consider the following narrowband input-output relation:

\[y = Hs + n. \] (1)

Here, \(y \in \mathbb{C}^B \) is the received signal vector at the BS, \(H \in \mathbb{C}^{B \times U} \) is the known uplink MIMO channel matrix, \(s \in S^U \) is the transmit data vector, where \(S \) is the constellation set (e.g., 16-QAM), and \(n \in \mathbb{C}^B \) is i.i.d. circularly-symmetric complex Gaussian noise with covariance matrix \(C_n = \mathbb{E}_n [nn^H] = N_0 I_B \) per complex entry. In what follows, we assume that the transmit signals of the UEs, \(s_u, u = 1, \ldots, U \), are i.i.d. zero mean with variance \(E_s \) so that \(C_s = \mathbb{E}_s [ss^H] = E_s I_U \).

Remark 1. The input-output relation (1) is not only valid to model narrowband transmission, but can also be used to model the subcarriers of a wideband massive MU-MIMO system that uses orthogonal frequency-division multiplexing (OFDM). The theory and algorithms developed in the remainder of the paper can be generalized for systems with inter-symbol interference—the details are left for future work.

Remark 2. We assume that the channel remains constant over multiple symbol transmissions and, hence, can be estimated. For our mathematical derivations, we assume (quantized) perfect channel state information at the BS. For systems in which the UEs use an antenna array to perform transmit beamforming, the channel matrix \(H \) represents the joint effect of beamforming and the physical channel.

B. A Primer on L-MMSE Equalization

A key task of the BS is to form estimates \(\hat{s} \in \mathbb{C}^U \) of the transmitted data vector \(s \). To develop methods that are computationally efficient and hardware friendly, we focus on linear spatial estimators of the form \(\hat{s} = WHy \), where \(W \in \mathbb{C}^{U \times B} \) is the L-MMSE equalization matrix that minimizes the post-equalization MSE defined as

\[MSE = \mathbb{E}_{s,n} [||WHy - s||_2^2]. \] (2)

Given the assumptions on the statistics of the transmit data and noise vectors, \(s \) and \(n \), we have that

\[MSE = E_s ||WHH - I_U||_F^2 + N_0 ||W||_F^2. \] (3)

Hence, the L-MMSE equalization matrix can be obtained by solving the following matrix least-squares problem:

\[W^H = \arg \min_{W^H \in \mathbb{C}^{U \times B}} ||I_U - WHH||_F^2 + \rho ||W||_F^2. \] (4)

with regularization parameter \(\rho = N_0 / E_s \). This optimization problem has a well-known closed-form solution given by

\[W^H = (\rho I_U + WHH)^{-1} HH^H, \] (5)

which can be computed efficiently in hardware [18].

We can alternatively compute the rows \(w_u, u = 1, \ldots, U \), of the L-MMSE equalization matrix \(W^H \) by decomposing into \(U \) independent per-UE problems as follows:

\[w_u = \arg \min_{\tilde{w} \in \mathbb{C}^B} ||e_u - HH\tilde{w}||_2^2 + \rho \tilde{w}||_2^2. \] (6)

This alternative formulation of the L-MMSE equalizer will turn out useful in the next section.

III. FAME: Finite-Alphabet MMSE Equalization

We now propose the finite-alphabet equalization paradigm. We start by defining a finite-alphabet equalization matrix that enables efficient hardware for low-cardinality alphabets. We then formulate the FAME problem, which computes the finite-alphabet equalization matrix that minimizes the post-equalization MSE. Finally, we present a simple approach to compute finite-alphabet equalization matrices and compare its performance to the one of an equalizer that solves the FAME problem exactly.

A. Finite-Alphabet Equalization

Linear equalization in hardware requires the computation of an inner product \(\langle w_u, y \rangle = w_u^H y \) per UE for every received vector \(y \). As demonstrated in Section II-A, executing even such simple computations at the bandwidth offered by mmWave systems can result in excessively large area and high power consumption. To reduce both the area and power consumption, we propose to reduce the numerical precision of the equalization vectors \(w_u, u = 1, \ldots, U \). In the extreme case where the entries of \(w_u \) are quantized using 1-bit per real and imaginary component, an inner-product computation would only require additions and subtractions; this is significantly less costly (in area and power) than using high-precision multipliers [14]. However, it is obvious that reducing the numerical precision of the equalization vectors \(w_u \) will affect the MSE and eventually the error-rate performance. Furthermore, quantization to, e.g., the finite alphabet \(\mathcal{X} = \{ +1 + j, +1 - j, -1 + j, -1 - j \} \), will result in numerical-range issues, meaning that such matrices will not be able to represent large or small entries. To mitigate both of these issues, we now develop a principled way to perform equalization with what we call finite-alphabet matrices. Concretely, we are interested in designing equalization matrices with the structure defined next.

Definition 1. We define a \(U \times B \) finite-alphabet equalization matrix as follows:

\[V^H = \text{diag}([\beta^u])X^H. \] (7)
Here, $\beta \in \mathbb{C}^U$ is a vector that consists of post-equalization scaling factors and $X^H \in \mathbb{C}^{U \times B}$ is an equalization matrix with entries chosen from the finite alphabet \mathcal{X}.

Remark 3. In this work, we are particularly interested in finite alphabets \mathcal{X} of low cardinality and whose elements can be represented using a small number of bits. An example is the “1-bit” finite alphabet $\mathcal{X} = \{+1 + j, +1 - j, -1 + j, -1 - j\}$, which differs from the MSE in (2) as now V is diagonal.

With Definition 1, the equalized received symbol for the uth UE is given by

$$s_u = v_u^H y = \beta_u x_u^H y,$$

where $v_u^H \in \mathbb{C}^{1 \times B}$ and $x_u^H \in \mathcal{X}^{1 \times B}$ are the uth rows of the matrices V^H and X^H, respectively. It is now key to realize that spatial equalization as in (8) allows for efficient circuit implementations, especially for finite alphabets with low cardinality and regularly spaced elements. For such matrices, the inner product $x_u^H y$ can be implemented using low-resolution multipliers. As $\beta \in \mathbb{C}^U$, the post-equalization scaling operation by the scalar factor β_u is performed using high-resolution multipliers. Nonetheless, this operation is executed only once per UE. In Section IV, we will show that equalizer implementations that leverage finite-alphabet equalization matrices enable significant area and power savings.

B. FAME: Finite-Alphabet MMSE Equalization

We now propose FAME, a principled method to compute MSE-optimal finite-alphabet equalization matrices. Analogous to the derivation of the L-MMSE equalizer in Section II-B, we are interested in minimizing the post-equalization MSE

$$\text{FA-MSE} = \mathbb{E}_{u,n} \left[\| V^H y - s \|^2 \right],$$

which differs from the MSE in (2) as now $V^H = \text{diag}(\beta^*) X^H$ is a finite-alphabet equalization matrix as per Definition 1. The FAME matrix is the finite-alphabet equalization matrix that minimizes (9), i.e., it is the solution to the problem

$$V^H = \arg \min_{X \in \mathcal{X}^{U \times B}, \beta \in \mathbb{C}^U} \| I_U - V^H H \|_F^2 + \rho \| V^H \|_F^2,$$

where $\tilde{V}^H = \text{diag}(\beta^*) \tilde{X}^H$. Clearly, the problem in (10) mirrors the one in (9). Hence, it follows from (6) that the rows $v_u^H = \beta_u x_u^H$, $u = 1, \ldots, U$, of the desired FAME matrix can be computed by solving the following optimization problem:

$$\{ \beta_u, x_u \} = \arg \min_{x \in \mathcal{X}^B, \beta \in \mathbb{C}} \| e_u - H^H \tilde{\beta} x \|^2_2 + \rho \| \tilde{\beta} x \|^2_2.$$

Intuitively, we are interested in finding the finite-alphabet equalization vectors $v_u^H = \beta_u x_u^H$, $u = 1, \ldots, U$, that best mimic the infinite-precision L-MMSE equalizer.

Remark 4. For a fixed scaling factor β_u, the FAME problem in (11) is a closest vector problem, which is known to be NP-hard (27)-(29). For example, for a system with 256 BS antennas using a 1-bit finite-alphabet equalization matrix, solving the FAME problem using an exhaustive search would require one to evaluate the objective function in (11) more than 10^{154} times for each UE. Clearly, without low-complexity algorithms, the FAME problem cannot be solved in practical massive MU-MIMO mmWave systems.

Since the FAME problem in (11) minimizes the cost function for two quantities at once, i.e., the scaling factor β_u and the low-resolution vector x_u, it is not obvious how to solve it efficiently. To derive computationally efficient algorithms in Section IV, we will use the following equivalent form of the FAME problem in (11); the proof is given in Appendix A.

Lemma 1. The FAME problem in (11) is equivalent to solving the following optimization problem for each UE $u = 1, \ldots, U$:

$$x_u = \arg \min_{x \in \mathcal{X}^B} \frac{\| H^H \tilde{x} \|^2_2 + \rho \| x \|^2_2}{\| H^H X_u \|^2_2},$$

where the associated optimal scaling factor is given by

$$\beta_u(x_u) = \frac{x_u^H H_u}{\| H^H X_u \|^2_2 + \rho \| x_u \|^2_2}.$$

This formulation of the FAME problem allows us to first find the optimal vector x_u using (12) and then compute the associated optimal scaling factor β_u using (13). Note that the equation in (13) represents the MSE-optimal scaling factor β_u for a given vector x_u, regardless of how x_u was computed. Furthermore, the equivalent formulation in Lemma 1 is similar to a formulation proposed in [24] in the context of nonlinear quantized precoders.

C. FL-MMSE: A Baseline Finite-Alphabet Equalizer

Since the FAME problem is NP-hard, we now present a baseline method to compute finite-alphabet equalization matrices as per Definition 1 without having to solve the FAME problem in (12). We call our approach finite-alphabet L-MMSE (FL-MMSE), as it obtains the entries of the low-resolution matrix X^H by quantizing the L-MMSE equalizer in (5)—the corresponding scaling factors β_u, $u = 1, \ldots, U$, are then obtained via (13). In this work, we will use the FL-MMSE equalizer as a baseline to evaluate the performance of other, more sophisticated finite-alphabet equalizers that attempt to directly solve the FAME problem in (12).

For the 1-bit case, FL-MMSE applies the signum function $\text{sgn}(\cdot)$ separately on the real and imaginary parts of the L-MMSE matrix \mathcal{W}^H to obtain X^H. Then, FL-MMSE uses the expression in (20) to compute the high-resolution scaling factors in the vector β. FL-MMSE can also be used with finite alphabets that have more than 1-bit per complex entry. In such cases, after computing the L-MMSE equalization matrix \mathcal{W}^H in (5), we proceed to quantize its real and imaginary parts as follows. First, for each row w_u^H of \mathcal{W}^H, we identify the scalar w_{max} corresponding to the largest absolute value in $\mathbb{R}\{w_u^H\} \cup \mathbb{I}\{w_u^H\}$. Then, assuming that the targeted resolution is r bits, we divide the range $[-w_{\text{max}} + w_{\text{max}}]$ into 2^r uniform-width bins and quantize the entries of $\mathbb{R}\{w_u^H\}$ and $\mathbb{I}\{w_u^H\}$ to the centroid values of these bins. For 2-bit resolution, for example, the centroid values of the bins are $\{-0.75, -0.25, 0.25, 0.75\} w_{\text{max}}$. In hardware, one would scale these centroid values so that the minimum absolute value corresponds to 1. Following the previous example, one would...
use the values \{-3, -1, +1, +3\} to represent the entries of \(\Re\{x^H_u\}\) and \(\Im\{x^H_u\}\). Note that this scaling does not affect the solution of the FAME problem in (12), as it is absorbed by the scaling factor \(\beta_u\) in (13). After obtaining the low-resolution vector \(x_u^H\), the corresponding scaling factor \(\beta_u\) is computed using the expression in (13).

D. EVM and Beamforming Performance of Exact FAME

We now assess the EVM and beamforming performance of the optimal FAME problem in (12) for a 1-bit finite alphabet. To solve the NP-hard problem, we resort to an exhaustive search, which we call FAME-EXH. To keep the complexity within reasonable bounds, we simulate a small MU-MIMO system with \(B = 8\) BS antennas. We also simulate the performance of conventional, infinite-precision L-MMSE equalization and 1-bit FL-MMSE equalization as proposed in Section III-C.

1) **Error-Vector Magnitude:** Figure 3 shows scatter plots of the equalization outputs \(\hat{s}\) of L-MMSE, FL-MMSE, and FAME-EXH equalization for 2,000 realizations in a \(B = 8\) BS antenna, \(U = 2\) UE system operating over an i.i.d. Rayleigh-fading channel at 15 dB SNR. While the infinite-precision L-MMSE equalizer achieves an EVM of 11.58%, quantizing its solution to 1-bit using FL-MMSE degrades the EVM to 30.58%, which blurs the decision regions of the considered 16-QAM constellation. In stark contrast, the 1-bit FAME-EXH equalizer achieves an EVM of only 15.30%, which is close to that of the infinite-precision L-MMSE equalizer; furthermore, the decision regions between constellation points are clearly visible. These results demonstrate the significant EVM advantage of solving the FAME problem over the simple FL-MMSE equalizer.

2) **Beam- and Null-forming Performance:** Figure 4 illustrates the beam- and null-forming capabilities of FAME-EXH. For these plots, we consider a \(B = 8\) BS antenna, \(U = 2\) UE system operating at 15 dB SNR over a textbook LoS channel, for these plots, we consider a \(B = 8\) BS antenna, \(U = 2\) UE system operating at 15 dB SNR over a textbook LoS channel. We focus on 1-bit finite alphabets, we can relax (17) by replacing the constraint \[|h^H_{b,u}x_{\hat{g}}|^2 = 1\] by \[h^H_{b,u}x_{\hat{g}} = 1\], where the positive semidefinite matrix \(X \in S^B_+\) should approximate \(x_{\hat{g}}x_{\hat{g}}^H\). This SDR yields

\[
\begin{align*}
& \text{minimize} & & \text{tr}\left((H^H_{\hat{g},\hat{g}} + \rho I_{2B}) X \right) \\
& \text{subject to} & & h^H_{b,u} X_{\hat{g}} = 1 \\
& & & X_{1,1} = \bar{X}_{b,b}, b = 2, \ldots, 2B,
\end{align*}
\]

where we ensure that the diagonal elements of \(X \in S^B_+\) must be equal (but we do not specify their value). This constraint is a result of the fact that we are interested in a solution in the set \(Z_{\alpha}\), where the parameter \(\alpha\) is not known. After solving the semidefinite program in (17), we compute the finite-alphabet vector by first extracting the leading eigenvector of the solution matrix \(X \) followed by quantizing it to \([-1, +1]\) using the signum function \(\text{sgn}(\cdot)\). The equalization vector can then be scaled using the optimal FAME scaling parameter in (13).

IV. FAST ALGORITHMS TO SOLVE FAME

We present next approximate algorithms to solve the FAME problem efficiently for systems with a large number of BS antennas. We start by proposing a semidefinite relaxation (SDR)-based method and then develop a much faster method that uses forward-backward splitting (FBS).

A. **FAME with Semidefinite Relaxation (SDR)**

We focus on using SDR (26) to solve the FAME problem in (12) for a 1-bit finite alphabet. To do so, we first re-express the FAME problem in the real domain using the quantities

\[
x_\hat{g} = \begin{bmatrix} \Re\{x\} \\ \Im\{x\} \end{bmatrix} \quad \text{and} \quad H_\hat{g} = \begin{bmatrix} \Re\{H\} & -\Im\{H\} \\ \Im\{H\} & \Re\{H\} \end{bmatrix},
\]

Throughout, we will assume that \(\Re\{x\}\) and \(\Im\{x\}\) take values from the same alphabet \(X_{\hat{g}}\). For example, for 1-bit finite alphabets, we have \(X_{\hat{g}} = \{-1, +1\}\). We can now rewrite the FAME problem in (12) as

\[
x_{\hat{g},u} = \arg \min_{x_{\hat{g}} \in X^{B}_{\hat{g}}} \frac{\|H^H_{\hat{g}} x_{\hat{g}}\|^2 + \rho \|x_{\hat{g}}\|^2}{\|h^H_{b,u} x_{\hat{g}}\|^2}.
\]

Despite the significant performance advantages of 1-bit FAME-EXH over 1-bit FL-MMSE, solving 1-bit FAME-EXH for large-dimensional problems that arise in mmWave systems is infeasible in practice. To this end, we next develop low-complexity FAME solvers that scale to large BS antenna arrays.
We refer to this procedure as FAME-SDR. A more detailed description of general SDR techniques can be found in [26].

Remark 5. While FAME-SDR can also be derived for multi-bit finite alphabets, e.g., using the techniques described in [27], we will not pursue this approach for the following reasons. As we will show in Section IV-C, the complexity of FAME-SDR does not scale well to a large number of BS antennas. Moreover, FAME-SDR cannot be applied to finite alphabets that are not separable into real and imaginary parts, such as a finite alphabet that contains the elements of an 8-PSK (phase shift keying) constellation. In addition, to the best of our knowledge, SDR can only handle finite alphabets with even cardinality that exclude a zero element. To avoid the drawbacks of SDR for FAME, we next present an alternative approach.

B. FAME with Forward-Backward Splitting (FBS)

Due to the high complexity of FAME-SDR and the fact that SDR solvers are notoriously difficult to implement in hardware [28], we next develop a low-complexity alternative for solving the FAME problem approximately. To do so, we start by assuming that, for each UE $u = 1, \ldots, U$, we know the optimal value of the objective in (12), which we denote with γ_u. Mathematically,

$$\gamma_u = \frac{\|H^Hx_u\|_2^2 + \rho\|x_u\|_2^2}{\|H^Hx_u\|_2^2},$$

(19)

where x_u is the solution to the problem in (12). Note that it follows from (19) that $\gamma_u > 1$. By rearranging (19), we obtain

$$0 = \|H^Hx_u\|_2^2 + \rho\|x_u\|_2^2 - \gamma_u\|H^Hx_u\|_2^2.$$

(20)

Thus, if γ_u was known, solving the problem

$$x_u = \arg\min_{\hat{x} \in \mathcal{X}} \frac{1}{\rho} \|H^H\hat{x}\|_2^2 + \frac{\rho}{2} \|\hat{x}\|_2^2 - \gamma_u\|H^H\hat{x}\|_2^2$$

(21)

would yield the same solution as (12). As the optimal value of the objective in (12) is unknown in practice, we will use γ_u as an algorithm parameter that we tune to empirically improve the algorithm’s performance.

Since the problem in (21) still contains a search over the finite alphabet \mathcal{X}^B, we relax the non-convex constraint $\hat{x} \in \mathcal{X}^B$ to $\hat{x} \in B^B$. Here, B corresponds to the convex hull of the finite alphabet \mathcal{X}, which is defined as [29]

$$B = \left\{ \sum_{i=1}^{\|\mathcal{X}\|} \alpha_i \tilde{x}_i \ | \ (\alpha_i \in \mathbb{R}_+, \forall i) \land \sum_{i=1}^{\|\mathcal{X}\|} \alpha_i = 1 \right\},$$

(22)

where \tilde{x}_i is the ith element of \mathcal{X} and $i = 1, \ldots, \|\mathcal{X}\|$. After this relaxation step, the all-zeros vector $\mathbf{0}_{B \times 1}$ becomes a trivial solution. To prevent the algorithm from returning this trivial solution, we follow the approach put forward in [30] and include a term in (21) that encourages large entries in the vector \hat{x}. Specifically, we add $-\frac{\rho}{2} \|\hat{x}\|_2^2$ to the objective function,
where \(\delta > 0 \) is a regularization parameter. The resulting optimization problem is given by

\[
x_u = \arg \min_{\hat{x} \in \mathbb{B}} \frac{1}{2} \left\| H^H \hat{x}_u \right\|^2 - \frac{\gamma_u}{2} \left\| h^H \hat{x}_u \right\|^2 + \frac{\rho - \delta}{2} \left\| \hat{x}_u \right\|^2.
\]

(23)

To compute a solution to (23), we utilize FBS [31]–[33]. FBS is an efficient, iterative solver for convex optimization problems of the form

\[
\hat{x} = \arg \min_{\hat{x}} f(\hat{x}) + g(\hat{x}),
\]

where both functions \(f \) and \(g \) are convex, but \(f \) is a smooth function and \(g \) is not necessarily smooth or bounded. FBS executes the following operations for \(t = 1, 2, \ldots, t_{\text{max}} \) iterations or until convergence

\[
\hat{z}^{(t+1)} = \hat{x}^{(t)} - \tau(t) \nabla f(\hat{x}^{(t)})
\]

(25)

\[
\hat{x}^{(t+1)} = \text{prox}_g\left(\hat{z}^{(t+1)}; \tau(t)\right).
\]

(26)

Here, \(\nabla f(\hat{x}^{(t)}) \) is the gradient of the function \(f \), \(\{\tau(t) > 0\} \) is a sequence of step sizes, and \(\text{prox}_g(\cdot) \) is the proximal operator of the function \(g \), defined as [34]

\[
\text{prox}_g(z; \tau) = \arg \min_{\hat{x}} \left\{ \tau g(\hat{x}) + \frac{1}{2} \| \hat{x} - z \|^2 \right\}.
\]

(27)

Our problem in (23) is not convex and hence, FBS is not guaranteed to converge to an optimal solution. Nevertheless, we can use FBS to find approximate solutions to (23) by setting

\[
f(\hat{x}) = \frac{1}{2} \| H^H \hat{x}_u \|^2 - \frac{\gamma_u}{2} \| h^H \hat{x}_u \|^2 \]

(28)

\[
g(\hat{x}) = 1_{B^\mathbb{R}}(\hat{x}) + \frac{\rho - \delta}{2} \| \hat{x}_u \|^2.
\]

(29)

Here, the convex constraint \(\hat{x} \in B^\mathbb{R} \) in (23) is incorporated into the function \(g(\hat{x}) \) via the indicator function \(1_{B^\mathbb{R}}(\hat{x}) \), which is zero if \(\hat{x} \in B^\mathbb{R} \) and infinity otherwise. With these definitions, we arrive at

\[
\nabla f(\hat{x}) = HH^H \hat{x} - \gamma_u h^H \hat{x} \]

(30)

\[
\text{prox}_g(\hat{z}) = \text{sgn}(\Re\{\hat{z}\}) \min \left\{ \nu(t) | \Re\{\hat{z}\}, 1 \right\}
\]

\[
+ j \text{sgn}(\Im\{\hat{z}\}) \min \left\{ \nu(t) | \Im\{\hat{z}\}, 1 \right\},
\]

(31)

where \(\nu(t) = (1 - \tau(t) (\rho - \delta))^{-1} \) and (31) is applied element-wise to the vector \(\hat{z} \).

Note that we have introduced three sets of algorithm parameters: \(\{\tau(t)\}, \{\nu(t)\}, \) and \(\{\gamma_u\} \), where \(t = 1, \ldots, t_{\text{max}} \) and \(u = 1, \ldots, U \). While one could manually tune these parameters via numerical simulations, we automate the tuning process by using a neural-network-based approach as put forward in [35]. We note that such a neural-network-based approach is only used for determining the algorithm parameters, i.e., it is trained offline without affecting the runtime complexity of FAME-FBS. As the same algorithm parameters should work across several channel realizations, having a per-UE parameter such as \(\gamma_u \) is meaningless. As a result, we set \(\gamma = \gamma_u \) for \(u = 1, \ldots, U \). Furthermore, to provide the neural network with greater flexibility during optimization, we allow \(\gamma \) to be different in each iteration; i.e., we introduce another set of per-iteration parameters \(\{\gamma(t)\}, t = 1, \ldots, t_{\text{max}} \). We call the resulting algorithm FAME-FBS, which is summarized next.

Algorithm 1 (FAME-FBS)

Initialize \(\hat{x}^{(1)} \) with either the maximum-ratio combining (MRC) solution \(h_u \) or the low-resolution vector \(x_u \) computed by FL-MMSE, and fix the sets of parameters \(\{\nu(t)\}, \{\tau(t)\}, \) and \(\{\gamma(t)\} \). Then, for every iteration \(t = 1, 2, \ldots, t_{\text{max}}, \)

\[
\hat{x}^{(t+1)} = \left(I_B - \nu(t) (H_I - \gamma(t) e_u e_u^H) H^H \right) \hat{x}^{(t)}
\]

(32)

\[
\hat{x}^{(t+1)} = \text{prox}_g(\hat{z}^{(t+1)}).
\]

(33)

Here, the proximal operator \(\text{prox}_g(\cdot) \) is the element-wise function given by (37). The result \(\hat{x}^{(t_{\text{max}}+1)} \) is quantized to the finite alphabet \(X \) to obtain \(x_u^{(t)} \). Then, the optimal FAME scaling parameter \(\beta_u \) is computed using (13).

Remark 6.

FAME-FBS supports multi-bit finite-alphabet equalization matrices. This is achieved by uniformly quantizing, in the range \([-1, +1]\), the real and imaginary parts of the solution vector \(\hat{x}^{(t_{\text{max}}+1)} \), similar to what is done by FL-MMSE equalization. As a consequence, unlike FAME-SDR, FAME-FBS can operate with finite alphabets that contain (i) an odd number of elements and (ii) a zero element. Furthermore, FAME-FBS (and FL-MMSE) can be applied to PSK-like finite alphabets following an approach related to the one used in [36].

Remark 7.

Since FAME-FBS was obtained by relaxing the original optimization problem and by applying an iterative solver for convex optimization problems to the non-convex problem in (23), it is not guaranteed to converge to the optimal solution of the original problem in (12). Nonetheless, our simulation results in Section IV-D confirm that FAME-FBS achieves competitive performance for (i) different system configurations and (ii) realistic channel models.

C. Computational Complexity

We now assess the complexity of (i) computing the equalization matrix and (ii) performing equalization on a received vector \(y \), for high-resolution and finite-alphabet equalization approaches. We measure computational complexity as the number of real-valued multiplications performed by an algorithm.

1) Computing the Equalization Matrix

Table I lists the computational complexity for computing a single equalization matrix.

Algorithm	Computational complexity	Asymptotic scaling
L-MMSE	\(2U^3 + 6BU^2 - 2BU - 2U + 1 \)	\(O(BU^3) \)
FL-MMSE	\(10BU^3 + 2U^3 + 2U + 1 + U + 1 \)	\(O(BU^3) \)
FAME-SDR	n.a.	\(O(B^4 U) \)
FAME-FBS	\((8\max(t) + 4)BU^2 + 2U^2 + (4\max + 2)U + (2\max + 3)U \)	\(O(BU^2) \)

For the remainder of the paper, we assume that complex-valued multiplications require four real-valued multiplications.
matrix using L-MMSE, FL-MMSE, FAME-SDR, and FAME-FBS. For the infinite-precision L-MMSE equalizer, the complexity corresponds to explicitly computing the equalization matrix W^H. For the finite-alphabet equalizers (FL-MMSE and FAME-based algorithms), the complexity corresponds to the computation of the low-resolution matrix X^H and the scaling factors in the vector β. Solving FAME-SDR results in the highest complexity, which asymptotically scales as $O(B^{4.5})$ unless specific problem structures can be exploited [26]. Since we do not have access to a particular SDR solver, we only provide this asymptotic scaling. Evidently, FAME-SDR does not scale well to systems with a large number of BS antennas. FAME-FBS has the same asymptotic scaling of $O(BU^2)$ as L-MMSE and FL-MMSE equalization, making it suitable for massive MU-MIMO mmWave systems. The exact complexity counts listed in Table I are derived in Appendix B.

Remark 8. While the constant associated with the term BU^2 is larger for FAME-FBS than for L-MMSE and FL-MMSE, the complexity of the latter algorithms appears to be higher in practice. Computing the L-MMSE (and the FL-MMSE) equalizer in hardware requires square roots and divisions, which result in high numerical precision requirements [18]. Furthermore, the Cholesky decomposition and forward- and back-substitution procedures required when computing the L-MMSE (and the FL-MMSE) equalization matrix result in stringent data dependencies that limit parallelism and, hence, reduce throughput. In contrast, FAME-FBS has a regular structure with few data dependencies and the matrix-vector multiplications can be parallelized easily. In addition, one can parallelize computation per UE as the FAME problem in [12] is independent for each $u = 1, \ldots, U$. In fact, a simple hardware engine, similar to the one proposed in [37] for another FBS-based algorithm, could be used to efficiently execute FAME-FBS to determine the low-resolution equalization vectors x_u^H.

2) Performing Equalization: After computing the equalization matrix, one must perform spatial equalization on the received signal vectors y at the rate of the ADCs. For the infinite-precision L-MMSE equalizer, this corresponds to computing one high-resolution matrix-vector product $s = W^H y$ per receive vector. For finite-alphabet equalizers, this corresponds to a low-resolution matrix-vector product $z = X^H y$, followed by U high-resolution products $s_u = \beta_u^* z_u$, $u = 1, \ldots, U$. The complexity of equalization is summarized in Table I where we distinguish between high resolution and low resolution multiplications. While finite-alphabet equalization performs more multiplications than a conventional equalizer, most of these multiplications are performed at low resolution. Thus, for sufficiently low resolution, finite-alphabet equalization effectively reduces the complexity of spatial equalization.

Remark 9. While spatial equalization must be carried out at symbol rate, the computation of the equalization matrix must only be carried out if the channel matrix changes. Given that we are considering operation at extremely high bandwidths, the complexity of performing equalization will dominate in most mmWave systems. For scenarios with short coherence times, methods that minimize the complexity of computing the equalization matrix are to be preferred.

D. Simulation Results

We now evaluate the uncoded BER performance of FAME-based algorithms, and compare it to infinite-precision L-MMSE equalization and FL-MMSE. The following simulation results are obtained by carrying out 10^4 Monte-Carlo trials. The per-iteration parameters $\{\gamma(t)\}, \{\tau(t)\}$, and $\{\nu(t)\}$ of FAME-FBS are tuned using a neural network as in [35]; the neural network is trained using 10^4 channel realizations, which differ from the ones used to evaluate the BER. In practice, we have observed that $\gamma(t) = 1.1$ and $\nu(t) = 1.1$, $t = 1, \ldots, t_{\text{max}}$, constitute
good values for initializing the neural network regardless of the system configuration; good initializers for \(\tau^{(0)} \) vary from \(2^{-4} \) to \(2^{-9} \) for the systems considered in this work. For all equalizers, we quantize the entries of the channel matrices \(H \) to 8 bits per real and imaginary components. In addition, the received signal vectors are quantized to 7 bits per real and imaginary components, which is sufficient to achieve virtually the same performance as with double-precision representation.

In Figure 5, we show uncoded BER for two different MU-MIMO systems in an i.i.d. Rayleigh-fading scenario. For the \(B = 8 \) BS antenna, \(U = 2 \) UE system shown in Figure 5(a), we see that 1-bit FAME-EXH significantly outperforms 1-bit FL-MMSE, which suffers from an error floor. Since the complexity of FAME-EXH scales exponentially in \(B \), it cannot be used for significantly larger systems. Hence, we also show the performance of FAME-SDR, which has a 2 dB loss at a BER of \(10^{-3} \) compared to FAME-EXH. Since FAME-SDR scales to systems with more BS antennas, we also show a \(B = 64 \) BS antenna, \(U = 4 \) UE system in Figure 5(b). In this scenario, FAME-SDR continues to substantially outperform 1-bit FL-MMSE. As discussed in Section IV-C, however, FAME-SDR does not scale to systems with more BS antennas, whereas FAME-FBS exhibits the same asymptotic complexity scaling as L-MMSE and FL-MMSE equalization. From Figure 5, we see that FAME-FBS performs on par with FAME-SDR but at much lower complexity.

In Figure 6(a), we show the BER performance of finite-alphabet equalization matrices in a \(B = 256 \) BS antenna, \(U = 16 \) UE system using 16-QAM with i.i.d. Rayleigh-fading channels. The performance behavior of 1-bit FL-MMSE and 1-bit FAME-FBS is similar to what we have observed for smaller systems. The same figure also shows the performance of finite-alphabet equalizers with resolutions larger than 1 bit. We see that the performance gap between FAME-FBS and FL-MMSE is more pronounced for 1-bit and 2-bit finite-alphabet equalization matrices than for 3-bit. We note that finite-alphabet equalizers achieve virtually the same performance as infinite-precision L-MMSE equalization when using 6 bits; nonetheless, 3 bits are sufficient to operate at SNRs lower than 4 dB.

Since i.i.d. Rayleigh-fading channels are a poor model for mmWave propagation conditions, we also show the performance of FAME-FBS in a \(B = 256 \) BS antenna, \(U = 16 \) UE system operating over more realistic mmWave channels generated using the QuaDRiGa model [39]. Concretely, in Figure 6(b) and Figure 6(c), we simulate mmWave systems with a carrier frequency of 60 GHz within the “mmMAGIC_UMi” scenario. We consider both non-LoS (shown in Figure 6(b)) and LoS (shown in Figure 6(c)) propagation conditions. We also model power control by scaling the QuaDRiGa-generated channels so that the received UE powers are in the range...
±3 dB. Specifically, for each channel realization, the UE with highest power has 4 x the power of the UE with the lowest power. Furthermore, the UEs are randomly placed in a sector of 120° in front of the BS antenna array with a distance ranging from 10 m to 110 m, and a minimum angular separation of 4°. From Figure 6(b) and Figure 6(c) we observe that FAME-FBS outperforms FL-MMSE for both non-LoS and LoS channels—essentially the same trends as for Rayleigh-fading channels. These simulation results indicate that finite-alphabet equalization performs well under more realistic mmWave propagation conditions, while having the potential to significantly reduce power consumption and silicon area.

To further evaluate the performance of finite-alphabet equalizers, Figure 7 shows the EVM performance of FAME-FBS and FL-MMSE for the same system configuration and propagation conditions considered in Figure 6. The gray dashed lines indicate the EVM requirements for different modulation schemes as specified by the 3GPP 5G NR standard [38]. Figure 7 confirms the trends observed in the BER simulations. For example, while 1-bit FL-MMSE is not able to meet the EVM requirement for QPSK in Figure 7(a) and Figure 7(b), 1-bit FAME-FBS is almost able to reach the EVM requirement for 64-QAM. Moreover, while FAME-FBS significantly outperforms FL-MMSE when using 1 and 2 bits of resolution, their EVM performance is similar for 3 bits, in which case the performance of both finite-alphabet equalizers is close to that of infinite-precision L-MMSE.

Remark 10. FL-MMSE and FAME-based algorithms (FAME-EXH, FAME-SDR, and FAME-FBS) generate finite-alphabet equalization matrices as in Definition 7. This implies that, for a fixed equalizer resolution, all the algorithms proposed in this paper produce a low-resolution matrix \(X^H \) whose entries belong to the same finite alphabet \(\mathcal{X} \), as well as a set of post-equalization scaling factors \(\beta \), which are computed via (72) once \(X^H \) has been determined. Even though all the algorithms use the same finite alphabet for the entries of \(X^H \), FAME-based algorithms are able to achieve a better performance as they are (approximately) solving the FAME problem in (72).

Remark 11. The improved performance of FAME-FBS over FL-MMSE comes at the cost of a higher complexity, as shown in Table I. Hence, there exists a performance-complexity trade-off between using FL-MMSE and FAME-FBS to generate finite-alphabet equalizers. In addition, the complexity and performance of FAME-FBS can be further tuned via the number of iterations \(\tau_{\text{max}} \). Finally, the equalizer resolution offers another performance-complexity trade-off: The use of more bits for the finite-alphabet equalization matrix improves the performance, but also increases the circuit’s power consumption and silicon area—a trade-off we will study next.

V. Hardware-Level Evaluation

To demonstrate the real-world benefits of finite-alphabet equalization, we now quantify the power and area savings that can be attained in comparison with conventional, high-resolution equalizers.

Table III

Equalizer resolution \(r \) [bit]	1	2	3	4	5	10
Silicon area [mm²]	0.06	0.08	0.10	0.14	0.16	0.26
Clock freq. [GHz]	1.33	1.25	1.25	1.16	1.16	1.05
Throughput [M vectors/s]	5.18	4.88	4.88	4.53	4.53	4.10
Power [mW]	18.5	29.2	38.8	42.6	51.3	57.1

Extracted from stimuli-based post-layout simulations in the typical-typical process corner at 25°C with a nominal power supply of 0.9V.

A. Equalizer Architectures

To arrive at a fair comparison between finite-alphabet equalization and conventional, high-resolution equalizers, we implemented two equalization circuits: one for finite-alphabet equalization and one for high-resolution equalization.

The high-resolution equalizer computes a matrix-vector product between the \(U \times B \) equalization matrix \(W^H \) and the received vector \(y \). The matrix-vector product is computed in a column-by-column fashion by using a linear array of \(U \) parallel multiply-accumulate (MAC) units over \(B \) clock cycles. The multipliers in the MAC units are high-resolution and take as input 10-bit numbers from the equalization matrix \(W^H \) and 7-bit numbers from the received vector \(y \). The accumulators in the MAC units use 18 bits. Finally, 9 bits are taken from both real and imaginary accumulators as the outputs of each MAC unit. These outputs correspond to the estimates \(\hat{s} = W^H y \).

The finite-alphabet equalizer computes a low-resolution matrix-vector product between the \(U \times B \) finite-alphabet matrix \(X^H \) and the received vector \(y \). This matrix-vector product is implemented in the same way as in the traditional equalizer, with the difference that far fewer bits are used for the multipliers and accumulators. The multipliers take as input \(r \)-bit numbers from \(X^H \) and 7-bit numbers from \(y \), while the accumulators use \(r + 13 \) bits (except for the case where \(r = 1 \), where the accumulators use 13 bits). We take 9 bits from the accumulators in each MAC unit as the output of the low-resolution matrix-vector product \(X^H y \). Unlike conventional equalization, the results of the \(U \)-dimensional vector \(X^H y \) are scaled by the values in \(\beta^* \). This scaling operation is implemented with a high-resolution multiplier that computes the product between the 9-bit \(x^H \) and the 10-bit scaling factor \(\beta^* \). The output of this multiplier is represented using 9 bits per real and imaginary components and correspond to the estimates \(\hat{s} = V^H y \).

B. Implementation Results

Table III lists post-layout implementation results for the circuits discussed in Sections V-A implemented for a \(B = 256 \) BS antenna, \(U = 16 \) UE system, using a 28 nm CMOS technology. The traditional, high-resolution equalizer corresponds to the design with an equalization resolution \(r \) of 10 bits, whereas the finite-alphabet equalizer was implemented for \(r = \{1, 2, \ldots, 5\} \) bits. To allow for a fair comparison between the different equalization circuits, we consider a scenario in which all of the designs support the same throughput. We
assume a throughput of 2 G (complex-valued) vectors/s, which implies that the 2B ADCs at the BS run at 2 G samples/s. As we can see from Table III, a single instance of our equalizer designs reaches throughputs of the order of M vectors/s, which is well below the target throughput of 2 G vectors/s. We can, however, instantiate a time-multiplexed array of equalizers that achieve the desired throughput (at the expense of increased area). Assuming no overhead for this replication approach, we can estimate the total silicon area and power consumption required to perform equalization in a high-bandwidth mmWave setting; Figure 8 shows the corresponding results.

Figure 8(a) shows the power consumption reduction achieved by lowering the equalizer resolution; Figure 8(b) shows the same effect but on silicon area. We see that halving the number of bits used for the high-resolution equalizer already introduces substantial gains of 19% and 44% lower power and area, respectively. Further reducing the equalizer resolution reduces the power and area by a factor of 3.9× and 5.8×, respectively, when a 1-bit finite-alphabet equalizer is used.

Remark 12. We note that the power and area can potentially be reduced much more. Once the number of bits in the equalization matrix has been reduced to 5 bits or below, emerging processing-in-memory architectures, such as the one proposed in [20], potentially lower the area and power (additionally to the savings above) by about 2× to 4×. A detailed analysis of such emerging multiplier-array architectures in combination with finite-alphabet equalization is left for future work.

VI. CONCLUSIONS

We have proposed finite-alphabet equalization, a paradigm in which the spatial equalization matrix contains low-resolution numbers in order to enable energy- and area-efficient equalization hardware. To achieve an error-rate performance similar to that of conventional, high-resolution equalizers, such as the L-MMSE equalizer, we have formulated the finite-alphabet MMSE equalization (FAME) problem, which minimizes the post-equalization MSE. We have shown that solving the FAME problem yields significant improvements over finite-alphabet matrices that are obtained by naively quantizing the L-MMSE matrix in terms of EVM, beamforming capabilities, and uncoded BER. Since the FAME problem is NP-hard, we have proposed approximate algorithms that trade-off performance with complexity. One of the proposed algorithms, FAME-FBS, achieves a performance that is on par with semidefinite relaxation while having the same asymptotic complexity scaling as L-MMSE equalization. We have shown that FAME-FBS significantly outperforms a baseline finite-alphabet equalizer for LoS and non-LoS massive MU-MIMO mmWave channel models in terms of EVM and uncoded BER. In addition, our reference VLSI implementation results in 28 nm CMOS have demonstrated that the use of finite-alphabet equalization is able to reduce the power and area of spatial equalization by at least a factor of 3.9× and 5.8×, respectively. Thus, finite-alphabet equalization is a viable solution to combat the excessively high power consumption and area of all-digital massive MU-MIMO mmWave BS designs.

There are many avenues of future work. A theoretical convergence and performance analysis of FAME-FBS is an interesting (but difficult) open problem. Moreover, the development of algorithms that outperform FAME-FBS and further approach the performance of FAME-EXH at low complexity is a challenging open research direction. The finite-alphabet equalization paradigm is also applicable to downlink precoding in massive MU-MIMO mmWave systems [41] and could be used in other applications where matrix-vector products must be computed at high rates or with low power consumption—an investigation of other applications is part of ongoing research.

APPENDIX A

PROOF OF LEMMA 11

We start by deriving the expression for the optimal scaling factor \(\beta_n \) given an equalization vector \(\mathbf{x}_u \) and then use the resulting quantity to simplify the optimization problem. We first take the Wirtinger derivative of the objective function in (11) in the complex-valued variable \(\beta^* \) and set it to zero:

\[
\frac{\partial}{\partial \beta^*} \left(||\mathbf{e}_u - \mathbf{H}^H \tilde{\mathbf{x}}||^2 + \rho ||\tilde{\mathbf{x}}||^2 \right) = 0
\]

\[
-\mathbf{x}^H \mathbf{H}_u + \tilde{\mathbf{x}}^H \mathbf{H}^H \tilde{\mathbf{x}} + \rho ||\tilde{\mathbf{x}}||^2 \beta = 0.
\]

Since \(\mathbf{H}_u = \mathbf{h}_u \), we obtain (13) by solving for \(\tilde{\beta} \). To obtain (12), we substitute (13) into (11) and simplify the resulting expression using algebraic manipulations. Concretely, we carry out the steps listed in (36)–(43).

APPENDIX B

COMPLEXITY COUNTS FOR COMPUTING EQUALIZATION MATRICES WITH DIFFERENT ALGORITHMS

In what follows, we ignore the complexity of reciprocals, square roots, and additions. The numbers in parentheses are real-valued multiplications, where we assume that a complex-valued multiplication requires four real-valued multiplications.

![Fig. 8. Power and area consumed by equalizer hardware designs in 28 nm CMOS technology for a \(B = 256 \) BS antenna. \(U = 16 \) UE massive MU-MIMO system with varying equalizer resolution. All equalizers operate at a rate of 2 G vectors/s and 7 bits are used to represent the entries of the received vector \(\mathbf{y} \). For an equalizer resolution lower than 6 bits, we use a finite-alphabet equalizer consisting of a low-resolution matrix-vector product, followed by per-UE high-resolution scaling. The equalizer resolution of 10 bit is executed with a high-resolution matrix-vector product only. Finite-alphabet equalization (shown in blue) can reduce the power and area of conventional, high-precision equalization (shown in orange) by a factor of 3.9× and 5.8×, respectively.](image-url)
\[\left\| e_u - \frac{H^H \beta(\hat{x}) \hat{x}}{2} + \rho |\beta(\hat{x})|^2 \left\| \hat{x} \right\|^2 \right\|_2^2 = \left\| e_u - \frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} e_u \right\|_2^2 + \rho \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \left\| \hat{x} \right\|^2 \]

\[= \left\| \left(I - \frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right) e_u \right\|_2^2 + \rho \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \left\| \hat{x} \right\|^2 \]

\[= \left| e_u \right|_2^2 - 2 e_u^H H \hat{x} \hat{x}^H H e_u + e_u^H H \hat{x} \hat{x}^H H H \hat{x} \hat{x}^H H e_u + \rho \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \left\| \hat{x} \right\|^2 \]

\[= 1 - 2 \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} + \frac{\left(\frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right)^2 + \rho \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2}}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \left\| \hat{x} \right\|^2 \]

\[= 1 + \frac{\left| \frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \left(-2 + \frac{\left(\frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right)^2 + \rho \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2}}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right) \]

\[= 1 - \frac{\left| \frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right|_2^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} + \frac{\left(\frac{H^H \hat{x} \hat{x}^H H}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \right)^2 + \rho \frac{|\hat{x}^H H e_u|^2}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2}}{\left\| H \hat{x} \right\|^2 + \rho |\hat{x}|^2} \left\| \hat{x} \right\|^2 \]

A. Complexity of Explicit L-MMSE

Explicit L-MMSE equalization corresponds to computing $W_t = (\rho L + H^H H)^{-1} H^H$, which can be achieved at low complexity using the approach detailed in [13]. First, we calculate $A = \rho L + H^H H (2BU)^2$. Then, we apply a Cholesky decomposition to A such that $A = LL^H (\frac{2}{3}U^3 - \frac{2}{3}U)$. Next, we compute the inverse of L via back-substitution ($\frac{2}{3}U^3 - \frac{2}{3}U + 1$), to calculate $A^{-1} = L^{-1} L^{-1} (\frac{2}{3}U^3 + \frac{2}{3}U)$. Finally, we obtain $W_t = A^{-1} H^H (4BU^2 - 2BU)$. The total complexity of the explicit L-MMSE equalizer is $(4BU^2 + 2BU + 2)\alpha_{max}$ real-valued products. As shown in Appendix B-B computing the optimal scaling factor $\beta_u(x_u)$ requires $(4BU^2 + 2BU + 2)\alpha_{max}$ real-valued multiplications per UE. Thus, the total computational complexity of FAME-FBS is $(8\alpha_{max} + 4BU^2 + 2BU + 2)\alpha_{max} + 1)BU + (2\alpha_{max} + 3)U$. Hence, FAME-FBS has an asymptotic complexity of $O(BU^2)$.

B. Complexity of FL-MMSE

We start by computing the explicit L-MMSE equalizer, which, as shown in Appendix A, entails a complexity of $2U^3 + 6BU^2 - 2BU - 2U + 1$. Then, we quantize the entries of the L-MMSE equalizer. We will not count the complexity of quantization as there are hardware-efficient ways to do so. Now that X^H has been determined, the next step is to compute the optimal scaling factor $\beta_u(x_u)$ for each UE. We need to first calculate $H^H x_u (4BU^2)$ from which we also extract $x^H u h_u$. Then, we compute the ℓ_2-norm of $H^H x_u$ and x_u $(2U + 2DU^2)$ respectively. The next steps are to scale $|x^H u h_u|^2$ by ρ (1 multiplication), and obtain $\beta_u(x_u)$ by multiplying $x^H u h_u$ and the multiplicative inverse of $|x^H u h_u|^2 + \rho |x^H u|^2$ (2 multiplications). Then, computing $\beta_u(x_u)$ for all UEs $u = 1, \ldots, U$ has a complexity of $4BU^2 + 2BU + 2U^2 + 3U$. Thus, computing X^H and β for FL-MMSE equalization has a total complexity of $10BU^2 + 2U^3 + 2U^2 + U + 1$. As expected, FL-MMSE has the same asymptotic complexity scaling $O(BU^2)$ as the L-MMSE equalizer.

C. Complexity of FAME-FBS

For each UE $u = 1, \ldots, U$, one instance of FAME-FBS is executed. Each FAME-FBS instance requires an iterative procedure with t_{max} iterations followed by the computation of $\beta_u(x_u)$. In the iterative procedure, we compute $H^H x (4BU)$ and scale one of its entries with $\gamma_i(2)$ multiplications. With this, we have computed the vector $(H^H - \gamma_i e_u e_u^H H^H) x$, which we now multiply with $H (4BU)$ to obtain the gradient $\nabla \hat{f}(x)$ in (30). The next step in FAME-FBS is to scale $\nabla \hat{f}(x)$ with $\tau_i(2)$ to compute $\hat{z}(t^{i+1})$. Then, the entries of $\hat{z}(t^{i+1})$ are scaled by $\bar{\nu}_i(2B)$, completing one FAME-FBS iteration. Hence, to compute x_u, FAME-FBS requires $(8BU + 4BU + 2)\alpha_{max}$ real-valued products. As shown in Appendix B-B computing the optimal scaling factor $\beta_u(x_u)$ requires $(4BU^2 + 2BU + 2)\alpha_{max}$ real-valued multiplications per UE. Thus, the total computational complexity of FAME-FBS is $(8\alpha_{max} + 4BU^2 + 2U^2 + 2(\alpha_{max} + 1)BU + (2\alpha_{max} + 3)U$. Hence, FAME-FBS has an asymptotic complexity of $O(BU^2)$.

REFERENCES

[1] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!" IEEE Access, vol. 1, pp. 335–349, May 2013.

[2] A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, "Millimeter-wave massive MIMO: The next wireless revolution?" IEEE Commun. Mag., vol. 52, no. 9, pp. 56–62, Sep. 2014.

[3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[4] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[5] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, Feb. 2014.

[6] B. Sadhu, Y. Touis, J. Hallin, S. Sahil, S. Reynolds, O. Renström, K. Sjögren, O. Haapalahi, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlberg, E. Westesson, J. Thillberg, L. Rexberg, M. Yeck, X. Gu, D. Friedman, and A. Valdés-Garcia, "A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4-degree beam-steering resolution for 5G communication," in IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2017, pp. 128–129.
[7] A. Alkhateeb, J. Mo, N. González-Prelcic, and R. W. Heath Jr., “MIMO precoding and combining solutions for millimeter-wave systems,” *IEEE Commun. Mag.*, vol. 52, no. 12, pp. 122–131, Dec. 2014.

[8] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” *IEEE Commun. Mag.*, vol. 49, no. 6, pp. 101–107, Jun. 2011.

[9] E. Björnson, L. Van der Perre, S. Buzzi, and E. G. Larsson, “Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences,” *IEEE Wireless Commun. Mag.*, vol. 26, no. 2, pp. 100–108, Apr. 2019.

[10] S. Dutta, C. N. Barati, D. Ramirez, A. Dhananjay, J. F. Buckwalter, and S. Rangan, “A case for digital beamforming at mmWave,” *IEEE Trans. Wireless Commun.*, vol. 19, no. 2, pp. 756–770, Feb. 2020.

[11] J. Mo and R. W. Heath, “Capacity analysis of one-bit quantized MIMO systems with transmitter channel state information,” *IEEE Trans. Signal Process.*, vol. 63, no. 20, pp. 5498–5512, Oct. 2015.

[12] K. Roth and J. A. Nossek, “Achievable rate and energy efficiency of hybrid and digital beamforming receivers with low resolution ADC,” *IEEE J. Sel. Areas Commun.*, vol. 35, no. 9, pp. 2056–2068, Sep. 2017.

[13] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer, “Throughput analysis of massive MIMO uplink with low-resolution ADCs,” *IEEE Trans. Wireless Commun.*, vol. 16, no. 6, pp. 4038–4051, Jun. 2017.

[14] R. Zimmerman, “Computer arithmetic: Principles, architectures, and VLSI design,” Integrated Systems Laboratory, ETH Zürich, Technical Report, 1999.

[15] C. Studer and G. Durisi, “Quantized massive MU-MIMO-OFDM uplink,” *IEEE Trans. Commun.*, vol. 64, no. 6, pp. 2387–2399, Jun. 2016.

[16] J. Mo, A. Alkhateeb, S. Abu-Surra, and R. W. Heath Jr., “Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs,” *IEEE Wireless Commun.*, vol. 16, no. 4, pp. 2274–2287, Apr. 2017.

[17] H. Yan, S. Ramesh, T. Gallagher, C. Ling, and D. Cabric, “Performance, power, and area design trade-offs in millimeter-wave transmitter beamforming architectures,” *IEEE Circuits Syst. Mag.*, vol. 19, no. 2, pp. 33–58, May 2019.

[18] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-output MIMO detection using MMSE parallel interference cancellation,” *IEEE J. Selected Areas in Communications*, vol. 34, no. 7, pp. 1754–1765, Jul. 2011.

[19] M. Wu, B. Yin, G. Wang, C. Dick, J. Cavallaro, and C. Studer, “Large-scale MIMO detection for 3GPP LTE: Algorithm and FPGA implementation,” *IEEE J. Sel. Topics Signal Process.*, vol. 8, no. 5, pp. 916–929, Oct. 2014.

[20] A. Paulraj, R. Nabar, and D. Gore, *Introduction to space-time wireless communications*. Cambridge Univ. Press, 2003.

[21] E. Agren, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” *IEEE Trans. Inf. Theory*, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.

[22] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,” *Math. Comput.*, vol. 44, no. 170, pp. 463–471, Apr. 1985.

[23] S. Verdú, “Computational complexity of optimum multiuser detection,” *Algorithmica*, vol. 4, no. 1, pp. 303–312, 1989.

[24] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized precoding for massive MU-MIMO,” *IEEE Trans. Commun.*, vol. 65, no. 11, pp. 4670–4684, Nov. 2017.

[25] D. Tse and P. Viswanath, *Fundamentals of Wireless Communication*. Cambridge Univ. Press, 2005.

[26] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” *IEEE Signal Process. Mag.*, vol. 27, no. 3, pp. 20–34, May 2010.

[27] T.-H. Chang, C.-W. Hsin, W.-K. Ma, and C.-Y. Chi, “A linear fractional semidefinite relaxation approach to maximum-likelihood detection of higher-order QAM OSTBC in unknown channels,” *IEEE Trans. Signal Process.*, vol. 58, no. 4, pp. 2315–2326, Apr. 2009.

[28] O. Castañeda, T. Goldstein, and C. Studer, “Data detection in large multi-antenna wireless systems via approximate semidefinite relaxation,” *IEEE Trans. Circuits Syst. I*, vol. 63, no. 12, pp. 2334–2346, Dec. 2016.

[29] M. Wu, C. Dick, J. Cavallaro, and C. Studer, “High-throughput data detection for massive MU-MIMO-OFDM using coordinate descent,” *IEEE Trans. Circuits Syst. I*, vol. 63, no. 12, pp. 2357–2367, Nov. 2016.

[30] S. Shah, A. K. Yadav, C. D. Castillo, D. W. Jacobs, C. Studer, and T. Goldstein, “Biconvex relaxation for semidefinite programming in computer vision,” in *Eur. Conf. Comput. Vision (ECCV)*, Sep. 2016, pp. 717–735.

[31] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” *SIAM J. Imag. Sci.*, vol. 2, no. 1, pp. 183–202, Jan. 2009.

[32] T. Goldstein and S. Setzer, “High-order methods for basis pursuit,” UCLA CAM Technical Report, 2010.

[33] C. Studer, C. Studer, and R. G. Baraniuk, “A field guide to forward-backward splitting with a FASTA implementation,” Nov. 2014. [Online]. Available: http://arxiv.org/abs/1411.3406

[34] N. Parikh and S. Boyd, “Proximal algorithms,” *Foundations and Trends Optimization*, vol. 1, no. 3, pp. 127–239, Jun. 2014.

[35] A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi, and C. Studer, “Neural-network optimized 1-bit precoding for massive MU-MIMO,” in *IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC)*, Jul. 2019.

[36] O. Castañeda, S. Jacobsson, G. Durisi, T. Goldstein, and C. Studer, “VLSI design of a 3-bit constant-modulus precoder for massive MU-MIMO,” in *IEEE Int. Symp. Circuits Systems (ISCAS)*, May 2018.

[37] O. Castañeda, S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “1-bit massive MU-MIMO precoding in VLSI,” *IEEE J. Emerging Sel. Topics Circuits Syst.*, vol. 7, no. 4, pp. 508–522, Dec. 2017.

[38] 3GPP, “5G; NR; base station (BS) radio transmission and reception,” May 2019, TS 38.104 version 15.5.0 Rel. 15.

[39] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “QuaDRiGa: A versatile in-memory accelerator for matrix-vector-product-like operations,” in *IEEE Int. Conf. Application-specific Syst., Archit., Processors (ASAP)*, Jul. 2019, pp. 149–156.

[40] O. Castañeda, S. Jacobsson, G. Durisi, T. Goldstein, and C. Studer, “Finite-alphabet Wiener filter precoding for mmWave massive MU-MIMO systems,” in *Proc. Asilomar Conf. Signals, Syst., Comput.* Nov. 2019, pp. 178–183.