A review of liver disorders in inflammatory bowel disease (IBD)

Niraj James Shah*, Nitin K Gupta and Brian B Borg

1Department of Medicine, Division of Digestive Diseases, The University of Mississippi Medical Center, USA
2Director of inflammatory Bowel Disease, School of Medicine, Department of Medicine, Division of Digestive Diseases, The University of Mississippi Medical Center, USA
3Director of Hepatology, Medical Director of Liver Transplant, School of Medicine, Department of Medicine, Division of Digestive Diseases, The University of Mississippi Medical Center, USA

Abstract

Disorders of the liver and the biliary tract are frequently the extraintestinal manifestations of inflammatory bowel disease (IBD). The etiology of these hepatobiliary conditions is deemed secondary to their shared pathogenesis, the chronic effects of a long term, ongoing inflammation of the bowel, along with the medications used to manage IBD. For up to 30% of patients with IBD, abnormal liver biochemical tests are present. Other, selected patients with IBD are followed for reactivation of hepatitis B, through guidelines only relatively recently in place. The vast realm of related clinical conditions does not always correspond well with IBD severity, which can range from mild hepatic insult to end-stage liver disease, necessitating liver transplantation. Hence it is critical to follow its presence, clinical course and long term consequences. Moreover, the management of these disorders is necessarily individualized, with some patients requiring frequent monitoring and others a more multi-disciplinary approach. Studies aimed at improving the outcomes of patients with IBD who experience associated liver and biliary tract disorders are now needed to assess early identification, possible screening approaches and more effective systems of referral. This article covers the evidence-based literature on topics detailing the co-existence of liver conditions in inflammatory bowel disease with a focus on its epidemiology, clinical manifestations, diagnosis and management.

Introduction

Although it would lack biopsy confirmation until the mid-20th century, published accounts of inflammatory bowel disease (IBD) were in circulation in the early 19th century suggesting evidence for an association between hepatobiliary disorders and IBD. This evidence has now immensely expanded, with hepatobiliary disease in IBD now known to constitute some of the disorder’s most common extraintestinal manifestations [1-8]. Also, these hepatobiliary manifestations do not always parallel IBD disease activity, but instead may follow an independent natural course [5].

The most specific hepatobiliary complication associated with IBD is primary sclerosing cholangitis (PSC). Nonalcoholic fatty liver disease (NAFLD), however, is its most common manifestation. Liver toxicity arising from IBD-related medications is also common [9-15], as is hepatitis B reactivation, secondary to the use of immunosuppressive agents, including biologics. Given the high risk implicated for these agents, regular hepatitis B screening has been suggested for this subgroup. Relatively recent studies have also suggested that the emergence of obesity has changed the phenotype of the IBD population [16,17], with greater numbers of patients with IBD having NAFLD. Other, less common, hepatobiliary manifestations of IBD include cholelithiasis, autoimmune hepatitis, hepatic abscesses, IgG4-associated cholangitis, portal vein thrombosis, granulomatous hepatitis and primary biliary cholangitis. Finally, comparative studies of the prevalence of cholelithiasis, PSC and fatty liver in the general population (1.8%-22.4%, not applicable, 6%-35%) indicate a higher prevalence in Ulcerative Colitis (4.6%-36.4%, 0.76%-5.4%, 1.5%-55%) and Crohn’s Disease (11%-34%, 1.2%-3.4%, 1.5%-39.5%) [18].

Materials and methods

Literature search

We conducted online electronic searches of manuscripts published by PubMed and the Cochrane Library. We also conducted manual searches of selected specialty journals to identify any pertinent literature. The search was conducted using the key words ‘inflammatory bowel disease’, ‘liver diseases’, ‘ulcerative colitis’, ‘crohn’s disease’, ‘primary sclerosing cholangitis’, ‘drug induced liver injury’ and ‘hepatitis B’. The references of articles were reviewed to identify additional articles. Studies not published in English were excluded.

Abnormal liver test in IBD

As about 30% of patients with IBD are reported to have an abnormal liver biochemical profile, either transient (due to IBD activity) or persistent [19], a systematic approach to excluding common liver conditions unrelated to IBD should be considered [20]. At a minimum, all patients with IBD should be screened for viral hepatitis B.
hepatitis, substance abuse and alcohol abuse. Further, an etiology-based approach to an abnormal liver test should examine the pattern of liver injury, whether cholestatic or hepatocellular, and clinicians should inquire about the patient’s use of over-the-counter medications, NSAIDs, and any other drugs.

In a cholestatic pattern of liver injury, the elevation of alkaline phosphatase is out of proportion to the transaminases. This pattern of injury includes primary sclerosing cholangitis (PSC), drug-related liver injury from drugs used to manage IBD or others, cholestasis, autoimmune hepatitis, PSC overlap syndrome, granulomatous hepatitis, hepatic abscess or, rarely, hepatic amyloidosis.

A hepatocellular pattern of liver injury presents with an elevated transaminits out of proportion to alkaline phosphatase. This too can occur through drug related liver injury, stemming either from drugs used for the management of IBD or others. NAFLD (with ALT > AST), autoimmune hepatitis, as well as PSC overlap syndrome, viral hepatitis or autoimmune hepatitis.

Below we discuss our findings from the literature on the a few of the overarching types of hepatobiliary complications associated with IBD, possible subtypes, and evidence-based recommendations for clinical work-up and therapeutic approaches.

Non-alcoholic Fatty Liver Disease (NAFLD)

Physicians have long been trained to recognize the association of fatty liver with IBD. However, only with the past decade’s growing concerns about obesity has fatty liver’s astounding prevalence of 50% to 60% of patients with IBD, been recognized. Globally, fatty liver is both on the rise and well on its way to be the leading cause of liver transplant, given that excessive fat deposition and its associated oxidative stress, in turn leads to fibrosis, cirrhosis and even liver cancer. Nevertheless, NAFLD has one important, positive attribute: with early recognition and such decisive interventions as a 10% reduction in body weight, exercise and adherence to a balanced diet, reversal is possible. That said, fatty liver is multi-factorial and seen in non-obese, as well as the obese, populations. Hence, an extensive workup is required to ascertain the true etiology of fatty liver in specific patients. During this workup, it important to avoid assumptions about any specific etiologies, including its association with IBD [21,22].

Hepatic steatosis in IBD was first reported on an autopsy finding by C. H. Thomas in 1873; it was described as “a much enlarged fatty liver” in a young patient with “ulceration of the colon” [23]. Numerous case series, including studies well before the current obesity epidemic, depicted steatosis in patients with IBD. However, the obesity epidemic, coupled with effective pharmacotherapy for the management of IBD, has altered the phenotype of a malnourished, under-weight IBD patient to one identified as having NAFLD. NAFLD, moreover, has an increasing incidence and prevalence in the general population, and it is likely to be more prevalent in future in patients with IBD.

The etiology of NAFLD in IBD is poorly understood, but considered to be multi-factorial and influence by such factors as age, gender, alcohol use, presence of metabolic syndrome (insulin resistance), IBD disease activity, duration of disease, gut dysbiosis, history of IBD related surgical intervention, medications used (corticosteroids, anti-TNF agents) and parenteral nutrition playing a role. The prevalence of NAFLD in IBD populations ranges from 6.2% to 40% [24–30], with the obvious discrepancy observed in this range attributed to varied definitions for describing NAFLD, as well as to the different tools used for diagnosis. Ultrasonography for the diagnosis of NAFLD has a sensitivity and specificity of 85% (95% CI: 79.5–88.9%) and 94% (95% CI: 87.2–97%), respectively [31].

NAFLD is the leading cause of elevated transaminases (ALT > AST, except in cirrhosis). Limited data exists on liver fibrosis and IBD, but they are respectively reported to be between 6.4% and 10 [32]. The degree of steatosis, a reflection of IBD disease activity, may be reversed with the treatment of IBD [25]. The prevalence of metabolic syndrome in IBD patients has geographical variation. Nagahori et al. in 2010 in J Gastroenct reported that, in Japan, its prevalence was 18.6%, and thus comparable with the general population. However, a 2013 study conducted by Sourianarayanan et al. in J Crohn’s colitis in 2013 demonstrated a lower prevalence of metabolic syndrome in the IBD population as compared to the general American population.

Dysbiosis with alteration of gut microbiota has been associated with IBD disease activity and NAFLD [33,34], with the duration of IBD identified as an independent risk factor for NAFLD [30]. The topic on IBD related medications and liver toxicity including NAFLD has been covered later in this review article. NAFLD can lead to cirrhosis and its complications, yielding increased morbidity and mortality with co-existing IBD.

At present no specific guidelines exist for screening or assessing patients with IBD for NAFLD. However, patients are usually asymptomatic and may present with hepatomegaly. Biochemical and histological improvements in NAFLD patients have been achieved with >7% weight loss [35]. Obese patients with CD may have increased anorectal disease, require earlier surgical intervention and experience greater surgical complications than their non-obese counterparts [36–38]. Elevated liver enzymes with NAFLD can limit the use of Azathioprine and Methotrexate. Patients should be advised to monitor for excessive weight and to maintain healthy dietary and exercise habits.

Primary Sclerosing Cholangitis (PSC)

PSC is a chronic progressive cholestatic liver disease characterized by gradual inflammation and fibrosis of intrahepatic and/or extrahepatic bile ducts leading to chronic cholestasis and elevated alkaline phosphatase. PSC is the most specific hepatobiliary manifestation of IBD [1,39,40]. It is likely the most well-known condition almost all physicians associate with IBD. It may have a characteristic presentation while its diagnosis requires a high index of suspicion. Recurrent cholangitis is one of the most serious complications associated with PSC. Its management involves the use of ursodeoxycholic acid aimed to reduce the progression of PSC; while a liver transplant remains the sole long term treatment hope. A host of other medications including anti-inflammatory agents or biologics, none have shown to alter the natural course of progression of the disease. PSC’s incidence ranges from 0 to 1.3 per 100,000 person/year, its prevalence is 0 to 16.2 per 100,000 people [41], and it usually affects young and middle aged patients, especially those with underlying IBD [39,42], with median age of onset between 30 and 40 years. From 0.4 % to 7.5% of patients with IBD develop PSC [1,42]; however, among patients with an established PSC diagnosis, 70% to 80% have UC and 15% to 20% have CD [43,44]. Of note, IBD is associated with poorer outcomes in patients with PSC with increased risk for malignant complications and hence requirement for liver transplantation [45]. The natural course of PSC, though varied, is usually progressive and can lead to liver cirrhosis and failure [39,46].

PSC: Etiology and pathogenesis

PSC’s exact etiology is unknown. Genetic susceptibility, autoimmune mechanism, intestinal dysbiosis with toxin production...
from the gut microbiota, chronic portal bacteremia, unrecognized viral infections, as well as abnormal metabolism, transport and immunoregulation of bile acids have all been proposed [47-49]. However, multiple HLA haplotypes have been associated with PSC [50], and at the genome level, about 16 risk loci, accounting for 7.3% of overall liability [51], have been identified for PSC. These risk loci for PSC overlap with risk loci for UC and/or CD [52,53].

The pathogenesis of pathogenesis of PSC has been proposed to arise through increased intestinal permeability during bacterial translocation, as well as activation of innate immune response [54,55]. This view suggests that the ectopic aberrant expression of mucosal address in cell adhesion to molecule 1, expressed in the liver and usually in PSC and other liver inflammatory states, along with those T-helper cells responsible for liver fibrosis, are primed in the intestine, circulate via entero-hepatic circulation and linger as memory cells, triggering in a portal inflammation that results in biliary destruction [56-58].

PSC-diagnosis

PSC is an uncommon medical condition, with as many as half the patients affected by it asymptomatic. A diagnosis of PSC must be considered when cholestasis occurs, especially in the setting of colitis. Patients with a history of colitis, recurrent cholangitis, and symptoms of pruritus and jaundice may be more likely to have sclerosing cholangitis. Note that patients may have ascending cholangitis characterized by fevers, chills, or both, right upper quadrant pain, and jaundice. Physical findings may be nonspecific; however, icterus, excoriation, or hepatosplenomegaly, especially in a male, may suggest the diagnosis [59]. Presenting symptoms for PSC are often fatigue (75%), pruritus (50%), weight loss (40%), and fever (35%) [54,59]. Mean survival after diagnosis of PSC is 10-12 years [39,60-62], with survival much shorter (50%), weight loss (40%), and fever (35%) [54,59].

Laboratory testing for PSC will reveal a cholestatic pattern, with elevated alkaline phosphatase and mild elevations in transaminases, hypergammaglobulinemia and IgM. A low albumin is indicative of active IBD and poor prognosis [63]. To establish the diagnosis of PSC, intrahepatic and/or extrahepatic strictures must be demonstrated, either by magnetic resonance cholangiopancreatography (MRCP), endoscopic retrograde cholangiopancreatography (ERCP), or percutaneous transhepatic cholangiography [63].

MRCP provides the test of choice for PSC, as it is readily available, less invasive and a cost effective option for the initial diagnosis; however, MRCP does not provide access to the biliary tree for tissue diagnosis or therapeutic manipulation [64,65]. Also, MRCP can miss early PSC changes and large duct involvement for which an ERCP is more helpful [63]. ERCP allows for an easy identification of fibrotic annular strictures that alternate with normal or dilated segments to produce the characteristic beaded pattern of the biliary tree. It also provides histologic/cytologic sampling and therapeutic maneuvers.

A liver biopsy is not always indicated. We should, however, obtain a liver biopsy if the MRCP and ERCP are non-diagnostic, as well as a cholestatic biochemical profile to rule out small duct PSC or, if we suspect an overlap syndrome of PSC, with autoimmune hepatitis [63]. The classical biopsy finding for PSC includes the fibrous obliteration of the small duct, with periductal concentric fibrosis in an "onion skin" fashion. However, periductal fibrosis, seen in secondary forms of sclerosing cholangitis [66,67], is not pathognomic for PSC, and is seldom seen.

Management of PSC

With no current medical management available to decrease PSC progression, the currently available aim is to halt its progression with UDCA (Ursodeoxycholic acid) and to manage its complications. UDCA enhances hepatobiliary secretion and protects cholangiocytes and hepatocytes from apoptosis [68,69].

Trials suggests a dose of 13 to 15 mg/kg/day of UDCA as appropriate [70,71]. Higher doses of UDCA (20-30 mg/kg/day) have been shown to be detrimental, rather than to have any substantial clinical benefit [72-76]. UCDA does not improve liver histology or liver transplant free survival, nor does it prevent the development of cholangiocarcinoma, colonic adenomas, colon cancer or incidence of death [73,77-79]. Corticosteroids have not been proven effective either as single agents or when used with colchicine or ursodeoxycholic acid [80], nor have methotrexate, colchicine, pentoxifylline, etanercept, or mycophenolate mofetil proved useful in PSC [81-86]. Preliminary studies suggest that selected antibiotics may be beneficial but evidence for their routine clinical use is lacking [87-89].

Pruritus in PSC is common; its initial management consists of cholestyramine or colesolic acid sequestrants. Where pruritus is refractory to bile acid sequestrants, patients should be treated with either Rifaximin (150-300 mg twice daily), Naltrexone (50 mg daily) or Sertraline (75-100 mg daily) [90].

Advice against alcohol consumption, smoking and marijuana use. A review of hepatitis A and B status (to assess any exposure) and recommendation of vaccinations is vital. Warn patients to avoid high-risk behaviors for hepatitis C, such as intravenous drug use and sexual promiscuity.

Patients with decompensated advanced liver disease, hepatocellular carcinoma or refluxatory bacterial cholangitis should be evaluated for liver transplant. The outcome from liver transplantation for PSC is substantially better than would be predicted from natural history models [91,92]. The possibility of recurrent PSC in the transplanted liver exists, however, and may affect graft and patient survival [93-95].

IgG4-associated cholangiopathy (IAC)

The pathogenesis of IAC is largely unknown. IAC has been described in patients with UC and is a IgG4-related systemic disease causing biliary destruction similar to PSC [96]. Although 9% to 36% of patients with PSC may have elevated IgG4; these levels are lower than in patients with IAC [97,98] and hence the tissue diagnosis of IgG4 plasma cell infiltration in the bile duct has greater diagnostic utility [96,99].

Primary biliary cholangitis (PBC)

Several case reports of PBC in UC have been published [100,101]. Though PBC and UC share some common HLA haplotypes [101,102], the prevalence of PBC in UC patients have been reported to occur only by chance [103]. These IBD patients with PBC were generally young with a male preponderance. Also, the UC was mild with limited colitis [100,101].

Medication associated liver injury in IBD

Most drugs used for the suppression of IBD activity has potential for liver toxicity; though serious complications are relatively low [24,104]. The mechanism of hepatotoxicity for these drugs is complex and ranges from immune mediated, metabolic, direct toxic effects to induction or worsening of intrinsic liver disease. The laboratory finding of hepatocellular versus cholestatic pattern of injury helps clinician’s decipher the etiology of the injury (Table 1).
Table 1. Medications and hepatotoxicity

Medication	Mechanism of injury	Liver toxicity
Corticosteroids	Oxidative hepatotoxicity	Worsening of NASH, steatosis
		Chronic hepatitis B reactivation
Aminosalicylates	1. Hypersensitivity	Drug induced hepatitis
	2. 5-ASA components toxicity	Cholestasis
Thiopurines	1. Direct toxicity from	Asymptomatic transaminitis
	intracellular accumulation	Drug induced hepatitis
	2. Damage to the vascular	Cholestasis
	endothelium	Nodular regenerative hyperplasia
Methotrexate	Is stored in the liver as	Asymptomatic transaminitis
	a polyglutamate metabolite	Steatosis
	which is hepatotoxic with	Drug induced pancreatitis
	long term use	
Infliximab and Adalimumab (Monoclonal antibodies against TNF α)	Interfere with the activity of TNF α –leads to precipitation of “denovo autoimmune hepatitis”, cholestasis and direct hepatocellular necrosis	Chronic hepatitis B reactivation or hepatitis C reactivation
Combination of anti-TNF and immunosuppressive therapy	Interfere with the activity of TNF α –leads to precipitation of “denovo autoimmune hepatitis”, cholestasis and direct hepatocellular necrosis	Hepatosplenic T-cell lymphoma

Aminosalicylates: Sulfasalazine and mesalamine

The mechanism of the anti-inflammatory properties of Aminosalicylates are not entirely understood but is attributed to inhibition of both prostaglandins and leukotrienes. Sulfasalazine is largely replaced (due to adverse effects) by Mesalamine and is indicated in the induction and maintenance of mild to moderate Ulcerative Colitis. The mechanism of injury is by the following [105,106]:

- **Hypersensitivity to Sulfasalazine**: This can in rare cases lead to acute liver failure presenting with fever, tender hepatomegaly, lymphadenopathy, transaminisits and hyperbilirubinemia [107,108].
- **Direct toxicity from the 5-ASA component**: This can lead to both acute or chronic hepatitis and has been shown to occur mostly between 6 days to 1 year of starting the drug.

Both 5-ASA and Sulfasalazine are equally responsible for the number of cases of drug induced hepatitis from Aminosalicylates [109-113]. Studies have reported liver enzyme abnormalities in up to 2% of patients on Mesalamine [114]. Most of these abnormalities have no clinical significance. The use of Mesalamine and 5-ASA are considered low risk as an etiology for the development of toxic hepatitis (3.2 and 6 cases per million prescriptions for Mesalamine and sulfasalazine respectively) [115] and hence close liver enzyme monitoring is required. The mechanism of injury is by the following [105,106]:

- **Hypersensitivity to Sulfasalazine**: This can in rare cases lead to acute liver failure presenting with fever, tender hepatomegaly, lymphadenopathy, transaminisits and hyperbilirubinemia [107,108].
- **Direct toxicity from the 5-ASA component**: This can lead to both acute or chronic hepatitis and has been shown to occur mostly between 6 days to 1 year of starting the drug.

Corticosteroids

Corticosteroids when used for a short duration for induction therapy causes minimal liver injury. When used at higher doses for extended periods corticosteroids can enhance NASH and oxidative hepatotoxicity in high risk patients with obesity, insulin resistance, uncontrolled diabetes and hypertriglyceridemia [116].

Thiopurines

Thiopurines are immunomodulators indicated for the maintenance of clinical remission in CD and UC. Azathioprine (the pro-drug) and 6 mercaptopurine (6-MP) convert to the metabolite 6-MMP (6-methylmercaptopurine) and 6-TG (6-Thioguanine); the levels of which relates to the therapeutic efficacy and the drug [117] (Figure 1).

6-MMP levels relates to therapeutic efficacy and in very high levels relates to liver toxicity. 6-TG levels also relates to therapeutic efficacy and in high levels relates to bone marrow toxicity.

TPMT Genotype is measure before initiating AZA or 6-MP to reduce hepatic toxicity. Those with homozygous mutant alleles should not receive azathioprine or 6-MP. Those with normal/heterozygous should be started on low dose and then increase the dose every 2-4 weeks. Routine liver enzyme monitoring is advised. The medication can be continued with mild abnormalities without clinical symptoms; but should be discontinued when patient develops jaundice or abnormalities persist despite lowering the dose of Azathioprine or 6-MP [118].

The measurement of the TPMT enzyme activity (phenotype) helps guide the Azathioprine or 6-MP dose and detect possible non-adherence. Undetectable TPMT levels may be due to altered metabolism or non-adherence. High TPMT-levels may suggest toxicity (Table 2).

Hepatotoxicity secondary to the use of Thiopurines ranges from 3% (in retrospective trials) to 10% (in prospective trials) [119]. The occurrence of hepatotoxicity increases with concomitant use of corticosteroids [119]. Pancreatitis and veno-occlusive disease caused by Thiopurines is an example of the dose independent side effect while hepatotoxicity is dose dependent (and hence is reversible with discontinuation).

The mechanism of injury of Thiopurines is believed to be by:
1. Intracellular accumulation of 6-MMP and 6-TG: which is a direct result of reduced TPMT enzymatic activity
2. Damage to the sinusoidal vascular endothelium: It’s rare and patients present with veno-occlusive disease and NRH (nodular regenerative hyperplasia). These patients usually present with non-cirrhotic portal hypertension.

Methotrexate

Methotrexate impairs DNA synthesis via inhibition of dihydrofolate reductase and also blocks T cell activation and expression of IFN-γ.

Table 2. TPMT: Its genotype and phenotype and its significance

TPMT Genotype	TPMT Phenotype	% population	Significance
wild type	Normal/high enzyme activity	89%	6-MP works well
Homozygous mutations	low TPMT enzyme activity	11%	May require higher doses of 6-MP
Homozygous mutations	negligible activity	0.3%	6-MP is ineffective; also causes 6-MP to be preferentially metabolized to produce higher levels of 6-TG

Figure 1. Thiopurine metabolism
of intercellular adhesion molecules [120]. It is indicated for use in the maintenance of the clinical remission of steroid dependent CD patients [121]. A meta-analysis of the use of methotrexate in IBD patients published in *IBD* in 2012 revealed elevation of transaminases (was seen in 10.5% of the patients) to be usually < 2 fold the upper limit of normal. This transaminitis reduced without any intervention with only 2.68% requiring discontinuation [9].

The careful selection of patients (avoidance of use of Methotrexate in patients with obesity, alcohol related health problems, diabetes) and close monitoring combined with use of folic acid or folic acid has reduced the incidence of hepatotoxicity associated with Methotrexate [9,122]. Methotrexate should be discontinued if the patient develops fibrosis or cirrhosis [123].

Earlier when the cumulative dose of methotrexate exceeded 1.5 grams a liver biopsy was warranted [124]; but this is no longer the case. Recent guidelines suggests closer monitoring of transaminases and albumin every 4-8 weeks and later every 8-12 weeks upon stabilization of the dose. A liver biopsy should be performed only if 6 out of the 12 tests within a year is abnormal [125]. The future role of fibroscan in monitoring of patients on Methotrexate is yet to be ascertained [123].

Biologic agents

Infliximab and Adalimumab are monoclonal antibodies directed against TNFα (which usually plays a role in hepatic regeneration) and is indicated for the induction and remission of steroid resistant and steroid dependent CD and UC [126,127]. Upon withdrawal of viral suppression as a result of immunosuppression with biologics; patients with chronic hepatitis B and hepatitis C are prone for reactivation with viral replication. The mechanism of injury with use of biologics is detailed in the table above. HSTCL (Hepatosplenic T-cell lymphoma) is a rare and fatal complication (seen mostly in young males) described with use of combination of anti-TNF and immunosuppressive therapy [12,128,129].

Natalizumab is a α4-integrin monoclonal antibody was used for the management of IBD (in Europe) and has been associated with severe liver injury, liver failure and progressive multifocal leukoencephalopathy (PML) [130,131].

Vedolizumab is a gut specific anti-integrin therapeutic antibody. Evidence collected from pre-licensure controlled trials reveal <2% of patients with Vedolizumab demonstrating > 5 times the upper limit of normal ALT elevation; which was similar to the placebo group [132]. No cases of significant liver toxicity has been reported till date.

Hepatitis B and IBD

Hepatitis B is a DNA virus that permanently leaves its genetic imprint, the ccc DNA (covalently closed circular DNA), which is embedded in the nucleus of the hepatocytes. The ccc DNA serves as a template for HBV transcription and subsequent replication. The careful selection of patients (avoidance of use of Methotrexate in patients with obesity, alcohol related health problems, diabetes) and close monitoring combined with use of folic acid or folic acid has reduced the incidence of hepatotoxicity associated with Methotrexate [9,122]. Methotrexate should be discontinued if the patient develops fibrosis or cirrhosis [123].

The carefull selection of patients (avoidance of use of Methotrexate in patients with obesity, alcohol related health problems, diabetes) and close monitoring combined with use of folic acid or folic acid has reduced the incidence of hepatotoxicity associated with Methotrexate [9,122]. Methotrexate should be discontinued if the patient develops fibrosis or cirrhosis [123].

Earlier when the cumulative dose of methotrexate exceeded 1.5 grams a liver biopsy was warranted [124]; but this is no longer the case. Recent guidelines suggests closer monitoring of transaminases and albumin every 4-8 weeks and later every 8-12 weeks upon stabilization of the dose. A liver biopsy should be performed only if 6 out of the 12 tests within a year is abnormal [125]. The future role of fibroscan in monitoring of patients on Methotrexate is yet to be ascertained [123].

Hepatitis C and IBD

Contrary to a study by Hou et al. [134] it has been reported that the prevalence of hepatitis C infection in IBD subgroup is comparable to the general population [135,136]. Corticosteroids are considered to flare hepatitis C viral replication especially after a liver transplant but no prospective studies exists. Azathioprine, Methotrexate, cyclosporine and mycophenolate mofetil has been shown to be safe for use in transplanted patients without any hepatitis C reactivation [137-139]. Thus, immunosuppressive agents used in IBD do not result in HCV reactivation.

Till the advent of directly acting anti-virals for the management of hepatitis C the IBD subgroup with hepatitis C infection were always excluded and hence not many trials exists to decipher whether hepatitis C medications affected the natural course of IBD. Several case reports of use of interferon in patients with IBD and hepatitis C concluded interferon not to adversely affect the IBD course [14-144]. Zan et al. demonstrated improved SVR (sustained virological response) rates when etanercept (an anti-TNF agent) was used in conjunction with interferon and ribavirin. This shows that anti-TNF agents are safe to use in IBD patients with hepatitis C infection [145]. Thus, anti-viral for hepatitis C does not have any adverse outcome on the IBD course.

Granulomatous hepatitis

Granulomatous hepatitis is a rare complication of Crohn disease. It’s usually benign and not progressive. The patients are mostly asymptomatic; but may have symptoms secondary to Crohn’s disease. The main laboratory abnormality is that of an elevated alkaline phosphate. Some have a mild degree of transaminitis while hyperbilirubinemia is rare. Granulomatous hepatitis and its association with the use of Sulfasalazine for the management of Crohn’s disease has also been well documented [104]. Ultrasound and CT scan is usually normal while lesions > 5 mm are identified on an MRI. A complete workup for any hepatic granuloma depends on the positive history and exam findings while a liver biopsy for its diagnosis.
is not indicated. When a biopsy is performed (for other indications); a non-caseating granuloma with epithelioid cells, giant cells and lymphocytes. Granulomatous hepatitis secondary to inflammatory bowel disease rarely requires treatment (which includes corticosteroids and immunosuppressive drugs) (Table 4).

Secondary Amyloidosis

Secondary or reactive amyloidosis in IBD is associated with chronic inflammation of the gut leading to extracellular (vasculature and sinusoids) amyloid deposition in the liver. The prevalence of amyloidosis in IBD has been estimated to be around 3% [146]. The incidence is higher in male individuals with colonic involvement and more common in Crohn’s disease when compared to Ulcerative colitis [146,147]. Patients present with asymptomatic hepatomegaly and rarely the diagnosis of hepatic amyloidosis precedes that of IBD [146]. Suppression of gut inflammation in Crohn’s disease reduces the oxidative burden thereby reducing precursors of amyloid fibrils and progression of hepatic amyloidosis [147,148]. Though medical management has limited success; colchicine, budesonide and infliximab been tried with varied results [149-151].

Cholelithiasis

The incidence of cholelithiasis in CD is doubled when compared to IBD-free controls and has been reported to be between 13% and 34% [6,152]. UC (which does not involve the small bowel) is not considered a risk factor for cholelithiasis. Patients with ileo-colonic CD are at increased risk of cholelithiasis when compared to CD patients with only the ileal involvement [153-155]. Past history of intestinal resections and the number of resections have also been implicated as risk for the development of cholelithiasis [26,152-155]. Ileal involvement (either resection or inflammation) with decreased bile salt absorption leading to lithogenic super saturated bile is considered the main mechanism for the development of cholelithiasis in this sub-group [156,157]. Also, patients undergoing ileoanal anastomosis have been identified to have increased gallstone cholesterol concentration leading to cholelithiasis [158].

Portal vein thrombosis

This is a relatively rare yet significant complication observed in patients with IBD secondary to a consequence of an inflammatory hypercoagulable state [159-161]. 1% to 2% of patients with IBD have been found to have thrombosis of the portal and the mesenteric veins [162]. IBD patients are hypercoagulable with elevated platelets, fibrinogen, factor V and VIII levels and reduced anti-thrombin III levels [163,164]. Portal vein thrombosis is most likely to occur in patients with UC undergoing restorative proctocolectomy [165-168]. Landman et al. published their incidental finding of 40% of the patients with inactive IBD with portomesenteric vein thrombosis [169]. Some single center studies have elucidated the course of portal vein thrombosis to be benign [170,171]. Patients with IBD do not have a higher incidence of genetic clotting abnormalities but may develop acquired prothrombotic disorder secondary to disease activity [172,173]. A six month course of anticoagulation has been instituted at various centers. However lifelong systemic anticoagulation is indicated in known congenital hypercoagulable states [162].

Budd Chiari Syndrome

Several case reports of IBD patients with Budd Chiari syndrome has been published [174,175]. Due to the hypercoagulable state spontaneous thrombolic embolism can occur; the risk of which is eight times higher during an acute flare [164]. Also, patients during any perioperative period are considered to be at increased risk for the development of thromboembolism.

Hepatic abscess

Liver abscess is a rare complication of CD that has been elucidated in case reports and cohort studies [176,177]. Hepatic abscess could be an initial manifestation of CD [178,179]. A typical presentation is that of a young patient with fever, abdominal pain, jaundice, diarrhea or hepatomegaly. Presence of abdominal abscess, malnutrition, fistulizing CD and corticosteroid therapy are known risk factors for the development of hepatic abscesses [179]. The mechanism of the formation of the abscess is not fully understood and is thought to be either secondary to the extension of the pre-existing abdominal abscess, portal pyemia with seeding of the hepatic parenchyma or due to increased intestinal mucosal permeability with the involvement of the tight junctions. Management of hepatic abscess includes surgical drainage [180] and lowering of the IBD activity.

Pancreatitis

Pancreatitis is rare and usually results in patients with IBD due to ampuillary CD, cholelithiasis, PSC or medications (including 6-mercaptopurine and Azathioprine). In a study the use of Azathioprine and 6-mercaptopurine in IBD population resulted in increased risk of pancreatitis when compared to patients treated with these drugs for other causes [181].

Autoimmune pancreatitis (AIP) resembles IBD-associated pancreatitis [182,183]. When compared to the general population the prevalence of IBD in patients with AIP was 10-fold, hence indicating that AIP could be contributing to the clinical finding of IBD-associated pancreatitis [184,185]. Data from a single prospective study of IBD patients with pancreatitis with high serum IgG4 is available and this needs to be further incorporated and validated in future studies.

IBD and liver transplantation

Development of De novo IBD after liver transplantation is infrequent; and has been described in various case series [186-189]. The exact etiology is unknown; though a damage-associated or pathogen-associated molecular pattern has been implicated [188]. Presence of a positive CMV donor with a negative recipient [189,190] and use of Tacrolimus post-liver transplant [191] has been identified as risk factors for the development of de novo IBD. It is believed that CMV and Tacrolimus can affect the mucosal immune system (via altering the epithelial barrier system [189] or reducing the interleukin-2 dependent generation of regulatory Tcells [192,193] respectively) increasing IBD activity. The diagnosis and management is often challenging. Steroids, Azathioprine and anti-TNF therapy have a good therapeutic response [189].

Conflicting reports of IBD activity have been published regarding the impact of a liver transplant on patients with preexisting IBD [192-196]. Risk factors for worsening of preexisting IBD after liver transplant includes active bowel inflammation at the time of transplantation [193], short interval between diagnosis of IBD and transplant [193],

Table 4. Medications associated with granulomatous liver lesions

Medication	Diltiazem	Chlorpropramide	Carbamazepine	BCG	Hydralazine	Mebendazole	Methotrexate	Diltiazem	Gold	Norfloxacin	Phenytoin	Quinidine	Sulfa drugs
	65%	62%	50%	42%	45%	44%	50%	50%	50%	50%	50%	50%	50%

Clin Case Rep Rev, 2017 doi: 10.15761/CCRR.1000352
cigarette smoking [197], *Clostridium difficile* infection [198] and use of Tacrolimus after transplant [191,193,199,200]. The use of steroid or immunosuppressive agents prior to transplant does not predict post-transplant IBD activity [194,195]. Steroids, Azathioprine and Cyclosporine should be preferred in these subgroup of patients [94,193,199-201]. The therapeutic response and outcome is usually poor when compared to the *de novo* IBD patients; requiring colectomy for refractory bowel disease [197,199,200]. Conflicting evidence suggesting for and against the association of use of immunosuppressive agents and CRC have been published [202,203].

PSC patients with IBD who have undergone a liver transplantation usually present with prolonged subclinical IBD activity and hence may underestimate the colorectal cancer (CRC) risk [204]. However, there are at increased risk for CRC (even when adjusted for the diagnosis of PSC and IBD in similar populations) [205,206] and should be monitored with annual colonoscopy [199,207].

Conclusion

Hepatobiliary manifestations associated with IBD are common and underdiagnosed. In conclusion, physicians managing IBD patients should be critically aware of these manifestations. Also, important to note is that these disorders may present differently and at times be asymptomatic. It is possible to improve the management and outcome with careful anticipation, screening and identifying complications early. Complex cases require a multidisciplinary approach including gastroenterology, general surgery, colorectal surgery and transplant surgery.

Acknowledgments

We thank Jo Anne Fordham, for her assistance in the critical review of the manuscript.

References

1. Bernstein CN, Blanchard JF, Rawsthorne P, Yu N (2001) The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. *Am J Gastroenterol* 96: 1116-1122. [Crossref]

2. Ricart E, Panaccione R, Lofhus EV Jr., Tremaine WJ, Harmens WS, et al. (2004) Autoimmune disorders and extraintestinal manifestations in first-degree familial and sporadic inflammatory bowel disease: a case-control study. *Inflamm Bowel Dis* 10: 207-214. [Crossref]

3. Bernstein CN, Wajda A, Blanchard JF (2005) The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. *Gastroenterology* 129: 827-836. [Crossref]

4. Mendoza JL, Lana R, Taxonera C, Alba C, Izquierdo S, et al. (2005) [Extraintestinal manifestations in inflammatory bowel disease: differences between Crohn's disease and ulcerative colitis]. *Med Clin (Barc)* 125: 297-300. [Crossref]

5. Greenstein AJ, Janowitz HD, Sachar DB (1976) The extra-intestinal complications of Crohn's disease and ulcerative colitis: a study of 700 patients. *Medicine (Baltimore)* 55: 401-412. [Crossref]

6. Navaneethan U, Shen B (2010) Hepatopancreatobiliary manifestations and complications associated with inflammatory bowel disease. *Inflamm Bowel Dis* 16: 1598-1619. [Crossref]

7. Peyri-Biourlet L, Lofhus EV Jr, Cokerofel JB, Sandborn WJ (2010) The natural history of adult Crohn's disease in population-based cohorts. *Am J Gastroenterol* 105: 289-297. [Crossref]

8. Uko V, Tanggada S, Radhakrishnan K (2010) Liver disorders in inflammatory bowel disease. *Gastroenterol Res Pract* 2012: 642923. [Crossref]

9. Khan N, Abbas AM, Whang N, Balart LA, Bazzano LA, et al. (2012) Incidence of liver toxicity in inflammatory bowel disease patients treated with methotrexate: a meta-analysis of clinical trials. *Inflamm Bowel Dis* 18: 359-367. [Crossref]

10. Cassaday RD, Malik JT, Chang JE (2011) Regression of Hodgkin lymphoma after discontinuation of a tumor necrosis factor inhibitor for Crohn's disease: a case report and review of the literature. *Clin Lymphoma Myeloma Leuk* 11: 289-292. [Crossref]

11. Morisco F, Castiglione F, Rispo A, Stroffolini T, Vitale R, et al. (2011) Hepatitis B virus infection and immunosuppressive therapy in patients with inflammatory bowel disease. *Dig Liver Dis* 43: 540-48. [Crossref]

12. Thai A, Prindiville T (2010) Hepatosplenic T-cell lymphoma and inflammatory bowel disease. *J Crohns Colitis* 4: 511-522. [Crossref]

13. Miehler W, Novacek G, Wernet H, Vogelsang H, Knottfach P, et al. (2010) A decade of infliximab: The Austrian evidence based consensus on the safe use of infliximab in inflammatory bowel disease. *J Crohns Colitis* 4: 221-256. [Crossref]

14. Kotlyar DS, Osterman MT, Diamond RH, Porter D, Blenski WC, et al. (2011) A systematic review of factors that contribute to hepatosplenic T-cell lymphoma in patients with inflammatory bowel disease. *Clin Gastroenterol Hepatol* 9: 36-41.e1. [Crossref]

15. Coffin CS, Fraser HF, Panaccione R, Ghosh S (2011) Liver diseases associated with anti-tumor necrosis factor-alpha (TNF-alpha) use for inflammatory bowel disease. *Inflamm Bowel Dis* 17: 479-484. [Crossref]

16. Flegel KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999-2008. *JAMA 303*: 235-241. [Crossref]

17. Ogden CL, Carroll MD, Kit BK, Flegel KM (2012) Prevalence of obesity in the United States, 2009-2010. *NHIS Data Brief* 1-8. [Crossref]

18. Lofhus EV Jr., Sandborn WJ, Lindor KD, Larusso NF (1997) Interactions between chronic liver disease and inflammatory bowel disease. *Inflamm Bowel Dis* 3: 288-302. [Crossref]

19. Gizard E, Ford AC, Bronowicki JP, Peyrin-Biroulet L (2014) Systematic review: The epidemiology of the hepatobiliary manifestations in patients with inflammatory bowel disease. *Aliment Pharmacol Ther* 40: 3-15. [Crossref]

20. Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver-enzyme results in asymptomatic patients. *N Engl J Med* 342: 1266-1271. [Crossref]

21. Kwo PY, Cohen SM, Lim JK (2017) *ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries.* *Am J Gastroenterol* 112: 18-35. [Crossref]

22. Restellini S, Chazouilleres O, Fasslard JL (2017) Hepatic manifestations of inflammatory bowel diseases. *Liver Int* 37: 475-489. [Crossref]

23. Thomas CH (1873) Ulceration of the colon with a much enlarged fatty liver. *Trans Pathol Soc Philadelphia* 4: 87-88.

24. Giuberti J, Luna M, Gonzalez-Lana Y, Pousa ID, Velasco M, et al. (2007) Liver injury in inflammatory bowel disease: long-term follow-up study of 786 patients. *Inflamm Bowel Dis* 13: 1106-1114. [Crossref]

25. Sourianarayanan A, Garg G, Smith TH, Butt MI, McCullough AJ, et al. (2013) Risk factors of non-alcoholic fatty liver disease in patients with inflammatory bowel disease. *J Crohns Colitis* 7: e279-285. [Crossref]

26. Bargiggia S, Maconi G, Eilli M, Molteni P, Ardizzone S, et al. Sonographic prevalence of liver steatosis and biliary tract stones in patients with inflammatory bowel disease: study of 511 subjects at a single center. *J Clin Gastroenterol* 36: 417-420. [Crossref]

27. de Fazio C, Torgano G, de Franchis R, Meucci G, Arrigoni M, et al. (1992) Detection of liver involvement in inflammatory bowel disease by abdominal ultrasound scan. *Int J Clin Lab Res* 21: 314-317. [Crossref]

28. Riegler G, D'Inca R, Sturino GC, Corraro G, Del Vecchio Blanco C, et al. (1998) Hepatobiliary alterations in patients with inflammatory bowel disease: a multicenter study. *Caprilli & Gruppo Italiano Studio Colon-Retto: Scand J Gastroenterol* 33: 93-98. [Crossref]

29. Yamamoto-Furusho JK, Sanchez-Osorio M, Uribe M (2010) Prevalence and factors associated with the presence of abnormal function liver tests in patients with ulcerative colitis. *Ann Hepatol* 9: 397-401. [Crossref]

30. Bessisow T, Le NH, Rollett K, Aft W, Bitton A, et al. (2016) Incidence and Predictors of Nonalcoholic Fatty Liver Disease by Serum Biomarkers in Patients with Inflammatory Bowel Disease. *Inflamm Bowel Dis* 22: 1937-1944. [Crossref]

31. Hernandez R, Lazo M, Bonekamp S, Kamel I, Brunclt FL, et al. (2011) Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. *Hepatology* 54: 1082-1090. [Crossref]

32. Chao CY, Battat R, Al Khoury A, Restellini S, Sebastiani G, et al. (2016) Co-existence of non-alcoholic fatty liver disease and inflammatory bowel disease: A review article. *World J Gastroenterol* 22: 7723-7734. [Crossref]

33. Liu TC, Stappenbeck TS (2016) Genetics and Pathogenesis of Inflammatory Bowel Disease. *Ann Rev Pathol* 11: 127-148. [Crossref]
34. Fukuda K, Fujita Y (2014) Determination of the discriminant score of intestinal microbiota as a biomarker of disease activity in patients with ulcerative colitis. BMC Gastroenterol 14: 49. [CrossRef]
35. Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearsn M, et al. (2010) Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51: 121-129. [CrossRef]
36. Blain A, Cattan S, Beaugerie L, Carbonnel F, Gendre JP, et al. (2002) Crohn's disease clinical course and severity in obese patients. Clin Nutr 21: 51-57. [CrossRef]
37. Hass DJ, Brensinger CM, Lewis JD, Lichtenstein GR (2006) The impact of increased body mass index on the clinical course of Crohn's disease. Clin Gastroenterol Hepatol 4: 482-488. [CrossRef]
38. Kiran RP, Remzi FH, Fazio VW, Lavry CJ, Church JM, et al. (2008) Complications and functional results after ileal pouch formation in obese patients. J Gastrointest Surg 12: 668-674. [CrossRef]
39. Wiesner RH, Grampsch PM, Dickson ER, Ludwig J, MacCarty RL, et al. (1989) Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. Hepatology 10: 430-436. [CrossRef]
40. Smith MP, Lee RH (1965) Sclerosing Cholangitis; Review of Recent Case Reports and Associated Diseases and Four New Cases. Am J Surg 119: 239-246. [CrossRef]
41. Boonstra K, Beuers U, Ponsioen CY (2012) Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 56: 1181-1188. [CrossRef]
42. Olsson R, Danielsson A, Järnerot G, Lindström E, Lööf L, et al. (1991) Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis. Gastroenterology 100: 1319-1323. [CrossRef]
43. Boonstra K, Weersma RK, van Erpecum KJ, Rauws EA, Spanier BW, et al. (2013) Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 58: 2045-2055. [CrossRef]
44. Bergquist A, Lindberg G, Saurinen S, Broome U (2005) Increased prevalence of primary sclerosing cholangitis among first-degree relatives. J Hepatol 42: 225-226. [CrossRef]
45. Ngu JH, Geary RB, Wright AJ, Stedman CA (2011) Inflammatory bowel disease is associated with poor outcomes of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 9: 1092-1097. [CrossRef]
46. Faubion WA Jr., Loftus EV, Sandborn WJ, Freeny DK, Perrault J (2001) Pediatric "PSC-IBD": a descriptive report of associated inflammatory bowel disease among pediatric patients with puc. J Pediatr Gastroenterol Nutr 33: 296-300. [CrossRef]
47. Donaldson PT, Farrant JM, Wilkinson ML, Haylrr K, Portmann BC, et al. (1991) Dual association of HLA DR2 and DR3 with primary sclerosing cholangitis. Hepatology 13: 129-133. [CrossRef]
48. Saurinen S, Olupre N, Broome U (2000) Increased frequency of autoimmune diseases in patients with primary sclerosing cholangitis. Am J Gastroenterol 95: 3195-3199. [CrossRef]
49. Donaldson PT, Norris S (2001) Immunogenetics in PSC. Best Pract Res Clin Gastroenterol 15: 611-627. [CrossRef]
50. Terjung B, Spengler U, Sauerbruch T, Worman HJ (2000) "Atypical p-ANCA" in cases of ulcerative colitis submitted to surgery. Am J Gastroenterol 95: 3195-3199. [CrossRef]
51. Chapman RW, Arboth BA, Rhodes JM, Summerfield JA, Dick R, et al. (1980) Primary sclerosing cholangitis: a review of its clinical features, cholangiography, and hepatic histology. Gut 21: 870-877. [CrossRef]
52. Farrant JM, Haylrr K, Wilkinson ML, Karani J, Portmann BC, et al. (1991) Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 100: 1710-1717. [CrossRef]
53. Broome U, Olsson R, Loof L, Boderman G, Hultcrantz R, et al. (1996) Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 38: 610-615. [CrossRef]
54. Tischendorf JJ, Hecker H, Kruger M, Manns MP, Meier PN (2007) Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: A single center study. Am J Gastroenterol 102: 107-114. [CrossRef]
55. Chapman R, Fevery J, Kaillo A, Nagermei DM, Bofferr MM, et al. (2010) Diagnosis and management of primary sclerosing cholangitis. Hepatology 51: 660-678. [CrossRef]
56. Talwalkar JA, Angulo P, Johnson CD, Petersen BT, Lindor KD (2004) Cost-minimization analysis of MIRC versus ERCP for the diagnosis of primary sclerosing cholangitis. Hepatology 40: 39-45. [CrossRef]
57. Dave M, Elmunzer BJ, Dzwawma BA, Higgins PD (2010) Primary sclerosing cholangitis: meta-analysis of diagnostic performance of MR cholangiopancreatography. Radiology 256: 387-396. [CrossRef]
58. Burak KW, Angulo P, Lindor KD (2003) Is there a role for liver biopsy in primary sclerosing cholangitis? Am J Gastroenterol 98: 1155-1158. [CrossRef]
59. Ludwig J, Czaja AJ, Dickson ER, LaRussa NF, Wiesen RH (1984) Manifestations of nonsuppressurative cholangitis in chronic hepatobiliary diseases: morphologic spectrum, clinical correlations and terminology. Liver 4: 105-116. [CrossRef]
60. Lazaridis KN, LaRussa NF (2016) Primary Sclerosing Cholangitis. N Engl J Med 375: 1161-1170. [CrossRef]
61. Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36: 525-531. [CrossRef]
62. Lindor KD (1997) Ursodiol for primary sclerosing cholangitis. Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med 336: 691-695. [CrossRef]
63. Beuers U, Spengler U, Kruis W, Aydemir U, Wiebecke B, et al. (1992) Ursodeoxycholic acid for treatment of primary sclerosing cholangitis: a placebo-controlled trial. Hepatology 16: 707-714. [CrossRef]
64. Olsson R, Bofferr BM, de Mackaell DS, Lindgren S, Hultcrantz R, et al. (2005) High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology 129: 1464-1472. [CrossRef]
65. Lindor KD, Kowdle LV, Luketic VA, Harrison ME, McCashland T, et al. (2009) High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 50: 808-814. [CrossRef]
66. Hirschfeld GM, Karlsen TH, Lindor KD, Adams DH (2013) Primary sclerosing cholangitis. Lancet 382: 1587-1599. [CrossRef]
67. Imam MH, Lindor KD (2014) The natural history of primary biliary cirrhosis. Semin Liver Dis 34: 329-333. [CrossRef]
68. Imam MH, Sinakos E, Gossard AA, Kowdle LV, Luketic VA, et al. (2011) High-dose ursodeoxycholic acid increases risk of adverse outcomes in patients with early stage primary sclerosing cholangitis. Aliment Pharmacol Ther 34: 1185-1192. [CrossRef]
69. Shi J, Li Z, Zeng X, Lin Y, Xie WF (2009) Ursodeoxycholic acid in primary sclerosing cholangitis: meta-analysis of randomized controlled trials. Hepatol Res 39: 865-873. [CrossRef]
70. Ashraf I, Choudhary A, Arif M, Mattoon ML, Hamمد HT, et al. (2012) Ursodeoxycholic acid in patients with ulcerative colitis and primary sclerosing cholangitis for prevention of colon cancer: a meta-analysis. Indian J Gastroenterol 31: 69-74. [CrossRef]
71. Poropat G, Giljaca V, Stitac M, Glud C (2011) Bile acids for primary sclerosing cholangitis. Cochrane Database Syst Rev CD003626. [CrossRef]
72. Angulo P, Batts KP, Jorgensen RA, LaRussa NA, Lindor KD (2000) Oral budesonide in the treatment of primary sclerosing cholangitis. Am J Gastroenterol 95: 2333-2337. [CrossRef]
73. Olsson R, Broome U, Danielsson A, Hagerstrand I, Sjärnerot G, et al. (1995) Colchicine treatment of primary sclerosing cholangitis. Gastroenterology 108: 1199-1203. [CrossRef]
20. Knox TA1, Kaplan MM (1991) Treatment of primary sclerosing cholangitis with oral methotrexate. *Am J Gastroenterol* 86: 546-552. [CrossRef]

21. LaRusso NF, Wiesner RH, Ludwig J, MacCarty RL, Beaver SJ, et al. (1988) Prospective trial of pentoxifylline for the treatment of primary sclerosing cholangitis. *Gastroenterology* 95: 1036-1042. [CrossRef]

22. Bharucha AE, Jorgensen R, Lichtman SN, LaRusso NF, Lindor KD (2000) A pilot study of pentoxifylline for the treatment of primary sclerosing cholangitis. *Am J Gastroenterol* 95: 2338-2342. [CrossRef]

23. Epstein MP, Kaplan MM (2004) A pilot study of etanercept in the treatment of primary sclerosing cholangitis. *Dig Dis Sci* 49: 1-4. [CrossRef]

24. Talwalkar JA, Angulo P, Keach JC, Petz JL, Jorgensen RA, et al. (2005) Mycophenolate mofetil for the treatment of primary sclerosing cholangitis. *Am J Gastroenterol* 100: 308-312. [CrossRef]

25. Farkkila M, Karvonen AL, Nurmi H, Nuutinen H, Taavitsainen M, et al. (2004) Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. *Hepatology* 40: 1379-1386. [CrossRef]

26. Davies VK, Cox KM, Abdallah BA, Safa A, Terry AB, et al. (2008) Long-term treatment of primary sclerosing cholangitis in children with oral vancomycin: an immunomodulating antibiotic. *J Pediatr Gastroenterol Nutr* 47: 61-67. [CrossRef]

27. Silveira MG, Torok NJ, Gossard AA, Keach JC, Jorgensen RA, et al. (2009) Minocycline in the treatment of patients with primary sclerosing cholangitis: results of a pilot study. *Am J Gastroenterol* 104: 83-88. [CrossRef]

28. Beuers U, Kremer AE, Bolier R, Elferink RP (2014) Pruritus in cholestasis: facts and fiction. *Hepatology* 60: 399-407. [CrossRef]

29. Grazzioli IW, Wiesner RH, Batts KP, Marotta PJ, LaRusso NF, et al. (1999) Recurrence of primary sclerosing cholangitis following liver transplantation. *Hepatology* 29: 1050-1056. [CrossRef]

30. Kim WR, Therneau TM, Wiesner RH, Poterucha JJ, Benson JT, et al. (2000) A revised natural history model for primary sclerosing cholangitis. *Mayo Clin Proc* 75: 688-694. [CrossRef]

31. Rowe IA, Webb K, Gunson BK, Mehta N, Haque S, et al. (2008) The impact of disease recurrence on graft survival following liver transplantation: a single centre experience. *Transpl Int* 21: 459-465. [CrossRef]

32. Cholongitas E, Shusang V, Papahadjopoulos GV, Marelli L, Manousou P, et al. (2008) Risk factors for recurrence of primary sclerosing cholangitis after liver transplantation. *Liver Transpl* 14: 138-143. [CrossRef]

33. Alabara E, Nightingale P, Gunson B, Huibles S, Olliff S, et al. (2009) A re-evaluation of the risk factors for the recurrence of primary sclerosing cholangitis in liver allografts. *Liver Transpl* 15: 330-340. [CrossRef]

34. Dastis SN, Latimine D, Sempoux C, Geulib AP (2009) Ulcerative colitis associated with IgG4 cholangitis: similar features in two HLA identical siblings. *J Hepatol* 51: 601-605. [CrossRef]

35. Hirano K, Kawabe T, Yamamoto N, Nakai Y, Sasahira N, et al. (2006) Serum IgG4 concentrations in pancreatic and biliary diseases. *Clin Chim Acta* 367: 181-184. [CrossRef]

36. Mendes FD, Jorgensen R, Keach J, Kattmann JA, Smyrk T, et al. (2006) Elevated serum IgG4 concentration in patients with primary sclerosing cholangitis. *Am J Gastroenterol* 101: 2070-2075. [CrossRef]

37. Okazaki K, Uchida K, Koyabu M, Miyoshi H, Takaoka M (2011) Recent advances in the concept and diagnosis of autoimmune pancreatitis and IgG4-related disease. *J Gastroenterol* 46: 277-288. [CrossRef]

38. Xiao WB, Liu YL (2003) Primary biliary cirrhosis and ulcerative colitis: a case report and review of literature. *World J Gastroenterol* 9(4):878-880. [CrossRef]

39. Kouletantsi M, Koutroubakis IE, Petinaki E, Tzaci M, Okeonomakis H, et al. (1999) Ulcerative colitis associated with primary biliary cirrhosis. *Dig Dis Sci* 44: 1953-1956. [CrossRef]

40. Onishi S, Sakamaki T, Maeda T, Iwamura S, Tomita A, et al. (1994) DNA typing of HLA class II genes; DRB1*0703 increases the susceptibility of Japanese to primary biliary cirrhosis. *J Hepatol* 21: 1053-1060. [CrossRef]

41. Lever E, Balasubramanian K, Condon S, Wat BY (1993) Primary biliary cirrhosis associated with ulcerative colitis. *Am J Gastroenterol* 88: 945-947. [CrossRef]

42. BH S (1992) Drug-induced hepatic injury. (2ndedn), Elsevier, new York. 1992.

43. Shah NJ (2017) A review of liver disorders in inflammatory bowel disease (IBD)
Shah NJ (2017) A review of liver disorders in inflammatory bowel disease (IBD)

Kopylov U, Amitai MM, Lubetsky A, Eliakim R, Chowers Y, et al. (2012) Clinical and radiographic presentation of superior mesenteric vein thrombosis in Crohn's disease: a single center experience. J Crohns Colitis 6: 543-549. [CrossRef]

Macconi G1, Bolzacchini E, Dell'Era A, Russo U, Aridzzone S, et al. (2012) Portal vein thrombosis in inflammatory bowel diseases: a single-center case series. J Crohns Colitis 6: 362-367. [CrossRef]

Bernstein CN, Sargent M, Vos HL, Rosendaal FR (2007) Mutations in clotting factors and inflammatory bowel disease. Am J Gastroenterol 102: 338-343. [CrossRef]

Danese S, Papa A, Saijbeni S, Repici A, Malesci A, et al. (2007) Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am J Gastroenterol 102: 174-186. [CrossRef]

Vassiliadis T, Mpoounponaris A, Gioulemi O, Hatzidakis A, Patsioura K, et al. (2009) Late onset ulcerative colitis complicating a patient with Budd-Chiari syndrome: a case report and review of the literature. Eur J Gastroenterol Hepatol 21: 109-113. [CrossRef]

Socha P, Rzyko J, Janczuk W, Dzik E, Iwaneczak B, et al. (2007) Hepatic vein thrombosis as a complication of ulcerative colitis in a 12-year-old patient. Dig Dis Sci 52: 1293-1298. [CrossRef]

Molina Infante J, Baranes Canizares R, Gomez Camarero J, Perez Calle JL (2004) [Liver abscess and Crohn' disease. Report of 3 cases]. Gastroenterol Hepatol 27: 317-319. [CrossRef]

Bernabeu JL, Leo E, Trigo C, Herrera JM, Sousa JM, et al. (2011) Crohn's disease and septic thrombophlebitis in inflammatory bowel diseases: a single-center case series. Dig Dis Sci 56: 543-549. [CrossRef]

Aguas M, Bastida G, Nos P, Beltran B, Grueso JL, et al. (2007) Septic thromboembolism of the superior mesenteric vein and multiple liver abscesses in a patient with Crohn's disease at onset. BMC Gastroenterol 7: 22. [CrossRef]

Vakil N, Hayne G, Sharma A, Hardy DJ, Slusky A (1994) Liver abscess in Crohn's disease. Am J Gastroenterol 89: 1090-1095.

Mir-Madjlessi SH, McHenry MC, Farmer RG (1986) Liver abscess in Crohn's disease. Report of four cases and review of the literature. Gastroenterology 91: 987-993. [CrossRef]

Bermejo F, Lopez-Sanroman A, Taxonera C, Gisbert JP, Pérez-Calle JL, et al. (2003) Liver abscess and Crohn's disease: a single-center experience. Eur J Gastroenterol Hepatol 15: 1931-1937. [CrossRef]

Barthet M, Lesavre N, Desplats S, Panuel M, Gasmi M, et al. (2006) Frequency and characteristics of pancreatitis in patients with inflammatory bowel disease. Pancreatology 6: 464-471. [CrossRef]

Barthet M, Lesavre N, Desplats S, Panuel M, Gasmi M, et al. (2006) Frequency and characteristics of pancreatitis in patients with inflammatory bowel disease. Pancreatology 6: 464-471. [CrossRef]

Ramji A, Owen DA, Erb SR, Scudamore CH, Yoshida EM (2002) Post-liver transplant Crohn's disease: graft tolerance but not self-tolerance? Dig Dis Sci 47: 522-527. [CrossRef]

Worms MA, Lohse AW, Neurath MF, Croxford A, Otto G, et al. (2006) Five cases of de novo inflammatory bowel disease after orthotopic liver transplantation. Am J Gastroenterol 101: 1931-1937. [CrossRef]

Hampton DD, Poleski MH, Onken JE (2008) Inflammatory bowel disease following solid organ transplantation. Clin Immunol 128: 287-293. [CrossRef]

Nepal S, Navaneethan U, Bennett AE, Shen B (2013) De novo inflammatory bowel disease and its mimics after organ transplantation. Inflamm Bowel Dis 19: 1518-1527. [CrossRef]

Sakamoto T, Satô Y, Yamamoto S, Oya H, Hatakeyama K (2012) De novo ulcerative colitis and autoimmune hepatitis after liver related liver transplantation from cytomegalovirus-positive donor to cytomegalovirus-negative recipient: a case report. Transplant Proc 44: 570-573. [CrossRef]

Riley TR, Schoen RE, Lee RG, Rakela J (1997) A case series of transplant recipients who despite immunosuppression developed inflammatory bowel disease. Am J Gastroenterol 92: 279-282. [CrossRef]

Papadheoridis GV, Hamilton M, Mistry PK, Davidson B, Rolles K, Burroughs AK. Ulcerative colitis has an aggressive course after orthotopic liver transplantation for primary sclerosing cholangitis. Gut 43: 639-644. [CrossRef]

Verdonk RC, Dijkstra G, Haagmans B, Esserom VK, Van den Berg AP, et al. (1998) Inflammatory bowel disease after liver transplantation: risk factors for recurrence and de novo disease. Am J Transplant 6: 1422-1429. [CrossRef]

MacLean AR, Lilly L, Cohen Z, O'Connor B, McLeod RS (2003) Outcome of patients undergoing liver transplantation for primary sclerosing cholangitis. Dis Colon Rectum 46: 1124-1128. [CrossRef]

Moncrief KJ, Savu A, Ma MM, Bain VG, Wong WW, et al. (2010) The natural history of inflammatory bowel disease and primary sclerosing cholangitis after liver transplantation—a single-centre experience. Can J Gastroenterol 24: 40-46. [CrossRef]

Beffler AS, Lissoon TW, Schiano TD, Conjevaram H, Dasgupta KA, et al. (1998) Clinical course and management of inflammatory bowel disease after liver transplantation. Transplantation 65: 393-396. [CrossRef]

Joshi D, Bjarmason I, Belgaumkar A, O'Grady J, Suddle A, et al. (2013) The impact of inflammatory bowel disease post-liver transplantation for primary sclerosing cholangitis. Liver Int 33: 53-61. [CrossRef]

Reddy SS, Brandt LJ (2013) Clostridium difficile infection and inflammatory bowel disease. J Clin Gastroenterol 47: 666-671. [CrossRef]

Dvorichik I, Subotin M, Demetris AJ, Fung JJ, Starzl TE, et al. (2002) Effect of liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis. Hepatology 35: 380-384. [CrossRef]

Haagmans EB, Van Den Berg AP, Kleibeuker JH, Streefoff MJ, Dijkstra G (2003) Inflammatory bowel disease after liver transplantation: the effect of different immunosuppressive regimens. Aliment Pharmacol Ther 18: 33-44. [CrossRef]

Navaneethan U, Choudhary M, Venkatesh PG, Lashner BA, Remzi FH, et al. (2012) The effects of liver transplantation on the clinical course of colitis in ulcerative colitis patients with primary sclerosing cholangitis. Aliment Pharmacol Ther 35: 1054-1063. [CrossRef]

Buell JF, Gross TG, Woodle ES (2005) Malignancy after transplantation. Transplantation 80: 2524-264. [CrossRef]

Hanouneh IA, Marcon C, Lopez R, Zein NN, Lashner BA (2012) Risk of colon neoplasia after liver transplantation for primary sclerosing cholangitis. Inflamm Bowel Dis 18: 269-274. [CrossRef]

Navaneethan U, Venkatesh PG, Mukewar S, Lashner BA, Remzi FH, et al. (2012) Progressive primary sclerosing cholangitis requiring liver transplantation is associated with reduced need for colectomy in patients with ulcerative colitis. Clin Gastroenterol Hepatol 10: 540-546. [CrossRef]

Loftus EV Jr., Harewood GC, Loftus EV, Jr., Talwalkar JA (2010) Inflammatory bowel disease after liver transplantation for primary sclerosing cholangitis. Am J Gastroenterol 105: 1417-1425. [CrossRef]

European Association for the Study of the Liver (2009) EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol 51: 237-267. [CrossRef]

Copyright: ©2017 Shah NJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.