Estimating Code-Switching on Twitter with a Novel Generalized Word-Level Language Detection Technique

Shruti Rijhwani*
Language Technologies Institute
Carnegie Mellon University
srijhwan@cs.cmu.edu

Royal Sequiera*
University of Waterloo
Waterloo, Canada
rdsequie@uwaterloo.ca

Monojit Choudhury Kalika Bali Chandra Sekhar Maddila
Microsoft Research
Bangalore, India
{monojitc,kalikab,chmaddil}@microsoft.com

Abstract

Word-level language detection is necessary for analyzing code-switched text, where multiple languages could be mixed within a sentence. Existing models are restricted to code-switching between two specific languages and fail in real-world scenarios as text input rarely has a priori information on the languages used. We present a novel unsupervised word-level language detection technique for code-switched text for an arbitrarily large number of languages, which does not require any manually annotated training data. Our experiments with tweets in seven languages show a 74% relative error reduction in word-level labeling with respect to competitive baselines. We then use this system to conduct a large-scale quantitative analysis of code-switching patterns on Twitter, both global as well as region-specific, with 58M tweets.

1 Introduction

In stable multilingual societies, communication, particularly social media, has resulted in language data in the text form which exhibits code-switching, among other speech-like characteristics (Crystal, 2001; Herring, 2003; Danet and Herring, 2007; Cardenas-Claros and Isharyanti, 2009). With the large amount of online content generated by multilingual users around the globe, it becomes necessary to design techniques to analyze mixed language, which can help not only in developing end-user applications, but also in conducting fundamental sociolinguistic studies.

Language detection (LD) is a prerequisite to several NLP techniques. Most state-of-the-art LD systems detect a single language for an entire document or sentence. Such methods often fail to detect code-switching, which can occur within a sentence. In recent times, there has been some effort to build word-level LD for code-switching between a specific pair of languages (Nguyen and Dogruöz, 2013; Elfardy et al., 2013; Solorio et al., 2014; Barman et al., 2014). However, usually user-generated text (e.g., on social media) has no prior information of the languages being used. Further, as several previous social-media based studies on multilingualism have pointed out (Kim et al., 2014; Manley, 2012), lack of general word-level LD has been a bottleneck in studying code-switching patterns in multilingual societies.

This paper proposes a novel technique for word-level LD that generalizes to an arbitrarily large set of languages. The method does not require a priori information on the specific languages (potentially more than two) being mixed in an input text as long as the languages are from a fixed (arbitrarily large) set. Training is done without any manually annotated data, while achieving accuracies comparable to language-restricted systems trained...
with large amounts of labeled data. With a word-
level LD accuracy of 96.3% on seven languages,
this technique enabled us to analyze patterns of
code-switching on Twitter, which is the second
key contribution of this paper. To the best of our
knowledge, this is the first quantitative study of its
kind, particularly at such a large-scale.

2 Related Work

In this section, we will briefly survey the language
detection techniques (see Hughes et al. (2006) and
Garg et al. (2014) for comprehensive surveys),
and sociolinguistic studies on multilingualism (see
Nguyen et al. (2016) for a detailed survey) that
were enabled by these techniques.

Early work on LD (Cavnar and Trenkle, 1994;
Dunning, 1994) focused on detecting a single
language for an entire document. These obtained
high accuracies on well-formed text (e.g.,
news articles), which led to LD being consid-
ered solved (McNamee, 2005). However, there
has been renewed interest with the amount of
user-generated content on the web. Such text
poses unique challenges such as short length,
misspelling, idiomatic expressions and acronyms
(Carter et al., 2013; Goldszmidt et al., 2013). Xia
et al. (2009), Tromp and Pechenizkiy (2011) and
Lui and Baldwin (2012) created LD systems for
monolingual sentences, web pages and tweets.
Zhang et al. (2016) built an unsupervised model to
detect the majority language in a document. There
has also been document-level LD that assigns mul-
tiple language to each document (Prager, 1999;
Lui et al., 2014). However, documents were syn-
thetically generated, restricted to inter-sentential
language mixing. Also, these models do not frag-
ment the document based on language, making
language-specific analysis impossible.

Document-level or sentence-level LD does not
identify code-switching accurately, which can oc-
cur within a sentence. Word-level LD systems
attempt to remedy this problem. Most work has
been restricted to cases where two languages,
known a priori, is to be detected in the input i.e.,
binary LD at the word-level. There has been
work on Dutch-Turkish (Nguyen and Dogruöz,
2013), English-Bengali (Das and Gambäck, 2014)
and Standard and dialectal Arabic (Elfardy et al.,
2013). King and Abney (2013) address word-
level LD for bilingual documents in 30 language
pairs, where the language pair is known a pri-
or. The features for word-level LD proposed
by Al-Badrashiny and Diab (2016) are language-
independent, however, at any given time, the
model is only trained to tag a specific language
pair. There have also been two shared task se-
ries on word-level LD: FIRE (Roy et al., 2013;
Choudhury et al., 2014; Sequiera et al., 2015) fo-
cused on Indian languages and the EMNLP Code-
Switching Workshop (Solorio et al., 2014; Molina
et al., 2016). These pairwise LD methods vary
from dictionary-based to completely supervised
and semi-supervised. None tackle the imminent
lack of annotated data required for scaling to more
than one language pair.

There has been little research on word-level LD
that is not restricted to two languages. Ham-
marström (2007) proposed a model for multi-
lingual LD for short texts like queries. Gella
et al. (2014) designed an algorithm for word-
level LD across 28 languages. Jurgens et al.
(2017) use an encoder-decoder architecture for
word-level LD that supports dialectal variation
and code-switching. However, these studies ex-
periment with synthetically created multilingual
data, constrained either by the number of lan-
guage switches permitted or to phrase-level code-
switching, and are not equipped to handle the chal-
enges posed by real-world code-switching.

Using tweet-level LD systems like the CompactLanguageDetector, there have been studies
on multilingualism in specific cities like Lon-
don (Manley, 2012) and Manchester (Bailey et al.,
2013). These studies, as well as Bergsma
et al. (2012), observe that existing LD systems fail
on code-switched text. Kim et al. (2014) studied
the linguistic behavior of bilingual Twitter users
from Qatar, Switzerland and Québec, and also ac-
knowledge that code-switching could not be stud-
died due to the absence of appropriate LD tools.

Using word-level LD for English-Hindi (Gella
et al., 2013), Bali et al. 2014 observed that as
much as 17% of Indian Facebook posts had code-
switching, and Rudra et al. (2016) showed that the
native language is strongly preferred for express-
ing negative sentiment by English-Hindi bilin-
guals on Twitter. However, without accurate mul-
tilingual word-level LD, there have been no large-
scale studies on the extent and distribution of
code-switching across various communities.

https://www.npmjs.com/package/cld
3 Generalized Word-level LD

We present Generalized Word-Level Language Detection, or GWLD, where:

- The number of supported languages can be arbitrarily large
- Any number of the supported languages can be mixed within a single input
- The languages in the input do not need to be known a priori
- Any number of language switches are allowed in the input.
- No manual annotation is required for training.

Formalizing our model, let \(w = w_1 \ldots w_n \) be a natural language text consisting of a sequence of words, \(w_1 \) to \(w_n \). For our current work, we define words to be whitespace-separated tokens (details in Sec 5). Let \(L = \{ l_1, l_2, \ldots, l_k \} \) be a set of \(k \) natural languages. We assume that each \(w_i \) can be assigned to a unique language \(l_j \in L \).

We also define universal tokens like numbers, emoticons, URLs, emails and punctuation, which do not belong to any specific natural language. Certain strings of alphabetic characters representing generic interjections or sounds, such as oh, awwww, zzz also fall in this category. For labeling these tokens, we use an auxiliary set of labels, \(X_L = \{ xl_1, xl_2, \ldots, xl_k \} \). Labeling each universal token with a specific language \(l_i \) instead of generically labeling all such tokens \(xl \) allows preserving linguistic context when a memoryless model like Hidden Markov Models (HMM) are used for tagging. Further, various NLP tasks on might require the input text, including these universal tokens, to be split by language.

For input \(w \), let the output from the LD system be \(y = y_1 \ldots y_n \), a sequence of labels, where \(y_i \in L \cup X_L \). \(y_i = l_j \) if and only if, in the context of \(w \), \(w_i \) is a word from \(l_j \). If \(w_i \) is a universal token, \(y_i = xl_j \), when \(y_i-1 = l_j \) or \(y_i-1 = xl_j \). If \(w_1 \) is a universal token, \(y_1 = xl_j \), where \(l_j \) is the label of the first token \(l \in L \) in the input.

Fig. 1 shows a few examples of labeled code-switched tweets. Named entities (NE) are assigned labels according to the convention used by King and Abney (2013).

4 Method

Word-level LD is essentially a sequence labeling task. We use a Hidden Markov Model (HMM), though any other sequence labeling technique, e.g., CRFs, can be used as well.

The intuition behind the model architecture is simple – a person who is familiar with \(k \) languages can easily recognize and understand the words when any of those languages are code-switched, even if s/he has never seen any mixed language text before. Analogously, is it possible that monolingual language models, when combined, can identify code-switched text accurately?

Imagine we have \(k \) HMMs, where the \(i \)th HMM has two states \(l_i \) and \(xl_i \). Each state can label a word. The HMMs are independent, but they are tied to a common start state \(s \) and end state \(e \), forming a word-level LD model for monolingual text in one of the \(k \) languages. Now, we make transitions from \(l_i \) to \(l_j \) possible, where \(i \neq j \). This HMM, shown in Fig. 2, is capable of generating and consequently, labeling code-switched text between any of the \(k \) languages. The solid and dotted lines show monolingual transitions and the added code-switching transitions respectively. Fig. 2 depicts three languages, however, the number of languages can be arbitrarily large.

Obtaining word-level annotated monolingual and code-switched data is expensive and nearly infeasible for a large number of languages. Instead, we automatically create weakly-labeled monolingual text (set \(W \)) and use it to initialize the HMM parameters. We then use Baum-Welch reestimation on unlabeled data (set \(U \)) that has monolingual and code-switched text in their natural distribution. Sec. 5 discusses creation of \(W \) and \(U \).

4.1 Structure, Initialization and Learning

The structure of the HMM shown in Fig. 2 can be formally described using:

- Set of states, \(S = s \cup L \cup X_L \cup e \)
- Set of observations, \(O \)
- Emission matrix \((|S| \times |O|) \)
- Transition matrix \((|S| \times |S|) \)

\(O \) consists of all seen events in the data, and a special symbol \(unk \) for all unseen events. We define an event as a token \(n \)-gram and we experimented with \(n = 1 \) to 3. It is important to mention that the \(n \)-grams do not spread over language states. We also use special start and end symbols, which are observed at states \(s \) and \(e \) respectively. Elements of \(O \) are effectively what the states of the HMM ‘emit’ or generate during decoding.
As stated earlier, the model supports code-switching by the addition of transitions $l_i \rightarrow l_j$, and $xl_i \rightarrow l_j$, for all $i \neq j$. For each state l_i, there are $2k - 2$ new transitions (Fig. 2). We initialize these news edges with a small probability π, before normalizing transitions for each state. π, which we call the code-switch probability, is a hyperparameter tuned on a validation set.

Starting with the initialized matrices, we reestimate the transition and emission matrices using the EM-like Baum-Welch algorithm (Welch, 2003) over the large set of unlabeled text \mathcal{U}.

4.2 Decoding
The input to the trained model is first preprocessed as described in Sec. 5.1 (tokenization and identification of universal tokens). The Viterbi algorithm is then used with the HMM parameters to perform word-level LD. When an unknown n-gram, is encountered, its emission probability is estimated by recursively backing off to $(n - 1)$-gram, until we find a known n-gram. If the unigram, i.e., the token, is also unknown, then the observation of the symbol unk is used instead.

5 Dataset Creation
The data for both training and testing comes primarily from Twitter because of its public API, and studies have shown the presence of code-switching in social media (Crystal, 2001; Herring, 2003; Danet and Herring, 2007; Cardenas-Claros and Isharyanti, 2009; Bali et al., 2014).

Our experiments use monolingual and code-switched tweets in seven languages – Dutch (nl), English (en), French (fr), German (de), Portuguese (pt), Spanish (es) and Turkish (tr). These form the set \mathcal{L}. The choice of languages is motivated by several factors. First, LD is non-trivial as all these languages use the Latin script. Second, a large volume of tweets are generated in these languages.
Third, there is annotated code-switched data available in nl-tr and en-es, which can be used for validation and testing. Lastly, we know that certain pairs of these languages are code-switched often.

5.1 Collection and Preprocessing

Using the Twitter API (Twitter, 2013), we collected tweets over May-July 2015. We selected tweets identified by Twitter LD API (Twitter, 2015) as one of the languages in \(L \). We also removed non-Latin script tweets.

As preprocessing, each tweet is first tokenized using ark-twitter (Gimpel et al., 2011) and URLs, hashtags and user mentions are identified using regular expressions. We also identify emoticons, punctuation, digits, special characters, and some universal interjections and abbreviations (such as RT, aww) as universal tokens. We use an existing dictionary (Chittaranjan et al., 2014) for the latter. Let the set of tweets after preprocessing be \(T \).

5.2 Sets \(W \) and \(U \)

We use the COVERSET algorithm (Gella et al., 2014) on each tweet in \(T \). It obtains a confidence score for a word \(w_i \) belonging to a language \(l_j \) using a Naive Bayes classifier trained on Wikipedia. These scores are used to find the minimal set of languages are required to label all the input words. If COVERSET detects the tweet as monolingual (i.e., one language can label all words) and the identified language is the same as the Twitter LD label, the tweet is added to the weakly-labeled set \(W \). These tweets are almost certainly monolingual, as COVERSET has very high recall (and low precision) for detecting code-switching. As these are not manually labeled, we call them weakly-labeled. \(W \) contains 100K tweets in each language (700K in total).

From \(T \), we randomly select 100K tweets in each of the seven languages based on the Twitter LD API labels. These tweets do not have word-level language labels and may be code-switched or have an incorrect Twitter language label. We use these as unlabeled data, the set \(U \).

5.3 Validation and Test Sets

We curate two word-level gold-standard datasets for validation and testing. These sets contain monolingual tweets in each of the seven languages as well as code-switched tweets from certain language pairs, based on the availability of real-world data. However, it must be noted that GWLD can detect code-switching between more than two languages. The language-wise distribution is shown in Table 1. Including universal tokens, the validation and test set contain 33981 and 58221 tokens respectively. The annotated tweets will be made available for public use.

For es-en, we use the word-level annotated test set from the code-switching shared task on language detection (Solorio et al., 2014). We ignore the tokens labeled NE, Ambiguous and Mixed during our system evaluation (Sec. 6), as they do not fall in the scope of this work. The words labeled ‘Other’ were marked as \(x_l \) where \(l \) is \(en \) or \(es \), based on the context. We also use existing nl-tr validation and test sets (Nguyen and Dogru ¨oz, 2013), which contain posts from a web forum.

For the other language pairs, we created our own validation and test sets, as none already exist. We randomly selected tweets for which COVERSET identified code-switching with high confidence. We gave 215 of these to six annotators for word-level annotation. It is difficult to find annotators who know all seven languages; elaborate guidelines were provided on using online machine translation, dictionaries and search engines for the task. Four out of the six annotators had high inter-annotator agreement – the agreement on \(L_1 \) (language that the majority of the words in the tweet belong to) was 0.93, \(L_2 \) (the other language, whenever present) was 0.8 and whether the tweet is code-switched was 0.84. We did not find any instances of code-switching between more than two

L1-L2	Tweets	L1 Tokens	L2 Tokens
nl	100 (100)	965 (1099)	–
fr	100 (102)	1085 (1045)	–
pt	100 (100)	1080 (967)	–
de	101 (100)	1078 (890)	–
tr	100 (100)	939 (879)	–
es	100 (100)	1067 (1119)	–
en	100 (100)	1161 (1006)	–
nl-en	65 (50)	498 (436)	243 (174)
fr-en	50 (48)	428 (370)	224 (227)
pt-en	53 (53)	463 (513)	278 (242)
de-en	49 (50)	417 (459)	293 (292)
tr-en	50 (50)	347 (336)	238 (209)
es-en	3013 (52)	8510 (355)	16356 (395)
nl-tr	735 (728)	5895 (8590)	5293 (8140)

Table 1: Test Set Statistics (Validation Set in parentheses). Rows in gray show existing datasets.
languages, which is rare in general. We distributed 3000 tweets between the four annotators (monolingual and code-switched tweets from COVER-SET). Disagreements were settled between the annotators and a linguist. A subset of the annotated tweets form the validation and test sets (Table 1), and were removed from \(W\) and \(U\).

6 Experiments and Results

We compare GWLD with three existing systems: LINGUINI (Prager, 1999), LANGID (Lui and Baldwin, 2012), and POLYGLOT (Lui et al., 2014). None of these perform word-level LD, however, LANGID and POLYGLOT return a list of languages with confidence scores for the input. Since code-switching with more than two languages is absent in our dataset, we consider up to two language labels. We define the tweet to be monolingual if the difference between the confidence values for the top two languages is greater than a parameter \(\delta\). Otherwise, it is assumed to be code-switched with the top two languages. \(\delta\) is tuned independently for the two LD systems on the validation set by maximizing the metric \(L_1 L_2\) Accuracy (Sec. 6.2). Inspired by Gella et al. (2013), we also compare with dictionary-based word-level LD baselines.

6.1 Dictionary-based Baselines

For each language, we build a lexicon of all the words and their frequencies found in \(W\) for that language. Let the lexicon for language \(l_i \in \mathcal{L}\) be \(\text{lex}_i\). Let \(f(\text{lex}_i, w_j)\) be the frequency of \(w_j\) in \(\text{lex}_i\). We define the following baselines:

MAXFREQ: For each \(w_j\) in \(\text{w}\), MAXFREQ returns \(\text{lex}_i\) that has the maximum frequency for that token. Therefore, the language label for \(w_j\) is \(y_j = l_i[\arg\max_i f(\text{lex}_i, w_j)]\). If the token is not found in any lexicon, \(y_j\) is assigned the value of \(y_{j-1}\).

MINCOVER: We find the smallest subset \(\text{mincov}(w) \subset \mathcal{L}\), such that for all \(w_j\) in input \(w\), we have at least one language \(l_i \in \text{mincov}(w)\) with \(f(\text{lex}_i, w_j) > 0\). If there is no such language, then \(w_j\) is not considered while computing \(\text{mincov}(w)\). Once \(\text{mincov}(w)\) is obtained, labels \(y_i\) are computed using the MAXFREQ strategy, where the set of languages is restricted to \(\text{mincov}(w)\) instead of \(\mathcal{L}\). Note that \(\text{mincov}(w)\) need not be unique for \(w\); in such cases, we choose the \(\text{mincov}(w)\) which maximizes the sum of lexical frequencies based on MAXFREQ labels.

6.2 Metrics

We define the Accuracy (Acc) of an LD system as the fraction of words in the test set that are labeled correctly. Since the existing LD systems do not label languages at word-level, we also define:

\[\text{IsMix} = \text{the fraction of tweets that are correctly identified as either monolingual or code-mixed}\]

\[L_1 L_2\text{ Accuracy} = \text{the mean accuracy of detecting language(s) at tweet-level. For monolingual tweets, this accuracy is 1 if the gold standard label is detected by the LD system, else 0. For code-switched tweets, the accuracy is 1 if both languages are detected, 0.5 if one language is detected, and 0 otherwise.}\]

6.3 Results

We use these metrics to assess performance on the test set for the baselines, existing LD systems and GWLD (Table 2). Initial refers to the HMM model estimated from \(W\) and Reestimated refers to the final model after Baum-Welch reestimation. The parameter \(\pi\) is tuned on the validation set using grid search. Reestimated GWLD has the best accuracy of 0.963 and performs significantly better than all the other systems for all metrics. Reestimation improves the word-level Acc for L1 from 0.89 to 0.97 and for L2 from 0.43 to 0.82. LINGUINI and POLYGLOT likely have low \(L_1 L_2\) Acc because they are trained on synthetically-created documents with no word-level code-switching.

Since our test set contains pre-existing annotations for en-es (Solorio et al., 2014) and nl-tr (Nguyen and Dogruöz, 2013), we compare with state-of-the-art results on those datasets. On en-es tokens, Al-Badrashiny and Diab (2016) reports an F1-score of 0.964; GWLD obtains 0.978. Nguyen and Dogruöz (2013) report 0.976 Acc on the nl-tr
We obtain a less competitive 0.936. However, when errors between nl-en are ignored as most of these are en words with nl gold-standard labels (convention followed by the dataset creators), the revised Acc is 0.963. Notably, unlike GWLD, both these models use large amounts of annotated data for training and are restricted to detecting only two languages.

Error Analysis: GWLD sometimes detects languages that are not present in the tweet, which account for a sizable fraction (39%) of all word-level errors. Not detecting a language switch causes 8% of the errors. Most other errors are caused by named entities, single-letter tokens, unseen words and the nl-en annotation convention in the test set from Nguyen and Dogruöz (2013).

6.4 Robustness of GWLD

We test the robustness of GWLD by varying the size of the weakly-labeled set, the unlabeled dataset and the number of languages the model is trained to support.

6.4.1 Size of \mathcal{W} and \mathcal{U}

The variation of Acc with the size of \mathcal{W} is shown in Figure 3a. Even with 0.25% of the set (250 tweets for each $l_i \in \mathcal{L}$), the model has accuracy of nearly 0.96. A slow rise in accuracy is observed as the number of tweets in \mathcal{W} is increased. We also experiment with varying the size of \mathcal{U}. In Figure 3a, we see that with 0.25% of \mathcal{U} (around 1,400 randomly sampled tweets), the accuracy on the test set is lower than 0.91. This quickly increases with 10% of \mathcal{U}. Thus, GWLD achieves Acc comparable to existing systems with very little weakly-labeled data (just 250 tweets per language, which are easily procurable for most languages) and around 50,000 unlabeled tweets.

6.4.2 Noise in \mathcal{W}

Since a small, but pure, \mathcal{W} gives high accuracy (Sec. 6.4.1), we evaluate how artificially introduced noise affects Acc. The noise introduced into the \mathcal{W} of each language comes uniformly from the other six languages. Figure 3b shows how increasing fractions of noise slowly degrades accuracy, with a steep drop to 0.11 accuracy at 90% noise, where the tweets from each incorrect language outnumber the correct language tweets. We test this with a pairwise model as well, as noise from a single language might have greater effect. The accuracy falls to 0.36 at 50% noise (Fig. 3b).

At this point, \mathcal{W} has an equal number of tweets from each language and is essentially useless.

6.4.3 Number of languages

Pairwise Models: Table 3 details two performance metrics (defined in Sec. 5.2) for our model trained on only two languages and the corresponding 7-language GWLD Acc for that language pair.

Incremental Addition of Languages: We test Acc while incrementally adding languages to the model in a random order (nl-en-pt-fr-de-es-tr). Figure 4 shows the variation in Acc for nl-en, pt-en and fr-en as more languages are added to the

L1-L2	Acc	IsCM	GWLD-Acc
nl-en	0.979	0.943	0.967
fr-en	0.982	0.948	0.969
pt-en	0.977	0.952	0.964
de-en	0.984	0.956	0.975
tr-en	0.985	0.984	0.983
es-en	0.954	0.929	0.978
nl-tr	0.975	0.907	0.936

Table 3: Statistics for Pairwise (col. 2 and 3) and GWLD Systems
7 Code-Switching on Twitter

The high accuracy and fast processing speed (the current multithreaded implementation labels 2.5M tweets per hour) of GWLD enables us to conduct large-scale and reliable studies of CS patterns on Twitter for the 7 languages. In this paper, we conduct two such studies. The first study analyzes 50M tweets from across the world to understand the extent and broad patterns of switching among these languages. In the second study, we analyze 8M tweets from 24 cities to gain insights into geography-specific CS patterns.

7.1 Worldwide Code-Switching Trends

We collected 50 million unique tweets that were identified by the Twitter LD API as one of the 7 languages. We place this constraint to avoid tweets from unsupported languages during analysis. Figure 5 shows the overall language distribution, including the CS language-pair distribution. Approximately 96.5% of the tweets are monolingual, a majority of which are en (74%).

Around 3.5% of all tweets are code-switched. Globally, en-es, en-fr and en-pt are the three most commonly mixed pairs accounting for 21.5%, 20.8% and 18.4% of all CS tweets in our data respectively. Interestingly, 85.4% of the CS tweets have en as one of the languages; fr is the next most popularly mixed language, with fr-es (3.2%), fr-pt (1.2%) and fr-nl (0.6%) as the top three observed pairs. Although around 1% of CS tweets were detected as containing more than two languages, these likely have low precision because of language over-detection as discussed in Sec. 6.3.

Figure 6 shows the fraction of code-switch points, i.e., how many times the language changes in a CS tweet, for all the languages, as well as for three language pairs with to highlight different trends. Most CS tweets have one CS-point, which implies that the tweet begins with one language, and then ends with another. Such tweets are very frequent for en-de where we observe that usually the tweets state the same fact in both en and de. This so-called translation function (Begum et al., 2016) of CS is probably adopted for reaching out to a wider and global audience. In contrast, es-fr tweets have fewer tweets with single and far more with two CS-point than average. Tweets with two CS-points typically imply the inclusion of a short phrase or chunk from another language. en-tr tweets have the highest number of CS-points, implying rampant and fluid switching between the two languages at all structural levels.

7.2 City-Specific Code-Switching Trends

Cosmopolitan cities are melting pots of cultures, which make them excellent locations for studying multilingualism and language interaction, including CS (Bailey et al., 2013). We collected tweets from 24 populous and highly cosmopolitan cities from Europe, North America and South America, where the primarily spoken language is one of the 7 languages detectable by GWLD. Around 8M tweets were collected from these cities.

Table 4 shows the top and bottom 6 cities, ranked by the fraction of CS tweets from that city. The total number of tweets analyzed and the top two CS pairs, along with their fractions (of CS tweets from that city) are also reported. More details can be found in the supplementary material. It is interesting to note that the 6 cities with lowest CS tweet fractions have en as the major language, whereas the 6 cities with highest CS fractions are from non-English (Turkish, Spanish and French) speaking geographies. In fact, the Pearson’s co-
Cities with highest fraction of CS tweet

City	Tweets	CS-fraction (CS pairs)
Istanbul	351K	.12 (en-tr .53, nl-tr .13)
Québec City	108K	.08 (en-fr .45, es-fr .23)
Paris	158K	.07 (en-fr .43, fr-pt .21)
Mexico City	332K	.07 (en-es .54, es-fr .14)
Brussels	100K	.06 (en-fr .37, es-fr .15)
Madrid	147K	.06 (en-es .43, es-fr .32)

Cities with lowest fraction of CS tweets

City	Tweets	CS-fraction (CS pairs)
Houston	588K	.01 (en-es .22, en-fr .21)
San Francisco	532K	.02 (en-es .26, en-fr .19)
NYC	690K	.02 (en-es .21, en-fr .19)
Miami	290K	.02 (en-es .33, en-pt .20)
London	492K	.02 (en-fr .26, en-pt .17)
San Diego	432K	.02 (en-es .29, en-fr .14)

Table 4: Top (left) and bottom (right) six cities according to the fraction of CS tweets.

![Figure 7: en-es Run Length](image)

A system for word-level language detection (GWLD) was conducted to study CS trends among seven Latin script languages. Results on monolingual and code-switched tweets in seven Latin script languages show a high 0.963 accuracy, significantly out-performing existing systems. Using GWLD, we conducted a large-scale study of CS trends among these languages, both globally and in specific cities.

One of the primary observations of this study is that while code-switching on Twitter is common worldwide (3.5%), it is much more common in non-English speaking cities like Istanbul (12%) where 90% of the population speak Turkish. On the other hand, while a third of the population of Houston speaks Spanish and almost everybody English, only 1% of the tweets from the city are code-switched. All the trends indicate a global dominance of English, which might be because Twitter is primarily a medium for broadcast, and English tweets have a wider audience. Bergsma et al. (2012) show that “[On Twitter] bilinguals bridge between monolinguals with English as a hub, while monolinguals tend not to directly follow each other.” Androustopoulos (2006) argues that due to linguistic non-homogeneity of online public spaces, languages like en, fr and de are typically preferred for communication, even though in private spaces, “bilingual talk” differs considerably in terms of distribution and CS patterns.

As future directions, we plan to extend GWLD to several other languages and conduct similar sociolinguistic studies on CS patterns including not only more languages and geographies, but also other aspects like topic and sentiment.

Acknowledgments

We would like to thank Prof. Shambavi Pradeep and her students from BMS College of Engineering for assisting with data annotation. We are also grateful to Ashutosh Baheti and Silvana Hartmann from Microsoft Research (Bangalore, India) for help with data organization and error analysis.
References

Mohamed Al-Badrashiny and Mona Diab. 2016. Lili: A simple language independent approach for language identification. In Proceedings of the 26th International Conference on Computational Linguistics (COLING), Osaka, Japan.

Jannis Andritsopoulos. 2006. Multilingualism, di-aspora, and the internet: Codes and identities on german-based diaspora websites. Journal of Sociolinguistics 10(4):520–547.

Peter Auer. 2013. Code-switching in conversation: Language, interaction and identity. Routledge.

George Bailey, Joseph Goggin, and Thomas Ingham. 2013. What can Twitter tell us about the language diversity of Greater Manchester? In Report by Multilingual Manchester. School of Languages, Linguistics and Cultures at the University of Manchester. http://bit.ly/2kG42Qf.

Kalika Bali, Yogarshi Vyas, Jatin Sharma, and Monojit Choudhury. 2014. “I am borrowing ya mixing?” an analysis of English-Hindi code mixing in Facebook. In Proceedings of the First Workshop on Computational Approaches to Code Switching.

Utsab Barman, Amitava Das, Joachim Wagner, and Jennifer Foster. 2014. Code mixing: A challenge for language identification in the language of social media. In Proceedings of the First Workshop on Computational Approaches to Code Switching.

Rafiya Begum, Kalika Bali, Monojit Choudhury, Kous- tav Rudra, and Niloy Ganguly. 2016. Functions of code-switching in tweets: An annotation framework and some initial experiments. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC).

Shane Bergsma, Paul McNamee, Mossaab Bagdouri, Clayton Fink, and Theresa Wilson. 2012. Language identification for creating language-specific twitter collections. In Proceedings of the second workshop on language in social media. Association for Computational Linguistics.

Mónica Stella Cardenas-Claros and Neny Isharyanti. 2009. Code-switching and code-mixing in internet chatting: Between yes, ya, and si a case study. In The JALT CALL Journal, 5.

Simon Carter, Wouter Weerkamp, and Manos Tsagkias. 2013. Microblog language identification: Overcoming the limitations of short, unedited and idiomatic text. Language Resources and Evaluation Journal 47:195–215.

William B Cavnar and John M Trenkle. 1994. N-gram-based text categorization .

Stanley F Chen and Joshua Goodman. 1999. An empirical study of smoothing techniques for language modeling. Computer Speech & Language 13(4):359–393.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and Monojit Choudhury. 2014. Word-level language identification using crf : Code-switching shared task report of msr india system. In Proceedings of the First Workshop on Computational Approaches to Code Switching.

Monojit Choudhury, Gokul Chittaranjan, Parth Gupta, and Amitava Das. 2014. Overview of FIRE 2014 track on transliterated search .

David Crystal. 2001. Language and the Internet. Cambridge University Press.

Brenda Danet and Susan Herring. 2007. The Multilingual Internet: Language, Culture, and Communication Online. Oxford University Press., New York.

Amitava Das and Bjorn Gambäck. 2014. Identifying languages at the word level in code-mixed indian social media text. In Proceedings of the 11th International Conference on Natural Language Processing, Goa, India, pages 169–178.

A Seza Doğruöz and Ad Backus. 2009. Innovative constructions in dutch turkish: An assessment of ongoing contact-induced change. Bilingualism: language and cognition 12(01):41–63.

Ted Dunning. 1994. Statistical identification of language. Computing Research Laboratory, New Mexico State University.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona Diab. 2013. Code switch point detection in arabic. In Natural Language Processing and Information Systems, Springer, pages 412–416.

Archana Garg, Vishal Gupta, and Manish Jindal. 2014. A survey of language identification techniques and applications. Journal of Emerging Technologies in Web Intelligence 6(4):388–400.

Spandana Gella, Kalika Bali, and Monojit Choudhury. 2014. “ye word kis lang ka hai bhai?” testing the limits of word level language identification. In NL-PAI.

Spandana Gella, Jatin Sharma, and Kalika Bali. 2013. Query word labeling and back transliteration for indian languages: Shared task system description .

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and A. Noah Smith. 2011. Part-of-speech tagging for twitter: Annotation, features, and experiments. In Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL).

Moises Goldszmidt, Marc Najork, and Stelios Paparizos. 2013. Boot-strapping language identifiers for short colloquial postings. In Machine Learning and Knowledge Discovery in Databases, volume 8189 of Lecture Notes in Computer Science, pages 95–111.
John. J. Gumperz. 1982. Discourse strategies. Cambridge University Press, Cambridge.

Harald Hammarström. 2007. A fine-grained model for language identification. In In Workshop of Improving Non English Web Searching. Proceedings of iN- EWS 2007 Workshop at SIGIR.

Susan Herring, editor. 2003. Media and Language Change. Special issue of Journal of Historical Pragmatics 4:1.

Baden Hughes, Timothy Baldwin, SG Bird, Jeremy Nicholson, and Andrew MacKinlay. 2006. Reconsidering language identification for written language resources.

David Jurgens, Yulia Tsvetkov, and Dan Jurafsky. 2017. Incorporating dialectal variability for socially equitable language identification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL). Vancouver, Canada.

Suin Kim, Ingmar Weber, Li Wei, and Alice Oh. 2014. Sociolinguistic analysis of twitter in multilingual societies. In Proceedings of the 25th ACM conference on Hypertext and social media.

Ben King and Steven Abney. 2013. Labeling the languages of words in mixed-language documents using weakly supervised methods. In Proceedings of NAACL-HLT. pages 1110–1119.

Marco Lui and Timothy Baldwin. 2012. langid.py: An off-the-shelf language identification tool. In In Proceedings of the ACL 2012 System Demonstrations. pages 25–30.

Marco Lui, Jey Han Lau, and Timothy Baldwin. 2014. Automatic detection and language identification of multilingual documents. In Transactions of the Association for Computational Linguistics.

Ed Manley. 2012. Detecting languages in Londons Twittersphere. In Blog post: Urban Movements. http://bit.ly/2kBytHm.

P. McNamee. 2005. Language identification: A solved problem suitable for undergraduate instruction. Journal of Computing Sciences in Colleges 20.

Lesley Milroy and Pieter Muysken. 1995. One speaker, two languages: Cross-disciplinary perspectives on code-switching. Cambridge University Press.

Giovanni Molina, Nicolas Rey-Villamizar, Thamar Solorio, Fahad AlGhamdi, Mahmoud Gholine, Abdelati Hawwari, and Mona Diab. 2016. Overview for the second shared task on language identification in code-switched data. EMNLP 2016 page 40.

Carol Myers-Scotton. 1993. Dueling Languages: Grammatical Structure in Code-Switching. Clarendon, Oxford.

Dong Nguyen and A. Seza Dogruöz. 2013. Word level language identification in online multilingual communication. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Dong Nguyen, A Seza Doğruöz, Carolyn P Rosé, and Francisca de Jong. 2016. Computational sociolinguistics: A survey. Computational Linguistics.

Shana Poplack. 1980. Sometimes I’ll start a sentence in Spanish y termino en espanol. Linguistics 18:581–618.

John M Prager. 1999. Language identification for multilingual documents. In Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference.

Rishiraj Saha Roy, Monojit Choudhury, Prasenjit Majumder, and Komal Agarwal. 2013. Overview and datasets of FIRE 2013 track on transliterated search. In Working Notes of FIRE.

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika Bali, Monojit Choudhury, and Niloy Ganguly. 2016. Understanding language preference for expression of opinion and sentiment: What do Hindi-English speakers do on Twitter? In Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Royal Sequiera, Monojit Choudhury, Parth Gupta, Paolo Rosso, Shubham Kumar, Somnath Banerjee, Sudip Kumar Naskar, Sivaji Bandyopadhyay, Gokul Chittaranjan, Amitava Das, and Kunal Chakma. 2015. Overview of fire-2015 shared task on mixed script information retrieval. In Working Notes of FIRE.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steven Bethard, Mona Diab, Mahmoud Gholine, Abdelati Hawwari, Fahad AlGhamdi, Julia Hirschberg, Allison Chang, et al. 2014. Overview for the first shared task on language identification in code-switched data. Proceedings of The First Workshop on Computational Approaches to Code Switching.

Erik Tromp and Mykola Pechenizkiy. 2011. Graph-based n-gram language identification on short texts. In In Proc. 20th Machine Learning conference of Belgium and The Netherlands. pages 27–34.

Twitter. 2013. GET statuses/sample — Twitter Developers. https://dev.twitter.com/docs/api/1/get/statuses/sample.

Twitter. 2015. GET help/languages — Twitter Developers. https://dev.twitter.com/rest/reference/get/help/languages.

Lloyd R Welch. 2003. Hidden markov models and the baum-welch algorithm. IEEE Information Theory Society Newsletter 53(4):10–13.
Fei Xia, William D Lewis, and Hoifung Poon. 2009. Language id in the context of harvesting language data off the web. In In Proceedings of the 12th EACL, pages 870–878.

Wei Zhang, Robert AJ Clark, Yongyuan Wang, and Wen Li. 2016. Unsupervised language identification based on latent dirichlet allocation. *Computer Speech & Language* 39:47–66.