Techno-economic evaluation of microalgae-based supply chain: Review on recent approaches

S L Y Lo¹, K G H Kong¹, B S How¹, J Y Lim², P L Show³ and J Sunarso¹

¹Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350 Kuching, Sarawak, Malaysia
²Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
³Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia

Email: bshow@swinburne.edu.my

Abstract. Third generation biomass-derived products such as biofuel has been garnering attention as a viable alternative energy source recently as it does not necessarily require fresh water and vast land for cultivation as compared to first-generation and second-generation biomass. However, extensive studies have to go into the feasibility evaluation for third generation biomass utilization prior to upscaling the process to commercial level. Other than comprehensive technical evaluation such as experimental studies to understand the microalgae productivity, economic evaluation of the utilization of third-generation biomass is also critical specifically in the perspective of supply chain. Therefore, the objective of this review is to lay out an overall picture to the readers the various option of approaches or methods utilized in feasibility evaluation of the microalgae-based supply chain. The outcome of the review paper indicated that approximately 58% of the papers reviewed opted for mathematical modeling with optimization whereas the remaining 42% opted for mathematical modeling without optimization.

1. Introduction

As stated by the International Renewable Energy Agency (IREA), the utilization of renewable energy source has vastly exceeded non-renewable energy source since 2015 [1]. One of the renewable energy sources that has been garnering attention is biomass. Biomass-derived energy source and products have been in the highlights in recent years that in turns slowly phasing out fossil fuels. Biomass can be further categorized into first, second, and third-generation biomass. First generation biomass is crop-like and usually edible biomass such as sugarcane, barley, and corn [2]. Apart from that, second-generation biomass consists of a wide variety of biomass usually inedible lignocellulosic biomass (i.e., wood chips, forest remains, or domestic solid wastes) [2]. Lastly, third-generation biomass is general algal biomass [3]. By definition, unicellular and basic multi-cellular microorganisms are both categorized under prokaryotic microalgae (i.e., cyanobacteria and eukaryotic microalgae) [3]. Researches are now leaning towards third-generation biomass such as microalgae utilization due to
multiple reasons. One among these is the high lipid content of certain algal species (i.e., *Chlorella* that has lipid content of approximately 60 to 70%), which allows higher production of biodiesel [4]. Additionally, microalgae can be cultivated in distinct origin of water namely saline water, wastewater, brackish water, and fresh water [5]. The capability of microalgae to be cultivated in wastewater has significant benefits as the discharge of wastewater into the environmental ecosystem can result in the increase of chemical oxygen demand (COD), which further causes the imbalance in ecosystem, contamination towards the environment specifically groundwater, and may pose risk to human health [6]. According to Posadas *et al.* [7], the development of low cost and green treatment for effluents such as wastewater is critical as industries are discharging large volumes of wastewater into the aquatic ecosystem. Although microalgae utilization in the renewable fuels sector is a favorable alternative, Tan [8] stated that the identification of reliable markets for microalgae to venture into has been unsuccessful due to an undesirable return on investment. Furthermore, Andrade *et al.* [9] mentioned that only a few published papers had studied the feasibility of microalgae-based supply chain. Therefore, it is critical to consider the different evaluation approaches available when evaluating the feasibility of the microalgae-based supply chain. As the microalgae-based supply chain is still in its infancy, a more comprehensive study is required to ensure that all aspects have been considered and to avoid any unnecessary losses whether in time or monetary aspects. Furthermore, Madugu and Collu [10] added that careful analysis of the microalgae-based supply chain is critical to for the assurance of the long-term sustainability of microalgae conversion process. According to Chew *et al.* [11], one of the foundation tools that can be adopted to perform feasibility evaluation of microalgae processing is techno-economic analysis.

Therefore, this review paper is equipped with the objective to compile the presently available approaches and methodology utilized in performing techno-economic analysis of microalgae-based supply chain. Subsequently, a list of recent reviews related to microalgae-based supply chain has been listed in table 1. Some of the works listed in this table such as Efroymson *et al.* [12] briefly illustrated a framework for better management practices (BMPs) to achieve sustainability objective that includes techno-economic analysis and provide brief description on the integration of economic indicators with environmental indicators. Nonetheless, they did not provide a discussion on the methods or mathematical models available to be used for techno-economic analysis. Generally, BMP can be obtained from techno-economic analysis and life cycle assessment (LCA) coming hand-in-hand to achieve sustainability objectives such as the reduction of greenhouse gas (GHG) emissions. Apart from that, Doliente *et al.* [13] also reviewed techno-economic analysis of first, second, and third-generation biomass-derived bio-aviation fuel. They however, only provided a cost breakdown for the delivered cost of first-generation and second-generation biomass specifically corn stover, switch grass, oil palm, miscanthus, eucalyptus, forest residues, and sugarcane. However, they did not go on to discuss more comprehensively on the approaches or methods available in performing techno-economic analysis. Aside from that, Rizwan *et al.* [14] discussed the optimization of microalgae-based biorefinery superstructure, which is based on deterministic and stochastic approach alongside the discussions on uncertainties revolving around microalgae-based biorefinery. However, they did not critically review the alternative techno-economic analysis approaches that can be performed without the need for optimization. In contrast, these approaches will be discussed in the current review. Apart from that, the type of microalgae and the corresponding conversion process are outlined in this review as well.
Table 1. A list of current available reviews related to techno-economic analysis of microalgae-based supply chain.

Year	Author	Review Scope
2021	Efroymson et al. [12]	• Provided description on algae and algae-derived biofuel production • Discussed the framework for BMPs that relies on LCA, techno-economic assessment, and resource analysis. • Provided examples for BMPs such as the quantity and quality of water
2020	Teng et al. [15]	• Discussed the integration of artificial intelligence (AI) in microalgae in different fields such as genetic engineering, experimental analysis, and process integration • Listed the essential databases used for microalgae bioinformatics • Discusses the optimization approaches used with the integration of AI in microalgae-based biorefineries
	Andrade et al. [9]	• Focused on Brazilian Microalgae Production Chain (BPMC) • Discussed briefly the studies performed on BPMC • Discussed a few significant elements of BPMC (Shortcomings, threats, challenges, opportunities, efficiency, and demand) • Highlighted a few ways to reduce the BPMC cost
	Doliente et al. [13]	• Review the bio-aviation fuel supply chain and their components: microalgae feedstock, conversion pathways, and logistics that include storage and transport • Provide a summary of supply chain studies that include environmental and economic for bio-aviation fuel • Discussed the advantages and limitations of bio-aviation fuel conversion pathways
2019	Rizwan et al. [14]	• Discussed microalgae-based biorefinery superstructure optimization • Focus on the description of formulation of optimization models that are mixed-integer linear programming (MILP) and mixed-integer non-linear programming (MINLP)
2018	Deprá et al. [16]	• Review microalgae biorefineries including microalgae cultivation and co-products produced during conversion process • Discussed application of process integration and LCA to microalgae biorefineries • Discussed the microalgae biorefineries’ bottlenecks
2017	Chew et al. [11]	• Discussed briefly the economic viability of microalgae biofuels. However, did not go in-depth towards the method and approach adopted • Emphasized more on microalgae biorefinery (inclusive of their conversion processes), components of microalgae, and potential application of each component of microalgae
The main purpose of this review paper is to provide a compilation of techno-economic studies performed for third-generation biomass utilization. Section 2 illustrates the review methodology adopted in this paper. Subsequently, a brief description of microalgae-based supply chain is included in Section 3. Section 4 then presents the compilation of the methods and approaches covered in this review paper. The concluding remarks and future works are outlined in Section 5.

2. Review methodology and scope of review

The review methodology utilized in this study is illustrated in figure 1. The review began with inputting the desired keyword “microalgae” into the database. The database used for this study is Scopus. After obtaining the search outcome from the keyword that includes 29,594 relevant papers, the next step involved refining the search result to the scope of “techno-economic” and further refined the search result to the scope of “supply chain”. The total resulting article was 208 relevant papers that were further refined to consist only journal articles, resulting in 103 total relevant papers. The scope of this review paper is the articles from the recent five years (2017 to 2021). Thus, 74 relevant papers were reviewed in this study. Manual methodology screening was conducted on each paper to determine whether the methodology of study adopted by the papers are relevant to be discussed in this review. After methodology screening, 51 papers (approximately 68% of the total papers obtained from the search results) were found to be less relevant towards the scope of this review paper.

Although specific keywords and article screening have been implemented and the result of the papers obtained are significant and insightful studies but less relevant towards the scope of this review paper (see tables 2A and 2B). For instance, review papers such as Kusmayadi et al. [17] found in the search results was screened out. The author briefly addressed the tools that can be used to evaluate the feasibility of production and conversion pathways that are techno-economic analysis and life cycle assessment. However, the paper focuses on the nutritional components of microalgae where the considered application is merely on using as animal and human feed. The largest category of papers is contributed by experimental studies (e.g., Vigor et al. [18], Wang et al. [19], and etc). Some of the papers performed mathematical modeling as well however did not perform techno-economic analysis. For instance, Andersson et al. [20] investigated the potential of process integration (material and heat integration) in microalgae processes (i.e., lipid extraction with transesterification, hydrothermal liquefaction (HTL) with catalytic hydrothermal gasification (CHG) for microalgae, Nannochloropsis and macroalgae, Laminaria saccharina, respectively). They studied the reuse of heat generated from the co-located oil refinery for algae-derived biofuel production process via heat integration. On the other hand, material integration was used to evaluate the potential reuse of hydrogen stream with purity content reaching 90% (categorized as waste stream) from the refinery process. The outcome of the studies was that heat integration and material integration have positive impacts on the biofuel process by reducing the net energy demand and process efficiency. On the other hand, Ryu et al. [21] formulated a generic mathematical model to describe the behavior of microalgae under heterotrophic culture conditions. They validated the results using two case studies—lipid production from the microalgae species, Chlorella protothecoides and lutein production from Chlorella protothecoides CS-41. The last study that performed mathematical modelling without performing techno-economic analysis is the study performed by Goffé and Ferrasse [22]. They studied the impact of stoichiometry ratio (i.e., carbon conversion ratio, energy ratio, and hydrogen conversion ratio) on the process conversion efficiency. Taking hydrogen conversion ratio as an example, it is taken as the amount of hydrogen within the particular biomass that is converted into value-added products.

Although all the listed works are insightful, they do not have direct relevance to the current review that focuses on the techno-economic analysis of microalgae-based supply chain. The brief explanation of microalgae-based supply chain is presented in the subsequent segment of this paper.
Figure 1. Review methodology.

Table 2A. Categorization of papers not reviewed in current paper. Note: R, Exp, Env, M, D and S denotes review paper, experimental works, environmental studies, mathematical modeling that does not consist of performing techno-economic analysis, decision making method, and simulation studies, respectively.

Year	Author	R	Exp	Env	M	D	S
2021	Kusmayadi et al. [17]	✓					
	Chen et al. [23]			✓			
	Lu et al. [24]	✓					
	Maiolo et al. [25]				✓		
	Hu et al. [26]	✓					
	Dalheim et al. [27]	✓					
	Serrano et al. [28]	✓					
	Chauton et al. [29]	✓					
	Andersson et al. [20]				✓		
	Culaba et al. [30]				✓		
	Nguyen et al. [31]	✓					
	Deprá et al. [32]	✓	✓				
	El-Dakar et al. [33]	✓					
	Branco-Vieira et al. [34]	✓					
	Maiolo et al. [35]	✓					
	Vigor et al. [18]	✓					
	Hossain et al. [36]	✓					
	Morales et al. [37]	✓					
	Pankratz et al. [38]	✓					
	Wahlen et al. [39]	✓					
	Naeini et al. [40]	✓					
Table 2B. Categorization of papers not reviewed in current paper. See table 2A caption for the description of abbreviations used here.

Year	Author	R	Exp	Env	M	D	S
2020	Lee et al. [41]	✓					
	Ryu et al. [20]		✓				
	Desjardins et al. [42]			✓			
	Callegari et al. [43]				✓		
2019	Rizwan et al. [14]						✓
	Azari et al. [44]					✓	
	Morales et al. [45]					✓	
	Lee and Sun [46]				✓		
	Zhang and Kendall [47]					✓	
	Song et al. [48]						✓
	Sawant et al. [49]						
2019	Sun et al. [50]					✓	
	Goffé and Ferrasse [21]					✓	
	Bacci di Capaci et al. [51]						✓
	Wang et al. [19]						✓
2018	Montero-Lobato et al. [52]					✓	
	Pedersen et al. [53]					✓	
	Foteinis et al. [54]						✓
	Poddar et al. [55]					✓	
	Sturme et al. [56]						✓
	Giraldo-Calderón et al. [57]						✓
	Chen et al. [58]					✓	
	Pan et al. [59]						✓
	Phusunti et al. [60]						✓
	Tang et al. [61]						✓
	Chen et al. [62]						✓
2017	Qiu et al. [63]						✓
	Tan et al. [64]						✓
	Sabu et al. [65]						✓
	Chew et al. [11]						✓
3. Microalgae-based supply chain

The microalgae-based supply chain is said to consists of microalgae cultivation followed by harvesting and then the conversion process (inclusive of pre-requrement prior to actual conversion process such as lipid extraction for biofuel production) and lastly, reuse or disposal [12] or transfer to the end users. Microalgae cultivation and harvesting differ from first-generation and second-generation biomass. Doliente et al. [13] mentioned that second generation biomass such as waste biomass are co-produced from ago-forestry activities such as lignocellulosic by-products often obtained as a result of post-harvest activities (i.e., wood processing, milling, and etc.). On the other hand, the cultivation of microalgae can be categorized into four types of cultivations (i.e., photoautotrophic, heterotrophic, mixotrophic, and photoheterotrophic) [66], where they can potentially be cultivated in either open ponds, raceways, or sealed photobioreactors (PBR) [12]. Apart from cultivation area, the cultured medium can be specially formulated to contain all required elements (i.e., zinc, copper, calcium, and etc.) [66] on top of the commonly available types that are fresh water, saline water, wastewater, and brackish water [5]. Apart from cultivation methods and medium, there are also various microalgae harvesting methods such as dewatering, wash methods, pumps, drying [12], flocculation, centrifugation, filtration, flotation, sedimentation, and electrolytic process [67]. Furthermore, different components of the microalgae can be extracted for different types of conversion processes. For instance, the carbohydrates and lipids obtained from microalgae can be utilized for fuel production, while microalgae polysaccharides can be used for cosmetic additives or natural therapeutic agents [11]. Apart from the specific components of microalgae, the microalgae biomass as a whole can undergo thermochemical conversion (i.e., liquefaction, pyrolysis, gasification, and direct combustion), biochemical or biological conversion (i.e., photobiological hydrogen production, anaerobic digestion, and alcoholic fermentation), transesterification (i.e., acid or base catalysis, and supercritical fluid), and photosynthetic microbial fuel cell process to produce value-added products as well [11].

All in all, microalgae-based supply chain has a very wide variety of cultivation and harvesting methods on top of the wide range of conversion processes. Hence, it is critical to understand the current techno-economic evaluation methods available and select the more suitable approach in evaluation to better achieve the desired objective.

4. Techno-economic analysis of microalgae-based supply chain

This section describes the techno-economic analysis methods used for microalgae-based supply chain evaluation. The evaluation methods can be separated into two sections—mathematical modeling without optimization and mathematical modeling with optimization.

4.1. Mathematical modelling without optimization

Recently, Wu et al. [68] performed a comparative LCA and economic analysis on four production scenarios (i.e., scenario 1 and 2 that focus on natural gas feedstock; scenario 3: anaerobic co-digestion to produces methanol; scenario 4: electrolysis of salt water that produces hydrogen) with the objective of generating fuel for either hydrogen or methanol fuel cell. In their work, microalgae were fed into the anaerobic digester (scenario 3) where three products, i.e., biogas, liquid digestate, and solid digestate are generated. To efficiently utilize all these products, biogas was proposed to be fed into combined heat and power (CHP) generation system and/or converted into methanol, whereas the liquid and solid digestates were used as the nutrient sources for microalgae cultivation. Based on their cost analysis, the capital expenditure (CAPEX) for scenario 3 is 94% higher than that of the CAPEX for scenario 1 given that approximately 50% of the CAPEX stemmed from conversion of biogas to methanol (i.e., methanol synthesis process, methanol storage, utility, and land). However, the operating expenditure (OPEX) for scenario 3 is slightly lower as compared to scenario 1 due to the higher price of natural gas. As a result, the overall levelized cost of methanol (LCOM) for scenario 3 is 18.6% higher than that of scenario 1. Similarly, Sano Coelho et al. [69] performed cost calculation of an economic evaluation indicator, the minimum biodiesel price, to assess the feasibility of utilization of heterotrophic microalgae (Auxemochlorella protothecoides) for biodiesel production.
They found that the microalgae biomass production session accounts for more than half of the total equipment cost (i.e., 64% of total equipment cost for fed-batch process and 55.5% for continuous process). On top of that, 95% of the overall equipment cost for the production of microalgae section originates from the bioreactor. Furthermore, a sensitivity analysis was performed to study the influence of various factors towards the minimum biodiesel price ($2.51 for fed-batch process and $2.27 for continuous process). The results showed that the molasses (substrate generated from the sugar crystallization process that act as substrate for microalgae lipid accumulation) price and bioreactor price are the two most influential factors, which need to be considered by the investors. Additionally, they also benchmarked the feasibility of a stand-alone microalgae plant with another microalgae plant, which is integrated with sugarcane bio-refinery. The result showed that the integrated plant offers a lower gross profit (approximately $4.2 million lower) because of the increase in expenses and decrease in revenue as a result of the decrease in ethanol produced. The results obtained shows that there is a need to consider all configuration options for conversion process and thereby, identifying all the bottlenecks that may lead to unfavorable outcomes. By identifying the bottlenecks, potential steps taken that can prevent the bottlenecks can be implemented.

Furthermore, table 3 also reveals that Chlorella represents a favorable microalgae type due to its characteristics, e.g., (i) high protein content with substantial vitamins and minerals content as well as a balanced composition of amino acids that make it suitable for human consumption [70]; and (ii) high lipids content making them suitable for biofuel production [4].

Some authors highlighted the concern regarding the price variation. For instance, Schade and Meier [71] investigated the impact of variation in future prices for input materials on the economic performance. Therefore, they performed 1,000 simulation runs with the Geometric Brownian motion to estimate the future prices for input materials then used the mean obtained from the 1,000 simulation results as input data for economic evaluation.
Table 3. Summary of the works adopting mathematical modeling without optimization.

Year	Author	Type of Microalgae	Conversion Process/Product	Mathematical Model Adopted
2021	Wu et al. [68]	*Chlorella vulgaris*	Microalgae production	LCA, manual cost calculation
	Sano Coelho et al. [69]	*Auxenochlorella protothecoides*	Lipid extraction for biodiesel production	Process simulation, manual cost calculation
	Silva et al. [72]	*Chlorella vulgaris*	Effluent treatment, lipids and biogas production	Experiment, mass and energy balance, manual cost calculation
	Schade and Meier [71]	*Nannochloropsis sp.* *Phaeodactylum tricornutum*	Dry biomass or protein-rich biomass and microalgae oil	Manual cost calculation
2020	Nappa et al. [73]	-	Microalgae biomass production (closed and open system)	Mass and energy balance, manual cost calculation
	Choudhary and Srivastava [74]	*Chlorella sp.*	Integrated crude oil heating system with anaerobic digester and solar PV module	Mass and energy balance, manual cost calculation
	Mennella et al. [75]	*Chlorella sp.*	Food and biodiesel production	Experimental, manual cost calculation
	Archanaa et al. [76]	*Rhodococcus opacus* *Chlorella vulgaris*	Biodiesel production via transesterification process	Experimental, manual cost calculation
2019	Tasca et al. [77]	*Chlorella vulgaris*	Biomethane production via anaerobic digestion	LCA, manual cost calculation
2018	Beal et al. [78]	*Desmodesmus sp.*	Fish oil and fishmeal replacement via lipid extraction and drying process	Energy and mass balance, energy impact, GHG impact and accounting, manual cost calculation
4.2. Mathematical modelling with optimization

A compilation for the authors adopting mathematical modeling with optimization are presented in tables 4A and 4B. Such model can be used not only to evaluate the performance, but also to determine the set of operational parameters that can provide the best possible performance [79]. Generally, mathematical modeling with optimization can be categorized into deterministic optimization and stochastic optimization. In short, deterministic optimization is an optimization model that does not account for uncertainties surrounding the supply chain [80]. In the case of Kang et al. [81], a two-stage MILP model integrated with geographic information system (GIS) is presented to determine an optimal microalgae-based supply chain with an aim to minimize the total supply chain cost. The proposed study considers 13 biorefineries where various conversion technologies (e.g., HTL, fermentation, and protein extraction) are used in their models. The outcome of the study is that the fermentation pathway was not favorable due to the high CAPEX and OPEX. When evaluating from a single biorefinery perspectives, Nannochloropsis sp. indicated better economic outcome as compared to Chlorella sp. due to the utilization of Nannochloropsis sp. in protein extraction process that offset larger revenue from protein sales. However, due to the higher transportation cost required for Nannochloropsis sp. as a result of constraints in resource availability and longer distance from supply source, it was only used in six out of the 13 biorefineries. This highlighted the importance of incorporating the supply chain cost to ensure the optimality of the microalgae selection. Nevertheless, they also found that the minimum fuel selling price of the microalgae-derived biodiesel of $10.92 per gallon of biodiesel is higher than that of the current market price for biodiesel ($3.51 per gallon of biodiesel) in 2019. To address this issue, various strategies (e.g., implementing storage for overproduced microalgae during summer season to be used in winter or autumn season) are proposed to enhance the economic viability. Mathematical modeling with optimization is not limited to merely maximizing total supply chain’s economic profitability. In fact, the optimization can be performed to assist in multi-criteria decision analysis (MCDA) to select the best microalgae strain for conversion process. Taking the study performed by Kokkinos et al. [82] as an example, they utilized three models that are fuzzy analytic hierarchy process (FAHP), fuzzy technique for order of preference to ideal solution (FTOPSIS), and fuzzy cognitive mapping (FCM) to select an optimal microalgae strain for biofuel production. The outcome from the studies showed that Chlorella vulgaris sp. was the best option amongst the four microalgae investigated given the relatively higher daily lipid productivity of Chlorella vulgaris sp. (134 mg L\(^{-1}\) d\(^{-1}\)) amongst the four types of microalgae strain and thus, able to produce greater amount of biofuel. This shows the significance in taking into consideration the microalgae composition (i.e., lipid content) requirement for specific conversion process during techno-economic analysis evaluation.

According to Shabani et al. [80], deterministic optimization models are not necessarily enough to reflect the reality of the actual performance of the biomass supply chains specifically when there are uncertain variables involved such as prices and yields. Thus, stochastic models should be applied to capture these uncertainties. Kangas and Kangas [83] mentioned that there can be many definitions or interpretations brought forth for uncertainty, however, it can be defined as the lack of information that can qualitatively or quantitatively describe or predict numerically a system or its characteristics. Fasahati et al. [84] highlighted that there are a few uncertainties surrounding biorefinery design such as productivity and residence time of cyanobacteria, supply mode for carbon dioxide, carbon dioxide demand required by cyanobacteria (influenced by potential leakage of carbon dioxide and ratio of cell to product mass), the water and nutrient supply, which is highly dependent on the output from wastewater treatment plant, and etc. Although they did not directly incorporate the uncertainties into their developed mathematical model, they performed sensitivity analysis to evaluate the impact of the uncertainties on the economic performance of the biorefinery.

Apart from performing sensitivity analysis, stochastic optimization model represents another way to incorporate uncertainties directly into the developed economic model. For instance, Beal et al. [78] applied Monte Carlo model to study the combined effect of investment cost, energy and material flows and labor cost uncertainty on the NPV, energy return on investment (ERoI), and GHG emissions. The
microalgae productivity was determined as the most influential factor due to the large range of historical data (8.5 to 42.85 g/m²-day). The incorporation of uncertainty has led the NPV value to decrease from $26.3 million in the base case to a median NPV of $15.8 M. The result obtained emphasized the importance of consideration of uncertainties as the base case NPV is relatively an overestimated value as compared to the median NPV, which may lead to unnecessary losses if not considered more comprehensively. Rizwan et al. [14] highlighted in their review that uncertainties tend to be the process parameters (i.e., lipid contents, yield, and productivity, microalgae biomass quality, raw material pricing, utility cost, and consumption). However, as observed in table 4A and table 4B, current studies that perform stochastic optimization to study uncertainties are still scarce. Hence, as a summary of the above discussion, it is critical to consider uncertainties when performing evaluation on the microalgae-based supply chain as a whole and not only consider the microalgae conversion process alone.

Table 4A. Summary of the works adopting mathematical modelling with optimization.

Year	Author	Type of Microalgae	Conversion Process/Product	Mathematical Model Adopted	Model Type
2021	Kokkinos et al. [82]	*Chlorella vulgaris sp.* *Schizochytrium limacinum SR21* *Arthrospira (Spirulina) Platensis* *Nannochloropsis sp.*	Biofuel production	FAHP, FTOPSIS, FCM	D
	Correa et al. [85]	-	Biofuel production	Integer linear programming (LP)	D
	Correa et al. [86]	*Nannochloropsis sp.*	Microalgae cultivation for biofuel production	LP	D
2020	Ahn et al. [87]	-	Biodiesel production	Two-stage stochastic model	S
	Sarker et al. [88]	*Schizochytrium sp.* *N. oculata*	Fish oil and fishmeal replacement	Hedonic regression analysis	S
	Kang et al. [81]	*Chlorella sp.* *Nannochloropsis sp.*	Biofuel with animal feeds and bioethanol produced as by-products	MILP	D
2019	Fasahati et al. [84]	Cyanobacteria	Biochemical production	MINLP	D
	Correa et al. [89]	-	Biodiesel production	GIS-based MCDA and LP	D

*a The mathematical model type indicates whether the model is categorized under deterministic (D) or stochastic (S) optimization.
Table 4B. Summary of the works adopting mathematical modelling with optimization.

Year	Author	Type of Microalgae	Conversion Process/Product	Mathematical Model Adopted	Model Typea
2019	Shirazi et al. [90]	-	Algae-derived syngas via supercritical water gasification (SCWG)	Genetic algorithm	
	Thomassen et al. [91] D & S	Dunaliella salina	Superstructure of processes including lipid extraction, thermal and biological process	Multi-objective MINLP, Monte Carlo model	D & S
	Thomassen et al. [91] D & S	Haematococcus pluvialis			
	Thomassen et al. [91] D & S	Nannochloropsis sp.			
2018	Beal et al. [78] S	Desmodesmus sp.	Fish oil and fishmeal replacement via lipid extraction and drying process	Monte Carlo	S
2017	Gong and You [92] D	-	Biodiesel production	Mixed integer nonlinear fractional programming (MINFP)	D
	Garcia Prieto et al. [93] D	Haematococcus pluvialis	Astaxanthin, biodiesel, poly(hydroxybutyrate) (PHB) production	MINLP	D
	Gong and You [94] S	-	Poly-3-hydroxybutyrate (PHB) and biodiesel production	Two-stage adaptive robust mixed integer fractional programming (ARMIFP)	S

The mathematical model type indicates whether the model is categorized under deterministic (D) or stochastic (S) optimization.

5. Possible research exploration areas
As microalgae-based feedstock is still in its infancy, modeling approaches on microalgae-based supply chain to evaluate the feasibility of microalgae utilization should consider a wider scope. For instance, the optimization of microalgae-based supply should consider the different types of microalgae, cultivation medium and environment, locations of microalgae cultivation (i.e., on-site of processing site or off-site), and etc. On top of that, stochastic optimization studies should consider multiple uncertainties so that the risk associated to the microalgae-based supply chain can be assessed. For example, the variation of microalgae productivity should be considered as it is influenced by multiple environmental conditions such as solar irradiation. This is where artificial intelligence (AI) can be integrated into the study. As an exemplification, an AI model can be developed that is capable of predicting the microalgae productivity based on the fluctuation of environmental conditions.
Microalgae productivity will indirectly impact the production of end-value product. Thus, it can be essential to integrate the prediction of microalgae productivity based on fluctuating environmental conditions into techno-economic evaluation model. Along the years, there has been advancement in government’s policy that encourages the exploration of AI. For instance, Malaysia’s government had launched a new policy regarding the Fourth Industrial Revolution— National 4IR Policy whereby AI is one of the key technologies that will be focused on [95]. Generally, the implementation of AI can provide few advantages such as acceleration of optimization solving procedures, reduction of uncertainty, and etc [96].

6. Conclusion
The quest for diversification of current energy profile around the world has led to the hunt for potential renewable energy sources. Third-generation biomass is slowly becoming the focus of attention as a potential feedstock for biofuel production. Therefore, comprehensive studies are required to evaluate the feasibility in upscaling the utilization of third-generation biomass to commercial scale. This review presented a compilation of current approaches used in techno-economic evaluation for microalgae-based supply chain. The current findings highlighted that approximately 58% of the studies opted for mathematical modeling with optimization whereas approximately 42% of the papers opted for mathematical modeling without optimization. Amongst the studies adopting mathematical modeling with optimization, deterministic model is deemed as a favorable option. Regarding potential future works, a larger scope of evaluation when performing superstructure analysis that comprises of different cultivation medium and cultivation environment can be substantial due to the wide varieties of cultivation medium and environment that come with their respective costs. Apart from that, it is also critical to consider the regional weather conditions (i.e., solar irradiation, seasonality, rain, and etc.) when selecting a location for the microalgae cultivation or when choosing macroalgae species. Specifically, when performing stochastic techno-economic analysis, it is important to consider the impact of variation of environmental conditions or microalgae species on the overall microalgae productivity of microalgae to attain a more accurate estimation on its economic feasibility. Furthermore, AI model, which is capable of predicting the influence of variation in environmental conditions on the microalgae productivity can be incorporated into the techno-economic analysis model and serves as another promising path to explore.

Acknowledgments
The authors would like to acknowledge the financial support from Swinburne University of Technology Sarawak Campus via Research Micro Fund [9-1372 RMFST] and Research Supervision Grant [2-5545 RSG].

References
[1] International Renewable Energy Agency 2019 Renewable Energy Now Accounts for a Third of Global Power Capacity International Renewable Energy Agency
[2] Lee R A and Lavoie J M 2013 From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity Anim. Front. 3 6–11
[3] Brennan L and Owende P 2010 Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products Renew. Sustain. Energy Rev. 14 557–77
[4] Liang Y, Sarkany N and Cui Y 2009 Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions Biotechnol. Lett. 31 1043–9
[5] Randrianarison G and Ashraf M A 2017 Microalgae: A potential plant for energy production Geology, Ecology, and Landscapes 1 104–20
[6] Drogui P, Asselin M, Brar S K, Benmoussa H and Blais J F 2008 Electrochemical removal of pollutants from agro-industry wastewaters Sep. Purif. Technol. 61 301–10
[7] Posadas E, Bochon S, Coca M, García-González M C, García-Encina P A and Muñoz R 2014 Microalgal-based agro-industrial wastewater treatment: A preliminary screening of biodegradability. J. Appl. Phycol. 26 2335–45

[8] Tan W 2018 ROI-Integrated commercialization: An adaptive pathway for microalgae technology. Ind. Biotechnol. 14 17–24

[9] Andrade D S, Telles T S and Leite Castro G H 2020 The Brazilian microalgae production chain and alternatives for its consolidation. J. Clean. Prod. 250 119526

[10] Madugu F and Collu M 2014 Techno-economic modelling analysis of microalgae cultivation for biofuels and co-products. WIT Trans. Ecol. Environ 190 1091–102

[11] Chew K W, Yap J Y, Show P L, Suan N H, Juan J C, Ling T C, Lee D J and Chang J S 2017 Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 229 53–62

[12] Efroymson R A, Jager H I, Mandal S, Parish E S and Mathews T J 2021 Better management practices for environmentally sustainable production of microalgae and algal biofuels. J. Clean. Prod. 289 125150

[13] Doliente S S, Narayan A, Tapia J F D, Samsatli N J, Zhao Y and Samsatli S 2020 Bio-aviation fuel: A comprehensive review and analysis of the supply chain components. Front. Energy Res. 8 110

[14] Rizwan M, Almansoori A and Elkamel A 2019 An overview on synthesis and design of microalgal biorefinery configurations by employing superstructure-based optimization approach. Energy Syst. 10 941–66

[15] Teng S Y, Yew G Y, Sukačová K, Show P L, Máša V and Chang J S 2020 Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol. Adv. 44 107631

[16] Deprá M C, dos Santos A M, Severo I A, Santos A B, Zepka L Q and Jacob Lopes E 2018 Microagal biorefineries for bioenergy production: Can we move from concept to industrial reality? BioEnergy Res. 11 727–47

[17] Kusmayadi A, Leong Y K, Yen H W, Huang C Y and Chang J S 2021 Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere 271 129800

[18] Vigor C, Oger C, Reversat G, Rocher A, Zhou B, Linares-Maurizzi A, Guy A, Bultel-Poncé V, Galano J M, Vercauteren J, Durand T, Potin P, Tonon T and Leblanc C 2020 Isoprostanoid profiling of marine microalgae. Biomolecules 10 7

[19] Wang X, Fosse H K, Li K, Chauton M S, Vadstein O and Reitan K I 2019 Influence of nitrogen limitation on lipid accumulation and EPA and DHA content in four marine microalgae for possible use in aquafeed. Front. Mar. Sci. 6 95

[20] Andersson V, Heyne S, Harvey S and Berntsson T 2020 Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment. Int. J. Energy Res. 44 10860–77

[21] Ryu K H, Kim B, Heo S, Chang Y K and Lee J H 2020 Mathematical modeling of microagal internal metabolic behaviors under heterotrophic conditions and its application. Ind. Eng. Chem. Res. 59 1631–45

[22] Goffé J and Ferrasse J H 2019 Stoichiometry impact on the optimum efficiency of biomass conversion to biofuels. Energy 170 438–58

[23] Chen R, Zhang S, Yang X, Li G, Zhou H, Li Q and Zhang Y 2021 Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. J. Waste Manag. 126 331–9

[24] Lu Q, Li H, Xiao Y and Liu H 2021 A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. Algal Res. 55 102281

[25] Maiolo S, Cristiano S, Gonella F and Pastres R 2021 Ecological sustainability of aquafeed: An energy assessment of novel or underexploited ingredients. J. Clean. Prod. 294 126266
[26] Hu X, Tang X, Bi Z, Zhao Q and Ren L 2021 Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid *Algal Res.* 54 102212

[27] Dalheim L, Svenning J B, Eilertsen H C, Vasskog T and Olsen R L 2021 Stability of lipids during wet storage of the marine diatom Porosira glacialis under semi-preserved conditions at 4 and 20 °C *J. Appl. Phycol.* 33 385–95

[28] Serrano E, Simpfendorfer R, Medina A, Sandoval C, Martínez A, Morales R and Davies S J 2021 Partially replacing fish oil with microalgae (*Schizochytrium limacinum* and *Nannochloropsis oceanica*) in diets for rainbow trout (*Oncorhynchus mykiss*) reared in saltwater with reference to growth performance, muscle fatty acid composition and liver ultrastructure *Aquac. Res.* 52 4401–13

[29] Chauton M S, Forbord S, Mäkinen S, Sarno A, Slizyte R, Mozuraityte R, Standal I B and Skjermo J 2021 Sustainable resource production for manufacturing bioactives from micro- and macroalgae: Examples from harvesting and cultivation in the Nordic region *Physiol. Plant.* 173 495–506

[30] Culaba A B, Ubando A T, Ching P M L, Chen W H and Chang J S 2020 Biofuel from microalgae: Sustainable pathways *Sustainability* 12 19

[31] Nguyen T H T, Park S, Jeong J, Shin Y S, Sim S J and Jin E 2020 Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in *Chlamydomonas* J. Appl. Phycol. 32 2829–40

[32] Deprá M C, Dias R R, Severo I A, de Menezes C R, Zepka L Q and Jacob-Lopes E 2020 Carbon dioxide capture and use in photobioreactors: The role of the carbon dioxide loads in the carbon footprint *Bioresour. Technol.* 314 123745

[33] El-Dakar M A, Ramzy R R, Ji H and Plath M 2020 Bioaccumulation of residual omega-3 fatty acids from industrial Schizochytrium microalgal waste using black soldier fly (*Hermetia illucens*) larvae J. Clean. Prod. 268 122288

[34] Branco-Vieira M, Costa D M B, Mata T M, Martins A A, Freitas M A V and Caetano N S 2020 Environmental assessment of industrial production of microalgal biodiesel in central-south Chile J. Clean. Prod. 266 121756

[35] Maiolo S, Parisi G, Biondi N, Lunelli F, Tibaldi E and Pastres R 2020 Fishmeal partial substitution within aquafeed formulations: Life cycle assessment of four alternative protein sources *Int. J. Life Cycle Assess.* 25 1455–71

[36] Hossain S M Z, Razzak S A, Al-Shater A F, Moniruzzaman M and Hossain M M 2020 Recent advances in enzymatic conversion of microalgal lipids into biodiesel *Energ. Fuels* 34 6735–50

[37] Morales M, Bonnefond H and Bernard O 2020 Rotating algal biofilm versus planktonic cultivation: LCA perspective J. Clean. Prod. 257 120547

[38] Pankratz S, Kumar M, Oyedun A O, Gemechu E and Kumar A 2020 Environmental performances of diluents and hydrogen production pathways from microalgae in cold climates: Open raceway ponds and photobioreactors coupled with thermochemical conversion *Algal Res.* 47 101815

[39] Wahlen B D, Wendt L M, Murphy A, Thompson V S, Hartley D S, Dempster T and Gerken H 2020 Preservation of microalgae, lignocellulosic biomass blends by ensiling to enable consistent year-round feedstock supply for thermochemical conversion to biofuels *Front. Bioeng. Biotechnol.* 8 316

[40] Naeini M A, Zandieh M, Najafi S E and Sajadi S M 2020 Analyzing the development of the third-generation biodiesel production from microalgae by a novel hybrid decision-making method: The case of Iran *Energy* 195 116895

[41] Lee T, Nam I H, Jung S, Park Y K and Kwon E E 2020 Synthesis of nickel/biochar composite from pyrolysis of Microcystis aeruginosa and its practical use for syngas production *Bioresour. Technol.* 300 122712
[42] Desjardins S M, Laamanen C A, Basiliko N and Scott J A 2020 Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae *Environ. Rev.* **28** 325–38

[43] Callegari A, Bolognesi S, Cecconet D and Capodaglio A G 2020 Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review *Crit. Rev. Environ. Sci. Technol.* **50** 384–436

[44] Azari A, Noorpoor A R and Bozorg-Haddad O 2019 Carbon footprint analyses of microalgae cultivation systems under autotrophic and heterotrophic conditions *Int. J. Environ. Sci. Technol.* **16** 6671–84

[45] Morales M, Hélias A and Bernard O 2019 Optimal integration of microalgae production with photovoltaic panels: Environmental impacts and energy balance *Biotechnol. Biofuels.* **12** 239

[46] Lee Y H and Sun J H 2019 Multifunctional fluorocarbon photobioreactor system: A novel integrated device for CO₂ segregation, O₂ collection, and enhancement of microalgae growth and bioproductions *Bioproc. Biosyst. Eng.* **42** 1591–601

[47] Zhang Y and Kendall A 2019 Consequential analysis of algal biofuels: Benefits to ocean resources *J. Clean. Prod.* **231** 35–42

[48] Song C, Xie M, Qiu Y, Liu Q, Sun L, Wang K and Kansha Y 2019 Integration of CO₂ absorption with biological transformation via using rich ammonia source for microalgae cultivation *Energy* **179** 618–27

[49] Sawant S S, Gosavi S N, Khadamkar H P, Mathpuri C S, Pandit R and Lali A M 2019 Energy efficient design of high depth raceway pond using computational fluid dynamics *Renew. Energy* **133** 528–37

[50] Sun C H, Fu Q, Liao Q, Xia A, Huang Y, Zhu X, Reungsang A and Chang H X 2019 Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems *Energy* **171** 1033–45

[51] Bacci di Capaci R, Tasca A L, Pannocchia G, Scali C, Tognotti L, Brunazzi E, Nicoletta C and Puccini M 2019 Biomethane production: Mass and energy balances of alternative supply chains *Ind. Eng. Chem. Res.* **58** 10951–62

[52] Montero-Lobato Z, Vázquez M, Navarro F, Fuentes J L, Bermejo E, Garbayo I, Vilchez C and Cuaresma M 2018 Chemically-induced production of anti-inflammatory molecules in microalgae *Marine drugs* **16** 12

[53] Pedersen T C, Gardner R D, Gerlach R and Peyton B M 2018 Assessment of Nannochloropsis gaditana growth and lipid accumulation with increased inorganic carbon delivery *J. Appl. Phycol.* **30** 2155–66

[54] Foteinis S, Antoniadis-Gavriil A and Tsoutsos T 2018 Life cycle assessment of algae-to-biodiesel shallow pond production systems in the Mediterranean: Influence of species, pond type, by(co)-product valorisation and electricity mix *Biofuel Bioprod. Biorefin.* **12** 542–58

[55] Poddar N, Sen R and Martin G J O 2018 Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth *Algal Res.* **33** 298–309

[56] Sturme M H J, Gong Y, Heinrich J M, Klok A J, Eggink G, Wang D, Xu J and Wijffels R H 2018 Transcriptome analysis reveals the genetic foundation for the dynamics of starch and lipid production in Ettlia oleoabundans *Algal Res.* **33** 142–55

[57] Giruldo-Calderón N D, Romo-Buchelly R J, Arbeláez-Pérez A A, Echeverri-Hincapié D and Atehortúa-Garcés L 2018 Microalgae biorefineries: Applications and emerging technologies *DYNA* **85** 219–33

[58] Chen C Y, Nagarajan D and Cheah W Y 2018 Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors *Bioresour Technol* **253** 1–7

[59] Pan S Y, Chiang P C, Pan W and Kim H 2018 Advances in state-of-art valorization technologies for captured CO₂ toward sustainable carbon cycle *Crit. Rev. Environ. Sci.*
[60] Phusunti N, Phetwarotai W and Tekasakul S 2018 Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae Korean. J. Chem. Eng. 35 503–10

[61] Tang Y, Ma X, Lai Z and Yu Q 2018 Oxy-fuel combustion characteristics and kinetics of microalgae and its mixture with rice straw using thermogravimetric analysis Int. J. Energy Res. 42 532–41

[62] Chen H, Wang J, Zheng Y, Zhan J, He C and Wang Q 2018 Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation Appl. Energy 211 296–305

[63] Qiu R, Gao S, Lopez P A and Ogden K L 2017 Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana Algal Res. 28 192–9

[64] Tan J, Tan R R, Aviso K B, Promentilla M A B and Sulaiman N M N 2017 Study of microalgae cultivation systems based on integrated analytic hierarchy process–life cycle optimization Clean Technol. Envir. 19 2075–88

[65] Sabu S, Bright Singh I S and Joseph V 2017 Molecular identification and comparative evaluation of tropical marine microalgae for biodiesel production Mar. Biotechnol. 19 328–44

[66] Daneshvar E, Sik Ok Y, Tavakoli S, Sarkar B, Shaheen S M, Hong H, Luo Y, Rinklebe J, Song H and Bhatnagar A 2021 Insights into upstream processing of microalgae: A review Bioresour. Technol. 329 124870

[67] Morais Junior W G, Gorgich M, Corrêa P S, Martins A A, Mata T M and Caetano N S 2020 Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing Aquaculture 528 735562

[68] Wu W, Pai C T, Viswanathan K and Chang J S 2021 Comparative life cycle assessment and economic analysis of methanol/hydrogen production processes for fuel cell vehicles J. Clean. Prod. 300 126959

[69] Sano Coelho R, Cuellar M C, Franco T T and van der Wielen L A M 2021 Techno-economic assessment of heterotrophic microalgae biodiesel production integrated with a sugarcane biorefinery Biofuel Bioprod. Biorefin. 15 416–29

[70] Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N and Tredici M R 2014 Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a Green Wall Panel photobioreactor Biotechnol. Biofuels. 7 84 1–12

[71] Schade S and Meier T 2021 Techno-economic assessment of microalgae cultivation in a tubular photobioreactor for food in a humid continental climate Clean Technol. Envir 23 1475–92

[72] Silva M I, Gonçalves A L, Vilar V J P and Pires J C M 2021 Experimental and techno-economic study on the use of microalgae for paper industry effluents remediation Sustainability 13 1314

[73] Nappa M, Lienemann M, Tossi C, Blomberg P, Jäntti J, Tittonen I J and Penttilä M 2020 Solar-powered carbon fixation for food and feed production using microorganisms—A comparative techno-economic analysis ACS Omega 5 33242–52

[74] Choudhary P and Srivastava R K 2020 Techno-economic case study: Bio-fixation of industrial emissions at an Indian oil and gas plant J. Clean. Prod. 266 121820

[75] Mennella L, Tosco D, Alberti F, Cembalo L, Crescimanno M, Del Giudice T, Galati A, Moglie M, Scardera A, Schifani G, Soldanelli F and Cicia G 2020 Perspectives and challenges of small scale plant microalgae cultivation. Evidences from Southern Italy Algal Res. 45 101693

[76] Archanaa S, Jose S, Mukherjee A and Suraishkumar G K 2019 Sustainable diesel feedstock: A comparison of oleaginous bacterial and microalgal model systems BioEnergy Research 12 205–16

[77] Tasca A L, Bacci di Capaci R, Tognotti L and Puccini M 2019 Biomethane from short rotation forestry and microalgal open ponds: System modeling and life cycle assessment Bioresour.
Beal C M, Gerber L N, Thongrod S, Phromkunthong W, Kiron V, Granados J, Archibald I, Greene C H and Huntley M E 2018 Marine microalgal commercial production improves sustainability of global fisheries and aquaculture Scientific Reports 8 15064

Lo S L Y, How B S, Leong W D, Teng S Y, Rhamdhani M A and Sunarso J 2021 Techno-economic analysis for biomass supply chain: A state-of-the-art review Renew. Sustain. Energy Rev. 135 110164

Shabani N, Akhtari S and Sowlati T 2013 Value chain optimization of forest biomass for bioenergy production: A review Renew. Sustain. Energy Rev. 23 299–311

Kang S, Heo S, Realff M J and Lee J H 2020 Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system Appl. Energy 265 114773

Kokkinos K, Karayannis V and Moustakas K 2021 Optimizing microalgal biomass feedstock selection for nanocatalytic conversion into biofuel clean energy, using Fuzzy Multi-Criteria Decision Making processes Front. Energy Res. 8 408

Kangas A S and Kangas J 2004 Probability, possibility and evidence: Approaches to consider risk and uncertainty in forestry decision analysis For. Policy Econ. 6 169–88

Fasahati P, Wu W and Maravelias C T 2019 Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach Appl. Energy 253 113625

Correa D F, Beyer H L, Possingham H P, Garcia-Ulloa J, Ghazoul J and Schenk P M 2020 Freeing land from biofuel production through microalgal cultivation in the Neotropical region Environ. Res. Lett. 15 094094

Correa D F, Beyer H L, Possingham H P, Fargione J E, Hill J D and Schenk P M 2021 Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries Energy 215 119033

Ahn Y, Kim J and Han J 2020 Optimization of microalgae-based biodiesel supply chain network under the uncertainty in supplying carbon dioxide Korean J Chem Eng 58 396–407

Sarker P K, Kapuscinski A R, McKuin B, Fitzgerald D S, Nash H M and Greenwood C 2020 Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable Sci. Rep. 10 19328

Correa D F, Beyer H L, Possingham H P, Thomas-Hall S R and Schenk P M 2019 Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact Glob. Change Biol. Bioenergy 11 914–29

Shirazi A, Rahbari A, Asselineau C A and Pye J 2019 A solar fuel plant via supercritical water gasification integrated with Fischer–Tropsch synthesis: System-level dynamic simulation and optimisation Energy Convers. Manag. 192 71–87

Thomassen G, Van Dael M, You F and Van Passel S 2019 A multi-objective optimization-extended techno-economic assessment: Exploring the optimal microalgae-based value chain Green Chem. 21 5945–59

Gong J and You F 2017 Consequential life cycle optimization: General conceptual framework and application to algal renewable diesel production ACS Sustain. Chem. Eng. 5 5887–911

Garcia Prieto C V, Ramos F D, Estrada V, Villar M A and Diaz M S 2017 Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB Energy 139 1159–72

Gong J and You F 2017 Optimal processing network design under uncertainty for producing fuels and value-added bioproducts from microalgae: Two-stage adaptive robust mixed integer fractional programming model and computationally efficient solution algorithm AIChE J. 63 582–600

Nor Ain Mohamed Radhi 2021 Govt Launches National 4IR Policy New Straights Time

Kong K G H, How B S, Teng S Y, Leong W D, Foo D C Y, Tan R R and Sunarso J 2021 Towards data-driven process integration for renewable energy planning Curr. Opin. Chem. Eng. 31 100665