Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

Ruud H. H. Wellenberg 1 · Johanna C. E. Donders 2,3 · Peter Kloen 2 · Ludo F. M. Beenen 1 · Roeland P. Kleipool 4 · Mario Maas 1 · Geert J. Streekstra 5

Received: 4 May 2017 / Revised: 26 July 2017 / Accepted: 1 August 2017 / Published online: 25 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract

Objective To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans.

Methods Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal.

Results The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively.

Conclusion Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.

Keywords Dual-energy CT · Virtual monochromatic imaging · Metal artifacts · Orthopedic implants · Quantitative analysis

Introduction

Metal implants used for fracture fixation impede the diagnostic value of CT in the radiologic evaluation of fracture healing [1]. Especially when dealing with absent or delayed fracture healing it is of great importance to optimize CT image quality. Different metal alloys cause different grades of metal artifacts. In Europe, approximately 90% of the fixation plates, nails and screws are made of titanium where in the US, approximately 90% is made of stainless-steel (D. Höntzsch, personal communication, 2017). Stainless-steel results in more scatter and...
more pronounced artifacts in adjacent soft tissue and bone structures compared to titanium due to a higher molecular weight of stainless-steel [2]. Virtual monochromatic images, derived from dual-energy computed tomography (DECT) scans, are known to reduce metal artifacts by decreasing beam-hardening artifacts. Virtual monochromatic images at low keV show high overall image contrast and more pronounced artifacts whereas high keV images show reduced metal artifacts albeit with reduced overall image contrast. Several DECT studies found different optimal monochromatic energies focusing on metal artifact reduction (MAR) varying from 95–190 keV [2–10].

As different metal alloys result in different grades of artifacts it is likely that implant specific CT imaging protocols are needed to achieve optimal monochromatic energies (keV) for metal artifact reduction. As such, improved visualization of fracture healing and bone and soft tissue pathology may improve diagnosis, diagnostic accuracy and patient outcome. When determining optimal monochromatic energies for different metal alloys, it is essential to determine baseline measures for adjacent bone and soft tissue structures at different keVs without the presence of metal artifacts. In previous studies, no reference was used in either patient or cadaver studies focusing on metal artifact reduction due to the absence of non-metal CT data [5–7, 10–14]. In these reports, it is unclear how successful metal artifact corrections took place and if original non-metal baseline measures were reached.

The aim of this study was to quantify and optimize metal artifact reduction in relevant bone and soft tissue structures using virtual monochromatic dual-energy CT images in intramedullary and extramedullary fixation implants placed in the lower leg compared to non-metal reference scans.

Methods

A pair of fresh frozen human cadaveric lower limbs from the body-donating program of our university, in accordance to Dutch law article 21 of the Burial and Cremation Act (BWBR00050009), was used. Dual-energy scans were acquired on a Siemens Somaton Force dual-source CT scanner (Siemens Healthcare, Forchheim, Germany) using 100-kVp (tube A) and tin filtered 150-kVp (tube B), 128 × 0.6 mm collimation, a pitch of 0.5, 1.5-mm slice thickness and 144 and 296 mAs for tube A and B, respectively. A sharp reconstruction filter (Qr59), also used in clinical practice, was chosen resulting in sharp edges, thereby enhancing the evaluation of osseous structures. After obtaining non-metal reference scans a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail (DePuy/Synthes, Amersfoort, The Netherlands) were implanted respectively and repeated CT scans were obtained. Surgical procedures were performed under supervision of a fellowship-trained orthopedic trauma surgeon using standard approach and fixation techniques. Soft tissues were closed following placement of the fixation implants.

Thin axial images were loaded on a SyngoVia workstation (version 3.0.0.16, Siemens Healthcare, Forchheim, Germany). For the titanium tibia plate, stainless-steel tibia plate, intramedullary nail and the reference scan, virtual monochromatic images were created from 70 to 190 keV, with steps of 10 keV, where 70 keV served as a reference. A reference of 70 keV was chosen since the average energy of a 120-kVp conventional CT scan is approximately 70 keV [15]. The left lower leg, containing the implants, was used for further analysis. For each setting the most suitable axial slices that not contained air and drill holes of previously implants screws were used for quantitative region of interest (ROI) measurements. Image J (version 1.48v, National Institute of Health, Bethesda, Maryland, USA) and Matlab (version 2014b, Natick, Massachusetts, USA) were used to create measurement templates for each of the four settings. Uniform circular ROIs with a diameter of 15 pixels were placed in the most affected and clinical relevant regions regarding muscle, fat, cortical bone and inside the intramedullary tibia canal where CT numbers and noise, measured as the standard deviation (SD) of pixels within a ROI, were measured (Fig. 1). In muscle, ‘M1’ was placed in a dark streak artifact region and ‘M2’ was placed in a bright streak artifact region with respectively decreased and increased CT numbers. Optimal keVs regarding CT number accuracy (ΔCT number) and SDs (ΔSD) were determined by searching for minimal absolute differences between the non-metal reference data and metal implant data.

Results

Non-metal CT numbers and standard deviations (SD) varied within the range of 70–190 keV (Fig. 2, Table 1). The SDs in bone and soft tissues decreased from 70 to 190 keV, with the largest decrease in bone. In the non-metal scans overall image contrast decreased at high keVs. The contrast between muscle and fat at 190 keV decreased 27% compared to 70 keV. Positive CT numbers of bone and muscle decreased 50 and 28% while negative CT numbers of fat increased 29% at 190 keV compared to 70 keV results (Fig. 2).

Metal The stainless-steel implant resulted in the most severe metal artifacts whereas the titanium intramedullary nail resulted in the least severe metal artifacts based on quantitative measurements (Figs. 1, 2 and 3; Table 1). CT numbers in 70 keV images were decreased in dark streak artifact regions and increased in bright streak artifact regions. We estimated...
the keVs where the measured CT numbers in metal scans were similar to those of the non-metal reference scans. For bone, CT numbers of non-metal results were reached for the titanium tibia plate and intramedullary nail at 130/140 keV and 80 keV respectively. In case of the stainless-steel implant, CT numbers of non-metal scans were not reached (Fig. 2a; Table 1). When reference values were not reached, differences in CT numbers compared to reference values were minimal at 190 keV, with a maximal difference of 101 HU for ‘M1’ in case of the stainless-steel tibia plate (Fig. 2b; Table 1).

Optimal keVs differ for bone and soft tissues. In order to generate results for specific implants and to obtain optimal keVs, CT number and SD inaccuracies were averaged for each implant and compared to non-metal reference data (Fig. 3). The least CT number inaccuracies of the relevant structures in 70 keV images were observed at 130, 180 and 190 keV for the

Reference keV	High/optimal keV
70 keV	190 keV
130 keV	190 keV
180 keV	190 keV
190 keV	190 keV

Fig. 1 a–d Show 70 keV images with ROIs of the non-metal reference (a), titanium tibia plate (b), stainless-steel tibia plate (c) and the titanium intramedullary nail (d), respectively. e Shows a 190 keV image of the non-metal reference scan. f–h Show images at optimal keVs of 130, 180 and 190 keV for the implanted titanium tibia plate, stainless-steel tibia plate and the titanium intramedullary nail respectively. Virtual monochromatic images at high keV show reduced artifacts and lower overall image contrast compared to reference images at 70 keV. ROI measurements (illustrated in red) were performed in relevant bone and soft tissues: B bone, M muscle (M1 = dark streak artifact, M2 = bright streak artifact), F fat and I intramedullary cavity.
titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. At these optimal keVs the CT number inaccuracies were decreased with 96, 87 and 73% for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively (Fig. 3). Standard deviations were increased compared to the reference scan for all ROIs due to the influence of metal artifacts. Those metal artifacts decreased for nearly all ROIs at higher keVs resulting in lower SDs. SDs were minimized at 130, 150 and 140 keV respectively (Fig. 3).
Table 1 CT numbers and standard deviations of regions-of-interest placed in bone and soft tissues are given from 70 keV up to 190 keV with steps of 10 keV. Additionally, contrast between muscle and fat in non-metal reference scans, measured in absolute differences in CT numbers, was provided.

	70 keV	80 keV	90 keV	100 keV	110 keV	120 keV	130 keV	140 keV	150 keV	160 keV	170 keV	180 keV	190 keV
Bone													
Non-metal	1,252 ± 52	1,065 ± 45	940 ± 39	854 ± 35	792 ± 33	747 ± 31	714 ± 29	688 ± 28	669 ± 27	653 ± 27	641 ± 26	631 ± 26	623 ± 25
Titanium tibia plate	1,300 ± 52	1,097 ± 46	960 ± 41	866 ± 38	800 ± 36	751 ± 35	714 ± 34	687 ± 34	665 ± 33	648 ± 33	635 ± 33	624 ± 33	615 ± 33
Stainless-steel tibia plate	1,440 ± 42	1,201 ± 35	1,045 ± 30	937 ± 27	860 ± 25	761 ± 23	729 ± 23	704 ± 22	684 ± 23	669 ± 22	665 ± 22	664 ± 22	664 ± 22
Titanium intramedullary nail	1,265 ± 67	1,064 ± 58	929 ± 51	837 ± 45	771 ± 35	723 ± 40	687 ± 38	660 ± 37	639 ± 36	622 ± 36	609 ± 34	598 ± 34	589 ± 33
Muscle													
Non-metal	62 ± 5	58 ± 4	55 ± 4	53 ± 4	52 ± 4	51 ± 3	50 ± 3	49 ± 4	49 ± 3	48 ± 3	48 ± 3	48 ± 3	48 ± 3
Titanium tibia plate (M1/dark)	−184 ± 43	−104 ± 29	−50 ± 20	−11 ± 14	16 ± 10	36 ± 7	51 ± 7	63 ± 8	72 ± 10	79 ± 11	84 ± 12	89 ± 13	92 ± 14
Titanium tibia plate (M2/bright)	154 ± 25	122 ± 20	72 ± 10	36 ± 7	51 ± 7	63 ± 8	72 ± 10	79 ± 11	84 ± 12	89 ± 13	92 ± 14	97 ± 14	102 ± 14
Stainless-steel tibia plate (M1/dark)	−824 ± 50	−600 ± 47	−450 ± 46	−342 ± 46	−267 ± 47	−212 ± 47	−172 ± 47	−141 ± 47	−117 ± 47	−99 ± 48	−84 ± 48	−72 ± 48	−63 ± 49
Stainless-steel tibia plate (M2/bright)	487 ± 60	341 ± 49	240 ± 40	170 ± 28	120 ± 18	83 ± 6	58 ± 8	53 ± 8	50 ± 7	57 ± 8	54 ± 8	54 ± 8	54 ± 8
Titanium intramedullary nail (M1/dark)	18 ± 15	29 ± 11	36 ± 9	40 ± 8	44 ± 7	46 ± 7	48 ± 7	50 ± 7	57 ± 8	54 ± 8	54 ± 8	54 ± 8	54 ± 8
Titanium intramedullary nail (M2/bright)	163 ± 17	130 ± 14	107 ± 11	91 ± 12	80 ± 12	72 ± 11	65 ± 12	61 ± 12	57 ± 12	54 ± 12	52 ± 12	50 ± 12	49 ± 12
Fat													
Non-metal	−72 ± 7	−66 ± 6	−62 ± 6	−59 ± 6	−57 ± 5	−55 ± 5	−54 ± 5	−53 ± 5	−52 ± 5	−52 ± 5	−51 ± 5	−51 ± 5	−51 ± 5
Titanium tibia plate	−79 ± 19	−72 ± 17	−67 ± 15	−64 ± 15	−61 ± 14	−60 ± 14	−58 ± 13	−57 ± 13	−56 ± 13	−56 ± 13	−55 ± 12	−54 ± 12	−54 ± 13
Stainless-steel tibia plate	−49 ± 11	−50 ± 9	−52 ± 8	−53 ± 7	−54 ± 6	−54 ± 6	−54 ± 6	−54 ± 6	−54 ± 6	−54 ± 6	−54 ± 6	−54 ± 6	−55 ± 6
Titanium intramedullary nail	−169 ± 15	−142 ± 17	−124 ± 16	−111 ± 15	−102 ± 15	−95 ± 15	−90 ± 15	−86 ± 15	−83 ± 15	−81 ± 15	−80 ± 15	−78 ± 15	−77 ± 15
Contrast between muscle-fat (non-metal)	135	124	117	112	108	106	104	103	101	101	100	99	99
Intramedullary cavity													
Non-metal	−47 ± 4	−48 ± 4	−48 ± 4	−49 ± 4	−49 ± 4	−49 ± 4	−49 ± 3	−49 ± 3	−49 ± 3	−49 ± 3	−49 ± 3	−49 ± 3	−49 ± 3
Titanium tibia plate	46 ± 22	15 ± 17	8 ± 15	23 ± 13	33 ± 12	40 ± 11	46 ± 10	50 ± 10	53 ± 10	56 ± 10	58 ± 9	60 ± 9	61 ± 9
Stainless-steel tibia plate	299 ± 49	184 ± 36	103 ± 24	47 ± 16	8 ± 11	−20 ± 7	−41 ± 6	−57 ± 5	−70 ± 6	−79 ± 6	−87 ± 7	−93 ± 7	−98 ± 8

Minimal CT number differences compared to non-metal reference CT numbers.
Discussion

In this study, we found that virtual monochromatic images computed from dual-energy CT scans reduced metal artifacts by reducing CT number inaccuracies and fluctuations in bone and soft tissues. These inaccuracies and fluctuations were highest at the reference monochromatic energy of 70 keV and decreased at higher keVs. The stainless-steel alloy resulted in more severe artifacts at equal keVs compared to both titanium implants, which was expected due to a higher atomic weight for the stainless-steel implant. Optimal monochromatic energies, based upon CT number analysis, tuned out to be dependent on the type of metal implant. These optimal energies differ for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail (130, 180 and 190 keV respectively).

In our study, we used non-metal CT data to determine baseline measures unlike in patient studies where real non-metal reference cannot be used [5–7, 10–14]. Only in some phantom studies non-metal scans were taken into account and were used as a reference [2, 16]. Although phantom studies may generate valuable information about the effectiveness of metal artifact reduction methods, they do not reflect the situation of real anatomical structures. Han et al. 2014 did investigate non-metal scans; however, they made a comparison between two groups (patients with and without a metal hip prosthesis) instead of an ideal comparison within individual patients [17], which may underestimate statistical significance between CT values due to variability of CT values within a population. Most of the patient studies used internal references distal to the implant [5–7, 10, 11, 14]; however, these regions may also be affected by metal artifacts. In our approach, the use of standardized measurement templates on fixed locations over the range of 70–190 keV enhanced the reliability of the measurements, including those of reference CT values without metal.

Few studies focus on the evaluation of bone and soft tissue structures regarding fixation implants. Some studies focus on pedicles and screws [4, 7, 8, 11] and others on larger hip implants [3, 6, 12, 14, 17] or dental implants [12, 18]. Filograna et al. (2015) investigated various metallic orthopedic implants in post-mortem studies, including fixation implants in the extremities. They found similar results where streak intensities decreased with an optimal keV between 130–148 keV [9]. Zhou et al. (2011) also investigated internal and external fixation implants in the upper and lower extremities with an optimal keV of 130 keV [13]. Bamberg et al. (2011) found optimal keVs of 95–150 keV, including results of nine patients with fixation implants [10]. Again, none of these clinical studies or post-mortem studies used non-metal reference scans.

The influence of different metal alloys and effectiveness of DECT in metal artifact reduction is investigated in some studies. Like in our study, these studies found that titanium implants result in less severe metal artifacts compared to metals with a higher atomic weight such as aluminum, stainless-steel, cerrobend and cobalt-chrome [2, 5, 8, 14, 18]. Lee et al. (2012) found optimal keVs of 80 and 110 keV for titanium and stainless-steel fixation plates respectively based on phantom results [5]. Komlosi et al. (2015) found optimal keVs of 90 keV and higher and 110 keV and higher for respectively titanium and cobalt-chrome cervical spine implants [8]. Meinel et al. (2012) investigated titanium and steel hip prostheses and found that steel hip prosthesis result in more severe artifacts; however an alloy specific optimal keV was not provided and they stated that a keV of 113 keV ranging from 100–130 keV is optimal [14].

Limitations and conclusions

This study has limitations. We only performed quantitative analyses to determine optimal keVs and did not include subjective image quality scoring by radiologists. A clinical study including subjective image quality scoring by multiple observers...
focusing on metal artifact reduction, overall image quality and
diagnostic accuracy in detecting bone and soft tissue pathology
will provide valuable insights in the diagnostic value of virtual
monochromatic images for different implants in patients.

Combining DECT with additional metal artifact reduction
software may further improve image quality due to more ef-
fective metal artifact reduction by reducing photon-starvation
and scatter artifacts [2, 5, 12, 17, 18]. However, combining
MAR software with dual-energy CT imaging is currently not
yet available on this system; furthermore when using MAR
software, despite the fact that overall image contrast is not
degraded compared to high keV virtual monochromatic re-

Choosing the optimal keV for each patient individually is
both challenging and time consuming. When choosing a keV
that is too low, metal artifacts will be more pronounced
resulting in an overall decreased image quality compromising
the evaluation of bone and soft tissue structures. On the other
hand, when choosing a keV that is too high, overall image
contrast will be decreased which impedes the diagnostic qual-
ity. We observed that most of the artifacts were reduced be-
tween 70–130 keV. In case of heavier metals, implants with a
more complex geometry and in case of bilateral implants, a
higher keV can be chosen since some metal artifact reduction
is observed above 130 keV. Therefore, we suggest that the use
of implant specific protocols is more beneficial than using
generalized protocols for all implants. In a clinical setting,
radiological evaluation using 70 keV images and implant spe-
cific optimal virtual monochromatic images with minimal CT
number inaccuracies and fluctuation is therefore advised.

Acknowledgements The authors thank the Department of Anatomy,
Embryology en Physiology of the Academic Medical Center
Amsterdam for providing a pair of fresh frozen human cadaveric lower
limbs.

Funding sources No funding was received.

Compliance with ethical standards

Disclosures of conflicts of interest Each author certifies that he or she
has no conflicts of interest to disclose.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Buckwalter KA, Parr JA, Choplin RH, Capello WN. Multichannel
CT imaging of orthopedic hardware and implants. Semin
Musculoskelet Radiol. 2006;10(1):86–97.

2. Huang J, Kerns J, Nute J, Liu X, Balter P, Stingo F, et al. An
evaluation of three commercially available metal artifact reduction
methods for CT imaging. Phys Med Biol. 2015;60(3):1047–67.

3. Lewis M, Reid K, Toms A. Reducing the effects of metal artefact
using high keV monoenergetic reconstruction of dual energy CT
(DECT) in hip replacements. Skelet Radiol. 2013;42(2):275–82.

4. Guggenberger R, Winklofer S, Osterhoff G, Wanner GA,
Fortunati M, Andreisek G, et al. Metallic artefact reduction with
monoenergetic dual-energy CT: systematic ex vivo evaluation of
posterior spinal fusion implants from various vendors and different
spine levels. Eur Radiol. 2012;22(11):2357–64.

5. Lee YH, Park KK, Song H-T, Kim S, Suh J-S. Metal artefact re-
duction in gemstone spectral imaging dual-energy CT with and
without metal artefact reduction software. Eur Radiol. 2012
Jun;22(6):1331–40.

6. Wang F, Xue H, Yang X, Han W, Q i B, Fan Y, et al. Reduction of
metal artifacts from alloy hip prostheses in computer tomography.
J Comput Assist Tomogr. 2014;38(6):823–33.

7. Dong Y, Shi AJ, Wu JL, Wang RX, Sun LF, Liu AL, et al. Metal
artifact reduction using virtual monochromatic images for patients
with pedicle screws implants on CT. Eur Spine J. 2016;25(6):1754–63.

8. Komlosi P, Grady D, Smith JS, Shaffrey CI, Goode AR, Judy PG,
et al. Evaluation of monoenergetic imaging to reduce metallic in-
strumentation artifacts in computed tomography of the cervical
spine. J Neurosurg Spine. 2015;22(1):34–8.

9. Filograna L, Magarelli N, Leone A, Guggenberger R, Winklofer
S, Thali MJ, et al. Value of monoenergetic dual-energy CT (DECT)
for artefact reduction from metallic orthopedic implants in post-
mortem studies. Skelet Radiol. 2015;44(9):1287–94.

10. Bamberg F, Dierks A, Nikolau K, Reiser MF, Becker CR,
Johnson TR. Metal artifact reduction by dual energy computed
tomography using monoenenergetic extrapolation. Eur Radiol.
2011;21:1424–9.

11. Wang Y, Qian B, Li B, Qin G, Zhou Z, Qiu Y, et al. Metal artifacts
reduction using monochromatic images from spectral CT: evalua-
tion of pedicle screws in patients with scoliosis. Eur J Radiol.
2013;82(8):e360–6.

12. Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo
M, Nikolau K, et al. Comparison and combination of dual-energy
and iterative-based metal artefact reduction on hip prosthesis and
dental implants. PLoS One. 2015;10(11):1–12.

13. Zhou C, Zhao YE, Luo S, Shi H, Li L, Zheng L, et al. Metal-
oneenergetic imaging of dual-energy CT reduces artifacts from
implanted metal orthopedic devices in patients with fractures. Acad
Radiol 2011;18(10):1252–7.

14. Meinel F, Bischoff B, Zhang Q, Bamberg F, Reiser M, Johnson T.
Metal artifact reduction by dual-energy computed tomography
using energetic extrapolation: a systematically optimized protocol.
Investig Radiol. 2012;47(7):406–14.

15. Hu D, Yu T, Duan X, Peng Y, Zhai R. Determination of the optimal
energy level in spectral CT imaging for displaying abdominal ves-
sels in pediatric patients. Eur J Radiol. 2014;83(3):589–94.

16. Wellenberg RHH, Boomsmf MA, Osch van JAC, Milles J,
Vlassenbroek A, Edens MA, et al. Computed tomography imaging
of a hip prosthesis using iterative model-based reconstruction and
orthopaedic metal artefact reduction: a quantitative analysis. J
Comput Assist Tomogr. 2016;40(6):971–8.

17. Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal
artifact reduction software used with abdominopelvic dual-energy CT
of patients with metal hip prostheses: assessment of image quality and
clinical feasibility. AJR Am J Roentgenol. 2014;203(4):788–95.

18. De Crop A, Casselman J, Van Hooft T, Dierens M, Vereecke E,
Bosu N, et al. Analysis of metal artifact reduction tools for dental
hardware in CT scans of the oral cavity: kVp, iterative reconstruc-
tion, dual-energy CT, metal artifact reduction software: Does it make
a difference? Neuroradiology. 2015;57(8):841–9.