Successful endoscopic third ventriculostomy after craniosynostosis reconstruction with cranial vault expansion after ventriculoperitoneal shunt failure

Smit Shah, Rachana Tyagi

ABSTRACT

Introduction: Syndromic craniosynostosis with growth restriction often causes increased intracranial pressure requiring shunting. Crouzon syndrome also known as branchial arch syndrome is an autosomal dominant disorder which has multiple phenotypic characteristics including proptosis, low set ears, bilateral strabismus, orofacial deformities affecting maxilla and mandible, and most importantly abnormal fusion of skull sutures also known as craniosynostosis.

Case Report: A 17-year-old male presented with severe Crouzon syndrome and brachycephaly who had a delayed cranial vault expansion. He subsequently developed intermittent shunt malfunction, which progressed to a complete obstruction. After successful endoscopic third ventriculostomy and return to baseline function the shunt was tied off.

Conclusion: Endoscopic third ventriculostomy (ETV) can be performed safely and effectively for shunt malfunction after cranial vault expansion in patients who may not have been candidates previously. By using ETV in addition to known traditional techniques of cranial vault expansion, patient’s prognosis and postoperative recovery can be expedited.
Successful endoscopic third ventriculostomy after craniosynostosis reconstruction with cranial vault expansion after ventriculoperitoneal shunt failure

Smit Shah, Rachana Tyagi

ABSTRACT

Introduction: Syndromic craniosynostosis with growth restriction often causes increased intracranial pressure requiring shunting. Crouzon syndrome also known as branchial arch syndrome is an autosomal dominant disorder which has multiple phenotypic characteristics including proptosis, low set ears, bilateral strabismus, orofacial deformities affecting maxilla and mandible, and most importantly abnormal fusion of skull sutures also known as craniosynostosis. Case Report: A 17-year-old male presented with severe Crouzon syndrome and brachycephaly who had a delayed cranial vault expansion. He subsequently developed intermittent shunt malfunction, which progressed to a complete obstruction. After successful endoscopic third ventriculostomy and return to baseline function the shunt was tied off. Conclusion: Endoscopic third ventriculostomy (ETV) can be performed safely and effectively for shunt malfunction after cranial vault expansion in patients who may not have been candidates previously. By using ETV in addition to known traditional techniques of cranial vault expansion, patient’s prognosis and postoperative recovery can be expedited.

Keywords: Craniosynostosis, Crouzon syndrome, Expansion, Vault

How to cite this article

Shah S, Tyagi R. Successful endoscopic third ventriculostomy after craniosynostosis reconstruction with cranial vault expansion after ventriculoperitoneal shunt failure. Int J Case Rep Images 2018;9(1):33–37.

Article ID: Z01201801CR10873SS

doi: 10.5348/ijcri-201804-CR-10873

INTRODUCTION

Crouzon syndrome also known as branchial arch syndrome is an autosomal dominant disorder which has multiple phenotypic characteristics including proptosis, low set ears, bilateral strabismus, orofacial deformities affecting maxilla and mandible, and most importantly abnormal fusion of skull sutures also known as craniosynostosis [1]. Numerous genetic anomalies including mutations in FGFR2 and FGFR3 have been proven to play a major role in its pathogenesis [2–4]. It is a rare disorder with an incidence of 1.6 out of every 100,000 people. Crouzon’s patients typically require more orofacial reconstruction than other syndromic patients, along with intense neurosurgical intervention due to the high probability of hydrocephalus secondary to craniosynostosis and other skull base malformations [5–7].
CASE REPORT

A 17-year-old Filipino male presented with a significant past medical history of Crouzon syndrome was found to have clover leaf deformity, along with malignant proptosis and subluxation of globes at birth. Consequently, in 1999, he underwent bilateral cranial orbital advancement with tarsorrhaphy in addition to bifrontal craniotomy and partial removal of sphenoid wing. One month postoperatively, he developed hydrocephalus for which he underwent right sided ventriculoperitoneal (VP) shunting which was revised in the year 2000, and three months later he required addition of a left VP catheter for a trapped left ventricle.

In the next few months, he developed respiratory difficulties due to a Chiari malformation extending to the C3 level, shunt failure and collapse of the bifrontal orbital advancement along with a large cervical subcutaneous muscular dural-epidural arteriovenous malformation from suboccipital area to C5. Consequently, patient underwent placement of bilateral cranial tissue expander, reprogramming of VP shunt, Chiari decompression consisting of sub occipital craniectomy and C1 to C3 laminectomy with grafting and resection of the arteriovenous malformation. The next year he underwent a nearly complete skull reconstruction for recurrent craniosynostosis (Figure 1). In 2005, he had another shunt revision, and was lost to follow-up due to insurance issues.

In 2013, he presented with respiratory failure and severe proptosis with bilateral globe subluxation with Valsalva, microcephaly and multiple bony skull defects with no evidence of shunt malfunction. He was found to have a recurrent Chiari malformation again (Figure 2). Consequently, he underwent sub-occipital craniectomy and C1 laminectomy with expansive duraplasty and a bifrontal cranial expansion with extensive hardware for reconstruction at a specialized craniofacial center, but developed recurrent wound healing issues.

The patient presented to our system with acute neurologic compromise 10 months later, with exposed cranial mesh and enlarged ventricles (Figure 3). His shunt was externalized due to concerns for possible shunt infection with improvement in his neurologic examination and decompression of the ventricular system on repeat imaging (Figure 4). The exposed hardware was subsequently removed with a plan to address the bony defects in a delayed manner once the hydrocephalus issues were resolved. Since the cranial vault expansion, the ventricular system had expanded enough that it was felt safe to attempt an ETV (Figure 5), which was performed through a left sided approach under stereotactic guidance.

Figure 1: The patient at age five years demonstrating complete skull reconstruction for recurrent craniosynostosis.

Figure 2: The patient at age 14 years. (A, B) Collapsed ventricular system, and (C) Recurrent Chiari malformation.

Figure 3: The patient at age 17 years 8 months demonstrating exposed cranial mesh and enlarged ventricles.
Postoperative MRI scan showed good flow through the ETV with no increase in ventricular size (Figure 6) and no change after clamping the shunt system (Figure 7). Therefore the valve was removed and the proximal right sided ventricular catheter tied off four days later, with no change in the ventricular system (Figure 8). He has continued to do well and returned to baseline neurologic function as per last follow-up 18 years 6 months.

DISCUSSION

As mentioned before, Crouzon syndrome also known as branchial arch syndrome occurs due to abnormal embryological development of branchial arches specifically first pharyngeal arch leading to maxillary and mandibular anomalies [8–10]. Diagnosis can be made at birth by assessing phenotypical anomalies; however in overt cases CT scan and MRI scan can be used to diagnose. In patients with brain anomalies specifically increased intracranial pressure due to abnormal skull fusion, ETV can be used if conservative management fails [8, 9].

Patients with Crouzon require extensive medical and surgical management secondary to a high incidence of intracranial pressure [8, 9]. In a study performed by Abu-Sittah et al., patients nearly 50% of patients had 1–2 episodes of raised ICP and they recommended regular ophthalmologic and neurological management until age of eight years after which decision can be made about whether patients need cranial vault expansion or not depending on the degree of clinical improvement [11].

A study by Di Rocco et al. demonstrated that as the initial treatment for progressive hydrocephalus “performing an ETV may facilitate control of hydrocephalus associated with faciocraniosynostosis in select cases” in addition to mandatory radiological monitoring [12, 13]. This study included 11 pediatric patients between the age of three months and 11 years with various syndromes including Crouzon and Pfeiffer syndrome with various anatomical anomalies including cerebellar tonsil herniation, lambdoid stenosis and jugular stenosis. They demonstrated that, “ETV procedure succeeded in controlling the hydrocephalus in eight children during the first postoperative weeks, defined as disappearance of the clinical symptoms and signs of raised ICP associated with a reduction of ventricular size compared with the preoperative period. In the remaining three patients the placement of a CSF VP shunt was needed because of the persistence or prompt recurrence of the signs of raised ICP” [13]. As all the failed were performed during infancy, these patients may be candidates for a delayed ETV as in our patient. Additional larger studies assessing the efficacy of ETV in patients with craniosynostosis are required [12–14].
CONCLUSION

Endoscopic third ventriculostomy (ETV) can be performed safely and effectively for shunt malfunction after cranial vault expansion in patients who may not have been candidates previously. This article will add to the data defining possible candidates for ETV, and hopefully increase the number of shunt-independent patients in the future. By using ETV in addition to known traditional techniques of cranial vault expansion, hopefully patient’s prognosis and post-operative recovery can be expedited.

REFERENCES

1. Aldana PR, Roy S, Postlethwait RA, James HE. Ultrasound-aided fixation of a biodegradable cranial fixation system: Uses in pediatric neurosurgery. J Neurosurg Pediatr 2009 May;3(5):420–4.
2. Coll G, Arnaud E, Collet C, Brunelle F, Sainte-Rose C, Di Rocco F. skull base morphology in fibroblast growth factor receptor type 2-related faciocraniosynostosis: A descriptive analysis. Neurosurgery 2015 May;76(5):571–83; discussion 583.
3. Dicus Brookes C, Golden BA, Turvey TA. Craniosynostosis syndromes. Atlas Oral Maxillofac Surg Clin North Am 2014 Sep;22(2):103–10.
4. Di Rocco F, Biosse Duplan M, Heuze Y, et al. FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum Mol Genet 2014 Jun 1;23(11):2914–25.
5. Canpolat A, Akçakaya MO, Altunrende E, et al. Crouzon type I malformation yielded to the diagnosis of Crouzon syndrome. J Neurosci Rural Pract 2014 Jan;5(1):81–3.
6. Spruijt B, Rijken B, Mathijssen I, et al. First vault expansion in apert and Crouzon-Pfeiffer syndromes: Front or back? Plastic & Reconstructive Surgery 2016;137(1):112–21.
7. Beuriat PA, Paulus C, Grassiot B, Szathmari A, Mottolese C. Cranial vault expansion with the split bone flap technique in shunt-related craniosynostosis. Rev Stomatol Chir Maxillofac Chir Orale 2015 Sep;116(4):239–44.
8. Choi M, Flores RL, Havlik RJ. Volumetric analysis of anterior versus posterior cranial vault expansion in patients with syndromic craniosynostosis. J Craniomaxillofac Surg 2012 Mar;23(2):455–8.
9. Spruijt B, Tasker RC, Driessen C, et al. Abnormal transcranial Doppler cerebral blood flow velocity and blood pressure profiles in children with syndromic craniosynostosis and papilledema. J Craniomaxillofac Surg 2016 Apr;44(4):465–70.
10. Crouzon LEO. Dysostose cranio-faciale héréditaire. [Article in French]. Bulletin de la Société des Médecins des Hôpitaux de Paris 1912;33:545–55.
11. Abu-Sittah GS, Jeelani O, Dunaway D, Hayward R. Raised intracranial pressure in Crouzon syndrome: Incidence, causes, and management. J Neurosurg Pediatr 2016 Apr;17(4):469–75.
12. Di Rocco F, Jucá CE, Arnaud E, Renier D, Sainte-Rose C. The role of endoscopic third ventriculostomy in the treatment of hydrocephalus associated with faciocraniosynostosis. J Neurosurg Pediatr 2010 Jul;6(1):17–22.
13. Winston KR, Stence NV, Boylan AJ, Beauchamp KM. Upward translation of cerebellar tonsils following surgical expansion of supratentorial cranial vault: A unified biomechanical explanation of chiari type I. Pediatr Neurosurg 2015;50(5):243–9.
14. Zhao R, Shi W, Yang H, Li H. Endoscopic third ventriculostomy instead of shunt revision in children younger than 3 years of age. World Neurosurg 2016 Apr;88:92–6.

SUGGESTED READING

- https://ghr.nlm.nih.gov/condition/crouzon-syndrome
- http://emedicine.medscape.com/article/942989-overview
- Mallikarjunappa B, Shetty S, Gupta S, Singh J. Crouzon’s syndrome: A case report from rural medical college with review of literature. Journal International Medical Sciences Academy 2016;29(1):30–1.

Author Contributions

Smit Shah – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Rachana Tyagi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor of Submission

The corresponding author is the guarantor of submission.

Source of Support

None

Consent Statement

Written informed consent was obtained from the patient for publication of this case report.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2018 Smit Shah et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
About Edorium Journals
Edorium Journals is a publisher of international, high-quality, open access, scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

Why should you publish with Edorium Journals?
In less than 10 words: “We give you what no one does”.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial review
All manuscripts submitted to Edorium Journals undergo pre-processing review followed by multiple rounds of stringent editorial reviews.

Peer review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early view version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates about status of your manuscripts.

Our Commitment

Six weeks
We give you our commitment that you will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this commitment by even one day, we will give you a 75% Discount Voucher for your next manuscript.

Four weeks
We give you our commitment that after we receive your page proofs, your manuscript will be published in the journal within 14 days (2 weeks). If we fail to honor this commitment by even one day, we will give you a 75% Discount Voucher for your next manuscript.

Favored author program
One email is all it takes to become our favored author. You will not only get 15% off on all manuscript but also get information and insights about scholarly publishing.

Institutional membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in publication fees.

Our presence
We have high quality, attractive and easy to read publication format. Our websites are very user friendly and enable you to use the services easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services. Please visit: www.edoriumjournals.com

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals.