STUDYING THE DYNAMICS OF VIBRATORY FINISHING MACHINE PROVIDING THE SINGLE-SIDED LAPPING AND POLISHING OF FLAT SURFACES

Vitaliy Korendiy 1, Oleksandr Kachur 1, Viktor Zakharov 2 and Igor Kuzio 1

1 Department of Robotics and Integrated Mechanical Engineering Technologies, Lviv Polytechnic National University, Ukraine
2 Galca Ltd, Ukraine
The improved design of the vibratory machine for single-sided lapping of flat surfaces is presented in Figure 1 (a)-(b). The corresponding kinematic diagram of the machine’s oscillatory system is shown in Figure 1 (c). The lower lap 2 is suspended from the stationary body 5 by the metal ropes 4. The parts 6 being treated by the upper lap 1 are fixed on the lower lap 2. The laps are connected with one another by the system of six coil springs 3. The vibration exciter is formed of six electromagnets 7 hingedly mounted on the lower lap 2 with the help of the bearing units 8. The electro-magnets’ armatures (retractable (sliding) rods) 9 are connected with the upper lap 1 by the hinges 10.
Figure 1. Vibratory lapping machine: (a) 3D-design; (b) electromagnets connection scheme; (c) kinematic diagram.
The system is set into motion by three pairs of electromagnets generating periodic disturbing forces applied between the upper and lower laps. By applying the same forced frequencies and the certain phase shifts of the excitation forces, the antiphase translational (circular) oscillations of the laps can be generated. The major difference between the improved machine and the previous one is following: new electromagnets with retractable rods (sliding armatures) are used. They are hingedly joined with the lower lap with the possibility of turning. The previous machine was equipped with the principally different electromagnets with the air gap between the electromagnet and the armature. The previous electromagnets were fixed (rigidly connected) to the machine’s lower platform without any possibility of turning (rotating). This allows for increasing the energy efficiency of the machine’s drive and the accuracy of the surface treatment.
Mathematical model of the system motion

In order to study the laps oscillatory motion, the inertial coordinate system xOy and the corresponding generalized coordinates x_1, x_2, y_1, y_2 are applied (see Figure 1 (c)). The latter describe the displacements of the upper lap and the lower lap relative to the adopted coordinate system. The origin O is placed at the upper lap’s mass center in its equilibrium position (state of rest). The masses of the upper lap, lower lap, and the parts being treated are denoted as m_1, m_2, m_3, respectively. The spring elements are characterized by the stiffness coefficients c_1. The energy dissipation during the lap sliding over the parts being treated is taken into account by the viscous friction coefficient μ, which depends on numerous factors: physical and mechanical properties of the contacting materials, specific features of the abrasive medium, lapping (polishing) conditions, etc. Therefore, the coefficient μ is usually determined experimentally.
Using the Euler–Lagrange equations, the simplified mathematical model describing the machine’s oscillatory system motion can be written as follows:

\[m_1 \cdot \ddot{x}_1(t) + \mu \cdot (\dot{x}_1(t) - \dot{x}_2(t)) + c_x \cdot (x_1(t) - x_2(t)) = F_1(t) \cdot \cos 0 + F_2(t) \cdot \cos(\pi/3) + F_3(t) \cdot \cos(5\pi/3), \]

\[(m_2 + m_3) \cdot \ddot{x}_2(t) + \mu \cdot (\dot{x}_2(t) - \dot{x}_1(t)) + c_x \cdot (x_2(t) - x_1(t)) = -F_1(t) \cdot \cos 0 - F_2(t) \cdot \cos(\pi/3) - F_3(t) \cdot \cos(5\pi/3), \]

\[m_1 \cdot \ddot{y}_1(t) + \mu \cdot (\dot{y}_1(t) - \dot{y}_2(t)) + c_y \cdot (y_1(t) - y_2(t)) = F_1(t) \cdot \sin 0 + F_2(t) \cdot \sin(\pi/3) - F_3(t) \cdot \sin(5\pi/3), \]

\[(m_2 + m_3) \cdot \ddot{y}_2(t) + \mu \cdot (\dot{y}_2(t) - \dot{y}_1(t)) + c_y \cdot (y_2(t) - y_1(t)) = -F_1(t) \cdot \sin 0 - F_2(t) \cdot \sin(\pi/3) + F_3(t) \cdot \sin(5\pi/3), \]

where \(F_1(t) = F \cdot \sin(\omega t), F_2(t) = F \cdot \sin(\omega t + \pi/3), F_3(t) = F \cdot \sin(\omega t + 2\pi/3) \) are the excitation (disturbing) forces; \(F \) is the maximal (amplitude) value of the excitation (disturbing) force; \(\omega \) is the forced frequency. The projections of the reduced (equivalent) stiffness coefficients on the \(Ox \) and \(Oy \) axes can be expressed as follows:

\[c_x = c_1 \cdot \cos 0 + c_1 \cdot \cos(\pi/3) + c_1 \cdot \cos(5\pi/3) \approx 2c_1, \]

\[c_y = c_1 \cdot \sin 0 + c_1 \cdot \sin(\pi/3) - c_1 \cdot \sin(5\pi/3) \approx 1.732c_1. \]

The numerical modeling is carried out by solving the derived system of differential equations with the help of the Runge-Kutta methods in the Mathematica software.
Experimental prototype of the vibratory lapping machine

Based on the proposed 3D-design of the vibratory lapping machine (see Figure 1 (a)), its experimental prototype has been developed at the Vibroengineering Laboratory of Lviv Polytechnic National University (see Figure 2 (a)). The machine’s frame (stationary body) 1 is welded using the square-shape tubes. The lower lap 2 is suspended from the frame 1 by the metal ropes 3. The cylindrical part (disc) 4 being treated is fixed to the lower lap 2 and is made of the mild (soft) AISI 1018 steel. The electromagnets (push-pull-type linear solenoids ZUIDID KK-1564B) 5 are fixed on the lower lap 2. The electromagnets’ retractable rods (sliding armatures) are spring-loaded and hingedly joined with the upper lap 6 made of the synthetic-resin bonded (SRB) paper laminate. The fine-grained abrasive medium Abro GP-201 is applied between the contacting surfaces of the part (disc) 4 being treated and the upper lap 6.

The experimental tests are focused on studying the machine’s free damped oscillations with the help of the WitMotion BWT901CL accelerometer 7. The processing of the experimental data is carried out using the corresponding WitMotion software (see Figure 2 (b)). The instantaneous value of the upper lap acceleration during the machine stopping conditions is registered by the accelerometer 7. Based on the obtained experimental data, the approximate value of the reduced (equivalent) damping coefficient μ has been determined.
Figure 2. Experimental testing of the lapping machine: (a) experimental prototype; (b) WitMotion software window.
The numerical modeling has been performed in the Mathematica software, and the following input parameters were applied: \(m_1 = 0.42 \text{ kg} \), \(m_2 = 0.5 \text{ kg} \), \(m_3 = 0.75 \text{ kg} \), \(\omega = 100.5 \text{ rad/s (16 Hz)} \), \(F = 4 \text{ N} \), \(c_1 = 3700 \text{ N/m} \), \(\mu = 20 \text{ N} \cdot \text{s/m} \). The time dependencies of the instantaneous displacements of the upper lap \((x_1, y_1)\) are presented in Figure 3 (a), while the upper lap motion trajectory is shown in Figure 3 (b).

Considering the steady-state operational conditions, the lap’s maximal horizontal displacement is equal to the vertical one, and takes the value of 0.0008 m (0.8 mm). The transient mode duration is about 0.2 s. Analyzing the modeled trajectory of the lap motion, it can be concluded that the initial idea of the proposed machine design is satisfied: the lap performs the translational (circular) oscillations, which are characterized by the uniform speed of each point of the lapping plate. In such a case, the best accuracy and operational efficiency of the lapping (polishing) process can be reached.
Figure 3. Results of numerical modeling of the upper lap oscillations: (a) time response curves; (b) lap trajectory.
Results of computer simulation (virtual experiments)

The computer simulation (virtual experiment) has been carried out in the SolidWorks Motion software using the developed 3D-model of the vibratory lapping machine. The corresponding results are presented in Figure 4. All the input parameters correspond to the ones mentioned above. In general, the simulation results satisfactorily agree with the ones obtained by numerical modeling. After the transient conditions lasting about 0.8 s, the lap describes the circular trajectory (path) of the radius equal to 0.8 mm. The only difference is that the center of this circle moved upwards and to the right. This fact can be described by the complex friction conditions taking place during the lapping process. The simplified mathematical model has not considered this phenomenon.
Figure 4. Computer simulation of the lap oscillations: (a) time response curves; (b) lap trajectory.
Conclusions

The paper considers the improved design of the vibratory lapping (polishing) machine based on the suspended double-mass oscillatory system and driven by six pairs of electromagnets. The corresponding kinematic diagram of the machine’s oscillatory system is developed, and the differential equations describing its motion are derived. The numerical modeling of the upper lap oscillations is performed in the Mathematica software. Based on the developed 3D-design of the lapping machine, the computer simulation (virtual experiment) of its operation is carried in the SolidWorks software. The experimental prototype has been implemented in practice at the Vibroengineering Laboratory of Lviv Polytechnic National University. The experimental data allowed for defining the reduced (equivalent) damping coefficient taking place during the lapping process.

Considering the steady-state operational conditions, the lap’s maximal horizontal displacement is equal to the vertical one, and takes the value of 0.8 mm. The results of numerical modeling and computer simulation allows for stating that the initial idea of the proposed machine design is satisfied: the lap performs the translational (circular) oscillations, which are characterized by the uniform speed of each point of the lapping plate. In such a case, the best accuracy and operational efficiency of the lapping (polishing) process can be reached. The obtained results can be used by designers and researchers of similar technological equipment, as well as by technologists implementing the vibratory finishing operations. The scopes of further investigations on the subject of the paper can be focused on analyzing the machine’s drive power consumption under different operational conditions and forming the optimization criteria for minimizing the power consumption and maximizing the machine’s technological efficiency.
THANK YOU FOR YOUR ATTENTION
AND LOOKING FORWARD TO
COOPERATING WITH YOU!