Longitudinal distribution of initial energy density and directed flow of charged particles in relativistic heavy-ion collisions

Ze-Fang Jiang,1,2,* Shanshan Cao,3,† Xiang-Yu Wu,1 C. B. Yang,1 and Ben-Wei Zhang1

1Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei, 430079, China
2Department of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan, Hubei, 432000, China
3Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China

We study the origin of the directed flow of charged particles produced in relativistic heavy-ion collisions. Three different initial conditions, Bozék-Wyskiel, CCNU and Shen-Alzhrani, of energy density distributions are coupled to the (3+1)-dimensional viscous hydrodynamic model CLVisc, and their effects on the development of the anisotropic medium geometry, pressure gradient and radial flow are systematically compared. By comparing to experimental data at both RHIC and LHC, we find that the directed flow provides a unique constraint on the tilt of the initial medium profile in the plane spanned by the impact parameter and space-time rapidity. Within mid-rapidity, the counter-clockwise tilt is shown to be a crucial source of the positive/negative force by the pressure gradient along the impact parameter direction at backward/forward rapidity, which drives a negative slope of the x component of the medium flow velocity with respect to rapidity, and in the end the same feature of the charged particle directed flow.

I. INTRODUCTION

Heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) suggest that a hot and dense nuclear matter, known as quark-gluon plasma (QGP), is formed in the reaction region. The strong collective flow, such as the elliptic flow v_2, is among the earliest observables for studying the collectivity in nuclear collisions at different energies [4–24], and the specific shear viscosity extracted from the model-to-data comparison is shown small [25, 26].

The first-order Fourier coefficient of the azimuthal distribution of hadrons, also known as the rapidity-odd directed flow (v_1) [27, 28], is among the earliest observables for studying the collectivity in nuclear collisions at different energies [29–31]. Since the commencement of relativistic heavy-ion collisions, it has been widely studied in RHIC and LHC experiments as well [32–37]. Model calculations suggest that directed flow is initiated during the passage time of the two colliding nuclei, whose typical time scale is $2R/\gamma$ with R and γ being the nuclear radius and Lorentz contraction factor respectively [6, 29, 38]. This could be earlier than the development of elliptic flow. Therefore, v_1 has been considered a sensitive probe of the fireball size and nucleon flow at the initial stage [3, 27, 38–42]. There are various sources contributing to the directed flow. It has been proposed that the size and sign of v_1 could depend on the deformation of the initial medium geometry, the baryon current, the equation of state of nuclear matter and also hadronic rescatterings [40, 43–49], although their quantitative relative contributions are still open questions.

To investigate how the initial geometric asymmetry is transformed to the final hadron v_1, various initialization methods have been developed and coupled to hydrodynamic model calculations. Among different parametrizations of the longitudinal structure of the initial fireball, one of the most frequently applied approaches is the Bozék-Wyskiel parametrization proposed in Ref. [44]. It takes into account the asymmetry along the impact parameter direction (x) at different space-time rapidity (η_s) which generates a counter-clockwise tilt of the initial fireball in the $x-\eta_s$ plane. This initialization method has been found successful in understanding the directed flow of not only the soft hadron, but also the heavy flavor mesons [40, 48–50] after coupling the heavy quark evolution model to the titled QGP medium. Following the idea of Bozék-Wyskiel, we developed an alternative initialization ansatz (CCNU parametrization) of the longitudinal distribution of the nuclear matter in an earlier study [51]. It grasps the key feature of the tilted medium geometry and is able to describe the charged particle v_1 at RHIC and LHC. Recently, an additional collision geometry-based 3-dimensional (3D) initial condition (Shen-Alzhrani parametrization) is developed in Refs. [46, 47], which incorporates the Bjorken flow in the longitudinal direction (same as the Bozék-Wyskiel and CCNU parametrizations) and ensures the conservation of local energy and momentum, and provides a satisfactory description of the v_1 of π^+ at RHIC. Therefore, it is of great interest to conduct a detailed comparison between these different initialization approaches within a uniform QGP evolution framework, and identify the main features of the initial geometry that lead to the final state hadron v_1 we observe.

In this work, the abovementioned systematical comparison between the three initial conditions – Bozék-Wyskiel, CCNU and Shen-Alzhrani – is performed using the (3+1)-D viscous hydrodynamic model CLVisc [52–54]. We investigate the correlation between the longitudinal structure of the initial fireball and the directed flow of the final state charged particles. Our calculation indicates the counter-clockwise tilt of the initial energy density profile yields an increasing/decreasing av-

*Electronic address: jiangzf@mails.ccnu.edu.cn
†Electronic address: shanshan.cao@sdu.edu.cn
verage pressure gradient $-\langle \partial_t P \rangle$ from zero with respect to time at backward-forward space-time rapidity within $|\eta_s| < 2$. This further leads to a negative slope of the average QGP flow velocity $\langle v_2 \rangle$ with respect to η_s, and in the end the same behavior of v_1 vs. η for the final-state charged particles, which is consistent with the experimental observations in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at RHIC [55] and $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at LHC [56].

This article is organized as follows. In Sec. II, we will discuss three different initialization methods of the rapidity-dependent energy density distribution in heavy-ion collisions and their impacts on the pressure gradient and flow velocity during the hydrodynamic expansion of the QGP. In Sec. III, we will present the charged particle directed flow from our hydrodynamic calculation and investigate its dependence on the initial condition. In the end, we summarize and discuss future improvements in Sec. IV.

II. THE MODEL FRAMEWORK

A. Parametrizations of the initial energy density profile

For the purpose of investigating the dependence of the final-state directed flow on the initial-state geometry of nuclear matter, in this section, we construct three different initial energy density distributions based on pioneer studies [44, 46, 47, 51, 57]. Their impacts on the time evolution of the pressure gradient and flow velocity of the QGP will be then explored using a (3+1)-D hydrodynamic model.

The nucleus thickness function $T(x, y)$ from the Woods-Saxon distribution is

$$T(x, y) = \int_{-\infty}^{\infty} dz \frac{n_0}{1 + e^{(\sqrt{x^2+y^2+z^2-R})/d}}, \quad (1)$$

where n_0 is the average nuclear density, d is the diffusiveness parameter, x, y, z are the space coordinates and R is the radius of the nuclear Fermi distribution, which depends on the nucleus species. The parameters used for Au and Pb in the present study are listed in Tab. I.

Nucleus	A	n_0 [1/fm3]	R [fm]	d [fm]
Au	197	0.17	6.38	0.546
Pb	208	0.17	6.62	0.535

TABLE I: Parameters used in the Woods-Saxon distribution for Au and Pb nuclei [58].

Consider two nuclei propagate along $\pm \hat{z}$ and collide with the impact parameter b. Their thickness function may be written as

$$T_+(x_T) = T(x_T - b/2), \quad T_-(x_T) = T(x_T + b/2) \quad (2)$$

respectively, where $x_T = (x, y)$ is the transverse plane coordinate. The density distributions of participant nucleons from the two nuclei are then

$$T_1(x_T) = T_+(x_T) \left\{ 1 - \left[1 - \frac{\sigma_{NN}T_-(x_T)}{A} \right]^A \right\}, \quad (3)$$

$$T_2(x_T) = T_-(x_T) \left\{ 1 - \left[1 - \frac{\sigma_{NN}T_+(x_T)}{A} \right]^A \right\}, \quad (4)$$

where A is the mass number of the colliding nuclei, σ_{NN} is the inelastic nucleon-nucleon scattering cross section. The collision centrality classes are determined by the impact parameter b [58].

The right/left-moving wounded nucleons are expected to produce more particles at forward/backward rapidity, respectively. This effect can be obtained by introducing the rapidity-dependent deformation into the weight function W_N of wounded nucleons.

Case (A) Bozé-Wyskiel parametrization.

Following the Bozé-Wyskiel parametrization of the tilted initial condition [44, 57], two piecewise functions are used to construct the wounded nucleon weight function W_N as:

$$W_N(x, y, \eta_s) = 2 \left[T_1(x, y)f_+(\eta_s) + T_2(x, y)f_-(\eta_s) \right], \quad (5)$$

with

$$f_+(\eta_s) = \begin{cases} 0, & \eta_s < -\eta_m, \\ \frac{\eta_s + \eta_m}{2\eta_m}, & -\eta_m \leq \eta_s \leq \eta_m, \\ 1, & \eta_s > \eta_m, \end{cases}$$

and

$$f_-(\eta_s) = \begin{cases} 1, & \eta_s < -\eta_m, \\ \frac{-\eta_s + \eta_m}{2\eta_m}, & -\eta_m \leq \eta_s \leq \eta_m, \\ 0, & \eta_s > \eta_m, \end{cases}$$

in which η_s is the longitudinal space-time rapidity, η_m defines the range of rapidity correlations and affects the relative contribution from forward and backward participating nucleons.

Case (B) CCNU parametrization.

In our earlier study [51], a monotonic function was introduced to describe the imbalance between the forward and backward regions, resulting in a tilted initial condition. The weight function of wounded nucleons W_N is defined as,

$$W_N(x, y, \eta_s) = \left[T_1(x, y) + T_2(x, y) \right] + H_t[T_1(x, y) - T_2(x, y)] \tan \left(\frac{\eta_s}{\eta_t} \right), \quad (6)$$

where the parameter H_t reflects the overall strength of imbalance between particle emission in the forward and backward rapidities along the direction of the impact parameter, while $\tan(\eta_s/\eta_t)$ generates the deformation of the initial energy density distribution along the rapidity direction. A fixed parameter of $\eta_t = 8.0$ is used for all the collision systems investigated in the present work.
The initial energy density \(\varepsilon(x, y, \eta_s) \) for both Case (A) and Case (B) is then given by [53]

\[
\varepsilon(x, y, \eta_s) = K \cdot W(x, y, \eta_s) \cdot H(\eta_s),
\]

where \(K \) is an overall normalization factor that will be determined by the particle yield in different collision systems, and \(W(x, y, \eta_s) \) is the total weight function defined as

\[
W(x, y, \eta_s) = \frac{(1 - \alpha)W_N(x, y, \eta_s) + \alpha n_{BC}(x, y)}{(1 - \alpha)W_N(0, 0, 0) + \alpha n_{BC}(0, 0)}|_{b=0}.
\]

Here, \(\alpha \) is known as the collision hardness parameter and \(n_{BC}(x, y) \) is the number of binary (hard) collisions given by

\[
n_{BC}(x, y) = \frac{\sigma_{NN}T_+(x, y)T_-(x, y)}{35.5},
\]

In Eq. (7), a function

\[
H(\eta_s) = \exp\left[-\frac{(\eta_s - \eta_w)^2}{2\sigma^2_\eta} \right]
\]

is introduced in order to describe the plateau structure of the rapidity distribution of emitted hadrons, in which \(\eta_w \) determines the width of the central rapidity plateau while \(\sigma_\eta \) determines the width (speed) of the Gaussian decay outside the plateau region [53]. Model parameters – \(K \), \(\eta_w \) and \(\sigma_\eta \) – will be summarized in Tab. II soon.

Case (C) Shen-Alzhrani parametrization.

A third parametrization of the \(\eta_s \)-dependent initial condition was proposed in Refs. [46, 47], which ensures the local energy-momentum conservation during converting the two colliding nuclei into the energy density profile of the produced nuclear medium. The local invariant mass \(M(x, y) \) and the center-of-mass rapidity \(\eta_{CM} \) are respectively defined as,

\[
M(x, y) = m_N\sqrt{T_1^2 + T_2^2 + 2T_1T_2\cosh(2y_{beam})},
\]

\[
y_{CM}(x, y) = \text{arctanh} \left[\frac{T_1 - T_2}{T_1 + T_2} \tanh(y_{beam}) \right],
\]

where \(y_{beam} = \arccosh(\sqrt{\sigma_{NN}/2m_N}) \) is the rapidity of each nucleon inside the colliding nuclei, and \(m_N \) is the nucleon mass.

The local energy density profile is then modeled as [46],

\[
\varepsilon(x, y, \eta_s; y_{CM}) = K \cdot N_c(x, y) \times \exp\left[-\left(\frac{(\eta_s - (y_{CM} - y_L)) - \eta_w}{2\sigma^2_\eta} \right)^2 \times \theta((\eta_s - (y_{CM} - y_L)) - \eta_w) \right],
\]

where \(K \) is the overall normalization factor and \(y_L = f y_{CM} \) with \(f \in [0, 1] \). Here, the transverse density distribution \(N_c \) is determined by the local invariant mass \(M(x, y) \) as

\[
N_c(x, y) = \frac{M(x, y)}{M(0, 0)\sqrt{2\sinh(\eta_w) + \sqrt{2}\sigma_\eta e^{\sigma^2_\eta/2C_\eta}}}.
\]

\[
C_\eta = e^{\eta_w} \text{erfc}\left(-\sqrt{\frac{1}{2}}\sigma_\eta \right) + e^{-\eta_w} \text{erfc}\left(\sqrt{\frac{1}{2}}\sigma_\eta \right),
\]

where \(\text{erfc}(x) \) is the complementary error function.

In Tab. II, we summarize the common parameters that are shared between our three model setups, Case(A), (B) and (C), including the initial time of the hydrodynamic evolution (\(\tau_0 \)), overall normalization factor (\(K \)), collision hardness parameter (\(\alpha \)) used in Case (A) and (B), nucleon-nucleon inelastic cross section (\(\sigma_{NN} \)), rapidity plateau width (\(\eta_w \)) and the width of the Gaussian decay (\(\sigma_\eta \)). They are tuned to provide a reasonable description of the charged hadron pseudo-rapidity distributions in the most central collisions [53], as will be shown in Figs. 7 and 8. Note that in order to compare the three parametrizations above in the same hydrodynamic evolution framework (CLVisc in this work), the parameters tuned here could be different from the original Bozé-Wyskiel work for Case (A) and Shen-Alzhrani work for Case (C). The parameter designed for each specific model – \(\eta_m \) for Case (A), \(H_t \) for Case (B) and \(f \) for Case (C) – will be discussed later when we compare its corresponding model to the charged particle \(v_1 \) data.

Parameter	Au+Au (\(\sqrt{s_{NN}} = 200 \text{ GeV} \))	Pb+Pb (\(\sqrt{s_{NN}} = 2.76 \text{ TeV} \))
\(\tau_0 \) (fm)	0.6	0.6
\(K \) (GeV/fm\(^3\))	35.5	103.0
\(\alpha \)	0.05	0.05
\(\sigma_{NN} \) (mb)	42	64
\(\eta_w \)	1.3	2.0
\(\sigma_\eta \)	1.5	1.8

TABLE II: Common parameters shared between different initial condition parametrizations [53, 58].

The initial fluid velocity at \(\tau_0 \) is assumed to follow the Bjorken approximation in this work as \(v_x = v_y = 0 \) and \(v_z = z/t \), where the initial transverse flow and the asymmetric distribution of \(v_z \) along the \(x \) direction are ignored. More sophisticated initial velocity profiles will be investigated in an upcoming study.

B. Initial energy density, eccentricity and pressure gradient

With the parametrizations above, we first compare the energy density profile between different setups. In Fig. 1, we present the initial energy density at \(\tau_0 = 0.6 \text{ fm} \) on the \(\eta_s - x \) plane for 5-40\% Au+Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \). Three different parametrizations of the initial energy distribution are compared. In order to describe the directed flow of charged particles later, the model parameter \(\eta_m = 2.8 \) is taken for the Bozé-Wyskiel parametrization (top panel) and \(H_t = 2.9 \) for the CCNU parametrization (middle panel), while \(f = 0.15 \) is taken from Ref. [47] for Shen-Alzhrani parametrization (bottom panel). From Fig. 1, we observe...
that parametrizations in our Case (A) and (B) generate similar initial energy density profiles: the distribution is not only shifted in the forward/backward rapidity direction for the positive/negative x region, it is also tilted counter-clockwise relative to $x = 0$ in the η_x-x plane (following the arrow direction in the figure). On the other hand, the distribution from Case (C) only appears shifted horizontally in the rapidity direction. We note that our Case (C) here is similar to the Hirano-Tsuda parametrization [59, 60] as illustrated in Ref. [44].

In order to quantify the asymmetry of the initial energy density distribution with respect to the y-z plane from different models, we present their corresponding first-order eccentricity coefficient ε_1 in Fig. 2 as a function of the space-time rapidity. The first-order eccentricity vector is defined as [15, 46]:

$$\vec{\varepsilon}_1 \equiv \varepsilon_1(\eta_s) e^{i\Psi_1(\eta_s)} = -\int d^2r \vec{r} \varepsilon(r, \phi, \eta_s),$$ \hspace{1cm} (16)

in which the angular distribution is evaluated with respect to the center-of-mass $(x_0(\eta_s), y_0(\eta_s))$ of each rapidity slice given by

$$x_0(\eta_s) = \frac{\int d^2r x \varepsilon(r, \phi, \eta_s)}{\int d^2r \varepsilon(r, \phi, \eta_s)},$$ \hspace{1cm} (17)

$$y_0(\eta_s) = \frac{\int d^2r y \varepsilon(r, \phi, \eta_s)}{\int d^2r \varepsilon(r, \phi, \eta_s)}.$$ \hspace{1cm} (18)

The transverse radius and the azimuthal angle are then defined as $\vec{r}(x, y, \eta_s) = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ and $\phi(x, y, \eta_s) = \arctan((y - y_0)/(x - x_0))$ respectively. In the end, ε_1 in Eq. (16) gives the first-order eccentricity coefficient while Ψ_1 gives the corresponding participant plane angle. The η_s dependence of this $\vec{\varepsilon}_1$ will contribute to explaining what kind of longitudinally deformed fireball is needed to produce the final hadron v_1.

In Fig. 2, one observes similar η_s dependence of ε_1 between Case (A) and (B), they are odd functions of η_s and positive/negative in the $+/- \eta_s$ regime. On the other hand, although ε_1 from Case (C) is also an odd function of η_s, its value is much smaller than that from (A) and (B) within $|\eta_s| < 2$. This will further affect the evolution profile of the nuclear medium in the subsequent hydrodynamic expansion.

In addition to the energy density distribution, we also present the initial pressure gradient $-\partial_x P$ in the transverse plane, which will directly drive the development of radial flow of nuclear matter. Our three model setups are compared in Fig. 3 for the initial $-\partial_x P$ distribution in the x-y plane at a given η_s, where the same parameter values of η_m, H_1, f are used as for Fig. 1. One may clearly observe the positive/negative value of $-\partial_x P$ in the $+/- x$ direction that drives
the outward expansion of the medium. In the top and middle panels, we see that at forward rapidity, the center (zero pressure) regions of these distributions are shifted towards +x for Case (A) and (B) due to the counter-clockwise tilt of the energy density distribution as previously discussed in Fig. 1. To the contrary, such shift is weaker in the bottom panel here for Case (C) due to its different profile of energy density. Whether the average x-component of the final-state hadron momentum will be positive or negative at a given rapidity depends on the average value of this $-\partial_x P$ over the corresponding transverse plane and how it evolves with time. This will be discussed in detail soon in this work.

C. Hydrodynamic evolution

Starting with the initial energy density and flow velocity described above, we use the (3+1)-D viscous hydrodynamic model CLVisc [52–54, 61, 62] to simulate the subsequent evolution of the QGP medium in this work. The hydrodynamic equation reads [22, 63–66]

$$\partial_\mu T^{\mu\nu} = 0,$$

where $T^{\mu\nu}$ is the energy-momentum tensor defined as

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}.$$ (20)

It is composed of the local energy density ε, the fluid four-velocity u^{μ}, the pressure P, the shear stress tensor $\pi^{\mu\nu}$ and the bulk pressure Π. The projection tensor is given by $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}$, and the metric tensor $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$ is used. The hydrodynamic equations are solved together with the lattice QCD Equation of State (EoS) from the Wuppertal-Budapest group (2014) [67], and the shear-viscosity-to-entropy-density ratio is set as $\eta_{s}/s = 0.08$ (note for the shear viscosity) for all collision systems investigated in this work. However, we have ignored effects of bulk viscosity and net baryon density at this moment, which have been incorporated in the recent CLVisc development [68, 69] and will also be taken into account in our follow-up effort.

The isothermal freeze-out condition [53] is applied in the current calculation, where the freeze-out hypersurface is determined by a constant temperature value $T_{\text{fix}} = 137$ MeV. On this hypersurface, hadron spectra are evaluated based on the Cooper-Frye formalism [70]. Contributions from resonance decay have also been taken into account according to Ref. [53].

D. Time evolution of average pressure gradient and flow velocity

Hydrodynamic model describes how the asymmetry of the initial energy density distribution is transferred to the anisotropy of the final-state hadron momentum. In this subsection, using the hydrodynamic simulation, we investigate how the average pressure gradient $-\langle \partial_x P \rangle$ and flow velocity $\langle v_x \rangle$ develop with time at different η_s. This will help understand the origin of directed flow and how it depends on the initial geometry of the nuclear matter.

As previously shown in Fig. 3, the deformation of the initial energy density breaks the symmetry of the pressure gradient along the x direction. In Fig. 4, we study how the average pressure gradient over the transverse plane at a given space-time rapidity (± 0.9 here) evolves with time. Similar to before, nuclear matter produced in 5-40% Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV is used. One finds that the time evolution of $-\langle \partial_x P \rangle$ is significantly affected by the initial condition of the medium. For Case (A) and (B) of our initial parametrization, $-\langle \partial_x P \rangle$ increases from zero with time at $\eta_s = -0.9$ while decreases at $\eta_s = 0.9$, indicating an increasing overall force.

FIG. 3: (Color online) The initial pressure gradient $-\partial_x P$ on the x-y plane at $\tau_0 = 0.6$ fm and $\eta_s = 2.1$ in 5-40% (b = 6.7 fm) Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, compared between three different model setups.
that accelerates the medium expansion toward the \(+x \) direction at \(\eta_s = -0.9 \) while toward the \(-x\) direction at \(\eta_s = 0.9 \). Little difference is observed between the two parametrization methods in Case (A) and (B). To the contrary, Case (C) leads to a qualitatively opposite average pressure gradient, therefore accelerating force, which slightly decreases from zero at \(\eta_s = -0.9 \) while increases at \(\eta_s = 0.9 \). Note that unlike higher-order components of anisotropy, values of eccentricity \(e_1 \) (in Fig. 2) and pressure gradient \(-\langle \partial_x P \rangle\) are not necessarily positively correlated to each other. Due to the tilted deformation of medium profiles in Case (A) and (B), its expansion in space contributes to an overall force on the \(+/−x\) direction at backward/forward rapidity, as intuitively illustrated in Ref. [44]. However, since the initial energy density given by Case (C) is rather symmetric along the \(±x \) direction at small \(|\eta_s| \), different \(-\langle \partial_x P \rangle\) is obtained.

The average pressure gradient can quantitatively or even qualitatively change as \(|\eta_s| \) increases. Shown in Fig. 5 are the time evolution of \(-\langle \partial_x P \rangle\) at \(\eta_s = -2.1 \) (upper panel) and 2.1 (lower panel). Compared to the smaller \(|\eta_s| \) region (Fig. 4), one observes a larger magnitude of the pressure gradient for Case (A) and (B). Meanwhile, a sign flip is also found for Case (C) due to its weaker asymmetric density distribution at smaller space-time rapidity but stronger asymmetric distribution at larger space-time rapidity along \(±x \) direction, as can be seen in the bottom panel of Fig. 1.

A direct outcome of different pressure gradients is the different flow velocities in the corresponding direction. In Fig. 6, we study how the space-time rapidity dependence of the average flow velocity \(\langle v_x \rangle \) develops with time. The average flow velocity at a given time and rapidity can be evaluated as [16, 44],

\[
\langle v_x(\eta_s) \rangle = \frac{1}{\gamma} \int d^2 r v_x \gamma \varepsilon (r, \phi, \eta_s) \int d^2 \varepsilon \varepsilon (r, \phi, \eta_s),
\]

where \(\gamma = 1/\sqrt{1−v_x^2−v_y^2−v_\eta^2} \) is the Lorentz boost factor.

Driven by the pressure gradient \(-\langle \partial_x P \rangle\) previously shown in Figs. 4 and 5, the average flow velocity \(\langle v_x \rangle \) in Fig. 6 is positive/negative at backward/forward rapidity for Case (A) and (B). The magnitude of \(\langle v_x \rangle \) increases with time as that of the pressure gradient does. A larger \(|−\langle \partial_x P \rangle|\) generates a larger \(\langle v_x \rangle \) at \(|\eta_s| \) around \(|\eta_s| \approx 2 \) than around \(|\eta_s| \approx 1 \). In contrast, \(\langle v_x \rangle \) from Case (C) shows opposite sign to that from Case (A) and (B) at small \(|\eta_s| \), while the same sign beyond \(|\eta_s| \approx 2 \). This is also consistent with the behaviors of the average pressure gradient at different space-time rapidity from Case (C). The average flow velocity of the QGP medium here will directly contribute to the directed flow coefficient of the final-state hadrons emitted from the QGP.
III. CHARGED PARTICLE YIELD AND DIRECTED FLOW

With the above setup of energy density initialization and hydrodynamic simulation, we present our results of charged particle yield and directed flow in this section. In particular, we investigate how the directed flow depends on the energy density distribution of the initial state.

To start with, we validate our model setup by comparing to the pseudorapidity distribution of the final-state charged particles in Fig. 7 (for RHIC) and Fig. 8 (for LHC). As discussed earlier, the model parameters summarized in Tab. II are adjusted to describe these charged particle distributions in the most central collisions at RHIC and LHC. As shown in the figures, after the hydrodynamic parameters are fixed for 0-6% Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and 0-5% Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, our calculation provides reasonable descriptions of the PHOBOS data [71] on the $dN_{ch}/d\eta$ distributions in other centralities at RHIC and the ALICE data [72] at LHC. The same set of parameters in Tab. II can be applied to the three initial condition models under investigation. This provides a reliable baseline for our further study of the directed flow coefficient.

In the end, we present results on the charged particle directed flow v_1 as functions of pseudorapidity. Here $v_1(\eta)$ is calculated via,

$$v_1(\eta) = \langle \cos(\phi - \Psi_1) \rangle = \frac{\int \cos(\phi - \Psi_1) \frac{dN}{d\eta d\phi} d\phi}{\int \frac{dN}{d\eta d\phi} d\phi},$$ \hspace{1cm} (22)
where Ψ_1 is the first-order event plane of the collision [44]. Since we use the optical Glauber model (described in Sec. II A) to initialize the energy density distribution of the QGP, event-by-event fluctuations are ignored in this work. As a result, the event plane here should be the same as the spectator plane determined using the deflected neutrons in realistic experimental measurements. A more consistent analysis should be conducted in our future work after event-by-event fluctuations are introduced. The charged particle v_1 is sensitive to the deformation of the initial energy density, which is governed by η_m in the Bozék-Wyskiel parametrization, H_t in the CCNU parametrization and f in the Shen-Alzhrani parametrization, as described in Sec. II A.

In Case (A), η_m determines the forward-backward correlation length [44, 73]. A larger value of η_m in Eq. (5) yields a weaker tilt of the initial energy density distribution thus a smaller value of charged particle v_1. In Case (B), an alternative way of constructing the tilted initial condition is proposed. A larger value of H_t in Eq. (6) results in a more tilted initial energy distribution and therefore a larger magnitude of v_1 in the end. In Case (C), the parameter f varies the longitudinal extent of the fireball and affects the net longitudinal momentum of the hydrodynamic fields [47]. For a given collision system in a given centrality, a larger f leads to a smaller magnitude of v_1, which is constrained by experimental data. Values of these three parameters used in our calculation are summarized in Tab. III. These parameters only affect the deformation of the medium geometry, but have very weak impact on the $dN_{ch}/d\eta$ distributions that have already been fixed by parameters in Tab. II.

Using these parameters, we show the charged particle v_1 in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in Fig. 9, upper panel for 5-40% centrality and lower for 30-60%. We observe parametrizations in our Case (A) and (B) result in comparable charged particle v_1 within $-2 < \eta < 2$, which is also consistent with the STAR data. As expected, the sign of the charged particle v_1 is consistent with that of the average flow velocity v_x of the QGP fluid – positive/negative at backward/forward
Table III: Parameters used in different initial condition models for describing the directed flow coefficient measured at RHIC and LHC. The average impact parameters (b) are used for different centrality bins.

200 GeV $\sqrt{s_{NN}}=2.76$ TeV	b (fm)	η_{in}	H_t	f
Au+Au	6.69	2.80	2.90	0.15
5-40%	9.70	2.10	4.30	0.15
Au+Au	6.50	12.10	0.70	0.05
30-60%	9.40	12.00	0.70	0.05
Pb+Pb	2.76 TeV	0.15	0.05	0.05
10-20%	Pb+Pb			
30-40%				

As we mentioned in Refs. [46, 47], introducing net baryon current into hydrodynamic simulation, varying the η_{in} and σ_t parameters in Eq. (14), or taking into account hadronic rescatterings after the QGP phase may further affect the charged particle v_1, or even flip its sign in the mid-η region. These effects are not the focus of our present study on the medium geometry effects and will be left for a future investigation.

In the present study, the directed flow coefficients above are analyzed with soft hadrons within $0 < p_T < 3.5$ GeV. Since we use the smooth initial condition from the optical Gläuber model, our discussion is restricted to the rapidity-odd component of v_1 here. The rapidity-even component, including its non-trivial p_T dependence even at mid-rapidity [75–77] is beyond the scope of this work.

IV. SUMMARY AND OUTLOOK

In this work, we have performed a systematic study on how the geometry of the initial energy density profile affects the charged particle directed flow in high-energy nuclear collisions. Three different parametrization setups – Case (A) Bozék-Wyskiel, Case (B) CCNU and Case (C) Shen-Alzhrani – are compared for the initial energy density distribution, and their subsequent time evolutions are simulated using the (3+1)-D viscous hydrodynamic model CLVis.

Within this framework, we have found the counterclockwise tilt of the initial energy density profile in the x-η_s plane, as generated by our Case (A) and (B), yields an increasing/decreasing average pressure gradient $-\langle \partial_x P \rangle$ from zero with respect to time at backward/forward rapidity. The magnitude of this pressure gradient appears larger at larger $|\eta_s|$. This further leads to a negative slope of the average QGP flow velocity $\langle v_x \rangle$ with respect to the space-time rapidity within $|\eta_s| < 2$, and in the end the same behavior of v_1 vs. η of the final-state charged particles emitted from the QGP. In contrast, without the tilted deformation in the central space-time rapidity region, the shifted initial geometry along the longitudinal direction alone in Case (C) results in the opposite sign of the x-component of the average pressure gradient, therefore the average QGP flow velocity and in the end the charged particle v_1 at mid-η_s (or η). At large space-time rapidity, the stronger deformation from Case (C) can also generate similar time and η_s (η) dependence of the above quantities as Case (A) and (B). A comparison to the RHIC and LHC data indicates the essential role of the tilted initial energy density profile in helping understand the observed charged particle v_1. We note that the correct sign of $-\langle \partial_x P \rangle$ at backward/forward rapidity is the key that drives the final directed flow of soft hadrons. This is more important than the detailed form of how to parametrize the initial condition. Alternative parametrization methods other than the tilted profile may exist, which lead to the similar η_s dependence of the pressure gradient.
Our study constitutes a step forward in revealing the source of the directed flow generated in relativistic heavy-ion collisions. Nevertheless, apart from the titled deformation of the initial geometry, other sources exist for the development of directed flow. For instance, (1) deviations from the Bjorken flow in the initial condition could provide additional contribution to the directed flow \cite{[47]}. In particular, they could affect the flow pattern of baryons and thus the bulk medium profile \cite{[44]}. (2) The strong electromagnetic field produced in the early stage of non-central heavy-ion collisions results in deflection of charged particles and influence the charged particle v_1 \cite{[73, 78, 79]}, although this effect is suggested small compared to the titled initial geometry \cite{[73]}. (3) The charged particle v_1 can also be contributed by the initial decelerated baryons and hadronic cascade after the QGP phase, especially at lower collision energy \cite{[46, 47]}. Moreover, a combination of hydrodynamic model and afterburner hadronic transport, such as UrQMD \cite{[68, 80] and SMASH \cite{[69, 81]}, are found necessary for more stringent constraints on the initial stage of nuclear collisions. These should be incorporated in our future calculation for a more precise understanding of the directed flow.

Acknowledgments

We are grateful for helpful discussions with Chun Shen, Jiaxing Zhao, Guang-You Qin and Long-Gang Pang. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11935007, 12175122 and 2021-867, Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008, the Natural Science Foundation of Hubei Province No. 2021CFB272, the Education Department of Hubei Province of China with Young Talents Project No. Q20212703 and the Xiaogan Natural Science Foundation under Grant No. XGKJS2021010016. Computational resources were provided by the Center of Scientific Computing at the Department of Physics and Electronic-Information Engineering, Hubei Engineering University.

\begin{thebibliography}{99}
\bibitem{[1]} S. S. Adler et al. Elliptic flow of identified hadrons in Au+Au collisions at s(NN)**(1/2) = 200-GeV. \textit{Phys. Rev. Lett.}, 91:182301, 2003.
\bibitem{[2]} K Aamodt et al. Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV. \textit{Phys. Rev. Lett.}, 105:252302, 2010.
\bibitem{[3]} S. Chatrchyan et al. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\sqrt{s_{NN}}$=2.76 TeV. \textit{Phys. Rev. C}, 87(1):014902, 2013.
\bibitem{[4]} Jean-Yves Ollitrault. Anisotropy as a signature of transverse collective flow. \textit{Phys. Rev. D}, 46:229–245, 1992.
\bibitem{[5]} Dirk H. Rischke, S. Bernard, and J. A. Maruhn. Relativistic hydrodynamics for heavy ion collisions. 1. General aspects and expansion into vacuum. \textit{Nucl. Phys. A}, 595:346–382, 1995.
\bibitem{[6]} H. Sorge. Elliptical flow: A Signature for early pressure in ultrarelativistic-nucleus-nucleus collisions. \textit{Phys. Rev. Lett.}, 78:2309–2312, 1997.
\bibitem{[7]} S.A. Bass, My. Gyulassy, H. Stoecker, and W. Greiner. Signatures of quark gluon plasma in high-energy heavy ion collisions: A Critical review. \textit{J. Phys. G}, 25:R1–R57, 1999.
\bibitem{[8]} C. E. Aguiar, Y. Hama, T. Kodama, and T. Osada. Event-by-event fluctuations in hydrodynamical description of heavy ion collisions. \textit{Nucl. Phys. A}, 698:639–642, 2002.
\bibitem{[9]} E. Shuryak. Does the quark gluon plasma at RHIC behave as a nearly ideal fluid? \textit{Prog. Part. Nucl. Phys.}, 53:273–303, 2004.
\bibitem{[10]} M. Gyulassy and L. McLerran. New forms of QCD matter discovered at RHIC. \textit{Nucl. Phys. A}, 750:30–63, 2005.
\bibitem{[11]} W. Broniowski, P. Bozek, and M. Rybczynski. Fluctuating initial conditions in heavy-ion collisions from the Glauber approach. \textit{Phys. Rev. C}, 76:054905, 2007.
\bibitem{[12]} R. P. G. Andrade, F. Grassi, Y. Hama, T. Kodama, and W. L. Qian. Importance of Granular Structure in the Initial Conditions for the Elliptic Flow. \textit{Phys. Rev. Lett.}, 101:112301, 2008.
\bibitem{[13]} T. Hirano and Y. Nara. Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions. \textit{Phys. Rev. C}, 79:064904, 2009.
\bibitem{[14]} B. Schenke, Sangyong Jeon, and C. Gale. Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics. \textit{Phys. Rev. Lett.}, 106:042301, 2011.
\bibitem{[15]} Zhi Qiu and Ulrich W. Heinz. Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. \textit{Phys. Rev. C}, 84:024911, 2011.
\bibitem{[16]} U. Heinz and R. Snellings. Collective flow and viscosity in relativistic heavy-ion collisions. \textit{Ann. Rev. Nucl. Part. Sci.}, 63:123–151, 2013.
\bibitem{[17]} P. Huovinen. Hydrodynamics at RHIC and LHC: What have we learned? \textit{Int. J. Mod. Phys. E}, 22:1330029, 2013.
\bibitem{[18]} C. Gale, Sangyong Jeon, and B. Schenke. Hydrodynamic Modeling of Heavy-Ion Collisions. \textit{Int. J. Mod. Phys. A}, 28:1340011, 2013.
\bibitem{[19]} P. Bozek and W. Broniowski. Collective dynamics in high-energy proton-nucleus collisions. \textit{Phys. Rev. C}, 88(1):014903, 2013.
\bibitem{[20]} Guang-You Qin and B. Müller. Elliptic and triangular flow anisotropy in deuteron-gold collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC and in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV at the LHC. \textit{Phys. Rev. C}, 89(4):044902, 2014.
\bibitem{[21]} K. Dusling, Wei Li, and B. Schenke. Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. \textit{Int. J. Mod. Phys. E}, 25(01):1630002, 2016.
\bibitem{[22]} P. Romatschke and U. Romatschke. \textit{Relativistic Fluid Dynamics In and Out of Equilibrium}. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 5 2019.
\bibitem{[23]} R. D. Weller and P. Romatschke. One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at \sqrt{s} = 5.02 TeV. \textit{Phys. Lett. B}, 774:351–356, 2017.
\bibitem{[24]} Wenbin Zhao, Che Ming Ko, Yu-Xin Liu, Guang-You Qin, and Huichao Song. Probing the Partonic Degrees of Freedom in High-Multiplicity $p+Pb$ and Pb+Pb collisions at \sqrt{s} = 5.02 TeV. \textit{Phys. Rev. Lett.}, 125(7):072301, 2020.
\bibitem{[25]} Huichao Song, Steffen A. Bass, Ulrich Heinz, Tetsufumi Hirano, and Chun Shen. 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid. \textit{Phys. Rev. Lett.}, 106:192301, 2011. [Erratum: Phys.Rev.Lett. 109, 139904 (2012)].
\bibitem{[26]} Jonah E. Bernhard, J. Scott Moreland, and Steffen A. Bass.
\end{thebibliography}
Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nature Phys., 15(11):1113–1117, 2019.

[27] S. Voloshin and Y. Zhang. Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Z. Phys. C, 70:665–672, 1996.

[28] A. Bilandzic, R. Snellings, and S. Voloshin. Flow analysis with cumulants: Direct calculations. Phys. Rev. C, 83:044913, 2011.

[29] M. Gyulassy, A. K. Frankel, and Horst Stoecker. DO NUCLEI FLOW AT HIGH-ENERGIES? Phys. Lett. B, 110:185–188, 1982.

[30] A. Gustafsson et al. Collective Flow Observed in Relativistic Nuclear Collisions. Phys. Rev. Lett., 52:1590–1593, 1984.

[31] Michael Annan Lisa, Ulrich W. Heinz, and Urs Achim Wiedemann. Tilted pion sources from azimuthally sensitive HBT interferometry. Phys. Lett. B, 489:287–292, 2000.

[32] J. Adams et al. Azimuthal anisotropy in Au+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. C, 72:014904, 2005.

[33] L. Adamczyk et al. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions. Phys. Rev. Lett., 112(16):162301, 2014.

[34] L. Adamczyk et al. Beam-Energy Dependence of the Directed Flow of Λ, Ν, K+, K0, and φ in Au+Au Collisions. Phys. Rev. Lett., 120(6):062301, 2018.

[35] J. Adam et al. First Observation of the Directed Flow of D0 and D+ in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV. Phys. Rev. Lett., 123(16):162301, 2019.

[36] S. Acharya et al. Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC. Phys. Rev. Lett., 125(2):022301, 2020.

[37] Jaroslav Adam et al. Bulk properties of the system formed in Au + Au collisions at $\sqrt{s_{NN}} =14.5$ GeV at the BNL STAR detector. Phys. Rev. C, 101(2):024905, 2020.

[38] S. Singha, H. Niemi, A. Ohnishi, and H. Stöcker. Examination of directed flow as a signature of the softest point of the equation of state in QCD matter. Phys. Rev. C, 94(3):034906, 2016.

[39] S. Chatterjee and P. Bozek. Large directed flow of open charm mesons probes the three dimensional distribution of matter in heavy ion collisions. Phys. Rev. Lett., 120(19):192301, 2018.

[40] Chao Zhang, Jianmin Chen, Xiaofeng Luo, Feng Liu, and Y. Nara. Beam energy dependence of the squeeze-out effect on the directed and elliptic flow in Au + Au collisions in the high baryon density region. Phys. Rev. C, 97(6):064913, 2018.

[41] Chong-Qiang Guo, Chun-Jian Zhang, and Jun Xu. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model. Eur. Phys. J. A, 53(12):233, 2017.

[42] A. Adil and M. Gyulassy. 3D jet tomography of twisted strongly coupled quark gluon plasma. Phys. Rev. C, 72:034907, 2005.

[43] P. Bozek and I. Wyskiel. Directed flow in ultrarelativistic heavy-ion collisions. Phys. Rev. C, 81:054902, 2010.

[44] Baoyo Chen, Maxoin Hu, Huanyu Zhang, and Jiaxing Zhao. Probe the tilted Quark-Gluon Plasma with charmonium directed flow. Phys. Lett. B, 802:135271, 2020.

[45] Chun Shen and S. Alzhrani. Collision geometry based 3D initial condition for relativistic heavy-ion collisions. Phys. Rev. D, 102(1):014909, 2020.

[46] Sangwook Ryu, Vahidin Jupic, and Chun Shen. Probing early-time longitudinal dynamics with the Λ hyperon’s spin polarization in relativistic heavy-ion collisions. Phys. Rev. C, 104(5):054908, 2021.

[47] S. Chatterjee and P. Bozek. Interplay of drag by hot matter and electromagnetic force on the directed flow of heavy quarks. Phys. Lett. B, 798:134955, 2019.

[48] A. Beraudo, A. De Pace, M. Monteno, M. Nardi, and F. Prino. Rapidity dependence of heavy-flavour production in heavy-ion collisions within a full 3+1 transport approach: quenching, elliptic and directed flow. JHEP, 05:279, 2021.

[49] Lucia Oliva, S. Plumari, and V. Greco. Directed flow of D mesons at RHIC and LHC: non-perturbative dynamics, longitudinal bulk matter asymmetry and electromagnetic fields. JHEP, 05:034, 2021.

[50] Ze-Fang Jiang, C. B. Yang, and Qi Peng. Directed flow of charged particles within idealized viscous hydrodynamics at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C, 104(6):064903, 2021.

[51] Long-Gang Pang, H. Petersen, Qun Wang, and Xin-Nian Wang. Vortical Fluid and A Spin Correlations in High-Energy Heavy-Ion Collisions. Phys. Rev. Lett., 117(19):192301, 2016.

[52] Long-Gang Pang, H. Petersen, and Xin-Nian Wang. Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics. Phys. Rev. C, 97(6):064918, 2018.

[53] Xiang-Yu Wu, Long-Gang Pang, Guang-You Qin, and Xin-Nian Wang. Longitudinal fluctuations and decorrelations of anisotropic flows at energies available at the CERN Large Hadron Collider and at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C, 98(2):024913, 2018.

[54] B.I. Abelev et al. System-size independence of directed flow at the Relativistic Heavy-Ion Collider. Phys. Rev. Lett., 101:252301, 2008.

[55] B. Abelev et al. Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at $\sqrt{s_{NN}} =2.76$ TeV. Phys. Rev. Lett., 111(23):232302, 2013.

[56] Piotr Bozek. Flow and interferometry in 3+1 dimensional viscous hydrodynamics. Phys. Rev. C, 85:034901, 2012.

[57] C. Loizides, J. Kamin, and D. d’Enterria. Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C, 97(5):054910, 2018. [Erratum: Phys.Rev.C 99, 019901 (2019)].

[58] T. Hirano and K. Tsuda. Collective flow and two pion correlations from a relativistic hydrodynamic model with early chemical freezeout. Phys. Rev. C, 66:054905, 2002.

[59] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey, and Y. Nara. Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions. Phys. Lett. B, 636:299–304, 2006.

[60] Wei Chen, Shanshan Cao, Tan Luo, Long-Gang Pang, and Xin-Nian Wang. Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions. Phys. Lett. B, 777:86–90, 2018.

[61] Yayun He, Long-Gang Pang, and Xin-Nian Wang. Bayesian extraction of jet energy loss distributions in heavy-ion collisions. Phys. Rev. Lett., 122(25):252302, 2019.

[62] Ze Fang Jiang, Duan She, C.B. Yang, and Defu Hou. Perturbation solutions of relativistic viscous hydrodynamics forlongitudinally expanding fireballs. Chin. Phys. C, 44(8):084107, 2020.

[63] Ze Fang Jiang, C.B. Yang, Chi Ding, and Xiang-Yu Wu. Pseudo-rapidity distribution from a perturbative solution of viscous hydrodynamics for heavy ion collisions at RHIC and LHC. Chin. Phys. C, 42(12):123103, 2018.

[64] G.S. Denicol, H. Niemi, E. Molnar, and D.H. Rischke. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D, 85:114047, 2012. [Erratum: Phys.Rev.D 91, 039902 (2015)].
[66] P. Romatschke. New Developments in Relativistic Viscous Hydrodynamics. *Int. J. Mod. Phys. E.*, 19:1–53, 2010.

[67] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo. Full result for the QCD equation of state with 2+1 flavors. *Phys. Lett. B*, 730:99–104, 2014.

[68] Wenbin Zhao, Weiyao Ke, Wei Chen, Tan Luo, and Xin-Nian Wang. From Hydrodynamics to Jet Quenching, Coalescence, and Hadron Cascade: A Coupled Approach to Solving the RAA\&v2 Puzzle. *Phys. Rev. Lett.*, 128(2):022302, 2022.

[69] Xiang-Yu Wu, Guang-You Qin, Long-Gang Pang, and Xin-Nian Wang. (3+1)-D viscous hydrodynamics CLVisc at finite net baryon density: identified particle spectra, anisotropic flows and flow fluctuations across BES energies. *arXiv: 2107.04949*.

[70] F. Cooper and G. Frye. Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production. *Phys. Rev. D*, 10:186, 1974.

[71] B. Alver et al. Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies. *Phys. Rev. C*, 83:024913, 2011.

[72] J. Adam et al. Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at \(\sqrt{\text{S}_{\text{NN}}} = 2.76 \) TeV. *Phys. Lett. B*, 754:373–385, 2016.

[73] G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna, D. E. Kharzeev, and M. Bleicher. Magnetic fields in heavy ion collisions: flow and charge transport. *Eur. Phys. J. C*, 80(3):293, 2020.

[74] Chun Shen. *private communications*.

[75] Derek Teaney and Li Yan. Triangularity and Dipole Asymmetry in Heavy Ion Collisions. *Phys. Rev. C*, 83:064904, 2011.

[76] Matthew Luzum and Jean-Yves Ollitrault. Directed flow at midrapidity in heavy-ion collisions. *Phys. Rev. Lett.*, 106:102301, 2011.

[77] Charles Gale, Sangyong Jeon, Björn Schenke, Prithwish Tribedy, and Raju Venugopalan. Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. *Phys. Rev. Lett.*, 110(1):012302, 2013.

[78] U. Gursoy, D. E. Kharzeev, and K. Rajagopal. Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. *Phys. Rev. C*, 89(5):054905, 2014.

[79] U. Gürsoy, D. E. Kharzeev, E. Marcus, K. Rajagopal, and Chun Shen. Charge-dependent Flow Induced by Magnetic and Electric Fields in Heavy Ion Collisions. *Phys. Rev. C*, 98(5):055201, 2018.

[80] S.A. Bass et al. Microscopic models for ultrarelativistic heavy ion collisions. *Prog. Part. Nucl. Phys.*, 41:255–369, 1998.

[81] H. Petersen, D. Oliinychenko, M. Mayer, J. Staudenmaier, and S. Ryu. SMASH – A new hadronic transport approach. *Nucl. Phys. A*, 982:399–402, 2019.