Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SINCE THE INTRODUCTION OF INTRAVITREAL ANTI-
vascular endothelial growth factor (anti-VEGF)
therapy, intravitreal injections have become one of
the most commonly performed procedures in all of medi-
cine.1 Although these medications have excellent safety
profiles, acute bacterial endophthalmitis remains an un-
common but visually devastating complication.2 Multiple
studies have evaluated potential risk factors associated
with postinjection endophthalmitis.3–7 In particular,
previous studies have established that the dispersion of
oral flora may be reduced by minimizing speaking during
the procedure and thereby reduce the incidence of oral
flora–associated endophthalmitis.7

Previous experimental investigations involving
simulated intravitreal injections suggest that face
mask use by physicians may reduce bacterial dispersion
associated with speech.8,9 However, it is unknown
how patient face mask use may affect bacterial disper-
sion. These findings are of particular importance given
that during the COVID-19 pandemic universal pre-
cations have been established for patients and physi-
cians to wear face masks in order to decrease potential
exposure to coronavirus through respiratory
secretions.10,11

However, there is concern that face mask use by patients
during an intravitreal injection may result in increased bac-
terial dispersion toward the eye. Previous studies have sug-
gested that different face mask designs may result in upward
or downward bacterial dispersion.12,13 Furthermore, in
response to the critical shortage of medical face masks
resulting from the COVID-19 pandemic, many patients
may be wearing homemade cloth masks as recommended
by the U.S. Centers for Disease Control and Prevention.14
It is unknown how these types of face masks affect the de-
gree of bacterial dispersion. The purpose of this study is to
investigate the amount of bacterial dispersion associated
with various patient face mask designs during simulated
intravitreal injections.
METHODS

OVERVIEW: This prospective, cross-sectional, single-center study was conducted in accordance with the tenets of the Declaration of Helsinki and conformed to the Health Insurance Portability and Accountability Act. The protocol was prospectively approved by Wills Eye Hospital institutional review board, and all participants provided written informed consent.

STUDY PARTICIPANTS: Fifteen healthy subjects were recruited to participate in the study as previously described. Inclusion criteria included subjects ≥18 years of age with the ability to read a standardized script for 2 minutes. All subjects had previously received fit-testing for N95 face masks based on the U.S. Occupational Safety and Health Administration guidelines. Exclusion criteria included any subject with a history of upper respiratory symptoms, fever, cough, or chills within the past 2 weeks.

STUDY DESIGN: Each subject was seated in an ophthalmologic examination chair in a standard examination lane at an outpatient ophthalmology office. The examination chair was reclined until the volunteer's face was approximately 45° from to the ground. A standardized 100-mm circular blood agar plate (BD BBL TSA II 5% sheep blood; Becton, Dickinson and Co, Franklin Lakes, New Jersey, USA) was then secured on the subject's forehead. Twelve scenarios were then tested. Six scenarios simulated a “no talking” policy in which the subjects were instructed to sit in silence for 2 minutes while breathing with their mouth closed. After completing the no talking scenarios, subjects were instructed to read a standardized script for 2 minutes for each of the 6 scenarios. For both the no talking and speaking scenarios, the face mask conditions included the following: 1) wearing no face mask; 2) wearing a loose-fitting surgical face mask (Halyard tie-on surgical mask; Halyard, Alpharetta, Georgia, USA; Figure 1, A); 3) wearing a tight-fitting surgical face mask (Halyard tie-on surgical mask; Figure 1, B) with the enclosed nosepiece conforming to the contour of the face; 4) wearing a tight-fitting surgical face mask (Halyard tie-on surgical mask; Figure 1, C) with the enclosed nosepiece conforming to the contour of the face and adhesive tape (Medical Tape McKesson Paper; McKesson Medical-Surgical, Irving, Texas, USA) securing the entire top portion of the face mask; 5) wearing an N95 face mask (3M Particulate Respirator 8210; 3M, St Paul, Minnesota, USA); and 6) wearing a cloth face mask (Amazon Reusable Cotton Face Mask B0891XJV1K; Amazon, Seattle, Washington, USA).

All blood agar plates were sealed and taken to Jefferson Clinical Microbiology Laboratory at Thomas Jefferson University where they were incubated for 72 hours at 37°C in a 5% carbon dioxide-rich environment. The number of bacterial colonies per plate was counted, and bacteria were identified using standard laboratory techniques by microbiologists who were masked to the plate collection.

FIGURE 1. Design of the surgical face masks used during the simulated intravitreal injections. A. Loose-fitting surgical face mask that does not have the nosepiece conforming to the contour of the face and has large openings along the sides of the mask. B. Tight-fitting surgical face mask with the nosepiece conforming to the entire contour of the face. C. Tight-fitting surgical face mask with the enclosed nosepiece conforming to the entire contour of the face and adhesive tape securing the entire top portion of the face mask.
sequence. No organisms were excluded from analysis, and a culture was oral flora–associated when Enterococcus or Streptococcus species was grown on culture.

STATISTICAL ANALYSIS: All data were analyzed using SPSS software (version 25; IBM Corp, Armonk, New York, USA).

The mean difference of colony-forming units (CFUs) and 95% confidence intervals (CIs) among the groups were analyzed using analysis of variance with adjustment for multiple comparisons using a Bonferroni correction. For categorical variables, significant differences between groups were analyzed using the Pearson χ² or Fisher exact tests. Pairwise comparisons between the no talking scenario and speech scenarios were performed using a paired Student t test with adjustment for unequal variances. Statistical significance was considered to be a 2-sided P value < .05.

RESULTS

FIFTEEN SUBJECTS WERE RECRUITED FOR THE STUDY, AND A total of 180 blood agar plates were successfully incubated. Overall, the mean ± standard deviation (SD) (range) CFU was 0.56 ± 0.88 (0-4) in the no talking scenarios compared with 0.83 ± 0.95 (0-6) in the speech scenarios (P = .044).

BACTERIAL DISPERSION DURING NO TALKING CONDITIONS: Figure 2, A shows the CFUs under the no talking scenario among the different face mask conditions. During the no talking scenario, subjects with tight-fitting face mask without tape grew the most colonies with a total of 17 CFUs or a mean ± SD of 1.13 ± 1.60 per subject. In contrast, during the no talking scenario, subjects with a tight-fitting face mask with adhesive tape or those with an N95 mask both grew the fewest number of colonies with a total of 3 CFUs or a mean ± SD of 0.20 ± 0.56 and 0.20 ± 40 per subject, respectively. Notably, during the no talking scenario, subjects wearing an N95 mask grew fewer CFUs compared with subjects wearing a tight-fitting face mask without tape (mean difference 0.93 [95% CI 0.32-1.55]; P = .003). In addition, during the no talking scenario, subjects wearing a tight-fitting face mask with tape grew fewer CFUs compared with subjects wearing a tight-fitting face mask without tape (mean difference 0.93 [95% CI 0.32-1.55]; P = .003). However, during the no talking scenario, there was no difference between subjects wearing the tight-fitting face mask with tape and subjects wearing an N95 mask (difference 0 [95% CI −0.62 to 0.62]; P > .99).

During the no talking scenario, there was no significant difference in mean CFUs between the no face mask and the loose-fitting face mask group (P = .831), between the no face mask and tight-fitting face mask groups (P = .089), between the no face mask and tight-fitting face mask with adhesive tape groups (P = .201), between the no face mask and N95 face mask groups (P = .201), and between the no face mask and cloth face mask groups (P = .831).

BACTERIAL DISPERSION DURING SPEECH CONDITIONS: Figure 2, B shows the mean CFUs under the speech scenario among the different face mask conditions. During the speech scenarios, subjects wearing a tight-fitting face mask without tape grew the most colonies with a total of...
A total of 125 CFUs were isolated with 50 isolated during the no talking scenario and 75 isolated in the speech scenario. Of the 50 CFUs in the no talking group, 0 of 50 (0%) were from oral flora, whereas 8 of 75 (11%) CFUs in the speech group were from oral flora ($P = .02$). The most common organisms isolated in the no talking scenario were Staphylococcal species (32/50, 64%).

In the speech scenarios, the most common organism isolated in the no talking scenario were Staphylococcal species (38/75, 51%). In the speech scenarios, 8 oral flora organisms were isolated with 4 of the cases in the no face mask scenario, and 4 cases in the tight-fitting face mask without adhesive tape scenario. Causative oral flora organisms included 3 colonies of Streptococcus mitis, 3 colonies of Streptococcus viridans, and 2 colonies of undifferentiated Streptococcus.

DISCUSSION

The COVID-19 pandemic has necessitated universal face mask protocols for infection control, which has resulted in significant interest in understanding face mask effectiveness from various disciplines, including ophthalmology. However, there are few data on how patient face mask use may alter bacterial dispersion during an intravitreal injection, which subsequently may affect the risk of postinjection endophthalmitis. In this experimental study of bacterial dispersion during a simulated intravitreal injection scenario with 6 different face masks, we found that subjects wearing tight-fitting face masks without adhesive tape covering the superior portion of the mask grew the most bacterial organisms under both no talking and speech scenarios. However, the introduction of adhesive tape to secure the superior portion of the same tight-fitting face mask significantly reduced the amount of bacterial dispersion toward the eyes. Furthermore, the introduction of adhesive tape to secure the superior portion of a tight-fitting face mask resulted in no statistically significant difference.
in bacterial dispersion compared with bacterial dispersion with an N95 face mask.

We assessed the number of CFUs under no talking conditions to simulate the clinical practice of a no talking policy in which intravitreal injections are administered under a strict policy of silence, such that the physician, patient, and others in the room do not speak during the injection procedure. Under the no talking condition, bacterial growth around the subject’s eye was highest when wearing a tight-fitting face mask without adhesive tape, and the source of bacteria in these no talking scenarios may be from the subject’s natural breathing. A known physiologic reaction to stress and anxiety is to hyperventilate, which some patients routinely do as they are anticipating an intravitreal injection—wearing a mask may contribute to this phenomenon. However, bacterial growth was significantly reduced when subjects wore the same tight-fitting face mask but had adhesive tape attached over the entire superior portion of the face mask. The bacterial growth was reduced such that the addition of adhesive tape to the tight-fitting face mask resulted in similar rates of bacterial growth compared with those wearing an N95 face mask.

A previous study on face mask use by the injector during simulated intravitreal injections reported that subjects speaking without a face mask resulted in an increased proportion of bacterial colony growth. The current study evaluated bacterial growth under speech scenarios where subjects were instructed to read a 2-minute standardized script while wearing various face masks. Regardless of the type of face mask worn, subjects in the speech scenarios had significantly greater bacterial growth compared with the no talking scenarios. Specifically, subjects wearing no face masks had greater bacterial growth in the speech scenario compared with the no talking scenario. These findings underscore the importance of a speech reduction policy when intravitreal injections are administered. Furthermore, within the various speech scenarios, subjects wearing N95 face masks and tight-fitting face masks with adhesive tape had significantly fewer CFUs compared with subjects wearing no face masks, loose face masks, and tight-fitting face masks without tape. Current guidelines from the U.S. Centers for Disease Control and Prevention at the time of writing recommend cloth face covering, which may not adhere to the face as well.

Our study found similar rates of bacterial dispersion with cloth-based face mask use in both scenarios. Although we did not assess the effect of adhesive tape for cloth face masks, future studies may be indicated to evaluate these specific scenarios given the findings of this study.

In both the no talking and speech scenarios, subjects wearing a tight-fitting face mask without tape had the highest bacterial growth—similar to, or even higher than, not wearing any mask. It is possible that the tight-fitting face without tape may result in a greater amount of bacterial dispersion upward toward the subject’s eye. Indeed, a recent study assessing respiratory droplet velocities with face mask use during simulated coughs reported that even with tight-fitting face masks, small openings can lead to leakage of droplets around the mask. However, our study suggests that securing the superior portion of the same, tight-fitting face mask with adhesive tape significantly decreased the amount of bacterial growth, suggesting that securing the superior portion of the mask with tape may create an important barrier for upward bacterial dispersion.

Although all forms of endophthalmitis are visually threatening, oral flora–associated endophthalmitis is associated with a particularly poor prognosis. Previous clinical studies have established that oral flora–associated endophthalmitis may be reduced with the implementation of a strict no talking policy by the physician and patient during intravitreal injection administration. Refraining from speaking during an intravitreal injection is thought to minimize the potential to contaminate the uncapped needle or conjunctival surface with oral flora immediately before or during the injection. Indeed, in our study, there were no cases of oral flora isolated during the no talking scenarios, which further supports the efficacy of a speech reduction policy to reduce the risk of oral flora–associated endophthalmitis. In contrast, during the speech scenarios, oral flora were isolated when subjects were speaking without a face mask or speaking with a tight-fitting face mask without tape, which parallel a previous study showing high rates of oral flora growth during similar scenarios.

Our study has several limitations. Blood agar plates were used for bacterial quantification and identification. However, these plates do not precisely reproduce the target field of the ocular surface. Furthermore, we standardized the distance between the agar plate and the eye, the duration of speech, and the positioning of the face mask, but in real-world clinical scenarios there may be significant variability in all of these clinical factors. For example, previous studies have reported that the tendency to wiggle one’s face beneath a surgical mask may increase bacterial dispersion and shedding, presumably from the beard and facial skin. Another limitation is that the speech scenarios had the subject read a script for 2 minutes, which is likely more time than any patient would spend speaking during an intravitreal injection. However, 2 minutes may be realistic when considering the preparation time for an intravitreal injection during which the patient may be speaking. Furthermore, previous studies have suggested that bacterial dispersal can occur even with shorter durations of speech.

Another limitation is that our study included participants who were previously fitted to wear N95 face masks, which may not be generalizable to the true patient population who wears N95 masks. Our findings may be underestimating the real-world benefit of taping because many patients come in with suboptimal fitting masks, regardless of material or type. Finally, it is unknown if the statistically significant difference in colony counts among the groups is of clinical significance. This study cannot prove that the presence of additional bacterial colonies surrounding the
injection site necessarily contributes to an increased risk of postinjection endophthalmitis. However, given the devastating visual prognosis of postinjection endophthalmitis, it is critical to minimize the potential risk of endophthalmitis with any measures available.

In summary, these experiments replicate the specific conditions of an intravitreal injection when patients are wearing different types of face masks. Until now, there was minimal evidence in the literature to guide practitioners in the management of patient face mask use during an intravitreal injection. These in vitro experiments suggest that addition of adhesive tape to the superior portion of a patient’s face mask during an intravitreal injection reduces bacterial dispersion, which may subsequently reduce the risk of postinjection endophthalmitis.

ALL AUTHORS HAVE COMPLETED AND SUBMITTED THE ICMJE FORM FOR DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST. Funding/Support: Supported by the J. Arch McNamara Research Fund (Philadelphia, Pennsylvania, USA). Financial Disclosures: Sunir J. Garg has received personal fees from Bausch and Lomb, Johnson and Johnson, Merck Manuals, Genentech, Santen Pharmaceutical Co, and Deciphera. Jason Hsu has received grants from Genentech, iVericBio, and Santen. Allen C. Ho has received grants from Chengdu Kang Hong, Genentech, Regeneron, and RegenxBio and is a consultant for Chengdu Kang Hong, Genentech, Regeneron, and RegenxBio. Michael N. Cohen is a consultant for Allergan. Omesh P. Gupta is a consultant for Alcon. Ajay E. Kuriyan has received grants from Second Sight and Genentech/Roche and is a consultant for Alimera. Hsu has received grants from Genentech, iVericBio, and Santen. Allen Chiang has received grants from Genentech and Regeneron and is a consultant for Genentech. Samir N. Patel, Raniah Mahmoudzadeh, Mirtaollah Salabati, Rebecca R. Soares, John Hinkle, Carl D. Regillo, and Ali Khan indicate no financial support or conflicts of interest. All authors attest that they meet the current ICMJE criteria for authorship.

REFERENCES

1. Parikh R, Ross JS, Sangaralingham LR, Adelman RA, Shah ND, Barkmeier AJ. Trends of anti-vascular endothelial growth factor use in ophthalmology among privately insured and medicare advantage patients. Ophthalmology 2017; 124(3):352–358.

2. Soliman MK, Gini G, Kuhn F, et al. International practice patterns for the management of acute postsurgical and post-intravitreal injection endophthalmitis: European vitreo-retinal society endophthalmitis study report 1. Ophthalmol Retina 2019;3(6):461–467.

3. Uhr JH, Hsu J. Endophthalmitis following intravitreal injections performed in the office versus operating room setting. Curr Ophthalmol Rep 2019;7(2):128–135.

4. Shah CP, Garg SJ, Vander JF, Brown GC, Kaiser RS, Haller JA. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmology 2011;118(10):2028–2034.

5. Storey P, Dollin M, Pitcher J, et al. The role of topical antibiotic prophylaxis to prevent endophthalmitis after intravitreal injection. Ophthalmology 2014;121(1):283–289.

6. Storey PP, Taqueeer Z, Yonekawa Y, et al. The impact of prefilled syringes on endophthalmitis following intravitreal injection of ranibizumab. Am J Ophthalmol 2019;199:200–208.

7. Garg SJ, Dollin M, Hsu J, Storey P, Vander JF. Effect of a strict ‘no-talking’ policy during intravitreal injection on post-injection endophthalmitis. Ophthalmic Surg Lasers Imaging Retina 2015;46(10):1028–1034.

8. Wen JC, McCannel CA, Mohon AB, Garner OB. Bacterial dispersal associated with speech in the setting of intravitreous injections. Arch Ophthalmol 2011;129(12):1551–1554.

9. Doshi RR, Leng T, Fung AE. Reducing oral flora contamination of intravitreal injections with face mask or silence. Retina 2012;32(3):473–476.

10. Klompas M, Morris CA, Sinclair J, Pearson M, Shenoy ES. Universal masking in hospitals in the covid-19 era. N Engl J Med 2020;382(21):e63.

11. Anfinrud P, Stadnytskiy V, Bax CE, Bax A. Visualizing speech-generated oral fluid droplets with laser light scattering. N Engl J Med 2020;382(21):2061–2063.

12. Schweitzer RT. Mask wigging as a potential cause of wound contamination. Lancet 1976;2(7995):1129–1130.

13. Orr NW. Is a mask necessary in the operating theatre? Ann R Coll Surg Engl 1981;63(6):390–392.

14. U.S. Centers for Disease Control and Prevention website. Use of cloth face coverings to help slow the spread of COVID-19. Available at: https://www.cdc.gov/coronavirus/2019-ncov/protect-against-spread/diy-cloth-face-coverings.html. Accessed June 1, 2020.

15. Chu DK, Akel EA, Duida S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395(10242):1973–1987.

16. Verma S, Dhanak M, Frankenfeld J. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys Fluids 2020;32(6):061708.

17. Dbouk T, Drikakis D. On respiratory droplets and face masks. Phys Fluids 2020;32(6):063303.

18. Ong SC, Razali MAB, Shaffee L, et al. Do slit-lamp shields and face masks protect ophthalmologists amidst COVID-19? Ophthalmology 2020;127(10):1427–1429.

19. Garg SJ, Dollin M, Storey P, et al. Microbial spectrum and outcomes of endophthalmitis after intravitreal injection: the importance of viridans streptococci. Retina 2011;31(8):1525–1533.

20. Chen E, Lin MY, Cox J, Brown DM. Endophthalmitis after intravitreal injection: the importance of viridans streptococci. Retina 2011;31(8):1525–1533.

21. Storey PP, Garg S. Endophthalmitis following intravitreal injection. Curr Ophthalmol Rep 2018;6(2):145–151.

22. Alwity A, Jackson E, Chen H, Holden R. The use of surgical facemasks during cataract surgery: is it necessary? Br J Ophthalmol 2002;86(9):975–977.