Limit shape of minimal difference partitions and fractional statistics

Leonid V. Bogacheva and Yuri V. Yakubovichb

aDepartment of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
Email: L.V.Bogachev@leeds.ac.uk

bDepartment of Probability Theory and Mathematical Statistics, Saint Petersburg State University, Universitetsky Prosp. 28, Peterhof, Saint Petersburg, 198504, Russia.
Email: Y.Yakubovich@spbu.ru

Abstract

The class of minimal difference partitions MDP\((q)\) (with gap \(q\)) is defined by the condition that successive parts in an integer partition differ from one another by at least \(q \geq 0\). In a recent series of papers by A. Comtet and collaborators, the MDP\((q)\) ensemble with uniform measure was interpreted as a combinatorial model for quantum systems with fractional statistics, that is, interpolating between the classical Bose–Einstein \((q = 0)\) and Fermi–Dirac \((q = 1)\) cases. This was done by formally allowing values \(q \in (0, 1)\) using an analytic continuation of the limit shape of the corresponding Young diagrams calculated for integer \(q\). To justify this “replica-trick”, we introduce a more general model based on a variable MDP-type condition encoded by an integer sequence \(q = (q_i)\), whereby the (limiting) gap \(q\) is naturally interpreted as the Cesàro mean of \(q\).

In this model, we find the family of limit shapes parameterized by \(q \in [0, \infty)\) confirming the earlier answer, and also obtain the asymptotics of the number of parts.

Keywords: integer partitions; minimal difference partitions; Young diagrams; limit shape; fractional statistics; equivalence of ensembles.

MSC 2010: Primary 05A17; Secondary 60C05, 82B10

1. Introduction

1.1. Integer partitions and the limit shape

An integer partition is a decomposition of a given natural number into an unordered sum of integers; for example, \(35 = 8 + 6 + 6 + 5 + 4 + 2 + 2 + 1 + 1\). That is to say, a non-increasing sequence of integers \(\lambda_1 \geq \lambda_2 \geq \cdots \geq 0\), \(\lambda_i \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}\) is a partition of \(n \in \mathbb{N}_0\) if \(n = \lambda_1 + \lambda_2 + \cdots\), which is expressed as \(\lambda \vdash n\). Zero terms are added as a matter of convenience, without causing any confusion. The non-zero terms \(\lambda_i \in \lambda\) are called the parts of the partition \(\lambda\). We formally allow the case \(n = 0\) represented by the “empty” partition \(\varnothing = (0, 0, \ldots)\), with no parts. The set of all partitions \(\lambda \vdash n\) is denoted \(A(n)\), and \(A := \cup_{n \in \mathbb{N}_0} A(n)\) is the collection of all integer partitions. For a partition \(\lambda = (\lambda_i) \in A\), the sum \(N(\lambda) := \lambda_1 + \lambda_2 + \cdots\) is referred to as its weight (i.e., \(\lambda \vdash N(\lambda)\)), and the number of its parts \(K(\lambda) := \# \{\lambda_i \in \lambda: \lambda_i > 0\}\) is called the length of \(\lambda\). Thus, for \(\lambda \in A(n)\), we have \(N(\lambda) = n\) but \(K(\lambda) \leq n\).
A partition $\lambda = (\lambda_1, \lambda_2, \ldots) \in \Lambda$ is succinctly visualized by its Young diagram \mathcal{Y}_λ formed by left- and bottom-aligned column blocks with $\lambda_1, \lambda_2, \ldots$ unit square cells, respectively. In particular, the area of the Young diagram \mathcal{Y}_λ equals the partition weight $N(\lambda)$. The upper boundary of \mathcal{Y}_λ is a non-increasing step function $Y_\lambda : [0, \infty) \to \mathbb{Z}_+ := \{0, 1, 2, \ldots\}$ (see Fig. 1 for illustration). Note that $\inf\{t \geq 0 : Y_\lambda(t) = 0\}$ coincides with the length $K(\lambda)$.

Fig. 1: The Young diagram \mathcal{Y}_λ (shaded) of a partition $\lambda = (8, 6, 6, 5, 4, 2, 2, 1, 1, 0, \ldots)$, with weight $N(\lambda) = 35$ and length $K(\lambda) = 9$. Note that the parts $\lambda_i > 0$ are represented by the successive columns of the diagram. The graph of the step function $t \mapsto Y_\lambda(t)$ (shown in red in the online version) gives the upper boundary of \mathcal{Y}_λ.

Theory of integer partitions is a classical branch of discrete mathematics and combinatorics dating back to Euler, with further fundamental contributions due to Hardy, Ramanujan, Rademacher and many more (see [3] for a general background). The study of asymptotic properties of random integer partitions (under the uniform distribution) was pioneered by Erdős & Lehner [12], followed by a host of research which in particular discovered a remarkable result that, under a suitable rescaling, the Young diagrams of typical partitions of a large integer n are close to a certain deterministic limit shape. For strict partitions (i.e., with distinct parts) this result was (implicitly) contained already in [12], for partitions without any restrictions, the limit shape was first identified by Temperley [33] in relation to the equilibrium shape of a growing crystal, and obtained more rigorously much later by Vershik (as pointed out at the end of [37]) using some asymptotic estimates by Szalay & Turán [32]. An alternative proof in its modern form was outlined by Vershik [34] and elaborated by PitTEL [28], both using the conditioning device based on a suitable randomization of the integer n being partitioned.

To date, many limit shape results are known for partitions subject to various restrictions, see a review in the recent paper by DeSalvo & Pak [11]. Deep connections between statistical properties of quantum systems (where discrete random structures naturally arise due to quantization) and asymptotic theory of random integer partitions are discussed in a series of papers by Vershik [34, 35]. Note that the idea of conditioning in problems of quantum

The randomization trick, often collectively called “Poissonization”, is well known in the general enumerative combinatorics (see, e.g., Kolchin et al. [22]). In the context of integer partitions, it was introduced by Fristedt [15].
statistical mechanics was earlier promoted by Khinchin \[21\] who advocated systematic use of local limit theorems of probability theory as a tool to prove the equivalence of various statistical ensembles in the thermodynamic limit.

From the point of view of statistical mechanics, it is conventional\[3\] to interpret the integer partition $\lambda = (\lambda_i) \in \Lambda$ as the energy spectrum in a sample configuration (state) of quantum gas, with $K(\lambda) = \#(\lambda_i > 0)$ particles and the total energy $\sum_i \lambda_i = N(\lambda)$. Note that decomposition into a sum of integers is due to the quantization of energy in quantum mechanics, while using unordered partitions corresponds to the fact that quantum particles are indistinguishable. In this context, the limit shape of Young diagrams associated with random partitions (for instance, under the uniform measure) is of physical interest as it describes the asymptotic distribution of particles in such ensembles over the energy domain.

1.2. Minimal difference partitions

For a given $q \in \mathbb{N}_0$, the class of minimal difference partitions with gap q, denoted $\text{MDP}(q)$, is the set of integer partitions $\lambda = (\lambda_1, \lambda_2, \ldots)$ subject to the restriction $\lambda_i - \lambda_{i+1} \geq q$ whenever $\lambda_i > 0$. Two important special cases of the $\text{MDP}(q)$ are furnished by the values $q = 0$ corresponding to plain partitions (i.e., with no restrictions), and $q = 1$ leading to strict partitions (i.e., with different parts).

In this paper, we propose a natural generalization of the MDP property as follows.

Definition 1.1. For a given sequence $q = (q_i)_{i \in \mathbb{N}_0}$ of non-negative integers (with the convention that $q_0 \geq 1$), we define $\Lambda_q \equiv \text{MDP}(q)$ to be the set of all integer partitions $\lambda = (\lambda_i)$ subject to the variable MDP-type condition

$$\lambda_i - \lambda_{i+1} \geq q_{k-i}, \quad i = 1, \ldots, k,$$

where k is the number of (non-zero) parts in the partition λ. By convention, the empty partition \emptyset satisfies (1.1).

Remark 1.1. For $i = k$, the inequality (1.1) specializes to $\lambda_k - \lambda_{k+1} \equiv \lambda_k \geq q_0$. That is to say, the smallest part of the partition $\lambda = (\lambda_i)$ is required to be not less than $q_0 \geq 1$ (which really poses a restriction only if $q_0 > 1$).

Remark 1.2. Alternatively, one could consider partitions subject to similar restrictions as (1.1) but in the reverse order relative to the sequence q,

$$\lambda_i - \lambda_{i+1} \geq q_i, \quad i = 1, \ldots, k.$$

However, the model (1.1) is preferable in view of the physical interpretation of parts λ_i as successive energy levels in a configuration (state) of a quantum system \[35\], which makes it more natural to enumerate the energy gaps starting from the minimal level $\lambda_k = \min\{\lambda_i : \lambda_i > 0\}$. One more motivation for choosing the model (1.1) is its earlier appearance (without any name) in work \[4\] devoted to partition bijections.

Throughout the paper, we impose the following

\[3\]For a historic background, see older papers by Auluck & Kothari \[2\] and Temperley \[33\], and Vershik \[35\] for a modern exposition.
Assumption 1.1. The sequence \(q = (q_i)_{i \in \mathbb{N}_0} \) \((q_i \in \mathbb{N}_0, q_0 \geq 1) \) satisfies the asymptotic regularity condition
\[
Q_k := \sum_{i=0}^{k-1} q_i = qk + O(k^\beta) \quad (k \to \infty),
\] (1.2)
with some \(q \geq 0 \) and \(0 \leq \beta < 1 \).

Note that under Assumption 1.1, the sequence \(q = (q_i) \) has a well-defined Cesàro mean, referred to as the limiting gap,
\[
\lim_{k \to \infty} k^{-1}Q_k = q \geq 0.
\] (1.3)

Remark 1.3. In the case \(q = 0 \), the asymptotic relation (1.2) accommodates sequences \((Q_k) \) that are irregularly growing (provided the growth is sublinear) or even bounded \((\beta = 0)\), including the case \(Q_k = 1 \) corresponding to plain (unrestricted) integer partitions.

For \(q = 0 \) (when the leading term in (1.2) vanishes), it is still possible to derive the limit shape results under our standard Assumption 1.1. However, to obtain the asymptotics of the typical MDP length \(K(\lambda) \), more regularity should be assumed by specifying the behaviour of the remainder term \(O(k^\beta) \).

Assumption 1.2 \((q = 0)\). The sequence \(q = (q_i)_{i \in \mathbb{N}_0} \) \((q_i \in \mathbb{N}_0, q_0 \geq 1)\) satisfies the asymptotic regularity condition
\[
Q_k := \sum_{i=0}^{k-1} q_i = \tilde{q}k^\beta + O(k^\beta) \quad (k \to \infty),
\] (1.4)
with some \(\tilde{q} \geq 0 \) and \(0 \leq \tilde{\beta} < \beta < 1 \).

Remark 1.4. The utterly degenerate case \(\tilde{q} = 0 \) and \(\tilde{\beta} = 0 \) in Assumption 1.2 is equivalent to Assumption 1.1 with \(q = 0 \) and \(\beta = 0 \). In this case, we have \(Q_k = O(1) \) as \(k \to \infty \), and since \(q_i \in \mathbb{N}_0 \), this implies that \(q_i = 0 \) for all sufficiently large \(i \). Clearly, the first few non-zero terms in the sequence \(q = (q_i) \) (i.e., in the MDP conditions (1.1)) do not affect any limiting results, and so effectively such a model is identical with the classical case of unrestricted partitions \((q_0 = 1 \text{ and } q_i \equiv 0 \text{ for } i \in \mathbb{N})\).

1.3. Main result

For \(n \in \mathbb{N}_0 \), consider the subset \(\Lambda_q(n) = \Lambda_q \cap \Lambda(n) \) comprising MDP\((q)\) partitions of weight \(N(\lambda) = n \). For example, the partition \(\lambda = (8, 6, 6, 5, 4, 2, 2, 1, 1, 0, 0, \ldots) \) used in Fig. 1 fits into the MDP-space \(\Lambda_q(35) \) with the alternating sequence \(q = (1, 0, 1, 0, 1, 0, \ldots) \). Suppose that each (non-empty) space \(\Lambda_q(n) \) is endowed with uniform probability measure denoted \(\nu_n^q \). We are interested in asymptotic properties (as \(n \to \infty \)) of this and similar measures on MDP spaces; in particular, we find the limit shape of properly scaled Young diagrams associated with partitions \(\lambda \in \Lambda_q(n) \) and prove exponential bounds for deviations from the limit shape.

Let us state one of our main results, slightly simplifying the notation as compared to the more general case treated in Section 4. For every \(q \geq 0 \), define the function
\[
\varphi(t; q) := \max \{0, -qt - \log(1 - e^{-t})\}, \quad t > 0,
\] (1.5)
and let \(T_q := \inf \{ t > 0 \colon \varphi(t; q) = 0 \} \); that is, \(T_q \) is the unique root of the equation
\[
q = -T_q^{-1} \log(1 - e^{-T_q})
\]
(with the convention \(T_0 := +\infty \)). The area under the graph of \(\varphi(t; q) \) is computed as
\[
\vartheta_q^2 := \int_0^{T_q} \varphi(t; q) \, dt = -\frac{qT_q^2}{2} + \text{Li}_2(1) - \text{Li}_2(e^{-T_q}),
\]
(1.7)
where \(\text{Li}_2(\cdot) \) denotes the dilogarithm function (see, e.g., [24, p. 1]),
\[
\text{Li}_2(x) := -\int_0^x \frac{\log (1 - u)}{u} \, du = \sum_{k=1}^{\infty} \frac{x^k}{k^2}, \quad 0 \leq x \leq 1.
\]
(1.8)
Note that \(\text{Li}_2(1) = \zeta(2) = \pi^2/6 \). It is easy to check from (1.6) that
\[
\lim_{q \downarrow 0} qT_q^2 = 0,
\]
so using (1.7) we obtain
\[
\vartheta_0 = \lim_{q \downarrow 0} \vartheta_q = \sqrt{\text{Li}_2(1)} = \frac{\pi}{\sqrt{6}}.
\]
(1.9)
Finally, observe that, setting \(x = e^{-T_q} \) in the well-known identity [24, Eq. (1.11), p. 5]
\[
\text{Li}_2(x) + \text{Li}_2(1 - x) = \text{Li}_2(1) - \log x \cdot \log(1 - x),
\]
(1.10)
and using the equation (1.6), the expression (1.7) is rewritten in a more appealing form,
\[
\vartheta_q^2 = \frac{qT_q^2}{2} + \text{Li}_2(1 - e^{-T_q}),
\]
(1.11)
where the terms on the right-hand side can be given a meaningful geometric interpretation (see details in Section 4.4).

Theorem 1.1 (Limit shape in \(\Lambda_q(n) \)). Let the sequence \(q = (q_i) \) satisfy Assumption 1.1 with \(q \geq 0 \). Then, for every \(t_0 > 0 \) and any \(\varepsilon > 0 \), we have
\[
\lim_{n \to \infty} \nu_{n}^q \left\{ \lambda \in \Lambda_q(n) \colon \sup_{t \geq t_0} \left| n^{-1/2} Y_\lambda(tn^{1/2}) - \vartheta_q^{-1} \varphi(t \vartheta_q; q) \right| > \varepsilon \right\} = 0,
\]
(1.12)
where \(Y_\lambda(\cdot) \) denotes the upper boundary of the Young diagram \(Y_\lambda \) and \(\vartheta_q \) is given by (1.11).

In view of formula (1.5), in the Cartesian coordinates
\[
x = t \vartheta_q, \quad y = \varphi(t \vartheta_q; q)
\]
(1.13)
the limit shape (1.12) is given by the equation
\[
e^{-y} = e^{\vartheta_q}(1 - e^{-x}).
\]
(1.14)
Clearly, \(y = y(x) \) is a continuous decreasing function (as long as \(y(x) > 0 \)), hitting zero at \(x = T_q \) for \(q > 0 \) (see equation (1.6)) and with \(\lim_{x \to \infty} y(x) = 0 \) for \(q = 0 \).

Remark 1.5. It is common to scale Young diagrams via reducing their area \(n \) to 1 [35]. In our case, this leads to the additional rescaling in the expression of the limit shape (see (1.12)). Instead, it is more natural to work with the intrinsic scaling (1.13) to produce a simpler equation for the limit shape (1.14) but where the limiting area \(\vartheta_q^2 \) varies with \(q \) (see (1.11)). See the precise corresponding assertions in Section 4.4.

3This identity can be obtained from the definition (1.8) by integration by parts.
Example 1.1. Let us specialize the notation introduced before Theorem 1.1 for a few simple values of $q \geq 0$, including all cases where closed expressions for T_q and ϑ_q in elementary functions are available.

- $q = 0$: here $T_0 = \infty$, $\vartheta_0 = \sqrt{\text{Li}_2(1)} = \pi/\sqrt{6} \doteq 1.282550$, and the limit shape (1.14) specializes to (cf. Vershik [34, p. 99])
 \[e^{-x} + e^{-y} = 1. \]

- $q = 1$: from the equation (1.6) we get $T_1 = \log 2 \doteq 0.693147$. By virtue of Euler’s result (see [24, Eq. (1.16), p. 6])
 \[\text{Li}_2(\frac{1}{2}) = \frac{\pi^2}{12} - \frac{(\log 2)^2}{2}, \]
 we obtain from (1.11)
 \[\vartheta_1^2 = \frac{T_1^2}{2} + \text{Li}_2(\frac{1}{2}) = \frac{\pi^2}{12}, \]
 Hence, $\vartheta_1 = \pi/\sqrt{12} \doteq 0.906900$ and the limit shape (1.14) is reduced to (cf. Vershik [34, p. 100])
 \[e^x - e^{-y} = 1. \]

- $q = 2$: the equation (1.6) (quadratic in $z = e^{-T_2}$) solves to give $T_2 = \log \left(\frac{1 + \sqrt{5}}{2}\right) \doteq 0.481212$. Hence, we find $1 - e^{-T_2} = \frac{3 - \sqrt{5}}{2}$. Using a known expression for the dilogarithm at this point (see [24, Eq. (1.20), p. 7]), we obtain from (1.11)
 \[\vartheta_2^2 = \frac{T_2^2}{2} + \text{Li}_2\left(\frac{3 - \sqrt{5}}{2}\right) = \log^2\left(\frac{1 + \sqrt{5}}{2}\right) + \frac{\pi^2}{15} - \frac{1}{4}\log^2\left(\frac{3 - \sqrt{5}}{2}\right) = \frac{\pi^2}{15}, \]
 which gives $\vartheta_2 = \pi/\sqrt{15} \doteq 0.811156$ (cf. Romik [30]).

- $q = \frac{1}{2}$: solving the equation (1.6) we get $T_{1/2} = \log \left(\frac{3 + \sqrt{5}}{2}\right) \doteq 0.962424$. Hence, $1 - e^{-T_{1/2}} = \frac{\sqrt{5} - 1}{2}$. Using another exact value of dilogarithm [24, Eq. (1.20), p. 7], formula (1.11) yields
 \[\vartheta_{1/2}^2 = \frac{T_{1/2}^2}{4} + \text{Li}_2\left(\frac{\sqrt{5} - 1}{2}\right) = \frac{1}{4}\log^2\left(\frac{3 + \sqrt{5}}{2}\right) + \frac{\pi^2}{10} - \log^2\left(\frac{\sqrt{5} - 1}{2}\right) = \frac{\pi^2}{10}, \]
 so that $\vartheta_{1/2} = \pi/\sqrt{10} \doteq 0.993459$.

- $q = 3$: an exact value of T_3 can be found by solving the equation (1.6) (cubic in $z = e^{-T_3}$), but no elementary expression is available for $\text{Li}_2(1 - e^{-T_3})$ (cf. [24]). It is easy to find numerically $T_3 \doteq 0.382245$ and $\vartheta_3 \doteq 0.752618$ (cf. [8, Fig. 3, p. 8]).

- $q = \frac{1}{3}$: numerical values are given by $T_{1/3} \doteq 1.146735$ and $\vartheta_{1/3} \doteq 1.038508$.
1.4. MDP and fractional statistics

The special case of the MDP\((q)\) model with a constant sequence \(q_i \equiv q \in \mathbb{N}_0\) in (1.1) was considered in a series of papers by Comtet et al. [7,8,9] in connection with fractional exclusion statistics of quantum particle systems (see [20], [23] or [25] for a “physical” introduction to this area). These authors obtained the limit shape of MDP\((q)\) using a physical argumentation. In particular, it was observed that the analytic continuation of the limit shape, as a function of \(q \in \mathbb{N}_0\), into the range \(q \in (0, 1)\) (the so-called replica trick) may be interpreted as a quantum gas obeying fractional exclusion statistics, thus furnishing a family of probability measures “interpolating” between the Bose–Einstein statistics \((q = 0)\) and the Fermi–Dirac statistics \((q = 1)\).

In the present work, we provide a combinatorial justification of this physical construction by working with a more general MDP\((q)\) model satisfying Assumption 1.1. In addition to many deterministic examples with such a property, the assumption (1.2) (and hence (1.3)) holds almost surely for sequences of independent random variables \(q = (q_i)\) satisfying mild conditions, thus providing a stochastic version of the MDP\((q)\) model (see Section 6 below).

As was observed by Comtet et al. [7], another model of statistical physics leading to the MDP-type constraint is the one-dimensional quantum Calogero model with harmonic confinement (see [29] for a review and further references therein), defined by the Hamiltonian of a \(k\)-particle system with spatial positions \((x_i)_{i=1}^k\) on a line,

\[
H_q := -\frac{1}{2} \sum_{i=1}^k \frac{\partial^2}{\partial x_i^2} + \sum_{1 \leq i < j \leq k} \frac{q(q-1)}{(x_i - x_j)^2} + \frac{1}{2} \sum_{i=1}^k x_i^2.
\]

This model is exactly solvable, and the solution can be expressed in terms of the pseudo-excitation numbers \(\lambda_i\) satisfying the condition \(\lambda_i - \lambda_{i+1} \geq q\), with a positive real \(q\).

As is common in such models (cf. [18]), an analogue of Pauli’s exclusion principle is not strictly local for models MDP\((q)\) with sequences \(q = (q_i)\) not degenerating to the trivial sequences \(q_i \equiv 0\) or \(q_i \equiv 1\) \((i \in \mathbb{N})\). Indeed, the occurrence of part \(\lambda_i = j\) rules out a few adjacent values, that is, \(\lambda_{i-1} \notin \{j, j+1, \ldots, j + q_{k-i+1} - 1\}\) if \(q_{k-i+1} > 0\) or \(\lambda_{i+1} \notin \{j, j-1, \ldots, j - q_{k-i} + 1\}\) if \(q_{k-i} > 0\), but the actual index \(k - i\) is determined by the entire partition \(\lambda = (\lambda_i)\) through the rank of the part \(\lambda_i = j\) among all (ordered) parts \(\lambda_i\), together with the total number \(k\) of non-zero parts in \(\lambda\).

Remark 1.6. Heuristically, the requirement \(\lambda_i - \lambda_{i+1} \geq q\) with \(q \in (0, 1]\) may be interpreted, at least for integer \(m := q^{-1}\), as saying that \(\lambda_i - \lambda_{i+m} \geq 1\) as long as \(\lambda_i > 0\), that is, to prohibit more than \(m = q^{-1}\) equal parts; in other words, no part counts bigger than \(q^{-1}\) are allowed. For \(q = 1\) this indeed translates as only strict partitions being permissible. In the general case, this interpretation turns out to be true for the expected part counts (see [20] §5.2]); however, literal restriction that the part counts do not exceed \(q^{-1}\) leads to a different model called Gentile’s statistics [20] §5.5]. The limit shape of partitions under Gentile’s statistics was found in [26] §9] (see also [39] where a rigorous proof is given).

The rest of the paper is organized as follows. In Section 2 several measures on minimal difference partitions are introduced, and certain relations between them are stated. Section 3 is devoted to finding the typical length of MDPs. In Section 4 the main results concerning the limit shape of MDPs, both with a restricted and unrestricted length growth, are proved. In fact, we obtain sharp exponential bounds for deviations from the limit shape. Section 5 describes an alternative approach to the limit shape based on a partition bijection that effectively removes the MDP-constraint. In Section 6 we extend our results to the case of random
sequences \(q \). Finally, the Appendix contains proof of the two technical propositions stated in Section \([2]\) which establish the equivalence of ensembles.

2. Probability measures on the MDP spaces

2.1. Basic definitions and notation

In this paper, we shall use several probability measures on MDPs and other partition spaces. In the present section we describe them and establish some properties. First we introduce notation for some functionals on partitions we shall need. If one fixes a probability measure on partitions, these functionals become random variables.

Let \(\lambda = (\lambda_1, \lambda_2, \ldots) \) \((\lambda_1 \geq \lambda_2 \geq \cdots \geq 0) \) be an integer partition, \(\lambda \in \Lambda \). Recall that \(N(\lambda) := \lambda_1 + \lambda_2 + \cdots \) is referred to as the weight of \(\lambda \) by and its length (number of parts) by \(K(\lambda) := \#\{\lambda_i \in \lambda: \lambda_i > 0\} \). An equivalent description of a partition \(\lambda \) can be given in terms of the consecutive differences \(D_j(\lambda) = \lambda_j - \lambda_{j+1} \); obviously,

\[
\lambda_i = \sum_{j \geq i} D_j(\lambda), \quad N(\lambda) = \sum_{j \geq 1} jD_j(\lambda), \quad K(\lambda) = \max\{j: D_j(\lambda) > 0\}. \quad (2.1)
\]

Consider the function

\[
Y_\lambda(t) := \sum_{j \geq t} D_j(\lambda), \quad t \geq 0, \quad (2.2)
\]

Evidently, the map \(t \mapsto Y_\lambda(t) \) is non-increasing, piecewise constant, and right-continuous. From (2.1), it is also easy to see that \(Y_\lambda(t) = \lambda_{[t]+1} \) \((t \geq 0) \), with \(\cdot \) denoting the floor function (i.e., integer part). The Young diagram \(Y_\lambda \) of a partition \(\lambda \) is defined as the closure of the planar set

\[
\{(t, u) \in \mathbb{R}^2: t \geq 0, \ 0 \leq u \leq Y_\lambda(t)\}.
\]

That is to say, the Young diagram \(Y_\lambda \) is the union of (left- and bottom-aligned) column blocks with \(\lambda_1, \lambda_2, \ldots \) unit squares, respectively; in particular, the function \(t \mapsto Y_\lambda(t) \) defines its upper boundary (cf. Section \([1.1]\)). We shall often identify the Young diagram \(Y_\lambda \) with the (graph of the) function \(Y_\lambda(t) \) (see Fig. \([1]\)).

The measure most important for us is the aforementioned uniform measure \(\nu^q_n \) on the set \(A_q(n) \):

\[
\nu^q_n(\lambda) := \frac{1}{p_q(n)} \quad (\lambda \in A_q(n)), \quad p_q(n) := \#A_q(n).
\]

The space \(A_q(n) \) can be further decomposed as a disjoint union of the sets \(A_q(n, k) := \{\lambda \in A_q(n): K(\lambda) = k\} \), and one can introduce the uniform measures on these spaces,

\[
\nu^q_{n, k}(\lambda) := \frac{1}{p_q(n, k)} \quad (\lambda \in A_q(n, k)), \quad p_q(n, k) := \#A_q(n, k).
\]

Note that \(\nu^q_{n, k} \) can be viewed as the measure \(\nu^q_n \) conditioned on the event \(\{K(\lambda) = k\} \); indeed, for any \(\lambda \in A_q(n, k) \),

\[
\nu^q_n(\lambda \mid K(\lambda) = k) = \frac{\nu^q_n(\lambda)}{\nu^q_n(K(\lambda) = k)} = \frac{\frac{1}{p_q(n)}}{\sum_{\lambda \in A_q(n, k)} \frac{1}{p_q(n)}} = \frac{1}{p_q(n, k)} = \nu^q_{n, k}(\lambda).
\]

8
This conditional measure is somewhat simpler than ν^q_n itself, since there exists a product expression for the Laplace generating function of $p_q(n, k)$ with respect to n (for any fixed k).

To establish such an expression, the following simple observation is useful. Define

$$D_q(k) := \{(d_1, \ldots, d_k) \in \mathbb{N}^k_0: \, d_j \geq q_{k-j}, \, j = 1, \ldots, k\}, \quad k \in \mathbb{N}.$$

Then the MDP(q) condition (1.1) implies that $\lambda \in A_q(\bullet, k) := \bigcup_{n \geq 0} A_q(n, k)$ if and only if $(D_1(\lambda), \ldots, D_k(\lambda)) \in D_q(k)$ and $D_j(\lambda) = 0$ for all $j > k$. Hence, the space $A_q(\bullet, k)$ is in one-to-one correspondence with the set $D_q(k)$. Moreover, using the second of the formulas (2.1), the Laplace generating function $F_q(z, k) (z \geq 0)$ of the sequence $(p_q(n, k))_{n \geq 0}$ (with $k \geq 0$ fixed) is evaluated as $F_q(z, 0) = 1$ and for $k \geq 1$

$$F_q(z, k) := \sum_{n=0}^{\infty} p_q(n, k) e^{-zn} = \sum_{n=0}^{\infty} \sum_{\lambda \in A_q(\bullet, k)} \mathbb{1}_{\{N(\lambda) = n\}} e^{-zN(\lambda)}$$

$$= \sum_{\lambda \in A_q(\bullet, k)} e^{-zN(\lambda)} = \prod_{j=1}^{k} \sum_{d_j = q_{k-j}} e^{-z d_j}$$

$$= \prod_{j=1}^{k} \frac{e^{-z j q_{k-j}}}{1 - e^{-z j}} = \frac{e^{-z s_k}}{(1 - e^{-z}) \cdots (1 - e^{-z k})}, \quad (2.3)$$

where we set

$$s_k := \sum_{j=1}^{k} j q_{k-j} \equiv \sum_{i=1}^{k} Q_i, \quad k \in \mathbb{N}, \quad (2.4)$$

with Q_i defined in (1.2). In particular, $s_k \geq k$ for all $k \geq 1$ (because $Q_i \geq q_0 \geq 1$, see (1.2)); moreover, the asymptotic condition (1.2) implies that, for $q \geq 0$,

$$s_k = q k^2 + O(k^{\beta+1}) \quad (k \rightarrow \infty). \quad (2.5)$$

Remark 2.1. The product structure of $F_q(z, k)$ revealed in (2.3) is similar to that of multiplicative measures introduced by Vershik [34]. However, there are some distinctions from multiplicative measures. Firstly, the partition length $K(\lambda)$ must be fixed to obtain independence. Secondly, the role of the part counts which become independent after randomization of $N(\lambda) = n$ is played here by the differences $D_j(\lambda)$.

Let us define an auxiliary probability measure $\mu^q_{z,k}$ on the space $A_q(\bullet, k)$ (parameterized by $z > 0$) by setting

$$\mu^q_{z,k}(\lambda) := \frac{e^{-z N(\lambda)}}{F_q(z, k)}, \quad \lambda \in A_q(\bullet, k). \quad (2.6)$$

Note that, for every $z > 0$, the measure $\mu^q_{z,k}$ conditioned on the event $\{N(\lambda) = n\}$ coincides with the uniform measure $\nu^q_{n,k}$ on the space $A_q(n, k)$; indeed, according to (2.6) we have, for any $\lambda \in A_q(n, k)$,

$$\mu^q_{z,k}(\lambda | N(\lambda) = n) = \frac{\mu^q_{z,k}(\lambda)}{\mu^q_{z,k}(\{N(\lambda) = n\})}$$

$$= \frac{e^{-zn}/F_q(z, k)}{\sum_{\lambda \in A_q(n, k)} e^{-zn}/F_q(z, k)} = \frac{1}{\# A_q(n, k)} = \nu^q_{n,k}(\lambda). \quad (2.7)$$

The following fact will be instrumental below.
Lemma 2.1. Under the measure $\mu_{z,k}^q$, the differences $(D_j(\lambda))^k_{j=1}$ are independent random variables such that the marginal distribution of $D_j(\lambda) - q_{k-j} \in \mathbb{N}_0$ is geometric with parameter $1 - e^{-z^j}$ ($j = 1, \ldots, k$); that is, for any $(d_1, \ldots, d_k) \in D_q(k)$,

$$
\mu_{z,k}^q\{\lambda \in A_q(\cdot, k) : D_j(\lambda) = d_j, j = 1, \ldots, k\} = \prod_{j=1}^{k} (1 - e^{-z^j}) e^{-z^j(d_j - q_{k-j})}.
$$

In particular, the expected values are given by

$$
\mathbb{E}_{z,k}^q[D_j(\lambda)] = q_{k-j} + \frac{e^{-z^j}}{1 - e^{-z^j}} \quad (j = 1, \ldots, k).
$$

(2.8)

Proof. The claim easily follows from the representation of $N(\lambda)$ through $(D_j(\lambda))$ (see (2.1)) and the product structure of the Laplace generating function Φ_{A}. □

Similarly, we can assign the weight $e^{-zN(\lambda)}$ to each partition $\lambda \in A_q = \bigcup_{k=0}^{\infty} A_q(\cdot, k)$ normalized by

$$
F_q(z) := \sum_{\lambda \in A_q} e^{-zN(\lambda)} = 1 + \sum_{k=1}^{\infty} F_q(z, k) = 1 + \sum_{k=1}^{\infty} \frac{e^{-z^k}}{(1 - e^{-z}) \cdots (1 - e^{-z^k})}.
$$

(2.9)

Note that the series (2.10) converges for all $z > 0$, since it is bounded by the convergent series $\sum_k e^{-z^k} (1 - e^{-z})^{-1} \cdots (1 - e^{-z^k})^{-1} = \prod_j (1 - e^{-z^j})^{-1}$. This way, we get the probability measure

$$
\mu_q^q(\lambda) := \frac{e^{-zN(\lambda)}}{F_q(z)}, \quad \lambda \in A_q.
$$

(2.11)

Similarly to (2.7), it is easy to check that the measure μ_q^q conditioned on $\{N(\lambda) = n\}$ coincides with the uniform measure ν_q^q on $A_q(n)$,

$$
\mu_q^q(\lambda | N(\lambda) = n) = \frac{1}{p_q(n)} = \nu_q^q(\lambda), \quad \lambda \in A_q(n).
$$

Furthermore, the definition (2.11) implies

$$
\mu_q^q\{\lambda \in A_q : K(\lambda) = k\} = \frac{F_q(z, k)}{F_q(z)}, \quad k \in \mathbb{N}.
$$

(2.12)

We finish this subsection by a comment linking the above MDP spaces and probability measures on them with the general nomenclature of ensembles in statistical mechanics (see, e.g., the monographs by Huang [19] or Greiner et al. [17]). Under the quantum interpretation of integer partitions $\lambda = (\lambda_i) \in A$ briefly mentioned in Section 1.1, the MDP(q) restriction determines the exclusion rules for permissible energy levels (λ_i). In general, the weight $N(\lambda)$ (total energy) and length $K(\lambda)$ (number of particles) are random. Fixing one or both of these parameters leads to different measures on the corresponding spaces, and therefore determines different ensembles. In particular, a completely isolated system, with fixed $N(\lambda) = n$ and $K(\lambda) = k$ and under uniform measure $\nu_{n,k}^q$ on the corresponding
Micro-canonical: $\nu^q_{n,k}$ on $A_q(n,k)$ + heat bath \Rightarrow Canonical: $\mu^q_{z,k}$ on $A_q(\ast,k)$

Meso-canonical: ν^q_n on $A_q(n)$ + heat bath \Rightarrow Grand-canonical: μ^q_z on A_q

Fig. 2: Schematic diagram illustrating the relation between different MDP-ensembles. The integer parameters n and k are interpreted as the total energy of the (quantum) system and the number of particles, respectively. The arrows “heat bath” and “particle bath” indicate that fixation of energy or the number of particles is lifted.

space $A_q(n,k)$, has the meaning of micro-canonical MDP ensemble. When, say, the fixation $N(\lambda) = n$ is lifted (which may be thought of as connecting the system to a heat bath, whereby thermal equilibrium is settled through exchange of energy with the bath), we get an enlarged space $A(\ast,k)$ with the measure $\mu^q_{z,k}$, which is interpreted as the canonical ensemble, with a fixed number of particles k. Furthermore, removing the latter constraint (which, similarly, is achieved by putting the canonical ensemble into a particle bath allowing free exchange of particles) leads to the space A_q with the measure μ^q_z, which is referred to as the grand canonical ensemble (see the schematic diagram in Fig. 2).

Note however that the space $A_q(n)$ (i.e., with a fixed energy $N(\lambda) = n$ and endowed with uniform measure ν^q_n), which is most natural from the combinatorial point of view, is missing in this picture: indeed, it may not be physically meaningful to talk about systems with fixed energy and free number of particles. But logically, it is perfectly possible to interchange the order of relaxations described above and first lift the condition $K(\lambda) = k$ by connecting the micro-canonical system to a particle bath; we take the liberty to call the resulting ensemble meso-canonical, indicating an intermediately coarse partitioning of the phase space (cf. [13]). Finally, removing the remaining constraint $N(\lambda) = n$ (by connecting the system further to a heat bath) we again obtain the grand canonical ensemble.

2.2. Asymptotic equivalence of ensembles

For $q \geq 0$, define the function

$$\vartheta_q(t) := \sqrt{\frac{1}{2}qt^2 + Li_2(1 - e^{-t})}, \quad t > 0$$

(2.13)

where $Li_2(\cdot)$ is the dilogarithm (see (1.8)). Recall that $T_q > 0$ is the unique solution of the equation (cf. (1.6))

$$e^{-qT_q} = 1 - e^{-T_q}.$$

(2.14)

Note that the value $\vartheta_q(T_q)$ coincides with the notation ϑ_q introduced in (1.11).

The following curious identity will be explained in Section 4.4.

Lemma 2.2. For all $q > 0$, we have

$$T_{q^{-1}} = qT_q.$$

(2.15)

This is just a placeholder in lieu of an established physical term.
Proof. Rewriting the equation (2.14) in the form \(e^{-q^{-1}(qT_q)} = 1 - e^{-qT_q} \), we see that \(\tau = qT_q \) satisfies (2.14) with \(q \) replaced by \(q^{-1} \). By uniqueness, this implies (2.15).

The next proposition establishes an asymptotic link between the measures \(\mu_q^z \) and \(\nu_q^z \).

Proposition 2.3. Suppose that the sequence \(q \) satisfies the condition (1.2). Let \(\{ A_z \}_{z>0} \) be a family of subsets of the space \(\Lambda_q \) such that, for some positive constant \(\kappa \),

\[
\limsup_{z \downarrow 0} z^\kappa \log \mu_q^z(A_z) < 0. \tag{2.16}
\]

Then there exists a sequence \((z_n) \) such that

\[
\lim_{n \to \infty} z_n \sqrt{n} = \vartheta_q \equiv \vartheta_q(T_q) \tag{2.17}
\]

and

\[
\limsup_{n \to \infty} n^{-\kappa/2} \log \nu_q^n(A_{z_n}) < 0. \tag{2.18}
\]

There is a similar connection between the measures \(\mu_{q,z,k}^z \) and \(\nu_{q,n,k}^z \), provided that \(z \downarrow 0, k \to \infty \) and \(n \to \infty \) in a coordinated manner.

Proposition 2.4. Let the sequence \(q = (q_i) \) satisfy Assumption 1.1. Let a family of sets \(A_{z,k} \subset \Lambda_q(\star, k) \) be such that, for some constant \(\kappa > 0 \),

\[
\limsup_{z \downarrow 0} z^\kappa \log \mu_{q,z,k}^z(A_{z,k}) < 0, \tag{2.19}
\]

for any \(k = k(z) \) such that \(zk(z) \to T \in (0, \infty] \) as \(z \downarrow 0 \).

(a) If \(T < \infty \) then for any sequence \((k_n) \) satisfying

\[
\lim_{n \to \infty} \frac{k_n}{\sqrt{n}} = \frac{T}{\vartheta_q(T)}, \tag{2.20}
\]

there exists a sequence \((z_n) \) such that

\[
\lim_{n \to \infty} z_n \sqrt{n} = \vartheta_q(T) \tag{2.21}
\]

and

\[
\limsup_{n \to \infty} n^{-\kappa/2} \log \nu_{q,n,k}^z(A_{z,n,k}) < 0. \tag{2.22}
\]

(b) Let \(T = \infty \) and \(q = 0 \), and assume in addition that \(z^{2/(\beta+1)} k(z) \to 0 \) as \(z \downarrow 0 \). Then for any sequence \((k_n) \) satisfying

\[
\lim_{n \to \infty} \frac{k_n}{k(\pi/\sqrt{6n})} = 1, \tag{2.23}
\]

there exists a sequence \((z_n) \) such that the asymptotic relations (2.21) and (2.22) hold true, with the right-hand side of (2.21) reducing to \(\vartheta_0(\infty) = \vartheta_0 = \pi/\sqrt{6} \) (see (1.9)).

These two propositions are instrumental for our method; their proof, being rather technical, is postponed until Appendix A.
3. Number of parts in a typical MDP

In this section, our ultimate goal is to show that if Assumption 1.1 holds then, under the measures \(\nu_q^n \) on the MDP-space \(\Lambda_q(n) \), the typical length \(K(\lambda) \) (i.e., the number of parts) of a partition \(\lambda \in \Lambda_q(n) \) of large weight \(N(\lambda) = n \) is concentrated around \(c\sqrt{n} \) (with a suitable constant \(c > 0 \)) if \(q > 0 \), or grows slightly faster than \(\sqrt{n} \) if \(q = 0 \). To this end, we will first study the distribution of \(K(\lambda) \) under the measure \(\mu_z^q \) in the space \(\Lambda_q \).

3.1. Preparatory lemmas

For \(z > 0 \), denote
\[
\eta_k(z) := \frac{e^{-zQ_k}}{1 - e^{-zk}}, \quad k \in \mathbb{N},
\]
where \(Q_k \) is given by (1.2). For every \(z > 0 \), the sequence \((\eta_k(z))_{k \geq 1} \) is decreasing, and in particular
\[
\eta_k(z) \leq \eta_1(z) = \frac{e^{-zq_0}}{1 - e^{-z}}, \quad k \in \mathbb{N}.
\]
Furthermore,
\[
0 \leq \lim_{k \to \infty} \eta_k(z) \leq e^{-zq_0} < 1.
\]
Thus, the set \(\{k : \eta_k(z) \geq 1\} \) is always finite (possibly empty). Define
\[
k_\star \equiv k_\star(z) := \begin{cases}
\max \{k \in \mathbb{N} : \eta_k(z) \geq 1\} & \text{if } \eta_1(z) \geq 1, \\
1 & \text{if } \eta_1(z) < 1.
\end{cases} \quad (3.2)
\]

Remark 3.1. Note that \(\lim_{z \downarrow 0} \eta_k(z) = +\infty \) for any fixed \(k \in \mathbb{N} \), and so \(k_\star(z) > 1 \) for all \(z > 0 \) small enough.

First, let us record a few auxiliary statements that do not depend on Assumption 1.1.

Lemma 3.1.

(a) For every \(z > 0 \), we have
\[
\max_{k \in \mathbb{N}} \mu_z^q \{K(\lambda) = k\} = \mu_z^q \{K(\lambda) = k_\star\},
\]
where \(k_\star = k_\star(z) \) is defined in (3.2). Moreover,
\[
\mu_z^q \{K(\lambda) = k_\star\} \geq \mu_z^q \{K(\lambda) = k_\star + 1\} > \mu_z^q \{K(\lambda) = k_\star + 2\} > \cdots, \quad (3.3)
\]
and, for \(k_\star \geq 2 \),
\[
\mu_z^q \{K(\lambda) = k_\star\} \geq \mu_z^q \{K(\lambda) = k_\star - 1\} > \cdots > \mu_z^q \{K(\lambda) = 1\}.
\]

(b) The function \(z \mapsto k_\star(z) \) is non-increasing and has no jumps larger than 1. Moreover, \(k_\star(z) \to +\infty \) as \(z \downarrow 0 \).

Proof. (a) Using (2.3), (2.4) and (2.12), we can rewrite (3.1) (for \(k \geq 2 \)) as
\[
\eta_k(z) = \frac{F_q(z, k)}{F_q(z, k - 1)} = \frac{\mu_z^q \{K(\lambda) = k\}}{\mu_z^q \{K(\lambda) = k - 1\}}. \quad (3.5)
\]
The definition of \(k_s = k_s(z) \) (see (3.2)) implies that \(\eta_k(z) < 1 \) for \(k > k_s \), and (3.3) follows. Similarly, assuming that \(k_s \geq 2 \), we have \(\eta_k(z) \geq 1 \) and \(\eta_k(z) > 1 \) for \(k < k_s \), which is the same as (3.4).

(b) For \(k \in \mathbb{N} \), let \(z = \zeta_k \) be the (unique) solution of the equation

\[
\eta_k(z) = 1. \tag{3.6}
\]

From the formulas (3.1) and (3.6), it is clear that the sequence \((\zeta_k)_{k \geq 1} \) is decreasing and, moreover, \(\zeta_k \downarrow 0 \) as \(k \to \infty \). If \(z = \zeta_k \) \((k \geq 2)\) then \(\mu_k^q \{ K(\lambda) = k \} = \mu_k^q \{ K(\lambda) = k - 1 \} \) are the two maxima of the sequence \((\mu_k^q \{ K(\lambda) = j \})_{j \geq 1} \), whereas for \(z \in (\zeta_{k+1}, \zeta_k) \), the unique maximum of this sequence is attained exactly at \(j = k \). Hence, \(k_s(z) \equiv k \) for \(z \in (\zeta_{k+1}, \zeta_k) \), that is, \(z \mapsto k_s(z) \) is a non-increasing (left-continuous) step function with unit downward jumps at points \(\zeta_k \) \((k \geq 2)\). Since \(\lim_{k \to \infty} \zeta_k = 0 \), it also follows that \(\lim_{z \downarrow 0} k_s(z) = +\infty \).

Definition 3.1. Note that the standard notation \(f(z) = O(g(z)) \) as \(z \downarrow 0 \) is equivalent to \(\lim \sup_{z \downarrow 0} |f(z)|/|g(z)| < \infty \). Willing to use a "one-sided" version of this property, in what follows we shall write \(f(z) \leq O(g(z)) \) \((z \downarrow 0)\) if \(\lim \sup_{z \downarrow 0} f(z)/g(z) < +\infty \).

Lemma 3.2. Uniformly in \(k \in \mathbb{N} \), as \(z \downarrow 0 \),

\[
\log \mu_k^q \{ K(\lambda) = k \} \leq z^{-1} \{ \text{Li}_2(e^{-zk}) - \text{Li}_2(e^{-zk}) \} + z(s_k - s_k) + O(\log \frac{1}{z}) \tag{3.7}
\]

\[
\leq (k_s - k) \log(1 - e^{-zk}) + z(s_k - s_k) + O(\log \frac{1}{z}). \tag{3.8}
\]

Proof. Recalling (2.12), for each \(k \in \mathbb{N} \) we can write (see (2.9))

\[
\log \mu_k^q \{ K(\lambda) = k \} = \log \frac{F_q(z,k)}{F_q(z)} \leq \log F_q(z,k) - \log F_q(z,k_s), \tag{3.9}
\]

where, according to (2.3),

\[
\log F_q(z,k) = -zs_k - \sum_{j=1}^k \log(1 - e^{-zj}) \quad (k \in \mathbb{N}). \tag{3.10}
\]

By the well-known Euler–Maclaurin sum formula [11, 23.1.36, p. 806] applied to the function \(x \mapsto \log(1 - e^{-zx}) \), we get, uniformly in \(k \in \mathbb{N} \) as \(z \downarrow 0 \),

\[
\sum_{j=1}^k \log(1 - e^{-zj}) = \int_1^z \log(1 - e^{-zx}) \, dx + O(1) \log(1 - e^{-z}) + O(1) \int_1^z \frac{ze^{-zx}}{1 - e^{-zx}} \, dx
\]

\[
= z^{-1} \{ \text{Li}_2(e^{-zk}) - \text{Li}_2(e^{-zk}) \} + O(\log \frac{1}{z}), \tag{3.11}
\]

where \(\text{Li}_2(\cdot) \) is the dilogarithm function (see (1.8)). Thus, substituting (3.11) into (3.10) and returning to (3.9), we obtain (3.7).

Furthermore, since the derivative \((\text{Li}_2(e^{-t}))' = \log(1 - e^{-t}) \) is increasing in \(t \in (0, \infty) \), the function \(t \mapsto \text{Li}_2(e^{-t}) \) is convex, hence

\[
\text{Li}_2(e^{-zk}) - \text{Li}_2(e^{-zk}) \leq z(k_s - k) \log(1 - e^{-zk}), \quad k \in \mathbb{N}.
\]

Combining this bound with (3.7) yields (3.8).
Lemma 3.3. Suppose that Assumption 1.1 is in force, that is, the sequence \(q = (q_i) \) satisfies (1.2) with \(q \geq 0 \) and \(0 \leq \beta < 1 \).

(a) If \(q > 0 \) then
\[
k_\ast(z) = z^{-1} T_q + O(z^{-\beta}) \quad (z \downarrow 0),
\]
where \(T_q \) is defined in (2.14).

(b) If \(q = 0 \) then
\[
1 - \beta \leq \liminf_{z \downarrow 0} \frac{z k_\ast(z)}{\log \frac{1}{z}} \leq \limsup_{z \downarrow 0} \frac{z k_\ast(z)}{\log \frac{1}{z}} \leq 1.
\]

In particular, for all \(q \geq 0 \),
\[
\lim_{z \downarrow 0} z k_\ast(z) = T_q.
\]

Proof. (a) Like in the proof of Lemma 3.1(b), denote by \(\zeta_k \) \((k \in \mathbb{N})\) the solution of the equation (3.6). Using the definition (3.1), equation (3.6) is expressed at \(z = \zeta_k \) as
\[
k^{-1} Q_k = -(k \zeta_k)^{-1} \log \left(1 - e^{-k \zeta_k} \right). \tag{3.15}
\]
Comparing this with equation (2.14), observe that \(k \zeta_k = T_{\tilde{q}_k} \), where \(\tilde{q}_k := k^{-1} Q_k \to q > 0 \) as \(k \to \infty \), due to the limit (1.3), and therefore \(\lim_{k \to \infty} T_{\tilde{q}_k} = T_q \), thanks to continuity of the mapping \(q \mapsto T_q \) mentioned after the definition (2.14).

To see why this implies (3.12), recall from the proof of Lemma 3.1(b) that \(k_\ast(z) \equiv k \) for \(z \in (\zeta_{k+1}, \zeta_k) \) \((k \in \mathbb{N})\) and the limit \(z \downarrow 0 \) is equivalent to \(k \to \infty \). Hence,
\[
k_\ast z = k \zeta_k - k(\zeta_k - z) \to T_q \quad (z \downarrow 0),
\]
because \(k \zeta_k \to T_q \) and
\[
0 \leq k(\zeta_k - z) \leq k \zeta_k - k \zeta_{k+1} \to 0 \quad (k \to \infty).
\]

Furthermore, by a standard perturbation analysis it is easy to estimate the corresponding remainder term in the limit (3.12). Indeed, setting \(\delta_k := k \zeta_k - T_q \to 0 \) and using the asymptotic relation (1.2), we can rewrite (3.15) in the form
\[
(T_q + \delta_k) \left(q + O(k^{\beta-1}) \right) = - \log \left(1 - e^{-T_q} \right) - \frac{e^{-T_q}}{1 - e^{-T_q}} \delta_k + O(\delta_k^2),
\]
which yields, in view of the identity (2.14), that \(\delta_k = O(k^{\beta-1}) \).

In turn, for \(\zeta_{k+1} < z \leq \zeta_k \) we get
\[
k_\ast z - T_q = (k \zeta_k - T_q) - k(\zeta_k - z)
= \delta_k + O(1)(\delta_k + \delta_{k+1})
= O(k^{\beta-1}) = O(z^{1-\beta}) \quad (z \downarrow 0),
\]
and the estimate (3.12) follows.

(b) Fix \(\varepsilon \in (0, 1 - \beta) \). For \(z > 0 \) small enough, \(\eta_k(z) = e^{-z Q_k}(1 - e^{-z k_\ast})^{-1} \geq 1 \) by the definition (3.2), so
\[
e^{-z k_\ast} \geq 1 - e^{-z Q_k} \geq 1 - e^{-z} \geq z^{1+\varepsilon},
\]

15
Furthermore, using the asymptotic bound (1.2) for \(k \),

\[
zk_*(z) \leq (1 + \varepsilon) \log \frac{1}{z}, \tag{3.16}
\]

which implies the last inequality in (3.13), since \(\varepsilon > 0 \) can be taken arbitrarily close to 0.

On the other hand, from (2.14) we also have \(\eta_{k+1}(z) < 1 \), that is,

\[
zk_*(z) > \log \frac{1}{z} - z - \log Q_{k+1}. \tag{3.17}
\]

Furthermore, using the asymptotic bound (1.2) for \(k = k_* \) (with \(q = 0 \)) and the estimate (3.16), we obtain

\[
\log Q_{k_*+1} = O(1) + \beta \log \frac{1}{z} + \beta \log \log \frac{1}{z} \quad (z \downarrow 0).
\]

Substituting this into (3.17), it is easy to see that

\[
\liminf_{z \downarrow 0} \frac{zk_*(z)}{\log \frac{1}{z}} \geq 1 - \lim_{z \downarrow 0} \frac{z}{\log \frac{1}{z}} - \lim_{z \downarrow 0} \frac{\log Q_{k_*+1}}{\log \frac{1}{z}} = 1 - \beta,
\]

and the first inequality in (3.13) is proved. \(\square \)

Remark 3.2. In the case \(q = 0 \), the asymptotic bounds in (3.13) are optimal in the following sense: under Assumption 1.2 (i.e., when \(q \sim \tilde{q}k^\beta \) as \(k \to \infty \)), one can show that \(\lim_{z \downarrow 0} z (\log \frac{1}{z})^{-1} k_*(z) = 1 - \beta > 0 \).

3.2. Asymptotics of \(K(\lambda) \) in the space \(A_q \): case \(q > 0 \)

We can now give exponential estimates on the asymptotic behaviour of the random variable \(K = K(\lambda) \) (see (2.1)) under the measure \(\mu_q \). We start with the case \(q > 0 \).

Theorem 3.4. Let the sequence \(q = (q_k) \) satisfy Assumption 1.1 with \(q > 0 \) and \(0 \leq \beta < 1 \). Then, for every \(\gamma \in (0, \frac{1}{2}(1 - \beta)) \) and any constant \(c > 0 \), we have

\[
\limsup_{z \downarrow 0} z^{1-2\gamma} \log \mu_q \{ \lambda \in A_q : |K(\lambda) - k_*| > cz^{\gamma-1} \} \leq -\frac{1}{2} q c^2 < 0, \tag{3.18}
\]

where \(k_* = k_*(z) \) is defined in (3.2).

Proof. From (2.12) we have

\[
\mu_q \{ |K(\lambda) - k_*| > cz^{\gamma-1} \} = \frac{1}{F_q(z)} \sum_{k \in I_z} F_q(z, k), \tag{3.19}
\]

where \(I_z := \{ k \in \mathbb{N} : |k - k_*| > cz^{\gamma-1} \} \). Recalling (3.1) and (3.5), observe that for \(k > 2k_* \)

\[
\frac{F_q(z, k)}{F_q(z, k-1)} = \eta_k(z) \leq \eta_{2k_*}(z) = \frac{e^{-zQ_{2k_*}}}{1 - e^{-2z k_*}}. \tag{3.20}
\]

By the asymptotic formulas (1.2) and (3.14), this gives

\[
\limsup_{z \downarrow 0} \log \frac{F_q(z, k)}{F_q(z, k - 1)} \leq -\lim_{z \downarrow 0} z Q_{2k_*} - \lim_{z \downarrow 0} \log (1 - e^{-2z k_*})
\]
\[
= -2qT_q - \log (1 - e^{-2T_q})
\]
\[
< -2qT_q - \log (1 - e^{-T_q}) = -qT_q < 0, \tag{3.21}
\]

16
where the last equality in (3.21) is due to equation (2.14). Hence, the part of the sum (3.19) with \(k > 2k_\ast \) is asymptotically dominated by a geometric series with ratio \(e^{-qT_q} < 1 \), so that

\[
\frac{1}{F_q(z)} \sum_{k>2k_\ast} F_q(z, k) \leq \frac{F_q(z, 2k_\ast)}{F_q(z)} \cdot \frac{e^{-qT_q}}{1 - e^{-qT_q}}. \tag{3.22}
\]

Furthermore, with the help of the monotonicity properties (3.3) and (3.4) yield

\[
\text{Observe from Lemma 3.3(a) that we obtain (3.18), which completes the proof.}
\]

Corollary 3.5. Let Assumption 1.1 hold with \(q > 0 \). Then, for any \(\varepsilon > 0 \),

\[
\lim_{z \downarrow 0} \mu_\varepsilon \{ \lambda \in A_q : |zK(\lambda) - T_q| > \varepsilon \} = 0.
\]

3.3. **Asymptotics of \(K(\lambda) \) in the space \(A_q \): case \(q = 0 \)

When Assumption 1.1 holds with \(q = 0 \), the asymptotics for \(k_\ast(z) \) as \(z \downarrow 0 \) cannot be obtained, as was mentioned in Remark 3.2. So there is no hope to find exponential bounds for \(K(\lambda) \) to fit into an interval of order smaller than \(z^{-1} \), as in (3.18). Nevertheless we can
still find an interval such that \(K(\lambda) \) does not hit it with an exponentially small \(\mu^q \)-probability, as \(z \downarrow 0 \). To this end, we need some additional notation.

Fix \(\gamma \in (0, 1) \) and define the function

\[
z \mapsto k_\gamma \equiv k_\gamma(z) := \inf \{ k \in \mathbb{N} : s_k \geq z^{-2(1-\gamma)} \}, \quad z \in (0, 1) .
\] \hspace{1cm} (3.27)

Recalling that \(s_k \geq k \) (see after formula (2.4)), from the definition (3.27) it follows that

\[
k_\gamma(z) \leq \lceil z^{-2(1-\gamma)} \rceil .
\] \hspace{1cm} (3.28)

On the other hand, it is clear that \(k_\gamma(z) \to \infty \) as \(z \downarrow 0 \). Actually we can tell more.

Lemma 3.6. Let Assumption 1.1 hold with \(q = 0 \) and some \(\beta \in [0, 1) \). Then, for any \(\gamma \in (0, 1) \),

\[
\lim_{z \downarrow 0} z^{2(1-\gamma)} s_{k_\gamma(z)} = 1 ,
\] \hspace{1cm} (3.29)

\[
\liminf_{z \downarrow 0} z^{2(1-\gamma)/(\beta+1)} k_\gamma(z) > 0 .
\] \hspace{1cm} (3.30)

Moreover, if \(0 < \gamma < \frac{1}{2} \) then for any \(t > 0 \)

\[
\limsup_{z \downarrow 0} z^{1-2\gamma} Q_{k_\gamma(z) - \lceil t/z \rceil} \leq t^{-1} .
\] \hspace{1cm} (3.31)

Proof. The definition (3.27) implies that \(s_{k_\gamma - 1} < z^{-2(1-\gamma)} \leq s_{k_\gamma} \). Hence, recalling notation (2.4) and combining the asymptotics (1.2) (with \(q = 0 \)) and the bound (3.31), we have

\[
z^{-2(1-\gamma)} \leq s_{k_\gamma} = s_{k_\gamma - 1} + Q_{k_\gamma} < z^{-2(1-\gamma)} + Q_{k_\gamma} \]
\[
= z^{-2(1-\gamma)} + O(z^{-2\beta(1-\gamma)}) \sim z^{-2(1-\gamma)},
\] \hspace{1cm} (3.32)

since \(\beta < 1 \) and \(1 - \gamma > 0 \). Now, the limit (3.29) follows from the two-sided estimate (3.32). Similarly, using (2.5) (with \(q = 0 \)), we obtain the asymptotic bound

\[
z^{-2(1-\gamma)} \leq s_{k_\gamma} = O(k_\gamma^{\beta+1}) \quad (z \downarrow 0),
\]

which implies (3.30). Finally, since the sequence \((Q_k) \) is non-decreasing (see (1.2)), for \(t > 0 \) we can write

\[
s_{k_\gamma} \geq \sum_{k = k_\gamma - \lceil t/z \rceil}^{k_\gamma} Q_k \geq \lceil t/z \rceil \cdot Q_{k_\gamma - \lceil t/z \rceil},
\]

and the claim (3.31) readily follows in view of (3.29). \(\square \)

The next result is a counterpart of Theorem 3.4 for the case \(q = 0 \).

Theorem 3.7. Let Assumption 1.1 hold with \(q = 0 \). Then, for any \(\gamma \in (0, \frac{1}{2}(1-\beta)) \),

\[
\limsup_{z \downarrow 0} z^{1-2\gamma} \log \mu \{ \lambda \in A_q : K(\lambda) < z^{-1} \log \log \frac{1}{z} \} = -\infty ,
\] \hspace{1cm} (3.33)

\[
\limsup_{z \downarrow 0} z^{1-2\gamma} \log \mu \{ \lambda \in A_q : K(\lambda) > k_\gamma(z) \} \leq -1 .
\] \hspace{1cm} (3.34)
Proof. Put \(k^t \equiv k^t(z) := \lfloor z^{-1} \log \log \frac{1}{z} \rfloor \). In view of the lower bound in (3.13), it is clear that \(k^t(z)/k_*(z) \to 0 \) as \(z \downarrow 0 \), and hence \(k^t(z) < k_*(z) \) for all \(z > 0 \) small enough. Then, using (2.12) and (3.4), we can write

\[
\mu^t\{K(\lambda) < k^t\} = \sum_{k < k^t} \frac{F_q(z,k)}{F_q(z)} \leq k^t \frac{F_q(z,k^t)}{F_q(z)}. \tag{3.35}
\]

Furthermore, for any \(\varepsilon \in (0, 1 - \beta) \) and all \(z > 0 \) small enough, according to (3.13) we have

\[
(1 - \beta - \varepsilon) z^{-1} \log \frac{1}{z} \leq k_* (z) \leq (1 + \varepsilon) z^{-1} \log \frac{1}{z},
\]

which also gives \(s_{k_*} = O(z^{-\beta-1}(\log \frac{1}{z})^{\beta+1}) \) by (2.5). Then from (3.7) we get

\[
\log F_q(z,k^t) \leq z^{-1} \left\{ \text{Li}_2(z^{1-\beta-\varepsilon}) - \text{Li}_2(e^{-zk^t}) \right\} + O(z^{-\beta}(\log \frac{1}{z})^{\beta+1}) \tag{3.36}
\]

and (3.33) follows by combining (3.35) and (3.36).

Next, to estimate the probability

\[
\mu^t\{K(\lambda) > k_\gamma\} = \frac{1}{F_q(z)} \sum_{k > k_\gamma} F_q(z,k),
\tag{3.37}
\]

observe (cf. (3.20)) that, for \(k > k_\gamma \) and all \(z > 0 \) small enough, we have

\[
\frac{F_q(z,k)}{F_q(z,k - 1)} = \eta_k(z) = \frac{e^{-zQ_k}}{1 - e^{-zk}} < \frac{e^{-z}}{1 - e^{-zk_\gamma}} \leq 1 - \frac{1}{2} z,
\]

because if \(2\gamma < 1 - \beta \) then the asymptotic bound (3.30) implies \(\lim_{z \downarrow 0} z^{-1} e^{-zk_\gamma} = 0 \), and therefore

\[
\frac{1}{z} \left(\frac{e^{-z}}{1 - e^{-zk_\gamma}} - 1 \right) = \frac{e^{-z} - 1}{z(1 - e^{-zk_\gamma})} + \frac{e^{-zk_\gamma}}{z(1 - e^{-zk_\gamma})} \to -1 \quad (z \downarrow 0).
\]

Thus, we can estimate the right-hand side of (3.37) by the sum of a geometric progression with ratio \(1 - \frac{1}{2} z < 1 \), that is,

\[
\mu^t\{K(\lambda) > k_\gamma\} \leq 2 z^{-1} F_q(z,k_\gamma) F_q(z). \tag{3.38}
\]

Next, using again the estimate (3.7) and also the asymptotics (3.29), we obtain (cf. (3.36))

\[
\log \frac{F_q(z,k_\gamma)}{F_q(z)} \leq z^{-1} \text{Li}_2(z^{1-\beta-\varepsilon}) - zs_{k_\gamma} + O(z^{-\beta}(\log \frac{1}{z})^{\beta+1}) \tag{3.39}
\]

where the asymptotic equivalence in (3.39) holds provided that \(0 < \varepsilon < 1 - \beta - 2\gamma \). Now, the desired result (3.34) follows by combining (3.38) and (3.39). \(\square\)
In the case $q = 0$, under the refined Assumption [1.2] with $\tilde{q} > 0$ (see (1.4)) one can prove the following analogue of the exponential bound (3.18): for any $c > 0$ and $\gamma \in (0, \frac{1}{2} \beta)$,

$$
\limsup_{z \downarrow 0} z^{\beta - 2q} \log \mu_{z} \{ \lambda \in A_{q} : |K(\lambda) - k_{s}| > cz^{-1} \} \leq -2^{\beta - 2\tilde{q}} \beta c^{2} < 0.
$$

(3.40)

Here $k_{s} = k_{s}(z)$ is again defined by (5.2) but now has the refined asymptotics (cf. (5.13))

$$
k_{s}(z) = z^{-1} \left((1 - \beta) \log \frac{1}{z} - \beta \log \frac{1}{z} - \beta \log(1 - \beta) - \log \tilde{q} + o(1) \right).
$$

(3.41)

The exponential bound (3.40) together with the asymptotic formula (3.41) immediately imply the law of large numbers for the number of parts (cf. Corollary 3.5): for any $\varepsilon > 0$,

$$
\lim_{z \downarrow 0} \mu_{z} \{ \lambda \in A_{q} : |z(\log \frac{1}{z})^{-1} K(\lambda) - (1 - \beta)| > \varepsilon \} = 0.
$$

Formally, these results do not cover the utterly degenerate case $\tilde{q} = 0$, $\tilde{\beta} = 0$ in the asymptotic formula (1.4) of Assumption [1.2], however, as explained in Remark 1.4, it is equivalent to the classical case of unrestricted partitions, where the asymptotic behaviour of $K(\lambda)$ (under the measure μ_{z} on A) is described by the limit theorem [15]

$$
\lim_{z \downarrow 0} \mu_{z} \{ \lambda \in A : z K(\lambda) - \log \frac{1}{z} \leq t \} = \exp(-e^{-t}), \quad t \in \mathbb{R}.
$$

(3.42)

The asymmetry of the limiting distribution (3.42) (i.e., exponential tail on the right and super-exponential tail on the left) explains the appearance of the two claims in Theorem 3.7.

3.4. Asymptotics of $K(\lambda)$ in the space $A_{q}(n)$

It is now easy to derive the analogues of Theorems 3.4 and 3.7 under the measures ν_{n}^{θ}.

Theorem 3.8. Suppose that Assumption [1.1] holds, with $q \geq 0$ and $0 \leq \beta < 1$, and let $\gamma \in (0, \frac{1}{2}(1 - \beta))$.

(a) If $q > 0$ then there exists a sequence (k_{n}) satisfying the asymptotic relation

$$
k_{n} \sim T_{q} \sqrt{n} \frac{\sqrt{n}}{\theta_{q}} \quad (n \to \infty),
$$

(3.43)

such that, for any $a > 0$,

$$
\limsup_{n \to \infty} n^{\gamma - 1/2} \log \nu_{n}^{\theta} \{ \lambda \in A_{q}(n) : |K(\lambda) - k_{n}| > a n^{(1-\gamma)/2} \} < 0.
$$

(3.44)

(b) If $q = 0$ then

$$
\limsup_{n \to \infty} n^{\gamma - 1/2} \log \nu_{n}^{\theta} \{ \lambda \in A_{q}(n) : K(\lambda) < \frac{1}{2} \sqrt{n} \log \log n \text{ or } K(\lambda) > n^{1-\gamma} \} < 0.
$$

(3.45)

Proof. (a) Applying Theorem 3.4 to the set $A_{\gamma} = \{ |K(\lambda) - k_{s}| > cz^{-1} \} \subset A_{q}$ with $c := \frac{1}{2} a \theta_{q}^{1-\gamma}$, we see that A_{γ} satisfies the condition (2.16) of Proposition 2.3 with $\kappa = 1 - 2 \gamma > 0$. Hence, setting $k_{n} := k_{s}(z_{n})$ and using (2.18) together with the property (2.17), we obtain (3.44), as claimed. Finally, relation (3.43) easily follows from (2.17) and (3.14).
(b) Consider the set \(A_z = \{ K(\lambda) < z^{-1} \log \log \frac{1}{z} \text{ or } K(\lambda) > k_{\gamma}(z) \} \). By Theorem 3.7 the set \(A_z \) satisfies the condition (2.16) of Proposition 2.3. Moreover, if the asymptotic relation (2.17) with \(q = 0 \) holds for a sequence \(z_n \), then the set referred to in (3.45) is a subset of \(A_{z_n} \), at least for \(n \) large enough, because

\[
z_n^{-1} \log \log \frac{1}{z_n} > \frac{1}{2} \sqrt{n} \log \log n, \quad k_{\gamma}(z_n) \leq \left[z_n^{-2(1-\gamma)} \right] \sim \left(\frac{6n}{\pi^2} \right)^{1-\gamma} < n^{1-\gamma} \quad (n \to \infty).
\]

Thus, the required relation (3.45) follows from (2.18).

Similarly as before, Theorem 3.8 with \(q > 0 \) implies the law of large numbers for \(K(\lambda) \) under the measure \(\nu_{q,n} \), analogous to Corollary 3.5.

Corollary 3.9. Let Assumption 1.1 hold with \(q > 0 \). Then, for any \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \nu_{q,n} \left\{ \lambda \in A_q(n) : \left| \frac{K(\lambda)}{\sqrt{n log n}} - \frac{T_q}{\partial_q} \right| > \varepsilon \right\} = 0.
\]

If \(q = 0 \) then, under Assumption 1.2 with \(\tilde{q} > 0 \) (see (1.4)), one can deduce in a similar fashion the law of large numbers for \(K(\lambda) \): for any \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \nu_{\tilde{q},n} \left\{ \lambda \in A_\tilde{q}(n) : \left| \frac{K(\lambda)}{\sqrt{n log n}} - \frac{\sqrt{6}(1-\beta)}{2\pi} \right| > \varepsilon \right\} = 0. \tag{3.46}
\]

In fact, an exponential bound for large deviations of \(K(\lambda) \) can be obtained by combining (3.40) with Theorem 3.8(b), but we omit technical details.

Finally, if \(\tilde{q} = 0 \) and \(\tilde{\beta} = 0 \) in (1.4), then the classical limit theorem (under the uniform measure \(\nu_n \) on \(A(n) \)) states that \[12, 15\]

\[
\lim_{n \to \infty} \nu_n \left\{ \lambda \in A(n) : \frac{\pi K(\lambda)}{\sqrt{6n}} - \log \frac{\sqrt{6n}}{\pi} \leq t \right\} = \exp(-e^{-t}), \quad t \in \mathbb{R}. \tag{3.47}
\]

Of course, this result implies the law of large numbers,

\[
\lim_{n \to \infty} \nu_n \left\{ \lambda \in A(n) : \left| \frac{K(\lambda)}{\sqrt{n log n}} - \frac{\sqrt{6}}{2\pi} \right| > \varepsilon \right\} = 0,
\]

which can be formally considered as the limiting case of (3.46) as \(\beta \downarrow 0 \).

Remark 3.3. To be more precise, the results by Erdős & Lehner \[12\] and Fristedt \[15\], quoted above as formulas (3.42) and (3.47), are technically about the maximal part \(\lambda_1 \), but due to the invariance of the measures \(\mu_z \) and \(\nu_n \) under conjugation of Young diagrams (whereby columns become rows and vice versa; see also Section 5), the random variable \(\lambda_1 \) has the same distribution as the number of parts \(K(\lambda) \).

4. Limit shape of the minimal difference partitions

4.1. The parametric family of limit shapes

Mutual independence of the random variables \((D_j(\lambda))_{j=1}^k \) with respect to the measure \(\mu_{z,k}^q \) (see Lemma 2.1) provides an easy way to find the limit shape for MDPs as \(z \downarrow 0 \). It is natural to allow the maximal part \(k \) to grow to infinity as \(z \) approaches 0, where the correct
growth rate, as suggested by Theorem 3.4, is of order z^{-1} when $q > 0$ and possibly faster, by a logarithmic factor, when $q = 0$. It turns out that if the condition (1.2) holds and $\lim_{z \to 0} z k = T < \infty$ then $\mu_{z,k}^q$-typical partitions $\lambda \in A_q(\cdot, k)$ concentrate around the limit shape determined by the function

$$\varphi_T(t; q) := \begin{cases} q(T - t) + \log \frac{1 - e^{-T}}{1 - e^{-t}}, & 0 < t \leq T, \\ 0, & t \geq T. \end{cases} \quad (4.1)$$

If $q = 0$ then the expression (4.1) is reduced to

$$\varphi_T(t; 0) = \begin{cases} \log \frac{1 - e^{-T}}{1 - e^{-t}}, & 0 < t \leq T, \\ 0, & t \geq T. \end{cases} \quad (4.2)$$

which coincides, as one could expect, with the limit shape of plain (unrestricted) partitions subject to the condition $zk \to T$ (see [38]).

If $q = 0$, one can also allow zk to grow slowly to infinity as $z \downarrow 0$ (which is actually a typical behaviour), whereby the limit shape is given by the formula

$$\varphi_\infty(t; 0) = - \log (1 - e^{-t})$$

(which is formally consistent with (4.2) if we set $T = \infty$).

Another simplification of formula (4.1) worth mentioning occurs for $q > 0$ and $T = T_q$ (see (2.14)), which determines the typical behaviour of the number of parts in this case (see Theorem 3.4 and the asymptotic formula (3.14)); here, the limit shape (4.1) is reduced to

$$\varphi_{T_q}(t; q) = \begin{cases} -qt - \log (1 - e^{-t}), & 0 < t \leq T_q, \\ 0, & t \geq T_q. \end{cases} \quad (4.3)$$

This coincides with the limit shape found by Comtet et al. [8 Eq. (19)], [9 Eq. (11)]. The limit shape (4.3) is illustrated in Fig. 3 for various values of parameter $q \geq 0$ using Cartesian coordinates $x = t, y = -qt - \log (1 - e^{-t})$, whereby (4.3) takes the form

$$e^{-y} = e^{\alpha x} (1 - e^{-x}), \quad (4.4)$$

which was already mentioned in Section 1.3 (see (1.14)).

4.2. The limit shape in the spaces $A_q(\cdot, k)$ and $A_q(n, k_n)$

The exact statement is as follows. Recall that the notation $k_\gamma(z)$ is defined in (3.27).

Theorem 4.1. Let Assumption 1.1 hold, with $q \geq 0$. Then for every $t > 0$ and any $\varepsilon > 0$, uniformly in $k = k(z) \in \mathbb{N}$ such that $\lim_{z \to 0} z k(z) = T \in (0, \infty),$

$$\limsup_{z \to 0} z \log \mu_{z,k}^q \left\{ \lambda \in A_q(\cdot, k) : |z Y_\lambda(t/z) - \varphi_T(t; q)| > \varepsilon \right\} < 0. \quad (4.5)$$

Furthermore, if $q = 0$ and $\lim_{z \to 0} z k(z) = \infty$ but $k(z) \leq k_\gamma(z)$, with some $\gamma \in (0, \frac{1}{2}(1 - \beta))$, then (4.5) holds with $\varphi_\infty(t; 0)$ in place of $\varphi_T(t; q)$.

Fig. 3: The parametric family of the limit shapes (4.3) plotted in the Cartesian coordinates $x = t$ and $y = -tq - \log (1 - e^{-t})$ (see (4.3)).

Proof. First, let us show that the curve $t \mapsto \varphi_T(t; q)$ is the limit of the $\mu^q_{z,k}$-mean of the scaled Young diagrams, that is, for every $t > 0$

$$\lim_{z \downarrow 0} z E^q_{z,k}[Y_\lambda(t/z)] = \varphi_T(t; q).$$

(4.6)

To this end, using the definition (2.2) and the formula (2.8), we can write, for $0 < t < T$,

$$E^q_{z,k}[Y_\lambda(t/z)] = \sum_{t/z < j \leq k} E^q_{z,k}[D_j(\lambda)] = \sum_{t/z < j \leq k} q_{k-j} + \sum_{t/z < j \leq k} \frac{e^{-jz}}{1 - e^{-jz}}.$$ (4.7)

According to (1.2), for $T < \infty$ and $q \geq 0$ the first sum in (4.7) is asymptotically evaluated as follows

$$\sum_{t/z < j \leq k} q_{k-j} = Q_{k-\lfloor t/z \rfloor} = q(k - \lfloor t/z \rfloor) + O((k - t/z)^\beta) = qz^{-1}(T - t) + o(z^{-1})$$ (4.8)

since $zk \to T$ as $z \downarrow 0$. If $T = \infty$ and $q = 0$, then for $k \leq k_\gamma(z)$ one has $Q_{k-\lfloor t/z \rfloor} = O(z^{-1+2\gamma}) = o(z^{-1})$ by Lemma 3.6 (see (3.31)).

For the second sum in (4.7), we get (e.g., via the Euler–Maclaurin sum formula) that

$$\sum_{t/z < j \leq k} \frac{e^{-jz}}{1 - e^{-jz}} \sim \int_{t/z}^k \frac{e^{-xz}}{1 - e^{-xz}} \, dx$$

$$= z^{-1} \log (1 - e^{-xz}) \big|_{t/z}^k$$

$$= z^{-1} \log \frac{1 - e^{-zk}}{1 - e^{-t}}$$

$$\sim z^{-1} \log \frac{1 - e^{-T}}{1 - e^{-t}} \quad (z \downarrow 0).$$ (4.9)

The same calculation is valid when $zk \to \infty$, with the change of e^{-T} to 0. Thus, on substituting the estimates (4.8) and (4.9) into (4.7) we get (4.6).
To obtain the exponential bound (4.5), we use a standard technique often applied in similar problems (see, e.g., [10]). Suppose that \(zk \rightarrow T \in (0, \infty) \), and fix \(t \in (0, T) \) and \(\varepsilon > 0 \). In what follows, we always assume that \(z \) is small enough so that \(zk > t \) and

\[
|z E_{z,k}[Y_{\lambda}(t/z)] - \varphi_T(t; q)| < \frac{1}{2} \varepsilon. \tag{4.10}
\]

Then for any \(u \in (0, t) \)

\[
\mu_{z,k}^u \{ zY_{\lambda}(t/z) - \varphi_T(t; q) > \varepsilon \} \leq \mu_{z,k}^u \{ Y_{\lambda}(t/z) \geq E_{z,k}^u [Y_{\lambda}(t/z)] + \frac{1}{2} z^{-1} \varepsilon \}
\leq \exp \left(-u E_{z,k}^u [Y_{\lambda}(t/z)] - \frac{1}{2} uz^{-1} \varepsilon \right) \left[\exp (u Y_{\lambda}(t/z)) \right]
\leq \exp \left(-\frac{1}{2} uz^{-1} \varepsilon \right) \prod_{t/z < j \leq k} E_{z,k}^u \left[\exp (u D_j - u E_{z,k}^u (D_j)) \right], \tag{4.11}
\]

where the first inequality is a consequence of assumption (4.10), the second is the exponential Markov inequality, and the last line follows from the additive structure of \(Y_{\lambda}(t) \) and independence of \((D_j)_{j=1}^k \).

Suppose that, for some \(w \in (0, 1) \) that will be specified later,

\[
0 < u \leq \log \left(1 + \frac{w}{h(t)} \right) =: v(w), \tag{4.12}
\]

where we put for short

\[
h(t) := \frac{e^{-t}}{1 - e^{-t}}, \quad t \in (0, \infty). \tag{4.13}
\]

Then for \(j \geq t/z \) we have

\[
(e^u - 1) h(zj) \leq (e^u - 1) h(t) \leq w.
\]

Applying the elementary inequalities

\[
- \log (1 - x) \leq -x w^{-1} \log (1 - w) \quad (0 < x \leq w),
\]

\[
e^u - 1 \leq u w^{-1} (e^v - 1) \quad (0 < u \leq v),
\]

with \(x := (e^u - 1) h(zj) \) and \(v := v(w) \) (see (4.12)), we obtain

\[
- \log (1 - (e^u - 1) h(zj)) \leq u y(w) h(zj), \quad y(w) := \frac{- \log (1 - w)}{h(t) v(w)}.
\]

Hence, for \(u \leq \min \{v(w), t \} \leq jz \)

\[
\log \left(E_{z,k}^u \left[\exp (u D_j - u E_{z,k}^u (D_j)) \right] \right) = \log \frac{1 - e^{-zj}}{1 - e^{u-zj}} - u h(zj)
\leq - \log [1 - (e^u - 1) h(zj)] - u h(zj)
\leq u \left(y(w) - 1 \right) h(zj). \tag{4.14}
\]

Substituting (4.14) into (4.11) and recalling (4.9), we obtain

\[
z \log \mu_{z,k}^u \{ \lambda \in \Lambda_q(\bullet, k) : zY_{\lambda}(t/z) - \varphi_T(t; q) > \varepsilon \}
\leq u \left(\frac{- \varepsilon + (y(w) - 1) \varphi_T(t; 0)}{2} \right)
\leq \frac{v(w)}{2} \left(\frac{- \varepsilon + (y(w) - 1) \varphi_T(t; 0)}{2} \right). \tag{4.15}
\]
Since \(y(w) \to 1 \) as \(w \downarrow 0 \), we can choose \(w \) small enough to make the right-hand side of (4.15) negative. This yields the desired bound for the probability of positive deviations in (4.5). The probability of negative deviations is estimated in the same fashion.

We are now in a position to state and prove our first main result.

Theorem 4.2. Suppose that Assumption [1.1] is satisfied with some \(q \geq 0 \), and let \(k_n \to \infty \) so that \(k_n^{q} / \sqrt{n} \to \tau \) as \(n \to \infty \), for some \(\tau \in (0, \sqrt{2/q}) \), with the right bound understood as \(+\infty \) when \(q = 0 \). Then, for every \(t_0 > 0 \) and any \(\varepsilon > 0 \),

\[
\limsup_{n \to \infty} \frac{1}{\sqrt{n}} \log \nu^\beta_{n,k_n} \left\{ \lambda \in \Lambda_q(n,k_n) : \sup_{t \geq t_0} |z_n Y_{\lambda}(t/z_n) - \varphi_{T_\ast}(t;\varepsilon)| > \varepsilon \right\} < 0, \tag{4.16}
\]

where \(T_\ast = T_\ast(\tau;q) > 0 \) is the (unique) solution of the equation

\[
\tau \vartheta_q(T_\ast) = T_\ast \tag{4.17}
\]

and

\[
z_n := T_\ast \frac{k_n}{T} \sim \frac{T_\ast}{\tau \sqrt{n}}. \tag{4.18}
\]

Furthermore, if \(q = 0 \) then the result (4.16) is also valid in the case \(k_n^{q} / \sqrt{n} \to \infty \) under the additional condition \(\limsup_{n \to \infty} k_n^{q+1}/n^{1-\delta} < \infty \) for some \(\delta \in (0, 1) \), with \(T = \infty \) and \(\vartheta_0(\infty) = \pi/\sqrt{6} \).

Remark 4.1. The assumption \(\tau^2 < 2/q \) in Theorem 4.2 arises naturally, because if \(\lambda \in \Lambda_q(n,k) \), then, due to the MDP condition (1.1), we must have \(n \geq s_k = \frac{1}{2}qk^2 + O(k^{1+\beta}) \), which yields \(\tau^2 \leq 2/q \). The boundary case \(\tau^2 = 2/q \) can in principle be realized, but both the formulation and analysis should be more accurate, so we do not consider it with the exception of the important special case \(q = 0 \) when additional difficulties can be treated without much effort.

Proof of Theorem 4.2. Note that the equation (4.17) can be rewritten as

\[
\frac{\text{Li}_2(1 - e^{-T})}{T^2} = \frac{1}{\tau^2} - \frac{q}{2}
\]

with the left-hand side decreasing from \(+\infty \) to 0 as \(T \) grows from 0 to \(+\infty \), so its positive solution \(T = T_\ast \) always exists (and is unique) for any \(\tau \in (0, \sqrt{2/q}) \).

For \(0 < t_0 \leq t < T \leq \infty \) and \(\varepsilon > 0 \), denote

\[
A_{z,k}(t,\varepsilon) := \{ \lambda \in A(\ast,k) : |z Y_{\lambda}(t/z) - \varphi_T(t;\varepsilon)| > \varepsilon \},
\]

\[
\hat{A}_{z,k}(t_0,\varepsilon) := \{ \lambda \in A(\ast,k) : \sup_{t \geq t_0} |z Y_{\lambda}(t/z) - \varphi_T(t;\varepsilon)| > \varepsilon \}.
\]

Given \(t_0 > 0 \) and \(\varepsilon > 0 \), define \(t_i \) recursively by \(\varphi_T(t_i;\varepsilon) = \varphi_T(t_{i-1}, q) - \varepsilon/2 \) until \(\varphi_T(t_{s-1}) - \varepsilon/2 \) becomes negative for some \(s \). By construction,

\[
\bigcup_{i=0}^{s-1} A_{z,k}(t_i,\varepsilon/2) \supset \hat{A}_{z,k}(t_0,\varepsilon), \tag{4.19}
\]

because both \(Y_{\lambda}(t) \) and \(\varphi_T(t,\varepsilon) \) decrease as functions of \(t \).

Now, we aim to apply Theorem [4.1] and Proposition [2.4] To this end, in the case \(T < \infty \) take \(k(z) \) to be any integer-valued function such that \(z k(z) \to T \); in the case \(T = \infty \)
(arising for \(q = 0, \tau = \infty \)) let \(k(z) := k_n \) for \(z \in (\pi/\sqrt{6(n+1)}, \pi/\sqrt{6n}] \), where the sequence \((k_n) \) is referred to in the theorem. In the latter case one can write \(k(z) = k_n^{\pi^2/6z^2} \), and the additional requirement \(\limsup_{n \to \infty} k_n^{\beta+1}/n^{1-\delta} < \infty \) combined with (2.5) implies \(s_{k_n} = O(n^{1-\delta}) \) which can be rewritten as \(s_{k(z)} = O(z^{-2+2\delta}) \). Thus, for \(\gamma \in (0, \delta) \) and \(z \) small enough one has \(s_{k(z)} < z^{-2+2\gamma} \), and thus \(k(z) < k_n(z) \) (see (3.27)).

Hence, Theorem 4.3 implies that for any \(t \in (0, T) \) and \(\varepsilon > 0 \)

\[
\limsup_{z \to 0} z \log \mu_{z,k(z)}^q (A_z,k(z)(t,\varepsilon)) < 0. \tag{4.20}
\]

It follows from the asymptotic bound (4.20) (applied with \(\varepsilon/2 \) instead of \(\varepsilon \)) and the inclusion (4.19) that for any \(t_0 > 0 \)

\[
\limsup_{z \to 0} z \log \mu_{z,k(z)}^q (\hat{A}_{z,k(z)}(t_0,\varepsilon)) < 0.
\]

Furthermore, \(k_n/\sqrt{n} \to \tau = T/\vartheta(q) \) as \(n \to \infty \); if \(q = 0 \) and \(\tau = \infty \) then \(k_n/k(\pi/\sqrt{6n}) = 1 \) by construction and \(z^{2/(\beta+1)}k(z) \to 0 \) by the assumption \(\limsup_{n \to \infty} k^{\beta+1}/n^{1-\delta} < \infty \). As a result, by Proposition 2.4 there exists a sequence \(\{z_n\} \) such that for any \(t_0 > 0 \)

\[
\limsup_{n \to \infty} \frac{1}{\sqrt{n}} \log \nu_{n,k_n}^q (\hat{A}_{z_n,k_n}(t_0,\varepsilon)) < 0.
\]

Finally, it is easy to see that the sequence \(\{z_n\} \) of Proposition 2.4 and the sequence \(\{z_n\} \) defined by (4.18) are asymptotically equivalent so can be interchanged in (4.16). \(\square \)

4.3. The limit shape in the spaces \(A_q \) and \(A_q(n) \)

Recall that the function \(\varphi_{T_q}(t; q) \) is given by (4.3), where \(T_q \) is defined as the unique solution of the equation (2.14).

Theorem 4.3. Let Assumption 3.1 hold, with \(q \geq 0 \). Then for every \(t > 0 \) and any \(\varepsilon > 0, \delta > 0 \)

\[
\limsup_{z \to 0} z^{1-\delta} \log \mu_z^q \{ \lambda \in A_q : |zY_{\lambda}(t/z) - \varphi_{T_q}(t; q)| > \varepsilon \} < 0. \tag{4.21}
\]

Proof. Let \(A_z \subset A_q \) be the set on the left-hand side of (4.21). Then

\[
\mu_z^q (A_z) = \sum_{k=0}^{\infty} \mu_z^q (A_z \cap A_q(\cdot, k)) = \sum_{k=0}^{\infty} \mu_z^q (A_z) \mu_z^q \{ K(\lambda) = k \}.
\]

Suppose that \(q > 0 \). Take \(\gamma \in (0, \min\{\delta/2, (1-\beta)/2\}) \) and set \(I_z := \{ k \in \mathbb{N} : |k-k_s| > z^{\gamma-1} \} \), where \(k_s = k_s(z) \) is defined in (3.2). Then

\[
\mu_z^q (A_z) \leq \left(\sum_{k \in I_z} + \sum_{k \not\in I_z} \right) \mu_z^q (A_z) \mu_z^q \{ K(\lambda) = k \}
\]

\[
\leq \mu_z^q \{ K(\lambda) \in I_z \} + \max_{k \in I_z} \mu_z^q (A_z). \tag{4.22}
\]

Using the elementary inequality (3.26), we get from (4.22)

\[
\log \mu_z^q (A_z) \leq \log 2 + \max_{k \in I_z} \left\{ \log \mu_z^q \{ K(\lambda) \in I_z \}, \log \max_{k \in I_z} \mu_z^q (A_z) \right\}.
\]

Multiplying this by \(z^{1-\delta} \) and applying Theorems 3.4 and 4.1, we obtain (4.21).

If \(q = 0 \) then we set \(I_z := \{ k \in \mathbb{N} : k < z^{-1} \log \log \frac{1}{\varepsilon} \} \cup \{ k \in \mathbb{N} : k > k_s(z) \} \) and repeat the above argumentation with a reference to Theorem 3.7 instead of Theorem 3.4. \(\square \)
Our second main result describes the limit shape under the measure \(\nu_q^A \), that is, without any restriction on the number of parts.

Theorem 4.4. Let Assumption (**1.1**) be satisfied, with \(q \geq 0 \). Then for every \(t_0 > 0 \) and any \(\varepsilon > 0 \) and \(\delta > 0 \), we have

\[
\limsup_{n \to \infty} n^{\delta-1/2} \log \nu_n^A \left\{ \lambda \in A_q(n) : \sup_{t \geq t_0} |z_n Y_\lambda(t/z_n) - \phi_{T_q}(t; q)| > \varepsilon \right\} < 0,
\]

where \(z_n = \vartheta_q / \sqrt{n} \), with \(\vartheta_q \) given by (**1.11**).

Proof. The claim follows from Theorem 4.3 and Proposition 2.3 by the same argumentation as that used to derive Theorem 4.2 from Theorem 4.1 and Proposition 2.4. \(\square \)

4.4. Ground state

Observe that, for \(q > 0 \), the area beneath the limit shape \(t \mapsto \phi_{T_q}(t; q) \) featured in Theorems 4.3 and 4.4 contains a right-angled triangle \(\Delta_q \) (shaded in Fig. 4) obtained in the limit from the (rescaled) partitions in \(A_q(n) \) satisfying the hard version of the MDP restrictions (**1.1**), that is, when all inequalities are replaced by equalities. Thus, we can say that the triangle \(\Delta_q \) represents the ground state of the MDP(q) system, while the remaining part of the limit shape corresponds to additional degrees of freedom in a \(\nu_q^A \)-typical partition. Note that, according to the \(\nu_q^A \)-typical asymptotic behaviour of \(K(\lambda) \) described in Corollary 3.9 under the scaling of Theorem 4.4, the horizontal leg of the triangle \(\Delta_q \) is identified as \(T_q \). On the other hand, by the condition (**1.3**) the slope of the hypotenuse of the triangle is given by \(q \), therefore the vertical leg of \(\Delta_q \) is found to be \(qT_q \). In particular, the area of \(\Delta_q \) is \(\frac{1}{2} q T_q^2 \). Since the total area of the limit shape is \(\vartheta_q^2 \) (see (**1.11**)), the area of the “free” part is given by

\[
\vartheta_q^2 - \frac{1}{2} q T_q^2 = \text{Li}_2(1 - e^{-T_q}).
\]

(4.23)

This remark helps to clarify the duality identity (**2.15**) of Lemma 2.2. To this end, consider the triangle \(\hat{\Delta}_q \) obtained from \(\Delta_q \) by reflection about the principal coordinate diagonal, that is, with legs \(qT_q \) (horizontal) and \(T_q \) (vertical). This triangle may serve as the ground state of a suitable MDP(\(\hat{q} \)) ensemble. The slope of the hypotenuse of \(\hat{\Delta}_q \) is \(1/q \), which therefore gives the limiting gap of the space MDP(\(\hat{q} \)). But according to the previous considerations, the legs of the triangle \(\hat{\Delta}_q \) must have the lengths \(T_{1/q} \) (horizontal) and \((1/q) T_{1/q} \) (vertical). Comparing these values, we arrive at the identity (**2.15**) (see Fig. 4).

Finally, despite the limit shape of the ensemble MDP(\(\hat{q} \)) contains the triangle \(\hat{\Delta}_q = \Delta_{1/q} \) of the same area as \(\Delta_q \), the “free” area changes to (cf. (**4.23**))

\[
\text{Li}_2(1 - e^{-T_{1/q}}) = \text{Li}_2(1 - e^{-qT_q}) = \text{Li}_2(e^{-T_q}).
\]

Moreover, according to the identity (**1.10**), the total area of the free parts in the limit shapes with \(q \) and \(1/q \) is given by \(\frac{1}{6} \pi^2 - qT_q^2 \), which in turn implies that the total area of both limit shapes including the ground state triangles equals \(\frac{1}{6} \pi^2 \),

\[
\vartheta_q^2 + \vartheta_{1/q}^2 = \frac{\pi^2}{6},
\]

(4.24)

which may be interpreted as the (asymptotic) law of conservation of total energy in dual systems, that is, with limiting gaps \(q \) and \(1/q \). It would be interesting to find a physical explanation of this identity.
Fig. 4: The duality under the transformation $q \mapsto 1/q$ illustrated for $q = \frac{4}{3}$, where $T_{4/3} \doteq 0.598382$ and $T_{3/4} \doteq 0.797842$. The ground state triangles Δ_q and $\Delta_{1/q}$ (shaded) are obtained from one another by reflection about the main coordinate diagonal. Thus, in line with Lemma 2.2, $T_{1/q} = qT_q$ and, equivalently, $T_q = q^{-1}T_{1/q}$; in particular, $T_{3/4} = \frac{4}{3}T_{4/3}$. Solid curves (red in the online version) show the limit shape graphs. According to formula (4.24), the areas under the limit shapes sum up to $\zeta(2) = \frac{1}{6}\pi^2$.

5. Alternative approach to the limit shape

Iterating the MDP condition (1.1), for any partition $\lambda = (\lambda_1, \ldots, \lambda_k) \in \Lambda_q(n, k)$ we get the explicit constraints on its parts,

$$\lambda_i \geq q_0 + \cdots + q_{k-i} \quad (i = 1, \ldots, k). \quad (5.1)$$

Note that equalities in (5.1) correspond to what was called the “ground state” in the discussion in Section 4.4. Now, it is natural to “subtract” the ground state by shifting the parts of $\lambda \in \Lambda_q(n, k)$ so as to lift the constraints (5.1) (apart from the default condition that all parts are not smaller than 1). Specifically, consider the mapping

$$\mathcal{I}: \lambda = (\lambda_1, \ldots, \lambda_k) \rightarrow \rho = (\rho_1, \ldots, \rho_k) \quad (5.2)$$

defined by

$$\rho_i := \lambda_i + 1 - g_0 - \cdots - q_{k-i} \geq 1 \quad (i = 1, \ldots, k). \quad (5.3)$$

Using (5.3) and (1.1), note that

$$\rho_i - \rho_{i+1} = \lambda_i - \lambda_{i+1} - q_{k-i} \geq 0, \quad \rho_k = \lambda_k + 1 - g_0 \geq 1,$$

and, recalling the notation (2.4),

$$r := \sum_{i=1}^{k} \rho_i = \sum_{i=1}^{k} \lambda_i + k - \sum_{i=1}^{k} iq_{k-i} = n + k - s_k \geq k,$$
where \(n \geq s_k \) as long as the set \(\Lambda_q(n, k) \) is not empty. Hence, \(\rho = \mathcal{I}(\lambda) \) is a partition of the same length \(k \) and the new weight \(r = n + k - s_k \), but with \textit{no constraints} on its parts; that is, \(\rho \in \Lambda(r, k) \). Moreover, it is evident that the mapping (5.2) is a bijection of \(\Lambda_q(n, k) \) onto \(\Lambda(r, k) \), for each \(k \in \mathbb{N} \) and any \(n \geq s_k \). In particular, if \(\nu_{n,k}^q \) is the uniform measure on \(\Lambda_q(n, k) \) then the push-forward \(\mathcal{I}^\ast \nu_{n,k}^q = \nu_{n,k}^q \circ \mathcal{I}^{-1} \) is the uniform measure on \(\Lambda(r, k) \).

This observation furnishes a more straightforward way to finding the limit shape of partitions in the MDP spaces \(\Lambda_q(n, k) \) and \(\Lambda_q(n) \). The heuristic idea is as follows. Consider a partition \(\lambda \in \Lambda_q(n, k_n) \), where \(k_n \sim \tau \sqrt{n} \) with \(0 < \tau < \sqrt{2/q} \) (cf. the hypothesis in Theorem 4.2). On account of the asymptotics (2.5), for the weight of \(\rho = \mathcal{I}(\lambda) \) this gives

\[
\rho r \sim (1 - \frac{1}{2} q \tau^2) n = b^2 n, \tag{5.4}
\]

where

\[
b = b(q; \tau) := \sqrt{1 - \frac{1}{2} q \tau^2} > 0. \tag{5.5}
\]

In particular, \(k_n \sim (\tau/b) \sqrt{n} \). Suppose now that the limit shape of \(\rho \in \Lambda(r, k_n) \) exists under the usual \(\sqrt{r} \)-scaling, so that for \(x > 0 \) and \(r \to \infty \) we have approximately

\[
\frac{\rho x \sqrt{r}}{\sqrt{r}} \approx \phi(x).
\]

By the relation (5.3) and the asymptotic formulas (1.2) and (5.4), this implies

\[
\frac{\lambda x \sqrt{n}}{\sqrt{n}} = \frac{\rho x \sqrt{n}}{\sqrt{n}} - \frac{1}{\sqrt{n}} + \frac{Q_{k_n - x, \sqrt{n}}}{\sqrt{n}} \approx b \frac{\phi(x/b)}{\sqrt{n}} + q \frac{(k_n - x \sqrt{n})}{\sqrt{n}} \\
\approx b \frac{\phi(x/b)}{b} + q \left(\frac{T_q}{\sqrt{q}} - x \right), \tag{5.6}
\]

which yields the limit shape for \(\lambda \in \Lambda_q(n, k_n) \) as \(n \to \infty \). Note that the last term in (5.6) corresponds to the ground state discussed earlier, whereas the first term indicates the contribution from the “free part” of the partition \(\lambda \in \Lambda_q(n, k_n) \).

Likewise, for partitions \(\lambda \in \Lambda(n) \), assuming that their length follows the typical behaviour \(K(\lambda) \approx T_q \partial_q^{-1} \sqrt{n} \) (see Corollary 3.9), formula (5.6) yields the limit shape

\[
\frac{\lambda x \sqrt{n}}{\sqrt{n}} \approx b_q \phi(x/b_q) + q \left(\frac{T_q}{\partial_q} - x \right),
\]

where \(b_q := \sqrt{1 - \frac{1}{2} q T_q^2 / \partial_q^2} \) (cf. (5.5)).

Let us now give a more rigorous argumentation. We confine ourselves to the case \(q > 0 \) and prove a weaker statement than in the previous section (i.e., just convergence in probability instead of exponential bounds on deviations), since known results can be applied in this case. A similar approach was used by Romik [30] to find the limit shape of MDP(\(q \)) with \(q = 2 \), and by DeSalvo & Pak [11] for any positive integer \(q \). The same technique can be worked out in the case \(q = 0 \), but this requires a more detailed analysis.

The limit shape for partitions under the uniform measure \(\nu_{r,k} \) on the space \(\Lambda(r, k) \) has been found by Vershik & Yakubovich [38] (see also Vershik [44]). Adapted to our notation, this result is formulated as follows. Recall that a partition \(\rho \) is said to be \textit{conjugate} to partition \(\rho \in \Lambda(r) \) if their Young diagrams \(T_\rho \) and \(T_{\rho'} \) are symmetric to one another with respect to reflection about the main diagonal of the coordinate plane. In other words, column blocks of the diagram \(T_\rho \) become row blocks of the diagram \(T_{\rho'} \), and vice versa. Clearly, \(\rho' \) has the same weight as \(\rho \), that is, \(\rho' \in \Lambda(r) \). The next result refers to the conjugate Young diagrams \(T_{\rho'} \), but it easily translates to the original diagrams \(T_\rho \). Note that the scalings used there along the two axes are both proportional to \(\sqrt{r} \) but different (unless \(c = 1 \).
Theorem 5.1 ([38] Theorem 1). Let $r, k \to \infty$ so that $k = c\sqrt{r} + O(1)$ with some $c > 0$, then for any $\varepsilon > 0$

\[
\nu_{r,k} \{ \rho \in \Lambda(r, k) : \sup_{u \geq 0} |k^{-1}Y_\rho(ru/k) - \psi_c(u)| > \varepsilon \} \to 0, \tag{5.7}
\]

where\(^5\)

\[
\psi_c(u) := \frac{\log(1 - y_c(1 - y_c)u/c^2)}{\log(1 - y_c)}, \quad u \geq 0, \tag{5.8}
\]

and $y_c \in (0, 1)$ is the (unique) solution of the equation

\[
c^2 \text{Li}_2(y_c) = \log^2(1 - y_c). \tag{5.9}
\]

Equivalently, the statement of Theorem 5.1 can be rewritten as follows: for any $s_0 \in (0, 1]$ and $\varepsilon > 0$,

\[
\nu_{r,k} \{ \rho \in \Lambda(r, k) : \sup_{s \in [s_0, 1]} |kr^{-1}Y_\rho(sk) - \phi_c(s)| > \varepsilon \} \to 0, \tag{5.10}
\]

where $\phi_c(s)$ is the inverse function,

\[
\phi_c(s) := \psi_c^{-1}(s) = \frac{c^2}{\log(1 - y_c)} \log \left(\frac{1 - (1 - y_c)^s}{y_c} \right), \quad s \in (0, 1]. \tag{5.11}
\]

Unfortunately, the condition $k = c\sqrt{r} + O(1)$ is too strong for our purposes. However, tracking the proof given in [38] and using the continuity of the expression (5.8) with respect to c, one can verify that the limits (5.7) and (5.10) hold true provided only that $k \sim c\sqrt{r}$.

Returning to the limit shape problem for partitions $\lambda \in \Lambda(n, k_n)$, with $k_n \sim \tau\sqrt{n}$, put

\[
c = \frac{\tau}{b} = \frac{\tau}{\sqrt{1 - \frac{1}{2}qT^2}}, \tag{5.12}
\]

so that $k_n \sim \tau\sqrt{n} \sim c\sqrt{r}$ (see (5.4)). Let T_s be the solution of the equation (4.17). Using the definition (2.13), it is straightforward to check that $y_c = 1 - e^{-T_s}$ solves the equation (5.9). Furthermore, expressing τ from (4.17) and using (2.13), formula (5.12) can be rewritten as

\[
c^2 = \frac{T_s^2}{\vartheta_q^2(T_s) - \frac{1}{2}qT_s^2} = \frac{T^2_s}{\text{Li}_2(1 - e^{-T_s})}. \tag{5.13}
\]

Hence, the expression (5.11) takes the form

\[
\phi_c(s) = \frac{T_s}{\text{Li}_2(1 - e^{-T_s})} \log \frac{1 - e^{-T_s}}{1 - e^{-sT_s}}, \quad s \in (0, 1],
\]

and the asymptotic result (5.10), restated in the new variable $t = sT^*/\vartheta_q(T_s)$, readily yields

\[
\lim_{n \to \infty} \rho_{n, k_n}^A \left\{ \sup_{t \in [t_0, T_*/\vartheta_q(T_s)]} \left| \frac{1}{\sqrt{n}} Y_\lambda(t\sqrt{n}) - \frac{1}{\vartheta_q(T_s)} \log \frac{1 - e^{-T_s}}{1 - e^{-t\vartheta_q(T_s)}} \right| > \varepsilon \right\} = 0. \tag{5.14}
\]

Finally, to see how (5.13) produces the expression for the limit shape $\varphi_{T_*/\vartheta_q(T_s)}(t; q)$ already obtained in Theorem 4.2 it remains to notice, using (1.2) and (5.3), that (cf. (5.6))

\[
\frac{Y_\lambda(t\sqrt{n}) - Y_\lambda(t\sqrt{n})}{\sqrt{n}} = \frac{Q_{k_n - |t\sqrt{n}|}}{\sqrt{n}} \to q \left(\frac{T_s}{\vartheta_q(T_s)} - t \right),
\]

\(^5\)There is a misprint in [38] eq.(5), p. 459], where the variable u should be replaced with $-uc^{-2} \log(1 - y_c)$.

30
for all $\lambda \in A_q(n, k_n)$ and uniformly in $t \in [0, T_q/\partial_q(T_\star)]$.

In a similar fashion, one can prove Theorem 4.4. More specifically, by Corollary 3.9
$K(\lambda)/k_n \to 1$ in ν_n^q-probability, where $k_n = (T_q/\partial_q) \sqrt{n}$. The push-forward $\mathcal{I}^* \nu_n^q = \nu_n^q \circ \mathcal{I}^{-1}$
under the bijection \mathcal{I} defined in (5.2) is a measure on partitions $\rho \in A$ such that (random)
$r = N(\rho)$ and $k = K(\rho)$ satisfy the relation $r = n + k - s_k$. Since $K(\lambda) = K(\rho)$, it
follows that $K(\rho)/k_n \to 1$ in $(\mathcal{I}^* \nu_n^q)$-probability. Hence, using (1.11) and (2.5), we obtain,
in $(\mathcal{I}^* \nu_n^q)$-probability as $n \to \infty$,

$$
\frac{r}{k^2} = \frac{n}{k^2} + \frac{1}{k} - \frac{s_k}{k^2} \to \frac{\partial_q^2}{T_q^2} - \frac{q}{2} = \frac{\text{Li}_2(1 - e^{-T_q})}{T_q^2} > 0.
$$

Thus, taking $c = T_q/\sqrt{\text{Li}_2(1 - e^{-T_q})}$ it is easy to see that $y_c = 1 - e^{-T_q}$ solves the equation
(5.9). Furthermore, using (2.14) the expression (5.11) is reduced to

$$
\varphi(t) = \frac{T_q}{\text{Li}_2(1 - e^{-T_q})} \left(-qT_q - \log(1 - e^{-tT_q})\right), \quad t \in (0, 1],
$$

and (5.10) implies that

$$
\lim_{n \to \infty} \nu_n^q \left\{ \sup_{t \in [t_0, T_q/\partial_q]} \frac{1}{\sqrt{n}} \left| Y_\lambda(t\sqrt{n}) - \frac{-qT_q - \log(1 - e^{-t\partial_q})}{\partial_q}\right| > \varepsilon \right\} = 0. \quad (5.14)
$$

It remains to notice, using condition (1.2), that in ν_n^q-probability

$$
\sup_{t \in [t_0, T_q/\partial_q]} \left| \frac{Y_\lambda(t\sqrt{n}) - Y_\lambda(t\sqrt{T_q})}{\sqrt{n}} - q \left(\frac{T_q}{\partial_q} - t \right) \right| \to 0,
$$

which, together with (5.14), yields the expression $\varphi_{T_q}(t; q)$ for the limit shape already obtained in Theorem 4.4.

6. Minimal difference partitions in random environment

The assumption (1.2) that the partial sums Q_k grow linearly ($q > 0$) or sub-linearly ($q = 0$)
can be satisfied not just by a fixed sequence, but also by that obtained via some stochastic
procedure. Similarity with random walks in random environment (see, e.g., [5] for a review
and further references) allows one to speak about minimal difference partitions in random
environment.

Without attempting to investigate such models in full generality, we provide sufficient
conditions for the basic limit (1.2) to hold with a random sequence $q = (q_i)$. The following
simple statement describes one of the possible approaches to introducing randomness into the
MDP(q) context. In what follows, abbreviation “a.s.” stands for “almost surely” with respect
to the distribution of the environment; we denote by \mathbb{E} the corresponding expectation.

Theorem 6.1. Suppose that $q = (q_i)$ (with the usual convention $q_0 \geq 1$) is a sequence of
independent integer-valued non-negative random variables, each having a finite moment of
order $1 + \varepsilon$ for some $\varepsilon > 0$ and satisfying the following two conditions.

(i) For some $\beta \in [0, 1)$ and $q \geq 0$,

$$
\sum_{i=0}^{k-1} \mathbb{E}(q_i) = qk + O(k^\beta) \quad (k \to \infty). \quad (6.1)
$$
For some $\delta > 0$

$$S_k^{(1+\varepsilon)} := \sum_{j=0}^{k-1} \mathbb{E}(|q_i - \mathbb{E}(q_i)|^{1+\varepsilon}) = O(k^\delta) \quad (k \to \infty). \quad (6.2)$$

Then the asymptotic relation (1.2) holds a.s. provided that

$$\delta < \beta(1 + \varepsilon). \quad (6.3)$$

Proof. According to [27, Theorem 6.6], if $(X_j)_{j \geq 1}$ is a sequence of independent random variables with zero mean and finite absolute moment of order $1 + \varepsilon$, with some $\varepsilon \in (0, 1]$, and $(a_j)_{j \geq 1}$ is a non-random positive sequence such that $a_j \to \infty$ as $j \to \infty$ and

$$\sum_{j=1}^{\infty} a_j^{-1-\varepsilon} \mathbb{E}(|X_j|^{1+\varepsilon}) < \infty, \quad (6.4)$$

then $a_j^{-1}(X_1 + \cdots + X_j) \to 0$ a.s. Now, take $a_j := j^\beta$ and $X_j := q_j - \mathbb{E}(q_j)$. Putting $S_0^{(1+\varepsilon)} := 0$ and using summation by parts, we obtain, for any $k \geq 1$,

$$\sum_{j=1}^{k} j^{-\beta(1+\varepsilon)} \mathbb{E}(|X_j|^{1+\varepsilon}) = \sum_{j=1}^{k} \frac{S_j^{(1+\varepsilon)} - S_{j-1}^{(1+\varepsilon)}}{j^{\beta(1+\varepsilon)}} \leq \frac{S_k^{(1+\varepsilon)}}{k^{\beta(1+\varepsilon)}} + \sum_{j=1}^{k-1} \frac{(1 + 1/j)\beta(1+\varepsilon) - 1}{(j + 1)^{\beta(1+\varepsilon)}} \frac{S_j^{(1+\varepsilon)}}{j^{\beta(1+\varepsilon)+1}} \leq \frac{S_k^{(1+\varepsilon)}}{k^{\beta(1+\varepsilon)}} + \frac{5}{4} \beta(1 + \varepsilon) \sum_{j=1}^{k-1} \frac{S_j^{(1+\varepsilon)}}{j^{\beta(1+\varepsilon)+1}}. \quad (6.5)$$

If (6.2) holds with δ satisfying (6.3), then passing to the limit in the inequality (6.5) as $k \to \infty$ shows that the series in (6.4) converges. Hence, $j^{-\beta}(X_1 + \cdots + X_j) \to 0$ a.s., and in combination with (6.1) this gives (1.2) a.s. □

Remark 6.1. Actually, our main results (Theorems 4.2 and 4.4) are proved under the assumption (1.2) with an arbitrary $\beta < 1$. Hence, it is sufficient that some $\beta < 1$ exists, which is guaranteed by the inequality $\delta < 1 + \varepsilon$ instead of (6.3), together with a sufficiently tight asymptotic estimate (6.1) for the means.

Remark 6.2. In the interesting special case of i.i.d. random variables (q_j), conditions (6.1), (6.2) and (6.3) follow from the assumption

$$\mathbb{E}(q_i^{1+\varepsilon}) < \infty \quad \text{for some} \quad \varepsilon \in (0, 1]. \quad (6.6)$$

Under condition (6.6), the asymptotic relation (1.2) holds with $q = \mathbb{E}(q_1) > 0$ and $\beta > 1/(1 + \varepsilon)$. If $\varepsilon = 1$ (i.e., q_1 has finite variance), then the law of the iterated logarithm shows that one cannot take $\beta = \frac{1}{2}$; in the general case $\varepsilon \in (0, 1)$, the optimality of the bound $\beta > 1/(1 + \varepsilon)$ follows from [27, §7.5.16, p. 258].

32
A. Appendix: Proof of Propositions 2.3 and 2.4

A.1. Auxiliary lemmas

According to the representation (2.1) and independence of \(\{D_j\} \) under the measure \(\mu_{x,k}^q \) (see Section 2), the weight \(N(\lambda) \) of partition \(\lambda \in \Lambda_q \) is the sum of \(k \to \infty \) independent random variables, so one may expect a local limit theorem to hold (cf. [6, 36, 15, 16]). For our purposes, it suffices to obtain an asymptotic lower bound for the probability of the event \(\{N(\lambda) = n\} \). To this end, we need some auxiliary technical results (for simplicity, we suppress the dependence on \(z \) in the notation of some functions introduced below).

Lemma A.1. Let \(\chi_j(u) := E_{x,k}^q[\text{e}^{iuJD_j}] \) (\(u \in \mathbb{R} \)) be the characteristic function of the random variable \(jD_j \) (\(1 \leq j \leq k \)). Then, as \(z \downarrow 0 \), uniformly in \(j \in \mathbb{N} \) and \(u \in \mathbb{R} \)

\[
\log \chi_j(u) = i(q_k - j + h(zj))ju - \frac{1}{2}h(zj)(1 + h(zj)) j^2u^2 + R_j(u),
\]

where \(\log(\cdot) \) denotes the principal branch of the logarithm, \(h(\cdot) \) is given by (4.13) and

\[
R_j(u) = \left(h(zj) + h(zj)^2 + h(zj)^4 \log \frac{1}{j^3u^3} \right) O(j^3u^3).
\]

Proof. An easy computation shows that

\[
\chi_j(u) = \sum_{r=0}^{\infty} e^{iu(r+q_{k-r})} e^{-zjr} (1 - e^{-zj}) = e^{iuq_{k-r}} \frac{1 - e^{-zj}}{1 - e^{-zj + iu}}.
\]

Hence

\[
\log \chi_j(u) = iuq_{k-r} - \log \frac{1 - e^{-zj} - e^{-zj}(e^{iu} - 1)}{1 - e^{-zj}} = iuq_{k-r} - \log \left(1 - h(zj)(e^{iu} - 1) \right).
\]

It is easy to check that the function

\[
\zeta \mapsto g_j(\zeta) := -\log \left\{ 1 - h(zj)(\zeta - 1) \right\}
\]

is analytic in the half-plane \(\Re \zeta < 1 + 1/h(zj) \). Hence, Taylor’s formula for complex-analytic functions (see, e.g., [31, §5.2, p. 244]) gives for \(|\zeta| < 1 + 1/h(zj) \)

\[
g_j(\zeta) = g_j(1) + g_j'(1)(\zeta - 1) + \frac{g_j''(1)}{2}(\zeta - 1)^2 + \frac{(\zeta - 1)^3}{2\pi i} \oint_{\Gamma_j} \frac{g_j(\xi)}{(\xi - 1)^3(\xi - \zeta)} \, d\xi,
\]

where \(\Gamma_j \) is the circle of radius \(1 + 1/(2h(zj)) \) about the origin, positively oriented.

Note from (A.3) that for \(\zeta \in \Gamma_j \) we have

\[
|e^{-g_j(\zeta)}| = \left| 1 + h(zj) - h(zj)\xi \right| \leq \frac{3}{2} + 2h(zj), \quad |\arg e^{-g_j(\zeta)}| \leq \frac{\pi}{2}.
\]

Using that \(|\log (re^{i\theta})| \leq |\log r| + \pi/2 \) (\(r > 0, |\theta| \leq \pi/2 \)), this yields

\[
|g_j(\zeta)| = |\log (e^{-g_j(\zeta)})| \leq \log \left(\frac{3}{2} + 2h(zj) \right) + \frac{\pi}{2} \leq \log \left(1 + h(z) \right) + \log 2 + \frac{\pi}{2} \leq \log \frac{z + 1}{z} + \log 2 + \frac{\pi}{2},
\]

(A.5)
by virtue of monotonicity of $h(\cdot)$ and the elementary bound

$$1 + h(z) = \frac{1}{1 - e^{-z}} \leq \frac{z + 1}{z}.$$

Furthermore, for any $\xi \in \mathbb{R}$ and $|\xi| = 1$ (in particular, $\zeta = 1$) we have $|\xi - \zeta|^{-1} \leq 2h(zj)$. Thus, computing the derivatives of $g_j(\cdot)$ at 1 and substituting (A.5) into (A.4), we get

$$g_j(\zeta) = h(zj)(\zeta - 1) + \frac{h(zj)^2}{2}(\zeta - 1)^2 + (\zeta - 1)^3 h(zj)^4 O(\log \frac{1}{z}) \quad (z \downarrow 0), \quad (A.6)$$

where the estimate $O(\cdot)$ is uniform in $j \in \mathbb{N}$ and ζ such that $|\zeta| = 1$.

Now, using the Taylor expansion

$$e^{ix} = \sum_{\ell=0}^{m-1} \frac{(ix)^\ell}{\ell!} + R_m(x), \quad |R_m(x)| \leq \frac{|x|^m}{m!},$$

which is valid for all $m \in \mathbb{N}$ and any real x (see, e.g., [14, § XV.4, Lemma 1, p. 512]), we substitute $\zeta = e^{ju}$ into (A.6) to obtain, as $z \downarrow 0$,

$$g_j(e^{ju}) = h(zj) \left((ju - \frac{1}{2} j^2 u^2 + O(j^3 u^3)) - \frac{1}{2} h(zj)^2 (j^2 u^2 + O(j^3 u^3)) + O(j^3 u^3) h(zj)^4 \log \frac{1}{z}, \right.$$

where all O-estimates are uniform in $j \in \mathbb{N}$, $u \in \mathbb{R}$. (Note that it is convenient to use the representation $(\zeta - 1)^2 = (\zeta^2 - 1) - 2(\zeta - 1)$.) Finally, rearranging the terms we obtain (A.1) and (A.2). \hfill \Box

Lemma A.2. For $r, \ell \in \mathbb{N}$, denote

$$\Sigma_{z, k}(r, \ell) := \sum_{j=1}^{k} j^r h(zj)^\ell. \quad (A.7)$$

Then, uniformly in $k \geq t_1/z$ (for any $t_1 > 0$), as $z \downarrow 0$,

$$\Sigma_{z, k}(1, 1) = z^{-2} \text{Li}_2(1 - e^{-zk}) + O(z^{-1}), \quad \Sigma_{z, k}(2, 2) > \frac{1}{2} z^{-3}(1 - e^{-2t_1}), \quad \Sigma_{z, k}(3, 2) = O(z^{-4}) \quad (\ell = 1, 2, 3), \quad \Sigma_{z, k}(3, 4) = O(z^{-4} \log \frac{1}{z}). \quad (A.8, A.9, A.10)$$

Proof. Using the Euler–Maclaurin sum formula like in the proof of Lemma 3.2, we obtain

$$\sum_{j=1}^{k} j h(zj) = \int_{1}^{k} \frac{x e^{-zx}}{1 - e^{-zx}} dx + O(1) \frac{e^{-z}}{1 - e^{-z}} + O(1) \int_{1}^{k} \frac{(zx - 1)e^{-zx} + e^{-2zx}}{(1 - e^{-zx})^2} dx$$

$$= z^{-2} \int_{0}^{zk} \frac{y e^{-y}}{1 - e^{-y}} dy + O(z^{-1}) = z^{-2} \text{Li}_2(1 - e^{-zk}) + O(z^{-1}),$$

using the substitution $u = 1 - e^{-y}$ and formula (1.3). Hence, (A.8) is proved.

Similarly, (A.9) follows from the asymptotic estimate

$$\sum_{j=1}^{k} j^2 h(zj)^2 \sim z^{-3} \int_{0}^{zk} \frac{y^2 e^{-2y}}{(1 - e^{-y})^2} dy \sim z^{-3} \int_{0}^{t_1} e^{-2y} dy = \frac{1}{2} z^{-3}(1 - e^{-2t_1}).$$
Finally, noting that \(y(1 - e^{-y})^{-1} \leq e^{y/2} \) for all \(y > 0 \), we obtain
\[
\sum_{j=1}^{k} j^3 h(z)j^\ell \sim z^{-4} \int_{z}^{\infty} y^3 e^{-\ell y} \frac{dy}{(1 - e^{-y})^\ell} \leq z^{-4} \int_{z}^{\infty} y^3 \frac{dy}{e^{\ell y/2}} \leq O(z^{-4}) \text{ for } \ell < 4 \text{ and } O(z^{-4} \log \frac{1}{z}) \text{ for } \ell = 4, \text{ and (A.10) follows.}
\]

Remark A.1. Formula (A.8) may be obtained from (3.11) by formal differentiation with respect to \(z \), using the dilogarithm identity (1.10).

Lemma A.3. Let \(v > \frac{5}{4} \) and \(t_1 > 0 \) be some constants. Then there exists \(\delta > 0 \) such that, for any \(z \in (0, \delta) \) and all \(k \geq t_1/z \), the inequality
\[
\mu_{z,k}^3 \{ N(\lambda) = n \} \geq n^{-v}
\]
holds for all \(n \in \mathbb{N} \) satisfying the bound
\[
|n - s_k - z^{-2} \text{Li}_2(1 - e^{-z})| \leq z^{-4/3}.
\]

Proof. Let us start by pointing out that, for \(z \) sufficiently small, the inequality (A.11) has many integer solutions \(n \). Moreover, since \(\text{Li}_2(1 - e^{-t}) \) increases in \(t \), it follows from (A.11) that for all \(z > 0 \) small enough and for every \(k \geq t_1/z \),
\[
n \geq z^{-2} \text{Li}_2(1 - e^{-z}) + s_k - z^{-4/3} \geq \frac{1}{2} z^{-2} \text{Li}_2(1 - e^{-t_1}) > 0.
\]

Now, using the decomposition \(N(\lambda) = \sum_{j} D_j(\lambda) \) and independence of \(D_j(\lambda) \) for different \(j \) (see Lemma 2.1), by the Fourier inversion formula we have
\[
\mu_{z,k}^3 \{ N(\lambda) = n \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \prod_{j=1}^{k} \chi_j(s) e^{-isn} \, ds = \frac{1}{\pi} \int_{0}^{\pi} \prod_{j=1}^{k} \chi_j(s) e^{-isn} \, ds
\]
\[
= \frac{1}{\pi} \int_{0}^{\frac{\pi}{7}} \prod_{j=1}^{k} \chi_j(s) e^{-isn} \, ds + \frac{1}{\pi} \int_{\frac{\pi}{7}}^{\frac{\pi}{5}} \prod_{j=1}^{k} \chi_j(s) e^{-isn} \, ds
\]
\[
=: I_1 + I_2.
\]

First, we shall obtain a suitable lower bound for \(I_1 \) and then show that \(I_2 \) is small.

Using Lemma A.1 and recalling the notation (A.7), we have
\[
I_1 = \frac{1}{\pi} \int_{0}^{\frac{\pi}{7}} \Re \exp \left\{ -iu \nu + \sum_{j=1}^{k} \log \chi_j(u) \right\} \, du
\]
\[
= \frac{1}{\pi} \int_{0}^{\frac{\pi}{7}} \Re \exp \left\{ -iu \nu(n - s_k - \Sigma_{z,k}(1,1)) - \frac{1}{2} u^2 \left(\Sigma_{z,k}(2,1) + \Sigma_{z,k}(2,2) \right) + O(u^3) \left(\Sigma_{z,k}(3,1) + \Sigma_{z,k}(3,2) + \Sigma_{z,k}(3,4) \log \frac{1}{z} \right) \right\} \, du.
\]

Due to the estimate (A.8) and the assumption (A.11),
\[
n - s_k - \Sigma_{z,k}(1,1) = O(z^{-4/3}) \quad (z \downarrow 0).
\]
Next, using (A.9) we get
\[\Sigma_{z,k}(2, 1) + \Sigma_{z,k}(2, 2) > \Sigma_{z,k}(2, 2) \geq \frac{1}{2} z^{-3}(1 - e^{-2t_1}) \quad (z \downarrow 0). \]

Finally, by virtue of (A.10)
\[\Sigma_{z,k}(3, 1) + \Sigma_{z,k}(3, 2) + \Sigma_{z,k}(3, 4) \log \frac{1}{z} = O\left(z^{-4}(\log \frac{1}{z})^2\right) \quad (z \downarrow 0). \]

Substituting these three estimates into (A.14) and changing the variable \(u = z^{3/2} \), we obtain, after some simple calculations,
\[
I_1 \geq \frac{z^{3/2}}{\pi} \int_0^{\pi} \Re \exp \left\{ -ivO(z^{1/6}) - \frac{1}{4}v^2(1 - e^{-2t_1}) + O(v^3)(z^{1/2}(\log \frac{1}{z}))^2 \right\} dv \\
\sim \frac{z^{3/2}}{\pi} \int_0^{\pi} \exp \left\{ -\frac{1}{4}v^2(1 - e^{-2t_1}) \right\} dv = \frac{z^{3/2}}{\sqrt{\pi(1 - e^{-2t_1})}} \quad (z \downarrow 0). \tag{A.15}
\]

Estimation of \(I_2 \) is based on the inequality
\[
|\chi_j(s)|^2 = \frac{(1 - e^{-zj})^2}{|1 - e^{-zj+js}|^2} = 1 - \frac{|1 - e^{-zj+js}|^2 - (1 - e^{-zj})^2}{|1 - e^{-zj+js}|^2} \\
= 1 - \frac{2e^{-zj}(1 - \cos sj)}{|1 - e^{-zj+js}|^2} \leq 1 - \frac{2e^{-zj}(1 - \cos sj)}{(1 + e^{-zj})^2} \leq 1 - \frac{e^{-zj}(1 - \cos sj)}{2}.
\]

This implies, for \(k > k_1 := \lfloor t_1/z \rfloor \) as in the statement of the lemma, that
\[
|I_2| \leq \frac{1}{\pi} \int_{\pi/2}^{\pi} \prod_{j=1}^k |\chi_j(s)| ds = \frac{1}{\pi} \int_{\pi/2}^{\pi} \exp \left\{ \frac{1}{2} \sum_{j=1}^k \log |\chi_j(s)|^2 \right\} ds \\
\leq \frac{1}{\pi} \int_{\pi/2}^{\pi} \exp \left\{ \frac{1}{2} \sum_{j=1}^{k_1} \log \left(1 - \frac{e^{-zj}}{2}(1 - \cos sj) \right) \right\} ds \\
\leq \frac{2}{\pi} \int_{\pi/2}^{\pi/2} \exp \left\{ -\frac{e^{-t_1}}{4} \sum_{j=0}^{k_1} (1 - \cos 2ju) \right\} du, \tag{A.16}
\]

where the substitution \(s = 2u \) is made in the last line. The last sum in (A.16) can be easily estimated: for \(u \in [0, \frac{1}{2}\pi] \)
\[
\sum_{j=0}^{k_1} (1 - \cos 2ju) = \frac{2k_1 + 1}{2} - \frac{\sin((2k_1 + 1)u)}{2 \sin u} \geq \min \left\{ \frac{k_1^3 u^2}{3}, \frac{2k_1 + 1}{4} \right\}, \tag{A.17}
\]

where for \(u \in [0, \pi/(2k_1 + 1)] \) the inequality (A.17) follows from the elementary inequalities \(u - u^3/6 \leq \sin u \leq u \) and \(\sin x \leq x - x^3/12, x \in [0, \pi] \) (applied with \(x = (2k_1 + 1)u \)), while for \(u \in [\pi/(2k_1 + 1), \pi/2] \) (A.17) follows from the inequalities \(|\sin x| \leq 1 \) and \(\sin u \geq 2u/\pi \geq 2/(2k_1 + 1) \). Hence, for \(u \in [\frac{1}{2}z^{-7/5}, \frac{1}{2}\pi] \) and small \(z > 0 \), the sum (A.17) is bounded below by \(t_1^3z^{-1/5}/12 \), and this estimate combined with (A.16) yields
\[
|I_2| \leq \exp \left\{ -t_1^3e^{-t_1}z^{-1/5}/48 \right\}. \tag{A.18}
\]

Plugging (A.15) and (A.18) in to (A.13) and using (A.12) to reformulate the obtained estimate in terms of \(n \) yields the result. \(\square \)
A.2. Proof of Proposition 2.4

Consider case (a). Substituting (2.20) into (2.5), we obtain
\[s_{kn} = \frac{qT^2}{2\vartheta_q(T)^2} n + O(n^{\beta+1}) \quad (n \to \infty), \]
(A.19)

where the first term disappears for \(q = 0 \). From (2.13) and (A.19) it follows, for \(q \geq 0 \),
\[n - s_{kn} \sim n\left(1 - \frac{qT^2}{2\vartheta_q(T)^2}\right) = n \frac{\text{Li}_2(1 - e^{-T})}{\vartheta_q(T)^2} \quad (n \to \infty). \]
(A.20)

Let \(z_n > 0 \) be the unique solution of the equation
\[(n - s_{kn})z^2 = \text{Li}_2(1 - e^{-k_nz}). \]
(A.21)

Using the asymptotic equations (A.20) and (2.20) one can verify that the limit
\[\xi := \lim_{n \to \infty} \frac{z_n\sqrt{n}}{\vartheta_q(T)} \]
(A.22)

must satisfy the equation
\[\xi^2 \text{Li}_2(1 - e^{-T}) = \text{Li}_2(1 - e^{-T\xi}), \]
which has the unique root \(\xi = 1 \). As a result, the relation (2.21) holds for such \(z_n \); it also follows that \(z_nk_n \to T \) as \(n \to \infty \).

On the other hand, by Lemma A.3 we obtain, for \(v > \frac{3}{4} \) and large enough \(n \),
\[\mu^q_{z_n,k_n}\{N(\lambda) = n\} \geq n^{-v}. \]
(A.23)

Let the event \(A_{z,k} \) be as given in Proposition 2.4 then
\[\nu_{n,k_n}^q(A_{z_n,k_n}) = \frac{\mu_{z_n,k_n}^q(A_{z_n,k_n} \cap \{N(\lambda) = n\})}{\mu_{z_n,k_n}^q\{N(\lambda) = n\}} \leq \frac{\mu_{z_n,k_n}^q(A_{z_n,k_n})}{\mu_{z_n,k_n}^q\{N(\lambda) = n\}} \]
and an application of (A.23) and (2.19) with \(z = z_n \) and \(k(z_n) = k_n \) readily gives (2.22).

Case (b) is considered in a similar manner. The assumption \(k(z) = o(z^{-2/(\beta+1)}) \) (with \(\beta < 1 \)) and (2.23) imply that \(k_n \sim k(\pi/\sqrt{6n}) = o(n^{1/(\beta+1)}) \) as \(n \to \infty \). In turn, it follows from (2.5) that \(s_{kn} = o(n) \). Hence, if \(z_n > 0 \) is the solution of (A.21) then \(\xi := \lim_{n \to \infty} z_n\sqrt{n}/\vartheta_0 \) with \(\vartheta_0 \equiv \vartheta_0(\infty) = \pi/\sqrt{6} \) (see (1.9)) satisfies
\[\xi^2 \vartheta_0^2 = \text{Li}_2(1) = \frac{\pi^2}{6}, \]
which readily implies that \(\xi = 1 \). The rest of the proof is the same as for case (a) above.

A.3. Proof of Proposition 2.3

For any \(z > 0 \),
\[\nu_{n}^q(A_z) = \frac{\mu_{n}^q(A_z \cap \{N(\lambda) = n\})}{\mu_{n}^q\{N(\lambda) = n\}} \leq \frac{\mu_{n}^q(A_z)}{\mu_{n}^q\{N(\lambda) = n\}}. \]
(A.24)
The proof of Proposition 2.4, we obtain that due to (A.28) the limit

\[\mu^q \{ N(\lambda) = n \} = \sum_{k=0}^{\infty} \mu^q_{z,k} \{ N(\lambda) = n \} : \mu^q \{ K(\lambda) = k \}, \quad n \in \mathbb{N}_0. \]

(A.25)

By virtue of Lemma 3.1(a), \(k = k_* \equiv k_*(z) \) defined in (3.2) maximizes \(\mu^q \{ K(\lambda) = k \} \), and if \(q > 0 \) Theorem 3.4 applied with \(c = \frac{1}{4} \) guarantees that, for any \(\gamma \in (0, \frac{1}{2}(1 - \beta)) \) and for \(z > 0 \) small enough,

\[\mu^q \{ K(\lambda) = k_* \} \geq 1 - \frac{\mu^q \{ |K(\lambda) - k_*| > cz^{\gamma - 1} \}}{1 + 2cz^{\gamma - 1}} \sim \frac{1}{2} e^{-1 - \gamma} = 2z^{1 - \gamma}. \]

(A.26)

If \(q = 0 \) we refer to Theorem 3.7 instead, which gives, for any \(\gamma \in (0, \frac{1}{2}(1 - \beta)) \) and \(z > 0 \) small enough,

\[\mu^q \{ K(\lambda) = k_* \} \geq 1 - \frac{\mu^q \{ K(\lambda) > k_* \}}{k_*} \geq \frac{1}{2} z^{2(1 - \gamma)} \]

(A.27)

because \(k_\gamma(z) \leq \lceil z^{-2(1 - \gamma)} \rceil \) (see (3.28)).

Let \((z_n) \) be a positive sequence satisfying, for large enough \(n \in \mathbb{N} \), the inequality

\[|n - s_{k_*(z)} - z^{-2} \text{Li}_2(1 - e^{-z_{k_*(z)}})| \leq z^{-4/3}. \]

(A.28)

It is easy to see that \(z_n \) must vanish in the limit as \(n \to \infty \). Solutions of (A.23) exist despite the discontinuities of the function \(z \mapsto s_{k_*(z)} \), because \(k_*(z) \) has unit jumps and, consequently, the condition (1.2) and the asymptotic formula (3.14) imply that the jumps of \(s_{k_*(z)} \) are bounded by \(q_{k_*(z)} = O(z^{-1}) \) for \(q > 0 \), while for \(q = 0 \) the upper bound in (3.13) gives \(q_{k_*(z)} = O\left(z^{-\beta(\log \frac{1}{z})^{\beta}}\right) \). Thus, the left-hand side of (A.28) has discontinuities of order \(O(z^{-1}) \) as \(z \downarrow 0 \), which is much smaller than the term \(z^{-4/3} \) on the right-hand side. Furthermore, note that \(z_n k_*(z_n) \to T_q \) (see (3.14)). Hence, in the same fashion as in the proof of Proposition 2.4, we obtain that due to (A.28) the limit \(\xi := \lim_{n \to \infty} z_n \sqrt{n}/q \) satisfies the equation

\[\xi^2 q^2 \theta_0^2 - \frac{1}{4} q T_q^2 = \text{Li}_2(1 - e^{-T_q}). \]

[For \(q = 0 \), use the values \(T_0 = \infty, q T_q^2 |_{q = 0} = 0 \) and \(\theta_0 = \sqrt{\text{Li}_2(1)} = \pi/\sqrt{6} \) (see (1.9)).] Comparing this with equation (2.13), we conclude that \(\xi = 1 \), and (2.17) readily follows.

With \(z = z_n \) and \(k = k_*(z_n) \), the conditions of Lemma A.3 are satisfied, so (A.25) and (A.26) (or (A.27) for \(q = 0 \)) yield that, for any \(v > \frac{3}{4} \) and for \(n \) large enough,

\[\mu^q_{z_n} \{ N(\lambda) = n \} \geq \mu^q_{z_n, k_*(z_n)} \{ N(\lambda) = n \} \cdot \mu^q \{ K(\lambda) = k_*(z_n) \} \geq \frac{1}{2} n^{-\sigma} z_n^{\sigma}, \]

(A.29)

where \(\sigma = 1 - \gamma \) when \(q > 0 \) and \(\sigma = 2(1 - \gamma) \) when \(q = 0 \). But \(z_n \sim \text{const} \cdot n^{-1/2} \), so (A.29) provides a lower bound which is polynomial in \(n \to \infty \). The claim of the proposition now follows from the estimates (A.29) and (A.24).

Acknowledgements

Both authors have benefited from partial support by the Bielefeld Center for Interdisciplinary Research (Zentrum für interdisziplinäre Forschung, ZiF) during the ZiF programme “Stochastic Dynamics: Mathematical Theory and Applications” (2012). The second-named author was also supported by a visiting grant from the School of Mathematics at the University of Leeds in August 2018.
References

[1] Abramowitz, M. and Stegun, I.A. (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York, 1972.

[2] Auluck, F.C. and Kothari, D.S. Statistical mechanics and the partitions of numbers. Proc. Cambridge Philos. Soc. 42 (1946), 272–277. (MR0017682 doi:10.1017/S030500410002303)

[3] Andrews, G.E. The Theory of Partitions. Encyclopedia of Mathematics and Its Applications (G.-C. Rota, ed.), Vol. 2. Addison-Wesley, Reading, MA, 1976. (MR0557013)

[4] Bessenrodt, C. and Pak, I. Partition congruences by involutions. European J. Combin. 25 (2004), 1139–1149. (MR2095475 doi:10.1016/j.ejc.2003.09.018)

[5] Bogachev, L.V. Random walks in random environments. In: Encyclopaedia of Mathematical Physics (J.-P. Françoise, G.L. Naber and S.T. Tsou, eds.), Vol. 4, pp. 353–371. Elsevier, Oxford, 2006. (doi:10.1016/B0-12-512666-2/00063-8)

[6] Bogachev, L.V. Unified derivation of the limit shape for multiplicative ensembles of random integer partitions with equiweighted parts. Random Structures Algorithms 47 (2015), 227–266. (MR3382672 doi:10.1002/rsa.20540)

[7] Comtet, A., Majumdar, S.N. and Ouvry, S. Integer partitions and exclusion statistics. J. Phys. A 40 (2007), 11255–11269. (MR2372388 doi:10.1088/1751-8113/40/37/004)

[8] Comtet, A., Majumdar, S.N., Ouvry, S. and Sabhapandit, S. Integer partitions and exclusion statistics: limit shapes and the largest parts of Young diagrams. J. Stat. Mech. Theory Exp. (2007), no. 10, P10001, 1–13. (MR2358050 doi:10.1088/1742-5468/2007/10/P10001)

[9] Comtet, A., Majumdar, S.N. and Sabhapandit, S. A note on limit shapes of minimal difference partitions. Zh. Mat. Fiz. Anal. Geom. 4 (2008), 24–32. (MR2404172 http://jmagr.ilt.kharkov.ua/join.php?fn=/jmag/pdf/4/jm04-0024e.pdf)

[10] Corteel, S., Pittel, B., Savage, C.D. and Wilf, H.S. On the multiplicity of parts in a random partition. Random Structures Algorithms 14 (1999), 185–197. (MR1667320 doi:10.1002/(SICI)1098-2418(199903)14:2<185::AID-RSA4>3.0.CO;2-F)

[11] DeSalvo, S. and Pak, I. Limit shapes via bijections. Combin. Probab. Comput. First View (2018), 1–54. (doi:10.1017/S0963548318000330)

[12] Erdős, P. and Lehner, J. The distribution of the number of summands in the partitions of a positive integer. Duke Math. J. 8 (1941), 335–345. (MR0004841 doi:10.1215/S0012-7094-41-00826-8)

[13] Fannes, M., Maes, C. and Verbeure, A. (Eds). On Three Levels: Micro-, Meso- and Macro-Approaches in Physics. Proc. NATO Advanced Research Workshop (Leuven, Belgium, July 19–23, 1993); NATO ASI Series, Ser. B, Phys. 324. Plenum, New York, 1994. (doi:10.1007/978-1-4615-2460-1)

[14] Feller, W. An Introduction to Probability Theory and Its Applications, Vol. II. 2nd ed. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1971. (MR0270403)

[15] Fristedt, B. The structure of random partitions of large integers. Trans. Amer. Math. Soc. 337 (1993), 703–735. (MR1094553 doi:10.1090/S0002-9947-1993-1094553-1)

[16] Granovsky, B.L., Stark, D. and Erlihson, M. Meinardus’ theorem on weighted partitions: Extensions and a probabilistic proof. Adv. in Appl. Math. 41 (2008), 307–328.
[17] Greiner, W., Neise, L. and Stöcker, H. *Thermodynamics and Statistical Mechanics*. Classical Theoretical Physics. Springer-Verlag, New York, 1995. (doi:10.1007/978-1-4612-0827-3)

[18] Haldane, F.D.M. “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. *Phys. Rev. Lett.* **67** (1991), 937–940. (MR1121460, doi:10.1103/PhysRevLett.67.937)

[19] Huang, K. *Statistical Mechanics*, 2nd ed. Wiley, New York, 1987. (MR1042093)

[20] Khare, A. *Fractional Statistics and Quantum Theory*, 2nd ed. World Scientific, Singapore, 2005. (doi:10.1142/5752)

[21] Khinchin, A.Y. *Mathematical Foundations of Quantum Statistics*, translated from the Russian edition (1951). Graylock Press, Albany, NY, 1960. (MR0111217)

[22] Kolchin, V.F., Sevast’yanov, B.A. and Chistyakov, V.P. *Random Allocations*, translated from the Russian edition (1976). Scripta Series in Mathematics. V. H. Winston & Sons/Scripta Technica, Inc., Washington, D.C., 1978 [distributed by Halsted Press/Wiley, New York]. (MR0471016)

[23] Lerda, A. *Anyons: Quantum Mechanics of Particles with Fractional Statistics*. Lecture Notes in Physics Monographs, **14**. Springer-Verlag, Berlin, 1992. (doi:10.1007/978-3-540-47466-1)

[24] Lewin, L. *Polylogarithms and Associated Functions*. North-Holland, New York, 1981. (MR0618278)

[25] Murthy, M.V.N. and Shankar, R. *Exclusion Statistics: From Pauli to Haldane*. IMSc Report No. 120. Institute of Mathematical Sciences, Chennai, India, 2009. (https://www.imsc.res.in/xmlui/bitstream/handle/123456789/334/MR120.pdf?sequence=1)

[26] Pak, I. The nature of partition bijections II: Asymptotic stability. Preprint (2004), 1–32. (http://www.math.ucla.edu/~pak/papers/stab5.pdf)

[27] Petrov, V.V. *Sums of Independent Random Variables*. Ergebnisse der Mathematik und ihrer Grenzgebiete, **82**. Springer-Verlag, Berlin, 1975. (MR0388499, doi:10.1007/978-3-642-65809-9)

[28] Pittel, B. On a likely shape of the random Ferrers diagram. *Adv. in Appl. Math.* **18** (1997), 432–488. (MR1445358, doi:10.1006/aama.1996.0523)

[29] Polychronakos, A.P. The physics and mathematics of Calogero particles. *J. Phys. A* **39** (2006), 12793–12845. (MR2277458, doi:10.1088/0305-4470/39/41/S07)

[30] Romik, D. Identities arising from limit shapes of constrained random partitions. Preprint (2003), 1–15. (https://www.math.ucdavis.edu/~romik/data/uploads/papers/shape.pdf)

[31] Saff, E.B. and Snider, A.D. *Fundamentals of Complex Analysis, with Applications to Engineering and Science*, 3rd ed. Prentice Hall, Upper Saddle River, NJ, 2003.

[32] Szalay, M. and Turán, P. On some problems of the statistical theory of partitions with application to characters of the symmetric group. I. *Acta Math. Acad. Sci. Hungar.* **29** (1977), 361–379. (MR0506108, doi:10.1007/BF01895857)

[33] Temperley, H.N.V. Statistical mechanics and the partition of numbers II. The form of crystal surfaces. *Proc. Cambridge Philos. Soc.* **48** (1952), 683–697. (MR0053036, doi:10.1017/S0305004100076453)
[34] Vershik, A.M. Statistical mechanics of combinatorial partitions, and their limit shapes. (Russian) *Funktsional. Anal. i Prilozhen.* **30** (1996), no. 2, 19–30; English translation in *Funct. Anal. Appl.* **30** (1996), 90–105. (MR1402079 [doi:10.1007/BF02509449])

[35] Vershik, A.M. Limit distribution of the energy of a quantum ideal gas from the viewpoint of the theory of partitions of natural numbers. (Russian) *Uspekhi Mat. Nauk* **52** (1997), no. 2, 139–146; English translation in *Russian Math. Surveys* **52** (1997), 379–386. (MR1480142 [doi:10.1070/RM1997v052n02ABEH001782])

[36] Vershik, A.M., Frei\v{c}man, G.A. and Yakubovich, Yu.V. A local limit theorem for random partitions of natural numbers. (Russian) *Teor. Veroyatn. Primen.* **44** (1999), 506–525; English translation: Freiman, G., Vershik, A.M. and Yakubovich, Yu.V. A local limit theorem for random strict partitions. *Theory Probab. Appl.* **44** (2000), 453–468. (MR1805818 [doi:10.1137/S0040585X97977719])

[37] Vershik, A.M. and Kerov, S.V. Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group. (Russian) *Funktsional. Anal. i Prilozhen.* **19** (1985), no. 1, 25–36. English translation: Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group. *Funct. Anal. Appl.* **19** (1985), 21–31. (MR0783703 [doi:10.1007/BF01086021])

[38] Vershik, A. and Yakubovich, Yu. The limit shape and fluctuations of random partitions of naturals with fixed number of summands. *Mosc. Math. J.* **1** (2001), 457–468. (MR1877604 [https://www.ams.org/distribution/mmj/vol1-3-2001/vershik.pdf])

[39] Yakubovich, Yu. Ergodicity of multiplicative statistics. *J. Combin. Theory Ser. A* **119** (2012), 1250–1279. (MR2915644 [doi:10.1016/j.jcta.2012.03.002])