PARTIAL DATA INVERSE PROBLEMS FOR THE HODGE LAPLACIAN

FRANCIS J. CHUNG, MIKKO SALO, AND LEO TZOU

ABSTRACT. We prove uniqueness results for a Calderón type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometric optics solutions which reduce the Calderón type problem to a tensor tomography problem for 2-tensors. The arguments in this paper allow to establish partial data results for elliptic systems that generalize the scalar results due to Kenig-Sjöstrand-Uhlmann.

CONTENTS

1. Introduction 1
2. Statement of results 3
3. Notation and identities 7
4. Carleman estimates and boundary terms 11
5. The 0-form case 13
6. The k-form case 19
7. Complex geometrical optics solutions 27
8. The tensor tomography problem 31
9. Higher dimensions 36
10. Appendix 41
References 51

1. Introduction

This article is concerned with inverse problems with partial data for elliptic systems. We first discuss the prototype for such problems, which comes from the scalar case: the inverse problem of Calderón asks to determine the electrical conductivity γ of a medium Ω from electrical measurements made on its boundary. More precisely, let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary and let $\gamma \in L^\infty(\Omega)$ satisfy $\gamma \geq c > 0$ a.e. in Ω. The full boundary measurements are given by the Dirichlet-to-Neumann map (DN map)

$$\Lambda_{\gamma}^{DN} : H^{1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega), \quad f \mapsto \gamma \partial_{\nu} f|_{\partial\Omega}$$

2000 Mathematics Subject Classification. Primary 35R30.

Key words and phrases. Inverse problems, Hodge Laplacian, partial data, absolute and relative boundary conditions, admissible manifolds, Carleman estimates.
where \(u \in H^1(\Omega) \) is the unique solution of \(\text{div}(\gamma \nabla u) = 0 \) in \(\Omega \) with \(u|_{\partial \Omega} = f \), and the conormal derivative \(\gamma \partial_\nu u|_{\partial \Omega} \) is defined in the weak sense. Equivalently, one can consider the Neumann-to-Dirichlet map (ND map)

\[
\Lambda_{\gamma}^{ND} : H^{-1/2}(\partial \Omega) \to H^{1/2}(\partial \Omega), \quad g \mapsto v|_{\partial \Omega}
\]

where \(\text{div}(\gamma \nabla v) = 0 \) in \(\Omega \) with \(\gamma \partial_\nu v|_{\partial \Omega} = g \), and \(H^{-1/2}(\partial \Omega) \) consists of those elements in \(H^{-1/2}(\partial \Omega) \) that are orthogonal to constants. The inverse problem of Calderón asks to determine the conductivity \(\gamma \) from the knowledge of the DN map or (equivalently) the ND map. There is a substantial literature on this problem, with pioneering works including [Fa66], [Ca80], [SU87], [HN87], [Na88], [No88]. We refer to the surveys [No08], [Uh09] for more information.

The Calderón problem with partial data corresponds to the case where one can only make measurements on subsets of the boundary. Let \(\Gamma_D \) and \(\Gamma_N \) be open subsets of \(\partial \Omega \), and assume that we measure voltages on \(\Gamma_D \) and currents on \(\Gamma_N \). If the potential is grounded on \(\partial \Omega \setminus \Gamma_D \) but can be prescribed on \(\Gamma_D \), the partial boundary measurements are given by the partial DN map \(\Lambda_{\gamma}^{DN} f|_{\Gamma_N} \) for all \(f \in H^{1/2}(\partial \Omega) \) with \(\text{supp}(f) \subset \Gamma_D \).

If instead the set \(\partial \Omega \setminus \Gamma_N \) is insulated but we can freely prescribe currents on \(\Gamma_N \), then we know the partial ND map \(\Lambda_{\gamma}^{ND} g|_{\Gamma_D} \) for all \(g \in H^{-1/2}(\partial \Omega) \) with \(\text{supp}(g) \subset \Gamma_N \).

The basic uniqueness question is whether a (sufficiently smooth) conductivity is determined by such boundary measurements. We remark that in the partial data case there seems to be no direct way of obtaining the partial DN map from the partial ND map or vice versa, and the two cases need to be considered separately.

By now there are many uniqueness results for the Calderón problem with partial data involving varying assumptions on the sets \(\Gamma_D \) and \(\Gamma_N \). For further information we refer to the recent survey [KS13] for results in dimensions \(n \geq 3 \) and the surveys [GT13], [IY13b] for the case \(n = 2 \). We only list here some of the main results for the partial DN map:

- \(n \geq 3 \), \(\Gamma_D \) can be possibly very small but \(\Gamma_N \) has to be slightly larger than the complement of \(\Gamma_N \) [KSU07]
- \(n \geq 3 \), \(\Gamma_D = \Gamma_N = \Gamma \) and the complement of \(\Gamma \) has to be part of a hyperplane of a sphere [Is07]
- \(n = 2 \), \(\Gamma_D = \Gamma_N = \Gamma \) can be an arbitrary open set [IUY10]
- \(n \geq 3 \), \(\Gamma_D = \Gamma_N = \Gamma \) and the complement of \(\Gamma \) has to be (conformally) flat in one direction and a certain ray transform needs to be injective [KSI2] (a special case of this was proved independently in [IY13a])

The approach of [KSU07] is based on Carleman estimates with boundary terms and the approach of [Is07] is based on reflection arguments. The paper [KSI2] combines these two approaches and extends both. There seem to be fewer results for the partial ND map, see [Ch12], [HPS12], [Is07], [IUY12]. In fact, in dimensions \(n \geq 3 \) the Carleman estimate approach for the partial ND map seems to be more involved than for the partial DN map.

The purpose of this paper is to consider analogous partial data results for elliptic systems. In the full data case (\(\Gamma_D = \Gamma_N = \partial \Omega \)), many uniqueness results are available for linear elliptic systems such as the Maxwell system [OPS93], [KSU11a], [CZ12], Dirac systems [NT00], [ST09], Schrödinger equation with Yang-Mills potentials [Es01], elasticity [NU94], [NU03], [ER02], and equations in fluid flow [HLW07], [LW07]. In contrast, the only partial data results for such systems in dimensions \(n \geq 3 \) that we are aware of are [COS09] for the Maxwell system and [ST10] for the Dirac system. One
reason for the lack of partial data results for systems is the fact that Carleman estimates for systems often come with boundary terms that do not seem helpful for partial data inverse problems (see [El08, ST09] for some such estimates). In two dimensions, a number of partial data results for systems are available [AGTU11, [Y12].

In this paper we establish partial data results analogous to [KSU07] for systems involving the Hodge Laplacian for graded differential forms, on certain Riemannian manifolds in dimensions $n \geq 3$. These are elliptic systems that generalize the scalar Schrödinger equation $(-\Delta + q)u = 0$ and are very close to the time-harmonic Maxwell equations when $n = 3$. The main technical contribution is a Carleman estimate for the Hodge Laplacian, with limiting Carleman weights, that has boundary terms involving the relative and absolute boundary values of graded forms. The boundary terms are of such a form that allows to carry over the Carleman estimate approach of [KSU07] to the Hodge Laplace system.

In a sense, to deal with boundary terms for systems in a flexible way, one first needs a good understanding of the different splittings of Cauchy data in the scalar case. This seems to be related to understanding both the scalar DN and ND maps simultaneously. Therefore the methods developed in [Ch12] for the partial ND map, involving Fourier analysis to treat the boundary terms in Carleman estimates, will be crucial in our approach. We expect that the methods developed in this paper open the way for obtaining partial data results via Carleman estimates for other elliptic systems as well.

The plan of this document is as follows. Section 1 is the introduction, and Section 2 contains precise statements of the main results. Section 3 collects notation and identities used throughout the paper. Sections 4-6 will be devoted to the proofs of the Carleman estimates. In Section 3 we will give the basic integration by parts argument for k-forms and simplify the boundary terms. In Section 5 we prove the Carleman estimates for 0-forms using the arguments from [Ch12, KS12]. We will conclude the argument in Section 6 by showing that the Carleman estimates for graded forms follow from an induction argument, given the corresponding result for 0-forms. In Section 7 we will construct relevant complex geometrical optics solutions, following the ideas in [DKSaU09]. In Section 8 we will present the Green’s theorem argument and give the density result based on injectivity of a tensor tomography problem which finishes the proofs of Theorems 2.1 and 2.2. Section 9 will contain the proof of Theorem 2.3 and make some remarks about the case of dimensions $n \geq 4$. Section 10 contains proofs of some technical lemmas.

Acknowledgements. F.C. and M.S. were supported in part by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research) and an ERC Starting Grant, and L.T. was partly supported by the Academy of Finland and Vetenskapsrådet. The authors would like to thank the organizers of the Institut Mittag-Leffler program on Inverse Problems in 2013, where part of this work was carried out.

2. Statement of results

The results in this paper are new even in Euclidean space, but it will be convenient to state them on certain Riemannian manifolds following [DKSaU09, KS12, DKLS13]. Suppose that (M_0, g_0) is a compact oriented manifold with smooth boundary, and consider a manifold $T = \mathbb{R} \times M_0$ equipped with a Riemannian metric of the form $g = c(e \oplus g_0)$, where c is a smooth conformal factor and (\mathbb{R}, e) is the real line with Euclidean metric. A compact manifold (M, g) of dimension $n \geq 3$, with boundary ∂M, is said to be CTA (conformally transversally anisotropic) if it can be expressed as a submanifold of such a T. A CTA manifold is called admissible if additionally (M_0, g_0) can be chosen to be simple, meaning that ∂M_0 is strictly convex and for any point $x \in M_0$, the exponential map \exp_x is a diffeomorphism from some closed neighbourhood of 0 in $T_x M_0$ onto M_0 (see [Sh94]).
Let $\Lambda^k M$ be the kth exterior power of the cotangent bundle on M, and let ΛM be the corresponding graded algebra. The corresponding spaces of sections (smooth differential forms) are denoted by $\Omega^k M$ and ΩM. We will define Δ to be the Hodge Laplacian on M, acting on graded forms:

$$-\Delta = d\delta + \delta d.$$

Here d is the exterior derivative and δ is the codifferential (adjoint of d in the L^2 inner product). Suppose Q is an L^∞ endomorphism of ΛM; that is, Q associates to almost every point $x \in M$ a linear map $Q(x)$ from $\Lambda_x M$ to itself, and the map $x \mapsto \|Q(x)\|$ is bounded and measurable. We will also consider continuous endomorphisms, meaning that $x \mapsto Q(x)$ is continuous in M.

We would like to consider boundary value problems for the operator $-\Delta + Q$. In order to do this, we will define the tangential trace $t: \Omega M \to \Omega \partial M$ by

$$t: \omega \mapsto i^* \omega,$$

where $i: \partial M \to M$ is the natural inclusion map. Then the first natural boundary value problem to consider for $-\Delta + Q$, acting on graded forms u, is the relative boundary problem

$$(-\Delta + Q)u = 0 \text{ in } M$$
$$tu = f \text{ on } \partial M$$
$$t\delta u = g \text{ on } \partial M.$$

If Q is such that 0 is not an eigenvalue for this problem, then the uniqueness of solutions to this problem defines a relative-to-absolute map

$$N^{RA}_Q: H^\frac{1}{2}(\partial M, \Lambda\partial M) \times H^{-\frac{1}{2}}(\partial M, \Lambda\partial M) \to H^\frac{1}{2}(\partial M, \Lambda\partial M) \times H^{-\frac{1}{2}}(\partial M, \Lambda\partial M)$$

by

$$N^{RA}_Q(f, g) = (tu, t\delta u)$$

where $*$ is the Hodge star operator on M.

The second natural boundary value problem to consider is the absolute boundary value problem

$$(-\Delta + Q)u = 0 \text{ in } M$$
$$t^* u = f \text{ on } \partial M$$
$$t\delta^* u = g \text{ on } \partial M.$$

Assuming that 0 is not an eigenvalue, this defines an absolute-to-relative map

$$N^{AR}_Q: H^\frac{1}{2}(\partial M, \Lambda\partial M) \times H^{-\frac{1}{2}}(\partial M, \Lambda\partial M) \to H^\frac{1}{2}(\partial M, \Lambda\partial M) \times H^{-\frac{1}{2}}(\partial M, \Lambda\partial M)$$

by

$$N^{AR}_Q(f, g) = (tu, t\delta u)$$

for appropriate Q. For a reference on wellposedness of the relative and absolute boundary value problems with the Hodge Laplacian, see [Ta99, Section 5.9].

These maps both give rise to a Calderón type inverse problem, which asks if knowledge of N^{RA}_Q or N^{AR}_Q suffices to determine Q. If we restrict ourselves to considering the case of zero-forms only and if Q acts on zero-forms by multiplication by a function $q \in L^\infty(M)$, then the relative-to-absolute and absolute-to-relative maps become the DN and ND maps, respectively, for the Schrödinger equation

$$(-\Delta + q)u = 0 \text{ in } M$$

where u is now a function on M and Δ is the Laplace-Beltrami operator on functions. Our problem is therefore a generalization of the standard partial data problem for the scalar Schrödinger equation on a compact manifold with boundary.
Let us review some earlier results for the Schrödinger problem in the scalar case. In dimensions \(n \geq 3 \), where \(M \) is Euclidean, Sylvester and Uhlmann proved that knowledge of the full DN map uniquely determines the potential \(g \) in the paper \([SU87]\). Versions of this problem on admissible and CTA manifolds as defined above have been considered in \([DKSaU09]\) and \([DKLS13]\). Partial data results for the DN map have been proven in \([BU01]\), \([Is07]\), and \([KSU07]\) for the Euclidean case, and more recently in \([KS12]\), the last of which contains the previous three results and extends them to the manifold case. Improved results in the linearized case are in \([DKSU09]\). Partial data results for the ND map, analogous to the ones in \([KSU07]\), were proven in \([Ch12]\). Other partial data results for scalar equations with first order potentials as well were obtained in \([DKSU07]\) and \([Ch11]\), and some of those techniques will be useful to us in this paper as well. In dimension \(n = 2 \), the Schrödinger problem with full data was solved in \([Bu08]\) and with local data in \([IUY10]\), and the manifold case also with local data was considered in \([GT11]\).

For the Hodge Laplacian acting on graded forms, we are not aware of previous results dealing with the determination of a potential from the relative-to-absolute or absolute-to-relative maps. However, \([KLU11]\) reconstructs a real analytic metric from these maps in the case of no potential, and \([SS12]\), \([Sho13]\), \([BS08]\), and \([JL05]\) recover various kinds of topological information about the manifold from variants of these maps, again in the case of no potential. We remark that full data problems for the Hodge Laplacian in Euclidean space are very similar to the scalar case (see Section 9), but the partial data problem even in Euclidean space is more involved.

In order to describe the main results precisely, we will define ‘front’ and ‘back’ sets of the boundary \(\partial M \) as in \([KSU07]\). If \(M \subset T = \mathbb{R} \times M_0 \) is CTA, we can use coordinates \((x_1, x')\) where \(x_1 \) is the Euclidean variable, and define the function \(\varphi: T \to \mathbb{R} \) by \(\varphi(x_1, x') = x_1 \). As discussed in \([DKSU09]\), \(\varphi \) is a natural limiting Carleman weight in \(M \). Now define

\[
\partial M_+ = \{ p \in \partial M | \partial_1 \varphi(p) \geq 0 \} \quad \partial M_- = \{ p \in \partial M | \partial_1 \varphi(p) \leq 0 \}.
\]

Then the main results of this paper are the following.

Theorem 2.1. Let \(M \subset \mathbb{R} \times M_0 \) be a three dimensional admissible manifold with conformal factor \(c = 1 \), and let \(Q_1 \) and \(Q_2 \) be continuous endomorphisms of \(\Lambda M \) such that \(N_{Q_1}^{RA} \), \(N_{Q_2}^{RA} \) are defined. Let \(\Gamma_+ \subset \partial M \) be a neighbourhood of \(\partial M_+ \), and let \(\Gamma_- \subset \partial M \) be a neighbourhood of \(\partial M_- \). Suppose that

\[
N_{Q_1}^{RA}(f, g)|_{\Gamma_+} = N_{Q_2}^{RA}(f, g)|_{\Gamma_+}
\]

for all \((f, g) \in H^1(\partial M, \Lambda \partial M) \times H^{-1}(\partial M, \Lambda \partial M)\) supported in \(\Gamma_- \). Then \(Q_1 = Q_2 \).

Theorem 2.2. Let \(M \) be a three dimensional admissible manifold with conformal factor \(c = 1 \), and let \(Q_1 \) and \(Q_2 \) be continuous endomorphisms of \(\Lambda M \) such that \(N_{Q_1}^{AR} \), \(N_{Q_2}^{AR} \) are defined. Let \(\Gamma_+ \subset \partial M \) be a neighbourhood of \(\partial M_+ \), and let \(\Gamma_- \subset \partial M \) be a neighbourhood of \(\partial M_- \). Suppose that

\[
N_{Q_1}^{AR}(f, g)|_{\Gamma_+} = N_{Q_2}^{AR}(f, g)|_{\Gamma_+}
\]

for all \((f, g) \in H^1(\partial M, \Lambda \partial M) \times H^{-1}(\partial M, \Lambda \partial M)\) supported in \(\Gamma_- \). Then \(Q_1 = Q_2 \).

In the case that \(M \) is a domain in Euclidean space, we can also extend the results to higher dimensions.

Theorem 2.3. Let \(M \) be a bounded smooth domain in \(\mathbb{R}^n \), with \(n \geq 3 \), and let \(Q_1 \) and \(Q_2 \) be continuous endomorphisms of \(\Lambda M \) such that \(N_{Q_1}^{RA} \), \(N_{Q_2}^{RA} \) are defined. Fix a unit vector \(\alpha \), and let \(\varphi(x) = \alpha \cdot x \). Let \(\Gamma_+ \subset \partial M \) be a neighbourhood of \(\partial M_+ \), and let \(\Gamma_- \subset \partial M \) be a neighbourhood of \(\partial M_- \). Suppose that

\[
N_{Q_1}^{RA}(f, g)|_{\Gamma_+} = N_{Q_2}^{RA}(f, g)|_{\Gamma_+}
\]
for all \((f, g) \in H^{\frac{1}{2}}(\partial M, \Lambda \partial M) \times H^{-\frac{1}{2}}(\partial M, \Lambda \partial M)\) supported in \(\Gamma_+\). Then \(Q_1 = Q_2\). The same result holds if we replace the relative-to-absolute map with the absolute-to-relative one.

Theorem 2.1 is a generalization to certain systems of the scalar partial data result of [KSU07] for the DN map, and similarly Theorem 2.2 is an extension to systems of the scalar result of [Ch12] for the ND map. To be precise, the above theorems are stated for the linear Carleman weight and not for the logarithmic weight as in [KSU07], [Ch12]. This restriction comes from the lack of conformal invariance of the full Hodge Laplacian. However, in the scalar case we could use the conformal invariance of the scalar Schrödinger operator together with a reduction from [KS12] to recover the logarithmic weight results of [KSU07], [Ch12] from the above theorems.

The proof of Theorems 2.1 and 2.2 involve three main ingredients – the construction of complex geometric optics (CGO) solutions, a Green’s theorem argument, and a density argument relating this inverse problem to a tensor tomography problem. Both the construction of CGO solutions and the Green’s theorem argument require appropriate Carleman estimates.

To describe them, we will introduce the following notation. For a CTA manifold \(M\), let \(N\) be the inward pointing normal vector field along \(\partial M\). We can extend \(N\) to be a vector field in a neighborhood of \(\partial M\) by parallel transporting along normal geodesics, and then to a vector field on \(M\) by multiplying by a cutoff function. For \(u \in \Omega_M\) we will let

\[u_{\perp} = N^\flat \wedge i_N u, \]

where \(N^\flat\) is the 1-form corresponding to \(N\) and \(i_N\) is the interior product, and

\[u_{||} = u - u_{\perp}. \]

Let \(\nabla\) denote the Levi-Civita connection on \(M\), and \(\nabla'\) denote the pullback connection on the boundary. Let

\[\Delta_\varphi = e^{\Phi} h^2 e^{-\Phi}. \]

Then the Carleman estimates are as follows.

Theorem 2.4. Let \(M\) be a CTA manifold, and let \(Q\) be a \(L^\infty\) endomorphism of \(\Lambda M\). Define \(\Gamma_+ \subset \partial M\) to be a neighbourhood of \(\partial M_+\). Suppose \(u \in H^2(M, \Lambda M)\) satisfies the boundary conditions

\[u|_{\Gamma_+} = 0 \text{ to first order} \]

\[tu|_{\Gamma_+} = 0 \]

\[th\delta e^{-\Phi} u|_{\Gamma_+} = h\sigma_i e^{-\Phi} u \]

for some smooth endomorphism \(\sigma\) independent of \(h\). Then there exists \(h_0\) such that if \(0 < h < h_0\),

\[\|(-\Delta_\varphi + h^2 Q)u\|_{L^2(M)} \gtrsim h\|u\|_{H^1(M)} + h^{\frac{3}{2}}\|u_{\perp}\|_{H^1(\Gamma_+)} + h^{\frac{1}{2}}\|
abla N u\|_{L^2(\Gamma_+)}\].

Here \(H^1\) signifies the semiclassical \(H^1\) space with semiclassical parameter \(h\), and for instance

\[\|u\|_{H^1(M)} = \|u\|_{L^2(M)} + \|\nabla u\|_{L^2(M)}. \]

The constant implied in the \(\gtrsim\) sign is meant to be independent of \(h\). Note that the last boundary condition in (2.1) can be rewritten as

\[th\delta u|_{\partial M} = -ti_\varphi u - h\sigma_i Nu. \]
Theorem 2.5. Let M be a CTA manifold, and let Q be a L^∞ endomorphism of ΛM. Define $\Gamma_+ \subset \partial M$ to be a neighbourhood of ∂M_+. Suppose $u \in H^2(M, \Lambda M)$ satisfies the boundary conditions
\begin{equation}
 u|_{\Gamma_+} = 0 \text{ to first order}

 t \ast u|_{\Gamma_+} = 0

 \text{for some smooth endomorphism } \sigma \text{ independent of } h.
\end{equation}
Then there exists h_0 such that if $0 < h < h_0$,
\[
 \|(-\Delta + h^2 Q)u\|_{L^2(M)} \geq h\|u\|_{H^1(M)} + h^{3/2} \|u\|_{H^1(\Gamma_+)} + h^{5/2} \|\nabla_N u\|_{L^2(\Gamma_+)}.
\]
Note that Theorem 2.5 is actually Theorem 2.4 with u replaced by $\ast u$, and vice versa. Therefore it suffices to prove Theorem 2.4. It is also worth noting that the Carleman estimates are proved for CTA manifolds in general, with no restriction on either the dimension, the conformal factor, or the transversal manifold (M_0, g_0). Theorems 2.4 and 2.5 are extensions to the Hodge Laplace system of the Carleman estimates in [KSU07] and [Ch12], respectively.

3. Notation and identities

Let (M, g) be a smooth ($= C^\infty$) n-dimensional Riemannian manifold with or without boundary. All manifolds will be assumed to be oriented. We write $\langle v, w \rangle$ for the g-inner product of tangent vectors, and $|v| = \langle v, v \rangle^{1/2}$ for the g-norm. If $x = (x_1, \ldots, x_n)$ are local coordinates and ∂_j the corresponding vector fields, we write $g_{jk} = \langle \partial_j, \partial_k \rangle$ for the metric in these coordinates. The determinant of (g_{jk}) is denoted by $|g|$, and (g^{jk}) is the matrix inverse of (g_{jk}).

We shall sometimes do computations in normal coordinates. These are coordinates x defined in a neighborhood of a point $p \in M^\text{int}$ such that $x(p) = 0$ and geodesics through p correspond to rays through the origin in the x coordinates. The metric in these coordinates satisfies
\[
g_{jk}(0) = \delta_{jk}, \quad \partial_k g_{jk}(0) = 0.
\]

The Einstein convention of summing over repeated upper and lower indices will be used. We convert vector fields to 1-forms and vice versa by the musical isomorphisms, which are given by
\[
 \begin{align*}
 (X^j \partial_j)^* &= X_k \, dx^k, \quad X_k = g_{jk} X^j, \\
 (\omega^k \, dx^k)^* &= \omega_j \partial_j, \quad \omega^j = g^{jk} \omega_k.
 \end{align*}
\]
The set of smooth k-forms on M is denoted by $\Omega^k M$, and the graded algebra of differential forms is written as
\[
 \Omega M = \oplus_{k=0}^n \Omega^k M.
\]
The set of k-forms with L^2 or H^s coefficients are denoted by $L^2(M, \Lambda^k M)$ and $H^s(M, \Lambda^k M)$, respectively. Here H^s for $s \in \mathbb{R}$ are the usual Sobolev spaces on M. The inner product $\langle \cdot, \cdot \rangle$ and norm $|\cdot|$ are extended to forms and more generally tensors on M in the usual way, and we also extend the inner product to complex valued tensors as a complex bilinear form.

Let $d : \Omega^k M \to \Omega^{k+1} M$ be the exterior derivative, and let $\ast : \Omega^k M \to \Omega^{n-k} M$ be the Hodge star operator. We introduce the sesquilinear inner product on $\Omega^k M$,
\[
 \langle \eta|\zeta \rangle = \int_M \langle \eta, \zeta \rangle \, dV = \int_M \eta \wedge \ast \zeta = (\ast \eta|\ast \zeta).
\]
Here $dV = \ast 1 = |g|^{1/2} \, dx^1 \cdots \, dx^n$ is the volume form. The codifferential $\delta : \Omega^k M \to \Omega^{k-1} M$ is defined as the formal adjoint of d in the inner product on real valued forms, so that
\[
 (d\eta|\zeta) = (\eta|\delta \zeta), \quad \text{for } \eta \in \Omega^{k-1} M, \zeta \in \Omega^k M \text{ compactly supported and real.}
These operators satisfy the following relations on k-forms in M:
\[** = (-1)^{k(n-k)}, \quad \delta = (-1)^{k(n-k) - n + k + 1} * d * . \]

If X is a vector field, the interior product $i_X : \Omega^k M \to \Omega^{k-1} M$ is defined by
\[i_X \omega(Y_1, \ldots, Y_{k-1}) = \omega(X, Y_1, \ldots, Y_{k-1}). \]

If ξ is a 1-form then the interior product i_ξ is the formal adjoint of $\xi \wedge$ in the inner product on real valued forms, and on k-forms it has the expression
\[i_\xi = (-1)^n (k-1) \ast \xi \wedge * . \]

The interior and exterior products interact by the formula
\[i_\xi \alpha \wedge \beta = (i_\xi \alpha) \wedge \beta + (-1)^k \alpha \wedge i_\xi \beta, \]
where α is a k-form and β an m-form. In particular if α and ξ are one-forms then
\[i_\xi \alpha \wedge \beta + \alpha \wedge i_\xi \beta = \langle \alpha, \xi \rangle \beta . \]

In addition, the differential and codifferential satisfy the following product rules:
\[d(f \eta) = df \wedge \eta + f d\eta \]
and
\[\delta(f \eta) = -i_d \eta + f \delta \eta. \]

The Hodge Laplacian on k-forms is defined by
\[-\Delta = (d + \delta)^2 = d\delta + \delta d. \]

It satisfies $\Delta * = * \Delta$. The above quantities may be naturally extended to graded forms.

We will also have to deal with forms that are not compactly supported on M. We have already introduced the tangential trace $t : \Omega M \to \Omega \partial M$ by
\[t : \omega \mapsto \iota^* \omega, \]
so if u is a graded form on M, then tu is a graded form on ∂M. Then
\[(tu|tv)_{\partial M} \]
is interpreted in the same manner as $(u|v)_M$ above. If u and v are graded forms on M, we will also define
\[(u|v)_{\partial M} = \int_{\partial M} (u, v) dS = \int_{\partial M} t_{i\nu} u \wedge * v dS \]
where dS is the volume form on ∂M. Now if $\eta \in \Omega^{k-1} M$ and $\zeta \in \Omega^k M$ then d and δ satisfy the following integration by parts formulas.

(3.1) \[(d\eta|\zeta)_M = (\nu \wedge \eta|\zeta)_{\partial M} + (\eta|\delta \zeta)_M, \]

(3.2) \[(\delta \zeta|\eta)_M = -(i_{\nu} \zeta|\eta)_{\partial M} + (\zeta|d \eta)_M. \]

Note also that
\[(i_{\nu} \zeta|\eta)_{\partial M} = (\nu \wedge \eta|\zeta)_{\partial M}. \]

Here ν denotes both the unit outer normal of ∂M and the corresponding 1-form.

Applying these formulas for the Hodge Laplacian gives
\[(-\Delta u|v)_M = (u - \Delta v)_M \]
\[+ (\nu \wedge \delta u|v)_{\partial M} + (i_{\nu} d u|v)_{\partial M} + (i_{\nu} d v|u)_{\partial M}, \]
where \(u \) and \(v \) are \(k \)-forms, or graded forms. We can also redo the integration by parts to write the boundary terms in terms of absolute and relative boundary conditions, so
\[
(-\Delta u|v)_M = (u|\Delta v)_M + (tu|t\nu|dv)_{\partial M} + (t\delta*u|t\nu*v)_{\partial M} + (t*u|t\nu*\nu+*v)_{\partial M} + (\delta u|t\nu|d)_{\partial M}.
\]

The Levi-Civita connection, defined on tensors in \(M \), is denoted by \(\nabla \) and it satisfies \(\nabla_X* = *\nabla_X \). We will sometimes write \(\nabla f \) (where \(f \) is any function) for the metric gradient of \(f \), defined by
\[
\nabla f = (df)^\sharp = g^{ik}\partial_jf\partial_k.
\]

If \(X \) is a vector field and \(\eta, \zeta \) are differential forms we have
\[
\nabla_X(\eta \wedge \zeta) = (\nabla_X\eta) \wedge \zeta + \eta \wedge (\nabla_X\zeta).
\]

If \(X, Y \) are vector fields then
\[
[\nabla_X, i_Y] = i_{\nabla_X Y}.
\]

We can also express \(d \) using the \(\nabla \) operator, as follows: if \(\omega \) is a \(k \)-form on \(M \), and \(X_1, \ldots, X_{k+1} \) are vector fields on \(M \), then
\[
d\omega(X_1, \ldots, X_{k+1}) = \sum_{l=1}^{k+1} (-1)^{l+1} (\nabla_{X_l} \omega)(X_1, \ldots, \hat{X}_l, \ldots, X_{k+1})
\]
where \(\hat{X}_l \) means that we omit the \(X_l \) argument. Moreover if \(e_1, \ldots, e_n \) are an orthonormal frame of \(TM \) defined in a neighborhood \(U \subset M \) we have
\[
-\delta\omega = \sum_{j=1}^n i_{e_j} \nabla e_j \omega.
\]

For the statements of the Carleman estimates, we introduced the notation
\[
u_\perp = N^\flat \wedge i_N u
\]
and
\[
u_\parallel = u - \nu_\perp
\]
where \(N \) is a smooth vector field which coincides with the inward pointing normal vector field at the boundary \(\partial M \), and is extended into \(M \) by parallel transport. Note that \(i_N \nu_\parallel = 0, N \wedge \nu_\perp = 0, \) and \(tu_\perp = 0 \) at \(\partial M \). In addition, if \(u \) and \(v \) are graded forms on \(M \), then
\[
(tu|tv)_{\partial M} = (tu_\parallel|tv_\parallel)_{\partial M} = (u_\parallel|v_\parallel)_{\partial M}
\]
and
\[
(t\nu|tNv)_{\partial M} = (t\nu_\perp|tN\nu_\perp)_{\partial M} = (u_\perp|v_\perp)_{\partial M}.
\]
If \(X \) is a vector field, we can break down \(X \) into parallel and perpendicular components in the same way by using \((X_\parallel)^2 \) and \((X_\perp)^2 \). The \(\perp \) and \(\parallel \) signs are interchanged by the Hodge star operator:
\[
(*u_\parallel) = (*u)_\perp \quad \text{and} \quad (*u_\perp) = (*u)_\parallel.
\]

Note that by its definition in terms of parallel transport, \(\nabla_N N = 0 \). Thus \(\nabla_N \) commutes with \(N \wedge \) and \(i_N \).

If we view \(\partial M \) as a submanifold embedded into \(M \), then \(TM \) splits into \(T\partial M \oplus N\partial M \), where \(T\partial M \) is the tangent bundle of \(\partial M \) and \(N\partial M \) is the normal bundle. Then the second fundamental form \(II : T\partial M \oplus T\partial M \to N\partial M \) of \(\partial M \) relative to this embedding is defined by
\[
II(X, Y) = (\nabla_X Y|N)N.
\]
Lemma 3.1. If ξ and η are real valued 1-forms on M and if u is a k-form, then
\[
\xi \wedge i_\eta u + i_\xi (\eta \wedge u) + \eta \wedge i_\xi u + i_\eta (\xi \wedge u) = 2(\xi, \eta)u.
\]

We also give an expression for the conjugated Laplacian.

Lemma 3.2. Let (M, g) be an oriented Riemannian manifold, let $\rho \in C^2(M)$ be a complex valued function, and let s be a complex number. If u is a k-form on M, then
\[
e^{s\rho}(-\Delta)(e^{-s\rho}u) = -s^2(\rho_u, d\rho)u + s[2\nabla_{\text{grad}(\rho)} + \Delta \rho]u - \Delta u.
\]

Next, an expansion for the expression $t\delta$.

Lemma 3.3. Let $u \in \Omega^k(M)$. Then
\[
-t(\delta u) = -\delta tu + (S - (n-1)\kappa)ti_N u\perp + t\nabla_N i_N u,
\]
where κ is the mean curvature of ∂M, and $S : \Omega^{k-1}(\partial M) \to \Omega^{k-1}(\partial M)$ is defined by
\[
S\omega(X_1, \ldots, X_{k-1}) = \sum_{\ell=1}^{k-1} \omega(X_1, \ldots, sX_\ell, \ldots, X_{k-1}),
\]
with $s : T\partial M \to T\partial M$ being the shape operator of ∂M.

Now for $ti_N d$.

Lemma 3.4. Let $u \in \Omega^k(M)$. Then on ∂M,
\[
ti_N du = t\nabla_N u\perp + Stu\perp - d'ti_N u.
\]

We also need an expansion for $t\delta B$, where B is the operator
\[
B = \frac{h}{l}[d \circ i_{d\varphi_c} + i_{d\varphi_c} \circ d - d\varphi_c \wedge \delta - \delta(d\varphi_c \wedge \cdot)]
\]
\[
= \frac{h}{l}[2\nabla\varphi_c + \Delta\varphi_c] .
\]

Lemma 3.5. If $u \in \Omega^k(M)$ is such that $tu = 0$, then
\[
t\delta Bu = d'tBu + \frac{ih}{l}i_{(\nabla_{\varphi_c})\perp}\nabla_N i_N u - 2ih\partial_{\varphi_c}\partial_\nabla_N \nabla_N i_N u +\frac{ih}{l}(2(n-1)\kappa - S)\partial_{\varphi_c}\partial_\nabla_N i_N u + 2iht(S - (n-1)\kappa)\nabla_N i_N u + \frac{ih}{l}(2(n-1)\kappa - S)\partial_{\varphi_c}\Delta\varphi_c + \nabla_N \Delta\varphi_c)ti_N u
\]
\[
+ 2ihti_NR(N, \nabla_{\varphi_c})u\perp + 2iht\nabla^2((\nabla_{\varphi_c})\perp, N)i_N u - 2ih\partial_{(\nabla_{\varphi_c})\perp}\nabla_N u\perp.
\]
Finally, we will need to do a computation to split the Hodge Laplacian into normal and tangential parts. To do this, we will take advantage of a Weitzenbock identity, which says that
\[\Delta = \tilde{\Delta} + R \]
where \(R \) is a zeroth order linear operator depending only on the curvature of \(M \), \(\Delta \) is the Hodge Laplacian, and \(\tilde{\Delta} \) is the connection Laplacian:
\[\tilde{\Delta} u := \nabla^* \nabla u. \]

We then have the following result for \(\tilde{\Delta} \).

Lemma 3.6. Let \(u \in \Omega^k(M) \) satisfy \(tu = 0 \). Then
\[t_i N \tilde{\Delta} u = \tilde{\Delta}' t_i N u + t \nabla_N \nabla_N i_N u + \text{tr}(s^2) i_N u - S_2 i_N u \]
where \(S_2 \omega(X_1,..,X_{k-1}) := \sum_{l=1}^{k-1} \omega(...,s^2X_l,..) \).

4. Carleman estimates and boundary terms

As noted in the introduction, Theorem 2.4 follows from Theorem 2.5, so it suffice to show that we can prove Theorem 2.5.

In proving the Carleman estimates, it will suffice to work with smooth sections of \(\Lambda^k M \) and apply a density argument to get the final result. Let \(\Omega^k(M) \) denote the space of smooth sections of \(\Lambda^k M \), and \(\Omega(M) \) denote the space of smooth sections of \(\Lambda M \).

In this section we give an initial form of the Carleman estimates by using an integration by parts argument as in [KSU07]. To do this, we will first need to understand the relevant boundary terms. We will use the integration by parts formulas
\[
(4.1) \quad (du|v)_M = (v \wedge u|v)_\partial M + (u|\delta v)_M,
\]
\[
(4.2) \quad (\delta u|v)_M = -(i_v u|v)_\partial M + (u|dv)_M
\]
for \(u, v \in \Omega(M) \).

As in [KSU07], we will need to work with the convexified weight
\[\varphi_c = \varphi + \frac{h\varphi^2}{2\varepsilon}. \]

Then
\[-\Delta \varphi_c = e^{\frac{h}{2}} (-h^2 \Delta) e^{-\frac{h}{2}}. \]

Writing
\[d\varphi_c = e^{\frac{h}{2}} hde^{-\frac{h}{2}} = hd - d\varphi_c \wedge, \]
\[\delta \varphi_c = e^{\frac{h}{2}} h\delta e^{-\frac{h}{2}} = h \delta + i d\varphi_c, \]
we have
\[-\Delta \varphi_c = d\varphi_c \delta \varphi_c + \delta \varphi_c d\varphi_c. \]
By Lemma 3.2 we can write this as $A + iB$ where A and B are self-adjoint operators given by

$$A = -h^2 \Delta - (d\varphi_c \wedge i_d\varphi_c + i_d\varphi_c(d\varphi_c \wedge \cdot))$$

$$= -h^2 \Delta - |d\varphi_c|^2,$$

$$B = \frac{h}{i} [d \circ i_d\varphi_c + i_d\varphi_c \circ d - d\varphi_c \wedge \delta - \delta(d\varphi_c \wedge \cdot)]$$

$$= \frac{h}{i} [2\nabla \varphi_c + \Delta \varphi_c].$$

Let $\| \cdot \|$ indicate the L^2 norm on M, unless otherwise stated. Then, for $u \in \Omega^k(M)$,

$$\|\Delta_{\varphi_c}u\|^2 = ((A + iB)u|(A + iB)u)$$

$$= \|Au\|^2 + \|Bu\|^2 + i(Bu|Au) - i(Au|Bu).$$

Integrating by parts gives

$$(Bu|Au) = (Bu|h^2d\delta u + h^2d\delta u - |d\varphi_c|^2 u) = (h\delta Bu|h\delta u) + (h\delta Bu|h\delta u)$$

$$- (|d\varphi_c|^2 Bu|u) + h(Bu|\nu \wedge h\delta u - i_\nu h\delta u)_\partial M$$

$$= (ABu|u) + h(h\delta Bu|\nu \wedge u)_\partial M - h(h\delta Bu|i_\nu u)_\partial M + h(Bu|\nu \wedge h\delta u - i_\nu h\delta u)_\partial M$$

and after a short computation

$$(Au|Bu) = (BAu|u) - \frac{2h}{i}((\partial_{\nu \varphi_c}Au|u)_\partial M).$$

This finishes the basic integration by parts argument and shows the following:

Proposition 4.1. If $u \in \Omega M$, then

$$\|\Delta_{\varphi_c}u\|^2 = \|Au\|^2 + \|Bu\|^2 + (i[A, B]|u)$$

$$+ ih(h\delta Bu|\nu \wedge u)_{\partial M} - ih(h\delta Bu|i_\nu u)_{\partial M} + ih(Bu|\nu \wedge h\delta u - i_\nu h\delta u)_{\partial M}$$

$$+ 2h(\partial_{\nu \varphi_c}Au|u)_{\partial M}. \tag{4.3}$$

Now we invoke the absolute boundary conditions to estimate the non-boundary terms and to simplify the boundary terms in (4.3). It is enough to consider differential forms $u \in \Omega^k(M)$ for fixed k.

Proposition 4.2. Let $u \in \Omega^k(M)$ such that

$$t * u = 0 \tag{4.4}$$

for some smooth bounded endomorphism σ whose bounds are uniform in h.

Then the non-boundary terms in (4.3) satisfy

$$\|Au\|^2 + \|Bu\|^2 + (i[A, B]|u) \gtrsim \frac{h^2}{\varepsilon}||u||^2_{H^1(M)} - \frac{h^3}{\varepsilon}||u||^2_{H^1(\partial M)} + \|h\nabla N u_{\perp}\|^2_{L^2(\partial M)} \tag{4.5}$$

for $h \ll \varepsilon \ll 1$. Also, the boundary terms in (4.3) have the form

$$- 2h^3(\partial_{\nu \varphi} \nabla N u_{\perp} \nabla N u_{\perp})_{\partial M} - 2h(\partial_{\nu \varphi}|d\varphi|^2 + |\partial_{\nu \varphi}|^2)u||u||_{\partial M} + R \tag{4.6}$$

where

$$|R| \lesssim Kh^3||t uu||^2_{\partial M} + \frac{h}{K}||u||^2_{\partial M} + \frac{h^3}{K}||\nabla N u_{\perp}||^2_{\partial M}.$$
Proof of Proposition 4.2. We will prove 4.3 first. The argument follows the one given in [Ch12], for scalar functions.

Note that A and B have the same scalar principal symbols as they do for zero-forms: that is, given a local basis dx^1, \ldots, dx^n for the cotangent space with $dx^i = dx^{i_1} \land \ldots \land dx^{i_k}$,

$$A = A_s + hE_1, \quad A_s(fdx^i) = (Af)dx^i$$

and

$$B = B_s + hE_0, \quad B_s(fdx^i) = (Bf)dx^i,$$

where E_1 and E_0 are first and zeroth order operators, respectively, with uniform bounds in h and ε. Therefore locally

$$[A, B](fdx^i) = ([A, B]f)dx^i + h([E_1, B_s] + [A_s, E_0] + hR)(fdx^i)$$

where R is a first order operator with uniform bounds in h and ε. Choosing a partition of unity χ_1, \ldots, χ_m of M such that this operation can be performed near each $\text{supp}(\chi_j)$, the argument for scalar functions in the proof of Proposition 3.1 from [Ch12] implies that

$$i([A, B]u|u) = \sum_{j=1}^{m} i([A, B]|\chi_j u) = 4h^2\varepsilon\|(1 + h\varepsilon^{-1}\varphi)u\|_{L^2}^2 + h(\beta Bu|u) + h^2(Qu|u),$$

where Q is a second order operator. Recall that

$$B = \frac{h}{i}(d \circ i_{d\varphi} + i_{d\varphi} \circ d - d\varphi \land \delta - \delta(d\varphi \land \cdot)),$$

so using integration by parts with the above formula, we get

$$h(\beta Bu|u) = h(\beta Bu|Bu) - ih^2(i_{\nu} \beta Bu|\nu)_{\partial M} - ih^2(\nu \land \beta Bu|u)_{\partial M} - ih^2(i_{\nu} \varphi \land \beta Bu|u)_{\partial M} = h(\beta Bu|Bu) - ih^2(\nu \land \beta Bu|\nu)_{\partial M} - ih^2(i_{\nu} \varphi \land \beta Bu|u)_{\partial M} - ih^2(i_{\nu} \varphi \land \beta Bu|u)_{\partial M}.$$

By Lemma 3.1 we obtain

$$h(\beta Bu|u) = h(\beta Bu|Bu) - 2ih^2(\partial_\nu \varphi \land \beta Bu|u)_{\partial M}.$$

The absolute boundary condition says that $t \ast u = 0$, so $u_\perp = 0$ at the boundary. Therefore

$$h(\beta Bu|u) = h(\beta Bu|Bu) - 2ih^2(\partial_\nu \varphi \land \beta Bu|u_{\parallel})_{\partial M} = h(\beta Bu|Bu) - 2ih^2(t\partial_\nu \varphi \land \beta Bu|u_{\parallel})_{\partial M}.$$

The boundary term in the last expression is bounded by

$$h^3\varepsilon^{-1}\|Bu\|^2_{L^2(\partial M)} + h^3\varepsilon^{-1}\|u\|^2_{L^2(\partial M)}.$$

At the boundary,

$$tBu = \frac{h}{i} t[2\nabla \varphi + \Delta \varphi] u = \frac{h}{i} h^{-2}[2\partial_\nu \varphi \land t\nabla_{\nu} u_{\perp} - 2\partial_\nu \varphi \land \nabla_{\nu} u_{\parallel} + 2t\nabla(\varphi_{\parallel}) u_{\parallel} + \Delta \varphi tu_{\parallel}],$$
so
\[\| tBu \|_{L^2(\partial M)}^2 \lesssim \| t\nabla_N u \|_{L^2(\partial M)}^2 + \| t\nabla_N u \|_{L^2(\partial M)}^2 + \| t\nabla(\nabla\varphi_i) u \|_{L^2(\partial M)}^2 + h^2 \| tu \|_{L^2(\partial M)}^2, \]
\[\lesssim \| t\nabla_N u \|_{L^2(\partial M)}^2 + \| t\nabla_N u \|_{L^2(\partial M)}^2 + \| u \|_{H^1(\partial M)}^2. \]

Now by Lemma 3.4,
\[t_i N h u = t\nabla_N u + hStu - h\delta ti_N u. \]

Since \(t \ast u = 0 \), we have \(i_N u, u_\perp = 0 \) at the boundary, and thus
\[t_i N h u = t\nabla_N u + hStu. \]

Therefore
\[\| t\nabla_N u \|_{L^2(\partial M)}^2 \lesssim \| t_i N h du \|_{L^2(\partial M)}^2 + \| tu \|_{H^1(\partial M)}^2. \]
and thus
\[h(B\beta Bu | u) \lesssim \frac{h^2}{\varepsilon} \| Bu \|_{L^2}^2 + \frac{h^3}{\varepsilon} \| u \|_{H^1(\partial M)}^2 + \frac{h^3}{\varepsilon} \| h\nabla_N u_\perp \|_{L^2(\partial M)}^2. \]

Similarly
\[h^2(Qu | u) \lesssim h^2 \| u \|_{H^1}^2 + h^3 \| u \|_{H^1(\partial M)}^2 + h^3 \| h\nabla_N u_\perp \|_{L^2(\partial M)}^2. \]

Therefore
\[i([A, B]u | u) \gtrsim \frac{h^2}{\varepsilon} \| u \|_{L^2}^2 - \frac{h^2}{\varepsilon} \| Bu \|_{L^2}^2 - h^2 \| u \|_{H^1}^2 - h^3 \varepsilon^{-1} \| u \|_{H^1(\partial M)}^2 - h^3 \varepsilon^{-1} \| h\nabla_N u_\perp \|_{L^2(\partial M)}^2. \]

Meanwhile, since \(t \ast u = 0 \) on \(\partial M \) we can write
\[h^2(\| hdu \|_{L^2}^2 + \| h\delta u \|_{L^2}^2) = h^2((h\delta * u, h\delta * u) + (h\delta * u, h\delta * u)) \]
\[= h^2(-h^2 \nabla \ast u | u) - h^3(\nu \wedge h\delta * u | u)_{\partial M} \]
\[= h^2(Au | u) + h^2(|\partial N| e^2 u | u) - h^3(\nu \wedge h\delta * u | u)_{\partial M} \]
\[= h^2(Au | u) + h^2(|\partial N| e^2 u | u) + h^3(th\delta * u | ti_N * u)_{\partial M}. \]

Using the absolute boundary conditions again, we have
\[th\delta * u = -ti_{\partial} * u + h\sigma ti_N * u \]
\[= \partial_N \varphi ti_N * u + h\sigma ti_N * u, \]
so
\[h^2(\| hdu \|_{L^2}^2 + \| h\delta u \|_{L^2}^2) \lesssim \frac{1}{K} \| Au \|_{L^2}^2 + K h^4 \| u \|_{L^2}^2 + h^2 \| u \|_{L^2}^2 + h^3 \| ti_N * u \|_{L^2(\partial M)}^2, \]
or
\[\| Au \|_{L^2}^2 \geq K h^2 (\| h d u \|_{L^2}^2 + \| h \delta u \|_{L^2}^2) - K^2 h^4 \| u \|_{L^2}^2 - K h^2 \| f \|_{L^2}^2 - K h^3 \| u \|_{L^2(\partial M)}^2. \]

We take \(K \sim \frac{1}{\alpha^2} \) with \(\alpha \) large and fixed. Putting this together with the inequality for \((i[A, B]|u|u) \) and Gaffney’s inequality \(\| u \|_{H^1} \sim \| u \|_{L^2} + \| h d u \|_{L^2} + \| h \delta u \|_{L^2} \) when \(t * u = 0 \), we obtain that
\[\| Au \|^2 + \| Bu \|^2 + (i[A, B]|u|u) \geq \frac{h^2}{\varepsilon} \| u \|_{H^1}^2 - h^3 \varepsilon^{-1} (\| u \|_{H^1(\partial M)}^2 + \| h \nabla_N u \|_{L^2(\partial M)}^2) \]
for \(h \ll \varepsilon \ll 1 \). This proves (4.5).

We will now show the expression (4.6) for the boundary terms in (4.3). Recall that these boundary terms are given by
\[\begin{aligned}
&ih(h d B u|\nu \wedge u)_{\partial M} - ih(h \delta B u|\nu \wedge u)_{\partial M} + ih(B u|\nu \wedge h \delta u - i_v h d u)_{\partial M} \\
&+ 2h((\partial_v \varphi_c) A u)_{\partial M}.
\end{aligned} \tag{4.7} \]

Note that
\[\begin{aligned}
&ih(h d B * u|\nu \wedge * u)_{\partial M} - ih(h \delta B * u|\nu \wedge * u)_{\partial M} + ih(B * u|\nu \wedge h \delta * u - i_v h d * u)_{\partial M} \\
&+ 2h((\partial_v \varphi_c) A * u)_{\partial M} \\
&= ih(h d B u|\nu \wedge u)_{\partial M} - ih(h \delta B u|\nu \wedge u)_{\partial M} + ih(B u|\nu \wedge h \delta u - i_v h d u)_{\partial M} \\
&+ 2h((\partial_v \varphi_c) A u)_{\partial M},
\end{aligned} \]

Moreover, if \(u \) satisfies the absolute boundary conditions (1.3), then \(u \) satisfies the relative boundary conditions
\[\begin{aligned}
t u &= 0 \\
- th \delta u &= -ti_d \varphi u + h \sigma t_i u,
\end{aligned} \tag{4.8} \]
and vice versa. Therefore it suffices to prove that if \(u \) satisfies (1.8) then the boundary terms (4.7) become
\[\begin{aligned}
- 2h^3(\partial_v \varphi \nabla_N u|\nabla_N u\|_{\partial M} - 2h(\partial_v \varphi (|d \varphi|^2 + |\partial_v \varphi|^2) u_{\perp}|u_{\perp}\|_{\partial M} + R
\end{aligned} \tag{4.9} \]
where
\[\begin{aligned}
| R | \lesssim K h^3 |\nabla^t i_N u|_{\partial M}^2 + \frac{h}{K} |u_{\perp}|_{\partial M}^2 + \frac{h^3}{K} |\nabla_N u\|_{\partial M}^2
\end{aligned} \tag{4.10} \]
for any large enough \(K \) independent of \(h \).

So let’s return to (4.7), and assume \(u \) satisfies (1.8). The condition \(t u = 0 \) implies that the first term \(ih(h d B u|\nu \wedge u)_{\partial M} \) is zero. Therefore we are left with
\[-ih(h \delta B u|\nu \wedge u)_{\partial M} + ih(B u|\nu \wedge h \delta u)_{\partial M} - ih(B u|\nu \wedge h d u)_{\partial M} + 2h((\partial_v \varphi_c) A u)_{\partial M}. \]

We calculate each of the terms individually.

Firstly,
\[\begin{aligned}
&ih(B u|\nu \wedge h \delta u)_{\partial M} = ih(B u|\nu \wedge h(\delta u))_{\partial M} \\
&= -ih(i_N B u|h(\delta u))_{\partial M} \\
&= -ih(i_N B u|th \delta u)_{\partial M}.
\end{aligned} \]

Now
\[Bu = \frac{h}{i} (2 \nabla \varphi_c + \Delta \varphi_c) u, \]
so
\[t_i N B u = \frac{h}{i} t_i N \left(2 \nabla (\nabla \varphi_c)_{||} - 2 \partial_{\nu} \varphi_c \nabla N + \Delta \varphi_c \right) u \]
\[= \frac{h}{i} \left(2 \nabla (\nabla \varphi_c)_{||} t_i N - 2 \partial_{\nu} \varphi_c t_N i_N + t \Delta \varphi_c i_N \right) u. \]

Therefore,
\[-ih(t_i N B u|\theta \delta u)_{\partial M} = 2h(\partial_{\nu} \varphi_c \theta \nabla N i_N u|\theta \delta u)_{\partial M} \]
\[- 2h(h \nabla (\nabla \varphi_c)_{||} t_i N u|\theta \delta u)_{\partial M} \]
\[- h^2(t \Delta \varphi_c i_N u|\theta \delta u)_{\partial M}. \]

Now if \(\theta \delta u|_{\partial M} = -ti_{\delta u} + h \sigma ti_N u, \) and \(tu = 0, \)
\[(4.11) \quad \theta \delta u|_{\partial M} = (\partial_{\nu} \varphi + h \sigma) ti_N u. \]

Therefore
\[-ih(t_i N B u|\theta \delta u)_{\partial M} = 2h(\partial_{\nu} \varphi_c \theta \nabla N i_N u|(\partial_{\nu} \varphi + h \sigma) ti_N u)_{\partial M} \]
\[- 2h(h \nabla (\nabla \varphi_c)_{||} ti_N u|(\partial_{\nu} \varphi + h \sigma) ti_N u)_{\partial M} \]
\[- h^2(t \Delta \varphi_c i_N u|(\partial_{\nu} \varphi + h \sigma) ti_N u)_{\partial M}. \]

Moreover, by Lemma 3.3
\[th(\delta u) = h \delta' tu_{\parallel} + h((n - 1) \kappa - S) ti_N u_{\perp} - th \nabla N i_N u. \]

Since \(tu = 0, \)
\[th(\delta u) = h((n - 1) \kappa - S) ti_N u_{\perp} - th \nabla N i_N u. \]

Substituting this into (4.11) gives
\[(4.12) \quad th \nabla N i_N u = (-\partial_{\nu} \varphi - h \sigma + h(n - 1) \kappa - hS) ti_N u. \]

Therefore
\[-ih(t_i N B u|\theta \delta u)_{\partial M} = - 2h(\partial_{\nu} \varphi_c (\partial_{\nu} \varphi + h \sigma - h(n - 1) \kappa + hS) ti_N u|(\partial_{\nu} \varphi + h \sigma) ti_N u)_{\partial M} \]
\[- 2h(h \nabla (\nabla \varphi_c)_{||} ti_N u|(\partial_{\nu} \varphi + h \sigma) ti_N u)_{\partial M} \]
\[- h^2(t \Delta \varphi_c i_N u|(\partial_{\nu} \varphi + h \sigma) ti_N u)_{\partial M}. \]

We can write this as
\[(4.13) \quad ih(Bu|\nu \wedge h \delta u)_{\partial M} = - 2h(\partial_{\nu} \varphi |\partial_{\nu} \varphi|^2 ti_N u|ti_N u)_{\partial M} + R_2 \]
where \(R_2 \) satisfies the bound on \(R \) in (4.10).

Secondly,
\[-ih(Bu|\nu hdu)_{\partial M} = ih((Bu)_{||}|i_N hdu)_{\partial M} \]
\[= ih(t(Bu)_{||}|ti_N hdu)_{\partial M}. \]

By Lemma 3.3
\[ti_N hdu = th \nabla N u_{\parallel} + hStu_{\parallel} - hd'ti_N u, \]
so if \(tu = 0, \)
\[ti_N hdu = th \nabla N u_{\parallel} - hd'ti_N u. \]

Therefore
\[-ih(Bu|\nu hdu)_{\partial M} = ih(tBu|th \nabla N u_{\parallel} - hd'ti_N u)_{\partial M}. \]
Expanding B, this becomes
\[h(t(h(-2\partial_\nu \varphi_c \nabla_N u + 2\nabla(\nabla_\varphi_c))u + (\nabla \varphi_c)u)\nabla_N u - h\dot{d}ti_N u)_{\partial M}. \]

Since $tu = 0$, the last expression is equal to
\begin{equation}
-2h(\partial_\nu \varphi_c th\nabla_N u - th\nabla(\nabla_\varphi_c)u|th\nabla_N u|| - h\dot{d}ti_N u)_{\partial M}.
\end{equation}

The part has the same type of bound as in (4.10), so
\begin{equation}
-2h(\partial_\nu \varphi_c th\nabla_N u|| - h\dot{d}ti_N u)_{\partial M}
\end{equation}

has the same type of bound as in (4.10), so
\begin{equation}
-ih(Bu|_{\nu, h\delta Bu})_{\partial M} = -2h(\partial_\nu \varphi_c th\nabla_N u||th\nabla_N u||)_{\partial M} + R_3,
\end{equation}
where R_3 has the same bound as in (4.10).

Thirdly,
\[ih(h\delta Bu|_{\nu, u})_{\partial M} = ih(h(\delta Bu)|_{\nu, u})_{\partial M} = -ih(ht(\delta Bu)|_{ti_N u})_{\partial M}. \]

By Lemma 3.3
\[ht\delta Bu = h\delta Bu + 2ih^2\nabla(\nabla_\varphi_c)\nabla_N i_N u - 2ih^2\partial_\nu \varphi_c t\nabla_N i_N u \]
\[+ ih^2((n-1)\kappa - S)\partial_\nu \varphi_c + 2\partial_\nu \varphi_c + \nabla_\varphi c t\nabla_N i_N u \]
\[+ 2ih^2(S - (n-1)\kappa)\nabla(\nabla_\varphi_c)\nabla_N i_N u + ih^2((n-1)\kappa)\nabla_\varphi c + \nabla_N \nabla_\varphi c ti_N u \]
\[+ 2ih^2ti_N R(N, \nabla(\nabla_\varphi_c))_{\parallel} = 2ih^2t\nabla(\nabla_\varphi_c)\nabla_N i_N u + 2ih^2t\nabla(\nabla_\varphi_c)\nabla_N ti_N u. \]

The terms on the last two lines, when paired with $ih ti_N u$, are bounded by (4.10). Moreover, using the boundary conditions in the form of equation (4.12) on the
\[h^3(2((n-1)\kappa - S)\partial_\nu \varphi_c + 2\partial_\nu \varphi c + \nabla_\varphi c ti_N u)_{\partial M} \]

term shows that this too is bounded by (4.10). Therefore we need only worry about the first three terms.

For the $-ih(tBu|htu)_{\partial M}$ term, we can integrate by parts to get
\[-ih(tBu|hd'ti_N u)_{\partial M} = -2h(ht\nabla(\nabla_\varphi_c)u| + \frac{1}{2}h\Delta \varphi_c tu|hd'ti_N u)_{\partial M}. \]

Since $tu = 0$, we get
\[ih(tBu|hd' ti_N u)_{\partial M} = 2h(ht\nabla(\nabla_\varphi_c)u|hd' ti_N u)_{\partial M}. \]

Now
\[t\nabla(\nabla_\varphi_c)u = t\nabla(\nabla_\varphi_c)u_{\parallel} + t\nabla(\nabla_\varphi_c)u_{\perp} \]

since $tu = 0$. Therefore
\[|ih(tBu|hd' ti_N u)_{\partial M}| \leq Kh^3||\nabla ti_N u||^2_{\partial M} + Kh^3||u_{\perp}||^2_{\partial M} + Kh^3||\nabla N u||^2, \]

and so this term is bounded by (4.10).

For the $2h^3(\nabla(\nabla_\varphi_c))_{\partial M} ti_N u)_{\partial M}$ term, we can use equation (4.12) to get
\[2h^3(\nabla(\nabla_\varphi_c))_{\parallel} ti_N u)_{\partial M} \]
\[= -2h^2(\nabla(\nabla_\varphi_c)(-\partial_\nu \varphi - h\sigma + h(n-1)\kappa - hS) ti_N u)_{\partial M}. \]
and then use Cauchy-Schwartz, so this term is bounded by (4.10) too. Therefore

\[-i h (\delta B u | \iota v u)_{\partial M} = 2 h^3 (\partial_u \varphi_c t \nabla_N \nabla_N i_N u | t i_N u)_{\partial M} + R_1 \]

where \(R_1 \) is bounded by (4.10).

Finally,

\[2 h ((\partial_u \varphi_c) A u | u)_{\partial M} = 2 h ((\partial_u \varphi_c) A u | u_{\perp})_{\partial M} = 2 h ((\partial_u \varphi_c) t i_N A u | t i_N u)_{\partial M} \]

because of the boundary condition \(tu = 0 \). Now \(\Lambda = -h^2 \Delta - |d \varphi_c|^2 \), so

\[2 h ((\partial_u \varphi_c) t i_N A u | t i_N u)_{\partial M} = -2 h ((\partial_u \varphi_c) h^2 t i_N \Delta u | t i_N u)_{\partial M} - 2 h ((\partial_u \varphi_c) |d \varphi_c|^2 t i_N u | t i_N u)_{\partial M}. \]

Using the Weitzenbock identity, we can write

\[-2 h ((\partial_u \varphi_c) h^2 t i_N \Delta u | t i_N u)_{\partial M} \]

as

\[-2 h (\partial \varphi_c h^2 t i_N \Delta u | t i_N u)_{\partial M} + 2 h (\partial_u \varphi_c) h^2 R i_N u | t i_N u)_{\partial M}. \]

The second term is bounded by (4.10). For the first term, we can apply Lemma 3.6 to get

\[-2 h ((\partial_u \varphi_c) h^2 t \nabla_N \nabla_N i_N u | t i_N u)_{\partial M} - 2 h (\partial_u \varphi_c) h^2 \tilde{\Delta}' t i_N u | t i_N u)_{\partial M} + h^3 (\text{tr}(s^2) i_N u - S_2 i_N u | t i_N u)_{\partial M} \]

where \(S_2 \omega(X_1, \ldots, X_{k-1}) := \sum_{i=1}^{k-1} \omega(\ldots, s^2 X_i, \ldots) \). The last term is bounded again by (4.10) and we can integrate by parts in the \(\tilde{\Delta}' \) part to get something bounded by (4.10) as well. Therefore

\[2 h ((\partial_u \varphi_c) A u | u)_{\partial M} = -2 h ((\partial_u \varphi_c) |d \varphi_c|^2 t i_N u | t i_N u)_{\partial M} - 2 h ((\partial_u \varphi_c) h^2 t \nabla_N \nabla_N i_N u | t i_N u)_{\partial M} + R_1 \]

where \(R_1 \) is bounded by (4.10).

Now putting this together with (4.13), (4.15), and (4.16), we get that the boundary terms in (4.3) have the form

\[-2 h (\partial_u \varphi | \partial_u \varphi_c^2 t i_N u | t i_N u)_{\partial M} - 2 h (\partial_u \varphi_c \text{tr} \nabla_N u | t h \nabla_N u)_{\partial M} + 2 h (\partial_u \varphi_c^2 t i_N u | t i_N u)_{\partial M} + R. \]

The \(\pm 2 h (\partial_u \varphi_c t \nabla_N \nabla_N i_N u | t i_N u)_{\partial M} \) terms cancel, leaving us with

\[-2 h (\partial_u \varphi | \partial_u \varphi_c^2 t i_N u | t i_N u)_{\partial M} - 2 h (\partial_u \varphi_c \text{tr} \nabla_N u | t h \nabla_N u)_{\partial M} - 2 h (\partial_u \varphi_c |d \varphi_c|^2 t i_N u | t i_N u)_{\partial M} + R. \]

We can replace \(\varphi_c \) by \(\varphi \) and incorporate the error into \(R \) without affecting the bound on \(R \), to get

\[-2 h (\partial_u \varphi | \partial_u \varphi_c^2 t i_N u | t i_N u)_{\partial M} - 2 h (\partial_u \varphi_c \text{tr} \nabla_N u | t h \nabla_N u)_{\partial M} - 2 h (\partial_u \varphi |d \varphi|^2 t i_N u | t i_N u)_{\partial M} + R. \]

and the proposition follows.

\[\square \]
5. The 0-form case

We will now prove Theorem 2.5 in the 0-form case. In the case where (M, g) is a domain in Euclidean space, Theorem 2.5 [for 0-forms is the Carleman estimate given in [Ch12, Theorem 1.3]. In this section we will deal with the added complication of being on a CTA manifold, rather than in Euclidean space.

If u is a zero form, then $i_N u = 0$, so $u_\perp = 0$ and $u = u_\parallel$. Theorem 2.5 reduces to the estimate

$$\|(-\Delta_c + h^2 Q) u\|_{L^2(M)} \lesssim h\|u\|_{H^1(M)} + h^2 \|u\|_{H^1(\Gamma_+^c)}$$

where $Q \in L^\infty(M)$ and $0 < h < h_0$, for functions $u \in H^2(M)$ with $u|_{\Gamma_+} = 0$ to first order and $h\partial_{\nu}(e^{-\frac{\xi}{h}} u) = h\sigma e^{-\frac{\xi}{h}} u$ on Γ_+^c. By arguing as in the beginning of Section 6 below, the estimate (5.1) will be a consequence of the following proposition.

Proposition 5.1. Suppose u is a function in $H^2(M)$ which satisfies the following boundary conditions:

$$u, \partial_{\nu} u = 0 \quad \text{on} \quad \Gamma_+$$

$$h\partial_{\nu}(e^{-\frac{\xi}{h}} u) = h\sigma e^{-\frac{\xi}{h}} u \quad \text{on} \quad \Gamma_+^c$$

for some smooth function σ independent of h.

Then

$$h^2 \|h\nabla' u\|_{L^2(\Gamma_+^c)} \lesssim \|\Delta_c u\|_{L^2(M)} + h\|u\|_{H^1(M)} + h^2 \|u\|_{L^2(\Gamma_+^c)}.$$

We will prove this proposition in the case where the metric g has the form $g = e \oplus g_0$. However, if g were of the form $g = c(e \oplus g_0)$, we could write

$$\|\Delta_c u\|_{L^2(M)} = \|h^2 e^{\frac{\xi}{h}} \Delta e^{\frac{\xi}{h}} \|_{L^2(\Gamma_+^c)}.$$

$$\lesssim \|h^2 e^{\frac{\xi}{h}} \Delta e^{\frac{\xi}{h}} \|_{L^2(M)} - h\|u\|_{H^1(M)}.$$

Therefore the proposition remains true even in the case when the conformal factor is not constant. More generally, the proofs of the Carleman estimates work for any smooth conformal factor, and thus as noted earlier, the Carleman estimates hold on CTA manifolds in general.

5.1. The operators

Here we introduce the operators we will use in the proof of Proposition 5.1. Similar operators are found in [Ch11] and [Ch12]. Suppose $F(\xi)$ is a complex valued function on \mathbb{R}^{n-1}, with the properties that $|F(\xi)|, \text{Re} F(\xi) \approx 1 + |\xi|$. Fix coordinates (x_1, x') on \mathbb{R}^n, and define \mathbb{R}^+_n to be the subset of \mathbb{R}^n with $x_1 > 0$. Define $\mathcal{S}(\mathbb{R}^+_n)$ as the set of restrictions to \mathbb{R}^+_n of Schwartz functions on \mathbb{R}^n. Finally, if $u \in \mathcal{S}(\mathbb{R}^+_n)$, then define $\hat{u}(x_1, \xi)$ to be the semiclassical Fourier transform of u in the x' variables only.

Now for $u \in \mathcal{S}(\mathbb{R}^+_n)$, define J by

$$\hat{J} u(x_1, \xi) = (F(\xi) + h\partial_{\xi_1}) \hat{u}(x_1, \xi).$$

This has adjoint J^* defined by

$$\hat{J^*} u(x_1, \xi) = (\overline{F(\xi)} - h\partial_{\xi_1}) \hat{u}(x_1, \xi).$$

These operators have right inverses given by

$$\hat{J^{-1}} u = \frac{1}{h} \int_0^{x_1} \hat{u}(t, \xi) e^{\frac{F(\xi)}{h} t - \frac{\xi}{h} t} dt$$

and

$$\hat{J^{* -1}} u = \frac{1}{h} \int_{x_1}^{\infty} \hat{u}(t, \xi) e^{\frac{F(\xi)}{h} t - \frac{\xi}{h} t} dt.$$
Now we have the following boundedness result, given in [Ch12].

Lemma 5.2. The operators J, J^*, J^{-1}, and J^{*-1}, initially defined on $S(\mathbb{R}_+^n)$, extend to bounded operators

$$J, J^* : H^1(\mathbb{R}_+^n) \rightarrow L^2(\mathbb{R}_+^n)$$

and

$$J^{-1}, J^{*-1} : L^2(\mathbb{R}_+^n) \rightarrow H^1(\mathbb{R}_+^n).$$

Moreover, these extensions for J^* and J^{*-1} are isomorphisms.

Note that similar mapping properties hold between $H^1(\mathbb{R}_+^n)$ and $H^2(\mathbb{R}_+^n)$, by the same reasoning.

We’ll record the other operator fact from [Ch12] here, too.

Let $m, k \in \mathbb{Z}$, with $m, k \geq 0$. Suppose $a(x, \xi, y)$ are smooth functions on $\mathbb{R}^{n-1} \times \mathbb{R}^{n-1} \times \mathbb{R}$ that satisfy the bounds

$$|\partial_{\xi}^\alpha \partial_{\eta}^\beta a(x, \xi, y)| \leq C_{\alpha, \beta} (1 + |\xi|)^{m-|\alpha|}$$

for all multiindices α and β, and for $0 \leq j \leq k$. In other words, each $\partial_{\eta}^j a(x, \xi, y)$ is a symbol on \mathbb{R}^{n-1} of order m, with bounds uniform in y, for $0 \leq j \leq k$. Then we can define an operator A on Schwartz functions in \mathbb{R}^n by applying the pseudodifferential operator on \mathbb{R}^{n-1} with symbol $a(x, \xi, y)$, defined by the Kohn-Nirenberg quantization, to $f(x, y)$ for each fixed y.

Lemma 5.3. If A is as above, then A extends to a bounded operator from $H^{k+m}(\mathbb{R}^n)$ to $H^k(\mathbb{R}^n)$.

5.2. The graph case. Suppose $f : M_0 \rightarrow \mathbb{R}$ is smooth. In this section, we’ll examine the case where M lies in the set $\{x_1 \geq f(x')\}$, and Γ_+^n lies in the graph $\{x_1 = f(x')\}$. For this section we’ll make two additional assumptions on f and M_0.

First, we’ll assume that g_0 is nearly constant: that there exists a choice of coordinates on the subset $P(M)$ which consists of the projection of M onto M_0, such that when represented in these coordinates,

$$|g_0 - I| \leq \delta$$

on $P(M)$, where δ is a positive constant to be chosen later.

Second, we’ll assume that f is such that $\nabla g_0 f$ is nearly constant on $P(M)$: that there exists a constant vector field K on TM_0 such that

$$|\nabla g_0 f - K|_{g_0} \leq \delta$$

where δ is the same constant from above. The choice of δ will depend ultimately only on K. In the next subsection we’ll see how to remove these two assumptions.

Now we can do the change of variables $(x_1, x') \mapsto (x_1 - f(x'), x')$. Define \tilde{M}' and $\tilde{\Gamma}_+^n$ to be the images of M and Γ_+^n respectively, under this map. Note that $\{x_1 \geq f(x')\}$ maps to $(0, \infty) \times M_0$, and Γ_+^n maps to a subset of $0 \times M_0$.

Now it suffices to prove the following proposition.

Proposition 5.4. Suppose $w \in H^2(\tilde{M}')$, and

$$w, \partial_{\nu} w = 0 \text{ on } \tilde{\Gamma}_+^n$$

$$h \partial_{\nu} w|_{\tilde{\Gamma}_+^n} = \frac{w + \nabla g_0 f \cdot h \nabla g_0 w - h \sigma w}{1 + |\nabla g_0 f|^2},$$

where σ is smooth and bounded on \tilde{M}'. Then

$$h^{\frac{3}{2}} \|h \nabla g_0 w\|_{L^2(\tilde{\Gamma}_+^n)} \lesssim \|\tilde{\xi}' \cdot w\|_{L^2(\tilde{M}')} + h\|w\|_{H^1(\tilde{M}')} + h^{\frac{3}{2}} \|w\|_{L^2(\tilde{\Gamma}_+^n)}$$
where
\[\hat{\mathcal{L}}_{\varphi, \epsilon} = (1 + |\nabla g_0|^2)h^2\partial_t^2 - 2(\alpha + \nabla g_0 \cdot h\nabla g_0)h\partial_1 + \alpha^2 + h^2\Delta g_0 \]
and \(\alpha = 1 + \frac{1}{\epsilon}(x_1 + f(x')) \). Note that on \(\tilde{M}' \), \(\alpha \) is very close to 1.

This proposition implies Proposition 5.1 in the graph case described above.

Proof of Proposition 5.1 in the graph case. Suppose \(u \in H^2(M) \), and \(u \) satisfies (5.2). Let \(w \) be the function on \(\tilde{M} \) defined by \(w(x_1, x') = u(x_1 + f(x'), x') \). Then \(w \in H^2(\tilde{M}') \), and \(w \) satisfies (5.4). Therefore by Proposition 5.4,

\[h^{\frac{1}{2}}\|h\nabla'w\|_{L^2(\tilde{\Gamma}_+')} \lesssim \|\hat{\mathcal{L}}_{\varphi, \epsilon} w\|_{L^2(\tilde{M})} + h\|w\|_{H^1(\tilde{M}')}, \]

Now by a change of variables,

\[\|u\|_{L^2(\tilde{\Gamma}_+')} \lesssim \|w\|_{L^2(\tilde{\Gamma}_+')}, \]
and

\[\|u\|_{H^1(\tilde{M})} \lesssim \|w\|_{H^1(\tilde{M}')}. \]

Moreover,

\[\left(\hat{\mathcal{L}}_{\varphi, \epsilon} w \right)(x_1 - f(x'), x') = \mathcal{L}_{\varphi, \epsilon}(u(x_1, x')) + hE_1 u(x_1, x') \]
where \(E_1 \) is a first order semiclassical differential operator. Therefore by a change of variables,

\[\|\hat{\mathcal{L}}_{\varphi, \epsilon} w\|_{L^2(\tilde{M})} \lesssim \|\mathcal{L}_{\varphi, \epsilon} u\|_{L^2(M)} + h\|u\|_{H^1(M)}. \]

Putting this all together gives

\[h^{\frac{1}{2}}\|h\nabla g_0 u\|_{L^2(\tilde{\Gamma}_+')} \lesssim \|\mathcal{L}_{\varphi, \epsilon} u\|_{L^2(M)} + h\|u\|_{H^1(M)} + h^{\frac{1}{2}}\|u\|_{L^2(\tilde{\Gamma}_+')} \]

We can do a second change of variables to move to Euclidean space. By our assumption on \(M_0 \), we can choose coordinates on \(P(M') = P(M) \) such that

\[|g_0 - I| \leq \delta. \]

Now we have a change of variables giving a map from \(P(M') \) to a subset of \(\mathbb{R}^{n-1} \), and hence a map from \(\tilde{M}' \) to a subset of \(\mathbb{R}^n_+ \), where the image of \(\tilde{\Gamma}_+ \) lies in the plane \(x_1 = 0 \). Let \(\tilde{M} \) and \(\tilde{\Gamma}_+ \) be the images of \(M' \) and \(\tilde{\Gamma}_+ \) respectively, under this map. We’ll use the notation \((x_1, x')\) to describe points in \(\mathbb{R}^n_+ \), where now \(x' \) ranges over \(\mathbb{R}^{n-1} \). Now it suffices to prove the following proposition.

Proposition 5.5. Suppose \(w \in H^2(\tilde{M}) \), and

\[w, \partial_\nu w = 0 \text{ on } \tilde{\Gamma}_+, \]

\[h\partial_\gamma w|_{\tilde{\Gamma}_+} = \frac{w + \beta \cdot h\nabla x w - h\sigma w}{1 + |\gamma|^2}. \]

where \(\sigma \) is smooth and bounded on \(\tilde{M} \), and \(\beta \) and \(\gamma \) are a vector valued and scalar valued function, respectively, which coincide with the coordinate representations of \(\nabla g_0 f \) and \(|\nabla g_0 f|_{g_0} \). Then

\[h^{\frac{1}{2}}\|h\nabla x' w\|_{L^2(\tilde{\Gamma}_+')} \lesssim \|\hat{\mathcal{L}}_{\varphi, \epsilon} w\|_{L^2(\tilde{M})} + h\|w\|_{H^1(\tilde{M})} + h^{\frac{1}{2}}\|w\|_{L^2(\tilde{\Gamma}_+')} \]

where

\[\hat{\mathcal{L}}_{\varphi, \epsilon} = (1 + |\gamma|^2)h^2\partial_t^2 - 2(\alpha + \beta \cdot h\nabla x)h\partial_1 + \alpha^2 + h^2\mathcal{L}, \]
and \(\mathcal{L} \) is the second order differential operator in the \(x' \) variables given by

\[
\mathcal{L} = g^{ij}_{\delta} \partial_i \partial_j.
\]

Proposition 5.4 can be obtained from Proposition 5.5 in the same manner as before, with errors from the change of variables being absorbed into the appropriate terms. Therefore it suffices to prove Proposition 5.5.

To do this, we’ll split \(w \) into small and large frequency parts, using a Fourier transform. Recall that we are assuming

\[
|\nabla_{g_0} f - K|_{g_0} \leq \delta.
\]

Translating down to \(\tilde{M} \), and recalling that \(g_0 \) is nearly the identity, we get that there is a constant vector field \(\tilde{K} \) on \(M \) such that

\[
|\beta - \tilde{K}| \leq C_\delta
\]

and

\[
|\gamma - |\tilde{K}| | \leq C_\delta
\]

where \(C_\delta \) goes to zero as \(\delta \) goes to zero. Now choose \(m_2 > m_1 > 0 \), and \(\mu_1 \) and \(\mu_2 \) such that

\[
\frac{|\tilde{K}|}{\sqrt{1 + |\tilde{K}|^2}} < \mu_1 < \mu_2 < \frac{1}{2} + \frac{|\tilde{K}|}{2\sqrt{1 + |\tilde{K}|^2}} < 1.
\]

The eventual choice of \(\mu_j \) and \(m_j \) will depend only on \(\tilde{K} \).

Define \(\rho \in C_0^\infty(\mathbb{R}^n) \) such that \(\rho(\xi) = 1 \) if \(|\xi| < \mu_1 \) and \(|\tilde{K} \cdot \xi| < m_1 \), and \(\rho(\xi) = 0 \) if \(|\xi| > \mu_2 \) or \(|\tilde{K} \cdot \xi| > m_2 \).

Now suppose \(w \in C^\infty(\tilde{M}) \) such that \(w \equiv 0 \) in a neighbourhood of \(\tilde{\Gamma}_+ \), and \(w \) satisfies (5.5). We can extend \(w \) by zero to the rest of \(\mathbb{R}_+^n \). Then \(w \in \mathcal{S}(\mathbb{R}_+^n) \), and we can write our desired estimate as

\[
h^{\frac{3}{2}}||w||_{H^1(\partial \mathbb{R}_+^n)} \lesssim ||\tilde{\mathcal{L}}_{x',\nu} w||_{L^2(\mathbb{R}_+^n)} + h||w||_{H^1(\mathbb{R}_+^n)} + h^{\frac{3}{2}}||w||_{L^2(\partial \mathbb{R}_+^n)}.
\]

Recall that \(\tilde{w}(x_1, \xi) \) is the semiclassical Fourier transform of \(w \) in the \(x' \) directions, and define \(w_s \) and \(w_t \) by \(\tilde{w}_s = \rho \tilde{w} \) and \(\tilde{w}_t = (1 - \rho) \tilde{w} \), so \(w = w_s + w_t \).

Now we can address each of these parts separately.

Proposition 5.6. Suppose \(w \) is as above. There exist choices of \(m_1, m_2, \mu_1 \), and \(\mu_2 \), depending only on \(\tilde{K} \), such that if \(\delta \) is small enough,

\[
h^{\frac{3}{2}}||w_s||_{H^1(\partial \mathbb{R}_+^n)} \lesssim ||\tilde{\mathcal{L}}_{x',\nu} w||_{L^2(\mathbb{R}_+^n)} + h||w||_{H^1(\mathbb{R}_+^n)} + h^{\frac{3}{2}}||w||_{L^2(\partial \mathbb{R}_+^n)}.
\]

Before proceeding to the proof, let’s make some definitions. If \(V \in \mathbb{R}^{n-1} \) and \(a \in \mathbb{R} \), define \(A_{\pm}(a, V, \xi) \) by

\[
A_{\pm}(a, V, \xi) = \frac{1 + iV \cdot \xi \pm \sqrt{(1 + iV \cdot \xi)^2 - (1 + |a|^2)(1 - |\xi|^2)}}{1 + |a|^2}.
\]

In other words, \(A_{\pm}(a, V, \xi) \) are defined to be the roots of the polynomial

\[
(1 + |a|^2)X^2 - 2(1 + iV \cdot \xi)X + (1 - |\xi|^2).
\]

In the definition, we’ll choose the branch of the square root which has non-negative real part, so the branch cut occurs on the negative real axis.
Proof. Now consider the behaviour of \(A_\pm (|\tilde{K}|, \tilde{K}, \xi) \) on the support of \(\rho \), or equivalently, on the support of \(\tilde{w}_s \). If \(\eta > 0 \), we can choose \(\mu_2 \) such that on the support of \(\tilde{w}_s \),

\[
1 - (1 + |\tilde{K}|^2)(1 - |\xi|^2) < \eta.
\]

Then on the support of \(\tilde{w}_s \), the expression

\[
(1 + i\tilde{K} \cdot \xi)^2 - (1 + |\tilde{K}|^2)(1 - |\xi|^2)
\]

has real part confined to the interval \([-\tilde{K}^2 - m_2^2, \eta + m_2^2]\), and imaginary part confined to the interval \([-2m_2, 2m_2]\). Therefore, by correct choice of \(\eta \) and \(m_2 \), we can ensure

\[
\text{Re} A_\pm (|\tilde{K}|, \tilde{K}, \xi) > \frac{1}{2(1 + |\tilde{K}|^2)}
\]

on the support of \(\tilde{w}_s \). This allows us to fix the choice of \(\mu_1, \mu_2, m_1 \), and \(m_2 \). Note that the choices depend only on \(\tilde{K} \), as promised.

The bounds on \(A_\pm (|\tilde{K}|, \tilde{K}, \xi) \) allow us to choose \(F_\pm \) so that \(F_\pm = A_\pm (|\tilde{K}|, \tilde{K}, \xi) \) on the support of \(\tilde{w}_s \), and \(\text{Re} F_\pm, |F_\pm| \simeq 1 + |\xi| \) on \(\mathbb{R}^n \), with constant depending only on \(\tilde{K} \). Therefore \(F_+ \) and \(F_- \) both satisfy the conditions on \(F \) in Section 2. If \(T_\psi \) represents the operator with Fourier multiplier \(\psi \) (in the \(x' \) variables), then it follows that the operators \(h\partial_y - T_{F_+} \) and \(h\partial_y - T_{F_-} \) both have the properties of \(J^* \) in that section.

Up until now, the operator \(\tilde{\mathcal{L}}_{\varphi, \varepsilon} \) has only been applied to functions supported in \(\tilde{M} \). However, we can extend the coefficients of \(\tilde{\mathcal{L}}_{\varphi, \varepsilon} \) to \(\mathbb{R}^2 \) while retaining the \(|\beta - \tilde{K}| < C_\delta \) and \(|\gamma - |\tilde{K}|| \leq C_\delta \) conditions. Then

\[
\left\| \tilde{\mathcal{L}}_{\varphi, \varepsilon} w_s \right\|_{L^2(\mathbb{R}^2)} \geq \left\| \left(1 + |\tilde{K}|^2\right) (1 + \tilde{K} \cdot h\nabla_x) h\partial_y + \alpha^2 + \tilde{K} \cdot h\nabla_x \right\|_{L^2(\mathbb{R}^2)} \
\]

for sufficiently small \(h \) and some \(C_\delta \) which goes to zero as \(\delta \) goes to zero. Meanwhile,

\[
(1 + |\tilde{K}|^2) (h\partial_y - T_{F_+}) (h\partial_y - T_{F_-}) w_s
\]

\[
= (1 + |\tilde{K}|^2) (h^2 \partial_y^2 - T_{F_+} + T_{F_-}) w_s.
\]

Since \(F_\pm = A_\pm (|\tilde{K}|, \tilde{K}, \xi) \) on the support of \(\tilde{w}_s \), this can be written as

\[
(1 + |\tilde{K}|^2) (h^2 \partial_y^2 - T_{A_+} + T_{A_-}) w_s
\]

\[
= ((1 + |\tilde{K}|^2) (h^2 \partial_y^2 - 2(h \cdot \tilde{K} \nabla_x) h\partial_y + 1 + h^2 \Delta_x) w_s.
\]

Therefore

\[
\left\| \tilde{\mathcal{L}}_{\varphi, \varepsilon} w_s \right\|_{L^2(\mathbb{R}^2)} \geq \left\| (h\partial_y - T_{F_+}) (h\partial_y - T_{F_-}) w_s \right\|_{L^2(\mathbb{R}^2)} - C_\delta \left\| w_s \right\|_{H^2(\mathbb{R}^2)}.
\]

Now by the boundedness properties,

\[
\left\| (h\partial_y - T_{F_+}) (h\partial_y - T_{F_-}) w_s \right\|_{L^2(\mathbb{R}^2)} \simeq \left\| w_s \right\|_{H^2(\mathbb{R}^2)},
\]

so for small enough \(\delta \),

\[
\left\| \tilde{\mathcal{L}}_{\varphi, \varepsilon} w_s \right\|_{L^2(\mathbb{R}^2)} \gtrsim \left\| w_s \right\|_{H^2(\mathbb{R}^2)}.
\]
Then by the semiclassical trace formula,
\[\| \hat{L}_{\varphi,\varepsilon} w_s \|_{L^2(\mathbb{R}^n_+)} \gtrsim h^{\frac{3}{2}} \| w_s \|_{H^1(\partial \mathbb{R}^n_+)} . \]

Finally, note that
\[\| \hat{L}_{\varphi,\varepsilon} w_s \|_{L^2(\mathbb{R}^n_+)} = \| \hat{L}_{\varphi,\varepsilon} T_\rho w \|_{L^2(\mathbb{R}^n_+)} \]
\[\lesssim \| (1 + |\gamma|^2)^{-1} \hat{L}_{\varphi,\varepsilon} T_\rho w \|_{L^2(\mathbb{R}^n_+)} \]
\[\lesssim \| T_\rho (1 + |\gamma|^2)^{-1} \hat{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}^n_+)} + \| hE_1 w \|_{L^2(\mathbb{R}^n_+)} , \]
where \(hE_1 \) comes from the commutator of \(T_\rho \) and \((1 + |\gamma|^2)^{-1} \hat{L}_{\varphi,\varepsilon} \). By Lemma 5.3 \(E_1 \) is bounded from \(H^1(\mathbb{R}^n_+) \) to \(L^2(\mathbb{R}^n_+) \), so
\[\| \hat{L}_{\varphi,\varepsilon} w_s \|_{L^2(\mathbb{R}^n_+)} \lesssim \| \hat{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}^n_+)} + \| w \|_{H^1(\mathbb{R}^n_+)} , \]
Therefore
\[\| \hat{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}^n_+)} + \| w \|_{H^1(\mathbb{R}^n_+)} \gtrsim h^{\frac{3}{2}} \| w_s \|_{H^1(\partial \mathbb{R}^n_+)} \]
as desired.

Now we have to deal with the large frequency term.

Proposition 5.7. Suppose \(w \) is the extension by zero to \(\mathbb{R}^n_+ \) of a function in \(C^\infty(\tilde{M}) \) which is \(0 \) in a neighbourhood of \(\tilde{\Gamma}_+ \), and let \(w_\ell \) be defined as above. Then if \(\delta \) is small enough,
\[h^{\frac{3}{2}} \| w_\ell \|_{H^1(\partial \mathbb{R}^n_+)} \lesssim \| \hat{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}^n_+)} + \| w \|_{H^1(\mathbb{R}^n_+)} + h^{\frac{3}{2}} \| w \|_{L^2(\partial \mathbb{R}^n_+)} . \]

Proof. Suppose \(V \in \mathbb{R}^n \). Recall that we defined
\[A_\pm(a, V, \xi) = \frac{1 + iV \cdot \xi \pm \sqrt{(1 + iV \cdot \xi)^2 - (1 + |a|^2)(1 - |\xi|^2)}}{1 + |a|^2} , \]
so \(A_\pm(a, V, \xi) \) are roots of the polynomial
\[(1 + |a|^2)X^2 - 2(1 + iV \cdot \xi)X + (1 - |\xi|^2) . \]
Now let’s define
\[A_\pm^\varepsilon(a, V, \xi) = \frac{\alpha + iV \cdot \xi \pm \sqrt{(\alpha + iV \cdot \xi)^2 - (1 + |a|^2)(\alpha^2 - g_{ij}^0 \xi_i \xi_j)}}{1 + |a|^2} , \]
so \(A_\pm^\varepsilon(V, \xi) \) are the roots of the polynomial
\[(1 + |a|^2)X^2 - 2(\alpha + iV \cdot \xi)X + (\alpha^2 - g_{ij}^0 \xi_i \xi_j) . \]
(Recall that \(\alpha \) is defined by \(\alpha = 1 + \frac{\varepsilon}{2} (x_1 + f(x')) \). Again we’ll use the branch of the square root with non-negative real part.

Now set \(\zeta \in C^\infty_c(\mathbb{R}^{n-1}) \) to be a smooth cutoff function such that \(\zeta = 1 \) if
\[|\tilde{K} \cdot \xi| < \frac{1}{2} m_1 \text{ and } |\xi| < \frac{1}{2} \sqrt{1 + |\tilde{K}|^2} + \frac{1}{2} \mu_1 , \]
and \(\zeta = 0 \) if \(|\tilde{K} \cdot \xi| \geq m_1 \) or \(|\xi| \geq \mu_1 \).

Now define
\[G_\pm(a, V, \xi) = (1 - \zeta)A_\pm(a, V, \xi) + \zeta . \]
and
\[G^*_\pm(a, V, \xi) = (1 - \zeta)A^*_\pm(a, V, \xi) + \zeta. \]

Consider the singular support of \(A^*_\pm(\gamma, \beta, \xi) \). These are smooth as functions of \(x \) and \(\xi \) except when the argument of the square root falls on the non-positive real axis. This occurs when \(\beta \cdot \xi = 0 \) and
\[g_{ij}^{\xi} \xi_j \leq \frac{\alpha^2 |\gamma|^2}{1 + |\gamma|^2}. \]

Now for \(\delta \) sufficiently small, depending on \(\tilde{K} \), this does not occur on the support of \(1 - \zeta \). Therefore
\[G^*_\pm(\gamma, \beta, \xi) = (1 - \zeta)A^*_\pm(\gamma, \beta, \xi) + \zeta \]
are smooth, and one can check that they are symbols of first order on \(\mathbb{R}^n \).

Then by properties of pseudodifferential operators,
\[(1 + |\gamma|^2) (h \partial_y - T_{G^*_\pm(\gamma, \beta, \xi)}(h \partial_y - T_{G^*_\mp(\gamma, \beta, \xi)}) \]
\[= (1 + |\gamma|^2) (h^2 \partial_y^2 - T_{G^*_\pm(\gamma, \beta, \xi)} + T_{G^*_\mp(\gamma, \beta, \xi)} G^*_\pm(\gamma, \beta, \xi)) + hE_1, \]
where \(E_1 \) is bounded from \(H^1(\mathbb{R}^n_{+1}) \) to \(L^2(\mathbb{R}^n_{+1}) \). This last line can be written out as
\[(1 + |\gamma|^2) h^2 \partial_y^2 - 2(\alpha + \beta \cdot h \nabla_{\xi} h \partial_y T_{1 - \zeta} T_{1 + \zeta} + (\alpha + h^2 \mathcal{L}) T_{1 - \zeta}^2 + hE_1 + 2h \partial_y T_{1 - \zeta}, \]
by modifying \(E_1 \) as necessary. Now \(T_{\zeta} w_\ell = 0 \), so
\[(1 + |\gamma|^2) (h \partial_y - T_{G^*_\pm(\gamma, \beta, \xi)}(h \partial_y - T_{G^*_\mp(\gamma, \beta, \xi)}) w_\ell \]
\[= \hat{L}_{\varphi, \epsilon} w_\ell - hE_1 w_\ell. \]

Therefore
\[\| \hat{L}_{\varphi, \epsilon} w_\ell \|_{L^2(\mathbb{R}^n_{+1})} \gtrsim \| (h \partial_y - T_{G^*_\pm(\gamma, \beta, \xi)}(h \partial_y - T_{G^*_\mp(\gamma, \beta, \xi)}) w_\ell \|_{L^2(\mathbb{R}^n_{+1})} - h \| w_\ell \|_{H^1(\mathbb{R}^n_{+1})}. \]

Now
\[G^*_\pm(\gamma, \beta, \xi) = G_+(|\tilde{K}|, \tilde{K}, \xi) + (G^*_\pm(\gamma, \beta, \xi) - G_+(|\tilde{K}|, \tilde{K}, \xi)), \]
and
\[T_{G^*_\pm(\gamma, \beta, \xi)} - G_+(|\tilde{K}|, \tilde{K}, \xi) \]
involves multiplication by functions bounded by \(O(\delta) \), so
\[\| T_{G^*_\pm(\gamma, \beta, \xi)} - G_+(|\tilde{K}|, \tilde{K}, \xi) \|_{L^2(\mathbb{R}^n_{+1})} \lesssim \| \| v \|_{H^1(\mathbb{R}^n_{+1})}. \]

Therefore
\[\| \hat{L}_{\varphi, \epsilon} w_\ell \|_{L^2(\mathbb{R}^n_{+1})} \gtrsim \| (h \partial_y - T_{G_+(|\tilde{K}|, \tilde{K}, \xi)}(h \partial_y - T_{G^*_\mp(\gamma, \beta, \xi)}) w_\ell \|_{L^2(\mathbb{R}^n_{+1})} - h \| w_\ell \|_{H^1(\mathbb{R}^n_{+1})} - \delta \| (h \partial_y - T_{G^*_\pm(\gamma, \beta, \xi)}) w_\ell \|_{H^1(\mathbb{R}^n_{+1})}. \]

Now we can check that \(G_+(|\tilde{K}|, \tilde{K}, \xi) \) satisfies the necessary properties of \(F \) from Section 5, so
\[\| \hat{L}_{\varphi, \epsilon} w_\ell \|_{L^2(\mathbb{R}^n_{+1})} \gtrsim \| (h \partial_y - T_{G^*_\pm(\gamma, \beta, \xi)}) w_\ell \|_{H^1(\mathbb{R}^n_{+1})} - h \| w_\ell \|_{H^1(\mathbb{R}^n_{+1})} - \delta \| (h \partial_y - T_{G^*_\pm(\gamma, \beta, \xi)}) w_\ell \|_{H^1(\mathbb{R}^n_{+1})}. \]
Then for small enough δ,
\[
\| \tilde{L}_{\varphi,\varepsilon} w_t \|_{L^2(\mathbb{R}_+^{n+1})} \gtrsim \left\| (h \partial_y - T_{G_{\varphi,\varepsilon}^L}(y,\beta,\xi)) w_t \|_{H^1(\mathbb{R}_+^{n+1})} - h \| w_t \|_{H^1(\mathbb{R}_+^{n+1})} \right\|
\gtrsim h^{\frac{1}{2}} \left\| (h \partial_y - T_{G_{\varphi,\varepsilon}^L}(y,\beta,\xi)) w_t \|_{L^2(\mathbb{R}_+^n)} - h \| w_t \|_{H^1(\mathbb{R}_+^{n+1})} \right\|.
\]
Now by (5.3),
\[
h \partial_y w = \frac{w + \beta \cdot h \nabla w + h \sigma w}{1 + |\gamma|^2}
\]
on $\partial \mathbb{R}_+^n$, so
\[
h \partial_y w_t = \frac{w_t + \beta \cdot h \nabla w_t + h E_0 w}{1 + |\gamma|^2} + h E_0 w
\]
on $\partial \mathbb{R}_+^n$, where E_0 is bounded from $L^2(\mathbb{R}_+^{n-1})$ to $L^2(\mathbb{R}_+^{n-1})$. Therefore
\[
\| \tilde{L}_{\varphi,\varepsilon} w_t \|_{L^2(\mathbb{R}_+^n)} \gtrsim h^{\frac{1}{2}} \left\| \frac{w_t + \beta \cdot h \nabla w_t}{1 + |\gamma|^2} - T_{G_{\varphi,\varepsilon}^L}(y,\beta,\xi) w_t \|_{L^2(\partial \mathbb{R}_+^n)} - h \| w_t \|_{H^1(\mathbb{R}_+^n)} - \frac{1}{2} \| w \|_{L^2(\partial \mathbb{R}_+^n)} \right\| \gtrsim h^{\frac{1}{2}} \| w \|_{H^1(\partial \mathbb{R}_+^n)} - h \| w_t \|_{H^1(\mathbb{R}_+^n)} - \frac{1}{2} \| w \|_{L^2(\partial \mathbb{R}_+^n)}.
\]
Now
\[
\| w_t \|_{H^1(\mathbb{R}_+^n)} \lesssim \| w \|_{H^1(\mathbb{R}_+^n)}
\]
and
\[
\| \tilde{L}_{\varphi,\varepsilon} w_t \|_{L^2(\mathbb{R}_+^n)} \lesssim \| \tilde{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}_+^n)} + h \| w \|_{H^1(\mathbb{R}_+^n)}.
\]
Therefore
\[
\| \tilde{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}_+^n)} + h \| w \|_{H^1(\mathbb{R}_+^n)} + h^{\frac{1}{2}} \| w \|_{L^2(\partial \mathbb{R}_+^n)} \gtrsim h^{\frac{1}{2}} \| w \|_{H^1(\partial \mathbb{R}_+^n)}
\]
as desired.

Now combining the results of Propositions [5.6] and [5.7] gives
\[
h^{\frac{1}{2}} \| w \|_{H^1(\mathbb{R}_+^n)} + h^{\frac{1}{2}} \| w \|_{H^1(\partial \mathbb{R}_+^n)} \lesssim \| \tilde{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}_+^n)} + h \| w \|_{H^1(\mathbb{R}_+^{n+1})} + h^{\frac{1}{2}} \| w \|_{L^2(\partial \mathbb{R}_+^n)}.
\]
Since $w = w_s + w_t$, we get
\[
h^{\frac{1}{2}} \| w \|_{H^1(\mathbb{R}_+^n)} \lesssim \| \tilde{L}_{\varphi,\varepsilon} w \|_{L^2(\mathbb{R}_+^n)} + h \| w \|_{H^1(\mathbb{R}_+^{n+1})} + h^{\frac{1}{2}} \| w \|_{L^2(\partial \mathbb{R}_+^n)}.
\]
for $w \in C^\infty(\hat{M})$ such that $w = 0$ in a neighbourhood of Γ_+, and w satisfies (5.4). A density argument now proves Proposition [5.3] and hence Proposition [5.1] at least under the assumptions on g_0 and f made at the beginning of this section.

5.3. Finishing the proof. Now we need to remove the graph conditions on Γ_+, and the conditions on the metric g_0. Since Γ_+ is a neighbourhood of ∂M_+, in a small enough neighbourhood U around any point p on Γ_+, Γ_+ coincides locally with a subset of a graph of the form $x_1 = f(x')$, with $M \cap U$ lying in the set $x_1 > f(x')$. Moreover, for any $\delta > 0$, if $\nabla g_0 f(p) = K$, then in some small neighbourhood of p, $|\nabla g_0 f - K|_{g_0} < \delta$. Additionally, since we can choose coordinates at p such that $g_0 = I$ in those coordinates, for any $\delta > 0$ we can ensure that there are coordinates such that $|g_0 - I| \leq \delta$ in a small neighbourhood of p. We can choose δ to be small enough for Proposition [5.1] to hold, by the proof in the previous subsection.

Now we can let U_j be open sets in \mathbb{R}^n such that $\{U_1, \ldots, U_m\}$ is a finite open cover of Γ_+ such that each $M \cap U_j$ has smooth boundary, and each $\Gamma_+ \cap U_j$ is represented as a graph of the form
\[x_1 = f_j(x'), \] with \(|\nabla g_0 f_j - K_j g_0| < \delta_j, \] and there is a choice of coordinates on the projection of \(M \cap U_j \) in which \(|g_0 - 1| \leq \delta_j, \) where \(\delta_j \) are small enough for

\[
h^\frac{1}{2} \| h \nabla v_j \| _{L^2(\Gamma_+ \cap U_j)} \lesssim \| \mathcal{L}_\varphi,\varepsilon v_j \| _{L^2(M \cap U_j)} + h \| v_j \| _{H^1(M \cap U_j)} + h^\frac{1}{2} \| v_j \| _{L^2(\Gamma_+ \cap U_j)},
\]

to hold for all \(v_j \in H^2(M \cap U_j) \) such that

\[
v_j, \partial_\nu v_j = 0 \text{ on } \partial(U_j \cap M) \setminus \Gamma_+
\]

\[
h^\frac{1}{2} \partial_\nu (e^{-\frac{\sqrt{t}}{M}} v_j) = h \sigma e^{-\frac{\sqrt{t}}{M}} v_j \text{ on } \Gamma_+ \cap U_j.
\]

Now let \(\chi_1, \ldots, \chi_m \) be a partition of unity subordinate to \(U_1, \ldots, U_m, \) and for \(w \in H^2(M) \) satisfying (5.4), define \(w_j = \chi_j w. \) Then if \(\Gamma_+ \cap U_j \neq \emptyset, \) \(w_j \) satisfies (5.6) for some \(\sigma, \) and so

\[
h^\frac{1}{2} \| h \nabla w_j \| _{L^2(\Gamma_+ \cap U_j)} \lesssim \| \mathcal{L}_\varphi,\varepsilon w_j \| _{L^2(M \cap U_j)} + h \| w_j \| _{H^1(M \cap U_j)} + h^\frac{1}{2} \| w_j \| _{L^2(\Gamma_+ \cap U_j)}.
\]

Adding together these estimates gives

\[
h^\frac{1}{2} \| h \nabla w \| _{L^2(\Gamma_+)} \lesssim \sum_{j=1}^m \| \mathcal{L}_\varphi,\varepsilon w_j \| _{L^2(M)} + h \| w \| _{H^1(M)} + h^\frac{1}{2} \| w \| _{L^2(\Gamma_+)}.
\]

Now each \(\| \mathcal{L}_\varphi,\varepsilon w_j \| _{L^2(M)} = \| \mathcal{L}_\varphi,\varepsilon \chi_j w \| _{L^2(M)} \) is bounded by a constant times \(\| \mathcal{L}_\varphi,\varepsilon w \| _{L^2(M)} + h \| w \| _{H^1(M)}, \) so

\[h^\frac{1}{2} \| h \nabla w \| _{L^2(\Gamma_+)} \lesssim \| \mathcal{L}_\varphi,\varepsilon w \| _{L^2(M)} + h \| w \| _{H^1(M)} + h^\frac{1}{2} \| w \| _{L^2(\Gamma_+)}.
\]

This finishes the proof of Proposition 5.1.

6. The k-form case

We will prove Theorem 2.3 for \(u \in \Omega^k(M) \) by induction. If \(k = 0, \) then \(i_N u = 0, \) so \(u_\perp = 0 \) and \(u = u_\parallel. \) Then Theorem 2.3 for \(k = 0 \) becomes the Carleman estimate (5.1) that was established in Section 5.

Note that it suffices to prove Theorem 2.3 for \(u \in \Omega^k(M), \) with the appropriate boundary conditions, for each \(k, \) and \(Q = 0. \) Then the final theorem follows by adding the resulting estimates and noting that the extra \(h^2 |Q u| \) term on the right can be absorbed into the terms on the left, for sufficiently small \(h. \)

6.1. Proof of Theorem 2.3 for \(k \geq 1. \) Suppose \(u \in \Omega^k(M) \) with \(k \geq 1. \) First note that if we impose the boundary conditions (2.2) of Theorem 2.3 by substituting the result of Proposition 4.2 into (4.3) gives

\[
\| \Delta_\varphi u \|^2 = \| A u \|^2 + \| B u \|^2 + (i[A, B] u u) - 2h^3 (\partial_\nu \varphi \nabla_N u \perp | \nabla_N u \perp)_{\Gamma_+} - h (\partial_\nu \varphi (|d \varphi |^2 + |\partial_\nu \varphi |^2) u_\parallel | u_\parallel)_{\Gamma_+} + R
\]

where

\[
|R| \leq C \left(\frac{K h^3}{2} \| \nabla^t u_\parallel \| _{L^2(\Gamma_+)}^2 + \frac{h}{R} \| u_\parallel \| _{L^2(\Gamma_+)}^2 + \frac{h^3}{R} \| \nabla_N u_\perp \| _{L^2(\Gamma_+)}^2 \right).
\]

Recall also from Proposition 4.2 that the non-boundary terms \(\| A u \|^2 + \| B u \|^2 + (i[A, B] u u) \) satisfy

\[
\| A u \|^2 + \| B u \|^2 + (i[A, B] u u) \gtrsim \frac{h^2}{\epsilon} \| u \|^2 _{H^1(M)} - \frac{h^3}{\epsilon} (\| u \|^2 _{H^1(\partial M)} + \| u \|^2 _{L^2(\partial M)}).
\]
for $h \ll \varepsilon \ll 1$. We now return to \eqref{eq:6.1} and examine the boundary terms. On Γ^c_ε, there exists $\varepsilon_1 > 0$ such that $\partial_\nu \varphi < -\varepsilon_1$. Using this together with \eqref{eq:6.1} and \eqref{eq:6.2} gives

$$\| \Delta_{\varphi, u} u \|^2 + Kh^3 \| \nabla' t u \| \| \nabla_\nu u \| + \frac{h}{K} \| u \|^2_{H^1(M)} + \frac{h^3}{K} \| \nabla N u \| \| \nabla_\nu u \| \| \nabla_\nu u \|$$

$$\geq \frac{h^2}{\varepsilon} \| u \|^2_{H^1(M)} + h^3 \| \nabla N u \| \| \nabla_\nu u \| + h \| u \| \| \nabla_\nu u \| ,$$

for large enough K. The last two terms on the left side can be absorbed into the right side, giving

$$\| \Delta_{\varphi, u} u \|^2 + Kh^3 \| \nabla' t u \| \| \nabla_\nu u \| \| \nabla_\nu u \| \geq \frac{h^2}{\varepsilon} \| u \|^2_{H^1(M)} + h^3 \| \nabla N u \| \| \nabla_\nu u \| + h \| u \| \| \nabla_\nu u \| .$$

Now we want to analyze the boundary term on the left, and this is the part where we will use induction on k:

Lemma 6.1. If $u \in \Omega^k(M)$ and u satisfies the boundary conditions \eqref{eq:2.2}, then

\begin{equation}
(6.3)
\| \Delta_{\varphi, u} u \|^2 \lesssim \| \Delta_{\varphi, u} u \|^2 + h^2 \| u \|^2_{H^1(M)} + h^3 \| u \| \| \nabla N u \| \| \nabla_\nu u \|.
\end{equation}

If \eqref{eq:6.3} is granted, fix K sufficiently large and then take $h \ll \varepsilon \ll 1$ to obtain that

$$\| \Delta_{\varphi, u} u \|^2 \gtrsim \frac{h^2}{\varepsilon} \| u \|^2_{H^1(M)} + h^3 \| \nabla N u \| \| \nabla_\nu u \| + h \| u \| \| \nabla_\nu u \| .$$

Rewriting without the squares,

$$\| \Delta_{\varphi, u} u \| \gtrsim \frac{h^2}{\varepsilon} \| u \|_{H^1(M)} + h^2 \| \nabla N u \|_{H^1(M)} + h \| u \|_{H^1(M)} .$$

Now if u satisfies \eqref{eq:2.2} then so does $e^\frac{2}{\varepsilon} u$ since ε is fixed. Therefore

$$\| e^\frac{2}{\varepsilon} \Delta_{\varphi, u} u \| \gtrsim \frac{h^2}{\varepsilon} \| e^\frac{2}{\varepsilon} u \|_{H^1(M)} + h^2 \| h \nabla N e^\frac{2}{\varepsilon} u \|_{H^1(M)} + h \| e^\frac{2}{\varepsilon} u \|_{H^1(M)} .$$

Since $e^\frac{2}{\varepsilon}$ is smooth and bounded on M, we get

$$\| \Delta_{\varphi, u} u \| \gtrsim h \| u \|_{H^1(M)} + h^2 \| h \nabla N u \|_{H^1(M)} + h \| u \|_{H^1(M)} .$$

Thus Theorem \ref{thm:2.5} for $k \geq 1$ will follow after we have proved Lemma 6.1.

Proof of Lemma 6.1. For the 0-form case, this follows from Theorem \ref{thm:2.6} for 0-forms, which in this section we are assuming has been proved. Therefore we can seek to prove \eqref{eq:6.3} for k-forms by induction on k.

Let $k > 0$, and assume that \eqref{eq:6.3} holds for $k - 1$ forms satisfying \eqref{eq:2.2}. Now let $U_1, \ldots, U_m \subset T$ be an open cover of Γ^c_ε such that each $U_i \cap \Gamma^c_\varepsilon$ has a coordinate patch, and let χ_1, \ldots, χ_m be a partition of unity with respect to $\{U_i\}$ such that $\sum \chi_i = 1$ near Γ^c_ε and $\nabla N \chi_i = 0$ for each i. It will suffice to show that

$$h^3 \| \nabla' t \chi_i u \| \| \nabla_\nu u \| \| \nabla_\nu u \| \lesssim \| \Delta_{\varphi, u} u \|^2 + h^2 \| u \|^2_{H^1(M)} + h^2 \| u \| \| \nabla_\nu u \| \| \nabla_\nu u \| .$$

Now on $U_i \cap \Gamma^c_\varepsilon$, let $\{e_1, \ldots, e_{n-1}\}$ be an orthonormal frame for the tangent space, and extend these vector fields into M by parallel transport along normal geodesics.

Observe for all $\omega \in \Omega^k(M)$ one can write

\begin{equation}
(6.4)
\omega = \frac{1}{k} \sum_{j=1}^{n-1} e_j^k \wedge i_{e_j} \omega .
\end{equation}
Therefore we can write

\[\nabla' t \chi_i u \| = \frac{1}{k} \nabla' \sum_{j=1}^{n-1} e_j^i \wedge i e_j t \chi_i u \| \]

\[= \frac{1}{k} \nabla' \sum_{j=1}^{n-1} e_j^i \wedge t i e_j \chi_i u \| . \]

Then it suffices to show that

\[h^3 \| \nabla'(e_j^i \wedge t i e_j \chi_i u \|) \|^2_\ast \lesssim \| \Delta \varphi, u \|^2 + h^2 \| u \|_{H^1(M)}^2 + h^2 \| u \|_\Gamma^2 \]

or equivalently, that

\begin{equation}
\tag{6.5}
\| \nabla' t i e_j \chi_i u \| \|^2_\ast \lesssim \| \Delta \varphi, u \|^2 + h^2 \| u \|_{H^1(M)}^2 + h^2 \| u \|_\Gamma^2 .
\end{equation}

Now we want to apply the induction hypothesis to \(i e_j \chi_i u \| \), so we have to check that it satisfies the boundary conditions \(\tag{2.2} \). In fact we will have to modify \(i e_j \chi_i u \| \) slightly to achieve this. Let \(\rho(x) \) be a function defined in a neighbourhood of the boundary as the distance to the boundary along a normal geodesic, and extend it to the rest of \(M \) by multiplication by a cutoff function. Then the claim is that \(v = i e_j \chi_i (u \| + h(1 - e^{\frac{\rho}{2}}) Zu \|) \) satisfies the absolute boundary conditions \(\tag{2.2} \), where \(Z \) is an endomorphism yet to be chosen.

Since \(u \) satisfies \(\tag{2.2} \), \(i e_j \chi_i u \| \) and \(i e_j \chi_i (h(1 - e^{\frac{\rho}{2}}) Zu \|) \) both vanish to first order on \(\Gamma_+ \). Therefore \(v \) does as well.

Moreover, \(t * i e_j \chi_i u \| = 0 \) on \(\Gamma_+ \) if \(i N i e_j \chi_i u \| = -\chi_i i e_j i N u \| = 0 \) on \(\Gamma_+ \), and this again follows from the fact that \(u \) satisfies \(\tag{2.2} \). Note that \((1 - e^{\frac{\rho}{2}}) = 0 \) at \(\partial M \), so \(t * v = 0 \) on \(\Gamma_+ \).

Finally, by Lemma \(\tag{3.3} \)

\[-\delta t * i e_j \chi_i u \| = -\delta t (\ast i e_j \chi_i u \|) + (S - (n - 1)\kappa) tiN (\ast i e_j \chi_i u \|) + t \nabla N i N * i e_j \chi_i u \| . \]

Since \(t * i e_j \chi_i u \| = 0 \) on \(\Gamma_+ \), the first term vanishes there as well. Therefore on \(\Gamma_+ \),

\[-\delta t * i e_j \chi_i u \| = h(S - (n - 1)\kappa) tiN (\ast i e_j \chi_i u \|) + t \nabla N i N i N * i e_j \chi_i u \| . \]

Now

\[th \nabla N i N * i e_j \chi_i u \| = th \nabla N i N e_j^i \wedge (u \| (-1)^{k-1} \]

\[= th \nabla N i N e_j^i \wedge (u \| (-1)^{k-1} \]

\[= th \nabla N i N e_j^i \wedge (u \| (-1)^{k-1} \]

\[= (-1)^k \chi_i e_j^i \wedge th \nabla N i N * u , \]

so

\[\tag{6.6} -\delta t * i e_j \chi_i u \| = h(S - (n - 1)\kappa) tiN (\ast i e_j \chi_i u \|) + (-1)^k \chi_i e_j^i \wedge th \nabla N i N * u . \]

Applying the same calculation to the \(i e_j \chi_i h(1 - e^{\frac{\rho}{2}}) Zu \| \) term gives

\[-\delta t * i e_j i e_j \chi_i h(1 - e^{\frac{\rho}{2}}) Zu \| = (-1)^k \chi_i e_j^i \wedge th^2 \nabla N (1 - e^{\frac{\rho}{2}}) i N * Zu \| ; \]

the other term vanishes since \((1 - e^{\frac{\rho}{2}}) = 0 \) at the boundary. Thus

\[-\delta t * i e_j i e_j \chi_i h(1 - e^{\frac{\rho}{2}}) Zu \| = (-1)^k \chi_i e_j^i \wedge tiN h Zu \| . \]

Meanwhile, by Lemma \(\tag{3.3} \) and by \(\tag{2.2} \),

\[-\delta t * u = h(S - (n - 1)\kappa) tiN (u \|) + th \nabla N i N (u \|) = ti d \varphi * u - h \sigma tiN * u. \]
Viewing this as an equation for $th \nabla X_i u(\ast u)$ and substituting into (6.6) gives

$$-th \delta \ast i_{e_j} \chi_i u_{\ast} = h(S - (n - 1)\kappa)ti_N(*i_{e_j} \chi_i u_{\ast})_{\perp}$$

$$+ (-1)^k \chi_i e_j^\flat \wedge (-h(S - (n - 1)\kappa)ti_N(*u)_{\perp} + ti_{d\varphi} * u - h\sigma ti_N * u).$$

Therefore

$$-th \delta \ast i_{e_j} \chi_i u_{\ast} + h(1 - e^\kappa)Zu_{\ast} = h(S - (n - 1)\kappa)ti_N(*i_{e_j} \chi_i u_{\ast})_{\perp}$$

$$+ (-1)^k \chi_i e_j^\flat \wedge (-h(S - (n - 1)\kappa)ti_N(*u)_{\perp} + ti_{d\varphi} * u - h\sigma ti_N * u + ti_N * hZu_{\ast}) .$$

Now if we let

$$Z = *N \wedge (S + \sigma - (n - 1)\kappa)i_{N\ast},$$

where here we identify S and σ with their extensions by parallel transport to a neighbourhood of the boundary, then

$$ti_N * Zu_{\ast} = (S + \sigma - (n - 1)\kappa)ti_N * u_{\ast} = (S + \sigma - (n - 1)\kappa)ti_N * u,$$

and

$$-th \delta \ast i_{e_j} \chi_i (u_{\ast}) + h(1 - e^\kappa)Zu_{\ast}) = h(S - (n - 1)\kappa)ti_N(*i_{e_j} \chi_i u_{\ast})_{\perp} + (-1)^k \chi_i e_j^\flat \wedge ti_{d\varphi} * u .$$

Since $t * u = 0$ on Γ^c, we can replace the $d\varphi$ in $ti_{d\varphi} * u$ with its normal component:

$$ti_{d\varphi} * u = -\partial_{\nu} \varphi ti_N * u .$$

Then

$$\chi_i e_j^\flat \wedge -ti_{d\varphi} * u = \partial_{\nu} \varphi \chi_i e_j^\flat \wedge ti_N(*u)_{\perp}$$

$$= \partial_{\nu} \varphi \chi_i e_j^\flat \wedge ti_N * u_{\ast}$$

$$= -\partial_{\nu} \varphi ti_N \chi_i e_j^\flat \wedge *u_{\ast}$$

$$= \partial_{\nu} \varphi ti_N * i_{e_j} \chi_i u_{\ast}(-1)^k .$$

Since $t * i_{e_j} \chi_i u_{\ast} = 0$ on Γ^c,

$$\chi_i e_j^\flat \wedge -ti_{d\varphi} * u = -ti_{d\varphi} * i_{e_j} \chi_i u_{\ast}(-1)^k ,$$

and

$$(-1)^k \chi_i e_j^\flat \wedge -ti_{d\varphi} * u = -ti_{d\varphi} * i_{e_j} \chi_i u_{\ast} .$$

Therefore

$$-th \delta \ast i_{e_j} \chi_i (u_{\ast}) + h(1 - e^\kappa)Zu_{\ast}) = ti_{d\varphi} * i_{e_j} \chi_i u_{\ast} - h\sigma ti_N * i_{e_j} \chi_i u_{\ast}$$

where σ' is a smooth bounded endomorphism. We can replace u_{\ast} on the right side by $u_{\ast} + h(1 - e^\kappa)Zu_{\ast}$, since $(1 - e^\kappa)$ is zero at the boundary. Therefore $v = i_{e_j} \chi_i (u_{\ast} + h(1 - e^\kappa)Zu_{\ast})$ satisfies the boundary conditions (2.2), and so by the induction hypothesis,

$$h^3 \|
abla^tv\|^2_{H^2} \lesssim \|
abla \varphi, v\|^2 + h^2 \|v\|^2_{H^1(M)} + h^2 \|v\|^2_{L^2} .$$

Keeping in mind that the second term of v is zero at the boundary, and $O(h)$ elsewhere, we get

$$h^3 \|
abla ti_{e_j} \chi_i u_{\ast}\|^2_{L^2} \lesssim \|
abla \varphi, v\|^2 + h^2 \|u_{\ast}\|^2_{H^1(M)} + h^2 \|u_{\ast}\|^2_{L^2} .$$

Now

$$\|
abla \varphi, v\| \lesssim \|
abla \varphi, i_{e_j} \chi_i u_{\ast}\| + h\|
abla \varphi, i_{e_j} \chi_i (1 - e^\kappa)Zu_{\ast}\|. $$
The commutators of $\Delta \varphi_c$ with $i_x \chi_i$ and $i_x \chi_i (1 - e^{\mathcal{F}}) Z$ are $O(h)$ and first order, so
\[
\|\Delta \varphi_c v\| \lesssim \|i_x \chi_i \Delta \varphi_c u\| + h \|i_x \chi_i (1 - e^{\mathcal{F}}) Z \Delta \varphi_c u\| + h \|u\| H^1(M) \\
\lesssim \|\Delta \varphi_c u\| + h \|u\| H^1(M).
\]

Substituting back into (6.7) gives
\[
h^3 \|\nabla' i_x \chi_i u\|_{\Gamma_+^c}^2 \lesssim \|\Delta \varphi_c u\|_{\Gamma_+^c}^2 + h^2 \|u\|_{H^2(M)}^2 + h^2 \|u\|_{L^2(M)}^2.
\]

This proves (6.5), which finishes the proof of the lemma.

\section{Complex geometrical optics solutions}

We will begin by constructing CGOs for the relative boundary case. To start, we can use the Carleman estimate from Theorem 2.4 to generate solutions via a Hahn-Banach argument. The notations are as in Section 2.

\begin{proposition}
Let Q be an L^∞ endomorphism on ΛM, and let Γ_+^c be a neighbourhood of ∂M_+. For all $v \in L^2(M, \Lambda M)$, and $f, g \in L^2(M, \Lambda \partial M)$ with support in Γ_+^c, there exists $u \in L^2(M, \Lambda M)$ such that
\[
(-\Delta \varphi + h^2 Q^*) u = v \text{ on } M \\
t u = f \text{ on } \Gamma_+^c \\
\text{th} \delta \varphi u = g \text{ on } \Gamma_+^c,
\]
with
\[
\|u\|_{L^2(M)} \lesssim h^{-1} \|v\|_{L^2(M)} + h^{1/2} \|f\|_{L^2(\Gamma_+^c)} + h^{1/2} \|g\|_{L^2(\Gamma_+^c)}.
\]
\end{proposition}

\begin{proof}
Suppose $w \in \Omega(M)$ satisfies the relative boundary conditions (2.1) with $\sigma = 0$, and examine the expression
\[
|\langle w|v \rangle - (ti_x \varphi d_x w|hf)_t \rangle_{\Gamma_+^c} - (ti_x \varphi wh)g_{\Gamma_+^c} |.
\]
This is bounded above by
\[
h \|w\|_{L^2(M)} h^{-1} \|v\|_{L^2(M)} + h^{1/2} \|ti_x \varphi d_x w|hf\|_{L^2(\Gamma_+^c)} + h^{1/2} \|ti_x \varphi wh\|_{L^2(\Gamma_+^c)} + h^{1/2} \|g\|_{L^2(\Gamma_+^c)}.
\]
By Lemma 3.3
\[
ti_x \varphi d_x w = h e^{\mathcal{F}} tN(e^{-\mathcal{F}} w) + h Stw - \frac{he^{\mathcal{F}} d'tN(e^{-\mathcal{F}} w)}{\mathcal{F}}.
\]
Since $tw = 0$,
\[
ti_x \varphi d_x w = htNw - e^{\mathcal{F}} d'tN(e^{-\mathcal{F}} w).
\]
Therefore
\[
\|ti_x \varphi d_x w\|_{L^2(\Gamma_+^c)} \leq \|hNw\|_{L^2(\Gamma_+^c)} + \|w\|_{H^1(\Gamma_+^c)}.
\]
Then by Theorem 2.4
\[
|\langle w|v \rangle + (ti_x \varphi d_x w|hf)_{\Gamma_+^c} + (ti_x \varphi wh)g_{\Gamma_+^c} |
\]
\[
\lesssim \|(-\Delta \varphi + h^2 Q) w\|_{L^2(M)} \left(h^{-1} \|v\|_{L^2(M)} + h^{1/2} \|f\|_{L^2(\Gamma_+^c)} + h^{1/2} \|g\|_{L^2(\Gamma_+^c)} \right).
\]

Therefore on the subspace
\[
\{(-\Delta \varphi + h^2 Q) w|w \in \Omega(M) \text{ satisfies } (2.1) \text{ with } \sigma = 0 \} \subset L^2(M, \Lambda M),
\]
the map

\[(-\Delta \varphi + h^2 Q) w \mapsto (w|v) - (ti_\nu h d \varphi w | hf)_{\Gamma_+^c} - (ti_\nu w | hg)_{\Gamma_+^c} \]
defines a bounded linear functional with the bound

\[h^{-1} \|v\|_{L^2(\mathcal{M})} + h^{\frac{3}{2}} \|f\|_{L^2(\Gamma_+^c)} + h^{\frac{3}{2}} \|g\|_{L^2(\Gamma_+^c)}. \]

By Hahn-Banach, this functional extends to the whole space, and thus there exists a \(u \in L^2(\mathcal{M}, \Lambda \mathcal{M}) \) such that

\[\|u\|_{L^2(\mathcal{M})} \lesssim h^{-1} \|v\|_{L^2(\mathcal{M})} + h^{\frac{3}{2}} \|f\|_{L^2(\Gamma_+^c)} + h^{\frac{3}{2}} \|g\|_{L^2(\Gamma_+^c)} \]

and

\[(w|v) - (ti_\nu h d \varphi w | hf)_{\Gamma_+^c} - (ti_\nu w | hg)_{\Gamma_+^c} = ((-\Delta \varphi + h^2 Q) w | u). \]

Integrating by parts and applying the boundary conditions (2.1) gives

\[(w|v) - (ti_\nu h d \varphi w | hf)_{\Gamma_+^c} - (ti_\nu w | hg)_{\Gamma_+^c} = (w|(-\Delta \varphi + h^2 Q^*) u) - h(t_\nu h d \varphi w | tu)_{\partial \mathcal{M}} - h(t_\nu w | t h \delta \varphi u)_{\partial \mathcal{M}}. \]

Then by choosing the correct \(w \), we can see that

\[(-\Delta \varphi + h^2 Q^*) u = v \text{ on } \mathcal{M} \]

\[tu = f \text{ on } \Gamma_+^c \]

\[t h \delta \varphi u = g \text{ on } \Gamma_+^c, \]

as desired. \(\square \)

To match notations with previous papers, we will begin by rewriting this result, along with the Carleman estimate, in \(\tau \) notation, as follows.

Theorem 2.4 becomes the following.

Theorem 7.2. Let \(Q \) be an \(L^\infty \) endomorphism on \(\Lambda \mathcal{M} \). Define \(\Gamma_+ \subset \partial \mathcal{M} \) to be a neighbourhood of \(\partial \mathcal{M}_+ \). Suppose \(u \in H^2(\mathcal{M}, \Lambda \mathcal{M}) \) satisfies the boundary conditions

\[u|_{\Gamma_+} = 0 \text{ to first order} \]

\[tu|_{\Gamma_+^c} = 0 \]

\[t h \delta e^{-\tau \varphi} u|_{\Gamma_+^c} = \sigma t_i \Lambda e^{-\tau \varphi} u \]

for some smooth endomorphism \(\sigma \) independent of \(\tau \). Then there exists \(\tau_0 > 0 \) such that if \(\tau > \tau_0 \),

\[\|(-\Delta_\tau + Q) u\|_{L^2(\mathcal{M})} \gtrsim \tau \|u\|_{L^2(\mathcal{M})} + \|\nabla u\|_{L^2(\mathcal{M})} + \tau^{\frac{3}{2}} \|u\|_{L^2(\Gamma_+^c)} + \tau^{\frac{3}{2}} \|\nabla^\prime t \iota_i \Lambda u\|_{L^2(\Gamma_+^c)} + \tau^{\frac{3}{2}} \|\nabla N u\|_{L^2(\Gamma_+^c)}, \]

where

\[\Delta_\tau = e^{\tau \varphi} \Delta e^{-\tau \varphi}. \]

By choice of coordinates, note that the same theorem holds for \(\tau < 0 \), with \(\Gamma_+ \) replaced by \(\Gamma_- \).

Then Proposition 2.1 becomes the following.

Proposition 7.3. Let \(Q \) be an \(L^\infty \) endomorphism on \(\Lambda \mathcal{M} \). For all \(v \in L^2(\mathcal{M}, \Lambda \mathcal{M}) \), and \(f, g \in L^2(\Gamma_+^c, \Lambda \mathcal{M}) \), there exists \(u \in L^2(\mathcal{M}, \Lambda \mathcal{M}) \) such that

\[(-\Delta_{-\tau} + Q^*) u = v \text{ on } \mathcal{M} \]

\[tu = f \text{ on } \Gamma_+^c \]

\[t h \delta_{-\tau} u = g \text{ on } \Gamma_+^c, \]
with
\[\|v\|_{L^2(M)} \lesssim \tau^{-1/2}\|u\|_{L^2(M)} + \tau^{-1/2}\|f\|_{L^2(\Gamma^-)} + \tau^{-1/2}\|g\|_{L^2(\Gamma^-)}. \]

Now we turn to the construction of the CGOs themselves. From now on we will invoke the assumption that the conformal factor \(c\) in the definition of \(M\) as an admissible manifold satisfies \(c = 1\). Below we will consider complex valued 1-forms, and \(\langle \cdot, \cdot \rangle\) will denote the complex bilinear extension of the Riemannian inner product to complex valued forms.

We assume that
\[\langle M, g \rangle \subset (\mathbb{R} \times M_0, g), \quad g = e \oplus g_0, \]
where \((M_0, g_0)\) is a compact \((n - 1)\)-dimensional manifold with smooth boundary. We write \(x = (x_1, x')\) for points in \(\mathbb{R} \times M_0\), where \(x_1\) is the Euclidean coordinate and \(x'\) is a point in \(M_0\). Let \(Q\) be an \(L^\infty\) endomorphism of \(\Lambda M\). We next wish to construct solutions to the equation
\[(-\Delta + Q)Z = 0 \text{ in } M \]
where \(Z\) is a graded differential form in \(L^2(M, \Lambda M)\) having the form
\[Z = e^{-sx_1}(A + R). \]
Here \(s = \tau + i\lambda\) is a complex parameter where \(\tau, \lambda \in \mathbb{R}\) and \(|\tau|\) is large, the graded form \(A\) is a smooth amplitude, and \(R\) will be a correction term obtained from the Carleman estimate. Inserting the expression for \(Z\) in the equation results in
\[e^{sx_1}(-\Delta + Q)e^{-sx_1}R = -F \]
where
\[F = e^{sx_1}(-\Delta + Q)e^{-sx_1}A. \]

The point is to choose \(A\) so that \(\|F\|_{L^2(M)} = O(1)\) as \(|\tau| \to \infty\).

By Lemma 3.2, we have
\[F = (-\Delta - s^2 + 2s\nabla_{\partial_1} + Q)A. \]
We wish to choose \(A\) so that \(\nabla_{\partial_1}A = 0\). The following lemma explains this condition. Below, we identify a differential form in \(M_0\) with the corresponding differential form in \(\mathbb{R} \times M_0\) which is constant in \(x_1\).

Lemma 7.4. If \(u\) is a \(k\)-form in \(\mathbb{R} \times M_0\) with local coordinate expression \(u = u_I dx^I\), then
\[\nabla_{\partial_1}u = 0 \iff u_I = u_I(x') \text{ for all } I. \]
If \(\nabla_{\partial_1}u = 0\), then there is a unique decomposition
\[u = dx^1 \wedge u' + u'' \]
where \(u'\) is a \((k - 1)\)-form in \(M_0\) and \(u''\) is a \(k\)-form in \(M_0\). For such a \(k\)-form \(u\), one has
\[\Delta u = dx^1 \wedge \Delta_x u' + \Delta_x u'' \]
where \(\Delta\) and \(\Delta_{x'}\) are the Hodge Laplacians in \(\mathbb{R} \times M_0\) and in \(M_0\), respectively.

The proof of the lemma may be found in the appendix. Returning to the expression for \(F\), the assumption \(\nabla_{\partial_1}A = 0\) gives that
\[F = (-\Delta - s^2 + Q)A. \]
Writing \(Y^k\) for the \(k\)-form part of a graded form \(Y\), and decomposing \(A^k = dx^1 \wedge (A^k)' + (A^k)''\) as in Lemma 7.4, we obtain that
\[F^k = dx^1 \wedge (-\Delta_{x'} - s^2)(A^k)' + (-\Delta_{x'} - s^2)(A^k)'' + (QA)^k. \]
Thus, in order to have \(\|F\|_{L^2(M)} = O(1) \) as \(|\tau| \to \infty \), it is enough to find for each \(k \) a smooth \((k-1)\)-form \((A_k)'\) and a smooth \(k \)-form \((A_k)''\) in \(M_0 \) such that
\[
\begin{align*}
&\|(-\Delta + s^2)(A_k)'\|_{L^2(M_0)} = O(1), \quad \|(A_k)'\|_{L^2(M_0)} = O(1), \\
&\|(-\Delta + s^2)(A_k)''\|_{L^2(M_0)} = O(1), \quad \|(A_k)''\|_{L^2(M_0)} = O(1).
\end{align*}
\]

If \((M_0, g_0)\) is simple, there is a straightforward quasimode construction for achieving this.

Lemma 7.5. Let \((M_0, g_0)\) be a simple \(m \)-dimensional manifold, and let \(0 \leq k \leq m \). Suppose that \((\hat{M}_0, g_0)\) is another simple manifold with \((M_0, g_0) \subset \subset (\hat{M}_0, g_0)\), fix a point \(\omega \in \hat{M}_0 \setminus M_0 \), and let \((r, \theta)\) be polar normal coordinates in \((\hat{M}_0, g_0)\) with center \(\omega \). Suppose that \(\eta^1, \ldots, \eta^m \) is a global orthonormal frame of \(T^*M_0 \) with \(\eta^1 = dr \) and \(\nabla_\theta \eta^j = 0 \) for \(2 \leq j \leq m \), and let \(\{\eta^j\} \) be a corresponding orthonormal frame of \(\Lambda^kM_0 \). Then for any \(\lambda \in \mathbb{R} \) and for any \(\{\eta^j\}_k \) complex functions \(b_j \in C^\infty(S^{m-1}) \), the smooth \(k \)-form
\[
u = e^{isr}g_0(r, \theta)^{-1/4} \sum_j b_j(\theta)\eta^j,
\]
with \(s = \tau + i\lambda \) for \(\tau \) real, satisfies as \(|\tau| \to \infty \)
\[
\|(-\Delta + s^2)\nu\|_{L^2(M_0)} = O(1), \quad \|\nu\|_{L^2(M_0)} = O(1).
\]

Proof. We first try to find the quasimode in the form \(\nu = e^{is\psi}a \) for some smooth real valued phase function \(\psi \) and some smooth \(k \)-form \(a \). Lemma 3.2 implies that
\[
(-\Delta + s^2)(e^{is\psi}a) = e^{is\psi}(s^2(|d\psi|^2 - 1)a - is[2\nabla_{\text{grad}}(\psi)a + (\Delta r)\psi]a - \Delta r)a.
\]

Let \((r, \theta)\) be polar normal coordinates as in the statement of the lemma, and note that
\[
g_0(r, \theta) = \begin{pmatrix} 1 & 0 \\ 0 & h(r, \theta) \end{pmatrix}
\]
globally in \(M_0 \) for some \((m-1) \times (m-1)\) symmetric positive definite matrix \(h \).

Define
\[
\psi(r, \theta) = r.
\]

Then \(\psi \in C^\infty(M_0) \) and \(|d\psi|^2 = 1 \), so that the \(s^2 \) term will be zero. We next want to choose \(a \) so that \(2\nabla_{\text{grad}}(\psi)a + (\Delta r)\psi)a = 0 \). Note that
\[
\nabla_{\text{grad}}(\psi) = \nabla_{\partial_r}, \quad \Delta r\psi = \frac{1}{2} \frac{\partial_r |g_0(r, \theta)|}{|g_0(r, \theta)|}.
\]

Thus, choosing \(a = |g_0|^{-1/4}\tilde{a} \) for some \(k \)-form \(\tilde{a} \), it is enough to arrange that
\[
\nabla_\partial \tilde{a} = 0.
\]

Using the frame \(\{\eta^j\} \) above, with \(\eta^1 = dr \), we write
\[
\tilde{a} = \eta^1 \wedge \tilde{a}' + \tilde{a}''
\]
where \(\tilde{a}' \) is a \((k-1)\)-form and \(\tilde{a}'' \) is a \(k \)-form in \(M_0 \) of the form
\[
\begin{align*}
\tilde{a}' &= \sum_{J \subset \{2, \ldots, m\}, |J| = k-1} \alpha_{1,J} \eta^j, \\
\tilde{a}'' &= \sum_{J \subset \{2, \ldots, m\}, |J| = k} \beta_J \eta^j.
\end{align*}
\]
for some functions $\alpha_{1,j}$ and β_j in M_0. Now, the form of the metric implies that $\nabla_{\alpha_j} \eta^I = 0$, and by assumption $\nabla_{\alpha_j} \eta^I = 0$ for $2 \leq j \leq m$. Therefore

$$\nabla_{\alpha_j} \tilde{a} = \sum_{J \subset \{2, \ldots, m\} \atop |J| = k-1} \partial_r \alpha_{1,j} \eta^1 \wedge \eta^J + \sum_{J \subset \{2, \ldots, m\} \atop |J| = k} \partial_r \beta_j \eta^J.$$

In the definitions of \tilde{a}' and \tilde{a}'', we may now choose

$$\alpha_{1,j} = b_{(1)} \cup J(\theta), \quad \beta_j = b_j(\theta)$$

where b_I are the given functions in $C^\infty(S^{m-1})$. The resulting k-form $u = e^{is\psi} |g_0|^{-1/4} \tilde{a}$ satisfies the required conditions. \hfill \Box

The next result gives the full construction of the complex geometrical optics solutions.

Lemma 7.6. Let $(M, g) \subset \subset (\mathbb{R} \times M_0, g)$ where $g = g \oplus g_0$, assume that (M_0, g_0) is simple, and let Q be an L^∞ endomorphism of ΛM. Let (M_0, g_0) be another simple manifold with $(M_0, g_0) \subset \subset (M_0, g_0)$, fix a point $\omega \in M_0 \setminus M_0$, and let (r, θ) be polar normal coordinates in (M_0, g_0) with center ω. Suppose that η^1, \ldots, η^n is a global orthonormal frame of $T^*(\mathbb{R} \times M_0)$ with $\eta^1 = dx^1$, $\eta^2 = dr$, and $\nabla_{\alpha_j} \eta^I = 0$ for $3 \leq j \leq n$, and let $\{\eta^1\}$ be a corresponding orthonormal frame of $\Lambda(\mathbb{R} \times M_0)$. Let also $\lambda \in \mathbb{R}$. If $|\tau|$ is sufficiently large and if $s = \tau + i\lambda$, then for any 2^n complex functions $b_I \in C^\infty(S^{n-2})$ there exists a solution $Z \in L^2(M, \Lambda M)$ of the equation

$$(\Delta + Q)Z = 0 \text{ in } M$$

having the form

$$Z = e^{-sx^1} \left[e^{isr} |g_0(r, \theta)|^{-1/4} \left(\sum_I b_I(\theta) \eta^I \right) + R \right]$$

where $\|R\|_{L^2(M)} = O(|\tau|^{-1})$. Further, one can arrange that the relative boundary values of Z vanish on Γ_+^c or Γ_-^c (depending on the sign of τ).

Proof. Try first $Z = e^{-sx^1}(A + R)$ where $\nabla_{\alpha_j} A = 0$. By the discussion in this section, we need to solve the equation

$$e^{sx^1} (\Delta + Q)(e^{-sx^1} R) = -F$$

where

$$F = (-\Delta - s^2 + Q)A.$$

Decomposing the k-form part of A as $A^k = \eta^I \wedge (A^k)' + (A^k)'' \text{ as in Lemma 7.5}$ where $\eta^1 = dx^1$, we obtain that

$$F^k = \eta^1 \wedge (\Delta_{x^1} - s^2)(A^k)' + (\Delta_{x^1} - s^2)(A^k)'' + (QA)^k.$$

Let η^1, \ldots, η^n and $\{\eta^I\}$ be orthonormal frames as in the statement of the result. We can use Lemma 7.5 to find, for any $\binom{n-1}{k-1}$ functions $b_I'(\theta)$ and for any $\binom{n-1}{k}$ functions $b_I''(\theta)$, quasimodes

$$(A^k)' = e^{isr} |g_0|^{-1/4} \sum_{J \subset \{2, \ldots, n\} \atop |J| = k-1} b_I'(\theta) \eta^J,$$

$$(A^k)'' = e^{isr} |g_0|^{-1/4} \sum_{J \subset \{2, \ldots, n\} \atop |J| = k} b_I''(\theta) \eta^J.$$
Recalling that $A^k = \eta^1 \wedge (A^k)' + (A^k)''$ and relabeling functions, this shows that for any $\binom{n}{k}$ functions $b_I \in C^\infty(S^{n-2})$ we may find A^k of the form

$$A^k = e^{isr} |g_0|^{-1/4} \sum_{I \subset \{1, \ldots, n\}} b_I(\theta) \eta^I$$

with $\|(-\Delta - s^2) A^k\|_{L^2(M)} = O(1)$, $\|A^k\|_{L^2(M)} = O(1)$ as $|\tau| \to \infty$. Repeating this construction for all k, we obtain the amplitude

$$A = e^{isr} |g_0(r, \theta)|^{-1/4} \sum_{I} b_I(\theta) \eta^I$$

with the same norm estimates as those for A^k. Then also $\|F\|_{L^2(M)} = O(1)$. Then Proposition \ref{proposition:1} allows us to find R with the right properties. This finishes the proof. \hfill \Box

Note that if Z is a solution to $(-\Delta + sQ\star^{-1})Z = 0$ in M, and Z has relative boundary values that vanish on Γ_\pm^c, then $\ast Z$ is a solution to $(-\Delta + Q) \ast Z = 0$ in M, and $\ast Z$ has absolute boundary values that vanish on Γ_\pm^c. Thus this construction also gives us solutions with vanishing absolute boundary values on Γ_\pm^c.

8. The tensor tomography problem

Now we can begin the proof of Theorems \ref{theorem:2} and \ref{theorem:3}. First we will use the hypotheses of Theorem \ref{theorem:2} to obtain some vanishing integrals involving $(Q_2 - Q_1)$.

Lemma 8.1. Suppose the hypotheses of Theorem \ref{theorem:2} hold. Using the notation in Lemma \ref{lemma:7}, let $Z_j \in L^2(M, \Lambda M)$ be solutions of $(-\Delta + Q_1)Z_1 = (-\Delta + Q_2)Z_2 = 0$ in M of the form

$$Z_1 = e^{-sx_1} \left[e^{isr} |g_0|^{-1/4} \left(\sum_{I} c_I(\theta) \eta^I \right) + R_1 \right],$$

$$Z_2 = e^{sx_1} \left[e^{isr} |g_0|^{-1/4} \left(\sum_{I} d_I(\theta) \eta^I \right) + R_2 \right]$$

with vanishing relative boundary conditions on Γ_\pm^c and Γ_\pm^e respectively. Then

$$((Q_2 - Q_1)Z_1|Z_2)_M = 0.$$

Proof. Let Y be a solution of $(-\Delta + Q_2)Y = 0$ in M with the same relative boundary conditions as Z_1; such a solution exists by the assumption on Q_2. Then consider the integral

$$((N_{Q_1}^{RA} - N_{Q_2}^{RA})(tZ_1, t\delta Z_1)|(ti_N d * Z_2, ti_N * Z_2))_{\partial M}.$$

By definition of the N^{RA} map, this is

$$((t * (Z_1 - Y), t\delta * (Z_1 - Y))|(ti_N d * Z_2, ti_N * Z_2))_{\partial M} = ((t * (Z_1 - Y)|ti_N d * Z_2)_{\partial M} + (t\delta * (Z_1 - Y)|ti_N * Z_2)_{\partial M}.$$

Recall from the section on notation and identities that

$$(-\Delta u|v)_M = (u| - \Delta v)_M + (tu | ti_N d v)_{\partial M} + (t\delta * u | ti_N * v)_{\partial M} + (t \ast u | ti_N d v)_{\partial M} + (t\delta u | ti_N v)_{\partial M}.$$
Since the relative boundary values of \((Z_1 - Y)\) vanish, by definition, the integration by parts formula above implies that
\[
((t \ast (Z_1 - Y)|t_1 N d * Z_2)_{\partial M} + (t \delta \ast (Z_1 - Y)|t_1 N * Z_2)_{\partial M} = (-\Delta (Z_1 - Y)|Z_2)_M - (Z_1 - Y - \Delta Z_2)_M
\]
\[
= (Q_2 Y - Q_1 Z_1 |Z_2)_M - (Z_1 - Y - \overline{Q_2} Z_2)_M \]
\[
= (((Q_2 - Q_1) Z_1 |Z_2)_M.
\]

Meanwhile, by the hypothesis on \(N_{Q_1}^{RA}\) and \(N_{Q_2}^{RA}\), we have that \(N_{Q_1}^{RA}(Z_1 - Y) = N_{Q_2}^{RA}(Z_1 - Y)\) on \(\Gamma_+\). Therefore
\[
((t \ast (Z_1 - Y)|t_1 N d * Z_2)_{\partial M} + (t \delta \ast (Z_1 - Y)|t_1 N * Z_2)_{\partial M}
\]
\[
= ((t \ast (Z_1 - Y)|t_1 N d * Z_2)_{\Gamma^c_+} + (t \delta \ast (Z_1 - Y)|t_1 N * Z_2)_{\Gamma^c_+}.
\]

Now by construction, \(Z_2\) has relative boundary values that vanish on \(\Gamma^c_+\). But
\[
ti_1 N * Z_2 |\Gamma^c_+ = 0 \iff (Z_2)_{\Gamma^c_+} = 0
\]
\[
\iff (Z_2)_{\Gamma^c_+} = 0
\]
\[
\iff \partial M (Z_2)_{\Gamma^c_+} = 0.
\]

Similarly,
\[
ti_1 N d * Z_2 |\Gamma^c_+ = 0 \iff t \delta * Z_2 |\Gamma^c_+ = 0.
\]

Therefore the fact that \(Z_2\) has relative boundary values that vanish on \(\Gamma^c_+\) implies that
\[
((t \ast (Z_1 - Y)|t_1 N d * Z_2)_{\Gamma^c_+} + (t \delta \ast (Z_1 - Y)|t_1 N * Z_2)_{\Gamma^c_+} = 0.
\]

Therefore
\[
((Q_2 - Q_1) Z_1 |Z_2)_M = 0
\]
for each such pair of CGO solutions \(Z_1\) and \(Z_2\). \(\square\)

Working through the same argument with \(*Z_1\) and \(*Z_2\) gives us the following lemma as well.

Lemma 8.2. Suppose the hypotheses of Theorem 1.2 hold. Using the notation in Lemma 7.6, let \(*Z_j \in L^2(M, \Lambda M)\) be solutions of \((-\Delta + Q_1) * Z_1 = (-\Delta + Q_2) * Z_2 = 0\) in \(M\) of the form
\[
Z_1 = e^{-sx_1} \left[e^{is_1 |g_0|^{-1/4}} \left(\sum_{l} c_l(\theta) \eta^l \right) + R_1 \right],
\]
\[
Z_2 = e^{sx_1} \left[e^{is_1 |g_0|^{-1/4}} \left(\sum_{l} d_l(\theta) \eta^l \right) + R_2 \right].
\]

Then
\[
((Q_2 - Q_1) Z_1 |Z_2)_M = 0.
\]

Therefore both of the main theorems reduce to using the condition \((QZ_1, Z_2)_{L^2(M)} = 0\) for solutions of the type given in Lemma 7.6 to show that \(Q = 0\).

The next result shows that from the condition \((QZ_1, Z_2)_{L^2(M)} = 0\) for solutions of the type given in Lemma 7.6 it follows that certain exponentially attenuated integrals over geodesics in \((M_0, g_0)\) of matrix elements of \(Q\), further Fourier transformed in \(x_1\), must vanish.
Proposition 8.3. Assume the hypotheses in Theorem 7.4 or 7.2, with $Q = Q_2 - Q_1$ extended by zero to $\mathbb{R} \times M_0$. Fix a geodesic $\gamma : [0, L] \to M_0$ with $\gamma(0), \gamma(L) \in \partial M_0$, let ∂_r be the vector field in M_0 tangent to geodesic rays starting at $\gamma(0)$, and suppose that $\{\eta^j\}$ is an orthonormal frame of $\Lambda(\mathbb{R} \times M_0^{\text{int}})$ with $\eta^1 = dx^1, \eta^2 = dr$, and $\nabla_\partial \eta_j = 0$ for $3 \leq j \leq n$. (Such a frame always exists.) Then for any $\lambda \in \mathbb{R}$ and any I, J one has

$$\int_0^L e^{-2\lambda r} \left[\int_{-\infty}^{\infty} e^{-2i\lambda x_1} \langle Q(x_1, \gamma(r))\eta^j, \eta^j \rangle dx_1 \right] dr = 0.$$

Proof. Using the notation in Lemma 7.6 let $Z_j \in L^2(M, \Lambda M)$ be solutions of $(-\Delta + Q)Z_j = (-\Delta + \bar{Q})Z_2 = 0$ in M of the form

$$Z_1 = e^{-sx_1} \left[e^{isr}|g_0|^{-1/4} \sum_I c_I(\theta)\eta^I + R_1 \right],$$

$$Z_2 = e^{sx_1} \left[e^{isr}|g_0|^{-1/4} \sum_I d_I(\theta)\eta^I + R_2 \right],$$

where $s = \tau + i\lambda, \tau > 0$ is large, $\lambda \in \mathbb{R}$, and $c_I, d_I \in C^\infty(S^{n-2})$. We can assume that $\|R_j\|_{L^2(M)} = O(\tau^{-1})$ as $\tau \to \infty$, and that the relative (absolute) boundary values of Z_j are supported in \bar{F} and the relative (absolute) boundary values of Z_2 are supported in \bar{B}. By Lemma 8.1 (Lemma 8.2), we have

$$0 = \lim_{\tau \to \infty} (QZ_1, Z_2)_{L^2(M)} = \int_{S^{n-2}} \int_0^\infty e^{-2\lambda r}$$

$$\times \left[\sum_{I,J} \int_{-\infty}^{\infty} e^{-2i\lambda x_1} \langle Q(x_1, r, \theta)\eta^I, \eta^J \rangle dx_1 \right] c_I(\theta) d_I(\theta) dr d\theta.$$

We now extend the M_0-geodesic γ to \hat{M}_0, choose $\omega = \gamma(-\varepsilon)$ for small $\varepsilon > 0$, and choose θ_0 so that $\gamma(t) = (t, \theta_0)$. The functions c_I and d_I can be chosen freely, and by varying them we obtain that

$$\int_0^\infty e^{-2\lambda r} \left[\int_{-\infty}^{\infty} e^{-2i\lambda x_1} \langle Q(x_1, r, \theta_0)\eta^I, \eta^J \rangle dx_1 \right] dr = 0$$

for each fixed I and J. Since Q is compactly supported in M_0^{int}, this implies the required result.

It remains to show that a frame $\{\eta^I\}$ with the required properties exists. Let $\omega = \gamma(0)$, and let (\hat{M}_0, g_0) be a simple manifold with $(M_0, g_0) \subset (\hat{M}_0, g_0)$ such that the \hat{M}_0-geodesic starting at ω in direction $\nu(\omega)$ never meets M_0. (It is enough to embed (M_0, g_0) in some closed manifold and to take \hat{M}_0 strictly convex and slightly larger than M_0.) Let (r, θ) be polar normal coordinates in \hat{M}_0 with center $\omega = \gamma(0)$, fix $r_0 > 0$ so that the geodesic ball $B(\omega, r_0)$ is contained in M_0^{int}, and let $\bar{\theta} \in S^{n-2}$ be the direction of $\nu(\omega)$. Choose some orthonormal frame η^3, \ldots, η^n of the cotangent space of $\partial B(\omega, r_0) \setminus \{(r_0, \bar{\theta})\}$, and extend these as 1-forms in M_0^{int} by parallel transporting along integral curves of ∂_r. We thus obtain a global orthonormal frame η^2, \ldots, η^n of $T^*M_0^{\text{int}}$ with $\eta^2 = dr$ and $\nabla_\partial \eta_j = 0$ for $3 \leq j \leq n$. Moreover, η^2, \ldots, η^n will be a global orthonormal frame of $T^*(\mathbb{R} \times M_0^{\text{int}})$ inducing an orthonormal frame $\{\eta^I\}$ of $\Lambda(\mathbb{R} \times M_0^{\text{int}})$.

We will now show how the coefficients are uniquely determined by the integrals in Proposition 8.3. This follows by inverting attenuated ray transforms, a topic of considerable independent interest (see [ABK98, No02, BS04] and the survey [Fi03] for results in the Euclidean case, and the survey [PSU13b] and references below for the manifold case). The transform in Proposition 8.3 is not exactly
the same kind of attenuated ray transform/Fourier transform as in the scalar case for instance in [DKSaU09], since the matrix element of Q that appears in the integral may actually depend on the geodesic γ (note that the 1-forms η depend on γ). To clarify this point, we fix some global orthonormal frame $\{\varepsilon^1,\ldots,\varepsilon^n\}$ of $T^*(\mathbb{R} \times M_0)$ with $\varepsilon^1 = dx^1$, and let $\{\varepsilon^I\}$ be the corresponding orthonormal frame of $\Lambda(\mathbb{R} \times M_0)$. Define the matrix elements

$$q_{I,J} = \langle Q\varepsilon^I,\varepsilon^J \rangle.$$

Define also

$$\hat{q}_{I,J}(\xi_1,x') = \int_{-\infty}^{\infty} e^{-ix_1\xi_1} q_{I,J}(x_1,x') \, dx_1.$$

Then the conclusion in Proposition 5.3 implies that

$$\int_0^L e^{-2\lambda r} \hat{q}_{I,J}(2\lambda,\gamma(r)) \langle \eta^I,\varepsilon^J \rangle \langle \eta^J,\varepsilon^J \rangle \, dr = 0$$

for any $\lambda \in \mathbb{R}$, for any I,J, and for any maximal geodesic γ in M_0. (Note that the inner products $\langle \eta^I,\varepsilon^J \rangle$ do not depend on x_1.)

Up until now everything discussed in this paper has held for any dimension $n \geq 3$. Now, however, we will invoke the assumption that $n = 3$. Then $q_{I,J}$ is an 8×8 matrix. In this case we may choose $\eta^1 = dx^1$, $\eta^2 = dr$, and $\eta^3 = \eta_0 dr$, where dr is the 1-form dual to γ on the geodesic γ. Let also $\{\varepsilon^j\}$ be the orthonormal frame of vector fields dual to $\{\varepsilon^j\}$ (which is assumed to be positively oriented).

It follows that

$$\langle \eta^I,\varepsilon^J \rangle = 1, \quad \langle \eta^1,\varepsilon^j \rangle = 0, \quad \langle \eta^3,\varepsilon^j \rangle = 0,$$

$$\langle \eta^2,\varepsilon^1 \rangle = 0, \quad \langle \eta^2,\varepsilon^2 \rangle = \langle \varepsilon_2,\dot{\gamma} \rangle, \quad \langle \eta^2,\varepsilon^3 \rangle = \langle \varepsilon_2,\gamma \rangle,$$

$$\langle \eta^3,\varepsilon^1 \rangle = 0, \quad \langle \eta^3,\varepsilon^2 \rangle = -\langle \varepsilon_3,\dot{\gamma} \rangle, \quad \langle \eta^3,\varepsilon^3 \rangle = \langle \varepsilon_3,\dot{\gamma} \rangle.$$

The relations for $\eta^{(1,2)} = \eta^1 \wedge \eta^2, \eta^{(3,1)}, \eta^{(2,3)}$ and $\varepsilon^{(1,2)}, \varepsilon^{(3,1)}, \varepsilon^{(2,3)}$ can be determined from the above relations by duality. Finally, $\langle \eta^0,\varepsilon^J \rangle = 1$ if $I = 0$ and 0 otherwise, and the other relations for $\eta^0,\varepsilon^0, \eta^{(1,2,3)}$, and $\varepsilon^{(1,2,3)}$ are similar.

Now choosing $I = J = 1$ (here we identify 1 with $\{1\}$) we obtain

$$\int_0^L e^{-2\lambda r} \hat{q}_{1,1}(2\lambda,\gamma(r)) \, dr = 0 \quad \text{for all } \lambda \text{ and } \gamma.$$

This means that the usual attenuated geodesic ray transform of the function $\hat{q}_{1,1}(2\lambda,\cdot)$ in M_0 vanishes for all λ. First we have $\hat{q}_{1,1}(2\lambda,\cdot) \in C^\infty(M_0)$ for all λ [FSU08 Proposition 3], and then $\hat{q}_{1,1}(2\lambda,\cdot) = 0$ for all λ by the injectivity of the attenuated ray transform [SaU11] and so $q_{1,1} = 0$. The same argument applies for all pairs (I,J) where

$$I,J \in \{0,1,\{2,3\},\{1,2,3\}\}.$$

Now consider the case where $I = 1$ and $J = 2$. Then

$$\int_0^L e^{-2\lambda r} (\hat{q}_{1,2}(2\lambda,\gamma(r)) \langle \varepsilon_2,\dot{\gamma} \rangle + \hat{q}_{1,3}(2\lambda,\gamma(r)) \langle \varepsilon_3,\dot{\gamma} \rangle) \, dr = 0.$$

Then the injectivity result for the attenuated ray transform on 1-tensors [SaU11] together with the regularity result [HS10 Proposition 1] says that

$$\hat{q}_{1,2}(2\lambda,x)\varepsilon^2 + \hat{q}_{1,3}(2\lambda,x)\varepsilon^3 = 0$$

for all $\lambda \neq 0$, from which we can conclude that

$$q_{1,2} = q_{1,3} = 0.$$

The same argument then applies for all pairs \((I, J)\) where \(I \in \{0,1,\{2,3\}\}\) and \(J \in \{2,3,\{1,2\}\}\), or vice versa.

Finally, consider the case when \(I = J = 2\). For brevity, we’ll write \(\langle \epsilon_j, \gamma \rangle \) as \(\hat{\gamma}_j\). Then \(I = J = 2\) gives

\[
(8.1) \quad \int_0^L e^{-2\lambda r} (\hat{q}_{2,2} \hat{\gamma}_2^2 + \hat{q}_{2,3} \hat{\gamma}_2 \hat{\gamma}_3 + \hat{q}_{3,2} \hat{\gamma}_2 \hat{\gamma}_3 + \hat{q}_{3,3} \hat{\gamma}_3^2) \, dr = 0.
\]

The integrand here can be represented as the symmetric 2-tensor

\[
f^{2,2} := \left(\frac{1}{2} (\hat{q}_{2,2} + \hat{q}_{3,2}) \hat{q}_{3,3} \right)
\]

(in coordinates provided by \(\{\epsilon^2, \epsilon^3\}\)) applied to \((\hat{\gamma}, \hat{\gamma})\). This shows that the attenuated ray transform of the 2-tensor \(f^{2,2}\) in \((M_0, g_0)\), with constant attenuation \(-2\lambda\), vanishes identically.

We will now make use of the methods of [PSU13a] in this tensor tomography problem. We only give the details in the case where \(Q\) (and hence \(f^{2,2}\)) is \(C^\infty\). The result also holds for continuous \(Q\) by using an elliptic regularity result for the normal operator, but in the present weighted case for 2-tensors the required result may not be in the literature. We only say that such a result can be proved by adapting the methods of [HS10] to the 2-tensor case (in particular one needs a solenoidal decomposition \(f = f^s + d\beta\) of a 2-tensor \(f\) and a further solenoidal decomposition \(\beta = \beta^s + d\phi\) of the 1-form \(\beta\), and one then shows that the normal operator acting on “solenoidal triples” \((f^s, \beta^s, \phi)\) is elliptic because the weight comes from a nonvanishing attenuation).

Since \(f^{2,2}\) is \(C^\infty\), the injectivity result for the attenuated ray transform on symmetric 2-tensors (see [As12], following [PSU13a]) says that

\[f^{2,2} = -X u + 2\lambda u\]

where \(X\) is the geodesic vector field on \((M_0, g_0)\), and \(u\) is a smooth function on the unit circle bundle \(SM_0\) that corresponds to the sum of a 1-tensor and scalar function, with

\[u|_{\partial M_0} = 0.\]

Here we have identified \(f^{2,2}\) and \(u\) with functions on \(SM_0\) as in [PSU13a]. We can also express \(u\) and \(f^{2,2}\) in terms of Fourier components as in [PSU13a],

\[u = u_{-1} + u_0 + u_1\]

\[f^{2,2} = f_{-2}^{2,2} + f_0^{2,2} + f_2^{2,2}.\]

Here \(u_0 \in C^\infty(M_0)\), \(u_1 + u_{-1}\) corresponds to a smooth 1-tensor in \(M_0\), and \(u_0, u_1, u_{-1}\) vanish on \(\partial M_0\). Then

\[-X(u_{-1} + u_0 + u_1) + 2\lambda(u_{-1} + u_0 + u_1) = f_{-2}^{2,2} + f_0^{2,2} + f_2^{2,2}.\]

Now parity implies the following two equations:

\[2\lambda(u_{-1} + u_1) = Xu_0\]

and

\[-X(u_{-1} + u_1) + 2\lambda(u_0) = f_{-2}^{2,2} + f_0^{2,2} + f_2^{2,2}.\]

Assume that \(\lambda\) is non-zero. Using the first equation in the second one implies that

\[
(8.2) \quad -\frac{X^2(u_0)}{2\lambda} + 2\lambda u_0 = f^{2,2},
\]

where \(X^2 u_0\) corresponds to the covariant Hessian \(\nabla^2 u_0\) of \(u_0\). The first equation implies that \(u_0\) vanishes to first order on \(\partial M_0\).
Unfortunately, this is not enough to conclude that the coefficients of \(f^{2,2} \) are 0. However, going back and choosing \((I,J) = (2,3), (3,2), \) and \((3,3) \) gives us three additional equations of this type with the same elements \(q_{i,j} \). More specifically,

\[
\begin{align*}
 f^{2,3} &= \begin{pmatrix}
 \frac{1}{2} (\dot{q}_{2,3} - \dot{q}_{2,2}) & \frac{1}{2} (\dot{q}_{3,3} - \dot{q}_{2,2}) \\
 -\dot{q}_{3,2} & -\dot{q}_{2,2}
\end{pmatrix}, \\
 f^{3,2} &= \begin{pmatrix}
 \frac{1}{2} (\dot{q}_{3,3} - \dot{q}_{2,2}) & \frac{1}{2} (\dot{q}_{3,3} - \dot{q}_{2,2}) \\
 -\dot{q}_{3,2} & -\dot{q}_{2,2}
\end{pmatrix}, \\
 f^{3,3} &= \begin{pmatrix}
 \frac{1}{2} (\dot{q}_{3,3} - \dot{q}_{2,2}) & \frac{1}{2} (\dot{q}_{3,3} - \dot{q}_{2,2}) \\
 -\dot{q}_{3,2} & -\dot{q}_{2,2}
\end{pmatrix},
\end{align*}
\]

are all of the same form. Therefore it follows that \(f^{2,2} + f^{3,3} \) and \(f^{2,3} - f^{3,2} \) are as well. But these are both scalar matrices, and if

\[
-\frac{X^2(u_0)}{2\lambda} + 2\lambda u_0
\]

is a scalar matrix, then also the covariant Hessian \(\nabla_2 u_0 \) is a scalar matrix in the \(\{ \varepsilon^2, \varepsilon^3 \} \) basis.

To make the previous statement more explicit, identify \((M_0, g_0)\) with the unit disk in \(\mathbb{R}^2 \) and choose an isothermal coordinate system \((x^1, x^2)\) in which the metric is given by \(e^{2\mu} \delta_{jk} \) for some \(\mu \in C^\infty(M_0) \). Choosing \(e_2 = e^{-\mu} \partial_1 \) and \(e_3 = e^{-\mu} \partial_2 \), the condition \(\nabla_2 u_0(e_2, e_2) - \nabla_2 u_0(e_3, e_3) = 0 \) implies that

\[
\partial_{1}^2 u_0 - \partial_{2}^2 u_0 + b \cdot \nabla u_0 = 0 \quad \text{in } M_0
\]

for some vector field \(b \in C^\infty(M_0, \mathbb{R}^2) \) depending on \(\mu \). Since \(u_0 \) vanishes to first order on \(\partial M_0 \), extending \(u_0 \) by zero to \(\mathbb{R}^2 \) we have

\[
\partial_{1}^2 u_0 - \partial_{2}^2 u_0 + b \cdot \nabla u_0 = 0 \quad \text{in } \mathbb{R}^2
\]

where \(u_0 \in H^2(\mathbb{R}^2) \) is compactly supported and \(b \) is some smooth compactly supported vector field. Uniqueness for hyperbolic equations [Ta99, Section 2.8] implies that \(u_0 = 0 \).

The above argument shows that \(f^{2,2} + f^{3,3} \) and \(f^{2,3} - f^{3,2} \) are 0. Thus \(\dot{q}_{2,2} + \dot{q}_{3,3} = 0 \) and \(\dot{q}_{2,3} - \dot{q}_{3,2} = 0 \), showing that \(f^{2,2} \) and \(f^{2,3} \) are trace free. Taking traces in \((8.2) \) and using that \(u_0 \) vanishes to first order on \(\partial M_0 \) implies that \(u_0 = 0 \) by unique continuation for elliptic equations. Thus \(f^{2,2} = 0 \) and similarly \(f^{2,3} = 0 \), which shows that \(q_{2,2}, q_{2,3}, q_{3,2}, \) and \(q_{3,3} \) are zero as well.

The same argument now works for the remaining entries of \(q \), and this finishes the proof.

9. Higher dimensions

In higher dimensions, \(n > 3 \), as noted above, everything up to and including the proof of Proposition [S.3] still holds. However, this does not reduce easily into a tensor tomography problem, as in the three-dimensional case, because we cannot choose the basis \(\{ \eta^i \} \) so that \(\eta^3, \ldots, \eta^4 \) to depend on \(\eta^2 = dr \) in a tensorial manner.

More precisely, in general we lack tensors \(T_i \) for which \(\eta^i = T_i(\eta^2, \ldots, \eta^4) \) for \(i \geq 3 \), as is the case in three dimensions. Moreover, even if the results of Proposition [S.3] can be reduced to a tensor tomography problem, there is no guarantee that it will be one for which there are useful injectivity results, since there are very few such results for \(k \)-tensors with \(k > 2 \).

However, in the Euclidean case we can do better, since we have the extra freedom to vary the Carleman weight \(\varphi \). In particular, we can construct CGOs to reduce the problem in Lemmas [S.1] and [S.2] to a Fourier transform, as has been done for inverse problems for scalar functions, e.g. in [BU01]. Therefore we can conclude this paper by a proof for higher dimensions, in the Euclidean case.
Proof of Theorem 2.3. Fix coordinates x_1, \ldots, x_n on \mathbb{R}^n. The corresponding basis for the cotangent space is dx^1, \ldots, dx^n, and this gives a corresponding basis $\{dx^I\}$ for ΛM.

Now note that if f is a scalar function, $\triangle(fdx^I) = (\Delta f)dx^I$. Therefore if α and β are unit vectors such that $\alpha \cdot \beta = 0$, then

$$e^{-\frac{\alpha\cdot\beta}{h^2}}h^2(-\Delta + Q)(e^{\frac{(\alpha + \beta)x}{h}}dx^I) = O(h^2)dx^I.$$

Therefore Proposition 7.1 implies that there exists $r \in L^2(M, \Lambda M)$ such that

$$(-\Delta + Q)(e^{\frac{(\alpha + \beta)x}{h}}(dx^I + r)) = 0,$$

with $\|r\|_{L^2(M)} = O(h)$, and $Z = e^{\frac{(\alpha + \beta)x}{h}}(dx^I + r)$ has relative boundary conditions which vanish on Γ^c_+.

Now if k and ℓ are mutually orthogonal unit vectors which are both orthogonal to α, then we can set $\beta_1 = \ell + h k$ and $\beta_2 = \ell - h k$, and create $Z_1 = e^{\frac{-(\alpha + \beta_1)x}{h}}(dx^I + r_1)$ and $Z_2 = e^{\frac{-(\alpha + \beta_2)x}{h}}(dx^I + r_2)$ so that $(-\Delta + Q_1)Z_1 = (-\Delta + Q_2)Z_2 = 0$, and Z_1 and Z_2 have relative boundary conditions that vanish on Γ^c_- and Γ^c_+ respectively.

Then Lemma 8.1 together with the hypotheses of Theorem 2.3 implies that

$$(Q_1 - Q_2)|e^{-i2kx}| = 0.$$

This can be done for any k orthogonal to α. Since α can be varied slightly without preventing the relative boundary conditions of the solutions from vanishing on the correct set, this is in fact true for k in an open set, from which we can conclude that $Q_1 = Q_2$ on M.

The absolute boundary value version works similarly, with the appropriate change in the CGOs.

\[\square\]

10. Appendix

For the next proof, we will write k-forms in local coordinates as $u = u_I \varepsilon^I$, where $\varepsilon^1, \ldots, \varepsilon^n$ is some frame of 1-forms, the sum is over all k-combinations $I = \{1, \ldots, n\}$, and we write $\varepsilon^I = \varepsilon^{i_1} \wedge \ldots \wedge \varepsilon^{i_k}$ if $i_1 < \ldots < i_k$.

Proof of Lemma 3.7. We will prove that

$$\xi \wedge i_\xi u + i_\xi (\xi \wedge u) = |\xi|^2 u.$$

The lemma will follow immediately from this by polarization. It is enough to prove the identity at a fixed point. Choose a positive orthonormal basis $\varepsilon^1, \ldots, \varepsilon^n$ of covectors such that $\xi = |\xi|\varepsilon^1$, and note that if $I = \{i_1, \ldots, i_k\}$ with $i_1 < \ldots < i_k$, we have

$$\varepsilon^I \wedge i_\varepsilon^I = \begin{cases} \varepsilon^I, & 1 \in I, \\ 0, & \text{otherwise} \end{cases}$$

and

$$i_{\varepsilon^I} (\varepsilon^I \wedge u) = \begin{cases} \varepsilon^I, & 1 \notin I, \\ 0, & \text{otherwise}. \end{cases}$$

This proves the result.

\[\square\]

Proof of Lemma 3.2. Note that

$$e^{sp}d(e^{-sp}u) = (d - s dp\wedge)u$$

and by duality

$$e^{sp}\delta(e^{-sp}u) = (\delta + s idp)u.$$
It follows that
\[e^{s\rho}(-\Delta)(e^{-s\rho}u) = e^{s\rho}(d\delta + \delta d)(e^{-s\rho}u) \]
\[= (d - s d\rho)(d\delta + u + d\rho)(du - s d\rho \wedge u) \]
\[= -s^2 [d\rho \wedge i_{d\rho} d\rho \wedge \cdot] u \]
\[+ s [i_{d\rho} d\rho \wedge d\rho \wedge \delta - \delta (d\rho \wedge \cdot)] u - \Delta u. \]

Writing \(\rho = \phi + i\psi \) where \(\phi \) and \(\psi \) are real valued, Lemma 3.1 implies that
\[d\rho \wedge i_{d\rho} u + i_{d\rho} (d\rho \wedge u) = \langle d\rho, d\rho \rangle u. \]

It remains to show that
\[i_{d\rho} d\rho \wedge d\rho \wedge \delta - \delta (d\rho \wedge \cdot) = 2\nabla_{\text{grad}(\rho)} + \Delta \rho. \]

To prove this, we compute in Riemannian normal coordinates at a fixed point \(p \). Then \(u \) has the coordinate expression \(u = u_I dx^I \). We have
\[i_{d\rho} (du)|_p = \partial_j u_I \partial_k \rho i_{d\rho}(dx^j \wedge dx^k)|_p \]
and
\[d(i_{d\rho} u)|_p = d(u_I \partial_k \rho i_{d\rho}(dx^j \wedge dx^k)|_p \]
\[= \partial_j (u_I \partial_k \rho) dx^j \wedge i_{d\rho}(dx^j \wedge dx^k)|_p \]
\[= \partial_j u_I \partial_k \rho dx^j \wedge i_{d\rho}(dx^j \wedge dx^k)|_p \]
\[= \partial_j u_I \partial_k \rho dx^j \wedge i_{d\rho}(dx^j \wedge dx^k)|_p \]
\[= \partial_j u_I \partial_k \rho dx^j \wedge i_{d\rho}(dx^j \wedge dx^k)|_p \]
\[= \partial_j u_I \partial_k \rho i_{d\rho}(dx^j \wedge dx^k)|_p. \]

Combining these computations with Lemma 3.1, we see that
\[i_{d\rho} d\rho \wedge d\rho \wedge \delta - \delta (d\rho \wedge \cdot) = 2\nabla_{\text{grad}(\rho)} + \Delta \rho. \]

The right hand side is \(2\nabla_{\text{grad}(\rho)} u + (\Delta \rho) u|_p \). \qed

Proof of Lemma 3.3. First examine \(-t\delta u \perp \). By using the expansion of \(\delta \) in coordinates, at a point \(p \in \partial M \),
\[-t\delta u \perp = ti_N \nabla_N u \perp + t \sum_{j=1}^{n-1} i_{e_j} \nabla_{e_j} u \perp, \]
where \(\{e_j\} \) are a basis for \(T\partial M \) at \(p \). Since \(N \) is a geodesic vector field, \(\nabla_N N^\perp = 0 \), and thus
\[i_N \nabla_N u \perp = \nabla_N i_N u \perp. \]
Therefore
\[(10.1) \]
\[-t\delta u \perp = t\nabla_N i_N u \perp + t \sum_{j=1}^{n-1} i_{e_j} \nabla_{e_j} u \perp, \]
Meanwhile, if \(\{X_1, \ldots, X_{k-1}\} \) are local sections of \(T\partial M \) near \(p \),
\[
\sum_{j=1}^{n-1} t e_j \nabla_{e_j} u_\perp(X_1, \ldots, X_{k-1})
\]
\[
= -t \sum_{j=1}^{n-1} \left(u_\perp(\nabla_{e_j} e_j, X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} u_\perp(e_j, X_1, \ldots, \nabla_{e_j} X_l, \ldots, X_{k-1}) \right)
\]
\[
= -t \sum_{j=1}^{n-1} \left(u_\perp(\nabla'_{e_j} e_j + II(e_j, e_j), X_1, \ldots, X_{k-1}) \right.
\]
\[
+ \sum_{l=1}^{k-1} u_\perp(e_j, X_1, \ldots, \nabla'_{e_j} X_l + II(e_j, X_l), \ldots, X_{k-1}) \right),
\]

where \(II : T\partial M \oplus T\partial M \to N\partial M \) is the second fundamental form of \(\partial M \) relative to its embedding in \(M \).

Since all of \(e_j \) and \(X_k \) in the above sum belong to \(T\partial M \) and \(u_\perp \) needs an element of \(N\partial M \) in its argument to survive, we have that
\[
u_\perp(e_j, X_1, \ldots, \nabla'_{e_j} X_l + II(e_j, X_l), \ldots, X_{k-1}) = u_\perp(e_j, X_1, \ldots, II(e_j, X_l), \ldots, X_{k-1}) \right).
\]

Therefore, \(t \sum_{j=1}^{n-1} t e_j \nabla_{e_j} u_\perp(X_1, \ldots, X_{k-1}) \) is equal to
\[
- t \sum_{j=1}^{n-1} \left(u_\perp(II(e_j, e_j), X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} u_\perp(e_j, X_1, \ldots, II(e_j, X_l), \ldots, X_{k-1}) \right).
\]

Then
\[
- \sum_{j=1}^{n-1} \left(u_\perp(II(e_j, e_j), X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} u_\perp(e_j, X_1, \ldots, II(e_j, X_l), \ldots, X_{k-1}) \right)
\]
\[
= - \sum_{j=1}^{n-1} u_\perp(II(e_j, e_j), X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} \sum_{j=1}^{n-1} u_\perp(N, X_1, \ldots, e_j(N[II(e_j, X_l)]), \ldots, X_{k-1})
\]
\[
= -(n-1)\kappa u_\perp(N, X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} \sum_{j=1}^{n-1} u_\perp(N, X_1, \ldots, e_j(sX_l[e_j]), \ldots, X_{k-1})
\]
\[
= -(n-1)\kappa u_\perp(N, X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} u_\perp(N, X_1, \ldots, sX_l, \ldots, X_{k-1})
\]

Therefore
\[
t \sum_{j=1}^{n-1} i_{e_j} \nabla_{e_j} u_\perp = (S - (n-1)\kappa)tiNu_\perp.
\]

Using this together with \((10.1)\) gives
\[
(10.2) \quad - t\delta u_\perp = t\nabla_iNu_\perp + (S - (n-1)\kappa)tiNu_\perp.
\]
Now consider $t\delta u_\parallel$. Again, using the expansion of δ in coordinates,

$$-t\delta u_\parallel = t \sum_{j=1}^{n} i_{e_j} \nabla_{e_j} u_\parallel = ti_N \nabla_N u_\parallel + t \sum_{j=1}^{n-1} i_{e_j} \nabla_{e_j} u_\parallel.$$

Since N is a geodesic vector field, $\nabla_N N = 0$. Moreover, $i_N u_\parallel = 0$ by the definition of u_\parallel. Therefore $i_N \nabla_N u_\parallel = 0$. Then for the remaining sums, we let $\{X_1, \ldots, X_{k-1}\}$ be sections of $T\partial M$ and compute

$$\sum_{j=1}^{n-1} (i_{e_j} \nabla_{e_j} u_\parallel)(X_1, \ldots, X_{k-1})$$

$$= \sum_{j=1}^{n-1} (e_j u_\parallel(e_j, X_1, \ldots, X_{k-1}) - u_\parallel(\nabla_{e_j} e_j, X_1, \ldots, X_{k-1}))$$

$$- \sum_{l=1}^{k-1} u_\parallel(e_j, X_1, \ldots, \nabla_{e_j} X_l, \ldots, X_{k-1}).$$

We have that $\nabla_{e_j} X = \nabla'_{e_j} X + II(e_j, X)$ for all $X \in T\partial M$. Using this formula and the fact that $i_N u_\parallel = 0$ we have that

$$\sum_{j=1}^{n-1} (i_{e_j} \nabla_{e_j} u_\parallel)(X_1, \ldots, X_{k-1})$$

$$= \sum_{j=1}^{n-1} (e_j u_\parallel(e_j, X_1, \ldots, X_{k-1})) - u_\parallel(\nabla_{e_j} e_j, X_1, \ldots, X_{k-1})$$

$$- \sum_{l=1}^{k-1} u_\parallel(e_j, X_1, \ldots, \nabla_{e_j} X_l, \ldots, X_{k-1})$$

$$= \sum_{j=1}^{n-1} (i_{e_j} \nabla'_{e_j} u_\parallel)(X_1, \ldots, X_{k-1})$$

$$= (-\delta' tu_\parallel)(X_1, \ldots, X_{k-1}).$$

Therefore

$$t\delta u_\parallel = \delta' tu_\parallel.$$

Combining this with (10.2) finishes the proof of the lemma. □

Proof of Lemma 3.4. As in the previous proof, we’ll begin by examining the u_\perp part. Using the expansion of d in terms of sections, if $\{X_1, \ldots, X_k\}$ are local sections of $T\partial M$,

$$i_N du_\perp(X_1, \ldots, X_k) = \sum_{j=1}^{k} (-1)^j \nabla_{X_j} u_\perp(N, X_1, \ldots, \hat{X}_j, \ldots, X_k) + \nabla_N u_\perp(X_1, \ldots, X_k)$$

Here we have identified X_j with its extension to a neighbourhood of ∂M in the interior of M by parallel transport along normal geodesics, so that $(N|X_j)$ vanishes identically. Then the last term becomes

$$\nabla_N u_\perp(X_1, \ldots, X_k) = N(u_\perp(X_1, \ldots, X_k)) - \sum_{l=1}^{k} u_\perp(X_1, \ldots, X_l \nabla_{X_l} X_k) = 0.$$
For the first term, we can use the Leibnitz rule to get

\[
\sum_{j=1}^{k} (-1)^j \nabla X_j u_\perp (N, X_1, ..., \hat{X}_j, ..., X_k)
\]

\[
= \sum_{j=1}^{k} (-1)^j (X_j(u_\perp (N, X_1, ..., \hat{X}_j, ..., X_k)) - u_\perp(\nabla X_j N, X_1, ..., \hat{X}_j, ..., X_k))
\]

\[
- \sum_{l=1}^{k} u_\perp (N, X_1, ..., \nabla X_j X_l, ..., \hat{X}_j, ..., X_k)
\]

For all \(j \), \(u_\perp(\nabla X_j N, X_1, ..., \hat{X}_j, ..., X_k) = u_\perp((\nabla X_j N)_\perp, X_1, ..., \hat{X}_j, ..., X_k) \) since one needs a normal component in the argument for the expression to not vanish. However,

\[
0 = X_j (N|N) = 2(\nabla X_j N, N)
\]

so

\[
u_\perp(\nabla X_j N, X_1, ..., \hat{X}_j, ..., X_k) = 0\]

for all \(j \). On the other hand, for all \(l \) and \(j \),

\[
u_\perp(N, X_1, ..., \nabla X_j X_l, ..., \hat{X}_j, ..., X_k)
\]

\[
= u_\perp(N, X_1, ..., (\nabla X_j X_l)|\|, ..., \hat{X}_j, ..., X_k)
\]

\[
= u_\perp(N, X_1, ..., \nabla' X_j X_l, ..., \hat{X}_j, ..., X_k)
\]

since the expression only allows one normal component in its argument. Therefore,

\[
\sum_{j=1}^{k} (-1)^j \nabla X_j u_\perp (N, X_1, ..., \hat{X}_j, ..., X_k)
\]

\[
= - \sum_{j=1}^{k} (-1)^{j+1} \nabla' X_j \iota_N u_\perp (X_1, ..., \hat{X}_j, ..., X_k)
\]

\[
= -d' \iota_N u_\perp
\]

Therefore

\[
\iota_N du_\perp = -d' \iota_N u_\perp.
\]

Now examine the parallel part. Suppose \(\{X_1, ..., X_k\} \) are local sections of \(T\partial M \). By definition of \(u_\parallel \),

\[
u_\parallel(N, X_1, ..., \nabla X_j X_l, ..., X_k) = 0,
\]
so we can write
\[i_N df_{||}(X_1, \ldots, X_k) = \sum_{j=1}^{k} (-1)^{j} \nabla_{X_j} df_{||}(N, X_1, \ldots, \hat{X}_j, \ldots, X_k) + \nabla_{N} df_{||}(X_1, \ldots, X_k) \]
\[= - \sum_{j=1}^{k} (-1)^{j} u_{||}(\nabla_{X_j} N, \ldots, \hat{X}_j, \ldots, X_k) + \nabla_{N} df_{||}(X_1, \ldots, X_k) \]
\[= - \sum_{j=1}^{k} (-1)^{j} u_{||}(\langle \nabla_{X_j} N \rangle_{||}, \ldots, \hat{X}_j, \ldots, X_k) + \nabla_{N} df_{||}(X_1, \ldots, X_k) \]
\[= \sum_{j=1}^{k} u_{||}(X_1, \ldots, sX_j, \ldots, X_k) + \nabla_{N} df_{||}(X_1, \ldots, X_k) \]

Therefore
\[ti_N df_{||} = Stu_{||} + t \nabla_{N} df_{||}. \]

Putting this together with the calculation for the normal part gives
\[ti_N df = -d'ti_N df_{\perp} + Stu_{||} + t \nabla_{N} df_{||} \]

Since \(i_N df_{\perp} = i_N df \),
\[ti_N df = -d'ti_N df + Stu_{||} + t \nabla_{N} df_{||} \]
as desired. \(\square \)

To prove Lemma 10.1, we will first require the following intermediate lemma.

Lemma 10.1. For all smooth functions \(f, u \in \Omega^k(M) \) such that \(tu = 0 \), we have that
\[t\nabla_{N} i_N \nabla_{\nabla f} u = \nabla_{\nabla f_{||}} t\nabla_{N} i_N \nabla_{\nabla f} u - ti_N \nabla_{\nabla f_{||}} \nabla_{N} df_{||} + ti_N R(N, \nabla f_{||})df_{\perp} \]
\[+ t\nabla_{[\nabla f_{||}, N]} i_N df_{\perp} - \partial_{\nu} f t \nabla_{N} \nabla_{N} i_N df_{\perp} + \partial_{\nu}^{2} f t \nabla_{N} \nabla_{N} i_N df_{\perp}. \]

Proof. We first split \(\nabla_{\nabla f} \) into its normal and tangential parts: \(\nabla_{\nabla f} = -\partial_{\nu} f \nabla_{N} + \nabla_{\nabla f_{||}} \) and
\[t\nabla_{N} i_N \nabla_{\nabla f} u = t\nabla_{N} \partial_{\nu} f i_N \nabla_{N} u + t\nabla_{N} i_N \nabla_{\nabla f_{||}} u \]
where \(\nabla_{\nabla f_{||}} \) is defined by \(\nabla_{f} = -\eta f \nabla_{N} + \nabla_{\nabla f_{||}} \). We first compute the tangential derivative
\[t\nabla_{N} i_N \nabla_{\nabla f_{||}} \]
\[= ti_N \nabla_{N} \nabla_{\nabla f_{||}} u \]
\[= ti_N \nabla_{\nabla f_{||}} \nabla_{N} u + ti_N R(N, \nabla f_{||})u + ti_N \nabla_{\nabla f_{||}, N}u \]
\[= t\nabla_{\nabla f_{||}} \nabla_{N} i_N u - ti_N \nabla_{\nabla f_{||}} \nabla_{N} u + ti_N R(N, \nabla f_{||})u + ti_N \nabla_{\nabla f_{||}, N}u \]

We now observe that \(ti_N \nabla_{N} u_{||} = 0 \) and \(t\nabla_{N} u_{\perp} = 0 \) so that we have
\[ti_N \nabla_{\nabla f_{||}} \nabla_{N} u_{||} = ti_N \nabla_{\nabla f_{||}} \nabla_{N} u_{||} = ti_N \nabla_{\nabla f_{||}} \nabla_{N} u_{||} \]
and
\[ti_N \nabla_{\nabla f_{||}} \nabla_{N} u_{\perp} = ti_N \nabla_{\nabla f_{||}} \nabla_{N} u_{\perp} = 0. \]
Plugging all this into the equality above we have
\[t\nabla_N^2 \nabla_{\nabla f_j} u = t\nabla_{\nabla f_j} \nabla_N i_N u - t_i \nabla_{\nabla f_j} \nabla_N u \| + t_i N R(N, \nabla f_j) u + t_i N \nabla_{\nabla f_j, N} u \]
(10.3)
\[= t\nabla_{\nabla f_j} \nabla_N i_N u - t_i \nabla_{\nabla f_j} \nabla_N u \| + t_i N R(N, \nabla f_j) u + t_i N \nabla_{\nabla f_j, N} u. \]

If \(tu = 0 \), then the last term \(t_i \nabla_{\nabla f_j, N} u = t_i (\nabla_{\nabla f_j, N} u) \| = 0 \) since \([\nabla f_j, N] \in T \partial M \) and \(N \) is constant length. Furthermore, since \((\nabla_N i_N u) \| = 0 \) for all \(u \) we have that \(t\nabla_{\nabla f_j} \nabla_N i_N u = \nabla_{\nabla f_j} t\nabla_N i_N u \). Therefore we get

\[t\nabla_N^2 \nabla_{\nabla f_j} u = \nabla_{\nabla f_j} t\nabla_N i_N u - t_i \nabla_{\nabla f_j} \nabla_N u \| + t_i N R(N, \nabla f_j) u + t_i N \nabla_{\nabla f_j, N} u. \]

For the derivative in the normal direction we write

\[-\nabla_N \partial_v f N i_N u = -\partial_v f \nabla_N i_N u + \partial^2_v f \nabla_N i_N u. \]

Combining the last two equations finishes the proof.

\[\square \]

Proof of Lemma 4.3 By Lemma 3.3
\[\delta tBu = \delta tBu - (S - (n - 1)K) t_i N (Bu) - t\nabla_N i_N Bu. \]

Now
\[t\nabla_N i_N (Bu) = -iht \left(2\nabla_N i_N \nabla_{\nabla \phi_c} u + \nabla_N \Delta \phi_c i_N u \right) \]
and
\[t_i N (Bu) = -iht_i N \left(2\nabla_{\nabla \phi_c} + \Delta \phi_c \right) u \]
\[= -iht_i N \left(2\nabla_{\nabla \phi_c} \| u - 2\partial_v \phi_c \nabla_N u + \Delta \phi_c u \right) \]

If \(tu = 0 \), then \(t_i \nabla_{\nabla \phi_c} N u = 0 \), so
\[t_i N (Bu) = -ih \left(2t_i \nabla_{\nabla \phi_c} i_N u - 2\partial_v \phi_c t\nabla_N i_N u + \Delta \phi_c t_i N u \right). \]

Therefore
\[\delta tBu = \delta tBu + iht \left(2\nabla_N i_N \nabla_{\nabla \phi_c} u + \nabla_N \Delta \phi_c i_N u \right) \]
\[+ ih(S - (n - 1)K) \left(2t_i \nabla_{\nabla \phi_c} i_N u - 2\partial_v \phi_c t\nabla_N i_N u + \Delta \phi_c t_i N u \right) \]

Now by Lemma 10.1
\[t\nabla_N^2 \nabla_{\nabla \phi_c} \| \]
\[= \nabla_{\nabla \phi_c} t\nabla_N i_N \| - t_i \nabla_{\nabla \phi_c} \| \nabla_N \| \]
\[+ t_i N R(N, \nabla(N, \nabla \phi_c)) u \| + t_i N \nabla_{\nabla \phi_c} \| \nabla_N i_N \| - \partial_v \phi_c t\nabla_N \nabla_N i_N \| + \partial^2_v \phi_c t\nabla_N i_N \|. \]

Substituting this into the previous equation finishes the proof.

\[\square \]

Proof of Lemma 3.7 First we see that for all \(v \in \Omega^k(M) \) and \(e_j, X_l \in T \partial M \) we have
\[(t_i \nabla e_j v)(X_1, \ldots, X_{k-1}) = (\nabla e_j, i_N v)(X_1, \ldots, X_{k-1}) - v(\nabla e_j, N, X_1, \ldots, X_{k-1}) \]

Since \((\nabla e_j, N) \| = 0 \) and \((\nabla e_j, N) \| = se_j \) by Weingarten’s identity, we have that
\[t_i \nabla e_j v = \nabla e_j, ti_N v \| - t_i se_j v \|. \]
Setting $v = \nabla_{e_j} u$ we have for $e_j \in T\partial M$, $j = 1, \ldots, n - 1$

\[
 ti_N \nabla_{e_j} \nabla_{e_j} u = ti_N \nabla_{e_j} ((\nabla_{e_j} u)_\perp + (\nabla_{e_j} u)_{||})
 = \nabla'_{e_j} (ti_N (\nabla_{e_j} u)_\perp) - i_{se_j} (\nabla_{e_j} u)_{||}
\]

Since $(\nabla_{e_j} N)_\perp = 0$ we have that $\nabla'_{e_j} ti_N (\nabla_{e_j} u)_\perp = \nabla'_{e_j} \nabla'_{e_j} (ti_N u)$ and therefore

\[
 (10.4) \quad ti_N \sum_{j=1}^{n-1} \nabla_{e_j} \nabla_{e_j} u = \hat{\Delta} ti_N u - \sum_{j=1}^{n-1} i_{se_j} (\nabla_{e_j} u)_{||}
\]

For the term involving e_n we use $\nabla_N N = 0$ to obtain $i_N \nabla_{e_n} \nabla_{e_n} u = \nabla_{e_n} \nabla_{e_n} i_N u$. Combining this and (10.4) we obtain

\[
 ti_N \hat{\Delta} u = \hat{\Delta} ti_N u + t \nabla_N \nabla_N i_N u - \sum_{j=1}^{n-1} ti_{se_j} (\nabla_{e_j} u)_{||}.
\]

Let $p \in \partial M$ and since the above identity is true for any local orthonormal frame, we will choose $\{e_1, \ldots, e_{n-1}\}$ so that they are eigenvectors of the shape operator s at the point p with $se_j = \lambda_j e_j$.

For $X_1, \ldots, X_l \in T\partial M_p$ we compute

\[
 ti_N \hat{\Delta} u(X_1, \ldots, X_{k-1}) = \hat{\Delta} ti_N u(X_1, \ldots, X_{k-1}) + t \nabla_N \nabla_N i_N u(X_1, \ldots, X_{k-1})
 - \sum_{j=1}^{n-1} i_{se_j} (\nabla_{e_j} u)_{||}(X_1, \ldots, X_{k-1})
 = \hat{\Delta} ti_N u(X_1, \ldots, X_{k-1}) + t \nabla_N \nabla_N i_N u(X_1, \ldots, X_{k-1})
 + \sum_{j=1}^{n-1} (u(\nabla_{e_j} se_j, X_1, \ldots, X_{k-1}) + \sum_{l=1}^{k-1} u(se_j, \ldots, \nabla_{e_j} X_l, \ldots))
 = \hat{\Delta} ti_N u(X_1, \ldots, X_{k-1}) + t \nabla_N \nabla_N i_N u(X_1, \ldots, X_{k-1})
 + \sum_{j=1}^{n-1} (u(\lambda_j I(e_j, e_j), N)N, X_1, \ldots, X_{k-1})
 + \lambda_j \sum_{l=1}^{k-1} u(e_j, \ldots, \nabla_{e_j} X_l, \ldots)
\]

Since $tu = 0$, only the second fundamental form appears in ∇_{e_j} terms:

\[
 ti_N \hat{\Delta} u(X_1, \ldots, X_{k-1}) = \hat{\Delta} ti_N u(X_1, \ldots, X_{k-1}) + t \nabla_N \nabla_N i_N u(X_1, \ldots, X_{k-1})
 + \sum_{j=1}^{n-1} (\lambda_j I(e_j, e_j), N)u(N, X_1, \ldots, X_{k-1})
 + \lambda_j \sum_{l=1}^{k-1} u(e_j, \ldots, II(e_j, X_l), \ldots)).
\]
This shows that
\[\nabla \delta x, \ \text{exterior derivative and codifferential in} \ \nabla \]
\[\text{have the unique decomposition} \]
\[\text{Thus } \nabla u, \ \text{where} \]
\[\text{parameter} \]
\[\text{Proof of Lemma 7.4.} \]
\[\text{In the } (x, x') \text{ coordinates } g \text{ has the form} \]
\[g(x, x') = \begin{pmatrix} 1 & 0 \\ 0 & g_0(x') \end{pmatrix}. \]
\[\text{Consequently, for any } k, l \text{ the Christoffel symbols satisfy} \]
\[\Gamma^l_{ik} = \frac{1}{2} g^{lm} (\partial_l g_{km} + \partial_k g_{lm} - \partial_m g_{lk}) = 0. \]
\[\text{This shows that } \nabla_{\partial_i} dx^l = 0 \text{ for all } I, \text{ and therefore any } k-\text{form } u = u_I dx^l \text{ satisfies} \]
\[\nabla_{\partial_i} (u_I dx^l) = \partial_i u_I dx^l. \]
\[\text{Thus } \nabla_{\partial_i} u = 0 \text{ if and only if each } u_I \text{ only depends on } x'. \text{ In general, if } u \text{ is a } k-\text{form on } \mathbb{R} \times M_0 \text{ we have the unique decomposition} \]
\[u = dx^1 \wedge u' + u'' \]
where \(u(x_1, \cdot) \) is a \((k-1)\)-form in \(M_0 \) and \(u''(x_1, \cdot) \) is a \(k\)-form in \(M_0 \), depending smoothly on the parameter \(x_1 \). If \(\nabla_{\partial_i} u = 0 \), then \(u = dx^1 \wedge u' + u'' \) where \(u' \) and \(u'' \) are differential forms in \(M_0 \).

Suppose now that \(u = dx^1 \wedge u' + u'' \) where \(u' \) and \(u'' \) are forms in \(M_0 \). Denote by \(d_{x'} \) and \(\delta_{x'} \) the exterior derivative and codifferential in \(x' \). Clearly
\[d(dx^1 \wedge u') = -dx^1 \wedge d_{x'} u', \quad du'' = d_{x'} u''. \]
The identity \(\delta = -\sum_{j=1}^n \epsilon_j \nabla e_j \), where \(e_j \) is an orthonormal frame in \(T(\mathbb{R} \times M_0) \) with \(e_1 = \partial_1 \), together with the fact that \(\nabla_{\partial_1} u'' = 0 \), implies that
\[\delta u'' = \delta_{x'} u''. \]
Finally, computing in Riemannian normal coordinates at p gives that
\[
\delta(dx^1 \wedge u')|_p = -\sum_{j=1}^n i\partial_j \nabla_{\partial_j} (u'_j dx^1 \wedge dx^j)|_p \\
= -\sum_{j=2}^n i\partial_j (dx^1 \wedge \nabla_{\partial_j} u')|_p \\
= -dx^1 \wedge \delta_x u'|_p.
\]
Thus
\[
\delta(dx^1 \wedge u') = -dx^1 \wedge \delta_x u'.
\]
It follows directly from these facts that
\[
\Delta(dx^1 \wedge u' + u'') = -(d\delta + \delta d)(dx^1 \wedge u' + u'') \\
= dx^1 \wedge \Delta_x u' + \Delta_x u''.
\]
\[\square\]

REFERENCES

[AGTU11] P. Albin, C. Guillarmou, L. Tzou, G. Uhlmann, Inverse boundary problems for systems in two dimensions, Ann. Henri Poincaré 14 (2013), 1551–1571.

[ABK98] E.V. Arbuzov, A.L. Bukhgeim, S.G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math. 8 (1998), 1–20.

[As12] Y.M. Assylbekov, Attenuated tensor tomography on simple surfaces, preprint (2012), arXiv:1204.4388.

[BS08] M. Belishev, V. Sharafutdinov, Dirichlet to Neumann map on differential forms, Bull. Sci. Math. 132 (2008) no. 2, 128-145.

[BS04] J. Boman, J.-O. Strömberg, Novikov’s inversion formula for the attenuated Radon transform – a new approach, J. Geom. Anal. 14 (2004), 185–198.

[Bu08] A.L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-posed Probl., 16 (2008), 19–34.

[BU01] A.L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27 (2002), 653–668.

[Ca80] A.P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980.

[CZ12] P. Caro, T. Zhou, On global uniqueness for an IBVP for the time-harmonic Maxwell equations, Analysis & PDE (to appear), arXiv:1210.7602.

[COS09] P. Caro, P. Ola, and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm. PDE 34 (2009), 1425–1464.

[Ch11] F.J. Chung, A partial data result for the magnetic Schrodinger inverse problem, preprint (2011), arXiv:1111.6658.

[Ch12] F.J. Chung, Partial data for the Neumann-Dirichlet map, preprint (2012), arXiv:1211.0211.

[DKSJaU09] D. Dos Santos Ferreira, C.E. Kenig, M. Salo, G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math. 178 (2009), 119-171.

[DKSjU07] D. Dos Santos Ferreira, C.E. Kenig, J. Sjöström, and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys. 271 (2007), 467–488.

[DKSjU09] D. Dos Santos Ferreira, C.E. Kenig, J. Sjöström, and G. Uhlmann, On the linearized local Calderón problem, Math. Res. Lett. 16 (2009), 955–970.

[DKL13] D. Dos Santos Ferreira, Y. Kurylev, M. Lassas, M. Salo, The Calderón problem in transversally anisotropic geometries, preprint (2013), arXiv:1305.1273.

[El08] M. Eller, Carleman estimates for some elliptic systems, J. Phys. Conf. Series 124 (2008), 012023.

[Es01] G. Eskin, Global uniqueness in the inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials, Comm. Math. Phys. 222 (2001), no. 3, 503–531.

[ER02] G. Eskin and J. Ralston, On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems 18 (2002), 907–921.

[Fa66] L.D. Faddeev, Increasing solutions of the Schrödinger equation, Sov. Phys. Dokl. 10 (1966), 1033–1035.
[OPS93] P. Ola, L. Päivärinta, E. Somersalo, *An inverse boundary value problem in electrodynamics*, Duke Math. J. 70 (1993), 617–653.

[PSU13a] G.P. Paternain, M. Salo, G. Uhlmann, *Tensor tomography on surfaces*, Invent. Math. 193 (2013), 229–247.

[PSU13b] G.P. Paternain, M. Salo, G. Uhlmann, *Tensor tomography: progress and challenges*, Chinese Ann. Math. Ser. B. (to appear).

[ST09] M. Salo and L. Tzou, *Carleman estimates and inverse problems for Dirac operators*, Math. Ann. 344 (2009), 161–184.

[ST10] M. Salo, L. Tzou, *Inverse problems with partial data for a Dirac system: a Carleman estimate approach*, Adv. Math. 225 (2010), 487–513.

[SaU11] M. Salo, G. Uhlmann, *The attenuated ray transform on simple surfaces*, J. Diff. Geom. 88 (2011), 161–187.

[Sh94] V.A. Sharafutdinov, *Integral geometry of tensor fields*, Inverse and Ill-Posed Problems Series. VSP, Utrecht, 1994.

[SS12] V.A. Sharafutdinov, C. Shonkwiler, *The complete Dirichlet-to-Neumann map for differential forms*, J. Geom. Anal. (2012), doi:10.1007/s12220-012-9320-6.

[Sho13] C. Shonkwiler, *Poincaré duality angles and the Dirichlet-to-Neumann operator*, Inverse Problems 29, (2013) 045007.

[SU87] J. Sylvester, G. Uhlmann, *A global uniqueness theorem for an inverse boundary value problem*, Ann. of Math. 125 (1987), 153–169.

[Ta99] M.E. Taylor, *Partial differential equations I: Basic theory*. Springer, 1999.

[Uh09] G. Uhlmann, *Electrical impedance tomography and Calderón’s problem*, Inverse Problems 25 (2009), 123011.

[Zw12] M. Zworski, *Semiclassical analysis*, Graduate Studies in Mathematics 138, American Mathematical Society, Providence, RI, 2012.

Department of Mathematics, University of Michigan, Ann Arbor, USA

Department of Mathematics & Statistics, University of Jyväskylä, Jyväskylä, Finland

Department of Mathematics, Stockholm University, Stockholm, Sweden