Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Differences by region of birth in SARS-CoV-2 vaccine coverage and positive SARS-CoV-2 test among 400 000 healthcare workers and the general population in Sweden

Rickard Ljung a,⇑, Maria Feychting a, Bo Burström b, Jette Möller b

a Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
b Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden

ABSTRACT

Background: Globally SARS-CoV-2 vaccine coverage varies among healthcare workers.

Methods: Based on Swedish registers, data on vaccination status as of 31 October 2021 were analysed for all adults aged 35–64 years, 3 861 565 individuals, in Sweden by healthcare worker occupation group and region of birth.

Results: For both men and women vaccination coverage decreased in a graded manner by healthcare worker group with physicians having the highest coverage (96%), followed by registered nurses, licensed practical nurses, and nurse aides. Coverage also differed by region of birth for all groups of healthcare workers and non-healthcare workers with those born in Sweden with Sweden born parents having the highest coverage, and those born outside Sweden but within EU the lowest.

Conclusion: The difference in vaccine coverage by region of birth among healthcare workers, regardless of whether it results from socioeconomic inequalities or sociocultural beliefs, puts them at a great occupational hazard and increased risk of nosocomial transmission.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sweden implemented on 27th December 2020 a phased vaccine distribution plan against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [1]. Initially those living in nursing homes were prioritized followed by staff and healthcare workers (HCW) at nursing homes and assisted living facilities. The priority of HCWs was based on their increased risk of being infected in addition to a high potential risk of contributing to nosocomial transmission.

A qualitative study in Europe in 2016, long before the SARS-CoV-2 pandemic, showed that vaccine hesitancy is present among HCW foremost due to fear of side effects [2]. Vaccine acceptance during the pandemic has varied among HCW. By March 2021, in a hospital in United Kingdom (UK), vaccine coverage was higher among physicians than among other groups of HCW, and higher among white and Asian but lower among black and Afro-Caribbean [3]. In contrast, a global survey showed higher vaccine willingness in low- and middle-income countries compared with the United States (US) and Russia [4]. In another qualitative assessment, vaccine hesitancy among HCW in the US decreased from fall 2020 to early spring 2021 [6]. In another US study, intention to be vaccinated was higher among HCW with longer educational requirements [7]. A survey of availability of vaccine coverage data for HCW in the Nordic countries showed that such data were not systematically collected on national level [8], however by linking the national vaccination register in Sweden to information on occupation, such data are now available [9].

This study aims to determine differences by region of birth in vaccine coverage and positive SARS-CoV-2-testing among HCW in Sweden compared with non-HCW by using national registers with complete data regarding occupation, country of birth and vaccination status.

⇑ Corresponding author at: Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 3, SE-17177 Stockholm, Sweden.
E-mail addresses: rickard.ljung@lakemedelsverket.se, rickard.ljung@ki.se (R. Ljung).

https://doi.org/10.1016/j.vaccine.2022.04.014
0264-410X/© 2022 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2. Method

2.1. Study design

The study population comprises all adults aged 35–64 years, permanently residing in Sweden and alive on 31 October 2021 as registered in the Total Population Register [10]. This register also yielded information on region of birth [10]. Vaccination status, retrieved from the national vaccination register, by HCW occupational group is presented as of 31 October 2021, when vaccination was opened for all ages 12 years and older, in total 3 861 565 individuals [9]. Information on latest occupation (as of the status in November 2018), and mother’s and father’s region of birth was retrieved from the nationwide longitudinal integrated database for health insurance and labour market studies (LISA). A positive polymerase chain reaction test or lateral flow test of SARS-CoV-2 was retrieved from the register on surveillance of notifiable communicable diseases [11]. Data are part of the COvid-19 VACCination register SAFETY study in Sweden (CoVacSafe-SE) and have been described in detail elsewhere [12].

2.2. Classification of healthcare workers and region of birth

2.2.1. Healthcare workers

HCW were classified into four groups according to the Swedish Standard Classification of Occupations (SSYK) [13] and ordered by length of post-compulsory education; Physician, registered nurse, licensed practical nurse, and one group including nursing assistant, nurse aide, and psychiatric aide, and as comparison group all others as non-HCW.

According to the Swedish Medical Subject Headings (MeSH) the Swedish occupations under study correspond to the following definitions [14]; Physician: Individuals licensed to practice medicine. Registered nurse: Professionals qualified by graduation from an accredited school of nursing and by passage of a national licensing examination to practice nursing. They provide services to patients requiring assistance in recovering or maintaining their physical or mental health. Licensed practical nurse: Health personnel who do not hold professional degrees or credentials but have completed training and are licensed to provide routine patient care under the direction of registered nurses and physicians. Nursing assistant, nurse aide and psychiatric aide: Persons who assist in the routine care of patients in psychiatric or somatic care, usually under the supervision of the nursing department.

2.3. Region of birth

Region of birth was categorized into four mutually exclusive groups by a combination of the person’s own country of birth and his or her parents’ country of birth, similar to the categorization used by Statistics Sweden [15]. Region of birth was grouped into: (i) Person born in Sweden with both parents born in Sweden or where the parents’ country of birth is unknown (foremost elderly), (ii) Second-generation immigrant, person born in Sweden with at least one parent born outside Sweden, (iii) First-generation immigrant, person born in Europe, (iv) First-generation immigrant, person born outside Europe.

2.4. Classification of outcome

2.4.1. SARS-CoV-2 vaccination

The national vaccination register contains since 1st January 2021 information on SARS-CoV-2 vaccination [9]. Date of vaccination for first dose and second dose of SARS-CoV-2 vaccination was retrieved from the register.

2.5. Statistical analyses

Proportions of the population vaccinated with one dose only, two doses or unvaccinated and proportion positive SARS-CoV-2 test are presented by healthcare occupation groups and region of birth, stratified by sex and age. Due to integrity reasons any number <10 is presented as <10. The population under study is the total population, hence, no statistical tests or confidence intervals are presented.

3. Results

In total, 3 861 565 individuals aged 35–64 years were included, 1 961 787 (50.8%) men and 1 899 778 (49.2%) women. Among the male population 14 932 (0.76%) were physicians, 8588 (0.44%) registered nurses, 11 389 (0.58%) licensed practical nurses, and 37 502 (1.91%) nursing assistants, and corresponding numbers for the female population 17 092 (0.90%) physicians, 69 751 (3.76%) registered nurses, 126 042 (6.63%) licensed practical nurses, 112 220 (5.91%) nursing assistants (Table 1).

For both men and women aged 50–64 vaccination coverage (2-doses) decreased in a graded manner (by educational requirements) by HCW group with physicians having the highest coverage (96%) and nurse aides the lowest. Vaccination coverage differed by region of birth for all groups of HCW as well as among non-HCW with those Sweden born with Sweden born parents having the highest coverage and those born within EU the lowest. Among Sweden born all groups of HCW except nurse aides had higher coverage than non-HCW. Among those foreign born all groups of HCW had higher coverage than non-HCW (Table 2).

Correspondingly, among both men and women aged 35–49 vaccination coverage (2-doses) decreased in a graded manner by HCW group and differed by region of birth as for the older age group 50–64 but the differences between HCW groups and between country of birth were larger (Table 3).

Among both men and women born in Sweden by Sweden born parents, 11–13% of physicians, registered nurses, and licensed practical nurses were registered as SARS-CoV-2 positive in 2020, compared to 10–18% among foreign-born. Among nurse aides, a positive SARS-CoV-2 test was also more common among those outside Sweden (9–11%) compared to Sweden-born (7%). In 2020, the proportion with a positive SARS-CoV-2 test among HCW was higher than in non-HCW. In 2021, a positive SARS-CoV-2 test was also more common among foreign-born compared to Sweden-born, but the proportion with positive SARS-CoV-2 test among HCW was lower than in non-HCW (Table 4).

4. Discussion

In this national study on coverage of SARS-CoV-2 vaccination we show that up to 95% of physicians and registered nurses had been vaccinated with two doses by 31st October 2021. Licensed practical nurses and nurse aides had a lower coverage, but in general higher than non-HCW, except for nurse aides born in Sweden who had a lower coverage than non-HCW of Swedish born. Older HCW had higher coverage than younger. We also show that in all HCW groups Sweden-born had a higher coverage than their foreign-born counterparts. Positive SARS-CoV-2 test in 2021 was slightly more common among foreign-born HCW compared to Sweden-born.

Despite the high vaccination coverage among physicians and registered nurses the difference by region of birth in vaccine coverage among all HCW is of concern. The Swedish National Council on Medical Ethics is an advisory board to the Swedish government on ethical issues in healthcare and biomedicine and has stated that all
HCW have a responsibility to get vaccinated [16]. There has been no official mandate for all HCW to get vaccinated. Some health care providers have raised this issue, but according to current legislation it is not possible to demand that HCW get vaccinated. However, under certain circumstances non-vaccinated employees could be assigned other work tasks.

Ethnic differences in vaccine hesitancy have been shown previously but not in the Nordic countries [2–8]. Explanations of vaccine hesitancy include concern around immediate side-effects and long-term effects but also mistrust in information and in the government and pharmaceutical companies [5,17]. A lower level of health literacy may in part explain lower vaccine coverage among foreign-born in non-HCW but would not be expected to explain lower vaccine coverage among foreign-born HCW. Regardless of whether lower vaccine coverage in foreign-born HCW is an effect of mistrust in government and the healthcare system, socioeconomic inequalities, or due to sociocultural beliefs it is important to address vaccine hesitancy as these groups have an increased

Table 1
Number of healthcare workers and non-health care workers aged 35–64, by country of birth, as of 31 October 2021, Sweden.

Healthcare worker	Physician	Registered Nurse	Licensed practical nurse	Nurse aide	Total
Men	14 932	11 389	37 502	1 889 787	
Sweden born by Sweden born	7594 (50.9)	5603 (49.2)	19 852 (52.9)	1 222 589 (64.7)	11 270 040 (75.8)
Sweden born by foreign born	15 293 (10.2)	1 918 (10.0)	248 367 (13.4)	284 378 (16.1)	749 247 (48.2)
Born within EU	3109 (20.6)	852 (7.5)	3443 (9.2)	217 178	
Born outside EU	2700 (18.1)	4024 (35.3)	10 477 (27.9)	284 378 (16.1)	749 247 (48.2)

Table 2
Proportion healthcare workers fully vaccinated (2doses), started vaccination (1dose) and unvaccinated, by country of birth, aged 50–64, Vaccination status as of 31 October 2021.

Healthcare worker	Physician	Registered Nurse	Licensed practical nurse	Nurse aide	Non-healthcare workers	Total
Men	14 932	11 389	37 502	1 889 787		

Due to integrity reasons any number <10 is presented as <.
Proportion healthcare workers fully vaccinated (2 doses), started vaccination (1 dose) and unvaccinated, by country of birth, aged 35–49, Vaccination status as of 31 October 2021. Due to integrity reasons any number <10 is presented as <.

Table 3

Healthcare worker	Non-healthcare workers	Total
	Women	
	Sweden born by Sweden born	
	6152 (100)	25 263
	26 333 29 777 28 123	476 989
	567 374 476 152 113 231	
	918 (10.8)	
	945 (3.6)	
	2969 (10.0)	
	4197 (14.9)	
	42 264 (8.9)	
	50 484 11 919 (2.5)	
	14 526 14 333 258 302	
	1 dose	
	141 (2.3)	
	586 (22.2)	
	900 (3.0)	
	980 (3.5)	
	11 919 (2.5)	
	14 526 14 333 258 302	
	2 doses	
	5902 (95.9)	
	24 802 (94.2)	
	25 908 (87.0)	
	22 946 (81.6)	
	422 806 (88.6)	
	502 364 97 969 107 332	
	Sweden born by foreign born	
	1187 (9.1)	
	3380	
	4790	
	5284	
	83 328 97 969 107 332	
	1 dose	
	51 (4.3)	
	248 (7.3)	
	764 (16.0)	
	1215 (23.0)	
	14 964 (17.9)	
	17 224 97 969 107 332	
	1 dose	
	37 (3.1)	
	105 (3.1)	
	200 (4.2)	
	241 (4.6)	
	2943 (3.5)	
	35 265 97 969 107 332	
	2 doses	
	1099 (92.6)	
	3027 (89.6)	
	3826 (79.9)	
	3828 (72.4)	
	65 439 (78.5)	
	77 219 97 969 107 332	
	Born within EU	
	2500	
	2353	
	5729	
	5575	
	92 522 108 679 107 332	
	Unvaccinated	
	275 (11.0)	
	350 (14.9)	
	1388 (24.2)	
	2026 (36.3)	
	35 187 (38.0)	
	39 226 108 679 107 332	
	1 dose	
	69 (2.7)	
	74 (3.1)	
	254 (4.4)	
	286 (5.1)	
	4106 (4.4)	
	4789 108 679 107 332	
	2 doses	
	2156 (86.2)	
	1929 (82.0)	
	4087 (71.3)	
	3263 (58.5)	
	53 229 (57.5)	
	64 664 108 679 107 332	
	Born outside EU	
	1168	
	2369	
	12 413	
	13 521	
	187 310 108 679 107 332	
	Unvaccinated	
	110 (9.4)	
	272 (11.5)	
	2245 (18.1)	
	3528 (26.1)	
	42 751 (27.1)	
	48 906 108 679 107 332	
	1 dose	
	30 (2.6)	
	114 (4.8)	
	622 (6.6)	
	985 (7.3)	
	9191 (5.8)	
	11 142 108 679 107 332	
	2 doses	
	1028 (88.0)	
	1983 (83.7)	
	9346 (75.3)	
	9008 (66.6)	
	105 897 (67.1)	
	127 262 108 679 107 332	

occupational risk of SARS-CoV-2 exposure [18,19]. In an effort to increase vaccination coverage, multilingual information campaigns and mobile vaccination centres have been implemented in Sweden to target residential areas with a large proportion of immigrants and a low vaccine coverage.

The higher proportion of SARS-CoV-2 positive tests in 2020 among both foreign-born HCW and non-HCW compared to Sweden-born may reflect inequalities in health. Foreign-born have through their living and working conditions a higher exposure and susceptibility to SARS-CoV-2 as well as a higher risk of more severe consequences of the disease leading to a higher disease mortality [20]. Hence, a SARS-CoV-2 infection in foreign-born might more often lead to the need of healthcare treatment and thus result in a positive test. In contrast, obstacles to health-seeking behaviour faced by non-Swedish-speaking immigrants may have led to that they failed to get tested, and may thus not have isolated themselves, aiding transmission at home and work. However, in 2021, testing have been free and widely available, thus detection bias would probably not fully explain the higher proportion of SARS-CoV-2 positive among foreign-born persons. Instead, socioeconomic factors such as crowded living conditions with difficulties to follow recommendations of social distancing, a higher rate of transmission in the residential area and dependency on public transportation may increase the risk of exposure to the virus and could together with a lower vaccination coverage contribute to a higher transmission of SARS-CoV-2, which may in turn exacerbate existing inequalities in health.

The strengths of this study include the nationwide coverage of the whole population aged 35–64 years, the wide range of healthcare occupations, by information on region of birth, and mandatory reporting of SARS-CoV-2 vaccinations and SARS-CoV-2 positive tests to nationwide registers. One limitation is that information on occupation was obtained as of the status in November 2018 and some individuals may have changed occupation since then. This probably foremost affects those with shorter education, nurse aides followed by licensed practical nurses; hence vaccination coverage might be underestimated in these groups as the denominator probably is slightly overestimated compared to those still working as nurse aides in 2021. Also, despite being registered in Sweden, it may be a larger proportion of foreign-born than Sweden-born residing abroad or who moved abroad during the pandemic, or simply spent their vacation in their country of origin and might thus have been vaccinated abroad which is unknown to the Swedish national vaccination register. Hence, vaccine coverage might be underestimated in foreign-born and probably foremost among those born within EU who have easier access to their country of origin. However, all HCW employed within the healthcare services were offered vaccination early spring 2021. We have not assessed whether HCW who previously had been tested positive for SARS-CoV-2 to a lower or higher degree have chosen to get vaccinated.
The general recommendation in Sweden at the time was to get vaccinated even if you had had a verified SARS-CoV-2 infection.

In conclusion, vaccine coverage among physicians and registered nurses is very high. It is lower among licensed practical nurses and nurse aides, for some groups even lower than in non- HCW which is probably explained by a lower socioeconomic position among nurse aides. In all HCW groups Sweden-born had higher vaccination coverage than foreign-born. The difference in HCW which is probably explained by a lower socioeconomic position among nurses and nurse aides, for some groups even lower than in non-HCW.

Table 4
Proportion healthcare workers with positive test for SARS-CoV-2 in 2020 and 2021, by country of birth, aged 35–64, Positive test status as of 31st October 2021.

Healthcare worker	Physician N (%)	Registered Nurse N (%)	Licensed practical nurse N (%)	Nurse aide N (%)	Non-healthcare workers N (%)
Men					
Sweden born by Sweden born	7594 (11.9)	6440	5603	19852	1222582
COVID-19 2020	906 (11.9)	876 (13.6)	719 (12.8)	1430 (7.2)	58196 (4.8)
COVID-19 2021	483 (6.4)	453 (7.0)	400 (7.1)	1498 (7.6)	101429 (8.3)
Sweden born by foreign born	1529	840	910	3730	191285
COVID-19 2020	188 (12.3)	122 (14.5)	118 (13.0)	281 (7.5)	10130 (5.3)
COVID-19 2021	115 (7.5)	52 (6.2)	73 (8.0)	294 (7.9)	16207 (8.5)
Born within EU	3109 (11.4)	382 (13.6)	582	3443 (7.0)	209192 (10.9)
COVID-19 2020	354 (10.5)	90 (15.1)	136 (16.0)	300 (8.7)	10790 (4.8)
COVID-19 2021	211 (6.8)	36 (6.2)	74 (8.7)	330 (9.6)	17281 (8.3)
Born outside EU	2700	726	4024	10477 (7.0)	269310 (8.4)
COVID-19 2020	409 (15.2)	132 (18.2)	641 (15.9)	1066 (10.2)	16588 (6.2)
COVID-19 2021	220 (8.2)	59 (8.1)	367 (9.1)	995 (9.5)	24368 (9.2)
Women					
Sweden born by Sweden born	9170 (11.8)	53 (8.24)	80190	67418	998738 (9.8)
COVID-19 2020	1038 (11.1)	6189 (11.5)	9614 (12.0)	4766 (7.1)	52305 (5.2)
COVID-19 2021	624 (6.7)	4036 (7.5)	6135 (7.6)	5374 (8.0)	85412 (8.6)
Sweden born by foreign born	1672	6766	11393	11254 (7.0)	190172 (10.0)
COVID-19 2020	215 (12.9)	847 (12.5)	1338 (11.7)	804 (7.1)	9049 (5.7)
COVID-19 2021	126 (7.5)	522 (7.7)	939 (8.2)	935 (8.3)	13982 (8.8)
Born within EU	4107	4993	13379	11981 (7.0)	173928 (8.0)
COVID-19 2020	413 (10.1)	659 (13.2)	2054 (15.4)	1077 (9.0)	9361 (5.4)
COVID-19 2021	268 (6.5)	401 (8.0)	1366 (10.2)	1175 (9.8)	15702 (9.0)
Born outside EU	1943	4168	21080	21567 (10.8)	242920 (11.9)
COVID-19 2020	241 (12.4)	679 (16.3)	3604 (17.1)	2332 (10.8)	15595 (6.4)
COVID-19 2021	141 (7.3)	356 (8.5)	1989 (9.4)	2142 (9.9)	23788 (9.8)

5. Disclosure statement

R.L. is employed at the Swedish Medical Products Agency, SE-751 03 Uppsala, Sweden. The views expressed in this paper do not necessarily represent the views of this Government agency.

Ethical approval

The study is approved by the Swedish Ethical Review Authority (2020-06859, 2021-02186).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[11] Rolfhamre P, Jansson A, Arneborn M, Ekdahl K. SmiNet-2: Description of an internet-based surveillance system for communicable diseases in Sweden. Euro Surveill 2006;11(5):15–6. https://doi.org/10.2807/ese11.05.00626-en.

[12] Ljung R, Sundström A, Grunewald M, Backman C, Feltelius N, Gedeborg R, Zethelius B. The profile of the COvid-19 VACCination register SAFETY study in Sweden (CoVacSafe-SE). Ups J Med Sci 2021;126. https://doi.org/10.48101/umms.v126.8136. eCollection 2021.

[13] Statistics Sweden. The Swedish Standard Classification of Occupations 2012 (SSYK 2012). www.scb.se/contentassets/0c0085c085a45d4b1dc83923ad933a/in-english-ssyk-2012.pdf. Accessed 19th November 2021.

[14] Karolinska Institutet. Swedish Medical Subjects Heading (MeSH) – Health personnel. www.mesh.kib.ki.se/term/D006282/health-personnel. Accessed 19th November 2021.

[15] Statistics Sweden. Reports on Statistical Co-ordination for the Official Statistics of Sweden. Statistics on persons with foreign background Guidelines and recommendations 2002:3. Örebro, SCB, 2002. https://www.scb.se/contentassets/8078b8c7/8b8c434a8036d11f695b6d5/mis-2002-3.pdf. Accessed 19th November 2021.

[16] The Swedish National Council on Medical Ethics. https://smer.se/wp-content/uploads/2021/09/smer-uttalande-avseende-vaccination-mot-covid-19-avvard-och-omsorgspersonal.pdf.

[17] Barry Mazin, Temsah Mohamad-Hani, Aljamaan Fadi, Saddik Basema, Al-Eyadhy Ayman, Alenezi Shuliweeh, et al. COVID-19 vaccine uptake among healthcare workers in the fourth country to authorize BNT162b2 during the first month of rollout. Vaccine 2021;39(40):5762–8. https://doi.org/10.1016/j.vaccine.2021.08.083. Online ahead of print.

[18] Larson HJ, Clarke RM, Jarrett C, Eckersberger E, Levine Z, Schulz WS, Paterson P. Measuring trust in vaccination: A systematic review. Hum Vaccin Immunother 2018;14(7):1599–609. https://doi.org/10.1080/21645515.2018.1450252. Epub 2018 May 10.

[19] Barboza M, Marttila A, Burström B, Kulane A. Covid-19 and pathways to health inequities for families in a socioeconomically disadvantaged area of Sweden - qualitative analysis of home visitors' observations. Int J Equity Health 2021;20(1):215. https://doi.org/10.1186/s12939-021-01556-6.

[20] Diderichsen F. How did Sweden Fail the Pandemic? Int J Health Serv 2021;51(4):417–22. https://doi.org/10.1177/0020714421994848. Epub 2021 Feb 26.