The impact of auctions on financing conditions and cost of capital for wind energy projects

Mak Dukan a, *, Lena Kitzing b

a Energy Economics and System Analysis (EESA) Section, Sustainability Division, Department of Technology, Management and Economics & Society, Market & Policy (SMP) Section, DTU Wind Energy, Technical University of Denmark, Lyngby, Roskilde, Denmark
b Society, Market & Policy (SMP) Section, DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark

ARTICLE INFO

Keywords: Renewable energy auctions Cost of capital Financing conditions Investor risk Auctions design

ABSTRACT

The recent rise of auctions to allocate support payments for renewable energy projects creates new uncertainties during project development and causes a decrease in support levels. We investigate the effects of the shift to auctioning on costs of capital (CoC) and financing conditions through semi-structured and focus group interviews with 40 experts in onshore and offshore wind project development and financing in Europe. We find that auctions create a competitive environment that pressures the industry into accepting higher risks and lower returns. Banks have reduced debt margins, while large investors decreased hurdle rates and equity returns, despite additional risks from auctions, such as uncertainty about future award prices, allocation and qualification risks. The risk of being awarded support and incurring sunk costs makes smaller bidders averse to participating in auctions. Competitive bidding may also decrease secured revenues and increase offtaker risks, especially when combined with sliding premiums. Despite increased price risk, the competitive pressure driven by project sponsors, seems to lower financing costs and hurdle rates, thus decreasing CoC for offshore projects. To reduce negative impacts on CoC and financing, policymakers can minimise additional risks, by adopting remuneration schemes that stabilise revenues, and supporting smaller actors through removing participation hurdles.

1. Introduction

Policymakers increasingly use auctions to allocate renewable energy (RE) support (IRENA, 2019b). In 2011, only five European Member States used auction-based support schemes (Kitzing et al., 2012). Since then, legislative changes such as the EU State Aid Guidelines (European Commission, 2014), lead to more auction implementations, so that today, there are 19 active schemes (Szabó et al., 2020). In an auction-based support scheme, eligible bidders compete, typically based on their required support level, to obtain support rights for a limited quantity of additional renewable energy capacity that a state authority is procuring (Mora et al., 2017). In Europe, successful bidders typically receive support in form of access to a fixed remuneration or premium – essentially an add-on to the wholesale electricity price – that exposes them to different levels of price risk, depending on the individual designs (CEER, 2016). This is unlike the early expansion of RE in Europe, where support policies such as the feed-in-tariff prevailed (Kitzing et al., 2012), and that offered guaranteed price certainty and a low-risk investment profile (Held et al., 2006). Auctions induce new risks into RE – such as the risk of qualifying and winning the auction - and their introduction coincides with increased price risk, which has become one of the main risk sources for renewables in Europe (Egli, 2020).

As renewable energy investments are mainly composed of upfront capital costs, and their economic feasibility is more sensitive to changes in costs of capital than their fossil fuel alternatives (Hirth and Steckel, 2016; Schmidt, 2014), de-risking renewable energy investments could increase the cost-effectiveness of the energy transition (Komendantova et al., 2019; Ondraczek et al., 2015; Schinko and Komendantova, 2016). Accordingly, policy makers need a better understanding of the impacts of auctions on costs of capital and financing.

To this end, Pahle and Schweizerhof (2016) conceptually analyse the effects of introducing auctions and remuneration scheme changes in the German renewable energy law on price risks, volume risk, off-taker risk and support allocation risk. Polzin et al.’s (2019) literature review outlines the potential impacts of different auction and Power Purchase Agreement (PPA) designs on risk and return for investors, while Shirimali et al. (2016) investigate auction cost-effectiveness in India through a risk perspective. Kruger et al. (2019) assess the impact on project risks of different site selection procedures for projects in solar PV auctions in South Africa and Zambia. Botta (2019) explores the relation between...
auctions and costs of capital (CoC), by focusing on the impacts of different auction design combinations on cost of equity. While these studies take into account the general risk-return perspective of support policies – as described by Dinica (2006) – they do not focus on the effects of auctions on different elements of CoC and financing such as costs of equity, costs of debt, debt size and other project financing conditions.

This paper addresses this research gap by presenting an overview of the interactions between auctions and financing conditions. By exploring the potential relations, we lay the groundwork for uncovering the cause-effect relations between auctions and different elements of cost of capital and financing. Through linking finance theory and RES auction applications by means of literature study and 17 semi-structured and 21 focus group interviews, we formulate and validate eight potential effects of auctions on financing. As financing and the impact of auctions on bidder’s financing conditions are private and typically confidential information, we used stakeholder interviews to obtain otherwise inaccessible data. We selected diverse interviewees, ranging from major offshore developers and utilities investing in the sector, to smaller and larger onshore developers, representatives of major commercial banks, original equipment manufacturers (OEM), energy community members, and insurers.

This paper is organised as follows: Section 2 presents the elements of CoC and financing that we consider, and discusses the eight potential effects. Section 3 gives the methodology. Section 4 presents the findings, and Section 5 discusses them. Section 6 concludes and offers implications for policy-makers.

2. Potential effects of auctions on financing and costs of capital

Within this section we first present the corporate finance theory that underpins our analysis, whereby we also define more precisely the elements of CoC and financing that we investigate. After this we formulate the eight potential effects, outlined in Fig. 1 according to project development stages.

2.1. Elements of costs of capital and financing

Cost of capital refers to the costs under which capital providers lend or invest debt or equity into a company or project (Pratt and Grabowski, 2014). The overall costs of capital, weighted by the shares and costs of debt and equity in overall financing, forms the weighted average costs of capital (WACC) (Brealey and Myers, 2002). Companies use the WACC in project valuation to discount cash flows and calculate Net Present Value (NPV) (Ross et al., 1993). A positive NPV indicates that projects generate internal rates of return (IRR) higher than the WACC, meaning they create value and companies should undertake them (Pratt and Grabowski, 2014; Titman and Martin, 2007). However, in practice companies only initiate projects whose expected IRR equals or surpasses an internally determined hurdle rate. This oftentimes exceeds the WACC, to filter through multiple IRR-positive investment opportunities due to capital constraints (Helms et al., 2015), or adjust for project specific risks that differ from the companies risk profile (Hürlimann and Bengoa, 2017). When hurdle rates are higher than the WACC, companies apply positive hurdle rate premiums. Because of strategic reasons - such as gaining an advantage in a new market - companies may also decrease hurdle rates and accept projects with negative hurdle rate premiums, whose expected IRR is lower than the WACC. Assuming debt obligations are fixed, under such conditions companies accept lower equity returns i.e they apply lower costs of equity, as illustrated in Fig. 2.

According to the Modigliani and Miller (1958) capital irrelevance theory, in perfect markets, companies are indifferent to financing projects through debt or equity. For example, increasing the debt share to benefit from lower cost of debt as compared to equity would be futile, as this would increase the cost of equity (due to increased equity risks) and perfectly balance the benefits of higher leverage. Therefore, under perfect market conditions, a company’s WACC should be constant. However, markets are subject to numerous imperfections, including taxation, financial distress costs, agency costs and asymmetric information (Berk and DeMarzo, 2018). Considering this, companies typically strive in practice to leverage their projects by maximising debt size, to lower their WACC. Recent surveys on costs of capital of onshore wind energy projects across the EU find shares of debt between 55% and 80% (Brückmann, 2018; Noothout et al., 2016; Tesniere et al., 2017), largely because debt minimises project costs, as it is cheaper than equity (Grulios Alonso, 2015).

Onshore and offshore wind investors increasingly employ debt through project financing (Wind Europe, 2019), where they create a financially and

![Fig. 1](image-url) a) Potential effects derived based on corporate finance theory, previous research on auctions for renewable energy support and six exploratory semi structured interviews b) Auction and remuneration scheme designs considered in the paper – all designs correspond to project development stages and c) Individual elements of costs of capital and financing that are potentially affected by the auction designs. These connect to the above named potential effects.
etc. (Mora et al., 2017). Auctioneers also require bidders to satisfy material pre-qualifications such as planning permits, grid concessions from bidders investing into qualifying for the auction through obtaining scheme, bidders are not guaranteed support until winning a tender. This capital

2.2. Auctions could affect the cost and availability of project development capital

Auctions for renewable energy support have created new uncertainties during project development, which may affect the above outlined CoC and financing elements. In an auction based support scheme, bidders are not guaranteed support until winning a tender. This so called allocation risk increases the likelihood of sunk costs, arising from bidders investing into qualifying for the auction through obtaining material pre-qualifications such as planning permits, grid concessions etc. (Mora et al., 2017). Auctioneers also require bidders to satisfy financial pre-qualifications, by submitting bid bonds to demonstrate their financial capability (Kreiss et al., 2017). Most often these are bank guarantees and the auctioneers sometimes use them to enforce penalties, by retaining and drawing on them in case of project delay or non-realisation (Soyal and Kurgpold, 2016). While the auctioneer returns the bonds to unsuccessful bidders, banks may require bidders to submit cash collateral in exchange for issuing the guarantee, meaning the bidder may suffer a temporary decrease in liquidity. We define the risks of material and financial pre-qualifications as qualification risk.

Bidders might respond to allocation and qualification risk by adjusting their hurdle rates and equity returns in several ways, which we discuss below.

Potential effect 1: Allocation risk might impact hurdle rates and costs of equity in three ways. First, it might incline potential bidders to use higher hurdle rates in project valuation, in order to account for the sunk costs of failed bids (PE 1a). Second, the bidder might decrease hurdle rates to increase the probability of being awarded. Assuming that the company’s debt obligations towards external creditors are fixed, this would mean accepting a lower return on equity (PE 1b). Third, the bidder might decide not to enter the auction (PE 1c).

The literature related to the effect of allocation risk on cost of capital of renewable energy investments is scarce. While Hern et al. (2015) estimate the impacts of introducing auctions for Contracts for Difference in the UK, and conclude that a 50% probability of winning could translate into a hurdle rate mark-up of between 0.75% and 1.3%, we are unaware of other literature that directly relates to PE 1.

Material and financial pre-qualifications might impact the bidders similarly as allocation risk.

Potential effect 2: First, the bidder could incorporate the costs of qualifying into capital expenditures by increasing the cost of capital, and hence bid higher to maintain the hurdle rate level (PE 2a) Second, the bidder could maintain the bid level, and hence accept a lower hurdle rate (PE 2b) Third, the bidder could also decide not to enter the auction because of the qualification risk (PE 2c).

Larger actors are more likely to accept allocation and qualification risk, and adjust hurdle rates according to their strategy. The additional material and financial pre-qualifications might even improve their debt financing since they ensure the seriousness of their bids and prevent speculative bidding (Botta, 2019). However, smaller bidders like community energy groups are most likely to withdraw from auctions with strict prequalification’s, as they lack scale to bid multiple projects simultaneously and diversify away allocation risk (Grashof, 2019; Grashof and Droschel, 2018; Lucas et al., 2017).

Auction volumes and frequencies might also impact project development capital. While auction based support mechanisms can create stability by enabling governments to control support costs (Mora et al., 2017), they are vulnerable to lack of long-term political commitment. Intermittent auction rounds decrease planning security, needed to develop solid project pipelines (Del Río and Linares, 2014), while endogenous reductions of auction volumes or reserve prices also decreases competition (Ehrhart et al., 2020).

Potential effect 3: Auction schemes with clearly defined auction round frequency, auction dates and auction volumes might have positive effects on cost of equity, cost of debt and debt terms through improving planning uncertainty, especially in previously unstable markets (PE 3a). However, sudden changes and lack of clear schedules could increase the cost and decrease availability of project development capital, and possibly increase market and industry-wide risk premiums (PE 3b).

2.3. Penalties could impact both financing conditions and equity returns

Depending on their design, penalties might impact project bankability or trigger similar effects as allocation and qualification risk. The auctioneer can implement penalties by reducing support level or duration, terminating the support contract, or excluding bidders from future rounds, and enforce them by retaining parts of the submitted bid bond (Gephart et al., 2017). Lower remuneration levels or duration could endanger the projects ability to meet DSCR requirements, while penalties where the auctioneer retains parts of the bid bond may create additional costs, affecting equity returns and hurdle rates in similar ways as described in potential effects 1 and 2. However, while penalties increase costs in case of completion failure, their occurrence is not directly linked to completion risk, as the latter depends on factors outside the scope of the penalty itself, for instance the permitting environment.

Potential effect 4: Penalties, where the auctioneer reduces support duration or level might affect the projects ability to repay banks loans and could ultimately lead to lower debt capacity and a higher WACC (PE 4a). Penalties that are implemented by retaining parts of the bid bond might increase hurdle rates, if the additional costs nudge the bidder to bid higher, or decrease them if the bidder reduces expected return on equity (PE 4b).

Fig. 2. Companies may differentiate their hurdle rate (required IRR for project execution) from the theoretically applicable weighted average cost of capital (WACC).
2.4. Auction competition could decrease equity and debt margins

As auctions create a highly competitive environment, the renewable energy industry is likely to transition into a state with lower margins. Companies often operate with positive hurdle rate premiums in situations of industry growth and financial health (Meier and Tarhan, 2007) - an environment resembling the RE industry prior the introduction of banking competition also plays a role. Furthermore, in auctions with long realisation deadlines and lenient penalties, the project’s option value (Dixit and Pindyck, 1994) might drive a bidder’s decision to bid aggressively (Matthias et al., 2019).

Potential effect 5: Faced with high auction competition, bidders might reduce equity return requirements (by reducing their hurdle rate), allowing them to become more competitive by bidding lower (PE 5).

Debt margins depend on many factors, including financing learning rates, which might have decreased them by 11%, for both onshore wind and solar PV, for every doubling of installed capacity (Egli et al., 2018). However, since banks compete for market share by decreasing lending interest rates (Leroy and Lucotte, 2015; Leuvensteijn et al., 2008, 2013), banking competition also plays a role.1 Auctions might have intensified this, as sponsors negotiate financing offers and select the one that decreases their CoC the most, although the European Central Banks (ECB) monetary policy since the 2008 financial crisis also played a critical role in decreasing lending interest rates (Claeys et al., 2015).

Potential effect 6: When bank competition is high and sponsors pressure banks to offer better terms to become more competitive in auctions, banks might respond by decreasing debt margins (PE 6).

2.5. Auctions could lower secured revenues and worsen project financing conditions

Policymakers usually introduce auctions along with market based remuneration schemes, which in combination with high auction competition might expose projects to large merchant and market risks, and deteriorate their project financing conditions. With sliding premiums where bidders retain excess revenues when the electricity price exceeds the bid level (Klobasa et al., 2013), low bids expose bidders to merchant risks of directly selling electricity on power markets. While they mitigate this through corporate Power Purchase Agreements, PPA contractors might be inaccessible in time of bidding, exposing the bidder to the market risk of acquiring one. Additionally, if the bidder contracts off-takers with a lower credit rating, banks might offer less favourable financing due to increased credit exposure. Fixed premiums that top-up the electricity price with a premium, expose RE producers fully to price fluctuations, and create similar market and merchant risks. Conversely, with Contracts for Difference (CfD) bidders receive a government-backed contracted price, therefore eliminating price risks. However, recent auctions for CdDs also produced record low results (Woodman and Fitch-Roy, 2019), which may increase DSCR requirements due to lower revenue levels.

Potential effect 7: Auctions lead to projects with low levels of revenues from secured support payments and/or higher market risk exposure, leading to higher DSCR requirements. This could translate into lower debt sizes, higher WACC values and potentially shorter loan tenors (PE 7).

2.6. Auctions may cause a shift from project to balance sheet financing

Renewable energy sponsors can finance projects without banks, by employing their balance sheets directly. In such cases companies issue corporate bonds (Wind Europe, 2019) or use other capital sources, such as retained earnings to fund projects. However, balance sheet financing might be unavailable to smaller sponsors. Through using project financing, they overcome their size limitation, and incorporate projects into a separate SPV (Gatti, 2013). By not employing their balance sheet directly, renewable energy sponsors initiate projects despite existing debt, and overcome their debt overhang problem (Steffen, 2018). However, as banks provide loans only against projects’ assets and revenue streams, project financing might become less available in an environment with higher market and merchant risks.

Potential effect 8: The potential decrease in secured revenues, greater revenue volatility and exposure to less creditworthy off-takers, may worsen project financing loan conditions to an extent that forces sponsors to switch to balance sheet financing or find other risk sharing arrangements. This could especially happen in countries, where banks have little experience of dealing with market-based support instruments, or where high price risks prevail (PE 8).

3. Research design

To understand the effects of auctions on CoC and financing we conducted semi-structured and focus group interviews with stakeholders from onshore and offshore wind financing and project development. According to Patton (2015), both of these interview types enable the researcher to pre-define a research structure (as opposed to open-ended interviews), while allowing sufficient flexibility to explore new and unforeseen concepts. Moreover, focus groups enable cost effective data collection with more participants, and they facilitate a discussion between conflicting perspectives, which enhances the data quality.

Our study is based on an objectivist grounded theory approach (Su, 2018), which we conducted in five steps: i) we consulted corporate finance theory, and literature on auctions for renewable energy support. This was necessary to identify meaningful questions and effectively engage with the interviewees (Alvesson, 2012); ii) we conducted the first interview round, consisting of six semi structured interviews and one focus group with eight participants iii) based on this we validated early theoretical findings, restructured the questions to embrace new emerging themes and formulated the eight potential effects; iv) we then conducted the remaining interviews and focus groups, while asking questions targeted at the eight potential effects; iv) we finally coded the interviews to assess if the interviewees spoke in favour of or against the effects. To conclude if the interviews affirm a potential effect, we applied a threshold equalling at least 60% of the coded segments of that effect. Altogether, the data comprises of 17 semi-structured interviews with 19 interview respondents, and four focus groups with 21 participants, which we conducted between March 2019 and February 2020. To enrich our data sample, we also participated in an offshore wind finance conference, and took extensive notes. We focused on stakeholders active in onshore and/or offshore wind. Although we limited our scope to EU 27 and UK, our data sample comprises one interview that mentions only North African experiences with auctions. We acquired the first six interviews based on the networks of the authors and the AURES2 project (AURES2, 2020), and the remaining ones through referrals or snowball sampling (Egli et al., 2018). Finally, we acquired the focus group participants with the help of Wind Europe, a wind energy industry association (Wind Europe, 2020).

As can be seen in Table 1, our sample consists of 17 project developers, five bankers, three OEM representatives, and other interviewees (see Table 2 in Annex for a more detailed description). We acquired a broad group of interviewees because of the exploratory nature of our study, where we aimed to understand all possible effects of auctions on financing and CoC.

1 Leroy and Lucotte (2015) measure bank competition through the Lerner Index that measures competition as the price-cost margin where 0 indicates perfect competition (prices equal costs) (Lerner, 1934), while Leuvensteijn et al. (2008) and Leuvensteijn et al. (2013) apply the Boone Indicator, where “more efficient firms (that is, firms with lower marginal costs) will gain higher market shares or profits, and this effect will be stronger the heavier competition in that market is”. Therefore unlike the Herfindahl-Hirschman Index (HII) that is used to measure concentration in the banking industry (Vujic et al., 2002), the measures that we refer to focus on efficiency and the price-cost margin.
We asked the interviewees broad questions related to the change in financing conditions and CoC due to the shift to auctioning, and to comment if any auction design in specific affected their investment risk more than the others. As our interviewees have experiences with diverse auction schemes, we asked them to comment on auction designs within a specific country and technology context. This enabled us to compare the effects within different schemes and draw general conclusions (see Annex for more details).

We conducted the semi-structured interviews in English under Chatham House Rules, over the phone or in person, while we held three focus groups in person and one via online conference. Each semi-structured interview lasted between 45 to 60 min, while each focus group lasted for at least 60 min. With the permission of the interviewees, we recorded the semi-structured interviews, with the exception of two where the interviewee declined recording, and one where the recording equipment failed. We transcribed verbatim the recorded interviews, while the data from the unrecorded ones comprise of notes. We did not record the focus group interviews. Instead, at least two persons moderated each group, where one moderated the discussion, while the other took notes. We formed the interviewee groups randomly. In addition, we used a visual aid to stimulate the discussion, which comprised of a chart with project development stages and risk scales, ranging from “large worsening” to “large improvement”. Each moderator asked the participants to evaluate and explain if at any project development stage, an auction design affected their investment risk, in comparison to project development within a non-auction based generation scheme designs. Finally, the interviewees dismiss the connection between auction competition and the pressure among sponsors and banks to reduce their equity and debt margins (PE 5 and PE 6), while our interviewees contradict regarding the effect of auctions on revenues (PE 7). Although some ascribe a risk (PE 1) as the most pertinent new risk during project development, however, our interviews did not record any findings related to allocation risk and its effect on hurdle rate adjustment (PE1a, PE1b). Regarding financial pre-qualifications, they seem to disincentivise smaller onshore actors from bidding (PE 2c), while they also incentivise new partnerships, where OEM’s submit bid bonds together with smaller project developers. However, we again do not find evidence that pre-qualifications affect hurdle rate adjustments (PE 2a, PE2b), because the interviewees did not mention it. We additionally find that bid bonds mostly do not affect offshore developers, while the permitting regime might primarily effect offshore bidder’s decision to participate in an auction (PE 2c). Offshore developers are also unaffected by penalties, inasmuch as the penalties are gradual and connected to reasonable realisation timelines (PE 4b), while they deter onshore bidders from bidding if the overall business environment – for instance increasing number of environmental lawsuits in Germany – hinders timely project realisation.

Moreover, our results confirm that auctions might increase planning risks and affect corporate financing of project pipelines. A number of onshore developers and bankers expressed this view, mainly because of fluctuations in average awarded bids, and endogenous rationing of auction volumes and reserve prices (PE 3b). Nonetheless, since auctions enable governments to control support costs, our interviewees also confirm that their introduction might positively affect financing, especially in countries that have a history of retroactive policy changes (PE 3a).

The results confirm the connection between auction competition and the pressure among sponsors and banks to reduce their equity and debt margins (PE 5 and PE 6), while our interviewees contradict regarding the effect of auctions on revenues (PE 7). Although some ascribe a decrease in secured revenues and larger revenue volatility to auctioned sliding premiums, others argue that auctions do not affect financing conditions, and instead connect the increased price risk only to remuneration scheme designs. Finally, the interviewees dismiss the connection between financing types and auctions. For instance, within offshore wind, corporate practices dominate the choice of financing type, and developers adjust financing structures on a project basis, irrelevant of the auctions (PE 8).

We summarise the findings in Fig. 5 where we divide the potential effects according to their subsections. We proceed by discussing each potential effect in order in which we outlined them in Section 2. Additionally, for each effect we present a code co-occurrence model (Kuckartz and Radiker, 2019), which records the frequency of the links between each 2nd order theme, the potential effects and whether or not these links are affirmative (green) or denying (red).

4.1. PE 1: Allocation risk mainly impact bidders decision to participate in auctions

A total of 11 interviewees confirmed 27 times the effect of allocation risk on hindering bidders from participating in auctions (PE 1c), making it the most significant auction-related source of risk, especially for
community energy organisations \((n_i = 14.5) \). Our interviewees, including both onshore and offshore actors, stress the importance of diversification, through developing multiple projects, in mitigating allocation risk \((n_i = 7.4) \). As one renewable energy cooperative association representative commented:

“If you invest one hundred thousand euros for the planning and project development of a wind turbine and you only have one or two wind turbines to go into the tender. That is an ‘all in’ like in a casino. You can’t share risk!”

Our findings imply that allocation risk primarily depends on bidder size. A banker comments that larger project developers have more diverse cash inflows coming from ownership of projects, O&M contracts and project sales – therefore, they are more resilient to potential losses, and more able to diversify their project portfolio. Larger actors also benefit from network effects – for instance an offshore developer comments that OEMs choose between actors they perceive have a higher chance of developing the site, and the bidder invests only to spend (PE 2c). For instance, in case of UK offshore wind auctions the bidder needs to spend “tens of millions of EUR” while in the Netherlands the government develops the site, and the bidder invests only “a million euro or two”, leading to a “massive difference”. Similarly as for PE 1, our interviews did not record any findings regarding the effect of allocation risk on hurdle rate setting (PE 1a, PE 1b).

4.2. PE2: Qualification risk could impact both larger and smaller bidders

Our interviewees mainly confirm that bid bonds could hinder smaller onshore wind developers and community energy groups in submitting bids (PE 2c). An OEM interviewee explains that sometimes his company helps smaller developers submit the bid bond:

“[…] the bank only gives this bid bond against the company risk of the developer or the sponsor and this is sometimes really difficult for small developers. They have 1 or 2 projects, they have a very cyclical business so they usually do not have the credit lines to give this bid bond so either they have to provide cash collateral […] or as I said they find a partner helping them with this bid bond”

On the opposite side, offshore project developers in our sample largely agree that financial pre-qualifications are needed to reduce frivolous bids, and commit bidders to realise the projects \((n_i = 8.3) \) – therefore they are not an obstacle. In the words of an offshore developer:

“For offshore wind you do want a threshold. Smaller players are not the most qualified to do these large projects. And having a threshold like this to test the seriousness is a good thing.”

Permitting regimes might also hinder potential bidders from bidding (PE 2c). For instance, in case of UK offshore wind auctions the bidder needs to spend “tens of millions of EUR” while in the Netherlands the government develops the site, and the bidder invests only “a million euro or two”, leading to a “massive difference”. Similarly as for PE 1, our interviews did not record any findings regarding the link between qualification risk and hurdle rate adjustment (PE 2b, PE 2c), as indicated in Fig. 7.

4.3. PE3: Auctions have both a positive and negative effect on planning risk

Our findings confirm that auctions affect planning risk both positively and negatively. According to a banker, the substitution of price-based support schemes with auctions could positively impact costs of debt, because it reduces overcompensation risk and improves financial sustainability (PE 3a). As the interviewee points out in regards to an unstable country with a feed in tariff system:

“… if we have another project on a feed in tariff which isn’t part of our existing timeline you could think of our cost of debt as being basically infinite because we simply won’t do it […] but for a new project under a sound auction scheme, we’re back in business …”

However, the effect of auctions on stability mainly depends on the auctioneers discipline in adhering to announced designs (PE 3b). Another banker illustrates this through a French example where the auctioneer decreased reserve prices after an onshore wind auction, to decrease the average awarded price:

“… in France what happened last time, the responsible Minister was just rejecting certain projects from the auction, because according to the law, that actually stipulated the regulation of the auction system, he has the right to do so …”

Auctions, in which the average awarded price fluctuates, might also affect stability negatively (PE 3b). Five interviewees and our focus groups - among them experts who are mainly active in onshore wind in Germany - shared this view. They stressed that award price fluctuations have a large impact on project pipeline planning and development, because average award prices might differ though time i.e. they could be high when project development starts, but low when the project is finally ready for participating in an auction. Therefore, our interviewees have validated both aspects of PE3, as shown in Fig. 8.

4.4. PE4: Penalties mostly have no effect on financing

On the question of penalties, an offshore developer explains that a reduction in support level or duration would decrease the projects expected returns, but it would not significantly impact its bankability (PE 4a). Furthermore, penalties in offshore wind could only have an effect if they are “cliff edge”, meaning that the auctioneer cancels the support contract in case of missing the initially agreed realisation period. Otherwise, gradual penalties do not seem to have a large impact (PE 4a, PE 4b). However in case of onshore wind, factors that are outside the auction designs such as lawsuits increase the chances of breaching realisation timelines \((n_i = 5.3) \), and therefore increase non-compliance risk. Overall, our interviewees did not confirm either PE4a or PE4b, as depicted in Fig. 9.

4.5. PE5: Auctions affect equity margin reduction, mainly in offshore wind

Our interviewees indicate that a number of reasons including country risk, large capital liquidity and lack of investable projects, affect equity margins. For instance, a banker comments that projects in Italy have a 1–1.5% higher equity return than in Germany, only because of higher country risk. Further, an OEM representative comments that large capital liquidity and low interest rates, combined with a lack of investable projects, are incentivising large institutional investors to
Fig. 4. Summary of the categorisation of the coded segment including segments from the semi structured and focus group interviews. Top row: assigned categories. Leftmost column: potential effects, divided where applicable into their sub-effects. Each number represents the number of coded segments per each category and per each potential effect and sub-effect.

Potential Effect	Offshore	Onshore	Small	Large	Medium	Other	Banker	Developer	Affirm	Deny
PE1a: Bidders use higher hurdle rates in project valuation	0	0	0	0	0	0	0	0	0	0
PE1b: Bidders decrease hurdle rates	0	0	0	0	0	0	0	0	0	0
PE1c: The bidder might decide not to enter the auction	4	24	14	13	0	9	1	20	27	1
PE2a: Bidders bid higher to maintain hurdle rate	0	0	0	0	0	0	0	0	0	0
PE2b: Bidders maintain bid level and decrease hurdle rate	0	0	0	0	0	0	0	0	0	0
PE2c: Bidder might decide not to enter the auction	9	20	1	27	1	8	10	14	18	11
PE3a: Clear auction volumes and frequency have positive effect	3	15	0	17	2	6	8	9	15	4
PE3b: Sudden changes and lack of schedule deteriorate financing	1	15	2	14	0	3	3	11	14	2
PE4a: Support level and duration reduction has negative effect	4	0	0	4	0	4	0	0	0	4
PE4b: Bid bond retention penalties might affect hurdle rates	2	0	0	2	0	0	0	2	0	0
PE 5: Auctions might induce bidders to reduce equity margins	8	10	0	13	2	1	6	14	10	7
PE 6: Auctions might induce banks to reduce their debt margins	7	7	1	13	0	1	9	8	11	4
PE 7: Auctions could lower secured revenues and worsen fin.	26	31	0	48	6	21	16	36	33	22
PE 8: Auctions cause a shift from project to balance sheet fin	12	5	0	17	1	6	3	11	2	16
Fig. 5. Summary of findings divided as per subsections of each individual Potential Effect. Here an effect is considered as confirmed if at least 60% of its coded segment are affirmative.

Potential Effect	Affirm	Deny	
PE 1A: Bidders use higher hurdle rates to account for sunk costs of failed bids	0 (-%)	0 (-%)	n/a
PE 1B: Bidder might decrease hurdle rates to increase probability of being awarded	0 (-%)	0 (-%)	n/a
PE 1C: Bidder might decide not to enter the auction	27 (96%)	1 (4%)	Affirm
PE 2A: Bidders incorporate the costs of qualifying by adjusting hurdle rate upwards and bidding higher	0 (-%)	0 (-%)	n/a
PE 2B: Bidders incorporate the costs of qualifying by maintaining bid level and accepting a lower hurdle rate	0 (-%)	0 (-%)	n/a
PE 2C: Bidder might decide not to enter the auction	18 (62%)	11 (38%)	Affirm
PE 3A: Auction schemes with clear volumes and frequency positively affect debt and equity financing	15 (79%)	4 (21%)	Affirm
PE 3B: Sudden changes and lack of schedule increase costs of financing and industry wide risk premiums	14 (88%)	2 (12%)	Affirm
PE 4A: Support level and duration reduction penalties negatively affect debt financing	0 (0%)	4 (100%)	Deny
PE 4B: Bid bond retention penalties might affect hurdle rate adjustment	0 (0%)	2 (100%)	Deny
PE 5: Auctions might induce bidders to reduce equity margins	10 (58%)	7 (42%)	Partially affirm
PE 6: Auctions might induce banks to reduce their debt margins	11 (73%)	4 (17%)	Affirm
PE 7: Auctions could lower secured revenues and worsen financing	33 (60%)	22 (40%)	Affirm
PE 8: Auctions may cause a shift from project to balance sheet fin.	2 (11%)	16 (89%)	Deny

Fig. 6. Potential Effect 1 code co-occurrence model. Left – the potential effect. Middle - 2nd order themes. Right – affirmative or denying coded segments. Green lines – indicate to coded segments that have been grouped into 2nd order themes and which affirm the potential effect. Red lines - indicate to coded segments that have been grouped into 2nd order themes and which deny the potential effect. The thickness of the lines and the number allocated to each line, indicate the frequency r of coded segments. For instance, the 2nd order theme “Risk of getting awarded increases by auctions” has 14 affirmative and 1 denying coded segment that together make 15 segments that link to the potential effect. Note: same explanation holds for Figs. 7-13. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
decrease their equity returns for onshore wind projects.

Nevertheless, our interviewees also stress the importance of competition \((n_i p = 7.3)\), especially in offshore wind auctions. An offshore developer comments on the downward pressure of auctions on equity margins:

“you don’t have a choice when you are in an auction scenario because at the end of the day the biggest determinant of your price […] is the return you require on your equity. And so if you want to win you need to lower it.”

An onshore developer also argues that the auction price pressure may incentivise investors to decrease their hurdle rates closer to their objective costs of capital. Therefore they argue auctions play a revealing role. Overall our interviewees only partially affirmed Potential Effect 5, as shown in Fig. 10.

4.6. PE6: Auction induced competition contributes to debt margin reduction

Our findings indicate that financing terms have improved for wind
energy projects across Europe during the last five years. Two bankers and one offshore developer stressed that debt margins in Germany decreased between 20 and 30 basis points, while DSCR requirements for offshore wind decreased from around 1.40 to 1.25. The ECB’s monetary policy played an important role in the decrease.

When asked about wind energy related reasons, an offshore developer also named increasing technology learning rates in the financial industry, larger investment “ticket sizes” and auctions as considerable factors driving the decrease. An offshore project developer and former banker, explains banks have accepted that today’s projects have lower remuneration levels, and they adapted by charging lower interest margins. Further, the interviewee explains a dynamic where bankers “deep dive” into offshore wind risk faster than before, to help their clients win tenders. According to another offshore developer, sponsors also pressure banks to offer better terms:

Sponsors [...] are pushing them to do more. But the banks are responding because they realize that their choice is to do that or to do no deals. So the auction is quite binary for everybody. It’s either participate in the auction competitively or you don’t do anything [...] everybody now knows we’ve got to work harder and take a bit more risk to try and do business.

Therefore the interviewees mostly affirmed PE 6, as indicated in Fig. 11.

4.7. PE 7: Decrease in secured revenues and increase in revenue volatility

On the connection between auctions, lower secured revenue, and increase in revenue volatility, this study finds contradictory results, with 33 affirmatory and 22 denying coded segments from 15 participants. Our interviewees affirm that auctions could lower secured revenues and increase revenue volatility, and mainly connect this to sliding premiums that incentivise underbidding by enabling bidders to retain excess revenues when the electricity price exceeds their bid level \(p_i = 14.8 \). Both onshore and offshore project developers, and bankers in our sample clearly prefer financing projects under a CfD scheme, as opposed to sliding or fixed premiums \(p_i = 12.7 \). As one offshore developer points out regarding the increase in merchant revenues:

Sponsors [...] are pushing them to do more. But the banks are responding because they realize that their choice is to do that or to do no deals. So the auction is quite binary for everybody. It’s either participate in the auction competitively or you don’t do anything [...] everybody now knows we’ve got to work harder and take a bit more risk to try and do business.

Therefore the interviewees mostly affirmed PE 6, as indicated in Fig. 11.
Absolutely! [...] certain companies were just saying to the authorities “well look rather than bidding at let’s say 25 EUR/MWh, when the market price is at 30 EUR/MWh, I’d rather have the right to develop this project and take the price risk myself. So I don’t want a subsidy” [...] but the guy that’s bidding at 35 gets certainty on his revenue [...] of course they (auctions) introduce more risk because now you’re bidding at 0, [...] the result of this auction is now, the subsidy regimes have been pulled to the ground.”

Low bid levels in effect do not necessarily lead to merchant price exposure, if e.g. a corporate PPA is concluded for the project. However, our results indicate that auctions still increase offtaker risks. An offshore developer explains that most corporates typically have lower credit ratings than government off-takers in Western and Northern European markets and as a result, banks might offer less favourable financing. Moreover, he explains that the corporate PPA market is not “deep enough” as “there aren’t that many companies that are so intensive in their electricity consumption that they can buy huge amount of power over a long period of time”.

In contrast, several interviewees do not connect auctions with worse financing conditions and higher WACC. Instead, they negate the role of auctions and stress that only remuneration schemes cause additional price risk (n, ip = 13.9). They argue that banks do not differentiate between support awarded through an auction or other allocation mechanism.

4.8. PE8: Auctions do not affect choice of financing type

This study has been unable to demonstrate that auctions affect financing types (affirmatory = 2, denying = 16). Our interviewees state that they neither cause offshore (n, ip = 4.3) nor onshore project developers (n, ip = 2.2) to shift between project and balance sheet financing.
For offshore wind sponsors, the connection between financing type and auctions seems to be irrelevant, since such projects typically achieve financial close around 2 years after support allocation (Pineda et al., 2020) or even longer; for example the 900 MW He Dreiht project has 6 years from award to financial close (Cremers, 2019). Further, large scale bidders like utilities choose between financing types on a project-by-project basis ($n, i_p = 3.3$), while in most cases even the companies that finance project development and construction off their balance sheet, refinance projects with debt during operation stage. An onshore wind developer also confirms that companies keep to their traditional way of doing business, for instance smaller developers that are short of liquidity will continue using project financing.

5. Discussion

Our findings affirm that price risk increased in auction-based support schemes that expose sponsors to volatile power prices, including sliding and fixed premiums (PE 7). In that regard, our study is in alignment with Egli (2020). Surprisingly, we find that despite the increase in price risk, financing conditions seem to have improved. Banks have decreased their debt margins (PE 6) but also increased debt size, lowered DSCR requirements and increased loan duration, especially for offshore wind projects. While other external effects including the European Central Banks’s expansionary monetary policy and financing learning curves might explain this (Egli et al., 2018), we find that auction competition also plays a role, specifically through the pressure from sponsors to negotiate better financing.

The competitive nature of auctions also seems to have reduced hurdle rates, as bidders decrease their costs of capital to remain price competitive (PE 5). In auctions with high competition, bidders might bid aggressively because of the project’s option value or in anticipation of technology cost decrease, better financing conditions and optimistic electricity price projections. On the other hand, when competition is low, bidders may be inclined to increase hurdle rates to maximise their equity returns and/or recover sunk costs as reported by Hern et al. (2015). This would explain why the under subscribed German onshore auctions attracted bids at the ceiling price (Sach et al., 2019).

Therefore, our findings suggest auctions have nudged the industry into accepting higher risks and lower returns, therefore creating a risk-return misalignment – however, this is a hypothesis that should be verified by further research. The low margins might also affect technical quality and reliability of projects (Balfour, 2017). While auctions help policymakers to cost-effectively achieve climate and energy targets, the low margin environment they create endangers other goals including maintaining of actor diversity. For these reasons, it could be beneficial to establish additional revenue stabilisation and to reduce additional risk as much as possible, for instance through a floor and ceiling price (see for example Kitzing and Breitschopf, 2019; Wind Europe, 2018).

Our results confirm the general view that systematic auction round scheduling with well-defined volumes and frequencies facilitate long term planning for bidders (PE 3a), as e.g. expressed in IRENA and CEM (2015). However, fixed auction schedules where the policy maker does not have the ability to respond to changes in project supply, could in the short term lead to fluctuations in average awarded prices, for instance like in German onshore auctions where the average awarded price first decreased 38 EUR/MWh in May 2017, and then increased to the ceiling level of 62 EUR/MWh in October 2018, and remained there ever since (Sach et al., 2019). Our interviewees commented that reduced clarity regarding future offtake prices creates uncertainty in project development (especially during low price periods), by preventing developers and bankers from assessing the expected future offtake price, and therefore the feasibility of projects in the development pipeline. According to our interviewees this negatively affects corporate financing of project development (PE 3b). While policymakers could respond to changing market conditions through endogenously adjusting auction volumes or ceiling prices, this could damage the reliability and trustworthiness of the auctioneer and decrease competition further (Hanke and Tiedemann, 2020).

While auction price competitiveness may incline bidders to adjust their hurdle rates (PE 5), we find no evidence that allocation risk of qualification risk affect hurdle rate adjustment (PE 1a, PE 1b, PE 2a, PE 2b). Allocation risk and qualification risk could mainly affect a potential bidders decision to participate (PE 1c, PE 2c), indicating that strict designs such as costly financial and material pre-qualifications could primarily decrease participation rates. This could change the ownership structure of renewable energy projects, where smaller developers avoid allocation risk by selling projects before the auction, and community energy groups either enter co-ownership arrangements with developers or avoid allocation risk by refraining from bidding. This validates earlier findings regarding the negative effects of auctions on citizen participation (Grafshof, 2019; Grafshof and Droschel, 2018; Lucas et al., 2017).

Our interviewees denied the proposition that auctions cause project sponsors to shift between project and balance sheet financing (PE 8). While we acknowledge the result, we also wonder if this finding might have been influenced by the project experience of our interviewees being predominantly in Northern and Western European markets. The effect might differ in countries where banks are not accustomed to financing projects that have less predictable revenues, for example in South-Eastern Europe, where electricity markets are just being established (IRENA, 2019a). In such markets, it is more likely that banks might shield themselves against credit risk, e.g. by denying non-recourse financing arrangements, thus making balance sheet financing and
collaterals more prevalent. This remains a topic for future research.

6. Conclusion and policy implications

This study aimed to determine the impacts of auctions for renewable energy support on costs of capital and financing conditions, by eliciting and analysing information from semi-structured and focus group interviews with onshore and offshore wind project developers, bankers and financing experts.

First, our results from stakeholder interviews suggest that despite the increase in price risk that coincided with the introduction of auctions, financing conditions seem to have improved, especially for offshore investments. The price pressure that auction competition creates seems to play a key role, where project sponsors (the winners of the auction bids) may pressure banks to offer better terms, who respond due to increasing competition in the banking industry in regard to financing the green transition. We have found indication that, simultaneously, bidders reduce their hurdle rates. Second, remuneration scheme designs appear to drive price risk the most, whereas in combination with high competition and very low auction prices they expose bidders to greater merchant risks, which may worsen financing conditions. Third, pre-qualification requirements and allocation risk seem to mainly affect the bidders’ decision to participate in an auction and we could not determine an effect on cost of equity or hurdle rates, due to lack of relevant interview responses.

Fourth, stakeholders emphasised that auctions can decrease planning risk when a long term auction roll out schedule is created and predictability regarding expected support costs exists. This positively effects risk perception of debt providers, especially in markets that had previously experienced retroactive policy changes. However, auctions could increase planning uncertainty in case of large fluctuations in average award prices, or in case of designs that aim to increase competition through endogenous rationing. Such instabilities may worsen access to project development capital. Finally, we find no evidence that auctions have impacted the choice of financing type.

While acknowledging that we are drawing upon a limited number of interviews and idiosyncrat empirics, some of the insights derived above are general enough to indicate to several potential courses of policy action that can help creating a low-risk auction environment: First, combining auctions with remuneration schemes that stabilise revenues could create a better balance between risk and return, while simultaneously increasing debt capacity and reducing WACC. Replacing a fixed or sliding premium with a CfD could ensure revenue predictability and better financing, especially in highly competitive offshore wind auctions. Such schemes disincentivise bidding on electricity price expectations, and decouple revenues from power price volatility, thus simultaneously increasing debt capacity and reducing WACC. Replacing revenues could create a better balance between risk and return, while.

Finally, further research is needed to quantify the impacts of auction designs on costs of capital and financing, and to establish firm cause-effect relations. Such efforts could further help design auctions that ensure a low-risk investment environment, which we see as an enabler for a comprehensive and rapid energy transition.

Data availability

The data that has been used is confidential.

CRediT authorship contribution statement

M. Đukan: Conceptualization, Methodology, Investigation, Writing – original draft, Writing – review & editing, Visualization. Lena Kitzing: Conceptualization, Methodology, Investigation, Writing – original draft, Writing – review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements & Funding

The authors would first like to thank David Mora and Poul Erik Morthorst for providing valuable feedback on the paper drafts. Further, we would like to thank other members of the AURES2 consortium for their inputs in the early stages of the research, and in specific for their contributions to a project report, where we outlined an early version of the ideas that underpin this paper (available on aures2project.eu/2019/04/30/auctions-effects-financing-conditions-renewable-energy/), and assistance with organising and facilitating the focus groups. Further thanks goes to Wind Europe, and specifically Guy Brindley for helping organise the focus groups, and to the interview participants, who generously provided their time and experiences. We are also grateful to Florian Egli from ETH Zürich, who provided valuable ideas for the methodology of the focus group workshops. Finally, we are thankful for the feedback received at the 16th IAEE European Conference in 2019 in Ljubljana and the 2019 Wind Energy Science Conference in Cork. This work has been conducted as part of the AURES2 project. We are grateful for the co-funding that made this research possible, consisting primarily from the Horizon 2020 programme (grant agreement no. 817619) and DTU (project no. 82626-42). Special thanks to the Otto Monsted’s Fond and the Fabrikant PA Fiskers Fond that co-financed the authors training in financial risk management at London School of Economics and Political Science, and that helped establish the theoretical backbone of this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enpol.2021.112197. This includes a code-theory model that we use to derive second order concepts.
Annex.

8.1. List of interviewees

Table 2
List of interviewees according to interview type, interviewee type, country, technology type and size

ID	Interview type	Actor type	Organisation	Position	Country	Technology	Actor size
1	SS	Project developer	German utility	Senior Business Developer	DE	On-shore	Large
2	SS	Project developer	Danish project developer	Executive Vice President	DK	On-shore	Medium
3	SS	Project developer	Offshore wind consultancy	Managing Director	FR	Off-shore	Large
4	SS	Project developer	Austrian project developer	Business Development Manager	AT	On-shore	Medium
5	SS	Project developer	Italian project developer	-	IT	On-shore	Large
6	SS	Project developer	Community energy developer	Development Manager	UK	On-shore	Small
7	SS	Project developer	Offshore developer	Managing Director, Development Europe	UK	Off-shore	Large
8	SS	Project developer	German utility	Senior Manager Kapitalmarkt	DE	Off-shore	Large
9	SS	Project developer	German utility	Head of Commercial Management & Valuation	DE	Off-shore	Large
10	SS	Project developer	German utility	-	DE	Off-shore	Large
11	SS	Project developer	Danish utility	Lead Transaction Manager	UK	Off-shore	Large
12	FG	Project developer	German utility	Head of Investment Europe & New Markets	DE	Both	Large
13	FG	Project developer	Spanish developer	Director of Regulation, Regulatory Affairs Office	SP	On-shore	Large
14	FG	Project developer	Dutch energy company	Finance New Energies	NL	Off-shore	Large
15	FG	Project developer	US multinational	Director Business Development EMEA, Wind	DE	Both	Large
16	FG	Project developer	German utility	Finance Director	DE	Off-shore	Large
17	FG	Project developer	Spanish utility	Advisor, Legal and Regulatory Affairs	SP	Both	Large
18	FG	Banker	Multilateral dev bank	Senior Energy Expert	LU	Both	Large
19	SS	Banker	German bank	Fachbereichsleiter Umwelttechnik und EE	DE	On-shore	Large
20	SS	Banker	Multilateral dev bank	Associate Director (Energy & Infrastr. Policy)	UK	On-shore	Large
21	SS	Banker	German bank	Energy & Utilities, Clients Relationship Manager	DE	On-shore	Large
22	FG	Banker	Multilateral dev bank	Finance Director - Structured Finance	LU	Both	Large
23	SS	OEM	Danish OEM	Senior Specialist, Global Public Affairs	DK	On-shore	Large
24	SS	OEM	Danish OEM	Analyst	DK	Both	Large
25	FG	Government org.	Danish OEM	Programme Officer	UAE	Both	Large
26	SS	Insurance provider	German re-insurance company	Project Manager	CH	Both	Large
27	FG	Government org.	Spanish government	Chief of Staff	SP	Both	Large
28	FG	Government org.	-	-	-	On-shore	Small
29	FG	Government org.	International advocacy	-	-	On-shore	Small
30	FG	Consultant	UK legal firm	Energy Associate	UK	Both	Large
31	FG	Consultant	-	-	-	On-shore	Small
32	FG	Consultant	-	-	-	On-shore	Small
33	SS	Association rep.	Community energy association	Member of the Board	DE	On-shore	Small
34	SS	Association rep.	Energy cooperatives association	Leader of Energy Cooperatives Section	DE	On-shore	Small
35	FG	Association rep.	Wind energy association	Senior Wind Energy Finance Analyst	BE	Both	Large
36	FG	Association rep.	Wind energy association	Director of Public Affairs	BE	Both	Large
37	FG	Association rep.	Danish OEM	Head of Global Public Affairs	DK	On-shore	Large
38	FG	Association rep.	Wind energy association	Head of Economy, Operation & Legal Affairs	FR	On-shore	Large
39	FG	Association rep.	Wind energy association	Senior Advisor	DK	Both	Large
40	FG	Academic	Swiss university	Research assistant	CH	Both	Large

8.2. Semi structured Interview questions

1. What technologies does your organization invest in? In which countries are you active? Have you invested in projects that were awarded support through auctioning?
2. How do you typically finance the following individual project phases?
 - Development (permitting procedures and studies) > pre financial close
 - Construction > pre commercial operation date
 - Operation
3. How did financing conditions change because of the shift from administrative support schemes to auctioning? Why have these changes occurred?
 - Cost of capital
 - Cost of debt
 - Cost of equity
 - Debt to equity ratio
 - Weighted Average Cost of Capital (WACC)
 - Loan conditions
 - Debt Service Coverage Ratio (DSCR)
 - Loan tenor
 - Financing type
 - Project vs. balance sheet financing
 - Should we consider any other financing indicators or aspects (for instance syndicated lending)?
4. Are there any auction design elements that affect your investment risk? And if yes could you please describe their effect?

5. Has the introduction of auctions for renewable energy support caused any other market-level changes that directly or indirectly affect financing conditions?
 - Sustainability of support scheme
 - Debt and equity margin changes
 - Effects on actor diversity
 - Cyclical market behaviour

6. Could you give us your overall opinion of the main effects of auctions on financing for renewable energy projects?

8.3. Focus group visual aid and brief clarification of process

ALL GROUPS

How does an auction-based support allocation scheme impact financing conditions in comparison with a non-auctioned fixed remuneration scheme – e.g FIT?

- **Main effects**: UK permitting regime for offshore wind
- **Main effects**: Bid bonds and permitting risk (especially in DE for onsite wind)
- **Main effects**: One-sided CDD risk due to unsecured revenues (merchant risk) – for example in Germany
- **Main effects**: Central permitting in NL and DE in future for offshore wind systems
Fig. 14. Graphical aid used during focus groups and results summary for all groups. The differently coloured dots represent different actor types, while the dot represents the interviewees’ evaluation of the change in costs of capital and financing in comparison to a support scheme without auctions.

- Each focus group was given an conference poster size print out containing 1) the headline question “How does an auction based support allocation scheme impact financing conditions in comparison with a non-auctioned fixed remuneration scheme – e.g FIT?, 2) project development stages and 3) a scale consisting of categories that range from “large worsening” to “large improvement” and in relation to the impact on financing
- The interviewees were then asked to mark with a coloured dot - where different colours indicated the types of actor they consider themselves – each project development stage
- Following this they were asked to explain their choice

8.4. Example of the process of obtaining 2nd order themes from first order concepts

Fig. 15. First order concepts related to the effect of bid bonds. Each row represents a first order concept, while the numbers in the image indicate the number of times we used the concept in an interviews. Each column represents one interview, which has been anonymised due to confidentiality. From there onwards we compress the first order concepts into second order themes, as shown in Fig. 16

Fig. 16. Second order themes related to the effect of bid bonds. Similarly to Fig. 15, the 2nd order themes are in the rows while individual interviews are grouped into columns. Again the numbers show the number of times a 2nd order concept was used while coding an interview transcript. As can be seen, the number of 2nd order themes is much smaller than the 1st order concepts. We derived the 2nd order themes through developing code theory models. We present the code theory model for the effect of bid bonds in the supplementary materials, and show how we further treat the data in Fig. 17.

Fig. 17. Code relations browser for the second order themes related to the effects of bid bonds. Unlike in the previous two Figures, the columns contain the categories that we assigned to the 2nd order themes in third step of our coding process. These categories include: offshore wind, onshore wind, small sized actor, large sized actor, medium sized actor, banker, project developer, other actor, very negative, negative, neutral, positive and very positive. Each number indicates the number of times we have assigned each of these categories to one of the 2nd order themes.

References

Alvesson, M., 2012. Practical aspects on interview studies. In: Interpreting Interviews, pp. 43–61. https://doi.org/10.4135/9781446266353.n3.
Angelopoulos, D., Brückmann, R., Jirouš, F., Konstantinavičiute, I., Noothout, P., Psarras, J., Tesnière, L., Breitschopf, B., 2016. Risks and cost of capital for onshore wind energy investments in EU countries. Energy Environ. 27, 82–104. https://doi.org/10.1177/0958305X16628573. AURES2, 2020. AURES II project [WWW Document]. URL. http://aure2project.eu/. accessed 12.6.20. Balfour, J.R., 2017. The race to the bottom — accelerating PV insolvency [WWW Document] Renew. Energy World. https://www.renewableenergyworld.com/2017/06/07/the-race-to-the-bottom-accelerating-pv-insolvency/#gref. Berk, J., DeMarzo, P., 2018. Corporate Finance, fifth ed. Pearson,
Botta, E., 2019. An experimental approach to climate finance: the impact of auction design and policy uncertainty on renewable energy equity costs in Europe. Energy Pol. 133, 110939. https://doi.org/10.1016/j.enpol.2019.110939.

Bodmer, E., 2014. Debt sculpting in a project finance model. Corp. Proj. Financ. Model. Complex Iss. Circ. Ref. Other Complex Iss. Financ. Struct. Proj. Financ. Corp. Financ. Model. 515-538. https://doi.org/10.1007/978-118-957394-8_14 (Chapter 41).

Brealey, R.A., Myers, S.C., 2002. Capital Investment and Valuation. McGraw-Hill.

Breitschopf, B., Angelopoulos, D., Doukas, H., Konstantinakis, S., 2017. Auctions for Renewable Energy Support - Taming the Beast of Competitive Bidding. https://doi.org/10.2139/ssrn.2523749.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.

Breux, I., Resch, G., Steffen, B., Schmidt, T.S., 2019. Renewable energy auctions: a comparison of site selection strategies in South Africa and Zambia. Renew. Sustain. Energy Rev. 97, 656-668. https://doi.org/10.1016/j.eneco.2017.11.006.
Tesniere, L., de Jager, D., Noothout, P., Boutnikoudi, S., Brückmann, R., Borek, F., Naydenova, I., Nicola, S., Valach, B., Dukan, M., Jerkic, L., Dabetic, M., 2017. Mapping the Cost of Capital for Wind and Solar Energy in South Eastern European Member States.

Titman, S., Martin, J.D., 2007. Valuation: the Art and Science of Corporate Investment Decisions.

Tipuric, D., Kolakovic, M., Dumicic, K., 2002. Research of change in Croatian banking industry concentration 1993-2000 [Istrazivanje promjena u koncentraciji Hrvatske bankarske industrije 1993-2000]. Ekon. Pregl. 53, 470-494.

Wind Europe, 2020. Wind Europe - the voice of the wind energy industry [WWW Document]. URL. https://windeurope.org/. accessed 22.05.20.

Wind Europe, 2019. Financing and Investment Trends: the European Wind Industry in 2019.

Wind Europe, 2018. Sustaining a Cost Efficient Energy Transition in Europe.

Woodman, B., Fitch-Roy, O., 2019. Auctions for the Support of Renewable Energy in the UK.