Supplementary material

Figure S1 Population flow chart

Figure S2 Directed acyclic graph (DAG) – visual modelling of the assumptions of the dependence-structure (causal pathways) between retinal layer thickness, age, sex, height, ocular size and refraction, cardiovascular risk factors and related factors.

Figure S3 Causal and non-causal pathways between age and smoking vs. retinal layer thickness, DAGs-illustrated.

Table S1 Descriptive Characteristics of Participants Included in (1) Cross-Sectional Analyses of Body Composition Measurements, Sub-Sample with Available DXA-Measurements of Body Fat, and (2) Longitudinal Analyses of Change in Retinal Layer Thickness from Tromsø6 (2007-08) to Tromsø7 (2015-16)

Table S2 Pairwise Correlation between Variables – by Sex and Total; Women (left panel), Men (middle panel) and Total (right panel). Correlation Coefficient and Level of Significance.

Table S3 Prediction Model. Retinal Layer Thickness and Explained Variance by Cardiovascular Risk Factors, Relative Importance and Model R2. Cross-sectional Analyses (N=7864)

Table S4 Body Composition Measurements and Association with Retinal Layer Thickness by Sex, Z-scores. Cross-sectional Analysis on Sub-sample with Available DXA-Measurements of Body Fat (N=2734) *

Appendix U-Shaped Effect of Blood Pressure
von Hanno et al - Macular layer thickness and CVD risk factors

Cross-sectional analyses, selection of scan:
We selected data from one eye in one survey. The selection gave priority to scan without drusen, Tromsø Study 6 before 7, right eye before left. In participants with total body fat-data in the Tromsø Study 7 only, we selected scan from the Tromsø Study 7.

Longitudinal analyses, selection of participants and scans:
Participants with eligible OCT-data from the same eye in both surveys. The selection gave priority to scans without drusen, right eye before left.

Participants with OCT-scan Tromsø Study 6 (2007-08)
N=6389

Participants with OCT-scan Tromsø Study 7 (2015-16)
N=7379

Cross-sectional Analyses
N=8288

Longitudinal Analyses
N=2595

Ungradable scans in both or only eye(s)
(1) Retinal pathology possibly affecting thickness measurements in both or only eye or (2) retinal pathology in one eye and not good quality scan* in the other eye
Not good quality scans* in both or only eye(s)

Participants with diabetes†
Participants with diagnosed glaucoma†

Figure S1. Population flow chart.
* Good quality was defined as signal strength ≥ 6 and no defects or errors in the automated lines for internal limiting membrane and retinal pigment epithelium; † In either survey.
Figure S2. Directed acyclic graph (DAG) – visual modelling of the assumptions of the dependence-structure (causal pathways) between retinal layer thickness, age, sex, height, ocular size and refraction, cardiovascular risk factors and related factors. The DAGs were used to guide the choice of regression models for effect on retinal layer thickness (Outcome) of variables in the model (Exposures), to explore confounding and mediating factors. Direct effect (independent) regression models (RM) of the exposure variables explored in this work were as follows, (Model 0=Age, Sex, Systolic BP, Daily smoking, LDL, HDL, HbA1c, Refraction): BMI: RM=Model 0+BMI; BFP: RM=Model 0+BFP+Height; Weight: RM=Model 0+Weight+Height; Sex, Systolic BP, LDL, HDL, HbA1c: RM=Model 0+BMI+Height. Age, Daily smoking: RM=Model 0+BMI+Height (Nearest approximation to direct effect model; Complete direct effect model would further include axial length, though not available in this cohort); Total effect regression models (RMtotal): Age, Sex: RMtotal=Age, Sex, Daily smoking: RMtotal=Age, Sex, Daily smoking. Height: RMtotal=Age, Sex, Height; (No direct effect assumed, only effect mediated through axial length (eye size) mainly.)

(Unobserved variables marked with elliptic symbol. AC = anterior chamber; BFP = total body fat percentage; BMI = body mass index; BP = blood pressure; BP T. = Blood pressure lowering treatment; Lipid T. = Lipid lowering treatment; LDL and HDL = low and high density lipoprotein; HbA1c = glycated hemoglobin; SER = spherical equivalent refraction; Note: Direction of dependence structure between Exercise and BFP/BMI could go both ways and implies a limitation of the DAG-model, while was of no importance as all models were independent of the DAG-modelled direction between Exercise and Weight/BFP-related variables. * In the DAG with BMI as exposure variable of interest, causal arrow between height>BMI was omitted from diagram, as BMI is defined by height. † Measured retinal layer thickness (RLT) available only; if “real” RLT were available, causal arrow refraction>RLT could be omitted. DAG-drawing tool: www.dagitty.net)
Figure S3. Causal pathways (green), direct + mediated through refraction, between age (panel A) and daily smoking (panel C) and retinal layer thickness. Non-causal pathways (red) opened by adjustment for refraction (SER) and not axial length (age (panel B) and daily smoking (panel D)), possibly inducing bias. (Blue box (I) = Outcome; Green box = Exposure; Elliptic boxes = unobserved variables; Grey boxes = adjustment; Causal arrows between other variables omitted in figure for simplicity, to highlight relationships possibly affected by body and eye size and refractive related magnification on retinal thickness measures. (AC = anterior chamber; SER = spherical equivalent refraction. † Measured retinal layer thickness (RLT) available only; if “real” RLT were available, causal arrow refraction>RLT could be omitted. DAG-drawing tool: www.dagitty.net)
von Hanno et al - Macular layer thickness and CVD risk factors

Table S1. Descriptive Characteristics of Participants Included in (1) Cross-Sectional Analyses of Body Composition Measurements, Sub-Sample with Available DXA-Measurements of Body Fat, and (2) Longitudinal Analyses of Change in Retinal Layer Thickness from Tromsø6 (2007-08) to Tromsø7 (2015-16) *

Variables	Characteristics Cross-Sectional Sub-Sample with Available DXA-data	Baseline characteristics Longitudinal Sub-Sample
	Men	Women
	N Mean%/ SD Min Max	N Mean%/ SD Min Max
RNFL, μm†	1149 32.9 3.6 14.0 45.0	1110 32.7 3.6 12.0 44.0
GCIPL, μm†	1149 76.9 7.4 33.0 98.0	1110 78.7 7.3 28.0 101.0
ORL, μm†	1149 129.8 8.2 105.0 183.0	1110 129.4 8.3 98.0 188.0
Age, yr	1149 64.4 8.8 38.0 87.0	1110 59.5 6.9 38.0 76.0
Systolic BP, mmHg	1149 135.5 18.8 83.0 216.0	1105 138.4 19.2 91.0 226.0
Daily smoking	1149 1585	1105 1467
Never	415 36.1	361 32.7
Previously	611 53.2	576 52.1
Currently	123 10.7	168 15.2
LDL cholesterol, mmol/L	1149 3.6 1.0 1.1 7.2	1104 3.7 1.0 1.2 7.7
HDL cholesterol, mmol/L	1149 1.4 0.4 0.4 3.6	1104 1.4 0.4 0.5 3.3
HbA1c, %	1149 5.6 0.3 4.4 6.4	1101 5.6 0.3 4.3 6.4
Body mass index, kg/m²	1149 27.4 3.5 17.0 41.8	1110 27.3 3.4 17.8 43.7
Total body fat, %	1149 29.4 5.9 11.0 45.0	105 27.3 5.5 13.7 39.5
Height, cm	1149 176.6 6.5 155.5 200.3	1110 176.9 6.5 155.8 195.8
Refraction (SER), D	1149 0.3 2.1 -8.9 9.0	1087 0.3 1.9 -7.7 8.8

Change in thickness over 8 years	Men	Women
	N Mean%/ SD Min Max	N Mean%/ SD Min Max
RNFL, μm	1110 0.05 2.0 -22 22	1485 0.3 1.6 -7 20
GCIPL, μm	1110 -3.0 3.3 -44 47	1485 -2.5 2.4 -12 39
ORL, μm	1110 0.6 4.8 -59 57	1485 0.5 4.1 -55 22

DXA = dual-energy X-ray absorptiometry; RNFL = retinal nerve fiber layer; GCIPL = ganglion cell-inner plexiform layer; ORL = outer retinal layers; BP = blood pressure; LDL and HDL = low and high density lipoprotein; HbA1c = glycated hemoglobin; SER = spherical equivalent refraction.

* Continuous variables presented as mean and standard deviation, daily smoking as percentages of total.

† Average thickness in 6 sectors of the 14.13 mm² elliptic annulus centered at the fovea.
Table S2. Pairwise Correlation between Variables – by Sex and Total; Women (left panel), Men (middle panel) and Total (right panel). Correlation Coefficient and Level of Significance.

	Women				Men					Total				Sex
Age														
BF														
P														
D smoking														
BMI														
LDL														
HDL														
HbA1c														
BFP														
von Hanno et al - Macular layer thickness and CVD risk factors														

RNFL = retinal nerve fiber layer; GCIPL = ganglion cell-inner plexiform layer; ORL = outer retinal layers; BP = blood pressure; D = daily; LDL and HDL = low and high density lipoprotein cholesterol; HbA1c = glyctated hemoglobin; BMI = body mass index; BFP = total body fat percent.
Table S3. Prediction Model. Retinal Layer Thickness and Explained Variance by Cardiovascular Risk Factors, Relative Importance and Model R². Cross-sectional Analyses (N=7864) *

Model R²	RNFL thickness (µm)†	GCIPL thickness (µm)†	ORL thickness (µm)†
	β (95% CI) β' P Value	β (95% CI) β' P Value	β (95% CI) β' P Value
Intercept	33.14 (32.97 to 33.30) 0.11 <0.001	77.79 (77.46 to 78.11) -0.01 <0.001	130.50 (130.09 to 130.90) 0.26 <0.001
Sex, women	-0.22 (-0.38 to -0.06) -0.06 0.008	0.83 (0.52 to 1.15) 0.12 <0.001	-3.07 (-3.46 to -2.68) -0.37 <0.001
Age, years	-0.03 (-0.04 to -0.02) -0.08 <0.001	-0.26 (-0.28 to -0.24) -0.36 <0.001	-0.02 (-0.05 to 0.01) -0.03 0.124
Interaction, Sex (women) x Age (years)	0.02 (0.00 to 0.03) 0.04 0.047	0.04 (0.01 to 0.07) 0.06 0.010	0.05 (0.01 to 0.09) 0.06 0.008
Age-squared, years²	-0.002 (-0.003,-0.001) -0.05 <0.001	-0.005 (-0.006,-0.003) -0.06 <0.001	-0.002 (-0.004,-0.001) -0.03 0.002
Systolic BP, 10 mmHg	-0.07 (-0.11 to -0.03) -0.05 <0.001	-0.11 (-0.19 to -0.04) -0.03 0.003	-0.06 (-0.15 to 0.03) -0.02 0.205
Daily smoking, previous vs. never	-0.07 (-0.23 to 0.09) -0.02 0.394	0.03 (-0.29 to 0.35) 0.004 0.853	-0.12 (-0.52 to 0.28) -0.01 0.568
Daily smoking, current vs. never	-0.05 (-0.27 to 0.18) -0.01 0.670	0.17 (-0.27 to 0.62) 0.02 0.451	-1.03 (-1.58 to -0.47) -0.12 <0.001
LDL cholesterol, mmol/L	0.06 (-0.02 to 0.14) 0.02 0.128	0.13 (-0.02 to 0.29) 0.02 0.095	-0.10 (-0.29 to 0.09) -0.01 0.316
HDL cholesterol, mmol/L	-0.05 (-0.23 to 0.13) -0.01 0.601	-0.19 (-0.55 to 0.17) -0.01 0.299	0.46 (0.01 to 0.90) 0.03 0.044
HbA1c, %	0.11 (-0.14 to 0.36) 0.01 0.372	0.34 (-0.15 to 0.83) 0.02 0.175	-0.58 (-1.19 to 0.02) -0.02 0.060
Body mass index, kg/m²	-0.05 (-0.08 to -0.02) -0.06 0.001	-0.12 (-0.18 to -0.06) -0.07 <0.001	-0.09 (-0.17 to -0.02) -0.05 0.018
Interaction, Sex (women) x BMI (kg/m²)	0.03 (-0.00 to 0.07) 0.04 0.087	0.07 (-0.01 to 0.14) 0.04 0.078	0.03 (-0.06 to 0.12) 0.01 0.524

RNFL = retinal nerve fiber layer; GCIPL = ganglion cell-inner plexiform layer; ORL = outer retinal layers; BP = blood pressure; LDL and HDL = low and high density lipoprotein; HbA1c = glycated hemoglobin; β = regression coefficient; CI = confidence interval; β' = standardized regression coefficient.

* Linear regression model: all variables in the table left column. β denotes the change in thickness per 10 mgHg change in Systolic BP and per 1 unit change in other continuous variables. Standardized β-coefficient included to facilitate comparison of effect on different outcome variables of different exposure variables. Continuous variables centered on population mean (Table 1). Interaction term between sex and BMI was included as p for interaction was <0.1 for RNFL and GCIPL. Sex coded 0=men, 1=women.

† Retinal layer thickness predicted from refraction = Population mean of layer thickness+residuals from linear regression of layer thickness on refraction (modelled curvilinear).
Table S4. Body Composition Measurements and Association with Retinal Layer Thickness by Sex, Z-scores. Cross-sectional Analysis on Sub-sample with Available DXA-Measurements of Body Fat (N=2734) *

Exposure Variables	RNFL Thickness	GCIPL Thickness	ORL Thickness						
	β'	SE	P Value	β'	SE	P Value	β'	SE	P Value
Adjusted for age									
Total body fat, %									
Men	-0.01	0.04	0.795	-0.08	0.04	0.026	0.00	0.04	0.975
Women	-0.01	0.03	0.743	-0.05	0.03	0.065	-0.03	0.03	0.354
Body mass index, kg/m²									
Men	-0.07	0.03	0.034	-0.09	0.03	0.006	-0.01	0.03	0.662
Women	-0.00	0.02	0.880	-0.03	0.02	0.122	-0.02	0.02	0.500
Weight, kg									
Men	-0.03	0.03	0.341	-0.08	0.03	0.021	0.02	0.03	0.569
Women	0.02	0.03	0.389	-0.04	0.03	0.165	0.02	0.03	0.548
Height, cm									
Men	0.07	0.04	0.077	0.01	0.04	0.803	0.08	0.04	0.040
Women	0.10	0.04	0.010	0.01	0.04	0.867	0.10	0.04	0.005
Direct effect model †									
Total body fat, %									
Men	-0.01	0.04	0.847	-0.09	0.04	0.017	-0.00	0.04	0.904
Women	-0.01	0.03	0.783	-0.04	0.03	0.135	-0.02	0.03	0.523
Body mass index, kg/m²									
Men	-0.07	0.03	0.052	-0.10	0.03	0.001	-0.02	0.04	0.500
Women	-0.01	0.02	0.654	-0.03	0.02	0.216	-0.01	0.02	0.567
Weight, kg									
Men	-0.07	0.04	0.069	-0.11	0.04	0.002	-0.03	0.04	0.486
Women	-0.01	0.03	0.757	-0.04	0.03	0.136	-0.01	0.03	0.786

DXA = dual-energy X-ray absorptiometry; RNFL = retinal nerve fiber layer; GCIPL = ganglion cell-inner plexiform layer; ORL = outer retinal layers; SD = standard deviation; β' = standardized regression coefficient; SE = standard error.

* Population with complete data in all model variables, Men N=1149, Women N=1585. Continuous model-variables included as z-scores (centered and rescaled according to mean and standard deviation in total population (Table 1)), to facilitate comparison of effect on different outcome variables of different exposure variables. Interaction-term for sex and age included to obtain results separated on sex; Adjustment for age and refraction modelled curvilinear, other continuous variables modelled linearly.

† Direct (independent) effect models, adjustment according to direct acyclic graphs (DAGs, models specified in the legend of Supplemental Figure S2). No direct effect by height assumed according to the DAGs.
Appendix

U-Shaped Effect of Blood Pressure

High intraocular pressure is the most important risk factor of glaucoma, while glaucoma may also occur with intraocular pressure within normal ranges for what reasons are not fully understood. Vascular dysregulation is proposed as relevant while studies have been conflicting.1,2

Pappelis and Jansonius have demonstrated a U-shaped relationship with blood pressure (BP) in healthy non-glaucomatous eyes.2 They investigated not only the effect of treated and untreated hypertension (HT), while also the possible effect of low BP on structural OCT. They found that participants with low BP, as well as participants with treated and untreated HT, had thinner inner retinal layers compared to participants with normal BP.

Participants aged 50-65 years were categorized in 4: low BP, normal BP, treated and untreated HT with cutoff values for categories of diastolic and systolic blood pressure based on blood pressure levels in an age-matched population without any record of hypertension treatment. As noted by the authors, the female fraction in their low blood pressure group was substantially higher than in the reference group of normal blood pressure, and this complicates the interpretation of their results. This substantial difference was predictable as women have lower blood pressure than men and cutoff values in their study were selected equal between sexes.

In our main analyses, blood pressure was included as continuous variable, showing an inverse non-curved relationship with ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL). In these supplemental analyses we have categorized participants according to blood pressure levels, corresponding to the study of Pappelis and Jansonius, with some modifications.

Methods

We included participants aged 50-65 years, 2372 women and 1893 men. Information on treatment for HT was based on self-report in questionnaires. We calculated sex-specific 10-percentile, 90-percentile, mean and standard deviation (SD) of systolic and diastolic BP in the 1903 women and 1482 men without current treatment for HT. We defined normal BP as both systolic and diastolic BP within 1 SD from the mean, low BP as both systolic and diastolic BP below the 10-percentile and hypertension as both systolic and diastolic BP above the the 90-percentile. We used linear regression with retinal layer thickness as dependent variable and the blood pressure categories as independent variable, with the normal pressure group as the reference group. A priori we run analyses separate for women and men. We analyzed crude models, age-adjusted models, age and height-adjusted models and full models (adjusted for Age, Sex, Daily smoking, LDL, HDL, HbA1c, Refraction, BMI and Height); age and
refraction were modelled curvilinearly. Regression results were reported as estimated difference β (95% confidence interval), P-values < 0.05 were considered significant.

Table S5. Difference in Ganglion Cell-Inner Plexiform Layer Thickness by Blood Pressure Group, compared to the Normal Blood Pressure Group.

Groups	Women		Men			
	N	β (95% CI)	P Value	N	β (95% CI)	P Value
Normal BP	1000	Reference	868	Reference		
Low BP	88	-1.75 (-3.16 to -0.35)	**0.015**	71	1.81 (0.04 to 3.59)	**0.045**
Treated HT	469	-1.26 (-1.96 to 0.55)	**0.001**	411	-1.34 (-2.21 to -0.48)	**0.002**
Untreated HT	91	-1.31 (-2.69 to 0.08)	0.065	80	-1.60 (-3.28 to 0.08)	0.062
Normal BP	1000	Reference	868	Reference		
Low BP	88	-1.97 (-3.37 to -0.56)	**0.006**	71	1.58 (-0.20 to 3.35)	0.081
Treated HT	469	-0.85 (-1.57 to -0.12)	**0.022**	411	-1.08 (-1.95 to -0.21)	**0.015**
Untreated HT	91	-1.13 (-2.51 to 0.25)	0.108	80	-1.58 (-3.26 to 0.09)	0.064

GCIPL = ganglion cell-inner plexiform layer; $N =$ number in group; $\beta =$ regression coefficient; CI = confidence interval. $P =$ level of significance (< 0.05 in bold); BP = blood pressure; HT hypertension. Difference (β) in layer thickness (µm) between groups, compared to the normal BP group, crude and age-adjusted models. Groups were categorized as follows:

Normal BP:
- Women: Systolic BP between 108.5-148 mmHg and diastolic BP between 64-83.5 mmHg and no treatment for HT.
- Men: Systolic BP between 115-153 mmHg and diastolic BP between 70.5-90.5 mmHg and no treatment for HT.

Low BP:
- Women: Systolic BP <105 mmHg and diastolic BP <61.5 mmHg and no treatment for HT.
- Men: Systolic BP <112 mmHg and diastolic BP <69 mmHg and no treatment for HT.

Treated HT: Based on self-reported current use of blood pressure lowering drugs in questionnaires.

Untreated HT:
- Women: Systolic BP >154 mmHg and diastolic BP >86.5 mmHg and no treatment for HT.
- Men: Systolic BP >158 mmHg and diastolic BP >93.5 mmHg and no treatment for HT.

Results

The sex-specific BP-limits for the group categorization are given in the legend of Table S5. Women with low BP had thinner GCIPL than women with normal BP and the estimated difference increased in the age-adjusted model (Table S5). In men GCIPL was thicker than in the normal BP group in the crude model, while not no longer significant in the age-adjusted model (Table S5). Adjustment for height made no difference in estimates in either sex (results not shown). Comparing results from GCIPL crude and full model in participants with complete variables in full model, gave nearly equal estimates/P between models for both women and men (not shown). There was no significant difference in RNFL and ORL between low BP and normal BP-group in either sex.
Both women and men with treated HT had significantly thinner GCIPL than the normal BP-group, while the difference between untreated HT and normal BP-group was not significant (Table S5). Men with treated HT had thinner RNFL than men in the normal BP-group (-0.73 (-1.16 to -0.29) µm, P=0.001), with nearly similar results in the age-adjusted model. Else there were no significant differences in RNFL and ORL between treated/untreated HT and normal BP-group in either sex (not shown).

References

1. Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359-393.
2. Pappelis K, Jansonius NM. U-Shaped Effect of Blood Pressure on Structural OCT Metrics and Retinal Perfusion in Ophthalmologically Healthy Subjects. Invest Ophthalmol Vis Sci. 2021;62:5.