Measuring the dispersion of rainfall using Bayesian confidence intervals for coefficient of variation of delta-lognormal distribution: a study from Thailand

Noppadon Yosboonruang, Sa-aat Niwitpong Corresp., Suparat Niwitpong

Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand

Corresponding Author: Sa-aat Niwitpong
Email address: sa-aat.n@sci.kmutnb.ac.th

Since rainfall data series often contain zero values and thus follow a delta-lognormal distribution, the coefficient of variation is often used to illustrate the dispersion of rainfall in a number of areas and so is an important tool in statistical inference for a rainfall data series. Therefore, the aim in this paper is to establish new confidence intervals for a single coefficient of variation for delta-lognormal distributions using Bayesian methods based on the independent Jeffreys', the Jeffreys' Rule, and the uniform priors compared with the fiducial generalized confidence interval. The Bayesian methods are constructed with either equitailed confidence intervals or the highest posterior density interval. The performance of the proposed confidence intervals was evaluated using coverage probabilities and expected lengths via Monte Carlo simulations. The results indicate that the Bayesian equitailed confidence interval based on the independent Jeffreys' prior outperformed the other methods. Rainfall data recorded in national parks in July 2015 and in precipitation stations in August 2018 in Nan province, Thailand are used to illustrate the efficacy of the proposed methods using a real-life dataset.
Measuring the dispersion of rainfall using Bayesian confidence intervals for coefficient of variation of delta-lognormal distribution: a study from Thailand

Noppadon Yosboonruang¹, Sa-aat Niwitpong², Suparat Niwitpong³

¹,²,³ Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand

Corresponding Author:
Sa-aat Niwitpong¹
1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok, 10800, Thailand
Email address: sa-aat.n@sci.kmutnb.ac.th

Abstract
Since rainfall data series often contain zero values and thus follow a delta-lognormal distribution, the coefficient of variation is often used to illustrate the dispersion of rainfall in a number of areas and so is an important tool in statistical inference for a rainfall data series. Therefore, the aim in this paper is to establish new confidence intervals for a single coefficient of variation for delta-lognormal distributions using Bayesian methods based on the independent Jeffreys', the Jeffreys' Rule, and the uniform priors compared with the fiducial generalized confidence interval. The Bayesian methods are constructed with either equitailed confidence intervals or the highest posterior density interval. The performance of the proposed confidence intervals was evaluated using coverage probabilities and expected lengths via Monte Carlo simulations. The results indicate that the Bayesian equitailed confidence interval based on the independent Jeffreys' prior outperformed the other methods. Rainfall data recorded in national parks in July 2015 and in precipitation stations in August 2018 in Nan province, Thailand are used to illustrate the efficacy of the proposed methods using a real-life dataset.

Introduction
Presently, the effects of global climate change caused by many factors, both natural and man-made (such as fuel burning, burning forests, deforestation, and oil drilling), are continuous. Such factors directly enhance natural changes such as the greenhouse effect and cause changes in precipitation, sea level, and the polar vortex. Thailand is a country that has been affected, as has been seen in the past few years. Especially in the north of Thailand, a lot of deforestation has caused flooding because there are insufficient trees to absorb water due to heavy rain. Subsequently, many organizations, both governmental and from the private sector, are interested in finding ways to mitigate the damage from such events, and thus a study on measuring the dispersion of rainfall in
areas with the potential risk of flooding has become necessary. In statistics, the measurement of
the coefficient of variation of rainfall data can illustrate the dispersion of rainfall and also predict
the precipitation in each area as well. However, rainfall data are often zero-inflated, especially
during the winter to summer months (October to May in Thailand; Climatological group (2015)).
Thus, the rainfall dataset follows a combination of two distributions: lognormal and binomial.
Therefore, rainfall data follows a delta-lognormal distribution, as has been reported by many
researchers (e.g. Fukushi (1988); Shimizu (1993); Yue (2000); Kong et al. (2012)).

In many scientific studies, the data consist of positive right-skewed observations with an
excess of exact zeros, and Aitchison (1955) determined that the distribution of this data is delta-
lognormal, which has subsequently been used in other studies: for instance, the diagnostic charge
data in Callahan’s (Callahan et al., 1997) study (Zhou and Tu, 2000; Li et al., 2013), fisheries data
from a trawler survey carried out by the National Institute of Water and Atmospheric Research in
New Zealand (Fletcher, 2008; Wu and Hsieh, 2014), household expenditure explored by the
Ministry of Food in 1950 (Aitchison, 1955), and the concentration of airborne chlorine measured
at an industrial site in the US (Owen and DeRouen, 1980; Tian and Wu, 2006).

To solve the problems when dealing with delta-lognormally distributed data, statistical
inference is used which constructs confidence intervals for the parameters of interest, and in the
past two decades, many researchers have investigated this. Kvanli et al. (1998) constructed a
confidence interval based on the likelihood ratio test approach for the population mean when there
are many zeros in the data. Zhou and Tu (2000) proposed three different interval estimation
procedures comprising a percentile- \(t \) bootstrap interval based on sufficient statistics and two
likelihood-based confidence intervals for the mean of diagnostic test charge data containing zeros.
Chen and Zhou (2006) introduced confidence intervals based on a true generalized pivotal (GP)
method, an approximate GP method, a signed log-likelihood ratio (SLLR), and a modified SLLR
for the ratio or difference between two means of lognormal populations with zeros. Tian and Wu
(2006) constructed confidence intervals for the mean of lognormal data with excess zeros using an
adjusted SLLR via an SLLR approach and a bootstrap approach. Fletcher (2008) used three
methods, namely Aitchison's estimator, a modification of Cox's method for lognormal
distributions, and a profile-likelihood interval to construct confidence intervals for the mean of a
delta-lognormal distribution. Buntao and Niwitpong (2013) presented two confidence intervals:
the concept of the GP approach (GPA) and the method of variance estimate recovery (MOVER)
for the ratio of coefficients of variation of delta-lognormal distributions. Li et al. (2013) proposed
two methods for the mean based on an approximate GP quantity and fiducial quantity of lognormal
data with excess zeros. Wu and Hsieh (2014) established confidence intervals with Aitchison's
method, a modified Land's method, the profile-likelihood interval, and the generalized confidence
interval (GCI) for the mean of a delta-lognormal distribution. Maneerat et al. (2018) introduced
GCI, MOVER based on the variance stabilizing transformation (VST), the Wilson score interval,
and Jeffreys’ method to construct confidence intervals for the mean of a delta-lognormal
distribution.
The coefficient of variation is another interesting parameter defined as the ratio of the standard deviation to the mean. It is useful to describe the dispersion of data and can be used to compare the degree of variation between two or more datasets with different measurement units. The coefficient of variation is used in several fields, such as medical science, meteorology, agriculture and economics (e.g., Kim et al. (2005); Gulhar et al. (2012); Tian (2005)). Recently, several researchers have considered various approaches to construct confidence intervals for coefficients of variation. For example, Wong and Wu (2002), Tian (2005), Mahmoudvand and Hassani (2009), Donner and Zou (2012), and Wongkhao et al. (2015) established confidence intervals for the coefficient of variation for a normal distribution. After that, van Zyl and van der Merwe (2017) proposed a Bayesian control chart for the common coefficient of variation for a normal distribution. In studies on two-parameter exponential distributions, Sangnawakij and Niwitpong (2017) used three methods, namely MOVER, GCI, and the asymptotic confidence interval, to establish confidence intervals for a single coefficient of variation and the difference between coefficients of variation, and Thangjai and Niwitpong (2017) presented confidence intervals based on an adjusted MOVER, GCI, and a large sample method for weighted coefficients of variation.

There have been studies on other skewed distributions, such as the one by Fletcher (2008) who presented three methods: Aitchison’s estimator (the classical method), a modification of Cox’s method for the lognormal, and a profile-likelihood interval, to construct confidence intervals for the mean of a delta-lognormal distribution. Fletcher suggested that Cox’s method and profile likelihood interval, which are the modified methods, are well performed to construct the confidence intervals for the mean of a delta-lognormal distribution. While Aitchison’s estimator tends to have too low an upper limit. Therefore, Fletcher not recommend the Aitchison’s estimator. Buntau and Niwitpong (2012) revealed the GPA and a closed-form method of variance estimation for coefficients of variation for both lognormal and delta-lognormal distributions. Harvey and van der Merwe (2012) constructed confidence intervals for means and variances of lognormal and bivariate lognormal distributions using a Bayesian method. Niwitpong (2013) presented a new confidence interval for the coefficient of variation of a lognormal distribution with restricted parameters. D'Cunha and Rao (2014) offered a Bayes confidence interval for the mean of a lognormal distribution and compared it with the maximum likelihood estimator method. Sangnawakij et al. (2015) proposed MOVER with Score and Wald interval methods to construct confidence intervals for the ratio of coefficients of variation of gamma distributions. Rao and D'Cunha (2016) presented Bayesian confidence intervals for the median of a lognormal distribution and compared it with the confidence interval obtained from a Monte Carlo simulation. Recently, Yosboonruang et al. (2018) constructed confidence intervals for the coefficient of variation of a delta-lognormal distribution based on a modified Fletcher method using the concept of Fletcher (2008), and the GCI. The modified Fletcher, based on its variance, is the basic method to construct the confidence interval. Although this method failed in term of the coverage probability and the expected length, it is used to compare with the GCI. Moreover, they proposed methods including the fiducial generalized confidence interval (FGCI) and MOVER based on the
VST, the Wilson score, and Jeffreys’ method to establish the confidence intervals for the coefficient of variation of three parameters of a delta-lognormal distribution, of which FGCI is recommended for constructing confidence intervals (Yosboonruang et al., 2019). In addition, they extended this study to construct confidence intervals for the coefficient of variation.

The goal of this study is to propose new confidence intervals using Bayesian methods and comparing them with FGCI proposed by Yosboonruang et al. (2019) for a single coefficient of variation of a delta-lognormal distribution. The methods and theories to establish the confidence intervals are described in Section 2. Next, a simulation study and results are presented in Section 3, and then the proposed methods are applied to the real-world datasets, as detailed in Section 4. The last section contains conclusions on the study.

Methods

Let \(V=(V_1, V_2, \ldots, V_n) \) be a positive random variable from a lognormal distribution with parameters \(\mu \) and \(\sigma^2 \), denoted as \(LN(\mu, \sigma^2) \). The probability density function of \(V_i \) is given by

\[
f(v_i; \mu, \sigma^2) = \begin{cases} \frac{1}{v_i \sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2\sigma^2} \left[\ln(v_i) - \mu \right]^2 \right\} & ; \ v_i > 0 \\ 0 & ; \ \text{otherwise}. \end{cases}
\]

Suppose that the population of interest contains both zero and non-zero observed values, denoted by \(n_{(0)} \) and \(n_{(1)} \), respectively, where \(n=n_{(0)}+n_{(1)} \). The zero observations follow a binomial distribution, \(n_{(0)} \sim Bin(n, \delta') \), where \(\delta'=1-\delta \) is the probability of zero observations, and the non-zero observations follow a lognormal distribution, thus resulting in a delta-lognormal distribution. Let \(X=(X_1, X_2, \ldots, X_n) \) be a random sample from a delta-lognormal distribution, denoted by \(\Delta(\delta', \mu, \sigma^2) \). The distribution function of a delta-lognormal population presented by Tian and Wu (2006) can be derived as

\[
G(x_i; \delta', \mu, \sigma^2) = \begin{cases} \delta' & ; \ x=0 \\ \delta' + \delta F(x_i; \mu, \sigma^2) & ; \ x > 0, \end{cases}
\]

where \(F(x_i; \mu, \sigma^2) \) is the lognormal cumulative distribution function. Let \(Y_i = \ln(X_i) \sim N(\mu, \sigma^2) \) for \(X_i > 0 \). Aitchison (1955) described the respective population mean and variance of \(X \) as
\[
E(X) = \mu_x = \delta \exp\left(\mu + \frac{\sigma^2}{2}\right) \quad (3)
\]

and

\[
\text{Var}(X) = \sigma^2_x = \delta \exp\left(2\mu + \sigma^2\right)\left[\exp(\sigma^2) - \delta\right]. \quad (4)
\]

The minimum variance unbiased estimator of \(\mu_x\) was expressed by Aitchison (1955); the estimator of \(\mu_x\) is given by

\[
\hat{\mu}_x = \hat{\delta} \exp(\hat{\mu})\psi(\frac{\hat{\sigma}^2}{2}), \quad (5)
\]

where \(\hat{\delta} = \frac{n(1)}{n}, \hat{\mu} = \frac{1}{n(1)} \sum_{i=1}^{n(1)} \ln(x_i),\) and \(\hat{\sigma}^2 = \frac{1}{n(1) - 1} \sum_{i=1}^{n(1)} \left[\ln(x_i) - \hat{\mu}\right]^2,\) then the coefficient of variation of \(X\) can be expressed as

\[
CV(X) = \eta = \sqrt{\frac{\exp(\sigma^2)}{\delta} - 1}. \quad (6)
\]

The methods to construct the confidence intervals for \(\eta\) are proposed in the following section.

The Bayesian confidence interval for a single coefficient of variation

If a delta-lognormal distribution has three unknown parameters \((\delta', \mu, \sigma^2)\), then the joint likelihood function is given by

\[
L(\delta', \mu, \sigma^2 \mid x) \propto (\delta')^{n(1)} \delta^{n(1)} \prod_{i=1}^{n(1)} \frac{1}{\sqrt{\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}\left[\ln(x_i) - \mu\right]^2\right\}. \quad (7)
\]

Therefore, the Fisher Information matrix of the unknown parameters \((\delta', \mu, \sigma^2)\) per unit observation is written as
$$I(\delta', \mu, \sigma^2) =\begin{bmatrix} \frac{n}{\delta' \delta} & 0 & 0 \\ 0 & \frac{n\delta}{\sigma^2} & 0 \\ 0 & 0 & \frac{n\delta}{2(\sigma^2)^2} \end{bmatrix}. \tag{8}$$

In the following section, the Bayesian confidence interval is constructed upon three priors: the independent Jeffreys, Jeffreys' Rule, and uniform.

The Bayesian confidence interval using the independent Jeffreys' prior

Jeffreys' prior is defined as $p(\theta) \propto \sqrt{I(\theta)}$, where $I(\theta)$ is a Fisher Information matrix. It is a non-informative prior distribution used in Bayesian parameter estimation and is very useful because it has the notable property of invariance under the reparameterization of θ (Harold Jeffreys, 1946).

Independent Jeffreys' prior is a non-informative prior under the concept of establishing the product of Jeffreys' prior for each parameter while imposing staticity on the others (Rubio and Liseo, 2014).

For a binomial distribution, the parameter of interest is the probability δ', then the Jeffreys' invariant prior for a binomial parameter is given by

$$p(\delta') \propto \sqrt{|I(\delta')|} \propto (\delta')^{-\frac{1}{2}} \delta^{\frac{1}{2}}, \tag{9}$$

which is $Beta(1/2,1/2)$ (Bolstad and Curran, 2017). Subsequently, the posterior distribution of δ' is in the form

$$p(\delta' \mid n_{(0)}) \propto (\delta')^{n_{(0)} - \frac{1}{2}} \delta^{\frac{n_{(0)}}{2} - \frac{1}{2}}, \tag{10}$$

which is a beta distribution $Beta(n_{(0)} + 1/2, n_{(0)} + 1/2)$. Similarly, the independent Jeffreys' prior for a lognormal distribution is $p(\sigma^2) \propto \sigma^{-2}$. Therefore, the prior distribution for a delta-lognormal distribution can be expressed as

$$p(\delta', \sigma^2) \propto \sigma^{-2} (\delta')^{\frac{1}{2}} \delta^{\frac{1}{2}}. \tag{11}$$
The joint posterior density function is clearly defined as

\[
p(\delta', \sigma^2 | x) = \frac{1}{\text{Beta}\left(n_{(0)} + \frac{1}{2}, n_{(1)} + \frac{1}{2}\right)} \left(\delta' \right)^{n_{(0)} - \frac{1}{2}} \delta^{n_{(0)} - \frac{1}{2}}
\times \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2} \left(\frac{\mu - \hat{\mu}}{\sigma} \right)^2 \right]
\times \frac{\left(\frac{(n_{(1)} - 1)}{2}\right)^{n_{(0)} - \frac{1}{2}}}{\Gamma\left(\frac{n_{(0)} - 1}{2}\right)} \left(\sigma^2\right)^{-\frac{(n_{(0)} - 1)}{2}} \exp \left[-\frac{(n_{(1)} - 1)}{2\sigma^2} \right].
\]

(12)

where \(\hat{\mu} = \frac{1}{n_{(1)}} \sum_{i=1}^{n_{(0)}} \ln(x_i) \) and \(\hat{\sigma}^2 = \frac{1}{n_{(1)} - 1} \sum_{i=1}^{n_{(0)}} \left[\ln(x_i) - \hat{\mu}^2 \right]^2 \). Since \(\delta' \) and \(\sigma^2 \) are independent, then the posterior distributions of \(\delta' \) and \(\sigma^2 \) are a beta and an inverse gamma distribution, respectively, as follows:

\[
\delta' | x \sim \text{Beta}\left(n_{(0)} + \frac{1}{2}, n_{(1)} + \frac{1}{2}\right)
\]

(13)

and

\[
p(\sigma^2 | x) = \frac{\left(\frac{(n_{(1)} - 1)}{2}\right)^{n_{(0)} - \frac{1}{2}}}{\Gamma\left(\frac{n_{(0)} - 1}{2}\right)} \left(\sigma^2\right)^{-\frac{(n_{(0)} - 1)}{2}} \exp \left[-\frac{(n_{(1)} - 1)}{2\sigma^2} \right].
\]

(14)

To construct the Bayesian confidence interval, \(\delta' \) and \(\sigma^2 \) in Equation (6) are substituted by \(\delta' | x \) and \(\sigma^2 | x \) defined in Equations (13) and (14), respectively. Therefore, the \(100(1 - \alpha) \) \% two-sided confidence interval for the coefficient of variation based on the independent Jeffreys' prior Bayesian is obtained by
where $L_{\eta}^{B,indj}$ and $U_{\eta}^{B,indj}$ are the lower and upper bounds of the $100(1-\alpha)\%$ equitailed confidence interval and the highest posterior density (HPD) interval of η, respectively.

The HPD interval is an interval in the domain of a posterior probability distribution which gives the narrowest length of the interval (Hyndman, 1995; Yau and Campbell, 2019). It represents the most credible points which cover most of the distribution. In addition, each point inside the interval has a higher probability density than those outside it.

The Bayesian confidence interval using the Jeffreys' Rule prior

As mentioned previously, Jeffreys' Rule prior is obtained from the square root of the determinant of the Fisher Information matrix. This prior is appropriate for a single parameter. The Jeffreys' Rule prior has the rule that the prior is invariant (the valuable property) (Lee, 2012), which is imposed as $p(\sigma^2) \propto \sigma^{-3}$. From Harvey and van der Merwe (2012), the Jeffreys' Rule prior for δ' in a binomial distribution is $p(\delta') \propto (\delta')^{\frac{3}{2}}$. It is easy to find the Jeffreys' Rule prior for the delta-lognormal distribution, which is defined as

$$p(\delta',\sigma^2) \propto \sigma^{-3}(\delta')^{\frac{1}{2}}\delta^{\frac{1}{2}}.$$ \hspace{1cm} (16)

Subsequently, the joint posterior density is given by

$$p(\delta',\sigma^2 \mid x) = \frac{1}{Beta\left(n(0) + \frac{1}{2},n(l) + \frac{3}{2}\right)}(\delta')^{n(0)-\frac{1}{2}}\delta^{n(l)+\frac{1}{2}} \times \frac{1}{\sqrt{2\pi n(l)}} \exp \left[-\frac{1}{2n(l)} \frac{\sigma^2}{n(l)} \right] \times \frac{n(l)\sigma^2}{2} \left(\sigma^2\right)^{-\frac{n(l)}{2}} \exp \left[-\frac{n(l)\hat{\sigma}^2}{2\sigma^2}\right].$$ \hspace{1cm} (17)
where \(\hat{\mu} = \frac{1}{n_{(i)}} \sum_{i=1}^{n_{(i)}} \ln(x_i) \) and \(\hat{\sigma}^2 = \frac{1}{n_{(i)} - 1} \sum_{i=1}^{n_{(i)}} \left[\ln(x_i) - \hat{\mu} \right]^2 \). In addition, the posterior density of \(\delta' \) becomes

\[
delta' \mid x \sim Beta \left(n_{(i)} + \frac{1}{2}, n_{(i)} + \frac{3}{2} \right) \tag{18}
\]

and the posterior distribution of \(\sigma^2 \) can be expressed as

\[
p(\sigma^2 \mid x) = \left[\frac{n_{(i)}\hat{\sigma}^2}{\frac{2}{n_{(i)}}} \right] \left(\sigma^2 \right)^{-\frac{n_{(i)} - 1}{2}} \exp \left[-\frac{n_{(i)}\hat{\sigma}^2}{2\sigma^2} \right]. \tag{19}
\]

Next, the confidence limit of \(\eta \) is constructed using \(\delta' \mid x \) and \(\sigma^2 \mid x \) given by Equations (18) and (19), respectively. Therefore, the 100(1-\(\alpha \))% equitailed confidence interval and HPD interval for the coefficient of variation based on the Jeffreys' Rule prior Bayesian are obtained by

\[
CI^B_{\eta,\text{jeff}} = [L^B_{\eta,\text{jeff}}, U^B_{\eta,\text{jeff}}], \tag{20}
\]

where \(L^B_{\eta,\text{jeff}} \) and \(U^B_{\eta,\text{jeff}} \) are the lower and upper bounds of the confidence limit, respectively.

The Bayesian confidence interval using the uniform prior

The prior probability of the uniform prior is a constant function (Stone, 2013). This means that the uniform prior gives equally likely \textit{a priori} to all possible values (O’Reilly and Mars, 2015). The uniform prior for the binomial proportion is \(p(\delta') \propto 1 \) (Bolstad and Curran, 2017), that for \(\sigma^2 \) is \(p(\sigma^2) \propto 1 \) (Kalukur T. and Rao, 2017), and that of a delta-lognormal distribution is \(p(\delta', \sigma^2) \propto 1 \). The joint posterior density function can be expressed as
\[p(\delta', \sigma^2 | x) = \frac{1}{\text{Beta}(n_0 + 1, n_1 + 1)} (\delta')^{n_0} \delta^{n_1} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{n_1}} \exp \left[-\frac{1}{2} \frac{(\mu - \hat{\mu})^2}{\sigma^2} \right] \]

\[
\frac{1}{\Gamma\left(\frac{n_1 - 2}{2}\right)} \left(\sigma^2\right)^{-\frac{n_1 - 2}{2}} \exp \left[-\frac{(n_1 - 2)\hat{\sigma}^2}{2\sigma^2} \right]
\]

Equation (21)

where \(\hat{\mu} = \frac{1}{n_1} \sum_{i=1}^{n_1} \ln(x_i) \) and \(\hat{\sigma}^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} \left[\ln(x_i) - \hat{\mu} \right]^2 \). By Equation (21), the respective posterior distributions of \(\delta' \) and \(\sigma^2 \) are formed as

\[\delta' | x \sim \text{Beta}(n_0 + 1, n_1 + 1) \]

(22)

and

\[p(\sigma^2 | x) = \frac{1}{\Gamma\left(\frac{n_1 - 2}{2}\right)} \left(\sigma^2\right)^{-\frac{n_1 - 2}{2}} \exp \left[-\frac{(n_1 - 2)\hat{\sigma}^2}{2\sigma^2} \right] \]

(23)

which are beta and inverse gamma distributions, respectively. From Equations (22) and (23), the confidence limit for \(\eta \) can be established, and consequently, the 100(1-\(\alpha \))% equitailed confidence interval and HPD interval for the coefficient of variation based on the uniform prior Bayesian are as follows:

\[\text{CI}_\eta^{\text{uni}} = [L^{\text{uni}}_\eta, U^{\text{uni}}_\eta] \]

(24)

where \(L^{\text{uni}}_\eta \) and \(U^{\text{uni}}_\eta \) are the lower and upper bounds of the confidence limit, respectively.

Algorithm 1

Step 1: Generate \(x_i \), \(i = 1, 2, \ldots, n \) from a delta-lognormal distribution.
Step 2: Compute $\hat{\delta}$ and $\hat{\sigma}^2$.

Step 3: Generate $\delta' | x$, which is the beta distribution from Equations (13), (18), and (22).

Step 4: Generate $\sigma^2 | x$, which is the inverse gamma distribution from Equations (14), (19), and (23).

Step 5: Compute η by substituting $\delta' | x$ and $\sigma^2 | x$ in Equation (6).

Step 6: Repeat Steps 3-5 5,000 times and obtain an array of η.

Step 7: Compute the 95% equitailed confidence interval and HPD interval for η from Equations (15), (20), and (24). If $L \leq \eta \leq U$, then set $cp = 1$; else, set $cp = 0$.

Step 8: Repeat Steps 1-7 15,000 times to compute the coverage probability and the expected length.

The FGCI for a single coefficient of variation

The fiducial approach was first introduced by Fisher (1930), after which it has been used to construct confidence limits by many researchers, such as Hannig et al. (2006a), Hannig et al. (2006b), Hannig (2009), Hannig and Lee (2009), Li et al. (2013), and Yosboonruang et al. (2019).

The concept of FGCI uses the respective generalized fiducial quantities for δ and σ^2 (Li et al., 2013):

\[
R_\delta = \frac{1}{2} \text{Beta}(n_{(1)}, n_{(0)} + 1) + \frac{1}{2} \text{Beta}(n_{(1)} + 1, n_{(0)})
\]

(25)

and

\[
R_{\sigma^2} = \left(\frac{n_{(1)} - 1}{U} \right) \hat{\sigma}^2,
\]

(26)

where $U \sim \chi^2_{n_{(1)} - 1}$. Subsequently, the generalized fiducial quantity for η is

\[
R_\eta = \sqrt{\frac{\exp(R_{\sigma^2})}{R_\delta}} - 1.
\]

(27)

Therefore, the $100(1-\alpha)\%$ generalized fiducial quantity interval for the coefficient of variation is defined by

\[
CI^{fgci}_\eta = \left[R_\eta \left(\alpha/2 \right), R_\eta \left(1-\alpha/2 \right) \right],
\]

(28)
where $R_\eta(\alpha/2)$ and $R_\eta(1-\alpha/2)$ are the $100(\alpha/2)$-th and $100(1-\alpha/2)$-th percentiles of the distribution of R_η, respectively.

Algorithm 2

Step 1: Generate x_i, $i = 1, 2, \ldots, n$ from a delta-lognormal distribution.

Step 2: Compute $\hat{\delta}$ and $\hat{\sigma}^2$.

Step 3: Generate $Beta(n_{(1)}, n_{(0)} + 1)$ and $Beta(n_{(1)} + 1, n_{(0)})$.

Step 4: Compute R_δ, R_{σ^2}, and R_η from Equations (25), (26), and (27), respectively.

Step 5: Repeat Steps 3-4 5,000 times and obtain an array of R_η.

Step 6: Compute the 95% confidence intervals for η from Equation (28). If $L \leq \eta \leq U$, then set $cp = 1$; else, set $cp = 0$.

Step 7: Repeat Steps 1-6 15,000 times to compute the coverage probability and the expected length.

Results

To evaluate the performance of the proposed methods, their coverage probabilities and expected lengths were estimated via Monte Carlo simulation using the R statistical programming language (Venables and Smith, 2009). Normally, the best confidence intervals are chosen from the coverage probability that is greater than or closest to the nominal confidence level and has the shortest expected lengths. In the simulation study, sample size n was set as 25, 50, 100, and 200; μ as 0; δ as 0.2, 0.5, 0.8, and 0.9; and σ^2 as 0.1, 0.5, 1.0, and 2.0. We eliminated the case of $n = 25$, $\delta = 0.2$ and $\sigma^2 = 0.1, 0.5, 1.0, 2.0$ because the expected non-zero observations were less than 10 (see Fletcher (2008); Wu and Hsieh (2014)). For all of the simulations, the number of replications was set as 15,000, and 5,000 repetitions were used for the Bayesian and FGCI methods; the nominal confidence level was 0.95.

The results in Table 1 show that the Bayesian method using the independent Jeffreys' prior for the equitalled confidence interval outperformed the others because the coverage probabilities were consistently greater than or close to the target in all cases. In addition, for the equitalled confidence intervals, the coverage probabilities of the Bayesian using the Jeffreys' Rule prior were less than the nominal confidence level of 0.95 for some of the cases: $n = 25$, $\delta = 0.5, \sigma^2 = 0.1, 2.0$; $n = 50, 100$, $\delta = 0.2, \sigma^2 = 0.1, 2.0$; and $n = 200$, $\delta = 0.2, \sigma^2 = 0.1$. For the Bayesian method using the uniform prior, the coverage probabilities were close to 1 in a few cases when the sample sizes were less than 100 and had small variances together with high proportion of non-zero values. For the method with HPD intervals, the coverage probabilities of the independent Jeffreys' prior did not cover the target in most cases, especially for large sample sizes. Similarly, a few cases with the Bayesian method using the uniform prior had coverage probabilities less than the nominal confidence level when the sample sizes were large. Moreover, the Bayesian method using the Jeffreys' Rule prior had coverage probabilities of less than 0.95 in almost all cases. Last, the
coverage probabilities with FGCI did not cover the nominal confidence level when the variances were small for all sample sizes. In addition, when considering the expected lengths of all methods which is shown in Table 2, these were wide in cases of $\sigma^2 = 2.0$ and became narrower when the sample size increased, although they corresponded with the coverage probabilities in almost all cases. Furthermore, the values were similar for all of the methods. Moreover, the expected lengths of the intervals when $n = 50$, $\delta = 0.2$, and $\sigma^2 = 2.0$ were very much larger than the other cases because the number of expected non-zero observations was small together with a large variance. This case might have affected the parameter estimation, thus it is possible that the efficacy of the confidence intervals constructed from it was not very good.
Table 1. The coverage probabilities of 95% two-sided confidence intervals for a single coefficient of variation with the delta-lognormal distribution

n	δ	σ^2	Equitailed confidence intervals	HPD intervals					
			Independent Jeffreys	Jeffreys’ Rule	Uniform	Independent Jeffreys	Jeffreys’ Rule	Uniform	FGCI
25	0.5	0.1	0.9600	0.9397	0.9647	0.9413	0.9181	0.9475	0.8686
	0.5	0.9718	0.9595	0.9763	0.9526	0.9308	0.9591	0.9415	
	1.0	0.9593	0.9481	0.9668	0.9381	0.9187	0.9461	0.9518	
	2.0	0.9521	0.9438	0.9608	0.9421	0.9309	0.9505	0.9523	
	0.8	0.1	0.9721	0.9657	0.9848	0.9539	0.9446	0.9746	0.9192
	0.5	0.9677	0.9618	0.9733	0.9579	0.9498	0.9686	0.9541	
	1.0	0.9541	0.9487	0.9601	0.9499	0.9413	0.9589	0.9512	
	2.0	0.9533	0.9482	0.9583	0.9482	0.9407	0.9551	0.9506	
	0.9	0.1	0.9669	0.9610	0.9960	0.9439	0.9391	0.9865	0.9393
	0.5	0.9607	0.9553	0.9683	0.9565	0.9500	0.9697	0.9559	
	1.0	0.9511	0.9463	0.9573	0.9521	0.9464	0.9618	0.9539	
	2.0	0.9524	0.9467	0.9563	0.9532	0.9475	0.9596	0.9481	
50	0.2	0.1	0.9622	0.9349	0.9569	0.9384	0.9029	0.9289	0.8687
	0.5	0.9741	0.9547	0.9729	0.9539	0.9269	0.9517	0.9403	
	1.0	0.9641	0.9477	0.9684	0.9449	0.9175	0.9477	0.9499	
	2.0	0.9553	0.9447	0.9641	0.9402	0.9203	0.9485	0.9491	
	0.5	0.1	0.9605	0.9476	0.9619	0.9471	0.9301	0.9504	0.8694
	0.5	0.9669	0.9579	0.9689	0.9563	0.9435	0.9586	0.9356	
	1.0	0.9585	0.9521	0.9622	0.9446	0.9329	0.9490	0.9499	
	2.0	0.9534	0.9485	0.9575	0.9426	0.9346	0.9462	0.9537	
	0.8	0.1	0.9651	0.9600	0.9755	0.9508	0.9436	0.9659	0.9018
	0.5	0.9623	0.9581	0.9671	0.9547	0.9486	0.9621	0.9495	
	1.0	0.9557	0.9523	0.9590	0.9467	0.9421	0.9527	0.9523	
	2.0	0.9551	0.9529	0.9574	0.9525	0.9488	0.9556	0.9487	
	0.9	0.1	0.9660	0.9640	0.9830	0.9515	0.9463	0.9720	0.9274
	0.5	0.9581	0.9555	0.9623	0.9543	0.9509	0.9621	0.9537	
Table 1. Continued

n	δ	σ^2	Coverage probabilities	HPD intervals	FGCI				
			Equitailed confidence intervals						
			Independent Jeffreys	Jeffreys’ Rule	Uniform	Independent Jeffreys	Jeffreys’ Rule	Uniform	
50	0.9	1.0	0.9519	0.9496	0.9554	0.9474	0.9443	0.9535	0.9535
		2.0	0.9507	0.9484	0.9537	0.9483	0.9450	0.9518	0.9501
100	0.2	0.1	0.9571	0.9355	0.9513	0.9406	0.9155	0.9325	0.8582
		0.5	0.9673	0.9532	0.9655	0.9539	0.9350	0.9509	0.9288
		1.0	0.9612	0.9519	0.9623	0.9433	0.9263	0.9430	0.9461
		2.0	0.9511	0.9435	0.9563	0.9401	0.9279	0.9434	0.9491
0.5	0.1	0.9578	0.9462	0.9587	0.9473	0.9356	0.9487	0.8591	
		0.5	0.9605	0.9531	0.9621	0.9531	0.9432	0.9543	0.9315
		1.0	0.9566	0.9532	0.9585	0.9433	0.9367	0.9455	0.9468
		2.0	0.9546	0.9518	0.9559	0.9457	0.9412	0.9472	0.9516
0.8	0.1	0.9603	0.9566	0.9694	0.9464	0.9413	0.9578	0.8845	
		0.5	0.9605	0.9580	0.9641	0.9461	0.9425	0.9508	0.9442
		1.0	0.9533	0.9505	0.9544	0.9485	0.9473	0.9517	0.9514
		2.0	0.9509	0.9499	0.9524	0.9476	0.9458	0.9499	0.9509
0.9	0.1	0.9657	0.9633	0.9768	0.9495	0.9461	0.9667	0.9065	
		0.5	0.9538	0.9533	0.9582	0.9544	0.9509	0.9601	0.9473
		1.0	0.9534	0.9507	0.9539	0.9491	0.9475	0.9529	0.9491
		2.0	0.9505	0.9493	0.9527	0.9498	0.9480	0.9509	0.9512
200	0.2	0.1	0.9565	0.9407	0.9513	0.9425	0.9263	0.9381	0.8541
		0.5	0.9591	0.9473	0.9570	0.9485	0.9355	0.9461	0.9189
		1.0	0.9577	0.9496	0.9577	0.9406	0.9281	0.9397	0.9423
		2.0	0.9561	0.9515	0.9567	0.9399	0.9326	0.9417	0.9477
0.5	0.1	0.9564	0.9490	0.9573	0.9463	0.9389	0.9483	0.8567	
		0.5	0.9565	0.9517	0.9575	0.9507	0.9440	0.9508	0.9249
		1.0	0.9555	0.9531	0.9560	0.9433	0.9397	0.9439	0.9438
		2.0	0.9541	0.9521	0.9552	0.9445	0.9408	0.9461	0.9469
Table 1. Continued

n	δ	σ^2	Equitailed confidence intervals	HPD intervals	FGCI				
			Independent Jeffreys	Jeffreys’ Rule	Uniform	Independent Jeffreys	Jeffreys’ Rule	Uniform	
200	0.8	0.1	0.9575	0.9537	0.9625	0.9509	0.9454	0.9575	0.8771
	0.5	0.1	0.9555	0.9531	0.9578	0.9506	0.9476	0.9536	0.9409
	1.0	0.1	0.9517	0.9503	0.9523	0.9475	0.9465	0.9497	0.9503
	2.0	0.1	0.9507	0.9500	0.9513	0.9464	0.9457	0.9473	0.9527
0.9	0.1	0.9603	0.9587	0.9693	0.9495	0.9465	0.9601	0.8949	
0.5	0.9541	0.9527	0.9565	0.9482	0.9463	0.9505	0.9445		
	1.0	0.9523	0.9518	0.9531	0.9462	0.9444	0.9468	0.9480	
	2.0	0.9513	0.9513	0.9517	0.9514	0.9511	0.9523	0.9500	

Table 2. The expected lengths of 95% two-sided confidence intervals for a single coefficient of variation with the delta-lognormal distribution

n	δ	σ^2	Equitailed confidence intervals	HPD intervals	FGCI				
			Independent Jeffreys	Jeffreys’ Rule	Uniform	Independent Jeffreys	Jeffreys’ Rule	Uniform	
25	0.5	0.1	0.7297	0.6901	0.7259	0.7126	0.6750	0.7087	0.5254
	0.5	1.5150	1.4019	1.6064	1.3664	1.2766	1.4273	1.3969	
	1.0	4.2513	3.8066	4.7342	3.2613	2.9912	3.5216	4.1004	
	2.0	33.7300	27.5715	42.9352	17.2204	14.9908	19.8622	32.8632	
0.8	0.1	0.4319	0.4176	0.4390	0.4222	0.4084	0.4296	0.3280	
	0.5	0.8803	0.8469	0.9149	0.8168	0.7885	0.8457	0.8324	
	1.0	2.1046	2.0054	2.2163	1.7993	1.7294	1.8798	2.0750	
	2.0	9.4926	8.8318	10.2578	6.9057	6.5518	7.3427	9.4872	
0.9	0.1	0.3346	0.3248	0.3518	0.3232	0.3139	0.3410	0.2710	
	0.5	0.7577	0.7342	0.7880	0.7082	0.6881	0.7346	0.7376	
n	δ	σ^2							
----	---------	-----------	-----------------	-----------------	-----------------	-----------------	-----------------		
			Equitailed confidence intervals		HPD intervals		FGCI		
			Independent	Jeffreys' Rule	Uniform	Independent	Jeffreys' Rule	Uniform	FGCI
25	0.9	1.0	1.7631	1.6978	1.8460	1.5534	1.5049	1.6173	1.7591
		2.0	7.4883	7.0855	7.9907	5.8011	5.5645	6.1147	7.4510
50	0.2	0.1	1.3339	1.2287	1.3061	1.2863	1.1889	1.2586	0.9404
	0.5		3.0407	2.6749	3.3153	2.5845	2.3218	2.7126	2.1064
	1.0		10.4439	8.5127	12.8712	6.8066	5.8704	7.6676	9.7812
	2.0		218.3340	123.9037	409.4769	77.4546	55.6155	141.4522	517.7059
0.5	0.1		0.5278	0.5128	0.5246	0.5204	0.5059	0.5174	0.3787
	0.5		0.9170	0.8878	0.9311	0.8739	0.8476	0.8849	0.8188
	1.0		2.0182	1.9446	2.0759	1.8142	1.7545	1.8557	1.9373
	2.0		7.8105	7.4368	8.1546	6.3278	6.0759	6.5403	7.9104
0.8	0.1		0.3063	0.3012	0.3082	0.3023	0.2972	0.3043	0.2298
	0.5		0.5519	0.5429	0.5603	0.5349	0.5265	0.5427	0.5203
	1.0		1.1725	1.1514	1.1951	1.0952	1.0773	1.1143	1.1520
	2.0		3.9949	3.9093	4.0925	3.5027	3.4371	3.5760	3.9755
0.9	0.1		0.2436	0.2400	0.2491	0.2390	0.2355	0.2447	0.1923
	0.5		0.4867	0.4799	0.4948	0.4717	0.4655	0.4793	0.4729
	1.0		1.0405	1.0248	1.0588	0.9804	0.9674	0.9971	1.7590
	2.0		3.4585	3.3987	3.5352	3.0534	3.0069	3.1113	3.4754
100	0.2	0.1	0.9341	0.8971	0.9200	0.9190	0.8829	0.9050	0.6628
	0.5		1.6376	1.5617	1.6550	1.5542	1.4859	1.5640	1.4196
	1.0		3.7403	3.5325	3.8579	3.2758	3.1139	3.3492	3.5025
	2.0		16.4708	15.2363	17.4752	12.4579	11.7196	12.9891	15.9392
0.5	0.1		0.3774	0.3719	0.3760	0.3738	0.3685	0.3725	0.2712
	0.5		0.6066	0.5975	0.6096	0.5957	0.5871	0.5986	0.5354
	1.0		1.2286	1.2092	1.2409	1.1698	1.1521	1.1801	1.1719
	2.0		3.9868	3.9149	4.0450	3.6197	3.5622	3.6637	3.9565
Table 2. Continued

	δ	σ^2	Expected lengths						
			Equitailed confidence intervals	HPD intervals		FGCI			
			Independent Jeffreys	Jeffreys’ Rule	Uniform	Independent Jeffreys	Jeffreys’ Rule	Uniform	
100	0.8	0.1	0.2190	**0.2172**	0.2196	0.2171	0.2153	0.2177	0.1633
	0.5	0.3732	0.3703	0.3758	0.3664	0.3637	**0.3689**	0.3487	
	1.0	0.7565	0.7502	0.7625	0.7330	0.7274	**0.7388**	0.7426	
	2.0	2.3285	2.3082	2.3515	2.1759	2.1582	2.1948	**2.3232**	
0.9	0.1	0.1743	**0.1729**	0.1761	0.1723	0.1710	0.1742	0.1358	
	0.5	0.3296	0.3275	0.3322	0.3236	**0.3216**	0.3262	0.3182	
	1.0	0.6764	0.6720	0.6817	0.6560	0.6521	**0.6612**	0.6717	
	2.0	2.0505	2.0360	2.0685	1.9451	1.9328	**1.9618**	2.0511	
200	0.2	0.1	0.6714	0.6576	**0.6658**	0.6638	0.6502	0.6582	0.4777
	0.5	1.0731	1.0499	1.0742	1.0478	1.0255	1.0481	0.9122	
	1.0	**2.1624**	2.1109	2.1802	2.0517	2.0062	2.0653	2.0429	
	2.0	7.4107	**7.2073**	7.5181	6.5125	6.3549	6.5886	7.2846	
0.5	0.1	0.2704	0.2684	**0.2699**	0.2685	0.2666	0.2680	0.1946	
	0.5	0.4194	0.4163	0.4202	**0.4154**	0.4123	0.4161	0.3676	
	1.0	0.8190	**0.8128**	0.8224	0.7971	0.7910	0.8001	0.7794	
	2.0	2.4764	**2.4567**	2.4900	2.3551	2.3375	2.3669	2.4492	
0.8	0.1	0.1566	0.1559	0.1568	**0.1557**	0.1550	0.1558	0.1163	
	0.5	0.2587	0.2577	0.2595	**0.2562**	0.2552	0.2569	0.2415	
	1.0	0.5145	0.5127	0.5166	0.5055	0.5036	0.5073	**0.5045**	
	2.0	1.5141	1.5085	1.5205	1.4683	1.4623	1.4744	**1.5080**	
0.9	0.1	0.1247	**0.1243**	0.1254	0.1238	0.1233	0.1244	0.0965	
	0.5	0.2283	0.2276	0.2292	0.2260	0.2254	**0.2268**	0.2200	
	1.0	**0.4602**	0.4635	0.4521	0.4508	0.4539	0.4557		
	2.0	1.3467	1.3423	1.3523	1.3067	**1.3028**	1.3121	1.3467	
An empirical studies

Ananthakrishnan and Soman (1989) studied a daily rainfall data series focusing on the normalized rainfall curve (NRC). They found that the NRC is uniquely determined by the coefficient of variation of the rainfall series. To verify the effectiveness of the proposed confidence intervals, we used two examples of rainfall datasets from Nan province, Thailand as follows.

Example 1
The rainfall data was collected in July 2015 for national parks in Nan province, Thailand: Doi Phu Kha, Mae Charim, Nanthaburi, Tham Sa Koen, Sri Nan, Khun Sathan, and Doi Pha Klong recorded by the Protected Area Regional Office 13 Phrae, Thailand. For this data series, there were 217 rainfall measurements, of which 117 were positive, showing a right-skewed distribution. The density of this data is presented in Fig. 1. Next, the minimum Akaike information criterion (AIC) was first to test the distribution of the positive rainfall data. The results in Table 3 reveal that the AIC value of the lognormal distribution was smallest, thus the distribution of this positive data series was the lognormal distribution. To validate the AIC test, a normal Q-Q plot for log-transformation data series is shown in Fig. 2. The distribution of zero values in this rainfall series coincided with the method in Section 2 for a binomial distribution. Therefore, a delta-lognormal distribution was appropriate for these data. Next, summary statistics were computed: \(n = 217, \hat{\delta} = 0.5392, \hat{\mu} = 2.4762, \hat{\sigma}^2 = 0.9381, \text{ and } CV = 1.9337. \) Finally, the 95\% confidence intervals for \(\eta \) were calculated, as reported in Table 4. These results correspond with those from the simulation study when the sample size was large in that the coverage probabilities of the Bayesian methods (equitailed confidence intervals) were greater than the target. This indicates that the Bayesian method using the Jeffreys' Rule prior is appropriate to construct a confidence interval for this rainfall data due to it having the shortest expected length compared to the other methods. The estimated coefficient of variation in Table 4 means that the variability of the rainfall was rather high. This indicates that the rainfall fluctuated, which would have affected the water levels in the area and there could have been flooding, which would have affected agricultural productivity in the area.

Table 3. AIC results to check the distributions of positive rainfall values in July 2015 for national parks in Nan province, Thailand

Densities	Normal	Lognormal	Cauchy	Exponential
AIC	978.4592	\textbf{906.9903}	971.7420	908.4876
Figure 1. The density of rainfall data in July 2015 for national parks in Nan province, Thailand

Figure 2. The normal Q-Q plot of log-transformed for positive rainfall data in July 2015 for national parks in Nan province, Thailand
Table 4. The 95% confidence intervals for a single coefficient of variation of rainfall data in July 2015 for national parks in Nan province, Thailand

Methods	Confidence intervals for η	Length of Intervals
Bayesian: Independent Jeffreys' (Equitailed)	1.6570 - 2.3579	0.7009
Bayesian: Jeffreys' Rule (Equitailed)	1.6610 - 2.3460	0.6850
Bayesian: Uniform (Equitailed)	1.6646 - 2.3560	0.6914
Bayesian: Independent Jeffreys' (HPD)	1.6314 - 2.3166	0.6852
Bayesian: Jeffreys' Rule (HPD)	1.6424 - 2.3170	0.6746
Bayesian: Uniform (HPD)	1.6549 - 2.3345	0.6796
FGCI	1.6788 - 2.3294	0.6506

Example 2

To investigate variation in rainfall, a rainfall dataset reported by the Upper Northern Region Irrigation Hydrology Center, Bureau of Water Management and Hydrology Royal Irrigation Department Thailand for August 2018 comprising eight precipitation stations in Nan province, Thailand (Muang, Thawangpha, Thung Chang, Pua, Song Khwae, Santisuk, Chaloem Phra Kiat, and Chiang Klang) was used. There were 248 observed values comprising 91 zero values and 157 positive values; the density of this rainfall data is shown in Fig. 3. The positive values follow a lognormal distribution, as indicated by the minimum AIC in Table 5 and a normal Q-Q plot of the log-transformed data displayed in Fig. 4. In addition, the zero values have a binomial distribution (as discussed by Aitchison (1955)), thus the overall distribution is delta-lognormal. The summary statistics were $n = 248$, $\hat{\delta} = 0.6331$, $\hat{\mu} = 1.5822$, $\hat{\sigma}^2 = 2.2598$, and $CV = 3.7595$.

The results in Table 6 report the 95% confidence intervals for η. The results of the methods to construct the confidence intervals are in accordance with those in the simulation study for the case of a large sample size. The Bayesian method based on the Jeffreys' Rule prior (equitailed confidence intervals) had the shortest expected length. The coefficient of variation estimation in Table 6 indicates that the rainfall of this area was highly volatile, which affected the water level of the Nan River. Moreover, there might have been flooding in some of the areas due to high rainfall.

Table 5. AIC results to check the distributions of positive rainfall values in August 2018 from eight precipitation stations in Nan province, Thailand

Densities	Normal	Lognormal	Cauchy	Exponential
AIC	1,596.0140	1,073.3380	1,196.0190	1,186.0920
Figure 3. The density of rainfall data in August 2018 from eight precipitation stations in Nan province, Thailand

Table 6. The 95% confidence intervals for a single coefficient of variation of rainfall data in August 2018 from eight precipitation stations in Nan province, Thailand

Methods	Confidence intervals for η	Length of Intervals	
	Lower	Upper	
Bayesian: Independent Jeffreys’ (Equitailed)	2.9429	5.1996	2.2567
Bayesian: Jeffreys’ Rule (Equitailed)	2.9536	5.1211	2.1675
Bayesian: Uniform (Equitailed)	2.9784	5.2196	2.2412
Bayesian: Independent Jeffreys’ (HPD)	2.7824	4.9280	2.1456
Bayesian: Jeffreys’ Rule (HPD)	2.8144	4.9014	2.0870
Bayesian: Uniform (HPD)	2.8704	5.0156	2.1452
FGCI	2.9795	5.1291	2.1496
Discussion

Our findings reveal that the Bayesian method using the independent Jeffreys' prior to construct the equitailed confidence intervals performed well for all cases due to the coverage probabilities being consistently greater than or close to the nominal confidence level while the expected lengths were mostly no different from the other methods. Moreover, underestimation occurred for a few of the cases when applying the Bayesian methods based on the Jeffreys' Rule prior (equitailed), the independence Jeffreys' prior (HPD), and the uniform prior (HPD), and it appeared in almost all cases of the Jeffreys' Rule prior (HPD). In contrast, overestimation occurred in a few cases of applying the Bayesian method based on the uniform prior (equitailed) when the sample size was less than 100 together with a small variance and high proportion of non-zero values.

Conclusions

We proposed the construction of confidence intervals for a single coefficient of variation of a delta-lognormal distribution using Bayesian methods and compared them with FGCI. The Bayesian methods, which are based on the independent Jeffreys' prior, the Jeffreys' Rule prior, and the uniform prior, were constructed under equitailed confidence intervals or HPD intervals. The performance of the confidence intervals was assessed using the coverage probability and expected length through Monte Carlo simulations. The simulation studies showed that the Bayesian equitailed confidence intervals based on the independent Jeffreys' prior is recommended as a confidence interval for a single coefficient of variation. Future researchers may also be extended to the case of the coefficients of variation function.
References

Aitchison J. 1955. On the distribution of a positive random variable having a discrete probability mass at the origin. *Journal of the American Statistical Association* 50:901–908 DOI: 10.2307/2281175.

Ananthakrishnan R, Soman MK. 1989. Statistical distribution of daily rainfall and its association with the coefficient of variation of rainfall series. *International Journal of Climatology* 9:485–500.

Bolstad WM, Curran JM. 2017. *Introduction to Bayesian statistics*. Hoboken, New Jersey: John Wiley & Sons.

Buntao N, Niwitpong S. 2012. Confidence intervals for the difference of coefficients of variation for lognormal distributions and delta-lognormal distributions. *Applied Mathematical Sciences* 6:6691–6704.

Buntao N, Niwitpong S. 2013. Confidence intervals for the ratio of coefficients of variation of delta-lognormal distribution. *Applied Mathematical Sciences* 7:3811–3818.

Callahan CM, Kesterson JG, Tierney WM. 1997. Association of symptoms of depression with diagnostic test charges among older adults. *Annals of Internal Medicine* 126:426–432.

Chen Y-H, Zhou X-H. 2006. Generalized confidence intervals for the ratio or difference of two means for lognormal populations with zeros. *UW Biostatistics Working Paper Series*.

Climatological group. 2015. The climate of Thailand. Available at https://www.tmd.go.th/en/archive/thailand_climate.pdf (accessed 1 May 2019)

D'Cunha JG, Rao KA. 2014. Bayesian inference for mean of the lognormal distribution. *International Journal of Scientific and Research Publications* 4.

Donner A, Zou GY. 2012. Closed-form confidence intervals for functions of the normal mean and standard deviation. *Statistical Methods in Medical Research* 21:347–359 DOI: 10.1177/0962280210383082.

Fisher RA. 1930. Inverse probability. *Mathematical Proceedings of the Cambridge Philosophical Society* 26:528–535 DOI: 10.1017/S0305004100016297.

Fletcher D. 2008. Confidence intervals for the mean of the delta-lognormal distribution. *Environmental and Ecological Statistics* 15:175–189 DOI: 10.1007/s10651-007-0046-8.

Fukuchi H. 1988. Correlation properties of rainfall rates in the United Kingdom. *IEE Proceedings H - Microwaves, Antennas and Propagation* 135:83–88 DOI: 10.1049/ip-h-2.1988.0018.

Gulhar M, Kibria BMG, Albatineh AN, Ahmed NU. 2012. A comparison of some confidence intervals for estimating the population coefficient of variation: a simulation study. *SORT-Statistics and Operations Research Transactions* 36:45–68.

Hannig J. 2009. On generalized fiducial inference. *Statistica Sinica* 19:491–544.

Hannig J, E L, Abdel-Karim A, Iyer H. 2006a. Simultaneous fiducial generalized confidence intervals for ratios of means of lognormal distributions. *Austrian Journal of Statistics* 35:261–269.

Hannig J, Iyer H, Patterson P. 2006b. Fiducial generalized confidence intervals. *Journal of the American Statistical Association* 101:254–269 DOI: 10.1198/016214505000000736.

Hannig J, Lee TCM. 2009. Generalized fiducial inference for wavelet regression. *Biometrika* 96:847–860.
Harold Jeffreys, F.R.S. 1946. An invariant form for the prior probability in estimation problems. *Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences* 186:453-461 DOI: 10.1098/rspa.1946.0056.

Harvey J, van der Merwe AJ. 2012. Bayesian confidence intervals for means and variances of lognormal and bivariate lognormal distributions. *Journal of Statistical Planning and Inference* 142:1294–1309 DOI: 10.1016/j.jspi.2011.12.006.

Hyndman RJ. 1995. Highest-density forecast regions for non-linear and non-normal time series models. *Journal of Forecasting* 14:431–441.

Kalkur T. A, Rao A. 2017. Bayes estimator for coefficient of variation and inverse coefficient of variation for the normal distribution. *International Journal of Statistics and Systems* 12:721–732.

Kim YY, Lee JT, Choi GH. 2005. An investigation on the causes of cycle variation in direct injection hydrogen fueled engines. *International Journal of Hydrogen Energy* 30:69–76 DOI: 10.1016/j.ijhydene.2004.03.041.

Kong CY, Jamaludin S, Yusof F, Foo HM. 2012. Parameter estimation for bivariate mixed lognormal distribution. *Journal of Science and Technology* 4:41–48.

Kvanli AH, Shen YK, Deng LY. 1998. Construction of confidence intervals for the mean of a population containing many zero values. *Journal of Business & Economic Statistics* 16:362–368 DOI: 10.1080/07350015.1998.10524776.

Lee PM. 2012. *Bayesian statistics: an introduction*. Chichester, West Sussex: John Wiley & Sons.

Li X, Zhou X, Tian L. 2013. Interval estimation for the mean of lognormal data with excess zeros. *Statistics & Probability Letters* 83:2447–2453 DOI: 10.1016/j.spl.2013.07.004.

Mahmoudvand R, Hassani H. 2009. Two new confidence intervals for the coefficient of variation in a normal distribution. *Journal of Applied Statistics* 36:429–442 DOI: 10.1080/0266476080249249.

Maneerat P, Niwitpong S, Niwitpong S. 2018. Confidence Intervals for the Ratio of Means of Delta-Lognormal Distribution. In: Anh LH, Dong LS, Kreinovich V, Thach NN, eds. *Econometrics for Financial Applications. Studies in Computational Intelligence*. Springer International Publishing, 161–174.

Niwitpong S. 2013. Confidence intervals for coefficient of variation of lognormal distribution with restricted parameter space. *Applied Mathematical Sciences* 7:3805–3810.

O’Reilly JX, Mars RB. 2015. Bayesian models in cognitive neuroscience: a tutorial. In: Forstmann BU, Wagenmakers E-J, eds. *An Introduction to Model-Based Cognitive Neuroscience*. Springer, 179-197.

Owen WJ, DeRouen TA. 1980. Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants. *Biometrics* 36:707–719 DOI: 10.2307/2556125.

Rao KA, D’Cunha JG. 2016. Bayesian inference for median of the lognormal distribution. *Journal of Modern Applied Statistical Methods* 15:526–535 DOI: 10.22237/jmasm/1478003400.

Rubio FJ, Liseo B. 2014. On the independence Jeffreys prior for skew-symmetric models. *Statistics and Probability Letters* 85:91-97.
Sangnawakij P, Niwitpong S. 2017. Confidence intervals for coefficients of variation in two-parameter exponential distributions. *Communications in Statistics - Simulation and Computation* 46:6618–6630 DOI: 10.1080/03610918.2016.1208236.

Sangnawakij P, Niwitpong S, Niwitpong S. 2015. Confidence intervals for the ratio of coefficients of variation of the gamma distributions. In: Huynh VN, Inuiguchi M, Demoeux T, eds. *Integrated Uncertainty in Knowledge Modelling and Decision Making*. Lecture Notes in Computer Science. Springer Cham, 193–203.

Shimizu K. 1993. A bivariate mixed lognormal distribution with an analysis of rainfall data. *Journal of Applied Meteorology* 32:161–171.

Stone JV. 2013. Bayes’ Rule: a tutorial introduction to Bayesian analysis. Sheffield: Sebtel Press.

Thangjai W, Niwitpong S. 2017. Confidence intervals for the weighted coefficients of variation of two-parameter exponential distributions. *Cogent Mathematics* 4:1315880 DOI: 10.1080/23311835.2017.1315880.

Tian L. 2005. Inferences on the mean of zero-inflated lognormal data: the generalized variable approach. *Statistics in Medicine* 24:3223–3232 DOI: 10.1002/sim.2169.

Tian L, Wu J. 2006. Confidence intervals for the mean of lognormal data with excess zeros. *Biometrical Journal. Biometrische Zeitschrift* 48:149–156.

van Zyl R, van der Merwe AJ. 2017. A Bayesian control chart for a common coefficient of variation. *Communications in Statistics - Theory and Methods* 46:5795–5811 DOI: 10.1080/03610926.2015.1112914.

Venables WN, Smith DM. 2009. *An introduction to R*. Bristol: Network Theory Ltd.

Wong ACM, Wu J. 2002. Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models. *Journal of Statistical Planning and Inference* 104:73–82 DOI: 10.1016/S0378-3758(01)00241-5.

Wongkhaow A, Niwitpong S, Niwitpong S. 2015. Confidence intervals for the ratio of two independent coefficients of variation of normal distribution. *Far East Journal of Mathematical Sciences* 98:741–757.

Wu W-H, Hsieh H-N. 2014. Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data. *Journal of Applied Statistics* 41:1471–1485 DOI: 10.1080/02664763.2014.881780.

Yau C, Campbell K. 2019. Bayesian statistical learning for big data biology. *Biophysical Reviews* 11:95–102.

Yosboonruang N, Niwitpong S, Niwitpong S. 2018. Confidence intervals for the coefficient of variation of the delta-lognormal distribution. In: Anh LH, Dong LS, Kreinovich V, Thach NN, eds. *Econometrics for Financial Applications*. Studies in Computational Intelligence. Springer International Publishing, 327–337.

Yosboonruang N, Niwitpong S, Niwitpong S. 2019. Confidence intervals for coefficient of variation of three parameters delta-lognormal distribution. In: Kreinovich V, Sriboonchitta S, eds. *Structural Changes and their Econometric Modeling*. Studies in Computational Intelligence. Springer International Publishing, 352–363.
Yue S. 2000. The bivariate lognormal distribution to model a multivariate flood episode. *Hydrological Processes* 14:2575–2588.

Zhou XH, Tu W. 2000. Confidence intervals for the mean of diagnostic test charge data containing zeros. *Biometrics* 56:1118–1125.

Supplemental Files

Dataset 1: Rainfall data (mm.) in July 2015 for national parks in Nan province, Thailand: Doi Phu Kha, Mae Charim, Nanthaburi, Tham Sa Koen, Sri Nan, Khun Sathan, and Doi Pha Klong as shown in Dataset S1.

Dataset 2: Rainfall data (mm.) in August 2018 from eight precipitation stations in Nan province, Thailand: Muang, Thawangpha, Thung Chang, Pua, Song Khwae, Santisuk, Chaloem Phra Kiat, and Chiang Klang as shown in Dataset S2.

Dataset S1. Rainfall data (mm.) in July 2015 for national parks in Nan province, Thailand

Date	NP1	NP2	NP3	NP4	NP5	NP6	NP7
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	1.9	0	0	0	0	0	0
6	47.9	0	0	0	0	0	0
7	10.5	0	8.9	2.55	12.0	0	0
8	43.8	3.0	3.7	39.5	46.0	8.6	4.5
9	1.9	0	0.7	0	0	10.8	0
10	0.6	0	10.5	0	0	0	0
11	5.6	0	28.2	5.0	21.0	63.9	0
12	0	0	25.7	27.5	0	0	0
13	3.1	0	13.4	17.5	0	30.0	0
14	3.2	0	0	0	0	9.4	0
15	13.8	0	14.6	5.0	0	18.6	0
16	3.0	0	7.0	17.5	6.0	8.6	10.0
17	7.4	0	36.2	0	0	4.7	0
18	14.5	0	3.2	3.75	0	2.5	0
19	34.2	13.0	40.0	25.0	12.0	10.0	0
20	14.9	0	16.7	17.5	0	4.0	10.0
21	15.8	36.0	54.2	30.0	73.0	35.3	30.0
22	3.8	0	4.8	2.5	7.0	6.3	0
23	42.1	0	19.0	75.0	13.0	23.1	10.0
24	23.2	0	9.1	16.8	0	13.9	0
25	60.7	6.0	6.7	53.75	0	6.7	0
26	23.7	10.0	9.8	37.5	0	25.5	0
27	22.5	0	32.5	3.75	0	10.0	20.0
28	12.4	0	12.1	13.75	10.0	7.2	0
Dataset S1. Continued

Date	NP1	NP2	NP3	NP4	NP5	NP6	NP7
29	19.6	18.0	21.3	0	0	8.2	15.0
30	9.2	10.0	20.0	7.5	0	4.0	35.0
31	13.4	22.0	19.1	0	0	1.3	35.0

Note: NP1, NP2, NP3, NP4, NP5, NP6, and NP7 represent Doi Phu Kha, Mae Charim, Nanthaburi, Tham Sa Koen, Sri Nan, Khun Sathan, and Doi Pha Klong national parks, respectively.

(http://www.parophrae.com/paro13kpi/index.php/45-2558)

Dataset S2. Rainfall data (mm.) in August 2018 from eight precipitation stations in Nan province, Thailand

Date	S1	S2	S3	S4	S5	S6	S7	S8
1	1.9	1.0	0.1	1.3	0.0	0.0	0.0	0.0
2	0.0	8.7	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	59.0	3.2	22.6	81.0	0.0	0.0	6.4
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.7	0.0	0.0	5.9	0.0	0.5	0.0
6	0.0	0.0	0.0	2.2	0.0	0.0	0.4	0.0
7	0.0	0.0	5.4	0.0	0.0	0.0	1.3	0.0
8	0.7	0.0	1.6	1.2	4.6	1.0	0.0	2.0
9	9.3	7.1	19.3	26.3	8.6	5.2	22.5	7.0
10	0.0	0.0	0.0	0.0	0.8	0.0	2.8	0.0
11	0.0	0.0	4.2	0.0	0.7	0.0	1.2	0.0
12	0.0	2.1	6.0	0.7	0.0	0.0	3.7	1.9
13	0.8	10.6	9.8	6.4	12.5	0.0	8.3	8.4
14	0.4	1.3	0.4	2.0	0.0	0.0	0.0	12.1
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7
16	20.7	126.1	8.0	15.0	10.4	370.0	7.3	2.1
17	69.2	72.0	106.1	111.0	151.5	65.0	90.2	153.0
18	2.1	3.5	22.5	0.0	10.5	3.5	24.4	3.7
19	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0
20	8.9	2.4	25.6	2.3	2.3	0.0	0.0	31.6
21	8.8	4.4	4.8	6.7	5.0	0.0	2.3	2.0
22	32.8	9.8	29.6	3.2	20.6	2.6	13.0	36.1
23	1.8	2.6	9.1	1.4	0.0	9.0	2.8	0.0
24	1.1	4.5	3.6	2.4	38.4	14.6	10.4	4.6
25	8.7	0.0	1.3	2.0	8.7	3.5	0.0	1.6
26	0.0	0.8	33.8	8.3	18.5	0.0	2.7	14.0
27	6.9	0.1	5.4	22.4	31.0	2.2	7.2	1.3
28	3.3	0.1	0.7	2.0	1.0	0.0	0.7	0.0
29	2.5	4.8	6.6	6.0	3.9	3.7	12.4	4.7
30	0.0	1.8	0.5	0.0	1.8	1.3	9.2	0.0
Dataset S2. Continued

Date	S1	S2	S3	S4	S5	S6	S7	S8
31	0.0	0.3	3.9	0.0	6.2	0.0	20.2	3.3

Note: S1, S2, S3, S4, S5, S6, S7, and S8 represent Muang, Thawangpha, Thung Chang, Pua, Song Khwae, Santisuk, Chaloem Phra Kiat, and Chiang Klang precipitation stations, respectively.

(https://hydro-1.net/Data/HD-04/houly/rain_today_search.php?storage)