Molecular understanding of wood formation in trees

Laifu Luo¹,² and Laigeng Li¹*

¹ National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
² University of the Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author, E-mail: lgli@cemps.ac.cn

Abstract

Trees convert and store the majority of their photosynthetic products in wood which is an essential renewable resource much in demand by human society. Formation of wood follows a process of consecutive cell developmental stages, from vascular cambium proliferation, cell expansion and differentiation, secondary cell wall deposition to programmed cell death, which is controlled by the functionality of complex molecular networks. What are the molecular networks involved in wood formation? How do the molecular networks act in a way to generate wood tissue during tree growth? What are the regulatory modules that lead to the formation of various wood characteristics? The answers to these questions are fundamental to understanding how trees grow, as well as how we can genetically engineer trees with desired properties of wood for human needs. In recent years, a great deal of interest has been invested in the elucidation of wood formation at the molecular level. This review summarizes the current state of understanding of the molecular process that guides wood formation in trees.

Citation: Luo L, Li L. 2022. Molecular understanding of wood formation in trees. Forestry Research 2:5 https://doi.org/10.48130/FR-2022-0005

Introduction

Trees are major constituents of terrestrial ecosystems and every year more than half of the carbon fixed by terrestrial plants can be attributed to trees[1]. Most of the carbon fixed in trees is stored in wood, therefore, wood is an important carbon reservoir and plays an important role in the balance of oxygen and carbon dioxide in the atmosphere. In addition, as a natural renewable resource, wood is widely used in human society, such as in pulping, construction, lignocellulosic biofuels, and other wood-based chemicals. Understanding how wood is produced through complex molecular processes has tremendous significance in maximizing carbon storage in trees and is also essential for the genetic improvement of trees for wood production.

Formation of wood (secondary xylem) is a sequential developmental process that starts from the vascular cambium, via cell division/differentiation, cell expansion, secondary cell wall (SCW) deposition and programmed cell death (PCD) (Fig. 1) to form wood tissue. The different developmental stages involve a distinct battery of genes to carry out various molecular and cellular activities in directing wood cell development[2]. Here we try to summarize the current understanding of the molecular processes that occur in wood formation of trees.

Molecular basis for vascular cambium proliferation and xylem differentiation

Vascular cambium, derived from procambium in the vascular bundle, is a ring of meristem tissue which grows the stem girth. Vascular cambium cell proliferation produces daughter cells that differentiate into various cell types through different pathways. Generally, the daughter cells differentiate outward into secondary phloem and inward into secondary xylem (wood tissue). Wood tissue is mainly composed of tracheids and parenchyma cells in gymnosperms, but vessels, fibers and parenchyma cells in angiosperms, which provide mechanical support and long distance transportation of water and minerals for upright growth[3]. The vascular cambium proliferation and differentiation are programmatically carried out and precisely regulated through complex signals and molecular networks.

Phytohormones play an essential role in controlling vascular cambium activities. Of them, auxin, cytokinin and brassinosteroids are known to be the main phytohormones involved in regulating cambium proliferation activity. Auxin regulates cell fate to promote xylem identity[4]. In trees, auxin is distributed in a bell curve of concentration across the phloem-cambium-developing xylem area, peaking in the cambium district[5,6]. It is postulated that the gradient of auxin concentration affects cambium proliferation and differentiation[7]. Regulation of the auxin concentration modifies cambium activity and wood formation. In Populus, two vascular cambium-related MADS-box genes, VCM1 and VCM2, are found to modulate the soluble auxin concentration in cambium cells by regulating expression of PIN5, whereby regulating vascular cambium activity[8]. VCM1 and VCM2 bind to the PIN5 promoter to enhance PIN5 expression, while PIN5, localized in the ER membrane, transports active IAA from the cytosol to the ER lumen, in which the active IAA is deactivated. Thus, the VCM1/VCM2-PIN5 functions as a molecular module to tune the auxin homeostasis in the vascular cambium district and hence to modify the vascular cambium activity. Auxin levels can trigger molecular cascades through auxin early response genes, such as the Auxin/Indole-3-Acetic Acid (Aux/IAA) family and Auxin Response Factor (ARF) family. PttIAA3 is a Populus IAA member predominantly expressed in the cambial meristem and developing secondary xylem cells[9]. By upsetting the auxin signaling through expression of a dominant mutant version of PttIAA3, the cambium...
cell division activity is reduced, affecting the secondary xylem development with little effect on phloem development10. PtoIAA9, another IAA gene in Populus, is also preferentially expressed in cambium and its neighboring cells11. PtoIAA9 can interact with PtoARF5 to regulate cambium division and xylem development via orchestrating the expression of the HD-ZIP III transcription factor genes PtoHB7/8 which correlate with cambium proliferation and xylem cell differentiation in poplar11. There are a total of 35 Aux/IAA and 39 ARF genes in the Populus trichocarpa genome12. It is unclear how many Aux/IAAs and ARFs are specifically involved in auxin signaling in the regulation of wood formation. Nevertheless, the experimental evidence shows that auxin and its signaling play a key role in the regulation of cambium activity and secondary xylem development. However, the knowledge regarding how auxin signaling is conducted in cambium cells to direct cell proliferation and differentiation is far from complete. Many questions remain to be studied, such as how auxin determines wood cell type differentiation? What are the molecular pathways, by which the auxin signaling is transduced downstream of the ARFs to cell proliferation, differentiation and SCW formation?

Cytokinin (CK) is another phytohormone known to play a role in wood formation. CK is distributed across the vascular cambium area with its peak concentration in the cells of the developing phloem side next to the cambium6. Cks can stimulate cambium cell division and thus affect wood formation13. Reducing the CK level by overexpression of a cytokinin catabolic gene, the Arabidopsis CYTOKININ OXIDASE 2 (CKX2) gene in poplar, results in inhibition of the radial growth, likely due to the decrease of cell division in vascular cambium13. The spatial distribution of CK and auxin in the cambium zone is partially overlapped6. Increase of CK biosynthesis in the cambial zone and developing xylem cells result in an increase in auxin concentration in the cambial zone6, suggesting that the two hormone signals are interconnected in regulating cambium proliferation and differentiation. However, the molecular pathways underlying the crosstalk of the two hormones as it relates to control of wood formation are yet to be studied. A recent study showed that reduction of the CK level in phloem cells by phloem-specific expression of cytokinin oxidase/dehydrogenase 2 (CKX2, a gene encoding a cytokinin degrading enzyme), restricts the cambium proliferation activity14. This suggests that CK is transported from phloem to cambium cell for directing cell division.

Brassinosteroids (BRs) are shown to be related to cambial activity and it may coordinate with IAA to promote cambium cell division15. In Populus, exogenous application of 24-epibrassinolide (BL, an active form of BRs) results in enhancement of cambial cell division while application of propiconazole (PCZ, an inhibitor of BR biosynthesis) leads to inhibition of cell division16. Additionally, other phytohormones such as ethylene17,18, gibberellins19 and abscisic acid20, are also reported to be involved in modulating cambium proliferation and cell differentiation in trunk growth of trees. However, it is unclear how signal transduction of these hormones is carried out in cambium and developing xylem cells. A more challenging question yet to be answered is how the multiple phytohormone signals are mutually connected in regulating vascular cambium proliferation and differentiation during tree growth.

In addition to traditional phytohormones, small peptides play a critical role in modulating cambial activity. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGIONRELATED (CLE) peptide is recognized by its receptor to regulate the molecular networks involved in the maintenance of meristem identity and activity in Arabidopsis21,22. Activity of the vascular cambium in trees is also regulated by CLE peptides. The Populus homologs of CLE41 and PHLOEM INTERCALATED WITH XYLEM (PXY) play a role in directing cambium division23. Overexpression of PttCLE41 that encodes a peptide ligand known as TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)24 and its receptor kinase gene PttPXY in hybrid aspen results in increased cambial cell division23. Meanwhile, the PttWOX4 (WUSCHEL HOMEOBOX RELATED 4) gene, a transcription factor downstream of the CLE-PXY signaling, is specifically expressed in the cambium region. Suppression of PttWOX4 leads to reduction of secondary growth in trees25. The studies suggest that CLE-PXY-WOX4 forms a molecular module in promoting vascular cambium activity. Meanwhile, other CLE genes, such as PtxCLE20 and PttCLE47 are also found to play a role in the regulation of the vascular cambium activity in Populus26,27. PtxCLE20 is transcribed in developing xylem and its derived peptide displays inhibition on cambium cell dividing activity. Likely the peptide is moved from developing xylem to cambium cells where it inhibits vascular cambium proliferation26. It is proposed that the cambium activity may be coordinately regulated by a pair of peptide signals respectively from the phloem and xylem28. The CLE41 peptide, which is originated from phloem cells24,28,29 to deliver a positive signal and the CLE20, which is originated from xylem cells to convey a negative signal28, meet in the cells of the vascular cambium to regulate cambium proliferation in a synchronized manner. This proposition projects a molecular view of how wood formation is tuned by the signals from two opposite locations. Nevertheless, more analysis would provide multi-faceted evidence for further corroboration.
In an analysis of transcriptional activity in wood formation, high-spatial-resolution RNA sequencing identified a group of transcription factor genes actively expressed in the cambium-xylem area[20,31]. Although many of the transcription factor genes expressed in the wood-forming tissue are yet to be studied for their function in cambium activity and xylem differentiation, several have been characterized for their roles in regulating wood formation in trees. The HD-ZIP III gene family has been shown to regulate vascular formation, differentiation of cambium daughter cell, polar auxin transport, organ polarity in Arabidopsis, such as ATHB-8, PHV/ATHB-9, CORONA/ATHB-15, PHABULOSA (PHB)/ATHB-14, and INTERFASCULAR FIBERLESS1 (IFL1)/REVOLUTA (REV)[32–34]. The P. trichocarpa genome contains seven members of the HD-ZIP III gene family but five in Arabidopsis. HD-ZIP III genes are highly expressed in relation to vascular cambium development and xylem differentiation[35–38]. Among them, alteration of PopREVOLUTA (PRE, an orthologue of Arabidopsis IFL1/REV) expression in Populus leads to defects in vascular tissue patterning[36]. Mis-expression of PopCORONA (PCN), a homologous gene of the Arabidopsis Corona/ATHB-15, results in defects of xylem cell differentiation[37]. PtrHB7, the homologous gene of ATHB-8, is highly expressed in cambium and functions in balancing the differentiation between secondary xylem and phloem tissues[33]. Suppression of PtrHB7 results in enhanced differentiation of cambium cells to phloem but has an inhibitory effect to xylem, while PtrHB7-overexpressed plants display the opposite phenotype[33]. Furthermore, PtrHB4 is required for development of the interfascicular cambium to form the vascular cambium in trees[38]. These studies indicate that the HD-ZIP III members act in different stage of wood formation, from vascular patterning, vascular cambium formation and xylem differentiation. In response to auxin signaling, HB7/8 are regulated by IAA9-ARFS module in cambium proliferation in Populus[11]. It appears that the HD-ZIP III regulators play a key role in cambium proliferation and differentiation. Full characterization of the HD-ZIP III mediated pathways would provide more insights into understanding wood formation.

The transcriptional regulatory networks during wood formation may be initially orchestrated by phytohormones as fundamental signaling. In Populus, PaC3H17 and PaMYB199 expression is regulated by auxin, and PaC3H17 and PaMYB199 display opposite roles in cambium cell proliferation[39]. PaMYB199 plays a repressive role in cambium proliferation while its expression is inhibited by PaC3H17. Conceivably, PaC3H17 and PaMYB199 may act as intermediate players in the auxin signaling pathway to regulate cambium proliferation[39]. Vascular cambium development, proliferation and subsequent cell differentiation are primary processes in cellular development of wood formation in trees. To date, studies have shown that phytohormones, peptides and molecular modules play various roles in regulating cambium proliferation and differentiation (Fig. 2). This knowledge represents a foundation toward a more comprehensive understanding of the molecular mechanisms underlying wood formation in trees.

Molecular process of cell expansion in wood formation

After the secondary xylem mother cells are produced from cambium cells, they undergo cell expansion, followed by depo-
an endo-1,4-β-mannanase gene in *Populus*, leads to enhanced cell wall loosening but inhibits cell wall thickening, while knockdown of its expression has the opposite effect[^56]. The *PtrMAN6* function in coordinating cell wall remodeling and thickening may be mediated through oligosaccharide signals[^56].

Pectin is a major component of the primary cell wall, critical to remodeling and expansion of cell walls. Pectin methyl esterases (PMEs) and pectin acetyltransferases (PAEs) are two enzymes of pectin modification to control cell wall loosening[^57,58]. Modification of *PME1* in *Populus* affects expansion of the wood cells and results in changes in fiber cell length and width[^59]. High PME activity is detected in the cambium and developing xylem region in *Populus* stem, suggesting that PME is important for the regulation of dynamic cell expansion during wood formation[^60]. Overexpression of the *Populus trichocarpa PAE1* gene in tobacco reduces the degree of pectin acetylation and alters cell wall characteristics[^58].

Hormone signals may play roles in cell elongation and expansion. Overexpression of GA biosynthesis-related genes such as GIBBERELLIN 20-OXIDASE 1 (GA20ox1) in transgenic *Populus* increases the endogenous GA content and promotes elongation of xylem fibers and growth[^61,62]. Moreover, studies have shown that overexpression of the ethylene response factor gene *ERF139* in *Populus* reduced the diameter of vessels while the *ERF139* dominant negative mutant displayed an increase in vessel diameter[^63]. Ethylene can induce the expression of *ERF139* and *ERF118*[^64]. *ERF118* in *Populus* is reported to be associated with cell expansion[^63]. These results suggest that ethylene signaling may be involved in the cell expansion of wood. Auxin signaling is involved in promoting cell expansion[^65], however, the specific mechanism regulating the role of auxin in wood cell expansion is not fully understood.

As discussed above, xylem cell expansion in the process of wood formation is regulated by many factors, including plant hormones, expansins, hydrolases, and other molecular networks. The molecular knowledge underlying xylem cell expansion would have implications in tree improvement.

Transcriptional networks in wood secondary cell wall deposition

After cell expansion, SCW deposition is initiated. SCW is the main biomass produced by land plants and stores most of the carbon fixed by photosynthesis. In trees, SCW is primarily deposited in xylem tissue, i.e. wood. SCW are mainly composed of three kinds of polymers, including 60% cellulose, 10%−40% hemicellulose and 30% lignin[^67]. Biosynthesis and assembly of SCW during wood formation is regulated by a battery of elaborate transcriptional networks.

Biosynthesis of SCW involves multiple metabolic pathways to convert photosynthetic products into three major biopolymers. Coordination of the biosynthesis and assembly of the biopolymers to deposit in SCW during wood formation is strictly regulated through hierarchical transcriptional networks (Fig. 3). The regulatory networks are constructed in multiple layers composed of NAC and MYB transcription factors[^68−71]. In *Arabidopsis*, a number of NAC transcription factors such as Vascular-related NAC-domain1 (VND1) to VND7, NAC secondary wall thickening promoting factor 1 (NST1), and secondary

Fig. 3 Transcription factor genes in regulation of wood secondary cell wall biosynthesis.

[^56]: Luo & Li. Forestry Research 2022, 2:5
[^57]:
[^58]:
[^59]:
[^60]:
[^61]:
[^62]:
[^63]:
[^64]:
[^65]:
[^66]:
[^67]:
wall-associated NAC domain protein 1 (SND1/NST3) and NST2 constitute the top-level master regulators to regulate the expression of other downstream TFs and genes related to wall synthesis[72-74]. In tree species, the compeer master regulators in the hierarchical networks are named WNDs (wood-associated NAC domain transcription factors)[75,76]. Compared to Arabidopsis, the Populus genome contain more homologous genes of the master regulators. For example, there are three NST homologs (NST1, NST2 and NST3/SND1) in Arabidopsis, and four homologous genes (WND1A, WND1B, WND2A and WND2B) in Populus trichocarpa which function differently[75,77,78]. PtrWND1B, an ortholog of Arabidopsis SND1, functions in fiber cell wall thickening. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening[78]. PtrWND1B alternative splicing produces two isoforms which play antagonistic roles in regulating fiber cell wall thickening, which does not occur in Arabidopsis and may act as a particular mechanism to regulate xylem fiber cell wall thickening in trees[78,79]. Overexpression of the normal short-transcript PtrWND1B-s enhanced fiber cell wall thickening, while overexpression of the alternative long-transcript PtrWND1B-I repressed fiber cell wall thickening[78]. Meanwhile, EgWND1, an SND1 homolog in Eucalyptus, also shows its relation to SCW deposition. Its overexpression in Arabidopsis causes ectopic deposition of SCW[80]. Modification of PtrWND2B and PtrWND6B expression in Populus results in changes to SCW thickening and biosynthesis of lignin and cellulose[77,81]. WNDs act as main transcriptional regulators to control wood SCW formation through a set of hierarchical networks in trees.

WNDs activate downstream genes through its binding to the secondary wall NAC-binding element (SNBE) in the promoter of target genes[81,82]. In Populus, the PtrMYB83 and PtrMYB20 promoters contain multiple SNBE elements that are targeted by PtrWNDs[81]. A number of the MYB transcription factors constitute a complex of regulatory networks downstream of the NAC transcription factors to hierarchically regulate SCW formation in response to internal developmental signals and environmental stimuli[80,83,84]. In Arabidopsis, MYB46 and MYB83 are the second layer master switches in the regulatory network, which can be directly targeted by NAC to activate the secondary wall biosynthetic program[83,84]. PtrMYB2/21 and PtrMYB3/20, the homologous genes of AtMYB46 and AtMYB83 in Populus, respectively, which are activated by WNDs to regulate the biosynthesis pathways of cellulose, lignin and hemicellulose[85,86]. Studies also show that PtrMYB18/74/75/128 are also able to activate the expression of SCW biosynthesis genes[81]. In addition, several regulators have been identified for specific regulation of lignin biosynthesis. PtrMYB4 and EgMYB2 are homologous genes of AtMYB46/83 in pine and Eucalyptus, respectively, and constitutively overexpression of these genes induces ectopic SCW formation, particularly lignin biosynthesis[87,88]. Similarly, PtrMYB26/28/90/152 in P. trichocarpa[89,90] and PtrMYB92/170/216 in P. tomentosa[91-94] and PtrMYB1/8 in pine[95] are reported to specifically regulate lignin biosynthesis. On the other hand, SCW biosynthesis can be regulated through repression mechanisms. PdMYB199, a homologous gene of AtMYB42/85, plays a negative role in SCW thickening by inhibiting expression of SCW biosynthesis genes[95]. In Populus, PtrMYB21a[96], PdMYB22[97], PtrMYB156[98], PtrMYB189[99] and Eucalyptus EgMYB8[100,101] are transcriptional repressors inhibiting lignin biosynthesis. LTF1, one of the AtMYB4 homologous genes in Populus acts as a sensory switch to specifically repress lignin biosynthesis[102].

Furthermore, expression of EgrNAC61, a SND1 homolog in Eucalyptus, is positively related to wood SCW formation and displays activity in Arabidopsis protoplast to induce expression of the SCW biosynthesis genes[103]. PtrNAC154[104], PdNAC150/156/157, PtrZF1 and PtrGATA1 (two zinc-finger transcription factors)[81] are identified in Populus as activators for SCW thickening, while PtrWRKY19 and PtrKNA7[105,106] exert repression on expression of cellulose, hemicellulose and lignin biosynthesis genes.

Studies have revealed a complex of regulatory genes that control formation of SCW in tree wood (Fig. 3). Generally, the identified genes display regulatory roles similar to their homologs in herbaceous model species. However, many of them perform distinct functions specific to tree species. For example, alternative splicing of PtrWND1B illustrates a mechanism to sustain homeostatic fiber cell wall thickening during wood formation in Populus, while its orthologs in Arabidopsis do not undergo alternative splicing[78]. In terms of cell wall structure and chemical composition, wood SCWs show diverse characteristics in various tree species and are also very different from those in herbaceous species[107,108]. Thus, formation of the characteristic of wood SCWs may be attributed to specific regulations unique to tree species, which are largely unknown. Understanding of the regulations underlying wood SCW formation has huge implications for tree improvement for biomaterial production.

Biosynthesis of secondary cell wall

SCW is mainly composed of cellulose, hemicelluloses and lignin, which are also the main components of wood[3]. To date, most of the genes that encode the enzymes catalyzing SCW biosynthesis during wood formation have been characterized.

Cellulose, a biopolymer of unbranched β-(1,4)-linked glucan chains, is the most abundant component in wood SCW and its content has a substantial effect on its properties. Cellulose biosynthesis is catalyzed by cellulose synthases (CESAs)[109], which form a cellulose synthesis complex (CSC) localized on the plasma membrane (PM). On the PM, CSCs are co-localized with cortical microtubules (MTs) and moves along the MT bands to catalyze glucan chain elongation to form cellulose microfibrils extending into cell walls[107,110]. The *P. trichocarpa* genome contains 18 CES4 genes to form two types of CSCs to synthesize cellulose wood cell wall SCWs[111,112]. Knockout or suppression of CES4 in *Populus* results in the disruption of the SCW layered structure as well as alteration of the cellulose content and structure[113,114]. The CES4 in different types of CSC showed distinct effects on the cellulose microfibril structure[114]. This suggests a possibility that CES4 composition in CSC affects formation of the cellulose microfibril structure. In addition, wood cellulose biosynthesis involves other proteins. *Ptrcela9A6* and *PtrKOR1* (KORRIGAN 1) are EgGase genes which are required for SCW cellulose formation[55,115]. They are expressed in developing xylem undergoing secondary wall thickening. Suppression of their expression results in thinner SCW with reduced cellulose content[107,110]. Studies have shown that sucrose synthase (SUS) is involved in cell wall thickening and cellulose biosynthesis[116,117]. While in tree species, reduction of the SUS...
activity does not specifically affect cellulose content but causes an overall decrease of biopolymers in wood\(^{[118]}\), indicating that SUS may not be particularly involved in cellulose biosynthesis. The CYTOSOLIC INVERTASES (CINs) convert sucrose to UDP-glucose. Suppression of CIN activity in *Populus* leads to a decrease in UDP-glucose and cellulose\(^{[119]}\).

Cellulose is a main component of wood and there has been a great deal of investigation to understand cellulose biosynthesis and its regulation. While the general molecular mechanism of cellulose biosynthesis has been elucidated, much more of its regulation is yet to be studied. Full understanding of how cellulose biosynthesis can be manipulated in relation to wood properties would help to engineer trees with desired cellulose and wood characters.

Hemicellulose is a heteropolysaccharide and can form linkages with cellulose and lignin to make cell wall polymers connect together\(^{[120]}\). There are different types of hemicelluloses, such as xyloglucan, xylan, mannan, and β-(1→3)(1→4)-glucan. Xylan and mannan are the main hemicelluloses in SCW\(^{[121]}\).

Xylan is composed of a β-(1,4)-xylan backbone decorated with glycosyl substitutions and modifications with methyl and acetyl groups\(^{[122]}\). Genetic and biochemical analyses revealed that β-1,4-xylan backbone biosynthesis is mediated mainly by a xylan synthase complex composed of IRX10/IRX10L, IRX9/IRX9L and IRX14/IRX14L. Mutations in these genes show defects in xylan synthesis\(^{[122–127]}\). In *Populus*, five GT43 glycosyltransferases are encoded by PtrGT43A/B/C/D/E genes, which are highly expressed in developing xylem\(^{[128]}\). Modification of their expression disrupts xylan synthesis\(^{[128]}\). In addition, more glycosyltransferase genes are reported to play a role in xylan synthesis. PoGT47C, PoGT8D and PoGT8E/F are suggested to act in synthesis of the xylan reducing end\(^{[128–130]}\). In wood xylan, glucuronic acid (GlcA) is often methylated at the O-4 position by glucuronoxylan methyltransferases (GXMs)\(^{[131,132]}\). PtrGX1, PtrGX2, PtrGX3, and PtrGX4 in *Populus* have been reported to mediate the methylation of GlcA in xylan during wood formation\(^{[133]}\). DUF579 proteins show diverse function and PtrDUF579-3 is able to catalyze the GlcA methylation of xylan in *Populus*\(^{[134,135]}\). Suppression of PtrDUF579-3 leads to a reduction in both the number of GlcA side chains and the degree of methylation on the GlcA side chain\(^{[134]}\). In addition to methylation, acetylation is another form of xylan modification. PtrXOATs (XYLAN O-ACETYLTRANSFERASE), DUF231 proteins in *Populus*, shows a catalyzing activity of acetylation on xylan\(^{[136]}\). The REDUCED WALL ACETYLATION (RWA) genes may play a role in the regulation of xylan acetylation. Four RWA genes in *Populus*, including RWA-A1/B1/C1/D1, are expressed in developing wood and downregulation of these genes result in a reduction of xylan and xyloglucan acetylation in wood\(^{[137]}\).

Glucomannan and galactoglucomannan are two types of mannan SCWs. Glucomannan is mainly formed in angiosperms while galactoglucomannan is a major hemicellulose in gymnosperms\(^{[107]}\). Biosynthesis of the β-1,4-glucomannan backbone is catalyzed by cellulose synthase-like family A (CSlA)\(^{[138]}\). *Populus* PtrCslA1 is highly expressed in wood-tissue, exhibiting glucomannan synthase activity for the biosynthesis of glucomannan during wood formation\(^{[111]}\).

Lignin, the second most abundant component after cellulose in wood, is a cross-linked phenolic polymer. Generally, lignin, which contains three subunits, H-, G- and S-monolignols, are polymerized by oxidative coupling of p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol\(^{[2,108]}\). Monolignol biosynthesis is achieved through a general phenylpropanoid pathway in cytosol and monolignols needed to be transported across the plasma membrane into the cell wall for polymerization. In the phenylpropanoid pathway, monolignol synthesis starts with deamination of phenylalanine catalyzed by phenylalanine ammonia-lyase (PAL), and is then catalyzed by a series of enzymes including cinnamate 4-hydroxylase (C4H), 4-coumarate: CoA ligase (4CL), Hydroxycinnamoyl-CoA Shikimate/Quinate Hydroxycinnamoyl Transferase (HCT), Caffeoyl-CoA O-methyltransferase (CCoAOMT), Cinnamoyl-CoA reductase (CCR), Ferulate 5-hydroxylase (F5H), Caffeate O-Methyltransferase (COMT) and Cinnamyl alcohol dehydrogenase (CAD), to form three monolignols\(^{[108]}\). Analysis of genes associated with the phenylpropanoid pathway in *Populus* show a set of 23 genes that encode for the monolignol biosynthesis enzymes. Eighteen of the genes are preferentially expressed in developing xylem and may play a core role in the biosynthesis of monolignols during wood formation\(^{[139]}\). During wood formation, changing the expression of these genes results in significant changes in the content of monolignols\(^{[140]}\). Meanwhile, alternative routes are reported in monolignols biosynthesis. For instance, caffeoyl shikimate esterase (CSE) can catalyze the conversion of caffeoyl shikimate to caffeic acid\(^{[122]}\). Modification of CSE expression in *Populus* leads to defective lignin biosynthesis\(^{[141]}\).

Monolignol polymerization is believed to be catalyzed by laccases (LACs) and peroxidases\(^{[142]}\). *Populus* genome contains 49 LAC genes and 17 of them are highly expressed in developing xylem, likely participating in lignin polymerization in a redundant manner\(^{[143]}\). LAC expression is regulated by PtrMIR397a. Overexpression of Ptr-MIR397a in *Populus* results in reduction of the LAC transcript abundance and lignin content\(^{[143]}\). Studies show that peroxidase plays a role in cell wall lignification in *Arabidopsis*\(^{[144]}\) and down-regulation of anionic peroxidase alters both lignin content and composition in hybrid aspen\(^{[145]}\).

Lignin, a major component of SCW, is recalitrant for the utilization of cell wall biomass in the production of biofuels and biochemicals\(^{[146,147]}\). Thus, modification of lignin is considered as an expectant strategy to circumvent the barrier for efficient processing of cell wall biomass\(^{[148]}\). Lignin modification in trees can change the lignin content and monolignol composition\(^{[149–151]}\). However, modification of lignin is often concomitant with defects in growth and development. For example, down-regulating the expression of 4CL in *Populus* results in a decrease in lignin content and is accompanied by stunting in the growth of transgenic *Populus*\(^{[152]}\). To overcome the growth penalty caused by lignin modification, recent studies have developed a new approach to engineer lignin through cell-type specific modifications. Cell-specific downregulation of *LTF1* or 4CL in the fibers and vessels of *Populus* xylem, respectively, result in the reduction of lignin content in fibers or vessels, while the fiber-specific lignin reduction does not affect plant growth but achieves improvements in wood biomass quality and saccharification efficiency\(^{[153,154]}\). In another study, vessel-specific reintroduction of lignin biosynthesis in the lignin biosynthesis-deficient *Populus* results in restoration of lignification in vessels and ray cells with hypolignification in fibers,
and this modification yields increase of the wood biomass saccharification[155]. These studies indicate that lignin biosynthesis can be specifically regulated in different cell types in wood tissue. Cell-specific modification of lignin promises a new strategy to engineer lignin for improvement of wood cell wall biomass without growth penalty in trees.

Molecular events in wood programmed cell death

In the process of wood formation, a series of irreversible autolysis, induced by the collapse of the vacuole, promotes PCD which is the last step in the formation of mature xylem cells[156,157]. Analyzing the maturation of secondary xylem of *Populus* revealed that many genes encoding proteases, nucleases, and autophage-related proteins are up-regulated before the PCD process of *Populus* xylem cells, indicating that they may be related to PCD during wood formation[157]. During the development of secondary xylem of *Populus*, 20S proteasome (20SP), a protein complex, was identified as having caspase-3-like activity related to PCD[158]. Treatments with Ac-DEVD-CHO (caspase-3 inhibitor) and clasto-lactacystin β-lactone (a proteasome inhibitor) inhibited the xylem differentiation of veins in *Arabidopsis* cotyledons and PCD of vessels in a VND6-induced Arabidopsis xylerogenic culture, respectively, indicating the 20S proteasome is involved in xylem development and PCD[158]. PttMC13 (METACASPASE 13) and PttMC14 encoding cysteine proteases in *Populus* had been reported to play an important role in the process of proteolytic and xylem elements cell death[159]. Moreover, during PCD, endonucleases can catalyze the degradation of DNA, and two Ca2+-dependent DNase genes (EuCaN1 and EuCaN2) encoding endonuclease were identified in secondary xylem of *Eucommia ulmoides*[160], Disrupting their expression resulted in abnormal xylem development, which may be related to their role in PCD[160].

Formation of characteristic heartwood in trees is an interesting physiological process. The longitudinal and radial parenchyma cells in some tree species remain alive over the course of several years to contribute to heartwood formation[3,161,162]. Clearly, those cells may not be normally programmed to go to full PCD process but keep active in synthesis of the compounds needed for heartwood maturation[3,161,162]. The molecular mechanisms that control the process of heartwood formation need further investigation and research.

PCD is a crucial step in wood formation, accompanied by a series of irreversible hydrolysis processes and ultimate degradation of all cellular content, except the cell wall. While current understanding of PCD in relation to wood formation is insufficient, further research will help provide new insights into understanding of the development of distinct wood characteristics.

Conclusions

With the continuous advancement of research in tree molecular biology, we are on the way to extending our knowledge of the molecular regulation of wood formation. Recently, the release of the cell atlas of *Populus* xylem obtained by single-cell sequencing[163] provides a possibility to dissect the cellular developing lineage of wood formation at a single-cell resolution, which would open a new avenue to further our understanding of wood formation. Meanwhile, more and more tree genomes have being sequenced. Availability of the high-quality genome sequences which include tree species with a variety of wood properties will aid in mapping the genomic bases for regulation of the characteristics of wood formation. By combination of the genomic, genetic, molecular and cellular approaches, understanding of the molecular mechanisms underpinning wood formation will be advanced more quickly with more comprehensive elaborations, which will provide strong knowledge for improvement of wood with desired properties.

Acknowledgments

This study was supported by the National Nature Science Foundation of China (32130027, 31630014) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB27020104).

Conflict of interest

The authors declare that they have no conflict of interest.

Dates

Received 15 March 2022; Accepted 22 March 2022; Published online 25 April 2022

REFERENCES

1. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–40
2. Li L, Lu S, Chiang V. 2006. A genomic and molecular view of wood formation. Critical Reviews in Plant Sciences 25:215–33
3. Plomion C, Leprovost G, Stokes A. 2001. Wood Formation in Trees. Plant Physiology 127:1513–23
4. Smetana O, Makila R, Lyy Y, Amimamie A, Sánchez Rodríguez F, et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–89
5. Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115:577–85
6. Immanen J, Niineminen K, Smolander OP, Kojima M, Alonto Serra J, et al. 2016. Cytokinins and auxin display distinct but interconnected distribution and signalling profiles to stimulate cambial activity. Current Biology 26:1990–97
7. Brackmann K, Qi J, Gebert M, Jouannet V, Schlimp T, et al. 2018. Spatial specificity of auxin responses coordinates wood formation. Nature Communications 9:875
8. Zheng S, He J, Lin Z, Zhu Y, Sun J, et al. 2021. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in *Populus*. Plant Communications 2:10019
9. Moyle R, Sbrador J, Stenberg A, Olsson O, Saxena S, et al. 2002. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. The Plant Journal 31:675–85
10. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, et al. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. The Plant Cell 20:843–55
11. Xu C, Shen Y, He F, Fu X, Yu H, et al. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in *Populus*. New Phytologist 222:752–67
12. Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. 2007. Genome-wide analysis of Aux/IAA and ARF gene families in *Populus*.
Molecular understanding of wood formation

13. Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, et al. 2008. Cytokinin signaling regulates cambial development in poplar. *PNAS* 105:20032–37

14. Fu X, Su H, Liu S, Du X, Xu C, Luo K. 2021. Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of *Populus* stems. *New Phytologist* 230:1476–88

15. Kim SK, Abe H, Little CHA, Pharis RP. 1990. Identification of 2 Brassinosteroids from the Cambial Region of Scots Pine (*Pinus* *sylvestris*) by Gas-Chromatography Mass-Spectrometry. *Plant Biology* 94:1709–13

16. Du J, Gertrulla S, Li Z, Zhao S, Liu Y, et al. 2020. Brassinosteroid regulation of wood formation in poplar. *New Phytologist* 225:1516–30

17. Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T. 2004. Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. *Plant Biology* 6:22–29

18. Love J, Björklund S, Vahala H, Hertzberg M, Kangasjärvi J, et al. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of *Populus*. *PNAS* 106:5984–89

19. Maurat M, Moritz T. 2009. Analyses of GA20ox- and GID1-overexpressing aspen suggest that gibberellins play two distinct roles in wood formation. *The Plant Journal* 58:989–1003

20. Arend M, Fromm J. 2013. Concomitant analysis of cambial abscisic acid and cambial growth activity in poplar. *Trees* 27:1271–76

21. Fletcher JC. 2020. Recent Advances in Arabidopsis CLE Peptide Signaling. *Trends in Plant Science* 25:1005–16

22. Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK, et al. 2010. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. *Plant Physiology* 154:1721–36

23. Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR. 2015. Wood formation in trees is increased by manipulating PYK-regulated cell division. *Current Biology* 25:1050–55

24. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, et al. 2017. Regulation of wood formation by an auxin-mediated *PaC3H17*-PA MYB199 module in *Populus*. *New Phytologist* 225:1545–61

25. McNeil M, Darvill AG, Fry SC, Albersheim P. 1984. Structure and Function of the Primary-Cell Walls of Plants. *Annual Review of Biochemistry* 53:625–63

26. Carpita NC, Gibeaut DM. 1993. Structural models of primary-cell walls in flowering plants – consistency of molecular-structure with the physical-properties of the walls during growth. *The Plant Journal* 3:1–30

27. Mellerowicz EJ, Sundberg B. 2008. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. *Current Opinion in Plant Biology* 11:293–300

28. Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. *Genome Biology* 6:242

29. McQueen-Mason S, Durachko DM, Cosgrove DJ. 1992. Two Endogenous Proteins That Induce Cell-Wall Extension in Plants. *The Plant Cell* 4:1425–33

30. Yennawar NH, Li L, Dudzinski DM, Tabuchi A, Cosgrove DJ. 2006. Crystal structure and activities of EXPB1 (*Zea mays* 1), a β-expansin and group-1 pollen allergen from maize. *PNAS* 103:14664–71

31. Yuan S, Wu Y, Cosgrove DJ. 2001. A fungal endoglucanase with plant cell wall extension activity. *Plant Physiology* 127:324–33

32. Gray-Mitsumune M, Mellerowicz EJ, Abe H, Schwarz J, Winzell A, et al. 2004. Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family. *Plant Physiology* 135:1552–64

33. Nishikubo N, Awano T, Banasik A, Bourquin V, Ibatullin F, et al. 2011. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. *Plant Physiology* 153:399–413

34. Nikishikub N, Awano T, Banasik A, Bourquin V, Ibatullin F, et al. 2007. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. *Plant and Cell Physiology* 48:843–55

35. Trainotti L, Spolaore S, Pavanella A, Baldan B, Casadoro G. 1999. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits.
Molecular understanding of wood formation

Plant Molecular Biology 40:323–32

53. Ohmiya Y, Nakai T, Park YW, Aoyama T, Oka A, et al. 2003. The role of PopCel1 and PopCel2 in poplar leaf growth and cellulose biosynthesis. *The Plant Journal* 33:1087–97

54. Yu L, Li Q, Zou Y, Azfal MS, Li L. 2018. An auxin-induced β-type endo-1,4-β-glucanase in poplar is involved in cell expansion and lateral root formation. *Planta* 247:1194–61

55. Yu L, Sun J, Li L. 2013. PtcCel9A6, an Endo-1,4-β-glucanase, is required for cell wall formation during xylem differentiation in *Populus*. *Molecular Plant* 6:1904–17

56. Zhao Y, Song D, Sun J, Li L. 2013. Populus endo-β-mannanase PtmMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. *The Plant Journal* 74:473–85

57. Pelloux J, Rustérucci C, Mellerowicz EJ. 2007. New insights into pectin methyltransferase structure and function. *Trends in Plant Science* 12:267–77

58. Gou J, Miller LM, Hou G, Yu X, Chen X, et al. 2012. Acetylenederivative-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. *Plant Cell* 24:50–65

59. Niedzialecka A, Wiklund S, Peronne MA, Michel F, Lesniewska J, et al. 2008. Pectin methyl esterase inhibits intrusive and suppressive cell growth in developing wood cells of *Populus*. *Plant Physiology* 146:554–65

60. Micheli F, Sundberg B, Goldberg R, Richard L. 2000. Radial distribution pattern of pectin methyltransferases across the cambial region of hybrid aspen at activity and dormancy. *Plant Physiology* 124:191–200

61. Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, et al. 2016. Developing xylem-preferential expression of PgDA2ox1, a gibberellin 20-oxidase 1 from *Pinus densiflora*, improves woody biomass production in a hybrid poplar. *Plant Biotechnology Journal* 14:1161–70

62. Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. *Nature Biotechnology* 18:784–88

63. Wessels B, Seyfferth C, Escamzé S, Vain T, Antos K, et al. 2019. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. *New Phytologist* 224:1585–99

64. Vahala J, Felten J, Love J, Gorzsz A, Gerber L, et al. 2013. A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. *New Phytologist* 200:511–22

65. Seyfferth C, Wessels B, Jokipi-Lukkari S, Sundberg B, Delhomme N, et al. 2018. Ethylene-related gene expression networks in wood formation. *Frontiers in Plant Science* 9:2722

66. Hager A. 2003. Role of the plasma membrane H+–ATPase in auxin-induced elongation growth: historical and new aspects. *Journal of Plant Research* 116:483–505

67. Meents MJ, Watanabe Y, Samuel AL. 2018. The cell biology of secondary cell wall biosynthesis. *Annals of Botany* 121:1107–25

68. Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in *Arabidopsis*. *The Plant Cell* 20:2763–82

69. Zhong R, Ye ZH. 2014. Complexity of the transcriptional network controlling secondary wall biosynthesis. *Plant Science* 229:193–207

70. Demura T, Fukuda H. 2007. Transcriptional regulation in wood formation. *Trends in Plant Science* 12:64–70

71. Zhu Y, Li L. 2021. Multi-Layered Regulation of Plant Cell Wall Thickening. *Plant Cell Physiology* 62:1867–73

72. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2005. The NAC transcription factors NST; and NST2, of *Arabidopsis* regulate secondary wall thickenings and are required for anther dehiscence. *Plant Cell* 17:2993–3006

73. Tan T, Endo H, Sano R, Kurata T, Yamaguchi M, et al. 2018. Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation. *Plant Physiology* 176:773–89

74. Zhou J, Zhong R, Ye Z. 2014. A *Arabidopsis* NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. *PLoS One* 9:e105726

75. Zhong R, Lee C, Ye Z. 2010. Functional characterization of poplar wood-associated NAC domain transcription factors. *Plant Physiology* 152:1044–55

76. Ye Z, Zhong R. 2015. Molecular control of wood formation in trees. *Journal of Experimental Botany* 66:4119–31

77. Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, et al. 2011. A NAC domain protein family contributing to the regulation of wood formation in *Poplar*. *The Plant Journal* 67:499–512

78. Zhong R, Sun J, Xu P, Zhang R, Li L. 2014. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR18 regulates cell wall thickening during fiber development in *Populus* species. *Plant Physiology* 164:765–76

79. Li Q, Lin Y, Sun Y, Song J, Chen H, et al. 2012. Splice variant of the SN1 transcription factor is a dominant negative of SN1 members and their regulation in *Populus trichocarpa*. *PNAS* 109:14699–704

80. Zhong R, Lee C, Ye Z. 2010. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. *Trends in Plant Science* 15:625–32

81. Zhong R, McCarthy RL, Lee C, Ye Z. 2011. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in *Poplar*. *Plant Physiology* 157:1452–68

82. Zhong R, Lee C, Ye Z. 2010. Global analysis of direct targets of secondary wall NAC master switches in *Arabidopsis*. *Molecular Plant* 3:1087–103

83. McCarthy RL, Zhong RQ, Ye Z. 2009. MYB83 is a direct target of SN1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in *Arabidopsis*. *Plant and Cell Physiology* 50:1950–64

84. Zhong R, McCarthy RL, Haghighbat M, Ye Z. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. *PLoS One* 8:e69219

85. Goicoechea M, Lacombre E, Legay S, Mihaljevic S, Rech P, et al. 2005. *EghMYB2*, a new transcriptional activator from *Eucalyptus* xylem, regulates secondary cell wall formation and lignin biosynthesis. *The Plant Journal* 43:553–67

86. Patzlaff A, McNinis S, Courtenay A, Surman C, Newman LJ, et al. 2003. Characterisation of a pine MYB that regulates lignification. *The Plant Journal* 36:743–54

87. Wang S, Li E, Porth I, Chen J, Mansfield SD, et al. 2014. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor *PtrMYB152* in *Arabidopsis*. *Scientific Reports* 4:5054

88. Zhong R, Ye Z. 2009. Transcriptional regulation of lignin biosynthesis. *Plant Signal Behav* 4:1028–34

89. Li C, Ma X, Yu H, Fu Y, Luo K. 2018. Ecopic expression of *PtoMYB74* in poplar and *Arabidopsis* promotes secondary cell wall formation. *Frontiers in Plant Science* 9:1262

90. Xu C, Fu X, Liu R, Guo L, Ran L, et al. 2017. *PtoMYB170* positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic *Arabidopsis*. *Tree
The Plant Cell
Gardiner JC, Taylor NG, Turner SR. 2003. Control of cellulose and hemicelluloses. Annual Review of Plant Biology 54:102−15

Lee C, Teng Q, Zhong R, Ye Z. 2011. Molecular dissection of xylan biosynthesis of the hemicellulose glucuronoxylan. Plant Physiology 155:1331−41

Wu AM, Hörnblad E, Voxeur A, Gerber L, Rihouey C, et al. 2010. Analysis of the arabidopsis family GT43 glycosyltransferases form two functionally distinct glycosyl transferases involved in glucuronoxylan biosynthesis. Molecular Plant 3:383−41

Lee C, Teng Q, Huang WL, Zhong RQ, Ye ZH. 2010. The arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiology 153:526−41

Wu AM, Hörnblad E, Voxeur A, Gerber L, Rihouey C, et al. 2010. Analysis of the arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiology 153:542−54

Lee C, Teng Q, Zhong R, Ye Z. 2011. Molecular dissection of xylan biosynthesis during wood formation in poplar. Molecular Plant 4:730−47

Lee C, Teng Q, Huang W, Zhong R, Ye Z. 2009. Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Physiology 150:1103−12

Timell TE. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology 1:45−70

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:102−15

Delmer DP. 1999. CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. Annual Review of Plant Physiology and Plant Molecular Biology 50:245−76

Gardiner JC, Taylor NG, Turner SR. 2003. Control of cellulose synthase complex localization in developing xylem. The Plant Cell 15:1740−8
Molecular understanding of wood formation

Plant and Cell Physiology 50:1075–89

130. Lee C, Teng Q, Huang W, Zhong R, Ye Z. 2009. The poplar GT8E and GT8F glycosyltransferases are functional orthologs of arabidopsis PARVUS involved in glucuronoxylan biosynthesis. *Plant and Cell Physiology* 50:1982–7

131. Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye ZH. 2012. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. *Plant and Cell Physiology* 53:1934–49

132. Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, et al. 2012. 4-O-methylation of glucuronic acid in *Arabidopsis* glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. *PNAS* 109:14253–58

133. Yuan Y, Teng Q, Zhong R, Ye Z. 2014. Identification and biochemical characterization of four wood-associated glucuronoxylan methyltransferases in *Populus*. *PLoS* One 9:e87370

134. Song D, Gui J, Liu C, Sun J, Li L. 2016. Suppression of *PtrDUF579-3* expression causes structural changes of the glucuronoxylan in *Populus*. *Frontiers in Plant Science* 7:493

135. Song D, Sun J, Li L. 2014. Diverse roles of *PtrDUF579* proteins in *Populus* and *PtrDUF579-1* function in vascular cambium proliferation during secondary growth. *Plant Molecular Biology* 85:601–12

136. Zhong R, Cui D, Ye Z. 2018. A group of *Populus trichocarpa* DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan. *Plos One* 13:e0194532

137. Pawar PMA, Ratke C, Balasubramanian VK, Chong SL, Gandia ML, et al. 2017. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. *New Phytologist* 214:1491–505

138. Liepmann AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, et al. 2007. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannanins in plants. *Plant Physiology* 143:1881–93

139. Shi R, Sun YH, Li Q, Heber S, Sederoff R, et al. 2010. Towards a systems approach for lignin biosynthesis in *Populus trichocarpa*: transcript abundance and specificity of the monolignol biosynthetic genes. *Plant and Cell Physiology* 51:144–63

140. Wang JP, Matthews ML, Williams CM, Shi R, Yang CM, et al. 2018. Improving wood properties for wood utilization through multiomics integration in lignin biosynthesis. *Nature Communications* 9:1579

141. de Lyra Soriano Saleme M, Cesario I, Vargas L, Kim H, Vanholme R, et al. 2017. Silencing CAFFEYL SHIKIMATE ESTERASE affects lignification and improves saccharification in poplar. *Plant Physiology* 175:1040–57

142. Bonawitz ND, Chapple C. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. *Annual Review of Genetics* 44:337–63

143. Lu S, Li Q, Wei H, Chang M, Tuniyada-Anukit S, et al. 2013. *PtrmiR397a* is a negative regulator of lacase genes affecting lignin content in *Populus trichocarpa*. *PNAS* 110:10848–53

144. Shigeto I, Itoh Y, Hirao S, Ohira K, Fujita K, et al. 2015. Simultaneously disrupting AtPtrx2, AtPtrx25 and AtPtrx7 alters lignin content and structure in *Arabidopsis* stem. *Journal of Integrative Plant Biology* 57:349–56

145. Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N. 2003. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. *Journal of Plant Research* 116:175–82

146. Kumar M, Campbell L, Turner S. 2016. Secondary cell walls: biosynthesis and manipulation. *Journal of Experimental Botany* 57:515–31

147. Pauly M, Keegstra K. 2010. Plant cell wall polymers as precursors for biofuels. *Current Opinion in Plant Biology* 13:304–11

148. Vanholme R, Morreel K, Ralph J, Boerjan W. 2008. Lignin engineering. *Current Opinion in Plant Biology* 11:278–85

149. Li L, Zhou Y, Cheng X, Sun J, Marita JM, et al. 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. *PNAS* 100:4939–44

150. Hu WJ, Harding SA, Jung J, Popko JL, Ralph J, et al. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. *Nature Biotechnology* 17:808–12

151. Chanoca A, de Vries L, Boerjan W. 2019. Lignin Engineering in Forest Trees. *Frontiers in Plant Science* 10:912

152. Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki CY, et al. 2010. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. *Plant Physiology* 154:874–86

153. Gui JS, Lam PY, Tobimatsu Y, Sun JY, Huang C, et al. 2020. Fibre-specific regulation of lignin biosynthesis improves biomass quality in *Populus*. *New Phytologist* 226:1074–87

154. Cao S, Huang C, Luo L, Zheng S, Zhong Y, et al. 2020. Cell-specific suppression of 4-Coumarate-CoA ligase gene results in differential effect of lignin on cell physiological function in *Populus*. *Frontiers in Plant Science* 11:589729

155. De Meester B, Vanholme R, de Vries L, Wouters M, Van Doornsselaere J, Boerjan W. 2021. Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar. *The Plant Journal* 108:752–65

156. van Doorn WG. 2011. Classes of programmed cell death in plants, compared to those in animals. *Journal of Experimental Botany* 62:4749–61

157. Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, et al. 2009. A unique program for cell death in xylem fibers of *Populus* stem. *Plant Journal* 58:260–74

158. Han J, Lin W, Oda Y, Cui K, Fukuda H, et al. 2012. The proteasome is responsible for caspase-3-like activity during xylem development. *The Plant Journal* 72:129–41

159. Bollhöner B, Jokipi-Lukkari S, Bygdell J, Stael S, Adriasola M, et al. 2018. The function of two type II metacaspases in woody tissues of *Populus* trees. *New Phytologist* 217:1551–65

160. Chen H, Pang Y, Zeng J, Ding Q, Yin S, et al. 2012. The Ca2+-dependent DNases are involved in secondary xylem development in *Eucommia ulmoides*. *Plant Communications* 5:457–75

161. Stewart CM. 1966. Excretion and Heartwood Formation in Living Trees. *Science* 153:1068–74

162. Spicer R. 2005. Senescence in Secondary Xylem: Heartwood Formation as an Active Developmental Program. In *Vascular Transport in Plants*, eds. Holbrook NM, Zwieniecki MA. UK: Academic Press. pp. 457–75 https://doi.org/10.1016/B978-012088457-5/0024-1

163. Li H, Dai X, Huang X, Xu M, Wang Q, et al. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in *Populus*. *Journal of Integrative Plant Biology* 63:1906–21

Copyright: © 2022 by the author(s). Published by Maximum Academic Press, Fayetteville, GA. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.