Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs

Martin Weigt and Alexander K. Hartmann

Institute for Theoretical Physics, University of Göttingen, Bunsenstr. 9, 37073 Göttingen, Germany
(February 1, 2008)

In this letter, we analytically describe the typical solution time needed by a backtracking algorithm to solve the vertex-cover problem on finite-connectivity random graphs. We find two different transitions: The first one is algorithm-dependent and marks the dynamical transition from linear to exponential solution times. The second one gives the maximum computational complexity, and is found exactly at the threshold where the system undergoes an algorithm-independent phase transition in its solvability. Analytical results are corroborated by numerical simulations.

PACS: (89.20.Ff), (02.10.-c), (05.20.-y), (89.15.Hc)

Over the last few years, phase-transition phenomena in combinatorial problems have increasingly attracted computer scientists and, more recently, also statistical physicists. Many computationally hard problems, as e.g. 3-satisfiability, graph coloring, number partitioning or vertex cover, undergo dramatic changes in their solvability or their solution structure when external parameters are changed. These problems, all belonging to the class of NP-complete problems, are believed to be solvable only in a time which scales exponentially with the problem size. Therefore the scientific interest was largely increased by the observation that phase transitions are strongly related to a pronounced peak in the typical computational time: The hardest instances were typically found in the vicinity of the transition point, where problems are said to be critically constrained. Far away from this point, problems are easily solved or hopelessly over-constrained. Problems at such phase boundaries thus provide an optimal testing ground for the development or improvement of algorithms.

Classical complexity theory characterizes the hardness of a computational problem with respect to the worst possible case. The above-mentioned observations have however underlined the need of a typical-case complexity theory. At this point statistical mechanics enters: Many algorithm-independent aspects of these phenomena, as e.g. the location of the phase transition and the solution space structure, have already been characterized using methods from statistical mechanics of disordered systems. A description of the average behavior of specific algorithms is however less obvious. Probabilistic methods help to analyze simple descent algorithms and thus establish rigorous bounds on phase boundaries, but the calculation of computing times for complete backtracking algorithms was out of range. Recently a breakthrough was obtained in for the 3-satisfiability problem: Combining elements of probabilistic analysis with methods from statistical mechanics, the typical time complexity of a backtracking algorithm could be obtained.

The vertex-cover decision problem: In this letter we concentrate on the vertex-cover (VC) problem on finite-connectivity random graphs, which is one of the basic NP-complete combinatorial problems, see . It is expected that no algorithm can be designed which solves this problem always in a time growing sub-exponentially with the graph size. VC was recently shown to have similar phase-transition properties as satisfiability, but it is much easier to understand due to its simpler geometrical structure. After having introduced the model and reviewed some recent results, we will introduce a simple branch-and-bound algorithm and calculate its computational time complexity by means of analytical as well as numerical tools.

Vertex covers are defined as follows: Take any undirected graph \(G = (V,E) \) with \(N \) vertices \(i \in V = \{ 1, 2, ..., N \} \) and \(M \) edges \(\{ i, j \} \in E \subset V \times V \). We consider subsets \(V_{vc} \subset V \); vertices \(i \) with \(i \in V_{vc} \) are called covered, and uncovered for \(i \notin V_{vc} \). Analogously also an edge \(i,j \in E \) is called covered iff at least one of its endvertices is covered, \(i \in V_{vc} \) or \(j \in V_{vc} \). The set \(V_{vc} \) is a vertex cover iff all edges of the graph are covered.

The vertex-cover decision problem asks whether there are VCs of fixed given cardinality \(xN = |V_{vc}| \). In other words we are interested if it is possible to cover all edges of \(G \) by covering \(xN \) suitably chosen vertices, i.e., by distributing \(xN \) covering marks among the vertices.

In order to be able to speak of typical or average cases, we have to introduce an ensemble of graphs. We investigate random graphs \(G_{N,c/N} \) with \(N \) vertices and edges \(\{ i, j \} \) which are drawn randomly and independently with probability \(c/N \), thus the average connectivity \(c \) remains finite in the large-\(N \) limit. For a complete introduction to the field see .

When the number \(xN \) of covering marks is lowered (\(c \) is kept constant), the model is expected to undergo a coverable-uncoverable transition. Using probabilistic tools, rigorous lower and upper bounds for this threshold and the asymptotic behavior for large connectivities have been deduced. Recently we have investigated VC using a statistical mechanics approach . For connectivity \(c < e \approx 2.72 \) the transition is given by

\[
x_c(c) = 1 - \frac{2W(c) + W(c)^2}{2c},
\]

(1)
where $W(c)$ is the Lambert-W-function defined by $W(c) \exp(W(c)) = c$. For $x > x_c(c)$, vertex covers of size xN exist with probability one, for $x < x_c(c)$ the available covering marks are not sufficient. For connectivities $c > e$ replica symmetry breaking is present, and no exact result for $x_c(c)$ has been obtained.

The algorithm: We analyze a branch-and-bound algorithm similar to [1], for an introduction to this kind of algorithms see [2]. As each vertex is either covered or uncovered, there are 2^N possible configurations which can be arranged as the leaves of a binary (backtracking) tree. The basic idea is to traverse the whole tree to search for vertex covers. At first we explain how the tree-traversal is organized (branch) then we show how much computational time can be saved by excluding subtrees where surely no covers can be found (bound).

We introduce three states of vertices: free, covered or uncovered. The algorithm starts at the root of the tree where all vertices are free. The algorithm descends into the tree by choosing free vertices at random. Each vertex i has two subtrees corresponding to covering/uncovering i. If i has neighboring vertices which are either free or uncovered, we mark i covered first (left subtree). If the number of covered vertices does not exceed xN the descent continues. If the algorithm returns, vertex i is set uncovered (right subtree). In case i has only covered neighbors, the order the two subtrees is exchanged. The algorithm stops either if it has covered all edges before having used all covering marks (output: graph coverable) or if it has exhausted all covering marks in the right-most branch without having covered all edges (output: graph uncoverable).

The performance of this algorithm can be improved easily by introducing a bound. If at any node one of the subtrees can be proven to contain no VC, the corresponding subtree can be omitted. The bound used here is simple: It forbids to mark a vertex uncovered if it has any neighbor which was already marked uncovered. Otherwise some edges would remain uncovered. The algorithm is summarized below, where $G = (V, E)$ denotes the graph, $m(i) \in \{\text{free}, \text{cov}, \text{uncov}\}$ contains the marks, and X equals the currently available number of marks. Initially we set $m(i) = \text{free}$ for all $i \in V$, and $X = xN$.

begin
 $m(i) \leftarrow \text{free}$;
 vertex-cover(G, m, X);
end

begin
 $m(i) \leftarrow \text{uncov}$;
 vertex-cover(G, m, X);
end

begin
 $m(i) \leftarrow \text{cov}$;
 vertex-cover($G, m, X - 1$);
end

else (all neighbors j of i have $m(j) = \text{cov}$)

begin
 $m(i) \leftarrow \text{uncov}$;
 vertex-cover(G, m, X);
 $m(i) \leftarrow \text{cov}$;
 vertex-cover($G, m, X - 1$);
end

This algorithm is complete, i.e. decides whether or not a graph is coverable with the desired number of covering marks. Due to backtracking it will in general need exponential time in order to decide this question. In the following, the solution time is measured as the number of visited nodes in the backtracking tree.

The first descent into the tree: The analysis of the first descent into the left-most subtree is straight forward for our algorithm, as it forms a Markov process of random graphs. In every time step, one vertex and all its incident edges are covered and can be regarded as removed from the graph. As the order of appearance of the vertices is not correlated to its geometrical structure, the graph remains a random graph. After T steps, we consequently find a graph $G_{N-T,c/N}$ having $N-T$ vertices. As the edge probability remains unchanged, the average connectivity decreases from c to $(1 - T/N)c$.

For large N, it is reasonable to work with the rescaled time $t = T/N$, which becomes continuous in the thermodynamic limit. In this notation, our generated graph reads $G_{(1-t)N,c/N}$. An isolated vertex is now found with probability $(1 - c/N)^{(1-t)N-1} \approx \exp\{-(1 - t)c\}$, so the expected number of free covering marks becomes $X(t) = N - N \int_0^t dt' (1 - \exp\{-(1 - t')c\})$. The first descent thus describes a trajectory in the $c - x$-plane,

$$c(t) = (1 - t)c$$

$$x(t) = \frac{x - t}{1 - t} + \frac{e^{-(1-t)c} - e^{-c}}{(1-t)c}$$ \hspace{1cm} (2)

The results are presented in figure 1. There are two cases: for large starting value of x, $x(t)$ reaches one at a certain rescaled time $t < 1$, and the graph is proven to be coverable after having visited tN nodes of the backtracking tree. This holds as long as the starting point (x, c) is situated above the line

$$x_b(c) = 1 + \frac{e^{-c} - 1}{c}$$ \hspace{1cm} (3)

Below $x_b(c)$, $x(t)$ vanishes already before having covered all edges. So the algorithm has to backtrack, and, intuitively, exponential solution times have to be expected.
The backtracking time: In order to calculate the solution time also for \(x < x_b(c) \), we combine equations (1) and (2). We have also included \(x_c(c) \) into fig. 1. For \(x < x_b(c) \), the trajectory of the first descent crosses the phase transition line at a certain rescaled time \(\bar{t} \) at \((\bar{c}, \bar{x})\).

There the generated random subgraph of \(\tilde{N} = (1-t)N \) vertices and average connectivity \(\tilde{c} \) becomes uncoverable by the remaining \(\bar{x}\tilde{N} \) covering marks. Please note that \(\bar{t} \) is not for \(x < x_c(c) \), i.e. if we already start with an uncoverable graph. To prove this uncoverability the algorithm has to completely backtrack the subtree. This part of the algorithm obviously contributes the exponentially dominating part to the solution time. In the following we may thus concentrate completely on the generated subgraph, skipping "sub-\(x \)" in subgraph, subtree, subproblem etc.

Numerical simulation show that the exponential solution times approach a log-normal distribution of large \(N \). Hence, the typical solution time \(\bar{c}^N \tau(x,c) \) follows from the quenched average \(\tau(x,c) = \lim_{\tilde{N} \to \infty} \frac{1}{\tilde{N}} \log(t_{bt}(G_{\tilde{N},\bar{c}/\tilde{N},\bar{x})} where \(t_{bt}(G_{\tilde{N},\bar{c}/\tilde{N},\bar{x)} \) is the backtracking time for the generated uncoverable instance \(G_{\tilde{N},\bar{c}/\tilde{N},\bar{x)} \), and the overbar denotes the average over the random graph ensemble. Solution times, as already mentioned above, are measured as the number of nodes visited by an algorithm. Since also the leaves are visited nodes, \(t_{bt} \) exceeds the number \(N_l \) of leaves. As the depth of the backtracking tree is at most \(\tilde{N} \), we also have \(t_{bt} \leq \tilde{N} N_l \). The exponential time contribution is thus given by

\[
\tau(x,c) = \lim_{\tilde{N} \to \infty} \frac{1}{\tilde{N}} \log(N_l(G_{\tilde{N},\bar{c}/\tilde{N},\bar{x)})) .
\]

(4)

We have consequently reduced the problem of calculating the backtracking time to an entropic calculation which can be achieved using the tools of equilibrium statistical mechanics. The number of leaves is trivially bounded from above by \((\tilde{N},\bar{c}/\tilde{N}) \), i.e. by the number of possible placements of the \(\bar{x}\tilde{N} \) covering marks on the \(\tilde{N} \) vertices. Using Stirling's formula, we thus find

\[
\tau(x,c) \leq -\frac{\bar{c}}{c} (\bar{x} \log \bar{x} + (1 - \bar{x}) \log(1 - \bar{x})) .
\]

(5)

This time is realized by our algorithm if the bound is skipped, i.e. if all branches of the backtracking tree are visited until the covering marks are exhausted. Using the bound, our algorithm does not mark any two neighboring vertices simultaneously as uncoverable. This excludes the most of all \((\tilde{N},\bar{c}/\tilde{N}) \) above-mentioned configurations, leaving only an exponentially small fraction. So the simple bound causes already an exponential speed-up. The number of leaves fulfilling our criterion can be characterized easily: Imagine a certain leaf is reached at level \(\kappa \tilde{N} \) of the backtracking-subtree. Then, our algorithm has constructed a VC of the subgraph consisting of the \(\kappa \tilde{N} \) visited vertices because edges between these are not allowed to stay uncovered. Due to the random order of levels in the backtracking tree, this subgraph is again a random graph \(G_{\kappa \tilde{N},\bar{c}/\kappa \tilde{N}} \) having average connectivity \(\kappa c \).

We may thus conclude that the number of leaves at level \(\kappa \tilde{N} \) equals the total number \(N_{VC}(G_{\kappa \tilde{N},\bar{c}/\kappa \tilde{N}}, \bar{x}) \) of VCs of \(G_{\kappa \tilde{N},\bar{c}/\kappa \tilde{N}} \) using \(\bar{x}\tilde{N} \) covering marks. Summing over all possible values of \(\kappa \) leads to the saddle point

\[
\tau(x,c) = \max_{\kappa} \left[\lim_{\tilde{N} \to \infty} \frac{1}{\tilde{N}} \log N_{VC}(G_{\kappa \tilde{N},\bar{c}/\kappa \tilde{N},\bar{x}\tilde{N})} \right].
\]

(6)

The average of \(\log N_{VC} \) over the random graph ensemble can be calculated using the replica trick. In order to avoid technicalities, we use the annealed bound \(\log N_{VC} \leq \log N_{VC} \) which provides a very good approximation. The latter average is calculated easily, we obtain

\[
\tau(x,c) \simeq -\frac{\bar{c}}{c} \max_{\kappa=0,...,1} \left[\kappa s_{ann}(\bar{x},\bar{c}/\kappa) \right] .
\]

(7)

where \(\bar{x} \) and \(\bar{c} \) follow from the crossing point of (2) with \(x_c(c) \). In fig. 2 this result is compared with numerical simulations. Due to the exponential time complexity the system sizes which can be treated are of course much smaller than for the study of the first descent. In order to eliminate however strong logarithmic finite size dependencies, we have also used the number of leaves in these simulations; cross-checks using the number of visited nodes in the backtracking trees also show the expected behavior. Clear consistency of numerical and analytical data is found. One also finds that the computational complexity is maximal at \(x = x_c(c) \) for both algorithms with or without bound, as described by equations (3) and (5).

Conclusion and outlook: To conclude, we have calculated the typical solution time needed by a complete backtracking algorithm for vertex covering random graphs. We have combined probabilistic methods used in computer science for characterizing the first descent, and statistical mechanics methods which enabled us to calculate the phase transition threshold and the entropy of leaves.

These results imply a very intuitive picture for the different regimes of the typical computational complexity which is expected to share essential features with the behavior of more complicated algorithms. The algorithm starts its first descent into the backtracking tree. There is some parameter range of the model inside the coverable phase, where the first descent already successfully produces a VC and thus proves the coverability of the graph with the prescribed number of covering marks. In this region the solution time is found to be typically linear in problem size. If we lower the allowed number of covering marks, the initial problem still remains coverable.
but the first descent into the tree generates an uncoverable macroscopic subproblem. To escape from the corresponding subtree, the algorithm has to backtrack and consequently consumes exponential time. The maximum backtracking tree appears when the initial problem is exactly situated at the phase transition point \(x = x_c(c) \), where the exponential solution time shows its maximum, as found also for other algorithms \([7]\) or other combinatorial problems \([1,2]\). The height of the time peak depends however on the considered algorithm, and consequently also the maximal analyzable system size. In \([7]\), we could numerically solve systems up to \(N = 140 \), but the analysis of this algorithm goes far beyond the presented methods.

Related to the depicted scenario, there are mainly two different possibilities of improving algorithms:

(i) More sophisticated heuristics for the first descent allow to shift the onset of exponential complexity towards \(x_c(c) \). One important restriction to obtain algorithms analyzable within the described scheme is that the order of appearance of vertices in the backtracking tree must be independent of the structure of the graph (e.g., of the connectivities) in order to remain inside the random graph ensemble.

(ii) The second possibility of improving algorithms is given by the inclusion of more elaborated bounds into the backtracking tree. These result in an exponential speed-up of the algorithm, as we have already seen for the simple bound used in our algorithm.

Acknowledgements: We are very grateful to S. Cocco and R. Monasson for communicating the results of \([9]\) prior to publication. J. Berg is acknowledged for carefully reading the manuscript. AKH is financially supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Zi209/6-1.

[1] T. Hogg, B. A. Huberman, and C. Williams (eds.), Frontiers in problem solving: phase transitions and complexity, *Artif. Intell.* **81** (I+II) (1996)
[2] O. Dubois, R. Monasson, B. Selman, and R. Zecchina (eds.), special issue of *Theor. Comp. Sci.*, to appear (2001)
[3] M. R. Garey and D. S. Johnson, *Computers and intractability* (Freeman, San Francisco, 1979)
[4] R. Monasson, R. Zecchina, *Phys. Rev. E* **56**, 1357 (1997)
[5] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, *Nature* **400**, 133 (1999)
[6] S. Mertens, *Phys. Rev. Lett.* **81**, 4281 (1998)
[7] M. Weigt and A. K. Hartmann, *Phys. Rev. Lett.* **84**, 6118 (2000)
[8] M. T. Chao and J. Franco, *SIAM J. Comput.* **15**, 1106 (1986)
[9] S. Cocco and R. Monasson, preprint cond-mat/0009410
[10] B. Bollobas, *Random Graphs* (Academic Press 1985)
[11] R.E. Tarjan and A.E. Trojanowski, *SIAM J. Comp.* **6**, 537 (1977)
[12] E.L. Lawler and D.E. Wood, *Oper. Res.* **14**, 699 (1966)
[13] P. G. Gazmuri, *Networks* **14**, 367 (1984)
[14] A. M. Frieze, *Discr. Math.* **81**, 171 (1990)