Magnetotransport through graphene spin valves

Kai-He Ding1, Zhen-Gang Zhu2, and Jamal Berakdar2

1Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha,410076, China

2Institut für Physik Martin-Luther-Universität Halle-Wittenberg Nanotechnikum-Weinberg, Heinrich-Damerow-Strasse 4 D - 06120 Halle (Saale), Germany

Abstract

We present a theoretical study on the spin-dependent transport through a spin valve consisting of graphene sandwiched between two magnetic leads with an arbitrary orientation of the lead magnetization. No gate voltage is applied. Using Keldysh’s nonequilibrium Green’s function method we show that, in absence of external magnetic fields, the current-voltage curves are nonlinear. Around zero bias the differential conductance versus bias voltage possesses a strong dip. The zero-bias anomaly in the tunnel magnetoresistance (TMR) is affected strongly by the leads spin polarization. Depending on the value of the bias voltage TMR exhibits a behavior ranging from an insulating to a metallic-type. In presence of a static external magnetic field the differential conductance and TMR as a function of the bias voltage and the strength of the magnetic field show periodic oscillations due to Landau-level crossings. We also inspect the effects of the temperature and the polarization degrees on the differential conductance and TMR.

PACS numbers: 75.47.-m,85.75.-d,81.05.Uw
I. INTRODUCTION

Recent advances in nanoscience techniques opened the way for the creation and the investigation of the two-dimensional carbon, also called graphene [1][2][3][4]. This system is a monolayer of carbon atoms packed densely into a honeycomb lattice, and can be viewed as the basic building block for many carbon-based materials with other dimensionalities, including fullerene, nanotube and graphite, etc. Its low energy band structure consists of two inequivalent pairs of cones with apices located at the Brillouin zone corners [5]. In these cones, the energy-dispersion relation is linear, and the dynamics of the charge carriers is governed by a massless Dirac-type equation. The form of the electronic band structure is expected to lead to a number of unusual electronic properties in graphene such as the anomalous quantized Hall effect, the absence of the weak localization and the existence of the minimal conductivity [6]. Graphene is also an interesting candidate for transport-applications, in particular for spintronics: The mobility is remarkably high and the carrier density is controllable by gate voltage. In addition, spin-dependent interactions can be exploited for the control of the magnetoconductance [7][8][9][10][11][12]. Motivated by these facts, the spin-dependent properties of graphene are in the focus of current research; e.g., E. W. Hill et al. fabricated graphene spin-valve device and observed a 10% change in the resistance as the electrodes switch from a parallel to an antiparallel state [13]. Recent experiments on spin injection in a single layer graphene show a rather long spin-flip length ($\approx 1\mu m$) at room temperature [14]. Spin injection into a graphene thin film has been successfully demonstrated by using non-local magnetoresistance measurements [14][15][16]. W.H. Wang et al. measured the magnetoresistance of mesoscopic graphite spin valve devices and observed a cusp-like feature of the magnetoresistance versus the applied bias and pointed out the importance of spin-dependent interfacial resistance for spin injection [17].

In this work we investigate theoretically the spin-dependent transport through a graphene spin valve device with ferromagnetic leads having arbitrary spin-polarization directions. No gate voltage is applied. Utilizing Keldysh’s nonequilibrium Green’s function method [18] we calculate the density of state (DOS) and the electrical current in the ferromagnet-graphene-feromagnet (FM-G-FM) coupled system. The differential conductance and the tunnel magnetoresistance are also calculated without and with a static external magnetic field at finite temperatures. We found that at zero magnetic fields, the current-voltage curves in this spin-
tronic structure show a nonlinear characteristic, the differential conductance as a function of the applied voltage exhibits a strong dip near zero bias. The behaviour of the zero-bias anomaly in TMR is governed by the leads spin polarization. With increasing the temperature, the dip in the differential conductance and the cusp in TMR near zero bias diminish. When both the spin-polarization degrees and the relative angles of the two ferromagnetic moments are large, the differential conductance is small due to the influence of both the DOS in graphene and the conventional spin-valve effect. In the presence of a static magnetic field, the differential conductance and TMR show periodic oscillations due to a resonant transport though the Landau levels when the bias-voltage values are appropriate. At zero bias voltage, the differential conductance versus the temperature show a behavior different from the field-free case. We attribute this fact to the breaking of the insulator-type properties of graphene at finite magnetic fields.

The rest of this paper is organized as follows: In section 2, we introduce the model and derive the current formula in the absence of the magnetic field. In section 3, the magnetotransport properties of this system are computed at finite external magnetic fields. In section 4, the corresponding numerical results are given. Finally, a summary is presented.

II. THEORETICAL MODEL

We consider a spin valve device consisting of a graphene layer contacted to ferromagnetic electrodes, as shown in Fig.1. The moment M_L of the left electrode is assumed to define the z direction, while the moment M_R of the right electrode deviates from the z direction by a relative angle θ. A bias voltage V is applied between the left and the right electrode. The electrical current flows in the x direction. The left and the right electrodes can be described by Hamiltonians

$$H_L = \sum_{k,\sigma} \varepsilon_{k\sigma} c_{k\sigma}^\dagger c_{k\sigma},$$

$$H_R = \sum_{k,\sigma} [\varepsilon_R(k) - \sigma M_R \cos \theta] c_{k\sigma}^\dagger c_{k\sigma} - M_R \sin \theta c_{k\sigma}^\dagger c_{k\sigma},$$

where $\varepsilon_{k\sigma}$ is the single electron energy associated with the momentum k, the spin σ and the α electrode. $c_{k\sigma}^\dagger (c_{k\sigma})$ creates (annihilates) an electron with the energy $\varepsilon_{k\alpha\sigma}$.
The tight-binding Hamiltonian of the electrons in graphene is given by
\[H_G = -t \sum_{\langle i,j \rangle, \sigma} (a_{i,\sigma}^\dagger b_{j,\sigma} + \text{H.c.}), \] (3)
where \(a_{i,\sigma}^\dagger (a_{i,\sigma}) \) creates (annihilates) an electron with the spin \(\sigma \) on the position \(\mathbf{R}_i \) of the sublattice A, \(b_{i,\sigma}^\dagger (b_{i,\sigma}) \) creates (annihilates) an electron with the spin \(\sigma \) on the position \(\mathbf{R}_i \) on the sublattice B, and \(t \) is the nearest neighbor (\(\langle i,j \rangle \)) hopping energy. In the momentum space the Hamiltonian \(H_G \) is rewritten as
\[H_G = \sum_{\mathbf{q}, \sigma} [\phi(\mathbf{q}) a^\dagger_{\mathbf{q}\sigma} b_{\mathbf{q}\sigma} + \phi(\mathbf{q})^* b^\dagger_{\mathbf{q}\sigma} a_{\mathbf{q}\sigma}], \] (4)
where
\[\phi(\mathbf{q}) = -t \sum_{i=1}^3 e^{i \mathbf{q} \cdot \mathbf{\delta}_i} \quad \text{with} \quad \mathbf{\delta}_1 = \frac{a}{2} (1, \sqrt{3}, 0), \quad \mathbf{\delta}_2 = \frac{a}{2} (1, -\sqrt{3}, 0), \quad \mathbf{\delta}_3 = a (1, 0, 0). \]
Here \(a \) is the lattice spacing. Diagonalizing the Hamiltonian \(H_G \) one finds
\[E_{\pm}(\mathbf{k}) = \pm t |\phi(\mathbf{k})|, \]
which can be linearized around the \(\mathbf{K} \) points of the Brillouin zone leading to the dispersion
\[E_{\pm}(\mathbf{k}) = \pm v_F |\mathbf{k}|, \] (5)
where \(v_F = 3ta/2 \) is the Fermi velocity of electron \((t \sim 2.3eV) \) . The coupling between the electrodes and graphene is modeled by
\[H_T = \frac{1}{\sqrt{N}} \sum_{\mathbf{kq}\alpha\sigma} [T_{\mathbf{kq}\alpha} c^\dagger_{\mathbf{kq}\alpha\sigma} a_{\mathbf{q}\sigma} + \text{H.c.}], \quad \alpha = L, R. \] (6)
\(T_{\mathbf{kq}\alpha} \) is the coupling matrix between the \(\alpha \) electrode and the graphene; \(N \) is the number of sites on the sublattice A.

The electrical current from the left electrode to the graphene sheet is obtained from the time evolution of the occupation number operator of the left electrode, i.e.
\[I = e \langle \dot{\hat{N}}_L \rangle = \frac{ie}{\hbar} \langle [H, \hat{N}_L] \rangle, \quad \hat{N}_L = \sum_{\mathbf{k}\sigma} c^\dagger_{\mathbf{kL}\sigma} c_{\mathbf{kL}\sigma}. \] (7)

Using the nonequilibrium Green’s function method, Eq.(7) can be further expressed as
\[I = -\frac{ie}{\hbar N} \int \frac{d\varepsilon}{2\pi} Tr \sum_{\mathbf{qq}'} \left\{ G^{r}_{\mathbf{q}\alpha,\mathbf{q}'\alpha}(\varepsilon) - G^{a}_{\mathbf{q}\alpha,\mathbf{q}'\alpha}(\varepsilon) \right\} f_L(\varepsilon) + G^{<}_{\mathbf{q}\alpha,\mathbf{q}'\alpha}(\varepsilon) \right\} \Gamma_{L\mathbf{q}'\mathbf{q}}(\varepsilon), \] (8)
where Tr means the trace in the spin space and $f_{\alpha}(\varepsilon)$ is the Fermi distribution function at the energy ε.

$$G_{q_0,q'_a}^{\sigma\sigma',<}(t-t') = i\langle a_{q',\sigma'}^\dagger(t')a_{q\sigma}(t) \rangle$$

is the matrix expression for the lesser Green’s function. $G_{q_0,q'a}^{r}(\varepsilon)$ and $G_{q_0,q'a}^{a}(\varepsilon)$ are 2×2 matrices in the spin space in the sublattice A describing respectively the retarded and the advanced Green’s function. The line width matrix $\Gamma_{aqq'}$ is given by

$$\Gamma_{aqq'}(\varepsilon) = \begin{pmatrix} \Gamma_{aqq'}^\dagger & 0 \\ 0 & \Gamma_{aqq'}^\dagger \end{pmatrix}, \quad \text{and} \quad \Gamma_{aaq'}^\sigma(\varepsilon) = 2\pi \sum_n T_{kaoq}^\ast T_{kaoq'} \delta(\varepsilon - \varepsilon_{k\sigma}), \quad (9)$$

where T_{kLq} stand for the coupling of graphene to the electrodes. To evaluate I from Eq. (8) the retarded Green’s function $G_{qa,q'a}^{r}(\varepsilon)$ needs to be calculated. Here we consider electrons near the Fermi level which contribute predominantly to tunneling. In this case one may assume the coupling matrix T_{kLq} to be independent of q and set $\Gamma_{aqq'} = \Gamma_{a}^\sigma$. Standard Green’s function technique [18] delivers

$$G_{qa,q'a}^{r}(\varepsilon) = \delta_{qa} g_{qa,q'a}^{r}(\varepsilon) + g_{qa,q'a}^{r}(\varepsilon) T(\varepsilon) g_{q'a,q'a}^{r}(\varepsilon). \quad (10)$$

In the above expressions we introduced

$$g_{qa,q'a}^{r}(\varepsilon) = \frac{\varepsilon}{(\varepsilon \pm i\eta)^2 - |\phi(q)|^2}, \quad \text{and} \quad T(\varepsilon) = \frac{\Sigma^{r}(\varepsilon)}{1 - g_{aa}(\varepsilon)\Sigma^{r}(\varepsilon)},$$

where

$$\overline{g}_{aa}(\varepsilon) = \frac{1}{N} \sum_q g_{q_0,q_0}^{r,a}(\varepsilon), \quad \text{and} \quad \Sigma^{r,a}(\varepsilon) = \frac{i}{\pi} \left[\Gamma_{L}(\varepsilon) + R \Gamma_{R}(\varepsilon) R^\dagger \right]$$

with

$$R = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix}.$$

In Eq. (8), $G_{qa,q'a}^{<}(\varepsilon)$ can be derived by applying Keldysh equation

$$G_{qa,q'a}^{<}(\varepsilon) = G_{qa,q'a}^{r}(\varepsilon) \Sigma^{<}(\varepsilon) G_{qa,q'a}^{a}(\varepsilon)$$

with

$$\Sigma^{<}(\varepsilon) = i[f_{L}(\varepsilon)\Gamma_{L}(\varepsilon) + f_{R}(\varepsilon)R \Gamma_{R}(\varepsilon) R^\dagger].$$

Substituting the expressions of the graphene Green’s functions in Eq. (8), and after a straightforward calculation we obtain the tunneling current as

$$I = \frac{\varepsilon}{\hbar} \int \frac{d\varepsilon}{2\pi} Tr\{[G_{a}^{r}(\varepsilon)(R \Gamma_{R}(\varepsilon) R^\dagger)]G_{a}(\varepsilon)(\Gamma_{L}(\varepsilon))[f_{R}(\varepsilon) - f_{L}(\varepsilon)]\}, \quad (11)$$
where
\[
\mathcal{G}^{\nu,a}_{\nu',a}(\varepsilon) = \sum_{q'} \sum_{q} \mathcal{G}^{\nu,a}_{\nu q, a' q'}(\varepsilon) = \frac{\bar{g}^{\nu,a}_{\nu q, a}(\varepsilon)}{1 - \bar{g}^{\nu,a}_{\nu q, a}(\varepsilon) \Sigma^{\nu,a}(\varepsilon)}.
\] (12)

Introducing a cutoff \(k_c \) leads to
\[
\bar{g}^{\nu,a}_{\nu q, a}(\varepsilon) = -F_0(\varepsilon) \mp i\pi \rho(\varepsilon),
\] (13)

where
\[
F_0(\varepsilon) = \frac{\varepsilon}{D^2} \ln \left| \frac{\varepsilon^2 - D^2}{\varepsilon^2} \right|, \quad \rho(\varepsilon) = \frac{|\varepsilon|}{D^2} \theta(D - |\varepsilon|).
\] (14)

\(D = v_F k_c \) stands for a high-energy cutoff of the graphene bandwidth. Invoking the Debye’s prescription, we choose \(k_c \) such that the total number of states in the Brillouin zone is conserved after the linearization of the spectrum around the \(\mathbf{K} \) point. Hence, Eq. (13) is accurate for \(\varepsilon \ll D \), i.e. \(\varepsilon \) has to be in the region where the linearization of the spectrum is justifiable which is roughly estimated [20] to be [-1.6 eV, 1.6 eV]. In Eq. (12) we assumed a symmetrical voltage drop as \(\mu_{L,R} = E_F \pm \frac{1}{2} eV \), and put \(E_F = 0 \) in the numerical calculations.

The TMR at the angle \(\theta \) is conventionally defined as
\[
TMR(\theta) = \frac{I(0) - I(\theta)}{I(0)}.
\] (15)

III. MAGNETOTRANSPORT AT FINITE EXTERNAL MAGNETIC FIELDS

In the presence of a static external magnetic field, the description of the transport properties of electrons in a honeycomb lattice becomes much more involved due to the coupling between graphene and the electrodes associated with the Hofstadter problem. To circumvent this situation we describe the electrons in the honeycomb lattice as Dirac fermions in the continuum. At first we introduce the field operators [21][22]

\[
\Psi_{\alpha}(r) = \sum_{q} \frac{e^{iqx}}{\sqrt{L}} \left(\begin{array}{c} 0 \\ \phi_0(y) \end{array} \right) d_{q\sigma} + \sum_{q,n,\alpha} \frac{e^{iqx}}{\sqrt{2L}} \left(\begin{array}{c} \phi_n(y - ql_B^2) \\ \phi_{n+1}(y - ql_B^2) \end{array} \right) d_{q\sigma \alpha},
\] (16)

where \(l_B = 1/\sqrt{eB} \) is the cyclotron length, \(n = 0, 1, 2, ..., \alpha = \pm 1 \), and \(\phi_n(x) \) is the \(n \)th eigenfunction of the usual one-dimensional harmonic oscillator. The Hamiltonian describing the electrons in graphene acquires the second-quantized form
\[
H_G = \sum_{\nu n \alpha \sigma} E(n, \alpha) d_{\nu n \alpha \sigma}^\dagger d_{\nu n \alpha \sigma}.
\] (17)
where
\[E(n, \alpha) = \alpha \omega_c \sqrt{n + 1} \]

is the Landau level with \(\omega_c = v_F \sqrt{2eB} \). The sum over integer \(n \)'s is cut off at \(N \). The coupling between graphene and ferromagnetic electrodes is

\[
H_T = \sum_{kq\sigma} \phi_0(-q l_B^2)(T_{kLq}c_{k\sigma}d_{q\sigma} + T_{kLq}^*d_{q\sigma}^\dagger c_{k\sigma}) \\
+ \sum_{kq\alpha\sigma} [\phi_n(-q l_B^2) + \alpha \phi_{n+1}(-q l_B^2)](T_{kLq}c_{k\sigma}d_{q\sigma} + T_{kLq}^*d_{q\sigma}^\dagger c_{k\sigma}) \\
+ \sum_{kq\sigma}(L - q l_B^2)(T_{kRq}c_{k\sigma}d_{q\sigma} + T_{kRq}^*d_{q\sigma}^\dagger c_{k\sigma}) \\
+ \sum_{kq\alpha\sigma} [\phi_n(L - q l_B^2) + \alpha \phi_{n+1}(L - q l_B^2)](T_{kRq}c_{k\sigma}d_{q\sigma} + T_{kRq}^*d_{q\sigma}^\dagger c_{k\sigma}).
\]

(18)

where \(L \) is length of graphene. Similar to the calculation of Eq.(11) we obtain the electrical current in the form

\[
J_L = \frac{e}{h} \int \frac{d\varepsilon}{2\pi} Tr\{[\varepsilon - (1 + \varepsilon X)\Sigma^\sigma]^{-1}(1 + \varepsilon X)^2 R \Gamma_R R^\dagger[\varepsilon - (1 + \varepsilon X)\Sigma^\sigma]^{-1} \Gamma_L\}[f_R(\varepsilon) - f_L(\varepsilon)],
\]

(19)

where

\[X(\varepsilon) = \sum_{n\alpha} \frac{1}{\varepsilon - E(n, \alpha)} = \frac{2\varepsilon}{\omega_c^2} \left[\Psi\left(\frac{\omega_c^2 - \varepsilon^2}{\omega_c^2}\right) - \Psi\left(\frac{N+2\omega_c^2 - \varepsilon^2}{\omega_c^2}\right) \right] \]

with \(\Psi(z) \) denoting the digamma function [23]. The electric conductance can be obtained by \(\partial J_L/\partial V \). For a small bias voltage we obtain the Landauer-Büttiker-type expression

\[G = \frac{e^2}{h} T_{eff}, \]

(20)

where

\[
T_{eff} = Tr\{[E_F - (1 + E_F X(E_F))\Sigma^\sigma]^{-1}(1 + E_F X(E_F))^2 R \Gamma_R R^\dagger[\varepsilon - (1 + E_F X(E_F))\Sigma^\sigma]^{-1} \Gamma_L\}
\]

plays the role of an effective energy-dependent transmission coefficient. In the limit \(B \to 0 \), we further obtain for \(\theta = 0 \),

\[
T_{eff} = \sum_{\sigma} \frac{\lambda \Gamma_L^\sigma \Gamma_R^\sigma}{E_F^2 + \frac{1}{4} \lambda (\Gamma_L^\sigma + \Gamma_R^\sigma)^2},
\]

(21)

where \(\lambda = (2N + 3)^2 + 2(N+1)(N+2)(2N+3) \frac{\omega_c^2}{E_F} \).
IV. NUMERICAL RESULTS AND DISCUSSIONS

Adopting the wide bandwidth approximation for the graphene spin valve system we neglect the energy dependence of the line width functions $\Gamma^{\sigma}_{\alpha}(\varepsilon)$. Denoting the spin polarization of the left and the right electrodes by respectively p_L and p_R we write $\Gamma^{\uparrow,\downarrow}_{L} = \Gamma^{\uparrow,\downarrow}_{R} = \Gamma_0(1 \pm p)$, here Γ_0 describes the coupling between the graphene and the electrode without the internal magnetization. Here we assumed the left and the right electrodes to be of the same material. In the following numerical calculation, we take Γ_0 as the energy scale. We calculate the DOS in graphene via relation $\rho(\varepsilon) = -\frac{1}{\pi} \text{Im} \sum_{\sigma} G^{\sigma\sigma,r}_{\alpha}(\varepsilon)$. Fig.2 shows the DOS as a function of energy for different polarization p and magnetization angle θ. It is clearly observed that the DOS displays a dip structure with the energy. For nonzero energy, the DOS increases with increasing p, however decreases with increasing θ. This is caused by the different tunneling rates for up and down spins owing to the splitting of DOS of the ferromagnetic leads. This splitting acts as an effective magnetic field reaching values much larger than externally applied magnetic field. This results in a spin dependence of the DOS in the central region. While at the zero energy point, the DOS is independent of p and θ. This stems from the nature of Dirac point in the graphene.

The bias dependence of the electrical current and the differential conductance $G = dI/dV$ are shown in Fig.3 for parallel electrodes magnetizations and for the different polarization p, The nonlinear behaviour of G and the strong dip at zero bias are in line with the experimental observations, and are at variance with the typical behaviour when a Fermi liquid were in central region instead of graphene. In that case the electrical current is proportional to the applied voltage at small bias and obey the Ohmic law. The results obtained here resemble rather the ferromagnet-insulator-ferromagnet (FM-I-FM) junctions. The reason is that: the DOS in graphene diminishes at the Fermi level. Hence, graphene sheet can be viewed as a tunneling barrier at the zero energy point, similar to FM-I-FM system. With increasing the polarization p, the portion of spin-up electron states increases while for the spin-down electrons decreases. However, the scattering of the former is larger than that of the latter, thus we conclude that the conductance G decreases with increasing p at nonzero bias (cf. Fig.3 (b)). While G is almost independent of p at zero bias, which stems from the fact that the spin transport through the Dirac point of graphene is ballistic due to its insulator-like properties.
The bias dependence of the conductance at different temperatures T and angles θ are shown in Fig.4. The conductance is roughly independent of T at large bias. Near $V = 0$ the conductance increases with increasing T. This behavior is also in contrast to usual Fermi liquids where the conductance decreases with increasing temperature because thermal fluctuations enhance the scattering of conduction electrons and thereby contributes to the resistance of the system [26]. In our case, the graphene is equivalent to a barrier at the zero energy point. Near zero bias voltage, the thermally excited electrons are dominant in tunneling process. Therefore, with increasing temperatures, the increase of the thermally excited electrons enhances the conductance. On the other hand for large bias, the contributions to the conductance stem mainly from electrons with excess energies well above the Fermi level (as dictated by the applied voltage) which leads to a very weak dependence of the conductance on the temperature at large bias. The conductance as a function of θ (Fig.4 (b)) follows the conventional behaviour of magnetic junctions such as the ferromagnet-quantum dot-ferromagnet system [29][30][31]. When θ changes from 0 to π the number of spin-up and spin-down electrons is rearranged. Fig.5 shows TMR ratio as a function of the applied voltage for different polarizations p and temperatures T. A pronounced cusp-like feature appears at zero bias in line with experimental observations [17]. We assign this behaviour to the result of a non-trivial combined effect of graphene and conventional spin-valve properties, evidenced by the dependence of TMR on the polarization p at a fixed bias voltage (cf. Fig.5(a)). When increasing the polarization p the contribution of spin-up states relative to the spin-down is increased resulting in an increase of TMR for the entire bias range. However, the TMR changes in a non-linear manner: the TMR value at zero bias becomes larger than that at nonzero bias. This is because for a small bias graphene behaves as an insulator. In contrast, for a large bias graphene behaves more like a metal, which is an essential difference between graphene and other materials in the central region. The spin tunneling is ballistic through an insulator in contrast to a metal, whence the TMR is more enhanced around zero bias. There is almost no changes with the temperature T for large bias (see Fig.5(b)). With increasing temperatures more thermally excited electrons contribute to the electrical currents for the parallel and the antiparallel configurations, in fact, the increase of the electrical current is faster for the antiparallel configuration. Therefore, we can conclude that the TMR decreases at higher temperatures and the zero-bias anomaly diminishes in this situation.
The bias and the magnetic field dependencies of the differential conductance G for the different temperature in the parallel configuration of magnetization is shown in Fig.6. G versus the applied voltage exhibits an oscillating behaviour. Each conductance peak corresponds to resonant transport through a Landau level. As bias voltage increases, the distance between two neighboring peaks decreases due to the decrease of the distance between neighboring Landau levels. The differential conductance oscillates as a function of the magnetic field, as shown in Fig.6(b). This is due to resonant transport through the Landau levels at a particular magnetic field strength and the applied bias values. With increasing temperatures (Fig.6(a)) the differential conductance decreases for all bias voltages. In particular, at zero bias the temperature dependence of the differential conductance is different from the magnetic field-free case. The explanation for this phenomena is as follows: the magnetic field lifts the insulator behavior at Dirac point in graphene, and thus thermal fluctuations suppress the conductance. Fig.7 shows the TMR as a function of the bias voltage and the magnetic field strength for different polarizations p. TMR reaches a minimal value at bias voltages corresponding to the conductance peaks and increases with increasing p which is nothing but a spin-valve effect.

V. SUMMARY

In conclusion, we have studied the spin-dependent transport through a graphene spin valve device for a non-collinear configuration by means of Keldysh’s nonequilibrium Green’s function method. It is found that at a zero magnetic field, the current-voltage curves show a nonlinear behaviour. The corresponding differential conductance exhibits a strong dip near zero bias. The TMR shows a zero-bias anomaly that depends on the leads-spin polarization. Increasing the bias TMR follows a behaviour akin to a metallic or an insulating system depending on the value of the bias. In the presence of an external magnetic field, the differential conductance and TMR oscillate periodically due to a resonant transport through Landau levels. At zero bias the differential conductance versus the temperature reveals a behavior different from the magnetic field-free case.
Acknowledgments

The work of K.H.D. was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 08JJ4002), the National Natural Science Foundation of China (Grant Nos. 60771059) and Education Department of Hunan Province, China. J.B. and Z.H.Z. were supported by the cluster of excellence “Nanostructured Materials” of the state Saxony-Anhalt.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).
[3] Y. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett. 94, 176803 (2005).
[4] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbaighi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
[5] J. McClure, Phys. Rev. 104, 666 (1956).
[6] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
[7] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[8] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).
[9] D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74, 155426 (2006).
[10] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[11] Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Phys. Rev. B 75, 041401(R) (2007).
[12] K. H. Ding, G. Zhou, Z. G. Zhu, and J. Berakdar, J. Phys.: Condens. Matter 20, 345228 (2008).
[13] E. W. Hill, A. K. Geim, K. Novoselov, F. Schedin, and P. Black, IEEE Trans. Magn. 42, 2694 (2006).
[14] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. Van Wees, Nature 448, 571 (2007).
[15] S. Cho, Yung-Fu Chen, and M. S. Fuhrer, Appl. Phys. Lett. 91, 123105 (2007).
[16] M. Ohishi, M. Shiraishi, R. Nouchi, T. Nozaki, T. Shinjo, and Y. Suzuki, Jap. J. Appl. Phys. 46, L605 (2007).

[17] W. H. Wang, K. Pi, Y. Li, Y. F. Chiang, P. Wei, J. Shi, and R. K. Kawakami, Phys. Rev. B 77, 020402(R) (2008).

[18] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1998).

[19] V. P. Gusynin and S. G. Sharapov, Phys. Rev. B 73, 245411 (2006).

[20] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, arXiv:0709.1163 (accepted to be published in Rev. Mod. Phys).

[21] N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006).

[22] B. Dóra and P. Thalmeier, Phys. Rev. B 76, 035402 (2007).

[23] M. Abramowitz, I.A. Stegun, (Eds.) Handbook of Mathematical Functions. (1968, Dover Publ., New York).

[24] Z. G. Zhu, Phys. Lett. A 372, 695 (2008).

[25] A.N. Pasupathy, et al., Science 306, 86 (2004).

[26] H. F. Mu, G. Su, Q. R. Zheng, and B. Jin, Phys. Rev. B 71, 064412 (2005).

[27] J. S. Moodera, Lisa R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

[28] J. S. Moodera, J. Nowak, and Rene J. M. van de Veerdonk, Phys. Rev. Lett. 80, 2941 (1998).

[29] N. Sergueev, Qing-Feng Sun, Hong Guo, B. G. Wang, and J. Wang, Phys. Rev. B 65, 165303 (2002).

[30] Hai-Feng Mu, Gang Su, and Qing-Rong Zheng, Phys. Rev. B 73, 054414 (2006).

[31] Zhen-Gang Zhu, Gang Su, Qing-Rong Zheng, and Biao Jin, Phys. Rev. B 70, 174403 (2004).
FIG. 1: Schematic illustration of the system considered in this work. The graphene is connected to two magnetic leads by the tunneling barriers. The moments of the leads are aligned by a relative angle \(\theta \), and the coupling matrix between \(\alpha (\alpha = L, R) \) electrode and graphene is \(T_{\kappa \alpha} \).
FIG. 2: DOS as a function of energy ε for different polarization p at $\theta = 0$ (a) and for different angle θ at $p = 0.6$ (b). The other parameters are taken as $D = 2\Gamma_0$ and $B = 0$.
FIG. 3: The bias dependence of the electrical current I (a) and differential conductance G (b) for different polarization p at $\theta = 0$ and $k_B T = 0.005\Gamma_0$. The other parameters are taken the same as those of Fig[2]
FIG. 4: The bias dependence of the differential conductance G for different temperature T at $\theta = 0$ (a) and for different angle θ at $k_BT = 0.005\Gamma_0$ (b). The parameters are taken the same as those of Fig[2]
FIG. 5: The bias dependence of TMR for different polarization p at $k_B T = 0.005 \Gamma_0$ (a) and for different temperature T at $p = 0.6$ (b). The other parameters are taken the same as those of Fig. 2.
FIG. 6: The differential conductance as a function of the bias voltage at $\mu_B B = 1\Gamma_0$ (a) and of the magnetic field at $eV = 300\Gamma_0$ (b) for different temperature T in the parallel configuration. The parameters are taken as $p = 0.6$ and $N = 100$.
FIG. 7: The TMR as a function of the bias voltage at $\mu_B B = 1\Gamma_0$ (a) and of the magnetic field at $eV = 300\Gamma_0$ (b) for different polarization p at $k_B T = 0.1\Gamma_0$. The other parameters are taken the same as those of Fig.6.