The influence of forest series and stand age on individual plant species nutritional quality in a mixed-conifer forest

Timothy DelCurto†,1, Noah G. Davis†, Samuel A. Wyffels†, Daalkhaijav Damiran†, Enkhjargal Darambazar†, Martin Vavra†, and Robert A. Riggs‖

†Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59718; ‡Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada; and †Eastern Oregon Agricultural Research Center, Oregon State University, Union, OR 97883

© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

INTRODUCTION

Forested ecosystems present a broad array of existing and potential plant communities based both on plant associations (sensu Daubenmire, 1952) and successional stage. These different combinations of plant associations and vegetation successional stage have been termed ecological land units in resource planning (Haufler et al., 1996). Forage quantity and quality, which theoretically vary across ecological land units, are important factors that affect habitat selection by ungulates. Managing forested ecosystems for sustainable and multiple uses requires that managers have a thorough understanding of how the type and intensity of resource dynamics influences other ecosystem components. In particular understanding how different silvicultural prescriptions affect future understory vegetation composition, production, and nutritive quality is essential to forest managers in order to maintain sustainable timber, livestock, and wild ungulate production. Numerous researchers have observed variations in habitat use as influenced by forest type within forested rangeland allotments (Parsons et al., 2003; DelCurto et al., 2005; Roever et al., 2015). Unfortunately, research designed to model secondary succession in forests affected by multiple disturbance agents is rare (Riggs et al., 2000). Likewise, research designed to describe the variation in forage quality and quantity among ecological land units (such as forest series and stand age) throughout the summer grazing period is limited.

The purpose of this study was to characterize changes in forage quality of commonly occurring plant species during the growing season for three forest series and two successional stages (stand ages) in a mixed-conifer forest. Furthermore, we hypothesized that plant species found in numerous forest types may be effective key species to evaluate the influence of overstory characteristics on understory forage quality.

MATERIALS AND METHODS

This study was conducted in the Blue Mountains in northeastern Oregon on a 36,245 ha block of forestland formerly owned by Boise Cascade Corporation (BCC) 20 km north of Wallowa, OR. Elevation ranges from 1,100 to 1,350 m and precipitation averages 650 mm with approximately 55% coming in the winter. All sites in this study were developed by Yost (2005) using BCC geographic information system data. Sites were selected based on potential natural climax overstory species (forest series) and stand age. The ponderosa pine (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), and grand fir (Abies grandis) series were the primary forest series at the study site and represent the dominant forest vegetation of the region. Stands with
mean diameter at breast height (DBH) of less than 23 cm were classified as “young”; stands with mean DBH of greater than 23 cm were classified as “old.”

Production was sampled by species in August of 2004 and 2005 at randomly selected sites in each forest series—stand age combination (forest type) using 1.8-m² caged plots installed in the early spring of each year (Damiran et al., 2008). Of the species that occurred in all forest series, we selected the two most dominant graminoids, forbs, and shrubs for nutritional quality sampling. These species were the graminoids: elk sedge (Carex geyeri) and pinegrass (Calamagrostis rubescens), the forbs: strawberry (Fragaria spp.) and western yarrow (Achillea millefolium), and the shrubs: snowberry (Symphoricarpos albus) and birchleaf spirea (Spirea betulifolia). Of the sites sampled for production, eight sites within each forest type were randomly selected for nutritional quality sampling. Each species was individually sampled at each site, where it occurred over four 6-wk intervals from early May through mid-September in 2004 and 2005.

Samples were collected in paper bags in the field and transported to the Eastern Oregon Agricultural Research Center in Union, OR, where they were dried at 55 °C for 48 h in a forced-air oven, ground to pass a 1-mm screen, and stored in plastic bags at room temperature for subsequent chemical analysis. Samples were analyzed for crude protein (CP; AOAC, 1990) and neutral detergent fiber (NDF; Goering and Van Soest, 1970). All samples were run in duplicate; any sample whose coefficient of variation was greater than 5% was reanalyzed. This experiment was considered a repeated measures completely randomized design with eight replications and two factors (forest type, n = 6; and sampling date, n = 4). Because each species was not found in both age classes of each forest series, each forest type was treated as a unique factor level. Site was treated as the experimental unit. Each species was analyzed separately in R (R Core Team, 2018) with the lmTest (Kuznetsova et al., 2017) and lme4 (Bates et al., 2015) packages using a mixed model analysis of variance that included site as the random effect. Means were separated with the emmeans package (Lenth, 2018) using the Tukey method. Statistical significance was accepted at $P \leq 0.05$.

RESULTS AND DISCUSSION

Graminoids

Elk sedge was the most dominant forage found across forest series and stand ages, representing 11–33% of the understory production (Table 1). CP displayed a forest type × sampling date interaction ($P < 0.01$; Table 2). In early May, the old grand fir type had higher CP ($P < 0.05$) than the old Douglas fir type with both ponderosa pine types being intermediate. No differences in Elk sedge CP content was observed in early August and mid-September. NDF also displayed a forest type × sampling date interaction ($P < 0.05$; Table 3). The old Douglas fir type was higher ($P < 0.05$) than old ponderosa pine type in early May and the old grand fir type was higher than the ponderosa pine and Douglas fir types in mid-June. Pinegrass CP content was not influenced ($P > 0.05$) by forest type at any sampling dates, averaging 15.0% in early May and declining to 4.7% by mid-September. Likewise, NDF

Table 1. Production of the most common understory species in the forest types (forest series and stand ages) of the Blue Mountains of Oregon

Species	Ponderosa pine	Douglas fir	Grand fir			
	Young	Old	Young	Old	Young	Old
Graminoids						
Elk sedge (Carex geyeri)	138 (11)	159 (14)	NS*	342 (33)	NS	177 (13)
Pinegrass (Calamagrostis rubescens)	126 (10)	121 (11)	94 (10)	93 (9)	NS	164 (12)
Forbs						
Strawberry (Fragaria spp.)	62 (5)	21 (2)	30 (3)	33 (3)	NS	31 (2)
Western yarrow (Achillea millefolium)	61 (5)	NS	33 (3)	NS	26 (2)	NS
Shrubs						
Birchleaf spirea (Spirea betulifolia)	5 (0.4)	18 (2)	NS	42 (4)	51 (4)	56 (4)
Snowberry (Symphoricarpos albus)	10 (1)	32 (3)	22 (2)	72 (7)	43 (4)	45 (3)
Total	1,227	1,108	988	1,047	1,307	1,406

Production is expressed as kg/ha and % of understory community (parenthesis). Data are from 137 plots clipped by species in August of 2004 and 2005. Means are only reported for plant species that were in the top 80% of the plant community based on production weight. Plant species were not in the top 80% of the understory vegetation based on 2003 peak production plots.

NS = nonsampled.

Translate basic science to industry innovation
content was not influenced by forest type at any sampling date.

Forbs

Western yarrow CP content displayed a forest type × sampling date interaction (*P < 0.01*). In early May, the young grand fir type had higher CP than the young ponderosa pine or young Douglas fir type; in mid-June, CP content was still higher (*P < 0.05*) in the young grand fir type than young ponderosa pine type but did not differ from the young Douglas fir type (*P > 0.05*). CP content was similar across forest types in early August and mid-September. Western yarrow NDF content also displayed a forest type × sampling date interaction (*P < 0.01*) with the young grand fir type having higher NDF than the young ponderosa pine type in mid-June and mid-September. Strawberry CP content was higher in the old grand fir type than the old ponderosa pine type (*P = 0.07*). In addition, strawberry CP declined with advancing maturity, averaging 18.2% CP in early May and declining to 9.4% in mid-September. NDF content was influenced by a forest type × sampling date interaction (*P < 0.01*). The old grand fir type had higher NDF than both ponderosa pine types in mid-June (*P < 0.05*) and higher NDF than the young Douglas fir type in mid-September (*P < 0.05*). Like western yarrow, NDF content of strawberry was relatively low and did not change (*P > 0.05*) over the growing season.

Shrubs

Birchleaf spirea CP content (*P = 0.08*) tended to be higher in grand fir understories than ponderosa pine and Douglas fir understories. Likewise,
Birchleaf spirea was influenced by sampling period \((P < 0.05)\) ranging from 20.5% CP in early May to 6.9% CP in mid-September. Birchleaf spirea NDF content displayed a forest type \(\times\) sampling date interaction \((P < 0.01)\) with both grand fir types having higher NDF than both ponderosa pine types in mid-June and mid-September. Snowberry leaf CP content was not influenced by forest series or stand age \((P > 0.05)\) and ranging from 19.6% in early May to 7.3% CP in mid-September. Snowberry NDF content displayed a treatment \(\times\) sampling date interaction \((P = 0.02)\). In early May, the old Douglas fir and old grand fir types were higher in NDF than the old ponderosa pine type. In mid-June, the young grand fir type was higher in NDF than all ponderosa pine and Douglas fir types.

Mixed-conifer forest rangelands in the interior western United States are important forage resources for the beef industry and provide critical habitat for wildlife. These areas are also diverse in respect to plant communities and present a challenge to sustainable rangeland management. We anticipated that individual plant species quality would differ as a function of overstory canopy and stand age and this difference would be most prominent in the early-August and mid-September sampling times. Instead, most of the differences in CP content occurred during the first two sampling dates with little to no differences in CP content at the end of the growing season. As expected, NDF content was highest in the graminoids.

Table 3. The influence of forest series and stand age on the NDF concentration of the most common understory species in the mixed-conifer forests of the Blue Mountains in northeastern Oregon

Species	Ponderosa pine	Douglas fir	Grand fir	SEM		
	Young	Old	Young	Old	Young	Old
Elk sedge*						
Early May	62.77ab	61.31*	–	67.83b	–	65.39ab
Mid-June	61.52b	57.99*	–	62.18b	–	70.28b
Early August	66.23	63.69	–	63.76	–	65.59
Mid-September	61.37	63.93	–	64.09	–	68.57
Pinegrass						
Early May	62.94	61.29	64.57	65.17	–	64.59
Mid-June	59.37	59.13	60.62	57.47	–	62.14
Early August	62.16	60.45	63.20	60.77	–	62.66
Mid-September	61.94	62.20	63.69	64.21	–	66.19
Western yarrow*						
Early May	43.11	–	43.57	–	38.63	–
Mid-June	41.09b	–	43.94ab	–	47.55b	–
Early August	53.45	–	50.46	–	54.62	–
Mid-September	58.33b	–	62.62ab	–	64.40b	–
Strawberry*						
Early May	35.63	34.71	36.74	37.81	–	36.24
Mid-June	33.87b	30.60*	35.75ab	39.34b	–	39.25b
Early August	37.96	36.33	36.49	36.17	–	36.81
Mid-September	35.33ab	34.58ab	33.25a	34.63ab	–	38.72b
Birchleaf spirea*						
Early May	36.18	30.60	–	35.09	30.41	31.55
Mid-June	28.83b	25.03b	–	32.94bc	42.41b	38.69ab
Early August	32.33a	31.99a	–	34.81ab	41.88b	39.22ab
Mid-September	31.77a	33.08ab	–	40.51bc	43.67b	46.00f
Snowberry*						
Early May	28.22ab	23.68a	27.62ab	34.27b	26.81ab	33.80b
Mid-June	26.23a	22.51a	23.68a	25.37a	35.00a	30.79ab
Early August	32.02	28.97	30.60	29.77	32.36	31.76
Mid-September	32.31ab	28.73a	30.44ab	35.71ab	37.42a	36.64ab

Means are averaged over samples taken at four 6-wk intervals between May and September of 2004 and 2005 at eight sites of each forest type.

* A treatment \(\times\) sampling date interaction was observed \((P < 0.05)\).

* *Means within a row that do not share a common superscript differ \((P < 0.05)\).
as compared with the forbs and shrubs (Van Soest, 1994). However, we did not expect to observe higher NDF concentrations in the grand fir forest series plants as compared with the ponderosa pine and Douglas fir series. Forested habitats are important in that they provide higher forage quality later into the summer grazing period as compared with non-forested habitats. This observation is supported by other researchers who have documented the value of overstory characteristics on understory forage quality (Walburger et al., 2007; Clark et al., 2013) and the shift in beef cattle distribution to forested north aspects late in the grazing period (DelCurto et al., 2005; Roever et al., 2015).

Implications

Forest rangelands in the inland Pacific Northwest are diverse with substantial variation in vegetation types because of large pasture sizes and dramatic differences in elevation and aspect. Our data suggests that forest series and stand age influence the forage quality of plant species commonly occurring in the understories of these mixed-conifer forests. CP content differed early in the growing season, where grand fir sites had higher protein, whereas CP was not influenced by forest type later in the growing season. Plant species found in grand fir forest types contained the highest concentrations of NDF. Understanding how overstory vegetation modifies understory microclimates and, in turn, the quality of understory vegetation may provide needed insights to how large herbivores use landscapes on a space and time continuum.

Conflict of interest statement. None declared.

LITERATURE CITED

AOAC. 1990. Official methods of analysis. 15th ed. Arlington (VA): Association of Official Analytical Chemists.
Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1–48. doi:10.18637/jss.v067.i01
Clark, A. A., T. DelCurto, M. Vavra, and B. L. Dick. 2013. Stocking rate and fuels reduction effects on beef cattle diet composition and quality. Rangel. Ecol. Manag. 66:714–720. doi:10.2111/REM-D-12-00122.1
Damiran, D., T. DelCurto, E. Darambazar, R. A. Riggs, M. Vavra, and J. G. Cook. 2008. Monitoring sites databases: transitional forested rangelands in the Blue Mountains of eastern Oregon. Circ. No. 6. Union (OR): Eastern Oregon Agricultural Research Station, Oregon State University.
Daubenmire, R. 1952. Forest vegetation of northern Idaho and adjacent Washington, and its bearing on concepts of vegetation classification. Ecol. Monogr. 22:301–330. doi:10.2307/1948472
DelCurto, T. M. Porath, C. T. Parsons, and J. A. Morrison. 2005. Management strategies for sustainable beef cattle grazing on forested rangelands in the Pacific northwest. Invited synthesis paper. Rangel. Ecol. Manag. 58:119–127. doi:10.2111/1551-5028(2005)58%3C119:MSFSBC%3E2.0.CO;2
Goering, H. K., and P. J. Van Soest. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agriculture Handbook No. 379. Washington (DC): ARS-USDA.
Haufler, J. B., C. A. Mehli, and G. J. Roloff. 1996. Using a coarse-filter approach with species assessment for ecosystem management. Wildl. Soc. Bull. 24:200–208.
Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82:1–26. doi:10.18637/jss.v082.i13
Lenth, R. 2018. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.1. [Accessed April 4, 2019]. https://CRAN.R-project.org/package=emmeans
Parsons, C. T., P. A. Momont, T. DelCurto, M. McInnis, and M. L. Porath. 2003. Cattle distribution patterns and vegetation use in mountain riparian areas. J. Range Manage. 56:334–341. doi:10.2307/4004036
R Core Team. 2018. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. [Accessed April 4, 2019]. https://www.R-project.org/
Riggs, R. A., A. R. Tiedemann, J. G. Cook, T. M. Ballard, P. J. Edgerton, M. Vavra, W. C. Krueger, F. C. Hall, L. D. Bryant, L. L. Irwin, and T. DelCurto. 2000. Modification of mixed-conifer forests by ruminant herbivores in the Blue Mountains ecological province. Research Paper PNW-RP-527. Portland (OR): USDA-USFS-PNW.
Roever, C. L., T. DelCurto, M. Rowland, M. Vavra, and M. Wisdom. 2015. Cattle grazing in semiarid forestlands: habitat selection during periods of drought. J. Anim. Sci. 93:3212–3225. doi:10.2527/jas.2014-8794
Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd ed. Ithaca (NY): Cornell University Press.
Walburger, K. J., T. DelCurto, and M. Vavra. 2007. Influence of forest management and previous herbivory on cattle diets. Rangel. Ecol. Manag. 60:172–178. doi:10.2111/05-223R3.1
Yost, A. C. 2005. Probabilistic modeling of understory vegetation species in a northeast Oregon industrial forest [PhD dissertation]. Corvallis (OR): Oregon State University.