Studies on storage behavior of Assam Lemon (Citrus limon Burm)

S.R. Baruah* and U. Kotoky

Department of Horticulture,
Assam Agricultural University, Jorhat-785 013, Assam, India.

Received: 19-06-2017 Accepted: 02-11-2017

ABSTRACT

Assam lemon is one of the most important fruit of Assam and it is used for culinary purpose due to its fragrance and acidic content. Though Citrus fruits are non-climacteric in nature, depending on the temperature and storage duration, chemical composition of fruits may change. In this experiment different treatments viz. T₀: Control, T₁: Chlorination (4%), T₂: Chlorination (4%) + Polyethylene (300 gauge thickness), T₃: Chlorination (4%) + perforated polythene (with pinholes), T₄: Chlorination (4%) + individual shrink wrapping, T₅: Chlorination (4%) + tray packaging were used to study the storage life and post harvest quality of Assam Lemon fruits. The effect of these treatments on citric acid, respiration, fruit texture and colour were studied. Among all the treatments, individual shrink wrapping (T₄) of Assam Lemon fruit stored at ambient temperature (30-32°C and 80–85% RH) was found to be beneficial because it helped to extend the shelf life without deterioration in quality of fruit. Shrink wrap packaging retained the freshness, colour and firmness of the fruit up to 1 month without any decay.

Key words: Assam Lemon, Chroma, Hue angle, Respiration, Shrink wrapping.

INTRODUCTION

Citrus fruits are well known for their dietary, nutritional, medicinal and cosmetic properties and are also good sources of citric acid, flavonoids, phenolic, pectin, limonoids, ascorbic acids etc. (Dugo and Di Giacomo, 2002; Kumar et al., 2010). Citrus fruits are non-climacteric but compounds in fruits depending on the temperature and storage duration may change appreciably (Lester and Hodges, 2007). Among the citrus, lemon is the third most important citrus species after orange and mandarin (Porat et al., 2000). In Assam, lemon covers an area of 0.13 lakh hectar with 1.04 lakh MT production (Indian Horticulture Database, 2015). Assam Lemon is one of the most important varieties of lemon, which is valued for fragrance, acidic content and mainly used in green matured stage for culinary purposes. Citrus fruits do not undergo rapid chemical or physical changes, after harvest lemons are the only citrus fruits held in prolonged storage. Commercially, the duration of holding depends on the fruit colour at the beginning of storage-such as yellow and green. Thus, the knowledge of the biochemical changes during storage is essential to extend storage life and improve keeping quality of a fruit. Various workers have reported about the storage behavior of many citrus species. But limited post-harvest studies on the cultivar Assam Lemon has been carried out with reference to prolonging the shelf life and thereby, stretching the period of fresh fruit and availability.

MATERIALS AND METHODS

The experiment was undertaken during 2014-15 in the quality control and PHT Laboratory of the Department of Horticulture, Jorhat. The fruits were collected from the Experimental plot, Department of Horticulture, AAU, Jorhat. Uniformly matured Assam Lemon fruits were harvested at marketable stage and immediately brought to the Laboratory. The fruits were kept in departmental laboratory in open condition at temperature 30-32°C and relative humidity 80-85 %. The fruits were kept for 28 days and changes in respiration, color, texture and citric acid level were observed at weekly interval.

RESULTS AND DISCUSSION

Colour development: The results revealed that (Table 1) brightness or lightness (L) value of fruit continued to increase during storage in all the treatments, but in treatment 4 (T₄), the lightness value was observed to be significantly lowest, whereas, control recorded highest value of lightness during all the storage days. There was consistent decrease in the...
greenness value (-a) and increase in the yellowness value (+b) for all the treatments. But, treatment 4 (shrink wrapping) recorded highest average value (-12.69) of greenness (-a) and lowest average value (26.48) of yellowness (+b), whereas, lowest mean value (-7.14) of greenness and highest mean value (31.14) of yellowness were recorded in control. (Table 1).

Values of hue angle near 90° represent yellow colour, while values near 120° represent green colour Minolta, (2008). In our present study, the value of hue angle was found to be decreasing indicating yellowing of the fruit during storage. But, among all the treatments, treatment 4 (T4) showed significantly highest mean value (116.70) of hue angle than the other treatments with a range between 124 to 105 during 28 days of storage and control showed the lowest mean (103.75) value of hue angle (Table 2).

Chromaticity (Chroma) defines colour vividness or clearness. Present study revealed that chroma value increased with storage days. Among all the treatments, treatment (4), recorded lowest mean value of chroma (29.78), whereas, control recorded the highest mean value (33.35).

As the fruit ripen and chlorophyll disappears, the carotenoids gradually increase their concentrations, as they are synthesized during ripening but these changes are not to a great extent in lemons Kato et al., (2004). The loss of chlorophyll coincides with decrease in the coordinate a’ (green), decrease in hue angle and rise in chroma in our study. The present study revealed that, with increase in storage days, negative values of coordinate a’ decreased, indicating degradation of chlorophyll (lemons become less green) and appearance of carotenes (colour coordinate b’). These findings were in accordance with the reports of Tietel et al., (2010); on storage of Satsuma mandarins. These authors found decrease in hue angle (from 118 to 88), increase in lightness (from 56 to 67) and increase in colour saturation (from 31 to 42), characterizing peel colour change from dark green to bright yellow.

Thus, as indicated by the significant decrease in hue angle values, increase in color saturation or vividness, and increase in brightness; it may be inferred that, all the treatments and control promotes the de-greening of Assam Lemon during storage but significantly lower rate was observed in treatment 4 (T4) compared to others treatments and control. Wrapping of Nagpur mandarin fruit with heat-shrinkable polyolefin Cryovac films D-955 and BDF-2001 minimized water loss and retained fruit colour and freshness, up to 3 weeks at 30-35°C and 25-40% RH (NRCC).

Respiration rate (mg CO₂/kg Fruit/hr): Citrus fruits have a relatively low respiration rate, which decline with time after harvest. The treatments were found to be significant for rate of respiration (Table 3). The rate of respiration in Assam lemon fruits showed declining trend as storage days
Table 2: Colour parameters (Hue and chroma) of Assam Lemon fruit stored under ambient temperature 30-32°C and RH, 80-85%

Treatment	Hue angle	Chroma								
	Storage days		Storage days							
	7	14	21	28	Mean	7	14	21	28	Mean
T₀	117a	108ab	97a	93a	103.75a	27.03a	30.92d	33.78c	37.63d	33.35c
T₁	118a	110b	101b	98b	106.75b	26.86a	29.73b	32.97c	35.84b	31.24b
T₂	118a	111b	100b	98b	106.91b	27.20a	30.11bc	33.79c	37.44cd	32.04c
T₃	121b	115c	110c	102c	112c	27.30a	28.40c	29.32b	35.93bc	30.23b
T₄	124c	121d	113d	105d	115.75d	27.96b	28.32a	28.74a	34.13a	29.78a
T₅	116a	106a	100b	97b	104.75a	26.84a	34.11d	34.11c	36.31bcd	32.10c
Mean	119a	111.8b	103.5c	98.83d		27.19a	30.26c	32.11d	36.14d	

*Means within the same column followed by the same small letters are not significantly different (level of significance 5%) according to Duncan multiple range test.

Initial value of chroma = 26, Hue angle: 125

T₀: Control, T₁: Chlorination (4%), T₂: Chlorination (4%) + Polyethylene (300 gauge thickness), T₃: Chlorination (4%) + perforated polythene (with pinholes), T₄: Chlorination (4%) + individual shrink wrapping, T₅: Chlorination (4%) + tray packaging

Table 3: Rate of respiration (mg CO₂/kg/hr) of Assam lemon fruit stored under temperature 30-32°C and RH, 80-85%

Treatments	Storage days				
	7	14	21	28	Mean
T₀	23.50a	22.50b	21.55b	20.51b	22.43b
T₁	23.40a	22.15b	21.44b	20.38b	22.29b
T₂	23.45a	22.25b	21.47b	20.41b	22.33b
T₃	23.35a	22.15b	21.38b	20.35b	22.26b
T₄	23.00a	21.76a	20.00a	19.00a	21.57a
T₅	23.45a	22.25b	21.67b	20.25b	22.34b
Mean	23.35d	22.17b	21.25c	20.15a	

*Means within the same column followed by the same small letters are not significantly different (level of significance 5%) according to Duncan multiple range test.

Initial value of respiration = 24.10 mg CO₂/kg hr

T₀: Control, T₁: Chlorination (4%), T₂: Chlorination (4%) + Polyethylene (300 gauge thickness), T₃: Chlorination (4%) + perforated polythene (with pinholes), T₄: Chlorination (4%) + individual shrink wrapping, T₅: Chlorination (4%) + tray packaging

In the present investigation shrink wrapping significantly reduced the rate of respiration. This might be due to the fact that, shrink wrapping arrested the process of respiration and transpiration by creating modified atmosphere. Individual shrink wrapping has also been reported to reduce the respiration rate of ‘Nagpur’ mandarins by 47% as compared with unwrapped fruits at 30°C storage Nanda et al., (2001). This reduction in the respiration rates of fruits could be due to exposure to high concentrations of CO₂ and low concentrations of O₂ in the individual wrapping Rouyi et al., (2005).

Citric acid: Different treatments during storage showed significant effect on citric acid content of the Assam Lemon fruit. The citric acid content of the fruit was found to be decreased with increase in storage days (Table 4) for all the treatments, but highest loss of citric acid was recorded in control, whereas, lowest loss was recorded in treatment 4. Treatment (4) recorded highest content of citric acid during all the storage days, which ranged between 0.98 to 0.63 % with a mean value 0.80 % and the lowest acid content (0.58%) was recorded in control. The decrease of acid content during storage indicates the disappearance of astringency which might be due to the use of the acids present, as respiratory materials. In shrink wrapped fruits the lowering of acidity was delayed which might be due to the effect of shrink packaging film in delaying the respiratory and ripening process Mahajan et al., (2013). The results are in conformity with the findings of Mahajan and Singh (2014), who reported highest average acidity (0.54 %) in
shrink wrapped fruit and lowest average acidity in (0.48 %) in control fruit of kinnow mandarin under ambient storage condition.

Fruit firmness: The effect of treatments on firmness was found to be significant (Table 5) during all the storage days. In the present investigation, fruit firmness, followed a declining trend commensurate with advance in storage period. The individually shrink wrapped fruits maintained higher firmness as compared to control at all storage intervals. The highest mean fruit firmness (7.84 kg forces) was observed in individually shrink wrapped fruits. The individually shrink wrapped fruits maintained higher fruit firmness throughout the stipulated storage period of 28 days which ranged between 10.05 to 5.35kg force as compared to other treatments. On the other hand, the control fruits showed significantly the faster loss of firmness during storage and ranged between 9.16 to 1.65kg force, thereby leading to excessive softening and shriveling of fruits.

Fruit firmness is one of the most important attributes in determining the post harvest quality (Lachapella et al., 2013). Softening of fruits is caused by loss of pectic substances in the middle lamella of the cell wall that leads to the loss of cell wall integrity, thus causes loss of firmness leading to shriveling and softening (Solomos and Laties 1973). The maintenance of higher firmness in shrink film packed fruits during storage could be due to the reduction in moisture loss, respiratory activity and thus maintained the turgidity of the cells. Pongener et al., (2011) observed higher firmness in shrink film packed peach fruit.

The minimum loss in firmness and freshness of shrink wrapping might be due to maintaining a modified atmosphere (MA) around each piece of fruit, which reduces senescence process and thus, help in retention of fresh surface appearance even at ambient storage condition. Similar results were reported by Ben et al., (1983) in Lemon, Dhall et al., (2011) in cucumber under ambient condition.

The above results revealed that, shrink wrapping of Assam Lemon fruit stored at ambient temperature (30-32°C) with relative humidity 80-85 % was beneficial as it helped to extend the shelf life by retaining freshness, color and firmness of the fruit. The results were in conformity with Sharma et al., (2010), who reported that, shrink wrapping of fruits in polymeric films creates modified atmosphere resulting in reduced rate of respiration, transpiration and retention of colors and texture. Malik et al., (2002); reported that firmness and freshness of shrink wrapped kinnow fruits treated with chlorinated water were found to be better than seal and tray packaging stored under ambient condition.

CONCLUSION

It can be concluded from the experiment that, individual shrink wrapping affects positively on different parameters of Assam Lemon fruits. The shrink wrap fruits

Table 4: Citric acid content (%) of Assam lemon fruit stored under temperature 30-32°C and RH, 80-85%

Treatment	7	14	21	28	Mean
T₀	0.67a	0.61a	0.56a	0.5a	0.58a
T₁	0.75c	0.71d	0.65c	0.56c	0.66c
T₂	0.71b	0.67c	0.62b	0.54b	0.63b
T₃	0.93d	0.81e	0.72d	0.58d	0.76d
T₄	0.98e	0.85f	0.77e	0.63e	0.80e
T₅	0.72b	0.66b	0.62b	0.53b	0.63b
Mean	0.79b	0.71d	0.65c	0.55a	0.56c

aMeans within the same column followed by the same small letters are not significantly different (level of significance 5%) according to Duncan multiple range test.

Initial value of Citric Acid = 1.66

Table 5: Firmness (Kg.force) of Assam lemon fruit stored under temperature 30-32°C and RH, 80-85%

Treatments	7	14	21	28	Mean
T₀	9.16a	5.56a	3.84a	1.65a	5.05a
T₁	9.2b	5.61b	4.51b	1.69b	5.25b
T₂	9.46c	5.73d	4.75d	2.35c	5.57c
T₃	9.7d	5.81e	4.8e	2.43d	5.68d
T₄	10.05e	8.5f	7.5f	5.35e	7.85e
T₅	9.45c	5.71c	4.73c	2.37e	5.56c

aMeans within the same column followed by the same small letters are not significantly different (level of significance 5%) according to Duncan multiple range test.

Initial value of firmness = 10.50 kg.f.
show significant differences for all the parameters as compared to control sample. Individual Shrink wrapping retained the freshness, color and firmness of the fruit preserving the quality of the fruit during storage.

REFERENCES

Ben, Y.S., Shapiro, B. and Lurie, S. (1983). Mode of action of plastic film in extending life of lemon and bell pepper fruits by alleviation of water stress. Plant Physiology. 73: 87-93.

Dhall, R.K., Sharma, S.R. and Mahajan, B.V.C. (2011). Effect of shrink wrap packaging for maintaining quality of cucumber during storage. J Food Sci Technol. 49(4): 495–499.

Dugo, G. Di Giacomo. A. (2002). Citrus: the genus citrus, medicinal and aromatic plants- industrial profiles.

Kato, M.; Ikoma, Y.; Matsumoto, H.; Sugiiura, M.; Hyodo, H. and Yano, M. (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit. Plant Physiol 134(2):824–837.

Kumar, S.; Jena, S.N.; and Nair, N.K. (2010). ISSR polymorphism in Indian wild orange (Citrus indica Tanaka) and related wild in North east India. Sci. Hortic. 123: 350-359.

Lachapella, M., Bourgeois and Deii J. R. (2013). Effect of preharvest weather conditions on firmness of McIntosh apples at harvest time. Hort Science 48:474-480.

Lester, G.E. and Hodges, D.M. (2007). Antioxidants associated with fruit senescence and human health: Novel orange fleshed non-netted honey dew melon genotype comparisons following different seasonal production and cold storage durations. Postha. Bio. Tech., 48: 347-54.

Mahajan, B.V.C.; Kumar, D and Dhillon, W.S (2013). Effect of different polymeric films on the shelf life and quality of pear fruits under supermarket conditions. Indian Journal of Horticulture 70: 309-312.

Mahajan B.V.C and Singh R. (2014). Effect of packaging films on shelf life and quality of kinnow fruits packed in consumer packages. International Journal of Farm Sciences 4(1):92-98

Malik., A.M.; Singh, S.; Salim, B.A. and Khan, M. N. (2006). Post-harvest handling of fresh citrus fruits. An overview.

Minolta. (2008). Precise color communication: color control from feeling to instrumentation. New Jersey: Williams Drive, p. 1-49.

Murata, T. (1997). Citrus. In Post-harvest physiology and storage of tropical and subtropical fruits, (S.K. Mitra, ed.). CAB International, pp. 21-47.

Murata, T., and Yamawaki, K. (1989). Respiratory changes of several varieties of citrus fruits during and after conditioning with two different humidities. J. Jpn Soc. Hort. Sci. 58:723–729.

Nanda, S.; Sudhakar Rao, D.V. and Krishnamurthty, S. (2001) Effect of shrink film wrapping and storage temperature on the shelf life and quality of pomegranate fruits cv. Ganesh. Postharvest Biol Technol 22:61–69

Pongener, A., Mahajan, B.C and Singh, H. (2011). Effect of different packaging films on storage life and quality of peach fruits under cold storage conditions. Indian Journal Horticulture 68(2): 240-245

Porat, R.; Weiss, Daus, B.; Goren, A. R. and Droby, S. (1999). Effects of ethylene and 1-methylcyclopropene on the postharvest qualities of ‘Shamouti’ oranges. Postharvest Biology and Technology 15:155-163.

Ruoyi, K. zhifang., Y., Zhaoxin, L., (2005). Effect of coating and intermittent warming on enzymes, soluble protein solution and ascorbic acid of Prunus persica during refrigerated storage. Food Research International. 38: 331-336.

Rapisarda, P.; Bianco, M. L.; Pannuzzo, P. and Timpanaro, N. (2008): Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biology and Technology 49: 348-35

Rapisarda, P.; Bianco, M. L.; Pannuzzo, P. and Timpanaro, N. (2008): Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biology and Technology 49: 348-35

Solomos T. and Laties, G.G (1973). Cellular organization and fruit ripening. Nature 245: 390-391

Tietel, Z., Bar, E., Lewinsohn, E., and Fallik, E.(2011). Sensory and aroma profiling of fresh and stored ‘Or’ mandarins. Acta Hortic. 892 :373–38