The Begg’s uprighting spring – Revisited

Vinay Kumar and Shobha Sundareswaran

ABSTRACT

Uprighting springs, an integral part of the Begg light wire differential force technique is gaining more and more popularity, as a useful adjunct in contemporary preadjusted edgewise appliance systems as well. It can be used with brackets containing vertical slots for mesiodistal crown uprighting, or as braking auxiliaries providing additional anchorage while protracting posteriors. Here, we present a simple and quick chair side method of fabricating and customizing uprighting springs according to the required crown/root movement for correction. This communication would serve as a ready reckoner during fabrication of the springs, thus dispelling the confusion that usually arises regarding direction and position of the coil and active arm.

Key words: Braking mechanics, reinforced anchorage, root uprighting

INTRODUCTION

Uprighting springs or mesiodistal root uprighting springs are an indispensable component of light wire differential force technique, introduced by Begg in 1956. Besides being used for mesiodistal root uprighting during Stage III of Begg’s Technique, they are also used as braking auxiliaries to increase the anchorage to carry out various tooth movements. However, with the advent of the preadjusted edgewise appliance, the use of light wire technique has drastically reduced resulting in a lack of familiarization of the Begg uprighting spring among contemporary orthodontists. Of late, the various possibilities of this spring as an adjunctive in contemporary preadjusted edgewise appliance systems containing vertical slot is being explored. The additional anchorage potential provided by uprighting springs can be used to treat different situations successfully (e.g. space closure by posterior teeth protraction). These springs are made from 0.009” to 0.018” Australian archwire depending upon the type of tooth (i.e. incisors, canines, premolars and molars) and the purpose (e.g. mesiodistal uprighting or as brakes to provide additional anchorage) for which we need to use these auxiliaries. Although these uprighting springs are easily available in prefabricated form, here we present a simple and quick chair side method to fabricate and customize uprighting springs according to the required crown/root movement for correction.

Steps in fabrication

1. Determine the type of moment (clockwise or counterclockwise), required for mesiodistal root uprighting either clinically or with the help of OPG. This will vary depending upon tooth type and quadrant of the arch under consideration in the maxilla or mandible.
2. Figure 1, represents a situation, where upper right 2nd premolar needs clockwise moment for root uprighting. Hold approximately 6 cm of Australian arch wire, as shown in Figure 1a, and bend the right plank of the wire in a clockwise direction. Then, the wire is bent around beak of 139 pliers keeping this end under the left plank (Figure 1b). Make the coil with two and half turns (Figure 1c). Figure 1d completes the residual wire bending as per requirement of the degree of activation. Optimum angulation is 135° between arm and stem of uprighting spring. For anchorage reinforcement, minimum to moderate degree of activation is sufficient. This will also minimize side effects on adjacent teeth.
3. Figure 2, represents a situation, where lower right 2nd premolar needs anticlockwise moment for root uprighting [Figure 2a]. Bend the left plank of wire in anticlockwise direction. Then, the wire is bent around beak of 139 pliers keeping this end under the left plank [Figure 1b]. Make the coil with two and half turns [Figure 1c]. Figure 1d completes the residual wire bending as per requirement of the degree of activation.
4. Figure 2, represents a situation, where lower right 2nd premolar needs anticlockwise moment for root uprighting [Figure 2a]. Bend the left plank of wire in anticlockwise direction. In Figure 2b, the wire is bent around beak of

Address for correspondence: Dr. Vinay Kumar, Unit of Orthodontics, Oral Health Sciences Center, Post Graduate Institute of Medical Education and Research, Chandigarh - 160 012, India. E-mail: sonidrvinay16@gmail.com
139 pliers keeping this end under the right plank. Give two and a half turns around the beak [Figure 2c]. Complete the residual wire bending and final clockwise type uprighting spring [Figure 2d].

Alternatively, bending directly from the spool is advisable to prevent wastage. Springs should always be used with rigid base archwires.

DISCUSSION

Contemporary world of orthodontics utilizes different kinds of preadjusted appliances, where all the features to correct 1st, 2nd and 3rd order discrepancies, are incorporated therein.

However, certain clinical situations exist where we need to increase or reinforce the anchorage value at a particular location, to carry out various types of orthodontic tooth movements. Some of these clinical situations are shown in Figure 3, where Begg’s uprighting spring has been used as an adjunct to facilitate tooth movements. Barbieri and Barbieri reported various clinical situations for the use of uprighting spring to reinforce anchorage.

These auxiliaries can also be useful in diverging the roots of canines and or first premolars in presurgical orthodontics for anterior maxillary osteotomy by Wassmund’s or Wunderer’s technique. Physical factors like gauge and resiliency of the wire, size of the helix, number of the coils, direction of activation are discussed besides their classical use as mesiodistal uprighting auxiliary. The relationship between diameter of the wire and diameter of the loop referred to as “spring coil index” should be at least six as described by Thurow. This means that loop diameter should be at least 6 times the diameter of the wire (e.g. for wire diameter of 0.012”, loop diameter should be 0.072”) for its optimal performance. Lesser than this will lead to the creation of internal strain and increases the risk of failure.

So also, while using such kind of auxiliaries, the utmost care must be exercised to prevent or minimize their side effects like labial crown movements, extrusion of anteriors, intrusion of posteriors and buccal crown movements. It is, therefore, absolutely essential that the base archwire be rigid enough, preferably 0.020” premium or 0.018” premium plus, pulse straightened Australian archwires to overcome the side effects.

SUMMARY

A simple and quick method to fabricate uprighting spring has been described here. This can find use to enhance
uprighting (quality and quantity), reinforce anchorage, and presurgical root positioning along with contemporary preadjusted edgewise (or Tip-edge type) appliances. Merely determining the direction (clockwise or anticlockwise) of moments, will help to customize these uprighting springs as per individual needs as shown in Figure 3. Additional advantages are that there is no need for stocking/storing, or any extra investment over the purchase of prefabricated ones.

REFERENCES

1. Begg PR. Differential force in orthodontic treatment. Am J Orthod 1956;42:38-48.

2. Cadman GR. A vade mecum for the Begg technique: Technical principles. Am J Orthod 1975;67:477-512.

3. Barbieri AE, Barbieri FR. Begg auxiliaries. An evaluation and clinical application. J Clin Orthod 1972;6:133-42.

4. Jayade VP. Refined Begg for Modern Times. 1st ed. Karnataka: Mrs. Anuradha V. Jayade; 2001.

5. Wilcock AJ Jr. Arthur J. Wilcock Jr. On orthodontic wires. Interview by R. C. Kesling and C. K. Kesling. J Clin Orthod 1988;22:484-9.

6. Thurow CR. Edgewise Orthodontics. 4th ed. St. Louis: C.V. Mosby; 1982. p. 252.

How to cite this article: Kumar V, Sundareswaran S. The Begg’s uprighting spring - Revisited. J Orthodont Sci 2015;4:30-2.

Source of Support: Nil, Conflict of Interest: None declared.