Coefficient and Fekete-Szegö Problem Estimates for Certain Subclass of Analytic and Bi-Univalent Functions

Hesam Mahzoon

Abstract. In this paper, we obtain the Fekete-Szegö problem for the k-th ($k \geq 1$) root transform of the analytic and normalized functions f satisfying the condition

$$1 + \frac{\alpha - \pi}{2 \sin \alpha} < \text{Re} \left(\frac{zf'(z)}{f(z)} \right) < 1 + \frac{\alpha}{2 \sin \alpha} \quad (|z| < 1),$$

where $\alpha \in [\pi/2, \pi)$. Afterwards, by the above two-sided inequality we introduce a certain subclass of analytic and bi-univalent functions in the disk $|z| < 1$ and obtain upper bounds for the first few coefficients and Fekete-Szegö problem for functions f belonging to this class.

1. Introduction

Let \mathcal{A} be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$ \hspace{1cm} (1)

which are analytic in the open unit disk $\Delta = \{ z \in \mathbb{C} : |z| < 1 \}$ and normalized by the condition $f(0) = f'(0) - 1 = 0$. Also let \mathcal{P} be the class of functions p analytic in Δ which are of the form

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots + p_n z^n + \cdots,$$

such that $\text{Re}(p(z)) > 0$ for all $z \in \Delta$. The subclass of all functions f in \mathcal{A} which are univalent (one-to-one) in Δ is denoted by \mathcal{S}. An example for the class \mathcal{S} is the well-known Koebe function which has the following form

$$k(z) := \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \cdots + nz^n + \cdots \quad (z \in \Delta).$$

It is known that the Koebe function maps the open unit disk Δ onto the entire plane minus the interval $(-\infty, -1/4]$. Also, the well-known Koebe One-Quarter Theorem states that the image of the open unit disk Δ
under every function $f \in S$ contains the disk $\{w : |w| < \frac{1}{4}\}$, see [11, Theorem 2.3]. Therefore, according to the above, every function f in the class S has an inverse f^{-1} which satisfies the following conditions:

$$f^{-1}(f(z)) = z \quad (z \in \Delta)$$

and

$$f(f^{-1}(w)) = w \quad (|w| < r_0(f); \ r_0(f) \geq 1/4),$$

where

$$f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots =: g(w). \quad (2)$$

We say that a function $f \in A$ is bi-univalent in Δ if, and only if, both f and f^{-1} are univalent in Δ. We denote by Σ the class of all bi-univalent functions in Δ. The following functions $z_1 - z_2, -\log(1 - z)$ and $1/2 \log(1 + z)$, with the corresponding inverse functions, respectively,

$$\frac{w}{1 + w}, \quad \frac{\exp(w) - 1}{\exp(w)} \quad \text{and} \quad \frac{\exp(2w) - 1}{\exp(2w) + 1},$$

belong to the class Σ. It is clear that the Koebe function is not a member of the class Σ, also the following functions

$$z - \frac{1}{2}z^2 \quad \text{and} \quad \frac{z}{1 - z^2},$$

do not belong to the class Σ, see [35].

It should be mentioned here that the pioneering work on the subject by Srivastava et al. [35] actually revived the study of analytic and bi-univalent functions in recent years. In fact, subsequent to this important investigation by Srivastava et al. [35], many authors have introduced and studied various subclasses of analytic and bi-univalent functions (see, for example, [9, 23, 25, 28, 29, 31, 32, 36, 37, 40, 43, 44]).

A function $f \in A$ is called starlike (with respect to 0) if $tw \in f(\Delta)$ whenever $w \in f(\Delta)$ and $t \in [0, 1]$. We denote by S^\ast the class of all starlike functions in Δ. Also, we say that a function $f \in A$ is starlike of order γ ($0 \leq \gamma < 1$) if, and only if,

$$\text{Re}\left\{\frac{z f'(z)}{f(z)}\right\} > \gamma \quad (z \in \Delta).$$

The class of the starlike functions of order γ in Δ is denoted by $S^\ast(\gamma)$. As usual we put $S^\ast(0) \equiv S^\ast$.

We recall that a function $f \in A$ belongs to the class $M(\alpha)$ if f satisfies the following two-sided inequality

$$1 + \frac{\alpha - \pi}{2\sin \alpha} < \text{Re}\left\{\frac{f'(z)}{f(z)}\right\} < 1 + \frac{\alpha}{2\sin \alpha} \quad (z \in \Delta),$$

where $\alpha \in [\pi/2, \pi]$. The class $M(\alpha)$ was introduced by Kargar et al. in [13]. We define the function ϕ as follows

$$\phi(\alpha) := 1 + \frac{\alpha - \pi}{2\sin \alpha} \quad (\pi/2 \leq \alpha < \pi).$$

Since

$$2\phi'(\alpha) = [(\pi - \alpha) \cot \alpha + 1] \csc \alpha \quad (\pi/2 \leq \alpha < \pi),$$
therefore for each \(\alpha \in [\pi/2, \pi] \) we see that \(\phi'(\alpha) \neq 0 \). On the other hand, since \(\phi(\pi/2) = 1 - \pi/4 \approx 0.2146 \) and
\[
\lim_{\alpha \to \pi} \phi(\alpha) = \frac{1}{2},
\]
thus the class \(\mathcal{M}(\alpha) \) is a subclass of the starlike functions of order \(\gamma \) where \(0.2146 \leq \gamma < 0.5 \). By this fact that \(\mathcal{S}(\gamma) \subset \mathcal{S} \) for each \(\gamma \in [0,1) \), thus we conclude that the members of the class \(\mathcal{M}(\alpha) \) are univalent in \(\Delta \).

Now, we recall the following result for the class \(\mathcal{M}(\alpha) \), see [13, Lemma 1.1].

Lemma 1.1. Let \(f(z) \in \mathcal{A} \) and \(\alpha \in [\pi/2, \pi] \). Then \(f \in \mathcal{M}(\alpha) \) if, and only if,
\[
\left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \mathcal{B}_\alpha(z) \quad (z \in \Delta),
\]
where
\[
\mathcal{B}_\alpha(z) := \frac{1}{2i \sin \alpha} \log \left(\frac{1 + ze^{i\alpha}}{1 + ze^{-i\alpha}} \right) \quad (z \in \Delta). \tag{3}
\]
Here "\(\prec \)" denotes the well known subordination relation.

The function \(\mathcal{B}_\alpha(z) \) is convex univalent and has the form
\[
\mathcal{B}_\alpha(z) = \sum_{n=1}^\infty A_n z^n \quad (z \in \Delta), \tag{4}
\]
where
\[
A_n := \frac{(-1)^{(n-1)} \sin n \alpha}{n \sin \alpha} \quad (n = 1, 2, \ldots).
\]
Also we have \(\mathcal{B}_\alpha(\Delta) = \Omega_\alpha \) (see [10]) where
\[
\Omega_\alpha := \left\{ \zeta \in \mathbb{C} : \frac{\alpha - \pi}{2 \sin \alpha} < \Re \{\zeta\} < \frac{\alpha}{2 \sin \alpha} \quad : \pi/2 \leq \alpha < \pi \right\}.
\]

Very recently Sun et al. (see [41]) and Kwon and Sim (see [17]) have studied the class \(\mathcal{M}(\alpha) \). Sun et al. showed if the function \(f \) is of the form (1) belongs to the class \(\mathcal{M}(\alpha) \), then \(|a_n| \leq 1 \) while the estimate is not sharp. Subsequently, Kwon and Sim obtained sharp estimates on the initial coefficients \(a_2, a_3, a_4 \) and \(a_5 \) of the functions \(f \) belonging to the class \(\mathcal{M}(\alpha) \). The coefficient estimate problem for each of the Taylor-Maclaurin coefficients \(|a_n| \) \((n = 6, 7, \ldots)\) is still an open question. Also, the logarithmic coefficients of the function \(f \in \mathcal{M}(\alpha) \) were estimated by Kargar, see [12].

It is interesting to mention this subject that Brannan and Taha [7] introduced certain subclass of the bi-univalent function class \(\Sigma \), denoted by \(\mathcal{S}_\gamma(\gamma) \) similar to the class of the starlike functions of order \(\gamma \) \((0 \leq \gamma < 1)\). For each function \(f \in \mathcal{S}_\gamma(\gamma) \) they found non-sharp estimates for the initial Taylor-Maclaurin coefficients. Recently, motivated by the Brannan and Taha’s work, many authors investigated the coefficient bounds for various subclasses of the bi-univalent function class \(\Sigma \), see for instance [8, 21, 22, 26, 27, 35, 38, 39].

In this paper, motivated by the aforementioned works, we introduce and investigate a certain subclass of \(\Sigma \) similar to the class \(\mathcal{M}(\alpha) \) as follows.

Definition 1.2. Let \(\alpha \in [\pi/2, \pi] \). A function \(f \in \Sigma \) is in the class \(\mathcal{M}_\Sigma(\alpha) \), if the following inequalities hold:
\[
1 + \frac{\alpha - \pi}{2 \sin \alpha} < \Re \left\{ \frac{zf'(z)}{f(z)} \right\} < 1 + \frac{\alpha}{2 \sin \alpha} \quad (z \in \Delta)
\]
and
\[
1 + \frac{\alpha - \pi}{2 \sin \alpha} < \Re \left\{ \frac{wg'(w)}{g(w)} \right\} < 1 + \frac{\alpha}{2 \sin \alpha} \quad (w \in \Delta),
\]
where \(g \) is defined by (2).
Remark 1.3. Upon letting $\alpha \to \pi^-$ it is readily seen that a function $f \in \Sigma$ is in the class $M_\Sigma(1/2)$ if the following inequalities are satisfied:

$$\text{Re} \left(\frac{z f'(z)}{f(z)} \right) > \frac{1}{2} (z \in \Delta)$$

and

$$\text{Re} \left(\frac{w g'(w)}{g(w)} \right) > \frac{1}{2} (w \in \Delta),$$

where g is defined by (2).

The following lemma will be useful.

Lemma 1.4. (see [19]) Let the function p be of the form $p(z) = 1 + az + \sum_{n=2}^{\infty} a_n z^n$. Then for any complex number μ we have

$$|p_2 - \mu p_1^2| \leq \left\{ \begin{array}{ll}
-4\mu + 2, & \text{if } \mu \leq 0; \\
2, & \text{if } 0 \leq \mu \leq 1; \\
4\mu - 2, & \text{if } \mu \geq 1.
\end{array} \right.$$

The result is sharp for the cases $\mu < 0$ or $\mu > 1$ if and only if $p(z) = \frac{1+z}{1-z}$ or one of its rotations. If $0 < \mu < 1$, then the equality holds if and only if $p(z) = \frac{1+\mu z}{1-\mu z}$ or one of its rotations. For the case $\mu = 0$, the equality holds if and only if $p(z) = 1 + \frac{1}{2} (1 + \nu) z + \sum_{n=2}^{\infty} a_n z^n$ for $0 \leq \nu \leq 1$, or one of its rotations. If $\mu = 1$, the equality holds if and only if $p(z) = 1 + \frac{1}{2} (1 + \nu) z + \sum_{n=2}^{\infty} a_n z^n$ for $0 \leq \nu \leq 1$, or one of its rotations.

This paper is organized as follows. In Section 2 we derive the Fekete-Szegö coefficient functional associated with the k-th root transform for functions in the class $M(\alpha)$. In Section 3 we propose to find the estimates on the Taylor-Maclaurin coefficients $|a_2|, |a_3|$ and Fekete-Szegö problem for functions in the class $M_\Sigma(\alpha)$ which we introduced in Definition 1.2.

2. Fekete-Szegö problem for the class $M(\alpha)$

Recently, many authors have obtained the Fekete-Szegö coefficient functional associated with the k-th root transform for certain subclasses of analytic functions, see for instance [5, 14, 15]. In this section, we investigate this problem for the class $M(\alpha)$. At first, we recall that for a univalent function f is of the form (1), the k-th root transform is defined by

$$F_k(z) := (f(z))^k = 1 + \sum_{n=1}^{m} b_{kn+1} z^{kn+1} (z \in \Delta, k \geq 1).$$

For f given by (1), we have

$$(f(z))^k = 1 + \frac{1}{k} a_2 z^{k+1} + \left(\frac{1}{k} a_3 - \frac{1}{2} \frac{k-1}{k^2} a_2^2 \right) z^{2k+1} + \cdots.$$

Equating the coefficients of (5) and (6) yields

$$b_{k+1} = \frac{1}{k} a_2 \text{ and } b_{2k+1} = \frac{1}{k} a_3 - \frac{1}{2} \frac{k-1}{k^2} a_2^2.$$

Now we have the following.
Theorem 2.1. Let \(\alpha \in [\pi/2, \pi) \) and \(f \in M(\alpha) \). If \(F \) is the \(k \)-th (\(k \geq 1 \)) root transform of the function \(f \) defined by (5), then for any complex number \(\mu \) we have

\[
|b_{2k+1} - \mu b_{k+1}^2| \leq \begin{cases}
\frac{1}{2\pi} \left(1 - \cos \alpha - \frac{2\mu + k - 1}{k} \right), & \text{if } \mu \leq \delta_1; \\
\frac{1}{2\pi}, & \text{if } \delta_1 \leq \mu \leq \delta_2; \\
\frac{1}{2\pi} \left(\cos \alpha + \frac{2\mu + k - 1}{k} - 1 \right), & \text{if } \mu \geq \delta_2,
\end{cases}
\]

(8)

where \(\delta_1 := (1 - k(1 + \cos \alpha))/2 \), \(\delta_2 := (1 + k(1 - \cos \alpha))/2 \) and \(b_{2k+1} \) and \(b_{k+1} \) are defined by (7). The result is sharp.

Proof. Let \(\alpha \in [\pi/2, \pi) \). If \(f \in M(\alpha) \), then by Lemma 1.1 and by definition of subordination, there exists a Schwarz function \(w : \Delta \rightarrow \Delta := \{ z : |z| \leq 1 \} \) with the following properties

\[w(0) = 0 \quad \text{and} \quad |w(z)| < 1 \quad (z \in \Delta), \]

such that

\[
\frac{z f'(z)}{f(z)} = 1 + \mathcal{B}_w(w(z)) \quad (z \in \Delta),
\]

(9)

where \(\mathcal{B}_w \) is defined by (3). We define

\[p(z) := \frac{1 + w(z)}{1 - w(z)} = 1 + p_1 z + p_2 z^2 + \cdots \quad (z \in \Delta). \]

(10)

It is clear that \(p(0) = 1 \) and \(p \in \mathcal{P} \). Relationships (4) and (10) give us

\[
1 + \mathcal{B}_w(w(z)) = 1 + \frac{1}{2} A_1 p_1 z + \left(\frac{1}{4} A_2 p_2^2 + \frac{1}{2} A_1 \left(p_2 - \frac{1}{2} p_1^2 \right) \right) z^2 + \cdots,
\]

where \(A_1 = 1 \) and \(A_2 = -\cos \alpha \). If we equate the coefficients of \(z \) and \(z^2 \) on both sides of (9), then we get

\[a_2 = \frac{1}{2} p_1 \]

(11)

and

\[a_3 = \frac{1}{4} \left(p_2 - \frac{1}{2} \cos \alpha p_1^2 \right). \]

(12)

From (7), (11) and (12), we get

\[b_{k+1} = \frac{p_1}{2k}, \]

and

\[
b_{2k+1} = \frac{1}{4k} \left(p_2 - \frac{1}{2} \left(\cos \alpha + \frac{k-1}{k} \right) p_1^2 \right),
\]

where \(k \geq 1 \). Therefore

\[
b_{2k+1} - \mu b_{k+1}^2 = \frac{1}{4k} \left(p_2 - \frac{1}{2} \left(\cos \alpha + \frac{2\mu + k - 1}{k} \right) p_1^2 \right) \quad (\mu \in \mathbb{C}).
\]

If we apply the Lemma 1.4 and letting

\[\mu' := \frac{1}{2} \left(\cos \alpha + \frac{2\mu + k - 1}{k} \right), \]
then we get the desired inequality (8).

From now, we shall show that the result is sharp. For the sharpness of the first and third cases of (8), i.e. \(\mu \leq \delta_1 \) and \(\mu \geq \delta_2 \), respectively, consider the function

\[
f_1(z) := z \exp \left\{ \int_0^z \frac{\mathcal{B}_\alpha(\xi) - 1}{\xi} \, d\xi \right\} \quad (z \in \Delta)
\]

\[
= z + z^2 + \frac{1}{2} (1 - \cos \alpha) z^3 + \frac{1}{18} (1 - 9 \cos \alpha + 8 \cos^2 \alpha) z^4 + \cdots,
\]
or one of its rotations. It is easy to see that \(f_1 \) belongs to the class \(M(\alpha) \) and

\[
(f_1(z^k))^{1/k} = z + \frac{1}{k} z^{k+1} + \left(\frac{1}{2k} (1 - \cos \alpha) - \frac{1 - 1}{2k^2} \right) z^{2k+1} + \cdots.
\]

The last equation shows that these inequalities are sharp. For the sharpness of the second inequality, we consider the function

\[
f_2(z) := z^2 \exp \left\{ \int_0^z \frac{\mathcal{B}_\alpha(\xi^2) - 1}{\xi} \, d\xi \right\} = z + \frac{1}{2} z^3 + \cdots \quad (z \in \Delta).
\]

A simple calculation gives that

\[
(f_2(z^k))^{1/k} = z + \frac{1}{2k} z^{2k+1} + \cdots.
\]

Therefore the equality in the second inequality (8) holds for the \(k \)-th root transform of the above function \(f_2 \). This completes the proof of Theorem 2.1.

The problem of finding sharp upper bounds for the coefficient functional \(|a_3 - \mu a_2^2| \) for different subclasses of the normalized analytic function class \(A \) is known as the Fekete-Szegö problem. In the recent years, many scholars have investigated the Fekete-Szegö problem for some certain subclasses of analytic functions, see for example [16, 24, 30, 33, 34, 42].

Letting \(k = 1 \) in the Theorem 2.1 we get the Fekete-Szegö inequality for the class \(M(\alpha) \) which we give in the following corollary.

Corollary 2.2. Let \(\alpha \in [\pi/2, \pi) \) and \(f \in M(\alpha) \). Then for any complex number \(\mu \) we have

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{1}{2} (1 - \cos \alpha) - \mu, & \text{if } \mu \leq -\frac{1}{2} \cos \alpha; \\
\frac{1}{2}, & \text{if } -\frac{1}{2} \cos \alpha \leq \mu \leq 1 - \frac{1}{2} \cos \alpha; \\
\frac{1}{2} (\cos \alpha - 1) + \mu, & \text{if } \mu \geq 1 - \frac{1}{2} \cos \alpha.
\end{cases}
\]

The result is sharp.

Putting \(\alpha = \pi/2 \) in the Corollary 2.2 we get the following.

Corollary 2.3. Let the function \(f \) be given by (1) satisfies the inequality

\[
\left| \frac{\text{Re} \left\{ z f'(z) \right\}}{f(z)} - 1 \right| < \frac{\pi}{4} \quad (z \in \Delta).
\]

Then for any complex number \(\mu \in \mathbb{C} \) we have the following sharp inequalities

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{1}{2} - \mu, & \text{if } \mu \leq 0; \\
\frac{1}{2}, & \text{if } 0 \leq \mu \leq 1; \\
\mu - \frac{1}{2}, & \text{if } \mu \geq 1.
\end{cases}
\]
If we let \(\alpha \to \pi^- \) in the Corollary 2.2, then we have:

Corollary 2.4. If the function \(f \) is of the form (1) is starlike of order \(1/2 \), then for any complex number \(\mu \in \mathbb{C} \) the following sharp inequalities hold true.

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
1 - \mu, & \text{if } \mu \leq \frac{1}{2}; \\
\frac{1}{2}, & \frac{1}{2} \leq \mu \leq \frac{3}{2}; \\
\mu - 1, & \text{if } \mu \geq \frac{3}{2}.
\end{cases}
\]

From (11) and (12) and the first case of the Lemma 1.4 we get:

Corollary 2.5. If a function \(f \in \mathcal{A} \) is of the form (1) belongs to the class \(M(\alpha) \) \((\pi/2 \leq \alpha < \pi)\), then the following sharp inequalities hold.

\[
|a_2| \leq 1 \quad \text{and} \quad |a_3| \leq \frac{1}{2}(1 - \cos \alpha).
\]

3. Coefficient estimate and Fekete-Szegő problem for the class \(M_\Sigma(\alpha) \)

In this section, motivated by the Zaprawa’s work (see [45]) we shall obtain the Fekete-Szegő problem for the class \(M_\Sigma(\alpha) \). Also, we obtain upper bounds for the first coefficients \(|a_2| \) and \(|a_3| \) of the function \(f \) is of the form (1) belonging to the class \(M_\Sigma(\alpha) \). The coefficient estimate problem for each of the coefficients \(|a_n| \) \((n \geq 4)\) is an open question. Here we recall that the initial coefficients estimate of the class of bi-univalent functions \(\Sigma \) was studied by Lewin in 1967 and he obtained the bound \(1.51 \) for the modulus of the second coefficient \(|a_2| \), see [18]. Afterward, Brannan and Clunie conjectured that \(|a_2| \leq \sqrt{2} \), see [6]. Finally, in 1969, Netanyahu [20] showed that \(\max f \in \Sigma |a_2| = 4/3 \). For the another coefficients \(a_n \) \((n \geq 3)\) the sharp estimate is presumably still an open problem.

Moreover, we apply the same technique as in [4].

Theorem 3.1. Let the function \(f \) given by (1) be in the class \(M_\Sigma(\alpha) \) and \(\alpha \in [\pi/2, \pi) \). Then

\[
|a_2| \leq \sqrt{\frac{2}{2 + \cos \alpha}} \quad \text{(13)}
\]

and for any real number \(\mu \) we have

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{1}{2}, & \text{if } |1 - \mu| \leq \frac{1}{2} \left(1 + \frac{1}{2} \cos \alpha\right); \\
\frac{|1 - \mu|}{1 + \frac{1}{2} |\cos \alpha|}, & \text{if } |1 - \mu| \geq \frac{1}{2} \left(1 + \frac{1}{2} \cos \alpha\right).
\end{cases}
\]

Proof. Let \(f \in M_\Sigma(\alpha) \) be of the form (1) and \(g = f^{-1} \) be given by (2). Then by Definition 1.2, Lemma 1.1 and definition of subordination there exist two Schwarz functions \(u : \Delta \to \Delta \) and \(v : \Delta \to \Delta \) with the properties \(u(0) = 0 = v(0), |u(z)| < 1 \) and \(|v(z)| < 1 \) such that

\[
\frac{zf''(z)}{f'(z)} = 1 + \mathcal{B}_n(u(z)) \quad (z \in \Delta)
\]

and

\[
\frac{wg'(w)}{g'(w)} = 1 + \mathcal{B}_n(v(z)) \quad (z \in \Delta),
\]
where B_α is defined by (3). Now we define the functions k and l, respectively as follows

$$k(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + k_1 z + k_2 z^2 + \cdots \quad (z \in \Delta)$$

and

$$l(z) = \frac{1 + v(z)}{1 - v(z)} = 1 + l_1 z + l_2 z^2 + \cdots \quad (z \in \Delta)$$

or equivalently

$$u(z) = \frac{k(z) - 1}{k(z) + 1} = \frac{1}{2} \left(k_1 z + \left(k_2 - \frac{1}{2} k_1^2 \right) z^2 + \cdots \right)$$

(16)

and

$$v(z) = \frac{l(z) - 1}{l(z) + 1} = \frac{1}{2} \left(l_1 z + \left(l_2 - \frac{1}{2} l_1^2 \right) z^2 + \cdots \right).$$

(17)

It is clear that the functions k and l belong to class P and $|k_i| \leq 2$ and $|l_i| \leq 2 \ (i = 1, 2, \ldots)$. From (4), (14)-(17), we have

$$zf'(z) = f(z) + B_\alpha \left(\frac{k(z) - 1}{k(z) + 1} \right) = 1 + \frac{1}{2} A_1 k_1 z + \frac{1}{2} A_1 \left(k_2 - \frac{1}{2} k_1^2 \right) z^2 + \cdots,$$

(18)

and

$$wg'(w) = g(w) + B_\alpha \left(\frac{l(z) - 1}{l(z) + 1} \right) = 1 + \frac{1}{2} A_1 l_1 z + \frac{1}{2} A_1 \left(l_2 - \frac{1}{2} l_1^2 \right) z^2 + \cdots.$$

where $A_1 = 1$ and $A_2 = -\cos \alpha$. Thus, upon comparing the corresponding coefficients in (18) and (19), we obtain

$$a_2 = \frac{1}{2} A_1 k_1 = \frac{1}{2} k_1,$$

(20)

$$2a_3 - a_2^2 = \frac{1}{2} A_1 \left(k_2 - \frac{1}{2} k_1^2 \right) + \frac{1}{4} A_2 k_1^2 = \frac{1}{2} \left(k_2 - \frac{1}{2} k_1^2 \right) - \frac{k_1^2}{4} \cos \alpha,$$

(21)

$$-a_2 = \frac{1}{2} A_1 l_1 = \frac{1}{2} l_1,$$

(22)

and

$$3a_2^2 - 2a_3 = \frac{1}{2} A_1 \left(l_2 - \frac{1}{2} l_1^2 \right) + \frac{1}{4} A_2 l_1^2 = \frac{1}{2} \left(l_2 - \frac{1}{2} l_1^2 \right) - \frac{l_1^2}{4} \cos \alpha.$$

(23)

From equations (20) and (22), we can easily see that

$$k_1 = -l_1$$

(24)

and

$$8a_2^2 = (k_1^2 + l_1^2).$$
If we add (21) to (23), we get
\[2\tilde{a}_2 = \frac{1}{2} \left[(k_2 - \frac{1}{2}l_1^2) + (l_2 - \frac{1}{2}k_1^2) \right] - \frac{1}{4} \cos \alpha \left(k_1^2 + l_1^2 \right). \] (25)

Substituting (20), (22) and (24) into (25), we obtain
\[k_1^2 = \frac{k_2 + l_2}{2(1 + \cos \alpha /2)}. \] (26)

Now, (20) and (26) imply that
\[\tilde{a}_2 = \frac{k_2 + l_2}{2(2 + \cos \alpha)}. \] (27)

Since \(|k_2| \leq 2 \) and \(|l_2| \leq 2 \), (27) implies that
\[|\tilde{a}_2| \leq \sqrt{\frac{2}{2 + \cos \alpha}}, \]
which proves the first assertion (13) of Theorem 3.1. Now, if we subtract (23) from (21) and use of (24), we get
\[a_3 = a_2^2 + \frac{1}{8}(k_2 - l_2). \] (28)

From (27) and (28) it follows that
\[a_3 - \mu a_2^2 = \left(\frac{1}{8} + h(\mu) \right) k_2 + \left(h(\mu) - \frac{1}{8} \right) l_2 \quad (\mu \in \mathbb{R}), \]
where
\[h(\mu) := \frac{1 - \mu}{2(2 + \cos \alpha)} \quad (\mu \in \mathbb{R}). \]

Since \(|k_2| \leq 2 \) and \(|l_2| \leq 2 \), we conclude that
\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{1}{2}, & \text{if } 0 \leq |h(\mu)| \leq \frac{1}{4}; \\ 4|h(\mu)|, & \text{if } |h(\mu)| \geq \frac{1}{4}. \end{cases} \]

This completes the proof. \(\square \)

Taking \(\mu = 0 \) in the above Theorem 3.1 we get.

Corollary 3.2. Let \(f \) of the form (1) be in the class \(\mathcal{M}_\Sigma(\alpha) \). Then
\[|a_3| \leq \frac{1}{1 + \frac{1}{2} \cos \alpha} \quad (\pi/2 \leq \alpha < \pi). \]

If we let \(\alpha \to \pi^- \) in the Theorem 3.1, we get the following.

Corollary 3.3. If the function \(f \) is of the form (1) belongs to the class \(\mathcal{M}_\Sigma(1/2) \), then \(|\tilde{a}_2| \leq 1 \) and
\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{1}{2}, & \text{if } |1 - \mu| \leq \frac{1}{4}; \\ 2|1 - \mu|, & \text{if } |1 - \mu| \geq \frac{1}{4}, \end{cases} \]
where \(\mu \) is real.
References

[1] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
[2] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145–174.
[3] P. Erdős, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) 207–214.
[4] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions Applied Mathematics Letters 25 (2012) 344–351.
[5] R. M. Ali, Ş. K. Lee, V. Ravichandran, S. Supramaniam, The Fekete-Szegő coefficient functional for transforms of analytic functions, Bulletin of the Iranian Mathematical Society 35 (2011) 119–142.
[6] D. A. Brannan, J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979), Academic Press, New York and London, 1980.
[7] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18–21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53–60; see also Studia Universitatis Babeş-Bolyai / Mathematica 31 (1986) 70–77.
[8] S. Bulut, Coefficient estimates for a class of analytic bi-univalent functions related to Pseudo-starlike functions, Miskolc Mathematical Notes 19 (2018) 149–156.
[9] M. Çağlar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish Journal of Mathematics 41 (2017) 694–706.
[10] M. Dorff, Convolutions of planar harmonic convex mapping, Complex Variables and Elliptic Equations 45 (2001) 263–271.
[11] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[12] R. Kargar, On logarithmic coefficients of certain starlike functions related to the vertical strip, The Journal Analysis 27 (2019) 985–995.
[13] R. Kargar, A. Ebadian, J. Sokól, Radius problems for some subclasses of analytic functions, Complex Analysis and Operator Theory 11 (2017), 1639–1649.
[14] R. Kargar, A. Ebadian, J. Sokól, On Booth lemniscate and starlike functions, Analysis and Mathematical Physics 9 (2019) 143–154.
[15] R. Kargar, H. Mahzoon, N. Kanzi, Some inequalities for a certain subclass of starlike functions, arXiv:1804.06435 [math.CV]
[16] B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegő problem for close-to-convex functions with respect to convex functions, Publications de l’Institut Mathématique 101 (115) (2017) 143–149.
[17] O. S. Kwon, Y. J. Sim, On coefficient problems for starlike functions related to vertical strip domain, Communications of the Korean Mathematical Society 34 (2019) 451–464.
[18] M. Lewin, On a coefficient problem for bi-univalent function, Proceedings of the American Mathematical Society 18 (1967) 63–68.
[19] W. Ma and D. Minda, A unified method for certain special classes of univalent functions, In Proceedings of the Conference On Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169.
[20] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Archive for Rational Mechanics and Analysis 32 (1969) 100–112.
[21] P. Sharma and A. Nigam, The Fekete-Szegő problem for a Ma-Minda type class of bi-univalent functions associated with the Hohlov operator, Asian-European Journal of Mathematics 10 (2017) 1750052 (15 pages).
[22] H. M. Srivastava, S. Altinkaya, S. Yalçın, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iranian Journal of Science and Technology. Transaction A 43 (2019), 1873–1879.
[23] H. M. Srivastava, S. Altinkaya, S. Yalçın, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32 (2018) 503–516.
[24] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional q-calculus operators, Miskolc Mathematical Notes 20 (2019) 1245–1266.
[25] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, Journal of the Egyptian Mathematical Society 23 (2015) 242–246.
[26] H. M. Srivastava, S. Bulut, M. Çağlar M. N. Yaşmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013) 831–842.
[27] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Matematika 28 (2017) 693–706.
[28] H. M. Srivastava, S. Gaboury, F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia. Series B. English Edition 36 (2016) 863–871.
[29] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis. Mathematics-Informatics 41 (2015) 153–164.
[30] H. M. Srivastava, S. Hussain, A. Raza, M. Raza, The Fekete-Szegő functional for a subclass of analytic functions associated with quasi-subordination, Carpathian Journal of Mathematics 34 (2018) 103–113.
[31] H. M. Srivastava, B. B. Jena, S. K. Paikray, U. K. Misra, Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 112 (2018) 1487–1501.
[32] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Studia Universitatis Babeş-Bolyai Mathematica 63 (2018) 419–436.
[33] H. M. Srivastava, C. Kızılateş, A parametric kind of the Fubini-type polynomials, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 113 (2019) 3253–3267.
[34] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegő problem for a subclass of close-to-convex functions, Complex Variables, Theory and Application 44 (2001) 145–163.
[35] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters 23 (2010) 1188–1192.
[36] H. M. Srivastava, F. M. Sakar, H.O. Guneysu, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat 34 (2020) 1313–1322.
[37] H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal 7 (2014) 1–10.
[38] H. M. Srivastava, S. Sümér Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29:8 (2015) 1839–1845.
[39] H. M. Srivastava, S. Sümér Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bulletin of the Iranian Mathematical Society 44 (2018) 149–157.
[40] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Mathematical Journal 59 (2019) 493–503.
[41] Y. Sun, Z. -G. Wang, A. Rasila, Janusz Sokół, On a subclass of starlike functions associated with a vertical strip domain, Journal of Inequalities and Applications (2019) 2019: 35. https://doi.org/10.1186/s13660-019-1988-8
[42] H. Tang, H. M. Srivastava, S. Sivasubramanian, P. Gurusamy, The Fekete-Szegő functional problems for some classes of m-fold symmetric bi-univalent functions, Journal of Mathematical Inequalities 10 (2016) 1063–1092.
[43] Q. -H. Xu, H. -G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Applied Mathematics and Computation 218 (2012) 11461–11465.
[44] Q. -H. Xu, Y. -C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters 25 (2012) 990–994.
[45] P. Zaprawa, On the Fekete-Szegő problem for classes of bi-univalent functions, Bulletin of the Belgian Mathematical Society-Simon Stevin 21 (2014) 169–178.