Development and validation of a nomogram to predict overall survival of T1 esophageal squamous cell carcinoma patients with lymph node metastasis

Jia Yu, Wenyu Hu, Nan Yao, Mengzi Sun, Xiaotong Li, Ling Wang, Yixue Yang, Bo Li*

Department of Epidemiology and Biostatistics, Jilin University School of Public Health, 1163 Xinmin Street, Changchun, Jilin, 130021, China

A R T I C L E I N F O

Keywords:
Esophageal squamous cell carcinoma
Lymph node metastases
Overall survival
Prognosis
Nomogram

A B S T R A C T

Purpose: To develop a nomogram for predicting the prognosis of T1 esophageal squamous cell carcinoma (ESCC) patients with positive lymph node.

Methods: T1 ESCC patients with lymph node metastasis diagnosed between 2010 and 2015 were selected from the Surveillance, Epidemiology, and Final Results (SEER) database. The entire cohort was randomly divided in the ratio of 7:3 into a training group (n=457) and validation group (n=192), respectively. Prognostic factors were identified by univariate and multivariate Cox regression models. Harrell's concordance index (C-index), receiver operating characteristic (ROC) curve, and calibration curve were used to evaluate the discrimination and calibration of the nomogram. The accuracy and clinical net benefit of the nomogram compared with the 7th AJCC staging system were evaluated using net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA).

Results: The nomogram consisted of eight factors: insurance, T stage, summary stage, primary site, radiation code, chemotherapy, surgery, and radiation sequence with surgery. In the training and validation cohorts, the AUCs exceeded 0.700, and the C-index scores were 0.749 and 0.751, respectively, indicating that the nomogram had good discrimination. The consistency between the survival probability predicted by the nomogram and the actual observed probability was indicated by the calibration curve in the training and validation cohorts. For NRI>0 and IDI>0, the predictive power of the nomogram was more accurate than that of the 7th AJCC staging system. Furthermore, the DCA curve indicated that the nomogram achieved better clinical utility than the traditional system.

Conclusions: Unlike the 7th AJCC staging system, the developed and validated nomogram can help clinical staff to more accurately, personally and comprehensively predict the 1-year and 3-year OS probability of T1 ESCC patients with lymph node metastasis.

Introduction

Esophageal cancer (EC) is the 7th most common cancer and the 6th leading cause of cancer deaths worldwide [1]. Esophageal squamous cell carcinoma (ESCC) accounts for approximately 90% of the 456,000 cases of esophageal cancers per year [2], and its prognosis remains poor. The causes of poor prognosis might be related to the main characteristics of ESCC, including extensive lymph node networks, early regional tumor progression, and early regional lymph node metastases (LNM) [3-5]. For ESCC patients with LNM, the greater number the metastatic lymph nodes, the worse was the prognosis [6,7]. Cancer patients can show favorable survival performance if they are identified at an early stage; for example, the 5-year survival rate of non-small cell lung cancer patients with surgical resection at 0-1 stage is 70%, and the 5-year survival rate for ovarian cancer patients diagnosed at stage I is 92% [8,9]. In recent decades, early esophageal cancer with LNM can be detected by endoscopy [10]. However, despite early detection and complete resection, the 5-year survival rate for patients is only 40% to 50%, and the prognosis remains unsatisfactory [11]. It is therefore important to find prognostic evidence for ESCC patients with LNM at the early stage.

The most common cancer-related prognosis assessment system is the American Joint Committee on Cancer (AJCC) staging system, which has been serving as a valuation system in the United States since 1959. This system classifies the extent of cancer based primarily on anatomical information of the extent of the primary tumor, regional lymph nodes, and distant metastases. However, it has disadvantages in predicting the
prognosis of cancer because it does not consider certain personal factors such as demographics, number of tumors, and clinical treatments. Hence, even patients at the same cancer stage display different progress and survival times. Therefore, a comprehensive and personalized model for prediction should be developed for patients diagnosed with some cancers. For the past few years, nomograms have been applied to predict the prognosis of cancer [12]. Nomograms meet the requirements for an integrated model that includes clinical and demographical variables, and thus play an essential part in driving toward individualized-and comprehensive-related factor evaluation model [13,14]. To date, no nomogram has been constructed to predict risk factors related to prognosis in T1 ESCC patients with positive lymph nodes. In the present study, by using the ESCC cohort of the Surveillance, Epidemiology and End Results (SEER) database, we aimed to identify prognostic factors for patients with ESCC and construct a prognostic nomogram model for these targeted populations.

Materials and methods

Data source

The data were obtained from the SEER database (https://seer.cancer.gov), which is a comprehensive source of population-based cancer-related information from collaboration between the US Centers for Disease Control and Prevention, the National Cancer Institute, and regional and state cancer registries. The specific dataset with chemotherapy and radiotherapy applied in the present study was the “SEER 18Regs Custom Data (with additional treatment fields), Nov 2018 Sub 1975-2016”. Study data was screened using SEER Stat software (version 8.3.5) provided by the SEER database.

Patient selection

Patients diagnosed with EC were initially recovered from the SEER database for the period between January 1975 and November 2016. The data were then filtered using the Code of International Classification of Diseases, 3th edition (ICD-O-3) defined as 8070-8076; the stage of tumor infiltration was T1, the number of metastatic lymph nodes was greater than 0, and survival status as well as vital status were clear.

Variable selection

Variables for the nomogram, included demographic information, pathological features, and clinical treatments. For demographic data, age at diagnosis, race, sex, insurance, rural-urban continuum, marital status, and follow-up time were selected. For pathological features, primary sites, summary stage, AJCC stage, T stage, N stage, M stage, grade, CS extension, number of malignant tumors as well as benign tumors were included. For clinical treatments, surgery status, radiotherapy status, and chemotherapy status were included in this study. The primary outcomes were the vital status and survival months.

According to the 7th AJCC staging system, seven variables are used for the evaluation of EC and include the depth of infiltration of the tumor (T), number of metastatic lymph nodes (N), distant metatases (M), histopathological type, biological activity of the tumor (histological grade), histological stage (AJCC Stage), and location. In the present study, only one subtype of EC-ESCC patient was used for the study population, the histopathological type was not entered into the AJCC staging system as a variable. The final variables that were applied for the AJCC staging system were TNM stage, histological grade, AJCC stage, and location.

Statistical analysis

All patients were randomly divided into a training and validation group. Frequencies and percentages were described as class variables.

A chi-square test was used to compare categorical variables and Student’s t-test to continuous variables. Cox regression analyses were used to identify factors that may affect OS. A nomogram to predict 1- and 3-year overall survival (OS) probabilities was developed by applying variables from Cox multivariate regression analyses. After the model was established, several indicators were used to validate the model. The concordance index (C-index) and the receiver operating characteristic (ROC) curves with area under the curve (AUC) were used to evaluate the discrimination capability of model. C-index and AUC ranged from 0.5 to 1.0. Basically, C-index and AUC over 0.7 indicate that the nomogram provides a reasonable estimation. Calibration plots were applied to assess the uniformity between the actual outcomes and the predicted probabilities. The net reclassification index (NRI) quantifies how well a new model reclassifies subjects as compared to an old model, while the integrated discrimination improvement index (IDI) considers different tangent lines that can be used to assess the improvement of the model. These two indicators can be used to evaluate the improved or decreased accuracy of a new model compared to the 7th AJCC staging system. Formally, a NRI>0 indicates the new model is more accurate than the old model for prediction. To the same is true for IDI. Finally, decision-curve analysis (DCA) was used to evaluate the clinical validity of the nomogram by quantifying the net benefit compared to the 7th AJCC staging system.

Statistical analysis was conducted using R software (version 4.0.3, https://www.r-project.org/). In the present study, the R packages used in the study included doBy, plotrix, stringr, stringr, nnet, car, mgcv, gdata, caret, rms, survival, rms, foreign, survival, ROC, and nricens packages. p-values were derived from two-tailed tests, and a p < 0.05 was considered statistically significant.

Results

Baseline characteristics of patients

Data on 649 T1 ESCC patients diagnosed with positive lymph nodes from 2010 to 2015 were extracted from the SEER database and then randomly divided into a training set and validation set in a 7:3 ratio. The average age of the patients was 68.17±11.25 years. The majority of patients were ethnically white (61.48%), male (66.72%), living in the counties (86.59%), married (46.84%), and insured (74.73%). The most common TNM stages were T1N0S (74.42%), N1 (73.96%), and M0 (65.95%), and the predominant AJCC stage was IIb (47.46%). For clinical treatments, only a few patients received primary site surgery and radiotherapy, while over half had chemotherapy. Almost the entire cohort (70.72%) had one malignant tumor. The average follow-up time was 15.01 months. Demographic and clinical characteristics are shown in Table 1.

Identifying variables for the nomogram

In the Cox univariate regression analysis, 14 variables were identified that were associated with OS (p < 0.05). In the Cox multivariate analysis, these factors were integrated, and eight of them were identified as independent prognostic factors related to OS (p < 0.05). These factors were insurance, T stage, summary stage, primary site, radiation code, chemotherapy, surgery, and radiation sequence with surgery. The Cox multivariate analysis showed that uninsured status, lower third of the esophagus, regional esophagus, radiation before surgery, no radiation therapy, and chemotherapy were related to the deterioration of OS. For the T1b stage, esophagectomy served as a protective factor for OS. The Cox analyses for screening factors related to OS are listed in Table 2.

Establishment of the nomogram

The eight factors that influenced prognosis of ESCC were identified from Cox multivariate analysis and entered into the present nomogram.
Table 1: Demographic and clinical characteristics of T1 ESCC patients with LNM.

Variable	Whole cohort [n = 649]	Training cohort [n = 457]	Validation cohort [n = 192]	p-value	
Age, n (%)	25-44 years	13 (2.00%)	9 (1.97%)	4 (2.08%)	0.977
45-64 years	235 (35.90%)	166 (36.12%)	67 (34.90%)		
65-84 years	357 (55.01%)	249 (54.49%)	108 (56.25%)		
≥85 years	46 (7.09%)	33 (7.22%)	13 (6.77%)		
Median, years, (IQR)	68.17±11.25	67.19±11.44	70.49±10.45	0.201	
Follow-up time (months), mean±SD	15.01±6.85	14.66±6.04	14.47±3.14	0.149	
Race, n (%)	White	399 (61.48%)	282 (61.71%)	117 (60.94%)	0.778
Black	172 (26.50%)	123 (26.91%)	49 (25.52%)		
American Indian/Alaska Native	5 (0.77%)	4 (0.88%)	1 (0.52%)		
Asian/Pacific Islander	73 (11.25%)	48 (10.50%)	25 (13.02%)		
Sex, n (%)	Female	216 (33.28%)	153 (33.48%)	63 (32.81%)	0.869
Male	433 (66.72%)	304 (66.52%)	129 (67.19%)		
Rural and Urban, n (%)	65-84	73 (11.25%)	48 (10.50%)	25 (13.02%)	0.215
C15.8/9-Overlapping Counties	12 (1.85%)	10 (2.19%)	2 (1.04%)		
Insurance Recode, n (%)	485 (74.73%)	350 (76.59%)	135 (70.31%)	0.241	
Any Medicaid	122 (18.80%)	80 (17.51%)	42 (21.88%)		
Uninsured	42 (6.47%)	27 (5.91%)	15 (7.81%)		
Primary Site – labeled, n (%)	C15.0-Cervical esophagus	40 (6.16%)	23 (5.03%)	17 (8.85%)	0.431
C15.1-Thoracic esophagus	47 (7.24%)	31 (6.78%)	16 (8.33%)		
C15.3-Upper third esophagus	81 (12.48%)	58 (12.69%)	23 (11.98%)		
C15.4-Middle third esophagus	211 (32.51%)	154 (33.70%)	57 (29.69%)		
C15.5-Lower third esophagus	183 (28.20%)	127 (27.79%)	56 (29.17%)		
C15.8-9-Overlapping lesion/NOS	87 (13.41%)	64 (14.00%)	23 (11.98%)		
Grade, n (%)	Grade I	22 (3.39%)	17 (3.72%)	5 (2.60%)	0.242
Grade II	240 (36.98%)	175 (38.29%)	65 (33.85%)		
Grade III	243 (37.44%)	160 (35.01%)	83 (43.23%)		
Grade IV	9 (1.39%)	5 (1.09%)	4 (2.08%)		
Unknown	135 (20.80%)	100 (21.88%)	35 (18.23%)		
AJCC Stage, n (%)	AJCC Stage	308 (47.46%)	217 (47.48%)	91 (47.40%)	0.815
IIB	40 (6.16%)	31 (6.78%)	9 (4.69%)		
IIIA	13 (2.00%)	8 (1.75%)	5 (2.60%)		
IIIC	221 (34.05%)	155 (33.92%)	66 (34.38%)		
Unknown	67 (10.32%)	46 (10.07%)	21 (10.94%)		
T Stage, n (%)	T1a	99 (15.25%)	68 (14.88%)	31 (16.15%)	0.729
T1b	67 (10.32%)	45 (9.85%)	22 (11.46%)		
T1NOS	483 (74.42%)	344 (75.27%)	139 (72.40%)		
N Stage, n (%)	N1	480 (73.96%)	338 (73.96%)	142 (73.96%)	0.690
N2	65 (10.02%)	48 (10.50%)	17 (8.85%)		
N3	87 (13.41%)	61 (13.35%)	26 (13.54%)		
NX	17 (2.62%)	10 (2.19%)	7 (3.65%)		
M Stage, n (%)	M0	428 (65.95%)	302 (66.08%)	126 (65.62%)	0.910
M1	221 (34.05%)	155 (33.92%)	66 (34.38%)		
Summary stage, n (%)	Localized	67 (10.32%)	46 (10.07%)	21 (10.94%)	0.552
Regional	261 (40.22%)	190 (41.58%)	71 (36.98%)		
Distant	321 (49.46%)	221 (48.36%)	100 (52.08%)		
Radiation with surgery, n (%)	None	577 (88.60%)	398 (87.09%)	177 (92.19%)	0.279
Before surgery	40 (6.16%)	31 (6.78%)	9 (4.69%)		
After surgery	33 (5.08%)	27 (5.91%)	6 (3.12%)		
Before and after surgery	1 (0.15%)	1 (0.22%)	0 (0.00%)		
Surg Prim Site, n (%)	None	596 (91.83%)	417 (91.25%)	179 (93.23%)	0.314
Endoscopic therapy	5 (0.31%)	2 (0.44%)	0 (0.00%)		
Partial esophagectomy	9 (1.39%)	9 (1.97%)	0 (0.00%)		
Total esophagectomy	9 (1.39%)	6 (1.31%)	3 (1.56%)		
Esophagectomy, NOS	33 (5.08%)	23 (5.03%)	10 (5.21%)		
Radiation recode, n (%)	0.257	(continued on next page)			
Table 1 (continued)

Variable	Whole cohort [n = 649]	Training cohort [n = 457]	Validation cohort [n = 192]	p-value
Beam radiation	391 (60.25%)	283 (61.93%)	108 (56.25%)	
Radiation, NOS	6 (0.92%)	3 (0.66%)	3 (1.56%)	
None/Unknown	252 (38.83%)	171 (37.42%)	81 (42.19%)	0.927
Chemotherapy, n (%)	Yes	404 (62.25%)	285 (62.36%)	
None/Unknown	245 (37.75%)	172 (37.64%)	73 (38.02%)	0.662
CS extension, n (%)	100 mm	74 (11.40%)	51 (11.16%)	23 (11.98%)
110-170 mm	123 (18.95%)	83 (18.16%)	40 (20.83%)	
210-300 mm	452 (69.65%)	323 (70.68%)	129 (67.19%)	
No. of malignant tumors, n (%)	1	459 (70.72%)	317 (73.74%)	122 (63.54%)
2	151 (23.27%)	95 (20.79%)	56 (29.17%)	
3	39 (6.01%)	25 (5.47%)	14 (7.29%)	
No. of benign tumors, n (%)	0	647 (99.69%)	455 (99.56%)	192 (100.00%)
1	2 (0.31%)	2 (0.44%)	0 (0.00%)	

LNM: lymph node metastases; NOS: Not specific.
SEER data represents a collaboration between the US Centers for Disease Control and Prevention, the National Cancer Institute, and regional and state cancer registries from 18 states of the United States.

From the accuracy analysis, the NRI values for the 1-year and 3-year OS probabilities were 0.313 (95% CI: 0.182–0.408) and 0.483 (95% CI: 0.198–0.776) in the training cohort and 0.364 (95% CI: 0.129–0.526) and 0.325 (95% CI: 0.017–0.557) in the validation cohort (Table 3). In addition, the IDI values for the 1-year and 3-year OS probabilities were 0.132 (95% CI: 0.085–0.184) and 0.110 (95% CI: 0.038–0.204) respectively, in the training dataset and 0.171 (95% CI: 0.078–0.257) and 0.161 (95% CI: 0.042–0.275), respectively, in the validation dataset (Table 3). All these results indicated that the present nomogram had improved accuracy compared to the 7th AJCC staging system in predicting OS.

DCA was performed to compare the clinical validity of the nomogram to the 7th AJCC staging system. As shown in Fig. 4A-D, the nomogram achieved greater net clinical benefits across a wide range of threshold probabilities versus the 7th AJCC stage system in both the training cohort and the validation cohort.

Discussion

No comprehensive and personalized prediction model currently exists to evaluate the prognosis for early ESCC patients with lymph nodes.
Table 2
Univariate and multivariate Cox analyses for screening factors related to overall survival of T1 ESCC patients with LNM

Variable	Univariate analysis	Multivariate analysis	p-value
	HR	95%CI	P
Age			
25-44 years	1.000	0.001	
45-64 years	1.110	0.604-2.038	0.737
65-84 years	1.117	0.611-2.039	0.720
≥85 years	1.879	0.969-3.646	0.062
Race			
White	1.000	0.001	
Black	1.160	0.955-1.409	0.136
Ameri Indian/Alaska Native	1.325	0.547-3.208	0.533
Asian/Pacific Islander	1.013	0.767-1.336	0.929
Sex			
Female	1.000		1.000
Male	1.208	1.008-1.448	0.041
Age			
II	1.185	0.924-1.534	0.120
Grade			
T1a	1.000		1.000
T1b	0.442	0.301-0.648	<0.001
T2N	1.468	1.208-1.748	0.008
N Stage			
N1	1.000		1.000
N2	1.089	0.821-1.444	0.556
N3	1.632	1.279-2.083	<0.001
N4	1.543	1.920-2.589	0.100
M Stage			
M0	1.000		1.000
M1	1.922	1.611-2.294	<0.001
Summary stage			
Localized	1.000		1.000
Regional	0.981	0.741-1.299	0.894
Distant	0.463	0.345-0.621	<0.001
Radiation with surgery			
None	1.000		1.000
Before surgery	0.398	0.262-0.606	<0.001
After surgery	0.427	0.276-0.661	<0.001
Before and after surgery	0.000	0.000	
Surg Prim Site			
None	1.000		1.000
Endoscopic therapy	1.481	0.369-5.945	0.579
Partial esophagectomy	0.205	0.066-0.637	0.006
Total esophagectomy	0.173	0.055-0.537	0.002
Esophagectomy, NOS	0.273	0.166-0.450	<0.001
Radiation recode			
Beam radiation	1.000		1.000
Radiation, NOS	1.127	0.466-2.729	0.790
None/Unknown	2.265	1.905-2.693	<0.001

(continued on next page)
Table 2 (continued)

Variable	Univariate analysis HR (95%CI)	p-value	Multivariate analysis HR (95%CI)	p-value
Chemotherapy				
Yes	1.00		1.00	
None/Unknown	2.786 (2.340–3.317)	<0.001	3.020 (2.432–3.751)	<0.001
CS extension				
100 mm	1.00		1.00	
110–170 mm	0.584 (0.421–0.811)	0.001	1.021 (0.591–1.764)	0.940
210–300 mm	1.127 (0.862–1.474)	0.381	0.866 (0.439–1.710)	0.679
No. of malignant tumors				
1	1.00		1.00	
2	0.762 (0.620–0.935)	<0.001	0.898 (0.723–1.117)	0.335
3	0.734 (0.509–1.059)	0.098	0.832 (0.559–1.239)	0.365
No. of benign tumors				
0	1.00			
1	0.302 (0.042–2.150)	0.232	–	–

LNM: lymph node metastases; NOS: Not specific; HR: hazard ratio.

Table 3

The validation of the nomogram versus the 7th AJCC staging system by C-index, NRI, and IDI

Index	Training cohort	Validation cohort		
	Estimate (95%CI)	P-value	Estimate (95%CI)	P-value
NRI versus AJCC Staging system				
For 1-year OS	0.313 (0.182–0.408)	<0.001	0.364 (0.129–0.526)	<0.001
For 3-year OS	0.483 (0.198–0.776)	<0.001	0.325 (0.017–0.557)	0.040
IDI versus AJCC Staging system				
For 1-year OS	0.132 (0.085–0.184)	<0.001	0.171 (0.078–0.257)	<0.001
For 3-year OS	0.110 (0.038–0.204)	<0.001	0.161 (0.042–0.275)	<0.001
C-index				
Nomogram	0.749 (0.723–0.774)	<0.001	0.751 (0.712–0.790)	<0.001
AJCC Staging system	0.640 (0.522–0.671)	0.638 (0.471–0.805)		

positive despite the unfavorable OS [15]. We developed and validated a nomogram that integrates various variables to predict the risk factors related to 1- and 3-year OS for T1 ESCC patients who had positive lymph nodes. NRI, IDI and ROC curve analyses indicated the nomogram showed possessed favorable discrimination, calibration, and clinical usage.

The nomograms that have been developed for EC patients mainly focus on the whole stage and type. Thus far, there are only five papers for early EC patients, and none of the nomograms targeted early ESCC with lymph node metastases [16-20]. Li et al. have published a study on early EC patients who are nonoperative [17]. In this study, the OS of patients who had undergone chemoradiotherapy (CRT) was initially compared with that of patients who had undergone radiotherapy (RT). In this study, subgroup analysis was introduced to make the comparison more reliable, and the identified prognostic factors to build the nomogram were evaluated. Eight variables were fitted into the model, in which the type of therapy was recognized as the most significant contributor to the prognosis, followed by histology, T stage, race, N stage, age, sex, and site. The discrimination of the nomogram model was poor. The C-index value was 0.595 in the training dataset and 0.587 in the validation dataset, and the AUC values of the 3-year survival rate were 0.642 and 0.642 in the training and validation cohorts, respectively. Moreover, the accuracy and clinical value for the nomogram were not discussed. In the present study, the discrimination and calibration as well as the accuracy and clinical utility of the nomogram were analyzed, and compared with the 7th AJCC staging system by applying C-index, calibration plots, NRI, IDI, and DCA. Our nomogram C-index was 0.750 vs. 0.645 for the 7th AJCC. From the calibration plots, good calibration was observed. As indicated by the positive NRI and IDI, the present nomogram is more accurate in predicting OS than the 7th AJCC system. Moreover, based on DCA, the nomogram built in this study achieved better clinical benefits than the conventional staging system. In the present nomogram, in addition to the pathological features (e.g., summary stage, primary site) which are included in the 7th AJCC evaluated system, the clinical treatments such as radiation, chemotherapy, and surgery, which influence the prognosis significantly, and demographic factors were entered into the nomogram. Overall, the present nomogram can be more comprehensive and personalized to evaluate the prognosis of T1 ESCC patients with lymph node metastases.

For the most significant factor to predict the OS for the nomogram, radiation sequence with surgery was considered for patients who underwent radiation before and/or after surgery/Endoscopic therapy (ET). ET or Surgery followed by Radiotherapy (RT) have been recommended for T1 ESCC patients at risk of lymph node invasion [21]. In this study, patients who underwent radiation after ET or surgery indeed showed prolonged OS than those who had radiation before ET or surgery, in agreement with existing findings [22,23]. However, Zheng wang et al. demonstrated that neoadjuvant therapy with surgery would be the current optimal treatment for thoracic esophageal cancer (EC) patients with the potential risk of metastatic lymph node [24]. Regardless of the sequence with surgery/ET, patients with chemotherapy or radiation therapy exhibited better OS performance than those without such a therapy. In this study, esophagectomy had better performance than endoscopic therapies (e.g., photodynamic therapy, electrocautery, cryosurgery, and laser esophagectomy), which was similar to findings in other studies [25-27]. However, it should be noted that as adverse events, the mortality rate and morbidity rate accompanied with esophagectomy is about 10% and 30%, respectively. The 5-year survival rate after receiving treatment is stable at 20% [28]. For the summary stage, in agreement with the findings of Kim et al. [29], patients with localized ESCC outperformed those with regional and distant ones. Localized patients would have fewer lymph node metastases than the other two types would, which might contribute to this result.

Uninsured status, as a financial factor, was identified as a risk factor for this group of patients. This conclusion is consistent with that of Grant et al. [30] and Saraiya et al. [31], who found that the patients
without insurance experienced unfavorable cancer outcomes. This can be explained by several reasons. First, an uninsured population is less likely to undergo cancer screening than an insured one [32]. Second, an uninsured population is more prone to have poor financial conditions and thus have reduced access to health services [33]. Lastly, an uninsured group tends to have poorer living habits (e.g., smoking, alcohol abuse, and poor nutrition), which are risk factors for ESCC [34]. The different effects of insured and uninsured care on the prognosis of ESCC observed here indicate the need for health care reform.

In this study, surprisingly, T1a patients exhibited worse outcomes than T1b patients. Normally, patients in the T1b stage have worse prognoses than those in the T1a stage [35-38]. However, several studies have reported that the Tn stages have better outcomes than the Tn-1 stage (e.g., T2 over T1 [26,39], T3/4 over T1/T2 [40,41] as well as T4 over T3 [42]), and is primarily associated with lymph node invasion. The prognosis of advanced cancers (Tn) with a few positive nodes may be similar to or better than that of less advanced cancers (Tn-1) with more positive nodes. Moreover, as compared to T1a patients (except for T1a involving the muscularis mucosa), T1b patients with positive lymph nodes are more likely to receive adjuvant therapy after surgery, leading to better clinical results [43]. It is noteworthy that the prognosis of patients cannot be evaluated merely based on the T stage.

There are several limitations of this study. First, this cohort was based on the American population, which may not fit the population of other countries and limit the prediction ability of the nomogram. Furthermore, some demographic factors related to ESCC prognosis (e.g., smoking, drinking and dietary habits) were not considered in this nomogram. Third, this study lacks external validation. For subsequent research, more data regarding valuable prognosis risk characteristics should be included, and an external validation should be conducted to testify the prediction ability of the nomogram.

Conclusion

Eight variables, comprising insurance, T stage, summary stage, primary site, radiation code, chemotherapy, surgery, and radiation se-
Fig. 3. Calibration curves for predicting 1-year and 3-year OS for T1 lymph node-positive ESCC patients in the training cohort (A-B) and in the validation cohort (C-D). The red dots represent the accuracy of the nomogram prediction. The closer the red line to the gray line, the greater is the accuracy of the nomogram.

quency with surgery, were integrated into a nomogram. Among these OS-related factors, the radiation sequence with surgery was identified as the most significant predictive variable, followed by the type of surgery and chemotherapy. For the T stage, patients at T1a stage showed more disappointing performance, based on OS, as compared to patients at T1b stage. The present nomogram with internal validation showed its advantage in predicting 1-year and 3-year OS compared to the 7th AJCC staging system and may provide more optimal performance for the prediction of survival time and the provision of suitable treatment recommendations for patients.

Author contribution

Jia Yu: Conceptualization, Methodology, Software, Validation, Resources, Formal analysis, Data Curation, Writing - Original Draft.
Wenyu Hu: Resources, Validation, Data Curation.
Nan Yao: Resources, Data Curation.
Mengzi Sun: Resources, Data Curation.
Xiaotong Li: Data Curation.
Ling Wang: Data Curation.
Yixue Yang: Data Curation.
Bo Li: Writing - Review & Editing, Supervision.

Funding

There was no funding from the public, commercial, or not-for-profit sectors for the present study.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank Jianjun Zhang and Yutong Sui for assistance with data analysis and comments that improved the manuscript substantially.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.tranon.2021.101127.
Fig. 4. Decision curve analysis (DCA) for the nomogram model and the AJCC staging system in the training cohort (A-B) and validation cohort (C-D) for predicting 1- and 3-year OS. The red solid lines represent the DCA of the nomogram, and the green dashed lines represent the AJCC staging system. The turquoise dashed line assumes that all patients were alive, while the purple dashed line assumes that all patients were dead.

References

[1] F Bray, J Ferlay, I Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394–424, doi:10.3322/cace.21492.

[2] HG Coleman, SH Xie, J. Lugerger, The epidemiology of esophageal adenocarcinoma, Gastroenterology 154 (2018) 390–405, doi:10.1053/j.gastro.

[3] W Huang, B Li, H Gong, et al., Pattern of lymph node metastases and its implication in radiotherapeutic clinical target volume in patients with thoracic esophageal squamous cell carcinoma: a report of 1077 cases. Radiotherapy and oncology, J. Eur. Soc. Therap. Radiol. Oncol. 95 (2010) 229–233, doi:10.1016/j.radonc.2010.01.006.

[4] Y Akutu, K Murakami, M Kano, et al., The concentration of programmed cell death-ligand 1 in the peripheral blood is a useful biomarker for esophageal squamous cell carcinoma, Esophagus: Off. J. Jpn. Esophageal Soc. 15 (2018) 103–108, doi:10.1007/s10388-018-0604-1.

[5] T Aikou, Y Kitagawa, M Kitajima, et al., Sentinel lymph node mapping with GI cancer, Cancer Metastasis Rev. 25 (2006) 269–277, doi:10.1007/s10555-006-8507-3.

[6] JY Cho, The role of endosonography in the staging of gastrointestinal cancers, Clin. Endosc. 48 (2015) 297–301, doi:10.5946/ce.2015.48.4.297.

[7] SG Wu, JY Sun, LC Yang, et al., Prognosis of patients with esophageal squamous cell carcinoma after esophagectomy using the log odds of positive lymph nodes, Oncotarget 6 (2013) 36911–36922, doi:10.18632/oncotarget.3366.

[8] S Blandin, PA Crosbie, HK Balata, et al., Progress and prospects of early detection in lung cancer, Open Biol. 33 (2017) 121–128, doi:10.1098/rsob.170070.

[9] AB Joyner, CD Runowicz, Ovarian cancer screening and early detection, Womens Health 5 (2009) 693–699, doi:10.2217/whe.09.65.

[10] S Malik, G Sharma, MR Sanaka, et al., Role of endoscopic therapy in early esophageal cancer, World J. Gastroenterol. 24 (2018) 3965–3973, doi:10.3748/wjg.v24.i35.3965.

[11] NK Altorki, Three-field lymphadenectomy for esophageal cancer, Chest Surg. Clin. N. Am. 10 (2000) 553–560, doi:10.1016/j.jsps.2020.05.057.

[12] VP Balachandran, M Gonen, JJ Smith, et al., Nomograms in oncology: more than meets the eye, Lancet Oncol. 16 (2015) 173–180, doi:10.1016/s1470-2045(14)71166-7.

[13] GS Collins, How can I validate a nomogram? Show me the model, Ann. Oncol. : Off. J. Eur. Soc. Med. Oncol. 26 (2015) 1034–1035, doi:10.1093/annonc/mdv069.

[14] SY Park, Nomogram: An analogue tool to deliver digital knowledge, J. Thorac. Cardiovasc. Surg. 155 (2018) 1793, doi:10.1016/j.jtcvs.2017.12.107.

[15] DC Codipilly, Y Qin, SM Dawson, et al., Screening for esophageal squamous cell carcinoma: recent advances, Gastrointest. Endosc. 88 (2018) 413–426, doi:10.1016/j.gie.2018.04.2352.

[16] XF Duan, P Tang, XB Zhang, et al., The prevalence of lymph node metastasis for pathological T1 esophageal cancer: a retrospective study of 143 cases, Surg. Oncol. 27 (2018) 1–6, doi:10.1016/j.suronc.2017.11.002.

[17] J Li, Y Jia, Y Cheng, et al., Chemoradiotherapy vs radiotherapy for nonoperative
