Almost order-weakly compact operators on Banach lattices

Mina Matin · Kazem Haghnejad Azar · Ali Ebadi

Received: date / Accepted: date

Abstract A continuous operator T between two Banach lattices E and F is called almost order-weakly compact, whenever for each almost order bounded subset A of E, $T(A)$ is a relatively weakly compact subset of F. In Theorem 4 we show that the positive operator T from E into Dedekind complete F is almost order-weakly compact if and only if $T(x_n) \rightarrow \overline{0}$ in F for each disjoint almost order bounded sequence $\{x_n\}$ in E. In this manuscript, we study some properties of this class of operators and its relationships with others known operators.

Keywords almost order bounded · weakly compact · order weakly compact · almost order-weakly compact.

Mathematics Subject Classification (2010) 47B60 · 46A40

1 Introduction

Since order weakly compact operators play important role in positive operators, our aim in this manuscript is to introduce and study a new class of operators as almost order-weakly compact operators and we establish some

Mina Matin
Department of Mathematics and Applications, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
E-mail: minamatin1368@yahoo.com

Kazem haghnejad Azar
Department of Mathematics and Applications, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
E-mail: haghnejad@uma.ac.ir

Ali Ebadi
Department of Mathematics and Applications, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
E-mail: ali1361ebadi@gmail.com
of its relationships with others known operators. Under some conditions, we show that the adjoint of any almost order-weakly compact operator is so. Every compact and weakly compact operators are almost order-weakly compact operator, but the converse in general not holds.

To state our results, we need to fix some notations and recall some definitions. Let E be a Banach lattice. A subset A is said to be almost order bounded if for any ϵ there exists $u \in E^+$ such that $A \subseteq [-u, u] + \epsilon B_E$ (B_E is the closed unit ball of E). One should observe the following useful fact, which can be easily verified using Riesz decomposition Theorem, that $A \subseteq [-u, u] + \epsilon B_E$ iff \[\sup_{x \in A} \|([x] - u)^+\| = \sup_{x \in A} \|x - |x| \land u\| \leq \epsilon. \]

By Theorems 4.9 and 3.44 of [1], each almost order bounded subset in order continuous Banach lattice is relatively weakly compact. $A \subseteq L_1(\mu)$ is relatively weakly compact iff it is almost order bounded (see [2]). Recall that a vector $e > 0$ in vector lattice E is an order unit or a strong unit (resp. weak unit) when the ideal I_e (resp. band B_e) is equal to E; equivalently, for every $x \geq 0$ there exists $n \in \mathbb{N}$ such that $x \leq ne$ (resp. $x \land ne \uparrow x$ for every $x \in E^+$). Suppose that Banach lattice E is an order continuous norm with a weak unit e. It is known that E can be represented as a norm and order dense ideal in $L_1(\mu)$ for some finite measure μ (see [5]). A continuous operator T from a Banach lattice E to a Banach space X is said to be

- **order weakly compact** whenever $T[0, x]$ is a relatively weakly compact subset of X for each $x \in E^+$.
- **M-weakly compact** if $T(x_n) \rightharpoonup 0$ holds for every norm bounded disjoint sequence $\{x_n\}$ of E.
- **b-weakly compact** whenever T carries each b-order bounded subset of E into a relatively weakly compact subset of X.

A continuous operator T from a Banach space X to a Banach lattice E is said to be

- **L-weakly compact** whenever $y_n \rightharpoonup 0$ for every disjoint sequence $\{y_n\}$ in the solid hull of $T(B_X)$.
- **semicom pact** whenever for each $\epsilon \geq 0$ there exists some $u \in E^+$ satisfying \[\|([T|x| - u]^+)\| \leq \epsilon \] for all $x \in B_X$.

An operator $T : E \to F$ is regular if $T = T_1 - T_2$ where $T_1, T_2 : E \to F$ are positive operators. We denote by $L(E, F) (L'(E, F))$ the space of all operators (regular operators) from E into F.

An operator $T : E \to F$ between two vector lattices is said to be lattice homomorphism (resp. preserve disjointness) whenever $T(x \lor y) = T(x) \lor T(y)$ (resp. $x \land y$ in E implies $T(x) \land T(y)$ in F).

Recall that $L_0(E, F)$ is the vector space of all order bounded operators from E to F.

A Banach space X is said to be Grothendieck space whenever $weak^*$ and weak convergence of sequences in X' (norm dual of X) coincide.

A Banach lattice E is said to be AM-space (resp. AL-space), if for $x, y \in E$ with $x \land y = 0$, we have $\|x \lor y\| = \max\{\|x\|, \|y\|\}$ (resp. $\|x + y\| = \|x\| + \|y\|$).
A Banach lattice E is said to be KB-space whenever every increasing norm bounded sequence of E^+ is norm convergent.

Let E be a vector lattice and $x \in E$. A net $\{x_\alpha\} \subseteq E$ is said to be unbounded order convergent to x if $|x_\alpha - x| \wedge u \xrightarrow{uo} 0$ for all $u \in E^+$. We denote this convergence by $x_\alpha \xrightarrow{uo} x$ and write that $\{x_\alpha\}_\alpha$ is uo-convergent to x.

2 almost order bounded operators

Let $T : E \to F$ be a continuous operator between two Banach lattices. T is said to be almost order-weakly compact operator whenever T maps the almost order bounded subset A of E into an almost order bounded subset of F. The vector space of all almost order bounded operators from E to F will be denoted $L_{aob}(E, F)$.

It is obvious that if $T : E \to F$ is a semicompact operator, then it is almost order bounded. If E has an order unit and $T : E \to F$ is order bounded, then it is an almost order bounded operator and if F has an order unit and T is an almost order bounded operator, then it is order bounded.

Here is an example show that the class of order bounded operators differ from the class of almost order bounded.

Example 1 The operator $T : L_1[0, 1] \to c_0\mu$ defined by

$$T(f) = \left(\int_0^1 f(x)\sin x dx, \int_0^1 f(x)\sin 2x dx, \ldots \right)$$

is not order bounded (see page 67 of [1]). Let $A \subseteq L_1[0, 1]$ be an almost order bounded. Hence A is a relatively weakly compact subset of E. Because T is continuous, so $T(A)$ also is relatively weakly compact. Since $c_0\mu$ is an AL-space, therefore by Theorem 4.27 of [1], it is lattice isometric by $L_1(\mu)$. Hence $T(A)$ is an almost order bounded subset of $c_0\mu$. So T is an almost order bounded operator.

Here is an example that the operator T is almost order bounded while whose modulus does not exist.

Example 2 Consider the continuous function $g : [0, 1] \to [0, 1]$ defined by $g(x) = x$ if $0 \leq x \leq \frac{1}{2}$ and $g(x) = \frac{1}{2}$ if $\frac{1}{2} < x \leq 1$. Now define the operator $T : C[0, 1] \to C[0, 1]$ by $Tf(x) = f(g(x)) - f(\frac{1}{2})$. T is a regular operator and therefore it is an order bounded operator. Because $C[0, 1]$ is an AM-space with unit, so T is an almost order bounded. Note that the modulus of T does not exist (see Exercise 9 of page 22 of [1]).

We are looking for situations where if T is an almost order bounded, then $|T|$ exist and it is an almost order bounded operator.
Proposition 1 Let \(T : E \to F \) be an almost order bounded operator between two Banach lattices that \(F \) is Dedekind complete and \(E, F \) have an order unit, then the modulus of \(T \) exists and it is almost order bounded.

Proof Let \(T \) be almost order bounded. Since \(F \) has an order unit, therefore \(T \) is an order bounded operator. Because \(F \) is Dedekind complete, so by Theorem 1.18 of [1], \(|T| \) exist and it is an order bounded. Since \(E \) has an order unit, hence \(|T| \) is an almost order bounded.

Proposition 2 If \(T : E \to F \) is an onto lattice homomorphism, then \(T \) is almost order bounded.

Proof Let \(T : E \to F \) be an almost order bounded and \(A \subseteq E \) be an almost order bounded set. It means that for each \(\varepsilon > 0 \) there exists \(u \in E^+ \) that \(\sup_{x \in A} \| (|x| - u)^+ \| \leq \varepsilon \). Since \(T \) is a positive operator therefore it is a continuous operator. Hence we have for each \(\varepsilon > 0 \) there exists \(u \in E^+ \) that \(\sup_{x \in A} \| T(|x| - u)^+ \| \leq \varepsilon \). Since \(T \) is a lattice homomorphism, therefore \(\sup_{x \in A} \| T(|x| - u)^+ \| \leq \varepsilon \). Because \(T \) is onto, so the proof is complete.

Remark 1 If \(T : E \to F \) is onto lattice homomorphism and \(F \) is Archimedean, then \(|T| \) exists and it is an almost order bounded.

Proof Since \(T \) is lattice homomorphism, therefore it is an order bounded and disjointness preserving. Hence by Theorem 2.40 of [1], \(|T| \) exists. It is obvious that \(|T| \) is a lattice homomorphism. By Proposition 2, \(|T| \) is an almost order bounded.

3 almost order-weakly compact operators

Let \(T : E \to F \) be a continuous operator between two Banach lattices. \(T \) is said to be almost order-weakly compact operator (for short, \(ao-wc \) operator) whenever \(T \) maps the almost order bounded subset \(A \) of \(E \) into a relatively weakly compact subset of \(F \).

By Theorem 3.40 of [1], \(T \) is \(ao-wc \) operator iff for every almost order bounded sequence \(\{x_n\} \) of \(E \) the sequence \(\{T(x_n)\} \) has a weak convergent subsequence in \(F \).

The collection of all \(ao-wc \) operators between two Banach lattices \(E \) and \(F \) will be show by \(K_{ao-wc}(E, F) \).

It is obvious that each compact and weakly compact operator is \(ao-wc \) and each \(ao-wc \) operator is an order weakly compact operator.

By Theorem 5.23 and 5.27 of [1], we have the following result.

Theorem 1 1. Each continuous operator \(T \) from a Grothendieck Banach lattice \(E \) into a Banach lattice \(F \) is an \(ao-wc \) operator.
2. Let \(T \) be a positive operator from a Banach lattice \(E \) into a Banach lattice \(F \) and \(E^* \) has order continuous norm. If \(F \) is a KB-space, then \(T \) is \(ao-wc \).
In the following we have some examples of ao-wc operators.

Example 3 1. Since $C[0,1]$ is a Grothendieck space, therefore by Theorem 1, the continuous operator $T : C[0,1] \to c_0$, given by

$$T(f) = \left(\int_0^1 f(x) \sin xdx, \int_0^1 f(x) \sin 2xdx, \ldots \right),$$

is an ao-wc operator.

2. Since c' has order continuous norm and \mathbb{R} is a KB-space, therefore by Theorem [1](2), the functional $f : c \to \mathbb{R}$ defined by

$$f(x_1, x_2, \ldots) = \lim_{n \to \infty} x_n$$

is an ao-wc operator.

Proposition 3 Let E, F and G be three Banach lattices, $T : E \to F$ and $S : F \to G$ be two ao-wc operators. By one of the following conditions, $S \circ T$ is an ao-wc operator.

1. F is an AL-space.
2. F has order continuous norm with a weak unit.

Proof Let $A \subseteq E$ be almost order bounded. By assumption, $T(A)$ is relatively weakly compact subset of F. If F is an AL-space, then by Theorem 4.27 of [1], F is lattice isometric to some concrete $L_1(\mu)$ and if F has order continuous norm with a weak unit, then F is norm and order dense ideal in $L_1(\mu)$. Therefore $T(A)$ is an almost order bounded subset of F. So by assumption, $S(T(A))$ is relatively weakly compact subset of G. Hence $S \circ T$ is an ao-wc operator.

As following example the adjoint of ao-wc operator in general is not ao-wc operator.

Example 4 Let $A \subseteq \ell^1$ be an almost order bounded set. Since ℓ^1 has order continuous norm, therefore A is relatively weakly compact. Thus the identity operator $I : \ell^1 \to \ell^1$ is an ao-wc operator. Since the identity operator $I : \ell^\infty \to \ell^\infty$ is not order weakly compact, therefore it is not ao-wc.

In the following theorem, under some conditions, we show that the adjoint of ao-wc operator is so.

Theorem 2 Let $T : E \to F$ be an ao-wc operator between two Banach lattices. If any of the following conditions are met, then T' is ao-wc.

1. E has an order unit.
2. E' is a KB-space and F' has an order unit.

Proof 1. Let E has an order unit and $T : E \to F$ be ao-wc. If $A \subseteq E$ is norm bounded, then A is an order bounded and therefore almost order bounded. Hence by assumption, $T(A)$ is a relatively weakly compact subset of F. It means that T is a weakly compact operator. Therefore by Theorem 5.5 of [4], T' is weakly compact and hence it is an ao-wc operator.
2. Let $T : E \to F$ be an ao wc operator. Therefore T is an order weakly compact operator. Since E' is a KB-space, by Theorem 3.3 of [2], T' also is an order weakly compact operator. Since F' has an order unit, it is clear that T' is ao wc.

We know that each compact and weakly compact operator is an ao wc operator, but by following example the converse in general not holds.

Example 5 The identity operator $I : \ell^1 \to \ell^1$ is an ao wc operator but is not compact or weakly compact operator.

Corollary 1 Under conditions of Theorem 2, an operator $T : E \to F$ is weakly compact iff it is ao wc.

Proof Let E has an order unit and operator $T : E \to F$ be ao wc, then it is a weakly compact operator.

Let E' be a KB-space, F' has an order unit and operator $T : E \to F$ is ao wc. By Theorem 2, T' is ao wc. Because F' has an order unit, T' is weakly compact. By Theorem 5.5 of [3], T is weakly compact.

Remark 2 Let E be a Banach lattice with an order unit. Then a subset A of E is norm bounded iff is order bounded iff it is almost order bounded. Therefore an operator $T : E \to F$ is weakly compact if and only if is order weakly compact if and only if is ao wc.

Remark 3 Under conditions of Theorem 2, if $T : E \to F$ is ao wc, then by Corollary 1 and Theorem 5.44 of [1], there exist a reflexive Banach lattice G, lattice homomorphism $Q : E \to G$ and positive operator $S : G \to F$ that $T = S \circ Q$.

Note that the identity operator $I : \ell^\infty \to \ell^\infty$ is not ao wc, however its adjoint $I : (\ell^\infty)' \to (\ell^\infty)'$ is ao wc.

Let $T : E \to F$ be an operator between two Banach lattices. If $T' : F' \to E'$ is ao wc and F' has an order unit, then T' is weakly compact and therefore T is weakly compact. Hence T is ao wc. If T is M-weakly compact or L-weakly compact, then by Theorem 5.61 of [1], T is weakly compact and therefore T is an ao wc operator. Thus we have the following result.

Theorem 3 Let $T : E \to F$ be an operator between two Banach lattices. By one of the following conditions T is an ao wc operator.

1. T is M-weakly compact,
2. T is L-weakly compact,

Moreover if F has order continuous norm and $T : E \to F$ is ao wc.

If $T : E \to F$ is semicompact operator, or dominated by a semicompact operator, then T is an ao wc. Let A be an almost order bounded subset of E. Then A is norm bounded. Therefore if T is a semicompact operator, $T(A)$ is an almost order bounded in F. Since F has order continuous norm, $T(A)$ is relatively weakly compact subset of F. Hence T is an ao wc operator. If T is dominated by a semicompact operator, then by Theorem 5.72 of [1], T is semicompact operator and so is an ao wc operator.
Remark 4 1. An ao-wc operator need not be an M-weakly or L-weakly compact operator. For instance, the identity operator $I : L_1[0,1] \to L_1[0,1]$ is ao-wc, but is not M-weakly or L-weakly compact operator.

2. Note that if F has not order continuous norm, then each semicompact operator $T : E \to F$ is not necessarily ao-wc. For example, the identity operator $I : \ell^\infty \to \ell^\infty$ is semicompact and ℓ^∞ has not order continuous norm. Thus I is not ao-wc.

Let E, F be two normed vector lattices. Recall from [8], a continuous operator $T : E \to F$ is said to be σ-uom-continuous, if for each norm bounded uo-null sequence $\{x_n\} \subseteq E$ implies $T(x_n) \xrightarrow{\|\|} 0$.

Theorem 4 Let E and F be two Banach lattices that F is Dedekind complete. The positive operator $T : E \to F$ is ao-wc iff for each disjoint almost order bounded sequence $\{x_n\}$ in E implies $T(x_n) \xrightarrow{\|[\|} 0$ in F.

Proof Let the operator $T : E \to F$ be ao-wc. This means that for every ϵ there exists $u \in E^+$ such that $T([-u, u] + \epsilon B_E)$ is relatively weakly compact.

Let I_z be the ideal generated by $z \in [-u, u] + \epsilon B_E$ in E. The operator $T|I_z : I_z \to F$ is weakly compact. Since I_z is an AM-space with order unit, therefore $T|I_z : I_z \to F$ is M-weakly and hence by Remark 2.8 of [8], is σ-uom-continuous. It is clear that the extension of operator $T|I_z, T : E \to F$ is σ-uom-continuous. If $\{x_n\} \subseteq E$ is an almost order bounded and disjoint, hence it is norm bounded and uo-null. So we have $T(x_n) \xrightarrow{\|\|} 0$. Conversely, let $A \subseteq E$ be an almost order bounded set. Then for each ϵ there exists $u \in E^+$ such that $A \subseteq [-u, u] + \epsilon B_E$. Let I_u be the ideal generated by u in E and $\{x_n\} \subseteq A$ be a disjoint sequence. It is clear that $\{x_n\}$ is norm bounded. By assumption, we have $T(x_n) \xrightarrow{\|\|} 0$ in F. Therefore $T : I_u \oplus E \to F$ is M-weakly compact, and so by Theorem 3 $T : I_u \oplus E \to F$ is an ao-wc operator. Thus $T : E \to F$ is ao-wc.

Corollary 2 1. Let $T : E \to F$, $S : F \to G$ be two ao-wc operators where F, G are Dedekind complete and $\{x_n\} \subseteq E$ is a disjoint almost order bounded sequence. By Theorem 4 we have $T(x_n) \xrightarrow{\|\|} 0$. Since S is a continuous operator, $S(T(x_n)) \xrightarrow{\|\|} 0$. Therefore $S \circ T$ is ao-wc operator.

2. By Theorem 5.60 of [11], obviously that if $T : E \to F$ is an ao-wc operator, then for each $\epsilon > 0$ there exists some $u \in E^+$ such that $\|T((|x| - u)^+))\| < \epsilon$ holds for all $x \in A$ that A is an almost order bounded subset of E.

Recall that a Banach lattice E is said to have the dual positive Schur property if every positive w^*-null sequence in E^* is norm null.

Theorem 5 The following statements are true.

1. Let E be a Banach lattice Dedekind complete. E has order continuous norm iff each positive operator T from E into each Banach lattice F is an ao-wc operator.
2. Let E be a Banach lattice Dedekind complete. E has order continuous norm iff each almost order bounded disjoint sequence $\{x_n\} \subseteq E$ is norm null.

3. If E has the property (b) and each operator $T^2 : E \to E$ is ao-uc, then E has order continuous norm.

4. Let $T : E \to F$ be a continuous operator between two Banach lattices E, F that F is Dedekind complete. If $|T|$ exists and it is ao-uc, then T is also ao-uc.

5. If E has the dual positive Schur property, F has order continuous norm and Dedekind complete, then adjoint of each positive operator $T : E \to F$ is an ao-uc operator.

Proof

1. Let E has order continuous norm and $\{x_n\}$ be an almost order bounded disjoint sequence in E. Therefore $x_n \xrightarrow{uo} 0$ in E. By Proposition 3.7 of [7], $x_n \xrightarrow{wc} 0$. By continuity of T, it follows that $Tx_n \xrightarrow{wc} 0$ in F.

Conversely, let E has not order continuous norm. By Theorem 2.7 of [3], there exists an operator T from E into ℓ^∞ such that T is not order weakly compact and therefore is not ao-uc.

2. Let E has order continuous norm, therefore the identity operator $I : E \to E$ is ao-uc. Then $x_n = Ix_n \xrightarrow{wc} 0$ where $\{x_n\} \subseteq E$ is almost order bounded disjoint sequence.

Conversely, let $\{x_n\}$ be an order bounded disjoint sequence in E. Therefore $\{x_n\}$ is almost order bounded disjoint in E. Hence by assumption $x_n = Ix_n \xrightarrow{wc} 0$. By Theorem 4.14 of [4], E has order continuous norm.

3. By contradiction, assume that E has not order continuous norm, it follows from the proof of Theorem 2 of [11], that E contains a closed order copy of c_0 and there exists a positive projection $P : E \to c_0$. Let $i : c_0 \to E$ be the canonical injection. Obviously that $T = i \circ P : E \to E$ is not b-weakly compact. Since E has property (b), therefore T is not order weakly compact, and so T^2 is not ao-uc.

4. Let $0 \leq T \leq S$ and S be an ao-uc operator. If $\{x_n\}$ is an almost order bounded and disjoint sequence in E, then by Theorem [3] $S(x_n) \xrightarrow{wc} 0$. Therefore $T(x_n) \xrightarrow{wc} 0$. We have $-|T| \leq T \leq |T|$ and so $0 \leq T + |T| \leq 2|T|$. It follows that T is an ao-uc operator whenever $|T|$ is ao-uc.

5. Let $\{f_n\}$ be an almost order bounded disjoint sequence in F'. Then $f_n \xrightarrow{uo} 0$ in F'. Without loss of generality, assume $0 \leq f_n$. Note that $0 \leq T'f_n$. Now since F has order continuous norm, by Theorem 2.1 from [6], $f_n \xrightarrow{wc} 0$ in F'. Since T' is w^*-w^* continuous, hence $T'f_n \xrightarrow{wc} 0$ in F'. Since E has the dual positive Schur property, hence $T'f_n \xrightarrow{wc} 0$ in E'.

Proposition 4 If E has an order unit, then $T : E \to F$ is σ-uon-continuous if and only if it is an ao-uc operator.

Proof Let $T : E \to F$ be an ao-uc operator, then T is order weakly compact. Let $\{x_n\} \subseteq E$ be a norm bounded disjoint sequence. Since E has an order unit,
then \(\{x_n\} \) is order bounded disjoint sequence. By assumption and Theorem 5.57 of [1], \(T(x_n) \xrightarrow{\|\cdot\|} 0 \). So \(T \) is \(M \)-weakly compact and therefore by remark 2.8 of [8], \(T \) is \(\sigma \)-uon-continuous.

In the following, we establish some relationships between the class of \(ao \)-wc operators and the class of semicompact operators. By Remark 2, we know that the class of \(ao \)-wc operators different with the class of semicompact operators, but as following we see some relations.

Theorem 6 Let \(T : E \to F \) be an \(ao \)-wc operator between two Banach lattices. Then \(T \) is semicompact operator.

Proof Let \(T : E \to F \) be \(ao \)-wc. Let \(A \) be an almost order bounded subset of \(E \). Without loss of generality we assume that for each \(\epsilon \) there exists \(u \in E^+ \) such that \(A = [-u,u] + \epsilon B_E \). Let \(p(x) = \|x\| \). Then \(\lim p(Tx_n) = 0 \) holds for each disjoint sequence \(\{x_n\} \) in \(A \). By Theorem 4.36 of [1], there exists some \(v \in E^+ \) satisfying \(\|T(|x| - v)^+\| \leq \epsilon \) for all \(x \in A \). Put \(w = Tv \in F^+ \), and note that

\[
\begin{align*}
(|Tx| - w)^+ &= \\
(|Tx| - Tv)^+ &\leq \\
(T|x| - Tv)^+ &= \\
(T(|x| - v))^+ &\leq \\
T((|x| - v)^+).
\end{align*}
\]

Therefore \(T \) is a semicompact operator.

By Theorems 3 and 6, we have the following result.

Corollary 3 1. Each operator \(T : E \to F \) that it is \(ao \)-wc is an almost order bounded operator.

2. Let \(F \) be a Banach lattice with order continuous norm. Then \(T : E \to F \) is \(ao \)-wc if and only if it is a semicompact operator.

If \(T \) is \(ao \)-wc, in general \(|T| \) is not exist, see the following example.

Example 6 The operator \(T : L_1[0,1] \to c_0 \) defined by

\[
T(f) = \left(\int_0^1 f(x) \sin x dx, \int_0^1 f(x) \sin 2x dx, \cdots \right),
\]

is an \(ao \)-wc operator. Note that by Exercise 10 of page 289 of [1], its modulus does not exist.

In the following theorem, under some conditions, we show that \(|T| \) exist and is \(ao \)-wc whenever \(T \) is \(ao \)-wc.

Recall that a Banach lattice \(E \) is said to have the property \((P) \) if there exists a positive contractive projection \(P : E'' \to E \) where \(E \) is identified with a sublattice of its topological bidual \(E'' \).
Theorem 7 Let $T : E \to F$ be an ao-wc operator. By one of the following conditions, the modulus of T exists and it is an ao-wc operator.

1. E is an AL-space and F has the property (P).
2. E and F have order unit.
3. F is Archimedean Dedekind complete and T is an order bounded preserves disjointness.

Proof 1. By Theorem 1.7 of [10], we have $L^r(E, F) = L(E, F)$. Therefore $|T|$ exists. Since E has order continuous norm, by Theorem 5, $|T| : E \to F$ is an ao-wc operator.

2. Since E has an order unit, T is a weakly compact operator. Since F has an order unit, therefore by Theorem 2.3 of [9], the modulus of T exists and it is a weakly compact operator. It is obvious that $|T|$ is an ao-wc operator.

3. By Theorem 2.40 of [11], $|T|$ exists and for all x, we have $|T|(x) = |T|(x)| = |T(x)|$. If $x_n \subseteq E$ is an almost order bounded disjoint sequence, then by assumption $T(x_n) \rightarrow 0$. For each n, we have $|T|(x_n) = |T(x_n)| = |T(x_n)| \rightarrow 0$ in F. The inequality $||(T(x_n))|| \leq ||T||x_n||$, implies that $|T|(x_n) \rightarrow 0$.

Hence $|T|$ is an ao-wc operator.

Theorem 8 Let E and F have order unit with F Dedekind complete. Then $K_{ao-wc}(E, F) \cap L_b(E, F)$ is a band in $L_b(E, F)$.

Proof It is obvious that if $T, S \in K_{ao-wc}(E, F) \cap L_b(E, F)$ and $\alpha \in \mathbb{R}$, then $T + \alpha S \in K_{ao-wc}(E, F) \cap L_b(E, F)$.

Let $|S| \leq |T|$ where $T \in K_{ao-wc}(E, F) \cap L_b(E, F)$, $S \in L_b(E, F)$ and $\{x_n\} \subseteq E$ be almost order bounded disjoint sequence. Without loss of generality, assume that $x_n \geq 0$ for all n. By Theorem 7 $|T|(x_n) \rightarrow 0$. The inequalities $|S(x_n)| \leq |S|(x_n) \leq |T|(x_n)$ implies that $S(x_n) \rightarrow 0$. Therefore $S \in K_{ao-wc}(E, F) \cap L_b(E, F)$, and so $K_{ao-wc}(E, F) \cap L_b(E, F)$ is an ideal of $L_b(E, F)$.

Now let $0 \leq T_\alpha \vdash T$ in $L_b(E, F)$ with $\{T_\alpha\} \subseteq K_{ao-wc}(E, F) \cap L_b(E, F)$. Since T is positive, therefore T is order bounded and since E has an order unit, then by Example 8 T is ao-wc. Hence $T \in K_{ao-wc}(E, F) \cap L_b(E, F)$.

References

1. C.D.Aliprantis and O.Burkinshaw. Positive Operators, Springer, Berlin (2006).Zbl 1098.47001, MR2262133.
2. B. Aqzzouz, A. Elbour and J. Hmichane. The duality problem for the class of b-compact operators. Positivity. (4) 13, 683–692 (2009). Zbl 1191.47024, MR2538515.
3. B. Aqzzouz, A. Elbour and J. Hmichane, kenitra. Some results on order weakly compact operators. Mathematica Bohemica, Vol. 134 (2009), No. 4, 359–367.
4. J.B. Conway. A course in functional analysis, 2nd edition, Springer-Verlag, New York, 1990.
5. Y. Deng, M. O’Brien and V.G. Troitsky. Unbounded norm convergence in Banach lattices, Positivity. 21, 963–974 (2017). Zbl 06816280, MR3688941.
6. N. Gao. Unbounded order convergence in dual spaces, J. Math. Anal. Appl. 419, 347–354 (2014). Zbl 1316.46019, MR3217153.
7. N. Gao and F. Xanthos. Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl. 415, 931–947 (2014). Zbl 1351.60053, MR3178299.
8. K. Haghnejad Azar, M. Matin and R. Alavizadeh. Unbounded order-norm continuous and unbounded norm continuous operators. Filomat 35:13, 4417–4426 (2021).
9. K.D. Schmidt. On the modulus of weakly compact operators and strongly additive vector measures. Proceeding of the American mathematical. Volume 102, Number 4, April 1988.
10. H.H. Schaefer. Banach Lattices and Positive Operators. Springer, Berlin, 1974.
11. W. Wnuk. Some characterizations of Banach lattices with the Schur property, Congress on Functional Analysis (Madrid, 1988). Rev. Mat. Univ. Complut. Madrid 2(suppl.), 217–224 (1989). Zbl 0717.46018.