Solvent-Induced Degradation of Electrochemically Exfoliated Vanadium Selenide Visualized by Electron Microscopy

Sarah Friedensen,† Parisa Yasini,† Rachael Keneipp, Alice Castan, and Marija Drndić*

1. INTRODUCTION
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) \(\text{VX}_2 \) \((X = S, \text{Se})\) and their heterostructures have been suggested to rich and unique electronic properties including confinement-induced charge-ordered states, superconductivity, ferromagnetism, and Curie temperatures \(T_C \) considerably above room temperature,\(^1\) making them extremely promising for room-temperature quantum and spintronic applications. Developing these applications requires the structural characterization of 2D materials and investigation of two main aspects of these materials: their properties under dimensional reduction from bulk to 2D, 2D to one-dimensional (1D), and the emergent phenomena induced by stacking these materials in multilayers. While in recent years the field of quantum devices has progressed from exploratory work to implementation, the cryogenic temperatures required for operation may limit practical applications. Through clever preparation techniques, the realization of novel spin textures and dynamics in materials such as \(\text{VX}_2 \) may be possible, which motivates investigations into new preparation techniques and methods of enhancing environmental stability.

Bulk vanadium selenide \((\text{VSe}_2) \) has primarily been known for its unique three-dimensional (3D) charge density wave (CDW) transition at approximately 110 K due to 3D Fermi surface "nesting," with the exact transition temperature depending on material thickness.\(^7\)–\(^\text{13}\) Recently, however, investigation of its electronic and magnetic properties has begun to gain attention, which has led to both controversy and practical challenges. Some theoretical studies have shown that \(\text{VSe}_2 \) exhibits ferromagnetic behavior in the few- to monolayer limit, with a predicted Curie temperature of 472 K.\(^3\) In addition, recent experimental studies have shown the emergence of ferromagnetic ordering stable above room temperature.\(^2\) However, the existence of intrinsic ferromagnetism in \(\text{VSe}_2 \) has been called into question by recent experimental studies that report no ferromagnetic signal from \(\text{VSe}_2 \) monolayer film at temperatures down to 10 K using X-ray magnetic circular dichroism (XMCD) experiments.\(^14\)\(^,\)\(^15\) Using the same technique, another study showed the absence of a long-range magnetic order at temperatures down to 2 K and magnetic fields up to a 7 T in \(\text{VSe}_2 \) monolayers.\(^16\)
In addition to the above-mentioned debate, obtaining robust, large-area monolayer flakes of VSe₂ present some difficulties. Mechanical exfoliation down to monolayers is challenging possibly due to relatively strong attractive forces between the monolayer and the polymer or the tape used for peeling. In addition, ultrathin VSe₂ flakes are extremely unstable in air, due to the oxidation of Se vacancies. Several avenues have been explored in efforts to attain monolayer VSe₂, including molecular beam epitaxial (MBE) growth, mechanical exfoliation from bulk crystals, chemical vapor deposition (CVD) growth, colloidal synthesis, liquid-phase exfoliation, and electrochemical exfoliation. In addition, after successful isolation of ultrathin layers of materials, aging and degradation are important aspects that need to be considered for further practical applications and device performance. For example, aging of 2D transition-metal dichalcogenides over several months showed changes in morphology and severe quenching of the direct gap photoluminescence, which could be prevented by encapsulation of the monolayer sheet by an ∼10 nm thick polymer.

Recently, preparation of ultrathin VSe₂ has been reported using electrochemical exfoliation and surface passivation with 1H,1H,2H,2H-perfluorodecanethiol (FDT, C₁₂H₂₅F₁₂S), This study supported the existence of a ferromagnetic response in room-temperature VSe₂ and demonstrated that passivation with FDT protected against oxidation. In this paper, we conduct a detailed study of ultrathin 1T-phase VSe₂ flakes obtained via this electrochemical exfoliation technique. We further investigate and expand upon the previous exfoliation protocol and study the properties of the resulting flakes. In this study, we highlight the development and effects of holes and other defects developed during the exfoliation process, the air stability of the as-prepared VSe₂ flakes, and the concentration-dependent effect of chemical passivation with dilute FDT using atomic and magnetic force microscopy (AFM and MFM).

Additionally, we demonstrate the suitability of VSe₂ ultrathin flakes for TEM nanosculpting and take the solvent-mediated decomposition of VSe₂ in propylene carbonate (PC) to its logical extreme and identify the decomposition products.

2. METHODS

High-purity bulk VSe₂ was purchased from 2D semiconductors and stored under vacuum until ready for use. Following the procedure established by Yu et al., we prepared few-layer to monolayer samples of VSe₂ via electrochemical exfoliation. The electrolyte solution was composed of 5 mM tetrapropylammonium chloride (TPAC, Sigma-Aldrich, 98%) dissolved in propylene carbonate (PC, Sigma-Aldrich, 99.7%). The VSe₂ cathode was held by a bent strip of titanium foil (Figure 1a), and platinum wire served as the anode. The reaction took place in a glass cuvette. To drive tetrapropylammonium cation (TPA⁺) intercalation and exfoliation, voltages between 2 and 2.5 V were applied, with exfoliation of the flakes selected for study occurring at 2.5 V for 30 min. The expanded VSe₂ crystal was removed to a fresh solution of PC after turning completely black and visibly expanding (Figure 1a). After manually shaking the resultant solution until it appeared well dispersed and then sonicating the black suspension for 1–2 min (Figure 1b, top), the solution was transferred to an argon glovebox and immediately drop-cast.

Piranha-cleaned silicon wafer fragments coated with 300 nm of thermal silicon oxide (Figure 1c) and fresh holey carbon grids were used as substrates for the exfoliated flakes for TEM nanosculpting and MFM measurements and TEM experiments, respectively. These samples were then immediately transferred to the vacuum antechamber of the glovebox attached to an Edwards RV12F rotary-vane pump to dry overnight (for the quick drying experiment—see SI Figure S2—an Edwards nXDS 6i scroll pump was used instead), except in the case of the grid used for cryogenic TEM. After drying, bare VSe₂ grids were transported to a JEOL F200 TEM under argon and quickly loaded into the TEM for atomic-resolution imaging. The cryo-TEM grid was loaded into the Gatan Ultra Low Temperature Double Tilt (ULTD) liquid helium TEM holder immediately after drop-casting with the propylene carbonate VSe₂ suspension and while still wet, then placed under high vacuum.
overnight. For surface passivation, FDT (97% Sigma-Aldrich) was used on its own as well as diluted to the following concentrations in ethanol: undiluted, 5 mM, and 3 mM. Control samples were treated with pure ethanol. All samples were immersed in their treatment solutions overnight and then washed with acetone. AFM/MFM samples were then quickly dried in air with a nitrogen gun before being returned to the argon glovebox, whereas TEM grids were allowed to dry evaporatively under argon. Immediately prior to AFM and MFM measurement, samples were immersed and gently agitated in isopropanol for 10 min before blow-drying and mounting on magnetic sample pucks. Before TEM measurements, grids were rinsed in methanol and dried under argon.

Atomic and magnetic force microscopy measurements were performed with a Bruker MultiMode8 AFM in air to determine the extent of VSe$_2$ degradation in atmosphere over a span of 24

Figure 2. Atomic force microscope topography of VSe$_2$ flakes treated with (a) pure ethanol, (b) 3 mM C$_{10}$H$_{5}$F$_{14}$S in ethanol, (c) 5 mM C$_{10}$H$_{5}$F$_{14}$S in ethanol, and (d) pure C$_{10}$H$_{5}$F$_{14}$S at roughly 0 (top) and 24 (bottom) hours.

Figure 3. Magnetic force microscopy phase of VSe$_2$ flakes treated with (a) pure ethanol, (b) 5 mM C$_{10}$H$_{5}$F$_{14}$S in ethanol, and (c) pure C$_{10}$H$_{5}$F$_{14}$S at roughly 0 (top) and 24 (bottom) hours. In (a), the features in the top quarter of the 24 h image are not associated with any topography and are suspected to be spurious instrument fluctuations. In (c), note that after passing over a high feature in the approximate center of the first scan, the contrast inverted at the horizontal line. The authors have inverted the contrast again for easier viewing, but noncorrected data are available as the Supporting Information. The contrast change between 0 and 24 h is due to the AFM realignment.
At the time of measurement, the exfoliated samples shown had been stored in the glovebox for four months. However, topography measurements on samples prepared from a new exfoliation and measured within the same week behaved similarly (SI Figure S2). Topography measurements were taken using Bruker’s PeakForce HR mode and associated tips. For MFM, Bruker MESP-V2 tips were used. The MESP-V2 tips were magnetized with a lateral field in a custom holder (SI Figure S2 and supplementary .stl files) for 10 min before being loaded. For the first MFM scan, the magnetized tip was set to the highest lift height at which good contrast was achieved, and the scan taken the next day maintained that lift height, typically around 20 nm.

TEM data were taken at 200 kV in a JEOL F200 high-resolution transmission electron microscope (HR-TEM) in phase contrast, selected-area electron diffraction (SAED), and scanning transmission electron microscopy (STEM) modes. EDS mapping and analysis were performed in Digital Micrograph.

Raman spectroscopy of the bare and 5 mM FDT-passivated VSe$_2$ nanoflakes on Si/SiO$_2$ substrates was performed under 785 nm laser excitation. Spectroscopy was performed on the same bare and 5 mM FDT-passivated flakes that were used for the AFM and MFM time series, and spectra were collected after the AFM and MFM measurements had taken place.

3. RESULTS AND DISCUSSION

3.1. Atomic and Magnetic Force Microscopy (AFM and MFM). Figure 2 shows the results of topography scans for samples treated with (a) pure ethanol, (b) 3 mM FDT in ethanol, (c) 5 mM FDT in ethanol, and (d) pure FDT. Severe degradation of the control flake is apparent: only the very thickest parts of the flake remain intact, while the rest of the area has become a loose debris field. During the first day of measurements on the control flake, substantial debris built up along the edges of the scanned region, which can be seen in the lower half of Figure 2a. The 3 mM FDT-treated sample shown in Figure 2b also degraded significantly, with the “lacy” areas becoming lacier and a larger network of holes opening in the thin flakes on the right side of the image. Additionally, the small bumps that can be seen on the flakes (red) grew larger. The 5 mM FDT-treated flakes showed less degradation in the lacy areas with holes and smaller presumptive vanadium oxide towers (Figure 2c). In addition, the few-layer flakes did not decompose into a network of holes as the 3 mM-treated flakes had. Finally, the sample treated with pure FDT (Figure 2d) shows very little change over the span of 24 h, with only the appearance of small bumps similar to those seen on the 3 mM-treated flakes being observed as a noticeable difference. These regions were observed even after extremely brief periods in air and regardless of passivation technique. This agrees with the findings of Yu et al. that show the damage accrued with time.
spent in the PC suspension increases. SI Figure S2 supports this conclusion, as the sample shown dried faster than the other samples. This decreased both the drying time and the observed damage to the very thinnest flakes. Indeed, a monolayer region with relatively few holes can be seen in the bottom left part of SI Figure S2a,b.

Figure 3 shows the same time series with MFM scans of the ethanol control, 5 mM FDT-passivated, and pure FDT-passivated samples. Initially, the control flake shows strong signal in the lacy monolayer areas and at high peaks in the scanned region. The main body of the flake and some of its surface features are readily distinguishable from background but are dwarfed by the monolayer lacy and high-peak areas. The main body of the flake is about was measured to be 4 nm thick. At the same settings, the MFM signal of the control flake decreased by about one order of magnitude after 24 h and, other than the large central patch that also remains in the topography, is nearly indistinguishable from background. The 5 mM FDT-treated sample in Figure 3b shows that the observed topographical peaks, hypothesized to be oxidation, increase overnight in air but only locally suppress the magnetic response without affecting the rest of the flake. In addition, the surface fields from the lacelike degraded areas can be seen, strengthening our conclusion that while complete oxidation almost destroys the magnetic signal, more moderately damaged VSe₂ retains some virtue, consistent with the transport results presented by Yu et al. Finally, in Figure 3c, we can see that there has also been little to no discernible degradation of the magnetic signal, as expected since little to no damage was discernible in the topography.

3.2. Materials Analysis of Bare VSe₂. To verify the structure of the exfoliated material, some of the VSe₂ suspension was immediately drop-cast onto holey carbon grids for atomic-resolution TEM imaging. As can be seen in Figure 4a,b, the crystal structure of the flake is hexagonal, and measurement of the high-resolution images viewed down the [001] zone axis yields a lattice constant of 0.311 (±0.004) nm, which compares favorably with a literature value of 0.336 nm measured using XRD. Figure 4c shows an HR-TEM image of bare VSe₂ at 87.8 K, which has a smaller lattice spacing of 0.305 (±0.001) nm. These ranges are reported based on the lattice constants measured using fast Fourier transform (FFT) of the entire TEM images and the numbers are extracted using a script written in python “HexDiff” based on Miller indices indexing. This code is available upon request (see SI Figure S4 for FFTs of the entire images). The ultralow temperature TEM imaging was performed to study charge density waves (CDW). However, we did not observe any superlattice associated with the CDWs, possibly due to the thickness-dependent and solvent residue on the flakes. The small difference between the obtained lattice constant of VSe₂ at room temperature and 87.8 K could be due to a distortion in lattice structure at lower temperatures, possibly in response to the CDW transition at around 110 K. However, further study should be conducted to confirm that this change in the in-plane lattice constant is due to the CDW. The EDS spectrum shown in Figure 4d, meanwhile, shows the presence of vanadium, selenium, and oxygen, as well as background carbon, copper, and zinc. Figure 4e compares the Raman spectra for thick and thin untreated VSe₂ flakes (see SI Figure S5 for optical images). The characteristic vibration peak appearing at 206 cm⁻¹ corresponds to the A₁g mode of 1T-VSe₂. The peaks at 236 and 249 cm⁻¹, meanwhile, indicate the presence of vibron mode of 1T-VSe₂.

Figure 5. Oxidation damage and both naturally occurred and deliberately sculpted structures using electron beam irradiation appeared in bare VSe₂ with approximately 12 h air exposure. (a) Low-magnification image of air-exposed VSe₂ flake over carbon grid, showing many patches where material has oxidized. A bare, uno oxidized flake is shown in the inset for comparison. (b) HR-TEM image of oxidized region adjacent to crystalline VSe₂. Crystalline region has a lattice spacing of 0.35 nm, potentially indicating the presence of orthorhombic vanadium oxides. (c) “Nanobridge” found in the damaged region of air-exposed VSe₂, showing a lattice spacing of 0.45 nm, pointing the edge of a pore drilled by rapidly bringing the beam to crossover in high-resolution TEM mode. There is an approximately 5 nm region of amorphous material between the pore itself and crystalline hexagonal VSe₂ with a lattice spacing of 0.33 nm. Lattice spacing was measured directly using a line profile on the region of interest (close to the beam-affected area).
before re-spreading (beam current $\sim 150-200$ pA/cm2). Figure 5d shows the result of this experiment: the pore was surrounded by an approximately 5 nm region of amorphous material, but beyond that band, the material evidently remained 1T-VSe$_2$ with a lattice constant of 0.331 nm.

Controlled hole formation in a ferromagnetic 2D material may present interesting opportunities for in situ sensing of local electromagnetic fields and engineering of new spin textures.

3.3. Materials Analysis of FDT-Treated VSe$_2$

Similar material analysis was also performed on VSe$_2$ flakes treated with FDT, as shown in Figure 6. The most defining feature of the FDT-treated samples during TEM analysis was extensive carbon contamination: the dark rings and fully black ovals that can be seen in Figure 6a are due to carbon contamination on a grid treated with pure FDT and then washed with acetone and isopropanol from viewing the imaged region under higher magnification and STEM mode, respectively. Figure 6b shows a diffraction pattern from a sample treated with 5 mM FDT, rinsed in acetone and isopropanol, and then run through a rapid thermal annealing (RTA) cycle at 350 °C to remove excess carbon so that EDS analysis could be performed without carbon contamination building up to the point that it heavily obscured the imaging region.

Despite the significant challenge, we were able to collect an HR-TEM image of the pure-FDT-treated sample that had not undergone RTA, as shown in Figure 6c, and obtained a lattice constant of 0.324 (±0.002) nm. Figure 6d shows the EDS spectrum results for the 5 mM FDT-treated and annealed flake (EDS for an unannealed flake can be found in SI Figure S7): In addition to the previously detected elements, a notable fluorine K line appears, indicating the presence of the FDT fluorocarbon. The sulfur signal remains quite small—this is unsurprising due to the stoichiometry of the FDT molecule. Figure 6e compares the Raman spectra of bare VSe$_2$ flakes and 5 mM FDT-treated VSe$_2$ flakes. No shift in the A$_{1g}$ peak of VSe$_2$ was observed, but the peak appeared somewhat larger for the treated flakes. This difference may be attributed to differences in flake thickness.

3.4. Materials Analysis of Aged Suspension

To further investigate the effects of extended exposure to PC on VSe$_2$, we prepared a holey carbon TEM grid with exfoliated VSe$_2$ that had spent 48 h in PC suspension after chemical exfoliation (aged suspension). Fewer VSe$_2$ flakes were observed than in younger suspensions, and those that were found appeared thicker in the electron microscope, were often damaged, and had high sensitivity to further beam damage. Specifically, we observe that upon electron irradiation, the aged flakes were damaged more easily and over a shorter time period than the freshly deposited flakes (Figure 7). The possible reason for this observation could be the presence of holes and defects in the...
materials induced by solvent that are more prone to damage and expansion by electron beam compared to pristine and hole-free flakes. The accrued damage is likely to make the flake structurally weak, and a large network of preexisting defects means that fewer bonds need to be broken for the expansion of defects/holes the authors witnessed to occur (Figure 7). TEM and EDS analyses of these flakes are presented in Figure 7. The HR-TEM images obtained from these flakes nonetheless demonstrated a lattice spacing of 0.319 (±0.004) nm (Figure 7), which remains consistent with the published value for VSe$_2$. It is worth mentioning that these damaged flakes were not the only solids to appear in the aged solution. Both rectangularly symmetric nanowires and highly porous “chunks” with a network of circular holes were found on the same grid. SI Figure S8 shows TEM and EDS analysis of a few of the nanowires. It can be seen in SI Figure S8a that the nanowires are numerous, rectangular in shape, and can be several microns in size. The HR-TEM image in SI Figure S8b and its associated FFT in SI Figure S8c confirm the rectangular symmetry, and a lattice spacing of 0.45 nm is observed. This measurement agrees with published values for selenium nanowires. Our hypothesis that the rectangular crystals are primarily elemental selenium gains support from the EDS maps shown in SI Figure S8d–f. The vanadium in the region of the nanowire is suppressed, while the selenium signal is atypically strong, as one would expect for a selenium crystal precipitated atop a damaged VSe$_2$ flake.

While we were unable to determine lattice constants from the highly porous chunks (SI Figures S8g and S9) due to the combination of both polycrystalline and amorphous materials, EDS maps of the porous chunks in SI Figure S8g, shown in SI Figure S8h,i, are more telling. The vanadium signal from the selected region is extremely strong, and the selenium signal is quite weak, which is the reverse of what one would expect from VSe$_2$ based on its stoichiometry. Based on these observations, it is likely that when kept in propylene carbonate for relatively little time, VSe$_2$ nanoflakes decompose into their elemental constituents. This observation further supports the solvent (PC) effect and provides additional information on the degradation products.

4. CONCLUSIONS

In this work, we have confirmed the ability to electrochemically exfoliate ultrathin VSe$_2$ flakes including monolayers. We characterized the oxidation and degradation of the resultant flakes using atomic-resolution TEM down to cryogenic temperatures, AFM, and Raman spectroscopy. Additionally, we used MFM to explore changes in the observed magnetic response due to the formation of hole defects and putative oxide towers over time. Our results show that both propylene carbonate (PC) and oxidation damage only locally affect the surface fields measured by MFM rather than leading to widespread quenching of the MFM signal. We also demonstrated the ability to use an electron beam to sculpt VSe$_2$ nanosheets, which opens the way toward controllable TEM defect engineering and nanopatterning.

We have also expanded upon process parameters that affect the quality of electrochemically exfoliated VSe$_2$ ultrathin flakes:
any delay in removing the solvent, including drying time, contributes to the degradation of monolayer and bilayer regions of the flakes. This degradation initially manifests as a lacelike network of holes and eventually progresses to wide-scale decomposition of the VSe$_2$ into selenium nanowires and a porous sponge consisting primarily of vanadium. Damage can be mitigated by performing the exfoliation and drop-casting process quickly and minimizing the drying time. Regardless, changing to an electrolyte solvent with a higher vapor pressure and lower reactivity may be a more fruitful avenue for reliably producing quality ultrathin VSe$_2$ flakes.

Additionally, we determined that dilute FDT passivation can be performed with concentration-dependent efficacy and that the previously reported method of a simple acetone rinse is insufficient for removing excess FDT.15 In addition, a rapid thermal annealing cycle proved necessary to collect meaningful TEM data without massive carbon contamination. Device applications will likely require similar processing for clean electrical contact. This study provides a detailed, multipronged structural analysis of 2D VSe$_2$ during preparation and deposition on substrates and during top-down TEM nanofabrication, providing necessary insights for correlating structure with material properties and further advancing studies and applications of a novel 2D ferromagnetic material.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acsomega.2c04749.

Additional cryogenic phase contrast transmission electron microscope (TEM) images of VSe$_2$ (Figure S1); topography of VSe$_2$ electrochemically exfoliated and dried using an Edwards nXDS 6i scroll pump, treated with 5 mM C10H5F14S, and measured the same week as preparation (Figure S2); apparatus used for magnetizing atomic force microscope (AFM) tips and samples (Figure S3); HR-TEM images of bare VSe$_2$ measured (Figure S4); optical images of thinner and thicker VSe$_2$ flakes characterized by Raman spectroscopy (Figure S5); zoomed-in EDS spectrum of the bare VSe$_2$ on holey carbon copper grid, demonstrating overlap between vanadium L line and oxygen K line (Figure S6); EDS mapping of unannealed VSe$_2$ flake treated with 5 mM C10H5F14S in ethanol (Figure S7); and TEM analysis of nanowires and porous chunks that form in 2-day-old VSe$_2$ suspension in PC (Figure S8). Crystallographic data (ZIP)

ACKNOWLEDGMENTS

The authors thank David Evynshteyn and Andrew Broeker for the design and printing of the holder for the tip magnetizer (Magnetotoaster.stl and ToasterFork.stl in Supplement). This work was supported by the NSF through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) DMR-1720530 as well as NSF DMR 1905045, NSF EAGER 1838456, and DOE DE-SC0023224. This work was performed in part at the University of Pennsylvania’s Singh Center for Nanotechnology, an NNCI member supported by NSF Grant ECCS-1542153.

ADDITIONAL NOTE

“Note, the oxygen K line and the vanadium L line overlap substantially in EDS and could not be resolved, the zoomed-in spectra are presented in SI Figure S6.”

REFERENCES

1. Gan, L. Y.; Zhang, Q.; Cheng, Y.; Schwingschlägl, U. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control. Phys. Rev. B 2013, 88, No. 235310.
2. Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggert, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe$_2$, monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.
3. Fuh, H. R.; Chang, C. R.; Wang, Y. K.; Evans, R. F. L.; Chantrell, R. W.; Jeng, H. T. Neutype single-layer magnetic semiconductor in transition-metal dichalcogenides VX$_2$ (X = S, Se, and Te). Sc. Rep. 2016, 6, No. 32625.
4. Fuh, H. R.; Chang, K. W.; Hung, S. H.; Jeng, H. T. Two-dimensional Magnetic Semiconductors Based on Transition-Metal Dichalcogenides VX$_2$ (X = S, Se, and Te) and Similar Layered Compounds VI$_2$ and Co(OH)$_2$. IEEE Magn. Lett. 2017, 8, 1–5.
5. Wang, L.; Tan, X.; Zhu, Q.; Dong, Z.; Wu, X.; Huang, K.; Xu, J. The universality applications of MoS$_2@$MnS heterojunction hollow microspheres for univalence organic or multivalence aqueous
electrolyte energy storage device. J. Power Sources 2022, 518, No. 230747.

(6) Xu, J.; Liu, Q.; Dong, Z.; Wang, L.; Xie, X.; Jiang, Y.; Wei, Z.; Gao, Y.; Zhang, Y.; Huang, K. Interconnected MoS2 on 2D Graphdiyne for Reversible Sodium Storage. ACS Appl. Mater. Interfaces 2021, 13, 54974−54980.

(7) Xu, K.; Chen, P.; Li, X.; Wu, C.; Guo, Y.; Zhao, J.; Wu, X.; Xie, Y. Ultrathin Nanosheets of Vanadium Diselenide: A Metallic Two-Dimensional Material with Ferromagnetic Charge-Density-Wave Behavior. Angew. Chem., Int. Ed. 2013, 52, 10477−10481.

(8) Xue, Y.; Zhang, Y.; Wang, H.; Lin, S.; Li, Y.; Dai, J. Y.; Lai, S. P. Thickness-dependent magnetoelectric properties in 1T VSe2 single crystals prepared by chemical vapor deposition. Nanootechnology 2020, 31, No. 145712.

(9) Yang, J.; Wang, W.; Liu, Y.; Du, H.; Ning, W.; Zheng, G.; Jin, C.; Han, Y.; Wang, N.; Yang, Z.; Tian, M.; Zhang, Y. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 2014, 105, No. 063109.

(10) Hossain, M.; Juanxia, W.; Wen, W.; Haining, L.; Xincheng, W.; Liming, X. Chemical Vapor Deposition of 2D Vanadium Disulphide and Diselenide and Raman Characterization of the Phase Transitions. Adv. Mater. Interfaces 2018, 5, No. 1800528.

(11) Pásztor, Á.; Scarfato, A.; Barreteau, C.; Giannini, E.; Renner, C. Dimensional crossover of the charge density wave transition in thin exfoliated VSe2. 2D Mater. 2017, 4, No. 041005.

(12) Strocov, V. N.; Shi, M.; Kobayashi, M.; Monney, C.; Wang, X.; Krempasky, J.; Schmitt, T.; Patthey, L.; Berger, H.; Blaha, P. Three-Dimensional Electron Realm in VSe2 by Soft-X-Ray Photoelectron Spectroscopy: Origin of Charge-Density Waves. Phys. Rev. Lett. 2012, 109, No. 086401.

(13) Terashima, K.; Sato, T.; Komatsu, H.; Takahashi, T.; Maeda, N.; Hayashi, K. Charge-density wave transition of 1T-VSe2 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2003, 68, No. 155108.

(14) Feng, J.; Biswas, D.; Rajan, A.; Watson, M. D.; Mazzola, F.; Clark, O. J.; Underwood, K.; Markovic, I.; McLaren, M.; Hunter, A.; Burn, D. M.; Duffy, L. B.; Barua, S.; Balakrishnan, G.; Bertran, F.; Frevre, P. L.; Kim, T. K.; Van der Laan, G.; Hesjedal, T.; Wahl, P.; King, P. D. C. Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe2. Nano Lett. 2018, 18, 4493−4499.

(15) Fumega, A. O.; Gobbi, M.; Dreher, P.; Wan, W.; González-Orellana, C.; Peña-Diaz, M.; Rogerio, C.; Herrero-Martín, J.; Gargiani, P.; Ilyin, M.; Ugega, M.; Pardo, V.; Bianco-Canosa, S. Absence of Ferromagnetism in VSe2 Caused by Its Charge Density Wave Phase. J. Phys. Chem. C 2019, 123, 27802−27810.

(16) Wong, P. K. J.; Zhang, W.; Bussolotti, F.; Yin, X.; Herrg. T. S.; Zhang, L.; Huang, Y. L.; Vinai, G.; Krishnamurthi, S.; Brikvalov, D. W.; Zheng, Y. J.; Chua, R.; NDiaye, A. T.; Morton, S. A.; Yang, C. Y.; Tang, K. H. O.; Torelli, P.; Chen, W.; Goh, K. E. J.; Ding, J.; Lin, M. T.; Brooks, G.; Jing, P.; Castro Neto, A. H.; Wee, A. T. S. Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet. Adv. Mater. 2019, 31, No. 1901185.

(17) Gao, E.; Lin, S. Z.; Qin, Z.; Buchler, M. J.; Feng, X. Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 2018, 115, 248−262.

(18) Chu, W.; Li, J.; Herrg. T. S.; Wang, Z.; Zhao, X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J.; Chen, Z.; Chen, Z.; Li, Z.; Lu, J.; Pennycook, S. J.; Feng, Y. P.; Ding, J.; Loh, K. P. Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism. Adv. Mater. 2019, 31, No. 1903779.

(19) Liu, Z. L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J. O.; Zheng, Q.; Zhu, Z. L.; Ibrahimb, K.; Wang, Y. L.; Gao, H. J. Epitaxially grown monolayer VSe2: an air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419−425.

(20) Li, D.; Wang, X.; Kan, C. M.; He, D.; Li, Z.; Hao, Q.; Zhao, H.; Wu, C.; Jin, C.; Cui, X. Structural Phase Transition of Multilayer VSe2. ACS Appl. Mater. Interfaces 2020, 12, 25143−25149.

(21) Feroze, A.; Na, H. R.; Park, Y. C.; Jun, J. H.; Jung, M. H.; Lee, J. H.; Kim, J. H.; Seong, M. J.; Hong, S.; Chun, S. H.; Lee, S. In-Depth Structural Characterization of 1T-VSe2 Single Crystals Grown by Chemical Vapor Transport. Cryst. Growth Des. 2020, 20, 2860−2865.

(22) Littlejohn, A. J.; Li, Z.; Lu, Z.; Sun, X.; Nawarat, P.; Wang, Y.; Li, Y.; Wang, T.; Chen, Y.; Zhang, L.; Li, H.; Kisslinger, K.; Shi, S.; Shi, J.; Raeliarjaona, A.; Shi, W.; Terrones, H.; Lewis, K. M.; Washington, M.; Lu, T. M.; Wang, G. C. Large Metallic Vanadium Disulphide Ultrathin Flakes for Spintronic Circuits and Quantum Computing Devices. ACS Appl. Nano Mater. 2019, 2, 3684−3694.

(23) Boscher, N. D.; Blackman, C. S.; Carmah, C. J.; Parkin, I. P.; Prieto, A. G. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 2007, 253, 6041−6046.

(24) Zhang, Z.; Niu, J.; Yang, P.; Gong, Y.; Ji, Q.; Shi, J.; Fang, Q.; Jiang, S.; Li, H.; Zhou, X.; Gu, L.; Wu, X.; Zhang, Y. Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extra-High Electrical Conductivity. Adv. Mater. 2017, 29, No. 1702359.

(25) Yan, M.; Pan, X.; Wang, P.; Chen, F.; He, L.; Jiang, G.; Wang, J.; Liu, J. Z.; Xu, X.; Liao, X.; Yang, J.; Mai, L. Field-Effect Tuned Adsorption Dynamics of VSe2 Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Lett. 2017, 17, 4109−4115.

(26) Zhao, W.; Dong, B.; Guo, Z.; Su, G.; Gao, R.; Wang, W.; Cao, L. Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. Chem. Commun. 2016, 52, 9228−9231.

(27) Xu, J.; Li, Y.; Chen, P.; Wang, A.; Huang, K.; Fang, L.; Lu, W. X. Interlayer-expander V2S3 nanosheet: Fast ion transport, dynamic mechanism and application in Zn2+ and Mg2+/Li+ hybrid batteries systems. J. Colloid Interface Sci. 2022, 620, 119−126.

(28) Xu, J.; Zhang, S.; Wei, Z.; Yan, W.; Wei, X.; Huang, K. Orientated VSe2 nanoparticles anchored on N-doped hollow carbon sphere for high-stable aqueous energy application. J. Colloid Interface Sci. 2021, 585, 12−19.

(29) Gao, J.; Li, B.; Tan, J.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10, 2628−2635.

(30) Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J. Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 2019, 7, 4291−4312.

(31) Diego, J.; Said, A. H.; Mahatha, S. K.; Bianco, R.; Monacelli, L.; Calandra, M.; Mauri, F.; Rossnagel, K.; Errea, I.; Blanco-Canosa, S. van der Waals driven anharmonic melting of the 3D charge density wave in VSe2. Nat. Commun. 2021, 12, No. 598.

(32) Ramana, C. V.; Hussain, O. M.; Srinivasulu Naidu, B.; Julien, C.; Balkanski, M. Physical investigations on electron-beam evaporated vanadium pentoxide films. Mater. Sci. Eng., B 1998, 52, 32−39.

(33) Li, Q.; Yam, V. W. W. High-yield synthesis of selenium nanowires in water at room temperature. Chem. Commun. 2006, 1006−1008.