SARS-CoV-2 reinfections during the first three major COVID-19 waves in Bulgaria

Georgi K. Marinov, Mladen Mladenov, Antoni Rangachev, Ivailo Alexiev

1 Department of Genetics, Stanford University, Stanford, CA, United States of America, 2 Premier Research, Morrisville, NC, United States of America, 3 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria, 4 International Center for Mathematical Sciences-Sofia, Sofia, Bulgaria, 5 National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria

* GKM359@gmail.com

Abstract

Background

The COVID-19 pandemic has had a devastating impact on the world over the past two years (2020-2021). One of the key questions about its future trajectory is the protection from subsequent infections and disease conferred by a previous infection, as the SARS-CoV-2 virus belongs to the coronaviruses, a group of viruses the members of which are known for their ability to reinfec convalescent individuals. Bulgaria, with high rates of previous infections combined with low vaccination rates and an elderly population, presents a somewhat unique context to study this question.

Methods

We use detailed governmental data on registered COVID-19 cases to evaluate the incidence and outcomes of COVID-19 reinfections in Bulgaria in the period between March 2020 and early December 2021.

Results

For the period analyzed, a total of 4,106 cases of individuals infected more than once were observed, including 31 cases of three infections and one of four infections. The number of reinfections increased dramatically during the Delta variant-driven wave of the pandemic towards the end of 2021. We observe a moderate reduction of severe outcomes (hospitalization and death) in reinfections relative to primary infections, and a more substantial reduction of severe outcomes in breakthrough infections in vaccinated individuals.

Conclusions

In the available datasets from Bulgaria, prior infection appears to provide some protection from severe outcomes, but to a lower degree than the reduction in severity of breakthrough infections in the vaccinated compared to primary infections in the unvaccinated.
Introduction
The COVID-19 [1–3] pandemic has become the most significant public health crisis in more than a century, and is still rapidly developing. An important question for its future trajectory, especially given the large and steadily growing number of infected individuals in most countries, is the degree of protection from subsequent infection and serious disease that prior SARS-CoV-2 infection and recovery confers.

SARS-CoV-2 belongs to the coronavirus family, of which four different endemic human viruses were known prior to the pandemic—HCoV-OC43 [4, 5], HCoV-229E [6], HCoV-NL63 [7, 8] and HCoV-HKU1 [9–11]. These usually cause common colds (around 10-15% of colds, depending on the source [12–15], are considered to be caused by them), and, as is common with respiratory viruses [16], they cause repeated reinfections throughout people’s lifetimes [17]. Large coronavirus epidemics are thought to occur at two- to three-year intervals [18, 19], though these are generally not noticed by society due to the overall mild nature of these viruses.

Given that SARS-CoV-2 belongs to the same family of viruses, it is natural to expect that a similar host-pathogen dynamics involving frequent reinfections will be observed with it too.

The first reports of repeated infections appeared very early in the pandemic [20]. However, at the time it was difficult to exclude the possibility of simple persistence of viral RNA as opposed to true reinfections. Viral genomic sequencing (showing that distinct viral lineages infected the same individual more than once) eventually proved beyond reasonable doubt that reinfection occurs, but it was still initially seen as an exotic and surprising phenomenon [21–27]. Since then, however, reinfection has been proven to be far from a rare phenomenon as a large body of case reports has accumulated from around the world [28–121], most recently including even cases of third infections [38, 122, 123].

A number of cohort studies have also been published [123–173], but most of these suffer from various drawbacks, such as the inclusion of a very narrow time window after initial infection, focus on healthcare workers (meaning that the age distribution is not representative of the overall population), and the fact that most such studies were carried out prior to the appearance of the more highly derived SARS-CoV-2 variants that have come to dominate the pandemic in 2021 and 2022. The importance of comprehensive population sampling was shown by a recent reinfection study from Denmark [127], which found protection from reinfection of only 47.1% among those 65 years old and older during the late-2020 surge as opposed to 80.5% for the general population. The importance of variants was first stressed by the placebo arm of the clinical trial of the Novavax vaccine in South Africa [174], which showed little protection of prior infection against infection with the dominant at the time there B.1.351 variant [175].

Later, towards the end of 2021, the Omicron lineage of variants emerged, with very strong immune escape characteristics [176–179] and the ability to reinfect convalescent individuals at a high rate [123, 180–183].

In this work, we analyze available reinfection data in Bulgaria prior to the emergence of the Omicron variant, when largely homologous antigenically variants were circulating. Bulgaria has been one of the most seriously affected by the pandemic countries [184], having experienced three major COVID-19 waves in 2020-2021 and exhibiting excess mortality approaching 1% of its population within that period [185]. In the same time, only a small portion of the population has been fully vaccinated (<30% by the end of 2021), meaning that the country provides a unique context in which the clinical impact of reinfections can be observed in a previously severely impacted population with an age structure skewed towards the elderly individuals, but without the confounding factor of high vaccination coverage. We identify 4,106
reinfected individuals out of \(\leq 700,000 \) cases in the country prior to December 2021. The frequency of reinfection increased substantially during the third wave driven by the Delta variant, at which point reinfections represented \(\sim 2.2\% \) of cases, with protection conferred by previous infection \(\sim 81\% \). The severity of reinfections (i.e. the rate of hospitalizations and fatalities) was comparable to that of primary infections, while severity was reduced in breakthrough infections in vaccinated uninfected subjects.

Methodology

The research described in this manuscript has been approved by the Ethics Committee of the IMI-BAS (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences).

Datasets

Primary SARS-CoV-2 Infections in Bulgaria. At the time of writing this manuscript, there were no publicly available age-stratified datasets on hospitalizations and deaths associated with confirmed SARS-CoV-2 infections in Bulgaria. We obtained a patient-sensitive dataset from Bulgaria’s Ministry of Health, which included data on all infections from the beginning of the pandemic until November 5th 2021.

This dataset included information about a person’s age, gender, region, the date of their latest Covid-19 test, their status (infected, recovered, hospitalized, deceased), their hospitalization start and end dates, if any, information about accompanying diseases, as well as whether they received any breathing assistance, whether they were taken into intensive care and whether they died of Covid-19.

Data on breakthrough infections in vaccinated individuals. Information about infections, hospitalizations and deaths among the vaccinated population in Bulgaria were obtained through publicly available datasets provided by Bulgaria’s Ministry of Health. These datasets present a daily time series that contain information about the age at 10 year intervals, gender, vaccination course and count of infected, hospitalized or deceased per group.

Reinfections. No publicly available datasets about the reinfection rates in Bulgaria existed prior to the writing of this manuscript. We obtained these datasets through a separate request for information on patient-sensitive data from Bulgaria’s Ministry of Health. The data provided by the Ministry covers the period from the beginning of the pandemic until December 9th 2021.

Reinfections were defined as cases of two positive tests spaced \(\geq 90 \) days apart.

Breakthrough reinfections were defined as cases of a second positive tests at least one day after the completion of the vaccination course.

SARS-CoV-2 sequencing data. Information about sequenced SARS-CoV-2 genomes was obtained from the GISAID database [186].

Results

Suspected SARS-CoV-2 reinfection cases in Bulgaria

In order to identify SARS-CoV-2 reinfection cases in Bulgaria, we obtained datasets on the incidence and clinical outcomes of suspected reinfections up to December 9th 2021. We classified cases as suspected reinfections if \(\geq 90 \) days have passed between testing positive on at least two different occasions.

After largely successfully escaping the first global wave of infections in the first half of 2020, Bulgaria experienced three major waves of COVID-19, in October-December 2020, in February-April 2021, and in the later months of 2021, of roughly equal magnitude (Fig 1A). Under
Fig 1. Suspected SARS-CoV-2 reinfections in Bulgaria over time. (A) Primary infections in Bulgaria over time. Bulgaria has so far experienced three distinct major epidemiological waves of COVID-19, with peaks in November 2020, March 2021, and October 2021 (an initial wave did occur in the first half of 2020 but it was very small and generally successfully suppressed, and is of little relevance to the progression of the pandemic in the country). (B) Number of people eligible to be considered for reinfection, i.e., people who have tested positive and ≥90 days have elapsed since that positive test. (C) Dominant variants in Bulgaria over time. The first major
this criterion, the eligible population to be considered for potential reinfection was \(\approx 200,000 \) individuals after the first major wave, doubling to \(\geq 400,000 \) after the second (Fig 1B). These waves were driven by different variants of the SARS-CoV-2 virus. The first was dominated by B.1 lineages antigenically similar to the ancestral strain. The second consisted almost entirely of the Alpha (B.1.1.7) variant [187, 188], while in the third the globally dominant by then Delta (B.1.617.2/AY.) variant [189] constituted practically all cases (Fig 1C). We have defined for the purposes of our analyses the dividing lines between these waves as mid-January 2021 and beginning of June 2021.

In total, we identified 4,106 cases of individuals infected more than once, including 31 cases of people infected three times and one case of a quadruple infection.

The number of reinfections in the first major wave in late 2020 was small, peaking at \(\leq 100 \) such cases weekly, reflecting the low incidence of COVID-19 earlier that year (Fig 1C). A larger, though still relatively small number of reinfections were observed during the Alpha wave in the first half of 2021. The bulk of reinfections came during the Delta wave in the second half of the year, peaking at 755 a week at the end of October 2021. During the Delta wave reinfections constituted \(\approx 2.3\% \) of cases in Bulgaria. Taking into account the number of eligible for reinfection individuals, during the months of October and November protection from reinfection is estimated to have stood at \(\approx 81\% \) (95% CI [190], 63% to 100%).

We then examined the time between primary and subsequent infections. We observe a peak at approximately a year from the initial infection, but the distribution is highly dispersed and a large number of reinfections are observed all throughout the interval from 90 to 360 days (Fig 2A). These numbers correspond primarily to a cohort of people who were infected in the first wave and then reinfected in the Delta wave (\(n = 1,674 \)), and another group of people infected during the Alpha wave and then reinfected during the Delta wave (\(n = 1,435 \)).

Clinical severity of reinfections

We then analyzed the clinical outcomes of reinfections and compared it to outcomes from primary infections and from infections in vaccinated individuals (“breakthrough infections”).

Among the 4,106 reinfections, 413 were also “breakthrough reinfections”, i.e. the reinfection occurred after a vaccination course was completed. We divided the reinfection cases into separate unvaccinated and breakthrough reinfection categories.

A total of 84 fatalities were recorded within the reinfected cases, one of them within the set of 31 individuals with three infections. This corresponds to an apparent lower case fatality rate (CFR) than the total CFR in Bulgaria for the studied period (\(\approx 2\% \) compared to \(\approx 4.2\% \)). In terms of hospitalizations, for the 4,106 reinfected individuals, 705 hospitalizations were recorded for the second infections (a rate of 17.7%); this compares to 8,177 hospitalizations out of 49,170 breakthrough cases in vaccinated individuals (16.6%) and 109,108 hospitalizations out of 332,510 total primary infections (32.8%). However, such comparisons based on total numbers are confounded by the fact that populations are not age matched.

We therefore divided cases in all four categories into age groups and compared the rates of hospitalizations and fatalities in each (Fig 3). This analysis reveals a moderately reduced rate of hospitalizations between primary infections and reinfections across all age groups (we observe 40% reduction of risk in the 20-60 age group and 31% in the 60+ age group for the unvaccinated reinfected, and 60% and 40% for the vaccinated reinfected, respectively), and a less
pronounced risk of death (38% reduction in the 20-60 age group and 25% in the 60+ age group for the unvaccinated reinfected; note that total numbers were too small for breakthrough reinfections for an accurate estimate). For comparison the severity of breakthrough infections was more strongly reduced compared to primary infections in the unvaccinated (60%/70% risk reductions for hospitalization/death in the 20-60 age group and 49%/66% in the 60+), although that effect diminished in the higher age groups (consistent with previous findings of lower vaccine efficacy in the elderly [191–193]).

Conclusions

In this study we evaluated the rate of incidence and the clinical outcomes of SARS-CoV-2 reinfections during the first three waves of the COVID-19 pandemic in Bulgaria, and compared them to primary infections and breakthrough infections in vaccinated individuals. The bulk of reinfections happened during the Delta variant-driven wave, with prior infection providing protection from reinfection at ~80%. Clinical severity was somewhat reduced relative to primary infections, but to a lesser extent than the observed reduction in severity in breakthrough infections in the vaccinated. A possible limitation of our study is the possibility that in some individuals the disease may have passed with mild symptoms or asymptotically, and thus not all cases have been properly diagnosed and registered in the national system, leading to some bias towards documenting symptomatic infections. Results regarding the relative severity of reinfections in the literature have ranged from finding no difference in the severity of reinfections and primary infection to finding considerable (though rarely very high) degree of reduction from severe outcomes [169]; our results also fit within this range of estimates.
Acknowledgments

The authors would like to acknowledge the help of the Bulgarian Ministry of Health and Information Services for providing us with raw data about reinfections, demographics and vaccination status.

Fig 3. Clinical severity of SARS-CoV-2 reinfections in previously infected individuals in Bulgaria. (A) Percentage of hospitalizations among cases in primary infections, breakthrough infections (infections in vaccinated individuals), reinfections (divided into reinfections in the unvaccinated and breakthrough reinfections); (B) Percentage of deaths among cases in primary infections, breakthrough infections (infections in vaccinated individuals), reinfections (divided into reinfections in the unvaccinated and breakthrough reinfections). Binomial proportion confidence intervals were estimated using the Clopper-Pearson exact binomial interval method. (C) Age distribution of reinfected individuals.

https://doi.org/10.1371/journal.pone.0274509.g003
Author Contributions

Conceptualization: Georgi K. Marinov, Antoni Rangachev.
Data curation: Georgi K. Marinov, Mladen Mladenov, Antoni Rangachev.
Formal analysis: Georgi K. Marinov, Mladen Mladenov.
Investigation: Georgi K. Marinov.
Methodology: Georgi K. Marinov, Mladen Mladenov, Antoni Rangachev.
Project administration: Georgi K. Marinov, Antoni Rangachev, Ivailo Alexiev.
Software: Georgi K. Marinov, Mladen Mladenov.
Supervision: Georgi K. Marinov, Antoni Rangachev, Ivailo Alexiev.
Visualization: Georgi K. Marinov.
Writing – original draft: Georgi K. Marinov, Mladen Mladenov.
Writing – review & editing: Georgi K. Marinov, Mladen Mladenov, Antoni Rangachev, Ivailo Alexiev.

References

1. Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. Lancet 395(10223):470–473. https://doi.org/10.1016/S0140-6736(20)30185-9 PMID: 31986257

2. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-0212-7 PMID: 32015507

3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMID: 31986264

4. McIntosh K, Becker WB, Chanock RM. 1967. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA 58(6):2268–2273 https://doi.org/10.1073/pnas.58.6.2268 PMID: 4298578

5. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 57:933–940. https://doi.org/10.1073/pnas.57.4.933 PMID: 5231356

6. Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121(1):190–193 https://doi.org/10.3181/00379727-121-30734 PMID: 4285768

7. Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, et al. 2004. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA 101(16):6212–6216 https://doi.org/10.1073/pnas.0400762101 PMID: 15073334

8. Pyrc K, Jeblink MF, Berkhout B, van der Hoek L. 2004. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J 1:7 https://doi.org/10.1186/1743-422X-1-7 PMID: 15549333

9. Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895 https://doi.org/10.1128/JVI.79.2.884-895.2005 PMID: 15613917

10. Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, et al. 2006. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol 44(6):2063–2071 https://doi.org/10.1128/JCM.02614-05 PMID: 16757999

11. Vabret A, Dina J, Gouarin S, Petitjean J, Corbet S, Freymuth F. 2006. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin Infect Dis 42(5):634–639 https://doi.org/10.1086/500136 PMID: 16447108

12. Wat D. 2004. The common cold: a review of the literature. Eur J Intern Med 15(2):79–88 https://doi.org/10.1016/j.ejim.2004.01.006

13. Mäkelä MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M, et al. 1998. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36(2):539–542. https://doi.org/10.1128/JCM.36.2.539-542.1998 PMID: 9466772
14. Larson HE, Reed SE, Tyrrell DA. 1980. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J Med Virol 5(3):221–29. https://doi.org/10.1002/jmv.1890050306 PMID: 6262450

15. Nicholson KG, Kent J, Hammersley V, Cancio E. 1997. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ 315(7115):1060–1064. https://doi.org/10.1136/bmj.315.7115.1060 PMID: 9366736

16. Yewdell JW. 2021. Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLoS Pathog 17(4):e100950

17. Callow KA, Parry HF, Sergeant M, Tyrrell DA. 1990. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect 105:435–446. https://doi.org/10.1017/so950268800048019 PMID: 2170159

18. Monto AS. Medical reviews: coronaviruses. Yale J Biol Med 47:234–251. PMID: 4617423

19. Kahn JS, McIntosh K. 2005. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24(11 Suppl):S223–227. https://doi.org/10.1097/01.inf.0000188166.17324.60 PMID: 16378063

20. Mahase E. 2020. Covid-19: WHO and South Korea investigate reconfirmed cases. BMJ 369:m1498

21. de Vrieze J. 2020. Reinfections, still rare, provide clues on immunity. Science 370(6519):895–897. https://doi.org/10.1126/science.370.6519.895 PMID: 33214256

22. Arafkas M, Khosrawipour T, Kocbach P, Zielinski K, Schubert J, Mikolajczyk A, et al. 2021. Current meta-analysis does not support the possibility of COVID-19 reinfections. J Med Virol 93(3):1599–1604. https://doi.org/10.1002/jmv.26496 PMID: 32897549

23. Ledford H. 2020. Coronavirus reinfections: three questions scientists are asking. Nature 585 (7824):168–169. https://doi.org/10.1038/d41586-020-02506-y PMID: 32887957

24. Jabbari P, Rezaei N. 2020. With Risk of Reinfection, Is COVID-19 Here to Stay? Disaster Med Public Health Prep 14(4):e33 https://doi.org/10.1017/dmp.2020.274 PMID: 32713383

25. Duggan NM, Ludy SM, Shannon BC, Reisner AT, Wilcox SR. 2021. Is novel coronavirus 2019 reinfection possible? Interpreting dynamic SARS-CoV-2 test results. Am J Emerg Med 39:256.e1–256.e3. https://doi.org/10.1016/j.ajem.2020.06.079 PMID: 32703607

26. York A. 2020. Can COVID-19 strike twice? Nat Rev Microbiol 18(9):477. https://doi.org/10.1038/s41579-020-0424-x PMID: 32690876

27. Law SK, Leung AWN, Xu C. 2020. Is reinfection possible after recovery from COVID-19? Hong Kong Med J 26(3):264–265. PMID: 32536614

28. Tang CY, Wang Y, McElroy JA, Li T, Hammer R, Ritter D, et al. 2021. Reinfection with two genetically distinct SARS-CoV-2 viruses within 19 days. J Med Virol 93(10):5700–5703. https://doi.org/10.1002/jmv.27154 PMID: 34170528

29. Lee JS, Kim SY, Kim TS, Hong KH, Ryoo NH, Lee J, et al. 2020. Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection After Recovery from Mild Coronavirus Disease 2019. Clin Infect Dis ciaa1421

30. Mulder M, van der Vegt DSJM, Oude Munnink BB, GeurtsvanKessel CH, van de Bovenkamp J, Sikkema RS, et al. 2020. Reinfection of SARS-CoV-2 in an immunocompromised patient: a case report. Clin Infect Dis ciaa1538

31. To KK, Hung IF, Ip JD, Chu AW, Chan WM, Tam AR, et al. 2020. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis ciaa1275

32. Larson D, Brodniak SL, Voegly LJ, Cer RZ, Glang LA, Malagon FJ, et al. 2020. A Case of Early Re-infection with SARS-CoV-2. Clin Infect Dis ciaa1436

33. Goldman JD, Wang K, Roltgen K, Nielsen SCA, Roach JC, Naccache SN, et al. 2020. Reinfection with SARS-CoV-2 and Failure of Humoral Immunity: a case report. medRxiv 2020.09.22.20192443 https://doi.org/10.1101/2020.09.22.20192443 PMID: 32995830

34. Tillett RL, Sevillano G, Ortega-Paredes D, Loiza K, Zurita-Salinas C, Zurita J. 2021. Evidence of SARS-CoV-2 reinfection within the same clade in Ecuador: A case study. Int J Infect Dis 108:53–56. https://doi.org/10.1016/j.ijid.2021.04.073 PMID: 33930542
37. Gupta V, Bhoyar RC, Jain A, Srivastava S, Upadhayay R, Imran M, et al. 2020. Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2. *Clin Infect Dis* ciaa1451

38. Shastri J, Parikh S, Agrawal S, Chatterjee N, Pathak M, Chaudhary S, et al. 2021. Clinical, Serological, Whole Genome Sequence Analyses to Confirm SARS-CoV-2 Reinfection in Patients From Mumbai, India. *Front Med (Lausanne)* 8:631769 https://doi.org/10.3389/fmed.2021.631769 PMID: 33768104

39. Resende PC, Bezerra JF, Teixeira Vasconcelos RH, Arantes I, Appolinario L, Mendonça A, et al. 2021. Severe Acute Respiratory Syndrome Coronavirus 2 P.2 Lineage Associated with Reinfection Case, Brazil, June–October 2020. *Emerg Infect Dis* 27(7):1789–1794. https://doi.org/10.3201/eid2707.210401 PMID: 33883059

40. Nonaka CKV, Franco MM, Grät T, de Lorenzo Barcia CA, de Ávila Mendonca RN, de Sousa KAF, et al. 2021. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. *Emerg Infect Dis* 27(5):1522–1524. https://doi.org/10.3201/eid2705.210191 PMID: 33865869

41. Mahajan NN, Gajbhiye RK, Lokhande PD, Bahirat S, Modi D, Mathe AM, et al. 2021. Clinical Presentation of Cases with SARS-CoV-2 Reinfection/ Reactivation. *J Assoc Physicians India* 69(1):16–18. PMID: 34227769

42. Garvey MI, Casey AL, Wilkinson MAC, Ratcliffe L, McMurray C, Stockton J, et al. 2021. Details of SARS-CoV-2 reinfections at a major UK tertiary centre. *J Infect* 82(6):e29–e30. https://doi.org/10.1016/j.jinf.2021.03.004 PMID: 33744302

43. Harrington D, Kele B, Pereira S, Couto-Parada X, Riddell A, Forbes S, et al. 2021. Confirmed Reinfection with SARS-CoV-2 Variant VOC-202012/01. *Clin Infect Dis* ciab014 https://doi.org/10.1093/cid/ciab014 PMID: 33421056

44. Zucman N, Uhel F, Descamps D, Roux D, Ricard JD. 2021. Severe reinfection with South African SARS-CoV-2 variant 501Y.V2: A case report. *Clin Infect Dis* ciab129

45. Ramírez JD, Muñoz S, Ballesteros N, Patiño LH, Castañeda S, Rincón CA, et al. 2021. Phylogenomic Evidence of Reinfection and Persistence of SARS-CoV-2: First Report from Colombia. *Vaccines (Basel)* 9(3):282. https://doi.org/10.3390/vaccines9030282 PMID: 33806867

46. Van Eslande J, Vermeersch P, Vandervoort K, Wawina-Bokalanga T, Vanmechelen B, Wellants E, et al. 2021. Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Reinfection by a Phylogenetically Distinct Strain. *Clin Infect Dis* 73(2):354–356. https://doi.org/10.1093/cid/ciaa1330 PMID: 32887979

47. Tomassini S, Kotecha D, Bird PW, Folwell A, Biju S, Tang JW. 2021. Setting the criteria for SARS-CoV-2 reinfection—six possible cases. *J Infect* 82(2):282–327. https://doi.org/10.1016/j.jinf.2020.08.011 PMID: 32800801

48. Hoang VT, Dao TL, Gautret P. 2020. Recurrence of positive SARS-CoV-2 in patients recovered from COVID-19. *J Med Virol* 92(11):2366–2367. https://doi.org/10.1002/jmv.26056 PMID: 32449789

49. Bongiovanni M. 2021. COVID-19 reinfection in a healthcare worker. *J Med Virol* 93(7):4058–4059. https://doi.org/10.1002/jmv.26565 PMID: 32990954

50. Salzer HJF, Neuböck M, Heldt S, Haug I, Paar C, Lamprecht B. 2021. Emerging COVID-19 reinfection four months after primary SARS-CoV-2 infection. *Wien Med Wochenschr* 1–3. https://doi.org/10.1007/s10354-021-00813-1 PMID: 33555412

51. Sicisic I Jr, Chacon AR, Zaw M, Ascher K, Abreu A, Chediak A. 2021. A case of SARS-CoV-2 reinfection in a patient with obstructive sleep apnea managed with telemedicine. *BMJ Case Rep* 14(2): e240496 https://doi.org/10.1136/bcr-2020-240496

52. Salcin S, Fontem F. 2021. Recurrent SARS-CoV-2 infection resulting in acute respiratory distress syndrome and development of pulmonary hypertension: A case report. *Respir Med Case Rep* 33:101314. https://doi.org/10.1016/j.rmcr.2020.101314 PMID: 33312856

53. Selhorst P, Van Ierssel S, Michiels J, Maria J, Bartholomeeusen K, Dirinck E, et al. 2020. Symptomatic SARS-CoV-2 reinfection of a health care worker in a Belgian nosocomial outbreak despite primary neutralizing antibody response. *Clin Infect Dis* ciaa1850.

54. Scarpati G, Piazza O, Pagliano P, Rizzo F. 2021. COVID-19: a confirmed case of reinfection in a nurse. *BMJ Case Rep* 14(7):e244507 https://doi.org/10.1136/bcr-2021-244507 PMID: 34257135

55. Garg J, Agarwal J, Das A, Sen M. 2021. Recurrent COVID-19 infection in a healthcare worker: a case report. *J Med Case Rep* 15(1):363 https://doi.org/10.1186/s13256-021-02881-8 PMID: 34253225

56. Goes LR, Siqueira JD, Garrido MM, Alves BM, Pereira ACPM, Cicala C, et al. 2021. New infections by SARS-CoV-2-variants of concern after natural infections and post-vaccination in Rio de Janeiro, Brazil. *Infect Genet Evol* 94:104998 https://doi.org/10.1016/j.meegid.2021.104998 PMID: 34252616
Ahmadian S, Fathizadeh H, Shabestari Khiabani S, Asgharzadeh M, Kafil HS. 2021. COVID-19 reinfection in a healthcare worker after exposure with high dose of virus: A case report. *Clin Case Rep* 9(6):e04257. https://doi.org/10.1002/ccr3.4257 PMID: 34194783

Amorim MR, Souza WM, Barros ACG Jr, Toledo-Teixeira DA, Dos-Santos KB, Simeoni CL, et al. 2021. Respiratory Viral Shedding in Healthcare Workers Reinfected with SARS-CoV-2, Brazil. *Emerg Infect Dis* 27(6):1737–1740. https://doi.org/10.3201/eid2706.210558 PMID: 33871331

Bongiovanni M, Marra AM, Bini F, Bodini BD, Carlo DD, Giuliani G. 2021. COVID-19 reinfection in healthcare workers: A case series. *J Infect* 82(6):e4–e5. https://doi.org/10.1016/j.jinf.2021.04.002 PMID: 33839184

Salehi-Vaziri M, Omrani MD, Pouriayev ali MH, Fotouhi F, Banifazl M, Farahman d B, et al. 2021. SARS-CoV-2 reinfection with a different genotype. *Virus Res* 299:198421. https://doi.org/10.1016/j.viruses.2021.198421 PMID: 33836204

Bonifácio LP, Pereira APS, Araújo DCAE, Balbão VDMP, Fonseca BALD, Passos ADC, et al. 2020. Are SARS-CoV-2 reinfection and Covid-19 recurrence possible? a case report from Brazil. *Rev Soc Bras Med Trop* 53:e20200619 https://doi.org/10.1590/0037-8682-0619-2020 PMID: 32965458

Silva MSD, Demoliner M, Hansen AW, Gularte JS, Silveira F, Heldt FH, et al. 2021. Early detection of SARS-CoV-2 P.1 variant in Southern Brazil and reinfection of the same patient by P.2. *Rev Inst Med Trop Sao Paulo* 63:e58. https://doi.org/10.1590/S1678-9964202163058 PMID: 34231823

Yu ALF, Liphaus BL, Ferreira PM, Tanamachi AT, Masuda ET, Trevisan CM, et al. 2021. SARS-CoV-2 reinfection: report of two cases in Southeast Brazil. *Rev Inst Med Trop Sao Paulo* 63:e50. https://doi.org/10.1590/S1678-9964202163050 PMID: 34161556

Romano CM, Felix AC, Paula AV, Jesus JG, Andrade PS, Cândido D, et al. 2021. SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil. *Rev Inst Med Trop Sao Paulo* 63:e36. https://doi.org/10.1590/S1678-9964202163036 PMID: 33909850

West J, Everden S, Nikitas N. 2021. A case of COVID-19 reinfection in the UK. *Clin Med (Lond)* 21(1):e52–e53. https://doi.org/10.7861/cclinmed.2020-0912 PMID: 33303623

Sharma R, Sardar S, Mohammad Arshad A, Ata F, Zara S, Munir W. 2020. A Patient with Asymptomatic SARS-CoV-2 Infection Who Presented 86 Days Later with COVID-19 Pneumonia Possibly Due to Reinfection with SARS-CoV-2. *Am J Case Rep* 21:e927154 https://doi.org/10.12659/AJCR.927154 PMID: 33257644

Ozaras R, Ozdogru I, Yilmaz AA. 2020. Coronavirus disease 2019 re-infection: first report from Turkey. *New Microbes New Infect* 38:100774. https://doi.org/10.1016/j.nmni.2020.10.004 PMID: 33235800

Colson P, Finaud M, Levy N, Lagier JC, Raoult D. 2021. Evidence of SARS-CoV-2 re-infection with a different genotype. *J Infect* 82(4):84–123. https://doi.org/10.1016/j.jinf.2021.01.011 PMID: 33207255

Selvaraj V, Herman K, Dapaah-Afrinye K. 2020. Severe, Symptomatic Reinfection in a Patient with COVID-19. *R I Med J (2013)* 103(10):24–26.

AlFehaidi A, Ahmad SA, Hamed E. 2021. SARS-CoV-2 re-infection: a case report from Qatar. *J Infect* 82(3):414–451. https://doi.org/10.1016/j.jinf.2020.09.019 PMID: 33156600

de Brito CAA, Lima PMA, de Brito MCM, de Oliveira DB. 2020. Second Episode of COVID-19 in Health Professionals: Report of Two Cases. *Int Med Case Rep J* 13:471–475 https://doi.org/10.2147/IMCRJ.S277882

Hanif M, Haider MA, Ali MJ, Naz S, Sundas F. 2020. Reinfection of COVID-19 in Pakistan: A First Case Report. *Cureus* 12(10):e11176. https://doi.org/10.7759/cureus.11176 PMID: 33262913

Ferrante L, Livas S, Steinmetz WA, Almeida ACL, Leão J, Vassão RC, et al. 2021. The First Case of Immunity Loss and SARS-CoV-2 Reinfection by the Same Virus Lineage in Amazonia. *J Racial Ethn Health Disparities* 8(4):821–823 https://doi.org/10.1007/s40615-021-01084-7 PMID: 34155594

Arteaga-Livias K, Panduro-Correa V, Pinzas-Acosta K, Perez-Abad L, Pecho-Silva S, Espinoza-Sánchez F, et al. 2021. COVID-19 reinfection? a suspected case in a Peruvian patient. *Travel Med Infect Dis* 39:101947 https://doi.org/10.1016/j.tmtd.2020.101947 PMID: 33307196

Novoa W, Miller H, Mattar S, Faccini-Martinez A, Rivero R, Serrano-Coll H. 2021. A first probable case of SARS-CoV-2 reinfection in Colombia. *Ann Clin Microbiol Antimicrob* 20(1):7 https://doi.org/10.1186/s12941-020-00413-8 PMID: 33435982

Alzedam A, Benghyla AM, Zeglam MJ, Benmassoud ET, Bennji SM. 2021. A case of COVID-19 re-infection in Libya. *Afr J Thorac Crit Care Med* 27(2). https://doi.org/10.7196/AJTCM.2021.v27i2.131 PMID: 34430866

Camargo CH, Goncalves CR, Pagnoca EVRG, Campos KR, Montanha JOM, Flores MNP, et al. SARS-CoV-2 reinfection in a healthcare professional in inner Sao Paulo during the first wave of COVID-19 in Brazil *Diagn Microbiol Infect Dis*. 101(4):115516
80. Rodríguez-Espinosa D, Roseta Monzó JJ, Casals Q, Piñeiro GJ, Rodas L, Vera M, Maduell F, 2021. Fatal SARS-CoV-2 reinfection in an immunosuppressed patient on hemodialysis. *J Nephrol* 34 (4):1041–1043. https://doi.org/10.1007/s40620-021-01039-5 PMID: 34097293

81. Sanyang B, Kanteh A, Usuf E, Nadjm B, Jarju S, Bah A, et al. 2021. COVID-19 reinfections in The Gambia by phylogenetically distinct SARS-CoV-2 variants-first two confirmed events in west Africa. *Lancet Glob Health* 9(7):e905–e907 https://doi.org/10.1016/S2214-109X(21)00213-8 PMID: 34090610

82. Loconsole D, Sallustio A, Accogli M, Centrone F, Casulli D, Madaro A, et al. 2021. Symptomatic SARS-CoV-2 Reinfection in a Healthy Healthcare Worker in Italy Confirmed by Whole-Genome Sequencing. *Viruses* 13(5):899 https://doi.org/10.3390/v13050899 PMID: 34066205

83. Garduño-Orbe B, Sánchez-Rebolledo JM, Cortés-Rafael M, García-Jiménez Y, Perez-Ortiz M, Menéndez-Pastrana IR, et al. 2021. SARS-CoV-2 Reinfection among Healthcare Workers in Mexico: Case Report and Literature Review. *Medicina (Kaunas)* 57(5):442 https://doi.org/10.3390/medicina57050442 PMID: 34063699

84. Vora T, Vora P, Vora F, Sharma K, Desai HD. 2021. Symptomatic reinfection with COVID-19: A first from Western India. *J Family Med Prim Care* 10(3):1496–1498. https://doi.org/10.4103/jfmpc.jfmpc_2002_20 PMID: 34041201

85. Sánchez Molla M, de Gregorio Bernardo C, Ibarra Rizo M, Soriano A. 2021. [Reinfection by SARS-CoV-2 in a socio-sanitary residence. Description of the outbreak]. *Aten Primaria* 53(8):102100. https://doi.org/10.1016/aprim.2021.102100 PMID: 34033997

86. Fageeh H, Alshehri A, Fageeh H, Bizzoca ME, Lo Muzio L, Quadri MFA. 2021. Re-infection of SARS-CoV-2: A case in a young dental healthcare worker. *J Infect Public Health* 14(6):685–688. https://doi.org/10.1016/j.jiph.2021.02.012 PMID: 33971576

87. Novazzi F, Baj A, Genoni A, Spezia PG, Colombo A, Cassagni G, et al. 2021. SARS-CoV-2 B.1.1.7 reinfection after previous COVID-19 in two immunocompetent Italian patients. *J Med Virol* 93 (9):5646–5649. https://doi.org/10.1002/jmv.27066 PMID: 33969504

88. Letizia AG, Smith DR, Ge Y, Ramos I, Sealfon RSG, Goforth C, et al. 2021. Viable virus shedding during SARS-CoV-2 reinfection. *Lancet Respir Med* 9(7):e56–e57 https://doi.org/10.1016/S2213-2600 (21)00219-8 PMID: 33964243

89. Staub T, Arendt V, Lasso de la Vega EC, Braquet P, Michaux C, Kohnen M, et al. 2021. Case series of four re-infections with a SARS-CoV-2 B.1.351 variant, Luxembourg, February 2021. *Euro Surveill* 26 (18):2100423. https://doi.org/10.2807/1560-7917.ES.2021.26.18.2100423

90. Brehm TT, Pfefferle S, von Possel R, Kobbe R, No¨rz D, Schmiede S, et al. 2021. SARS-CoV-2 Reinfection, a summary of the literature and an outbreak report in Lower Saxony, Germany. *J Infect Public Health* 14(6):685–688. https://doi.org/10.1016/j.jiph.2021.02.012 PMID: 33971576

91. Konstantinou F, Skrapari I, Bareta E, Bakogiannis N, Papadopoulou AM, Bakoyiannis C. 2021. A Case of SARS-CoV-2 Clinical Relapse after 4 Negative RT-PCR Tests in Greece: Recurrence or Reinfection? *Clin Med Insights Case Rep* 14:11795476211009813. https://doi.org/10.1177/11795476211009813 PMID: 33911911

92. Shoar S, Khavandi S, Tabibzadeh E, Khavandi S, Naderan M, Shoar N. 2021. Recurrent coronavirus diseases 19 (COVID-19): A different presentation from the first episode. *Clin Case Rep* 9(4):2149–2152. https://doi.org/10.1002/ccr3.3967 PMID: 33921216

93. Rani PR, Imran M, Lakshmi JV, Jolly B, Jain A, Surekha A, et al. 2021. Symptomatic reinfection of SARS-CoV-2 with spike protein variant N440K associated with immune escape. *J Med Virol* 93 (7):4163–4165. https://doi.org/10.1002/jmv.26997 PMID: 33818797

94. Vánucs S, Dembrovszky F, Farkas N, Szakó L, Teutsch B, Bunduc S, et al. 2021. Repeated SARS-CoV-2 Positivity: Analysis of 123 Cases. *Viruses* 13(5):512 https://doi.org/10.3390/v13050512 PMID: 33908867

95. Das P, Satter SM, Ross AG, Abdullah Z, Nazneen A, Sultana R, et al. 2021. A Case Series Describing the Recurrence of COVID-19 in Patients Who Recovered from Initial Illness in Bangladesh. *Trop Med Infect Dis* 6(2):41. https://doi.org/10.3390/tropicalmed6020041 PMID: 33807247

96. Fintelman-Rodrigues N, da Silva APD, Dos Santos MC, Saraiva FB, Ferreira MA, Gesto J, et al. 2021. Genetic Evidence and Host Immune Response in Persons Reinfected with SARS-CoV-2, Brazil. *Emerg Infect Dis* 27(5):1446–1453. https://doi.org/10.3201/eid2705.2004912 PMID: 33797393
97. Lee JT, Hesse EM, Paulin HN, Datta D, Katz LS, Talwar A, et al. 2021. Clinical and Laboratory Find-
98. Roy S. 2021. COVID-19 Reinfection in the Face of a Detectable Antibody Titer. Curr Opin Infect Dis
99. Fernandes AC, Figueiredo R. 2021. SARS-CoV-2 reinfection: a case report from Portugal. Rev Soc Bras Med Trop 54:e0002–2021. https://doi.org/10.1590/0037-8682-0002-2021 PMID: 33759910
100. Ul-Haq Z, Khan A, Fazid S, Noor F, Yousaftai YM, Sherin A. 2020. First documented reinfection of SARS-CoV-2 in second wave from Pakistan. J Ayub Med Coll Abbottabad 32(Suppl 1)(4):S704–S705. PMID: 33754536
101. Krishna VN, Ahmad M, Overton ET, Jain G. 2021. Recurrent COVID-19 in Hemodialysis: A Case Report of 2 Possible Reinfections. Kidney Med 3(3):447–450. https://doi.org/10.1159/00051675 PMID: 33744883
102. Leung S, Hossain N. 2021. Recurrence and Recovery of COVID-19 in an Older Adult Patient with Multiple Comorbidities: A Case Report. Gerontologist 67(4):445–448. https://doi.org/10.1119/000514675 PMID: 33744883
103. Salehi-Vaziri M, Jalali T, Farahmand B, Fotouhi F, Banifazl M, Pouriayev ali MH, et al. 2021. Clinical characteristics of SARS-CoV-2 by re-infection vs. reactivation: a case series from Iran. Eur J Clin Microbiol Infect Dis 40(8):1713–1719. https://doi.org/10.1007/s10096-021-04221-6 PMID: 33738620
104. Romera I, Núñez K, Calizada M, Baeza I, Molina R, Morillas J. 2021. SARS-CoV-2 reinfection. Med Intensiva (Engl Ed) 45(6):375–376. https://doi.org/10.1016/j.medint.2021.01.007
105. Yadav SP, Wadhwa T, Thakkar D, Kapoor R, Rastogi N, Sarma S. 2021. COVID-19 reinfection in two children with cancer. Pediatr Hematol Oncol 38(4):403–405. https://doi.org/10.1080/08880018.2020.1855276 PMID: 33625290
106. Cavanaugh AM, Thoroughman D, Miranda H, Spicer K. 2021. Suspected Recurrent SARS-CoV-2 Infections Among Residents of a Skilled Nursing Facility During a Second COVID-19 Outbreak—Kentucky, July-November 2020. MMWR Mortal Mortal Wkly Rep 70(8):273–277. https://doi.org/10.15585/mmwr.mm7008a3 PMID: 33630817
107. Vetter P, Cordey S, Schibler M, Vieux L, Despres L, Laubscher F, et al. 2021. Clinical, virologic and immunologic features of a mild case of SARS-CoV-2 reinfection. Clin Microbiol Infect 27(5):791.e1–4. https://doi.org/10.1016/j.cmi.2021.02.010 PMID: 33618012
108. Lee JT, Hesse EM, Paulin HN, Datta D, Katz LS, Talwar A, et al. 2021. Clinical and Laboratory Findings in Patients with Potential SARS-CoV-2 Reinfection, May-July 2020. Clin Infect Dis ciab148. https://doi.org/10.1093/cid/ciab148 PMID: 33598716
109. Kulkarni O, Narreddy S, Zaveri L, Kaial IG, Tallapaka KB, Sowpati DT. 2021. Evidence of SARS-CoV-2 reinfection without mutations in Spike protein. Clin Infect Dis ciab136. https://doi.org/10.1093/cid/ciab136 PMID: 34492695
110. Adrielle Dos Santos L, Filho PGG, Silva AMF, Santos JVG, Santos DS, Aquino MM, et al. 2021. Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers. J Infect 82(2):399–406. https://doi.org/10.1016/j.jinf.2021.01.020 PMID: 33589297
111. Inada M, Ishikane M, Terada M, Matsunaga A, Maeda K, Tsuichiya K, et al. 2021. Asymptomatic COVID-19 re-infection in a Japanese male by elevated half-maximal inhibitory concentration (IC50) of neutralizing antibodies. J Infect Chemother 27(7):1063–1067. https://doi.org/10.1016/j.jiac.2021.04.017 PMID: 33962861
112. Fonseca V, de Jesus R, Adelino T, Reis AB, de Souza BB, Ribeiro AA, et al. 2021. Genomic evidence of SARS-CoV-2 reinfection case with the emerging B.1.2 variant in Brazil. J Infect 83(2):237–279. https://doi.org/10.1016/j.jinf.2021.05.014 PMID: 34029627
113. Zhou X, Zhou YN, Ali A, Liang C, Ye Z, Chen X, et al. 2021. Case Report: A Re-Positive Case of SARS-CoV-2 Associated With Glaucoma. Front Immunol 12:70129. https://doi.org/10.3389/fimmu.2021.70129 PMID: 34394095
114. Massachi J, Donohue KC, Kelly JD. 2021. Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection Cases Corroborated by Sequencing. Am J Trop Med Hyg 105(3):210365. https://doi.org/10.4269/ajtmh.21-0365 PMID: 34307005
115. Massanella M, Martin-Urda A, Mateu L, Marin T, Aldas I, Riveira-Muñoz E, et al. 2021. Critical Presentation of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection: A Case Report. Open Forum Infect Dis 8(7):ofab329 https://doi.org/10.1093/ofid/ofab329 PMID: 34337095
116. Alshukairi AN, El-Kafrawy SA, Dada A, Yasir M, Yamani AH, Saeedi MF, et al. 2021. Re-infection with a different SARS-CoV-2 clade and prolonged viral shedding in a hematopoietic stem cell transplantation patient. Int J Infect Dis 110:267–271. https://doi.org/10.1016/j.ijid.2021.07.036 PMID: 34289407
117. Bader N, Khattab M, Farah F. 2021. Severe reinfec tion with severe acute respiratory syndrome coronavirus 2 in a nursing home resident: a case report. J Med Case Rep 15(1):392. https://doi.org/10.1186/s13256-021-02958-4 PMID: 34284812

118. Awada H, Nassereddine H, Haj Ali A. 2021. Severe acute respiratory syndrome coronavirus 2 reinfec tion in a coronavirus disease 2019 recovered young adult: a case report. J Med Case Rep 15(1):382 https://doi.org/10.1186/s13256-021-02965-5 PMID: 34271967

119. Zanferrari C, Fanucchi S, Sollazzo MT, Ranieri M, Volterra D, Valvassori L. 2021. Focal Cerebral Arteriopathy in a Young Adult Following SARS-CoV2 Reinfection. J Stroke Cerebrovasc Dis 30(9):105944. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105944 PMID: 34271279

120. Zhang N, Chen X, Jia W, Jin T, Xiao S, Chen W, et al. 2021. Evidence for lack of transmission by close contact and surface touch in a restaurant outbreak of COVID-19. J Infect 83(2):207–216. https://doi.org/10.1016/j.jinf.2021.05.030 PMID: 34062182

121. Naveca FG, Nascimento VA, Nascimento F, Ogrzewalska M, Pauvolid-Corrêa A, Araujo MF, et al. 2021. A case series of SARS-CoV-2 reinfections caused by the variant of concern Gamma in Brazil. medRxiv 2021.11.29.21266109

122. Hasanzadeh A, Shariatmohammadi SS, Vakilian A, Javan A, Rahmani M, Ganjoo S, et al. 2021. Case series: Reinfection of recovered SARS CoV-2 patients for the third time. Clin Case Rep 9(10):e04936 https://doi.org/10.1002/ccr3.4936 PMID: 34691457

123. Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. 2021. Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv 2021.11.11.21266068

124. Vitale J, Muroni N, Clerici P, De Paschale M, Evangelista I, Cei M, et al. 2021. Assessment of SARS-CoV-2 Reinfection 1 Year After Primary Infection in a Population in Lombardy, Italy. JAMA Intern Med e212959

125. Babiker A, Marvil CE, Waggoner JJ, Collins MH, Piantadosi A. 2020. The importance and challenges of identifying SARS-CoV-2 reinfections. J Clin Microbiol 59(4):e02769–20.

126. Boyton RJ, Altmann DM. 2021. Risk of SARS-CoV-2 reinfection after natural infection. Lancet 397(10280):1161–1163. https://doi.org/10.1016/S0140-6736(21)00662-0 PMID: 33743219

127. Hansen CH, Michlmayr D, Gubbels SM, Molbak K, Ethelberg S. 2021. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet 397(10280):1204–1212. https://doi.org/10.1016/S0140-6736(21)00575-4 PMID: 33743221

128. Gousseff M, Penot P, Gallay L, Batisse D, Benech N, Bouiller K, et al. 2020. Clinical recurrences of COVID-19 symptoms after recovery: Viral relapse, reinfection or inflammatory rebound? J Infect 81(5):816–846. https://doi.org/10.1016/j.jinf.2020.06.073 PMID: 32619697

129. Lawandi A, Warner S, Sun J, Demirkale CY, Danner RL, Klompass M, et al. 2021. Suspected SARS-CoV-2 Reinfections: Incidence, Predictors, and Healthcare Use among Patients at 238 U.S. Healthcare Facilities, June 1, 2020- February 28, 2021. Clin Infect Dis ciab671

130. Iwasaki A. 2020. What reinfections mean for COVID-19. Lancet Infect Dis 2(20):19–20. https://doi.org/10.1016/S1473-3099(20)30783-0 PMID: 33058796

131. Leidi A, Koegler F, Dumont R, Dubos R, Zaballa ME, Piumatti G, et al. 2021. Risk of reinfection after seroconversion to SARS-CoV-2: A population-based propensity-score matched cohort study. Clin Infect Dis cbia495

132. Hall VJ, Foulkes S, Charleit A, Atti A, Monk EJM, Simmons R, et al. 2021. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 397(10283):1459–1469. https://doi.org/10.1016/S0140-6736(21)00675-9 PMID: 33844963

133. Abu-Raddad LJ, Chemaitelly H, Malek JA, Ahmed AA, Mohamoud YA, Younuskuju S, et al. 2020. Assessment of the risk of SARS-CoV-2 reinfection in an intense re-exposure setting. Clin Infect Dis ciaa1846

134. Ghorbani SS, Taherpour N, Bayat S, Ghalaji H, Mohseni P, Hashemi Nazari SS. 2021. Epidemiologic characteristics of cases with re-infection, recurrence and hospital readmission due to COVID-19: a systematic review and meta-analysis. J Med Virol

135. Santiago-Espinosa O, Prieto-Torres ME, Cabrera-Gaytan DA. 2021. Laboratory-confirmed SARS-CoV-2 reinfection in the population treated at social security. Respir Med Case Rep 34:101493. https://doi.org/10.1016/j.rmcr.2021.101493 PMID: 34395189

136. Peghin M, Bouza E, Fabris M, De Martino M, Palease A, Bontempo G, et al. 2021. Low risk of reinfections and relation with serological response after recovery from the first wave of COVID-19. Eur J Clin Microbiol Infect Dis 1–8. https://doi.org/10.1007/s10096-021-04335-x PMID: 34378086
137. Wilkins JT, Hirschhorn LR, Gray EL, Wailia A, Carnethon M, Zembower TR, et al. 2021. Serologic Status and SARS-CoV-2 Infection over 6-Months of Follow-Up in Healthcare Workers in Chicago: A Cohort Study. *Infect Control Hosp Epidemiol* 1–29. https://doi.org/10.1017/ice.2021.367 PMID: 34369331

138. Ali AM, Ali KM, Fatah MH, Tawfeeq HM, Rostam HM. 2021. SARS-CoV-2 reinfection in patients negative for immunoglobulin G following recovery from COVID-19. *New Microbes New Infect* 43:100926. https://doi.org/10.1016/j.nmni.2021.100926 PMID: 34367645

139. Ringlander J, Olausson J, Nyström K, Hännqvist T, Jakobsson HE, Lindh M. Recurrent and persistent infection with SARS-CoV-2—epidemiological data and case reports from Western Sweden, 2020. *Infect Dis (Lond)*. 1–8

140. Dobaño C, Ramirez-Morros A, Alonso S, Vidal-Alaball J, Ruiz-Olalia G, Vidal M, et al. 2021. Persistence and baseline determinants of seropositivity and reinfection rates in health care workers up to 12.5 months after COVID-19. *BMC Med* 19(1):155. https://doi.org/10.1186/s12916-021-02032-2 PMID: 34185093

141. Sánchez-Montalvá A, Fernández-Naval C, Antón A, Durá X, Vimes A, Silgado A, et al. 2021. Risk of SARS-CoV-2 Infection in Previously Infected and Non-Infected Cohorts of Health Workers at High Risk of Exposure. *J Clin Med* 10(9):1968. https://doi.org/10.3390/jcm10091968 PMID: 34064314

142. Lutrick K, Ellingson KD, Baccam Z, Rivers P, Beitel S, Parker J, et al. 2021. COVID-19 Infection, Reinfection, and Vaccine Effectiveness in a Prospective Cohort of Arizona Frontline/Essential Workers: The AZ HEROES Research Protocol. *JMRI Res Protoc* https://doi.org/10.2196/28925 PMID: 34057904

143. Crelten T, Pi L, Davis EL, Pollington TM, Lucas TCD, Ayabina D, et al. 2021. Dynamics of SARS-CoV-2 with waning immunity in the UK population. *Philos Trans R Soc Lond B Biol Sci* 376(1829):20200274 https://doi.org/10.1098/rstb.2020.0274 PMID: 34053264

144. Breathnach AS, Riley PA, Cotter MP, Houston AC, Habibi MS, Planche TD. 2021. Prior COVID-19 significantly reduces the risk of subsequent infection, but reinfections are seen after eight months. *J Infect* 82(4):e11–e12. https://doi.org/10.1016/j.jinf.2021.01.005 PMID: 33450303

145. Qureshi AI, Baskett WI, Huang W, Lobanova I, Naqvi SH, Shyu CR. 2021. Re-infection with SARS-CoV-2 in Patients Undergoing Serial Laboratory Testing. *Clin Infect Dis* 62(4):e2260 https://doi.org/10.1093/cid/ciaa069. https://doi.org/10.3390/jcm10091968 PMID: 33666988

146. Brouqui P, Colson P, Melenotte C, Houhamdi L, Bedotto M, Devaux C, et al. 2021. COVID-19 re-infection in Shahroud, Iran: a follow-up study. *Epidemiol Infect* 211(1):478 https://doi.org/10.1038/s41552-021-06208-2 PMID: 34030176

147. Breathnach AS, Duncan CJA, Bouzidi KE, Hanrath AT, Payne BAI, Randell PA, et al. 2021. Prior SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. *Nature* 595(7867):421–425. https://doi.org/10.1038/s41586-021-03647-4 PMID: 34030176

148. Davido B, De Truchis P, Lawrence C, Annane D, Domart-Rancón M, Gault E, et al. 2021. SARS-CoV-2 reinfections among hospital staff in the greater Paris area. *J Travel Med* 28(4):taab058. https://doi.org/10.1093/jtm/taab058 PMID: 33834251

149. Zare F, Teimouri M, Khozravi A, Rohani-Rasaf M, Chaman R, Hosseinzadeh A, et al. 2021. COVID-19 protects against reinfection, even in the absence of detectable antibodies. *J Infect Dis* 211(3):e2260 https://doi.org/10.1093/cid/ciaa069. https://doi.org/10.3390/jcm10091968 PMID: 33666988

150. Zare F, Teimouri M, Khozravi A, Rohani-Rasaf M, Chaman R, Hosseinzadeh A, et al. 2021. COVID-19 protects against reinfection, even in the absence of detectable antibodies. *J Infect Dis* 211(3):e2260 https://doi.org/10.1093/cid/ciaa069. https://doi.org/10.3390/jcm10091968 PMID: 33666988

151. Breathnach AS, Duncan CJA, Bouzidi KE, Hanrath AT, Payne BAI, Randell PA, et al. 2021. Prior COVID-19 protects against reinfection, even in the absence of detectable antibodies. *J Infect Dis* 211(3):e2260 https://doi.org/10.1093/cid/ciaa069. https://doi.org/10.3390/jcm10091968 PMID: 33666988
Abu-Raddad LJ, Chemaitelly H, Coyle P, Malek JA, Ahmed AA, Mohamoud YA, et al. 2021. SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95% efficacy. *EClinicalMedicine* 35:100861 https://doi.org/10.1016/j.eclinm.2021.100861 PMID: 33937733

Hanrath AT, Payne BAI, Duncan CJA. 2021. Prior SARS-CoV-2 infection is associated with protection against symptomatic reinfection. *J Infect* 82(4):e29–e30. https://doi.org/10.1016/j.jinf.2020.12.023 PMID: 33373652

Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al. 2021. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. *N Engl J Med* 384(6):533–540. https://doi.org/10.1056/NEJMoa2034545 PMID: 33369366

Hamed E, Sedeeq S, Alnuaimi AS, Syed M, ElHamid MA, Alemrayat B, et al. 2021. Rates of recurrent SARS-CoV-2 swab results among patients attending primary care in Qatar. *J Infect* 82(4):84–123. https://doi.org/10.1016/j.jinf.2020.10.029 PMID: 33144191

Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang ML, et al. 2020. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. *J Clin Microbiol* 58(11):e02107–20. https://doi.org/10.1128/JCM.02107-20 PMID: 32826322

Mack CD, Tai C, Sikka R, Grad YH, Maragakis LL, Grubaugh ND, et al. 2021. SARS-CoV-2 Reinfection: A Case Series from a 12-Month Longitudinal Occupational Cohort. *Clin Infect Dis* ciab738

Abu-Raddad LJ, Chemaitelly H, Bertollini R; 2021. National Study Group for COVID-19 Epidemiology. Disease severity of SARS-CoV-2 Reinfections as Compared with Primary Infections. *N Engl J Med* NEJMc2108120

Bean DJ, Monroe J, Turcincovic J, Moreau Y, Connor JH, Sagar M. 2021. SARS-CoV-2 reinfection with a High Attack Rate. *J Infect Dis* ciab940.

Mensah AA, Campbell H, Stowe J, Seghezzo G, Simmons R, Lacy J, et al. 2021. Risk of SARS-CoV-2 reinfections in children: prospective national surveillance, January 2020 to July 2021, England. *medRxiv* 2021.12.10.21267372

Levin-Rector A, Firestein L, McGibbon E, Sell J, Lim S, Lee EH, et al. 2021. Reduced Odds of SARS-CoV-2 Reinfection after Vaccination among New York City Adults, June–August 2021. *medRxiv* 2021.12.09.21267203

Malhotra S, Mani K, Lodha R, Bakhshi S, Mathur VP, Gupta P, et al. 2022. SARS-CoV-2 Reinfection Rate and Estimated Effectiveness of the Inactivated Whole Virion Vaccine BBV152 Against Reinfection Among Health Care Workers in New Delhi, India. *JAMA Netw Open* 5(1):e2142210 https://doi.org/10.1001/jamanetworkopen.2021.42210 PMID: 34994793

Mao Y, Wang W, Ma J, Wu S, Sun F. 2021. Reinfection rates among patients previously infected by SARS-CoV-2: systematic review and meta-analysis. *Chin Med J (Engl)* 135(2):145–152. https://doi.org/10.1097/CM9.0000000000001892 PMID: 34908003

Salehi-Vaziri M, Pouriaeyavali MH, Fotouhi F, Jalali T, Banifazl M, Farahmand B, et al. 2021. SARS-CoV-2 re-infection rate in Iranian COVID-19 cases within one-year follow-up. *Microb Pathog* 161(Pt B):105296 https://doi.org/10.1016/j.micpath.2021.105296 PMID: 34801646

Mensah AA, Lacy J, Stowe J, Seghezzo G, Simmons R, Lacy J, et al. 2022. Disease severity during SARS-CoV-2 reinfection: a nationwide study. *J Infect* S0163-4453(22)00010-X https://doi.org/10.1016/j.jinf.2022.01.012 PMID: 35085659

McKeigue PM, McAllister DA, Robertson C, Stockton D, Colhoun HM, for the PHS COVID-19 Epidemiology and Research Cell. 2021. Reinfection with SARS-CoV-2: outcome, risk factors and vaccine efficacy in a Scottish cohort. *medRxiv* 2021.11.23.21266574

Maier HE, Balsamada A, Ojeda S, Cerpas C, Sanchez N, Plazoaola M, et al. 2021. An immune correlate of SARS-CoV-2 infection and severity of reinfections. *medRxiv* 2021.11.23.21266767 https://doi.org/10.1101/2021.11.23.21266767 PMID: 34845458

Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Ash N, et al. 2021. Protection and waning of natural and hybrid COVID-19 immunity. *medRxiv* 2021.12.04.21267114

Chivese T, Matizanadzo JT, Musa OAH, Hindy G, Furuya-Kanamori L, Islam N, et al. 2021. The prevalence of adaptive immunity to COVID-19 and reinfection after recovery—a comprehensive systematic review and meta-analysis. *medRxiv* 2021.09.03.21263103

Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. 2021. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. *N Engl J Med* 384(20):1899–1909. https://doi.org/10.1056/NEJMoa2103055 PMID: 33951374

Tegally H, Wilkinson E, Giovannetti M, Irandadeh A, Fonseca V, Ghandhari J, et al. 2021. Detection of a SARS-CoV-2 variant of concern in South Africa. *Nature* 592(7854):438–443. https://doi.org/10.1038/s41586-021-03402-9 PMID: 33690265
176. Muik A, Lui BG, Wallisch AK, Bacher M, Mühl J, Reinholz J, et al. 2022. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. *Science* 375(6581):678–680. https://doi.org/10.1126/science.abm7591 PMID: 35040667

177. Dejnirattisai W, Hoo J, Zhou D, ZahradnÄ­k J, Supasa P, Liu C, et al. 2022. SARS-CoV-2 Omicron B.1.1.529 leads to widespread escape from neutralizing antibody responses. *Cell* 185(3):467–484. e15 https://doi.org/10.1016/j.cell.2021.12.046 PMID: 35081335

178. Hui KPY, Ho JCW, Cheung MC, Ng KC, Ching RHH, Lai KL, et al. 2022. SARS-CoV-2 Omicron variant replication in human bronchi and lung ex vivo. *Nature*. https://doi.org/10.1038/s41586-022-04479-6 PMID: 35104836

179. Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, et al. 2022. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. *Nature*. https://doi.org/10.1038/s41586-022-04474-x PMID: 35104837

180. Altarawneh H, Chemaitelly H, Tang P, Hasan MR, Qassim S, Ayoub HH, et al. 2022. Protection afforded by prior infection against SARS-CoV-2 reinfection with the Omicron variant. *medRxiv* 2022.01.05.22268782

181. Nunes MC, Sibanda S, Baillie VL, Kwatra G, Aguas R, Madhi SA, et al. 2022. SARS-CoV-2 Omicron symptomatic infections in previously infected or vaccinated South African healthcare workers. *medRxiv* 2022.04.02.22270480 https://doi.org/10.3390/vaccines10030459 PMID: 35335091

182. Lyngse FP, Mortensen LH, Denwood MJ, Christiansen LE, Moller CH, Skov RL, et al. 2021. SARS-CoV-2 Omicron VOC Transmission in Danish Households. *medRxiv* 2021.12.27.21268278

183. Lacy J, Mensah A, Simmons R, Andrews M, Siddiqui MR, Bukasa A, et al. 2022. Protective effect of a first SARS-CoV-2 infection from reinfection: a matched retrospective cohort study using PCR testing data in England. *medRxiv* 2022.01.10.22268896; https://doi.org/10.1017/S0950268822000966 PMID: 35607808

184. Rangachev A, Marinov GK, Mladenov M. 2021. The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. *medRxiv* 2021.04.06.21254958

185. Karlinsky A, Kobak D. 2021. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. *Elife* 10:e69336 https://doi.org/10.7554/eLife.69336 PMID: 34190045

186. Shu Y, McCauley J. 2017. GISAID: Global initiative on sharing all influenza data—from vision to reality. *Euro Surveill* 22(13):30494 https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494 PMID: 28382917

187. Kraemer MUG, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, et al. 2021. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. 2021. *Science* 373(6557):889–895. https://doi.org/10.1126/science.abj0113 PMID: 34301854

188. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. 2021. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. *Science* 372(6538):eaabg3055 https://doi.org/10.1126/science.abg3055 PMID: 33653326

189. Mccochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, et al. 2021. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. *Nature* 599(7883):114–119. https://doi.org/10.1038/s41586-021-03944-y PMID: 34488225

190. Hightower AW, Orenstein WA, Martin SM. 1988. Recommendations for the use of Taylor series confidence intervals for estimates of vaccine efficacy. *Bull World Health Organ* 66(1):99–105. PMID: 3260147

191. Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. 2022. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. *Science* 375(6578):331–336. https://doi.org/10.1126/science.abm0620 PMID: 34735261

192. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Alroy-Preis S, et al. 2021. Protection against Covid-19 by BNT162b2 Booster across Age Groups. 2021. *N Engl J Med* 385(26):2421–2430. https://doi.org/10.1056/NEJMoa2115926 PMID: 34879188

193. Collier DA, Ferreira IATM, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. 2021. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. *Nature* 596(7872):417–422. https://doi.org/10.1038/s41586-021-03739-1 PMID: 34192737