Channels and transporters play essential biological roles primarily through the transportation of ions and small molecules that are required to maintain cellular activities across the biomembrane. Secondary to transportation, channels and transporters also integrate and coordinate biological functions at different levels, ranging from the subcellular (nm) to multicellular (μm) scales. This is underpinned by efficient functional coupling within molecular assemblies of channels, transporters, proteins, small molecules and lipids.

Molecular interactions create local microenvironments that, in some cases, uniquely modify the functional properties of the channels and transporters. These molecular assemblies built around a transporter or channel (“transportsomes” and “channelsomes”) can be considered as physiological functional units. In this special issue, we provide an overview of recent progress in our understanding of protein-protein and molecular interactions in transportsomes and channelsomes, which occur through both direct molecular contacts and more distal functional coupling, and examine the validity of these “somes”.

Subunit assembly is at the very basis of transportsomes and channelsomes. Nakajo and Kubo discuss the issue of their work on the interaction of the KCNQ1 pore-forming subunit with the KCNE auxiliary subunit of voltage-dependent K⁺ channels. The analysis of photo bleaching steps of single fluorescence protein-tagged K⁺ channel subunits suggests intriguing stoichiometric flexibility in the assembly of KCNQ1 and KCNE: multiple stoichiometries are allowed depending on the relative expression levels of the subunits. Different stoichiometries lead to functional variation of KCNQ1 channels, suggesting the importance of considering the relative quantities of the constituent proteins and molecules in channelsomes.

The physical and chemical nature of lipids surrounding the channel and transporter proteins in the membrane has a significant influence on the physiological function of channelsomes/transportsomes, as do protein-protein interactions. The importance of lipids is prominent in mechanosensitive channels such as TREK and TRAAK K⁺ channels, which are activated by shear stress and negative membrane pressure, as reviewed by Noël et al. who describe how polyunsaturated fatty acids including arachidonic acid and phospholipids are potent activators of TREK and TRAAK K⁺ channels. Protein-protein interaction strongly affects these properties of TREK such that association of A-kinase-anchoring protein AKAP150 fully activates the TREK current and abolishes its sensitivity to stimulation by mechanical stress and lipids. Proteins become associate with the membrane (and lipids within it) via their interactions with channel-forming subunit proteins, which infers the existence of functional units (channelsomes or transportsomes), and thus the importance of lipid rafts in the formation of these units, as discussed below.

Transient receptor potential proteins (TRPs) are rich in biology and chemistry. TRPs can naturally form a variety of channelsomes with distinctive roles. The review by Ong and Ambudkar illustrates that TRPC1 channelsomes, which act as a molecular machinery for store-operated Ca²⁺ channels (SOCs) activated by depletion of internal Ca²⁺ stored in the endoplasmic reticulum, are associated with cholesterol-binding scaffolding proteins such as caveolin-1 (Cav-1) in lipid raft domains. Assembly of the TRPC1 complex appears to be dynamic because rearrangement occurs during activation of SOCs by STIM: store depletion converts transient TRPC1 scaffolding by Cav-1 into a stable active STIM1-TRPC1 channel. Further examples are channelsomes for TRPC3, TRPC5, and TRPM2. These TRP complexes mediate Ca²⁺ influx and trigger activation of Ca²⁺-dependent signal transduction proteins to integrate and amplify characteristic receptor signals (Fig. 1). Thus, diverse and dynamic properties make TRP complexes particularly interesting for studies of channelsome biology.

We should reiterate that the primary aim of channelsome or transportsome formation is to ensure that the permeation and transportation of ions and small molecules across membranes are efficiently coupled to downstream events. Sites for this coupling can sometimes be observed with high-resolution microscopes as discrete subcellular structures, which should facilitate establishing biological relevance of these multi-protein units. The junctional membrane structure, which is the site for excitation-contraction (E-C) coupling in muscles (i.e., the coupling of surface membrane voltage-dependent Ca²⁺ channels (VDCCs) and sarcoplasmic reticulum ryanodine receptor Ca²⁺ release channels) falls into this category. Zhao et al. report that the junctional membrane structure is maintained by multiple mechanisms but,
The sites of vesicle fusion and the presynaptic membrane remains unresolved. Reflecting the essential roles played by VDCCs in controlling multiple neuronal processes, VDCCs form channelomes with several important regulatory proteins both up and downstream. Turner et al. describe protein complexes formed by VDCCs with G-protein-coupled receptors or Ca\(^{2+}\)-dependent K\(^+\) channels, which could enhance the efficiency of presynaptic control of neurotransmission and the regulation of membrane excitability. The bidirectionality of VDCC signaling may explain the characteristic ability of neurons to integrate information from numerous inputs. Precision in the formation of neural networks requires interactions between proteins both pre- and postsynaptically, and in the cleft. In addition to postsynaptic receptors, adhesion proteins and extracellular matrix proteins, VDCCs play an important role in interaction networks, and Nishimune comprehensively reviews this new type of VDCC channelsome.

Abnormalities in transportsomes and channelomes in diseases are also discussed in this special issue. Singer and Camargo describe the interactions between neutral amino acid SLC transporters and proteins such as angiotensin-converting enzyme (ACE) and their role in neurotransmission. Despite this complexity, junctophilin (discovered by Takeshima and colleagues) appears to play a central role in this process, where multiple membrane components are overlaid to form triad/diad junctions in muscles. It is important to note that the channelome formed by the interaction between VDCCs and ryanodine receptor Ca\(^{2+}\) release channels has served as a model mechanism in discussing activation of SOCs.

In a context similar to junctional membrane structures for E-C coupling, a discrete subcellular structure called the active zone (AZ) has been recognized as the site for excitation-secretion (E-S) coupling, making the presynaptic molecular complexes underlying E-S coupling another ideal target for channelome research. It is well known that various presynaptic proteins involved in the fusion of transmitter-containing vesicles with the presynaptic membrane are associated with VDCCs. Rab3-interacting molecules (RIMs) have emerged as AZ scaffolding proteins that link synaptic vesicles and depolarization-induced Ca\(^{2+}\) influx by interacting with Rab3 and VDCCs, respectively, at separate sites. (Fig. 2). The association of RIM-VDCC may provide important molecular insights into the mechanism by which VDCCs are geometrically related to the sites of vesicle fusion and the presynaptic membrane remains unresolved. Reflecting the essential roles played by VDCCs in controlling multiple neuronal processes, VDCCs form channelomes with several important regulatory proteins both up and downstream. Turner et al. describe protein complexes formed by VDCCs with G-protein-coupled receptors or Ca\(^{2+}\)-dependent K\(^+\) channels, which could enhance the efficiency of presynaptic control of neurotransmission and the regulation of membrane excitability. The bidirectionality of VDCC signaling may explain the characteristic ability of neurons to integrate information from numerous inputs. Precision in the formation of neural networks requires interactions between proteins both pre- and postsynaptically, and in the cleft. In addition to postsynaptic receptors, adhesion proteins and extracellular matrix proteins, VDCCs play an important role in interaction networks, and Nishimune comprehensively reviews this new type of VDCC channelsome.

Abnormalities in transportsomes and channelomes in diseases are also discussed in this special issue. Singer and Camargo describe the interactions between neutral amino acid SLC transporters and proteins such as angiotensin-converting enzyme (ACE) and their role in neurotransmission.
It is fascinating that the formation of channelosomes and transportosomes not only enhances signal transduction efficiency but is also implicated in pathogenesis. Original research by Wilson et al. demonstrates that the interaction of the axonal growth/guidance protein CRMP-2 (collapsing response mediator protein 2) with the N-type VDCC, Cav2.2, increases Cav2.2 translocation to the plasma membrane and that blockade of this interaction improves pain.31,32 This is reminiscent of ischemic neuronal death suppressed by the disruption of the NMDA receptor-PSD95-neuronal nitric oxide synthase complex.33 Disruption of channelosome/transportosome formation is a potentially powerful strategy for developing clinically relevant therapeutic tools. This special issue covers only a selection of important examples from among the vast number of transportosomes and channelosomes but is intended to enlighten readers as to their physiological importance. Compared to the straightforwardness of identifying transporter and channel molecules by cloning, the clarification of transportosomes and channelosomes is a laborious and slow process because of the complexity and heterogeneity of the interacting components and the dynamism with which they are multimerized. However, channelosomes/transportosomes offer significant signaling flexibility in the membrane at the interface between the internal and external environments, and this function clearly underlies some of the variability of cellular responsiveness seen among different types of cells/species. Realization of the importance of these complexes will give momentum to a rising field of research, a field that should be sufficiently diverse to engage scientists from many different biological disciplines.

References
1. Nakajo K, Kubo Y. Nano-environmental changes by KCNE proteins modify KCNQ channel function. Channels (Austin) 2011; 5:395-9; PMID:21654200.
2. Nakajo K, Ulbrich MH, Kubo Y, Isacoff EY. Stoichiometry of the KCNQ1-KCNE1 ion channel complex. Proc Natl Acad Sci USA 2010; 107:18862-7; PMID:20962273.
3. Noel J, Sandoz G, Lesage F. Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 2011; 5:400-7; PMID:21829087.
4. Sandoz G, Thümmler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, et al. AKAP150, a switch to convert mecha-, pH- and arachidonic acid-sensitive TREK-β-subunit-RIM1 interaction at presynaptic AZs. Synaptic vesicles are anchored to presynaptic AZs through the association of RIM1 with β-subunits and Rab3. The functional properties of neuronal VDCCs are significantly modulated by RIM1 through physical association with the β-subunit, which can efficiently maintain Ca2+ influx through VDCCs at AZs.
5. Ong HL, Ambudkar IS. The dynamic complexity of transmembrane protein 2 (ACE2) of the renin-angiotensin system.39 Hartnup disorder is characterized by neutral aminoaciduria and is caused by defects in the gene for the B4AT transporter. Interestingly, some Hartnup disorder mutations change the partner proteins with which the B4AT transporter interacts, illustrating the pathological potential of transportosome abnormalities. Similarly, the interaction of RIMs with VDCCs (see above), which strongly regulates VDCC function (especially voltage-dependent inactivation),38 can be pathologic because mutations in RIM disrupts this regulation and causes autosomal dominant cone-rod dystrophy.30 Thus, it will be interesting to re-evaluate mutations of transporters and channels in the context of transportosome/channelosome formation.
6. Numata T, Kiyonaka S, Kato K, Takahashi N, Mori Y. Nitric oxide activates TRP channels in B lymphocytes. EMBO J 2003; 22:4677-88; PMID:12979180.
7. Yoshida T, Inoue R, Mori T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006; 2:596-607; PMID:16998480.
8. Nishida M, Sugimoto K, Hara Y, Morii E, Morii T, Kurosaki T, et al. Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCγ2 in B lymphocytes. EMBO J 2003; 22:4677-88; PMID:12979180.
9. Numata T, Nishida M, Kiyonaka S, Kato K, Kato N, Mouri E, et al. Ca2+ influx and protein scaffolding via TRPC3 sustain PKCβ and ERK activation in B cells. J Cell Sci 2010; 123:927-38; PMID:20179100.
10. Yoshida T, Inoue R, Mori T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006; 2:596-607; PMID:16998480.
11. Yoshida T, Inoue R, Mori T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006; 2:596-607; PMID:16998480.
12. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K. Juncrophilins: a novel family of junctional membrane complex proteins. Mol Cell 2000; 6:11-22; PMID:10949023.
13. Putney JW Jr, Bird GS. The signal for capacitative calcium entry. Cell 1993; 75:199-201; PMID:8402906.
14. Zhai RG, Bellen HJ. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 2004; 19:262-70; PMID:15381754.
15. Zhu MX, Ed. TRP Channels. Boca Raton, FL: CRC Press 2011; 91-112.
16. Ong HL, Ambudkar IS. The dynamic complexity of the TRPC1 channelosome. Channels (Austin) 2011; 5:422-9; PMID:21747253.
18. Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, et al. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 2007; 10:691-701; PMID:17496890.

19. Uriu Y, Kiyonaka S, Miki T, Yagi M, Akiyama S, Mori E, et al. Rab3-interacting molecule γ isoforms lacking the Rab3-binding domain induce long lasting currents but block neurotransmitter vesicle anchoring in voltage-dependent PVQ-type Ca2+ channels. J Biol Chem 2010; 285:21750-67; PMID:20452978.

20. Yasuda T, Shibasaki T, Minami K, Takahashi H, Mizoguchi A, Uriu Y, et al. Rim2n determines docking and priming states in insulin granule exocytosis. Cell Metab 2010; 12:117-29; PMID:20674857.

21. Kaeser PS, Deng L, Wang Y, Dudanova I, Liu X, Rizz J, et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 2011; 144:282-95; PMID:21241895.

22. Gandini MA, Sandoval A, González-Ramírez R, Mori Y, de Waard M, Felix R. Functional coupling of Rab3-interacting molecule 1 (RIM1) and L-type Ca2+ channels in insulin release. J Biol Chem 2011; 286:15757-65; PMID:21402706.

23. Adler EM, Augustine GJ, Duffy SN, Charlton MP. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 1991; 11:1496-507; PMID:1675264.

24. Stanley EF. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci 1997; 20:404-9; PMID:9292969.

25. Meinrenken CJ, Borst JG, Sakmann B. Calcium secretion coupling at calyx of Held governed by non-uniform channel-vesicle topography. J Neurosci 2002; 22:1648-67; PMID:11880495.

26. Yang YM, Fedchyshyn MJ, Grande G, Amthub J, Tsang CW, Xie H, et al. Septins regulate developmental switching from microdomain to nanodomain coupling of Ca2+ influx to neurotransmitter release at a central synapse. Neuron 2010; 67:100-15; PMID:20624593.

27. Turner RW, Anderson D, Zampaoni GW. Signalling complexes of voltage gated calcium channels. Channels (Austin) 2011; 5:438-46; PMID:21525790.

28. Nishimune H. Transsynaptic channelosomes: non-conducting roles of ion channels in synapse formation. Channels (Austin) 2011; 5:430-7 PMID:21654201.

29. Singer D, Camargo SM, Tatemoto and ACE2 in renal and intestinal amino acid transport. Channels (Austin) 2011; 5:408-21; PMID:21814048.

30. Miki T, Kiyonaka S, Uriu Y, De Waard M, Wakamori M, Beedle AM, et al. Mutation associated with an autosomal dominant cone-rod dystrophy CORD7 modifies RIM1-mediated modulation of voltage-dependent Ca2+ channels. Channels (Austin) 2007; 1:144-7; PMID:18690027.

31. Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, et al. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Channels (Austin) 2011; 447-54; PMID:21829088.

32. Wilson SM, Brittain JM, Piekarz AD, Ballard C, Rapich MS, et al. Further insights into the antinociceptive potential of uncoupling calcium channel (Ca\textsubscript{2+}) form the collapsing response mediator protein-2 (CRMP-2). Channels (Austin) 2011; 447-54; PMID:21829088.

33. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 1999; 284:1845-8; PMID:10364559.