Cardiopulmonary Exercise Testing to Assess Persistent Symptoms at 6 Months in People With COVID-19 Who Survived Hospitalization: A Pilot Study

David Debeaumont1,2, Fairuz Boujibar3,4, Eglantine Ferrand-Devouge2,5,6, Elise Artaud-Macari7,8,9, Fabienne Tamion10-11, Francis-Edouard Gravier7,8,12, Pauline Smondack12, Antoine Cuvelier7,8,9, Jean-François Muir7,8,9,12, Kevin Alexandre13,14, Tristan Bonnevie7,8,12*

1Department of Respiratory and Exercise Physiology, Rouen University Hospital, Rouen, France
2Centre d’Investigation Clinique-Centre de Recherche Biologique 1404, Rouen University Hospital, Rouen, France
3Department of General and Thoracic Surgery, Rouen University Hospital, Rouen, France
4Institut National de la Santé et de la Recherche Médicale U1096, Rouen University Hospital, Rouen, France
5Department of General Practice, Normandie University, UNIROUEN, Rouen, France
6INSERM U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’ Institut Blood and Brain @ Caen-Normandie, Cyceron, Normandie University, UNICAEN, Caen, France
7Unité Propre de Recherche de l’Enseignement Supérieur, Equipe d’accueil 3830 (Groupe de Recherche sur le Handicap Ventilatoire), Normandie University Rouen, Rouen, France
8Rouen Institute for Research and Innovation in Biomedicine, Rouen, France
9Pulmonary, Thoracic Oncology and Respiratory Intensive Care Department, Rouen University Hospital, Rouen, France
10Normandie University, UNIROUEN, Inserm U1096, FHU- REMOD-VHF, Rouen, France
11Medical Intensive Care Unit, Rouen University Hospital, Rouen, France
12ADIR Association, Rouen University Hospital, Rouen, France
13Infectious Diseases Department, Rouen University Hospital, Rouen, France
14Equipe d’accueil 2656 (GRAM 2.0), Institute for Research and Innovation in Biomedicine, Normandie University, Unirouen, Rouen, France

*Address all correspondence to Dr Bonnevie at: t.bonnevie@adir-hautenormandie.com

Abstract

Objective. The aim of this pilot study was to assess physical fitness and its relationship with functional dyspnea in survivors of COVID-19 6 months after their discharge from the hospital.

Methods. Data collected routinely from people referred for cardiopulmonary exercise testing (CPET) following hospitalization for COVID-19 were retrospectively analyzed. Persistent dyspnea was assessed using the modified Medical Research Council dyspnea scale.

Results. Twenty-three people with persistent symptoms were referred for CPET. Mean modified Medical Research Council dyspnea score was 1 (SD = 1) and was significantly associated with peak oxygen uptake (VO2peak; %) (rho = −0.49). At 6 months, those hospitalized in the general ward had a relatively preserved VO2peak (87% [SD = 20]), whereas those who had been in the intensive care unit had a moderately reduced VO2peak (77% [SD = 15]). Of note, the results of the CPET revealed that, in all individuals, respiratory equivalents were high, power-to-weight ratios were low, and those who had been in the intensive care unit had a relatively low ventilatory efficiency (mean VE/VCO2 slope = 34 [SD = 5]). Analysis of each individual showed that none had a breathing reserve <15% or 11 L/min, all had a normal exercise electrocardiogram, and 4 had a heart rate >90%.

Conclusion. At 6 months, persistent dyspnea was associated with reduced physical fitness. This study offers initial insights into the mid-term physical fitness of people who required hospitalization for COVID-19. It also provides novel pathophysiological clues about the underlying mechanism of the physical limitations associated with persistent dyspnea. Those with persistent dyspnea should be offered a tailored rehabilitation intervention, which should probably include muscle reconditioning, breathing retraining, and perhaps respiratory muscle training.

Impact. This study is the first, to our knowledge, to show that a persistent breathing disorder (in addition to muscle deconditioning) can explain persistent symptoms 6 months after hospitalization for COVID-19 infection and suggests that a specific rehabilitation intervention is warranted.

Keywords: Cardiopulmonary Exercise Testing, Exercise Capacity, COVID-19, Physiotherapy, Pulmonary Rehabilitation
Introduction

The COVID-19 virus causes serious infection, leading to hospitalization for many of those infected. It is reasonable to assume that those who are admitted to the hospital would experience cardiopulmonary complications as well as muscle deconditioning due to isolation during hospitalization, which may be further complicated by intensive care unit (ICU) acquired weakness. This has recently been highlighted by Van Aerde et al and Belli et al, who all showed that people who survived COVID-19 infection had impaired physical fitness on discharge from hospital. However, the mid- and long-term impact of COVID-19 on physical fitness remains unknown, although cardiopulmonary impairments and symptoms, such as dyspnea or fatigue, may persist for months after discharge. In addition, the field tests, such as those typically used during hospitalization, provide a non-specific evaluation of physical fitness that does not indicate the cause of the underlying limitation. As such, it is difficult to implement specific, rehabilitation programs. The aim of this pilot study, therefore, was to assess physical fitness and its relationship with functional dyspnea in survivors of COVID-19 at 6 months after discharge from the hospital and according to the mode of hospitalization in the general ward or in an ICU. The secondary aim was to assess the relationship between early clinical outcomes and physical fitness at 6 months. We hypothesized that physical fitness, assessed by peak oxygen uptake (VO₂peak), would be markedly reduced (due to both a muscle deconditioning and pulmonary vascular or interstitial impairments related to the COVID-19 infection) and would be related to functional dyspnea symptoms.

Methods

Design and Patients

The data collected routinely from people referred for a cardiopulmonary exercise testing (CPET) in Rouen University Hospital due to persistent symptoms (fatigue or dyspnea) following hospitalization for COVID-19 were analyzed. The protocol was ethically approved by the Comité d’Ethique pour la Recherche sur Données Existantes et/ou hors loi Jardé, Rouen University Hospital (E2020–70). According to current French law, formal consent to retrospectively review medical records was not required. Patient data confidentiality was respected, and the protocol was performed in compliance with the Declaration of Helsinki.

Assessment

During a routine outpatient assessment 6 months post discharge, people underwent a comprehensive evaluation of respiratory function and physical fitness. This included an assessment of dyspnea using the modified Medical Research Council dyspnea score, pulmonary function testing, respiratory muscle testing, arterial blood gas measurements, and CPET. All these procedures were performed according to international guidelines adapted to limit the spread of the virus and expressed as percent predicted values. Particularly, CPET was performed on an electromagnetic ergometer (Ergoline 900, GmbH, Bitz, Germany). After a 3-minute warm-up period, incremental ramp exercise (aimed to last for about 10 minutes using steps from 5 to 20 W/min depending on the physician’s evaluation, the patient’s history, and usual physical activity levels) was applied up to exhaustion. A face mask, pneumotach, and gas analyzer (Viventus CPX, Vyaire Medical, Mettawa, IL, USA) were used to assess oxygen uptake (VO₂) and carbon dioxide production (VCO₂), breath by breath. VO₂ measured during the last fully sustained ramp was defined as the VO₂peak and was expressed as predicted value according to age, weight, and sex. A VO₂peak (% predicted value) < 85% was considered as clinically reduced. For those people with obesity, a specific predictive equation was used instead to avoid any misinterpretation of a reduced VO₂peak that would only be attributable to the obesity. The corresponding cardiorespiratory variables and gas exchanges data were retrieved and expressed as percentages of predicted values. Heart rate was continuously monitored with a 12-lead electrocardiogram, perceived exertion was assessed using the Borg scale, and arterial blood gases were measured at exhaustion (Suppl. Figure). The mechanisms underlying the impairment in physical fitness were analyzed using mean or median values from the CPET at peak effort separately according for each mode of hospitalization (general ward or ICU).

Early clinical outcomes were also collected through a retrospective chart review. These included initial pulmonary impairment measured from chest computed tomography (visually classified as normal, minimal [<10%], moderate [10%–25%], extensive [25%–50%], very extensive [50%–75%], and critical [>75%]), length of stay in ICU and in hospital, number of days of invasive mechanical ventilation, neuromuscular blockers, amine and extra-corpooreal membrane oxygenation administration, number of sessions of active physical therapy, and the occurrence of acute respiratory distress syndrome (ARDS).

Statistical Analysis

Descriptive statistics were reported as counts (percentages and 95% CI), means (SD), or medians (IQR) according to their distribution, which was assessed using the Kolmogorov-Smirnov normality test. To limit type 1 statistical errors, the analysis was restricted to the 9 pre-specified early clinical outcomes as well as dyspnea and potential physiological variables that contributed to a reduction in physical fitness. Physiological variables were restricted to those identified as potential contributors based on the interpretation of the CPET, pulmonary function testing, and respiratory muscle testing results (ie, maximal inspiratory pressure, power to weight ratio, respiratory equivalents, and minute ventilation to carbon dioxide slope) for a total of 14 analyses.

The relationship between VO₂peak (%predicted value) and functional dyspnea, physiological variables and early clinical outcomes was assessed using a Pearson product correlation coefficient when the data met the requirements for linear analysis (ie, normally distributed and homoscedastic, assessed with Levene’s test). The relationship between VO₂peak (% predicted value) and data that did not meet the requirements for linear analysis was assessed using the Spearman rank order correlation test. The effect size of these relationships was expressed by the correlation coefficient (r) and the Spearman rho, respectively. Analysis relating to ICU and rescue therapy were undertaken on the overall cohort considering that those who had not been admitted to the ICU had 0 days of the specific outcome. A sensitivity analysis was conducted specifically on the data of those admitted to the ICU. Finally, the impact of categorical early clinical outcomes on VO₂peak (% predicted value) was assessed using a Mann Whitney test (ARDs) or a Kruskal-Wallis test (initial scan). P < .05 was considered significant.
Table 1. Clinical Characteristics at 6 Months in People With COVID-19 Who Survived Hospitalization

Characteristics	Total Cohort (n = 23)	Survivors of General Ward (n = 16)	Survivors of ICU (n = 7)
Comorbidities, n (%)			
Respiratory condition (other than COPD)	6 (26)	4 (23)	2 (29)
COPD	1 (4)	0 (0)	1 (14)
Tobacco	9 (39)	8 (47)	1 (14)
Hypertension	9 (39)	6 (38)	3 (43)
Hypercholesterolemia	2 (9)	1 (6)	1 (14)
Diabetes	4 (17)	3 (18)	1 (14)
Cardiopathies	4 (17)	3 (18)	1 (14)
Obesity	11 (48)	7 (44)	4 (57)
CPAP-treated obstructive sleep apnea	4 (17)	3 (18)	1 (14)
Digestive condition	7 (30)	5 (29)	2 (29)
Orthopedic	4 (17)	3 (18)	1 (14)
Cancer	0 (0)	0 (0)	0 (0)
Viral infection	2 (9)	0 (0)	2 (29)
Pulmonary function testing, mean (SD)			
FEV1 (L)	3.1 (0.9)	3.2 (0.8)	2.9 (1.1)
FEV1 (%)	104 (21)	109 (16)	92 (26)
FVC (%)	104 (22)	111 (18)	88 (21)
FEV1/FVC (%)	0.80 (0.11)	0.80 (0.08)	0.80 (0.16)
VC (%)	103 (21)	109 (19)	87 (20)
RV (%)	90 (25)	91 (19)	88 (40)
TLC (%)	95 (16)	100 (12)	83 (19)
DLCO (%)	82 (16)	87 (11)	70 (21)
DLCO VA (%)	90 (14)	94 (13)	81 (14)
Arterial blood gas at rest			
PaO2 (kPa), mean (SD)	11.0 (1.7)	11.0 (1.7)	11.1 (1.7)
PaCO2 (kPa), mean (SD)	4.9 (0.5)	4.8 (0.3)	5.2 (0.7)
pH, mean (SD)	7.43 (0.03)	7.44 (0.03)	7.42 (0.02)
Hb (g/dl), mean (SD)	14 (2)	14 (2)	15 (1)
SaO2 (%), median (IQR)	97 (95–98)	97 (95–98)	97 (94–99)
HCO3- (mmol/L), mean (SD)	25 (2)	25 (1)	25 (3)
P(A-a)O2 (kPa), mean (SD)	2.9 (2.0)	3.2 (2.1)	2.5 (1.6)
Respiratory muscle testing			
MIP (cm H2O2), median (IQR)	51 (28–62)	54 (37–62)	28 (16–62)
MIP (%), median (IQR)	73 (37–97)	87 (47–97)	42 (29–92)
MEP (cm H2O2), median (IQR)	63 (50–74)	65 (47–88)	60 (43–71)
MEP (%), mean (SD)	78 (35)	78 (40)	78 (30)
SNiFF (cm H2O2), median (IQR)	80 (31)	83 (39)	79 (68–82)
SNiFF (%), median (IQR)	100 (30)	107 (36)	87 (79–94)

*Percentages may not sum to 100 due to rounding. COPD = chronic obstructive pulmonary disease; CPAP = constant positive airway pressure; DLCO = diffusing capacity of lung for carbon monoxide; DLCO VA = diffusing capacity of lung for carbon monoxide corrected for alveolar ventilation; FEV1 = forced expiratory volume in 1 second; FVC = forced vital capacity; Hb = hemoglobin; MEP = maximal expiratory pressure; MIP = maximal inspiratory pressure; P(A-a)O2 = alveolar to arterial oxygen partial pressure gradient; PaO2 = arterial oxygen partial pressure; PaCO2 = arterial carbon dioxide partial pressure; RV = residual volume; SaO2 = arterial oxygen saturation; SNIFF = sniff test; TLC = total lung capacity; VC = vital capacity.

Diego, CA, USA) and R 3.6.1 (The R Project for Statistical Computing, The R Foundation, r-project.org) were used for analyses.

Results

Patients

Twenty-four people were referred for CPET in our center up to November 2020. One was excluded because of a previous history of chronic respiratory failure with documented impairment of VO2peak (%). The remaining 23 people were aged an average 59 years (SD = 13), 48% were female, and their mean body mass index was 29 kg/m2 (SD = 4) (Tab. 1). None were provided with supplemental oxygen therapy. Their COVID-19–related outcomes are also shown in Table 2.

Cardiopulmonary Exercise Testing and Relationship With Dyspnea

The most frequent persistent symptom was dyspnea (78% [95% CI = 0.56 to 0.93]). The mean mMRC dyspnea score was 1 (SD 1) and was significantly associated with VO2peak (%) (rho = –0.49; P = .019) (Fig. 1A). Two people were treated with beta-blockers, and 5 participated in regular active physical therapist sessions at the time of the outpatient assessment. At 6 months, 12 people (52% [95% CI = 0.33–0.71]) had a reduced VO2peak (%). Particularly, the VO2peak (87% [SD = 20]) of those hospitalized in the general ward was relatively preserved. It is worth noting that their respiratory equivalent for oxygen (median 38 [IQR 30–42]) and carbon dioxide (mean = 33 [SD = 5]) was high, with a low power to weight ratio (mean = 1.5 kg/w [SD = 0.6]) (Tab. 3).
Conversely, the mean VO2peak (%) of those admitted to the ICU was moderately decreased (77% [SD = 15]) and was also associated with high respiratory equivalents for oxygen (median = 42; IQR = 31–43) and carbon dioxide (mean = 34 [SD = 4]), a relatively low ventilatory efficiency (mean VE/VCO2 slope = 34 [SD 5]), and a low power to weight ratio (mean = 1.3 W/kg [SD = 3]) (Tab. 3). Assessment of each individual showed that none had a breathing reserve <15% or 11 L/min, all had a normal exercise electrocardiogram, and 4 had a heart rate (%) >90%.9 Finally, among the above-mentioned physiological variables, power to weight ratio was significantly related to VO2peak (%) (rho = 0.78; P < .001), and there was a tendency towards a relationship between VE/VCO2 slope and VO2peak (%) (rho = −0.39; P = .066) (Fig. 1B, C; Tabs. 3 and 4).

Association Between Early Clinical Outcomes and Physical Fitness

Only 1 person underwent extra-corporeal membrane oxygenation, so this outcome was not further considered. There was no significant difference in VO2 peak (%) at 6 months according to the level of pulmonary impairment seen on chest computed tomography (overall P = .366) (Fig. 2A) nor between those people who experienced ARDS and those who did not (P = .131) (Fig. 2B). VO2 peak (%) was not significantly associated with ICU length of stay (rho = −0.34; P = .111), duration of invasive mechanical ventilation (rho = −0.34; P = .108), or duration of curare (rho = −0.35; P = .106) or amine administration (rho = −0.34; P = .108) (Fig. 2C-F), respectively. There was a trend toward an association with length of hospital stay (rho = −0.40; P = .058) and a significant relationship with the number of active inpatient physical therapist sessions (rho = −0.44; P = .040) (Figs. 1D and E), respectively. The sensitivity analysis including only those admitted to the ICU is shown in the Supplementary Table. Though the effect size was higher, none of the associations was statistically significant.

Discussion

The results from this pilot study provide a preliminary, reassuring signal about functional recovery 6 months following hospitalization for COVID-19. The results extend those of Sonnweber et al,18 who showed recovered cardiopulmonary recovery function in people 3 months after a confirmed diagnosis of COVID-19. A frequent persistent symptom, dyspnea,15,18 was significantly associated with reduced physical fitness in the present study. Based on the results of the CPET, the persistent dyspnea is likely caused by both a persistent breathing disorder (overall high equivalents at VO2 peak and ventilatory inefficiency for those hospitalized in the ICU) and muscle deconditioning. This deconditioning was evidenced by (1) an overall low power to weight ratio, (2) a non-identifiable ventilatory threshold in approximately 25% of the patients, and (3) for those with an identifiable threshold, VO2vt/VO2 predicted was >40% and no ventilatory or cardiac limitations were evident.12 These data also suggest, contrary to our hypothesis, that pulmonary vascular or interstitial impairments as assessed by the the ratio between dead space volume to tidal volume, alveolar to arterial oxygen partial pressure gradient, P(A-a)O2, and arterial blood gases at exhaustion (see Tab. 3) were not major causes of mid-term impairment of physical fitness.

Another interesting finding was that physical fitness was not reduced due to ventilatory limitation. This might have been expected because those hospitalized in the ICU had a more restrictive respiratory pattern and a reduced maximal inspiratory pressure. However, any clinically relevant
impairment would have led to a reduced breathing reserve at exhaustion, which was not the case for any of those included. In contrast, ventilatory inefficiency may be involved in physical fitness impairment, particularly for those hospitalized in the ICU (Fig. 1; Tab. 3). In this context, this raises the question of whether inspiratory muscle training, in addition to muscle reconditioning, would be beneficial for those people with a reduced maximal inspiratory pressure. This issue warrants further evaluation, because evidence from people with chronic obstructive pulmonary disease suggests that it may not provide any further worthwhile clinical benefits19,20; however, the effect in the post–COVID-19 context is unknown.

There was a significant association between the number of active inpatient physical therapist sessions and VO\textsubscript{2}peak
Table 3. Cardiopulmonary Exercise Testing Performance at 6 Months in People With COVID-19 Who Survived Hospitalization

Characteristics	Total Cohort (n = 23)	General Ward Survivors (n = 16)	ICU Survivors (n = 7)
Cardiopulmonary exercise testing			
Metabolic load			
Maximal workload (W), mean (SD)	125 (54)	125 (51)	124 (65)
Maximal workload (%), mean (SD)	90 (24)	91 (25)	87 (26)
VO2peak (mL/min), mean (SD)	1642 (629)	1649 (635)	1628 (665)
VO2peak (%), mean (SD)	19.0 (6.8)	19.8 (6.8)	17.2 (6.8)
People without a ventilatory threshold, n (%)	6 (26)	4 (25)	2 (29)
VO2/VO2predicted, mean (SD)	0.56 (0.08)	0.56 (0.09)	0.54 (0.04)
RER, mean (SD)	1.14 (0.15)	1.15 (0.17)	1.12 (0.09)
Watts/weight (W/kg), mean (SD)	1.4 (0.6)	1.5 (0.6)	1.3 (0.7)
Lactates (mmol/L), mean (SD)	5.4 (1.9)	5.8 (2.1)	4.6 (0.6)
VO2/watts (mL/W/min), mean (SD)	10.7 (1.9)	10.8 (1.8)	10.4 (2.2)
Ventilatory pattern at VO2peak			
Vt (L), mean (SD)	1.9 (0.6)	1.9 (0.7)	1.7 (0.5)
RR (cpm), mean (SD)	35 (7)	33 (7)	38 (7)
VE (L/min), mean (SD)	63 (21)	62 (20)	64 (25)
Breathing reserve (%), mean (SD)	45 (13)	47 (14)	40 (11)
VE/VO2median (IQR)	38 (30–43)	38 (30–42)	42 (31–43)
VE/VO2CO2mean (SD)	33 (5)	33 (5)	34 (4)
VE/VO2CO2 slope, mean (SD)	32 (5)	32 (6)	34 (5)
Vd/Vt, mean (IQR)	0.18 (0.08)	0.16 (0.08)	0.22 (0.10)
Cardiovascular adaptation at VO2peak			
Heart rate (bpm), mean (SD)	143 (25)	148 (24)	132 (24)
Heart rate (%), mean (SD)	85 (12)	87 (12)	81 (13)
VO2/HR (mL/beat), mean (SD)	12 (4)	11 (4)	12 (4)
VO2/HR (%), mean (SD)	100 (25)	101 (27)	97 (23)
Systolic arterial pressure (mm Hg), mean (SD)	176 (32)	176 (34)	177 (31)
Diastolic arterial pressure (mm Hg), mean (SD)	89 (9)	88 (9)	89 (8)
Arterial blood gas at VO2peak			
PaO2 (kPa), mean (SD)	11.4 (2.2)	11.8 (1.8)	10.5 (2.9)
PaCO2 (kPa), mean (SD)	4.8 (0.5)	4.8 (0.5)	5.0 (0.7)
pH, mean (SD)	7.38 (0.03)	7.38 (0.03)	7.38 (0.03)
Hb (g/dL), mean (SD)	15 (2)	15 (2)	15 (1)
SaO2 (%), median (IQR)	97 (95 to 98)	97 (95 to 98)	95 (89 to 98)
SpO2 (%), median (IQR)	97 (96 to 98)	98 (96 to 99)	97 (91 to 98)
HCO3− (mmol/L), mean (SD)	21 (2)	21 (2)	22 (3)
PA-aO2 (kPa), mean (SD)	4.1 (2.2)	3.8 (1.9)	4.9 (3)
Perceived exertion at VO2peak			
Dyspnea (Borg scale), mean (SD)	5 (2)	5 (2)	6 (3)
Muscle fatigue (Borg scale), mean (SD)	5 (2)	5 (2)	5 (3)

Hb = hemoglobin; HR = heart rate; P(A-a)O2 = alveolar to arterial oxygen partial pressure gradient; PaCO2 = arterial carbon dioxide partial pressure; PaO2 = arterial oxygen partial pressure; RER = respiratory exchange ratio; RR = respiratory rate; SaO2 = arterial oxygen saturation; VCO2 = carbon dioxide production; Vd = dead space volume; VE = minute ventilation; VO2peak = peak oxygen uptake; VO2vt = oxygen uptake at the ventilatory threshold, VO2predicted = predicted oxygen uptake, Vt = volume tidal.

(% predicted value) in the mid-term (Fig. 1C). Although the negative nature of this relationship may be surprising at first glance, it probably reflects that (1) physiotherapists prioritized treatment of those with the highest levels of disability, and (2) the number of physical therapist sessions is influenced by length of hospital stay. This is corroborated by a trend toward an association between the total length of hospital stay and physical fitness 6 months following discharge (Fig. 1B). Evidence from other populations, such as those with chronic obstructive pulmonary disease, shows that hospitalization leads to physical inactivity and muscle wasting. Indeed, longer periods of hospitalization may in turn impact physical fitness 6 months later. The direct implication of these findings is that those people with long hospital stays should be closely followed-up to determine their individual rehabilitation needs. Based on our results, we suggest that rehabilitation programs should include muscle reconditioning (including peripheral muscle strengthening and exercise training, similar to pulmonary rehabilitation), breathing retraining, and perhaps also respiratory muscle strengthening to improve symptoms.

Though some studies in the field of ARDS reported an association between functional disability after hospital discharge and length of ICU stay, we did not find such an association. This is likely due to the fact that this population was underrepresented in the present cohort (Fig. 2C).

Limitations

The main limit of this study is its small sample size: the results may not be representative of the whole population of COVID-19 survivors discharged from hospital. In addition, data should be interpreted cautiously because the presence of
Figure 2. Relationship between VO₂peak (% predicted value) and (A) initial pulmonary impairment measured from chest computed tomography, (B) occurrence of an ARDS, (C) length of stay in the ICU, (D) length of invasive mechanical ventilation, (E) duration of neuromuscular blockers administration, and (F) duration of amines administration. The comparison of VO₂peak (% theoretical value) between categorical data was assessed using the Kruskal-Wallis test (initial scan) and the Mann Whitney test (ARDS). Relationships were assessed using the Spearman rank order correlation test. ARDS = acute respiratory distress syndrome, ICU = intensive care unit.

An outlier can lead to an overestimation of the relationship between variables or, conversely, actual, but more modest relationship may be missed due to a lack of statistical power. Other limitations include the lack of evaluation of peripheral muscle strength and mood status (anxiety and depression). This prevented evaluation of the role of other non-physical potential contributors to physical fitness impairment, such as psychological status. In addition, no data were available about the physical fitness of the patients before COVID-19 infection or at hospital discharge. Finally, those with the highest levels of disability may have not been referred for CPET during the 6-month period following their discharge.

To conclude, this pilot study offers a preliminary insight into the mid-term physical fitness of people who survived COVID-19 and were discharged home. It also provides important novel pathophysiological clues regarding the mechanisms underlying the physical limitations associated with persistent dyspnea. Finally, survivors of COVID-19 should be
offered a tailored rehabilitation intervention. While this pilot study suggests a suitable rehabilitation intervention should include muscle reconditioning, breathing retraining, and perhaps also respiratory muscle strengthening exercises, further studies are needed to identify the most effective rehabilitation approaches.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author Contributions
Concept/idea/research design: D. Debeaumont, F. Boujibar, E. Ferrand-Devouge, E. Artaud-Macari, F. Tamion, F.-E. Gravier, P. Smondack, A. Cuvelier, J.-F. Muir, T. Bonnevie
Writing: F. Boujibar, E. Ferrand-Devouge, E. Artaud-Macari, F. Tamion, F.-E. Gravier, P. Smondack, J.-F. Muir, T. Bonnevie
Data collection: D. Debeaumont, F. Boujibar, E. Ferrand-Devouge, E. Artaud-Macari, F. Tamion, J.-F. Muir, T. Bonnevie
Data analysis: F. Boujibar, E. Ferrand-Devouge, F. Tamion, P. Smondack, A. Cuvelier, J.-F. Muir, T. Bonnevie
Project management: D. Debeaumont, F. Boujibar, E. Artaud-Macari, F. Tamion, A. Cuvelier, T. Bonnevie
Fund procurement: A. Cuvelier
Providing participants: D. Debeaumont, A. Cuvelier, K. Alexandre
Providing facilities/equipment: D. Debeaumont, A. Cuvelier, J.-F. Muir
Providing institution liaisons: F. Boujibar, E. Ferrand-Devouge, A. Cuvelier, T. Bonnevie
Clerical/secretarial support: F.-E. Gravier
Consultation (including review of manuscript before submitting): D. Debeaumont, F. Boujibar, E. Artaud-Macari, F. Tamion, F.-E. Gravier, P. Smondack, A. Cuvelier, J.-F. Muir, T. Bonnevie

Acknowledgments
We wish to thank Anne-Marie Leroi, Manuel Etienne, Laurent Martin, Jean-Baptiste Poppe, and Grégoire Prum for their involvement in the care of the people with COVID-19.

Ethics Approval
Ethical approval and consent to participate: The protocol was ethically approved by the Comité d’Ethique pour la Recherche sur Données Existantes et/ou hors loi Jardé, Rouen University Hospital (E2020–70). According to the French law, formal consent to retrospectively review medical records was not required. Patient data confidentiality was maintained, and the protocol was performed in compliance with the Declaration of Helsinki.

Disclosures
T.B. reports grants from Fisher & Paykel, nonfinancial support from Asten Santé, and other from KerNel Biomedical, outside the submitted work. The other authors report no conflicts of interest relating to this work.

References
1. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and White patients with COVID-19. N Engl J Med. 2020;382:2534–2543.
2. Motiejuanaite J, Balagny P, Arnoul F, et al. Hyperventilation: a possible explanation for long-lasting exercise intolerance in mild COVID-19 survivors? Front Physiol. 2020;11:614590.
3. Van Aerde N, Van den Berghe G, Wilmer A, Gosselin R, Hermans G, Consortium C. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020;46:2083–2085.
4. Belli S, Balbi B, Prince I, et al. Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived the hospitalisation. Eur Respir J. 2020;56:2002096.
5. Goertz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6:00542–2020.
6. Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis. 1984;129:S49–S53.
7. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Eur Respir J. 1993;6:5–40.
8. American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.
9. American Thoracic Society. American College of Chest Physicians ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211–277.
10. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J. 1993;6:41–52.
11. Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969;99:696–702.
12. Wasserman K, Hansen J, Sue D, Stringer W, Whipp B. In: Wilkins LW, ed., Principles of Exercise Testing and Interpretation. 4th ed. Philadelphia, PA, USA: Lippincott, Williams, & Wilkins; 2004.
13. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85:546–562.
14. Debeaumont D, Tardif C, Folope V, et al. A specific prediction equation is necessary to estimate peak oxygen uptake in obese patients with metabolic syndrome. J Endocrinol Invest. 2016;39:635–642.
15. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.
16. Lode B, Jalarb C, Orclt T, et al. Imagerie de la pneumonie COVID-19. Journal d'imagerie diagnostique et interventionnelle. 2020;3:249–258.
17. Van de Poppe DJ, Hulzebos E, Takken T. Lowland fitness registry study g. reference values for maximum work rate in apparently healthy Dutch/Flemish adults: data from the Low Lands Fitness Registry. Acta Cardiol. 2019;74:223–230.
18. Sonnweber T, Sahanic S, Pizzini A, et al. Cardiopulmonary recovery after COVID-19—an observational prospective multi-center trial. Eur Respir J. 2020;50:30481. doi: 10.1183/13993003.030481-2020. Epub ahead of print.
19. Schultz K, Jelusic D, Wittmann M, et al. Inspiratory muscle training does not improve clinical outcomes in 3-week COPD rehabilitation: results from a randomised controlled trial. Eur Respir J. 2018;51:1702000.
20. Beaumont M, Mialon P, Le Ber C, et al. Effects of inspiratory muscle training on dyspnoea in severe COPD patients during pulmonary rehabilitation: controlled randomised trial. *Eur Respir J*. 2018;51:1701107.

21. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Physical activity and hospitalization for exacerbation of COPD. *Chest*. 2006;129:536–544.

22. Spruit MA, Gosselink R, Troosters T, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. *Thorax*. 2003;58:752–756.

23. Bott J, Blumenthal S, Buxton M, et al. Guidelines for the physiotherapy management of the adult, medical, spontaneously breathing patient. *Thorax*. 2009;64:i1–i51.

24. Needham DM, Wozniak AW, Hough CL, et al. Risk factors for physical impairment after acute lung injury in a national, multicenter study. *Am J Respir Crit Care Med*. 2014;189:1214–1224.

25. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. *N Engl J Med*. 2003;348:683–693.