Clinical applications of optical coherence tomography in urology

Hsing-Wen Wang and Yu Chen*
Fischell Department of Bioengineering; University of Maryland; College Park, MD USA

Keywords: optical coherence tomography, doppler optical coherence tomography, bladder, kidney, ureter

Abbreviations: OCT, optical coherence tomography; SS-OCT, swept source/OCT; OFDI, optical frequency domain imaging; DOCT, doppler optical coherence tomography; UHR, ultrahigh-resolution; TCC, transitional-cell carcinoma; CIS, carcinoma in situ; HFUS, high-frequency ultrasound

Since optical coherence tomography (OCT) was first demonstrated in 1991, it has advanced significantly in technical aspects such as imaging speed and resolution, and has been clinically demonstrated in a diverse set of medical and surgical applications, including ophthalmology, cardiology, gastroenterology, dermatology, oncology, among others. This work reviews current clinical applications in urology, particularly in bladder, urethra, and kidney. Clinical applications in bladder and urethra mainly focus on cancer detection and staging based on tissue morphology, image contrast, and OCT backscattering. The application in kidney includes kidney cancer detection based on OCT backscattering attenuation and non-destructive evaluation of transplant kidney viability or acute tubular necrosis based on both tissue morphology from OCT images and function from Doppler OCT (DOCT) images. OCT holds the promise to positively impact the future clinical practices in urology.

Principle and Instrumentation of OCT

OCT is an emerging medical imaging technology which enables cross-sectional imaging of tissue microstructure in situ and in real-time.1 OCT can achieve 1–10 µm resolutions and 1–2 mm penetration depths, approaching those of standard excisional biopsy and histopathology, but without the need to remove and process tissue specimens.2 OCT is analogous to ultrasound imaging, except that imaging is performed by measuring the echo time delay and intensity of backscattered light rather than sound. OCT imaging can be performed fiber-optically using delivery devices such as hand-held probes, endoscopes, catheters, laparoscopes, and needles which enable non-invasive or minimally-invasive internal body imaging.3,4

Figure 1A shows a schematic of time-domain OCT. Measurements are performed using a Michelson interferometer with a low coherence length (broadband) light source. One arm of the interferometer illuminates the light on the tissue and collects the backscattered light (typically referred to as “sample arm”). Another arm of the interferometer has a reference path delay which is scanned as a function of time (typically referred to as “reference arm”). Optical interference between the light from the sample and reference arms occurs only when the optical delays match to within the coherence length of the light source.

Alternatively, OCT interference signals can be detected in frequency or Fourier domain. In Fourier-domain OCT, the reference mirror position is fixed, and echoes of light are obtained by Fourier transforming the interference spectrum. These techniques are somewhat analogous to Fourier transform spectroscopy and have a significant sensitivity and speed advantage compared with time-domain OCT because they measure the optical echo signals from different depths along the entire axial scan simultaneously rather than sequentially. Fourier-domain detection enables 10–100 folds improvement in detection sensitivity and speed over the time-domain configuration.5,7 These advances greatly improve the performance of OCT, enabling three-dimensional OCT (3D-OCT) imaging in vivo.

Fourier-domain OCT can be performed using two complementary techniques, known as spectral/Fourier-domain OCT and swept-source/Fourier-domain OCT (SS-OCT, also known as Optical Frequency Domain Imaging, OFDI). Spectral/Fourier-domain detection uses a spectrometer and a high speed line scan camera to measure the interference spectrum in parallel (see Fig. 1B).8,9 In contrast, swept-source/Fourier-domain OCT uses a frequency-swept laser light source and a photodetector to measure the interference spectrum (see Fig. 1C).10-12 Three-dimensional imaging of biological tissue in vivo enabled by Fourier-domain OCT promises to have a powerful impact in disease diagnosis13,14 and therapy monitoring.15,16 Up to date, many clinical applications using OCT have demonstrated in a diverse set of medical and surgical specialties. Several commercially-available devices have received US Food and Drug Administration (FDA) clearance to be sold in the market,17 such as Imalux Corporation (Fig. 1D) whose OCT system is based on time-domain mechanism for endoscopic imaging, and LightLab Imaging (now part of St. Jude Medical, Inc.) (Fig. 1E) that adapts frequency-domain mechanism for their OCT system in cardiovascular imaging.
To image internal organs, miniaturized catheter/endoscope imaging devices have been developed for intraluminal and intravascular imaging. Other imaging devices such as laparoscopes and needle imaging device have been developed to enable solid organ imaging. Nowadays, various OCT imaging probes have been developed for different clinical
Development of such devices facilitates the translation of OCT to clinical applications and allows clinicians to use the enhanced imaging capabilities of this technique to benefit the patients.

Figure 2A shows the schematic of a representative OCT catheter/endoscope device consisting of a hollow cable carrying a single-mode (SM) optical fiber. The beam from the distal end of the fiber is focused by a gradient-index (GRIN) microlens and is directed perpendicular to the catheter axis by a microprism or micromirror. The distal optics is encased in a transparent housing. The beam can be scanned either circumferentially (by rotating the cable) or linearly (by translating the cable) to form a cross-sectional OCT image. The outer diameter of the catheter/endoscope can be made small enough to image inside a human coronary artery (see Figure 2B). Figure 2C shows the schematic of a catheter based OCT (from St. Jude Medical, Inc.) combined with a modified vacuum-pumped biopsy needle. This modified core-needle biopsy device includes the addition of a transparent front window for real-time OCT guidance, the addition of a long steel/plastic tube through which the OCT catheter is inserted, and a Y-valve to allow both linear access for the OCT catheter and the vacuum/pressure tube connection. Figure 2D depicts a custom laparoscopic OCT device imaging the ovaries in patients undergoing oophorectomy.

Clinical Applications of OCT

Since its invention in 1991, OCT has rapidly developed as a non-invasive biomedical imaging modality that enables cross-sectional visualization of tissue microstructures in vivo. The resolution of OCT is one to two orders of magnitude higher than conventional ultrasound, approaching that of histopathology, thereby allowing architectural morphology to be visualized in situ and in real-time. OCT enables imaging of structures in which biopsy would be hazardous or impossible, and promise to reduce the sampling errors associated with excisional biopsy. OCT has been translated from bench to various clinical applications including ophthalmology, cardiology, gastroenterology, dermatology, dentistry, urology, and gynecology.
among others. The most developed clinical OCT applications are those focusing on ophthalmic, cardiovascular, and oncologic imaging. For the application in oncology, many cancers arise from the epithelial layers, and demonstrate disruption of normal architectural morphology of tissues. The resolution and imaging field-of-view of OCT is approaching those of standard biopsy and histopathology, therefore OCT represents a potential method for “optical biopsy” of the tissue in situ, which can guide the excision biopsy to improve the sampling accuracy. OCT has shown promises in detecting structural alterations associated with malignancies including those arising in the breast, brain, gastrointestinal, respiratory, and reproductive tracts, skin, larynx, and oral cavity.

Clinical applications of OCT in ophthalmology, cardiology, and gastroenterology have been reviewed extensively elsewhere. In this review, we focus on clinical OCT applications in urology, particularly in bladder, ureter, and kidney.

Bladder

Bladder cancer originates in the urothelium and is curable if diagnosed and treated early, but has a high mortality rate in advanced stages. However, early diagnosis of bladder cancer remains a clinical challenge. The other problem is its high recurrence rate resulting in lifelong follow-up and possible repeated treatments, which make bladder cancer one of the most expensive cancers to manage. Currently, white light cystoscopy (WLC) is the standard for initial bladder cancer diagnosis with several shortcomings such as flat carcinoma in situ (CIS) is difficult to visualize. OCT and several other optical imaging techniques (such as fluorescence imaging) have been developed to better identify and characterize bladder lesions beyond what is possible with standard WLC.

Over the last decade, both ex vivo and in vivo studies have been conducted on the ability of OCT to detect bladder cancer by resolving the changes of bladder wall...
layers in urothelium, lamina propria, and muscularis propria and/or the corresponding backscattering. A 32 patient study showed that OCT has high detection accuracy for real-time imaging and staging of bladder cancer adjunct to WLC (90% sensitivity and 89% specificity for tumor confined to the mucosa, and 100% sensitivity and 90% specificity for muscle-invasive tumors). Another clinical study based on OCT imaging with 24 patients reported an overall sensitivity of 100%, specificity of 89%, and diagnostic accuracy of 92% for superficial bladder transitional-cell carcinoma (TCC) and 5 flat lesions; Tumor invasion.

Another study showed that the overall specificity of cystoscopic OCT (81%) was comparable to voided cytology (88.9%, \(P = 0.49 \)), but significantly higher than WLC (62.5%, \(P = 0.02 \)) in TCC diagnosis. Figure 3 illustrates in vivo WLC, OCT, and H&E images of normal human bladder (Fig. 3A–C) and TCC (Fig. 3D–F). TCC exhibited enhanced urothelial heterogeneity as indicated by the arrows shown in Figure 3E. Furthermore, the same work also demonstrated better tumor margin detection using OCT to guide transurethral resection (TUR), which is commonly used for non-muscle-invasive bladder cancer such as TCC that attributes to approximately 75% of all bladder cancer, and to enhance re-TUR cases where the scar or necrosis induced by previous TUR may make it difficult to identify residual or recurrent tumors by WLC. Figure 4 shows in vivo WLC, OCT, and H&E images of TCC post-TUR (Fig. 4A–C) and carcinoma in situ (CIS) (Fig. 4D–F). It demonstrated that OCT image
can differentiate recurrent TCC from scar or necrosis (Fig. 4B). CIS has low diagnostic sensitivity and specificity (e.g., 30–60%) under routine WLC and remains a critical clinical problem.111,112 Its OCT image showed characteristics including no obvious urothelial thickening, slightly decreased backscattering in urothelium, and drastically diminished backscattering in lamina propria layer (Fig. 4E). Finally, Zagaynova et al. evaluated 28 cases with OCT during TUR to discriminate between muscle-invasive and non-muscle-invasive tumors with a sensitivity of 100% and specificity of 77%.108 Table 1 summarizes the performance of OCT in clinical diagnosis of urological diseases.

Computer-aided recognition of bladder cancer using OCT and texture analysis is under investigation to improve the clinical utility of OCT.88 Higher OCT axial resolution demonstrated the ability to differentiate healthy urothelial tissue, CIS, and TCC from 142 fresh human bladder tissue samples.106 The reported sensitivity and specificity to detect malignant bladder are 83.8% and 78.1%, respectively. Recently, real-time 3D-OCT imaging was demonstrated in 3 clinical cases with bladder/ureter carcinoma to show the contrast of muscle-invasive carcinoma area, the scar tissue area from normal bladder wall, and ureter with three distinguishable layers, including the urothelium, lamina propria, and muscularis layer.113

Similar to other techniques, OCT has some limitations in bladder cancer detection.100,114 One is false-positives that may be induced by scarring or inflammation of the mucosa.99 More clinical studies are needed to confirm the reported results in detecting bladder cancer. The other limitation is the limited field-of-view (FOV) in both lateral and depth directions. OCT was compared with high-resolution ultrasound (i.e., 40 MHz high frequency ultrasound, HFUS) in a rat bladder cancer model.97 Results showed that OCT could differentiate inflammatory lesions and TCC based on characterization of urothelial thickening and enhanced backscattering or heterogeneity, which HFUS failed due to insufficient image resolution and contrast. On the other hand, HFUS was able to stage large T2 tumors that OCT failed due to limited imaging depth. Multimodality cystoscopy combining OCT and HFUS, or the combination of OCT with larger lateral FOV technique such as WLC, narrow band imaging, and photodynamic diagnosis may help improve diagnosis and staging.87,100,114,115

Ureter

Few OCT studies have been conducted in ureter, which has somewhat similar mucosal morphology as bladder that the tissue surface is covered with urothelial cells. Early detection of ureteral cancer, as well as accurate tumor staging and grading, is also critical to reduce the mortality of the disease and help making the optimal treatment decisions.116 The staging and grading of urothelial carcinoma in ureter is challenging because the narrow caliber makes biopsy difficult and unreliable. Endoscopic OCT (EOCT) is necessary to access the layer structures of the ureteral wall with sufficient resolution to stage early ureteral cancer. Several ex-vivo studies in porcine ureter have demonstrated to clearly distinguish anatomical layers particularly the urothelium and lamina propria layers117,118 with better differentiation ability than endoluminal ultrasound.117 Bus et al. reported the
intraluminal OCT identification of anatomical layers of the healthy human ureter in vivo and the results for grading and staging upper urinary track (UUT) urothelial carcinoma using OCT. They identified several unique features by OCT although this study does not have enough patients to provide information on OCT’s sensitivity and specificity of UUT diagnosis. Their study demonstrated that OCT can: (1) distinguish healthy tissues from tumors; (2) differentiate invasive and non-invasive tumors; (3) differentiate grade 2 and 3 lesions by quantifying OCT backscattering attenuation and, thus, has the potential to provide intraoperative real-time histological information on stage and grade during minimally-invasive procedures. Figure 5 shows representative OCT images of healthy ureter with identified urothelium, lamina propria, and muscularis layers. Figure 6 shows representative OCT images of invasive tumor (namely stage T3G3 urothelial carcinoma) where distinction among anatomical layers was not possible.

Kidney

OCT studies in clinical kidney diseases include applications in kidney cancer and non-destructive evaluation of transplant kidney viability or acute tubular necrosis (ATN). Barwari et al. conducted both an ex vivo study with 14 patients and an in vivo study with 16 cases. They demonstrated the capability of OCT to distinguish normal renal parenchyma from malignant renal tumors based on the backscattering properties. Both studies measured higher backscattering property in malignant tumors (measured from the surface or measured directly in the internal tumors) than normal parenchyma. The averaged backscattering value of three benign tumors reported in the in vivo study is between the value from normal and malignant tumor but it did not show significant difference from that of normal renal parenchyma and tumors. Linehan et al. imaged fresh surgical resected tissues of normal renal parenchyma and neoplasm using a laboratory OCT system with lateral resolution of 10 μm and axial resolution of 4 μm. They found angiomyolipoma and transitional cell carcinoma can be distinguished from normal parenchyma. However, higher resolution OCT is necessary to distinguish clear-cell tumors and other renal carcinoma subtypes from normal parenchyma and between carcinoma subtype themselves, which had a heterogeneous appearance on OCT. Figure 7 shows OCT image and corresponding light microscopy of renal carcinoma, chromophobe subtype (top panel) and papillary subtype, grade 4.
4 (bottom panel). Some defining features such as collections of large polygonal cells arranged in trabeculae in chromophobe renal carcinoma and elements of cuboidal cells surrounding a fibrovascular stalk in papillary renal carcinoma were not clearly evident on corresponding OCT images.

Acute tubular necrosis (ATN) is the most common insult to donor kidneys destined for transplantation. OCT is caused by a lack of oxygen to the kidney (ischemia of the kidneys), and is one of the most common causes of kidney failure. Both ex vivo and in vivo studies demonstrated the capability of OCT to visualize kidney parenchyma morphology and function (i.e., tubular morphology, blood flow from vessels and glomeruli) that provide information to kidney ischemic damage. Figure 8 shows the hand-held OCT imaging device used in the operating room (Fig. 8A–C). Figure 8D depicts representative in vivo kidney OCT images after kidney transplant showing cross-sectional profiles of superficial proximal tubules below the renal capsules. The openness of tubule lumens labeled in Figure 8D reflects a functioning post-transplanted kidney. Figure 8E shows the combination of morphological imaging with OCT and functional imaging with DOCT for one patient that displayed good tubular morphology and blood flow. Fairly densely packed uriniferous tubules are observed with several cortical blood vessels indicating re-perfusion. Finally, Video S1 shows combined OCT and DOCT real-time images of the living kidney following its transplant as would be seen while imaging the kidney in the operation room.

Summary

OCT is a powerful medical imaging technology that can reveal microstructure and blood flow in biological tissues in a non-invasive fashion and in real-time. Current technology improvements enable 3D-OCT imaging in real-time, thereby dramatically reducing the motion artifacts during image acquisition when accurate quantification of OCT/DOCT image is essential for disease diagnosis and decision making. In addition, higher resolution might also help to enhance the classification of imaging parameters for disease diagnosis. With continued technology development and clinical translation, OCT promises to enhance current clinical practice in urology.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Supplemental Materials

Supplemental materials may be found here:

www.landesbioscience.com/journals/intravital/article/28770

References

1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Florio T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science 1991; 254:1178-81; PMID:1957169; http://dx.doi.org/10.1126/science.254.5035.1178

2. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA. Optical biopsy and imaging using optical coherence tomography. Nat Med 1995; 1:970-2; PMID:7585229; http://dx.doi.org/10.1038/mm.95-7970

3. Yaqoob Z, Wu J, McDowell EJ, Heng X, Yang C. Methods and application areas of endoscopic optical coherence tomography. J Biomed Opt 2006; 11:063001; PMID:17212523; http://dx.doi.org/10.1117/1.21740214

4. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Florio T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science 1991; 254:1178-81; PMID:1957169; http://dx.doi.org/10.1126/science.254.5035.1178

5. Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography: Opt Express 2003; 11:2183-9; PMID:14966066; http://dx.doi.org/10.1364/OE.11.021838

6. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003; 28:2067-9; PMID:14587817; http://dx.doi.org/10.1364/OL.28.002067

7. Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express 2003; 11:889-94; PMID:14961802; http://dx.doi.org/10.1364/OE.11.008089

8. Fercher AF, Hitzenberger CK, Kamp G, Elsässer SX, Mezrich R, Chen Y. Endoscopic microscopy using optical coherence tomography. Opt Express 2003; 11:889-94; PMID:19050889; http://dx.doi.org/10.1364/OE.11.000889

9. Wojtkowiak M, Leitgeb R, Kowalczyk A, Bajaszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002; 7:457-63; PMID:12175297; http://dx.doi.org/10.1117/1.1482379

10. Chino SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett 1997; 22:340-2; PMID:18183957; http://dx.doi.org/10.1364/OL.22.000340

11. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt Lett 1997; 22:1784-6; PMID:18188341; http://dx.doi.org/10.1364/OL.22.001704

12. Yun S, Tearney G, de Boer J, Iftimia N, Bouma B. High-speed optical frequency-domain imaging. Opt Express 2003; 11:2953-63; PMID:13471415; http://dx.doi.org/10.1364/OE.11.002953

13. Adler DC, Chen Y, Huber R, Schmitt J, Correll J, Fujimoto JG. Three-dimensional endomicroscopy using optical coherence tomography. Nat Photonics 2007; 1:709-16; http://dx.doi.org/10.1038/nphoton.2007.228

14. Vakoc BJ, Shishko M, Yun SH, Oh WY, Suter MJ, Desjardins AE, Evans JA, Nishimura NS, Tearney GJ, Bouma BE. Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest Endosc 2007; 65:898-905; PMID:17383652; http://dx.doi.org/10.1016/j.gie.2006.08.009

15. Zhou C, Adler DC, Becker L, Chen Y, Tsai TH, Figuerido M, Schmitt JM, Fujimoto JG, Mashimo H. Effective treatment of chronic radiation proctitis using radiofrequency ablation. Therap Adv Gastroenterol 2009; 2:149-56; PMID:19593010; http://dx.doi.org/10.1177/1756283X0933541

16. Zhou C, Tsai TH, Lee HC, Kirtane T, Figueiredo M, Tao YK, Ahsen OO, Adler DC, Schmitt JM, Huang Q, et al. Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with video). Gastrointest Endosc 2012; 76:32-40; PMID:22482920; http://dx.doi.org/10.1016/j.gie.2012.02.003

17. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 2007; 12:051403; PMID:17994864; http://dx.doi.org/10.1117/1.2797376

18. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pittirsi C, Southern JF, Fujimoto JG. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997; 276:2037-9; PMID:9197265; http://dx.doi.org/10.1126/science.276.5321.2037

19. Herz P, Chen Y, Aguirre A, Fujimoto J, Mashimo H, Schmitt J, Koski A, Goodnow J, Petersen C. Ultrathin resolution optical biopsy with endoscopic optical coherence tomography. Opt Express 2004; 12:3932-42; PMID:15483882; http://dx.doi.org/10.1364/OE.12.039332

20. Boppart SA, Bouma BE, Pittirsi C, Tearney GJ, Fujimoto JG, Brezinski ME. Forward-imaging instruments for optical coherence tomography. Opt Lett 1997; 22:1618-20; PMID:18188355; http://dx.doi.org/10.1364/OL.22.001618

21. Hariri LP, Bonnema GT, Schmidt K, Winkler AM, Korde V, Hatch KD, Davis JR, Brewer MA, Barton JK. Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol Oncol 2009; 114:188-94; PMID:19481241; http://dx.doi.org/10.1016/j.ygyno.2009.05.014

22. Li X, Chudoba C, Ko T, Pittirsi C, Fujimoto JG. Imaging needle for optical coherence tomography. Opt Lett 2000; 25:1520-2; PMID:10816818; http://dx.doi.org/10.1364/OL.25.001520
31. Pan Y, Li Z, Xie T, Chu CR. Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J Biomed Opt 2013; 18:036009; PMID:23858088; http://dx.doi.org/10.1117/1.JBO.18.3.036009

32. Jain A, Kopa A, Pan YT, Fedder GK, Xie HK. A miniature endoscope for simultaneous two-axis electrothermal micromirror for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. Opt Express 2011; 19:1236-46; PMID:21956465; http://dx.doi.org/10.13140/2.1.0000432

33. Yang VXD, Tang SJ, Gordon ML, Brezinski ME, et al. Optical coherence tomography of the esophagus and proximal stomach in health and disease. Am J Gastroenterol 1997; 92:128-33; PMID:9086742; http://dx.doi.org/10.1111/j.1572-0241.1997.tb09187.x

34. Herz PR, Chen Y, Goodnow J, Peterson C. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. Opt Lett 2004; 29:237-41; PMID:15198686; http://dx.doi.org/10.1364/OL.29.002374

35. Liu X, Cobb MJ, Chen Y, Kinney MB, Li X. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt Lett 2004; 29:2262-3; PMID:15234274; http://dx.doi.org/10.1364/OL.29.002262

36. Tumlinson AR, Hariri LP, Utrrizinger U, Barton JK. Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence microscopy. Appl Opt 2004; 43:113-21; PMID:14714651; http://dx.doi.org/10.1364/AO.43.000113

37. Yeow JTW, Yang VXD, Chahwan A, Gordon ML, Qi B, Virkin IA, Wilson BC, Goodnow J, Peterson C. Micromachined 2-D scanner for 3-D optical coherence tomography. Sens Actuators A Phys 2005; 117:345-53; http://dx.doi.org/10.1016/j.sna.2004.11.030

38. Yang VXD, Moe YX, Munce N, Stanish B, Kucharczyk W, Marcon NE, Wilson BC, Virkin IA. Intraretinal Doppler optical coherence tomography. Opt Lett 2005; 30:791-3; PMID:16092347; http://dx.doi.org/10.1364/OL.30.000791

39. Xie T, Mukan D, Guo S, Brenner M, Chen Z. Fiber-optic bundle-based optical coherence tomography for in vivo breast imaging. Opt Lett 2005; 30:1803-5; PMID:16092351; http://dx.doi.org/10.1364/OL.30.001803

40. Xie T, Guo S, Chen Z, Mukan D, Brenner M. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. Opt Express 2011; 19:3432-40; PMID:21956465; http://dx.doi.org/10.13140/2.1.0000432

41. Boghrist HJ, Lankena E, Rohde V, Huttmann G, Giese A. Optical coherence tomography for experimental neuroendoscopy. Minim Invasive Neurosurg 2004; 47:240-5; PMID:15760339; http://dx.doi.org/10.1159/000079457

42. Wu J, Conroy MT, Gu W, Wang F, Yaoqiao Z, Yang C. Paired-angle-rotation scanning optical coherence tomography of the human mucosa. Opt Express 2006; 14:12657-75; PMID:17002148; http://dx.doi.org/10.1364/OE.14.012657

43. Jung W, McCormick DT, Zhang J, Liao T, NC, Chen ZP. Three-dimensional endoscopic optical coherence tomography of the human gastrointestinal tract using a two-axis microelectromechanical scanning mirror. Appl Phys Lett 2006; 88:163901

44. Furchner AF, Drexler W, Hiirzenberger CK, Lasar T. Optical coherence tomography: principles and applications. Rep Prog Phys 2008; 61:239-303; http://dx.doi.org/10.1088/0034-4885/61/2/204

45. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003; 21:1361-7; PMID:12859566; http://dx.doi.org/10.1038/nbt892

46. Bouma BE, Tearney GJ. Clinical imaging with optical coherence tomography. Acad Radiol 2002; 9:942-53; PMID:12186444; http://dx.doi.org/10.1016/S1076-6332(01)80437-3

47. Walther J, Gaertner M, Cimalla P, Burkhardt A, Kurten L, Meissner S, Koch E. Optical coherence tomography in biomedical research. Anal Bioanal Chem 2011; 400:2721-43; PMID:21562739; http://dx.doi.org/10.1007/s00216-010-4119-x

48. Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography.Prog Retin Eye Res 2008; 27:45-89; PMID:18085865; http://dx.doi.org/10.1016/j.preteyeres.2007.07.005

49. Brezinski ME, Tearney GJ, Chahwan A, Boppart SA, Hee MR, Swanson EA, Southern JF, Fujimoto JG. Imaging of coronary artery microstructure (in vivo) with optical coherence tomography. Am J Cardiol 1996; 77:92-9; PMID:8540647; http://dx.doi.org/10.1016/S0002-9149(97)18913-6

50. Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pissett C, Brezinski ME. Optical coherence tomography: comparison with intravascular ultrasound. Circulation 2001; 104:2754; PMID:11723031; http://dx.doi.org/10.1161/hc701.098069

51. Zysk AM, Nguyen PT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 2007; 12:054803; PMID:17994864; http://dx.doi.org/10.1117/1.2797336
71. Otis LL, Everett MJ, Sathyamurthy US, Colston BW.
72. Welzel J, Lankenau E, Birngruber R, Engelhardt PA.
73. de Melo LS, de Araujo RE, Freitas AZ, Zezell D.
74. Tearney GJ, Brezinski ME, Southern JF, Bouma BE.
75. Zagaynova EV, Streltsova OS, Gladkova ND, Snopova R.
76. Zagaynova EV, Streltsova OS, Gladkova ND, Snopova R.
77. Piriss C, Goodman A, Boppart SA, Libus JJJ, Fujimoto JG, Brezinski ME. Optical coherence tomography of gynecologic neoplasms using optical coherence tomography. Obstet Gynecol 1999; 93:135-9; PMID:9916791.
78. Boppart SA, Goodman A, Libus J, Piriss C, Jesser CA, Brezinski ME. High-resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. Br J Obstet Gynaecol 1999; 106:707-7; PMID:10519434; http://dx.doi.org/10.1111/j.1475-0361.1999.tb14740.x.
79. Brewer MA, Utzinger U, Barton JK, Hoying JB, Kirkpatrick ND, Brandi WR, Davis JR, Hunt K, Stevens SJ, Gimfud AT. Imaging of the ovary. Technol Cancer Res Treat 2004; 3:617-27; PMID:15560720.
80. Boppart SA, Luo W, Marks DL, Singleterry KW. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat 2004; 84:85-97; PMID:14999139; http://dx.doi.org/10.1023/B: BREAL.0000001840.13609.54.
81. Huang PL, Phakth DR, Chen Y, Aguirre AD, Fujimoto JG, Connolly JL. Benign and malignant lesions in the human breast depicted with ultra-high resolution and three-dimensional optical coherence tomography. Radiology 2007; 244:865-74; PMID:17630358; http://dx.doi.org/10.1148/radiol.2443061865.
82. Goldberg BD, Iftimia NV, Bressner J, Pitman MB, Halpern E, Bouma BE, Tearney GJ. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. J Biomed Opt 2008; 13:014014; PMID:18353732; http://dx.doi.org/10.1117/1.2837434.
83. Nguyen PT, Zysk AM, Chaney JF, Kotynek J, Oliphant UJ, Belfiore FJ, Rowland KM, Johnson PA, Boppart SA. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res 2009; 69:8790-6; PMID:19910924; http://dx.doi.org/10.1158/0008-5472.CAN-09-1701.
84. Zhou C, Cohen DW, Wang Y, Lee HC, Mondelblatt AE, Tsai TH, Aguirre AD, Fujimoto JG, Connolly JL. Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res 2010; 70:10071-9; PMID:20569988; http://dx.doi.org/10.1158/0008-5472.CAN-10-2968.
85. Pan Y, Horiuchi JP, Bastacky SI, Meyers S, Ptitskhovilai GS, Zeidel ML, Farkas DL. Detection of tumorigenesis in rat bladders with optical coherence tomography. Med Phys 2001; 28:2433-40; PMID:11797946; http://dx.doi.org/10.1118/1.1487726.
86. Yuan Z, Wang Z, Pan R, Liu J, Cohen H, Pan Y. High-resolution imaging diagnosis and staging of bladder cancer: comparison between optical coherence tomography and high-frequency ultrasound. J Biomed Opt 2008; 13:054007; PMID:19021387; http://dx.doi.org/10.1117/1.2978059.
87. Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. J Biomed Opt 2008; 13:024003; PMID:18469660; http://dx.doi.org/10.1117/1.28344087.
88. Golub AE, Tsai TH, Jensen SN, Slesser LP. Optical coherence tomography as an adjunct to white light cystoscopy for intra vesical real-time imaging and staging of bladder cancer. Urology 2008; 72:133-7; PMID:18598879; http://dx.doi.org/10.1016/j.urology.2008.02.002.
89. Goh AC, Tresser NJ, Shen SS, Lerner SP. Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix and vulva. Int J Gynecol Cancer 2008; 18:35-40; PMID:18381938; http://dx.doi.org/10.1181/1048891X.2008.314444.
90. Escobar PF, Belinson JL, White A, Shakhova NM, Feldchtein FL, Karetz VV, Gladkova ND. Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of the cervix uteri and vulva. J Gynecol Obstet Biol Reprod (Paris) 2008; 37:377-82; PMID:18546224; http://dx.doi.org/10.1016/j.jgyno.2008.02.006.
91. Escobar PF, Rojas-Espallar L, Tisci S, Enerson C, Brainard J, Smith T, Tresser NL, Feldchtein FL, Rojas LB, Belinson JL. Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix. Int J Gynecol Cancer 2006; 16:1815-22; PMID:17008969; http://dx.doi.org/10.1111/j.1525-1438.2006.00665.x.
92. Mogensen M, Joergensen TM, Nürnberg BM, Morst H, Thomsen JB, Tharane L, Jemec GBE. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 2009; 35:965-72; PMID:19397661; http://dx.doi.org/10.1111/j.1097.0018-4522.2009.01164.x.
93. Shakhov AV, Terentjeva AB, Kamensky VV, Snopova LB, Gelikonov VM, Feldchtein FL, Sergeev AM. Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J Surg Oncol 2001; 77:253-8; PMID:11473374; http://dx.doi.org/10.1002/jso.10115.
94. Armstrong WB, Radigam JW, Vokes DE, Guo S, Perez J, Jackson RP, Gu M, Su J, Cremluk RL, Shichov TY et al. Optical coherence tomography of laryngeal cancer. Laryngoscope 2006; 116:1107-13; PMID:16826043; http://dx.doi.org/10.1097/01.MLM.0000201739.74232.5a.
95. Huang PL, Zhang J, Chung JR, Wilder-Smith P, Brenner M, Nelson JS, Chen ZP. Advances in oral cancer detection using optical coherence tomography. IEEE J Sel Top Quantum Electron 2005; 11:817-8; http://dx.doi.org/10.1109/JSTQE.2005.857678.
102. Tsai MT, Lee HC, Lu CW, Wang YM, Lee CK, Yang CC. Ex vivo determination of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt 2008; 13:944012; PMID:19021340; http://dx.doi.org/10.1117/1.2960652

103. Mortef P, Soureyrand G. Optical coherence tomography to diagnose under-expansion of a drug-eluting stent. JACC Cardiovasc Imaging 2009; 2:245-6; author reply 246; PMID:19356563; http://dx.doi.org/10.1016/j.jcmg.2008.11.008

104. Messing EM, Catalona W. Urothelial tumors of the urinary tract. In: Walsh PC, Retik A, Vaughan ED, Wein AJ, eds. Campbell’s Urology. St.Louis: WB Saunders Company, 1998: 2327-10.

105. Jesser CA, Boppart SA, Pitsch C, Stamper DL, Nielsen GP, Braeunig ME, Fujimoto JG. High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br J Radiol 1999; 72:1109-7; PMID:10703474

106. Hermes B, Spöler F, Naami A, Bornemann J, Först G. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin formation. J Endourol 2011; 77:1254-8; PMID:21235359; http://dx.doi.org/10.1067/mju.2010.11.044

107. Ravery V, Treiber U, et al. Comparison of the BTA Stat test with voided urine cytology and bladder wash cytology in the diagnosis and monitoring of bladder cancer. J Urol 2011; 185:1009-13; PMID:21683985; http://dx.doi.org/10.1016/j.juro.2010.10.140

108. Zagaynova E, Gladkova N, Shakhova N, Gelikonov G, Gelikonov V. Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology. J Biophotonics 2008; 1:134-28; PMID:19343643; http://dx.doi.org/10.1002/jbio.200710017

109. Pan YT, Xie TQ, Du CW, Batacky S, Meyers S, Zeldek ML. Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography. Opt Lett 2003; 28:2485-7; PMID:14690122; http://dx.doi.org/10.1364/OL.28.002485

110. El-Hakim A, Weiss GH, Lee BR, Smith AD. Correlation of ureteroscopic appearance with histologic grade of upper tract transitional cell carcinoma. Urology 2004; 63:647-50, discussion 650; PMID:15072780; http://dx.doi.org/10.1016/j.urology.2003.10.076

111. Mueller-Lisse UL, Meissner OA, Babaryka G, Bauer M, Eibel R, Stief CG, Reiser MF, Mueller-Lisse AM. Three-dimensional imaging of ureter with optical coherence tomography: O(CT) of the ureter: ex-vivo correlation with histology in porcine specimens. Eur Radiol 2006; 16:2259-65; PMID:16743532; http://dx.doi.org/10.1007/s00330-006-0191-8

112. Wang H, Kang W, Zhu H, MacLennan G, Xie H. Bearing-based intraluminal optical coherence tomography (OCT) of the ureter: ex-vivo correlation with histology in porcine specimens. Eur Radiol 2011; 21:1254-58; PMID:21256048; http://dx.doi.org/10.1007/s00330-010-1676-2

113. Linehan JA, Bracamonte ER, Hariri LP, Sokoloff AM. Three-dimensional imaging of ureter with optical coherence tomography: a preliminary report. J Endourol 2011; 25:311-5; PMID:21235359; http://dx.doi.org/10.1067/mju.2010.11.044

114. Barwari K, de Bruin DM, Faber DJ, Kamphuis GM, van Leeuwen TG, de Reijke TM. Volumetric in vivo visualization of upper urinary tract tumors using optical coherence tomography: a pilot study. J Urol 2013; 190:2236-42; PMID:23954585; http://dx.doi.org/10.1016/j.juro.2013.08.006

115. Klein T, Wieser W, Reznicek I, Neubauer A, Kampik A, Huber R. Multi-MHz retina OCT. Biomed Opt Express 2013; 4:1890-98; PMID:24560562; http://dx.doi.org/10.1364/BOE.4.001890

116. Bhalla R, Yuan S, Jiang J, Cable A, Chen Y. Optical coherence tomography of human kidney. J Urol 2010; 183:2090-4; PMID:20303512; http://dx.doi.org/10.1016/j.juro.2010.12.091