Bayesian nonparametric estimation for Quantum Homodyne Tomography

Zacharie Naulet
CEREMADE, Université Paris-Dauphine, France
e-mail: zacharie.naulet@dauphine.eu

and

Éric Barat
CEA, LIST, Laboratory of Modeling, Simulation and Systems
F-91191 Gif-sur-Yvette, France
e-mail: eric.barat@cea.fr

Abstract: We estimate the quantum state of a light beam from results of quantum homodyne tomography noisy measurements performed on identically prepared quantum systems. We propose two Bayesian nonparametric approaches. The first approach is based on mixture models and is illustrated through simulation examples. The second approach is based on random basis expansions. We study the theoretical performance of the second approach by quantifying the rate of contraction of the posterior distribution around the true quantum state in the L^2 metric.

MSC 2010 subject classifications: Primary 62G05; secondary 62G20, 81V80.

Keywords and phrases: Bayesian nonparametric estimation, inverse problem, nonparametric estimation, quantum homodyne tomography, Radon transform, Wigner distribution, mixture prior, Wilson bases, rate of contraction.

Received October 2016.

1. Introduction

Quantum Homodyne Tomography (QHT), is a technique for reconstructing the quantum state of a monochromatic light beam in cavity (Artiles et al., 2005). Unlike classical optics, the predictions of quantum optics are probabilistic so that we cannot in general infer the result of a single measurement, but only the distribution of possible outcomes. The quantum state of a monochromatic light beam in cavity is a positive, self-adjoint and trace-class operator ρ acting on the Hilbert space $L^2(\mathbb{R})$. We should here distinguish the pure states which are projection operators onto one-dimensional subspaces of $L^2(\mathbb{R})$, and mixed-states which are all the other possible states.

Having prepared a quantum system in state ρ, the aim of the physicist is to perform measurement of certain observables. Mathematically speaking, an observable A is a self-adjoint operator on $L^2(\mathbb{R})$. A measurement is a mapping
which assigns to an observable A and a state ρ a probability measure μ_A on \mathbb{R}; this mapping is given by the so-called Born-von Neumann formula (Hall, 2013).

Two observables of interest in quantum optics correspond to the measurements of the electric field and the magnetic field of a light beam, and are given respectively by the operator Q and P with domains $D(Q) := \{ \psi \in L^2(\mathbb{R}) : x \mapsto x\psi(x) \in L^2(\mathbb{R}) \}$ and $D(P) := \{ \psi \in L^2(\mathbb{R}) : x \mapsto \psi'(x) \in L^2(\mathbb{R}) \}$. The operators Q and P act on $D(Q)$, respectively $D(P)$, as $Q\psi(x) = x\psi(x)$, and $P\psi(x) = -i\psi'(x)$.

The derivative in the definitions of $D(P)$ and P is understood in the distributional sense.

By virtue of the Heisenberg uncertainty principle (Hall, 2013), the observables P and Q cannot be measured simultaneously; that is there is no joint probability distribution associated to the simultaneous measurement of P and Q. Nevertheless, the Wigner density $W_\rho : \mathbb{R}^2 \rightarrow \mathbb{R}$, with respect to the Lebesgue measure on \mathbb{R}^2, as defined below, is the closest object to a joint probability density function associated to the joint measurement of P and Q on a system in state ρ. The Wigner distribution satisfies $\int_{\mathbb{R}^2} W_\rho = 1$, and its marginals on any direction are bona-fide probability density functions. In general, however, W_ρ fails to be a proper joint probability density function, as it can take negative values, reflecting the non classicality of the quantum state ρ. For a pure state ρ_ψ, $\psi \in L^2(\mathbb{R})$, the Wigner quasi-probability density of ρ_ψ is defined as

$$W_\psi(x,\omega) := \int_{\mathbb{R}} \overline{\psi(x + t/2)}\psi(x - t/2)e^{-2\pi i\omega t}dt, \quad (x,\omega) \in \mathbb{R}^2. \quad (1)$$

We delay to later the definition of the Wigner distribution for mixed states, which will follow from the definition for pure states in a relatively straightforward fashion. Here we take the opportunity to say that whenever we will be concerned with pure states, we will identify the state ρ_ψ to the function $\psi \in L^2(\mathbb{R})$, and talk abusively about the state ψ.

Although we cannot measure simultaneously the observables P and Q, it is possible to measure the quadrature observables, defined as $X_\theta := Q\cos \theta + P\sin \theta$ for all $\theta \in [0, \pi]$. We denote by X_θ^ρ the random variable whose distribution is the measurement of X_θ on the quantum system in state ρ. Assuming that θ is drawn uniformly from $[0, \pi]$, the joint probability density function (with respect to the Lebesgue measure on $\mathbb{R} \times [0, \pi]$) for (X_θ^ρ, θ) is given by the Radon transform of the Wigner distribution W_ρ, that is

$$p_\rho(x,\theta) := \int_{\mathbb{R}} W_\rho(x \cos \theta - \xi \sin \theta, x \sin \theta + \xi \cos \theta) d\xi, \quad (x,\theta) \in \mathbb{R} \times [0, \pi]. \quad (2)$$

For a pure state $\psi \in L^2(\mathbb{R})$, there is a convenient way of rewriting the previous equation, as stated for example in (Markus, Bryan and Jorge, 2010, equa-
Bayesian nonparametric estimation for QHT

\begin{align}
\psi(x, \theta) &= \begin{cases}
\frac{1}{2\pi}\left|\int_{\mathbb{R}} \psi(z) \exp\left(\pi i \frac{\cot \theta}{2} z^2 - \pi i \frac{z}{\sin \theta}\right) dz\right|^2 & \theta \neq 0, \ \theta \neq \pi/2, \\
|\tilde{\psi}(x)|^2 / \pi & \theta = 0, \\
|\tilde{\psi}(x)|^2 / \pi & \theta = \pi/2,
\end{cases} \\
\end{align}

(3)

where $\tilde{\psi}$ is the Fourier transform of ψ (according to the convention defined in the next section of the paper). Equation (3) emphasizes that for any (x, θ) we indeed have $p_\psi(x, \theta) \geq 0$, a fact that remains true for mixed states, but which is not so clear from the definition of equation (2).

Quantum homodyne tomography is an experiment that allow for measuring the quadrature observables X_θ for a monochromatic light beam in cavity in state ρ. Here we consider the situation when we perform identical and independent measurements of X_θ on n quantum systems in the same state ρ, with θ spread uniformly over $[0, \pi]$. Following Butucea, Guţă and Artiles (2007), it turns out that a good model for a realistic quantum homodyne tomography must take into account noise on observations.

In practice, the noise is mostly due to the fact that a number of photons fails to be detected. The ability of the detector to detect photons is quantified by a parameter $\eta \in [0, 1]$, called the efficiency of the detector. When $\eta = 0$, then the detector fails to detect all photons, whereas $\eta = 1$ corresponds to the ideal case where all the photons are detected. In general, it is assumed that η is known ahead of the measurement process, and η is relatively close to one, according to the physicists. Then, from Butucea, Guţă and Artiles (2007, section 2.4), a more realistic model for quantum homodyne tomography is to consider that we observe the random variables (given θ)

\begin{align}
Y_\theta^\rho &= X_\theta^\rho + \sqrt{\frac{1 - \eta}{\eta}} X_\theta^{\text{vac}},
\end{align}

where $X_\theta \sim p_\rho(\cdot | \theta)$, and X_θ^{vac} is the random variable whose distribution is the measurement of X_θ on the vacuum state and is assumed independent of X_θ^ρ.

Here we adopt the convention that the vacuum state is the projection operator onto $x \mapsto 2^{-1/4} \exp(-\pi x^2)$. It turns out from equations (1) and (4) that X_θ^{vac} has a normal distribution with mean zero and variance $1/(4\pi)$. This leads to the following efficiency corrected probability density function of observations,

\begin{align}
p_{\psi}^\eta(y, \theta) := \sqrt{\frac{2}{1 - \eta}} \int_{\mathbb{R}} p_\psi(x, \theta) \exp\left[-\frac{2\pi \eta}{1 - \eta} (x - y)^2\right] dx.
\end{align}

(4)

To shorten notations, we define

\begin{align}
\gamma := \frac{\pi (1 - \eta)}{2\eta}, \quad \text{and} \quad \Phi_\gamma(x) := \sqrt{\pi/\gamma} \exp\left[-\pi^2 x^2/\gamma\right],
\end{align}

(5)

\footnote{Some readers may have noticed that the variance here is different that in Butucea, Guţă and Artiles (2007). This comes from a different convention for defining the vacuum state.}

\[\text{To shorten notations, we define} \]

\[\gamma := \frac{\pi (1 - \eta)}{2\eta}, \quad \text{and} \quad \Phi_\gamma(x) := \sqrt{\pi/\gamma} \exp\left[-\pi^2 x^2/\gamma\right], \]
so that we have $p_\psi^n(y, \theta) = [p_\psi(\cdot, \theta) * \Phi_\gamma](y)$, where $*$ denote the convolution product.

To summarize the statistical model we are considering in this paper, we aim at estimating the Wigner density function W_ρ, or better directly the state ρ, from n independent and identically distributed noisy observations $(Y_1, \theta_1), \ldots, (Y_n, \theta_n)$ distributed according to the distribution that has the density function of equation (4) with respect to the Lebesgue measure on $\mathbb{R} \times [0, \pi]$.

The problem of QHT is a statistical nonparametric ill-posed inverse problem that has been relatively well studied from a frequentist point of view in the last few years, and now quite well understood. We mention here only papers with theoretical analysis of the performance of their estimation procedure. We should classify frequentist methods in two categories, depending on whether they are based on estimating the state ρ, or estimating W_ρ (although $\rho \mapsto W_\rho$ is one-to-one, methods based on estimating W_ρ don’t permit to do the reverse path from $W_\rho \mapsto \rho$).

The estimation of the state ρ from QHT measurements has been considered in the ideal situation ($\eta = 1$, no noise) by Artiles et al. (2005), while the noisy setting is investigated in Aubry, Butucea and Méziani (2008) under Frobenius-norm risk. For smoothness class of realistic states $\mathcal{R}(C, B, r)$, an adaptive estimation procedure has been proposed by Alquier, Meziani and Peyré (2013) and an upper bound for the Frobenius-norm risk is given. Goodness-of-fit testing is investigated in Méziani (2008).

Regarding frequentist methods for estimating W_ρ, the first result goes back to Guţă and Artiles (2007), where sharp minimax results are given over a class of smooth Wigner functions $\mathcal{A}(\beta, r = 1, L)$, under the pointwise risk. The noisy framework has been considered in Butucea, Guţă and Artiles (2007); authors obtain the minimax rates of convergence under the pointwise risk and propose an adaptive estimator over the set of parameters $\beta > 0$, $r \in (0, 1)$ that achieve nearly minimax rates. In the same time Méziani (2007) explored the estimation of a quadratic functional of the Wigner function, as an estimator of the purity of the state. In, Aubry, Butucea and Méziani (2008) an upper bound for the L^2-norm risk over the class $\mathcal{R}(C, B, r)$ is given. More recently, Lounici, Meziani and Peyré (2015) established the first sup-norm risk upper bound over $\mathcal{A}(\beta, r, L)$, as well as the first minimax lower bounds for both sup-norm and L^2-norm risk; they also provide an adaptive estimator that achieve nearly minimax rates for both sup-norm and L^2-norm risk over $\mathcal{A}(\beta, r, L)$ for all $\beta > 0$ and $r \in (0, 2)$.

To our knowledge, no Bayesian nonparametric method has been proposed to address the problem of QHT with noisy data, a gap that we try to fill with this paper. In particular, after having introduced preliminary notions in the next section, we propose two families of prior distributions over pure states that can be useful in practice, namely mixtures of coherent-states and random Wilson series. Regarding mixed-states, we will discuss how we can straightforwardly extend the prior distributions over pure states onto prior distributions over mixed states. After presenting simulation results, we will investigate posterior rates of contraction for random Wilson series in the main section of the paper.
Rates of contraction, or even consistency, is still challenging for coherent states mixtures, a fact that will be discussed more thoroughly in section 5.2.

2. Preliminaries

2.1. Notations

For $x, y \in \mathbb{R}^d$, xy denote the euclidean inner product of x and y, and $\|x\|$ is the euclidean norm of a vector $x \in \mathbb{R}^d$. For any function f, we denote by \tilde{f} the involution $\tilde{f}(x) = f(-x)$. We use the notation $\| \cdot \|_p$ for the norm of the spaces $L^p(\mathbb{R}^d)$.

We use the following convention for the Fourier transform of a function $f \in L^1(\mathbb{R}^d)$.

$$\mathcal{F}f(\omega) := \hat{f}(\omega) := \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \omega} \, dx, \quad \forall \omega \in \mathbb{R}^d.$$

Then, whenever $f \in L^1(\mathbb{R}^d)$ and $\mathcal{F}f \in L^1(\mathbb{R}^d)$, the inverse Fourier transform $\mathcal{F}^{-1} \hat{f} = f$ is well defined and given by

$$f(x) = \int_{\mathbb{R}^d} \hat{f}(\omega)e^{2\pi i \omega x} \, d\omega, \quad \forall x \in \mathbb{R}^d.$$

Regarding the space $L^2(\mathbb{R}^d)$, we use the convention that the inner product $\langle \cdot, \cdot \rangle : L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \to \mathbb{C}$ is linear in the first argument and antilinear in the second argument, that is for two functions $f, g \in L^2(\mathbb{R}^d)$ we define $\langle f, g \rangle := \int_{\mathbb{R}^d} f(x)\overline{g(x)} \, dx$, where \overline{z} is the complex conjugate of $z \in \mathbb{C}$. The unit circle of $L^2(\mathbb{R}^d)$ will be denoted by $S^2(\mathbb{R}^d)$; that is $S^2(\mathbb{R}^d) := \{ f \in L^2(\mathbb{R}^d) : \| f \|_2 = 1 \}$.

We shall sometimes encounter the Schwartz space $\mathcal{S}(\mathbb{R}^d)$; that is the space of all infinitely differentiable functions $f : \mathbb{R}^d \to \mathbb{R}$ for which $|x^\alpha D^\beta f(x)| < +\infty$ for all $\alpha, \beta \in \mathbb{N}^d$, with the convention $x^\alpha = x_1^{\alpha_1} \ldots x_d^{\alpha_d}$ and $D^\beta f = \partial^{\beta_1 + \ldots + \beta_d} f / (\partial x_1^{\beta_1} \ldots \partial x_d^{\beta_d})$.

Dealing with probability distributions, we consider the Hellinger distance $H^2(P, Q) := \frac{1}{2} \int (\sqrt{dP/d\lambda} - \sqrt{dQ/d\lambda})^2 \, d\lambda$, for any probability measures P, Q absolutely continuous with respect to a common measure λ.

We denote by P_ρ, respectively P_ρ^η, the distributions that admit equation (2), respectively equation (4), as density with respect to the Lebesgue measure on $\mathbb{R} \times [0, \pi]$. When $\rho \equiv \rho_0$ denote a pure state, we denote the previous distribution by P_ψ and P_η^ψ, respectively.

Finally, inequalities up to a generic constant are denoted by the symbols \lesssim and \gtrsim, where $a \lesssim b$ means $a \leq Cb$ for a constant $C > 0$ with no consequence on the result of the proof.

2.2. Coherent states

In quantum optics, a coherent state refers to a state of the quantized electromagnetic field that describes a classical kind of behavior.
Let $T_x f(y) := f(y - x)$, $M_\omega f(y) = e^{2\pi i \omega y} f(y)$, denote the translation and modulation operators, respectively, and g a window function with $\|g\|_2 = 1$; most of time g is chosen as $g(x) = 2^{-1/4} \exp(-\pi x^2)$. Mathematically speaking, coherent states are pure states ρ_ψ, that is projection operators, described by a wave-function ψ belonging to
\[\{ \psi \in L^2(\mathbb{R}) : \psi = T_x M_\omega g \quad (x, \omega) \in \mathbb{R}^2 \}. \]

Note that the operators T_x and M_ω are isometric on $L^p(\mathbb{R}^d)$ and $\|f\|_p = \|T_x M_\omega f\|_p$ for any $1 \leq p \leq \infty$, all $f \in L^p(\mathbb{R}^d)$ and all $x, \omega \in \mathbb{R}$.

2.3. Wilson bases

Daubechies, Jaffard and Journé (1991) proposed simple Wilson bases of exponential decay. They constructed a real-valued function φ such that for some $a, b > 0$,
\[|\varphi(x)| \lesssim e^{-a|x|}, \quad |\hat{\varphi}(\omega)| \lesssim e^{-b|\omega|}, \]
and such that the φ_{lm}, $l \in \mathbb{N}$, $m \in \frac{1}{2} \mathbb{Z}$ defined by
\[\varphi_{lm}(x) := \begin{cases}
\varphi(x - 2m) & \text{if } l = 0, \\
\sqrt{2} \varphi(x - m) \cos(2\pi lx) & \text{if } l \neq 0 \text{ and } 2m + l \text{ is even}, \\
\sqrt{2} \varphi(x - m) \sin(2\pi lx) & \text{if } l \neq 0 \text{ and } 2m + l \text{ is odd},
\end{cases} \]
constitute an orthonormal base for $L^2(\mathbb{R})$. Following Gröchenig (2001, section 8.5), we may rewrite φ_{lm} in a convenient form for the sequel, emphasizing the relationship with coherent states,
\[\varphi_{lm} = c_l T_m (M_l + (-1)^{m+l} M_{l-1}) \varphi, \quad (l, m) \in \mathbb{N} \times \frac{1}{2} \mathbb{Z}, \tag{6} \]
where $c_0 := 1/2$ and $c_l := 1/\sqrt{2}$ for $l \geq 1$.

3. Prior distributions

We recall that a pure state ρ_ψ is a projection operator onto a one-dimensional subspace of $L^2(\mathbb{R})$. Before giving the methodology for estimating general states, we introduce two types of prior distribution over pure-states. More precisely, we first define two probability distributions over $S^2(\mathbb{R})$, that can be trivially identified with the set of pure-state through the mapping $S^2(\mathbb{R}) \ni \psi \mapsto \rho_\psi$; then we will show how to enlarge these prior distributions to handle mixed states.

The first prior model is based on Gamma mixtures, whereas the second is based on the Wilson base of exponential decay.
3.1. Gamma Process mixtures of coherent states

For any finite positive measure \(\alpha \) on the measurable space \((X, \mathcal{X}) \), let \(\Pi_\alpha \) denote the Gamma process distribution with parameter \(\alpha \); that is, \(Q \sim \Pi_\alpha \) is a measure on \((X, \mathcal{X}) \) such that for any disjoints \(B_1, \ldots, B_k \in \mathcal{X} \) the random variables \(Q(B_1), \ldots, Q(B_k) \) are independent random variables with distributions \(\text{Ga}(\alpha(B_i), 1) \), \(i = 1, \ldots, k \).

We suggest a mixture of coherent states as prior distribution on the wave function \(\psi \). For a Gamma random measure \(Q \) on \(\mathbb{R}^2 \times [0, 2\pi] \), our model may be summarized by the following hierarchical representation. Recall that \(P_\eta \psi \) denote the probability distribution having the density of equation (4), with \(\rho = \rho_\psi \) the projection operator onto \(\psi \).

\[
(Y_1, \theta_1), \ldots, (Y_n, \theta_n) \overset{i.i.d.}{\sim} P_\psi^n, \quad \text{with } \psi = \tilde{\psi}/\|\tilde{\psi}\|_2
\]

\[
\tilde{\psi}(z) = \int_{\mathbb{R}^2 \times [0, 2\pi]} e^{i\phi} T_z M_{\omega} g(z) Q(dxd\omega d\phi)
\]

\(Q \sim \Pi_\alpha. \)

3.2. Random Wilson series

Let \((\phi_{lm}) \) be the orthonormal Wilson base with exponential decay of section 2.3. For any positive number \(Z \), let \(\Lambda_Z \) be the spherical array

\[
\Lambda_Z := \{(l, m) \in \mathbb{N} \times \frac{1}{2} \mathbb{Z} : l^2 + m^2 < Z^2\}.
\]

Also define the simplex \(\Delta_Z \) in the \(\ell_2 \) metric as

\[
\Delta_Z := \{p = (p_{lm})_{(l, m) \in \Lambda_Z} : \sum_{(l, m) \in \Lambda_Z} p_{lm}^2 = 1, \ p_{lm} \geq 0\}.
\]

We consider the following prior distribution \(\Pi \) on \(S^2(\mathbb{R}) \). Let \(P_Z \) be a distribution over \(\mathbb{R}^+ \) and draw \(Z \sim P_Z \). Given \(Z \), draw \(p \) from a distribution \(G(\cdot \mid Z) \) over the simplex \(\Delta_Z \). Independently of \(p \), draw \(\zeta = (\zeta_{lm})_{(l, m) \in \Lambda_Z} \) from a distribution \(P_\zeta(\cdot \mid Z) \) over \([0, 2\pi]^{\Lambda_Z} \) and set

\[
\psi := \sum_{(l, m) \in \Lambda_Z} p_{lm} e^{i\zeta_{lm}} \phi_{lm}.
\]

Note that \((\phi_{lm}) \) is orthonormal, thus \(\|\psi\|^2_2 = \sum_{(l, m) \in \Lambda_Z} p_{lm}^2 = 1 \) almost-surely, that is \(\psi \in S^2(\mathbb{R}) \) almost-surely.

3.3. Estimation of mixed states

The set of quantum states is a convex set. According to the Hilbert-Schmidt theorem on the canonical decomposition for compact self-adjoint operators, for
every quantum state ρ there exists an orthonormal set $(\psi_n)_{n=1}^N$ in $L^2(\mathbb{R})$ (finite or infinite, in the latter case $N = \infty$), and $\alpha_n > 0$ such that

$$\rho = \sum_{n=1}^N \alpha_n \rho \psi_n, \quad \text{and} \quad \text{Tr} \rho = \sum_{n=1}^N \alpha_n = 1.$$

The $(\alpha_n)_{n=1}^N$ are the non-zero eigenvalues of ρ and $(\rho \psi_n)_{n=1}^N$ projection operators onto $(\psi_n)_{n=1}^N$. Thus every mixed state is a convex linear combination of pure states. In particular, for any state ρ we have

$$W_\rho(x,\omega) = \sum_{n=1}^N \alpha_n W_{\psi_n}(x,\omega),$$

making relatively straightforward the extension of priors over pure states onto priors over general states. In other words, a prior distribution over general states can be constructed as a mixture of pure states by a random probability measure.

4. Simulations examples

We test the Gamma process mixtures of coherent states on two examples of quantum states, corresponding to the Schrödinger cat and 2-photons states, that are respectively described by the wave functions

$$\psi_{\text{cat}}^{x_0}(x) := \exp(-\pi(x-x_0)^2) + \exp(-\pi(x+x_0)^2), \quad 2^{1/4} \sqrt{1 + \exp(-2\pi x_0^2)},$$

$$\psi_2(x) := 2^{-1/4}(4\pi x^2 - 1) \exp(-\pi x^2).$$

Using equations (1) and (2), it is seen that the conditional density on $\theta \in [0, \pi]$ corresponding to the measurement of X_ϕ on the systems in states $\psi_{\text{cat}}^{x_0}$ and ψ_2 are respectively given by

$$p_{\text{cat}}^{x_0}(x \mid \theta) \propto \sqrt{2} e^{-2\pi (x-x_0 \cos \theta)^2} + 2 e^{-2\pi x_0^2} \sqrt{2} e^{-2\pi x^2} \cos(4\pi x_0 \sin \theta) e^{-2\pi x_0^2 \sin^2 \theta},$$

and,

$$p_2(x \mid \theta) = 2^{-1/2}(4\pi x^2 - 1)^2 e^{-2\pi x^2}.$$

Note that $p_{\text{cat}}^{x_0}(\cdot \mid \theta)$ is not a mixture density, since one term can take negative values. Conditionally on θ drawn uniformly on $[0, \pi]$, we simulate observations from the Schrödinger cat state with $x_0 = 2$ using $p_{\text{cat}}^{x_0}(\cdot \mid \theta)$ and the rejection sampling algorithm with candidate distribution $\frac{1}{2} \mathcal{N}(-x_0 \cos \theta, 1/(4\pi)) + \frac{1}{2} \mathcal{N}(x_0 \cos \theta, 1/(4\pi))$. Similarly, we simulate observations from the 2-photons state using the rejection sampling algorithm with a Laplace candidate distribution. Finally, a Gaussian noise is added to observations according to equation (4).
4.1. Simulation results

We use the algorithm of Naulet and Barat (2015) for simulating samples from posterior distributions of Gamma process mixtures. The base measure α on $\mathbb{R}^2 \times [0, 2\pi]$ of the mixing Gamma process is taken as the independent product of a normal distribution on \mathbb{R}^2 with covariance matrix $\text{diag}(1/2, 1/2)$ and the uniform distribution on $[0, 2\pi]$.

We ran 3000 iterations of the algorithm for $n = 500$, $n = 2000$ and $n = 5000$ simulated observations of either the Schrödinger cat state or the 2-photons state, with efficiencies of $\eta = 0.85$ and $\eta = 0.95$. The algorithm was run with $p = 50$ particles (see Naulet and Barat, 2015), leading to an acceptance rate of approximately 60% for the particle moves for all runs. All random-walk Metropolis-Hastings steps are Gaussians, with amplitudes chosen to achieve approximately 25% acceptance rates. All the statistics were computed using only the 2000 last samples provided by the algorithm.

	Schrödinger cat	2-photons
$\eta = 0.85$	0.316	0.044
$\eta = 0.95$	0.347	0.027
500 obs.	0.134	0.010
2000 obs.	0.047	0.005
5000 obs.	0.048	0.003

Table 1

Summary of the average over 100 runs of the L^2-error between the true Wigner distribution and the posterior mean estimate for varying number of observations and efficiency of the detector.

For each run of the algorithm, we computed the L^2-error between the true Wigner distribution and the posterior mean estimate. The error was computed using Simpson integration on a fine grid. Table 1 presents the average of the L^2-error over 100 runs of the algorithm for varying number of observations and efficiency of the detector. Surprisingly, the efficiency of the detector seems to only have a little impact on the error, and there is no clear difference between the results for $\eta = 0.85$ and $\eta = 0.95$. However, the number of observations has a clear impact on the error, although on these simple examples we believe it is not worth to increase the number of data above 5000 since the gain on error is then very low for a huge increase of the computation cost.

Figures 1 and 3 represent the average of posterior samples of the Wigner distribution for the Schrödinger cat state, and the 2-photons state, respectively, for $n = 2000$ observations and $\eta = 0.95$. Because it is hard to distinguish between the posterior mean estimator and the true Wigner distribution, we added to the figures a view map of the absolute value of the difference between the evaluated posterior mean and the true Wigner distribution.

Figures 2 and 4 show the marginals of the posterior mean estimates of Wigner distributions for our two examples. We represented the true marginals in dashed lines, as well as the posterior credible bands provided by the algorithm, which
Fig 1. Left: Average of Wigner distribution samples from the posterior distribution of the mixture of coherent states prior given 2000 quantum homodyne tomography observations simulated from a Schrödinger cat state with $\eta = 0.95$. Right: View map of the absolute value of the difference between the posterior mean estimate of the Wigner distribution and the true Wigner distribution.

Fig 2. Marginals of the Wigner distribution samples from the posterior distribution of the mixture of coherent states prior given 2000 quantum homodyne tomography observations simulated from a Schrödinger cat state with $\eta = 0.95$. In straight line the posterior mean estimate, whereas the dashed lines corresponds to the true marginals. The 95% credible intervals for the sup-norm distance are drawn in shading.
Fig 3. Left: Average of Wigner distribution samples from the posterior distribution of the mixture of coherent states prior given 2000 quantum homodyne tomography observations simulated from a 2-photons state with $\eta = 0.95$. Right: View map of the absolute value of the difference between the posterior mean estimate of the Wigner distribution and the true Wigner distribution.

Fig 4. Marginals of the Wigner distribution samples from the posterior distribution of the mixture of coherent states prior given 2000 quantum homodyne tomography observations simulated from a 2-photons state with $\eta = 0.95$. In straight line the posterior mean estimate, whereas the dashed lines corresponds to the true marginals. The 95% credible intervals for the sup-norm distance are drawn in shading.
we computed by retaining the 95% samples with the smaller sup-norm distance from the posterior mean estimator of the marginals.

Compared to other classical methods in this area, our estimate is non-linear, preventing easy computations. To our knowledge, however, none of the current approaches can preserve the physical properties of the true Wigner function (non-negativity of marginal distributions, bounds) whereas our approach does guarantee preservation of all physical properties.

5. Rates of contraction for random series priors

In this section, we establish posterior convergence rates in the quantum homodyne tomography problem, for estimating pure states. Unfortunately, to get such result we need a fine control of the $L^2(\mathbb{R})$ norm of random functions drawn from the prior distribution, which remains challenging for mixtures of coherent states. However, dealing with Wilson bases, the control of the $L^2(\mathbb{R})$ norm is straightforward and we are able to obtain posterior concentration rates.

5.1. Preliminaries on function spaces

To establish posterior concentration rates, we describe suitable classes of functions that can be well approximated by partial sums of Wilson bases elements; these functional classes are called ultra-modulation spaces. To this aim, we need the following ingredients: the short-time Fourier transform (STFT), a class of windows and a class of weights. For a non-zero window function $g \in L^2(\mathbb{R})$, the short-time Fourier transform of a function $f \in L^2(\mathbb{R})$ with respect to the window g is given by

$$V_g f(x, \omega) := (f, M_{\omega} T_x g) = \int_{\mathbb{R}} f(t) \overline{g(t-x)} e^{-2\pi i \omega t} dt, \quad (x, \omega) \in \mathbb{R}^2. \quad (7)$$

We also need a class of analyzing windows g with sufficiently good time-frequency localization properties. Following, Cordero (2007); Cordero et al. (2005); Gröchenig and Zimmermann (2004), we use the Gelfand-Shilov space $S^{1,1}(\mathbb{R})$. For any $d \geq 1$, a function $f : \mathbb{R}^d \to \mathbb{C}$ belongs to the Gelfand-Shilov space $S^{1}(\mathbb{R}^d)$ if $f \in C^\infty(\mathbb{R}^d)$ and there exist real constants $h > 0$ and $k > 0$ such that

$$\sup_{x \in \mathbb{R}^d} |f(x) e^{h\|x\|}| < +\infty, \quad \sup_{\omega \in \mathbb{R}^d} |\hat{f}(\omega) e^{k\|\omega\|}| < +\infty. \quad (8)$$

The class $C_{g}(\beta, r, L)$ is reminiscent to modulation spaces (Gröchenig, 2001, 2006). Note that it would be interesting to consider $C_{g}(\beta, r, L)$ for $r \geq 1$, since most
quantum states should fall in these classes. There is, however, at least two limitations for considering \(r \geq 1 \). First, we use repeatedly in the proofs that
\[
\exp(\beta \|x + y\|^r) \leq \exp(\beta \|x\|^r) \exp(\beta \|y\|^r)
\]
for \(r \leq 1 \), which is no longer true when \(r > 1 \). The previous limitation is indeed not the more serious concerns, since for \(r > 1 \) we could use that
\[
\exp(\beta \|x + y\|^r) \leq \exp(2^{r-1} \|x\|^r) \exp(2^{r-1} \|y\|^r).
\]
The more serious problem is that, to our knowledge, there is no Wilson base for \(L^2(\mathbb{R}) \) whose elements fall into \(C_g(\beta, r, L) \) for \(r > 1 \) and \(\beta > 0, L > 0 \). The case \(r = 1 \) is more delicate since it depends on the value of \(\beta \). For sufficiently small \(\beta > 0 \), the results proved in this paper for \(r < 1 \) should also hold for \(r = 1 \).

Let also notice that, there is a fundamental limit on the growth of the weights in the definition of \(C_g(\beta, r, L) \), imposed by Hardy’s theorem. If \(r = 2 \) and \(\beta > \pi/2 \), the corresponding classes of smoothness \(C_g(\beta, r, L) \) are trivial for any \(L > 0 \) (Gröchenig and Zimmermann, 2001).

A critical point regarding the class \(C_g(\beta, r, L) \) is the dependence on \(g \) in the definition. We truly want that for two different windows \(g_0 \) and \(g_1 \) the corresponding smoothness classes are the same. Fortunately, we have the following theorem, proved in appendix A.

Theorem 1. Let \(g, g_0 \in S^1(\mathbb{R}) \). For all \(\beta, L > 0 \) and all \(0 \leq r < 1 \) there is a constant \(C > 0 \), depending only on \(g, g_0 \), such that embedding \(C_g(\beta, r, L) \subseteq C_{g_0}(\beta, r, CL) \) holds.

The STFT and the Wigner transform both aim at having a time-frequency representation of functions in \(L^2(\mathbb{R}) \), and are deeply linked to each other. However, contrarily to the Wigner transform, the STFT has the advantage of being a linear operator, which is one reason why we prefer to state the class \(C_g(\beta, r, L) \) in term of the STFT instead of the Wigner transform.

5.2. Assumptions and results

Before stating the main result of this paper, we need some further assumptions on the random Wilson base series prior, which we state now. To this aim, we need the following definition of the weighted simplex \(\Delta^w_Z(\beta, r, M) \).

For a constant \(M > 0, \beta > 0 \) and \(r \in [0, 1) \) let

\[
\Delta^w_Z(\beta, r, M) := \left\{ p \in \Delta_Z : \sum_{(l,m) \in \Lambda_Z} p_{lm} \exp \left(\beta (l^2 + m^2) r/2 \right) < M \right\}.
\]

Then, in the sequel, we assume that

- There is a constant \(a_0 > 0 \) such that for any sequence \((x_{lm})_{(l,m) \in \Lambda_Z} \in [0, 2\pi]^{\Lambda_Z} \),

 \[
P_Z \left(\sum_{(l,m) \in \Lambda_Z} |x_{lm}|^2 \leq t \mid Z \right) \geq \exp \left(-a_0 Z^2 \log t^{-1} \right), \quad \forall t \in (0, 1).
\]

- \(P_Z(Z < +\infty) = 1 \) and there are constants \(a_1, a_2 > 0 \) and \(b_1 > 2 + r \), such that for all \(k \) positive integer large enough

 \[
P_Z(Z = k) \geq \exp(-a_1 k^{b_1}), \quad P_Z(Z > k) \leq \exp(-a_2 k^{b_1}).
\]
• For any constant $C > 0$ and any sequence $q \in \Delta_Z^{w}(\beta, r, C)$, there is a constant $a_3 > 0$ such that the distribution $G(\cdot | Z)$ satisfy,

$$G \left(\sum_{(l, m) \in \Lambda_Z} |p_{lm} - q_{lm}|^2 \leq t \right) \geq \exp \left(-a_3 Z^{b_1 - r \log t} \right), \forall t \in (0, 1).$$

We further assume that there exist constants $a_4 \geq 0$, $a_5, c_0 > 0$, and $b_5 > b_1/r$ such that for $x > 0$ large enough

$$G \left(p \not\in \Delta_Z^{w}(\beta, r, c_0 x^{a_4}) \mid Z \leq x^{1/r} \right) \approx \exp \left(-a_5 x^{b_5} \right).$$

It is not clear whether or not we can find a distribution G for which the above conditions are satisfied simultaneously for all (β, r, L), eventually with constants a_3, a_4, a_5, b_5 depending on (β, r, L). If such distribution exists, then the rates stated below are easily seen to be adaptive on (β, r, L). In section 6, we show that for a given (β, r, L) it is easy to construct a distribution G that satisfies the above conditions, with $a_4 = 2/r$. However, we believe that the proof for adaptive rates must follow a different path, still to be found.

Under the hypothesis above, we will dedicate the rest of the paper to prove the following theorem.

Theorem 2. Let $\beta, L > 0$ and $r \in (0, 1)$. Let Π be the random Wilson series prior satisfying the assumptions above, and $(Y_1, \theta_1), \ldots, (Y_n, \theta_n)$ be observations coming from the statistical model described by equation (4), with $0 < \eta < 1$ and $\gamma > 0$ defined in equation (5). Then for any $\psi_0 \in C_0(\beta, r, L)$, there is $M > 0$ such that

$$P_{\psi_0}^{\eta \Pi}(\|\psi - \psi_0\|_2 \geq M \epsilon_n \mid (Y_1, \theta_1), \ldots, (Y_n, \theta_n)) \rightarrow 0,$$

$$\epsilon_n^2 = (\log n)^{2a_4} \exp \left\{ -\beta \left(\frac{\log n}{2 \gamma} \right)^{r/2} \right\}.$$

Note that the same result holds with $\|\psi - \psi_0\|_2$ replaced with $\|W_\psi - W_{\psi_0}\|_2$, because the Wigner transform is isometric from $L^2(\mathbb{R})$ onto $L^2(\mathbb{R}^2)$; see for instance Gröchenig (2001, proposition 4.3.2).

The rates of contraction are relatively slow, a fact that is also pointed out in Butucea, Guta and Artiles (2007). Indeed, the rates are faster than $(\log n)^{-a}$ but slower than n^{-a}, for all $a > 0$. The reason for such bad rates of convergence is to be found in the deconvolution of the Gaussian noise. If one does not care about deconvoluting the noise, then all the steps in the proof of theorem 2 can be mimicked to get weaker a result. In particular, we infer from the results of the paper that the posterior distribution should contracts at nearly parametric rates, i.e. at rate $\epsilon_n \approx n^{-1/2} (\log n)^t$ for some $t > 0$, around balls of the form

$$\left\{ \psi \in S^2(\mathbb{R}) : \int_{\mathbb{R}^2} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 \hat{\Phi}_n(\|z\|)^2 dz \leq \epsilon_n^2 \right\},$$

whenever $\psi_0 \in C_0(\beta, r, L)$ for some $\beta, L > 0$ and $r \in (0, 1)$. Moreover, we’ve made many restrictive assumptions on the prior distribution that can be easily
Bayesian nonparametric estimation for QHT

A natural question regarding the rates found in theorem 2 concerns optimality. We do not know yet the minimax lower bounds over the class \(C_\theta(\beta, r, L) \) for the \(L^2 \) risk. However, Butucea, Guță and Artiles (2007); Aubry, Butucea and Méziani (2008); Lounici, Meziani and Peyré (2015) consider a class \(A(\alpha, r, L) \) that resembles to \(C_\theta(\beta, r, L) \). More precisely, they define

\[
A(\alpha, r, L) := \left\{ W_\rho : \int |\hat{W}_\rho(z)|^2 \exp(2\alpha \|z\|^r) dz \leq L^2 \right\}.
\]

Identifying \(\rho_\psi \) with \(\psi \), our proposition 7 state the embedding \(C_\theta(\beta, r, L) \subseteq A(\beta/2, r, L) \). Hence \(C_\theta(\beta, r, L) \) is certainly contained in the intersection of a class \(A(\beta/2, r, L) \) with the set of pure states, and it makes sense to compare the rates. To our knowledge, the only minimax lower bound for the quadratic risk known is for the estimation of a state in \(A(\alpha, r = 2, L) \), stated in Lounici, Meziani and Peyré (2015); although minimax lower bounds for the pointwise risk are known since Butucea, Guță and Artiles (2007) for all \(r \in (0, 2) \). For \(r \in (0, 1) \), however, upper bounds for the quadratic risk over \(A(\beta/2, r, L) \) are established in Aubry, Butucea and Méziani (2008), and coincide with the rates found here. Therefore, we believe that the rates we found in this paper are optimal.

Let conclude with a few points that are still challenging at this time. First, the rates (or even consistency) for the coherent states mixtures priors appears difficult to establish with the method employed here; the reason comes from the difficulty to control the norm \(\|\tilde{\psi}\|_2 \) when \(\tilde{\psi} \) is a coherent states mixture. Regarding Wilson based priors, we already discussed the lack of adaptivity, which clearly deserved to be dug in a near future. Finally, it would be interesting to consider priors based on Gabor frames expansions, as they are more flexible than Wilson bases, and should be computationally more efficient than coherent states mixtures. However, Gabor frames suffer from the same evil that coherent states, namely the expansions are not unique and it is hard to control from below the \(L^2 \) norm of random Gabor expansions.

6. Example of prior on the simplex

In this section, we construct a prior on the simplex \(\Delta_Z \) that satisfy the assumptions of section 5.2 for a given \((\beta, r) \). For all \(k \geq 1 \), and a constant \(M > 0 \) to be defined later, we define the sets

\[
I_k := \{(l, m) \in \mathbb{N} \times \frac{1}{2}\mathbb{Z} : (k - 1)M \leq \sqrt{l^2 + m^2} < kM \}.
\]

We assume without loss of generality that \(Z = KM \) for an integer \(K > 0 \); then \(\Delta_Z = \bigcup_{k=1}^K I_k \). We then construct the distribution \(G(\cdot \ | Z) \) over the simplex \(\Delta_Z \) as follows. For \(k = 2, \ldots, K \), let \(H_k \) be the uniform distribution over...
Assume that there is a constant c drawn from F independently. Then the next step is to introduce distributions F_k over the I_k-simplex

$$S_k := \left\{ (\eta_{lm})_{(l,m) \in I_k} : \sum_{(l,m) \in I_k} \eta_{lm}^2 = 1, \quad \eta_{lm} \geq 0 \right\},$$

and draw independently sequences $(\eta_{lm})_{(l,m) \in I_1}$, $(\eta_{lm})_{(l,m) \in I_2}$, ..., $(\eta_{lm})_{(l,m) \in I_K}$, according to distributions F_1, F_2, \ldots, F_K. Finally, the sequence $p = (p_{lm})_{(l,m) \in \Lambda Z}$ drawn from $G(\cdot \mid Z)$ is defined to be such that

$$p_{lm} := \frac{\eta_{lm} \mathbb{1}((l, m) \in I_k)}{\sum_{k=1}^{K} \theta_k^2}.$$

Now we prove that we can choose reasonably $M > 0$ and the distributions F_1, F_2, \ldots to meet the assumptions of section 5.2. The proofs of the next two propositions are to be found in appendix D.

Proposition 1. There is a constant $c_0 > 0$ such that for any $Z \geq 0$ it holds $(p_{lm})_{(l,m) \in \Lambda Z} \in \Delta_Z^\mathbb{R}(\beta, r, c_0Z^2)$ with $G(\cdot \mid Z)$ probability one.

Proposition 2. Let $M > 0$ be large enough, $K \geq 0$ integer, and $Z = KM$. Assume that there is a constant $c_0 > 0$ and a sequence $(d_k)_{k=1}^K$ such that $\sum_{k=1}^K d_k \leq c_0 K$, and for any sequence $(\varepsilon_{lm})_{(l,m) \in S_k}$ it holds $F_k(\sum_{(l,m) \in I_k} \eta_{lm} - \varepsilon_{lm}) \geq \exp(-d_k K^{-1} \beta - 1 \log t^{-1})$. Then there is a constant $a_3 > 0$ such that $G(\sum_{(l,m) \in \Lambda Z} \|p_{lm} - q_{lm}\|^2 \leq 2t \mid Z) \geq \exp(-a_3 Z^{-1} \log t^{-1})$.

In the previous proposition, some conditions are required on F_1, F_2, \ldots; these conditions are indeed really mild. For instance, it follows from Ghosal, Ghosh and Van Der Vaart (2000, lemma 6.1) that the conclusion of proposition 2 is valid if $\eta_{lm} := \sqrt{u_{lm}}$, where $(u_{lm})_{(l,m) \in I_k}$ are drawn from Dirichlet distributions with suitable parameters.

7. Proof of theorem 2

The proof of theorem 2 follows the classical approach of Ghosal, Ghosh and Van Der Vaart (2000); Ghosal and van der Vaart (2007) for which the prior mass of Kullback-Leibler type neighborhoods need to be bounded from below and tests constructed. See details in appendix E.

Throughout the document, we let $D_n^{\beta,r} := \left(\log(n)/\beta\right)^{1/r}$. Then we introduce the following events, which we’ll use several times in the proof of posterior contraction rates.

$$E_n := \left\{ (y, \theta) \in \mathbb{R} \times [0, 2\pi] : |y| \leq D_n^{\beta,r} \right\},$$

$$\Omega_n := \left\{ ((y_1, \theta_1), \ldots, (y_n, \theta_n)) : (y_i, \theta_i) \in E_n \quad \forall i = 1, \ldots, n \right\}. \quad (10)$$

7.1. Prior mass of Kullback-Leibler neighborhoods

We introduce a new variation around the basic lines of Ghosal, Ghosh and Van Der Vaart (2000); Ghosal and van der Vaart (2007), permitting to slightly...
weaken the so-called Kullback-Leibler (KL) condition. We show that we can trade the KL condition for a restricted KL condition; that is prior positivity of the sets

\[B_n(\delta_n) := \left\{ \psi : \int_{E_n} p_{\psi_0}^n \log \frac{p_{\psi_0}^n}{p_\psi^n} \leq \delta_n^2, \quad \int_{E_n} p_{\psi_0}^n \left(\log \frac{p_{\psi_0}^n}{p_\psi^n} \right)^2 \leq \delta_n^2 \right\}. \quad (12) \]

Although looking trivial, this will ease the proof of our main theorem, since the prior positivity of \(B_n(\delta_n) \) is simpler to prove than the classical positivity of KL balls of Ghosal, Ghosh and Van Der Vaart (2000); Ghosal and van der Vaart (2007).

7.1.1. Decay estimates of the true density

It is a classical fact that in Bayesian nonparametrics we often require tails assumptions on the density of observations to be able to state rates of convergence. Here, the density of observations is quite complicated, as being the convolution of a Gaussian noise with the Radon-Wigner transform of \(\psi \). Since the Wigner transform of \(\psi \) interpolates \(\psi \) and its Fourier transform, we definitely have to take care about fancy tails assumptions on the density that could be non-compatible with the requirements of a Wigner transform. Instead, we show that the decay assumptions on the STFT stated in the definition of \(C_g(\beta, r, L) \) directly translate onto the tails of the joint density of observations. We have the following theorem, whose proof is given in appendix B.1.

Lemma 1. For all \(\beta, L > 0 \) and all \(r \in (0, 1) \) there is a constant \(C(\beta, r, \eta) > 0 \) such that \(P_{\psi}^n(\Omega_n^c) \leq 2\pi C(\beta, r, \eta)L^2n^{-2} \) and \(P_{\psi}^{0,n}(\Omega_n^c) \leq 2\pi C(\beta, r, \eta)L^2n^{-1} \) for all \(\psi \in C_g(\beta, r, L) \).

7.1.2. Approximation theory

In order to prove the prior positivity of the sets \(B_n(\delta_n) \), we need to construct a family \(M_n \) of functions in \(S^2(\mathbb{R}) \) that approximate well \(\psi_0 \) in the \(L^2(\mathbb{R}) \) distance. We will show later that the sets \(B_n(\delta_n) \) contains suitable closed balls around \(\psi_0 \) in the norm of \(L^2(\mathbb{R}) \).

In the sequel, we need to relate the parameters \(\beta, r, L \) to the decay of the coefficients \(\langle \psi_0, \varphi_{l,m} \rangle \) of \(\psi_0 \in C_g(\beta, r, L) \) expressed in the Wilson base. Fortunately, Wilson bases are unconditional bases for the ultra-modulation spaces, and \(C_g(\beta, r, L) \) is a subset of the ultra-modulation space \(M^1_{\beta, r} \). It follows the following lemma (Gröchenig, 2001, theorem 12.3.1).

Lemma 2. Let \(\psi \in C_g(\beta, r, L) \) for some \(\beta, L > 0 \) and \(0 < r < 1 \). Then there is a constant \(0 < C(\beta, r) < +\infty \) such that

\[\sum_{(l,m) \in \Lambda_{\infty}} |\langle \psi, \varphi_{l,m} \rangle| \exp \left(\beta(l^2 + m^2)^{r/2} \right) \leq C(\beta, r)L. \]
Having characterized the decay of Gabor coefficients for those $\psi \in C_g(\beta, r, L)$, we are now in position to construct functions ψ_Z which degree of approximation to $\psi_0 \in C_g(\beta, r, L)$ is indexed by the value of Z. In view of section 2.3, ψ_0 has the formal decomposition $\psi_0 = \sum_{l,m} \langle \psi_0, \varphi_{lm} \rangle \varphi_{lm}$, with unconditional convergence of the series in $L^2(\mathbb{R})$. We define $\tilde{\psi}_Z$ such that

$$
\tilde{\psi}_Z := \sum_{(l,m) \in \Lambda_Z} \langle \psi_0, \varphi_{lm} \rangle \varphi_{lm}.
$$

Since (φ_{lm}) constitutes an orthonormal base for $L^2(\mathbb{R})$, lemma 2 implies that for any $\beta > 0$ and $r \in (0, 1)$,

$$
\|\psi_0 - \tilde{\psi}_Z\|_2^2 = \sum_{(l,m) \notin \Lambda_Z} |\langle \psi_0, \varphi_{lm} \rangle|^2 \\
\leq \exp\left(-\beta Z^r\right) \sum_{l,m} |\langle \psi_0, \varphi_{lm} \rangle| \exp\left(\beta (l^2 + m^2)^{r/2}\right) \\
\leq C(\beta, r) L \exp\left(-\beta Z^r\right),
$$

because on Λ_Z, we have $l^2 + m^2 \geq Z^2$ and $|\langle \psi_0, \varphi_{lm} \rangle| \leq \|\psi_0\|_2 \|\varphi_{lm}\|_2 = 1$. Note that $\tilde{\psi}_Z$ is not necessarily in $S^2(\mathbb{R})$, that is in general $\|\tilde{\psi}_Z\|_2 \neq 1$, whereas it is not a proper wave-function. We now trade $\tilde{\psi}_Z$ for a version ψ_Z with $\|\psi_Z\|_2 = 1$, keeping the same order of approximation. Indeed, let $\psi_Z := \tilde{\psi}_Z/\|\tilde{\psi}_Z\|_2$, then since $\|\psi_0\|_2 = 1$,

$$
\|\psi_Z - \psi_0\|_2 \leq \|\psi_Z - \tilde{\psi}_Z\|_2 + \|\tilde{\psi}_Z - \psi_0\|_2 \\
\leq \|\tilde{\psi}_Z\| \left|1 - \frac{1}{\|\psi_Z\|_2}\right| + \|\tilde{\psi}_Z - \psi_0\|_2 \leq 2\|\tilde{\psi}_Z - \psi_0\|_2 \\
\leq 2\sqrt{C(\beta, r) L \exp\left(-\beta Z^r/2\right)}.
$$

7.1.3. A lower bound on $\Pi(B_n(\delta_n))$

The proof of the lemmas and theorem of this section are to be found in appendices B.2 and B.3. To prove the Kullback-Leibler condition, we first construct a suitable set $\mathcal{M}_n \subset B_n(\delta_n)$, and we’ll lower bound $\Pi(B_n(\delta_n)) \geq \Pi(\mathcal{M}_n)$. Let ψ_Z be the function constructed in section 7.1.2 and $c_{lm} := \langle \psi_{Z}, \varphi_{lm} \rangle$, so that $\psi_Z = \sum_{(l,m) \in \Lambda_Z} c_{lm} \varphi_{lm}$. Then, we define the set $\mathcal{M}_n = \mathcal{M}_n(Z, U)$ as follows, and we’ll prove that Z, U can be chosen so that $\mathcal{M}_n(Z, U) \subset B_n(\delta_n)$.

$$
\mathcal{M}_n(Z, U) := \left\{ \psi \in S^2(\mathbb{R}) : \begin{array}{c}
\psi = \sum_{(l,m) \in \Lambda_Z} p_{lm} e^{i \zeta_{lm}} \varphi_{lm}, \\
\sum_{(l,m) \in \Lambda_Z} |p_{lm} - c_{lm}|^2 \leq U^2, \\
\sum_{(l,m) \in \Lambda_Z} |\zeta_{lm} - \arg c_{lm}|^2 \leq U^2
\end{array} \right\}.\quad(14)
$$
Lemma 3. For all $\psi \in \mathcal{M}_n(Z, U)$, it holds with the constant $C(\beta, r)$ of lemma 2,
\[
\|\psi - \psi_0\|_2 \leq 2U + 2\sqrt{C(\beta, r, g)L \exp \left(-\frac{\beta Z r}{2} \right)}.
\]

The fact that $\mathcal{M}_n(Z, U)$ is included into a suitable $L^2(\mathbb{R})$ ball around ψ_0 is not enough to prove the inclusion $\mathcal{M}_n(Z, U) \subset B_n(\delta_n)$. The next lemma states sufficient conditions for which the inclusion $\mathcal{M}_n(Z, U) \subset B_n(\delta_n)$ actually holds true.

Lemma 4. There are constants $0 < C_1, C_2 < \infty$ depending only on $\gamma, \beta, r, A, B, L$ such that if $U \leq C_1 (\log n)^{-4/r} \delta_n^2$ and $Z \geq C_2 (\log \delta_n^{-1})^{1/r}$, then for n large enough $\mathcal{M}_n(Z, U) \subset B_n(\delta_n)$ for every $\delta_n^2 \geq 4/2C(\beta, r, \eta) \ln^{-1}$, where $C(\beta, r, \eta)$ is the constant of lemma 1.

Now that we have shown that $\mathcal{M}_n(Z, U) \subset B_n(\delta_n)$ for suitable choice of Z and U, it is clear that the prior mass of $B_n(\delta_n)$ is lower bounded by the prior mass of $\mathcal{M}_n(Z, U)$, the one is relatively easy to compute. This statement is made formal in the next theorem.

Theorem 3. Let $\psi_0 \in C_\gamma(\beta, r, L)$, and $b_1 > 2 + r$. Then there is a constant $C > 0$ such that for $n \delta_n^2 = C(\log n)^{b_1/r}$ it holds $\Pi(B_n(\delta_n)) \gtrsim \exp(-n \delta_n^2)$ for n large enough.

7.2. Construction of tests

The approach for constructing tests is reminiscent to Knapik and Salomond (2014), where authors provide a general setup to establish posterior contraction rates in nonparametric inverse problems. We define the following sieve. For positive constants c, h to be determined later, and the constant $a_4 > 0$ of the assumptions
\[
\mathcal{F}_n := \left\{ \psi \in S^2(\mathbb{R}) : \psi = \sum_{(l, m) \in A_Z} p_{lm} e^{i \omega l} \varphi_{lm}, \quad 0 \leq Z \leq h (\log n)^{1/r}, \quad p \in \Delta_\psi^Z(\beta, r, c(\log n)^{a_4}) \right\}.
\]

Then, we construct test functions with rapidly decreasing type I and type II errors, for testing the hypothesis $H_0 : \psi = \psi_0$ against the alternative $H_1 : \psi \in U_n \cap \mathcal{F}_n$, with $U_n := \{ \psi \in S^2(\mathbb{R}) : \| \psi - \psi_0 \|_2 \geq \epsilon_n \}$, for a sequence $(\epsilon_n)_{n \geq 0}$ to be determined later. To this aim, we need the following series of propositions about \mathcal{F}_n, which are proved in appendix C.1.

Proposition 3. Let $n \delta_n^2 = C(\log n)^{b_1/r}$ for some constant $C > 0$. Then $\Pi(\mathcal{F}_n) \lesssim \exp(-6n \delta_n^2)$ whenever $h > (6C/a_2)^{1/b_1}$ and $c > 0$ large enough.

Proposition 4. Let $b_1 > 2 + r$ and assume that $n \delta_n^2 = C(\log n)^{b_1/r}$ for some constant $C > 0$. Then $N(\sqrt{2} \delta_n^2, \mathcal{F}_n, \| \cdot \|_2) \exp(-6n \delta_n^2) = o(1)$.

Proposition 5. There is a constant $M > 0$, depending only on φ and η, such that for all $\psi \in \mathcal{F}_n$ it holds $\| \hat{p}_\psi \|_\infty \leq M h^2(\log n)^{2/r}$.

Proposition 6. For all $\beta > 0$ and $r \in (0, 1)$ there is a constant $R > 0$ such that for any $u > 0$ it holds $\sup_{\psi \in \mathcal{F}_n} \int_{\{||z|| > u\}} |\hat{W}_\psi(z)|^2 \, dz \leq R(\log n)^{2\beta} \exp(-\beta u^r)$.

The first step in the tests construction consists on bounding, both from below and from above, the Hellinger distance $H^2(P^n_\psi, P^n_{\psi_0})$ by a multiple constant of $\|\psi - \psi_0\|_2$, at least for those $\psi_0 \in C_g(\beta, r, L)$ and those $\psi \in \mathcal{F}_n$. To this aim, we need to estimate the decay of \hat{W}_{ψ_0}, stated in the next proposition. The remaining proofs for this section can be found in appendices C.2 and C.3.

Proposition 7. Let $\psi \in C_g(\beta, r, L)$ for some $\beta, L > 0$ and $r \in (0, 1)$. Then

$$\int_{\mathbb{R}^2} |\hat{W}_\psi(z)|^2 \exp(\beta \|z\|^r) \, dz \leq L^2.$$

The practical proposition 7 allows to upper bound $\|\psi - \psi_0\|_2$ by $H(P^n_\psi, P^n_{\psi_0})$, provided ψ and ψ_0 are sufficiently separated from each other.

Lemma 5. Let $\beta, L > 0, r \in (0, 1), C_0 := \|p_{\psi_0}\|_\infty$, $M, R > 0$ be the constants of propositions 5 and 6, and assume n large enough. Then for all $u > 0$, all $\psi \in \mathcal{F}_n$ and all $\psi_0 \in C_g(\beta, r, L)$ such that $\|\psi - \psi_0\|_2 \geq 8R(\log n)^{2\beta} \exp(-\beta u^r)$, it holds

$$\sqrt{2}H^2(P^n_\psi, P^n_{\psi_0}) \leq \|\psi - \psi_0\|_2 \leq 2\sqrt{C_0 + Mh^2(\log n)^{2/r}e^{\gamma u^2}} H(P^n_\psi, P^n_{\psi_0}).$$

From the last lemma, we are in position to construct test functions with rapidly decreasing type I and type II error for testing $H_0 : \psi = \psi_0 \in C_g(\beta, r, L)$ against $H_1 : \|\psi - \psi_1\|_2 \leq \sqrt{2}\delta_n^2$ for any $\psi_1 \in \mathcal{F}_n$ such that $\|\psi_1 - \psi_0\|_2 \geq \epsilon_n^2$, with

$$\delta_n^2 := \frac{\epsilon_n^2 \exp(-2\gamma u_n^2)}{48[C_0 + Mh^2(\log n)^{2/r}]]}, \quad \epsilon_n^2 := 8R(\log n)^{2\beta} \exp(-\beta u_n^2),$$

where $(u_n)_{n \geq 0}$ is an increasing sequence of positive numbers to be determined later and $M, R > 0$ the constants of propositions 5 and 6.

Proposition 8. Let δ_n, ϵ_n be as in equation (15). Then there exist test functions $(\phi_n)_{n \geq 0}$ for testing $H_0 : \psi = \psi_0 \in C_g(\beta, r, L)$ against $H_1 : \|\psi - \psi_1\|_2 \leq \sqrt{2}\delta_n^2$ for any $\psi_1 \in \mathcal{F}_n$ such that $\|\psi_1 - \psi_0\|_2 \geq \epsilon_n^2$, with type I and type II errors satisfying

$$P^n_{\psi_0, \phi_n} \leq \exp(-6n\delta_n^2), \quad \sup_{\psi \in \mathbb{S}^2 : \|\psi - \psi_0\|_2 \leq \sqrt{2}\delta_n^2} P^n_{\psi_0, (1 - \phi_n)} \leq \exp(-6n\delta_n^2).$$

Proof. By lemma 5, we deduce that $H(P^n_\psi, P^n_{\psi_0}) \geq \sqrt{2}\delta_n$. From lemma 11, for any $\psi \in \mathbb{S}^2(\mathbb{R})$ with $\|\psi - \psi_1\|_2 \leq \sqrt{2}\delta_n^2$ (ψ not necessarily in \mathcal{F}_n), we have the estimate $H(P^n_\psi, P^n_{\psi_0}) \leq \delta_n \leq H(P^n_\psi, P^n_{\psi_0})/2$. Then the conclusion follows from Ghosal, Ghosh and Van Der Vaart (2000, section 7).

The small balls estimate of proposition 8 allows to build the desired test functions, using the classical approach of the covering of \mathcal{F}_n with balls of radius $\sqrt{2}\delta_n^2$ in the $L^2(\mathbb{R})$ norm (Ghosal, Ghosh and Van Der Vaart, 2000).
Theorem 4. Assume that $\psi_0 \in C_g(\beta, r, L)$ for $\beta, L > 0$ and $r \in (0, 1)$, and let ϵ_n, δ_n be as in equation (15). Let $N(\sqrt{2\delta_n^2}, F_n, \| \cdot \|_2)$ be the number of $L^2(\mathbb{R})$ balls of radius $\sqrt{2\delta_n^2}$ needed to cover F_n. Then there exist test functions $(\phi_n)_{n \geq 0}$ such that

$$P_{\psi_0}^{\eta,n}\phi_n \leq N(\sqrt{2\delta_n^2}, F_n, \| \cdot \|_2) \exp(-6n\delta_n^2),$$

and

$$\sup_{\psi \in F_n : \| \psi - \psi_0 \|_2 \geq \epsilon_n} P_{\psi}^{\eta,n}(1 - \phi_n) \leq \exp(-6n\delta_n^2).$$

7.3. Conclusion of the proof

Let summarize what we’ve done so far, and finalize the proof of theorem 2. In lemma 10 in appendix, we state sufficient conditions to finish the proof of our main theorem; these conditions involve two parts. First, proving that for a suitable sequence $\delta_n \to 0$ with $n\delta_n^2 \to C_0$ our prior puts enough probability mass on the balls $B_n(\delta_n)$ and; the construction of tests functions with sufficiently rapidly decreasing type I and type II errors for testing $H_0 : \psi = \psi_0$ against $H_1 : \| \psi - \psi_0 \|_2 \geq \epsilon_n$, for those ψ in a set F_n of prior probability $1 - \exp(-6n\delta_n^2)$.

For the prior considered here, we found in theorem 3 that δ_n must satisfy $n\delta_n^2 \geq C_1 \log n / \delta_1/r$ for some $C > 0$, otherwise the so-called Kullback-Leibler condition is not met. Regarding the construction of tests, this involved to build explicitly the sets F_n in section 7.2. From that construction and equation (15), we deduce that the required test functions exist, if for some constants $K_1, K_2 > 0$ and a sequence $u_n \to \infty$

$$\delta_n^2 \leq \frac{K_1 \exp(-2\gamma u_n^2)\epsilon_n^2}{(\log n)^{2/r}}, \quad \epsilon_n^2 \geq K_2 (\log n)^{2a_4} \exp(-\beta u_n^r). \quad (16)$$

Since we must also have $n\delta_n^2 \geq C(\log n)^{b_1/r}$, we deduce that the sequence $(u_n)_{n \geq 1}$ should satisfy, for a suitable constant $C' > 0$,

$$\beta u_n^r + 2\gamma u_n^2 - 2a_5 (\log n)^{r'/2} \leq \log C' + \log n - r^{-1}(2 + b_1 - 2ra_4) \log \log n.$$

Finally, we can take,

$$u_n^2 = \frac{\log n}{2\gamma} - O((\log n)^{r/2})$$

and the conclusion of the proof follows by equation (16).

Appendix A: Proof of theorem 1

We need some subsidiaries results to prove the theorem 1.

Proposition 9. For all $\beta > 0$, all $0 \leq r \leq 1$ and all $x, y \in \mathbb{R}^2$, it holds $\exp(\beta \| x + y \|') \leq \exp(\beta \| x \|') \exp(\beta \| y \|').$
Proof. This follows from the trivial estimate
\[\|x + y\|_r^r \leq (\|x\| + \|y\|)^r = \|x\|(\|x\| + \|y\|)^{r-1} + \|y\|(\|x\| + \|y\|)^{r-1} \]
\[\leq \|x\|\|x\|^{r-1} + \|y\|\|y\|^{r-1} = \|x\|^r + \|y\|^r. \]

The next lemma is about the change of window in the STFT; its proof is given for arbitrary \(g \in S(\mathbb{R}) \) and \(\psi \in S'(\mathbb{R}) \) in Gröchenig (2001, lemma 11.3.3). The proof is identical when \(g, \psi \in L^2(\mathbb{R}) \), since it essentially relies on a duality argument. Note, however, that the class of windows and functions that we are considering are subset of \(S(\mathbb{R}) \).

Lemma 6. Let \(g_0, g, h \in L^2(\mathbb{R}) \) such that \(\langle h, g \rangle \neq 0 \) and let \(\psi \in L^2(\mathbb{R}) \). Then \(|V_{g_0}\psi(x, \omega)| \leq |\langle h, g \rangle|^{-1}|V_g \psi| * |V_{g_0} h|(x, \omega) \) for all \((x, \omega) \in \mathbb{R}^d \).

Proof. From Gröchenig (2001, corollary 3.2.3), for those \(g, h \in L^2(\mathbb{R}) \) with \(\langle h, g \rangle \neq 0 \), we have the inversion formula \(\psi = \langle h, g \rangle^{-1} \int V_g \psi(x, \omega) T_x h d\omega dx \) for all \(\psi \in L^2 \). Applying \(V_{g_0} \) both sides
\[V_{g_0} \psi(x', \omega') = \frac{1}{\langle h, g \rangle} \int_{\mathbb{R}^2} V_g \psi(x, \omega) V_{g_0} (M_{T_x} h) (x', \omega') d\omega dx. \]
The conclusion follows because \(|V_{g_0} (M_{T_x} h) (x', \omega')| = |V_{g_0} h(x' - x, \omega - \omega)|. \]

Finally, we have the sufficient material to establish the independence of the class \(C_g(\beta, r, L) \) with respect to the choice of the window function \(g \), as soon as \(g \) is suitably well behaved.

Proof of theorem 1. Using lemma 6, we have that \(|V_{g_0} \psi| \leq \|g\|_2^{-2} |V_g \psi| * |V_{g_0} g| \). Then, because \(r < 1 \) by assumption,
\[\int_{\mathbb{R}^2} |V_{g_0} \psi(z)| \exp(\beta \|z\|^r) dz \]
\[\leq \int_{\mathbb{R}^2} (|V_g \psi(z)| * |V_{g_0} g(z)| \exp(\beta \|z\|^r) dz \]
\[\leq \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} |V_g \psi(u) \exp(\beta \|u\|^r)|V_{g_0} g(z - u) \exp(\beta \|z - u\|^r) dudz \]
\[\leq \int_{\mathbb{R}^2} |V_g \psi(u)| \exp(\beta \|u\|^r) du \int_{\mathbb{R}^2} |V_{g_0} g(u)| \exp(\beta \|u\|^r) du, \]
where we’ve used Young’s inequality and the first estimate of proposition 9. We have by Gröchenig and Zimmermann (2004, corollary 3.10) that \(V_{g_0} g \in S_1^1(\mathbb{R}^2) \), thus the second integral in the rhs of the last equation is bounded.

Appendix B: Proofs of Kullback-Leibler neighborhoods prior mass

B.1. Proof of lemma 1

To prove lemma 1, we need the following intermediate lemmas, relating the smoothness of \(\psi \) to the tails of the Wigner density of \(\psi \).
Lemma 7. Let $\psi \in \mathcal{C}_g(\beta, r, L)$ with $\beta, L > 0$ and $r \in (0, 1)$. Then,

$$\int_{\mathbb{R}^2} |W_\psi(z)| \exp(\beta \|2z\|^r) d\zeta \leq L^2.$$

Proof. Let $\tilde{\psi}(x) = \psi(-x)$. Then from the definition of $V_g \psi$ and W_ψ we have that $W_\psi(x, \omega) = 2e^{4\pi i \omega x}V_\psi(2x, 2\omega)$. By lemma 6 (with $|\langle g, g \rangle| = \|g\|^2 = 1$), proposition 9, and Young’s inequality,

$$\int |W_\psi(z/2)| \exp(\beta \|z\|^r) d\zeta \leq 2 \int |V_g \psi| \exp(\beta \|z\|^r) d\zeta \leq 2 \int |V_g \psi(u)| \exp(\beta \|u\|^r) \exp(\beta \|z - u\|^r) d\zeta d\zeta \leq 2 \int |V_g \psi(z)| \exp(\beta \|z\|^r) d\zeta \times \int |V_\psi g(z)\| \exp(\beta \|z\|^r) d\zeta.$$

Moreover, a straightforward computation shows that

$$V_\psi g(x, \omega) = e^{-2\pi i \omega x}V_g \psi(x, -\omega),$$

which concludes the proof. \qed

Lemma 8. Let $\psi \in \mathcal{C}_g(\beta, r, L)$ with $\beta, L > 0$ and $r \in (0, 1)$. Then,

$$\sup_{\theta} \int_{\mathbb{R}} p_\psi(x, \theta) \exp(2\beta \|x\|^r) dx \leq L^2.$$

Proof. From the definition of p_ψ,

$$\int_{\mathbb{R}} p_\psi(x, \theta) e^{2\beta \|x\|^r} dx = \int_{\mathbb{R}^2} W_\psi(x \cos \theta - \xi \sin \theta, x \sin \theta + \xi \cos \theta) e^{2\beta \|x\|^r} d\xi dx.$$

Performing the change of variable $(x, \xi) \mapsto (x \cos \theta + \xi \sin \theta, -x \sin \theta + \xi \cos \theta)$, we arrive at

$$\int_{\mathbb{R}} p_\psi(x, \theta) e^{2\beta \|x\|^r} dx = \int_{\mathbb{R}^2} W_\psi(x, \xi) e^{2\beta \|x \cos \theta + \xi \sin \theta\|^r} d\xi dx.$$

But for all $r \in (0, 1)$, by the triangle inequality and Hölder’s inequality

$$|x \cos \theta + \xi \sin \theta|^r \leq (|x \cos \theta| + |\xi \sin \theta|)^r \leq (|x| + |\xi|)^r \leq 2^{r/2}(x^2 + \xi^2)^{r/2}.$$

Then

$$\int_{\mathbb{R}} p_\psi(x, \theta) e^{2\beta \|x\|^r} dx \leq \int_{\mathbb{R}^2} |W_\psi(z)| \exp(\beta \|2z\|^r) d\zeta,$$

and the conclusion follows from lemma 7. \qed
Lemma 9. For all $\beta, L > 0$ and $r \in (0, 1)$ there is a constant $C(\beta, r, \eta) > 0$ such that if $\psi \in C_0(\beta, r, L)$ we have $\sup_{\theta} \int_{\mathbb{R}} p_{\psi}^\beta(y, \theta) \exp(2\beta|y|^r) \, dy \leq C(\beta, r, \eta)L^2$.

Proof. Using Fubini’s theorem twice and the estimate $|u + x|^r \leq |u|^r + |x|^r$,

$$\int p_{\psi}^\beta(y, \theta) e^{2\beta|y|^r} \, dy = \sqrt{\frac{\pi}{\gamma}} \int p_{\psi}(x, \theta) \exp\left\{-\frac{\pi^2(x - y)^2}{\gamma}\right\} \, dx e^{2\beta|y|^r} \, dy$$

$$= \sqrt{\frac{\pi}{\gamma}} \int p_{\psi}(x, \theta) \exp\left\{-\frac{\pi^2u^2}{\gamma}\right\} \exp(2\beta|u + x|^r) \, du \, dx$$

$$\leq \sqrt{\frac{\pi}{\gamma}} \int p_{\psi}(x, \theta) e^{2\beta|x|^r} \, dx \int \exp\left\{-\frac{\pi^2u^2}{\gamma} + 2\beta|u|^r\right\} \, du.$$

The conclusion follows from lemma 8. \square

From the lemmas above the proof of lemma 1 is relatively straightforward, we give it here for the sake of completeness.

Proof of lemma 1. We begin with the obvious estimate $P_{\psi}^{\eta,n}(\Omega^c_n) \leq nP_{\psi}^{\eta}(E^c_n)$. The proof is finished by noticing that

$$P_{\psi}^{\eta,n}(E^c_n) = \int_{E^c_n} p_{\psi}^\eta(y, \theta) e^{2\beta|y|^r} e^{-2\beta|y|^r} \, d\theta \, dy$$

$$\leq n^{-2} \int p_{\psi}^\eta(y, \theta) e^{2\beta|y|^r} \, d\theta \, dy$$

$$\leq 2\pi C(\beta, r, \eta)L^2n^{-2},$$

because of lemma 9. \square

B.2. Proofs regarding approximation theory

Proof of lemma 3. For all $\psi \in \mathcal{M}_n(Z,U)$ we have the following estimate. Because (φ_{lm}) is an orthonormal base of $L^2(\mathbb{R})$,

$$\|\psi - \psi_Z\|_2^2 = \sum_{(l,m) \in \Lambda_Z} |p_{\psi} e^{i\xi_{lm}} - c_{lm}|^2$$

$$\leq 2 \sum_{(l,m) \in \Lambda_Z} |p_{\psi} - |c_{lm}||^2 + 2 \sum_{(l,m) \in \Lambda_Z} |\xi_{lm} - \arg c_{lm}|^2 \leq 4U^2.$$

Then the conclusion follows using $\|\psi - \psi_0\|_2 \leq \|\psi - \psi_Z\|_2 + \|\psi_Z - \psi_0\|_2$ and equation (13). \square

Proof of lemma 4. Recall that $p_{\psi}^\eta(y, \theta) = [p_{\psi}(\cdot, \theta) * \Phi_{\gamma}](y)$. We have the obvious bound

$$p_{\psi}^\eta(y, \theta) = \int_{-\infty}^{+\infty} p_{\psi}(x, \theta) \Phi_{\gamma}(y - x) \, dx \geq \int_{-D_n^{\beta,r}}^{+D_n^{\beta,r}} p_{\psi}(x, \theta) \Phi_{\gamma}(y - x) \, dx.$$
Then for all \((y, \theta) \in E_n\) (i.e. \(|y| \leq D_n^{\beta, r}\)) it follows from the definition of \(\Phi\), that \(p_n^\eta(y, \theta) \geq \Phi_n(2D_n^{\beta, r})p_n(\lambda(X) \leq D_n^{\beta, r} \mid \theta)/(2\pi)\). From proposition \(10\) in appendix, the latter implies for \(n\) large enough that for all \(\psi \in \mathcal{M}_n\) it holds \(p_n^\eta(y, \theta) \geq \Phi_n(2D_n^{\beta, r})/(4\pi)\) whenever \((y, \theta) \in E_n\). Since \(\psi_0 \in C_\eta(\beta, r, L)\), which is a subset of the Schwartz space \(S(\mathbb{R})\), and since the Radon transform maps \(S(\mathbb{R})\) onto a subset of \(S([\mathbb{R} \times [0, 2\pi]])\) by Helgason (2011, theorem 2.4), we deduce that there is a constant \(C = C(\psi_0, \eta) > 0\) such that for all \(\psi \in \mathcal{M}_n(Z, U)\),

\[
\frac{p_n^\eta(y, \theta)}{p_n^\eta(y, \theta)} \leq C \exp \left\{ \frac{4\pi^2}{\gamma} \left(\frac{\log n}{\beta} \right)^{2/r} \right\} =: \lambda_n^{-1}, \quad \forall (y, \theta) \in E_n.
\]

The proof now follows similar lines as Shen, Tokdar and Ghosal (2013, lemma B2). The function \(r : (0, \infty) \to \mathbb{R}\), defined implicitly by \(\log x = 2(x^{1/2} - 1) - r(x)(x^{1/2} - 1)^2\), is nonnegative and decreasing. Thus we obtain,

\[
\int_{E_n} p_n^\eta \log \frac{p_n^\eta}{p_\psi^\eta} = -2 \int_{E_n} p_n^\eta \left(\sqrt{\frac{p_n^\eta}{p_\psi^\eta}} - 1 \right) + \int_{E_n} p_n^\eta r \left(\frac{p_n^\eta}{p_\psi^\eta} \right) \left(\sqrt{\frac{p_n^\eta}{p_\psi^\eta}} - 1 \right)^2 \\
\leq 2 \left(1 - \int \sqrt{p_n^\eta p_\psi^\eta} - 2P_n^\eta(E_n^c) \right. \\
\left. + 2 \int_{E_n} \sqrt{p_n^\eta p_\psi^\eta} + r(\lambda_n) \int_{E_n} \left(\sqrt{p_n^\eta} - \sqrt{p_\psi^\eta} \right)^2 \\
\leq 2H^2(P_n^\eta, P_\psi^\eta) (1 + r(\lambda_n)) + 2P_n^\eta(E_n^c)^{1/2} P_\psi^\eta(E_n^c)^{1/2},
\]

where the last line follows from Hölder’s inequality. Also, proceeding as in the proof of Shen, Tokdar and Ghosal (2013, lemma B2) we find that

\[
\int_{E_n} p_n^\eta \left(\log \frac{p_n^\eta}{p_\psi^\eta} \right)^2 \leq H^2(P_n^\eta, P_\psi^\eta) \left(12 + 2r(\lambda_n)^2 \right).
\]

Note that \(r(x) \leq \log x^{-1}\) for \(x\) small enough, and by lemma 1,

\[
P_n^\eta(E_n^c)^{1/2} P_\psi^\eta(E_n^c)^{1/2} \leq P_n^\eta(E_n^c)^{1/2} \leq \sqrt{2\pi C(\beta, r, \eta)} Ln^{-1}.
\]

Then we deduce from equations (17) to (19) and lemma 11 that for \(n\) large enough, provided \(\delta_n^2 \geq 4\sqrt{2\pi C(\beta, r, \eta)} Ln^{-1}\),

\[
B_n(\delta_n) \supset \left\{ P_n^\eta : \psi \in S^2(\mathbb{R}), \quad \|\psi - \psi_0\|_2 \leq \frac{\gamma^2}{48\sqrt{2\pi^4}} \left(\frac{\beta}{\log n} \right)^{4/r} \delta_n^2 \right\}.
\]

Then the conclusion follows from lemma 3.
B.3. Proof of the lower bound

Proof of theorem 3. Let $C_1, C_2 > 0$ be the constants of lemma 4, let $U_n = C_1(\log n)^{-1/r} \delta_n^2$ and Z_n be the smaller integer larger than $C_2(\log \delta_n^{-1})^{1/r}$. Then by lemma 4 $\Pi(B_n(\delta_n)) \geq \Pi(\mathcal{M}_n(Z_n, U_n))$, and

$$\Pi(\mathcal{M}_n(Z_n, U_n)) \geq P_Z(Z = Z_n) G \left(\sum_{(l,m) \in \Lambda_2} |p_{lm} - |c_{lm}|^2 \leq U_n^2 \mid Z \right)$$

$$\times P_Z \left(\sum_{(l,m) \in \Lambda_2} |\zeta_{lm} - \arg c_{lm}|^2 \leq U_n^2 \mid Z \right).$$

Note that by lemma 2 the sequence $(|c_{lm}|)_{(l,m) \in \Lambda_2}$ is in $\Delta_Z^w(\beta, r, C(\beta, r)L)$. Hence, using the assumptions of section 5.2, we have for n large enough

$$\Pi(\mathcal{M}_n(Z_n, U_n)) \gtrsim \exp \{-a_1 Z_n^{b_1} - (a_0 + a_3) Z_n^{b_1/r - r} \log U_n^{-2}\}.$$

We deduce from the above the existence of a constant $K > 0$ not depending on n, such that for n large enough,

$$\Pi(B_n(\delta_n)) \gtrsim \exp \left\{ -K(\log \delta_n^{-1})^{b_1/r} - K(\log \delta_n^{-1})^{b_1/r - 1} (\log \delta_n^{-1} + \log \log n) \right\}$$

$$\gtrsim \exp(-n \delta_n^2).$$

Then the conclusion of the theorem follows since we assume $n \delta_n^2 = C(\log n)^{b_1/r}$ for a suitable constant $C > 0$. \hfill \Box

Appendix C: Proofs of tests construction

C.1. Proofs regarding the sieve

Proof of proposition 3. Let Z_n be the smaller integer larger than $h(\log n)^{1/r}$. Clearly $\psi \sim \Pi$ is almost-surely in $\mathbb{S}^2(\mathbb{R})$. Then if $c > 0$ is large enough we have the bound

$$\Pi(F_n) \leq P_Z \left(Z > h(\log n)^{1/r} \right) + G \left(p \notin \Delta_Z^w(\beta, r, c(\log n)^{a_4}) \mid Z \leq Z_n \right)$$

$$\lesssim \exp \left(-a_2 h^{b_1} (\log n)^{b_1/r} \right) + \exp \left(-a_5 (\log n)^{b_5} \right)$$

which is trivially smaller than a multiple constant of $\exp(-6n \delta_n^2)$ when h is as large as in the proposition, and because $b_5 > b_1/r$ by assumption. \hfill \Box

Proof of proposition 4. We use the classical argument that $N(\sqrt{2} \delta_n^2, F_n, \| \cdot \|_2)$ is bounded by the cardinality of a $\sqrt{2} \delta_n^2$-net over F_n is the $\| \cdot \|_2$ distance (Shen, Tokdar and Ghosal, 2013). We compute the cardinality of such $\sqrt{2} \delta_n^2$-net as follows. Let $Z_n := h(\log n)^{1/r}$, \hat{P} be a δ_n^2-net over the simplex Δ_{Z_n} in the ℓ_2 distance, and let \hat{O} be a δ_n^2-net over $[0, 2\pi]$ in the euclidean distance. Then define

$$\mathcal{N}_n := \left\{ \psi \in \mathbb{S}^2(\mathbb{R}) : \right.$$

$$\hat{\psi} = \sum_{(l,m) \in \Lambda_{Z_n}} v_{lm} e^{i \zeta_{lm}},$$

$$v_{lm} \in \hat{P}, \quad \forall (l, m) \in \Lambda_{Z_n} : \zeta_{lm} \in \hat{O} \left\}.$$
For all $\psi \in \mathcal{F}_n$ we have $\psi = \sum_{(l,m) \in \Lambda_Z} q_{lm} e^{i \zeta_{lm}} \varphi_{lm}$, with $q_{lm} = p_{lm}$ for those $(l, m) \in \Lambda_Z$, $Z \leq Z_n$, and $q_{lm} = 0$ otherwise. Since (φ_{lm}) is an orthonormal base of $L^2(\mathbb{R})$, we have $\sum_{(l,m) \in \Lambda_Z} q_{lm}^2 = 1$, and we can find a function $\psi' \in \mathcal{N}_n$ with $\psi' = \sum_{(l,m) \in \Lambda_Z} q'_{lm} e^{i \zeta_{lm}} \varphi_{lm}$ such that $\sum_{(l,m) \in \Lambda_Z} |q'_{lm} - q_{lm}|^2 \leq \delta_n^4$, and $|\zeta'_{lm} - \zeta_{lm}| \leq \delta_n^2$ for all $(l, m) \in \Lambda_Z$. Using standard arguments, we have

$$\|\psi' - \psi\|_2^2 = \sum_{(l,m) \in \Lambda_Z} |q'_{lm} e^{i \zeta'_{lm}} - q_{lm} e^{i \zeta_{lm}}|^2 \leq 2 \sum_{(l,m) \in \Lambda_Z} |q'_{lm} - q_{lm}|^2 + 2 \sum_{(l,m) \in \Lambda_Z} q_{lm}^2 |e^{i \zeta'_{lm}} - e^{i \zeta_{lm}}|^2 \leq 4 \delta_n^4.$$

Thus \mathcal{N}_n is a $2 \delta_n^2$-net over \mathcal{F}_n in the $\| \cdot \|_2$ norm. Moreover, the cardinality of \mathcal{N}_n is upper bounded by $|\mathcal{F}| \cdot |\mathcal{O}|^{\Lambda_{Z_n}}$, which is in turn bounded by

$$C \left(\frac{1}{\delta_n^4} \right)^{|\Lambda_{Z_n}|} \left(\frac{2 \pi}{\delta_n} \right)^{|\Lambda_{Z_n}|},$$

for a constant $C > 0$. Clearly, the cardinality of a $\sqrt{2} \delta_n^2$-net over \mathcal{F}_n in the $\| \cdot \|_2$ distance satisfy the same bound, eventually for a different constant C. Therefore, for a suitable constant $K > 0$, when n is large enough.

$$N(\sqrt{2} \delta_n^2, \mathcal{F}_n, \| \cdot \|_2) \lesssim \exp \left\{ K |\Lambda_{Z_n}| \log \frac{1}{\delta_n} \right\} \lesssim \exp \left\{ Kh^2 (\log n)^{1+2/r} \right\}.$$

The conclusion follows because $b_1 > 2 + r$. \qed

Proof of proposition 5. The bound is obvious for those $\psi \in \mathcal{F}_n$ with $Z = 0$. For $Z \geq 1$, we have from the definition of the Wigner transform (equation (1)), for an arbitrary $\psi \in \mathcal{F}_n$,

$$W_\psi(x, \omega) = \sum_{(l,m) \in \Lambda_Z} \sum_{(j,k) \in \Lambda_Z} p_{lm} p_{jk} e^{i \zeta_{lm} - \zeta_{jk}} \int_{\mathbb{R}} \varphi_{lm}(x + t/2) \tilde{\varphi}_{jk}(x - t/2) e^{-2 \pi i \omega t} dt.$$

Using the expression of φ_{lm} from equation (6), it follows

$$\varphi_{lm}(x + t/2) \tilde{\varphi}_{jk}(x - t/2) = c_l c_j T_m M_l \varphi(x + t/2) \tilde{T}_k M_j \varphi(x - t/2) + (-1)^{2k+l} c_l c_j T_m M_l \varphi(x + t/2) \tilde{T}_k M_{-j} \varphi(x - t/2) + (-1)^{2m+l} c_l c_j T_m M_{-l} \varphi(x + t/2) \tilde{T}_k M_j \varphi(x - t/2) + (-1)^{2m+l} (-1)^{2k+l} c_l c_j T_m M_{-l} \varphi(x + t/2) \tilde{T}_k M_{-j} \varphi(x - t/2).$$
Recalling that $T_x \varphi(y) = \varphi(y - x)$ and $M_{\omega} \varphi(y) = e^{2\pi i \omega y} \varphi(y)$, it follows

$$
\int_{\mathbb{R}} T_m M_l \varphi(x + t/2) T_k M_j \varphi(x - t/2) e^{-2\pi i \omega t} dt
$$

$$
= \int_{\mathbb{R}} e^{2\pi i l(x + t/2 - m)} \varphi(x + t/2 - m) e^{-2\pi i j(x - t/2 - k)} \varphi(x - t/2 - k) e^{-2\pi i \omega t} dt
$$

$$
= 2 e^{4\pi i \omega(x - m) - 2\pi i j(2x - m - k)} \int_{\mathbb{R}} \varphi(u) \varphi(-u + 2x - m - k) e^{-2\pi i u(2\omega - l - j)} du
$$

$$
= 2 e^{4\pi i \omega(x - m) - 2\pi i j(2x - m - k)} \mathcal{V} \tilde{\varphi}(2x - m - k, 2\omega - l - j).
$$

Thus, we deduce the following expression for the Wigner transform of an arbitrary function $\psi \in \mathcal{F}_n$.

$$
W_\psi(x, \omega) = \sum_{(l,m) \in \Lambda_2} \sum_{(j,k) \in \Lambda_2} p_{lm} p_{jk} e^{i(\zeta_m - \zeta_j)} \times 2c_l c_j e^{4\pi i \omega(x - m)}
$$

$$
e^{-2\pi i j(2x - m - k)} \mathcal{V} \tilde{\varphi}(2x - m - k, 2\omega - l - j) + (-1)^{2k+j} e^{2\pi i j(2x - m - k)} \mathcal{V} \tilde{\varphi}(2x - m - k, 2\omega + l - j) + (-1)^{2m+l} \mathcal{V} \tilde{\varphi}(2x - m - k, 2\omega + l - j).
$$

To ease notations, let

$$
f(x, \omega; l, m, j, k) := e^{4\pi i \omega(x - m) - 2\pi i j(2x - m - k)} \mathcal{V} \tilde{\varphi}(2x - m - k, 2\omega - l - j).
$$

Letting $R f(x, \theta)$ denote the Radon transform of f, it is easy to check that $\mathcal{F}[R f(\cdot, \theta)](u) = \hat{f}(u \cos \theta, u \sin \theta)$, where \hat{f} is the Fourier transform with respect to both variables of f, and \mathcal{F} the L^1 Fourier operator. Note that,

$$
\int \mathcal{V} \tilde{\varphi}(x, y) e^{\pi i y} e^{-2\pi i (x \xi_1 + y \xi_2)} dxdy
$$

$$
= \int_{\mathbb{R}^2} \int_{\mathbb{R}} \varphi(u) \varphi(x - u) e^{-2\pi i u y} du e^{\pi i y} e^{-2\pi i (x \xi_1 + y \xi_2)} dxdy
$$

$$
= \int \varphi(u) e^{-\pi i y} \int \mathcal{V} \tilde{\varphi}(t)e^{2\pi i \xi_1 (u/2)} dt e^{-2\pi i u \xi_1 - 2\pi i y \xi_2} du
$$

$$
= 2 e^{4\pi i \xi_1 \xi_2} \int \mathcal{V} \tilde{\varphi}(t)e^{(t - 2\xi_1) e^{-4\pi i \xi_2}} dt
$$

$$
= 2 e^{4\pi i \xi_1 \xi_2} \mathcal{V} \tilde{\varphi}(2\xi_1, 2\xi_2).
$$

Hence,

$$
|\hat{f}(u \cos \theta, u \sin \theta; l, m, j, k)| = \frac{1}{2} |\mathcal{V} \tilde{\varphi}(u \cos \theta + j - l, u \sin \theta + m - k)|
$$

By Fourier duality, this implies that

$$
\sup_x |\mathcal{R} f(\cdot; l, m, j, k)(x, \theta)| \leq \frac{1}{2} \int |\mathcal{V} \tilde{\varphi}(u \cos \theta + j - l, u \sin \theta + m - k)| du
$$
The function \(\varphi \) is in \(S^1_1(\mathbb{R}) \) by construction. From Gröchenig and Zimmermann (2004, corollary 3.10) we can then find a constant \(a > 0 \) such that \(|V_{\varphi}\hat{\varphi}(x, \omega)| \lesssim \exp(-a\sqrt{x^2 + \omega^2}) \). Moreover,

\[
(u \cos \theta + j - l)^2 + (u \sin \theta + m - k)^2
\]
\[
= (u + (j - l) \cos \theta + (m - k) \sin \theta)^2 + ((m - k) \cos \theta - (j - l) \sin \theta)^2
\]
\[
\geq (u + (j - l) \cos \theta + (m - k) \sin \theta)^2.
\]

Therefore,

\[
\sup_{x, \theta} |\mathcal{R}_{f}(l, m, j, k)(x, \theta)| \lesssim \int \exp(-a|u|) \, du = 2a^{-1}.
\]

Since the Radon transform is a linear map, we deduce that

\[
|p_{\varphi}(x, \omega)| \lesssim 8a^{-1} \left(\sum_{(l, m) \in \Lambda_{x}} p_{lm} \right)^2 \leq 8a^{-1} |\lambda_z| \leq 8a^{-1} h^2 (\log n)^{2/r}.
\]

Now \(p_{\varphi}^{n}(y, \theta) = [p_{\varphi}(\cdot, \theta) \ast \Phi_{y}](y) \), so that conclusion of the proposition follows from Young’s inequality.

Proof of proposition 6. Using the expression of \(\varphi_{lm} \) of equation (6), we have

\[
V_{g}\varphi_{lm} = c_{l}V_{g}(T_{m}M_{l}\varphi) + (-1)^{2m+l}c_{l}V_{g}(T_{m}M_{-l}\varphi).
\]

Since \(|V_{g}(T_{m}M_{l}\varphi)(x, \omega)| = |V_{g}(x - m, \omega - m)| \), it follows

\[
|V_{g}\varphi_{lm}(x, \omega)| \leq c_{l}|V_{g}\varphi(x - m, \omega - l)| + c_{l}|V_{g}\varphi(x - m, \omega + l)|.
\]

Now pick an arbitrary \(\psi \in \mathcal{F}_{n} \). We have

\[
\int_{\mathbb{R}^2} |V_{g}\psi(z)| \exp(\beta \|z\|^r) \, dz
\]
\[
\leq \sum_{(l, m) \in \Lambda_{x}} p_{lm} \int_{\mathbb{R}^2} |V_{g}\varphi_{lm}(z)| \exp(\beta \|z\|^r) \, dz
\]
\[
\leq \sum_{(l, m) \in \Lambda_{x}} p_{lm} c_{l} \int_{\mathbb{R}^2} |V_{g}\varphi(x - m, \omega - l)| \exp\left(\beta(x^2 + \omega^2)^{r/2}\right) \, dx \, d\omega
\]
\[
+ \sum_{(l, m) \in \Lambda_{x}} p_{lm} c_{l} \int_{\mathbb{R}^2} |V_{g}\varphi(x - m, \omega + l)| \exp\left(\beta(x^2 + \omega^2)^{r/2}\right) \, dx \, d\omega
\]
\[
\leq 2 \sum_{(l, m) \in \Lambda_{x}} p_{lm} \exp\left(\beta(l^2 + m^2)^{r/2}\right) \int_{\mathbb{R}^2} |V_{g}\varphi(z)| \exp(\beta \|z\|^r) \, dz
\]
\[
\lesssim \sum_{(l, m) \in \Lambda_{x}} p_{lm} \exp\left(\beta(l^2 + m^2)^{r/2}\right) \lesssim (\log n)^{a_{4}},
\]

where the last line follows from Gröchenig and Zimmermann (2004, corollary 3.10), since both \(g \) and \(\varphi \) are in \(S^1_1(\mathbb{R}) \) and \(r < 1 \) by assumption. The previous estimate show that \(\mathcal{F}_{n} \subset C_{g}(\beta, r, L_{n}) \) with \(L_{n} \lesssim (\log n)^{a_{4}} \). Hence the conclusion follows from proposition 7.

\(\square \)
\textbf{C.2. Proofs of norm equivalence}

\textit{Proof of proposition 7.} Recall that \mathcal{F} denote the L^1 Fourier transform operator. By definition of W_ψ, it holds $W_\psi(u_1, u_2) = \mathcal{F}[\psi(u_1 + \cdot/2)\psi(u_1 - \cdot/2)](u_2)$. Clearly if $\psi \in C_\eta(\beta, r, L)$ then $W_\psi \in L^1(\mathbb{R}^2)$ by lemma 7. Moreover, for all $u_1 \in \mathbb{R}$ the mapping $t \mapsto \psi(u_1 + t/2)\overline{\psi(u_1 - t/2)}$ is in $L^1(\mathbb{R})$ because of Cauchy-Schwarz inequality and $\psi \in L^2(\mathbb{R})$. Then by Fourier inversion, we get

$$\int W_\psi(u_1, u_2)e^{-2\pi i u_2(-\xi_2)} du_2 = \psi(u_1 + \xi_2/2)\overline{\psi(u_1 - \xi_2/2)}.$$

Taking the Fourier transform with respect to u_1 yields

$$\iint W_\psi(u_1, u_2)e^{-2\pi i (u_1\xi_1 + u_2\xi_2)} du_1 du_2 = \int \psi(u_1 - \xi_2/2)\overline{\psi(u_1 + \xi_2/2)}e^{-2\pi i u_1\xi_1} du_1 = e^{-\pi i \xi_1 \xi_2}\int \psi(t)\overline{\psi(t + \xi_2)}e^{-2\pi i \xi_1 t} dt.$$

Hence we proved that $\tilde{W}_\psi(\xi_1, \xi_2) = e^{-\pi i \xi_1 \xi_2}V_\psi(-\xi_2, \xi_1)$, at least when $\psi \in C_\eta(\beta, r, L)$. By lemma 6, $|V_\psi(-\xi_2, \xi_1)| \leq (|V_\psi|*|V_\psi|)(\xi_2, \xi_1)$ since $\|\psi\|_2 = 1$. Note that, by proposition 9 we have

$$\exp(\beta(\xi_1^2 + \xi_2^2)^{r/2}) \leq \exp(\beta((-\xi_2 - u_1)^2 + (\xi_1 - u_2)^2)^{r/2}) \exp(\beta(u_1^2 + u_2^2)^{r/2}).$$

Also, by Cauchy-Schwarz inequality $|\tilde{W}_\psi(\xi_1, \xi_2)| \leq \|\psi\|_2^2 = 1$. Therefore, by Young’s inequality, and because $|V_\psi g| = |V_\psi|$,

$$\iint |\tilde{W}_\psi(\xi_1, \xi_2)|^2 \exp(\beta(\xi_1^2 + \xi_2^2)^{r/2}) d\xi_1 d\xi_2 \leq \iint |\tilde{W}_\psi(\xi_1, \xi_2)| \exp(\beta(\xi_1^2 + \xi_2^2)^{r/2}) d\xi_1 d\xi_2 \leq \left(\iint |V_\psi(\xi_1, \xi_2)| \exp(\beta(\xi_1^2 + \xi_2^2)^{r/2}) d\xi_1 d\xi_2\right)^2,$$

which concludes the proof. \hfill \qed

\textit{Proof of lemma 5.} The lower bound follows from lemma 11 in appendix F. In the sequel we let $M_n := Mh^2(\log n)^{2/r}$ and $R_n := R(\log n)^{2a_4} \exp(-\beta u^r)$. To establish the upper bound, we first bound the L^2 distance between densities by the Hellinger distance. By triangular inequality and Young’s inequality,

$$|p^n_\psi(y, \theta) - p^n_\psi(y, \theta)|^2 \leq 2 \left|\sqrt{p^n_\psi(y, \theta)}\sqrt{p^n_\psi(y, \theta)} - \sqrt{p^n_\psi(y, \theta)}\sqrt{p^n_\psi(y, \theta)}\right|^2 + 2 \left|\sqrt{p^n_\psi(y, \theta)}\sqrt{p^n_\psi(y, \theta)} - \sqrt{p^n_\psi(y, \theta)}\sqrt{p^n_\psi(y, \theta)}\right|^2.$$
Taking the integral both sides, under the assumptions of the lemma it comes
\[
\iint |p_\psi^n(y, \theta) - p_{\psi_0}^n(y, \theta)|^2 \, dyd\theta \leq 2(C_0 + M_n)H^2(P_\psi^n, P_{\psi_0}^n).
\]
Recall that \(\mathcal{F} \) denote the \(L^1 \)-Fourier transform operator. Then by Parseval-Plancherel formula we can rewrite
\[
\iint |\mathcal{F}[p_\psi^n(\cdot, \theta)](\xi) - \mathcal{F}[p_{\psi_0}^n(\cdot, \theta)](\xi)|^2 \, d\xi d\theta \leq 2(C_0 + M_n)H^2(P_\psi^n, P_{\psi_0}^n).
\]
Recalling that \(p_\psi^n(y, \theta) = [p_\psi(\cdot, \theta) \ast \Phi_\gamma](y) \), where \(\mathcal{F}[\Phi_\gamma] = \hat{\Phi}_\gamma \), we deduce that \(\mathcal{F}[p_\psi^n(\cdot, \theta)](\xi) = \mathcal{F}[p_\psi(\cdot, \theta)](\xi) \hat{\Phi}_\gamma(\xi) \). Therefore,
\[
\iint |\mathcal{F}[p_\psi(\cdot, \theta)](\xi) - \mathcal{F}[p_{\psi_0}(\cdot, \theta)](\xi)|^2 |\hat{\Phi}_\gamma(\xi)|^2 \, d\xi d\theta \leq 2(C_0 + M_n)H^2(P_\psi^n, P_{\psi_0}^n).
\]
Using that \(\mathcal{F}[p_\psi(\cdot, \theta)](\xi) = \hat{W}_\psi(\xi, \cos \theta, \xi \sin \theta) \), and performing the suitable change of variables, we arrive at
\[
\int_{\mathbb{R}^2} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 |\hat{\Phi}_\gamma(\|z\|)|^2 \, dz \leq 2(C_0 + M_n)H^2(P_\psi^n, P_{\psi_0}^n).
\]
Now, using that the Fourier transform is isometric from \(L^2(\mathbb{R}) \) onto itself, and that the Wigner transform is isometric from \(L^2(\mathbb{R}) \) onto \(L^2(\mathbb{R}^2) \), by Gröchenig (2001, proposition 4.3.2), we write
\[
\|\psi - \psi_0\|^2 = \int_{\mathbb{R}^2} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 \, dz
\]
\[
= \int_{\{\|z\| \leq u\}} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 \, dz + \int_{\{\|z\| > u\}} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 \, dz
\]
\[
\leq \frac{1}{|\hat{\Phi}_\gamma(u)|^2} \int_{\mathbb{R}^2} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 |\hat{\Phi}_\gamma(\|z\|)|^2 \, dz
\]
\[
+ \int_{\{\|z\| > u\}} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 \, dz.
\]
Under the hypothesis of the lemma, the second term in the rhs of the last equation is bounded by \(4R_n \) when \(n \) is large, because by proposition 7 we have
\[
\int_{\{\|z\| > u\}} |\hat{W}_{\psi_0}(z)|^2 \, dz = \int_{\{\|z\| > u\}} |\hat{W}_{\psi_0}(z)|^2 e^{\beta \|z\|} e^{-\nu \|z\|'} \, dz
\]
\[
\leq e^{-\beta u'} \int_{\mathbb{R}^2} |\hat{W}_{\psi_0}(z)|^2 e^{\beta \|z\|} \, dz \leq L^2 e^{\beta u'}.
\]
Since \(\hat{\Phi}_\gamma(\xi) = \exp(-\gamma \xi^2) \), it follows,
\[
\|\psi - \psi_0\|^2 \leq \frac{1}{|\hat{\Phi}_\gamma(u)|^2} \int_{\mathbb{R}^2} |\hat{W}_\psi(z) - \hat{W}_{\psi_0}(z)|^2 |\hat{\Phi}_\gamma(\|z\|)|^2 \, dz + 4R_n
\]
\[
\leq 2(C_0 + M_n)e^{2\gamma u^2} H^2(P_\psi^n, P_{\psi_0}^n) + 4R_n.
\]
Consequently, when $||\psi - \psi_0||_2^2 \geq 8R_n$ we have

$$||\psi - \psi_0||_2^2 \leq 4(C_0 + M_n)e^{2\gamma a^2}H^2(P^n_\psi, P^n_{\psi_0}).$$

\[\square \]

C.3. Construction of global test functions

Proof of theorem 4. Let $N = N(\sqrt{2}\delta_n^2, F_n, \| \cdot \|_2)$ denote the number of balls of radius $\sqrt{2}\delta_n^2$ and centers in F_n, needed to cover F_n. Let (B_1, \ldots, B_N) denote the corresponding covering with centers (ψ_1, \ldots, ψ_N). Now let J be the index set of balls B_j with $||\psi_j - \psi_0||_2 \geq \epsilon_n$. Using proposition 8, for each of these balls B_j with $j \in J$, we can build a test function $\phi_{n,j}$ satisfying

$$P^n_{\psi_0} \phi_{n,j} \leq \exp(-6n\delta_n^2), \quad \sup_{\psi \in B_j} P^n_{\psi} (1 - \phi_{n,j}) \leq \exp(-6n\delta_n^2).$$

Define the test function $\phi_n := \max_{j \in J} \phi_{n,j}$. Then $P^n_{\psi_0} \phi_n \leq \sum_{j \in J} P^n_{\psi_0} \phi_{n,j} \leq N \exp(-6n\delta_n^2)$ and $P^n_{\psi_0} (1 - \phi_n) \leq \min_{j \in J} \sup_{\psi \in B_j} P^n_{\psi} (1 - \phi_{n,j}) \leq \exp(-6n\delta_n^2)$ for any $\psi \in F_n$ with $||\psi - \psi_0||_2 \geq \epsilon_n - \sqrt{2}\delta_n^2$ (recall that $\delta_n \ll \epsilon_n$), and hence for any $\psi \in F_n$ with $||\psi - \psi_0||_2 \geq \epsilon_n$. \[\square \]

Appendix D: Proofs for uniform series prior on simplex

Proof of proposition 1. From the definition of of G and Hölder’s inequality, for $K \geq 0$ integer, $Z = KM$ and $(p_{lm})_{(l,m) \in \Lambda_Z}$ in the support of $G(\cdot | Z)$, we get estimate

$$\sum_{(l,m) \in \Lambda_Z} p_{lm} \exp(\beta(l^2 + m^2)^{r/2}) \leq \sum_{k} \theta_k \sum_{(l,m) \in \mathcal{I}_k} \eta_{lm} \exp(\beta(l^2 + m^2)^{r/2})$$

$$\leq \sum_{k} \theta_k \sqrt{|\mathcal{I}_k|} \exp(\beta k^r M^r),$$

because $\sum_{k=1}^K \theta_k^2 \geq \theta_1^2 = 1$. The conclusion is direct because $\theta_1 = 1$ and $\theta_k \leq \sqrt{2L} \exp(-\beta(k^r - 1)M^r)$ for any $k = 2, \ldots, K$. \[\square \]

Proof of proposition 2. Let $Z = KM$ for $K \geq 0$ integer, and $(q_{lm})_{(l,m) \in \Lambda_Z} \in \Delta_Z^2(\beta, r, L)$ be arbitrary. For any $(l, m) \in \Lambda_Z$, and any sequence $(p_{lm})_{(l,m) \in \Lambda_Z} \in \Delta_Z$, let define the unnormalized coefficients

$$\overline{q}_{lm} := \frac{q_{lm}}{\sqrt{\sum_{(n,p) \in \mathcal{I}_l} q_{np}^2}}, \quad \overline{p}_{lm} := \frac{p_{lm}}{\sqrt{\sum_{(n,p) \in \mathcal{I}_l} p_{np}^2}}.$$

Note that $\sum_{(l,m) \in \mathcal{I}_l} \overline{q}_{lm}^2 = \sum_{(l,m) \in \mathcal{I}_l} \overline{p}_{lm}^2 = 1$. Moreover, we also have

$$\sum_{(l,m) \in \Lambda_Z} p_{lm}^2 = \sum_{(l,m) \in \Lambda_Z} q_{lm}^2 = 1;$$
it turns out that
\[q_{lm} = \frac{\tilde{q}_{lm}}{\sqrt{\sum_{(n,p)\in\Lambda_Z} \tilde{q}_{np}^2}}, \quad p_{lm} = \frac{\tilde{p}_{lm}}{\sqrt{\sum_{(n,p)\in\Lambda_Z} \tilde{p}_{np}^2}}, \]

By the triangle inequality, the two previous expressions of \(q_{lm}, p_{lm} \) yield the bound,
\[\sqrt{\sum_{(l,m)\in\Lambda_Z} |q_{lm} - p_{lm}|^2} \leq \frac{2\sqrt{\sum_{(l,m)\in\Lambda_Z} |q_{lm} - \tilde{p}_{lm}|^2}}{\sqrt{\sum_{(l,m)\in\Lambda_Z} \tilde{q}_{lm}^2}} \leq 2 \sqrt{\sum_{(l,m)\in\Lambda_Z} |q_{lm} - \tilde{p}_{lm}|^2}. \]

For any \(k = 1, \ldots, K \), define \(t_k := \sum_{(l,m)\in\mathcal{I}_k} \tilde{q}_{lm}^2 \) and \(e_{lm} := \tilde{q}_{lm} t_k^{-1} \mathbb{1}(l,m) \in \mathcal{I}_k \). Note that by construction we have \(t_1 = 1 \). With obvious definition for \(\theta_k \) and \(\eta_{lm} \), we have
\[\sum_{(l,m)\in\Lambda_Z} |p_{lm} - q_{lm}|^2 \leq 2 \sum_{k=1}^K \sum_{(l,m)\in\mathcal{I}_k} |\theta_k \eta_{lm} - t_k e_{lm}|^2 \leq 4 \sum_{k=1}^K t_k^2 \sum_{(l,m)\in\mathcal{I}_k} |\eta_{lm} - e_{lm}|^2 + 4 \sum_{k=2}^Z |\theta_k - t_k|^2. \]

We can choose \(M > 0 \) large enough to have \(\sum_{(l,m)\in\mathcal{I}_1} \tilde{q}_{lm}^2 \geq 1/2 \); it turns out that \(\sum_{k=1}^K t_k^2 \leq 2 \). Moreover, with \(M > 0 \) chosen as previously we have
\[t_k \exp(\beta k^\gamma M^r) = \sqrt{2} e^{\beta M^r} \sum_{(l,m)\in\mathcal{I}_k} q_{lm} \exp(\beta (k-1)^\gamma M^r) \leq \sqrt{2} e^{\beta M^r} \sum_{(l,m)\in\mathcal{I}_k} q_{lm} \exp(\beta (t^2 + m^2)^{r/2}) \leq \sqrt{2} Le^{\beta M^r}, \]

thus the coefficients \((t_k)_{k=1}^K \) are in the support of \(G(\cdot \mid Z) \). By independence structure of the prior, and since \(\sum_{k=1}^K t_k^2 \leq 2 \), it suffices to prove that for any \(t > 0 \),
\[\prod_{k=1}^K F_k \left(\sum_{(l,m)\in\mathcal{I}_k} |\eta_{lm} - e_{lm}|^2 \leq t \right) \geq \exp(-cK^{b_1-r} \log t^{-1}), \tag{20} \]
\[\Pr \left(\sum_{k=2}^K |\theta_k - t_k|^2 \leq t \right) \geq \exp(-c'K^{b_1-r} \log t^{-1}), \tag{21} \]
for some constants \(c, c' > 0 \). Equation (20) is automatically satisfied by the assumptions on \(F_1, F_2, \ldots \) in the proposition. Equation (21) is straightforward from the definition of \(G(\cdot \mid Z) \).

Appendix E: Bounding the posterior distribution

We bound the posterior distribution as follows. Let \(\Omega_n \) be the event of equation (11). Then, with the notation \(Z_i := (Y_i, \theta_i) \) and \(Z^n = (Z_1, \ldots, Z_n) \), for any
measurable set U_n,
\[P_{\psi_0}^{n,n}(U_n \mid Z^n) = P_{\psi_0}^{n,n}(\Omega_n) \left[I_1^n + I_2^n + I_3^n + P_{\psi_0}^{n,n}(\Omega_n^c) I_4^n \right]. \tag{22} \]

where
\[
\begin{align*}
I_1^n &:= \int_{\Omega_n} \Pi(U_n \cap F_n^n \mid z^n) \, dP_{\psi_0}^{n,n}(z^n \mid \Omega_n), \\
I_2^n &:= \int_{\Omega_n} \phi_n(z^n) \Pi(U_n \cap F_n \mid z^n) \, dP_{\psi_0}^{n,n}(z^n \mid \Omega_n), \\
I_3^n &:= \int_{\Omega_n} (1 - \phi_n(z^n)) \Pi(U_n \cap F_n \mid z^n) \, dP_{\psi_0}^{n,n}(z^n \mid \Omega_n), \\
I_4^n &:= \int_{\Omega_n} \Pi(U_n \mid z^n) \, dP_{\psi_0}^{n,n}(z^n \mid \Omega_n^c).
\end{align*}
\]

This decomposition of the expectation for the posterior distribution serves as a basis for the proof of the next lemma.

Lemma 10. Let $\delta_n \to 0$ with $n \delta_n^2 \to \infty$. Assume that there are sets $F_n \subset F$ with $\Pi(F_n^n) \leq e^{-6n\delta_n^2}$ and a sequence of test functions $(\phi_n)_{n \geq 1}$, $\phi_n : (\mathbb{R}^+ \times [0, 2\pi])^n \to [0, 1]$, such that $P_{\psi_0}^{n,n} \phi_n \to 0$ and $\sup_{\psi \in U_n \cap F_n} P_{\psi}^{n,n} (1 - \phi_n) \leq e^{-6n\delta_n^2}$.

Also assume that $\Pi(B_n(\delta_n)) \gtrsim e^{-n\delta_n^2}$, where $B_n(\delta_n)$ are the sets defined in equation (12). Then $P_{\psi_0}^{n,n} \Pi(U_n \mid Z^n) \to 0$ as $n \to \infty$.

Proof. The proof looks like Ghosal, Ghosh and Van Der Vaart (2000), with careful adaptations. It is obvious that $I_3^n \leq 1$ so that $P_{\psi_0}^{n,n}(\Omega_n) I_4^n \to 0$ by lemma 1.

With the same argument we have that $I_2^n \leq P_{\psi_0}^{n,n}(\Omega_n)^{-1} P_{\psi_0}^{n,n} \phi_n$. Now we bound I_3^n. As usual, recalling that the observations are i.i.d we rewrite
\[
\Pi(U_n \cap F_n \mid z^n) = \frac{\int_{U_n \cap F_n} \prod_{i=1}^n \frac{p_{\psi}^n(y_i, \theta_i)}{p_{\psi_0}^n(y_i, \theta_i)} \, d\Pi(\psi)}{\prod_{i=1}^n \frac{p_{\psi}^n(y_i, \theta_i)}{p_{\psi_0}^n(y_i, \theta_i)} \, d\Pi(\psi)}. \tag{23}
\]

We lower bound the integral in the denominator of equation (23) by integrating on the smaller set B_n. Consider the events
\[
A_n := \left\{ ((y_1, \theta_1), \ldots, (y_n, \theta_n)) : \int_{B_n} \prod_{i=1}^n \frac{p_{\psi}^n(y_i, \theta_i)}{p_{\psi_0}^n(y_i, \theta_i)} \, d\Pi(\psi) \leq \exp(-4n\delta_n^2) \right\}
\]
\[
C_n := \left\{ ((y_1, \theta_1), \ldots, (y_n, \theta_n)) : \sum_{i=1}^n \int_{B_n} \log \frac{p_{\psi}^n(y_i, \theta_i)}{p_{\psi_0}^n(y_i, \theta_i)} \, d\Pi(\psi) \geq 4n\delta_n^2 \right\}.
\]

By Jensen’s inequality, we have the inclusion $C_n \subseteq A_n$, thus $P_{\psi_0}^{n,n}(A_n \mid \Omega_n) \leq P_{\psi_0}^{n,n}(C_n \mid \Omega_n)$. Moreover, using that the observations are independent, and Fubini’s theorem, we have
Thus, for the sake of simplicity; with the same arguments as previously, we can bound the variance with respect to $P_{\psi_0}^n(\cdot | \Omega_n)$, denoted var for the sake of simplicity; with the same arguments as previously,

\[
\text{var} \left[\sum_{i=1}^n \int_{B_n} \log \frac{P_{\psi_0}^n(y_i, \theta_i)}{P_{\psi_0}^n(y_i, \theta_i)} \, d\Pi(\psi) \right] \\
\leq \frac{n}{P_{\psi_0}^n(E_n)} \int_{E_n} \left(\int_{B_n} \log \frac{P_{\psi_0}^n(y, \theta)}{P_{\psi_0}^n(y, \theta)} \, d\Pi(\psi) \right)^2 \, dP_{\psi_0}^n(y, \theta) \\
\leq \frac{n}{P_{\psi_0}^n(E_n)} \int_{B_n} \left[\int_{E_n} \left(\log \frac{P_{\psi_0}^n(y, \theta)}{P_{\psi_0}^n(y, \theta)} \right)^2 \, dP_{\psi_0}^n(y, \theta) \right] \, d\Pi(\psi) / \Pi(B_n).
\]

From the definition of B_n and because $P_{\psi_0}^n(E_n) \geq 1/2$ for n large enough, we get from Chebychev inequality that for those n,

\[
P_{\psi_0}^n(A_n | \Omega_n) \leq P_{\psi_0}^n(C_n | \Omega_n) \leq \frac{1}{8n\delta_n^2}.
\]

Hence,

\[
\int_{\Omega_n \cap A_n} (1 - \phi_n(z^n)) \Pi(U_n \cap \mathcal{F}_n | z^n) \, dP_{\psi_0}^n(z^n | \Omega_n) \leq \frac{P_{\psi_0}^n(A_n)}{P_{\psi_0}^n(\Omega_n)} \leq \frac{(n\delta_n^2)^{-1}}{P_{\psi_0}^n(\Omega_n)}.
\]

and,

\[
\int_{\Omega_n \cap A_n^c} (1 - \phi_n(z^n)) \Pi(U_n \cap \mathcal{F}_n | z^n) \, dP_{\psi_0}^n(z^n | \Omega_n) \\
\leq \frac{e^{4n\delta_n^2}}{\Pi(B_n)} \int_{\Omega_n \cap A_n^c} (1 - \phi_n(z^n)) \int_{U_n \cap \mathcal{F}_n} \prod_{i=1}^n \frac{P_{\psi_0}^n(y_i, \theta_i)}{P_{\psi_0}^n(y_i, \theta_i)} \, d\Pi(\psi) \, dP_{\psi_0}^n(z^n | \Omega_n) \\
= \frac{e^{4n\delta_n^2}}{\Pi(B_n)} \int_{U_n \cap \mathcal{F}_n} \int_{\Omega_n \cap A_n^c} (1 - \phi_n(z^n)) \prod_{i=1}^n \frac{P_{\psi_0}^n(y_i, \theta_i)}{P_{\psi_0}^n(y_i, \theta_i)} \, dP_{\psi_0}^n(z^n | \Omega_n) \, d\Pi(\psi) \\
\leq \frac{e^{4n\delta_n^2} \Pi(U_n \cap \mathcal{F}_n) \sup_{\psi \in U_n \cap \mathcal{F}_n} P_{\psi_0}^n(1 - \phi_n)}{P_{\psi_0}^n(\Omega_n)}.
\]
where the third line follows from Fubini’s theorem. Combining the last two results yields $P_{\psi_0}^n(\Omega_n)I_3^n \to 0$. The bound on I_3^n follows exactly the same lines as the bound on I_3^0 (see also Ghosal, Ghosh and Van Der Vaart, 2000).

\[Q.E.D.\]

Appendix F: Remaining proofs and auxiliary results

Lemma 11. Let $\psi, \psi_0 \in S^2(\mathbb{R})$. Then, $H^2(P^0_{\psi}, P^0_{\psi_0}) \leq \sqrt{2}H(P_{\psi}, P_{\psi_0}) \leq \sqrt{2}\|\psi - \psi_0\|_2$. Moreover, we also have that $H(P_{\psi}(\cdot \mid \theta), P_{\psi_0}(\cdot \mid \theta)) \leq \|\psi - \psi_0\|_2$ for all $\theta \in [0, \pi]$.

Proof. First, we recall that $p^n_\psi(y, \theta) = [p_\psi(\cdot, \theta) * \Phi_\gamma](y)$. The same holds for $p^n_{\psi_0}$. Then using that the square Hellinger distance is bounded by the total variation distance, which is in turn bounded by the Hellinger distance,

$$H^2(P^0_{\psi}, P^0_{\psi_0}) \leq \iint |p_\psi(\cdot, \theta) * \Phi_\gamma(y) - [p_{\psi_0}(\cdot, \theta) * \Phi_\gamma](y)| \, dy \, d\theta \leq \|\Phi_\gamma\|_1 \iint |p_\psi(x, \theta) - p_{\psi_0}(x, \theta)| \, dx \, d\theta \leq \sqrt{2}H(P_{\psi}, P_{\psi_0}),$$

where the second line follows from Young’s inequality. Now let $\theta \neq 0$ and $\theta \neq \pi/2$. Using that $|x| - |y| = |x - y + y| - |y| \leq |x - y|$ for all $x, y \in \mathbb{C}$, it holds from equation (3) that,

$$\sqrt{p_\psi(x, \theta)} - \sqrt{p_{\psi_0}(x, \theta)} \leq \frac{1}{2\pi \sqrt{|\sin \theta|}} \left| \int_{-\infty}^{\infty} (\psi(z) - \psi_0(z)) \exp \left(i \cot \frac{\theta}{2} z^2 - i \frac{x}{\sin \theta} z \right) \, dz \right|.$$

On almost recognize the expression of the square-root of a density in the rhs of the last equation. Indeed, it is not because $\psi - \psi_0$ is not normalized in L^2. But, letting $\psi_v := (\psi - \psi_0)/\|\psi - \psi_0\|_2$,

$$\left(\sqrt{p_\psi(x, \theta)} - \sqrt{p_{\psi_0}(x, \theta)} \right)^2 \leq p_v(x, \theta)\|\psi - \psi_0\|_2^2. \tag{24}$$

One can show easily that the same bound holds when $\theta = 0$ or $\theta = \pi/2$ (although it is even not necessary). The conclusion of the lemma then follows from the definition of the Hellinger distance and the fact that p_v is a probability density. The results for conditional densities is immediate from equation (24) since $p_\psi(x \mid \theta) = \pi p_{\psi}(x, \theta)$ for any $\psi \in S^2(\mathbb{R})$. \[Q.E.D.\]

Proposition 10. There exists n_0 such that for all $n \geq n_0$ and all $\psi \in M_n(Z, U)$ it holds $P_{\psi}(|X| \leq D^3_{n} \mid \theta) \geq 1/2$ for all $\theta \in [0, \pi]$.

Proof. It suffices to write that,

$$P_{\psi_0}(|X| \leq D^3_{n} \mid \theta) \leq \int_{[-D^4_{n}, -D^4_{n}]} p_{\psi_0}(x \mid \theta) \, dx + \int_{\mathbb{R}} |p_{\psi}(x \mid \theta) - p_{\psi_0}(x \mid \theta)| \, dx \leq P_{\psi}(|X| \leq D^3_{n} \mid \theta) + \sqrt{2}H(P_{\psi}(\cdot \mid \theta), P_{\psi_0}(\cdot \mid \theta)).$$
By lemma 11, $\sqrt{2}H(P_\psi(\cdot \mid \theta), P_{\psi_0}(\cdot \mid \theta)) \leq 1/4$ for all $\psi \in \mathcal{M}_n$ if n is large enough. Moreover, if n is sufficiently large, we also have $P_{\psi_0}(|X| \leq D_{n, r}^2 \mid \theta) \geq 3/4$, concluding the proof.

Acknowledgements

Part of this work has been supported by the BNPSI ANR project no ANR-13-BS-03-0006-01.

References

ALQUIER, P., MEZIANI, K. and PEYRÉ, G. (2013). Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data. Inverse Problems 29 075017. MR3080478

ARTILES, L., GILL, R. et al. (2005). An invitation to quantum tomography. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 109–134. MR2136642

AUBRY, J.-M., BUTUCEA, C. and MÉZIANI, K. (2008). State estimation in quantum homodyne tomography with noisy data. Inverse Problems 25 015003. MR2465335

BUTUCEA, C., GUŤĂ, M. and ARTILES, L. (2007). Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. Annals of Statistics 35 465–494. MR2336856

CORDERO, E. (2007). Gelfand–Shilov window classes for weighted modulation spaces. Integral Transforms and Special Functions 18 809–817. MR2374584

CORDERO, E., PILIPOVIĆ, S., RODINO, L. and TEOFANOV, N. (2005). Localization operators and exponential weights for modulation spaces. Mediterranean Journal of Mathematics 2 381–394. MR2191800

DAUBECHIES, I., JAFFARD, S. and JOURNÉ, J.-L. (1991). A simple Wilson orthonormal basis with exponential decay. SIAM Journal on Mathematical Analysis 22 554–573. MR1084973

GHOsal, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of posterior distributions. Annals of Statistics 28 500–531. MR1790007

GHOsal, S. and VAN DER VAART, A. (2007). Convergence rates of posterior distributions for noniid observations. Annals of Statistics 35 192–223. MR2332274

GRÖCHENIG, K. (2001). Foundations of Time-Frequency Analysis. Birkhäuser. MR1843717

GRÖCHENIG, K. (2006). Weight functions in time-frequency analysis. arXiv preprint math/0611174. MR2385335

GRÖCHENIG, K. and ZIMMERMANN, G. (2001). Hardy’s theorem and the short-time Fourier transform of Schwartz functions. Journal of the London Mathematical Society 63 205–214. MR1802767

GRÖCHENIG, K. and ZIMMERMANN, G. (2004). Spaces of test functions via the STFT. Journal of Function Spaces and Applications 2 25–53. MR2027858
Gută, M. and Artiles, L. (2007). Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors. Mathematical Methods of Statistics 16 1–15. MR2319467

Hall, B. C. (2013). Quantum theory for mathematicians. Springer. MR3112817

Helgason, S. (2011). The Radon Transform on \mathbb{R}^n. Springer. MR0741182

Knäpić, B. and Salomond, J.-B. (2014). A general approach to posterior contraction in nonparametric inverse problems. arXiv preprint arXiv:1407.0335.

Lounici, K., Meziani, K. and Peyré, G. (2015). Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. arXiv preprint arXiv:1506.06941.

Markus, T., Bryan, H. and Jorge, O. (2010). Phase-Space Optics Fundamentals and Applications. McGraw-Hill Companies New York.

Méziani, K. (2007). Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data. Mathematical Methods of Statistics 16 354–368. MR2378280

Méziani, K. (2008). Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data. Electronic Journal of Statistics 2 1195–1223. MR2461899

Naulet, Z. and Barat, E. (2015). Some aspects of symmetric Gamma process mixtures. arXiv preprint arXiv:1504.00476.

Shen, W., Tokdar, S. T. and Ghosal, S. (2013). Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Biometrika 100 623–640. MR3094441