Biocatalytic Potential of Enzymes Involved the Modification of Glucosamine in Chemotherapeutical Intermediates Synthesis

Ahmed M. Senan*

Glycomics and Glycan Bioengineering Research Center, School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Correspondence to: Ahmed M. Senan
Glycomics and Glycan Bioengineering Research Center, School of Food Science and Technology Nanjing Agricultural University Nanjing 210095, China
Tel: 86-25-84399553
E-mail: ahmedmsenan@njau.edu.cn

Received: December 04, 2020
Accepted: February 15, 2021
Published: February 18, 2021

Citation: Senan AM. 2021. Biocatalytic Potential of Enzymes Involved the Modification of Glucosamine in Chemotherapeutical Intermediates Synthesis. J Food Chem Nanotechnol 7(1): 18-24.

Copyright: © 2021 Senan. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY) (http://creativecommons.org/licenses/by/4.0/) which permits commercial use, including reproduction, adaptation, and distribution of the article provided the original author and source are credited. Published by United Scientific Group

Abstract

The enzymatic modification of glucosamine (GlcN) and its derivatives have a keen interest for researchers due to the natural abundance of its bio-sourced such as chitin. The recent progress for understanding the role of glucosamine based on various novel approaches for enzymatic synthesis in the field of medicinal chemistry and food supplements. These developments led to improve chemo-selective protection and/or deprotection of amino-sugar during chain-enhancement and allow the simultaneous regioselective reaction of functionally relevant acetyl, phosphate, or sulfate groups. In this review, we give an overview of current strategies on the synthesis of therapeutically relevant glucosamine-containing derivatives.

Keywords

Glucosamine, Oligosaccharides, Glycosylation, Protecting group, Biomass

Introduction

Glucosamine and its derivatives have diverse molecular structures, a prominent precursor in the biochemical synthesis of polysaccharides such proteins and lipids. In particular, N-acetyl-glucosamine and mannosamine are naturally building units of chitin which is a primary compound in exoskeletons of arthropods (Scheme 1) [1-4]. The glycosylation reaction mostly depends on the type of protecting groups; it is mostly carried out between donors-glycosyl including the acetyl glucosamine with acceptor in optimization condition in a slightly acidic medium. There are several situations in which we are concerned about the classification of approaches on the biosynthesis of oligosaccharides from GlcN derivatives [5-8].

The increasing consumption of polysaccharides as feedstock, the wide application of carbohydrates in industry and the uses of oligosaccharides as supplementary food and medicine sources are particularly well appreciated [9]. The keen interest in the pharmacological properties and the enzymatic modification of glucosamine are the main reason for its rapid growth in the production quality and the great market [10-13]. Generally, there is a proposal to succeed the modification of amino-sugars with acidic moiety and/or ester carbohydrates, including the synthesis of oligosaccharides [14-18]. In the literature, several elegant strategies have been designed to improve synthetic glucosamine’s performance in nature and used as a substance-based N-X-derivatives, whereas the X instead of acetyl group, phosphate and/or polysaccharides [17, 18]. Nowadays, J. Rojo and his colleagues reported several biological modifications of carbohydrate-based on therapeutics. These advances have allowed the use of numerous
glycomimetics for drug synthesis [17, 19]. This review targets comprehensively scanning the recent developments of this exciting topic as available information, along with high coverage of modification of glucosamine [20]. Consequently, the biocatalytic modification of glucosamine derivatives can be improved via glycosylation, phosphorylation, acetylation, and synthesis of polysaccharides under some conditions: (1) β-directing effects; (2) most at an ease of attachment; (3) compatibility with the whole synthetic method; (4) facilitating NMR structural analysis due to the C2-symmetry; (5) easy reconversion and (6) the deprotection counterpart with high yield [21-25]. The most common of sugars constant amino protecting groups are collectively classified as outlined in (Scheme 1) [26-31].

The enzymatic modification of N-acetyl-α-D-glucosamine- N-phosphate

In 1953, Leloir and Cardini reported that glucosamine produced from n-hexose 6-phosphate and N-glutamine specifically using Neurosporacrassa enzyme in middling conditions [32]. Transformation of α-D-glucosamine-1-phosphate to N-acetyl-α-D-glucosamine 6-phosphate has been completed, and with phosphatases-catalyst to establish conversion of 6-ester. This reaction’s key step is the rate limitation imposed by the chemical cleavage of phosphate and transfer within a molecule [33].

The most prevalent system of this class enzyme is called N-acetyl-α-D-glucosamine 1,6-phosphomutase (GlcNAc-1,6-p). The other names in common include acetylglucosamine phosphomutase and N-acetyl-D-glucosamine 1,6-phosphomutase (Scheme 2) [34]. NagA is known as amid-hydrolase superfamily enzyme, and it has employed for producing the amino acid, nucleic acid, and sugar through the hydrolytic cleavage of amide bonds. Increasing the nucleophilic attack on the amide bonds is activated in present of the water as co-catalysis, and mechanistically the activation happened through the elimination of protons [35]. Adrian et al., described the GlcN and GlcN-6-phosphate both analogues employed for supported the glmS ribozyme cofactor catalyst [36], which catalyzes site-specific phosphodiester cleavage. The enzyme GlcN-6-p synthetase (GlmS), mostly known as gram-positive bacteria, controls cell wall biosynthesis by bacterial gene-regulatory RNA (Scheme 3) [37]. The 3-azido-GlcN is produced in two chemical steps; the first step is protecting groups [1, 2, 4, 6] following the SN2 reactions mechanism with an excellent respective, and the second step is the acidic hydrolysis of an intermediate to afford the products [38-41]. The α/β 3-azido GlcN was prepraed from GlcN-6-P and GlcN, the result of this performance can also gave the allosamine as a rare aminosugar. The modifications of 6-OH at (GlcN-CBz.TES) protecting group, which converted to the fully deprotected by TFA/H2O and afforded 6-azido glucosamin. Then the TES as leaving groups were hydrolyzed to produce the 2,6-diaminoglucose analogue Such as the (TFA) 2 salt [40-45]. Generally, the chemical phosphorylation of the 6-OH in the Glc analogues required N-protecting groups. An oxaziridine was utilized as starting materials to prepare the 2-hydroxylamino-glucose analogue, which could be converted to its 6-OH precursor. There action with enzymatic phosphorylation procedure carried out to give the 6-phospho- 2-hydroxyl-aminoglucose.

However, the particularity is almost certainly non-existent but afforded the 2-guanidinyl-glucose as intermediate of the 6-phospho analogue after final deprotection. Furthermore, treating through 6 steps including the yeast hexokinase

![Scheme 1: Illustrating the classification, protected groups based on enzymatic modification of glucosamine derivatives.](image1)

![Scheme 2: GlcNAc-6-p deacetylated by NagA catalyst.](image2)

![Scheme 3: GlcN-6-P-derivatives as catalytic cofactors of the glmS ribozyme from (GlcN-6-P) and glucosamine (GlcN).](image3)
in presence ATP, is used to produce 6-phospho-2-hydroxyl aminoglucosanologe with 6-OH-compounds, which was unstable under simple conditions. The preparation of 6-phospho-2-aminoalactam from glucosamine was synthesized far away in 13-steps as long as procedures in literature. The phosphorylation stage is mostly executed with POCI3 in pyridine, and the selectively exposed 6-OH group included the triethylisilyl (TES) protecting group. The movement of the leaving groups was achieved in late 2-step, thiol-disulfide of selectivity for producing phospholipase group in sugaramine-6-OH. 

The preparation of tri-O-acetyl-D-glucal occurs in one pot without separation of the intermediate products. Triacetyl glucal was obtained in good yield by Dhandarheer et al. In general, the anomeric protection can be followed the traditional protection and deprotection strategies, including peracetylation of azido hexose and its variety of oligosaccharide. Most recently, our research group unexpectedly has been found a new approach for obtaining glucosamine from chitin under simple conditions. Using the deacetylase enzyme which isolated from Cyclobacterium marinum and these can all be used to convert the GlcNAc to glucosamine following two-steps strategies: (a) glycosidic bound cleavage of chitin to give intermediate GlcNAc by enzymatic processes, (b) through selective enzyme which has ability for N-deacetylation GlcNAc to GlcN with high yield. The GlcNAc is particularly obtained with acidic hydrolysis of chitin as in, the GlcNAc converted to GlcN as an unstable under simple conditions. Anderson and his colleagues used the method for obtaining GlcN from chitin under simple conditions. The deacetylation enzymatic process was achieved in late 2-step, thiol-disulfide of selectivity for producing glucosamine group in sugaramine-6-OH.

All methods of previous studies were required harsh conditions such as concentration acidity, high temperature, resulting in low yields and mostly no more than 50% conversion. However, the improvement of biocatalyst for the direct N-deacetylation of GlcNAc is described by our research group. The obtaining of the GlcN from chitin has also been investigated and was compared with de-N-acetylation efficiencies of previous methods. However, a biocatalytic reaction is usually unlike a Lewis acid catalyst in a chemical synthesis process. A biocatalytic reaction would possibly result in a one-pot synthesis process with a low cost and good economy. The enzymes are significantly playing a role in biocatalytic reactions, it is improved the activation, modification, and control of enzymatic catalysis's efficiency.

The chitin and chitosan are found as biomass components in the cell wall of crustaceans and insects, this converted by using different biochemical process; an enzymatically deacetylated and hydrolyzed the chitin to form a GlcN.

Bio-catalytic transformation of biomass to glucosamine derivatives

In literature were concluding the polymerization of Glucose/GlcNAc to synthesize polysaccharides cellulose/chitin, respectively. A chitinase is used as a key biocatalytic modification of chitin to chitosan through deacetylated procedure. The more important steps that the conversion of chitin to the primary glucosamine by de-N-acetylation/hydrolyzation of chitin (B) enzymatic crystallization of GlcNAc to obtained the chitin (C). The biodegradation of biomass is accessed to obtain the necessary intermediate compounds of GlcN-6-P. Similarly, procedure B is carried out by deacetylation-hydrolyzation method scheme 6. Whereas the chitin is enzymatically degraded and phosphorylated to form the derivatives of GlcN-6-P, such as in steps D, which can be converted to N-acetyl-glucosamine-6-P in presence acetly coenzyme A (E).

The modification scope of glucosamine derivatives and its classification of protecting amino groups have been described along with their advantages/disadvantages, involving the synthesis of diverse polysaccharides either from mono/dichloro-N-acetyl-glucosamine and/or N-acetyl glucosamine-
Conclusion

In this review, we have introduced and assessed several biocatalysis strategies related to the modification of glucosamine-derivatives, including nanotechnology and biotherapeutics such as heparin and heparin sulfate. Also, the synthesis of β-linked N-acetyl-D-glucosamine-containing oligosaccharides was illustrated. The classification of protected groups based on enzymatic modification from glucosamine to glycosides. Specifically, in the chemical formulation of the glucosamine and/or the oligosaccharides-D-glucosamine containing nitrogen atom that can be masked as part of an amino-protecting group or latent amino group. This review allows the readership to clearly understand how components of glucosamine derivatives with various reagents and oligosaccharide synthesis become therapeutics. In particular, the understanding of the relationship between multiple functionalities, stereochemistry, and the related biological activity will help researchers to design and improve their chemical synthesis of target saccharides in near future.

Conflict of Interest

The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Acknowledgments

This work was supported by the NJAU Academia and Department of Food Science and Technology, which start-up initiative of the 1000 Foreign Talents Plan (grant number 8080 to Ahmed M.).

References

1. Prabu K, Natarajan E. 2012. Isolation and FTIR spectroscopy characterization of chitin from local sources. Adv Appl Sci Res 3(2): 1870-1875.
2. Herth W, Bartholw W. 1979. The site of β-chitin fibril formation in centric diatoms. I. Pores and fibril formation. J Ultrasruct Res 68(1): 6-15. https://doi.org/10.1016/0022-5320(79)90137-0
3. Muñana KR, Onamendi AJ, Nettifee JA, Papich MG. 2018. Population pharmacokinetics of extended-release levetiracetam in epileptic dogs when administered alone, with phenobarbital or zonisamide. J Vet Intern Med 32(5): 1677-1683. https://doi.org/10.1111/jvim.15298
4. Knapp S, Darout E. 2002. The surprise synthesis of α-GlcNAc 1-C-sulfonates. Tetrahedron Letters 43(34): 6075-6078. https://doi.org/10.1016/S0040-4039(02)01218-2
5. Chen J, Li S, Li C. 2020. Mechanisms of melanocyte death in vitiligo. Med Res Rev 41(2): 1138-1166. https://doi.org/10.1002/med.21754
6. Roth Z, Yeheszkel G, Khalila I. 2012. Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012: 640923. https://doi.org/10.1155/2012/640923
7. Wang SY, Laborda P, Lu AM, Duan XC, Ma HY, et al. 2016. N-acetylglucosamine 2-epimerase from pedobacter heparinus: first experimental evidence of a deprotonation/reprotonation mechanism. Catalysts 6(12): 1-16. https://doi.org/10.3390/catal6120212
8. Champion E, André I, Moulis C, Bouet J, Descroix K, et al. 2009. Design of α-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J Am Chem Soc 131(21): 7379-7389. https://doi.org/10.1021/ja900183h
9. Petitou M, Hérault JP, Bernat A, Drigueux P, et al. 1999. Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398(6726): 417-422. https://doi.org/10.1038/188777
10. Suzuki K, Ito Y, Kanze O. 2012. An improved method for the synthesis of protected glycosyl fluorides from thioglycosides using N,N-acetylimidazole trifluoride (DAST). Carbohydr Res 359: 81-91. https://doi.org/10.1016/j.carres.2012.07.003
11. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. 2002. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Eng 41(14): 2596-2599. https://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::aid-anie2596%3E3.0.co;2-4
12. Brockhausen I, Carran J, McEleney K, Lehotay M, Yang X, et al. 2005. N-Acyl derivatives of glucosamine as acceptor substrates for galactosyltransferase from bone and cartilage cells. Carbohydr Res 340(12): 1997-2003. https://doi.org/10.1016/j.carres.2005.08.002
13. Demchenko AV. 2008. General aspects of the glycosidic bond formation. In: Demchenko (ed) Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1-27. https://doi.org/10.1002/9783527621644.ch1
14. Petrović DM, Kok I, Woortman AJF, Ćirić J, Loos K. 2015. Characterization of oligocellulose synthesized by reverse phosphorolysis using different celloxullose phosphorylases. Anal Chem 87(19): 9639-9646. https://doi.org/10.1021/acs.analchem.5b01098
15. Chang KL, Zuluetta MML, Lu XA, Zhang YQ, Hung SC. 2010. Regioselective one-pot protection of D-glucosamine. J Org Chem 75(21): 7424-7427. https://doi.org/10.1021/jo103320r
16. Liu Y, Xu X, Gao Q, Yan S, Li Y, et al. 2017. Rapid access to 6"-functionalized α-galactosyl ceramides by using 2-naphthylmethly ether as the permanent protecting group. Bioorg Med Chem Lett 27(8): 1795-1798. https://doi.org/10.1016/j.bmcl.2017.02.055
17. Sierra H, Cordova M, Chen CSJ, Rajdabykshia M. 2015. Confocal imaging-guided laser ablation of basal cell carcinomas: an ex vivo study. J Invest Dermatol 5(2): 612-615. https://10.1038/jid.2014.371
Biocatalytic Potential of Enzymes Involved the Modification of Glucosamine in Chemotherapeutical Intermediates Synthesis

Senan.

18. Balestrini JL, Gard AL, Liu A, Leiby KL, Schwan J, et al. 2015. Production of decellularized porcine lung scaffolds for use in tissue engineering. *Integrative Biology* 7(12): 1598-1610. https://doi.org/10.1039/c5ib00063g

19. Khlysoy AA. 2012. Glycobiology and drug design. American Chemical Society, Washington, DC, USA.

20. Lipták A, Borbás A, Bajza I. 2007. Protecting group manipulations in carbohydrate synthesis. In: Kamerling H (ed) Comprehensive Glycoscience: From Chemistry to Systems Biology, Elsevier B.V, Amsterdam, Netherlands, pp 203-259. https://doi.org/10.1016/B978-044451967-2-00007-6

21. Mouilleron S, Badet-Denisot MA, Pequeur I, Madiona K, Assirri N, et al. 2012. Structural basis for morpheein-type allosteric regulation of *Escherichia coli* glucosamine-6-phosphate synthase: Equilibria between inactive hexamer and active dimer. *J Biol Chem* 287(41): 34533-34546. https://doi.org/10.1074/jbc.m112.380378

22. Benakki K, Zha C, Kerns RJ. 2001. Oxazolidinone protected 2-amino-2-deoxy-D-glucose derivatives as versatile intermediates in stereoselective oligosaccharide synthesis and the formation of α-linked glycosides. *J Am Chem Soc* 123(38): 9461-9462. https://doi.org/10.1021/ja0162109

23. Berger E, Zhang D, Zerovol VV, Schwarz WH. 2007. Two noncellulosomal cellulosomes of *Clostridium thermocellum*, Cel91 and Cel48Y, hydrolyse crystalline cellulose synergistically. *FEBS Microbial Lett* 268(2): 194-201. https://doi.org/10.1111/j.1574-6968.2006.00583.x

24. Schmidt RR, Vankar YD. 2008. 2-Nitroglycals as powerful glycosyl donors: application in the synthesis of biologically important molecules. *Acc Chem Res* 41(8): 1059-1073. https://doi.org/10.1021/ar800249r

25. Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, et al. 2008. Roles of pgaABC genes in synthesis, modification, and export of the *Escherichia coli* biofilm adhesive poly-β-1,6-N-acetyl-D-glucosamine. *J Bacterial* 190(10): 3670-3680. https://doi.org/10.1128/JB.01920-07

26. Aley MRE, Ibrahim E-SI, El-Ashry E-SHE, Schmidt RR. 2010. ChemInform abstract: synthesis of lacto-α-neoaceroxa and lacto-α-neoaceroxa using the dimethylmethylol moiety as an amino protective group. ChemInform. http://www.thieme-connect.com/ejournals/home/abstract/10.1055/s-0030-1217157

27. Helfrich B, Zirner J. 1962. Zur synthese von tetraacetyl-hexosen mit freiem 2-hydroxyl. synthese einiger disaccharide. *Chemische Berichte* 95(11): 2604-2611. https://doi.org/10.1002/cber.19620951103

28. Teixidó E, Núñez O, Santos FJ, Galceran MT. 2011. Synthesis of N-acetyl-D-neuraminic acid from N-acetyl-D-glucosamine by using the spore surface-displayed N-acetyl-D-glucosamine acid aldolase. *Appl Environ Microbiol* 77(19): 7080-7083. https://doi.org/10.1128/aem.05601-11

34. Maley F, Maley GF, Lardy HA. 1956. The synthesis of α-D-Glucosamine-1-phosphate and N-Acetyl-α-D-glucosamine-1-phosphate. Enzymatic formation of uridine diphosphogluosamine. *J Am Chem Soc* 78(20): 5303-5307. https://doi.org/10.1021/ja01601a040

35. Hall RS, Dao FX, Xu C, Rausch FM. 2007. N-acetyl-D-glucosamine-6-phosphate deacetylase: substrate activation via a single divalent metal ion. *Biochemistry* 46(27): 7942-7952. https://doi.org/10.1021/bj070043a

36. Posakony JJ, Ferre-D’Amare AR. 2013. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme. *J Org Chem* 78(10): 4730-4743. https://doi.org/10.1021/jo400192e

37. Yang Y, Yu B. 2007. N-Dimethylphosphoryl-protected glucosamine trichloroacacetimide as an effective glycosylation donor. *Tetrahedron Letters* 48(26): 4557-4560. https://doi.org/10.1016/j.tetlet.2007.04.150

38. Liaw SH, Chen SJ, Ko TP, Hsu CS, Chen CJ, et al. 2003. Crystal structure of D-aminoacylase from Alcaligenes faecalis DAA1: a novel subset of amidohydrolases and insights into the enzyme mechanism. *J Biol Chem* 278(7): 4957-4962. https://doi.org/10.1074/jbc.m210795200

39. WilliamsLK, Nguyen T, Li Y, Porter TN, Rausch FM. 2006. Uronate isomerase: a nonhydrolytic member of the amidohydrolase superfamily with an ambivalent requirement for a divalent metal ion. *Biochemistry* 45(24): 7453-7462. https://doi.org/10.1021/bi0605311

40. Barnum DW. 1983. Hydrolysis of cations. formation constants and standard free energies of formation of hydroxyl complexes. *Inorg Chem* 22(16): 2297-2305. https://doi.org/10.1021/ic00158a016

41. Bingham JL, Gonzalez IY, Wang B, Bevilaqua PC. 2017. Activation of the glmS ribozyme nucleophile via overdetemined hydrogen bonding. *Biochemistry* 56(33): 4313-4317. https://doi.org/10.1021/acs.biochem.7b00662

42. Wang CC, Lee JC, Luo SY, Kulkarni S, Huang YW, et al. 2007. Regioselective one-pot protection of carbohydrates. *Nature* 446(7138): 896-869. https://doi.org/10.1038/nature05730

43. Seith BD, Bingham JL, Veenis AJ, Button AC, Bevilaqua PC. 2018. Elucidation of catalytic strategies of small nucleolar ribonucleases from comparative analysis of active sites. *ACS Catal* 8(1): 314-327. https://doi.org/10.1021/acscatal.7b02976

44. Li S, Luns CE, Harris KA, Breaker RR. 2015. Biochemical analysis of hatchet self-cleaving ribozymes. *RNA* 21(11): 1845-1851. https://doi.org/10.1261/rna.105252.115

45. Vuiuрович N, Altman RR, Terry DS, Micura R, Blanchard SC. 2017. Pseudoknot formation seeds the twister ribozyme cleavage reaction coordinate. *J Am Chem Soc* 139(24): 8186-8193. https://doi.org/10.1021/jacs.7b01549

46. Wünsch M, Schröder D, Fröh R, Teichmann L, Hedwig S, et al. 2017. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics. *Beilstein J Org Chem* 13: 2428-2441. https://doi.org/10.3762/bjoc.13.240

47. Lahiri R, Palanivel A, Kulkarni SA, Vankar YD. 2014. Synthesis of isofagomine-pyrrolidine hybrid sugars and analogues of (+)-steviamine and (+)-hyacinthacine C5 using 1,3-dipolar cycloaddition reactions. *J Org Chem* 79(22): 10786-10801. https://doi.org/10.1021/jo5016745

48. Paul S, Lancaster GI, Meikle PJ. 2019. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. *Prog Lipid Res* 74: 186-195. https://doi.org/10.1016/j.plipres.2019.04.003

49. Chong K, Loughlin T, Moeder C, Perpall HJ, Thompson R, et al. 1996. Drug substance manufacture process control: application of flow injection analysis and HPLC for monitoring an enantiomeric synthesis.
Biocatalytic Potential of Enzymes Involved the Modification of Glucosamine in Chemotherapeutical Intermediates Synthesis

Senan.

J Pharm Biomed 15(1): 111-121. https://doi.org/10.1016/j.pharmbiom.2006-30015(2)10.0.003

Lidholt K. 1997. Biosynthesis of glycosaminoglycans in mammalian cells and in bacteria. Biochim Biophys Acta 79(3): 433-441. https://doi.org/10.1016/0005-2760(87)90183-6

Dhurandhare VM, Wen YS, Gawande SD, Liao PH, Wang CC. 2016. Synthesis of D-Galactosamine and D-Allosamine derivatives via a microwave-assisted preparation of 1,6-Anhydroglucosamine. J Org Chem 81(22): 11521-11528. https://doi.org/10.1021/acs.joc.6b02038

Chryseobacterium indologenes, Comamonas koreensis

Good TA, Bessman SP. 1964. Determination of glucosamine and galactosamine using borate buffers for modification of the Elson-Morgan and Morgan-Elson reactions. Anal Biochem 9(3): 253-262. https://doi.org/10.1016/0003-2697(64)90183-6

Garg HG, Von Dem Bruch K, Kunz H. 1994. Developments in the synthesis of glycopeptides containing glycosyl-1-asperagine, l-serine, and l-threonine. In: Horton D ed Advances in Carbohydrate Chemistry and Biochemistry, Academic Press, Washington, DC, USA.

Lv YM, Laborda P, Huang K, Cai ZP, Wang M, et al. 2017. Highly efficient and selective biocatalytic production of glucosamine from chitin. Green Chem 19(2): 527-533. https://doi.org/10.1039/C6GC02910H

Kim TI, Lim DH, Baek KS, Jang SS, Park BY, et al. 2018. Production of chitinase from Escherichia fergusonii, chitosanase from Chrysobacterium indologenes, Comamonas koreensis and its application in N-acetylglucosamine production. Int J Biol Macromol 112: 1115-1211. https://doi.org/10.1016/j.ijbiomac.2018.02.056

Böltê T, Schumacher T, Namdjou DJ, Gallego RG, Claussen H, et al. 2001. Chemoenzymatic synthesis of biotinylated nucleotide sugars as substrates for glycosyltransferases. ChemBiochem 2(12): 884-894. https://doi.org/10.1002/1439-7633(20011203)2:12<3C84::AID-CBIC84>3.0.CO;2-2

Majeed A, Kaleem Abbas M, Hameed S, Imran A, Rahim N. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6: 198. https://doi.org/10.3389/fmicb.2015.00198

Brown DH. 1951. The phosphorylation of D(+) glucosamine by crystalline yeast hexokinase. Biochim Biophys Acta 7(4): 487-493. https://doi.org/10.1016/0005-2760(51)90063-7

Pridmore RD, Crouzillat D, Walker C, Foley S, Zink R, et al. 2000. Chemoenzymatically synthesized GM3 analogues as potential therapeutic agents to recover nervous functionality after injury by inducing neurite outgrowth. Eur J Med Chem 35(1): 61-66. https://doi.org/10.1016/S0221-1694(00)00102-9

Bontemps Y, Vuillermoz B, Antonicelli F, Perreau C, Danan J-L, et al. 2003. Specific protein-1 is a universal regulator of UDP-glucose dehydrogenase expression: its positive involvement in transforming growth factor-β signaling and inhibition in hypoxia. J Biol Chem 278(4): 21566-21575. https://doi.org/10.1074/jbc.M209366200

Wei S, Kulinich A, Duan XC, Liu L, Voglmair J. 2015. Discovery and biochemical characterization of UDP-glucose dehydrogenase from Granulibacter bethesdensis. Protein Pept Lett 22(7): 628-634. https://doi.org/10.2174/09286733266610520692818

Van CE, Stoltenberg R. 2005. Metabolism and functions of phosphatidylycerine. Prog Lipid Res 44(4): 207-234. https://doi.org/10.1016/j.plipres.2005.05.001

Światek MA, Urem M, Tenconi E, Rigali S, van Wezel GP. 2012. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unexpected role of NagA in glucosamine metabolism. Bioengineered 3(5): 280-285. https://doi.org/10.4161/bioe.21371

Candelà B, Balomenou S, Aucher W, Bouriotis V, Simore J-P, et al. 2014. N-acetylglucosamine deacetylases modulate the anchoring of the gamma-glutamyl capsule to the cell wall of Bacillus anthracis. Microb Drug Resist 20(3): 223-230. https://doi.org/10.1016/j.mdr.2014.0066

Dodge GR, Jimenez SA. 2003. Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritic articular chondrocytes. Osteoarthritis Cartilage 11(6): 424-432. https://doi.org/10.1016/S1063-4580(03)00052-9

Herrero-Beaumont G, Rovati LC. 2006. Use of crystalline glucosamine sulfate in osteoarthritis. Future Rheumatol 1(4): 397-414. https://doi.org/10.2217/17460816.1.4.397

Sandy JD, Gamett D, Thompson V, Verscharen C. 1998. Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem J 335(Pt 1 Pt 1): 59-66. https://doi.org/10.1042/bj3350059

Croze ML, Vella RE, Pillon NJ, Soula HA, Hadji L, et al. 2013. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice. J Nutr Biochem 24(2): 457-466. https://doi.org/10.1016/j.jnutbio.2012.01.008

Kim SJ, Cho H. 2015. Convenient synthesis of glucosamine and mannose starting from glucose. B Korean Chem Soc 36(7): 1916-1918. https://doi.org/10.1002/bkcs.10349

Zheng C, Qu H, Liao W, Bavarro T, Terreni M, et al. 2018. Chemoenzymatically synthesized GM3 analogues as potential therapeutic agents to recover nervous functionality after injury by inducing neurite outgrowth. Eur J Med Chem 146: 613-620. https://doi.org/10.1016/j.ejmech.2018.01.079

Bontemps Y, Vuillermoz B, Anonticelli F, Perreau C, Danan J-L, et al. 2003. Specific protein-1 is a universal regulator of UDP-glucose dehydrogenase expression: its positive involvement in transforming growth factor-β signaling and inhibition in hypoxia. J Biol Chem 278(4): 21566-21575. https://doi.org/10.1074/jbc.M209366200

Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. 2005. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18): 3919-3928. https://doi.org/10.1016/j.biomaterials.2004.09.062

Zhang YY, Senan AM, Wang T, Liu L, Voglmair J. 2019. 1-(2-Aminoethyl)-3-methyl-1H-imidazol-3-ium tetrafluoroborate: synthesis and application in carbohydrate analysis. Pure Appl Chem 91(9): 1441-1450. https://doi.org/10.1515/pac-2019-0117

Li X, Jiang L, Wang Y, Xiao Y, Huang Y, et al. 2007. Inhibition of angiogenesis by a novel small peptide consisting of the active fragments of platelet factor-4 and vasostatin. Cancer Lett 256(1): 29-32. https://doi.org/10.1016/j.canlet.2007.05.002

Muñoz E, Xu D, Arici F, Kemp M, Liu J, et al. 2006. Enzymatic synthesis of heparin related polysaccharides on sensor chips: rapid

Journal of Food Chemistry & Nanotechnology | Volume 7 Issue 1, 2021
screening of heparin–protein interactions. Biochem Biophys Res Commun 339(2): 597–602. https://doi.org/10.1016/j.bbrc.2005.11.051

82. Tiwari V, Clement C, Duncan MB, Chen J, Liu J, et al. 2004. A role for 3-O-sulfated heparan sulfate in cell fusion induced by herpes simplex virus type 1. J Gen Virol 85(Pt 4): 805–809. https://doi.org/10.1099/vir.0.19641-0

83. Sivashankari PR, Prabaharan M. 2017. 5-Deacetylation modification techniques of chitin and chitosan. Chitosan Based Biomaterials 1: 117-133. https://doi.org/10.1016/B978-0-08-100230-8.00005-4

84. Blomquist GJ, Jurenka R, Schal C, Tittiger C. 2005. Biochemistry and molecular biology of pheromone production. Comprehensive Molecular Insect Science 3: 705–751. https://doi.org/10.1016/B0-44-451924-6/00046-6

85. Rivas F, Parra A, Martinez A, Garcia-Granados A. 2013. Enzymatic glycosylation of terpenoids. Phytochem Rev 12(2): 327–339. https://doi.org/10.1007/s11101-013-9301-9

86. Seo J, Michaelian N, Owens SC, Dashner ST, Wong AJ, et al. 2009. Chemoselective and microwave-assisted synthesis of glycopeptoids. Org Lett 11(22): 5210–5213. https://doi.org/10.1021/ol9021468

87. Kim KS, Fulse DB, Baek JY, Lee B-Y, Jeon HB. 2008. Stereoselective direct glycosylation with anomeric hydroxy sugars by activation with phthalic anhydride and trifluoromethanesulfonic anhydride involving glycosyl phthalate intermediates. J Am Chem Soc 130(26): 8537–8547. https://doi.org/10.1021/ja710955z