Transcriptomic analysis of gene expression in mice treated with troxerutin

Yuerong Wang1,2, Shuangshuang Wei1,2, Lintao Chen1,2, Jinli Pei1,2, Hao Wu1,2, Yechun Pei2,3, Yibo Chen2, Dayong Wang1,2*

\textbf{1} Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China, 2 Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China, 3 Department of Animal Science, Hainan University, Haikou, Hainan, China

\cite{1111111111}

* wangdy@hainu.edu.cn

Abstract

Troxerutin, a semi-synthetic derivative of the natural bioflavonoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO), and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR).

Introduction

Troxerutin (TX), known as vitamin P4, is a semi-synthetic derivative of the natural bioflavonoid rutin (alias rutoside, vitamin P) which is originally extracted from \textit{Ruta graveolens} L. It is abundant in capers, olive, buckwheat, asparagus, and raspberries\cite{1111111111}. Compared with rutin, TX can be absorbed more easily through digestion system. The safety of TX has been confirmed in human including pregnant women and the aged\cite{1111111111}. Clinical trials have proved that TX has a very good safety profile and tolerability even at high doses\cite{1111111111}.

Accumulative evidence has shown that TX has broad pharmacological effects, such as vasoprotection, anti-inflammation, immune support and anti-aging\cite{1111111111}. It is clinically recognized as an effective agent in treatment of cardiovascular diseases, for instance, varicose veins and chronic venous deficiency\cite{1111111111,1111111111}. It has been reported that TX can pass through the blood-brain barrier and influence the nervous system\cite{1111111111,1111111111}. So far, the effects of TX on genome-wide expression have not been reported, which could help understanding the clinical effects of TX.
In molecular biology, transcript identification and quantification of gene expression has been distinct core activities[21]. The rapid development of high-throughput sequencing of mRNA (RNA-Seq), for example, Illumina RNA sequencing, has provided efficient technology for transcriptomic characterization in human and other well-documented experimental animals like mice[22]. Theoretically, RNA-Seq can characterize every aspect of transcriptional activities. In this context, we used Illumina HiSeq 4000 to generate a substantial dataset of transcript reads in different groups treated with or without TX. To understand the transcriptomic effects of TX, bioinformatics analysis was made which contains Gene Ontology (GO) analyses, and real-time quantitative PCR (Q-PCR) was used to notarize the differential expression of genes induced by TX.

Materials and methods

Chemicals

TX was purchased from the Abcam Chemical Company (USA). RNAiso Blood RNA Extraction kit was purchased from Takara, PrimeScript™ RT reagent kit with gDNA Eraser and real-time quantitative PCR kit were also obtained from Takara Bio (Dalian, China). Globin-Zero Gold rRNA Removal Kit for removal of unwanted ribosomal RNA and hemoglobin mRNA from mammalian blood RNA samples were bought from Illumina, Inc. (USA).

Animal care and maintenance

Male Kunming mice (Swiss mice, SPF), five-weeks old, were purchased from the Experimental Animal Center of Hainan province. They were housed at temperature of 22 to 24 °C with 12-h light/12-h dark cycle. The mice had free access to water and normal chow diets until they were sacrificed with CO₂. All efforts were made to alleviate suffering. All animal procedures were abide by the Manipulative Technique for the Care and Use of Laboratory Animals (2nd revision) issued by the State Scientific and Technological Commission of China. All animal experimental protocols were approved by the Institutional Animal Care and Use Committee of Hainan University (Hainan, China). All animals were randomly divided into control group and experimental groups (N = 3). The control group received injection of normal saline (NS), and the experimental group received subcutaneous injection of TX dissolved in NS at dose of 130 mg/kg twice daily at 9:00 AM and 5:00 PM. On the 3th day of treatment, the blood samples were drawn from the animals’ hearts 4 h after the last dose of TX.

RNA isolation and manipulation

Total RNA was extracted from the blood samples by using a RNA Extraction kit (Takara RNAiso blood). The concentration of RNA in each sample was determined using a NanoDrop 2000 micro-volume spectrophotometer (Thermo Scientific, USA), and the quality of RNA samples were examined using an Agilent Bioanalyzer (Agilent Technologies, USA). The defined criterion for qualification of RNAseq is that the RIN value of a sample is higher than 8.5. Ribosomal RNA and hemoglobin mRNA from the blood RNA samples was removed using a Globin-Zero Gold rRNA Removal Kit (Illumina, USA).

Sequencing library construction and illumina sequencing for transcriptomic analysis

The sequencing library construction and Illumina sequencing were performed by AnnoRoad Biotechnology Co, Ltd, China. Briefly, mRNA was enriched via purification with oligo (dT) magnetic beads and fragmented into short fragments using fragmentation buffer. First-strand
cDNA was synthesized using random primers and fragments of mRNA as templates. Subsequently, second-strand cDNA was synthesized using DNA polymerase I, buffer, dNTPs, and RNaseH. After purification, we used a QIAQuick PCR kit and eluted by EB buffer. Purified double-stranded cDNA were end-repaired, added bases A, and ligated with sequencing adapters. After SDS-PAGE, amplified products were gel extracted. The cDNA were PCR-amplified for a minimum number of cycles to avoid normalization for downstream quantitative gene expression analyses. Then it was sequenced on an Illumina HiSeq 4000 with the sequencing strategy PE150.

Reads processing and identification of differentially expressed genes
To ensure reproducibility and reliability of the results, quality control checks were applied pertinently at different stages of the analysis. Quality control for the raw reads contained the analysis of sequence quality, GC content, the presence of adapters and low-quality reads. We adopted DESeq to analyze differential expression of genes (DEGs). Compared with the reference genome of Kunming mice, we selected standard was $|\log_2 \text{Ratio}| \geq 1$ and $q < 0.05$, then got up-regulated and down-regulated genes. All expressed genes were monitored, and their gene functions were explored using database annotations such as NR, NT, UNIPROT, GO, and KEGG.

Real-time quantitative PCR
Reverse transcription was carried out using PrimeScript™ RT reagent kit with gDNA eraser (Takara, China). Total RNA was isolated from the blood samples drawn from mice hearts. For cDNA synthesis, one μg of total RNA was reverse-transcribed in a total volume of 20 μL, using a One-step gDNA Removal and cDNA Synthesis Super Mix kit (Trans Script).

Synthesized cDNA samples were diluted 3 times prior to Q-PCR. The primers were designed for 9 genes (Table 1). Q-PCR was accomplished using the SYBR premix Ex Taq kit (Takara, China). β-actin was used as the internal reference gene in this study. The results were analyzed on an ABI StepOnePlus Real-Time PCR System (Thermofisher Scientific, USA).

Q-PCR was performed with 2 μl of template cDNA, 0.8 μl of forward primer (10 μM), 0.8 μl of reverse primer (10 μM), and 10 μl of SYBR Primer Ex Taq II (Tli RNaseH Plus) (2 X) in a total reaction volume of 20 μl. The procedure was conducted as follows—95˚C for 30 s for initial denaturation followed by 40 cycles of 95˚C for 5 s, and 60˚C for 34 s—and then generated the melt curves for verification of amplification specificity by a thermal denaturing step. Genes was normalized to β-actin expression and calculated using the equation: change (x-fold) = $2^{-\Delta\Delta C_T}$[23].

Experiment data were analyzed using IBM SPSS statistics 19 software. Statistical significance was determined by the Student’s t test or one-way analysis of variance (ANOVA), and the differences were considered statistically significant at a value of $P < 0.05$.

Results
Illumina sequencing and data quality
Initial Illumina sequencing results existed in the original image data file. Using the CASAVA software the base calling function, they were transformed into sequenced reads, which were called the raw data. The raw data were stored in FASTQ file format. FASTQ files include the name of every read, base sequence and their sequencing quality information.

The raw reads output from the Illumina sequencing platform were trimmed for the purpose of quality control. Adaptor, N < 10% and low-quality reads were removed to obtain high-quality reads, which was called clean reads, producing about 23.76 million paired-end reads per
sample equivalent to over 3.405 to 3.564 billion nucleotides per sample. Among those reads, over 96.27% of the clean reads with high-quality scores at the Q30 level (a base quality greater than 30 and an error probability of 0.1%) were identified (Table 2).

The clean reads were used for further analysis (Fig 1A and 1B). The cDNA libraries produced a total of 140,324,838 clean reads, which represented the majority of the data (almost covered 90% of the whole gene set), with Q30 scores > 95% (Fig 1C). The mean quality distribution of all samples was shown in Fig 2.

Comparison analysis with a reference genome and gene mapping

The filtered sequencing results were compared with the reference genome of Kunming mice for its orientation to the genome. For the samples, we used TopHat software, which was specifically designed for comparison of the transcriptome data[24,25]. To ensure accuracy and reliability of the data, about 140 million high-quality reads were generated, and over 88.5% of the data were mapped to the reference genome for each sample. Most of the sequences were compared to the exon region. Besides, alternative splicing and expression noise maybe come from the intron region, and the new transcripts and expression noise may belong to the intergenic sequence. For the control group and experiment group, 95.35% and 96.04% were mapping to

Table 1. Q-PCR primers.

Target gene	Primer sequence (5’ to 3’)	Product length (bp)
β-actin	Forward GGCTGTATCCCTCCATCGG	154
	Reverse CCAGTTGGTACAAATGGCTGT	
Tnr	Forward GGAGGTGACTCAAGAGGGGC	137
	Reverse AGAGGTTGTCACGGGCGAC	
Robo1	Forward TCCAAAGAGACCTGGGAGATG	142
	Reverse GCTCCAGATGGGCGGATG	
Pnp2	Forward CGAACCTCAAGTGCCAGTGAT	148
	Reverse GCAAATCACAACACGCTGG	
H2-k1	Forward TGGACGACCGAGTTCG	147
	Reverse CCACTCAGAAACTCCTGCTAT	
Fcnb	Forward CTGACTGCTCAGGGGCTG	147
	Reverse TCCTCTATCTCCTTGGCACC	
Arhgdig	Forward GCTGGTTCAAGTAGAAGGAG	126
	Reverse CCATGATGATAGCCTGGAG	
Hbq1a	Forward CGGAAATCTACAGCGAGGG	146
	Reverse TAGGAGCTACAGGCTATG	
Srp14	Forward CGTTTCAAGCTCAGTTAAGAT	136
	Reverse CAGGTCGTCGTTCTCCCTTT	
Npy	Forward GGGCCAGATACACTCCGGCTC	135
	Reverse CTGTGTCCGGGGGCTTCTTTC	

https://doi.org/10.1371/journal.pone.0188261.t001

Table 2. Summary of statistical data for the transcriptome of mice.

Samples	C1	C2	C3	YR1	YR2	YR3
Total raw reads	25,037,206	24,771,616	23,903,170	24,938,020	25,995,740	24,499,022
Total clean reads	23,764,936	23,558,544	22,702,076	23,519,160	23,737,328	23,042,794
Clean bases Number	3,564,740,400	3,533,781,600	3,405,311,400	3,527,874,000	3,560,599,200	3,456,419,100
Clean reads rate (%)	94.92	95.1	94.98	94.31	91.31	94.06
Clean Q30 bases rate (%)	98.04	98.03	98.11	97.58	96.27	97.52

https://doi.org/10.1371/journal.pone.0188261.t002
the exon region, 3.12% and 2.84% belonged to the intron region, and 1.53% and 1.12% were in the intergenic sequence respectively (Fig 3) (Table 3).

Analysis of differential expression of genes

Differential expression analysis requires that gene expression values be compared among samples. Reads Per Kilobase Million (RPKM) is used to quantitatively estimate value of gene expression\(^{[26]}\), which has the computation formula:

\[
\text{RPKM} = \frac{(1000000 \times R)}{(N \times L / 1000)}
\]

Where R is the number of mappable reads in specific genes, N is the total number of reads mapped to genes in a particular sample, and L is the length of the gene exon.

In general, differential gene expression only account for a small portion of total gene. There is little effect on the distribution of the sample expression quantity by a few differentially expressed genes. All samples have similar overall gene expression pattern (S1 Fig).

Differences in gene expression in mice in two different groups were examined. For biological triplicate samples, we adopted DESeq to analyze differential expression of genes. In total, fifteen genes were differentially expressed, among which 5 genes were significantly up-regulated and 10 genes down-regulated in TX-treatment mice (S2 Fig). We identified their gene functions using database annotations tools such as NCBI, UNIPROT, and GO databases. We summarized 15 different genes main function influenced by TX in mice (Table 4).

Gene Ontology (GO) analysis for selected gene

To further understand the function of the differential expression of genes, GO term enrichment analysis (q<0.05) was performed. There are three GO domains: biological process...
(GOBP), cellular component (GOCC), and molecular function (GOMF). The most significantly enriched GO terms were “single-organism process” and “biological regulation” within GOBP, ‘binding’ and ‘structural molecule’ were the two most abundant terms within GOMF, and “macromolecular complex” and “organelle part” were the most highly represented terms in GOCC respectively (Fig 4).

A directed acyclic graph (DAG) showed enrichment analysis results. It is a branch inclusion relationship that the lower node function was subordinate to the upper nodes function. Top 5 GO enrichment analysis results were selected as master nodes in DAG. The color depth of the DAG nodes indicates the degree of enrichment, the darker the red color is, the higher the enrichment degree of the node would be.

We found that genes involved in T cell mediated cytotoxicity (q = 0.000149) and telencephalon development (q = 0.000374) were most highly enriched (Fig 5). Further characterization of the differential expression of genes using DAG showed that the differentially expressed genes were implicated in cell surface, cell membrane (q = 5.04e-06) and endoplasmic reticulum exports (q = 0.000153) (Fig 6). In molecular function, genes in β2-mioroglobule binding (q = 0.000278), TAP-binding (q = 0.000165), T cell and neuropeptide Y receptor binding (q = 0.000196) were highly enriched (Fig 7).

Fig 2. Mean quality distribution of samples. C1, C2 and C3 represent control groups that received injection of normal saline (NS), and YR1, YR2 and YR3 represent experimental groups that received subcutaneous injection of TX dissolved in NS at a dose of 130 mg/kg, twice daily. The x-axis indicates base position of filtered high quality sequences. The y-axis indicates mean sequencing quality at each position.

https://doi.org/10.1371/journal.pone.0188261.g002
Real-time quantitative PCR

To further confirm the accuracy and reproducibility of the RNA-Seq results, real-time quantitative Q-PCR was performed to quantify the transcriptional levels. Nine differentially expressed genes, including Tnr, Robo1, Npy, Arhgdig, Srp14, H2-k1, Pnp2, and Fcnb, Hbq1a were evaluated, and each genes showed significantly differential expression after the treatment with TX (Table 5) (P<0.05, Fig 8). We performed the transcriptomic characterization of the effects of TX in mice to identify differentially expressed genes related with pharmacological properties of TX (Fig 9).
Discussion

TX, a rutoside derivative, has raised considerable interest because of its extensive pharmacological activities. It has been conventionally used for treating diseases including capillary fragility, chronic venous and varicosity in clinical[27]. Researches over the past decades have revealed that TX can act against γ-radiation-induced lipid peroxidation, UV radiation and colon carcinogenesis[28–30]. Furthermore, TX can cure retinopathy and play a significant role in the management of type-2 diabetes mellitus[31–33]. Beside, TX can inhibit 2-AA + UVA radiation-induced DNA damage and environmental carcinogens, showing its potential therapeutic activities for cancer[34]. Gene expression behind the pharmacological activities of TX has not been investigated clearly so far. And our findings provide novel insights into TX, which could help understanding clinical effects of TX.

In this study, we made a comprehensive analysis of the effects of TX on genome-wide expression of genes. A total of 15 differentially expressed genes (DEGs) were found, in which 5 genes were up-regulated and 10 genes down-regulated significantly. Moreover, Q-PCR confirmed that our RNA-Seq results were reliable. Our experimental findings provide evidence about the TX against diabetes, cardiovascular diseases and cancer through down- or up-regulation of different genes, implicating its treating capacity.

Tenascin-R (TN-R) is an extracellular matrix protein expressed primarily in the central nervous system. It is a member of the tenascin gene family, which includes 4 known members in

Table 3. Summary statistics of clean reads mapping.

Sample	C1	C2	C3	YR1	YR2	YR3
Total Clean Reads	23,764,936	23,558,544	22,702,076	23,519,160	23,737,328	23,042,794
Mapping Reads	22,158,309	22,118,461	21,098,768	20,836,785	21,276,557	20,227,093
Mapped Rate (%)	0.93	0.94	0.93	0.89	0.9	0.88
Exon (%)	95.16%	96.76%	96.20%	92.99%	97.84%	95.21%
Intron (%)	3.47%	2.50%	2.55%	4.81%	1.30%	3.26%
Intergenic (%)	1.37%	0.74%	1.25%	2.20%	0.86%	1.54%

Table 4. Summary of 15 genes for the transcriptome of mice.

Gene	variation tendency	Main function
Tnr	up	cure neurological diseases and neuroprotection
Hbq1a	up	impact the activity of oxygen transporter, anti-oxidative
RPL17e	up	important for ribosome architecture and function, tumor suppressor
GM10499	up	against extracellular microbes and toxic molecules
GM5526	up	responsible for skeletal muscle tissue development and muscle filament sliding
Robo1	Down	protect liver from injury and fibrosis
Pnp2	Down	positively regulate T cell-mediated cytotoxicity and proliferation of T cells
H2-k1	Down	anti-inflammatory and immune
Fcnb	Down	ameliorate inflammation
Arhgdig	Down	catalytic activity and protein localization
Srp14	Down	protein export
Npy	Down	immunomodulatory function, maintenance of body homeostasis and inhibits diabetes
Rpl13e	Down	drug resistance, virus replication and anti-oxidative defense
GM28114	Down	against extracellular microbes and toxic molecules
GM12366	Down	anti-cancer

https://doi.org/10.1371/journal.pone.0188261.1003

https://doi.org/10.1371/journal.pone.0188261.1004
vertebrates. During development of mammalian brain, TN-R is found around birth[35]. TN-R can affect cell migration, cell differentiation and adhesion. TN-R expression is tightly regulated in a spatiotemporal manner in brain, especially during cortical plate formation[36]. More importantly, many researches showed that TN-R could play an important role in brain development and cognition. By activating microglia, TN-R can indirectly elevate the secretion of cytokines and growth factors, including brain-derived neurotrophic factor (BDNF), transforming growth factor-β (TGF-β), CXCL2, and nerve growth factor (NGF)[37]. In addition, loss of TN-R was shown to impair cognition, synaptic plasticity and motor abilities[38]. And it has been proved to participate in maintaining a balance between excitatory and inhibitory circuits involved in learning, memory and cognition in mice[39–41]. TN-R deficient mice showed increased excitatory transmission through reduced perineuronal nets and altered synaptic activities[42]. In summary, TN-R may play a primary or secondary role in many neurological diseases [43] and have a significant role in neuroprotection. Previous evidence showed that TX significantly improved behavioral performance of D-galactose-treated mice in the step-through test and Morris water maze[44], and alleviated the oxidative damage caused by D-galactose in the liver and kidney, as well as cognitive impairments. In addition, some researchers think TX could be recommended as a possible candidate for prevention and therapy of cognitive deficits and Alzheimer’s disease[45], and improved synaptic plasticity failure induced by Amyloid β peptide. The up-regulation of TN-R expression induced by TX may underlie its neuroprotective function.
Neuropeptide Y (NPY), a 36-amino acid peptide [46], is a highly conserved neurotransmitter involved in a broad range of fundamental physiological activities. NPY’s pleiotropic functions comprise regulation of body-weight and energy balance, brain activity, food intake, vasoconstriction, immune function, and emotional response[47]. In fact, its immunomodulatory function and maintenance of body homeostasis are also vital [48]. The effects of NPY are depend on many factors, such as at least four G protein-coupled receptors known as Y1, Y2, Y4, Y5 and cell types involved[49]. Different receptors are involved in various physiological activities. During inflammation, immune cells themselves are capable of producing and releasing NPY. NPY can regulate immune cell activities through a paracrine or autocrine mode of action[50–52]. NPY has different effects on inflammation. The binding of NPY to receptors...
influences the activities of immune cells in either a pro- or an anti-inflammatory manner[53]. Recently, it has been proved that NPY possesses a pro-inflammatory function in the gut [54,55]. Additionally, loss of NPY can combat obesity and diabetes through increased energy expenditure and lowered fat contents. In our study, we found that under the effect of TX, the NPY expression was suppressed. It provides evidence that TX can ameliorate lipid abnormalities and diabetes[56,57], and have anti-inflammatory activities at least in part.

Ribosomes are essential components of the protein synthesis machinery. Ribosomes are formed from two unequally sized subunits: the large ribosomal subunit and small ribosomal subunit[58]. The process of ribosome biogenesis is well organized and tightly regulated. There is increasing evidence indicating that ribosomal proteins (RPs) have extraribosomal functions

Fig 6. Directed acyclic graph (DAG) for differentially expressed genes (DEGs) in the cellular component (CC) ontology.
including DNA repair and other cellular processes. It has been shown that RPs are related to the development and progression of metabolic, cancer and cardiovascular diseases [59]. 60S ribosomal protein L17 (rpl17) is a protein that is encoded by the \texttt{Rpl17} gene. It has an essential role in ribosome architecture and function. Rpl17 is thought to stabilize long-range interactions important for establishing the structure of the polypeptide exit tunnel, during 60S subunit assembly [60]. Reducing the amount of rpl17 in mouse cells led to stalled 60S subunit maturation, causing degradation of most of synthesized precursors, which could affect normal functions of the ribosome. Elaine et al. discovered that rpl17 is a vascular smooth muscle cell (VSMC) growth inhibitor, akin to a tumor suppressor [61]. In our study, \texttt{Rpl17} was found to be up-regulated by TX. It could have relationship with that TX cures cardiovascular diseases and

Fig 7. Directed acyclic graph (DAG) for differentially expressed genes (DEGs) in the molecular function (MF) ontology.

https://doi.org/10.1371/journal.pone.0188261.g007
Table 5. Relative expression values determined using RNAseq and real-time quantitative PCR (Q-PCR).

gene	RNA-seq Fold Change	Log2Fold Change	Q-PCR(±SD)	variation tendency
Tnr	187.9821351	7.554451752	6.799±1.27	Up
Robo1	0.005668298	-7.462868797	0.370±0.11	Down
Pnp2	0.024258529	-5.365364134	0.544±0.09	Down
H2-k1	0.127654812	-2.969680168	0.7192±0.07	Down
Fcnb	0.036825424	-4.763154065	0.5041±0.04	Down
Arhgdig	0.015302976	-6.030043964	0.7694±0.12	Down
Hbg1a	298.7735665	8.222906703	1.4009±0.15	Up
Srp14	0.199374235	-2.326449115	0.4807±0.10	Down
Npy	0.000831662	-10.23171562	0.3677±0.01	Down

https://doi.org/10.1371/journal.pone.0188261.t005

Fig 8. Q-PCR for nine differentially expressed genes (DEGs). Relative gene expression was normalized by comparison with the expression of β-actin, and calculated using the 2^−ΔΔCT. (C, control group; TX, troxerutin, s.c. injected at a dose of 130 mg/kg, twice daily. *P < 0.05 and ** P < 0.01 vs control group, N = 6–8).

https://doi.org/10.1371/journal.pone.0188261.g008
is conducive to the formation of ribosomes. Besides, ribosomal protein L3 (rpl3) is known to be an essential component for the peptidyltransferase center[62]. It acts as a binding site for a ribosome inhibitory protein and plays an important role in drug resistance and virus replication[63]. Annapina et al. revealed that Rpl3 was down-regulated and the expression of stress-response genes was activated in rCalu-6 cells. They found that rpl3 reduced xCT and GST-a1 expression levels. Researches also demonstrated that rpl3 was a negative regulator of cystathionine-β-synthase (CBS) expression. Silencing CBS gene severely reduces cellular glutathione (GSH) levels, and down-regulation of Rpl3 can induce anti-oxidative defense. These represent indirect ways for TX to potentiate expression of antioxidant genes to activate defensive response. Rpl3 also regulates negatively the activation of NF-kB[64]. Rps2, a 32 kDa ribosomal protein, is over expressed in prostate cancer and promotes malignancy of human prostate PC-3ML cells in the severe combined immunodeficiency (SCID) tumor modeling studies[65]. Previous studies have found that Rps2 is overexpressed in human squamous cell carcinoma and breast tumor samples. Thus, rps2 might promote cancer and be an excellent therapeutic target for the treatment of the diseases. In this context, the effect of TX to inhibit Rps2 expression and thereby stabilize it in cells indicates that TX may have anti-cancer function.

The mammalian signal recognition particle (SRP) is an 11S cytoplasmic ribonucleoprotein that plays an essential role in protein sorting. It is a cytosolic particle that transiently binds to the endoplasmic reticulum (ER) signal sequence of a nascent protein, to the large ribosomal unit, and to the SRP receptor in the ER membrane[66]. Srp14 encodes SRP subunit 14 (SRP14). It can influence protein export, as specified in the Gene Ontology Molecular Function (GOMF). SRP14 and SRP9 proteins form a heterodimer that bind to the RNA of Alu domain of SRP which is responsible for translation arrest. This gene is significantly down-regulated by TX. Besides, GTP hydrolysis plays a vital role in the SRP cycle; SRP protein and both subunits of the SRP receptor contain G-domains. The GTPase cycle of SRP, modulated by the ribosome, provides the regulatory link between translation and translocation machineries[67,68]. Interestingly, in our study, Arhgdig was found to be down-regulation by TX. It’s Gene Ontology biological process (GOBP) is the regulation of catalytic activity and protein localization. This gene encodes a protein which is a GTPase activator. To sum up, our study indicated that TX may have pharmacological effects on the synthesis and export of proteins.

Form the DAG, we found that the genes involved in T cell-mediated cytotoxicity and telencephalon development were highly enriched. T cells help eliminate pathogens present in infected cells and also help B cells make different kinds of antibodies to protect against extracellular microbes and toxic molecules[69]. To accomplish these important functions, T cells have to interact intimately with other cells and then come into play. However, T cells are unable to peek beneath the surface of cells to identify the cells that have ingested bacteria. T cells recognize antigenic peptide only in the context of MHC I or MHC II molecules that are displaying the antigen on cell surface[70]. MHC I molecules present peptides from the proteins that are synthesized by cells. This recognition allows the immune system to detect cells in abnormal states for elimination. Moreover, Reduction of MHC I molecule expression in human tumors is often detected[71,72]. Among DEGs, H2-k1 and GM10499 gene encode major histocompatibility complex class I (MHC-1), and GM28114 encodes lymphocyte antigen 6 complexes. Expression of these genes are differently affected by TX. In GOBP, they can positively regulate T cell-mediated cytotoxicity and endocytosis. Besides, PNP2 is a family of purine-nucleoside phosphorylase. It can also positively regulate T cell-mediated cytotoxicity and proliferation of T cells. PNP2 expression is down-regulated by TX.

Natural immunity depends on the ability of some pattern recognition molecules to sense molecular markers. Ficolin is a group of pattern recognition molecules to recognize molecules on pathogens, apoptotic and necrotic cells. A series of new findings have indicated that ficolin
B encoded by Fcnb gene can activate the complement system via the lectin pathway similar to MBL[73–75]. The activation of the complement system results in the release of multiple inflammatory signaling molecules[76]. Recently, a number of reports have shown that membrane attack complexes (MACs) were produced by complement activation. MACs can increase production of pro-inflammatory cytokines IL-8 and NF-kB nuclear translocation. These cytokines and molecules can induce inflammation. Moreover, Ficolins are reported to stimulate expression of inflammatory cytokines by macrophages[77]. Under the effect of TX, the expression of Fcnb gene was down-regulated, which may ameliorate inflammation. The Roundabout (Robo) family proteins are transmembrane receptors. Secreted proteins Slit-family proteins (SLITs) can act through Robo receptors to mediate axonal guidance and branching. It could be related with directing migration of many cell types, such as immune, and tumor cells[78]. Robo1 was initially found in Drosophila. SLIT/ROBO signaling is an important regulator of cellular interactions[79]. Some researchers have proved that Slit2-Robo1 signaling may debilitate liver injury and fibrosis[80]. In our study, Robo1 gene expression was decreased by TX, which could protect liver from injury and fibrosis. In addition, Lvzhen et al. demonstrated that silencing the expression of Robo1 gene inhibited cell proliferation and suppressed the development of proliferative vitreoretinopathy (PVR), offering a potential therapeutic usefulness in treating PVR[81]. Other studies support that ovarian angiogenesis was enhanced by a partial lack of Robo1 genes and this lack would enhance ability of fertility[82].

In addition to the above, Hbq1a encodes hemoglobin, theta 1A, which is closely connected with oxygen and iron binding, and impact the activity of oxygen transporter. It may be associated with anti-oxidative effects of TX[83]. GM5526 is mainly responsible for skeletal muscle tissue development and muscle filament sliding. It encodes a protein, which is a structural constituent of muscle.

Conclusion

Our study accentuated the beneficial effects of bioflavonoid derivative TX by analyzing differential gene expression in blood cells. Transcriptomic analysis demonstrated that the expression
of fifteen genes was significantly changed by the treatment with TX, among which 5 genes were up-regulated and 10 genes were down-regulated. DAG analysis showed that these genes could influence T cell-mediated cytotoxicity ($q = 0.000149$), telencephalon development ($q = 0.000374$), cell membrane ($q = 5.04\times10^{-6}$), endoplasmic reticulum exports ($q = 0.000153$), β_2-microglobule binding ($q = 0.000278$), TAP-binding ($q = 0.000165$), and T cell and neuro-peptide Y receptor binding.

Among the 15 DEGs, TX has neuroprotective effects and improves cognitive impairment by up-regulating TN-R expression, anti-inflammatory effects and inhibits diabetes by down-regulating Npy and Fcnb, anti-cancer effects by changing ribosome protein gene rps2, effects on cardiovascular disease by up-regulating Rpl17 and down-regulating rob1, and anti-oxidative activities by changing Rpl3 and Hbq1a expression. In addition, H2-k1 and Pnp2 expression was also changed. They are involved in positive regulation of T cell-mediated cytotoxicity and T cell proliferation. Srp14 and Arhgdig expression were also change, which affect synthesis and export of proteins.

Supporting information

S1 Fig. Distribution of sample expression. (PDF)

S2 Fig. Counts of differentially expressed genes (DEGs). (PDF)

S1 Table. Exon_mapping. (XLS)

S2 Table. Filter. (XLS)

S3 Table. Mapping results. (XLS)

S4 Table. rpk log2 values. (XLS)

S5 Table. PCR results. (XLS)

Author Contributions

Conceptualization: Dayong Wang.

Data curation: Shuangshuang Wei, Jinli Pei.

Formal analysis: Yuerong Wang.

Funding acquisition: Dayong Wang.

Investigation: Yuerong Wang, Jinli Pei.

Methodology: Yuerong Wang, Dayong Wang.

Project administration: Shuangshuang Wei, Dayong Wang.

Resources: Dayong Wang.

Software: Yuerong Wang, Lintao Chen, Hao Wu.
Supervision: Dayong Wang.
Validation: Shuangshuang Wei, Yechun Pei, Yibo Chen.
Visualization: Lintao Chen, Hao Wu.
Writing – original draft: Yuerong Wang.
Writing – review & editing: Yechun Pei, Dayong Wang.

References

1. Fan SH, Zhang ZF, Zheng YL, Lu J, Wu DM, Shan Q, et al. (2009) Troxerutin protects the mouse kidney from D-galactose-caused injury through anti-inflammation and anti-oxidation. International Immunopharmacology 9: 91–96. https://doi.org/10.1016/j.intimp.2008.10.008 PMID: 19000936

2. Sampath S, Karundevi B (2014) Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem 395: 11–27. https://doi.org/10.1007/s11010-014-2107-2 PMID: 24880482

3. Panat NA, Maurya DK, Ghaskadbi SS, Sandur SK (2016) Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chemistry 194: 32–45. https://doi.org/10.1016/j.foodchem.2015.07.078 PMID: 26471524

4. Panat NA, Maurya DK, Ghaskadbi SS, Sandur SK (2016) Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem 194: 32–45. https://doi.org/10.1016/j.foodchem.2015.07.078 PMID: 26471524

5. Marhic C (1991) Clinical and rheological efficacy of troxerutin in obstetric gynecology. Rev Fr Gynecol Obstet 86: 209–212. PMID: 1767176

6. Munshi A, Hobbs M, Meyn R (2005) Clonogenic cell survival assay. Methods Mol Med 110: 21–28. https://doi.org/10.1385/1-59259-869-2:021 PMID: 15901923

7. Wijayanegara H, Mose J, Achmad L, Sobarna R, Permadi W (1992) A clinical trial of hydroxyethylrutosides in the treatment of haemorrhoids of pregnancy. J Int Med Res 20: 54–60. https://doi.org/10.1177/03000609200200107 PMID: 1568520

8. Maurya DK, Balakrishnan S, Salvi VP, Nair CK (2005) Protection of cellular DNA from gamma-radiation-induced damages and enhancement in DNA repair by troxerutin. Mol Cell Biochem 280: 57–68. https://doi.org/10.1007/s11010-005-8052-3 PMID: 16311905

9. Blasig I, Löwe H, Ebert B (1987) Radical trapping and lipid peroxidation during myocardial reperfusion injury—radical scavenging by troxerutin in comparison to mannitol. Biomed Biochim Acta 46: S539–544. PMID: 2829870

10. Lu J, Wu D, Zheng Y, Hu B, Cheng W, Zhang Z, et al. (2013) Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J Immunol 190: 3466–3479. https://doi.org/10.4049/jimmunol.1202862 PMID: 23420885

11. Kessler M, Ubeaud G, Walter T, Sturm F, Jung L (2002) Free radical scavenging and skin penetration of troxerutin and vitamin derivatives. J Dermatolog Treat 13: 133–141. https://doi.org/10.1080/0954663020199505 PMID: 12227877

12. Zhang Z, Fan S, Zhang Y, Lu J, Wu D, Shan Q, et al. (2009) Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J Agric Food Chem 57: 7731–7736. https://doi.org/10.1021/jf9012357 PMID: 19722705

13. Adam BS, Pentz R, Siegers CP, Strubelt O, Tegtmeyer M (2005) Troxerutin protects the isolated perfused liver from a possible lipid peroxidation by coumarin. Phytomedicine 12: 52–61. https://doi.org/10.1016/j.phymed.2004.01.007 PMID: 15693708

14. Lu J, Wu DM, Hu B, Cheng W, Zheng YL, Zhang ZF, et al. (2010) Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiol Learn Mem 93: 157–164. https://doi.org/10.1016/j.nlm.2009.09.006 PMID: 19766199

15. Chung H, Choi S, Ahn B, Kwak H, Kim J, Kim W (2005) Efficacy of troxerutin on streptozotocin-induced rat model in the early stage of diabetic retinopathy. Arzneimittelforschung 55: 573–580. https://doi.org/10.1055/s-0031-1296907 PMID: 16294303

16. Lu J, Wu DM, Zheng ZH, Zheng YL, Hu B, Zhang ZF (2011) Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain 134: 783–797. https://doi.org/10.1093/brain/awq376 PMID: 21252113
17. Boisseau MR, Taccone A, Garreau C, Vergnes C, Roudaut MF, Garreau-Gomez B (1995) Fibrinolysis and hemorh eology in chronic venous insufficienc y: a double blind study of troxerutin efficiency. J Cardi-ovasc Surg (Torino) 36: 369–374.

18. Gohel MS, Davies AH (2009) Pharmacological agents in the treatment of venous disease: an update of the available evidence. Curr Vasc Pharmacol 7: 303–308. PMID: 19601855

19. Pyrzanowska J, Plechal A, Blecharz-Klin K, Joniec-Maciejak I, Zobel A, Widy-Tyszkievicz E (2012) Influence of long-term administration of rutin on spatial memory as well as the concentration of brain neurotransmitters in aged rats. Pharmacol Rep 64: 808–816. PMID: 23087133

20. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85: 180–192. PMID: 12641740

21. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17: 13. https://doi.org/10.1186/s13059-016-0881-8 PMID: 26813401

22. Zhang T, He K, Wang Z (2016) Transcrip tomic effects of troxerutin in Four Developmental Stages. Sci Rep 6: 35008. https://doi.org/10.1038/srep35008 PMID: 27713521

23. Schefee JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression 's CT difference" formula. J Mol Med (Berl) 84: 901–910.

24. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111. https://doi.org/10.1093/bioinformatics/btp120 PMID: 19289445

25. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. https://doi.org/10.1186/gb-2009-10-3-r25 PMID: 19261174

26. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131: 281–285. https://doi.org/10.1007/s12064-012-0162-3 PMID: 22872506

27. Liu W, Yang T, Yao C, Zuo S, Kong Y (2013) Spectroscopic Studies on the Interaction Between Troxerutin and Bovine Hemoglobin. Journal of Solution Chem 42: 1169–1182.

28. Maurya D, Salvi V, Nair K (2004) Radioprotection of Normal Tissues in Tumor-bearing Mice by Troxerutin. 221–228 p. PMID: 15304964

29. Vinothkumar R, Vinoth Kumar R, Sudha M, Viswanathan P, Balasubramanian T, Nalini N (2014) Modulatory effect of troxerutin on biotransforming enzymes and preneoplastic lesions induced by 1,2-dimethylhydrazine in rat colon carcinogenesis. Exp Mol Pathol 96: 15–26. https://doi.org/10.1016/j.yexmp.2013.10.009 PMID: 24512697

30. Lee KS, Cha HJ, Lee GT, Lee KK, Hong JT, Ahn KJ, et al. (2014) Troxerutin induces protective effects against ultraviolet B radiation through the alteration of microRNA expression in human HaCaT keratinoocyte cells. International Journal of Molecular Medicine 33: 934–942. https://doi.org/10.3892/ijmm.2014.1641 PMID: 24503859

31. Yu Y, Zheng G (2017) Troxerutin protects against diabetic cardiomyopathy through NF-kB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep 15: 3473–3478. https://doi.org/10.3892/mmr.2017.6456 PMID: 28440404

32. Geetha R, Radika M, Priyadarshini E, Bhavani K, Anuradha C (2015) Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol Cell Biochem 407: 263–279. https://doi.org/10.1007/s11010-015-2474-3 PMID: 26077659

33. Archimowicz-Cyry#ow sk B, Adamek B, Droidzik M, Samochowiec L, Whjcicki J (1996) Clinical Effect of Buckwheat Herb, Ruscus Extract and Troxerutin on Retinopathy and Lipids in Diabetic Patients. PHY-TOTHERAPY RESEARCH 10: 659–662.

34. Subastri A, Harikrishna I, Miljkovic D, Schachner M, Andjus P (2013) Tenascins and inflammation in disorders of the nervous system. Amino Acids 44: 1115–1127. https://doi.org/10.1007/s00726-013-2014-0 PMID: 23269478

35. El Ayachi I, Fernandez C, Baeza N, De Paula A, Pesheva P, Figarella-Branger D (2011) Spatiotemporal distribution of tenascin-R in the developing human cerebral cortex parallels neuronal migration. J Comp Neurol 519: 2379–2389. https://doi.org/10.1002/cne.22632 PMID: 21456020

36. Liao H, Bu WY, Wang TH, Ahmed S, Xiao ZC (2005) Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function. J Biol Chem 280: 8316–8323. https://doi.org/10.1074/jbc.M412730200 PMID: 15615725
38. Dufresne D, Hamdan FF, Rosenfeld JA, Torchia B, Rosenblatt B, Michaud JL, et al. (2012) Homozygous deletion of Tenascin-R in a patient with intellectual disability. J Med Genet 49: 451–454. https://doi.org/10.1136/jmedgenet-2012-100831 PMID: 22730557

39. Saghatelayan A, de Chevigny A, Schachner M, Lledo PM (2004) Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat Neurosci 7: 347–356. https://doi.org/10.1038/nn1211 PMID: 15034584

40. Freitag S, Schachner M, Morellini F (2003) Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R. Behav Brain Res 145: 189–207. PMID: 14529817

41. Montag-Sallaz M, Montag D (2003) Severe cognitive and motor coordination deficits in tenascin-R-deficient mice. Genes Brain Behav 2: 20–31. PMID: 12882316

42. Gurevicius K, Gureviciene I, Valjakka A, Schachner M, Tanila H (2004) Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 25: 515–523. https://doi.org/10.1016/j.mcn.2003.12.001 PMID: 15033179

43. Anlar B, Gunel-Ozcan A (2012) Tenascin-R: role in the central nervous system. Int J Biochem Cell Biol 44: 1385–1389. https://doi.org/10.1016/j.biocel.2012.05.009 PMID: 22634605

44. Lu J, Wu D, Hu B, Cheng W, Zheng Y, Zhang Z, et al. (2010) Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiol Learn Mem 93: 157–164. https://doi.org/10.1016/j.nlm.2009.09.006 PMID: 19766199

45. Zhang S, Li H, Zhang L, Li J, Wang R, Wang M (2017) Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res 1657: 355–360. https://doi.org/10.1016/j.brainres.2016.12.009 PMID: 27998794

46. Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296: 659–660. PMID: 6896083

47. Zhou Z, Zhu G, Hatri R, Enoch M, Scott D, Sinha R, et al. (2008) Genetic variation in human NPY expression affects stress response and emotion. Nature 452: 997–1001. https://doi.org/10.1038/nature06858 PMID: 18385673

48. Lu Y, Andiapann A, Lee B, Ho R, Lim T, Kuan W, et al. (2016) Neuropeptide Y associated with asthma in young adults. Neuropeptides 59: 117–121. https://doi.org/10.1016/j.npep.2016.07.003 PMID: 27469060

49. Michel M, Beck-Sickinger A, Cox H, Doods H, Herzog H, Larhammar D, et al. (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50: 143–150. PMID: 9549761

50. Wheway J, Mackay C, Newton R, Sainsbury A, Boey D, Herzog H, et al. (2005) A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 202: 1527–1538. https://doi.org/10.1084/jem.20051971 PMID: 16330815

51. Schwarz H, Villiger P, von Kempis J, Lotz M (1994) Neuropeptide Y is an inducible gene in the human immune system. J Neuroimmunol 51: 53–61. PMID: 8157736

52. Macia L, Yulyaningsih E, Pangon L, Nguyen A, Lin S, Shi Y, et al. (2012) Neuropeptide Y1 receptor in immune cells regulates inflammation and insulin resistance associated with diet-induced obesity. Diabetologia 61: 3228–3238. https://doi.org/10.2337/db12-0156 PMID: 23011592

53. Farzi A, Reichmann F, Holzer P (2015) The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol (Oxf) 213: 603–627.

54. Fang X, Li T, Xie Q, He F, Cui D, Chen Y, et al. (2010) Amelioration of dextran sulfate sodium-induced colitis by neuropeptide Y antisense oligodeoxynucleotide. Int J Colorectal Dis 25: 1047–1053. https://doi.org/10.1007/s00384-010-0964-z PMID: 20533056

55. Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46: 261–274. https://doi.org/10.1007/s00247-012-0805-0 PMID: 22979996

56. Geetha R, Yogalakshmi B, Sreeja S, Bhavani K, Anuradha C (2014) Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice. Mol Cell Biochem 387: 123–134. https://doi.org/10.1007/s10021-013-1977-2 PMID: 24173620

57. Pelava A, Schneider C, Watkins N (2016) The importance of ribosome synthesis, and the 5S RNP-MDM2 pathway, in health and disease. Biochem Soc Trans 44: 1086–1090. https://doi.org/10.1042/BST20160106 PMID: 27528756

58. Gamalinda M, Woolford J (2015) Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins. Translation (Austin) 3: e975018.

59. Wang W, Nag S, Zhang X, Wang M, Wang H, Zhou J, et al. (2015) Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 35: 225–285. https://doi.org/10.1002/med.21327 PMID: 25164622
60. Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford J (2013) Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 41: 1965–1983. https://doi.org/10.1093/nar/gks1272 PMID: 23268442

61. Smolock E, Korsunov V, Glazko G, Qiu X, Gerloff J, Berk B (2012) Ribosomal protein L17, RpL17, is an inhibitor of vascular smooth muscle growth and carotid intima formation. Circulation 126: 2418–2427. https://doi.org/10.1161/CIRCULATIONAHA.112.125971 PMID: 23065385

62. Meskauskas A, Dinmann J (2007) Ribosomal protein L3: gatekeeper to the A site. Mol Cell 25: 877–888. https://doi.org/10.1016/j.molcel.2007.02.015 PMID: 17386264

63. Kobayashi Y, Kawakami K, Ohbayashi M, Kohyama N, Yamamoto T (2010) Ribosomal protein L3 mediated the transport of digoxin in Xenopus laevis oocyte. J Toxicol Sci 35: 827–834. PMID: 21139332

64. Russo A, Saide A, Cagliani R, Cantile M, Botti G, Russo G (2016) rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Sci Rep 6: 38369. https://doi.org/10.1038/srep38369 PMID: 27924828

65. Ohkia A, Hu Y, Wang M, Garcia F, Stearns M (2004) Evidence for prostate cancer-associated diagnostic marker-1: immunohistochemistry and in situ hybridization studies. Clin Cancer Res 10: 2452–2458. PMID: 15073124

66. Lütcke H (1995) Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem 228: 531–550. PMID: 7737147

67. Bacher G, Lütcke H, Jungnickel B, Rapoport T, Dobberstein B (1996) Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381: 248–251. https://doi.org/10.1038/381248a0 PMID: 8622769

68. Birse D, Kapp U, Strub K, Cusack S, Aberg A (1997) The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. EMBO J 16: 3757–3766. https://doi.org/10.1093/emboj/16.13.3757 PMID: 9233785

69. Rock K, Reits E, Neefjes J (2016) Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol 37: 724–737. https://doi.org/10.1016/j.it.2016.08.010 PMID: 27614798

70. Flajnik M, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11: 47–59. https://doi.org/10.1038/nrg2703 PMID: 19997068

71. Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195: 346–355. https://doi.org/10.1002/jcp.10290 PMID: 12704644

72. Holt CB, Ostergaard JA, Axelgaard E, Nielsen GK, Endo Y, Thiel S, et al. (2015) Ficolin B in Diabetic Kidney Disease in a Mouse Model of Type 1 Diabetes. Mediators Inflamm 2015: 653260. https://doi.org/10.1155/2015/653260 PMID: 26339138

73. Endo Y, Nakazawa N, Liu Y, Iwaki D, Takahashi M, Fujita T, et al. (2005) Carbohydrate-binding specificities of mouse ficolin A, a splicing variant of ficolin A and ficolin B and their complex formation with MASP-2 and sMAP. Immunogenetics 57: 837–844. https://doi.org/10.1007/s00251-005-0058-1 PMID: 16328467

74. Ren Y, Ding Q, Zhang X (2014) Ficolins and infectious diseases. Virol Sin 29: 25–32. https://doi.org/10.1007/s12290-014-3421-2 PMID: 24452543

75. Holt CB, Ostergaard JA, Axelgaard E, Nielsen GK, Endo Y, Thiel S, et al. (2015) Ficolin B in Diabetic Kidney Disease in a Mouse Model of Type 1 Diabetes. Mediators Inflamm 2015: 653260. https://doi.org/10.1155/2015/653260 PMID: 26339138

76. Ypsilanti A, Zagar Y, Chédotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137: 1939–1952. https://doi.org/10.1242/dev.04511 PMID: 20501599

77. Macias H, Moran A, Samara Y, Moreno M, Compton J, Harburg G, et al. (2011) SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell 20: 827–840. https://doi.org/10.1016/j.devcel.2011.05.012 PMID: 21664580

78. Chang J, Lan T, Li C, Ji X, Zheng L, Gou H, et al. (2015) Activation of Slit2-Robo1 signaling promotes liver fibrosis. J Hepatol 63: 1413–1420. https://doi.org/10.1016/j.jhep.2015.07.033 PMID: 26264936

79. Huang L, Xu Y, Yu W, Li Y, Chu L, Dong J, et al. (2010) Effect of Robo1 on retinal pigment epithelial cells and experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 51: 3193–3204. https://doi.org/10.1167/iovs.09-3779 PMID: 20071679
82. Li J, Ye Y, Zhang R, Zhang L, Hu X, Han D, et al. (2015) Robo1/2 regulate follicle atresia through manipulating granulosa cell apoptosis in mice. Sci Rep 5: 9720. https://doi.org/10.1038/srep09720 PMID: 25988316

83. Rajagopalan G, Chandrasekaran S, Carani Venkatraman A (2017) Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart. Clin Exp Pharmacol Physiol 44: 103–113. https://doi.org/10.1111/1440-1681.12671 PMID: 27626906