ABSTRACT

Using *Spitzer* IRAC and MIPS observations of the Large Magellanic Cloud, we have identified 13 objects that have extremely red mid-IR colors. Follow-up *Spitzer* IRS observations of seven of these sources reveal varying amounts of SiC and C$_2$H$_2$ absorption as well as the presence of a broad MgS feature in at least two cases, indicating that these are extreme carbon stars. Preliminary estimates find these objects have luminosities of $(4-11) \times 10^4$ L_{\odot} and preliminary model fitting gives mass-loss rates between 4×10^{-5} and $2 \times 10^{-4} M_{\odot}$ yr$^{-1}$, higher than any known carbon-rich AGB star in the LMC. These spectral and physical properties require careful reconsideration of dust condensation and mass-loss processes for carbon stars in low-metallicity environments.

Subject headings: infrared: stars — Magellanic Clouds — stars: AGB and post-AGB — stars: carbon

1. INTRODUCTION

We have undertaken a study of star formation in the Large Magellanic Cloud (LMC; Gruendl & Chu 2008), using archival *Spitzer Space Telescope* observations, such as those of Surveying the Agents of a Galaxy’s Evolution (SAGE; Meixner et al. 2006). In the process of identifying young stellar objects (YSOs) we noticed 13 bright mid-IR sources (Table 1) that all had similar photometric properties with spectral energy distributions (SEDs) markedly different from those of evolved stars or YSOs: (1) they have extremely red mid-IR colors, $[4.5] - [8.0] > 4.0$; (2) their SEDs, peaking between 8 and 24 μm, can be moderately well fit by blackbodies with effective temperatures of $\sim 230-320$ K; (3) they all fall in a narrow range of brightness, $7.0 > [8.0] > 8.5$; and (4) none of the sources have counterparts in the Two Micron All Sky Survey Point Source Catalog (2MASS PSC; Skrutskie et al. 2006) or in the Digitized Sky Survey. We dubbed these sources “extremely red objects” (EROs).

The EROs are not likely asteroids because of their high brightnesses and lack of proper motions in SAGE observations from two epochs separated by ~ 3 months. They cannot be background galaxies or Galactic sources, as the *Spitzer* Wide-area IR Extragalactic Survey (SWIRE; Lonsdale et al. 2003) and the Galactic Legacy IR Mid-Plane Survey Extraordinaire (GLIMPSE; Benjamin et al. 2003) do not have counterparts with similar mid-IR colors and brightnesses. These EROs are most likely associated with the LMC, and their high luminosities imply that their Galactic counterparts would have saturated in the SWIRE and GLIMPSE Surveys.

Queries of the SIMBAD database found that some EROs had been detected previously in either MSX or IRAS observations (e.g., Schwinging 1989). Five have been suggested as possible obscured AGB stars by Loup et al. (1997); however, many of our EROs have also been suggested to be YSO candidates (Whitney et al. 2008). As these EROs have never been confirmed or rejected as YSOs spectroscopically, we included seven among our follow-up observations of massive YSOs in the LMC using the *Spitzer* InfraRed Spectrograph (IRS; Houck et al. 2004). These IRS observations show unambiguously that the EROs are carbon stars; furthermore, the spectra reveal silicon carbide (SiC) absorption features. While SiC emission features are fairly common in both Galactic and LMC carbon stars, this is the first clear detection of SiC absorption for LMC carbon stars. Preliminary analysis of the IRS spectra suggests that these are extraordinary carbon stars with very high mass-loss rates. This Letter reports their discovery. In § 2 we describe their basic photometric properties and their possible optical and near-IR counterparts. In § 3 we introduce our IRS observations and in § 4 we discuss the results.

2. PHOTOMETRIC OBSERVATIONS

2.1. Mid-Infrared Observations

Spitzer observations of the EROs, from SAGE (Meixner et al. 2006), were made with the InfraRed Array Camera (IRAC; Fazio et al. 2004) and the Multiband Imaging Photometer for *Spitzer* (MIPS; Rieke et al. 2004). Aperture photometry of the EROs was obtained for the IRAC 3.6, 4.5, 5.8, and 8.0 μm bands and the MIPS 24 and 70 μm bands using the task *phot* in IRAF. A detailed description of the data reduction, photometric extraction, and uncertainties can be found in Gruendl & Chu (2008). When multiple observations were available, the photometric measurements were averaged. Table 1 presents the average photometric results: column (1) lists source names that provide epoch J2000.0 coordinates, columns (2)–(7) give flux densities and uncertainties at 3.6, 4.5, 5.8, 8.0, 24, and 70 μm, and column (8) gives cross-identifications to previously known sources. Figure 1 plots the locations of the EROs in a mid-IR [8.0] versus [4.5] versus [8.0] color-magnitude diagram along with other red sources classified as evolved stars by Gruendl & Chu (2008). The EROs are at the extreme red end of the tail formed by the evolved stars.

2.2. Complementary Near-Infrared and Optical Photometry

None of the EROs have a counterpart in the 2MASS PSC. Thus, we obtained deeper near-IR observations at J and K_s bands for six of the EROs using the IR Side Port Imager (ISP; van der Bliek et al. 2004) on the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory in 2007 February. The resulting images have a typical effective exposure time of ~ 300 and 600 s in the J and K_s bands, respectively, and are flux-calibrated using stars in the 2MASS PSC. The angular...
resolution of the images is typically $\pm 1.0''$ and the astrometric accuracy is better than 0.2''. For a more detailed description of the near-IR data reduction, see Gruendl & Chu (2008).

Table 2 presents the near-IR photometry and 3 σ upper limits for the six EROS observed. Only two EROS, 051301.75–693351.0 and 053044.10–714300.5, have near-IR counterparts projected within 0.2$''$ as indicated in the last column of the table. To supplement our ISPI observations, we have used the Magellanic Clouds Point Source Catalog from the InfraRed Survey Facility (IRSF; Kato et al. 2007). This survey has an astrometric accuracy of $\sim 0.1''$ and 90% completeness limits of 18.5 and 17.4 for m_J and m_K, respectively. IRSF sources with spatial coincidence of 1$''$ or better are also included in Table 2. Only two IRSF sources are within 0.2$''$ or less from their respective EROS and are the same counterparts identified by our ISPI observations. The other three IRSF sources are included for completeness but are unlikely to be near-IR counterparts to the EROS.

To search for optical counterparts, we used the optical photometry from the Magellanic Clouds Photometric Survey (MCPS; Zaritsky et al. 2004) which has an astrometric accuracy of $\sim 0.5''$ and is generally complete to $m_V = 20$. We find that three EROS have faint ($m_V > 19$) optical sources within 1$''$, but are less related as none have a spatial coincidence better than 0.7$''$. In Figure 2 we combine all photometric data for each source to get a broad SED extending from the optical to 70 μm.

3. IRS OBSERVATIONS

Seven EROS were included in our Spitzer IRS survey of YSOs (PID $= 40650$), which used the Short-Low (SL) modules to obtain spectra over ~ 5.2–14.5 μm with spectral resolution $R = (\lambda/\Delta\lambda)$ of 64–128, and the Short-High (SH) and Long-High (LH) modules to obtain spectra over ~ 9.9–37.2 μm with spectral resolution of ~ 600. Background observations with the same integration times were made in nearby regions with low surface brightnesses in the IRS 12 and 25 μm maps.

To extract spectra, we used the basic calibrated data (BCD) from the Spitzer Science Center’s pipeline. Rogue pixels and flagged data were cleaned using the IRSCLEAN package (ver. 1.9). Multiple exposures for each slit position were median averaged. The background was cleaned using the IRSCLEAN package (ver. 1.9). Multiple exposures for each slit position were median averaged. The background was cleaned using the IRSCLEAN package. To search for optical counterparts, we used the optical photometry from the Magellanic Clouds Photometric Survey (MCPS; Zaritsky et al. 2004) which has an astrometric accuracy of $\sim 0.5''$ and is generally complete to $m_V = 20$. We find that three EROS have faint ($m_V > 19$) optical sources within 1$''$, but are less related as none have a spatial coincidence better than 0.7$''$. In Figure 2 we combine all photometric data for each source to get a broad SED extending from the optical to 70 μm.

Table 2

Source ID	m_J (mag)	m_K (mag)	Offset (arcsec)
ISPI Observations			
050231.49–680535.8	>19.67	>18.63	
050405.60–682340.3	>19.84	>18.60	
051301.75–693351.0	16.91 ± 0.05	16.65 ± 0.06	<0.2
052937.89–724952.9	>19.52	>18.74	
053044.10–714300.5	17.79 ± 0.07	16.77 ± 0.07	<0.2
055026.08–695603.1	>19.82	>18.74	
Possible Counterparts in IRSF Catalog			
051301.75–693351.0	16.98 ± 0.02	16.27 ± 0.06	0.1
051848.36–693334.7	17.27 ± 0.03a	16.66 ± 0.12a	1.0
052404.10–714300.5	18.54 ± 0.08	17.23 ± 0.22	0.2
052540.63–700827.2	17.77 ± 0.04a	17.08 ± 0.17a	0.7
054134.73–694209.3	19.61 ± 0.21a	16.70 ± 0.09a	0.6

a Doubtful counterpart.
and LH modules and the tapered column point source method for the SL modules. The SH and LH spectra were automatically defr-inged using the IRSFRINGE package (ver. 1.1). To combine all spectra, we used the SL extracted spectra to set the flux level (as their background subtraction was more robust) and then applied a multiplicative scale factor for the SH and LH spectra based on the continuum where the spectra overlapped. The resulting spectra span the wavelength range from 5.2 to 37.2 μm. A more detailed description is presented in J. P. Seale et al. (2009, in preparation) which reports the results of our IRS survey of LMC YSO candidates.

4. RESULTS

Figure 3 presents the IRS spectra of seven EROs along with the IRAC and MIPS mid-IR photometry. Clearly, these spectra are dominated by dust continuum emission. Interestingly, the 11.3 μm SiC feature is detected in *absorption* in nearly all spectra; in Figure 3 the spectra have been ordered from top to bottom based on the strength of the SiC absorption feature. In addition, the C₂H₂ (acetylene) 13.7 μm absorption feature appears in every spectrum, and the C₂H₇ 7.5 μm absorption feature appears in some spectra. In contrast, the MgS emission feature at ~26 μm is clearly detected in the spectrum of 055026.08−695603.1 and possibly in that of 052937.89−724952.9. Finally, we note that the only source without SiC absorption, 051811.70−703027.0, has a nearly featureless spectrum similar to AFGL 618 (the Westbrook Nebula) a carbon-rich proto-planetary nebula (Kraemer et al. 2002; Cernicharo et al. 2001a, 2001b).

4.1. Mass-Loss Rates

The extreme red colors of these EROs, [8.0] − [24] = 3−5, suggest that they have high opacities and hence high mass-loss rates, \(\dot{M} \). Simple fits to the mid-IR SEDs of the EROs give bolometric luminosities in the range of \((4–11) \times 10^3 L_\odot\) (for a distance of 50 kpc; Feast 1999). Preliminary analysis using the radiative transfer model DUSTY (Ivezic & Elitzur 1995) shows that the highest optical depths (\(\tau \)) are found for 054859.98−703322.5, with \(\tau \)'s of 270, 8.1, and 10.0 at 1, 10, and 11.3 μm, respectively. Assuming a gas-to-dust ratio of 200, the estimated \(\dot{M} \)'s are in the range of \((0.4–2.3) \times 10^{-4} M_\odot\) yr\(^{-1}\) (see Table 1). We have adjusted values of \(\dot{M} \) from other works to reflect a gas-to-dust ratio of 200.

Our derived values for \(\dot{M} \) are higher than previously known for carbon-rich AGB stars in the LMC. Furthermore, these 13 sources more than double the previously known eight carbon-rich AGB stars in the LMC with \(\dot{M} \) higher than \((10^{-5} M_\odot)\) yr\(^{-1}\) (van Loon et al. 1999; Groenewegen et al. 2007). More intriguingly, these sources typically exceed the maximum \(\dot{M} \) expected for both oxygen-rich and carbon-rich AGB stars (van Loon et al. 1999). For example, the \(\dot{M} \) of 054859.98−703322.5, \(2.3 \times 10^{-4} M_\odot\) yr\(^{-1}\), is much
plotted with each spectrum for comparison using alternating symbols. The source name in the figure. Our mid-IR photometry for each source are each spectrum has been offset by a constant value in Jy which is given after their Galactic counterparts (e.g., Speck et al. 2008). The mean that the highest found in the LMC are comparable to those of synthesized within these stars. These new extreme carbon stars show of carbon available in the atmosphere, which is ultimately syn-
thetic. 2005; Sloan et al. 2008), because depends on the amount Galaxy show that does not depend on metallicity (Matsuura et
Fig. 3.—IRS spectra for seven EROs. The spectra are roughly ordered from top to bottom based on the increasing strength of the SiC feature at 11.3 μm. This hypothesis is supported by a recent study of the correlation between mass-loss rate and the amount of SiC required to model Galactic extreme carbon star spectra (Speck et al. 2008). Only two of the LMC EROs show evidence for a MgS feature at 30 μm indicating that the SiC grains may not be coated for some of these objects. Current models for the effect of metallicity on condensation sequences in the Galaxy and the Magellanic Clouds (e.g., Lagadec et al. 2007; Leisenring et al. 2008; Speck et al. 2006) need to be reanalyzed in light of this discovery.

This research was supported by NASA grants JPL1264494 and JPL1290956. We thank S. D. Points for obtaining the ISPI observations used in this Letter. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

REFERENCES

Barlow, M. J. 1983, in IAU Symp. 103, Planetary Nebulae, ed. D. R. Flower (Dordrecht: Reidel), 105
Benjamin, R. A., et al. 2003, PASP, 115, 953
Cernicharo, J., et al. 2001a, ApJ, 546, L123
———. 2001b, ApJ, 546, L127
Fazio, G., et al. 2004, ApJS, 154, 10
Feast, M. 1999, in IAU Symp. 190, New Views of the Magellanic Clouds, ed. Y.-H. Chu et al. (San Francisco: ASP), 542
Groenewegen, M. A. T., et al. 2007, MNRAS, 376, 313
Gruendl, R. A., & Chu, Y.-H. 2008, ApJS, submitted
Higdon, S. J. U., et al. 2004, PASP, 116, 975
Houck, J. R., et al. 2004, ApJS, 154, 18
Ivezić, Z., & Elitzur, M. 1995, ApJ, 445, 415
Kato, D., et al. 2007, PASJ, 59, 615
Kraemer, K. E., et al. 2002, ApJS, 140, 389
Lagadec, E., et al. 2007, MNRAS, 376, 1270
Leisenring, J. M., Kemper, F., & Sloan, G. C. 2008, ApJ, 681, 1557
Lodders, K., & Fegley, B., Jr. 1995, Meteoritics, 30, 661
Lonsdale, C. J., et al. 2003, PASP, 115, 897
Loup, C., et al. 1997, A&A, 125, 419
Matsuura, M., et al. 2005, A&A, 434, 691
Meixner, M., et al. 2006, AJ, 132, 2268
Pitman, K. M., Speck, A. K., & Hofmeister, A. M. 2006, MNRAS, 371, 1744
Rieke, G. H., et al. 2004, ApJS, 154, 25
Rinehart, S. A., et al. 2002, MNRAS, 336, 66
Schwering, P. B. W. 1989, A&AS, 79, 105
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Sloan, G. C., et al. 2008, preprint (arXiv:0807.2998)
Speck, A. K., Barlow, M. J., & Skinner, C. J. 1997, MNRAS, 288, 431
Speck, A. K., Corman, A. B., Wheeler, C. H., Wakeman, K., & Thompson, G. D. 2008, ApJ, submitted
Speck, A. K., et al. 2006, ApJ, 650, 892
Stanghellini, L., et al. 2007, ApJ, 671, 1669
van der Bliek, N. S., et al. 2004, Proc. SPIE, 5492, 1582
van Loon, J. Th., et al. 1999, A&A, 351, 559
Vassiliadis, E., & Wood, P. R. 1993, ApJ, 413, 641
Whitney, B. A., et al. 2008, AJ, 136, 18
Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E. K. 2004, AJ, 128, 1606
Zijlstra, A., et al. 2007, MNRAS, 370, 1961