LOCAL THETA CORRESPONDENCES BETWEEN SUPERCUSPIDAL REPRESENTATIONS
CORRESPONDANCES THÊTA LOCALES ENTRE LES REPRÉSENTATIONS SUPERCUSPIDALES

HUNG YEAN LOKE AND JIA-JUN MA

Abstract. By the works of Yu, Kim and Hakim-Murnaghan, we have a parameterization and construction of all supercuspidal representations of a reductive p-adic group in terms of supercuspidal data, when p is sufficiently large. In this paper, we will define a correspondence of supercuspidal data via moment maps and theta correspondences over finite fields. Then we will show that local theta correspondences between supercuspidal representations are completely described by this notion. In Appendix B, we give a short proof of a result of Pan on “depth preservation”.

Résumé. Par les travaux de Yu, Kim et Hakim-Murnaghan, on a un paramétrisatrage et une construction de toutes les représentations supercuspidales d’un groupe réductif p-adique en termes de données supercuspidales, quand p est suffisamment grand. Dans cet article, nous définirons une correspondance entre les données supercuspidales par l’intermédiaire d’applications moments et de correspondances thêta sur des corps finis. Ensuite, nous montrerons que les correspondances thêta locales entre les représentations supercuspidales sont complètement décrites par cette notion. Dans l’Appendice B, nous fournisons une courte démonstration d’un résultat de Pan sur “la prédervation de la profondeur”.

Contents

1. Introduction 2
1.1. Notation 2
1.2. The set of data 3
1.3. Statement of the main theorem 3
1.4. Organization of the paper 4
Acknowledgement
2. Preliminary: Local theta correspondence 5
2.1. Type I dual pairs and moment maps 5
2.2. Lattice functions and Bruhat-Tits Buildings 6
2.3. Generalized lattice model 7
3. Preliminary: Supercuspidal representations 9
3.1. Residue characteristics 9
3.2. Good factorization 10
3.3. Tamely ramified supercuspidal representations for classical groups 10
3.4. Even orthogonal groups 12
3.5. Tamely ramified supercuspidal representation for covering groups 15
4. Good factorizations and block decompositions 18

1991 Mathematics Subject Classification. 22E46, 22E47.
Key words. local theta correspondence, moment maps, supercuspidal representations.
Mots clés. Correspondances thêta locales, application moment, représentations supercuspidales.
In this paper, we give an explicit description of the local theta correspondences between tamely ramified supercuspidal representations in terms of the supercuspidal data developed in [11, 13, 17, 38].

1.1. Notation. Throughout this paper, we fix a non-Archimedean local field F of characteristic zero with ring of integers \mathfrak{o}, and finite residual field \mathfrak{f}. Let “val” denote the normalized valuation map such that val(F) = \mathbb{Z}. Suppose E is a finite extension of F or the central simple quaternion division algebra over F, let \mathfrak{o}_E denote its ring of integers, let \mathfrak{p}_E denote the maximal ideal in \mathfrak{o}_E and let $\mathfrak{f}_E := \mathfrak{o}_E/\mathfrak{p}_E$ denote the residue field. We continue to let “val” denote the natural extension of valuations to E. When $E = F$, we sometimes omit the subscript. We fix a non-trivial additive character $\psi: F \to \mathbb{C}^\times$ with conductor \mathfrak{p} (i.e. $\psi|_{\mathfrak{o}}$ is trivial but $\psi|_{\mathfrak{f}}$ is non-trivial). Let $\overline{\psi}$ denote the additive character on \mathfrak{f} induced by ψ. For a vector space \mathfrak{V} with an endomorphism \star, we let $\mathfrak{V}^{\star,\varepsilon}$ denote the ε-eigenspace of \star in \mathfrak{V}.
1.2. The set of data. Let \((D, \tau)\) denote one of the division algebras over \(F\) given in Section 2.1 with an \(F\)-linear involution \(\tau\). Let \(\epsilon \in \{\pm 1\}\) and \(\epsilon' = -\epsilon\). Let \((V, \langle \ , \ , V \rangle)\) (respectively \((V', \langle \ , \ , V \rangle)\)) denote a right \(D\)-module equipped with an \(\epsilon\)-Hermitian form \(\langle \ , \ , V \rangle\) (respectively \(\epsilon'\)-Hermitian form \(\langle \ , \ , V \rangle\)). Then \(W := V \otimes_D V'\) is naturally a symplectic space. Let \((G, G') = (U(V), U(V'))\) be an irreducible type I reductive dual pair in the symplectic group \(Sp := Sp(W)\). For any subset \(E\) of \(Sp\) let \(E\) be its inverse image in the metaplectic \(\mathbb{C}^\times\)-cover \(\tilde{Sp}(W)\) of \(Sp(W)\). See Section 2 for more details of the notation.

We assume that \(p\) is large enough compared to the sizes of \(G\) and \(G'\) since we need the hypotheses in \([17, \S 3.5]\) to hold. We will give a lower bound for \(p\) in Corollary 3.2. We will review the construction of supercuspidal representations for \(\tilde{G}\) following \([17, \S 3.8]\) in Section 3. Let \(\Sigma := (x, \Gamma, \phi, \rho)\) be a supercuspidal datum as in \([17]\). We briefly explain the entries in \(\Sigma\): (i) \(\Gamma\) is a semisimple element in \(g\) and \(G^0 := Z_G(\Gamma)\); (ii) \(x\) is a point in the building \(B(G^0)\) of \(G^0\); (iii) \(\phi\) and \(\rho\) are certain representations of \(G^0_x\). See Definition 3.4 for details. Then \(\Sigma\) will determine an open compact subgroup \(K \subseteq G\) and an irreducible \(K\)-module \(\eta_K\) and, \(\pi_\Sigma := c\text{-Ind}_K^G \eta_K\) is a supercuspidal representation of \(G\). By \([17]\), under the assumption that \(p\) is large enough, this construction gives all supercuspidal representations of \(G\). Let \(\mathcal{D}_V\) be the set of all supercuspidal data and let \(\tilde{G}_{sc}\) be the equivalence classes of irreducible supercuspidal \(G\)-modules. In \([11]\) an equivalence relation \(\sim\) on \(\mathcal{D}_V\) is defined so that \(\tilde{\mathcal{D}}_V := \mathcal{D}_V / \sim \to \tilde{G}_{sc}\) given by \([\Sigma] \mapsto [\pi_\Sigma]\) is a bijection. In other words, \(\tilde{\mathcal{D}}_V\) parametrizes \(\tilde{G}_{sc}\). In fact, the equivalence relation is just \(G\)-conjugacy in our situation (cf. Definition 3.6).

Now we consider the covering group \(\tilde{G}\). It is well known that the cover \(\tilde{K} \to K\) splits. Given a certain splitting \(\xi : K \to \tilde{K}\), we identify \(\tilde{K}\) with \(K \times \mathbb{C}^\times\). We call \(\tilde{\Sigma} := (\Sigma, \xi) = (x, \Gamma, \phi, \rho, \xi)\) a supercuspidal datum of \(\tilde{G}\). Define \(\tilde{\eta}_\Sigma := \eta_\Sigma \otimes \text{id}_{\mathbb{C}^\times}\) which is an irreducible \(\tilde{K}\)-module. Then \(\tilde{\pi}_\Sigma := c\text{-Ind}_{\tilde{K}}^\tilde{G} \tilde{\eta}_\Sigma\) is an irreducible supercuspidal representation of \(\tilde{G}\). We will see in Section 3.5.4 that under the assumption that \(p\) is large enough, the construction of \(\tilde{\pi}_\Sigma\) exhausts all the irreducible supercuspidal genuine\(^1\) representations of \(\tilde{G}\). The equivalence relation on the set of data of \(\tilde{G}\) could also be deduced from that of \(G\) easily (cf. Section 3.5).

1.3. Statement of the main theorem. We retain the notation in Section 1.2. Fix a Witt tower \(T'\) of \(\epsilon'\)-Hermitian spaces. The covering group \(\tilde{G}\) in the dual pair \((G, G') = (U(V), U(V'))\) for all \(V' \in \mathcal{T}'\) are canonically isomorphic to one another. Let \(\omega\) be the Weil representation of \(\tilde{Sp}(W)\) with respect to the character \(\psi\) and let
\[
(1.1) \quad \mathcal{R}(\tilde{G}, \omega) := \{ \tilde{\pi} \in \text{Irr}_{\text{gen}}(\tilde{G}) \mid \text{Hom}_{\tilde{G}}(\omega, \tilde{\pi}) \neq 0 \} \]
be the equivalence classes of irreducible smooth genuine \(\tilde{G}\)-modules which could be realized as a quotient of \(\omega\). Let \(\theta_{V', \omega} : \mathcal{R}(\tilde{G}, \omega) \to \mathcal{R}(\tilde{G}, \omega)\) denote the theta correspondence map.

Let \(\tilde{\pi}\) be an irreducible supercuspidal genuine \(\tilde{G}\)-module. Note that the \(\tilde{\pi}\)-isotypic component \(\omega[\tilde{\pi}]\) of \(\omega\) is naturally a \(\tilde{G} \times G'\) module, say \(\omega[\tilde{\pi}] \cong \tilde{\pi} \boxtimes \Theta_{V', \omega}(\tilde{\pi})\) where \(\Theta_{V', \omega}(\tilde{\pi})\) is a genuine \(\tilde{G}'\)-module. Let
\[
m_{\mathcal{T}'}(\tilde{\pi}) = \min \{\dim_D(V'') \mid \Theta_{V', \omega}(\tilde{\pi}) \neq 0 \text{ where } V'' \in \mathcal{T}' \}
\]
which is called the first occurrence index of \(\tilde{\pi}\) with respect to the Witt tower \(\mathcal{T}'\).

It is well known that (cf. \([23, \S 3.14.4\) Théorème principal]):

(i) \(\Theta_{V', \omega}(\tilde{\pi})\) is either zero or irreducible.
m_{T'}(\tilde{\pi}) \leq 2 \dim V + a_{T'}$, where $a_{T'} = \min \{ \dim_D V'' \mid V'' \in T' \}$ is the dimension of the anisotropic kernel in T' (cf. [20]).

(iii) $\Theta_{V,V'}(\tilde{\pi}) \neq 0$ if and only if $\dim_D (V') \geq m_{T'}(\tilde{\pi})$ in which case $\theta_{V,V'}(\tilde{\pi}) = \Theta_{V,V'}(\tilde{\pi})$.

(iv) $\theta_{V,V'}(\tilde{\pi})$ is supercuspidal if and only if $\dim (V') = m_{T'}(\tilde{\pi})$. In this case, we say that the first occurrence of $\tilde{\pi}$ is at V'.

The aim of this paper is to describe the first occurrences of theta lifts of supercuspidal representations in terms of the supercuspidal data.

Let

\[D_{T'} = \bigsqcup_{V' \in T'} D_{V'} \]

Using the moment maps and theta correspondences over finite fields, we will define theta lifts of equivalence classes of supercuspidal data in Section 5, i.e. we will define a map

\[\vartheta_{V,T'}: D_V \to D_{T'} \]

Fix a pair of data $(\Sigma, \Sigma') \in D_V \times D_{V'}$. There is a canonical splitting

\[\xi_{x,x'}: K \times K' \to \tilde{K} \times \tilde{K}' \]

constructed from the generalized lattice model (cf. (2.4)). We always set $\tilde{\Sigma} = (\Sigma, \xi_{x,x'}|_K)$ and $\tilde{\Sigma'} = (\Sigma', \xi_{x,x'}|_{K'})$.

Main Theorem.

(i) Suppose $\Sigma \in D_V$ and $[\Sigma'] := \vartheta_{V,T'}([\Sigma]) \in D_{V'}$ for certain $V' \in T'$. Then $\theta_{V,V'}(\tilde{\pi}_{\Sigma}) = \tilde{\pi}'_{\Sigma'}$.

(ii) Conversely, suppose $\theta_{V,V'}(\tilde{\pi}) = \tilde{\pi}'$, such that $\tilde{\pi}$ and $\tilde{\pi}'$ are supercuspidal representations. Then there exists $\Sigma \in D_V$ such that $\tilde{\pi} = \tilde{\pi}_{\Sigma}$ and $\tilde{\pi}' = \tilde{\pi}'_{\Sigma'}$, where $[\Sigma'] = \vartheta_{V,T'}([\Sigma])$ and T' is the Witt class of V'.

Remarks.

1. If $\tilde{\pi}$ is a depth zero supercuspidal representation, then $\vartheta_{V,T'}(\tilde{\pi})$ is essentially constructed in [27].

2. After the completion of the first draft of this paper, we received a preprint [30] from Pan which describes the theta lifts of certain positive depth supercuspidal representations.

3. The main theorem generalizes our earlier results with Savin for epipelagic representations [22].

4. The construction of $\vartheta_{V,T'}$ provides a criterion on the occurrence of supercuspidal representations by conditions on the isomorphism classes of the Hermitian spaces modulo the theta correspondences over finite fields. On the other hand, for some supercuspidal representations, theta correspondences over finite fields do not show up in the descriptions of their first occurrences. See Section 5.4 for details.

5. In the proof of Main Theorem (ii), we need a generalization of [28, Proposition 6.3] which is proved in Appendix B. This also leads to a simpler proof of Pan’s theorem on “depth preservation” [2, 28].

6. A similar result in terms of the parametrization developed by Bushnell-Kutzko [5] and Stevens [35] should also be established. We hope to take on this problem in a future project.

1.4. **Organization of the paper.** In Section 2 we recall some basic definitions and notations of local theta correspondences and generalized lattice models. In Section 3 we review the definition of supercuspidal data and the constructions of supercuspidal representations for both linear and covering groups.

In Section 4 we define the block decompositions of supercuspidal data in terms of valuations of eigenvalues. In Section 5 we first review the correspondence for depth
zero representations and then define the lift of a single block supercuspidal datum using the moment maps. By taking direct sum, the lift in the general case is defined in the end.

We begin the proof of the main theorem with the single block case in Section 6 and Section 7. The geometric structures of moment maps are studied in Section 6 and refined K-types are constructed in Section 7 using these structures. These two sections are the most technical parts of the paper.

By induction on the number of blocks, we prove part (i) of the Main Theorem in Section 8. Using part (i) and a similar induction, part (ii) of the Main Theorem is finally proved in Section 9.

In Appendix A, we review the Heisenberg-Weil representations over a finite field and the special isomorphisms of Yu. These are used freely in Sections 6, 8 and 9. In Appendix B, we first prove the generalization of an identity of Pan needed in Section 9 and then finish the paper by giving a quick proof of the “depth preservation”.

Acknowledgment. We would like to thank Gordan Savin and Jiu-Kang Yu for inspiring discussions. We would like to thank Wee Teck Gan and Eitan Sayag for their valuable comments and encouragement. We also would like to thank the referees for their careful reading and comments, in particular for their call to discuss supercuspidal representations of Metaplectic groups in greater detail. Hung Yean Loke is supported by a MOE-NUS AcRF Tier 1 grant R-146-000-208-112. Jia-Jun Ma is partially supported by HKRGC Grant CUHK 405213 during his postdoctoral fellowship in IMS of CUHK and by MOE Tier 1 Grant R-146-000-189-112 and Shanghai Jiao Tong University Startup Fund WF220407110 during the revision of this paper.

2. Preliminary: Local theta correspondence

In this section, we set up some notations and review some facts about the generalized lattice model of the oscillator representation.

2.1. Type I dual pairs and moment maps. Let (D, τ) denote a division algebra D over F with an F-linear involution τ in one of the following situations:

(a) $D = F$ and τ is the identity map;
(b) D is a quadratic field extension of F and τ is the nontrivial element in $\text{Gal}(D/F)$;
(c) D is the central division quaternion algebra over F and τ is the main involution.

2.1.1. Let $\epsilon \in \{ \pm 1 \}$. Let (V, \langle , \rangle_V) or simply V denote a right D-module equipped with an ϵ-Hermitian form \langle , \rangle_V. Let $\mathfrak{gl}(V) := \text{End}_D(V)$ be the Lie algebra of $\text{GL}_D(V)$. For $X \in \mathfrak{gl}(V)$, let $X^* \in \mathfrak{gl}(V)$ denote the adjoint of X which is defined by

$$
(Xv_1, v_2)_V = \langle v_1, X^*v_2 \rangle_V \quad \forall v_1, v_2 \in V.
$$

Then the isometry group of V and its Lie algebra are given by

$$
U(V) = \{ g \in \mathfrak{gl}(V) \mid gg^* = \text{id} \} \quad \text{and} \quad u(V) = \{ X \in \mathfrak{gl}(V) \mid X + X^* = 0 \} = \mathfrak{gl}(V)^{*-1}
$$

respectively. We will always view $U(V)$ and $u(V)$ as subsets of $\text{End}_D(V)$.

Let $tr_{D/F}: D \to F$ be the reduced trace on D. We set $tr_F := tr_{D/F} \circ tr: \mathfrak{gl}(V) \to F$. Clearly $tr_F(X) = tr_F(X^*)$. Let

$$
\mathcal{B}(X, Y) := \frac{1}{2} tr_F(XY).
$$

It is the invariant non-degenerate bilinear form on $\mathfrak{gl}(V)$ and $u(V)$ which we fix throughout this paper.
2.1.2. Let $\epsilon' = -\epsilon$ and $(V', \langle \cdot, \cdot \rangle'_V)$ be a right D-module equipped with an ϵ'-Hermitian sesquilinear form $\langle \cdot, \cdot \rangle'_V$. We view V' as a left D-module by $av = va^\tau$ for all $a \in D$ and $v \in V'$. Let $W = V \otimes_D V'$. We always identify W with $\text{Hom}_D(V, V')$ by $v \otimes v' \mapsto (v_1 \mapsto v'(v, v_1)_V)$. For any $w \in \text{Hom}_D(V, V')$, let $w^* \in \text{Hom}_D(V', V)$ denote its adjoint which is defined by

$$\langle w, v' \rangle_V = \langle v, w^* v' \rangle_V \quad \forall v \in V, v' \in V'.$$

The F-vector space W will be equipped with a symplectic form $\langle \cdot, \cdot \rangle_W$ given by

$$\langle v_1 \otimes v'_1, v_2 \otimes v'_2 \rangle_W = \text{tr}_{D/F}(v_1, v_2)_V (v'_1, v'_2)^*_V).$$

Let $G = U(V, \langle \cdot, \cdot \rangle_V)$ and $G' = U(V', \langle \cdot, \cdot \rangle_{V'})$. The pair (G, G') is called an irreducible reductive dual pair of type I in $\text{Sp}(W)$ following Howe. The above construction gives all such pairs when F varies (cf. [11, §5] or [21, Lecture 5]).

Let $g := u(V)$ and $g' := u(V')$ denote the Lie algebras of G and G' respectively. For $w \in W$, it is not hard to see that $w^* w \in g \subseteq \text{End}_D(V)$ and $ww^* \in g' \subseteq \text{End}_D(V')$.

Definition 2.1. We define the moment maps $M: W \to g$ and $M': W \to g'$ for the dual pair (G, G') by

$$M(w) = w^* w \quad \text{and} \quad M'(w) = ww^* \quad \forall w \in W.$$

The Lie algebras g and g' act on $W = \text{Hom}_D(V, V')$ by

$$(X \cdot w)(v) = w(-Xv) \quad \text{and} \quad (X' \cdot w)(v) = X'(w(v))$$

for all $w \in W$, $v \in V$, $X \in g$ and $X' \in g'$. We leave the proof of the following simple formulas to the readers.

Lemma 2.2. Let $w, w_1, w_2 \in W$, $X \in g$ and $X' \in g'$. Then

(i) $\langle w_1, w_2 \rangle_W = \text{tr}_F(w_1^* w_2)$,

(ii) $\langle X \cdot w, w \rangle_W = 2B(X, M(w))$ and

(iii) $\langle X' \cdot w, w \rangle_W = 2B(X', -M'(w)).$ \hfill \Box

2.2. **Lattice functions and Bruhat-Tits Buildings.** We recall some well known facts about self-dual lattice functions. We refer to [22, §4] for more details.

Definition 2.3. A lattice function L in V is a function which maps $s \in \mathbb{R} \cup \mathbb{R}^+$ to an \mathfrak{o}_D-lattice L_s in V such that (i) $L_s \supseteq L_t$ if $s < t$, (ii) $L_{s + \text{val}(a)} = L_s a$ for all $a \in D^\times$, (iii) $L_s = \bigcap_{t < s} L_t$ and, (iv) $L_+ = \bigcup_{t > 0} L_t$. For a lattice function L, we set

$$\text{Jump}(L) := \{ r \in \mathbb{R} \mid L_r \supset L_+ \}.$$

For an \mathfrak{o}_D-lattice L in V, we denote its dual lattice

$$L^* := \{ v \in V \mid \langle v, L \rangle_V \subseteq \mathfrak{p}_D \}.$$

A lattice function L in V is called self-dual if $(L_t)^* = L_{-t^+}.$

We always let $\mathcal{B}(G)$ denote the (extended) Bruhat-Tits building of G. Then $\mathcal{B}(G)$ is naturally identified with the set of self-dual lattice functions (cf. [31] and [22, §4]). For any $x \in \mathcal{B}(G)$, we let L_x denote the corresponding lattice function. Let G_x denote the stabilizer of x in G. For $r \in \mathbb{R} \cup \mathbb{R}^+$ and $r \geq 0$ (respectively $r \in \mathbb{R} \cup \mathbb{R}^+$), we let $G_{x,r}$ denote the corresponding Moy-Prasad subgroup of G (respectively Lie subalgebra of g) [24, 25]. For $r < t$, we set

$$\mathfrak{g}_{x,r,t} := \mathfrak{g}_{x,r} / \mathfrak{g}_{x,t}.$$

Let L_x and L_x^* be two self-dual lattice functions in V and V' respectively. We define a lattice function $\mathcal{B}_{x,x'}$ on $W = V \otimes_D V'$ by

$$\mathcal{B}_{x,x'} := \{ L_x \otimes_D L_{x'} \} = \sum_{t_1 + t_2} L_{x,t_1} \otimes_{\mathfrak{o}_D} L_{x',t_2}.$$

(2.1)
Then \(B_{x,x'} \) is a self-dual lattice function on \(W \). We view \(\text{Hom}_D(\mathcal{L}_x, \mathcal{L}_{x'}') \) as a lattice in \(\text{Hom}_D(V, V') = W \). Then \(B_{x,x',t} = \cap_t \text{Hom}_D(\mathcal{L}_x, \mathcal{L}_{x'}', \mathcal{L}_{t,-}) \).

Now \((x, x') \mapsto B_{x,x'} \) gives a natural \(G \times G' \)-equivariant map
\[
B(G) \times B(G') \rightarrow B(\text{Sp}(W)).
\]

If it is clear what \(x \) and \(x' \) are, then we will suppress \(x, x' \) and simply write \(L = \mathcal{L}_x \), \(L' = \mathcal{L}_{x'} \) and \(B = B_{x,x'} \). For \(s < t \), we denote
\[
\mathcal{L}_{s,t} := \mathcal{L}_s / \mathcal{L}_t, \quad \mathcal{L}'_{s,t} := \mathcal{L}'_s / \mathcal{L}'_t \quad \text{and} \quad B_{s,t} := B_{s/t}. \]

2.3. Generalized lattice model. Let \(W \) be a symplectic space. Let \(H(W) = \mathbb{F} \times F \) denote the corresponding Heisenberg group and let \(\text{Sp}(W) \) denote the metaplectic \(\mathbb{C}^\times \)-covering of \(\text{Sp}(W) \).

Let \((\omega, \mathcal{I})\) or simply \(\omega \) denote the oscillator representation of \(\tilde{\text{Sp}}(W) \rtimes H(W) \) with central character \(\psi \). We recall below the definition of the generalized lattice model of the oscillator representation. See [37] or [22, § 3] for more details.

2.3.1. Fix a self-dual lattice function \(B \) in \(W \). Let \(b := B_0 / B_{0+} \). The symplectic form \((\cdot, \cdot)_W \) induces a non-degenerate symplectic form on the \(\mathbb{F} \)-vector space \(b \). Let \(H(b) = b \times \mathbb{F} \) be the Heisenberg group defined by \(b \). Let \((\overline{\omega}_b, B(b)) \) be the oscillator representation of \(\text{SH}(b) := \text{Sp}(b) \rtimes H(b) \) with central character \(\overline{\psi} \) (cf. Section 1.1). See Appendix A.1. Let \(H(B_0) := B_0 \times \mathbb{F} \subseteq H(W) \), \(\text{Sp}_{\mathbb{F}} := \{ g \in \text{Sp}(W) \mid gB_0 = B_0 \} \) and \(\text{Sp}_{\mathbb{F}, 0+} := \{ g \in \text{Sp}(W) \mid (g - 1)B_0 \subseteq B_{0+} \} \). By an abuse of notation, we also let \(\overline{\omega}_b \) denote its inflation to \(\text{Sp}_{\mathbb{F}} \rtimes H(B_0) \) via the natural quotient map.

A generalized lattice model with respect to \(B_0 \) of the oscillator representation \((\omega, \mathcal{I})\) is realized on the following space of functions
\[
\mathcal{I}(B_0) := \left\{ f : W \rightarrow \mathbb{S}(b) \mid f \text{ is locally constant and compactly supported, } f(a + w) = \psi(\frac{1}{2} \langle w, a \rangle_W) \overline{\omega}_b(a) f(w) \forall a \in B_0 \right\}.
\]

Via the generalized lattice model \(\mathcal{I}(B_0) \), we get a splitting \(\xi_{\mathbb{F}} : \text{Sp}_{\mathbb{F}} \rightarrow \tilde{\text{Sp}}_{\mathbb{F}} \subseteq \tilde{\text{Sp}}(W) \) given by
\[
(\omega \circ \xi_{\mathbb{F}}(k)) f(w) = \overline{\omega}_b(k) f(k^{-1} \cdot w) \forall k \in \text{Sp}_{\mathbb{F}}, w \in W, f \in \mathcal{I}(B_0).
\]

The splitting \(\xi_{\mathbb{F}} : \text{Sp}_{\mathbb{F}} \rightarrow \tilde{\text{Sp}}_{\mathbb{F}} \) extends to an isomorphism
\[
\tilde{\xi}_{\mathbb{F}} : \text{Sp}_{\mathbb{F}} \times \mathbb{C}^\times \rightarrow \tilde{\text{Sp}}_{\mathbb{F}}
\]
given by \((k, c) \mapsto \xi_{\mathbb{F}}(k)c\).

If there is no fear of confusion, we will write \(\omega \circ \xi_{\mathbb{F}}(k) \) as \(\omega(k) \) for \(k \in \text{Sp}_{\mathbb{F}} \). By Appendix C, the splitting restricted on \(\text{Sp}_{\mathbb{F}, 0+} \) is independent of the choices of \(B \) and agrees with Kudla’s splitting\(^3\). In particular we have following canonical splitting on the pro-unipotent part of \(\text{Sp} \):
\[
\Xi : \bigcup_{B \in B(\text{Sp})} \text{Sp}_{\mathbb{F}, 0+} \rightarrow \bigcup_{B \in B(\text{Sp})} \tilde{\text{Sp}}_{\mathbb{F}, 0+}.
\]

\(^2\)One can show that it is an embedding. In fact, the map is a restriction of the natural embedding \(B_{\text{red}}(\text{GL}(V)) \times B_{\text{red}}(\text{GL}(V')) \rightarrow B_{\text{red}}(\text{GL}(V \otimes_D V')) \) between reduced buildings.

\(^3\)We only checked the compatibility of splittings for lattice model in [22, Appendix C]. We still need to check the compatibility between generalized lattice model and lattice model. However this is clear by testing on the unique (up to scalar) fixed vector of a certain self-dual lattice.

Alternatively, one can prove this using the fact that the first and second cohomologies of a pro-\(p \) group taking values in a 2-group is trivial when \(p \neq 2 \). See [12, Proposition 2.3].

We warn that the canonical splitting does not extend to the union \(\bigcup_{B \in B(\text{Sp})} \text{Sp}_{\mathbb{F}} \).
For any subset $\Omega \subseteq W$ and any element $w \in W$, we set
\[
\mathcal{I}(\mathcal{B}_0)_{\Omega} := \{ f \in \mathcal{I}(\mathcal{B}_0) \mid \text{supp}(f) \subseteq \Omega + \mathcal{B}_0 \}
\]
and $\mathcal{I}(\mathcal{B}_0)_w := \mathcal{I}(\mathcal{B}_0)_{\{w\}}$.

Suppose $\mathcal{B} = \mathcal{B}_{x,x'}$ where (x, x') is a pair of points in $\mathcal{B}(G) \times \mathcal{B}(G')$. Then $G_x \times G'_x \subseteq \text{Sp}_{\mathcal{B}}$. The restriction of $\xi_{x,x'}$ gives a splitting
\[
(2.4) \quad \xi_{x,x'} := \xi_{x,x'}|_{G_x \times G'_x} : G_x \times G'_x \longrightarrow \tilde{G}_x \times \tilde{G}'_x.
\]
of the covering $\tilde{G}_x \times \tilde{G}'_x \to G_x \times G'_x$. The restriction of $\xi_{x,x'}$ to the subgroup $K \times K' \subseteq G_x \times G'_x$ (still called $\xi_{x,x'}$) is the canonical splitting we referred to in Section 1.3.

2.3.2. We now study a subspace of \mathcal{I} as an induced representation which plays a key role later in this paper.

Fix an element $w \in W$ and let
\[
S_w := \text{Stab}_{\text{Sp}_{\mathcal{B}}}(w + \mathcal{B}_0) = \{ h \in \text{Sp}_{\mathcal{B}} \mid h \cdot w - w \in \mathcal{B}_0 \}.
\]
The evaluation at w given by $f \mapsto f(w)$ induces an isomorphism $\mathcal{I}(\mathcal{B}_0)_w \cong \mathbb{S}(b)$. Clearly S_w acts on $\mathcal{I}(\mathcal{B}_0)_w$ which translates to an action on $\mathbb{S}(b)$. We will denote the resulting S_w-action on $\mathbb{S}(b)$ by $\overline{\omega}_w$.

Lemma 2.4. The group S_w acts on $\mathbb{S}(b)$ by
\[
\overline{\omega}_w(h) := \overline{\omega}_b(h)\overline{\omega}_b(h^{-1} \cdot w - w)\psi(\frac{1}{2} \langle w, h^{-1}w - w \rangle_W)
= \overline{\omega}_b(h)\overline{\omega}_b(h^{-1} \cdot w - w)\psi(\frac{1}{2} \langle h \cdot w - w, w \rangle_W)
\]
for all $h \in S_w$.

Let H be a subgroup of $\text{Sp}_{\mathcal{B}}$ and $S := \text{Stab}_H(w + \mathcal{B}_0) = H \cap S_w$. We have an isomorphism of H-modules
\[
\mathfrak{T} : \mathcal{I}(\mathcal{B}_0)_{H \cdot w + \mathcal{B}_0} \cong \text{c-Ind}^H_S \mathcal{I}(\mathcal{B}_0)_w \cong \text{c-Ind}^H_S \overline{\omega}_w
\]
given by $(\mathfrak{T}(f))(k) = (\omega(k)f)(w)$ for all $k \in H$.

Proof. Let $h \in S_w$. Then $h^{-1} \cdot w - w \in \mathcal{B}_0$. Hence, for any $f \in \mathcal{I}(\mathcal{B}_0)$,
\[
(\omega(h)f)(w) = \overline{\omega}_b(h)f(h^{-1} \cdot w) = \overline{\omega}_b(h)f(w + (h^{-1} \cdot w - w))
= \overline{\omega}_b(h)\overline{\omega}_b(h^{-1} \cdot w - w)\psi(\frac{1}{2} \langle w, h^{-1} \cdot w - w \rangle_W)f(w)
= \overline{\omega}_w(h)f(w).
\]
Observe that $\langle w, h^{-1} \cdot w - w \rangle_W = \langle w, h^{-1} \cdot w \rangle_W = \langle h \cdot w, w \rangle_W = \langle h \cdot w - w, w \rangle_W$. The second equality in (2.5) follows.

Note that $h \mapsto h \cdot w + \mathcal{B}_0$ defines a bijection $H/S \cong (H \cdot w + \mathcal{B}_0)/\mathcal{B}_0 \subseteq W/\mathcal{B}_0$. Hence $\mathcal{I}(\mathcal{B}_0)_{H \cdot w + \mathcal{B}_0} = \text{Span} \{ \omega(H) \mathcal{I}(\mathcal{B}_0)_w \}$ and \mathfrak{T} is an isomorphism.

Remarks. It is easy to see that (2.5) could be simplified greatly in some cases.
1. Suppose that $w \in \mathcal{B}_s$ for certain $s > 0$. Let $h := (g, g') = (\exp(X), \exp(X')) \in G_{x,s} \times G'_{x',s}$ where $(X, X') \in \mathfrak{g}_{x,s} \oplus \mathfrak{g}'_{x',s}$. Then
\[
\frac{1}{2} \langle w, h^{-1} \cdot w - w \rangle_W = \frac{1}{2} \langle h \cdot w - w, w \rangle_W \\
\equiv \frac{1}{2} \left(\langle X, X' \rangle \cdot w + \frac{1}{2} \langle X, X' \rangle \cdot (X' \cdot w, w \rangle_W \right. \\
\left. \left. \mod p \right) \\
= \frac{1}{2} \langle (X, X') \cdot w, w \rangle_W - \frac{1}{4} \langle (X, X') \cdot w, (X, X') \cdot w \rangle_W \\
= \frac{1}{2} \langle X \cdot w, w \rangle_W + \frac{1}{2} \langle X' \cdot w, w \rangle_W \\
= \mathcal{B}(X, M(w)) + \mathcal{B}(X', -M'(w)) \quad \text{(by Lemma 2.2)}.
\]

This immediately implies $\psi\left(\frac{1}{2} \langle h \cdot w - w, w \rangle_W\right) = \psi_{M(w)}(g) \psi_{-M'(w)}(g')$ (see (3.2) for the definition of $\psi_{M(w)}$) and
\[
(2.7) \quad \overline{x}_w(h) = \overline{x}_h(-\langle X, X' \rangle \cdot w) \psi_{M(w)}(g) \psi_{-M'(w)}(g').
\]

2. Suppose $h = (g, g') = \exp(X, X') \in G_{x,s} \times G'_{x',s}$. Then $(X, X') \cdot w \in \mathcal{B}_0$ and (2.7) could be further simplified into
\[
(2.8) \quad \overline{x}_w(h) = \psi_{M(w)}(g) \psi_{-M'(w)}(g').
\]

3. Preliminary: Supercuspidal representations

In this section, we will first review the parametrization of tamely ramified supercuspidal representations for classical groups G when p is sufficiently large. Then we will extend the notion to the covering groups \tilde{G}. We follow closely the notations and formulation in [17].

3.1. Residue characteristics. We assume that the residue characteristics p is large enough compared to the size of G so that all the hypotheses in [17, §3.4] hold. In this subsection, we will find a lower bound for p.

Let
(i) e_D be the absolute ramification index of D/\mathbb{Q}_p if D is a field, or
(ii) $e_D = 2e_F$ if D is the quaternion division algebra over F.

Proposition 3.1. Suppose V is an ϵ-Hermitian space over D such that $n := \dim_D(V)$. Kim’s hypotheses [17, §3.4] are satisfied for $\text{U}(V)$ if
\[
p \geq \max\{2n + 1, e_D n + 2\}.
\]

Proof. We check each of Kim’s hypotheses (Hk), (HB), (HT) and (HN):
1. (Hk.1) requires the exponential map to be well-defined on $\mathfrak{g}_{x,0^+}$, which is ensured by $p \geq e_D n + 2$ [17, Section B.1].
2. (Hk.2) translates to $p \geq e_D n + 2$ for $G \subset \text{GL}_n(D)$.
3. (HB) holds for classical groups when $p \neq 2$ since it holds for GL and classical group is the fixed point of an involution. We would like to thank J. Adler for the discussion.
4. (HT) holds by the Howe factorization (cf. Proposition 4.3).
5. (HN) consists of the set of hypotheses in [6, §4.2]. Hypothesis 4.2.3 holds for $p \geq 2n + 1$. Hypotheses 4.2.1 holds by Hypotheses 4.2.3 in characteristic zero case (see [6, Appendix A]). Hypothesis 4.2.4 and Hypothesis 4.2.5 hold since F is characteristic zero. Hypothesis 4.2.7 holds for the exponential map by (Hk).

This proves the proposition. □
Corollary 3.2. Let \((G, G') := (U(V), U(V'))\) be a type I dual pair with \(n := \dim_D V\). Let \(\tilde{\pi}\) and \(\tilde{\pi}'\) be irreducible supercuspidal genuine representations of \(\tilde{G}\) and \(\tilde{G}'\) respectively such that \(\tilde{\pi}' = \theta_{V, V'}(\tilde{\pi})\). Then Kim’s hypotheses in [17, § 3.4] are satisfied for \(U(V)\) and \(U(V')\) if

\[
p \geq \max \{4n + 9, e_D(2n + 4) + 2\}.
\]

Proof. By [Section 1.3 (1)] \(\dim_D V' \leq 2\dim_D V + a_V \leq 2n + 4\). Then \(p\) satisfying the inequality in the corollary will satisfy (5.1) for both \(U(V)\) and \(U(V')\). \(\square\)

3.2. Good factorization. Let \(\Gamma \in \mathfrak{g}\) be a semisimple element. We say that \(\Gamma\) is tamely ramified if \(\Gamma\) lies in a Cartan subalgebra \(\mathfrak{t}\) which splits over certain tamely ramified extension \(E\) of \(F\). Let depth: \(\mathfrak{g} \to \mathbb{Q}\) denote the depth function given by

\[
\text{depth}(X) = \sup_{x \in B(\mathfrak{g})} \{ r \mid X \in \mathfrak{g}_{x,r} \setminus \mathfrak{g}_{x,r+} \} \quad \forall X \in \mathfrak{g}.
\]

We say that \(\Gamma\) is good or \(G\)-good if for every root \(\alpha\) of \(\mathfrak{g}(E) := \mathfrak{g} \otimes_E E\) with respect to \(\mathfrak{t}(E)\), \(\alpha_0(\Gamma)\) is either zero or has valuation depth(\(\Gamma\)). See [1] and [18, § 2].

Definition 3.3. Suppose \(\Gamma\) is a tamely ramified semisimple element in \(\mathfrak{g}\) with depth \(-r < 0\). A decomposition of \(\Gamma = \sum_{i=d}^{d} \Gamma_i\) in \(\mathfrak{g}\) is called a good factorization if the following hold:

(a) \(\{ \Gamma, \Gamma_d, \ldots, \Gamma_{-1} \}\) is a set of commuting semisimple elements in \(\mathfrak{g}\);
(b) depth(\(\Gamma_{-1}\)) \(\geq 0\) and we set \(r_{-1} = 0\);
(c) If \(0 \leq i < d\), then \(\Gamma_i\) is a good element and \(-r_i := \text{depth}(\Gamma_i) < 0\);
(d) \(\Gamma_d \in Z(\mathfrak{g})\);
(e) If \(\Gamma_d = 0\) (called Case I), then \(-r_{d-1} < \cdots < -r_0 < 0\) and we set \(r_d := r_{d-1} = r\);
(f) If \(\Gamma_d \neq 0\) (called Case II), then \(-r_d < -r_{d-1} < \cdots < -r_0 < 0\) where \(r_d := r = -\text{depth}(\Gamma_d)\).

Fix a good factorization of \(\Gamma\) as above. We define \(G^d = G\) and \(G^i = Z_{G^{i+1}}(\Gamma_i)\) for \(0 \leq i \leq d - 1\).

Remarks. 1. Good factorization of \(\Gamma\) exists. It is not unique but the set \(\{ G^i : 0 \leq i \leq d \}\) are independent of the choice of the good factorization (cf. [17, Prop. 4.7]).

2. By [17, Remarks 5.10], \(\Gamma_{-1}\) plays no role in the construction of supercuspidal data. In general, we always assume \(G^0 = Z_G(\Gamma)\). For example, this could be achieved via replacing \(\Gamma\) by \(\Gamma - \Gamma_{-1}\). By the argument in [Section 4.1] the condition \(G^0 = Z_G(\Gamma)\) is equivalent to \(\Gamma_{-1} \in Z(\mathfrak{g}^0) = F'[\Gamma_d, \ldots, \Gamma_0]\) for one (and so for any) good factorization \(\Gamma = \sum_{i=-1}^{d} \Gamma_i\) where \(F' := Z(D)\) is the center of \(D\).

3.3. Tamely ramified supercuspidal representations for classical groups. We now quickly review the notion of supercuspidal data and the constructions of supercuspidal representations.

We only study classical groups that appear in Type I dual pairs. Let \(G\) be such a classical group. In this case, the center \(Z(G)\) is anisotropic so the reduced building and the extended building of \(G\) are the same. Therefore we will use \(x\) instead of its image \([x]\) in the reduced building (cf. [38]).

Under our assumption that \(p\) is big enough, the exponential map exp is well defined on \(\bigcup_{x \in B(\mathfrak{g})} \mathfrak{g}_{x, 0^+}\). Let \(\exp\) denote the inverse map whenever it makes sense.

3.3.1. For an element \(\Gamma \in \mathfrak{g}\), we define a function \(\psi_\Gamma\) on the domain of log by

\[
\psi_\Gamma(g) := \psi_\mathfrak{g}(\mathbb{B}(\log(g), \Gamma))
\]

Definition 3.4. A supercuspidal datum for \(G\) is a tuple \(\Sigma = (x, \Gamma, \phi, \rho)\) satisfying the following conditions:
(a) Γ is a tamely ramified semisimple element in \mathfrak{g} which admits a good factorization
\[\Gamma = \sum_{i=-1}^{d} \Gamma_i \text{ such that } \Gamma_{-1} \in F[\Gamma_d, \cdots, \Gamma_0]; \]
(b) The center $Z(G^0)$ of the connected component $^0G^0$ of $G^0 := Z_{\Gamma}(G)$ is anisotropic;
(c) The point x is a vertex in $\mathcal{B}(G^0)$, i.e. the connected component of $G^0_x := \text{Stab}_{G^0}(x)$
is a maximal parahoric subgroup in G^0;
(d) $\phi : G^0_x \to \mathbb{C}^\times$ is a character such that $\phi|_{G^0_{x,0^+}} = \psi_{\Gamma}|_{G^0_{x,0^+}}$. Note that $G^0_{x,0^+}$ is the pro-p unipotent radical of G^0_x;
(e) ρ is an irreducible cuspidal representation of the finite group $G^0_x := G^0_x/G^0_{x,0^+}$.

We define the depth of the datum Σ, denoted by $\text{depth}(\Sigma)$, to be $\max \{ -\text{depth}(\Gamma), 0 \}$. Note that if Σ is a depth zero data, then $\Gamma \in Z(\mathfrak{g})$ by definition.

Remark. If we only require that the G^0_x-module ρ in (e) is irreducible but not necessarily cuspidal, then we call the tuple (x, Γ, ϕ, ρ) a (refined) K-type datum. We will use such K-type data in Definition 5.17 and Section 9.

3.3.2. Let $\Sigma = (x, \Gamma, \phi, \rho)$ be a supercuspidal datum. We fix a good factorization of
\[\Gamma = \sum_{i=0}^{d} \Gamma_i. \]
Since $Z(G^0)$ is anisotropic, there are canonical embeddings of buildings
\[\mathcal{B}(G^0) \hookrightarrow \mathcal{B}(G^1) \hookrightarrow \cdots \hookrightarrow \mathcal{B}(G^{d-1}) \hookrightarrow \mathcal{B}(G^d). \]

We now define some notations and review the construction of supercuspidal G-module π_{Σ} attached to Σ. These notations will be used freely in the rest of the paper.

Definition 3.5. Let Σ be a supercuspidal data. We set

(a) $s_i := r_i/2$,
(b) $K^i := G^0_x G^1_x \cdots G^i_x s_{i-1}$,
(c) $K^i_{0^+} := G^0_{x,0^+} G^1_{x,0^+} \cdots G^i_{x,0^+} = K^i \cap G^0_{x,0^+}$,
(d) $K^i_+ := G^0_{x,0^+} G^1_{x,0^+} G^2_{x,0^+} \cdots G^i_{x,0^+}$,
(e) $K := K^d$, $K^0_+ := K^0_{0^+}$ and $K^d_+ := K^d_+$.

(f) The character ϕ extends to a character of $G^0_x K_+$ by setting $\phi|_{K_+} = \psi_{\Gamma}$. By an abuse of notation, we still denote it by ϕ.

(g) Let κ^i be the canonically constructed irreducible K^i-module such that $\kappa^i|_{K^i_+} = \psi_{\Gamma}|_{K^i_+}$-isotypic. See Appendix A.2.2 for the precise definition. Let $\kappa := \kappa^d$.

(h) Let $\eta_{\Sigma} := \rho \otimes \kappa$, which is an irreducible K-module. Here ρ is identified with its inflation to G^0_x.

(i) Let $\pi_{\Sigma} := \text{c-Ind}_K^{G^0_x} \eta_{\Sigma}$.

Suppose G is a connected reductive group. Yu proves that π_{Σ} is an irreducible supercuspidal representations of G \[^3\text{S}\]. If the residue characteristic of F is big enough (see (3.1)), Kim proves that the set of π_{Σ} exhausts all the supercuspidal representations of connected G \[^1\text{L}\].

Note that every odd orthogonal group is a direct product of a special orthogonal group with $\{ \pm 1 \}$. Hence, the above results of Yu and Kim, as well as those of Hakim-Murnaghan in Section 3.3.3 below, extend to odd orthogonal groups. We will show in Section 3.4 that they also extend to even orthogonal groups.

We call π_{Σ} the supercuspidal representation of G constructed from the datum Σ.
3.3.3. We now describe the equivalence relation on supercuspidal data.

Definition 3.6. Let $\Sigma = (x, \Gamma, \phi, \rho)$ and $\tilde{\Sigma} = (\tilde{x}, \tilde{\Gamma}, \tilde{\phi}, \tilde{\rho})$ be two supercuspidal data. We say that Σ and $\tilde{\Sigma}$ are equivalent with each other if there exists an element $g \in G$ such that

(a) $x = g \cdot \tilde{x}$,
(b) $\text{Ad}_g(\tilde{\Gamma}) \in \Gamma + g_{\rho,0}$ and,
(c) $\tilde{\rho} \otimes \tilde{\phi} \cong (\rho \otimes \phi) \circ \text{Ad}_g$ as G^0_Σ-modules\(^5\).

Remark. Since we assume \[\text{Definition 3.4 (a)}\] in the definition of supercuspidal data, we may further assume $\text{Ad}_g(\tilde{\Gamma}) \in \Gamma + (Z(G^0) \cap g_{\rho,0})$ in \[\text{Definition 3.6 (b)}\] thanks to [19, Lemma 5.1.3 (3)]. On the other hand, a depth zero data (x, Γ, ϕ, ρ) is always equivalent to $(x, 0, 1, \rho \otimes \phi)$ which is considered as a typical representative of the equivalence class.

Let Σ and $\tilde{\Sigma}$ be two supercuspidal data. Hakim and Murnaghan show that π_Σ and $\pi_{\tilde{\Sigma}}$ are isomorphic if and only if Σ and $\tilde{\Sigma}$ differ by an elementary transform, conjugation and refactorization. \[\text{Definition 3.6}\] could be read off from [11, Lemma 6.4, Theorem 6.7] by observing that, in our situation, a) $Z(G)$ is anisotropic so there is no elementary transform; b) the refactorization corresponds to a refactorization of the semisimple element Γ in terms of G^0-good elements, so the notion of “refactorization” also could be suppressed. We now record their theorem as follows.

Theorem 3.7 (Hakim-Murnaghan). Suppose G is a connected classical group, a special orthogonal group or an odd orthogonal group. Let Σ and $\tilde{\Sigma}$ be two supercuspidal data for G. Then $\pi_\Sigma \cong \pi_{\tilde{\Sigma}}$ if and only if Σ and $\tilde{\Sigma}$ are equivalent with each other. \(\square\)

We record following easy consequence of the equivalence of data.

Lemma 3.8. Suppose G be as in \[\text{Theorem 3.7}\]. Let $\Sigma = (x, \Gamma, \phi, \rho)$ be a supercuspidal data for G and let $\kappa = \kappa_\Sigma$. Then the multiplicity space

\[\rho' := \text{Hom}_{K_{\rho,0}}(\kappa, \pi_\Sigma)\]

is isomorphic to ρ as G^0_Σ-modules.

Proof. Let $\tilde{\rho}$ be an irreducible component of ρ'. By [17, Proposition 17.2], $\tilde{\rho}$ is a cuspidal G^0_Σ-module. By Frobenius reciprocity and Yu’s construction, $\pi_\Sigma \cong \pi_{\tilde{\Sigma}}$ where $\tilde{\Sigma} = (x, \Gamma, \phi, \tilde{\rho})$. Now by \[\text{Theorem 3.7}\], $\rho \cong \tilde{\rho}$. Hence, ρ' is ρ-isotypic with multiplicity

\[m_\rho = \text{Hom}_K(\rho, \text{Hom}_{K_{\rho,0}}(\kappa, \pi_\Sigma)) = \text{Hom}_K(\eta_\Sigma, \pi_\Sigma) = \text{Hom}_G(\pi_\Sigma, \pi_\Sigma) = 1.\]

\(\square\)

3.4. **Even orthogonal groups.** We now show that the results of Yu, Kim and Hakim-Murnaghan extend to the even orthogonal groups. The contents in this subsection is well known to the experts. We include the proofs for completeness.

Let V be an even dimensional quadratic space. Let $G = O(V)$ and $^0G = SO(V)$.

Suppose V is anisotropic, then there is nothing to prove. Suppose V is a two dimensional hyperbolic space, then $O(V) = O(1, 1)$. The subgroup $SO(1, 1)$ in $O(1, 1)$ is defined to be a parabolic subgroup since it is the stabilizer of an isotropic subspace. This implies that all representations of $O(1, 1)$ are non-supercuspidal. Therefore it suffices to consider $\dim V > 2$.

For any subgroup H of G, we denote $^0H := ^0G \cap H$. For a subgroup H of G and a H-module τ, we will let $^c\tau$ denote the $\text{Ad}_c(H)$-module defined by $^c\tau(h) = \tau(\text{Ad}_{c^{-1}}H)$.

\[\text{Note that (a) and (b) imply } G^0_\Sigma \cong \text{Ad}_q(G^0_\Sigma)\]
3.4.1. In this section, we only assume that G is a group and $\circ G$ is an index two normal subgroup of G. We first review some simple relationships between irreducible representations of group G and $\circ G$. Let $c \in G \setminus \circ G$. Suppose $\circ \pi$ is an irreducible representation of $\circ G$. Then $\text{Ind}^{\circ G}_{\circ G} \circ \pi|_{\circ G} \cong \circ \pi \oplus \circ(\circ \pi)$. The induced representation $\text{Ind}^{\circ G}_{\circ G} \circ \pi$ is either (I) an irreducible representation of G, which happens if and only if $\circ \pi$ and $\circ(\circ \pi)$ are non-isomorphic as $\circ G$-modules or (II) it is a direct sum of two irreducible G-modules.

Conversely, the restriction of an irreducible representation π of G to $\circ G$ is either (I) a direct sum of two non-isomorphic irreducible $\circ G$-modules or (II) an irreducible $\circ G$-module.

3.4.2. As the basic step, we first show that the theory of depth zero supercuspidal representation of connected group extends to G. Note that $G_x \cap (G \setminus \circ G) \neq \emptyset$ for each vertex $x \in B(G)$.

Let π be a depth zero supercuspidal G-module. We consider its restriction to $\circ G$ and relate to the two cases (I) and (II) in Section 3.4.1 above.

(I) Suppose $\pi|_{\circ G} = \circ \pi_1 \oplus \circ \pi_2$. Then there is a depth zero minimal K-type $(x, \circ \rho)$ of $\circ \pi_1$ where x is a vertex in $B(G)$ and $\circ \rho$ is a cuspidal $\circ G_x$-module. We fix $c \in G_x \cap (G \setminus \circ G)$. By [38, 5.7], $\circ \rho \not\cong \circ \rho$ since $\circ \pi_1 \cong \circ \pi_2 \not\cong \circ \pi_1$. Hence, $\pi = c-\text{Ind}^{G_x}_{\circ G_x} \circ \rho$ where $\rho := \text{Ind}^{\circ G_x}_{\circ G_x} \circ \rho$ is an irreducible cuspidal G_x-module.

(II) Suppose $\pi|_{\circ G}$ is an irreducible supercuspidal. Then it has a minimal K-type $(x, \circ \rho)$ where $x \in B(G)$ is a vertex. Let ρ be the natural representation of G_x on the $G_{x,0+}$-invariant subspace of π. Clearly $\rho|_{G_x} = \circ \rho$. Hence $\pi = c-\text{Ind}^{G_x}_{\circ G_x} \circ \rho$ since $c-\text{Ind}^{G_x}_{\circ G_x} \circ \rho = \circ \pi$ is irreducible.

In summary, Condition D4 and related claims in p. 590 hold for even orthogonal groups.

3.4.3. The centralizer $Z_G(\gamma)$ of a semisimple element $\gamma \in \mathfrak{g}$ is called a twisted Levi subgroup of G if $Z_{\circ G}(\gamma)$ is a twisted Levi subgroup of $\circ G$ p. 586. Therefore a twisted Levi subgroup is a product of general linear groups, unitary groups and at most one even orthogonal group. Combining with Section 3.4.2 above, Yu’s definition of generic G-datum in p. 615] extends to the orthogonal groups without any change.

Our formulation of supercuspidal data follows Kim’s simplification [17, Section 5]. To translate between Kim and Yu’s formulations, we see that the following variation of [17, Lemma 5.5] holds for all twisted Levi subgroups appearing in the construction of supercuspidal representations:

Lemma 3.9. Suppose \tilde{G} is a twisted Levi subgroup of G such that $Z(\circ \tilde{G})/Z(G)$ is anisotropic, γ is a negative depth element in the center of the Lie algebra of G and $x \in B(\tilde{G})$, then there exists a character ϕ of \tilde{G} such that $\phi|_{G_{x,0+}}(g) = \psi(\mathbb{B}(\gamma, \log(g)))$ for every $g \in G_{x,0+}$.

Proof. Since $Z(\circ \tilde{G})/Z(G)$ is anisotropic, \tilde{G} cannot have any $O(1,1)$ factor or general linear group factor. Therefore, the center of the Lie(\tilde{G}) is contained in a product of unitary Lie algebra factors. Now the lemma follows immediately from its connected group version [17, Lemma 5.5].

3.4.4. In this subsection, we refer to Conditions GE1 and GE2 and the notation in § 8]. Let X be a good element in G and let $\tilde{G} := Z_G(X)$ be the corresponding twisted Levi subgroup. This is GE1 under our settings. The following modification of GE2 is clearly implied by GE1 for orthogonal groups:

Claim (GE2’). Let $T \subset \tilde{G} \subset G$ be maximal torus of \tilde{G} and $X \in \text{Lie}(T)$. Let \tilde{F} be the algebraic closure of F. Let X^* be as in p. 596]. Let $W := N_{G(\tilde{F})}(T(\tilde{F}))/T(\tilde{F})$ and
\(\hat{W} := N_{G(F)}(T(F))/T(F) \) be the absolute Weyl groups of \(G \) and \(\hat{G} \) respectively. Then \(Z_W(\hat{X}^*) = \hat{W} \).

3.4.5. Let \(\Sigma = (x, \Gamma, \phi, \rho) \) be a supercuspidal datum of \(G \) as in Definition 3.4. Argue as in [17] Remarks 5.10, there is a datum \((\hat{G}, x, \hat{\Gamma}, \hat{\phi}, \hat{\rho})\) such that \(\phi_i \) is represented by the good element \(\Gamma_i \) and \(\rho \otimes \phi = \hat{\rho} \otimes \prod_{i=0}^{d} \phi_i \). In particular, \(\eta_\Sigma \) constructed in Definition 3.5 in [17] is the same as the \(K \)-type constructed following Yu’s recipe.

3.4.6. We now explain how to extend the proofs in [38] to \(G \).

Theorem 3.10. The representation \(\pi_\Sigma := c\text{-Ind}_K^G \eta_\Sigma \) constructed in Definition 3.3 in [17] is an irreducible supercuspidal representation of \(G = O(V) \).

Proof. In [38] §4, Yu defines conditions SC1, SC2, and SC3, which do not assume that the group is connected so they are applicable to \(G \). We now verify these conditions and then [38 Proposition 4.6] will imply that \(\pi_\Sigma \) is an irreducible supercuspidal representation of \(G \).

First we consider SC1. Its proof in [38] Theorem 9.4 relies on [38] Lemma 8.3 which still applies. In the proof of [38] Lemma 8.3, Yu uses conditions GE1 and GE2 which are satisfied by the discussion in Section 3.4.4. In addition, one also needs the existence of certain integral model of the Moy-Prasad groups. This is clear by viewing the orthogonal group as a symmetric subgroup of the general linear group, see [3].

The condition SC2 is about the existence of Heisenberg-Weil representation. This is taken care of by Appendix A.2.1.

The proof of SC3 takes up [38] §12-13. Though it is long but the proof extends without change to our case. \(\square \)

3.4.7. Next we extend the exhaustion result of [17] to \(G \).

Theorem 3.11. Given (3.1), the set of \(\pi_\Sigma \) exhausts all the supercuspidal representations of \(G = O(V) \).

Proof. Let \(\pi \) be an irreducible supercuspidal representation of \(G \). Then \(\pi \) contains an irreducible supercuspidal representation \(\sigma \) of \(\hat{G} \). By [17], \(\sigma = \sigma_\Sigma \) for some supercuspidal datum \(\Sigma \). Using \(\Gamma \) and \(x \) we define \(G_0^\Sigma \) and \(K \) etc. By Lemma 3.9 we can assume \(\sigma \) extends to a character \(\phi \) of \(G_0^\Sigma \). Let \(\kappa \) be the \(K \)-module defined by the procedure in Appendix A.2.2.

We note that \(K_{0^+} = \sigma(K_{0^+}) \). Define \(\rho' = \text{Hom}_{K_{0^+}}(\kappa, \pi) \) to be the multiplicity space of \(\Sigma \). It is a natural \(G_0^\Sigma \)-module and the \(\rho \)-isotypic subspace \(\rho'[\rho] \neq 0 \). Pick any irreducible \(G_0^\Sigma \)-submodule \(\rho \) in \(\rho'[\rho] \) and define \(\Sigma = (x, \Gamma, \phi, \rho) \). Then \(\pi \) is a submodule of \(\pi_\Sigma = c\text{-Ind}_K^G \eta_\Sigma \). By Theorem 3.10, \(\pi_\Sigma \) is irreducible so \(\pi = \pi_\Sigma \). This completes the proof. \(\square \)

3.4.8. Finally we extend Theorem 3.7 to \(G \).

Theorem 3.12. Let \(\Sigma \) and \(\tilde{\Sigma} \) be two supercuspidal data for \(G = O(V) \). Then \(\pi_\Sigma \simeq \pi_{\tilde{\Sigma}} \) if and only if \(\Sigma \) and \(\tilde{\Sigma} \) are equivalent in the sense of Definition 3.6.

Proof. Suppose \(\Sigma = (x, \Gamma, \phi, \rho) \) and \(\tilde{\Sigma} = (\tilde{x}, \tilde{\Gamma}, \tilde{\phi}, \tilde{\rho}) \). We argue case by case.

(Case A) First we suppose \(G_0^\Sigma \subset \sigma \). Then \(\hat{K} := K_{\Sigma} \subset \sigma \) and \(\Sigma \) is also a supercuspidal datum for \(\sigma \). Fixing \(c \in G \setminus \sigma \), then \(\pi_\Sigma|_{\sigma} = c\text{-Ind}_{\hat{K}}^\hat{G} \eta_\Sigma \oplus c\text{-Ind}_{\hat{K}}^\hat{G} \eta_{\Sigma_1} \), where \(\Sigma_1 := (c \cdot x, \text{Ad}_c \Gamma, \check{\phi}, \check{\rho}) \). On the other hand, let \(\hat{\rho}_1 \) be an irreducible \(\hat{K} \)-submodule in \(\hat{\rho} \) and \(\sigma_1 = (\hat{x}, \hat{\Gamma}, \hat{\phi}|_{G_0^\Sigma}, \hat{\rho}_1) \). Then \(\pi_\Sigma|_{\sigma} \cong \pi_{\Sigma_1}|_{\sigma} \) contains \(c\text{-Ind}_{\hat{K}}^\hat{G} \eta_{\Sigma_1} \). Now by [17], there is a \(g \in \sigma \) such that \(\sigma_{\Sigma_1} \) is equivalent to either \(\Sigma \) or \(\sigma \). In particular, \(\hat{K} \subset \sigma \) so that \(\hat{\rho} = \hat{\rho}_1 \) is an irreducible \(\sigma \)-module. Hence, \(\Sigma \) and \(\tilde{\Sigma} \) are equivalent.
Proof. Theorem 3.14. The representation \(\tilde{\eta}_\Sigma \) which is an irreducible \(\tilde{G}_x \)-module. Using similar proof in Case A, we see that, up to \(G \)-conjugacy, \(\hat{x} = x, \hat{\Gamma} \in \Gamma + g_{x,0} \) and \((\hat{\rho} \otimes \hat{\phi})|_{\tilde{G}_x} \) contains \(\hat{\rho} \otimes (\hat{\phi}|_{\tilde{G}_x}) \). Hence, \(\Sigma \) and \(\hat{\Sigma} \) are equivalent by applying the discussion in Section 3.4.1 to \(K > \tilde{K} \).

(2) Suppose \(\hat{\rho} := \rho|_{\tilde{G}_x} \) is already irreducible. Let \(\hat{\rho} := \rho|_{\tilde{G}_x}, \hat{\phi} = \phi, \kappa = \eta_{\Sigma} \) be the corresponding supercuspidal datum for \(\hat{\rho} \) in the algebraic group case. Then \(\eta_{\Sigma} = \eta_{\Sigma}|_{\tilde{K}} \) is the supercuspidal type of \(\tilde{K} \) determined by \(\hat{\Sigma} \) and \(\pi_{\Sigma}|_{\tilde{K}} = \text{Ind}_{\tilde{K}} G \eta_{\Sigma} \). Again by the argument in Case A, up to \(\tilde{G} \)-conjugacy, we could assume \(\hat{x} = x, \hat{\Gamma} \in \Gamma + g_{x,0}, \hat{\phi} = \phi \) and \(\rho|_{\tilde{G}_x} \cong \hat{\rho}|_{\tilde{G}_x} \). One observes that both \(\rho \) and \(\hat{\rho} \) must be \(\tilde{G}_x \)-submodules in the multiplicity space \(\rho' \) in (3.3). However \(\rho'|_{\tilde{G}_x} \cong \hat{\rho}|_{\tilde{G}_x} \) is irreducible. Hence, \(\rho = \hat{\rho} \).

Remark. As a consequence of Theorem 3.12 Lemma 3.8 also extends to even orthogonal groups. We leave the details to the reader.

3.5. Tamely ramified supercuspidal representation for covering groups. We now state and review some results on tamely ramified supercuspidal representations of \(\tilde{G} \). We will supply some proofs although they follow almost immediately from those in the algebraic group case.\(^6\) Depth zero representations of non-linear covers of \(p \)-adic groups were studied by Howard and Weissman [12].

3.5.1. The supercuspidal data for \(\tilde{G} \) is an extension of the supercuspidal data for \(G \) by a splitting of the covering:

Definition 3.13. A supercuspidal datum for \(\tilde{G} \) is a tuple \(\tilde{\Sigma} = (x, \Gamma, \phi, \rho, \xi) \) such that \(\Sigma = (x, \Gamma, \phi, \rho) \) is a supercuspidal datum for \(G \) as in Definition 3.4 and

\((f) \ \xi: K \to \tilde{K} \) is a splitting of the \(\mathbb{C}^* \)-covering \(\tilde{K} \to K \) such that \(\xi|_{K_0^+} = \Xi|_{K_0^+} \) where \(\Xi \) is the canonical splitting defined in (2.3) and, \(K \) and \(K_0^+ \) are defined in Definition 3.5 with respect to \(\Sigma \). The splitting \(\xi \) induces an identification of \(\tilde{K} \) with \(K \times \mathbb{C}^* \). Let

\[\tilde{\xi}: K \times \mathbb{C}^* \rightsquigarrow \tilde{K} \]

denote the corresponding isomorphism.

Remark. Suppose \(\xi_1 \) is another splitting of \(K \), then \(\xi \) and \(\xi_1 \) differ by a character. More precisely we have a character

\[(3.5) \quad \mu_{\xi_1, \xi}: K \to \mathbb{C}^* \quad \text{given by} \quad \mu_{\xi_1, \xi}(k)\xi_1(k) = \xi(k) \quad \text{for all} \ k \in K. \]

3.5.2. Let \(\tilde{\Sigma} = (x, \Gamma, \phi, \rho, \xi) \) be a supercuspidal datum for \(\tilde{G} \). We assume all the notations in Section 3.3.2 We let

\[(3.6) \quad \tilde{\eta}_\Sigma := (\eta_{\Sigma} \otimes \text{id}_{\mathbb{C}^*}) \circ \tilde{\xi}^{-1} \]

which is an irreducible \(\tilde{K} \)-module and let

\[\tilde{\pi}_\Sigma := c\text{-Ind}_{\tilde{K}} \tilde{\eta}_\Sigma. \]

Theorem 3.14. The representation \(\tilde{\pi}_\Sigma \) is an irreducible supercuspidal representation.

Proof. Let \(I(\eta_{\Sigma}) := \{ g \in G \mid \text{Hom}_{K_0^+ K}(\eta_{\Sigma}, g\eta_{\Sigma}) \neq 0 \} \) be the set of intertwiners of \(\eta_{\Sigma} \). We will follow the proof of [38] Proposition 4.6] in which Yu proves that

\[(3.7) \quad I(\eta_{\Sigma}) = K. \]

\(^6\)The essences of most proofs for the algebraic groups are related to the positive depth parts. Hence these proofs translate to our case by identifying the positive depth parts via the canonical splitting \(\tilde{G} \).
proof to our theorem, it suffices to show that the set
\[I(\tilde{\eta}_E) := \left\{ \tilde{g} \in \tilde{G} \mid \text{Hom}_{\tilde{K} \cap K}(\tilde{\eta}_E, \tilde{\eta}_E) \neq 0 \right\} \]
of intertwiners of \(\tilde{\eta}_E \) is exactly \(\tilde{K} \). Fix \(\tilde{g} \in \tilde{G} \) and let \(g \) be its image in \(G \). Note that the adjoint action of \(\tilde{G} \) factors through \(G \). Then
(a) \(\tilde{\eta} \tilde{K} \cap \tilde{K} = \tilde{K} \cap K \) which we identified with \((\rho K \cap K) \times \mathbb{C}^x \) using \(\xi \) in \([3,4]\), and
(b) \(\tilde{\eta}_E|_{\tilde{K} \cap K} = (\eta_E \otimes \text{id}_\mathbb{C}) \circ \xi^{-1}|_{\tilde{K} \cap K} \).
Therefore, we have \(I(\tilde{\eta}_E) = I(\eta_E) \) which is \(\tilde{K} \) by \([3,7]\). \(\square \)

Definition 3.15. We call \(\tilde{\pi}_E \) the supercuspidal representation of \(\tilde{G} \) attached to the datum \(\tilde{\Sigma} \).

3.5.3.
Now we describe the equivalence of supercuspidal data for covering groups.

Definition 3.16. Let \(\tilde{\Sigma} = (x, \Gamma, \phi, \rho, \xi) \) and \(\hat{\Sigma} = (\hat{x}, \hat{\Gamma}, \hat{\phi}, \hat{\rho}, \hat{\xi}) \) be two supercuspidal data for \(\tilde{G} \). We say that \(\tilde{\Sigma} \) and \(\hat{\Sigma} \) are *equivalent* data if there exists an element \(g \in G \) such that
(a) \(x = g \cdot \hat{x} \),
(b) \(\text{Ad}_g(\hat{\Gamma}) \in \Gamma + \mathfrak{g}_{x,0} \) and
(c) \((\rho \otimes \hat{\phi}) \otimes \text{id}_{\mathbb{C}^x} \circ \xi^{-1} \cong (\rho \otimes \phi) \otimes \text{id}_{\mathbb{C}^x} \circ \hat{\xi}^{-1} \circ \text{Ad}_g \) as \(G^0_{2x} \)-module.\(^7\)

We remark that Condition (c) is equivalent to
(c') \(\hat{\rho} \otimes \hat{\phi} \otimes \mu_{\xi, \xi'} \cong (\rho \otimes \phi) \circ \text{Ad}_g \) as \(G^0_{2x} \)-module where \(\mu_{\xi, \xi'} \) is defined by \([3,5]\) and \(\xi' := \text{Ad}_{g^{-1}} \circ \xi \circ \text{Ad}_g \).

Since our choices of splittings agree on the pro-unipotent part, \(\mu_{\xi, \xi'} \) is a character that is trivial on \(G^0_{x,0+} \), i.e. a character of \(G^0_y := G^0_{x,0}/G^0_{x,0+} \). Condition (c') is simpler and seems easier to check because \(\mu_{\xi, \xi'} \) is trivial in most of the cases (cf. \([26]\)).

The following theorem is a variation of a result in \([11]\). The reader may consult \([11]\) for notations when reading the proof and should note that the notations in the proof may not agree with other parts of our paper.

Theorem 3.17. Let \(\tilde{\Sigma} = (x, \Gamma, \rho, \phi, \xi) \) and \(\hat{\Sigma} = (\hat{x}, \hat{\Gamma}, \hat{\rho}, \hat{\phi}, \hat{\xi}) \) be two supercuspidal data. Then \(\tilde{\pi}_E \cong \hat{\pi}_E \) if and only if \(\tilde{\Sigma} \) and \(\hat{\Sigma} \) are equivalent with each other.

Proof. Suppose \(\tilde{\Sigma} \) and \(\hat{\Sigma} \) are equivalent. By definition \(\tilde{\eta}_E \) and \(\hat{\eta}_E \) are isomorphic up to \(G \)-conjugacy so \(\tilde{\pi}_E \cong \hat{\pi}_E \).

We now assume \(\tilde{\pi}_E \cong \hat{\pi}_E \). Let \(K \) and \(\hat{K} \) be the compact subgroups determined by \((x, \Gamma) \) and \((\hat{x}, \hat{\Gamma}) \) respectively. Let \(\bullet \mapsto (\bullet)'^y \) denote the operation of taking contragredient.

In order to apply the result in \([11, \S \, 5]\), we make following definitions. We let \(\mathcal{G} := G \times G \) equipped with an involution \(\theta \) sending \((g_1, g_2)\) to \((g_2, g_1)\) and identify \(G \) with the diagonal subgroup of \(\mathcal{G} \). Let \(\Sigma = (x, \Gamma, \rho, \phi) \) and \(\Sigma' = (\hat{x}, -\Gamma, \hat{\rho}, \hat{\phi}) \). We view \(\Psi := \Sigma \times \Sigma' \) as a supercuspidal datum for \(\mathcal{G} \).

\(^7\)Here \(\text{Ad}_g \) acts on \(\tilde{G} \) since the adjoint action factors through the center.
The \tilde{G}-module $\hat{\pi}_\Sigma \otimes (\hat{\pi}_\Sigma')^\vee$ factors to a G-module and we have

$$\mathcal{C} = \text{Hom}_G(\hat{\pi}_\Sigma \otimes \hat{\pi}_\Sigma', 1) = \text{Hom}_G((c\text{-Ind}_{G_x}^{\tilde{G}} \eta_{G_{x+}}) \otimes \eta_{G_{x-}}, 1) \cong \sum_{g \in K \cap G_x} \text{Hom}_{K \cap G_x}(\eta_{G_{x+}} \otimes g \eta_{G_{x-}}, 1).$$

Therefore, exactly one term of the above summation is non-vanishing and of dimension 1. By replacing $\hat{\Sigma}$ by its G-conjugate, we may assume that

$$\text{(3.8)} \quad \text{Hom}_{K \cap G_x}(\eta_{G_{x+}} \otimes \eta_{G_{x-}}, 1) = \mathcal{C}.$$

By Section 2.3.1, $\xi|_{K \cap K_+} = \hat{\xi}|_{K \cap K_+}$. Hence (3.8) implies

$$\text{Hom}_{K \cap K_+}(\psi_1 \otimes \psi_{-\hat{\gamma}}, 1) \neq 0.$$

This means Ψ is weakly compatible with the involution θ in the sense of [11] Definition 5.6. Now [11] Proposition 5.7 implies that Ψ is weakly θ-symmetric up to a conjugation of $K \times K$. By the definition of weakly θ-symmetric in [11] Definition 3.13, we may assume $\Gamma = \hat{\Gamma}$ and so $G^0 = Z_G(\hat{\Gamma}) = Z_G(\Gamma) = G^0$.

Since we are in the “group case”, the theorem could be proven by reducing to the depth zero case: Thanks to [17] Lemma 5.5, we can fix a character ϕ_0 of G^0 extending $\psi_1|_{\sigma_{b^+}}$. Consider the depth zero supercuspidal data $\hat{\Sigma}_0 := (x, 0, 1, \rho \otimes \phi \otimes \phi_0^{-1}, 1, \xi)$ and $\hat{\Sigma}_0 := (x, 0, 1, \rho \otimes \phi \otimes \phi_0^{-1}, 1, \xi)$. Let $\eta_{\hat{\Sigma}_0}$ and $\tilde{\eta}_{\hat{\Sigma}_0}$ be depth zero supercuspidal K-types of \tilde{G}^0 defined by data $\hat{\Sigma}_0$ and $\hat{\Sigma}_0$ respectively. Restricting (3.8) to $G^0_x \cap \tilde{G}^0_x$ gives

$$0 \neq \text{Hom}_{\tilde{G}^0_x \cap G^0_x}(\tilde{\eta}_{\hat{\Sigma}_0} \otimes \eta_{\hat{\Xi}_0}, 1) = \text{Hom}_{G^0_x \cap G^0_x}(\eta_{\hat{\Xi}_0} \otimes \eta_{\hat{\Sigma}_0}, 1)^{\otimes m},$$

where m is certain multiplicity. On the other hand, $\text{Hom}_{G^0_x \cap G^0_x}(\tilde{\eta}_{\hat{\Xi}_0} \otimes \eta_{\hat{\Sigma}_0}, 1) \neq 0$ implies the depth zero supercuspidal G^0-modules $\pi_{\hat{\Xi}_0} = c\text{-Ind}_{G^0_x}^{G^0} \tilde{\eta}_{\hat{\Xi}_0}$ and $\pi_{\hat{\Sigma}_0} = c\text{-Ind}_{G^0_x}^{G^0} \eta_{\hat{\Sigma}_0}$ are isomorphic to each other. Since all depth zero unrefined minimal K-types are associates (see [12] Proposition 3.6), there is an element $g \in G^0$ such that $x = g \cdot \hat{x} \in B(G^0) = B_{\text{red}}(G^0)$ and $((\rho \otimes \phi \otimes \phi_0^{-1}) \otimes \text{id}_{C^\times}) \circ \xi^{-1} \circ \text{Ad}_{g} \cong ((\rho \otimes \phi \otimes \phi_0^{-1}) \otimes \text{id}_{C^\times}) \circ \xi$ as \tilde{G}^0_x-modules. This finishes the proof of the theorem.

3.5.4. We will extend the results of [17] to every covering group \tilde{G} appearing in a type I dual pair. More precisely we will show that the set of $\hat{\pi}_\Sigma$ exhausts all the genuine supercuspidal representations of \tilde{G} under the assumption that p is big enough. Gan and Kim are currently preparing a manuscript on such kinds of non-linear covering groups [9].

Since all covering groups in this paper occur in a type I dual pair, these are split central covering groups except the odd orthogonal-metaplectic dual pairs. Therefore Kim’s exhaustion result applies except for metaplectic groups. We now show that the exhaustion for metaplectic groups could be obtained from that of odd-orthogonal groups:

Corollary 3.18. Let V' be a symplectic space over F of even dimension n. Let Mp be the metaplectic C^\times-cover of $Sp(V')$. Suppose $p \geq \max \{2n+3, e_F(n+1)+2\}$ where e_F is the ramification index of F/\mathbb{Q}_p. Then every genuine supercuspidal representation of Mp is of the form $\pi_{\hat{\Sigma}}$ where Σ is a supercuspidal data of Mp.

8Here “genuine” means the restriction of the representation on C^\times is the scalar multiplication id_{C^\times}.
Proof. Let \(\pi' \) be an irreducible supercuspidal genuine \(\text{Mp} \)-module. By the conservation relation \[36\], there is an odd dimensional quadratic space \(V \) such that (i) \(\dim_F V \leq n + 1 \), (ii) \((G, G') = (U(V), U(V')) \) form a type I dual pair so that \(\tilde{G}' = \text{Mp} \) and (iii) \(\pi' = \theta_{V,V'}(\pi) \) for an irreducible supercuspidal genuine \(\tilde{G}' \)-module. By Proposition 3.1 both \(U(V) \) and \(U(V') \) satisfy Kim's hypotheses \[17, \S 3.4\]. Hence there is a supercuspidal data \(D \) such that \(\pi' = \pi_{\Sigma} \) by \[17\]. This is the starting point of the proof of part (iii) of the main theorem in Section 9.1 Using Proposition 9.1 the proof gives supercuspidal data \(\Sigma \) and \(\Sigma' \) such that \(D \) and \(\Sigma \) are equivalent (i.e. \(\pi = \pi_{\Sigma} \)) and \(\pi' = \pi'_{\Sigma'} \). In particular, \(\pi' \) is realized as a supercuspidal representation of \(\tilde{G}' \) attached to the supercuspidal datum \(\Sigma' \). This finishes the proof. \(\square \)

Remark. The proof of Proposition 9.1 does not depend on Kim's work on exhaustion except a variation of \[17\, \text{Proposition 17.2}\]. Hence there is no circular reasoning.

4. Good factorizations and block decompositions

In this section, we first construct GL-good factorizations which will be used in Section 6. Then we will define a notion of block decompositions for supercuspidal data. The theta lifting map of supercuspidal data in Section 5 is defined based on this notion. We remark that parts of the treatment resemble those of \[34\, \S 3\].

4.1. GL-good factorization. We now construct a good factorization of a tamely ramified semisimple element \(\Gamma \in \mathfrak{g} \) following Howe \[13\]. Let \(F' := Z(D) \) be the center of \(D \) which is also identified with the center of \(\text{End}_D(V) \).

Let \(A := F'[\Gamma] \subseteq \text{End}_D(V) \). Then \(A \) is isomorphic to a product \(\prod_{j \in J} F_j \) of (tamely ramified) finite extensions of \(F' \) where \(J \) is a finite index set. Furthermore, we have factorization of the \(A \)-module \(V = \bigoplus_j V_j \) where \(V_j \) is an \((F_j, D) \)-bimodule. Since \(\Gamma^* = -\Gamma \), * induces an involution on \(A \) and on the set \(J \) respectively. An orbit of the *-action on \(J \) has at most 2 elements. Therefore we have a decomposition of \(J \) and \(A \) such that

\[
(A1) \quad J = J_0 \sqcup J_1 \sqcup *\langle J_1 \rangle \quad \text{and} \quad A = F'[\Gamma] = \prod_{j \in J_0} F_j \times \prod_{j' \in J_1 \setminus J_0} (F_j^+ \times F_j^-) \quad \text{where} \quad F_j^+ := F_j \quad \text{and} \quad F_j^- := F_{j'}(j) \quad \text{for} \quad j \in J_0;
\]

\[
(A2) \quad \text{the *-action is an involution or the identity on the field} \quad F_j \quad \text{when} \quad j \in J_0.
\]

\[
(A3) \quad \text{the *-action permutes} \quad F_j^+ \quad \text{and} \quad F_j^- \quad \text{when} \quad j \in J_1.
\]

Lemma 4.1. Let \(\mathbf{G}^0 \) be the connected component of \(G^0 := Z_G(\Gamma) \). Let \(\mathfrak{g}^0 \) be its Lie algebra and let \(\mathfrak{g}^0 := Z_{\mathfrak{gl}_2(V)}(\Gamma) \). Then

(i) \(Z(\mathfrak{g}^0) = F'[\Gamma] \);

(ii) the center \(Z(\mathbf{G}^0) \) is anisotropic if and only if (a) \(J_1 = \emptyset \) in the decomposition (A1) and (b) there is no SO(1,1)(F) factor in \(\mathbf{G}^0 \);

(iii) \(Z(\mathfrak{g}^0) = F'[\Gamma] \cap \mathfrak{g} \) when the equivalent conditions in part (a) holds.

Proof. Let \(D_j := F_j \otimes_{F'} D \). Then \(D_j \) is a central simple algebra over \(F_j \) and \(D[\Gamma] = \prod_j D_j \). Hence \(\mathfrak{g}^0 = Z_{\mathfrak{gl}_2(V)}(\Gamma) = \prod_j \text{End}_{D_j} V_j \) where each factor \(\mathfrak{g}_j := \text{End}_{D_j} V_j \) is a central simple algebra over \(F_j \). This proves part (a).

The *-action permutes \(\mathfrak{g}_j \) and \(\mathfrak{g}_{j'}(j) \). If \(j \in J_0 \), then the form \(\langle \cdot, \cdot \rangle_{V_j} \) restricted on \(V_j \) is non-degenerate. If \(j \in J_0 \) and \(F_j \neq F' \), then the *-action on \(F_j \) is nontrivial since \((\Gamma|_{V_j})^* = -\Gamma|_{V_j} \). In this case, \(U_j := \{ g \in \text{End}_{D_j}(V_j) \mid g^*g = \text{id}_{V_j} \} \) is a unitary group.

\[9\text{This is because} \quad F_j \quad \text{could be equal to} \quad F \quad \text{in certain cases. For example, if} \quad D = F \quad \text{and} \quad \Gamma \quad \text{is not a full rank matrix, then} \quad F[\Gamma] \cong F \oplus (F[x]/P(x)) \quad \text{where} \quad P \quad \text{is the minimal polynomial of} \quad \Gamma.\]
defined over the $*$-fixed point sub-field F_j^* of F_j. In summary, we have
\[G^0 = \prod_{j \in J \setminus 0} \text{GL}_{D_j}(V_j) \times \prod_{j \in J_0, F_j \neq F} U_j \times \prod_{j \in J_0, F_j = F} U(V_j). \]
Now part (ii) and part (iii) follow. □

By Lemma 4.1 and Definition 3.4 (b), we may and will assume that $J_1 = \emptyset$ and (A3) will not happen since we only study those Γ which are contained in supercuspidal data. Lemma 4.2 and Proposition 4.3 below also apply to $J_1 \neq \emptyset$. We will leave the details to the reader.

Lemma 4.2. Let $\gamma \in \mathfrak{g}$ be a tamely ramified semisimple element. If it is $\text{GL}_D(V)$-good, then it is G-good.

Proof. It is enough to prove this lemma after a base change to a tamely ramified extension of F such that Γ is contained in a split Cartan subalgebra of \mathfrak{g}. Since the set of roots of \mathfrak{g} is the restrictions of a subset of roots of $\text{gl}_D(V)$, the lemma follows. □

Proposition 4.3. Let Γ be a tamely ramified semisimple element in \mathfrak{g}. Then there is a G-good factorization $\Gamma = \sum_{i=1}^d \Gamma_i$ such that Γ_i is $\text{GL}_D(V)$-good for $0 \leq i \leq d$.

The construction of the factorization is essentially the Howe factorization.

Proof. We fix a uniformizer ϖ_F of F. We recall that $A = F'[\Gamma] = \prod_{j \in J} F_j$ is a product of fields.

First we assume that the product has only one factor, i.e. $\Gamma \neq 0$ and $A = F'[\Gamma]$ is a field. Let e_A be the ramification index of A/F. Suppose Γ has valuation $\frac{k}{e}$ such that k and e are coprime. Consider $b := \varpi_F^{-k} \Gamma^e$. Then $b \in \sigma_A \setminus p_A$. Let C be the set of roots of unity in $F'[\Gamma]$. Then $(b + p_A) \cap C$ has a unique element, say \hat{b}.

Claim 1. The equation $\varpi_F^{-k} \gamma^e = \hat{b}$ has a unique solution $\gamma = \hat{\gamma}$ in A such that $\Gamma \equiv \hat{\gamma}$ (mod $p_A^{\frac{k}{e} + 1}$). Moreover $\hat{\gamma}^* = -\hat{\gamma}$, i.e. $\hat{\gamma} \in \mathfrak{g}$.

Proof. Note that $p \nmid e$. Hence the map $1 + p_A \rightarrow b + p_A = b(1 + p_A)$ given by $1 + x \mapsto b(1 + x)^e$ is a surjection (in fact it is a bijection) for any $b \in \sigma_A \setminus p_A$. Therefore $\varpi_F^{-k} \gamma^e = \hat{b}$ has a solution $\gamma = \Gamma(1 + x)$ for certain $x \in p_A$. On the other hand, all solutions of $\varpi_F^{-k} \gamma^e = \hat{b}$ are of the form $\gamma := c\hat{\gamma}$ such that $c^e = 1$. However among them only $\hat{\gamma}$ satisfies $\Gamma \equiv \hat{\gamma}$ (mod $p_A^{\frac{k}{e} + 1}$). This proves the first assertion of the claim.

Both $\hat{\gamma}^*$ and $-\hat{\gamma}$ are solutions of $\varpi_F^{-k} \gamma^e = \hat{b}^* = (-1)^e \hat{b}$ and $\hat{\gamma}^* \equiv \Gamma^e \equiv -\Gamma \equiv -\hat{\gamma}$ (mod $p_A^{\frac{k}{e} + 1}$). Hence $\hat{\gamma}^* = -\hat{\gamma}$ by the uniqueness of the first part. This finishes the proof of the claim. □

Next we consider the general case when $F'[\Gamma] = A = \prod_{j \in J} F_j$ is a product of fields. Let Γ_j denote the F_j component of Γ to F_j. Let $-r_j$ denote the valuation of Γ_j and let $-r = \frac{k}{e}$ denote the depth of Γ where k and e are coprime integers. Let $b_j = \varpi_F^{-k} \Gamma_j^e \in \sigma_{F_j} \setminus p_{F_j}$ when $r_j = r$. Define \hat{b}_j and $\hat{\gamma}_j$ as before. Let $\beta_1 = \sum_{r_j = r} \hat{\gamma}_j$.

Claim 2. The element β_1 is $\text{GL}_D(V)$-good.

Proof. We could base change to a tamely ramified extension E of F which at least contains a c-th root ϖ_E of ϖ_F and sufficiently many roots of unity so that β_1 splits over E.

Each factor $\hat{\gamma}_j$ satisfies $\varpi_E^{-k} \hat{\gamma}_j^e = \hat{b}_j$ and \hat{b}_j is a certain root of unity. The eigenvalue of β_1 is of the form $\zeta \varpi_E^k$ where ζ is a root of unity. The evaluation of β_1 on any root (with
respect to any split maximal torus in \(\mathfrak{gl}(V) \otimes_F E \) containing \(\beta_1 \) is a difference of two eigenvalues. It is either 0 or has valuation \(\frac{d}{r} = -r \). This proves the claim. \(\square \)

Let \(\Gamma' = \Gamma - \beta_1 \). Apply the same construction to \(\Gamma' \) and stop if \(\text{depth}(\Gamma') \geq 0 \). Note that \(\text{depth}(\Gamma') > \text{depth}(\Gamma) \). Moreover the denominator of \(\text{depth}(\Gamma') \) is bounded by the maximum of the ramification index of \(F_j/F \), since \(\Gamma' \subseteq F^\prime[\Gamma] \). Therefore the procedure stops after finitely many steps. We get \(\beta_1, \beta_2, \ldots, \beta_d \) for certain \(d' \geq 1 \). If \(\beta_1 \notin F' \), then we define \(d = d', \Gamma_d = 0 \) and \(\Gamma_{d-i} = \beta_i \) for \(1 \leq i \leq d \). If \(\beta_1 \in F' \), then we define \(d = d' - 1 \), \(\Gamma_d = \beta_1 \) and \(\Gamma_{d-i} = \beta_{1+i} \) for \(1 \leq i \leq d \). Finally we set \(\Gamma_{-1} = \Gamma - \sum_{i=0}^{d} \Gamma_i \).

Now \(\Gamma = \sum_{i=-1}^{d} \Gamma_i \) is the required factorization. \(\square \)

4.2. Block decomposition. Let \(\Sigma = (x, \Gamma, \phi, \rho) \) be a supercuspidal data of \(G = U(V) \).

Let \(\Gamma_j \) be the \(F_j \) component of \(\Gamma \) in \(\prod_{j \in J} F_j \) in Section 4.1 (A1). Let

\[
\{b_r > \cdots > 1_r\} = \{- \text{val}(\Gamma_j) > 0 \mid j \in J\}
\]

be a set of positive numbers arranged in decreasing order where \(b \) is the size of the set. We set

\[
l A := \prod_{\text{val}(\Gamma_j) = -b_r} F_j \quad \forall 1 \leq l \leq b.
\]

For \(l = 0 \), we define \(0 A := \prod_{j \in J} F_j \) where product is taken over those \(j \in J = J_0 \) such that \(\Gamma_j = 0 \) or \(\text{val}(\Gamma_j) \geq 0 \).

Let \(1 \) and \(11 \) be the multiplicative identity elements of \(A \) and \(l A \) respectively. Then we set \(l = l 1 \cdot \Gamma \cdot l 1 \) and \(l V = l 1 \cdot V \). These give

\[
A = F^\prime[\Gamma] = \bigoplus_{l=0}^{b} l A, \quad 1 = \bigoplus_{l=0}^{b} l 1, \quad \Gamma = \bigoplus_{l=0}^{b} l \Gamma \quad \text{and} \quad V = \bigoplus_{l=0}^{b} l V.
\]

It is easy to see that \(\langle , \rangle \) restricted to \(l V \) is non-degenerate and \(V = \bigoplus_{l=0}^{b} l V \) is an orthogonal decomposition\(^1\). We call (4.2) the block decompositions of \(A, 1, \Gamma \) and \(V \) respectively.

Definition 4.4. (a) We say that a supercuspidal datum \(\Sigma = (x, \Gamma, \phi, \rho) \) is a single block of positive depth \(r \) if \(\Gamma_j \) has the same valuation \(-r < 0 \) for all \(j \in J \) in Section 4.1 (A1). Equivalently this means \(\text{depth}(\Gamma) = -r, \Gamma = 1 \Gamma \) and \(V = 1 V \) in (4.2).

(b) A depth zero supercuspidal datum \(\Sigma = (x, \Gamma, 1, \rho) \) is called a single block of zero depth.

Proposition 4.5. Let \(\Sigma = (x, \Gamma, \phi, \rho) \) be a supercuspidal datum of \(G \). Then there exists an orthogonal decomposition of \(V = \bigoplus_{l=0}^{b} l V \) such that

\[
(i) \quad \Gamma = \bigoplus_{l=0}^{b} l \Gamma \quad \text{where} \quad l \Gamma \in \text{End}_D(l V) \cap g;
(ii) \quad b_r > \cdots > 1_r > 0 = 0_r \quad \text{where} \quad 1_r = \max \{- \text{depth}(l \Gamma), 0\};
(iii) \quad G^0 = \bigoplus_{l=0}^{b} l G^0;
(iv) \quad x = (0_x, \cdots, b_x) \in B(0 G^0) \times \cdots \times B(b G^0) \hookrightarrow B(G);
(v) \quad \phi = 0_\phi \otimes \cdots \otimes b_\phi \otimes 0_\rho \otimes \cdots \otimes b_\rho \text{ as } G^0_x = \prod_{l=0}^{b} l G^0_{x_l}-\text{modules};
(vi) \quad S = (l_1 \in J, 1, \phi, l_1 \rho) \text{ is a single block supercuspidal datum of positive depth } l_1 \text{ for } 1 \leq l \leq b; \text{ and}
(vii) \quad S = (0_1 \in J, 1, \phi, 0_1) \text{ is a single block supercuspidal datum of zero depth.}
\]

Here \(G^0 := Z_G(\Gamma), l G := G \cap \text{End}_D(l V) = U(l V) \) and \(G^0 = Z_{G^0}(1 \Gamma) \) for \(0 \leq l \leq b \) (cf. Section 4.1).

\(^1\)If we set \(\Gamma_{-1} = 0 \), then \(0 V \) is the kernel of \(\Gamma \).
Proof. The proposition is straightforward probably except (iii). Part (iii) follows easily from the fact that \(l \in F^\prime[\Gamma] \) for all \(1 \leq l \leq b \) (cf. (4.2)).

Motivated by the above proposition, we make the following definition.

Definition 4.6. Retaining the notation in Proposition 4.5, we write \(\Sigma = \bigoplus_{l=0}^{b} l \Sigma \) and we call it the block decomposition of \(\Sigma \) (cf. next section). In this situation, we say that \(\Sigma \) has \(b \) blocks (by counting from 0).

In fact, the block decomposition is unique. See [34, Remark 3.3 (iii)] for an elementary argument.

4.3. Direct sum of supercuspidal data

We now define the direct sum of single block supercuspidal data with different depths.

Lemma 4.7. Suppose \(b \) is a positive integer and \(\{ l \Sigma : 0 \leq l \leq b \} \) is a set of supercuspidal data for \(U(\ell V) \) such that

(a) \(\ell V \) is an \(\epsilon \)-Hermitian space;
(b) \(l \Sigma \) has zero depth;
(c) \(l \Sigma \) is single block of positive depth \(\ell r \) for \(1 \leq l \leq b \);
(d) \(b r > \cdots > 1 r > 0 \).

Let \(V := \bigoplus_{l=0}^{b} \ell V \) be the orthogonal direct sum of \(\epsilon \)-Hermitian spaces. Define \(x, \Gamma, \phi \) and \(\rho \) by the formula in Proposition 4.5 (i), (iv) and (v) respectively.

Then \(\Sigma = (x, \Gamma, \phi, \rho) \) is a supercuspidal datum with depth \(\ell r \) for \(U(V) \) called the direct sum of \(\{ l \Sigma \} \) and we write \(\Sigma = \bigoplus_{l=0}^{b} l \Sigma \).

Remark. This construction also induces a notion of direct sum on the set of equivalence classes of data.

Proof. We recall \(G^0 = Z_{U(V)}(\Gamma) \) and \(\ell G = U(\ell V) \) as in Proposition 4.5. We claim that \(G^0 = \prod_{l} \ell G^0 \). Indeed this follows from the observation that, after a certain base change, \(\ell V \) is exactly the direct sum of eigenspaces of \(\Gamma \) whose eigenvalues have valuation \(-l r \) if \(1 \leq l \leq b \). The lemma now follows from this claim and we will leave the details to the reader.

5. Theta Lifts of supercuspidal data

The purpose of this section is to define the notion of theta lifts of supercuspidal data. We first define the lift for a single block of zero depth or positive depth. The general case is defined using direct sum (cf. Section 4.3).

Recall that \(f \) is the residual field of \(F \) and \(f_D \) is the residual field of \(D \) which is at most a quadratic extension of \(f \). We fix an uniformizer \(\varpi_D \in p_D \) such that \(\tau(\varpi_D) = \epsilon_D \varpi_D \) and \(\epsilon_D \in \{ \pm 1 \} \). We retain the notation of Section 2.1.

5.1. Theta lifts of depth zero representations

Local theta lifts between depth zero supercuspidal representations were studied by Pan in [27]. It is reduced to theta correspondences over finite fields. We summarize these results below.

5.1.1. We recall the definition of the dual lattice in Definition 2.3. A lattice \(L \) in \(V \) is called a good lattice if \(L^* p_D \subseteq L \subseteq L^* \).

The set of vertices in \(\mathcal{B}(G) \) naturally corresponds to a subset of good lattices. \[11\]

Let \(L \) be a good lattice in \(V \) corresponding to a vertex \(x \in \mathcal{B}(G) \). Then

(a) \(G_x = \{ g \in G \mid gL = L \} \).

\[11\]Suppose \(x \) is a vertex in \(\mathcal{B}(G) \) and \(\mathcal{L} \) is the corresponding lattice function, then \(\mathcal{L} \mapsto \mathcal{L}_0^+ \) gives the correspondence. The subset of good lattices could be proper, see [52, Example 2.2.3.1].
(b) \(G_{x,0^+} = \{ g \in G \mid (g-1)L^* \subseteq L, (g-1)L \subseteq L^* p_D \} \).

c) The \(f_D \)-modules \(\ell := L/L^* p_D \) and \(\ell^* := L^*/L \) are equipped with \(f_D \)-sesquilinear forms induced by \(\varpi_D^{-1}(\cdot, \cdot)_V \) and \((\cdot, \cdot)_V \) respectively. Clearly \(\ell \) is \(\ell_D \epsilon \)-Hermitian and \(\ell^* \) is \(\epsilon \)-Hermitian.

d) We have \(G_x/G_{x,0^+} \cong U(\ell) \times U(\ell^*) \).

The Witt classes of \(\ell \) and \(\ell^* \) are completely determined by the Witt class of \(V \) but independent of the choices of \(L \) in \(V \). Indeed, the anisotropic kernel of the Witt class of \(\ell \) (resp. \(\ell^* \)) is equal to \(L_{\min}/L_{\min}^* p_D \) (resp. \(L_{\max}^*/L_{\max} \)) where \(L_{\min} \) (resp. \(L_{\max} \)) is a minimal (resp. maximal) good lattice.

Let \(T \) be a Witt class of \(\epsilon \)-Hermitian \(D \)-modules. Let \(\mathcal{T} \) and \(\mathcal{T}^* \) be the corresponding Witt classes of \(\ell \) and \(\ell^* \) determined by \(T \). Then it is clear that there is a map

\[
\Upsilon: \mathcal{T} \times \mathcal{T}^* \longrightarrow \mathcal{T}
\]

\[
(\ell, \ell^*) \longmapsto V
\]

such that \(\dim_{D_\ell} \ell + \dim_{D_{\ell^*}} \ell^* = \dim_D V \), and \(\ell \) and \(\ell^* \) are constructed from a vertex \(x \in \mathcal{B}(U(V)) \).

Definition 5.1.

(a) We say that a pair \((x, \rho)\) is a depth zero \(K \)-type for \(G := U(V) \) when \(x \) is a vertex in \(\mathcal{B}(G) \) and \(\rho \) is an irreducible \(G_x := G_x/G_{x,0^+} \)-module.

(b) Suppose \(\tilde{G} \) is a certain central \(\mathbb{C}^\times \)-covering of \(G \) in (a). We say that a pair \((x, \tilde{\rho})\) is a depth zero \(K \)-type for \(\tilde{G} \) when \(x \) is a vertex in \(\mathcal{B}(G) \) and \(\tilde{\rho} \) is an irreducible \(\tilde{G}_x := \tilde{G}_x/\tilde{G}_{x,0^+} \)-module.

(c) We equip an equivalence relation on the set of depth zero \(K \)-types by \(G \)-conjugacy.

(d) A \(\tilde{G} \)-module \(\tilde{\pi} \) is said to have a depth zero \(\tilde{K} \)-type \((x, \tilde{\rho})\) if \(\tilde{\rho} \) occurs in \(\tilde{\pi}|_{\tilde{G}_x} \).

We warn that the depth zero \(K \)-type in (a) and (d) above is more general than the depth zero minimal \(K \)-type in \([24,25]\) where \(\rho \) must be cuspidal.

Clearly, a depth zero supercuspidal datum \(\Sigma = (x, 0, 1, \rho) \) corresponds to the depth zero \(K \)-type \((x, \rho)\). This gives an embedding of the set of equivalence classes of depth zero supercuspidal datum to the set of equivalence classes of depth zero \(K \)-types. The image precisely consists of the equivalence classes \([x, \rho]\) where \(\rho \) is cuspidal.

5.1.2. We review some basic results of theta correspondences over a finite field. Let \((U(\ell), U(\ell'))\) be a type I reductive dual pair in a symplectic \(f \)-space \(W \) and let \(\varpi_W \) be the oscillator representation of \(\text{Sp}(W) \) with respect to the additive character \(\tilde{\psi} \) (cf. Section 1.1).

Definition 5.2. Let \(\rho \) and \(\rho' \) be irreducible representations of \(U(\ell) \) and \(U(\ell') \) respectively. Then \(\rho \) and \(\rho' \) are said to correspond with each other if \(\rho \otimes \rho' \) is a submodule of \(\varpi_W|_{U(\ell) \times U(\ell')} \). Such correspondence is not one-to-one in general, so we can only say that \(\rho' \) is “a” theta lift of \(\rho \).

If \(\rho \) is cuspidal, then there is at most one \(\rho' \) which corresponds to \(\rho \). In particular, when restricted to cuspidal representations, theta lift still provide an one-to-one correspondence (cf. \([23\text{ Section 3.IV.4}]\)). In this case, we write \(\rho' = \theta_{\ell, \ell'}(\rho) \).

5.1.3. In the definition of lift of data, a zero dual pair (i.e. \(\ell = 0 \) or \(\ell' = 0 \)) may occur as the degenerate case\footnote{Similar notion also applies to dual pairs over other fields.}.

Definition 5.3. A type I reductive dual pair \((U(\ell), U(\ell'))\) defined over the field \(f \) is called a zero dual pair if \(\ell \) or \(\ell' \) is the zero vector space.
In this case, $\text{Sp}(\ell \otimes_{i_D} \ell')$ degenerates to the trivial group and the corresponding oscillator representation is the trivial representation. Since the roles of ℓ and ℓ' are symmetric, we will assume that $\ell = 0$. Then $U(\ell)$ is the trivial group and it has only one representation, namely, the trivial representation $\pi := 1_{U(\ell)}$. Now $\theta_{\ell,\ell'}(\pi)$ is the trivial representation of $U(\ell')$. Note that, the trivial representation of $U(\ell')$ is cuspidal if and only if ℓ' is anisotropic.

5.1.4. Fix a Witt tower T' of ℓ'-Hermitian D-modules. The discussion in Section 5.1.1 also applies to T' and we add primes to extend the corresponding notations.

We fix $V' \in T'$ and a vertex $x' \in B(G')$. Then $(U(\ell), U(\ell'))$ and $(U(\ell'), U(\ell'))$ form two reductive dual pairs over the finite field \mathbb{F}_D. Here the zero dual pair may appear.

Definition 5.4. Let (x, ρ) and (x', ρ') be two depth zero K-types of G and G' respectively. We write $\rho := \rho_1 \boxtimes \rho_2$ and $\rho' := \rho_{1'} \boxtimes \rho_{2'}$, where ρ_0 is an irreducible $U(\phi)$-module with $\phi \in \{ \ell, \ell^*, \ell', \ell'^* \}$. We say (x', ρ') is a (theta) lift of (x, ρ) if ρ_1 is a theta lift of ρ_2 and $\rho_{1'}$ is a theta lift of $\rho_{2'}$.

Now we are ready to state a theorem of Pan.

Theorem 5.5 ([27, Theorem 5.6]). Let $(G, G') = (U(V), U(V'))$ be a type I dual pair over F and $\tilde{\pi} = \theta_{V, V'}(\tilde{\pi})$. Suppose $\tilde{\pi}$ has a depth zero K-type $(x, \tilde{\rho})$. Then there exists a depth zero K-type (x, ρ) and a theta lift (x', ρ') of it such that (see [24, 2.3] for the definition of $\tilde{\xi}_{x,x'}$)

(a) $\tilde{\rho} = (\rho \boxtimes \text{id}_{\mathbb{C}^*)} \circ \tilde{\xi}_{x,x'}^{-1}$, and

(b) $\tilde{\pi}'$ has depth zero K-type $(x', \tilde{\rho}')$ where $\tilde{\rho}' := (\rho' \boxtimes \text{id}_{\mathbb{C}^*)} \circ \tilde{\xi}_{x,x'}^{-1}$. \(\square\)

On the other hand, suppose (x', ρ') is a theta lift of (x, ρ). Let $\tilde{\rho}$ and $\tilde{\rho}'$ be defined as in Theorem 5.5 (m) and (n). Then the $G_x \times G'_{x'}$-module $\tilde{\rho} \boxtimes \tilde{\rho}'$ occurs in $\mathcal{J}(\mathcal{B}_x)_{2\rho_0}$ where $\mathcal{B} = \mathcal{B}_{x,x'}$.

5.1.5. Now let $\Sigma = (x, 0, 1, \rho)$ be a depth zero supercuspidal datum of $U(V)$ and let T' be a fixed Witt tower of ℓ'-Hermitian spaces. Then we have ℓ, ℓ^*, T', T'^* defined in Section 5.1.1. Moreover, $\rho = \rho_1 \boxtimes \rho_2$ with ρ_1 and ρ_2 cuspidal.

Let $\rho_{2*} := \theta_{\ell, T'^*}(\rho_2)$ be the theta lift of ρ_2 such that it is at the first occurrence, say $\ell^* \in T'^*$, with respect to the Witt tower T'^*. Likewise define ℓ' and the $U(\ell')$-module $\rho_1 := \theta_{\ell', T}(\rho_{1'})$. Note that $\rho_1 \boxtimes \rho_{2*}$ is a cuspidal representation. By [5.1], let $V' := T'(\ell^*, \ell'^*) \in T'$ and let x' be the corresponding vertex in $\mathcal{B}(U(V'))$.

Definition 5.6. Define $\Sigma' := (x', 0, 1, \rho_{2*} \boxtimes \rho_{2*'}) \in \mathcal{B}_{V'}$ and call it the theta lift of Σ with respect to the Witt tower T'. Furthermore, the theta lift of data map $\vartheta_{V, T'}$ is defined by

\[
\vartheta_{V, T'}(\Sigma) = [\Sigma']
\]

when restricted on the set of depth zero supercuspidal data. By an abuse of notation, we also write $\Sigma' = \vartheta_{V, T'}(\Sigma) = \vartheta_{V, T'}(\Sigma')$ where Σ' is any element in the equivalence class $[\Sigma']$.

The next corollary follows immediately from the above discussion (cf. [27, § 9]).

Corollary 5.7. The Main Theorem holds when restricted on the set of depth zero supercuspidal representations. \(\square\)

5.2. Theta lift of a single block of positive depth. Throughout this subsection, we assume that $\Sigma = (x, \Gamma, \phi, \rho)$ is a single block datum of positive depth r for $G = U(V)$. Let $s := r/2$ and $\mathcal{L} = \mathcal{L}_x$. Since x is a point in $\mathcal{B}(G^0)$, we have

(1) $\mathcal{L}_{t, r} = \Gamma \mathcal{L}_t$ for all $t \in \mathbb{R} \sqcup \mathbb{R}^+$, and

(2) each element in $\Gamma + g_{x, r-1}$ is invertible with depth $-r$.

Definition 5.8. For $\Gamma \in \mathfrak{g}$ which is invertible in $\mathfrak{gl}(V)$, we define V_Γ to be the $(-\epsilon)$-Hermitian D-module with the same underlying D-module as V and equipped with the form $\langle v_1, v_2 \rangle_{V_\Gamma} := \langle v_1, \Gamma v_2 \rangle_V$ for $v_1, v_2 \in V_\Gamma$.

Remark. In fact, there is an element $w \in W := \text{Hom}_D(V, V_\Gamma)$ such that $M(w) = \Gamma$. Let $\iota \in \text{Hom}_D(V, V_\Gamma)$ be the identity map with respect to the underlying D-modules of V_Γ and V. Let $w := \iota$. Then $w^\ast = \Gamma \circ \iota^{-1}$ and $M(w) = w^\ast w = \Gamma$.

5.2.1. In this subsection, we let V' be an ϵ'-Hermitian D-module such that

$$\dim_D V' = \dim_D V$$

and $\epsilon' = -\epsilon$.

Lemma 5.9. Suppose that there is a $w \in \text{Hom}_D(V, V')$ such that $M(w) \in \Gamma + \mathfrak{g}_{x,-r+}$. By \cite{[12]}, w is an isomorphism of D-modules. We define a lattice function in V' by

$$\mathcal{L}'_t := wL_t+s.$$

Then

(i) Jump$(\mathcal{L}') = \text{Jump}(\mathcal{L}) - s$,

(ii) the lattice function \mathcal{L}' is self-dual and

(iii) \mathcal{L}' is the unique self-dual lattice function on V' such that $w \in (\mathcal{L} \otimes_D \mathcal{L}')_s$.

Proof. (i) This is clear from the definition of \mathcal{L}'.

(ii) For any $v \in V$, $(\langle w, \mathcal{L}'_t \rangle_{V'})_v = \langle vw, w\mathcal{L}_{t+s} \rangle_V = \langle v, w^\ast wL_{t+s} \rangle_V = \langle v, \mathcal{L}_{t+s} \rangle_V$. Therefore $(\mathcal{L}'_t)^* = (w, \mathcal{L}_t, t^a) = \mathcal{L}'_{t^a}$, i.e. \mathcal{L}' is self-dual.

(iii) Clearly, $w \in (\mathcal{L} \otimes_D \mathcal{L}')_s$ by the definition of \mathcal{L}'. Suppose \mathcal{L}' is another self-dual lattice function such that $w \in (\mathcal{L} \otimes_D \mathcal{L}')_s$. Then $\mathcal{L}'_{t^a} = wL_{t+s} \subseteq \mathcal{L}'_{t}$ for all $t \in \mathbb{R}$. Taking the dual lattices gives $\mathcal{L}'_{t^a} = (\mathcal{L}'_t)^* \subseteq (\mathcal{L}'_s)^* = \mathcal{L}'_t$ for all $t \in \mathbb{R}$. Hence $\mathcal{L}' = \mathcal{L}'_t$. \hfill \Box

5.2.2. The following proposition shows the surjectivity of moment maps on certain cosets. This is a key proposition in the single block of positive depth case.

Proposition 5.10. Let \mathcal{L}' be a self-dual lattice in V' and $\mathcal{B} := \mathcal{L} \otimes_D \mathcal{L}'$. Let $w \in \mathcal{B}_s$. Suppose that $M(w) \in \Gamma + \mathfrak{g}_{x,-r+}$. Then

$$M(w + \mathcal{B}_t) = M(w) + \mathfrak{g}_{x,-s+t} \quad \forall t > -s.$$

Proof. We first prove the following claim.

Claim 1. The map

$$w + \mathcal{B}_t \mapsto (M(w) + \mathfrak{g}_{x,-s+t})/\mathfrak{g}_{x,-s+t} \subseteq \mathfrak{gl}/\mathfrak{g}_{x,-s+t}$$

given by $w' \mapsto M(w') + \mathfrak{g}_{x,-s+t}$ is a surjection.

Proof. Let $b \in \mathcal{B}_t$. Since $t > -s$, we have

$$M(w + b) = (w + b)^\ast (w + b) = w^\ast w + w^\ast b + b^\ast w + b^\ast b \equiv M(w) + w^\ast b + b^\ast w \pmod{\mathfrak{g}_{x,-s+t}}.$$

On the other hand, by Lemma 5.9, $X \mapsto wX$ gives an isomorphism $\mathfrak{gl}(V)_{x,s+t} \cong \mathcal{B}_t$. Hence we assume that $b = wX$ for some $X \in \mathfrak{gl}(V)_{x,s+t}$.

Pick a good element $\bar{\Gamma} \in M(w) + \mathfrak{g}_{x,-r} = \Gamma + \mathfrak{g}_{x,-r}$, $w^\ast b + b^\ast w = w^\ast wX + (wX)^\ast w = M(w)X + X^*M(w)$

$$\equiv \bar{\Gamma} X + X^* \bar{\Gamma} \pmod{\mathfrak{g}_{x,-s+t}}.$$

We set $\mathfrak{gl}(V)_{x,t_1,t_2} := \mathfrak{gl}(V)_{x,t_1}/\mathfrak{gl}(V)_{x,t_2}$ for $t_1 < t_2$. Now Claim 1 reduces to the following claim.
Claim 2. The map $\beta: \mathfrak{gl}(V)_{x,s+t:s+t^+} \to \mathfrak{g}_{x,-s+t:-s+t^+}$ defined by $X \mapsto \tilde{\Gamma}X + X^*\tilde{\Gamma}$ is surjective.

Under the $*$-action, $\mathfrak{gl}(V)_{x,-s+t} = \mathfrak{g}_{x,-s+t} \oplus \mathfrak{gl}(V)_{x,-s+t^+}$ where $\mathfrak{gl}(V)_{x,-s+t^+}$ is the $*$-invariant subspace. Under the $\tilde{\Gamma}$-action, we have decomposition $\mathfrak{g} = \mathfrak{g} \oplus \mathfrak{g}^\perp$ where $\mathfrak{g} = Z_g(\tilde{\Gamma})$ and \mathfrak{g}^\perp is the orthogonal complement of \mathfrak{g} in \mathfrak{g} under the G-invariant bilinear form B. We also have a similar decomposition of $\mathfrak{gl}(V)$. Since $\tilde{\Gamma}$ is $*$-skew invariant, these decompositions are compatible with each other.

First assume that $X \in \mathfrak{g}_{x,-s+t}$, i.e. $X^* = -X$. Then $\beta(X) = \tilde{\Gamma}X - X\tilde{\Gamma} = [\tilde{\Gamma}, X]$.

Now [LS Lemma 2.3.4] states that $X \mapsto [\tilde{\Gamma}, X]$ induces an isomorphism

$$\beta: \tilde{\mathfrak{g}}_{x,s+t:s+t^+} \cong \tilde{\mathfrak{g}}_{x,-s+t:-s+t^+}.$$

Since $\mathfrak{g}_{x,s+t:s+t^+} = \tilde{\mathfrak{g}}_{x,s+t:s+t^+} \oplus \tilde{\mathfrak{g}}_{x,-s+t:-s+t^+}$ it is remains to show that $\tilde{\mathfrak{g}}_{x,s+t:s+t^+}$ is in the image of β. Let $\tilde{\mathfrak{g}} = Z_{\mathfrak{gl}(V)}(\tilde{\Gamma})$. Suppose $X \in \tilde{\mathfrak{g}}_{x,s+t:s+t^+}$. Then

$$\beta(X) = \tilde{\Gamma}X + X^*\tilde{\Gamma} = \tilde{\Gamma}X + X\tilde{\Gamma} = 2\tilde{\Gamma}X.$$

Therefore β restrict to an an isomorphism $\tilde{\mathfrak{g}}_{x,s+t} \cong \tilde{\mathfrak{g}}_{x,-s+t}$ which proves Claim 2 and also Claim 1. □

We now prove [Proposition 5.10]. By (5.3) we have $M(w + \mathcal{B}_t) \subseteq M(w) + \mathfrak{g}_{x,-s+t}$. Fix an element $\gamma \in M(w) + \mathfrak{g}_{x,-s+t}$. Clearly $M(w) \in \gamma + \mathfrak{g}_{x,-s+t}$. Let $w_1 := w$ and $t_1 := t$. We construct sequences $\{w_i\}$ and $\{t_i\}$ inductively. Suppose we have $M(w_i) \in \gamma + \mathfrak{g}_{x,-s+t_i}$ for some $w_i \in w + \mathcal{B}_t$. Apply the above claim with $w = w_i$ and $t = t_i$; we get a certain $b_i \in \mathcal{B}_{t_i}$ such that $M(w_i + b_i) \in \gamma + \mathfrak{g}_{x,-s+t_i}$. Let $w_{i+1} := w_i + b_i$ and $t_{i+1} = \max\{t \mid t > t_i, \mathfrak{g}_{x,-s+t} = \mathfrak{g}_{x,-s+t_i}\} \in \text{Jump}(\mathfrak{g}_{x})$ where \mathfrak{g}_{x} denote the lattice function on \mathfrak{g} corresponding to the Moy-Prasad filtration. Clearly $M(w_{i+1}) \in \gamma + \mathfrak{g}_{x,-s+t_i} = \gamma + \mathfrak{g}_{x,-s+t_{i+1}}$. Since $\text{Jump}(\mathfrak{g}_{x})$ is a discrete set in \mathbb{R}, $t_i \to \infty$ and w_i converges to some $w_\infty \in w + \mathcal{B}_t$. Since the moment map is continuous, we have $M(w_\infty) = \lim_{i \to \infty} M(w_i) = \gamma$. This proves the proposition. □

Now we present some corollaries of [Proposition 5.10].

Corollary 5.11. The set of self-dual lattice functions \mathcal{L}' in \mathcal{V}' such that

$$(\Gamma + \mathfrak{g}_{x,r^+}) \cap M((\mathcal{L} \otimes D \mathcal{L}')_{-s}) \neq \emptyset$$

is a G'-orbit.

Proof. Let \mathcal{L}' and \mathcal{L}'' be two self-dual lattice functions in the set. Let $w \in (\mathcal{L} \otimes \mathcal{L}')_{-s}$ such that $M(w) \in \Gamma + \mathfrak{g}_{x,r^+}$. By [Proposition 5.10] we may assume that $M(w) = \Gamma$. By [Lemma 5.9] $\mathcal{L}' = w_\mathcal{L} - w_\mathcal{L} - s_\mathcal{L}$ for all t. Similarly we pick a $\mathcal{L}\mathcal{L}'' = w_\mathcal{L} - s_\mathcal{L}$ for all t. Note that Γ is invertible. By Witt’s theorem (see [8 Section 1.11] and [13 Thm 3.7.1]) there is $g' \in G'$ such that $\mathcal{L}' = g'\mathcal{L}'$. Hence $\mathcal{L}'' = h_\mathcal{L} - s_\mathcal{L}_h = g' \mathcal{L}'_h$ for all t. □

We recall the definition of \mathcal{V}_Γ in [Definition 5.8].

Corollary 5.12. The set of ϵ-Hermitian D-modules

$$\mathcal{V}'_\Gamma = \{\mathcal{V}' \mid \dim_D \mathcal{V}' = \dim_D \mathcal{V} \text{ and } M^{-1}(\Gamma + \mathfrak{g}_{x,-r^+}) \neq \emptyset\}$$

is the isometry class of \mathcal{V}_Γ.

Proof. By the remark after Definition 5.8, we see that \mathfrak{V}_r' contains V_r. Let $V' \in \mathfrak{V}_r'$. By Proposition 5.10, there exists a $w \in \text{Hom}(V,V')$ such that $M(w) = \Gamma$. Now $\langle wv_1, wv_2 \rangle_{V'} = \langle v_1, v_2 \rangle_V$ for all $v_1, v_2 \in V$. In other words w gives an isometry from V_r to V'. This proves the corollary.

Corollary 5.12 shows that V_r is the unique ℓ'-Hermitian D-module V' up to isometry such that $\dim_D V' = \dim_D V$ and there exists a $w \in W$ such that $M(w) \in \Gamma + \mathfrak{g}_{x,r^+}$.

5.2.3. Recall the notation in the beginning of Section 5.2 where $\Sigma = (x, \Gamma, \phi, \rho)$ is a single block supercuspidal datum of positive depth r. We have an isomorphism

$$\Sigma := (\Gamma, \phi, \rho) \sim (\Gamma_0, \phi', \rho')$$

of the choice of the element in the equivalence class Σ.

Let Proposition 5.13. Let $\Gamma = \sum_{i=1}^d \Gamma_i$ be a GL$_D(V)$-good factorization of Γ in \mathfrak{g} (which always exists by Proposition 4.3). Let

$$\Gamma_i' := \Gamma_i w_i^{-1}.$$

Then $\Gamma_i' \in \mathfrak{g}'$ and $\Gamma' = \sum_{j=-1}^d \Gamma_j$ is a GL$_D(V')$-good factorization of Γ' in \mathfrak{g}'.

Proof. Since Γ commutes with Γ_j, we have

$$(\Gamma_j')^* = (w^{-1})^\ast \Gamma_j^* w^\ast = -(w^\ast)^{-1} \Gamma_j w^\ast = -(w^\ast)^{-1} \Gamma_j w = -w^\ast \Gamma_j w^{-1} = -\Gamma_j.$$

This shows that $\Gamma_j' \in \mathfrak{g}'$. Note that $w : V \to V'$ is an isomorphism of D-modules. Hence $\Gamma' = \sum_{j=1}^d \Gamma_j'$ is a GL(V')-good factorization. □

Remarks. We collect some easy consequences of Proposition 5.13

1. By Lemma 4.2, $\Gamma' = \sum_{j=-1}^d \Gamma_j$ is also a G'-good factorization.
2. Γ' satisfies Definition 3.4 (a) with respect to G' and therefore

$$G_0' := Z_{G'}(\Gamma_0', \ldots, \Gamma_0') = Z_{G_0'}(\Gamma') .$$

3. We have an isomorphism

$$\alpha : G_0' \cong G_0^0 \text{ defined by } g \mapsto wgw^{-1}.$$

Thanks to Lemma 5.9, α restricted to an isomorphism $\alpha|_{G_0^0} : G_0^0 \cong G_0^0$.

4. The point $x' \in \mathcal{B}(\mathfrak{g}_0')$ is also a vertex.

Let $\phi' := \phi^* \circ \alpha^{-1}$ and $\rho' := \rho^* \circ \alpha^{-1}$ viewed as a character and a cuspidal representation of $G_{x'}^0/G_{x,0}^0$ respectively. Clearly

$$\Sigma_{\Sigma_{w}} := (x', -\Gamma', \phi', \rho')$$

is a single block supercuspidal datum of positive depth r for $G' = U(V')$.

The following lemma shows that (5.8) is well-defined up to equivalence classes.

Lemma 5.14. Let $\Sigma := (x, \Gamma, \phi, \rho)$ be a single block datum of positive depth r. Let $w \in M^{-1}(\Gamma)$ and define Σ_{w} as in (5.8). Then the equivalence class $[\Sigma_{w}]$ is independent of the choice of the element in the equivalence class $[\Sigma]$ and w.
Proof. First we fix $\Sigma = (x, \Gamma, \phi, \rho)$ in $[\Sigma]$. For any $w \in M^{-1}(\Gamma)$, let Σ'_{ω} denote the datum defined via (5.3). Since $M^{-1}(\Gamma)$ is a single G'-orbit, we see that elements in \{ $\Sigma'_{\omega} \mid w \in M^{-1}(\Gamma)$ \} are G'-conjugates of one another.

Suppose $\Sigma = (\hat{x}, \hat{\Gamma}, \hat{\phi}, \hat{\rho}) \in [\Sigma]$. We will show that Σ'_{ω} and Σ'_w are equivalent. By G-conjugacy, we could assume $\hat{x} = x$ and $\Gamma = \Gamma + \gamma$ such that $\gamma \in Z(\mathfrak{g}^0) \cap \mathfrak{g}_{x,0} \subseteq F'[\Gamma]$ (see Remark after Definition 3.6 and Lemma 4.1) to check that $\dot{\Gamma}$ is independent of the choice of the element in $[\Sigma]$ by Corollary 5.12. We define $\vartheta(\dot{\Sigma}_w)$ to be the equivalence class $[\Sigma] = \dot{\Sigma}_w$. This completes the proof of the lemma. \[\square\]

Claim. Let $F'(\Gamma)^\ast := F'(\Gamma) \cap \mathfrak{g}(V)_{x,0}^{\ast+1}$ be the set of elements in $F'(\Gamma)$ which are \ast-invariant and whose depth is not smaller than r. Then there is an element $c \in F'(\Gamma)^\ast$ such that $M(w(1+c)) = \dot{\Gamma}$.

Proof. By a similar calculation as in (5.3) and (5.4), we have $M(w(1+c)) = \dot{\Gamma}$ if and only if $2c + c^2 = \Gamma^{-1}c$. Observe that $\dot{\Gamma}$ is a product of non-Archimedean local field(s) and $F'(\Gamma)^\ast$ is an ideal in its integral ring. Since $p \neq 2$, the map $F'(\Gamma)^\ast \rightarrow F'(\Gamma)^\ast$ defined by $c \mapsto 2c + c^2$ is a bijection by Hensel’s lemma. Now the claim follows because $\Gamma^{-1}c \in F'(\Gamma)^\ast$. \[\square\]

Let c be the element given by the above claim and $\hat{w} := w(1+c)$. It is straightforward to check that $\dot{\Gamma}' = \dot{\Gamma}' + \gamma'$ with $\gamma' := w(2c + c^2)w^x \in Z(\mathfrak{g}^0) \cap \mathfrak{g}_{x,0}^\ast$. Moreover G^0, x', α', ρ' are exactly the same objects for w and \hat{w}. In other words, Σ'_w and Σ'_w are equivalent. This completes the proof of the lemma. \[\square\]

Definition 5.15. We retain the notation in Lemma 5.14. The isomorphism class of Σ' is independent of the choice of the element in $[\Sigma]$ by Corollary 5.12. We define $\vartheta^+(\Sigma)$ to be the equivalence class $[\Sigma_{\omega,w}] \in \mathcal{D}_{\Sigma'}$. By an abuse of notation, we will also write $\Sigma' = \vartheta^+(\Sigma)$ where $\Sigma' := \Sigma_{\omega,w}$ and w is implicitly fixed.

5.3. The general case. Let $\Sigma = (x, \Gamma, \phi, \rho)$ be a supercuspidal datum of $G := U(V)$. By Definition 4.6, let $\Sigma = B = \bigoplus_{i=0}^b \Sigma_i$ be the block decomposition of Σ into b positive depth blocks $\{ \Sigma_i \mid 1 \leq i \leq b \}$ and a depth zero block Σ_0. In addition, we have $\Gamma = \bigoplus \Gamma_i$ and $V = \bigoplus V_i$.

For any ϵ'-Hermitian D-module V', let $[V']$ represent its Witt class in the Witt group.

Definition 5.16. Let \mathcal{T}' be a fixed Witt class of ϵ'-Hermitian D-modules. We recall $\mathcal{D}_{\mathcal{T}'}$ in (5.2). We set

(a) $\Sigma' := \vartheta^+(\Sigma) \in \mathcal{D}_{V_i}$ for $1 \leq i \leq b$;
(b) $\vartheta \mathcal{T} := \mathcal{T} - \sum_{i=0}^b [\mathcal{V}_i]$ and
(c) $\vartheta \Sigma' := \vartheta_{\mathcal{T},\dot{\mathcal{T}}}(\dot{\Sigma}'_w)$ (cf. Definition 5.6).

Then we define $\vartheta_{\mathcal{T},\dot{\mathcal{T}}}(\dot{\Sigma}') := \bigoplus_{i=0}^b \dot{\Sigma}'_w \in \mathcal{D}_{\mathcal{T}}$.

By an abuse of notation again, we also write $\Sigma' = \vartheta_{\mathcal{T},\dot{\mathcal{T}}}(\Sigma)$ where $\Sigma' = \bigoplus_{i=0}^b \Sigma'$.

Remarks. 1. Note that the Σ_i's have different depths. It follows from Lemma 4.7 that $\Sigma' := \vartheta(\Sigma) = (x', -\Gamma', \phi', \rho')$ is a supercuspidal datum of $U(V')$ for a well-defined $[V'] \in \mathcal{T}'$.

2. In the construction, we get an element $\Sigma' \in \dot{\mathcal{T}}$ such that $\mathcal{T} = M(\dot{\Sigma}')$ and $\mathcal{T}' = M'(\dot{\Sigma}')$ for each $0 \leq i \leq b$. Therefore we get an element

$$w := \bigoplus_{0 \leq i \leq b} \Sigma' \subseteq \bigoplus_{0 \leq i \leq b} \mathcal{T}' \subseteq \mathcal{T} \otimes \mathcal{T}'$$

so that $\Gamma \equiv M(w)$ (mod $\mathfrak{g}_{x,0}$) and $\Gamma' \equiv M'(w)$ (mod $\mathfrak{g}_{x,0}$).
3. In the above definition of \(\vartheta_{V,T'} \), the key is the correspondence of semisimple elements via the moment maps. We expect an explicit description of the correspondences between cuspidal representations of dual pairs over finite fields using similar construction. Indeed there are some partial results in this aspect by Pan [30, 31].

4. The discussions in Sections 3 to 5 extend to \(K \)-type data defined in the remark to [Definition 3.4]. More precisely, the notion of \(K \)-type data extends to the covering group and the notions of equivalence relation, block decomposition, direct sum etc. extend under exactly the same definition as well.

5. Suppose \(\Sigma \) (resp. \(\bar{\Sigma} \)) is a \(K \)-type data for \(G \) (resp. \(\bar{G} \)). Then \(\eta_{\Sigma} \) and \(\bar{\eta}_{\bar{\Sigma}} \) are also defined in the same way.

Definition 5.17. A \(K \)-type datum \(\Sigma' \) is a theta lift of a supercuspidal datum \(\Sigma \) for the dual pair \((U(V), U(V'))\), if

(a) \(\Sigma = \bigoplus_{l=0}^{b} \Sigma_l \) is a block decomposition of a \(K \)-type datum;
(b) \(\Sigma' = \vartheta^+ (\Sigma) \) for \(1 \leq l \leq b \);
(c) \(\theta \Sigma' \) is a (not necessary supercuspidal) depth zero data which is a theta lift of \(\theta \Sigma \) (cf. Definition 5.4);
(d) \(V' = \bigoplus_{l=0}^{b} V' \) and \(\Sigma' = \bigoplus_{l=0}^{b} \rho \Sigma' \).

5.4. An example. To illustrate the content of the definitions made above, we provide the following example which could be considered as a generic case:

Example. Let \(\bar{\Sigma} \) be a supercuspidal datum of \(G \) such that \(V \) is the zero space under the block decomposition (cf. Section 1.2). Equivalently, this means every eigenvalue of \(\Gamma \) over \(F \) has negative valuation when we view \(V \) as an \(F \)-vector space and \(\Gamma \) as an \(F \)-linear map on \(V \). Since \(\Gamma \) is invertible, we let \(V_{\Gamma} \) denote the \(\epsilon \)-Hermitian space in Definition 5.8. Let \(V_{\Gamma}^{V,\Gamma} \) be the anisotropic \(\epsilon \)-Hermitian space in the Witt tower \(T' = [V_{\Gamma}] \). Then the first occurrence of \(\bar{\eta}_{\bar{\Sigma}} \) is at \(V' := V_{\Gamma} \oplus V_{\Gamma}^{V,\Gamma} \) in the Witt tower \(T' \). Using this explicit formula, one may check the conservation relation [36] of the first occurrence indices directly in this case. If \(T' = [V_{\Gamma}] \), then \(\vartheta_{V,T'}(\Sigma) \) is essentially the “contragredient” of \(\Sigma \) (cf. [5,8]). Otherwise, \(\vartheta_{V,T'}(\Sigma) \) is the direct sum of \(\vartheta_{V,[V_{\Gamma}]}(\Sigma) \) and the datum attached to the trivial representation of \(U(V_{\Gamma}^{V,\Gamma}) \).

6. ONE POSITIVE DEPTH BLOCK CASE I: ORBIT STRUCTURE

6.1. Assumptions. Throughout this section, we retain the notation in Section 5.2 and make the following assumptions:

(I) Let \(\Sigma = (x, \Gamma, \phi, \rho) \) be a single block datum with positive depth \(r = 2s \). In particular \(\Gamma \) is an invertible element in \(\text{End}(V) \). We fix a \(\text{GL}(V) \)-good factorization \(\Gamma = \sum_{i=-1}^{d} \Gamma_i \).

(II) The space \((V', \langle \cdot, \cdot \rangle_{V'})\) is isomorphic to \((V_{\Gamma}, \langle \cdot, \cdot \rangle_{V_{\Gamma}})\) and \(w \in \text{Hom}_D(V, V') \) is a fixed element such that \(M(w) = \Gamma \). In particular \(\dim_D V = \dim_D V' \).

We make following definitions:

Definition 6.1. (a) We refer to Cases I and II in Definition 3.3. If we are in Case I, i.e. \(\Gamma_d = 0 \), then we set \(\Gamma_r := \{ 0, \cdots, d - 1 \} \) and \(\Gamma = \Gamma_{d-1} \). Otherwise if we are in Case II, i.e. \(\Gamma_d \neq 0 \), then we set \(\Gamma_r := \{ 0, \cdots, d \} \) and \(\Gamma = \Gamma_d \). Under this definition \(\Gamma \) is a nonzero good element in \(\Gamma + \mathfrak{g}_{x,-s} \). Let \(\bar{\Gamma} := Z_G(\Gamma) \).

(b) Define \(G^i \) with its Lie algebra \(\mathfrak{g}^i \) as in Definition 3.3. In particular \(G^0 = Z_G(\Gamma) \).

(c) Let \(\mathfrak{g}^{i-1}_r \) be the orthogonal complement of \(\mathfrak{g}^{i-1} \) in \(\mathfrak{g}^i \) with respect to the invariant bilinear form \(\mathcal{B} \) in Section 2.1.1, i.e. \(\mathfrak{g}^i = \mathfrak{g}^{i-1} \oplus \mathfrak{g}^{i-1} \). Let \(\mathfrak{g}^{i}_{x,r} = \mathfrak{g}^{i-1} \cap \mathfrak{g}_{x,r} \).
(d) Let $\mathfrak{gl} := \mathfrak{gl}^d := \mathfrak{gl}(V)$ and $\mathfrak{gl}^i = Z_{\mathfrak{gl}^d}(\Gamma_i)$ for $0 \leq i < d$.
(e) Let \mathcal{L} be the self-dual lattice function on V corresponding to x. Let \mathcal{L}' be the self-dual lattice function in V' defined by $\mathcal{L}'_i = x_i \mathcal{L}'_{i+s}$ as in Lemma 5.9 and let x' be the corresponding point in $\mathcal{B}(G_0)$.
(f) Let $\Gamma' = M'(w)$ and $\Gamma' = \sum_{i=1}^d \Gamma_i$ be the good factorization of Γ' given by Proposition 5.13.
(g) We define similar notations for G_0 as in (i) to (d).
(h) Let $\mathcal{B} := \mathcal{L} \otimes \mathcal{L}'$. Then $w \in \mathcal{B}_+$ by Lemma 5.9 (iii).

6.2. Structure of orbits. We apply Definition 3.5 (a)-(e) to data (x, Γ) and (x', Γ'). The purpose of this section is to study the $K \times K'$-orbit of the coset $w + \mathcal{B}_0$ in W/\mathcal{B}_0.

6.2.1. We start by investigating some properties of α and α^\perp by elementary linear algebra.

Lemma 6.2. For any $t \in \mathbb{R}$, we set $t'_l := r - r_{l-1} + t$. Then the following statements hold:

(i) $\alpha(g^l_{x,t}) \subseteq g^l_{x,t}'$ for $0 \leq i \leq d$.
(ii) $\alpha^\perp(g^l_{x,t}) \subseteq g^l_{x,t}'$ for $0 < i < d$.
(iii) $\alpha : g^0 \rightarrow g^0$ is an isomorphism which is the differential of α and $\alpha^\perp(g^0) = 0$.
(iv) $\alpha(g^l_{x,t}) \subseteq g^l_{x,t}'$ for $i \in \mathcal{I}_r$.
(v) The map $\alpha|_{g^l_{x,t}^i} : g^l_{x,t}^i \rightarrow g^l_{x,t}'$ induced by $\alpha|_{g^l_{x,t}^i}$ is an isomorphism for $i \in \mathcal{I}_r$.
Hence, $\alpha|_{g^l_{x,t}^i} : g^l_{x,t}^i \rightarrow g^l_{x,t}'$ and $\alpha|_{g^l_{x,t}^i} : g^l_{x,t}^i \rightarrow g^l_{x,t}'$ are also isomorphisms for $i \in \mathcal{I}_r$.
(vi) $\alpha(g^l_{x,t}) \subseteq g^l_{x,t}'$ for $0 \leq i \leq d$ and so $\alpha(g^l_{x,t}) \subseteq g^l_{x,t}'$ by (i).

Proof. We set $\tilde{X} := wXw^{-1} = \alpha(X) + \alpha^\perp(X)$. By the definition of \mathcal{L}', it is clear that $\tilde{X} \in g^l_{x,t}'$, if and only if $X \in g^l_{x,t}$. Note that $(w^{-1})^\ast = (w^\ast)^{-1}$ and $\tilde{X}^\ast = (wXw^{-1})^* = (w^\ast)^{-1}Xw^\ast$.

(i) Suppose $X \in g^l_{x,t}$. Then $[\tilde{X}, \Gamma_i'] = [wXw^{-1}, w\Gamma_i] = w[X, \Gamma_i]w^{-1} = 0$ for all $i \leq l \leq d$, i.e. $\tilde{X} \in g^l_{x,t}$. Similar argument gives $X^\ast \in \mathfrak{gl}^d$. Now $\alpha(X) = (\tilde{X} - X^\ast)/2 \in g^0$. This shows that $\alpha(g^l_{x,t}) \subseteq g^0$. Since $\tilde{X}^\ast \in g^l_{x,t}^i$ for $X \in g^l_{x,t}$, $\alpha(g^l_{x,t}) \subseteq g^l_{x,t}'$.

(ii) Let $X \in g^l_{x,t}$. Then

$$\alpha^\perp(X) = \frac{1}{2}(wXw^{-1} + (wXw^{-1})^*) = \frac{1}{2}(wXw^{-1} - (w^\ast)^{-1}Xw^\ast)$$

$$= \frac{1}{2}(w^\ast)^{-1}(w^\ast wX - Xw^\ast w)w^{-1} = \frac{1}{2}(w^\ast)^{-1}[\Gamma, X]w^{-1}$$

$$= \frac{1}{2}(w^\ast)^{-1} \left(\sum_{l=1}^d [\Gamma_l, X] \right)w^{-1} = \frac{1}{2}(w^\ast)^{-1} \left(\sum_{l=1}^{i-1} [\Gamma_l, X] \right)w^{-1}.$$

Note that, for any $\tilde{t} \in \mathbb{R}$, we have $w^{-1}\mathcal{L}_{\tilde{t}} = \mathcal{L}_{l+s}$, $(w^\ast)^{-1}\mathcal{L}_{\tilde{t}} = \mathcal{L}_{l+s}'$, $\Gamma_i \mathcal{L}_{\tilde{t}} \subseteq \mathcal{L}_{l-t_r}$, and $X \mathcal{L}_{\tilde{t}} \subseteq \mathcal{L}_{l+t}$ (cf. Section 5.2.1). Hence $\alpha^\perp(X) \in g^l_{x,t'_{r_{l-s-1}}}$.

(iii) This is clear from the definition of α, G_0 and G_0 (cf. Definition 6.1 (a) and (ii)).
6.2.2. We define symplectic forms on \(\mathfrak{g} \) and \(\mathfrak{g}' \) respectively by\(^\text{13}\)

\[
\langle X_1, X_2 \rangle_\Gamma = \mathbb{B}([X_1, X_2], \Gamma) \quad \forall X_1, X_2 \in \mathfrak{g} \quad \text{and} \\
\langle X'_1, X'_2 \rangle_{\Gamma'} = \mathbb{B}([X'_1, X'_2], -\Gamma') \quad \forall X'_1, X'_2 \in \mathfrak{g}'.
\]

We equip \(\mathfrak{g} \oplus \mathfrak{g}' \) with the form \(\langle \cdot, \cdot \rangle_{\Gamma} \oplus \langle \cdot, \cdot \rangle_{-\Gamma'} \).

Lemma 6.3. The map \(\iota : \mathfrak{g} \oplus \mathfrak{g}' \rightarrow W \) given by

\[
(X, X') \mapsto X \cdot w + X' \cdot w = -wX + X'w
\]

is an isometry.

Proof. Let \(X, X_1, X_2 \in \mathfrak{g} \) and \(X', X'_1, X'_2 \in \mathfrak{g}' \). Then

\[
\langle X_1, X_2 \rangle_\Gamma = \mathbb{B}([X_1, X_2], \Gamma) = \frac{1}{2} \text{tr}_F(X_1X_2\Gamma - X_2X_1\Gamma)
\]

\[
= \frac{1}{2} \text{tr}_F(X_1X_2\Gamma - (X_2X_1\Gamma)^\ast) = \frac{1}{2} \text{tr}_F(X_1X_2\Gamma + \Gamma X_1X_2)
\]

\[
= \text{tr}_F(X_1X_2w^\ast w) = -\text{tr}_F((-wX_2)^\ast(-wX_1))
\]

\[
= -\langle X_2 \cdot w, X_1 \cdot w \rangle_W = \langle \iota(X_1), \iota(X_2) \rangle_W.
\]

Similarly, we have

\[
\langle X'_1, X'_2 \rangle_{-\Gamma'} = -\mathbb{B}([X'_1, X'_2], -\Gamma') = -\text{tr}_F(X'_1X'_2\Gamma') = -\text{tr}_F(X'_1X'_2ww^\ast)
\]

\[
= \text{tr}_F((X'_1w)^\ast X'_2w) = \langle X'_1 \cdot w, X'_2 \cdot w \rangle_W = \langle \iota(X'_1), \iota(X'_2) \rangle_W.
\]

\(^{13}\text{Do not confuse with } \langle \cdot, \cdot \rangle_{V_T} \text{ on } V_T \text{ in Definition 5.8.} \)
On the other hand
\[
\langle \iota(X), \iota(X') \rangle_W = \langle -wX, X'w \rangle_W = \text{tr}_F((-wX)^*X'w) = \text{tr}_F(Xw^*X'w)
\]
\[
= \text{tr}_F(w^*X'wX) = \text{tr}_F((X'w)^*(-wX)) = \langle \iota(X), \iota(X) \rangle_W
\]
\[
= -\langle \iota(X), \iota(X') \rangle_W .
\]
Hence \(\langle \iota(X), \iota(X') \rangle_W = 0\). Therefore, \(\iota(g)\) and \(\iota(g')\) are orthogonal to each other. \(\square\)

6.2.3. Let \(\langle , \rangle_\Gamma\) denote the \(\mathfrak{f}\)-symplectic form on \(g_{x,s;s^+}\) induced by \(\langle , \rangle\). Let \(r := \text{Rad}(\langle , \rangle_\Gamma)\) be the radical of \(\langle , \rangle_\Gamma\) in \(g_{x,s;s^+}\). Likewise we define \(\langle , \rangle_{\Gamma'}\) and \(r' := \text{Rad}(\langle , \rangle_{\Gamma'})\).

Lemma 6.4. (i) In Case I (i.e. \(\Gamma_d = 0\)), we have \(r = g_{x,s;s^+}^{d-1}\). In Case II (i.e. \(\Gamma_d \neq 0\)), we have \(\langle , \rangle_\Gamma \equiv 0\) and \(r = g_{x,s;s^+}\).

(ii) Likewise \(r' = g_{x',s;s^+}^{d-1}\) in Case I and \(r' = g_{x',s;s^+}\) in Case II.

Proof. For \(X_1, X_2 \in g_{x,s}\),
\[
(\langle X_1, X_2 \rangle_\Gamma) = B([X_1, X_2], \Gamma) = -B(X_2, [X_1, \Gamma]).
\]
Hence \(r = \{ X_1 + g_{x,s^+} \mid \text{ad}_r(X_1) \in g_{x,s^+}\}\). However \(\text{ad}_r|_{g_{x,s^+}} = \text{ad}_r|_{g_{x,s^+}}\). We get the conclusion in Case I by (5.5). In Case II, we have \(\Gamma = \Gamma_d \in \mathbb{Z}(g)\). So \([X_1, \Gamma] \equiv [X_1, \Gamma] \equiv 0\) (mod \(g_{x,s^+}\)) and \(X_1, X_2 \Gamma \in \mathfrak{p}\). \(\square\)

6.2.4. We recall that \(b := \mathcal{B}_{0,0^+}\) is an \(\mathfrak{f}\)-symplectic space. By [Lemma 6.3] \(\iota\) induces an isometry
\[
\bar{i} : g_{x,s;s^+} \oplus g_{x',s;s^+} \rightarrow b.
\]
Define \(\Delta : g \rightarrow g \oplus g'\) by \(X \mapsto (X, \text{ad}(X))\). It induces an injection
\[
\Delta : g_{x,s;s^+} \oplus g_{x',s;s^+} \rightarrow g_{x,s;s^+} \oplus g_{x',s;s^+}.
\]
Let \(b_+ := \bar{i}(r \oplus r')\). Then \(b_+\) is the radical of \(\text{Im} (\bar{i})\). Let \(b_0 := b_+ / b_+\).

Lemma 6.5. The following statements hold.

(i) \(\overline{\text{d} \alpha} : r \rightarrow r'\) is an isomorphism.

(ii) \(0 \twoheadrightarrow r \xrightarrow{\bar{i}} g_{x,s;s^+} \oplus g_{x',s;s^+} \rightarrow b\) is exact.

(iii) \(b_+ = \bar{i}(r) = \bar{i}(r')\).

(iv) \(\dim g_{x,s;s^+} + \dim g_{x',s;s^+} = \dim b\).

(v) \(b_+ = \text{Im}(\bar{i})\).

(vi) In Case I, the composition of maps
\[
\bar{i} : g_{x,s;s^+} \oplus g_{x',s;s^+} \rightarrow b_+ \rightarrow b_0
\]

is an isomorphism of non-degenerate symplectic spaces over \(\mathfrak{f}\).

(vii) In Case II, \(\text{Im}(\bar{i}) = b_+ = b_+^\perp\) is a maximal isotropic subspace of \(b\) and \(b_0 = 0\).

Proof. Throughout this proof, we let \((X, X') \in g_{x,s} \oplus g_{x',s}\) and we let \((\bar{X}, \bar{X}')\) denote its image in \(g_{x,s;s^+} \oplus g_{x',s;s^+}\).

(i) This follows from [Lemma 6.2 (v)] and [Lemma 6.4].

(ii) Let \(\bar{X} \in r \subseteq g_{x,s;s^+}\). Then
\[
\bar{i} \circ \Delta(X) \equiv -wX + \text{ad}(X)w = (-wX^{-1} + \text{ad}(X))w
\]
\[
= -\text{ad}(X)w \pmod{\mathcal{B}_0^+}.
\]
Since \(r > r_{d-2} \) in Case I (resp. \(r > r_{d-1} \) in Case II), \textbf{Lemma 6.2 (ii)} implies \(\mathfrak{d}_r^-(X) \in \mathfrak{g}_x^{r,s,+} \). Hence \(\mathfrak{d}_r^-(X)w \in \mathfrak{f}_0 \). This proves \(\overline{\alpha}(\mathfrak{t}) \subseteq \text{Ker} \bar{i} \).

Now we show the opposite inclusion. Suppose \(\bar{i}(\bar{X}, \bar{X}') = 0 \). Since \(\bar{i} \) is an isometry, \((\bar{X}, \bar{X}') \in \mathfrak{t} \oplus \mathfrak{t}' = \text{Rad}(\langle \mathfrak{f}, \mathfrak{t} \rangle \oplus \langle \mathfrak{f}, \mathfrak{t}' \rangle) \). Now \(\overline{\mathfrak{a}}(\bar{X}) = (X, \overline{\mathfrak{d}}(\bar{X})) \in \text{Ker} \bar{i} \) so \(\bar{i}(0, \bar{X}' - \overline{\mathfrak{d}}(\bar{X})) = 0 \). Note that \(\bar{i}|_{\mathfrak{g}_x^{r,s,+}} \) is an injection. This implies \(\bar{X}' = \overline{\mathfrak{d}}(\bar{X}) \) and proves the exactness of (ii).

(iii) By (ii), \(\bar{i}(\bar{X}) = -\bar{i}(\overline{\mathfrak{d}}(\bar{X})) \) for \(\bar{X} \in \mathfrak{t} \). Now \(\bar{i}(\mathfrak{t}) = \bar{i}(\mathfrak{t}') \) by part (i).

(iv) Since \(\mathcal{L}_t' = w.\mathcal{L}_{t+s} \), we have \(\mathfrak{g}_x^{t,s,+} \cong \mathfrak{b} \) by \(X \rightarrow wX \). Therefore,

\[
(6.4) \quad \dim \mathfrak{b} = \dim \mathfrak{g}_x^{t,s,+}.
\]

Consider the isomorphism \(\eta : \mathfrak{g}_t \rightarrow \mathfrak{g}_t' \) defined by \(X \mapsto w^*Xw \). Since \((w^*)^* = -w \), we have \(\eta(X)^* = (w^*Xw)^* = -wX^*w = \eta(X^*) \). By reducing to the residue field, \(\overline{\eta} : \mathfrak{g}_x^{t,s,+} \rightarrow \mathfrak{g}_{x'}^{t^\prime,-s-s^\prime} \) induces an isomorphism

\[
\overline{\eta} : \mathfrak{g}_x^{t^\prime,+1} \rightarrow \mathfrak{g}_{x'}^{t^\prime,-1} = \mathfrak{g}_{x',-s,-s^\prime} \cong \text{Hom}_i(\mathfrak{g}_x^{t^\prime,s,+}, \mathfrak{f}).
\]

Therefore

\[
(6.5) \quad \dim \mathfrak{g}_x^{t,s,+} = \dim \mathfrak{g}_x^{t,s,+} + \dim \mathfrak{g}_{x,s,-}^{t^\prime,+1} = \dim \mathfrak{g}_x^{t,s,+} + \dim \mathfrak{g}_{x',s,-}^{t^\prime,+1}.
\]

Combining (6.4) and (6.5) yields (iv).

(v) Note that \(\bar{i} \) is an isometry. So \(\text{Im} (\bar{i}) \subseteq \bar{i}(\mathfrak{t}) = \mathfrak{b}^+ \) by (iii). Since \(\bar{i}|_{\mathfrak{g}_x^{t,s,+}} \) is an injection and \(\mathfrak{b} \) is a non-degenerate symplectic space, \(\dim \mathfrak{b}^+ = \dim \mathfrak{b} - \dim \mathfrak{b}^- = \dim \mathfrak{g}_x^{t,s,+} + \mathfrak{g}_{x',s,-}^+ - \dim \mathfrak{t} = \dim \text{Im} (\bar{i}) \) by (iv) and (ii).

(vi) By \textbf{Lemma 6.4 (ii)}, \(\mathfrak{d}_x^{t-1} + \mathfrak{g}_x^{t-1} \) is a maximal non-degenerate symplectic subspace of \(\mathfrak{g}_x^{t,s,+} \). Now the claim follows from (v), since \(\bar{i} \) is an isometry.

(vii) This follows by a similar argument as that of part (vi) using \textbf{Lemma 6.4 (ii)}. \(\square \)

6.2.5. We begin with definitions which will be used in the rest of the section.

\textbf{Definition 6.6.} In order to simplify the notation, let

(a) \(\bar{K} := K \times K' \), \(\bar{K}_0 := K_0 \times K'_0 \) and \(\bar{K} := K \times K' \);

(b) \(\bar{G}_{s_i} := G_{x,s_i} \times G_{x,s_i}^0 \) and \(\bar{G}_i := G_{x,s_i} \times G_{x,s_i}^0 \) for \(0 < i < d \); and

(c) \(\bar{G}_0 := G_{x} \times G_{x}^0 \) and \(\bar{G}_0 := G_{x,0} \times G_{x,0}^0 \).

We define

(d) \(S := \text{Stab}_K(w + \mathfrak{f}_0) = \{ (h, h') \in \bar{K} \mid (h, h') \cdot w = w + \mathfrak{f}_0 \} \),

(e) \(S^i := S \cap \bar{G}_{s_i} \) and \(S^i := S \cap \bar{G}_{s_i}^i \) for \(i > 0 \),

(f) \(S^0 := S \cap \bar{G}_0 \), \(S_+ := S \cap \bar{K}_0 \) and \(S_0 := S \cap \bar{K}_0 \).

We extend the group isomorphism \(\alpha : G_{x}^0 \rightarrow G_{x'}^0 \) in \textbf{Definition 6.1 (ii)} to a map

\[
(6.6) \quad \alpha : G_{x}G_{x,0}^0 \rightarrow G_{x}G_{x',0}^0 \quad \text{by} \quad g \exp(X) \mapsto (wgw^{-1}) \exp(\mathfrak{d}_r(X))
\]

for all \(g \in G_{x}^0 \) and \(\exp(X) \in G_{x,0}^0 \). This map \(\alpha \) is well-defined because \(w \exp(X)w^{-1} = \exp(\mathfrak{d}_r(X)) \) for \(\exp X \in G_{x}^0 \cap G_{x,0}^0 = G_{x,0}^0 \). We warn that the map \(\alpha \) is not necessarily a group homomorphism. We define

(g) \(\Delta^0 := \{ (g, \alpha(g)) \mid g \in G_{x}^0 \} \cong G_{x}^0 \cong G_{x'}^0 \),

(h) \(\Delta^0_+ := \{ (g, \alpha(g)) \mid g \in G_{x,0}^0 \} \cong G_{x,0}^0 \cong G_{x',0}^0 \),

(i) \(\Delta^i := \{ (g, \alpha(g)) \mid g \in G_{x,s_i}^i \} \) for \(i > 0 \) and

(j) \(\Delta^i_+ := \{ (g, \alpha(g)) \mid g \in G_{x,s_i}^i \} \) for \(i > 0 \).
By [Lemma 6.2] the map α restricts to a map $\alpha_{|G_{x,s_{i-1}}^i} : G_{x,s_{i-1}}^i \rightarrow G_{x,s_{i-1}}^{n_i}$ for $1 \leq i \leq d$ and this restricted map is a bijection if $i \in I_{\Gamma}$. Therefore $\Delta^i \subseteq \tilde{G}_{s_{i-1}}^i$ and $\Delta^i_{+} \subseteq \tilde{G}_{s_{i-1}}^{n_i}$ for all $0 \leq i \leq d$.

Obviously $G_{x,s}G_{x',s}^s \subseteq S$. The following is a key lemma which claims that S is generated by these sets.

Lemma 6.7. (i) If $(g, g') \in \Delta^0$, then $(g, g') \cdot w = w$. Moreover, ι and $\bar{\iota}$ are Δ^0-equivariant.

(ii) Suppose $0 < i \in I_{\Gamma}$. Let $g = \exp(X)$ with $X \in g_{x,s_{i-1}}^i$. Then $\alpha_{\bar{\iota}}(X)w \in \mathcal{B}_0+$, $[\alpha(X), \alpha_{\bar{\iota}}(X)]w \in \mathcal{B}_s$ and

$$(g, \alpha(g)) \cdot w \leq w - \frac{1}{2}[\alpha(X), \alpha_{\bar{\iota}}(X)]w + \mathcal{B}_s \subseteq w + \mathcal{B}_0+.$$

In particular, $\Delta^i \subseteq S$.

(iii) $S \cap G = G_{x,s}$ and $S \cap G' = G_{x',s}$.

(iv) For each $i \in I_{\Gamma}$, $S^i = \Delta^i G_{x,s}^{n_i} = \Delta^i G_{x,s}G_{x',s}$.

(v) In Case I, i.e. $\Gamma_d = 0$ and $r = r_d = r_{d-1}$,

$$S = \Delta^0 \Delta^1 \cdots \Delta^{d-1} G_{x,s}G_{x',s}$$ and

$$S_{+} = \Delta^0 \Delta^1 \cdots \Delta^{d-1} \Delta^d G_{x,s}G_{x',s}.$$

In Case II, i.e. $\Gamma_d \neq 0$ and $r = r_d > r_{d-1}$,

$$S = \Delta^0 \Delta^1 \cdots \Delta^{d-1} \Delta^d G_{x,s}G_{x',s}$$ and

$$S_{+} = \Delta^0 \Delta^1 \cdots \Delta^{d-1} \Delta^d G_{x,s}G_{x',s}.$$

Proof. (i) Clearly, $(g, g') \cdot w = g'gw^{-1} = \alpha(g)gw^{-1} = wgw^{-1} = w$. The claim that ι and $\bar{\iota}$ are Δ^0-equivariant also follows by a straightforward computation which we will leave to the reader.

(ii) Let $X' := \alpha(X)$, $Y' := \alpha_{\bar{\iota}}(X)$ and $g' := \exp(X')$. Then $(g, g') = (g, \alpha(g)) \in \Delta^i$. Note that $r > r_{i-1} > 0$ and so $r - s_{i-1} > s_i$. By [Lemma 6.2] (i) and (ii), $X' \in g_{x',s_{i-1}}^i \subseteq g_{x',0} +$ and $Y' \in g_{x',s_{i-1}}^i \subseteq g_{x',s}^i \subseteq g_{x',0} +$. Therefore $X'Y', Y'X' \in g_{x',r}^i$, $Y'w \in \mathcal{B}_0$ and $[X', Y']w \in \mathcal{B}_s$. By Zassenhaus formula,

$$(g, g') \cdot w)^{-1} = g'gw^{-1}w^{-1} = \exp(X') \exp(-wXw^{-1}) = \exp(X') \exp(-X' - Y')$$

$$= \exp(X') \exp(-X') \exp(-Y') \exp(-\frac{1}{2}[X', Y'])g_{x'}^i$$

$$= \exp(-Y') \exp(-\frac{1}{2}[X', Y'])g_{x'}^i.$$

where $g_{x'}^i \in \text{GL}(V')_{x',r}$. Hence $(g, g') \cdot w - w \equiv \exp(-Y') \exp(-\frac{1}{2}[X', Y']) - w \equiv -Y'w - [X', Y']w$ (mod \mathcal{B}_s). This finishes the proof of (ii).

(iii) We only prove the identity for G' and the proof for G is similar. Note that $T \mapsto Tw^{-1}$ induces an isomorphism $\mathcal{B}_t \rightarrow g_{x',t+s}^i$. Therefore, for $g' \in G'$, $g'w + \mathcal{B}_0 = w + \mathcal{B}_0$ if and only if $g' \in g_{x',s}^i$. Hence $S \cap G' = \text{GL}(V')_{x',s} \cap G' = G_{x',s}$.

(iv) By (ii) to (iii), $S^i \supseteq \Delta^i G_{x,s}^n G_{x',s}^n \supseteq \Delta^i G_{x,s}^n$. It remains to show $S^i \subseteq \Delta^i G_{x,s}^n$. Indeed suppose $(g, g') \in S^i \subseteq \tilde{G}_{s_{i-1}}^i$. Then $(1, \alpha(g)^{-1}g') = (g, \alpha(g))^{-1}(g, g') \in S^i \cap G^n \subseteq G_{x',s}^n$ by (iii). Hence $(g, g') \in \Delta^i G_{x,s}^n$.

\footnote{We reiterate that α is not necessarily a group homomorphism}
Suppose $\Delta^d \subseteq G_{x,s}G'_{x',s'}$ in Case I. By (i)-(iv), $S \supseteq S'$. Observe that the projection to the first factor $pr_1: S' \rightarrow K$ is surjective. Suppose $(g, g') \in S$. Then there is a $g'' \in K'$ such that $(g, g'') \in S'$. Therefore $(1, g'^{-1}g) \in S \cap G' = G'_{x,s}$ by (iii). Hence $S \subseteq S'G'_{x',s'} = S'$. This proves that $S = S'$. Intersecting S with K_+ gives S_+. □

6.3. A key identity of ψ. We recall the function ψ in (5.2) which is clearly well-defined on K_0.

Lemma 6.8. Suppose $1 \leq i \in J_\Gamma$ and $(g, g') \in \Delta^i$ or $(g, g') \in G_{x,s} \times G'_{x',s'}$. Then

$$\psi(\frac{1}{2}(w, (g, g')^{-1} \cdot w - w)_{W}) = \psi_T(g)\psi_{-\Gamma'}(g').$$

Remark. For $(g, g') \in \Delta^0$, $\psi(\frac{1}{2}(w, (g, g')^{-1} \cdot w - w)_{W}) = 1$ by **Lemma 6.7** (ii).

Proof. Suppose $(g, g') = (\exp(X), \exp(X')) \in \Delta^i$ where $X \in g_{x,s_{i-1}}$ and $X' = d\alpha(X)$. Let $Y' := d\alpha^{-1}(X)$. By **Lemma 6.7** (ii), $(g, g')^{-1} \cdot w - w \equiv Y'w - \frac{1}{2}[X', Y']w$ (mod \mathfrak{g}_s).

We claim that $\frac{1}{2}(w, [X', Y']w)_{W} \in \mathfrak{p}$. Indeed by **Lemma 2.2**

$$\frac{1}{2}(w, [X', Y']w)_{W} = \mathbb{B}([\Gamma', [Y', X']], Y') = \mathbb{B}([\Gamma', X'], Y') \equiv \mathbb{B}(\mathfrak{g}_s, Y') \pmod{\mathfrak{p}}$$

$$= 0 \quad \text{(because $X' \in Z_{g'}(\Gamma')$ by **Lemma 6.2** (ii) and $i \in J_\Gamma$).}$$

Note that $wXw^{-1} = X' + Y'$ and so we have

$$\psi_T(g^{-1})\psi_{-\Gamma'}(g'^{-1})\psi(\frac{1}{2}(w, (g, g')^{-1} \cdot w - w)_{W})$$

$$= \psi \left(\mathbb{B}(\Gamma, -X) + \mathbb{B}(-\Gamma', -X') + \frac{1}{2}(w, Y'w)_{W} - \frac{1}{4}(w, [X', Y']w)_{W} \right)$$

$$= \psi \left(\frac{1}{2}\text{tr}_F(w\mathfrak{g}\mathfrak{g}wX) + \frac{1}{2}\text{tr}_F(w\mathfrak{g}\mathfrak{g}X') + \frac{1}{2}\text{tr}_F(w\mathfrak{g}Y'w) \right)$$

$$= \psi \left(\frac{1}{2}\text{tr}_F(wXw^{-1} + w\mathfrak{g}X') \right)$$

$$= \psi(0) = 1.$$

This proves the lemma for $(g, g') \in \Delta^i$.

Next suppose $(g, g') := (\exp(X), \exp(X')) \in G_{x,s}G'_{x',s'}$. Then

$$\psi(\frac{1}{2}(w, (g, g')^{-1} \cdot w - w)_{W}) = \psi(\mathbb{B}(X, M(w)) + \psi(\mathbb{B}(X', -M'(w))) \quad \text{(by (2.6))}$$

$$= \psi_M(w)(g)\psi_{-M'(w)}(g') = \psi_T(g)\psi_{-\Gamma'}(g').$$

This proves the lemma. □

6.4. A maximal totally isotropic subspace. We refer to **Appendix A.2.1** for the notation. Also see [38, p. 591] and [17, Section 12]. Suppose $1 \leq i \in J_\Gamma$. Let $J^i := (G^{i-1}, G^i)_{x,(r_{i-1}, s_{i-1})}$ and $J^i_+ := (G^{i-1}, G^i)_{x,(r_{i-1}, s^+_i)}$. Likewise we have subgroups J^n and J^n_+ in G'. Let $\bar{J}^i := J^i \times \bar{J}^i$ and $\bar{J}^i_+ := J^i_+ \times \bar{J}^i_+$. Note that exp induces a group isomorphism $g_{x,s_{i-1};s^+_i-1} \cong J^i/J^i_+$ and we identify both sides from now on. We let $W^i := J^i/J^i_+ = g_{x,s_{i-1};s^+_i-1}$, $\bar{W}^i := J^i/J^i_+ = \bar{g}_{x,s_{i-1};s^+_i-1}$ and $\bar{W}^i := \bar{J}^i_+ = \bar{W}^i \times \bar{W}^i$.

Note that \bar{W}^i has a natural non-degenerate symplectic space structure over \mathfrak{f} induced by
Let $\langle \cdot, \cdot \rangle_\Gamma \oplus \langle \cdot, \cdot \rangle_{-\Gamma}$ (cf. [6.2]). Let D^i be the image of $\Delta^i \cap \tilde{J}^i$ under the natural quotient map $\tilde{J}^i \to \tilde{W}^i$. By Lemma 6.2, $\Delta^i \cap \tilde{J}^i = \{ (\exp(X), \exp(\lambda(X)) \mid X \in g_{s_{i-1:1}} \oplus g_{s_{i-1:1}^+} \}$. Although $\Delta^i \cap \tilde{J}^i$ is not a subgroup of $G \times G'$, D^i is an \mathfrak{f}-subspace in \tilde{W} isomorphic to $g_{s_{i-1:1}^+}$.

Lemma 6.9. For $1 \leq i \in \mathfrak{f}_\Gamma$, D^i is a maximal totally isotropic subspace of \tilde{W}^i.

Proof. By Lemma 6.2 (v),

$$\dim g_{s_{i-1:1}^+} = \dim g_{s_{i-1:1}^+} / g_{s_{i-1:1}} = \dim g_{s_{i-1:1}^+} / g_{s_{i-1:1}^+} = \dim g_{s_{i-1:1}^+}.$$

Therefore, by Lemma 6.2 (vi), it induces an isomorphism $g_{s_{i-1:1}^+} \cong g_{s_{i-1:1}^+}^\perp$ and $\dim D^i = \frac{1}{2} \dim W^i$. It remains to show that D^i is isotropic. Let $X_1, X_2 \in g_{s_{i-1}^+}$ and let $Y_1 = \lambda(X_1), Y_2 = \lambda(X_2)$. Then the symplectic form is given by

$$\langle (X_1, Y_1), (X_2, Y_2) \rangle = B([X_1, X_2], \Gamma_{i-1}) + B([Y_1, Y_2], -\Gamma_{i-1})$$

$$= B(X_2, ad_{\Gamma_{i-1}}(X_1)) - B(Y_2, ad_{\Gamma_{i-1}}(X_1))$$

$$= B(X_2, ad_{\Gamma_{i-1}}(X_1)) - B(wX_2w^{-1}, w(ad_{\Gamma_{i-1}}(X_1))w^{-1})$$

$$= 0 \pmod{p}.$$

This finishes the proof. \(\square\)

6.5. Triviality of χ^{b^+}

We recall the \mathfrak{f}-vector space $b_+ = \iota(\mathfrak{f}) = \iota(\mathfrak{f}^\perp)$ in Section 6.2.4. The space b_+ is an isotropic subspace in \mathfrak{b} and Δ^0 acts on it. Let χ^{b^+} be the character of Δ^0 as defined in Appendix A.1. More precisely, $\chi^{b^+}(g, \alpha(g)) = \det((g, \alpha(g))_{b_+})^{(q-1)/2}$ where $(g, \alpha(g)) \in \Delta^0$ and $q = |\mathfrak{f}|$.

Lemma 6.10. We have $\chi^{b^+}(g, \alpha(g)) = 1$ for all $(g, \alpha(g)) \in \Delta^0$.

The rest of this section is devoted to the proof of the above lemma. The proof does not affect the rest part of the paper, so the reader may skip it without loss of continuity.

First we introduce some notation. Suppose \mathfrak{f} is an extension of \mathfrak{f} and \mathfrak{W} is an \mathfrak{f}-module. Let G be a group acting \mathfrak{f}-linearly on \mathfrak{W}. Let $\det_\mathfrak{f}(g|_{\mathfrak{W}})$ denote the determinant of $g \in G$ when we view \mathfrak{W} as an \mathfrak{f}-vector space. Let $\chi^\mathfrak{f}$ be the character $g \mapsto \det_\mathfrak{f}(g|_{\mathfrak{W}})^{|G|^{-1/2}}$. More conceptually, $\chi^\mathfrak{f}(g)$ is 1 if $\det_\mathfrak{f}(g|_{\mathfrak{W}})$ is a square in \mathfrak{f}^\times and is -1 if otherwise, i.e. it is the Legendre symbol of $\det_\mathfrak{f}(g|_{\mathfrak{W}})$ in \mathfrak{f}.

Note that $G^0_x \cong \Delta^0$ via $g \mapsto (g, \alpha(g))$ and $\mathfrak{r} \cong b_+$ via $X \mapsto \iota(X)$. Clearly for $g \in G^0_x$ and $X \in \mathfrak{r}$,

$$\iota(g \cdot X) = -wXg^{-1} - \alpha(g)wXg^{-1} = (g, \alpha(g)) \cdot \iota(X)$$

so $\chi_\mathfrak{f}(g) = (\det_\mathfrak{f}(g|_{\mathfrak{W}}))^{(q-1)/2} = \det_\mathfrak{f}((g, \alpha(g))_{b_+})^{(q-1)/2} = \chi^{b^+}((g, \alpha(g)))$. Then Lemma 6.10 is equivalent to the following statement:

$$\chi^{b^+}(g) = 1 \quad \forall \ g \in G^0_x.$$

Recall $\hat{\Gamma}$ and \hat{G} in Definition 6.1 (iv). Note that G^0_x is a subgroup of \hat{G}_x and \hat{G}_x acts on $\mathfrak{r} = \mathfrak{g}_{x,s_+}$. Hence (6.8) is a consequence of the following:

$$\chi^{b^+}_\mathfrak{f}(g) = 1 \quad \forall \ g \in \hat{G}_x.$$

If we replace Γ by $\hat{\Gamma}$, then every object in (5.9) remains unchanged. Therefore, we could assume that $\Gamma = \hat{\Gamma}$. In this case $G^0_x = G^0_x$.
We recall that $F' = Z(D)$. We consider Case I and Case II separately.

1. In Case I, $F'[\Gamma] = \prod_i F_i$ is a product of fields F_i with involution \ast and $V = \bigoplus_i V_i$ such that each V_i is a certain Hermitian space over F_i. Let F_i^0 be the \ast fixed subfield of F_i. Then $U(V_i)$ is an algebraic group defined over F_i^0. Under this decomposition, $G^0 = \prod_i U(V_i)$, $x = (x_i) \in \prod_i B(U(V_i))$ and $\chi_f = \prod_i \chi_f^i$.

The residue field \mathfrak{f}_i of F_i^0 could be a finite extension of \mathfrak{f}. Note $\chi_f^{u(V_i)_{x_i,s,s}}(g) = 1$ means that $\det_{\mathfrak{f}_i}(g) = a^2$ is a square in $(\mathfrak{f}_i)\times$. Hence $\det_{\mathfrak{f}}(g) = \text{Norm}_{\mathfrak{f}^0/\mathfrak{f}} \circ \det_{\mathfrak{f}}(g) = (\text{Norm}_{\mathfrak{f}^0/\mathfrak{f}}(a))^2$ is a square in \mathfrak{f}^\times. So $\chi_f^{u(V_i)_{x_i,s,s}}(g) = 1$. In order to prove (6.9), it suffices to check that $\chi_f^{u(V_i)_{x_i,s,s}} \bigg|_{U(V_i)_{x_i}}$ is trivial for each i.

2. In Case II, $G^0 = G$ is a unitary group over $D = F' = F[\Gamma]$.

To summarize, we have reduced Lemma 6.10 to the following claim.

Claim. Suppose

(a) D is a quadratic field extension of a certain p-adic field F;
(b) τ is the nontrivial element in $\text{Gal}(D/F)$;
(c) V is a D-vector space with a Hermitian form \langle , \rangle;
(d) $G = U(V)$, $\mathfrak{g} = \mathfrak{u}(V)$ and $x \in B(G,F)$;
(e) Γ is an element in $Z(\mathfrak{g}) = D^{-1}$ with valuation $-r = -2s$.

Then $\chi_f^{g_{x,s,s}}(g) = 1$ for all $g \in G_x$.

Proof of the Claim. Without loss of generality, we may assume $\text{val}(D) = Z$. Let \mathcal{L} be the self-dual lattice function corresponding to x. Define the f_D-space $L_\mathcal{L} := \mathcal{L}_\mathcal{L}/L_{\mathcal{L}}^\perp$.

1. If D/F is unramified, we let ϖ_D be the fixed uniformizer of both D and F. The residue field \mathfrak{f}_D is a quadratic extension of \mathfrak{f}. Moreover L_0 and $L_\frac{1}{2}$ (possibly zero spaces) are Hermitian spaces over \mathfrak{f}_D.

2. If D/F is ramified then $\mathfrak{f}_D = \mathfrak{f}$. We fix a uniformizer ϖ of D such that $\varpi_D = -\varpi_D$.

Then L_0 is an orthogonal space over \mathfrak{f} whose form is induced by \langle , \rangle and $L_{\frac{1}{2}}$ is a symplectic space over \mathfrak{f} whose form is induced by $\varpi_D^{-1} \langle , \rangle$.

Note that $\chi_f^{g_{x,s,s}}$ factors through the group

$$G := \frac{G_x}{G_{x,0^+}} = \prod_{t \in \text{Jump}(Z) \cap (0, \frac{1}{2})} (\mathcal{G}_{tD}(L_\mathcal{L})) \times U(L_0) \times U(L_{\frac{1}{2}}).$$

Now we consider two separate cases in the next two subsections.

6.5.1. Case I: $s \in \text{val}(D) = Z$. First we claim that D is an unramified extension of F. Indeed, if D/F is ramified, then $\text{val}(F) = 2Z$ and $-r = \text{val}(\Gamma)$ is odd because $\Gamma \in D^{r-1}$. This implies $s \notin Z$, a contradiction.

Now $X \mapsto \varpi_D X$ gives a G-equivariant isomorphism $\mathfrak{g}_{x,0^+} \rightarrow \mathfrak{g}_{x,s,s}$. Therefore $\det_{\mathfrak{f}}(g|_{\mathfrak{g}_{x,s,s}}) = \det_{\mathfrak{f}}(g|_{\mathfrak{g}_{x,0^+}}) = 1$ since all the simple factors of G in (6.10) are of type A acting on its Lie algebra via adjoint action. Note that $\text{GL}_{tD}(L_\mathcal{L})$ should be viewed as a group defined over \mathfrak{f} by restriction of scalars, but this does not affect the conclusion. Hence we have proved the claim in this case.
6.5.2. Case 2: $s \not\in \text{val}(D) = \mathbb{Z}$. Then $s = \frac{t}{2} \in \mathbb{Z} \setminus \mathbb{Z}$. We recall that

$$
\text{gl}_{x,s; s^+} = \bigoplus_{t \in \mathbb{Q}/\mathbb{Z}} \text{Hom}_D(L_t, L_{t+s}).
$$

(6.11)

The adjoint action \ast (cf. Section 2.1.1) permutes the terms in (6.11) and $\text{gl}_{x,s; s^+}$ is the (-1)-eigenspace of \ast in $\text{gl}_{x,s; s^+}$. Let $l_t := \dim_{\mathbb{C}} L_t$.

Now we consider the value of $\chi_{g, x,s; s^+}$ on each factor of (6.10).

(i) Suppose $t \equiv -t \pmod{\mathbb{Z}}$ and $t \equiv -(t+s) \pmod{\mathbb{Z}}$. We consider the action of $\text{GL}(L_t)$. We have

$$\ast : \text{Hom}_D(L_t, L_{t+s}) \rightarrow \text{Hom}_D(L_{-t}, L_{-t}) \quad \text{and}$$

$$\ast : \text{Hom}_D(L_{l-t}, L_{l+s}) \rightarrow \text{Hom}_D(L_{l-t}, L_t).$$

The two domains and codomains are distinct terms in (6.11). Moreover $l_{t+s} = l_{-t}$ since $L_{t-s} \cong L_{t+s}$ via multiplication by \mathbb{Z}_D. Therefore

$$\text{det}_t(\text{Ad}(g)|_{g, x,s; s^+}) = \text{Norm}_D(L_t) \left(\text{det}_D(g|_{L_t})^{-l_{t+s}} \text{det}_D(g|_{L_t})^{l_{t+s}} \right) = 1 \quad \forall g \in \text{GL}(L_t).$$

Hence $\chi_{g, x,s; s^+}(g) = 1$ for $g \in \text{GL}(L_t)$.

(ii) Suppose $t \equiv -t \equiv 0 \pmod{\frac{1}{2}}$. We consider the actions of $U(L_0)$ and $U(L_{\frac{1}{2}})$. Now $-s + \frac{1}{2}$ is an integer and multiplication by \mathbb{Z}_D induces isomorphisms

$$\text{Hom}(L_0, L_s) \rightarrow \text{Hom}(L_0, L_{\frac{1}{2}}) \text{ and } \text{Hom}(L_{-\frac{1}{2}}, L_{s+\frac{1}{2}}) \rightarrow \text{Hom}(L_{-\frac{1}{2}}, L_0).$$

Now $\ast : \text{Hom}(L_0, L_{\frac{1}{2}}) \cong \text{Hom}(L_{-\frac{1}{2}}, L_0)$. Combining with the above gives

$$\text{Hom}(L_0, L_s) \rightarrow \text{Hom}(L_{-\frac{1}{2}}, L_{s+\frac{1}{2}}).$$

As a $U(L_0)$-module, $\text{gl}_{x,s; s^+}$ is isomorphic to $\text{Hom}(L_0, L_{\frac{1}{2}})$ direct sum with certain copies of the trivial representation. Suppose

$g_0 \in U(L_0)$. Then $\text{det}_t(g_0|_{g, x,s; s^+}) = \text{det}_t(g_0|_{L_0})^{-l_{\frac{1}{2}}}$.

- If D/F is unramified, then $U(L_0)$ is a unitary group. Now $\text{det}_D(g_0|_{L_0}) \in \mathbb{U}$ has norm 1 so $\text{det}_t(g_0|_{L_0}) = 1$. By a similar argument, $\text{det}_t(g_{\frac{1}{2}}|_{g, x,s; s^+}) = 1$ for $g_{\frac{1}{2}} \in U(L_{\frac{1}{2}})$.

- If D/F is ramified, then L_0 is an orthogonal space and $L_{\frac{1}{2}}$ is a symplectic space. Hence $\text{det}_t(g_0|_{g, x,s; s^+}) = \text{det}_t(g_0|_{L_0})^{-l_{\frac{1}{2}}} = 1$ since $l_{\frac{1}{2}}$ is even. Since $L_{\frac{1}{2}}$ is a symplectic space, $\text{det}_t(g_{\frac{1}{2}}|_{g, x,s; s^+}) = 1$ for $g_{\frac{1}{2}} \in U(L_{\frac{1}{2}})$.

Hence, we have shown that $\chi_{g, x,s; s^+}$ is trivial on $U(L_0) \times U(L_{\frac{1}{2}})$.

(iii) Suppose $t \equiv -t - s \pmod{\mathbb{Z}}$. Then $t \equiv \pm \frac{1}{2} \pmod{\mathbb{Z}}$. We consider the actions of $\text{GL}(L_{\frac{1}{2}})$ in (6.10). Composing with multiplication by \mathbb{Z}_D induces an isomorphism

$$\text{Hom}(L_{\pm \frac{1}{2}}, L_{s+\frac{1}{2}}) \rightarrow \text{Hom}(L_{\pm \frac{1}{2}}, L_{-\frac{1}{2}})$$

and the \ast-action on the left hand side commutes with the $(\varepsilon \ast)$-action on the right hand side. Here $\varepsilon = 1$ if D/F is unramified and $\varepsilon = (-1)^{s+\frac{1}{2}}$ if D/F is ramified.

Similarly composing with multiplication by \mathbb{Z}_D induces an isomorphism

$$\text{Hom}(L_{-\pm \frac{1}{2}}, L_{-s+\frac{1}{2}}) \rightarrow \text{Hom}(L_{-\pm \frac{1}{2}}, L_{\frac{1}{2}})$$

and \ast action on the left hand side commutes with the $(\varepsilon' \ast)$-action on the right hand side with $\varepsilon' = 1$ if D/F is unramified and $\varepsilon' = (-1)^{s-\frac{1}{2}}$ if D/F is ramified.

Let $s := \text{Hom}(L_{\pm \frac{1}{2}}, L_{\pm \frac{1}{2}})$ and $s' := \text{Hom}(L_{\pm \frac{1}{2}}, L_{\frac{1}{2}})$. Clearly s and s' are dual to each other as $\text{GL}(L_{\frac{1}{2}})$-modules over \mathbb{Z}_D via the trace form $(X, Y) \mapsto \text{tr}_{L_{\frac{1}{2}}}(XY)$. Since
the form is $*$-invariant, $\mathbf{s}^{*,e}$ and $\mathbf{s}^{*,e'}$ are dual to each other for $e \in \{\pm 1\}$. As a
$GL(\mathbf{L}_1)$-module, $\mathbf{G}_{x,s,s+s}$ is isomorphic to $\mathbf{s}^{*,e} \oplus \mathbf{s}^{*,e'}$ direct sum with copies of the
trivial representation. Let $g_1^{\pm} \in GL(\mathbf{L}_1)$.

- If D/F is unramified, then $\varepsilon = \varepsilon' = 1$. Since $\mathbf{s}^{*,1}$ and $\mathbf{s}^{*,1}$ are dual to each other,
 we have $\text{det}_{f}(g_1^{\pm}|_{\mathbf{G}_{x,s,s+s}}) = 1$.

- If D/F is ramified, then $\varepsilon = -\varepsilon'$. Since $\text{det}_{f}(g_1^{\pm}|_{s}) = \text{det}_{f}(g_1^{\pm}|_{s})^{2\ell}$ is a square
 and $\mathbf{s} = \mathbf{s}^{*,e} \oplus \mathbf{s}^{*,e'}$, we have $\chi_{f}^{s^{*,e}} = \chi_{f}^{s^{*,e'}}$. Hence
 \[
 \chi_{f}^{s^{*,e}+}(g_1^{\pm}) = \chi_{f}^{s^{*,e}}(g_1^{\pm})\chi_{f}^{s^{*,e'}}(g_1^{\pm}) = \chi_{f}^{s^{*,e}}(g_1^{\pm}) = 1.
 \]

We conclude that $\chi_{f}^{s^{*,e}+} = 1$ on $GL(\mathbf{L}_1)$.

Combining (i), (ii) and (iii), we have proved the Claim in view of (6.10).

This concludes the proof of Lemma 6.10.

7. One Positive Depth Block Case II: The Constructions of Refined Minimal K-types

We retain the notation in Section 6. Recall that $\Sigma = (x, \Gamma, \phi, \rho)$ is a single block datum with positive
degree $r = 2s$ as in Section 6.1. We have $\Gamma = M(w)$, $\Gamma' = M'(w)$ and a group isomorphism $\alpha: G_{x}^{0} \rightarrow G_{x}^{0}$. In Definition 5.15, we had defined $\Sigma' := \vartheta^{+}(\Sigma) = (x', -\Gamma', \phi', \rho')$ where $\phi' := \phi^{*} \circ \alpha^{-1}$ and $\rho' = \rho^{*} \circ \alpha^{-1}$.

7.1. A key proposition. We always use \sim to mark an object in $G \times G'$ having two similar components in G and G' as below. We set

- $K := K \times K'$, $K_{0} = K_{0} \times K'_{0}$ and $K_{+} := K_{+} \times K'_{+}$;
- $\mathbf{G}_{x} := G_{x}/G_{x,0} \equiv G_{x,0}^{0} \times G_{x,0}^{0}/G_{x,0}^{0}$;
- $\mathbf{\rho} := \rho \otimes \rho'$ be the $K \times K'$-module inflated from the G_{x}-module $\rho \otimes \rho'$;
- $\mathbf{\kappa} := \kappa \boxtimes \kappa'$ be the Heisenberg-Weil representation of K constructed by $(\Gamma', -\Gamma')$
 (cf. Appendix A.2.2);
- $\mathbf{\eta} := \eta \otimes \eta' = \mathbf{\rho} \otimes \mathbf{\kappa}$ and
- $\Omega := K \cdot W + \mathcal{B} \subseteq W$.

Remark. The above notations also apply to multiple block Σ and its lift Σ' defined in Remark 3 of Definition 5.16.

7.1.1. If J is a compact group, U is a J-module and χ is an irreducible J-module, then we let $U[\chi]$ denote the χ isotypic component of U. Now we can state a key proposition.

Proposition 7.1. Under the settings in Section 7.1, we have $\mathcal{S}(\mathcal{B})[\Omega][\eta \otimes \eta'] \cong \eta \otimes \eta'$.

The proof will be given in Section 7.1.4 based on Lemma 7.3 below.

7.1.2. We now record an elementary fact which will be used freely in this paper. Suppose H and J are compact groups and J is a subgroup of H. For a J-module τ, we will identify the induced representation with a space of functions:

$$\text{Ind}^{H}_{J} \tau = \{ f : H \rightarrow \tau \mid f(jh) = \tau(j)f(h) \forall j \in J, h \in H \}$$

where H acts by right translation.

Lemma 7.2. Suppose J is a compact normal subgroup of H. Let J_{1} be a subgroup of H
such that $J < J_{1} < H$. Let τ be a J_{1}-module and χ be an irreducible J-module. Suppose
that H stabilizes χ, i.e. $\chi \circ \text{Ad}_{h} \cong \chi$ as J-modules for all $h \in H$. Then $\tau[\chi]$ is a J-module
and $(\text{Ind}^{H}_{J_{1}} \tau)[\chi] = \text{Ind}^{H}_{J_{1}}(\tau[\chi])$. \hfill \square
7.1.3. Let \(\tilde{\psi} := \psi_I \otimes \psi_{-I^*} \) be the function on \(G_{x,0^+} \times G'_{x,0^+} \). Recall that \(\tilde{\psi} \) restricted on \(\tilde{K}_+ \) is a character, \(\tilde{K} \) normalizes \(\tilde{K}_+ \) and stabilizes \(\tilde{\psi}|_{\tilde{K}_+} \). We could extend \(\tilde{\psi} \) to a function on \(\Delta^0 G_{x,0^+} G'_{x,0^+} \) by letting \(\tilde{\psi}(xg) := \tilde{\psi}(g) \) for all \(x \in \Delta^0 \) and \(g \in G_{x,0^+} G'_{x,0^+} \).

Combining Lemma 2.4, Lemma 6.7(ii) and Lemma 6.8 yields the following lemma.

Lemma 7.3. As an \(S \)-module realized on \(\mathbb{S}(b) \), \(\mathbb{w}_w \) is given by

\[
\mathbb{w}_w(h) = \tilde{\psi}(h) \mathbb{w}_b(h) \mathbb{w}_b(h^{-1} w - w) \quad \forall h \in S. \quad \square
\]

We recall the definitions of \(b_+ \) and \(b_0 := b_+/b_+ \) in Section 6.2.4. Let \(\mathbb{S}(b)^{b_+} \) be the \(\mathbb{w}_b(b_+) \) invariant subspace in \(\mathbb{S}(b) \). Then \(\mathbb{S}(b)^{b_+} \cong \chi^{b_+} \otimes \mathbb{w}_b(b_0) \), where \(\mathbb{P}(b_+) \) is the parabolic subgroup in \(\mathbb{S}(b) \) stabilizing \(b_+ \) (see Appendix A.1 for notation).

From Lemma 6.7(ii), \(S = (\prod_{j \in \mathfrak{J}} \Delta^j) \tilde{G}_s \) and

\[
S\tilde{K}_+ = \left(\prod_{j \in \mathfrak{J}} \Delta^j \right) \tilde{K}_+ \tilde{G}_s = \begin{cases}
\Delta^0 \Delta^1 \cdots \Delta^{d-1} \tilde{K}_+ \tilde{G}_s & \text{in Case I,} \\
\Delta^0 \Delta^1 \cdots \Delta^d \tilde{K}_+ \tilde{G}_s & \text{in Case II.}
\end{cases}
\]

Lemma 7.4. (i) The evaluation map \(\text{eva} \) defined by \(f \mapsto f(1) \) gives an isomorphism between the vector spaces

\[
(7.1) \quad \text{eva}: \left(\text{Ind}_S^{\tilde{S} \tilde{K}_+} \mathbb{w}_w \right) [\tilde{\psi}|_{\tilde{K}_+}] \xrightarrow{\sim} \mathbb{S}(b)^{b_+}.
\]

Note that \(\mathbb{S}(b)^{b_+} \cong \mathbb{S}(b_0) \). The \(S\tilde{K}_+ \)-module structure on the left hand side of (7.1) translates to an action \(\psi^S \) of \(S\tilde{K}_+ \) on \(\mathbb{S}(b_0) \). The action \(\psi^S \) is given as follows:

(a) If \(h \in \prod_{1 \leq j \leq r} \Delta^j \tilde{K}_+ \), then \(\psi^S(h) \) acts on \(\mathbb{S}(b_0) \) by the scalar \(\tilde{\psi}(h) \).

(b) If \(h = (\exp(X), \exp(X')) \in G_{x,s} \times G'_{x,s} \), then \(\psi^S(g) = \tilde{\psi}(h) \mathbb{w}_b(b) \) where \(b \) is the image of \(b_0 \) of \(h^{-1} w - w \equiv w X - X' w \) (mod \(\mathcal{B}_0^+ \)).

(c) \(\psi^S|_{\Delta^0} \) is the inflation of \(\mathbb{w}_b(b_0) \) by \(\Delta^0 \rightarrow \mathbb{S}(b_0) \).

(ii) We have \(\left(\text{Ind}_S^{\Delta^0 \tilde{K}_+} \mathbb{w}_w \right) [\tilde{\psi}|_{\tilde{K}_+}] \cong \tilde{\kappa}|_{\Delta^0 \tilde{K}_+} \) as \(\Delta^0 \tilde{K}_+ \)-modules.

(iii) Let \(\overline{\Delta^0} \) denote the image of \(\Delta^0 \) in \(\tilde{G}_0 \). Then we have following \(\tilde{K} \)-module isomorphisms

\[
\left(\text{Ind}_S^{\tilde{K}} \mathbb{w}_w \right) [\tilde{\psi}|_{\tilde{K}_+}] \cong \text{Ind}_{\Delta^0 \tilde{K}_+}^{\tilde{K}} \left(\left(\text{Ind}_S^{\Delta^0 \tilde{K}_+} \mathbb{w}_w \right) [\tilde{\psi}|_{\tilde{K}_+}] \right) \cong \left(\text{Ind}_{\overline{\Delta^0} \tilde{K}_+}^{\tilde{G}_0} \right) \otimes \tilde{\kappa}.
\]

Note that (iii) follows immediately from (ii). Before we embark on the proofs of (i) and (iii), we will use the lemma to give a proof of Proposition 7.1.

\(^{15}\)By definition \(\tilde{\psi}|_{\Delta^0} \equiv 1 \). Therefore by (ii) the function \(\tilde{\psi} \) is a character when restricted on \(\prod_{j \in \mathfrak{J}} \Delta^j \tilde{K}_+ \).
7.1.4. Proof of Proposition 7.1. We have
\[\text{Hom}_K(\eta, \mathcal{J}(\mathcal{R}_0)_\Omega) = \text{Hom}_K(\eta, \left(\text{Ind}^S_{\mathcal{R}_0} \varphi \right) \mid_{\mathcal{K}_+}) \]
(by Lemma 2.4 and the fact that \(\eta \mid_{\mathcal{K}_+} \) is \(\psi \mid_{\mathcal{K}_+} \)-isotypic)
\[= \text{Hom}_K(\rho \otimes \tilde{k}, (\text{Ind}^S_{\mathcal{R}_0} \varphi) \otimes \tilde{k}) \]
(by Lemma 7.4 (iii))
\[= \text{Hom}_{C_0}(\rho, (\text{Ind}^S_{\mathcal{R}_0} \varphi) \otimes \text{Hom}_{\mathcal{K}_0^+} \tilde{k}, \tilde{k}) \]
(since \(\rho \) and \(\text{Ind}^S_{\mathcal{R}_0} \varphi \) are trivial when restricted on \(\mathcal{K}_0^+ \))
\[= \text{Hom}_{C_0}(\rho, (\text{Ind}^S_{\mathcal{R}_0} \varphi) \otimes \text{Hom}_{\mathcal{K}_0^+} \tilde{k}, \tilde{k}) \]
(since \(\tilde{k} \mid_{\mathcal{K}_0^+} \) is irreducible)
\[= \text{Hom}_{\mathcal{R}_0}(\rho, 1) = C \]
(since \(\rho' = \rho^* \circ \alpha^{-1} \)).

This proves the proposition.

7.2. Proof of Lemma 7.4. The rest of this section is devoted to proving Lemma 7.4.

7.2.1. Proof of Lemma 7.4 (i). We recall that \(S_+ := S \cap \mathcal{K}_+ \). Frobenius reciprocity gives the following natural isomorphism of vector spaces:
\[\text{ev}: \left(\text{Ind}^S_{\mathcal{R}_0} \varphi \right) \mid_{\mathcal{K}_+} \cong \left(\text{Ind}^S_{\mathcal{R}_0} \varphi \right) \mid_{\mathcal{K}_+} \cong \text{ev}_w(\psi) \mid_{\mathcal{S}_+}. \]

Now the key is to prove the following claim.

Claim. We have
\[\text{ev}_w(\psi) \mid_{\mathcal{S}_+} = S(b)^{b_+} \subseteq S(b). \]

Proof. We will only prove it for Case I. The proof for Case II is similar and easier, so we leave it to the reader.

We recall Lemma 6.7 (vi) that
\[S_+ = \Delta^0 \mathcal{A}_+ \ldots \Delta^d \mathcal{A}_+ G_{x,s} G_{x',s} G_{x,s} G_{x',s}. \]

Now we consider the \(\mathcal{A}_w \)-action (cf. Lemma 7.3) of each factor on the right hand side of (7.3). Note that \(\mathcal{A}_w \mid_{\mathcal{S}_+} \) is trivial since \(\mathcal{S}_+ \subseteq \mathcal{A}_0 \cup \mathcal{A}_0' \).

(1) Suppose \(h = \exp(X) \in G_{x,s} \) where \(X \in \mathfrak{g}_{x,s} \). Then \(h^{-1} \cdot w - w \in \mathcal{A}_0 \cup \mathcal{A}_0' \subseteq \mathcal{A}_0'. \)

Hence \(\mathcal{A}_w(h) = \psi(h) \mathcal{A}_w(h^{-1} \cdot w - w) = \psi(h) \). By the same argument, we also have
\[\mathcal{A}_w(h) = \psi(h) \]
for \(h \in \mathcal{G}_+ \).

(2) Suppose \(h = \exp(X) \in G_{x,s} \) with \(X \in \mathfrak{g}^{d-1}_{x,s} \). Then \(h^{-1} \cdot w - w \in \mathcal{A}_0 \cup \mathcal{A}_0' \subseteq \mathcal{A}_0' \).

Hence \(\mathcal{A}_w(h) = \psi(h) \mathcal{A}_w(wX) \). The same argument gives \(\mathcal{A}_w(h') = \psi(h') \mathcal{A}_w(-X'w) \) for \(h' = \exp(X') \in G_x^{d-1} \) where \(X' \in \mathfrak{g}^{d-1}_{x,s} \).

Hence \(\mathcal{A}_w(\psi) \subseteq S(b)^{b_+} \) since \(b_+ = i(\mathfrak{g}^{d-1}_{x,s} \oplus \mathfrak{g}^{d-1}_{x',s}) = \mathfrak{g}^{d-1}_{x,s} + \mathfrak{g}^{d-1}_{x',s} + \mathcal{A}_0' \subseteq \mathcal{A}_0'/\mathcal{A}_0' \).

(3) Suppose \(h = (g, g') \in \mathcal{A}_+ \) for \(0 \leq i \leq d - 1 \). By Lemma 6.7 (i) and (ii), \(h^{-1} \cdot w - w \in \mathcal{A}_0 \).

Therefore \(\mathcal{A}_w(h) = \psi(h) \).

Combining (1)–(3), we see that the \(\psi \mid_{\mathcal{S}_+} \) isotypic component is exactly the \(\mathcal{A}_w(\mathcal{L}_+)^{-}\)invariant subspace in \(S(b) \). This proves the claim.

Now we calculate the translated \(S\mathcal{K}_+ = \Delta^0 \prod_{0<i<\mathfrak{r}} \Delta^i \mathcal{K}_+ \) action \(\psi^S \) on \(S(b_0) \cong S(b)^{b_+} \).

(4) Clearly \(\psi^S \mid_{\mathcal{K}_+} = \psi \mid_{\mathcal{K}_+} \).

(5) Suppose \(h \in \Delta^i \) for \(0 < i < \mathfrak{r} \). Then \(h \in \mathcal{A}_0 \cap \mathcal{A}_0' \) and \(h^{-1} \cdot w - w \in \mathcal{A}_0' \) by Lemma 6.7 (i). So \(\psi^S(h) = \mathcal{A}_w(h) = \psi(h) \). Combining this with (i) proves part (iv).
(6) Suppose $h \in G_{x,s} \times G'_{x',s}$. By Appendix A.1 (iii),
\[
\psi^S(h) = \varpi_w(h) = \tilde{\psi}(h)\varpi_b(h^{-1} \cdot w - w) = \tilde{\psi}(h)\varpi_b(h).
\]
This proves part (i).

(7) Suppose $h \in \Delta^0$. By Appendix A.1 (iii) and Lemma 6.10,
\[
\psi^S(h) = \varpi_w(h) = \varpi_b(h) = \chi^{b+}(h)\varpi_b(h) = \varpi_b(h).
\]
This proves part (iii).

These complete the proof of Lemma 7.4 (ii).

7.2.2. Proof of Lemma 7.4 (iii). By Part (i) and Lemma 7.2, we have
\[
\text{(7.4)} \quad \left(\text{Ind}_S^{\Delta^0 \check{K}_0+} \varpi_w \right) \left[\tilde{\psi}|\check{K}_+\right] \cong \text{Ind}_S^{\Delta^0 \check{K}_0+} \left(\left(\text{Ind}_S^S \varpi_w \right) \left[\tilde{\psi}|\check{K}_+\right] \right) \cong \text{Ind}_S^{\Delta^0 \check{K}_0+} \psi^S
\]
as $\Delta^0 \check{K}_0+$-modules.

Claim. We have
\[
\text{(7.5)} \quad \dim \text{Ind}_S^{\Delta^0 \check{K}_0+} \psi^S = \dim \check{k}.
\]
Proof. Let $K_{x,s} := K_+ \cap G_{x,s}$ and $K_s := K \cap G_{x,s} = G_{x,s}$. Let $Q := (S_0+)^2$, $N := #(K_0+/K_+)$, $N_s := #(K_0+/K_+)$, $N' := #(K_0+/K_+)$ and $N'_s := #(K_s+/K_+)$.

We note the following facts.
1. By the definition of \check{k}, we have $\dim \check{k} = (\#K_0+/\check{K}_+)^{\frac{1}{2}} = \sqrt{NN'}$.
2. By Lemma 6.5 (vi), we have $\dim \mathcal{S}(b_0) = \sqrt{\#b_0} = \sqrt{\#(K_s+/K_+)}\#(K'_s+/K_+) = \sqrt{N/\check{N}}$.
3. By Lemma 6.7 (vi), the projection to the first coordinate $S_0+ \to K_+$ is surjective and its kernel is K'_s. Hence $K_0+ \cong S_0+/K'_s$. Similarly, we have $K_+ \cong S_0+/K'_s$. Hence
\[
\text{(7.6)} \quad K_0+/K_+ \cong (S_0+/K'_s)/(S_0+/K'_s) \cong S_0+/K'_sS_0+ \cong (S_0+/S_+)/(K'_sS_0+/S_+).
\]
Note that K'_s+/K'_s is K'_sS_0+/S_+. Counting the elements of the both sides of (7.6), we get $N' = Q/N_s$. A similar argument yields $\check{N}' = Q/N_\check{s}$.
4. Note that $\check{K}_0+ \cap S\check{K}_+ = S_0+/K_+$ and $S_0+/\check{K}_+ = S_0+/\check{K}_+$. Hence
\[
\dim \text{Ind}_S^{\Delta^0 \check{K}_0+} \psi^S = \dim \mathcal{S}(b_0) \cdot \#(K_0+)/\check{K}_+ \cong \dim \mathcal{S}(b_0) \cdot \#(K_0+/\check{K}_+)/\#(S_0+/\check{K}_+)
\]
\[
= \sqrt{N/\check{N}} \cdot \sqrt{NN'/Q} = \sqrt{NN'} = \dim \check{k}.
\]
This proves the claim.

In Section 7.2.3, we will show that
\[
\text{(7.7)} \quad \dim \text{Hom}_{\Delta^0 \check{K}_0+}(\check{k}, \text{Ind}_S^{\Delta^0 \check{K}_0+} \psi^S) = \dim \text{Hom}_{\Delta^0 \check{K}_0+}(\check{k}, \psi^S) = 1.
\]
Combining (7.4), (7.5) and (7.7) gives Lemma 7.4 (iii). This also completes the proof of the whole Lemma 7.4.
7.2.3. Proof of (7.7). The first equality in (7.7) is just Frobenius reciprocity. It remains to prove the second equality. We only give the proof for Case I. The proof for Case II where \(b_0 = 0 \) is essentially contained in the proof of Lemma 7.5 (ii) below.

We assume the notation and the construction of \(\kappa \) in Appendix A.2.2. We also retain the notion in Section 6.4. Recall \(J^j := (G^{j-1}, G^j)_{x, (r_{j-1}, s_{j-1})}, J^j_+ := (G^{j-1}, G^j)_{x, (r_{j-1}, s_{j-1})}^+ \), \(\bar{J}^j := J^j \times J^j \), and \(\bar{J}^j_+ := J^j_+ \times J^j_+ \).

- For \(1 \leq j \leq d \), let \(Q^j := \Delta^1 \cdots \Delta^j \bar{K}^j_+ \) and \(Q_j := (\Delta^j \cap \bar{J}^j) \bar{J}^j_+ \).
- For \(0 \leq j \leq d-1 \), let \(\bar{\kappa} := \kappa^j \) and \(P^j := S \bar{K}^j_+ \cap G^j = \Delta^0 \Delta^1 \cdots \Delta^j \bar{K}^j_+ \).
- Moreover, let \(P := P^{d-1} \).

For \(1 \leq j \leq d \), let \(\bar{\omega}^j_{\Gamma_{j-1}} := \bar{\omega}^j_{\Gamma_{j-1}} \otimes \bar{\omega}^j_{\Gamma_{j-1}} \) and \(1 \times \bar{\psi}_{\bar{J}^j} := \left(1 \times \psi_{\bar{J}^j} \right) \otimes \left(1 \times \psi_{\bar{J}^j} \right) \) be \(\bar{K}^{j-1} \times \bar{J}^j = (K^{j-1} \times J^j) \times (K^{j-1} \times J^j) \)-modules. Here \(\Gamma^j := \sum_{i=j}^d \Gamma_i \) and \(\Gamma^{\bar{J}} := \sum_{i=j}^d \Gamma_i \).

By definition we have

(a) a surjection \(P \times \bar{J}^j \to S \bar{K}^j_+ \);
(b) \(Q^j \) and \(Q_j \) are groups such that \(Q_j = Q^{j-1} Q_j \);
(c) \(P^0 = \Delta^0 \bar{K}^0_+ \) and \(P^j = \Delta^0 Q^j = P^{j-1} Q_j \);
(d) Pulling back via \(P^{j-1} \times \bar{J}^j \to \bar{K}^j, \bar{\kappa}^j \mid_{P^{j-1} \times \bar{J}^j} = \bar{\kappa}^{j-1} \otimes (\bar{\omega}^j_{\Gamma_{j-1}} \otimes (1 \times \bar{\psi}_{\bar{J}^j})) \) where the \(\bar{K}^{j-1} \)-module \(\bar{\kappa}^{j-1} \) is inflated to \(P^{j-1} \times \bar{J}^j \) via \(P^{j-1} \times \bar{J}^j \to P^{j-1} \to \bar{K}^{j-1} \).

In particular, as \(P \times J^d \)-module,

\[
\bar{\kappa} = \bar{\kappa}^{d-1} \otimes \bar{\omega}^d_{\Gamma_{d-1}}.
\]

Now

\[
\text{Hom}_{S \bar{K}^j} (\bar{\kappa}, \psi^S) = \text{Hom}_{P \times J^d} (\bar{\kappa}^{d-1}, \text{Hom}_{C} (\bar{\omega}^d_{\Gamma_{d-1}}, \psi^S)) = \text{Hom}_{P} (\bar{\kappa}^{d-1}, \text{Hom} (\omega^d_{\Gamma_{d-1}}, \psi^S)).
\]

The map \(\bar{\kappa} \) defined in Section 6.2.4 induces a \(P \)-equivariant isomorphism of symplectic spaces:

\[
\bar{\kappa} b_0 : \bar{W}^d := g^d_{x, s+} \oplus g^d_{x, s+} \bar{\omega}^d_{\Gamma_{d-1}} \bar{\psi}^d_{\Gamma_{d-1}} \to b_0.
\]

In fact, this is just a rephrase of Lemma 6.3 [vi] and Lemma 6.7 [i] since the \(P \) actions on the both sides of \(\bar{\kappa} b_0 \) factors through \(\Delta^0 \).

Consider the map \([16]\)

\[
\zeta b_0 : \quad \bar{J}^d \longrightarrow (b_+^+ / b_+^+) \times f = H(b_0)
\]

\[
h = (\exp(X), \exp(X')) \dashrightarrow (- (X, X') \cdot w, \frac{1}{2} \omega (w, h^{-1} \cdot w - w))
\]

By the explicit description of special isomorphism in Appendix A.2.1 (2.3), (7.9) and Lemma 7.3 [i] part [ii], the following diagram commutes:

\[
\Delta^0 \times \bar{J}^d \xrightarrow{\zeta b_0} \text{SH}(\bar{W}^d) \xrightarrow{\bar{\kappa}^d} \text{SH}(b_0)
\]

Hence, as \(\Delta^0 \times \bar{J}^d \)-module,

\[
\psi^S \cong \bar{\omega}^d_{\Gamma_{d-1}}.
\]

[16] Note that there is a negative sign before \((X, X') \cdot w\).
Lemma 7.4 (i) part (a)). Therefore, as \(P \equiv \psi \), now assume \(\dim \text{Hom}_P \equiv \psi \). Putting this into (7.12), (7.7) becomes

\[
(7.12) \quad \dim \text{Hom}_P(\tilde{\kappa}^{d-1}, \tilde{\psi}|_P) = 1.
\]

This follows from part (ii) of the next lemma.

Lemma 7.5.

(i) For \(1 \leq j \leq d - 1 \), we have

\[
(7.13) \quad \text{Hom}_{Q_j}(\tilde{\omega}_{\tilde{\Gamma}_{j-1}} \otimes (1 \times \tilde{\psi}_{\tilde{\Gamma}_j}), \tilde{\psi}) \cong \psi
\]

as \(P^j \)-modules.

(ii) For \(0 \leq j \leq d - 1 \), we have \(\dim \text{Hom}_{P^j}(\tilde{\kappa}^j, \tilde{\psi}) = 1 \).

Proof. (i) We first check that the right hand side of (7.13) has dimension one. The proof. (i) We first check that the right hand side of (7.13) has dimension one. The image of \(Q_j \) under \(J^j \to J^j/J^j_+ =: W^j \) is \(D^j \) which is a maximal isotropic subspace in \(W^j \) according to Lemma 6.9. Note that the \(Q_j \)-character \(\chi^j = \tilde{\psi}_{\tilde{\Gamma}_{j-1}} \otimes \tilde{\psi}_{\tilde{\Gamma}_j} \cong \tilde{\psi}|_{J^j} \otimes (\tilde{\psi}_{\tilde{\Gamma}_j}|_{J^j})^{-1} \) factors to a \(D^j \)-character. Therefore

\[
\dim \text{Hom}_{Q_j}(\tilde{\omega}_{\tilde{\Gamma}_{j-1}} \otimes (1 \times \tilde{\psi}_{\tilde{\Gamma}_j}), \tilde{\psi}) = \dim \text{Hom}_{Q_j}(\tilde{\omega}_{\tilde{\Gamma}_{j-1}}, \tilde{\psi}_{\tilde{\Gamma}_{j-1}}) = 1.
\]

We now check that the actions of \(P^{j-1} = \Delta^0 Q^{j-1} \) on both sides of (7.13) agree.

- The character \(\tilde{\psi} \) is trivial on \(\Delta^0 \). By the Appendix A.1, the left hand side of (7.13) is isomorphism to \(\chi^{D^j} \equiv \chi^j \). We claim that \(\chi^j \equiv \Delta^0 \). Indeed \(D^j \cong W^j \) as \(\Delta^0 \equiv G^0 \)-module. Since the right hand side has a symplectic form preserved by \(G^0 \)-action, \(\det(h)_{|D^j} = 1 \) for all \(h \in \Delta^0 \). This proves the claim.

- The group \(Q^{j-1} \subseteq P^{j-1} \) has trivial action on \(\tilde{\omega}_{\tilde{\Gamma}_{j-1}} \otimes (1 \times \tilde{\psi}_{\tilde{\Gamma}_j}) \). Therefore the left hand side of (7.13) is \(\tilde{\psi} \)-isotypic as \(Q^{j-1} \)-module. This proves (i).

(ii) We prove by induction on \(j \).

1. By definition, \(\dim \text{Hom}_{P^0}(\tilde{\kappa}^0, \tilde{\psi}) = 1 \).

2. Now assume \(\dim \text{Hom}_{P^{j-1}}(\tilde{\kappa}^{j-1}, \tilde{\psi}) = 1 \). By (i)

\[
\text{Hom}_{P^j}(\tilde{\kappa}^j, \tilde{\psi}) = \text{Hom}_{P^{j-1}}(\tilde{\kappa}^{j-1}, \text{Hom}_{Q_j}(\tilde{\omega}_{\tilde{\Gamma}_{j-1}} \otimes (1 \times \tilde{\psi}_{\tilde{\Gamma}_j}), \tilde{\psi})) = \text{Hom}_{P^{j-1}}(\tilde{\kappa}^{j-1}, \tilde{\psi}).
\]

Hence \(\dim \text{Hom}_{P^j}(\tilde{\kappa}^j, \tilde{\psi}) = 1 \). This completes the induction process and proves (ii).

Now (7.12) holds and the proof of (7.7) is complete.

8. Proof of the main theorem I: Construction of \(K \)-types in the general case

In this section, we will prove the part (ii) of the Main Theorem by reducing the statement into one block cases. The idea is old, already appeared in [16, § 2.4] and [33, Section 3.3] for example. Hence we will omit the proofs of some simple facts.

We retain the notation in the Main Theorem. The part (ii) of the Main Theorem is a consequence of the following proposition.
Proposition 8.1. Suppose \(\Sigma' := \vartheta_{V,T}(\Sigma) = (x', -\Gamma', \phi', \rho') \). Let \(w \in V \otimes_D V' \) be the element defined by \((5.9)\) via the construction of \(\Sigma' \). We retain the notation in Section 7.1 with respect to \(w \), \(\Sigma \) and \(\Sigma' \) so that \(\Omega := K \cdot w + \mathcal{B}_0 \). Then
\[\dim \operatorname{Hom}_K(\hat{\eta}, \mathcal{H}(\mathcal{B}_0)_{\Omega}) = 1. \]

Remark. More generally, if \(\Sigma' \) a theta lift of \(\Sigma \) as in Definition 5.17, then the same proof in this section would show that
\[\operatorname{Hom}_K(\hat{\eta}, \mathcal{H}(\mathcal{B}_0)_{\Omega}) \neq 0. \]

The rest of this section is devoted to proving the proposition by induction on the number of blocks. We first state the induction hypothesis in Section 8.1. Then we prove some lemmas on the block decomposition in Sections 8.2 and 8.3. The proof is completed in Section 8.4.

8.1. Induction hypothesis. Let
(a) \(\hat{V} \) be an \(\epsilon \)-Hermitian space such that \(\dim_D \hat{V} \leq \dim_D V \);
(b) \(\hat{T} \) be a Witt space of \(\epsilon \)-Hermitian spaces;
(c) \(\hat{\Sigma} \) be a supercuspidal data for \(\hat{G} := U(\hat{V}) \) such that \(\hat{\Sigma} \) has \(\hat{b} \) blocks and \(\hat{b} < b \);
(d) \(\Sigma' := \vartheta_{\hat{V}, \hat{T}}(\hat{\Sigma}) \) be a supercuspidal data of \(V' \) where \([[V']] \in \hat{T}' \).

We extend all the notations to this dual pair by adding “\(\cdot \)”.
We assume that Proposition 8.1 holds for \((\hat{\Sigma}, \hat{\Sigma}') \), i.e.
\[\dim \operatorname{Hom}_K(\hat{\eta}, \mathcal{H}(\mathcal{B}_0)_{\Omega}) = 1. \]

Note that the Hypothesis holds when \(\hat{b} = 0 \), i.e. the depth-zero case (cf. [27] and Section 5.1).

8.2. Block decomposition of vector spaces. We have already treated the depth zero case, so we assume that \(b \geq 1 \).

8.2.1. Let \(\Sigma = \bigoplus_{l=0}^b b \Sigma_l \) and \(\Gamma = \bigoplus_{l=0}^b b \Gamma_l \) be the decomposition of datum \(\Sigma \) according to Proposition 4.5 where \(\Gamma_l \) has depth \(-l' \). We denote \(a \Sigma := \bigoplus_{l=0}^{b-1} b \Sigma_l \) so that \(\Sigma = b \Sigma \oplus a \Sigma \).

In the rest of the section, the index \(i \) is reserved specially for \(i = b, a \).

Definition 8.2. We collect the following definitions and facts.
(i) Let \(r = b \) \(r \) be the depth of \(\Sigma \) and \(s = r/2 \) as usual.
(ii) We have \(V = b V \oplus a V \) where \(a V := \bigoplus_{l=0}^{b-1} b V \).
(iii) Let \(^aG := U(\{V\}) \). Then \(bG \times aG \subseteq \operatorname{End}_D(aV) \oplus \operatorname{End}_D(bV) \) sitting in \(G \subseteq \operatorname{End}_D(V) \) block diagonally.
(iv) We have \(\Gamma = b \Gamma \oplus a \Gamma \) where \(a \Gamma := \bigoplus_{l=0}^{b-1} b \Gamma \).
(v) We have \(x = (b x, a x) \in B(b G) \times B(a G) \) and \(L = b L \oplus a L \) gives the decomposition in terms of the corresponding lattice functions.
(vi) We have \(G_0^a = bG_0^a \times aG_0^a \), \(\rho = b \rho \times a \rho \) and \(\phi = b \phi \times a \phi \).
(vii) Let \(^iK := K \cap ^iG \), \(^iK_0+ := K_0^+ \cap ^iG \), \(^iK_+ := K_+ \cap ^iG \) and \(\hat{a}K := \hat{b}K \times \hat{a}K \).
(viii) Let \(^b g := g \cap \hat{a} \operatorname{End} \) and \(\hat{a}g_{x,s} := \hat{a}g \cap g_{x,s} \) where
\[\hat{a} \operatorname{End} := \operatorname{Hom}_D(\hat{b}V \oplus \hat{a}V) \subseteq \operatorname{End}_D(V). \]
(ix) Let \(^b J := G_{x,r} \exp(\hat{a}g_{x,s}) \) and \(\hat{a}J_+ := ^b J \cap K_+ = G_{x,s} \exp(\hat{a}g_{x,s+}) \). Obviously
\[\exp: \hat{a}g_{x,s+} \rightarrow ^b J/\hat{a}J_+ =: \hat{a}W \]
is a \(bG_{b \times a} \)-equivariant isomorphism between abelian groups.
Lemma 8.4. Similar to (7.9), we have following lemma.

(8.1) Let \mathfrak{K} be the pull back of \mathfrak{g}_W via

$$\mathfrak{g}_K \otimes \mathfrak{g}_J \rightarrow \text{Sp}(\mathfrak{g}_W) \otimes \mathfrak{H}(\mathfrak{g}_W)$$

where $\mathfrak{g}_J \rightarrow \mathfrak{H}(\mathfrak{g}_W)$ is the restriction of special morphism given by (8.1).

(xiii) We identify \mathfrak{g}_K as \mathfrak{g}_K and \mathfrak{g}_J with their inflations to $\mathfrak{g}_K \otimes \mathfrak{g}_J$. Directly from the construction of \mathfrak{g}_K, we get

$$\mathfrak{g}_K = \mathfrak{g}_K \otimes \mathfrak{g}_K \text{ and } \mathfrak{g}_J = \mathfrak{g}_J \otimes \mathfrak{g}_J.$$
Proof. Let \((X, X') \in \mathfrak{g}_{x,s} \oplus \mathfrak{g}'_{x,s}\). In terms of matrices with respect to the decomposition \(V = bV \oplus \mathfrak{v}\) and \(V' = b'V' \oplus \mathfrak{v}'\), we write
\[
X = \begin{pmatrix} 0 & A \ns
\end{pmatrix}, \quad X' = \begin{pmatrix} 0 & A' \ns
\end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} b_w & 0 \\ 0 & c_w \ns
\end{pmatrix}.
\]
Here \(A \in \text{Hom}(a\mathcal{L}, b\mathcal{L})_s \subseteq \text{Hom}_D(a\mathcal{V}, b\mathcal{V})\) and \(\ast : \text{Hom}_D(a\mathcal{V}, b\mathcal{V}) \rightarrow \text{Hom}_D(b\mathcal{V}, a\mathcal{V})\) is defined by \((Av_1, v_2)_{a\mathcal{V}} = (v_1, A^\ast v_2)_{b\mathcal{V}}\) for all \(v_1 \in a\mathcal{V}, v_2 \in b\mathcal{V}\). The notation for \(V'\) is defined similarly. Then
\[
(X, X') \cdot w = -wX + X'w = \begin{pmatrix} 0 & -b_wA + A'c_w \\ -A^\ast b_w & 0 \ns
\end{pmatrix}.
\]

Claim 1. Then map \(\varphi_I\) is injective.

Proof. Suppose \(\varphi_I(X, X') \in \mathfrak{g}_{0+},\) i.e.
\[
\begin{align*}
\tag{8.4} & -b_w A + A'c_w \equiv 0 \pmod{\mathfrak{g}_{0+}} \quad \text{and} \\
\tag{8.5} & a_w A^\ast - A^\ast b_w \equiv 0 \pmod{\mathfrak{g}_{0+}}.
\end{align*}
\]
Applying \(\ast\) to \((8.5)\) gives
\[
\tag{8.6} A^\ast a_w - b_w A' \equiv 0 \pmod{\mathfrak{g}_{0+}}.
\]
Note that \(\varphi_I(X, X') \in \mathfrak{g}_{x,-(s-1)r}\) and so \(-T A \in \text{Hom}(a\mathcal{L}, b\mathcal{L})_s\). On the other hand, the datum \(b\mathcal{L}\) is a single positive depth block so multiplying by \(\mathcal{L}\) induces an isomorphism \(b\mathcal{L}_x \rightarrow b\mathcal{L}_x\). Hence \(A \in \text{Hom}(a\mathcal{L}, b\mathcal{L})_s\), i.e. \(X \in \mathfrak{g}_{x,s}\). A similar argument yeilds \(X' \in \mathfrak{g}'_{x,s}\). This proves \(\text{Claim 1}\) \(\square\)

Claim 2. We have \(\dim_I \mathfrak{g}_{x,s} = \dim_I \mathfrak{g}_{0+}\) and \(\dim_I \mathfrak{g}'_{x,s} = \dim_I b\mathfrak{b}\).

Proof. We recall that \(b_w b\mathcal{L}_t = b\mathcal{L}'_{t-s}\) by the construction of lift of datum. Hence \(A \mapsto b_w A\) induces an isomorphism
\[
\mathfrak{g}_{x,s} \cong \text{Hom}(a\mathcal{L}, b\mathcal{L})_{s}\rightarrow \text{Hom}(a\mathcal{L}, b\mathcal{L})_{0+} = \mathfrak{g}_{0+}.
\]
Similarly, \(A' \mapsto A^\ast b_w\) induces an isomorphism
\[
\mathfrak{g}'_{x,s} \cong \text{Hom}(b\mathcal{L}', a\mathcal{L}')_{s}\rightarrow \text{Hom}(b\mathcal{L}', a\mathcal{L}')_{0+} = \mathfrak{b} \mathfrak{b}.
\]
\(\square\)

\(\text{Claim 1}\) and \(\text{Claim 2}\) prove that \(\varphi_I\) is an isomorphism of \(f\)-vector spaces.

The group \(\mathfrak{g}\) stabilizes the coset \(w + \mathfrak{g}_{0+} \in \mathfrak{g} W / \mathfrak{g}_{0+}\). Using this fact and a direct computation show that \(\varphi_I\) is \(\mathfrak{g}\)-equivariant. \(\square\)

Remark. We only use the fact that \(\varphi_I(X, X') \in \mathfrak{g}_{x,-s}\) when we prove the injectivity of \(\varphi_I|_{\mathfrak{g}_{x,s}}\). Therefore we could and will reuse this proof in \(\text{Section 9.2.3}\).

8.3. Block decomposition of representations. As in the one block case, we consider the space \(\mathcal{I}(\mathfrak{g}_{0+})\). By \(\text{Lemma 2.4}\), \(\mathcal{I}(\mathfrak{g}_{0+}) = \text{Ind}^K_S \mathcal{I}(\mathfrak{g}_{0+}) = \text{Ind}^K_S \mathfrak{g}_{0+}\). We now decompose \(\mathfrak{g}_{0+}\) according to the decomposition of data.
8.3.1. Using the formula in (7.10), we get a morphism \(\zeta : \mathfrak{S} \to \mathfrak{H} \). Its natural extension to \(\mathfrak{S} \times \mathfrak{J} \to \mathfrak{SH}(b) \) is again denoted by \(\zeta \).

Let \(\mathfrak{SH} \) denote the pull back of \(\mathfrak{SH}_a \) via \(\zeta \), which is an \(\mathfrak{S} \times \mathfrak{J} \)-module realized on \(\mathfrak{S}(b) \). More precisely, for \(h = (u, (\exp(X), \exp(X')) \in \mathfrak{S} \times \mathfrak{J} \),

\[
\mathfrak{SH}(h) := \mathfrak{SH}_a(u)\mathfrak{SH}_a(-(X, X') \cdot w)\psi\left(\frac{1}{2} \langle w, (\exp(X), \exp(X'))^{-1} \cdot w - w \rangle_w \right).
\]

Lemma 8.5. We have \(\mathfrak{S}(b) \cong \mathfrak{SH}(b) \) as \(\mathfrak{S} \times \mathfrak{J} \)-modules.

Proof. By (2.6), we have \(\frac{1}{2} (w, h^{-1} \cdot w - w)_W \equiv B(X, \Gamma) + \mathfrak{S}(\mathfrak{J})(\mathfrak{J}, -\Gamma') \pmod{p} \) for all \(h = (\exp(X), \exp(X')) \in \mathfrak{J} \subseteq G_{x,s} \times G'_{x',s} \). Now the lemma follows immediately from Lemma 8.4 with the same proof of (7.11). \(\square \)

Since \(b = b \oplus b \), we have \(\mathfrak{SH}_a = \mathfrak{SH}_a \times \mathfrak{SH}_a \) as \(\mathfrak{SH}(b) \times \mathfrak{SH}(b) \)-module, realized on \(\mathfrak{S}(b) \).

(8.8)

\[
\mathfrak{S}(b) = \mathfrak{S}(b) \otimes \mathfrak{S}(b).
\]

Note that \(w = (b, a) \in \mathfrak{S}(b) \). Evaluation at \(w \) gives an isomorphism of \(\mathbb{C} \)-vector spaces

\[
\mathfrak{S}(b)_{w} \cong \mathfrak{S}(b)_{w}. \quad (8.9)
\]

Translating the \(\mathfrak{S} \)-module (resp. \(\mathfrak{J} \)-module for \(i = a, b \)) structure via (8.9), we let \(\mathfrak{SH} \) be the resulting module acting on \(\mathfrak{S}(b) \) (resp. \(\mathfrak{S}(b) \)). Clearly, by Lemma 2.4

\[
\mathfrak{SH}_{\mathfrak{S}}(h) = \mathfrak{SH}_a(h)\mathfrak{SH}_a(h^{-1} \cdot w - w)\psi\left(\frac{1}{2} \langle w, h^{-1} \cdot w - w \rangle_w \right)
\]

\[
= \mathfrak{SH}(b) \otimes \mathfrak{SH}(a) \quad \forall h = (b, a) \in \mathfrak{S}.
\]

We state a key lemma for the induction process.

Lemma 8.6. By an abuse of notation, let \(\mathfrak{SH} \) also denote its inflation to \(\mathfrak{S} \times \mathfrak{J} \). Then

\[
\mathfrak{SH}_w = \mathfrak{SH}_{\mathfrak{S}} \otimes \mathfrak{SH}
\]

as \(\mathfrak{S} \times \mathfrak{J} \)-module under the factorization (8.8).

Proof. Suppose \(h \in \mathfrak{S} \). Then \(h^{-1} \cdot w - w \in \mathfrak{B}_0 \), i.e. its component in \(\mathfrak{B}_0 \) is zero. Therefore by Lemma 2.4, (7.7) and (8.10),

\[
\mathfrak{SH}_w(h) = \mathfrak{SH}_a(h)\mathfrak{SH}_a(h^{-1} \cdot w - w)\psi\left(\frac{1}{2} \langle w, h^{-1} \cdot w - w \rangle_w \right)
\]

\[
= \mathfrak{SH}(b) \otimes \mathfrak{SH}.
\]

Suppose \(h = (\exp(X), \exp(X')) \in \mathfrak{J} \subseteq G_{x,s} \times G_{x,s} \). Then \(\mathfrak{SH}_a(h) = \text{id} \). Since \(h^{-1} \cdot w - w \in -(X, X') \cdot w + \mathfrak{B}_0 \subseteq \mathfrak{B}_0 \oplus \mathfrak{B}_0 \)

we see that \(\mathfrak{SH}_a(h^{-1} \cdot w - w) = \text{id} \otimes \mathfrak{SH}_a(-(X, X') \cdot w) \). Putting the above into (2.5) gives

\[
\mathfrak{SH}_w(h) = \mathfrak{SH}_a(-(X, X') \cdot w)\psi\left(\frac{1}{2} \langle w, h^{-1} \cdot w - w \rangle_w \right) = \mathfrak{SH}(h).
\]

This completes the proof of the lemma. \(\square \)
8.4. Proof of Proposition 8.1. Note that $^{\omega}\Sigma$ has $b-1$ blocks and the data $(^{\omega}\Sigma, ^{\omega}\Sigma')$ satisfies the induction hypothesis in Section 8.1. Also note that $^{\omega}\varpi$ is an irreducible $^{\omega}J$-module since it is a Heisenberg representation. Now

$$
\text{Hom}_K(\eta, \mathcal{S}(\mathcal{B}_0)) = \text{Hom}_K(\eta, \text{Ind}_S^K\varpi) = \text{Hom}_S(\eta, \varpi) = \text{Hom}_S(\eta, \varpi) \otimes \text{Hom}_S(\eta, \varpi) \otimes \text{Hom}_S(\eta, \varpi) \otimes \text{Hom}_S(\eta, \varpi) \otimes \text{Hom}_S(\eta, \varpi)
$$

(by (8.2) and Lemma 8.6)

$$
= \text{Hom}_S(\eta, \varpi) \otimes \text{Hom}_S(\eta, \varpi)
$$

(by Lemma 8.5)

$$
= \text{Hom}_S(\eta, \varpi) \otimes \text{Hom}_S(\eta, \varpi).
$$

It has dimension 1 by Proposition 7.1 and the Induction Hypothesis. This completes the induction process and proves the proposition.

9. Proof of the main theorem II: Exhaustion

In this section, we prove part (ii) of the Main Theorem.

9.1. Occurrence of refined K-types. Part (ii) of the Main Theorem is an easy consequence of following Proposition 9.1. Its proof consists of the whole Section 9.2 which uses the key identity (9.1).

Recall the notion of K-type data in the remark of Definition 3.4 and its extension to covering groups in Remark 4 of Definition 5.16.

Proposition 9.1. Let $(G, G') = (U(V), U(V'))$ be a type I reductive dual pair. Let $\mathcal{D} = (x, \Gamma, \phi, \rho, \xi)$ be a supercuspidal datum of G. Suppose that $\theta_{V, V'}(\pi_{\mathcal{D}}) \neq 0$ (or equivalently $\omega[\eta_{\mathcal{D}}] \neq 0$) with respect to (G, G'). Then there exist a supercuspidal datum Σ for G and a K-type datum Σ' for G' such that

(i) Σ' is a theta lift of Σ (cf. Definition 5.17), and the pair (Σ, Σ') defines a splitting $\xi_{x, x'}$;

(ii) \mathcal{D} is equivalent to $\mathcal{D} := (\Sigma, \xi_{x, x'})$, i.e. $\pi_{\mathcal{D}} \simeq \pi_{\mathcal{D}}$ and

(iii) $\omega[\eta_{\Sigma} \otimes \eta_{\Sigma'}] \neq 0$ under the splitting $\xi_{x, x'}$, where η_{Σ} and $\eta_{\Sigma'}$ are the refined K and K'-types defined by Σ and Σ' respectively.

Proof of Main Theorem part (ii). Let \mathcal{D} be a supercuspidal datum such that $\pi = \pi_{\mathcal{D}}$. By Proposition 9.1 we have Σ and Σ' such that $\pi = \pi_{\mathcal{D}} := c\text{-Ind}_K^G\eta_{\Sigma}$ and

$$
0 \neq \text{Hom}_{\mathcal{K} \times \mathcal{K}'}(\eta_{\Sigma} \otimes \eta_{\Sigma'}, \omega) = \text{Hom}_{\mathcal{G} \times \mathcal{G}'}(\pi \otimes \eta_{\Sigma'}, \omega) = \text{Hom}_{\mathcal{G} \times \mathcal{G}'}(\pi \otimes \eta_{\Sigma'}, \pi \otimes \theta_{V, V'}(\pi)).
$$

Therefore η_{Σ} occurs in $\theta_{V, V'}(\pi)$. By [17] Proposition 17.2 (2)], we conclude that ρ' in $\tilde{\Sigma}'$ is cuspidal since $\pi' = \theta_{V, V'}(\pi)$ is supercuspidal by assumption. Hence $\Sigma' = \theta_{V, V'}(\Sigma)$ by definition, $\tilde{\Sigma}'$ is a supercuspidal datum and $\tilde{\pi}' = \tilde{\pi}_{\Sigma'}$.

Remark. In the proof of [17] Proposition 17.2, [17] Lemma 15.4] is used to treat the depth-zero case (see [17] p 315]). The covering group version of this lemma also holds since “The proof of Proposition 6.7 in [25] goes through without changes” as stated in [12] proof of Theorem 3.10]. Meanwhile the other parts of the proof of [17] Proposition 17.2 (2)] only involves subgroups of G which split canonically (because they are either unipotent or pro-p). Thus the proof [17] Proposition 17.2 also adapts “mutatis mutandis”.

9.2. **Proof of Proposition 9.1.** When D has no positive depth block, i.e. D is a depth zero data, this is proved by Pan in [27]. See Section 5.1 and in particular Theorem 5.5.

We prove by induction on the number of blocks similar to Section 8. We now assume D has b positive depth blocks with $b > 0$.

Induction Hypothesis. Assume Proposition 9.1 holds for (\hat{D}, V, \hat{V}) where $\dim V \leq \dim \hat{V}$, $\dim \hat{V} \leq \dim V'$ and \hat{D} has b positive depth blocks with $b > b$.

9.2.1. Suppose $\tilde{D} = (x, \Gamma, \phi, \rho, \xi)$. Let $D = (x, \Gamma, \phi, \rho)$ and $D = \mathcal{D} \oplus \mathcal{D}$ be the decomposition of D as that for Σ in Section 8.2 so that depth(\mathcal{D}) = r and depth(\mathcal{D}) = r. We adopt the notation defined in Definition 8.2 with respect to D.

Let $\text{pr}_{G_{x,t}}$ (resp. $\text{pr}_{\tilde{G}_{x,t}}$) be the projection operator to the $G_{x,t}$-\mathcal{D}-isotypic component of and the $\tilde{G}_{x,t}$-isotypic component). Clearly, $\text{pr}_{[\Gamma]} = \text{pr}_{[\Gamma]} \circ \text{pr}_{G_{x,t}}$ and $\text{pr}_{[\Gamma]} \circ \text{pr}_{[\Gamma]} = \text{pr}_{[\Delta]}$.

Lemma 9.2. There exist an $x'' \in B(G')$ and a $w \in B_{x''}$ such that

(i) $\text{pr}_{\tilde{G}_{x,t}}(\mathcal{G}(B_{x''}, 0)) \neq 0$ and

(ii) $M(w) \in \Gamma + b_g \mathcal{G}_{x, s} \leq a_g$.

Proof. Since Jump(B_x) $\subseteq Q$, we have

\[
\mathcal{G}_{x,s} = \sum_{w \subseteq B_x} \mathcal{G}_{x,s}.
\]

See Appendix B for the notation and a quick proof of (9.1).

Note that $K \leq G_x$ preserves $\mathcal{G}_{x,s}$. Therefore, we can find an $x'' \in B(G')$ such that $\text{pr}_{\tilde{G}_{x,t}}(\mathcal{G}(B_{x''}, 0)) \neq 0$ since $\text{pr}_{\tilde{G}_{x,t}}(\mathcal{G}) \neq 0$.

We denote $B_{x,t}$ by B. Since $B_{x,s} = \bigcup_{w \in B_{x,s}} (w + B_0)$, there is $w \in B_{x,s}$ such that $\text{pr}_{\tilde{G}_{x,t}}(\mathcal{G}(B_0)) \neq 0$. Clearly, $\text{pr}_{[\Gamma]}(\mathcal{G}(B_0)) \neq 0$.

Claim. If $\text{pr}_{[\Gamma]}(\mathcal{G}(B_0)) \neq 0$, then $M(w) \in \Gamma + g_{x,s}$.

Proof. Let $g = \exp(X) \in G_{x,s}$ with $X \in g_{x,s}$. By (2.8), $\omega(g)f = \psi_M(g)f$ for each $(w, \mathcal{G}(B_0)) \neq 0$ is equivalent to $\psi_M(g) = \psi_T(g)$ for all $g \in G_{x,s}$. This is equivalent to

$$
\psi(B(M(w) - \Gamma, X)) = 1 \quad \forall X \in g_{x,s}.
$$

Since ψ is a non-trivial character with conductor \mathfrak{p}, the above condition is equivalent to $B(M(w) - \Gamma, g_{x,s}) \subseteq \mathfrak{p}$, i.e. $M(w) \in \Gamma + g_{x,s}$.

By Proposition 4.3, let $\hat{\Gamma}$ be a GL(\mathfrak{g})-good element in $b_g \mathcal{G}_{x,s}$ representing $\Gamma + b_g \mathcal{G}_{x,s}$. Then $\hat{\Gamma}$ is also a good element in $g_{x,t}$ representing $\Gamma + g_{x,s}$. Clearly $\hat{G} = Z_G(\hat{\Gamma}) \subseteq \mathfrak{G}$.

We now recall a result of Kim-Murnaghan.

Lemma ([19 Lemma 5.1.3 (3)]). Let $x \in B(G)$ and $X \in \mathfrak{g}_{x,t} \cap \mathfrak{g}_{x,s}$. Then for $t > -r$ we have

$$
(\text{Ad} G_{x,t})(\hat{\Gamma} + X + \mathfrak{g}_{x,t}) = \hat{\Gamma} + X + \mathfrak{g}_{x,t}.
$$

Setting $X = \Gamma - \hat{\Gamma}$, and $t = -s$, the above lemma gives $(\text{Ad} G_{x,s})(\Gamma + g_{x,s}) = \Gamma + g_{x,s}$. In other words, there is an $h \in G_{x,s}$ such that

$$
M(h \cdot w) = h \cdot M(w) \in \Gamma + g_{x,s} \subseteq (\mathfrak{g} + b_g \mathcal{G}_{x,s}) \oplus a_g g_{x,s}.
$$
Since $G_{x,s}$ normalizes $\tilde{\eta}_B$, $\text{pr}_{\tilde{\eta}_B}(\mathcal{I}(B_0)_{h,w}) = h \cdot \text{pr}_{\tilde{\eta}_B}(\mathcal{I}(B_0)_{w}) \neq 0$. Therefore by replacing w with $h \cdot w$, we may assume that w satisfies Lemma 9.2 (ii).

This completes the proof of Lemma 9.2.

9.2.2. Let x'' and w satisfy Lemma 9.2 Let $\mathcal{B} := \mathcal{B}_{x,x''}$ and

\[M(w) = bX + aX \]

where $bX \in T + b\mathfrak{g}_{x,-s}$ and $aX \in T + a\mathfrak{g}_{s,-s}$.

We define $bV' = w(bV)$ and $aV' = bV'^\perp$. Let $i'w := w|_{V'}$ for $i = a$ and b.

Lemma 9.3. The following statements hold:

(i) Restricting on bV, the map $w|_{V'} : bV \rightarrow bV'$ is an isomorphism.
(ii) The restriction of $\langle \cdot, \cdot \rangle_{V'}$ to bV' is non-degenerate. In particular, $V' = bV' \oplus aV'$.
(iii) The image $w(aV) \subseteq aV'$, i.e. $aw \in \text{Hom}(aV, aV')$.

Proof. (i) All elements in $bT + b\mathfrak{g}_{x,-s}$ are invertible elements in $\text{End}(bV)$. In particular bX is invertible. Since $w^2 w = bX$ restricted on bV, $w : bV \rightarrow bV'$ is an injection and hence an isomorphism.

(ii) Let $v_1, v_2 \in bV$. Then $\langle wv_1, wv_2 \rangle_{V'} = \langle v_1, M(w)v_2 \rangle_V = \langle v_1, bXv_2 \rangle_{V'}$. Since bX is invertible, the claim follows.

(iii) Suppose $v \in aV$. Then $\langle wu, wv \rangle_{V'} = \langle -bXu, v \rangle_V = 0$ for all $u \in bV$. Hence $wv \in bV'^\perp = aV'$.

By Lemma 9.3 we see that $i'w \in \text{Hom}(V, V')$ and $w = b w \oplus a w$ is a block diagonal decomposition. Moreover $i'M(i'w) = i'X$ for iX in [9.2] where $i'M$ is the moment map defined with respect to the dual pair $(U(V'), U(V'))$.

Let $i'L = L \cap V$ which is the lattice function corresponding to $i'x \in B(iG)$ and $L = bL + aL$. The following lemma says that the lattice function L' corresponding to x'' is split under $V' = bV' \oplus aV'$.

Lemma 9.4. Let $i'L' = L' \cap V'$ for $i = b, a$. Then

(i) $bL' = b_{w}(bL_{t+s})$ and it is self-dual in bV',
(ii) $L' = bL' \oplus aL'$ and
(iii) aL' is self-dual.

Proof. (i) Let $bL''_t := b_{w}(bL_{t+s}) = w(bL_{t+s})$. By Lemma 5.9 it is a self-dual lattice function in bV'. Since $w \in \mathcal{B}_{x,-s}$, $bL''_t \subseteq L' \cap V' = bL'$ for all $t \in \mathbb{R}$. Taking dual lattice in bV, we have $bL''_{t-} = (bL''_t)^{\ast} \supseteq (bL'_t)^{\ast} \supseteq (L'_t)^{\ast} \cap bV' = bL'_{t-}$ for all $t \in \mathbb{R}$. Hence (i) holds.

(ii) Obviously $L' \supseteq bL' \oplus aL'$. Conversely let $v = b_v + a_v \in L'_{t-}$, $v \in V'$. Then $b_v \in L'_{t-} = (L'_t)^{\ast}$ since $\langle v, bL'_t \rangle_{V'} = \langle v, bL'_t \rangle_{V'} \subseteq \langle v, L'_t \rangle_{V} \subseteq \mathfrak{p}_D$. Now $a_v = v - b_v \in (L'_t + bL'_{t+}) \cap aV' = aL'_{t-}$. Therefore, $L'_{t-} \subseteq bL'_{t+} \oplus aL'_{t-}$ for all $t \in \mathbb{R}$. This proves part (ii).

(iii) By (ii) and (i), $bL'_{t+} \oplus aL'_{t+} = L'_{t+} = (L'_t)^{\ast} \ast (aL'_t)^{\ast} = bL'_{t-} \oplus (aL'_t)^{\ast}$. Hence $aL'_{t+} = (aL'_t)^{\ast}$, i.e. aL' is self-dual.

Note that $bM(bw) \in T + b\mathfrak{g}_{x,-s}$. By Proposition 5.10 there is a $bw_0 \in bw + B_0$ such that $bM(bw_0) = T$. Replacing w with $bw_0 \oplus w \in w + B_0 \subseteq w + B_0$, we assume that $bM(bw) = T$ from now on.

18We warn that $aL'_t \neq w aL'_{t+s}$.

9.2.3. We retain all the notations in Definition 8.3 (i), (ii) and (iv). On the other hand, we do not have enough information about \(\Sigma' \) to define \(K' \) at the moment. Instead, we replace \(\tilde{K} \) by \(K \) in Definition 8.3 (vii) and define the following notations.

Let \(\Omega_K := K + \mathcal{B} \) and \(S_K := \text{Stab}_K(w + \mathcal{B}). \)

Let \(\Omega_K := i(K + \mathcal{B}) \) and \(S_K := \text{Stab}_K(i(K + \mathcal{B})) \) for \(i = a, b. \)

Let \(\bar{S}_K := \bar{S}_K \times S_K = \text{Stab}_{\chi \cdot \Sigma}(w + \mathcal{B})\) so that \(S_K = \bar{S}_K \).

By the remark of Lemma 8.4 we see that the map

\[
\bar{\iota}_K : \bar{\mathfrak{g}}_{x,s,s^+} \rightarrow \mathfrak{g}_{0;0} = \mathfrak{b}
\]

induced by \(X \mapsto X \cdot w \) is an \(\bar{\mathfrak{g}}_{x,s,s^+} \)-equivariant injection between \(\mathfrak{f} \)-modules. Moreover \(\bar{\iota}_K \) is an isometry with respect to natural symplectic forms of the domain and codomain. Let \(\bar{\mathfrak{b}}_K \) be the orthogonal complement of the image of \(\bar{\iota}_K \) in \(\mathfrak{b}. \)

The next lemma is a variation of Lemma 8.5 and Lemma 8.6 which follows by the same arguments.

Lemma 9.5. Let \(\bar{\mathfrak{g}}_K \) be the Heisenberg-Weil representation of \(\mathfrak{g}_K \) defined in Definition 8.2 (ii). Let \(\bar{\mathfrak{g}}_{x,s,s^+} \) and \(\bar{\mathfrak{g}}_x \) be the \(\bar{\mathfrak{g}}_K \times \mathfrak{a}_J \)-modules realized on \(S(\mathfrak{b}_K) \) and \(S(\mathfrak{b}) \) respectively as in Section 8.3.4 (see (8.17) and (8.10)). Then, as \(\bar{\mathfrak{g}}_K \times \mathfrak{a}_J \)-modules,

1. \(\bar{\mathfrak{g}}_{x,s,s^+} \cong \mathfrak{g}_K \otimes S(\mathfrak{b}_K) \) where \(c = \text{dim} \mathfrak{S}(\mathfrak{b}_K) = (\# \mathfrak{b}_K)^2, \)
2. \(\bar{\mathfrak{g}}_{x,s,s^+} \cong \mathfrak{g}_K \otimes \mathfrak{g}_{x,s,s^+} \), and
3. \(\bar{\mathfrak{g}}_x \cong \mathfrak{g}_{x,s,s^+} \otimes \mathfrak{b}_{x,s,s^+}. \)

\[\square \]

9.2.4. Let \(\mathcal{D} = (x, \Gamma, \phi, \varrho) \) where \(\varrho \) is nonzero (see Definition 3.16 and Lemma 9.2 (i)). By Lemma 9.5, we have

\[
0 \neq \text{Hom}_{\mathfrak{g}_K}(\eta_{\mathcal{D}}, \mathcal{J}(\mathcal{B}_0)_{\eta_{\mathcal{D}}}) = \text{Hom}_{\mathfrak{g}_K}(\eta_{\mathcal{D}}, \mathcal{J}(\mathcal{B}_0)_{\eta_{\mathcal{D}}}.
\]

In particular, \(0 \neq \text{Hom}_{\mathfrak{g}_K}(\eta_{\mathcal{D}}, \mathcal{J}(\mathcal{B}_0)_{\eta_{\mathcal{D}}}) \subseteq \text{Hom}_{\mathfrak{g}_K}(\eta_{\mathcal{D}}, \mathcal{J}(\mathcal{B}_0)_{\eta_{\mathcal{D}}}.
\]

Let \(\eta_{\mathcal{D}} := (\eta_{x,s}, \eta_{x,s^+}, \eta_{x,s}). \) Then \(\eta_{\mathcal{D}} \) has \(b - 2 \) blocks. Applying the induction hypothesis to \((\mathcal{D}', \mathcal{V}', \mathcal{V}'') \), we get \(\eta_{\mathcal{D}} ' = \eta_{\mathcal{D}} = \eta_{\mathcal{D}}. \)

Now we define

(a) \(x': (b'x', a'x') \in \mathcal{B}(G', F) \times \mathcal{B}(G', F) \subseteq \mathcal{B}(G', F); \)

(b) \(\Sigma := (b'x', \Gamma', b'y', b'\rho) \) where \(b'y' := b' \otimes (\mu_{\xi_{x,s}}, \eta_{\mathcal{D}}') \); (c) \(\Sigma := \Sigma \oplus \Sigma', \Sigma' := \vartheta' + (\Sigma') \) with respect to \(b'w \) and \(\Sigma' := \Sigma' \oplus \Sigma'. \)

Obviously, \(\Sigma' \) is a lift of \(\Sigma \) and \(x' \) occur as a part of the datum \(\Sigma'. \) By the functoriality of the construction of lattice model, one can see that

\[
\mu_{\xi_{x,s}, a'x', \xi_{x,s}} = \mu_{\xi_{x,s}, a'x', \xi_{x,s}} = \mu_{\xi_{x,s}, a'x', \xi_{x,s}} = \mu_{\xi_{x,s}, \xi_{x,s}} = \mu_{\xi_{x,s}, \xi_{x,s}} = \mu_{\xi_{x,s}, \xi_{x,s}}.
\]

Hence, we conclude that \((\Sigma, \xi_{x,x'}) \sim \mathcal{D} \). Applying the argument in Section 8.3.4, we conclude that

\[
0 \neq \text{Hom}_{K \times K'}(\eta_{\Sigma} \otimes \eta_{\Sigma'}, \mathcal{J}(\mathcal{B}_{x,x';0})_{K \times K}).
\]

This finishes the proof of Proposition 9.1 and hence also complements the proof of part (iii) of the Main Theorem. \(\square \)
APPENDIX A. HEISENBERG–WEIL REPRESENTATIONS

In this appendix, we collect some facts about Heisenberg–Weil representations.

A.1. Heisenberg–Weil representation after Gérardin. Let \(\mathfrak{f} \) be a finite field with \(q \) elements and let \(\mathfrak{w} \) be a nontrivial character of \(\mathfrak{f} \). Let \(\mathcal{W} \) be a non-degenerate symplectic space over \(\mathfrak{f} \). Let \(\text{H}(\mathcal{W}) = \mathcal{W} \times \mathfrak{f} \) and \(\text{Sp}(\mathcal{W}) \) denote the corresponding Heisenberg group and symplectic group as usual. We let \((\mathfrak{w}_\mathcal{W}, \mathbb{S}(\mathcal{W})) \) denote the space of the Heisenberg–Weil representation of \(\text{SH}(\mathcal{W}) := \text{Sp}(\mathcal{W}) \ltimes \text{H}(\mathcal{W}) \) with central character \(\mathfrak{w} \) realizing on \(\mathbb{S}(\mathcal{W}) \). In [10], Gérardin carefully studied the isomorphism class of \(\mathfrak{w}_\mathcal{W} \). We now recall the mixed model of this representation. See [11] § 2 for details.

For any subspace \(V \subseteq \mathcal{W} \), let \(\text{H}(V) \) be its inverse image in \(\text{H}(\mathcal{W}) \) under the projection \(\text{H}(\mathcal{W}) \to \text{H}(V)/f = \mathcal{W} \). Let \(\mathcal{W}_+ \) be a non-trivial totally isotropic subspace of \(\mathcal{W} \). Then \(\mathcal{W}_0 := \mathcal{W}_+/\mathcal{W}_+ \) is naturally a non-degenerate symplectic space. Let \(\text{P}(\mathcal{W}_+) \) be the parabolic subgroup stabilizing \(\mathcal{W}_+ \). By an abuse of notation, we let \(\mathfrak{w}_{\mathcal{W}_0} \) denote the pull back of \(\mathfrak{w}_\mathcal{W} \) to \(\text{P}(\mathcal{W}_+) \ltimes \text{H}(\mathcal{W}_+) \) via the natural quotient \(\text{P}(\mathcal{W}_+) \ltimes \text{H}(\mathcal{W}_+) \to \text{Sp}(\mathcal{W}_0) \ltimes \text{H}(\mathcal{W}_0) \).

Let \(\chi_{\mathcal{W}_+} \) be the (unique real) character of \(\text{P}(\mathcal{W}_+) \) given by \(g \mapsto (\det g|_{\mathcal{W}_+})^{(q-1)/2} \in \{\pm 1\} \) for all \(g \in \text{P}(\mathcal{W}_+) \). Then

(i) \(\mathfrak{w}_\mathcal{W} \) is the unique \(\text{SH}(\mathcal{W}) \)-module extending \(\text{Ind}_{\text{P}(\mathcal{W}_+) \ltimes \text{H}(\mathcal{W}_+) / \text{P}(\mathcal{W}_+) \ltimes \text{H}(\mathcal{W}_+)}(\chi_{\mathcal{W}_+} \otimes \mathfrak{w}_{\mathcal{W}_0}) \).

(ii) Fix a totally isotropic subspace \(\mathcal{W}_- \) such that \(\mathcal{W} = \mathcal{W}_- \oplus \mathcal{W}_+ \), then the induced module in (i) could be identified with the set of functions on \(\mathcal{W}_+ \) with values in \(\mathbb{S}(\mathcal{W}_0) \). The group actions could be easily work out.

(iii) The space \((\mathfrak{w}_\mathcal{W})(\mathcal{W}_-) \) of \(\mathcal{W}_- \)-invariants in \(\mathfrak{w}_\mathcal{W} \) is isomorphic to \(\mathfrak{w}_{\mathcal{W}_0} \) as an \(\text{H}(\mathcal{W}_+) \)-module. Moreover \(\text{P}(\mathcal{W}_+) \) acts by \(\chi_{\mathcal{W}_+} \otimes \mathfrak{w}_{\mathcal{W}_0} \).

(iv) The module \(\mathfrak{w}_\mathcal{W} \) has dimension \(q^2 \dim \mathcal{W} \).

Note that when \(\mathcal{W}_+ \) is a maximal isotropic subspace in \(\mathcal{W} \), we have \(\text{H}(\mathcal{W}_0) = \mathfrak{f} \) and \(\mathfrak{w}_{\mathcal{W}_0} = \mathfrak{w} \) so that we get the Schrödinger model of \(\mathfrak{w}_\mathcal{W} \).

A.2. Construction of \(\kappa \). Following [38], we discuss the construction of the \(K \)-module \(\kappa' \) which extends \(\psi|_{K_1^*} \).

A.2.1. Special isomorphism. As Yu [38] has pointed out, the extension of a Heisenberg representation to a “Weil representation” of \(K \) is subtle. The problem is that, \(\text{H}(\mathcal{W}) \) has a large subgroup of the automorphism group (isomorphic to \(\mathcal{W} \)) whose action on the center \(\mathfrak{f} \) and on \(\text{H}(\mathcal{W})/f \) are identity. Therefore, \(J \to \text{H}(\mathcal{W}) \) in [38, § 11] is far from unique and, Yu gives a canonical construction from root datum.

We retain the notation and situation in [38, § 11] and [17]:

(i) \(\Gamma \in \mathfrak{g} \) is a good element of depth \(-r \);

(ii) \((\tilde{G}, G) \) is a tamely ramified twisted Levi sequence with \(\tilde{G} = Z_G(\Gamma) \);

(iii) \(\mathcal{B}(\tilde{G}) \to \mathcal{B}(G) \) is a fixed embedding of buildings;

(iv) \(x \in \mathcal{B}(\tilde{G}) \);

(v) \(\mathfrak{g} = \mathfrak{g}_\mathfrak{f} \oplus \mathfrak{g}_\mathfrak{i} \) is an orthogonal decomposition with respect to the form \(\mathcal{B} \) in Section 2.1.1;

(vi) \(J = (\tilde{G}, G)(F)_{x, (r, s)} \) and \(J_+ = (\tilde{G}, G)(F)_{x, (r, s^+)} \). See [38] p. 580 [13].

Taking a clue from [Lemma 2.4] we could defined a “canonical” morphism for \(J \) below. The symplectic space \(\mathcal{W} = J/J_+ \) is identified with \(\mathfrak{g}_\mathfrak{i}^{+}_{x, (r, s)} \) via the exponential map. Suppose \(\mathfrak{X}_1, \mathfrak{X}_2 \in \mathfrak{g}_\mathfrak{i}^{+}_{x, (r, s)} \) with lifts \(X_1, X_2 \in \mathfrak{g}^{+}_{x, s^+} \) respectively. Then we have a non-degenerate

\[(\tilde{G}, G)(F)_{x, (r, s)} = \exp(\mathfrak{g}_\mathfrak{f}, r_1 + \mathfrak{g}_\mathfrak{i}^{+}_{x, (r, s)}) \] for \(0 < \frac{1}{2}r_1 \leq r_2 \).

\[19 \text{In our cases, } (\tilde{G}, G)(F)_{x, (r, s)} = \exp(\mathfrak{g}_\mathfrak{f}, r_1 + \mathfrak{g}_\mathfrak{i}^{+}_{x, (r, s)}) \] for \(0 < \frac{1}{2}r_1 \leq r_2 \).
symplectic form on \(\mathbf{W} \) given by \(\langle \tilde{X}_1, \tilde{X}_2 \rangle = \mathbb{B}([X_1, X_2], \Gamma) \in \mathfrak{f} \) (cf. [38, Lemma 11.1]). By the Baker-Campbell-Hausdorff formula, we have a group homomorphism
\[
\zeta: J \longrightarrow \text{H}(\mathbf{W}) = \mathbf{W} \times \mathfrak{f} \quad \text{given by} \quad \exp(X) \mapsto (\bar{X}, \mathbb{B}(X, \Gamma)).
\]
Note that \(\zeta \) agrees with the special morphism defined in [38, Section 11] since they agree on root subgroups. By an abuse of notation, we also let \(\zeta \) denote its natural extension
\[
\zeta: \tilde{G}_x \ltimes J \longrightarrow \text{Sp}(\mathbf{W}) \ltimes \text{H}(\mathbf{W}) = \text{SH}(\mathbf{W}).
\]

A.2.2. We fix a good factorization \(\Gamma = \sum_{i=0}^d \Gamma_i \) and therefore get a sequence of subgroups \(G_i \) as in Definition 3.3. We follow the notation in [38, p.591]: \(K^i := K \cap G_i = G_{x,s_i}^0 \cdots G_{x,s_{i-1}}^i \) and \(J_i := (G_i^{-1}, G_i)^{r_i,r_{i-1}} \). We inflate \(\zeta \) to \(\zeta: K \rightarrow \text{SH}(\mathbf{W}) \) via \(\zeta \).

Now we define a sequence of representations \(\kappa^i \) of \(K^i \) inductively such that \(K^i \) acts by the character \(\psi_{\Gamma} \). This is essentially Yu’s construction in [38, § 4].

0. First we set \(\kappa^0 = \phi \) (cf. Definition 3.3 (1)).

Suppose we have constructed \(\kappa^{i-1} \). We now construct the \(K^i \)-module \(\kappa^i \): Let \(\chi^i = K^{i-1} \ltimes J_i \). Now we define a sequence of representations \(\kappa^i \) of \(K^i \) inductively such that \(K^i \) acts by the character \(\psi_{\Gamma} \). This is essentially Yu’s construction in [38, § 4].

2. We set \(\Gamma^i := \sum_{i=1}^d \Gamma_i \) which is in the center of \(\mathfrak{g} \). We see that \(\psi_{\Gamma^i} \) is a character of \(G_{x,s_i}^i \). Let \(\mathbf{1} \times \psi_{\Gamma^i} \) be its extension to \(K^{i-1} \ltimes J_i \) such that \(K^{i-1} \) acts trivially. As a subgroup of \(J_i \), \(J_{i-1}^1 \) acts by the character \(\psi_{\Gamma^i} \) on \(\mathbb{C} \langle \mathbf{1} \times \psi_{\Gamma^i} \rangle \).

3. We inflate \(\kappa^{i-1} \) to a \(K^{i-1} \ltimes J_i \)-module. Since \(K^{i-1} \cap J_i = G_{x,r_{i-1}}^{i-1} \subseteq J_i^+ \cap K_{i+1} \), the \(K^{i-1} \ltimes J_i \)-module \(\kappa^{i-1} \otimes \mathbb{C} \langle \mathbf{1} \times \psi_{\Gamma^i} \rangle \) factors through \(K^{i-1} \ltimes J_i \longrightarrow K^{i-1} J_i = K^i \).

Let \(\kappa^i \) be the corresponding \(K^i \)-module. It is clear that \(K^i = K_{i+1}^i J_{i+1}^i \) acts by \(\psi_{\Gamma^i} \).

APPENDIX B. A QUICK PROOF OF A RESULT OF PAN

As the reader may notice, (9.1) is a generalization of [28, Proposition 6.3]. Our proof follows Pan’s idea. Although we use the exponential map to identify \(g \) on root subgroups. By an abuse of notation, we also let \(\zeta \) denote its natural extension

\[
\zeta: \tilde{G}_x \ltimes J \longrightarrow \text{Sp}(\mathbf{W}) \ltimes \text{H}(\mathbf{W}) = \text{SH}(\mathbf{W}).
\]

B.1. Invariant vectors under the action of lattices. Let \(\mathcal{S} \) be any realization of the oscillator representation of \(\tilde{G}(W) \ltimes H(W) \). Here \(H(W) := W \times F \) denotes the Heisenberg group of \(W \) and we identify \(W \) as a subset of \(H(W) \).

Suppose \(L \) is a lattice in \(W \) such that \(L \supseteq A^* \) for a certain good lattice \(A \). Let \(\mathcal{S}(A^*) \) denote the space of \(L^* \)-fixed vectors in \(\mathcal{S} \) under the Heisenberg group \(H(W) \) action. Let \(\mathcal{S}(A^*) \) be the generalized lattice model of the oscillator representation with respect to \(A^* \) and let \(\mathcal{S}(A^*)_L \) be the subspace of functions in \(\mathcal{S}(A^*) \) supported on \(L \). We identify \(\mathcal{S} \) with \(\mathcal{S}(A^*) \) via a fixed intertwining map. It is easy to see that \(\mathcal{S}(A^*) \) is exactly the image of \(\mathcal{S}(A^*)_L \) (cf. [28, Lemma 8.2]). Since \(\mathcal{S}(A^*) \) neither depends on the choice of \(A \) nor the choice of intertwining map, it makes sense to let \(\mathcal{S}_L \) denote \(\mathcal{S}(A^*) \) to emphasize that it is the space of functions with support on \(L \) under the generalized lattice module with

\[
\zeta(\mathbf{e}^X)\zeta(\mathbf{e}^Y) = (\mathbf{X}, \mathbb{B}(X, \Gamma)) \cdot (\mathbf{Y}, \mathbb{B}(Y, \Gamma)) = (\mathbf{X} + \mathbf{Y}, \mathbb{B}(X + Y + \frac{1}{2}[X, Y], \Gamma)) = \zeta(\mathbf{e}^X)\zeta(\mathbf{e}^Y).
\]

\[20\] We check that \(\zeta | \mathfrak{J} \) is a group homomorphism. Indeed by the Baker-Campbell-Hausdorff formula

\[
\log(\exp(X) \exp(Y)) \equiv X + Y + \frac{1}{2}[X, Y] \quad \text{(mod \(\mathfrak{g}_{x,*}^+ \))}
\]

and

\[
\zeta(\mathbf{e}^X)\zeta(\mathbf{e}^Y) = (\mathbf{X}, \mathbb{B}(X, \Gamma)) \cdot (\mathbf{Y}, \mathbb{B}(Y, \Gamma)) = (\mathbf{X} + \mathbf{Y}, \mathbb{B}(X + Y + \frac{1}{2}[X, Y], \Gamma)) = \zeta(\mathbf{e}^X)\zeta(\mathbf{e}^Y).
\]
respects to any \(A^* \subseteq L \). In particular, for a self-dual lattice function \(\mathcal{B} \) in \(W \), we identify \(\mathcal{I}^{x} \) with \(\mathcal{I}(\mathcal{B})_{x} \) and denote it by \(\mathcal{I}_{B_{x}} \).

B.2. Proof of (9.1) and depth preservation. We only need to consider rational points in the building for our study of minimal \(K \)-types. These points correspond to lattice functions with rational jumps.

In the rest of this section, we will prove the following theorem which is a slightly stronger version of (9.1).

Theorem B.1. Suppose \(\text{Jump}(\mathcal{L}_x) \subseteq \frac{1}{m} \mathbb{Z} \) so that \(\text{Jump}(\mathfrak{g}_e) \subseteq \frac{1}{m} \mathbb{Z} \) for certain positive integer \(m \). Let

\[
\mathcal{B}(G')_{2m} := \{ y \in \mathcal{B}(G') \mid \text{Jump}(\mathcal{L}_y \subseteq \frac{1}{2m} \mathbb{Z}) \}.
\]

Then for all \(0 \leq r \leq \frac{1}{m} \mathbb{Z} \),

\[
\mathcal{I}_{G_{x,r}} = \sum_{y \in \mathcal{B}(G')_{2m}} \mathcal{I}_{B_{x,y-r/2}}.
\]

B.2.1. We will call \(\mathcal{L} \) an \(\mathfrak{o}_D \)-module function in \(V \) if \(\mathcal{L}_s \) is only an \(\mathfrak{o}_D \)-submodule in \(V \) in Definition 2.3. In this case, \(\mathcal{L}_s \otimes_{\mathfrak{o}_D} D \) may not equal to \(V \) and

\[
\mathcal{L}_s^* := \{ v \in V \mid \langle v, \mathcal{L}_s \rangle_V \subseteq \mathfrak{p}_D \}
\]

may not be a lattice.

The following are the key lemmas:

Lemma B.2 (c.f. [28] Lemma 10.1). Suppose \(\mathcal{N} \) is an \(\mathfrak{o}_D \)-module function in \(V \) such that \(\text{Jump}(\mathcal{N}) \subseteq \frac{1}{2m} \mathbb{Z} \) and \(\langle \mathcal{N}_1, \mathcal{N}_2 \rangle_V \subseteq \mathfrak{p}_D^{[1+t_1+\frac{1}{m}]} \). Then there is a self-dual lattice function \(\mathcal{L} \) such that \(\mathcal{N} \subseteq \mathcal{L}_{t+\frac{1}{2m}} \) and \(\text{Jump}(\mathcal{L}) \subseteq \frac{1}{2m} \mathbb{Z} \).

Proof. Since \(\langle \mathcal{N}_1, \mathcal{N}_2 \rangle \subseteq \mathfrak{p}_D^{t+\frac{1}{2m}} \), we have \(\mathcal{N}_{t+\frac{1}{2m}} \subseteq \mathcal{N}_{t+\frac{1}{2m}}^* \). In particular, we have \(\mathcal{N}_0 \subseteq \mathcal{N}_{\frac{1}{2m}} \subseteq \mathcal{N}_0^* \). Fix a good lattice \(R \) which contains \(\mathcal{N}_0 \). Define

\[
\mathcal{L}_{\frac{1}{2m}} := \begin{cases} \mathcal{N}_{\frac{1}{2m}} + R^* & \text{when } -\frac{1}{2} < \frac{1}{2m} \leq 0; \\ \mathcal{L}_{\frac{1}{2m}}^* = \mathcal{N}_{\frac{1}{2m}}^* \cap R & \text{when } 0 < \frac{1}{2m} \leq \frac{1}{2}. \end{cases}
\]

Observe that \(\langle \mathcal{N}_{\frac{1}{2}}, R^* \rangle_V = \varpi_D^{-1} \langle \mathcal{N}_{\frac{1}{2}}, R^* \rangle_V \subseteq \mathfrak{o}_D^{t} \langle \mathcal{N}_0, R^* \rangle_V \subseteq \varpi_D^{-1} \langle R, R^* \rangle_V = \mathfrak{o}_D. \)

Therefore we have \(\langle \mathcal{L}_{\frac{1}{2m}}, \mathcal{L}_{\frac{1}{2m}} \rangle_V = \langle \mathcal{N}_{\frac{1}{2}}, R^*, \mathcal{N}_{\frac{1}{2}}^* + R^* \rangle_V \subseteq \mathfrak{o}_D \) which is equivalent to

\[
\mathcal{L}_{\frac{1}{2m}} \subseteq \mathcal{L}_{\frac{1}{2m}}^* \subseteq \mathfrak{o}_D.
\]

Hence (B.1) determines a lattice function \(\mathcal{L} \) such that \(\text{Jump}(\mathcal{L}) \subseteq \frac{1}{2m} \mathbb{Z} \). Moreover, \(\mathcal{L} \)

is self-dual since \(\mathcal{L}_{\frac{1}{2m}} = \mathcal{L}_{\frac{1}{2m}}^* \) by definition.

Note that

\[
\mathcal{L}_{\frac{1}{2m}} = \mathcal{N}_{\frac{1}{2m}} + R^* \supseteq \mathcal{N}_{\frac{1}{2m}} \quad \text{when } -\frac{1}{2} \leq \frac{i}{2m} < 0;
\]

\[
\mathcal{L}_{\frac{1}{2m}} = \mathcal{L}_{\frac{1}{2m}}^* = \mathcal{N}_{\frac{1}{2m}}^* \cap R \supseteq \mathcal{N}_{\frac{1}{2m}}^* \cap R = \mathcal{N}_{\frac{1}{2m}} \quad \text{when } 0 \leq \frac{i}{2m} < \frac{1}{2}.
\]

Therefore \(\mathcal{L}_{t+\frac{1}{2m}} \supseteq \mathcal{N}_t \) for all \(t \in \mathbb{R} \) by the definition of \(\mathcal{L} \). \(\square \)

Lemma B.3 (c.f. [28] Proposition 10.5). Suppose \(x' \) is a point in \(\mathcal{B}(G') \) and \(j \) is a positive integer. Then

\[
\mathcal{I}_{G_{x',j/m}} \subseteq \sum_{y \in \mathcal{B}(G')_{2m}} \mathcal{I}_{B_{x,y+j/2m}}.
\]
Proof. Let \(r := j/m \) and \(s := r/2 = j/2m \). Note that \(G_{x,r} \subseteq G_{x,s} \) and
\[
\mathcal{I}_{B_{x,s'},-j/2m} = \bigoplus_{w} \mathcal{I}(B_{x,x'}w)
\]
as \(G_{x,r} \)-module where \(w \) is running over representatives of \(B_{x,x'} \). By Remark 2 of Lemma 2.4 the summand \(\mathcal{I}(B_{x,x'}w) \) is \(G_{x,r} \)-isotypic and \(\exp(X) \in G_{x,r} \) acts by the scalar \(\psi(\mathcal{B}(X, w^*w)) \). Now fix a \(w \) such that \(\mathcal{I}(B_{x,x'}w) \notin \mathcal{I} G_{x,r} \). Since \(\psi|_\mathcal{C} \) is non-degenerate, \(\mathcal{B}(g_{x,r}, w^*w) = 0 \), i.e. \(M(w) = w^*w \in g_{x,r} \). Clearly, \(\mathcal{I}(B_{x,x'}w) \subseteq \mathcal{I} G_{x,r} \).

Define \(\mathcal{N} := (w + B_{x,x'}, \mathcal{L}_{x,t+s}) \). It is clear that \(\mathcal{N} \) is a \(\mathcal{O}_D \)-module in \(\mathcal{V}' \) and \(\text{Jump}(\mathcal{N}) \subseteq \frac{1}{2m} \mathbb{Z} \). On the other hand, \(w_1 w_2 \equiv M(w) \equiv 0 (\text{mod} \mathcal{L}(V)_{x,r} \) for any \(w_1, w_2 \in w + B_{x,x'} \) and \(\mathcal{L}(V)_{x,r} \equiv \mathcal{L}(V)_{x,-r} \). Therefore,
\[
\langle \mathcal{N}, \mathcal{N} \rangle_V \subseteq \left\langle \mathcal{L}_{x,t+s}, \mathcal{L}(V)_{x:r} \right\rangle_V \subseteq \left\langle \mathcal{L}_{x,t+s}, \mathcal{L}(V)_{x:-r} \right\rangle_V \subseteq \mathcal{D}_D^{[t_1+t_2+\frac{1}{m}]}.
\]

By Lemma B.2 there is a self-dual lattice function \(\mathcal{L}_y \) such that \(\mathcal{N} \subseteq \mathcal{L}_y \). Hence we have
\[
w + B_{x,x'} \subseteq \bigcap t \in \frac{1}{2m} \mathbb{Z} \mathcal{O}_D(\mathcal{L}_{x,t+s}, \mathcal{L}_y) = B_{x,y,s} + \frac{1}{m}
\]
and \(B_{x,x'} \subseteq \{ w_1 - w_2 \mid w_1, w_2 \in w + B_{x,x'} \} \subseteq B_{x,y,s} + \frac{1}{m} \). This means \(\mathcal{I}(B_{x,x'}w) \subseteq \mathcal{I} B_{x,y,s} + \frac{1}{m} \) and proves the lemma.

B.2.2. Proof of Theorem B.1. The “\(\supseteq \)” direction is obvious. We now prove the “\(\subseteq \)” direction. Let \(r = k/m \) and fix any \(x' \in \mathcal{B}(G')_{2m} \). For each integer \(j > k \), we have
\[
\mathcal{I}_{B_{x',x}, \frac{1}{2m}} = (\mathcal{I}_{B_{x',x}, \frac{1}{2m}})^{G_{x', \frac{1}{2m}}} = ((\mathcal{I}_{B_{x',x}, \frac{1}{2m}})^{G_{x,r}})^{G_{x', \frac{1}{2m}}} \subseteq \bigcup \mathcal{I}_{B_{x',x}, \frac{1}{2m}}^{G_{x', \frac{1}{2m}}} \subseteq \bigcup \mathcal{I}_{B_{x',x}, \frac{1}{2m}}^{G_{x', \frac{1}{2m}}}
\]
by Lemma B.3. Now the theorem follows from the fact that \(\mathcal{I} = \bigcup_{j \geq k} \mathcal{I}_{B_{x',x}, \frac{1}{2m}} \).

B.2.3. By the argument in the proof of [23] Theorem 6.6], “depth preservation” of theta correspondence is an immediate consequence of Theorem B.1. Indeed let \(\Phi \colon \mathcal{I} \rightarrow \pi \otimes \theta(\pi) \) be the \(\tilde{G} \times \hat{G} \)-intertwining map. Suppose \(\pi \) has depth \(r \). Then there is a certain \(x \in \mathcal{B}(G) \) such that \(\text{Jump}(\mathcal{L}_x) \in \mathcal{Q} \) and \(\pi^{G_{x',r}} \neq 0 \). By Theorem B.1, \(\Phi(\mathcal{B}_{x,y,s} \mathcal{L}_{x,t+s}) \neq 0 \) for some \(y \in \mathcal{B}(G') \) so \(\theta(\pi)^{G_{x',r}} \neq 0 \). Hence \(\text{depth}(\theta(\pi)) \leq \text{depth}(\theta(\pi)) \) as well which proves the “depth preservation”.

We remark that in proving his result [29] Theorem 5.5], Pan uses the fact that an irreducible representation of a classical group of positive depth has an unrefined minimal \(K \)-type of the form \((G_{L,r}, \zeta) \) where \(\zeta \) is a character of \(G_{L,r} \) and \(L \) is some regular small admissible lattice chain. See [23] Proposition 3.4. By the result in this appendix, this could be circumvented and we could replace “a regular small admissible lattice chain \(L \) in \(V \)” by “a rational point in the building of \(U(V) \)” or simply “a point in the building of \(U(V) \)” (since unrefined minimal \(K \)-type always could be achieved at a rational point) in the statement of [24] Theorem 5.5].
References

[1] J. D. Adler and S. DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Michigan Math. J. 50 (2002), no. 2, 263--286.

[2] A.-M. Aubert, Conservation de la ramification modérée par la correspondance de Howe, Bull. Soc. Math. France 117 (1989), no. 2, 297-303.

[3] P. Broussous and S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, Journal of Lie Theory 19 (2009), 55-78.

[4] F. Bruhat and J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, II. Groupes unitaires, Bull. Math. Soc. France 115 (1987), 141-195.

[5] C. J. Bushnell and P. C. Kutzko, The admissible dual of $GL(N)$ via compact open subgroups, Princeton University Press, 1993.

[6] S. DeBacker, Parametrizing nilpotent orbits via Bruhat-Tits theory, Annals of mathematics 156 (2002), 295-332.

[7] S. DeBacker and M. Reeder, Depth-zero supercuspidal L-packets and their stability, Annals of mathematics 169 (2009), 795-901.

[8] J. Dieudonné, La géométrie des groupes classiques, Springer, 1963.

[9] W. T. Gan and J.-L. Kim, Tame Types of Nonlinear Covering Groups. In preparation.

[10] P. Gérardin, Weil representations associated to finite fields, Journal of Algebra 46 (1977), no. 1, 54-101.

[11] J. Hakim and F. Murnaghan, Distinguished Tame Supercuspidal Representations, IMRP 2008 (2008).

[12] T. K. Howard and M. H. Weissman, Depth-Zero Representations of Nonlinear Covers of p-Adic Groups, Int Math Res Notices 21 (2009), 3979-3995, DOI 10.1093/imrn/rnp076.

[13] R. Howe, Tamely ramified supercuspidal representations of Gln, Pacific J. Math. 73 (73), no. 2, 437-460.

[14] _____. θ-series and invariant theory, Automorphic Forms, Representations and L-functions, Proc. Symp. Pure Math, vol. 33, 1979, pp. 275-285.

[15] _____. Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Piatetski-Shapiro, Ilya (ed.) et al., The Schur lectures (1992). Ramat-Gan: Bar-Ilan University, Isr. Math. Conf. Proc. 8, (1995), 1-182.

[16] R. Howe and A. Moy, Harish-Chandra homomorphisms for p-adic groups, CBMS Regional Conference Series in Mathematics 59 (1985).

[17] J.-L. Kim, Supercuspidal Representations: An Exhaustion Theorem, Journal of the American Mathematical Society 20 (2007), no. 2, pp. 273-320.

[18] J.-L. Kim and F. Murnaghan, Character Expansions and Unrefined Minimal K-Types, American Journal of Mathematics 125 (2003), no. 6, pp. 1199-1234.

[19] _____. K-types and Γ-asymptotic expansions, J. Reine Angew. Math. 592 (2006), 189-236.

[20] J.-S. Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237-255.

[21] _____. Minimal representations and reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998), IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., 2000, pp. 293-340.

[22] H. Y. Loke, J.-j. Ma, and G. Savin, Local theta correspondences between epipelagic supercuspidal representations, Math. Z. 283, no. 1, 169-196.

[23] C. Mœglin, M.-F. Vignéras, and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, vol. 1291, Springer, 1987.

[24] A Moy and G Prasad, Unrefined minimal K-types for p-adic groups, Inventiones Math. 116 (1994), 393-408.

[25] _____. Jacquet functors and unrefined minimal K-types, Comment. Math. Helvetici 71 (1996), 981-121.

[26] S.-Y. Pan, Splittings of the metaplectic covers of some reductive dual pairs, Pacific J. Math. 199 (2001), no. 1, 163-226.

[27] _____. Local theta correspondence of depth zero representations and theta dichotomy, J. Math. Soc. Japan 54 (2002), no. 4, 793–845, DOI 10.2969/jmsj/1191591993.

[28] _____. Depth preservation in local theta correspondence, Duke Math. J. 113 (2002), no. 3, 531–592, DOI 10.1215/S0012-7094-02-11334-9.

[29] _____. Local theta correspondence and minimal K-types of positive depth, Israel Journal of Mathematics 138 (2003), no. 1, 317-352, DOI 10.1007/BF02783431.

[30] _____. Supercuspidal representations and preservation principle of theta correspondence, Journal für die reine und angewandte Mathematik, posted on 2016, DOI 10.1515/crelle-2016-0050.
[31] ______, *Supercuspidal Representations and Theta Correspondence*, unpublished, available at http://ir.lib.nthu.edu.tw/handle/987654321/52348
[32] S. Stevens, *Double coset decompositions and intertwining*, Manuscripta Mathematica 106 (2001), no. 3, 349-364, DOI 10.1007/PL00005887.
[33] ______, *Intertwining and Supercuspidal Types for p-adic Classical Groups*, Proceedings of the London Mathematical Society 83 (2001), no. 1, 120-140, DOI 10.1112/plms/83.1.120.
[34] ______, *Semisimple characters for p-adic classical groups*, Duke Math. J. 127 (2005), no. 1, 123–173, DOI 10.1215/S0012-7094-04-12714-9.
[35] ______, *The supercuspidal representations of p-adic classical groups*, Inventiones mathematicae 172 (2008), no. 2, 289–352, DOI 10.1007/s00222-007-0099-1.
[36] B. Sun and C. Zhu, *Conservation relations for local theta correspondence*, Amer. Math. Soc 28 (2015), 939–983.
[37] J.-L. Waldspurger, *Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2 in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday*, Israel Math. Conf. Proc., 2, Weizmann, Jerusalem (1990), 267-324.
[38] J.-K. Yu, *Construction of tame supercuspidal representations*, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622.
[39] ______, *Bruhat-Tits Theory and Buildings*, Ottawa lectures on admissible representations of reductive p-adic groups, Vol. 26, American Mathematical Soc., 2009.

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

E-mail address: matlhy@nus.edu.sg

School of Mathematical Sciences, Shanghai Jiao Tong University 800 Dongchuan RD, Shanghai, China 200240

E-mail address: hoxide@sjtu.edu.cn