Effect of dietary levels of arginine on the growth performance and immunity of growing rabbits

A. M. Dahy1; H. E. Abou Ead2; M. S. Abousekken2 and M. A. El-Sherbiny1
1 Research Institute Environmental Studies - El-Sadat City University
2 Environmental Studies and Research Institute, University of Sadat City, Egypt.

ABSTRACT

The present Study was conducted at Environmental Studies and Research Institute farm, University of Sadat City and the Regional Center for Food and Feeds to determine the effect of the using different levels of arginine on the performance and immunity of growing rabbits. Forty WNZ growing rabbits of both sexes, aged 5 weeks with an average initial weight of 750 g were used in the experiment. The animals were divided into 5 groups, each group has 4 replicates each. All animals were individually housed in galvanized wire cages with feeder and automatic nipple drinker and kept under the same managerial conditions. The results obtained were: The final body weight of rabbit fed T4 was insignificantly higher than the other groups T1, T2, T3 and T5 being (2500.0g vs. 2280.0; 2487.50; 2446.87 and 2316.43g, respectively.), Also, rabbits group fed dietary arginine by 0.4 g/kg diet (T3) achieved the best total gain value (1758.13g) compared with control(T1) and other experimental groups(T2;T4;T5) being (1548.57 and 1740.63 ; 1715.63 ; 1563.57 , respectively . But there is no significant differences in final body weight gain between control and experimental treatments which supplemented with different levels of dietary arginine. Rabbits group fed dietary arginine by 0.6g/kg diet (T4) significantly (p<0.05) achieved the highest total FI (1081.25 and 451.25 g), meanwhile, rabbits group fed dietary arginine by 0.8 g/kg diet (T5) significantly (p<0.05) achieved the lowest feed intake (333.13g) .Insignificant differences between control and other experimental groups which ranged from 3.25 to 3.64 and no clear effect for dietary arginine on FCR. Therefore, it can be concluded that dietary arginine by 0.4g/kg diet (T3) achieved better growth performance of growing rabbits.

Key words: Arginine; Body weight; Weight gain; Growing rabbits; Feed conversion ratio
INTRODUCTION

The rabbit is considered as a good animal for meat production not only because of its early sexual maturity, sizable number of progeny kindled per doe and rapid growth, but also because the good quality of its meat. In addition; rabbits can utilize forages and agriculture by-products that are rich with fiber and convert it into high quality low fat meat, they are more efficient in feed conversion than other livestock animals (Cheeke et al. 1982 and Lebas 1983).

With respect to optimal dietary levels of protein for growth, Many Studies established that the best nutritive unit for energy and protein (crude, digestible or net), and the requirements of these nutrients for growth. These studies considered a wide range of protein and energy levels, different slaughter weights (2.0, 2.25 or 2.5 kg) or weaning age (25 vs 35 d) (de Blas et al., 1981 and 1985).

Several experiments have been performed to evaluate different units and to characterize the protein value of feedstuffs usually included in rabbit diets (Villamide et al. 2013).

Rabbit dietary intake is required in young animals to attain a normal growth rate. In addition, even though arginine is not required for maintenance of nitrogen balance in the adult under ordinary circumstances, this amino acid could still become indispensable in disease states, such as renal disease or diabetes, or other circumstances, such as response to trauma. Aside from the diet, arginine can be synthesized from citrulline mainly in the liver and kidney, or it can be released by the muscles (Reyes et al. 1994).

The intestinal transformation of arginine into citrulline seems to be of prime importance in the metabolic adaptation to high versus low protein diets. The immune cells possess the ability to synthesize both polyamines and nitric oxide. (Cynober et al. 1995).

(1 charmo)Recent studies show that specific nutrients such as AA can promote gastrointestinal integrity (Ziegler et al., 2003; Clifford, 2006). Glutam+ine is a primary energy source of enterocytes and immune cells (Newsholme et al., 1999). Previous information (Adamson and Fisher, 1976) indicated that Arg requirements of young rabbits might be particularly high.

Arginine has important roles in the modulation of the immune response (Evoy et al. 1998). Both Gln. and Arg. Considered conditionally essential AA under hypermetabolic states as occur at weaning. Arginine can be partially synthesized from...
Gln; however, the rate of synthesis might not be sufficient to meet Arg requirements in young rabbits. (Wu et al. 1994).

Supplementation of diets for early weaned pigs with these AA prevented jejunal atrophy and normalized lymphocyte function (Wu et al., 1996; Yoo et al., 1997; Zhan et al., 2008). However, there is no information available on the effects of dietary supplementation with Gln and Arg on gut barrier function in weaned rabbits. Therefore, The aim of this study is to determine the effect of the using different levels of arginine on the performance and immunity of growing rabbits.

MATERIALS AND METHODS

The present experiment was carried out at farm of Sustainable Development Department, Environmental Studies and Research Institute, University of Sadat City and cooperation with the Regional Center for food and feeds, Agriculture Research Center to determine the effect of feeding dietary of the use of different levels of arginine on growth performance and immunity of growing rabbits.

The study included 40 growing White New Zealand (WNZ) rabbits of both sexes (males and females), aged 4 weeks with an average initial weight of 550 g then divided into 5 groups with 4 replicates each. All animals were individually housed in galvanized wire cages (45 cm x 54 cm x 35 cm) with feeder and automatic nipple drinker and kept under the same managerial conditions during the experimental period (2 months).

Formulated diets of 17% crude protein were formulated, the diet containing 17% CP (commercial or control, T1)

Table (1). The Experimental groups were arranged as the following:

Group 1:	(T1)	(commercial or control diet)
Group 2:	(T2)	Addition of arginine by 0.2/kg diet
Group 3:	(T3)	Addition of arginine by 0.4/kg diet
Group 4:	(T4)	Addition of arginine by 0.6/kg diet
Group 5:	(T5)	Addition of arginine by 0.8/kg diet

Table (2). Composition of ingredient feed rations for control and treated groups.
Ingredients	Control 17 %CP
Alfalfa	25.00
Wheat bran	26.00
Barley grains ,Ground	20.00
Soybean meal (44% CP)	13.5
Yellow corn, ground	10.00
Wheat straw	1.50
DL-Methionine	0.35
Premix*	0.50
Na Cl	0.35
Di calcium phosphate	1.90
CaCO3	0.90
Total (kg)	100
Calculated analysis**	
Crude protein %	17.10
ME, kcal/kg diet	2520
Crude fiber %	12.00
Ether extract %	2.59
Calcium %	1.10
Available phosphorus	0.41
Lysine %	0.81
Methionine	0.60
Cost/kg of diet in L.E. ***	2.70

*The premix (Vit. & Min.) was added at a rate of 3 kg per ton of diet and supplied the following per kg of diet (as mg or I.U. per kg of diet): Vit. A 12000 I.U., Vit. D3 2000 I.U., Vit. E 40 mg, Vit. K3 4 mg, Vit. B1 3 mg, Vit. B2 6 mg, Vit. B6 4 mg, Vit. B12 0.03 mg, Niacin 30 mg, Biotin 0.08 mg, Pantothenic acid 12 mg, Folic acid 1.5 mg, Choline chloride 700 mg, Mn 80 mg, Cu 10 mg, Se 0.2 mg, I 40 mg, Fe 40 mg, Zn 70 mg and Co 0.25mg.

According to Feed Composition Tables for animal & poultry feedstuffs used in Egypt (2001).

According to market prices of the year 2018.

Rabbit Growth performance

Rabbits were weighed individually at the end of each week, during the whole experimental period of 8 weeks to the nearest gram. Live performance measurements for each feeding period were measured and / or calculated in terms of live body weight (LBW), body weight gain (BWG) was calculated by subtracting the average body weight from the average final body weight of the rabbit.

\[
\text{Body weight gain} = W_2 - W_1, \text{ where} \\
W_1 = \text{body weight at the onset of the period.} \\
W_2 = \text{body weight at the end of the period.}
\]
Feed intake (FI) Under each treatment, feed intake for each replicate was weekly calculated, on a group basis, by subtracting the residual feed from the offered one. Average daily feed intake per rabbit was then calculated by using the following equations:

\[
\text{FI/rabbit/day} = \frac{\text{FI/replicate/week}}{\text{No. of rabbits consumed feed daily during the week period}}
\]

Average daily feed intake (FI) per rabbit was calculated at the end of every week as follows:

\[
\text{FI} = \frac{\text{Total feed intake in gram per day per group}}{\text{Number of rabbits}}.
\]

Feed conversion ratio (FCR) Feed conversion ratio (FCR) (using the weight of mortality to correct FI data) weekly and whole experimental period was calculated for each replicate under each treatment and calculated as kg of feed used for producing one kg of body weight gain as follows:

\[
\text{FCR} = \frac{\text{Average feed intake (kg) per rabbit}}{\text{body weight gain (kg) per rabbit}}.
\]

RESULTS AND DISCUSSION

Body weight (g).

Live body weight (g) as effected by supplemented dietary different levels of arginine is presented in Table 3 and fig. 1. Data indicated that increasing dietary arginine insignificant improved among live body weight (g) after 2 weeks of experiment. After 4 weeks of experiment, rabbit group fed dietary arginine by 0.4/kg diet (T3) recorded significantly (p<0.05) the best body weight value (1766.87 g). Meanwhile, the lowest body weight was achieved with T1 group (control) being 1550.63 g. The final body weight of rabbit fed T4 was insignificantly higher than the other groups T1, T2, T3 and T5 being (2500.0 g vs 2280.0; 2487.50; 2446.87 and 2316.43 g, respectively.), but these differences were not significant.

These results were in agreement with the findings obtained by (Delgado et al 2018), who reported that post-weaning rabbits fed dietary treatments did not affect weight gain, feed intake, feed efficiency and final body weight during the whole fattening and were on average 45.5 g/d, 89.4 g/d, 0.511 and 1838 g, respectively.
Table 3. Live body weight (LBW) (g) of growing rabbits as affected by different levels of arginine. (Means ± SE).

*a, b ……. values within a row with different superscripts significantly different (p<0.05). NS = not significant SE= standard error

**T1=Control diet; T2 = Addition of arginine by 0.2/kg diet; T3 = Addition of arginine by 0.4/kg diet, T4 = Addition of arginine by 0.6/kg diet, T5= Addition of arginine by 0.8/kg diet.

*** IW(g) : Initial weight (g) ; LBW2: Live body weight after 2 weeks of experimental period ; LBW4: Live body weight after 4 weeks of experimental period ; LBW6 : Live body weight after 6 weeks of experimental period ; LBW8: Live body weight after 8 weeks of experimental period ; FLBW: Final live body weight at the end of the experimental period.

	T1 (Control)	T2 (0.2)	T3 (0.4)	T4 (0.6)	T5 (0.8)
IW(g)	733.13 ± 30.95	746.88 ± 30.95	741.88 ± 30.95	731.25 ± 30.95	745.63 ± 30.95
LBW2	1088.75 ± 44.05	1074.37 ± 44.05	1158.12 ± 44.05	1172.50 ± 44.05	1145.63 ± 44.05
LBW4	1550.63 ± 57.91	1709.38 ± 57.91	1766.87 ± 57.91	1726.88 ± 57.91	1663.13 ± 57.91
LBW6	2047.14 ± 67.57	2203.13 ± 63.21	2231.25 ± 63.21	2170.0 ± 63.21	2070.0 ± 63.21
LBW8	2280.0 ± 77.74	2487.50 ± 72.74	2500.0 ± 72.74	2446.88 ± 72.74	2316.43 ± 77.77
TLBW	2280.0 ± 77.74	2487.50 ± 72.74	2500.0 ± 72.74	2446.87 ± 72.74	2316.43 ± 77.77

Fig.1 Final Body weight (g) as affected by supplemented dietary different levels
of dietary arginine.

Live body weight gain.

Live body weight gain results as effected by supplemented dietary different levels of dietary arginine are presented in Table 4, and fig. 2. After 2 weeks of experiment, data indicated that the best gain value (214.38 g) was insignificantly recorded by T4 group (Addition of dietary arginine by 0.6g/kg diet) compared to control group which detected the worst gain value (176.88 g.). After the fourth week of experiment, It was observed that the total gain of rabbits group T2 (Addition of dietary arginine by 0.2g/kg diet) was insignificantly higher than control and other experimental groups being (297.50 vs 223.75 ; 241.25 and 224.38 , respectively). After 6 weeks of experiment, results in Table 4 indicated that the best gain value (343.13 g) was significantly (p<0.05) recorded by T2 group (Addition of dietary arginine by 0.2g/kg diet) and control group compared to other experimental groups. The same trend was observed among total gain results which cleared that rabbit group fed dietary arginine by 0.4g/kg diet (T3) achieved the best total gain value (1758.13 g) compared with control(T1) and other experimental groups(T2;T4;T5) being (1548.57 and 1740.63 ; 1715.63 ; 1563.57 , respectively . But there is no significant differences in final body weight gain between control and experimental treatments which supplemented with different levels of dietary arginine. These results were in agreement with the findings obtained by (Delgado et al. 2018) who indicated that supplementation with Arg., Gln. or Arg. +Gln. did not affect growth performance because the amino acid levels were enough to meet rabbits post-weaning requirements (Colin, 1975). and this is in agreement with previous results (Baylos et al., 2008; Chamorro et al., 2010).

Table 4. Live body weight gain (LBWG) (g) of growing rabbits as affected by different levels of dietary arginine. (Means ± SE).

Items*	Treatments**	T1 (Control)	T2 (0.2)	T3 (0.4)	T4 (0.6)	T5 (0.8)	Sig.
LBWG 2	176.88 ± 22.11	163.75 ± 22.1	211.88 ± 22.1	214.38 ± 22.1	206.88 ± 22.1	N S	
LBWG 4	223.75 ± 26.49	297.50 ± 26.49	258.13 ± 26.49	241.25 ± 26.49	224.38 ± 26.49	NS	
LBWG 6	312.86 ± 13.11	343.13 ± 12.26	233.75 ± 12.26	208.75 ± 12.26	200 ± 12.26	*	
LBWG 8	72.43 ± 17.22	80.63 ± 16.11	80.63 ± 16.11	86.25 ± 16.11	52.86 ± 17.22	N S	
TG	1548.57	1740.63	1758.13 ± 1715.63	1563.57	N		

Note: * indicates significant difference
TABLE 5

	T1	T2	T3	T4	T5
Total	±72.1	±67.42	67.41	±67.41	±72.1

*a, b, ce values within a row with different superscripts significantly different (p<0.05). NS = not significant SE= standard error

** T1=Control; T2 = Addition of arginine by 0.2/kg diet, T3 = Addition of arginine by 0.4/kg diet, T4 = Addition of arginine by 0.6/kg diet, T5= Addition of arginine by 0.8/kg diet.

***LBWG2: Live body weight gain after 2 weeks of experimental period; LBWG4: Live body weight gain after 4 weeks of experimental period; LBWG6: Live body weight gain after 6 weeks of experimental period; LBWG8: Live body weight gain after 8 weeks of experimental period; TG: Total Live body weight gain the experimental period

![Total gain](image)

Fig.2. Total live body weight gain as affected by supplemented dietary different levels of dietary arginine

Feed intake (FI)

Feed intake data expressed as FI (g) are presented in (Table 5 and fig.3). Results of feed intake (g) after 2; 4 weeks and total feed intake during the experimental period indicated that groups fed different dietary levels of arginine were significantly (p<0.05) increased compared with control rabbit groups (T1). After 6 and 8 weeks of the experimental period, FI results showed that rabbits group fed dietary arginine by 0.6g/kg diet (T4) significantly (p<0.05) consumed the highest FI (1081.25 and 451.25 g), meanwhile, rabbits group fed dietary arginine by 0.8 g/kg diet (T5) significantly (p<0.05) achieved the lowest feed intake (333.13g).

In this concern, (Adamson and Fisher. 1976), indicated that Arg requirements of young rabbits might be particularly high. There is an increased requirement for nutrients (approximately 30% of intake) to maintain healthy/functional structure of intestinal mucosa (Burrin et al. 2000).
Table 5. Feed intake (FI) (g) of growing rabbits as affected by different levels of arginine. (Means ± SE)

Item	Treatments**	T1 (Control)	T2 (0.2)	T3 (0.4)	T4 (0.6)	T5 (0.8)	Sig
FI 2	465ᵇ ±16.17	558.7ᵇ ±16.17	557.5ᵇ ±16.17	560ᵇ ±16.17	547.5ᵇ ±16.17	*	
FI 4	665ᵇ±54.93	967.5ᵇ ±54.93	932.5ᵇ±54.93	946.2ᵇ ±54.93	830ᵇ±54.93	*	
FI 6	883.13ᵇ ±21.84	793.75ᵇ±82.89	1003.13ᵇ ±82.89	1081.2ᵇ ±82.89	994.38ᵇ ±82.89	*	
FI 8	345.63ᵇ ±21.84	418.13ᵇ ±21.84	404.38ᵇ ±21.84	451.25ᵇ ±21.84	333.13ᵇ ±21.84	*	
TFI	4799.38ᵇ±212.84	5808ᵇ±212.84	5967ᵇ±212.84	6148.7ᵇ±212.84	5607.5ᵇ±212.84	*	

*a, b, values within a row with different superscripts significantly different (p<0.05).
NS = not significant SE= standard error
**T1=Control; T2 = Addition of arginine by 0.2/kg diet, T3 = Addition of arginine by 0.4/kg diet, T4 = Addition of arginine by 0.6/kg diet, T5= Addition of arginine by 0.8/kg diet.
***FI2: Feed intake after 2 weeks of experimental period; FI4: Feed intake after 4 weeks of experimental period; FI6: Feed intake after 6 weeks of experimental period; FI8: Feed intake after 8 weeks of experimental period; TFI: Total feed intake

![Graph showing feed intake](image)

FIG.3. Total feed intake (g)/8wks as affected by supplemented dietary different Levels of dietary arginine
Feed conversion ratio (FCR).

Data in (Table 6 and fig.4) indicated that the best feed conversion (g feed/g gain) after 2 weeks of experiment was observed with T3(2.72ᵇ) followed by T4 being 2.72 and 2.77, respectively, while the worst feed conversion was found for T2 (4.10) followed by those fed T3 (2.86) and T1 (3.14). This improvement of FCR for these diets may be due to the higher body weight gain and lower feed intake caused by some improvements in digestive tract environment of experimental rabbits. The same results were observed after 8 weeks of feeding the experimental diets. Among the results of total feed conversion, Data indicated that insignificant differences between control and other experimental groups which ranged from 3.25 to 3.64 and no cleared effect for dietary arginine on FCR. These results were in agreement with those obtained by (Chamorro et al . 2010). who concluded that Diets containing a combination of 1% Gln and 0.5% Arg. were of little additional benefit. Also, arginine can be partially synthesized from Gln; however, the rate of synthesis might not be sufficient to meet Arg. requirements in young rabbits. (Wu et al., 1994). On the other hand (Adamson and Fisher 1976). indicated that Arg. requirements of young rabbits might be particularly high.

Table 6. Feed conversion ratio (FCR) (g) of growing rabbits as affected by different levels of arginine. (Means ± SE).

Items* **	Treatments**	Sig.			
	Control	T2 (0.2)	T3 (0.4)	T4 (0.6)	T5 (0.8)
FCR 2	3.14ab ± 0.42	4.10 ± 0.42	2.72b ± 0.42	2.77b ± 0.42	2.86ab ± 0.42
FCR 4	3.13 ±0.72	3.30 ±0.72	4.57 ±0.72	4.66 ±0.72	4.03 ±0.72
FCR 6	3.00b±0.37	2.30b ±0.34	4.38 ±0.34	5.35a ± 0.34	5.14a ±0.34
FCR 8	18.24 ±4.84	7.04 ±4.53	7.01 ±4.53	5.90 ±4.53	12.99 ±4.84
TFC	3.25 ±0.16	3.35 ±0.15	3.45 ±0.15	3.62 ±0.15	3.64 ±0.16

*a, b, values within a row with different superscripts significantly different (p<0.05). NS = not significant SE= standard error.

** T1=Control; T2 = Addition of arginine by 0.2/kg diet, T3 = Addition of arginine by 0.4/kg diet, T4 = Addition of arginine by 0.6/kg diet, T5= Addition of arginine by 0.8/kg diet.

*** FCR2: Feed conversion ratio after 2 weeks of experimental period; FCR4: Feed conversion ratio after 4 weeks of experimental period; FCR8: Feed conversion ratio after
6 weeks of experimental period; FCRs: Feed conversion ratio after 8 weeks of experimental period; TFC: Total Feed conversion ratio.

![Graph showing TFCR](image)

Fig. 4. Average FCR after 8 weeks as affected by supplemented dietary different Levels of dietary arginine.

Conclusion:
Therefore, it can be concluded that dietary arginine by 0.4g/kg diet (T3) achieved better growth performance of growing rabbits.

REFERENCES

Adamson, I., Fisher, H., (1976). Further studies on the arginine requirements of the rabbit. J. Nutr. 106, 717–723.

Baylos M., Menoyo D., Chamorro S., Sainz A., Nicodemus N., de Blas C., Carabaño R. (2008). Effect of dietary level and source of glutamine on intestinal health in the postweaning period. In Proc.: 9th World Rabbit Congress, 10-13 June, 2008. Verona, Italy.

Burrin, D. G., B. Stoll, R. Jiang, X. Chang, B. Hartmann, J. J. Holst, G. H. Greeley Jr., and P. Reeds. (2000). Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: How much is enough? Am. J. Clin. Nutr. 71:1603–1610.

Chamorro, S., de Blas, C., Grant, G., Badiola, I., Menoyo, D., Carabaño, R., (2010). Effect of dietary supplementation with glutamine and a combination of glutamine-arginine on intestinal health in twenty-five-day-old weaned rabbits. J. Anim. Sci. 88, 170-180.

Cheeke, P.R. ; Patton, N. M. and Templeton, G. S. (1982). Rabbit Production. 5th Edition. The Institute Printers and Publishers, Inc. Danville. Illinois, USA.
Colin, M., (1975). Effet de la teneur en arginine du régime sur la croissance et le bilan azoté chez le lapin: Relation avec le taux de lisine. Ann. Zootech. 24, 629–638.

Cynober, L., Le Boucher, J., & Vasson, M. P. (1995). Arginine metabolism in

De Blas J.C., Fraga MJ., Rodriguez J.M. (1985). Units for feed evaluation and requirements for commercially grown rabbits. J. Anim. Sci., 60: 1021-1028.

De Blas J.C., Pérez E., Fraga M.J., Rodriguez J.M., Gálvez J.F. (1981). Effect of diet on feed intake and growth of rabbits from weaning to slaughter at different ages and weights. J. Anim. Sci., 52: 1225-1232.

Delgado, R., Nicodemus, N., Abad-Guamán, R., Sastre, J., Menoyo, D., Carabaño, R., & García, J. (2018). Effect of dietary soluble fibre and n-6/n-3 fatty acid ratio on growth performance and nitrogen and energy retention efficiency in growing rabbits. Animal Feed Science and Technology, 239, 44-54.

Evoy, D., M. D. Lieberman, T. J. Fahey, and J. M. Daly. (1998). Immunonutrition: The role of arginine. Nutrition 14:611–617.

Feed Composition Tables For Animal and Poultry Feedstuffs Used In Egypt (2001). Technical bulletin No.1, central lab for Feed and food; ministry of Agriculture, Egypt.

Reyes. A.A.. I.E. Karl & S. Klahr. (1994). Role of arginine in health and renal disease. .b. J. Physiol. 267. F33 1-346.

Villamide, M. J., García, A. I., Llorente, A., & Carabaño, R. (2013). Ileal vs. faecal amino acid digestibility in concentrates and fibrous sources for rabbit feed formulation. Animal Feed Science and Technology, 182(1-4), 100-110.

Wu, G., A. G. Borbolla, and D. A. Knabe.(1994). The uptake of glutamine and release of arginine citrulline and praline by the small intestine of developing pigs. J. Nutr. 124:2437–2444.