Influence of different fertilizers and nematicides on number of nematode galls and yield of okra in summer season in Chitwan, Nepal

Subodh Raj Pandey¹, Sandesh Bhandari¹, Kushal Giri¹, Pratiksha Wagle¹, Hira Kaji Manandhar²

Article Info

ABSTRACT

A field experiment was conducted at the Horticulture Farm of Agriculture and Forestry University, to determine the influence of different fertilizers and nematicides on the number of nematode galls (*Meloidogyne* spp.) and yield of okra (var. Arka Anamika) in summer season in Chitwan, Nepal. This experiment was carried out in a completely randomized block design (RCBD) which includes 7 treatments and 3 replications. The treatment included: goat manure, sesame (til) cake, mustard seed cake, poultry manure, Furacron (carbofuran), vermicompost and untreated control including only chemical fertilizer (NPK). All treatments were added to provide a sufficient amount of nitrogen required for the crop as per the recommendation. The remaining amount of required phosphorous and potassium was supplied by adding single super phosphate and muriate of potash, respectively. All treatments, except poultry manure had significantly superior germination at 7 days after seeding (DAS). Similarly, all treatments compared with control had significantly less gall index at 70 DAS; Furacron had least gall index at both 60DAS and 70DAS. The highest net profit was found in the case of poultry manure while the highest incremental cost-benefit ratio was obtained in Furacron. The highest yield (20 t ha⁻¹) and least number of galls were obtained in poultry manure which was as effective as a Furacron treatment. This experiment suggests the use of either poultry manure or Furacron, both of which will provide higher economic return and decrease the root-knot nematode in okra. However, use of carbofuran has recently been banned in Nepal.

Keywords:

furacron, galls manures, nematode, okra

INTRODUCTION

Okra (*Abelmoschus esculentus* L. Moench 2n=2x=130) is one of the important fruit vegetable crops majorly grown in tropical and sub-tropical regions. It is popular and grown in Terai, Inner Terai and lower Hills of Nepal as summer vegetable crop (Acharya and Shakya 2004). The various names of okra in English speaking countries are ladies finger, bindi, bamiya, onchro or gumbo and the crop belongs to the flowering plant of the mallow family (Khabdaker et al. 2017). In Nepal, it forms one of the major vegetables and is grown in different parts of country mostly in Makwanpur (22.4 mt ha⁻¹), Lalitpur (20 mt ha⁻¹), Kavre (15.6 mt ha⁻¹), Surkhet (15.7mt ha⁻¹), Dang (14 mt ha⁻¹), Taplejung (14 mt ha⁻¹), Bardia (15 mt ha⁻¹) and Jhapa (14.5 mt ha⁻¹) (MOAD 2016/17). The occurrence of root-knot nematodes (*Meloidogyne* spp.) in Nepal was first reported by Amatya and Shrestha in 1969 on tomato, eggplant, okra and chilly and the nematodes known to infect more than 2000 species of plants (Kafle 2013). The nematode is known to cause irregular growth, reduced and delayed growth with above ground chlorosis, stunting, delayed recovery with improved soil moisture conditions and gall formation below ground (Noling 2009). The affected plant becomes weak and prone to attack by many other disease causing organisms and pests (Kafle 2013). In Chitwan district, nematode reduces yield and quality of okra and other crops because farmers do not apply effective measures on account of their small landholding (Bhardwaj and Hogger, 1984). *Meloidogyne* species are the major damaging nematodes, of them *M. arenaria, M. incognita, M. javanica* and *M. hapla* represent 95% of the nematode species found in cultivated soil (Carneiro et al. 2016). Root-knot nematodes can be
suppressed in various ways: nematicides, soil solarization, fertilizers and manures (Habash and Al-Banna 2011). Animal manures have been used as local fertilizers in many developing countries (Gulshan et al. 2013) and their uses are inevitable practice for sustainable agriculture (Premsekhari and Rajashekar 2009). Some fertilizers and nematicides are known to inhibit hatching of nematode egg and cause complete mortality of 2nd stage juvenile i.e. destructive phase of nematode (Habash and AlBanna 2011). Nematicides are mostly used and known to cause harm in the environment and human health, so effective alternatives are emphasized that do not pollute the environment and effectively control nematode (Pakeerathan et al. 2009). Chicken manure is reported to decrease the number of nematodes (Kaplan and Noe 1993). Likewise, different organic manures could be used to control nematodes and improve soil health. This study aims to study the nematode population under different fertilizers and nematicide treatments and their effect on the yield of okra.

MATERIALS AND METHODS

Experimental Site and design

This experiment was carried out at the Horticultural Farm of Agriculture and Forestry University (AFU) on okra (var. Arka Anamika) from April 7, 2018 to July 2, 2018. The experiment field lies at the geographical location of 27°37′ latitude and 84°25′ longitude and at an altitude of 256 meters above sea level (Thapa and Dongol 1988). Soil type is sandy loam. The okra variety ‘Arka Anamika’, resistant to the yellow vein mosaic virus was used for the experiment. *Brassica oleracea* var. *botrytis* was grown last season in the research field.

The experiment was laid out in a randomized complete block design (RCBD) containing 7 different treatments replicated 3 times. Seeds were sown at spacing 50 cm*30 cm and 2 seeds were placed per planting hole. Ten days after seeding (DAS), they were thinned to maintain a single plant per planting hole. The area for each plot was 2.5m*1.8m (4.5m²) and consisted of 30 plants in each plot. The border was 1m wide around the field and 75cm between the blocks and treatments.

Treatment and Trial Management

There were seven different treatments used in this experiment viz: T1 (Goat manure), T2 (Sesame (til) cake), T3 (Mustard seed cake), T4 (Control) i.e. NPK, T5 (Poultry manure), T6 (Furacron) and T7 (Vermicompost). Seeds were sown 5 days after fertilizer application. The seeds were soaked in water for 24 hours prior to sowing to enhance the germination. Fertilizer was applied on the recommended dose (MOAD 2018) ie. 90:81:27 g NPK per 4.5 m². The recommended dose of nitrogen was fulfilled by respective treatments and the recommended dose of phosphorus and potassium was fulfilled by adding supplements of NPK fertilizers.

The NPK content of different organic fertilizers was determined in the animal science laboratory of AFU. Goat manure contained 3% N, 1% P and 2% K. The recommended level of nitrogen was fulfilled by applying 3 kg of goat manure. Here, the required level of phosphorus was fulfilled by adding 318.75 g single super phosphate (SSP) and potassium level was fulfilled by goat manure itself. Likewise, sesame (til) cake contained 6.61 %N, 2.1%P and 1.1%K. Here, 1.361kg sesame (til) cake was used to meet the nitrogen level. To meet the required dose of phosphorus and potassium, 327.56 g and 20.03 g SSP and muriate of potash (KCl) were used. Mustard seed cake contained 4.52%N, 1.78%P and 1.4%K. Here, 4.52 kg mustard seed cake was used to meet the nitrogen level. To meet the required dose of phosphorus, 284.75 g SSP was used and potassium was fulfilled by mustard seed cake itself. Poultry manure contained 1.2%N, 0.45%P and 0.8%K. Here, 7.5kg poultry manure was used. To meet the phosphorus level, 295.31 g SSP was used and potassium was fulfilled by poultry manure itself. Likewise, vermicompost contained 2.35%N, 1.6%P and 1.5%K. Here, 3.829kg vermicompost was used to meet the nitrogen level. To meet the required dose of phosphorus, 123.25g SSP was used and the potassium level was fulfilled by vermicompost itself. Similarly, Furacron at the rate of 1kg per 508.5 m² with NPK fertilizers was used as one treatment. Furacron (carbofuran 3%) in a granulated form, was used as synthetic nematicide as a part of our treatments.

Data Collection

Data were collected for evaluating the growth and yield parameters by taking 5 sample plants from each plot, excluding the border plants.

Germination

Two seeds were dropped per planting hole and the numbers of the germinated plants were counted at 7 DAS.

Plant height

Plant height was measured in every 10 days starting from 10 DAS and continued upto 60 DAS. It was measured with the help of measuring tape from the crown region to the tip of the plant.

Stem base diameter

The diameter of the stem was measured in every 10 days starting from 20 DAS and continued
upto 60 DAS using Vernier Caliper near the 1st bottom node of the plant.

Leaf number

The total number of fully opened leaves was counted in every 10 days starting from 10 DAS and continued till 60 DAS.

Yield

Okra fruits were picked every 3 days from 45DAS till 12 pickings. The weight of fruits was taken using weighing balance.

Galls counting and Gall indexing

Five plants were uprooted at 60DAS, 70DAS and 80DAS excluding the plants sampled for taking growth and yield parameters. The total number of galls was counted on each uprooted plants.

The gall index was calculated using the root evaluation chart given by Bridge and Page (1980) as cited in Martinez (2014). According to this chart, the root system was ranked from 0-10; 0 = no knots at all, 1 = few small knots which are difficult to find, 2 = clearly visible small knots but the main roots is clean, 3 = presence of some larger knots but the main root is clean, 4 = large knots predominates whereas the main root is clean, 5 = 50% of the root is infested and knotting can be seen on parts of main roots with reduced root system, 6 = knotting on main roots, 7 = majority of the root is knotted, 8 = majority of the root system is knotted and only a few clean roots are visible, 9 =all roots are severely knotted and are in the state of dying, 10 = all roots are severely knotted with no root system and the plant is dying.

Root number, Root length and Root diameter

These parameters were taken during the time of uprooting. Root number includes lateral roots and they were counted, too. Root length i.e. tap root was measured with the help of a ruler. Vernier Caliper was used to measure root diameter.

Statistical Analysis

The collected data were recorded in MS-excel and analyzed using analysis of variance (ANOVA) to determine if the treatments have any significant differences with each other. The data were analyzed according to One way ANOVA using software R-Stat.

Economic Analysis

For the economic analysis, the cost of fertilizers was calculated which included the cost of treatments i.e. cost of fertilizers and their supplements if essence to fulfill the recommend dose. Cost of different fertilizers were: goat manure: $0.05 kg⁻¹, sesame(til) cake: $0.25kg⁻¹, mustard seed cake:$0.30kg⁻¹, poultry manure: $0.05kg⁻¹, vermicompost: $0.17kg⁻¹, urea (nitrogen source): $0.2kg⁻¹, muriate of potash: $0.38kg⁻¹, single super phosphate: $0.18kg⁻¹ and nematicide i.e. Furacron: $1.6kg⁻¹ and the market price of okra: $0.3kg⁻¹. Similarly, the cost of treatments was subtracted from the additional income of respective treatments to find out the net profit. The incremental cost benefit-i was calculated separately for each treatment according to the following formula:

\[
\text{Incremental Cost-Benefit ratio (ICBR)} = \frac{\text{Cost of treatment Net profit} - 1}{\text{Chejara 2013}}
\]

RESULTS AND DISCUSSION

Climatic condition during the Biometric Observation

National Maize Research Program (NMRP), Rampur, Chitwan provided the required meteorological data of the cropping period. It is located 250m far from the research site. The total rainfall was 385mm during the entire cropping period. The vegetative stage received the least rainfall (35.1mm) i.e. in April and the fruiting period received the highest rainfall (212.2mm) i.e. in June. The maximum temperature ranged from 27.2°C to 38.1°C and the minimum temperature ranged from 27.2°C to 29.8°C (Figure 1).

![Figure 1. Climatic condition during biometric observation](image)

Effect on seed germination

The effect of different manures on seed germination was found significant at 5% level of significance among the treatments. However, all treatments except poultry manure were not statistically different (Table 1). Furacron-treated plot had 21.72% more germination than in control (NPK) plot. There was considerably low germination in poultry manure-treated plot (less by 20.43%). That could be due to the high water-absorbent nature causing dryness in the field. Sarma and Gogoi (2015) reported maximum germination in vermicompost.
Effects on number of galls formation

The effect of different types of fertilizers and nematicide on number of galls was found highly significant at 5% level of significance. Each individual plant was found infested by gall. Though Furacron, followed by goat manure, poultry manure, mustard seed cake and sesame (til) seed cake, was seemed to be superior at both 60DAS and 70 DAS its effect was not significantly different with other treatments except vermicompost and control (NPK) at 60 DAS, and control at 70 DAS (Table 2). However, at 80 DAS, the number of galls was found non-significant as the numbers tend to increase and the crop life period was about to complete. After that, there was a decrease in the number of galls as the roots started decaying. Tanimola and Akarekor (2014) also found poultry manure and carbofuran effective to control nematodes.

Effect on the number of leaves, plant height, diameter, root diameter, root length, number of lateral roots and yield of okra

At 10, 20, 30 and 40 DAS, the effect on number of leaves was found non-significant. At 50 and 60 DAS, the effect was significant at 1%, and 0.1% level of significance, respectively (Table 3). The number of leaves was found to be superior in poultry manure followed by vermicompost, Furacron, goat manure, sesame (til) cake, mustard seed cake and control at 50 DAS; and followed by sesame (til) cake, goat manure, Furacron, vermicompost, mustard seed cake and control at 60 DAS.

The plant height was found non-significant at 10, 20, 30 and 40 DAS, and was significant at 50 and 60 DAS (Table 4). At 50 DAS, poultry manure, Furacron, vermicompost and goat manure was found superior followed by sesame (til) cake, mustard seed cake and control at 1% level of significance. At 60 DAS, poultry manure and Furacron were found superior followed by sesame seed cake, vermicompost, goat manure, mustard oilcake and control (NPK) at 5% level of significance. Miglani et al. (2017) also reported similar results, but in their case farm yard manure (not included in our experiment) was found superior to poultry manure.

At 20, 30 and 40 DAS, the plant diameter was found non-significant (Table 5). It was significant at 50 and 60 DAS at 5% level of significance. Poultry manure was found to be superior followed by vermicompost, sesame (til) cake, Furacron, goat manure, mustard seed cake and control at 50 DAS; and followed by goat manure, vermicompost, sesame (til) cake, mustard seed cake, Furacron and control (NPK) at 60 DAS.

Table 1. Effect of different fertilizers on seed germination

Treatments	Number of seed germinated 7 DAS	SEM (±)	LSD (0.05)	CV	F-test
Furacron	93.33333 ×	4.39	16.4	11.2	
Goat manure	92.66667 ab				
Vermicompost	86.66667 ab				
Sesame (til) cake	82.66667 ab				
Mustard Oilcake	81.66667 a				
Control (NPK)	76.66667 ab				
Poultry Manure	61b				

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation. ×= Significant at 5% level

Table 2. Effect of different fertilizers on number of galls formation

Treatments	60 DAS	70 DAS	80 DAS
Furacron	2.333333a	2.866667a	4.933333
Goat manure	2.666667 ab	3.066667a	5.133333
Poultry Manure	3.333333 ab	4.266667a	5.866667
Mustard seed cake	3.466667 ab	4.466667a	6.266667
Sesame (til) cake	4.200000abc	4.533333a	6.266667
Vermicompost	4.666667 abc	4.933333ab	6.466667
Control (NPK)	6.266667 c	7.133333c	7.266667
SEM (±)	0.4	0.36	0.43
LSD (0.05)	2.33	2.21	4.11
CV	34.1	27.9	38.7
F-test	×	×	NS

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation, ×= Significant at 5% level and NS=Non-Significant
Table 3. Effect of different fertilizers on number of leaves

Treatments	10 DAS	20 DAS	30 DAS	40 DAS	50 DAS	60 DAS
Vermicompost	3.066667	5.600000	8.666667	17.46667	24.93333	31.73333
Sesame(Til) cake	3.000000	5.266667	7.466667	14.80000	19.73333	35.66667
Control (NPK)	3.000000	5.600000	8.333333	14.20000	15.60000	25.40000
Goat manure	2.933333	5.466667	8.466667	15.00000	22.06667	34.86667
Mustard oilcake	2.933333	5.400000	7.466667	15.53333	18.80000	29.60000
Poultry manure	2.933333	5.866667	8.666667	17.13333	26.73333	44.60000
Furacron	2.933333	5.866667	8.133333	18.93333	23.66667	31.80000

SEM (±)

	0.02	0.1	0.2	0.8	0.97	1.43
LSD (0.05)	0.162	0.907	1.62	6.46	4.73	5.48
CV	3.06	9.14	11.2	22.5	12.3	9.23

F test

| | NS | NS | NS | NS | ** | *** |

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation **= Significant at 1% level, ***= Significant at 0.1% level and NS=Non-Significant

Table 4. Effect of different fertilizers on plant height

Treatments	10 DAS	20 DAS	30 DAS	40 DAS	50 DAS	60 DAS
Goat manure	7.300000	14.20000	26.26667	60.20000	84.66667	109.3333
Furacron	7.300000	14.23333	27.06667	56.46667	87.46667	119.8667
Sesame (til) cake	6.800000	13.10000	26.13333	61.40000	84.20000	117.7333
Vermicompost	6.733333	13.06667	25.13333	53.66667	87.13333	111.6667
Poultry manure	6.600000	12.23333	24.90000	59.20000	88.33333	119.9333
Control (NPK)	6.400000	13.70000	26.93333	60.86667	74.53333	102.5333
Mustard Oilcake	6.333333	14.73333	26.93333	55.33333	77.46667	107.1333

SEM (±)

	0.16	0.38	0.52	1.26	1.32	1.83
LSD (0.05)	1.14	2.53	4.73	11.3	6.79	10.5
CV	9.49	10.4	10.1	10.9	4.57	5.24

F test

| | NS | NS | NS | NS | ** | * |

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation, NS=Non-significant, **= Significant at 1% level *= Significant at 5% level

Table 5. Effect of different fertilizers on plant diameter

Treatments	20 DAS	30 DAS	40 DAS	50 DAS	60 DAS
Goat manure	0.5400000	0.6133333	1.240000	1.586667	1.936667
Furacron	0.566667	0.683333	1.206667	1.673333	1.700000
Sesame (til) cake	0.550000	0.800000	1.280000	1.746667	1.773333
Vermicompost	0.513333	0.606667	1.193333	1.833333	1.846667
Poultry manure	0.566667	0.700000	1.273333	1.960000	2.200000
Control (NPK)	0.613333	0.706667	1.280000	1.933333	1.406667
Mustard seed cake	0.586667	0.726667	1.266667	1.500000	1.740000

SEM (±)

	0.01	0.02	0.03	0.07	0.06
LSD (0.05)	0.0961	0.15	0.223	0.377	0.341
CV	9.6	12.5	10	12.9	10.7

F test

| | NS | NS | NS | * | * |

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation, NS=Non-significant *= Significant at 5% level

At 60 DAS, root diameter was found significant at 5% level of significance (Table 6). Poultry manure, mustard seed cake and goat manure were found superior followed by sesame (til) cake, Furacron, vermicompost and control (NPK). The root diameter was non-significant at 70 and 80 DAS.

At 60 and 70 DAS, the root length was found significant at 5% level of significance in which poultry manure was found superior (Table 7). The root length was non-significant at 80 DAS.

The number of lateral roots was found non-significant at 60 DAS (Table 8) though it was found maximum in case of poultry manure followed by mustard seed cake, sesame(til) cake,
furacron, vermicompost, goat manure and control (NPK).

The fruit yield was significant at 0.1% level of significance (Table 8). Poultry manure was found superior followed by vermicompost, goat manure, sesame (til) cake, Furacron, mustard seed cake and control (NPK). Other researchers also have reported an increase in yield of okra with poultry manure as compared to sheep, cow and a combination of these 3 treatments (Yahaya and Fagwalawa 2016 and Tiamiyu et al. 2012), and cow dung and synthetic NPK fertilizer (Uka et al. 2013). Similarly, Attigah et al. (2013) and Nweke et al. (2013) also reported similar results.

The present results show that the poultry manure enhanced the vegetative growth of the plants and thereby increased the production. The above results are in the agreement with the findings of Aniefiok et al. (2013) and Tswanya et al. (2017) for increased okra production with poultry manure. Also, poultry manure has very high nitrogenous contents and it leads to the formation of ammonia gas which contains nematicidal properties (Rodryguez- Kabana 1986). This ammonia gas is toxic to root-knot nematodes. Generally, using organic manures enhances the microbial activities in soil, which might cause reduction in nematode population by antagonistic effects.

Economics of different fertilizers

Amongst all the fertilizer treatments, the highest net profit of $1407.92 was found in case of poultry manure (Table 9) followed by goat manure ($1077.5), Furacron ($742.67), vermicompost ($566.67), sesame (til) cake (-$152.62), and mustard seed cake (-$874.6). However, highest incremental cost/benefit ratio was obtained in Furacron (1:2.63) followed by goat manure (1:2.26), poultry manure (1:1.5), vermicompost (1:0.14), sesame (til) cake (1:0.09) and mustard seed cake (1:0.58).

CONCLUSIONS

Okra responded well to the different organic manures in terms of plant growth, nematode control and fruit yield. Among the organic manures evaluated poultry manure was found superior to other treatments excluding germination and incremental cost-benefit ratio (ICBR). The yield attributing characters and fruit yield was found superior in the poultry manure-treated plot than the plot treated with synthetic fertilizers. All organic manures, except mustard seed cake yielded

Table 6. Effect of different fertilizers on root diameter

Treatments	Root diameter(cm)		
	60 DAS	70 DAS	80 DAS
Furacron	1.653333^a	2.013333^b	2.246667^b
Vermicompost	1.566667^b	1.740000^b	2.046667^b
Goat manure	1.820000^a	1.920000^a	2.453333^a
Sesame cake	1.704000^b	1.920000^b	2.186667^b
Poultry Manure	1.833333^a	1.960000^a	2.506667^a
Mustard seed cake	1.820000^a	1.840000^a	2.140000^a
Control (NPK)	1.520000^b	1.700000^b	1.966667^b

F test: * NS

SEM(±)	0.05	0.05	0.07
LSD(0.05)	0.191	0.368	0.501
CV	6.31	11.1	12.7
F test	* NS		

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation, NS=Non-significant *= Significant at 5% level

Table 7. Effect on root length

Treatments	Root length(cm)		
	60 DAS	70 DAS	80 DAS
Poultry Manure	17.96667^a	18.36667^a	19.13333^a
Vermicompost	17.94667^a	18.16667^a	18.26667^a
Goat manure	16.90000^{ab}	17.70000^b	18.13333^a
Sesame (til) cake	16.19333^{ab}	16.40000^a	16.76667^a
Furacron	17.83333^a	17.70000^b	18.46667^a
Mustard seed cake	15.25333^b	15.46667^b	15.66667^b
Control (NPK)	15.16667^b	15.20000^b	15.40000^b
SEM(±)	0.34	0.35	0.59
LSD (0.05)	2.06	2.27	4.66
CV	6.92	7.5	15.1
F test	* NS		

Note: Same letter in the means do not differ significantly at p=0.05 by DMRT, SEM= Standard error of mean, LSD= Least significant difference, CV = Coefficient of variation, NS=Non-significant *= Significant at 5% level
significantly higher yield than the control (NPK). Of them, poultry manure seemed to be the most effective in our experiment. Sanni et al. (2015) recommends 25tha⁻¹ as a suitable dose whereas Tswanya et al. (2017) recommends 15tha⁻¹ for LD88 variety. Further research should be carried out to demonstrate the suitable dose of poultry manure for increased production under different field conditions.

ACKNOWLEDGMENTS

We want to thank the Department of Plant Pathology (Prof. Dr. Sundar Man Shrestha) and the Department of Horticulture (Mr. Rambabu Neupane and Mrs. Januka Basnet Rawol) of Agriculture and Forestry University for their support during the research period.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

ORCID

Subodh Raj Pandey: https://orcid.org/0000-0002-6303-8087

Table 8. Effect of different fertilizers on lateral roots and yield

Treatments	Number of lateral roots	Average Yield (mt ha⁻¹)
	60 DAS	
Furacron	36.7333	14.6133bc
Vermi compost	36.0000	17.3867ab
Goat manure	33.4000	16.7289ab
Sesame cake	38.2000	16.6222ab
Poultry Manure	44.8000	20.0000a
Mustard seed cake	39.4000	12.97778d
Control(NPK)	30.1333	10.50667

Table 9. Economics of different fertilizer

S.N.	Treatments	Cost of Treatments ($ha⁻¹)	Yield (Mt ha⁻¹)	Average yield of Produce ($ha⁻¹)	Gross return over control ($ha⁻¹)	Net Profit over control ($ha⁻¹)	ICBR
1.	Goat Manure+Supplements	333.33+141.67=475	16.72	4180	1552.5	1077.5	1:2.26
2.	Sesame (Til Cake)+Supplements	1548.56+126.56=1675.12	16.62	4150	1522	-152.62	-1:0.09
3.	Mustard Seed Cake+Supplements	1326.67+162.44=1489.10	12.97	3242	614.5	-874.6	-1:0.58
4.	Poultry Manure+Supplements	833.33+131.25=964.58	20	5000	2372.5	1407.92	1:1.5
5.	Furacron+ NPK	32+250.33=282.33	14.61	3652.50	1025	742.67	1:2.63
6.	Vermicompost+Supplements	1445.76+54.78=1500.54	17.38	4345	1717.5	216.96	1:0.14
7.	Control(NPK)i.e.RDF	30.1333	10.51	2627.50	-	-	-

Note: Negative sign(-) indicates loss
ICBR: Incremental Cost Benefit Ratio
REFERENCES

Acharya U. Sakya S. (2004) Effect of bioregulators on spring-summer season okra cultivation under inner Terai condition of Nepal, Fourth National Workshop on Horticulture. Lalitpur, Kathmandu 2-4, March. NARC, Nepal

Aniefiok E. Id oreynin A. John O. (2013) Effect of poultry manure and plant spacing on the growth and yield of water leaf (Talinum fruticosum (L.) Juss). Journal of Agronomy, (12): 146-152.

Attigah A. Asiedu E. Agyarko K. Baba H. (2013) Growth and yield of (Abelmoschus esculentus L.) as affected by organic and inorganic fertilizers. ARPN Journal of Agricultural and Biological Science, 766-770.

Bhardwaj L. Hogger C. (1984) Root knot nematodes of Chitwan district of Nepal. Nemato logia Mediterranea, 155-158.

Bridge J. Page S.L.J. (1980) Estimation of root knot nematode infestation levels on roots using a rating chart. Tropical Pest Management, 26(3): 296-298.

Carneiro R.M.D.G. Lima F.S.O. Correia V.R. (2016) Methods and Tools Currently Used for the Identification of Plant Parasitic Nematodes. Intech Open Science, 19-35.

Chejara B. (2013) Studies on Gram Pod Borer, Helicoverpa armigera (Hub.) on Chick pea and its control with insecticides and biopesticides. M.Sc. Thesis, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, M.P., India.

Gulshan A. Saeed H. Javid S. Meryem T. Amina M. Amin-ud-Din M. (2013) Eff ects of animal manure on the growth and development of okra (Abelmoschus esculentus L.), ARPN Journal of Agricultural and Biological Science, 213-218.

Habash S. Al-Banna L. (2011) Phosphonate fertilizers suppressed root knot nematodes Meloidogyne javanica and M. incognita. Journal of Nematology, 95-100.

Kaplan M. Noe J. P. (1993) Effects of Chicken excrement Amendments on Meloidogyne arenaria. Journal of Nematology, 25(1): 71-77.

Khabdaker M. Jusoh N. Ral ni N. Ismail S. (2017) The effect of different types of organic fertilizers on growth and yield of Abelmoschus esculentus L. Moench (okra). Bulgarian Journal of Agricultural Science, 23 (No 1): 119-125.

Kafle A. (2013) Evaluation of antagonistic plant materials to control Southern Root Knot Nematode (Meloidogyne incognita) in Tomato. The Journal of Agriculture and Environment, 14: 78-86.

Martinez D.E.P. (2014) Management of root knot nematode (Meloidogyne incognita) in Indiana soybeans. Master of Science, Purdue University, USA.

MOAD (2018) Krishi Diary, Recommended dose of fertilizer. Kathmandu: Nepal Government, Ministry of Agriculture and Livestock Development.

Miglani A. Gandhi N. Singh N. Kaur J. (2017) Influence of Different Organic Manures on Growth and Yield of Okra. International Journal of Advance Research in Science and Technology, 886-892.

MOAD (2016/17) Statistical Information on Nepalese Agriculture, Singhadurbar, Kathmandu. Ministry of Agriculture and Livestock Development (MOAD), Government of Nepal.

Noling J. W. (2009) Nematode Management in Sweet Corn. University of Florida, IFAS Extension, ENY-023: 1-7.

Nweke I. A. Ijearu S. I. Igili D. N. (2013) Effect of Different Sources of Animal Manure on the Growth and Yield of Okra (Abelmoschus Esculentus L.Moench) In Ustoxic Dystepept at Enugu South Eastern, Nigeria. International Journal of Scientific and Technology Research, 135-137.

Pakeerathan K. Mikunthan G. Tharsani N. (2009) Effect of Different Animal Manures on Meloidogyne incognita (Kofoid and White) on Tomato. World Journal of Agricultural Sciences, 5(4): 432-435.

Premsekhhar M. Rajashree V. (2009) Influence of Organic Manures on Growth, Yield and Quality of Okra. American-Eurasian Journal of Sustainable Agriculture, 6-8.

Rodry guez- Ka bana R. (1986) Organic and Inorganic amendments to soil as nematode suppressants. Journal of Nematology, (18): 129-135.

Sarma B. Gogoi N. (2015) Germination and seedling growth of Okra (Abelmoschus esculentus L.) as influenced by organic amendments. Cogent Food and Agriculture, 1: 1-6.

Sanni K. O. Godonu K. G. Animashaun M. O. (2015) Effects Of Different Levels Of Poultry Manure On The Growth And Yield Of Okra (Abelmoschus Esculentus Monech) in Ikorodu Agro-Ecological Zone of Nigeria. Researcher 2015, 7(4): 55-59.

Tanimola A. Akarekor C. (2014) Management of Root-Knot Nematode (Meloidogyne incognita) on Okra (Abelmoschus esculentus (L.) Moench) Using Carbofuran and Some Animal Manures. World Journal of Agricultural Sciences, 10(4): 85-193.

Thapa R. Dongol D. (1988) A preliminary survey of weed flora at IAAS and its vicinity. IAAS
Research Report (1985-1991), Institute of Agriculture and Animal Science, 5965.

Tiamiyu R. Ahmed H. Muhammad A. (2012) Effect of Sources of Organic Manure on Growth and Yields of Okra (Abelmoschus esculentus L.) in Sokoto, Nigeria. Nigerian Journal of Basic and Applied Science, 213-216.

Tswana M. Isah K. Ahmed M. Yisa P. Lile S. (2017) Effect of Poultry Droppings on Growth and Fruit Yield of Okra (Abelmoschus esculentus). International Journal of Environment, Agriculture and Biotechnology, 1247-1251.

Uka N. Chukwuka K. Iwuagwu M. (2013) Relative Effect of Organic and Inorganic Fertilizers on the Growth of Okra (Abelmoschus esculentus (L.) Moench). Journal of Agricultural Sciences, 159-166.

Yahaya S. M. Fagwalawa L. D. (2016) Effect of Organic Manure on the Growth and Yield of Okra. Imperial Journal of Interdisciplinary Research, 2(3): 130-133.