An action for reaction in general dimension

Ofek Birnholtz and Shahar Hadar
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
ofek.birnholtz@mail.huji.ac.il, shaharhadar@phys.huji.ac.il

Abstract: We present an effective field theory study of radiation and radiation reaction effects for scalar and electromagnetic fields in general spacetime dimensions. Our method unifies the treatment of outgoing radiation and its reaction force within a single action principle. Central ingredients are the field doubling method, which is the classical version of the closed time path formalism and allows a treatment of non-conservative effects within an action, action level matching of system and radiation zones, and the use of fields which are adapted to the enhanced symmetries of each zone. New results include compact expressions for radiative multipoles, radiation, and radiation reaction effective action in any spacetime dimension. We emphasize dimension-dependent features such as the difference between electric and magnetic multipoles in higher dimensions and the temporal non-locality nature of the effective action for odd spacetime dimensions, which is a reflection of indirect propagation (“tail effect”) in the full theory. This work generalizes the method and results developed for 4 dimensions in [arXiv:1305.6930], and prepares the way for a treatment of the gravitational case.
1 Introduction

While extensive work has been done on the post-Newtonian (PN) 2-body problem in General Relativity (GR) in four spacetime dimensions (see section (1) of paper I [1] for a comprehensive review of existing literature), much less is known in general spacetime dimensions \(d\). In this paper we study PN radiative effects, namely radiation and radiation reaction (RR), for (massless) scalar and electromagnetic (EM) theories in general \(d\). We work within an effective field theory (EFT) approach, which was introduced in [2] to the PN limit of GR and applied to the study of dissipative effects in 4-dimensional GR also in [3–8]. Our study of non-conservative effects in scalar and EM theories gives new results and insights into the problem already in these physically important cases, and lays foundations for a comprehensive treatment of these effects in higher \(d\) GR (see [9] for the first treatment of gravitational radiation in higher \(d\) within the EFT approach), where the main additional complication is the theory’s nonlinearity.
The well known $4d$ Abraham-Lorentz-Dirac (ALD) formula [10–13] gives the EM self-force on a point charge in flat spacetime in a covariant manner. There has been an extensive effort to generalize ALD to any d undertaken by Kosyakov, Gal’tsov, Kazinski and others [14–22]. Joint treatment of self-force under scalar, vector and tensor fields has been given by [23–26]. As is well known, in even d waves exhibit direct propagation, that is the Green’s function is supported only on the lightcone, while in non-even d waves propagate also indirectly - exhibiting the so-called tail effect. These features appear also in the above treatments of RR, but to our knowledge a closed-form formula for generalized ALD is available currently only for EM in even d [16]. The very regularizability of RR in high d is sometimes put to question in the above treatments.

Our method divides the problem into 2 zones, the system and radiation zones (fig.1). Each zone has an enhanced symmetry, namely a symmetry that is not a symmetry of the full problem. Different symmetries emerge when zooming out to the radiation zone or in to the system zone. The system zone is approximately stationary (time independent) since by assumption (of the PN approximation) all velocities are non-relativistic. The radiation zone is approximately spherically symmetric since the system shrinks to a point at the origin and hence rotations leave it invariant. Identifying symmetries is central to making fitting choices for the formulation of a perturbation theory in each zone, including the choice of how to divide the action into a dominant part and a perturbation, the choice of field variables and - when relevant - the choice of gauge. Hence we insist on using spherical field variables (in fact, symmetric trace-free tensors), following paper I and [27], and unlike the more common plane-wave and wave-vectors approach used in many EFT works [3–7].

As is well known, Hamilton’s traditional action formalism is not compatible with dissipative effects. In order to account for non-conservative effects within the action we use the method of field doubling (see [8] for a crisp general formulation) which is the classical version of the closed time path (CTP) or in-in formalism [28] introduced in the quantum field theory context in the 1960’s. In this method each degree of freedom in the system is doubled and a generalized action principle for the whole system (including doubled fields)
is constructed from the original action. Only after deriving equations of motion (EOM) from this generalized action, one enforces the so-called physical condition, identifying each field with its doubled counterpart. The resulting forces in the EOM can be dissipative.

In order to formulate the whole problem within a single action principle, we introduce new matching fields which couple to system & radiation zone fields at an appropriate boundary. We call these fields “2-way multipoles”. We physically interpret them as the multipole moments of the system (living at the origin of the radiation zone and at infinity of the system zone), but they are treated as any other field in the theory. Thereby, matching is lifted to the level of the action.

The main goal of this paper is to compute, in general d, the radiative multipoles, outgoing radiation, RR effective action, dissipated energy and RR force in the cases of scalar and electromagnetic fields, thereby generalizing the method devised in paper I to general d. We comment that this paper is not intended to be self contained: the main ideas and ingredients of our formulation are thoroughly elaborated on in paper I, and here we generalize and apply them to obtain new results in higher dimensions. The ability to generalize the machinery set up in paper I in order to obtain new results demonstrates the method’s efficiency. Moreover, this generalization is natural since a central step in the method is a reduction to one dimension (corresponding to the radial coordinate) - and from there on the treatment is very similar to the one done in $4d$.

This paper is organized as follows: In section 2 we treat the scalar field case, which already contains most of our formulation’s main ingredients. In particular this section contains a thorough discussion of the tail effect in non-even spacetime dimensions. In section 3 we treat the EM case, where one must account for the additional polarizations available for general dimensional vector fields. In both sections we also show explicitly successful comparisons to known results in $4d$ and $6d$. Sections 2, 3 contain detailed derivations of our results, intended to maximally clarify our computations for interested readers. In section 4 we briefly summarize our main results and definitions. In section 5 we discuss these results and elaborate on future directions.

Conventions and nomenclature: We use the mostly plus signature for the flat d-dimensional spacetime metric $\eta_{\mu\nu}$, as well as $c = 1$. We denote $D := d - 1$, $\hat{d} := d - 3$, and Ω_{d+1} is the volume of a unit $d + 1$ dimensional sphere. Lower case Greek letters denote $\{0, 1, \ldots, D\}$ spacetime indices, lower case Latin letters denote $\{1..D\}$ spatial indices, upper case Greek letters denote $\{1..(\hat{d} + 1)\}$ indices on the sphere, upper Latin letters are spatial multi-indices, and Hebrew letters (ℵ) enumerate different vectorial harmonics on the sphere.

Field doubling conventions: We work in the Keldysh ([28]) representation of the field doubling formalism, where for every field ϕ (and source function) in the original action, we introduce a counterpart $\hat{\phi}$, interpreted as the difference between the doubled degrees of freedom, and with it a new EOM:

$$\frac{\delta \hat{S}}{\delta \hat{\phi}} = 0 \ . \quad (1.1)$$

\hat{S} is always linear in the hatted fields, so enforcing the so-called physical condition $\hat{\phi} = 0$
(after the derivation of EOM) is trivial.

We write the radiation reaction (RR) effective action \(\hat{S} \) in terms of the system’s multipoles and their doubled counterparts, which are defined as

\[
\hat{Q} = \frac{\delta Q}{\delta \hat{\rho}}. \tag{1.2}
\]

In particular, for a source composed of point particles the doubled multipoles are given by

\[
\hat{Q} = \sum_{A} \frac{\delta Q}{\delta \hat{x}_A} \hat{x}_A, \tag{1.3}
\]

and the EOM for the \(A^{th} \) point particle is \(\frac{\delta \hat{S}}{\delta \hat{x}_A} = 0 \) For a detailed survey of the doubling formalism used in this paper, see section (2.4) of paper I.

2 Scalar case

2.1 Spherical waves and double-field action

We start with a massless scalar field coupled to some charge distribution in arbitrary spacetime dimension \(d \). We take the action to be

\[
S_{\Phi} = + \frac{1}{2 \Omega_{d+1}} \int (\partial_{\mu} \Phi)^2 r^{d+1} dr d\Omega_{d+1} dt - \int \rho r^{d+1} dr d\Omega_{d+1} dt, \tag{2.1}
\]

which leads to the usual field equation

\[
\Box \phi = -\Omega_{d+1} G \rho. \tag{2.2}
\]

Spherical waves: conventions. We shall work in the frequency domain and use a basis of spherical decomposition to multipoles. We note that any symmetric trace free tensor \(\phi_L (\ell \) being given), can be represented equivalently using the standard (scalar) spherical harmonic representation \(\phi_L^m \) (who form a basis of dimension \(D_\ell (\hat{d}+1, 0) \)) or using functions on the unit sphere \(\phi_L (\Omega_{d+1}) \), with the different forms related by

\[
\phi_L (\Omega_{d+1}) = \phi_L^m \frac{x^L}{r^L} = \sum_m \phi_L^m Y_{\ell m} (\Omega_{d+1}). \tag{2.3}
\]

We found it convenient to use the \(\phi_L \) decomposition, which is similar to the Maxwell cartesian spherical multipoles [31–34]. We thus decompose the field and the sources as

\[
\phi = \int \frac{d\omega}{2\pi} \sum_L \sum_m e^{-i\omega t} \Phi_L (r) x^L, \tag{2.4}
\]

\[
\rho = \int \frac{d\omega}{2\pi} \sum_L \sum_m e^{-i\omega t} \rho_L (r) x^L. \tag{2.5}
\]

\(D_\ell (n, s) \) is the number of independent spherical harmonics of degree \(\ell \) and spin \(s \) on the \(n \)-sphere. We use \(D_\ell (d+1, 0) = \frac{(2\ell+d)(\ell+d-1)!}{\ell!} \) [29, 30].

\[\text{–4–} \]
where \(L = (k_1 k_2 \cdots k_\ell) \) is a multi-index and \(x^L \) is the corresponding symmetric-trace-free (STF) multipole

\[
x^L = (x^{k_1} x^{k_2} \cdots x^{k_\ell})^{STF} \equiv x^{\ell} n^L.
\]

(2.6)

With \(g^{\Omega \Omega'} \) the metric on the \(\hat{d} + 1 \) dimensional unit sphere, the \(x^L \) are eigenfunctions of the Laplacian operator on that sphere,

\[
\Delta_{\hat{d} + 1} x^L = -c_s x^L = -\ell(\ell + \hat{d}) x^L.
\]

(2.7)

For any dimension \(d \), an orthogonal basis can be constructed from the multipoles, satisfying

\[
\int x^L(r, \Omega_{\hat{d} + 1}) x^{L'}(r, \Omega_{\hat{d} + 1}) d\Omega_{\hat{d} + 1} = N_{\ell, \hat{d}} r^{2\ell} \Omega_{\hat{d} + 1} \delta_{\ell \ell'} \delta_{L L'},
\]

(2.8)

\[
\int g^{\Omega \Omega'} \partial_\Omega x^L(r, \Omega_{\hat{d} + 1}) \partial_{\Omega'} x^{L'}(r, \Omega_{\hat{d} + 1}) d\Omega_{\hat{d} + 1} = c_s \cdot N_{\ell, \hat{d}} r^{2\ell} \Omega_{\hat{d} + 1} \delta_{\ell \ell'} \delta_{L L'},
\]

(2.9)

\[
N_{\ell, \hat{d}} = \frac{\Gamma(1 + \hat{d}/2)}{2^\ell \Gamma(\ell + 1 + \hat{d}/2)} = \hat{d}!! (2 \ell + \hat{d})!!.
\]

(2.10)

We use the summation conventions and definitions following [1] (see Appendix B.1) and note that \(d = 4 \) implies \(\hat{d} = 1 \), \(N_{\ell, 1} = (2 \ell + 1)!!^{-1} \). We also use the inverse transformation

\[
\rho_{L \omega}(r) = \int \rho_{L \omega}(\tilde{r}) x^L N_{\ell, \hat{d}} \frac{d\Omega_{\hat{d} + 1}}{r^{\ell + \hat{d} + 1}} = \int dt e^{i\omega t} \rho(r, t) x^L \frac{d\Omega_{\hat{d} + 1}}{N_{\ell, \hat{d}} \Omega_{\hat{d} + 1} r^{2\ell}}.
\]

(2.11)

Spherical waves: dynamics. In the new notation, using \(\Phi_{L - \omega} = \Phi^*_{L \omega} \), the action (2.1) becomes

\[
S_{\Phi} = \frac{1}{2} \int d\omega \sum_{L} \int dr \left[\frac{r^{2\ell + \hat{d} + 1} N_{\ell, \hat{d}} \Phi^*_L}{G} \left(\omega^2 + \partial_r^2 + \frac{2\ell + \hat{d} + 1}{r} \partial_r \right) \Phi_L - (\rho_{L \omega} \Phi^*_L + c.c.) \right],
\]

(2.12)

with the source term defined as

\[
\rho_{L \omega}^\phi(r) = N_{\ell, \hat{d}} \Omega_{\hat{d} + 1} r^{2\ell + \hat{d} + 1} \rho_{L \omega}(r) = r^{\hat{d} + 1} \int d\Omega_{\hat{d} + 1} \rho_{L \omega}(\tilde{r}) x^L.
\]

(2.13)

From (2.12) we derive the EOM

\[
0 = \frac{\delta S}{\delta \Phi^*_L} = \frac{N_{\ell, \hat{d}} r^{2\ell + \hat{d} + 1}}{G} \left(\omega^2 + \partial_r^2 + \frac{2\ell + \hat{d} + 1}{r} \partial_r \right) \Phi_L - \rho_{L \omega}^\phi.
\]

(2.14)

Defining \(x := \omega r \) the homogenous part of this equation is

\[
[\partial_r^2 + \frac{2\ell + \hat{d} + 1}{x} \partial_x + 1] \psi_{\ell, \hat{d}} = 0,
\]

(2.15)
and its solutions $\psi_{\ell,\hat{d}} = \psi_\alpha = \tilde{j}_\alpha, \tilde{\hat{y}}_\alpha, \tilde{h}^\pm_\alpha$ (with $\alpha = \ell + \hat{d}/2$) are Bessel functions up to normalization (see Appendix B.2). Thus the propagator for spherical waves is

$$ G^\Phi_{\text{ret}}(r', r) = -i\omega^{2\ell+\hat{d}} M_{\ell,\hat{d}} \tilde{G}_\alpha(\omega r_1) \tilde{h}^\pm_\alpha(\omega r_2) ; \quad (2.16) $$

$$ r_1 := \min\{r', r\}, \quad r_2 := \max\{r', r\}, $$

where

$$ M_{\ell,\hat{d}} = \frac{\pi}{2^{2\alpha+1} N_{\ell,\hat{d}} \Gamma(\alpha + 1)} = \frac{\pi}{2^{\ell+1+\hat{d}} \Gamma(1 + \hat{d}/2) \Gamma(\ell + 1 + \hat{d}/2)}, \quad (2.17) $$

which we notice is equal to $[\hat{d}!!(2\ell + \hat{d})!!]^{-1}$ for odd \hat{d} and to $\frac{\pi}{2} [\hat{d}!!(2\ell + \hat{d})!!]^{-1}$ for even \hat{d}. We turn to derive the source terms (vertices) in the radiation zone. This is done through matching with the system zone according to the diagrammatic definition

$$ -Q_{L\omega}^{\star \ell} := \quad \text{\textbullet} \quad = \quad \text{\textbullet} \quad : $$

$$ \Phi_{L\omega}(r) = -Q_{L\omega} \left(-i\omega^{2\ell+\hat{d}} M_{\ell,\hat{d}} \right) \tilde{h}^1_\alpha(\omega r) . \quad (2.19) $$

In the full theory (or equivalently in the system zone), on the other hand, we can also use spherical waves to obtain the field outside the source as

$$ \Phi_{L\omega}(r) = - \int dr' \rho_{L,\omega}(r') G^\Phi_{\text{ret}}(r', r) = - \int dr' \tilde{j}_\alpha(\omega r') \rho_{L\omega}(r') \left(-i\omega^{2\ell+\hat{d}} M_{\ell,\hat{d}} \right) \tilde{h}^1_\alpha(\omega r) $$

$$ = - \int d^D x' \tilde{j}_\alpha(\omega r') \rho_{\omega}(\vec{r}') x' \left(-i\omega^{2\ell+\hat{d}} M_{\ell,\hat{d}} \right) \tilde{h}^1_\alpha(\omega r) . \quad (2.20) $$

By comparing the above expressions for the field (2.19,2.20) and using (2.11) to return to the time domain we find that the radiation source multipoles are

$$ Q_L = \int d^D x \tilde{j}_\alpha(\vec{r} \partial_t) x'_{\text{STF}} \rho(\vec{r}, t) . \quad (2.21) $$

We note that from the series expansion of \tilde{j}_α (B.8) it can be seen that Q_L includes only even powers of $i\partial_t$, for every ℓ, \hat{d}, and is thus well-defined and real. A simple test of substituting
$d = 4$ shows these multipoles coincide with the multipoles given by Ross [35] and by paper I. We can think of this process as a “zoom out balayage” (French for sweeping/scanning - see paper I) of the original charge distribution $\rho(\vec{r})$ into Q_L carried out through propagation with $\tilde{j}_\alpha(\omega r)$. A useful representation of this result is

$$Q_L = \int d^Dx x_L^{\text{STF}} \int_{-1}^1 dz \delta_{\ell,d}(z) \rho(\vec{r}, u + uz) , \quad (2.22)$$

where (inspired by [36, 37]) we have implicitly defined the \hat{d}-dimensional generating time-weighted function

$$\int_{-1}^1 dz \delta_{\ell,d}(z) f(\vec{r}, u + uz) = (2\ell + \hat{d})!! \sum_{p=0}^{+\infty} \frac{(2p)!}{(2\ell + 2p + \hat{d})!!} (r \partial_u)^{2p} f(\vec{r}, u) , \quad (2.23)$$

remarking that for odd \hat{d} (even space-time dimension),

$$\delta_{\ell,d}(z) = \frac{(2\ell + \hat{d})!!}{2(2\ell + \hat{d} - 1)!!} (1 - z^2)^{\ell + (d-1)/2} . \quad (2.24)$$

Altogether the Feynman rules in the radiation zone for the propagator and vertices are

$$\int = -Q_{L,\omega}^{s,s} , \quad \int r = -Q_{L,\omega}^{s,s} , \quad (2.25)$$

$$\int_{r'}^r = G^{s,s}_{\text{ret}}(r', r) = -i\omega^{2\ell + \hat{d}} M_{\ell,d} G_{\tilde{j}_\alpha(\omega r_1)}(\omega) G_{\tilde{j}_\alpha(\omega r_2)} \quad r_1 \leq r_2 , \quad (2.26)$$

where for future use we allowed for a possible polarization label ϵ and a rational ℓ, \hat{d}-dependent factor R_s^{α} which is absent in the scalar case, namely $R|_{s=0} = 1$.

2.2 Outgoing radiation and the RR effective action

We can now use these Feynman rules to compute central quantities.

Outgoing radiation can now be found diagrammatically as

$$\Phi_{L,\omega}(r) = \int_{r'}^r X^{r'} = -Q_{L,\omega}^{s,s} \sqrt{\frac{\pi}{2^{\hat{d}+1} \Gamma(1 + \hat{d}/2)}} (i\omega)^{\ell + \hat{d}/2} \frac{Q_L r^\ell}{r^{\hat{d}+1}} \exp\frac{i\omega r}{r^{\hat{d}+1}} , \quad (2.27)$$

where we used the asymptotic forms of $\tilde{h}_\alpha(x)$ (B.9) and $\tilde{j}_\alpha(\omega r')|_{r'=0} = 1$ for the source at $r' = 0$, and (2.17). In odd \hat{d} we can use (2.5) to find that (as $r \to \infty$) the outgoing radiation is

$$\Phi(\vec{r}, t) \sim \frac{G}{d!!} r^{-\frac{d+1}{2}} \sum_L n^L \partial_t^{\ell + \frac{d-1}{2}} Q_L(t - r) . \quad (2.28)$$
For $d = 4$ this coincides with paper I (eq.(3.20)) and with [35] (eq. (21); note our normalizations differ by 4π). While (2.28) is valid and local for all odd \hat{d}, for non-odd \hat{d} (non-even spacetime dimension), the corresponding expression in the time-domain would include a non-integer number of time derivatives, implying non-locality (see more below). (2.27) is, of course, valid in every dimension.

Dissipated power. The power carried away by the radiation field (2.27) is

$$
\dot{E} = \frac{1}{G} \int \frac{d\omega}{2\pi} \sum_{L,L'} \left(r^{d+1} \Omega_{d+1} \right)^{\frac{3}{2}} \int \frac{d\omega}{2\pi} \sum_{L,L'} \left(r^{d+1} \Omega_{d+1} \omega^2 \Phi^*_{L\omega} x^L x_{L'} \Phi^{L'} \right)
$$

$$
= \sum_{L} \int \frac{d\omega}{2\pi} \frac{\pi G N_{\ell,d}}{2\pi 2^{d+1} \Gamma^2 (1 + d/2)} \omega^{2\ell + d+1} Q_{L\omega} Q_{L'}
$$

$$
= \sum_{L} \int \frac{d\omega}{2\pi} G \omega^{2\ell + d+1} |Q_{L\omega}|^2 \cdot \left\{ \frac{\pi}{\omega} \left[\frac{d!!(2\ell + \hat{d})!!}{d!!(2\ell + \hat{d})!!} \right]^{-1} \right. \quad d \text{ odd},
$$

$$
\left. \pi \left[\frac{2^{\ell + d+1} \Gamma(\ell + 1 + \frac{\hat{d}}{2}) \Gamma(1 + \frac{\hat{d}}{2})}{2^{\ell + d+1} \Gamma(2\ell + \hat{d})!!} \right]^{-1} \right\} \quad d \text{ even}, \quad (2.29)
$$

where we have used (2.4,2.8,2.10). We note in particular that in even dimension d we can find the symmetric time-domain form,

$$
\dot{E} = \sum_{L} \frac{G}{d!!(2\ell + \hat{d})!!} \left\langle (\partial_t^{\ell + \frac{d+1}{2}} Q^L)^2 \right\rangle = \sum_{L} \frac{G}{d!!(2\ell + \hat{d})!!} \left\langle (\partial_t^{\ell + \frac{d+1}{2}} Q^STF_{k_1k_2\ldots k_r})^2 \right\rangle . \quad (2.30)
$$

We remark that in 4d this matches (3.22) of [1] and (15) of [35] (note normalization and summation conventions).

Radiation reaction effective action encodes the RR force and is given formally by

$$
\hat{S}_\Phi = \left\langle \int \frac{d\omega}{2\pi} \sum_{L,L'} (-Q_{L\omega}) G_{\text{ref}}(0,0) \left(-\dot{Q}_{L\omega} \right) + \text{c.c.} \right\rangle
$$

$$
= \frac{G}{2} \int \frac{d\omega}{2\pi} \sum_{L} -i \omega^{2\ell + d} M_{\ell,d} \cdot \mathcal{G}_\alpha \cdot Q_{L\omega} + \text{c.c.} , \quad (2.31)
$$

$$
\mathcal{G}_\alpha = \left. -\frac{\partial \hat{J}_\alpha(\omega r')}{\partial r'} \hat{J}_\alpha(\omega r) \right|_{r' \to 0} \cdot \left. \left[\hat{J}_\alpha(\omega r') + i \hat{\gamma}_\alpha(\omega r') \right] \right|_{r' \to 0} , \quad (2.32)
$$

where now both vertices are taken at $r = r' = 0$. For non-even \hat{d} (odd or non-integer), we use $\hat{J}_\alpha(0) = 1$, and (B.8, B.10) for $\hat{J}_\alpha, \hat{\gamma}_\alpha$, to find

$$
\mathcal{G}_\alpha = \hat{J}_\alpha(0) \cdot \hat{J}_\alpha(0) + \left\{ \frac{i \Gamma(\alpha + 1) 2^\alpha \hat{J}_\alpha(x)}{\sin(\alpha \pi) x^\alpha} \left[J_\alpha(x) \cos(\alpha \pi) - J_{-\alpha}(x) \right] \right\}_{x \to 0}
$$

$$
= 1 + \frac{i \Gamma(\alpha + 1) 2^\alpha}{\sin(\alpha \pi)} \left\{ \sum_{p,q=0}^{\infty} (-1)^{p+q} \Gamma(\alpha + 1) x^{2p+2q} \left[\frac{\cos(\alpha \pi)}{2^p \Gamma(p+\alpha + 1)} - \frac{2^\alpha x^{-2\alpha}}{\Gamma(p-\alpha + 1)} \right] \right\}_{x \to 0} . \quad (2.33)
$$
The contribution from the \(j_\alpha^2(0) = 1 \) term is simple and independent of dimension. The \(\tilde{\alpha}_0 \tilde{\alpha}_0 \) contributes both a Taylor series \(x^{2p+2q} \) and a Laurent series \(x^{2\hat{d}+2\hat{p}−2\hat{\alpha}} \). We note that for every \(\hat{d} \), the number of terms divergent as \(x \to 0 \) is finite \((\ell + \lfloor \frac{d+1}{2} \rfloor) \), and these amount to renormalizations of the different multipole moments. The Taylor series consists of an infinite number of zeroes \((p + q > 0) \), and a single \((p = q = 0) \) imaginary numerical correction, \(\text{icot}(\alpha \pi) \). Therefore for non-even \(\hat{d} \) we are left with

\[
G_\alpha = 1 + i \cot(\pi \alpha) = i \sin^{-1}(\pi \alpha)[\cos(\pi \alpha) - i \sin(\pi \alpha)] = [i^{2\ell+\hat{d}-1}\sin(\pi \alpha)]^{-1}. \tag{2.34}
\]

Substituting in (2.31), we find

\[
\dot{S}_\phi = \frac{G}{2} \int \frac{d\omega}{2\pi} \sum_L \frac{(-i\omega)^{2\ell+\hat{d}}}{\sin(\ell \pi + \frac{d\pi}{2})} M_{\ell,\hat{d}} Q^L \dot{Q}_L^* + c.c, \tag{2.35}
\]

in all non-even \(\hat{d} \). In odd integer \(\hat{d} \), using (2.11,2.17) we return to the time-domain, finding the radiation reaction effective action to be

\[
\dot{S}_\phi = G \int dt \sum_L \frac{(-)^{\ell+\hat{d}+1}}{\hat{d}!!(2\ell+\hat{d})!!} Q^L \partial_t^{2\ell+\hat{d}} Q_L, \tag{2.36}
\]

where \(Q_L \) was given by (2.21) and

\[
\dot{Q}_L = \frac{\delta Q^L}{\delta \rho} \dot{\rho} = \frac{\delta Q^L}{\delta x^i} \dot{x}^i = \frac{\partial Q^L}{\partial x^i} \dot{x}^i + \frac{\partial Q^L}{\partial v^i} \dot{v}^i + \frac{\partial Q^L}{\partial a^i} \dot{a}^i + \cdots. \tag{2.37}
\]

We remark especially that this action, and as we shall see the dissipated energy and the self force, are given by regular, local and real expressions for all odd \(\hat{d} \). The computation itself reduces to mere multiplication: vertex – propagator – vertex. The expression (4.6) contains an odd number of time derivatives, matching our expectation of a time-asymmetric dissipative term.

In fractional dimensions, transforming (2.35) back to the time domain introduces the Fourier transform of a fractional derivative, yielding

\[
\dot{S}_\phi = \frac{G}{2} \sum_L \frac{M_{\ell,\hat{d}}}{\sin(\pi \ell + \frac{d\pi}{2})} \int dt e^{-i\omega t} \dot{Q}^L(t) \int dt' e^{i\omega t'} Q_L(t') + c.c
\]

\[
= \frac{G}{2} \sum_L \frac{M_{\ell,\hat{d}}}{\sin(\pi \ell + \frac{d\pi}{2})} \int dt \dot{Q}^L(t) \int dt' Q_L(t') \partial_t^n \int \frac{d\omega}{2\pi} (-i\omega)^{-b} e^{i\omega(t-t')} + c.c
\]

\[
= G \sum_L \frac{M_{\ell,\hat{d}}}{\Gamma(b) \sin(\pi \ell + \frac{d\pi}{2})} \int dt \dot{Q}^L(t) \int dt' Q_L(t') \partial_t^n \Theta(t-t') \Gamma(t-t')^{-b}
\]

\[
= G \sum_L \frac{\pi}{\Gamma(b) \Gamma(1+\frac{d}{2}) \Gamma(\ell+1+\frac{d}{2}) \sin(\pi \ell + \frac{d\pi}{2})} \int dt \dot{Q}^L(t) \int_{-\infty}^{t} dt' Q_L(t') \partial_t^n (t-t')^{-b-1}, \tag{2.38}
\]

where \(n = 2\ell + |\hat{d}| \), \(b = |\hat{d}| - \hat{d} \). Thus in fractional dimensions, the self-force has a non-local ("tail") contribution, originating from transforming \((-i\omega)^{-b} \). We note that this tail integral converges at \(t' \to t \), and under reasonable assumptions regarding \(Q^L(t) \) at very early
times converges at \(t' \to -\infty \) as well. As shown earlier, in even integer dimensions \(b = 0 \) and the transformation produces a delta function in time, indicating locality. However, the same form does not apply at odd integer \(d \), because the Bessel functions and \(G_\alpha \) assume a different form. Using a limiting process over \(d' = d + \epsilon \) for \(\epsilon \to 0^+ \), corresponding to \(n = 2\ell + \hat{d} + 1 \), \(b = 1 - \epsilon \), we expect a \(\ln \) term to appear as \(b \to 1^- \); we treat it separately.

2.3 Odd spacetime dimensions

Radiation in odd spacetime dimensions - as in any dimension - is given in the frequency domain by eq. (2.27). However, radiation in the time domain will look essentially different, as we know that in odd \(d \) an additional effect of indirect (off the lightcone) propagation comes into play. In our analysis, this effect appears in (2.27) via non-analyticity of the frequency domain solution for the field, in the form of a branch cut. An inverse Fourier transform of the solution can now have two distinct contributions (see fig. 2): one from the integral along the branch cut, which gives rise to a tail term, and the other from the arc at \(|\omega| \to -\infty \) (\(\Im \omega < 0 \)), which may give rise to a local term. Fourier transforming as described gives the radiation at infinity

\[
\Phi(\vec{r}, t) = -\frac{G}{\sqrt{2\pi d!!}} r^{-\frac{d-1}{2}} \sum_L n^L \partial_t^{\ell + \frac{3}{2}} \int_{-\infty}^{t-r} \frac{Q_L(t')}{|t - r - t'|^{1/2}} dt',
\]

which converges at both integration limits under reasonable assumptions for \(Q_L(t) \).

In the case of odd spacetime dimensions (even \(\hat{d} \)), \(\alpha = \ell + \frac{d}{2} = n \) is an integer, and (B.10) for \(\tilde{y}_\alpha \) must be replaced with (B.11). This is of importance in the analysis of the RR effective action (2.31, 2.32). Multiplying the Bessel functions \(\tilde{j}_n(\omega r), \tilde{j}_n(\omega r') + i\tilde{y}_n(\omega r') \) and taking the limit \(r, r' \to 0 \) at the same rate\(^2\), we again regularize the finite number of

\(^2\)This makes sense from the point of view of the effective radiation zone theory, since the “zoom out” procedure out to the radiation zone affects both hatted and unhatted sources in the same manner. From

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Different possible contours are represented by dashed (green) and solid (blue) lines. The branch cut is represented by the zigzag (red) line.}
\end{figure}
terms of joint negative degree, ignore the infinite number of positive degree terms (each giving zero), and are left only with a ln term and with constant terms,

$$G_n = 1 + \frac{i}{\pi} \left[2 \ln \left(\frac{\omega r'}{2} \right) \right] _{r' \to 0} - (\psi(1) + \psi(n + 1)) - \sum_{n=1}^{\infty} \frac{(-)^m n!^2}{m(n + m)! (n - m)!}$$

$$= 1 + \frac{i}{\pi} \left[2 \ln \left(\frac{\omega r'}{2} \right) \right] _{r' \to 0} + 2 \gamma + H(2n) - 2H(n),$$

(2.40)

where $H(n)$ is the n’th harmonic number. In the frequency domain, therefore, the RR effective action is given by (2.31) with G_n given in (2.40). To obtain the time-domain representation of the RR effective action, we integrate over ω. Again, we are presented with the branch-cut discontinuity of the ln term, absent from the even dimensional case. Placing the branch cut along the negative imaginary ω axis ($\omega = -i \sigma$, with $\sigma \in \mathbb{R}, \sigma \geq 0$), we use contour integration (as shown in figure 2) to find the (dimensionally regularized) identity

$$\int d\omega \frac{\theta(\omega r') e^{-i\omega(t-t')}}{2\pi} = -\frac{\theta(t-t')}{t-t'} + \left(\frac{\pi i}{2} - \gamma + \ln \left(\frac{r'}{\mu} \right) \right) \delta(t-t') \ ,$$

(2.41)

where μ is some arbitrary timescale of the system. Using the definition of the Fourier transform $Q_{L\omega} = \int_{-\infty}^{+\infty} e^{i\omega t} Q_L(t) dt$, the integral (2.41) and the expressions (2.40,2.17), from (2.31) we obtain the odd-dimensional radiation-reaction effective action in the time domain,

$$\hat{S}_\phi = G \int dt \sum_{-\infty}^{\infty} \frac{(-)^{l+\frac{d}{2}}}{d!!(2l+\frac{d}{2})!!} Q_L^L(t) \left[\left(\frac{1}{2} H(2l + \frac{d}{2}) - H(l + \frac{d}{2}) + \ln \left(\frac{r'}{\mu} \right) \right) \left. \partial_t^{2l+\frac{d}{2}} Q_L(t) \right|_{t' \to 0} - \int_{-\infty}^{t} dt' \left(\frac{1}{t-t'} \partial_t^{2l+\frac{d}{2}} Q_L(t') \right) \right].$$

(2.42)

The $\ln \left(r'/\mu \right)$ term acts as a regulator for the integral - it takes care of its divergence near the coincidence limit $t' \to t$, as the size of the system ($c = 1$) is also roughly the natural cutoff for the t' integration. However, it also generically adds a finite local term of the same form as the local terms already present in (2.42). The value of this additional term depends on the short-scale structure of the sources (as, for example, in [6]). In principle it should be determined through matching to the full theory (c.f. [2]). It would be interesting to start by analyzing the simple case of a single point particle in the full theory, which would also require Detweiler-Whiting ([38]) regularization.

One can write the RR effective action, therefore, implicitly as

$$\hat{S}_\phi = G \int dt \sum_{-\infty}^{\infty} \frac{(-)^{l+\frac{d}{2}}}{d!!(2l+\frac{d}{2})!!} Q_L^L(t) \left[\left(\frac{1}{2} H(2l + \frac{d}{2}) - H(l + \frac{d}{2}) \right) \left. \partial_t^{2l+\frac{d}{2}} Q_L(t) \right|_{t' \to 0} - \int_{-\infty}^{t} dt' \left(\frac{1}{t-t'} \partial_t^{2l+\frac{d}{2}} Q_L(t') \right) \right] \ ,$$

(2.43)

the point of view of the full theory, for a single point source and its hatted counterpart obviously $r = r'$. For a composite source, however, there is no unique radial position of the source. This is strongly related to the fact that in general the local term in the RR effective action depends on the source’s short-distance details.
Thus we find that in odd spacetime dimensions the action includes both a local (purely conservative) term and a non-local term, which is responsible for dissipative effects. The non-local (but causal!) term is a manifestation, in our effective theory of multipoles, of field propagation inside the lightcone (the so-called “tail” effect) in the spacetime picture. It is known that integrating out a massless degree of freedom generically leads to a non-local effective action [22, 39, 40], as was shown to be the case in odd spacetime dimensions. The even-dimensional case turns out to be the special case where the effective action is still local after this elimination.

2.4 Applications and tests

Perturbative expansion of the RR force. Consider the case of a single charged body with a prescribed trajectory (“being held and waved at the tip of a wand”) interacting with a scalar field. In this case the notion of RR force and self-force coincide. For 4d, the fully relativistic force expression is given analogously to the Abraham-Lorentz-Dirac (ALD) self force [11, 12] familiar from electromagnetism:

\[F_{\text{ALD}}^\mu \equiv \frac{d\mu}{d\tau} = \frac{1}{3} G q^2 \left(\frac{d^3 x^\mu}{d\tau^3} - \frac{d^3 x^\nu}{d\tau^3} \frac{dx^\mu}{d\tau} \right). \] (2.44)

Expansion of this equation to leading and +1PN orders yields

\[\bar{F}_{\text{ALD}} = G q^2 \left[\frac{1}{3} \ddot{a} + \frac{1}{3} \dot{v}^2 \dot{a} + (\ddot{v} \cdot \dot{a}) \bar{a} + \frac{1}{3} (\ddot{v} \cdot \ddot{a}) \bar{v} \right]. \] (2.45)

Upon substituting \(\ddot{d} = 1 \), all the expressions given in sections 2.1 and 2.2 can be seen to yield expressions identical to those given in paper I (section (3.1.2)) for the scalar field; in particular, the 4d ALD force at leading and next-to-leading order (2.45) is recovered immediately.

We derive the formula for the RR force in general even dimensions, and also check explicitly \(d = 6 \), for which an ALD-like radiation-reaction 4-force on a scalar charge was developed by Galt’sov [25, 26]. Our method derives the RR force from the action and multipoles (2.21, 4.6) in three stages: by using a source term of a point particle for \(\rho \), by matching the appropriate \(\hat{\rho} \), and by finally calculating the contribution from generalized Euler-Lagrange equation \(\delta S/\delta \dot{x}^i \). The source term corresponding to a scalar-charged point particle with a trajectory \(\bar{x}(t) \) in \(d \) spacetime dimensions is

\[\rho(\bar{x}', t) = q \int \delta^{(d)}(x' - x) d\tau = \frac{q}{\gamma} \delta^{(D)}(\bar{x}' - \bar{x}) = \sum_{s=0}^{\infty} \frac{-(2s - 3)!! v^{2s} r^{2p} x_L}{(2s)!!} \delta^{(D)}(\bar{x}' - \bar{x}). \] (2.46)

Thus we find

\[Q^L = -(2\ell + \hat{d})!! \sum_{\ell=0}^{\infty} \sum_{p=0}^{\infty} \frac{(2s - 3)!!}{(2p)!!(2\ell + 2p + \hat{d})!!(2s)!!} \partial_{\bar{x}^i}^{2p} \delta^{(D)}(\bar{x}' r^{2p} x_L). \]

\[\hat{Q}^L = -(2\ell + \hat{d})!! \sum_{\ell=0}^{\infty} \sum_{\hat{d}=0}^{\infty} \frac{(2s - 3)!!}{(2\hat{d})!!(2\ell + 2\hat{d} + \hat{d})!!(2s)!!} \partial_{\bar{x}^i}^{2p} \delta^{(D)}(\bar{x}' r^{2p} x_L). \] (2.47)
Accordingly we obtain the Lagrangian, which after moving $2\dot{p}$ time derivatives from the \dot{x}^L multipoles to the x^L multipoles by partial integration becomes

$$\dot{L}_\Phi = Gq^2 \sum_L (-)^{\ell+\frac{d-1}{2}} \frac{(2\ell+d)!}{d!!} \sum_{p=0}^\infty \sum_{s=0}^\infty \sum_{\hat{p}=0}^\infty \sum_{\hat{s}=0}^\infty (2s-3)! \frac{(2p)!}{(2p+d+\hat{p})!!} \frac{(2\hat{s}-3)!}{(2\hat{s}+d+\hat{p})!!} \times \dot{x}^i \delta_x^F (v^{2s+2\hat{p}} x_L^T x_F^L) \partial_\ell^{(\ell+\hat{p})} + \hat{d} \partial_\hat{d} (v^{2s+2\hat{p}} x_L^T x_F^L).$$ \hspace{1cm} (2.48)

In the EOM, the RR force contribution is given by the variation by \dot{x}^j,

$$F^j = \frac{\delta \dot{S}}{\delta \dot{x}^j} = \left[\frac{\partial \dot{L}}{\partial \dot{x}^j} - \frac{d}{dt} \left(\frac{\partial \dot{L}}{\partial \dot{x}^j} \right) \right].$$ \hspace{1cm} (2.49)

The leading order arises from the same term (the leading dipole term $\ell = 1, p = \hat{p} = s = \hat{s} = 0$) in every (even) dimension, and is given by

$$F_{L,O}^{(d)}(d) = \frac{(-)^{\frac{d}{2}} Gq^2}{(d-1)!!(d-3)!!} \partial^{d-1}_d x.$$ \hspace{1cm} (2.50)

The term for $d = 6$ ($\hat{d} = 3$) is shown in table 1. Out of the 15 possible action terms in the next-to-leading order (for different $\ell, p, \hat{p}, s, \hat{s}$), we find using the Euler-Lagrange equation 9 non-zero contributions to the force (recorded in table 2 for $d = 6$). Adding these contributions we find

$$F_{RR}^i = -Gq^2 \left[\frac{1}{45} \ddot{a}^i + \frac{2}{45} v^2 \dot{a}^i + \frac{2}{9} (\vec{v} \cdot \vec{a}) \dot{a}^i + \frac{2}{9} (\vec{v} \cdot \vec{a}) \dot{a}^i + \frac{1}{9} (\vec{v} \cdot \vec{a}) \dot{a}^i + \right.$$

$$+ \left. \frac{1}{45} (\vec{v} \cdot \vec{a}) v^i + \frac{1}{9} (\vec{a} \cdot \vec{a}) a^i + \frac{1}{9} a^2 a^i \right].$$ \hspace{1cm} (2.51)

We compared this result (2.51) to Galt’sov’s expression for the 6-dimensional scalar d-force in flat space. We seem to find sign mismatches between his results from 2007 [25] and 2011 [26]; we assume an expression identical to his up to the signs of two subleading terms ($x^\mu x^\mu, x^2 x^\nu$),

$$f_{flat}^\mu = - (\eta^{\mu \nu} + \dot{x}^\mu \dot{x}^\nu) \left[\frac{1}{45} x_5^{(5)} - \frac{1}{9} x^2 x^\nu \right] + \frac{2}{9} (\vec{x} \vec{x}) \ddot{x}^\mu;$$ \hspace{1cm} (2.52)

where $\eta_{\mu \nu}$ is the flat (mostly-plus) metric and with the derivatives taken w.r.t proper time. Expansion of this expression up to 1-PN (next-to-leading) order to find the D-force gives

$$F_{Galt’sov}^i = - \left[\frac{1}{45} \ddot{a}^i + \frac{2}{45} v^2 \dot{a}^i + \frac{2}{9} (\vec{v} \cdot \vec{a}) \dot{a}^i + \frac{2}{9} (\vec{v} \cdot \vec{a}) \dot{a}^i + \frac{1}{9} (\vec{v} \cdot \vec{a}) \dot{a}^i + \right.$$

$$+ \left. \frac{1}{45} (\vec{v} \cdot \vec{a}) v^i + \frac{1}{9} (\vec{a} \cdot \vec{a}) a^i + \frac{1}{9} a^2 a^i \right].$$ \hspace{1cm} (2.53)

where all derivatives are now with respect to t, namely $v^i := dx^i/dt$, $a^i := d^2x^i/dt^2$, etc. This result coincides exactly with our result (2.51) to +1PN order.
Table 1. Leading order contribution to the scalar self-force

ℓ p \hat{p} s \hat{s}	$L/(G q^2)$	$F^j/(G q^2)$
1 0 0 0 0	$-\frac{1}{45} \dot{x}^i \partial_t^4 x_i$	$-\frac{1}{45} \ddot{a}^j$

Table 2. Next-to-Leading order contribution to the scalar self-force

ℓ p \hat{p} s \hat{s}	$L/(G q^2)$	$F^j/(G q^2)$
2 0 0 0 0	$\frac{1}{630} \dot{x}^k \frac{\delta}{\delta x^k} [x^i x^j - \frac{1}{2} x^2 \delta^{ij}] \partial_t^4 (x_i x_j) - \frac{1}{315} \partial_t^4 (x^i x^j) x_i - \frac{1}{6} \partial_t^4 (x^2 x^2)$	
1 1 0 0 0	$-\frac{1}{630} \dot{x}^i \partial_t^4 (x^i x_i)$	$-\frac{1}{630} \partial_t^4 (x^2 x_i)$
1 0 1 0 0	$-\frac{1}{630} \dot{x}^k \frac{\delta}{\delta x^k} [x^i x^2 \partial_t^4 (x_i x_i) - \frac{1}{6} \partial_t^4 (x^2 x^2)]$	
1 0 0 1 0	$+\frac{1}{90} \dot{x}^i \partial_t^4 (x^i x_i)$	$+\frac{1}{90} \partial_t^4 (x^2 x_i)$
0 1 1 0 0	$+\frac{1}{450} \dot{x}^i \partial_t^4 x^2$	$+\frac{1}{450} \partial_t^4 \partial_t^4 x^2$
0 1 0 0 1	$-\frac{1}{90} \dot{x}^i \partial_t^4 x^2$	$+\frac{1}{90} \partial_t^4 \partial_t^4 x^2$
0 0 1 1 0	$-\frac{1}{90} \dot{x}^i \partial_t^4 \partial_t^4 x^2$	$-\frac{1}{90} \partial_t^4 \partial_t^4 \partial_t^4 x^2$
0 0 0 1 1	$+\frac{1}{90} \dot{x}^i \partial_t^4 \partial_t^4 x^2$	$-\frac{1}{90} \partial_t^4 \partial_t^4 \partial_t^4 x^2$

We can also use the multipole formulation (4.6, 2.37, 2.48, 2.49) to calculate the power dissipated by the RR force in even dimension d:

$$P_{RR} = -\vec{v} \cdot \vec{F} = \frac{dx^i}{dt} \frac{\delta \hat{L}}{\delta \dot{x}^i} \bigg|_{\vec{v} \to \vec{x}} = G \sum_L \frac{(-)^{\ell+d+\frac{1}{2}}}{d!!(2\ell + d)!!} \delta Q^L \frac{dx^i}{dt} \partial_t^{2\ell + d} Q_L. \quad (2.54)$$

The time-averaged power is found using

$$\int dt \frac{dx^i}{dt} \frac{\delta Q^L}{\delta x^i} = \int dt \frac{dQ^L}{dt}, \quad (2.55)$$

followed by $\ell + \frac{d+1}{2}$ integrations by parts, to be

$$\dot{E} = <P_{RR}> = \sum_L \frac{G}{d!!(2\ell + d)!!} \left(\partial_t^{\ell + \frac{d+1}{2}} Q_t^L \right)^2, \quad (2.56)$$

which agrees with (2.30). In 6d, we record the radiated power to +1PN order,

$$\dot{E} = G q^2 \left[\frac{1}{45} \dot{a}^2 + \frac{1}{15} v^2 (\vec{v} \cdot \vec{\dot{a}}) + \frac{1}{3} (\vec{v} \cdot \vec{a}) (\vec{v} \cdot \vec{\ddot{a}}) + \frac{1}{9} (\vec{a} \cdot \vec{\dot{a}}) (\vec{v} \cdot \vec{\ddot{a}}) + \frac{1}{9} (\vec{a} \cdot \vec{\dddot{a}}) (\vec{v} \cdot \vec{\ddot{a}}) \right]. \quad (2.57)$$

We note the special case of 2d, where the only STF multipoles are $\{1, x\}$; the leading order remains (2.50), while at higher orders the sum over L trivializes.
3 Electromagnetism

The EM action is given by
\[S = -\frac{1}{4\Omega_{d+1}} \int F_{\mu\nu} F^{\mu\nu} r^{d+1} \, drd\Omega_{d+1} dt - \int A_\mu J_\mu r^{d+1} \, drd\Omega_{d+1} dt . \]

Working in spherical coordinates \((t, r, \Omega)\), we reduce over the sphere as in (2.4,2.5). The EM field and sources are decomposed as
\[A_{t/r} = \int \frac{d\omega}{2\pi} \sum_L A_{L/\omega}^L x^L e^{-i\omega t}, \]
\[A_\Omega = \int \frac{d\omega}{2\pi} \sum_L \left(A_{L/\omega}^L \partial_\Omega x^L + A_{\omega L/\Omega}^L \right) e^{-i\omega t}, \]
\[J_{t/r} = \int \frac{d\omega}{2\pi} \sum_L J_{L/\omega}^L x^L e^{-i\omega t}, \]
\[j_\Omega = \int \frac{d\omega}{2\pi} \sum_L \left(J_{L/\omega}^S \partial^L x^L + J_{\omega L/\Omega}^R x^L \right) e^{-i\omega t}, \]

where the scalar multipoles \(x^L\) (2.8,2.9) are now supplemented by the divergenceless vector multipoles \(x^L_{\Omega\Omega}\), enumerated by an antisymmetric multi-index \(\Omega\) taken from the Hebrew alphabet, representing \(D - 3\) spherical indices:
\[x^L_{\Omega\Omega} = \epsilon_{\Omega_1 \cdots \Omega_{d+1}}^D \partial_{\Omega'} x^L = \epsilon_{\Omega_1 \cdots a_{1\cdots d}}^D x^b a_{1\cdots d} \partial^a x^L = \left(\frac{i}{r} \wedge \nabla \right) x^L, \]

where \(\epsilon_{\Omega_1 \cdots \Omega_{d+1}}^D\) is the complete antisymmetric tensor on the \(\Omega_{d+1}\)-sphere (in \(D\) spatial dimensions), \(\wedge\) is the exterior product and \(*\) is the Hodge duality operator \([41-47]\). The dimension of this independent vectorial basis is \(D_\ell(\ell + 1, 1) = \frac{(\ell + \hat{d})(2\ell + \hat{d})(\ell + \hat{d} - 2)!}{(\ell - 1)!!(\ell + 1)!}\) \([29, 30]\). The complete normalization conditions in \(d\) dimensions are \([29, 30]\)
\[\int x^L_{\Omega_{d+1}} x^{L'}_{\hat{\Omega}_{d+1}} d\Omega_{d+1} = N_{\ell_d} r^{2\ell} \delta^\Omega_{d+1} \delta_{L_d L'_d}, \]
\[\int g^{\Omega_\Omega} \partial_{\Omega_{d+1}} x^L_{\Omega_{d+1}} x^{L'}_{\hat{\Omega}_{d+1}} d\Omega_{d+1} = c_s N_{\ell_d} r^{2\ell} \delta^\Omega_{d+1} \delta_{L_d L'_d}, \]
\[\int g^{\Omega_\Omega} x^L_{\Omega_{d+1}} x^{L'}_{\hat{\Omega}_{d+1}} d\Omega_{d+1} = c_s N_{\ell_d} r^{2\ell} \delta^\Omega_{d+1} \delta_{L_d L'_d}, \]
\[\int g^{\Omega_\Omega} g^{\Psi_\Psi} x^L_{\Omega_{d+1}} x^{L'}_{\hat{\Omega}_{d+1}} d\Omega_{d+1} = 2c_s c_s N_{\ell_d} r^{2\ell} \delta_{L_d L'_d} \delta_{\Omega_{d+1}}, \]

where \(c_s := \ell(\ell + \hat{d})\), \(c_v := c_s + \hat{d} - 1\) and the semicolon ";" represents the covariant derivative on the sphere. The inverse transformations are given by
\[\text{[This are generalizations of the single 4d \((\hat{d} = 1)\) multipole family } x^L_{\Omega_{d+1}} = \epsilon_\Omega \partial^\Omega x^L = (\vec{r} \times \vec{\nabla} x^L)_{\Omega}]. \]

In 4d, \(D_\ell(\ell + 1, 1) = 2\ell + 1 = D_\ell(\ell + 1, 0)\), and thus these indeed form a single family; \(\Omega\) is then an empty string.
\[J_{J_\omega}^L(r) = \left(N_{\ell, d}r^{2\ell\Omega_{d+1}} \right)^{-1} \int dte^{i\omega t} J(L_\omega)^x \cdot n_x d\Omega_{d+1}, \]

\[J_{J_\omega}^R(r) = \left(N_{\ell, d}r^{2\ell\Omega_{d+1}} \right)^{-1} \int dte^{i\omega t} J(R_\omega)^x \cdot n_x d\Omega_{d+1}, \]

\[J_{J_\omega}^{VN}(r) = \left(c_s N_{\ell, d}r^{2\ell\Omega_{d+1}} \right)^{-1} \int dte^{i\omega t} J(V_\omega)^x \cdot n_x d\Omega_{d+1}, \]

\[J_{J_\omega}^{NV}(r) = \left(c_s N_{\ell, d}r^{2\ell\Omega_{d+1}} \right)^{-1} \int dte^{i\omega t} J(N_{\omega})^x \cdot n_x d\Omega_{d+1}. \quad (3.5) \]

We note that only three inverse transformations are required, as we henceforth replace \(J_{L_\omega}^S \) using current conservation

\[0 = D_\mu J_{L_\omega}^\mu = i\omega J_{L_\omega}^L + (\partial_\tau + \frac{\ell + d + 1}{r}) J_{L_\omega}^L - c_s J_{L_\omega}^S. \quad (3.6) \]

We plug (3.2) into the action (3.1) to obtain

\[S = \frac{1}{2} \int \frac{da}{2\pi} \sum L N_{\ell, d} S_{L\omega}, \]

\[S_{L\omega} = \int d\tau r^{2\ell+1} \left\{ \left[i\omega A_{L\omega}^{A\ell} - \frac{1}{r}(r^\ell A_{L\omega}^{A\ell})' \right]^2 + \frac{c_s}{r} \left[i\omega A_{L\omega}^{A\ell} - A_{L\omega}^{A\ell} \right]^2 - \Omega_{d+1} \right\}, \quad (3.7) \]

where \(\cdot' := \frac{d}{d\tau} \), and we use \(A_{L\omega} = A_{L\omega}^s \), \(J_{L\omega} = J_{L\omega}^s \) since \(A_{L\omega}^\mu(x) \) are real. In the spirit of [27], we notice that \(A_{L\omega}^{A\ell} \) is an auxiliary field, a field whose derivative \(A_{L\omega}^\mu(x) \) does not appear in (3.7). Therefore, its EOM is algebraic and is solved to yield

\[A_{L\omega}^{A\ell} = -\frac{1}{\omega^2} \left[\frac{i\omega}{r^\ell} \left(r^\ell A_{L\omega}^{A\ell} \right)' + \frac{c_s}{\ell + 1} \left(r^\ell A_{L\omega}^{A\ell} \right)' - \Omega_{d+1} J_{L\omega} \right]. \quad (3.8) \]

Substituting the solution into the action, it is seen that the action can be separated into independent fields, corresponding to the different possible polarizations. We distinguish between the vectorial \(A_{L_{VN}}^{A\ell} \) fields, as they appear already in (3.7), coupled to the vector source terms

\[\rho_{L_{\omega}}^{VN} := J_{L_{\omega}}^{VN}, \quad (3.9) \]

and the scalar fields

\[\tilde{A}_{L_{\omega}}^{A\ell} := A_{L_{\omega}}^{A\ell} - i\omega A_{L_{\omega}}^{A\ell}, \quad (3.10) \]

which are coupled to the corresponding source terms

\[\rho_{L_{\omega}}^{A\ell} := -J_{L_{\omega}}^{A\ell} + \frac{i}{\omega r^{\ell+1}} \left(r^{\ell+1} A_{L_{\omega}}^{A\ell} \right)' \quad (3.11) \]
where \(\Lambda := \frac{\omega^2 v^2}{c_s^2} \), and we have used \((3.6)\). The action can now be concisely decoupled to scalar and vector parts (omitting hereafter the indices \((L\omega)\) for brevity):

\[
S_{EM} = \frac{1}{2} \int \frac{d\omega}{2\pi} \sum_L \left[S_{L\omega}^S + \sum_r S_{\omega r}^V \right],
\]

with

\[
S_{L\omega}^S = N_{\ell,d} \int r^{2\ell + d + 1} dr \left[\frac{1}{1 - \Lambda} \left| \frac{1}{r} \left(r^\ell \tilde{A}_S \right)' \right|^2 + \frac{c_s}{r^2} \left| \tilde{A}_S \right|^2 + \Omega_{d+1} (\tilde{A}_S \rho_{L\omega}^S + c.c.) \right],
\]

\[
S_{\omega r}^V = N_{\ell,d} \int r^{2\ell + d + 1} dr c_s \left[\frac{\omega^2}{r^2} - \frac{c_v}{r^4} \right] |A_{V\omega}|^2 \left| \frac{1}{r^{\ell + 1}} \left(r^\ell \tilde{A}_{V\omega} \right)' \right|^2 - \Omega_{d+1} (A_{V\omega} \rho_{L\omega}^V + c.c.)\right],
\]

and we treat them separately. Note that for \(\ell = 0 \) we have \(\rho_{L\omega}^S = 0 \) (see eq. \((3.6),(3.11)\)) as well as \(S_V = 0 \), thus only \(\ell \geq 1 \) need be considered.

The scalar part of the EM action

We derive the equation of motion for the scalar action from \(S_{L\omega}^S \) \((3.13)\) by treating \((r^\ell \tilde{A}_S)\) as the field, and finding equations for its conjugate momentum \((N_{\ell,d} r^\ell \Pi_S)\),

\[
\left(N_{\ell,d} r^\ell \Pi_S \right) := \frac{\partial L}{\partial (r^\ell \tilde{A}_S')} = \frac{N_{\ell,d}}{1 - \Lambda} r^{d+1} (r^\ell \tilde{A}_S)',
\]

\[
\left(N_{\ell,d} r^\ell \Pi_S \right)' := \frac{\partial L}{\partial (r^\ell \tilde{A}_S^*)} = N_{\ell,d} c_s r^{d-1} (r^\ell \tilde{A}_S) + N_{\ell,d} \Omega_{d+1} r^{\ell + d + 1} \rho_{L\omega}^S.
\]

Differentiating \((3.16)\) with respect to \(r \), substituting \((3.15)\), and renaming the field \(A_E \) and source term \(\rho_{L\omega}^{AE} \) (recalling \((3.5),(3.11)\)) as

\[
A_E = \left(\ell \frac{r}{\ell + d} \right)^{1/2} \Pi_S,
\]

\[
\rho_{L\omega}^{AE} = N_{\ell,d} \Omega_{d+1} \frac{r^{\ell + d}(\ell^2 + 2\ell + 2 d + 2)}{\ell + d} \int d\Omega_{d+1} \left[\frac{\omega^2 + \partial_r^2 + \frac{2\ell + d + 1}{r} \partial_r}{\ell + d} \right] \tilde{A}_E - \rho_{L\omega}^{AE},
\]

we find the equation

\[
0 = N_{\ell,d} r^{2\ell + d + 1} \frac{\ell}{\ell + d} \left(\omega^2 + \partial_r^2 + \frac{2\ell + d + 1}{r} \partial_r \right) A_E - \rho_{L\omega}^{AE}.
\]

This equation is of the same form as \((2.14)\), up to the replacement of \(G \) by

\[
R_1^+ = \frac{\ell + d}{\ell},
\]

thus we find a propagator similar to \((2.16)\),

\[
G_{ref}^{AE} (r', r) = R_1^+ G_{ref}^{Ph} (r', r) = -i \omega^{2\ell + d} M_{\ell,d} R_1^+ j_{\ell} (\omega r_1) \tilde{h}_{\ell}^+(\omega r_2) \delta_{LL'} ;
\]

\[
r_1 := \min \{ r', r \}, \quad r_2 := \max \{ r', r \}.
\]
We return to the time domain using (3.5) to find
\[Q \text{given (see 3.18) by} \]
where we have defined (recalling (3.5)) as
\[\text{radiation zone, the field can be written as} \]
\[\text{We again present the EFT Feynman rules following the steps (2.19,2.20,2.21). In the} \]
\[\text{vector sector of the action, we rewrite (3.14) in a form similar to (2.12),} \]
\[\text{We note here that an expansion of } \tilde{j}_\alpha \text{ according to (B.8) reproduces, for } d = 4, \text{ eq.(47) of [35] (after using current conservation, eq. (49) there).} \]
\[\text{The vector part of the EM action} \]
\[\text{For the vector sector of the action, we rewrite (3.14) in a form similar to (2.12),} \]
\[\text{where we have defined (recalling (3.5)) as} \]

\[A_{\ell^2}^{EFT}(r) = (-Q_{\ell}^E \left(-i\omega^{2\ell + \hat{d}} M_{\ell,\ell} R_1^+ h^\perp_r (\omega r) \right), (3.21) \]
\[\text{where } Q_{\ell}^E \text{ are the sources (fig. 2.18). In the full theory the solution outside the sources is} \]
\[\text{and the sources can be read off and identified (using (3.5, 3.17), integrations by parts and} \]
\[\text{We return to the time domain using (3.5) to find the electric type radiation source multipoles} \]
\[\text{compare (2.21))}\]
\[\text{We note here that an expansion of } \tilde{j}_\alpha \text{ according to (B.8) reproduces, for } d = 4, \text{ eq.(47) of [35] (after using current conservation, eq. (49) there).} \]

\[Q_{\ell}^{(E)} = \frac{1}{\ell + d} \int d^D x' x'_L \left[\frac{1}{r^{\ell + d - 1}} \left(\rho_\omega(\vec{x}') - \tilde{j}_\alpha(\vec{x}') \right) \right] , (3.24) \]
\[\text{We return to the time domain using (3.5) to find the electric type radiation source multipoles} \]
\[\text{We return to the time domain using (3.5) to find the electric type radiation source multipoles} \]
\[\text{We return to the time domain using (3.5) to find the electric type radiation source multipoles} \]
The action (3.26) is again identical to (2.12) up to a prefactor of R_1^\dagger, with a source similar to (2.13). The propagator, therefore, is (compare 2.16, 3.20)

\[
G_{\text{rel}}^{A_{\text{MR}}} (r', r) = -i\omega^{2\ell+\hat{d}} M_{\ell,\hat{d}} R_1^\dagger \tilde{h}_{\alpha} (\omega r_1) \delta_{\alpha\beta} \delta_{LL'} ;
\]

\[
r_1 := \min\{r', r\}, \quad r_2 := \max\{r', r\}.
\]

We find these sources $Q_{L\omega}^{(M,N)}$ by again matching $\Phi_{L\omega}^{A_{\text{MR}}} (r)$ for large r and from the diagrammatic representation (in analogy with 2.19, 2.20, 2.21, 3.21, 3.22, 3.24), to find

\[
Q_{L\omega}^{(M,N)} = \int dD x \tilde{j}_\alpha (\omega r) \left(* (\vec{r} \wedge \vec{J}) \right)^{k_L L^{L-1}},
\]

(3.30)

where we have used (3.5, 3.9). In the time domain, we find the magnetic radiation source multipoles (compare (2.21, 3.24)),

\[
Q_{L\omega}^{L(M,N)} = \int dD x \tilde{j}_\alpha (ir \partial_t) \left(* (\vec{r} \wedge \vec{J}) \right)^{k_L L^{L-1}} \mathrm{STF},
\]

(3.31)

\[
\hat{Q}_{L}^{L(M,N)} = \frac{\delta Q_{L}^{(M,N)}}{\delta J_i} \hat{j}^i = \frac{\delta Q_{L}^{(M,N)}}{\delta x_i} \hat{x}^i.
\]

(3.32)

Presenting \tilde{j}_α as a series expansion using (B.8), these coincide with eq.(48) of [35].

3.1 Outgoing EM radiation and the RR effective action

Outgoing EM radiation can now be found diagrammatically (compare 2.27) as

\[
A_{E\omega}^{L}(r) = -Q_{L\omega}^{(M,N)} G_{\text{rel}}^{A_{\text{MR}}} (0, r) = \sqrt{\frac{\pi}{2^{d+1} \Gamma (1 + \hat{d}/2)}} \frac{R_1^+}{r^{\ell+\hat{d}+1}} \frac{Q_{L\omega}^{(M,N)} e^{i\omega r}}{r^\frac{d+1}{2}},
\]

(3.33)

\[
A_{M\omega}^{L}(r) = -Q_{L\omega}^{(M,N)} G_{\text{rel}}^{A_{\text{MR}}} (0, r) = \sqrt{\frac{\pi}{2^{d+1} \Gamma (1 + \hat{d}/2)}} \frac{R_1^+}{r^{\ell+\hat{d}+1}} \frac{Q_{L\omega}^{(M,N)} e^{i\omega r}}{r^\frac{d+1}{2}}.
\]

In the time domain, for even d, we find (where ϵ is (+)/(−, \Re) for the electric/magnetic part/s)

\[
A_{\epsilon}(\vec{r}, t) = \frac{1}{d!!} r^{-\frac{d+1}{2}} \sum_L R_1^+ R_L^{\ell+\frac{d+1}{2}} Q_{L}^{\epsilon}(t-r).
\]

(3.34)
The EM double field effective action is a sum of the scalar and vector action diagrams and can be written using our Feynman rules, similarly to (2.31,2.33),

\[
\hat{S}_{EM} = \left\| \begin{array}{c}
A_E \\
\end{array} \right\| + \left\| \begin{array}{c}
A_M \\
\end{array} \right\|
\]

\[
= \frac{1}{2} \int \frac{d\omega}{2\pi} \sum_{L,L'} \left[\left(-Q_{\omega}^{(E)} \right) G_{rel}^{A_L}(0,0) \left(-Q_{\omega}^{(E)*} \right) + \left(-Q_{\omega}^{(M,N)} \right) G_{rel}^{A_M}(0,0) \left(-\hat{Q}_{\omega}^{(M,N)*} \right) \right]^{\text{c.c.}}
\]

\[
= \int \frac{d\omega}{2\pi} \sum_{L} -i \omega^{2\ell + \hat{d}} M_{\ell,\ell} \cdot G_{\alpha}(\omega) \left[R_{\hat{Q}} \hat{Q}_{\omega}^{(E)} \hat{Q}_{\omega}^{(E)*} + R_{\hat{Q}} \hat{Q}_{\omega}^{(M,N)} \hat{Q}_{\omega}^{(M,N)*} \right] + \text{c.c.} ,
\]

where \(Q_{\omega}^{(E)}, \hat{Q}_{\omega}^{(E)}, Q_{\omega}^{(M)}, \hat{Q}_{\omega}^{(M)} \) were given by (3.24,3.25,3.31,3.32). In even \(d \), we can transform to the time domain and use (2.17,3.19,3.27,2.33) explicitly to find

\[
\hat{S}_{EM} = \int dt \sum_{L} \frac{(-)^{\ell + \hat{d} + 1}}{d!!(2\ell + d)!!} \left[\frac{\ell + \hat{d}}{\ell} Q_{\omega}^{(E)} + \frac{\ell^2 \hat{d}}{(\ell + 1)(\ell + \hat{d} - 1)} Q_{\omega}^{(M)}, \hat{Q}_{\omega}^{(M)} \right]^{(3.36)}
\]

where we have also summed over the \(\aleph \) indices, defining the bi-vector multipoles

\[
Q_{\omega}^{(M)} = \int d^{D}x \tilde{\alpha}(ir\partial_t) (\vec{\tau} \wedge \vec{J}(\vec{r}))^{(k_{L}x_{L}^{-1})},
\]

defining \(\hat{Q}_{\omega}^{(M)} \) accordingly, and incurring a factor of

\[
\frac{D_{\ell}(\ell + 1,1)}{D_{\ell}(\ell + 1,0)} = \frac{\ell \hat{d}(\ell + \hat{d})}{(\ell + 1)(\ell + \hat{d} - 1)}
\]

from summing over the different \(\aleph \) combinations.

The case of the EM field in non-even (and in particular odd) spacetime dimensions is treated in a similar manner to the scalar case (Sec.2.3), and similar non-local “tail” expressions appear (compare with (2.43)):

\[
\hat{S}_{EM} = \int dt \sum_{L} \frac{(-)^{\ell + \hat{d} + 1}}{d!!(2\ell + d)!!} \left[\frac{\ell + \hat{d}}{\ell} S_{(E)}(t) + \frac{\ell^2 \hat{d}}{(\ell + 1)(\ell + \hat{d} - 1)} S_{(M)}(t) \right],
\]

\[
S_{(E/M)}(t) = \hat{Q}_{\omega}^{(E/M)}(t) \left[\frac{1}{2} H(2\ell + \hat{d} - H(\ell + \frac{\hat{d}}{2})) \hat{Q}_{\omega}^{(E/M)}(t) + \int_{-\infty}^{t} dt' \frac{1}{t - t'} \hat{Q}_{\omega}^{(E/M)}(t')(t') \right] \text{regularized}.
\]

3.2 Applications and tests

Perturbative expansion of the RR force and comparison with ALD. For the RR force on a single accelerating electric charge we have the ALD formula [11] in 4d,

\[
F_{ALD}^{\mu} = \frac{dp^\mu}{dt} = \frac{2}{3} q^2 \left(\frac{d^3 x^\mu}{d\tau^3} - \frac{d^3 x^\nu}{d\tau^3} \frac{dx_\nu}{dt} \frac{dx^\mu}{dt} \right).
\]
Our expressions, specialized to \(d = 4 \), can be seen to be identical to those given in paper I (section (3.2.2)), already shown to reproduce the ALD result. We test here for \(d = 6 \), comparing the force with Galt’sov’s result [25]:

\[
J_{\text{flat}}^\mu = - (\eta^{\mu
u} + \hat{x}^\mu \hat{x}^\nu) \left(\frac{4}{45} x^{(5)}_\nu - \frac{2}{9} \hat{x}^2 x^\nu \right) + \frac{2}{3} \left(\hat{x}^2 \hat{x} \right) \hat{x}^\mu .
\]

(3.42)

Expanded to leading and next-to-leading order, we find

\[
F_{\text{Galt'sov}} = \left[\frac{4}{45} a^m + \frac{8}{45} v^2 a^m + \frac{8}{9} (\vec{v} \cdot \vec{a}) a^m + \frac{8}{9} (\vec{a} \cdot \vec{v}) a^m \\
+ \frac{4}{45} (\vec{a}^m \cdot \vec{v}) a^i + \frac{4}{9} (\vec{a}^m \cdot \vec{v}) a^i + 2 a^2 a^i + \frac{2}{3} (\vec{a}^m \cdot \vec{a}) a^m \right] ,
\]

from which we also find an expression for the emitted power,

\[
P_{\text{Galt'sov}} = - \vec{v} \cdot \vec{F}_{\text{Galt'sov}} = \\
= \frac{4}{45} (\vec{v} \cdot \vec{a}^m) + \frac{4}{15} \vec{v}^2 (\vec{v} \cdot \vec{a}^m) + \frac{8}{9} (\vec{v} \cdot \vec{a}^m)^2 \\
+ \frac{2}{3} \vec{a}^2 (\vec{v} \cdot \vec{v}) + \frac{2}{3} (\vec{a} \cdot \vec{a}) (\vec{v} \cdot \vec{v}).
\]

(3.44)

For our RR force calculation on a point charge \(q \) along a path \(\vec{x}(t) \), we rewrite the action

\[
\dot{S}_{EM} = \int dt \, \dot{L}_{EM}, \quad \dot{L}_{EM} = \dot{L}_{EM}^S + \dot{L}_{EM}^V ,
\]

as a PN series expansion. With (3.24,3.31,3.35, B.8) we find for every (even) dimension

\[
\dot{L}_{EM}^S = q^2 \sum_L \frac{(-)^{L+\frac{d+1}{2}} (2L + d)!}{(L + d)!} \\
\cdot \sum_{\ell=0}^{\infty} \frac{\delta^p}{(2\ell)!((2L+2p+d)!!)} \delta x^i \left[(2\hat{p} + \ell + \hat{d}) r^{2\ell+1} x_L - \partial_i \left(r^{2\ell+1} x_L \vec{v} \cdot \vec{r} \right) \right] \hat{x}^i ,
\]

(3.46)

for the scalar part and

\[
\dot{L}_{EM}^V = q^2 \sum_L \frac{(-)^{L+\frac{d+1}{2}} (2L + d)!}{(d-1)!!(L + 1)((L + d)!} \sum_{\ell=0}^{\infty} \frac{\delta^p}{(2\ell)!((2L+2p+d)!!)} \hat{x}^i \delta x^i \left[r^{2\ell} (\vec{r} \cdot \vec{v}) (k t x^{L-1}) \right] \\
\cdot \hat{x}^i \delta x^i \left[r^{2\ell} (\vec{r} \cdot \vec{v}) (k t x^{L-1}) \right] \delta x^i ,
\]

(3.47)

for the vector part.

Similarly to the scalar RR computation, we integrate by parts to move the \(2p \) (or \(2p + 1 \)) time derivatives from the \(\hat{x}^L \) multipoles to the \(x^L \) multipoles, and use the EOM (2.49)
found from variation with respect to \hat{x}^j. We thus find the leading RR force, arising from the electric dipole term ($\ell = 1$, $p = \hat{p} = 0$, sources $\rho, \hat{\rho}$) at every (even) dimension d to be

$$ F^{(d)}_{LO} = q^2 \frac{(-)^{\ell} (d - 2)}{(d - 1)!!(d - 3)!!} \partial^{d-1} \hat{x}^\ell. \quad (3.48) $$

The term for $d = 4$ of course matches ALD; the term for $d = 6$ is recorded in Table 3, and matches that expected from Galt’sov (3.43). In fact, in every even dimension this expression matches exactly the leading order PN ($v_c << 1$) which can be derived from Kazinski, Lyakhovich & Sharapov ([16]) eq. (26),(30), found in a very different method ([17, 18]). We find the exact match to significantly support the validity of both our method and Kazinski et al’s.

The next-to-leading-order includes 5 contributions to the scalar sector, summarized for 6d in Table 4, as well as the leading vector contribution (Table 5). Their sum is identical with Galt’sov’s result (3.43). We have also tested these expressions using Mathematica Code[48] for dimensions (8,10,12,14,16), finding in every case non-trivial cancellations of all non-physical terms (the terms involving explicit position coordinates, breaking translation invariance).

We remark also that at $d = 2$ the only STF tensor is x ($\ell = 1$), and we reproduce the expected null result for the action, radiation and self-force identically to any order.

ℓ	p	\hat{p}	Source	L/q^2	F^j/q^2	
2	0	0	ρ	$\hat{\rho}$	$-\frac{1}{55} \hat{x}^j \partial_i^j \hat{x}_i$	$-\frac{1}{45} \hat{x}^j$
1	1	0	ρ	$\hat{\rho}$	$-\frac{1}{105} \hat{x}_i \partial_i^j \hat{x}_i$	$-\frac{1}{105} \partial_i^j \hat{x}_i$
1	0	1	ρ	$\hat{\rho}$	$\frac{1}{45} \hat{x}^i \partial_i^j \hat{x}^k x_k$	$\frac{1}{45} \partial_i^j \hat{x}^i x_k$
0	0	1	j_r	$\hat{\rho}$	$\frac{1}{45} \hat{x}^i \partial_i^j \hat{x}^k x_k$	$\frac{1}{45} \partial_i^j \hat{x}^i x_k$

Table 3. Leading order contribution to the 6d EM self-force (only electric $\epsilon = +$)

Table 4. Next-to-Leading order contribution to the 6d EM self-force, scalar (electric $\epsilon = +$) sector

ℓ	p	\hat{p}	Source	L/q^2	F^j/q^2	
2	0	0	ρ	$\hat{\rho}$	$-\frac{1}{55} \hat{x}^j \partial_i^j \hat{x}_i$	$-\frac{1}{45} \hat{x}^j$
1	1	0	ρ	$\hat{\rho}$	$-\frac{1}{105} \hat{x}_i \partial_i^j \hat{x}_i$	$-\frac{1}{105} \partial_i^j \hat{x}_i$
1	0	1	ρ	$\hat{\rho}$	$\frac{1}{45} \hat{x}^i \partial_i^j \hat{x}^k x_k$	$\frac{1}{45} \partial_i^j \hat{x}^i x_k$
0	0	1	j_r	$\hat{\rho}$	$\frac{1}{45} \hat{x}^i \partial_i^j \hat{x}^k x_k$	$\frac{1}{45} \partial_i^j \hat{x}^i x_k$

Kosyakov [21] gives a result for the power at $d = 6$ that seems to agree at LO but disagree at NLO with our and with Galt’sov’s result.
Table 5. Next-to-Leading order contribution to the 6d EM self-force, from vector (magnetic $\epsilon = -$) sector

ℓ	p	L/q^2	F^ℓ/q^2
1	0	$-\frac{1}{4q^2}\frac{d}{dx^2}[r_j \nabla_k \partial_k (r^j v^k - r^k v^j)]$	$-\frac{1}{4q^2} \left(2v_i \partial_j^L [x^j v^i - x^i v^j] + x_i \partial_j^L [x^j a^i - x^i a^j] \right)$

Dissipated power. Similarly to (2.54), we compute the power of the RR force on the accelerating charge, now using (3.35):

$$P_{\text{RR}} = -\vec{v} \cdot \vec{F} = -\frac{dx^i}{dt} \frac{\delta L}{\delta x^i} \bigg|_{\vec{x} \to \vec{x}} = \sum_L \frac{(-)^{\ell+\frac{d}{2}}}{L(2\ell + d)!!d!!} \left[\frac{\ell + \hat{d}}{(\ell + 1)(\ell + d - 1)} \frac{dx^i}{dt} \frac{\delta Q^L_{(E)}}{\delta x^i} \cdot \partial_t^{\ell+\hat{d}} Q^L_{(E)} + \frac{\ell^2 \hat{d}}{(\ell + 1)(\ell + d)} \right] \frac{dx^i}{dt} \frac{\delta Q^L_{(M)}}{\delta x^i} \cdot \partial_t^{\ell+\hat{d}} Q^L_{(M)} \bigg|_{\vec{x} \to \vec{x}} \right) \right].$$

The time-averaged power is found using

$$\int dt \frac{dx^i}{dt} \frac{\partial Q^L_{(E)}}{\partial x^i} = \int dt \frac{dQ^L_{(E)}}{dt}, \quad \int dt \frac{dx^i}{dt} \frac{\delta Q^L_{(M)}}{\delta x^i} = \int dt \frac{dQ^L_{(M)}}{dt},$$

followed by $\ell + \frac{d-1}{2}$ integrations by parts (and recalling \hat{d} is odd), to be

$$\langle P_{\text{RR}} \rangle = \sum_L \frac{1}{(2\ell + d)!!d!!} \left< R^+_1 (\partial_t^{\ell+\frac{d+1}{2}} Q^L_{(E)})^2 + R^-_1 \frac{D_t(\hat{d} + 1, 1)}{D_t(\hat{d} + 1, 0)} (\partial_t^{\ell+\frac{d+1}{2}} Q^L_{(M)})^2 \right> \right) \r
Q^L and their doubled counterparts $\hat{Q} = \frac{\delta Q}{\delta \phi} \hat{\phi}$ (1.2), and find the EOM by variation of \hat{S} with respect to hatted fields (1.1).

For a massless scalar field coupled to sources

$$S_\Phi = \frac{1}{2\Omega_{\ell+1}^d} G \int (\partial_{\mu} \Phi)^2 d^d x - \int \rho \Phi d^d x,$$ \hspace{1cm} (4.2)

we find the radiative multipoles to be

$$Q^L = \int d^D x \hat{\gamma}_{\ell+\frac{d}{2}} (ir\partial_t) x_L^{TF} \rho(\vec{r}, t).$$ \hspace{1cm} (4.3)

In even-dimensional spacetime, outgoing radiation is given by

$$\Phi(\vec{r}, t) = \frac{G}{d!!(2\ell + d+1)} \sum_L n^L \partial_{\ell+\frac{d}{2}} Q^L(t - r) ,$$ \hspace{1cm} (4.4)

and the power dissipated through it is

$$\dot{E} = \sum_L \frac{G}{\ell!!(2\ell + d+1)!} \left\langle (\partial_{\ell+\frac{d}{2}} Q^L)^2 \right\rangle = \sum_L \frac{G}{\ell!!(2\ell + d+1)!} \left\langle (\partial_{\ell+\frac{d}{2}} Q^L_{STF})^2 \right\rangle .$$ \hspace{1cm} (4.5)

Elimination of system & radiation zone fields gives the radiation reaction (RR) effective action

$$\hat{S}_\Phi = G \int dt \sum_L \frac{(-)^{\ell+\frac{d}{2}}}{d!!(2\ell + d+1)!} Q^L \partial_{\ell+\frac{d}{2}} Q^L .$$ \hspace{1cm} (4.6)

In odd-dimensional spacetime, frequency domain results are similar to those of the even dimensional case. In the time domain, outgoing radiation is given by

$$\Phi(\vec{r}, t) = -\frac{G}{\sqrt{2\pi d!!}} r^{\frac{d}{2}+1} \sum_L n^L \partial_{\ell+\frac{d}{2}} \int_{-\infty}^{t-r} \frac{Q^L(t')}{|t-r-t'|^{1/2}} dt' ,$$ \hspace{1cm} (4.7)

and the RR effective action by

$$\hat{S}_\Phi = G \int dt \sum_L \frac{(-)^{\ell+\frac{d}{2}}}{d!!(2\ell + d+1)!} Q^L \partial_{\ell+\frac{d}{2}} Q^L .$$ \hspace{1cm} (4.8)

where the regularization is discussed in Sec. 2.3. The coefficient of the local term in (4.8) above is not universal but depends on the short-distance details of the system.

For an EM field coupled to sources

$$S = -\frac{1}{4\Omega_{d+1}^d} \int F_{\mu\nu} F^{\mu\nu} d^d x - \int A_\mu J^{\mu d+1} d^d x ,$$ \hspace{1cm} (4.9)
we find the following electric and magnetic multipoles

\[
Q^L_{(E)} = \frac{1}{\ell + d} \int d^Dx x_F \left[Q^L_{(E)} \right],
\]

\[
Q^L_{(M)} = \int d^Dx \left[\left(\frac{1}{\ell + d} \right) \left(\frac{1}{\ell + d - 1} \right) \right]^{STF},
\]

where \(R \) is an antisymmetric multi-index (3.3). Radiation in even spacetime dimensions is given by

\[
A_\epsilon(r, t) = \frac{1}{d!!} r^{-\frac{d+1}{2}} \sum_L R^L_\epsilon n^L \partial^{\ell + \frac{d-1}{2}} Q^L_{(E)}(t - r),
\]

where \(\epsilon = (+) \) for the electric sector and \((-, R)\) for the magnetic sectors, and

\[
R^+ = \frac{\ell + d}{\ell} ; \quad R^- = \ell + d.
\]

The RR effective action in even spacetime dimensions is

\[
\hat{S}_{EM} = \int dt \sum_L \left(-\frac{\ell + d + 1}{d!!(2\ell + d)!!} \right) \left[\frac{\ell + d}{\ell} Q^L_{(E)} \cdot \partial^{2\ell + d} Q^L_{(E)} + \frac{\ell^2 d}{(\ell + 1)(\ell + d - 1)} Q^L_{(M)} \cdot \partial^{2\ell + d} Q^L_{(M)} \right].
\]

The case of the EM field in non-even (and in particular odd) spacetime dimensions is treated in a similar manner to the scalar case, and similar non-local “tail” expressions appear:

\[
\hat{S}_{EM} = \int dt \sum_L \left(-\frac{\ell + d + 1}{d!!(2\ell + d)!!} \right) \left[\frac{\ell + d}{\ell} S^{(E)}(t) + \frac{\ell^2 d}{(\ell + 1)(\ell + d - 1)} S^{(M)}(t) \right],
\]

\[
S^{(E/M)}(t) = \left[\frac{1}{2} H(2\ell + d) - H(\ell + d + 1) \right] \partial^{2\ell + d} Q^L_{(E/M)}(t) - \int_{-\infty}^t dt' \left[\frac{1}{\ell + d} \partial^{2\ell + d} Q^L_{(E/M)}(t') \right]_{\text{regularized}}.
\]

5 Discussion

In this paper we formulated an EFT describing radiative effects in scalar and EM theories in general spacetime dimensions and applied it to solve for the radiation and radiation reaction effective action in these cases, thereby generalizing the 4d treatment of paper I. We found that the method devised there naturally generalizes to higher dimensions, providing new results even in these linear, well studied theories (see section 4) and laying a solid foundation for the study of such effects in higher dimensional GR.

Some dimension-dependent issues that need to be handled with care appeared. One of them is the tail effect in odd spacetime dimensions (and, formally, in all non-even \(d \),
which is due to indirect propagation - propagation not restricted to the lightcone. We found that while frequency domain analyses of any spacetime dimensions are similar, time domain results are substantially different. From our analysis’ point of view, the difference is all due to different analytic properties of the fields and effective actions in the complex frequency plane. It appears only when transforming the results into the time domain. In particular, we find that in odd d the RR effective action is composed of a nonlocal part which contains all the dissipative effects, and a local conservative part; while in even d the RR effective action contains only a local part which is purely dissipative.

We remark that there has been debate [14–19, 21, 22] over the very possibility of defining and regularizing self-force and radiation-reaction even in general even dimensions. We hope our independent method and results for scalar and EM fields in any dimension help shed new light on the matter.

Another important issue appeared when treating fields with nonzero spin, namely the issue of having multiple fields, and the associated question of gauges. Here these arose in the case of the EM field of spin 1. One of the main ideas of our method is the use of gauge-invariant spherical fields and the reduction of the problem to 1d. This was done with a vector spherical harmonic decomposition. In 4d, the electric field (which behaves like a scalar on the sphere) and magnetic field (which behaves like a vector on the sphere) are very similar - one is a vector field and the other an axial vector field. However, the magnetic field is more generally a two-form field. This is more visible when working in $d > 4$, where for example one obtains essentially different multipoles for these two sectors, which live in different representations of the rotation group. Going to higher spins in higher dimensions, more sectors appear - a rank-2 tensor sector in GR, etc.

The main complication that arises in the gravitational case is the theory’s nonlinearity. Although for the leading order the linearized theory suffices, just as in 4d, going to higher order one would need to include nonlinear interactions - a $+1\text{PN}$ correction from first system zone nonlinearities, $+1.5\text{PN}$ from first radiation zone nonlinearities, and so on. Also, there is a PN order hierarchy between the different sectors: only the scalar sector is needed for leading order, for next-to-leading ($+1\text{PN}$) order the vector sector must also be accounted for, and at next-to-next-to-leading ($+2\text{PN}$) order the tensor sector also begins to contribute. We treat the general d gravitational 2-body problem and its non-linearities separately in [49].

It would be interesting to use and enhance our method in the study of higher order radiation zone effects (first in 4d). For example, one can replace the Bessel functions in our propagators with Regge-Wheeler/Zerilli functions (solutions for gravitational perturbations around non-rotating black holes) and compare results for an observable - e.g., emitted radiation - to those obtained by the usual EFT sum of diagrams for scattering of waves off the total mass of the system. This could both improve the EFT and give insight on the problem from a new angle.

Acknowledgments

We thank the organizers of the 16th CAPRA meeting hosted in Dublin in July 2013 during which this work was initiated. We thank Chad Galley, Tomer Shacham and Barry Wardell
for helpful discussions. We especially thank Barak Kol for many very useful discussions and encouragement, and for comments on the manuscript. This research was supported by the Israel Science Foundation grant no. 812/11, and was part of the Einstein Research Project “Gravitation and High Energy Physics”, which is funded by the Einstein Foundation Berlin. O. B. was partly supported by an ERC Advanced Grant to T. Piran.

A Solution without zone separation

A.1 Scalar field

Looking back at the field equation for a scalar field Φ (2.2) using the spherical decomposition (2.4,2.5, 2.10,2.11,2.13), we see that it can be solved using the propagator (2.16), yielding $(r>r')$

$$
\Phi_\omega(\vec{r}) = \sum_L x^L \Phi_{L\omega}(r) = \sum_L x^L \int dr' G^\Phi_{\omega rt}(r,r') \rho^\Phi_{L\omega}(r')
$$

$$
= -iG \sum_L \omega^{2\ell+d} M_{\ell,d} x^L \tilde{\cal K}_\alpha(\omega r) \int d^D x' \tilde{j}_\alpha(\omega r') x'_L \rho_{\omega}(r').
$$

(A.1)

Restricting to even integer spacetimes d (odd \tilde{d}), the self-force arises only from the time-asymmetric part of the propagator. Since \tilde{y}_α contains only odd powers of ω and \tilde{j}_α only even powers, by expanding the spherical Bessel functions as series we find the time-asymmetric propagator is given by

$$
G^{\omega}_{\omega}(\vec{r},\vec{r}') = -iG \sum_L \omega^{2\ell+d} M_{\ell,d} x^L \tilde{j}_\alpha(\omega r) \tilde{j}_\alpha(\omega r') x'_L
$$

$$
= G \sum_L \frac{(-i)^{\ell+\frac{d-1}{2}(2\ell+\tilde{d})} \omega^L M_{\ell,d} x^L \tilde{j}_\alpha(\omega r) \tilde{j}_\alpha(\omega r') x'_L}{d!!}.
$$

(A.2)

and

$$
\Phi_\omega(\vec{r}) = \int d^D x' G_{\omega \omega}(\vec{r},\vec{r}') \rho_{\omega}(r').
$$

(A.3)

Here we find it more direct to use the $\{r,r'\}$ basis rather than the Keldysh basis. The lagrangian for the self-interactions of a scalar-charged point particle q described by (2.46) is given in the by

$$
L_\omega = \int d^D x \dot{\rho} \Phi \Phi = \int d^D x d^D x' \dot{\rho} \Phi G_{\omega \omega}(\vec{r},\vec{r}') \rho_{\omega}(r') =
$$

$$
= Gq^2 \sum_L \frac{(-i)^{\ell+\frac{d-1}{2}(2\ell+\tilde{d})} \omega^L M_{\ell,d} x^L \tilde{j}_\alpha(\omega r) \tilde{j}_\alpha(\omega r') x'_L}{d!!} \sum_p \sum_{\tilde{p}=0} \sum_s \sum_{\tilde{s}=0} C^{\rho \rho s}_{\ell,d} (-i\omega)^{2\ell+2\tilde{p}+\tilde{d}} (r^{2p} v^{2s} x^L (r^{2\tilde{p}} v^{2\tilde{s}} x'_L),
$$

$$
C^{\rho \rho s}_{\ell,d} = \frac{(2s-3)!!(2\tilde{s}-3)!!}{(2\tilde{p})!!(2\ell+2\tilde{p}+\tilde{d})!!(2p)!!(2\ell+2p+d)!!(\ell+\tilde{d})!!(2s)!!}\cdot
$$

(A.5)

similarly to the one given by (2.48), and where an ℓ^{-1} is implied by the summation convention. The self-force on the particle is found using the Euler-Lagrange equation by
first varying according to the difference in trajectories \(r - r' \) (equivalent to the hatted trajectory of the Keldysh basis), then setting \(r' \to r \); we see immediately that the force found in (2.49) is recovered exactly.

A.2 Electromagnetic self-force in the Lorentz Gauge

We examine the EM action for the field \(A^\mu \) in \(d \) spacetime dimensions (3.1), with a source \(d \)-current

\[
\rho = q \delta^{(D)}(x - x_p(t)), \quad (A.7)
\]

\[
\vec{j} = q \vec{v}_p \delta^{(D)}(x - x_p(t)). \quad (A.8)
\]

Under the Lorentz gauge condition, the wave equation (2.2) is replaced for the Electromagnetic field \(A^\mu = (\phi, \vec{A}) \) by

\[
\Box A^\mu = \Omega \hat{d}^{d+1} j^\mu. \quad (A.9)
\]

These \(d \) independent equations are each of the form (2.2), except for an opposite overall sign (and \(G = 1 \)). We can thus use the same propagator (A.2), and we solve the \(d \) equations using the same method as in the scalar case: we fourier transform each equation along with its source, integrate using this propagator \(G_{\text{odd}} \) in the frequency domain, and transform back to find the \(d \) EM components, analogously to (A.3):

\[
A^\mu_\omega(\vec{r}) = \int d^D x' G_{\omega}(\vec{r}, \vec{r'}) j^\mu_w(\vec{x'}). \quad (A.10)
\]

We note that for the scalar potential term \(A^0 = \phi \), this is just equation (A.3) again, where the only difference from the scalar case is the simpler source term (A.7) instead of (2.46), or in other words the absence of the \(\gamma \) term. This means we will find the same contributions to this potential term as we have found for the scalar potential, but without \(s > 0 \) corrections. For \(A^k (k = 1..D) \), solving (A.10) is similar to solving (A.3), but with an additional \(v^k \) present in \(j^k \):

\[
\phi_\omega(\vec{r}) = q \sum_L \frac{(-)^{\ell + \frac{d+1}{2}} (2\ell + \hat{d})!!}{\hat{d}!!} \sum_{p=0}^{\infty} \sum_{\hat{p}=0}^{\infty} \frac{(-i\omega)^{2\ell+2p+2\hat{p}+d} x_L x^L_p x_p^L x^L_p}{(2\hat{p})!!(2\ell+2p+\hat{d})!!(2\ell+2p+\hat{d})!!}, \quad (A.11)
\]

\[
A^k_\omega(\vec{r}) = q \sum_L \frac{(-)^{\ell + \frac{d+1}{2}} (2\ell + \hat{d})!!}{\hat{d}!!} \sum_{p=0}^{\infty} \sum_{\hat{p}=0}^{\infty} \frac{(-i\omega)^{2\ell+2p+2\hat{p}+d} x_L x^L_p x^L_p x^L_p v^k}{(2\hat{p})!!(2\ell+2p+\hat{d})!!(2p)!!(2\ell+2p+\hat{d})!!}, \quad (A.12)
\]

and an \(\ell!^{-1} \) is implied by the summation convention.

We again solve order by order. The leading and next-to-leading orders are recorded in tables 6,7,8.
Table 6. Leading order contributions from A^0 and A^k

ℓ	p	\hat{p}	$A^0/q = \phi/q$	F^3/q^2
1 0 0	(-)$\frac{3}{2}$	$\frac{1}{2D!!d!!} x_i(x_p^i)^{(D)}$	(-)$\frac{3}{2}+1$	$\frac{1}{2D!!d!!}(x_p^i)^{(D)}$
0 0 0	(-)$\frac{1}{2}$	$\frac{1}{2D!!d!!} k_p^{(d)}$	(-)$\frac{1}{2}$	$\frac{1}{2D!!d!!}(x_p^i)^{(D)}$

Table 7. Next-to-leading order contributions from A^0

ℓ	p	\hat{p}	$A^0/q = \phi/q$	F^3/q^2
0 1 1	(-)$\frac{3}{2}$	$x^2(x_p^2)^{(d+1)}$	(-)$\frac{3}{2}+1$	$\frac{1}{2D!!d!!}(x_p^2)^{(d+1)}$
1 0 1	(-)$\frac{3}{2}$	$x^2 x_i(x_p^i)^{(d+1)}$	(-)$\frac{3}{2}+1$	$\frac{1}{2D!!d!!}(x_p^i)^{(d+1)}$
1 1 0	(-)$\frac{3}{2}$	$x_i(x_p^2)^{(d+1)}$	(-)$\frac{3}{2}+1$	$\frac{1}{2D!!d!!}(x_p^2)^{(d+1)}$
2 0 0	(-)$\frac{3}{2}$	$x_i x_j x_k(x_p^i x_p^j x_p^k)^{(d+1)} - \frac{1}{D} x^2(x_p^2)^{(d+1)}$	(-)$\frac{3}{2}+1$	$\frac{1}{2D!!d!!}(x_p^2)^{(d+1)}$

Table 8. Next-to-leading order contributions from A^k

ℓ	p	\hat{p}	A^k/q	F^3/q^2
0 0 1	(-)$\frac{3}{2}$	$x^2 v_p^k(v_p^k)^{(D)}$	(-)$\frac{3}{2}+1$	$\frac{2x^2 v_p^k x_p^i(v_p^k)^{(D)} - x_p^2 v_p^j(v_p^j)^{(D)} - 2(v_p^k \cdot v_p^i)v_p^j)^{(D)}$
0 1 0	(-)$\frac{3}{2}$	$x^2 v_p^k(v_p^k)^{(D)}$	(-)$\frac{3}{2}+1$	$\frac{2x^2 v_p^k v_p^j(v_p^k)^{(D)} - x_p^2 v_p^j(v_p^j)^{(D)} - 2(v_p^k \cdot v_p^j)v_p^j)^{(D)}$
1 0 0	(-)$\frac{3}{2}$	$x_i(x_p^i v_p^k)^{(D)}$	(-)$\frac{3}{2}+1$	$\frac{2x^2 v_p^k x_p^i(v_p^k)^{(D)} - x_p^2 v_p^j(v_p^j)^{(D)} - 2(v_p^k \cdot v_p^i)v_p^j)^{(D)}$

We derive the EM force from the Action for the particle trajectory in the EM field:

$$S = S_{\text{worldline}} + S_{EM} = -m \int d\tau - \int d\tau j_\mu A^\mu.$$ \hfill (A.13)
When deriving the E-L equation, the first part introduces the $m \ddot{x}$ term, while

$$S_{EM} = \int dt q(\vec{A} \cdot \dot{\vec{v}} - \phi) = \int dt L_{EM}$$

(A.14)

gives the EM force. We thus find

$$F_{EM}^j = q(v_k \partial A^k \partial x_j - \dot{A}^j - \frac{\partial \phi}{\partial x_j}) = F_A^j + F_\phi^j$$

(A.15)

The leading and next-to-leading contributions to the self force are recorded in tables 6,7,8. Summed together, we find the two leading orders of the total self force on an EM charge q in d spacetime dimensions to be

$$\vec{F}_{LO} = (-)^\frac{d}{2} \frac{D-1}{(D-2)!!D!!} q^2 x_p$$

(A.16)

$$\vec{F}_{NLO}^{d=4} = +q^2 \left[\frac{2}{3} (\vec{a}^2) \ddot{\vec{a}} + \frac{2}{3} (\vec{v} \cdot \ddot{\vec{a}}) \vec{a} + \frac{2}{3} (\vec{v} \cdot \dot{\vec{a}}) \ddot{\vec{a}} \right].$$

(A.17)

$$\vec{F}_{NLO}^{d=6} = -q^2 \left[\frac{2}{3} (\vec{a}^2) \ddot{\vec{a}} + \frac{2}{3} (\vec{v} \cdot \ddot{\vec{a}}) \vec{a} + \frac{8}{9} (\vec{v} \cdot \ddot{\vec{a}}) \vec{a} + \frac{4}{45} (\vec{v} \cdot \dot{\vec{a}}) \vec{a} \right].$$

(A.18)

We see that the leading order matches ALD for $d = 4$ and Galt’sov for $d = 6$ (the numerical factors are $+\frac{2}{3}$ and $-\frac{4}{45}$, correspondingly), and that the next-to-leading order also exactly matches the expected ALD result for $d = 4$, and Galt’sov’s result for $d = 6$ (3.43) [25]. We also record the emitted power for $d = 6$ (LO & NLO),

$$P_{d=6} = -\vec{v} \cdot \left(\vec{F}_{LO}^{d=6} + \vec{F}_{NLO}^{d=6} \right)$$

(A.19)

$$= q^2 \left[\frac{4}{45} (\vec{v} \cdot \ddot{\vec{a}}) + \frac{2}{3} \ddot{\vec{a}}^2 (\vec{v} \cdot \ddot{\vec{a}}) + \frac{2}{3} (\vec{v} \cdot \ddot{\vec{a}}) (\ddot{\vec{a}} \cdot \vec{a}) + \frac{4}{3} (\vec{v} \cdot \ddot{\vec{a}}) (\vec{v} \cdot \ddot{\vec{a}}) + \frac{8}{9} (\vec{v} \cdot \ddot{\vec{a}})^2 + \frac{4}{45} (\vec{v} \cdot \ddot{\vec{a}}) \right].$$

Code for computing the self-force for any even dimension is available on our webserver[48].

B Useful definitions and conventions

In this appendix we collect several definitions and conventions used in this paper.

B.1 Multi-index summation convention

Multi-indices are denoted by upper case Latin letters

$$I \equiv I_\ell := (i_1 \ldots i_\ell).$$

(B.1)

Here each $i_k = 1, \ldots, D$ is an ordinary spatial index, and ℓ is the total number of indices. We define a slightly modified summation convention for multi-indices by

$$P_I Q_J := \sum_\ell P_I \ell Q_{J \ell} := \sum_\ell \frac{1}{\ell!} P_{i_1 \ldots i_\ell} Q_{j_1 \ldots j_\ell},$$

(B.2)
so repeated multi-indices are summed over as in the standard summation convention, but an additional division by $\ell!$ is implied. When ℓ is unspecified the summation is over all ℓ. In addition a multi-index delta-like function is defined through

$$\delta_{I, J} := \ell! \delta_{i_1 j_1} \ldots \delta_{i_\ell j_\ell} .$$

(B.3)

These definitions are such that factors of $\ell!$ are accounted for automatically.

B.2 Normalizations of Bessel functions

We find it convenient to define an origin-biased normalization of Bessel functions. We start with conventionally normalized solutions of the Bessel equation

$$\left[\frac{\partial^2}{\partial x^2} + \frac{1}{x} \frac{\partial}{\partial x} + 1 - \frac{\nu^2}{x^2} \right] B_\nu(x) = 0 ,$$

(B.4)

where $B \equiv \{J, Y, H^\pm\}$, namely B represents Bessel (of the first or second kind) and Hankel functions, and ν denotes their order. Given α, we define

$$\tilde{b}_\alpha := \Gamma(\alpha + 1) 2^\alpha B_\alpha(x) \frac{1}{x^\alpha} ,$$

(B.5)

the “origin normalized” Bessel functions \tilde{b}_α, which satisfy the equation (compare 2.15)

$$\left[\frac{\partial^2}{\partial x^2} + \frac{2\alpha + 1}{x} \frac{\partial}{\partial x} + 1 \right] \tilde{b}_\alpha(x) = 0 .$$

(B.6)

The purpose of this definition is to have a simple behavior of \tilde{j}_α in the vicinity of the origin $x = 0$,

$$\tilde{j}_\alpha(x) = 1 + \mathcal{O} \left(x^2 \right) .$$

(B.7)

More precisely, the series expansion for $\tilde{j}_\alpha(x)$ around $x = 0$ is given by the even series

$$\tilde{j}_\alpha(x) = \sum_{p=0}^{\infty} \frac{(-)^p (2\alpha)!!}{(2p)!!(2p + 2\alpha)!!} x^{2p} .$$

(B.8)

The asymptotic form of our solutions for $x \rightarrow \infty$ is best stated in terms of Hankel functions $\tilde{h}^\pm := \tilde{j} \pm iy$

$$\tilde{h}_\alpha^\pm(x) \sim (\mp i)^{\alpha + 1/2} 2^{\alpha + 1/2} \Gamma(\alpha + 1) e^{\pm ix} \frac{x^{\alpha + 1/2}}{\sqrt{\pi}} .$$

(B.9)

Around $x = 0$ the Bessel function of the second kind for α non-integer is

$$\tilde{y}_\alpha(x) = \frac{\Gamma(\alpha + 1) 2^\alpha}{\pi} \frac{\cos(\alpha \pi)}{\sin(\alpha \pi)} \left[\pm i x - \frac{\Gamma(\alpha - 2\alpha)}{\Gamma(p + \alpha + 1)} \right] .$$

(B.10)
while for integer $\alpha = n$, using (c.f. equation (9.1.11) of [50]) it is given by

$$
\tilde{y}_n(x) = -\frac{2(2n)!!}{\pi} \sum_{m=1}^{n} \frac{(2m - 2)!!}{(2n - 2m)!!} x^{-2m} + \frac{2}{\pi} \ln \left(\frac{x}{2} \right) j_n(x)
- \frac{(2n)!!}{\pi} \sum_{k=0}^{\infty} \frac{(-)^k}{(2k)!!(2n + 2k)!!} x^{2k},$$

(B.11)

where ψ is the digamma function, defined for integers using the Harmonic numbers $H(N)$ and the Euler-Mascheroni constant γ:

$$
\psi(N + 1) = H(N) - \gamma.
$$

(B.12)

References

[1] O. Birnholtz, S. Hadar and B. Kol, “Theory of post-Newtonian radiation and reaction,” Phys. Rev. D 88, 104037 (2013) [arXiv:1305.6930 [hep-th]].

[2] W. D. Goldberger and I. Z. Rothstein, “An effective field theory of gravity for extended objects,” Phys. Rev. D 73, 104029 (2006)
W. D. Goldberger, “Les Houches lectures on effective field theories and gravitational radiation,” arXiv:hep-ph/0701129

[3] W. D. Goldberger and I. Z. Rothstein, “Dissipative effects in the worldline approach to black hole dynamics,” Phys. Rev. D 73, 104030 (2006) [hep-th/0511133].

[4] W. D. Goldberger, A. Ross, “Gravitational radiative corrections from effective field theory,” Phys. Rev. D81, 124015 (2010). [arXiv:0912.4254 [gr-qc]].

[5] C. R. Galley and M. Tiglio, “Radiation reaction and gravitational waves in the effective field theory approach,” Phys. Rev. D 79, 124027 (2009) [arXiv:0903.1122 [gr-qc]].

[6] S. Foffa and R. Sturani, “Tail terms in gravitational radiation reaction via effective field theory,” Phys. Rev. D 87, 044056 (2013) [arXiv:1111.5488 [gr-qc]].

[7] C. R. Galley and A. K. Leibovich, “Radiation reaction at 3.5 post-Newtonian order in effective field theory,” Phys. Rev. D 86, 044029 (2012) [arXiv:1205.3842 [gr-qc]].

[8] C. R. Galley, “The classical mechanics of non-conservative systems,” Phys. Rev. Lett. 110, 174301 (2013) [arXiv:1210.2745 [gr-qc]].

[9] V. Cardoso, O. J. C. Dias and P. Figueras, “Gravitational radiation in $d > 4$ from effective field theory,” Phys. Rev. D 78, 105010 (2008) [arXiv:0807.2261 [hep-th]].

[10] M. Abraham, “Theorie der Elektrizität”, vol. II, Springer, Leipzig (1905).

[11] P. A. M. Dirac, “Classical theory of radiating electrons,” Proc. Roy. Soc. Lond. A 167, 148 (1938).

[12] J. D. Jackson, Classical Electrodynamics, Third Edition (Wiley, New York, 1998).

[13] E. Poisson, “An Introduction to the Lorentz-Dirac equation,” gr-qc/9912045.

[14] B. P. Kosyakov, “Exact solutions of classical electrodynamics and the Yang-Mills-Wong theory in even-dimensional space-time,” Theor. Math. Phys. 119, 493 (1999) [Teor. Mat. Fiz. 119, 119 (1999)] [hep-th/0207217].
[15] D. V. Gal’tsov, “Radiation reaction in various dimensions,” Phys. Rev. D 66, 025016 (2002) [hep-th/0112110].

[16] P. O. Kazinski, S. L. Lyakhovich and A. A. Sharapov, “Radiation reaction and renormalization in classical electrodynamics of point particle in any dimension,” Phys. Rev. D 66, 025017 (2002) [hep-th/0201046].

[17] D. V. Gal’tsov and P. Spirin, “Radiation reaction reexamined: Bound momentum and Schott term,” Grav. Cosmol. 12, 1 (2006) [hep-th/0405121].

[18] P. O. Kazinski, S. L. Lyakhovich and A. A. Sharapov, “A Comment on ‘Radiation reaction reexamined: Bound momentum and Schott term by D.V. Gal’tsov and P. Spirin’,” hep-th/0405287.

[19] D. Galakhov, “Self-interaction and regularization of classical electrodynamics in higher dimensions,” JETP Lett. 87, 452 (2008) [arXiv:0710.5688 [hep-th]].

[20] B. P. Kosyakov, “Introduction to the classical theory of particles and fields,” Berlin, Germany: Springer (2007) 479 p

[21] B. P. Kosyakov, “Electromagnetic radiation in even-dimensional spacetimes,” Int. J. Mod. Phys. A 23, 4695 (2008) [arXiv:0803.3304 [hep-th]].

[22] E. Shuryak, H.-U. Yee and I. Zahed, “Self-force and synchrotron radiation in odd space-time dimensions,” Phys. Rev. D 85, 104007 (2012) [arXiv:1111.3894 [hep-th]].

[23] A. Mironov and A. Morozov, “Radiation beyond four space-time dimensions,” Theor. Math. Phys. 156, 1209 (2008) [hep-th/0703097 [HEP-TH]].

[24] A. Mironov and A. Morozov, “On the problem of radiation friction beyond 4 and 6 dimensions,” Int. J. Mod. Phys. A 23, 4677 (2008) [arXiv:0710.5676 [hep-th]].

[25] D. V. Gal’tsov and P. A. Spirin, “Radiation reaction in curved even-dimensional spacetime,” Grav. Cosmol. 13, 241 (2007) [arXiv:1012.3085 [gr-qc]].

[26] D. Gal’tsov, “Radiation Reaction and Energy-Momentum Conservation,” Fundam. Theor. Phys. 162, 367 (2011) [arXiv:1012.2846 [gr-qc]].

[27] V. Asnin and B. Kol, “Dynamical versus auxiliary fields in gravitational waves around a black hole,” Class. Quant. Grav. 24, 4915 (2007) [hep-th/0703283].

[28] J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2, 407 (1961). K. T. Mahanthappa, “Multiple production of photons in quantum electrodynamics,” Phys. Rev. 126, 329 (1962). L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].

[29] M. A. Rubin and C. R. Ordonez, “Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics,” J. Math. Phys. 25, 2888 (1984). M. A. Rubin and C. R. Ordonez, “Symmetric Tensor Eigen Spectrum of the Laplacian on n Spheres,” J. Math. Phys. 26, 65 (1985).

[30] A. Higuchi, “Symmetric Tensor Spherical Harmonics on the N Sphere and Their Application to the De Sitter Group SO(N,1),” J. Math. Phys. 28, 1553 (1987) [Erratum-ibid. 43, 6385 (2002)].

[31] J. C. Maxwell, A treatise on electricity and magnetism, vol 1, Clarendon, Oxford, UK, p155ff (1873).
J. C. Maxwell, The scientific papers of James Clerk Maxwell. University Press, Cambridge (1890).

[32] C. Frye and C. J. Efthimiou, “Spherical Harmonics in p Dimensions,” (2012) [arXiv:1205.3548 [math.CA]].

[33] H. Kalf, “On the expansion of a function in terms of spherical harmonics in arbitrary dimensions,” Bulletin of the Belgian Mathematical Society - Simon Stevin 2.4, 361-380 (1995).

[34] J. Applequist, “Traceless cartesian tensor forms for spherical harmonic functions: new theorems and applications to electrostatics of dielectric media,” J. Phys. A: Math. Gen. 22, 4303 (1989).

[35] A. Ross, “Multipole expansion at the level of the action,” Phys. Rev. D 85, 125033 (2012) [arXiv:1202.4750 [gr-qc]].

[36] L. Blanchet and T. Damour, “Postnewtonian Generation Of Gravitational Waves,” Annales Poincare Phys. Theor. 50, 377 (1989).

[37] T. Damour and B. R. Iyer, “Multipole analysis for electromagnetism and linearized gravity with irreducible cartesian tensors,” Phys. Rev. D 43, 3259 (1991).

[38] S. L. Detweiler and B. F. Whiting, “Selfforce via a Green’s function decomposition,” Phys. Rev. D 67, 024025 (2003) [gr-qc/0202086].

[39] N. L. Balazs, “Wave Propagation in Even and Odd Dimensional Spaces,” Proc. Phys. Soc. A 68, 521 (1955).

[40] E. S. C. Ching, P. T. Leung, W. M. Suen and K. Young, “Wave propagation in gravitational systems: Late time behavior,” Phys. Rev. D 52, 2118 (1995) [gr-qc/9507035].

[41] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (D. Reidel Publishing Company, Dordrecht, 1984).

[42] D. Hestenes, New Foundations for Classical Mechanics (Kluwer Academic Publishers, Dordrecht, 1990).

[43] W. E. Baylis, Electrodynamics, A Modern Geometric Approach (Birkhäuser, Boston, 1999).

[44] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, 2003)

[45] D. Hestenes, “Oersted Medal Lecture 2002: Reforming the mathematical language of physics,” Am. J. Phys. 71, 104121 (2003).

[46] D. R. Rowland, “On the value of geometric algebra for spacetime analyses using an investigation of the form of the self-force on an accelerating charged particle as a case study,” Am. J. Phys 78, 187-194 (2010).

[47] J. M. Chappell, A. Iqbal, D. Abbott, “A simplified approach to electromagnetism using geometric algebra,” (2010) arXiv:1010.4947 [physics.ed-ph]

[48] http://phys.huji.ac.il/~ofek/PNRR/

[49] O. Birnholtz and S. Hadar, “Action for reaction in the post-Newtonian 2-body problem in general dimension,” (work in progress).

[50] Abramowitz, M., and Stegun, I. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Mineola, New York.

– 34 –