Mitohormesis Primes Tumor Invasion and Metastasis

Highlights

- Evidence of endogenous mitohormesis in breast cancer cell lines and primary tumors
- Mitohormetic priming of tumor cells leads to increased basal activation of the UPR\textsubscript{mt}
- Mitohormesis and UPR\textsubscript{mt} activation makes cancer cells more invasive and metastatic
- UPR\textsubscript{mt} enriched breast cancer patients have worse clinical outcomes

Authors
Timothy C. Kenny, Amanda J. Craig, Augusto Villanueva, Doris Germain

Correspondence
doris.germain@mssm.edu

In Brief
Mitohormesis, a phenomenon resulting in persistent activation of cytoprotective mechanisms, has been studied in the context of aging and longevity. Kenny et al. demonstrate that breast cancer cells co-opt mitohormesis to promote their invasion and metastasis via activation of the mitochondrial unfolded protein response (UPR\textsubscript{mt}).
Mitohormesis Primes Tumor Invasion and Metastasis

Timothy C. Kenny,1,3 Amanda J. Craig,2,3 Augusto Villanueva,1,2,3 and Doris Germain1,3,4,*

1Tisch Cancer Institute, Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
2Tisch Cancer Institute, Department of Medicine, Division of Liver Diseases, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
3Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
4Lead Contact
*Correspondence: doris.germain@msm.edu
https://doi.org/10.1016/j.celrep.2019.04.095

SUMMARY

Moderate mitochondrial stress can lead to persistent activation of cytoprotective mechanisms—a phenomenon termed mitohormesis. Here, we show that mitohormesis primes a subpopulation of cancer cells to basally upregulate mitochondrial stress responses, such as the mitochondrial unfolded protein response (UPRmt) providing an adaptive metastatic advantage. In this subpopulation, UPRmt activation persists in the absence of stress, resulting in reduced oxidative stress indicative of mitohormesis. Mechanistically, we showed that the SIRT3 axis of UPRmt is necessary for invasion and metastasis. In breast cancer patients, a 7-gene UPRmt signature demonstrated that UPRmt-HIGH patients have significantly worse clinical outcomes, including metastasis. Transcriptomic analyses revealed that UPRmt-HIGH patients have expression profiles characterized by metastatic programs and the cytoprotective outcomes of mitohormesis. While mitohormesis is associated with health and longevity in non-pathological settings, these results indicate that it is perniciously used by cancer cells to promote tumor progression.

INTRODUCTION

The Warburg effect has led to the misconception that the mitochondria of cancer cells are non-functional (Vander Heiden et al., 2009). It is now recognized that they are, in fact, critical for tumor growth and exhibit drastic reprogramming to support the unique metabolic and biosynthetic needs of a cancer cell (Pavlova and Thompson, 2016; Vyas et al., 2016; Wallace, 2012). Mitochondrial reprogramming is characterized by elevated oxidative stress via reactive oxygen species (ROS). As the majority of ROS are produced at the mitochondrial inner membrane, the mitochondria of cancer cells are especially prone to their effects. Increased ROS can serve as signaling molecules important for oncogenesis and tumor formation (D'Autréaux and Toledano, 2007; Schieber and Chandel, 2014). On the other hand, ROS can damage lipids, DNA, and proteins by oxidation—causing protein misfolding. In metastatic cells, the effects of ROS may be exacerbated due to anchorage-independent growth and the foreign microenvironments experienced during dissemination. Excessive ROS poses a severe risk to mitochondrial network integrity and, in turn, cancer cell viability. These observations emphasize the need for cancer cells to maintain mitochondrial fitness through adaptive mechanisms, including proteostasis, antioxidant machinery, mitochondrial biogenesis, and mitophagy.

Hormesis describes the biphasic response of a cell or organism to increasing amounts of a substance or condition. At high doses, these toxins or stressors are detrimental, but at low level exposure within the “hormetic zone,” favorable biological responses are produced (Mattson, 2008).

Mitochondrial ROS within the hormetic zone activates mitoprotective mechanisms, which paradoxically persist when the acute stress subsides—termed mitohormesis (Ristow and Zarse, 2010; Yun and Finkel, 2014). Mitohormesis elicited by mitochondrial ROS extends lifespan in C. elegans and yeast (Bonawitz et al., 2007; Lee et al., 2010; Yang and Hekimi, 2010; Feng et al., 2001; Van Raamsdonk and Hekimi, 2009;Schulz et al., 2007). In flies and worms, the mitochondrial unfolded protein response (UPRmt) was identified as a pathway essential for mitohormesis-induced longevity (Dillin et al., 2002; Feng et al., 2001; Merkwirth et al., 2016; Tian et al., 2016; Owusu-Ansah et al., 2013; Nargund et al., 2015; Durieux et al., 2011). The UPRmt was originally discovered by the Hoogenraad group, who described retrograde signaling mediated by C/EBP homologous protein (CHOP) leading to the induction of mitochondrial proteases, such as HSP60 (Zhao et al., 2002). Using HSP60 as a UPRmt reporter in C. elegans, subsequent work has identified ATF-5 and DVE-1/UBL5 as important transcriptional activators of the UPRmt (Benedetti et al., 2006; Durieux et al., 2011; Fiorese et al., 2016; Gitschlag et al., 2016; Haynes et al., 2007, 2010; Lin et al., 2016; Lisanti et al., 2016; Merkwirth et al., 2016; Nargund et al., 2015, 2012; Pellegriino et al., 2014; Rauthan et al., 2013; Tian et al., 2016).

In mammalian cells, we reported a SIRT3-dependent axis of the UPRmt that activates antioxidant genes, mitochondrial biogenesis, and mitophagy (Kenny and Germain, 2017a, 2017b; Kenny et al., 2017a, 2017b; Papa and Germain, 2014). A strikingly similar sirtuin UPRmt axis exists in C. elegans (Mouchiroud et al., 2013). Recently, mitohormesis was described in mammalian cells using an inducible and reversible SOD2 knockdown mouse (iSOD2-KD) (Cox et al., 2018). In this study, knockdown of
SOD2 in development caused increased ROS and mitohormesis, resulting in mitochondrial biogenesis and antioxidant programs (Cox et al., 2019).

In the context of development and aging, mitohormesis in the absence of underlying pathology is beneficial. In the context of cancer, however, the persistent activation of cytoprotective mechanisms by mitohormesis may favor tumor growth and progression. We initiated the current study to determine if mitohormesis occurs under endogenous oxidative stress in breast cancer and to assess its potential impact on disease progression.

Our data suggest the existence of two subpopulations of cancer cells characterized by mitochondrial ROS levels. We found that the ROS-positive subpopulation upregulates mitoprotective pathways, such as the UPRmt, which maintain ROS in the hormetic zone and result in increased mitochondrial fitness in a manner consistent with mitohormesis. Consequently, these cells are more resistant to oxidative stress and have increased metastatic capacity. Our data suggest that cancer cells exploit mitohormesis to enhance metastatic disease progression.

RESULTS

Mitohormesis in Primary Tumors Identifies a Metastatic Subset of Cancer Cells

Two cohorts of 3-month-old female MMTV-rtTA/TetO-NeuNT mice (Moody et al., 2002) were given doxycycline supplemented drinking water to generate primary mammary tumors at different rates (Figure 1A). Using MitoSOX, flow cytometry was performed on primary tumors from all mice, and a distinct biphasic distribution of mitochondrial ROS was observed (Figures 1B and 1C). Low (ROS−) and high ROS (ROS+) subpopulations were isolated by fluorescence-associated cell sorting (FACS) and expanded ex vivo (Figure 1C). By transwell invasion assay, we found the ROS+ subpopulation significantly more invasive than its matched ROS− counterpart (Figure 1D). Further, we found that this difference is maintained over continued passage, indicating a stable phenotype (Figure 1D). This was not due to different proliferation rates (Figure S1A). After confirming no intrinsic differences in bioluminescence (Figure S1B), we performed tail vein injections to test metastasis differences in vivo. We found that ROS+ cells were significantly more metastatic than the ROS− subpopulation (Figures 1E and 1F). As ROS activates the UPRmt (Papa and Germain, 2014) and correlates with an invasive phenotype (Kenny et al., 2017a), we probed both subpopulations directly after FACS (Figure 1C) for markers of the UPRmt (Figure 1G). We found the ROS+ subpopulation upregulates UPRmt markers, including the SIRT3 axis (SIRT3, FOXO3a, LC3, NRF1, SOD2) and the CHOP/ATF5 axis (HSP60) (Figure 1D). Using an unbiased multi-omic approach, SOD1 was identified as a part of the UPRmt (Münch and Harper, 2016). We therefore included SOD1 and also found it upregulated in ROS+ cells (Figure 1G).

To test if mitohormesis was occurring, we assessed mitochondrial ROS levels following ex vivo expansion (Figure 1H). Consistent with persistent activation of cytoprotective mechanisms by mitohormesis, we found the original ROS+ subpopulation had significantly lower levels of ROS (Figure 1H), suggesting that this subpopulation is resistant to oxidative stress from ex vivo growth. We then isolated the ROS− portion of the original subpopulations by FACS to query activation of the UPRmt under lower levels of oxidative stress (Figure 1H). We found that the original ROS+ subpopulation still had enhanced activation of the UPRmt (Figure 1I). This observation supports the conclusion that oxidative stress in primary tumors induces mitohormesis in a population of cells. To functionally demonstrate the consequence of mitohormesis, we subjected the original ROS− and ROS+ subpopulations to an oxidative stress challenge using menadione—a redox cycling compound that promotes mitochondrial ROS production and mitochondrial stress (Cox et al., 2018). We found that the ROS+ subpopulation was significantly more resistant to cell death by menadione than its ROS− counterpart (Figure 1J). Taken together, these results suggest that cells primed by mitohormesis maintain activation of the UPRmt and are resistant to subsequent stress.

After finding different UPRmt subpopulations within the primary tumor, we sought to assess UPRmt activation in situ and ask if metastatic lesions are enriched for the UPRmt. Using MMTV-rtTA/TetO-NeuNT mice that develop spontaneous lung metastases (Figure S1C), we first established that doxycycline alone does not activate the UPRmt (Figures S1D–S1F; see STAR Methods). We then used immunohistochemistry (IHC) to monitor UPRmt activation in primary tumors and lung metastases of these mice. In primary tumors, we found heterogeneous staining of all UPRmt markers (Figure 2A). This suggests that the UPRmt is focally activated in primary tumors under endogenous stress. Further, we found that all markers of the UPRmt except FOXO3a were increased in lung metastases compared with primary tumors (Figure 2B), indicating in vivo that metastatic cells activate the UPRmt. Using overlaid serial sections stained by IHC, we found that all markers of the UPRmt co-localize in primary tumors (Figure 2C) and metastatic lesions (Figure 2D). Collectively, these results demonstrate that mitohormesis is observed in cells under endogenous stress, leading to UPRmt activation and a selective advantage to metastasize.

Endogenous Mitochondrial Stress in Human Breast Cancer Cell Lines Activates the UPRmt and Increases Invasion

To determine if mitohormesis and its contribution to metastasis occurred in human breast cancer, we used MCF7 and MDA-MB-231 cells in which we previously characterized the UPRmt (Kenny et al., 2017a). Having established that endogenous mitohormesis primed a subpopulation of cancer cells in vivo to become more invasive, we hypothesized that the invasive subpopulation of a given cell line should have increased UPRmt activation. To test this possibility, we performed a transwell invasion assay with MCF7 cells and isolated the invasive subpopulation, MCF7 iteration 1 (I1) (Figure 3A). As expected, MCF7 I1 cells were more invasive than the parental (Figure 3B). When mitochondrial ROS levels were compared, MCF7 I1 cells had less than the parental, consistent with mitohormesis (Figure 3C). Importantly, MCF7 I1 cells had more UPRmt activation (Figure 3D). We also analyzed levels of NRF2, as it is a master transcription factor for antioxidant genes and binds to the promoter of SIRT3 (DeNicola et al., 2011; Hayes and McMahon,
Compared with parental, MCF7 I1 had more NRF2 (Figure S2A). Having demonstrated low and high ROS subpopulations in primary tumors, we asked if this was true in MCF7 cells. We identified and isolated a small ROS+ subpopulation of MCF7 by FACS (Figure 3E). We found that the ROS+ subpopulation was significantly more invasive than the parental (Figure 3F) and had increased activation of the UPR mt-SIRT3 but not HSP60 or SOD1 (Figure 3G).

To further test these observations, we repeated the same analyses in invasive, UPR mt-SIRT3 positive MDA-MB-231 cells. Two consecutive rounds of invasion were used to generate

See also Figure S1.
Figure 2. Focal Activation of UPRmt in Primary Murine Tumors and Enrichment of UPRmt in Metastases

Female MMTV-rtTA/TetO-NeuNT mice given doxycycline in water at 1.5 g/L for 12 weeks.

(A) Primary tumors stained by IHC with UPRmt markers. \(n = 7 \) mice; scale, 100 \(\mu \)m.

(B) Primary tumors and lung metastases from serial sections stained by IHC with UPRmt markers. 1+, 2+ or 3+ scoring system (scale, 10 \(\mu \)m). Samples scored by intensity or intensity x extent. Intensity distribution with representative images (scale, 50 \(\mu \)m). Intensity x extent compared in primary and metastatic lesions. \(n = 7 \) mice; 8 primary tumors with 8 regions scored; all lung metastases (14-23/stain) scored. Unpaired \(t \) test, two-sided, *\(p < 0.05 \), **\(p < 0.01 \), ****\(p < 0.0001 \); mean (red line) ± SEM.

(C) 5 \(\mu \)m serial sections of primary tumors stained with UPRmt markers, pseudocolored, and overlaid (scale, 100 \(\mu \)m). ROI highlighted and enlarged below. SIRT3 (green); FOXO3a (pink); LC3B (purple); NRF1 (red); SOD2 (yellow); HSP60 (blue); SOD1 (orange). \(n = 7 \) mice.

(D) 5 \(\mu \)m serial sections of lung metastases as in (C). \(n = 7 \) mice.

See also Figure S1 and Table S6.
MDA-MB-231 I1 and I2 cells (Figure 3H). We found that MDA-MB-231 I1 and I2 were progressively more invasive than the parental (Figure 3I) and had decreased ROS (Figure 3J). Consistent with mitohormesis, MDA-MB-231 I1 and I2 showed successive increases in the UPR_{mt} (Figure 3K). We also queried NRF2 levels and observed cumulative increases in the invasive subpopulations (Figure S2B). When we isolated the ROS+ of MDA-MB-231 cells by FACS (Figure 3L), we again found that the ROS+ subpopulation was more invasive than the parental (Figure 3M). Additionally, ROS+ MDA-MB-231 had enhanced UPR^{mt} activation compared with the parental, except for HSP60 (Figure 3N). To test if mitohormetically primed cells are resistant to oxidative stress, we again used menadione. As before (Figure 1J), we found that MDA-MB-231 I1, I2, and ROS+ cells were more resistant to cell death than the parental (Figure S2C).

To address causality between ROS reduction by UPR^{mt} activation and the invasive phenotype, we generated stable control (shScrambled) and SIRT3 knockout (shSIRT3-345 and shSIRT3-752) MDA-MB-231 cells (Figure 3R). Western blotting of these cells confirmed near complete loss of SIRT3 in shSIRT3-345 and shSIRT3-752 MDA-MB-231 cells (Figure 3R). When treated with 5 μM G-TPP, MDA-MB-231 showed robust activation of all UPR_{mt} markers (Figure S2E) and enhanced inversion capacity (Figure S2F) compared with DMSO control. These results demonstrate that UPR^{mt} activation promotes invasion.

To address causality between UPR^{mt} activation and invasion mechanistically, we performed small interfering RNA (siRNA) knockdown of SIRT3 in MDA-MB-231. SIRT3 knockdown leads to a subsequent decrease of UPR_{mt}-SIRT3 markers (FOXO3a, SOD2, NRF1), but not SOD1 or HSP60 (Figures 3O and 3P). Interestingly, SIRT3 knockdown significantly increased LC3, suggesting a potential non-SIRT3-mediated mechanism of upregulation to maintain viability after UPR_{mt}-SIRT3 knockdown (Figures 3O and 3P). Importantly, transwell assays of MDA-MB-231 treated with siSIRT3 or non-targeting control revealed that SIRT3 knockdown significantly reduced invasion (Figure 3Q). The inhibitory effect of SIRT3 knockdown on invasion was validated using a second siRNA (Figures S2A and S2B). Additionally, SIRT3 knockdown did not affect proliferation (Figure S2C) or viability (Figure S2D), demonstrating a specific effect on invasion. To assess the role of SIRT3 in metastasis in vivo, we generated stable control (shScrambled) and SIRT3 knockout (shSIRT3-345 and shSIRT3-752) MDA-MB-231 cells (Figure 3R). Western blotting of these cells confirmed near complete loss of SIRT3 in shSIRT3-345 and shSIRT3-752 compared to shScrambled and ubiquitous GFP expression in all three lines (Figure 3R). We queried in vitro invasion capacity of these cells and found that SIRT3 loss reduced invasion capacity (Figure S2K) without impacting in vitro proliferation (Figure S2L), as in our siRNA experiments (Figures 3Q and S2). We then performed tail vein injections with these cells and harvested 4 weeks later. Two-photon microscopy was used on freshly excised lungs to visualize GFP+ metastases. While disseminated cells could be identified in all three experimental groups, markedly larger metastatic lesions were detected in shScrambled compared with either shSIRT3 group (Figures 3S and S2M). These results indicate that SIRT3 is necessary for overt lung metastasis formation. Whole lung sections were stained by immunofluorescence (IF) for GFP to quantify single disseminated cells, clusters, and micro-metastases. As observed by two-photon microscopy, the shScrambled group had appreciably

Figure 3. Identification of Invasive, UPR_{mt}-HIGH Subpopulation of Human Cell Lines by Endogenous Mitohormesis

(A) Invasive subpopulation of MCF7 cells isolated by transwell invasion and sub-cultured to generate MCF7 iteration 1 (I1).
(B) Representative transwell invasion (scale, 100 μm).
(C) Flow cytometry of endogenous mitochondrial ROS levels in MCF7 parental (P) and I1.
(D) Western for UPR_{mt} in MCF7 P and I1.
(E) ROS+ population of MCF7 isolated by FACS and sub-cultured to generate MCF7 ROS+ cells.
(F) Representative images of transwell invasion assays (scale, 100 μm).
(G) Western for UPR_{mt} in MCF7 P and ROS+.
(H) Invasive subpopulation of MDA-MB-231 P cells isolated by transwell invasion and sub-cultured to generate I1 and repeated to generate I2.
(I) Representative transwell invasion (scale, 100 μm).
(J) Flow cytometry of endogenous mitochondrial ROS levels in MDA-MB-231 P, I1, and I2.
(K) Western for UPR_{mt} markers in MDA-MB-231 P, I1, and I2.
(L) ROS+ population of MDA-MB-231 cells isolated by FACS and sub-cultured to generate MDA-MB-231 ROS+ cells.
(M) Representative images of transwell invasion (scale, 100 μm).
(N) Western for UPR_{mt} in MDA-MB-231 P and ROS+.
(O) MDA-MB-231 treated with non-targeting siNC1 or siSIRT3. Representative western of UPR_{mt}.
(P) Quantification of UPR_{mt} after siRNA. n = 3 experiments. Unpaired t test, two-sided, *p < 0.05, **p < 0.01, ns = not significant; mean ± SEM.
(Q) Representative transwell invasion of MDA-MB-231 siNC1 or siSIRT3 (scale, 100 μm). n = 3 experiments with ≥ 3 technical replicates.
(R) Western for indicated markers in MDA-MB-231 generated with stable shRNA control (shScrambled) or targeting (shSIRT3-345 and shSIRT3-752) constructs in pLV-H1-CMV-green vector. Tail vein injection and collected after 4 weeks.
(S) Metastases visualized in freshly excised lungs using multiphoton microscopy. GFP, green. Collagen, purple (scale, 100 μm). shScrambled n = 5; shSIRT3-345 n = 4; shSIRT3-752 n = 5 mice.
(T) Whole lung sections from S stained by IF for GFP. Lesions per section counted and size noted as single cells, clusters, or micro-metastases. Total lung lesions compared. Mann-Whitney, two-tailed, *p < 0.05, **p < 0.01; mean ± SEM.
See also Figure S2.
found a clear subset of patients with higher expression of all UPR genes (Figure 4B), relapse-free survival (Figure 4C), and distant metastasis–secondary organs. Taken together, these results demonstrate that SIRT3 is necessary for multiple steps of the metastatic cascade.

UPRmt Gene Signature Identifies Breast Cancer Patients with Worse Prognoses and Mitohormetic Transcriptional Profiles

To address the translational relevance of our findings to patients, we took advantage of publicly available primary breast cancer expression datasets. In a cohort of 1809 patients (Györfy et al., 2010), we extracted expression levels of SIRT3, FOXO3a, SOD2, SOD1, LC3B, NRF1, and HSP60 and computed an average UPRmt expression score per patient (Figure 4A). We found a clear subset of patients with higher expression of all markers and called them UPRmt-HIGH (Figure 4A). Treating UPRmt score as a categorical value, we found a significant association between UPRmt-HIGH and estrogen receptor (ER)-negative disease (Figure 4A). This association was also significant when UPRmt score was treated as a continuous variable (Figure S3A). The UPRmt score was also calculated in the The Cancer Genome Atlas (TCGA) breast cancer cohort and again showed a significant association between ER-negative disease and elevated UPRmt (Figure S3B). The molecular classifications in the TCGA cohort enabled comparison of UPRmt among PAM50 intrinsic subtypes (Figure S3C). We found that the UPRmt scores were significantly different between breast cancer subtypes, with basal-like and HER2-Enriched having significantly higher levels than luminal A and luminal B (Figure S3C).

We then assessed the impact of UPRmt expression on outcomes using the larger Kaplan-Meier (KM) plotter cohort (Lángczyk et al., 2016). Alone, the individual UPRmt genes had mixed prognostic value (Figures S3D–S3J). A multigene classifier of these 7 genes was used to compare clinical outcomes between UPRmt-HIGH and UPRmt-LOW patients. We found that UPRmt-HIGH patients had significantly worse overall survival (Figure 4B), relapse-free survival (Figure 4C), and distant metastasis–free survival (Figure 4D) compared with UPRmt-LOW patients. Even in lymph node–positive patients, a population which is at significant increased risk of metastatic relapse, UPRmt-HIGH patients had significantly worse distant metastasis–free survival (Figure 4E).

To further understand differences between UPRmt-HIGH and UPRmt-LOW patients, we compared global gene expression between the groups. Differential gene expression analysis between UPRmt-HIGH and UPRmt-LOW patients identified 141 genes with a log2 fold change ≥ 0.6 and a false discovery rate <0.05 (Figure 4F; Tables S1 and S2).

Transcripts significantly upregulated in UPRmt-HIGH patient tumors included metalloproteases (MMP1, ADAM15, MM7, MMP12) and immune-related genes, such as MARCO (Figure 4F; Tables S1 and S2). MARCO identifies a subset of tumor-associated macrophages that promotes tumor growth and metastatic dissemination (Georgoudaki et al., 2016). Of interest, PDK1 was significantly increased in UPRmt-HIGH patients (Figure 4F). PDK1 was also upregulated in the livers of mitohormetically primed iSOD2-KD mice (Cox et al., 2018). Transcripts significantly downregulated in UPRmt-HIGH patient tumors include the metabolic enzyme MGAM, and PTTHL, which is implicated in epithelial-mesenchymal interactions in the developing mammary gland (Figure 4F; Tables S1 and S2).

To understand the gene expression programs differing between UPRmt-HIGH and UPRmt-LOW patients, we performed pre-ranked gene set enrichment analysis (GSEA) (Table S3; Subramanian et al., 2005). We found that cholesterol homeostasis, cell cycle, and peroxisome proliferator-activated receptor (PPAR) signaling were positively enriched in UPRmt-HIGH patients (Figure 4G; Table S4). PPAR signaling was identified as the defining transcriptional signature of mitohormetically primed iSOD2-KD mice (Cox et al., 2018). In addition, mTORC1 signaling and glycine, serine, and threonine metabolism were positively enriched in UPRmt-HIGH patients, in agreement with data that these pathways are activated by mitochondrial stress (Quíros et al., 2017). Interestingly, it has been shown that mTORC1 regulates SOD1 activity (Tsang et al., 2018) and HSP60 as part of the mitochondrial integrated stress response (ISRmt) (Khan et al., 2017). This highlights the integrated nature of mitochondrial stress responses and substantiates the UPRmt as a complex network of signaling axes. Importantly, metastasis, angiogenesis, and cell migration gene sets were positively enriched in UPRmt-HIGH patients (Figure 4G; Table S4). Innate immunity and inflammation–related gene sets were also positively enriched, in agreement with observations in C. elegans that linked the UPRmt to innate immunity (Pellegrino et al., 2014) (Figure 4G; Table S4).

Conversely, we found processes related to protein production, such as translational elongation and the ribosome, negatively enriched in UPRmt-HIGH patients (Figure 4G; Table S5). This is consistent with work showing translational inhibition in response to mitochondrial stress (Münch and Harper, 2016; Ruan et al., 2017; Wrobel et al., 2015).

Taken together, these results demonstrate that UPRmt activation is observed in patient samples and is significantly associated with worse clinical outcomes including metastasis. Further, we found that the global gene expression of UPRmt-HIGH patients is indicative of mitohormetic priming and persistent cytotoxic mechanisms.

DISCUSSION

The mitochondria of cancer cells show profound reprogramming and elevated ROS. ROS levels in cancer must be maintained to ensure viability. The ability of ROS manipulation to impact tumor biology is supported by studies demonstrating that antioxidants promote cancer growth and metastasis (Bjelakovic and Gluud, 2007; Le Gal et al., 2015; Sayin et al., 2014).

Here, we provide evidence that mitohormesis, a phenomenon normally associated with health and longevity, is permissively used by cancer cells to promote tumor progression. Mitohormesis in cancer cells results in persistent activation of the UPRmt and reduction in oxidative stress. Resultantly, mitohormetically primed cancer cells are more metastatic. The molecular mechanisms underlying mitohormetic activation and UPRmt persistence
Figure 4. Increased Activation of UPRmt in Patients Correlates with Worse Clinical Outcomes and Is Associated with a Distinct Transcriptional Signature

(A) Heatmap of UPRmt expression in 1809 breast cancer patients. Top ranked tertile (n = 603) called UPRmt-HIGH. Estrogen receptor (ER) status displayed. Negative, white; positive, black. Significant correlation: ER negative and UPRmt-HIGH. Pearson’s chi-square, Yates’ continuity correction, p = 2.45e-20, n = 1231.

(B) Kaplan-Meier (KM) analysis of overall survival (OS) with UPRmt classifier (n = 1402). HR = hazard ratio.

(C) KM of relapse-free survival (RFS) with UPRmt classifier (n = 1764).

(D) KM of distant metastasis-free survival (DMFS) with UPRmt classifier (n = 1133).

(E) KM of RFS in lymph node positive patients with UPRmt classifier (n = 3951).

(F) Volcano plot UPRmt-HIGH versus UPRmt-LOW patients (n = 1809). Log2 fold change versus false discovery rate (FDR). Significant genes, red (FDR < 0.05 & log2 fold change \(\pm 0.6\)).

(G) Gene set enrichment analysis (GSEA) of UPRmt-HIGH versus UPRmt-LOW patients (n = 1809). Negatively (left) and positively (right) enriched gene ontology terms. Bar length, normalized enrichment score (NES). Bar color, FDR. Gene set source, color code.

See also Figure S3 and Tables S1, S2, S3, S4, and S5.
in cancer remains elusive. A likely possibility is that epigenetic regulation is involved, as shown in C. elegans (Ma et al., 2019; Merkwirth et al., 2016; Tian et al., 2016). Future work will address such outstanding questions.

Our findings indicate that elevated UPRmt in patients results in significantly worse survival. Analysis of the transcriptomes of UPRmtHIGH patients shows simultaneous activation of pro-metastatic programs and the global cytoprotective effects of mitohormesis. Our patient-derived UPRmt signature showed significant overlap with mito-protective pathways obtained from \textit{in vitro} or genetic manipulations of mitochondrial stress (Cardamone et al., 2018; Münch and Harper, 2016; Pellegrino et al., 2014; Quirós et al., 2017; Tian et al., 2016). Of note, transcriptional repression was strongly affected by the UPRmt classifier, consistent with reports characterizing exogenous UPRmt induction \textit{in vitro} (Münch and Harper, 2016; Quirós et al., 2017). Mitochondria can influence innate immunity through the cytoplasmic release of mtDNA (West and Shadel, 2017; West et al., 2015). Interestingly, we see significant enrichment of innate immunity gene sets in UPR\textsuperscript{mt-HIGH} patients suggesting a possible role for mitohormesis in shaping the tumor microenvironment. Several neurodegenerative gene sets were negatively enriched in UPR\textsuperscript{mt-HIGH} patients. This is consistent with our work showing that UPRmt activation delayed symptom onset in a familial amyotrophic lateral sclerosis (ALS) mouse model (Riar et al., 2017). This observation suggests that mitohormesis, which we show promotes tumor progression, is predicted to oppose neurodegeneration.

In the context of cancer biology, our results are also in agreement with numerous studies reporting mitochondrial changes in recurrent tumors and circulating cancer cells. These changes included oxidative phosphorylation, mitochondrial biogenesis, and SOD2 and PGC-1\textalpha upregulation, although a unifying mechanism was not identified (Hu et al., 2012; LeBlu et al., 2014; Vi ale et al., 2014). The results of our study suggest that activation of the UPRmt-SIRT3 mechanistically underlies these observations.

This possibility is further supported by the fact that SIRT3 is a common denominator linking mitochondrial biogenesis, PGC1\textalpha, and SOD2. SIRT3 directly controls the activity of SOD2 through deacetylation (Lombard et al., 2007; Tao et al., 2010). PGC1-\textalpha, in complex with ERRx, regulates several genes involved in mitochondrial biogenesis as well as SOD2 and SIRT3 (Kong et al., 2010; Giralt et al., 2011). SIRT3 indirectly regulates PGC1-\textalpha through AMPK signaling, which promotes CREB phosphorylation and PGC1\textalpha expression (Shi et al., 2005). Therefore, SIRT3 and PGC1\textalpha crosstalk establishes a positive feedback loop to regulate mitochondrial biogenesis and antioxidant defenses. In this study, the transcriptional signature of UPR\textsuperscript{mt-HIGH} patients was significantly enriched for PPAR signaling, of which PGC1\textalpha is a key component. Notably, the PPAR signaling pathway and PGC1\textalpha were key differences seen in mitohormetically primed mice (Cox et al., 2018).

In cancer biology, SIRT3 has been reported to act as an onco-gene (Alhazzazi et al., 2011; Cheng et al., 2013; Choi et al., 2016; Cui et al., 2015; George et al., 2016; Li et al., 2010; Papa and German, 2014; Wang et al., 2015; Wei et al., 2013) and a tumor suppressor (Allison and Milner, 2007; Desouki et al., 2014; Dong et al., 2016; Finley et al., 2011; Kim et al., 2010; Li et al., 2010; Wang et al., 2014; Wei et al., 2013; Yu et al., 2016; Zhang and Zhou, 2012). This discrepancy suggests that the function of SIRT3 in cancer is context dependent. Loss of SIRT3 during tumor formation leads to increased ROS levels and promotes mitochondrial reprogramming (Finley et al., 2011). Importantly, SIRT3 loss is heterozygous, suggesting selective pressure to maintain an intact copy of the gene (Finley et al., 2011). When the prognostic value of individual UPRmt genes was analyzed, elevated SIRT3 was associated with better relapse-free survival (Figure S3F), in agreement with a recent report (Lee et al., 2018). This observation is consistent with a study demonstrating that SIRT3 overexpression in MDA-MB-231 cells delays tumor growth in xenografts (Gonzalez Herrera et al., 2018). It is important to note that this overexpression far exceeds the endogenous levels found in invasive cells, such as MDA-MB-231. The same group also demonstrated that SIRT3 is downregulated in the invasive front of MCF10A cells (Lee et al., 2018). To reconcile these observations, we propose the following model (Figure S4). In normal cells, SIRT3 levels are highest. This is supported by the observation that MCF10A cells have significantly higher SIRT3 levels than breast cancer cells lines (Papa and German, 2014). During transformation, heterozygous SIRT3 loss increases ROS, which stabilizes HIF1\textalpha and produces a glycolytic switch (Brunelle et al., 2005; Chandel et al., 1998, 2000; Finley et al., 2011; Haigis et al., 2012). During tumor progression, however, the retained SIRT3 allele is used to promote invasion and metastasis.

In conclusion, we demonstrate that endogenous mitohormesis leads to persistent activation of the UPRmt in a subset of cancer cells. Consistent with the pro-longevity effect of mitohormesis, its activation leads to global changes in cytoprotective mechanisms, which results in resistance to subsequent stress. In the context of cancer, however, mitohormesis promotes metastatic disease progression.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Cell Culture
 - Animals
- **METHOD DETAILS**
 - siRNA Transfection
 - Generation of stable shRNA cell lines
 - Transwell Invasion Assays
 - Western Blotting
 - Flow Cytometry and Fluorescence Associated Cell Sorting (FACS)
 - Animal Experiments: MMTV-rtTA/TetO-NeuNT mice
 - Animal Experiments: Doxycycline treatment, analysis of UPRmt
 - Animal Experiments: Tail Vein Injections
 - Histology and Immunohistochemistry (IHC)
 - Immunofluorescence
Multiphoton Microscopy
- Bioluminescence Imaging
- Bioinformatic Analyses

QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.cellrep.2019.04.095.

ACKNOWLEDGMENTS

Some figures used modified illustrations from Servier Medical Art licensed under a Creative Commons Attribution 3.0 Unported License. T.C.K. and A.J.C. received support from NIH T32 CA078207 Training Program in Cancer Biology. T.C.K. is currently funded by NIH F31 FCA228239A. The Tisch Cancer Institute NIH P30 CA196521 resources grant to the Flow Cytometry and Microscopy CoRE Facilities supported this work. Microscopy was performed at the Microscopy CoRE Facility with funding from NIH Shared Instrumentation Grant S10RR026639. A.V. is supported by the US Department of Defense grant CA150272P3. This work was funded by NIH RO1 CA172046 to D.G.

AUTHOR CONTRIBUTIONS

T.C.K. and D.G. conceived of the project. T.C.K. designed, performed, and analyzed all experiments under the supervision of D.G. T.C.K. and A.J.C. performed genomic analysis under the supervision of A.V. T.C.K. prepared the figures. T.C.K. and D.G. wrote the manuscript. D.G. obtained funding, provided resources, and supervised the project.

DECLARATION OF INTERESTS

A.V. has received consulting fees from Guidepoint and Fujifilm; advisory board fees from Exact Sciences, Nucleix, and NGM; and lecture fees from Exelixis.

REFERENCES

Alhazzazi, T.Y., Kamarajan, P., Joo, N., Huang, J.-Y., Verdin, E., D’Silva, N.J., and Kapila, Y.L. (2011). Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117, 1670–1678.

Allison, S.J., and Minler, J. (2007). SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle 6, 2669–2677.

Benedetti, C., Haynes, C.M., Yang, Y., Harding, H.P., and Ron, D. (2006). Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229–239.

Bjelakovic, G., and Gluud, C. (2007). Surviving antioxidant supplements. J. Natl. Cancer Inst. 99, 742–743.

Bonawitz, N.D., Chatenay-Lapointe, M., Pan, Y., and Shadel, G.S. (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 5, 265–277.

Brunelle, J.K., Bell, E.L., Quesada, N.M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpluta, R.C., and Chandel, N.S. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1, 409–414.

Cardamone, M.D., Tanasa, B., Cederquist, C.T., Huang, J., Mahdaviani, K., Li, W., Rosenfeld, M.G., Liosa, M., and Periisi, V. (2018). Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Coactivator GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol. Cell 69, 757–772.e7.

Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95, 11715–11720.

Chandel, N.S., McClintock, D.S., Feliciano, C.E., Wood, T.M., Melendez, J.A., Rodriguez, A.M., and Schumacker, P.T. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138.

Cheng, Y., Ren, X., Gowda, A.S., Shan, Y., Zhang, L., Yuan, Y.S., Patel, R., Wu, H., Huber-Keener, K., Yang, J.W., et al. (2013). Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 4, e731.

Choi, J., Koh, E., Lee, Y.S., Lee, H.W., Kang, H.G., Yoon, Y.E., Han, W.K., Choi, K.H., and Kim, K.S. (2016). Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma. Biochem. Biophys. Res. Commun. 474, 547–553.

Cox, C.S., McKay, S.E., Holmbeck, M.A., Christian, B.E., Scorte, A.C., Tsay, A.J., Newman, L.E., and Shadel, G.S. (2018). Mitohormesis in Mice via Sustained Basal Activation of Mitochondrial and Antioxidant Signaling. Cell Metab. 28, 776–786.e6.

Cui, Y., Qin, L., Wu, J., Xu, Q., Hou, C., Sun, W., Li, S., Vaughan, A.T.M., Li, J.J., and Liu, J. (2015). SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PLoS ONE 10, e0129834.

D’Autréaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824.

DeNicola, G.M., Karrer, F.A., Humpton, T.J., Gipapinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109.

Desouki, M.M., Doubinskaia, I., Gius, D., and Abdulkadir, S.A. (2014). Decreased mitochondrial SIRT3 expression is a potential molecular biomarker associated with poor outcome in breast cancer. Hum. Pathol. 45, 1071–1077.

Dillin, A., Hsu, A.-L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401.

Dong, X.C., Jing, L.M., Wang, W.X., and Gao, Y.X. (2016). Down-regulation of SIRT3 promotes ovarian carcinoma metastasis. Biochem. Biophys. Res. Commun. 475, 245–250.

Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91.

Feng, J., Bussière, F., and Hekimi, S. (2001). Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644.

Finley, L.W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P.I., Cardoso, S.M., Clish, C.B., et al. (2011). SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19, 416–428.

Fiorese, C.J., Schulz, A.M., Lin, Y.-F., Rosin, N., Pellegrino, M.W., and Haynes, C.M. (2016). The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR. Curr. Biol. 26, 2037–2043.

George, J., Nihal, M., Singh, C.K., Zhong, W., Liu, X., and Ahmad, N. (2016). Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma. J. Invest. Dermatol. 136, 809–818.

Georgoudaki, A.-M., Prokope, K.E., Boura, V.F., Hellqvist, E., Sohn, S., Östling, J., Dahan, R., Harris, R.A., Rantalainen, M., Klevebring, D., et al. (2016). Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis. Cell Rep. 15, 2000–2011.

Giralt, A., Hondares, E., Villena, J.A., Ribas, F., Diaz-Delfin, J., Giralt, M., Igleias, R., and Villarroya, F. (2011). Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential
component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 286, 16958–16966.

Gitschlag, B.L., Kirby, C.S., Samuels, D.C., Gangula, R.D., Malik, S.A., and Patel, M.R. (2016). Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans. Cell Metab. 24, 91–103.

Gonzalez Herrera, K.N., Zaganjor, E., Ishikawa, Y., Spinelli, J.B., Yoon, H., Lin, J.-R., Satterstrom, F.K., Ringel, A., Mulei, S., Souza, A., et al. (2018). Small-Molecule Screen Identifies De Novo Nucleotide Synthesis as a Vulnerability of Cells Lacking SIRT3. Cell Rep. 22, 1945–1955.

György, B., Lanczycki, A., Eklund, A.C., Denkert, C., Budczies, J., Li, Q., and Suomalainen, A. (2017). mTORC1 Regulates the Chaperone Network and mitochondrial UPR and FOXO Signaling. Cell 167, 430–441, May 21, 2019.
Nargund, A.M., Pellegrino, M.W., Fiorese, C.J., Baker, B.M., and Haynes, C.M. (2012). Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590.

Nargund, A.M., Fiorese, C.J., Pellegrino, M.W., Deng, P., and Haynes, C.M. (2015). Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell 58, 123–133.

Olmeda, D., Cereto-Wallis, D., Riveiro-Falkenbach, E., Pennacchi, P.C., Conteras-Alcaide, M., Ibarz, N., Cifdaloz, M., Catena, X., Calvo, T.G., Cañón, E., et al. (2017). Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 546, 676–680.

Owusu-Ansah, E., Song, W., and Perrimon, N. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712.

Padmanabhan, B., Tong, K.I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M.-I., Kobayashi, A., Yokoyama, S., and Yamamoto, M. (2006). Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21, 689–700.

Papa, L., and Germain, D. (2014). Sirt3 regulates the mitochondrial unfolded protein response. Mol. Cell. Biol. 34, 699–710.

Pavlou, N.N., and Thompson, C.B. (2016). The Emerging Hallmarks of Cancer Metabolism. Cell 23, 27–47.

Pellegrino, M.W., Nargund, A.M., Kirienko, N.V., Gillis, R., Ohtsuji, M., and Haynes, C.M. (2014). Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516, 414–417.

Quirós, P.M., Prado, M.A., Zambroni, N., D’Amico, D., Williams, R.W., Finley, D., Gygi, S.P., and Auwerx, J. (2017). Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027–2045.

Rauthan, M., Ranji, P., Aguilar Pradenas, N., Piot, C., and Pilon, M. (2013). The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. Proc. Natl. Acad. Sci. USA 110, 5981–5986.

Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., and Mesirov, J.P. (2006). GenePattern 2.0. Nat. Genet. 38, 500–501.

Riar, A.K., Burstein, S.R., Palomo, G.M., Arreguin, A., Manfredi, G., and Gerlinger, M.O. (2014). Antioxidants accelerate lung cancer progression in mice. Sci. Adv. 1, e1400061.

Ruan, L., Zhou, L., Li, Y., Cui, Z., You, Z., Chen, Y., Sun, H., and Li, L. (2013). XE991 increases oxidative stress by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis. 4, e601.

Riviere, M., Bach, O., Kofflard, J., Grynpas, M.D., and Thibault, C. (2014). Nuclear respiratory factor 2 induces SIRT3 expression. Aging Cell 13, 363–375.

Sayin, V.I., Ibrahim, M.X., Larsson, E., Nilsson, J.A., Lindahl, P., and Nguyen, T. (2015). Nuclear respiratory factor 2 regulates expression of the mitochondrial Sirt3 gene. Aging Cell 14, 818–825.

Shi, T., Wang, F., Stieren, E., and Tong, Q. (2005). SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560–13567.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550.

Tao, R., Coleman, M.C., Pennington, J.D., Ozden, O., Park, S.-H., Jiang, H., Kim, H.-S., Flynn, C.R., Hill, S., Hayes McDonald, W., et al. (2010). Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893–904.

Tian, Y., Garcia, G., Bian, Q., Steffen, K.K., Joe, L., Wolff, S., Meyer, B.J., and Dillin, A. (2016). Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt). Cell 165, 1197–1208.

Tsang, C.K., Chen, M., Cheng, X., Qi, Y., Chen, Y., Das, I., Li, X., Vallat, B., Fu, L.-W., Qian, C.-N., et al. (2018). SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation. Mol. Cell 70, 502–515.e8.

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.

Viale, A., Pettazzoni, P., Lyssiotis, C.A., Ying, H., Sánchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632.

Vyas, S., Zaganjor, E., and Haigis, M.C. (2016). Mitochondria and Cancer. Cell 166, 555–566.

Wallace, D.C. (2012). Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698.

Wei, L., Zhou, Y., Dai, Q., Cao, Q., Zhao, L., Hui, H., Lu, N., and Guo, Q.-L. (2013). Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis. 4, e601.

Yang, W., and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Genet. 6, e1000961.

Yang, W., and Hekimi, S. (2010). Mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556.

Yun, J., and Finkel, T. (2014). Mitohormesis. Cell Metab. 19, 757–766.

Zhang, Y.Y., and Zhou, L.M. (2012). Sirt3 inhibits hepatocellular carcinoma cell migration through reducing Mdm2-mediated p53 degradation. Biochem. Biophys. Res. Commun. 423, 26–31.

Zhao, Q., Wang, J., Levichkin, I.V., Stasinopoulos, S., Ryan, M.T., and Hoogenraad, N.J. (2002). A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit monoclonal anti-SIRT3 (C73E3)	Cell Signaling Technology	Cat#2627; RRID:AB_2188622
Rabbit polyclonal anti-SIRT3	Millipore	Cat#07-1596; RRID:AB_1977497
Mouse monoclonal anti-HSP60	BD Biosciences	Cat#611563; RRID:AB_399009
Rabbit monoclonal anti-ATF5 [EPR18286]	Abcam	Cat#ab184923; RRID:AB_2800462
Mouse monoclonal anti-NRF1	Abcam	Cat#ab55744; RRID:AB_2154534
Rabbit monoclonal anti-CLPP [EPR7133]	Abcam	Cat#ab124822; RRID:AB_10975619
Rabbit polyclonal anti-SOD-1 (FL-154)	Santa Cruz Biotechnology	Cat#sc-11407; RRID:AB_2193779
Rabbit monoclonal anti-FOXO3a (75D8)	Cell Signaling Technology	Cat#ab2497; RRID:AB_836876
Mouse monoclonal anti-Actin, clone C4	Millipore	Cat#MAB1501; RRID:AB_2223041
Rabbit polyclonal anti-Mn-SOD	Millipore	Cat#06-984; RRID:AB_310325
Rabbit polyclonal anti-LC3	MBL International	Cat#PM036; RRID:AB_2274121
Mouse monoclonal anti-SDHA [2E3GC12FB2AE2]	Abcam	Cat#ab14715; RRID:AB_301433
Rabbit polyclonal anti-MTCO1	Abcam	Cat#ab45918; RRID:AB_944283
Mouse monoclonal anti-GFP (B-2)	Santa Cruz Biotechnology	Cat#sc-9996; RRID:AB_627695
Rabbit monoclonal anti-NRF2 (D1Z9C)	Cell Signaling Technology	Cat#ab2715528
Mouse monoclonal anti-ErbB2 (3B5)	Abcam	Cat#ab16901; RRID:AB_443537
Rabbit polyclonal anti-SIRT3	Abcam	Cat#ab86671; RRID:AB_10861832
Rabbit monoclonal anti-FOXO3a (D19A7)	Cell Signaling Technology	Cat#ab12829; RRID:AB_263699
HRP Goat anti-Mouse IgG	Jackson ImmunoResearch Labs	Cat#115-035-003; RRID:AB_10015289
HRP Goat anti-Rabbit IgG	Thermo Fisher Scientific	Cat#65-6120; RRID:AB_2353967
HRP Digital anti-Mouse IgG	Kindle Biosciences	Cat#R1005; RRID:AB_2800463
HRP Digital anti-Rabbit IgG	Kindle Biosciences	Cat#R1006; RRID:AB_2800464
Biotin Goat anti-Mouse IgG	Jackson ImmunoResearch Labs	Cat#115-065-205; RRID:AB_2338571
Biotin Donkey anti-Rabbit IgG	Jackson ImmunoResearch Labs	Cat#711-065-152; RRID:AB_2340593
Alexa Flour 488 Goat anti-Mouse IgG	Thermo Fisher Scientific	Cat#A-11001; RRID:AB_2534069
Bacterial and Virus Strains		
NEB Stable Competent E. coli (High Efficiency)	New England BioLabs	Cat#3040
Chemicals, Peptides, and Recombinant Proteins		
Antibody Diluent, Normal	MP Biomedicals	Cat#08980641; RRID:AB_2335238
Streptavidin, Horseradish Peroxidase concentrate for IHC	Vector Laboratories	Cat#SA-5004; RRID:AB_2336509
Lipofectamine 2000 Transfection Reagent	Thermo Fisher Scientific	Cat#11668019
Lipofectamine RNAiMAX Transfection Reagent	Thermo Fisher Scientific	Cat#13778100
Collagen I, Rat Tail	Corning	Cat#354236
Polybrene	Santa Cruz Biotechnology	Cat#sc-134220
Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix	Corning	Cat#354230
MitoSOX Red Mitochondrial Superoxide Indicator	Thermo Fisher Scientific	Cat#M36008
gamintrinib-triphenylphosphonium (G-TPP)	Kang et al., 2009	N/A
Doxycycline hyclate	Sigma-Aldrich	Cat#D9891
Amoxicillin trihydrate	Sigma-Aldrich	Cat#PHR1127
D-Luciferin	Sigma-Aldrich	Cat#L9504
Collagenase	Sigma-Aldrich	Cat#C9891
Red Blood Cell Lysing Buffer Hybri-Max	Sigma-Aldrich	Cat#R7757

(Continued on next page)
Continued

Critical Commercial Assays

REAGENT or RESOURCE	SOURCE	IDENTIFIER
AEC Peroxidase Substrate Kit	Vector Laboratories	Cat#SK-4200; RRID:AB_2336076
Plasmid Maxi Kit	QIAGEN	Cat#12165
Cell Culture Insert, Transparent PET Membrane, 8 μm pore size	Corning	Cat#353097; Cat#353093
Hema 3 Manual Staining System and Stat Pack	Fisher Scientific	Cat#23-123869

Deposited Data

RESOURCE	SOURCE	IDENTIFIER
Primary breast cancer gene expression data	Gene Expression Omnibus	GEO: GSE11121, GSE12093, GSE12276, GSE1456, GSE16391, GSE2034, GSE2990, GSE3494, GSE5327, GSE6532, GSE7390, and GSE9195
TCGA Breast Cancer Dataset	National Cancer Institute GDC Data Portal	TGCA-BRCA, DbGAP Study Accession #phs000178

Experimental Models: Cell Lines

MODEL	ORGANISM	SOURCE	IDENTIFIER
MCF7	Human	ATCC	Cat#HTB-22
MDA-MB-231	Human	ATCC	Cat#HTB-26
Lenti-X 293T	Human	Takara Clontech	Cat#632180
MMTV-rTATetO-NeuNT mammary tumor cell lines	Mouse	This Paper	N/A

Experimental Models: Organisms/Strains

MODEL	ORGANISM	SOURCE	IDENTIFIER
Mouse: MMTV-rTATetO-NeuNT: FVB Tg(MMTV-rTA)1Lach Tg(TetO-Erbb2)1Lach	Mouse	Moody et al., 2002	Mouse Genome Informatics: 5506798
Mouse: FVB/N: FVB/NCrl	Mouse	Charles River	Strain Code: 207
Mouse: C57BL/6: C57BL/6NCrl	Mouse	Charles River	Strain Code: 027
Mouse: Nude: Hsd:Athymic Nude-Foxn1(1itu)	Mouse	Envigo	Model Code: 069

Oligonucleotides

Primer	Identifiers	
rTAT Primer Forward 5'-TGCCGCCATTATTACGACAAGC-3'	This Paper	
rTAT Primer Reverse 5'-ACGTTACTGTCATTTCCAAGGG-3'	This Paper	
Neu Primer Forward 5'-TTTCTGACGAGCTCAGGC-3'	This Paper	
Neu Primer Reverse 5'-CGGAACCCACATCAGGCC-3'	This Paper	
siSIRT3 #1 Forward 5'-GCCCAACGUCACACUACTT-3'	This Paper	
siSIRT3 #1 Reverse 5'-GUAGUGAGUGACUGGGGCTT-3'	This Paper	
siSIRT3 #2 Forward 5’-ACUCCCAAUCUUCUUUACCTT-3’	This Paper	
siSIRT3 #2 Reverse 5’- GUGAAAAGAAUGGGAGUTT-3’	This Paper	
DsiNC1	Integrated DNA Technologies	Cat#51-01-14-03

Recombinant DNA

Plasmid	SOURCE	IDENTIFIER
shRNA vector set against SIRT3 in pLV-H1-CMV-Green plasmid	Biosettia	Cat#SORT-B01, Gene ID:23410; Accession NM_001017524.2

Software and Algorithms

SOFTWARE	IDENTIFIER
KM Plotter	György et al., 2010; Lánčzy et al., 2016
JetSet	Li et al., 2011
GraphPad Prism v6.0c	https://www.graphpad.com/
FIJI	https://fiji.sc/
FCS Express Flow 6	http://www.denovosoftware.com/site/downloadresearch.shtml
GenePattern	Reich et al., 2006
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Doris Germain, DG (doris.germain@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
MDA-MB-231 and MCF7 cells, and their respective sub-lines were cultured in DMEM media supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). LentiX-293T cells (Takara Clonetech) were cultured in DMEM media supplemented with 10% FBS and 1% P/S. Cells derived from MMTV-rtTA/TetO-NeuNT mammary tumors were grown in DMEM / F12 (50/50) supplemented with 10% FBS, 1% P/S, 25 ng/mL Hydrocortisone, 0.25 μg/mL Amphotericin B, and 2 μg/mL Doxycycline and cultured on collagen coated plates (50 μg/mL Collagen 1 rat tail in 0.01M HCL).

Animals
All animal experiments were performed under an IUCAC approved protocol. MMTV-rtTA/TetO-NeuNT mice were originally generated and kindly provided by Lewis Chodosh. Genotypes of mice were confirmed using the following primers: rtTA (5’-TGCCGCCAT TATTACGACAAGC-3’; 5’-ACCGTACTCGTCAATTCCAAGGG-3’) and Neu: (5’-TTTCTTGACAGCCTAGC-3’, 5’-CGGAACCCA CATCAGGCC-3’). Experimental MMTV-rtTA/TetO-NeuNT were 12-week-old females. Non-transgenic FVBN and C57BL/6N were also used in this study. Experimental FVBN mice were 8-week-old females. Experimental C57BL/6N mice were 8-week-old males. Female Athymic Nude-Foxn1nu mice 9 or 12 weeks of age were used for tail vein injection experiments. All mice were housed in vivariums at Mount Sinai with ad libitum access to food and water.

METHOD DETAILS

siRNA Transfection
Transfections were performed for 72 hours on cells seeded in antibiotic-free medium using Lipofectamine RNAi Max (Invitrogen 13778-100) and Opti-MEM (GIBCO) following manufacturer recommendations. Transfections were performed with non-targeting DsIC1 (IDT #51-01-14-03) or SIRT3 targeting siRNA: siSIRT3 #1 (5’-GCCCAACGUCACUCACUACTT-3’), siSIRT3 #2 (5’-GUAGUGAGUGAC GUUGGGCTT-3’; GeneLink) and siSIRT3 #2 (5’-ACUCCCAUUCUUCUUCACTT-3’, 5’- GUGAAAGAAGAAUGGGAGUTT-3’, GeneLink). Percent of cells alive and total cell number were determined using the Countess automated cell counter and trypan blue (Invitrogen) on MDA-MB-231 cells treated with siNC1, siSIRT3 #1, or siSIRT3 #2 after 72 hours transfection to determine viability and in vitro proliferation (Figure S2).

Generation of stable shRNA cell lines
A pre-designed shRNA vector set was purchased from Biosettia with shRNAs designed against SIRT3 (Gene ID 23410; Accession NM_001017524.2) in the pLV-H1-CMV-Green plasmid (Biosettia #SORT-B01). NEB stable competent E. Coli cells (New England BioLabs #C3040) were transformed by heat shock with plasmids obtained from Biosettia. Transformed colonies were picked and expanded under antibiotic selection. Plasmids were prepared from bacterial cultures by Maxiprep (QIAGEN #12165). OptiMEM (GIBCO) and Lipofectamine 2000 (Invitrogen #11668019) were used to transfect 9 μg of pLV-H1-CMV-Green plasmid, 6 μg psPAX2 plasmid (Addgene #12260), and 3 μg pMD2.G plasmid (Addgene #12259) into Lentix 293T packaging cells in antibiotic free medium. pMD2.G and psPAX2 plasmids were generous gifts from Didier Trono. Lentivirus containing media was then collected, filtered and used with polybrene to infect target MDA-MB-231 Parental cells. Transduced cells were selected for using fluorescence associated cell sorting (FACS) to generate stable shRNA cell lines.

Transwell Invasion Assays
Cells were trypsinized and collected in respective serum-free media (see Cell Culture) and pelleted at 2500 rpm for 5 minutes. Cells were resuspended in respective serum-free media and counted using the Countess automated cell counter and trypan blue (Invitrogen). Equal cell numbers were seeded in respective serum-free media on 8 μm pore size cell culture inserts for 24-well plates (Corning). Prior to seeding cell seeding, cell culture inserts were coated with growth factor reduced matrigel (GIBCO) diluted 1:100 in PBS that was incubated at room temperature for 2 hours and removed. Respective media with 10% FBS was used in the lower chamber and assays were performed for time frames indicated (see Figures) in a tissue culture incubator. Following incubation, invaded cells were fixed, stained using the Hema 3 Manual Staining Stat Pack according to manufacturer’s guidelines (Thermo Fisher Scientific), and placed on glass slides with mounting media (Permount). To generate invasive clones of MCF7 and MDA-MB-231 cells, the protocol outlined above was followed except 8 μm pore size cell culture inserts for 6-well plates (Corning) were used and invaded cells were detached by trypsin and subsequently cultured.
Western Blotting
Cells, washed with PBS, or pulverized flash frozen tissue was lysed in cold NP-40 lysis buffer with protease inhibitors (50 mM Tris, pH 7.5, 250 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, 50 mM NaF, 0.2 mM Na₃ VO₄, 1 g/ml leupeptin, 1 g/ml pepstatin, 100 g/ml phenylmethylsulfonyl fluoride), sonicated for 5 s at 20% amplitude, and centrifuged at 14,000 rpm for 20 minutes at 4°C. Protein concentrations of lysates were assayed using the Bradford method (Bio-Rad Protein Assay). Equal amounts of protein were separated by SDS-PAGE electrophoresis and transferred to nitrocellulose membrane (GE Healthcare). Following blocking, membranes were probed with the following primary antibodies overnight at 4°C: SIRT3 (Cell Signaling 2627S), SIRT3 (EMD Millipore 07-1596), HSP60 (BD Transduction 611563), ATF5 (abcam ab184923), NRF1 (abcam ab55744), CliP (abcam ab 124822), SOD1 (Santa Cruz sc-11407), FOXO3a (Cell Signaling 2497S), Actin (EMB Millipore MAB1501R), SOD2 (EMB Millipore 06-984), LC3 (MBL International PM036), SDHA (abcam ab14715), MTCO1 (abcam ab45918), GFP (Santa Cruz sc-9996), NRF2 (cell Signaling 12721). Blots were then probed with horseradish peroxidase conjugated anti-mouse (Jackson ImmunoResearch or KwikQuant) or anti-rabbit secondary antibodies (Thermo Fisher Scientific or KwikQuant) and detected using enhanced chemiluminescence (GE Healthcare or KwikQuant).

Flow Cytometry and Fluorescence Associated Cell Sorting (FACS)
Cells growing in culture were detached with trypsin, collected in respective media, and centrifuged to pellet cells. Cells were then washed in PBS and finally resuspended in 0.5% Bovine Serum Albumin (BSA) in Hank’s Balanced Salt Solution (HBSS). Appropriate volume of freshly made 5 mM stock of MitoSOX Red (Thermo Fisher Scientific M36008) was added to cells in 0.5% BSA HBSS to yield final staining concentration of 5 μM. Staining was performed for 30 minutes at 37°C in the dark. Following staining, cells were pelleted by centrifugation, washed in 0.5% BSA HBSS, and resuspended in 0.5% BSA HBSS and passed through a single cell strainer before flow cytometry or FACS. Using the BD FACSaria II and BD FACSdiva software, samples were excited and captured at wavelengths consentient with the fluorescent spectrum of MitoSox. When sorting was performed, noted populations were selected and sorted for subsequent analyses or culture.

Primary mammary tumors from MMTV-rtTA/TetO-NeuNT mice were extracted from euthanized animals and placed in DMEM / F12 (50/50) supplemented with 25 ng/mL Hydrocortisone, 0.25 μg/mL Amphotericin B, and 2 μg/mL Doxycycline and brought into a tissue culture hood. Tumors were mechanically cut and digested using scalpels and the homogenized tumor was placed in a 50 mL falcon tube and filled with supplemented DMEM / F12 (50/50) media. Tumor homogenate and media was mixed by repeated inversion and centrifuged at 900 rpm to separate pelleted cells from fat and debris. Pelleted cells were washed in PBS and then resuspended in red blood cell (RBC) lysis buffer and mixed gently for 1-2 minutes. Supplemented media was then added to cells in RBC lysis buffer and centrifuged at 200-500 g for 7 minutes. Pellet was resuspended in supplemented media plus 1 mg/mL collagenase (Sigma-Aldrich C9891). This was incubated at 37°C for 30 minutes with pipetting performed twice during the incubation to aid in digestion. Following incubation, the solution was briefly vortexed and stood upright for 1-2 minutes to allow large chunks to settle. The supernatant was collected and centrifuged at 900 rpm for 5 minutes. The pellet was then resuspended in supplemented media and passed through a 70 μm nylon strainer to achieve single cell suspension. Cells were then pelleted, washed with PBS, and resuspended in 0.5% BSA HBSS. Staining and flow cytometry/FACS was then performed as above.

Animal Experiments: MMTV-rtTA/TetO-NeuNT mice
12-week-old female MMTV-rtTA/TetO-NeuNT were given doxycycline in drinking water (Sigma Aldrich) at a concentration of 0.75 g/L for 7 weeks or 1.5 g/L for 12 weeks. Doxycycline water was changed biweekly. At euthanasia, primary tumors and lungs were collected and formalin fixed, flash frozen, and/or processed for FACS.

Animal Experiments: Doxycycline treatment, analysis of UPRmt
As doxycycline has been reported to inhibit mitochondrial translation and induce mitochondrial stress (Moullan et al., 2015), we first tested whether, doxycycline alone induces the UPRmt in non-transgenic mice treated with doxycycline. We found no changes in markers of either the UPRmt-SIRT3 or UPRmt-CHOP (Figure S1D). As the ratio of MTCO1 to SDHA has been used previously as a marker of mitochondrial stress and imbalance between the mitochondria and nuclear genome (Moullan et al., 2015), this ratio was also tested. No difference was observed in either the mammary gland (Figure S1D) or the liver (Figure S1E). As this result is in contrast to the reported effect of doxycycline (Moullan et al., 2015), we repeated the experiment using the same gender, strain, and experimental conditions as the published study (Moullan et al., 2015). Using these conditions, we found that doxycycline promotes mitochondrial protein imbalance as measured by the ratio of MTCO1 to SDHA, (Figure S1E) but did not lead to a concomitant activation of either the UPRmt-SIRT3 or UPRmt-CHOP (Figure S1E). This observation is consistent with a more recent report from the Auwerx group showing that doxycycline does not activate canonical UPRmt pathways(Quirós et al., 2017). It also suggests that the effect of doxycycline varies between mouse strains and/or gender.

8-week-old female FVBN mice were given doxycycline (Sigma Aldrich) at a concentration of 1.5 g/L in drinking water for 30 days. Doxycycline water was changed biweekly. At euthanasia, livers and mammary glands were flash frozen for subsequent analysis. 8-week-old male C57BL/6N mice were given amoxicillin (Sigma Aldrich) at 50/mg/kg/day for 15 days or 500mg/kg/day doxycycline for 15 or 30 days in 50 g/L sucrose water. Both amoxicillin and doxycycline sucrose water was changed every 48 hours. At euthanasia, livers were flash frozen for subsequent analysis.
Animal Experiments: Tail Vein Injections

For experiments in Figure 1, 12-week-old female Athymic Nude-Foxn1nu mice were given doxycycline at a concentration of 1.5 g/L in drinking water 2 weeks prior to tail vein injection and this was continued throughout the experiment. Doxycycline water was changed biweekly. FACS sorted primary tumor subpopulations (ROS- or ROS+) expanded ex vivo were used for tail vein injection. Prior to tail vein injection, the bioluminescence of ROS- and ROS+ subpopulations was confirmed in vitro and was found to be insignificantly different between the two. 5x10^6 cells in 100 µL PBS was injected into the tail vein of each mouse. Five mice per group were injected.

For experiments in Figure 3, 9-week-old female Athymic Nude-Foxn1nu mice were used for tail injections. 1x10^6 cells in 100 µL PBS supplemented with 1% FBS were injected into the tail vein of each mouse. Five mice per group were injected.

Histology and Immunohistochemistry (IHC)

Tissue was fixed in 10% formalin (Thermo Fisher Scientific) and then processed and paraffin embedded for sectioning by the Biorepository Core Facility at Mount Sinai. Hematoxylin and eosin (H&E) or unstained paraffin embedded slides were obtained from the core facility. Serial 5 µm sections were used for all IHC staining. Briefly, sections were deparaffinized and rehydrated in xylene followed by decreasing alcohol gradients. Antigen retrieval was performed for 30 minutes at 95 °C in either citrate buffer pH 6 or 10 mM TRIS 1 mM EDTA pH 9. Following antigen retrieval, endogenous peroxidase activity was quenched using Dako Dual Endogenous Enzyme Block (#S20003) followed by serum blocking (MP Biomedicals Normal Antibody Diluent #98063) at room temperature. Primary antibody staining was performed at room temperature or 4°C for an optimized length of time. Secondary antibody staining with either Biotynlated Anti-Rabbit (Jackson ImmunoResearch #711-065-152) or Biotynlated Anti-Mouse (Jackson ImmunoResearch #115-065-205) diluted in TBS was incubated at room temperature for an optimized length of time. Streptavidin-HRP (Vector Labs #SA-5004) was diluted in TBS and incubated for 30 minutes at room temperature. All washes were performed with TBS with 0.04% Tween 20. Antigen detection was performed with freshly prepared AEC Solution (Vector Labs #SK-4200) according to manufacturer guidelines for an optimized length of time. Sections were counterstained with hematoxylin, sufficiently rinsed in water, and mounted in Vectamount aqueous mounting media (Vector Labs #H-5501). For specific conditions used for each antigen staining, see Table S6.

Sequentially sectioned (5 µm apart) primary tumors and lungs were stained with all indicated antibodies and matching regions of interest were imaged at the same magnification using a Zeiss AX10 light microscope. These images were imported into Adobe Photoshop individually and a layer encompassing all positive staining created. This layer was pseudocolored and saved alone. Multiple pseudocolored layers from different stainings were superimposed on one another after proper alignment. These overlays were saved and displayed on a black background to generate the images seen in Figure 2.

Immunofluorescence

Sections were deparaffinized and rehydrated in xylene followed by decreasing alcohol gradients. Antigen retrieval was performed in citrate buffer pH 6 for 20 minutes in the microwave. Blocking was performed with 10% serum in 0.5% Tween-20 PBS for 2 hours at room temperature. Primary antibody (GFP; Santa Cruz sc-9996) staining was performed overnight at 4°C. Secondary antibody staining with Alexa Flour 488 goat anti-mouse; Invitrogen #A11001) was performed for 2 hours at room temperature at a concentration of 1:250 in 1% serum 0.5% Tween-20 PBS. Finally, sections were stained with DAPI for 20 minutes at room temperature prior to mounting with Fluoromount-G (Southern Biotech). All washes were performed in 0.5% Tween-20 PBS. Sections stained following the protocol above with the exception of no primary antibody were used as negative controls. Metastatic lesions were visualized, counted, and imaged using a Leica DM5500 B upright automated microscope.

Multiphoton Microscopy

Freshly excised lungs from mice used in Figure 3 were imaged using an Olympus FV1000 multiphoton microscope with an Olympus 25X 1.05 NA water immersion objective. As previously described (Olmeda et al., 2017), a Coherent Chameleon Vision II laser was used at 880 nm to excite GFP. Collagen was visualized by second harmonic generation. 512 x 512 images were taken at 12.5 µs/pixel with a Z step-size of 5 µm using a Kalman filter. For all images, the RFP channel was also captured to rule out artifactual autofluorescence.

Bioluminescence Imaging

Given that the MMTV-rtTA/TetO-NeuNT mice have an IRES-Firefly Luciferase sequence downstream of the Tet-inducible NeuNT, we performed whole body bioluminescence imaging on athymic nude mice that were tail vein injected with isolated MMTV-rtTA/TetO-NeuNT primary tumor populations expanded ex vivo. Bioluminescence imaging was conducted using the IVIS Spectrum In Vivo Imaging System (PerkinElmer) in accordance with manufacturer protocols. Mice anesthetized with isoflurane were imaged before and after D-Luciferin (dissolved in PBS) injection intra peritoneally (150mg/kg body weight) at equal exposure times to determine bioluminescence signal. A kinetic study of bioluminescent signal after Luciferin injection was performed to determine peak signal time.

Bioinformatic Analyses

For Kaplan Meier analysis, KM Plotter was used (Györfy et al., 2010; Lángczyk et al., 2016). The optimal probes to be used for each UPRmt marker were identified using JetSet (Lu et al., 2011) and were as follows: SIRT3 (221913_at), FOXO3a (217399_s_at), SOD2
Publicly available expression data for primary breast cancers (GEO: GSE11121, GSE12093, GSE12276, GSE1456, GSE16391, GSE2034, GSE2990, GSE3494, GSE5327, GSE6532, GSE7390, and GSE9195) was downloaded and compiled. Normalized expression of UPR mt markers (SIRT3, FOXO3a, SOD2, SOD1, NRF1, LC3, HSP60) were averaged for each patient to calculate a UPR mt Expression Score. Patients were ranked from lowest to highest UPR mt Expression Score and the highest third of patients (33.3%, n = 603) were designated UPR mt-HIGH and the bottom two thirds of patients (66.6%, n = 1206) were designated UPR mt-LOW. The designations were used as classifiers for Comparative Marker Selection available through GenePattern (Reich et al., 2006). All genes with a false discovery rate (FDR) less than 0.05 were ranked by Log2 Fold Change and this was used for pre-ranked gene set enrichment analysis (GSEA) available through GenePattern (Mootha et al., 2003; Reich et al., 2006; Subramanian et al., 2005). Enrichment scores were determined as a running sum statistic at maximum deviation from zero.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests used are described in figure legends with additional detail. Statistical significance was defined as a p value below 0.05. ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data displayed as mean ± standard error of the mean (SEM) or mean ± standard deviation (SD) and noted in figure legends. Statistical analyses were performed using GraphPad Prism Software or R.
Supplemental Information

Mitohormesis Primes Tumor Invasion and Metastasis

Timothy C. Kenny, Amanda J. Craig, Augusto Villanueva, and Doris Germain
Figure S1. Additional analysis of murine and cellular models. Related to Figure 1 and Figure 2. (A) Isolated ROS- and ROS+ primary tumor sub-populations were tested for *in vitro* bioluminescence. Radiance (p/sec/cm²/sr) was normalized to seeded cell number. Experiment performed in technical triplicate with three cell densities seeded. Mann-Whitney test, two sided, ns = not significant; Mean ± SEM. (B) Isolated ROS- and ROS+ primary tumor sub-populations were seeded at equal density and counted 1 and 3 days after seeding. Cell number was counted in triplicate wells per time point for each cell line. Mann-Whitney, two sided, ns = not significant; Mean ± SEM. C) Experimental design of animals used in Figure 2. 12-week-old female MMTV-rtTA/TetO-NeuNT mice were given doxycycline in their drinking water at a concentration of 1.5 g/L for 3 months. Hematoxylin and Eosin (H&E) staining of representative primary tumor and spontaneous lung metastases. Immunohistochemistry of HER2 in primary tumor section showing oncogene activation (scale bar 100 µm). D) 8 week old female wild type non-transgenic FVBN mice were given water or doxycycline supplemented water (1.5 g/L) for 30 days. Mammary glands of these mice were collected and analyzed by western blotting with indicated URPmt markers. Quantification of each respective blot normalized to actin is shown on the right. The ratio of normalized MTCO1 to SDHA was calculated for each mouse. Mann-Whitney, two sided, ns = not significant; Mean ± SEM. E) 8 week old female FVBN mice (no transgene) were given water or doxycycline supplemented water (1.5 g/L) for 30 days. Livers of these mice were collected and analyzed by western blotting with indicated URPmt markers. To right of blots, quantification of each respective blot normalized to actin. The ratio of normalized MTCO1 to SDHA was calculated for each mouse (n = 5 per group). Mann-Whitney, two sided, ** p < 0.01, ns = not significant; Mean ± SEM. F) 8 week old male C57BL/6 mice (no transgene) were given amoxicillin at 50/mg/kg/day for 15 days or 500mg/kg/day doxycycline for 15 or 30 days in 50g/L sucrose water. Livers of these mice were collected and analyzed by western blotting with indicated URPmt markers. To right of blots, quantification of each respective blot normalized to actin. The ratio of normalized MTCO1 to SDHA was calculated for each mouse (n = 2 per group). No statistics performed; Mean ± SEM.
Figure S2. SIRT3 knockdown reduces invasion and metastasis capacity but not proliferation or cell viability. Related to Figure 3. A) Western blotting for NRF2 in MCF7 Parental (P) and MCF7 Iteration 1 (I1) cells from blots used in Figure 3D. B) Western blotting for NRF2 in MDA-MB-231 Parental (P), MDA-MB-231 Iteration 1 (I1), and MDA-MB-231 Iteration 2 (I2) cells from blots used in Figure 3K. C) Percent viability of attached MDA-MB-231 Parental (P), Iteration 1 (I1), Iteration 2 (I2), and ROS+ cells following treatment with 50 µM menadione for 18 hrs. Paired t-test, two-sided, * p < 0.05; ** p < 0.01 Mean ± SEM; n = 3 biological replicates each with 3 technical replicates. D) MDA-MB-231 Parental and Iteration #2 cells were grown in media (vehicle) or 5 mM N-Acetyl-L-cysteine (NAC) as indicated for 24 hours followed by transwell invasion assay performed in presence of 5 mM NAC as indicated. Representative transwell invasion assay of MDA-MB-231 Parental, MDA-MB-231 Parental +5 mM NAC, and MDA-MB-231 Iteration 2 cells (scale bar 100 µm). Inlay shows two representative filters. Experiments repeated in technical triplicate. E) Parental MDA-MB-231 cells were treated with vehicle or 5 µM gamitrinib-triphenylphosphonium (G-TPP) for 8 hours and used for western blotting with indicated UPRmt markers or F) transwell invasion assay. Representative image shown (scale bar 100 µm). Inlay shows two representative filters. Experiment repeated in technical triplicate. G) Parental MDA-MB-231 cells were treated with non-targeting siRNA (siNC1) or a second independent siRNA against SIRT3. Representative western blot with SIRT3 is shown on the left with the quantification of the changes following siRNA treatment in three independent experiments. Unpaired t-test, two sided, * p < 0.05; Mean ± SEM. H) Representative transwell invasion assay of MDA-MB-231 cells treated with siNC1 or siSIRT3 #2 (scale bar 100 µm). Inlay shows two representative filters. Transwell invasion assays of MDA-MB-231 cells treated with siNC1 or siSIRT3 #2 were repeated in two independent experiments with at least three technical replicates per experiment. I) 1.5x10⁵ MDA-MB-231 cells were seeded and transfected with non-targeting siRNA (siNC1), siSIRT3 #1 (used in Figure 3), or siSIRT3 #2 for 72 hours. Cell number was recorded in triplicate from two experimental replicates. Mann-Whitney, two tailed, ns = not significant; Mean ± SEM. J) 1.5x10⁵ MDA-MB-231 cells were seeded and transfected with non-targeting siRNA (siNC1), siSIRT3 #1 (used in Figure 3), or siSIRT3 #2 for 72 hours. Cell viability was recorded in triplicate from two experimental replicates. Mann-Whitney, two tailed, ns = not significant; Mean ± SEM. K) Transwell invasion assay of generated MDA-MB-231 cells with stable shRNA control (shScrambled) or targeting (shSIRT3-345 and shSIRT3-752) constructs in the pLV-H1-CMV-green vector system (scale bar 100 µm). Inlay shows two representative filters. Experiment repeated in technical triplicate. L) MDA-MB-231 shScrambled, shSIRT3-345, and shSIRT3-752 were seeded at equal cell number and counted at indicated timepoints. Cell number was counted in triplicate wells per time point for each cell line. One-way ANOVA, ns = not significant; Mean ± SEM. M) 1.0x10⁶ shScrambled, shSIRT3-345, or shSIRT3-752 MDA-MB-231 cells were injected in the tail vein of nude mice and collected 4 weeks later. Metastases were visualized in the freshly excised lungs of mice from each experimental group using multiphoton microscopy. GFP signal is displayed as green and collagen, detected by second harmonic generation is displayed as purple (scale bar 100 µm). Representative images of metastases from the three groups are shown. White arrow points to single disseminated cells or nanometastases. shScrambled n = 5 mice; shSIRT3-345 n = 4 mice; shSIRT3-752 n = 5 mice. N) Immunofluorescence staining for GFP in whole lung sections of each mouse from tail vein injection experiment described in (M). Metastatic lesions were counted and recorded as single cells, clusters, or micro-metastases. Sections stained without primary antibody were used as negative controls. GFP is displayed in green, DAPI is displayed in blue (scale bar 25 µm). shScrambled n = 5 mice; shSIRT3-345 n = 4 mice; shSIRT3-752 n = 5 mice.
Figure S3. Breast cancer subtypes have differential activation of the UPRmt and individual genes of UPRmt have mixed prognostic value. Related to Figure 4. A) Mean UPRmt Expression Score was treated as a continuous variable and compared between patients with ER Positive and ER Negative breast cancer from the KM Plotter cohort used in Figure 4A. Welch’s two sample t-test, two-sided, p < 2.2e-16; Mean ± SD; n = 1231. B) Mean UPRmt Expression Score was calculated in the TCGA breast cancer cohort and compared between patients with ER Positive and ER Negative disease. Wilcoxon signed-rank test, two-sided, p = 7.2e-11; Mean ± SD; n = 784. C) Mean UPRmt Expression Score in the TCGA breast cancer cohort was compared between breast cancer subtypes identified by PAM50. Kruskal-Wallis test, p = 8.6e-6, * p < 0.05; **** p < 0.0001; Mean ± SD; n = 1102. D) Kaplan Meier analysis of relapse-free survival in patients with high (33.3% of patients) or low (66.6% of patients) SIRT3 expression (n = 3951, source = KM Plotter, Breast Cancer). HR = hazard ratio. E) As in (D) with FOXO3a expression. F) As in (D) with SOD2 expression. G) As in (D) with SOD1 expression. H) As in (D) with NRF1 expression. I) As in (D) with LC3B expression. J) As in (D) with HSP60 expression.
Figure S4. Model of the duality of SIRT3 as a tumor suppressor and oncogene. Related to Figure 3 and Figure 4. In normal cells, SIRT3 levels are the highest. Upon transformation, SIRT3 is down-regulated leading to increased ROS levels and a metabolic switch to glycolysis. In invasive cancer cells, SIRT3 is elevated but because the majority of breast cancer cells have only one copy of the SIRT3 gene, this elevation never reach the same levels as in normal cells.
Antigen	Antigen Retrieval	Primary Antibody (Diluted in MP Biomedicals Normal Antibody Diluent #980631)	Secondary Antibody (Diluted in Tris Buffered Saline)	Streptavidin HRP (Vector Labs #SA-5004; Diluted in Tris Buffered Saline)	AEC Chromagen (Vector Labs #SK-4200)						
	Retrieval Solution	Time in Water Bath at 95°C	Antibody	Dilution	Incubation Time	Antibody	Dilution	Incubation Time	Dilution	Incubation Time	Detection Time
HER2	Citrate Buffer pH 6	30 minutes	Anti-HER2 (Abcam #16901)	1:400	2 hours at Room Temp	Biotynlated Anti-Mouse (Jackson ImmunoResearch #115-065-205)	1:200	1 hour	1:300	30 minutes	7 minutes
SOD1	Citrate Buffer pH 6	30 minutes	SOD1 (Santa Cruz #sc-11407)	1:100	2 hours at Room Temp	Biotynlated Anti-Rabbit (Jackson ImmunoResearch #711-065-152)	1:200	1 hour	1:300	30 minutes	10 minutes
SOD2	Citrate Buffer pH 6	30 minutes	SOD2 (Millipore #06-984)	1:100	2 hours at Room Temp	Biotynlated Anti-Rabbit (Jackson ImmunoResearch #711-065-152)	1:200	1 hour	1:300	30 minutes	10 minutes
HSP60	Citrate Buffer pH 6	30 minutes	HSP60 (BD Biosciences #MS-1372-P0)	1:100	30 minutes at Room Temp	Biotynlated Anti-Mouse (Jackson ImmunoResearch #115-065-205)	1:200	1 hour	1:300	30 minutes	7 minutes
FOXO3a	Citrate Buffer pH 6	30 minutes	FOXO3a D19A7 (Cell Signaling #12829)	1:100	30 minutes at Room Temp	Biotynlated Anti-Rabbit (Jackson ImmunoResearch #711-065-152)	1:200	1 hour	1:300	30 minutes	17 minutes
NRF1	10 mM TRIS 1 mM EDTA pH 9	30 minutes	NRF1 (Abcam #ab55744)	1:25	2.5 hours at Room Temp	Biotynlated Anti-Mouse (Jackson ImmunoResearch #115-065-205)	1:200	1.5 hours	1:300	30 minutes	30 minutes
LC3	Citrate Buffer pH 6	30 minutes	LC3 (MBL #PM036)	1:400	1.25 hours at Room Temp	Biotynlated Anti-Rabbit (Jackson ImmunoResearch #711-065-152)	1:200	30 minutes	1:300	30 minutes	5 minutes
SIRT3	Citrate Buffer pH 6	30 minutes	SIRT3 (Abcam #ab86671)	1:100	Overnight at 4°C	Biotynlated Anti-Rabbit (Jackson ImmunoResearch #711-065-152)	1:200	1 hour	1:300	30 minutes	20 minutes

Citrate Buffer (2.1 g citrate monohydrate in 1L H2O, pH to 6 with 10M NaOH)

Table S6. Optimized conditions used for immunohistochemistry. Related to Figure 2.