Reachability in Fixed Dimension
Vector Addition Systems with States

Wojciech Czerwiński
University of Warsaw, Poland
wczerwin@mimuw.edu.pl

Sławomir Lasota
University of Warsaw, Poland
sl@mimuw.edu.pl

Ranko Lazić
University of Warwick, UK
R.S.Lazić@warwick.ac.uk

Jérôme Leroux
CNRS & University of Bordeaux, France
jerome.leroux@labri.fr

Filip Mazowiecki
Max Planck Institute for Software Systems, Germany
filipm@mpi-sws.org

Abstract
The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability.

We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation → Verification by model checking; Theory of computation → Logic and verification

Keywords and phrases reachability problem, vector addition systems, Petri nets

Funding Wojciech Czerwiński: Supported by the ERC grant LIPA, agreement no. 683080.
Sławomir Lasota: Supported by the NCN grant 2017/27/B/ST6/02093.
Ranko Lazić: Supported by EPSRC grant EP/P020992/1.
Jérôme Leroux: Supported by ANR grant ANR-17-CE40-0028.

Acknowledgements We thank Matthias Englert for inspiring conversations.

1 Introduction

Context. Vector addition systems with states (shortly, VASS) [20, cf. Section 5.1], vector addition systems without states (shortly, VAS) [27], and Petri nets [37], are equally expressive with well-known straightforward mutual translations. They form a long established model of concurrency with extensive applications in modelling and analysis of hardware
Two central decision problems in the context of formal verification based on that model are the following. Stated in terms of the first formalism, the input of both problems is a VASS V, and two configurations $p(v)$ and $q(w)$.

Coverability asks whether V has a run starting at $p(v)$ and finishing at some configuration $q(w')$ such that $w' \geq w$. Thus the final configuration of the run needs to have control that is in the given target state q and resources that are component-wise no smaller than the given target vector w. In applications, $q(w)$ is typically seen as a minimal unsafe configuration, and the coverability problem is fundamental for verifying safety properties.

Reachability asks whether V has a run starting at $p(v)$ and finishing at $q(w)$. Thus the run needs to reach the given target configuration exactly. It has turned out that verification of liveness properties amounts to solving the reachability problem [22]. Moreover, a plethora of problems from formal languages [10], logic [26, 13, 12, 8], concurrent systems [18, 16], process calculi [35], linear algebra [23] and other areas (the references are again illustrative, cf. Schmitz’s recent survey [40]) are inter-reducible with the reachability problem.

The coverability problem was found ExpSpace-complete already in the 1970s [33, 38], and the reachability problem was proved decidable in the early 1980s [34]. However, the complexity of the latter has become one of the most studied open questions in the theory of verification. The best upper and lower bounds are both very recent, and are given by an Ackermannian function [29] and a tower of exponentials [11], respectively.

Fixed Dimension VASS. The gaps in the state of the art on the complexity of the reachability problem are particularly vivid when the dimension is fixed. For concreteness, we focus on VASS, bearing in mind that corresponding statements in terms of VAS or Petri nets can be obtained by means of standard translations (we refer to [40] Section 2.1 for details, noting that in some cases the dimension is affected by a small additive constant). The only broadly settled cases are for dimensions 1 and 2, as shown in the following table, where ‘unary’ and ‘binary’ specify how the integers in the input to the reachability problem are encoded.

Dimension	Unary VASS	Binary VASS
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete

For dimensions $d \geq 3$, the best known bounds are from [29] and [11], namely membership of the fast-growing primitive recursive class F_{d+4} and hardness for $(d - 13)$-ExpSpace when $d \geq 13$, respectively, which hold with both unary and binary encodings. In particular, for $3 \leq d < 13$, no better lower bounds have been known than NL for unary VASS and PSPACE for binary VASS, whereas the F_{d+4} upper bound is far above elementary already for $d = 3$.

Flat Control. The structural restriction of flatness, which is essentially that the control graph contains no nested cycles, has long played a prominent role in a number of settings in verification, cf. e.g. [9]. In fact, all the tight upper bounds for dimensions 1 and 2 recalled above can be seen as due to the effective flattrability of 2-dimensional VASS [30]. Regarding the complexity of reachability for flat VASS, there has been a marked contrast in the state of the art depending on the encoding.

Binary: Thanks to reducibility to existential Presburger arithmetic [17, 3], we have NP membership, even when the dimension is not fixed. And already for dimension 1, we have NP hardness.
Unary: With the exception of dimensions 1 and 2 for which we have the NL memberships, no better upper bound than NP has been known in dimension 3 or higher. And for any fixed dimension, no better lower bound than NL has been obtained. Interestingly, from the results of Rosier and Yen [39], we have that the coverability problem for fixed dimension flat VASS is in NP with the binary encoding and in NL with the unary encoding, which not provably better than the reachability problem as just discussed.

Main Results. The NL memberships of reachability for unary VASS in dimension 2 and of coverability for unary VASS in any fixed dimension were obtained by proving that polynomially bounded witnessing runs always exist. It is therefore pertinent to ask:

Do polynomially bounded witnessing runs exist for reachability for unary flat VASS in fixed dimensions greater than 2?

Our first main result, presented in Section 3, provides a negative answer immediately in dimension 3. We believe this is very significant for the continuing quest to understand the reachability problem, for which as we have seen there is currently a huge complexity gap already in dimension 3. Namely, 3-dimensional VASS have so far been distinguished from 2-dimensional VASS only by means of the infamous example of Hopcroft and Pansiot [24, proof of Lemma 2.8], which shows that, in contrast to the latter, the former do not have semi-linear reachability sets and are hence not flattable. However, we now have a new distinguishing feature which is present even under the restriction of flatness.

Even if polynomially bounded witnessing runs do not exist, it is conceivable that the decision problem nevertheless has low complexity, so we next ask:

Is reachability for unary flat VASS in NL in fixed dimensions greater than 2?

We show that this is unlikely in Section 4 where our second main result establishes NP hardness in dimension 7. This provides the first concrete indication that the reachability problem is harder than the coverability problem for fixed dimension flat VASS.

Lastly, we turn to binary VASS in fixed dimensions d, where without the flat assumption, the enormous complexity gap between PSPACE hardness and F_{d+4} membership remains for $3 \leq d \leq 13$. Given that exponentially bounded witnessing runs exist for $d = 2$ [14] (which yields PSPACE membership) but not for $d = 14$ [11], we ask:

Do exponentially bounded witnessing runs exist for reachability for binary VASS in fixed dimensions from 3 to 13?

A negative answer is provided in Section 5 by our third main result, which exhibits a family of 4-dimensional VASSes whose shortest witnessing runs are doubly exponentially long.

Technical Contributions. In all three of the main results, we make use of a key technical pattern first seen in [11], namely checking divisibility of a counter x by a large integer as follows: ensure that a counter y is initially equal to x, then multiply x weakly (which a priori may nondeterministically produce an erroneous smaller result) by many integer fractions greater 1 whose product is c/d, and finally verify that $x = y \cdot (c/d)$ by subtracting c from x and d from y repeatedly until they are both 0. The divisibility by the large integer is ensured because the check succeeds if and only if the weak multiplications are all exact. However, much additional development has been involved:

1. For the exponentially long shortest runs in Section 3, we employ the factorial fractions also seen in [11], but in reverse order, with the construction stripped to its essentials to minimise the dimension, and with a detailed divisibility analysis of large integers.
2. The NP hardness in Section 3 builds on the development in the previous section, adding careful machinery that facilitates exact computations on exponentially large integers.

3. To obtain the doubly exponentially long shortest runs in Section 4, we have developed an intricate new family of sequences of fractions, where in contrast to the much simpler factorial equations, the number of distinct fractions in a sequence is logarithmic in relation to both the numerators and the denominators as well as to the length of the sequence.

2 Preliminaries

Vector Addition Systems with States. A vector addition system with states in dimension \(d \) (\(d \)-VASS, or simply VASS if the dimension is irrelevant) is a pair \(V = (Q,T) \) consisting of a finite set \(Q \) of states and a finite set of transitions \(T \subseteq Q \times \mathbb{Z}^d \times Q \). The size of a VASS is \(|Q| + |T| \cdot s \), where \(s \) is the maximum on the representation size of a vector in \(T \). A configuration of a \(d \)-VASS is a pair \((p,v) \in Q \times \mathbb{N}^d \), denoted \(p(v) \), consisting of a state \(p \) and a nonnegative integer vector \(v \). A run of a \(d \)-VASS is a sequence of configurations

\[
p_0(v_0), \ldots, p_k(v_k),
\]

such that for every \(1 \leq i \leq k \) there is a transition \(\alpha_i = (p_{i-1},w_i,p_i) \in T \) satisfying \(v_{i-1} + w_i = v_i \). The sequence of transitions \(\alpha_1, \ldots, \alpha_k \) we call the path of the run \((1) \).

We are interested in the complexity of the reachability problem: given a \(d \)-VASS and two configurations \(p(v), q(w) \) does there exist a run from \(p(v) \) to \(q(w) \). W.l.o.g. we can restrict \(v = w = 0 \) to be the zero vectors, as the general case polynomially reduces to such restricted case. Indeed, it suffices to add a new initial state whose only out-going transition adds \(v \), and likewise a new final state whose only in-going transition subtracts \(w \). In the sequel we usually assume that VASS is additionally equipped with a pair of configurations, a source \(p(v) \) and a target \(q(w) \), thus \(V = (Q,T,p(v),q(w)) \). Thus we do not distinguish between a VASS and a VASS reachability instance. Runs from \(p(v) \) to \(q(w) \) we call halting runs of \(V \).

We study the reachability problem under two further restrictions. The first restriction assumes that the dimension \(d \) is fixed. In this case it may matter, for the complexity of the reachability problem, whether the numbers appearing in the vectors in \(T \) are encoded in unary or binary. We will thus distinguish these two cases, and speak of unary, respectively binary VASS. Note that in the unary case one can assume w.l.o.g. all vectors in \(T \) to be either the zero vector, or the unit vector \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \) with single 1 on some \(i \)-th coordinate, or inverse \(-e_i \) thereof. The second restriction is flatness and concerns cycles in runs (see e.g. [30, 3]). The path \(\alpha_1, \ldots, \alpha_k \) of a run \((1) \) is called simple if there is no repetition of states along the path; it is called simple cycle if there is no repetition of states along the path except for the first and the last states which are equal: \(p_0 = p_k \). A VASS is flat if every state admits at most one simple cycle on it (i.e., the VASS has no nested cycles).

Counter Programs. We are going to represent VASSes by counter programs. A counter program is a numbered sequence of commands of the following types:

- \(x += n \) (increment counter \(x \) by \(n \))
- \(x -= n \) (decrement counter \(x \) by \(n \))
- \(\text{goto } L \text{ or } L' \) (jump to either line \(L \) or line \(L' \))

except that the first and the last command of the program, respectively, are of the form

- \(\text{initialise to } 0 \) (initialise all counters to zero);
- \(\text{halt if } x_1, \ldots, x_i = 0 \) (terminate provided all listed counters are zero).
(We note that in the unary case, increments \(x += m \) and decrements \(x -= m \) can be written as \(m \) consecutive unitary increments \(x += 1 \) and decrements \(x -= 1 \), respectively, introducing only linear blow-up. In the binary case this would lead to an exponential blow-up.) Indeed, a counter program \(\mathcal{P} \) represents a VASS (in fact, a VASS reachability instance) of dimension equal to the number of counters used in \(\mathcal{P} \), with a separate state for every line in \(\mathcal{P} \). The increment and decrement commands in \(\mathcal{P} \) are simulated by transition vectors of the VASS. The source and target configurations of the VASS correspond to the first and last line of \(\mathcal{P} \). The size of the VASS is linear with respect to the size of the program. This convenient representation was adopted e.g. in \([15, 11]\).

Accordingly with runs of a VASS, we speak of runs of a counter program (in particular, values of counters along a run are nonnegative) with the proviso that the initial value of all counters is 0. A run is **halting** if it has successfully executed its (necessarily last) \text{halt} command; otherwise, the run is **partial**. The reachability problem for a VASS translates into the question whether there exists a halting run in a counter program.

Note that a counter program does not need to test for zero all counters in the final \text{halt} command; for the sake of presentation it is convenient to allow for halting runs with non-zero final value of certain (irrelevant) counters. On the other hand, formally, our intention is that a counter program represents a VASS reachability instance with the zero target vector. This incompatibility can be circumvented by assuming that counter programs are implicitly completed with additional loops allowing to decrease every untested counter just before executing the \text{halt} command.

In case of fragments of counter programs which neither start with \text{initialise} nor end with \text{halt}, we consider explicit \text{initial} and \text{final} values of counters. Note however that due to nondeterministic \text{goto} command, final values are not uniquely determined by initial ones.

When writing counter program we use a syntactic sugar: we write \text{goto} \(L \) instead of \text{goto} \(L \) or \(L \), and whenever a program repeats the block of commands in line 2 some nondeterministically chosen number of times (possibly zero, possibly infinite), as shown on the left, we use a shorthand as shown on the right:

\begin{align*}
1: & \text{ goto } L \\
2: & \text{ <iterated commands> } \\
3: & \text{ goto } L \\
4: & \text{ <remaining commands> }
\end{align*}

\begin{align*}
1: & \text{ loop } \\
2: & \text{ <iterated commands> } \\
3: & \text{ <remaining commands> }
\end{align*}

In the sequel we will only occasionally use \text{goto} commands explicitly. Observe that a counter program without explicit \text{goto} commands, but using **unnested** \text{loop} commands (which implicitly use \text{goto} commands), always represents a flat VASS.

\begin{algorithm}[H]
\begin{enumerate}
\item \text{loop} \\
\item \(x -= 1 \) \(y += 1 \) \\
\item \text{loop} \\
\item \(x += c \) \(y -= d \)
\end{enumerate}
\end{algorithm}

We end this section with examples of counter programs that \textit{weakly} compute a number \(b \) in some counter \(x \), i.e., all runs end with \(x \leq b \), and there is a run that ends with \(x = b \). On the way we also introduce macros to be used later to facilitate writing complex programs. As a preparation, consider the program in Algorithm 1 which weakly multiplies the initial value of \(x \) by \(\frac{c}{d} \).

\begin{algorithm}[H]
\begin{enumerate}
\item \(x, y \) be initial and final values, respectively, of counters \(x, y \). We claim that the sum of final values is at most \(\frac{c}{d} \) times larger than the sum of initial values. Moreover, it is exactly \(\frac{c}{d} \) times larger if, and only if, both loops are iterated \textit{maximally}: the first loop exits only when the counter \(x \), decreased in its every iteration, reaches the minimal possible value 0; and likewise the second loop exits only when the counter \(y \) reaches 0. Enforcing
maximal iteration of loops will be our fundamental technical objective in the sequel.

Claim 1. Let x', y' be the values of counters x, y at the exit from the first loop. Then $x_1 + y_1 \leq (x_0 + y_0) \cdot \frac{c}{d}$. Moreover, $x_1 = (x_0 + y_0) \cdot \frac{c}{d}$ if, and only if, $x' = y_1 = 0$.

Algorithm II Program fragment W_b.
1: initialise to 0
2: for $i := m$ downto 0 do
3: loop
4: $x -= 1$ $y += 1$
5: loop
6: $x += 2$ $y -= 1$
7: if $b_i = 1$ then $x += 1$

Algorithm III Unfolding of macros in W_2.
1: initialise to 0
2: loop
3: $x -= 1$ $y += 1$
4: loop
5: $x += 2$ $y -= 1$
6: $x += 1$
7: loop
8: $x -= 1$ $y += 1$
9: loop
10: $x += 2$ $y -= 1$

Figure 1 A 2-VASS represented by the program W_2. The first coordinate corresponds to the value of counter x and the second one to the value of counter y.

The counter program W_b shown in Algorithm II weakly computes a number b, assuming that $b_m \ldots b_0 = \text{Bin}(b)$ is the binary representation of b (the oldest bit $b_m = 1$). The halt command is omitted as no zero-testing is relevant in this example. We use for and if then preprocessing macros with the following semantics. The macro

for $i := m$ downto 0 do <program fragment>

is understood as $(m + 1)$-fold repetition of copies of <program fragment>:

<program fragment> $(i = m)$
<program fragment> $(i = m - 1)$
...<program fragment> $(i = 0)$

for $i = m, m - 1, \ldots, 0$. It is important that i is not a counter but a meta-variable that is treated as a constant in every program fragment. By convention we use different fonts for counters and meta-variables: i is a counter while i is a meta-variable. Furthermore in every copy, say for $i = k$, at every appearance of the macro if $\varphi(i)$ then <optional program fragment>, the formula $\varphi(i)$ is evaluated and, if it evaluates positively then macro is replaced by <optional program fragment>, otherwise it is removed. Specifically, consider for example $m = 1$ and $b = 2$, i.e., $b_1 = 1$ and $b_0 = 0$. Unfolding of the macros appearing in W_2 yields the counter program shown in Algorithm III. Figure 1 shows the corresponding 2-VASS. We remark that the programs in Algorithm II and Algorithm III represent flat VASS.

Clearly, we do not want for and if then to be full-fledged commands operating on program counters, as this would make counter programs as powerful as Minsky machines, hence undecidable. They are just pre-processing macros that operate on meta-variables i only, and constitute syntactic sugar helpful in writing repetitive program fragments.

Proposition 2. The program W_b weakly computes b.

Picture of Figure 1
Proof. By Claim 1, the program W_b weakly multiplies x by 2 in lines (3)–(6). Combining this with addition of a bit in (7) gives weak computation of b.

\section{Exponential Shortest Runs}

\begin{theorem}
There is a family of unary flat 3-VASS $(\mathcal{V}_n)_{n \in \mathbb{N}}$ of size $O(n^2)$ such that every halting run of \mathcal{V}_n is of length exponential in n.
\end{theorem}

\begin{algorithm}
1: initialise to 0
2: $x \leftarrow 1$ $y \leftarrow 1$
3: loop
4: $x \leftarrow 1$ $y \leftarrow 1$
5: for $i := n$ down to 1 do
6: loop
7: $x \leftarrow i + 1$ $z \leftarrow i$
8: loop
9: $x \leftarrow i + 1$ $z \leftarrow i$
10: loop
11: $x \leftarrow n + 1$ $y \leftarrow 1$
12: halt if $y = 0$.
\end{algorithm}

Similarly, let x_i' be the value of counter x at the exit from the loop in lines 6–7. For uniformity we write x_{n+1} and z_{n+1} for the values of x and z, respectively, just before entering the for macro, and call these values initial. Notice that x_{n+1} is equal to the value of counter y at that point and $z_{n+1} = 0$. By Claim 1, we derive:

\begin{claim}
For all $i = 1, \ldots, n$, we have $x_{i+1} + z_{i+1} \leq (x_i + 1 + z_i) \cdot \frac{i+1}{i}$.
\end{claim}

We focus on runs that maximally iterate both inner loops, by which we mean:

- the value of x is 0 at the exit of the loop in lines 6–7.
- the value of z is 0 at the exit of the loop in lines 8–9.

\begin{claim}
We have $x_{i+1} \leq x_{n+1} \cdot (n+1)$. The equality holds if, and only if, $z_i = z_i' = 0$ for all $i = 1, \ldots, n$.
\end{claim}

For a finite subset $X \subseteq \mathbb{N}$ of natural numbers, we write $\text{LCM}(X)$ for the least common multiple of all numbers in X. We will use the number $N(n)$ defined as

$$N(n) := \frac{\text{LCM}(\{2, \ldots, n+1\})}{n+1}.$$

The following two claims conclude the proof of Theorem 3.

\begin{claim}
The function N grows exponentially with respect to n. The binary representation Bin$(N(n))$ is computable in time polynomial with respect to n.
\end{claim}

\begin{proof}
For the exponential upper bound we recall that $N(n) \leq n!$. For the exponential lower bound we use the prime number theorem (proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896): the number of primes $\pi(n)$ between 2 and n is at least $\pi(n) \geq c \cdot n^\epsilon - 1$ for some constants $c > 0$ and $0 < \epsilon < 1$. Since $\text{LCM}(\{2 \ldots n+1\})$
must be divisible by all prime numbers between 2 and \(n + 1 \) and each prime number is at least 2 we get \(\text{Lcm}(\{2, \ldots, n + 1\}) \geq 2^{\pi(n+1)} \).

\(N(n) \) is computated by exhaustive enumeration of all non-divisors of \(n + 1 \), computing their prime decompositions, and combining them into prime decomposition of \(N(n) \).

\[\triangleright \text{Claim 7.} \quad \text{For every initial value } x_{n+1} \text{ of counter } x \text{ there is at most one halting run. Such a run exists if, and only if, } x_{n+1} \text{ is a positive multiple of } N(n). \]

\[\text{Proof. Recall that the last loop in } P_n \text{ in line } 11 \text{ decreases simultaneously } y \text{ by 1 and } x \text{ by } n + 1. \text{ Therefore, the run halts only if } x \geq y \cdot (n + 1). \text{ By Claim 5 we have } x \leq y \cdot (n + 1). \text{ Thus every halting run satisfies the equality } x = y \cdot (n + 1). \text{ By Claim 5 we know that is possible only if } z_i = x'_i = 0 \text{ for all } i = 1, \ldots, n, \text{ which uniquely determines the run for a given } x_{n+1}. \text{ It remains to prove that a halting run exists if, and only if, } x_{n+1} \text{ is a positive multiple of } N(n). \text{ Notice that by Claim 4 and Claim 5 in a halting run}
\]

\[x_i = x_{i+1} \cdot \frac{i + 1}{i + 1} = \ldots = x_{n+1}, \quad \prod_{j=1}^{n} \frac{j + 1}{j} = x_{n+1} \cdot \frac{n + 1}{i}. \]

Therefore \(x_{n+1} \cdot (n + 1) \) must be always divisible by all numbers in \(\{1 \ldots n\} \). Since \(n + 1 \) divides \(x_{n+1} \cdot (n + 1) \) as well, we deduce that \(\text{LCM}(\{2, \ldots, n + 1\}) \) divides \(x_{n+1} \cdot (n + 1) \) which is equivalent to \(N(n) \) divides \(x_{n+1} \). Conversely, if \(x_{n+1} \) is a multiple of \(N(n) \) then there is a run where all loops are iterated maximally, satisfying \(x_i = x_{i+1} \cdot \frac{i + 1}{i + 1} \) and thus halting.

\[\triangleleft \]

4 NP-hardness

This section is devoted to proving NP-lower bound for flat VASS in fixed dimension.

\[\triangleright \text{Theorem 8. The reachability problem for unary flat 7-VASS is P-hard.} \]

As mentioned in the introduction NP-membership is already known (even in binary VASS of unrestricted dimension). Thus as a corollary we get the following result.

\[\triangleright \text{Corollary 9. The reachability problem for flat } d \text{-VASS is } \text{NP-complete for fixed } d \geq 7. \]

To prove Theorem 8 we reduce from the \text{Subset Sum} problem: given a set of positive integers \(S = \{s_1, \ldots, s_k\} \subseteq \mathbb{N} - \{0\} \) and an integer \(s_0 > 0 \), determine if some subset \(R \subseteq S \) satisfies \(\sum_{s \in R} s = s_0 \). Note that all the numbers \(s_0, s_1, \ldots, s_k \) are encoded in binary.

Fix an instance \(s_0, s_1, \ldots, s_k \) of the \text{Subset Sum} problem and let \(n \) be the smallest natural number such that \(N(n) \geq s_0, s_1, \ldots, s_k \). By Claim 4 the number \(n \) as well as the binary representation \(\text{Bin}(N(n)) = b_n \ldots b_0 \) is computable in time polynomial with respect to the sizes of binary representations of \(s_0, s_1, \ldots, s_k \). Recall that \(b_m = 1 \). We are going to define a unary counter program \(P \) of polynomial size using 7 counters, as a function of \(s_0, s_1, \ldots, s_k \) and \(n \), which halts if, and only if, the instance \(s_0, s_1, \ldots, s_k \) is positive.

The main obstacle is that the numbers in the \text{Subset Sum} problem are represented in binary, while the numbers in a counter program are to be represented in unary. Thus we have to exactly compute with exponential numbers, using a fixed number of 7 counters.

Construction of \(P \). We face the challenge by combining the weak computation given by Proposition 2 (that allows us to compute at most a required value \(b \)) with the insight of the proof of Theorem 3 (that enforces that the computed value is simultaneously at least \(b \)).
The program \(P \) implements this idea. The first half of the program, namely lines 1–11 weakly computes in counter \(e \) the value \(N(n) \), and in counter \(f \) the value \(N(n) \cdot (k+1) \), very much like the counter program \(\mathcal{W}_k \). Note a slight difference compared to Algorithm [V] the oldest bit \(b_m = 1 \) is treated in a different way than other bits \(b_i \) for \(0 \leq i < m \), by initializing counters \(e \) and \(f \) to 1 and \(k+1 \), respectively, which excludes a trivial halting run that would never iterate any loop and end with the value of \(y \) equal to 0. Then the second part of \(I \) checks, very much like the counter program \(\mathcal{P}_n \), if the values are computed exactly. (Notice that lines 12–19 of Algorithm [V]) Using Claim [I] we get:

\[\text{Claim 10.} \quad \text{Counter program} \ I \text{ has exactly one halting run that computes} \ N(n) \text{ and} \ N(n) \cdot (k+1) \text{ in counters} \ e \text{ and} \ f, \text{respectively, and} \ 0 \text{ in the remaining counters} \ x, x', y \text{ and} \ z. \]

The program \(\mathcal{P} \) (shown in Algorithm [VI] consists of the program \(I' \) obtained from \(I \) by removing the last \text{halt} command. The remaining part of \(\mathcal{P} \) exploits the values of counters \(e \) and \(f \) computed by \(I' \) to turn weak computations of exponential numbers into exact ones. It never modifies the counter \(y \) again, hence \(y \) is listed in the final \text{halt} command of \(\mathcal{P} \), and uses a distinguished counter \(u \), initially set to 0, a program fragment \(\mathcal{R}_{s_0, \text{true}}^+ \) and a number of program fragments \(\mathcal{R}_{s, p}^- \) for \(s \in \{ s_1, s_2 \ldots s_k \} \) and \(p \in \{ \text{true, false} \} \). We call these program fragments \textit{components}. In every halting run of \(\mathcal{P} \), the component \(\mathcal{R}_{s, \text{true}}^- \) decrements \(u \) by \(s \) while the other component \(\mathcal{R}_{s, \text{false}}^- \) has no effect on counter \(u \). Likewise, the component \(\mathcal{R}_{s_0, \text{true}}^+ \) increments \(u \) by \(s_0 \). Finally, \(u \) is zero-tested by the final \text{halt} command.

Algorithm V Counter program \(I \).

1. initialise to 0
2. \(x := 1 \quad y := 1 \quad e := 1 \quad f := k+1 \)
3. for \(i := m - 1 \) to 0 do
 4. loop
 5. \(x := 1 \quad x' := 1 \)
 6. \(y := 1 \quad e := 1 \quad f := k+1 \)
 7. loop
 8. \(x := 2 \quad x' := 1 \)
 9. \(y := 2 \quad e := 2 \quad f := 2(k+1) \)
10. if \(b_i = 1 \) then
11. \(x := 1 \quad y := 1 \quad e := 1 \quad f := k+1 \)
12. for \(i := n \) down to 1 do
13. loop
14. \(x := 1 \quad z := 1 \)
15. loop
16. \(x := i + 1 \quad z := i \)
17. loop
18. \(x := n + 1 \quad y := 1 \)
19. halt if \(y = 0 \)

\[I' \]
\[\mathcal{R}_{s_0, \text{true}}^+ \]
\[\text{goto } f_1 \text{ or } t_1 \]
\[f_1: \mathcal{R}_{s_1, \text{false}}^- \text{ goto } f_2 \text{ or } t_2 \]
\[f_2: \mathcal{R}_{s_2, \text{false}}^- \text{ goto } f_3 \text{ or } t_3 \]
\[t_1: \mathcal{R}_{s_1, \text{true}}^- \text{ goto } f_2 \text{ or } t_2 \]
\[t_2: \mathcal{R}_{s_2, \text{true}}^- \text{ goto } f_3 \text{ or } t_3 \]
\[\ldots \]
\[f_3: \mathcal{R}_{s_3, \text{false}}^- \text{ goto } h \]
\[t_3: \mathcal{R}_{s_3, \text{true}}^- \]
\[\text{halt if } y, u, f = 0 \]

For \(1 \leq i \leq k \), we use \(f_i \), respectively \(t_i \), to denote the the first line of the program fragment \(\mathcal{R}_{s_i, \text{false}}^- \) respectively \(\mathcal{R}_{s_i, \text{true}}^- \). Every component \(\mathcal{R}_{s_i, p}^- \), for \(0 \leq i < k \) and \(* \in \{ +, - \} \), is followed by \text{goto} \(f_{i+1} \) or \(t_{i+1} \). Thus for every \(i = \{ 1 \ldots k \} \) either \(\mathcal{R}_{s_i, \text{false}}^- \) or \(\mathcal{R}_{s_i, \text{true}}^- \) is executed, as shown by the following control flow diagram of \(\mathcal{P} \):
Reachability in Fixed Dimension VASS

Observe that every halting run of \(P \) determines a subset \(R \subseteq \{1, \ldots, k\} \) such that for \(i \in R \) the component \(R_{s_i, true}^* \) is executed, while for \(i \notin R \) the component \(R_{s_i, false}^* \) is executed.

The Components. The component \(R_{s, p}^* \) is shown in Algorithm VII. By \(\text{BIN}_n(a) = a_m \ldots a_0 \) we mean the \((m+1)\) -bit binary representation of the number \(a < 2^{m+1} \), padded with leading 0 bits if needed. The aim of every \(R_{a, true}^* \) is to increment (when \(* = + \)) or decrement (when \(* = - \)) \(a \) from the counter \(u \), using the counters \(e \) and \(f \) to enforce exactness. After the auxiliary counter \(v \) is initialised to 1, in every iteration of the for loop (in lines 2-8) counter \(v \) is weakly multiplied by 2, so after \(i \) iterations its value is at most \(2^i \).

\[
\text{Algorithm VII Component } R_{a, p}^*.
\]

1. \(v \leftarrow 1 \)
2. for \(j := 0 \) to \(m - 1 \) do
3. \(\text{loop} \)
4. \(v \leftarrow 1 \quad v' \leftarrow 1 \)
5. \(\text{if } b_j = 1 \text{ then} \)
6. \(e \leftarrow 1 \quad e' \leftarrow 1 \quad f \leftarrow 1 \)
7. \(\text{if } p \land (a_j = 1) \text{ then } u \leftarrow 1 \)
8. \(\text{loop} \)
9. \(v \leftarrow 2 \quad v' \leftarrow 1 \)
10. \(\text{loop} \)
11. \(v \leftarrow 1 \)
12. \(e \leftarrow 1 \quad e' \leftarrow 1 \quad f \leftarrow 1 \)
13. \(\text{if } p \land (a_m = 1) \text{ then } u \leftarrow 1 \)
14. \(\text{loop} \)
15. \(e \leftarrow 1 \quad e' \leftarrow 1 \)

Note that the oldest bit \(a_m \), irrespectively of its value 0 or 1, is treated differently (in lines 10, 11, 13) from the other bits \(a_{m-1} \ldots a_0 \) of \(\text{BIN}_m(a) \) (treated in the body of the for loop in lines 2-9). This is because the auxiliary counter \(v \) needs to be multiplied by 2 exactly \(m \) times, which happens in the course of \(m \) iterations of the for loop, while the number of bits in \(\text{BIN}(a) \) is \(m + 1 \), thus larger by 1. Consequently, in lines 10, 13 the value of \(v \) is not flushed to \(v' \) nor restored back from \(v' \), and hence \(v \) is forcedly 0 at the end of \(R_{a, true}^* \) and can be reused by the following commands. Note that the if macro is used in line 12 as, due to the choice of \(m \), the oldest bit \(b_m \) of \(\text{BIN}(N(n)) \) is 1.

The above analysis applies equally well to every component \(R_{a, false}^* \), as its computation is exactly the same as that of \(R_{a, true}^* \), except that the value of \(u \) is not changed.

Dimension 7. To estimate the dimension of the VASS represented by \(P \), notice that \(I' \) uses counters \(x, x', y, z, e, f \) and components \(R_{s, p}^* \) use additionally \(v, v', e', u \). However, by Claim 10 the final values of \(x, x', z \) computed by \(I' \) are 0 in every halting run of \(P \), hence the three counters can be reused in components, which reduces the number of counters to 7.

5 Doubly Exponential Shortest Runs

- **Theorem 11.** There is a family of binary 4-VASS \((V_n)_{n \in \mathbb{N}} \) of size \(O(n^3) \) such that every halting run of \(V_n \) is of length doubly exponential in \(n \).
In this section we prove the theorem. Define the description size of an irreducible fraction \(\frac{p}{q} \) as \(\max\{p,q\} \). We start with a key technical lemma stating existence of arbitrarily long increasing sequences of rationals greater than 1, of description size exponential with respect to \(k \), with the property that the result of multiplying consecutive exponential powers of these rationals has only exponential (and not doubly exponential) description size.

Lemma 12. For each \(k \geq 1 \) there are \(k \) rational numbers
\[
1 < f_1 < \ldots < f_k = 1 + \frac{1}{4^k},
\]
of description size bounded by \(4^k \), such that the description size of \(f \) defined by
\[
f = (f_k)^{2^k} \cdot \ldots \cdot (f_2)^{2^2} \cdot (f_1)^{2^1}
\]
is bounded by \(4^{2(k^2+k)} \).

A distinguished counter \(x \) in the 4-VASS \(V_k \) will play a special role: in every halting run, \(x \) will be exactly multiplied by consecutive powers as in (3). As the denominator of the irreducible form of \(f_k \) is at least 2, the counter \(x \), just before the very first multiplication by \((f_k)^{2^k} \), must be divisible by the denominator of \(f_k \) to the power \(2^k \), which is doubly exponential in \(k \). In consequence, every halting run has to be doubly exponentially long.

As before, the main difficulty is to turn weak multiplications into exact ones. To this aim we will rely on Lemma 12 and on a well-known weakly exponentiating 3-VASS gadget of Hopcroft and Pansiot [24]:

The gadget is represented by the program fragment \(HP(c,d) \) shown in Algorithm VIII.

Proposition 13. Consider program fragment \(HP(c,d) \) for an irreducible fraction \(\frac{c}{d} > 1 \), and initial values \(x_0, y_0, z_0 \) of counters \(x, y \) and \(z \). In every run, the respective final values \(x_1, y_1, z_1 \) satisfy
\[
x_1 + y_1 \leq (x_0 + y_0) \cdot \left(\frac{c}{d} \right)^{z_0 - z_1}.
\]
Moreover, there is a run satisfying \(x_1 = (x_0 + y_0) \cdot \left(\frac{c}{d} \right)^{z_0} \) if, and only if, \(x_0 + y_0 \) is divisible by \(d^{z_0} \). In this case \(y_1 = z_1 = 0 \).

Proof. The two inner loops (lines 2–5) coincide with the counter program fragment shown in Algorithm I. As the outer loop is executed \(z_1 - z_0 \) times, the first part follows by Claim I.

For the second part, assume \(x_0 + y_0 \) is divisible by \(d^{z_0} \), and consider the unique run where all the loops are iterated maximally, by which we mean:
- the outer loop (lines 1–6) is executed exactly \(z_1 - z_0 \) times;
- whenever execution of the first inner loop (lines 2–3) ends, the value of \(x \) is 0;
- whenever execution of the second inner loop (lines 4–5) ends, the value of \(y \) is 0;
Thus every execution of the two inner loops necessarily multiplies the sum \(x + y \) by \(\frac{c}{a} \), and consequently, after \(i \) iterations of the outer loop the values of respective counters \(x', y', z' \) satisfy

\[
x' = (x_0 + y_0) \cdot \left(\frac{c}{a} \right)^{z_0 - i} \quad y' = 0 \quad z' = z_0 - i.
\]
(4)

Repeating the multiplication \(z_0 \) times yields \(x_1 = \left(\frac{c}{a} \right)^{z_0} \) and \(y_1 = z_1 = 0 \), as required.

Conversely, suppose \(x_1 = (x_0 + y_0) \cdot \left(\frac{c}{a} \right)^{z_0} \). As \(c \) and \(d \) are co-primes, the sum of initial values \(x_0 + y_0 \) is thus forcedly divisible by \(d^{z_0} \). By the first part we know that the outer loop has been iterated maximally, hence \(z_1 = 0 \). Then \(y_1 = 0 \) follows by the first part. ▷

Construction of \(V_k \). Fix \(k \geq 1 \). Let \(f_i = \frac{a_i}{b_i} \), for \(i \leq i \leq k \), be the fractions from Lemma 12 and let \(f = \frac{a}{b} \) be the result of their multiplication as in (3). We thus have:

\[
\left(\frac{a_1}{b_1} \right)^2 \cdot \left(\frac{a_2}{b_2} \right)^2 \cdots \left(\frac{a_k}{b_k} \right)^2 = \frac{a}{b}.
\]

Algorithm IX (on the left below) shows the counter program representing the 4-VASS \(V_k \) (on the right below), using four counters \(t, x, y \) and \(z \). The constants appearing in increment and decrement commands are exponential in \(k \), represented in binary in size \(V_k \) is \(\mathcal{O}(k) \). The length of \(V_k \) is \(\mathcal{O}(k) \) and hence its size is \(\mathcal{O}(k^3) \).

Algorithm IX Program representing 4-VASS \(V_k \) shown on the right. Counters \(t, x, y \) and \(z \) correspond to consecutive dimensions.

1: initialise to 0
2: \(t += 1 \quad x += 1 \)
3: loop
4: \(t += 1 \quad x += 1 \)
5: for \(i := k \) down to 1 do
6: \(z += 2^i \)
7: loop
8: loop
9: \(x -= 1 \quad y += 1 \)
10: loop
11: \(x += a_i \quad y -= b_i \)
12: \(z -= 1 \)
13: loop
14: \(t -= b \quad x -= a \)
15: halt if \(t = 0 \)

▷ Claim 14. For every \(k \geq 0 \), the 4-VASS \(V_k \) has a halting run.

Proof. Put \(N := \prod_{i=1..k} (b_i)^{2^i} \). By performing the first loop (lines 3–4) exactly \(N - 1 \) times, the run reaches the following valuation of counters \(x, y, z \):

\[
x_k = N \quad y_k = z_k = 0.
\]

(6)
Notice that the outer loop (lines 7–12) coincides with the program fragment $\mathcal{HP}(a_i, b_i)$. We use the second part of Proposition 13 for consecutive iterations of the for macro. The proposition allows us to derive a run where the values x_j, y_j, z_j of counters x, y, z, after $k - j$ iterations of the for macro (for $j \in \{0, \ldots, k\}$), satisfy:

$$
x_j = N \cdot \left(\frac{a_j}{b_j} \right)^{2^j} \cdots \left(\frac{a_k}{b_k} \right)^{2^k} \quad \forall j \quad y_j = z_j = 0. \quad (7)
$$

Indeed, by induction with respect to $k - j$ (using (6) as induction base for $j = k$), we argue as follows: if (7) holds then x_j is divisible by $(b_j - 1)^{2^j - 1}$, and hence by Proposition 13 there is a continuation of the run that yields

$$
x_{j-1} = x_j \cdot \left(\frac{a_{j-1}}{b_{j-1}} \right)^{2^{j-1}} \quad y_{j-1} = z_{j-1} = 0.
$$

In consequence, for $j = 0$ we obtain, using (5):

$$
x_0 = N \cdot \frac{a}{b} \quad y_0 = z_0 = 0.
$$

As the counter t is not modified inside the for loop (lines 5–12), its value is still equal to N after for loop is finished. Thus, by executing N iterations of the last loop (in lines 13–14) we reach the value 0 of all the four counters t, x, y, z and hence halt in line 15. Summing up, every V_k admits a halting run.

Proof of Theorem 11. We argue that every halting run of V_k has length at least doubly exponential in k. Consider an arbitrary halting run, i.e., a run reaching the final value $t = 0$ in line 15. As before, let x_j, y_j and z_j, for $j = 0, \ldots, k$, stand for the values of counters x, y and z, respectively, after $k - j$ iterations of the for macro. Let $x_k = N \geq 1$ be the value of the counters t and x after exiting from the first loop (lines 3–4); cf. (6). The counter t is not modified inside the for loop (lines 5–12). Thus the last loop (in lines 13–14) has to be performed exactly N times, which implies

$$
x_0 \geq N \cdot \frac{a}{b}. \quad (8)
$$

Let $n_k, n_{k-1}, \ldots, n_1$ stand for the number of iterations of the outer loop (lines 7–12) in consecutive iterations of the for macro. By the very structure of V_k we know that, for every $1 \leq i \leq k$,

$$
k \sum_{j=i}^{k} n_j \leq \sum_{j=1}^{k} 2^j. \quad (9)
$$

We aim to show that the inequality (8) implies $n_j = 2^j$ for every $j \in \{1, \ldots, k\}$. As the outer loop (lines 7–12) coincides with the program fragment $\mathcal{HP}(a_i, b_i)$, we may apply the first part of Proposition 13 to derive, similarly as above:

$$
x_j \leq N \cdot \left(\frac{a_j}{b_j} \right)^{n_j} \cdots \left(\frac{a_k}{b_k} \right)^{n_k}. \quad (10)
$$

Claim 15 will imply that, roughly speaking, the biggest value of x_j is obtained, if in every unfolding of the for macro we perform the maximal possible number of iterations of the outer loop, and hence finish with the counter value $z = 0$.

Claim 15. Assuming (9), \((\frac{a_j}{b_j})^{n_1} \cdot (\frac{a_2}{b_2})^{n_2} \cdot \ldots \cdot (\frac{a_k}{b_k})^{n_k} \leq \frac{a}{b} \). The equality holds if, and only if, \(n_j = 2^j\) for all \(j \in \{1, \ldots, k\}\).

Proof. For vectors \((n_1, \ldots, n_k)\) satisfying (9), we define the function \(f(n_1, \ldots, n_k) = (\frac{a_1}{b_1})^{n_1} \cdot \ldots \cdot (\frac{a_k}{b_k})^{n_k}\). Thus (5) says that \(f(2^1, \ldots, 2^k) = \frac{a}{b}\). Observe that any other vector \((n_1, \ldots, n_k)\) satisfying (9) is obtained from \((2^1, \ldots, 2^k)\) by applying a number of times one of the following two operations:
1. decrement some \(n_i\) by 1
2. decrement some \(n_i\) by 1 and increment \(n_{i-1}\) by 1.

As any of this operations strictly decreases the value of \(f\), Claim 15 follows.

By the first part of Claim 15, together with inequalities (9) and (10) we deduce \(x_0 \leq N \cdot \frac{a}{b}\), which, combined with (8) yields the equality:
\[
x_0 = N \cdot \frac{a}{b}.
\]
The latter equality, together with the second part of Claim 15, implies \(n_j = 2^j\) for all \(j = 1 \ldots k\). As a consequence, the initial value \(N\) of \(x\) is, due to the second part of Proposition 13, divisible by \(M = (b_k)^{2^k}\). As \(1 < \frac{a_k}{b_k} < 2\), we have \(b_k \geq 2\), and hence \(M\) is doubly exponential with respect to \(k\). It follows that the length of the run is also doubly exponential, as the first inner loop, in the first iteration of the \texttt{for} macro \((i = k)\), is necessarily executed \(N - 1 \geq M - 1\) times. This concludes the proof of Theorem 11.

6 Conclusion

Our three main results have provided non-trivial counter-examples that advance the state of the art in the challenging area of the complexity of the reachability problem for VASS (equivalently, VAS and Petri nets). We have focussed on fixed dimension, and in particular, answered a central question that had remained open since [3] and [14], namely whether reachability for flat VASS given in unary is decidable in nondeterministic logarithmic space for any fixed dimension, by establishing NP hardness in dimension 7. Two specific matters that remain unresolved by this work are: whether NP hardness of reachability for unary flat VASS is obtainable in any dimension less than 7 (and more than 2), and whether binary VASS in dimension 3 can have doubly exponential shortest reachability witnesses.

We also remark that, although it has never been made precise, there seems to be an intriguing deep connection between the still open gap from NL hardness to NP membership of reachability for unary flat 3-VASS and the still open gap from PSPACE hardness to EXPSPACE membership of coverability for 1-GVAS (1-VASS with pushdown) [31] [41]. Finally, we expect that the novel family of sequences of fractions developed in Section 5 will have applications beyond the result obtained here.
References

1. David Angeli, Patrick De Leenheer, and Eduardo D. Sontag. Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. *SIAM Journal of Applied Mathematics*, 71(1):128–146, 2011. doi:10.1137/090779401

2. Paolo Baldan, Nicoletta Cocco, Andrea Marin, and Marta Simeoni. Petri nets for modelling metabolic pathways: a survey. *Natural Computing*, 9(4):955–989, 2010. doi:10.1007/s11047-010-9180-6

3. Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In *LICS*, pages 32–43. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.14

4. Mikolaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on data words. *ACM Trans. Comput. Log.*, 12(4):27:1–27:26, 2011. doi:10.1145/1970398.1970403

5. Mikolaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on data trees and XML reasoning. *J. ACM*, 56(3):13:1–13:48, 2009. doi:10.1145/1516512.1516515

6. Ahmed Bouajjani and Michael Emmi. Analysis of recursively parallel programs. *ACM Trans. Program. Lang. Syst.*, 35(3):10:1–10:49, 2013. doi:10.1145/2518188

7. Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic. In *FSTTCS*, volume 29 of *LIPIcs*, pages 267–278. Schloss Dagstuhl, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.267

8. Hubert Comon and Véronique Cortier. Flatness is not a weakness. In *CSL*, volume 1862 of *LNCS*, pages 262–276. Springer, 2000. doi:10.1007/3-540-44622-2_17

9. Stefano Crespi-Righi and Dino Mandrioli. Petri nets and Szilard languages. *Information and Control*, 33(2):177–192, 1977. doi:10.1016/S0019-9958(77)90558-7

10. Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. The reachability problem for Petri nets is not elementary. In *STOC*, pages 24–33. ACM, 2019. doi:10.1145/3313276.3316369

11. Normann Decker, Peter Habermehl, Martin Leucker, and Daniel Thoma. Ordered navigation on multi-attributed data words. In *CONCUR*, volume 8704 of *LNCS*, pages 497–511. Springer, 2014. doi:10.1007/978-3-662-44584-6_34

12. Stéphane Demri, Diego Figueira, and M. Praveen. Reasoning about data repetitions with counter systems. *Logical Methods in Computer Science*, 12(3), 2016. doi:10.2168/LMCS-12(3:17)2016

13. Matthias Englert, Ranko Lazić, and Patrick Totzke. Reachability in two-dimensional unary vector addition systems with states is NL-complete. In *LICS*, pages 477–484. ACM, 2016. doi:10.1145/2933575.2933577

14. Javier Esparza. Decidability and complexity of Petri net problems — an introduction. In *Lectures on Petri Nets I*, volume 1491 of *LNCS*, pages 374–428. Springer, 1998. doi:10.1007/3-540-65306-6_20

15. Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population protocols. *Acta Inf.*, 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3

16. Laurent Fribourg and Hans Olsén. Proving safety properties of infinite state systems by compilation into Presburger arithmetic. In *CONCUR*, volume 1243 of *LNCS*, pages 213–227. Springer, 1997. doi:10.1007/3-540-63141-0_15

17. Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. *ACM Trans. Program. Lang. Syst.*, 34(1):6:1–6:48, 2012. doi:10.1145/2160910.2160915

18. Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. *J. ACM*, 39(3):675–735, 1992. doi:10.1145/146637.146681
Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines. *Theor. Comput. Sci.*, 7:311–324, 1978. [doi:10.1016/0304-3975(78)90020-8](https://doi.org/10.1016/0304-3975(78)90020-8)

Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in succinct and parametric one-counter automata. In *CONCUR*, volume 5710 of *LNCS*, pages 369–383. Springer, 2009. [doi:10.1007/978-3-642-04081-8_25](https://doi.org/10.1007/978-3-642-04081-8_25)

Michel Hack. The recursive equivalence of the reachability problem and the liveness problem for Petri nets and vector addition systems. In *SWAT*, pages 156–164. IEEE Computer Society, 1974. [doi:10.1109/SWAT.1974.28](https://doi.org/10.1109/SWAT.1974.28)

Piotr Hofman and Sławomir Lasota. Linear equations with ordered data. In *CONCUR*, volume 118 of *LIPIcs*, pages 24:1–24:17. Schloss Dagstuhl, 2018. [doi:10.4230/LIPIcs.CONCUR.2018.24](https://doi.org/10.4230/LIPIcs.CONCUR.2018.24)

John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional vector addition systems. *Theor. Comput. Sci.*, 8:135–159, 1979. [doi:10.1016/0304-3975(79)90041-0](https://doi.org/10.1016/0304-3975(79)90041-0)

Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multithreaded program verification. *ACM Trans. Program. Lang. Syst.*, 36(4):14:1–14:29, 2014. [doi:10.1145/2629608](https://doi.org/10.1145/2629608)

Max I. Kanovich. Petri nets, Horn programs, linear logic and vector games. *Ann. Pure Appl. Logic*, 75(1–2):107–135, 1995. [doi:10.1016/0168-0072(94)00060-G](https://doi.org/10.1016/0168-0072(94)00060-G)

Richard M. Karp and Raymond E. Miller. Parallel program schemata. *J. Comput. Syst. Sci.*, 3(2):147–195, 1969. [doi:10.1016/S0022-0000(69)80011-9](https://doi.org/10.1016/S0022-0000(69)80011-9)

Hélène Leroux, David Andreu, and Karen Godary-Dejean. Handling exceptions in Petri net-based digital architecture: From formalism to implementation on FPGAs. *IEEE Trans. Industrial Informatics*, 11(4):897–906, 2015. [doi:10.1109/TII.2015.2435696](https://doi.org/10.1109/TII.2015.2435696)

Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-recursive in fixed dimension. In *LICS*, pages 1–13. IEEE, 2019. [doi:10.1109/LICS.2019.8785796](https://doi.org/10.1109/LICS.2019.8785796)

Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems with states. In *CONCUR*, volume 3170 of *LNCS*, pages 402–416. Springer, 2004. [doi:10.1007/978-3-540-28644-8_26](https://doi.org/10.1007/978-3-540-28644-8_26)

Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for pushdown vector addition systems in one dimension. In *ICALP, Part II*, volume 9135 of *LNCS*, pages 324–336. Springer, 2015. [doi:10.1007/978-3-662-47666-6_26](https://doi.org/10.1007/978-3-662-47666-6_26)

Yuliang Li, Alin Deutsch, and Victor Vianu. VERIFAS: A practical verifier for artifact systems. *PVLDB*, 11(3):283–296, 2017. URL: http://www.vldb.org/pvldb/vol11/p283-li.pdf

Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62, Yale University, 1976. URL: http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/

Roland Meyer. A theory of structural stationarity in the pi-calculus. *Acta Inf.*, 46(2):87–137, 2009. [doi:10.1007/s00236-009-0091-x](https://doi.org/10.1007/s00236-009-0091-x)

Mor Peleg, Daniel L. Rubin, and Russ B. Altman. Research paper: Using Petri net tools to study properties and dynamics of biological systems. *JAMIA*, 12(2):181–199, 2005. [doi:10.1177/jamia.M1637](https://doi.org/10.1177/jamia.M1637)

Carl Adam Petri. *Kommunikation mit Automaten*. PhD thesis, Universität Hamburg, 1962. URL: http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/

Charles Rackoff. The covering and boundedness problems for vector addition systems. *Theor. Comput. Sci.*, 6:223–231, 1978. [doi:10.1016/0304-3975(78)90036-1](https://doi.org/10.1016/0304-3975(78)90036-1)

Louis E. Rosier and Hsu-Chun Yen. A multiparameter analysis of the boundedness problem for vector addition systems. *J. Comput. Syst. Sci.*, 32(1):105–135, 1986. [doi:10.1016/0022-0000(86)90006-1](https://doi.org/10.1016/0022-0000(86)90006-1)
We now concentrate on the second part of the claim. If \(x' = y = 0 \) then \(d \mid (x_0 + y_0) \) and thus \(x_1 = (x_0 + y_0) \cdot \frac{c}{d} \). For the opposite direction, if \(y_1 \neq 0 \) then \(x_1 < x + y_1 \leq (x_0 + y_0) \cdot \frac{c}{d} \). If \(x' \neq 0 \) then by (11) we get

\[
\begin{align*}
x_1 &\leq x' + \frac{c}{d} \\
\end{align*}
\]

We now concentrate on the second part of the claim. If \(x' = y_1 = 0 \) then \(d \mid (x_0 + y_0) \) and thus \(x_1 = (x_0 + y_0) \cdot \frac{c}{d} \). For the opposite direction, if \(y_1 \neq 0 \) then \(x_1 < x + y_1 \leq (x_0 + y_0) \cdot \frac{c}{d} \). If \(x' \neq 0 \) then by (11) we get

\[
\begin{align*}
x_1 &\leq x' + \frac{c}{d} \\
\end{align*}
\]

Proof of Claim 1. As \(x' + y' = x_0 + y_0 \) and \(c > d \) we get:

\[
\begin{align*}
x_1 + y_1 &\leq x' + \frac{c}{d} \\
\end{align*}
\]

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.

Proof of Claim 5. By Claim 1 we get \(x_i + z_i \leq (x_{i+1} + z_{i+1}) \cdot \prod_{i=1}^{n} \frac{i+1}{i+1} = (x_{n+1} + z_{n+1}) \cdot (n+1) \). Since \(z_{n+1} = 0 \) this implies the inequality.

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.

Proof of Theorem 8. The size of \(P \) is polynomial in \(n, k \) and \(m \) and it can be computed in time polynomial with respect to the size of the input: \(s_0, S = \{ s_1, \ldots, s_k \} \). \(P \) represents a flat VASS since its explicit goto commands form a directed acyclic graph, and loop macros are not nested. We prove that \(P \) has a halting run if, and only if, the instance \(\{ s_0 \}, \{ s_1, \ldots, s_k \} \) of the subset problem is positive.
Consider a halting run ρ of \mathcal{P}, and recall that after I' the counter y is not modified any more, and zero-tested by the final halt command of \mathcal{P}. By Claim 10 the values of e and f after I' are $N(n)$ and $N(n) \cdot (k + 1)$, respectively.

The sum of counters e and e' is invariantly equal $N(n)$ as decrement of one is always accompanied by increment of the other. Thus in every component $R^*_{a,p}$ visited by ρ, the counter f is decreased by at most the initial value of e, hence by at most $N(n)$. Finally, by construction of \mathcal{P} the run ρ passes through exactly $k + 1$ components $R^*_{a,p}$. Therefore, as f is zero-tested by the final halt command, we deduce.

\[\text{Claim 16. The run } \rho \text{ decreases } f \text{ by exactly } N(n) \text{ in every visited component } R^*_{a,p}. \]

In consequence, the initial values of component $R^*_{a,p}$, for $0 \leq i \leq k$, satisfy:

\[e_0 = N(n), \quad f_0 = N(n) \cdot (k + 1 - i), \quad v_0 = v'_0 = 0. \]

Using Claim 14 we deduce.

\[\text{Claim 17. The run } \rho \text{ iterates all loops maximally in every visited component } R^*_{a,p}, \text{ except possibly the last loop in line } 13 \text{ in the last two components } R^*_{a,p}. \]

Possible non-maximal iteration of the last loop in $R^*_{a_{true}}$ and $R^*_{a_{false}}$ has no impact on the further analysis of the run ρ. As a direct corollary we deduce:

\[\text{Claim 18. The run } \rho \text{ executes the command } u := 1 \text{ exactly } a \text{ times in every visited component } R^*_{a_{true}}. \]

Therefore, the value of u is incremented by s_0 in component $R^*_{a_{true}}$. Let $R \subseteq \{s_1, \ldots, s_k\}$ be the set of all s_i such that ρ passes through $R^*_{a_{true}}$. Again by Claim 18 for every $s_i \in R$ the value of u is decreased by s_i in component $R^*_{a_{true}}$, and for every $s_i \notin R$ the value of u is preserved in component $R^*_{a_{false}}$. Since u is zero-tested by the final halt command, the instance of the Subset Sum problem is necessarily positive.

\[\text{Proof of Lemma 12} \]

For $1 \leq i \leq k$ put $r_i := \frac{4^{k+i} - 1}{4^k}$, and observe the following (straightforward) equalities:

\[\left(\frac{1}{r_i}\right)^2 \cdot \left(\frac{1}{r_i}\right)^2 \cdot \ldots \cdot \left(\frac{1}{r_i}\right)^2 = r_i. \]

Multiplying all these equalities yields the equality:

\[f_1^2 \cdot f_2^2 \cdot \ldots \cdot f_k^2 = f, \quad \text{where} \quad f_i = \frac{r_i}{r_{i+1} \cdot \ldots \cdot r_k}, \quad f = (r_1 \cdot \ldots \cdot r_k)^2. \]

(12)

As numerators and denominators of all r_i are bounded by 4^{k+1}, numerators and denominators of all f_i are bounded by 4^{k^2+k}, and numerator and denominator of f are bounded by $4^{2(k^2+k)}$, as required.

It remains to argue that the (in)equalities (2) hold. We notice the following relation between r_i and r_{i-1}, for $1 < i \leq k$:

\[r_i^2 = \left(1 + \frac{2k-i}{4^k}\right)^2 > 1 + \frac{2k+1-i}{4^k} = r_{i-1}, \]

which implies

\[\frac{r_i}{r_{i-1} \cdot \ldots \cdot r_k} = \frac{r_i^2}{r_{i-1} \cdot \ldots \cdot r_k} > 1 \]
and hence $f_1 < f_2 < \ldots < f_k$. For $i = k$ we have $f_k = r_k = 1 + \frac{1}{4^k}$. It thus remains to show $f_1 > 1$, which is equivalent to

$$r_1 > r_2 \cdot \ldots \cdot r_k. \quad (14)$$

By (13) we deduce $r_2^{i-1} > r_{k-i}$, by induction on i, which implies the following inequality:

$$r_k^{2^{k-1}-1} = r_k^{1+2+4+\ldots+2^{k-2}} > r_2 \cdot \ldots \cdot r_k.$$

For (14) it suffices to show, relying on the above inequality, that $r_1 > r_k^{2^{k-1}-i}$. Put $N := 2^{k-1} - 1$ for convenience. We thus need to prove:

$$r_1 > (1 + \frac{1}{4^k})^N. \quad (15)$$

By inspecting the expansion of the right-hand side

$$(1 + \frac{1}{4^k})^N = \sum_{i=0}^{N} \binom{N}{i} \cdot \frac{1}{4^{ik}}$$

we observe that the right-hand side is bounded by the sum of first N elements of a geometric progression, which, in turn, is bounded by the sum of the whole infinite one:

$$(1 + \frac{1}{4^k})^N \leq 1 + \frac{N}{4^k} + \frac{N^2}{4^{2k}} + \ldots + \frac{N^N}{4^{Nk}} < \frac{1}{1 - \frac{1}{4^k}}.$$

Thus for showing (15) it is sufficient to prove the inequality $r_1 > \frac{1}{1 - \frac{1}{4^k}}$, which is equivalent to

$$\left(1 - \frac{2^{k-1}-1}{4^k}\right)\left(1 + \frac{2^{k-1}}{4^k}\right) > 1.$$

The latter inequality is easily verified to hold true as

$$\frac{1}{4^k} > \frac{2^{k-i}-1}{4^k} \cdot \frac{2^{k-i}}{4^k}.$$

The inequality (15) is proved, and hence so is Lemma 12.