Spherical designs and lattices

Elisabeth Nossek

November 4, 2011

Abstract

In this article we prove that integral lattices with minimum \(\leq 7 \) (or \(\leq 9 \)) whose set of minimal vectors form spherical 9-designs (or 11-designs respectively) are extremal, even and unimodular. We furthermore show that there does not exist an integral lattice with minimum \(\leq 11 \) which yields a 13-design.

1 Introduction

The density of a sphere packing associated to a lattice \(\Lambda \) is given through the Hermite function \(\gamma(\Lambda) \). The local maxima of \(\gamma \) are called extreme lattices and where characterised through the geometry of their shortest vectors, \(S(\Lambda) := \{ l \in \Lambda | (l, l) = \min(\Lambda) \} \), where \(\min(\Lambda) := \min\{ (x, x) | 0 \neq x \in \Lambda \} \), in the works of Voronoi([10]), Korkine and Zolotareff([3]). A prominent subclass of extreme lattices are the strongly perfect lattices introduced by Venkov [9]. They are characterised by the property that \(S(\Lambda) \) forms a spherical 5-design:

1.1 Definition

A finite subset \(X \) of the \(n \)-dimensional sphere \(S^{n-1}(m) \) of radius \(m \) forms a spherical \(t \)-design if

\[
\int_{S^{n-1}(m)} f(x) dx = \frac{1}{|X|} \sum_{x \in X} f(x)
\]

for all homogeneous polynomials \(f \) in \(n \) Variables and of degree \(\leq t \). A lattice \(\Lambda \) such that \(S(\Lambda) \) is a spherical \(t \)-design is called a \(t \)-design lattice.

The classification of strongly perfect lattices is known up to dimension 12 ([6], [7]), but becomes very complicated in higher dimensions (see [8]). Venkov [9] and Martinet [5] imposed further design conditions and classified
all integral lattices of $\min \leq 3$ (resp. $\min \leq 5$) whose minimal vectors form spherical 5-designs (resp. 7-designs).

This paper extends their work, more precisely we prove the following theorem:

1.2 Theorem
1. The only integral 9-design lattices with minimum ≤ 7 are the Leech lattice Λ_{24} and the extremal even unimodular lattices in dimension 48.
2. The only integral 11-design lattices with minimum ≤ 9 are Λ_{24} and the 48 and 72 dimensional extremal even unimodular lattices.
3. There is no integral 13-design lattice with minimum ≤ 11.

2 Some facts about spherical designs and lattices

As 9 and 11-designs are also 7-designs, we will summarize their classification known from [5]:

2.1 Theorem
The integral 7-design lattices with minimum ≤ 5 are E_8, the unimodular lattice O_{23} with minimum 3, the three laminated lattices Λ_{16} (the Barnes-Wall lattice), Λ_{23} and Λ_{24} (the Leech lattice) and the unimodular lattices of dimension 32 and minimum 4.

Martinet also proves that only the Leech lattice is an 11-design lattice and the other lattices in Theorem 2.1 do not yield 8-designs [5, Proposition]. Hence the only integral lattice with minimum ≤ 5 whose minimal vectors form a 9 or 11-design is the Leech lattice.

In this article we will use the following characterisation (see [9 th. 3.2]):

2.2 Theorem
A finite set $X = -X \subset S^{n-1}(m)$ forms a spherical $2t+1$-design if and only if

$$D_{2i}(\alpha) := \sum_{x \in X} (x, \alpha)^{2i} = c_i |X|^m (\alpha, \alpha)^i$$

with $c_i := \prod_{k=0}^{i-1} \frac{1 + 2k}{n - 2k}$

holds for all $i \leq t$ and all $\alpha \in \mathbb{R}^n$.

2
In the following we will often distinguish between unimodular and non-unimodular lattices. If \(\Lambda \) is an integral non-unimodular lattice then for \(v \in \Lambda^* \) minimal in its class modulo \(\Lambda \) holds that \(|(v, \lambda)| \leq \frac{\min(\Lambda)}{2} \) for all \(\lambda \in S(\Lambda) \) ([5, Lemme 1.1]). For even non-unimodular lattices \(\Lambda \) we know that \(\Lambda^*/\Lambda \) is a regular quadratic group in particular there exists an element \(w \in \Lambda^* \) with \((w, w) \not\in 2\mathbb{Z}\) and we can assume w.l.o.g. that such a \(w \) is minimal in its class.

3 9-design lattices of minimum \(\leq 7 \)

Throughout this section \(\Lambda \subseteq \mathbb{R}^n \) denotes an integral 9-design lattice of minimum \(m \leq 7 \) with \(X \bigcup -X := S(\Lambda) \) and \(s := |X| \).

We will start by proving part \(\[1\] \) of Theorem \(\[1.2\] \). The characterisation in Theorem \(\[2.2\] \) leads to the following system of linear equations for which only integral solutions correspond to integral 9-design lattices.

3.1 Lemma

For all \(\alpha \in S(\Lambda) \) put \(s_i(\alpha) := |\{x \in X| (x, \alpha) = \pm i\}| \). The \(s_i \) are independent of \(\alpha \) and \(s_i = 0 \) for \(i > 3 \). The following system of linear equations has non-negative integral solutions for the \(s_i \) and for \(s \) if \(S(\Lambda) \) is a spherical 9-design:

\[
\begin{pmatrix}
1 & 2^2 & 3^2 \\
1 & 2^4 & 3^4 \\
1 & 2^6 & 3^6 \\
1 & 2^8 & 3^8
\end{pmatrix}
\begin{pmatrix}
s_1 \\
s_2 \\
s_3
\end{pmatrix}
=
\begin{pmatrix}
\frac{sm^2}{n} - m^2 \\
\frac{3sm^4}{n(n+2)} - m^4 \\
\frac{15sm^6}{10n(n+4)(n+6)} - m^6
\end{pmatrix}
.
\]

Proof: The system of equations is just a result the evaluation of the equations in Theorem \(\[2.2\] \) for \(\alpha \in S(\Lambda) \).

3.2 Remark

A simple calculation with Pari shows that for \(m = 7 \) there are no non-negative integral solutions \((n, s, s_1, s_2, s_3) \in \mathbb{Z}^5_{\geq 0}\). For \(m = 6 \) non-negative integral solutions exist only for the following values of \(n \) and \(s \):

n	26	36	44	46	48	49
s	69888	1149120	8500800	13395200	26208000	50992095

Table 1: Dimensions and kissing numbers for integral 9-design lattices.
Following a method used in [5] we will have a look at non-unimodular lattices at first.

3.3 Lemma
If Λ is non-unimodular and $\min(\Lambda) = 6$ then $n \in \{26, 36\}$.

Proof: For all elements $v \in \Lambda^* \setminus \Lambda$ that are minimal in their class modulo Λ we can define $t_i(v) := |\{x \in S(\Lambda)|(x, v) = i\}|$. The t_i are independent of v and for $i > 4$ $t_i = 0$. Therefore we get a system of equations again with $t = (v, v)$:

$$
\begin{pmatrix}
1 & 2^2 & 3^2 \\
1 & 2^4 & 3^4 \\
1 & 2^6 & 3^6 \\
1 & 2^8 & 3^8
\end{pmatrix}
\begin{pmatrix}
t_1 \\
t_2 \\
t_3
\end{pmatrix}
=
\begin{pmatrix}
\frac{\text{sm}}{n} \\
\frac{3\text{sm}^2t^2}{n(n+2)} \\
\frac{15\text{sm}^3t^3}{n(n+2)(n+4)} \\
\frac{105\text{sm}^4t^4}{n(n+2)(n+4)(n+6)}
\end{pmatrix}.
$$

t has to be rational and positive. For every pair (n, s) from Table I we get a solution of the system and a polynomial equation p_n of degree 4 whose positive rational roots are the possible values for t. But the only cases in which p_n has such roots are $n = 26$ where $t \in \{\frac{8}{3}, 4\}$ and for $n = 36$ where $t = 4$.

3.4 Lemma
There is no non-unimodular lattice in dimension 26 or 36 such that its set of minimal vectors form a spherical 9-design.

Proof: Let Λ be a non-unimodular lattice. Without loss of generality we can assume that Λ is generated by its minimal vectors, hence Λ is even. For $n = 36$ we know that $(v, v) = 4$ for all v in $\Lambda^* \setminus \Lambda$ with minimal norm in its class modulo Λ. Hence Λ^* has to be even and therefore unimodular which contradicts our assumption.

For $n = 26$ we know that $(v, v) \in \{\frac{8}{3}, 4\}$ for v in $\Lambda^* \setminus \Lambda$ with minimal norm in its class modulo Λ. Λ^*/Λ is a regular quadratic \mathbb{F}_3 space with $q : \Lambda^*/\Lambda \rightarrow \mathbb{F}_3$ with $q(x + \Lambda) := \frac{3(x, x)}{2} \mod 3$. Because $q(\Lambda^*/\Lambda) = \{0, 1\}$ we know that Λ^*/Λ is an one-dimensional \mathbb{F}_3 space with a generator v with $q(v) = 1$. Hence $\det(\Lambda) = 3$ and $\gamma(\Lambda) = \frac{6}{3\sqrt{26}}$ which is greater than the Hermite constant γ_{26} (see Table 3). □

3.5 Lemma
If Λ is unimodular and $\min(\Lambda) = 6$ then $n = 48$ and Λ is even and extremal.
Proof: Let $\Lambda^{(e)} := \{ \lambda \in \Lambda | (\lambda, \lambda) \in 2\mathbb{Z} \}$ be the even sublattice of Λ then $S(\Lambda^{(e)}) = S(\Lambda)$ and $\Lambda^{(e)}$ is even and unimodular as a result of Lemma 3.3 and Lemma 3.4. Therefore n has to be divisible by 8 as a result of a theorem by Hecke (see e.g. [4, Satz V.2.5]), hence $n = 48$. As $\Lambda^{(e)}$ is unimodular it has to be equal to Λ, so Λ is even and obviously extremal. □

This concludes the proof of Theorem 1.21.

3.6 Corollary
Both the Leech lattice and the 48-dimensional even unimodular lattices yield not only 9-designs but also 11-designs.

Proof: These lattice are all even, unimodular and extremal and their dimension is divisible by 24 hence their sets of minimal vectors form 11-designs by a theorem by Venkov (see e.g. [2, Chapter 7, Theorem 23]). □

4 11-design lattices with minimum ≤ 9

Throughout this section $\Lambda \subseteq \mathbb{R}^n$ denotes an integral 11-design lattice with minimum $m \leq 9$ and $s = |X|$ with $X \bigcup -X := S(\Lambda)$. We will proceed in this section with the proof of theorem 1.2 part 2 and compute the possible values for the dimension and the kissing number in the same way as in 3.1.

4.1 Lemma
Using the definitions in the proof of Lemma 3.7 we get that $s_i = 0$ for $i > 4$. The following system of linear equations has non-negative integral solutions for the s_i and for $s := |X|$ if $S(\Lambda)$ is a spherical 11-design:

$$
\begin{pmatrix}
1 & 2^2 & 3^2 & 4^2 \\
1 & 2^4 & 3^4 & 4^4 \\
1 & 2^6 & 3^6 & 4^6 \\
1 & 2^{10} & 3^{10} & 4^{10}
\end{pmatrix}
\begin{pmatrix}
s_1 \\
s_2 \\
s_3 \\
s_4
\end{pmatrix}
=
\begin{pmatrix}
\frac{sm^2}{n^{m^2}} - m^2 \\
\frac{n(n+2)}{15sm^6} - m^4 \\
\frac{n(n+2)(n+4)}{105sm^8} - m^6 \\
\frac{n(n+2)(n+4)(n+6)}{945sm^{10}} - m^8 \\
\end{pmatrix}.
$$

4.2 Remark
We get no solutions $(n, s, s_i)_{i \leq 4} \in \mathbb{Z}^6_{>0}$ for $m = 9$ and for $m = 8$ we get such solutions only for the values of n and s in Table 2.

Now we can see with the same arguments as in Lemma 3.3 and Lemma 3.4 that an integral 11-design lattice has to be unimodular.
Table 2: Dimensions and Kissing numbers for 11-design lattices.

n	50	56	62	64	66
s	57256875	237875400	1071285600	1866110400	3236535225
n	68	72	76	78	82
s	474335190	3109087800	1263241980	866338200	470377215

4.3 Lemma
There is no non-unimodular lattice with minimum 8 whose minimal vectors form a spherical 11-design.

Proof: For all elements \(v \in \Lambda^* \setminus \Lambda \) that are minimal in their class modulo \(\Lambda \) we can define \(t_i(v) := |\{x \in S(\Lambda)|(x, v) = i\}| \). The \(t_i \) are independent of \(v \) and for \(i > 5 \) \(t_i = 0 \). Therefore we get a system of equations again with \(t := (v, v) \):

\[
\begin{pmatrix}
1 & 2^2 & 3^2 & 4^2 \\
1 & 2^4 & 3^4 & 4^4 \\
1 & 2^6 & 3^6 & 4^6 \\
1 & 2^8 & 3^8 & 4^8 \\
1 & 2^{10} & 3^{10} & 4^{10}
\end{pmatrix}
\begin{pmatrix}
t_1 \\
t_2 \\
t_3 \\
t_4
\end{pmatrix}
= \begin{pmatrix}
smt^n \\
\frac{smt}{3^n}t^2 \\
\frac{smt}{n(n+2)}t^3 \\
\frac{15sm^2t^4}{n(n+2)(n+4)} \\
\frac{n(n+2)(n+3)(n+6)}{105sm^4t^5} \\
\frac{945sm^6t^6}{n(n+2)(n+4)(n+6)(n+8)}
\end{pmatrix}.
\]

\(t \) has to be rational and positive. For every pair \((n, s)\) from Table 2 we get a solution of the system and a polynomial equation of degree 5 whose positive rational roots are the possible values for \(t \). The only dimension in which we get a positive rational value for \(t \) is \(n = 56 \) with \(t = 6 \). But then \(\Lambda^* \) would have to be even and hence \(\Lambda \) would be unimodular.

4.4 Lemma
Let \(\Lambda \) be unimodular with \(\min(\Lambda) = 8 \) and \(S(\Lambda) \) a spherical 11-design, then \(n = 72 \) and \(\Lambda \) is even and extremal.

Proof: \(\Lambda \) is even (see Lemma 3.5). As the theta-series of even unimodular lattices are modular forms, \(n \) has to be divisible by eight and \(\min(\Lambda) \leq 2\lfloor \frac{n}{24} \rfloor + 2 \) [V.2.8.Satz]. Therefore \(n = 72 \) for \(m = 8 \) is the only possible combination.

5 13-design lattices of minimum \(\leq 11 \)

We will now prove that there is no integral lattice with minimum smaller or equal to 11 whose minimal vectors form a 13-design. For minima smaller than 10 we can use the results for 11-designs.
5.1 Lemma
There is no integral lattice Λ with $\min(\Lambda) < 10$ such that $S(\Lambda)$ is a spherical 13-design.

Proof: If $S(\Lambda)$ forms a 13-design it also forms an 11-design and hence can only be an extremal even unimodular lattice of dimension 24, 48 or 72. But as a result of [5, Proposition 4.1] we know that these lattices yield no higher designs.

So the only statement left to prove is the following:

5.2 Lemma
There is no integral 13-design lattice of minimum 10 or 11.

Proof: If we assume that Λ would be an integral 13-design lattice with $\min(\Lambda) \in \{10, 11\}$ then the following system of equations would have integral non-negative solutions for s and s_1, \ldots, s_5.

$$
\begin{pmatrix}
1 & 2^2 & 3^2 & 4^2 & 5^2 \\
1 & 2^4 & 3^4 & 4^4 & 5^4 \\
1 & 2^6 & 3^6 & 4^6 & 5^6 \\
1 & 2^8 & 3^8 & 4^8 & 5^8 \\
1 & 2^{10} & 3^{10} & 4^{10} & 5^{10} \\
1 & 2^{12} & 3^{12} & 4^{12} & 5^{12}
\end{pmatrix}
\begin{pmatrix}
s_1 \\
s_2 \\
s_3 \\
s_4 \\
s_5
\end{pmatrix}
=
\begin{pmatrix}
\frac{sm^2}{n} - m^2 \\
\frac{3sm^4}{n(n+2)} - m^4 \\
\frac{n(n+2)(n+4)}{15sm^6} - m^6 \\
\frac{n(n+2)(n+4)(n+6)}{105sm^8} - m^8 \\
\frac{n(n+2)(n+4)(n+6)(n+8)}{945sm^{10}} - m^{10} \\
\frac{n(n+2)(n+4)(n+6)(n+8)(n+10)}{10395sm^{12}} - m^{12}
\end{pmatrix}.
$$

But an easy calculation shows that there are no such solutions.

References

[1] H. Cohn, N. Elkies, New upper bounds on sphere packings I Annals of Mathematics, vol. 157, (2003) 689-714

[2] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups. 3rd edition, Springer-Verlag 1998.

[3] A. Korkine, G. Zolotareff, Sur les formes quadratiques. Math. Ann. 5 (1872) 581–583, ibid 6 (1873) 366–389, ibid 11 (1877) 242–292.

[4] M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen Springer-Verlag 1998.

[5] J. Martinet, Sur certains designs sphériques liés à des réseaux entiers Monogr. Ens. Math. vol. 37, (2001) 10-86.
[6] G. Nebe, B. Venkov, *The strongly perfect lattices of dimension 10*. J. Théorie de Nombres de Bordeaux 12 (2000) 503-518.

[7] G. Nebe, B. Venkov, *Low dimensional strongly perfect lattices. I: the 12-dimensional case*. L’enseignement mathématiques 51 (2005) 129–163

[8] E. Nossek, *On the Classification of dual strongly perfect lattices*. In preparation.

[9] B. Venkov, *Réseaux et designs sphériques*. Monogr. Ens. Math. vol. 37, (2001) 10-86.

[10] G.F. Voronoi, *Nouvelles applications des paramètres continus à la théorie des formes quadратiques*. Journal f. d. Reine und Angewandte Mathematik, 133 (1908), ibid 134 (1908), ibid 136 (1909).