Multivariate Regular Variation of Discrete Mass Functions with Applications to Preferential Attachment Networks

Tiandong Wang· Sidney I. Resnick

Received: 10 January 2016 / Revised: 13 May 2016 / Accepted: 23 May 2016 / Published online: 2 June 2016
© Springer Science+Business Media New York 2016

Abstract Regular variation of a multivariate measure with a Lebesgue density implies the regular variation of its density provided the density satisfies some regularity conditions. Unlike the univariate case, the converse also requires regularity conditions. We extend these arguments to discrete mass functions and their associated measures using the concept that the mass function can be embedded in a joint density function with continuous arguments. We give two different conditions, monotonicity and convergence on the unit sphere, both of which can make the discrete function embeddable. Our results are then applied to the preferential attachment network model, and we conclude that the joint mass function of in- and out-degree is embeddable and thus regularly varying.

Keywords Multivariate regular variation · Preferential attachment · Random graphs · Power laws · In-degree · Out-degree

Mathematics Subject Classification (2010) 28A33 · 60G70 · 05C80

1 Introduction

The influence of heavy tailed modeling methods has spread to many fields. Application areas for the modeling and statistical methods include finance (Smith 2003), insurance (Embrechts et al. 1997), social networks and random graphs (Durrett 2010; Bollobás et al. 2003; Resnick and Samorodnitsky 2015; Samorodnitsky et al. 2016), mobility modeling for

Tiandong Wang and S. Resnick were supported by Army MURI grant W911NF-12-1-0385 to Cornell University.
wireless phone users (Kim et al. 2015), parallel processing queueing models of cloud computing (Jiang et al. 2013), models to optimize power usage when a mobile user changes between wifi and mobile networks (Kim et al. 2014).

The theory of regular variation is an essential mathematical tool in the analysis of heavy tailed phenomena. A measurable function \(f \) is regularly varying with index \(\alpha > 0 \) (written \(f \in RV_\alpha \)) if \(f : \mathbb{R}_+ \mapsto \mathbb{R}_+ \) satisfies
\[
\lim_{t \to \infty} \frac{f(tx)}{f(t)} = x^\alpha, \quad \text{for } x > 0.
\]

In the univariate case, Karamata’s theorem gives the asymptotic properties of the indefinite integral; differentiation of a regularly varying integral to recover the density function is covered by the monotone density theorem; see Resnick (2007, Chapter 2.3) and Bingham et al. (1987, page 38). Roughly, if the derivative of \(f \) is regularly varying with index \(\alpha \), then \(f \) is regularly varying with index \(\alpha + 1 \). Conversely, when \(f \) is monotone, the derivative of \(f \in RV_\alpha \) is regularly varying with index \(\alpha - 1 \). These results can be interpreted as relating regular variation properties of an absolutely continuous measure and the density of the measure.

In practice, collected data are often multidimensional which raises the issue of generalizing the one-dimensional theory relating an integral and derivative to higher dimensions. Unfortunately additional regularity conditions are indispensable for the generalizations. This is discussed in a series of publications (de Haan and Resnick 1979; de Haan et al. 1984; de Haan and Resnick 1987; de Haan and Omey 1984; Omey 1989). An additional issue is that in the era of Internet and social network studies, many data sets are discrete. For example, when studying the growth of social networks, the in- and out-degrees of nodes exhibit power laws. Under such circumstances, ignoring the discrete essence of the data is not appropriate and we need to understand the relationship between regular variation properties of a discretely supported measure and its mass function.

We proceed using the idea of embedding a function of a discrete variable in a function of a continuous variable. In one dimension (Bojanic and Seneta 1973), (Bingham et al. 1987, Theorem 1.9.5), a regularly varying sequence can always be embedded in a regularly varying function of a continuous variable. The embeddability property in the multivariate case is not as obvious because the definition of regular variation exerts no control over the function’s variation when we move from ray to ray and additional conditions are required for embeddability. Once this is resolved the results in the continuous cases can be used to examine the relationship between the regular variation of a mass function and its associated measure.

We apply our results to the preferential attachment network model studied in Bollobás et al. (2003), Krapivsky and Redner (2001), Samorodnitsky et al. (2016), Resnick and Samorodnitsky (2015), and Wang and Resnick (2015) where a new node attaches to an existing node or new edges are created according to probabilistic postulates that take into account the current in- and out-degrees of the existing nodes. The joint asymptotic distribution of in- and out-degree has multivariate regularly varying tails (Resnick and Samorodnitsky 2015; Samorodnitsky et al. 2016). We check the embeddability conditions for the joint mass function of in- and out-degree and conclude that the mass function is also regularly varying.

This paper is organized as follows. We start with a brief overview of the multivariate regular variation of both measures and functions in Section 2.1 and then state the univariate embeddability results in Section 2.2. We describe the preferential attachment model in Section 2.3. Sections 3 and 4 provide two different conditions to establish embeddability in the bivariate case and also characterize the relationship between the regular variation of
a mass function and its measure. We then apply our results to the preferential attachment model in Sections 3.1 and 4.1, verifying that the joint mass function of in- and out-degrees is also regularly varying.

2 Preliminaries

2.1 Multivariate Regular Variation

We briefly review the basic concepts of multivariate regular variation for measures with emphasis on the two dimensional case. We use \mathcal{M}-convergence to define regular variation instead of the traditional way of using vague convergence. See Hult and Lindskog (2006), Das et al. (2013), and Lindskog et al. (2014) for the details on \mathcal{M}-convergence and reasons for its use.

Consider \mathbb{R}_+^2 metrized by a convenient metric $d(x, y)$. A subset $C \subseteq \mathbb{R}_+^2$ is a cone if it is closed under positive scalar multiplication: if $v \in C$ then $cv \in C$ for $c > 0$. A proper framework for discussing regular variation is measure convergence on a closed cone $C \subseteq \mathbb{R}_+^2$ with a closed cone $C_0 \subseteq C$ deleted. C_0 is called the forbidden zone. In this paper we are interested in the case where $C = \mathbb{R}_+^2$ and $C_0 = \{0\}$. Then $E = \mathbb{R}_+^2 \setminus \{0\}$ is the space for defining \mathcal{M}-convergence appropriate for regular variation of distributions of positive random vectors. The forbidden zone is the origin $\{0\}$.

Let $\mathcal{M}(C \setminus C_0)$ be the set of Borel measures on $C \setminus C_0$ which are finite on sets bounded away from the forbidden zone C_0. We now give the definition of \mathcal{M}-convergence which becomes the basis for our definition of multivariate regular variation of measures.

Definition 1 For $\mu_n, \mu \in \mathcal{M}(C \setminus C_0)$ we say $\mu_n \to \mu$ in $\mathcal{M}(C \setminus C_0)$ if $\int f \, d\mu_n \to \int f \, d\mu$ for all bounded, continuous, non-negative f on $C \setminus C_0$ whose support is bounded away from C_0.

A random vector $(X, Y) \geq 0$ is non-standard regularly varying on $C \setminus C_0$ if there exists $b_1(t) \in RV_{1/\alpha_1}$ and $b_2(t) \in RV_{1/\alpha_2}$ ($\alpha_1, \alpha_2 > 0$), called the scaling functions, and a measure $\nu(\cdot) \in \mathcal{M}(C \setminus C_0)$, called the limit or tail measure, such that as $t \to \infty$,

$$\frac{X}{b_1(t)} \cdot \frac{Y}{b_2(t)} \in \cdot \to \nu(\cdot), \quad \text{in } \mathcal{M}(C \setminus C_0).$$

When $b_1(t) = b_2(t)$, (X, Y) is said to have a distribution with standard regularly varying tails with index $\alpha := \alpha_1 = \alpha_2$ and the limiting measure ν satisfies the scaling property: $\nu(c \cdot) = c^{-\alpha} \nu(\cdot)$ for $c > 0$. Without loss of generality, we assume all scaling functions are continuous and strictly increasing.

Following the definition in de Haan et al. (1984), we say a measurable function $f : \mathbb{R}_+^2 \mapsto \mathbb{R}_+$ is *multivariate regularly varying with scaling functions* b_1 and b_2 and *limit function* λ, if there exists $h : (0, \infty) \mapsto (0, \infty)$ with $h \in RV_\alpha$ for some $\alpha \in \mathbb{R}$ such that

$$\lim_{t \to \infty} \frac{f(b_1(t)x, b_2(t)y)}{h(t)} = \lambda(x, y) > 0, \quad \forall x, y > 0. \quad (2.1)$$

If both b_1 and b_2 are the identity function, we get ordinary regular variation as in de Haan and Resnick (1979).
2.2 Regularly Varying Functions of Discrete Variables and Embeddability

Internet modeling and social network studies require many relevant variables to be discrete. A natural example is in- and out-degree of nodes in a random graph. So it is useful to examine regular variation for functions of discrete variables. For the one dimensional case, see Bojanic and Seneta (1973) and Bingham et al. (1987).

Definition 2 A sequence \((c_n)_{n \in \mathbb{N}}\) of positive numbers is regularly varying with index \(\alpha \in \mathbb{R}\) if

\[
\lim_{n \to \infty} \frac{c_{[nx]}}{c_n} = x^\alpha, \quad x > 0,
\]

where \([x]\) denotes the largest integer smaller than or equal to \(x\). A doubly indexed function \(k: \mathbb{Z}^2 \setminus \{0\} \to \mathbb{R}_+\) is regularly varying with scaling functions \(b_1\) and \(b_2\) and limit function \(\lambda(x, y)\) if for some \(h \in \text{RV}_\alpha\) and some \(\alpha \in \mathbb{R}, b_1 \in \text{RV}_{\beta_1}, \beta_1 > 0\), we have

\[
\lim_{n \to \infty} \frac{k([b_1(n)x], [b_2(n)y])}{h(n)} = \lambda(x, y) > 0, \quad \forall x, y > 0.
\]

In one dimension, a regularly varying sequence can always be embedded in a regularly varying function of a continuous argument (Bingham et al. 1987, Theorem 1.9.5):

Theorem 2.1 If \((c_n)\) is regularly varying in the sense of Eq. 2.2, then the function

\[
f(x) := c_{[x]}, \quad x > 0,
\]

varies regularly with index \(\alpha\).

We now give the definition of embeddability in both univariate and multivariate cases.

Definition 3 Embeddability of a regularly varying function with discrete arguments is considered in two cases:

(i) In one dimension, we say a regularly varying sequence \((c_n)\) is embeddable if there exists a regularly varying function \(f: \mathbb{R}_+ \mapsto \mathbb{R}_+\) such that \(c_n = f(n)\). By Theorem 2.1, every regularly varying sequence is embeddable.

(ii) In the multivariate case, a regularly varying, array-indexed function \(k(i, j)\) is embeddable if there exists a bivariate regularly varying function \(g(x, y)\) such that \(g(x, y) := k([x], [y])\).

Unlike one dimension, in higher dimensions, Eq. 2.3 does not automatically guarantee the embeddability of \(k(i, j)\).

2.3 Preferential Attachment Network Models

The directed edge preferential attachment model (Krapivsky and Redner 2001; Bollobás et al. 2003) is a model for a growing directed random graph. The model evolves according to certain rules. Choose strictly positive parameters \(\alpha, \beta, \gamma, \lambda, \mu\) such that \(\alpha + \beta + \gamma = 1\), and additionally assume that \(\alpha, \beta, \gamma < 1\) to avoid trivial cases. The initial condition for the model is a finite directed graph, denoted by \(G(n_0)\), with at least one node and \(n_0\) edges. For \(n = n_0 + 1, n_0 + 2, \ldots, G(n)\) is a graph with \(n\) edges and a random number \(N(n)\) of nodes.
If a node \(v \) is from \(G(n) \), use \(D_{in}(v) \) and \(D_{out}(v) \) to denote its in and out degree respectively (dependence on \(n \) is suppressed). Then \(G(n + 1) \) is obtained from \(G(n) \) as follows.

(i) With probability \(\alpha \) a new node \(w \) is born and we add an edge leading from \(w \) to an existing node \(v \in G(n) \) (written as \(w \mapsto v \)). The existing node \(v \) is chosen with probability according to its in-degree:

\[
P(v \in G(n) \text{ is chosen}) = \frac{D_{in}(v) + \lambda}{n + \lambda N(n)}.
\]

(ii) With probability \(\beta \) we add a directed edge \(v \mapsto w \) between two existing nodes \(v, w \in G(n) \). Nodes \(v \) and \(w \) are chosen independently from all the nodes of \(G(n) \) with probabilities

\[
P(v \text{ is chosen}) = \frac{D_{out}(v) + \mu}{n + \mu N(n)}, \quad \text{and} \quad P(w \text{ is chosen}) = \frac{D_{in}(w) + \lambda}{n + \lambda N(n)}.
\]

(iii) With probability \(\gamma \) a new node \(w \) is born and we add an edge leading from an existing node \(v \in G(n) \) to \(w \). The existing node \(v \) is chosen with probability according to its out-degree:

\[
P(v \in G(n) \text{ is chosen}) = \frac{D_{out}(v) + \mu}{n + \mu N(n)}.
\]

For \(i, j = 0, 1, 2, \ldots \) and \(n \geq n_0 \), let \(N_{ij}(n) \) be the random number of nodes in \(G(n) \) with in-degree \(i \) and out-degree \(j \). According to Bollobás et al. (2003, Theorem 3.2), there exist non-random constants \(p(i, j) \) such that

\[
\lim_{n \to \infty} \frac{N_{ij}(n)}{N(n)} = p(i, j) \quad \text{a.s. for } i, j = 0, 1, 2, \ldots \quad (2.5)
\]

Define two random variables \((I, O)\) such that

\[
P[I = i, O = j] = p(i, j), \quad i, j = 0, 1, 2, \ldots
\]

and the distribution generated by \((I, O)\) is a non-standard regularly varying measure (Resnick and Samorodnitsky 2015; Samorodnitsky et al. 2016). The pair \((I, O)\) has representation

\[
(I, O) \overset{d}{=} (B(1 + X_1, Y_1) + (1 - B)(X_2, 1 + Y_2),
\]

\[
(2.6)
\]

where \(B \) is a Bernoulli switching variable independent of \(X_j, Y_j, j = 1, 2 \) with

\[
P(B = 1) = 1 - P(B = 0) = \frac{\gamma}{\alpha + \gamma}.
\]

Let \(T_\delta(p) \) be a negative binomial integer valued random variable with parameters \(\delta > 0 \) and \(p \in (0, 1) \). Now suppose \(\{T_\delta(p), p \in (0, 1)\} \) and \(\{\tilde{T}_\delta(p), p \in (0, 1)\} \) are two independent families of negative binomial random variables and define

\[
c_1 = \frac{\alpha + \beta}{1 + \lambda (\alpha + \gamma)}, \quad c_2 = \frac{\beta + \gamma}{1 + \mu (\alpha + \gamma)} \quad \text{and} \quad a = c_2/c_1.
\]

By Samorodnitsky et al. (2016, Theorem 2), \(X_j, Y_j, j = 1, 2 \) in Eq. 2.6 can be written as

\[
(X_1, Y_1) = (T_{\lambda + 1}(Z^{-1}), \tilde{T}_\mu(Z^{-a})), \quad \text{and} \quad (X_2, Y_2) = (T_{\lambda}(Z^{-1}), \tilde{T}_{\mu + 1}(Z^{-a})).
\]

(2.7)

where \(Z \) is a Pareto random variable on \([1, \infty)\) with index \(c_1^{-1} \), independent of the negative binomial random variables.

We will show that \(p(i, j) \) in Eq. 2.5 is regularly varying.
3 Embeddability and Monotonicity

The embeddability problem is no longer as straightforward in higher dimensions as Theorem 2.1 would lead us to believe; here we only deal with the case where \(d = 2 \). Multivariate regular variation provides no control over the function’s variation when we move from ray to ray and in order to obtain embeddability in the bivariate case we need regularity conditions. The following theorem provides one approach.

Theorem 3.1 (Standard case) Suppose \(u : \mathbb{Z}_+^2 \setminus \{0\} \mapsto \mathbb{R}_+ \) is an eventually decreasing (in both arguments) mass function that is regularly varying: There exists \(h(\cdot) \in RV_\rho, \rho < 0 \) such that,

\[
\lim_{n \to \infty} \frac{u([nx], [ny])}{h(n)} = \lambda(x, y) > 0, \quad \forall x, y > 0. \tag{3.1}
\]

Then the function \(g(x, y) := u([x], [y]) \) is eventually decreasing and regularly varying,

\[
\lim_{t \to \infty} \frac{g(tx, ty)}{h(t)} = \lambda(x, y), \quad \forall x, y > 0, \tag{3.2}
\]

so that \(u \) is embeddable in the regularly varying function \(g \).

Remark 3.1 In particular, if a probability mass function (pmf) \(p(i, j) \) plays the role of \(u \) and satisfies monotonicity and Eq. 3.1, then we can embed \(p(i, j) \) in a monotone regularly varying probability density function (pdf) \(f(x, y) \) by simply assigning constant probability density \(p([x], [y]) \) over the rectangle \([x], [x + 1] \times ([y], [y + 1]). \) Such a pdf \(f(x, y) \) has continuous arguments but takes discrete values and so the function \(f(x, y) \) itself is discrete.

Proof For \(s > 0 \), we show that the limiting function \(\lambda \) in Eq. 3.1 satisfies \(\lambda(sx, sy) = s^\rho \lambda(x, y) \) as is the case for any function satisfying (3.1) and embeddability. For fixed \(s > 0 \), Eq. 3.1 gives

\[
\lim_{n \to \infty} \frac{u([nsx], [nsy])}{h(n)} = \lambda(sx, sy).
\]

We rewrite the left hand side as

\[
\frac{u([nsx], [nsy])}{h(n)} = \frac{u([nsx], [nsy])}{u([nsx], [nsy])} \times \frac{u([nsx], [nsy])}{h(n)} \times \frac{h(n)}{h(n)}.
\]

The second term on the right hand side of Eq. 3.3 converges to \(\lambda(x, y) \) as \(n \to \infty \), by Eq. 3.1, and as \(h \in RV_\rho \), the third term converges to \(s^\rho \). It now suffices to show

\[
\lim_{n \to \infty} \frac{u([nsx], [nsy])}{u([nsx], [nsy])} = 1. \tag{3.4}
\]

Since \(u \) is eventually decreasing, for \(x > 0, y > 0 \) and \(n \) large enough \(u([nx], [ny]) \) is decreasing in both \(x \) and \(y \). Hence,

\[
\frac{u([nsx] + 1)x, [nsy] + 1y)}{u([nsx]x, [nsy]y)} \leq \frac{u([nsx], [nsy])}{u([nsx], [nsy])} \leq 1, \tag{3.5}
\]

and

\[
\frac{u([nsx] + 1)x, [nsy] + 1y)}{u([nsx]x, [nsy]y)} \to \lambda(x, y) \cdot 1 \cdot \frac{1}{\lambda(x, y)} = 1, \tag{3.6}
\]

\(\square \) Springer
which coupled with Eq. 3.5 shows Eq. 3.4. Set \(g(x, y) = u([x], [y]) \) and on the one hand, as \(t \to \infty \),

\[
\frac{g(tx, ty)}{h(t)} \sim \frac{u([tx], [ty])}{h(t)} \leq \frac{u([t]x, [t]y)}{h([t])} \to \lambda(x, y),
\]

and on the other, since \((t+1)x \geq tx\),

\[
\frac{g(tx, ty)}{h(t)} \geq \frac{g(((t+1)x, ((t+1)y))}{h(t)} = \frac{u([(t+1)x], [(t+1)y])}{h(t)},
\]

and the result follows from Eq. 3.6.

We generalize Theorem 3.1 to the non-standard case.

Corollary 3.1 (Non-standard case) Suppose \(u : \mathbb{Z}_+^2 \setminus \{0\} \to \mathbb{R}_+ \) is a mass function that is eventually decreasing in both arguments. For \(\alpha_1, \alpha_2 > 0 \), let \(b_1 \in RV_{1/\alpha_1} \) and \(b_2 \in RV_{1/\alpha_2} \) be two strictly increasing scaling functions such that

\[
\lim_{n \to \infty} \frac{u([b_1(n)x], [b_2(n)y])}{h(n)} = \lambda(x, y) > 0, \quad \forall x, y > 0,
\]

(3.7)

where \(h(\cdot) \in RV_\rho, \rho < 0 \). The limit function \(\lambda \) satisfies the scaling property:

\[
\lambda(s^{1/\alpha_1}x, s^{1/\alpha_2}y) = s^\rho \lambda(x, y) \quad \text{for all } s, x, y > 0 \text{ and } g(x, y) = u([x], [y]) \text{ is an eventually decreasing regularly varying function such that and for all } x, y > 0
\]

\[
\lim_{t \to \infty} \frac{g(b_1(tx), b_2(ty))}{h(t)} = \lambda(x, y) > 0.
\]

(3.8)

Thus \(u \) is embeddable in the regularly varying function \(g \).

Proof By Omey (1989, Theorem 1.2.2), Eq. 3.7 implies that for all \(x, y > 0 \),

\[
\lim_{n \to \infty} \frac{u([b_1(nx)], [b_2(ny)])}{h(n)} = \lambda(x^{1/\alpha_1}, y^{1/\alpha_2}).
\]

Since \(b_1 \) and \(b_2 \) are strictly increasing, \(u([b_1(x)], [b_2(y)]) \) is eventually decreasing in \(x \) and \(y \). A similar proof as in Theorem 3.1 shows that the function \(g \) defined by \(g(b_1(x), b_2(y)) := u([b_1(x)], [b_2(y)]) \) satisfies for all \(x, y > 0 \),

\[
\lim_{t \to \infty} \frac{g(b_1(tx), b_2(ty))}{h(t)} = \lambda(x^{1/\alpha_1}, y^{1/\alpha_2}).
\]

Then the scaling property of \(\lambda \) follows immediately. Applying Omey (1989, Theorem 1.2.2) again, we conclude that \(u \) can be embedded in a function \(g \) satisfying Eq. 3.8.

Assuming a probability measure has a mass function satisfying the monotonicity condition, we make explicit the relation between regular variation of the probability measure and regular variation of its pmf. The first part of Theorem 3.2 is the multivariate analogue of the monotone density theorem.

Theorem 3.2 Suppose two non-negative integer valued random variables \((X, Y)\) have mass function \(p(i, j) \) and \(p \) is eventually decreasing in both arguments. For \(\alpha_1, \alpha_2 > 0 \), assume
further that \(b_1(\cdot) \in RV_{1/\alpha_1}, b_2(\cdot) \in RV_{1/\alpha_2} \) are strictly increasing, continuous scaling functions.

1. (Regular variation of the measure implies regular variation of the mass function:) If there exists a limit measure \(\nu \in \mathcal{M}(\mathbb{R}_+^2 \setminus \{0\}) \) with density \(\lambda(x, y) \), such that as \(t \to \infty \),

\[
\lim_{t \to \infty} f\left(\frac{b_1(t)x}{(b_1(t)b_2(t))^\alpha}, \frac{b_2(t)y}{(b_1(t)b_2(t))^\alpha}\right) = \lambda(x, y), \quad x, y > 0.
\]

then the mass function \(p(i, j) \) is regularly varying:

\[
\lim_{t \to \infty} \frac{p([b_1(t)x], [b_2(t)y])}{(b_1(t)b_2(t))^{-\alpha}} = \lambda(x, y), \quad x, y > 0.
\]

2. (Regular variation of the mass function implies regular variation of the measure:) Conversely, if \(p(i, j) \) satisfies Eq. (3.10), then the distribution of \((X, Y) \) is regularly varying and Eq. (3.9) holds with \(\nu(dx, dy) = \lambda(x, y)dxdy \).

Proof (1) Extend the pmf \(p(i, j) \) to an eventually decreasing pdf \(f(x, y) \) using the method in Remark 3.1, such that \(p(i, j) = f(i, j) \) for all \(i, j \in \mathbb{N} \). Let \((X^*, Y^*) \) have pdf \(f(x, y) \), and Eq. (3.9) implies

\[
\lim_{t \to \infty} \frac{p\left(\frac{X}{b_1(t)}, \frac{Y}{b_2(t)}\right)}{(b_1(t)b_2(t))^{-\alpha}} = \lambda(x, y), \quad x, y > 0.
\]

By de Haan and Omey (1984, Theorem 2.3), we have

\[
\lim_{t \to \infty} \frac{f\left(\frac{b_1(t)x}{b_2(t)y}\right)}{(b_1(t)b_2(t))^{-\alpha}} = \lambda(x, y).
\]

Then Eq. (3.10) can be recovered by noting that \(p([b_1(t)x], [b_2(t)y]) = f\left(\frac{b_1(t)x}{b_2(t)y}\right) \) and \(p(i, j) \) is embeddable in \(f(x, y) \) in the sense of Eq. (3.2).

(2) Since \(p(i, j) \) satisfies (3.10) and is eventually monotone, \(p(i, j) \) can be embedded into a pdf, \(f(x, y) \) which is also eventually monotone. Following the arguments in de Haan and Resnick (1979) and de Haan and Omey (1984), we have for all Borel sets \(A \subseteq \mathbb{R}_+^2 \setminus \{0\} \) bounded away from \(0 \) such that \(\int_A \lambda(x, y)dxdy < \infty \),

\[
\lim_{t \to \infty} \int_A \frac{f\left(\frac{b_1(t)x}{b_2(t)y}\right)}{(b_1(t)b_2(t))^{-\alpha}}dxdy = \int_A \lambda(x, y)dxdy,
\]

and Eq. (3.9) then follows by the embeddability of \(p(i, j) \).

3.1 Application to the Preferential Attachment Model

As an example of the previous results, we treat a special case of the preferential attachment model, where \(c_1 = c_2, i.e. \) the joint regular variation of the distribution of \((I, O) \) is standard. Due to the decomposition in Eq. 2.6, it suffices to verify the monotonicity of the joint mass function of \((X_j, Y_j), j = 1, 2 \). We will show that the joint mass function of \((X_1, Y_1) \) is decreasing and the same argument also works for \((X_2, Y_2) \). Our approach requires the fact that the gamma function \(\Gamma(x) \) is log-convex and \((\log \Gamma)'' > 0 \). See Abramowitz and Stegun (1972, page 260, Section 6.4). This means \(f(x) = \log \Gamma(x) \) is convex, \(f'(x) = \Gamma'(x)/\Gamma(x) \) and \(f''(x) = (\Gamma''(x)\Gamma(x) - (\Gamma'(x))^2)/\Gamma(x)^2 > 0 \).
Recall Section 2.3 and Eqs. 2.7 and 2.6. When \(c_1 = c_2 \), we have \((X_1, Y_1) = (T_{\lambda+1}(Z^{-1}), \tilde{T}_\mu(Z^{-1}))\). Set \(q(i, j) = p[X_1 = i, Y_1 = j] \) and for \(i, j \in \mathbb{N} \),

\[
q(i, j) := \frac{\Gamma(i + \lambda + 1)}{\Gamma(\lambda + 1) \Gamma(j + 1)} \cdot \frac{1}{c_1} \int_1^\infty z^{-(2+1/c_1+\lambda+\mu)} (1 - z^{-1})^{j+1} dz
\]

which shows that \(q(i,j) \) is decreasing in \(x \). Thus

\[
g(a) = \Gamma(i + \lambda + 1) / \Gamma(j + 1) \cdot \Gamma(j + \mu) / \Gamma(i + j + 1) = C \Gamma(i + \lambda + 1) / \Gamma(j + 1) \cdot \Gamma(j + \mu) / \Gamma(i + j + 1).
\]

Taking the log of \(q(i, j) \), pretend \(i \) is a continuous variable and take the first partial derivative with respect to \(i \). This gives

\[
\frac{\partial}{\partial i} \log q(i, j) = \frac{\Gamma'(i + \lambda + 1)}{\Gamma(i + \lambda + 1)} - \frac{\Gamma'(i + 1)}{\Gamma(i + 1)} = [f'(i + \lambda + 1) - f'(i + 1)] - [f'(i + 1/c_1 + \lambda + \mu + 2) - f'(i + 1)],
\]

where we used the notation \(f = \log \Gamma \). Since \(f \) is convex, \(f' \) is increasing on \(\mathbb{R}_+ \). For fixed \(x > 0 \) and \(a > 0 \), \(g(a) := f'(x + a) - f'(x), a > 0 \), satisfies \(g'(a) = f''(x + a) > 0 \), and thus \(g(a) \) is increasing in \(a \). Hence for \(j \geq 0 \),

\[
f'(i + j + 1/c_1 + \lambda + \mu + 2) - f'(i + j + 1) \geq f'(i + 1/c_1 + \lambda + \mu + 2) - f'(i + 1),
\]

which gives

\[
\frac{\partial}{\partial i} \log q(i, j) \leq [f'(i + \lambda + 1) - f'(i + 1)] - [f'(i + 1/c_1 + \lambda + \mu + 2) - f'(i + 1)] = f'(i + \lambda + 1) - f'(i + 1/c_1 + \lambda + \mu + 2) < 0.
\]

Therefore, \(q(i, j) \), the joint mass function of \((X_1, Y_1)\), is decreasing in \(i \). Analogously we can show that \(q(i, j) \) is also increasing in \(j \). The monotonicity of the joint mass function \(p(i, j) \) of \((I, O)\) defined in Eq. 2.5 then follows from the decomposition in Eq. 2.6. Hence we are left to show Eq. 3.1 for \(p(i, j) \).

Using Eq. 3.11 with the constant \(C \) restored, we have

\[
q([nx], [ny]) = \frac{\Gamma(1 + 1/c_1 + \lambda + \mu)}{c_1 \Gamma(\lambda + 1) \Gamma(\mu)} \times \frac{\Gamma([nx] + \lambda + 1)}{\Gamma([nx] + [ny] + 1)} \cdot \frac{\Gamma([ny] + \mu)}{\Gamma([nx] + [ny] + 1) / \Gamma([nx] + [ny] + 1)}.
\]

Hence, for all \(x, y > 0 \)

\[
\lim_{n \to \infty} \frac{q([nx], [ny])}{n^{-(2+1/c_1)}} = \frac{\Gamma(1 + 1/c_1 + \lambda + \mu)}{c_1 \Gamma(\lambda + 1) \Gamma(\mu)} \frac{x^{\lambda} y^{\mu-1}}{(x + y)^{1+\lambda+\mu+1/c_1}},
\]

which shows that \(q(i,j) \) is regularly varying. Similar calculations can be done for \((X_2, Y_2)\) and then using Eq. 2.6, we have for all \(x, y > 0 \),

\[
\lim_{n \to \infty} \frac{p([nx], [ny])}{n^{-(2+1/c_1)}} = \frac{\gamma}{\alpha + \gamma} \Gamma(1 + 1/c_1 + \lambda + \mu) \frac{x^{\lambda} y^{\mu-1}}{(x + y)^{1+\lambda+\mu+1/c_1}} + \frac{\alpha}{\alpha + \gamma} \Gamma(1 + \lambda) \Gamma(\mu) \frac{x^{\lambda-1} y^{\mu}}{(x + y)^{1+\lambda+\mu+1/c_1}}.
\]
Therefore, in the special case that $c_1 = c_2$, $p(i, j)$ is embeddable and standard regularly varying.

We also know from Samorodnitsky et al. (2016, Theorem 2) that the joint distribution (as opposed to the mass function) of (I, O) is regularly varying, and Theorem 3.2 implies that the joint mass function $p(i, j)$ must also be regularly varying in the sense of Eq. 3.10. From Eq. 3.13, the limit function for $p(i, j)$ is exactly the density for the limit measure specified in Samorodnitsky et al. (2016). We summarize:

Proposition 3.1 In the preferential attachment model with $c_1 = c_2$, the asymptotic joint mass function of in- and out-degrees $p(i, j)$ is eventually monotone, embeddable and standard regularly varying and satisfies Eq. 3.13.

When $c_1 \neq c_2$, we have not succeeded in demonstrating the monotonicity condition for the mass function. Instead, in the next section, we will give a different sufficient condition which can be used to verify the regular variation of the joint mass function.

4 Embeddability and Convergence on the Unit Sphere

In Section 3, embeddability of a mass function is guaranteed by assuming monotonicity; however, sometimes monotonicity is either not applicable or difficult to verify. An alternate approach is to fix a norm $\| \cdot \|$ and suppose regular variation on $\mathbb{N}_0 := \{ v \in \mathbb{R}_+^2 : \| v \| = 1 \}$, the unit sphere in this norm relative to the origin, with respect to a continuous variable. This is sufficient for embeddability but further uniformity and boundedness conditions are necessary to relate pmf’s, pdf’s and their measures.

Theorem 4.1 (Standard Case) Suppose $h(\cdot) \in RV_{\rho}$, $\rho < 0$ and $u : \mathbb{Z}_+^2 \mapsto \mathbb{R}_+$ satisfies:

1. There exists a limit function $\lambda_0 > 0$ defined on \mathbb{N}_0 such that
 \[
 \lim_{t \to \infty} \frac{u([tx], [ty])}{h(t)} = \lambda_0(x, y), \quad \forall (x, y) \in \mathbb{N}_0. \tag{4.1}
 \]

 Then

 1. The doubly indexed function $u(i, j)$ is regularly varying: For all $x, y > 0$
 \[
 \lim_{n \to \infty} \frac{u([nx], [ny])}{h(n)} = \lambda(x, y) := \lambda_0 \left(\frac{(x, y)}{\| (x, y) \|} \right) \| (x, y) \| ^\rho > 0; \tag{4.2}
 \]
 2. The doubly indexed function $u(i, j)$ is embeddable in a regularly varying function $f : \mathbb{R}_+^2 \mapsto \mathbb{R}$ with limit function $\lambda(\cdot)$ such that $f(x, y) = u([x], [y])$;
 3. If Eq. 4.1 is uniform on \mathbb{N}_0, then f also satisfies
 \[
 \lim_{t \to \infty} \sup_{(x, y) \in \mathbb{N}_0} \left| \frac{f(tx, ty)}{h(t)} - \lambda_0(x, y) \right| = 0. \tag{4.3}
 \]
Note if a pdf satisfies Eq. 4.3 with λ_0 positive and bounded on \mathbb{N}_0, then also the measure is regularly varying. See de Haan and Resnick (1987) and Resnick (2008).

Proof. Write $v := (x, y)$, $u([tv]) := u([tx], [ty])$, and for v such that $\|v\| \neq 0$, we have $a := v/\|v\| \in \mathbb{N}_0$. We show that convergence on \mathbb{N}_0 implies convergence everywhere. We have for $v = \|v\| \cdot a \neq 0$,

$$
\frac{u([tv])}{h(t)} = \frac{u([tx], [ty])}{h(t)} = \frac{u([\|v\| \cdot a])}{h(t)} \cdot \frac{h(\|v\|)}{h(t)} \to \lambda_0(a) \|v\|^\rho.
$$

This gives Eq. 4.2 and regular variation of f follows directly. If Eq. 4.1 is uniform on \mathbb{N}_0 then by definition of $f(v) = u([v])$, Eq. 4.3 is true.

There are various possible ways to extend this result to the non-standard case, depending on the purpose in mind. The following is crafted with Section 4.1 in mind.

Corollary 4.1 (Non-standard case; power law scaling) Suppose $h(\cdot) \in RV_\rho$, $\rho < 0$, $u : \mathbb{Z}_+^2 \mapsto \mathbb{R}_+$ and scaling functions are power laws; i.e., $b_i(t) = t^{1/\alpha_i}$, $i = 1, 2$. If there exists a limit function $\lambda_0 > 0$ defined on $E_0 := \{(x, y) : (x^{\alpha_1}, y^{\alpha_2}) \in \mathbb{N}_0\}$ such that

$$
\lim_{t \to \infty} \frac{u([t^{1/\alpha_1}x], [t^{1/\alpha_2}y])}{h(t)} = \lambda_0(x, y), \quad \forall (x, y) \in \mathcal{E}_0,
$$

then

1. The doubly indexed function $u(i, j)$ is regularly varying: For all $x, y > 0$, define $w = w(x, y) := (x^{\alpha_1}, y^{\alpha_2})$ and

$$
\lim_{n \to \infty} \frac{u([n^{1/\alpha_1}x], [n^{1/\alpha_2}y])}{h(n)} = \lambda(x, y) := \lambda_0\left(\frac{x}{\|w\|^{1/\alpha_1}}, \frac{y}{\|w\|^{1/\alpha_2}}\right) \|w\|^\rho > 0; \quad (4.5)
$$

2. The doubly indexed function $u(i, j)$ is embeddable in a non-standard regularly varying function $f : \mathbb{R}_+^2 \mapsto \mathbb{R}$ with limit function $\lambda(\cdot)$ such that $f(x, y) = u([x], [y])$;

3. If convergence in Eq. 4.4 is uniform on \mathcal{E}_0, then also,

$$
\lim_{t \to \infty} \sup_{(x, y) \in \mathcal{E}_0} \left| \frac{f(t^{1/\alpha_1}x, t^{1/\alpha_2}y)}{h(t)} - \lambda_0(x, y) \right| = 0. \quad (4.6)
$$

Remark 4.1 If a regularly varying pdf $f(x, y)$ on \mathbb{R}_+^2 satisfies Eq. 4.6 with λ_0 positive and bounded on \mathcal{E}_0, then also the measure induced by the pdf is regularly varying. If a pmf $u(i, j)$ satisfies Eq. 4.4 with λ positive and bounded on \mathcal{E}_0, then the corresponding discretely supported measure is regularly varying. See de Haan and Resnick (1987) and Resnick (2008) and the comments after the proof of Corollary 4.1.

Proof. Note that for all $(x, y) \neq 0$, the function w creates a map onto \mathcal{E}_0 and

$$(x, y) \mapsto \left(\frac{x}{\|w\|^{1/\alpha_1}}, \frac{y}{\|w\|^{1/\alpha_2}}\right) \in \mathcal{E}_0.$$
We show that convergence on E_0 implies convergence for all $x, y > 0$: For $x, y > 0$,
\[
\lim_{t \to \infty} \frac{u([t^{1/\alpha_1} x], [t^{1/\alpha_2} y])}{h(t)} = \frac{u([t^{1/\alpha_1} \|w\|^{1/\alpha_1} \cdot (x/\|w\|^{1/\alpha_1}), [t^{1/\alpha_2} \|w\|^{1/\alpha_2} \cdot (y/\|w\|^{1/\alpha_2})])}{h(t)} = \frac{\lambda_0 \left(x/\|w\|^{1/\alpha_1}, y/\|w\|^{1/\alpha_2} \right)}{\|w\|^{\rho}},
\]
which verifies Eq. 4.5. The embeddability and Eq. 4.6 follow by a similar argument as in the proof of Theorem 4.1.

For Remark 4.1: If we assume f is regularly varying, λ_0 is bounded on E_0 and (4.6), it is straightforward to generalize results in de Haan and Resnick (1987, Theorem 2.1): For $(x, y) \in A$, where A is a Borel set bounded away from 0, find an integrable bound for
\[
f \left((t \|w\|^{1/\alpha_1} \|w\|^{-1/\alpha_1} x, (t \|w\|^{1/\alpha_2} \|w\|^{-1/\alpha_2} y) \right) \cdot \frac{h(t \|w\|)}{h(t)},
\]
using the boundedness of λ_0 on E_0 to bound the first term and Karamata’s representation to bound the second (same as in the proof of de Haan and Resnick 1987, Theorem 2.1). Then the convergence of the associated measure follows from dominated convergence.

4.1 Application to the Preferential Attachment Model

We now apply Corollary 4.1 to show that in the case where $c_1 \neq c_2$, the joint pmf of (I, O) is also regularly varying. The following lemma is a variant of Stirling’s formula.

Lemma 4.1 For a compact set $K \subset (0, \infty)$ and $0 < k \neq 1$, we have
\[
\lim_{t \to \infty} \sup_{x \in K} \left| \frac{\Gamma(t x + k)}{t^k \Gamma(t x)} - x^k \right| = 0.
\]

Proof Define $f_t(x) = \frac{\Gamma(t x + k)}{t^k \Gamma(t x)}$. By Stirling’s formula (Abramowitz and Stegun 1972, p. 254), we have pointwise convergence:
\[
\lim_{t \to \infty} f_t(x) = x^k, \quad x > 0.
\]

According to Qi et al. (2006, Theorem 4) or Qi et al. (2008, Theorem 1.3), for $x > 0$, $\log f_t(x)$ is increasing in t if $k \in (0, 1)$ and decreasing in t if $k > 1$. Either case will allow us to apply Dini’s theorem to the pointwise convergence in Eq. 4.7 to conclude the uniform convergence of f_t on K.

Now we show regular variation of $p(i, j)$ for the preferential attachment model in the nonstandard case where $c_1 \neq c_2$. Here we still only detail the calculations for (X_1, Y_1); results for (X_2, Y_2) can be obtained in a similar way.
Set \(a = c_2 / c_1, b_i(t) = t^{c_i} \). We have
\[
q([r^{c_1} x], [r^{c_2} y]) = \frac{\Gamma([r^{c_1} x] + \lambda + 1)}{\Gamma(\lambda + 1) \Gamma([r^{c_1} x] + 1)} \frac{\Gamma([r^{c_2} y] + \mu)}{\Gamma(\mu) \Gamma([r^{c_2} y] + 1)} \frac{1}{c_1} \times \\
\times \int_1^\infty s^{-(1+1/c_1)} (1-s^{-1}) [r^{c_1} x] s^{-(\lambda+1)} (1-s^{-a}) [r^{c_2} y] s^{-a \mu} ds.
\]

It suffices to assume according to Corollary 4.1 that \((x, y) \in \mathcal{E}_0\). Making the change of variable \(z = s / t^{c_1} \), we rewrite the integral as
\[
t^{-(1+c_1(\lambda+1)+c_2\mu)} \int_{1/t^{c_1}}^\infty z^{-(2+1/c_1+\lambda+a \mu)} \left(1 - \frac{z^{-1}}{t^{c_1}} \right)^{[r^{c_1} x]} \left(1 - \frac{z^{-a}}{t^{c_2}} \right)^{[r^{c_2} y]} dz. \tag{4.8}
\]

Note that for any \((x, y)\) on the compact set \(\mathcal{E}_0 \) defined in Corollary 4.1, dominated convergence gives the convergence of the integral in Eq. 4.8 to
\[
\int_0^\infty z^{-(2+1/c_1+\lambda+a \mu)} e^{-\left(\frac{z^{1/c_1}}{t^{c_1}} \right)} dz,
\]
as \(t \to \infty \). Therefore, according to Corollary 4.1 we have for all \(x, y > 0 \),
\[
\lim_{n \to \infty} \frac{q([n^{c_1} x], [n^{c_2} y])}{n^{-(1+c_1+c_2)}} = \frac{x^{\lambda} y^{\mu-1}}{c_1 \Gamma(\lambda + 1) \Gamma(\mu)} \int_0^\infty z^{-(2+1/c_1+\lambda+a \mu)} e^{-\left(\frac{z^{1/c_1}}{t^{c_1}} \right)} dz, \tag{4.9}
\]
which shows that \(q(i, j) \) is regularly varying. Applying Eq. 2.6 again, we conclude,
\[
\lim_{n \to \infty} \frac{p([n^{c_1} x], [n^{c_2} y])}{n^{-(1+c_1+c_2)}} = \frac{\gamma}{\alpha + \gamma} \frac{x^{\lambda} y^{\mu-1}}{c_1 \Gamma(\lambda + 1) \Gamma(\mu)} \int_0^\infty z^{-(2+1/c_1+\lambda+a \mu)} e^{-\left(\frac{z^{1/c_1}}{t^{c_1}} \right)} dz \\
+ \frac{\alpha}{\alpha + \gamma} \frac{x^{\lambda-1} y^{\mu}}{c_1 \Gamma(\lambda) \Gamma(\mu + 1)} \int_0^\infty z^{-(1+a+1/c_1+\lambda+a \mu)} e^{-\left(\frac{z^{1/c_1}}{t^{c_1}} \right)} dz. \tag{4.10}
\]

Therefore, \(p(i, j) \) is regularly varying with scaling functions \(b_i(t) = t^{c_i} \) for \(i = 1, 2 \) and limit function as in Eq. 4.10, which is the density of the limit measure given in Samorodnitsky et al. (2016). We summarize:

Proposition 4.1 In a preferential attachment model where \(c_1 \neq c_2 \), the joint mass function of in- and out-degrees \(p(i, j) \) is embeddable, nonstandard regularly varying and satisfies Eq. 4.10.

Using Lemma 4.1, we can also conclude that the convergence in Eq. 4.9 is uniform on \(\mathcal{E}_0 \) and so is Eq. 4.10. The limit function specified in Eq. 4.10 is positive and bounded on \(\mathcal{E}_0 \). Hence, the results in Corollary 4.1(3) and Remark 4.1 are also applicable here and allow the conclusion that regular variation of the pmf \(p(i, j) \) implies regular variation of the associated measure proven in Resnick and Samorodnitsky (2015) and Samorodnitsky et al. (2016)

References

Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables, 10th edn. Dover, New York

Bingham NH, Goldie CM, Teugels JL (1987) Regular variation. Cambridge University Press, Cambridge

Bojanic R, Seneta E (1973) A unified theory of regularly varying sequences. Math Z 134:91–106

© Springer
