High-Throughput Sequencing Reveals miRNAs Affecting Follicle Development in Chicken

Quan Zhang*, Shanshan Li, Bingwang Du

Department of Animal Breeding and Genetics, Agricultural College, Guangdong Ocean University, Zhanjiang, P. R. China

Email address: gdouzq@foxmail.com (Quan Zhang)

*Corresponding author

To cite this article:
Quan Zhang, Shanshan Li, Bingwang Du. High-Throughput Sequencing Reveals miRNAs Affecting Follicle Development in Chicken. International Journal of Genetics and Genomics. Vol. 5, No. 6, 2017, pp. 76-84. doi: 10.11648/j.ijgg.20170506.12

Received: October 5, 2017; Accepted: October 19, 2017; Published: November 16, 2017

Abstract: As the derivative of chicken skin, hair follicle is capable of self-renew. Its proliferation and differentiation result in hair formation. MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development. In this study, we used next generation sequencing technology sequenced miRNAs of the hair follicle derived from the 13 day-old chicken (Gallus gallus) embryos in which from Kirin chicken and Huaixiang chicken that feathers having morphogenesis with significantly different curling. A population of conserved miRNAs was identified. These conserved miRNAs were derived from 638 homologous hairpin precursors across 5 animal species. We identified a total of 645 miRNAs in the chicken embryos. Among them, 11 differentially expressed miRNAs were identified (>±2 Fold, p value <0.05) by comparing Kirin chicken and Huaixiang chicken. Several gene ontology (GO) biology processes and the WNT, BMP and TGF-β signaling pathways were found to be differentially expressed miRNAs as part of hair follicle development process. The miR-1623 has an effect on WNT4 and involved in hair follicle cell development. This study has identified miRNAs that associated with the chick embryonic hair follicle development and identified some target miRNAs for further research into their role played in feather growth.

Keywords: Chicken Embryo, Follicle, Mirnas

1. Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules that suppress gene expression post-transcriptionally, and function important roles in diverse biological processes [1]. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved [2]. In addition to endogenous presence in cells, miRNAs can also be actively released into extracellular fluids through exosomes or microvesicles [3, 4]. Consequently, miRNA research has become a hot spot in the field of biological for explaining molecular formation mechanisms [5] and important traits of animals [6-9]. The skin plays an important protection role in animal existence and it evolves with the animal bifurcation.

The feather is one of the most complex integumentary appendages due to the extensive diversity in shape, size, arrangement and pigmentation, and is therefore an excellent model for evolutionary and developmental biology as variations can occur at each step of development and differentiation [10-13]. The Kirin chicken can adapt to high-temperature environment because of unique frizzled feather branching structure characteristic, rachis stout and outwardly curved, barbs short sparse, feather hook can’t connect with the back edge of the adjacent twig lead to pinna can not closed. Recent advances that frizzled feather is caused by KRT75 mutation reside in autosomal, belong to incomplete dominant inheritance [14]. Feathers develop from the hair follicle, therefore the hair follicles numbers, diameter with feathers growth have a direct relationship [15, 16]. And miRNAs connected with hair follicles developmental processes [5, 17] and regulate hair follicle development and hair growth [18, 19].

In this study, we investigated the expression profile of miRNAs in the follicles of 13-day chicken embryos from the Kirin chicken (KRC) and Huaixiang chicken (HXC). The results demonstrate that chicken embryonic follicle contains large amounts of miRNAs.
2. Materials and Methods

2.1. Ethics Statement

All chicken embryos experiments were approved and reviewed by the local ethical committee and the procedures in this study followed the guidelines of the Guangdong Ocean University Animal Care and Use Committee. To minimize the suffering of animals, sodium pentobarbital anesthesia was used before the collection of chicken skin hair follicles samples.

2.2. Collection of Chicken Embryonic Follicle Samples

Fertile eggs were collected from 45-wk-old KRC and HXC. Fertile eggs were incubated at 37.8°C with 65 to 75% humidity and intermittent rotations, which to provided 2-3cm skin tissue were obtained from the back of the body of 13-day chicken embryos, separately. Samples of hair follicle stored at −80°C until used.

2.3. Small RNA Library Preparation and Sequencing

Collected feather follicle from six chicken embryos at the age of 13-day were used to construct two small RNA libraries in this study. These samples included three KRC ones and three HXC, respectively.

Total RNA was extracted from the follicle using TruSeq Small RNA Sample Pre Kits (Illumine, San Diego, USA) according to the manufacturer’s instructions. Total RNA quality was checked with a Bioanalyzer 2100 (Agilent Technologies, USA). The RIN was > 8.0 and A260/A280 was > 2.1 for all samples. The equal concentration total RNAs of six samples were constructed small RNA libraries by TruSeq Small RNA Sample prep Kit of illumina. The overall flow of the sequencing procedure is as follows: small RNAs ranging from 18 to 35nt in length was purified from 15% polyacrylamide gels, then ligated to 5’ and 3’ adapters. Reverse transcription was performed, and followed by PCR amplification. The purified PCR products (~140bp) were used directly for cluster generation and sequencing analysis using the Illumina’s 2000 Sequencer according to the manufacturer’s instructions (Personalbio, ShangHai, China).

2.4. Sequence Data Analysis

Sequence data analysis was done using AGGT101-mir tool. After deleting poor quality reads, adaptor pollution reads and reads less than 18nt, the clean reads were obtained. The clean reads of small RNAs were aligned to the reference chicken (G. gallus) genome to identify known miRNAs. The sequences that matched perfectly to known miRNAs (miRBase V21.0) were determined as conserved miRNAs. Other small RNAs (rRNA, tRNA, snRNA and snoRNA) were annotated by blasting against the Rfam, Repbase and ncRNA databases.

The unannotated small RNA sequences were aligned to the reference chicken (G. gallus) genome to find potential precursor sequences for novel miRNAs. Novel miRNAs were predicted by RNA-fold tools following the criteria: (1) number of nucleotides in one bulge in stem (< = 12); (2) number of base pairs in the stem region of the predicted hairpin (>= 16); (3) cutoff of free energy (kcal/mol = = -15); (4) length of hairpin (up and down stems + terminal loop >= 50); (5) length of hairpin loop (< = 20); (6) number of nucleotides in one bulge in mature region (< = 8); (7) number of biased errors in one bulge in mature region (< = 4); (8) number of biased bulges in mature region (< = 2); (9) number of errors in mature region (< = 7); (10) number of base pairs in the mature region of the predicted hairpin (>= 12); (11) percent of mature in stem (< = 80). Furthermore, the raw reads > = 10 at least.

To identify differentially expressed miRNAs, the number of conserved miRNAs was normalized to the total number of reads in each sample that matched the chicken (Gallus Gallus) genome. P-values for differentially expressed miRNAs (KRC/HXC) were calculated by Fisher’s exact-test and Chi square (2x2) test.

2.5. Mirna Target Prediction and Functional Analysis

Target genes of differentially expressed miRNAs were predicted by Target Scan and miRanada. To acquire higher prediction accuracy, only common target genes were considered. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were retrieved using DAVID (http://david.abcc.ncifcrf.gov/).

2.6. Quantitative RT-PCR

Total RNAs of sampled follicle were reverse-transcribed by PrimerScript® RT reagent Kit (TAKARA, DRR037A). The primers (Table 1) were designed by Primer 5.0 (ABI). 5ul RT reaction system included: denatured RNA and RT primer (2 uM) 3.0ul, 5×PrimeScript®Buffer 1.0ul, RNase Free dH2O 0.6ul, PrimeScript® RT Enzyme Mix I 0.4ul. The RT reactions were performed as follows: 42°C for 15 minutes, 85°C for 5 seconds and hold at 4°C. 20ul real-time PCR reaction system included: 2×SYBR Green Mix with ROX 10.0ul, ddH2O 8.2ul, Primer mix (10 uM) 0.8ul, cDNA 1ul. The PCR reactions were performed as follows: 50°C for 2 minutes, 95°C for 2 minutes, then 40 cycles with 94°C for 15 seconds and 60°C for 30 seconds.

All experiments were performed on ABI 7900 HT sequence detection system. Each reaction was carried out with 3 replicates. snRNA U6 was used as the control for RT-qPCR. The relative expression level of each miRNA to U6 snRNA was normalized as ΔCp = Cq miRNA - Cq U6RNA [20]. Comparison of relative expression level in different stages

Primer	sequences (5’-3’)	bp
miR-1623	ACCGCAGGCACAGCACAGGCAGT	22
miR-U6	TGCTTTGGAGACACATATACAA	23
Reverse Primer	GATGCCGCTCTTCATCGTGTAT	21
WNT4-F	TCTAGCCTCATCTTCATCGCA	20
WNT4-R	AGCCAAATGTATTTCCGGCAG	20
β-actin-F	TGCCAGGGTACATTTGTTGTA	20
β-actin-R	TGCCGTCATCAAGGAGAAG	20

Table 1. The list of RT-qPCR primer.
was determined using the 2\(^{-\Delta\Delta Ct}\) method [21]. Statistical significance analysis of the expression change was performed by one-way ANOVA in SPSS 20.0.

3. Results

3.1. Small RNA Library Construction and Sequencing

To investigate the miRNA expression profile in chicken follicle, High-throughput HiSeq 2000 sequencing yielded 9,714,611 (HXC) and 10,875,477 (KRC) raw reads on average for each group small RNA libraries. After filtered low quality sequences, 9,134,499 (HXC) and 7,919,788 (KRC) clean reads for each group were obtained respectively (Table 2). The histograms of the reads length distribution showed majority were 20nt ~ 24nt (Figure 1). Of these, 35,705 (HXC) and 52,201 (KRC) unique small RNAs were identified.

Table 2. The hair follicles small RNA sequencing reads of Kirin chicken and Huaixiang chicken.

Sample	HXC1	HXC2	HXC3	KRC1	KRC2	KRC3
raw reads	9,873,177	9,556,045	11,410,76	11,278,066	11,337,531	10,010,835
clean reads	9,318,257	8,950,741	10,596,63	8,282,543	8,141,768	7,335,054
15-30nt reads	8,881,208	7,869,359	9,238,098	7,733,489	7,519,340	6,329,447
unique reads	36,938	31,801	38,376	56,408	53,568	46,628

HXC: wild feather of Huaixiang chickens; KRC: frizzle feather of Kirin chickens.

Figure 1. The histograms of the RNA-seq reads length distribution from 15nt to 30nt.

3.2. Identification of Conserved Mirnas

To identify conserved miRNAs in chicken follicle, the small RNAs were aligned to current miRBase (Release V21.0). Sequences with perfect matching to known chicken (*Gallus Gallus*) miRNAs were considered as conserved miRNAs. In total, 645 conserved sequences were annotated as chicken miRNAs. To obtain higher reliable results, only the miRNAs with raw reads >10 at least were considered. Then 290 were sorted as common miRNAs, with only one KRC-specific miRNA (gga-miR-1682). All 291 conserved miRNAs detected by sequencing were listed in Table 3.

Table 3 The conserved miRNAs expressed in the chicken follicle

miRNA name	miRNA_seq
gga-miR-3607-5p	TACATATGATGAGCTTTGCACT
gga-miR-6544-5p	TTTCCAGAAAGATATGAGGAGT
gga-miR-6555-5p	GATTCGCAAGCAGAAACAGT
gga-miR-6694-3p	TAAAGAATGAGCTTCTGAGTC
gga-miR-1800	ACTATCGAGTGGCAGATGAG
gga-miR-1737	CACGACATGGCAGATGAG
gga-miR-1559-3p	ATGGTTACATCTATTTCTGAGT
gga-miR-429-5p	GCTTACACGAGGAAGATAG
gga-miR-6550-3p	GCTTACACGAGGAAGATAG
gga-miR-19b-5p	AGTTTTGCAGGTTTGCATCAG
gga-miR-6548-5p	AACAAACAGCGGACTGCGG
gga-miR-29a-3p	TACGACCATGGAATACGGT
gga-miR-6590-3p	TTAGTCTGTCTCTAGCAG
gga-miR-23b-3p	TGGGTTGTGAAGAGAGAG
gga-miR-6575-5p	TTGTACAGTGACATGAGT
gga-miR-1727	AACGACATGGCAGATGAG
gga-miR-1591-5p	GCTTACACGAGGAAGATAG
gga-miR-128-2-5p	GGGGCGCTTACAGCTGAGAGA
gga-miR-1781-3p	TTAGTCTGTCTCTAGCAG
gga-miR-6548-3p	GCTTACACGAGGAAGATAG
gga-miR-6516-3p	TTGGTGACATGGAATACGGT
gga-miR-1626-3p	ATGGTTACATCTATTTCTGAGT
gga-miR-30b-3p	ATGGTTACATCTATTTCTGAGT
gga-miR-1666	TTGTACAGTGACATGAGT
gga-miR-1644	AACGACATGGCAGATGAG
gga-miR-135a-3p	GCTTACACGAGGAAGATAG
gga-miR-7460-3p	GCTTACACGAGGAAGATAG
gga-miR-1698	CTGGTGACATGGAATACGGT
gga-miR-6582-3p	GCTTACACGAGGAAGATAG
gga-miR-1808	GCTTACACGAGGAAGATAG
gga-miR-6566-5p	GCTTACACGAGGAAGATAG
gga-miR-6565-3p	GCTTACACGAGGAAGATAG
gga-miR-33-3p	GCTTACACGAGGAAGATAG
gga-miR-6631-5p	GCTTACACGAGGAAGATAG
gga-miR-1649-5p	GCTTACACGAGGAAGATAG
gga-miR-6648-3p	GCTTACACGAGGAAGATAG
gga-miR-16-2-3p	GCTTACACGAGGAAGATAG
gga-miR-6669-3p	GCTTACACGAGGAAGATAG
gga-miR-1684a-3p	GCTTACACGAGGAAGATAG
gga-miR-3532-3p	GCTTACACGAGGAAGATAG
gga-miR-1651-3p	GCTTACACGAGGAAGATAG
gga-miR-1805-3p	GCTTACACGAGGAAGATAG
gga-miR-1707	GCTTACACGAGGAAGATAG
gga-miR-1769-3p	GCTTACACGAGGAAGATAG
Sequence	Description
----------	-------------
gga-miR-1558	CTCGCTGTGAAGGAGCTGACGACG
gga-miR-1559	AGGGACGTAATTGGGGGCAAGTGT
gga-miR-1574p	ACGCTGGGAGTACGAGCAGTCC
gga-miR-1623	ACCCGGCACAGAAGGACGC
gga-miR-1663p	TGCAATCGAAGAAGGCTAGTC
gga-miR-4608p	TTCACGGATGTACGACCTGGA
gga-miR-153p	AGGCAAGCTTTGGTGGTGGTTT
gga-miR-1716	ACGGGGCCGCTGGAAGCTGACG
gga-miR-6459p	TGCTTTCGCTTGGAGTACGAG
gga-miR-551-3p	GCAGGCACTTCTGAGATGAG
gga-miR-138-5p	AGCCTGGTGTTGAAGGACAGC
gga-miR-6710-3p	AAAGTCTGTTCTCTTTGATG
gga-miR-1458	GTGCTTGATGGACAGCAGAAG
gga-miR-1729-3p	CTTACCTGGTGGTGGTGGTGT
gga-miR-1663p	TACGCCTGTGGTGGTGGTGT
gga-miR-34-5p	AGGGAGTGTAGTCTGAGTCTT
gga-miR-6543-5p	TGCTTTCGCTTGGAGTACGAG
gga-let-7g-3p	TGCTAGAAGGTGAGGAGCAGC
gga-miR-3594-3p	TGCTGATGCTTGGAGGCCAG
gga-miR-135a-3p	TAGGAGGATGGAAGGACAGC
gga-miR-1569	TTAGGTTGGTGGTGGTGGTGG
gga-miR-6670-5p	TGGCGTTAATGAGAGAGACG
gga-miR-138-1-3p	GCTTCTTACTGAGAGGACAGC
gga-miR-130c-3p	AGGACAGGCAGGGAGGACAGC
gga-miR-1674	GCTGCTATTGGTGGTGGTGG
gga-miR-1677-5p	TGGCTGATGCTTGGAGTACGAG
gga-miR-17-3p	TCTCTTCGCTTGGAGGAGCAGC
gga-miR-1930-3c	ATGAGGAGGAGGAGGACAGC
gga-miR-6670-3p	TGGCGTTAATGAGAGAGACG
gga-miR-1563	GCTGATGCTTGGAGGCCAG
gga-miR-1569	TTAGGTTGGTGGTGGTGGTGG
gga-miR-22-3p	AACGCACTATCCATCAGGAC
gga-miR-6615-3p	TGGCGTTAATGAGAGAGACG
gga-miR-1703-5p	AGAGGTGAGGAGGAGGACAGC
gga-miR-137-3p	TATGCTGGAGAATACACCTG
gga-miR-1635	GCTCAGGTGGTGGTGGTGGT
gga-miR-4663-3p	CACAGCCAATACAACTGAGG
gga-miR-181b-2-3p	CACAGCCAATACAACTGAGG
gga-miR-1724	TCGTGAATGCTTGGAGGACAG
gga-miR-153c-3p	CACACGACCATCAGGACAGC
gga-miR-1662	TGACACAGCTTGGAGGACAGC
gga-miR-6604-5p	TGGCGTTAATGAGAGAGACG
gga-miR-1731-5p	AGAGGTGAGGAGGAGGACAGC
gga-miR-1466-3p	TGCTGATGCTTGGAGGAGGAC
gga-miR-1451-3p	GCAGAAGCTTGGAGGAGGAC
gga-miR-223	TCTCTTGTGGAGGAGGACAGC
gga-miR-133a-3p	AGGCGTGAACTGAGGAGGAC
gga-miR-1558	TCTGCTGATGCTTGGAGGAGGAC
gga-miR-223	TCTGCTGATGCTTGGAGGAGGAC
gga-miR-1930-3c	ATGAGGAGGAGGAGGACAGC
gga-miR-128-1-5p	GGCGCGGAACACTGAGGAGGAC
gga-miR-146a-3p	ACCATGGGGCAGCAGGAGGAC
gga-miR-133c-3p	TGGCTGATGCTTGGAGGAGGAC
gga-miR-383-5p	AGACAGGAGGAGGAGGACAGC
gga-miR-130a-5p	GCTGCTATTGGTGGTGGTGG
gga-miR-1799	AGAGGTGAGGAGGAGGACAGC
gga-miR-130-3a	GCTGCTATTGGTGGTGGTGG
gga-miR-150-5b	TGGCGTTAATGAGAGAGACG
gga-miR-279-5b	AGACAGGAGGAGGAGGACAGC
gga-miR-1416-5p	TCTTCACTGAGGAGGACAGC
gga-miR-7-5d	AGAGGTGAGGAGGAGGACAGC
gga-miR-310b-5p	GCTGCTATTGGTGGTGGTGG
gga-miR-10-3b	AGACAGGAGGAGGAGGACAGC
gga-miR-931a	CTCTGCTATTGGTGGTGGTGG
gga-miR-6542-3p	AGGCGTGAACTGAGGAGGAC
gga-miR-184-3p	TGGCGTTAATGAGAGAGACG
gga-miR-2311-5p	ATGAGGAGGAGGAGGACAGC
gga-miR-3538	GTGCTGTGAGGAGGAGGACAGC
gga-miR-145-3p	GTGCTGTGAGGAGGAGGACAGC
gga-miR-191-3p	AGAGGTGAGGAGGAGGACAGC
gga-miR-184-3p	TGGCGTTAATGAGAGAGACG
gga-miR-490-3p	CACACGACCATCAGGACAGC
gga-miR-489-3p	TGGCGTTAATGAGAGAGACG
gga-miR-3528	GTGCTGTGAGGAGGAGGACAGC
gga-miR-147	GTGCTGTGAGGAGGAGGACAGC
gga-miR-194	TGGCGTTAATGAGAGAGACG
gga-miR-24-5p	TGGCGTTAATGAGAGAGACG
gga-miR-7-3j	TGTGCGTTAATGAGAGAGACG
gga-miR-6557-3p	TGGCGTTAATGAGAGAGACG
gga-miR-161-1-3p	CACACGACCATCAGGACAGC
gga-miR-7c-3p	TGTGCGTTAATGAGAGAGACG
gga-miR-3529	AGGCGTGAACTGAGGAGGAC
gga-miR-99a-3p	CACAGTGGAGGAGGAGGACAGC
gga-miR-15b-3p	CACAGTGGAGGAGGAGGACAGC
gga-miR-3607-3p	ATGAGGAGGAGGAGGACAGC
gga-miR-1712-3p	TGGCGTTAATGAGAGAGACG
gga-miR-199b	CACAGTGGAGGAGGAGGACAGC
gga-miR-7a-2-3p	TGTGCGTTAATGAGAGAGACG
gga-miR-6615-5p	TGGCGTTAATGAGAGAGACG
High-Throughput Sequencing Reveals miRNAs Affecting Follicle Development in Chicken

3.3. Differential Expression Profiles of Conserved Mirnas Between HXC and KRC

To compare the differential expression of miRNAs in the follicle of HXC versus KRC chickens, the numbers of miRNAs in each group sample were normalized to the total number of reads. The expression of one KRC-specific miRNAs was not significant in KRC chickens compared to HXC counterparts. So only the differentially expressed miRNAs in follicle were showed in table 4. In total, 11 miRNAs were considered to be differentially expressed (P< 0.05), with 5 up-regulated and 6 down-regulated. Nine miRNAs had more than two fold expression changes (log2(fold-change))> 1.0) from KRC to HXC (Table 4). We also confirmed the expression patterns by RT-qPCR which of (|log2(fold-change)|> = 1.0) from KRC to HXC (Table 4). We also confirmed the expression patterns by RT-qPCR which of (|log2(fold-change)|> = 1.0) from KRC to HXC (Table 4).
Table 4. The differentially expressed miRNAs between HXC and KRC.

miR_name	miR_seq	Fold Change (KRC/HXC)	log2(Fold Change)	P-value
gga-miR-1623	ACCGCAGGCACAGACAGGCAGT	9.09	3.18	0.00000
gga-miR-6544-3p	AGTTGTATTTTCTTCTGACAG	3.30	1.72	0.00871
gga-miR-1458	TTCCTGTGATGCTCATGAGA	3.04	1.60	0.00281
gga-miR-1559-3p	AGTTACATGTAGTCATCGAGCA	2.81	1.49	0.00536
gga-miR-199b	CAGTAGTCTGACATT	2.34	1.23	0.00628
gga-miR-144-5p	GGATATCATCATACTGTAAGT	0.59	-0.77	0.04962
gga-miR-6599-3p	TGACGGATCTGCCCTCCCTCG	0.51	-0.98	0.03224
gga-miR-1731-5p	ACTTGACTGAGCCAGCTGCTGCT	0.50	-1.01	0.03513
gga-miR-184-3p	TGGACGGGAACGTGATAGGT	0.36	-1.46	0.03880
gga-miR-1798-5p	AACGTGACACTTTAGAAAAAAAACT	0.26	-1.95	0.03156
gga-miR-1798-3p	TTTCAGAAGTGATGCGT	0.12	-3.11	0.00003

3.4. Target Prediction and Functional Analysis of Differential Expression Mirnas

To further explore the roles of differentially expressed miRNAs, putative target genes of the most differentially expressed 9 miRNAs (|Log2 (fold-change)| ≥ 1.0) were predicted by integrating TargetScan and miRanda. In total, 8250 common target genes were found (data is not shown) which include FZD4, WNT4, BMP and EGF of which related hair follicle development (Table 5).

Table 5. The differentially expressed miRNAs target genes annotation.

Gene Name	Ensembl Gene ID	Involved KEGG pathways	Associated miRNAs
FZD4	ENSGALG00000017242	Wnt signaling pathway	gga-miR-1623, gga-miR-184-3p, gga-miR-1458
WNT4	ENSGALG00000004790	mTOR signaling pathway	gga-miR-1623
EGF	ENSGALG00000012155	MAPK signaling pathway	gga-miR-184-3p, gga-miR-199b
BMP2/4	ENSGALG00000012429	TGF-beta signaling pathway	miR-184-3p, miR-1559-3p

GO annotation showed the putative target genes were significantly enriched (counts > 30, \(P < 0.05 \)) in biological processes (BP) (Table 6), Cellular component (CC) (Table 7) and Molecular function (MF) (Table 8). The KEGG analysis (Table 9) suggested that Focal adhesion, Phosphatidylinositol signaling system, ECM-receptor interaction, Inositol phosphate metabolism, Oocyte meiosis and Ubiquitin mediated proteolysis were the most enriched
pathways (counts > 50, \(P < 0.01 \)).

Table 6. GO analysis of the putative target genes in biological processes.

GO term in biological processes	gene count	P-value
cell migration	78	0.00003
protein autophosphorylation	76	0.00006
signal transduction	166	0.00006
intracellular protein transport	106	0.00013
peptidyl-tyrosine phosphorylation	33	0.00017
peptidyl-serine phosphorylation	70	0.00028
activation of GTPase activity	41	0.00035
cell-matrix adhesion	36	0.00066
positive regulation of protein kinase B signaling	37	0.00300
positive regulation of JNK cascade	30	0.00450
positive regulation of NF-kappaB kinase/NF-kappaB signaling	68	0.00460
cell adhesion	97	0.00500
axon guidance	54	0.00740
extracellular matrix organization	49	0.00760
cilium assembly	62	0.00980
positive regulation of NF-kappaB transcription factor activity	43	0.00990
single organismal cell-cell adhesion	30	0.01000
positive regulation of canonical Wnt signaling pathway	35	0.01100
positive regulation of transcription from RNA polymerase II promoter	273	0.01200
positive regulation of protein binding	32	0.01200
positive regulation of cell migration	74	0.01300
transmembrane receptor protein tyrosine kinase signaling pathway	46	0.01500
intracellular signal transduction	148	0.01600
positive regulation of peptidyl-serine phosphorylation	36	0.01600
integrin-mediated signaling pathway	36	0.01600
positive regulation of proteasomal ubiquitin-dependent protein catabolic process	33	0.01900
xenophagy	40	0.02000
positive regulation of phosphatidylinositol 3-kinase signaling	35	0.02100
positive regulation of neuron projection development	30	0.02100
post-embryonic development	37	0.02300
positive regulation of transcription, DNA-templated innate immune response	134	0.02600
protein ubiquitination involved in ubiquitin-dependent protein catabolic process	68	0.03600
protein polyubiquitination	44	0.03700
cellular response to lipopolysaccharide	30	0.03900
positive regulation of cell proliferation	110	0.04200
regulation of Rho protein signal transduction	34	0.04500
endocytosis	45	0.04700
protein phosphorylation	60	0.04700
negative regulation of transcription, DNA-templated	111	0.04700

Table 7. GO analysis of the putative target genes in Cellular component.

GO term in Cellular component	gene count	P-value
nucleoplasm	685	0.00000
cytoplasm	1337	0.00000
centrosome	183	0.00000
plasma membrane	726	0.00001
PML body	47	0.00002
cytosol	494	0.00013
early endosome	82	0.00048
proteinaceous extracellular matrix	100	0.00052
extracellular exosome	959	0.00054

Table 8. GO analysis of the putative target genes in Molecular function.

GO term in Molecular function	gene count	P-value
ATP binding	679	0.00000
metal ion binding	416	0.00000
zinc ion binding	471	0.00002
phosphatidylinositol binding	50	0.00031
protein serine/threonine kinase activity	122	0.00044
ubiquitin-protein transferase activity	90	0.00065
protein kinase activity	67	0.00069
non-membrane spanning protein tyrosine kinase activity	30	0.00250
GTPase activator activity	100	0.00280
transcription regulatory region DNA binding receptor activity	57	0.00460
ligase activity	47	0.00580
thiold-dependent ubiquitin-specific protease activity	39	0.00760
ATPase activity	62	0.01000
receptor signaling protein serine/threonine kinase activity	35	0.01200
extracellular matrix structural constituent receptor binding	30	0.01300
Rab GTPase binding	30	0.02400
chromatin binding	145	0.02700
microtubule motor activity	31	0.03300
signal transducer activity	63	0.03900

Table 9. KEGG analysis of the putative target genes.

KEGG Term	Count	P-value
Focal adhesion	137	0.00001
Phosphatidylinositol signaling system	73	0.00003
ECM-receptor interaction	59	0.00015
Inositol phosphate metabolism	55	0.00026
Oocyte meiosis	67	0.00110
Ubiquitin mediated proteolysis	87	0.00690
Cell cycle	77	0.01700
Endocytosis	153	0.03700
Nurr1 signaling pathway	44	0.04100

4. Discussion

In this study, we detected 11 differential expressed miRNAs that were enriched in the KRC and HXC libraries and obtained several predicted target genes that may play different roles in
hair follicles formation and development. We also identified several pathways associated with hair follicle cell development, including Focal adhesion, Phosphatidylinositol signaling system, ECM-receptor interaction.

Our analysis of the most abundant mature miRNAs with raw reads>=10 in the KRCs and HXCs identified 290 miRNAs that were common in the two groups. Our analysis of the differential expressed miRNAs revealed 11 miRNAs (table 2) in two groups. These differential expressed miRNAs including miR-1623, miR-184-3p, miR-199b. The miR-184 inhibition argonaute 2 protein expression [22] and the growth of hair follicles [23]. And miRNA-199b has an important role in skin and hair follicle development [24, 25]. The miR-1623 target genes that played important roles in Wnt/β-catenin pathway [19]. Through qRT-PCR, we confirmed miR-1623 target gene the WNT4 in chicken and WNT4 showed the higher expression in HXCs (Figure 3). Thus, the miR-1623 has an effect on WNT4 and involved in hair follicle cell development. We also identified several target genes, such as those encoding FZD4 and EGF, which are related to hair follicle development in chicken. These miRNAs target genes involved several signaling pathways, including WNT, TGF-β, EGF, FGF, BMP, Hox signaling pathway [26-30]. These signaling pathways regulated and transformed hair follicle development in different stages. The WNT and BMP signaling pathways related to differentiation of keratin cell and regulation of the hair shaft formation [31]. And the TGF-β pathway control growth of hair follicles [27].

![Figure 3. The miR-1623 target gene expression.](image)

Many complex factors support hair follicle cell development. To further investigate the functions of miRNAs and their target genes more experiments need to be performed and miRNA knockdown to identify target genes expression levels.

5. Conclusion

In conclusion, we identified several miRNAs such as miR-1623, miR-184-3p, miR-199b, and their target genes WNT4, FZD4 and EGF which may be involved in hair follicle development in chicken. These data provide a strong foundation for the study of hair follicle development in chicken at the molecular levels.

Acknowledgements

This work was supported by the Guangdong Ocean University Research System (101402/R17030) and Program of Guangdong key laboratory of genomics and molecular breeding of agricultural animals. We have no competing interests in this research.

References

[1] Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
[2] Ambros V: The function of animal MicroRNAs. Nature 2004, 431(7006):350-355.
[3] Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M: Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells. Cell Reports 2014, 8(5):1432-1446.
[4] Villarrobaybeltri C, Gutierrezvazquez C, Sanchezzabo F, Penezhernandez D, Vazquez J, Martincificres NB, Martinezherrera DJ, Pascualmontano A, Mittelbrunn M, Sanchezmadrid F: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications 2013, 4:2980-2980.
[5] Hochfeld LM, Anhalt T, Hofmann A, Fricker N, Nothen MM, Heilmannheimbach S: 192 MicroRNAs and their regulatory interactions in the human hair follicle. Journal of Investigative Dermatology 2016, 136(9).
[6] Li C, Ren L, Wang Y, Zhong J, Huang L, Lin Y, Zi X, Zheng Y: 0345 Construction and functional analysis of expression vector and miRNA interference vectors of Gsdma of Tibetan sheep. Journal of Animal Science 2016, 94:165-166.

[7] Wade B, Cummins ML, Keyburn AL, Crowley TM: Isolation and detection of microRNA from the egg of chickens. BMC Research Notes 2016, 9(1):283.

[8] Mai J, Jin L, Tian S, Liu R, Huang W, Tang Q, Ma J, Jiang A, Wang X, Hu Y: Deciphering the microRNA transcription profile of skeletal muscle during porcine development. PeerJ 2016, 4.

[9] Wu N, Gaur U, Zhu Q, Chen B, Xu Z, Zhao X, Yang M, Li D: Expressed microRNA associated with high rate of egg production in chicken ovariocytes follicles. Animal Genetics 2017, 48(2):205-216.

[10] Feng C, Gao Y, Dorshorst B, Song C, Gu X, Li Q, Li J, Liu T, Rubin C, Zhao Y: A cis-regulatory mutation of PDSS2 causes silky-feather in chickens. PLOS Genetics 2014, 10(8).

[11] Cooke TF, Fischer CR, Wu P, Jiang TX, Xie KT, Kuo J, Doctorov E, Zehnder A, Khosla C, Chuong CM: Genetic Mapping and Biochemical Basis of Yellow Feather Pigmentation in Budgerigars. Cell 2017, 171(2):427-439.e421.

[12] Li A, Figueroa S, Jiang TX, Wu P, Widelitz R, Nie Q, Chuong CM: Diverse feather shape evolution enabled by coupling anisotropic signalling modules with self-organizing branching programme. Nature Communications 2017, 8: ncomms14139.

[13] Lowe CB, Clarke JA, Baker AJ, Haussler D, Edwards SV: Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Molecular Biology and Evolution 2015, 32(1):23-28.

[14] Ng CS, Wu P, Foley J, Foley A, McDonald MN, Juan W, Huang C, Lai Y, Lo W, Chen C: The Chicken Frizzle Feather Is Due to an α-Keratin (KRT75) Mutation That Causes a Defective Rachis. PLOS Genetics 2012, 8(7).

[15] Wu P, Ng CS, Yan J, Lai Y, Chen C, Lai Y, Wu S, Chen J, Luo W, Widelitz RB: Topographical mapping of α- and β-keratins. Histopathology 1996, 11(2):431.

[16] Allibardi L: Review: cornification, morphogenesis and evolution of feathers. Protoplasma 2017, 254(3):1259-1281.

[17] Yi R, Ocarroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E: Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics 2006, 38(3):356-362.

[18] Mardaryev AN, Ahmed MI, Vlahov N, Fessing MY, Gill JH, Sharov AA, Botchkareva NV: Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. The FASEB Journal 2010, 24(10):3869-3881.

[19] Zhang L, Nie Q, Su Y, Xie X, Luo W, Jia X, Zhang X: MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene 2013, 519(1):77-81.

[20] Mestdagh P, Van VP, De WA, Muth D, Westermann F, Speelman F, Vandesompele J: A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology 2009, 10(6): R64.

[21] Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.

[22] Roberts JC, Warren RB, Griffiths CEM, Ross K: Expression of microRNA-184 in keratinocytes represses argonaute 2. Journal of Cellular Physiology 2013, 228(12):2314-2323.

[23] Yu J, Ryan DG, Gletsios S, Oliveirafernandes M, Fatima A, Lavker RM: MicroRNA-184 antagonizes microRNA-205 to maintain SHH2 levels in epithelia. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(49):19300-19305.

[24] Liu Z, Xiao H, Li H, Zhao Y, Lai S, Yu X, Cai T, Du C, Zhang W, Li J: Identification of Conserved and Novel microRNAs in Cashmere Goat Skin by Deep Sequencing. PLOS ONE 2012, 7(12).

[25] Andl T, Murchison EP, Liu F, Zhang Y, Yuntagonzalez M, Tobias JW, Andl CD, Seykora JT, Hannon GJ, Millar SE: The miRNA-Processing Enzyme Dicer Is Essential for the Morphogenesis and Maintenance of Hair Follicles. Current Biology 2006, 16(10):1041-1049.

[26] Fu J, Hsu W: Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. Journal of Investigative Dermatology 2013, 133(4):890-898.

[27] Wollina U, Lange D, Funa K, Paus R: Expression of transforming growth factor beta isoforms and their receptors during hair growth phases in mice. Histology and Histopathology 1996, 11(2):431.

[28] Murillas R, Larcher F, Conti CJ, Santos M, Ullrich A, Jorcano JL: Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. The EMBO Journal 1995, 14(21):5216-5223.

[29] Suzuki S, Ota Y, Ozawa K, Imamura T: Dual-Mode Regulation of Hair Growth Cycle by Two Fgf-5 Gene Products. Journal of Investigative Dermatology 2000, 114(3):456-463.

[30] Jen K, Jihan D, Zaini M, Jihan L, Jihan J, Jihan S, Jihan Y, Jihan Z, Jihan W, Jihan X, Jihan Y, Jihan Z: Expression of microRNA-184 in keratinocytes represses argonaute 2. Journal of Cellular Physiology 2013, 228(12):2314-2323.

[31] Schmidullrich R, Paus R: Molecular principles of hair follicle induction and morphogenesis. Bio Essays 2005, 27(3):247-261.