Research Article

Reinhard Farwig and Ryo Kanamaru

Optimality of Serrin type extension criteria to the Navier-Stokes equations

https://doi.org/10.1515/anona-2020-0130
Received May 10, 2020; accepted January 15, 2021.

Abstract: We prove that a strong solution u to the Navier-Stokes equations on $(0, T)$ can be extended if either $u \in L^\theta(0, T; \dot{U}_{\infty,1}^a(\mathbb{R}^n))$ for $2/\theta + \alpha = 1$, $0 < \alpha < 1$ or $u \in L^2(0, T; \dot{V}_0^{\infty,\infty,2})$, where $\dot{U}_{p,\beta,\alpha}$ and $\dot{V}_p^{\infty,\infty,2}$ are Banach spaces that may be larger than the homogeneous Besov space \dot{B}_p^s. Our method is based on a bilinear estimate and a logarithmic interpolation inequality.

Keywords: Serrin type extension criterion; Navier-Stokes equations; bilinear estimate; logarithmic interpolation inequality

MSC: 35Q30 (primary), 35B65, 46E35, 76D05

1 Introduction

The motion of a viscous incompressible fluid in \mathbb{R}^n, $n \geq 2$, is governed by the Navier-Stokes equations:

\[
\begin{aligned}
\partial_t u - \Delta u + u \cdot \nabla u + \nabla \pi &= 0, \quad x \in \mathbb{R}^n, \ t > 0, \\
\text{div} \ u &= 0, \quad x \in \mathbb{R}^n, \ t > 0, \\
u|_{t=0} &= u_0,
\end{aligned}
\]

(N-S)

where $u = (u_1(x, t), \cdots, u_n(x, t))$ and $\pi = \pi(x, t)$ denote the velocity vector field and the pressure of the fluid at the point $x \in \mathbb{R}^n$ and time $t > 0$, respectively, while $u_0 = u_0(x)$ is the given initial vector field for u.

It is known that for every $u_0 \in H^2 \equiv W^{2,2}(\mathbb{R}^n)$, there exists a unique solution $u \in C([0, T); H^2)$ to (N-S) for some $T > 0$. Such a solution is in fact smooth in $\mathbb{R}^n \times (0, T)$. See, for instance Fujita-Kato [9]. It is an important open question whether T may be taken as $T = \infty$ or $T < \infty$. In this direction, Giga [10] gave a Serrin type criterion, i.e., if the solution u satisfies the condition

\[
\int_0^T \|u(t)\|_{L^p}^\theta \ dt < \infty, \quad 2/\theta + n/p = 1, \ n < p \leq \infty,
\]

then u can be extended to the solution in the class $C([0, T'); H^2)$ for some $T' > T$. Later on, the condition (1.1) was relaxed from the L^p-criterion to

\[
\int_0^T \|u(t)\|_{B_{\infty,\infty}^\alpha}^\theta \ dt < \infty, \quad 2/\theta + \alpha = 1, \ 0 < \alpha < 1
\]

Reinhard Farwig, Department of Mathematics, Darmstadt University of Technology, 64289 Darmstadt, Germany, E-mail: farwig@mathematik.tu-darmstadt.de

Ryo Kanamaru, Department of Pure and Applied Mathematics, School of Fundamental Science and Engineering Waseda University, Tokyo 169-8555, Japan, E-mail: ryo-kana@suou.waseda.jp

Open Access. © 2021 Reinhard Farwig and Ryo Kanamaru, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License.
by Kozono-Ogawa-Taniuchi [16] and Kozono-Shimada [17]. In a recent work, Nakao-Taniuchi [22] gave a new criterion, instead of (1.1) and (1.2) with \(p = \infty \) and \(\alpha = 0 \) (\(\theta = 2 \)), in such a way that

\[
\int_0^T \| u(t) \|_{V_{1/2}}^2 \, dt < \infty.
\]

(1.3)

Here, \(V_\beta, \beta > 0 \), is introduced by

\[
V_\beta := \{ f \in \mathcal{S} : \| f \|_{V_\beta} < \infty \},
\]

\[
\| f \|_{V_\beta} := \sup_{N=1,2,...} \| \psi^*_N * f \|_{N^\beta},
\]

where \(\psi \in \mathcal{S} \) is a radially symmetric function with \(\hat{\psi}(\xi) = 1 \) in \(B(0, 1) \) and \(\hat{\psi}(\xi) = 0 \) in \(B(0, 2) \) and \(\psi_N(x) := 2^{nN} \psi(2^Nx) \). This function space \(V_\beta \) is called the Vishik space and admits a continuous embedding \(L^\infty \subset V_\beta \) for each \(\beta > 0 \). The above three criteria are important from a viewpoint of scaling invariance. Indeed, it is easy to show that if \((u, \pi) \) satisfies (N-S), then so does \((u_A, \pi_A) \) for all \(\lambda > 0 \), where \(u_A(x, t) := \lambda u(\lambda x, \lambda^2 t) \) and \(\pi_A(x, t) := \lambda^3 \pi(\lambda x, \lambda^2 t) \). We call a Banach space \(X \) scaling invariant for the velocity \(u \) with respect to (N-S) if

\[
\| u_\lambda \|_X = \| u \|_X
\]

holds for all \(\lambda > 0 \). In fact, the spaces \(L^\theta(0, \infty; L^p) \) with \(2/\theta + n/p = 1 \), \(L^\theta(0, \infty; \dot{B}^{n,\infty}_{\infty,\infty}) \) with \(2/\theta + \alpha = 1 \) and \(L^2(0, \infty; V_{1/2}) \) are scaling invariant for \(u \) with respect to (N-S).

On the other hand, Beale-Kato-Majda [1] and Beirão da Veiga [2] gave a criterion by means of the vorticity, i.e., if the solution \(u \) satisfies the condition

\[
\int_0^T \| \text{rot } u(t) \|_{L^p}^\theta \, dt < \infty, \quad \frac{2}{\theta} + \frac{n}{p} = 2, \quad \frac{n}{2} < p \leq \infty,
\]

(1.4)

then \(u \) can be extended to a solution in the class \(C([0, T'); H^s(\mathbb{R}^n)) \) for some \(T' > T \). Later on, the condition (1.4) was relaxed from the \(L^p \)-criterion to

\[
\int_0^T \| \text{rot } u(t) \|_{B^0_{p,\infty}}^\theta \, dt < \infty, \quad \frac{2}{\theta} + \frac{n}{p} = 2, \quad n \leq p \leq \infty
\]

(1.5)

by Kozono-Ogawa-Taniuchi [16]. Moreover, Nakao-Taniuchi [21] gave a similar type of the criterion as (1.3), instead of (1.4) and (1.5) with \(p = \infty \) (\(\theta = 1 \)), in such a way that

\[
\int_0^T \| \text{rot } u(t) \|_{V_1} \, dt < \infty.
\]

Note that \(V_\beta \) admits the following continuous embeddings in the case \(\beta = 1 \):

\[
L^\infty \subset bmo \subset B^{n,\infty}_{\infty,\infty} \subset V_1.
\]

Futhermore, the author [12] improved the \(B^{n,\infty}_{\infty,\infty} \)-criterion (1.5) to

\[
\int_0^T \| \text{rot } u(t) \|_{B^{n,\infty}_{\infty,\infty}}^\theta \, dt < \infty, \quad \frac{2}{\theta} + \frac{n}{p} = 2, \quad r \leq p \leq \infty
\]

(1.6)

for \(L'(n < r < \infty) \) strong solutions to (N-S). Here, \(V^S_{p,q,\theta} \) is a Banach space introduced by Definition 2.1 and has a continuous embedding \(B^{n,\infty}_{\infty,\infty} \subset V^S_{p,\infty,\theta} \). The above criteria by means of the vorticity are also important from a viewpoint of scaling invariance. Indeed, since \(u_A = \lambda^2 \text{rot } u(\lambda x, \lambda^2 t) \), the spaces \(L^\theta(0, \infty; L^p), L^\theta(0, \infty; \dot{B}^0_{p,\infty}), L^\theta(0, \infty; \dot{V}^0_{p,\infty,\theta}) \) with \(2/\theta + n/p = 2 \) and \(L^1(0, \infty; V_1) \) are scaling invariant for the vorticity with respect to (N-S).
The aim of this paper is to improve the extension criterion (1.2) to the Navier-Stokes equations by means of Banach spaces which are larger than $\dot{B}_{\infty,\infty}^{\alpha}$ in the same way that the condition (1.5) was relaxed to (1.6). In fact, we prove that if the solution u to (N-S) on $(0, T)$ satisfies the condition either

$$\int_0^T \|u(t)\|_{\dot{B}_{\infty,\infty}^{\theta}}^2 \, dt < \infty, \quad \frac{2}{\theta} + \alpha = 1, \ 0 < \alpha < 1$$

(1.7)

or

$$\int_0^T \|u(t)\|_{\dot{B}_{\infty,1}^{\theta}}^2 \, dt < \infty,$$

(1.8)

then u can be extended to a solution in the class $C([0, T'); H^s(\mathbb{R}^n))$ for some $T' > T$. Here, $\dot{U}_{p, \beta, \sigma}^s$ is a Banach space introduced by Definition 2.2 and has the following continuous embeddings:

$$\dot{B}_{\infty,\infty}^\alpha \subset \dot{V}_{\infty,\infty, \theta}^\alpha \subset \dot{U}_{\infty,1/\theta, \infty}^\alpha \quad \frac{2}{\theta} + \alpha = 1, \ 0 < \alpha < 1.$$

Hence, we see that (1.7) and (1.8) may be regarded as a weaker condition than (1.2). Moreover, note that the spaces $L^2(0, \infty; \dot{U}_{\infty,1/\theta, \infty}^\alpha)$ with $2/\theta + \alpha = 1$ and $L^2(0, \infty; \dot{V}_{\infty,\infty, \theta}^\alpha)$ are also scaling invariant for solutions u to (N-S). In order to obtain our extension principle, we need a logarithmic interpolation inequality by means of $\dot{U}_{p, \beta, \sigma}^s$:

$$\|f\|_{\dot{U}_{p, \beta, \sigma}^s} \leq C \left(1 + \|f\|_{\dot{U}_{p, \beta, \sigma}^s} \log^{\beta} (e + \|f\|_{\dot{U}_{p, \beta, \sigma}^s}) \right).$$

This is related to the Brezis-Gallouet-Wainger inequality given in Brezis-Gallouet [5] and Brezis-Wainger [6]. Several inequalities of Brezis-Gallouet-Wainger type were established in [1], [7], [8], [11], [12], [15], [16], [19], [20], [21], [22], [23], [24], [25]. Moreover, we prove that $\dot{U}_{p, \beta, \sigma}^s$ is the weakest normed space that satisfies such a logarithmic interpolation inequality. Thus, roughly speaking, new conditions (1.7) and (1.8) may be regarded as optimal Serrin type criteria that guarantee a priori estimates of H^s strong solutions to (N-S) with double exponential growth form.

The present paper is organized as follows. In the next section, we shall state our main results. In section 3 and 4, proofs of our main results are established.

2 Results

2.1 Function spaces

We first introduce some notation. Let $S = S(\mathbb{R}^n)$ be the set of all Schwartz functions on \mathbb{R}^n, and \mathcal{S}' the set of tempered distributions. The L^p-norm on \mathbb{R}^n is denoted by $\| \cdot \|_p$. We recall the Littlewood-Paley decomposition and use the functions $\psi, \phi_j \in \mathcal{S}, \ j \in \mathbb{Z}$, such that

$$\hat{\psi}(\xi) = \begin{cases} 1, & |\xi| \leq 1, \\ 0, & |\xi| \geq 2, \end{cases}$$

$$\hat{\phi}(\xi) := \hat{\psi}(\xi) - \hat{\psi}(2\xi), \ \hat{\phi}_j(\xi) := \hat{\phi}(\xi/2^j).$$

Let $\mathcal{Z} := \{ f \in \mathcal{S}; D^a \hat{f}(0) = 0 \text{ for all } a \in \mathbb{N}^n \}$ and \mathcal{Z}' denote the dual space of \mathcal{Z}. We note that \mathcal{Z}' can be identified with the quotient space $\mathcal{S}' / \mathcal{P}$ of \mathcal{S}' with respect to the space of polynomials, \mathcal{P}. Furthermore, the homogeneous Besov space $\dot{B}_{p,q}^s := \{ f \in \mathcal{Z}; \| f \|_{\dot{B}_{p,q}^s} < \infty \}$ is defined by the norm

$$\|f\|_{\dot{B}_{p,q}^s} := \begin{cases} \left(\sum_{j \in \mathbb{Z}} 2^js^q \| \phi_j \ast f \|_p^q \right)^{\frac{1}{q}}, & q \neq \infty, \\ \sup_{j \in \mathbb{Z}} 2^js^q \| \phi_j \ast f \|_p, & q = \infty. \end{cases}$$

See Bergh-Löfström [3, Chapter 6.3] and Triebel [26, Chapter 5] for details. Let \(C^\infty_0(\mathbb{R}^n) \) denote the set of all \(C^\infty \) functions with compact support in \(\mathbb{R}^n \) and \(C^\infty_{0, \alpha} := \{ \phi \in (C^\infty_0(\mathbb{R}^n))^n; \text{div} \phi = 0 \} \). Concerning Sobolev spaces we use the notation \(H^p(\mathbb{R}^n) \) for all \(s \in \mathbb{R} \). Then \(H^p_\alpha \) is the closure of \(C^\infty_{0, \alpha} \) with respect to \(H^p \)-norm. In Section 4 we will also use homogeneous Sobolev spaces \(H^p(\mathbb{R}^n) \) and note that \(H^p = B^0_{2, 2} \) for all \(s \in \mathbb{R} \).

We now introduce Banach spaces \(\dot{V}^s_{p, q, \alpha} \) and \(\dot{U}^s_{p, q, \alpha} \) which are larger than the homogeneous Besov spaces \(B^s_{p, q} \). These spaces may be regarded as modified versions of spaces defined by Nakao-Taniuchi [22] and Vishik [27].

Definition 2.1. Let \(s \in \mathbb{R} \), \(1 \leq p, q, \theta \leq \infty \) and let \(\{ \phi_j \}_{j=-\infty}^\infty \) be the Littlewood-Paley decomposition. Then, \(\dot{V}^s_{p, q, \alpha}(\mathbb{R}^n) := \{ f \in \mathcal{Z}^\prime; \| \cdot \|_{\dot{V}^s_{p, q, \alpha}} < \infty \} \) is introduced by the norm

\[
\| f \|_{\dot{V}^s_{p, q, \alpha}} := \begin{cases}
\sup_{N=1, 2, \ldots} \left(\frac{1}{N^{s-\frac{\alpha}{\theta}}} \left(\sum_{|\alpha| \leq N} 2^{j\alpha s} \| \phi_j \ast f \|_p \right)^{\frac{1}{\theta}} \right), & \theta \neq \infty, \\
\max_{|\alpha| \leq N} 2^j \| \phi_j \ast f \|_p, & \theta = \infty.
\end{cases}
\]

Definition 2.2. Let \(s, \beta \in \mathbb{R} \), \(1 \leq p, \alpha \leq \infty \) and let \(\{ \phi_j \}_{j=-\infty}^\infty \) be the Littlewood-Paley decomposition. Then, \(\dot{U}^s_{p, \beta, \alpha}(\mathbb{R}^n) := \{ f \in \mathcal{Z}^\prime; \| \cdot \|_{\dot{U}^s_{p, \beta, \alpha}} < \infty \} \) is equipped with the norm

\[
\| f \|_{\dot{U}^s_{p, \beta, \alpha}} := \begin{cases}
\sup_{N=1, 2, \ldots} \left(\frac{1}{N^\beta} \left(\sum_{|\alpha| \leq N} 2^{j\alpha s} \| \phi_j \ast f \|_p \right)^{\frac{1}{\alpha}} \right), & \alpha \neq \infty, \\
\max_{|\alpha| \leq N} 2^j \| \phi_j \ast f \|_p, & \alpha = \infty.
\end{cases}
\]

We see from the following proposition that \(\dot{V}^s_{p, q, \alpha} \) and \(\dot{U}^s_{p, \beta, \alpha} \) are extensions of \(B^s_{p, q} \) and \(\dot{V}^s_{p, q, \alpha} \), respectively.

Proposition 2.3.

(i) Let \(s \in \mathbb{R} \), \(1 \leq p, q \leq \infty \) and \(1 \leq \theta_1 \leq \theta_2 \leq q < \theta_3 \). Then, it holds that

\[\{ 0 \} = \dot{V}^s_{p, q, \theta_1} \subset \dot{B}^s_{p, q} = \dot{V}^s_{p, q, \theta_2} \subset \dot{V}^s_{p, q, \theta_3} \subset \dot{V}^s_{p, q, \theta_1}. \]

(ii) Let \(s \in \mathbb{R} \), \(1 \leq p, \alpha \leq \infty \) and \(\beta_1 < 0 \leq \beta_2 < \beta_3 \). Then, it holds that

\[\{ 0 \} = \dot{U}^s_{p, \beta_1, \alpha} \subset \dot{B}^s_{p, \beta} = \dot{U}^s_{p, \beta_2, \alpha} \subset \dot{U}^s_{p, \beta_3, \alpha} \subset \dot{U}^s_{p, \beta_1, \alpha}. \]

(iii) Let \(s, \beta \in \mathbb{R} \), \(1 \leq p, q, \theta \leq \infty \), \(\beta = \frac{1}{\beta} - \frac{1}{q} \) and \(1 \leq \alpha_1 \leq \alpha_2 \leq \infty \). Then, it holds that

\[\dot{V}^s_{p, q, \theta} = \dot{U}^s_{p, \beta, \theta} \quad \text{and} \quad \dot{U}^s_{p, \beta, \alpha_1} \subset \dot{U}^s_{p, \beta, \alpha_2}. \]

Proof. We easily prove \(\dot{V}^s_{p, q, \alpha_1} \subset \dot{V}^s_{p, q, \alpha_2} \) in (i) by the standard and the reverse Hölder’s inequality. The others follow from the definitions of \(\dot{B}^s_{p, q} \), \(\dot{V}^s_{p, q, \alpha} \) and \(\dot{U}^s_{p, \beta, \alpha} \).

It follows by Proposition 2.3 (i) and (iii) that

\[
\dot{B}^s_{\infty, \infty} \subset \dot{V}^s_{\infty, \infty, \theta} \subset \dot{U}^s_{\infty, 1/\theta, \infty}
\]

for \(s \in \mathbb{R} \) and \(1 \leq \theta < \infty \). We observe from the following examples that the continuous embeddings (2.1) are proper if \(s > -n \) and \(1 \leq \theta < \infty \), which is important in terms of Theorem 2.9.
Example 2.4. (1) The continuous embedding $\tilde{B}^{s}_{\infty, \infty} \subset \tilde{V}^{s}_{\infty, \infty, \theta}$ is proper if $s > -n$ and $1 \leq \theta < \infty$. We now introduce a distribution $f \in \tilde{V}^{s}_{\infty, \infty, \theta} \setminus \tilde{B}^{s}_{\infty, \infty}$ for $s > -n$ and $1 \leq \theta < \infty$. Let $f \in \mathcal{Z}'$ defined as

$$\hat{f}(\xi) := \begin{cases} 2^{-(n+s)(k^{\theta+1})}, & 2^{k^{\theta+1}+1} \leq |\xi| \leq 2^{k^{\theta+1}+1} \ (k = 1, 2, \cdots), \\ 0, & \text{otherwise}. \end{cases}$$

Indeed, since $\hat{f} \in L^\infty$ holds, we obtain $f \in \mathcal{Z}'$. We easily see that

$$\|\phi_j \ast f\|_\infty = \int_{\mathbb{R}^n} \hat{\phi}_j(\xi) \hat{f}(\xi) \, d\xi = \int_{2^{j-1} \leq |\xi| \leq 2^{j+1}} \hat{\phi}_j(\xi) \hat{f}(\xi) \, d\xi$$

$$= 2^{-s(k^{\theta+1})} k\|\hat{\phi}\|_1 \quad \text{for } j = [k^{\theta+1}] \ (k = 1, 2, \cdots),$$

$$\leq 2^{-s(k^{\theta+1})} 2^nk\|\hat{\phi}\|_1 \quad \text{for } j = [k^{\theta+1}] + 1 \ (k = 1, 2, \cdots),$$

$$= 0 \quad \text{for } j \in \mathbb{Z} \setminus \{ [k^{\theta+1}] + 1 \}.$$

Hence, it holds that

$$\|f\|_{\tilde{B}^{s}_{\infty, \infty}} \geq \sup_{k=1,2,\ldots} 2^{s(k^{\theta+1})} \|\phi_j \ast f\|_\infty = \sup_{k=1,2,\ldots} k \|\hat{\phi}\|_1 = \infty. \quad (2.2)$$

On the other hand, for any $N = 1, 2, \cdots$, there exists $k_N \in \mathbb{N}$ such that $k_N^{\theta+1} \leq N < (k_N + 1)^{\theta+1}$. Therefore, we obtain

$$\sum_{|j| \leq N} 2^{j\theta} \|\phi_j \ast f\|_\infty \leq \sum_{k=1}^{k_N^{\theta+1}} \sum_{j=[k^{\theta+1}]-1}^{[k^{\theta+1}]+1} 2^{j\theta} \|\phi_j \ast f\|_\infty \leq \sum_{k=1}^{k_N^{\theta+1}} \sum_{j=[k^{\theta+1}]-1}^{[k^{\theta+1}]+1} 2^{j\theta}(2^{-s(k^{\theta+1})} 2^nk\|\hat{\phi}\|_1)^\theta = C \sum_{k=1}^{k_N^{\theta+1}} k^\theta \leq C(k_N + 1)^{\theta+1} \leq Ck_N^{\theta+1} \leq CN,$$

where C is dependent only on n, s and θ. Thus, it follows that

$$\|f\|_{\tilde{V}^{s}_{\infty, \infty, \theta}} = \sup_{N=1,2,\ldots} \left(\frac{\sum_{|j| \leq N} 2^{j\theta} \|\phi_j \ast f\|_\infty}{N^{\frac{1}{\theta}}} \right)^{\frac{1}{\theta}} \leq \sup_{N=1,2,\ldots} \frac{C N^{\frac{1}{\theta}}}{N^{\frac{1}{\theta}}} < \infty. \quad (2.3)$$

From (2.2) and (2.3), we get $f \in \tilde{V}^{s}_{\infty, \infty, \theta} \setminus \tilde{B}^{s}_{\infty, \infty}$.

(2) The continuous embedding $\tilde{V}^{s}_{\infty, \infty, \theta} = \tilde{U}^{s}_{\infty, 1/\theta, \infty} \subset \tilde{U}^{s}_{\infty, 1/\theta, \infty}$ is also proper if $s > -n$ and $1 \leq \theta < \infty$. We now introduce a distribution $g \in \tilde{U}^{s}_{\infty, 1/\theta, \infty} \setminus \tilde{V}^{s}_{\infty, \infty, \theta}$ for $s > -n$ and $1 \leq \theta < \infty$. Let $g \in \mathcal{Z}'$ defined as

$$\tilde{g}(\xi) := \begin{cases} k^{\frac{n}{\theta+1}}2^{-(n+s)(k^{\theta+1})}, & 2^{k^{\theta+1}+1} \leq |\xi| \leq 2^{k^{\theta+1}+1} \ (k = 1, 2, \cdots), \\ 0, & \text{otherwise}. \end{cases}$$

Indeed, since $\tilde{g} \in L^\infty$ holds, we obtain $g \in \mathcal{Z}'$. We easily see that

$$\|\phi_j \ast g\|_\infty = \int_{\mathbb{R}^n} \hat{\phi}_j(\xi) \tilde{g}(\xi) \, d\xi = \int_{2^{j-1} \leq |\xi| \leq 2^{j+1}} \hat{\phi}_j(\xi) \tilde{g}(\xi) \, d\xi$$

$$= 2^{-s(k^{\theta+1})} k^{\frac{n}{\theta+1}} \|\hat{\phi}\|_1 \quad \text{for } j = [k^{\theta+1}] \ (k = 1, 2, \cdots),$$

$$\leq 2^{-s(k^{\theta+1})} 2^nk^{\frac{n}{\theta+1}} \|\hat{\phi}\|_1 \quad \text{for } j = [k^{\theta+1}] + 1 \ (k = 1, 2, \cdots),$$

$$= 0 \quad \text{for } j \in \mathbb{Z} \setminus \{ [k^{\theta+1}], [k^{\theta+1}] + 1 \}.$$
For any $N = 1, 2, \ldots$, we take $k_N \in \mathbb{N}$ such that $k_N^{\theta+1} \leq N < (k_N + 1)^{\theta+1}$. Then, it holds that
\[
\sum_{|j| \leq N} 2^{js} \| \bar{\phi}_j \ast g \|_\infty \geq \sum_{1 \leq k \leq k_N} 2^{s|k^{n+1}|} \| \bar{\phi}_{k^{n+1}} \ast g \|_\infty = C_1 \sum_{1 \leq k \leq k_N} k^{\theta+1} \geq C_1 k_N^{\theta+2} \geq C_1 (k_N + 1)^{\theta+2} \geq C_1 N^{\theta/2},
\]
where C_1 is dependent only on n and θ. Hence, we have
\[
\| f \|_{\mathcal{V}_{\infty,\infty,\beta}} = \sup_{N=1,2,\ldots} \left(\frac{1}{N} \sum_{|j| \leq N} 2^{js} \| \bar{\phi}_j \ast f \|_\infty \right)^{\frac{\beta}{s}} \geq \sup_{N=1,2,\ldots} C_1^N N^{\frac{\beta}{s}+1} = \infty. \tag{2.4}
\]
On the other hand, it follows that
\[
\max_{|j| \leq N} 2^{js} \| \bar{\phi}_j \ast g \|_\infty \leq \max_{1 \leq k \leq k_N} \max_{j=[k^{n+1}],|k^{n+1}|s} 2^{js} \| \bar{\phi}_j \ast g \|_\infty \leq \max_{1 \leq k \leq k_N} \max_{j=[k^{n+1}],|k^{n+1}|s} 2^{js} 2^{-s|k^{n+1}|} 2^n k^{-1} \| \bar{\phi}_j \|_1 \leq C_2 \max_{1 \leq k \leq k_N} \max_{j=[k^{n+1}],|k^{n+1}|s} k^{-1} = C_2 (k_N + 1)^{\theta+1} \leq C_2 k_N^{\theta+1} \leq C_2 N^{\frac{\theta+1}{s}},
\]
where C_2 is dependent only on n and s. Thus, we obtain
\[
\| g \|_{\mathcal{V}_{\infty,\infty,\beta}} = \sup_{N=1,2,\ldots} \max_{|j| \leq N} 2^{js} \| \bar{\phi}_j \ast f \|_\infty \leq \sup_{N=1,2,\ldots} C_2^N N^{\frac{\theta+1}{s}} < \infty. \tag{2.5}
\]
From (2.4) and (2.5), we get $g \in \bigcup_{n=1}^s \mathcal{V}_{\infty,\infty,\beta} \setminus \mathcal{V}_{\infty,\infty,\beta}^s$.

2.2 Logarithmic interpolation inequalities and optimality

Theorem 2.5. (i) Let $s_0, s_1, s_2 \in \mathbb{R}$ satisfy $s_1 < s_0 < s_2$, let $0 \leq \beta < \infty$ and $1 \leq p, \sigma \leq \infty$. Then there exists a positive constant C depending only on s_0, s_1, s_2, but not on p, β, σ such that
\[
\| f \|_{\mathcal{B}^{s_0}_{p,\sigma}} \leq C \left(1 + \| f \|_{\mathcal{V}_{\infty,\infty,\beta}} \log^\beta (e + \| f \|_{\mathcal{B}^{s_1}_{p,\beta} \cap \mathcal{B}^{s_2}_{p,\sigma}}) \right) \tag{2.6}
\]
for all $f \in \mathcal{B}^{s_1}_{p,\beta} \cap \mathcal{B}^{s_2}_{p,\sigma}$.

(ii) Let $s_0 \in \mathbb{R}$, $0 \leq \beta < \infty$ and $1 \leq p, \sigma \leq \infty$, and let X be a normed space of distributions on \mathbb{Z}. Assume that X satisfies the following conditions:

(C1) $X \to \mathbb{Z}$;

(C2) there exists a constant $K_1 > 0$ such that
\[
\| f(\cdot - y) \|_X \leq K_1 \| f \|_X \quad \text{for all } f \in X \text{ and all } y \in \mathbb{R}^n;
\]

(C3) there exists a constant $K_2 > 0$ such that
\[
\| \rho \ast f \|_X \leq K_2 \| \rho \|_1 \| f \|_X \quad \text{for all } \rho \in \mathbb{Z} \text{ and all } f \in X;
\]

(C4) there exist $s_1, s_2 \in \mathbb{R}$ satisfy $s_1 < s_0 < s_2$ and $K_3 > 0$ such that
\[
\| f \|_{\mathcal{B}^{s_0}_{p,\beta}} \leq K_3 \left(1 + \| f \|_X \log^\beta (e + \| f \|_{\mathcal{B}^{s_1}_{p,\beta} \cap \mathcal{B}^{s_2}_{p,\sigma}}) \right) \quad \text{for all } f \in X \cap \mathbb{Z}.
\]
Then, \(X \to \dot{U}_{p,\beta,\alpha}^{s_0} \) holds.

Remark 2.6. (1) In the first part of Theorem 2.5, the assumption \(s_1 < s_0 < s_2 \) is essential. If either of \(s_1 \) or \(s_2 \) tends to \(s_0 \), then the constant \(C \) appearing on the right hand side diverges to infinity.

(2) By Proposition 2.3 (ii), we observed that the following continuous embeddings hold for \(s_1 < s_0 < s_2 \) and \(\beta \geq 0 \):

\[
\dot{B}_{p,\infty}^{s_1} \cap \dot{B}_{p,\infty}^{s_2} \subset \dot{B}_{p,\alpha}^{s_0} \subset \dot{U}_{p,\beta,\alpha}^{s_0}.
\]

Thus, (2.6) may be regarded as an interpolation inequality.

(3) From Theorem 2.5 (i), we see that \(\dot{U}_{p,\alpha,\beta}^{s_0} \) satisfies conditions (C1)-(C4). Hence, Theorem 2.5 (ii) implies that \(\dot{U}_{p,\alpha,\beta}^{s_0} \) is the weakest normed space that satisfies (C1)-(C4).

(4) By Proposition 2.3 (iii), we see that Theorem 2.5 covers the result given by the author [12]. Indeed, by setting \(\beta = \frac{1}{q} - \frac{1}{q'} \), \(\alpha = \theta \left(1 \leq q \leq \infty, 1 \leq \theta \leq q \right) \) in (2.6), it holds that

\[
\|f\|_{\dot{B}_{p,\theta}^{s_0}} \leq C \left(1 + \|f\|_{\dot{B}_{p,q}^{s_0}} \log^{\frac{1}{q'} - \frac{1}{q}} \left(e + \|f\|_{\dot{B}_{p,q}^{s_0}} \right) \right)
\]

for all \(f \in \dot{B}_{p,\theta}^{s_0} \cap \dot{B}_{p,\infty}^{s_2} \).

2.3 Serrin type regularity criteria for Navier-Stokes systems

Definition 2.7. Let \(s > n/2 - 1 \) and let \(u_0 \in H_0^s \). A measurable function \(u \) on \(\mathbb{R}^n \times (0, T) \) is called a strong solution to (N-S) in the class \(\mathcal{C}_L \) if

(i) \(u \in \mathcal{C}((0, T); H_0^s) \cap \mathcal{C}^1((0, T); H_0^s) \cap \mathcal{C}((0, T); \mathcal{H}_0^{s+2}) \);

(ii) \(u \) satisfies (N-S) with some distribution \(\pi \) such that \(\nabla \pi \in \mathcal{C}((0, T); \mathcal{H}_0^s) \).

Remark 2.8. For \(s > n/2 - 1 \), the existence of a strong solution to (N-S) in the class \(\mathcal{C}_L \) has been proven in Fujita-Kato [9], Kato [14] and Giga [10].

Our result on extension of strong solutions now reads as follows:

Theorem 2.9. (i) Let \(0 < \alpha < 1 \), \(s > n/2 - \alpha \) and let \(u_0 \in H_0^s \). Assume that \(u \) is a strong solution to (N-S) in the class \(\mathcal{C}_L \). If the solution \(u \) satisfies

\[
\int_0^T \|u(t)\|_{\dot{U}_{\infty,1;0,\infty}^\alpha}^\beta \, dt < \infty, \quad \frac{2}{\beta} + \alpha = 1,
\]

then \(u \) can be extended to a strong solution to (N-S) in the class \(\mathcal{C}_L \) for some \(T' > T \).

(ii) Let \(s > n/2 \) and let \(u_0 \in H_0^s \). Assume that \(u \) is a strong solution to (N-S) in the class \(\mathcal{C}_L \). If the solution \(u \) satisfies

\[
\int_0^T \|u(t)\|_{\dot{U}_{\infty,1}^{s_0}}^2 \, dt < \infty,
\]

then \(u \) can be extended to a strong solution to (N-S) in the class \(\mathcal{C}_L \) for some \(T' > T \).

Remark 2.10. (1) Let \(0 < \alpha < 1 \). As is mentioned Example 2.4, we have proper embeddings \(\dot{B}_{\infty,\infty}^{s_0} \subset \dot{U}_{\infty,\infty}^{a,0} \subset \dot{U}_{\infty,1;0,\infty}^{a} \) and hence Theorem 2.9 (i) covers the extension criterion in \(\dot{B}_{\infty,\infty}^{s_0} \) given by Kozono-Shimada [17] for \(s > n/2 - \alpha \). Indeed, if the solution \(u \) satisfies either

\[
\int_0^T \|u(t)\|_{\dot{B}_{\infty,\infty}^a}^\beta \, dt < \infty, \quad \frac{2}{\beta} + \alpha = 1,
\]
or
\[
\int_0^T \|u(t)\|_{B_{\infty,\infty}^\alpha}^2 \, dt < \infty, \quad \frac{2}{\theta} + \alpha = 1,
\]
then the estimate (2.8) is easily obtained, so that the solution can be extended beyond \(t = T\).

(2) From Example 2.4, the proper embeddings \(\dot{B}_{\infty,\infty}^s \subset \dot{V}_{\infty,\infty}^0 \subset \dot{U}_{\infty,1/2,\infty}^0\) hold. Hence, Theorem 2.9 (ii) may be regarded as an extension of the \(\dot{B}_{\infty,\infty}^s\)-criterion given by Kozono-Ogawa-Taniuchi [16] for \(s > n/2\). On the other hand, it seems to be difficult to obtain the same result as in Theorem 2.9 (ii) under the condition
\[
\int_0^T \|u(\tau)\|_{\dot{U}_{\infty,1/2,\infty}^0}^2 \, d\tau < \infty.
\]
This stems from inapplicability of Lemma 4.1 with \(\alpha = 0\).

As an immediate consequence of the above Theorem 2.9, we have the following blow-up criteria of strong solutions:

Corollary 2.11. (i) Let \(0 < \alpha < 1, \ s > n/2 - \alpha\) and let \(u_0 \in H^s\). Assume that \(u\) is a strong solution to (N-S) in the class \(CL_s(0, T)\). If \(T\) is maximal, i.e., \(u\) cannot be extended in the class \(CL_s(0, T')\) for any \(T' > T\), then it holds that
\[
\int_0^T \|u(t)\|_{\dot{U}_{\infty,1/2,\infty}^0}^{\theta} \, dt = \infty, \quad \frac{2}{\theta} + \alpha = 1.
\]
In particular, we have \(\lim\sup_{t \to T} \|u(t)\|_{\dot{U}_{\infty,1/2,\infty}^0}^{\theta} = \infty\).

(ii) Let \(s > n/2\) and let \(u_0 \in H^s\). Assume that \(u\) is a strong solution to (N-S) in the class \(CL_s(0, T)\). If \(T\) is maximal, then it holds that
\[
\int_0^T \|u(t)\|_{\dot{V}_{\infty,\infty}^0}^2 \, dt = \infty.
\]
In particular, \(\lim\sup_{t \to T} \|u(t)\|_{\dot{V}_{\infty,\infty}^0}^2 = \infty\).

3 Proof of Theorem 2.5

We first prove Theorem 2.5 (i). To this aim, we use arguments given in Kozono-Ogawa-Taniuchi [16], Nakao-Taniuchi [21] and Kanamaru [12].

Proof of Theorem 2.5 (i). We first consider the case \(1 \leq \sigma < \infty\). By the definition of the Besov space, we obtain
\[
\|f\|_{B_{\infty,\infty}^\sigma} = \left(\sum_{j \in \mathbb{Z}} 2^{js_0\sigma} \|\phi_j * f\|_q^\sigma \right)^{\frac{1}{\sigma}}
\]
\[
\leq \sum_{j < -N} 2^{js_0} \|\phi_j * f\|_p + \sum_{j = N} 2^{js_0} \|\phi_j * f\|_p + \left(\sum_{j \in \mathbb{Z}} 2^{js_0} \|\phi_j * f\|_p^\sigma \right)^{\frac{1}{\sigma}}
\]
\[
=: S_1 + S_2 + S_3
\]
Concerning \(S_1 \), it holds that
\[
S_1 \leq \sum_{j<-N} 2^{fs} \| \phi_j \| \| f \|_p \| a \|^{2(s_0-s_1)} \\
\leq \| f \|_{\B^{s_0}_{p,\infty}} \sum_{j<-N} 2^{fs} \\
\leq C_1 2^{-(s_0-s_1)N} \| f \|_{\B^{s_0}_{p,\infty}},
\]
where \(C_1 \) is dependent only on \(s_0 \) and \(s_1 \). For \(S_2 \), in the same way as (3.2), we have
\[
S_2 \leq C_2 2^{-(s_1-s_0)N} \| f \|_{\B^{s_1}_{p,\infty}},
\]
where \(C_2 \) is dependent only on \(s_0 \) and \(s_2 \).

We finally estimate \(S_3 \). By Definition 2.2, it clearly follows that
\[
S_3 \leq N^\beta \| f \|_{\I^{s_0}_{p,\alpha}}.
\]
Combining (3.2), (3.3) and (3.4) with (3.1), we obtain
\[
\| f \|_{\B^{s_0}_{p,\alpha}} \leq C \left(2^{-sN} \| f \|_{\B^{s_0}_{p,\infty}}, \| f \|_{\I^{s_0}_{p,\alpha}} + N^\beta \| f \|_{\I^{s_0}_{p,\alpha}} \right)
\]
for \(s_* := \min(s_0-s_1, s_2-s_0) \) and \(C = C(s_1, s_2-s_1) \). In the case \(\| f \|_{\B^{s_0}_{p,\infty}}, \| f \|_{\I^{s_0}_{p,\alpha}} \leq 1 \), we take \(N = 1 \) in (3.5). Then it holds that
\[
\| f \|_{\B^{s_0}_{p,\alpha}} \leq C \left(1 + \| f \|_{\I^{s_0}_{p,\alpha}} \right) \leq C \left(1 + \| f \|_{\I^{s_0}_{p,\alpha}} \log(\epsilon + \| f \|_{\B^{s_0}_{p,\infty}}, \| f \|_{\B^{s_0}_{p,\alpha}}) \right);
\]
this is the desired estimate (2.6). In the case \(\| f \|_{\B^{s_0}_{p,\infty}}, \| f \|_{\I^{s_0}_{p,\alpha}} > 1 \), we take \(N = 1 + \left[\log(\epsilon + \| f \|_{\B^{s_0}_{p,\infty}}, \| f \|_{\B^{s_0}_{p,\alpha}})/s_* \log 2 \right] \) in (3.5), where \([\cdot]\) denotes the Gauß symbol. Then, we get (2.6) again.

In the case \(\sigma = \infty \), we obtain, instead of (3.1),
\[
\| f \|_{\B^{s_0}_{p,\alpha}} \leq \sup_{j<-N} 2^{js} \| \phi_j \| \| f \|_p + \sup_{j>N} 2^{js} \| \phi_j \| \| f \|_p + \max_{j \leq N} 2^{js} \| \phi_j \| \| f \|_p
\]
\[
= : \tilde{S}_1 + \tilde{S}_2 + \tilde{S}_3
\]
(3.6)
Therefore, using the same argument as in the previous case \(1 \leq \sigma < \infty \), we get (2.6).

In order to prove the second part of Theorem 2.5, we use the following Lemma.

Lemma 3.1. Let \(\rho \in \mathcal{Z} \) and Let \(X \) be a normed space. Assume that \(X \) satisfies conditions (C1) and (C2) given in Theorem 2.5 (ii). Then, it holds that
\[
\rho * g \in L^\infty \quad \text{for all } g \in X.
\]

Proof. By (C1), we get that for all \(\phi \in \mathcal{Z} \), there exists a constant \(C = C(\phi) > 0 \) such that
\[
\| g(\phi) \| \leq C \| g \|_X \quad \text{for all } g \in X.
\]
(3.8)

Assume that (3.8) does not hold. Then, there is a \(\phi_0 \in \mathcal{Z} \) with the following property: for each positive integer \(N \), there is a \(g_N \in X \) such that
\[
\| g_N(\phi_0) \| > N \| g_N \|_X.
\]
(3.9)

Letting \(h_N := \frac{g_N}{N^\sigma \| g_N \|_X} \), we obtain \(\| h_N \|_X = N^{-\frac{\sigma}{2}} \to 0 \) as \(N \to \infty \), which implies \(h_N \to 0 \) in \(X \). By (C1), this convergence holds in \(\mathcal{Z} \). On the other hand, by (3.9),
\[
\| h_N(\phi_0) \| = \frac{|g_N(\phi_0)|}{N^\sigma \| g_N \|_X} \to N^{\frac{\sigma}{2}} \to \infty \quad \text{as } N \to \infty,
\]
which contradicts \(h_N \to 0 \) in \(\mathcal{Z} \). Thus we get (3.8).
Concerning the second term on the right-hand side of (3.13), we obtain

$$
|\rho \ast g(x)| \leq C(\rho)\|\tau_{-x}g\|_X \leq C(\rho, K_1)\|g\|_X \quad \text{for all } x \in \mathbb{R}^n,
$$

which means (3.7).

We are now in position to prove the second part of Theorem 2.5 and follow arguments given by Nakao-Taniuchi [21] and the author [12].

Proof of Theorem 2.5 (ii). Substituting \(f = \frac{h}{\epsilon \|h\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}}} \) into the inequality given in (C4), we obtain

$$
\|h\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}} \leq K_3 \left(\epsilon \|h\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}} + \|h\|_X \log^p \left(e + \frac{1}{\epsilon} \right) \right) \tag{3.10}
$$

for all \(h \in X \cap \mathcal{Z} \) and all \(\epsilon > 0 \). Let \(g \in X \) and \(\Phi_N := \sum_{|j| \leq N} \phi_j \in \mathcal{Z} \) for \(N = 1, 2, \ldots \). By Lemma 3.1, \(\Phi_N \ast g \in L^\infty \).

Hence, since \(\Phi_N \ast g = \Phi_{N+1} \ast \Phi_N \ast g \), we have \(\Phi_N \ast g \in \mathcal{Z} \). On the other hand, it holds from (C3) that

$$
\|\Phi_N \ast g\|_X \leq K_2 \|\Phi_N\|_1 \|g\|_X \leq K_2 (\|\psi_N\|_1 + \|\psi_{N-1}\|_1) \|g\|_X \leq K_2 \|\psi_1\|_1 \|g\|_X, \tag{3.11}
$$

where \(\psi_j(x) := 2^{jn} \psi(2^j x) \). Thus, we also get \(\Phi_N \ast g \in X \). Substituting \(h = \Phi_N \ast g \in X \cap \mathcal{Z} \) into (3.10), we obtain

$$
\|\Phi_N \ast g\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}} \leq K_3 \epsilon \|\Phi_N \ast g\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}} + K_3 \|\Phi_N \ast g\|_X \log^p \left(e + \frac{1}{\epsilon} \right). \tag{3.12}
$$

We first consider the case \(1 \leq \sigma < \infty \).

The left-hand side of (3.12) can be estimated from below as follows. Noting that \(\text{supp} \hat{\Phi}_N \subset \{ 2^{-N-1} \leq |\xi| \leq 2^{N+1} \} \), we get

$$
\|\Phi_N \ast g\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}}^\sigma = \sum_{|j| \leq N+1} 2^{(s_0 + \sigma)} \|\phi_j \ast \Phi_N \ast g\|_p^\sigma \tag{3.13}
$$

Concerning the second term on the right-hand side of (3.13), we obtain

$$
\sum_{j=N,N+1} 2^{(s_0 + \sigma)} \|\phi_j \ast \Phi_N \ast g\|_p^\sigma \geq 2^{-(s_0 + \sigma)} 2^{N s_0} \sum_{j=N,N+1} \|\phi_j \ast \Phi_N \ast g\|_p^\sigma \geq 2^{-(s_0 + \sigma)} 2^{N s_0} \left(\sum_{j=N,N+1} \|\phi_j \ast \Phi_N \ast g\|_p \right)^\sigma \tag{3.14}
$$

As in (3.14), similar estimates hold when replacing \(N \) and \(N + 1 \) by \(-N \) and \(-N - 1 \), respectively. Summarizing (3.13), (3.14) we obtain that

$$
\|\Phi_N \ast g\|_{L^p_{\mu,\nu} \cap L^p_{\mu,\nu}^{\sigma}} \geq 2^{-(s_0 + \sigma)} \left(\sum_{|j| \leq N} 2^{(s_0 + \sigma)} \|\phi_j \ast g\|_p \right)^\sigma. \tag{3.15}
$$
Next, we estimate the first term on the right-hand side of (3.12). From Young’s inequality and Hölder’s inequality, it holds that

\[
\|\Phi_N * g\|_{L^{p_0}_x} = \sup_{|\alpha| \leq s_N} 2^{j_0} \|\phi_\alpha \ast \Phi_N * g\|_p \\
\leq \sup_{|\alpha| \leq s_N} 2^{j_0} \|\phi_\alpha\|_1 \|\Phi_N * g\|_p \\
\leq C_1 2^{j_0} \sum_{|\alpha| \leq N} 2^{j_0} \|\phi_\alpha \ast g\|_p \\
\leq C_1 2^{j_0} \left(\sum_{|\alpha| \leq N} \frac{1}{s_N} \left(\sum_{|\alpha| \leq N} 2^{j_0} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha} \right) \\
\leq C_1 2^{j_0} \left(\sum_{|\alpha| \leq N} \frac{1}{s_N} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha},
\tag{3.16}
\]

where \(C_1\) depends only on \(n\) and \(s_1\). In the same way as (3.16), we have

\[
\|\Phi_N * g\|_{L^{p_0}_x} \leq C_2 2^{j_0} \left(\sum_{|\alpha| \leq N} \frac{1}{s_N} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha},
\tag{3.17}
\]

where \(C_2\) depends only on \(n\) and \(s_2\). In the end, from (3.16) and (3.17), we get that

\[
\|\Phi_N * g\|_{L^{p_0}_x} \leq C_3 2^{j_0} \left(\sum_{|\alpha| \leq N} \frac{1}{s_N} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha},
\tag{3.18}
\]

for \(s^* := |s_0| + \max(|s_1|, |s_2|) + 1\) and \(C_3 = C_3(n, s_1, s_2)\).

Thus, combining (3.11), (3.15) and (3.18) with (3.12), we obtain

\[
\left(\sum_{|\alpha| \leq N} 2^{j_0} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha} \leq Ce^{2s^* N} \left(\sum_{|\alpha| \leq N} 2^{j_0} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha} + C\|g\|_X \log^\beta \left(e + \frac{1}{e} \right)
\]

for all \(N = 1, 2, \ldots, \) all \(e > 0\) and \(C = C(n, s_0, s_1, s_2, K_2, K_3)\). Taking \(e = \frac{1}{2e^{2s^*}}\), from the above inequality, we get

\[
\left(\sum_{|\alpha| \leq N} 2^{j_0} \|\phi_\alpha \ast g\|_p^\alpha \right)^\frac{1}{\alpha} \leq C\|g\|_X \text{ for all } N = 1, 2, \cdots.
\]

This implies

\[
\|g\|_{L^{p_0}_{\tilde{p}, 0}} \leq C\|g\|_X \text{ for all } g \in X,
\]

i.e., the embedding \(X \hookrightarrow L^{p_0}_{p, 0}\).

In the case \(s = \infty\), we obtain, instead of (3.13),

\[
\|\Phi_N * g\|_{L^{p_0}_x} = \max \left(\max_{|\alpha| \leq N-1} 2^{j_0} \|\phi_\alpha \ast g\|_p, \max_{j=N-1} 2^{j_0} \|\phi_\alpha \ast \Phi_N * g\|_p \right) \\
\max_{j=-N,-N-1} 2^{j_0} \|\phi_\alpha \ast \Phi_N * g\|_p.
\]

Therefore, by using the same argument as in the case \(1 \leq s < \infty\), we get

\[
\|g\|_{L^{p_0}_x} \leq C\|g\|_X \text{ for all } g \in X.
\]

This proves Theorem 2.5 (ii).
4 Proof of Theorem 2.9

In order to prove Theorem 2.9, we need bilinear estimates which are related to Leibniz’ rule. Therefore, we first recall the following two lemmata.

Lemma 4.1 ([13], Proposition 2.2). Let $1 \leq p, q \leq \infty$, $s_0 > 0$, $\alpha > 0$ and $\beta > 0$. Moreover, assume that $1 \leq p_1, p_2, p_3, p_4 \leq \infty$ satisfy $1/p = 1/p_1 + 1/p_2 = 1/p_3 + 1/p_4$. Then, there exists a constant $C(n, s_0, \alpha, \beta) > 0$ such that

$$\|f \cdot g\|_{B^{s_0}_{p_4,q}} \leq C\left(\|f\|_{B^{s_0}_{p_1,q}} \|g\|_{B^{s_0}_{p_2,q}} + \|f\|_{B^{s_0}_{p_3,q}} \|g\|_{B^{s_0}_{p_4,q}} \right)$$

for all $f \in B^{s_0+\epsilon}_{p_1,q} \cap B^{-\beta}_{p_3,q}$ and $g \in B^{-\alpha}_{p_2,q} \cap B^{s_0+\beta}_{p_4,q}$.

Lemma 4.2 ([18], Lemma 1). Let $1 < p < \infty$ and $a, \beta \in \mathbb{N}^n$. Then, there exists a constant $C(n, p, a, \beta) > 0$ such that

$$\|\partial^a f \cdot \partial^\beta g\|_p \leq C \left(\|f\|_{B^{a(p)}_{\infty,q}} \|g\|_p + \||-\Delta\|_p \|f\| \|g\|_{BMO} \right)$$

for all $f, g \in BMO \cap W^{a(p)}[\beta]_p$.

We are now in a position to prove Theorem 2.9 and follow arguments given by Kozono-Ogawa-Taniuchi [16], Kozono-Shimada [17], Kozono-Taniuchi [18] and the author [12].

Proof of Theorem 2.9. (i) It is well-known that the local existence time T_* of the strong solution to (N-S) can be estimated from below as

$$T_* \geq \frac{C(n, s)}{\|u_0\|_{H^{s+1}}},$$

see e.g. [10] and [14]. Hence by the standard argument of continuation of local solutions, it suffices to establish the following *a priori* estimate:

$$\sup_{\epsilon_0 \leq t \leq T} \|u(t)\|_{H^{s+1}} \leq C \left(n, s, \alpha, T, \|u(\epsilon_0)\|_{H^{s+1}}, \int_{\epsilon_0}^T \|u(\tau)\|_{\dot{B}^{a(p)}_{\infty,q}} \, d\tau \right)$$

for some $\epsilon_0 \in (0, T)$, where $[\cdot]$ denotes the Gauß symbol.

Applying ∂^k with $|k| = 0, 1, \cdots, [s] + 1$ to (N-S), we have

$$\partial_t v_k - \Delta v_k + \nabla q_k = F_k,$$

where $v_k := \partial^k u$, $q_k := \partial^k \pi$ and $F_k := -\partial^k (\nu \cdot v) u = -\partial^k \nabla \cdot u \cdot u$. Taking the inner product in L^2 between (4.4) and $2v_k$, and then integrating the resulting identity on the time interval (ϵ_0, t), we obtain

$$\frac{\|v_k(t)\|^2_2}{2} + \int_{\epsilon_0}^t \|\nabla v_k\|^2_2 \, d\tau \leq \|v_k(\epsilon_0)\|^2_2 + 2 \int_{\epsilon_0}^t (F_k, v_k) \, d\tau, \quad \epsilon_0 \leq t < T,$$

where

$$|(F_k, v_k)| = \langle |(-\Delta)^{-\frac{s}{2}} \partial^k \nabla \cdot u \cdot u, (-\Delta)^{-\frac{s}{2}} v_k \rangle \leq C \|u \cdot u\|_{\dot{B}^{1|1|,-s\cdot\alpha}_{2,2}} \|v_k\|_{H^s}.$$

By the bilinear estimate Lemma 4.1 (4.1) with $p = q = 2$, $p_1 = p_4 = 2$, $p_2 = p_3 = \infty$, $s_0 = 1 + |k| - \alpha, \beta = \alpha$, it follows that

$$\|u \cdot u\|_{\dot{B}^{1|1|,-s\cdot\alpha}_{2,2}} \leq C \|u\|_{\dot{B}^{s\cdot\alpha}_{2,2}} \|u\|_{\dot{B}^{s\cdot|k|}_{2,2}}.$$

Together with an interpolation inequality applied to $\|v_k\|_{H^s}$, we conclude from Young’s inequality that

$$|(F_k, v_k)| \leq C \|u\|_{\dot{B}^{s\cdot\alpha}_{2,2}} \|u\|_{\dot{B}^{s\cdot|k|}_{2,2}} \|v_k\|_{H^s} \|v_k\|_{H^s}^{1-s} \leq C \|u\|_{\dot{B}^{s\cdot\alpha}_{2,2}} \|\nabla v_k\|_{H^s}^{1-s} \|v_k\|_{H^s}^{1-s} \leq C \|u\|_{\dot{B}^{s\cdot\alpha}_{2,2}} \|v_k\|_{H^s}^{2} + \frac{1 + \alpha}{2} \|\nabla v_k\|_{H^s}^{2}.$$
where $\theta = \frac{2}{1 - p}$. C depends on n, s, a. Inserting (4.6) to the right-hand side of (4.5), summing for $|k| = 0, 1, \cdots, [s] + 1$, and absorbing the terms $\|\nabla v_k\|_2^2$ from the right-hand side by the left-hand side, we obtain

$$\|u(t)\|_{H^0}^2 \leq \|u(\varepsilon_0)\|_{H^0}^2 + C \int_{\varepsilon_0}^t \|u(\tau)\|_{B^s_{\infty,\infty}}^\theta \|u(\tau)\|_{H^0}^2 \, d\tau,$$

for all $\varepsilon_0 \leq t < T$. By using Gronwall’s inequality, we get

$$\|u(t)\|_{H^0} \leq \|u(\varepsilon_0)\|_{H^0} \exp \left(C \int_{\varepsilon_0}^t \|u(\tau)\|_{B^s_{\infty,\infty}}^\theta \, d\tau \right), \tag{4.7}$$

Now, applying the logarithmic interpolation inequality (2.6) with $s_0 = -1, s_1 = -n/2$ and $s_2 = s - n/2 (> -a)$, $\beta = 1/\theta$, $p = \sigma = \infty$ to $f = u(\tau)$, it follows that

$$\|u(\tau)\|_{B^s_{\infty,\infty}} \leq C \left(1 + \|u(\tau)\|_{U^{1,1/\sigma}} \log \|u(\tau)\|_{B^s_{\infty,\infty}} \right). \tag{4.8}$$

By the embeddings $B^0_{2,2} \subset B^{-n/2}_{2,\infty} \subset B^{s-n/2}_{2,\infty}$ and $H^s \subset B^s_{2,2} \subset B^s_{2,\infty} \cap B^s_{2,\infty}$, we have

$$\|u(\tau)\|_{B^s_{\infty,\infty}} \leq C \|u(\tau)\|_{B^s_{2,2}} \leq C \|u(\tau)\|_{B^s_{2,\infty}} \leq C \|u(\tau)\|_{H^s}. \tag{4.9}$$

Hence, by (4.7), (4.8) and (4.9), it holds that

$$\|u(t)\|_{H^0} \leq \|u(\varepsilon_0)\|_{H^0} \exp \left(C \int_{\varepsilon_0}^t \left(1 + \|u(\tau)\|_{U^{1,1/\sigma}} \log (1 + \|u(\tau)\|_{H^0}) \right) \, d\tau \right),$$

where $C = C(n, s, a)$. Therefore, with $g(t) \equiv \log (1 + \|u(t)\|_{H^0})$, we obtain

$$g(t) \leq g(\varepsilon_0) + C \int_{\varepsilon_0}^t \left(1 + \|u(\tau)\|_{U^{1,1/\sigma}} \right) g(\tau) \, d\tau.$$

Then Gronwall’s inequality implies that

$$g(t) \leq g(\varepsilon_0) \exp \left(C \int_{\varepsilon_0}^t \left(1 + \|u(\tau)\|_{U^{1,1/\sigma}} \right) \, d\tau \right)$$

for all $\varepsilon_0 \leq t < T$. Thus, we get the estimate (4.3) in the form

$$\sup_{\varepsilon_0 \leq t < T} \|u(t)\|_{H^0} \leq \left(e + \|u(\varepsilon_0)\|_{H^0} \right) \exp \left(C_T + C \int_{\varepsilon_0}^t \|u(\tau)\|_{U^{1,1/\sigma}} \, d\tau \right).$$

(ii) By the same argument as in the above proof, it suffices to establish the following a priori estimate:

$$\sup_{\varepsilon_0 \leq t < T} \|u(t)\|_{H^0} \leq C \left(n, s, T, \|u(\varepsilon_0)\|_{H^0}, \int_{\varepsilon_0}^T \|u(\tau)\|_{U^{1,1/\sigma}}^2 \, d\tau \right) \tag{4.10}$$

for some $\varepsilon_0 \in (0, T)$.

Applying ∂^k with $|k| = 0, 1, \cdots, [s] + 1$ to (N-S), we have

$$\partial_t v_k - \Delta v_k + u \cdot \nabla v_k + \nabla q_k = G_k, \tag{4.11}$$

where $v_k := \partial^k u$, $q_k := \partial^k \pi$ and $G_k := - \sum_{l,k,|l| < |k| - 1} (l) \partial^{k-l} u \cdot \nabla (\partial^l u)$. Testing (4.11) with v_k and integrating the resulting identity on the time interval (ε_0, t), we obtain

$$\|v_k(t)\|_2^2 + 2 \int_{\varepsilon_0}^t \|\nabla v_k\|_2^2 \, d\tau \leq \|v_k(\varepsilon_0)\|_2^2 + 2 \int_{\varepsilon_0}^t \|G_k, v_k\|_2 \, d\tau, \quad \varepsilon_0 \leq t < T. \tag{4.12}$$
Now the bilinear estimate (4.2) with $p = 2$, $|\alpha| = |k| - |l|$, $|\beta| = |l| + 1$, implies that

$$
\|G_k\|_2 \leq C\|u\|_{BMO}(\|\Delta\|^{k}_{l+1} u\|_2.
$$

(4.13)

From (4.13) and Young’s inequality we conclude that

$$
|\langle G_{k}, v_{k} \rangle| \leq \|G_{k}\|_2 \|v_{k}\|_2 \leq C\|u\|_{BMO}(\|\Delta\|^{k}_{l+1} \|u\|_2 \|v_{k}\|_2
$$

\leq C\|u\|_{BMO}^2 \|v_{k}\|_2^2 + \frac{1}{2}\|\nabla v_{k}\|_2^2,
$$

(4.14)

with $C = C(n, s)$. Inserting (4.14) to the right-hand side of (4.12) and summing for $|k| = 0, 1, \ldots, [s] + 1$, we obtain that

$$
\|u(t)\|_{H^{s+1}}^2 \leq \|u(\varepsilon_0)\|_{H^{s+1}}^2 + \frac{C}{\varepsilon_0} \int_{\varepsilon_0}^t \|u(\tau)\|_{BMO}^2 \|u(\tau)\|_{H^{s+1}}^2 \, d\tau,
$$

for all $\varepsilon_0 \leq t < T$. By using Gronwall’s inequality and then the continuous embedding $\dot{B}_{\infty, 2}^{0} \subset BMO$, we get

$$
\|u(t)\|_{H^{s+1}} \leq \|u(\varepsilon_0)\|_{H^{s+1}} \exp \left(\frac{C}{\varepsilon_0} \int_{\varepsilon_0}^t \|u(\tau)\|_{BMO}^2 \, d\tau \right),
$$

(4.15)

Now, by applying the logarithmic interpolation inequality (2.6) with $s_1 = -n/2 < s_0 = 0 < s_2 = s - n/2$, $\beta = 1/2$, $p = \infty$ and $\sigma = 2$ to $f = u(\tau)$, it follows that

$$
\|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}} \leq C \left(1 + \|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}} \log^\frac{1}{2} (e + \|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}}) \right).
$$

(4.16)

Here, we note that $\dot{B}_{\infty, 1/2, 2}^{0} = \dot{B}_{\infty, 0, 2}^{0}$ holds due to Proposition 2.3 (iii). Hence, combining (4.15), (4.16) and (4.9), it holds that

$$
\|u(t)\|_{H^{s+1}} \leq \|u(\varepsilon_0)\|_{H^{s+1}} \exp \left(C \int_{\varepsilon_0}^t \left(1 + \|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}} \log(e + \|u(\tau)\|_{H^{s+1}}) \right) \, d\tau \right),
$$

where $C = C(n, s)$. Therefore, letting $g(t) \equiv \log(e + \|u(t)\|_{H^{s+1}})$, we obtain

$$
g(t) \leq g(\varepsilon_0) + C \int_{\varepsilon_0}^t \left(1 + \|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}} \right) g(\tau) \, d\tau,
$$

which by Gronwall’s inequality implies that

$$
g(t) \leq g(\varepsilon_0) \exp \left(C \int_{\varepsilon_0}^t \left(1 + \|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}} \right) \, d\tau \right)
$$

for all $\varepsilon_0 \leq t < T$. Thus, we get the estimate

$$
\sup_{\varepsilon_0 \leq t < T} \|u(t)\|_{H^{s+1}} \leq \left(e + \|u(\varepsilon_0)\|_{H^{s+1}} \right) \exp \left(C T + C \int_{\varepsilon_0}^T \|u(\tau)\|_{\dot{B}_{\infty, 2}^{0}} \, d\tau \right),
$$

which is the desired estimate (4.10).

\[\square\]

Acknowledgement. We acknowledge support by the German Research Foundation and the Open Access Publishing Fund of Technical University of Darmstadt.
References

[1] Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94, 61-66 (1984)

[2] Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in \mathbb{R}^n. Chinese Ann. Math. Ser. B 16B, 407-412 (1995)

[3] Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Berlin-New York-Heidelberg, Springer-Verlag (1976)

[4] Bony, J. M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Éc. Norm. Supér. (4) 14, 209-246 (1981)

[5] Brezis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. TMA 4, 677-681 (1980)

[6] Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5, 773-789 (1980)

[7] Chae, D.: On the well-posedness of the Triebel-Lizorkin spaces. Comm. Pure Appl. Math. 55, 654-678 (2002)

[8] Engler, H.: An alternative proof of the Brezis-Wainger inequality. Comm. Partial Differential Equations. 14(4), 541-544 (1989)

[9] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269-315 (1964)

[10] Giga, Y.: Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations 62, 186-212 (1986)

[11] Kanamaru, R.: Brezis-Gallouet-Wainger type inequalities and a priori estimates of strong solutions to Navier-Stokes equations. J. Funct. Anal. 278 (2020). https://doi.org/10.1016/j.jfa.2019.108277

[12] Kanamaru, R.: Optimality of logarithmic interpolation inequalities and extension criteria to the Navier-Stokes and Euler equations in Vishik spaces. J. Evol. Equ. 20, 1381-1397 (2020)

[13] Kaneko, K., Kozono, H., Shimizu, S.: Stationary solution to the Navier-Stokes equations in the scaling invariant Besov space and its regularity. Indiana Univ. Math. J. 68, 857-880 (2019)

[14] Kato, T.: Strong L^p-solutions of the Navier-Stokes equation in \mathbb{R}^m, with applications to weak solutions. Math. Z. 187, 471-480 (1984)

[15] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891-907 (1988)

[16] Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251-278 (2002)

[17] Kozono, H., Shimada, Y.: Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math. Nachr. 276, 63-74 (2004)

[18] Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier-Stokes equations. Math. Z. 235, 173-194 (2000)

[19] Kozono, H., Taniuchi, Y.: Limiting case of Sobolev inequality in BMO, with application to the Euler equations. Comm. Math. Phys. 214, 191-200 (2000)

[20] Kozono, H., Wadade, H.: Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935-950 (2008)

[21] Nakao, K., Taniuchi, Y.: Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains. Comm. Math. Phys. 357, 951-973 (2018)

[22] Nakao, K., Taniuchi, Y.: Brezis-Gallouet-Wainger type inequalities and its application to the Navier-Stokes equations. Contemp. Math. 710, 211-222 (2018)

[23] Ogawa, T., Taniuchi, Y.: On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J. Differential Equations 190, 39-63 (2003)

[24] Ogawa, T., Taniuchi, Y.: A note on blow-up criterion to the 3-D Euler equations in a bounded domain. J. Math. Fluid Mech. 5, 17-23 (2003)

[25] Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259-269 (1995)

[26] Triebel, H.: Theory of Function Spaces. Akademische Verlagsgesellschaft Leipzig 1983

[27] Vishik, M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. Éc. Norm. Supér. 32, 769-812 (1999)