

W-LIKE MAPS WITH VARIOUS INSTABILITIES OF ACIM’S

ZHENYANG LI

ABSTRACT. This paper generalizes the results of [13] and then provides an interesting example. We construct a family of W-like maps \(\{W_a\} \) with a turning fixed point having slope \(s_1 \) on one side and \(-s_2\) on the other. Each \(W_a \) has an absolutely continuous invariant measure \(\mu_a \). Depending on whether \(\frac{1}{s_1} + \frac{1}{s_2} \) is larger, equal or smaller than 1, we show that the limit of \(\mu_a \) is a singular measure, a combination of singular and absolutely continuous measure or an absolutely continuous measure, respectively. It is known that the invariant density of a single piecewise expanding map has a positive lower bound on its support. In Section 4 we give an example showing that in general, for a family of piecewise expanding maps with slopes larger than 2 in modulus and converging to a piecewise expanding map, their invariant densities do not necessarily have a positive lower bound on the support.

1. Introduction

In practice, due to external noise, or roundoff errors in computation, there is a natural interest in the stability of properties of chaotic dynamical systems under small perturbations. If we consider a family of piecewise expanding maps \(\tau_a : I \to I, \) \(a > 0 \) with absolutely continuous invariant measures (acim’s) \(\mu_a \), converging to a piecewise expanding map \(\tau_0 \) with acim \(\mu_0 \), then under general assumptions \(\mu_a \)'s converge to \(\mu_0 \). One such assumption is that \(\inf |\tau'_a| > 2 \) for all \(a > 0 \) (see [1], [6], [7] or [10]). This is useful in the study of the metastable systems [15], or to approximate the invariant densities [8].

Keller [9] introduced the family of \(\{W_a\} \) maps that are piecewise expanding, ergodic transformations with a “stochastic singularity”, i.e., \(\mu_a \)'s converge to a singular measure. This occurs because of the existence of diminishing invariant neighborhoods of the turning fixed point. The slopes of the Keller’s \(W_a \) maps converge to 2 and -2 on the left and right hand sides of the turning fixed point, respectively.

Given two numbers, \(s_1 \) and \(s_2 \), greater than 1, we consider a W-like map with one turning fixed point having slope \(s_1 \) on one side and \(-s_2\) on the other. In [13], the authors considered the special case where \(s_1 = s_2 = 2 \). Their perturbed maps \(W_a \) are piecewise expanding with slopes strictly greater than 2 in modulus and are exact with their acim’s supported on all of \([0, 1]\). The standard bounded variation method [2] cannot be applied in this setting as the slopes of the maps in that family are not uniformly bounded away from 2. Other methods, for example, those studied in [3], [12] and [14] cannot be applied either. Using the main result of [5], it can
be shown that the μ_a’s converge to $\frac{2}{3}\mu_0 + \frac{1}{3}\delta_{\frac{1}{2}}$, where $\delta_{\frac{1}{2}}$ is the Dirac measure at point $1/2$ and μ_0 is the acim of the W_0 map. Thus, the family of measures μ_a approach a combination of an absolutely continuous and a singular measure rather than the acim of the limit map. Similar instability was also shown in [11] for a countable family of transitive Markov maps approaching Keller’s W_0 map.

In this paper, we construct a family of maps for which the instability of the acim’s has a global character, not a local one. In the more general case considered in this paper, with s_1, s_2 not necessarily equal to 2, we will discuss the limits of the acim’s μ_a of the $\{W_a\}$ maps. We have three cases:

(I) If $\frac{1}{s_1} + \frac{1}{s_2} > 1$, then μ_a’s converge *-weakly to $\delta_{\frac{1}{2}}$.

(II) If $\frac{1}{s_1} + \frac{1}{s_2} = 1$, then μ_a’s converge *-weakly to

$$\frac{(qs_1 + ps_2 - p - q)(s_2 + 2)\mu_0 + 2rs_1s_2^2}{(qs_1 + ps_2 - p - q)(s_2 + 2) + 2rs_1s_2^2} \delta_{\frac{1}{2}},$$

where p, q and r are parameters defining our family of maps.

(III) If $\frac{1}{s_1} + \frac{1}{s_2} < 1$, then μ_a’s converge to μ_0.

Additionally, in Theorem 2, we prove that in case (III) the densities of the μ_a’s are uniformly bounded. The first case of our result contains the example in which Keller [9] obtained the “stochastic singularity.” In the second case, the limit measure is a combination of an absolutely continuous and a singular measure, and this combination is varying according to p, q and r for fixed s_1 and s_2. This is a generalization of the result of [13]. In the third case, we have a map with a stable acim.

At the end of the paper, we use our main results to provide an interesting example. Keller [11] and Kowalski [12] proved that for a piecewise expanding map $\tau: I \to I$ with $|\frac{x}{\tau(x)}|$ being a function of bounded variation, the density of the acim of τ has a uniform positive lower bound on its support. We construct a family of piecewise expanding, piecewise linear maps τ_n such that τ_n converge to $\tau = W_0$ ($s_1 = s_2 = 2$), $|\tau_n'| > 2$ for all n but the densities of the acims μ_n’s do not have a uniform positive lower bound.

In Section 2 we introduce our family of W_a maps and state the main result. In Section 3 we present the proofs. In Section 4 we show the example related to the results of Keller [11] and Kowalski [12].

2. Family of W_a maps and the main result

Let $s_1, s_2 > 1$ and $p, q, r > 0$. We consider the family $\{W_a: 0 \leq a \leq 1\}$ of maps of $[0,1]$ onto itself defined by

$$W_a(x) = \begin{cases} 1 - \frac{2(s_1 + pa)}{s_1 - 1 + pa - 2ra} x, & \text{for } 0 \leq x < \frac{1}{2} - \frac{2ra}{s_1 + pa}, \\ (s_1 + pa)(x - 1/2) + 1/2 + ra, & \text{for } \frac{1}{2} - \frac{2ra}{s_1 + pa} \leq x < 1/2; \\ -(s_2 + qa)(x - 1/2) + 1/2 + ra, & \text{for } 1/2 \leq x < \frac{1}{2} + \frac{2ra}{s_2 + qa}; \\ 1 + \frac{2(s_2 + qa)}{s_2 - 1 + qa - 2ra} (x - 1), & \text{for } \frac{1}{2} + \frac{2ra}{s_2 + qa} \leq x \leq 1. \end{cases}$$

For each choice of $s_1, s_2 > 1$, $p, q, r > 0$, we consider only $a > 0$ such that $0 \leq W_a(x) \leq 1$ for $x \in [0,1]$.

An example of a W_a map is shown in Fig.2. Fig.2(a) is the unperturbed W_0 map with turning fixed point at $1/2$ and $s_1 = 3/2$, $s_2 = 3$. Fig.2(b) is the perturbed map W_a, with $a = 0.05$, $r = 2$, $p = 3$, $q = 2$. The slope of the second branch is
$s_1 + pa = 1.65$, the slope of the third branch is $s_2 + qa = 3.1$, and $W_{0.05}(1/2) = 1/2 + ra = 0.6$.

Figure 1. The W-like maps with $1/s_1 + 1/s_2 = 1$: (a) W_0 with $s_1 = 3/2$ and $s_2 = 3$, (b) W_a with $s_1 = 3/2$, $s_2 = 3$; $a = 0.05$; $r = 2$, $p = 3$, $q = 2$; also several initial points of the trajectory of $1/2$.

Every W_a has a unique absolutely continuous invariant measure μ_a since all the slopes are greater than 1 in modulus. We will show later that, for $1/s_1 + 1/s_2 \leq 1$, μ_a is supported on $[0, 1]$ and for $1/s_1 + 1/s_2 > 1$ it is supported on a subinterval around $1/2$. W_a is an exact map with the measure μ_a. Let h_a denote the normalized density of μ_a, $a \geq 0$. Since the W_0 map is a Markov one, it is easy to check that

$$ \begin{align*}
(2) \quad h_0 &= \begin{cases}
\frac{2s_1(s_2+1)}{2s_2(s_1-1)}, & \text{for } 0 \leq x < 1/2; \\
\frac{2s_1s_2^2}{2s_2(s_1-1)}, & \text{for } 1/2 \leq x \leq 1.
\end{cases}
\end{align*} $$

Our main result is the following theorem

Theorem 1. As $a \to 0$ the measures μ_a converge $*$-weakly to the measure

(I) $\delta(1/2)$, if $1/s_1 + 1/s_2 > 1$;

(II) $\mu_0 + \frac{2r s_1 s_2^2}{(q^2 s_1 + ps_2 - p - q)(s_2+2) + 2rs_1 s_2^2} \delta(1/2)$, if $1/s_1 + 1/s_2 = 1$;

(III) μ_0, if $1/s_1 + 1/s_2 < 1$,

where $\delta(1/2)$ is the Dirac measure at point 1/2.

The proof relies on the general formula for invariant densities of piecewise linear maps and direct calculations. Most objects and quantities we use depend on the parameter a. We suppress a from the notation to make it simpler.

In case (III), we actually prove a little more:

Theorem 2. If $1/s_1 + 1/s_2 < 1$, then the normalized invariant densities $\{h_a\}$ are uniformly bounded for given p, q and r. Consequently, we obtain Theorem (I)(III).

3. Proofs

This section contains the proofs of Theorems 1 and 2 divided into a number of steps.
3.1. Assume $\frac{1}{s_1} + \frac{1}{s_2} > 1$. Let

$$x_l^* = \frac{s_1 - 1 + pa - 2ra}{2(s_1 - 1 + pa)}$$

and

$$x_r^* = \frac{s_2 s_1 - s_2 + (2rs_1 - q + ps_2 + qs_1)a + (2rp + pq)a^2}{2(s_1 - 1 + pa)(s_2 + qa)}.$$

x_l^* is the fixed point on the second branch of W_a, and x_r^* is the preimage of x_l^* under the third branch of W_a. Both x_r^* and x_l^* converge to $\frac{1}{2}$ as a approaches 0. For small a, we have

$$W_a(1/2) - x_r^* = \frac{ra[s_1 s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)]}{(s_1 - 1 + pa)(s_2 + qa)} < 0.$$

In this case, we have $W_a([x_l^*, x_r^*]) \subseteq [x_l^*, x_r^*]$. $W_a|_{[x_l^*, x_r^*]}$ is a skewed tent map with $W_a(1/2) > 1/2$; it is known that with acim μ_a, it is exact on $[x_l^*, W_a(1/2)]$. Since μ_a is concentrated on $[x_l^*, x_r^*]$, we conclude that μ_a converge *-weakly to $\delta_{(1/2)}$. This proves Theorem 1(I).

Fig. 2 shows an example with $a = 0.05, r = 2, p = 3, q = 2; s_1 = 4/3, s_2 = 5/2.$

![Figure 2. The W_a map with $\frac{1}{s_1} + \frac{1}{s_2} > 1$](image)

3.2. Formula for the non-normalized invariant density of W_a if $\frac{1}{s_1} + \frac{1}{s_2} \leq 1$. An example of a map W_a is shown in Fig. 1. We have the following proposition.

Proposition 1. For $\frac{1}{s_1} + \frac{1}{s_2} \leq 1$, the map W_a has an absolutely continuous invariant measure μ_a supported on $[0, 1]$ and the map W_a with respect to μ_a is exact.

Proof. W_a is a piecewise expanding transformation. From the general theory (see for example [2]), it follows that it is enough to show that the images $W_a^n(J)$ grow to cover all $[0, 1]$ as $n \to \infty$, for any interval $J \subset [0, 1]$. Since W_a is expanding, $W_a^n(J)$ grow until some image $W_a^{m_0}(J)$ contains an internal partition point. If this point is not 1/2, then $W_a^{m_0+2}(J)$ contains the repelling fixed point 1. Then its images grow
to cover all of $[0,1]$. If this point is $1/2$, we proceed as follows. First, assume that $\frac{1}{s_1} + \frac{1}{s_2} < 1$. Consider a small neighborhood $J = (z_1, z_2)$ around $1/2$ with length ℓ, then
\[
\min_{z_2-z_1=\ell} \max \left\{ \frac{1}{2} - z_1 (s_1 + pa), (z_2 - \frac{1}{2})(s_2 + qa) \right\} = \frac{1}{s_1 + pa + s_2 + qa} \ell > \ell.
\]
Thus, the interval J will grow until its image covers two partition points of W_a. Then the second iteration afterward will cover $[0,1]$. Therefore, W_a is exact with respect of μ_a.

Assume $\frac{1}{s_1} + \frac{1}{s_2} = 1$. If $a \neq 0$, then $\frac{1}{s_1 + pa + s_2 + qa} > 1$, which implies W_a is exact with respect to μ_a. In the case $a = 0$, we first note that $1/2$ is a turning fixed point. Take again a small interval $J = (z_1, z_2) \supseteq 1/2$. Its image is an interval $(z, 1/2)$. It will grow under iteration and its iterations still contain $1/2$. It will grow until its image covers another partition point of W_a. Then, the second iteration afterward will cover all of $[0,1]$. Thus, W_a is again exact with respect to μ_a. □

We adapt the general formulas of [5] to our case and obtain the following lemma:

Lemma 1. (I) $N=4$, $K=2$, $L=0$;

(II) $\alpha = (1,1/2 + ra, 1/2 + ra, 1)$, $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$, where $\beta_1 = -\frac{2(s_1 + pa)}{s_1 - 1 + pa - 2ra}$, $\beta_2 = s_1 + pa$, $\beta_3 = -(s_2 + qa)$ and $\beta_4 = \frac{2(s_2 + qa)}{s_2 - 1 + qa - 2ra}$, $\gamma = (0,0,0,0)$;

(III) The digits $A = (a_1, a_2, a_3, a_4)$, where $a_1 = -1$, $a_2 = \frac{s_1 - 1 + pa - 2ra}{2}$, $a_3 = -\frac{s_2 + 1 + qa - 2ra}{2}$, $a_4 = \frac{s_2 + 1 + qa - 2ra}{s_1 - 1 + pa - 2ra}$;

(IV) There are two c_i’s, which are $c_1 = (1/2, 2)$ and $c_2 = (1/2, 3)$, and $j(c_1) = 2$, $j(c_2) = 3$. Then, $W_u = \{c_1, c_2\}, W_l = \emptyset$, $U_l = \{c_2\}, U_r = \{c_1\}$;

(V) $\beta(c_1, 1) = s_1 + pa$ since $j(c_1) = 2$, then $\beta(c_1, 2) = -(s_1 + pa)(s_2 + qa)$ and $\beta(c_1, k) = -(s_2 + qa)(s_1 + pa)^{k-1}$ up to some k which is the first moment j when the $W_d^j(1/2)$ is less than $\frac{1}{2} - \frac{1}{2 + ra}{s_1 + pa}$, and is the same one defined in Lemma[4];

(VI) $\beta(c_2, 1) = -(s_2 + qa)$ since $j(c_2) = 3$, then $\beta(c_2, 2) = (s_2 + qa)^2$ and $\beta(c_2, k) = (s_2 + qa)^2(s_1 + pa)^{k-2}$ up to the same k in part (e), $W_d^a(c_1) = W_d^a(c_2)$ for all n;

(VII) Based on (VI), we have the following for the matrix $S = (S_{i,j})_{1 \leq i,j \leq 2}$:

For $c_1 \in U_r$,
\[
S_{1,1} = \sum_{n=1}^{\infty} \frac{\delta(\beta((c_1, n) > 0))\delta(W_d^a(c_1) > 1/2) + \delta(\beta((c_1, n) < 0))\delta(W_d^a(c_1) < 1/2)}{|\beta(c_1, n)|},
\]
\[
S_{1,2} = \sum_{n=1}^{\infty} \frac{\delta(\beta((c_1, n) > 0))\delta(W_d^a(c_1) > 1/2) + \delta(\beta((c_1, n) < 0))\delta(W_d^a(c_1) < 1/2)}{|\beta(c_1, n)|},
\]

For $c_2 \in U_l$
\[
S_{2,1} = \sum_{n=1}^{\infty} \frac{\delta(\beta((c_2, n) < 0))\delta(W_d^a(c_2) > 1/2) + \delta(\beta((c_2, n) > 0))\delta(W_d^a(c_2) < 1/2)}{|\beta(c_2, n)|},
\]
\[
S_{2,2} = \sum_{n=1}^{\infty} \frac{\delta(\beta((c_2, n) < 0))\delta(W_d^a(c_2) > 1/2) + \delta(\beta((c_2, n) > 0))\delta(W_d^a(c_2) < 1/2)}{|\beta(c_2, n)|}.
\]

Remark 1. It follows from (V, VI) of Lemma 1 that
\[
S_{1,1} = S_{1,2}, S_{2,1} = S_{2,2} \text{ and } S_{1,1} = \frac{s_2 + qa}{s_1 + pa} S_{2,2}.
\]
Let \(\text{Id} \) be the \(2 \times 2 \) identity matrix and let \(V = [1, 1] \). Then, for the solution, \(D = [D_1, D_2] \), of the system:

\[
(-S^T + \text{Id}) D^T = V^T, \tag{1}
\]

we have \(D_1 = D_2 \). Let us denote them by \(\Lambda \).

Let \(I_1, I_2, I_3, I_4 \) be the partition of \(I = [0, 1] \) into maximal intervals of monotonicity of \(W_a \): \(I_1 = [0, \frac{s_1 - 1 + pa - 2ra}{2(s_1 + pa)}), I_2 = (\frac{s_1 - 1 + pa - 2ra}{2(s_1 + pa)}, \frac{1}{2}), I_3 = (\frac{1}{2}, \frac{s_2 + 1 + qa + 2ra}{2(s_2 + qa)}) \) and \(I_4 = (\frac{s_2 + 1 + qa + 2ra}{2(s_2 + qa)}, 1] \). We define the following index function:

\[
j(x) = j \text { for } x \in I_j, j = 1, 2, 3, 4,
\]

and

\[
j(c_1) = 2, j(c_2) = 3.
\]

We define the cumulative slopes for iterates of points as follows:

\[
\beta(x, 1) = \beta_j(x), \quad \text{and} \quad \beta(x, n) = \beta(x, n - 1) \cdot \beta_j(W_a^{n-1}(x)), \quad n \geq 2.
\]

In particular, we have

\[
\beta(1/2, n) = (s_1 + pa) \cdot W_a'(W_a(1/2)) \cdot W_a'(W_a^2(1/2)) \cdots W_a'(W_a^{n-1}(1/2)),
\]

which is the cumulative slope along the \(n \) steps of trajectory of \(1/2 \). Recall that \(k \) is the first moment \(j \) when the \(W_a^j(1/2) \) is less than \(\frac{1}{2} - \frac{1/2 + ra}{s_1 + pa} \). Let \(k_1 = \lfloor \frac{2}{3} k \rfloor \) (the integer part of \(2k/3 \)). Note that \(k_1 \rightarrow \infty \) as \(a \rightarrow 0 \). Let

\[
\chi^x(t, x) = \begin{cases}
\chi_{[0, x]} & \text{for } t > 0 \\
\chi_{[x, 1]} & \text{for } t < 0.
\end{cases}
\]

Now, we can obtain the following formula for \(f_a \):

Lemma 2. Let

\[
f_a = 1 + (1 + \frac{s_1 + pa}{s_2 + qa}) \Lambda \left(\sum_{n=1}^{\infty} \frac{\chi^x(\beta(1/2, n), W_a^n(1/2))}{|\beta(1/2, n)|} \right).
\]

Then \(f_a \) is \(W_a \) invariant non-normalized density. Furthermore, for small \(a > 0 \), we have:

(I) If \(\frac{1}{s_1} + \frac{1}{s_2} = 1 \), then \(\Lambda < -1 \);

(II) If \(\frac{1}{s_1} + \frac{1}{s_2} < 1 \), the sign of \(\Lambda \) depends on \(s_1 \) and \(s_2 \), can be either positive or negative depending on the sign of \(\vartheta = 1 - \left(\frac{s_1 + qa}{s_1 + s_2} + \frac{s_1 + qa}{s_1 + s_2 - 1} \right) = 1 - \frac{s_1 + qa}{s_1 + s_2} \left(1 + \frac{s_1}{s_2(s_1 - 1)} \right) \).

The case when \(\vartheta = 0 \) is discussed at the end of Section II.

Proof. By the Theorem 2 in [3], it follows from \((IV, V, VI)\) of Lemma 1 that:

\[
f_a = 1 + D_1 \sum_{n=1}^{\infty} \frac{\chi^x(\beta(c_1, n), W_a^n(c_1))}{|\beta(c_1, n)|} + D_2 \sum_{n=1}^{\infty} \frac{\chi^x(-\beta(c_2, n), W_a^n(c_2))}{|\beta(c_2, n)|}
\]

\[
= 1 + \Lambda \sum_{n=1}^{\infty} \frac{\chi^x(\beta(c_1, n), W_a^n(1/2))}{|\beta(c_1, n)|} + \Lambda \sum_{n=1}^{\infty} \frac{\chi^x(-\beta(c_2, n), W_a^n(1/2))}{|\beta(c_2, n)|}
\]

\[
= 1 + (1 + \frac{s_1 + pa}{s_2 + qa}) \Lambda \left(\sum_{n=1}^{\infty} \frac{\chi^x(\beta(1/2, n), W_a^n(1/2))}{|\beta(1/2, n)|} \right).
\]
Since
\[S_{1,1} \geq \frac{1}{s_1 + pa} + \frac{1}{s_2 + qa} \sum_{n=1}^{k_1-1} \frac{1}{(s_1 + pa)^n} = \frac{1}{s_1 + pa} + \frac{1}{s_2 + qa} \frac{1 - \frac{1}{(s_1 + pa)^k}}{s_1 + pa - 1}, \]
and \(\Lambda = \frac{1}{s_2 + qa\Lambda_{1,1} - 1} \), we have
\[\Lambda \leq \frac{1}{1 - (\kappa + \eta(\kappa + \eta(\kappa + \eta)))} \leq \Lambda \leq \Lambda_h, \]
where \(\kappa = \frac{s_1 + s_2 + pa + qa}{s_1 + s_2}, \eta = \frac{s_1 + s_2 + pa + qa}{s_1 + s_2 - 1} \).

To obtain the upper bound of \(S_{1,1} \), we assume \(s_1 < s_2 \). For \(s_1 > s_2 \) the calculations differ slightly.

(I) Note that for small \(a \) both estimates \(\Lambda_l \) and \(\Lambda_h \) are smaller than \(-1 \) since both \(\kappa \) and \(\eta \) are smaller than \(1 \) and close to \(1 \). Furthermore, as \(a \) approaches \(0 \), both \(\kappa \) and \(\eta \) approach \(1 \).

(II) As \(a \) approaches \(0 \), \(\kappa \) and \(\eta \) approach \(\frac{s_1 + s_2}{s_1 s_2} \) and \(\frac{s_1 + s_2}{s_1 - 1} \), respectively. Again, note that for small \(a \), estimates \(\Lambda_l \) and \(\Lambda_h \) can be either positive or negative, and they have the same sign. \(\square \)

For small positive \(a \), the first image of \(1/2 \) is \(W_a(1/2) = 1/2 + ra \) and the next one falls just below the fixed point \(x^* \) slightly less than \(1/2 \). The following images form a decreasing sequence until they go below \(\frac{1}{2} - \frac{1/2 + ra}{s_1 + pa} \). Since \(k \) is the first iteration \(j \) when the \(W_a^j(1/2) \) is less than \(\frac{1}{2} - \frac{1/2 + ra}{s_1 + pa} \), the consecutive cumulative slopes of \(1/2 \) are
\[(s_1 + pa), -(s_1 + pa)(s_2 + qa), -(s_1 + pa)^2(s_2 + qa), \ldots, -(s_1 + pa)^{k-1}(s_2 + qa), \]
and
\[f_a = 1 + (1 + \frac{s_1 + pa}{s_2 + qa}) \Lambda \left(\frac{\chi[0,W_a(1/2)]}{(s_1 + pa)} + \sum_{j=2}^{k} \frac{\chi[W_a^j(1/2),1]}{(s_1 + pa)^{j-1}(s_2 + qa)} + \ldots \right). \]

3.3. Estimates, normalizations and integrals on \(f_a \) for \(\frac{1}{s_1} + \frac{1}{s_2} \leq 1 \). Remembering that \(k = \min\{j \geq 1 : W_a^j(1/2) \leq \frac{1}{2} - \frac{1/2 + ra}{s_1 + pa}\} \) and \(k_1 = \lfloor \frac{2k}{3} \rfloor \) (the integer part of \(2k/3 \)), we will give the estimates on \(f_a \).

Let us define
\[g_l = \frac{\chi[0,W_a(1/2)]}{s_1 + pa} + \frac{1}{s_2 + qa} \sum_{j=2}^{k_1} \frac{\chi[W_a^j(1/2),1]}{(s_1 + pa)^{j-1}}, \]
and
\[g_h = g_l + \frac{1}{s_2 + qa} \sum_{j=0}^{\infty} \frac{1}{(s_1 + pa)^{2+j}} = g_l + \frac{1}{(s_2 + qa)(s_1 + pa - 1)(s_1 + pa)^{k_1-1}}. \]

Also, let \(\chi_1 = \chi[0,1/2+ra], \chi_j = \chi[W_a^j(1/2),1/2+ra] \), \(j = 2, 3, \ldots, k_1 \), \(\chi_c = \chi(1/2+ra,1) \).
3.3.1. Estimates on f_a if $\frac{a}{s_1} + \frac{1}{s_2} = 1$. We have the following lemma:

Lemma 3. For the family of W_a maps, if $\frac{a}{s_1} + \frac{1}{s_2} = 1$, we have

(I) $W_a(1/2) = 1/2 + ra$, $W_a^2(1/2) = -ra(s_2 + qa) + 1/2 + ra$, and for $3 \leq m \leq k$,
we have $W_a^m(1/2) = -a^2(s_1 + pa)^m - r(s_1 + pa - p - q + rpqa) + \frac{s_1 - 1 + pa - 2ra}{s_1 + pa - 1};$

(II) $\lim_{a \to 0} ak = 0$;

(III) $\lim_{a \to 0} \frac{1}{a(s_1 + pa)^k} = 0$;

(IV) $\lim_{a \to 0} \frac{1}{a(s_1 + pa)} = 0$;

(V) $\lim_{a \to 0} a^2(s_1 + pa)^k = 0$;

(VI) $\lim_{a \to 0} W_a^k(\frac{1}{2}) = \frac{1}{2}$.

Proof. Suppose (I) is true. Let us first prove that (II) and (III) are true.

By the definition of k, we have:

$$0 \leq -a^2(s_1 + pa)^k - r(qs_1 + ps_2 - p - q + rpqa) + \frac{s_1 - 1 + pa - 2ra}{s_1 + pa} \leq \frac{1}{2} - \frac{1}{4s_1 + pa},$$

The first inequality of (2) implies that $(s_1 + pa)^k - 2a^2(r(qs_1 + ps_2 - p - q + rpqa),$ thus

$$ak \leq a \frac{\ln(s_1 - 1 + pa - 2ra) - \ln 2 - 2 \ln a - \ln(r(qs_1 + ps_2 - p - q + rpqa) + 2a, \ln(s_1 + pa)}{a(s_1 + pa)^k} \leq \frac{2a(r(qs_1 + ps_2 - p - q + rpqa)}{s_1 - 1 + pa - 2ra}.$$

Therefore,

$$\frac{1}{a(s_1 + pa)} \leq \frac{2a(r(qs_1 + ps_2 - p - q + rpqa)}{s_1 - 1 + pa - 2ra}.$$

and as $a \to 0$, we obtain (III).

On the other hand, (2) implies

$$\frac{1}{a(s_1 + pa)^k} \leq \frac{2a(r(qs_1 + ps_2 - p - q + rpqa)}{s_1 - 1 + pa - 2ra}.$$
The fixed point slightly less than 1/2 is
\[x_t^* = \frac{s_1 - 1 + pa - 2ra}{2(s_1 - 1 + pa)} \]
and
\[x_t^* - W^2_a(1/2) = \frac{ra^2(q(s_1 - 1) + p(s_2 - 1) + apq)}{s_1 - 1 + pa} > 0, \]
which implies that
\[W^m_a(1/2) \]
are all in the domain of the second branch of
\[W_a \]
for \(3 \leq m \leq k \). For a linear map
\[T(x) = m_0x + b_0, \]
we have
\[T^m(x) = m_0^m x + \frac{m_0^m - 1}{m_0 - 1}b_0. \]
This proves (I).

Using (4) and (3), we see that for the functions
\[f_l = 1 + \left(1 + \frac{s_1 + pa}{s_2 + qa}\right)\Lambda_l g_h \]
and
\[f_h = 1 + \left(1 + \frac{s_1 + pa}{s_2 + qa}\right)\Lambda_h g_1, \]
we have
\[f_l \leq f_o \leq f_h. \]

Now, we will represent functions
\[f_l \]
and
\[f_c \]
as combinations of functions
\[\chi_j, \]
\(j = 1, \ldots, k \)
and
\[\chi_c. \]
After some calculations, we obtain
\[f_l = 1 + (1 + \frac{s_1 + pa}{s_2 + qa})\Lambda_l \left(\frac{\chi[0,W_a(1/2)]}{s_1 + pa} + \frac{1}{s_2 + qa} \sum_{j=2}^{k_1} \frac{\chi[W_a^2(1/2),1]}{(s_1 + pa)^{j-1}}\right) \]
\[\quad + \frac{1}{(s_2 + qa)(s_1 + pa - 1)(s_1 + pa)^{k_1-1}} \]
\[\quad \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)}\Lambda_l + 1\right) \chi_1 + \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_l \sum_{j=2}^{k_1} \frac{\chi_j}{(s_1 + pa)^{j-1}} \]
\[\quad + \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_l 1 - \frac{1}{s_1 + pa - 1} + 1\right) \chi_c \]
\[\quad + \frac{s_1 + s_2 + pa + qa}{s_2 + qa} \Lambda_l \]
\[\quad + \frac{1}{(s_2 + qa)(s_1 + pa - 1)(s_1 + pa)^{k_1-1}}. \]

\[f_h = 1 + (1 + \frac{s_1 + pa}{s_2 + qa})\Lambda_h \left(\frac{\chi[0,W_a(1/2)]}{s_1 + pa} + \frac{1}{s_2 + qa} \sum_{j=2}^{k_1} \frac{\chi[W_a^2(1/2),1]}{(s_1 + pa)^{j-1}}\right) \]
\[\quad \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)}\Lambda_h + 1\right) \chi_1 + \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \sum_{j=2}^{k_1} \frac{\chi_j}{(s_1 + pa)^{j-1}} \]
\[\quad + \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h 1 - \frac{1}{s_1 + pa - 1} + 1\right) \chi_c. \]

In the case we are considering, (3) implies that both \(\Lambda_l, \Lambda_h \) are smaller than -1. Using this, one can show that all the coefficients in the representation of \(f_l \) and \(f_h \) are negative for sufficiently small \(a \). For example, let us consider the coefficient of \(\chi_1 \) in \(f_h \):
\[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)}\Lambda_h + 1 = \frac{\kappa}{1 - (\kappa + \eta)} + 1 = \frac{1 - \eta}{1 - (\kappa + \eta)} < 0. \]
3.3.2. Normalizations and integrals if \(\frac{s_1}{s_2} + \frac{1}{s_2} = 1 \). Let us define \(J_1 = [0, W^{k_1}(1/2)] \), \(J_2 = [W^{k_1}(1/2), 1/2 + ra] \), \(J_3 = (1/2 + ra, 1] \). We will calculate integrals of \(f_h \) over each of these intervals \(J_1 \), \(J_2 \) and \(J_3 \), and use them to normalize \(f_h \). We have

\[
C_1 = \int_{J_1} f_h \, d\lambda = \int_{J_1} \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right] \chi_1 \, d\lambda
\]

\[
= \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right] W^{k_1}(1/2) = \left[\frac{\kappa}{1 - (\kappa + \eta)} + 1 \right] W^{k_1}(1/2)
\]

\[
= \left[\frac{a(2qs_1s_2 + ps^2 - 2qs_2 - p - q)}{(1 - (\kappa + \eta))(s_2 + qa)^2(s_1 + pa - 1)} \right] W^{k_1}(1/2).
\]

Using Lemma 3, we obtain

\[
\lim_{a \to 0} \frac{C_1}{a} = - \frac{2qs_1s_2 + ps^2 - 2qs_2 - p - q}{2s_2(s_1 - 1)} = - \frac{2qs_1 + ps^2 - p - q}{2s_2s_1}.
\]

In the same way, we can see that for any \(0 < \theta < 1/2 \), we obtain

\[
\lim_{a \to 0} \frac{1}{a} \int_0^\theta f_h d\lambda = - \frac{2qs_1 + ps^2 - p - q}{s_2s_1} \theta.
\]

On the interval \(J_2 \), the integral of \(f_h \) is:

\[
C_2 = \int_{J_2} f_h \, d\lambda = \int_{J_2} \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right] \chi_1 \, d\lambda
\]

\[
+ \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \sum_{j=2}^{k_1} \int_{J_2} \frac{\chi_j}{(s_1 + a)^{j-1}} \, d\lambda
\]

\[
= \left[1 - \frac{\eta}{1 - (\kappa + \eta)} \right] \left(\frac{1}{2} + ra - W^{k_1}(1/2) \right)
\]

\[
+ \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \left[\frac{ra(s_2 + qa)}{s_1 + pa} + \frac{ra(1 - \frac{1}{(s_1 + pa)^{k_1 - 1}})}{(s_1 + pa - 1)^2} \right]
\]

\[
+ \frac{a^2(k_1 - 2)}{s_1 + pa - 1} r(qs_1 + ps_2 - p - q) + rpqa.
\]

Using Lemma 3, we obtain

\[
\lim_{a \to 0} \frac{C_2}{a} = - \frac{s_1 + s_2}{s_2} \left[\frac{rs_2}{s_1} + \frac{r}{(s_1 - 1)^2} \right] = -rs_2.
\]

On the interval \(J_3 \), the integral of \(f_h \) is:

\[
C_3 = \int_{J_3} f_h \, d\lambda = \int_{J_3} \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \left[1 - \frac{1}{(s_1 + pa)^{k_1 - 1}} \right] \chi_c \, d\lambda
\]

\[
= \left[\left(1 - \frac{1}{(s_1 + pa)^{k_1 - 1}} \right) \left[\frac{\eta}{1 - (\kappa + \eta)} + 1 \right] \left(\frac{1}{2} - ra \right) \right]
\]

\[
= \left[\frac{a(qs_1 + ps_2 - p - q) + qa}{(s_1 + pa)(s_2 + qa)} \right] \left(\frac{1}{1 - (\kappa + \eta)} \left(\frac{1}{2} - ra \right) \right).
\]
Lemma 4. For the family of weakly to the measure

\[\lim_{a \to 0} \frac{C_3}{a} = \frac{qs_1 + ps_2 - p - q}{2s_1s_2}. \]

In the same way, we can see that for any \(0 < \theta < 1/2 \), we obtain

\[\lim_{a \to 0} \frac{1}{a} \int_{1/2+\theta}^1 f_h d\lambda = \frac{qs_1 + ps_2 - p - q}{s_1s_2} \left(\frac{1}{2} - \theta \right). \]

If we define \(B = C_1 + C_2 + C_3 \), then \(\frac{B}{a} \) is a normalized density. We see that

\[\lim_{a \to 0} \frac{B}{a} = \frac{(qs_1 + ps_2 - p - q)(s_2 + 2) + 2rs_1s_2^2}{2s_1s_2}. \]

Our calculations show that the normalized measures \(\{(f_h/B) \cdot \lambda\} \) converge \(*\)-weakly to the measure

\[\frac{(qs_1 + ps_2 - p - q)(s_2 + 2) + 2rs_1s_2^2}{(qs_1 + ps_2 - p - q)(s_2 + 2) + 2rs_1s_2^2}s_1s_2^2 \delta_{\frac{1}{2}}. \]

Now, we will show the same holds for the normalized measure defined by \(f_1 \). To this end, let us notice that

\[f_h - f_1 = (1 + \frac{s_1 + pa}{s_2 + qa})\Lambda_h g_1 - (1 + \frac{s_1 + pa}{s_2 + qa})\Lambda_l g_h \]

\[= (1 + \frac{s_1 + pa}{s_2 + qa})(\Lambda_h - \Lambda_l)g_1 - \Lambda_l (s_2 + qa)(s_1 + pa - 1)(s_1 + pa)^{k_1-1} \]

\[= (1 + \frac{s_1 + pa}{s_2 + qa})\left[1 - (\kappa + \eta)(1 - (\kappa + \eta)(1 - \frac{1}{(s_1 + pa)^{k_1-1}})) \right] g_1 \]

\[- \Lambda_l (s_2 + qa)(s_1 + pa - 1)(s_1 + pa)^{k_1-1}, \]

where \(|g_1| \leq \frac{2}{s_1} \) and \(\lim_{a \to 0} \Lambda_l = -1 \). Using Lemma 3 once again, we can show that for any subinterval \(J \subset [0,1] \), we have

\[\lim_{a \to 0} \frac{1}{a} \int_J (f_h - f_1) d\lambda = 0. \]

For \(J = [0,1] \) this means that the normalizations of \(f_1 \) and \(f_h \) are asymptotically the same. With this, the limit for a general \(J \) means in particular that the \(*\)-weak limit of normalized measures defined using \(f_1 \) is the same as for those defined using \(f_h \). In view of inequality (7), this proves Theorem (II).

3.3.3. Estimates on \(f_a \) if \(\frac{1}{s_1} + \frac{1}{s_2} < 1 \). We have the following lemma:

Lemma 4. For the family of \(W_a \) maps, if \(\frac{1}{s_1} + \frac{1}{s_2} < 1 \), we have

(I) \(W_a(1/2) = 1/2 + ra \), \(W_a^2(1/2) = -ra(s_2 + qa) + 1/2 + ra \), and for \(3 \leq m \leq k \), we have \(W_a^m(1/2) = -a(s_1 + pa)^{m-2}[s_1s_2 - s_1s_2 + a(qs_1 + ps_2 - p - q)] + a^{m-1} + pa - 2ra \); \(\lambda \)

(II) \(\lim_{a \to 0} a_k = 0 \); \(\lambda \)

(III) \(\lim_{a \to 0} a(s_1 + pa)^{k_1} = 0 \);

(IV) \(\lim_{a \to 0} W_a^{k_1}(\frac{1}{2}) = \frac{1}{4} \).
Proof. Suppose (I) is true. Let us first prove that (II) and (III) are true.
By the definition of \(k \), we have:

\[
0 \leq -a(s_1 + pa)^{k-2} \frac{r[s_1s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)]}{s_1 + pa - 1} + \frac{s_1 - 1 + pa - 2ra}{2(s_1 + pa - 1)}.
\] (8)

The inequality (8) implies \(a(s_1 + pa)^{k-2} \leq \frac{r[s_1s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)]}{2r[s_1s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)]}, \) thus

\[
ak \leq a \frac{\ln(s_1 - 1 + pa - 2ra) - \ln 2 + 2 \ln(s_1 + pa) - \ln r - \ln a}{\ln(s_1 + pa)} - a \frac{\ln(2r[s_1s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)])}{\ln(s_1 + pa)},
\]

\[
a(s_1 + pa)^{k_1} \leq \frac{(s_1 - 1 + pa - 2ra)(s_1 + pa)^2}{2r[s_1s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)](s_1 + pa)^{k - k_1}},
\]

and since \(\lim_{a \to 0} a \ln a = 0 \), we obtain (II) and (III). (IV) follows from (III).

Now, let us prove (I).

The fixed point slightly less than 1/2 is \(x'_i = \frac{s_1 - 1 + pa - 2ra}{2(s_1 - 1 + pa)} \), and

\[
x'_i - W^2_a(1/2) = \frac{ra[s_1s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)]}{s_1 - 1 + pa} > 0,
\]

which implies that \(W^m_a(1/2) \) are all in the domain of the second branch of \(W_a \) for \(3 \leq m \leq k \). Now, (I) follows by the same reasoning as in Lemma 4. \(\square \)

Lemma 5. If the normalized densities \(\{h_a\}_{a < a_0} \), for some \(a_0 > 0 \), are uniformly bounded, then \(h_a \to h_0 \) in \(L^1 \).

Proof. The uniform boundedness implies \(\{h_a\}_{a < a_0} \) is a weakly precompact set in \(L^1 \). Thus, any limit of \(\{h_a\}_{a < a_0} \) is an invariant density by Proposition 11.3.1 [2]. At the same time, this limit is an \(L^1 \) function, thus defines an absolutely continuous invariant measure. Since the map \(W_0 \) is exact and has only one acim, we conclude that \(h_a \to h_0 \) in \(L^1 \). \(\square \)

Now, we will prove Theorem 2.

The main idea of the proof is the following: since non-normalized densities \(\{f_a\} \) are uniformly bounded (formulas (9), (10), (11)), it is enough to show that \(\{f^i_0 f_a d\lambda\} \) are uniformly separated from zero.

For small \(a \), by Lemma 2 \(\Lambda \) (and then both \(\Lambda_f \) and \(\Lambda_h \)) can be either positive or negative. Thus, we can have the following cases.

Case (i): \(\Lambda_l < 0 \):

Comparing with (1) and (3), we see that for the functions \(\hat{f}_l = 1 + (1 + \frac{s_1 + pa}{s_2 + qa})\Lambda_l g_l \) and \(\hat{f}_h = 1 + (1 + \frac{s_1 + pa}{s_2 + qa})\Lambda_h g_l \), we have

\[
\hat{f}_l \leq f_a \leq \hat{f}_h.
\] (9)

Note that \(\hat{f}_l \) and \(\hat{f}_h \) have the same form as \(f_l \) and \(f_h \) in Section 3.3.1 so their representations as combinations of functions \(\chi_j, j = 1, \ldots, k_1 \) and \(\chi_c \) are similar to
that of \(f_1 \) and \(f_h \). At the same time, now we have \(\frac{1}{s_1} + \frac{1}{s_2} < 1 \), so the representation is as follows:

\[
\hat{f}_1 = \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_1 + 1 \right) \chi_1 + \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_1 \sum_{j=2}^{k_1} \frac{\chi_j}{(s_1 + pa)^{j-1}}
\]

\[
+ \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_1 \frac{1 - \frac{1}{(s_1 + pa)^{j+1}}}{s_1 + pa - 1} + 1 \right) \chi_c
\]

\[
+ \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa - 1)(s_1 + pa)^{k_1-1}}
\]

\[
\hat{f}_h = \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right) \chi_1 + \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \sum_{j=2}^{k_1} \frac{\chi_j}{(s_1 + pa)^{j-1}}
\]

\[
+ \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \frac{1 - \frac{1}{(s_1 + pa)^{j+1}}}{s_1 + pa - 1} + 1 \right) \chi_c.
\]

(3) implies that all the coefficients in the representation of \(\hat{f}_1 \) and \(\hat{f}_h \) are negative for sufficiently small \(a \).

We use the same notations \(J_1, J_2 \) and \(J_3 \) as in Section 3.3.2. First, we do the calculations assuming that \(\vartheta = 1 - \left(\frac{s_1 + s_2}{s_1 s_2} + \frac{s_1 + s_2}{s_2^2(s_1 - 1)} \right) \neq 0 \).

We will calculate the integrals of \(\hat{f}_h \) over each of \(J_1, J_2 \) and \(J_3 \), and use them to normalize \(\hat{f}_h \). We have

\[
\hat{C}_1 = \int_{J_1} \hat{f}_h \, d\lambda = \int_{J_1} \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right] \chi_1 \, d\lambda
\]

\[
= \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right] W^{k_1} \left(\frac{1}{2} \right) \frac{\chi}{1 - (\kappa + \eta) + 1} \left[\frac{k}{1 - (\kappa + \eta) + 1} \right] W^{k_1} \left(\frac{1}{2} \right)
\]

\[
= \left[\frac{s_1 s_2 - s_1 - s_2 - s_2^2}{1 - (\kappa + \eta)(s_2 + qa)^2(s_1 + pa - 1)} + a(2qs_1s_2 + ps^2_2 - 2qs_2 - p - q) + \frac{2pqs_2 - q^2 + q^2 s_1 + pq^2 a^2}{1 - (\kappa + \eta)(s_2 + qa)^2(s_1 + pa - 1)} \right] W^{k_1} \left(\frac{1}{2} \right)
\]

Using Lemma 3.1 we have

\[
\lim_{a \to 0} \hat{C}_1 = \left[\frac{1}{2} \left(\frac{s_1 s_2 - s_1 - s_2 - s_2^2}{s_2^2(s_1 - 1)} \right) \right] = \left[\frac{1}{2} \left(\frac{1 - s_1 + s_2}{s_2^2(s_1 - 1)} \right) \right]
\]

On the interval \(J_2 \), the integral of \(\hat{f}_h \) is:

\[
\hat{C}_2 = \int_{J_2} \hat{f}_h \, d\lambda = \int_{J_2} \left[\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} \Lambda_h + 1 \right] \chi_1 \, d\lambda
\]

\[
+ \frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda_h \sum_{j=2}^{k_1} \int_{J_2} \frac{\chi_j}{(s_1 + pa)^{j-1}} \, d\lambda
\]
Using Lemma 4 once again, we have
\[
\frac{1}{1 - (\kappa + \eta)} \left(\frac{1}{2} + ra - W_{\hat{a}}^{k_1} \left(\frac{1}{2} \right) \right)
\]
where
\[
s_1 + s_2 + pa + qa = \Lambda h \left[ra(s_2 + qa) + \frac{ra(1 - \frac{1}{(s_1 + pa)^{k_1 - 1}})}{s_1 + pa} \right]
\]
and
\[
a(k_1 - 2) r(s_1 s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa))
\]
\[
\frac{a(k_1 - 2) r(s_1 s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa))}{s_1 + pa - 1}.
\]
Using Lemma 4 we have \(\lim_{a \to 0} \hat{C}_2 = 0. \)

On the interval \(J_3 \), the integral of \(\hat{f}_h \) is:
\[
\hat{C}_3 = \int_{J_3} \hat{f}_h \, d\lambda = \int_{J_3} \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)^2} \Lambda h \frac{1 - \frac{1}{(s_1 + pa)^{k_1 - 1}}}{s_1 + pa - 1} + 1 \right) \chi_c \, d\lambda
\]
\[
= \left[\left(1 - \frac{1}{(s_1 + pa)^{k_1 - 1}} \right) \frac{s_1 s_2 - s_1 - s_2 + a(qs_1 + ps_2 - p - q + pqa)}{(s_1 + pa)(s_2 + qa)} \right] \frac{\eta}{(s_1 + pa)^{k_1 - 1} - 1} \frac{1}{1 - (\kappa + \eta)} \frac{1 - \frac{1}{(s_1 + pa)^{k_1 - 1}}}{s_1 + pa - 1} .
\]

Using Lemma 4 once again, we have
\[
\lim_{a \to 0} \hat{C}_3 = \frac{1}{2} \left(1 - \frac{\frac{s_1 + s_2}{s_1 s_2} + \frac{s_1 + s_2}{s_2 s_1}}{(s_1 + pa)^{k_1 - 1}} \right).
\]

Note that if we define \(\hat{B} = \hat{C}_1 + \hat{C}_2 + \hat{C}_3 \), then
\[
\lim_{a \to 0} \hat{B} = \frac{1}{2} \left(1 - \frac{\frac{s_1 + s_2}{s_1 s_2} + \frac{s_1 + s_2}{s_2 s_1}}{(s_1 + pa)^{k_1 - 1}} \right),
\]
which is not 0. Since \(\{ \hat{f}_h \} \) are uniformly bounded, we conclude that the normalized \(\{ \hat{f}_h \} \) are also uniformly bounded.

Now, we will show that the normalized \(\{ \hat{f}_i \} \) are also uniformly bounded. To this end, let us notice that
\[
\hat{f}_h - \hat{f}_i = (1 + \frac{s_1 + pa}{s_2 + qa}) \Lambda h g_l - (1 + \frac{s_1 + pa}{s_2 + qa}) \Lambda_l g_h
\]
\[
= (1 + \frac{s_1 + pa}{s_2 + qa}) (\Lambda h - \Lambda_l) g_l - \Lambda_l \left(\frac{s_2 + qa}{s_1 + pa} \right) (s_1 + pa - 1)(s_1 + pa)^{k_1 - 1}
\]
\[
= (1 + \frac{s_1 + pa}{s_2 + qa}) \left[\frac{1}{1 - (\kappa + \eta)} \left[1 - \frac{1}{(s_1 + pa)^{k_1 - 1}} \right] \right] g_l
\]
\[
\quad - \Lambda_l \left(\frac{s_2 + qa}{s_1 + pa} \right) (s_1 + pa - 1)(s_1 + pa)^{k_1 - 1},
\]
where \(|g_l| \leq \frac{1}{s_2(s_1 - 1)} \) and \(\lim_{a \to 0} \Lambda_l = \frac{1}{1 - \frac{\frac{s_1 + s_2}{s_1 s_2} + \frac{s_1 + s_2}{s_2 s_1}}{(s_1 + pa)^{k_1 - 1}}} \). Thus, \(\lim_{a \to 0} \hat{f}_h - \hat{f}_i = 0 \).

We conclude that the normalized \(\{ \hat{f}_i \} \) are uniformly bounded since the normalized \(\{ \hat{f}_h \} \) are uniformly bounded. Thus, after normalization, \(\{ f_a \} \) are also uniformly bounded.
Case (ii): $\Lambda_l > 0$

This case implies that f_a given by (4) has the following properties:

\[f_a \geq 1, \]

and all the coefficients of the characteristic functions appearing in (4) are positive. We note that Λ is always positive for small a. Thus,

\[f_a \leq 1 + (1 + \frac{s_1 + pa}{s_2 + qa})^2 \Lambda \sum_{n=1}^{\infty} \frac{1}{|\beta(1/2, n)|}, \]

which is finite since our maps $\{W_a\}$ are expanding. In view of (10), we conclude that the normalized $\{f_a\}$ are uniformly bounded.

If $\vartheta = 1 - \frac{s_1 + s_2}{s_1 s_2} + \frac{s_1 + s_2}{s_2(s_1 - 1)} = 0$, then we have $\lim_{a \to 0} \frac{1}{\Lambda_0} = \lim_{a \to 0} \frac{1}{\Lambda_0} = 0$, Λ_l and Λ_h are still of the same sign. We can renormalize f_a. Let us take the \hat{f}_h as an example. Multiplying it by $\frac{1}{\Lambda_h}$, we obtain

\[\frac{1}{\Lambda_h} \hat{f}_h = \left(\frac{s_1 + s_2 + pa + qa}{(s_2 + qa)(s_1 + pa)} + \frac{1}{\Lambda_h} \right) \chi_1 + \frac{1 - \frac{1}{(s_1 + pa)^2}}{s_1 + pa - 1} + \frac{1}{\Lambda_h} \chi_c. \]

Note that the coefficients of χ_1 and χ_c converge to $\frac{s_1 + s_2}{s_1 s_2}$ and $\frac{s_1 + s_2}{s_2(s_1 - 1)}$, respectively. Thus, $\{\int_0^1 \frac{1}{\Lambda_h} \hat{f}_h \, d\lambda\}$ are separated from 0. This implies $\{\frac{1}{\Lambda_h} \hat{f}_h\}$ are uniformly bounded. A similar procedure can be applied to \hat{f}_l. We conclude that $\{\frac{1}{\Lambda} f_a\}$ are uniformly bounded.

4. Example

One of the important properties of a piecewise expanding transformation of an interval is that its invariant density is bounded away from 0 on its support. The following result was proved, by Keller [11] and by Kowalski [12].

Theorem 3. Let a transformation $\tau : I \to I$ be piecewise expanding with $\frac{1}{|\tau'(x)|}$ a function of bounded variation, and let f be a τ-invariant density which can be assumed to be lower semicontinuous. Then there exists a constant $c > 0$ such that $f|_{\text{supp } f} > c$.

We provide an example showing that this result cannot be generalized to a family of expanding maps, even if they all have this property and converge to a limit map also with this property. Let $d(\cdot, \cdot)$ be the metric on the weak topology of measures.

Example 1. Let us fix

\[s_1 = s_2 = 2, \quad p = q = 1. \]

For small $a > 0$, let $W_{a,r}$ denote the W_a maps with varying parameter r, and let $\mu_{a,r}$ denote the absolutely continuous invariant measure of $W_{a,r}$. We know that $\mu_{a,r}$ is supported on $[0, 1]$ and $W_{a,r}$ with $\mu_{a,r}$ is exact. Using Theorem 7, we know that $\{\mu_{a,r}\}$ converge \ast-weakly to the measure

\[\mu_{0,r} = \frac{1}{1 + 2r} \mu_0 + \frac{2r}{1 + 2r} \delta_{\frac{1}{2}}. \]
Let \(r_n = n \), \(n = 1, 2, 3, \cdots \). Also, let \(\{a_n\}_{1}^{\infty} \) satisfy \(r_n a_n < 1/2 \) and be so small that
\[
d(\mu_{a_n,r_n}, \mu_{0,r_n}) < \frac{1}{n}.
\]
Now, for the family of maps \(\tau_n = W_{a_n,r_n}, n = 1, 2, 3, \cdots \), \(\tau_n \) converge to \(W_0 \) with \(|\tau_n'(x)| > 2 \), but the invariant densities \(\mu_{a_n,r_n} \) converge to \(\delta_{\frac{1}{2}} \). This implies that the invariant densities \(\{f_{a_n,r_n}\} \) corresponding to \(\{\mu_{a_n,r_n}\} \) have no uniform positive lower bound.

Acknowledgment: The author is grateful to Dr. P. Góra and Dr. A. Boyarsky, for inspiring the author and for help with this paper. He would also like to thank the members of the dynamical system seminars at Concordia University for helpful discussions.

References

[1] V. Baladi and D. Smania, *Alternative proofs of linear response for piecewise expanding unimodal maps*, Ergod. Th. & Dynam. Sys. 30 (2010), 1–20.

[2] A. Boyarsky and P. Góra, *Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension*, Probability and its Applications, Birkhäuser, Boston, MA, 1997.

[3] M. Dellnitz, G. Froyland, and S. Seerl, *On the isolated spectrum of the Perron-Frobenius operator*, Nonlinearity 13 (2000), 1171–1188.

[4] P. Eslami and M. Miszurwicz, *Singular limits of absolutely continuous invariant measures*, Jour. Differ. Equ. Appl. (2011), doi: 10.1080/10236198.2011.590480.

[5] P. Góra, *Invariant densities for piecewise linear maps of interval*, Ergod. Th. & Dynam. Sys. 29 (2009), 1549–1583.

[6] P. Góra, *On small stochastic perturbations of one-sided subshift of finite type*, Bull. Acad. Polon. Sci. 27 (1979), 47–51.

[7] P. Góra and A. Boyarsky, *Absolutely continuous invariant measures for piecewise expanding \(C^2 \) transformations in \(\mathbb{R}^N \)*, Israel Jour. Math. 67 (1989), 272–286.

[8] P. Góra and A. Boyarsky, *Approximating the invariant densities of transformations with infinitely many pieces on the interval*, Proc. Amer. Math. Sot. 105 (4) (1989), 922–928.

[9] G. Keller, *Stochastic stability in some chaotic dynamical systems*, Monatshfte fär Mathematik 94 (4) (1982), 313–333.

[10] G. Keller and C. Liverani., *Stability of the spectrum for transfer operators*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1) (1999), 141–152.

[11] G. Keller, *Piecewise monotonic transformations and exactness*, Seminar on Probability, Rennes 1978(French), Univ. Rennes, Rennes, 1978, pp. Exp. No. 6, 32.

[12] Z. S. Kowalski, *Invariant measures for piecewise monotonic transformation has a positive lower bound on its support*, Bull de L’Academie Polonaise des Sci, Series des sciences mathematiques, Vol XXVII No 1, 1979, 53-57

[13] Z. Li, P. Góra, A. Boyarsky, H. Proppe and P. Eslami, *A Family of Piecewise Expanding Maps having Singular Measure as a limit of ACIM’s*, accepted to Ergodic Theory and Dynamical Systems.

[14] R. Murray, Approximation of invariant measures for a class of maps with indifferent fixed points, University of Waikato, Mathematics Research Report Series II No. 106. (2005), http://www.math.canterbury.ac.nz/~r.murray/files/ulamifpnum.pdf

[15] C. G. Tokman, B. R. Hunt and P. Wright, *Approximating invariant densities of metastable systems*, Ergod. Th. & Dynam. Sys. 31 (2011), 1345–1361.

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada

E-mail address: zhenyangemail@gmail.com