Relative Coordinates Generality of Gradient Stability Zones and Force Factor between Hemispherical Polar Tips (in Faraday Magnetometer)

A A Sandulyak, M N Polismakova, D A Sandulyak, A V Sandulyak, D O Kiselev
Moscow Technological University, Moscow, Stromynka 20

E-mail: anna.sandulyak@mail.ru

Abstract. Coordinate dependencies of the field induction, its gradient, and the magnetic force factor in the region between hemispherical polar tips proposed for use (in the Faraday magnetometer) are given. Dependencies (and their functional form) are determined by the influence of the distance between the polar tips on the coordinates of the gradient extrema and the force factor, and also on the extreme values of these parameters: they are close to logarithmic and power-like ones, respectively. It has been shown that using hemispherical polar tips of one or another diameter, it is entirely possible to operate with more universal, namely relative (referred to the diameter or radius) values of the distance between the polar tips and coordinates of the gradient extremum or the force factor.

1. Introduction
To solve many technical and fundamental problems Faraday magnetometers of various types continue to stay in demand for a long time. In particular, they are magnetometers based on electromagnetic system use (a block consisting of magnetizing coils, cores and polar tips) [1-14], short (including superconducting) coils [15-23], permanent high-energy magnets (for example, Nd-Fe-B) [24,25].

As for the magnetometers of the first type (the most numerous), an original decision was made in [26-28] on the expediency of using hemispherical polar tips in the Faraday magnetometer. Such a solution is argued by the fact that the specially obtained coordinate (in the radial direction of the interpolar region symmetry plane) characteristic of induction \(B \) is tortuous. From a mathematical point of view, this guarantees obtaining an extreme coordinate characteristic of the induction gradient (practically identical with the partial derivative \(\frac{dB}{dx} \)), while in the vicinity of the \(x_{\text{extr}} \) extremum the \(\frac{dB}{dx} \) values are almost stable. The coordinate characteristic of the so-called [29] magnetic force factor \(B \frac{dB}{dx} \) - with the individual coordinate of the extremum \(x_{\text{extr}} \), whose vicinity values \(B \frac{dB}{dx} \) are almost stable, is also extreme.

The \(x_{\text{extr}} \) coordinates (which turned out to be independent of the current load \(I \) and dependent on the mutual removal of the hemispherical tips \(b \)) were obtained in [26-28] for the example of hemispherical tips with a diameter \(D = 100 \, \text{mm} \), which, as it is, indicates their particular character. Therefore, development of researches [26-28] with use hemispherical tips of other diameter is required. In this connection, a comparative analysis of the corresponding coordinates of the stability zones of the gradient and the force factor for different diameters of the hemispherical tips \(D \) is of scientific and practical interest. In this case, it is possible to determine the eligibility of operating with relative (as more universal) parameters \(b/D \) and \(x_{\text{extr}} / D \).
2. Research results and their analysis
With use of polar hemispherical tips \(D = 135 \text{mm} \) in diameter there are received and shown on the Figure 1 the coordinate dependencies of the field \(B \) induction in the region between the (alternatively, the dependencies for \(D = 100 \text{mm} \) in [26-28]) for their various mutual distances \(b \) - from 4.7 mm to 17.6 mm and different values of the winding supply current \(I \) is from 4A to 30A. It can be seen that each of the curves \(B \) has an inflection (in the neighborhood of which, as before [26-28], its section can be linearized), which indicates the presence of an extremum of the coordinate characteristic of the gradient \(dB/dx \) (figure 2), determined, as in [26-28], on the basis of the fourth degree polynomial with the corresponding coordinates of the extremum \(x_{extr} \) (table 1). There is also a corresponding extremum of one or another coordinate dependence of the magnetic force factor \(BdB/dx \) (figure 3) - with the corresponding values of the coordinates of the extremum \(x_{extr} \) (table 2).

It should be noted that, similarly to the results obtained earlier [26-28] (using hemispherical polar tips \(D = 100 \text{mm} \) in diameter), it is also characteristic here for hemispherical polar tips with a diameter \(D = 135 \text{mm} \) that the coordinate of the extremum \(x_{extr} \) of both the gradient and the force factor does not depend from the current load of the winding (figure 1-3, Table 1, 2).

![Figure 1](image1.png)

Figure 1. Coordinate characteristics of field induction between hemispherical polar tips, points - experiment, lines - calculation using a polynomial; a) \(b = 4.7 \text{mm} \), b) \(b = 8.1 \text{mm} \), c) \(b = 10.8 \text{mm} \), d) \(b = 13.5 \text{mm} \), e) \(b = 15.5 \text{mm} \), f) \(b = 17.6 \text{mm} \); 1 - \(I = 4 \text{A} \), 2 - \(I = 8 \text{A} \), 3 - \(I = 16 \text{A} \), 4 - \(I = 30 \text{A} \).

Table 1. The coordinates of the extrema of the dependencies shown in figure 2.

\(I, \text{A} \)	\(x_{extr}, \text{mm} \)				
\(b=4.7\text{mm} \)	\(b=8, \text{mm} \)	\(b=10.8\text{mm} \)	\(b=13.5\text{mm} \)	\(b=15, \text{mm} \)	\(b=17, \text{mm} \)
Figure 2. The coordinate characteristics of the gradient field obtained from the data in figure 1.

Table 2. The coordinates of the extrema of the dependencies shown in figure 3.

I, A	x_{extr}, mm
4	8.559
8	8.458
16	8.458
30	8.391
4	11.05
8	11.01
16	11.16
30	11.10
4	12.77
8	12.18
16	12.11
30	12.07
4	14.00
8	14.57
16	14.56
30	15.43
4	16.91
8	15.42
16	15.38
30	15.07
4	18.17
8	16.15
16	16.37
30	16.63
4	18.39
8	16.83
16	16.83
30	16.83

I, A	x_{extr}, mm	$\frac{dB}{dx}$, mT/mm
4	8.559	11.05
8	8.458	11.01
16	8.458	11.16
30	8.391	11.10
4	12.77	14.00
8	12.18	14.57
16	12.11	14.56
30	12.07	15.43
4	16.91	18.17
8	15.42	16.15
16	15.38	16.37
30	15.07	16.63
Figure 3. The coordinate characteristics of the magnetic field force factor obtained from the data in figure 1 and figure 2.

As for the influence on x_{extr} of the mutual removal b of the hemispherical tips, then, for greater values x_{extr} (in comparison with the values of x_{extr} for $D = 100$mm [26-28]), figure 4, the realizable data generalization in relative coordinates is noticeable: x_{extr}/D from b/D (figure 5). This testifies to the universality of the obtained results on the identification of the stability zones (gradient and force factor) in the case of using polar tips of just such a (spherical) shape.

Figure 4. Influence of mutual removal of hemispherical polar tips ($D = 135$mm) on: a) the coordinate of the induction gradient extremum (the conditional center of its stability zone), b) coordinate of the extremum of the magnetic force factor (the conditional center of its stability zone).
Figure 5. Influence of mutual removal of hemispherical polar tips on: a) relative coordinate of the induction gradient, b) the relative the coordinate of the extremum of the magnetic force factor; ○ - $D = 100\text{mm}$ (data [26]), ● - $D = 135\text{mm}$; In semilogarithmic coordinates, the data are quasilinearizable, so that indicates their logarithmic form.

Of course, what has been said fully applies to the size of the zones themselves, i.e. $\Delta x, \Delta y$ and Δz, the more universal representation of which is in relative form: $\Delta x/D, \Delta y/D$ and $\Delta z/D$ (see data in figures 1-3 in comparison with the data [26-28]). Thus, for example, if the dimensions of the zones described below are about $5x5x5\text{mm}$ for hemispherical polar tips of diameter $D = 100\text{mm}$, then these dimensions are almost 1.35 times larger, in practice, for hemispherical polar tips of diameter $D = 135\text{mm}$ approximately $7x7x7\text{mm}$.

We also note that, judging by the quasilinearization of the x_{ind}/D data from b/D in semilogarithmic coordinates (figure 5), in the selected b/D range they correspond to the logarithmic function. In this case, the extremes of the force factor are located 30-40% closer to the axial line of the poles than for the gradient. In addition, for polar tips of hemispheres of a different diameter (in this case, $D = 135\text{mm}$), as before [26-28] ($D = 100\text{mm}$), the dependence of the induction gradient abscissas is practically the same (figure 6a, exponent: -1, 3) and the force factor (figure 6b, exponent: -2.2) from the mutual removal of hemispherical polar tips.
Figure 6. Illustration of the power-law dependence of the induction gradient (a) and magnetic force factor (b) from the mutual removal of hemispherical polar tips (after the quasi-linearization of these data in logarithmic coordinates); 1 - I = 4A, 2 - I = 8A, 3 - I = 16A, 4 - I = 30A.

3. Conclusion
The families of the coordinate characteristics B, dB/dx, dB/dx are obtained and analytically analyzed, depending on the basic parameters of the unit functioning responsible for creating a non-uniform field in the Faraday magnetometer: current load I, mutual removal b between the hemispherical tips proposed for use, their diameter D. The x_{extr} extremum coordinates for the parameters dB/dx and dB/dx are found and compared (including on the basis of the calculated dependence obtained). It is shown that for each of the values of b, the x_{extr} data for both the gradient and the force factor remain practically unchanged irrespective of I, while the extrema of the force factor are 30-40% closer to the axial line of the poles than to the gradient. The dependencies (and their functional form) are determined by the influence of b on the x_{extr} values for dB/dx and dB/dx, and on the extreme values of these parameters; they turned out to be close to the logarithmic and power-law dependencies, respectively. It is shown that using hemispherical polar tips it is quite possible to operate with more universal ones, namely the relative parameters b/D and x_{extr}/D.

References
[1] Garber M, Henry W G and Hoeve H G A magnetic susceptibility balance and the temperature dependence of the magnetic susceptibility of copper, silver, and gold, 295° - 975° K 1960 Can J Phys 38 1595-1613.
[2] Klaase JCP The Faraday balance, Van der Waals- Zeeman Institute, November 1999, URL: http://www.science.uva.nl/research/cmp/klaasse/fdb.html, as of December 2014.
[3] Quinn R K and Knauer R C Low temperature Faraday susceptibility apparatus 1972 Rev Sci Instrum 43 1543-1544.
[4] Petersson L and Ehrenberg A Highly sensitive Faraday balance for magnetic susceptibility studies of dilute protein solutions 1985 Rev Sci Instrum 56 575-580.
[5] Lewis R T A Faraday type magnetometer with an adjustable field independent gradient. Review of Scientific Instruments 1971 Rev Sci Instrum 42 31-34.
[6] Schäfer H L, Morrow J C and Smith H M Magnetic susceptibility and crystal structure of
(Pyridine N-Oxide)-Copper(II) Chloride 1965 J Chem Phys 42 504-508.
[7] Gruber J B and Hecht H G Low temperature magnetic susceptibility of UCl₄ 1974 J Chem Phys 60 1352-1354.
[8] Gopalakrishnan R, Barathan S, Govindarajan D Magnetic susceptibility measurements on fly ash admixed cement hydrated with groundwater and seawater 2012 AmerJMaterials Science 2(1) 32-36.
[9] Hensig G R and McClelland J D Magnetic susceptibility and free energy of graphite bromide 1955 J Chem Phys 23 1431-1435.
[10] Heyding R D, Taylor J B and Hair M L Four-inch shaped pole caps for susceptibility measurements by the Curie method 1961 Rev Sci Instrum 32 161-163.
[11] Hosu B G, Jakab K, Bánki P, Tóth F I and Forgacs G Magnetic tweezers for intracellular applications 2003 Rev Sci Instrum 74 4158-4163.
[12] Marcon P, Ostanina K March 27-30, 2012 PIERS Proceedings, Malaysia, Kuala Lumpur 420–424.
[13] Govindarajan D and Gopalakrishnan R Magnetic susceptibility measurements on metakaolin admixed cement hydrated with ground water and sea water 2009 International Journal of Minerals, Metallurgy and Materials 16 349-354.
[14] Burmester W L and Sellmyer D J Are VPD₃ and NbPd₃ itinerant ferromagnets? 1982 J Appl Phys 53 2024-2026.
[15] Zhang C P, Chaud X, Beaugn E and Zhou L Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ 2015 Physica C 508 25-30.
[16] Seidov Z, H.-A. Krug von Nida, Hemberger J, Loidl A, Sultanov G, Kerimova E and Panfilov A Magnetic susceptibility and ESR study of the covalent-chain antiferromagnets TlFeSe₂ and TlFeSe₂ Physical Review B. 65 p 014433.
[17] Slobinsky D, Borzi R, Mackenzie A, Grigera F S Fast sweep-rate plastic Faraday force magnetometer in simultaneous sample temperature measurement. 2012 ARevSciInstrum 83 125104.
[18] Mexner W and Heinemann K An improved method for relaxation measurements using a Faraday balance 1993 Rev Sci Instrum 64 (11) 3336-3337.
[19] Blach T P, E MacA Gray A Faraday magnetometer for studying interstitially modified ferromagnets 1994 Meas Sci Technol 5 1221-1225.
[20] Reutzel S and Herlach D M Measuring magnetic susceptibility of undercooled co-based alloys with a Faraday balance 2001 Adv Eng Mat 3 65–67.
[21] Srinivasan R and Usha S Auxiliary coils for generating magnetic field gradients for a Faraday magnetometer 1986 J Physics E: Sci Instrum 19 930–932.
[22] Stewart A M The superconducting Faraday magnetometer: error forces and lateral stability 1975 J Physics E: Sci Instrum 8 55–59.
[23] Cape J A and Young R A Canted Helmholtz coils for constant-gradient Faraday balance magnetometry 1971 Rev Sci Instrum 42 1061–1063.
[24] Riminiucci A, Ulharz M, R De Santis and Herrmannsdörfer T Analytical balance-based Faraday magnetometer 2017 J Appl Phys 121 094701.
[25] Finot E., Thundat T., Lesniewska E., Goudenot J P Measuring magnetic susceptibilities of nanomaterial quantities of materials using microcantilevers 2001 Ultramicroscopy 86 175–180.
[26] Sandulyak A V, Sandulyak A A, Polismakova M, Ershova V, Sandulyak D, Kiselev D On the issue of choosing the measuring zones in a Faraday balance when studying magnetic susceptibility of small samples 2016 Applied Physics, System Science and Computers 77-83.
[27] Sandulyak A V, Sandulyak A A, Polismakova M N, Kiselev D O, Sandulyak D A, Ershova V A The working zone in the interpolar area of the Faraday balance: an approach to testing the magnetic force factor stability criterion 2017 MATEC Web of Conferences.
[28] Sandulyak A A, Sandulyak A V, Polismakova M N, Kiselev D O, Sandulyak D A An approach for choosing positioning of small volume sample at instantiation ponderomotive Faraday method in determining its magnetic susceptibility 2017 Russian Technological Journal No. 2 57–69.
[29] A. V. Sandulyak Purification of liquids in magnetic field Lvov: High School 1984 p 167.
Acknowledgments
The research is conducted with financial support from RFFI within the frameworks of research project № 16-38-60034 mol_a_dk and from Russian Federation Ministry of Education and Science №9.9626.2017.