The complete chloroplast genome of the Chinese medicinal herb *Senecio scandens*

Shuning Zheng, Qirui Wang, Chenshu Gao, Yuqing Ge and Rubin Cheng

College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

ABSTRACT

Senecio scandens Buch.-Ham. is a crucial source of Chinese traditional medicine with antibacterial properties. In this study, we report the complete chloroplast genome sequence of *S. scandens*. The assembled chloroplast genome was 150,729 bp in length, containing two inverted repeated (IR) regions of 24,455 bp each, a large single-copy (LSC) region of 83,984 bp and a small single-copy (SSC) region of 17,835 bp. The genome encodes 133 genes consisting of 89 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The overall GC content of *S. scandens* is 37.4%, with the highest GC content of 43% in the IR region. A total of 38 simple sequence repeats are identified in the cp genome of *S. scandens*. Phylogenetic analysis demonstrated a sister relationship between *S. scandens* and *Pericallis hybrida*, indicating further revisions for the genus *Senecio*. This work provides basic genetic resources for investigating the evolutionary status and population genetics diversities for this medicinal species.

Senecio scandens Buch.-Ham. is a medicinal plant from family Asteraceae, which has been recorded as Senecios Scandentis Herba (Qianliguang) in Chinese Pharmacopeia. It has a climbing woody stem and usually grows on hills, mountains, woods and roadsides. *Senecio scandens* is widely used as an ingredient to produce hundreds of medicinal plantal preparations with various activities (Wang et al. 2013). Because of similar morphological characteristics, several species are easily confused with *S. scandens*. However, significant differences were found on the chemical markers even between the two species from the genus *Senecio* (Xiong et al. 2014). It is necessary to develop an effective molecular identification strategy for *S. scandens* to ensure the safety of clinical application. The aim of this study was to analyze the chloroplast genome sequence of *S. scandens*, which could provide essential information for molecular marker development and analysis of phylogenetic status of this species.

The sample of *S. scandens* was collected from Fuyang area of Zhejiang Province (30°05′2.4″N, 119°53′20.4″E) and deposited in the collection center of Zhejiang Chinese Medical University with the specific number of QLG-1919. Total genomic DNA was extracted and sequenced using the Illumina Hiseq Platform according to the previous report (Ying et al. 2019; Wang et al. 2020). The chloroplast genome of *S. scandens* was assembled by metaSPAdes with the chloroplast sequence of *Dendrosenecio brassiciformis* as reference (Nurk et al. 2017). The chloroplast was annotated using GeSqe and further confirmed by BLAST (Tillich et al. 2017). The complete cp genome of *S. scandens* was submitted to GenBank with the accession number of MT178410.

The length of the complete chloroplast genome sequence of *S. scandens* was 150,729 bp, with a large single-copy (LSC) region of 83,984 bp, a small single-copy (SSC) region of 17,835 bp, and two separated inverted repeated (IR) regions of 24,455 bp each. A total of 133 genes were identified in the cp of *S. scandens*, including 89 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The overall GC content was 37.4%, and the corresponding contents for LSC, SSC, and IR regions were 35.5%, 30.9% and 43%, respectively. The genome included 17 duplicated genes in the IR region and exhibited 52.48% protein-coding sequences. Moreover, a total of 38 small single repeats (SSR) are identified in the cp of *S. scandens*, ranging from 10 bp to 21 bp.

The complete genome sequences of *S. scandens* and other 14 representative species from the family Asteraceae were analyzed using MEGA 7.0 by maximum-likelihood (ML) method to confirm its phylogenetic position (Kumar et al. 2016). The result demonstrated that *S. scandens* clustered together with *Pericallis hybrida* and combined to form the clade II, indicating a close genetic relationship between the two species (Figure 1). In addition, the six species from genus *Senecio* did not cluster together to form a monophyletic group, but was divided into three groups, providing molecular evidences for further revisions on genus *Senecio* (Figure 1). Our results would contribute the development of...
molecular markers and further investigation on the population genetics and phylogenetics of the genus *Senecio*.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported by the Opening Project of Zhejiang Provincial Preponderant and Characteristic Subject of Key University (Traditional Chinese Pharmacology), Zhejiang Chinese Medical University [No. ZYAOX2018033] and Project of Quality Guarantee System of Chinese Herbal Medicines [Grant No. 201507002-4].

References

Kumar S, Stecher G, Tamura K. 2016. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7): 1870–1874.

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27(5):824–834.

Tillich M, Lehward P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq – versatile and accurate annotation of organ-elle genomes. Nucleic Acids Res. 45(W1):W6–W11.

Wang Q, Yu S, Gao C, Ge Y, Cheng R. 2020. The complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant *Rubus chinig* Hu. Mitochondrial DNA Part B. 5(2):1307–1308.

Xiong A, Fang L, Yang X, Yang F, Qi M, Kang H, Yang L, Tsim KW, Wang Z. 2014. An application of target profiling analyses in the hepatotoxicity assessment of herbal medicines: comparative characteristic fingerprint and bile acid profiling of *Senecio vulgaris* L. and *Senecio scandens* Buch.-Ham. Anal Bioanal Chem. 406(29):7715–7727.

Ying Z, Wang Q, Yu S, Liao G, Ge Y, Cheng R. 2019. The complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant *Lysimachia hemsleyana*. Mitochondrial DNA B. 4(2):3878–3879.