ON THE DERIVATIVES OF THE LEMPERT FUNCTIONS

NIKOLAI NIKOLOV AND PETER PFLUG

Abstract. We show that if the Kobayashi–Royden metric of a complex manifold is continuous and positive at a given point and any non-zero tangent vector, then the “derivatives” of the higher order Lempert functions exist and equal the respective Kobayashi metrics at the point. It is a generalization of a result by M. Kobayashi for taut manifolds.

1. Introduction and results

Let $\mathbb{D} \subset \mathbb{C}$ be the unit disc. Let M be an n-dimensional complex manifold. Recall first the definitions of the Lempert function k_M and the Kobayashi–Royden pseudometric κ_M of M:

$$k_M^*(z, w) = \inf \{ |\alpha| : \exists f \in \mathcal{O}(\mathbb{D}, M) : f(0) = z, f(\alpha) = w \},$$

$$\kappa_M = \tanh^{-1} k_M^*,$$

$$\kappa_M(z; X) = \inf \{ |\alpha| : \exists f \in \mathcal{O}(\mathbb{D}, M) : f(0) = z, \alpha f^*(d/d\zeta) = X \},$$

where X is a complex tangent vector to M at z. Note that such an f always exists (cf. [12]; according to [2], page 49, this was already known by J. Globevnik).

The Kobayashi pseudodistance k_M can be defined as the largest pseudodistance bounded by κ_M. Note that if $k_M^{(m)}$ denotes the m-th Lempert function of M, $m \in \mathbb{N}$, that is,

$$k_M^{(m)}(z, w) = \inf \left\{ \sum_{j=1}^{m} k_M(z_{j-1}, z_j) : z_0, \ldots, z_m \in M, z_0 = z, z_m = w \right\},$$

then

$$k_M(z, w) = k_M^{(\infty)} := \inf_m k_M^{(m)}(z, w).$$

2000 Mathematics Subject Classification. 32F45.

Key words and phrases. Lempert functions, Kobayashi pseudodistance, Kobayashi–Royden pseudometric, Kobayashi–Buseman pseudometric.

This note was written during the stay of the first named author at the Universität Oldenburg supported by a grant from the DFG, Az. PF 227/8-2 (November – December 2006). He likes to thank both institutions for their support.
By a result of M.-Y. Pang (see [9]), the Kobayashi–Royden metric is the ”derivative” of the Lempert function for taut domains in \(\mathbb{C}^n \); more precisely, if \(D \subset \mathbb{C}^n \) is a taut domain, then
\[
\kappa_D(z;X) = \lim_{t \to 0} \frac{\kappa_D(z, z + tX)}{t}.
\]

In [6], S. Kobayashi introduces a new invariant pseudometric, called the Kobayashi–Buseman pseudometric \(\hat{\kappa}_M \) of \(M \) is just to set \(\hat{\kappa}_M(z;\cdot) \) to be largest pseudonorm bounded by \(\kappa_M(z;\cdot) \). Recall that
\[
\hat{\kappa}_M(z;X) = \inf\{\sum_{j=1}^m \kappa_M(z;X_j) : m \in \mathbb{N}, \sum_{j=1}^m X_j = X\}.
\]

Thus it is natural to consider the new function \(\kappa_M^{(m)}(z;X) \), \(m \in \mathbb{N} \), namely,
\[
\kappa_M^{(m)}(z;X) = \inf\{\sum_{j=1}^m \kappa_M(z;X_j) : \sum_{j=1}^m X_j = X\}.
\]

We call \(\kappa_M^{(m)} \) the \(m \)-th Kobayashi pseudometric of \(D \). It is clear that \(\kappa_M^{(m)} \geq \kappa_M^{(m+1)} \) and if \(\kappa_M^{(m)}(z;\cdot) = \kappa_M^{(m+1)}(z;\cdot) \) for some \(m \), then \(\kappa_M^{(m)}(z;\cdot) = \kappa_D^{(j)}(z;\cdot) \) for any \(j > m \). It is shown in [8] that \(\kappa_M^{(2n-1)} = \kappa_M^{(\infty)} := \hat{\kappa}_M \), and \(2n - 1 \) is the optimal number, in general.

We point out that all the introduced objects are upper semicontinuous. Recall that this is true for \(\kappa_M \) (cf. [7]). It remains to check this for \(\hat{\kappa}_M \). We shall use a standard reasoning. Fix \(r \in (0,1) \) and \(z, w \in M \). Let \(f \in \mathcal{O}(\mathbb{D},M) \), \(f(0) = z \) and \(f(\alpha) = w \). Then \(\tilde{f} = (f, \text{id}) : \Delta \to \tilde{M} = M \times \Delta \) is an embedding. Setting \(\tilde{f}_r(\zeta) = \tilde{f}(r\zeta) \), by [10], Lemma 3, we may find a Stein neighborhood \(S \subset M \) of \(\tilde{f}_r(\mathbb{D}) \). Embed \(S \) as a closed complex manifold in some \(\mathbb{C}^N \) and denote by \(\psi \) the respective embedding. Moreover, there is an open neighborhood \(V \subset M \) of \(\psi(S) \) and a holomorphic retraction \(\theta : V \to \psi(S) \). Then, for \(z' \) near \(z \) and \(w' \) near \(w \), we may find, as usual, \(g \in \mathcal{O}(\mathbb{D},V) \) such that \(g(0) = \psi(z',0) \) and \(g(\alpha/r) = \psi(w',\alpha) \). Denote by \(\pi \) the natural projection of \(\tilde{M} \) onto \(M \). Then \(h = \pi \circ \psi^{-1} \circ \theta \circ g \in \mathcal{O}(\mathbb{D},M) \), \(h(0) = z' \) and \(h(\alpha/r) = w' \). So \(r\hat{\kappa}_M^{(\alpha)}(z',w') \leq \alpha \), which implies that
\[
\limsup_{z' \to z, w' \to w} \frac{\hat{\kappa}_M(z',w')}{\alpha} \leq \hat{\kappa}_M(z,w).
\]

To extend Pang’s result on manifolds, we have to define the ”derivatives” of \(\kappa_M^{(m)} \), \(m \in \mathbb{N}^* = \mathbb{N} \cup \{\infty\} \). Let \((U, \varphi) \) be a holomorphic chart
near z. Set

$$D_k^{(m)}(z; X) = \limsup_{t \to 0, w \to z, Y \to \varphi \cdot X} |w|^{-1}(\varphi(w) + tY).$$

Note that this notion does not depend on the chart used in the definition and

$$D_k^{(m)}(z; \lambda X) = |\lambda|D_k^{(m)}(z; X), \quad \lambda \in \mathbb{C}.$$

Replacing \limsup by \liminf, we define $D_k^{(m)}$. From M. Kobayashi's paper [5] it follows that, if M is a taut manifold, then

$$\hat{\kappa}_M(z; X) = D_k^{(m)}(z; X) = D_k(z; X),$$

that is, the Kobayashi–Buseman metric is the "derivative" of the Kobayashi distance. The proof there also leads to

$$(*) \quad \kappa_M^{(m)}(z; X) = D_k^{(m)}(z; X) = D_k^{(m)}(z; X), \quad m \in \mathbb{N}^*.$$

We say that a complex manifold M is hyperbolic at z if $k_M(z, w) > 0$ for any $w \neq z$. We point out that the following conditions are equivalent:

(i) M is hyperbolic at z;

(ii) $\liminf_{z' \to z, w \in M \setminus U} \hat{\kappa}_M(z', w) > 0$ for any neighborhood U of z;

(iii) $\hat{\kappa}_M(z; X) := \liminf_{z' \to z, X' \to X} \kappa_M(z', X') > 0$ for any $X \neq 0$;

The implication (i) \Rightarrow (ii) \Rightarrow (iii) are almost trivial (cf. [4]) and the implication (iii) \Rightarrow (i) is a consequence of the fact that k_M is the integrated form of κ_M.

In particular, if M is hyperbolic at z, then it is hyperbolic at any z' near z.

Since if M is taut, then it is k-hyperbolic and κ_M is a continuous function, the following theorem is a generalization of $(*).$

Theorem 1. Let M be a complex manifold and $z \in M$.

(i) If M is hyperbolic at z and κ_M is continuous at (z, X), then

$$\kappa_M(z; X) = D_k(z; X) = D_k^{(m)}(z; X).$$

(ii) If κ_M is continuous and positive at (z, X) for any $X \neq 0$, then

$$\kappa_M^{(m)}(z; \cdot) = D_k^{(m)}(z; \cdot) = D_k^{(m)}(z; \cdot), \quad m \in \mathbb{N}^*.$$

The first step in the proof of Theorem 1 is the following

Proposition 2. For any complex manifold M one has that

$$\kappa_M^{(m)} \geq D_k^{(m)}, \quad m \in \mathbb{N}^*.$$
Note that when M is a domain, a weaker version of Proposition 2 can be found in [3], namely, $\hat{k}_M \geq \mathcal{D}k_M$ (the proof is based on the fact that $\mathcal{D}k_M(z; \cdot)$ is a pseudonorm).

2. Examples

The following examples show that the assumption on continuity in Theorem 1 is essential.

- Let A be a countable dense subset of \mathbb{C}, In $[1]$ (see also $[3]$), a pseudoconvex domain D in \mathbb{C}^2 is constructed such that:

 (a) $(\mathbb{C} \times \{0\}) \cup (A \times \mathbb{C}) \subset D$;

 (b) if $z_0 = (0, t) \in D$, $t \neq 0$, then $\kappa_D(z_0; X) \geq C\|X\|$ for some $C = C_t > 0$. (One can be shown that even $\mathcal{D}\hat{k}_D(z_0; X) \geq C\|X\|$).

Then it is easy to see that $\kappa_D(\cdot; e_2) = \mathcal{D}k_D(\cdot; e_2) = k_D^{(3)} = 0$ and $\hat{k}_D(z_0; X) \geq c\|X\|$, where $e_2 = (0, 1)$ and $c > 0$. Thus

$$\hat{k}_D(z_0; X) > \kappa_D(z_0; e_2) = \mathcal{D}k_D^{(3)}(z_0; e_2) = \mathcal{D}k_D^{(5)}(z_0; X), \quad X \neq 0.$$

This phenomena obviously extends to $\mathbb{C}^n, n \geq 2$ (by considering $D \times \mathbb{D}^{n-2}$). So the inequalities in Proposition 2 are strict in general.

- If D is a pseudoconvex balanced domain with Minkowski function h_D, then (cf. [3])

$$h_D = \kappa_D(0; \cdot) = \mathcal{D}\hat{k}_D(0; \cdot).$$

Therefore, $\mathcal{D}\hat{k}_D(0; X) > \mathcal{D}\hat{k}_D(0; X)$ if $\kappa_D(0; \cdot)$ is not continuous at X.

On the other hand, if D denotes the convex hull of D, then

$$h_D = \hat{k}_D(0; \cdot) = \mathcal{D}k_D(0; \cdot) = \mathcal{D}k_D(0; \cdot) = \hat{k}_D(0; \cdot).$$

- Modifying the first example leads to a pseudoconvex domain $D \subset \mathbb{C}^2$ with

$$L_{\mathcal{D}k_D}(\gamma) > 0 = L_{k_D}(\gamma) = L_{\mathcal{D}\hat{k}_D}(\gamma),$$

where $\gamma : [0, 1] \to \mathbb{C}^2$, $\gamma(t) := (ti/2, 1/2)$, and $L_\gamma(\gamma)$ denotes the respective length.

Indeed, choose a dense sequence (r_j) in $[0, i/2]$. Put

$$u(\lambda) = \sum_{k=1}^{\infty} \frac{1}{k^2} \log \frac{|\lambda-1/k|}{4}, \quad v(\lambda) = \sum_{j=1}^{\infty} \frac{u(\lambda/2 - r_j)}{2j^2}, \quad \lambda \in \mathbb{C},$$

and

$$D = \{ z \in \mathbb{C}^2 : \psi(z) = |z_2| e^{\|z\|^2 + v(z_1)} < 1 \}.$$

It is easy to see that v is a subharmonic function on \mathbb{C}. Hence D is a pseudoconvex domain with $(\mathbb{C} \times \{0\}) \cup (\bigcup_{j,k=1}^{\infty} \{ r_j + 1/k \} \times \mathbb{C}) \subset D$.

Observe that \(u|_{\mathbb{D}} < -1 \) and so \(D \) contains the unit ball \(\mathbb{B}_2 \). Note also that
\[
k_D(a, b) = 0, \quad a, b \in \gamma([0, 1]).
\]
Set \(\hat{\psi}(z) = \|z\|^2/2 - \log \psi(z) \). Fix \(z^0 \in \mathbb{B}_2 \) with \(\text{Re} z^0_1 \leq 0, \text{Im} z^0_2 \geq 1/e \).
Since \(u(\lambda) \geq u(0) \) for \(\text{Re} \lambda \leq 0 \), we have
\[
\|z^0\|^2/2 < \hat{\psi}(z^0) < 1 - u(0) =: 8C.
\]

Let \(\varphi \in \mathcal{O}(\mathbb{D}, D); \varphi(0) = z^0 \). Following the estimates in the proof of Example 3.5.10 in [3], we see that \(\|\varphi'(0)\| < C \). Hence, \(\kappa_D(z^0, X) \geq C\|X\|, X \in \mathbb{C}^2 \). Since \(k_D \) is the integrated form of \(\kappa_D \), it follows that
\[
k_D(a - te_1) \geq Ct, \quad a \in \gamma([0, 1]), \quad 0 \leq t \leq 1/2 - 1/e, \quad e_1 = (1, 0).
\]
Hence \(\mathcal{D}k_D(a; e_1) \geq C \) and therefore, \(L_{\mathcal{D}k_D}(\gamma) \geq C/2 > 0 \), which completes the proof of this example.

Note that it shows that, with respect to the lengths of curves, \(\mathcal{D}k_D \) behaves different than the ”real” derivative of \(k_D \) (cf. [11] or [4], page 12). Moreover, it implies that, in general, \(\mathcal{D}k_D \neq \tilde{\mathcal{D}}k_D \).

Questions. It will be interesting to know examples showing that, in general, \(\kappa_D \neq \mathcal{D}k_D \). It remains also unclear whether \(\mathcal{D}k_D \) is holomorphically contractible (see [3]). Recall that \(\int \mathcal{D}k_D = k_D \); but we do not know if \(\int \tilde{\mathcal{D}}k_D = k_D \).

3. Proofs

Proof of Proposition

First, we shall consider the case \(m = 1 \). The key is the following

Theorem 3. [10] Let \(M \) be an \(n \)-dimensional complex manifold and \(f \in \mathcal{O}(\mathbb{D}, M) \) regular at 0. Let \(r \in (0, 1) \) and \(D_r = r\mathbb{D} \times \mathbb{D}^{n-1} \). Then there exists \(F \in \mathcal{O}(D_r, M) \), which is regular at 0 and \(F|_{r\mathbb{D} \times \{0\}} = f \).

Since \(\kappa_M(z; 0) = \mathcal{D}\tilde{k}_M(z; 0) = 0 \), we may assume that \(X \neq 0 \). Let \(\alpha > 0 \) and \(f \in \mathcal{O}(\mathbb{D}, M) \) be such that \(f(0) = z \) and \(\alpha f_* (d/d\zeta) = X \). Let \(r \in (0, 1) \) and \(F \) as in Theorem 3. Since \(F \) is regular at 0, there exist open neighborhoods \(U = U(z) \subset M \) and \(V = V(0) \subset D_r \) such that \(F|_V : V \rightarrow U \) is biholomorphic. Hence \((U, \varphi) \) with \(\varphi = (F|_V)^{-1} \), is a chart near \(z \). Note that \(\varphi_*(X) = \alpha e_1 \), where \(e_1 = (1, 0, \ldots, 0) \).

If \(w \) and \(Y \) are sufficiently near \(z \) and \(\alpha e_1 \), respectively, then
\[
g(\zeta) := F(\varphi(w) + \zeta Y/\alpha), \quad \zeta \in r^2 \mathbb{D}.
\]

We may replace Theorem 3 by the approach used in the proof of the upper semicontinuity of \(\tilde{k}_M \).
belongs to $O(r^2 \mathbb{D}, M)$ with $g(0) = w$ and $g(t) = \varphi^{-1}(\varphi(w) + tY)$, $t < r^2/\alpha$. Therefore, $r^2 k^*_M(w, \varphi^{-1}(\varphi(w) + tY)) \leq \alpha$. Hence $r^2 Dk_M(z; X) \leq \alpha$. Letting $r \to 1$ and $\alpha \to \kappa_M(z; X)$ we get that $Dk_M(z; X) \leq \kappa_M(z; X)$.

Let now $m \in \mathbb{N}$. By definition, $\kappa^{(m)}_M(z; \cdot)$ is the largest function with the following property:

For any $X = \sum_{j=1}^m X_j$ one has that $\kappa^{(m)}_M(z; X) \leq \sum_{j=1}^m \kappa_M(z; X_j)$.

To prove that $\kappa^{(m)}_M \geq Dk^{(m)}_M$ it suffices to check that $Dk^{(m)}_M(z; \cdot)$ has the same property. Following the above notation and choosing $Y_j \to \varphi_* X_j$ with $\sum_{j=1}^m Y_j = Y$, we set $w_0 = w$ and $w_j = \varphi^{-1}(\varphi(w) + t \sum_{k=1}^j Y_j)$. Since

$$k^{(m)}_M(w, w_q) \leq \sum_{j=1}^m \tilde{k}_M(w_{j-1}, w_j),$$

it follows by the case $m = 1$ that

$$Dk^{(m)}_M(z; X) \leq \sum_{j=1}^m Dk_M(z; X_j) \leq \sum_{j=1}^m \kappa_M(z; X_j).$$

Finally, let $m = \infty$ and $n = \dim M$. Since $\tilde{k}_M = \kappa_2^{(2n-1)}$ and $k_M \leq k_2^{(2n-1)}$, we get that $Dk_M \leq \kappa_M$ using the case $m = 2n - 1$.

Proof of Theorem 1. We may assume that $X \neq 0$. In virtue of Proposition 2 we have to show that

$$\kappa^{(m)}_M(z; X) \leq Dk^{(m)}_M(z; X).$$

For simplicity we assume that M is a domain in \mathbb{C}^n.

(i) Fix a neighborhood $U = U(z) \in M$. Applying the hyperbolicity of M at z, there are a neighborhood $V = V(z) \subset U$ and a $\delta \in (0,1)$ such that, if $h \in O(\mathbb{D}, M)$ with $h(0) \in V$, then $h(\delta \mathbb{D}) \subset U$. Hence, by the Cauchy inequalities, $||h^{(k)}(0)|| \leq c/\delta^k$, $k \in \mathbb{N}$.

Now choose sequences $M \ni w_j \to z$, $C_* \ni t_j \to 0$, and $\mathbb{C}^n \ni Y_j \to X$ such that

$$\frac{\tilde{k}_M(w_j, w_j + t_j Y_j)}{|t_j|} \to Dk_M(z; X).$$

There are holomorphic discs $g_j \in O(\mathbb{D}, M)$ and $\beta_j \in (0,1)$ with $g_j(0) = w_j$, $g_j(\beta_j) = w_j + t_j Y_j$, and $\beta_j \leq \tilde{k}_M^*(w_j, w_j + t_j Y_j) + |t_j|/\beta_j$. Note that

$$\tilde{k}_M^*(w_j, w_j + t_j Y_j) \leq c_1 ||t_j Y_j|| \leq c_2 |t_j|.$$

Write

$$w_j + t_j Y_j = g_j(\beta_j) = w_j + g'_j(0) \beta_j + h_j(\beta_j).$$
ON THE DERIVATIVES OF THE LEMPERT FUNCTIONS

Then

$$||h_j(\beta_j)|| \leq c \sum_{k=2}^{\infty} \left(\frac{2}{k} \right)^k \leq c_3 |\beta_j|^2 \leq c_4 |t_j|^2, \quad j \geq j_0.$$

Put $\hat{Y}_j = Y_j - h_j(\beta_j)/t_j$. We have that $g_j(0) = w_j$ and $\beta_j g'_j(0)/t_j = \hat{Y}_j \to X$. Therefore,

$$\kappa_M(w_j; \hat{Y}_j) \leq \frac{\beta_j}{|t_j|} \leq \frac{\bar{k}_M^*(z_j, w_j + t_j Y_j)}{|t_j|} + \frac{1}{j}.$$

Hence with $j \to \infty$, we get that $\kappa_M(z; X) = \kappa_M(w; Y) \leq D_{\bar{k}}^k M(z; X)$.

(ii) The proof of the case $m \in \mathbb{N}$ is similar to the next one and we omit it. Now, we shall consider the case $m = \infty$.

Note first that our assumption implies that M is hyperbolic at z and, by the contrary,

$$\forall \varepsilon > 0 \exists \delta > 0 : ||w - z|| < \delta, ||Y - X|| < \delta ||X|| \Rightarrow |\kappa_M(w; Y) - \kappa_M(z; X)| < \varepsilon \kappa_M(z; X).$$

Moreover, the proof of (i) shows that

$$\bar{k}_M(a, b) \geq \kappa_M(a; b - a + o(a, b)), \text{ where } \lim_{a, b \to z} \frac{o(a, b)}{||a - b||} = 0.$$

Choose now sequences $M \ni w_j \to z$, $C_* \ni t_j \to 0$, and $\mathbb{C}^n \ni Y_j \to X$ such that

$$\frac{k_M(w_j, w_j + t_j Y_j)}{|t_j|} \to D_{\bar{k}} M(z; X).$$

There are points $w_{j,0} = w_j, \ldots, w_{j,m_j} = w_j + t_j X_j$ in M such that

$$\sum_{k=1}^{m_j} \bar{k}_M(w_j, w_{j,k-1}, w_{j,k}) \leq k_M(w_j, w_j + t_j Y_j) + \frac{1}{j}.$$

Set $w_{j,k} = w_j$ for $k > m_j$. Since

$$k_M(w_j, w_{j,l}) \leq \sum_{j=1}^{l} \bar{k}_M(w_j, w_{j,k-1}, w_{j,k}) \leq k_M(w_j, w_j + t_j Y_j) + \frac{1}{j} \leq c_2 |t_j| + \frac{1}{j},$$

then $k_M(w_j, w_{j,l}) \to 0$ uniformly in l. Then the hyperbolicity of M at z implies that $w_{j,l} \to z$ uniformly in l. Indeed, assuming the contrary and passing to a subsequence, we may suppose that $w_{j,l} \notin U$ for some $U = U(z)$. Then

$$0 = \lim_{j \to \infty} k_M(w_j, w_{j,l}) \geq \lim_{z' \to z, w \in M \setminus U} \bar{k}_M(z', w) > 0,$$

a contradiction.
Fix now $R > 1$. Then (1) implies that
\[\kappa_M(z; w_{j,k} - w_{j,k-1}) \leq R\kappa_M(w_{j,k}; w_{j,k} - w_{j,k-1} + o(w_{j,k}, w_{j,k-1})), \ j \geq j(R). \]
It follows by this inequality, (2) and (3) that
\[\sum_{k=1}^{m_j} \kappa_M(z; w_{j,k} - w_{j,k-1}) \leq Rk_M(w_j, w_j + t_j Y_j) + \frac{R}{j}. \]
Since $\hat{\kappa}_M(z; t_j Y_j)$ is bounded by the first sum, we obtain that
\[\hat{\kappa}_M(z; Y_j) \leq R\frac{k_M(w_j, w_j + t_j Y_j) + 1/j}{|t_j|}. \]
Note that $\hat{\kappa}_M(z; \cdot)$ is a continuous function. Hence with $j \to \infty$ and $R \to 1$, we get that $\hat{\kappa}_M(z; X) \leq Dk_M(z; X).$ \hfill \Box

Remark. It follows by the above proofs and a standard diagonal process that $\hat{\kappa}_M(z; \cdot) = D\hat{k}(z; \cdot)$ if M is hyperbolic at z.

References

[1] K. Diederich, N. Sibony, *Strange complex structures on Euclidian space*, J. Reine Angew. Math. 311/312 (1979), 397–407.
[2] S. Dineen, *The Schwarz lemma*, Oxford Math. Monographs, Clarendon Press, Oxford, 1989.
[3] M. Jarnicki, P. Pflug, *Invariant distances and metrics in complex analysis*, de Gruyter Exp. Math. 9, de Gruyter, Berlin, New York, 1993.
[4] M. Jarnicki, P. Pflug, *Invariant distances and metrics in complex analysis–revisited*, Dissertationes Math. 430 (2005).
[5] M. Kobayashi, *On the convexity of the Kobayashi metric on a taut complex manifold*, Pacific J. Math. 194 (2000), 117–128.
[6] S. Kobayashi, *A new invariant infinitesimal metric*, International J. Math. 1 (1990), 83–90.
[7] S. Kobayashi, *Hyperbolic complex spaces*, Grundlehren Math. Wiss. 318, Springer, Berlin, 1998.
[8] N. Nikolov, P. Pflug, *On the definition of the Kobayashi-Buseman pseudometric*, International J. Math. (to appear).
[9] M.-Y. Pang, *On infinitesimal behavior of the Kobayashi distance*, Pacific J. Math. 162 (1994), 121–141.
[10] H.-L. Royden, *The extension of regular holomorphic mapps*, Proc. Amer. Math. Soc. 43 (1974), 306–310.
[11] S. Venturini, *Pseudodistances and pseudometrics on real and complex manifolds*, Ann. Mat. Pura Appl. 154 (1989), 385–402.
[12] J. Winkelmann, *Non-degenerate maps and sets*, Math. Z. 249 (2005), 783–795.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev 8, 1113 Sofia, Bulgaria

E-mail address: nik@math.bas.bg
ON THE DERIVATIVES OF THE LEMPERT FUNCTIONS

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG, INSTITUT FÜR MATHEMATIK, FAKULTÄT V, POSTFACH 2503, D-26111 OLDENBURG, GERMANY

E-mail address: pflug@mathematik.uni-oldenburg.de