2D-DOA Estimation for Multiple FH Signals Based on Unitary ESPRIT

Yin-song Yang¹, Ying Guo¹2, Hong-guang Li¹, Kun-feng Zhang¹, Ping Sui¹ and Run-ze Dong¹

¹ Information and Navigation College in Air Force Engineering University, Xi’an 710077, China; ² Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China.

E-mail: yangyinsong131@163.com

Abstract. In order to use the two-dimensional direction-of-arrival (2D-DOA) of the frequency hopping (FH) signals for network sorting, an FH signal 2D-DOA estimation algorithm based on Unitary ESPRIT is proposed in this paper. Firstly, the snapshot model of FH signal is established based on the structure of the planar antenna array. Then using the morphological filtering method to correct the time-frequency map of FH signals after the SPWVD transform to complete the effective hop extraction, so FH signals can be simplified as a narrow-band signal when studying one hop. Thirdly, the Unitary ESPRIT is exploited to estimate the 2D-DOA of FH signals, which transforms the received data from the complex field to the real domain by the unitary transformation to decrease the calculation complexity and reuses the data during constructing the real matrix to improve the accuracy of the estimation. Finally, we did three experiments to measure the performance of proposed algorithm from three aspects: signal-to-noise ratio, snapshot count and time-consuming. The simulation results show that the proposed algorithm has good performance.

1. Introduction
Frequency-hopping communication has been widely used in military communications because of its good anti-interference, low interception and strong networking capabilities, but it also poses a serious challenge for the communication countermeasure reconnaissance. [1] Network sorting is a key step in frequency hopping signal reconnaissance. It can sort out frequency hopping network platforms from the complex electromagnetic environment, provide support for implementing electronic interference with accurate interference.

Signal direction of arrival (DOA) plays an important role in frequency hopping signal network classification and has also been a hot area of research. [2][3] Belouchrani first proposed the concept of spatial-time-frequency, and then processing method based on spatial-time-frequency was used in non-linear frequency modulation signal estimation and blind source signal separation, the performance was better than the traditional method. In paper [4] and [5], Chen put forward a new idea for the FH signals DOA estimation by constructing the spatial-time-frequency distribution matrix of each hop and using the MUSIC algorithm, however, this algorithm needed to perform spectral peak search in the parameter space, which had high computational complexity, and it also did not consider the two-dimensional DOA situation, unable to locate the target of three-dimensional space. A spatial-
polarimetric-time-frequency distributions and ESPRIT algorithm [6][7] was proposed to estimate DOA and polarization of FH signals, it can not only avoid seeking the spectral peak, but also achieve the goal of three-dimensional space positioning, but the ESPRIT algorithm had complex eigenvalue roots and parameter matching problems, and the computational complexity was still high. Almida K et al. [8] compared DOA estimation performance of LS-ESPRIT, TLS-ESPRIT and unitary ESPRIT in W-CDMA communication, and the simulation results showed the unitary ESPRIT algorithm had the best estimation performance when SNR was greater than 0. Some scholars [9]-[12]have proposed the unitary ESPRIT algorithm and its improved algorithm into DOA estimation of MIMO radar, those algorithms transform the received data from complex operations into real operations, which overcomes the problems that ESPRIT algorithm needs parameter matching and has low estimation accuracy under the condition of low SNR and low snapshot data. The denoising method based on morphological filtering was proposed to obtain a clearer time-frequency map.[13]

Based on the above issues, the STFD&U-ESPRIT algorithm is proposed in this paper to estimate 2D-DOA of multiple FH signals. In section 2, a planar antenna array receiving model is established and an array snapshots model of the FH signal is deduced therefrom. Then the effective hops of FH signals from time and frequency domain is extracted and the spatial-time-frequency distribution matrix of this hop is established in section 3. In section 4, we present the detailed steps of the algorithm proposed in this paper. Finally, the simulation results and analysis are given in Section 5 and paper is concluded in 6 Section.

2. Snapshots model of FH signal
Assume that the hopping period of FH signal \(s_n(t)\) is \(T_n\), there are L hops within time of \(\Delta t\) in total. \(\omega_n\) and \(\varphi_n\) represent the carrier frequency and initial phase of l-th hop respectively and the time of initial hop is \(\Delta t_{0n}\). Then the \(s_n(t)\) can be defined as:

\[
s_n(t) = v_n(t) \sum_{l=0}^{L-1} \exp[j(\omega_n t + \varphi_n)] \text{rect} \left(\frac{t - T_n}{T_n} \right)
\]

(1)

Where \(t = t - (k-1)T_n - \Delta t_{0n}\), \(v_n\) stands for the complex envelope of base band of signal \(s_n(t)\), \(\text{rect}\) is the unit rectangle pulse.

(a) The structure of array (b) The 2D-DOA of FH signals

Figure 1 The receiving model of FH signals

Array structure shown in Figure 1(a), the total number of array elements are \(N \times M\), the bandwidth of the receiver \(B = f_{\max} - f_{\min}\), the adjacent array spacing are \(d_1\) and \(d_2\), and the elements spacing \(\max(d_1,d_2) < \frac{c}{2f_{\max}}\) (\(c\) denotes the speed of light), \(f_{\max}\) and \(f_{\min}\) denote the upper and lower limits of the receiver bandwidth, respectively. Suppose that \(K\) FH signals \(s_k(t)(k = 1, 2, ..., K)\) impinge instantaneously onto the \(N \times M\) array. The receiving model of FH signals as shown by Figure 1(b), let the pitch angle of the FH incident wave is \(\theta_k\), the azimuth angle of the FH incident wave is \(\varphi_k\), and
the wavelength is λ. Where $\vartheta_k \in [0, \pi / 2]$, $\varphi_k \in [0, 2\pi]$. Define the coordinate original point array element as the reference array element, then direction matrix of N elements on the X axis can be expressed as:

$$\mathbf{A}_x = [a_1(\vartheta_1, \varphi_1), a_2(\vartheta_2, \varphi_2), \ldots, a_N(\vartheta_N, \varphi_N)]$$

Where $a_k(\vartheta, \varphi) = [1, e^{2\pi d_1 \sin \varphi \sin \vartheta / \lambda}, \ldots, e^{2\pi d_{N-1} \sin \varphi \sin \vartheta / \lambda}]^T$. In a similar way, the direction matrix of M elements on the Y axis can be expressed as:

$$\mathbf{A}_y = [b_1(\vartheta_1, \varphi_1), b_2(\vartheta_2, \varphi_2), \ldots, b_M(\vartheta_M, \varphi_M)]$$

Where $b_k(\vartheta, \varphi) = [1, e^{2\pi d_1 \sin \varphi \sin \vartheta / \lambda}, \ldots, e^{2\pi d_{M-1} \sin \varphi \sin \vartheta / \lambda}]^T$. Then $N \times M$ array can be divided into M subarrays, so subarray 2 to M corresponds to the offset of subarray 1 along the Y axis. The difference between the direction matrices of adjacent subarrays is a fixed value $\Psi = \text{diag}(e^{2\pi d_1 \sin \varphi \sin \vartheta / \lambda}, e^{2\pi d_2 \sin \varphi \sin \vartheta / \lambda}, \ldots, e^{2\pi d_{M-1} \sin \varphi \sin \vartheta / \lambda})$. Therefore, the flow pattern matrix of $N \times M$ array can be formulated as:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \mathbf{D}_1(\mathbf{A}_1) & & \\ & \mathbf{A}_2 \mathbf{D}_2(\mathbf{A}_2) & \\ & & \mathbf{A}_M \mathbf{D}_M(\mathbf{A}_M) \end{bmatrix}_{NM \times K}$$

Where $\mathbf{D}_m(\bullet)$ represents a diagonal matrix constructed by m rows of the matrix. Assume the received data vector is $\mathbf{X}(t) \in \mathbb{R}^{NM \times 1}$, gaussian white noise data vector is $\mathbf{N}(t) \in \mathbb{R}^{NM \times 1}$, and FH source data vector is $\mathbf{S}(t) \in \mathbb{R}^{K \times 1}$, so snapshot vector model for array can be defined as:

$$\mathbf{X}(t) = \mathbf{A} \mathbf{S}(t) + \mathbf{N}(t)$$

3. Extraction of effective hops and construction of space-time-frequency matrix

The frequency hopping signal is a broadband signal, and the carrier frequency of each hop jumps randomly, so flow pattern matrix of the plane array also changes with the carrier frequency hopping, however it can be simplified as a narrow-band signal when studying one hop. For the problem of reducing frequency hopping signal to narrowband signal processing, it has been studied by some scholars. Chen [4] extracts the effective hops of FH signal by the panoramic time-frequency map getting from polyphase filter group method. The effective hops of the FH signal are extracted by the combined time-frequency method of short-time Fourier transform (STFT) and Smoothed Pseudo Wagner Distribution (SPWVD).[5] Different improvements[6] [7] have been made to the combined time-frequency method by Zhang . He combines with time-frequency single-source to set the noise threshold, effectively remove the noise and a clear and robust time-frequency map is obtained, improving the performance of extracting the effective hops.

As mentioned in the above articles, we can see that getting a clear time-frequency map of the FH signal is the most crucial step, because it will directly affect the extraction accuracy of the effective hop, thereby affecting the performance of DOA estimation and network station sorting. In order to further improve the performance of 2D-DOA estimation, this paper uses the morphological filtering method to correct the time-frequency map of FH signals after the SPWVD transform to complete the effective hop extraction. The more details about process of morphological filtering see paper [13]. After getting the effective hops, we can establish the spatial-time-frequency distribution matrix of one effective hop of signal.

Cohen discrete time frequency distribution of signal $x(t)$ is expressed as:

$$D_{\psi_x}(t, f) = \sum_{l=-\infty}^{\infty} \sum_{\tau=-\infty}^{\infty} \psi(l, \tau)x(t + l + \tau)x^*(t + l - \tau)e^{-4\pi j \tau f}$$

(6)
Where \(\varphi(l, \tau) \) denotes kernel function. Therefore, the discrete cross-time-frequency distribution of signal \(x_i(t) \) and \(x_j(t) \) can be defined as:

\[
D_{x_i x_j}(t, f) = \sum_{l=-\infty}^{\infty} \sum_{\tau=-\infty}^{\infty} \varphi(l, \tau)x_i(t+l+\tau)x_j^*(t+l-\tau)e^{-j2\pi \tau f}
\]

(7)

Then the spatial-time-frequency distribution of signal \(x(t) \) can be defined as:

\[
D_{xx}(t, f) = \sum_{l=-\infty}^{\infty} \sum_{\tau=-\infty}^{\infty} \varphi(l, \tau)x(t+l+\tau)x(t+l-\tau)e^{-j2\pi \tau f}
\]

(8)

Where \([D_{xx}(t, f)]_{ij} = D_{x_i x_j}(t, f) \) \((i, j = 1, 2, \ldots, M)\) denotes the time frequency distribution between the output signals of each array. According to (5) and (8), the covariance matrix of time frequency domain can be written as:

\[
E[D_{xx}(t, f)] = AD_{ss}(t, f)A^H + E[D_{xx}(t, f)]
\]

(9)

4. 2D-DOA estimation of FH signal and network sorting

Suppose the number of frequency hopping sources are \(K \), and the number of sources are less than the number of elements at any time-frequency point.

The unitary transformation matrix \(U_N \) is defined as follows:

\[
U_{2n} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_n & jI_n \\ \Pi_n & -j\Pi_n \end{bmatrix}
\]

(10)

\[
q_{2n+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_n & 0 & jI_n \\ \Pi_n & \sqrt{2} & \Pi_n^T \\ 0 & \Pi_n & -j\Pi_n \end{bmatrix}
\]

(11)

Where \(\Pi_n \) is the antisymmetric unit matrix. Constructing unitary transformation matrix \(Q_N \) and \(M_N \) based on the formulation (10) and (11). Then the real matrices \(Y \) converted from complex matrices \(\chi \) can be expressed as:

\[
Y = \left(Q_N^H \otimes Q_N^H \right) \chi
\]

(12)

Where \(\otimes \) donates the Kronecker multiplication. Let \(E = [\text{Re}(Y), \text{Im}(Y)] \), then we can obtain the \(\tilde{R}_{EE} \), where \(\tilde{R}_{EE} \) is the estimation value of array covariance matrix of the \(E \). Then doing eigenvalue decomposition for \(\tilde{R}_{EE} \), we can obtain the signal subspace \(E_S \) that is formed by the eigenvectors corresponding to the larger \(K \) eigenvalues, and noise subspace \(E_N \) whose dimensional is \(NM - K \). Since each frequency hopping signal is irrelevant, there must be a full rank matrix \(T \), s.t \(E_S = DT \), where \(D \) is the Direction matrix of \(Y \). We define the selection matrix can be expressed as:

\[
J_1 = [I_{(N-1)(N-1)}, 0_{(N-1)\times 1}]
\]

(13)

\[
J_2 = [0_{(N-1)\times 1}, I_{(N-1)(N-1)}]
\]

(14)

According to the property of unitary matrix \(U_N U_N^H = I \), we obtain the relationship between selection matrix and unitary matrix can be rewritten as \(U_N^H J_1 U_N = (U_{N-1}^H J_1 U_{N-1})^T \). Simultaneously we order that \(K_{\mu 1} = I_M \otimes \text{Re}(U_{N-1}^H J_1 U_N) \) and \(K_{\nu 1} = \text{Re}(U_{N-1}^H J_2 U_{N-1}) \otimes I_M \) Considering the case of receiving \(K \) frequency hopping signals, then we have:
\[
\begin{align*}
K_{\mu_1}D_{\mu_1} &= K_{\mu_2}D \\
K_{\mu}D_{\mu} &= K_{v}D \\
\end{align*}
\]
(15)

Where \(D_{\mu} = \text{diag}(\tan(\frac{\mu_1}{2}), ..., \tan(\frac{\mu_K}{2})) \), \(D_{v} = \text{diag}(\tan(\frac{v_1}{2}), ..., \tan(\frac{v_K}{2})) \), and

\[
\mu_k = \frac{2\pi}{\lambda} d \cos \phi_k \sin \theta_k, \quad v_k = \frac{2\pi}{\lambda} d \sin \phi_k \sin \theta_k, \quad k = 1, 2, ..., K.
\]

According to the relationship between \(D \) and \(T \), we can obtain:

\[
\begin{align*}
K_{\mu_1}E_{\mu_1} &= K_{\mu_2}E, \\
\psi_\mu &= T^{-1}Q_{\mu}T^{-1}, \\
K_{\mu}E_{\mu} &= K_{v}E_{v}, \\
\psi_v &= T^{-1}Q_{T}T^{-1}, \\
\end{align*}
\]
(16)

Merging the formulation (16), we obtain a new matrix can be written as:

\[
P = \psi_\mu + j\psi_v = T^{-1}(Q_{\mu} + Q_{T})T
\]
(17)

Then doing eigenvalue decomposition of the \(P \), we get a diagonal matrix \(\Sigma \) composed of eigenvalues. In addition, \(\mu \) and \(v \) are defined as follows:

\[
\begin{align*}
\mu &= \frac{2}{\pi} \arctan(\text{Re}(\Sigma)) \\
v &= \frac{2}{\pi} \arctan(\text{Im}(\Sigma))
\end{align*}
\]
(18)

Finally, the pitch angle estimation and azimuth angle estimation are obtained from the formulation (18), i.e.

\[
\begin{align*}
\hat{\theta} &= \arcsin(\mu^2 + v^2)^{1/2} \\
\hat{\phi} &= \arctan(\mu^2 + v^2)^{1/2}
\end{align*}
\]
(19)

From the formulation (19) derivation process, we can see that compared with the traditional ESPRIT algorithm, the unitary ESPRIT algorithm transforms the eigenvalue decomposition and the matrix operations of complex domain into the real domain, which greatly reduces the computational complexity. When constructing the real matrix \(\Psi \), the received data is repeatedly used that improves the estimation accuracy. In addition, 2D-DOA estimation can be automatically paired. After we get the 2D-DOA estimation, the network sorting of multi-FH signal can be achieved through the clustering analysis.

5. Simulation and analysis

Suppose that there are five frequency hopping signal \(FH_1, FH_2, FH_3, FH_4, FH_5 \) in the space, the incident pitch angles are \(\theta_1 = 15^\circ, \theta_2 = 30^\circ, \theta_3 = 45^\circ, \theta_4 = 60^\circ, \theta_5 = 75^\circ \) and the incident azimuth angles are \(\phi_1 = 80^\circ, \phi_2 = 60^\circ, \phi_3 = 40^\circ, \phi_4 = 20^\circ, \phi_5 = 10^\circ \) respectively, the hopping period is 10us, the normalize carrier frequency jumps between \(0 \to 0.7 \). 200 Monte Carlo experiments were performed, the overall root mean square error of DOA and overall estimated success rate were used as the performance criterion. The total root mean square error (RMSE) of DOA is defined as:

\[
RMSE = \sqrt{\frac{1}{PK \sum_{p=1}^{P} \sum_{k=1}^{K} (\hat{\theta}_{kp} - \theta_k)^2 + (\hat{\phi}_{kp} - \phi_k)^2 }}
\]
(20)

Where \(K \) denotes the source number, \(P \) denotes the total Monte Carlo experiments, \(\theta_k \) and \(\phi_k \) denote the true values of pitch angle and azimuth angle of the \(k \)-th FH signal,
\(\tilde{\theta}_{kp} \) and \(\varphi_{kp} \) are \(p \)-th pitch angle and azimuth angle estimations of the \(k \)-th FH signal. The total estimated success rate \(\eta \) is defined as:

\[
\eta = \frac{P_1}{P}
\]

(21)

Where \(P_1 \) denotes the number of successful experiments with DOA estimated deviations less than 1°, and \(P \) denotes the total number of experiments.

5.1 Experiment 1
In order to verify the impact of signal to noise ratio (SNR) on the performance of the algorithm, assume that the receiving array structure is \(4 \times 4 \) uniform array, \(d_1 = d_2 = 0.5m \), and the number of snapshots are 600. Fig.2 shows the performance comparison of 2D-DOA estimation in proposed algorithm and ESPRIT algorithm when SNR increase from -5dB to 20dB.

![Figure 2](image1.png)

(a) The total success rate of Experiment 1
(b) The RMSE of Experiment 1

Figure 2 Performance comparison of 2D-DOA estimation

It can be seen from Figure 2 (a) that with the increase of SNR, the \(\eta \) of the proposed algorithm and the ESPRIT algorithm are gradually increased, the proposed algorithm is slightly larger; When the SNR reaches 9dB, the \(\eta \) of the proposed algorithm is close to 100% while the ESPRIT algorithm needs to reach about 12dB.

It can be seen from Figure 2(b) that with the increase of SNR, the RMSE of the proposed algorithm and the ESPRIT algorithm are gradually decreased; the RMSE of the proposed algorithm is obviously less than ESPRIT algorithm in general; When the SNR is greater than 11dB, the RMSE of the proposed algorithm is close to the ESPRIT algorithm, and both tend to be stable.

5.2 Experiment 2
In order to verify the impact of the amount of snapshot data on the performance of the algorithm, assume that the number of snapshots per hop gradually increases from 400 to 2000, the structure of receiving arrays is \(4 \times 4 \), and the SNR are 0dB and 5dB, respectively, other experimental conditions are same with Experiment 1. Figure 3 shows the performance comparison of 2D-DOA estimation in proposed algorithm and ESPRIT algorithm.
Figure 3 shows that under different SNR, the overall estimation success rates of both algorithms increase gradually with the increase of snapshots. However, under each snapshot, the success rate of the proposed algorithm is better than ESPRIT algorithm. From Figure 3(b), we can see that with the increase of snapshot data under different SNR, the total RMSE of the proposed algorithm and ESPRIT algorithm decrease gradually. In other words, the longer the frequency signal lasts, the more observation the sample gets and the better the estimated performance.

5.3 Experiment 3
In order to compare the algorithmic complexity of two algorithms, assume that the SNR is 5dB, the snapshot data of each hop is 3000, the structure of receiving arrays are $3 \times 3, 4 \times 4, 5 \times 5, 6 \times 6, 7 \times 7, 8 \times 8$, respectively, other experimental conditions are same with Experiment 1. The time required for the 2D-DOA estimation of the two algorithms is shown in Table 1.

Algorithm type	3×3	4×4	5×5	6×6	7×7	8×8
Proposed algorithm	0.572	0.951	1.515	2.210	3.802	5.407
ESPRIT algorithm	0.863	1.389	2.225	3.248	5.336	7.467

From Table 1, we can see that as the number of arrays increases, both the proposed algorithm and ESPRIT algorithm consume more time, but the ESPRIT algorithm required more. When the structure of array is the same, the proposed algorithm is less time consume than ESPRIT algorithm, and the time consume of proposed algorithm is about 0.65 times of ESPRIT algorithm.

6. Conclusion
The 2D-DOA information of the frequency hopping signals can be effectively used to complete multi-FH signal network sorting. The STFD&U-ESPRIT algorithm is deduced and explained in this paper to estimate the 2D-DOA information of multiple FH signals. Theoretical analysis and simulation results show that the proposed algorithm can reduce the computational complexity compared with the traditional ESPRIT algorithm, while the performance is still better. In addition, the proposed algorithm transforms data processing from complex to real domain. Therefore, it has higher applicability and more engineering practical value.

7. Appendices
This work was supported by the National Natural Science Foundation of China under Grant 61601500.

References
[1] Sha Z C, Liu Z M, Huang Z T, et al. Online Hop Timing Detection and Frequency Estimation of Multiple FH Signals[J]. ETRI Journal, 35,5(2013-10-01), 2013, 35(5):748–756.
[2] Belouchrani A, Amin M G. Time-frequency MUSIC[J]. IEEE Signal Processing Letters, 2002, 6(5):109-110.
[3] Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representations[J]. IEEE Transactions on Signal Processing, 1998, 46(11):2888-2897.
[4] Chen L H, Zhang E Y. Directions of arrival estimation for multi frequency-hopping signals based on digital channelized receiver and spatial time-frequency analysis[J]. Journal on Communications, 2009, 30(10):68-74. (in Chinese)
[5] Chen L H. Directions of arrival estimation for multicomponent frequency-hopping signals based on spatial time-frequency analysis[J]. Systems Engineering & Electronics, 2011, 33(12):2587-2592. (in Chinese)
[6] Zhang D W, Guo Y, Qi Z S, et al. A joint estimation of 2D-DOA and polarization estimation for multiple frequency hopping signals[J]. Journal of Huazhong University of science & technology 2015, 09:84-88. (in Chinese)

[7] Zhang D W, Guo Y, Qi Z S, et al. A joint estimation algorithm of multiple parameters for frequency hopping signals using spatial polarimetric time frequency distributions[J]. Journal of Xi’an Jiao tong University, 2015, 49(8):17-23. (in Chinese)

[8] Almidfa K, Tsoulos G V, Nix A. Performance analysis of ESPRIT, TLS-ESPRIT and Unitary-ESPRIT algorithms for DOA estimation in a W-CDMA mobile system[C]// 3g Mobile Communication Technologies, 2000. First International Conference on. IET, 2000:200-203.

[9] Guimei Zheng, Baixiao Chen, Minglei Yang. Unitary ESPRIT algorithm for bistatic MIMO radar[J]. Electronics Letters, 2012, 48(3):179-181.

[10] Zheng G, Tang J, Yang X. ESPRIT and Unitary ESPRIT Algorithms for Coexistence of Circular and Noncircular Signals in Bistatic MIMO Radar[J]. IEEE Access, 2017, 4(99):7232-7240.

[11] Zhou Y, Fei Z, Yang S, et al. Joint Angle Estimation and Signal Reconstruction for Coherently Distributed Sources in Massive MIMO Systems Based on 2D Unitary ESPRIT[J]. IEEE Access, 2017, PP(99):1-1.

[12] Liu S Q, Wang B H, Li L J, et al. DOA estimation method for two-dimensional hybrid MIMO phased-array radar[J]. Journal of xi’an university of electronic science and technology (natural science edition), 2017, 44(3):157-163. (in Chinese)

[13] Gong X, Wang Z H, Wang C G. Parameter estimation of frequency hopping signal based on time-frequency analysis and morphological filtering. [J] Journal of Air Force Radar Academy, 2011, 25(4):243-246. (in Chinese)