Pluriclosed and Strominger Kähler–like metrics compatible with abelian complex structures

Anna Fino1,2 | Nicoletta Tardini3 | Luigi Vezzoni1

1Dipartimento di Matematica ‘G. Peano’, Università degli studi di Torino, Via Carlo Alberto, Torino, Italy
2Department of Mathematics and Statistics, Florida International University, Miami, Florida, USA
3Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze, Parma, Italy

Correspondence
Nicoletta Tardini, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, Parma I-43124, Italy. Email: nicoletta.tardini@unipr.it

Abstract
We show that the existence of a left-invariant pluriclosed Hermitian metric on a unimodular Lie group with a left-invariant abelian complex structure forces the group to be 2-step nilpotent. Moreover, we prove that the pluriclosed flow starting from a left-invariant Hermitian metric on a 2-step nilpotent Lie group preserves the Strominger Kähler–like condition.

MSC (2020) 22E25, 53C55, 53E30 (primary)

1 | INTRODUCTION

A Hermitian metric g on a complex manifold (M, J) is called pluriclosed (or SKT) if its fundamental form $\omega(\cdot, \cdot) = g(J\cdot, \cdot)$ satisfies

$$dJd\omega = 0.$$ (1)
The pluriclosed condition (1) can be characterized in terms of the torsion of the Bismut (or Strominger) connection ∇^B. Indeed, in [10] Bismut proved that on a Hermitian manifold (M,J, g) there is a unique Hermitian connection ∇^B whose torsion T^B, once regarded as a $(3,0)$-tensor via g, is skew-symmetric. The pluriclosed condition is equivalent to $dT^B = 0$. If $T^B = 0$, the Bismut connection ∇^B coincides with the Levi–Civita condition and the metric g is Kähler.

By [30] a Hermitian metric g is pluriclosed and satisfies the condition $\nabla^B T^B = 0$ if and only if its Bismut curvature R^B satisfies the first Bianchi identity

$$\sigma_{x,y,z} R^B(x, y, z) = 0$$

and the type condition

$$R^B(x, y, z) = R^B(Jx, Jy, z),$$

for any tangent vectors x, y, z in M. Hermitian metrics satisfying (2) and (3) are called in literature Strominger Kähler–like and have been studied recently in [5, 17, 29, 30].

An important tool in the geometry of pluriclosed metrics is the so-called pluriclosed flow, defined by the equation

$$\frac{\partial}{\partial t} \omega(t) = -\left(\rho^B\right)^{1,1}, \quad \omega(0) = \omega_0,$$

where $(\rho^B)^{1,1}$ denotes the $(1,1)$-part of the Ricci form of the Bismut connection and ω_0 is a fixed Hermitian metric. This is a parabolic flow of Hermitian metrics which preserves the pluriclosed condition [26, 27]. A natural question is to see if the Strominger Kähler–like condition is preserved by the flow.

Every conformal class of any Hermitian metric on a compact complex surface admits a pluriclosed metric, but in higher dimensions, the existence of a pluriclosed metric is not automatically guaranteed anymore. Looking at the existence of left-invariant pluriclosed metrics on 6-dimensional nilpotent Lie groups endowed with a left-invariant complex structure, only 4 out of the 34 isomorphism classes admit pluriclosed metrics and they are all 2-step nilpotent, leading to the question whether this is a general feature in arbitrary dimensions [18]. It turns out that 2 of the 4 classes in dimension six admit Strominger Kähler–like metrics [5] and that the complex structure is abelian. More in general, a characterization of 2-step nilpotent Lie algebras admitting Strominger Kähler–like metrics have been obtained in [31], showing in particular that the left-invariant complex structure has to be abelian.

We recall that a left-invariant complex structure on a real Lie group G of real dimension $2n$ is completely determined by a complex structure J on the Lie algebra \mathfrak{g} of G, that is, by an endomorphism satisfying $J^2 = -\text{Id}$ and the integrability condition

$$J[x, y] - [Jx, y] - [x, Jy] - J[Jx, Jy] = 0, \quad \forall x, y \in \mathfrak{g}.$$

The complex structure J is called abelian if

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g},$$

or equivalently if the i-eigenspace of J, denoted with $\mathfrak{g}^{1,0}$, is an abelian subalgebra of $\mathfrak{g}^C := \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ (that motivates the terminology introduced in [8]). By [23] a Lie algebra admitting an abelian complex structure has abelian commutator, thus, it is 2-step solvable.
Recent results about the existence of pluriclosed metrics on solvable Lie groups have been obtained in [7, 14, 15, 19, 22].

The purpose of this paper is twofold. On one hand we study the existence of a pluriclosed metric on a unimodular Lie group with an abelian complex structure and on the other hand we investigate the interplay between the Strominger Kähler–like condition and the pluriclosed flow. We recall that a Lie group G is unimodular if and only if $|\det(Ad_g)| = 1$, for every $g \in G$, where Ad is the adjoint representation. For a connected Lie group G this is equivalent to requiring that $tr(ad_X) = 0$, for every $X \in \mathfrak{g}$, where \mathfrak{g} is the Lie algebra of G.

The existence of other types of Hermitian inner products compatible with abelian complex structures, like for instance Kähler [3], balanced [4] and locally conformally Kähler inner products [4], has been already studied in literature. In [13] the second author and the third author, in collaboration with H. Kasuya, proved that on non-abelian Lie algebras with an abelian complex structure there are no Hermitian-symplectic structures. The latter can be regarded as special pluriclosed inner products and the natural follow-up is focusing on the existence of pluriclosed metrics compatible with abelian complex structures.

Our first result is the following

Theorem 1.1. Let \mathfrak{g} be a unimodular Lie algebra with an abelian complex structure J. If (\mathfrak{g}, J) admits a pluriclosed inner product, then \mathfrak{g} is 2-step nilpotent.

In the particular case when the commutator of \mathfrak{g} is totally real the result follows from [19, Corollary 5.7], but our proof does not make use of the argument in [19]. Moreover, Theorem 1.1 generalizes [13, Proposition 6.1].

Next we focus on the existence of Strominger Kähler–like metrics in relation to the pluriclosed flow. By using the characterization in [31] of left-invariant Strominger Kähler–like metrics on 2-step nilpotent Lie groups, we prove the following

Theorem 1.2. Let (G, J, g_0) be a 2-step nilpotent Lie group with a left-invariant Strominger Kähler–like Hermitian structure and let g_t be the solution to the pluriclosed flow starting from g_0. Then g_t is Strominger Kähler–like for every t.

2 PROOF OF THEOREM 1.1

We first need the following

Lemma 2.1. Let \mathfrak{g} be a Lie algebra with an abelian complex structure J and an Hermitian inner product g. Then, the torsion 3-form T^B of the Bismut connection of (\mathfrak{g}, J, g) satisfies

$$T^B(x, y, z) = -g([x, y], z) - g([y, z], x) - g([z, x], y),$$

for every $x, y, z \in \mathfrak{g}$.

Proof. Let ω be the fundamental form of g. Let $x, y, z, w \in \mathfrak{g}$, then $T^B(x, y, z) = -d\omega(Jx, Jy, Jz)$ and we directly compute
\[d\omega(Jx, Jy, Jz) = -\omega([Jx, Jy], Jz) - \omega([Jy, Jz], Jx) - \omega([Jz, Jx], Jy) \]
\[= -\omega([x, y], Jz) - \omega([y, z], Jx) - \omega([z, x], Jy). \]

Hence the claim follows. \qed

As a consequence we have the following:

Proposition 2.2. Let \((\mathfrak{g}, J)\) be a Lie algebra with an abelian complex structure. A Hermitian inner product \(g\) on \((\mathfrak{g}, J)\) is pluriclosed if and only if

\[g([y, z], [w, x]) - g([x, z], [w, y]) + g([x, y], [w, z]) = 0 \quad (5) \]

for every \(x, y, z, w \in \mathfrak{g}\).

Proof. We recall that \(g\) is pluriclosed if and only if \(dT^B = 0\). Let \(x, y, z, w \in \mathfrak{g}\), then, by the previous Lemma,

\[dT^B(w, x, y, z) = -T^B([w, x], y, z) + T^B([w, y], x, z) - T^B([w, z], x, y) \]
\[- T^B([x, y], w, z) + T^B([x, z], w, y) - T^B([y, z], w, x) \]
\[= g([[w, x], y], z) + g([y, z], [w, x]) + g([z, [w, x]], y) \]
\[- g([[w, y], x], z) - g([x, z], [w, y]) - g([z, [w, y]], x) \]
\[+ g([[w, z], x], y) + g([x, y], [w, z]) + g([y, [w, z]], x) \]
\[+ g([[x, y], w], z) + g([w, z], [x, y]) + g([z, [x, y]], w) \]
\[- g([[x, z], w], y) - g([w, y], [x, z]) - g([y, [x, z]], w) \]
\[+ g([[y, z], w], x) + g([w, x], [y, z]) + g([x, [y, z]], w) \]
\[= 2(g([y, z], [w, x]) - g([x, z], [w, y]) + g([x, y], [w, z]). \]

where, in the last equality, we used the Jacobi identity.

Therefore, \(g\) is pluriclosed if and only if

\[g([y, z], [w, x]) - g([x, z], [w, y]) + g([x, y], [w, z]) = 0, \]

as required. \qed

Remark 2.3. Note that from the complex point of view, condition (5) is equivalent to

\[g([z_1, \bar{z}_2], [z_3, \bar{z}_4]) = g([z_1, \bar{z}_4], [z_3, \bar{z}_2]), \]

for every \(z_1, z_2, z_3, z_4 \in \mathfrak{g}^{1,0}\).
From now on, for a Lie algebra \(\mathfrak{g} \) with an abelian complex structure \(J \) we will denote by \(\zeta \) the center of \(\mathfrak{g} \) and by \(\mathfrak{g}_J^1 \) the ideal
\[
\mathfrak{g}_J^1 = \mathfrak{g}^1 + J\mathfrak{g}^1,
\]
where \(\mathfrak{g}^1 := [\mathfrak{g}, \mathfrak{g}] \). Note that \(\mathfrak{g}_J^1 \) is a \(J \)-invariant Lie subalgebra of \(\mathfrak{g} \).

Under the hypothesis of Proposition 2.2 we obtain the following characterization in terms of the center \(\zeta \) of \(\mathfrak{g} \).

Corollary 2.4. Let \((\mathfrak{g}, J, g) \) be a Lie algebra with an abelian complex structure and a pluriclosed inner product. Then
\[
\| [x, y] \|^2 + \| [x, Jy] \|^2 = g([x, Jx], [y, Jy])
\]
for every \(x, y \in \mathfrak{g} \). In particular, \(x \in \mathfrak{g} \) lies in the center of \(\mathfrak{g} \) if and only if
\[
[x, Jx] = 0,
\]
that is,
\[
\zeta = \{ x \in \mathfrak{g} : [x, Jx] = 0 \}.
\]

Proof. By using (5) for \(x, y \in \mathfrak{g} \) we have
\[
\| [x, y] \|^2 + \| [x, Jy] \|^2 = g([x, y], [x, y]) + g([x, Jy], [x, Jy]) = g([Jx, Jy], [x, y]) - g([Jx, y], [x, Jy]) = g([y, Jy], [x, Jx]),
\]
and the claim follows. \(\square \)

We will need the following:

Lemma 2.5. Let \(\mathfrak{g} \) be a unimodular Lie algebra with an abelian complex structure \(J \). Then,
\[
\mathfrak{g}_J^1 \neq \mathfrak{g}.
\]

Proof. By contradiction, assume that \(\mathfrak{g}_J^1 = \mathfrak{g} \). Then, since by hypothesis \(\mathfrak{g}^1 \) is an abelian ideal in \(\mathfrak{g} \), by [9, Proposition 4.1] \((\mathfrak{g}/\zeta, J) \) is holomorphically isomorphic to \(\text{aff}(A) \) for some commutative algebra \(A \). Since, \(\mathfrak{g} \) is unimodular, also \(\mathfrak{g}/\zeta \) is unimodular, and so \(\text{aff}(A) \) is unimodular. So, by [4, Lemma 2.6], \(A \) is nilpotent and \(\text{aff}(A) \) is a nilpotent Lie algebra. As a consequence, we have that \(\mathfrak{g}/\zeta \) is also nilpotent implying that \(\mathfrak{g} \) is nilpotent too. But, this is absurd since by [25] for a nilpotent Lie algebra \(\mathfrak{g} \) we have \(\mathfrak{g}_J^1 \neq \mathfrak{g} \). \(\square \)

Proposition 2.6. Let \(\mathfrak{g} \) be a Lie algebra with an abelian complex structure \(J \). Assume that \((\mathfrak{g}, J) \) has a pluriclosed inner product \(g \) and \(\mathfrak{g}_J^1 \) is 2-step nilpotent. Then \(\mathfrak{g} \) is 2-step nilpotent.
Proof. Write
\[\mathfrak{g} = (\mathfrak{g}_J^1)^{\perp} \oplus \mathfrak{g}_J^1 \]
with respect to the inner product \(g \). Since \(\mathfrak{g}_J^1 \) is nilpotent and has a pluriclosed inner product, its center \(\mathfrak{u} \) is \(J \)-invariant. We write
\[\mathfrak{g}_J^1 = \mathfrak{u}^{\perp} \oplus \mathfrak{u}. \]

The key observation is that \(\mathfrak{u} \) is contained in the center of \(\mathfrak{g} \). Indeed, if \(x \in \mathfrak{u} \), then in particular we have \([x, Jx] = 0\) and Corollary 2.4 implies that \(x \) belongs to the center of \(\mathfrak{g} \).

Now let \(f \in (\mathfrak{g}_J^1)^{\perp} \). We show that \([f, x] \) lies in the center of \(\mathfrak{g} \), for every \(x \in \mathfrak{g} \).

Set \(D := \text{ad}_f : \mathfrak{g}_J^1 \to \mathfrak{g}_J^1 \). Since \(J \) is abelian, \(\text{ad}_f J = -\text{ad}_f f \) and therefore, \(D \) and \(DJ \) are both derivations. Moreover, we observe that
\[D[x, y] = 0 \quad \text{for every} \quad x, y \in \mathfrak{g}_J^1; \]
indeed from the 2-step nilpotency of \(\mathfrak{g}_J^1 \), we have that \([x, y] \in \mathfrak{u} \), for every \(x, y \in \mathfrak{g}_J^1 \), and that \(\mathfrak{u} \subset \zeta \).

Let \(x \in \mathfrak{g}_J^1 \) and \(y \in \mathfrak{g} \). We first show that
\[[Dx, J Dx] = [DJx, Dx]. \]
Since \(D \) is a derivation,
\[[Dx, J Dx] = D[x, J Dx] - [x, DJ Dx], \]
now, \(x, J Dx \in \mathfrak{g}_J^1 \) because \(\mathfrak{g}_J^1 \) is \(J \)-invariant, and so, by the previous observation, \(D[x, J Dx] = 0 \). Hence, now using that also \(DJ \) is a derivation we get
\[[Dx, J Dx] = -[x, DJ Dx] = -DJ[x, Dx] + [DJx, Dx]. \]
Similarly, \(x, Dx \in \mathfrak{g}_J^1 \), and by the 2-step nilpotency of \(\mathfrak{g}_J^1 \), \([x, Dx] \in \mathfrak{u} \). Since \(\mathfrak{u} \) is \(J \)-invariant, \(J[x, Dx] \in \mathfrak{u} \subset \zeta \), therefore \(DJ[x, Dx] = 0 \), showing the claim.

Then, taking into account that \(\mathfrak{g} \) is 2-step solvable, Corollary 2.4 yields that
\[\|[Dx, y]||^2 + \|[Dx, Jy]||^2 = g([Dx, J Dx], [y, Jy]) = g([DJx, Dx], [y, Jy]) = 0, \]
from which we deduce that \([f, x] \) is in the center of \(\mathfrak{g} \) for all \(x \in \mathfrak{g}_J^1 \).

Now let \(f_1, f_2 \in (\mathfrak{g}_J^1)^{\perp} \). By Jacobi identity
\[[[f_1, f_2], x] = 0 \]
for every \(x \in \mathfrak{g}_J^1 \). Hence \([f_1, f_2] \in \mathfrak{u} \) and so in the center of \(\mathfrak{g} \), as required. \(\square \)

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. We work by induction on the complex dimension n of \mathfrak{g}. The base case $n = 1$ is trivial and we assume that the statement holds up to complex dimension $n - 1$. Let (\mathfrak{g}, J, g) be a Lie algebra of complex dimension n with an abelian complex structure and a pluriclosed inner product. In view of Lemma 2.5, \mathfrak{g}_1 is a proper Lie subalgebra and inherits an abelian complex structure and a pluriclosed inner product. By induction, assumption \mathfrak{g}_1 is 2-step nilpotent. Hence Proposition 2.6 implies that \mathfrak{g} is 2-step nilpotent and the claim follows.

Remark 2.7. By Theorem 1.1, if \mathfrak{g} is a unimodular Lie algebra with an abelian complex structure J and a pluriclosed inner product, then \mathfrak{g} is 2-step nilpotent. In particular, notice that \mathfrak{g}_1 is abelian. Indeed, since J is abelian, \mathfrak{g} is 2-step solvable and

$$[\mathfrak{g}, \mathfrak{g}] = [J\mathfrak{g}, J\mathfrak{g}] = 0.$$

Moreover from the 2-step nilpotency of \mathfrak{g} we infer that also

$$[\mathfrak{g}_1, J\mathfrak{g}_1] = 0.$$

As a consequence, if $X = \Gamma \backslash G$ is a nilmanifold endowed with an invariant abelian complex structure J and a pluriclosed metric g, then by [18, Theorem A], X is a total space of a principal holomorphic torus bundle over a torus.

Notice that from Theorem 1.1 in particular follows that a nilpotent Lie algebra with an abelian complex structure and admitting a pluriclosed inner product is necessarily 2-step. This partially confirms the conjecture that the existence of a pluriclosed inner product on a nilpotent Lie algebra \mathfrak{g} with a complex structure forces \mathfrak{g} to be 2-step.

Moreover, it is quite natural to wonder how rigid is the existence of another kind of special inner products on a Lie algebra with a complex structure. In particular, the so-called astheno-Kähler metrics introduced by Jost and Yau in [20], which are characterized by the condition

$$\partial \overline{\partial} \omega^{n-2} = 0.$$

Clearly, on a complex surface any Hermitian metric is astheno-Kähler and in complex dimension 3 the notion of astheno-Kähler metric coincides with that of pluriclosed. Here we observe that in the nilpotent case the existence of a astheno-Kähler inner product on a Lie algebra compatible with an abelian complex structure does not force the 2-step condition in contrast to Theorem 1.1 for the pluriclosed case.

Example 2.8. In view of [21, Corollary 5.1.9] we consider the 8-dimensional 3-step nilpotent Lie algebra \mathfrak{g} with complex structure equations

$$d\varphi^1 = d\varphi^2 = 0, \quad d\varphi^3 = \varphi^{1\bar{1}}, \quad d\varphi^4 = B_{11}\varphi^{1\bar{1}} + B_{13}(\varphi^{1\bar{2}} + \varphi^{1\bar{3}}) + D_{3\bar{1}}(\varphi^{2\bar{1}} + \varphi^{3\bar{1}}),$$

with $D_{3\bar{1}} \neq 0$. In particular, the complex structure J is abelian.
Let
\[\omega = \sum_{k=1}^{3} ix_{kk} \varphi^{kk} + \sum_{1 \leq k < l \leq 3} (x_{kl} \varphi^{kl} - \bar{x}_{kl} \varphi^{lk}) + \frac{i}{2} \varphi^{44}. \]

If \(i x_{22} + i x_{33} + 2 \Im m (x_{23}) = 0 \), then \(\omega \) defines an astheno Kähler metric on \((\mathfrak{g}, J) \).

3 | PROOF OF THEOREM 1.2

Let \(G \) be a 2-step nilpotent Lie group with a left-invariant Hermitian structure \((\mathfrak{g}, J) \) and denote by \(\mathfrak{g} \) its Lie algebra. Assume further that \(g \) is pluriclosed. In view of [31], the metric \(g \) is Strominger Kähler–like if and only if there exists an orthonormal basis \(\{x_i\}_{i=1}^{s} \) of \(\mathfrak{g}^1 = [\mathfrak{g}, \mathfrak{g}] \) and an orthonormal basis \(\{\epsilon_i\}_{i=1}^{2n} \) of \(\mathfrak{g} \) such that

1. \(J \epsilon_i = \epsilon_{i+n}, \quad i = 1, ..., n; \)
2. \(\mathfrak{g}^1 + J \mathfrak{g}^1 = \text{span}\{\epsilon_{r+1}, ..., \epsilon_n, \epsilon_{n+r+1}, ..., \epsilon_{2n}\}; \)
3. the only non-trivial brackets under \(\{\epsilon_i\} \) are
 \[[\epsilon_i, \epsilon_{n+i}] = \lambda_i x_i, \quad i = 1, ..., s, \]
 for some positive numbers \(\{\lambda_i\}_{i=1}^{s} \) and \(n - r \leq s \leq \min\{r, 2(n-r)\} \).

Note, that in particular \(J \) has to be abelian.

If \(\{e^i\} \) is the dual basis to \(\{\epsilon_i\} \), then the metric \(g \) writes as
\[g = \sum_{k=1}^{2n} (e^k)^2. \]

From [31] it follows that every other left-invariant pluriclosed metric \(h \) taking the diagonal form
\[h = \sum_{k=1}^{2n} a_k \epsilon^k \epsilon^k, \quad a_k > 0, a_k = a_{n+k}, \quad \text{for every } k = 1, ..., n, \]
is Strominger Kähler–like since we can modify the basis \(\{\epsilon_k\} \) to
\[\tilde{\epsilon}_k = \frac{1}{\sqrt{a_k}} \epsilon_k \]
which still satisfies items 1–3.

Moreover, in view of [12], the Ricci form of the Bismut connection of \(h \) takes the following expression:
\[\rho^B_h(x, y) = \frac{1}{2} \sum_{k=1}^{s} \frac{1}{a_k} h([\epsilon_k, \epsilon_{k+n}], [x, y]), \]
which implies that ρ^B_h takes the diagonal form

$$\rho^B_h = \sum_{k=1}^{s} b_k \epsilon^k \wedge \epsilon^{n+k}.$$

It follows that, by uniqueness, the solution to the pluriclosed flow starting from g_0 is diagonal for every t and the claim of Theorem 1.2 follows.

Remark 3.1. Notice that we can give a more explicit expression for the Ricci form $\rho^B_{g_t}$ of the Bismut connection ∇^B of the metric g_t. Let $\{\epsilon_i\}$ be a basis satisfying items 1–3 and

$$g_0 = \sum (\epsilon^k)^2.$$

Consider the solution to the pluriclosed flow

$$g_t = \sum a^t_k (\epsilon^k)^2.$$

If $\{\epsilon^t_k\}$ is a g_t-orthonormal basis satisfying items 1–3, namely

$$\epsilon^t_k = \frac{1}{\sqrt{a^t_k}} \epsilon_k,$$

then

$$\rho^B_{g_t}(x, y) = \frac{1}{2} \sum g_t([\epsilon^t_k, \epsilon^t_{n+k}], [x, y]).$$

We have

$$[\epsilon^t_k, \epsilon^t_{n+k}] = \frac{1}{\sqrt{a^t_k}} \sqrt{a^t_{n+k}} [\epsilon_k, \epsilon_{n+k}] = \frac{1}{a^t_k} \lambda^t_k x^t_k$$

and

$$[\epsilon^t_k, \epsilon^t_{n+k}] = \lambda^t_{k, n+k}$$

with $\{x^t_k\}$ g_t-orthonormal. Hence

$$\rho^B_{g_t}(x, y) = \frac{1}{2} \sum \lambda^t_k g_t(x^t_k, [x, y]).$$

Now

$$\rho^B_{g_t}(\epsilon_i, \epsilon_{n+i}) = \frac{1}{2} \sum_{k=1}^{s} \lambda^t_k g_t(x^t_k, [\epsilon_i, \epsilon_{n+i}]).$$
Since
\[[\varepsilon_i, \varepsilon_{n+i}] = a^l_i [\varepsilon^l_i, \varepsilon^l_{n+i}] = a^l_i \lambda^l_i x^l_i \]
we get
\[\rho^B_{g_t}(\varepsilon_i, \varepsilon_{n+i}) = \frac{1}{2} \sum_{k=1}^s \lambda^l_k g_k(x^l_k, [\varepsilon_i, \varepsilon_{n+i}]) = \frac{1}{2} \sum_{k=1}^s \lambda^l_k a^l_i g_k(x^l_k, \lambda^l_i x^l_i) = \frac{1}{2} (\lambda^l_i)^2 a^l_i. \]

Therefore,
\[\rho^B_{g_t} = \frac{1}{2} \sum_{k=1}^s (\lambda^l_k)^2 a^l_k \varepsilon^k \wedge \varepsilon^{n+k}. \]

ACKNOWLEDGMENTS
The paper is supported by Project PRIN 2017 ‘Real and complex manifolds: Topology, Geometry and Holomorphic Dynamics’ and by GNSAGA of INdAM. The second author has financially been supported by the Programme ‘FIL-Quota Incentivante’ of University of Parma and co-sponsored by Fondazione Cariparma.

Open Access Funding provided by Universita degli Studi di Parma within the CRUI-CARE Agreement.

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES
1. A. Andrada, M. L. Barberis, and I. Dotti, Classification of abelian complex structures on 6-dimensional Lie algebras, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 232–255.
2. A. Andrada, M. L. Barberis, and I. Dotti, Corrigendum: Classification of abelian complex structures on six-dimensional Lie algebras, J. Lond. Math. Soc. (2) 87 (2013), no. 1, 319–320.
3. A. Andrada, M. L. Barberis, and I. Dotti, Abelian Hermitian geometry, Differential Geom. Appl. 30 (2012), no. 5, 509–519.
4. A. Andrada and M. Origlia, Locally conformally Kähler structures on unimodular Lie groups, Geom. Dedicata 179 (2015), no. 1, 197–216.
5. D. Angella, A. Otal, L. Ugarte, and R. Villacampa, On Gauduchon connections with Kähler-like curvature, Commun. Anal. Geom. arXiv:1809.02632 [math.DG], to appear.
6. A. Andrada and R. Villacampa, Abelian balanced Hermitian structures on unimodular Lie algebras, Transform. Groups 21 (2016), no. 4, 903–927.
7. R. Arroryo and R. Lafuente, The long-time behavior of the homogeneous pluriclosed flow, Proc. Lond. Math. Soc. (3) 119 (2019), no. 1, 266–289.
8. M. L. Barberis, I. G. Dotti Miattello, and R. J. Miattello, On certain locally homogeneous Clifford manifolds, Ann. Glob. Anal. Geom. 13 (1995), 289–301.
9. M. L. Barberis and I. Dotti, Abelian complex structures on solvable Lie algebras, J. Lie Theory 14 (2004), 25–34.
10. J.-M. Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), no. 4, 681–699.
11. I. Dotti and A. Fino, *HyperKähler torsion structures invariant by nilpotent Lie groups*, Classical Quantum Gravity **19** (2002), no. 3, 551–562.
12. N. Enrietti, A. Fino, and L. Vezzoni, *The pluriclosed flow on nilmanifolds and Tamed symplectic forms*, J. Geom. Anal. **25** (2015), 883–909.
13. A. Fino, H. Kasuya, and L. Vezzoni, *SKT and tamed symplectic structures on solvmanifolds*, Tohoku Math. J. (2) **67** (2015), 19–37.
14. A. Fino, A. Otal, and L. Ugarte, *Six-dimensional solvmanifolds with holomorphically trivial canonical bundle*, Int. Math. Res. Not. **2015**, no. 24, 13757–13799.
15. A. Fino and F. Paradiso, *Generalized Kähler almost abelian Lie groups*, Ann. Mat. Pura Appl. **200** (2021), no. 4, 1781–1812.
16. A. Fino, M. Parton, and S. Salamon, *Families of strong KT structures in six dimensions*, Comment. Math. Helv. **79** (2004), no. 2, 317–340.
17. A. Fino and N. Tardini, *Some remarks on Hermitian manifolds satisfying Kähler-like conditions*, Math. Z. **298** (2021), no. 1, 49–68.
18. A. Fino and L. Vezzoni, *A correction to “Tamed” symplectic forms and strong Kähler with torsion metrics*, J. Symplectic Geom. **17** (2019), no. 4, 1079–1081.
19. M. Freibert and A. Swann, *Two-step solvable SKT shears*, Math. Z. **299** (2021), no. 3–4, 1703–1739.
20. J. Jost and S.-T. Yau, *A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry*, Acta Math. **170** (1993), no. 2, 221–254; Correction, Acta Math. **173** (1994), no. 2, 307.
21. A. Latorre, ‘Geometry of nilmanifolds with invariant complex structure’, Phd Thesis, Universidad de Zaragoza, 2016.
22. T. Madsen and A. Swann, *Invariant strong KT geometry on four-dimensional solvable Lie groups*, J. Lie Theory **21** (2011), no. 1, 55–70.
23. A. P. Petravchuk, *Lie algebras decomposable into a sum of an abelian and a nilpotent subalgebra*, Ukr. Math. J. **40** (1988), no. 3, 331–334.
24. M. Pujía and L. Vezzoni, *A remark on the Bismut-Ricci form on 2-step nilmanifolds*, C. R. Math. Acad. Sci. Paris **356** (2018), no. 2, 222–226.
25. S. Salamon, *Complex structures on nilpotent Lie algebras*, J. Pure Appl. Algebra **157** (2001), 311–333.
26. J. Streets and G. Tian, *A Parabolic flow of pluriclosed metrics*, Int. Math. Res. Notices **2010** (2010), no. 16, 3101–3133.
27. J. Streets and G. Tian, *Regularity results for pluriclosed flow*, Geom. Topol. **17** (2013), no. 4, 2389–2429.
28. J. E. Snow, *Invariant complex structures on four dimensional solvable real Lie groups*, Manuscripta Math. **66** (1990), 397–412.
29. S. T. Yau, Q. Zhao, and F. Zheng, *On Strominger Kähler-like manifolds with degenerate torsion*, arXiv:1908.05322.
30. Q. Zhao and F. Zheng, *Strominger connection and pluriclosed metrics*, arXiv:1904.06604.
31. Q. Zhao and F. Zheng, *Complex nilmanifolds and Kähler-like connections*, J. Geom. Phys. **146** (2019), 103512.