Nonlinear wave evolution with data-driven breaking

D. Eeltink1,4,*, H. Branger2, C. Luneau2, Y. He6, A. Chabchoub6,7,8, J. Kasparian3, T.S. van den Bremer4,5, and T.P. Sapsis1

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France
3Group of Applied Physics and Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
4Department of Engineering Science, University of Oxford, UK
5Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
6Centre for Wind, Waves and Water, School of Civil Engineering, University of Sydney, Sydney, Australia
7Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
8Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
*Corresponding author: eeltink@mit.edu

February 22, 2022

Abstract
Wave breaking is the mechanism that dissipates energy input into ocean waves by wind and transferred across the spectrum by nonlinearity. It determines the properties of a sea state and plays a crucial role in ocean-atmosphere interaction, ocean pollution, and rogue waves. Owing to its turbulent nature, wave breaking remains too computationally demanding to solve using direct numerical simulations except for in simple, short-duration circumstances. To overcome this challenge, we present a blended machine learning framework in which a physics-based nonlinear evolution model for deep-water, non-breaking waves and a recurrent neural network are combined to predict the evolution of breaking waves. We use wave tank measurements rather than simulations to provide training data and use a long short-term memory neural network to apply a finite-domain correction to the evolution model. Our blended machine learning framework gives excellent predictions of breaking and its effects on wave evolution, including for external data.

1 Introduction
The importance of wave breaking, the mechanism that dissipates energy input into ocean waves, is twofold. First, wave breaking provides an upper limit to how tall or steep waves can become, thereby limiting the steepening effects of winds1, currents
2, crossing seas3, refraction by bathymetry4, abrupt depth transitions5,6, and nonlinear focusing7,8,9. Second, wave breaking itself plays a crucial role in important physical processes, such as the transport and dispersion of surface pollution including plastic debris and oil10, the energy, momentum and mass fluxes in ocean-atmosphere interactions11,12 with climate applications such as atmosphere-ocean CO\textsubscript{2} exchange13,14, and the formation of rogue waves15.

Despite its ubiquity and importance, no satisfying models for wave breaking exist. In potential-flow models, such as (variants of) the nonlinear Schrödinger (NLS) equation7,16 and higher-order spectral methods (HOSM)17, the effects of breaking and the vorticity the breaking induces are ignored as a direct consequence of the potential-flow assumption; they must be re-introduced through reduced-form breaking terms added to the model in ad-hoc fashion18,19,20,21. Such reduced-form breaking terms have been validated for highly simplified cases, but not for realistic broad-banded spectra, and require parameter tuning, yielding them unfit for prediction. On a larger scale, spectral wave models, such as WaveWatch III,22,23,24 include wave breaking through empirically determined dissipation modules22,23,24, but do not resolve individual waves.

Direct numerical simulations (DNS) of the Navier–Stokes equations have to be performed in 3D to explicitly resolve turbulence and have only recently been used to capture the entire pre- and post-breaking of only a single wave in 3D25, although at very high computational cost. The 2D approximation26,27 offers a promising prospect, but remains so computationally demanding that only a very narrow region in space and time can be studied. In short, none of the three methods to describe breaking discussed above can be used in practical wave-resolving forecasting.

In other related fields, machine learning (ML) has recently been used to complement physical models with great success. In climate modelling, where the main uncertainty comes from estimating sub-grid processes, ML techniques can be used to emulate physical processes not resolved by the climate model28. In fluid dynamics, ML in conjunction with the Navier–Stokes equations can be used to obtain the pressure on the wall of an aneurysm from just an image of the velocity field29. Using ML, extreme event statistics in nonlinear dynamical systems can be correctly predicted from only a small number of
samples [30]. In so-called blended machine learning specifically, a simplified physics-based model is combined with a ML algorithm to capture the physical processes missing from the simplified model. The algorithm is then trained on data to learn the full solution or ground truth. This approach has been successfully applied to spatio-temporally non-local turbulence closures [31] and particle trajectories in vortical flows [32]. The key ingredient is to include memory of previous time steps in a recurrent neural network (RNN), allowing non-local representations by which the missing physical processes or ‘closure terms’ can be parameterized. While ML studies have been performed in the context of wave breaking, these have focused on the detection and classification of breaking waves [33–35], rather than their prediction and simulation.

In this paper we develop a blended machine learning framework to model wave breaking and its effects on nonlinear evolution of ocean waves. We show that the framework can be used for wave-resolving forecasting of breaking waves. In doing so, we overcome the challenge of having to explicitly model the turbulent nature of wave breaking. In the framework we develop, we use the viscous modified NLS (MNLS) equation [7, 16, 36, 37] as the physics-based model for non-breaking waves and wave tank measurements to serve as the ground truth.

Several mechanisms influence the evolution of waves, both in a tank and in the ocean. These include wind forcing, dispersion, nonlinear interactions, and dissipation as a result of kinematic viscosity, tank side-walls and wave breaking. The MNLS is a canonical wave model that can predict the nonlinear and dispersive evolution of the (complex) envelope a of the free surface of unidirectional water waves accurately [38] and at very low computational cost, provided the waves are in deep water, do not break, there is no energy input from wind, and dissipative effects other than the kinematic viscosity are excluded. In non-dimensional form, the MNLS we use reads:

$$\frac{\partial a}{\partial \xi} + \frac{1}{2} \frac{\partial^2 a}{\partial \tau^2} + i a |a|^2 = \epsilon \left[8 |a|^2 \frac{\partial a}{\partial \tau} + 2a^2 \frac{\partial a^*}{\partial \tau} + 2iaH \left(\frac{\partial |a|^2}{\partial \tau} \right) \right] - \delta_0 a - i\delta_1 \frac{\partial a}{\partial \tau} - \delta_2 \frac{\partial^2 a}{\partial \tau^2},$$

(1)

where ξ is dimensionless space, τ dimensionless time, the steepness $\epsilon = A_0 k_0 \sqrt{\nu}$ with A_0 the characteristic surface elevation amplitude and k_0 the carrier wave number, the $*$ symbol denotes the complex conjugate, H a Hilbert transform, and the zeroth, first and second-order viscous contributions have coefficients $\delta_0 = 1/(2\epsilon \nu)$, $\delta_1 = 5\nu/2$, $\delta_2 = 5\epsilon \nu$ respectively, where $\nu = T_0 k_0^2 \nu$ with T_0 the carrier wave period and $\nu = 1.00 \times 10^{-6}$ m2/s the kinematic viscosity.

From the listed mechanisms, the NLS terms [7] in eq. (1) capture the key physical processes (i.e., nonlinearity and dispersion) that are responsible for the Benjamin–Feir [39] or modulational instability (MI), which characterizes the evolution of non-breaking deep-water surface gravity waves. The higher-order terms [16] account for asymmetries in the spectrum and allow for steep (narrow-band) waves to be modelled accurately [35]. The MNLS is derived from the water-wave equations using a perturbation expansion in steepness and a slowly varying envelope approximation [16, 40]; as such, its validity is compromised for very broad-banded spectra. We emphasize that the spatial-evolution version of the MNLS we use (i.e., eq. (1)) captures linear dispersion exactly even for broad-banded spectra, whereas temporal-evolution versions require additional higher-order (spatial) derivatives [11, 12, 33, 44]. The bandwidth limitations of eq. (1) arise because of the combination of broad bandwidth and nonlinearity. The viscous damping terms in eq. (1) account for the kinematic viscosity, and more importantly, restrict growth of spurious high-frequency waves when the MNLS reaches unphysical amplitudes [36, 37]. We do not account for side-wall friction, which does not have a significant effect in our experiments. Furthermore, we study the effect of wave breaking in isolation and therefore omit wind forcing [45, 46].

For the blended framework, high-fidelity turbulence-resolving direct numerical simulations remain too computationally expensive as a method to generate training data. We instead use measurements of breaking waves in a wave tank as the ground truth (see Methods). We obtain a training data set consisting of three wave types. Modulated plane waves (Wave Category I) are the simplest idealized example of breaking waves, reaching their maximum amplitude due to MI. Dispersively focused irregular waves (Wave Category II) provide a more realistic representation of the ocean [17], and can reach a breaking amplitude due to focusing of the phases of the different-frequency wave components. Modulated plane waves and focused irregular waves (Wave Categories I-II) are chosen deliberately as they are the only two wave types for which breaking can be clearly and non-controversially detected in the spectrum. Finally, irregular waves with random phases (Wave Category III) are closest to a (unidirectional) sea state, where the number of breaking waves is sporadic, depending on the significant wave height, and breaking is harder to detect. The data set is split into training, validation and test sets, of which only the first two are used in the training and training optimization process of the model. In addition, the model is only trained on segments of the total propagation length of the experiments.

Although measurements have the added advantage of being closer to the ground truth than any model (measurement errors notwithstanding) thus capturing the relevant physical processes more completely, data is only available at a finite number of measurement locations, where wave gauges are positioned, and not at each solver step. While the wave envelope varies sufficiently slowly and can be interpolated, the phase cannot (see [31]). To overcome the requirement of conventional machine learning methods [38, 32, 31] to have the full ground truth at each solver step, we develop a finite-domain machine learning (FDML) correction, which applies a RNN over multiple solver steps. The RNN allows the network’s memory states to detect signals, such as steepening or spectral broadening, as predictors of wave breaking. In addition, it allows future information of the simplified model (MNLS) to influence the correction at earlier time steps. The algorithm is thus non-local and non-causal, partly explaining its efficiency. The FDML framework we develop can be used in other applications in which only part of the ground truth is available, such as in optical fibers, in which it is notoriously difficult to measure phase [49].
2 Results

2.1 Wave Category I: modulated plane waves

Figure 1: Example result (not used for training) for the spatial evolution of a modulated plane wave (Wave Category I) showing wave breaking at $\xi = 3.42$, as indicated by the black dotted line. a-d) Time domain. Color bar indicates surface envelope amplitude a (see eq. (1)). a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measurements and MNLS or MNLS+FDML simulations. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the amplitude spectrum normalized by the maximum of the initial condition.

Figure 1 shows results for the canonical case of a modulated (or perturbed) plane wave (Wave Category I), consisting of a carrier wave perturbed by upper and lower sidebands, resulting in dynamics that are mainly determined by only three spectral modes. Due to modulational instability [39, 7], the spectral sidebands grow, and the spectrum broadens. In the time domain, this corresponds to an amplification of the amplitude. In the MNLS simulation (fig. 1a-e), an approximate recurrence back to the initial condition occurs, known as the Fermi–Pasta–Ulam–Tsingou (FPUT) recurrence [50, 51, 52]. In the experiment (fig. 1c), the amplitude amplification leads to breaking at $\xi = 3.42$, most notably resulting in the lower sideband becoming dominant (fig. 1g) [8, 53, 54].

We note that existing breaking models, such as the steepness threshold model by [19] and the nonlinear dissipation term in [18] correctly predict a spectral downshift for a modulated plane wave, although they have not been compared to experimental data therein (see Supplementary Information for a comparison with our results). The kinetic energy equation based model [20, 21] also gives good qualitative agreement for the downshift with modulated plane wave experiments, but requires parameter tuning.

Our MNLS+FDML model correctly predicts the permanent downshift of the peak (fig. 1f) and consequently of the spectral mean. The large amplitudes predicted by the MNLS alone (fig. 1a) leading to breaking and amplitude reduction in experiments (fig. 1c) are capped correctly (fig. 1b). The dispersive spread of the measurements (fig. 1c) at long distances is captured well by the MNLS+FDML model, although the light-colored ‘valleys’ of the envelope in the experiments are somewhat deeper and more broad. Importantly, our MNLS+FDML model does not apply an over-correction for non-breaking waves (see S12).
2.2 Wave Category II: dispersively focused irregular waves

To examine wave fields that form a more realistic representation of the real ocean environment, we apply our MNLS+FDML framework to focused irregular waves created using a JONSWAP spectrum \[47\] as the input condition. The phases of the components of this spectrum are chosen so that they all come into phase (according to linear theory) at position ξ_f in the tank, creating a steep wave that will break at ξ_f or before.

Figure 2: Example result (not used for training) for the evolution of focused irregular waves (Wave Category II) showing wave breaking at $\xi = 0.78$, as indicated by the black dotted line. a-d) Time domain. Color bar indicates surface elevation envelope. a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+FDML. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the spectrum normalized by the maximum of the initial condition. The horizontal red dashed lines correspond to the gauge locations examined in fig. 3.

Figure 2 shows the evolution of an example wave, breaking at $\xi = 0.78$. The measured envelope evolution differs from the MNLS prediction, and equally from a non-breaking wave, in several ways. First, in the time domain, the MNLS model (fig. 2a) predicts a much higher amplitude around $\xi = 0.78$ than the measurement (fig. 2c), as also manifested from the much higher steepness (fig. 4c). Second, breaking causes a sudden loss of about 30% of the total energy (calculated as the norm of the envelope, i.e., $N(\xi) = \int \hat{u}^2 d\Omega$), as shown in fig. 4a, unlike the MNLS prediction. This energy loss (not a redistribution across the spectrum) is due to the turbulent nature of breaking. Third, the MNLS predicts strong dispersive spreading for $\xi > 0.78$ (fig. 2a,e) not present in the measurements (fig. 2c,g). The additional high-frequency components present in the MNLS predictions at long distances (fig. 2a) travel with slower speeds (fig. 2a), in accordance with the linear surface gravity wave dispersion relation. The discrepancy in high-frequency components between MNLS and measurements is most clearly displayed in the time series at $\xi = 1.33$ (gauge 7, fig. 2b) and at $\xi = 2.06$ (gauge 11, fig. 2i). Focusing in the time domain corresponds to a broadening of the spectrum at $\xi = 0.78$ in the MNLS simulations (fig. 4i). In reality, these additional high-frequency components are quenched by breaking (comparing fig. 2 to fig. 3, and fig. 4a to fig. 4f). Finally, wave breaking induces a downshift of the spectral peak and the spectral mean \[55, 58, 54\]. The MNLS prediction does not account for the former (fig. 3e and f), and even shows a slight upshift of the mean frequency, as shown in fig. 4b, whereas the downshift in the measurement is dramatic.

For the focused irregular waves, the architecture and training procedure of the FDML algorithm is identical to that used for the modulated plane wave, but the training data set consists of focused wave groups with initial JONSWAP spectra. The MNLS+FDML model is able to reproduce accurately the measured evolution in both the time and the frequency domain. The significant improvement compared to the MNLS model is indicated by the mean squared error (MSE) evolution in fig. 2d,h.
Figure 3: Envelopes and amplitude spectra of the focused irregular waves (Wave Category II) shown in fig. 2 at different spatial locations: initial condition (IC, dotted grey) measurements (solid blue), MNLS simulations (dashed yellow) and MNLS+FDML simulations (dashed-dotted green) at the wave gauge locations indicated by the red-dotted lines in fig. 2.

Figure 4: Evolution of summary parameters of the focused irregular waves (Wave Category II) shown in figs. 2 and 3: a) Evolution of the norm N/N_0 b) Evolution of the mean frequency Ω_c. Note that $\Omega = 0$ corresponds to the central peak of the initial spectrum, which is lower than Ω_c for the initial condition. c) Evolution of the characteristic steepness A_{max,k_0}.

Examining the effect of breaking, fig. 2b shows the maximum amplitude of the envelope is attenuated to a value close to the measurement value, as corroborated by the sharp decline of the norm in fig. 4a. In addition, the suppression of the dispersive spreading at long distances is correctly predicted. In the spectrum, fig. 2f shows the spectral width at the breaking point is reduced. Figure 3f shows that the (slight) downshifting of the peak is correctly reproduced. The downshift of the mean frequency closely follows the measurements (fig. 4b). As for modulated plane waves, for non-breaking focused irregular waves our MNLS+FDML model does not apply an over-correction. We refer to the Supplementary Information for an example of a non-breaking wave.

To assess overall performance of the MNLS+FDML model, fig. 5 shows the mean squared error (MSE) for the full length of propagation, averaged over the experiments in the test set, i.e., those that were not used for training (see Supplementary Information for all cases from the test set). The FDML correction is responsible for an order-of-magnitude improvement compared to the MNLS prediction. To verify the generality of our MNLS+FDML model, we also predict wave breaking in an external data set of focused breaking waves recorded in the Multifunctional Ship Model Towing Tank at Shanghai Jiao Tong University, which has a much larger tank and wave dimensions than our training set, and find comparable results to those reported here. Results are displayed in SI 3.4

2.3 Wave Category III: random irregular waves

Moving yet further to a realistic random sea state, we investigate the ability of our MNLS+FDML model to provide forecasts of (unidirectional) irregular waves based on a broad-banded JONSWAP spectrum with peak enhancement factor $\gamma = 3.3$, with random instead of focused phases (Wave Category II). In this category, both dispersion and MI can lead to wave steepening. Random sea state forecasts face two challenges. First, based on a finite-duration measurement at a point, random irregular waves can, as a result of dispersion, only be forecast over a finite so-called predictable region, which narrows as the time
Figure 5: Mean squared error (MSE) relative to the ground truth for the MNLS+FDML model compared to the MNLS model, averaged over all experiments from the test set (the set of data not used for training) that are breaking. The shaded region corresponds to ±1 standard error across cases. Data is shown for the full propagation length. Wave Category I in the time domain (a) and frequency domain (b) and Wave Category II in the time domain (c) and frequency domain (d). We plot the dimensional distance x on the horizontal axis, as the dimensionless distance ξ is different for each sample.

Horizon of prediction increases or spectra become more broad banded [56]. Second, the signature of breaking is much less pronounced in the spectrum of (broad-banded) irregular waves. We therefore only compare the physical-space evolution. The training data generation for this method is detailed in [SI 5].

Figure 6: Example result (not used for training) for the evolution of the envelope of random irregular waves (Wave Category III), showing wave breaking at $\xi = 1.1$, as indicated by the red circle. The color bar indicates surface elevation envelope a. a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+FDML simulations. e-g) Envelopes a at the wave gauge locations indicated by the red-dotted lines in (a): measurements (solid blue), MNLS simulations (dashed yellow) and MNLS+FDML simulations (dashed-dotted green).

Because wave breaking in an irregular sea is generally sporadic, the dynamics (and the MSE) are dominated in large part by the waves that do not break. To assess the ability of the MNLS+FDML model to capture breaking, we select and
examine wave groups from the test data set that are sufficiently steep, according do the criterion $\hat{\Delta}k_0 > 0.28$, ensuring a high likelihood of breaking. These events are displayed in SI 5.3.

Figure 6 shows the evolution of a representative example, with a breaking event occurring around $\xi = 1.1$ (gauge 7). The MNLS overestimates the amplitude, even predicting a non-physically large amplitude indicated by the red circle in fig. 6, whereas the MNLS+FDML model corrects this over-estimation. For non-breaking waves, the performance of the MNLS+FDML model is comparable to that of the MNLS only, see fig. SI 5.7 When there is a breaking event, the MNLS+FDML model outperforms the MNLS model, see fig. [6]. The model has been trained on segments with a maximum length of half the propagation length in fig. 6. Although the MNLS+FDML model has been trained on a broad-banded JONSWAP spectrum (peak enhancement factor $\gamma = 3.3$), it works equally well for a more narrow-banded JONSWAP spectrum ($\gamma = 6$, see fig. SI 5.3).

3 Discussion

We have demonstrated that the MNLS+FDML framework developed herein can predict the uni-directional evolution of the wave envelope and its spectrum for an arbitrary propagation length, even if wave breaking occurs along the way. This includes the correct prediction of dissipation of total energy by breaking, as well as the resulting suppression of higher frequencies and the downshift of the mean and peak frequency of the spectrum. The attenuation of the maximum amplitude of the surface elevation and the reduction in dispersive spreading are also correctly predicted. We have shown that our developed method is successful for modulated plane waves (Wave Category I), JONSWAP spectrum-based dispersively focused wave groups (Wave Category II), and broad-banded JONSWAP random irregular wave evolution (Wave Category III), increasing the degree of realism step by step.

Our framework employs experimental data as the ground truth instead of a high-fidelity numerical model. Using measurements allows previously inaccessible physics to be included in the model, as opposed to just achieving a speed-up of the simulation of known physics by a more complex model [57, 58, 59, 60]. This direct access does come at a price when considered in the context of the growing body of work [61, 62, 63] in which machine learning algorithms discover partial differential equations (PDEs), parts thereof, or their solutions. First, the ground truth is not always known in full at the model solver step, as required in an infinitesimal-domain blended model [32, 31], because of the finite resolution of measurements and the difficulty interpolating all aspects of the ground truth information (e.g., phase) to the required time step (as in this paper) or because it is notoriously difficult to measure certain aspects of the ground truth, e.g., phase, such as in optics [49]. Second, convergence of the ML algorithm to a global minimum is not guaranteed if the error between measurements and the full solution (a PDE or PDE term to be discovered) is due to missing physics instead of simply Gaussian noise added to synthetic data [60, 61]. Third, when measurement data is only available in limited quantities, purely data-driven approaches are not successful, and a physics-based model is essential to compensate the lack of data [64, 61]. For instance, for optical fibers, the evolution dynamics can be described by a Neural Network instead of the NLS equation [55], when trained on large volumes of data. However, in the water-wave setting, obtaining such large quantities of wave tank experiments is prohibitively expensive.

While the finite-domain ML framework we have developed addresses some of these challenges, it has limitations. The evolution of the envelope over a finite domain strongly depends on the wave input, as the nonlinear interactions quickly mix the effects of all terms in the PDE. Therefore, over a finite domain, the difference in evolution with and without breaking has entangled in it the effects of both the wave type and its inherent nonlinear behavior and the breaking behavior. Consequently, the parameters that minimize the loss function of the network have different values for different wave types, and the FDML model cannot yet extrapolate from one wave type to another. If phase information at the solver step becomes available though either measurements or simulations, we envisage that the infinitesimal-domain method could remedy this limitation in future work as the effect of breaking on the spectrum and the nonlinear (non-breaking) spectral evolution itself then can become decoupled.

The main novelty of our work is the demonstration that the turbulent breaking process can be captured by a neural network with memory, and decoupled from the potential flow. As wave breaking is a complex phenomenon, the first step must be to select circumstances in which the signature of breaking is clearly detectable in both the time and frequency domain. Fulfilling this requirement, we choose Wave Categories I (modulated plane waves) and II (dispersively focused irregular waves), which are conventionally studied in the context of wave breaking [5, 60, 67, 26, 68]. Our results for Wave Category III (random irregular waves) act as a proof of concept for the applicability of our FDML model in wave-resolving forecasts of realistic random sea states. In this latter category, both dispersion and MI can steepen the waves.

To tackle more realistic sea states, we anticipate two future directions of development, distinguishing those that make use of the infinite-domain and those that make use of the finite-domain approach. In the finite-domain approach, the same approach as in this paper can readily be used for other combinations of models and measurement techniques, depending on the purpose of the study, such as deterministic wave forecasting, statistics, or extreme event detection. For each purpose the blended approach as in this work can be applied: a model that captures the basic physics without breaking, a machine learning layer with memory, and measurements that track the evolution at finite intervals.

Before turning to the challenging integration with other effects such as wind forcing, the effect of directional spreading...
should be examined. While the unidirectional wave is a valid approximation for sea states dominated by swell, most realistic sea states have a degree of directional spreading. To generalize our approach to directional sea states, the 1D MNLS equation will need to be replaced by the 2D MNLS [11, 13, 69] or a model that directly describes the surface elevation (instead of the envelope) and is less restrictive on bandwidth, such as higher-order spectral methods (HOSM) [17, 70], or the Zakharov equation [1, 71].

For the surface elevation, crest slow down is an additional signature of incipient breaking, which can be used to test validity of results [72]. Challenges will arise from dealing with the finite predictable region in 2D, from the boundaries of a finite spatial domain or a finite-size wave tank and from the need for large quantities of spatially resolved data to be suitable for machine learning. For the latter, different measurement techniques such as stereo-imaging [73, 74] could be used. Finally, although the effect of small degrees of directional spreading on breaking is understood [75], breaking in crossing seas is not and may be much less dissipative and amplitude-limiting [3].

For the infinitesimal-domain method, the first challenge in future work will be to identify and develop suitable, high-fidelity models that capture at least the most salient features of wave breaking, are able to do so for a range of wave types and conditions and can generate a sufficient amount of training data without excessive computational cost. Numerical models based on the Reynolds-averaged Navier–Stokes equation with a turbulence model are a promising candidate for this [70]. In addition, for this method, it will be crucial to guarantee stability such that the error of the predicted evolution as indicated in fig. 7, does not increase cumulatively with every step. To prevent such instability and non-physical results, hard physical constraints can be enforced on the output of the network, often implemented as some form of outer loop optimization [77, 78, 79, 80, 81] or added as a penalty in the cost function (so-called soft constraints).

In conclusion, we have developed a blended framework to predict the evolution of waves that includes the abrupt and turbulent process of wave breaking based on a canonical potential flow-based wave evolution equation. We foresee that being able to incorporate breaking effects in wave evolution equations in a simple way will help lift restrictions breaking has placed on the validity of models explaining the behaviour of waves subject to winds [1], currents [2], crossing seas [3], refraction by bathymetry [4], abrupt depth transitions [5, 6], and nonlinear focusing [7, 8, 9]. The experiment-based blended framework for wave breaking we have developed in this paper builds a suitable foundation for application to wave-resolving forecasting in real-world sea states, which should be the direction of future research.

4 Methods

Wave tank experiments - For Wave Categories I (modulated plane waves) and II (focused irregular waves), ground-truth training data was generated in the 40 m long, 2.7 m wide wave facility at Aix Marseille University, France, by means of a piston wavemaker. Waves were measured by 12 wave gauges placed along the center-line of the tank with a sampling rate of 400 Hz. Experiments for Wave Category III (random irregular waves) were performed in the 30 m long, 1 m wide facility at the University of Sydney, Australia, again by means of an piston wave maker. An array of 8 wave gauges was moved along the tank for repeated measurements, to obtain a final number of 24 wave gauges positions spaced 0.83 m apart (covering 19.1 m). The gauges had a sampling rate of 32 Hz. See fig. 7 for the experimental set-up.

MNLS simulations and non-dimensionalization - MNLS simulations were carried out by integrating eq. (1) numerically using a split-step Fourier method. The envelope constructed from the measured surface elevation \(\eta(t) \) at any wave gauge can be used as initial condition. The envelope can be constructed from the surface elevation by means of the Hilbert transform:

\[
\tilde{a}(t) = (\eta(t) + i\tilde{\eta}(t)) e^{-i(k_0 x - \omega_0 t)},
\]

where \(\tilde{\eta} \) is the Hilbert transform, \(\tilde{\eta} = \mathcal{H}[\eta] = \mathcal{F}^{-1} [-i \text{sign}(\omega) \mathcal{F}[\eta]] \), with \(\mathcal{F} \) a Fourier transform and \(\omega \) the angular frequency. To obtain a smooth envelope, bound modes are filtered from the measurement signal, and smoothing filters are applied. Quantities have been made dimensionless as \(a = \tilde{a}/\tilde{a}_0, \tau = t'/T_0 \), and \(\xi = x/L_0 \), where \(t' = t - x/c_g \) is the group time scale with \(c_g = \sqrt{g/k_0} \) the linear group velocity in the deep-water limit, \(T_0 = 1/(\omega_0 t' \), \(L_0 = 1/(2\epsilon k_0) \), \(\tilde{a} \) the dimensional envelope, \(\tilde{a}_0 \) its initial value, and \(\epsilon = \tilde{a}_0 k_0 / \sqrt{2} \) the steepness.

Wave Category I - The modulated plane wave consists of a carrier wave seeded by upper and lower sidebands with modulation frequency \(\Omega_M \), defined in dimensionless form as:

\[
a(0, \tau) = \sqrt{b_0} + \sqrt{b_{-1}} e^{i(\Omega_M \tau + \psi)} + \sqrt{b_{+1}} e^{i(-\Omega_M \tau + \psi)},
\]

where \(\sqrt{b_0}, \sqrt{b_{-1}}, \) and \(\sqrt{b_{+1}} \) are the amplitudes of the main mode and upper-and lower sidebands, respectively, and \(\psi \) the relative phase between the sidebands and the carrier mode. The amplitudes of the three modes of the initial condition are given by:

\[
b_0 = 1 - b_F, \quad b_{-1} = (1 - b_0 + \alpha)/2, \quad b_{+1} = (1 - b_0 - \alpha)/2,
\]

where \(b_F \) is sideband fraction, and \(\alpha \) the sideband unbalance. The dimensional signal for the wavemaker can be obtained as \(\eta(0, t) = \tilde{a}_0 a(0, \tau) e^{i\omega_0 t} \). Due to modulation instability (MI) [39, 81], the spectrum will broaden, and the amplitude of the wave will increase, attaining a maximum at the focus position \(\xi_f \), after which the modulation will decrease: the FPUE recurrence cycle [50, 51, 52]. By selecting the initial steepness \(\tilde{a}_0 k_0 / \sqrt{2} \), \(b_F \), \(\alpha \) and \(\Omega_M \), we can set the steepness at \(\xi_f \).
To generate a variety of waves, parameters were drawn from the following ranges: $f_0 = \omega_0/(2\pi) \in [1.30, 1.55]$ Hz, $a_0k_0 \in [0.12, 0.25]$, $b_F \in [0.01, 0.1]$, $\Omega_M \in [0.7, 1.55]$, $\psi \in [0, 2\pi]$ and $\alpha \in [-0.16, 0.16]$. A data set of 258 wave trajectories were generated and measured. Figure 1 shows the evolution of a breaking wave with initial parameters $f_0 = 1.40$ Hz, $a_0k_0 = 0.19$, $b_F = 0.09$, $\Omega_M = 1$, $\psi = \pi$ and $\alpha = 0$.

Wave Category II - For the focused irregular waves, the JONSWAP spectral density $S(\omega)$ is characterized by the shape parameter γ:

$$S(0, \omega) = \frac{K\gamma^2}{\omega^n} \exp \left[-\frac{5}{4} \left(\frac{\omega_p}{\omega} \right)^4 \right] \gamma', \tag{5}$$

with $r = \exp \left[-\frac{(\omega - \omega_p)^2}{2\sigma^2} \right]$. Here, ω_p is the peak frequency in rad/s and σ_s the spectral width. $\sigma_s = 0.07$ for $\omega \leq \omega_p$ and $\sigma_s = 0.09$ for $\omega > \omega_p$. As the parameter K scales the entire spectrum, it can be chosen to obtain the appropriate significant wave height H_s. When mimicking a random sea state, the phases of the spectrum are randomized. To focus the spectrum, the phases are chosen such that components $a_n(\omega_n)$ of the JONSWAP spectrum superimpose to a maximum at the same position in the tank, x_f, creating a maximum amplitude of the wave group at this position, and possibly a breaking event.

The surface elevation at the wavemaker reads:

$$\eta(0, t) = \sum_n a_n \cos (\omega_n t + k_n x_f). \tag{6}$$

Parameters were drawn from the following ranges: $\gamma \in [2, 5]$, $H_s \in [10, 60]$ mm, $f_p = \omega_p/(2\pi) \in [0.5, 1.25]$ Hz, $x_f \in [10, 24]$ m, such that each initial condition was generated based on a unique combination of these parameters. A data set of 180 wave trajectories were generated and measured. Note that for both wave categories, parameters cannot be selected randomly, as not every combination leads to a breaking event within the length of the tank. Figures 2 to 4 show the evolution of a breaking wave with initial parameters $f_p = 0.91$ Hz, $\omega_p = 5.7$ rad/s, $\gamma = 4$, $H_s = 30$ mm and $x_f = 14$ m.

Wave Category III - For the random irregular waves, the JONSWAP spectral density eq. (4) is used. Instead manipulating the phases to exhibit dispersive wave focusing, they are randomly drawn from a uniform distribution for each wave.
frequency in the spectrum. Parameters for the initial condition were $\gamma = 3.3$, $f_p = 1.25$ Hz, and four different significant wave height values: $H_s = 25, 34, 41, 54$ mm. For each wave height, three 20-minute experiments (about 1500 wave periods) were conducted. Shorter experiments were performed to create a test set with properties: $\gamma = 6.0$, $f_p = 1.25$ Hz, $\sigma_s = 1$, $H_s = 44$ mm.

Neural Network and Algorithm - The goal of training is to teach the network the discrepancy between the MNLS propagation prediction and the true propagation from measurements over an arbitrary number of solver propagation steps, when started from the same initial condition. As we do not have the phase information that allows us to Fourier transform the envelope between the time and frequency domain at each solver step, we correct the evolution of the time and frequency domain separately, by using two separate Neural Networks with identical architecture. One in the time domain and the other in the frequency domain. Below, we outline the structure of the algorithm for Wave Categories I and II (see SI 6 for further details). The procedure for Wave Category III is slightly different, as this involved segmenting a continuous time-series, and is outlined in SI 5.

Obtaining the ground truth at solver step

- The wave tank experiments need to be interpolated such that the ground truth is available at very (fixed-size) solver propagation step $\Delta \xi$ instead of only at the wave gauge positions. The Nyquist–Shannon sampling theorem provides a lower bound for the sampling frequency to capture all the information from a continuous signal of final bandwidth. Following this, the slowly varying envelope is sufficiently sampled by our 12 gauges in space, and by the wave gauge sampling frequency in time. As we can only interpret the modulus of the envelope of the measurement and not its phase, we perform a spline interpolation on the modulus of the wave tank measurements separately in the time and frequency domains. Hereby moving from the envelope at discrete locations of the wave gauges $a_{\text{true}}(\xi_{wg})$ to the modulus of the envelope-field at interval $\Delta \xi$ for both domains:

$$a_{\text{true}}(\xi_{wg}) \rightarrow |a_{\text{true}}(\xi), |\hat{a}_{\text{true}}(\xi)|$$

Data augmentation

- Simply using the entire experiment would not yield enough data, and we therefore augment the data by creating smaller propagation segments. In order to account for different stages of evolution of the wave, we can choose training samples starting at different positions ξ_0. Note that this is different from simply cutting the entire propagation comparison of MNLS and experiment into smaller pieces, as each segment requires its own MNLS simulation starting from its own initial condition. For each experiment, 3 segments lengths are selected. The starting position can only be at wave gauge positions ξ_k, as these are the only locations with access to the complex field (modulus and phase). An MNLS simulation can be started from this initial condition $a(\xi_k, \tau)$, a segment length n_{steps}, yielding $a_{\text{MNLS}}(\xi_k, \xi_k + n_{\text{steps}} \Delta \xi, \tau)$.

This prediction can then be compared to the same stretch of the measured field, or true evolution a_{true} in eq. (7). Since only the modulus of the envelope is available at the solver step, an input-output training pair s is the modulus of the envelope

$$s = [\text{input, output}] = |a|_{\text{MNLS}}(\xi_k, \xi_k + n_{\text{steps}} \Delta \xi), |a|_{\text{true}}(\xi_k, \xi_k + n_{\text{steps}} \Delta \xi)$$

Similarly, a separate training pair \hat{s} can be created for the modulus of the spectrum of the envelope. To limit the number of free parameters, the number of modes (and, correspondingly, the length of the time vector) is truncated to $n_t = 512$. The input and output therefore each have matrix dimensions $[n_{\text{steps}}, n_t = 512]$. By varying the segment length and the starting gauge, many pairs $s \in S$ can be created. Note that the network is never trained on the entire propagation length available in the tank.

Neural Network

- A neural network is a nonlinear function F_{NN} of its parameters β (the weights and biases) and the input:

$$|a|_{\text{pred}} = F_{\text{NN}}(\beta, |a|_{\text{MNLS}}).$$

The goal is to optimize β such that the mean squared error (MSE) of the prediction and the true value of the envelope is minimized. We employ a separate network for the time and frequency domain. For the time-domain RNN, this cost function is simply defined as:

$$J(\beta) = \frac{1}{N} \sum_{i=1}^{N} (F_{\text{NN}}(\beta, |a|_{\text{MNLS}})_i - |a|_{\text{true},i})^2 = \frac{1}{N} \sum_{i=1}^{N} (|a|_{\text{pred},i} - |a|_{\text{true},i})^2,$$

where i the grid point, and $N = n_{\text{steps}} \times n_t$, the total number of grid points. The definition for the frequency-domain network is the counterpart of eq. (10) for $|\hat{a}|$. To find the network parameters β that minimize the cost function, $J(\beta)$, the Adam stochastic gradient descent method with bounded gradient is used. Details of the optimization include:

- For this optimization problem, different network architectures can be chosen for F_{NN}. Our work employs an RNN, for which the weights of the hidden states are updated based on the previous propagation step and passed on to the next recursively. As such, RNNs are able to return an output sequence, incorporating memory of all the propagation steps in the input sequence. This is crucial to detect breaking signatures along the evolution. The
main property of the finite-domain correction is that the system evolves for several propagation steps, after which the correction is applied. As a consequence, the correction uses information of future propagation steps and is non-causal. To mediate the problems of vanishing and exploding gradients that a fully connected RNN would have, we employ the long short-term memory (LSTM) method [82].

- The measurement data are divided into a training (80%), validation (15%) and test (5%) set. The first is used to minimize eq. (14), the second to evaluate performance after each training epoch (a complete pass through the training set), and the latter is never used in the optimization process, and only serves to validate the performance of the model.

- Since wave breaking does not possess any conserved quantities for the envelope evolution, no physical constraints can be added as either soft or hard constraints.

- As the time-vector is of length 512, consequently, the input and output layers must consist of 512 units. The LSTM layer is connected to the input and consists of 128 hidden units, followed by one dense, or fully connected, layer with 64 units. To promote generality, the dense layer has a dropout of 0.1, meaning this fraction of neurons will be randomly turned off during training. The dense layer is connected to the output layer. All layers have a leaky rectified linear unit (ReLu) activation function. The resulting model has a total of 369,728 parameters (degrees of freedom). Note that the architecture of the LSTM layer stays the same for all propagation steps; more propagation steps do not add more degrees of freedom.

- Note that for prediction, the MNLS trajectory must have the same time and propagation step as during training: $\Delta \xi = \Delta \tau_{\text{train}}$. Similarly for the time step $\Delta \tau = \Delta \tau_{\text{train}}$. Finally, the network is trained on data normalized by the maximum value of the initial condition.

- The MNLS solver has periodic boundary conditions, therefore it is equivariant to translations of the input in τ. To account for this in physical space we add 40 random translations $n_{t_r} \in [0, n_t = 512]$ of the input and output vectors. Note that in frequency space, these shifts do not affect \hat{a}. Additional examples of these translated results are included in SI 2.2.

MNLS + FDML correction - Once the network is trained, MNLS + FDML model can be utilized as illustrated in figure fig. [7]. While the network has been trained on shorter segments, it can be used for longer, or arbitrary propagation length, and on unseen data. Like the MNLS, an initial-value or deterministic wave-forecasting problem is solved. That is, for a given initial condition at a position x_0, one wants to know the evolution up to and including a point x_1. If the initial condition is a time series measurement of the surface elevation, the complex envelope $\hat{a}(x_0, t)$ has to be obtained using the Hilbert transform. Subsequently, the MNLS solver can be used to propagate the solution forward to x_1. Over this finite stretch of evolution, the RNN applies a correction to the modulus of the time-domain envelope amplitude, or on the frequency-domain envelope amplitude to correct for breaking effects. Figures 7 and SI 2.1 show the entire propagation length available in the tank merely because this offers the most extensive comparison.

Data availability

Measurement data and code are available online at: https://tinyurl.com/8ermjt2t

References

[1] P. Sullivan and J. McWilliams, “Dynamics of winds and currents coupled to surface waves,” *Annual Review of Fluid Mechanics*, vol. 42, pp. 19–42, 2010.

[2] M. Onorato, D. Proment, and A. Toffoli, “Triggering rogue waves in opposing currents,” *Physical Review Letters*, vol. 107, p. 184502, 2011.

[3] M. L. McAllister, S. Draycott, T. A. Adcock, P. H. Taylor, and T. S. Van Den Bremer, “Laboratory recreation of the Draupner wave and the role of breaking in crossing seas,” *Journal of Fluid Mechanics*, vol. 860, pp. 767–786, 2018.

[4] T. T. Janssen and T. H. Herbers, “Nonlinear wave statistics in a focal zone,” *Journal of Physical Oceanography*, vol. 39, no. 8, pp. 1948–1964, 2009.

[5] Y. Li, Y. Zheng, Z. Lin, T. A. Adcock, and T. S. Van Den Bremer, “Surface wavepackets subject to an abrupt depth change. Part 1. Second-order theory,” *Journal of Fluid Mechanics*, vol. 915, 2021.

[6] A. J. Majda, M. N. Moore, and D. Qi, “Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 116, no. 10, pp. 3982–3987, 2019.
[28] J. Yuval and P. A. O’Gorman, “Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions,” *Nature Communications*, vol. 11, no. 1, pp. 1–10, 2020.

[29] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations,” *Science*, vol. 367, no. 6481, pp. 1026–1030, 2020.

[30] M. A. Mohamad and T. P. Sapsis, “Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 115, no. 44, pp. 11138–11143, 2018.

[31] A.-T. G. Charalampopoulos and T. P. Sapsis, “Machine-learning energy-preserving nonlocal closures for turbulent fluid flows and inertial tracers,” *ArXiv - Preprint*, no. 617, pp. 1–26, 2021.

[32] Z. Y. Wan and T. P. Sapsis, “Machine learning the kinematics of spherical particles in fluid flows,” *Journal of Fluid Mechanics*, vol. 857, p. R2, 2018.

[33] C. E. Stringari, P. V. Guimarães, J.-F. Filipot, F. Leckler, and R. Duarte, “Deep Neural Networks for Active Wave Breaking Classification,” *Scientific Reports*, vol. 11, pp. 1–12, jan 2021.

[34] D. Buscombe and R. J. Carini, “A data-driven approach to classifying wave breaking in infrared imagery,” *Remote Sensing*, vol. 11, no. 7, pp. 1–10, 2019.

[35] N. Kouvaras and M. R. Dhanak, “Machine learning based prediction of wave breaking over a fringing reef,” *Ocean Engineering*, vol. 147, no. November 2017, pp. 181–194, 2018.

[36] J. J. D. Carter and A. Govan, “Frequency downshift in a viscous fluid,” *European Journal of Mechanics B Fluids*, vol. 59, pp. 177–185, sep 2016.

[37] A. Armaroli, D. Eeltink, M. Brunetti, and J. Kasparian, “Nonlinear stage of Benjamin-Feir instability in forced/damped deep-water waves,” *Physics of Fluids*, vol. 30, p. 017102, jan 2018.

[38] L. Shemer, A. Sergeeva, and A. Slunyaev, “Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation,” *Physics of Fluids*, vol. 22, no. 1, pp. 1–9, 2010.

[39] T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water Part 1. Theory,” *Journal of Fluid Mechanics*, vol. 27, pp. 417–430, feb 1967.

[40] M. J. Ablowitz, *Nonlinear Dispersive Waves, Asymptotic Analysis and Solitons*. Cambridge University Press, 2011.

[41] K. Trulsen and K. B. Dysthe, “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water,” *Wave Motion*, vol. 24, pp. 281–289, nov 1996.

[42] K. Trulsen and K. B. Dysthe, “Frequency downshift in three-dimensional wave trains in a deep basin,” *Journal of Fluid Mechanics*, vol. 359-373, p. S002212097007416, dec 1997.

[43] K. Trulsen, I. Kliakhandler, K. B. Dysthe, and M. G. Velarde, “On weakly nonlinear modulation of waves on deep water,” *Physics of Fluids*, vol. 12, no. 10, pp. 2432–2437, 2000.

[44] E. KIT and L. SHEMER, “Spatial versions of the Zakharov and Dysthe evolution equations for deep-water gravity waves,” *Journal of Fluid Mechanics*, vol. 450, pp. 201–205, jan 2002.

[45] J. Touboul and C. Kharif, “Nonlinear evolution of the modulational instability under weak forcing and damping,” *Nat. Hazards Earth Syst. Sci.*, vol. 10, pp. 2589–2597, dec 2010.

[46] D. Eeltink, A. Lemoine, H. Branger, O. Kimmoun, C. Kharif, J. D. Carter, A. Chabchoub, M. Brunetti, and J. Kasparian, “Spectral up- and downshifting of Akhmediev breathers under wind forcing,” *Physics of Fluids*, vol. 29, p. 107103, oct 2017.

[47] K. Hasselmann and D. Olbers, “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project,” *Ergänzung zur Deut. Hydrogr. Z*, vol. 7, no. 1, pp. 1–95, 1973.

[48] J.-X. Wang, J.-L. Wu, and H. Xiao, “Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data,” *Physical Review Fluids*, vol. 2, p. 034603, mar 2017.

[49] A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” *Nature Photonics*, vol. 12, no. 4, pp. 228–234, 2018.
[50] E. Fermi, J. Pasta, and S. Ulam, “Studies of nonlinear problems,” Los Alamos Report LA-1940, 1955.
[51] D. J. Benney and A. C. Newell, “The Propagation of Nonlinear Wave Envelopes,” Journal of Mathematics and Physics, vol. 46, no. 1-4, pp. 133–139, 1967.
[52] N. N. Akhmediev, “Déjà vu in optics,” Nature, vol. 413, pp. 267–268, sep 2001.
[53] E. Lo and C. C. Mei, “A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation,” Journal of Fluid Mechanics, vol. 150, pp. 395–416, jan 1985.
[54] M. P. Tulin and T. Waseda, “Laboratory observations of wave group evolution, including breaking effects,” Journal of Fluid Mechanics, vol. 378, pp. 197–232, 1999.
[55] B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train,” Journal of Fluid Mechanics, vol. 83, pp. 49–74, nov 1977.
[56] M. Galvagno, D. Eeltink, and R. Stuhlmeier, “Spatial deterministic wave forecasting for nonlinear sea–states,” Physics of Fluids, vol. 33, p. 102116, oct 2021.
[57] A. P. Singh, S. Medida, and K. Duraisamy, “Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils,” AIAA Journal, vol. 55, no. 7, pp. 2215–2227, 2017.
[58] P. A. O’Gorman and J. G. Dwyer, “Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events,” Journal of Advances in Modeling Earth Systems, 2018.
[59] R. Maulik, O. San, A. Rasheed, and P. Vedula, “Subgrid modelling for two-dimensional turbulence using neural networks,” Journal of Fluid Mechanics, vol. 858, pp. 122–144, 2019.
[60] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of partial differential equations,” Science Advances, vol. 3, p. e1602614, apr 2017.
[61] M. Raisi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
[62] K. Champion, B. Lusch, J. Nathan Kutz, and S. L. Brunton, “Data-driven discovery of coordinates and governing equations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 45, pp. 22445–22451, 2019.
[63] S. Desai and A. Strachan, “Parsimonious neural networks learn interpretable physical laws,” Scientific Reports, vol. 11, no. 1, pp. 1–9, 2021.
[64] M. Trautner and S. Ravela, “Neural Integration of Continuous Dynamics,” arXiv, 2019.
[65] L. Salmela, N. Tsipinakis, A. Foi, C. Billet, J. M. Dudley, and G. Genty, “Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network,” Nature Machine Intelligence, vol. 3, pp. 344–354, apr 2021.
[66] T. Hara and C. C. Mei, “Frequency downshift in narrowbanded surface waves under the influence of wind,” Journal of Fluid Mechanics, vol. 230, pp. 429–477, sep 1991.
[67] A. Yao and C. H. Wu, “Energy dissipation of unsteady wave breaking on currents,” Journal of Physical Oceanography, vol. 34, no. 10, pp. 2288–2304, 2004.
[68] N. E. Pizzo, “Surfing surface gravity waves,” Journal of Fluid Mechanics, vol. 823, pp. 316–328, jul 2017.
[69] D. Barratt, T. S. van den Bremer, and T. A. A. Adcock, “MNLS simulations of surface wave groups with directional spreading in deep and finite depth waters,” Journal of Ocean Engineering and Marine Energy, vol. 7, no. 3, pp. 261–275, 2021.
[70] G. Ducrozet, F. Bonnefoy, D. Le Touzé, and P. Ferrant, “HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method,” Computer Physics Communications, vol. 203, pp. 245–254, 2016.
[71] V. E. Zakharov, S. I. Badulin, V. V. Geogjaev, and A. N. Pushkarev, “Weak-Turbulent Theory of Wind-Driven Sea,” Earth and Space Science, vol. 6, no. 4, pp. 540–556, 2019.
[72] M. Derakhhti, J. T. Kirby, M. L. Banner, S. T. Grilli, and J. Thomson, “A Unified Breaking Onset Criterion for Surface Gravity Water Waves in Arbitrary Depth,” Journal of Geophysical Research: Oceans, vol. 125, no. 7, pp. 1–28, 2020.
[73] M. S. Schwendeman and J. Thomson, “Sharp-Crested Breaking Surface Waves Observed from a Ship-Based Stereo Video System,” Journal of Physical Oceanography, vol. 47, pp. 775–792, apr 2017.

[74] P. V. Guimarães, F. Ardhuin, F. Bergamasco, F. Leckler, J.-F. Filipot, J.-S. Shim, V. Dulov, and A. Benetazzo, “A data set of sea surface stereo images to resolve space-time wave fields,” Scientific Data, vol. 7, p. 145, dec 2020.

[75] M. Latheef, C. Swan, and J. Spinneken, “A laboratory study of nonlinear changes in the directionality of extreme seas,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2199, 2017.

[76] Y. Li and D. R. Fuhrman, “Computational Fluid Dynamics Simulation of Deep-Water Wave Instabilities Involving Wave Breaking,” Journal of Offshore Mechanics and Arctic Engineering, vol. 144, apr 2022.

[77] A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov, “Embedding Hard Physical Constraints in Neural Network Coarse-Graining of 3D Turbulence,” ArXiv - Preprint, pp. 1–13, jan 2020.

[78] A. Dener, M. A. Miller, R. M. Churchill, T. Munson, and C.-S. Chang, “Training neural networks under physical constraints using a stochastic augmented Lagrangian approach,” ArXiv - Preprint, pp. 1–21, sep 2020.

[79] B. Balogh, D. Saint-Martin, and A. Ribes, “A Toy Model to Investigate Stability of AI-Based Dynamical Systems,” Geophysical Research Letters, vol. 48, apr 2021.

[80] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, “Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems,” Physical Review Letters, vol. 126, mar 2021.

[81] B. Wetzel, J. M. Dudley, M. Erkintalo, G. Genty, K. Hammani, B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, and N. Akhmediev, “New analysis of an old instability,” SPIE Newsroom, may 2011.

[82] S. Hochreiter, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[83] A. V. Babanin, “On a wave-induced turbulence and a wave-mixed upper ocean layer,” Geophysical Research Letters, vol. 33, no. 20, pp. 1–6, 2006.

Acknowledgements

D.E. acknowledges financial support from the Swiss National Science Foundation (Mobility Fellowship P2GEP2-191480). J.K. and D.E. acknowledge SNSF 200020-175697. Y. He was supported by the University of Sydney International Scholarship (USydIS). T.S.vd.B. was supported by a Royal Academy of Engineering Research Fellowship. T.P.S was supported by the ONR Grants N00014-21-1-2357 and N00014-20-1-2366. The authors acknowledge Thomas Adcock and Ye Li for access to the external data and thank Maura Brunetti and Alexis Gomel for fruitful discussions and Michel Moret for providing access to the computation infrastructure.

Author Contributions

D.E. and T.P.S designed the research; D.E. H.B., A.C., Y.H. J.K and C.L. performed experiments; D.E., Y.H., A.C., J.K., T.P.S. and T.S.vd.B. analyzed the data; D.E. and T.P.S. developed the FDML framework. D.E., T.P.S., J.K. and T.S.vd.B. wrote the paper.

Competing Interests

The authors declare no competing interests.
SI 1 Limitations of infinitesimal-domain machine learning

In the infinitesimal-domain approach, the machine learning correction occurs at each numerical step. The machine learning correction is therefore detached from the nonlinear interactions that will mix the effects of the individual terms of the PDE after several solver steps and as such could give information about the physical processed captured in the RNN term. However, to apply this approach, the complex envelope of the true evolution is required at each model step to act as the initial condition for the MNLS solver step (see fig. 7b). In our system, the phase information cannot be retrieved from experiments at the solver-step level. Figure SI 1.1 shows a comparison between an MNLS simulation and measurement data for a non-breaking wave. Let us define the complex envelope as $a(\xi, \tau) = |a(\xi, \tau)|e^{i\phi(\xi, \tau)}$, that is, consisting of modulus $|a|$ and phase ϕ. Panel a and e demonstrate that the MNLS equation shows good agreement with the data for non-breaking waves. As the modulus of the envelope varies slowly with respect to the carrier wave, it is sufficiently sampled by the 12 gauges in the experiment, indicated by the green crosses in panels (c,g). Subsequently, one can obtain a smooth field at solver-step spacing through spline interpolation. In contrast, the phase information is under-sampled with respect to the Nyquist frequency. This is indicated in fig. SI 1.1c,g by the red crosses corresponding to the data, and the red line corresponding to the MNLS simulation. The resulting trajectory in the phase plane (fig. SI 1.1d,h) for a given point in time is therefore significantly altered, and no unambiguous interpolation in the complex plane can be made. To our knowledge, it is therefore not possible to obtain the phase information at each solver step necessary to perform the infinitesimal-domain machine learning correction.

In contrast, for the finite-domain machine learning (FDML) correction, fig. 7c, the phase information is only required for the initial condition.

Figure SI 1.1: Modulus and phase information of complex envelope $a(\xi, \tau) = |a(\xi, \tau)|e^{i\phi(\xi, \tau)}$. a) Modulus of the envelope, $|a|$, from MNLS simulations, and e) from measurements. b) Phase ϕ unwrapped in τ of the envelope from MNLS simulations, and f) from measurements. c,g) Modulus (green) and unwrapped phase (red) of MNLS simulations (solid line) and measurements (crosses) at cut-lines $\tau = A$ and $\tau = B$ (as shown in (a,e)), respectively. d,h) Phase trajectories in propagation direction ξ of the envelope at cut-lines $\tau = A$ and $\tau = B$ (as shown in (a,e)), respectively. For MNLS simulations (solid line) and measurements (crosses). The numbers of the crosses indicate the wave gauge position with respect to the wavemaker.
SI 2 Wave Category I: modulated plane waves

SI 2.1 Non-breaking wave example result

For a non-breaking wave, fig. SI 2.1 shows the MNLS+FDML framework only applies a slight correction to the MNLS, which already closely resembles the experiment. Note that while the MNLS offers a good approximation for a non-breaking wave, it does not include all the physics involved in the real experiment such as finite water depth, side wall friction, transverse modes and broad bandwidth. In contrast, the FDML correction is trained to learn the discrepancy between the measurement and the MNLS simulation, whether that is breaking or other inaccuracies. Therefore, it can outperform the MNLS also on non-breaking cases. Secondly, the FDML correction is optimized based on the MSE. However, especially in the time domain, the MSE is not a perfect metric, as it heavily penalizes small phase-shifts.

Figure SI 2.1: Example result (not used for training) of the spatial evolution of a non-breaking modulated plane wave (Wave Category I). a-d) Time domain. Color bar indicates envelope amplitude a (see eq. (1)). a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measurements and MNLS and MNLS+FDML simulations. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the amplitude spectrum normalized by the maximum of the initial condition. Parameters of the initial conditions: $f_0 = 1.42$ Hz, $\tilde{a}_0k_0 = 0.16$, $b_F = 0.16$, $\Omega_M = 1.1$, $\psi = 1.87\pi$ and $\alpha = 0$.

\[\text{Distance } \xi \]
\[\text{Time } \tau \]
\[\text{Distance } \xi \]
\[\text{Time } \tau \]
\[\text{Distance } \xi \]
\[\text{Frequency } \Omega \]
\[\text{Distance } \xi \]
\[\text{Frequency } \Omega \]
The MNLS is equivariant to translations in the time domain. Therefore, the FDML correction should also be able to apply corrections to arbitrarily translated input. This is achieved by including randomly translated inputs in the training set. Figure SI 2.2 shows the same example as in fig. 1 translated in τ by 60 time steps.

Figure SI 2.2: Example result (not used for training) of the spatial evolution of a breaking modulated plane wave translated in time (Wave Category I). a-d) Time domain. Color bar indicates envelope amplitude a (see eq. (1)). a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measurements and MNLS and MNLS+FDML simulations. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the amplitude spectrum normalized by the maximum of the initial condition. Parameters of the initial conditions are same as in fig. 1.
Figures SI 2.3 and SI 2.4 show the experiments from the test set for Wave Category I (summarized in fig. E). Note that these are for evolution over the whole length of the tank, starting from the first wave gauge. Augmenting the data by starting at different points and using smaller propagation lengths could create many more samples.

Figure SI 2.3: Test experiments 1-6 in Wave Category I. Each with a different combination of wave parameters.
Figure SI 2.4: Test experiments 7-13 in Wave Category I. Each with a different combination of wave parameters.
SI 3 Wave Category II: dispersively focused irregular waves

SI 3.1 Non-breaking wave example result

The evolution of a focused packet that does not undergo wave breaking confirms the FDML correction does not apply a correction in the non-breaking case. In fig. SI 3.1 the MNLS and MNLS+FDML prediction are nearly identical in the frequency domain; thus no correction is applied, as confirmed by the low and comparable MSE (fig. SI 3.1h). In physical space, the FDML correction applies a slight over-damping.

Figure SI 3.1: Example result (not used for training) for the spatial evolution of non-breaking dispersively focused irregular waves (Wave Category II). a-d) Time domain. Color bar indicates elevation envelope a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+FDML. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the spectrum normalized by the maximum of the initial condition. Parameters of the initial conditions: $f_p = 0.91 \text{ Hz}$, $(\omega_p = 5.7 \text{ rad/s})$, $\gamma = 3.3$, $H_s = 10 \text{ mm}$ and $x_f = 18 \text{ m}$.
The MNLS+FDML solver can start from any arbitrary initial condition, as long as the complex envelope is available. In fig. SI 3.2 the initial condition is the third wave gauge in the tank. The propagation length of the simulation can be set arbitrarily. In fig. SI 3.2 the propagation length is set such that the simulation extends beyond the physical tank length, indicated by the white space in panels c and g. Wave parameters are the same as in figs. 2 to 4.

Figure SI 3.2: Example result (not used for training) for the spatial evolution of dispersively focused irregular waves (Wave Category II) with alternative starting point and propagation length. a-d) Time domain. Color bar indicates elevation envelope. a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+FDML. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the spectrum normalized by the maximum of the initial condition. Parameters of the initial conditions are the same as in figs. 2 to 4.
Figure SI 3.3: Test experiments 7-13 in Wave Category II. Each with a different combination of wave parameters.
Figure SI 3.4: Test experiments 7-13 in Wave Category II. Each with a different combination of wave parameters.
SI 3.4 External dataset

Figure SI 3.5: Verification of the MNLS+FDML model on an external data set obtained at Shanghai Jiao Tong University (not used for training) with breaking occurring at $\xi = 0.77$ ($x = 76$ m). a-c) Time domain. d-f) Spectrum. a,d) MNLS simulation. b,e) Gauge 3. c,f) Gauge 4.

To verify the generalization properties and robustness of our MNLS+FDML model, we use it to predict wave breaking in an external data set of focused breaking waves recorded in the Multifunctional Ship Model Towing Tank at Shanghai Jiao Tong University. This tank used to has a length of 300 m, a width of 16 m, and a water depth of 7.3 m. Initial parameters were based on a Gaussian spectrum with $f_p = 0.47$ Hz ($\omega_p = 2.95$ rad/s) variance 0.06, $H_s = 120$ mm and linear focusing at $x_f = 144$ m. The initially Gaussian spectrum was focused based on linear wave theory to reach a maximum amplitude at $\xi_f = 1.46$ from the wavemaker, but broke at $\xi = 0.77$ ($x = 76$ m). Four wave gauges are placed along the centre-line of the tank at $\xi = 0.75$, 0.78, 0.81 and 0.85. Breaking occurs between the first and second gauge. Due to the non-linearity of the waves, the spectrum broadens as the waves evolve, and a spectral tail develops, giving the spectrum a more JONSWAP-like shape. The initial condition for the simulations is the surface elevation record from the first wave gauge.

Figure SI 3.5a,d, displaying the physical space and spectral evolution respectively, show that the wave gauges only record a very small part of the total focusing-defocusing cycle of the wave, while the MNLS+FDML model was trained to cover larger parts of the cycle. Nevertheless, the FDML correctly suppresses the shoulder in the spectrum upon breaking (fig. SI 3.5e,f) and caps off the high peak of the envelope predicted by the MNLS (fig. SI 3.5c).

The significant wave height of this wave group was 120 mm, corresponding to a wave amplitude-based Reynolds number $\text{Re} = \frac{a_s^2 \omega_p}{\nu} = 1.1 \times 10^4$, where $a_s = H_s/2$ is the significant amplitude. This is a much larger wave than in the experiments used to train the network. For the example in figs. 2 to 4, $\text{Re} = 1.3 \times 10^3$ ($H_s = 30$mm), an order of magnitude lower. This demonstrates the robustness of our MNLS+FDML model across a range of scales.
SI 4 Comparison with Kato & Oikawa (1995)

SI 4.1 Wave Category I: modulated plane waves

For modulated plane waves (Wave Category I), the wave breaking model developed in Kato & Oikawa (1995) [18] is able to reproduce some features of wave breaking, such as energy dissipation, amplitude attenuation and shortening of the FPUT recurrence cycle. However, it fails to capture the full strength of the downshift in the spectrum, and therefore gives different dynamics at greater distance from the breaking point. The KO95 model has one free parameter β (see their equation 2.1). When β is set too low there is no effect on the evolution. When set too high there is too much dissipation and the wave field disappears. For fig. SI 4.1, $\beta = 0.2$ was set such that the effect on the evolution was maximal, while the amount of energy dissipation remained reasonable.

Figure SI 4.1: Comparison to the breaking model of Kato & Oikawa (1995) (KO95) for the evolution of a breaking modulated plane wave (Wave Category I). a-d) Time domain. Color bar indicates elevation envelope a. a) MNLS simulations. b) MNLS+KO95 simulations. c) MNLS+FDML simulations. d) Measurements. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the spectrum normalized by the maximum of the initial condition. Parameters of the initial conditions are the same as in fig.1.
Figure SI 4.2: Mean squared error (MSE) at each wave gauge between measured envelope and MNLS, MNLS+FDML and MNLS+KO95 corresponding to fig. SI 4.1 a) Time domain. a) Frequency domain.

SI 4.2 Wave Category II: dispersively focused irregular waves

For the dispersively focused irregular waves (Wave Category II), the KO95 18 wave breaking model was performed with $\beta = 0.3$ (see their equation 2.1). Like for Wave Category II, this parameter was tuned such that it would have a maximal effect, limited by a reasonable dissipation of the energy of the wave. The MNLS + KO95 model gives a slight attenuation of the peak amplitude, but seems to turn on too late (fig. SI 4.3b). That is, after the breaking event in the experiment has already taken place. Suppression of the higher frequencies is only very slight in the frequency domain (fig. SI 4.3f). Overall, for the continuous spectrum of Wave Category II, the KO95 correction term is not as effective as for Wave Category I. The modification to the MNLS evolution is only minimal, as reflected by their similar MSE values in fig. SI 4.4.

Figure SI 4.3: Comparison to the breaking model of Kato & Oikawa (1995) (KO95) for the evolution of breaking dispersively focused irregular waves (Wave Category II). a-d) Time domain. Color bar indicates elevation envelope a. a) MNLS simulations. b) Kato 1995 simulations. c) MNLS+FDML simulations. d) Measurements. e-h) Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the spectrum normalized by the maximum of the initial condition. Parameters of the initial conditions are the same as in figs. 2 to 4.
Figure SI 4.4: Mean squared error (MSE) at each wave gauge between measured envelope and MNLS, MNLS+FDML and MNLS+KO95 corresponding to fig. SI 4.3. a) Time domain. b) Frequency domain.
SI 5 Wave Category III: random irregular waves

SI 5.1 Training data and algorithm

The goal for Wave Category III is to be able to predict the evolution of a finite time series up to a certain prediction horizon. The available experimental data consists of three time series of 20 minutes, or 1500 wave periods, for four different wave heights: $H_s = 25, 34, 41, 54$ mm, with a total of 12 experiments. For the lowest wave height there are no breaking events, for the highest value many breaking events occur.

Training pairs are created as follows. After determining a time and spatial step, the envelope is interpolated to those steps over the domain. Then, sections of 512 time steps and either 60 or 120 propagation steps are created, as illustrated in fig. SI 5.1b by the dashed rectangles. For each wave gauge, the next section is shifted 64 steps from the previous, as illustrated by the red rectangle, shifted from the yellow. This is repeated for each subsequent wave gauge. The green rectangle is positioned at the second wave gauge.

![Figure SI 5.1: a) Sections in space and time are created from the total wave record for random irregular waves (Wave Category III). b) For each section, an MNLS simulation is performed. c) For both the simulation and the measurement, the edges are discarded to account for information getting lost near the edges in the simulation to create a truncated section. A training pair s consists of the MNLS simulation and the interpolated measurement over the section.](image)

For each section created, the boundaries of the first time step are made periodic such that it can serve as an initial condition for the MNLS simulation. The MNLS simulation is performed over the segment length (fig. SI 5.1b). To take into account the fact that information can leave and come in through the boundaries, we discard the outer 64 time steps of both the measurement and the MNLS simulation, in analogue to the principle of the predictable region. This reduces the number of time steps from 512 to 386 (fig. SI 5.1b). Note that to be rigorous, this predictable region should depend on the propagation length, and the spectral properties, but we ignore this here. These truncated sections then form a training pair s, as shown in fig. SI 5.1b. To account for the truncated input and the amount of information contained in this input, the network architecture is slightly different than for the other wave categories. It consists of 384 input neurons, 384 output neurons, 256 LSTM neurons, and 256 dense neurons. The rest of the training algorithm is identical to that of Wave Categories I and II, outlined in the Methods section and SI 6.

For each of the 12 experiments, a section in time is reserved for validation (grey shaded) and testing (white shaded), as marked shaded areas in fig. SI 5.2 These areas will not be used for training.
Figure SI 5.2: Example of a total experiment for random irregular waves (Wave Category III). Test-section is colored white, validation section is colored grey.
SI 5.2 Narrow-banded result: $\gamma = 6$

Note the clear reduction in the MNLS+FDML model MSE at the wave breaking location. Also note that the model was trained on about 1/5 of the propagation length displayed here. Due to the narrower spectrum, the predictable region is extended.

Figure SI 5.3: Example result (not used for training) for the evolution of the envelope irregular waves (Wave Category III), for a narrow-banded sea: $\gamma = 6$, in the time domain, showing wave breaking at $\xi = 1.7$, as indicated by the red circle. Color bar indicates surface elevation envelope a. a) MNLS simulations. b) MNLS+FDML simulations. c) Measurements. d) Mean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+FDML. e-g) Envelope at different spatial locations: measurements (solid blue), MNLS simulations (dashed yellow) and MNLS+FDML simulations (dashed-dotted green) at the wave gauge locations indicated by the red-dotted lines in (a). The red circle indicates a wave breaking event.

SI 5.3 Other wave examples

As a clear breaking signature is difficult to identify in an irregular sea, we identify steep waves instead, which may or may not break, and illustrate the performance of the MNLS+FDML method in the vicinity of these steep events. Figure SI 5.4 shows in red the regions of steepness $\tilde{a}k_0 > 0.28$, for each of the three cases with $H_s = 0.54$ mm (the steepest experiment). Each possible breaking event is indicated with a number. Figures SI 5.5 and SI 5.6 show the MNLS and MNLS+FDML simulation for each event.

Figure SI 5.4: Test region for the three instances of the $H_s = 54$ mm experiment. Regions with steepness $\tilde{a}k_0 > 0.28$ are marked in red and numbered.
Figure SI 5.5: Simulations around the regions indicated in fig. SI 5.4.
Figure SI 5.6: Simulations around the regions indicated in fig. SI 5.4
SI 5.4 MSE test set

Figure SI 5.7 displays the MSE averaged over both space and time for the first 200 data pairs from the test-set (as in fig. SI 5.1, but for the test region), of each wave height, the dashed line indicating the MNLS+FDML model, and the solid line the MNLS model. While figures fig. 6 and fig. SI 5.3 show a local dip in MSE at the location of a wave breaking event, this does not affect the global MSE of the sample. Indeed, the performance of the MNLS and the MNLS+FDML models are comparable in fig. SI 5.7 indicating that averaged MSE is not a useful metric to confirm the ability of the MNLS+FDML model to predict breaking in irregular seas, in which breaking remains sporadic.

Figure SI 5.7: Mean Squared Error (MSE) for the first 200 test samples of each wave height. a) $H_s = 25$ mm b) $H_s = 34$ mm c) $H_s = 41$ mm d) $H_s = 44$ mm.
The three algorithms (Algorithm 1-3) below outline the training procedure of the neural network for Wave Categories I and II. The method for Wave Category III is slightly different, as the raw data is a long continuous record rather than separate experiments, and is outlined in [SI 5].

SI 6.1 Algorithm 1: Obtain ground truth at solver step

The wave tank experiments need to be interpolated such that the ground truth is available at every solver step, instead of only at the wave gauge positions. In both the time and the frequency domain, the absolute value of the envelope varies slowly in the propagation direction and is sufficiently sampled according to the Nyquist–Shannon theorem, and can be interpolated using a *pchip* spline. To make the algorithm applicable to different data-sets, the propagation and time-step are scaled so that the amount of variation over a typical length scale are comparable. The length of the time vector corresponds to the number of input neurons of the network and should therefore be high enough such that the MNLS can be solved, but not too high to avoid too many parameters to be tuned. In our study we used $n_t = n_{\text{RNN}} = 512$ for wave Categories I and II, and $n_t = n_{\text{RNN}} = 384$ for wave Category III. Note that in the illustration of algorithm 1 we show the evolution of only one of these time-points.

Algorithm 1: Obtain ground truth at solver step

1: **procedure** Ground Truth(\mathcal{E})

2: $\mathcal{E}\{e_1, e_2, \ldots e_{N_E}\}$

3: Set $\Delta \xi_{\text{train}} = k_0 \Delta x = 0.2$

4: Set $\Delta \tau_{\text{train}} = \omega_0 \epsilon \Delta t = 0.01$

5: for $e \in \mathcal{E}$ do

6: $\Delta x = 0.2/k_0$

7: $\Delta t = 0.01/(\omega_0 \epsilon)$

8: for PS,FS do:

9: $e[\Delta t_{\text{wave gauge}}, \Delta x_{\text{wave gauge}}] \rightarrow \bar{e}[\Delta t, \Delta x]$

10: end for

11: $\bar{\mathcal{E}}\{\bar{e}_1, \bar{e}_2, \ldots \bar{e}_{N_E}\}$

12: end for

13: **end procedure**
To increase the number of learning cases, each experiment is split up in segments of different propagation lengths and with different starting points, as shown in fig. [SI 6.1] For each experiment, 3 segments lengths are selected. Only segments terminating before the end of the wave tank, i.e., segments that are fully covered by the experiments are used for training. The starting position can only be at wave gauge positions, as these are the only locations with access to the complex envelope (modulus + phase).

Algorithm 2: Algorithm 3. MNLS simulations for training pairs

```
procedure MNLS simulations for training pairs(\(E\))

2: for \(e \in E\) do

4: \(n_{\text{steps,seg}} = l_i, i = 1, 2, 3\)

6: for \(l_i\) do: \(k=1\)

8: while \(x_k + l_i \leq x_{\text{max}}\) do

10: \(a_{\text{true}}(0, l_i) = e(x_k, x_k + l_i)\)

12: \(a_{\text{MNLS},0} = a_{\text{true},0}\)

14: \(j = 1\)

16: while \(j \leq n_{\text{steps,seg}}\) do

18: \(a_{\text{MNLS},j} = \text{MNLS}(a_{\text{MNLS},j-1})\)

20: \(j = j + 1\)

22: end while

24: for PS,FS do:

26: save: \(s = \{|a|_{\text{MNLS}}[n_{\text{steps,seg}}, 512], |a|_{\text{true}}[n_{\text{steps,seg}}, 512]|\}\)

28: end for

30: end while

32: end for

34: \(S\{s_1, s_2, ... s_{N_S}\}\)

▷ Set of training pairs, based on \(N_S\) unique wave parameter-, segment length- and start position combinations

▷ Chose 3 different segment lengths

▷ Gauge number \(k\)

▷ While the segment fits in the tank

▷ Select segment of true propagation

▷ Get complex initial condition from wave gauge

▷ Propagate MNLS solver over segment using split-step Fourier method

▷ Save training pair in PS and FS

Figure SI 6.1: Different starting point give different discrepancies between MNLS and true evolution.
As described in the Methods section, the network architecture is a simple LSTM, depicted in fig. SI 6.2. The parameter vector of the network $\beta$ consists of all the weights and biases of each neuron, as well as additional parameters for the gate functions of the LSTM unit. The goal is find the optimal $\beta$ such that the cost function eq. (10) is minimized. To this end, the network is fed with training pairs $s = [\text{input, output}] = [|a|_{\text{MNLS}}(\xi_k, \xi_k + n_{\text{steps}}\Delta\xi), |a|_{\text{true}}(\xi_k, \xi_k + n_{\text{steps}}\Delta\xi)]$ in batches.

To minimize eq. (10) over each batch, several optimization schemes can be employed. We use the Adam gradient descent variant provided by the TensorFlow package, to which we have added a gradient limit to avoid explosion of the gradient. The training procedure is outlined in Algorithm 3. As the MNLS is equivariant to translations of the time axis and has periodic boundary conditions, in the time domain, 40 random translations in time are added to augment the data (i.e., to create more training pairs).

Algorithm 3: Training procedure

```plaintext
1: procedure TRAINING(W, E)
2: $E\{e_1, e_2, ..., e_{N_E}\}$
3: $S\{1, 2, ..., n_S\}$
4: Shuffle E
5: fraction$_{\text{train}} = 0.80,$ fraction$_{\text{val}} = 0.15,$ fraction$_{\text{test}} = 0.05$
6: $\rightarrow E_{\text{train}}, E_{\text{val}}, E_{\text{test}} \subset E$
7: $\rightarrow S_{\text{train}}, S_{\text{val}}, S_{\text{test}} \subset S$
8: for PS, FS do:
9: RNN(β_0, a)
10: for n_{epochs} do
11: for n_{batches} do
12: $l_i \in L$
13: $s \in S_{\text{train}} = \{|a|_{\text{MNLS}}, i|n_{\text{steps}}, 512|, |a|_{\text{true}}, i|n_{\text{steps}}, 512|\}$
14: Calculate J (eq. (10))
15: end for
16: Minimize $J(\beta)$ (eq. (10)) $\rightarrow \beta$
17: Print: MSE training and MSE validation
18: end for
19: end for
20: end procedure
```

1 Note that an LSTM can only be trained on batches of equal length
6.4 Using the MNLS-FDML solver

The utilization of the MNLS-FDML scheme is the same as that of the MNLS solver, but also includes breaking effects, i.e., it takes the form of an initial value problem or deterministic wave forecasting. That is, for a given initial condition at a position \( x_0 \) we would like to know the evolution up to and including a point \( x_1 \). If the initial condition is a time series measurement of the surface elevation, the complex envelope \( a(x_0, t) \) has to be obtained using the Hilbert transform (see main text). Subsequently, the MNLS solver can be used to propagate the solution forward an arbitrary number of steps. After this propagation, the RNN applies a correction for the absolute value of the physical envelope and its Fourier spectrum, as depicted in fig. 7d.

Algorithm 4: Utilization MNLS-FDML correction

1: procedure MNLS-FDMLC(\( \eta_{x_0,t} \))
2: given: \( \eta_{x_0,t} \)
3: \( \eta_{x_0,t} \rightarrow A_{x_0,t} \)
4: \( A_{x_0,t} \rightarrow a_{\xi=0,\tau} \)
5: Set \( \Delta \xi = 0.2 \)
6: Set \( \Delta \tau = 0.01 \)
7: Set \( n_{\text{steps}} \)
8: while \( i \leq n_{\text{steps}} \) do
9: Propagate MNLS solver over desired length using the Split-Step scheme
10: \( a_{\text{MNLS},i} = \text{MNLS} (a_{\text{MNLS},i-1}) \)
11: \( i = i + 1 \)
12: end while
13: for PS,FS do
14: \( |a|_{\text{pred}} = \text{RNN}(\beta, |a|_{\text{MNLS}}) \)
15: end for
16: end procedure

\( \triangleright \) Given a time series measurement at position \( x_0 \)
\( \triangleright \) Obtain complex envelope
\( \triangleright \) Make Nondimensional
\( \triangleright \) Set time and propagation step solver
\( \triangleright \) Set desired number of propagation steps
\( \triangleright \) Apply correction over propagated steps
Figure SI 7.1 shows the mean squared error (MSE) of the training and validation set as a function of training epoch. In one epoch, the neural network is trained with all the training data once. The training data is then shuffled to continue training for the next cycle or epoch.

Figure SI 7.1: Training history of the RNNs for a) Wave Category I: Time domain RNN, b) Wave Category I: Frequency domain RNN, c) Wave Category II: Time domain RNN, d) Wave Category II: Frequency domain RNN, e) Wave Category III: Time domain RNN. Mean squared error (MSE) of the training set (blue line), validation set (orange line). The MSE of the untrained model on the test set is indicated by the red cross. The MSE of the test set after the training is complete is indicated by the green cross. Note that due to the randomly selected starting point and propagation length given to the experiments in the test set, the value of the MSE can vary slightly.