Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish

Seong Bin Park1, Takashi Aoki1,2 and Tae Sung Jung1*

Abstract

Edwardsiella tarda is one of the serious fish pathogens, infecting both cultured and wild fish species. Research on edwardsiellosis has revealed that E. tarda has a broad host range and geographic distribution, and contains important virulence factors that enhance bacterial survival and pathogenesis in hosts. Although recent progress in edwardsiellosis research has enabled the development of numerous, highly effective vaccine candidates, these efforts have not been translated into a commercialized vaccine. The present review aims to provide an overview of the identification, pathology, diagnosis and virulence factors of E. tarda in fish, and describe recent strategies for developing vaccines against edwardsiellosis. The hope is that this presentation will be useful not only from the standpoint of understanding the pathogenesis of E. tarda, but also from the perspective of facilitating the development of effective vaccines.

Table of contents

1. Introduction
2. Identification and classification
3. Hosts
4. Pathology and diagnosis
5. Virulence factors
6. Vaccines
7. Concluding remarks
8. Competing interests
9. Authors’ contributions
10. Acknowledgements
11. References

1. Introduction

Edwardsiellosis, caused by Edwardsiella tarda, has been reported worldwide in economically important fish species, including Japanese eel (Anguilla japonica), red sea bream (Pagrus major), yellowtail (Seriola quinqueradiata), channel catfish (Ictalurus punctatus), and turbot (Scophthalmus maximus) [1-4]. This infection also leads to serious economic losses in the aquaculture of olive flounder (Japanese flounder; Paralichthys olivaceus), the most important fish species in South Korean aquaculture, with production valued at 489.7 billion Korean Won (40 922 MT), which corresponds to 56.5% of total fisheries production in 2010 [5-7].

Recent studies on vaccine development have applied a variety of antigen-preparation methods; however, commercial vaccines are not yet available. In addition, numerous studies have reported on virulence factors of E. tarda and immune responses of hosts. In the present study, the pathogenicities of E. tarda in fish that can be exploited to elicit effective protection strategies against edwardsiellosis will be discussed.

2. Identification and classification

The genus Edwardsiella is composed of three species, E. tarda, E. ictaluri, and E. hoshinae [8-10]. Fish are usually infected with E. tarda or E. ictaluri, whereas E. hoshinae infection is usually reported in reptiles and birds [11]. Panangala et al. [12] suggested that biochemical tests can differentiate E. tarda from E. ictaluri among bacteria isolated from freshwater fish based on the positive reaction of E. tarda in tests of indole production, methyl red reduction and hydrogen sulfide generation. In protein profiling of bacterial isolates using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, the authors also demonstrated that E. ictaluri is more homogeneously distributed than E. tarda.
E. tarda was originally isolated from cultured Japanese eel (Anguilla japonica) in Japan in 1962 [1]. Subsequent findings for the bacterium were reported from snakes in Japan [13] and from human feces in the USA; the bacterium was designated E. tarda by Ewing et al. [8]. Although there was a move to change the epithet tarda to anguilliformum since it had been initially reported as Paracolobactrum anguilliformum [14], the bacterium is commonly named E. tarda because P. anguilliformum was not registered and the original culture was lost [6,15].

E. tarda is a Gram-negative, short, rod-shaped, facultative anaerobic bacterium that measures about 2–3 μm in length and 1 μm in diameter [11]. It is usually motile, but isolates from red sea bream and yellowtail are non-motile [16]. This bacterium can survive at 0–4% sodium chloride, pH 4.0–10.0, and 14–45°C [17]. The biochemical characteristics of E. tarda are catalase positive, cytochrome oxidase negative, production of indole and hydrogen sulfide, fermentation of glucose, and reduction of nitrate to nitrite [11]. However, several variations of biochemical tests have been found for ornithine decarboxylase, citrate utilization, hydrogen sulfide production, and fermentation of mannitol and arabinose. These discrepancies allow division into two groups: wild type and biogroup 1 [8,9,18]. The characteristics of wild-type E. tarda are negative for arabinose, mannitol and sucrose production, and positive for hydrogen sulfide production; the characteristics of biogroup 1 are the opposite.

Park et al. [19] demonstrated that E. tarda can be divided into four serotypes, A, B, C and D, using O-antigen extracts of 445 isolates from infected eel, water, and sediments. They suggested that 72% of isolates belonged to serotype A, the most virulent group based on experimental challenge tests, whereas a subsequent study of E. tarda isolated from olive flounder revealed that all isolates were serotype A [20]. Another study established an E. tarda serotyping scheme comprising 61 O groups and 45 H antigens that is preferable for international applications [21].

Several important findings suggest that intra- and/or inter-specific variability exists among E. tarda strains. E. tarda isolated from humans could be differentiated from isolates from fish by RAPD (random amplified polymorphic DNA) analysis [22], and E. tarda isolated from freshwater fish or pond sediments showed diverse and/or homogeneous characteristics in plasmid profiling, ERIC-PCR (enterobacterial repetitive intergenic consensus-polymerase chain reaction), SDS-PAGE, and RFLP (restriction fragment length polymorphism) analyses of 16S rDNA [12,23,24]. In addition, Western blot profiles of LPS (lipopolysaccharides) from E. tarda strains isolated from turbot and other fish revealed that only isolates from turbot were recognized by rabbit sera raised against the isolate from turbot [25]. Biochemical tests, protein profiling, LPS profiling, and RAPD analysis showed that E. tarda strains from olive flounder have highly homogeneous phenotypic and genotypic characteristics compared to isolates from Japanese eel (unpublished data).

3. Hosts
Since the first report of E. tarda infection in Japanese eel [1], E. tarda has been isolated from numerous marine and freshwater fishes, including barramundi (Lates calcarifer) [26], channel catfish [3], largemouth bass (Micropterus salmoides) [27], mullet (Mugil cephalus) [28], crimson sea bream (Erynnis japonica) [29], tilapia (Tilapia nilotica) [30], chinook salmon (Oncorhynchus tshawytscha) [31], red sea bream [2], yellow tail [2], olive flounder [32], common carp (Cyprinus carpio) [33], European sea bass (Dicentrarchus labrax) [34], turbot [4], Asian catfish (Claris batrachus) [35], brook trout (Salvelinus fontinalis) [36], Indian major carp (Catla catla) [37], rohu (Labeo rohita) [37], European eel (Anguilla anguilla) [38], and Far Eastern catfish (Silurus asotus) [39]. In addition, isolation of E. tarda has been reported in invertebrates [40], amphibians [40], reptiles [13,26], birds [27,41,42] and mammals, including humans, cattle, swine, dogs, and Weddell seals (Leptonychotes weddellii) [8,41-45]. These numerous reports indicate that E. tarda has a wide geographical distribution, even in Antarctica [42], and is an important pathogen in terms of public health, since it can progress as an epizootic and zoonotic bacterium [11].

4. Pathology and diagnosis
Edwardsiellosis in fish usually occurs under imbalanced environmental conditions, such as high water temperature, poor water quality, and high organic content [11]. Fish infected with E. tarda show abnormal swimming behavior, including spiral movement and floating near the water surface [3,46]. Although clinical signs vary after onset, fish infected with E. tarda show loss of pigmentation, exophthalmia, opacity of the eyes, swelling of the abdominal surface, petechial hemorrhage in fin and skin, and rectal hernia (Figure 1) [6,35,46]. Internally, watery and bloody ascites in the abdominal space and congested liver, spleen, and kidney are found [46,47]. Histopathological characteristics of edwardsiellosis in fish are supplicative interstitial nephritis, suppurative hepatitis, and purulent inflammation in the spleen [6,46-48]. Abscesses of various sizes, bacterial colonization, and infiltration of neutrophils and macrophages are found in the liver, spleen, and kidney [6,47,48]. Some remarkable pathological features have also been demonstrated in fish, such as dorsolateral petechial hemorrhage and abscesses in cutaneous lesions of channel
catfish [3,49]; hyperplasia, necrosis and inflammation in lateral line canals of striped bass [50]; and necrosis and aggregation of bacteria-laden macrophages in red sea bream [46]. However, the symptoms and pathological changes in fish are similar to those of other bacterial infections, including *Aeromonas hydrophila*, *Vibrio anguillarum* and *Pseudomonas anguilliseptica*; thus, other molecular or biochemical methods are recommended for diagnosis of *E. tarda* infection [51].

E. tarda is usually identified based on its unique biochemical characteristics after isolation on brain-heart infusion agar or tryptone soya agar from infected fish. Several studies have suggested that serological techniques are useful for diagnosis of *E. tarda* infection, including agglutination tests, enzyme linked immunosorbenbt assays (ELISA), and fluorescent antibody techniques [3,31,37]. Recently, PCR-based methods have been reported for accurate, sensitive, and differential diagnosis. Real-time PCR has been used to analyze the blood of oyster toadfish (*Opsanus tau*) infected with *E. tarda* [52], and the loop-mediated isothermal amplification (LAMP) method is able to detect *E. tarda* in infected tissue samples and pond water [53]. Chang et al. [54] developed a multiplex nested PCR for four important fish pathogens in subtropical Asia that can simultaneously detect *A. hydrophila*, *E. tarda*, *Photobacterium damselae* and *Streptococcus iniae* from pure colonies and tissue homogenates. In addition, a primer set, evaluated using 53 *E. tarda* strains isolated from various sources and 18 representative strains of related and unrelated bacterial species, was shown capable of detecting two cells from pure culture and 3 × 10^2 cells in seeded turbot tissues [55].

5. Virulence factors

E. tarda survive in their host by utilizing several important substances and abilities that serve as virulence factors in the host (Figure 2). A study using green fluorescent protein (GFP) showed that both avirulent and virulent *E. tarda* are able to adhere to, invade, and replicate in the carp epithelial papilloma (EPC) cell line using host microfilaments and protein tyrosine kinase [56]. Histopathological and infection kinetics studies using GFP revealed that the gill, gastrointestinal tract, and body surface of blue gourami (*Trichogaster trichopterus*) are the sites of entry of the virulent strain [57].

Type III secretion system (T3SS) and type VI secretion system (T6SS) play important roles in adherence, penetration, survival, and replication of *E. tarda* in epithelial cells and phagocytes (Table 1). The T6SS of *E. tarda* comprises 16 genes, and 13 of the encoded proteins are involved in the secretion of EvpP (*E. tarda* virulence protein) [58]. Three proteins (EvpP, EvpL, and EvpC) are secreted into the extracellular milieu, and the secretion of EvpC and EvpL are required for the secretion of EvpP [58]. The putative ATPase, EvpO, contains a Walker A motif, which possibly interacts with EvpA, EvpL, and EvpN [58]. T3SS is a multi-protein complex that is essential for host and pathogen interaction. The central component of T3SS is a needle complex, which is structurally similar to bacterial flagella, that spans the bacterial inner and outer membrane [59]. This needle can connect to the host cell membrane via the tip complex through the translocon, which can allow the delivery of bacterial effector proteins from an ATPase dependent manner [60]. In *E. tarda*, T3SS proteins include the *E.
E. tarda secretion system apparatus (EsaB and EsaN), effectors (EseB, EseC and EseD), chaperones (EscA, EscB and EscC), and regulators (EsrA, EsrB and EsrC) [60-62]. Proteomic studies have revealed that EseB, EseC and EseD are the major ECP, and mutations of these genes in E. tarda reduces virulence compared to parental E. tarda [63].

Several reports found that motility-related proteins, such as flagellin and autotransport adhesin AIDA, a fimbrial adhesin-like protein, are important for attachment and penetration into the epithelial cells of hosts [63-65]. An E. tarda mutant containing a deletion of the ethA gene (hemolysin gene locus from E. tarda), regulated by the two-component system EsrA-EsrB and nucleoid protein HhaEt, shows reduced capacity to internalize into EPC cells [66]. Interestingly, a recent study showed that the qseB and qseC two-component system of E. tarda inhibits flagella biosynthesis and motility, and induces the expression of the T3SS after invasion into host cells [67]. These findings indicate that E. tarda is capable of modulating the expression of genes involved in adjusting to environmental changes, such as adaptation to intracellular living.

Indeed, E. tarda is able to survive and adapt to various host environmental conditions, including host hormonal change, temperature, pH, salinity, and variations in several important nutritional elements, such as iron, phosphate, and Mg$^{2+}$ [64-74]. The qseB and qseC two-component system, an important virulence regulator that contributes to intracellular replication and systemic infection, are able to regulate flagella motility and the intracellular expression of T3SS elements EseB and EsaC in response to eukaryotic hormone-like signals, such as epinephrine and norepinephrine [67]. The PhoP-PhoQ two-component system of E. tarda is able to sense changes in temperature and Mg$^{2+}$ concentration and control the T3SS and T6SS via activation of esrB [70]. This study showed that a conformational change in PhoQ over a temperature range of 23–37°C and at low Mg$^{2+}$ concentration causes PhoQ autophosphorylation and subsequent activation of PhoP, which promotes expression of esrB and leads to secretion of virulent proteins, whereas below 20°C or above 37°C, no such conformational change in PhoQ takes place and the production of virulence proteins is decreased. Similarly, on the basis of observations of mutants containing an insertion of the pstSCAB-phoU operon, which is part of the phosphate regulon, Srinivasa Rao et al. [64] suggested that natural conditions of low inorganic phosphate in phagocytic and epithelial cells might stimulate virulent genes to promote survival and replication within the host. In another study, a high concentration of NaCl (3%) was shown to induce hemagglutination activity, which correlated with the expression of fimbrial major subunit (FimA), a 19.3 kDa protein; moreover, E. tarda enriched for this fimbrial protein showed higher virulence in challenge experiments compared to E. tarda raised in 0% NaCl broth [75].

The ability of bacteria to acquire iron acquisition using the bacterial iron chelator, siderophore, is essential for...
Abbreviation	Name	Accession number	Function
Type III secretion systems			
EsaB	putative TTSS apparatus protein B	AAV69410	apparatus
EsaC	putative TTSS apparatus protein C	AAV69411	apparatus
EsaD	putative TTSS apparatus protein D	AAV69412	apparatus
EsaG	putative TTSS apparatus protein G	AAV69415	apparatus
EsaH	putative TTSS apparatus protein H	AAV69416	apparatus
EsaI	putative TTSS apparatus protein I	AAV69417	apparatus
EsaJ	putative TTSS apparatus protein J	AAX76915	apparatus
EsaK	putative TTSS apparatus protein K	AAX76913	apparatus
EsaL	putative TTSS apparatus protein L	AAV69401	apparatus
EsaM	putative TTSS apparatus protein M	AAX76922	apparatus
EsaN	putative TTSS apparatus protein N	AAX76920	apparatus
EsaQ	putative TTSS apparatus protein Q	AAV69420	apparatus
EsaR	putative TTSS apparatus protein R	AAX76923	apparatus
EsaS	putative TTSS apparatus protein S	AAV69419	apparatus
EsaT	putative TTSS apparatus protein T	AAX76924	apparatus
EsaU	putative TTSS apparatus protein U	AAV69421	apparatus
EsaV	putative TTSS apparatus protein V	AAX76921	apparatus
EscA	putative TTSS chaperone protein A	AAV69403	chaperone
EscB	putative TTSS chaperone protein B	AAX76917	chaperone
EscC	putative TTSS chaperone protein C	AAV69402	chaperone
EseB	putative TTSS effector protein B	AAX76903	effector
EseC	putative TTSS effector protein C	AAV69404	effector
EseD	putative TTSS effector protein D	AAV69405	effector
EseE	putative TTSS effector protein E	AAV69406	effector
EseG	putative TTSS effector protein G	AAX76916	effector
EsrA	TTSS regulator protein A	AAV69423	regulator
EsrB	TTSS regulator protein B	AAX76904	regulator
EsrC	TTSS regulator protein C	AAV69414	regulator
Type VI secretion systems			
EvpA	*E. tarda* virulent protein A	AAR83927	apparatus
EvpB	*E. tarda* virulent protein B	AAR83928	apparatus
EvpC	*E. tarda* virulent protein C	AAR83929	extracellular apparatus
EvpD	*E. tarda* virulent protein D	AAR83930	apparatus
EvpE	*E. tarda* virulent protein E	AAS58123	apparatus
EvpF	*E. tarda* virulent protein F	AAS58124	apparatus
EvpG	*E. tarda* virulent protein G	AAS58125	apparatus
EvpH	*E. tarda* virulent protein H	AAS58126	apparatus
EvpI	*E. tarda* virulent protein I	ABW69081	extracellular apparatus
EvpJ	*E. tarda* virulent protein J	ABW69082	apparatus
EvpK	*E. tarda* virulent protein K	ABW69083	apparatus
EvpL	*E. tarda* virulent protein L	ABW69084	apparatus
EvpM	*E. tarda* virulent protein M	ABW69085	apparatus
EvpN	*E. tarda* virulent protein N	ABW69086	apparatus
Table 1 The virulence factors described in the present study (Continued)

Protein	Description	Accession Number	Function
EvpP	E. tarda virulent protein P	ABW69080	extracellular apparatus
The other proteins			
AidA	putative autotransporter protein AidA	BAH03175	autotransporter adhesin
HhaEt	α-hemolysin-modulator like protein	YP_003295064	nucleoid-associated proteins
EthA	E. tarda hemolysin A	BAA21097	hemolysin
EthB	E. tarda hemolysin B	BAA21096	hemolysin activation/secrection
QseB	DNA-binding transcriptional regulator QseB	ADO13165	Quorum sensing (QS) system
QseC	sensor protein QseC	ADO24152	Quorum sensing (QS) system
PhoP	two-component regulator protein PhoP	ADB28435	DNA-binding transcriptional regulator
PhoQ	two-component sensor protein PhoQ	ADB28436	sensor

the survival and replication of bacteria [64,73]. A natural mutant with lower siderophore production and a mutant with a gene encoding aryl sulfate sulphotransferase producing less siderophore showed significantly reduced virulence in E. tarda challenge experiments [72,73]. Recently, an E. tarda deletion mutant lacking the T6SS component evpP, which encodes a consensus ferric uptake regulator (Fur) box, was shown to exhibit low virulence in vivo and in vitro [74]. This finding might indicate that the EvpP protein in T6SS plays an important role in invasion mechanisms and thus may be a critical virulence factor.

It has been reported that E. tarda produces two kinds of hemolysins; one is a cell associated, iron-regulated hemolysin, encoded by ethA and ethB, that is secreted as an extracellular protein (ECP) under iron-regulated conditions [76], and the other is an extracellular hole-forming hemolysin distinct from EthA and EthB that is not regulated by iron [77-79]. A recent functional study demonstrated that EthA is critical for invasion in vivo and in vitro, and is regulated by the two-component system EsrA-EsrB and nucleoid protein HhaEt [66]. Other enzymes, including catalase, chondroitinase, dermatotoxin, protease, and collagenase, are also important for the pathogenesis of E. tarda [64,74,80,81].

Several studies have indicated that E. tarda is able to survive and replicate in phagocytes, leading to systemic infections [82-86]. Virulent E. tarda opsonized with serum of blue gourami can replicate within phagocytes and fails to induce an oxidative burst, possibly providing a mechanism for avoiding phagocyte-mediated killing [83]. A subsequent study revealed that the expression of the catalase (KatB) gene of E. tarda is responsible for the resistance to H2O2 and phagocyte-mediated killing [64]. Similarly, a comparison of the response of peritoneal macrophages from olive flounder to high- and low-virulence E. tarda demonstrated that only the highly virulent strain is able to resist reactive oxygen species generated by macrophages, and survive and replicate within macrophages [84]. In a subsequent report, the authors of this latter study extended their results, demonstrating that virulent E. tarda elicit a significantly greater induction of nitric oxide and tumor necrosis factor (TNF)-α production by macrophages, actions that may account for the pathogenicity of E. tarda infection [85]. In addition, a study of E. tarda septicemia revealed that E. tarda induces systemic immunosuppression through lymphocyte apoptosis, which suppresses systemic immune responses during the initial stage of septicemia [86].

The host also seems to possess immune mechanisms for avoiding or resisting the propagation of E. tarda. An examination of the pathogenicity of motile and non-motile E. tarda strains toward olive flounder, red sea bream, and yellow tail showed that all strains were virulent in the olive flounder and yellow tail, whereas only atypical strains showed mortality in the red sea bream [16]. These findings might indicate that immune mechanisms involved in recognition of and resistances against E. tarda vary among hosts. In zebra fish (Danio rerio), experimental infection with E. tarda resulted in an acute elevation of the inflammatory cytokines, interleukin-1β (IL-1β) and TNF-α [87]. Indian major carp challenged with E. tarda exhibited a significant induction of immune responses and expression of several immune related genes, including IL-1β, TNF-α, inducible nitric oxide synthase (iNOS), complement component C3, β2-microglobulin, CXCa, and C-type and G-type lysozyme [88]. T. Aoki and colleagues surveyed over a thousand genes in olive flounder infected with E. tarda using microarray analyses, identifying 36 genes that were differentially expressed between susceptible and resistant olive flounder groups [89-91]. Notably, 3 days post challenge, MHC class 1 antigen processing- and presenting-related genes were highly expressed in resistant groups, but susceptible groups showed high expression of genes involved in innate immune responses [90].

Understanding the virulence factors of E. tarda may inform the development of protection strategies against
edwardsiellosis in fish. Recent progress in analytical methods, such as genomics and proteomics, has revealed important virulence factors, including T3SS, T6SS, and two-component systems (Figure 2). Verjan et al. demonstrated seven antigenic proteins, which were identified as lipoproteins, periplasmic proteins, exported, and secreted proteins [92]. Additional proteomic studies on outer membrane proteins (OMP), ECP, and outer membrane vesicles (OMV) may also contribute to the development of effective protection strategies against edwardsiellosis [60,63,65,69,93–98]. In addition, knowing the full genome sequence of *E. tarda* would enhance our understanding of the relationship between *E. tarda* and the host, and further the development of new prophylactic and therapeutic strategies for managing edwardsiellosis in fish [99].

6. Vaccines

A vaccine is by definition a biological preparation that improves immunity to a specific disease. The vaccine typically consists of several agents, such as weakened or killed forms of the microbe, its toxin or one of its surface proteins [100]. Numerous antigen preparation methods have been used to develop effective vaccines against edwardsiellosis, including formalin killed cells (FKC), LPS, ECP, live attenuated *E. tarda*, avirulent *E. tarda*, ghost cells, OMP, recombinant proteins, recombinant protein-expressing cells, OMV, and DNA vaccines (Table 2). Several early studies noted that immunization of Japanese eel with FKC or LPS exerted protective effects after challenge with a virulent strain of *E. tarda* [101–103]. However, another study reported no protective effect of

No.	Antigen	Adjuvant	fish	Route	RPS (%)*	Country	year	Ref.
1	recombinant vaccine DnaJ	aluminum hydroxide	olive flounder	i.p.	62	China	2011	[106]
2	recombinant vaccine OMP		common carp	i.p.	54.3	India	2011	[107]
3	natural OMVs		olive flounder	i.p.	70	Korea	2011	[93]
4	Δalr Δasd *E. tarda*		olive flounder	i.p.	100	Korea	2011	[108]
5	recombinant vaccine rEta2	aluminum hydroxide	olive flounder	i.p.	83	China	2011	[109]
6	DNA vaccine pCEta2		olive flounder	i.m.	67	China	2011	[109]
7	recombinant vaccine pCEsa1		olive flounder	i.p.	57	China	2011	[110]
8	Esa1-expressing recombinant strain	aluminum hydroxide	olive flounder	PO	52	China	2010	[111]
9	Esa1-expressing recombinant strain	aluminum hydroxide	olive flounder	i.p.	79	China	2010	[111]
10	Live E22		olive flounder	i.p.	45	Japan	2010	[112]
11	DNA vaccine N163		olive flounder	i.m.	70.2	China	2010	[113]
12	recombinant vaccine scFv	Freund's incomplete adjuvant	Red drum	i.p.	88	China	2010	[114]
13	recombinant vaccine EseD	Freund's complete adjuvant	turbot	i.p.	62.5	China	2010	[62]
14	recombinant vaccine DegP_E	Freund's incomplete adjuvant	olive flounder	i.p.	89	China	2010	[81]
15	Recombinant vaccine Et49	Freund's incomplete adjuvant	olive flounder	i.p.	47	China	2010	[81]
16	Live ATCC 15947		olive flounder	i.p.	100	China	2010	[115]
17	Extracted OMP		olive flounder	i.p.	71	China	2010	[97]
18	recombinant vaccine Eta21	Bacillus sp. strain B187	Olive flounder	i.p.	69	China	2009	[116]
19	DHSa/pTAET21	Bacillus sp. strain B187	Olive flounder	i.p.	100	China	2009	[116]
20	DNA vaccine pEta6	Bacillus sp. strain B187	Olive flounder	i.p.	50	China	2009	[117]
21	recombinant vaccine Eta6	Bacillus sp. strain B187	Olive flounder	i.p.	53	China	2009	[117]
22	recombinant vaccine Et18	Bacillus sp. strain B187	Olive flounder	i.p.	61	China	2009	[118]
23	recombinant vaccine EseD	Bacillus sp. strain B187	Olive flounder	i.p.	51.3	China	2009	[118]
24	Formalin killed ACC35.1	Montaniode ISA 763 AVG	turbot	i.p.	100	Spain	2008	[55]
25	live, attenuated exB mutant		turbot	i.p.	93.3	China	2007	[119]
26	Ghost vaccine		olive flounder	PO	85.7	Korea	2007	[120]
27	Ghost vaccine		tilapia	i.p.	88.8	Korea	2006	[121]
28	37 kDa OMP		olive flounder	i.p.	70	Japan	2004	[122]
29	Formalin killed virulent bacterin		Olive flounder	i.p.	98	India	2002	[37]

“ means no adjuvant was added; i.p., intraperitoneal injection; i.m., intramuscular injection; PO, oral administration; *, relative percentage survival (RPS) calculating for vaccine efficacy (RPS = [1 minus vaccine group mortality/control group mortality] x 100).
FKC and LPS against *E. tarda* infection [104], possibly indicating the diverse antigenicity of *E. tarda* species [105]. Recent progress in vaccine preparation using diverse antigens has led to highly effective vaccines against *E. tarda* infection [106–122]. Several vaccine trials coupled with adjuvants have shown 100% relative survival, and most evaluated trials were shown to produce significant protective effects (Table 2). Interestingly, more than 75% of the studies published in China, Japan and South Korea during the last decade have focused on the protective effects of vaccines in olive flounder, providing an indication that Edwardsiella is in olive flounder is a serious problem in Far East Asia and highlighting the urgent need to develop an effective, commercializable vaccine. Thus, to improve the efficacy of the vaccine, comprehensive understanding of bacterial pathogenesis, including intracellular surviving, host cell mediated-immune responses, and comparative epidemiological investigation on *E. tarda* originating from different fish species is necessary. These efforts will allow for the identification of host pathogen cross-talk, which will lead to the identification of valuable vaccine candidates, such as a cocktail bacterin vaccine originating from different fish species, mutant vaccine made by deleting different genes compared with previous studies and DNA vaccine combined with several important multiple antigen genes.

7. Concluding remarks

E. tarda is a versatile Gram-negative bacterium that exhibits a broad geographical distribution and host range, and causes significant economic losses to the aquaculture industry. Despite limitations in this emerging field, recent studies on various virulence factors of *E. tarda* have enhanced our understanding of the pathogenesis of *E. tarda*, which adhere to, invade, and replicate in host cells and modulate their own gene expression to survive and adapt in fish. In addition, immune studies on Edwardsiella applying proteomic and genomic approaches suggest that hosts sense the bacterium, induce inflammatory responses, and synergistically direct innate and adaptive immune responses against *E. tarda* infection. Furthermore, numerous studies on Edwardsiella have reported highly efficacious vaccines, efforts that will encourage the development of a novel vaccine for use in aquaculture.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SBP drafted the manuscript, tables, and figure. TA and TSJ critically evaluated and revised the manuscript for important intellectual content. All authors have read and approved the final manuscript.

Acknowledgements

This work was supported by a grant from the World Class University Program (no. R32-10253) funded by the Ministry of Education, Science and Technology, of South Korea.

Author details

1 Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea. 2 Consolidated Research Institute for Advanced Science and Medical Care (ASiMWC), Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan.

Received: 7 June 2012 Accepted: 7 September 2012

Published: 4 October 2012

References

1. Hoshina T: On a new bacterium, *paracolobactrum anguillimortiferum* n. sp. Bull Jpn Soc Sci Fish 1962, 28:162–164.
2. Yasunaga N, Ogawa S, Hatai K: Characteristics of the fish pathogen *Edwardsiella* isolated from several species of cultured marine fishes. Bull Nagasaki Pref Intl Fish 1982, 8:57–65.
3. Meyer FP, Bullock GJ: *Edwardsiella tarda*, a new pathogen of channel catfish (*Ictalurus punctatus*). Appl Microbiol 1973, 25:155–156.
4. Nougayrede PH, Vuillaume A, Vigneulle M, Faivre B, Luengo S, Delprat J: First isolation of *Edwardsiella tarda* from diseased turbot (*Scophthalmus maximus*) reared in a sea farm in the Bay of Biscay. Bull Eur Assoc Fish Pathol 1994, 14:126–129.
5. Statistics Korea (KOSTAT): Republic of Korea: 2010 Survey on the status of fish culture, 2011. http://kostat.go.kr/portal/english/news/118/index.board?bmode=download&bSeq=4&uSeq=251088&bId=[consulted 23 April 2012].
6. Egusa S: Some bacterial diseases of freshwater fishes in Japan. Fish Pathol 1976, 10:103–114.
7. Bang JD, Chun SK, Park SI, Choi YJ: Studies on the biochemical and serological characteristics of *Edwardsiella tarda* isolated from cultured flounder, *Paralichthys olivaceus*. J Fish Pathol 1992, 5:29–35.
8. Ewing WH, McWhorter AC, Escobar MR, Lubin AH: *Edwardsiella*, a new genus of Enterobacteriaceae based on a new species, *E. tarda*. Int J Syst Evol Microbiol 1965, 15:33–38.
9. Grimont PAD, Grimont F, Richard C, Sakazaki R: *Edwardsiella hoshiniae*, a new species of Enterobacteriaceae. Curr Microbiol 1980, 4:347–351.
10. Hawke JP, McWhorter AC, Steigenwall AG, Brenner DONJ: *Edwardsiella icatuli* sp. nov., the causative agent of enteric septicaemia of catfish. Int J Syst Evol Microbiol 1981, 31:396–400.
11. Woo PTK, Bruno DW: Fish diseases and disorders, Volume 3: viral, bacterial and fungal infections. In *Edwardsiella septicaemias*. 2nd edition. Edited by Eavis JJ, Klesius PH, Plumb JA, Shoemaker CA; Wallingford: CABI International, 2010:512–534.
12. Panangala VS, Shoemaker CA, McNulty ST, Arias CR, Klesius PH: Intra-and interspecific phenotypic characteristics of fish-pathogenic *Edwardsiella icatuli* and *E. tarda*. Aquacult Res 2006, 37:49–60.
13. Sakazaki R: A proposed group of the family Enterobacteriaceae, the *eukarya* group. Int J Syst Evol Microbiol 1965, 15:45–47.
14. Sakazaki R, Tamura K: Priority of the specific epithet *anguillimortiferum* over the specific epithet tarda in the name of the organism presently known as *Edwardsiella tarda*. Int J Syst Bacteriol 1975, 25:219–220.
15. Farmer JJ III, Brenner DONJ, Clark WA: Proposal to conserve the specific epithet *tarda* over the specific epithet anguillimortiferum in the name of the organism presently known as *Edwardsiella tarda*: request for an opinion. Int J Syst Evol Microbiol 1976, 26:293–294.
16. Matsuyma T, Kamaiishi T, Ooseki N, Kurohara K, Iida T: Pathogenicity of motile and non-motile *Edwardsiella tarda* to some marine fish. Fish Pathol 2005, 40:133–136.
17. Ishihara S, Kusuda R: Growth and survival of *Edwardsiella tarda* bacteria in environmental water. Bull Jpn Soc Sci Fish 1982, 48:483–488.
18. Walton DT, Abbott SL, Landa JH: Sucrose-positive *Edwardsiella tarda* mimicking a biogroup 1 strain isolated from a patient with cholelithiasis. J Clin Microbiol 1993, 31:155–156.
19. Park S, Wakabayashi H, Watanabe Y: Serotype and virulence of *Edwardsiella tarda* isolated from eel and their environment. Fish Pathol 1983, 18:85–89.
20. Rashid MW, Honda K, Nakai T, Munro K: An ecological study on *Edwardsiella tarda* in flounder farms. Fish Pathol 1994, 29:221–227.
21. Tamura K, Sakazaki R, McWhorter AC, Kosako Y: *Edwardsiella tarda* serotyping scheme for international use. J Clin Microbiol 1988, 26:2343–2346.
22. Nucci C, Da Silva Weira, da Silva Corrêa S, Nakazato G, Bando SY, Ribeiro MA, de Castro AF: A microbiological comparative study of isolates of
Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

23. Maiti NK, Mandal A, Mohanty S, Mandal RN: Phenotypic and genetic characterization of Edwardsiella tarda isolated from pond sediments. Comp Immun Microbiol Infect Dis 2009, 32:1–8.

24. Wei LS, Musa N: Phenotyping, genotyping and whole cell protein profiling of Edwardsiella tarda isolated from cultured and natural habitat freshwater fish. Am Eurasian J Agric Environ Sci 2008, 3:681–691.

25. Castro N, Toranzo AE, Barja JL, Nunez S, Magarinos B: Characterization of Edwardsiella tarda strains isolated from turbot, Psetta maxima (L.). J Fish Dis 2006, 29:541–547.

26. Iveson JB: Strontium chloride B and EE enrichment broth media for the isolation of Edwardsiella, Salmonella and Arizona species from tiger snakes. J Hyg (Lond) 1971, 69:233–330.

27. White FH, Simpson CF, Williams LE Jr: Isolation of Edwardsiella tarda from aquatic animal species and surface waters in Florida. J Wildl Dis 1973, 9:204–209.

28. Kusuda R, Toyoshima T, Iwamura Y, Sako H: Edwardsiella tarda from an epizootic of mullets (Mugil cephalus) in Okiotsu Bay. Bull Jpn Soc Sci Fish 1976, 42:271–275.

29. Kusuda R, Itami T, Munekiyo M, Nakajima H: Characteristics of an Edwardsiella sp. from an epizootic of cultured crimson sea breams, Bull Jpn Soc Sci Fish 1977, 43:129–134.

30. Van Damme LR, Vandepitte J: Frequent isolation of Edwardsiella tarda and pleisomomas shigelloides from healthy zairese freshwater fish: a possible source of sporadic diarrhea in the tropics. Appl Environ Microbiol 1980, 39:475–479.

31. Amandi A, Hiu SF, Rohovec JS, Fryer JL: Pathology caused by the bacterium Edwardsiella tarda in striped bass. Fish Shellfish Immunol 2002, 13:35–66.

32. Nakatsugawa T: Edwardsiella tarda isolated from cultured yellow flounder. Fish Pathol 1983, 18:99–101.

33. Sae-Oui D, Muroga K, Nakai T: A case of Edwardsiella tarda infection in cultured colored carp Cyprinus carpio. Fish Pathol 1984, 19:197–199.

34. Blanch AR, Pinto RM, Jofre JT: Edwardsiella tarda isolated from cultured young flounder. Appl Environ Microbiol 1982, 43:1380–1384.

35. Edwardsiella tarda sp. strain, causative agent of mortalities in sea bass cultured in Mediterranean Spain. J Appl Environ Microbiol 2007, 73:685–689.

36. Edwardsiella tarda infection in oyster toadfish (Opsanus tau) held at the Marine Resources Center. Biol Bull 2004, 207:171.

37. Savan R, Kono T, Itami T, Sakai M: Loop-mediated isothermal amplification: an emerging technology for detection of fish and shellfish pathogens. J Fish Dis 2005, 28:573–581.

38. Chang CI, Wu CC, Cheng TC, Tsai JM, Lin KJ: Multiplex nested-polymerase chain reaction for the simultaneous detection of Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Sphingomonas inae, four important fish pathogens in subtropical Asia. Aquacult Res 2009, 40:1182–1190.

39. Edwardsiella tarda infection in Patterson’s seabeach and John Dory: an emerging technology for detection of fish and shellfish pathogens. Fish Shellfish Immunol 2006, 21:134–143.

40. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

41. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

42. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

43. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

44. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

45. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

46. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

47. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

48. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

49. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

50. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

51. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

52. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

53. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

54. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

55. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

56. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

57. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

58. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

59. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

60. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

61. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

62. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

63. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

64. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

65. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

66. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

67. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

68. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

69. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

70. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

71. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

72. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.

73. Edwardsiella tarda isolated in different countries from fish and humans. Vet Microbiol 2002, 89:29–39.
system for regulation of virulence in Edwardsiella tarda. J Biol Chem 2010, 285:38866–38888.

71. Kokubo T, Iida T, Wakabayashi H: Production of siderophore by Edwardsiella tarda. Fish Pathol 1990, 25:237–241.

72. Mathew JA, Tan YP, Sinnava Rao PS, Lim TM, Leung KY: Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiology 2001, 147:449–457.

73. Igarashi A, Iida T, Cosa JH: Iron-acquisition ability of Edwardsiella tarda with involvement in its virulence. Fish Pathol 2002, 37:53–58.

74. Wang X, Wang Q, Xiao J, Liu Q, Wu H, Xu L, Zhang Y: Edwardsiella tarda TetSS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol 2009, 27:469–477.

75. Yanasubu H, Arikawa Y, Fumitsuka-Uozumi K, Dombro M, Iida T, Mahmoud MM, Okuda J, Nakai T: Induction of Hemagglutinating activity of Edwardsiella tarda by sodium chloride. Fish Pathol 2006, 41:29–34.

76. Janda JM, Abbott SL: Expression of an iron-regulated hemolysin by Edwardsiella tarda. FEMS Microbiol Lett 1993, 111:275–280.

77. Chen JD, Lai SY, Huang SL: Expression of an iron-regulated hemolysin by Edwardsiella tarda. J Biol Chem 2001, 276:13254–13260.

78. Ishibe K, Yamanishi T, Wang Y, Osatomi K, Hara K, Kanai K, Yamaguchi K, Murase T, Komada T, Hamasaki T, Makino T, Otani H, Sasakawa C, Koyama N, Igarashi A, Iida T, Wakabayashi H: Differences in the phagocytosis of four bacteria pathogenic marine fish Edwardsiella tarda, Edwardsiella ictaluri, Edwardsiella uralensis, and Edwardsiella tarda. Fish Pathol 2000, 35:99–106.

79. Strauss EJ, Ghori N, Falkow S: Pathogenesis and inflammatory response to Edwardsiella tarda infection. Bull Jpn Soc Sci Fish 1985, 51:1233–1237.

80. Jiao X, Zhang M, Cheng S, Sun L: Analysis of Edwardsiella tarda DegP, a serine protease and a protective immunogen. Fish Shellfish Immunol 2008, 26:672–677.

81. Ainsworth JA, Devignan C: Differences in the phagocytosis of four bacteria by channel catfish neutrophils. Dev Comp Immunol 1990, 14:201–209.

82. Igarashi A, Iida T, Crosa JH: O-antigen-metabolizing enzymes of Edwardsiella tarda strains. J Bacteriol 1992, 174:5055–5060.

83. Igarashi A, Iida T, Wakabayashi H: Colony morphology, cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol 1996, 165:3–9.

84. Ishibe K, Otoomori K, Hara K, Kanai K, Yamaguchi K, Oda T: Comparison of the responses of peritoneal macrophages from Japanese flounder (Paralichthys olivaceus) against high virulent and low virulent strains of Edwardsiella tarda. Fish Shellfish Immunol 2009, 27:659–666.

85. Igarashi A, Iida T, Wakabayashi H: Differences in the phagocytosis of four bacteria pathogenic marine fish Edwardsiella tarda, Edwardsiella ictaluri, Edwardsiella uralensis, and Edwardsiella tarda. Fish Pathol 2000, 35:99–106.

86. Lee DC, Kim DH, Park SI: Effects of extracellular products of Edwardsiella tarda on the innate immunity in olive flounder Paralichthys olivaceus. Fish Pathol 2009, 45:17–23.

87. Pressley ME, Phelan PE III, Eckhard Witten P, Mellon MT, Kim CH: Structural characterization of the O-polysaccharide antigen of Edwardsiella tarda MT 108. Carbohydr Res 2005, 340:85–90.

88. Tan X, Zhan W, Sheng X, Chi H: Immune response of Japanese flounder Paralichthys olivaceus to outer membrane protein of Edwardsiella tarda. Fish Shellfish Immunol 2010, 28:333–343.

89. Kumar GP, Sharma P, Rathore G, Bist D, Sengupta U: Proteomic analysis of outer membrane proteins of Edwardsiella tarda. J Appl Microbiol 2010, 108:2214–2221.

90. Wang Q, Yang M, Xiao J, Wu H, Wang X, Lu Y, Xu L, Zheng H, Wang S, Zhao G: Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One 2003, 4:e7646.

91. Robinson A, Hudson MJ, Cranage MP: Vaccine protocols. In: Overview of Vaccines. 2nd edition. Edited by Ada G, Tottowa: Humana Press, 2003:1–7.

92. Salati F, Kawai K, Kusuda R: Immunogenicity of an Edwardsiella tarda lipopolysaccharide. Fish Pathol 1984, 19:187–192.

93. Gutierrez MA, Miyazaki T: Responses of Japanese eels to oral challenge with Edwardsiella tarda after vaccination with formalin-killed cells or lipopolysaccharide of the bacterium. J Aquat Anim Health 1994, 6:110–117.

94. Salati F, Kusuda R: Vaccine preparations used for immunization of eel Anguilla japonica against Edwardsiella tarda infection. Bull Jpn Soc Sci Fish 1985, 51:1233–1237.

95. Mekuchi T, Kiyokawa T, Honda K, Nakai T, Muroga K: Production of an anti-idiotypic antibody against the O-polysaccharide antigen of Edwardsiella tarda. Fish Pathol 2002, 27:621–625.

96. Vinogradov E, Nossova L, Perry MB, Kay WW: Comparative study of the immune effect of an Edwardsiella tarda antigen in two forms: Subunit vaccine vs DNA Vaccine protocols. In: Overview of Vaccines. 2nd edition. Edited by Ada G, Tottowa: Humana Press, 2003:1–7.

97. Tang X, Zhan W, Sheng X, Chi H: Immune response of olive flounder against edwardsiellosis. Fish Pathol 1995, 30:251–256.

98. Newman SC: Bacterial vaccines for fish. Annu Rev Fish Dis 1993, 3:145–185.

99. Dang W, Zhang M, Sun L: Edwardsiella tarda DnaJ is a virulence-associated molecular chaperone with immunoprotective potential. Fish Shellfish Immunol 2011, 31:182–188.

100. Mati B, Shetty M, Shekar M, Karunasagar I: Recombinant outer membrane protein A (OmpA) of Edwardsiella tarda, a potential vaccine candidate for fish, common carp, Microbiol Res 2011, 167:1–7.

101. Choi SH, Kim KH: Generation of two auxotrophic genes knock-out Edwardsiella tarda and assessment of its potential as a combined vaccine in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 2011, 31:58–65.

102. Sun Y, Liu CS, Sun L: Comparative study of the immune effect of an Edwardsiella tarda antigen in two forms: Subunit vaccine vs DNA Vaccine protocols. In: Overview of Vaccines. 2nd edition. Edited by Ada G, Tottowa: Humana Press, 2003:1–7.

103. Salati F, Kusuda R: Vaccine preparations used for immunization of eel Anguilla japonica against Edwardsiella tarda infection. Bull Jpn Soc Sci Fish 1985, 51:1233–1237.

104. Mekuchi T, Kiyokawa T, Honda K, Nakai T, Muroga K: Production of an anti-idiotypic antibody against the O-polysaccharide antigen of Edwardsiella tarda. Fish Pathol 2002, 27:621–625.
118. Hou JH, Zhang WW, Sun L: Immunoprotective analysis of two Edwardsiella tarda antigens. J Gen Appl Microbiol 2009, 55:57–61.
119. Lan MZ, Peng X, Xiang MY, Xia ZY, Bo W, Jie L, Li XY, Jun ZP: Construction and characterization of a live, attenuated ersB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicamia in turbot, Scophthamus maximus (L.). Fish Shellfish Immunol 2007, 23:521–530.
120. Kwon SR, Lee EH, Nam YK, Kim SK, Kim KH: Efficacy of oral immunization with Edwardsiella tarda ghosts against edwardsiellosis in olive flounder (Paralichthys olivaceus). Aquaculture 2007, 269:94–88.
121. Kwon SR, Nam YK, Kim SK, Kim KH: Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish Shellfish Immunol 2006, 22:621–626.
122. Kawai K, Liu Y, Ohnishi K, Oshima S: A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 2004, 22:3411–3418.

doi:10.1186/1297-9716-43-67
Cite this article as: Park et al. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary Research 2012 43:67.