Examining the role of vasopressin in the modulation of parental and sexual behaviors

Josi Maria Zimmermann-Peruzatto1, Virginia Meneghini Lazzari2, Ana Carolina de Moura2, Silvana Almeida2 and Márcia Giovenardi1,2*

1 Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2 Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil

Vasopressin (VP) and VP-like neuropeptides are evolutionarily stable peptides found in all vertebrate species. In non-mammalian vertebrates, vasotocin (VT) plays a role similar to mammalian VP, whereas mesotocin and isotocin are functionally similar to mammalian oxytocin (OT). Here, we review the involvement of VP in brain circuits, synaptic plasticity, evolution, and function, highlighting the role of VP in social behavior. In all studied species, VP is encoded on chromosome 20p13, and in mammals, VP is produced in specific hypothalamic nuclei and released by the posterior pituitary. The role of VP is mediated by the stimulation of the V1a, V1b, and V2 receptors as well as the oxytocinergic and purinergic receptors. VT and VP functions are usually related to osmotic and cardiovascular homeostasis when acting peripherally. However, these neuropeptides are also critically involved in the central modulation of social behavior displays, such as pairing recognition, pair-bonding, social memory, sexual behavior, parental care, and maternal and aggressive behavior. Evidence suggests that these effects are primarily mediated by V1a receptor in specific brain circuits that provide important information for the onset and control of social behaviors in normal and pathological conditions.

Keywords: evolutionary lineage VP, vasopressin-like, V1a receptor, V1b receptor, social behaviors

General Aspects

Vasopressin-like (VP-like) and oxytocin-like (OT-like) peptides have been isolated from invertebrates and vertebrates in more than 100 species (1). Approximately 700 million years ago, the ancestral gene encoding the precursor protein diverged between the invertebrate and vertebrate families (2). Generally, all vertebrate species express a VP-like and OT-like peptide.

The lineage of VP-like peptides is evolutionarily stable. In fishes, amphibians, reptiles, and birds, vasotocin (VT) shares similar roles with mammalian VP, whereas mesotocin and isotocin are functionally similar to mammalian oxytocin (OT) (3).

The gene expression and regulation of these peptides is conserved among vertebrates (3). The chemical structure of VP and OT differs by only two of nine amino acid residues (4, 5). The VP/OT superfamily can be traced back to different types of invertebrates, such as annelids and mollusks (6). There is a homology of 80% between VP and OT, but these neuropeptides have distinct physiological activities. The receptors for VP-like and OT-like peptides have been described in invertebrates (6) and vertebrates (7).
Both VP and OT are produced in the hypothalamus, released in the neurohypophysis, and distributed throughout the brain (8, 9). In 1895, the vasopressor effect of the neurohypophyseal extract was attributed to the neurohypophysis gland (10). However, two decades later, the antidiuretic effect of the pituitary extract was demonstrated (11). The isolation of VP in the fifties confirmed that the same neuropeptide is synthesized in the neurohypophysis gland and possesses antidiuretic and vasopressor effects (12).

This review focuses on the involvement of VP in brain circuits, synaptic plasticity, evolution, and function, highlighting the role of VP in parental and sexual behaviors.

Vasopressin and Vasopressin-Like Peptides

Gene Structure

Nucleotide sequences encoding the VP and OT hormones are highly homologous. In all species, VP and OT are located on the same chromosome, 20p13, but encoded by different genes separated by a segment of DNA only 12 kb long (13). The similarity in the intron–exon structures of the two genes and opposite orientation suggest recent gene duplication (14).

Synthesis and Release

Vasopressin is a nonapeptide with a disulfide bridge between two cysteine amino acids and is synthesized in a smaller amount by parvocellular neurons, primarily by magnocellular neurons of the hypothalamus in paraventricular nucleus (PVN) and supraoptic nucleus (SON) (15). These nuclei send axons to the neurohypophysis, the supra-optic–hypophyseal tract, and the supraoptic–hypophyseal tract to the neurohypophysis gland, where it is released into circulation (16).

The PVN and SON receive afferent nerve impulses from receptors in the left atrium, aortic arch, and carotid sinuses via the vagus nerve. PVN and SON receive osmotic input from the lamina terminals, which is excluded from the blood–brain barrier and is thus affected by systemic osmolality. Furthermore, Holmes et al. (16) suggested that in the rat brain, extrahypothalamic structures, such as the bed nucleus of the stria terminalis (BNST), the medial amygdala, nucleus of the locus coeruleus, hippocampus, and choroid plexus, in addition to the hypothalamus, are able to synthesize VP.

The anterior pituitary gland also releases VP but in smaller quantities. VP can activate the hypothalamic–pituitary–adrenal axis by stimulating the V1b receptor (V1bR) and controlling the liberation of adrenocorticotropic hormone (ACTH) (17), whereas the V1a receptor (V1aR) controls the synthesis and release of cortisol in the adrenal cortex (18).

Vasopressin Receptors

The functions of VP are modulated by stimulation of G-protein-coupled receptors (GPRCs) from each independent tissue. They are classified as V1aR, V1bR (also known as V2R), V2R, oxytocinergic (OTR), and P2 purinergic (P2R) receptors (19, 20). In mammals, the VPRs are widely distributed in the brain (21, 22).

Vasopressin can bind to all of these receptors but not with the same affinity. The receptors, which use G-proteins as transducer signals across the cell membranes, have seven hydrophobic transmembrane domains, four extracellular domains, and four intracellular domains (23). Neurotransmitters, hormones, and chemokines indicate the courses of VP action, whereas local mediators signal to the four main G-protein families to regulate metabolic enzymes, ion channels, and transcriptional regulators. The different types of VPR extracellular signals refer to specific G-proteins. Several important hormones interact with the G pathway, which is characterized by inhibition of adenylyl cyclase (24).

Agonist of VPR is a substance that initiates a physiological response through specific interactions with G-protein-coupled receptor kinases and protein kinase C present in the carboxyl termini of the receptors (25). The VP signal is transmitted through guanine nucleotide-binding proteins (G-proteins) (26), such as Gs, Gi, and Gq/11 subtypes (24).

V1aR Receptor

V1aR is primarily found on vascular smooth muscle and causes vasoconstriction by an increase in intracellular calcium via the phosphatidyl-inositol-bisphosphonate cascade. Studies in rats have shown that V1aR is also located in the brain, myocardium, gonads, cervical ganglion, liver, blood vessels, kidney, spleen, renal medulla, and platelets (20–22, 27–29); however, the physiologic roles of VP remain unknown in many tissues.

V1bR Receptor

V1bR is localized in pituitary gland, olfactory bulb, septum, hippocampus, pancreatic beta cells, and adrenal medulla and induces the release of hormones (20, 30–32). The phylogenetic analysis showed that V1bR diverged early from the V1aR sequences and presented the closest relationship with the OTR (31). V1bR is highly expressed in the anterior pituitary where it is thought to play a role in costimulating the neuroendocrine response to stress (33). The VP causes secretion of ACTH, which is important for the induction and phenotype maintenance of ACTH-secreting tumors mediated through Gs, Gi, and Gq/11 (34). Studies have shown that V1bR gene expression may thus be a marker of the corticotroph phenotype and can be used to help shed light on the pathophysiological mechanism of ectopic ACTH syndrome (30, 35).

V2R Receptor

V2R is located on vascular smooth muscle cells, vascular endothelium, and the collecting ducts of the renal medulla (20). The hydro-osmotic or antidiuretic effect of VP occurs via activation of V2R (36, 37). VP adjusts water homeostasis regulation of the fast shuttling of aquaporin 2 to the cell surface and stimulates the synthesis of mRNA encoding this protein (38, 39).

Phillips et al. (28) evaluated V2R and V1bR binding sites in vitro using selective radioligands and demonstrated that there was no vasocostritor activity of V2R in the endothelium, liver, brain, spinal cord, sympathetic ganglia, heart, or vascular smooth muscle. In this study, specific binding was only identified in the kidney, which is consistent with the known distribution of antidiuretic V2R on renal collecting tubules (28).
Other Receptors
Both VP and OT can bind with OTR but not with the same affinity. OTRs are coupled to G_{q/11} class binding proteins, which stimulate phospholipase C activity (34).

P₂, purinergic receptors also belong to the seven-transmembrane domain GPCR superfamily. Its role was confirmed in cardiac endothelium because VP exhibited effects through activation of P₂Rs (40).

Vasopressin and Oxytocin Neuropeptides
Vasopressinergic and oxytocinergic systems can be processed. Wacker et al. (51) described populations of vasopressinergic neurons in the main and accessory olfactory bulbs and anterior olfactory nucleus that are involved in processing social odor cues. Pharmacological studies have shown that VP administration improves social recognition in both sexes (58, 63). If applied bilaterally in the olfactory bulbs, extending the memory retention interval for the recognition of male rat odor is extended (72).

In rodents, intracerebroventricular microinjections of VP agonists facilitate social memory and can significantly extend social recognition and memory consolidation for as much as 120 min (73, 74). V₁ₐR antagonists produce marked effects on learning, memory, and social behaviors (59, 63). Intracerebroventricular and intraepathal microinjection of V₁ₐR antagonists block social recognition, and VP microinjection can rescue deficits in social recognition in Brattleboro rats that lack VP (74–77).

Bielsky et al. (45) demonstrated that V₁ₐR knockout mice (V₁ₐRKO) display an enormous deficit in social recognition, providing strong evidence that V₁ₐR is essential for this action. Similarly, V₁ₐR knockout mice (V₁ₐRKO) also presented deficits in the social memory test (52, 53). However, the increased V₁ₐR expression in the lateral septum (LS) facilitated social behavior (78).

Among other social behaviors, the parental behavior exerts an essential role in the behavioral development of offspring (79). Maternal care is best studied; however, pup-directed positive behaviors, such as retrieval and kyphosis (huddling), are exhibited by no-parturient animals and are characteristics of socially monogamous or cooperative breeding species. Male parental care has been primarily studied in relation to the vasopressinergic system, which is sexually dimorphic and androgen-dependent because testosterone promotes VP synthesis (79).

Paternal care is highly demonstrated by prairie vole males (80, 81). Lim and Young (82) demonstrated that the infusion of VP (0.1 ng) directly into the LS of these animals can enhance licking/grooming (LG) behavior toward pups and that this behavior is blocked by the use of a V₁ₐR antagonist (80). The father LG behaviors and retrieving the pups exert a pivotal role on the development of the VP systems and aggressive behavior of their adult offspring (79). In adult male rats, LG behaviors increase the levels of V₁ₐR binding within the amygdala nucleus (46).

Besides the parental behavior, the VP system is also an important mediator of maternal behavior. In the peripartum and lactation periods, there is an increase in the expression of mRNA, receptors, and density/binding of VP in the maternal brain. This increase contributes to the adaptations that develop in the female maternal care. Previous studies (83–85) have already suggested a role for VP facilitating maternal care, but more recent studies showed substantial evidence of this neuropeptide facilitating maternal behavior [for review, see Bosch and Newman (86)].
Furthermore, in females, V1aR density was significantly correlated with postpartum LG of the offspring (87).

Most studies are based on infusion of VP and V1aR antagonists in specific areas of the CNS participating in the neural circuitry of maternal behavior and thus demonstrating the modulation of VP in this behavior [for review, see Ref. (86, 88–91)].

Moreover, previous studies (92, 93) with HAB (high anxiety-related behavior) and LAB (low anxiety-related behavior) dams also reinforce that central VP modulates the maternal behavior because the blocking of V1aR by repeated acute intracerebroventricular administration of a selective antagonist promoted decrease arched back nursing and the time the dam spent with the pups in HAB dams.

In conjunction with these findings, the involvement of V1aR in the modulation of maternal behavior was demonstrated in V1aRKO mice (94), which showed that lactating females who received the V1aR antagonist in the lateral ventricle decreased the nursing and interaction with their pups.

In addition to maternal care, lactating rats exhibit aggressive behavior that is observed during the first two postpartum weeks and which aims to protect the offspring against a potentially dangerous intruder (95, 96). The role of VP in aggression has received attention, and previous studies (86, 88, 89, 91, 97–100) provide substantial evidence for VP promoting maternal aggresive behavior. Neuroanatomical studies with multiparous rats revealed significant increases in V1aR mRNA expression in the amygdala, SON, and LS in females on the fifth postpartum day when compared with primiparous rats (101, 102).

Bosch and Neumann (90) demonstrated that microinjection of a selective V1aR antagonist bilaterally into the BNST reduced maternal aggression (91) and the VP within the central nucleus of the amygdala (CeA) was positively correlated with the increased offensive behavior (90). Furthermore, other study by Bosch and Neumann (92) reported that in HAB rats VP promotes maternal aggression, and Lonstein and Gammie (103) showed the increased expression of the VP gene in the PVN. On the other hand, studies with Sprague-Dawley lactating rats showed different results, as the intracerebroventricular infusions of VP reduced maternal aggression, while treatments with an V1aR antagonist increased maternal aggression during early lactation (88).

Vasopressin-deficient Brattleboro rats exhibit reduced aggressive maternal behavior and reduced attacks in males without sexual experience against intruders (99). In other study on female pregnancy (51, 104), increasing V1aR levels in the PVN, CeA, and LS were positively correlated with aggressive behavior. The fluctuations observed in the OTR and V1aR in important areas of the CNS appear to regulate maternal aggression during the peripartum period. In a pharmacological study, microinjection of a selective V1aR antagonist bilaterally into the BNST reduced maternal aggression behavior but did not alter maternal care (105).

Furthermore, VP may be a new target for studies on treatments involving V1aR antagonists or synthetic VP to promote maternal care or suppress aggression in lactating females exposed to chronic stress-associated disorders (98). Using a model of VP-deficient mothers, Fodor et al. (105) demonstrated that these rats have decreased LG behavior and act less depressive. Thus, they suggest that VP antagonists could be an option for future studies on postpartum depression; however, the possible side effects of maternal neglect require further investigation (90, 105).

Some findings suggest that V1aR might also be involved in the modulation of aggressive behavior in both females and males. V1aRKO lactating mice showed an increased latency and decreased number of attacks against intruders when compared with wild-type mothers (97). The defensive behavior was studied in V1aRKO male mice and increased social behavioral responses were observed (106). In support, V1aRKO male mice also had impaired attack behavior toward a conspecific (97).

The role of this nonapeptide in sexual behavior has also been described in the past decades, and previous studies showed that VT/VP modulates specific types of vocalization in rats and squirrel monkeys (107). VT/VP central administration enhances pair-bonding and smell-recognition behaviors as a key feature for the onset of sexual behavior (66, 107).

Since the 1980s, studies have described the importance of vasopressinergic projections in both sexes in relation to sexual behavior. In this context, Meyerson et al. (104) administered an antagonist of VPRs into the lateral ventricles of female Sprague-Dawley rats in the neonatal period; this treatment induced a persistent increase in VP content and facilitated female sexual behavior. This study provided functional and immunocytochemical evidence of the importance of VP in female sexual behavior. In the same decade, Södersten et al. (108) reported that intracerebroventricular injections of VP inhibit sexual behavior in receptive female Wistar rats. These findings were reinforced by Pedersen and Boccia (109), which suggested that VP influences ovarian steroid activation of female sexual behavior via interactions with OT.

In males, Bohus (110) observed that VP agonists reversed the decrease of sexual behavior after castration, but injections of VP into LS of males did not dramatically alter sexual behavior (111, 112). In the 1990s, the role of VP in the modulation of male sexual behavior was hypothesized to be due to the refractory period in rats and consequently be an inhibitor of sexual behavior in males (112). In 1993, Winslow et al. (66) reported that VP is necessary to partner preference formation in monogamous prairie vole. However, these studies commonly focused on differences in neurotransmitter systems in brain structure between sexes instead of the role of the neurotransmitter on sexual behavior. Knowledge about differences in cell density, neurotransmitter content, receptors distribution, and vasopressinergic projections in rats and voles between sexes does not necessarily cause sex differences in sexual behavior (113).

Knockout animals were also used to investigate the role of VP and its receptors in sexual behavior. V1aRKO mice exhibited deficits in social behaviors that require olfactory function, including aggression and social recognition, but these animals had normal sexual behavior (52). The BNST is a sexually dimorphic structure that can be involved in the control of male sexual behavior because males have more VP neurons and denser projections from this area and in the medial amygdaloid nucleus than females (114). However, studies about VP innervation have focused on female sexual behavior. VP innervation from
the LS inhibits sexual behavior in females; thus, hypothetically, the higher levels of VP in males are correlated with less lordosis behavior (115).

In humans, VP has been reported as a selective enhancer of recognition of sexual cues in a behavioral task administered to males (116). Additionally, Argiolas and Melis (117) conducted an elegant review about the control of sexual behavior by neuropeptides in the species studied thus far, including rats, mice, monkeys, and humans (117), and describe VP as an ineffective neuropeptide on copulatory behavior in males but as an inhibitor of lordosis in female sexual behavior.

The role of VP in sexual behavior remains unclear. Controversial results can be explained by the different methods applied and the interactions of this peptide with others, which should always be considered.

References

1. Hoyle CH. Neuropeptide families and their receptors: evolutionary perspectives. Brain Res (1999) 848(1-2):1–25. doi:10.1016/S0006-8993(99)01975-7
2. Acher R, Chauvet J, Chauvet MT. Man and the chimera. Selective versus neutral oxytocin evolution. Adv Exp Med Biol (1995) 395:65–27.
3. Gilligan P, Brenner S, Venkatesh B. Neuropeptide-specific expression and regulation of the puffer fish isotocin and vasotocin genes in transgenic mice. J Neuroendocrinol (2003) 15:1027–36. doi:10.1046/j.1365-2826.2003.001090.x
4. Rose JD, Moore FL. Behavioral neuroendocrinology of vasopressin and vasoressin and the sensorimotor processing hypothesis. Front Neuroendocrinol (2002) 23:317–41. doi:10.1016/S0167-0068(02)00043-3
5. Mavani GP, Devita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med (2015) 2:19. doi:10.3389/fmed.2015.00019
6. Van Kesteren RE, Tensen CP, Smit AB, Van Minnen J, Kolakowski LF, Meyerhof W. Co-evolution of ligand–receptor pairs in the vasopressin/oxytocin superfAMILY of bioactive peptides. J Biol Chem (1996) 271:3619–26. doi:10.1074/jbc.271.7.3619
7. Warne JM. Cloning and characterization of an arginine vasotocin receptor from the euryhaline rounder Platichthys flesus. Gen Comp Endocrinol (2001) 122:312–9. doi:10.1006/gcen.2001.7644
8. Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res (1976) 33:333–85.
9. Ludwig M. Dendritic release of vasopressin and oxytocin. J Neuroendocrinol (1998) 10(12):881–95. doi:10.1111/j.1365-2826.1998.00279.x
10. Oliver H, Scharer EA. On the physiological action of extracts of the pituitary body and certain other glandular organs. J Physiol (1895) 18:277–9. doi:10.1113/jphysiol.1895.sp.000565
11. von den Velden R. The renal effects of hypophysal extract in humans [in German]. Berl Klin Wochenschr (1913) 50:2083–6.
12. Turner RA, Pierce JG, Du Vigneaud V. The purification and the amino acid content of vasopressin preparation. J Biol Chem (1951) 191:21–8.
13. Rao VV, Loßler C, Battey J, Hansmann I. The human gene for oxytocin-neurophysin-I (OXT) is physically mapped to chromosome 20p13 by in situ hybridization. Cytogenet Cell Genet (1992) 61:271–3. doi:10.1159/000133420
14. Sauville E, Carney D, Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem (1985) 260:10236–41.
15. Caldwell HK, Lee HJ, Macbeth AH, Young WS III. Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol (2008) 84:1–24. doi:10.1016/j.pneurobio.2007.10.007
16. Holmes CL, Patel BM, Russell JA, Walley KR. Physiology of vasopressin relevant to management of septic shock. Chest (2001) 120(3):989–1002. doi:10.1378/chest.120.3.989
17. Barsegyan AR, Atsak P, Hornberger WB, Jacobson PB, van Gaalen MM, Roozendaal B. The vasopressin 1b receptor antagonist A-988315 blocks stress effects on the retrieval of object-recognition memory. Neuropsychopharmacology (2015) 40(8):1979–89. doi:10.1038/npp.2015.48
18. Pasquali R, Gagliardi L, Vicennati V, Gamberini A, Colletta D, Ceroni L, et al. ACTH and cortisol response to combined corticotropic releasing hormone hypertension vasopressin stimulation in obese males and its relationship to body weight, fat distribution and parameters of the metabolic syndrome. Int J Obes Relat Metab Disord (1999) 23(4):419–24. doi:10.1038/sj.ijo.0800838
19. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part I – receptor physiology. Crit Care (2003) 7:427–34. doi:10.1186/cc2338
20. Tanndi A, Töre HF. Hiponatremia tedavisinde Vaptan kullanımı ve “Vaptans” in treatment of hyponatremia. Turk Kardiyol Dern Ars (2015) 43(3):292–301. doi:10.5543/tkd.2015.71508
21. Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov (2012) 11(6):472–8. doi:10.1038/nrd3702
22. Wu N, Siyuan Shang S, Su Y. The arginine vasopressin V1b receptor gene and prosociality: mediation role of emotional empathy. PsychJ (2015) 4(3):160–5. doi:10.1002/pchj.102
23. Koshimiya TA, Nakamura K, Egashira N, Hiyama Y, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev (2012) 92:1813–64. doi:10.1152/physrev.00035.2011
24. Neves SR, Ram PT, Iyengar R. G protein pathways. Science (2002) 296(5573):1636–9. doi:10.1126/science.1071550
25. Berrada K, Plesnicher CL, Luo X, Thibonniere M. Dynamic interaction of human vasopressin/oxytocin receptor subtypes with G protein-coupled receptor kinases and protein kinase C after agonist stimulation. J Biol Chem (2000) 275(35):27229–37. doi:10.1074/jbc.M0028820
26. Ross EM, Gilma AG. Biochemical properties of hormone sensitive adenylyl cyclase. Ann Rev Biochem (1980) 49:533–64. doi:10.1146/annurev.bio.49.070180.002533
27. Greenberg A, Verbalis JG. Vasopressin receptor antagonists. Kidney Int (2006) 69:2124–30. doi:10.1038/sj.ki.5000432
28. Phillips PA, Abrahams JM, Kelly JM, Mooser V, Trinder D, Johnston CL. Localization of vasopressin binding sites in rat tissues using specific V1 and V2 selective ligands. Endocrinology (1990) 126:1478–84. doi:10.1210/endo-126-3-1478
29. Thibonniere M, Graves MK, Wagner MS, Auzan C, Clauer E, Willard HF. Structure, sequence, expression, and chromosomal localization of the human V1a vasopressin receptor gene. Genomics (1996) 31(3):32734. doi:10.1006/geno.1996.0055
30. de Keyzer Y, Lenne F, Auzan C, Jégou S, René P, Vaudry H, et al. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome. J Clin Invest (1996) 97(5):1311–8. doi:10.1172/JCI118547
31. de Keyzer Y, Auzan C, Lenne F, Beldjord C, Thibonniere M, Bertagna X, et al. Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett (1994) 356:215–20. doi:10.1016/0014-5793(94)01268-7
32. Voigt S, Rabadan-Diehl C, Aguilara G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress (2004) 7:75–83. doi:10.1080/1025389041000173353

33. El-Werfali W, Toomasian C, Maliszewaska-Sciolo M, Li C, Rossi NR. Haemodynamic and renal sympathetic responses to V$_2$ vasopressin receptor activation within the paraventricular nucleus. Exp Physiol (2015) 100(5):533–65. doi:10.1113/expphysiol.2014.048442

34. Peter J, Burbach H, Adam RA, Lolait SJ, van Leeuwen FW, Mezey E, et al. Molecular neurobiology and pharmacology of the vasopressin/oxytocin receptor family. Cell Mol Neurobiol (1995) 15:573–95. doi:10.1007/BF02071318

35. Ci H, Wu N, Su Y. Clock gene modulates roles of OXTR and AVPR1B genes in prosociality. PLoS One (2014) 9(1):e90086. doi:10.1371/journal. pone.0090086

36. Choe KY, Bourque CW. The osmotic control of vasopressin-releasing neurons. In: Armstrong WE, Tasker JG, editors. Neurophysiology of Neuroendocrine Neurons. Chichester, UK: John Wiley & Sons, Ltd (2014). doi:10.1002/9781118608834.ch4

37. Birnbaumer M. Vasopressin receptors. Trends Endocrinol Metab (2000) 11:406–10. doi:10.1016/S1043-2760(00)00304-0

38. Harris HW Jr, Zeidel ML, Jo I, Hammond TG. Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. J Biol Chem (1994) 269:11993–2000.

39. Knepper MA, Inoue T. Regulation of aquaporin-2 water channel trafficking by vasopressin. Curr Opin Cell Biol (1997) 9:560–4. doi:10.1016/S0955-0674(97)80308-4

40. Zenteno-Savin T, Sada-Ovalle I, Ceballos G, Rubio R. Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur J Pharmacol (2000) 410(1):15–23. doi:10.1016/S0014-2999(00)00853-0

41. Goodson JL, Bass AH. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Brain Res Rev (2001) 35:246–65. doi:10.1016/S0165-0173(01)00043-1

42. Holley A, Beugnon E, Vosberg D, Wenzel K, Roorda S Jr, Pfaus G. The role of oxytocin and vasopressin in conditioned mate guarding behavior in the female rat. Physiol Behav (2015) 144:7–14. doi:10.1016/j.physbeh.2015.02.039

43. de Vries GJ, Miller MA. Anatomy and function of extrahypothalamic vasopressin systems in the brain. Prog Brain Res (1998) 119:3–20. doi:10.1016/S0079-6123(08)61558-7

44. de Vries GJ, Buijs RM, Swaab DF. Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain – presence of a sex difference in the lateral septum. Brain Res Brain Res Rev (1991) 14(1-2):67–78. doi:10.1016/0165-0173(91)90089-6

45. Bialyk I, Hao HU, Szegda K, Westphal H, Young L. Profound impairment in social recognition and reduction in anxiety-like behavior in the female rat. Nature (2011) 474:545–8. doi:10.1038/nature10036

46. Albers HE. Species, sex and individual differences in the vasopressin/oxytocin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol (2012) 35:49–71. doi:10.1016/j. fnen.2014.07.001

47. Ludwig M. Vasopressin and the olfactory system. Endocrine Abstr (2011). Available from: http://www.endocrine-abstracts.org/ca/0025/e0025517.htm

48. Ferguson IN, Young LJ, Insel TR. The neuroendocrine basis of social recognition. Front Neuroendocrinol (2002) 23(2):200–24. doi:10.1006/fnre.2002.0229

49. Ostrowski NL, Lolait SJ, Young WS III. Cellular localization of vasopressin V$_1$a receptor messenger ribonuclease acid in adult male rat brain, pineal, and brain vasculature. Endocrinology (1994) 135(4):1511–28. doi:10.1210/endo.135.4.7925112

50. Ostrowski NL. Oxytocin receptor mRNA expression in rat brain: implications for behavioral integration and reproductivesuccess. Psychoneuroendocrinology (2003) 28(9):899–904. doi:10.1016/S0306-4530(03)00070-5

51. Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M. Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci (2011) 1220:106–16. doi:10.1111/j.1749-6632.2010.05885.x
112. Moltz H. E-series prostaglandins and arginine vasopressin in the modulation of male sexual behavior. *Neurosci Biobehav Rev* (1990) 14:109–15. doi:10.1016/S0149-7634(05)80166-6

113. García-Villalon AL, García JL, Fernandez N, Monge L, Gomez B, Dieguez G. Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide. *Br J Pharmacol* (1996) 118:1848–54. doi:10.1111/j.1476-5381.1996.tb15613.x

114. de Vries GJ, Södersten P. Sex differences in the brain: the relation between structure and function. *Horm Behav* (2009) 55:589–96. doi:10.1016/j.yhbeh.2009.03.012

115. de Vries GJ, Panzica GC. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. *Neuroscience* (2006) 138:947–55. doi:10.1016/j.neuroscience.2005.07.050

116. Guastella AJ, Kenyon AR, Unkelbach C, Alves GA, Hickie IB. Arginine Vasopressin selectively enhances recognition of sexual cues in male humans. *Psychoneuroendocrinology* (2011) 36:294–7. doi:10.1016/j.psyneuen.2010.07.023

117. Argiolas A, Melis MR. Neuropeptides and central control of sexual behaviour from the past to the present: a review. *Prog Neurobiol* (2013) 108:80–107. doi:10.1016/j.pneurobio.2013.06.006

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Zimmermann-Peruzatto, Lazzari, de Moura, Almeida and Giovenardi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor is credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.