Genetic polymorphism study at 15 autosomal locus in central Indian population

Pankaj Shrivastava*, Toshi Jain and Veena Ben Trivedi

Abstract
The analysis of 15 autosomal STR locus (TH01, D3S1358, vWA, D21S11, TPOX, D7S820, D19S433, D5S818, D2S1338, D16S539, CSF1PO, D13S317, FGA, D18S51, D8S1179) was done in 582 healthy unrelated individuals (Male-366, Female-216) originating from the various geographical regions of Madhya Pradesh, India. All locus fall under Hardy–Weinberg equilibrium except TPOX. These STR loci were highly informative and discriminating with combined power of discrimination (CPD) >0.99999. Locus wise allele frequencies of the studied population were compared with the other published populations. Also the Clustering pattern and genetic distance of studied populations is compared and presented with various populations. The studied population showed the genetic proximity with geographically close populations of India and significant genetic variation with distant populations which is also evident by clustering pattern of the NJ tree and the PCA plot.

Keywords: DNA typing, Autosomal STR, Central India, Population data, Forensic

Background
After almost 30 years since the first formal application of DNA technology (Jeffreys et al. 1985), short tandem repeats (STR’s) based DNA analysis (Edwards et al. 1992) was accepted as a core method in forensics, it is still being routinely used in cases of simple paternity testing (Zupanic Pajnic et al. 2001), identification of human remains testing (Zupanic Pajnic et al. 2010) and in complicated criminal casework analysis, including rape and mass rape. STR’s form approximately 3% of the total human genome and on an average are present once in every 10,000 nucleotides (Butler 2005). Due to ease of use due to multiplexing, these markers are routinely used in forensic, anthropological and medical studies. With the growing number of laboratories using STR analysis technology, more and more population STR data have been reported (Tandon et al. 2002; Sarkar and Kashyap 2002; Sahoo and Kashyap 2002; Gaikwad and Kashyap 2002; Rajkumar and Kashyap 2004; Narkuti et al. 2008; Dubey et al. 2009; Ghosh et al. 2011; Chaudhari and Dahiya 2014; Giroti and Talwar 2010; Shrivastava et al. 2015a; b).

India is the largest secular country with a polygenetic population. Various known religions are found in India and the Indian population belongs to various linguistic and ethnic groups of different castes and tribes and it is said to be the melting pot of various ethnic groups (Eaaswarkhanth et al. 2009). Human diversity in India is defined by 4693 differently documented population groups that include 2205 major communities, 589 segments and 1900 territorial units spread across the country (Singh 1998). Major population migrations, social structure and caste endogamy has influenced the genetic structure of Indian populations.

Madhya Pradesh, a state in Central India is the second largest state in the country by area. Population of Madhya Pradesh is 72,597,565 comprising 37,612,920 males and 34,984,645 females, contributing 6 percent to India’s total population (Census of India 2011). With these rationales 15 highly polymorphic autosomal microsatellite markers including 13 core forensic loci, have been analyzed and the distribution of alleles across various populations is compared with the previously published data on the same markers from different parts of India (caste specific available data) and other area specific reported data only one from India and rest from other parts of world, in order to decipher genetic delineation amongst the populations.
(Tables 1, 2). As the genetic data being reported here is area specific therefore, besides comparing the data with the population geographically close (caste specific) to the population of Madhya Pradesh and other parts of India, the data was also compared with the area specific available data.

Methods

The population and DNA extraction

The population sample consisted of 582 healthy, unrelated individuals (Male-366, Female-216) originating from different geographical regions of Madhya Pradesh. Samples were taken from routine casework performed by the first author at the DNA fingerprinting Unit, State Forensic Science Laboratory, Sagar, Madhya Pradesh, India from the period of 2007 to 2013 after written informed consent. Only fathers and mothers were selected from paternity trios and unrelated individuals were taken into consideration from complex kinship analyses. DNA was extracted from the peripheral blood samples by automated DNA extraction system 12 GC (Precision System Science Co., Ltd., Matsudo, Japan).

DNA quantitation

Real Time PCR ABI 7000 (Applied Biosystems, Foster City, CA, USA) was used for quantification of the isolated DNA using the Quantifiler DNA Quantification Kit (Applied Biosystems, Foster City, CA, USA) as per the recommended protocol by the manufacturer.

Amplification

1 ng of DNA template was used to simultaneously amplify 15 STR locus including 13 CODIS (D3S1358, TH01, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, CSF1PO, vWA, D8S1179, TPOX, FGA) and 2 additional loci (D2S1338 and D19S433), as well as the gender determining locus Amelogenin using AmpFlSTR Identifiler or AmpFlSTR Identifiler Plus kit (Applied Biosystems, Foster City, CA, USA). Similar amount of DNA was used in all PCR reactions. Amplification was carried out according to the manufacturer’s recommended protocol, with a modification of decreasing the total volume of each reaction to 12.5 μL. The PCR amplification was carried out in AB Gene Amp PCR System 9700 Thermal Cycler (Applied Biosystems, Foster City, CA, USA).
Allele/n	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	THO1	D13S317	D16S539	D2S1338	D19S433	VWA	TPOX	D18S51	D5S818	FGA
6															
7	0.021	0.003		0.090	0.001	0.077									
8	0.005	0.234	0.005	0.127	0.220	0.085									
9	0.007	0.067	0.003	0.293	0.107	0.149									
9.3	0.138														
10	0.168	0.232	0.193	0.006	0.090	0.093									
11	0.072	0.247	0.294	0.253	0.315	0.004									
11.2		0.002													
12	0.109	0.170	0.381	0.001	0.246	0.227									
12.2		0.004													
13	0.166	0.028	0.079	0.002	0.070	0.114									
13.2		0.171													
14	0.199	0.001	0.013	0.045	0.015	0.014									
14.2		0.060													
15	0.176	0.001	0.306	0.003	0.136	0.095									
15.2		0.087													
16	0.084	0.302	0.008	0.048	0.224	0.144									
16.2		0.021													
17	0.013	0.241	0.067	0.009	0.258	0.076									
17.2		0.007													
18	0.001	0.097	0.158	0.204	0.040	0.007									
18.2		0.001													
19	0.008		0.144	0.092	0.033	0.049									
20		0.131		0.013	0.015	0.107									
20.2		0.053		0.001	0.008	0.143									
21		0.069		0.004		0.152									
21.2		0.168		0.001		0.183									
22		0.099		0.001		0.156									
22.2		0.006		0.006		0.009									
23		0.090		0.121											
Allele/n	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	THO1	D13S317	D16S539	D251338	D19S433	VWA	TPOX	D18S51	D5S818	FGA
---------	---------	--------	--------	--------	---------	------	--------	--------	---------	---------	-----	------	--------	--------	-----
25	0.001														
26		0.003													
27	0.008														
28	0.143														
29	0.209														
29.2	0.004														
30	0.187														
30.2	0.027														
31	0.045														
31.2	0.125														
32	0.008														
32.2	0.182														
33.2	0.048														
34.2	0.012														
35	0.001														
35.2	0.002														

Pm matching probability, PD power of discrimination, PIC polymorphism information content, PE power of exclusion, PI paternity index, Hobs observed heterozygosity, Hexp expected heterozygosity, P value HWE test
Typing

Multicapillary electrophoresis of the amplification products was performed on an ABI Prism 3100 Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) using LIZ 500 size standard (Applied Biosystems, Foster City, CA, USA) provided with the kit and the data was analysed using GeneMapper™ 3.5 Software (Applied Biosystems, Foster City, CA, USA). All steps were done according to the Laboratory’s internal control standards and respective kit controls, according to the IFSH recommendations (DNA recommendations 1994).

Quality control

Passed Proficiency testing of the GITAD, Spain http://gitad.ugr.es/principal.htm). Also, laboratory internal control standards and kit controls used.

Analysis of data

Allele frequency of the 15 STR loci was calculated by GenAlEx 6.5 software (Peakall and Smouse 2006). Several forensic parameters, i.e., polymorphism information content (PIC), power of discrimination (PD), power of exclusion (PE), matching probability (Pm) and paternity index (PI) was calculated using the PowerStatsV1.2 spreadsheet program (Tereba 1999). Observed heterozygosity (Hobs), Expected Heterozygosity (Hexp) and Hardy–Weinberg equilibrium (HWE) using exact test was calculated using Arlequin v3.5 (Excoffier et al. 2005). Allele frequencies of studied population were compared with other published populations using Fst pair wise distance by Arlequin v3.5 software (Excoffier et al. 2005). Nei’s genetic distances (Nei 1972) among compared populations were derived and subsequently used to generate a Neighbour joining (NJ) dendrogram using POPTREE2 program (Takezaki et al. 2009). The robustness of the phylogenetic relationship established by the NJ tree was assessed using bootstrap analysis with 1000 replications. Graphical representation of genetic distances was also performed based on Principle component analysis (PCA) plot using PAST 3.02a software (Hammer et al. 2001).

Table 4 The most common allele (MCA) and least common allele (LCA) in studied Central Indian population

Allele	MCA	LCA
D8S1179	14	18
D21S11	29	35
D7S820	11	14
CSF1PO	12	15
D3S1358	15	12
THO1	9	10
D13S317	11	14
D16S539	11	15
D2S1338	23	27
D19S433	13	9
vWA	17	16,2,17,18,2,21
TPOX	11,8	7,13
D18S51	14	9,23,24
D5S818	11	8
FGA	23	25,2

MCA most common allele, LCA least common allele

Table 5 Fst pairwise genetic distances and corresponding P value

Locus	Central India V/S	Bhil (Madhya Pradesh)	Balmiki (Punjab)	Mahadev Koli (Maharashtra)	Iyenger (Tamilnadu)	Kurumans (Tamilnadu)	Tripuri (Tripura)
D8S1179	0.009	0.001	0.013	0.006	0.025	0.000	0.395
D21S11	0.001	0.230	-0.001	0.000	0.479	0.042	0.000
D7S820	0.000	0.458	-0.002	0.003	0.150	0.000	0.412
CSF1PO	-0.002	0.826	0.000	-0.002	0.624	-0.003	0.742
D19S433	0.002	0.078	0.000	0.023	0.000	0.007	0.031
vWA	0.001	0.268	0.006	0.018	0.001	0.005	0.047
TPOX	0.017	0.000	0.000	0.019	0.003	0.000	0.379
D18S51	0.005	0.008	0.000	0.014	0.000	-0.001	0.628
D5S818	0.000	0.425	0.011	0.007	0.052	0.005	0.097
THO1	0.006	0.011	0.008	0.005	0.050	0.004	0.101
D13S317	0.000	0.414	0.006	0.036	0.000	0.008	0.023
D16S539	0.001	0.286	0.025	0.016	0.000	0.000	0.437
D2S1338	0.001	0.163	0.000	0.015	0.000	-0.001	0.746
D5S818	0.002	0.108	0.006	0.006	0.045	-0.001	0.502
FGA	0.002	0.126	0.002	0.003	0.118	-0.001	0.566

P value <0.003 values
Results and discussion

The genetic variations in the allele-frequency distribution at 15 STR loci and statistical analysis of forensic parameters for the studied populations are shown in Table 3. In total, 158 alleles were observed in the central Indian population with corresponding allele frequencies ranging from 0.001 to 0.381 (Table 3). In which CSF1PO locus was found to have a maximum allele frequency with allele 12 (0.381) being the most frequent allele in this population. Locus wise distribution of the most common and least common allele in studied population is summarized and presented in Table 4. The peak high threshold was 50 RFU for heterozygous and 200 RFU for homozygous alleles. The combined power of exclusion (CPE) and
combined power of discrimination (CPD) for all 15 STR loci were 0.9999 and greater than 0.99999 respectively in studied population. The combined matching probability was found to be 1.51×10^{18}. Among all the studied locus, no significant deviations from Hardy–Weinberg expectations were observed even after Bonferroni correction (Bland and Altman 1995) except at locus TPOX ($p < 0.003$). At TPOX locus all the homozygotic peaks were found with a peak height of more than 200 RFU, thus removing the possibility of any heterozygous peak. Allele 11 (437 out of 1164) followed by allele 8 (410 out of 1164) were found to be the dominating alleles in this population.

The expected heterozygosity and the power of discrimination calculated from allele frequencies obtained from central Indian population revealed that in combination, the 15 autosomal STRs have a high forensic efficacy. Locus wise allele frequencies of studied population were compared at all 15 loci with the other published Indian populations including geographically close populations viz. Chenchu (Andhra Pradesh), Lambadi (Andhra Pradesh), Yerucula (Andhra Pradesh) and Nai-kpood (Andhra Pradesh) (Bindu et al. 2005), Adimiong (Arunchal Pradesh) and Adipasi (Arunchal Pradesh) (Kritihika et al. 2007), Munda (Chotanagpur), Santal (Chotanagpur) and Oraon (Chotanagpur) (Banerjee et al. 2005), Kora (Bengal), Lodha (Bengal) and Maheli (Bengal) (Singh et al. 2006), Bhil (Gujrat) (Chaudhari and Dahiya 2014), Balmiki (Punjab), Sakaldwipi Brahmin (Jharkhand), Munda (Jharkhand), Konkanastha Brahmin (Maharashtra), Mahadev Koli (Maharashtra), Iyengar (Tamilnadu), Kurumans (Tamilnadu), Tripuri (Tripura) and Riang (Tripura) (Ghosh et al. 2011), Bhil (Madhya Pradesh) (Shrivastava et al. 2015b) populations using Pairwise Fst distance ranging from -0.003 to 0.247 (Tables 5, 6, 7, 8). Central Indian population showed a considerable genetic distance with other published indian population which were used for comparison (Table 1). Central Indian population showed significant variation at 14 loci with Lodha (Bengal), at 11 loci with Adi pasi population (Arunachal Pradesh) and Kora population (Bengal), at 10 loci with Yerukula population (Andhra Pradesh) and Maheli population (Bengal), at 9 loci with Adiminyong population (Arunachal Pradesh), at 8 loci with Naikpod Gond population (Andhra Pradesh) and Oraon population (Chotanagpur), at 7 loci with Riang population (Tripura) and Munda population (Chotanagpur), at 6 loci with Chencheu population (Andhra Pradesh), Santal population (Chotanagpur) and Mahadev koli population (Maharashtra), at 5 loci with Bhil (Gujrat), at 4 loci with Tripuri population (Tripura), at 3 locus with Munda population (Jharkhand) and Sakaldwipi brahmin population (Jharkhand), at 2 loci with Konkanastha Brahmin population (Maharashtra), Kurumans population (Tamilnadu), Balmiki population (Punjab) and Bhil population (Madhya Pradesh) and at 1 locus with Iyengar (Tamilnadu). Central Indian population showed no significant variation from Lambadi population (Andhra Pradesh). Neighbour Joining dendrogram (Figs. 1, 2) based on Nei’s genetic distance (Nei 1972)

Table 8 Fst pairwise genetic distances and corresponding P value

Locus	Central India V/S Bhil (Gujrat) Fst	Central India V/S Sakaldwipi Brahmin (Jharkhand) Fst	Central India V/S Konkayastha Brahmin (Maharashtra) Fst
	P-value 0.000	P-value 0.007	P-value 0.005
D8S1179	0.005	0.010	0.008
D21S11	0.002	0.004	0.051
D7S820	0.001	0.001	0.010
CSF1PO	0.002	−0.001	0.012
D19S433	0.001	0.007	0.003
vWA	0.005	0.002	0.006
TPOX	0.014	0.003	0.007
D18S51	0.002	0.012	0.002
D3S1358	0.000	0.005	0.040
THR1	0.001	0.032	0.000
D13S317	0.001	0.027	0.008
D16S539	0.003	0.005	0.010
D2S1338	0.005	0.010	0.010
D5S818	−0.001	0.006	−0.001
FGA	0.004	0.001	0.018

P value < 0.003 Values
showed genetic relationships of the studied population with other Indian published populations. The grouping of populations in PCA plot (Fig. 3) is also found consistent with the clustering pattern observed in the NJ tree.

The central Indian population showed significant variations at maximum number of studied loci (14 out of 15) with Lodha (Bengal) and showed no significant disparity from Lambadi population (Andhra Pradesh). This finding is found consistent with the clustering pattern of observed in the NJ tree and PCA plot. We also compared central Indian population on the basis of locus wise allele frequencies at all the 15 loci with the other published populations from Palestinian_Iraq (AL-Zubaidi et al. 2014), Swedish (Montelius et al. 2008), Hungarian (Demeter et al. 2010), Shenyang_China (Hou et al. 2013), Guangdong (Zhu et al. 2005), Moroccan (Bentayebi et al. 2014), Tamil (Balamurugan et al. 2010), Croatian (Projić et al. 2007), Wallachia_Romania (Stanciu et al. 2009), Estonia (Sadam et al. 2014) and Latvia (Jemeljanova et al. 2015) populations using Pairwise Fst distance ranging from −0.001 to 0.266 (Table 9, 10). Central Indian population showed genetic detachment from all other area specific published population data (Table 2), used for comparison and also showed significant variation.

Fig. 1 NJ tree based on Nei's genetic distance showing genetic distance of central Indian population with other reported Indian populations
Fig. 2 NJ tree for the studied population with other reported populations from different countries based on Nei’s genetic distances

Fig. 3 PCA plot of central Indian population showing distance pattern with other published Indian populations of India
at all 15 loci with Wallachia population. Central Indian population showed significant variations at 13 loci with Moroccan population and Estonian population, at 12 loci with Swedish population, at 11 loci with Shenyang population, at 10 loci with Hungarian population, at 9 loci with Latvia population and Croatian population, at 7 loci with Guangdong population and Palestinian Iraq population, at 5 loci with Tamil population (Table 9, 10). Neighbour Joining dendrogram (Fig. 2) based on Nei’s genetic distance (Nei 1972) showed genetic relatedness amongst same neighboring populations of India in the form of clustering pattern.

Table 9 Fst pairwise genetic distances and corresponding P value

Central Indian region V/S	Palestinian_Iraq	Swedish	Hungarian	Guangdong	Moroccan	Tamil						
	Fst	P-value										
D8S1179	0.005	0.062	0.023	0.000	0.016	0.000	0.005	0.069	0.009	0.000	0.044	0.010
D21S11	0.062	0.000	0.043	0.000	0.043	0.000	0.057	0.000	0.047	0.000	0.061	0.000
D7S820	0.011	0.012	0.007	0.001	0.011	0.000	0.023	0.001	0.011	0.000	0.000	0.441
CSF1PO	0.006	0.088	0.003	0.059	0.019	0.000	0.000	0.376	0.020	0.000	0.001	0.265
D19S433	0.025	0.000	0.027	0.000	0.014	0.000	0.047	0.000	0.014	0.000	0.015	0.000
vWA	0.002	0.175	NA	NA	0.010	0.000	0.011	0.016	0.010	0.000	0.004	0.012
TPOX	0.010	0.028	0.070	0.000	0.019	0.000	0.055	0.000	0.115	0.000	0.013	0.001
D18S51	0.019	0.000	0.016	0.000	0.015	0.000	0.010	0.010	0.017	0.000	0.001	0.209
D3S1358	0.026	0.002	0.015	0.000	0.003	0.000	0.000	0.369	0.000	0.155	−0.001	0.557
THO1	0.025	0.000	0.010	0.000	0.082	0.000	0.071	0.000	0.035	0.000	0.024	0.000
D13S317	0.016	0.002	0.008	0.000	0.006	0.009	0.004	0.129	0.028	0.000	0.000	0.430
D16S539	0.005	0.095	0.011	0.000	0.010	0.000	0.010	0.022	0.014	0.000	0.002	0.090
D25S1338	0.015	0.000	0.021	0.000	0.011	0.000	0.007	0.020	0.038	0.000	0.004	0.002
D55S818	−0.002	0.623	0.007	0.004	0.006	0.009	0.091	0.000	0.009	0.000	−0.001	0.817
FGA	0.003	0.135	0.006	0.000	0.002	0.083	0.026	0.000	0.002	0.047	0.003	0.018

NA not available
P value <0.003

Table 10 Fst pairwise genetic distances and corresponding P value

Central Indian region V/S	Croatian	Wallachia	Estonian	Shenyang	Latvian
	Fst	p-value	Fst	p-value	Fst
D8S1179	0.028	0.000	0.022	0.000	0.027
D21S11	0.067	0.000	0.050	0.000	0.041
D7S820	0.009	0.002	0.010	0.000	0.007
CSF1PO	0.000	0.304	0.007	0.000	0.017
D19S433	0.016	0.000	0.011	0.000	0.018
vWA	−0.001	0.671	0.002	0.001	0.002
TPOX	0.037	0.000	0.018	0.000	0.068
D18S51	0.004	0.031	0.011	0.000	0.015
D3S1358	0.005	0.026	0.008	0.000	0.012
THO1	0.066	0.000	0.056	0.000	0.078
D13S317	0.004	0.051	0.004	0.000	0.019
D16S539	0.011	0.001	0.006	0.000	0.011
D25S1338	0.021	0.000	0.017	0.000	0.028
D55S818	0.004	0.063	0.009	0.000	0.004
FGA	0.077	0.000	0.003	0.000	0.005

P value <0.003
NA not available
Conclusion
The data generated here will add to the databank of various studies conducted on Indian populations. With respect to the distribution of alleles at each STR locus, all the 15 STR loci were found to be substantially polymorphic in this population. The virtue of being polymorphic makes these 15 STR loci specific and valuable in individual identification. Central Indian population showed genetic distance from all the compared (published) populations.

Authors' contributions
PS designed the study, did genotyping of samples and contributed significantly in data analysis and manuscript preparation. TJ carried out data management, statistical analysis and drafted the manuscript. VBT helped in data analysis contributed in drafting the manuscript. All authors read and approved the final manuscript.

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interest.

We declare that our research was carried out according to our institution's ethical guidelines and that all subjects gave their consent to participate in this study.

Received: 25 May 2015 Accepted: 21 September 2015
Published online: 30 September 2015

References
AL-Zubaide MM, Dain Salem MA, Iaber Alawedi S (2014) Genetic variation of 15 autosomal short tandem repeat (STR) locus in sample of Palestinian population residing in Iraq. Int J Dev Res 4:153–156
Balamurugan K, Kanthimathi S, Vijaya M, Suhasini G, Duncan G, Tracey M, Budovole B (2010) Genetic variation of 15 autosomal microsatellite locus in a Tamil population from Tamil Nadu, Southern India. J Legal Med 12:320–323
Banerjee J, Trivedi R, Kashyap VK (2005) Polymorphism at 15 short tandem repeat AmpFLSTR Identifier Locus in three aboriginal populations of India: an assessment in human identification India. J Forensic Sci 50(5):1229–1234
Bentayeb K, Abada F, Ihzmad H, Amzazi S (2014) Genetic ancestry of a Moroccan population as inferred from autosomal STRs. Meta Gene 2:427–438
Bindu HG, Trivedi R, Kashyap VK (2005) Genotypic polymorphisms at fifteen tetranucleotides and two pentanucleotide repeat locus in four tribal populations of Andhra Pradesh, southern India. J Forensic Sci 50(4):978–983
Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170
Butler JM (2005) Forensic DNA typing: biology, technology, and genetics of STR markers. Elsevier, Burlington
Census of India (2011) http://censusindia.gov.in/. Accessed 22/02/2015.
Data highlights: The scheduled tribes, Census of India 2001, Source: Office of the Registrar General, India. Retrieved on 20.07.2014 from http://censusindia.gov.in/Tables_Published/SCST/dh_st_madhya_pradesh.pdf
Chaudhari RR, Dahiya MS (2014) Genetic diversity of 15 autosomal short tandem repeats locus using the AmpFLSTR Identifier™ kit in a Bhil tribe Population from Gujarat state, India. Indian J Hum Genet 20(2):148–152
Demeter SF, Kelemen B, Székely G, Popescu O (2010) Genetic variation at 15 polymorphic, autosomal, short tandem repeat locus of two Hungarian populations in Transylvania, Romania. Croat Med J 51:515–523
DNA recommendations (1994) Report concerning further recommendations of the DNA commission of the ISFH regarding PCR-based polymorphisms in STR (short tandem repeat) system. Forensic Sci Int 69:103–104
Dubey B, Meganathan PR, Eaawankarth M, Vasulu TS, Haque I (2009) Forensic STR profile of two endogamous populations of Madhya Pradesh, India. Legal Med 11:41–44
Eaawankarth M, Dubey B, Meganathan PR, Noor S (2009) Microsatellite differentiation delineates genetic relationships of Shia and Sunni Muslim populations of Uttar Pradesh, India. Human Biol 81(4):427–445
Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric tandem repeat locus in four human population groups. Genomics 12(2):241–253
Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50
Gaikwad S, Kashyap VK (2002) Polymorphism at fifteen hypervariable microsatellite locus in four population of Maharashtra, India. Forensic Sci Int 126:267–271
Ghosh T, Kalpana D, Mukherjee S, Mukherjee M, Sharma AK, Nath S, Rathod VR, Thakar MK, Jha GN (2011) Genetic diversity of autosomal STRs in eleven populations of India. Forensic Sci Int Genet 5(3):259–261
Girot R, Talwar I (2010) The most ancient democracy in the world is a genetic isolate: an autosomal and Y-chromosome study of the hermit village of Malana (Himachal Pradesh, India). Hum Biol 82(2):123–141. doi:10.1016/j.humbiol.2007.02.001
Hammer O, Harper DAT, Ryan PD (2001) PAST: palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica 4:9
Hou G, Jiang X, Wang Y, Li Q, Sun H (2013) Genetic distribution on 15 STR locus from a Han population of Shenyang region in northeast China. Forensic Sci Int Genet 7:86–87
Jeffreys AJ, Brookfield JF, Semeonoff R (1988) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818–819
Jemeljanova V, Gobujsinjenoka G, Bergere G, Latisheva K, Axelson EP, Pajnic I (2015) Population data for 15 autosomal STR locus from Latvia. Int J Legal Med 129(4):739–740. doi:10.1007/s00414-015-1205-3
Kirthika S, Trivedi R, Kashyap VK, Vasulu TS (2007) Genotype Profile for fifteen Tetrancleotide Repeat locus in two tribet-burman speakin tribal populations at Arunachal pradesh, India. India J Forensic Sci 52(1):1229–1234
Montelius K, Karlsson AO, Holmlund G (2008) STR data for the AmpFLSTR Identifier locus from Swedish population in comparison to European, as well as with non-European population. Forensic Sci Int Genet 2:49–52
Narkut V, Vellanki RN, Oraganti NM, Mangamoorn L (2008) Paternal exclusion: allele sharing in microsatellite testing. Clin Chem Lab Med 46(11):1586–1588. doi:10.1515/CCLM.2008.312
Nei M (1972) Genetic distance between populations. Am Nat 106:283–291
Peake R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. MolEcol Notes 6:288–295
Proji P, Skaro V, Samija I, Pojšiček N, Durić-Pašić A, Kovačević L, Bakal N, Primorac D, Marjanović D (2007) Allele frequencies for 15 short tandem repeat locus in representative sample of croatian population. Croat Med J 48:473–477
Rajkumar R, Kashyap VK (2004) Genetic structure of four socio-culturally diversified caste populations of southwest India and their affinity with related Indian and global groups. BMC Genet 5:23. doi:10.1186/1471-2156-5-23
Sadram L, Tasa G, Tiidla A, Lang A, Axelson EP, Pajnic IZ (2014) Population data for 22 autosomal STR locus from Estonia. Int J Legal Med 128(8):1488–1491. doi:10.1007/s00414-014-1099-7
Sahoo S, Kashyap VK (2002) Genetic variation at 15 autosomal microsatellite locus in three highly endogamous populations of orissa, India. Forensic Sci Int 130:189–193
Sarkar N, Kashyap VK (2002) Genetic diversity at two pentanucleotide STR and thirteen tetranucleotide STR locus by multiplex PCR in four predominant population groups of central India. Forensic Sci Int 128:196–201
Shrivastava P, Jain T, Gupta U, Triivedi VB (2015) Genetic polymorphism study on 12 X STR locus of investigator Argus X STR kit in Bhil tribal population of Madhya Pradesh, India. Int J Dev Res 4:9
Shrivastava P, Jain T, Gupta U, Triivedi VB (2015a) Genetic variation at 15 autosomal STR locus in Bhil tribal population of Central India. Hum Biol 87(4):411–412. doi:10.1016/j.humbiol.2015.04.019
Singh KS (1998) India's communities. People of India. National Series Volume IV. India Oxford University Press
Singh A, Trivedi R, Kashyap VK (2006) Genetic Polymorphism at 15 tetrameric short tandem repeat locus in four aboriginal tribal populations of Bengal. J Forensic Sci 51(1):183–187
Stanciu F, Stoian IM, Popescu OR (2009) Population data for 15 short tandem repeat locus from Wallachia Region, South Romania. Croat Med J 50:321–325
Takezaki N, Nei M, Tamura K (2009) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows-interface. Mol Biol Evol 27:747–752
Tandon M, Trivedi R, Kashyap VK (2002) Genomic diversity at 15 fluorescent labeled short tandem repeat locus in few important populations of State of Uttar Pradesh, India. Forensic Sci Int 28:190–195
Tereba A (1999) Tools for analysis of population statistics. Profiles DNA 2:14–16
Zhu J, Li J, Guo Y, Liu K, Zhu B, Liu Y (2005) Population data of 15 STR in Chinese Han population from north of Guangdong. J Forensic Sci 50:1510–1511
Zupanic Pajnic I, Sterlinko H, Balaic J, Komel R (2001) Parentage testing with 14 STR locus and population data for 5 STRs in the Slovenian population. Int J Legal Med 114(3):178–180
Zupanic Pajnic I, Gorajak Pogorelec B, Balazic J (2010) Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int J Legal Med 124(4):307–317. doi:10.1007/s00414-010-0431-y