Li$_2$MnO$_3$ domain size and current rate dependence on the electrochemical properties of 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ cathode material

Songyoot Kaewmala1, Patcharapohn Chantasuwon1, Narinthron Wiriya1, Sutham Srilomsak1, Wanwisa Limphirat2, Pimpa Limthongkul3 & Nonglak Meethong1,4,5

Layered-layered composite oxides of the form xLi$_2$MnO$_3$·(1−x) LiMO$_2$ (M = Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250 mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode materials of this class generally exhibit large capacity fade upon cycling and poor rate performance caused by structural transformations. Since electrochemical properties of the cathode materials are strongly dependent on their structural characteristics, the roles of these components in 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ cathode material was the focus of this work. In this work, the influences of Li$_2$MnO$_3$ domain size and current rate on electrochemical properties of 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ cathodes were studied. Experimental results obtained showed that a large domain size provided higher cycling stability. Furthermore, fast cycling rate was also found to help reduce possible structural changes from layered structure to spinel structure that takes place in continuous cycling.

Currently, lithium ion batteries have been widely used as energy storage devices in many applications, ranging from portable electronics to electric vehicles, due to their high-energy density and lightweight. The electrochemical properties of these batteries are largely determined by electrodes both anode and cathode materials. Layered oxide LiCoO$_2$ is one of the common commercial cathode material used in lithium ion batteries. It exhibits a low practical capacity of about 140 mAh/g and poor cycling stability owing to its structural instability during cycling. Layered-layered cathode materials in the class of xLi$_2$MnO$_3$·(1−x) LiMO$_2$ (M = Mn, Co, Ni) have been considered as an alternative cathode material for high energy density lithium ion batteries. They could potentially provide a high specific capacity of about 250 mAh/g with the operational voltage above 4.5 V higher than the current commercial LiCoO$_2$ cathode (~140 mAh/g)$^{1-5}$. Layered-layered cathode materials also exhibit good cycling stability due to integration of a Li$_2$MnO$_3$ component which acts as the structural stabilizer$^{6-8}$. These materials are usually considered composite based cathodes because they often exhibit phase separation of the Li$_2$MnO$_3$ and LiCoO$_2$ components. The particles of these materials usually consist of Li$_2$MnO$_3$ domains in a LiCoO$_2$ matrix$^{8-11}$. The Li$_2$MnO$_3$ component is electrochemically inactive and acts as a structural stabilizing phase in the cathode. However, these materials present high capacity fade up on repeated cycling, resulting from a phase transformation from a layered structure to a spinel-like structure. Phase transformation of the Li$_2$MnO$_3$ component during cycling brings about poor cycling stability and low rate performance$^{13-16}$. This indicates that the electrochemical properties of these materials are dramatically dependent on the Li$_2$MnO$_3$ component14,17,18. The structural
characteristic (i.e., cation ordering and phase separation) and morphology of the materials depend on their synthesis methods and conditions. To solve these problems, there are numerous research studies that investigated the roles of the Li$_2$MnO$_3$ component on the electrochemical performance of layered-layered composite materials. Bareño et al. studied 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ using a combination of techniques, including SEM, XRD, and XAS. They observed that the materials are nanocomposites consisting of Li$_2$MnO$_3$ and LiCoO$_2$ domains. Croy et al. found that the voltage drop phenomenon related to capacity decay upon cycling was increased with increasing Li$_2$MnO$_3$ content due to structural changes during cycling. Ghanty et al. showed particle size of a xLi$_2$Mn$_{1-x}$Co$_{0.25}$O$_2$ material and domain size of Li$_2$MnO$_3$ within the LiMn$_{0.375}$Ni$_{0.375}$Co$_{0.25}$O$_2$ matrix depending on Li$_2$MnO$_3$ content. As the Li$_2$MnO$_3$ content increases, both particle size and the Li$_2$MnO$_3$ domain size increase. The cycling stability was found to increase with Li$_2$MnO$_3$ content owing to the phase transformation of the Li$_2$MnO$_3$ component which might be effectively retarded by a larger Li$_2$MnO$_3$ domain size. However, the impacts of Li$_2$MnO$_3$ domain size on cycling stability and the phase transition during cycling is still not well understood.

The aim of this work is to investigate the influence of the Li$_2$MnO$_3$ domain size and current rates on the electrochemical properties of 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$. The Li$_2$MnO$_3$ domain size can be changed using different preparation methods such as sol-gel and ball-milling methods. We present that the electrochemical properties of the cathode material can be controlled by their Li$_2$MnO$_3$ domain size and testing conditions.

Results and Discussion

The crystal structure characterization of the prepared samples was determined using an XRD method and the results given in Fig. 1. XRD patterns of the LiCoO$_2$ and Li$_2$MnO$_3$ powders synthesized using the sol-gel method could be indexed with a rhombohedral crystal system (space group R_3m) and a monoclinic crystal system (space group $C2/m$), respectively. The XRD peaks of the 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ sample prepared by a ball-milling method were clearly separated especially at a 2θ of about 35° and 45°. The separated peaks could be identified as the diffraction patterns of LiCoO$_2$ and Li$_2$MnO$_3$ phases. This indicates that the ball-milling method provided a large phase separation between LiCoO$_2$ and Li$_2$MnO$_3$ components. Conversely, the XRD pattern of the 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ sample prepared by a sol-gel method showed quite broad and overlapped peaks owing to the sol-gel method offers phase separation of LiCoO$_2$ and Li$_2$MnO$_3$ components of about 5 to 10 nm length scale as demonstrated in Fig. 2(c), which is smaller than the phase separation that was observed in the ball-milled sample. The separated XRD peaks and broad XRD peaks occurrences confirmed the existence of phase separation, and that these materials are a composite (and not solid solution). The phase separation behavior can be confirmed by the TEM results illustrated in Fig. 2(c),(f). Additionally, the weak peaks between 20 and 22° 2θ were still found in both sol-gel and ball-milled samples resulting from the ordering of cations in the transition metal layer of Li$_2$MnO$_3$ in Li$_2$MnO$_3$-like regions.

The morphology of the composite samples was examined using SEM and TEM as shown in Fig. 2. The prepared materials obtained from the ball-milling and sol-gel methods have similar average particle sizes of 240 nm and 250 nm, respectively. TEM images reveal quite similar particle size distributions as well, which are quite broad showing particles with sizes ranging from a few tens of nm to more than 400 nm. In order to make a reasonable
comparison of the Li$_2$MnO$_3$ domain size of the two composite samples, several individual particles with the particle size of around 200 nm, which is similar to the average particle size of both samples, were selected to examine using HRTEM as presented in Fig. 2(c),(f). The results show that the Li$_2$MnO$_3$ (space group $C\overline{2}/m$) and LiCoO$_2$ (space group $R\overline{3}m$) regions could be clearly observed. The presence of the Li$_2$MnO$_3$ and LiCoO$_2$ domains confirmed that these materials formed a composite system consistent with the XRD results, corresponding to previous reports 10,19,30–32. Furthermore, the ball-milled sample had Li$_2$MnO$_3$ domain sizes of about 40–60 nm, while the domain size in sol-gel sample was smaller, ranging from 5–20 nm. The different Li$_2$MnO$_3$ domain sizes in the 0.5Li$_2$MnO$_3$$·$0.5LiCoO$_2$ cathodes obtained from different synthesis methods may have a crucial effect on their electrochemical properties such as Li$_2$MnO$_3$ phase activation, affecting the phase transformation from a layered structure into a spinel structure upon cycling.

The 0.5Li$_2$MnO$_3$$·$0.5LiCoO$_2$ cathode materials prepared by the sol-gel and ball-milling methods were cycled between 2.0–4.6 V at C/10 and C/3 as shown in Fig. 3. The first charging profiles of both samples showed two voltage plateaus at \sim3.9 and \sim4.5 V that were clearly observed in the initial charge. The first voltage plateau at \sim3.9 V occurred due to the oxidation of Co$^{3+}$ to Co$^{4+}$ in the LiCoO$_2$ component. During this reaction, depletion of lithium ions from the lithium layer was compensated by lithium ions, diffusing from an octahedral site in the manganese layer of the Li$_2$MnO$_3$ component to tetrahedral sites in the lithium depleted layer. This makes the overall structure of the composite materials becomes more stable during cycling6,33,34. The second voltage plateau corresponds to the extraction of lithium and oxygen from the Li$_2$MnO$_3$ component to form Li$_2$O and electrochemically active MnO$_2$ phases. Li$_2$O evolution brings about an increase in the first charge capacity and a large initial irreversible capacity6,7,19. During the initial discharging cycles, lithium ions intercalation into the MnO$_2$ component resulting in the reduction of Mn$^{4+}$ to Mn$^{3+}$ until the LiMnO$_2$ phase was completely formed. The layered LiMnO$_2$ phase is usually transformed into a spinel-like phase upon cycling leading to capacity and voltage decay as the cycle number increases. The ability to control the phase transition of the layered Li$_2$MnO$_3$ phase into the electrochemically active MnO$_2$ component is a crucial key to improve the cycling stability of layered-layered composite materials. The sloping discharge profiles at \sim3.8 to 2 V correspond to lithium ion interactions in the layered Li$_x$MO$_2$ species35. The distinct voltage plateau at \sim3.9 V corresponding to a lithium insertion into the LiCoO$_2$ component can clearly be seen for the ball-milled samples as demonstrated in Fig. 3(a)36, because the ball-milling method provides a larger phase separation between the LiCoO$_2$ and the Li$_2$MnO$_3$ components. This result is consistent with the XRD experimental results. As shown previously, voltage fade was observed in all of the electrodes in this study. However, the voltage fade resulting from phase transformation from the layered structure to the cubic spinel structure during cycling is a challenging problem that inhibits practical uses of the layered-layered oxide composite cathodes36,37,38. Therefore, studying governing parameters that can reduce this voltage fade is crucial. As can be seen, sol-gel samples exhibited larger voltage decay than the ball-milled sample due to the large Li$_2$MnO$_3$ domain size that retarded efficient activation of Li$_2$MnO$_3$ component since the large Li$_2$MnO$_3$ domain size is difficult to activate. Moreover, the samples cycled at a high current rate (C/3) and provided a lower voltage drop than the sample cycled at a low current rate (C/10). Since high current cycling (C/3) can reduce the extraction of lithium and oxygen from the Li$_2$MnO$_3$ component, the LiMnO$_2$ component evolution is retarded and most of Li$_2$MnO$_3$ phase remains during extended cycles. The existence of a Li$_2$MnO$_3$ component in a continuous cycle indicates that it acts as a structural stabilizer for the cathode during cycling enabling high cycling stability4,26.
Differential capacity plots obtained from the differentiation of capacity as a function of voltage profiles for both samples at different cycle numbers and current density at selected voltages ranging between 4.2 to 4.6 V are showed Fig. 4. The peak during the oxidation reaction at about 4.5 V was due to lithium and oxygen extraction from the Li₂MnO₃ component14,26. In the sol-gel samples cycled at C/10 and C/3, the oxidation peaks were only observed in the first cycle, but the broad oxidation peaks around 4.35–4.40 are presented in the next cycles corresponding to oxidation reaction of Co⁴⁺ to Co³⁺ in LiCoO₂ component39. The LiCoO₂ activation becomes notable

Figure 3. Charge-discharge profiles of the 0.5Li₂MnO₃·0.5LiCoO₂ samples prepared by ball-milling (a and b) and sol-gel (c and d) methods cycled at C/10 and C/3 rates.

Figure 4. Differential capacity plots of the 0.5Li₂MnO₃·0.5LiCoO₂ samples prepared by ball-milling (a,b) and sol-gel (c,d) methods cycled at C/10 and C/3 rates.
at the next cycles, due to the Li$_2$MnO$_3$ component was completely activated at the first charge in the electrodes prepared by sol-gel method that had a small Li$_2$MnO$_3$ domain size, which is easily activated at the initial charge. In the ball-milled samples cycled at C/10 and C/3, the oxidation peaks at approximately 4.5 V could still be clearly seen in subsequent cycles, since activation of the Li$_2$MnO$_3$ component was incomplete at the first charge. The ball-mill method provided a larger Li$_2$MnO$_3$ domain size leading to difficulties in lithium and oxygen extraction from the Li$_2$MnO$_3$ component. The presence of an oxidation peak indicates that Li$_2$MnO$_3$ activation can still occur and it confirmed that the Li$_2$MnO$_3$ component remained during the subsequent cycles. The remaining Li$_2$MnO$_3$ component at extended cycles results in the ability to stabilize the structure leading to high cycling stability. Furthermore, the ball-milled cathode cycled at high current rate (C/3) resulted in higher intensity of residual oxidation peaks at 4.5 V than the ball-milled cathode cycled at slower current rate (C/10). This is because Li$_2$MnO$_3$ activation can effectively be reduced by a high current rate cycling, which is more effective than a slower current rate cycling. Because the cycling at a high current rate, lithium and oxygen ions are difficultly extracted from Li$_2$MnO$_3$ structure to form LiMnO$_2$ phase, resulting in a small amount of the LiMnO$_2$ phase that can transform to the spinel-like phase. This causes the electrodes cycled at high current rate (C/3) to have a higher cyclability than the electrodes cycled at a slower current rate (C/10).

Rate capability of the 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ materials prepared using the ball-milling method and the sol-gel method is shown in Fig. 5(a). The ball-milled sample exhibits a higher rate capability than the sol-gel sample due to the larger Li$_2$MnO$_3$ domain size in the ball-milled sample, which can retard the layered structure transformation into the defective spinel-like structure. However, both cathode materials revealed low rate performance. This occurred since these electrodes were cycled at a slow C/10 rate for their first 5 cycles, leading to almost a complete activation of the Li$_2$MnO$_3$ component. As demonstrated in Fig. 5(b), the initial discharge capacities of the sol-gel cathodes were higher than the ball-milled cathodes. This results from the sol-gel cathodes providing a smaller Li$_2$MnO$_3$ domain size. Increasing Li$_2$MnO$_3$ activation can take place in the first cycle leading to a higher initial capacity. During the first four cycles, the discharge capacities of both sol-gel and ball-milled cathodes cycled at high current rate were low and increased gradually for the first few cycles. Cycling at a high current rate can retard Li$_2$MnO$_3$ phase activation in the first cycle, and this activation can occur in subsequent cycles until the Li$_2$MnO$_3$ phase is completely activated, resulting the higher capacities during the first few initial cycles. The capacities of ball-milled cathodes gradually increased for the first few cycles, which can be observed from the electrodes cycled by both high and low current rates, because a larger Li$_2$MnO$_3$ domain size was obtained by the ball-milling method. Although the electrode was cycled at a low current rate (C/10), the Li$_2$MnO$_3$ phase activation during the first cycle was still not completed. After that, the capacities decreased at different rates depending on current rates. The electrode cycled at the lower current rate exhibited a larger capacity decay than the one cycled at a high rate. A high current rate can effectively reduce the phase transformation of the Li$_2$MnO$_3$ component during cycling bringing about high cycling stability. Furthermore, the ball-milled cathodes exhibited higher cycling stability and rate capability than sol-gel cathodes due to the larger Li$_2$MnO$_3$ domain size obtained from the ball-milled method, potentially reducing the phase transition from then layered structure to the spinel structure during cycling. These results confirm that the mitigation of phase transformation of the Li$_2$MnO$_3$ component was largely controlled by the Li$_2$MnO$_3$ domain size and testing conditions (current rate). A larger Li$_2$MnO$_3$ domain size and suitable current rate cycling can efficiently retard the spinel phase evolution upon cycling. Coulombic efficiencies of the 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ materials prepared using the ball-milling and sol-gel methods cycled at C/3 and C/10 current rates are shown in Fig. 5(b). As can be seen, these cathodes provide low coulombic efficiencies during first few cycles due to irreversible formation of the Li$_2$O phase after the Li$_2$MnO$_3$ component activation. A recent work has shown that a core-shell structured nanocomposite of FePO$_4$ and Li$_2$MnO$_3$ can eliminate the large irreversible capacity of the Li-rich materials. The FePO$_4$ on the surface of Li$_2$MnO$_3$ can also serve as a host for Li ions that were deintercalated from Li$_2$MnO$_3$ during the initial charging process and the initial coulombic efficiency can be 100%. For the electrodes cycled using a slow rate (C/10), the sol-gel electrode exhibits a lower coulombic efficiency than the ball-milled electrode because the sol-gel method provides a smaller Li$_2$MnO$_3$ domain size. The smaller Li$_2$MnO$_3$ domain size can easily be activated to form large amounts of the Li$_2$O and MnO$_2$ phases leading to higher irreversible capacity loss during the first few cycles. In

Figure 5. Rate capability performances (a), cycling stabilities, and coulombic efficiencies cycled at C/10 and C/3 rates (b) of the 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ samples prepared by sol-gel and ball-milling methods.
addition, the electrodes cycled using a higher C-rate (C/3) show a higher coulombic efficiency than those cycled using a slower rate (C/10). This result also happens for the same reason. Cycling at a higher C-rate can mitigate the Li$_2$MnO$_3$ component transformation to the Li$_2$O and MnO$_2$ phases.

Conclusions
In this work, we studied and found that the impacts of the Li$_2$MnO$_3$ domain size and current rate on the electrochemical properties of 0.5Li$_2$MnO$_3$-0.5LiCoO$_2$ composite materials. The high cycling stability and rate performance of composite cathode materials are increased as Li$_2$MnO$_3$ domain size increases, which are suitable for high rate applications. The Li$_2$MnO$_3$ domain size within the LiCoO$_2$ matrix can be varied using different preparation methods. A ball-milling method provided larger Li$_2$MnO$_3$ domains than a sol-gel method. The larger Li$_2$MnO$_3$ domain size and high current rate could retard phase transformation of the Li$_2$MnO$_3$ component to the spinel-like phase. Therefore, the Li$_2$MnO$_3$ component remaining in subsequent cycles is a crucial strategy for improving the cycling stability and rate performance of layered-layered composite-based cathode materials. However, the Li$_2$MnO$_3$ domain size also must be optimized to obtain higher performance layered-layered composite cathode materials for lithium-ion batteries.

Methods

Cathode material preparation: Ball-milling method. Li$_2$MnO$_3$ compound was prepared by a sol-gel route using CH$_3$COOLi·2H$_2$O (Aldrich), and Mn(CH$_3$COO)$_2$·4H$_2$O (Aldrich) as the precursors, ascorbic acid as the chelating agent (ascorbic acid to metal ion molar ratio 0.5:1) and ethanol was used as the solvent. Stoichiometric amounts of the starting materials and ascorbic acid were dissolved in 200 mL of ethanol and stirred for approximately 3 hours at 80°C. After the mixture formed a gel, the gel was calcined at 300°C for 3 hours and then again at 800°C for 16 hours in air. LiCoO$_2$ compound was prepared by the sol-gel approach using CH$_3$COOLi·2H$_2$O (Aldrich), and Co(CH$_3$COO)$_2$·4H$_2$O (Aldrich) as the precursors and ascorbic acid as the chelating agent (ascorbic acid to metal ion molar ratio of 0.5:1) and ethanol was used as a solvent. Stoichiometric amounts of the starting materials and ascorbic acid were dissolved in 200 mL of ethanol and stirred for approximately 3 hours at 80°C. After the mixture formed a dried gel, the dried gel was calcined at 800°C for 10 hours in air. The 0.5Li$_2$MnO$_3$-0.5LiCoO$_2$ was prepared by a ball-milling method. Stoichiometric amounts of Li$_2$MnO$_3$ and LiCoO$_2$ (molar ratio of 1:1) were mixed in ethanol. After that, the mixed powder and 13 mm diameter alumina balls (ball to powder weight ratio of 20:1) were contained in a 120 mL Teflon bottle and then placed on a horizontal ball mill for 72 hours with a rotational speed of 180 rpm. The mixture was dried at 80°C for 10 hours in a vacuum oven. The mixture was calcined at 800°C for 10 hours in air and then furnace cooled to room temperature.

Cathode material preparation: Sol-gel method. Another 0.5Li$_2$MnO$_3$-0.5LiCoO$_2$ sample of cathode material was synthesized via a sol-gel method. CH$_3$COOLi·2H$_2$O (Aldrich), Mn(CH$_3$COO)$_2$·4H$_2$O (Aldrich), and Co(CH$_3$COO)$_2$·4H$_2$O (Aldrich) were used as the precursors and ascorbic acid as the chelating agent (ascorbic acid to metal ion molar ratio of 0.5:1). Stoichiometric amounts of the starting materials and ascorbic acid were dissolved in 200 mL of ethanol and stirred for approximately 3 hours at 80°C. After the mixture became a dried gel, it was first calcined at 300°C for 3 hours in air. The mixture was then ground with agate mortar and pestle, calcined again at 800°C for 10 hours in air and then cooled to room temperature in the furnace.

Structure and morphology characterization. X-ray diffraction (XRD) technique (X’pert Pro, PANalytical) was used to examine the crystal structure of the samples using Cu-Kα radiation at 40 kV and 30 mA. The data were collected with a step size of 0.02° over a 20 range from 15° to 80°. Morphology of the 0.5Li$_2$MnO$_3$-0.5LiCoO$_2$ samples and the existence of Li$_2$MnO$_3$ and LiCoO$_2$ domains were examined by scanning electron microscopy (SEM) (Zeiss, LEO-1450VP) and transmission electron microscopy (TEM) (JEOL, JEM-2100 Plus).

Electrochemical measurements. The active materials were mixed with polyvinylidene fluoride (PVDF Kynar 2801, Arkema) in N-methyl-2-pyrollidone (NMP) (Aldrich) as a binder and carbon black (Alfa Aesar) with a weight ratio of 78:11:11. The mixture was blended in a horizontal shaker for 2 hours and used to coat a sheet of aluminum foil using a doctor blade. It was then dried in a vacuum oven at 80°C for 10 hours. The electrodes were assembled by using a Swagelok cell-type in an Argon filled glovebox. A 0.75 mm thick Li metal was used as an anode. 1 M LiPF$_6$ in EC: DMC: DEC = 4:3:3 by volume (MTI) was used as an electrolyte. Celgard 2400 was used as a separator. Galvanostatic cycling tests were performed using a multichannel tester (BST8-MA, MTI) with a cut-off voltage of 2.0–4.6 V at 30°C.

References
1. Rana, J. et al. On the structural integrity and electrochemical activity of a 0.5Li$_2$MnO$_3$-0.5LiCoO$_2$ cathode material for lithium-ion batteries. J. Mater. Chem. A. 2, 9099–9110 (2014).
2. Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Lia, N. & Hackneyb, S. A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005).
3. Deng, H., Belharouak, I., Sun, Y.-K. & Amine, K. Li$_2$Ni$_{0.5}$Mn$_{0.5}$O$_2$ (0.5 ≤ x ≤ 2, 2 ≤ y ≤ 2.75) compounds for high-energy lithium-ion batteries. J. Mater. Chem. 19, 4310–4316 (2009).
4. Sun, Y.-K., Yoon, C. S., Myung, S.-T., Belharouak, I. & Amine, K. Role of AlF$_3$ coating on LiCoO$_2$ particles during cycling to cutoff above 4.5 V. J. Electrochem. Soc. 156, A1005–A1010 (2009).
5. Zhang, X., Meng, X., Elam, J. W. & Elam, I. Electrochemical characterization of voltage fade of Li$_2$Ni$_{0.5}$Mn$_{0.5}$O$_2$ cathode. Solid State Ionics. 268, 231–235 (2014).
6. Thackeray, M. M. et al. Li$_2$MnO$_3$-stabilized LiMO$_2$ (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).
7. Yan, J., Liu, X. & Li, B. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 17, 63268–63284 (2014).
8. Zhang, Q., Peng, T., Zhan, D. & Hu, X. Synthesis and electrochemical property of xLi$_2$MnO$_3$·(1−x)LiMnO$_2$ composite cathode materials derived from partially reduced Li$_2$MnO$_3$. J. Power Sources. 250, 40–49 (2014).

Acknowledgements

This project was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission through the Advanced Functional Materials Cluster of Khon Kaen University. S.K. wishes to acknowledge the support of the Thailand Graduate Institute of Science and Technology (TGIST). N.M. acknowledges partial support by the INRC, and the Nanotechnology Center (Nanotec), Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network.

Author Contributions

P.L. and N.M. designed this research. S.K., P.C., S.S., W.L., and N.W. carried out the experiments. S.K., N.M., and W.L. analyzed data. P.L., N.M., and S.K. wrote the manuscript. All authors contributed to the scientific discussion and manuscript revisions.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
