Morphology and molecular phylogeny reveal five new species of *Hydnellum* (Bankeraceae, Thelephorales) from China

Chang-Ge Song¹, Yi-Fei Sun¹, Dong-Mei Wu², Neng Gao², Shun Liu¹, Tai-Min Xu¹ and Bao-Kai Cui*¹

¹School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China, ²Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China

The genus *Hydnellum* is a kind of ectomycorrhizal fungi that can play a role in the material cycle by connecting the plant roots to the soil, and some species of *Hydnellum* are medicinal fungi with vital research value. The species diversity of *Hydnellum* is unclear in China. In this study, five new species of *Hydnellum* are described from China based on morphological characters and phylogenetic analyses inferred from two datasets of ITS + LSU and ITS + LSU + SSU + RPB2 sequences. *H. chocolatum* is characterized by its chocolate basidiomata with the fibrillose, spongy to tomentose pileal surface, and subglobose to globose basidiospores measuring (4.5–)5–6 × 4–5(–5.8) µm. *H. concentricum* is characterized by its zonate pileal surface, thin context, short stipe, presence of both simple septa and clamp connections in generative hyphae of spines, and subglobose to globose basidiospores measuring (4.5–)5–6 × 4–5(–5.8) µm. *H. crassipileatum* is characterized by its thick pileus with the reddish brown to grayish brown pileal surface, and subglobose to ellipsoidal basidiospores measuring (3.5–)4–5(–5.2) × (3.2–)3.5–5 µm. *H. melanocarpum* is characterized by its vinaceous brown to black pileus with spongy pileal surface, presence of both simple septa and clamp connections in generative hyphae of spines, and subglobose to ellipsoidal basidiospores measuring (3.5–)4–5(–5.2) × (3.2–)3.5–5 µm. *H. radiatum* is characterized by its radially aligned stripes on pileal surface, grayish brown context, short stipe, and subglobose to ellipsoidal basidiospores measuring (3.5–)4–5(–5.5) × 3–4.5 µm. Full descriptions, illustrations, and phylogenetic trees to show the placement of the new species are provided.

KEYWORDS
Bankeraceae, ectomycorrhizal fungi, multi-gene phylogeny, stipitate hydnoids, taxonomy
Introduction

Stipitate hydnoid fungi of the family Bankeraceae are ectomycorrhizal symbionts of trees in a broad spectrum of forests (Holec and Kučera, 2018), which can provide nutrients and water to roots by exchanging photosynthates from trees and improve the absorption capacity of trees to soil nutrients such as phosphorous (Erland and Taylor, 1999; Parfitt et al., 2007). In some forests, fewer ectomycorrhizal fungi have produced basidiomata (Arnolds, 1991, 2010) and become the emphasis of conservation in Europe (Parfitt et al., 2007). And some species are medicinal fungi, such as *H. concrescens* (Pers.) Banker which has an inhibitory action on syncytium formation, trafficking of glycoprotein and hemagglutinin-neuraminidase (HN) to the cell surface (Lee et al., 2012).

Hydnellum P. Karst., typed by *H. suaveolens* (Scop.) P. Karst., is a member of stipitate hydnoids. The genus *Hydnellum* together with *Phellodon* P. Karst. and *Sarcodon* Quél. ex P. Karst was affiliated to Bankeraceae Donk of Thelephorales Corner ex Oberw. The genus *Hydnellum* was established by Karsten (1879). At first, many species of the Bankeraceae including *Hydnellum* were originally classified into the Hydnaceae because of their dentate hymenium (Banker, 1906). Donk established the family Bankeraceae, which consisted of only two genera *Bankera* and *Phellodon* (Donk, 1961). Jülich (1981) revised the classification system of Basidiomycetes and classified *Hydnellum* into the Bankeraceae. The genus *Hydnellum* is characterized by annual basidiomata with a zonate or an azonate pileal surface, spinous and white to orange, gray blue, light brown, or dark brown spines, and centrally or eccentrically stipitate; a monomitic system of Basidiomycetes and classified (Donk, 1961). Jülich (1981) revised the classification system of Basidiomycetes and classified *Hydnellum* into the Bankeraceae. The genus *Hydnellum* is characterized by annual basidiomata with a zonate or an azonate pileal surface, spinous and white to orange, gray blue, light brown, or dark brown spines, and centrally or eccentrically stipitate; a monomitic hyphal system with simple septa or clamped generative hyphae, and subglobose to globose and tuberculate basidiospores (Baird and Khan, 1986; Baird et al., 2013). *Hydnellum* is often confused with *Phellodon* and *Sarcodon* because of the similar basidiomata with a hymenium made up of spines (Baird et al., 2013). While the basidiospores in the *Phellodon* species are hyaline, the basidiospores in *Hydnellum* and *Sarcodon* are yellow to brown-tinted (Maas Geesteranus, 1975). Besides, *Sarcodon* differs from *Hydnellum* mainly by its brittle fleshy substance (Banker, 1906) and larger basidiospores (7.4-9 μm; Larsson et al., 2019).

Morphological features, including macroscopic morphological and microscopic morphological characteristics, were commonly used to identify *Hydnellum* species in the past (Banker, 1906; Maas Geesteranus, 1962, 1971; Harrison, 1964; Hrouda, 1999). Banker (1906) conducted a study of hydnaceous fungi of the Czech Republic and Slovakia, and 11 species of *Hydnellum* were newly described. Harrison (1964) conducted a systematic study of the stipitate hydnoids of the Bankeraceae from North America and described 10 species of *Hydnellum*. However, traditional morphology-based generic restrictions are ambiguous (Larsson et al., 2019). Mycologists have used morphological characters and phylogenetic analyses to study the taxonomy of *Hydnellum* in recent years (Ainsworth et al., 2010; Baird et al., 2013; Larsson et al., 2019; Mu et al., 2021). Baird et al. (2013) reevaluated the species of stipitate hydnoids from the southern United States, and 41 distinct taxa were determined including 19 species of *Hydnellum*. Larsson et al. (2019) reassessed the generic limits for *Hydnellum* and *Sarcodon*, and transferred 12 species from *Sarcodon* to *Hydnellum* based on ITS and nLSU sequences, which make the division of the genera clearer. Currently, about 70 species have been described and transferred to the genus according to the records in Index Fungorum (Accessed 7 May 2022).

Species in Bankeraceae are associated with coniferous trees in forest ecosystems and are widely distributed in the northern hemisphere. Stipitate hydnoids were often found in forests on mesic to dry, sandy to loamy soils with, at the most, a thin humus and litter layer (Arnolds, 2010). According to a survey conducted in the Netherlands about 22 species of hydnoid fungi, 12 are associated with deciduous trees older than 40 years, mainly *Quercus robur, Quercus rubra*, and *Fagus sylvatica*, and 10 are associated with coniferous trees, almost exclusively with Scots pine (*Pinus sylvestris*) (Arnolds, 2003). However, herb-rich spruce (*Picea abies*) forests on more or less calcareous soils rich in minerals constitute a third important habitat for hydnoid fungi (Arnolds, 2010). These three types of hosts corresponded well in our investigation (Table 2).

Macrofungi have important ecological and economical values. The species diversity, taxonomy, and phylogeny of macrofungi have been extensively investigated in recent years, and many new species have been discovered (Han et al., 2016; Cui et al., 2019; Mu et al., 2019, 2021; Shen et al., 2019; Sun et al., 2020; Cao et al., 2021; Deng et al., 2021, 2022; Liu et al., 2021a,b, 2022a,b; Song et al., 2021, 2022; Zhang et al., 2021; Ji et al., 2022; Wang et al., 2022). During our investigations on macrofungi from China, 90 specimens of *Hydnellum* were collected with different morphological characteristics. The morphological observation and phylogenetic analyses based on ITS + nLSU and ITS + LSU + nSSU + RPB2 combined matrices were conducted to confirm the affinity of the undescribed species corresponding to *Hydnellum*. Five new species were described in detail and illustrated.

Materials and methods

Morphological study

The specimens used in this study were deposited at the herbarium of the Institute of Microbiology, Beijing Forestry
Species	Specimen no.	Locality	GenBank accession no.	ITS	nrLSU	nSSU	RPB1	RPB2
Amaurodon aquicoeruleus	UK 452	Australia	AM490944 AM490944	-	-	-	-	-
A. viridis	KHLarsson14947b	Norway	MK602707 MK602707	-	-	-	-	-
Hydnellum ampygaloisens	GB-0202072	France	MW144290 MW144290	-	-	-	-	-
H. ampygaloisens	SC-2011	-	IN376763 -	-	-	-	-	-
H. atrorubrum	Wei 8315	China	MWS79937 -	-	-	-	-	-
H. atrorubrum	Wei 8261	China	MWS79936 MWS79884 MWS79910	-	-	-	-	-
H. atrorubrum	Yuan 6514	China	MWS79940 MWS79886 MWS79913	-	-	-	-	-
H. atropinum	Yuan 6520	China	MWS79912 MWS79912	-	-	-	-	-
H. aurantiacum	RGCarlsson08-105	Sweden	MK602711 MK602711	-	-	-	-	-
H. aurantiacum	ElBendiksen177-07	Norway	MK602712 MK602712	-	-	-	-	-
H. auratile	OF294095	Norway	MK602714 MK602714	-	-	-	-	-
H. auratile	OF242763	Norway	MK602715 MK602715	-	-	-	-	-
H. hombiensis	Yuan 13759	China	MWS79941 MWS79887 MWS79914	-	OK254206			
H. hombiensis	Yuan 13767	China	MWS79942 MWS79915	-	-	-	-	-
H. brunneorubrum	Yuan 12997	China	MWS79944 MWS79889 MWS79917	-	OK254217			
H. brunneorubrum	Yuan 14339	China	MWS79943 MWS79888 MWS79916	-	OK254216			
H. brunneorubrum	Yuan 14668	China	MWS79945 MWS79889 MWS79918	-	OK254218			
H. caeruleum	OF291140	Norway	MK602717 MK602717	-	-	-	-	-
H. caeruleum	ElBendiksen575-11	Norway	MK602718 MK602718	-	-	-	-	-
H. chloclatum	Cui 18545	China	ON603657 -	-	-	-	-	-
H. chloclatum	Cui 18543	China	ON603656 ON603638 ON603646 ON605658	-	-	-	-	-
H. chrysinum	SC071	-	KJS34291 -	-	-	-	-	-
H. coactum	Wei 8094	China	MN846278 MN846287	-	-	-	-	-
H. coactum	Shi 181	China	MN846279 MN846288	-	-	-	-	-
H. complicatum	REB-71	United States	KC571711	-	-	-	-	-
H. complicatum	REB-329	United States	KC571712	-	-	-	-	-
H. concentricum	Cui 17017	China	ON603658 ON603639 ON603647 ON605659 ON605666	-	-	-	-	-
H. concentricum	Cui 17098	China	- ON603640 ON603648 ON605660	-	-	-	-	-
H. concrescens	REB-385	United States	JN135182	-	-	-	-	-
H. concrescens	REB-65	United States	KC571713	-	-	-	-	-
H. concrescens	REB-384	United States	KC571714	-	-	-	-	-
H. crassipilatum	Cui 17021	China	ON603660 ON603641 ON603649 ON605661 ON605668	-	-	-	-	-
H. crassipilatum	Cui 17019	China	ON603659 ON603642 ON603650 ON605662	-	-	-	-	-
H. cristatum	4446	Canada	KM406974 -	-	-	-	-	-
H. cristatum	REB-169	United States	JN135174	-	-	-	-	-
H. cumulatum	SEW 69	United States	AYS69026	-	-	-	-	-
H. cumulatum	REB-342	United States	JN135172	-	-	-	-	-
H. cyanopodium	SEW 85	United States	AYS69027	-	-	-	-	-
H. diabolus	KAH13873	Canada	AF51863 -	-	-	-	-	-
H. diasthifolium	ML902162HY	-	KK619420 -	-	-	-	-	-
H. diasthifolium	ML61211HY	-	KK619419 -	-	-	-	-	-
H. earlilimon	REB-375	United States	JN135179	-	-	-	-	-
H. earlilimon	REB-75	United States	KC571724	-	-	-	-	-
H. fagiscabrosum	GB-0195621	Sweden	MW144293 MW144293	-	-	-	-	-
H. fagiscabrosum	GB-0195805	Sweden	MW144294 MW144294	-	-	-	-	-
H. fagiscabrosum	GB-0195625	Sweden	MW144292 MW144292	-	-	-	-	-
H. fenicicum	OF242833	Norway	MK602738 MK602738	-	-	-	-	-

(Continued)
Species	Specimen no.	Locality	GenBank accession no.
H. fennicum	SWesterberg110909 Sweden	MK602739 MK602739	- - -
H. ferrugineum	ELarsson 356-16 Sweden	MK602721 MK602721	- - -
H. ferrugineum	ELarson 197-14 Sweden	MK602722 MK602722	- - -
H. ferrugipes	REB-176 United States	KCS71727 - - -	- - -
H. ferrugipes	REB-68 United States	JN135176 - - -	- - -
H. fibulatum	Yuan 14646 China	MW579957 -	MW579926 -
H. fibulatum	Yuan 14656 China	MW579927 -	MW579958 -
H. fulgineoviolaceum	LA120818 Sweden	MK602740 MK602740	- - -
H. fulgineoviolaceum	BNylen130918 Sweden	MK602741 MK602741	- - -
H. fuscoindicum	OSC 113641 United States	EU669230 EU669280	- - -
H. fuscoindicum	OSC 107844 United States	EU669229 EU669279	- - -
H. geogenium	EBendiksen526-11 Norway	MK602725 MK602725	- - -
H. geogenium	OF296213 Norway	MK602724 MK602724	- - -
H. geogenium	OF66379 Norway	MK602723 MK602723	- - -
H. glaucopus	RGCarlsson13-060 Sweden	MK602743 MK602743	- - -
H. glaucopus	JNitaro06091 Sweden	MK602744 MK602744	- - -
H. gracilipes	ELarsson 219-11 Sweden	MK602727 MK602727	- - -
H. gracilipes	GB-1113779 Sweden	MK602726 MK602726	- - -
H. granulosum	Yuan 12213a China	MW579948 MW579893 MW579921	OK254213
H. granulosum	Yuan 12213b China	MW579947 MW579892 MW579920	OK254212
H. grosslepidotum	Wei 8120 China	MN846274 MN846283	- - -
H. grosslepidotum	Wei 8015 China	MN846276 MN846285	- - -
H. iulidens	OF-76340 Norway	MW144334 MW144334	- - -
H. iulidens	OF-242769 Norway	MW144335 MW144335	- - -
H. iulidens	OF-68659 Norway	MW144333 MW144333	- - -
H. inflatum	Wang 80 China	MW579949 MW579949 MW579922	OK254210
H. inflatum	Shi 506 China	OK254210 MW579895	OK254210 OK254211
H. joecides	RGCarlsson11-090 Sweden	MK602749 MK602749	- - -
H. joecides	KHjortstam17589 Sweden	MK602750 MK602750	- - -
H. joecides	JNitaro10829 Sweden	MK602751 MK602751	- - -
H. lepidum	EGrundell10916 Sweden	MK602753 MK602753	- - -
H. lindogena	JNitaro10829 Sweden	MK602754 MK602754	- - -
H. lindogena	Wei 8329 China	MN846281 MN846280	- - -
H. lindogena	Wei 8365 China	MN846280 MN846289	- - -
H. lundellii	Strivdval10049 Sweden	MK602758 MK602758	- - -
H. lundellii	OF242639 Norway	MK602759 MK602759	- - -
H. lundellii	OF295814 Norway	MK602760 MK602760	- - -
H. martioflavus	OF242872 Norway	MK602761 MK602761	- - -
H. martioflavus	OF242435 Norway	MK602762 MK602762	- - -
H. martioflavus	ADeln110884 Sweden	MK602763 MK602763	- - -
H. melanocarpum	Cui 18566 China	ON603661 -	ON603651 -
H. melanocarpum	Cui 18557 China	ON603662 ON603643 ON603652	- -
H. melanocarpum	Cui 18559 China	ON603663 ON603644 ON603653	ON603667
H. mirabile	SLund140912 Sweden	MK602730 MK602730	- - -
H. mirabile	RGCarlsson11-119 Sweden	MK602728 MK602728	- - -
H. mirabile	ELarson17014 Sweden	MK602729 MK602729	- - -
H. nemorusum	GB-0195631 Sweden	MW144373 MW144373	- - -

(Continued)
Species	Specimen no.	Locality	GenBank accession no.	ITS	nrLSU	nSSU	RPB1	RPB2
H. nemorosum	O-F-242352	Norway	MW144372	MW144372	-	-	-	-
H. parvum	REB-131	United States	IN135187	-	-	-	-	-
H. parvum	REB-392	United States	KC571717	-	-	-	-	-
H. peckii	SSvantesson328	Norway	MK602731	MK602731	-	-	-	-
H. peckii	ELarsson174-14	Sweden	MK602732	MK602732	-	-	-	-
H. peckii	EBendiksen 567-11	Norway	MK602733	MK602733	-	-	-	-
H. pinetica	REB-49	United States	KC571733	-	-	-	-	-
H. pinetica	REB-43	United States	IN135175	-	-	-	-	-
H. piperatum	REB-332	United States	IN135173	-	-	-	-	-
H. piperatum	REB-304	United States	KC571723	-	-	-	-	-
H. radiatum	Cui 17130	China	ON603664	ON603645	ON603654	ON605663	ON605669	-
H. radiatum	Cui 16254	China	ON603665	-	ON603655	ON605664	-	-
H. regium	SEW 93	United States	AY569031	-	-	-	-	-
H. roseoaloeaecc	GB-0195687	Sweden	MW144375	MW144375	-	-	-	-
H. roseoaloeaecc	GB-0195936	Sweden	MW144374	MW144374	-	-	-	-
H. rubidofuscum	Yuan 14587	China	MW579852	MW579897	MW579925	-	OK254208	-
H. rubidofuscum	Yuan 14561	China	MW579851	MW579896	MW579924	-	OK254207	-
H. rubidofuscum	Yuan 14654	China	MW579893	MW579898	-	-	OK254209	-
H. scabriulatum	GB-0195806	Sweden	MW144377	MW144377	-	-	-	-
H. scabriulatum	GB-0195791	Sweden	MW144378	MW144378	-	-	-	-
H. scabriulatum	GB-0195689	Sweden	MW144379	MW144379	-	-	-	-
H. scabrosum	OF295824	Norway	MK602764	MK602764	-	-	-	-
H. scabrosum	OF360777	Norway	MK602765	MK602765	-	-	-	-
H. scabrosum	OF292320	Norway	MK602766	MK602766	-	-	-	-
H. scrobiculatum	REB-3	United States	IN135186	-	-	-	-	-
H. scrobiculatum	REB-352	United States	KC571740	-	-	-	-	-
H. spongiosipes	REB-78	United States	IN135181	-	-	-	-	-
H. spongiosipes	SEW 86	United States	AY569021	-	-	-	-	-
H. spongiosipes	REB-107	United States	KC571743	-	-	-	-	-
H. spongiosipes	REB-52	United States	IN135184	-	-	-	-	-
H. squamulosum	Yuan 13625	China	MW579896	MW579899	-	-	OK254204	-
H. squamulosum	Yuan 13743	China	MW579895	MW579895	-	-	OK254203	-
H. suaveolens	ELarsson 139-09	Norway	MK602734	MK602734	-	-	-	-
H. suaveolens	ELarsson 8-14	Sweden	MK602735	MK602735	-	-	-	-
H. suaveolens	SSvantesson877	Norway	MK602736	-	-	-	-	-
H. subsuccosum	SEW 55	United States	AY569033	-	-	-	-	-
H. subsuccosum	REB-10	United States	IN135178	-	-	-	-	-
H. sulcatum	Yuan 14521	China	MW579901	MW579902	MW579930	-	OK254202	-
H. sulcatum	Yuan 14649	China	MW579960	MW579901	MW579929	-	OK254201	-
H. sulcatum	Yuan 14660	China	MW579959	MW579900	MW579901	-	-	-
Hydnumellum sp.1	Shi 164	China	-	MW579896	-	-	-	-
Hydnumellum sp.2	Yuan 14387	China	MW579970	MW579908	MW579934	-	-	-
Hydnumellum sp.3	Yuan 14388	China	MW579971	-	-	-	-	-
Hydnumellum sp.4	Wang 295	China	MW579972	-	-	-	-	-
Hydnumellum sp.5	Yuan 14594	China	MW579973	MW579909	MW579935	-	OK254205	-
H. yunnanense	Yuan 14386	China	MW579962	MW579903	-	-	OK254199	-
H. yunnanense	Yuan 14396	China	MW579963	MW579904	-	-	OK254200	-

(Continued)
Table 1 (Continued)

Species	Specimen no.	Locality	GenBank accession no.
			ITS
			nrLSU
			nSSU
			RPB1
			RPB2
H. underwoodii	REB-358	United States	JN135189
H. underwoodii	REB-50	United States	KC571781
H. versipellis	EBendiksen164-07	Norway	MK602770
H. versipellis	RGCarlsson13-057	Sweden	MK602771
Sarcodon aspratus	-	-	DQ448877
S. aspratus	-	-	AF335110
S. imbricatus	JRova 1408929	Sweden	MK602746
S. imbricatus	ELarssen 384-10	Norway	MK602747
S. imbricatus	SSvantesson355	Norway	MK602748
S. scabripes	REB-351	United States	JN135191
S. scabripes	FCME:23240	Mexico	EU293829
S. squamosus	ELarssen 248-12	Sweden	MK602767
S. squamosus	OF177452	Norway	MK602768
S. squamosus	OF295554	Norway	MK602769
S. quercinofibulatus	JC-20090718.2	Italy	JX271818
S. leucopus	OF296099	Norway	MK602755
S. leucopus	OF296944	Norway	MK602756

New sequences are shown in bold.

University (BJFC). Macro-morphological descriptions were based on field notes and laboratory measurements. The microscopic measures used in this study were followed by Sun et al. (2020, 2022) under a light microscope (Nikon Eclipse E 80i microscope, Nikon, Tokyo, Japan). Microscopic characteristics, measurements, and drawings were made from slide preparations stained with Cotton Blue and Melzer's reagent, following Liu et al. (2021a). The following abbreviations were used: IKI = Melzer's reagent, IKI– = neither amyloid or dextrinoid, KOH = 5% potassium hydroxide, CB = Cotton Blue, CB += cyanophilous, CB– = acyanophilous, L = mean spore length (arithmetic average of all spores), W = mean spore width (arithmetic average of all spores), Q = variation in the L/W ratios between the specimens studied, and n = number of spores measured from given number of specimens. A field Emission Scanning Electron Microscope (FESEM) Hitachi SU-8010 (Hitachi, Ltd., Tokyo, Japan) was used to photograph the ornamentation of the basidiospores, and the materials were studied at up to 2,200 times magnification, according to Song et al. (2021, 2022).

DNA extraction, polymerase chain reaction amplification, and sequencing

The CTAB rapid plant genome extraction kit DN14 (Aidlab Biotechnologies, Beijing, China) was used to acquire total genomic DNA from dried specimens according to the manufacturer's instructions with some modifications (Sun et al., 2022). ITS4 and ITS5 were used as primers for the internal transcribed spacer (ITS), LR0R and LR7 were used for the large subunit of nuclear ribosomal RNA gene (nLSU), NS1/NS4 were used for the small subunit of nuclear ribosomal RNA gene (nSSU), and 5F/7Cr were used to the second largest subunit of RNA polymerase II (RPB2) gene. The Polymerase Chain Reaction (PCR) procedure for ITS was as follows: initial denaturation at 95°C for 3 min, followed by 35 cycles at 94°C for 40 s, 56°C for 45 s, and 72°C for 1 min, and a final extension of 72°C for 10 min. The PCR procedure for nLSU and nSSU was as follows: initial denaturation at 94°C for 1 min, followed by 35 cycles at 94°C for 30 s, 50°C for 1 min, and 72°C for 1.5 min, and a final extension of 72°C for 10 min. The PCR process for RPB2 was as follows: initial denaturation at 94°C for 2 min, 9 cycles at 94°C for 45 s, 60°C for 45 s, followed by 36 cycles at 94°C for 45 s, 53°C for 1 min, 72°C for 90 s, and a final extension of 72°C for 10 min. The PCR products were purified and sequenced at the Beijing Genomics Institute, China, with the same primers. The newly generated sequences were deposited at GenBank. All sequences analyzed in this study were deposited at GenBank and are listed in Table 1.

Phylogenetic analyses

The new sequences generated in this study were combined with the sequences downloaded from GenBank and are listed in Table 1. Amaurodon aquicoeruleus Agerer and A. viridis (Alb. and Schwein.) J. Schröt were used as the outgroups, according
Species	Distribution in China	Ecological habits	Alt.	Pileal surface (when fresh)	Spines color (when fresh)	Basidiospores (µm)	References
H. atrorubrum	Yunnan Province on the ground of Fagaceous forest		2100 m	light brown to dark ruby	white to dark brown	(4.1–)4.5–6 × (3.2–)3.9–5.1(–6)	Mu et al., 2021
H. atrospinosum	Qinghai Province on the ground of *Picea* forest		2800 m	light orange to yellowish brown	dark violet	(4–)4.1–5.1(–5.5) × (3–)3.3–3.9(–4)	Mu et al., 2021
H. bomiense	Xizang Autonomous Region on the ground with moss of Fagaceous forest		2760 m	grayish yellow, brown to dark brown	white to brown	(4–)4.1–5.1(–5.2) × (3–)3.3–4.5(–4.8)	Mu et al., 2021
H. brunneocarum	Liaoning Province on the ground of Fagaceous forest or mixed forest		400 m	brownish orange to brownish red	golden yellow to light brown	(4–)4.1–5.1(–5.2) × (3.1–)3.2–4.6(–4.8)	Mu et al., 2021
H. caeruleum	Xingjiang Autonomous Region on the ground of *Picea* forest		1900 m	pastel yellow to dark blonde	orange-white to dark brown	(4.9–)5–6(–6.1) × (4–)4.1–4.9(–5)	Mu et al., 2021
H. chocolatum	Sichuan Province on the ground of mixed forest		3000 m	dark brown to fuscous	brown to grayish brown	4–5(–5.8) × (4.5–)5–6	This study
H. coactum	Yunnan Province on the ground of Fagaceae forest		1600–2000 m	reddish-brown to dark brown	white to yellowish-white	(5.1–)3.7–7(–7.1) × (4.6–)4.7–5.9(–6)	Mu et al., 2020
H. concentricum	Yunnan Province on the ground of forest dominated by trees of *Pinus* and *Quercus*		3000–3500 m	light brown, pastel red, reddish-brown to grayish brown	fawn to reddish brown	(3.2–)3.5–5 × (3.5–)4–5(–5.2)	This study
H. cussipileatum	Yunnan Province on the ground of forest dominated by trees of *Pinus* and *Quercus*		3525 m	reddish brown to grayish brown	grayish brown to fuscous	4–5.5 × 4–6 (–6.5)	This study
H. fibulatum	Liaoning Province on the ground of *Quercus* forest		740 m	light brown to dark brown	pinkish white to brown	(4.2–)4.4–5.8(–6) × (4–)4.1–4.9(–5.1)	Mu et al., 2021
H. grunulosum	Sichuan Province on the ground of *Acer* and *Cryptomeria* mixed forest		1175 m	light yellow, light brown to grayish brown	grayish orange to dark brown when dry	(4–)4.1–5.1(–5.3) × (3.2–)3.4–4.7(–4.9)	Mu et al., 2021
H. grosselepidotum	Yunnan Province on the ground of Fagaceae forest		2000 m	pale orange to dark ruby	white to pale yellow	(5–)3.5–6.6(–6.6) × (4–)4.1–5.9(–6)	Mu et al., 2020
H. inflatum	Yunnan Province on the ground of Fagaceae forest		1580 m	grayish orange to brown	white to golden brown	(4–)3.2–5(–5.1) × (3–)3.8–4.3(–5)	Mu et al., 2021
H. lidongensis	Yunnan Province on the ground of Fagaceae forest		2400 m	light brown to brown	grayish-orange to brown	(4–)4.1–6(–6.1) × (3.9–)3–4.5(–5.1)	Mu et al., 2020
H. melanocarpum	Sichuan Province on the ground of mixed forest		4090 m	vinaceous brown	brown	(3.5–)3.8–5.1 × 4.5–5.5(–6)	This study
H. peckii	Xizang Autonomous Region on the ground of *Pinus* mixed forest		2760 m	white to light orange	brownish orange	(4.1–)4.2–5(–5.1) × (3.8–)3.9–4.4(–4.6)	Mu et al., 2021
H. radiatum	Yunnan Province on the ground of forest dominated by *Pinus armandii* and *Rhododendron* or *Pinus* and *Quercus*		2400–2700 m	dark brown, fuscous to black	dark brown	3–4.5(–5) × (3.5–)4–5	This study

(Continued)
TABLE 2 (Continued)

Species	Distribution in China	Ecological habits	Basidiospores (µm)	References
H. rubidofuscum	Liaoning Province on the ground of Quercus forest	700 m pastel red to dark magenta	4–5 (4.1–5.1) × 4.5–5.3 (4.7–5.8)	Mu et al., 2021
H. spongiosipes	Liaoning Province on the ground of Quercus forest	400 m pale orange to dark brown	5.1–6.1 (5.2–6.2) × 4.8–5.8 (4.9–6.1)	Mu et al., 2021
H. squamulosum	Xizang Autonomous Region on the ground with moss of Picea mixed forest	2760 m dark brown	4.1–5.1 (4.2–5.2) × 3.8–4.8 (3.9–5.0)	Mu et al., 2021
H. sulcatum	Liaoning Province on the ground of Quercus forest	740 m brown	4.1–5.1 (4.2–5.2) × 3.8–4.8 (3.9–5.0)	Mu et al., 2021
H. yunnanense	Yunnan Province on the ground	2358 m grayish red to dark brown	5.1–6.1 (5.2–6.2) × 4.8–5.8 (4.9–6.1)	Mu et al., 2021

to Mu et al. (2021). Sequences were aligned by MAFFT v.7 with the G-INS-I option (Katoh and Standley, 2013) and manually adjusted in BioEdit v. 7.0.9. (Hall, 1999). Alignments were spliced in Mesquite v. 3.2. (Maddison and Maddison, 2017). The partition homogeneity test (PHT) (Farris et al., 1994) of the four-gene dataset was tested by PAUP v. 4.0b10 (Swofford, 2002) under 1,000 homogeneity replicates. The best-fit evolutionary model was selected with AIC (Akaike Information Criterion) using ModelTest 2.3 (Guindon and Gascuel, 2003; Darriba et al., 2012). Phylogenetic analyses were carried out according to the previous studies (Cui et al., 2019; Liu et al., 2022a).

Maximum parsimony (MP) analyses were applied to the combined datasets. The construction was performed in PAUP∗ version 4.0b10 (Swofford, 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap analysis with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistics of tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree generated. RAxML-HPC2 was used to construct the maximum likelihood (ML) analyses with the GTR+gamma model. All model parameters were estimated by the program, and only the best ML tree from all searches was kept. The ML bootstrap values were performed using rapid bootstrapping with 1,000 replicates.

MrModeltest 2.3 (Posada and Crandall, 1998; Nylander, 2004) was used to determine the best-fit evolution model for each dataset for Bayesian inference (BI). BI was calculated using MrBays 3.1.2 with four Markov chains running for two runs from random starting trees for one million generations, and trees were sampled every 100 generations (Ronquist and Huelsenbeck, 2003). The first 25% of the sampled trees were discarded as burn-in and a majority rule consensus tree of all remaining trees was calculated. All trees were viewed in FigTree v. 1.4.2.

Results

Phylogeny

The combined ITS + nLSU dataset included 257 sequences from 156 specimens representing 76 taxa. The dataset had an aligned length of 2,605 characters, including gaps (1,202 characters for ITS, 1,403 characters for nLSU), of which 1,527 characters were constant, 122 were variable and parsimony-uninformative, and 956 were parsimony-informative. Maximum parsimony analysis yielded 12 equally parsimonious trees (TL = 5,489, CI = 0.355, RI = 0.798,
RC = 0.283, HI = 0.645). The best model for the combined ITS + nLSU sequences dataset estimated and applied in the Bayesian analysis was the GTR + I + G model. Bayesian and ML analysis resulted in a topology similar to that of MP analysis. Bayesian analysis has an average standard deviation of split frequencies = 0.005071. Only the ML tree was provided in Figure 1, and the MP bootstrap values (≥75%), ML bootstrap values (≥75%), and BPP (≥0.95) were shown at the nodes.

The combined ITS + nLSU + nSSU + RPB2 dataset included 312 sequences from 156 specimens representing 76 taxa. The dataset had an aligned length of 4,639 characters, including gaps (1,181 characters for ITS, 1,399 characters for nLSU, 986 characters for nSSU, and 1,073 characters for RPB2), of which 3,168 characters were constant, 186 were variable and parsimony-uninformative, and 1,285 were parsimony-informative. Maximum parsimony analysis yielded 15 equally parsimonious trees (TL = 6,171, CI = 0.392, RI = 0.800, RC = 0.313, HI = 0.608). The best model for the combined ITS + nLSU + nSSU + RPB2 sequences dataset estimated and applied in the Bayesian analysis was the GTR + I + G model. Bayesian and ML analysis resulted in a topology similar to that of MP analysis. Bayesian analysis has an average standard deviation of split frequencies = 0.007966. Only the ML tree was provided in Figure 2, and the MP bootstrap values (≥75%), ML bootstrap values (≥75%), and BPP (≥0.95) were shown at the nodes.

Taxonomy

Hydnellum chocolatum B. K. Cui and C. G. Song, sp. nov. (Figures 3A,B, 4A,B, 5).

Mycobank no.: 846115

Diagnosis: Differs from others by its fibrillose, spongy to tomentose pileal surface in chocolate color.

Type: CHINA. Sichuan Province, Jiuzhaigou County, on the ground of the mixed forest, elev. 2,600 m, 19 September 2020, Bao-Kai Cui, Cui 18543 (holotype, BJFC 035406).

Etymology: chocolatum (Lat.) refers to the chocolate-colored pileal surface.

Fruiting body: Basidiomata annual, eccentrically stipitate, single to concrescent, and odorless when fresh. The pileus is circular to irregular, with irregular folds in the middle, and up to 7.4 cm in diam and 0.7 cm thick at the center. Pileal surface is chocolate to fuscous when fresh, becoming grayish brown upon drying, azonate, fibrillose to spongy at the center, and tomentose near the margin, with radially aligned stripes toward the margin; margin white to light brown when fresh, becoming grayish brown upon drying, up to 7 mm wide. Context is brown to vinaceous gray upon drying, corky to fragile, and up to 3 mm thick. Spines are soft, brown to grayish brown when fresh, becoming grayish brown upon drying, fragile, and up to 5 mm long. Stipe is cylindrical and glabrous, surface layer is dark brown to vinaceous gray, and inner layer is grayish brown, and up to 3.8 cm long and 0.9 cm in diam.

Hyphal structure: Hyphal system monomitic; generative hyphae with simple septa; all the hyphae IKI–, CB–; tissues turned to olive-green or black in KOH.

Context: Generative hyphae grayish brown, thick-walled, branched, regular arranged, 2.5 to 6 µ m in diam.

Spines: Generative hyphae clay-buff, slightly thick-walled, occasionally branched, regular arranged, 2 to 4.5 µ m in diam. Cystidia and cystidioles are absent. Basidia clavate, bearing four sterigmata (2–4 µ m long) and a basal simple septum, 32–45 × 5–7 µ m; basidioles similar to basidia in shape, but slightly smaller.

Stipe: Generative hyphae clay-buff to grayish brown, slightly thick-walled, rarely branched, interwoven in the surface layer, regularly arranged in the inner layer, and 2 to 4 µ m in diam.

Sporae: Basidiospores subglobose to globose, hyaline, thick-walled, echinate, IKI–, CB– (4.5–5)–6 × 4–5(–5.8) µ m, L = 5.2 µ m, W = 4.7 µ m, Q = 1–1.25 (n = 60/2, without the ornamentation).

Additional specimen (paratype) examined: CHINA. Sichuan Province, Jiuzhaigou County, on the ground of the mixed forest, elev. 2,600 m, 19 September 2020, Bao-Kai Cui, Cui 18543 (BJFC 035404).

Ecological habits: Hydnellum chocolatum was collected in Southwest China under a plateau humid climate. It grows on the moist ground of the mixed forest, with well-watered bryophytes.

Hydnellum concentricum B. K. Cui and C. G. Song, sp. nov. (Figures 3C,D, 4C,D, 6).

Mycobank no.: 846116

Diagnosis: Differs from other Hydnellum species by its zonate pileal surface, thin context, short stipe, and presence of both simple septa and clamp connections in generative hyphae of spines.

Type: CHINA. Yunnan Province, Lijiang City, Yulong County, Jihe, Laojun Mountain, Jiushijulongtan, on the ground of forest dominated by trees of Pinus sp. and Quercus sp., elev. 2,800 m, 15 September 2018, Bao-Kai Cui, Cui 17017 (holotype, BJFC 030316).

Etymology: concentricum (Lat.) refers to the concentric bands on the pileal surface.

Fruiting body: Basidiomata annual, centrally stipitate, single, and odorless when fresh. Pileus infundibuliform, and up to 3.2 cm in diam and 0.4 cm thick at the center. Pileal surface is light brown, pastel red, reddish-brown to grayish brown when fresh, becoming brown to grayish brown upon drying, zonate, glabrous, with radially aligned stripes; margin fawn to orange-brown when fresh, becoming fawn upon drying, and up to 0.8 cm wide. Context is grayish brown upon drying, fragile, and up to 1 mm thick. Spines are soft, fawn to reddish-brown when fresh, grayish brown upon drying, fragile, and up to 3 mm long. Stipe cylindrical, glabrous, surface layer honey yellow to grayish
brown upon drying, inner layer grayish brown upon drying; and up to 1.8 cm long and 0.5 cm in diam.

Hyphal structure: Hyphal system monomitic; generative hyphae in context and stipe with simple septa, generative hyphae in spines mostly with simple septa, occasionally with clamp connections; all the hyphae IKI−, CB−; tissues turned to olive-green or black in KOH.

Context: Generative hyphae clay-buff to grayish brown, slightly thick-walled, branched, regularly arranged, and 2 to 6 µm in diam.

Spines: Generative hyphae clay-buff, thin-walled, occasionally branched, occasionally with clamp connections, regularly arranged, and 2 to 4.5 µm in diam. Cystidia and cystidioles are absent. Basidia clavate, bearing four sterigmata (2–4 µm long) and a basal simple septum, 22–48 × 5–7 µm; basidiospores are similar to basidia in shape but slightly smaller.

Stipe: Generative hyphae clay-buff, slightly thick-walled, rarely branched, interwoven in the surface layer, regularly arranged in the inner layer, and 2 to 4.5 µm in diam.

Spores: Basidiospores subglobose to ellipsoidal, hyaline, thin-walled, echinulate, IKI−, CB−; tissues turned to olive-green or black in KOH.

Additional specimen (paratype) examined: CHINA. Yunnan Province, Shangri-La, on the ground of forest dominated by...
FIGURE 2

Maximum likelihood tree of the Hydnellum species based on the combined ITS + nLSU + nSSU + RPB2 sequences data. Branches are labeled with parsimony bootstrap values equal to or higher than 75%, ML bootstrap values equal to or higher than 75%, and Bayesian posterior probabilities equal to or higher than 0.95. Bold names = New species.

trees of *Pinus yunnanensis*, elev. 3,200 m, 17 September 2018, Bao-Kai Cui, Cui 17098 (BJFC 030398).

Ecological habits: *Hydnellum concentricum* was collected in Southwest China, under a plateau monsoon climate. It grows on the moist ground of a forest dominated by trees of *Pinus yunnanensis*.

Hydnellum crassipileatum B. K. Cui and C. G. Song, sp. nov. (Figures 3E,F, 4E,F, 7).

MycoBank no.: 846117

Diagnosis: Differs from other *Hydnellum* species by its thick pileus with reddish brown to grayish brown pileal surface.

Type: CHINA. Yunnan Province, Lijiang City, Yulong County, Jiuhe, Laojun Mountain, Jiushijiulongtan, on the ground of forest dominated by trees of *Pinus* sp. and *Quercus* sp., elev. 2,800 m, 15 September 2018, Bao-Kai Cui, Cui 17021 (holotype, BJFC 030320).

Etymology: *crassipileatum* (Lat.) refers to the thick pileus.

Fruiting body: Basidiomata annual, eccentrically stipitate, single, and odorless when fresh. Pileus circular to elliptical, up to 5.5 cm in diam, and 0.5 cm thick at the center. Pileal surface is reddish-brown to grayish brown, becoming grayish brown upon drying, up to 6 mm wide. Context light grayish-brown upon drying, up to 5 mm thick. Spines soft, grayish brown to fuscous when fresh, fuscous to black upon drying, up to 4 mm long. Stipe cylindrical, grayish brown, surface layer grayish-brown, inner layer grayish brown to fuscous; up to 4.8 cm long, and 1.9 cm in diam.

Hyphal structure: Hyphal system monomitic; generative hyphae with simple septa; all the hyphae IKI–, CB–; tissues turned to olive-green or black in KOH.

Context: Generative hyphae clay-buff, thick-walled, occasionally branched, regularly arranged, and 2.5 to 5 µm in diam.

Spines: Generative hyphae clay-buff, thick-walled, occasionally branched, more or less regularly arranged, and 2.5 to 4 µm in diam. Cystidia and cystidioles are absent.
FIGURE 3
Basidiomata of Hydnellum species. (A) H. chocolatum (paratype, Cui 18543), (B) H. chocolatum (holotype Cui 18545), (C,D) H. concentricum (holotype, Cui 17017), (E,F) H. crassipileatum (paratype, Cui 17019), (G) H. melanocarpum (paratype, Cui 18557), and (H) H. melanocarpum (paratype, Cui 18559), (I,J) H. radiatum (holotype, Cui 17130) Scale bars: 2 cm.
FIGURE 4
Scanning Electron Microscope (SEM) of basidiospores of *Hydnellum* species. (A,B) *H. chocolatum*, (C,D) *H. concentricum*, (E,F) *H. crassipileatum*, (G,H) *H. melanocarpum*, and (I,J) *H. radiatum*. Scale bars: 1.5 µm.

Basidia clavate, bearing four sterigmata (2.5–3.5 µm long) and a basal simple septum, 14–31 × 5–7 µm; basidioles similar to basidia in shape, but slightly smaller.

Stipe: Generative hyphae clay-buff, slightly thick-walled, rarely branched, interwoven in the surface layer, regularly arranged in the inner layer, and 2.5 to 5 µm in diam.

Spores: Basidiospores subglobose to ellipsoidal, hyaline, thin-walled, echinulate, IKI–, CB–, 4–6(–6.5) × 4–5.5 µm, \(L = 5.6 \) µm, \(W = 4.5 \) µm, \(Q = 1–1.38 \) (\(n = 60/2 \), without the ornamentation).

Additional specimen (paratype) examined: CHINA. Yunnan Province, Lijiang City, Yulong County, Jiuhe, Laojun Mountain.
FIGURE 5
Microscopic structures of *H. chocolatum* (drawn from Cui 18545). (A) Basidiospores, (B) Basidia and basidioles, (C) Hyphae from context, (D) Hyphae from spines, (E) Hyphae from the inner layer of stipe, and (F) Hyphae from the surface layer of stipe.

Jiushijulongtan, on the ground of forest dominated by trees of *Pinus* and *Quercus*, elev. 2,800 m, 15 September 2018, Bao-Kai Cui, Cui 17019 (BJFC 030318).

Ecological habits: *Hydnellum crassipileatum* was collected in Southwest China, under a plateau monsoon climate. It grows on the ground of a moist forest dominated by trees of *Pinus* and *Quercus*.

Hydnellum melanocarpum B. K. Cui and C. G. Song, sp. nov. (Figures 3G,H, 4G,H, 8).

MycoBank no.: 846118

Diagnosis: Differs from other *Hydnellum* species by its vinaceous brown to black pileus with spongy pileal surface, and the presence of both simple septa and clamp connections in generative hyphae of spines.

Type: CHINA. Sichuan Province, Jiuzhaigou County, Jiuzhaigou Reverse, on the ground of the mixed forest, elev. 2,500 m, 20 September 2020, Bao-Kai Cui, Cui 18556 (holotype, BJFC 035417).

Etymology: *melanocarpum* (Lat.) refers to the vinaceous brown to black pileus.
FIGURE 6
Microscopic structures of *H. concentricum* (drawn from Cui 17017). (A) Basidiospores, (B) Basidia and basidioles, (C) Hyphae from context, (D) Hyphae from spines, (E) Hyphae from the inner layer of stipe, and (F) Hyphae from the surface layer of stipe.

Fruiting body: Basidiomata annual, centrally or eccentrically stipitate, single to concrecent, and odorless when fresh. Pileus is circular to irregular, up to 4.8 cm in diam, and 0.7 cm thick at the center. Pileal surface is vinaceous brown to black when fresh and becoming grayish brown upon drying, azonate, and glabrous to spongy at the center; margin cream, clay-buff, to orange-brown when fresh, light vinaceous gray at the lower tip, and becoming grayish brown to fuscous upon drying, and up to 0.6 cm wide. Spines are soft, brown when fresh, grayish brown to black upon drying, fragile, and up to 4 mm long. Context is grayish brown upon drying, fragile, and up to 3 mm thick. Stipe is cylindrical, glabrous, and grayish brown; and up to 2.6 cm long and 0.8 cm in diam.

Hyphal structure: Hyphal system monomitic; generative hyphae in context and stipe with simple septa, generative
Microscopic structures of *H. crassipileatum* (drawn from Cui 17021). (A) Basidiospores, (B) Basidia and basidioles, (C) Hyphae from context, (D) Hyphae from spines, (E) Hyphae from the inner layer of stipe, and (F) Hyphae from the surface layer of stipe.

Hyphae in spines mostly with simple septa, occasionally with clamp connections; all the hyphae IKI–, CB–; tissues turned to olive green in KOH.

Context: Generative hyphae clay-buff to grayish brown, thick-walled, branched, regularly arranged, and 2 to 4 μm in diam.

Spines: Generative hyphae clay-buff, thin-walled, occasionally branched, regularly arranged, and 2 to 3.5 μm in diam. Cystidia and cystidioles are absent. Basidia clavate, bearing four sterigmata (1.5–3 μm long) and a basal simple septum, 18–38 × 5–7 μm; basidioles similar to basidia in shape, but slightly smaller.
Microscopic structures of *H. melanocarpum* (drawn from Cui 18556). (A) Basidiospores, (B) Basidia and basidioles, (C) Hyphae from context, (D) Hyphae from spines, (E) Hyphae from the inner layer of stipe, and (F) Hyphae from the surface layer of stipe.

Stipe: Generative hyphae clay-buff, slightly thick-walled, rarely branched, interwoven in the surface layer, regularly arranged in the inner layer, and 2 to 4 μm in diam.

Spores: Basidiospores subglobose, hyaline, thin-walled, echinulate, IKI−, CB−, 4.5–5.5(–6) × (3.5–)3.8–5.1 μm, \(L = 5 \mu m \), \(W = 4.6 \mu m \), \(Q = 1–1.25 \) (\(n = 90/3 \), without the ornamentation).

Additional specimens (paratypes) examined: CHINA. Sichuan Province, Jiuzhaigou County, Jiuzhaigou Nature Reserve, on the ground of the mixed forest, elev. 2,500 m, 20 September 2020, Bao-Kai Cui, Cui 18557 (BJFC 035418) and Cui 18559 (BJFC 035420).

Ecological habits: *Hydnum melanocarpum* was collected in Southwest China, under a plateau monsoon climate. It grows on
the ground of the mixed forest, in well-watered bryophytes, and its roots are often interspersed with pine needles.

Hydnellum radiatum B. K. Cui and C. G. Song, sp. nov. (Figures 3I,J, 4I,J, 9).

MycoBank no.: 846120

Diagnosis: Differs from other *Hydnellum* species by its radially aligned stripes on pileal surface, grayish brown context, and short stipe.

Type: CHINA. Yunnan Province, Lanping County, Tongdian, Jianganchang, on the ground of forest dominated by

FIGURE 9

Microscopic structures of *H. radiatum* (drawn from Cui 17130). (A) Basidiospores, (B) Basidia and basidioltes, (C) Hyphae from context, (D) Hyphae from spines, (E) Hyphae from the inner layer of stipe, and (F) Hyphae from the surface layer of stipe.
Pinus armandii and Rhododendron, elev. 2,480 m, 18 September 2018, Bao-Kai Cui, Cui 17130 (holotype, BJFC 030430).

Etymology: radiatum (Lat.) refers to the radially aligned stripes on the pileal surface.

Fruiting body: Basidiomata annual, eccentrically stipitate, single, and odorless when fresh. Pileus is subcircular, plicate, and up to 2.9 cm in diam and 0.5 cm thick at the center. Pileal surface is dark brown, fuscous to black when fresh and becoming fuscous to black upon drying, azonate, fibrillosse, and with strong radially aligned stripes; margin white, cream to light brown when fresh, becoming grayish brown upon drying, and up to 0.3 cm wide. Context is grayish brown upon drying, tough, and up to 3 mm thick. Spines are soft, fuscous to black when fresh, grayish brown upon drying, fragile, and up to 3 mm long. Stipe is cylindrical, glabrous, surface layer fuscous to black upon drying, inner layer grayish brown upon drying, and up to 4 cm long and 1 cm in diam.

Hyphal structure: Hyphal system monomitic; generative hyphae with simple septa; all the hyphal IKI–, CB–; tissues of stipe with strong radially aligned stripes; margin white, cream to light brown when fresh, becoming grayish brown upon drying, and up to 2.9 cm in diam and 0.5 cm thick at the center. Stipe is cylindrical, glabrous, surface layer fuscous to black upon drying, inner layer grayish brown upon drying, and up to 4 cm long and 1 cm in diam.

Context: Generative hyphae clay-buff, thick-walled, branched, regularly arranged, and 2 to 5.5 μ m in diam.

Spines: Generative hyphae clay-buff, thick-walled, occasionally branched, regularly arranged, and 2 to 3.5 μ m in diam. Cystidia and cystidioloi are absent. Basidia clavate, bearing four sterigmata (1.5–4 μ m long) and a basal simple septum, 14–21 × 3–4 μ m; basidioles similar to basidia in shape, but slightly smaller.

Stipe: Generative hyphae clay-buff, thick-walled, rarely branched, interwoven in both the surface layer and the inner layer, and 2 to 5 μ m in diam.

Spores: Basidiospores subglobose to ellipsoidal, hyaline, thin-walled, echinulate, IKI–, CB–; tissues of pileus and spines turned to olive green in KOH, tissues of stipe without reaction.

Hyphal system monomitic; generative hyphae with simple septa; all the hyphal IKI–, CB–; tissues of stipe with strong radially aligned stripes; margin white, cream to light brown when fresh, becoming grayish brown upon drying, and up to 0.3 cm wide. Context is grayish brown upon drying, tough, and up to 3 mm thick. Spines are soft, fuscous to black when fresh, grayish brown upon drying, fragile, and up to 3 mm long. Stipe is cylindrical, glabrous, surface layer fuscous to black upon drying, inner layer grayish brown upon drying, and up to 4 cm long and 1 cm in diam.

Ecological habitats: Hydnellum radiatum was collected in Southwest China, under a plateau monsoon climate. It grows on the ground of the forest dominated by trees of Pinus yunnanensis, in well-watered bryophytes, and its roots are often interspersed with pine needles.

Key to species of Hydnellum from China:

(1) Pileal surface scaled...2
(1) Pileal surface not scaled...3
(2) Pileal surface pale orange to dark ruby... H. grosselepidotum
(2) Pileal surface differently colored... H. lidongensis
(3) Pileus subinfundibuliform to infundibuliform.................4
(3) Pileus differently shaped...8
(4) Pileal surface glabrous............................. H. concentricum
(4) Pileal surface not glabrous............................... H. melanocarpum
(5) Pileal surface brownish orange to brownish red........... H. brunneorubrum
(5) Pileal surface differently colored.................................6
(6) Pileal surface light brown to dark ruby...................... H. atrorubrum
(6) Pileal surface differently colored.................................7
(7) Pileus and spines grayish red.............................. H. yunnanense
(7) Pileus and spines differently colored.......................... H. bomiense
(8) Context tissue becoming blue-green in KOH.................... H. peckii
(8) Context tissue differently colored in KOH....................9
(9) Spines dark violet.. H. atrospinosum
(9) Spines differently colored...10
(10) Clamp connections present..11
(10) Clamp connections absent...13
(11) Pileal surface pastel yellow to dark blonde.................... H. caeruleum
(11) Pileal surface differently colored.................................12
(12) Clamp connections present in spines............................11
(12) Clamp connections absent in spines.............................12
(13) Pileal surface zonate...14
(13) Pileal surface azonate...16
(14) Pileal surface pastel red to dark magenta.................... H. squamulosum
(14) Pileal surface differently colored.................................15
(15) Pileal surface glabrous to scupose when fresh........ H. rubidofuscum
(15) Pileal surface scabrous to fibrous when fresh........ H. sulcatum
(16) Pileal surface with radially aligned stripes.................... H. fibulatum
(16) Pileal surface without radially aligned stripes..............17
(17) Spines fuscous to black... H. radiatum
(17) Spines brown to grayish brown.............................. H. chocoatrum
(18) Spines white to yellowish-white.......................... H. coatum
(18) Spines differently colored.................................17
(19) Context grayish orange.. H. granulosum
(19) Context differently colored.................................20
(20) Pileal surface reddish brown to grayish brown........... H. crassipileatum
(20) Pileal surface differently colored.............................21
Stipe light brown………………………….. H. inflatum
Stipe orange white, pale orange, sunburn to cognac….. H. inflatum
H. inflatum [Harrison, 1964].

In H. cumulatum ×umber pileus, wider basidia (20 µm) can be distinguished by its vinaceous buff, hessian brown to burnt grayish brown pileal surface; Hydnellum spongiosipes differs by its thick pileus with the reddish brown to grayish brown pileal surface; Hydnellum spongiosipes can be distinguished by its orange white to pale orange pileus and longer basidiospores [6–7 × 5–6 µm in H. spongiosipes vs. (4.5–)5–6 × 4–5(–5.8) µm in H. chocolatum, Baird et al., 2013].

Our phylogenetic analyses showed that Hydnellum concentricum was sister to H. squamulosum Y. H. Mu and H. S. Yuan (Figures 1, 2). The two species were both described in Southwest China, and share the annual, solitary to gregarious basidiomata, pastel red pileus, and reddish-brown spines (Mu et al., 2021). However, H. squamulosum differs from H. concentricum by its floccose to woolly, squamulose pileal surface and smaller basidiospores [4.1–5 × 3.3–4.1 µm in H. squamulosum vs. (3.5–)4–5(–5.2) × (3.2–)3.5–5 µm in H. concentricum, Mu et al., 2021].

Hydnellum melanocarpum is closely related to Hydnellum ferrugineum (Fr.) P. Karst. In our phylogenetic analyses (Figures 1, 2). However, H. ferrugineum differs from H. melanocarpum by its pale orange to burnt umber pileus, and larger basidiospores [5–6(–7) × 5–6 µm in H. ferrugineum vs. 4.5–5.5(–6) × (3.5–)3.8–5.1 µm H. melanocarpum, Baird et al., 2013].

Hydnellum radiatum resembles H. cumulatum in having similar colored spines, which have close phylogenetic relationship (Figures 1, 2). However, H. cumulatum can be distinguished by its vinaceous buff, hessian brown to burnt umber pileus, wider basidia (20 × 5–7 µm in H. cumulatum vs. 14–21 × 3–4 µm), and larger basidiospores [4–5.5 × 4–5 µm in H. cumulatum vs. (3.5–)4–5 × 3–4.5(–5) µm in H. radiatum, Harrison, 1964].

Discussion

The genus *Hydnellum* is easy to recognize in Bankeraceae by its coryx to woody pileus with crowded spines, but identification among the species in *Hydnellum* is difficult due to the quite similar morphological features. The main morphological characters of each species in *Hydnellum* from China were summarized in Table 2. The morphological differences between five new species were emphasized here briefly.

Hydnellum chocolatum was clustered with *H. crassipileatum* and *H. spongiosipes* (Peck) Pouzar in our phylogenetic analyses (Figures 1, 2). Morphologically, *H. chocolatum* resembles *H. crassipileatum* and *H. spongiosipes* in having single to concrescent basidiomata. However, *H. chocolatum* can be distinguished by its tomentose and azonate pileal margin, and longer basidia (32–45 × 5–7 µm); *H. crassipileatum* differs by its thick pileus with the reddish brown to grayish brown pileal surface; *Hydnellum spongiosipes* can be distinguished by its orange white to pale orange pileus and longer basidiospores [6–7 × 5–6 µm in *H. spongiosipes* vs. (4.5–)5–6 × 4–5(–5.8) µm in *H. chocolatum*, Baird et al., 2013].

In our phylogenetic analyses, Mu et al., 2021. However, *H. ferrugineum* can be distinguished by its pale orange to burnt umber pileus, and longer basidiospores [32–45 × 5–7 µm in *H. radiatum*]. However, the two species were both described in the genus *Hydnellum* in 2013. However, *H. mellifolium* differs by its thick pileus with the reddish brown to grayish brown pileal surface; *Hydnellum spongiosipes* can be distinguished by its orange white to pale orange pileus and longer basidiospores [6–7 × 5–6 µm in *H. spongiosipes* vs. (4.5–)5–6 × 4–5(–5.8) µm in *H. chocolatum*, Baird et al., 2013].

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories

2. https://www.ncbi.nlm.nih.gov/protein
and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, ON603638-ON603665 and https://www.ncbi.nlm.nih.gov/genbank/, ON605658-ON605669.

Author contributions

B-KC designed the research. B-KC, Y-FS, SL, T-MX, D-MW, NG, and C-GS prepared the samples. C-GS, SL, and T-MX conducted the molecular experiments and analyzed the data. C-GS, Y-FS, D-MW, NG, and B-KC drafted the manuscript. All authors read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (Nos. 31870008 and U2003211) and Beijing Forestry University Outstanding Young Talent Cultivation Project (No. 2019Q03016).

References

Ainsworth, A., Parfitt, B., Rogers, H., and Boddy, L. (2010). Cryptic taxa within European species of Hydnellum and Phellodon revealed by combined molecular and morphological analysis. Fungal Ecol. 3, 65–80. doi: 10.1016/j.fuene.2009.07.001
Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agr. Ecosyst. Environ. 35, 209–244. doi: 10.1016/0167-8809(91)90052-Y
Arnolds, E. (2003). De stekelzwammen en pruikzwammen van nederland en belgiã. Coolia 46, 1–96.
Arnolds, E. (2010). The fate of hydroid fungi in the Netherlands and Northwestern Europe. Fungal Ecol. 3, 88–91. doi: 10.1016/j.fuene.2009.05.005
Baird, R. E., and Khan, S. R. (1986). The stipitate hydnums (Thelephoraceae) of Florida. Brittonia 38, 171–184. doi: 10.2307/2807273
Baird, R. E., Wallace, L. E., Baker, G., and Scruggs, M. (2013). Stipitate hydroid fungi of the temperate southeastern United States. Fungal Divers. 62, 41–114. doi: 10.1007/s13225-013-0261-6
Banker, H. J. (1906). A contribution to a revision of the North American Hydnaceae. Mem. Torrey Bot. Club 12, 99–194. doi: 10.5962/bhl.title.97394
Cao, T., Hu, Y. P., Yu, J. R., Wei, T. Z., and Yuan, H. S. (2021). A phylogenetic overview of the Hydnaceae (Cantharellales, Basidiomycota) with new taxa from China. Stud. Mycol. 99, 100–121. doi: 10.1016/j.simyco.2021.100121
Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., et al. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 97, 137–392. doi: 10.1007/s11232-019-00427-4
Darriba, D., Taboada, G. L., Díaz, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9,772. doi: 10.1038/nmeth.2109
Deng, L. S., Kang, R., Zeng, N. K., Yu, W. J., Chang, Z., Xu, F., et al. (2021). Two new Inosperma (Inocybaceae) species with unexpected muscarine contents from tropical China. MycoKeys 85, 87–108. doi: 10.3897/mycokeys.85.71957
Deng, L. S., Yu, W. J., Zeng, N. K., Zhang, Y. Z., Wu, X. P., Li, H. J., et al. (2022). A new muscarine-containing Inosperma (Inocybaceae, Agaricales) species discovered from one poisoning incident occurring in tropical China. Front. Microbiol. 13:923435. doi: 10.3389/fmicb.2022.923435
Donk, M. A. (1961). Four new families of Hymenomycetes. Persoonia 1, 405–407.
Erland, S., and Taylor, A. F. S. (1999). “Resupinate ectomycorrhizal fungal genera,” in Ectomycorrhizal Fungus Key Genera and Species, ed J. W. G. Cairney and S. M. Chambers (Berlin: Springer).
Farris, J. S., Kallersjo, M., Kluge, A. G., and Bult, C. (1994). Testing significance of incongruence. Cladistics 10,315–319. doi: 10.1111/j.1095-0916.1994.tb00181.x
Felsenstein, J. (1985). Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39, 783–791. doi: 10.1111/j.1558-5646.1995.tb00420.x
Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. doi: 10.1080/10635150390255520
Hall, T. A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Han, M. L., Chen, Y. Y., Shen, L. L., Song, J., Vlasák, J., Dai, Y. C., et al. (2016). Taxonomy and phylogeny of the brown-rot fungi: fomitopsis and its related genera. Fungal Divers. 80,343–373. doi: 10.1007/s11232-016-0364-y
Harrison, K. A. (1964). New or little known north American stipitate hydnums. Can. J. Bot. 42,1205–1233. doi: 10.1139/b64-964–116
Holec, J., and Kulcera, T. (2018). Hydroid fungi of the family Bankeraceae-their assemblages and vegetation ecology in Central Europe, Czech Republic. Fungal Ecol. 32,40–48. doi: 10.1016/j.fuene.2017.11.007
Hrouda, P. (1999). Hydnaceous fungi of the Czech Republic and Slovakia. Czech Mycol. 51,99–155. doi: 10.33855/cmy.51202
Ji, X., Zhou, J. L., Song, C. G., Xu, T. M., Wu, D. M., and Cui, B. K. (2022). Taxonomy, phylogeny and divergence times of Polyporus (Basidiomycota) and related genera. Mycosphere 13,1–52. doi: 10.5943/mycosphere/13/1/1
Jullien, W. (1981). Higher taxa of basidiomycetes. Bibliotheca Mycologica 85,1–485.
Karsten, P. A. (1879). Symbolea ad mycobologia lennica. Meddelanden Soc. Fauna Flora Fennica 5,16–45.
Kato, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30,772–780. doi: 10.1093/molbev/msu010

Acknowledgments

We express our gratitude to Yu-Cheng Dai (Beijing Forestry University, China) for his help during field collections.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Larsson, K. H., Svantesson, S., Miscevic, D., Kljlajg, U., and Larsson, E. (2019). Reassessment of the generic limits for Hydnellum and Sarcodon (Thelephorales, Basidiomycota). MycoKeys 54, 31–47. doi: 10.3897/mycokeys.54.35386

Lee, D., Boo, K. H., Lee, J. M., Viet, C. D., Quyen, N., Unno, T., et al. (2012). Anti-viral activity of Hydnellum concrescens, a medicinal mushroom. Afr. J. Biotechnol. 11, 15241–15245.

Liu, S., Han, M. L., Xu, T. M., Wang, Y., Wu, D. M., and Cui, B. K. (2021a). Taxonomy and phylogeny of the Fomitopsis pinicola complex with descriptions of six new species from east Asia. Front. Microbiol. 12:644979. doi: 10.3389/fmicb.2021.644979

Liu, S., Shen, L. L., Wang, Y., Xu, T. M., Gates, G., and Cui, B. K. (2021b). Species diversity and molecular phylogeny of Cyanosporus (Polyporales, Basidiomycota). Front. Microbiol. 12:631166. doi: 10.3389/fmicb.2021.631166

Liu, S., Song, C. G., Xu, T. M., Ji, X., Wu, D. M., and Cui, B. K. (2022a). Species diversity, molecular phylogeny and ecological habits of Fomitopsis (Polyporales, Basidiomycota). Front. Microbiol. 13:859411. doi: 10.3389/fmicb.2022.859411

Liu, S., Chen, Y. Y., Sun, Y. F., He, X. L., Song, C. G., Si, J., et al. (2022b). Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Divers. doi: 10.1007/s13225-022-00511-2 [Epub ahead of print].

Loizides, M., Alvarado, P., Assyov, B., Arnolds, E., and Moreau, P. A. (2016). Hydnellum dichanthaefilus sp. nov. Basidiomycota, Thelephorales, a new tooth-fungus from southern Europe with notes on H. concrescens and H. scrobiculatum. Phytotaxa 280, 23–35. doi: 10.11646/phytotaxa.2.80.1.2

Maas Geesteranus, R. A. (1962). Hyphal structures in the hydnums. Persoonia 2:476.

Maas Geesteranus, R. A. (1971). Hydnaceous fungi of the eastern old world. Verh. Kon. Ned. Akad. Wetensch. Afd. Natuurw. 60:176.

Maas Geesteranus, R. A. (1975). The terrestrial hydnums of Europe. Verh. Kon. Ned. Akad. Wetensch. Afd. Natuurw. 65:127.

Maddison, W. P., and Maddison, D. R. (2017). Mesquite: a Modular System for Evolutionary Analysis. Version 3.2. Available online at: http://mesquiteproject.org (accessed August 15, 2022).

Mu, Y. H., Hu, Y. P., Wei, Y. L., and Yuan, H. S. (2020). Hydnaceous fungi of China 8. Morphological and molecular identification of three new species of Sarcodon and a new record from southwest China. MycoKeys 66, 83–103. doi: 10.3897/mycokeys.66.49910

Mu, Y. H., Wu, F., and Yuan, H. S. (2019). Hydnaceous fungi of China 7. morphological and molecular characterization of Phellodon subconfluentus sp. nov. from temperate, deciduous forests. Phytotaxa 414, 280–288. doi: 10.11646/phytotaxa.414.6.2

Mu, Y. H., Yu, J. R., Cao, T., Wang, X. H., and Yuan, H. S. (2021). Multi-Gene phylogeny and taxonomy of Hydnellum (Bankeraceae, Basidiomycota) from China. J. Fungi 7:818. doi: 10.3390/jof7110818

Nylander, J. A. A. (2004). MrModeltest v2. Program. Distributed by the Author, Evolutionary Biology Center. Uppsala: Uppsala University.

Parfitt, D., Ainsworth, A. M., Simpson, D., Rogers, H. J., and Boddy, L. (2007). Molecular and morphological discrimination of stipitate hydnoids in the genera Hydnellum and Phellodon. Mycol. Res. 111, 761–777. doi: 10.1016/j.mycres.2007.05.003

Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818. doi: 10.1093/bioinformatics/14.9.817

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi: 10.1093/bioinformatics/btg180

Shen, L. L., Wang, M., Zhou, J. L., Xing, J. H., Cui, B. K., and Dai, Y. C. (2019). Taxonomy and phylogeny of Postia. multi-gene phylogeny and taxonomy of the brown-rot fungi: postia (Polyporales, Basidiomycota) and related genera. Persoonia 42, 101–126. doi: 10.3767/persoonia.2019.42.05

Song, C. G., Chen, Y. Y., Liu, S., Xu, T. M., He, X. L., Wang, D., et al. (2022). A phylogenetic and taxonomic study on Phellodon (Bankeraceae, Thelephorales) from China. J. Fungi 8:429. doi: 10.3390/jof8050429

Song, C. G., Ji, X., Liu, S., He, X. L., and Cui, B. K. (2021). Taxonomy and molecular phylogeny of Phellodon (Thelephorales) with descriptions of four new species from Southwest China. J. Fungi 7:818. doi: 10.3390/jof7110818

Sun, Y. F., Costa-Bezares, D. H., Xing, J. H., Zhou, J. L., Zhang, R., Gibertoni, T. B., et al. (2020). Multi-gene phylogeny and taxonomy of Amauroderma s. lat. (Ganodermataceae). Persoonia 44, 206–239. doi: 10.3767/persoonia.2020.44.08

Sun, Y. F., Xing, J. H., He, X. L., Wu, D. M., Song, C. G., Liu, S., et al. (2022). Species diversity, systematic revision and molecular phylogeny of Ganodermataceae (Polyporales, Basidiomycota) with an emphasis on Chinese collections. Stud. Mycol. 101, 287–415. doi: 10.3114/tim2022.101.05

Swoford, D. L. (2002). PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods); Version 4.0b10. Sunderland, MA: Sinauer Associates.

Wang, Y., Tuo, Y. L., Wu, D. M., Gao, N., Zhang, Z. H., Rao, G., et al. (2022). Exploring the relationships between four new species of boletoid fungi from Northern China and their related species. J. Fungi 8:218. doi: 10.3390/jof8080218

White, T., Bruns, T., Lee, S., Taylor, F., White, T., Lee, S. H., et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 18, 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Zhang, M., Wang, C. Q., Buyck, B., Deng, W. Q., and Li, T. H. (2021). Multigene phylogeny and morphology reveal unexpectedly high number of new species of Cantharellus subgenus Parvocantharellus (Hydnaceae, Cantharellales) in China. J. Fungi 7:919. doi: 10.3390/jof7110919