Suprafascial Free Flaps: Classification and Comprehensive Review of the Literature

Sebastian Rios, MD¹, María Isabel Falguera-Uceda, MD¹, Alicia Dean, MD¹ and Susana Heredero, MD, PhD¹

Abstract

Study Design: Suprafascial free flaps have become common place in reconstructive surgery units. Nomenclature related to these flaps has not been uniform throughout the scientific literature, especially in regard to planes of dissection. This study is designed as a comprehensive review of the literature.

Objectives: Our study highlights which flaps are used most frequently, their main indications, their survival rate, and how they have evolved in the last few decades as innovations have been introduced.

Methods: A review of the literature was performed using keywords and Medical Subject Headings search terms. PubMed, Embase, and Cochrane Library were searched using the appropriate search terms. Data collected from each study included flap type, dissection plane, preoperative planning, area of reconstruction, as well as complications, donor-site morbidity and survival rate.

Results: Seven hundred and fifty-five studies were found based on the search criteria. After full-text screening for inclusion and exclusion criteria 34 studies were included. A total of 1332 patients were comprised in these studies. The most common types of flaps used were superficial circumflex iliac perforator flap (SCIP), anterolateral thigh flap (ALT), and radial forearm flap. The most common areas of reconstruction were head & neck and limbs. There was no significant difference in survival rates between flaps that were raised in different planes of dissection.

Conclusions: Based on the author’s review of the literature, suprafascial flaps are reliable, they have low donor site morbidity, and there is a wide selection available for harvest. The use of new technologies for preoperative planning, such as CT-Angiography and UHF ultrasound, have contributed to have more predictable results. We propose a standardized classification for these flaps, in order to create a uniform nomenclature for future reference.

Keywords
free flaps, suprafascial, thin
the muscle or muscle septum and into the skin and subcutaneous tissue superficially, leaving behind the muscle and sometimes deep muscle fascia. Using supermicrosurgical techniques that allow anastomosis of vessels less than 0.8 mm in diameter, these flaps could be raised without the need to dissect a long pedicle, and thus avoid trauma to the muscle.

Recently, studies carried out by Hong et al.⁵,⁶ show that a flap can be raised safely in the plane of the superficial adipose fascia that separates the superficial and deep fat lobules of the subcutaneous adipose tissue. We refer to free flaps raised in this plane as thin flaps.

As we can see, the evolution shows that soft tissue free flaps have become thinner as they are raised in a more superficial plane of dissection. This has been possible due to new technologies such a Computed Tomographic Angiography (CTA) and high-frequency ultrasound⁷ as well as a deeper knowledge in vascular anatomy such as the perforasome theory described by Saint-Cyr et al.⁸

Narushima et al.⁹ proposed a classification of thin flaps based on the anatomical plane on which they are raised: thin flaps dissected in the plane of the superficial adipose fascia, super thin flaps going above the superficial fascia, full thickness skin flap or pure skin perforator (PSP) flaps that are only as thick as the dermis and its superficial plexus of vessels, and split thickness skin flaps.

The objective of this study is to do a review of the flaps raised above the deep muscle fascia and their different variations. Our goal is to identify which flaps are used most frequently, their main indications, their survival rate, and how they have evolved in the last few decades as innovations have been introduced. We also propose a standardized classification for these flaps, to create a uniform nomenclature for future reference.

Materials and Methods

Between January 2019 and September 2020, a comprehensive search and review of the PubMed, Embase and Cochrane databases was carried out. This study has been conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.¹⁰ Two independent reviewers (S.R. and S.H.) screened each study for relevance, conflicting studies were reviewed by a third reviewer (M.F). The following search terms were used: “suprafascial free flap,” “thin perforator flap,” “super thin perforator flap,” “ultra thin perforator flap,” and “pure skin perforator flap.” A complete list of keywords and medical subject headings is reported (Table 1).

The inclusion criteria were: 5 or more clinical cases, only free flaps, dissection plane above the deep muscle fascia, and accessibility through the aforementioned databases. The exclusion criteria were: secondary thinning of the flaps, cadaveric or radiological studies. Only English language articles were reviewed. Studies from the same institution with verified, identical, duplicated data were excluded.

After a thorough review of the selected articles, we identified the following variables: flap type, plane of dissection, preoperative imaging and planning, area of reconstruction, number of patients, complications, donor-site morbidity, flap survival, final outcome and conclusions. Information from the included studies was recorded using Microsoft Excel 2019.

In the variable “plane of dissection” we will use the following classification: suprafascial flap refers to the plane above the deep muscle fascia, thin flaps refers to the plane of the superficial adipose fascia, super thin for flaps dissected above the superficial adipose fascia, and pure skin perforator flaps (PSP) that are only as thick as the dermis and the subdermal vessel plexus. Institutional ethics

Table 1. Keywords, MeSH Terms and Search Syntax Used for Screening.

Database	Search Terms
PubMed	(“suprafascial”[All Fields] OR “suprafascially”[All Fields]) AND (“free tissue flaps”[MeSH Terms] OR (“free”[All Fields] AND “tissue”[All Fields] AND “flaps”[All Fields]) OR “free tissue flaps”[All Fields] OR (“free”[All Fields] AND “flap”[All Fields]) OR “free flap”[All Fields]), “thin”[All Fields] AND (“perforator flap”[MeSH Terms] OR (“perforator”[All Fields] AND “flap”[All Fields]) OR (“perforator”[All Fields] AND “flap”[All Fields]) OR (“perforator flap”[MeSH Terms] OR (“perforator”[All Fields] AND “flap”[All Fields]). (“super”[All Fields] OR “supers”[All Fields]) AND “thin”[All Fields] AND (“perforator flap”[MeSH Terms] OR (“perforator”[All Fields] AND “flap”[All Fields]) OR “pure”[All Fields] AND (“skin”[MeSH Terms] OR “skin”[All Fields]) AND (“perforator flap”[MeSH Terms] OR (“perforator”[All Fields] AND “flap”[All Fields]) OR “flap”[MeSH Terms] OR “perforator flap”[All Fields])
Embase	“suprafascial free flap” OR (suprafascial AND free (“flap”[exp OR flap]). “thin perforator flap” OR (thin AND perforator AND (“flap”[exp OR flap]). “super thin perforator flap” OR (super AND thin AND perforator AND (“flap”[exp OR flap]). “ultra”[All Fields] AND (“perforator flap”[MeSH Terms] OR (“perforator”[All Fields] AND “flap”[MeSH Terms]) OR “pure”[All Fields] AND (“skin”[MeSH Terms] OR “skin”[All Fields]) AND (“perforator flap”[MeSH Terms] OR (“perforator”[All Fields] AND “flap”[All Fields]) OR (“flap”[exp OR flap]).
Cochrane Library	MeSH descriptor: (suprafascial free flap): ti, ab, kw. explode all trees213. MeSH descriptor: (thin perforator flap): ti, ab, kw. explode all trees14. MeSH descriptor: (super thin perforator flap): ti, ab, kw. explode all trees622. MeSH descriptor: (ultra thin perforator flap): ti, ab, kw. explode all trees40. MeSH descriptor: (pure skin perforator flap): ti, ab, kw. explode all trees112.
board approval was not required for this study, as it was a retrospective review of published literature.

Results

The initial literature search provided a total of 755 articles. We removed 203 duplicates from the selection, leaving 552 articles. After a first round of title and abstract screening, we removed 313 articles which were irrelevant to our study, leaving 239 articles. In the third round of screening, we completed full-text review and removed 205 articles based on our inclusion and exclusion criteria, leaving 34 articles for our final review (Figure 1).

We found a total of 34 articles that describe suprafascial free flaps and met all of our criteria. These studies are summarized in Table 2. There were 1332 patients included in these studies. The articles included were published between 1996 and 2020. Of these, 79% were published in the last 10 years. There were 14 articles that described flaps raised above the deep muscle fascia (suprafascial flaps), with 9 of them comparing suprafascial vs subfascial dissection planes. In 16 articles, the authors reported series of flaps raised on the superficial adipose fascia (thin flaps), with 1 of them comparing thin vs suprafascial dissection planes. There was 1 article that described ALT flaps raised above the superficial fascia (super thin), and compared them to the suprafascial dissection plane. In 3 articles Narushima presented clinical series of flaps dissected in a subdermal plane while preserving the subdermal vessel plexus (pure skin perforator flaps).

With regard to nomenclature, we found that the authors used different terms to describe the plane of dissection and the types of flap. If we consider Narushima’s classification of thin flaps, 94% of authors used this terminology. Those...
Table 2. Main Characteristics of the Articles Included for Review.

Year	Authors	PMID	Flap type	Plane of dissection	Planning	Area reconstruction	# of patients	Complications	Morbidity	Survival	Outcome/Conclusions
2020	Wang	32591211	SIEA	THIN	CTA, Duplex	Head & Neck	7	Vein thrombosis	Low donor site morbidity, 12% dose. Visible scar	100%	SIEA thin flap is a good option for soft tissue reconstruction of H&N
2020	Visconti	32718115	SCIP	THIN	HHD, Duplex	Limbs and H&N	7	N/A	No available data	100%	UHF-US is a very useful tool for planning of thin and superthin flaps
2019	Ullas Bali	31663935	ALT	SUPRAFASCIAL	CTA	Limbs and H&N	19	N/A	No available data	100%	CTA predicts the suprafascial course of perforators, increases safety
2019	D'Arpa	31307106	ALT	THIN	CTA	Axilla	12	Wound dehiscence	Lower because 1 flap for bilateral reconstruction	100%	Suprafascial dissection avoids 2’ and 3’ thinning
2019	Heredero	31233631	PAP	THIN	CTA, HHD	Head & Neck	10	Vasospasm	Low donor site morbidity, 12% dose	90%	PAP flap: Suprafascial dissection and pliable skin
2018	Narushima	30148784	SCIP	PSP	IGA, HHD	Ear and limbs	29	Vein thrombosis	No available data	N/A	SCIP flaps have a reliable subdermal plexus and we can obtain PSP flaps from it
2018	Diamond	2913000	ALT	SUPER-THIN	None	Limbs and H&N	23 SPF, 12 ST	No difference	No difference between subfascial and suprafascial	98%	Subfascial dissection took longer than Suprafascial
2017	Fisher	29132783	ALT	SUPRAFASCIAL	None	Limbs and H&N	20 SPF, 20 SPF	Similar for both	Similar for both	N/A	Sub- and suprafascial techniques are equivalent
2017	Lamans	28141212	ALT	SUPRAFASCIAL	None	Head & Neck	14	N/A	Low donor site morbidity, 12% dose	93%	SCALP: Suprafascial increases flap pliability and reduces thickness
2017	Shanina	28016548	Radial	SUPRAFASCIAL	None	Head & Neck	25 SPF, 22 SPF	Similar for both	Suprafascial doesn’t increase harvest time	100%	Suprafascial dissection decreases risk of tendon exposure
2017	Maruccia	2890694	ALT	SUPRAFASCIAL	CTA, HHD	Limbs	34 SPF, 26 SPF	Similar for both	Lower morbidity in suprafascial	96%	Less morbidity and less 2’ debulking
2017	Seth	28363228	ALT	THIN	HHD	Limbs	14 SPF, 11 Thn	Similar for both	Similar for both	100%	Extremities: Suprafascial improves flap contour and pliability
2016	Narushima	27085610	SCIP	PSP	IGA, HHD	Duplex Hands	6	Vein thrombosis	No available data	100%	Hands: PSP flaps avoid the need for 2’ debulking, flap thickness of 2 mm
2016	Schwarzter	27450896	Radial	SUPRAFASCIAL	None	Head & Neck	25 SPF, 25 SPF	Similar for both	Similar for both	N/A	No difference in success rate or morbidity
2016	Chen	27152581	ALT	SUPRAFASCIAL	HHD	Limbs	31 SPF, 30 SPF	Tendon exposure in sub	No available data	96%	Suprafascial: Fewer abnormal sensations and higher satisfaction
2015	Kim	2632492	TDAP	THIN	CTA, HHD	Limbs	13	Partial flap loss	Less donor site morbidity	85%	Provides good flap contour, large surface and volume when needed
2015	Kim	26220431	SCIP	THIN	HHD	Limbs	52	N/A	Low donor site morbidity, 12% dose	92%	Better flap contour and volume, no need for 2’ debulking
2015	Goh	25357163	SCIP	THIN	HHD	Limbs and H&N	210	Mostly in recipient site	Low donor site morbidity, 12% dose	95%	SCIP: Reliable vascularity, thin skin flap. New “workhorse flap”
2014	Choi	25329846	SCIP	THIN	CTA, HHD	Head & Neck	6	N/A	No available data	100%	SCIP flap provides good contour and aesthetics for facial reconstruction
2014	Hong	24458881	GAP	THIN	CTA, HHD	Limbs	27	Partial flap loss	Low donor site morbidity, 12% dose	100%	Good contour and thin flap, but short pedicle. Requires supermicro skills
2014	Kim	24211117	LD	THIN	CTA	Hands	7	Partial flap loss	Scar contracture	100%	LD flap is good for large, multi-digit and circumferential hand defects
2013	Narushima	23714796	SCIP	PSP	HHD, Duplex	Ear	9	Partial flap loss	Lower incidence of ear infection than skin grafts	88%	PSP flap allows reconstruction of EAC with minimal bulk
2013	Hong	23187712	SCIP	THIN	CTA, HHD	Lower limb	71	N/A	Lower incidence of lymphoedema	95%	SCIP: Avoids debulking, perforator-to-perforator anastomosis
2013	Hong	2308140	ALT	THIN	CTA, HHD	Limbs and H&N	54	N/A	Some donor sites required skin grafts for closure	98%	ALT can be raised safely in the superficial fascial plane
2012	Riva	2387444	AMT	SUPRAFASCIAL	HHD	Head & Neck	41	N/A	Good subjective perception and functional tests	95%	AMT flap is a good back up flap if the ALT fails and has low morbidity
2011	Avery	22079565	Radial	SUPRAFASCIAL	None	Head & Neck	30 SPF, 30 SPF	No available data	N/A	Similar sensory recovery, except for palmar light touch	

(continued)
Year	Authors	PMID	Flap type	Plane of dissection	Planning	Area reconstruction	# of patients	Complications	Morbidity	Survival	Outcome/Conclusions
27	2011 Sagalongos	21701330	Fibula	SUPRAFASCIAL	HHD	Head & Neck	18 SPF, 9 SBF	N/A	Low donor site morbidity, no alteration to ankle	N/A	Less morbidity and better contour outcome
28	2007 Daberger	17825774	Scapular	THIN	HHD	Limbs	5	N/A	Low donor site morbidity, 12 closure	100%	Scapular flap: High quality, hairless skin paddle, with chimeric options
29	2007 Avery	17537558	Radial	SUPRAFASCIAL	None	Head & Neck	121	Skin graft, Tendon exposure	Less morbidity with suprafascial dissection	97%	Radial flap is reliable, and suprafascial dissection has less morbidity
30	2006 Avery	16061309	Radial	SUPRAFASCIAL	None	Head & Neck	20 SBF, 20 SPF	N/A	No available data	N/A	No difference in sensory recovery
31	2006 Kimura	16525296	Groin/	THIN	HHD	Limbs	11	28%	Minimum donor site morbidity	100%	Thin groin flap (future SCIP) provides thin, pliable skin with a long pedicle
32	2001 Kim	1124052	LD	THIN	HHD	Limbs	12	N/A	Low donor site morbidity, 12 closure	100%	Thin LD flap has constant thickness, vascular supply, and low morbidity
33	1999 Lutz	9915173	Radial	SUPRAFASCIAL	None	Head & Neck	95	N/A	Complete skin graft is better	96%	Less morbidity and higher take of skin grafts, avoids 2 complications
34	1996 Chang	9016457	Radial	SUPRAFASCIAL	None	Head & Neck	49	N/A	Less tendon exposure, better sensory recovery	N/A	Less donor site morbidity in suprafascial dissection

Abbreviations: SIEA, superficial inferior epigastric artery perforator flap; ALT, anterolateral thigh flap; AMT, anteromedial thigh flap; PAP, profunda artery perforator flap; DIEP, deep inferior epigastric perforators flap; SCIP, superficial circumflex iliac perforator flap; TDAP, thoracodorsal artery perforator flap; GAP, gluteal artery perforator flap; LD, latissimus dorsi flap; UHF-US, ultra-high frequency ultrasound; HHD, hand-held acoustic Doppler; Duplex, color Doppler ultrasound; CTA, CT angiography; MRA, magnetic resonance angiography; IGA, indocyanine green angiography; SPF, suprafascial; SBF, subfascial; ST, super thin; N/A, no available data. Radial refers to the radial forearm flap. Scapular refers to the thin circumflex scapular artery perforator flap. Fibula refers to the free fibula flap.

[*]primary closure.
that did not use this nomenclature referred to thin flaps as super thin flaps.11,12

There were 12 different types of flaps used in the articles reviewed. The frequency of the flaps that were used was as follows: superficial circumflex iliac perforator flap (SCIP) 8 articles (398 total patients), anterolateral thigh flap (ALT) 7 articles (309 total patients), radial forearm flap 7 articles (462 total patients), latissimus dorsi (LD) 2 articles (19 patients in total). The following had 1 article per flap type: scapular, fibula, superficial inferior epigastric perforator flap (SIEA), thoracodorsal artery perforator flap (TDAP), deep inferior epigastric perforator flap (DIEP), profunda artery femoris flap (PAP), gluteal artery perforator flap (GAP), and anteromedial thigh flap (AMT).

A summary of indications and outcomes grouped by the different flap types is provided in Table 3. These indications and outcomes are solely based on the articles included in this review, and do not include the full range of indications for the flaps listed.

The most common area of reconstruction was head and neck (21 articles, 748 patients), followed by limbs (14 articles, 610 patients). Other areas of reconstruction included hands (2 articles, 13 patients) and axilla (1 article, 12 patients). The number of patients included ranged from 5 to 210 patients, with an average of 43 of patients per study.

Preoperative imaging planning to find dominant perforators was done in 67\% of articles. The most common method of imaging was the hand-held acoustic Doppler (9 articles, 444 patients), followed by CT-Angiography (3 articles, 38 patients) or a combination of both (7 articles, 248 patients). Other forms of preoperative planning included ultra-high frequency ultrasound (UHF-US) (4 articles, 29 patients) and indocyanine green angiography (1 article, 29 patients). No preoperative planning was done with radial forearm flaps.

The complication rate was generally underreported, with many articles not making any mention of them (only 50\% of studies made direct reports of complications). In general, they included partial flap loss (6\%), wound dehiscence (8\%), vein thrombosis (9\%), seroma (2\%) and tendon exposure in radial flaps (up to 20\% in subfascial dissection). However, most authors did mention that the rate of complications was similar for both suprafascial and subfascial flaps (mentioned in 5 out of the 9 articles that made the comparison).

The donor site morbidity of the flaps was low in all cases, and allowed for primary closure in 85\% of cases (except in radial flap). Most articles that reported donor site morbidity showed that it was similar in subfascial and suprafascial dissections (12 out of 34 articles). Suprafascial dissection showed less morbidity over the subfascial dissection in ALT flaps.13 In radial flaps, suprafascial dissection has shown to decrease tendon exposure and improved healing of skin grafts.14-17 Fibula flaps dissected in the suprafascial plane have also shown lower donor site morbidity and better wound contour.18 Thin flaps (dissected in the superficial adipose fascia) have also shown to improve donor site aesthetics due to a more uniform wound contour and higher primary closure rate.5

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Flap type & Indications & Outcomes \\
\hline
ALT & Head and Neck & 97.27\% survival. Good option for soft tissue reconstruction, long pedicle (10-12 cm), customizable thickness. \\
& Limbs (especially lower limb) & \\
\hline
AMT & Head and Neck, Limbs & 95\% survival. AMT flap is a good back up flap if the ALT fails. \\
\hline
DIEP & Axilla, Breasts & 100\% survival. Provides a large-surface flap which can be split to reconstruct multiple sites. \\
\hline
Fibula & Head and Neck & Suprafascial dissection provides lower donor site morbidity and better wound contour. \\
& Mandible reconstruction & \\
\hline
GAP & Limbs (especially lower limb) & 100\% survival. Good contour and thin flap, but short pedicle. Requires supermicrosurgical skills. \\
\hline
LD & Limbs (especially upper limb and hands) & 100\% survival. LD is good for large circumferential defects; it has a constant thickness and vascular supply. \\
\hline
PAP & Head and Neck (especially tongue) & 90\% survival. Thin and pliable flap, with customizable thickness. \\
\hline
Radial & Head and Neck & Lower donor site morbidity with suprafascial dissection. 97.67\% survival. Thin and pliable flap with long pedicle. \\
\hline
Scapular & Limbs & 100\% survival. Hairless skin paddle, with chimeric options (muscle and bone). \\
\hline
SCIP & Head and Neck & 96.25\% survival. Reliable vascularity, thin, pliable skin with a long pedicle. Provides lymph nodes to improve lymphatic drainage. \\
& Limbs & \\
\hline
SIEA & Head and Neck & 100\% survival. Good option for soft tissue reconstruction of H\&N. \\
\hline
TDAP & Limbs & 85\% survival. Provide good flap contour and large surface. \\
\hline
\end{tabular}
\caption{Indications and Outcomes Grouped by the Different Flap Types (Based on the Articles Included in This Review).}
\end{table}
All free flaps had survival rates of more than 85%. The flaps that presented the best survival rates based on more than 50 patients in the study were radial forearm (97.67%, 263 patients), ALT (97.29%, 258 patients), and superficial circumflex iliac perforator (SCIP) flap (96.25%, 369 patients). The following list shows the rest of the survival rate average based on the flap type: gluteal artery perforator (GAP) flap (100%, 27 patients), latissimus dorsi flap (100%, 19 patients), deep inferior epigastric artery perforator (DIEP) flap (100%, 12 patients), superficial inferior epigastric artery (SIEA) perforator flap (90%, 10 patients), anteromedial thigh (AMT) flap (95%, 41 patients), and thoracodorsal artery perforator (TDAP) flap (85%, 13 patients).

There was no significant difference in survival between flaps that were raised in different planes of dissection. Suprafascial flaps had a 96.14% survival rate, based on 498 flaps that were included. Thin flaps had a 96.78% survival rate, based on 529 flaps that were included. Super thin flaps had a 98% survival rate, based on 12 flaps that were included. PSP flaps had a 99% survival rate, based on 15 flaps. Using a one-way ANOVA test no significant statistical differences were found between these survival rates ($P = 0.16$).

Discussion

In this study we conducted a thorough review of the literature in regard to suprafascial free flaps. We presented the most useful techniques available for reconstruction that require thin, pliable and customizable flaps, and only included articles with clinical cases and significant caseloads, in order to show the reader feasible and reliable practices.

When looking at the chronological order and evolution, we see that initially soft tissue free flaps were dissected in a subfascial plane, therefore, when surgeons required a thin flap the one that was used the most was the radial forearm flap. Next there was a progressive surge in the use of perforator flaps, following studies carried out by Wei et al.19,20 describing a perforator-based ALT flap. Following this there have been different types of perforator flaps described, and the trend has been to leave behind the fasciocutaneous flaps for cutaneous perforator flaps in an ever-thinner plane of dissection. In our study we see that in the first 10 years radial flaps were primarily being used, then SCIP flaps, and in the last 10 years mostly ALT. Almost 80% of the articles included were published in the last decade,21-36 indicating that this a very contemporary subject in reconstructive surgery (Figure 2).

In regard to the nomenclature, some authors used the term suprafascial indistinctively when mentioning the deep and superficial fascia. Also, some referred to thin flaps as super thin.11,12 This was noted in the 34 articles that we reviewed in depth, but there was a lack of consensus in regard to the definition of these terms in the scientific literature. For this reason, we believe that adopting a common classification is necessary and we propose to use the following classification: Subfascial = below the deep muscle fascia, Suprafascial = above the deep muscle fascia but below the superficial adipose fascia, Thin flaps = dissected on the plane of the superficial adipose fascia, Super thin flaps = dissected above the superficial adipose fascia, Pure skin perforator (PSP) flaps = include only the skin and subdermal plexus vessels (Figure 3).
According to the literature, the main areas of reconstruction were head and neck, and limbs. This is because these areas normally require thin and pliable flaps, with long pedicles for anastomosis. For example, even though the radial forearm flap is the most commonly used flap for tongue reconstruction after hemiglossectomy, flaps like the PAP or ALT flap are preferable alternatives that provide thin and pliable tissue when they are dissected as thin flaps. Heredero et al. demonstrated that these thin flaps can be obtained even in obese patients when dissected above the superficial adipose fascia.

Most of the reviewed series of flaps dissected above the deep or the superficial fascia include preoperative imaging planning. Studies carried out by Heredero et al. with CT-angiography and Visconti et al. using ultra-high frequency ultrasound (UHF-US) allow us to map out the patterns of the perforating vessels in the suprafascial plane preoperatively. When we combine this knowledge with hand-held acoustic Doppler and/or duplex ultrasound, we have high confidence in the anatomical disposition of the vessels in our flaps. This improves flap survival and shortens operating time. It also allows us to have thinner flaps, which are more suitable for extremity or head and neck reconstruction, and have lower donor site morbidity. These flaps combined with super-microsurgical techniques, which allow us to anastomose ever smaller vessels (in general under 0.8 mm in diameter), improve our reconstructive options and lead to better outcomes.

Donor site morbidity has been improved with the advent of suprafascial flaps. Our series of articles show that donor site morbidity in suprafascial dissection is either similar or better than subfascial dissection, with no authors reporting inferior results. Suprafascial flaps also provide better wound contour and aesthetics, decrease the risk of tendon exposure and improve the healing of skin grafts in the radial forearm flap donor site, as well as allowing for a higher rate of primary closure in the ALT flap donor site.

One of the key aspects that has allowed for thin flaps to become mainstream today, is that the flap survival is independent to the plane of dissection. Studies carried out by Hong and Chung and Narushima et al. showed that if the vascular network of vessels is preserved, we can dissect extremely thin flaps. These authors also described 3 key areas which are critical to flap survival and must be carefully manipulated, which are the subdermal plexus, the perforating vessels that go through the deep muscle fascia, and the microsurgical anastomosis. Some flaps require customized design to see the perforating vessel patterns, and this is where new technologies have had an important role.

Conclusions
Suprafascial free flaps are becoming the new workhorse for surgeons as their variety and reliability have improved. We have seen that these flaps are just as reliable as subfascial flaps, they have less donor site morbidity, and there is a wide selection available for harvest. The use of new technologies for preoperative planning, such as CT-Angiography and UH-F ultrasound, have contributed to have more predictable results and they are becoming common techniques for surgeons harvesting these flaps. We propose a standardized classification for these flaps, in order to create a uniform nomenclature for future reference.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.
References

1. Taylor G, Blondeel PN, Morris SF, Hallock GG, Neligan P. Perforator Flaps: Anatomy, Technique, & Clinical Applications. CRC Press; 2014.

2. Pontén B. The fasciocutaneous flap: its use in soft tissue defects of the lower leg. Br J Plast Surg. 1981;34(2): 215-220. doi:10.1016/s0007-1226(81)80097-5

3. Yang GF, Chen PJ, Gao YZ, et al. Forearm free skin flap transplantation: a report of 56 cases. Br J Plast Surg. 1997; 50(3):162-165.

4. Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br J Plast Surg. 1989;42(6): 645-648. doi:10.1016/0007-1226(89)90075-1

5. Hong JP, Yim JH, Malzone G, Lee KJ, Dashiti T, Suh HS. The thin gluteal artery perforator free flap to resurface the posterior aspect of the leg and foot. Plast Reconstr Surg. 2014; 133(5):1184-1191. doi:10.1097/PRS.0b013e31826e095b

6. Hong JP, Chung IW. The superficial fascia as a new plane of elevation for anterolateral thigh flaps. Ann Plast Surg. 2013; 70(2):192-195. doi:10.1097/sap.0b013e3182367c2f

7. Visconti G, Bianchi A, Hayashi A, et al. Thin and superthin perforator flap elevation based on preoperative planning with ultrahigh-frequency ultrasound. Arch Plast Surg. 2020;47(4): 365-370. doi:10.5999/aps.2019.01179

8. Saint-Cyr M, Wong C, Schaverien M, Mojallal A, Rohrich RJ. The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg. 2009;124(5):1529-1544. doi:10.1097/PRS.0b013e3181b986a6

9. Narushima M, Yamasoba T, Iida T, et al. Pure skin perforator flaps: the anatomical vascularity of the superthin flap. Plast Reconstr Surg. 2018;142(3):351e-360e. doi:10.1097/prs.0b013e318268d803

10. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-269, W64.

11. Seth A, Iorio M. Super-thin and suprafascial anterolateral thigh perforator flaps for extremity reconstruction. J Reconstr Microsurg. 2017;33(7):466-473. doi:10.1055/s-0037-1601422

12. Kim J, Kim K, Yoon C. Reconstruction of moderate-sized distal limb defects using a superthin superficial circumflex iliac artery perforator flap. J Reconstr Microsurg. 2015;31(9): 631-635. doi:10.1055/s-0035-158959

13. Maruccia M, Fallico N, Cigna E, et al. Suprafascial versus traditional harvesting technique for free antero lateral thigh flap: a case-control study to assess the best functional and aesthetic result in extremity reconstruction. Microsurgery. 2017;37(8):851-857. doi:10.1002/micr.30248

14. Shonka DC, Kohli NV, Milam BM, Jameson MJ. Suprafascial harvest of the radial forearm free flap decreases the risk of postoperative tendon exposure. Ann Otol Rhinol Laryngol. 2017;126(3):224-228. doi:10.1177/0003489416685322

15. Avery C. Prospective study of the septocutaneous radial free flap and suprafascial donor site. Br J Oral Maxillofac Surg. 2007;45(8):611-616. doi:10.1016/j.bjoms.2007.04.008

16. Lutz BS, Wei FC, Chang SCN, Yang KH, Chen IH. Donor site morbidity after suprafascial elevation of the radial forearm flap: a prospective study in 95 consecutive cases. Plast Reconstr Surg. 1999;103(1):132-137. doi:10.1097/00006534-199910000-00021

17. Chang SC, Miller G, Halbert CF, Yang KH, Chao WC, Wei FC. Limiting donor site morbidity by suprafascial dissection of the radial forearm flap. Microsurgery. 1996;17(3): 136-140. doi:10.1002/(sici)1098-2752(1996)17:3<136::aid-micr7>3.0.co;2-k

18. Sagalongsos OS, Valerio LL, Hsieh CH, et al. Qualitative and quantitative analyses of donor-site morbidity following suprafascial versus subfascial free fibula flap harvesting. Plast Reconstr Surg. 2011;128(1):137-145. doi:10.1097/prs.0b013e318221af70

19. Wei FC, Jain V, Celik N, Chen HC, Chung DC, Lin CH. Have we found an ideal soft-tissue flap? An experience with 672 anterolateral thigh flaps. Plast Reconstr Surg. 2002; 109(7):2227-2230. doi:10.1097/00006534-200206000-00008

20. Wallace CG, Kao HK, Jeng SF, Wei FC. Free-style flaps: a further step forward for perforator flap surgery. Plast Reconstr Surg. 2009;124(6 suppl):e419-e426. doi:10.1097/prs.0b013e3181bfc189

21. Wang D, Gao T, Liu L, et al. Thin superficial inferior epigastric artery perforator flap for reconstruction of the tongue. Br J Oral Maxillofac Surg. 2020;58(8):992-996. doi:10.1016/j.bjoms.2020.05.011

22. Ulas Bali Z, Keçeci Y, Pabu¸scu Y, Yoleri L. Anterolateral thigh flap design by using suprafascial course of the perforator. Ann Plast Surg. 2020;84(5):550-553. doi:10.1097/sap.0000000000002066

23. D’Arpa S, Pignatti M, Vieni S, Muradov M, Blondeel P, Cordova A. The thin bilateral and bipedicled DIEAP flap for axillary reconstruction in hidradenitis suppurativa. Handchir Mikrochir Plast Chir. 2019;51(6):469-476. doi:10.1055/a-0881-9646

24. Diamond S, Seth A, Chatta C, Iorio M. Outcomes of subfascial, suprafascial, and super-thin anterolateral thigh flaps: tailoring thickness without added morbidity. J Reconstr Microsurg. 2017;33(4):176-184. doi:10.1055/s-0037-1607426

25. Fischer S, Diehm Y, Hirche C, et al. Comparison of subversus suprafascially raised anterolateral thigh free flaps with regard to donor-site morbidity, function and aesthetics. Microsurgery. 2017;38(5):444-449. doi:10.1002/micr.30274

26. Lamas GA, Knackstedt R, Couto RA, Abedi N, Durand P, Gastman B. The anterolateral thigh flap as the flap of choice for scalp reconstruction. J Craniofac Surg. 2017;28(2): 472-476. doi:10.1097/scs.0000000000003404
27. Narushima M, Iida T, Kaji N, et al. Superficial circumflex iliac artery pure skin perforator-based superthin flap for hand and finger reconstruction. *J Plast Reconstr Aesthet Surg*. 2016;69(6):827-834. doi:10.1016/j.bjps.2016.03.005

28. Schwarzer C, Mücke T, Wolf KD, Loefelbein DJ, Rau A. Donor site morbidity and flap perfusion of subfascial and suprafascial radial forearm flaps: a randomized prospective clinical comparison trial. *J Craniomaxillofac Surg*. 2016;44(9):1299-1304. doi:10.1016/j.jcms.2016.06.025

29. Chen YC, Scaglioni MF, Jimenez LEC, Yang JC, Huang EY, Lin TS. Suprafascial anterolateral thigh flap harvest: a better way to minimize donor-site morbidity in head and neck reconstruction. *Plast Reconstr Surg*. 2016;138(3):689-698. doi:10.1097/PRS.0000000000002496

30. Kim K, Hong J, Park C, Yoon C. Modification of the elevation plane and defatting technique to create a thin thoracodorsal artery perforator flap. *J Reconstr Microsurg*. 2015;32(2):142-146. doi:10.1055/s-0035-1563398

31. Goh TLH, Park SW, Cho JY, Choi JW, Hong JP. The search for the ideal thin skin flap: superficial circumflex iliac artery perforator flap—a review of 210 cases. *Plast Reconstr Surg*. 2015;135(2):592-601. doi:10.1097/01.prs.0000000000000951

32. Choi DH, Goh T, Cho JY, Hong JP. Thin superficial circumflex iliac artery perforator flap and supermicrosurgery technique for face reconstruction. *J Craniofac Surg*. 2014;25(6):2130-2133. doi:10.1097/SCS.0000000000001093

33. Kim SW, Lee HJ, Kim JT, Kim YH. Multiple-digit resurfacing using a thin latissimus dorsi perforator flap. *J Plast Reconstr Aesthet Surg*. 2014;67(1):74-80. doi:10.1016/j.bjps.2013.10.007

34. Hong JP, Sun SH, Ben-Nakhi M. Modified superficial circumflex iliac artery perforator flap and supermicrosurgery technique for lower extremity reconstruction: a new approach to moderate-sized defects. *Ann Plast Surg*. 2013;71(4):380-383. doi:10.1097/SAP.0b013e3182503a5

35. Riva FM, Tan NC, Liu KW, Hsieh CH, Jeng SF. Anteromedial thigh perforator free flap: report of 41 consecutive flaps and donor-site morbidity evaluation. *J Plast Reconstr Aesthet Surg*. 2013;66(10):1405-1414. doi:10.1016/j.bjps.2013.06.012

36. Avery C, Sundaram K, Jasani V, Peden A, Neal C. Comparison of sensory recovery at the subfascial and suprafascial donor sites of the free radial flap. *Br J Oral Maxillofac Surg*. 2012;50(6):495-499. doi:10.1016/j.bjoms.2011.10.011

37. Heredero S, Sanjuan A, Falguera MI, Dean A, Ogledzki M. The thin profunda femoral artery perforator flap for tongue reconstruction. *Microsurgery*. 2019;40(2):117-124. doi:10.1002/micr.30485

38. Visconti G, Hayashi A, Yoshimatsu H, Bianchi A, Salgarello M. Ultra-high frequency ultrasound in planning capillary perforator flaps: preliminary experience. *J Plast Reconstr Aesthet Surg*. 2018;71(8):1146-1152. doi:10.1016/j.bjps.2018.05.045

39. Koshima I, Namba Y, Takahashi Y, Tsukino A, Kishimoto K. Future of supramicrosurgery as it relates to breast reconstruction: free paraumbilical perforator adiposal flap. *Sem Plast Surg*. 2002;16(1):93-100. doi:10.1055/s-2002-22684

40. Dabernig J, Sorensen K, Shaw-Dunn J, Hart A. The thin circumflex scapular artery perforator flap. *J Plast Reconstr Aesthet Surg*. 2007;60(10):1082-1096. doi:10.1016/j.bjps.2006.10.002

41. Kim JT, Koo BS, Kim SK. The thin latissimus dorsi perforator-based free flap for resurfacing. *Plast Reconstr Surg*. 2001;107(2):374-382. doi:10.1097/00006534-200102000-00012

42. Avery C, Iqbal M, Hayter J. Recovery of sensation in the skin of non-innervated radial flaps after subfascial and suprafascial dissection. *Br J Oral Maxillofac Surg*. 2006;44(3):213-216. doi:10.1016/j.bjoms.2005.06.009

43. Narushima M, Yamasoba T, Iida T, et al. Supermicrosurgical reconstruction for congenital aural atresia using a pure skin perforator flap. *Plast Reconstr Surg*. 2013;131(6):1359-1366. doi:10.1097/01.prs.0b013e318288bd466

44. Kimura N, Saitoh M. Free microdissected thin groin flap design with an extended vascular pedicle. *Plast Reconstr Surg*. 2006;117(3):986-992. doi:10.1097/01.prs.0000200618.85172.22