ABSTRACT

The nature of the problem and earlier approaches to the automatic compilation of printed subject indexes are reviewed and illustrated. A simple method is described for the detection of semantically self-contained word phrase segments in title-like texts. The method is based on a predetermined list of acceptable types of nominative syntactic patterns which can be recognized using a small domain-independent dictionary. The transformation of the detected word phrases into subject index records is described. The records are used for the compilation of Key Word Phrase subject indexes (KWPSI). The method has been successfully tested for the fully automatic production of KWPSI-type indexes to titles of scientific publications. The usage of KWPSI-type display formats for the enhanced online access to databases is also discussed.

1. The problem of automatic compilation of subject indexes

Printed subject indexes (SI), such as back-of-the-book indexes and indexes to periodicals and abstract journals remain important as the most common tools for information retrieval. Traditionally SI are compiled from subject descriptions produced for this purpose by human indexers. Such subject descriptions are usually nominalized sentences in which the word order is chosen to emphasize as theme one of the objects participating in the description; the corresponding word or word phrase is placed at the beginning of the nominative construction. Furthermore, the nominalized sentence is rendered in a specially transformed ("articulated") way involving the separated by commas display of component word phrases together with the dominating prepositions; e.g. the sentence 'In lemon juice lead (is) determined by atomic absorption spectrometry' becomes 'LEMON JUICE, lead determination in, by atomic absorption spectroscopy.' Such rendering enhances the speedy understanding of the descriptions when browsing the index. At the same time it creates for the subject description a linearly ordered sequence of focuses which can be used for the hierarchical multilevel grouping of related sets of descriptions. The main focus (rHEME) serves for the grouping of descriptions under a corresponding subject heading, the secondary focuses make possible the further subdivision of such group by subheadings. This is illustrated on the SI fragment to "Chemical Abstracts" shown on figure 1.

Figure 1

Fragment of a subject index of traditional type to "Chemical Abstracts," compiled from subject descriptions by human indexers. A text processing problem, studied in connection with the compilation of such SI of traditional type, was the automatic transformation of subject descriptions for selecting their different possible themes and focuses (Armitage, 1967). An experimental procedure, not yet implemented, takes as input pre-edited subject descriptions (Cohen, 1976).

Since the generation of subject descriptions by human indexers is a very expensive procedure P. Luhn (1959) of IBM has suggested replacing subject descriptions by titles provided by the publication's authors. Using only a 'negative' dictionary of high frequency words excluded from indexing, he designed a procedure for the automatic compilation of listings where fragments of titles are displayed repeatedly...
for all their indexable words. These words are alphabetized and displayed on the printed page in the central position of a column; their contextual fragments are sorted according to the right-hand side contexts of the index words. Such listings, called Key-Word-in-Context (KWIC) indexes, have been produced and successfully marketed since 1960 as "quick-and-dirty" SI, despite their 'mechanical' appearance which makes them difficult enough to read and browse. A fragment of KWIC index to "Biological Abstracts," featuring titles enriched by additional key words is shown in figure 2.

Figure 2. Fragment of a Key-Word-in-Context (KWIC) type subject index to "Biological Abstracts," automatically compiled from titles of biological publications. The blank spaces replace the repeated occurrences of the key word appearing above.

Another mechanically compiled SI substitute still in current use is based on a similar idea and simply groups together all the titles containing a same indexable word. Such Key-Word-out-of-Context (KWOC) indexes display the full texts of titles under a common heading. Figure 3 shows a KWOC sample generated from title-like subject descriptions at the Institute for Scientific Information. The appearance of KWOC indexes is more acceptable but their browsing is much hindered by the lack of articulation of the lengthy subject descriptions (titles). Without proper articulation, the recognition of the context immediately relevant to the index word becomes too slow.

In 1966 the Institute for Scientific Information (ISI) introduced a different type of automatically compiled subject index called PERMUTERM Subject Index (PSI) (Garfield, 1976b), which at present is the main type of SI to the Science Citation Index and other similar ISI publications. Two different negative dictionaries are used for producing this SI: a so-called "full stop list" of words excluded from becoming headings as well as from being used as subordinate index entries, and a "semi-stop list" of words of little informative value, which are not allowed as headings but are used as index entries along with words found neither in the full-stop nor in the semi-stop lists. In the PSI every word co-occurring with the heading word in some context description (title) becomes an entry line subordinated to this heading. The format of the PSI is illustrated in figure 4.

Figure 4. Fragment of a PERMUTERM subject index to the Science Citation Index (Institute for Scientific Information), automatically compiled from titles. The index lines are words co-occurring in titles with the heading word. The arrows indicate the first occurrence under the given heading of a pointer to a given article.
PSI has the unique ability to make possible the easy retrieval of all titles containing any given pair of informative words. This ability is similar to the ability of computerized online search systems to retrieve titles by any boolean combination of search terms. The corresponding PSI ability is available to PSI users who have been instructed about the principles used for compiling it. The naive user is more likely to utilize it as a browsing tool.

When doing so, he may be inclined to perceive the subordinate word entries as being the immediate context of the headings. Used as a browsing tool, PSI may deliver relatively high percentage of false drops because of the lack of contextual information. Another shortcoming of the PSI is its relatively high cost due to its significant size which is proportional to the square of the average length of titles. The large number of entries subordinated to headings which are words of relatively high frequency makes the exhaustive scanning of entries under such headings a time consuming procedure.

An important advantage of all the above computer generated indexes over their manually compiled counterparts is the speed and essentially lower cost at which they are made available.

All the above compilation procedures are based exclusively on the most trivial facts concerning the syntax and semantics of natural languages. They make use of the fact that texts are built of words, of the existence of words having purely syntactic functions and of the existence of lexical units of very little informative value. A common disadvantage versus the SI of traditional type is that the above procedures fail to provide articulated contexts which would be short enough and structurally simple enough to be easily grasped in the course of browsing.

Certainly this problem can be solved by any system which can perform the full syntactic analysis of titles or similar kinds of subject descriptions. From the syntactic tree of the title a brief articulated context can be produced for any given word of a title by detecting a subtree of suitable size which includes the given word. However, in the majority of cases the practical conditions of the automatic generation of index compilation procedures are excluding the usage of full scale syntactic analysis, based on dictionaries containing the required morphological, syntactic and semantic information for all the lexical units of the processed input. For instance, ISI is processing annually for its multidisciplinary publications around 700,000 titles ranging in their subject orientation from science and technology to arts and humanities. The effort needed for the creation and maintenance of dictionaries covering several hundred thousands entries with a high ratio of appearance of new words would be excessive. Therefore, the automatic compilation of SI is practically feasible only on the basis of quite simplistic procedures based on "negative" dictionaries involving approximative methods of analysis which yield good results in the majority of cases, but are robust enough not to break down even in difficult cases.

At one end of the range of problems involving natural language processing are such as question answering which require a high degree of analytic sophistication and are based on a significant amount of domain dependent information formatted in bulky lexicons. Such procedures appear to be applicable to texts dealing with rather narrow fields of knowledge in the same way as the high levels of in-depth human expertise are usually limited to specific domains.

On the other end of the spectrum are simple problems requiring much less domain dependent information and relatively low levels of "intelligence" (defined as the ability to discuss comprehensive texts from gibberish); the corresponding procedures are usually applicable to wide categories of texts. For reasons explained above, we consider the problems of automatic compilation of subject indexes as belonging to this low end of the spectrum.

2. The automatic compilation of Key-Word-Phrase Subject Indexes

In this framework we developed an automatic procedure for the compilation of a SI based on the detection and usage of word phrases. The earlier stages of development of this Key-Word-Phrase subject index (KWPSI) have been reported elsewhere (Vladutz 1979). The procedure starts by detecting certain types of syntactically self-contained segments of the input text; such segments are expected to be semantically self-contained in view of the assumed well-formedness of the input. The segment detection procedure is based on a relatively short list of acceptable syntactic patterns, formulated in terms of markers attributable by a simple dictionary look-up. The markers are essentially the same as used in (Klein 1963) in the early days of machine translation for automatic grammatical coding of English words. All the words not found in an exclusion dictionary of 1,500 words are assigned the two markers ADJ and NOUN. All the acceptable syntactic patterns are characterized in the frameworks of a generative grammar constructed for title-type texts. Such texts are described as sequences of segments of acceptable syntactic patterns separated by arbitrary filler segments whose syntactic pattern is different from the acceptable ones. The analysis procedure leading to the detection of acceptable segments was formulated as a reversal of the generative grammar and is performed by a right to left scanning. New acceptable syntactic patterns can easily be incorporated into the generative grammar. It is envisaged to use in the future existing programs for automatically generating analysis programs from any specific variant of the grammar.

The present list of acceptable syntactic patterns includes such patterns where noun phrases are concatenated by the preposition 'OF' and the conjunctions 'AND', 'OR', 'AND/OR', as well as constructions of the type 'NP1, NP2, ... AND nPl'. Since no prepositions other than 'OF' and no conjunctions other than 'AND', 'OR', 'AND/OR' can occur in the acceptable segments the occurrences of other prepositions and conjunctions are used for initial delimitation of acceptable segments, but the detection procedure is not limited to such usage.

In particular, a past participle or a group containing adverbs followed by a past participle are excluded from the acceptable segment when preceding.
an initial delimiter. The segmentation detection is illustrated for three titles in figure 5.

A) SPREADING OF VIRUS INFECTION among WILD BIRDS And MONKEYS during INFLUENZA EPIDEMIC caused by VICTORIA(375) VIRUS

B) EXERCISE INDUCED CHANGES in LEFT-VENTRICULAR Function in Patients with MITRALE-VALVE PROLAPSE

C) DIFFERENTIATION OF MLC-INDUCED KILLER And Suppressor T-CELLS by SENSITIVITY to PYRILAMINE

Figure 5.

The detection of acceptable segments is shown for 3 titles. The words with all lowercase letters are prepositions and conjunctions used as initial delimiters. The words with only initial capital letters are "semi-stop" words, excluded from being used as index headings; the underscored by dotted lines "semi-stops" are past participles which become delimiters only when followed by initial delimiters. The resulting multi-word phrases are underscored twice unlike the resulting single word phrases which are underscored once.

The first part of the system's dictionary contains conjunctions, prepositions, articles, auxiliary verbs and pronouns. This part is completely domain independent. A second part of the dictionary consists of nouns, adjectives, verbs, present and past participles, all of them of little informative value and, therefore, called "semi-stop" words. Such words will not be allowed later to become SI headings. The semi-stop part of the dictionary is somewhat domain-dependent and has to be tuned for different broad fields of knowledge such as science and technology, social sciences or arts and humanities.

The second logical step in the SI compilation involves the transformation of acceptable segments into index records consisting of an informative word (not found in the system's dictionary) displayed as heading line and of an index line providing some relevant context for the heading word. Each multi-word segment generates as many index records as many informative words it contains. The right-hand side of the segment following the heading word is placed at the beginning of the index line to serve as its immediate context and is followed through a semicolon by the segment's left-hand side. When both sides are non-empty, an articulation of the index line is achieved. In the case of a single word segment an "expansion" procedure is performed during index record generation. It starts by placing at the beginning of the index line a fragment of the title consisting of the filler portion following the heading word and of the next acceptable segment, if any; this initial portion of the index line is followed by a semicolon after which follows the preceding acceptable segment, followed finally by the filler portion separating in the title this preceding segment from the heading word. The index record generation is illustrated in figure 6.

The final "enrichment" phase of the index record generation involves the additional display (in parenthesis) of the unused segments of the processed title.

- SPREADING of VIRUS INFECTION
- VIRUS INFECTION; SPREADING of *
- INFECTION
- SPREADING OF VIRUS *
- WILD BIRDS and MONKEYS
- BIRDS and MONKEYS; WILD *
- MONKEYS WILD BIRDS and *
- INFLUENZA EPIDEMIC
- EPIDEMIC INFLUENZA *
- SENSITIVITY to PYRILAMINE; DIFFERENTIATION of MLC-INDUCED KILLER SUPPRESSOR T-CELLS by *
- PYRILAMINE SENSITIVITY to *

Figure 6.

The transformation of Key-Word-Phrases into subject headings and subject entries is illustrated for the first two segments of the title A, Figure 6. The last two examples show how single word segments (from Title C) are expanded to include the preceding and following them segments.

As a result of this stage the informational value of the finally generated index record is almost equivalent to the information content of the initial full title. The entire process ultimately boils down to the the reshuffling of some component segments of the initial title. The enrichment stage of index record generation is illustrated on figure 7.

The index records are alphabetized firstly by heading words and secondly by index lines with the exclusion from alphabetization of prepositions and conjunctions if they occur at the beginning of index lines. During the photocomposition different parts of the index line are set using different fonts. If in the original title the initial part of the index line follows the heading word immediately this part is set in bold face italics, i.e. in the same font as the heading. The "inverted" part following the semicolon is set in light face roman letters. Finally the enrichment part of the index line, included in parentheses is always displayed in light-face italics. As a result the
*SPREADING
 OF VIRUS INFECTION (WILD BIRDS AND MONKEYS; INFLUENZA EPIDEMIC; VICTORIA(F)75 VARIANT OF A(H3N2) VIRUS)

*VIRUS
 INFECTION; SPREADING OF * (WILD BIRDS AND MONKEYS; INFLUENZA EPIDEMIC; EPIDEMIC; VICTORIA(3)75 VARIANT OF A(H3N2) VIRUS)

*BIRDS
 and MONKEYS; WILD * (SPREADING OF VIRUS INFECTIONS; INFLUENZA EPIDEMIC, EPIDEMIC; VICTORIA(3)75 VARIANT OF A(H3N2) VIRUS)

*INFLUENZA
 EPIDEMIC (SPREADING OF VIRUS INFECTIONS; VICTORIA(3)75 VARIANT OF A(H3N2) VIRUS)

*PYRILAMINE
 SENSITIVITY to * (DIFFERENTIATION OF MLC-INDUCED KILLER AND SUPPRESSOR T-CELS)

Figure 7
The enrichment of the subject entries by the display (in parenthesis) of the unused by them segments of the same title, illustrated for some of the entries of Figure 6.

immediately relevant context of the head word is displayed in bold face in order to facilitate its rapid grasping when browsing. Details of the appearance and structure of KWPSI are exemplified in figure 8 on a sample compiled for titles of publications dealing with librarianship and information science. The general appearance of KWPSI is close enough to the appearance of SI of traditional type.

For purposes of transportability the KWPSI system is programmed in ANSA COBOL. It includes two modules: the index generation module and the sorting and reformatting module. On an IBM 370 system index records are generated for titles of scholarly papers at a speed of ~ 70,000 titles/hour. The resulting total size of the index is of the same order as the size of KWOC indexes and compares favorably with the size of the PSI index.

The analysis of the rates and nature of failures of the segment detection algorithm shows that in 96% of cases the generated segments are fully acceptable as valuable index entries. In 2% of cases some important information is lost as a result of the elimination of prepositions, as in case of expressions of 'wood to wood' type. The rest of failures results in somehow awkward segments which are not completely semantically self-contained. Even in such cases the index entries retain some informative value. Around half of the failures can be eliminated by additions to the system's dictionary, especially by the inclusion of more verbs and past participles. Not counted as failures are the 5% of cases when the length of the detected segments is excessive; such segments can include the whole title.

The extent of tuning required for the application of the system in a new area of knowledge depends mainly upon the extent of figure 8.

*INDEXING

Figure 8
A photocomposed KWPSI sample showing details of its structure and appearance.
Index” includes besides titles of articles, also titles of book reviews, as well as descriptions of musical performances and musical records, compiled according to special rules. Many contain multivord names of works of art, taken in quotation marks, which have to be handled as single words. A KWPSI sample for arts and humanities is shown on figure 9. Two more KWPSI samples are given on figure 10 (science and technology titles) and figure 11 (geoscience research front names).

3. Possible usage of automatically detected word phrases for enhanced online access to databases

The common method of online access to commercially available textual databases of both bibliographic and full text type is through boolean queries formulated in terms of single words. Automatically detectable word phrases of the type used in the KWPSI system could be used in three different ways for improving online access.

One extreme way would involve the creation of word phrases of the above type at the input stage for every informative word of the input. In response to a single word query a sequence of screens would be shown displaying the image of what in a printed KWPSI would be the KWPSI section under the given word taken as heading. After browsing online some part of this up-to-date online SI the user could choose to limit further browsing by responding with an additional search term, most likely chosen from some of the already examined index entries. As a result the system would reply by eliminating from the displayed output the entries not containing the given word and the user would continue to browse the so trimmed display. Several such iterations could be performed...
until the user would be left with the display of a SI to relevant items of the database. This SI would be then printed together with the full list of relevant items. It is thought that such kind of interaction could be more user friendly than the currently used boolean mode.

Another way of using the KWPSI technique in an online environment would be to use the KWPSI format for the output of the results of a retrieval performed in a traditional boolean way. The query word which achieved the most strong trimming effect would be used as heading.

A third way would involve the compression of a KWPSI section under a given heading before it is displayed in response to a word. One could e.g. retain only such noun phrases containing the given word which occur at least k times in the database. An example of such list for the "Arts and Humanities" database is given in figure 12. By displaying such lists of words closely co-occurring with a given one the system would perform thesaurus-type functions.

The implementation of all such possibilities would be rather difficult for any existing system in view of the effort required to reprocess past input. Instead, after the input of a query word the corresponding full text records could be called a not processed online in core for generating KWPSI-type index records. In this case all the above functions could be still performed.

Figure 12
List of word phrases containing the word 'FILM(S)' and appearing at least twice in titles covered during a three months period by ISI's ARTS and HUMANITIES CITATION INDEX. Such automatically compiled lists are suggested as search aides for the online access to databases.

Another possibility which we are considering is to place the KWPSI-type processing capabilities into a microcomputer which is being used to mediate online searches in remote databases. All the text records containing a given (not too frequent) word could be initially tapped from the database into the microcomputer. Following that the microcomputer could perform all the above functions in an offline mode.

REFERENCES

Armitage, J.E., Lynch, M.F. "Articulation in the Generation of Subject Indexes by Computer." Journal of Chemical Documentation: 7:170-8, 1967.

Cohen, S.M., Dayton, D.L., Salvador, R. "Experimental Algorithmic Generation of Articulated Index Entries from Natural Language Phrases at Chemical Abstracts Service." Journal of Chemical Information and Computer Sciences: 1976 May, 16(2): 93-99.

Garfield, E. "The Permuterm Subject Index: An Autobiographic Review." Journal of the American Society for Information Science: 27(5/6): 288-291, 1976.

Klein S., Simmons R.F. "A Computational Approach to grammatical coding of English words." Journal of ACM: 10(3):334-347, 1963.

Luhn P. "Keyword-in-Context Index for Technical Literature." Report RC 127. New York: IBM Corp., Advanced System Development Division, 1959.

Vladuc G., Garfield E. "KWPSI - An Algorithmically derived Key Word/Phrase Subject Index." Proceedings of the ASIS, 42nd Annual Meeting, Minneapolis, Minnesota, October 14-18, 1979; pp. 236-245.