Study on the Impact Factors of Environmental Facility Planning and Design on Urban Development

Ling Yang (✉ 59342252@qq.com)
Jingdezhen Ceramic Institute

Minyuan Zhu
Jingdezhen Ceramic Institute

Research Article

Keywords: Urban Environment, Environmental Resources, Ecological Processes

DOI: https://doi.org/10.21203/rs.3.rs-754991/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
STUDY ON THE IMPACT FACTORS OF ENVIRONMENTAL FACILITY PLANNING AND DESIGN ON URBAN DEVELOPMENT

Ling Yang 1*, Minyuan Zhu 2

1 College of Design and Arts, Jingdezhen Ceramic Institute, Jingdezhen333403, Jiangxi, China
2 School of Product Design, Jingdezhen Ceramic Institute, Jingdezhen333403, Jiangxi, China

*Corresponding Author mail: 59342252@qq.com

Abstract

In the world of advancement, the development of the urban environment by providing favorable and secure conditions to the population are always directed to environmental factors of various levels. The role in urban development and growth remains an integral part of their management. It should focus on improving the effectiveness of territorial utilization and enhancing environmental resources. The planning will be based on the information regarding the past and present events of the recognized ecological processes in cities. Currently, there are several issues in towns that need to be addressed effectively and efficiently. The poor urban environment is a significant issue which leads to ecological issues. The environmental factors are one of the most important aspects that people should consider when implementing growth plans in the urban areas. This paper explores environmental factors such as Density, Compactness, Fragment, Variation, Cohesion in urban territory design and management.

Keywords: Urban Environment, Environmental Resources, Ecological Processes

1. Overview and Design on Urban Development

Recently, the rising interest in social, economic, and environmental development in the urban architecture, two forms of digital modeling software are currently needed in urban areas. Firstly, the softwares are essential tools to enable city designers to conduct sensitivity analyses and to determine the various Urban development city-scale parameters for performance: traffic flow requirements, carbon generation, the efficiency of mass transits, energy usage, resource management, and heat control, water storage and storm-water control [1]. Secondly, the different criteria have been interdependent, which frameworks for
digital simulations and allows for the simultaneous analysis of any or all these parameters using data from performance-based analyses that lead automated processes in the development and representation of social, economic, and environmental cities [2].

A variety of important technologies and technological products were found in this non-exhaustive study of the literature [3]. Furthermore, SimCity is that it demonstrates the generative capabilities of a complicated regulatory setting to simplify urban growth [4]. The simulation programmed Development Engine for computer games, and facility planning is another example of the digital process generation of cities [5]. Urban planning involves numerous forms and sizes of challenges from renovation schemes to the reconstruction projects, which are generally relatively limited and fragmented areas in a current metropolitan setting, to massive regeneration strategies, to ambitious proposals to create whole new communities, to the integration of much larger regions [6]. Each type of issue with specific problems involves many different approaches to planning and design [7]. However, many fundamental priorities are similar to each of them, including the desire to create economic and social life and the desire to build environments that foster a desirable quality of life [8]. They still have to deal with many different problems. However, the case for any planning phase in which there exist numerous conflicting objectives and constraints involving simultaneous reconciliation (as well as an inferior inflow of planning restricted data), an urban design process is, in fact, always entirely erroneous, iterative, and uncomplicated, for the sake of simplification [8]. A hypothetical sequential explanation for illustrative purposes remains useful, taking into account this caution [9]. Generally, most urban planning processes begin with the configuration of the road grid, the main organization, typical to cities of all sizes around the world [10].

The idea of Smart Cities has increasingly became an important strategy in the city that has been created, particularly as modern cities face losing characteristic challenges [11]. In the past decades, urban structure, as a reflection of urban form, has been a significant debate in urban studies; thus, the urban fabric evaluation is necessary to create a Smart Cities community [12]. Furthermore, mechanical advances made cost-effective and accelerated building methods possible during the industrial revolution [13]. Due to the desperate need for economic regeneration and restoration, some contemporary architects pursued the ideal
single structure, without paying heed, on the slogan functional dominance, to the organic order of urban dignity [14]. The global towns were affected by energy issues of the separation of isolated houses, transit infrastructures, and residual areas [15].

Currently, the same situation is being generated in China, where the rapid growth has caused the elimination of several historical districts with unique local features [16]. These include the inability to consider the urban fabric and the broader value and narrative of particular metropolitan environments [17]. Which includes the lack of urban development? The Chinese Government has been compelled to follow smart growth policy as modern science and rational urbanization approach, including urban optimization and urban space enhancement at both the micro and macro levels, through lack of a connexon to the environmental context and the absence of people’s sense of belonging [18].

The main Objectives of environmental facility planning and design of the urban development is given below,

1. To encourage a humane context, construction within private, industrial, and Urban city living areas.
2. The architecture of the location, size, and proportion of buildings and spaces in which it has been located, should react positively to its character.
3. The public and private growth are promoted to include amenities or focus points that promote neighborhood identity growth (including 'gates').
4. In the defined areas of character, defining architectural types are preserved.

2. Background studies on Environmental Planning

The author discussed a thorough analysis of Distribution Network Expansion (DEPs) possible goal functions, problem limitations, various horizons, and task variables, model optimization (single / multi-objective), Distributed Energy System Resources (DERs) task infertilities, etc. [19]. This paper provides a concise description of the Planning Urban Development [20]. Furthermore, to prevent contradictions between the purpose of district energy planning freedom (e.g., heat and electricity), and that of local electrical utilities’ dependency in terms of immediate power management and reliability services which address the needs of decentralized energy district managers [21]. In the area of network planning, identify the main future developments in the Environmental Facility.
This paper provides a technique for the operational analysis of the Printed Circuit Board (PCB) assembly systems for the management of waste flows [21]. The methodology is based on the principle of unit process modeling, process chaining, and multi-criteria impact assessment applied first to product development [22]. Furthermore, three approaches, the preparation and management decisions for hazard profile control at the facility level are guided: product assignment, employee assignment, and hybrid approach [23]. In terms of throughput and demand conditions, the optimization models balance total waste mass and facility-level risks [24]. A case study illustration is given for preparing six types of boards in a two-shift process along four production lines [25].

The author had been extensively discussed Optimal Power Flow (OPF) for both activities and planning [26]. The local optimization is more suitable for faster solutions in large, interconnected systems, whereas optimization of a broad, connected network for solving a problem at the local level is superfluous [27]. Furthermore, an optimization technique is introduced in this paper to solve the operations or the problem of planning utilizing partitioned field optimization [28]. It automatically chooses the goal for each region of the area and allows the constraints from the list.

The author suggested the points of the framework and attempted to clarify the position of authority in the mechanism of decision-making [29]. The critical character of the decision-making process is defined as the criteria, recommendations, proposals, and policies [30]. The goal and role of land-use zoning and variations, which result in historical processes, attitudes, and the influence of different environmental groups, are addressed.

3. Generalized sustainable planning summary

The researchers define a simplified design method in linear flow for the sake of simplification, which design process where multiple overlapping aims and constraints involve simultaneous compromise (and less than optimal inflowing design restriction) always quite misplaced, iterative, and volatile. Furthermore, the hypothetically sequential
description is still helpful for illustrative applications, keeping this caution into account. There are seven steps are given blow in the urban design process.

Fig. 1 Sustainable Planning and Urban Development Process

3.1. Step 1: Urban Planning Processes Commence

Planning is considered as the first probable step in the phase of urban planning. Furthermore, most urban planning processes commence concerning the configuration of the street grid, the key operational feature common to cities of all sizes worldwide, as shown in Figure 1. This grid allows for the transportation of people (with bus networks and walking routes), freight, and other kinds of services in and beyond the region. It is somewhat similar to a biological circulator scheme. Furthermore, it serves as the key public access network to create a wide range of facilities for the flows of critical infrastructural structures such as electricity, data, water, gases, and waste systems. Many of these things travel through the city, through the street and arteries, much like the productive movement of these properties is a crucial performance objective relevant to the street grid and related services. In addition to its position as the city’s leading transportation network, the road grid and associated sidewalks often play an essential role as the vital conduit and a gateway to the city’s public social component. Furthermore, the available channels of an urban city, bounded by opposite street walls, frame the experience of humanity which forms most of the citizens of the city and enables the unique identity of the city to emerge in accordance with public plazas, parks and monuments.

3.2. Step 2 Outdoor Public Areas
Once an initial concept has been created for the structure of the grid, the next typical step is to create outdoor public areas for parks and squares.

Provision of public open space is a common factor in the growth of urban cities, likely for many reasons, such as historical history (citizens are accustomed to getting such areas in city centers), deeper social-psychological motives, or financial factors (immobile plots adjacent to parks tend to become much more effective) as shown in Figure 2. Many considerations influence the selection of these public places; however, one of the key planning criteria is the intention to position public spaces so that no point in the town is a 10-minute walk from one of the public areas. Their process has been considerations in the process of deciding where these public spaces are located. However, one of the most fundamental requirements in planning is to try to find available locations in the city in such a manner that one of these public areas is not more than 10 minutes away on foot.

3.3. Step 3 Subdivision and Organization of the Urban Development

Sometimes the organization of the project has been subdivided and grouped into distinct communities, and the establishment of centers (social or business hubs) for those areas is recommended. The size and organization of the cities for developments that are incorporated into current urban environments would possibly be driven by precedents and trends present in those environments. To identify each neighborhood programmatic character (e.g., whether it is mainly industrial, residential, or institutional), the method of
evaluating neighborhoods typically involves establishing the concept of target mix ratios of different forms of land use. Furthermore, the word programmatic refers to the operations located in a specific building in the architectural sense.

3.4. Step 4 Neighborhoods and Districts of Urban Development planning

The districts and communities are defined as the refinement exercise of Buse styles that would always occur in the parcels of the land. During this exercise, a uses designation, including residential, industrial, or mixed-use, is applied to the separate properties within the limits of the Master Plan that essentially chart the applicable zoning of the Master Plan.

3.5. Step 5 Zoning of Master Plan in Urban Development Planning

The main aim of urban planning is to build a dynamic and practical combination of different styles of usage in the region. Furthermore, to create appropriately specified use clusters that work symbiotically with the surrounding clusters of other forms of use to promote the creation of diverse communities instead of building large areas which are entirely comprised of a single type of use or constructing large areas in which there is a completeness and consistent distribution of all traditional uses as shown in Figure 3. The zoning boundary selection processes determined the necessary sizes and locations Using-type clusters; several parameters are directed. Furthermore, Foot-traffic motivation impacts transport distance types of use and other tasks.

Fig.3 Neighborhoods and Districts of Urban Development planning

The main aim of urban planning is to build a dynamic and practical combination of different styles of usage in the region. Furthermore, to create appropriately specified use clusters that work symbiotically with the surrounding clusters of other forms of use to promote the creation of diverse communities instead of building large areas which are entirely comprised of a single type of use or constructing large areas in which there is a completeness and consistent distribution of all traditional uses as shown in Figure 3. The zoning boundary selection processes determined the necessary sizes and locations Using-type clusters; several parameters are directed. Furthermore, Foot-traffic motivation impacts transport distance types of use and other tasks.

3.5. Step 5 Zoning of Master Plan in Urban Development
When approximated, the zoning of the master plan has been including the selection of public transport elements, recommending paths, and designing the station and stop places. The public transport encompasses rail, bus, tram, express trains and trains. This architectural feature aims to create a stable and efficient network, allowing people to use public transit rather than personal cars to minimize traffic jams and minimize carbon footprint. The availability of parking facilities of this agenda is to encourage the parking of commuters in strategic locations that provide links to different accessible public transit services, thus minimizing traffic in the urban grid.

3.6. Step 6 Placement of Building Elements

Besides, the architectural message and placement of building elements influence other requirements of the results, such as the access to views of buildings (premium views) with attractive features or panoramas, which will translate into higher rates of rental and sales for developers. The adjustments have been reviewed iteratively and result in the final developmental master plan, which finally led to a proposal being approved by the proper governing body and to the requisite regulatory documents such as a zoned request, which specifies the constraints on the construction of any land use division for each Development process.

4. Factors of Environmental Facility Planning in Urban Fabric Indicator Concept

The morphology of the physical elements within a certain environment is expressed in the urban Development material. In general, figure-ground analysis is used to standardize the city's fabric while considering the structure as 'item' and space as 'context,' without a detailed definition, it is impossible to compare complicated and related structures compositions. This paper aims to incorporate many systematic metrics to carry out quantitative urban fabric assessments.

4.1. The Density of Urban Planning

The old city has a compact urban fabric of houses and town spaces on the human scale, resulting in sluggish development and self-reconstruction. Density can be seen as a standardized construction cover on a given plot, representing the spatial contrast between
figure and land. To some point, planners and architects may foresee and discern, according to density, particular urban types.

\[Density = \frac{\sum T_j}{T_c} \]

(1)

Where, \(T_j \) –indicates each building for footprint coverage with urban Development block, \(T_c \) –indicates the block area of urban cities as shown in Equation 1,

4.2. The compactness of Urban Planning

The allocation and spatial distribution of buildings within Urban Cities and the complement of Density is defined with compactness. The compactness formulation is based on an urban extension, and collection calculation model, as given by,

\[D = \frac{\sum e(k,l)}{M(M-1)/2} \]

(2)

e(k,l) –indicates the Cells raster urban buildings, \(M \) –Total Number of Cells raster. The commodity has been standardized by a standard circular sample to mitigate the prejudice of Urban Planning, as shown in Equation 2. A raster is used to measure the answer, and the raster resolution has been uniformed in advance.

4.3. Variation of Urban Planning

The Gestalt psychology reveals that social-emotional processing practices as an honesty of grouping with relation, similitude, continuity, closure, symmetry, and parallelism. This theory allows for the movement of footsteps to display a certain time, whether the footsteps are similar to each other and of an equal dimension. The variance coefficient is defined as the relationship between norm and mean deviation in:

\[Variance = \frac{\Sigma (T_j-T^2)}{M(M-1)/2} \]

(3)

Where \(T_j \) –indicates the building size of Footprint, and \(T_{mean} \) –indicates the size values of footprint buildings and \(M \) –indicates the total number of the building of urban development, as shown in Equation 3.

4.4. Fragment of Urban Development
To characterize urban fabrics, finesse and homogeneity are necessary for Urban Development. Furthermore, identical density constraints, a single building, and a group of buildings might be different. The sophistication of the urban fabric relies on the number and composition of buildings. An improved perimeter-area proportion has been used to calculate a patch surface complexity relative to a regular square of the same dimension, thus reducing the issue created by various surface sizes. In a landscape ecological study, this measure has been widely applied in Urban Development. The following development has been established for urban textiles fragmentation that is given by,

\[\text{Fragment} = 1 - \frac{4 \sqrt{T_j}}{Q} \] (4)

Where, \(T_j \) – indicates each Building of Footprint within an urban Development Block, and \(Q \) – indicates the Urban Buildings of the perimeter has been tested as shown in Equation 4.

4.5. The cohesion of Urban Development

The cohesion is a predictor counterpart to fragmentation, which is used to define the mixture of urban building. First, it is used to measure the fragmentation of urban planning. Secondly, below a predefined threshold, the building footprint forms have been added into patches, and fragmentation is measured in Urban Planning. Thirdly, the cohesion is determined according to the absolute value of the gap is given below,

\[\text{Cohesion} = |G - G'| \] (5)

Where, \(G \) – indicates the aggregation of the shape of Fragment, and \(G' \) – indicates the aggregation of Fragment in after shape, as shown in Equation 5.

5. RESULT AND DISCUSSION

The 97 blocks have been computed with urban Development blocks in addition to these five measures such as Density, Compactness, Fragment, Variation, Cohesion offers a data processing description. The comparative analysis is given below according to histograms,

Table 1 Comparative Analysis of Density, Compactness, Fragment, Variation, and Cohesion
Parameter Coefficient	Fragment	Density	Variation	Cohesion	Compactness
1	1.245	0.985	1.352	2.324	1.654
2	1.758	0.975	1.245	2.456	1.752
3	1.264	0.962	1.642	2.457	1.825
4	1.247	0.935	1.247	2.543	1.725
5	1.852	0.942	1.547	2.785	1.925

In this Section, the number of buildings has been used in the matrix of the correlation coefficient to analyse filling in urban Development blocks in addition to these five measures, such as Density, Compactness, Fragment, Variation, Cohesion. For the linear test, the Parameter coefficient of Spearman is used in a monotonic test, as shown in Table 1. Furthermore, to determine if these measures are correlated, all coefficients are linked to a dispersion map, as given below.

![Fig 4 Analysis of Fragment Value](image)

The medium value is placed along with the symmetrical axis of the standard curve for these Fragment Values are indicated. In contrast, the other costs are increasingly falling from the mean to the two curve ends, showing the spectrum of the dataset between low to high.
values. In all three metrics, the urban fabric is well dispersed. However, the distribution tends to be more distorted whenever the authors consider division and stability principles.

![Fig 5 Analysis of Density (%)](image)

The distribution has been biased to the right side for fragmentation, and most of the values are distributed at high values of 1.852, which suggests a high degree of fragmentation. Furthermore, the urban Environment planning fabric consists of fine grain buildings which have development area. Meanwhile, the value of the stability is left-squared and centered on low amounts of around 1.642, suggesting a condition close to that of the costs of Variation, as shown in Figure 5. Therefore, the urban structure of the region along the River is typically noticeable, where several minute spaces might create an extremely complex urban framework within the buildings.
The association has been density graded as zero (less than 0.942), poor (0.935), mild (0.962), or strong (0.985) depending on the values. To further evaluate if two variables are correlated, scatter plots can be used, as shown in Figure 6. As a result, a certain degree of similarity between four pairs of variables and two are strongly correlated in Density. Among these metrics are a very strong nonlinear fragmentation and the number of buildings at Spearman’s density coefficient of 0.985 with a value of 0.975. When the researchers look at this fragmented map, the fragmentation and Compactness value rise easily to nearly 2.452 homes in the Urban Environment planning. The Compactness value, then continues to stabilize, steadily rises when buildings in this urban development planning fill the whole block.
Besides, Density and compactness are strongly linear, with the coefficient of parameter and Pearson, at approximately 2.324, being remarkably similar, as shown in Figure 7. The scatter plot reveals that the greater association occurs around high values, suggesting how the urban blocks have been bound. In this situation, new buildings tend to be built near the old ones because of the block borders and local roads. Furthermore, a piece of the lightweight urban fabric is simpler to shape. The urban landscape analyzes the value-dependence trend, the association between values, and the relation between indicator values and spatial consistency. Urban Blocks had been broken down into three medium to moderate densities, and further analyses between the three groups were performed. The findings indicate that both of these metrics displayed a unique significance spectrum.
Medium (0.962), density and medium Fragment (1.264) blocks most frequently have a simple and standardized urban structure. Three main measures spread uniformly throughout the mean, even though there are minor differences in variety and harmony in urban planning, as shown in Figure 8. The characteristics of the original urban textile without too much interference has been inherited from most medium-density blocks and blend in well with the background. High-density (0.985) blocks and high Fragment (1.852) are hardly left stable, which markers tend to be more spaced over the average from each other. Furthermore, it could impede public space and disrupt the original urban framework for these blocks for urban development. Low-density (0.935) and low Fragments (1.245) unions face additional obstacles to maintain a cohesive urban fabric, with all metrics substantially fluctuating. However, to make stable the unreasonable demolitions and major construction programmers, the historical heritage is maintained in these blocks for Urban Environment. The imminent collapse of the urban structure suggests an indiscriminate turning point in both physical and social urbanization, transitioning from the corporate clinging to the land to a community in motion.

6. CONCLUSION
The hybridity of urban Environment Development planning on the scale of the blocks is defined by various physical properties through the research discussed in this paper. Furthermore, urbanization is motivated by environmental, economic, and cultural influences; these influences essentially represent a physical landscape that has the most significant effect on everyday life and thus demands more consideration in long-term planning. This study shows that the variety of hybrid urban environmental planning plays a significant role in fixing the urban background that is often overlooked in many fast-emerging Chinese cities. Besides, human mobility has steadily improved, along with the exponential growth of transport technology and accelerated globalization. In the coming years, people from diverse cultural backgrounds are improving the hybridity of urban fabric into a more specific architecture. Finally, this paper explores the impact of environmental factors such as Density, Compactness, Fragment, Variation, Cohesion in the urban territory design, and management has been improved by using systematic model.

Ethics Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author Statement

Conception and design of study: Ling Yang, Minyuan Zhu

Acquisition of data: Ling Yang

Analysis and/or interpretation of data: Minyuan Zhu

REFERENCE

1. Huo X, Ann TW, Darko A, Wu Z. Critical factors in site planning and design of green buildings: A case of China. Journal of Cleaner Production. 2019 Jun 10;222:685-94.
2. Xie Z. Key factors influencing landscape design in informatized urban development. Ekoloji. 2019 Feb 28;28(107):3535-40.

3. Fan Y, Fang C, Zhang Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. Journal of Cleaner Production. 2019 Aug 20;229:289-98.

4. Rizk-Allah, R. M., Hassanien, A. E., & Elhoseny, M. (2018). A multi-objective transportation model under neutrosophic environment. Computers & Electrical Engineering, 69, 705-719.

5. Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1-13.

6. Sathishkumar, V. E., Cho, Y., & Park, J. (2020). Seoul Bike Trip Duration Prediction using Data Mining Techniques. IET Intelligent Transport Systems.

7. He BJ, Ding L, Prasad D. Wind-sensitive urban planning and design: Precinct ventilation performance and its potential for local warming mitigation in an open midrise gridiron precinct. Journal of Building Engineering. 2020 May 1;29:101145.

8. Zhou Q, Leng G, Su J, Ren Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Science of the Total Environment. 2019 Mar 25;658:24-33.

9. Daniel, A., Subburathinam, K., Muthu, B., Rajkumar, N., Kadry, S., Mahendran, R. K., & Pandian, S. (2020). Procuring Cooperative Intelligence in Autonomous Vehicles for Object Detection through Data Fusion Approach. IET Intelligent Transport Systems.

10. Zhou H, Gao H. The impact of urban morphology on urban transportation mode: A case study of Tokyo. Case Studies on Transport Policy. 2020 Mar 1;8(1):197-205.

11. Gao, J., Wang, H., & Shen, H. (2020, May). Smartly handling renewable energy instability in supporting a cloud datacenter. In 2020 IEEE international parallel and distributed processing symposium (IPDPS) (pp. 769-778). IEEE.

12. Zhang Z, Liu J, Gu X. Reduction of industrial land beyond Urban Development Boundary in Shanghai: Differences in policy responses and impact on towns and villages. Land Use Policy. 2019 Mar 1;82:620-30.
13. Falco E, Kleinhans R. Digital participatory platforms for co-production in urban development: A systematic review. In Crowdsourcing: Concepts, Methodologies, Tools, and Applications 2019 (pp. 663-690). IGI Global.

14. Douglas O, Russell P, Scott M. Positive perceptions of green and open space as predictors of neighbourhood quality of life: implications for urban planning across the city region. Journal of environmental planning and management. 2019 Mar 21;62(4):626-46.

15. Zhang J, Tan PY, Zeng H, Zhang Y. Walkability assessment in a rapidly urbanizing city and its relationship with residential estate value. Sustainability. 2019 Jan;11(8):2205.

16. Radcliffe JC. History of water sensitive urban design/low impact development adoption in Australia and internationally. In Approaches to Water Sensitive Urban Design 2019 Jan 1 (pp. 1-24). Woodhead Publishing.

17. Wu Y, Shen L, Zhang Y, Shuai C, Yan H, Lou Y, Ye G. A new panel for analyzing the impact factors on carbon emission: A regional perspective in China. Ecological Indicators. 2019 Feb 1;97:260-8.

18. Liu Z, Ren Y, Shen L, Liao X, Wei X, Wang J. Analysis on the effectiveness of indicators for evaluating urban carrying capacity: A popularity-suitability perspective. Journal of Cleaner Production. 2020 Feb 10;246:119019.

19. Kim HS, Lee GE, Lee JS, Choi Y. Understanding the local impact of urban park plans and park typology on housing price: A case study of the Busan metropolitan region, Korea. Landscape and Urban Planning. 2019 Apr 1;184:1-1.

20. Bibri SE, Krogstie J, Kärholm M. Compact City planning and development: emerging practices and strategies for achieving the goals of sustainable development. Developments in the Built Environment. 2020 Jun 27:100021.

21. Hunter RF, Cleland C, Cleary A, Droomers M, Wheeler BW, Sinnett D, Nieuwenhuijsen MJ, Braubach M. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment international. 2019 Sep 1;130:104923.
22. Zheng Y, Lan S, Chen WY, Chen X, Xu X, Chen Y, Dong J. Visual sensitivity versus ecological sensitivity: An application of GIS in urban forest park planning. Urban Forestry & Urban Greening. 2019 May 1;41:139-49.

23. Han H, Sahito N, Thi Nguyen TV, Hwang J, Asif M. Exploring the features of sustainable urban form and the factors that provoke shoppers towards shopping malls. Sustainability. 2019 Jan;11(17):4798.

24. He BJ, Zhu J, Zhao DX, Gou ZH, Qi JD, Wang J. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land use policy. 2019 Jul 1;86:147-57.

25. Zhang Z, Meerow S, Newell JP, Lindquist M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening. 2019 Feb 1;38:305-17.

26. Büdenbender M, Aalbers MB. How subordinate financialization shapes urban development: The rise and fall of Warsaw’s Służewiec business district. International Journal of Urban and Regional Research. 2019 Jul;43(4):666-84.

27. Meng X, Tan X, Wang Y, Wen Z, Tao Y, Qian Y. Investigation on decision-making mechanism of residents’ household solid waste classification and recycling behaviors. Resources, Conservation and Recycling. 2019 Jan 1;140:224-34.

28. Holz-Rau C, Scheiner J. Land-use and transport planning—A field of complex cause-impact relationships. Thoughts on transport growth, greenhouse gas emissions and the built environment. Transport Policy. 2019 Feb 1;74:127-37.

29. Yan C, Guo Q, Li H, Li L, Qiu GY. Quantifying the cooling effect of urban vegetation by mobile traverse method: A local-scale urban heat island study in a subtropical megacity. Building and Environment. 2020 Feb 1;169:106541.

30. Oliveira GM, Vidal DG, Viterbo LM, Maia RL. Measuring the implementation of Sustainable Development Goals at a local level: The WeGIdx index. In Universities and Sustainable Communities: Meeting the Goals of the Agenda 2030 2020 (pp. 215-245). Springer, Cham.