Microbial diversity and biogeochemical cycling in soda lakes

Dimitry Y. Sorokin · Tom Berben · Emily Denise Melton · Lex Overmars · Charlotte D. Vavourakis · Gerard Muyzer

Received: 30 May 2014 / Accepted: 26 June 2014 / Published online: 26 August 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.

Keywords Biogeochemical cycling · Haloalkaliphile · Halophile · Meta-omics · Soda lake · Systems biology

Introduction

Soda lakes are found worldwide, predominantly in arid and semi-arid environments, such as the Rift Valley in East Africa, the rain-shadowed regions of California and Nevada, and the Kulunda Steppe in South Siberia (Russia) (Fig. 1). Soda lakes are formed in depressions where ground water rich in carbon dioxide, but poor in magnesium and calcium, leaches sodium from sodium-rich rocks. The absence of dissolved divalent cations is crucial to avoid carbonate precipitation. During arid climate conditions in closed basins, carbonate salts become more concentrated due to increased evaporation rates, leading to the formation of natural sodium carbonate/bicarbonate-buffered systems with elevated pH values (9.5–11) and salt concentrations up to saturation (Tindall 1988; Grant et al. 1990). The chemical composition of the prevailing salts leads to perfect conditions for haloalkaliphiles to thrive. Natronophilus indicates a preference for sodium carbonates over sodium chloride, the dominant salt in thalassic (hyper)saline environments, and is based on the fundamental difference in the electrolytic and osmotic properties of these two sodium salts (Banciu et al. 2004; Banciu and...
Low and moderately saline soda lakes (total salinity between 35 and 50 g/L and 50 and 250 g/L, respectively) are highly productive and harbor fully functional and diverse haloalkaliphilic microbial communities responsible for the cycling of chemical elements, such as carbon, nitrogen, and sulfur. Under hypersaline conditions (total salinity >250 g/L) the diversity is restricted to a few extremely salt-tolerant specialists (Ochsenreiter et al. 2002; Mesbah et al. 2007). The carbon and nitrogen cycles are presumably partly inhibited, as follows from the lack of cultured methanotrops at moderate salinity (Sorokin et al. 2000; Trotsenko and Khmelenina 2002) and the cessation of nitrification at high salt concentrations (Sorokin 1998).

Soda lakes are ‘treasure troves’ for biotechnologists, because they harbor extremophiles with the potential to produce enzymes (extremozymes) that are active both at a high pH and high salinity. Alkali-stable extracellular proteases, lipases, and cellulases have been used for the production of improved laundry detergents (Horikoshi 2006). Halo-alkali-stable cellulases can also be used to release sugars from recalcitrant lignocellulose in agricultural waste for the production of bioethanol. These enzymes have an additional advantage, because ionic liquids (organic analogues of inorganic salts) are frequently used during pretreatment in the solubilization of (ligno)cellulosic biomass (Zhu 2008; Zavrel et al. 2009; Zhang et al. 2011). Besides the discovery of novel hydrolases, a novel nitrile hydratase was isolated from the soda lake Actinobacterium Nitriliruptor alkaliphilus (van Pelt et al. 2008; Sorokin et al. 2009). Nitrile hydratases are important industrial enzymes that catalyze the hydration of a broad scope of nitrile compounds into commercially more valuable amides (e.g. acrylamide). Apart from these extremozymes, whole cells of haloalkaliphiles can be used for the sustainable removal of toxic sulfur compounds from wastewater (Janssen et al. 2009; de Graaff et al. 2011) and gas streams (van den Bosch et al. 2007; Sorokin et al. 2008f; Janssen et al. 2009), and for the biodegradation of hydrocarbons and other organic (e.g. nitro-aromatics) and inorganic (e.g. arsenic, uranium) pollutants (Sorokin et al. 2012c).

Here we present an overview of the cultured (Fig. 2 and Table 1) and uncultured bacterial and archaeal diversity of coastal and inland soda lakes worldwide.
soda lakes and focus on the role of these microorganisms in the biogeochemical carbon, nitrogen, and sulfur cycles. In addition, we discuss the molecular mechanisms that allow these haloalkaliphilic prokaryotes to thrive at the double-extreme conditions of high pH and high salinity.

**Cultured diversity and their role in biogeochemical cycles**

**The carbon cycle**

**Carbon fixation**

Autotrophic primary producers in soda lakes able to fix inorganic CO₂ into organic polymers include oxygenic and anoxygenic haloalkaliphilic phototrophs and some chemolithoautotrophs (Fig. 3a1). The primary production in most soda lakes is high due to a dense population of haloalkaliphilic cyanobacteria (Melack 1981; Kompantsева et al. 2009). They include unicellular and filamentous heterocystous and non-heterocystous groups. The planktonic cyanobacterial forms, which are dominant in tropical soda lakes in Kenya and Ethiopia (Fig. 1), include the genera *Arthrospira* (*Spirulina*), *Anabaenopsis* and *Cyanospira* (Dubinin et al. 1995; Ballot et al. 2009; Dadheech et al. 2013; Krienitz et al. 2013). Hypersaline soda brines are dominated by the extremely haloalkaliphilic unicellular cyanobacterium *‘Euhalothece natronophila’* (Mikhodyuk et al. 2008). Haloalkaliphilic cyanobacteria are most dominant at moderate salinity, whilst at higher salt concentrations only extremely salt-tolerant unicellular green algae, such as *Dunaliella viridis* and *Picocystis salinarium*, can thrive (Gerasimenko et al. 1999; Krienitz et al. 2012; Roesler et al. 2002).

In the south Siberian soda lakes (Kulunda Steppe, Altai) (Fig. 1), where the salinity ranges from 50 to 400 g/l, the most common oxygenic phototropic communities are represented either by floating aggregates of the green algae *Ctenocladus* and filamentous cyanobacteria or by filamentous cyanobacterial biofilms. The biofilms mainly contain haloalkaliphilic members of the genera *Geitlerinema* and *Nodosilinea* and, occasionally, *Leptolyngbya*. Members from the genera *Arthrospira*, which are dominant in eutrophic soda lakes, are virtually absent in this area (O. Samyлина, personal communication). At reduced salinity a mass development of heterocystous *Anabaenopsis* had been observed in East-African soda lakes (Krienitz et al. 2013).

Cyanobacteria are traditionally considered as the only diazotrophic component of the oxygenic phototrophic community (Fig. 3b2). However, as they are only moderately salt-tolerant, the identity and mechanisms of primary nitrogen fixation in hypersaline soda lakes remain enigmatic.

Anoxygenic phototrophs, represented by the haloalkaliphilic members of *Chromatiales* (*Thiorhodospira, Thiorhodovibrio*) at moderate salinity and *Ectothiorhodospiraceae* (*Ectothiorhodospiral Halorhodospira*) at high salinity, also contribute to the primary production in soda lakes (Gorlenko 2007; Kompantsева et al. 2009). ‘Secondary’ primary producers represented by aerobic chemolitho-autotrophic bacteria also contribute to inorganic carbon fixation in soda lakes. Haloalkaliphilic representatives of nitrifying, sulfur-oxidizing, H₂-oxidizing, and carboxydotrophic bacteria have recently been isolated from soda lakes and characterized (Sorokin and Kuenen 2005; Grant and Sorokin 2011).

**Heterotrophic carbon utilization**

The heterotrophic bacteria, responsible for the primary degradation of organic matter produced by the autotrophic bacteria, include aerobes and fermentative anaerobes, which in turn, are composed of two subgroups: the hydrolytics (Fig. 3a2), which degrade polymers, and the secondary heterotrophs (‘dissipotrophs’) (Figs. 3a4) that utilize the resulting monomers.

Aerobic hydrolytics, which produce alkali-stable hydrolases, have been the focus of many studies in the past, because of the high application potential of their enzymes in industry (Horikoshi 2004, 2006). However, only few of the known isolates were recovered from soda lakes. They mostly include aerobic Firmicutes, such as species within the genus *Bacillus* with various glycosidase activities and several Actinobacteria, such as *Cellulomonas* and *Dietzia*, and Gammaproteobacteria, such as the amylolytic *Alkalimonas* (Grant and Sorokin 2011). Recently, it was shown that aerobic haloalkaliphilic Actinobacteria and Gammaproteobacteria from the genus *Marinimicrobium* from soda lakes and soda soils can utilize chitin as growth substrate (Sorokin et al. 2012a). So far, only a single pure culture of an anaerobic low salt-tolerant cellulolytic bacterium has been recovered from a soda lake represented by *Clostridium alkalicellum* (Zhilina et al. 2005a). Two recently described fermentative anaerobic haloalkaliphiles from soda lakes can use pectin as substrate either at moderate (*Natronoflexus pectinovorans* from the Bacteriodetes) or high salt concentration (*Natronovirga* from the *Clostridiales*) (Sorokin et al. 2011a, 2012b) (Fig. 3a3). Additionally, two deep lineages of fermentative haloalkaliphilic bacteria specialized to exclusively utilize chitin as growth substrate were isolated from soda lakes. Both groups belong to the phylum TG3, which, until now, only included uncultured bacteria (Sorokin et al. 2012a). The high salt-
tolerant group has recently been described as *Chitinivibrio alkaliphilus* (Sorokin et al. 2014a).

Secondary (‘dissipotrophic’) heterotrophs, i.e., those that utilize monomeric organic compounds such as sugars, amino acids, organic acids, and alcohols are among the best represented groups of haloalkaliphiles isolated so far from soda lakes (Fig. 3a4). Among the aerobes, haloalkaliphilic members of the genus *Halomonas* from the Gammaproteobacteria, *Bacillus* from the Firmicutes, and Actinobacteria are the most abundant (Duckworth et al. 1996; Grant and Sorokin 2011). Soda lake fermentative anaerobes are dominated by haloalkaliphilic representatives of Clostridia, such as members of the genera *Anoxybacterium*, *Anaerovibra*, *Alkaliphilus*, *Natronaerobius*, *Natronaerobacterium*, and certain species of *Anaerobranca*, *Sporochoeta*, and *Anaerobacillus* (Zavarzin et al. 1999; Zavarzin and Zhilina 2000; Bowers et al. 2009; Grant and Sorokin 2011; Mesbah and Wiegel 2012) (Fig. 3a5). Among the secondary anaerobes, which function during the last stage of organic carbon degradation, homoacetogens (Fig. 3a7) and methanogens (Fig. 3a6) represent the least studied functional groups of soda lake microbial communities. The genera *Tindallia*, *Natroninicola* (*Clostridiales*), and *Natroniella acetogena* (*Halanaerobiales*) represent heterotrophic fermentative haloalkaliphilic acetogens, utilizing amino acids and alcohols as substrates (Kevbrin et al. 1998; Zhilina et al. 1995, 1998). Hydrogenotrophic acetogens in soda lakes have only recently been discovered. The only culturable organism is represented by a novel, extremely salt-tolerant haloalkaliphilic member of the *Halanaerobiales* described as *Fuchsiella alkaliacetigena* (Zhilina et al. 2012).

**Methane cycle**

The methane cycle has been explored in soda lakes as an important part of the microbial carbon cycle. Substantial efforts have been made to detect methanogenic activity in anaerobic sediments from North American and Central Asian soda lakes (Fig. 1). The results clearly demonstrated a dominance of methylo trophic methanogenesis and absence of acetoclastic processes, while the results concerning hydrogenotrophic methanogenesis were inconclusive (Oremland and Miller 1993; Namsaraev et al. 1999; Sorokin et al. 2004a; Nolla-Ardèvol et al. 2012). Some of the key haloalkaliphilic players in soda lake methanogenesis have been isolated in pure culture and described, including two groups of methylo trophs, such as *Methanobus taylorii* (moderate salinity) and *Methanosalum zhilinae* (high salinity), and a highly salt-tolerant lithotroph *Methanocalculus natronophilus* (Mathrani et al. 1988; Oremland and Boone 1994; Kevbrin et al. 1997; Zhilina et al. 2013).

Aerobic methanotrophs in soda lakes are dominated by low salt-tolerant alkaliphiles from the Gammaproteobacterial genus *Methylomicrobium* (Sorokin et al. 2000; Trotsenko and Khmelenina 2002). Assuming that methanotrophic alkaliphiles cannot grow at salinities above 1.5 M of total Na⁺, while methane production still occurs at these high salinity values, the methane cycle in hypersaline soda lakes may be incomplete, similar as in hypersaline chloride–sulfate lakes (Conrad et al. 1995).

The nitrogen cycle

Denitrification in soda lakes is performed by heterotrophs dominated by extremely salt-tolerant alkaliphilic representatives of the genus *Halomonas* (Shapovalova et al. 2009) and by several facultative anaerobic lithotrophs, such as representatives of the genus *Thioalkalivibrio* (see below) and the *Alkalilimnicola–Alkalispirillum* group of the Gammaproteobacteria (Sorokin et al. 2006; Hoeft et al. 2007) (Fig. 3b1). Whether dissimilatory ammonium competes with denitrification in soda lakes has not been resolved. So far, the alkaliphiles with this metabolism have only been found in bioreactors operating at high pH, i.e., *Desulfuri spirillum alkaliphilum* from the phylum Chrysiogenetes (Sorokin et al. 2007b) and *Sulfurospirillum alkalitolerans* from the Epsilonproteobacteria (Sorokin et al. 2013a).

Heterotrophic anaerobic fermentative haloalkaliphiles actively fix nitrogen in soda lakes and soda soils (Sorokin et al. 2008c) (Fig. 3b2). These organisms are represented by two groups of the Firmicutes: a moderate salt-tolerant *Anaerobacillus diazotrophicus* (reclassified from *Bacillus alkalidiazotrophicus*) (Sorokin et al. 2008d) and a highly salt-tolerant *Natronobacillus azotificans* (Sorokin et al. 2008e). Furthermore, the microbial activity and presence of the *nifH* gene, encoding a nitrogenase, have also been detected in two other soda lake anaerobes: the iron-reducing *Geoalkalibacter ferrhydriticus* (Zavarzina et al. 2006) and the cellulolytic *Clostridium alkalicellulosi* (Zhilina et al. 2005a). Additionally, the *nifH* gene has been detected in several soda lake anoxic phototroph representatives (Tourova et al. 2007), which indicates that anoxygenic phototrophs may also contribute to nitrogen fixation. Not much research has been conducted on nitrogen fixation in soda lakes at oxic conditions. However, a major suspect is a group of heterocystous low salt-tolerant alkaliphilic cyanobacteria from the *Anabaena* group (*Anabaenopsis* and *Nodularia*) (O. Samylina, personal communication). Nitrogen fixation activity has been
documented for aggregates of filamentous non-heterocystous *Phormidium*-like cyanobacteria and green algae belonging to the *Ctenocladus* in the oxic littoral zone of Mono Lake (Oremland 1990). However, it was not clear whether the phototrophic or the heterotrophic bacteria were responsible for the observed diazotrophy.

The ammonium produced during nitrogen fixation in soda lakes can be oxidized to nitrate via nitrite by haloalkaliphilic nitrifiers (Fig. 3b4). In soda lakes and soda soils ammonium oxidation to nitrite is performed by an extremely alkali-tolerant subpopulation of *Nitrosomonas halophila*, whilst nitrite oxidation can be performed by the moderately alkali-tolerant *Nitrobacter alkalicus* (Sorokin and Kuenen 2005). Since the maximum salt concentration for nitrification in soda lakes is 1 M of total Na\(^+\) (Sorokin 1998), the nitrogen cycle is inhibited in hypersaline soda lakes. In addition, the NH\(_3\)/NH\(_4^+\) equilibrium at high pH favors the formation of toxic NH\(_3\) and, therefore, causes potential N-loss from the ecosystem (Tindall 1988; Sorokin and Kuenen 2005). Therefore, the nitrogen cycle in soda lakes, especially in hypersaline ones, may depend on an externally supplied source of NO\(_3^−\).

The sulfur cycle

*Sulfidogenesis*

The dissimilatory reduction of oxidized sulfur compounds such as sulfate, sulfite, thiosulfate, and sulfur, resulting in sulfide production (sulfidogenesis) are important biogeochemical processes within soda lakes (Sorokin et al. 2010a, 2011b) (Fig. 3c1). Several obligatory anaerobic and obligatory haloalkaliphilic bacteria can perform these reactions. Members of the deltaproteobacterial genera *Desulfonatronum*, *Desulfonatronovibrio*, and *Desulfonatronospira* represent lithotrophic sulfate-reducing bacteria (SRB) in soda lakes (Sorokin et al. 2011c). They can grow either as typical SRB by oxidizing hydrogen, formate or short-chain organic compounds as electron donor, and sulfate, thiosulfate or sulfite as electron acceptor, or they can obtain energy by thiosulfate or sulfite disproportionation (Sorokin et al. 2008a, 2011b). Heterotrophic SRB in soda lakes belong to the group of incomplete oxidizers, utilizing either propionate (*Desulfobulbus alkaliphilus*) or butyrate (*Desulfobotulus alkaliphilus*) as e-donor/C-source with sulfate or thiosulfate as e-acceptor and forming acetate as a final product (Sorokin et al. 2010b; Sorokin et al. 2012d). So far, only a single haloalkaliphilic SRB, described as *Desulfonatronobacter acidivorans*, has been found in soda lakes, which belongs to the complete oxidizers (Sorokin et al. 2011d).
It can oxidize several volatile fatty acids (VFA) completely to CO$_2$ with sulfate or thiosulfate as e-acceptor, but cannot utilize externally provided acetate. Haloalkaliphilic syntrophic associations of reverse acetogenic Clos-tridiales members and lithotrophic SRB drive acetate oxidation in soda lakes under sulfate-reducing conditions. At low salt concentrations the association includes “Candidatus Contubernalis alkalaceticum” and Desulfonatronum cooperativum (Zhilina et al. 2005b), whilst at extremely high salt concentrations the association contained “Candidatus Syntrophonatronum acetioxidans” and Desulfonatronospira sp. (Sorokin et al. 2014b).

Elemental sulfur reduction in soda lakes is probably not performed by SRB, since none of the pure cultures of haloalkaliphilic SRB can grow with sulfur as e-acceptor. Instead, three different lineages of obligatory anaerobic haloalkaliphiles are implicated in sulfur reduction. In all three, the actual e-acceptor is not sulfur itself, but polysulfide (S$_x^{2-}$) forming abiotically at high pH from sulfur and sulfide. The first, Desulfurispira natronophila, belongs to the phylum Chrysiogenetes (Sorokin and Muyzer 2010). The second group of sulfur/polysulfide-respiring haloalkaliphiles, belongs to the Firmicutes and was isolated from soda lakes with formate as e-donor. A moderately salt-tolerant representative is described as Desulfuribacillus alkaliarsenatis (Sorokin et al. 2012d). Apart from sulfur, it can also use arsenate and thiosulfate as e-acceptors. Third, at saturated soda concentrations, microbial-mediated sulfur reduction can also be performed by Natroniella sulfidigena, which belongs to the Halanaerobiales. It can use acetate, H$_2$, and formate as e-donors for sulfur/polysulfide-dependent respiration (Sorokin et al. 2011d).

Elemental sulfur disproportionation

Two anaerobic low salt-tolerant alkaliphilic anaerobes from soda lakes, Dethiobacter alkaliphilus and Desulfuri-vibrio alkaliphilus, originally described as sulfur and thiosulfate reducers (Sorokin et al. 2008b), have the capability to grow chemolithoautotrophically by sulfur or polysulfide disproportionation (Fig. 3c3). Remarkably, they are the first alkaliphiles with such a physiology, and in contrast to the neutrophilic sulfur disproportionators, they do not require the presence of ferric iron to precipitate toxic sulfide compounds (Poser et al. 2013).

Sulfur-oxidizers

Sulfide produced by sulfidogens can be oxidized to elemental sulfur or sulfate by phototrophic and chemotrophic sulfur oxidizing bacteria (SOB) (Fig. 3c2). In soda lakes, the
| Genus                  | Species                               | Sample origin                              | Source                        | Genome Size (Kb) | Gene count | GC (%) |
|-----------------------|---------------------------------------|--------------------------------------------|-------------------------------|------------------|------------|--------|
| Thioalkalivibrio      | *Tv. denitrificans*                   | Lake Bogoria (Kenya)                       | Sorokin et al. (2001c)       | NA               |            |        |
|                       | *Tv. jannaschii*                      | Mono Lake (CA, US)                         | Sorokin et al. (2002a)       | NA               |            |        |
|                       | *Tv. versatus*                        | Siberia (Tuva region)                      | Sorokin et al. (2001a)       | PD 5844          | 5597       | 66     |
|                       | *Tv. nitratii*                        | Lake Nakuru (Kenya)                        | Sorokin et al. (2001a)       | NA               |            |        |
|                       | *Tv. thiocyanoxidans*                 | Kulunda Steppe (Siberia, Russia)           | Sorokin et al. (2002b)       | PD 2765          | 2677       | 66     |
|                       | *Tv. paradoxus*                       | Kenya/Wadi Natrun (Egypt)                  | Sorokin et al. (2002b)       | PD 3364          | 3233       | 67     |
|                       | *Tv. nitratireducens*                 | Lake Fazda (Wadi Natrun, Egypt)            | Sorokin et al. (2003)        | Complete 4002    | 3875       | 66     |
|                       | *Tv. thiocyanodinitrinicus*           | Wadi Natrun (Egypt)/Kulunda steppe (Siberia, Russia) | Sorokin et al. (2004b) | PD 3747 | 3679 | 65 |
|                       | *Tv. halophilus*                      | Stamp Lake (Kulunda Steppe, Russia)        | Banciu et al. (2004)         | Complete 1932    | 1734       | 47     |
| Thioalkalimicrobium    | *Tn. cyclicum*                       | Mono Lake (CA, US)                         | Sorokin et al. (2002a)       | Complete 2158    | 2111       | 46     |
|                       | *Tn. aerophilum*                      | East African Rift Valley (Kenya)/Siberia (Russia) | Sorokin et al. (2001a) | Complete |            |        |
|                       | *Tn. sibericum*                       | Siberia (Russia)                           | Sorokin et al. (2001a)       | NA               |            |        |
|                       | *Tn. microaerophilum*                 | Soap Lake (WA, USA)                        | Sorokin et al. (2007a)       | NA               |            |        |
| Thioalkalibacter       | *Ta. halophilus*                      | Kulunda Steppe (Siberia, Russia)           | Banciu et al. (2008)         | NA               |            |        |
| Thioalkalispira        | *Ts. microaerophilum*                | Lake Fazda (Wadi Natrun, Egypt)            | Sorokin et al. (2002c)       | NA               |            |        |
| Ectothiorhodospira     | *Es. variabilis*                      | Lake Um-Risha (Wadi Natrun, Egypt)         | Gorlenko et al. (2009)       | NA               |            |        |
|                       | *Es. vacuolata*                       | L. Bogoria, L. Nakuru, L. Elmentieta, Crater Lake, L. Magadi (Kenya) | Imhoff et al. (1981) | NA |            |        |
| Thiorhodospira         | *Tr. sibirica*                        | Malyi Kasytui (Siberia, Russia)            | Bryantseva et al. (1999)     | NA               |            |        |
| Ectothiorhodosinus     | *Ers. mongolicus*                     | Dzun Uldziin Nur (Mongolia)                | Gorlenko et al. (2004)       | NA               |            |        |
| Desulfonatronum        | *Dn. thiodismutans*                   | Mono Lake (CA, US)                         | Pikuta et al. (2003a)        | IP               | NA         | NA     |
|                       | *Dn. lacustre*                        | Lake Khadyn (Tuva Region, Siberia, Russia) | Pikuta et al. (1998)         | PD 3791          | 3460       | 59     |
|                       | *Dn. thiautotrophicum*               | Tanatar-1 (Kulunda Steppe, Siberia, Russia) | Sorokin et al. (2011c)     | NA               |            |        |
|                       | *Dn. thiosulfatophilum*              | Picturesque (Kulunda Steppe, Siberia, Russia) | Sorokin et al. (2011c) | NA |            |        |
| Desulfonatronovichio   | *Dv. thiodismutans*                   | Tanatar-5 (Kulunda Steppe, Siberia, Russia) | Sorokin et al. (2011c) | NA |            |        |
|                       | *Dv. magnus*                          | Tanatar-5 (Kulunda Steppe, Siberia, Russia) | Sorokin et al. (2011c) | NA |            |        |
|                       | *Dv. hydrogenovorans*                 | Lake Magadi (Kenya)                        | Zhilina et al. (1997)        | NA               |            |        |
| Desulfonatronospira    | *Dns. thiodismutans*                  | Kulunda Steppe (Siberia, Russia)           | Sorokin et al. (2008a)       | PD 3971          | 3791       | 51     |
|                       | *Dns. delicata*                       | Wadi Natrun (Egypt)                        | Sorokin et al. (2008a)       | NA               |            |        |
| Desulfurispira         | *Dsfr. natronophila*                  | Kulunda Steppe (Siberia, Russia)           | Sorokin and Muyzer (2010)    | NA               |            |        |
| Desulfuribacillus      | *Db. alkalilarsenatis*                | Kulunda Steppe (Siberia, Russia)           | Sorokin et al. (2012a)       | NA               |            |        |
| Anaerococcus           | *Ab. alkalilacustre*                  | Lake Khadyn (Tuva Region, Siberia, Russia) | Zavarzina et al. (2009)     | NA               |            |        |
| Cyanospira             | *C. rippkae*                          | Lake Magadi (Kenya)                        | Florenzano et al. (1985)    | NA               |            |        |
|                       | *C. capsulata*                        | Lake Magadi (Kenya)                        | Florenzano et al. (1985)    | NA               |            |        |
| Clostridium            | *Cl. alkalicellum*                    | Lake Verkhnee Beloe (Buryatiya, Russia)    | Zhilina et al. (2005a, b)   | PD 5307          | 4473       | 32     |
| Genus            | Species                          | Sample origin                                      | Source                                  | Genome | Size (Kb) | Gene-count | GC (%) |
|------------------|----------------------------------|----------------------------------------------------|-----------------------------------------|--------|-----------|------------|--------|
| Natronobacillus  | N. azotofigens                   | Kulunda Steppe (Siberia, Russia)                   | Sorokin et al. (2008c)                 | NA     | NA        | NA         |        |
| Tindallia        | Td. magadii                      | Lake Magadi (Kenya)                                | Kevbrin et al. (1998)                  | NA     | NA        | NA         |        |
| Nitrobacter      | Nb. alkalicus                    | Kunkur Steppe (Siberia, Russia)                    | Sorokin et al. (1998)                  | NA     | NA        | NA         |        |
| Halomonas        | H. mongoliensis                  | Lake Dzun-Tukhem-Nur (Mongolia)                    | Boltianskaya et al. (2007)             | NA     | NA        | NA         |        |
|                  | H. kenensis                      | L. Bogoria, L. Nakuru, L. Elmentieta, Crater Lake, | Boltianskaya et al. (2007)             | NA     | NA        | NA         |        |
|                  |                                  | L. Magadi (Kenya)                                  |                                         |        |           |            |        |
| Methanohalophilus| M. zhilinae                      | Bosa Lake (Wadi Natrun, Egypt)                     | Mathrani et al. (1988)                 | Complete | 2138 | 2083 | 39  |
| (= Methanosalzum)|                                 |                                                    |                                         |        |           |            |        |
| Methylomicrobium | Mm. buryatense                   | Lake Khadyn (Siberia, Russia)                      | Kaluzhnaya et al. (2001);              | PD     | 5067      | 4530       | 49     |
|                  |                                  |                                                    | Sorokin et al. (2000)                  |        |           |            |        |
|                  | Mm. alcaliphilum                 | Shara-Nur (Tuva Region, Siberia, Russia)           | Kaluzhnaya et al. (2008)               | Complete | 4668 | 4083 | 49  |
|                  | Mm. kenyense                     | Soda lakes in Kenya                                 | Kaluzhnaya et al. (2008);              | NA     | NA        | NA         |        |
|                  |                                  |                                                    | Sorokin et al. (2000)                  |        |           |            |        |
| Methylophaga     | Mp. alcalica                     | Lake Khotontyn (Mongolia)                          | Doronina et al. (2003)                 | NA     | NA        | NA         |        |
|                  | Mp. natronica                    | Lake Bulamay (Siberia, Russia)                     | Doronina et al. (2003)                 | NA     | NA        | NA         |        |
| Natroniella      | Ni. acetigena                    | Lake Magadi (Kenya)                                | Zhilina et al. (1995)                  | NA     | NA        | NA         |        |
|                  | Ni. sulfidigena                  | Wadi Natrun (Egypt)/Kulunda Steppe (Siberia, Russia) | Sorokin et al. (2011c)                | NA     | NA        | NA         |        |
| Tindallia        | Td. californiensis               | Mono Lake (CA, US)                                 | Pikuta et al. (2003b)                  | NA     | NA        | NA         |        |
|                  | Td. magadii                      | Lake Magadi (Kenya)                                | Kevbrin et al. (1998)                  | NA     | NA        | NA         |        |
| Natronoincola    | Ni. histidinovorans              | Lake Magadi (Kenya)                                | Zhilina et al. (1998)                  | NA     | NA        | NA         |        |
| Alkalilimnicola  | Al. ehrlichii                    | Mono Lake (CA, US)                                 | Hoeft et al. (2007)                    | Complete | 3276 | 2947 | 68  |
| Rubribacterium   | R. polymorphum                   | Barguzin River Valley (Siberia, Russia)            | Boldareva et al. (2009)                | NA     | NA        | NA         |        |
| Rhodobaca        | Rh. bogoriensis                  | Lake Bogoria, Crater Lake (Kenya)                  | Milford et al. (2000)                  | IP     | NA        | NA         | NA     |
|                  | Rh. barguzinensis                | Barguzin River Valley (Siberia, Russia)            | Boldareva et al. (2008)                | NA     | NA        | NA         |        |
| Rhodovulum       | Rv. tesquicola                   | Sul’Tatnoe (Siberia, Russia)                       | Kompantseva et al. (2012)             | NA     | NA        | NA         |        |
|                  | Rv. steppense                    | Lake Khilganta (Siberia, Russia)                   | Kompantseva et al. (2010)             | NA     | NA        | NA         |        |
| Spirochaeta      | Sp. americana                    | Mono Lake (CA, US)                                 | Hoover et al. (2003)                  | NA     | NA        | NA         |        |
|                  | Sp. alkalica                     | Lake Magadi (Kenya)                                | Zhilina et al. (1996)                  | PD     | 3358      | 2938       | 61     |
|                  | Sp. africana                     | Lake Magadi (Kenya)                                | Zhilina et al. (1996)                  | PD     | 3286      | 2874       | 58     |
|                  | Sp. asiatica                     | Lake Khadyn (Siberia, Russia)                      | Zhilina et al. (1996)                  | NA     | NA        | NA         |        |
| Anoxynatronum    | An. sibiricum                    | Nizhnee Beloe (Siberia, Russia)                    | Gamova et al. (2003)                  | NA     | NA        | NA         |        |
| Alkaliflexus     | Af. imshenetskii                 | Verkhneye Beloye (Buryatiya, Russia)               | Zhilina et al. (2004)                  | PD     | 4122      | 3393       | 43     |

NA not available, PD permanent draft, IP in progress
former are dominated by anoxicogenic purple sulfur bacteria, including haloalkaliphilic members of the genera *Ectothiorhodospira* and *Halorhodospira* at high salinity, and members of the genera *Thiorhodospira*, *Thioalkalicoccus*, and *Ectothiorhodospinus* at low salinity (Imhoff and Trueper 1981; Gorlenko 2007). The chemotrophic SOB in soda lakes belong to 4 genera of the haloalkaliphilic Gammaproteobacteria: the genera *Thioalkalivibrio* and *Thioalkalibacter* can grow in salt concentrations reaching saturation (Sorokin et al. 2001b, c, 2002b, 2003; Banciu et al. 2004) The genus *Thioalkalivibrio* is the most metabolically flexible and tolerates a wide range of salinity values. Several *Thioalkalivibrio* species have the ability to grow anaerobically with NO$_3^-$ as e-acceptors (Fig. 3b1), such as *Tv. denitrificans* (Sorokin et al. 2001b), *Tv. nitratireducens* (Sorokin et al. 2003), and *Tv. thiocyanodenitrificans* (Sorokin et al. 2004b).

Other *Thioalkalivibrio* species such as *Tv. thiocyanoxidans*, *Tv. paradoxus*, and *Tv. thiocyanodenitrificans*, are capable of growth using thiocyanate as the sole energy, sulfur, and nitrogen source (Sorokin et al. 2001c, 2002b, 2004b). The first two species degrade thiocyanate primarily to cyanate and were the first SOB cultures for which the cyanate pathway of primary thiocyanate degradation has been shown.

### Prokaryotic diversity, activity, and community structure identified by cultivation-independent approaches

It is well recognized that from the majority of the microorganisms in nature, cultured isolates are yet to be obtained. Alternative cultivation-independent approaches, especially those based on the characterization of DNA, have proven to be very useful in expanding the known diversity of the microbial communities thriving under the extreme conditions of high salinity and high pH. Grant et al. (1999) were the first to use molecular methods to study the archaeal diversity of saturated alkaline brines in Lake Magadi (Kenya, Africa) (Fig. 1). Thereafter, the presence of novel prokaryotic phylotypes in various soda lakes was shown by cloning and/or denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments (Ochsenreiter et al. 2002; Rees et al. 2004; Ma et al. 2004; Mesbah et al. 2007). More recently, next-generation sequencing of PCR-amplified regions of the 16S rRNA gene and reversed transcribed mRNA have been used (Lanzen et al. 2013).

Cultivation-independent approaches have also greatly improved our understanding of the overall microbial community structure and functioning in soda lakes, which seems to be governed by the prevailing salt concentrations. There is some evidence that hypersaline soda lake brines (total salinity >250 g/L) harbor similar microbial communities to hypersaline solar saltern brines of neutral pH. The latter are characterized by a low diversity dominated by a few extremely halophilic archaea, belonging to the class Halobacteria within the phylum Euryarchaeota (Rodriguez-Valera et al. 1985; Oren 1994; Casamayor et al. 2002; Ghai et al. 2011). It is conceivable that hypersaline soda lake brines may also be dominated by such archaea, as evidenced by the failure to amplify bacterial 16S rRNA genes from the soda brines (Grant et al. 1999) and the clear dominance of euryarchaeal sequences in 16S rRNA gene libraries (Grant et al. 1999; Ochsenreiter et al. 2002; Mesbah et al. 2007). The latter sequences share a high similarity with members from the family *Halobacteriaceae* (class *Halobacteria*; Ochsenreiter et al. 2002; Mesbah et al. 2007) and from halophilic members of the order *Methanosarcinales* (class *Methanomicrobia*) (Mesbah et al. 2007).

Moderately saline soda lake brines (total salinity between 50 and 250 g/L) harbor more diverse microbial communities than hypersaline environments and the community composition is affected by lake stratification and prevailing oxygen concentrations (Dimitriu et al. 2008; Carini and Joye 2008). The total bacterial and archaeal diversity in low saline lakes (total salinity between 35 and 50 g/L) can be as high as that in fresh water lakes (Lanzen et al. 2013). Several studies on the bacterioplankton from low and moderate saline soda lakes showed the dominant presence of Alphaproteobacteria (mostly from the family *Rhodobacteraceae*) and Gammaproteobacteria (including the genera *Halomonas* and *Thioalkalivibrio*), Firmicutes (aerobic *Bacillus*, anaerobic *Clostridia*), Bacteroidetes (*Cytophaga, Flexibacter, Flavobacterium, Bacteroides, Salinibacter*), the cyanobacterial genera *Arthrospira* and *Anabaenopsis*, and several purple phototrophic bacteria belonging to the families of *Ectothiorhodospiraceae*, *Chromatiaceae* and *Rhodobacteraceae* (Humayoun et al. 2003; Dimitriu et al. 2008; Mesbah et al. 2007; Pagaling et al. 2009; Lanzen et al. 2013; Dadheech et al. 2013; Asao et al. 2011).

The salt concentration in the sedimentary pore water of soda lakes also has a strong influence on the in situ microbial community composition (Mesbah et al. 2007) and negatively affects the diversity (Kulp et al. 2007; Foti et al. 2008). In addition, some of the fundamental biogeochemical cycles are hampered through the inhibition of key catabolic transformations, such as denitrification, sulfate reduction, and methanogenesis (Kulp et al. 2007;
Nevertheless, bacterial 16S rRNA from clone libraries and DGGE bands from moderate and hypersaline soda lake sediments was found to be relatively diverse, including various Alphaproteobacteria from the order Rhodobacterales or related to the genus Brevundimonas; Firmicutes (mainly Clostridia), Gammaproteobacteria, Bacteroidetes, Betaproteobacteria (genera Alcaligenes and Comamonas), Deltaproteobacteria (orders Desulfovibrionales and Desulfobacterales), Actinobacteria (moderate salinities), and benthic cyanobacteria (Mesbah et al. 2007; Ma et al. 2004; Foti et al. 2008; Dimitriu et al. 2008; Kulp et al. 2006).

Molecular studies targeting functional genes are necessary to identify possible microbial-mediated processes within the biogeochemical element cycles (Fig. 3). Giri et al. (2004) were the first to use cbbLM genes, encoding the large subunit of RuBisCo form I/II (Watson and Tabita 1997), as a functional and phylogenetic marker for autotrophs in soda lakes. They studied the distribution of these genes along a redox gradient in the sediment of Mono Lake (USA).

To study the diversity of autotrophic bacteria in soda lake sediments from the Kulunda Steppe (Siberia, Russia) and Wadi Natrun (Egypt) (Fig. 1), Kovaleva and colleagues (Kovaleva et al. 2011) used aclB, which encodes the large subunit of ATP citrate lyase part of the reverse Krebs cycle, in addition to cbbLM (Campbell et al. 2003). Overall, most autotrophs in the studied soda lake sediments use the Calvin–Benson–Bassham cycle for inorganic carbon fixation, with RuBisCO form I as the dominant and most diverse type. More specifically, the autotrophs in the sediments of hypersaline soda lakes were primarily composed of cyanobacteria and halokaliphilic SOB from the family Ectothiorhodospiraceae (class Gammaproteobacteria, order Chromatiales), including the chemolithotrophic genus Thioalkalivibrio and the phototrophic genus Halorhodospira (Giri et al. 2004; Kovaleva et al. 2011). In the less saline lakes, distinct novel lineages of anoxygenic phototrophs with RuBisCO form I within the order Chromatiales were found (Kovaleva et al. 2011). Autotrophic nitrification in Mono Lake was studied via bacterial and archaeal amoA and 16S rRNA gene libraries (Carini and Joye 2008). Samples were taken after an extended period of meromixis during which significant nitrification was measured and the mixolimnion was presumed to have become chronically N-deprived (Joye et al. 1999; Carini and Joye 2008). Ammonia monooxygenase catalyzes the first step in aerobic ammonium oxidation by autotrophic nitrifiers, and amoA, encoding its active-site polypeptide, is frequently used as a functional marker (Junier et al. 2010).

Sequences obtained from ammonia-oxidizing bacteria (AOB) were most closely related to halo- and/or alkali-tolerant Nitrosonomas-like sequences. Additionally, FISH analysis revealed the presence of Crenarchaeota and the correlation of nitrification rates with crenarcheal numbers. Although no archaeal amoA sequences were detected, it cannot be ruled out that ammonia-oxidizing archaea (AOA) contribute significantly to nitrification in Mono Lake (Carini and Joye 2008). Key functional genes of dissimilatory SRB are dsrAB, which encodes the α- and β-subunits of a dissimilatory sulfite reductase, and apsA, which encodes the α-subunit of an APS reductase (Wagner et al. 2005). Two independent studies focusing on these genes in sediment samples and enrichment cultures from Mono Lake (USA; Scholten et al. 2005) and soda lakes in Siberia (Russia; Foti et al. 2007) revealed novel clusters of SRB affiliated to the deltaproteobacterial order Desulfovibrionales and the family Desulfobacteraceae within the order Desulfobacterales. The latter comprises all of the known SRB that oxidize acetate completely during sulfate reduction. In combination with high dsrB copy numbers per cell and sulfate reduction rates encountered even in soda lakes with more than 475 g/L, Foti et al. (2007) challenged an earlier hypothesis, specifically for the case of soda lakes, that complete carbon oxidizers could only grow at salt concentrations below 150 g/L (Oren, 1999 and Oren 2011). So far, no acetate-oxidizing SRB have been isolated from soda lakes, even at low salinity.

The oxidative part of the sedimentary sulfur cycle was also studied in various soda lakes from Siberia and Egypt (Tourova et al. 2013) by targeting soxB, which encodes an indispensable sulfate thiohydrolase in the Sox pathway proposed for the oxidation of thiosulfate in SOB (Ghosh and Dam 2009). The majority of detected SOB sequences belonged to autotrophic Gammaproteobacteria, including the genus Thioalkalivibrio from which already many cultured isolates have been obtained. Interestingly, uncultured putative heterotrophic SOB from the Gamma-and Alphaproteobacterial classes have been found by comparing soxB clone libraries (Tourova et al. 2013) with earlier constructed cbbLM genes from the same sediment samples (Kovaleva et al. 2011).

A very effective technique to study microbial activity is the use of stable isotope probing (SIP; Dumont and Murrell 2005). Lin et al. (2004) used this approach to identify active methanotrophs in sediments of a low saline Transbaikal soda lake. By targeting both 16S rRNA genes as well as genes encoding pmoA and mmoX, key enzymes in the aerobic methane oxidation pathway (McDonald et al. 2008), they found that the type I methanotrophs, belonging to the gammaproteobacterial genera Methylomonas and Methylobacter, were the main methane oxidizers. Active aerobic methane oxidation, as well as archaeal ammonium oxidation (ammonium oxidation to nitrite) and denitrification (nitrite reduction to nitrous oxide) in the water column of two low saline Ethiopian soda lakes was
also shown by the successful amplification of mRNA for particulate methane monoxygenase (lake Beseka), ammonia monoxygenase (amoA) and nitrite reductase (nirK; lake Arenguadi; Lanzen et al. 2013).

**Cellular adaptations to high salt concentrations and high pH values**

Haloalkaliphilic bacteria have developed essential strategies to adapt to the extreme haloalkaline conditions in soda lakes (Padan et al. 2005; Slonczewski et al. 2009). Although not much is known about the genetics of these adaptations, some bioenergetic and structural adjustments that ensure the maintenance of an intracellular neutral pH and osmotic pressure have mainly been described in the species *Bacillus halodurans* C125 and *B. pseudofirmus* OF4 (Kitada et al. 1994; Ito et al. 2004; Janto et al. 2011). The membrane structure of alkaliphiles remains stable over a wide range of pH and salinity values and is poorly permeable to protons and sodium ions (van de Vossenberg et al. 1999). Therefore, these microbes use transporter proteins to mediate the transmembrane pH gradient (ΔpH) and electric potential (ΔΨ). The intracellular pH is regulated by several transporter mechanisms, one of which is mediated by electrogenic antiporters that import protons to the cytoplasm, whilst exporting a counterbalancing monovalent cation: Na⁺ or K⁺ (Ito et al. 1997; Kitada et al. 1994; Hunte et al. 2005; Mesbah et al. 2009; Muyzer et al. 2011, 2012) (Fig. 4a1). It has been shown that *Escherichia coli* cells require a Na⁺:H⁺ exchange ratio of at least 1:2 to support growth in alkaline environments (Pinner et al. 1993); however, the coupling stoichiometry of alkaliphiles isolated from soda lakes has so far not been determined yet. An alternative electro-neutral proton transporter has been described in *B. subtilis*. It functions in carrying proton-bound malate into the cell whilst cytoplasmic sodium-bound lactate is exported (Wei et al. 2000) (Fig. 4a2). Whether this transporter plays a potential role in the pH homeostasis of haloalkaliphiles remains to be elucidated. Another group of sodium transporters that are thought to play a role in pH homeostasis and also in motility and chemotaxis under alkaline conditions is the voltage-gated Na⁺ channel, encoded by *ncbA* in *B. pseudofirmus* OF4 (Ito et al. 2004; Fujinami et al. 2007) (Fig. 4a3). These channels can be co-localized with methylated chemotaxis proteins (Fujinami et al. 2007). Chemotaxis is also mediated through motility, which is sodium dependent in *B. pseudofirmus* (Ito et al. 2005; Fujinami et al. 2009) (Fig. 4a4). In the absence of sodium, potassium or rubidium can replace the role of sodium (Terahara et al. 2012). Last, an ATPase driven by a sodium motive force instead of a proton motive force has been identified in extremely salt-tolerant alkaliphilic clostridia *Natrinaerobius* (Mesbah and Wiegel 2011) (Fig. 4a5). Although such a protein has not yet been discovered in haloalkaliphiles, it is conceivable that they may possess a similar mechanism, which utilizes the excess sodium and maintains a high transmembrane electric potential.

The high salinity in soda lakes also causes a high degree of osmotic stress to haloalkaliphiles, requiring them to synthesize osmoregulators. In order to retain turgor pressure, halophilic microorganisms are known to either use the “salt in cytoplasm” strategy, where intracellular KCl concentrations are kept higher than the extracellular concentrations (Fig. 4b1), or to synthesize or accumulate compatible solutes during which high concentrations of neutral soluble organic molecules are stored in the cytoplasm (Rössler and Müller 2001) (Fig. 4b2). The compounds glycine betaine, glutamine, proline, ectoine, and hydroxyectoine have been found to play major roles as compatible solutes in bacteria (Grammann et al. 2002; Banciu et al. 2005; Hoffmann et al. 2012; Sorokin et al. 2013b). Extremely halo(alkali)philic Euryarchaeota predominantly utilize K⁺ as an osmotic regulator (Oren 1999, 2011). These osmolytes do not play an active role in the metabolism of the cell, but are pivotal to the cellular volume and homeostasis (Levy-Sakin et al. 2014), and have been shown to stabilize membrane protein structures (Burg and Ferraris 2008; Roychoudhury et al. 2013). Although the “salt out” strategy of osmotic regulation is energetically more expensive than the “salt in” strategy, it allows microorganisms with a highly efficient energy metabolism to survive over larger salinity gradients (Oren 2011).

Structural adjustments within the cell membrane of haloalkaliphilic prokaryotes include an increased level of the neutral lipid squalene and the polar lipid cardiolipin in the phospholipid bilayer (Angelini et al. 2012). Squalene has also been found in the lipid bilayer membrane of the bacterium *Thioalkalivibrio versutus* strain ALJ 15. Squalene functions in combination with cyclopropane fatty acids in the maintenance of their cellular membrane and might prevent proton leakage (Banciu et al. 2005). Squalene is physically positioned in the center of the membrane, perpendicular to the two lipid layers that comprise the membrane (Hauss et al. 2002) (Fig. 4c1). Another class of lipids found in bacterial membranes (*Thioalkalivibrio*) is cardiolipin (Banciu et al. 2005), whose negative charge prevents protons from diffusing away from the cells (Haines and Dencher 2002) (Fig. 4c2). The membrane lipids of extremely halophilic Euryarchaeota contain a large amount of diacidic phospholipids (Tenchov et al. 2006). Some extremely halophilic prokaryotes, such as members of the *Halobacteriaceae* and *Salinibacter*, have membrane surface layers that are strongly enriched in acidic amino acids (Oren 2013). The proteins may enable the bacteria to
influence the co-ordination of water molecules on their surface membranes facilitating their solubility at higher salt concentrations (Talon et al. 2014). Ecophysiological experiments followed by transcriptome and proteome analyses will offer an opportunity to provide additional insight into the molecular mechanisms by which these organisms adapt to extreme conditions of high pH and salinity.

**Perspectives**

Traditionally, studies on microbial communities were restricted to a few cultured isolates, whilst modern high-throughput techniques now allow the study of microbial community composition as a whole. Although a considerable number of cultured isolates has already been obtained from soda lakes, culture-independent methods have uncovered a much more diverse microbial community. Future studies should attempt to isolate members of the uncultured community (Alain and Querellou 2009). Metagenomic approaches might help to facilitate the isolation of microbes by providing insight into potential metabolisms, such as for the isolation of the ammonium-oxidizing archaeon *Nitrosopumilus maritimus* (Könneke et al. 2005). Amplicon sequencing of 16S rRNA gene fragments followed by co-occurrence analysis might shed light onto the different interactions of the community members (Barberán et al. 2012). The detection of functional genes and their transcripts might reveal additional diversity and potential niche differentiation.

Metagenomics can be applied to obtain a high-resolution genetic inventory of the microbial community in soda lakes. Such a genetic inventory can be used to explore the overall metabolic capacity of the prokaryotic soda lake communities. Other high-throughput techniques monitor community-wide levels of gene-expression (meta-transcriptomics; Carvalhais et al. 2012), protein abundance (meta-proteomics; Verberkmoes et al. 2009), and metabolite abundance (meta-metabolomics), thereby generating data to facilitate systems biology approaches.

Several metabolic processes might be present in soda lakes but have not yet been detected, such as anaerobic methane oxidation and anaerobic ammonium-oxidation. Furthermore, the importance of anaerobic polymer degradation in sediments is not well understood and the contribution of anoxicogenic photosynthesis to primary production might be underestimated. Nitrogen fixation at hypersaline conditions is suspected to be limited to diazotrophic anoxygenic phototrophs and heterotrophs, but a comprehensive study targeting *nifH* and *nifD* genes in soda lakes, and distinguishing between the contribution of heterotrophs and primary producing phototrophs, is still lacking. Single cell techniques, like FISH-NanoSIMS (Dekas and Orphan 2011), may provide clear answers here. The effect of salinity on other reactions in the nitrogen cycle, such as nitrification, could be confirmed by focusing on the detection and quantification of *amoA* genes and their transcripts.

In conclusion, several questions regarding biogeochemical cycles in soda lakes are still open. To obtain a more comprehensive insight into the microbial diversity of soda lakes, its role in biogeochemical cycles and the molecular mechanisms by which the microorganisms adapt to the extreme environmental conditions, we have to study these habitats with a systems biology approach in which we combine novel isolation methods with state-of-the-art meta-omics techniques, and eventually with mathematical modeling to predict the response of cells and communities to environmental stimuli and to infer the interactions of co-existing populations.

**Acknowledgments** We would like to extend our thanks to our funding sources: Gerard Muyzer, Tom Berben, Emily D. Melton, Lex Overmars and Charlotte D. Vavourakis are supported by the ERC Advanced Grant PARASOL (No. 322551). Dimitry Sorokin is supported by the RBFR Grant 13-04-00049. Thanks also to Sacha Heath for the photograph of Mono Lake in Fig. 1.

**Open Access** This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

**References**

Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A (2012) Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 1818:1365–1373

Asao M, Pinkart HC, Madigan MT (2011) Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a central Washington (USA) soda lake. Environ Microbiol 13:2146–2157

Ballot A, Kotut K, Novelo E, Krienitz L (2009) Changes of phytoplankton communities in Lakes Naivasha and Oloidien, examples of degradation and salinization of lakes in the Kenyan Rift Valley. Hydrobiologia 632:359–363

Banciu HL, Sorokin DY (2013) Adaptation in haloalkaliphiles and natronphilic bacteria. Polyextremophiles. Springer, Netherlands, pp 121–178

Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004) *Thaikalivibrio halophilus* sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334

Banciu H, Sorokin DY, Rijpstra WIC, Damsté JS, Galinski EA, Takaichi S, Muyzer G, Kuenen JG (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187

Banciu HL, Sorokin DY Tourova TP, Galinski EA, Muntyan MS, Kuenen JG, Muyzer G (2008) Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic,
extremely salt-tolerant, obligately chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium *Thioalkalibacter halophilus* gen. nov., sp. nov. from South-Western Siberian soda lakes. *Extremophiles* 12:391–404

Barberán A, Baters ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. *ISME J* 6:343–351

Boldareva EN, Akimov VN, Boychenko VA, Stadnickiuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM (2008) *Rhodobaca barguzinensis* sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). *Microbiology* (Moscow, English translation) 77:206–218

Boldareva EN, Moskalenko AA, Makhneva ZK, Tourova TP, Kolganova TV, Gorlenko VM (2009) *Rubribacterium polymorphism* gen. nov., sp. nov., a novel alkaliphilic nonsulfur purple bacterium from an Eastern Siberian soda lake. *Microbiology* (Moscow, English translation) 78:732–740

Bolyanskaya YuV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP, Osipov GA, Zhilina TN (2007) *Halomonas mongoliensis* sp. nov. and *Halomonas kenyensis* sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. *Microbiology* (Moscow, English translation) 76:739–747

Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? *Saline Syst* 5:9

Bryantseva IA, Gorlenko VM, Kompanetsva EL, Imhoff JF, Stilling J, Mityushina L (1999) *Thiorhodospira sibirica* gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. *Int J Syst Bacteriol* 49:697–703

Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. *J Biol Chem* 283:7309–7313

Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with *Alvinella pompejana*, a hydrothermal vent polychaete. *Appl Environ Microbiol* 69:5070–5078

Carini SA, Joyce SB (2008) Nitrification in Mono Lake, California: Activity and community composition during contrasting hydrological regimes. *Limnol Oceanogr* 53:2546

Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. *J Microbiol Meth* 91:246–251

Casamayor EO, Massana R, Benlloch S, Òvreás L, Díez B, Goddard VJ, Gasol JM, Joint L, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of generic fingerprinting methods in a multipond solar saltern. *Environ Microbiol* 4:338–348

Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. *FEMS Microbiol Ecol* 16:297–306

Dadheech PK, Glückner G, Casper P, Kotut K, Mazzoni CJ, Mbedi S, Krienczi L (2013) Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. *FEMS Microbiol Ecol* 85:389–401

De Graaff M, Bijmans MF, Abbas B, Euverink GJ, Muyzer G, Jansen AJ (2011) Biological treatment of refinery spent caustics under halo-alkaline conditions. *Bioresour Technol* 102:7237–7264

Dekas AE, Orphan VJ (2011) Identification of diazothrophic micro-organisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). *Meth Enzymol* 486:282–305

 Dimitriu PA, Pinkart HC, Peyton BM, Mornmle MR (2008) Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington state. *Appl Environ Microbiol* 74(15):4877–4888

Doronina NV, Darmaeva TD, Trotsenko YA (2003) *Methylophaga alkalica* sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. *Int J Syst Evol Microbiol* 53:223–229

Dubinin AV, Gerasimenko LM, Zavarzin GA (1995) Ecophysiology and diversity of cyanobacteria in lake Magadi. *Microbiology* 64:845–849

Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. *FEMS Microbiol Ecol* 9:181–191

Dumont MG, Murrell JC (2005) Stable isotope probing—linking microbial identity to function. *Nature Rev Microbiol* 3:499–504

Florenciano G, Sili C, Pelosi E, Vencinetti M (1985) *Cyanospira tripickae* and *Cyanospira capsulata* (gen. nov. and sp. nov.): new filamentous heterocystous cyanobacteria from Magadi lake (Kenya). *Arch Microbiol* 140:301–306

Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV et al (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. *Appl Environ Microbiol* 73:2093–2100

Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2008) Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda steppe (Altai, Russia). *Extremophiles* 12:133–145

Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Kruhlwich TA, Kawagishi I, Ito M (2007) The voltage gated Na+ channel NaVBP colocalizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic *Bacillus pseudofirmus* OF4. *Microbiol* 153:4027–4038

Fujinami S, Terahara N, Kruhlwich TA, Ito M (2009) Motility and chemotaxis in alkaliphilic Bacillus species. *Future Microbiol* 4:1137–1149

Garnova ES, Zhilina TN, Tourova TP, Lysenko AM (2003) *Anoxy- atronum sibiricum* gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulosic community of Nizhnee Beloe (Transbaikal region) *Extremophiles* 7:213–220

Gerasimenko LM, Dubinin AV, Mityushina LL, Zavarzin GA (1999) A microscopic green alga from soda lakes. *Microbiology* (Moscow, English translation) 68:696–700

Ghai R, Pašić L, Fernández AB, Martín-Cuadrado A, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodríguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera (2011) New abundant microbial groups in aquatic hypersaline environments. *Sci Rep* 1:135

Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. *FEMS Microbiol Rev* 33:999–1043

Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. *Appl Environ Microbiol* 70:3434–3448

Gorlenko VM (2007) Anoxygennic phototrophic bacteria from soda lakes. Transactions of the Winogradsky Institute of Microbiology, vol XIV. Nauka, Moscow, pp 159–183

Gorlenko VM, Bryantseva IA, Panteleeva EE, Tourova TP, Kolga- nova TV, Makhneva ZK, Moskalenko AA (2004) *Ectothiorhodos- dosus mongolicus* gen. nov., sp. nov., a new purple bacterium from a soda lake in Mongolia. *Microbiology* (Moscow, English translation) 73:66–74

Gorlenko VM, Bryantseva IA, Rabold S, Tourova TP, Rubtsova D, Smirnova E, Thiel V, Imhoff JF (2009) *Ectothiorhodospira variabilis* sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes. *Int J Syst Evol Microbiol* 69:558–564
Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: tRAT transporter TeaABC mediates uptake of ectoine and hydroxyectoine in *Halomonas elongata* DSM 25817. J Bacteriol 184:3078–3085

Grant WD, Sorokin DY (2011) Distribution and diversity of soda lake alkaliophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, New York, pp 27–54

Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

Grant S, Grant WD, Kato C, Li L (1999) Novel archaeal phylotypes from an east African alkaline saline saltmarch. Extremophiles 3:139–145

Haines TH, Dencher NA (2002) Cardioplina: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39

Hauss T, Dante S, Dencher NA, Haines TH (2002) Squalene is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta 1556:149–154

Hoeff SE, Switzer Blum J, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremendan RS (2007) *Alkalimicrobica ehrlichii* sp. nov., a novel arsenite-oxidizing, haloalkaliphilic gammaproteobacterium capable of chemooautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512

Hoffmann T, von Blohn C, Stanek A, Moses S, Barzanthny H, Bremer E (2012) Synthesis, release and recapture of compatible solute proline by osmotically stressed *Bacillus subtilis* cells. Appl Environ Microbiol 78:5753–5762

Hoover RB, Pikuta EV, Bej AK, Mardis D, Whitman WB, Tang J, Krader P (2003) *Spirochaeta americana* sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821

Horikoshi K (2004) Alkaliphiles. Proc Jpn Acad B Phys Biol Sci 80:166–178

Horikoshi K (2006) Alkaliphiles: genetic properties and applications of enzymes. Springer, New York

Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042

Hunt E, Scrafford A, Sackett M, Rimon A, Padan E, Michel H (2005) Structure of Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

Imhoff JF, Trueper HG (1981) *Ectothiorhodospira abdelmalekii* sp. nov., a new extremely halophilic and alkaliphilic phototrophic bacterium. Zentralbl Bakteriol Mikrobiol Hyg: 1 Abt Orig C 2:228–234

Imhoff JF, Tindall BJ, Grant WD, Trüper HG (1981) *Ectothiorhodospora vacuolata* sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130:238–242

Ito M, Guffanti AA, Zemsky J, Ivey DM, Krulwich TA (1997) Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic *Bacillus firmus* OF4. J Bacteriol 179:3851–3857

Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP of *Bacillus subtilis* has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic *Bacillus*. Proc Natl Acad Sci USA 101:10566–10571

Ito M, Terahara N, Fujinami S, Krulwich TA (2005) Properties of motility in *Bacillus subtilis* powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408

Janssen AJ, Lens PN, Stams AJ, Plugge CM, Sorokin DY, Muyzer G, Buysman CJ (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343

Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S, Fackelmayer OJ, Smith TA, Earl J, Elbourne LDH, Hassan K, Paulsen IT, Kolstø AB, Tourasse NJ, Ehrlich GD, Boissy R, Ivey DM, Li G, Xue Y, Ma Y, Hu FZ, Krulwich TA (2011) Genome of alkaliphilic *Bacillus p pseudofermentum* OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309

Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188

Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel K-P, Imhoff JF (2010) Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 85:425–440

Kaluzhnaya MG, Khmelenina V, Eshiminaev B, Sufina N, Nikitin D, Solonin A, Lin L-J, Maldon I, Murrell C, Trotsenko Y (2001) Taxonomic characterization of new alkaliphilic and alkali-tolerant methanotrophs from soda lakes of the southeastern Transbaikal Region and description of *Methylomicrobium buryatense* sp. nov. Syst Appl Microbiol 24:166–176

Kaluzhnaya MG, Khmelenina V, Eshiminaev B, Sorokin DY, Fuse H, Lidstrom M, Trotsenko YA (2008) Reclassification and emended description of halo(alkali)philic and halo(alkali)tolerant methanotrophs of genera *Methylomicrobium* and *Methylobacter* . Int J Syst Evol Microbiol 58:591–596

Kebrin VV, Lysenko AM, Zhilina TN (1997) Physiology of the alkaliphilic methanogen *Z-7936*, a new strain of *Methanosalsus zhilinaeae* isolated from Lake Magadi. Microbiology 66:315–320

Kebrin VV, Zhilina TN, Rainey FA, Zavarzin GA (1998) Tindallia magadiigeni, sp. nov., an alkaliphilic aerobic ammonia oxidizer from Lake Magadi. Curr Microbiol 37:94–100

Kitada M, Hashimoto M, Kudo T, Horikoshi K (1994) Properties of two different Na+/H+ antiport systems in alkaliphilic *Bacillus* sp. strain C-125. J Bacteriol 176:6464–6469

Kompanetsva EL, Komova AV, Rusanov II, Pimenov NV, Sorokin DY (2009) Primary production of organic matter and phototrophic communities in the soda lakes of the Kulunda steppe (Altai, Russia). Microbiology 78:643–649

Kompanetsva EL, Komova AV, Sorokin DY (2010) Communities of anoxygenic phototrophic bacteria in the saline soda lakes of the Kulunda steppe at Altai Krai. Microbiology (Moscow, English translation) 79:89–95

Kompanetsva EL, Komova AV, Novikov AA, Kostrikina NA (2012) *Rhodovalvum tesquicola* sp. nov., a haloalkaliphilic purple non-sulfur bacterium from brackish steppe soda lakes. Int J Syst Evol Microbiol 62:2962–2966

Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DB (2005) Isolation of an ammonium-oxidizing marine archaeon. Nature 437:543–546

Kovaleva OL, Tourova TP, Muyzer G, Kolganova TV, Sorokin DY (2011) Diversity of *RubisCO* and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol 75:37–47

Krienitz L, Bock C, Kotut K, Luo W (2011) *Picoysis salinarum* (*Chlorophyta*) in saline lakes and hot springs of East Africa. Phycologia 51:22–32

Krienitz L, Dabbeech PK, Kotut K (2013) Mass developments of the cyanobacteria *Anaabaenopsis* and *Cyanospira* (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 703:79–93

Kulp TR, Hoefs SE, Miller LG, Saltikov C, Murphy J, Han S, Lanoil B, Oremland RS (2006) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lake sediments. Hydrobiologia 607:293–300

Kulp TR, Bock C, Kotut K, Villaverde MC, Sprent JI, Lanoil B, Miller LG, Saltikov C, Murphy JN, Han S, Lanoil B, Oremland RS (2005) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lake sediments. Hydrobiologia 537:293–300
Namsaraev BB, Zhilina TN, Kulyrova AV, Gorlenko VM (1999) Extremophiles (2014) 18:791–809
Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Microbial diversity of the inner Mongolian Baer soda lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 4:5–11
Mathrani MJ, Boone DR, Mah RA, Fox GE, Lau PP (1998) Methanohalophilus ziliniae sp. nov., an alkaliphilic, halophilic, methylothrophic methanogen. Int J Syst Bacteriol 48:139–142
McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecotaxonomic techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 75:1305–1315
Melack JM (1981) Photosynthetic activity of phytoplankton in African Rift Valley soda lakes. Arch Microbiol 174:18–27
Mesbah NM, Wiegel J (2011) The Na+-translocating F$_{1}$F$_{0}$-ATPase from the halophilic, alkalithermophile. Biochim Biophys Acta 1807:1133–1142
Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082
Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi an Natrun, Egypt. Microbial Ecol 54:598–616
Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Methanocorpusculum thermophilus adapts to multiple environmental extremes using a large repertoire of Na$^{+}$/K$^{+}$/H$^{+}$ antiporters. Mol Microbiol 74:270–281
Mikhodyuk OS, Gerasimenko LM, Akimov VN, Ivanovsky RN, Zavarzin GA (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from lake Magadi. Microbiology 64:805–813
Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27
Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Patti A, d’Haeseleeer P, Woyke T, Kyrpides NC (2011) Complete genome sequence of Thioalkalivibrio sulfidophilus HL-EBGr7. Stand Genomic Sci 4:23–35
Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Patti A, d’Haeseleeer P, Woyke T, Kyrpides NC (2012) Complete genome sequence of Thioalkalivibrio sp. K90mix. Standards Genomic Sci 5:341–355
Namasraev BB, Zhilina TN, Kulyrova AV, Gorlenko VM (1999) Bacterial methanogenesis in soda lakes of the southeastern Transbaikal region. Microbiology (Moscow) 68:586–591
Nolla-Arde`vol V, Strous M, Sorokin DY, Merkel AY, Tegetmeyer HE (2012) Activity and diversity of haloalkaliphilic methanogens in Central Asian soda lakes. J Biotechnol 161:167–173
Oechsnerreiter T, Pfeifer F, Schleger C (2002) Diversity of archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274
Oremland RS (1990) Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California. Appl Environ Microbiol 56:614–622
Oremland RS, Boone DR (1994) Methanoblobus tailtori sp. nov., a new methylo trophic, estuarine methanogen. Int J Syst Bacteriol 45:537–575
Oremland RS, Miller LG (1993) Biogeochemistry of natural gases in three alkaline, permanently stratified (meromictic) lakes. In: Howell DG (ed) The future of energy gases, USGS Professional paper 1570, Washington DC, pp 453–470
Oren A (1994) The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–439
Oren A (1999) Bioenergetic aspects of halophilism. Microb Mol Biol Rev 63:334–348
Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923
Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations and acidic proteomes. Front Microbiol 4:315
Padin E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88
Pagaling E, Wang H, Venables M, Wallace A, Grant DW, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760
Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfitonatronum lacustre gen. nov., sp. nov.; a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology (Moscow, English translation) 67:105–113
Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003a) Desulfitonatronum thiodynamics sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithotrophic growth. Int J Syst Evol Microbiol 53:1327–1332
Pikuta EV, Hoover RB, Bej AK, Marsic D, Detkova EN, Whitman WB, Krader P (2003b) Tindalia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono lake in California. Extremophiles 7:327–334
Pinnick E, Kotler Y, Padin DA, Erschlitzer D (1993) Physiological role of Na$^{+}$/K$^{+}$/H$^{+}$-antiporters in Escherichia coli. J Biol Chem 25:1729–1734
Piner R, Vogt C, Knoeller K, Finster K, Sorokin DY, Lohmayer R, Planer-Friedrich B, Richnow H-H (2013) Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17:1003–1012
Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71
Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115
Roessel SR, Kjeldsen CS, Etherden SM, Goericke R, Kaie RP, Miller LM, Oremland RS (2002) Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnol Oceanogr 47:440–452
Rissler M, Muller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–745
Roychoudhury A, Bieker A, Haeussinger D, Oesterhelt F (2013) Membrane protein stability depends on the concentration of compatible solutes—a single molecule force spectroscopic study. Biol Chem 394:1465–1474
Sorokin DY, Gorlenko VM, Tourova TP, Kolganova TV, Tsapin AI, Sorokin DY, Gorlenko VM, Tourova TP, Lysenko AM, Kuenen JG (2001c) Halomonas chromatireducens sp. nov., a novel halophilic bacterium from soda soil capable of aerobic chromate reduction. Microbiology (Moscow) 78:117–127

Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2003) Complete denitrification by Thioalkalivibrio thiodismutans sp. nov., and Desulfonatronovibrio thiodismutans sp. nov., new species of Desulfonatronovibrio. Extremophiles 7:145–155

Sorokin DY, Detkova EN, Muyzer G (2010b) Propionate and butyrate utilizations by Bacteroidetes from soda lakes. Extremophiles 15:691–696

Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B, Sorokin DY, Tourova TP, Detkova EN, Kolganova TV, Galinski EA, Kuenen JG, Muyzer G (2011b) The microbial sulfur cycle in soda lakes of Kulunda steppe (Altai, Russia). Extremophiles 15:1444–1453

Sorokin ID, Kravchenko IK, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008a) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. - a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453

Sorokin ID, Tourova TP, Mussmann M, Muyzer G (2008b) Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov. - two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439

Sorokin ID, Kravchenko IK, Doroshenko BV, Boulgina ES, Zadorina EV, Tourova TP, Sorokin DY (2008c) Haloalkaliphilic diazotrophs in soda solonchak soils. FEMS Microbiol Ecol 65:425–433

Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulgina ES, Sorokin DY (2008d) Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile from Mongolian soda soil. Int J Syst Evol Microbiol 58:2459–2464

Sorokin ID, Kravchenko IK, Tourova TP, Boulgina ES, Sorokin DY (2008e) Natronobacillus azotifigens gen. nov. sp. nov., anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827

Sorokin DY, van den Bosch PLF, Janssen AJH, Muyzer G (2008) Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 80:965–975

Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp. nov. a deep lineage of haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59:248–253

Sorokin DY, Rusanov IV, Pimenov NV, Tourova TP, Abbas B, Muyzer G (2010a) Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda steppe (Altai, Russia). FEMS Microbiol Ecol 73:278–290

Sorokin DY, Detkova EN, Muyzer G (2010b) Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 14:71–77

Sorokin DY, Panteleeeva AN, Tourova TP, Kapurallina EN, Muyzer G (2011a) Natronoflexus pectinivorans gen. nov., sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes. Extremophiles 15:691–696

Sorokin DY, Tourova TP, Detkova EN, Koglanova TV, Galinski EA, Muyzer G (2011b) The microbial sulfur cycle in soda lakes. Front Microbial Physiol 2:44

Sorokin DY, Tourova TP, Detkova EN, Kolganova TV, Galinski EA, Muyzer G (2011c) Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thiocyanooxidans sp., Desulfonatronum thiocyanooxidans sp. nov., and Desulfonatronovibrio thiiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 15:391–401
a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253

Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005a) *Clostridium alkalicellum* sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74:557–566

Zhilina TN, Zavarzina DG, Kolganova TV, Tourova TP, Zavarzin GA (2005b) Candidatus “Contubernalis alkalaceticum”, an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with *Desulfonatronum cooperativum*. Microbiology 74:695–703

Zhilina TN, Zavarzina DG, Panteleeva AN, Osipov GA, Kostrikina NA, Tourova TP, Zavarzin GA (2012) *Fuchsiella alkaliacetigena* gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62:1666–1673

Zhilina TN, Zavarzina DG, Kevbrin VV, Kolganova TV (2013) *Methanocalculus natronophilus* sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from soda lake and proposal of the new family *Methanocalculaceae*. Microbiology (Moscow, English translation) 82:698–706

Zhu S (2008) Use of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Tech Biotech 83:777–779