ON CLASSES OF C3 AND D3 MODULES

ABYZOV ADEL NAILEVICH, TRUONG CONG QUYNH
AND TRAN HOAI NGOC NHAN

Abstract. The aim of this paper is to study the notions of A-C3 and A-D3 modules for some class A of right modules. Several characterizations of these modules are provided and used to describe some well-known classes of rings and modules. For example, a regular right R-module F is a V-module if and only if every F-cyclic module M is an A-C3 module where A is the class of all simple submodules of M. Moreover, let R be a right artinian ring and A, a class of right R-modules with local endomorphisms, containing all simple right R-modules and closed under isomorphisms. If all right R-modules are A-injective, then R is a serial artinian ring with $J^2(R) = 0$ if and only if every A-C3 right R-module is quasi-injective, if and only if every A-C3 right R-module is C3.

1. Introduction and notation.

The study of modules with summand intersection property was motivated by the following result of Kaplansky: every free module over a commutative principal ideal ring has the summand intersection property (see [14, Exercise 51(b)]). A module M is said to have the summand intersection property if the intersection of any two direct summands of M is a direct summand of M. This definition is introduced by Wilson [18]. Dually, Garcia [10] consider the summand sum property. A module M is said to have the summand sum property if the sum of any two direct summands is a direct summand of M. These properties have been studied by several authors (see [1, 3, 11, 12, 17,...]). Moreover, the classes of C3-modules and D3-modules have recently studied by Yousif et al. in [4, 20]. Some characterizations of semisimple rings and regular rings and other classes of rings are studied via C3-modules and D3-modules. On the other hand, several authors investigated some properties of generalizations of C3-modules and D3-modules in [6, 13]; namely, simple-direct-injective modules and simple-direct-projective modules.

A right R-module M is called a C3-module if, whenever A and B are submodules of M with $A \subset_d M$, $B \subset_d M$ and $A \cap B = 0$, then $A \oplus B \subset_d M$. M is called simple-direct-injective in [6] if the submodules A and B in the above definition are simple. Dually, M is called a D3-module if, whenever M_1 and M_2 are direct summands of M.

2010 Mathematics Subject Classification. 16D40, 16D80.

Key words and phrases. A-C3 module, A-D3 module, V-module.
and $M = M_1 + M_2$, then $M_1 \cap M_2$ is a direct summand of M. M is called \textit{simple-direct-projective} in \cite{12} if the submodules M_1 and M_2 in the above definition are maximal.

In Section 2, we introduce the notions of A-C3 modules and A-D3 modules, where A is a class of right modules over the ring R and closed under isomorphisms. It is shown that if each factor module of M is A-injective, then M is an A-D3 module if and only if M satisfies D2 for the class A, if and only if M have the summand intersection property for the class A in Proposition \ref{prop2.7}. On the other hand, if every submodule of M is A-projective, then M is an A-C3 module if and only if M satisfies C2 for the class A, if and only if M have the summand sum property for the class A in Proposition \ref{prop2.13}. Some well-known properties of other modules are obtained from these results.

In Section 3, we provide some characterizations of serial artinian rings and semisimple artinian rings. The Theorem \ref{thm3.2} and Theorem \ref{thm3.3} are indicated that let R be a right artinian ring and A, a class of right R-modules with local endomorphisms, containing all simple right R-modules and closed under isomorphisms:

(1) If all right R-modules are A-injective, the following conditions are equivalent for a ring R:
 (i) R is a serial artinian ring with $J^2(R) = 0$.
 (ii) Every A-C3 right R-module is quasi-injective.
 (iii) Every A-C3 right R-module is C3.

(2) If all right R-modules are A-projective, then the following conditions are equivalent for a ring R:
 (i) R is a serial artinian ring with $J^2(R) = 0$.
 (ii) Every A-D3 right R-module is quasi-projective.
 (iii) Every A-D3 right R-module is D3.

Moreover, we give an equivalent condition for a regular V-module. It is shown that a regular right R-module F is a V-module if and only if every F-cyclic module is simple-direct-injective in Theorem \ref{thm3.9}. It is an extension the result of rings to modules.

Throughout this paper R denotes an associative ring with identity, and modules will be unitary right R-modules. The Jacobson radical ideal in R is denoted by $J(R)$. The notations $N \leq M$, $N \leq_e M$, $N \leq M$, or $N \subset_d M$ mean that N is a submodule, an essential submodule, a fully invariant submodule, and a direct summand of M, respectively. Let M and N be right R-modules. M is called N-injective if for any right R-module K and any monomorphism $f : K \to N$, the induced homomorphism $\text{Hom}(N, M) \to \text{Hom}(K, M)$ by f is an epimorphism. M is called N-projective if for any right R-module K and any epimorphism $f : N \to K$, the induced homomorphism $\text{Hom}(M, N) \to \text{Hom}(M, K)$ by f is an epimorphism. Let A be a class of right modules over the ring R. M is called A-injective (A-projective) if M is N-injective (resp., N-projective) for all $N \in A$. We refer to \cite{3}, \cite{7}, \cite{10}, and \cite{11} for all the undefined notions in this paper.
2. On \(\mathcal{A} \)-C3 modules and \(\mathcal{A} \)-D3 modules

Let \(\mathcal{A} \) be a class of right modules over a ring \(R \) and closed under isomorphisms. We call that a right \(R \)-module \(M \) is an \(\mathcal{A} \)-C3 module if, whenever \(A \in \mathcal{A} \) and \(B \in \mathcal{A} \) are submodules of \(M \) with \(A \subset_d M \), \(B \subset_d M \) and \(A \cap B = 0 \), then \(A \oplus B \subset_d M \). Dually, \(M \) is an \(\mathcal{A} \)-D3 module if, whenever \(M \) is a direct sum of \(M/M_1, M/M_2 \in \mathcal{A} \) with \(M = M_1 + M_2 \), then \(M_1 \cap M_2 \) is a direct summand of \(M \).

Remark 2.1. Let \(M \) be a right \(R \)-module and \(\mathcal{A} \), a class of right \(R \)-modules.

(1) If \(M \) is a C3 (D3) module, then \(M \) is an \(\mathcal{A} \)-C3 (resp., \(\mathcal{A} \)-D3) module.

(2) If \(\mathcal{A} = \text{Mod} - R \), then \(\mathcal{A} \)-C3 modules (\(\mathcal{A} \)-D3 modules) are precisely the C3 modules (resp., D3) modules.

(3) If \(\mathcal{A} \) is the class of all simple submodules of \(M \), then \(\mathcal{A} \)-C3 (\(\mathcal{A} \)-D3) modules are precisely the simple-direct-injective (resp., simple-direct-projective) modules and studied in [6, 13].

(4) If \(\mathcal{A} \) is a class of injective right \(R \)-modules, then \(M \) is always an \(\mathcal{A} \)-C3 module.

(5) If \(\mathcal{A} \) is a class of projective right \(R \)-modules, then \(M \) is always an \(\mathcal{A} \)-D3 module.

Lemma 2.2. Let \(\mathcal{A} \) be a class of right \(R \)-modules and closed under isomorphisms. Then every summand of an \(\mathcal{A} \)-C3 module (\(\mathcal{A} \)-D3 module) is also an \(\mathcal{A} \)-C3 module (resp., \(\mathcal{A} \)-D3 module).

Proof. The proof is straightforward. \(\square \)

Proposition 2.3. Let \(\mathcal{A} \) be a class of right \(R \)-modules and closed under direct summands. Then the following conditions are equivalent for a module \(M \):

(1) \(M \) is an \(\mathcal{A} \)-C3 module.

(2) If \(A \in \mathcal{A} \) and \(B \in \mathcal{A} \) are submodules of \(M \) with \(A \subset_d M \), \(B \subset_d M \) and \(A \cap B = 0 \), there exist submodules \(A_1 \) and \(B_1 \) of \(M \) such that \(M = A \oplus B_1 = A_1 \oplus B \) with \(A \leq A_1 \) and \(B \leq B_1 \).

(3) If \(A \in \mathcal{A} \) and \(B \in \mathcal{A} \) are submodules of \(M \) with \(A \subset_d M \), \(B \subset_d M \) and \(A \cap B \subset_d M \), then \(A + B \subset_d M \).

Proof. It is similar to the proof of Proposition 2.2 in [4]. \(\square \)

Dually Proposition 2.3, we have the following proposition.

Proposition 2.4. Let \(\mathcal{A} \) be a class of right \(R \)-modules and closed under isomorphisms. Then the following conditions are equivalent for a module \(M \):

(1) \(M \) is an \(\mathcal{A} \)-D3 module.

(2) If \(M/A, M/B \in \mathcal{A} \) with \(A \subset_d M \), \(B \subset_d M \) and \(M = M/A + M/B \), then \(M = M/A \oplus B_1 = A_1 \oplus B \) with \(A \leq A_1 \) and \(B \leq B_1 \).

(3) If \(M/A, M/B \in \mathcal{A} \) with \(A \subset_d M \), \(B \subset_d M \) and \(A + B \subset_d M \), then \(A \cap B \subset_d M \).
Let $f : A \to B$ be a homomorphism. We denote by $\langle f \rangle$ the submodule of $A \oplus B$ as follows:

$$\langle f \rangle = \{ a + f(a) \mid a \in A \}.$$

The following result is proved in Lemma 2.6 of [15].

Lemma 2.5. Let $M = X \oplus Y$ and $f : A \to Y$, a homomorphism with $A \leq X$. Then the following conditions hold

(1) $A \oplus Y = \langle f \rangle \oplus Y$.

(2) $\text{Ker}(f) = X \cap \langle f \rangle$.

Proposition 2.6. Let M be an A-$D3$ module with A a class of right R-modules and closed under isomorphisms and summands. If $M = M_1 \oplus M_2$ and $f : M_1 \to M_2$ is a homomorphism with $\text{Im}(f) \subseteq_d M_2$ and $\text{Im}(f) \in A$, then $\text{Ker}(f)$ is a direct summand of M_1.

Proof. Assume that $M = M_1 \oplus M_2$ and a homomorphism $f : M_1 \to M_2$ with $\text{Im}(f) \subseteq_d M_2$ and $\text{Im}(f) \in A$. Call $M' := M_1 \oplus \text{Im}(f)$. Then M' is a direct summand of M and so is an A-$D3$ module. It follows that $M' = M_1 \oplus \text{Im}(f) = \langle f \rangle \oplus \text{Im}(f)$ by Lemma 2.5. It is easy to check $M'/M_1, M'/\langle f \rangle \in A$ and $M' = M_1 + \langle f \rangle$. As M' is an A-$D3$ module and by Lemma 2.5, $\langle f \rangle \cap M_1 = \text{Ker}(f)$ is a direct summand of M'. Thus $\text{Ker}(f)$ is a direct summand of M_1. \qed

Proposition 2.7. Let M be a right R-module and A, a class of right R-modules and closed under isomorphisms and summands. If each factor module of M is A-injective, then the following conditions are equivalent:

(1) For any two direct summands M_1, M_2 of M such that $M/M_1, M/M_2 \in A$, $M_1 \cap M_2$ is a direct summand of M.

(2) M is an A-$D3$ module.

(3) Any submodule N of M such that the factor module $M/N \in A$ is isomorphic to a direct summand of M, is a direct summand of M.

(4) For any decomposition $M = M_1 \oplus M_2$ with $M_2 \in A$, then every homomorphism $f : M_1 \to M_2$ has the kernel a direct summand of M_1.

(5) Whenever X_1, \ldots, X_n are direct summands of M and $M/X_1, \ldots, M/X_n \in A$, then $\cap_{i=1}^n X_i$ is a direct summand of M.

Proof. (2) \Rightarrow (1). Let M_1, M_2 be direct summands of M such that $M/M_1, M/M_2 \in A$. Then $M = M_1 \oplus M'_1$. Without loss of generality we can assume that $M_2 \not\subseteq M_1, M_2 \not\subseteq M'_1$. From our assumption, $\pi(M_2)$ is a direct summand of M'_1. Then we can write $M'_1 = \pi(M_2) \oplus M''_1$ for some $M''_1 \leq M'_1$. Since the class A is closed under direct summands, $M''_1 \in A$. It is easy to see that $M_1 + M''_1$ is a direct summand of M. We have $M/(M_1 + M''_1) \in A$ and $M_1 + M''_1 + M_2 = M$. It follows that $M_1 \cap M_2 = (M_1 + M''_1) \cap M_2$ is a direct summand of M.

(3) \Rightarrow (2). It is obvious.
(1) \Rightarrow (4). Assume that $M = M_1 \oplus M_2$ with $M_2 \in \mathcal{A}$ and a homomorphism $f : M_1 \to M_2$. It follows that $M = M_1 \oplus M_2 = \langle f \rangle \oplus M_2$ by Lemma 2.5. Note that $M/M_1, M/\langle f \rangle \in \mathcal{A}$. By (1) and Lemma 2.5, $\langle f \rangle \cap M_1 = \text{Ker}(f)$ is a direct summand of M. Thus $\text{Ker}(f)$ is a direct summand of M_1.

(4) \Rightarrow (3). Let M_1, M_2 be submodules of M such that $M = M_1 \oplus A, M/M_2 \cong A$ and $A \in \mathcal{A}$. Call $\pi_1 : M \to M_1$ and $\pi_2 : M \to A$ the projections. By the hypothesis, $\pi_2(M_2)$ is a direct summand of A and hence $A = \pi_2(M_2) \oplus B$ for some submodule B of A. Call $p : M \to M/M_2$ the canonical projection and isomorphism $\phi : M/M_2 \to A$. Take the homomorphism $f = \phi \circ (p|_{M_1}) : M_1 \to A$. It follows that $\text{Ker}(f) = M_1 \cap M_2$.

By (4), $\text{Ker}(f) = M_1 \cap M_2$ is a direct summand of M_1. Call N_1 a submodule of M_1 with $M_1 = N_1 \oplus (M_1 \cap M_2)$. Note that $M_1 + M_2 = M_1 \oplus \pi_2(M_2)$ and $N_1 \cap M_2 = 0$. This gives that

\[
\begin{align*}
M &= M_1 \oplus \pi_2(M_2) \oplus B \\
 &= (M_1 + M_2) \oplus B \\
 &= [N_1 \oplus (M_1 \cap M_2) + M_2] \oplus B = (N_1 + M_2) \oplus B \\
 &= (N_1 \oplus M_2) \oplus B.
\end{align*}
\]

(1) \Rightarrow (5). We prove this by induction on n. When $n = 2$, the assertion is true from (1). Suppose that the assertion is true for $n = k$. Let $X_1, X_2, \ldots, X_{k+1}$ be summands of M and $M/X_1, M/X_2, \ldots, M/X_{k+1} \in \mathcal{A}$. We can write $M = \cap_{i=1}^{k} X_i \oplus N$ for some submodule N of M. Without loss of generality we can assume that $\cap_{i=1}^{k} X_i \not\subset X_{k+1}$. Let $f : M \to M/X_{k+1}$ be the natural projection. Then $(\cap_{i=1}^{k} X_i)/(\cap_{i=1}^{k} X_i \cap X_{k+1})$ is \mathcal{A}-injective, and therefore, it is isomorphic to a direct summand of $M/X_{k+1} \in \mathcal{A}$. This gives that $\cap_{i=1}^{k} X_i/\cap_{i=1}^{k} X_i$ is isomorphic to a direct summand of M and

\[
M/(\cap_{i=1}^{k+1} X_i \oplus N) = (\cap_{i=1}^{k} X_i \oplus N)/(\cap_{i=1}^{k+1} X_i \oplus N) \in \mathcal{A}.
\]

Since the equivalence of (1) and (3), $(\cap_{i=1}^{k+1} X_i) \oplus N$ is a direct summand of M. Thus $\cap_{i=1}^{k+1} X_i$ is a direct summand of M. \square

Corollary 2.8. The following conditions are equivalent for a module M:

1. If M/A is a semisimple module and B, a submodule of M with $M/A \cong B \subset M$, then $A \subset M$.

2. For any two direct summands A, B of M with M/A and M/B are semisimple modules, then $A \cap B \subset M$.

3. For any two direct summands A, B of M such that $M/A, M/B$ are semisimple modules and $A + B = M$, then $A \cap B$ is a direct summand of M.

4. Whenever X_1, X_2, \ldots, X_n are direct summands of M and $M/X_1, M/X_2, \ldots, M/X_n$ are semisimple modules, then $\cap_{i=1}^{n} X_i$ is a direct summand of M.

Corollary 2.9. Let P be a quasi-projective module. If X_1, \ldots, X_n are summands of P and $P/X_1, \ldots, P/X_n$ are semisimple modules, then $\cap_{i=1}^{n} X_i$ is a direct summand of P.

Corollary 2.10. The following conditions are equivalent for a module M:

1. For any maximal submodule A of M and any submodule B of M such that $M/A \cong B \subset_d M$, $A \subset_d M$.
2. For any two maximal summands A, B of M, $A \cap B \subset_d M$.
3. If M/A is a finitely generated semisimple module with $M/A \cong B \subset_d M$, then $A \subset_d M$.
4. Whenever X_1, X_2, \ldots, X_n are maximal summands of M, then $\cap_{i=1}^n X_i$ is a direct summand of M.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4). Follow from Proposition 2.7.

(3) \Rightarrow (1). Clearly.

(1) \Rightarrow (3). Assume that M/A is a finitely generated semisimple module and isomorphic to a direct summand of M. Write $M/A = M_1/A \oplus \cdots \oplus M_n/A$ with simple submodules M_i/A of M/A. Then $M_i \cap (\sum_{j \neq i} M_j) = A$ for all $i = 1, 2, \ldots, n$. For any subset $\{i_1, i_2, \ldots, i_{n-1}\}$ of the set $I := \{1, 2, \ldots, n\}$, it is easily to see that

$$M/(M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}}) \cong M_k/A$$

for some $k \in I \setminus \{i_1, i_2, \ldots, i_{n-1}\}$. It follows that $M/(M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}})$ is isomorphic to a simple summand of M. By (1), $M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}}$ is a maximal summand of M. On the other hand, we can check that

$$A = \bigcap_{\{i_1, i_2, \ldots, i_{n-1}\} \subset I} (M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}}).$$

So, by (4), A is a direct summand of M. \qed

Proposition 2.11. Let M be an A-$C3$ module with A a class of right R-modules and closed under isomorphisms and summands. If $M = A_1 \oplus A_2$ and $f : A_1 \rightarrow A_2$ is a homomorphism with $\text{Ker}(f) \in A$ and $\text{Ker}(f) \subset_d A_1$, then $\text{Im}(f)$ a direct summand of A_2.

Proof. Let $f : A_1 \rightarrow A_2$ be an R-homomorphism with $\text{Ker}(f) \in A$. By the hypothesis, there exists a decomposition $A_1 = \text{Ker}(f) \oplus B$ for a submodule B of A_1. Then $B \oplus A_2$ is a direct summand of M. Note that every direct summand of an A-$C3$ module is also an A-$C3$ module. Hence $B \oplus A_2$ is an A-$C3$ module. Let $g = f|_B : B \rightarrow A_2$. Then g is a monomorphism and $\text{Im}(g) = \text{Im}(f)$. It is easy to see that $B \oplus A_2 = \langle g \rangle \oplus A_2$, $\langle g \rangle \cap B = 0$ and $\langle g \rangle \cong B$. Note that $B, \langle g \rangle \in A$. As $B \oplus A_2$ is an A-$C3$ module, $B \oplus \langle g \rangle$ is a direct summand of $B \oplus A_2$. Thus $B \oplus \langle g \rangle = B \oplus \text{Im}(g)$, which implies that $\text{Im}(g)$ or $\text{Im}(f)$ is a direct summand of A_2. \qed

Proposition 2.12. Let M be a right R-module and A, a class of right R-modules and closed under isomorphisms and summands. If every submodule of M is A-projective, the following conditions are equivalent:

1. For any two direct summands M_1, M_2 of M such that $M_1, M_2 \in A$, $M_1 + M_2$ is a direct summand of M.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4). Follow from Proposition 2.7.

(3) \Rightarrow (1). Clearly.

(1) \Rightarrow (3). Assume that M/A is a finitely generated semisimple module and isomorphic to a direct summand of M. Write $M/A = M_1/A \oplus \cdots \oplus M_n/A$ with simple submodules M_i/A of M/A. Then $M_i \cap (\sum_{j \neq i} M_j) = A$ for all $i = 1, 2, \ldots, n$. For any subset $\{i_1, i_2, \ldots, i_{n-1}\}$ of the set $I := \{1, 2, \ldots, n\}$, it is easily to see that

$$M/(M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}}) \cong M_k/A$$

for some $k \in I \setminus \{i_1, i_2, \ldots, i_{n-1}\}$. It follows that $M/(M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}})$ is isomorphic to a simple summand of M. By (1), $M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}}$ is a maximal summand of M. On the other hand, we can check that

$$A = \bigcap_{\{i_1, i_2, \ldots, i_{n-1}\} \subset I} (M_{i_1} + M_{i_2} + \cdots + M_{i_{n-1}}).$$

So, by (4), A is a direct summand of M. \qed
Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (3) Let \(f : A_1 \to A_2 \) be an \(R \)-homomorphism with \(A_1 \in \mathcal{A} \). By the hypothesis, \(\text{Ker}(f) \) is a direct summand of \(A_1 \). The rest of proof is followed from Proposition 2.11.

(3) ⇒ (1) Let \(N \) and \(K \) be direct summands of \(M \) such that \(N, K \in \mathcal{A} \). Write \(M = N \oplus N' \) and \(M = K \oplus K' \) for some submodules \(N', K' \) of \(M \). Consider the canonical projections \(\pi_K : M \to K \) and \(\pi_{N'} : M \to N' \). Let \(A = \pi_{N'}(\pi_K(N)) \). Then \(A = (N + K) \cap (N + K') \cap N' \) is a direct summand of \(M \) by (3). Write \(M = A \oplus L \) for some submodule \(L \) of \(M \). Clearly,

\[(N + K) \cap [(N + K') \cap (N' \cap L)] = 0.\]

Hence, \(N' = A \oplus (N' \cap L) \) and \(M = (N \oplus A) \oplus (N' \cap L) \). Since \(A \leq N + K \) and \(A \leq N + K' \), we get

\[N + K = (N \oplus A) \cap [(N + K) \cap (N' \cap L)]\]

and

\[N + K' = (N \oplus A) \cap [(N + K') \cap (N' \cap L)].\]

They imply

\[M = N + K' + K = (N \oplus A) + [(N + K) \cap (N' \cap L)] + [(N + K') \cap (N' \cap L)] \leq (N + K) + [(N + K') \cap (N' \cap L)].\]

Thus \(M = (N + K) \oplus [(N + K') \cap (N' \cap L)]. \)

\[\square\]

Proposition 2.13. Let \(M \) be a right \(R \)-module and \(\mathcal{A} \), a class of artinian right \(R \)-modules and closed under isomorphisms and summands. If every submodule of \(M \) is \(\mathcal{A} \)-projective, then the following conditions are equivalent:

1. \(M \) is an \(\mathcal{A} \)-C3 module.
2. Every submodule \(N \in \mathcal{A} \) of \(M \) that is isomorphic to a direct summand of \(M \) is itself a direct summand.
3. Whenever \(X_1, X_2, \ldots, X_n \) are direct summands of \(M \) and \(X_1, X_2, \ldots, X_n \in \mathcal{A} \), then \(\sum_{i=1}^{n} X_i \) is a direct summand of \(M \).

Proof. (1) ⇒ (2). Let \(M_1 \) be submodule of \(M \) and isomorphic to a direct summand \(M_2 \) of \(M \) and \(M_1 \in \mathcal{A} \). Then \(M = M_2 \oplus M_2' \). If \(M_1 \subset M_2 \), then by \(M_2 \) is artinian and \(M_1 \cong M_2 \), implies that \(M_1 = M_2 \). Let \(M_1 \nsubseteq M_2 \) and \(\pi : M_2 \oplus M_2' \to M_2' \) be projection. According to the hypothesis, \(\text{Ker}(\pi|_{M_1}) \) is a direct summand of \(M_1 \). It follows that \(M_1 = M_1 \cap M_2 \oplus N_1 \). Since \(N_1 \cong \pi(M_1), M_1 \cong M_2 \), then there is an isomorphism \(\phi : N' \to \pi(M_1) \), where \(N' \) is a direct summand of \(M_1 \). Since \(\langle \phi \rangle \in \mathcal{A} \) and \(\langle \phi \rangle \cap M_2 = 0, M_2 + \langle \phi \rangle = M_2 \oplus N_1 \) is a direct summand of \(M \). Therefore, \(N_1 \) is a non-zero direct
summand of M. It is clear that $M_1 \cap M_2 \in \mathcal{A}$ and $M_1 \cap M_2$ is isomorphic to a direct summand of M. If $M_1 \cap M_2$ is not a direct summand of M, by using an argument that are similar to the argument presented above, we can show that $M_1 \cap M_2 = N_2 \oplus N'_2$, where $N_2 \in \mathcal{A}$ is a non-zero direct summand of M and $N'_2 \in \mathcal{A}$ is a submodule of M isomorphic to a direct summand of M. Since each module of the class \mathcal{A} is artinian, by conducting similar constructions continue for some k, we obtain a decomposition $M_1 = N_1 \oplus \ldots \oplus N_k$, where $N_i \in \mathcal{A}$ for each i. Since M is an \mathcal{A}-C3 module, $N_1 \oplus N_2 \oplus \ldots \oplus N_k$ is a direct summand of M.

$(2) \Rightarrow (1)$. It is obvious.

$(1) \Rightarrow (3)$. We prove this by induction on n. When $n = 2$, the assertion follows from Proposition 2.12. Suppose that the assertion is true for $n = k$. Let $X_1, X_2, \ldots, X_{k+1}$ be summands of M and $X_1, X_2, \ldots, X_{k+1} \in \mathcal{A}$. Then there exists a submodule N of M such that $M = (\sum_{i=1}^{k} X_i) \oplus N$. Let $\pi : (\sum_{i=1}^{k} X_i) \oplus N \rightarrow N$ be the natural projection. As $\pi(X_{k+1})$ is \mathcal{A}-projective, then $X_{k+1} = ((\sum_{i=1}^{k} X_i) \cap X_{k+1}) \oplus S$ for some submodule S of M. Since the equivalence of (1) and (2), $\pi(X_{k+1})$ is a direct summand of M and, therefore, $N = \pi(X_{k+1}) \oplus T$ with T a submodule M. It follows that $\sum_{i=1}^{k+1} X_i = (\sum_{i=1}^{k} X_i) \oplus \pi(X_{k+1})$ and $M = (\sum_{i=1}^{k} X_i) \oplus \pi(X_{k+1}) \oplus T$. Thus, $\sum_{i=1}^{k+1} X_i$ is a direct summand of M. \hfill \Box

Remark 2.14. Let F be any nonzero free module over \mathbb{Z} and \mathcal{A}, a class of all free \mathbb{Z}-modules. It is well known that F is a quasi-continuous module and F is not a continuous module. Thus, F is an \mathcal{A}-C3 module and satisfies the property: there exists a submodule $N \in \mathcal{A}$ of F that is isomorphic to a direct summand of F is not a direct summand.

Proposition 2.15. Let M be a right R-module and \mathcal{A}, a class of right R-modules and closed under isomorphisms and summands. If every factor module of M is \mathcal{A}-projective, then the following conditions are equivalent:

(1) For any two direct summands M_1, M_2 of M such that $M_1, M_2 \in \mathcal{A}$, $M_1 + M_2$ is a direct summand of M.

(2) M is an \mathcal{A}-C3 module.

(3) For any decomposition $M = A_1 \oplus A_2$ with $A_1 \in \mathcal{A}$, then every homomorphism $f : A_1 \rightarrow A_2$ has the image a direct summand of A_2.

(4) Every submodule $N \in \mathcal{A}$ of M that is isomorphic to a direct summand of M is itself a direct summand.

(5) Whenever X_1, X_2, \ldots, X_n are direct summands of M and $X_1, X_2, \ldots, X_n \in \mathcal{A}$, then $\sum_{i=1}^{n} X_i$ is a direct summand of M.

Proof. $(1) \Rightarrow (2)$ is obvious.

$(2) \Rightarrow (3) \Rightarrow (1)$ are proved similarly to the argument proof of Proposition 2.12.

$(4) \Rightarrow (2)$ is obvious.

$(3) \Rightarrow (4)$. Let $\sigma : A \rightarrow B$ be an isomorphism with $A \in \mathcal{A}$ a summand of M and $B \leq M$. We need to show that B is a direct summand of M. Write $M = A \oplus T$ for
some submodule T of M. We have $A/A \cap B$ is an image of M and obtain that $A \cap B$ is a direct summand of A. Take $A = (A \cap B) \oplus C$ for some submodule C of A. Now $M = (A \cap B) \oplus (C \oplus T)$. Clearly, $A \cap [(C \oplus T) \cap B] = 0$ and $B = (A \cap B) \oplus [(C \oplus T) \cap B]$. Let $H := \sigma^{-1}((C \oplus T) \cap B)$. Then H is a submodule of A, $H \cap [(C \oplus T) \cap B] = 0$ and $A = H \oplus (H' \cap T)$. Consider the projection $\pi : M \rightarrow H' \cap T$. Then

$$H \oplus [(C \oplus T) \cap B] = H \oplus \pi((C \oplus T) \cap B).$$

By (3), the image of the homomorphism $\pi |_{(C \oplus T) \cap B} \circ \sigma |_H : H \rightarrow H' \oplus T$ is a direct summand of $H' \oplus T$ since H is contained in A. Write $H' \oplus T = \pi |_{(C \oplus T) \cap B} \circ \sigma (H) \oplus K$ for some submodule K of $H' \oplus T$. Then $H' \oplus T = \pi((C \oplus T) \cap B) \oplus K$. It follows that

$$M = H \oplus \pi((C \oplus T) \cap B) \oplus K = H \oplus [(C \oplus T) \cap B] \oplus K.$$

By the modular law, $C \oplus T = [(C \oplus T) \cap B] \oplus [(H \oplus K) \cap (C \oplus T)]$. Thus

$$M = (A \cap B) \oplus [(C \oplus T) \cap B] \oplus [(H \oplus K) \cap (C \oplus T)]$$

$$= B \oplus [(H \oplus K) \cap (C \oplus T)].$$

The implication $(1) \Rightarrow (5)$ is proved similarly to the argument proof of Proposition 2.13

\[\square\]

Corollary 2.16. The following conditions are equivalent for a module M:

1. For any semisimple submodules A, B of M with $A \cong B \subset M$, $A \subset M$.
2. For any semisimple summands A, B of M, $A + B \subset M$.
3. For any semisimple summands A, B of M with $A \cap B = 0$, $A + B \subset M$.
4. Whenever X_1, \ldots, X_n are semisimple summands of M and $X_1, \ldots, X_n \in A$, then $\sum_{i=1}^n X_i$ is a direct summand of M.

Corollary 2.17. Let Q be a quasi-injective module. If X_1, \ldots, X_n are semisimple summands of Q, then $\sum_{i=1}^n X_i$ is a direct summand of Q.

Corollary 2.18 ([6 Proposition 2.1]). The following conditions are equivalent for a module M:

1. For any simple submodules A, B of M with $A \cong B \subset M$, $A \subset M$.
2. For any simple summands A, B of M with $A \cap B = 0$, $A \oplus B \subset M$.
3. For any finitely generated semisimple submodules A, B of M with $A \cong B \subset M$, $A \subset M$.
4. For any finitely generated semisimple summands A, B of M with $A \cap B = 0$, $A \oplus B \subset M$.

3. Characterizations of rings

Lemma 3.1. Let A be a class of right R-modules with local endomorphisms and closed under isomorphisms. Assume that K and M are indecomposable right R-modules and not contained in A. Then
(1) $N = M \oplus P$ is an A-D3 module for all projective modules P.
(2) $N = M \oplus E$ is an A-C3 module for all injective modules E.
(3) $N = M \oplus K$ is an A-D3 module and an A-C3 module.

Proof. (1) Let $N/A \cong S \subset_d N$ with $S \in \mathcal{A}$. By [5] Lemma 26.4, there exist a direct summand M_1 of M and a direct summand P_1 of P such that $N = S \oplus M_1 \oplus P_1$. Write $P = P_1 \oplus P_2$ for some submodule P_2 of P. Since M is an indecomposable module, we have either $M_1 = 0$ or $M = M_1$. If $M_1 = 0$, then $N = S \oplus P_1 = (M \oplus P_2) \oplus P_1$ and it follows that $M \oplus P_2 \cong S$, and hence $M \in \mathcal{A}$ contradicting. So $M_1 = M$. Then $N = S \oplus (M \oplus P_1) = (M \oplus P_1) \oplus P_2$. This gives $S \cong P_2$, and consequently $N/A \cong S$ is projective. Hence, A is a direct summand of N and (1) holds.

(2) Suppose that A is a submodule of N such that $A \cong S$ with S a submodule of N and $S \in \mathcal{A}$. As in (1), we see that $N = S \oplus M_1 \oplus E_1$ with $M = M_1 \oplus M_2$ and $E = E_1 \oplus E_2$. Also, as in (1), $M_1 = M$. Therefore, $N = S \oplus M \oplus E_1 = M \oplus E = (M \oplus E_1) \oplus E_2$. It follows that $S \cong E_2$ is an injective module. Thus A is a direct summand of N.

(3) We show that N has no a nonzero direct summand S with $S \in \mathcal{A}$. Assume on the contrary that there exists a non-zero summand $S \subset_d N$ with $S \in \mathcal{A}$. As, in (1), $N = S \oplus M_1 \oplus K_1$ with $M = M_1 \oplus M_2$ and $K = K_1 \oplus K_2$. Also, as in (1), $M_1 = M$. Therefore, $N = S \oplus M \oplus K_1 = M \oplus K$.

Since K is indecomposable, $K = K_1$ or $K = K_2$. If $K = K_1$, then $S \oplus M \oplus K = M \oplus K$ and consequently $S = 0$, a contradiction. If $K = K_2$, then $K_1 = 0$ and so $S \oplus M = M \oplus K$. Therefore, $K \cong S$ and hence $K \in \mathcal{A}$, a contradiction. □

Recall that a module is uniserial if the lattice of its submodules is totally ordered under inclusion. A ring R is called right uniserial if R_R is a uniserial module. A ring R is called serial if both modules R_R and R_R are direct sums of uniserial modules.

Theorem 3.2. Let R be a right artinian ring and A, a class of right R-modules with local endomorphisms, containing all right simple right R-modules and closed under isomorphisms. If all right R-modules are A-injective, then the following conditions are equivalent for a ring R:

(1) R is a serial artinian ring with $J^2(R) = 0$.
(2) Every A-C3 module is quasi-injective.
(3) Every A-C3 module is C3.

Proof. (1) ⇒ (2) Assume that R is an artinian serial ring with $J^2(R) = 0$. Then every right R-module is a direct sum of a semisimple module and an injective module. Furthermore, every injective module is a direct sum of cyclic uniserial modules. Let M be an A-C3 module. We can write $M = (\bigoplus_{i \in I} S_i) \oplus (\bigoplus_{j \in J} E_j)$ where each S_i is simple if $i \in I$ and $\bigoplus_{j \in J} E_j$ is injective where each E_j is cyclic uniserial non-simple if $j \in J$. Note
that any \(E_j \) has length at 2 by [4, 13.3]. We show that \(M \) is a quasi-injective module. To show that \(M \) is quasi-injective, by [16, Proposition 1.17] it suffices to show that \(\bigoplus I S_i \) is \(\bigoplus J E_j \)-injective. By [16, Theorem 1.7], \(\bigoplus I S_i \) is \(\bigoplus J E_j \)-injective if and only if \(S_i \) is \(\bigoplus J E_j \)-injective for all \(i \in I \). Furthermore, for any \(i \in I \), if \(S_i \) is \(E_j \)-injective for all \(j \in J \), then \(S_i \) is \(\bigoplus J E_j \)-injective by [16, Proposition 1.5]. So, it suffices to show that \(S_i \) is \(E_j \)-injective for each \(i \in I \) and \(j \in J \). Suppose that \(E_j \) has a series \(0 \subset X \subset E_j \). Let \(f : A \rightarrow S_i \) be a homomorphism with \(A \leq E_j \). If \(A = 0 \) or \(A = E_j \) then it is obvious that \(f \) is extended to a homomorphism from \(E_j \) to \(S_i \). Assume that \(A = X \). If \(f \) is non-zero, then \(X \cong S_i \). As \(M \) is an \(A \)-C3 module, \(X \) is a direct summand of \(M \). It follows that \(X = E_j \), a contradiction. Hence \(S_i \) is \(E_j \)-injective and so \(M \) is quasi-injective.

(2) \(\Rightarrow \) (3) This is clear.

(3) \(\Rightarrow \) (1) Let \(M \) be an indecomposable module. If \(M \in A \), then it is quasi-injective. Now, suppose that \(M \not\in A \) and let \(\iota : M \rightarrow E(M) \) be the inclusion. Then, by Lemma 3.1, \(M \oplus E(M) \) is \(A \)-C3 and by assumption, \(M \oplus E(M) \) is a C3-module. It follows that \(\text{Im}(\iota) \) is a direct summand of \(E(M) \) by [4, Proposition 2.3]. Hence \(M \) is injective. Inasmuch as every indecomposable right \(R \)-module is quasi-injective, we infer from [9, Theorem 5.3] that \(R \) is an artinian serial ring. By [5, Theorem 25.4.2], every right \(R \)-module is a direct sum of uniserial modules. Now, by [4, 13.3], we only need to show that each uniserial module, say \(M \), has length at most 2. Suppose that \(M \) has a series \(0 \subset X \subset Y \subset M \) of length 3. Assume that \(Y \in A \). Then \(X \) is \(Y \)-injective and hence \(X \) is a direct summand of \(Y \), a contradiction. It follows that \(Y \not\in A \). By Lemma 3.1, \(M \oplus Y \) is an \(A \)-C3 module and then, by hypothesis, is a C3-module. Consequently, the natural inclusion, \(\eta : Y \rightarrow M \) splits; i.e. \(Y \subset_d M \) and so \(Y = M \), a contradiction. Hence, \(R \) is an artinian ring with \(J^2(R) = 0 \).

\[\square \]

Theorem 3.3. Let \(R \) be a right artinian ring and \(A \), a class of right \(R \)-modules with local endomorphisms, containing all right simple right \(R \)-modules and closed under isomorphisms. If all right \(R \)-modules are \(A \)-projective, then the following conditions are equivalent for a ring \(R \):

1. \(R \) is a serial artinian ring with \(J^2(R) = 0 \).
2. Every \(A \)-D3 module is quasi-projective.
3. Every \(A \)-D3 module is D3.

Proof. By Lemma 3.1 and [13, Theorem 4.4]. \[\square \]

Proposition 3.4. Let \(A \) be a class of right \(R \)-modules and closed under isomorphisms and summands. Then the following conditions are equivalent:

1. All modules \(A \in A \) are injective.
2. Every right \(R \)-module is \(A \)-C3.

Proof. (1) \(\Rightarrow \) (2) is obvious.
(2) ⇒ (1). Suppose that \(A \in \mathcal{A} \). Then by (2), \(A \oplus E(A) \) is an \(\mathcal{A} \)-C3 module. Call \(\iota : A \to E(A) \) the inclusion map. By Proposition 2.11, \(\text{Im}(\iota) = A \) is a direct summand of \(E(A) \). Thus \(A = E(A) \) is an injective module.

\[\square \]

Corollary 3.5 (\[6\]). The following conditions are equivalent for a ring \(R \):

1. \(R \) is a right \(\mathcal{V} \)-ring.
2. Every right \(R \)-module is simple-direct-projective.

Proposition 3.6. Let \(\mathcal{A} \) be a class of right \(R \)-modules and closed under isomorphisms and summands. Then the following conditions are equivalent:

1. All modules \(A \in \mathcal{A} \) are projective.
2. Every right \(R \)-module is \(\mathcal{A} \)-D3.

Proof. (1) ⇒ (2). Assume that \(M \) is a right \(R \)-module. Let \(M_1, M_2 \) be submodules of \(M \) with \(M/M_1, M/M_2 \in \mathcal{A} \) and \(M = M_1 + M_2 \). It follows that \(M/M_1, M/M_2 \) are projective modules and the following isomorphism

\[M/(M_1 \cap M_2) = (M_1 + M_2)/(M_1 \cap M_2) \simeq M/M_1 \times M/M_2. \]

Then \(M/(M_1 \cap M_2) \) is a projective module. We deduce that \(M_1 \cap M_2 \) is a direct summand of \(M \). It shown that \(M \) is an \(\mathcal{A} \)-D3 module.

(2) ⇒ (1). Suppose that \(A \in \mathcal{A} \). Call \(\phi : R^{(I)} \to A \) an epimorphism. Then \(R^{(I)} \oplus A \) is an \(\mathcal{A} \)-D3 module. By Proposition 2.6, \(A \) is isomorphic to a direct summand of \(R^{(I)} \). Thus \(A \) is a projective module.

\[\square \]

Corollary 3.7 (\[6\]). The following conditions are equivalent for a ring \(R \):

1. \(R \) is a semisimple artinian ring.
2. Every right \(R \)-module is simple-direct-projective.

Let \(M \) be a right \(R \)-module. \(M \) is called regular if every cyclic submodule of \(M \) is a direct summand. A right \(R \)-module is called \(M \)-cyclic if it is isomorphic to a factor module of \(M \).

Lemma 3.8. Let \(F \) be a regular module. Assume that \(A \neq 0 \) is a small finitely generated submodule of the factor module \(F/F_0 \) for some submodule \(F_0 \) of \(F \) and \(\mathcal{A} \) the class of all modules isomorphism to \(A \). Then there exists a \(F \)-cyclic module \(M \) and satisfies the property: there is a submodule \(N \in \mathcal{A} \) of \(M \) that is isomorphic to a direct summand of \(M \) and not a direct summand.

Proof. By the hypothesis we have \(((x_1R + x_2R + \cdots + x_mR) + F_0)/F_0 = A \) for some \(x_1, x_2, \ldots, x_m \) of \(F \). Since \(F \) is a regular module, \(x_1R + x_2R + \cdots + x_mR = \pi(F) \), where \(\pi \in \text{End}(F) \) and \(\pi^2 = \pi \). Since \(A \) is a small submodule of \(F/F_0 \), we have \(F/F_0 = ((1-\pi)F + F_0)/F_0 \). It follows that there exist epimorphisms \(f_1 : \pi(F) \to A \), \(f_2 : (1-\pi)(F) \to F/F_0 \). It is easy to check \(A \oplus (F/F_0) \) is an \(F \)-cyclic module. Call \(M = A \oplus (F/F_0) \). Thus, the module \(N := 0 \oplus A \simeq A \) is not a direct summand of \(M \) and isomorphic to a direct summand of \(M \).

\[\square \]
A module M is called a V-module if every simple module in $\sigma[M]$ is M-injective (see [19]). R is called a right V-ring if the right module R_R is a V-module.

Theorem 3.9. The following conditions are equivalent for a regular module F:

(1) F is a V-module.

(2) Every F-cyclic module M is an A-C_3 module where A is the class of all simple submodules of M.

Proof. The implication (1) \Rightarrow (2) is obvious.

(2) \Rightarrow (1). Let $S \in \sigma[F]$ is a simple module and $E_F(S)$ is the injective hull of S in the category $\sigma[F]$. Assume that $E_F(S) \neq S$. As $E_F(S)$ is generated by F, there exists a homomorphism $f : F \to E_F(S)$ such that $f(F) \neq S$. Then S is a small submodule of $f(F) \cong F/\text{Ker}(f)$. Call A the class of all modules isomorphism to S. By Lemma 3.8, there exists a F-cyclic module M and satisfies the property: there is a submodule $N \in A$ of M that is isomorphic to a direct summand of M and not a direct summand. We infer from Proposition 2.15 that M is not an A-C_3 module. This contradicts the condition of (2). \square

Corollary 3.10 ([6, Theorem 4.4.]). A regular ring R is a right V-ring if and only if every cyclic right R-module is simple-direct-injective.

References

1. Abyzov, A. N. and Tuganbaev A. A. *Modules in which sums or intersections of two direct summands are direct summands*, Fundam. Prikl. Mat. 19, 3-11, 2014.
2. Abyzov A. N. and Nhan T. H. N. *CS-Rickart Modules*, Lobachevskii Journal of Mathematics, 35, 317-326, 2014.
3. Alkan, M. and Harmanci, A. *On Summand Sum and Summand Intersection Property of Modules*, Turkish J. Math, 26, 131-147, 2002.
4. Amin, I. Ibrahim, Y. and Yousif, M. F. *C3-modules*, Algebra Colloq. 22, 655-670, 2015.
5. Anderson, F. W. and Fuller, K. R. *Rings and Categories of Modules*, Springer-Verlag, New York, 1974.
6. Camillo, V. Ibrahim, Y. Yousif, M. and Zhou, Y. *Simple-direct-injective modules*, J. Algebra 420, 39-53, 2014.
7. Dung, N. V. Huynh, D. V. Smith, P. F. and Wisbauer, R. *Extending modules*, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
8. Faith, C. *Algebra II. Ring Theory*, Springer-Verlag, New York, 1967.
9. Fuller, K. R. *On indecomposable injectives over artinian rings*, Pacific J. Math 29, 115-135, 1968.
10. Garcia, J. L. *Properties of Direct Summands of Modules*, Comm. Algebra, 17, 73-92, 1989.
11. Hamdouni, A. Harmanci, A. and Ç. Özcan, A. *Characterization of modules and rings by the summand intersection property and the summand sum property*, JP Jour.Algebra, Number Theory & Appl. 5, 469-490, 2005.
12. Hausen, J. *Modules with the Summand Intersection Property*, Comm. Algebra 17, 135-148, 1989.
13. Ibrahim, Y. Kossan, M. T. Quynh, T.C. and Yousif, M. *Simple-direct-projective modules*, to appear in Comm. Algebra, 2015.
14. Kaplansky, I. *Infinite Abelian Groups*, Univ. of Michigan Press, Ann Arbor, 1969.
Keskin Tütüncü, D. Mohamed, S.H. and Orhan Ertas, N. *Mixed injective modules*, Glasg. Math. J. **52**, 111-120, 2010.

Mohammed, S. H. and Müller, B. J. *Continuous and Discrete Modules*, London Math. Soc. LN **147**: Cambridge Univ. Press., 1990.

Quynh, T. C. Kosan, M. T. and Thuyet, L. V. *On (semi)regular morphisms*, Comm. Algebra **41**, 2933-2947, 2013.

Wilson, G. V. *Modules with the Direct Summand Intersection Property*, Comm. Algebra **14**, 21-38, 1986.

Wisbauer, R. *Foundations of Module and Ring Theory*, Gordon and Breach. Reading, 1991.

Yousif, M. F. Amin, I. and Ibrahim, Y. *D3-modules*. Commun. Algebra **42**, 578-592, 2014.

Department of Algebra and Mathematical Logic, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

E-mail address: aabyzov@ksu.ru, Adel.Abyzov@ksu.ru

Department of Mathematics, Danang University, 459 Ton Duc Thang, Danang city, Vietnam

E-mail address: tcquynh@dce.udn.vn; tcquynh@live.com

Department of Algebra and Mathematical Logic, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

E-mail address: tranhoaingocnhan@gmail.com