Supplemental method

Generation and maintenance of Igf2bp2Δ/Δ mouse

A transient induction of CRE-recombinase, however, results in a mixture of normally oriented and invertedly oriented exon-3 sequences in the gene locus. We employed transgenic mice that express CRE recombinase in the germline to select for offspring that carry an inverted exon-3, resulting in a deletion of exon-3 (49 bp) in Igf2bp2 mRNA (Supplemental Figure 1A-B). The deletion of exon-3 leads to a frame shift and introduction of a premature stop codon resulting premature translation termination and complete abrogation of Igf2bp2 expression at protein level (Supplemental Figure 1C-E). Also a truncated protein could not be detected.

Mice with a heterozygous or homozygous inversion of exon-3 are referred to as Igf2bp2Δ/Δ or Igf2bp2Δ−/Δ. The mouse line was bred by Igf2bp2Δ/Δ x Igf2bp2Δ/Δ matings or Igf2bp2Δ/Δ (females) x Igf2bp2Δ−/Δ (males) matings. Igf2bp2Δ−/Δ females were infertile indicating that Igf2bp2 is a maternal factor as seen in another mouse model of Igf2bp2 deletion. All wild-type mice in our experiments were from the littermates of Igf2bp2Δ−/Δ crosses or from C57BL/6 Janvier (C57BL/6JRj). Animals used for experiments were on a C57BL/6JRj background (7 fold backcrossed) and maintained in a specific pathogen-free (SPF) animal facility at the Fritz Lipmann Institute (FLI), Jena, with 12:12 hours light/dark cycle and fed ad-libitum (Ssniff GmbH; V1524-786) with a standard mouse chow and water. All animal experiments were performed following the protocols approved by the state government of Thuringia (Application Nr. 03-053/16 ZRA, O.KLR.18-20, Nr. FLI-17-022, and Nr.03-051/16).

Flow cytometry sorting and analysis

Total bone marrow cells were harvest from bones including fore and hind limbs, pelvis and spine. cKit+ BM cells were enriched by magnetic-activated cell separation (Miltenyi Biotec; 130-090-855). cKit+ BM cells were incubated with lineage cocktail containing biotinylated antibodies against CD4 (Biolegend; 100508), CD8 (Biolegend; 100704), TER-119 (Biolegend; 116204), CD11b (Biolegend; 101204), Gr-1 (Biolegend; 108404), and B220 (Biolegend; 103204) on ice for 30 min. After washing, the cells were incubated with anti-cKit-APC (Biolegend; 105812), anti-Sca1-PE-Cy7
(Biolegend; 108114), anti-streptavidin-APC-Cy7 (Biolegend; 405208), anti-CD34-Alexafluor700 (eBioscience; 56-0341-82), and anti-CD150-BV605 (Biolegend; 115927) on ice for overnight. For isolation of the HSC-containing population of cells derived from cultured HSC, the cultured cells were stained with lineage cocktail on ice for 30 min. After washing, the cells were stained with anti-Sca1-PE-Cy7, anti-streptavidin-APC-Cy7, and anti-CD48-PerCP-Cy5.5 (Biolegend; 103422) on ice for 30 minutes and re-suspended in FACS staining medium with DAPI (1:1,000) after washing.

Peripheral blood was incubated with anti-CD4-APC (Biolegend; 100516), anti-CD8-APC (Biolegend; 100712), anti-Gr-1-APC-Cy7 (Biolegend; 108424), anti-CD11b-APC-Cy7 (Biolegend; 101226), anti-B220-APC (eBioscience; 17-0452-82), and anti-B220-APC-Cy7 (Biolegend; 103224) on ice for 30 minutes, followed by red blood cell lysis (BD Biosciences; 555899).

Freshly isolated BM cells (1x10^7) were incubated with lineage cocktail at 4 °C for 30 min, then stained with anti-cKit-APC, anti-Sca1-PE-Cy7, anti-streptavidin-APC-Cy7, anti-CD34-Alexafluor700, anti-CD150-BV605, anti-FcγR-FITC (Biolegend; 101306) or anti-CD48-FITC (Biolegend; 103404), anti-CD127-PerCP-Cy5.5 (Biolegend; 135022), anti-Flt3-PE (Biolegend; 135306) or anti-CD41-PE (Biolegend; 133906) on ice for overnight.

Cell purification and FACS analysis were performed by the LSR Fortessa cell analyzer and FACS Aria III cell sorter, respectively. Data were analyzed by FlowJo software.

Homing assay

Previous protocols^3 were used to examine the homing potential of myeloid-biased HSC. In brief, freshly purified myeloid biased HSC (CD150^{high}CD34-LSK; 3,000 cells) from donor mice (CD45.2) were transplanted into lethally γ-irradiated (12 Gy) recipients (CD45.1) by intravenous (i.v.) injection (5 recipients per experimental group). In this experiment, 5 mice irradiated but not transplanted were used as negative control to quantify leftover CFCs in the BM of the irradiated mice. 12 h after transplantation, total bone marrow cells were harvest from bones (including fore and hind limbs, pelvis and spine) of each irradiated mouse and were quantified. Total BM cells from recipients in experimental groups were seeded into methylcellulose medium
at 3\times 10^6 cells/6 replicates; and total BM cells from mice in negative control group were seeded into methylcellulose medium at 1\times 10^6/duplicate. The number of colonies was counted 10 days after culture. Prior to transplantation, the number of CFCs from 500 myeloid-biased HSC of donor mice were quantified 10 days after culture. The calculation used was as below.

\[
\% \text{ CFC homed} = \frac{\text{total colony number (recipient)} - \text{total colony number (negative)}}{\text{colony number per 3000 donor cells}}
\]

Total colony number = colony number per million BM cells × BM cell number/1000000

Colony number per 3000 donor cells = colony number per 500 donor cells × 6

RNA purification, reverse transcription and quantitative real time PCR (RT-qPCR)

Total RNA was extracted by using MagMax96 total RNA isolation kit (Ambion; AM1830) according to the manufacturer’s protocol. The GoScript Reverse transcription system (Promega; A5000) was used for cDNA synthesis. RT-qPCR was performed with the SYBR system by using the 384 CFX detection systems. The amount of target RNA was normalized to that of the endogenous control β-actin (Actb). The gene expression ratio was calculated following the Pfaffl formula with primer efficiency correction. The qPCR primer sequences are as follows: β-actin, Fw 5’-AAGGCCAACCGTGAAAAGAT-3’ and Re 5’-GTGGTACGACCAGAGGCATAC-3; Lin28b, Fw 5’-AGAATGCAGTCTACCTCCTAG-3’ and Re 5’-CCTCCACTTCTCTTGGTGC-3; Hmga2, Fw 5’-AACCTGTGAGCCCTCTAAG-3’ and Re 5’-GCCGTTTTTCTCAAATGGTC-3; Igf2bp2, Fw 5’-GAATCCAGATTCGGGAACATCC-3’ and Re 5’- GTTGACAACCGCAGTTCTG-3’.

FACS analysis of phosphorylated-mTOR

Freshly isolated bone marrow cells stained with antibodies against surface marker were fixed and permeabilized by using the Cytofix/Cytoperm kit (BD Biosciences; 554714). The level of p-mTOR in specific populations was analyzed by FACS using anti-p-mTOR-PE (pS2448; BD Biosciences; 563489).

Cell cycle assay
Cell cycle analysis for freshly isolated cells was performed via Ki67 staining (BD Biosciences; 556027) using Cytofix/Cytoperm kit (see above).

Immunofluorescence staining

5,000-10,000 HSPC were plated on 12-well slides that were pre-coated with 1x poly-L-lysine (Sigma-Aldrich; P8920) at room temperature (RT) for 30 min and kept in a humid chamber for 30 min allowing cells to settle down onto the slides. Cells were fixed with 100% methanol for 10 min at RT. After 3 washes with PBS, the fixed cells were permeabilized with 2% BSA containing 0.3% Triton X-100 for 30 min at RT. Following this, cells were blocked by 2% BSA at RT for 30 min. After blocking, cells were incubated with primary antibodies at RT for overnight: anti-phosphorylated AKT (Ser 473; 1:400 in 2% BSA). On the next day cells were washed 3 times with PBS and incubated with secondary antibodies against rabbit with a fluorescent dye (Cy3, 1:400 in 2% BSA) for 30 min at RT. After washing the stained cells 3 times with PBS, the stained cells were counterstained by mounting medium containing DAPI and covered by a glass coverslip. Pictures were taken at the ApoTome microscope. The median intensity of each cell was measured by ImageJ, and the median intensity per mouse was quantified from the median intensity from 100-200 cells of the mouse. In order to combine the independent experiments together, the fold change of median intensity was normalized to the average of median intensity of young HSC or MPP in each experiment.

Respirometry analysis

The cellular ATP production rate in living cells was detected by using Agilent Seahorse XF96 Technology according to the guideline of real-time ATP production rate assay. Briefly, freshly isolated HSPC (40,000 cells) were plated into poly-lysine-coated 96-well cell culture plate with 180 μl XF DMEM medium (Agilent technologies; 102353) with 1mM pyruvate, 2mM glutamine, 10 mM glucose, 50ng/ml mTPO, 50ng/ml mSFC, 100 U/ml penicillin and 100 μg/ml streptomycin. The plated cells were incubated at 37°C without CO₂ for 1h before measuring. The OCR and ECAR were measured every one hour for 6 h by XF96 Seahorse prior to the real-time ATP production assay following the manufacturer’s protocol. The concentration of drugs used in the experiment was 2μM oligomycin (Sigma-Aldrich; 75351) and 1 μM of rotenone (Sigma-Aldrich; R8875-1G)/Antimycin A (Sigma-Aldrich; A8674) (Rot/AA).
The OCR and ECAR measured by real-time ATP production assay was used to calculate glycoATP production rate and mitoATP production rate by the Agilent Seahorse XF Real Time ATP Rate Assay Report Generator. In brief, the glycoATP production rate is equivalent to glycolytic proton efflux rate (glycoPER). The glycoPER is equal to the subtraction of mitochondrial PER (CO₂-dependent proton) from total PER. The total PER is calculated from ECAR, and mitochondrial PER is related to mitochondrial OCR (subtraction of OCR after addition of Rot/AA from basal OCR). The ATP generated from mitochondria by the process of oxidative phosphorylation (OXPHOS), called mitoATP, is calculated from ATP-linked OCR that is subtracted the OCR after injection of oligomycin from basal OCR. For further details see manufactures instruction. ⁴

The mitochondrial function was assessed by Agilent Seahorse Cell Mito Stress assay according to the manufacturer’s protocol. Prior to the Mito Stress assay, purified HSPC (40,000 cells) were cultured by SFEM medium with 50ng/ml mTPO, 50ng/ml mSFC, 100 U/ml penicillin and 100 μg/ml streptomycin for 12 h. The Mito Stress assay was performed by XF96 Seahorse with injections of 2 μM oligomycin, 4 μM FCCP (Sigma-Aldrich, C2920), and 1 μM of Rot/AA. The measured OCR was used for quantification. In brief, the OCR for basal or maximal respiration was calculated by subtraction of non-mitochondrial OCR (after injection of Rot/AA) from the basal OCR or the OCR after FCCP injection, respectively. The OCR for ATP-linked respiration was calculated by subtraction of the OCR (after injection of oligomycin) from the basal OCR.

Lentivirus infection of HSC

The open reading frame (ORF) of Igf2bp2 cDNA was cloned into the SFLV-EGFP plasmid⁵, which up-regulates the Igf2bp2 expression at mRNA and protein level (Supplemental Figure 7A and B). The LentIX 293T producer cells were transfected according to established protocols.⁶

Cell culture and inhibitor treatment

Viral-infected HSC were plated in 400 μl of serum-free expansion medium (SFEM; Stem Cell; 09650) containing 50 ng/ml thrombopoietin (TPO; Peprotech; 315-14), and 50 ng/ml stem cell factor (SCF; Peprotech; 250-03) with PI3K inhibitor
(LY294002, 10 μM; Cell Signaling Technology; 9901) or mTOR inhibitor (rapamycin, 200 μM; LC Laboratories; R-5000).

MitoRed measurement

Two days after culture, cells were stained with antibodies against surface markers as described in supplemental methods. The stained cells were incubated with MitoRed (PromoCell; PK-CA707-70055) and analyzed by FACS.

Bulk RNA sequencing and Gene ontology (GO) enrichment analysis

Bulk RNA sequencing was conducted on myeloid-biased HSC from 3 month-old and 22-26 month-old \(\text{Igf2bp2}^{-/} \) versus \(\text{Igf2bp2}^{+/-} \) mice. Total RNA was extracted by MagMax96 total RNA isolation kit (Ambion; AM1830). Quantification and quality checks used an Agilent 4200 TapeStation. Sequencing was carried out by Illumina’s next-generation sequencing methodology. In brief, full-length cDNA was prepared using SMART-Seq v4 Ultra Low Input RNA Kit from 2 ng of input material and quantified using High Sensitivity D5000 ScreenTape. Starting with tagmentation, Nextera XT DNA Library Preparation Kit was used to further process the full-length cDNA to Illumina libraries. Subsequently, quantification and quality check of libraries was performed on D5000 ScreenTape. Illumina libraries were pooled and sequenced on NovaSeq 6000 System running (single-end; Read 1: 101 bp). Sequence information was converted to FASTQ format using bcl2fastq v2.20.0.422. The raw reads were pseudoaligned to the GRCm38 mouse transcriptome using Salmon (v1.4.0) with default parameters. The transcript per million values outputted by Salmon were imported to R (v4.0.2) and summarized into a gene-level matrix using the tximport R package (v1.16.1). Differential gene expression was carried out using the DESeq2 R package (v1.28.1). A gene was considered differentially expressed if the Benjamini-Hochberg adjusted p-value was less than 0.05. 1,421 differentially expressed genes (DEG) were identified in young myeloid-biased HSC from \(\text{Igf2bp2}^{-/} \) versus \(\text{Igf2bp2}^{+/-} \) mice; 26 DEG were identified in old myeloid-biased HSC from \(\text{Igf2bp2}^{-/} \) versus \(\text{Igf2bp2}^{+/-} \) mice.

An overlap analysis was performed on the DEG in young myeloid-biased HSC from \(\text{Igf2bp2}^{-/} \) vs. \(\text{Igf2bp2}^{+/-} \) mice with 83 identified target RNAs directly bound to IGF2BP2 in brown fat as reported previously.
Gene ontology (GO) enrichment analysis was performed on the differentially expressed genes that are down-regulated or up-regulated in young myeloid-biased HSC from \textit{lgl2bp2}−/− vs. \textit{lgl2bp2}+/+ mice using the R package GOstats (v2.54.0). Significant GO terms were selected if the Benjamini-Hochberg adjusted p-value was less than 0.05. Taking the DEG down-regulated in young \textit{lgl2bp2}−/− versus \textit{lgl2bp2}+/+ mice which are associated with the GO terms “Mitochondrial organization”, “Mitochondrial respiratory chain complex assembly”, “Peptide metabolic process”, “Proteasomal ubiquitin-independent protein catabolic process”, “Cellular amide metabolic process”, and “Translation”, we used the Quanto R package (v1.22.0) to evaluate the differences in the expression of these genes across groups of samples. The quanto function outputs an F statistic and the corresponding p-value for each pair of sample types: Young \textit{lgl2bp2}−/− vs. Old \textit{lgl2bp2}+/+, young \textit{lgl2bp2}−/− vs. old \textit{lgl2bp2}−/− and Young \textit{lgl2bp2}−/− vs. Old \textit{lgl2bp2}+/+.

Single cell RNA sequencing (ScRNA-seq)

Freshly isolated myeloid-biased HSC from male wildtype mice (6 weeks old) were used to conduct single cell RNA sequencing using 10x Genomics Chromium Controller and the Chromium Single Cell 3’ v3 chemistry following the standard manufacturer’s protocols. In brief, 20,000 freshly isolated myeloid biased HSC (CD150highCD34 LSK) were loaded onto to the Chromium controller to recover 10,000 cells for library preparation and sequencing. After Post GEM-RT Cleanup, cDNA was amplified by 11 cycles. The total yield of cDNA was assessed on High Sensitivity DNA Assay (Agilent 2100 Bioanalyzer) resulting 540 ng. A total of 12 cycles was used for the Sample Index PCR reaction and final library was evaluated using D5000 ScreenTape. The library was sequenced on Illumina NextSeq 500 System (paired end; Read 1: 28 bp barcode & UMI; Read 2: 55 bp Insert). The initial analysis with Cell ranger (version: 3.1.0, parameter: -expect-cells=10000; bcl2fastq v2.20.0.422) estimated 7,906 cells with 46,552 reads/cell.

Single cell RNA-seq (scRNA-seq) data normalization and quality control

ScRNA-seq data were processed using 10X Genomics Cell Ranger (v5.0.0) mapped to the GRCm38 reference genome. Seurat R package (v3.2.3) was used for all further analysis. Data were read into R as a count matrix and log-transformed using the Seurat function SCTransform. For quality control, we began with 7,887 cells with
mean number of features 3,683.5, mean read count 14,037.9, and mean percentage of mitochondrial reads 8.2. We removed cells with fewer than 500 features, fewer than 3,000 reads, or over 50% mitochondrial reads, selecting 7,435 cells to use for further analysis.

Visualization, clustering, and differential expression of scRNA-seq data using Seurat

For Uniform Manifold Approximation and Projection (UMAP) and clustering, the first 30 principal components were used. UMAP plots of the expressions of *Lin28b, Hmga2, Igf2bp2, Igf2, Igf1, H19, Rian, and Cdkn1c* exclude the top 5%, 1%, 0%, 5%, 5%, 0%, 1%, and 1% of values, respectively (Figs. 3 and S4). Clustering was performed using the Seurat function FindClusters with resolution 0.3, resulting in 9 unique clusters. The Seurat function FindMarkers with a Bonferroni adjusted p-value cutoff of 0.01 was used to determine specific markers for each cluster. These markers were then compared with common hematopoietic lineage markers in order to identify which clusters were already primed towards a certain lineage. Clusters 1, 2, 6, and 7 were excluded based on their expression of: *Itga2b, Vwf, Pf4, Klf1, Mki67, Gata1, and Car1*, markers of megakaryocyte/thrombocyte and erythroid lineages (Supplemental Figure 5A-H).

Clusters 0, 3, 4, 5, and 8 were not clearly primed towards a certain lineage. KS tests were performed to compare *Igf2bp2* expression in Cluster 3 vs. Cluster 0, 4, 5, 8, respectively. We obtained the following p-values: 2.6x10^{-9}, 6.6x10^{-4}, 8.7x10^{-4}, 0.07. To perform differential expression on Cluster 3 relative to Cluster 0, 4, 5, and 8, we again used FindMarkers with an adjusted p-values cutoff of 0.01.

Proteomics analysis of *Igf2bp2*-overexpressing stem cells

Total CD150-positive (high and low) HSC were isolated from pools of old mice and transduced with virus particles containing *Igf2bp2*-cDNA or a vector control. 2.5 days after transduction, the infected HSC containing cell population (DAPI-GFP-CD48-LSK) was re-sorted for proteomic analysis, and protein amount was estimated based on cell number input. The sample preparation and data analysis were performed in the Core Facility Proteomics of the FLI.
In brief, cells were sorted in 10x lysis buffer (for a final concentration of 1% SDS, 100mM HEPES, 50mM DTT, pH8.5) and were sonicated by using a Bioruptor Plus Sonication Device with 10 cycles of 60 sec with interval of 30 sec resting at 20°C and heated to 95°C for 10 min. Following alkylation (15 mM iodoacetamide, 30 min, RT in the dark), proteins were precipitated by ice-cold acetone (8 x sample volume, overnight, -20°C). Protein pellets were obtained by centrifugation (20,000 g, 30min, 4°C), the pellets washed twice with 500 µL ice-cold 80% acetone/water. Pellets were vortexed and centrifuged (10mins after first wash, 2mins after second, at 20,000 g, 4°C), before re-suspension by sonication in the Bioruptor (as described before) in lysis buffer (100 mM HEPES, 3M Urea, pH 8.0). Digestion with Lys-C (1:100 enzyme/protein; Wako) was carried out for 4 h at 37°C, followed by 1:1 dilution with water and a secondary digestion with trypsin (1:100 enzyme/protein; Promega) performed overnight at 37°C. Digested peptides were acidified by the addition of 10% TFA to obtain pH 2 and then desalted using an Oasis® HLB µElution Plate (Waters Corporation). Digested peptides were spiked with the indexed retention time peptide (iRT) kit (Biognosys AG) and separated by the nanoAcquity M-Class Ultra-High Performance Liquid Chromatography system (Waters) fitted with a trapping (nanoAcquity Symmetry C18, 5µm, 180 µm x 20 mm) and an analytical column (nanoAcquity BEH C18, 1.7µm, 75µm x 250mm). The outlet of the analytical column was coupled directly to a Q exactive HF-X using the Proxeon nanospray source. Solvent A was water, 0.1 % FA and solvent B was acetonitrile, 0.1% FA. Samples were loaded at constant flow of solvent A at 5 µL/min onto the trap for 6 mins. Peptides were eluted via the analytical column at 0.3 µL/min and introduced via a Pico-Tip Emitter 360 µm OD x 20 µm ID; 10 µm tip (New Objective). A spray voltage of 2.2 kV was used. During the elution step, the percentage of solvent B increased in a non-linear fashion from 0 % to 40 % in 120 minutes. Total run time was 145 minutes. The capillary temperature was set at 300 °C. The RF lens was set to 40%. MS conditions were: Full scan MS spectra with mass range 350-1650 m/z were acquired in profile mode in the Orbitrap with resolution of 120000 FWHM. The filling time was set at maximum of 60 ms with limitation of 3 x 10^6 ions. DIA scans were acquired with 40 mass window segments of differing 20 widths across the MS1 mass range. The default charge state was set to 3+. HCD fragmentation (stepped normalized collision energy; 25.5, 27, 30%) was applied and MS/MS spectra were acquired with a resolution of 30000 FWHM with a fixed first mass of 200 m/z after accumulation of 3e6 ions or after
filling time of 35 ms (whichever occurred first). Data were acquired in profile mode. For data acquisition and processing of the raw data Xcalibur 4.0 (Thermo Scientific) and Tune version 2.9 were employed. For sample-specific spectral library generation, samples of Igf2bp2-cDNA infected and vector-infected digests were additionally analyzed by data-dependent acquisition (DDA), using the same gradients as the DIA analyses. Both DIA and DDA data were included in the library generation. The data were searched against the mouse Uniprot database (Swissprot entry only, release 2016_01, 16,747 entries) using the Pulsar search engine. The following modifications were included in the search: Carbamidomethyl (C) (Fixed) and Oxidation (M)/ Acetyl (Protein N-term) (Variable). A maximum of 2 missed cleavages for trypsin were allowed. The identifications were filtered to satisfy FDR of 1 % on peptide and protein level. The resulting library contained 79962 precursors corresponding to 5686 protein groups. Precursor matching, protein inference, and quantification were performed in Spectronaut using median peptide and precursors (no TopN). Relative quantification was performed in Spectronaut (version 12.0.20491.0.21234, Biognosys AG) using the paired samples from each condition across the replicates. Protein was considered differentially expressed which were >1.5-fold change and q-value<0.05. The data (candidate table) and data reports (protein quantities) were then exported and further data analyses and visualization were performed with R-studio (version 0.99.902) using in-house pipelines and scripts. Ingenuity pathway analysis (IPA) was performed on differentially expressed protein in Igf2bp2-overexpressing HSC compared to control vector-infected HSC and p-values were corrected by Benjamini-Hochberg.

In vivo transplantation assay with Igf2bp2 overexpressing HSC

10 h after transduction, viral-infected total CD150-positive (high and low) HSC (CD150^+^CD34^-^LSKs) from young and old WT mice (3 or 26 months old; CD45.2) were transplanted into recipients (7-month; CD45.2) by i.v. injection, along with 5x10^5^ competitor total BM cells (9-month; CD45.1). The initial transduction rate of HSC was determined on day 2.5 after culturing an aliquot of the same infected HSC that were used 10 h after infection for transplantation. The transduction efficiency did not show a significant difference in Igf2bp2 cDNA vs. vector-control infected HSC.

After transplantation, all the recipients were treated with antibiotic water (0.01%; Baytril) for one week and were monitored by weekly inspection until the end of the
experiments. Chimerism and lineage composition in PB from recipients was analyzed in 4 week intervals after transplantation by FACS.

Genotyping of Igf2bp2

Genotyping of the mice was performed by PCR amplification (Promega; M300) with genomic DNA from tail biopsies following the manufacturer’s protocol. The PCR primer sequences are as follows: Igf2bp2_GR, 5’-ACAGGCCTCAACCAATCAGA-3’ and INV_FP, 5’-AAAGCAACTGACCCTA-3’, the PCR product is 330 bp for the mutant allele; Lox_FP, 5’-AAGATTGTCCGTACGCTGCT-3’ and Lox_RP, 5’-AAATCTCCCACCTCCCAATC-3’, the PCR product is 150 bp for the wild type allele.

Body weight and survival study

For body weight study, mice were weighed in 2-week intervals after weaning. For survival study, mice were euthanized by CO₂ asphyxiation and recorded as “dead” when natural death occurred spontaneously or when human endpoints were reached including signs of morbidity, such as seizures, tumors, large non-healing skin erosions, large anal prolapses, sluggishness movements, or loss of >15% of body weight in two weeks.

Preparation of mouse embryonic fibroblast (MEF)

Embryos (E12.5) was aseptically minced with sterile scalpel in 2 ml of trypsin-EDTA, and incubated for 10 min at 37°C, 5% CO₂ after excision of head and liver. The head is used for genotyping as described before. The dissociated cells were plated onto new 10 cm dishes in 10 ml of DMEM medium with 10% FBS, 1% Non-essential amino acids (Gibco; 11140-035), 1% L-glutamine (Gibco; 25030-081), 1% Sodium pyruvate (Gibco; 11360-039) and 1% P/S. The cells were split at 1:2 ratio when freshly confluent, passaged two times to obtain protein lysate for western blotting.

ROS measurement

Freshly isolated bone marrow cells were stained with antibodies against surface makers as described above. The stained cells were incubated by CellRox detection (Thermo Scientific; C10444) and analyzed the intensity of ROS by FACS.

Intracellular ATP measurement
Intracellular ATP concentration in purified cells (1,500 cells) was determined by using ATP Determination Kit (Thermo Scientific; A22066) following the manufacturer’s protocol.

Western blotting

A piece of frozen liver, MEF cells or sorted cells with identical number were lysed with protein lysis buffer (RIPA lysis buffer with 1mM NaVO₃, 1mM DTT, Protease inhibitor and 1mM PMSF). The concentration of lysate was determined by the Bradford method using Bio-Rad Protein Assay Dye Reagent (Bio-Rad; 5000006). Equal amounts of protein were resolved through 12% SDS-PAGE. The proteins were wet-transferred using transfer buffer with 20% methanol onto nitrocellulose membranes. The total protein was detected for western blot normalization by Revert™ 700 Total Protein Stain Kit (LICOR Biosystems; 926-11010). The nitrocellulose membrane was blocked for 60 min with 5% milk in TBS buffer at RT and then incubated with the primary antibody against IGF2BP2 (D4R2F; 1:500; Cell Signaling Technology, 14672) in 5% milk in TBST (TBS with 0.01% Tween-20) for overnight. Next day the membrane was incubated with secondary antibody against Rabbit (1:10,000; IRDye 800CW Donkey anti-Rabbit; LI-COR) in 5% milk in TBST for 2 hrs, and image was acquired by the LI-COR Odyssey scanner. Then the membrane was blocked again and incubated with the primary antibody against β-actin (1:1,000; Sigma-Aldrich; A2066) at RT for 2 hrs. The last steps for secondary antibody incubation and scan were performed as described above.

Bone marrow cell counting

Bone marrow (BM) was isolated from fore and hind limbs, pelvis and spine. Freshly isolated BM cells were suspended by 15 ml staining medium, and measured the concentration of cells by CellCounter.

Supplemental reference

1. Schwenk F, Baron U, Rajewsky K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. *Nucleic Acids Res.* 1995;23(24):5080-5081.
2. Liu HB, Muhammad T, Guo Y, et al. RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation. *Adv Sci (Weinh).* 2019;6(15):1900295.

3. Khurana S, Buckley S, Schouteden S, et al. A novel role of BMP4 in adult hematopoietic stem and progenitor cell homing via Smad independent regulation of integrin-alpha4 expression. *Blood.* 2013;121(5):781-790.

4. Natalia Romero GR, Andy Neilson, Brian P. Dranka. White paper: Quantifying Cellular ATP Production Rate Using Agilent Seahorse XF Technology

5. Wang J, Sun Q, Morita Y, et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. *Cell.* 2012;148(5):1001-1014.

6. Schambach A, Galla M, Modlich U, et al. Lentiviral vectors pseudotyped with murine ecotropic envelope: increased biosafety and convenience in preclinical research. *Exp Hematol.* 2006;34(5):588-592.

7. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. *Nature.* 2008;456(7218):53-59.

8. Dai N, Zhao LP, Wrighting D, et al. IGF2BP2/IMP2-Deficient Mice Resist Obesity through Enhanced Translation of Ucp1 mRNA and Other mRNAs Encoding Mitochondrial Proteins. *Cell Metabolism.* 2015;21(4):609-621.

9. Yin R, Chang J, Li Y, et al. Differential m(6)A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. *Cell Stem Cell.* 2022;29(1):149-159 e147.
Table S1: Top 200 GO terms conditioned on the significance of their child terms enriched for DEG down regulated in young *lgf2bp2*/− vs. *lgf2bp2*/+/+ mice

Rank	GOBPID	AdjPvalue	Count	Size	Term	
1	GO:0007005	2.782656665316491E-10	29	300	mitochondrion organization	
2	GO:0010499	2.00131450902744E-09	10	24	proteasomal ubiquitin-independent protein catabolic process	
3	GO:0006518	8.0904883633362E-09	41	673	peptide metabolic process	
4	GO:0034641	3.2592581004028E-07	157	5330	cellular nitrogen compound metabolic process	
5	GO:0043604	7.55111504610725E-07	39	732	amide biosynthetic process	
6	GO:0032981	7.55111504610725E-07	10	45	mitochondrial respiratory chain complex I assembly	
7	GO:0044238	1.25062983476723E-06	234	9156	primary metabolic process	
8	GO:0017004	6.34073727455476E-06	8	32	cytochrome complex assembly	
9	GO:1901566	1.26875727741665E-05	59	1528	organonitrogen compound biosynthetic process	
10	GO:0046034	1.32882855941542E-05	19	245	ATP metabolic process	
11	GO:0001682	6.74803600808624E-05	5	12	tRNA 5'-leader removal	
12	GO:0006412	0.000140744073659142	24	444	translation	
13	GO:0034471	0.000206364655962008	5	15	ncRNA 5'-end processing	
14	GO:0044265	0.000485604046320963	40	1015	cellular macromolecule catabolic process	
15	GO:0033617	0.000649708076690648	5	19	mitochondrial cytochrome c oxidase assembly	
	GO:	p-value	Count	Description		
---	-------------	-----------------	-------	---		
16	GO:0034660	0.000956429574404362	22	ncRNA metabolic process		
17	GO:0017144	0.000963094582954386	25	drug metabolic process		
18	GO:0030163	0.0016027821937225	35	protein catabolic process		
19	GO:0070584	0.00173142097569082	5	mitochondrion morphogenesis		
20	GO:0032543	0.00176351096731206	8	mitochondrial translation		
21	GO:0006364	0.00244506478217451	12	rRNA processing		
22	GO:0022613	0.00259115789740638	20	ribonucleoprotein complex biogenesis		
23	GO:0051603	0.0027502525498714	9	proteolysis involved in cellular protein catabolic process		
24	GO:0042773	0.00281867027253935	7	ATP synthesis coupled electron transport		
25	GO:1902600	0.00349540179824992	7	proton transmembrane transport		
26	GO:0009144	0.0046459528955488	8	purine nucleoside triphosphate metabolic process		
27	GO:0045324	0.00496228750882052	4	late endosome to vacuole transport		
28	GO:0045333	0.00496228750882052	11	cellular respiration		
29	GO:2000277	0.00496228750882052	2	positive regulation of oxidative phosphorylation uncoupler activity		
30	GO:0045039	0.00496228750882052	3	protein insertion into mitochondrial inner membrane		
31	GO:0008033	0.00512279471211134	9	tRNA processing		
32	GO:0070585	0.00629294861564953	8	protein localization to mitochondrion		
33	GO:0090201	0.00629294861564953	4	negative regulation of release of cytochrome c from mitochondria		
GO:0044249	0.00767446512316412	122	4835	cellular biosynthetic process		
GO:0035456	0.00820606877977296	6	56	response to interferon-beta		
GO:0044267	0.00833265997704803	97	3948	cellular protein metabolic process		
GO:0006839	0.00884608779602929	11	181	mitochondrial transport		
GO:0015986	0.009264820920607	4	23	ATP synthesis coupled proton transport		
GO:009059	0.00934909188747073	104	4047	macromolecule biosynthetic process		
GO:0019068	0.0100088123880313	4	24	virion assembly		
GO:0035455	0.0100088123880313	4	24	response to interferon-alpha		
GO:0019068	0.0100088123880313	4	24	response to interferon-alpha		
GO:0006296	0.0100088123880313	2	3	nucleotide-excision repair, DNA incision, 5'-to lesion		
GO:0045764	0.0100088123880313	2	3	positive regulation of cellular amino acid metabolic process		
GO:0052547	0.0102461813760149	18	411	regulation of peptidase activity		
GO:0022900	0.0111700149718505	7	85	electron transport chain		
GO:0065003	0.0111700149718505	49	1635	protein-containing complex assembly		
GO:006396	0.0118836769876187	29	822	RNA processing		
GO:0032509	0.011836769876187	4	26	endosome transport via multivesicular body sorting pathway		
GO:0044085	0.0134772797543536	70	2633	cellular component biogenesis		
GO:1903900	0.0158092586362399	9	145	regulation of viral life cycle		
GO:0018364	0.0158092586362399	2	4	peptidyl-glutamine methylation		
GO:0043328	0.0158092586362399	2	4	protein transport to vacuole involved in ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway		
GO:0097250	0.0158092586362399	2	4	mitochondrial respirasome assembly		
GO:1905907	0.0158092586362399	2	4	negative regulation of amyloid fibril formation		
GO:1903624	0.0158508510693434	3	14	regulation of DNA catabolic process		
GO:0044237	0.0185384768007829	20	679	cellular metabolic process		
GO:0010917	0.0185384768007829	3	15	negative regulation of mitochondrial membrane potential		
GO:1902430	0.0185384768007829	3	15	negative regulation of amyloid-beta formation		
GO:0019884	0.0190131433713689	4	31	antigen processing and presentation of exogenous antigen		
GO:1900037	0.0207344162528091	3	16	regulation of cellular response to hypoxia		
GO:0007007	0.0207344162528091	2	5	inner mitochondrial membrane organization		
GO:1901575	0.0207344162528091	52	1846	organic substance catabolic process		
GO:0019348	0.0207344162528091	2	5	dolichol metabolic process		
GO:0033864	0.0207344162528091	2	5	positive regulation of NAD(P)H oxidase activity		
GO:0045541	0.0207344162528091	2	5	negative regulation of cholesterol biosynthetic process		
	GO:ID	Score	M	F	Description	
---	------------	-------------	------	------	---	
67	GO:0048550	0.0207344	2	5	negative regulation of pinocytosis	
68	GO:1902512	0.0207344	2	5	positive regulation of apoptotic DNA fragmentation	
69	GO:1902952	0.0207344	2	5	positive regulation of dendritic spine maintenance	
70	GO:0090322	0.0229530	4	34	regulation of superoxide metabolic process	
71	GO:0010821	0.0245364	8	133	regulation of mitochondrion organization	
72	GO:0043161	0.0246286	16	394	proteasome-mediated ubiquitin-dependent protein catabolic process	
73	GO:0045071	0.0257031	5	57	negative regulation of viral genome replication	
74	GO:2001233	0.0257031	16	399	regulation of apoptotic signaling pathway	
75	GO:0042127	0.0257031	47	1649	regulation of cell population proliferation	
76	GO:1903555	0.0264831	9	166	regulation of tumor necrosis factor superfamily cytokine production	
77	GO:0010269	0.0264831	2	6	response to selenium ion	
78	GO:0035795	0.0264831	2	6	negative regulation of mitochondrial membrane permeability	
79	GO:0046070	0.0264831	2	6	dGTP metabolic process	
80	GO:1905563	0.0264831	2	6	negative regulation of vascular endothelial cell proliferation	
81	GO:0051205	0.0269966	4	37	protein insertion into membrane	
	GO:0019941	0.0279923190091921	21	592	modification-dependent protein catabolic process	
---	------------	-------------------	----	-----	--	
83	GO:0006725	0.0279923190091921	113	4750	cellular aromatic compound metabolic process	
84	GO:0050790	0.0279923190091921	50	1798	regulation of catalytic activity	
85	GO:1901564	0.280261358672338	95	4272	organonitrogen compound metabolic process	
86	GO:0009200	0.280261358672338	3	20	deoxynucleoside triphosphate metabolic process	
87	GO:0033599	0.280261358672338	3	20	regulation of mammary gland epithelial cell proliferation	
88	GO:0042053	0.280261358672338	3	20	regulation of dopamine metabolic process	
89	GO:1900409	0.280261358672338	3	20	positive regulation of cellular response to oxidative stress	
90	GO:0060337	0.280261358672338	4	39	type I interferon signaling pathway	
91	GO:1903362	0.280261358672338	11	239	regulation of cellular protein catabolic process	
92	GO:0055114	0.280261358672338	25	775	oxidation-reduction process	
93	GO:0009438	0.280261358672338	2	7	methylglyoxal metabolic process	
94	GO:0010760	0.280261358672338	2	7	negative regulation of macrophage chemotaxis	
95	GO:0019673	0.280261358672338	2	7	GDP-mannose metabolic process	
96	GO:0060011	0.280261358672338	2	7	Sertoli cell proliferation	
97	GO:0070995	0.280261358672338	2	7	NADPH oxidation	
GO ID	GO Name	P-value	NES	Description		
------------	--	----------	------	---		
GO:1902177	positive regulation of oxidative stress-induced intrinsic apoptotic	0.0280261358672338	2	signaling pathway		
GO:0000413	protein peptidyl-prolyl isomerization	0.0280261358672338	3			
GO:0006120	mitochondrial electron transport, NADH to ubiquinone	0.0280261358672338	3			
GO:0019430	removal of superoxide radicals	0.0280261358672338	3			
GO:0032930	positive regulation of superoxide anion generation	0.0280261358672338	3			
GO:1901626	regulation of postsynaptic membrane organization	0.0280261358672338	3			
GO:0009206	purine ribonucleoside triphosphate biosynthetic process	0.0280261358672338	5			
GO:0045454	cell redox homeostasis	0.0280261358672338	5			
GO:0019748	secondary metabolic process	0.0280261358672338	5			
GO:0032459	regulation of protein oligomerization	0.0280261358672338	4			
GO:0061136	regulation of proteasomal protein catabolic process	0.0280261358672338	9			
GO:0046597	negative regulation of viral entry into host cell	0.0307334288045309	3			
GO:0051348	negative regulation of transferase activity	0.0312572952901065	11			
GO:1901360	organic cyclic compound metabolic process	0.0312572952901065	116			
GO:0046931	pore complex assembly	0.032304644334366	3			
GO:0071450	cellular response to oxygen radical	0.032304644334366	3			
GO:0048678	response to axon injury	0.032304644334366	5			
GO	Description	EASE score	P value	q value	GO Tools	Description
-----------	--	------------	---------	---------	----------	--
GO:2000179	positive regulation of neural precursor cell proliferation	5	67			
GO:0090150	establishment of protein localization to membrane	9	185			
GO:0046060	dATP metabolic process	2	8			
GO:1990314	cellular response to insulin-like growth factor stimulus	2	8			
GO:0060548	negative regulation of cell death	31	1031			
GO:0002181	cytoplasmic translation	6	94			
GO:0043067	regulation of programmed cell death	42	1509			
GO:0034340	response to type I interferon	4	44			
GO:0010155	regulation of proton transport	3	24			
GO:0045862	positive regulation of proteolysis	13	325			
GO:0006164	purine nucleotide biosynthetic process	8	156			
GO:0051353	positive regulation of oxidoreductase activity	4	46			
GO:0032760	positive regulation of tumor necrosis factor production	6	98			
GO:1901657	glycosyl compound metabolic process	6	98			
GO:0032373	positive regulation of sterol transport	3	25			
GO:0051402	neuron apoptotic process	12	293			
GO:0042743	hydrogen peroxide metabolic process	2	9			
	GO:ID	p-value	q-value	Enrichment	Description	
---	---------	-----------	---------	------------	---	
132	GO:0009396	0.032304644334366	0.032304644334366	2	9	folic acid-containing compound biosynthetic process
133	GO:0016559	0.032304644334366	0.032304644334366	2	9	peroxisome fission
134	GO:0032471	0.032304644334366	0.032304644334366	2	9	negative regulation of endoplasmic reticulum calcium ion concentration
135	GO:0034333	0.032304644334366	0.032304644334366	2	9	adherens junction assembly
136	GO:0034551	0.032304644334366	0.032304644334366	2	9	mitochondrial respiratory chain complex III assembly
137	GO:0042182	0.032304644334366	0.032304644334366	2	9	ketone catabolic process
138	GO:0044597	0.032304644334366	0.032304644334366	2	9	daunorubicin metabolic process
139	GO:0044598	0.032304644334366	0.032304644334366	2	9	doxorubicin metabolic process
140	GO:0046666	0.032304644334366	0.032304644334366	2	9	retinal cell programmed cell death
141	GO:1901033	0.032304644334366	0.032304644334366	2	9	positive regulation of response to reactive oxygen species
142	GO:0044092	0.032304644334366	0.032304644334366	30	1006	negative regulation of molecular function
143	GO:0072594	0.032304644334366	0.032304644334366	15	405	establishment of protein localization to organelle
144	GO:0000154	0.032304644334366	0.032304644334366	3	26	rRNA modification
145	GO:0000303	0.032304644334366	0.032304644334366	3	26	response to superoxide
146	GO:0000737	0.032304644334366	0.032304644334366	3	26	DNA catabolic process, endonucleolytic
147	GO:0006469	0.032304644334366	0.032304644334366	9	194	negative regulation of protein kinase activity
148	GO:0051260	0.032304644334366	0.032304644334366	14	372	protein homooligomerization
149	GO:0050435	0.032304644334366	0.032304644334366	4	48	amyloid-beta metabolic process
GO	p-value	q-value	fold change	term		
-----------	----------	---------	-------------	--		
GO:0043066	0.0323	0.323	26	negative regulation of apoptotic process		
GO:009394	0.0323	0.323	3	2'-deoxyribonucleotide metabolic process		
GO:0008625	0.0323	0.323	5	extrinsic apoptotic signaling pathway via death domain receptors		
GO:006995	0.0323	0.323	2	cellular response to nitrogen starvation		
GO:009650	0.0323	0.323	2	UV protection		
GO:0072321	0.0323	0.323	2	chaperone-mediated protein transport		
GO:1904667	0.0323	0.323	2	negative regulation of ubiquitin protein ligase activity		
GO:0046483	0.0323	0.323	109	heterocycle metabolic process		
GO:0055086	0.0323	0.323	17	nucleobase-containing small molecule metabolic process		
GO:009142	0.0323	0.323	5	nucleoside triphosphate biosynthetic process		
GO:0010719	0.0323	0.323	3	negative regulation of epithelial to mesenchymal transition		
GO:009117	0.0323	0.323	15	nucleotide metabolic process		
GO:2001056	0.0323	0.323	7	positive regulation of cysteine-type endopeptidase activity		
GO:009894	0.0323	0.323	25	regulation of catabolic process		
GO:0050821	0.0323	0.323	8	protein stabilization		
GO:0030262	0.0323	0.323	3	apoptotic nuclear changes		
GO:2001243	0.0323	0.323	5	negative regulation of intrinsic apoptotic signaling pathway		
	GO:0032464	0.0323046443334366	2	11	positive regulation of protein homooligomerization	
---	------------	---------------------	---	----	--	
168	GO:0035999	0.0323046443334366	2	11	tetrahydrofolate interconversion	
169	GO:0043653	0.0323046443334366	2	11	mitochondrial fragmentation involved in apoptotic process	
170	GO:0002673	0.0323046443334366	4	53	regulation of acute inflammatory response	
171	GO:0001193	0.0323046443334366	1	1	maintenance of transcriptional fidelity during DNA-templated transcription elongation from RNA polymerase II promoter	
172	GO:0003106	0.0323046443334366	1	1	negative regulation of glomerular filtration by angiotensin	
173	GO:0006185	0.0323046443334366	1	1	dGDP biosynthetic process	
174	GO:0010797	0.0323046443334366	1	1	regulation of multivesicular body size involved in endosome transport	
175	GO:0014895	0.0323046443334366	1	1	smooth muscle hypertrophy	
176	GO:0015805	0.0323046443334366	1	1	S-adenosyl-L-methionine transport	
177	GO:0018323	0.0323046443334366	1	1	enzyme active site formation via L-cysteine sulfinic acid	
178	GO:0030961	0.0323046443334366	1	1	peptidyl-arginine hydroxylation	
179	GO:0032581	0.0323046443334366	1	1	ER-dependent peroxisome organization	
180	GO:0032775	0.0323046443334366	1	1	DNA methylation on adenine	
181	GO:0032976	0.0323046443334366	1	1	release of matrix enzymes from mitochondria	
182	GO:0034158	0.0323046443334366	1	1	toll-like receptor 8 signaling pathway	
183	GO:0036372	0.0323046443334366	1	1	opsin transport	
184	GO:0036471	0.0323046443334366	1	1	cellular response to glyoxal	
185	GO:0036526	0.0323046443334366	1	1	peptidyl-cysteine deglycation	
186	GO:0036527	0.0323046443334366	1	1	peptidyl-arginine deglycation	
187	GO:0036528	0.0323046443334366	1	1	peptidyl-lysine deglycation	
188	GO:0036529	0.0323046443334366	1	1	protein deglycation, glyoxal removal	
189	GO:0036531	0.0323046443334366	1	1	glutathione deglycation	
190	GO:0042543	0.0323046443334366	1	1	protein N-linked glycosylation via arginine	
191	GO:0043105	0.0323046443334366	1	1	negative regulation of GTP cyclohydrolase I activity	
192	GO:0044209	0.0323046443334366	1	1	AMP salvage	
193	GO:0046054	0.0323046443334366	1	1	dGMP metabolic process	
194	GO:0046491	0.0323046443334366	1	1	L-methylmalonyl-CoA metabolic process	
195	GO:0046711	0.0323046443334366	1	1	GDP biosynthetic process	
196	GO:0050668	0.0323046443334366	1	1	positive regulation of homocysteine metabolic process	
197	GO:0060311	0.0323046443334366	1	1	negative regulation of elastin catabolic process	
198	GO:0060785	0.0323046443334366	1	1	regulation of apoptosis involved in tissue homeostasis	
	GO:0061078	0.0323046443334366	1	1	positive regulation of prostaglandin secretion involved in immune response	
---	------------	--------------------	----	----	--	
200	GO:0070130	0.0323046443334366	1	1	negative regulation of mitochondrial translation	
Table S2: Top 200 GO terms conditioned on the significance of their child terms enriched for DEG up regulated in young \textit{lgf2bp2}^{-/-} vs. \textit{lgf2bp2}^{+/+} mice

Rank	GOBPID	AdjPvalue	Count	Size	Term	
1	GO:0044238	9.23104288358855E-39	527	9156	primary metabolic process	
2	GO:0036211	2.29999415326339E-29	259	3453	protein modification process	
3	GO:1901564	2.11298183675619E-21	277	4435	organonitrogen compound metabolic process	
4	GO:0046483	1.98544585315803E-17	284	4720	heterocycle metabolic process	
5	GO:0006725	7.01522075790976E-17	285	4791	cellular aromatic compound metabolic process	
6	GO:0016070	2.12598353772816E-16	234	3687	RNA metabolic process	
7	GO:1901360	3.73398022929563E-16	291	4997	organic cyclic compound metabolic process	
8	GO:0043170	1.17291265586009E-15	142	2421	macromolecule metabolic process	
9	GO:0044267	1.28192718824707E-15	156	2333	cellular protein metabolic process	
10	GO:0034641	2.20579221992963E-15	302	5330	cellular nitrogen compound metabolic process	
11	GO:1901576	3.3198787845832E-15	187	2918	organic substance biosynthetic process	
12	GO:0043632	4.23509508570134E-15	69	602	modification-dependent macromolecule catabolic process	
13	GO:0042886	2.40958301965545E-14	140	1878	amide transport	
14	GO:0010605	1.55723244642524E-13	171	2581	negative regulation of macromolecule metabolic process	
	GO:ID	p-value	hits	target	Description	
---	----------------	--------------------	-------	--------	---	
15	GO:0009890	1.90684100550294E-13	118	1504	negative regulation of biosynthetic process	
16	GO:0097659	3.7681774764402E-13	182	2814	nucleic acid-templated transcription	
17	GO:0048519	6.60669570362696E-13	168	2724	negative regulation of biological process	
18	GO:0070647	7.90095893875288E-12	48	394	protein modification by small protein conjugation or removal	
19	GO:0071702	8.19729951432942E-12	156	2391	organic substance transport	
20	GO:0034654	8.6980937468926E-12	194	3179	nucleobase-containing compound biosynthetic process	
21	GO:0044237	1.82927596067564E-11	79	1302	cellular metabolic process	
22	GO:0045934	1.82927596067564E-11	98	1245	negative regulation of nucleobase-containing compound metabolic process	
23	GO:1902679	2.66218037821603E-11	95	1185	negative regulation of RNA biosynthetic process	
24	GO:0065009	5.43845982573898E-11	138	2074	regulation of molecular function	
25	GO:0007030	8.60663021548485E-11	25	121	Golgi organization	
26	GO:0051603	1.02038505506578E-10	58	575	proteolysis involved in cellular protein catabolic process	
27	GO:0007049	2.26070449687253E-10	35	270	cell cycle	
28	GO:0043067	4.03623736835232E-10	110	1538	regulation of programmed cell death	
29	GO:1901575	6.83465687051356E-10	125	1855	organic substance catabolic process	
30	GO:0000122	8.02307087569772E-10	73	857	negative regulation of transcription by RNA polymerase II	
	GO: Identifier	FDR	P-value	Count	Description	
---	---------------	-----	---------	-------	--	
31	GO:0030163	9.4994028313801E-09	49	502	protein catabolic process	
32	GO:0051301	2.16387806919067E-08	41	383	cell division	
33	GO:0022607	4.48134028968872E-08	136	2280	cellular component assembly	
34	GO:0051130	5.73240839456416E-08	86	1198	positive regulation of cellular component organization	
35	GO:0018193	1.09346230851413E-07	63	792	peptidyl-amino acid modification	
36	GO:0006650	1.3058760998349E-07	20	112	glycerophospholipid metabolic process	
37	GO:0045935	1.49211134057578E-07	114	1794	positive regulation of nucleobase-containing compound metabolic process	
38	GO:0044770	1.83509170098268E-07	19	104	cell cycle phase transition	
39	GO:0051338	3.97746034883717E-07	49	561	regulation of transferase activity	
40	GO:0000209	4.00541211274857E-07	20	120	protein polyubiquitination	
41	GO:0000070	6.04016071093172E-07	12	42	mitotic sister chromatid segregation	
42	GO:0033674	6.2951577075664E-07	44	476	positive regulation of kinase activity	
43	GO:0016043	6.49375175879364E-07	71	1211	cellular component organization	
44	GO:0006888	6.49375175879364E-07	20	123	endoplasmic reticulum to Golgi vesicle-mediated transport	
45	GO:0065007	7.18047408058048E-07	274	6747	biological regulation	
46	GO:0016567	8.33731333800214E-07	23	169	protein ubiquitination	
47	GO:0001701	1.05978890015171E-06	47	538	in utero embryonic development	
48	GO:0098813	1.07832968552138E-06	29	249	nuclear chromosome segregation	
#	Gene ID	P-Value	MW	K	Process	
---	--------	----------	-----	---------	--	
49	GO:0032502	1.40863705277315E-06	200	4128	developmental process	
50	GO:0006793	1.60028129612288E-06	47	601	phosphorus metabolic process	
51	GO:0010942	1.97780721897141E-06	55	695	positive regulation of cell death	
52	GO:0007346	2.39886365486283E-06	31	293	regulation of mitotic cell cycle	
53	GO:0032270	3.03304533068727E-06	89	1396	positive regulation of cellular protein metabolic process	
54	GO:0043085	3.17899871582597E-06	45	542	positive regulation of catalytic activity	
55	GO:0015031	3.78588364422005E-06	32	333	protein transport	
56	GO:0016050	4.28089239712905E-06	28	252	vesicle organization	
57	GO:0006511	4.76070537564352E-06	21	159	ubiquitin-dependent protein catabolic process	
58	GO:0009891	5.07994813128319E-06	114	1932	positive regulation of biosynthetic process	
59	GO:0032989	5.30409554150901E-06	60	815	cellular component morphogenesis	
60	GO:0048194	5.30409554150901E-06	10	34	Golgi vesicle budding	
61	GO:0060548	5.30409554150901E-06	59	805	negative regulation of cell death	
62	GO:0000280	5.4968617469048E-06	25	214	nuclear division	
63	GO:0006325	5.96175799595545E-06	37	408	chromatin organization	
64	GO:0060322	6.38015584296174E-06	53	688	head development	
65	GO:0070507	6.49820962407204E-06	24	199	regulation of microtubule cytoskeleton organization	
66	GO:1902680	7.01438536007607E-06	95	1538	positive regulation of RNA biosynthetic process	
	GO:	p-value	Count	Description		
---	-----------	-----------	-------	---		
67	GO:0009792	8.9257206772897E-06	60	embryo development ending in birth or egg hatching		
68	GO:0006913	9.5238977863853E-06	22	nucleocytoplasmic transport		
69	GO:0051174	1.12458015290964E-05	74	regulation of phosphorus metabolic process		
70	GO:1903047	1.55505179560498E-05	28	mitotic cell cycle process		
71	GO:0033365	1.82002624722506E-05	43	protein localization to organelle		
72	GO:0048522	1.82002624722506E-05	87	positive regulation of cellular process		
73	GO:0048858	1.82407337627159E-05	52	cell projection morphogenesis		
74	GO:0051641	2.02157005502507E-05	38	cellular localization		
75	GO:0022603	2.76135987050317E-05	70	regulation of anatomical structure morphogenesis		
76	GO:0007264	2.93336337219545E-05	40	small GTPase mediated signal transduction		
77	GO:0045937	3.16604342040004E-05	72	positive regulation of phosphate metabolic process		
78	GO:0034645	3.49872810430653E-05	121	cellular macromolecule biosynthetic process		
79	GO:0018105	3.96890115007544E-05	30	peptidyl-serine phosphorylation		
80	GO:0042325	4.77508286806648E-05	69	regulation of phosphorylation		
81	GO:0051674	5.12093579894238E-05	94	localization of cell		
82	GO:0010564	5.53430583395541E-05	27	regulation of cell cycle process		
	GO: Identifier	E-Value	Up/Down	Term Description		
---	-----------------	-----------------	-----------	--		
83	GO:0051129	5.84237557787559E-05	41	523 negative regulation of cellular component organization		
84	GO:0051276	6.41735966350662E-05	17	136 chromosome organization		
85	GO:1902115	6.79262923444311E-05	22	200 regulation of organelle assembly		
86	GO:0018205	6.79262923444311E-05	31	345 peptidyl-lysine modification		
87	GO:0045786	6.79262923444311E-05	28	298 negative regulation of cell cycle		
88	GO:0040007	7.81414573321041E-05	54	789 growth		
89	GO:1902850	8.21031973362559E-05	17	130 microtubule cytoskeleton organization involved in mitosis		
90	GO:0090110	8.21031973362559E-05	6	14 COPII-coated vesicle cargo loading		
91	GO:0043065	9.51394318391474E-05	36	443 positive regulation of apoptotic process		
92	GO:0043066	9.8766303564794E-05	41	541 negative regulation of apoptotic process		
93	GO:0009987	0.000101384866956536	52	1918 cellular process		
94	GO:0007051	0.000107246984383093	18	148 spindle organization		
95	GO:0000902	0.000116644643942125	33	404 cell morphogenesis		
96	GO:0120035	0.000128629744483153	53	772 regulation of plasma membrane bounded cell projection organization		
97	GO:0042752	0.000136179932189572	16	122 regulation of circadian rhythm		
98	GO:0030098	0.000139642469104033	33	395 lymphocyte differentiation		
99	GO:1903320	0.000170514476435427	23	229 regulation of protein modification by small protein conjugation or removal		
GO:0070201	0.000170514476435427	52	761	regulation of establishment of protein localization		
-------------	------------------------	--------	---------	--		
GO:0097549	0.000213924382378307	13	87	chromatin organization involved in negative regulation of transcription		
GO:0051302	0.000224055758628519	18	156	regulation of cell division		
GO:0033002	0.000226709441777809	18	157	muscle cell proliferation		
GO:0060429	0.000235865222091762	67	1090	epithelium development		
GO:0016236	0.000240825735659185	13	89	macroautophagy		
GO:0051246	0.000240825735659185	44	661	regulation of protein metabolic process		
GO:0007417	0.000240825735659185	58	895	central nervous system development		
GO:0006606	0.000240825735659185	14	102	protein import into nucleus		
GO:0060236	0.000240825735659185	6	17	regulation of mitotic spindle organization		
GO:0090304	0.000240825735659185	33	475	nucleic acid metabolic process		
GO:0019637	0.000240825735659185	51	761	organophosphate metabolic process		
GO:0031123	0.000240825735659185	14	102	RNA 3'-end processing		
GO:0006891	0.000240825735659185	7	25	intra-Golgi vesicle-mediated transport		
GO:0031326	0.000240825735659185	40	606	regulation of cellular biosynthetic process		
GO:0045588	0.000240825735659185	4	6	positive regulation of gamma-delta T cell differentiation		
GO:0060304	0.000240825735659185	4	6	regulation of phosphatidylinositol dephosphorylation		
Gene ID	GO Term	p-value	Count	Total	Description	
--------	---------	---------	-------	-------	-------------	
117	GO:0022610	0.000313582137446708	77	1310	biological adhesion	
118	GO:0021987	0.000325053149595525	14	105	cerebral cortex development	
119	GO:0010556	0.000337414634638412	33	465	regulation of macromolecule biosynthetic process	
120	GO:0006260	0.0003740122984837072	16	135	DNA replication	
121	GO:0000082	0.000386974833037351	10	57	G1/S transition of mitotic cell cycle	
122	GO:0090630	0.000461097715945304	12	82	activation of GTPase activity	
123	GO:0048729	0.000500036363218249	46	677	tissue morphogenesis	
124	GO:0060341	0.000505855519641317	63	1029	regulation of cellular localization	
125	GO:0006886	0.000505855519641317	39	557	intracellular protein transport	
126	GO:1904594	0.000520678214941738	3	3	regulation of termination of RNA polymerase II transcription	
127	GO:0048661	0.000521694122965928	11	71	positive regulation of smooth muscle cell proliferation	
128	GO:0030258	0.000575257310020052	21	218	lipid modification	
129	GO:1902532	0.000582542272192119	37	506	negative regulation of intracellular signal transduction	
130	GO:0006267	0.000582542272192119	4	7	pre-replicative complex assembly involved in nuclear cell cycle DNA replication	
131	GO:0036388	0.000582542272192119	4	7	pre-replicative complex assembly	
132	GO:0046854	0.000582542272192119	8	38	phosphatidylinositol phosphorylation	
133	GO:2001251	0.000623053953913651	13	99	negative regulation of chromosome organization	
	GO ID	P-value	Rank	Total	Description	
---	------------	---------------	------	-------	---	
134	GO:0080135	0.00065992436723702	34	457	regulation of cellular response to stress	
135	GO:0043434	0.000660026010325452	27	324	response to peptide hormone	
136	GO:0033044	0.000717399882367531	7	30	regulation of chromosome organization	
137	GO:0048511	0.000735993295718623	25	291	rhythmic process	
138	GO:0016202	0.000824585663200282	18	176	regulation of striated muscle tissue development	
139	GO:0032388	0.000824585663200282	19	192	positive regulation of intracellular transport	
140	GO:0031399	0.000829142749957381	61	1047	regulation of protein modification process	
141	GO:0010468	0.000842990028897118	43	724	regulation of gene expression	
142	GO:0007219	0.00086105111314719	18	177	Notch signaling pathway	
143	GO:0031323	0.00086105111314719	26	390	regulation of cellular metabolic process	
144	GO:0003007	0.000866737546499747	15	132	heart morphogenesis	
145	GO:0051783	0.000907880423323346	19	194	regulation of nuclear division	
146	GO:2000144	0.000959768436831571	7	31	positive regulation of DNA-templated transcription, initiation	
147	GO:0048193	0.000960681873875285	13	106	Golgi vesicle transport	
148	GO:0070828	0.00105920479476968	9	53	heterochromatin organization	
149	GO:0010563	0.00105920479476968	38	544	negative regulation of phosphorus metabolic process	
150	GO:0030866	0.00108008006781643	8	42	cortical actin cytoskeleton organization	
	GO:ID	p-value	Ranked	Total	Description	
---	-------------	---------------	--------	--------	---	
151	GO:0001934	0.001080806781643	58	960	positive regulation of protein phosphorylation	
152	GO:0048534	0.0011353763308271	54	883	hematopoietic or lymphoid organ development	
153	GO:0033157	0.0011602358010702	20	215	regulation of intracellular protein transport	
154	GO:0016310	0.00121177868419467	20	235	phosphorylation	
155	GO:0051571	0.0012404274213238	5	15	positive regulation of histone H3-K4 methylation	
156	GO:0060560	0.0012404274213238	21	234	developmental growth involved in morphogenesis	
157	GO:0000045	0.0012484237920141	12	93	autophagosome assembly	
158	GO:0033047	0.00129850389179332	10	67	regulation of mitotic sister chromatid segregation	
159	GO:1901653	0.0013245758437273	24	287	cellular response to peptide	
160	GO:0044089	0.00135371560172831	31	420	positive regulation of cellular component biogenesis	
161	GO:0032092	0.00146389020552491	13	109	positive regulation of protein binding	
162	GO:0010647	0.00146389020552491	101	1936	positive regulation of cell communication	
163	GO:0045648	0.00147558882115683	6	24	positive regulation of erythrocyte differentiation	
164	GO:0048638	0.0015245840938114	30	401	regulation of developmental growth	
165	GO:0007091	0.0015245840938114	3	4	metaphase/anaphase transition of mitotic cell cycle	
GO	Description	Adjusted p-value	p-value	Fold Change	FDR	
-----	--	------------------	-----------	-------------	-------	
GO:0046726	0.00153763237707497 positive regulation by virus of viral protein levels in host cell	5.8206167e-01	0.00153864700427697	3	4	negative regulation of response to stimulus
GO:0048585	0.00153864700427697 cellular response to stress	1.6932099e-01	0.00153864700427697	26	352	regulation of gamma-delta T cell activation
GO:0033554	0.00153864700427697 negative regulation of response to stimulus	1.6459873e-01	0.00153864700427697	4	9	regulation of gamma-delta T cell activation
GO:0046643	0.00153864700427697 maintenance of cell polarity	1.6760174e-01	0.00153864700427697	101	1942	positive regulation of signaling
GO:0030011	0.00158800081070809 positive regulation of signaling	7.9313452e-01	0.00158800081070809	5	16	maintenance of cell polarity
GO:0045893	0.00160919219081141 positive regulation of transcription, DNA-templated	1.0358938e-01	0.00160919219081141	24	302	negative regulation of cell communication
GO:0010648	0.0016301830025447 erythrocyte homeostasis	1.1891374e-01	0.0016301830025447	75	1352	negative regulation of cell communication
GO:0033554	0.00163593237707497 negative regulation of signaling	7.3025713e-01	0.00163593237707497	13	111	DNA integrity checkpoint
GO:0034101	0.00173276218453138 erythrocyte homeostasis	1.0358938e-01	0.00173276218453138	15	142	erythrocyte homeostasis
GO:0023057	0.00173276218453138 negative regulation of signaling	1.0358938e-01	0.00173276218453138	75	1356	negative regulation of signaling
GO:0090087	0.00173319001381069 regulation of peptide transport	7.9313452e-01	0.00173319001381069	21	244	regulation of peptide transport
GO:0023057	0.0017435400208103 regulation of nucleocytoplasmic transport	1.0358938e-01	0.0017435400208103	13	112	regulation of nucleocytoplasmic transport
GO:0032275	0.00178452940165331 regulation of chromatin organization	1.0358938e-01	0.00178452940165331	17	175	regulation of chromatin organization
GO:0002011	0.00178452940165331 morphogenesis of an epithelial sheet	1.0358938e-01	0.00178452940165331	9	58	morphogenesis of an epithelial sheet
GO:2000145	0.00178452940165331 regulation of cell motility	1.0358938e-01	0.00178452940165331	56	939	regulation of cell motility
ID	GO ID	FDR	Count	Description		
-----	-------------------	-------	-------	---		
182	GO:0071559	0.0017971943954664	19	208 response to transforming growth factor beta		
183	GO:0060996	0.0019466473370009	9	59 dendritic spine development		
184	GO:0048699	0.00198769940738496	80	1487 generation of neurons		
185	GO:0046907	0.00198769940738496	21	263 intracellular transport		
186	GO:0045579	0.00200616594878531	5	17 positive regulation of B cell differentiation		
187	GO:0006468	0.00201928835722702	35	538 protein phosphorylation		
188	GO:0051656	0.00204029794941234	22	264 establishment of organelle localization		
189	GO:0043161	0.00210763073731539	18	198 proteasome-mediated ubiquitin-dependent protein catabolic process		
190	GO:0051348	0.00211355979004536	21	246 negative regulation of transferase activity		
191	GO:0002315	0.00216927103778378	4	10 marginal zone B cell differentiation		
192	GO:0007220	0.00216927103778378	4	10 Notch receptor processing		
193	GO:0046543	0.00216927103778378	4	10 development of secondary female sexual characteristics		
194	GO:0060982	0.00216927103778378	4	10 coronary artery morphogenesis		
195	GO:0009894	0.00218569269603798	31	442 regulation of catabolic process		
196	GO:0042176	0.00221883700453103	21	249 regulation of protein catabolic process		
197	GO:0048812	0.00225200580313821	34	499 neuron projection morphogenesis		
198	GO:0016477	0.00232905705294305	29	410 cell migration		
199	GO:0045859	0.00241119023116754	16	169 regulation of protein kinase activity		
200	GO:0002335	0.00241119023116754	6	27	mature B cell differentiation	
Figure S1

A

WT *Igf2bp2* allele

Targeting vector

Mutant *Igf2bp2* allele

B

Mus musculus *Igf2bp2* mRNA

WT Liver *Igf2bp2* mRNA

WT Lung *Igf2bp2* mRNA

WT Intestine *Igf2bp2* mRNA

Mutant Liver *Igf2bp2* mRNA

Mutant Lung *Igf2bp2* mRNA

Mutant Intestine *Igf2bp2* mRNA

C

MEF

Igf2bp2-/-

Igf2bp2-/-

IGF2BP2

(66 kDa)

β-actin

(42 kDa)

D

Liver

Igf2bp2-/-

Igf2bp2-/-

Igf2bp2-/-

H2O

WT

(150 bp)

Mutant

(330 bp)
Figure S2
Figure S3

(A) Relative expression of \(\text{Igf2bp2} \) (normalized to \(\text{Actb} \)) in Young and Old mice.

- Balanced HSC: \(p = 0.0001 \)
- Myeloid-biased HSC: \(p = 0.0003 \)

- Male: \(p = 0.1008 \)
- Female: \(p < 0.0001 \)

(B) Myeloid-biased HSC

- 6 weeks old: \(p = 0.0001 \)
- 12 weeks old: \(p = 0.001 \)
- 36 weeks old: \(p < 0.0001 \)

(C) Myeloid-biased HSC

- Male: \(p = 0.001 \)
- Female: \(p < 0.0001 \)
Figure S4

A. Heatmap of top marker genes across different clusters.

B. UMAP plot showing expression levels of Hmga2 across different clusters.

C. Bar graph showing percentage of Hmga2 expressing cells in each cluster.

D. UMAP plot showing expression levels of Rian across different clusters.

E. Bar graph showing percentage of Rian expressing cells in each cluster.

F. UMAP plot showing expression levels of Cdkn1c across different clusters.

G. Bar graph showing percentage of Cdkn1c expressing cells in each cluster.

H. UMAP plot showing expression levels of H19 across different clusters.

I. Bar graph showing percentage of H19 expressing cells in each cluster.
Figure S5

(A) Myeloid-biased HSC

(B) Ilga2b

(C) Vwf

(D) Pf4

(E) Klf1

(F) Mki67

(G) Gata1

(H) Car1

(I) Igf2bp2 expression

Cluster number

0 3 4 5 8
Figure S6

Igf2bp2 deletion: effect size -14.31%, \(p=0.0014 \)

Igf2bp2 deletion: effect size -5.63%, \(p=0.401 \)
Figure S7

A

Relative expression of Igf2bp2 (normalized to Actb).

B

Intracellular ATP concentration (nM/1500 cells).

C

Comparison of OCR (pmol/min/4x10^4 cells) between young and old LSK Igf2bp2^-/- and Igf2bp2+/+.

D

Fold change of ROS MFI (normalized to young WT).

E

Rank GOBPID AdjPvalue Term

Rank	GOBPID	AdjPvalue	Term
19	GO:0070584	0.00173	mitochondrion morphogenesis
35	GO:0035456	0.00821	response to interferon-beta
59	GO:1902430	0.01854	negative regulation of amyloid-beta formation
65	GO:0033864	0.0207	positive regulation of NAD(P)H oxidase activity
70	GO:0090322	0.023	regulation of superoxide metabolic process
71	GO:0010821	0.0245	regulation of mitochondrion organization
72	GO:0043161	0.0246	proteasome-mediated ubiquitin-dependent protein catabolic process
73	GO:0045071	0.0257	negative regulation of viral genome replication
89	GO:1900409	0.028	positive regulation of cellular response to oxidative stress
90	GO:0060337	0.028	type I interferon signaling pathway
92	GO:0055114	0.028	oxidation-reduction process
97	GO:0070995	0.028	NADPH oxidation
101	GO:0019430	0.028	removal of superoxide radicals
105	GO:0045454	0.028	cell redox homeostasis
113	GO:0071450	0.0323	cellular response to oxygen radical
122	GO:0034340	0.0323	response to type I interferon
141	GO:1901033	0.0323	positive regulation of response to reactive oxygen species
145	GO:0000303	0.0323	response to superoxide
149	GO:0050435	0.0323	amyloid-beta metabolic process
169	GO:0043653	0.0323	mitochondrial fragmentation involved in apoptotic process

F

Intracellular ATP concentration (nM/1500 cells).
Figure S8

(A) Fold change of GFP+ cells in CD45.2+ PB (normalized to initial GFP+ rate) over weeks after transplantation.

(B) Young vs. Old comparison of GFP+ cells in PB.

(C) Lineage composition of CD45.2+ GFP+ cells in PB.

- **Myeloid cells**
- **Lymphoid cells**

Statistical Significance:
- p = 0.1446 (ns)
- p = 0.019
- p = 0.0218
- p = 0.0255
Figure S11

A

Igf2bp2+/+

Igf2bp2-/-

PC1: 71% Variance

PC2: 19% Variance

B

LFC >1 or unadjusted \(p\)-value < 0.05

C

unadjusted \(p\)-value < 0.05

D

adjusted \(p\)-value < 0.05

E

\begin{tabular}{|c|c|c|c|}
\hline
Rank & GOBPID & AdjPvalue & Term \\
\hline
1 & GO:0051873 & 3.52E-07 & killing by host of symbiont cells \\
2 & GO:0031640 & 3.52E-07 & killing of cells of other organism \\
3 & GO:0051883 & 3.52E-07 & killing of cells in other organism involved in symbiotic interaction \\
4 & GO:0006952 & 4.91E-07 & defense response \\
5 & GO:0002376 & 4.91E-07 & immune system process \\
6 & GO:0070944 & 5.71E-07 & neutrophil-mediated killing of bacterium \\
7 & GO:0070943 & 1.3E-06 & neutrophil-mediated killing of symbiont cell \\
8 & GO:0070942 & 2.5E-06 & neutrophil mediated cytotoxicity \\
9 & GO:0001906 & 3.04E-06 & cell killing \\
\hline
\end{tabular}

F

\begin{tabular}{|c|c|c|c|}
\hline
Rank & GOBPID & AdjPvalue & Term \\
\hline
1 & GO:0006379 & 0.00506 & mRNA cleavage \\
2 & GO:0016601 & 0.0169 & Rac protein signal transduction \\
3 & GO:2000601 & 0.0169 & positive regulation of Arp2/3 complex-mediated actin nucleation \\
4 & GO:0009653 & 0.0194 & anatomical structure morphogenesis \\
5 & GO:0090501 & 0.0194 & RNA phosphodiester bond hydrolysis \\
6 & GO:0034315 & 0.0194 & regulation of Arp2/3 complex-mediated actin nucleation \\
\hline
\end{tabular}
Supplemental figure legend

Figure S1. Generation of Igf2bp2 knockout mice. (A) Targeting strategy for Igf2bp2 gene by the Cre-loxP recombination system. Exon-3 of Igf2bp2 is flanked with two loxP sites (orange triangles) that were in opposite orientation. Upon germline expression of CRE, offspring with inverted exon-3 were used to generate homozygous knockout mice, which are referred to as Igf2bp2−/− mice. Arrows indicate the position of primers used for genotyping. (B) Alignment of Igf2bp2 mRNA sequences from liver, lung and intestine of Igf2bp2−/− and Igf2bp2+/+ mice by Sanger sequencing. Alignment was conducted against the reference sequence of Mus musculus Igf2bp2 mRNA (NM_183029). (N=2 mice per genotype) (C) The western blot shows IGF2BP2 protein (66 kDa) expression in MEF (E12.5) of the indicated genotypes (2-3 mice per genotype). The actin control was developed from the same membrane. (D) The western blot shows IGF2BP2 protein (66 kDa) expression in adult liver of mice of the indicated genotype (n= 4 mice per group). The actin control was developed from the same membrane. (E) Genotyping PCR analysis of tail biopsies from 2-week-old mice (n=3 per group) reveals the expected bands indicative of Igf2bp2+/+, Igf2bp2+/− and Igf2bp2−/− genotypes.

Figure S2. Gating strategies of FACS analyses.
(A) Gating strategy of FACS analysis for hematopoietic stem cell and progenitor populations in BM cells.
LSK: Lineage−Sca1−cKit+; LK: Lineage−Sca1−cKit+; HSC: Lineage−Sca1−cKit−CD150−CD34−; MPP: Lineage−Sca1−cKit+CD34+; CLP: Lineage−cKitlowSca1lowFlt3+CD127+; CMP: Lineage−Sca1−cKit+CD34+FcγR−; GMP: Lineage−Sca1−cKit+CD34+FcγR++; MEP: Lineage−Sca1−cKit+CD34−FcγR−.
(B) Gating strategy of FACS analysis for mature cell populations in PB cells.
B-cell: CD45+B220+; T-cell: CD45+CD4+/CD8+; Myeloid cell: CD45+Gr1+/CD11b+.
(C) Gating strategy of FACS analysis for subpopulations of MPP in BM cells.
MPP1: Lineage−Sca1−cKit+CD150−CD48−CD34−Flt3−; MPP2: Lineage−Sca1−cKit+CD150−CD48−CD34−Flt3−; MPP3: Lineage−Sca1−cKit+CD150−CD48−CD34−Flt3−; MPP4: Lineage−Sca1−cKit+CD150−CD48−CD34−Flt3−.
(D) Gating strategy of FACS analysis of ex vivo culture HSC: DAPI−GFP+Lineage−Sca1+CD48−. FSC, forward scatter; SSC, side scatter.

Figure S3. Myeloid-biased HSC (CD150high) from young, male mice have the highest expression of \textit{lgf2bp2} mRNA. The relative mRNA expression of \textit{lgf2bp2} (relative to \textit{Actb}) was analyzed (A) in balanced HSC (CD150lowCD34−LSKs) and myeloid-biased HSC (CD150highCD34−LSKs) from young (3-4 months) and old (24-26 months) wildtype mice (n=6-7 mice per group), (B) in myeloid-biased HSC (CD150highCD34−LSKs) from male wildtype mice of indicated age (n=3 mice per group), and (C) in myeloid-biased HSC from 9-month old wildtype mice of indicated genders, male and female (n=3 mice per group). (A-C) Statistical significance was assessed by two-way ANOVA on log2-transformed data followed by pairwise t-tests with Sidak's correction for multiple comparisons (A) or by one-way ANOVA on log2-transformed data followed by pairwise t-tests with Tukey's correction for multiple comparisons (B), or by Welch’s t-test on log2-transformed data (C). All data shown in this figure represent mean ± SD, and ns means “non-significant”.

Figure S4. \textit{lgf2bp2}-high cluster is enriched for the expression of imprinted genes that are expressed in long-term HSC. (A) Heat map showing top differentially expressed genes in each subcluster as depicted in Figure 3A. Color scale indicates the level of gene expression. (B-I) Feature plots and histograms on HSC-related, imprinted genes depicting the expression level and the percentage of positive cells in the HSC-subclusters (as shown in Fig. 3A) for (B,C) \textit{Hmga2}, (D,E) \textit{Rian}, (F,G) \textit{Cdkn1c} and (H,I) \textit{H19}. Gray dots indicate no expression, and red intensity indicates the expression level of each gene.

Figure S5. High expression of megakaryocyte/thrombocyte and erythroid marker genes indicates that HSC in clusters 1, 2, 6, and 7 are lineage primed. (A) UMAP plot with Seurat clustering. (B-H) Feature plots of common marker genes of megakaryocyte/thrombocyte and erythroid lineages: (B) \textit{Itga2b}, (C) \textit{Vwf}, (D) \textit{Pf4}, (E) \textit{Klf1}, (F) \textit{Mki67}, (G) \textit{Gata1}, (H) \textit{Car1}. (I) Violin plot of \textit{lgf2bp2} expression in Cluster-0, 3, 4, 5, 8 of unprimed myeloid-biased HSC. A KS test was performed to compare \textit{lgf2bp2} expression in Cluster 3 vs. each of Cluster-0 (\(p=2.6\times10^{-9}\)), Cluster-4 (\(p=6.6\times10^{-4}\)), Cluster-5 (\(p=8.7\times10^{-4}\)), Cluster-8 (\(p=0.07\)). The \textit{lgf2bp2} expression in
Cluster-3 is significantly up-regulated ($p=4.142\times10^{-9}$) compared to all of the unprimed clusters.

Figure S6. *Igf2bp2* deletion impairs colony forming capacity of balanced HSC of young mice. 500 freshly isolated, balanced HSC (CD150lowCD34$^{-}$LSK) from young (3-6 months) and aged (22-26 months) *Igf2bp2*+/− and *Igf2bp2*−/− mice were cultured in methylcellulose and serially replated for 3 rounds. The graph shows the number of colonies of the indicated groups per round of plating. Data points represent 8-12 mice per genotype. Statistical analysis by three-way ANOVA revealed significant effects on CFU capacity by genotype ($p=0.0047$) and round-of-plating ($p<0.0001$) but not by the age of the balanced HSC donors ($p=0.14$). Post-hoc testing with two-way ANOVA revealed that the genotype had stronger effects on suppression of CFU capacity on of balanced HSC of young mice (effect size -14.31 units, $p=0.0014$) compared to aged mice (effect size -5.63 units, $p=0.401$).

Figure S7. Lentivirus-mediated *Igf2bp2* overexpression and effects of *Igf2bp2* deletion on mitochondria respiration, ATP and ROS levels, and mitochondria stress related gene expression changes in hematopoietic stem and progenitor cells. (A-B) Freshly isolated LSK (Lineage−cKit$^{+}$Sca1$^{+}$) from wildtype mice were virally infected with *Igf2bp2* cDNA or an empty vector (control). Both constructs co-express GFP. On day 2.5 after transduction, DAPI$^{-}$GFP$^{+}$ cells were resorted for qPCR analysis and western blotting. (A) Relative mRNA expression of *Igf2bp2* (normalized to *Actb*) in infected LSK of the indicated groups from young (4 month) and old (24 month) mice. A total of 7 mice per group in two independent experiments. In one sample of vector-infected old LSK *Igf2bp2* was not detectable. Y-axis is in log-scale. Statistical test used two-way ANOVA on log2-transformed data followed by pairwise t-tests with Sidak’s correction for multiple comparisons. (B) Western blot showing IGF2BP2 protein level of LSK of 5 month old mice were infected with the indicated expression constructs (n=3 biological replicates, upper photograph). The total protein stain of the same membrane was determined as a loading control (lower photograph). (C) Representative kinetic profile of the oxygen consumption rate (OCR) of freshly isolated (upper profile) HSPC (Lineage−cKit$^{+}$Sca1$^{+}$ = LSK cells) from young (3-6 months), *Igf2bp2*−/− vs. *Igf2bp2*+/− mice and (lower profiles) from CD150$^{+}$ (high and low) HSC (CD150$^{+}$CD34$^{-}$LSK) and multipotent progenitors (CD34$^{+}$LSK) from aged (22-26 months).
months), *Igf2bp2*−/− vs. *Igf2bp2*+/+ mice. Arrows indicate the time for injections with oligomycin, FCCP, rotenone (Rot) and antimycin A (AA). (D) FACS analysis of ROS (by CellROX detection) in freshly isolated, living cells of *Igf2bp2*−/− vs. *Igf2bp2*+/+ mice at young (3-6 months) and old age (22-26 months). Fluorescence intensity values are plotted for CD150+ (high and low) HSC (CD150+CD34−LSK) and MPP (CD34+LSK). Data were normalized to HSC or MPP from young *Igf2bp2*+/+ mice set to 1. Data points represent 8-19 mice per group. No differences in ROS levels were observed in HSC or MPP from *Igf2bp2*−/− mice compared to *Igf2bp2*+/+ mice. (E) Mitochondrial stress related GO-terms that were significantly enriched and overall down-regulated in the bulk RNA sequencing of myeloid-biased HSC of young, *Igf2bp2*−/− vs. *Igf2bp2*+/+ mice (see Figure 2). (F) Intracellular ATP concentration was determined in 1,500 freshly isolated, CD150+ (high and low) HSC (CD150+CD34−LSK) and MPP (CD34+LSK) from young (4 months) and aged (22-26 months) *Igf2bp2*+/+ and *Igf2bp2*−/− mice. N=5-7 mice per group. (D and F) Statistical analysis by two-way ANOVA followed by pairwise t-tests with Sidak’s test correction for multiple comparisons. All data shown in this figure represent mean ± SD, and ns means “non-significant”.

Figure S8. *Igf2bp2* overexpression impairs maintenance and induces myeloid skewing of HSC, especially from aged donor mice. (A-C) CD150+ (high and low) HSC (CD150+CD34−LSKs) from young (3 month) and aged (26 month) WT mice were infected with virus containing *Igf2bp2*-cDNA or vector as control. 10 h after transduction, 5,000 viral-infected cells were transplanted along with 5x10^5 competitor total BM cells (CD45.1). 3-5 recipient per group. Chimerism in the peripheral blood (PB) from recipients was analyzed in 4-week intervals after transplantation by FACS. (A) Analysis of the relative change of GFP+ cells in CD45.2+ cells of PB from recipients of the indicated groups at the indicated time points after transplantation. Data were normalized to the initial transduction in HSC cells at 3 days after infection set to 1. (B) Representative FACS plots showing the percentage of GFP+ cells in CD45.2+ PB cells from recipients of the indicated groups, 12 weeks after transplantation. (C) The histogram shows the percentage of myeloid cells (Gr1+ and/or CD11b+) and lymphoid cells (B220+ or CD4+ or CD8+) in CD45.2+GFP+ PB cells of the indicated groups, 8 weeks after transplantation. (A and C) Statistical analysis by two-way ANOVA on original data (A), or on logit transformed data (C) followed by pairwise t-tests with
Sidak's test correction for multiple comparisons. All data shown in this figure represent mean ± SD, and ns means “non-significant”.

Figure S9. Igf2bp2 deletion extends lifespan in female mice. (A and B) Postnatal body weight curves of *Igf2bp2*+/+ and *Igf2bp2*−/− (A) male and (B) female mice. N=3-27 individual mice per group and per time point. The body weight was measured every two weeks after weaning. (C-E) Kaplan-Meier survival curve of *Igf2bp2*+/+ and *Igf2bp2*−/− mice, including (C) all animals (n=32-34 mice per group), (D) males (n=17-18 mice per group), and (E) females (n=15-16 mice per group). The statistical analysis was carried out by Log-rank test. Compared to the previous report, the reduction in body weight of knockouts vs. wildtype mice was less pronounced in our cohorts and the increase in lifespan was significant only in female mice but not in male mice. These differences may be related to differences in animal husbandry, in commensal bacteria/the microbiome, in animal chow, or in the genetic background.

Figure S10. Influence of Igf2bp2 gene status on hematopoietic stem and progenitor cells. (A-G) Freshly isolated bone marrow (BM) cells were analyzed to determine the number (per 1x10^6 BM cells) of the indicated cell populations and absolute number of total bone marrow cells in male and female, *Igf2bp2*+/+ and *Igf2bp2*−/− mice at young (3-6 months), middle (9-15 months), and old (18-27 months) age. The graphs show the combined analysis of multiple experiment, circles represent males, squares female. Cell number in the indicated groups of mice for (A) balanced HSC (CD150loswCD34−LSK), 6-24 mice per group; (B) CD41− HSC (CD41−CD150+CD34+LSK), 2-15 mice per group; (C) multipotent progenitor cells (MPP: CD34+LSK), 5-24 mice per group; (D) MPP subpopulations (MPP1: CD150+CD48−CD34+Flt3−LSK, MPP2: CD150+CD48+CD34+Flt3−LSK, MPP3: CD150−CD48+CD34+Flt3−LSK, and MPP4: CD150−CD48−CD34+Flt3−LSK), 2-10 mice per group; (E) common myeloid progenitors (CMP: CD34+FcyR−ScalcSca1^low^cKit^low^Lineage^−^), 2-12 mice per group; (F) absolute number of BM cells, 10-24 mice per group; (G) common lymphoid progenitor cells (CLP: Flt3+CD127+Sca1^low^cKit^low^Lineage^−^), 4-18 mice per group. (A,B,D) Y-axis is in log-scale. (A-G) Statistical analysis by two-way ANOVA on log-transformed data followed by pairwise t-tests with Sidak’s correction.
for multiple comparisons. (H) Representative FACS plots depicting myeloid cells (including Gr1⁺ cells and CD11b⁺) versus lymphoid cells (including B220⁺, CD4⁺, and CD8⁺ cells) in old donor-derived cells in peripheral blood (PB) 20 weeks after transplantation. All data shown in this figure represent mean ± SD, and ns means “non-significant”.

Figure S11. RNA sequencing data of long-term HSC (LT-HSC) from Yin et al.⁹ do not support the conclusion that *lgf2bp2* suppresses mitochondrial activity in HSC. (A) Principal component analysis plot of the four LT-HSC RNA-seq samples: two WT mice (red) and two *lgf2bp2*⁻/⁻ mice (black). (B-D) Volcano plots showing differentially expressed genes (DEG) highlighted in red, determined via different cutoff criteria. (B) DEG obtained using the criteria of Yin et al. of LFC > 1 or unadjusted p-value < 0.05 (8,332 genes). (C) DEG using the threshold of unadjusted p-value < 0.05 (1,394 genes). (D) DEG using the threshold of adjusted p-value < 0.05 (151 genes). Genes marked in Fig. 4A of Yin et al.⁹ are marked; only 2 (labeled blue) out of 18 are significant after correcting for multiple testing. (E) Top ten GO terms for the set of DEG that are up regulated in *lgf2bp2*⁻/⁻ mice as defined in (D). (F) Top ten GO terms for the set of DEG that are down regulated in *lgf2bp2*⁻/⁻ mice as defined in (D).