Emerging molecular technologies for light-mediated modulation of pancreatic beta-cell function

Zijing Chen¹, Leah Truskinovsky¹, Emmanuel S. Tzanakakis¹,²,³,⁴∗

ABSTRACT

Background: Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the photomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing β-cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K⁺ and Ca²⁺ and signaling intermediates such as cyclic adenosine monophosphate (cAMP), renders β-cells and their glucose-stimulated insulin secretion (GSIS) amenable to optoengineering for drug-free control of blood sugar.

Scope of review: The molecular circuit of the GSIS in β-cells is described with emphasis on intermediates which are targetable for optical intervention. Various pharmacological agents modifying the release of insulin are reviewed along with their documented side effects. These are contrasted with optical approaches, which have already been employed for engineering β-cell function or are considered for future such applications. Principal obstacles are also discussed as the implementation of optogenetics is pondered for tissue engineering and biology applications of the pancreas.

Major Conclusions: Notable advances in optogenetic, optochemical and photopharmacological tools are rendering feasible the smart engineering of pancreatic cells and tissues with light-regulated function paving the way for novel solutions for addressing pancreatic pathologies including diabetes.

© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Optogenetics; Pancreas; Beta-cells; Insulin secretion; Diabetes

1. INTRODUCTION

The regulation of major cellular functions using light has become possible through molecular customization of cells and advances in optogenetic and optochemical methods. These modalities afford superior spatial and temporal resolution allowing for precise stimulation of cells and tissues in contrast to pharmacological interventions. Optogenetic strategies were adopted early on in neuroscience with significant progress noted in their implementation [1,2], but recent successes have been reported for hearing restoration, bladder control, and cardiac muscle pacing [3–6]. Moreover, light-mediated modulation of cellular signaling pathways has become part of the tool chest for understanding fundamental subcellular processes driving physiological responses by cells and cell ensembles. Yet, the adoption of optical modulation systems in pancreas biology and tissue engineering has been relatively limited. While the exocrine pancreas produces digestive enzymes, the endocrine compartment supplies various hormones which are essential for homeostasis, including the control of blood sugar [7]. The pancreatic endocrine tissue comprises multiple cell types organized in clusters or islets traversed by blood vessels. Hormone secretion is orchestrated through interactions among neighboring cells and by extracellular stimuli. Greater understanding of this complex environment is necessary for developing effective therapies for pathologies of the pancreas. Among the endocrine cells, insulin-producing β-cells along with glucagon-secreting α-cells play a critical role in the maintenance of normoglycemia. This is evident in diabetes where extensive damage of the β-cells due to autoimmunity (type 1 diabetes; T1D) or insulin resistance (type 2 diabetes; T2D) mandates the administration of exogenous insulin in all T1D patients and over 30% of patients with advanced T2D. However, control of diabetes is suboptimal relying on manual calculation of the amount of insulin to be infused based on factors such as blood glucose, food caloric intake, etc. Patients with T2D are prescribed pharmacological regimens for boosting the amount of insulin

¹Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA ²Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, 02111, USA ³Department of Developmental, Molecular and Cell Biology, Tufts University School of Medicine, Boston, MA, 02111, USA ⁴Graduate Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Tufts University School of Medicine, Boston, MA, 02111, USA

∗Corresponding author. Department of Chemical and Biological Engineering, Tufts University, Science and Technology Center, Room 150, Medford, MA, 02155, USA. Fax: +1 617 627 3991.

E-mails: Zijing.Chen@tufts.edu (Z. Chen), Leah.Truskinovsky@tufts.edu (L. Truskinovsky), Emmanuel.Tzanakakis@tufts.edu (E.S. Tzanakakis).

Received June 11, 2022 • Revision received July 13, 2022 • Accepted July 13, 2022 • Available online 19 July 2022
https://doi.org/10.1016/j.molmet.2022.101552
released by their pancreas or facilitating the removal of excess glucose from the bloodstream. Nonetheless, compliance and side effects such as severe hypoglycemia, kidney dysfunction, and liver damage are vexing issues. Basic research in pancreas biology and translation to clinically relevant technologies stand to benefit from advances in optogenetics. Islet hormone secretion is mediated by the trafficking of ions (e.g., Ca\(^{2+}\), K\(^+\)) across compartments, membrane depolarization, and changes in metabolic and signaling intermediates (e.g., cyclic adenosine monophosphate (cAMP)). Conceivably, these molecular events can be paired with photoactivatable moieties such as opsins, which modify ionic fluxes across membranes, and proteins featuring light-regulated engineered cells and tissues can be part of therapeutic solutions for maladies of the pancreas, particularly of hormone-secreting islet cells. Conversely, the drug-based modulation of these pathways is described along with documented off-target effects. Against this backdrop, we look mainly at reported optogenetic approaches, in addition to optochemical, and photopharmacological ones and how these have been or can be employed for engineering islet cell function. Major challenges to the realization of these objectives are discussed in the last section. As noted in the fields of brain biology and heart pathophysiology, optogenetics will help gain new insights regarding the complex functions of the pancreas, particularly of hormone-secreting islet cells. Conversely, light-regulated engineered cells and tissues can be part of therapeutic solutions for maladies of the pancreas.
2. MOLECULAR CIRCUIT(S) GOVERNING GSIS OF β-CELLS

2.1. Glucose metabolism in β-cells

Glucose sourced via ingestion of food in the small intestine enters the bloodstream and eventually reaches the liver and the pancreas. Plasma glucose levels of 4−5 mM are reported in the fasting state, and ~7 mM is considered the threshold for metabolic events in pancreatic β-cells [14], which are the sole secretors of insulin in the body. A basic description is provided below of the molecular pathway(s) involved in β-cell GSIS with emphasis on major intermediates, which are potential targets for optogenetic intervention.

To enter β-cells (Figure 1), glucose undergoes facilitated diffusion through the transmembrane glucose transporter GLUT1 (in humans) or GLUT2 (in rodents). Intracellular glucose is phosphorylated by glucokinase (hexokinase IV in humans) in the first step of glycolysis, eventually leading to the generation of pyruvate. Pyruvate enters the Krebs’ (tricarboxylic acid; TCA) cycle in the mitochondria, producing nicotinamide adenine dinucleotide (NADH) and reduced Flavin adenine dinucleotide (FADH). These energy carriers are reduced by oxidative phosphorylation in a highly O2-intensive process to generate ATP [15].

Under suboptimal oxygen supply, animal cells can convert pyruvate to lactate, but β-cells express minimal levels of the catalyzing enzyme lactate dehydrogenase [16].

The primary effect of glucose catabolism is the increase in the ratio of ATP to ADP (ATP/ADP) with multiple downstream effects. ATP binds to an ATP-sensitive K⁺ (KATP⁺) channel, which consists of four pore-forming inward rectifier potassium channel subunits (Kᵢ6.2; KCNJ11) and four sulfonylurea receptor subunits (SUR1; ABCC8) [14,17]. The Kᵢ6.2 subunits bind metabolism-generated ATP causing the KATP⁺ channels to close. The SUR1 subunits feature nucleotide-binding-sites inducing KATP⁺ closure upon interacting with insulin secretagogues such as sulfonylurea and glinide [14,17]. With KATP⁺ channels shut, membrane permeability is altered contributing to its depolarization.

Hence, plasma glucose >6 mM reduces KATP⁺ channel activity by more than 75%. Conversely, β-cells are electrically silent in the absence of glucose due to active KATP⁺ channels and the maintenance of K⁺ efflux [14]. Serving as a halting mechanism of GSIS are the voltage-dependent K⁺ channels (Kᵥ and Ca²⁺-sensitive voltage-dependent K⁺ channels) that repolarize the cell membrane, effectively suspending Ca²⁺ transport [14]. As the β-cell membrane depolarizes with elevated ATP/ADP, it reaches an activation threshold for voltage-dependent calcium channels (VDCC) to increase conductance and allow Ca²⁺ to enter the cell [14].

Membrane depolarization and intracellular Ca²⁺ concentration ([Ca²⁺]ᵢ) are both oscillatory rather than biphasic [17]. The rise in β-cell [Ca²⁺]ᵢ induces the fusion of insulin granules to the plasma membrane via a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and the eventual release of the hormone [17].

In addition to the KATP⁺-mediated insulin secretion, a parallel pathway (KATP⁺ channel-independent or metabolic amplifying pathway) in β-cells is responsible for regulating at least 50% of the total hormone release postprandially [18]. The pathway involves transmembrane G-protein-coupled receptors (GPCRs) which are important drug targets. Stimulated GPCRs proceed to activate heterotrimeric G-proteins composed of α, β, and γ subunits. The α subunits are divided into four functionally distinct classes: Gₛ, G₁₁, G₁₂/13. The type of activated Gₛ dictates the role of GPCR signaling on the β-cell signaling and insulin secretion [19,20].

GPCR-mediated triggering of Gₛ leads to phospholipase C (PLC)-catalyzed conversion of phospholipid phosphatidylinositol bisphosphate (PIP₂) into diacylglycerol (DAG) and inositol trisphosphate (IP₃) with subsequent release of Ca²⁺ from the endoplasmic reticulum (ER) triggering the release of insulin [19].

The Gₛ α-subunit can bind to the membrane-associated protein adenyl cyclase (AC). There are nine transmembrane and one soluble isoforms of AC in different tissues with two main catalytic domains C1

Figure 1: Beta-cell GSIS molecular pathways. Glucose enters the β-cell from the bloodstream via the GLUT transporter and is catabolized yielding ATP. ATP induces the closure of KATP⁺ channels causing changes in membrane conductance leading to its depolarization. In response, VDCCs enhance Ca²⁺ influx, which triggers the migration and fusion of secretory granules to the cellular membrane, leading to insulin secretory granule exocytosis. Among various types of GPCRs, incretins that activate Gₛ can stimulate PLC to convert PIP₂ to DAG and IP₃, and release cytosolic [Ca²⁺]ᵢ, that results in insulin release. On the other hand, Gₛ-coupled GPCR inhibits AC, while incretins, such as GLP-1, can bind to Gₛ, and stimulate AC activity. AC catalyzes the conversion of ATP to cAMP, which activates both PKA and EPAC enhancing VDCC activity, and eliciting insulin exocytosis. The PDEs degrade cAMP.
and C2 [21]. Both insulinoma lines and primary β-cells in humans and rodents express different AC isoforms, including AC5 and AC6 [22] as well as the Ca2+- and calmodulin-activated isoforms AC1, AC3, and AC8 [23]. Activation of AC results in the conversion of ATP to cyclic adenosine monophosphate (cAMP). Conversely, phosphodiesterases (PDEs) continually degrade cAMP [24], bringing its concentration down to baseline once the incretin signal is attenuated. There are eleven PDE isoforms, of which human and rodent islets, and β-cell lines express: PDE1, PDE3, PDE4, PDE7, PDE8, PDE10, and PDE11 [23]. Among the PDE subtypes expressed in β-cell, PDE1, PDE3, and PDE4 are better studied and account largely for the regulation of cAMP levels in the context of GSIS [26]. Thus, Gs-targeting incretins promote the elevation of intracellular cAMP. In contrast, the activation of Gi results in inhibitory effect of AC, and cAMP formation and insulin secretion.

The incretin-mediated increase in cAMP leads to activation of the protein kinase A (PKA), which phosphorylates and enhances the function of VDCCs, allowing for greater Ca2+ influx, and therefore stimulation of membrane fusion and exocytosis of insulin granules [18,27]. PKA also directly phosphorylates and closes KATP channels in an ADP-dependent manner resulting in a decrease in membrane depolarization and VDCC activity [18]. Cyclic AMP may enlarge the readily releasable pool (RRP) of granules in a concentration-dependent manner independent of Ca2+, priming β-cells at stimulatory ambient glucose concentration [17].

In addition to PKA, the exchange protein directly activated by cAMP (EPAC) is a CAMP sensor, which like PKA features a CAMP binding domain, and regulates functions such as cell adhesion and junctions, secretion, differentiation, gene expression, and apoptosis [28]. While the roles of EPAC and PKA in insulin secretion require further elucidation, EPAC is involved in the priming of vesicles, inhibiting KATP through interaction with SUR1, and regulating ryanodine-sensitive Ca2+ channels in Ca2+-induced Ca2+ release from internal stores [29–31]. The biphasic nature of insulin secretion begins with a largely Ca2+-dependent, high amplitude burst of insulin exocytosis over a short duration sourced from the RRP, whose granules are already docked and primed at the plasma membrane. The second phase consists of a lower amplitude period of insulin output over a longer duration and is derived from the supplementation of the RRP by the granule storage pool, or reserve pool (RP). Insulin secretion is also known to exhibit oscillatory behavior in intervals of approximately 5 min in human patients [32]. The secretion of insulin is concomitant to that of C-peptide — a byproduct of proinsulin processing representative of de novo insulin synthesis — in a 1:1 molar ratio.

3. Pharmacological/Chemical Agents Modulating Insulin Secretion

There are several known secretagogues eliciting the release of insulin by β-cells, and some have been utilized in the treatment of T2D. Our discussion is limited to insulinotropic agents (Table 1) acknowledging that drugs in clinical use for managing blood glucose may target extrapancreatic tissues. For instance, biguanides (e.g., metformin) act on the liver, lessening glucose production, and sodium-glucose cotransporter (SGLT) inhibitors reduce the renal reabsorption of glucose [33,34]. As discussed already, cAMP and its modulators, ACs and PDEs, are central to the circuit regulating β-cell insulin secretion. Transmembrane ACs are stimulated by the Gaβ γ subunit of GPCRs, which in turn are targeted by incretins such as the gastric inhibitory polypeptide (GIP) and the glucagon-like peptide 1 (GLP-1) released from the gut after food ingestion. The GLP-1, which is a GaA-binding incretin upregulates intracellular cAMP, in addition to stimulating GLUT2 and glucokinase. These actions result in inhibition of KATP and Ks channels (reducing membrane repolarization), promotion of insulin biosynthesis, suppression of apoptosis and stimulation of proliferation of β-cells, curbing glucagon secretion (thus, preventing the release of glucose into the blood from hepatic storage), and delaying gastric emptying [14,15,18,27]. Because GIP and GLP-1 are rapidly degraded by dipeptidyl peptidase-4 (DPP4) [35], longer-acting agonists of the incretins (such as exendin-4 [36]) have been used for T2D treatment while DPP4 inhibitors are in development. It is reported that the use of GLP-1 agonists is linked to a lower risk of hypoglycemia for T2D patients.

The natural diterpenoid forskolin also activates ACs in a rapid, dose-dependent and reversible manner by binding close to the enzyme [28,37]. The natural diterpenoid forskolin also activates ACs in a rapid, dose-dependent and reversible manner by binding close to the enzyme [28,37]. The secretion of insulin is concomitant to that of C-peptide — a byproduct of proinsulin processing representative of de novo insulin synthesis — in a 1:1 molar ratio.
levels, given that the binding of sulfonylureas diminishes the ability of K$_{ATP}^+$ channels to sense intracellular ATP and ADP fluctuations in response to the rise and fall in extracellular glucose. This explains the risk for hypoglycemia and hyperinsulinism for T2D patients associated with this class of agents. Chronic administration of sulfonylureas also reduces SUR1 expression on the surface of β-cells exacerbating T2D, but this effect can be reversed by discontinuing the treatment. Moreover, several cell types beyond β-cells express K$_{ATP}^+$ channels lowering the specificity of the anti-diabetic effect of sulfonylureas. Accordingly, sulfonylurea regimens have been linked to higher risks of adverse cardiovascular outcomes in T2D given that cardiomyocytes also express K$_{ATP}^+$ channels [42]. Unlike the first generation of sulfonylureas (e.g., acethexamide, chlorpropamide, toiazamide, and tolbutamide) which had a high dosage requirement (100—2,000 mg/daily), a second-generation agents (e.g., glyburide, glipizide, gliclazide, and gliminepiride) are significantly more effective and potent (1—20 mg per day) with fewer side effects [43]. Meglitinide was introduced in 1995 as another T2D drug binding to the SUR1 and stimulating insulin secretion. Meglitinide analogs such as repaglinide, nateglinide, and mitiglinide, bind to distinct sites of the SUR1 with lower affinity compared to sulfonylureas. The shorter half-life of meglitinides may point to a lower likelihood of cardiovascular implications for diabetic patients compared to sulfonylurea treatment [42]. Additionally, nateglinide is 1000-fold more selective for K$_{ATP}^+$ channels in β-cells vs. cardiomyocytes. In albino mouse islets, 100 μM of tolbutamide, 1 μM of glipizide or 100 μM of meglitinide stimulates a rapid 8- to 9-fold increase of insulin secretion above basal values within 10 min in the presence of 10 mM glucose [44,45]. In pancreas, high voltage-gated Ca$^{2+}$ channels (HVCCs) also play a significant role of in β-cell glucoregulatory insulin release, as the influx of calcium ions via HVCC initiate the Ca$^{2+}$-dependent exocytosis of insulin [46]. HVCCs are multi-protein complexes comprising several different subunits, including the primary pore-forming transmembrane α1 subunit, along with auxiliary extracellular (α2δ), intracellular (β), and transmembrane (γ) subunits [47]. Pharmacological Ca$^{2+}$ channel blockers such as dithydropyridine (nifedipine), phenylalkylamine (Verapamil), and benzothiazepine (diltiazem), target L-type channels and are widely used to treat hypertension, inhibiting Ca$^{2+}$ from entering vascular smooth muscle and myocardial cells [47]. An early study shows nifedipine has a stronger effect on β-cell electrical activity compared to Verapamil. However, upon glucose stimulation, murine β-cells show high sensitivity to Verapamil but not nifedipine [48]. In rodent β-cells and islets as well as in human islets, Verapamil decreases the expression of thioredoxin-interacting protein (TXNIP), prevents β-cell apoptosis, and preserves functional β-cell mass [49]. In one pilot study involving recent-onset T1D patients, once-daily oral Verapamil (from 120 mg to 360 mg) reduces the need for exogenous insulin dosage, and frequencies of hypoglycemia compared to the placebo group [50]. The International Verapamil S.R./Trandolapril Study revealed an association between calcium channel blockers use and a lower risk for newly diagnosed T2DM However, intoxication by an overdose of Verapamil or diltiazem may result in hyperglycemia, as the agonists bind to the L-type HVCCs and diminish the release of insulin [51]. Among the GPCR-targeting agents to modulate [Ca$^{2+}$], acetylcholine (Ach), for instance, is a ligand of M$_3$ muscarinic ACh receptors (M3Rs) inciting G$\alpha_{i/o}$-type PCRs, activating the PLC pathway thereby augmenting [Ca$^{2+}$], and GSIS in rodent and human islets [52,53]. Other secretagogues operate beyond regulating the activity of cAMP, K$_{ATP}^+$ or Ca$^{2+}$ channels. Certain amino acids, including leucine, isoleucine, alanine, and arginine, enhance insulin secretion from primary islet cells and β-cell lines under specific conditions [54,55]. Cationically charged l-arginine directly triggers membrane depolarization at neutral pH only in the presence of glucose [56]. Other non-charged amino acids depolarize the cell membrane indirectly via a Na$^+$ transport-dependent mechanism. The phorbol 12-myristate 13-acetate (PMA) diester triggers insulin secretion by activating the protein kinase C (PKC) isoforms α, δ and or μ. Rat islets treated in 1 μM of PMA for 2 h exhibit enhanced insulin release both at baseline and after stimulation with glucose and tolbutamide. At the peak of first-phase insulin secretion, 20 mM glucose induces a 15-fold increase in PMA-treated islets vs. untreated islets. A less pronounced increase (3-fold) is also observed in the second phase [57]. While this is not an exhaustive review of pharmacological interventions for augmenting the secretion of insulin, it illustrates that these are associated with off-target effects and negative interactions, motivating research towards the generation of strategies for effective approaches characterized by greater specificity and fewer side effects.

4. OPTOGENETIC APPROACHES

4.1. Optogenetic regulation of GPCRs
 Optogenetic tools have been reported for precise spatial and temporal control of GPCR signaling in β-cells. Mansouri et al. introduced melanopin, a Gα_q-linked GPCR that can activate the PLC pathway which results in increases in cytosolic Ca$^{2+}$ and insulin release, as demonstrated with the INSvesc cells, a subvariant of the human insulin-releasing β-cell line 1.1E7 [58]. The new cell line (βi-cells) stably expressed a luciferase insulin reporter construct, and melanopin that was excited at 475 nm or with a smartphone flashlight. Peak insulin release was observed within 15 min of illumination in vitro. When βi-cells encapsulated in alginate-poly(l-lysine)-alginate beads were transplanted subcutaneously in STZ-treated diabetic C57BL/6J mice, blood insulin levels were elevated compared to STZ-mice alone and STZ-mice with transplanted cells but kept in the dark. Glucose tolerance testing showed that the hyperglycemia improved significantly with 15 min of flashlight illumination, even though INSvesc and βi-cells per se are not capable to sense glucose. Of note, melanopin is a promiscuous receptor activating Gs, Gi and Gs proteins [59] while the use of another opsin (Neurophin/OPN5), which activates Gs signaling specifically [60], may increase the effectiveness of optogenetic insulin release by β-cells. Gα_q protein-coupled rhodopsins such as JellyOp from the jellyfish Caryophyllium and Gα_v signaling inducing transmembrane ACs to increase intracellular cAMP. Cardiomyocytes expressing JellyOp exhibited accelerated spontaneous beating with blue light illumination similar to β-adrenergic stimulation using pharmacological means [56]. Short- and long-wavelength-sensitive opsins have been used for control of Gα_q signaling cascades to inhibit AC, cAMP in neuronal systems [61] and cardiomyocytes to decrease the beating rate [62] yet such applications have not been reported in β-cells to date.

4.2. Optogenetic targeting of intra-β-cell cAMP

4.2.1. Photoactivatable ACs (PACs)

The central role of cAMP in the regulation of β-cell GSIS has motivated the search for tools that modulate this secondary messenger (Figure 2). Photoactivatable adenyl cyclases (PACs) are expressed in bacteria and other microorganisms including Euglena gracilis (euPAC) [63], Oscillatoria acuminata (OaPAC) [64], and Beggiatoa (bPAC) [8,9] while artificial PACs resulting from protein engineering are also available (see below) [65]. The euPACs are large tetrameric proteins...
(>100 kDa) with two blue light using flavin adenine dinucleotide (BLUF) photoreceptor domains and two AC domains [66]. The complex exhibits baseline AC activity in the dark that is stimulated 80-fold in the light. Optostimulation of euPAC was demonstrated in *Xenopus* oocytes and HEK293 cells whereas its expression in the neuronal cells of *Drosophila* resulted in altered grooming behavior in response to blue light [67]. Yet, the large molecular mass, low solubility, significant dark activity, and moderate activation by light have prevented the wider use of euPACs in optogenetic applications.

In comparison, bPAC is a smaller protein (350 aa) encoded by a ~1 Kb gene, and it displays lower dark activity, high stimulation index (up to 300-fold increase in activity upon blue light stimulation), superior solubility, and short half-life of the active lit state. These attributes result in greater and longer augmentation of cAMP synthesis upon illumination [8,9,68,69]. The bPAC protein, originating in the sulfide-oxidizing *Beggiatoa* bacterium in sea floor environments, is a homodimer of an N-terminal BLUF photoreceptor domain and a C-terminal type III AC domain [8,68]. The flavin adenine dinucleotide (FAD) needed for BLUF activity is available natively in animal cells [9]. Absorption of photons and the resultant excitation cause secondary structural changes in the BLUF domain [68–70], which are required to activate the AC site. The absorption maximum of the original bPAC has been cited as 440 nm, indicating a high photosensitivity, possibly due to the bPAC’s native deep-sea environment, where light exposure is likely minimal [8,68,70]. Various PACs have been used for modulation of cAMP in different cell types and in some instances, in combination with engineered ion channels (see PAC-K system [71] below). In the context of β-cell GSIS, Zhang et al. expressed the bPAC gene in MIN6 insulinoma cells and murine islets. The expression of bPAC did not affect MIN6 cell growth, proliferation, and viability. Exposure of bPAC-expressing β-cells to blue light led to increased intracellular cAMP and insulin secretion. Photostimulation in the absence of glucose increased cAMP but did not elicit the production of insulin suggesting that glucose-independent hormone release is unlikely despite elevated cAMP. Interestingly, the oxygen consumption rate was not increased despite the blue light-mediated GSIS amplification. Upon transplantation of β-cells carrying bPAC to mice with streptozotocin (STZ)-induced diabetes, increased plasma insulin levels, heightened glucose tolerance and reduced blood glucose levels were measured [13,72]. Beyond natural PACs, the promise of proper optogenetic modulation of cAMP for controlling diverse functions of therapeutic interest has spurred the engineering of proteins featuring AC activity and photoactivatable moieties.

To this end, Yang et al. engineered PACmn to overcome the residual dark activity from natural soluble PACs [73]. PACmn is a modified bPAC with point mutations and membrane-anchoring peptides of the tyrosine kinase Lyn for membrane localization. Compared to the wild type bPAC, PACmn has a cyclase activity with three-fold lower light to dark

![Figure 2: Optical methods for modulating cell function using light. Three types of optical (optogenetics, photopharmacological and optochemical) approaches employed in the engineering of β-cells. (A) Light illumination stimulates PACs to upregulate conversion from ATP to intracellular cAMP thereby enhancing GSIS (See section 4.2.1). (B) Upon photoisomerization, azobenzene-based derivatives of sulfonylureas close the K_ATP channels leading to membrane depolarization, increases in [Ca^{2+}], and eventually the secretion of insulin [92]. (C) UV radiation cleaves photo-chelator nitrophenyl-EGTA with high affinity for Ca^{2+} and decages Ca^{2+} raising [Ca^{2+}], and leading to insulin release [99].](image-url)
ratio (>4,000) and shows a twice faster off kinetics in oocytes. It is interesting that the construct that displays the highest light to dark activity ratio (>7,000) exhibits reduced light activity. In rat hippocampal neurons, PACm shows no dark activity and accumulation of cAMP or PKA. The AC activity is observed by FRET in response to brief blue light illumination and diminishes within seconds for cAMP or ~10 min for PKA.

Moreover, a near-infrared optical window (NIRW)-absorbing PAC was reported by Fomicheva et al. [74]. Compared to blue light, NIRW light penetrates tissues at a greater depth (several centimeters), rendering NIRW-stimulated ACs an attractive modality for biomedical applications. Additionally, red light is less energy-intensive than blue light easing the design demands of envisioned optogenetic devices. It should be noted that photoreceptors relevant to the NIRW light are absent in most animal cells — unlike blue light flavins, which are naturally occurring — lowering the potential for side effects (e.g., phototoxidative damage) [65].

Engineered NIRW-ACs were constructed using bacteriophytochrome receptors with light sensitivity in the 670—760 nm spectral region and by fusing a type III homodimeric AC and a photosensory module from the bacterioptrophorhodobacter sphaeroides [74]. Phytochromes bind covalently to bilin chromophores or (specific to bacterioptrohromes) biliverdin IXα, which is naturally occurring in animal cells [65]. In the dark state, NIRW-AC’s enzymatic domain monomers are misaligned by photosensory modules preventing the formation of a homodimer. Upon absorption of NIRW photons, biliverdin IXα isomerization and alignment of the enzymatic domain monomers transpire, transitioning the synthetic AC into the active state [65,74].

The NIRW-AC engineered by Fomicheva et al., designated as IlaM5, mediated precise control of neuronal spindle waves in mice [74]. From the perspective of using IlaM5 in solutions for treating T2D, red spectral region-photoactivatable ACs would allow for greater tissue penetration, reduced energy of illumination, and potentially lower phototoxicity of β-cells [69,70].

4.2.2. Light-activated PDE

The Möglich group reported the generation of a synthetic light-activated PDE (LAPD) [75]. The LAPD was created by combining the photosensor module of Deinococcus radiodurans with the catalytic domain of the human PDE2A. Irradiation of LAPD with red light (650—700 nm) activates its hydrolytic activity of cAMP, whereas illumination with far-red light (theoretically 700—750 nm; however, an 850-nm LED was used in the study) reverts LAPD to its inactive state. It should be noted that for its function LAPD requires the chromophore biliverdin that is present in various animal tissues, but its supply can be augmented via co-expression of heme oxygenase, which converts heme to biliverdin. LAPD followed Michalis-Menten kinetics with a maximum reaction rate at substrate saturation of 1.8 and 6.5 μM (min−1 μM LAPD) in the dark- and red-light-adapted states, respectively. The corresponding values for substrate affinity (Km) were 470 and 180 μM. Upon expression of LAPD in zebrafish embryos, cAMP levels were reduced ~40% with red light exposure vs. control embryos without LAPD. Conversely, no significant difference was noted in intracellular cAMP when embryos were illuminated with infrared light. Exogenous provision of biliverdin was not required.

This work shows that LAPD can be functionally expressed in vivo. However, the utilization of LAPD for the optogenetic regulation of cellular functions — including GSIS — is lacking. This may be due to various reasons including that LAPD has dual specificity catalyzing the hydrolysis of cAMP and cyclic guanosine monophosphate (cGMP) similar to the human PDE2A. The simultaneous activation by LAPD of cAMP- and cGMP-participating pathways may confound strategies intended for optogenetic control. Moreover, the red-light induction index of LAPD is more than one order of magnitude less than that of bPACs. Yet, the prospect is appealing of using LAPD to accelerate the reduction of cAMP levels following its excursion (e.g., in GSIS) thereby improving the overall kinetics of an optogenetically driven response.

4.3. Optogenetic regulation of K+ for insulin secretion

The secretion of insulin by β-cells involves the action of membrane potential-modulating K+ channels. In recent years, various groups have worked on engineering optogenetic channels with K+ trafficking activity. The Moroni group reported an engineered blue light-gated K+ channel (BLINK1), in which a LOV2 photoreceptor domain controls a miniature channel pore, Kcv, in a reversible manner [76]. BLINK1, which was tethered to the plasma membrane through a myristoylation/palmitoylation domain (MGCTVSAE), was expressed in oocytes and cultured HEK293T cells permitting repeated inhibition by blue light (455 nm) without inactivation. Moreover, BLINK1 RNA was injected in zebrafish embryos, which respond to touch with a burst of swimming (escape response). BLINK1-expressing embryos exhibited a reduced escape response when exposed to blue light, but not when kept in the dark. A second version of the BLINK1 channel, coined BLINK2, was reported with a C-terminal signal and the ER export motif of the Kir2.1 and 14-3-3 (TASK1-3, KAT1) binding sites. BLINK2 exhibits improved surface export compared to BLINK1 and its post-illumination activity lasts tens of minutes [77] making this optogenetic K+ channel suitable for applications requiring durable light-off activity. To this end, rats with paclitaxel-induced allodynia, a neuropathic pain model, were intrathecally injected with a BLINK2 plasmid. Illumination with blue light reduced noiception for at least 30 min and up to 3 h. Given the disparate kinetics, a K+ channel like BLINK1, rather than BLINK2, with faster on/off kinetics, conceivably can be a suitable candidate for the photoregulation of insulin secretion in β-cells.

Light-controlled K+-based hyperpolarization has also been reported in conjunction with PAC activity [71]. The small CAMP-gated K+ channel SthK of the Spirochaeta thermophila confers strong repolarization/hyperpolarization. Co-expression of SthK and PAC (PAC-K system) in ventricular cardiomyocytes resulted in outward currents with a 10 ms exposure to 460 nm light suppressing electrically-evoked action potentials for extended periods, and silencing cardiomyocyte contractions. Similarly, PAC-K expression in cultured hippocampal neurons induced hyperpolarization with repetitive low-frequency or continuous exposure to low intensity blue light. In the same report, the PAC-K system was combined with a red-shifted channelrhodopsin (bReaChES) [78], which triggers action potentials by 550 nm light pulses, demonstrating dual-color optogenetic excitation and inhibition of membrane polarization-based cellular activity. Because the PAC-K system modulates both the intracellular cAMP and membrane potential, its consideration for use with different cell types including β-cells, warrants extensive investigation and significant tuning of its activity to avoid adverse non-specific effects.

4.4. Optogenetic regulation of Ca2+ for insulin release

Opsins are expressed across various organisms, from algae and fungi to animals. Channelrhodopsin-2 (ChR2; channelopsin-2 + retinal), which has been utilized extensively in optogenetic systems, acts as a cation channel that is activated by light. When exposed to blue light (~460–480 nm) the C. reinhardtii-derived ChR2 augments its conductance for mono- and divalent cations (e.g., Ca2+, Ba2+). Generally, the permeability of ChR2 appears to decrease...
with increasing atomic radius of the cations [79]. Yet, ChR variants have been engineered to respond to light wavelengths beyond the blue light, significantly expanding the repertoire of optogenetic applications for ChRs [80,81]. The flux modulation of ions, especially of Ca\(^{2+}\), has motivated the use of ChRs for optogenetic control of β-cell membrane depolarization and insulin secretion. The insulin secreted by murine MIN6 insulinoma cells transsected with the ChR2 gene (MIN6-ChR2) increased by ~60% upon irradiation with a 470 nm laser for 20 s vs. non-irradiated cells [12], notably though in the absence of glucose. Insulin secretion was mediated by the changes in [Ca\(^{2+}\)], due to ChR2 activation, as evidenced by patch-clamp analysis and the abrogation of insulin release in the presence of mibefradil dihydrochloride (a Ca\(^{2+}\) channel blocker). Upon subcutaneous delivery of MIN6-ChR2 cells to STZ-treated diabetic mice, blood glucose was lowered with irradiation (peak conc. of 18.6 mM) compared to that in animals receiving the cells but no light stimulation (peak conc. of 26.8 mM). The irradiation did not induce apoptosis of cells retrieved from the mice suggesting the lack of cytotoxicity due to ChR expression and activity. Reinhothe et al. examined islets isolated from transgenic mice with insulin promoter-driven expression of ChR2 [82]. As in MIN6 cells, exposure of islets from transgenic ChR2 mice in culture to blue light amplified [Ca\(^{2+}\)], and insulin secretion at low and intermediate but not at high concentrations of glucose. There was no change in glucagon release. In diabetic mice on high-fat diet, irradiation led to greater insulin secretion in high glucose indicating a compensatory potentiation of the Ca\(^{2+}\) response in these animals.

4.5. Non-β-cell optogenetic approaches

Extrapancreatic cells have also been targeted for optogenetic engineering and regulation of blood glucose with potential applications to diabetes. Elegant work by the Fussenegger group demonstrated the co-expression by HEK293 cells of melanopsin as well as a short variant of the human GLP-1 (shGLP1) gene driven by a promoter targeted by the nuclear factor of activated T cells (NFAT) [83]. Blue light activates a G-protein (melanopsin) cascade leading to the increase of [Ca\(^{2+}\)]. This in turn, induces calcineurin mobilizing the NFAT transcription factor to initiate the expression of target genes. When superimposed from blue light-exposed HEK293 cells expressing melanopsin and the NFAT-targeted promoter/shGLP1 was transferred to βTC-6 β-cells, insulin secretion was observed. Upon implantation of the engineered HEK293 cells to diabetic db/db mice, both circulating shGLP1 and insulin levels went up with 48 h of exposure to blue light. In a glucose tolerance assay, the reduction of blood sugar concentration after glucose injection was also higher in diabetic mice receiving the cells and illuminated with light vs. animals without photostimulation. Along the same vein, Shao et al. reported a far-red light (FRL)-inducible system with activation of the engineered bacterial photoreceptor BphS, which converts GTP into c-di-GMP [84]. Increased c-di-GMP production triggers the binding of transactivating elements (BldD: a c-di-GMP-binding domain derived from sporulating actinomycetes; p6S: the NF-κB-transactivating domain; VP64: a tetramer of the VP16 activation domain) to a promoter with BldD-specific operator DNA sites, turning on the expression of transgenes including shGLP1-1 and mouse insulin. Alginate-encapsulated HEK293 cells carrying the requisite set of genes for reconstituting the aforementioned optogenetic circuit, were delivered subcutaneously to diabetic mice. The mice exhibited improved blood glucose profile in glucose tolerance tests 48 h post-implantation. Moreover, db/db mice with implanted cells had blood sugar levels close to those of wild-type animals for about 13 days with FRL illumination. The irradiation regimen was realized by combining smartphone technology, glucose sensing, and LED/hydrogel interfacing. Furthermore, a smartphone-based system (semi-automatic theranostic system) was reported that features blood glucose monitoring coupled to a wirelessly controlled LED for illumination of insulin-producing HEK293 cells entrapped in a hydrogel [85]. Yu et al. illustrated a similar system with FRL-induced BphS stably expressed in human mesenchymal stem cells which were implanted while encapsulated in poly-(L-hysine)-alginate microcapsules [86]. The implanted cells with exposure to light caused a reduction in hyperglycemia in a mouse model (STZ) of T1D for 40 days. Under illumination, the expression of the cardiac oxidative stress marker malondialdehyde was reduced, while superoxide dismutase, glutathione, and total antioxidant capacity showed significant increase, vs. those in STZ-treated animals without receiving cells, and those that received cells but were kept in the dark.

5. OPTOCHEMICAL AND PHOTOPHARMACOLOGICAL APPROACHES

Parallel avenues for photocontrol of cellular activity are afforded by optochemistry (Figure 2), employing chemical constructs (rather than genetic as in optogenetics) with structural configuration that can be altered in response to light. For instance, caging compounds have been employed, which are capable of reversibly binding to a substrate or signaling intermediate of interest. Exposure to light induces the release of the bound substrate modifying a particular cellular function [87,88]. In addition to their high spatiotemporal precision and reversibility, optochemical methods rely on synthetic and thus more readily available agents. This is in contrast to optogenetic strategies entailing photosensitive proteins (e.g., PACs) whose expression requires molecular cloning and delivery of the corresponding genes for transcription and translation [89,90]. Yet, subcellular localization and photorelease efficiency are significant challenges of optochemical systems, as well as the formation of toxic byproduct(s) [91]. Optochemistry has notably been employed to aid several forms of bio-modulation, including control of proteins, peptides, small molecules, and nucleic acids (see below) [92]. Current investigations of optochemistry focus on shifting the photoactivation to the near-infrared (NIR) region and increasing the decaging efficiency of caged groups through chemical synthesis and structure design. For example, the potential for orthogonal decaging and activation is enhanced with increased π-conjugation, and varying the caging group solubility improves intracellular or membrane localization of the optochemical moiety [89].

Exploiting the high spatiotemporal resolution and specificity of optochemical methods, the dynamic and synergistic nature of β-cell signaling and patterns for insulin secretion along with islet β-cell heterogeneity were studied, revealing contributory interactions such as the role of lipids in hormone release [91]. Exhibiting the significance of lipid localization in β-cells’ secretory function, Nadler et al. demonstrated that uncaging of photocaged lipid-arachidonic acid at the β-cell plasma membrane enhanced Ca\(^{2+}\) oscillation frequency, while uncaging within the cytoplasm conversely hindered Ca\(^{2+}\) oscillations [93]. This and other studies support the use of optochemistry as well as photopharmacology (Figure 2), i.e., the use of a photosensitive moiety as a drug or ligand, for altering GSIS. Among proposed applications are azobenzene-based derivatives of sulfonylureas [94–97], diltiazem [98], and light-activated incretins [94,99–101] as photopharmacological methods; photocaged Ca\(^{2+}\), ATP, and secondary messengers such as cAMP [98,99,101]. These optical tools are
expected to facilitate investigations of β-cell GSIS potency and pertinent signaling pathways in cells under normal and pathological conditions.

6. OUTLOOK

The clinical realization of optogenetic approaches to treat diabetes share the challenges already faced in the field of islet transplantation, such as cell sourcing and delivery methods, and necessitates the progression of new technologies aligned for the photomodulatory nature of engineered cells, including illumination methods and seamless cellular interfacing with electronics.

Notable advances in the differentiation of human pluripotent stem cells (hPSCs) have brought us closer to the manufacturing of functional islet cells, strengthening the prospect of applying optomethods for control of hormone secretion in these cells. Several groups have reported the conversion of hPSCs to β-cell-like cells co-expressing biomarkers such as PDX1, MAFA, NKX6.1, and secreting variable amounts of insulin in response to glucose and other secretagogues [103–106]. Major efforts also focus on the generation of clusters comprising multiple cell types akin to the native pancreatic islets, for instance, organoids mimicking the ultrastructural and functional characteristics of the pancreatic endocrine compartment [107–109].

The engineering of hPSC-derived islet cells for functional regulation with light will entail distinctive issues given that these cells have several features of adult islet cells but are not identical. Differentiated hPSC progeny typically exhibits an immature phenotype although these cells may undergo maturation in vivo. Insulin produced by hPSC-specified β-cells is detected at least 2–4 weeks post-transplantation [103,110]. Reaggregating INS + cells after 20 days of differentiation, which induces maturation in culture, shortens this time frame, and C-peptide is detected 3 days after delivery to diabetic animals [104]. Hence, optogenetic modules for hPSC-derived insulin-producing cells may need to be compatible with the evolving phenotype until cells reach a fully mature state. Moreover, whether these islet cells maintain stable biochemical and functional properties in the long run is unclear. Successful optoregulation will rely on faithful recapitulation of the molecular circuitry of β-cell GSIS by insulin-producing cells from hPSCs. To this end, stem cell-derived β-cell-like cells reportedly increase their Ca2 + influx with glucose challenge, shut their KATP + channels upon incubation with sulfonylureas, and secrete C-peptide in response to secretagogues such as KCl and exendin-4 [103,104]. However, detailed understanding of the GSIS cascade of stem cell-derived β-cells is warranted before optogenouroption is considered. In fact, differential stimulation and sensing (e.g., ion channel activity), and disparate insulin content are documented among stem cell-derived and native islet cell populations [103,111,112].

This heterogeneity calls for optogenetic modulation that should evoke a desired response in cells falling on a spectrum of hormone production. Lastly, interactions should be considered among a multitude of cell types within clusters of stem cell-derived islet cells or organoids. For instance, glucagon production by α-cells and β-cell insulin secretion act synergistically for proper maintenance of glucose levels in vivo [113]. Hence, the effects of perturbations by optical switches on the physiology of multicellular assemblies and blood sugar control at the organism level should be researched.

Akin to the transplantation of islets, direct delivery of engineered β-cells will require chronic immunosuppression motivating encapsulation technologies. Since the study by Lim and Sun [114] of islet encapsulation in alginate microcapsules for transplantation in STZ-treated diabetic rats, relevant encapsulation modalities have advanced significantly. The selection of scaffolding materials is a critical parameter in the encapsulation of islet cells. Alginate, which is a polysaccharide derived from seaweed, has been reported extensively as a cell entrapment agent because of its minimal cytotoxicity and benign conditions for hydrogel formation. However, alginate implants, including those containing islets [115,116], promote the growth of fibrotic tissue around them. Other materials have also been utilized including agarose [117], hyaluronic acid [118], polyactic-co-glycolic acid (PLGA) [119], and polyethylene glycol (PEG) [120]. To reduce adverse immune reactions by the host, the delivery has been combined of cells with immunomodulatory factors such as TNFα and FasL [121,122].

The efficient exchange of nutrients, waste products, oxygen and insulin between the cells and their milieu is an important consideration for islet cell delivery technologies. Cells experience significant diffusion limitations over distances longer than 100–200 µm from vasculature [123]. Native islet microcirculation is realized by a network of capillaries traversing the islet core [124]. Hypoxia of encapsulated islets, which is a particularly vexing issue given the low solubility of O2 in aqueous environments and the high metabolic activity of islet cells, may be alleviated using perfluorocarbon emulsions, organosilicon compounds (e.g., PDMS) and other soluble factors.

The photo-regulation of cellular function requires materials with high light transmissibility, raising a unique challenge in the design of optogenetically engineered islet cell delivery systems. Constructs harboring islets with photosynthetic algae have been reported with the latter supplying O2 to islets with light delivery [125]. The murine islets and algae were co-encapsulated in sodium alginate beads based on the preparation method by Lim et al. [114], and placed in a chamber illuminated with an optical fiber, without details about the type of light. A 50% reduction of maximal stimulated insulin release was observed when the cells were kept in the dark for 30 min vs. cells with continuous exposure to light for the same interval. Alginate beads loaded with MIN6 cells expressing bPAC and implanted subcutaneously in STZ-treated mice, were successfully stimulated by an external blue LED array [72]. Animals with optogenetically engineered β-cells and exposed to blue light exhibited a better response to glucose tolerance test and higher plasma insulin levels vs. animals with the engineered β-cells but without photostimulation. Of note, alginate hydrogels formed with CaCO3 and D-glucosono-3-lactone (GDL) exhibit high transparency [126] with consistent compressive modulus and strength (Figure 3). To date, there are no reports of biomaterials

![Image](image-url)

Figure 3: Alginate hydrogels for cell encapsulation. Alginate hydrogel formed with 1.5% (w/v) sodium alginate in PBS, and various concentrations of CaCl2 or CaCO3·GDL (1:2 molar ratio). Gels formed with CaCO3·GDL show higher transparency. Gelation with CaCO3 and GDL results in improved transparency compared to CaCl2-crosslinked alginate gels at higher Ca2+ concentration.
besides alginate developed for use with optogenetically engineered islet cells. The intended site of implantation and light wavelength for optogenetic stimulation are also major factors in the design of constructs harboring optogenetically engineered islet cells. Light source integration with the delivery scaffold increases its size. Subcutaneous implantation, while permitting stimulation of the delivered cells by an external light, is typically linked to poor vascularization and blood supply. Moreover, promising results have been reported upon islet cell implantation in the omentum [127], which affords high blood circulation, and accessibility for cell transplantation and retrieval. For optogenetically engineered cells, the proximity of the omentum to the skin beds well for extracorporeal photostimulation. Implantation sites located deeper in the body will require the inclusion of a light source such as low energy light-emitting diodes (LEDs) in the delivery construct. This poses considerations about efficient powering of the light source. One potential solution is the wireless power transfer through inductive charging of the implanted light using an external charging device. Alternatively, cells may be engineered for stimulation by light in the infrared region (e.g., using a NIRW light-stimulated AC [74]) penetrating tissues deeper than light at shorter wavelengths.

Optogenetic device-based solutions envisioned for diabetes, feature control of the light source through coupling with continuous glucose monitoring of blood glucose, for instance, via readily available transdermal sensors (e.g., Dexcom Inc.), and wearable devices measuring glucose ocularly [128] or in biofluids such as sweat and saliva [129,130]. Complete linking of the cellular component, light source and glucose monitor can be achieved with software driving the operation of this closed loop for autonomous maintenance of normoglycemia, potentially eliminating error-prone user input and suboptimal sugar regulation. Advances in sensors, wireless communication and powering, and interfacing of biocomponents with electronics, demonstrate that interdisciplinary effort is pivotal for developing such closed-loop optogenetic systems. At the same time, the remarkable progress in photomodulation of cellular function and relevant technologies makes compelling the engineering of products ensuring reliable, robust and drug-free management of blood glucose in diabetic patients.

FUNDING

Grant numbers: National Science Foundation support to EST: CBET-1951104, CBET-2015849.

DATA AVAILABILITY

No data was used for the research described in the article.

CONFLICT OF INTEREST

None declared.

REFERENCES

[1] Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-timescale, genetically targeted optical control of neuronal activity. Nature Neuroscience 8(9):1263—1268.

[2] Xu, X., Mee, T., Jia, X., 2020. New era of optogenetics: from the central to peripheral nervous system. Critical Reviews in Biochemistry and Molecular Biology 55(1):1—16.

[3] Wrobel, C., Dieter, A., Huet, A., Kegpeiter, D., Duque-Afonso, C.J., Vogl, C., et al., 2018. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Science Translational Medicine 10(449).

[4] Mickie, A.O., Won, S.M., Noh, K.N., Yoon, J., Meacham, K.W., Xue, Y., et al., 2019. A wireless closed-loop system for optogenetic peripheral neuro-modulation. Nature 565(7739):361—365.

[5] Jang, T.M., Lee, J.H., Zhou, H., Joo, J., Lim, B.H., Cheng, H., et al., 2020. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Science Advances 6(46).

[6] Chua, C.J., Han, J.L., Li, W., Liu, W., Entcheva, E., 2021. Integration of engineered “Spark-Cell” spheroids for optical pacing of cardiac tissue. Frontiers in Bioengineering and Biotechnology 9:658594.

[7] Henry, B.M., Skinningsrud, B., Saganik, T., Pekala, P.A., Waloja, J.A., Tomaszweski, K.A., 2019. Development of the human pancreas and its vasculature—a integrated review covering anatomical, embryological, histological, and molecular aspects. Annals of Anatomy 221:115—124.

[8] Sierl, M., Stumpf, P., Udwari, D., Gaeta, R., Hagedorn, R., Lost, A., et al., 2011. Light modulation of cellular cAMP by a small bacterial photoactivated adenyl cyclase, bPAC, of the soil bacterium Beggiatoa. Journal of Biological Chemistry 286(2):1181—1188.

[9] Ryu, M.H., Moskvin, O.V., Stiberg-Liberles, J., Gomelsky, M., 2010. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. Journal of Biological Chemistry 285(53):41501—41508.

[10] Hughes, R.M., Vrana, J.D., Song, J., Tucker, C.L., 2012. Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins. Journal of Biological Chemistry 287(26):22165—22172.

[11] Muller, K., Engesser, R., Metzger, S., Schulz, S., Kampf, M.M., Busacker, M., et al., 2013. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Research 41(7):e77.

[12] Kushibiki, T., Okawa, S., Hirasea, T., Ishihara, M., 2015. Optogenetic control of insulin secretion by pancreatic beta-cells in vitro and in vivo. Gene Therapy 22(7):553—559.

[13] Zhang, F., Tzanakakis, E.S., 2017. Optogenetic regulation of insulin secretion in pancreatic beta-cells. Scientific Reports 7(1):9357.

[14] Velasco, M., Diaz-Garcia, C.M., Larque, C., Hiriart, M., 2016. Modulation of ionic channels and insulin secretion by drugs and hormones in pancreatic beta cells. Molecular Pharmacology 90(3):341—357.

[15] Boland, B.B., Rhodes, C.J., Grimsby, J.F., 2017. The dynamic plasticity of insulin production in beta-cells. Molecular Metabolism 6(9):958—973.

[16] Affourtit, C., Alberts, B., Barlow, J., Carre, J.E., Wynne, A.G., 2018. Control of pancreatic beta-cell bioenergetics. Biochemical Society Transactions 46(3):555—564.

[17] Komatsu, M., Takai, M., Ishii, H., Sato, Y., 2013. Glucose-stimulated insulin secretion: a newer perspective. J Diabetes Invest 4(6):511—516.

[18] Kim, W., Egan, J.M., 2008. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacological Reviews 60(4):470—512.

[19] Ahren, B., 2009. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nature Reviews Drug Discovery 8(5):369—385.

[20] Wincell, M.S., Abrán, B., 2007. G-protein-coupled receptors and islet function—implications for treatment of type 2 diabetes. Pharmacology & Therapeutics 116(3):437—448.

[21] Sunahara, R.K., Dessauers, C.W., Gilman, A.G., 1996. Complexity and diversity of mammalian adenylyl cyclases. Annual Review of Pharmacology and Toxicology 36:461.

[22] Leech, C.A., Castonguay, M.A., Habener, J.F., 1999. Expression of adenylyl cyclase subtypes in pancreatic beta-cells. Biochemical and Biophysical Research Communications 254(3):703—706.

[23] Lonsmann, I., Bak, L.K., 2020. Potential role of adenylyl cyclase 8 signaling complexes in regulating insulin secretion from pancreatic beta cells. Cellular Signalling 72:109635.
[24] Sassone-Corsi, P., 2012. The cyclic AMP pathway. Cold Spring Harbor Perspectives in Biology 4(12).

[25] Tengholm, A., 2012. Cyclic AMP dynamics in the pancreatic β-cell. Upsala Journal of Medical Sciences 117(4):355–369.

[26] Pratt, E.P., Harvey, K.E., Salyer, A.E., Hockerman, G.H., 2019. Regulation of cAMP accumulation and activity by distinct phosphodiesterase subtypes in INS-1 cells and human pancreatic β-cells. PLoS One 14(8):e0215188.

[27] Kang, G., Chepurny, O.G., Holt, G.G., 2001. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2⁺-induced Ca2⁺ release in INS-1 pancreatic beta-cells. Journal of Physiology 536(Pt 2):375–385.

[28] Cheng, X., Ji, Z., Tsalkova, T., Mei, F., 2008. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochimica et Biophysica Sinica 40(7):651–662.

[29] Ozaki, N., Shibasaki, T., Kashiwa, Y., Miki, T., Takahashi, K., Ueno, H., et al., 2000. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biology 2(11):805–811.

[30] Kang, G., Chepurny, O.G., Malester, B., Rindler, M.J., Rehmann, H., Bos, J.L., et al., 2006. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. Journal of Physiology 573(Pt 3):595–609.

[31] Kang, G., Joseph, J.W., Chepurny, O.G., Monaco, M., Wheeler, M.B., Bos, J.L., et al., 2003. Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulator for Ca2⁺-induced Ca2⁺ release and exocytosis in pancreatic beta-cells. Journal of Biological Chemistry 278(10):8279–8285.

[32] Weir, G.C., Bonner-Weir, S., 2013. Islet beta cell mass in diabetes and how it relates to function, birth, and death. Annals of the New York Academy of Sciences 1281:92–105.

[33] Scheen, A.J., 2015. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 75(1):33–50.

[34] Blonde, L., Dipp, S., Cadena, D., 2018. Combination glucose-lowering therapy plans in T2DM: case-based considerations. Advances in Therapy 35(7):939–965.

[35] Kieffer, T.J., McIntosh, C.H., Pederson, R.A., 1995. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136(8):3585–3596.

[36] Egan, J.M., Clocquet, A.R., Elahi, D., 2002. The insulinotropic effect of acute glucagon. Neuron 22(3):537–540.

[37] Kieffer, T.J., McIntosh, C.H., Pederson, R.A., 1995. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136(8):3585–3596.

[38] Sapio, L., Gallo, M., Chiosi, E., Illiano, M., Spina, A., et al., 2017. The natural cAMP elevating compound forskolin in cancer therapy: is it time? Journal of Cellular Physiology 232(5):922–927.

[39] Wynne-Jones, R.G., 2001. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a therapeutic agents. Pharmacology 65(1):50–59.

[40] Mansouri, M., Xue, S., Hussherr, M.D., Strittmatter, T., Camenisch, G., Fussenegger, M., 2021. Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes. Small 17(35):2101939.

[41] Zawalich, W., Zawalich, K., Ganesan, S., Calle, R., Rasmussen, H., 1991. Effects of the phorbol ester phorbol 12-myristate 13-acetate (PMA) on islet-cell responsiveness. Biochemical Journal 278(1):49–56.

[42] Sener, A., Best, L.C., Yates, A.P., Kadiata, M.M., Olivares, E., Louchami, K., et al., 2000. Stimulus-secretion coupling of arginine-induced insulin release. Endocrine 13(3):329–340.

[43] Zawalich, W., Zawalich, K., Ganesan, S., Calle, R., Rasmussen, H., 1991. Effects of the phorbol ester phorbol 12-myristate 13-acetate (PMA) on islet-cell responsiveness. Biochemical Journal 278(1):49–56.

[44] Zawalich, W., Zawalich, K., Ganesan, S., Calle, R., Rasmussen, H., 1991. Effects of the phorbol ester phorbol 12-myristate 13-acetate (PMA) on islet-cell responsiveness. Biochemical Journal 278(1):49–56.

[45] Mansouri, M., Xue, S., Hussherr, M.D., Strittmatter, T., Camenisch, G., Fussenegger, M., 2021. Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes. Small 17(35):2101939.

[46] Zawalich, W., Zawalich, K., Ganesan, S., Calle, R., Rasmussen, H., 1991. Effects of the phorbol ester phorbol 12-myristate 13-acetate (PMA) on islet-cell responsiveness. Biochemical Journal 278(1):49–56.

[47] Mansouri, M., Xue, S., Hussherr, M.D., Strittmatter, T., Camenisch, G., Fussenegger, M., 2021. Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes. Small 17(35):2101939.

[48] Zawalich, W., Zawalich, K., Ganesan, S., Calle, R., Rasmussen, H., 1991. Effects of the phorbol ester phorbol 12-myristate 13-acetate (PMA) on islet-cell responsiveness. Biochemical Journal 278(1):49–56.

[49] Mansouri, M., Xue, S., Hussherr, M.D., Strittmatter, T., Camenisch, G., Fussenegger, M., 2021. Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes. Small 17(35):2101939.
Cokić, M., Bruegmann, T., Sasse, P., Malan, D., 2021. Optogenetic stimulation of Gi signaling enables instantaneous modulation of cardiomyocyte pacemaking. Frontiers in Physiology 12.

Iseki, M., Matsuura, S., Murakami, A., Ohno, K., Shiga, K., Yoshida, K., et al., 2002. A blue-light-activated adenyl cyclase mediates photoavoidsance in Euglena gracilis. Nature 415(6875):1047–1051.

Ohki, M., Sugiyama, K., Kawai, F., Tanaka, H., Nihei, Y., Unzai, S., et al., 2016. Structural insight into photoactivation of an adenylyl cyclase from a photosynthetic cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America 113(24):6659–6664.

Ryu, M.H., Kang, I.H., Nelson, M.D., Jensen, T.M., Lyuksyutova, A.I., Siltberg-Liberis, J., et al., 2014. Engineering adenylyl cyclases regulated by near-infrared window light. Proceedings of the National Academy of Sciences of the United States of America 111(28):10167–10172.

Gomelsky, M., Klug, G., 2002. BLUF: a novel FAD-binding domain involved in length optogenetics. Journal of Biological Chemistry 287(38):31804–31812.

Schneider, F., Grimm, C., Hegemann, P., 2015. Biophysics of channelrhodopsin. Annual Review of Biophysics 44:167–186.

Reinbothe, T.M., Safi, F., Axelsson, A.S., Mollet, I.G., Rosengren, A.H., 2014. Optogenetic control of insulin secretion in intact pancreatic islets with beta-cell-specific expression of Channelrhodopsin-2. Islets 6(1):280–295.

Ye, H., Dasoudi-Baba, M., Peng, R.W., Fussenegger, M., 2011. A synthetic transgenic transcription device enhances blood-glucose homeostasis in mice. Science 329(5997):1565–1568.

Shao, J., Xue, S., Yu, G., Yu, Y., Yang, X., Bai, Y., et al., 2017. Smartphone-controlled optogenetically engineered cells enable semi-automated glucose homeostasis in diabetic mice. Science Translational Medicine 9(387).

Yu, G., Yu, Y., Ye, H., 2021. Constructing a smartphone-controlled semi-automated theranostic system for glucose homeostasis in diabetic mice. In: Mammalian cell engineering. Springer: p. 141–58.

Yu, G., Zhang, M., Gao, L., Zhou, Y., Qiao, L., Yin, J., et al., 2022. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Molecular Therapy 30(1):341–354.

Deiters, A., 2018. Special issue on optochemical and optogenetic control of cellular processes. ChemBioChem 19(12):1199–1200.

Caldwell, R.M., Bermudez, J.G., Thai, D., Aornbargkhen, C., Schuster, B.S., Courtney, T., et al., 2018. Optochemical control of protein localization and activity within cell-like compartments. Biochemistry 57(18):2590–2596.

Bardhan, A., Deiters, A., 2019. Development of photoactivatable protecting groups and their application to the optochemical control of cell signalling. Current Opinion in Structural Biology 57:164–175.

Wu, P., Manna, D., 2020. Optochemical control of protein degradation. ChemBioChem 21(16):2250–2252.

Frank, J.A., Broichhagen, J., Yushchenko, D.A., Trauner, D., Schultz, C., Hodson, D.J., 2018. Optical tools for understanding the complexity of beta-cell signalling and insulin release. Nature Reviews Endocrinology 14(12):721–737.

Ankenbruck, N., Courtney, T., Naro, Y., Deiters, A., 2018. Optochemical control of biological processes in cells and animals. Angewandte Chemie International Edition 57(11):2768–2798.

Nadler, A., Yushchenko, D.A., Muller, R., Stein, F., Feng, S., Mule, C., et al., 2015. Exclusive photorelease of signalling lipids at the plasma membrane. Nature Communications 6:10056.

Broichhagen, J., Schönbberger, M., Cork, S.C., Frank, J.A., Marchetti, P., Bagliani, M., et al., 2014. Optical control of insulin release using a photoswitchable sulfonyleurea. Nature Communications 5:11–11.

Walczewska-Szewcz, K., Nowak, W., 2021. Photo-switchable sulfonyleurea binding to ATP-sensitive potassium channel reveal the mechanism of light-controlled insulin release. The Journal of Physical Chemistry B 125(48):13111–13121.

Broichhagen, J., Frank, J., Johnston, N., Mitchell, R., Smid, K., Marchetti, P., et al., 2015. A red-shifted photochromic sulfonyleurea for the remote control of pancreatic beta-cell function. Chemical Communications 51(27):6018–6021.

Mehta, Z.B., Johnston, N.R., Nguyen-Tu, M.S., Broichhagen, J., Schultz, P., Larner, D.P., et al., 2017. Remote control of glucose homeostasis in vivo using photopharmacology. Scientific Reports 7(1):1–11.

Fehrentz, T., Huber, F.M.E., Hartmann, N., Bruegmann, T., Frank, J.A., Fine, N.H.F., et al., 2018. Optical control of L-type Ca(2+) channels using a diltiazem photoswitch. Nature Chemical Biology 14(8):764–767.

Broichhagen, J., Johnston, N.R., Von Oehsen, Y., Meyer-Berg, H., Jones, B.J., Blooom, S.R., et al., 2016. Allosteric optical control of a class B6-protein-coupled receptor. Angewandte Chemie International Edition 55(19):5865–5868.

Broichhagen, J., Podewin, T., Meyer-Berg, H., Von Oehsen, Y., Johnston, N.R., Jones, B.J., et al., 2015. Optical control of insulin secretion using an incretin switch. Angewandte Chemie International Edition 54(51):15565–15569.
Jones, B.J., Scopelliti, R., Tomas, A., Bloom, S.R., Hodson, D.J., Brinichgagen, J., 2017. Potent Prearranged Positive Allosteric Modulators of the Glucagon-like Peptide-1 Receptor. ChemistryOpen 6(4):501–505.

Ellis-Davies, G., Kaplan, J.H., 1994. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proceedings of the National Academy of Sciences 91(1):187–191.

Pagliuca, F.W., Millman, J.R., Gurtler, M., Segel, M., Van Dervort, A., Ryu, J.H., et al., 2014. Generation of functional human pancreatic beta cells in vitro. Cell 159(2):263–274.

Nair, G.G., Liu, J.S., Russ, H.A., Tran, S., Saxton, M.S., Chen, R., et al., 2019. Nair, G.G., Tzanakakis, E.S., Hebrok, M., 2020. Emerging routes to the GLP-1 receptor. ChemistryOpen 6(4):501–505.

Wojtusciszyn, A., Armanet, M., Berney, T., Bosco, D., 2008. Insulin tissue tracer. Journal of Cellular Physiology 219(6):1794–1803.

Lebreton, F., Lavallard, V., Bellofatto, K., Bonnet, R., Wassmer, C.H., Wojtusciszyn, A., Armanet, M., Morel, P., Berney, T., Bosco, D., 2008. Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia 51(10):1852.

Dorrell, C., Schug, J., Canaday, P.S., Russ, H.A., Tarlow, B.D., Grompe, M.T., et al., 2016. Human islets contain four distinct subtypes of beta cells. Nature Communications 7:11756.

Wendt, A., Eliasson, L., 2020. Pancreatic alpha-cells - the unsung heroes in islet function. Seminars in Cell & Developmental Biology 103:41–50.

Lim, F., Sun, A.M., 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910.

Soon-Shiong, P., Otterlie, M., Skjåk-Braek, G., Smidsrod, O., Heintz, R., Lanza, R.P., et al., 1991. An immunologic basis for the fibrotic reaction to implanted microcapsules. Transplantation Proceedings 23(1 Pt 1):758–759.

De Vos, P., Van Straaten, J.F., Nieuwenhuizen, A.G., de Groot, M., Ploeg, R.J., De Haan, B.J., et al., 1999. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 48(7):1381–1388.

Yang, H., Iwata, H., Shimizu, H., Takagi, T., Tsuji, T., Ito, F., 1994. Comparative studies of in vitro and in vivo function of three different shaped bioartificial pancreases made of agarose hydrogel. Biomaterials 15(2):113–120.

Harrington, S., Williams, J., Rawal, S., Ramachandran, K., Stehno-Bittel, L., 2017. Hyaluronic acid/collagen hydrogel as an alternative to alginate for long-term immunoprotected islet Transplantation 97:suppl 1:665–666.

Dufour, J.M., Rajotte, R.V., Zimmerman, M., Rezania, A., Kin, T., Dixon, D.E., et al., 2005. Development of an eptopic site for islet transplantation, using biodegradable scaffolds. Tissue Engineering 11(9–10):1323–1331.

Cruise, G.M., Hegre, O.D., Scharp, D.S., Hubbell, J.A., 1998. A sensitivity study of the key parameters in the interfacial photopolymerization of polyethylene glycol diacrylate upon porcine islets. Biotechnology and Bioengineering 57(6):655–665.

Lin, C.C., Metters, A.T., Anseth, K.S., 2009. Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFalpha. Biomaterials 30(28):4907–4914.

Headen, D.M., Woodward, K.B., Coronel, M.M., Shrestha, P., Weaver, J.D., Zhao, H., et al., 2018. Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nature Materials 17(8):732–739.

Rouwkema, J., Rivron, N.C., van Blitterswijk, C.A., 2008. Vascularization in tissue engineering. Trends in biotechnology 26(6):434–441.

Liu, Y.M., Guth, P.H., Kaneko, K., Livingston, E.H., Brunicardi, F.C., 1993. Dynamic in vivo observation of rat islet microcirculation. Pancreas 8(1):15–21.

Braich, K., Papimobedov, E., Yaryants, K., Vorobeychik, M., Beer, S., Vardi, P., 2006. Photosynthetic oxygen generator for bioartificial pancreas. Tissue Engineering 12(2):337–344.

Kuo, C.K., Ma, P.K., 2001. Ionically crosslinked alginate hydrogels as scaffold for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521.

Damyar, K., Farahmand, W., Whaley, D., Alexander, M., Lakey, J.R.T., 2021. An overview of current advancements in pancreatic islet transplantation into the omentum. Islets 13(5–6):115–120.

Kim, J., Kim, M., Lee, M.S., Kim, K., Ji, S., Kim, Y.T., et al., 2017. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Communications 8:14997.

Bariya, M., Nyein, H.Y.Y., Javey, A., 2018. Wearable sweat sensors. Nature Electronics 1(3):160–171.

Mani, V., Beduk, T., Khuzaim, W., Ceylan, A.E., Timur, S., Wolfbeiss, O.S., et al., 2021. Electrochemical sensors targeting salivary biomarkers: a comprehensive review. TrAC, Trends in Analytical Chemistry 135:116164.