Antimicrobial and Cytotoxic Properties of the Ascidians *Lissoclinum patella*, *Oxycoryna fascicularis*, *Didemnum molle* and *Botryllus schlosseri*

Firmansyah Karim¹, Masteria Yunovilsa Putra¹, Tri Aryono Hadi¹, Muhammad Abrar¹

¹Research Center for Oceanography, Indonesian Institute of Science

ABSTRACT

The aim of this research was to investigate antimicrobial and cytotoxic activity of Indonesian ascidians. Extracts prepared from the Indonesian ascidians namely *Lissoclinum patella*, *Oxycoryna fascicularis*, *Didemnum molle* and *Botryllus schlosseri* were assessed for antimicrobial and cytotoxic properties. Antimicrobial activity of the extracts was tested against two Gram-positive bacteria, *viz.* *Bacillus subtilis* ATCC 6633 and *Staphylococcus aureus* ATCC 25923, and three Gram-negative bacteria, *viz.* *Escherichia coli* ATCC 25922, *Vibrio cholerae* ATCC 14035 and *Pseudomonas aeruginosa* ATCC 101454 using the disk diffusion test. Antifungal activity was also tested against *Candida albicans* ATCC 10231 and *Aspergillus niger* ATCC 16404. The minimum inhibitory concentrations (MICs) of potential ascidian extracts were determined by the microdilution technique. Cytotoxicity of the extracts was assessed using the brine shrimp lethality bioassay. By comparing the inhibition zones in the disk diffusion test, the most active anti-bacterial activity against Gram-positive bacteria (*S. aureus* and *B. subtilis*) was found in the crude extracts of *Oxycoryna fascicularis* and *Didemnum molle*. *Lissoclinum patella* extract showed the highest activity against the Gram-negative bacteria *E. coli* and *V. cholerae*. The LC₅₀ values of the crude extracts of *Lissoclinum patella*, *Didemnum molle*, *Botryllus schlosseri*, and *Oxycoryna fascicularis* were 74.3, 97.2, 114.7 and 132.9 μg/ml, respectively. In our study, the most promising species for antimicrobial and cytotoxic properties were *Lissoclinum patella* and *Didemnum molle*.

Keywords: ascidians; antibacterial; antifungal; cytotoxicity

INTRODUCTION

The marine environment becomes a new focus of natural product drug discovery because of its relatively unexplored biodiversity compared to terrestrial environment (Malve, 2016). Available resources for pharmacy can be found in the coral reef communities such as algae, soft coral, sponge, ascidian, marine microorganism, etc (Abdillah *et al.*, 2015; Deepa *et al.*, 2017; Ramos *et al.*, 2016). Bio-prospection of marine natural products is one of the main interest of pharmaceutical research such as antibacterial, antiviral, antifungal, cytotoxic activity (Castro-Carvalho *et al.*, 2017).

Sessile filter-feeding chordates known as ascidians are an important structural component of coral reef communities. They populate marine ecosystems, whether in tropical, subtropical or temperate waters. Ascidians have been the source of a wide variety of secondary metabolites, some of which have physiological functions, mainly in defense against their natural predators (Joullié *et al.*, 2003; Paul *et al.*, 1990; Pisut & Pawlik, 2002)northern Sulawesi (Indonesia. While research efforts in bioactive metabolites from marine ascidians are relatively recent, some chemical compounds from marine ascidians are being evaluated as antitumor agents in preclinical and clinical trials. The most prominent example of an ascidian-derived drug is trabectedin or ecteinascidin 743 (ET-743, Yondelis®), an alkaloid isolated from the Caribbean ascidian *Ecteinascidia turbinate*. This is the first marine-derived drug to be prescribed against soft tissue carcinoma (Cuevas & Francesch, 2009; Gordon *et al.*, 2016; Menna, 2009).

It has been demonstrated that 7% of the compounds isolated from ascidians are produced by symbiotic bacteria, leaving the exact biosynthetic source of the remaining 93% of described metabolites unknown (Schmidt & Donia, 2010; Tianero *et al.*, 2015). Many anti-microbial compounds have been isolated from ascidians or ascidian-associated marine bacteria. Antibacterial activity was observed in brominated rubrolides isolated from an African ascidian *Synoicum*...
globosum (Sikorska, Parker-Nance, et al., 2012). Peptidolipins, which are lipopeptide compounds produced by bacteria (Nocardia sp.) from the Florida Keys tunicate Trididemnum orbiculatum, showed activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) (Wyche et al., 2012).

In the present study, investigations were undertaken on marine invertebrates from coastal areas of the Indonesian archipelago, one of the world’s hotspots of marine biodiversity. We examined organic extracts from some of the most abundant marine ascidians in the Buton islands, Southeast Sulawesi, namely Lissoclinum patella, Oxycoryna fascicularis, and Didemnum molle. We also investigated crude extracts of the ascidian Botryllus schlosseri collected from Selayar Island, South Sulawesi, for their anti-microbial and cytotoxic effects.

Using the disk diffusion assay, the anti-bacterial activity of ascidian extracts was tested against five human pathogenic bacteria, viz. Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Eschericia coli (ATCC 25922), Vibrio cholerae (ATCC 14035), and Pseudomonas aeruginosa (ATCC 10145). The bacteria were grown in liquid marine broth medium for 24 hours at room temperature. The various ascidian extracts were adjusted to a concentration of 100 µg/mL in MeOH and 20 µl of each extract was pipetted on to a sterile paper disk (6 mm diameter) and allowed to dry. A reference control paper disk carried 10 µg ampicillin in 20 µl MeOH. The paper discs were then placed on Mueller Hinton Agar (Himedia) in a petri dish that had been inoculated with the test bacteria (10⁷ CFU/mL). The inhibition zone that appeared was recorded after 24 h incubation at 30°C. All the assays were carried out in triplicate.

Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404 were used as test fungi and inoculated on to Sabouraud Dextrose Agar (fungus) plates (10⁴ CFU/mL). The various ascidian extracts were adjusted to a concentration of 100 µg/mL and 20 µl of each extract was pipetted on to 6 mm sterile paper disks. The discs were allowed to dry and then placed on Sabouraud Dextrose Agar. The inhibition zone was recorded after incubation at room temperature (25 °C) for 48 h. Nystatin (30 mg/disc) was used as the positive control and methanol as the solvent control. All the assays were performed in triplicate.

Microdilution Method
The microdilution method was used to evaluate the

Sponge Species	Depth (m)	Place of Collection	Voucher Specimen Number
Lissoclinum patella	1-5 m	Buton Island (Southeast Sulawesi)	ASC1-BT
Oxycoryna fascicularis	1-5 m	Buton Island (Southeast Sulawesi)	ASC2-BT,
Didemnum molle	1-5 m	Buton Island (Southeast Sulawesi)	ASC3-BT
Botryllus schlosseri	5-10 m	Selayar Island (South Sulawesi)	ASC1-SLY
minimum inhibitory concentration (MIC) of the ascidian extracts which displayed high activity (growth inhibition halos more than 9 mm.) Tests were performed in 96-well round bottom sterile culture plates using the Infinite® 200 PRO microplate reader (Tecan Austria GmbH). The assay plates were filled with Mueller-Hinton broth medium (MHB) containing different concentrations (62.5, 125, 250, 500 µg/ml) of Lissoclinum patella extract, Oxycoryna fascicularis extract, Didemnum molle extract, ampicillin or solvent control, as well as the test microorganism (10⁷ CFU/mL). After a 24 h incubation period at 37 °C, the turbidity in each well was measured at 600 nm.

MIC for fungal strains was also performed using the 96-well plate. Each well contained potato dextrose broth, different concentrations of Lissoclinum patella extract, Didemnum molle extract, Nystatin or solvent control, as well as the test yeast strain (10⁴ CFU/mL). Incubation was performed at room temperature (18-20 °C) for 48 h. The yeast growth was measured at 494 nm using the Infinite® 200 PRO microplate reader (Tecan Austria GmbH).

Brine Shrimp Lethality Bioassay
Different concentrations (10, 100, 1000 mg/ml) of the ascidian crude extracts were prepared for cytotoxic activity test using the brine shrimp lethality bioassay. Brine shrimp eggs (Artemia salina) were placed in a hatching tank containing 1 L of seawater under aeration at room temperature to hatch under continuous light. After 24 h, ten brine shrimp larvae were placed in a small container filled with sea water and different concentrations of the extracts. Survivors (instar III/IV stage) were calculated after 48 h incubation, and the mortality percentage for each concentration and the control (seawater) was determined. Treatments and controls were prepared in triplicates.

Statistical Analysis
Measurements in all the experimental analyses were expressed as mean ± SD (n = 3). Results of the research were tested for statistical significance with One-way ANOVA. Differences were considered statistically significant at the P < 0.05 level. The statistical software package SPSS v.16 (SPSS Inc., Chicago, IL, USA) was used for the analysis.

RESULTS AND DISCUSSION

Antimicrobial Properties
The results of the agar disk diffusion assay on the crude ascidian extracts against five bacteria (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Vibrio cholerae ATCC 14035, Pseudomonas aeruginosa ATCC 10145) and two strains of fungus (Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404) are presented in Table 2. All the ascidian extracts showed potential antimicrobial activities against at least one of the test strains. By comparing the inhibition zones, the most active antibacterial activity against Gram-positive bacteria (S. aureus and B. subtilis) was shown for the crude extracts of Oxycoryna fascicularis and Didemnum molle. Against S. aureus, Oxycoryna fascicularis and Didemnum molle produced inhibition zones of 9.10 and 9.20 mm, respectively. Moreover, against B. subtilis, Oxycoryna fascicularis and Didemnum molle showed inhibition zones of 9.20 and 10.2 mm, respectively.

Lissoclinum patella extract was found to possess the highest activity against Gram-negative bacteria (E. coli and V. cholerae), with inhibition zones of 9.20 and 9.1 mm, respectively. All ascidian extracts showed moderate activity against the Gram-negative bacterium P. aeruginosa. Based on the results from the anti-fungal assays, Didemnum molle demonstrated the highest

Species	S. aureus	B. subtilis	E. coli	V. cholerae	P. aeruginosa	C. albicans	A. niger
Lissoclinum patella	6.80	7.50	9.20	9.10	3.30	4.8	4.3
Oxycoryna fascicularis	9.10	9.20	8.00	4.60	2.10	5.2	5.8
Didemnum molle	9.2	10.2	8.1	8.5	5.3	9.1	4.2
Botryllus schlosseri	8.60	7.30	0	3.60	4.50	3.7	4.1
Ampicillin*	30.60	18.8	29.30	23.9	23.5	-	-
Nystatin*	-	-	-	-	20.3	15.4	

Table 2. Antimicrobial Activity of Marine Ascidian Extracts Determined by the Disk Diffusion Assay
Table 3. Minimum Inhibitory Concentrations (MICs in µg/ml) of Marine Ascidian Extracts

Ascidian extracts	Microorganisms						
	S. aureus	B. subtilus	E. coli	V. cholerae	P. aeruginosa	C. albicans	A. niger
Lissoclinum patella	-	-	250	250	-	-	-
Oxycoryna fascicularis	125	250	250	-	-	-	-
Didemnum molle	250	125	-	-	250	-	-

Table 4. Effect of the Extract of Sponges on Brine Shrimp Survival

Acidians	LC₅₀ (µg/mL)	Regression Equation	R²
Lissoclinum patella	74.336	y = 5.3818x - 5.0702	0.9915
Oxycoryna fascicularis	132.91	Y = 1.6445 + 1.5078	0.8028
Didemnum molle	97.145	y = 5.5812x - 6.0923	0.9281
Botryllus schlosseri	114.709	y = 3.9699x - 3.1765	0.9714

![Figure 1. The Plot of Log Concentration of Crude Ascidian Extracts vs. Percent of Shrimp Mortality After 48 H of Exposure (Probits)](image)

Inhibitory activity against *C. albicans*, with an inhibition zone of 9.1 mm. MICs were determined for the three ascidian extracts that gave the best results for antibacterial and anti-fungal activities. Results from the broth microdilution method are summarized in Table 3.

Cytotoxic Activity

Cytotoxic activity of the ascidian extracts was evaluated using the brine shrimp lethality bioassay. The LC₅₀ values of the crude extract of *Lissoclinum patella*, *Oxycoryna fascicularis*, *Didemnum molle* and *Botryllus schlosseri* were 74.3, 132.91, 97.145 and 114.709 µg/ml, respectively (Figure 1, Table 4). Based on the results from the cytotoxic assay, extracts of *Lissoclinum patella* and *Didemnum molle* were the most promising from the standpoint of cytotoxic activity.

A large number of natural compounds, especially those with anti-microbial or cytotoxic properties, have been extracted from marine invertebrates. Among such marine invertebrates widely studied are the ascidians, from which a broad range of interesting bioactive compounds, including those showing anti-bacterial, anti-cancer, anti-inflammatory and antimalarial properties, have been extracted. Nonetheless, information on potential pharmacological characteristics of Indonesian ascidians remains rare. With the evolution of multiple resistance among pathogenic microorganisms, the search for new anti-microbials from alternative sources such as the marine environment has taken on a new urgency.

We have, accordingly, initiated a program to screen Indonesian marine ascidians for anti-microbial and cytotoxic compounds.

Previous anti-microbial screenings have shown Gram-positive bacteria to be more sensitive than Gram-negative bacteria or fungi to extracts of marine invertebrates such as sponges, and ascidians (Qaralleh *et al.*, 2010; Tadesse *et al.*, 2008) including the bacteria *Staphylococcus aureus ATCC25923*, *Bacillus cereus ATCC11778*, *Pseudomonas aeruginosa ATCC27853*, *Escherichia coli ATCC35218*, the yeasts *Candida albicans ATCC10231* and *Cryptococcus neoformans ATCC90112*. All the sponge species in this study showed antibacterial activity against at least one bacterial strain and only one sponge species was significantly active against *C. albicans*. *P. aeruginosa* was considered resistant to all tested samples, since no inhibition zone was observed while the Gram-positive *B. cereus* was shown to be the most sensitive microorganism followed by *C. albicans* and *S. aureus*. The highest activity was obtained for the aqueous extract of *Neopetrosia exigua* against the Gram-positive bacteria *B. cereus* (inhibition zone 25mm and MIC 0.07mg/mL. Our results that find the tested
extracts showing high activity against Gram-positive bacteria are, therefore, in agreement with these findings. Based on these results, extracts from two ascidians, viz. Lissoclinum patella and Didemnum molle, were found to be especially promising in their anti-bacterial action towards Gram-positive bacteria, whereas another ascidian Oxycorina fasicularis was reactive against Gram-negative bacteria. Didemnum molle appears to have the greatest potential as an anti-microbial source. This ascidian was reactive against the Gram-positive bacteria (S. aureus and B. subtilis) and a fungal pathogen C. albicans. The anti-microbial activities of the extract from the genus Didemnum might be due to the presence of the compounds, Didemnolone A, Didemnolone C or Didemmaketal F, that are reported to be inhibitory to S. aureus, B. subtilis and C. albican (Palanisamy et al., 2017; Schumacher & Davidson, 1999; Shaala et al., 2014) while didemnolines B (2). The extract from another ascidian, Lissoclinum patella, also showed an apparent specificity towards Gram-positive bacteria. This genus is known to contain the anti-bacterial compound Lissoclinotoxins (Litaudon et al., 1994).

Gram-positive bacteria tend to be more sensitive to drug action than Gram-negative bacteria (Cos et al., 2006; Malanovc & Lohner, 2016; Mcdonnell & Russell, 1999) many of which have been used for hundreds of years, including alcohols, phenols, iodine, and chlorine. Most of these active agents demonstrate broad-spectrum antimicrobial activity; however, little is known about the mode of action of these agents in comparison to antibiotics. This review considers what is known about the mode of action and spectrum of activity of antiseptics and disinfectants. The widespread use of these products has prompted some speculation on the development of microbial resistance, in particular whether antibiotic resistance is induced by antiseptics or disinfectants. Known mechanisms of microbial resistance (both intrinsic and acquired. The former, such as S. aureus, are significant pathogens in hospital environments. For this reason, new anti-bacterial agents useful for treating serious Gram-positive infections are in demand.

Several cytotoxic compounds such as cyclic peptides, diterpenes, and alkaloids have been isolated from ascidian Lissoclinum patella and Didemnum molle (Donia et al., 2008; Rashid et al., 1995; Sikorska, Hau, et al., 2012; Teruya et al., 2008). These compounds are cytotoxic against various tumor cell lines, and they are considered potential lead compounds for the development of new anticancer agents.

The brine shrimp bioassay is broadly accepted as a useful indicator of potential cytotoxic activity in terrestrial plants and marine organisms. This assay, which has been shown to correlate well with cytotoxicity in cancer cell lines such as 9KB, P388, L5178Y and L1210 (De Rosa et al., 1994; Mclaughlin et al., 1998) to establish relevant structure-activity relationships (SAR, has the benefits of simplicity, low cost and reliability in assessing cytotoxicity. In our study that employed the assay, Lissoclinum patella and Didemnum molle were the most promising in their cytotoxic activity.

CONCLUSION

Indonesian marine ascidians were shown to possess anti-microbial and cytotoxic activities. In our study, the most promising species for anti-microbial and cytotoxic properties were Lissoclinum patella and Didemnum molle. Extracts from these organisms will be further subjected to bioassay-guided fractionation to isolate the active compounds responsible for these properties of pharmacological relevance.

ACKNOWLEDGMENTS

This work was supported financially by INSINAS Grant from Ministry of Research, Technology, and Higher Education of the Republic of Indonesia, and Coral Reef Rehabilitation and Management Program-Coral Triangle Initiative, Indonesian Institute of Science (COREMAP-CTI, LIPI).

REFERENCES

Abdillah S, Cita Y, Muzaki F, & Abdulgani N. (2015). Absence of anti-Staphylococcus aureus (MRSA) activity of secondary metabolite actinomycetes associated sponges from Pulau Panjang, Indonesia. Journal of Pharmaceutical Negative Results, 6(1), 33–36.

Castro-Carvalho B, Ramos A, Prata-Sena M, Malhão F, Moreira M, Gargiulo D, Rocha E. (2017). Marine-derived fungi extracts enhance the cytotoxic activity of doxorubicin in nonsmall cell lung cancer cells A459. Pharmacognosy Research, 9(6), 92–98.

Cos P, Vletinck AJ, Berge D Vanden, & Maes L. (2006). Anti - infective potential of natural products : How to develop a stronger in vitro ' proof ' of - concept '. Journal of Ethnopharmacology, 106, 290–302.

Cuevas C, & Francesch A. (2009). Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Natural Product Reports, 26, 322–377.

De Rosa S, De Giulio A, & Iodice C. (1994). Biological effects of prenylated hydroquinones: Structure-activity relationship studies in antimicrobial, brine shrimp, and fish lethality assays. Journal of Natural Products, 57, 1711–1716.

ISSN 2407-2354
Deepa S, Venkateshwaran P, Vinithkumar NV, & Kirubagaran R. (2017). Bioactive Propensity of Macroalgae from the Andaman & Nicobar Islands. *Pharmacognosy Journal*, 9(6), 815–820.

Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, & Hamann MT. (2008). Mollamides B and C, cyclic hexapeptides from the indonesian tunicate Didemnum molle. *Journal of Natural Products*, 71(6), 941–945.

Gordon EM, Sankhala KK, Chawla N, & Chawla SP. (2016). Trabectedin for Soft Tissue Sarcoma: Current Status and Future Perspectives. *Advances in Therapy*, 33, 1055–1071.

Joullié MM, Leonard MS, Portonovo P, Liang B, Ding X, & La Clair JJ. (2003). Chemical defense in ascidians of the Didemnidae family. *Bioconjugate Chemistry*, 14, 30–37.

Litaudon M, Trigalo F, Martin MT, Frappier F, & Guyot M. (1994). Lissoclinotoxins: Antibiotic polysulfur derivatives from the tunicate Lissoclinum perforatum. Revised structure of lissoclinotoxin A. *Tetrahedron*, 50(18), 5323–5334.

Malanovic N, & Lohner K. (2016). Antimicrobial peptides targeting Gram-positive bacteria. *Pharmaceuticals*, 9(3), 59.

Malve H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. *Journal of Pharmacy and Bioallied Sciences*, 8(2), 83–91.

Mcdonnell G, & Russell AD. (1999). Antiseptics and disinfectants: Activity, action, and resistance. *Clinical Microbiology Reviews*, 12, 147-179.

Mclaughlin JL, Rogers LL, & Anderson JE. (1998). The use of biological assays to evaluate botanicals. *Therapeutic Innovation & Regulatory Science*, 32, 513–524.

Menna M. (2009). Antitumor potential of natural products from Mediterranean ascidians. *Phytochemistry Reviews*, 8, 461–472.

Palanisamy SK, Rajendran NM, & Marino A. (2017). Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiae) and Successful Drugs in Clinical Development. *Natural Products and Bioprospecting*, 7(1), 1–111.

Paul V, Lindquist N, & Fenical W. (1990). Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. *Marine Ecology Progress Series*, 59, 109–118.

Piisut DP, & Pawlik JR. (2002). Anti-predatory chemical defenses of ascidians: Secondary metabolites or inorganic acids? *Journal of Experimental Marine Biology and Ecology*, 270, 203–214.

Qaralleh H, Idid S, Saad S, Susanti D, Taher M, & Khleifat K. (2010). Antifungal and Antibacterial Activities of Four Malaysian Sponge Species (Petrosiidae). *Journal de Mycologie Médicale*, 20(4), 315–320.

Ramos A, Castro-Carvalho B, Prata-Sena M, Dethoup T, Buttachon S, Kijjoa A, & Rocha E. (2016). Crude extracts of marine-derived and soil fungi of the genus Neosartorya exhibit selective anticancer activity by inducing cell death in colon, breast and skin cancer cell lines. *Pharmacognosy Research*, 8(1), 8–15.

Schmidt EW, & Donia MS. (2010). Life in cellulose houses: Symbiotic bacterial biosynthesis of ascidian drugs and drug leads. *Current Opinion in Biotechnology*, 21(6), 827-833.

Schumacher RW, & Davidson BS. (1999). Synthesis of didemnolines A-D, N9-substituted β-carboline alkaloids from the marine ascidian Didemnum sp. *Tetrahedron*, 51(37), 10125–10130.

Shaala LA, Youssef DTA, Ibrahim SRM, Mohamed GA, Badr JM, Risinger AL, & Mooberry SL. (2014). Didemmaketals F and G, new bioactive spiroketalts from a Red Sea ascidian Didemnum species. *Marine Drugs*, 12(9), 5021–5034.

Tadesse M, Gulliksen B, Strøm MB, Styrvold OB, & Haug T. (2008). Screening for antibacterial and antifungal activity of a family of marine sepiolids. *Pharmacognosy Research*, 1(1), 32–39.

Wada M, & Wada Y. (1993). Chemical defense of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. *Marine Ecology Progress Series*, 59, 109–118.
Antimicrobial and Cytotoxic Properties

antifungal activities in marine benthic invertebrates from northern Norway. *Journal of Invertebrate Pathology*, 99(3), 286–293.

Teruya T, Sasaki H, & Suenaga K. (2008). Hexamollamide, a hexapeptide from an Okinawan ascidian Didemnum molle. *Tetrahedron Letters*, 49, 5297–5299.

Tianero MDB, Kwan JC, Wyche TP, Presson A P, Koch M, Barrows LR, Schmidt EW. (2015). Species specificity of symbiosis and secondary metabolism in ascidians. *ISME Journal*, 9, 615–628.

Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, & Bugni TS. (2012). Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. *Journal of Natural Products*, 75(4), 735–740.