The Role of Mechanotransduction on Vascular Smooth Muscle Myocytes Cytoskeleton and Contractile Function

GEORGE J.C. YE, ALEXANDER P. NESMITH, AND KEVIN KIT PARKER*

Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and the School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

ABSTRACT

Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM. Anat Rec, 297:1758–1769, 2014. © 2014 Wiley Periodicals, Inc.

Key words: mechanotransduction; tissue mechanics; smooth muscle; cytoskeleton

Smooth muscle (SM) structure and function interact over many orders of spatial magnitude, ranging from the centimeter-length scale of vessels to the nanometer-length scale of cytoskeletal proteins. These relationships are maintained in vivo in several ways, one of which is the dynamic responsiveness to mechanical forces at the tissue, cellular, and subcellular spatial scales through mechanotransduction, the translation of mechanical stimuli into biochemical reactions within a cell. In one example, cyclic cardiac pumping exposes vascular SM (VSM) (Fig. 1) to a number of mechanical stimuli, such as transmural pressure, vascular shear strain induced by pulsatile pressure, and circumferential wall tension (Osol, 1995). The resultant changes within the VSM are cytoskeletal remodeling (Hayakawa et al., 2001; Cunningham et al., 2002; Gunst and Zhang, 2008), altered membrane conductance (Sparks, 1964; Kirber et al., 1992; Langton, 1993), and biochemical signal activation (Mills et al., 1990; Kulik et al., 1991; Pirola et al., 1994; Cattaruzza et al., 2004), that ultimately lead to functional changes in VSM tone. A well-studied example of this process is the myogenic response, where small arteries contract to counteract increased intraluminal pressure, protecting the blood vessel from potential hypertensive injury (Davis, 2012). Hence, the ability of VSM to sense and respond to mechanical forces experienced in normal physiology and in injury is critical for proper regulation of vascular tone.

It is now widely accepted that the cellular cytoskeleton plays a critical role in mediating mechanotransduction (Wang et al., 1993b; Alenghat and Ingber, 2002;
In cardiomyocytes, mechanosensitive proteins embedded in the cytoskeletal network adapt their polymerization states and distributions in response to mechanical cues, which eventually translates into functional changes (McCain and Parker, 2011; Sheehy et al., 2012). In both striated and SM cells, cytoskeletal organization gives rise to cellular architecture; and, redistribution of the cytoskeletal network as a result of mechanotransduction leads to changes in cellular and tissue structure. Hence, understanding the interaction of the mechanotransductive machinery may provide new insights into health and disease.
In this review, we examine the contribution of mechanotransduction on VSM cytoskeletal organization and contractile function. We first discuss the collective network of mechanosensitive cytoskeletal proteins in the VSM extracellular, intercellular, and intracellular domains that enable translation and integration of mechanical stimuli into structural or biochemical changes. We then draw on evidence found from in vitro studies to show the responses of the VSM cytoskeleton to external mechanical cues and how this lead changes in VSM contractile function.

MECHANOSENSITIVE CONTRACTILE CYTOSKELETON IN VASCULAR SMOOTH MUSCLE CELLS

VSM experiences a wide range of mechanical stimuli throughout the cardiovascular system such as transmural pressure, pulsatile pressure, and shear stress (Osol, 1995). These mechanical signals can propagate within and between cells (Fig. 2). For example, integrin proteins directly connect the extracellular matrix to actin filaments within the cell, allowing forces to be transmitted from outside to inside the cells (Wiesner et al., 2005). Cadherin junctions directly couple adjacent VSM cells (VSMCs) together and propagate mechanical signals from one cell to the next (Philippova et al., 1998). Actin, intermediate filaments, and microtubules propagate mechanical signals through common hubs named dense plaques that are distributed throughout the VSMC cytoplasm (Gimbrone Jr. and Cotran, 1975). In the following sections, we will briefly review the VSMC cytoskeletal components in extracellular, intercellular, and intracellular domains that contribute to mechanotransduction and modulate contractile functions.

Mechanical Signaling through the Integrin-Extracellular Matrix Interface

Integrin proteins are transmembrane, heterodimeric receptors comprising α- and β-subunits. They connect the extracellular matrix (ECM) to the internal cytoskeletal domains typically clustered at the focal adhesion complex via the short cytoplasmic tail of the β-subunit (Fig. 3). Functionally, integrins transduce both “outside-in” and “inside-out” mechanical signals in many different cell types including VSMCs (Baker and Zaman, 2010). To date, 24 integrins have been described and among them, 13 out of 24 are found in VSMCs (αβ1, αβ2, αβ3, αβ4, αβ5, αβ6, αβ7, αβ8, αβ9, αβ10, αβ11, and αβ12) (Glukhova et al., 1991; Moiseeva, 2001). Herein, we discuss how integrin subtypes are sensitive to ECM composition for transducing mechanical stimuli and perform contractile functions requisite for maintenance of proper vascular tone in vivo.

In vitro studies using isolated arterioles and VSMCs strongly suggest that integrins are crucial mechanotransductive elements for VSMCs. Wilson and coworkers (1995) demonstrated that the mitogenic response of the VSM to strain was dependent on the composition of the extracellular matrix to which it was adhered. Specifically, culturing VSMCs on fibronectin elicited the most significant mitogenic response to strain which corresponded with increased integrin binding. Further, soluble fibronectin, integrin binding peptide GRGDTP, and antibodies to β3 or αvβ5 integrins all independently blocked the mitogenic response of newborn rat VSMCs normally induced by mechanical strain, while soluble laminin, the inactive peptide GRGESP, and the antibody to the β1 integrin did not alter the mitogenic response to strain. Hence, specific integrin subunits sense and transduce the mechanical strain requisite for induction of the myogenic response in VSM (Wilson et al., 1995). Other studies subsequently showed that an integrin-recognizing synthetic RGD peptide can cause sustained vasodilation (Mogford et al., 1996) and decreased intracellular Ca²⁺ level in rat VSMCs (D’Angelo et al., 1997). These early studies demonstrated that integrins play an important role in transducing mechanical cues to intracellular signals that produce functional adaptive responses. More recently, studies on isolated rat arteriole tissue and VSMCs showed that antibody blocking of α integrins significantly inhibits myogenic constriction (Martinez-Lemus et al., 2005; Sun et al., 2008). However, pulling on fibronectin and...
β1-integrin antibody-coated magnetic beads on isolated renal VSMCs elicits an increased cellular traction force and sustained traction, analogous to the sustained increase of vascular tone in pressure-induced myogenic response (Balasubramanian et al., 2013). The integrin mechanotransduction mechanism has also been linked to βKCa ion channel activities and Src-dependent pathways (Wu et al., 2008; Min et al., 2012). Collectively, these studies demonstrated that integrins are critical to mechanotransduction and inhibition of integrin function can reduce VSMC contraction.

Mechanical Signaling through Cadherin Intercellular Junctions

In addition to cell–ECM connections, VSMCs in the vascular wall contain a variety of cell-cell adherent junctions, including cadherin and gap junctions (Hill et al., 2009). The cadherin family of calcium-dependent transmembrane receptors is mechanistically important: they bind adjacent VSMCs and link them intracellularly to actin filaments via catenins, allowing direct force transmission between neighboring cells during cellular contraction (Ganz et al., 2006; Desai et al., 2009; Liu et al., 2010). VSMCs express multiple cadherins, including N-cadherin, T-cadherin, R-cadherin, cadherin-6b, and E-cadherin (in the case of atherosclerotic lesions) (Moi-seeva, 2001). The predominant cadherin, N-cadherin, is expressed at a higher level in human venous smooth muscle cells (SMCs) than in arterial SMCs (Uglow et al., 2000). While N-cadherin has been investigated in the context of VSMC migration (Sabatini et al., 2008), proliferation (Jones et al., 2002), and survival (Koutsouki et al., 2005), Jackson et al. showed that selective blockade of N-cadherin or a cadherin inhibitory peptide in rat cremaster arterioles inhibits myogenic response to pressure changes independent of [Ca^{2+}] (Jackson et al., 2010), implicating N-cadherin in mechanical load sensing and arteriolar contraction regulation. T-cadherin was originally identified in a membrane fraction of aortic SMCs (Tkachuk et al., 1998). Unlike classical cadherin family members, T-cadherin does not have transmembrane and cytosolic domains but instead is anchored to
membranes by means of glycosylphosphatidylinositol (GPI). An analysis of Triton-X fractionized human and rat VSMCs revealed that T-cadherin co-localizes with mechanotransducing signaling molecules such as Gαs protein and Src-family kinases in caveolin-rich membrane domains (Philippova et al., 1998), suggesting that T-cadherin may function as a local signal-transducing protein as well as an adhesion molecule.

Actins, Intermediate Filaments, and Microtubules in Intercellular Mechanical Signaling

Actin is the most abundant cytoskeletal protein in contractile VSMCs, contributing about 20% of total protein content (Kim et al., 2008). Four of the six vertebrate isoforms of actin are found in VSMCs: α-smooth muscle actin (SMA), β-non-muscle actin, γ-SMA, and γ-cytoplasmic actin. VSMCs in large arteries typically contain about 60% α-SMA, 20% β-non-muscle actin, and about 20% combined γ SM and γ non-muscle actin (Fattigati and Murphy, 1984). Both α- and γ-SMA are commonly referred to as contractile actin because of their association with myosin filaments in generating tension and cell shortening. The two remaining actin isoforms are referred to as cytoplasmic actin and are localized to the cell cortex (Gallant et al., 2011).

Although the precise role of cytoplasmic actin in arteriolar myogenic behavior remains uncertain, growing evidence supports the hypothesis that this subpopulation of actin contributes to VSMC mechanotransduction (Gunst and Zhang, 2008). Earlier studies using pharmacological agents demonstrated that a short exposure period to an actin depolymerizing agent cytochalasin D profoundly suppressed VSM tension development (Adler et al., 1983; Wright and Hurn, 1994; Saito et al., 1996; Cipolla and Osoi, 1998), while exposure to an actin stabilizer enhanced myogenic tone (Cipolla et al., 2002), highlighting the critical role of actin polymerization in VSMC contraction and tension development. Independent studies using different techniques have demonstrated that actin polymerization is attributed to a small portion of G- to F-actin transition (Bárány et al., 2001; Cipolla et al., 2002; Flavahan et al., 2005; Srinivasan et al., 2008) that is associated with a redistribution of actin from the cell periphery (cortical region) to the cell interior (Flavahan et al., 2005). More recently, Kim et al. using labeled G-actin monomers, directly observed actin incorporation into cortical filaments upon agonist treatment (Kim et al., 2010) and that the nonmuscle cytoplasmic actin is primarily responsible for the agonist-induced actin polymerization (Kim et al., 2008). Given the known link between F-actin and putative mechanotransductive components such as integrins (Calderwood et al., 2000), cadherins (Yamada et al., 2005), and ion channels (Sharif-Naeini et al., 2009), these results suggest that the cortical non-muscle actin isoforms compose a dynamic subpopulation of actin that allows it to function as an intracellular sensor that actively remodels its polymerization state in response to the level of mechanical force applied to the cells.

In addition to actin fibers, intermediate filaments also function in providing structure and transducing mechanical signals. Intermediate filaments form bundles and associate with dense bodies to provide three-dimensional (3D) integrity to VSMCs (Berner et al., 1981). Two inter- mediate filament proteins are found in VSMCs, vimentin, and desmin (Berner et al., 1981). Vimentin production is high in VSMCs of large arteries. In human arteries, vimentin localization decreases gradually from proximal to distal, while desmin localization gradually increases (Frank and Warren, 1981; Gabbiani et al., 1981; Johansson et al., 1997). Vimentin- (Schiffers et al., 2000), and desmin-deficient mice (Loufrani et al., 2002) with normal myogenic responses display alterations in vasomotor properties such as agonist sensitivity and impaired flow-dependent dilation, suggesting that vimentin and desmin may be required for sensing mechanical cues in the local microenvironment. A similar dependence on vimentin occurs in airway SMCs. Wang et al. (2006) reported that downregulation of vimentin in canine airway SM attenuates force generation), while Tang et al. showed that airway SM stimulated with contractile agent 5-HT undergoes spatial rearrangement (Tang et al., 2005; Tang, 2008). Collectively, these results suggest that intermediate filaments of vascular and airway SMCs are important for adaptive remodeling to mechanical cues.

Lastly, microtubules are the cytoskeletal proteins that provide resistive forces in many cell types and are considered the compression bearing elements (Wang et al., 2004a). Since the ability to adequately stain and detect polymerized microtubules in dense contractile tissue depends on the tissue type and staining method (Yamin and Morgan, 2012), it is not surprising that contradicting findings on the role of microtubules in mechanotransduction have been reported for VSMCs. For example, one study showed that depolymerization of microtubules causes vasoconstriction in rat cremaster arteries when pressurized intravascularly. Furthermore, this response involves Rho-A dependent Ca2+ sensitization without an overt increase in [Ca2+] (Platts et al., 2002), suggesting that regulation of microtubule dynamics may be directly linked with VSMC contraction and reactivity. However, in another study where porcine coronary arteries were used, a higher level of isometric force was associated with an increased level of intracellular calcium in porcine coronary VSMCs when treated with microtubule depolymerizing agent (Paul et al., 2000), suggesting that microtubules may modulate Ca2+ signal transduction. These studies suggest that microtubules play a role in regulating both calcium-independent and calcium-dependent contraction in SM.

Mechanical Functions of the Nucleus

There is emerging evidence that suggests the nucleus of SMCs can also respond to mechanical signals and participate in contractile activities. Unlike skeletal muscle, SMCs have a single, centrally located nucleus that typically takes on an elongated "cigar shape." The nucleus was recently found to interact directly with the cytoskeleton via nuclear membrane proteins such as the SUN/KASH domain proteins (Wilhelmsen et al., 2005; King et al., 2008; Xiong et al., 2008) (Fig. 4). This physical linkage allows mechanical forces exerted on the surface adhesion receptors to be transmitted along the cytoskeletons to the protein complexes in the cytoplasm and nucleus (Wang et al., 2009). Further, Kuo and Seow (2004) utilized electron microscopy to show that
contractile filaments of airway SM are arranged parallel to the longitudinal axis of the cell and centrally attach to the nuclear envelope, effectively making the nucleus a force-transmitting structure. Similar findings were observed by Nagayama et al. (2011) in aortic SMCs: stress fibers stabilize the position of intranuclear chromatin through mechanical connections with the nucleus, which in turn modulates gene and protein expression in VSMCs and alters functional behavior. Taken together, these studies suggest that the nucleus may play a role in SM mechanotransduction and force transmission during SMC contraction.

Mechanotransduction Disruption in Disease

The process of mechanotransduction can be disrupted by dysfunction of each of these mechanosensors discussed and ultimately result in disease. One example of a clinical manifestation that results due to an abnormality in one of the proteins in the mechanotransductive pathway of vascular SM is thoracic aortic aneurysm and dissection (TAAD). In TAAD, the longitudinally oriented VSM layer degenerates leading to a loss of regulation of blood flow and pressure (Milewicz et al., 2008). Diseases of the extracellular matrix such as Marfan syndrome (Milewicz et al., 2008; Tadros et al., 2009) and Ehlers-Danlos (Pepin et al., 2000) have long been known for the clinical manifestation of TAAD. In these syndromes as well as other cases of TAAD, a switch from a contractile phenotype to a synthetic phenotype in VSMCs is observed leading to subsequent dilation of the aorta (Lesauskaite et al., 2001; Huang et al., 2010). More recently, genetic mapping studies have found mutations in myosin heavy chain 11 (Zhu et al., 2006; Pannu et al., 2007) and SM α-actin (Guo et al., 2007) also lead to TAAD. These mutations resulted in decreased contractile function and loss of regulation of blood pressure (Schmidt-meier et al., 2000). These genetic diseases demonstrate the concerted action of the ECM and cytoskeletal proteins is required for VSM to properly maintain vascular tone.

In summary, the extracellular, intercellular, and intracellular components of the VSMC cytoskeleton are embedded with proteins and filaments that are able to detect mechanical stimuli from the ECM, adjacent cells, or within the cytoplasm. Sensing these stimuli allows the cell to activate signaling pathways that promote structural remodeling of its cytoskeleton to offset or adapt to mechanical loading, forming a mechanotransduction feedback loop. When an abnormality exists within these mechanosensing proteins, cytoskeletal organization and function may undergo maladaptive remodeling resulting in disease.

MECHANOTRANSDUCTION FEEDBACK REGULATES CONTRACTILE CYTOSKELETON ARCHITECTURE

VSMCs are exposed to a wide range of mechanical signals from its extracellular microenvironment in physiological and pathological settings including cell shape deformations, pulsatile stretching, ECM rigidity, and subcellular surface topography. Due to the aforementioned mechanotransductive nature of the contractile cytoskeletal proteins, mechanical stimuli can regulate both cytoskeletal architecture and contraction. As a result, cytoskeletal proteins are tightly regulated spatiotemporally to ensure proper VSMC structure and function in normal physiological settings. To recapitulate desired VSMC structure and function, investigators exploit *in vitro* models to control mechanical parameters in the extracellular microenvironment. Here, we will summarize the influence of different mechanical cues on the VSMC cytoskeletal architecture.

Smooth Muscle Cell Shape

The shape of SMCs was observed to be dynamic during physiological and pathological developments; and, changes in SMC shape are closely associated with functional modulation. For example, irregular and more rounded VSM was found in muscular arteries of patients afflicted with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary vascular dementia characterized by a cerebral nonatherosclerotic, nonamyloid angiopathy that mainly affects the small arteries penetrating the white matter (Joutel et al., 1996). Recent advances in cellular engineering have enabled reproducible and precise studies of the role of cell shape in mechanotransduction (Borenstein et al., 2002; Park and Shuler, 2003; Parker et al., 2008). Our group has utilized microcontact printing (μCP) to micropattern ECM proteins on substrates to create user-defined cell-adhesive patterns that produce cells with various shapes (Kuo et al., 2012; McCain et al., 2012; Agarwal et al., 2013; McCain et al., 2013). More recently, our group engineered VSM tissues of varying widths by constraining the line width of micropatterned fibronectin and laminin proteins (Alford et al., 2011b). We found that, while the alignment of F-actin stress fibers is similar, the nuclear eccentricities of constituent VSMCs
significantly correlates with cell shape with length-to-width aspect ratios (ARs) between 20:1 and 50:1 (Alford et al., 2011b). To investigate the shape-contraction relationship more rigorously, we recently engineered single VSMCs on fibronectin islands with ARs from 5:1 to 20:1 and quantified their F-actin alignment by measuring the orientational order parameter (OOP) and nuclear eccentricity (Fig. 5). In contrast to VSM tissues, we found that isolated VSMCs with higher ARs had increased OOP and nuclear eccentricity, suggesting elongated cell shape leads to more aligned stress fibers and elongated nuclei (Ye et al., 2014). Thakar et al. showed that bovine VSMCs cultured on micropatterned collagen strips with elongated cell shape have decreased expression of actin stress fibers and α-actin on narrower strips (Thakar et al., 2003). They also reported that elongated cell shape lowers the nuclear shape index of isolated VSMCs while reduced spreading area significantly reduces nuclear volume (Thakar et al., 2009). When isolated rat VSMCs were cultured on user-defined cell adhesive patterns fabricated by plasma lithography, Goessl and colleagues observed cell shape-dependent actin formation and nuclear shape change (Goessl et al., 2001). When rat VSMC volume was changed in 3D through hyperosmotic shrinkage or hyposmotic swelling, a dramatic elevation of F- to G-actin ratio was observed (Koltsova et al., 2008), suggesting that cyclic stretching may strengthen the number and size of focal adhesion complexes. These findings indicate that mechanical stimulation in the form of cyclic stretching can remodel the state and organization of actin stress fibers and focal adhesions, which may subsequently feed back to VSMC functional changes.

Extracellular Matrix Interactions

ECM components influence VSMC phenotype and functions like migration, proliferation, and contraction in vitro. Concomitantly, significant changes in cytoskeletal organization and expression have also been reported. One early study reported that isolated rat VSMCs cultured on laminin develop significantly fewer focal adhesions than cells cultured on fibronectin (Hedin et al., 1997). Another found different amounts of myofilament expression in rabbit VSMCs cultured on interstitial matrix (collagen I and fibronectin), basal lamina protein (collagen IV and laminin), and the serum adhesion protein vitronectin (Hayward et al., 1995). In addition, immunofluorescent staining of stress fibers with antibodies against α-actin, myosin heavy chain isoform SM2, and vimentin, revealed that stress fiber expression of VSMC cultured on fibronectin coated substrate over a 5-day culture period gradually reduced with time (Qin et al., 2000), suggesting that ECM can mediate active remodeling of cytoskeleton. More recently, distinct morphologies of actin organization and focal adhesion formation were found on VSMCs cultured on different ECM components (Lim et al., 2010). Specifically, for VSMCs cultured on fibronectin and collagen IV, cytoskeletal stress fibers organize along the long axis of the cell and tight bundles occur along the periphery; whereas this stress fiber organization is less typical for cells cultured on collagen I and laminin. In addition, rounded focal adhesions are induced by fibronectin, while elongated

Pulsatile Stretching

The pulsatile nature of the vasculature exposes VSMCs to cyclic stretching in their native environment. Using ultrasonography and other methods, direct observation of the vasculature in vivo demonstrated that each cardiac cycle can radially strain human arteries, arterioles, and veins between 6 and 22%, with more distention experienced by larger, proximal arteries (Lyon et al., 1987; Wijnen et al., 1990; Laurent et al., 1992; Alfonso et al., 1994). These observations generated interest in the effect of stretching on VSMC behavior in vitro. Cyclic stretching on rat VSMCs in vitro produces rapid reorganization of stress fibers perpendicular to the stretching direction (Hayakawa et al., 2001). Longitudinal stretching of the vascular wall induces actin polymerization (Albinsson et al., 2004). In addition, cyclic stretching in rat VSMCs leads to increased expression level of insoluble focal adhesion contact components (Cunningham et al., 2002), paxillin, and vinculin (Na et al., 2008), suggesting that cyclic stretching may strengthen the number and size of focal adhesion complexes. These findings indicate that mechanical stimulation in the form of cyclic stretching can remodel the state and organization of actin stress fibers and focal adhesions, which may subsequently feed back to VSMC functional changes.

Fig. 5. Cellular shape directs cytoskeletal architecture. Engineered vascular smooth muscle cells with length-to-width aspect ratios of 5:1 (A-B), 10:1 (C-D), and 20:1 (E-F) self-assemble their cytoskeletons based on the boundaries of the micropatterned fibronectin. (A, C, E) are differential interference contrast images of engineered cells. (B, D, F) are stained with phalloidin for F-actin (black) and DAPI for nuclei (blue). Actin fibers and nuclei became increasingly aligned with the principle axis as cellular aspect ratio increased. Projected nuclear area also decreased as cell became more elongated. The remodeling of cytoskeleton as a result of cell shape re-distributes its mechanotransductive components and can lead to different contractile functions during healthy and diseased environment. (A-F) scale bars = 20 μm.
morphology is more common for collagens. Furthermore, a significant decrease in both F-actin and vinculin area occurs only for cells on fibronectin matrix. These studies demonstrated that ECM regulates the assembly and organization of cytoskeleton in VSMCs.

Microenvironmental Stiffness

In a large number of cardiovascular diseases involving VSMCs, such as hypertension and atherosclerosis, the stiffness of the diseased blood vessels is dramatically altered (Niklason et al., 1999). Changes in substrate stiffness in 2D and 3D culture systems lead to VSMC cytoskeletal remodeling. Peyton and coworkers have shown that human VSMCs cultured on 2D polyacrylamide gels with a range of stiffness from 1.0 to 308 kPa display more visible F-actin bundles and punctate focal adhesion sites on a rigid substrate compared to cells cultured on soft substrates (Peyton and Putnam, 2005). In the same study, they also demonstrated that an intermediate stiffness produces an intermediate amount of fibers and focal adhesions. Extending these findings using a poly(ethylene glycol)-conjugated fibrinogen-based 3D culture system with compressive modulus between 448 and 5804 Pa, the group observed a higher level of F-actin bundling on VSMCs on stiff matrices after 14 days in culture (Peyton et al., 2008). These results suggest that VSMCs actively adapt to stiffness in the microenvironment by remodeling stress fiber and focal adhesion organization. This may provide insight into the mechanism of increased rates of hypertension associated with vascular stiffening in aging patients.

Extracellular Surface Interactions

VSMCs in their native environment in the vessel wall also interact with micro- and nanoscaled features such as pores, fibers, and ridges on the basement membrane (Abrams et al., 2000). Studies that mimic these micro- and nanoscale topographies in vitro have reported active remodeling of cellular cytoskeleton. VSMCs seeded on nanopatterned gratings of poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) assume elongated cell and nuclei shapes (Yim et al., 2005). VSMCs cultured in microchannels with channel widths of 20, 30, 40, 50, and 60 μm display highly aligned actin filaments and elongated nuclei on narrower microchannels (Glawe et al., 2005). More recently, Taneja and coworkers evaluated the effect of 15 μm 316L stainless steel microgrooved surface on VSMC phenotypic changes to understand how topography of endovascular stent contributes to restenosis (Taneja et al., 2011). They found that microgrooved surfaces induce significant cell elongation in addition to significantly higher levels of α-actin expression (Taneja et al., 2011). These studies suggest that micro- and nanoscale topographical features can significantly alter the shape of both cell and nucleus and lead to cytoskeletal remodelling.

In Vitro Relevance

When stimuli deviate from the normal range experienced in health, maladaptive remodeling occurs in the cytoskeletal architecture and leads to diseased function in VSMCs. For example, in the case of vascular aging, wear and tear from cardiac cycling causes fatigue and fracture in the elastic fibers, promoting degeneration of the media layer and vessel stiffening (Lee and Oh, 2010). These changes in the ECM composition and substrate stiffness increase VSMC stiffness by increasing their adhesion molecule expression (Intengan and Schiffrin, 2000; Qiu et al., 2010) and drive the system away from healthy conditions and toward cardiovascular diseases. Aberrant mechanical stimuli can also be modeled in vitro to more rigorously study the maladaptive remodeling that occurs in disease (Brown, 2000; Balachandran et al., 2011; Hemphill et al., 2011; Huh et al., 2012; McCain et al., 2013). Alford et al. modeled the cerebral vasospasm that occurs in some instances of traumatic brain injury (Alford et al., 2011a). In this in vitro model, human VSMC was engineered on a flexible membrane and was subsequently subjected to acute tensile strain prior to performing studies of protein expression, structure, and contractile function. In this study, 10% strain was shown to induce hypercontraction in response to endothelin-1 1 hr after blast relative to the control; but, 24 hr after the blast, the engineered tissue was less contractile compared to the control. When the protein expression of smoothelin and SM myosin heavy chain were compared at the 1 and 24 hr time points, a decreased in expression of these cytoskeletal proteins was observed indicating remodeling in response to a mechanical stimuli, modeling both the acute hypercontraction as well as the chronic dysfunction seen in blast-induced cerebral vasospasm.

In summary, in vitro studies have enabled researchers to understand the effect of individual mechanical cues on VSMC cytoskeletal organization. These studies suggested that VSMC cytoskeleton is a dynamic network that constantly integrates mechanical cues and adapts its architecture accordingly to achieve homeostasis. These processes are also linked to many regulatory proteins within the cell, indicating that they are responsible for regulating a wide range of cellular functions.

SUMMARY

In summary, cytoskeleton proteins embedded in the extracellular, intracellular, and intercellular domains equip VSMCs with mechanosensing and mechano-transducing capabilities. This allows VSMCs to detect changes in the extracellular mechanical stimuli including tensile stress, cellular boundary, substrate stiffness and topography, in the forms of “outside-in” signaling. In response to these changes, VSMC cytoskeleton remodels by changing the rate of polymerization, distribution, and protein associations to adapt to the extracellular boundaries and external mechanical loads. This ultimately leads to differential activation of signaling pathways that mediates changes in VSMC functions such as proliferation, migration, contraction and gene expression. When the signaling pathways become disrupted under nonphysiological settings, maladaptive remodeling in cytoskeleton occurs and diseased function manifests.

Extensive studies with focuses on pharmacological perturbations on VSMCs in vitro and ex vivo provided a wealth of information on the functional outcomes of these inputs including protein expression profile, contractility and proliferation. However, little is known on the effect of these perturbations on cellular architecture and organization. While functional findings are
informative for treating vascular diseases, understanding mechanistically the role cytoskeleton played in sensing and transducing these changes allows investigators to directly target and correct maladaptive responses in the cytoskeleton to achieve the desired functions. From a vascular tissue engineering perspective, knowing the relationship between VSMC cytoskeleton and function equip investigators with new tools to design and build not only mechanically stable, but also functionally active vascular graft. This is particularly relevant for engineering small-diameter vascular grafts, where functional VSM tissue may improve graft patency and long-term survival. To achieve this, future studies focusing on understanding the mechanism between VSMC cytoskeleton and function interplay will be required.

LITERATURE CITED
Abrahams G, Goodman S, Nealey P, Franco M, Murphy C. 2000. Nanoscale topography of the basement membrane underlying the cornal epithelium of the rhesus macaque. Cell Tissue Res 299:39–46.
Adler KB, Krill J, Alberghini TV, Evans JAN. 1983. Effect of cytochalasin D on smooth muscle contraction. Cell Motil 3:545–551.
Agarwal A, Farouz Y, Nesmith AP, Deravi LF, McCain ML, Parker KK. 2011a. Blast-induced phenotypic switching in cerebral vasospasm. Proc Natl Acad Sci USA 108:12705–12710.
Alford PW, Nesmith AP, Seywerd JN, Parks AP, Grosberg A, Parker KK. 2011b. Vascular smooth muscle contractility depends on cell shape. Integr Biol 3:1063–1070.
Baker EL, Zaman MH. 2010. The biomechanical integrin. J Biomech 43:38–44. J Biomech 33:3–14.
Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Hemphill MA, Brigham MD, Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Alenghat FJ, Ingber DE. 2002. Mechanotransduction: all signals and functions of the cytoskeleton to achieve the desired functions. From cell biology to tissue engineering. Biomed Microdevices 4:167–175.
Barnáy M, Barron JT, Gu L, Barnáy K. 2001. Exchange of the /C19 family of vimentin variants in smooth muscle of the adult vessel. Am J Physiol Heart Circ Physiol 261:78–80.
Bedi DS, Hill JB, Mills D. 2000. Influence of channel width on alignment of smooth muscle cells by high-aspect ratio microfabricated elastomeric cell culture scaffolds. J Biomed Mater Res A 75:106–114.
Cattaruzza M, Lattreich C, Hecker M. 2004. Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43:726–730.
Cipolla MJ, Gokina NI, Osoł O. 2002. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. FASEB J 16:72–76.
Cipolla MJ, Osoł O. 1998. Vascular smooth muscle actin cytoskeleton in cerebral artery forced dilation. Stroke 29:1223–1228.
Cunningham JJ, Linderman JJ, Mooney DJ. 2002. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann Biomed Eng 30:927–935.
Dargenio M, Mogford J, Davis G, Davis M, Meininger G. 1997. Integrin-mediated reduction in vascular smooth muscle [Ca2+]i induced by RGD-containing peptide. Am J Physiol Heart Circ Physiol 272:H2065–H2070.
Davis MJ. 2012. Perspective: physiological role (s) of the vascular myogenic response. Microcirculation 19:99–114.
Desai RA, Gao L, Raghaivan S, Liu WP, Chen CS. 2009. Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122:905–911.
Fatigati V, Murphy R. 1984. Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J Biol Chem 259:14378–14388.
Flavahan NA, Bailey SR, Flavahan WA, Mitra S, Flavahan S. 2005. Imaging remodeling of the actin cytoskeleton in vascular smooth muscle cells after mechanosensitive arteriolar constriction. Am J Physiol Heart Circ Physiol 288:H660–H669.
Frank ED, Warren L. 1981. Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sci USA 78:3020–3024.
Gubbiani G, Schmid E, Winter S, Chaponnier C, De Chastony C, Vandekerckhove J, Weber K, Franke W. 1981. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 78:298–302.
Gallant C, Appel S, Graceffa P, Leavis P, Lin JJ-C, Gunning PW, Schevzov G, Chaponnier C, Degnore J, Lehman W. 2011. Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells. Am J Physiol Cell Physiol 300:C1256–C1365.
Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mége RM, Ladoux B. 2006. Traction forces exerted through N-cadherin contacts. Biol Cell 98:721–730.
Gimbrone M, Jr., Cotran R. 1975. Human vascular smooth muscle in culture. Growth and ultrastructure. Lab Invest 33:16–27.
Glansdorff JD, Hill JB. 1996. Myogenic behavior. FASEB J 16:72–76.
Goessl A, Bowen-Pope DF, Hoffman AS. 2001. Control of shape and size of vascular smooth muscle cells in vitro by plasma lithography. J Biomed Mater Res 57:15–24.
Gust JT, Zhang W. 2008. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295:C576–C587.
Guo DC, Panhu P, Tran-Fadulu V, paple CL, Yu RK, Avidan N, Bourgeois S, Estrada AL, Safl HJ, Sparks E, Emor D, Ades L, McConnell V, Willoughby CE, Abelio D, Willing M, Lewis RA, Kim DH, Scherer S, Tung P, Ahn C, Bui LM, Raman CS, Shete SS, Miflicz DM. 2007. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39:1488–1493.
Hakakawa K, Sato N, Obinata T. 2001. Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp Cell Res 268:104–114.
Hayward I, Bridle K, Campbell G, Underwood P, Campbell J. 1995. Effect of extracellular matrix proteins on vascular smooth muscle cell phenotype. Cell Biol Int 19:727–734.
Hedin U, Thyberg J, Roy J, Dumitrescu A, Tran PK. 1997. Role of tyrosine kinase in extracellular matrix-mediated modulation of arterial smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 17:1977–1984.

Hemphill MA, Dahbi BE, Gabriele S, Kerscher L, Franck C, Goss JA, Alford PW, Parker KK. 2011. A possible role for integrin signaling in diffuse axonal injury. PLoS One 6:e22899.

Hill MA, Meininger GA, Davia MJ, Lahe M. 2009. Therapeutic potential of pharmacologically targeting arterial myogenic tone. Trends Pharmacol Sci 30:363–374.

Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, Yangagawa H. 2010. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106:583–592.

Huh D, Leslie DC, Fraser JP, Jurke S, Hamilton GA, Huh D, Leslie DC, Fraser JP, Jurke S, Hamilton GA, Sheehy SP, Parker KK. 2012. Myocyte shape regulates lateral registry of sarcomeres and contractility. Am J Pathol 181:2030–2043.

Longton PD. 1993. Calcium-channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol 471:1–11.

Laurent S, Arcaro G, Benetos A, Lafleche A, Hoeks A, Safar M. 1992. Mechanism of nitrate-induced improvement on arterial compliance depends on vascular territory. J Cardiovasc Pharmacol 19:641–649.

Lee H-Y, Oh B-H. 2010. Aging and arterial stiffness. Circ J 74:2257.

Leusaukaite V, Tanganelli P, Sassi C, Neri E, Diciolla F, Ivanoviene L, Epistolato MC, Lalinga AV, Alessandrini C, Spina D. 2001. Smooth muscle cells of the media in the dilative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum Pathol 32:1003–1011.

Lim S-M, Kreipe BA, Trzcinskiowski J, Langott L, Trache A. 2010. Extracellular matrix effect on RhoA signaling modulation in vascular smooth muscle cells. Exp Cell Res 316:2853–2848.

Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS. 2010. Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci USA 107:9944–9949.

Loufrani L, Matrugghi K, Li Z, Lévy B, Lacroix F, Paulin D, Henriot D. 2002. Selective microvascular dysfunction in mice lacking the gene encoding for desmin. FASEB J 16:117–119.

Lyon RT, Runyon-Hass A, Davis HR, Glagov S, Zarins CK. 1987. Protection from atherosclerotic lesion formation by reduction of artery wall motion. J Vasc Surg 5:59–67.

Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK, 2001. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276:341–347.

Martinez-Lemus LA, Crow T, Davis MJ, Meininger GA. 2005. αvβ3- and α5β1-integrin blockade inhibits myogenic constriction of skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 289:H322–H329.

McCain ML, Lee H, Aratyn-Schaus Y, Kléger AG, Parker KK. 2012. Cooperative coupling of cell-matrix and cell–cell adhesions in cardiac muscle. Proc Natl Acad Sci USA 109:9881–9886.

McCain ML, Parker KK. 2011. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462:89–104.

McCain ML, Sheepy SP, Grosberg A, Goss JA, Parker KK. 2013. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci USA 110:9770–9775.

Milewicz DM, Guo DC, Tran-Fadula V, Lafort AL, Papke CL, Ingram JS, Swartzler SP, Sridhar S. 2008. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet 9:283–302.

Mills I, Letsou G, Rabban J, Sumpio B, Gewirtz H. 1999. Mechanosensitive adenylate cyclase activity in coronary vascular smooth muscle cells. Biochem Biophys Res Commun 171:143–147.

Min J, Reznichenko M, Poythress RH, Gallant CM, Vetterkind S, Li Y, Morgan KG. 2012. Src modulates contractile vascular smooth muscle function via regulation of focal adhesions. J Cell Physiol 227:3585–3592.

Mogford JE, Davis GE, Platts SH, Meininger GA. 1996. Vascular smooth muscle αvβ3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ Res 79:821–826.

Moisheva EP. 2001. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52:372–386.

Na S, Trache A, Trzeciakowski J, Sun Z, Meininger G, Humphrey J. 2000. Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiallactri. Ann Biomed Eng 36:369–380.

Nagayama K, Yahiro Y, Matsumoto T. 2011. Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett 585:3992–3997.

Niklasen L, Gao J, Abbott W, Hirschi K, Houser S, Marini R, Langer R. 1999. Functional arteries grown in vitro. Science 284:489–493.
Oosl G. 1995. Mechanotransduction by vascular smooth muscle. J Biol Chem 270:327–329.
Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, Guo D, Estrella AL, Safi HJ, Brasier AR, Vick GW, Marian AJ, Raman CS, Buja LM, Milewicz DM. 2007. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 16:2453–2462.
Park TH, Shuler ML. 2003. Integration of cell culture and microfabrication technology. Biotechnol Prog 19:243–253.
Parker KK, Tan J, Chen CS, Tung L. 2008. Myofibrillar architecture in engineered cardiac myocytes. Circ Res 103:340–342.
Paul RJ, Bowmans PS, Kolodney MS. 2000. Effects of microtubule disruption on force, velocity, stiffness and [Ca^{2+}] in in porcine coronary arteries. Am J Physiol Heart Circ Physiol 279:H2493–H2501.
Pepin M, Schwarze U, Superti-Furga A, Byers PH. 2000. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 342:673–680.
Peyton SR, Kim PD, Ghajar CM, Selkittar D, Putnam AJ. 2008. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607.
Polc H, Putnam AJ. 2005. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204:198–209.
Philippova M, Bochkov V, Stambolsky D, Tkachuk V, Resnik T. 1998. T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett 420:207–210.
Pirola C, Wang H, Strgacich M, Kamyar A, Cercek B, Forrester J, Clemens T, Fagin J. 1994. Mechanical stimuli induce vascular parathyroid hormone-related protein gene expression in vivo and in vitro. Endocrinology 134:2230–2236.
Platts SH, Martinez-Lemus LA, Meinerling GA. 2002. Microtubule-dependent regulation of vasomotor tone requires Rho-kinase. J Vasc Res 39:173–182.
Qin H, Ishiwata T, Wang R, Kudo M, Yokoyama M, Naito Z, Asano G. 2000. Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro. Exp Mol Pathol 69:79–90.
Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, Gansner M, Depre C, Resuelle RR, Natividad FF, Hunter WC, Genin GM. 2010. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging jovinity and significance. Circ Res 107:615–619.
Sabatini PJ, Zhang M, Silverman-Gavrilov R, Bendec MP, Langille BL. 2008. Homotypic and endothelial cell adhesions via N-cadherin determine polarity and regulate migration of vascular smooth muscle cells. Circ Res 103:405–412.
Saito S, Hori M, Ozaki H, Karaki H. 1996. Cytochalasin D inhibits smooth muscle contraction by directly inhibiting contractile apparatus. J Smooth Muscle Res 32:51–60.
Schiffers P, Henrion D, Boulanger C, Colucci-Guyon E, Langay-Vuves F, Van Essen H, Fazzi G, Levy B, De Mey J. 2000. Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterioscler Thromb Vasc Biol 20:611–616.
Schmidtmeier LA, Braun R, Taffet G, Debiasi M, Burns AE, Bradely A, Schwartz RJ. 2000. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J 14:2213–2220.
Sharif-Naenie R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatted M, Jodar M, Dedman A, Chatelain FC, Schulte U. 2009. Polyvalent 1- and 2-dose regalizes pressure sensing. Cell 139:587–596.
Shaw L, Ahmed S, Austin C, Taggart MJ. 2003. Inhibitors of actin filament polymerisation attenuate force but not global intracellular calcium in isolated pressure arrested resistance arteries. J Vasc Res 40:1–10.
Sheehy SP, Grosberg A, Parker KK. 2012. The contribution of cellular mechanotransduction to cardiomycocyte function and function. Biomech Model Mechanobiol 11:1227–1239.
Sjuve R, Arner A, Li Z, Mies B, Paulin D, Schmittner M, Small J. 1998. Mechanical alterations in smooth muscle from mice lacking desmin. J Muscle Res Cell Motil 19:415–429.
Sparks HV. 1964. Effect of quick stretch on isolated vascular smooth muscle. Circ Res 15:254–60.
Srinivasan R, Forman S, Quinlan RA, Ohanian J, Ohanian V. 2008. Regulation of contractility by Bap27 and Hic-5 in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 294:H961–H969.
Sun Z, Martinez-Lemus LA, Hill MA, Meinerling GA. 2008. Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. Am J Physiol Cell Physiol 296:C268–C278.
Tjdros EM, Klein MD, Shaha O. 2009. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation 119:880–890.
Taneja V, Vertegel A, Langan EM, III, LaBerge M. 2011. Influence of topography of an endovascular stent material on smooth muscle cell response. Ann Vasc Surg 25:675–685.
Tang D, Bai Y, Gunst S. 2005. Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J 388:773–783.
Tang DD. 2008. Intermediate filaments in smooth muscle. Am J Physiol Cell Physiol 294:C869–C873.
Thakar RG, Cheng Q, Patel S, Chu J, Nasir M, Liepman D, Komvopoulos K, Li S. 2009. Cell-shape regulation of smooth muscle cell proliferation. Biophys J 96:3423–3432.
Thakar RG, Ho F, Huang NF, Liepman D, Li S. 2003. Regulation of vascular smooth muscle cells by micropatterning. Biochem Biophys Res Commun 307:883–890.
Tkachuk VA, Bochkov VN, Philippova MP, Stambolsky DV, Kuzmenko ES, Sidorova MV, Molokoedov AS, Spirov VG, Resnik TJ. 1998. Identification of an atypical lipoprotein-binding protein from human aortic smooth muscle as T-cadherin. FEBS Lett 421:208–212.
Uglov E, Angelini G, George S. 2000. Cadherin expression is altered during intimal thickening in human supphensous vein. J Submicrosc Cytol Pathol 32:C113–C119.
Wang N, Butler J, Ingerd D. 1993a. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.
Wang N, Butler JP, Ingerde D. 1993b. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.
Wang N, Tytell JD, Ingarde D. 2009. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82.
Wang B, Li Q, Tang DD. 2008. Role of vimentin in smooth muscle force development. Am J Physiol Cell Physiol 291:C843–C849.
Wedek OK, Loqren M, Li Z, Paulin D, Arner A. 2002. Mechanical function of intermediate filaments in arteries of different size examined using desmin deficient mice. J Physiol 540:941–949.
Wieszner S, Legate K, Fasslter R. 2005. Integrin-actin interactions. Cell Mol Life Sci 62:1081–1099.
Wijnen J, Kuipers H, Kool M, Hoeks A, Van Baak M, HA SB, Verstappen TJ. 1998. Identification of an atypical lipoprotein-binding protein in the cell surface and through the cytoskeleton. J Submicrosc Cytol Pathol 32:C113–C119.
Wijnen J, Kuipers H, Kool M, Hoeks A, Van Baak M, HA SB, Verstappen F, Van Bertel L. 1990. Vessel wall properties of large arteries in trained and sedentary subjects. Basic Res Cardiol 85:25–29.
Wolmensen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A. 2003. Nespire-3, a novel outer nuclear membrane protein, associates with the cytokeratin linkers protein plectin. J Cell Biol 171:799–810.
Wilson E, Sudhir K, Ives HE. 1995. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest 96:2364.
Worth NF, Rolfe BE, Song J, Campbell GR. 2001. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton 49:130–145.
Wright G, Hurn E. 1994. Cytochalasin inhibition of slow tension increase in rat aortic rings. Am J Physiol Heart Circ Physiol 267:H1437–H1446.
Wu X, Yang Y, Gui P, Suhmy Y, Meinering GA, Davis GE, Braun AP, Davis MJ. 2008. Potentiation of large conductance, Ca2+...
activated K+ (BK) channels by α5β1 integrin activation in arteriole smooth muscle. J Physiol 586:1699–1713.

Xiong H, Rivero F, Euteneuer U, Mondal S, Mana-Capelli S, Larochelle D, Vogel A, Gassen B, Noegel AA. 2008. Dictyostelium sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic 9:708–724.

Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. 2005. Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901.

Yamin R, Morgan KG. 2012. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 590:4145–4154.

Ye GJ, Aratyn-Schaus Y, Nesmith AP, Pasqualini FS, Alford PW, Parker KK. 2014. The contractile strength of vascular smooth muscle myocytes is shape dependent. Integr Biol 6:152–163.

Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. 2005. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413.

Zeidan A, Nordström I, Albinsson S, Malmqvist U, Sward K, Hellstrand P. 2003. Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors. Am J Physiol Cell Physiol 284:C1387–C1396.

Zhu L, Vranckx R, Khau Van Kien P, Lalande A, Boisset N, Mathieu F, Wegman M, Glancy L, Gasc JM, Brunotte F, Bruneval P, Wolf JE, Michel JB, Jeunemaitre X. 2006. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:343–349.