INTRODUCTION

Temperature is widely regarded as a key factor both directly and indirectly responsible for the diversity of marine fauna. The usual patterns show species richness increasing from cold toward warmer regions among the majority of taxa, at least in the Palearctic and Nearctic (Gaston, 1998, 2000). In poikilotherms, temperature directly controls metabolism and growth rates, and hence, the size of an organism. Species diversity is usually negatively correlated with the size of an organism that was well documented on terrestrial insects (Siemann, Tilman, & Haarstad, 1996). That is why the temperature increase due to global warming is likely to cause a change in average individual size, or selection toward smaller species in communities (Atkinson & Sibly, 1997). Such a pattern has already been demonstrated in pelagic Copepoda (Beaugrand, Ibanez, & Reid, 2000), but it is not yet universal in benthic communities (Mazurkiewicz, Górska, Renaud, & Włodarska-Kowalczuk, 2020). The blurred size pattern among soft-bottom benthos is due to the dominance of polychaete worms and bivalves—two groups in which linear growth is difficult to assess. Peracaridan crustaceans, on the other hand, are likely to be the best model taxon for studies of temperature-related size changes. Peracaridans have no larval stage, and juveniles grow throughout life, with the successive moults clearly demarcating the increments. Egg incubation time, egg size, and gammarid female size are inversely related to temperature (see the review in Steele & Steele, 1975). In addition, not only low temperatures but also oxygen levels are responsible for the large size of cold-water Crustacea, a phenomenon known as "polar gigantism" (Chapelle & Peck, 1999).

The Atlantic sector of the Arctic is warming very fast (ACIA, 2005), mainly due to the increasing advection of Atlantic waters (Walczowski, Piechura, Goszczko, & Wieczorek, 2012) that brings boreal species north of their previous limits of distribution (Berge, Johnsen, Nilsen, Gulliksen, & Slagstad, 2005; Beuchel, Gulliksen, & Carroll, 2006; Fleischer, Schaber, & Piepenburg, 2007; Węsławski, Dragańska-Deja, Legeżyńska, & Walczowski, 2018).
Species/population	Region considered	Minimal female length (mm)	Max. length adult (mm)	Min. summer water temp. (°C)	Max. summer water temp. (°C)	Life span (years)	Sympatric species in region (nr)	Eggs incubation (days)	Reference
Chaetogammarus olivii (H. Milne Edwards, 1830)	Black, Medit.	6	12	15	20	1	14	Greze (1985)	
Chaetogammarus warpacowskyi Sars, 1897	Baltic	5	7	10	10	1	6	Zettler and Zettler (2017)	
Dikerogammarus haemobaphes (Eichwald, 1841)	Azov, Black	8	20	15	20	1	9	Dobrzycka-Krahel, Kendzierska, and Szaniawskas (2013), Zettler and Zettler (2017), http://www.iop.krakow.pl/gatunkiobce/	
Dikerogammarus haemobaphes (Eichwald, 1841)	Baltic	10	22	10	20	1	6	Zettler and Zettler (2017), http://www.iop.krakow.pl/gatunkiobce/	
Dikerogammarus villosus (Sowinsky, 1894)	Baltic	8	30	10	15	2	6	Dobrzycka-Krahel et al. (2013), Zettler and Zettler (2017), http://www.iop.krakow.pl/gatunkiobce/	
Echinogammarus finnarchicus (Dahl, 1938)	White	10	21	5	15	1	3	15–30	Gurjanova (1951), Tzvetkova (1975), Lincoln (1979), Zettler and Zettler (2017)
Echinogammarus foxi (Schellenberg, 1928)	Mediterr.	6	8	15	25	1	14	Grinstov (2016)	
Echinogammarus ischnus (Stebbing, 1899)	Baltic	6	15	10	20	1	6	https://nas.er.usgs.gov/queries/great_lakes/FactSheet.aspx?SpeciesID=23	
Echinogammarus ischnus (Stebbing, 1899)	Black	5	10	15	20	1	9	Greze (1985)	
Echinogammarus karadagiensis Grintsov, 2009	Black	4	6	15	25	0.5	9	Grinstov (2009, 2016)	
Echinogammarus marinus (Leach, 1815)	North, W Atl.	15	25	5	15	1	10	15–30	Gurjanova (1951), Tzvetkova (1975), Lincoln (1979), Zettler and Zettler (2017)
Echinogammarus obtusatus (Dahl, 1938)	North, W Atl.	9.	20.	5	15	1	10	15–116	Gurjanova (1951), Tzvetkova (1975), Lincoln (1979), Steele and Steele (1975)
Echinogammarus pirloti (Sexton & Spooner, 1940)	North	11	14	10	15	0.5	10	15	Lincoln (1979)
Echinogammarus planicurus (Reid, 1940)	North	5	9	10	20	1	11	https://www.marlin.ac.uk/species/detail/1776	
Species/population	Region considered	Minimal female length (mm)	Max. length adult (mm)	Min. summer water temp. (°C)	Max. summer water temp. (°C)	Life span (years)	Sympatric species in region (nr)	Eggs incubation (days)	Reference
----------------------	-------------------	-----------------------------	------------------------	-----------------------------	-----------------------------	-------------------	-------------------------------	------------------------	--
Echinogammarus stoerensis (Reid, 1938)	North, W Atl.	4	8	10	20	0.5	10	16	Gurjanova (1951), Tzvetkova (1975), Lincoln (1979), Zettler and Zettler (2017), Steele and Steele (1975)
Gammarus aequicauda (Martynov, 1931)	Black, Medit.	10	20	15	25	1	14		Greze (1985)
Gammarus annulatus Smith, 1873	W Atl.	10	20	5	15	1	5		Bousfield (1969)
Gammarus chevreuxi Sexton, 1913	North, E Atl.	6	13	10	20	0.5	10	15–30	Lincoln (1979)
Gammarus crinicornis Stock, 1966	Mediterr.	8	20	15	25	1	14		Lincoln (1979)
Gammarus crinicornis Stock, 1966	Black	10	20	15	25	1	9		Greze (1985)
Gammarus daiberi Bousfield, 1969	W Atl.	8	12.5	5	20	1	5		Bousfield (1969)
Gammarus duebeni Liljeborg, 1852	North, Baltic	8	22	10	20	1	6	30	Jazdżewski (1970a, 1970b), Lincoln (1979), Tzvetkova (1975), Steele and Steele (1975)
Gammarus duebeni Liljeborg, 1852	White	12	25	5	15	1	3	30–150	Gurjanova (1951), Tzvetkova (1975)
Gammarus inaequicauda Stock, 1966	North, Baltic	8	10	10	20	1	6		Zettler and Zettler (2017)
Gammarus insensibilis Stock, 1966	E Atl., Med., Black	5	21	15	25	1	14		Lincoln (1979), Greze (1985), Zettler and Zettler (2017)
Gammarus lacustris G.O. Sars, 1863	E Atl., Baltic	10	25	10	15	1	6		Zettler and Zettler (2017)
Gammarus lawrencianus Bousfield, 1956	W Atl.	5	10	5	15	0.5	5	17–82	Steele and Steele (1970a, 1970b, 1975)
Gammarus locusta (Linnaeus, 1758)	E. Atl., North	15	33	10	20	2	10		Gurjanova (1951), Lincoln (1979), Zettler and Zettler (2017)
Gammarus locusta (Linnaeus, 1758)	Baltic	12	18	10	20	2	6	30–60	Jazdżewski (1970a, 1970b)
Gammarus mucronatus Say, 1818	W Atl.	1	4	5	30	0.5	5	12–15	Bousfield (1969), Fredette and Diaz (1986)

(Continues)
Table 1 (Continued)

Species/population	Region considered	Minimal female length (mm)	Max. length adult (mm)	Min. summer water temp. (°C)	Max. summer water temp. (°C)	Life span (years)	Sympatric species in region (nr)	Eggs incubation (days)	Reference
Gammarus oceanicus Segerstråle, 1947	Atlantic	11	38	5	20	2	10	60–150	Lincoln (1979), Steele and Steele (1972), Tzvetkova (1975), Steele and Steele (1975)
Gammarus oceanicus Segerstråle, 1947	Baltic	10	30	10	20	2	6	25–94	Jazdżewski (1970a, 1970b), Zettler and Zettler (2017)
Gammarus pulex (Linnaeus, 1758)	Baltic	12	23	10	15	1	6		Zettler and Zettler (2017)
Gammarus salinus Spooner, 1947	E Atl.	12	24	10	20	1	10		Lincoln (1979), Tzvetkova (1975)
Gammarus s.婆 difference	Baltic	10	24	10	25	2	6	30–60	Jazdżewski (1970a, 1970b), Zettler and Zettler (2017)
Gammarus setosus Dementieva, 1931	Arctic	13	44	0	15	3	1	35–150	Gurjanova (1951), Steele and Steele (1970a, 1970b), Tzvetkova (1975), Steele and Steele (1975)
Gammarus subtypicus Stock, 1966	Black	6	20	15	25	1	9		Greze (1985)
Gammarus tigrinus Sexton, 1939	North, Baltic	4	14	10	25	1	6	30	Bousfield (1969), Lincoln (1979), Zettler and Zettler (2017)
Gammarus wilkitzkii Birula, 1897	Arctic	20	52	0	5	5	0	37–180	Tzvetkova (1975), Poltemann (1997)
Gammarus zaddachi Sexton, 1912	E Atl.	10	20	10	25	1	6	30–60	Jazdżewski (1970a, 1970b), Lincoln (1979), Tzvetkova (1975), Steele and Steele (1975)
Gammarus zaddachi Sexton, 1912	Baltic	7	30	10	30	1	6		Gurjanova (1951), Tzvetkova (1975), Zettler and Zettler (2017)
Obesogammarus crassus (G.O. Sars, 1894)	Baltic	7	15	10	15	1	6		Grabowski, Jazdżewski, and Konopacka (2007), Dobrzycka-Krahel et al. (2013), http://www.iop.krakow.pl/gatunkiobce/default2436.htm?nazwa=ops&id=356&je=pl
Pontogammarus robustoides (G.O. Sars, 1894)	Baltic, North	12	22	10	20	1	6		Zettler and Zettler (2017)
Here, we hypothesize that a larger body size (associated with perennial longevity) in northern littoral *Gammarus* populations reduces the possibility of sibling species occurring sympatrically, as observed at present in warmer waters. We explore this by comparing diversity and size in *Gammarus* populations inhabiting rocky North Atlantic coasts across latitudes from 45° to 81° N and water temperatures from −1.8° to 25°C. We expect that present-day patterns of distribution are likely to change, as the temperature increase will tend to shorten gammarid life cycles in the Subarctic. Such a phenomenon has already been observed in pelagic Crustacea, where the same species—*Calanus finmarchicus*—may produce from one generation in cold water to three in temperate seas per year, depending on the ambient temperature (Irigoien, Head, Cummings, & Harbour, 2000).

In the pelagic realm, the warming results in less diversified size structure of plankton (northern species mature at smaller size and small southern species arrive north). However, in the three dimensional pelagial, the competition for space or microhabitat is not crucial. In contrary, the coastal gammarids compete for the limited space on the seabed and here the size comes as an important factor.

2 | MATERIAL AND METHODS

The original material comes from the unpublished archive of the first author, who sampled littoral *Gammarus* species in the Gulf of Gdańsk (Baltic Sea, 54° N) and Hornsund fjord (Svalbard Archipelago, 77° N) in 1979–1982. They were collected with a hand net on the shore, at 0–1 m depth, from under stones and algae. The animals were measured from the tip of the head to the tip of telson, excluding spines. In gammarids, males use to be larger than females. As mature females those with setosed oostegites were considered, and as adult males the specimens with developed palpi pennealae on 7th segment. Two values were taken from the literature for the calculations: the maximal size of the specimen from the given population and the minimal size of adult female (that indicates ability to mature at low size).

Formalin-preserved specimens were wet-weighed after having been blotted on filter paper. The temperatures for the different localities were obtained from the cited references or meteorological data currently available on the Internet. Some of the materials collected by the first author were presented in the form of an unpublished manuscript—an MSc thesis at the University of Gdańsk (Wolska, 1983 unpublished).

Summer minimal temperature for the geographic region was taken as a critical value for marine poikilotherms (Golikov, Dolgolenko, Maximovich, & Scarlato, 1990). The occurrence of the sympatric species was assessed for the region from the literature cited, and species names were checked after Bellan-Santini and Costello (2001).

3 | RESULTS AND DISCUSSION

At least thirty sibling species from *Gammarus* and other species from closely related genera (*Marinogammarus*, *Pontogammarus*, *Dikerogammarus* etc.) occur in the intertidal of both the eastern and western North Atlantic (Table 1). Their size at maturity ranges from 4 to 52 mm and is related to lifespan and ambient temperature (Figure 1, Table 1). Number of sibling gammarid species in given temperature/region corresponds inversely with the size of specimens. In low temperature, where the large species occurs, number of sympatric similar species is low, and in warmer temperatures, high number of small species coexist (Figure 2). Length frequencies in the summer samples of the Arctic population of two sympatric sibling *Gammarus* species indicate that there are three annual cohorts, or fourteen size groups (2 mm intervals) (Figure 3). Compared to the Arctic, the temperature water population (Baltic) of the same species in summer (after the death of the winter cohort and juvenile release in spring) has a cohort of one age (length 6–15 mm) that corresponds to five size groups (2 mm intervals). The summer length frequency of the large (40 mm) species in the Arctic spans up to twenty such size groups (*G. setosus* or *G. wilkitzkii*).

The growth in two very different populations of *Gammarus oceanicus* from the Baltic and Arctic (summer temperatures plus 20°C and 4°C, respectively) is similar, although the cold-water population lives longer and grows to greater lengths (Figure 4). A cold-water individual may not reach maturity in the first year of its life, but will grow continuously for the next one or two years, ultimately attaining a large size.

If the life cycle is to be completed within a year or less, the critical phenomenon is the egg incubation time (Table 1). The relationship of this time to ambient temperature has been studied many times in poikilotherms like fish and crustaceans, as well as specifically in the genus *Gammarus* (Steele & Steele, 1975; Whiteley, Rastrick, Lunt, & Rock, 2011). Incubation in *G. setosus* or *G. wilkitzkii* lasts 120 and more days in cold, Subarctic—Arctic waters, at year round temperatures <2°C (Steele & Steele, 1974; Węsławski & Legeżyńska, 2002). In the Black Sea or southern Baltic, by contrast, *Gammarus inaequicauda* and *G. salinus* incubate eggs at temperatures >20°C in less than 20 days (Jażdżewski, 1970a). The ability to shorten the egg incubation period is probably governed by temperature only (as observed in *Calanus* copepods—Irigoien et al., 2000 or pelagic hyperids—Kostzytn, Timofeev, Węsławski, & Malinga, 1995). Other factors controlling the size of these invertebrates are the availability and quality of food and oxygen saturation (Chapelle & Peck, 1999). Adults of *Gammarus* species are omnivores (Tzvetkova, 1975), and food availability is not a limiting factor in the littoral (plant detritus, meiofauna, and microorganisms are plentiful; Węsławski,Wiktor, Zajączkowski, & Swerpel, 1993). The oxygen concentration in coastal waters is always high, or even supersaturated, as there the water dynamics are the highest. *Gammarus* species have adequate food resources, a high level of oxygen and an appropriate range of salinity. The only limiting factor is suitable microhabitat, that is, stones or crevices under which they can hide from predators. Gammarids are a preferred dietary constituent of coastal fish in the Baltic (MacNeil, Dick, & Elwood, 1999), and of fish, seabirds, and seals on Svalbard (Lydersen, Gjertz, & Węsławski, 1989; Węsławski & Kulinski, 1989). The interstices among loose stones, providing adequate shelter, are
quickly filled when some hundreds of animals are trying to hide beneath one of them (Węsławski, 1994). It is the occupation of this microhabitat by large, local species that is the likely factor preventing boreal, eurytopic species from successfully colonizing the North. Ca 300 large specimens (mean length 20 mm) or 2,000 small ones (mean length 5 mm) can conceal themselves under a stone 400 cm2 in area; this corresponds with the average densities reported for Arctic localities (300–500/m2) (Węsławski, 1994) and for temperate sites, where the number of small gammarid species can exceed 10,000/m2 (Tzvetkova, 1975).

Niche selection and competition was described as a critical factor for the new species colonization in littoral amphipods (Kotta et al., 2013; Piscart, Maazouzi, & Marmonier, 2008).

The majority of marine littoral gammarids display a very wide tolerance to salinity and temperature (Tzvetkova, 1975). In the North Atlantic intertidal, many different species occur in the temperature range between 0°C in winter and >20°C in summer. Consequently, most of the species, listed in Table 1, have a potentially very wide geographical distribution. If temperature was the only factor limiting their occurrence, the North Atlantic coast would be divided into a narrow zone with cold stenothermic Gammarus species (Gammarus wilkitzkii and G. setosus), with the rest of the area supporting the other, eurytopic species. In actual fact, however, the littoral gammarids are spatially more limited, and the number of species corresponds inversely to their size and life length (Table 1, Figure 1).

In the Arctic, where the two large, cold-water species (G. wilkitzkii and G. setosus) co-occur, there is almost no sympatric occurrence, as G. wilkitzkii is an ice-associated species and G. setosus is a littoral species. However, when the ice melts in coastal waters, G. wilkitzkii seeks the same shelter as its littoral congener (Poltermann, 1997, 1998; Węsławski, 1994). Another example of regions where two
large species occur together is Canada and Svalbard, where the local cold-water *G. setosus* is confronted with the boreal *G. oceanicus*. On Newfoundland, the coasts of which have an extensive tidal range from three to twelve meters, *G. setosus* was recorded higher up on the shore and *G. oceanicus* lower down (Steele & Steele, 1974). On Spitsbergen, the two species coexist recently, as the *G. oceanicus* is colonizing the area after the glacial retreat (Grabowski et al., 2019).

In the littoral, when a species is large, there are many size groups that act as separate ecological units: Size variations in gammarids lead to differences in mobility, food, and behavior (see Węsławski et al., 2010). All the available space is occupied, and the number of true species is limited—to two, according to published observations. In areas where species are small, there are fewer size groups and more species can coexist (up to fourteen in a region like the Mediterranean Sea, Table 1).

The sympatric occurrence discussed here is considering the regional scale (gamma diversity). The co-occurrence on a small scale of one sample, alpha diversity, is difficult to assess, as there are very few data. In the Baltic, where 9 local plus four alien (man introduced) species occur, the actual occurrence of three to five species in one spot was confirmed (Jażdżewski, 1970a, own observations).

As the size of gammarids is so closely related to ambient temperature, we may speculate that with increasing coastal temperatures in the Arctic, littoral gammarids will complete their life cycle at a smaller size, which will create opportunities for the area’s colonization by southern species. This will be a direct effect not of temperature (those eurytopic species are already capable of living there) but of the favorable size structure of competitors.

In summary, two phenomena are well documented in littoral *Gammarus* species. One is the direct relationship of temperature to lifespan and the size of an adult animal: At warmer temperatures, all known species grow faster and reach maturity at a smaller size. The other is the low number of sympatric species in areas where large species occur, and the high number of such species where the animals are small. From these two observations, we can infer that climate change may shift the boreal species northwards, where competition from large species will be reduced as the temperature rises and the cold-water species will lose the competitive advantage of their large size.

ACKNOWLEDGMENTS

Preparation of this publication was supported by funds from the Svalbard Miljøvern SIP Project—RIS No. 3243, Polish Ministry for Higher Education funds SPUB, the project ACCES—Belmont Fund project (Contract UMO-2018/28/Z/NZ8/00079), the ADAMANT-DAINA project (Contract NCN 2017/27/L/NZ8/0331 and the Polish
Norwegian Research Programme operated under Norwegian Finacial Mechanism (Contract No Pol-Nor/201992/93/2014, project DARWAF).

CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTION
Jan M. Węsławski: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal). Joanna Legeżyńska: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal). Maria Włodarska-Kowalczyk: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal).

DATA AVAILABILITY STATEMENT
All data presented in this paper are available through the project web page ACCES https://www.iopan.pl/projects/Acces/ (operational since June 2020) or direct email to the first author <weslaw@iopan.gda.pl>.

ORCID
Jan M. Węsławski https://orcid.org/0000-0001-8434-5927
Joanna Legeżyńska https://orcid.org/0000-0001-7718-0335
Maria Włodarska-Kowalczyk https://orcid.org/0000-0002-2757-1108

REFERENCES
ACIA (2005). Impacts of a warming Arctic: Arctic climate impact assessment. New York, NY: Cambridge University Press.

Atkinson, D., & Sibly, R. M. (1997). Why are organisms usually bigger in colder environments? Making sense of life history puzzle. Trends in Ecology and Evolution, 12, 235–239. https://doi.org/10.1016/S0169-5347(97)01058-6

Beaugrand, G., Ibanez, F., & Reid, P. C. (2000). Spatial seasonal and long term fluctuations of plankton in relation to hydroclimatic features in the English Channel, Celtic Sea and Bay of Biscay. Marine Ecology Progress Series, 200, 93–102. https://doi.org/10.3354/meps200093

Bellan-Santini, D., & Costello, M. J. (2001). Amphipoda. In M. J. Costello, C. S. Emblow, & R. White (Eds.), European register of marine species: A check-list of the marine species in Europe and a bibliography of guides to their identification (vol. 50, pp. 295–308). ParisMuséum national d'Histoire naturelle, Collection Patrimoines Naturels.

Berge, J., Johnsen, G., Nilsen, F., Guilliksen, B., & Slagstad, D. (2005). Ocean temperature oscillations enable reappearance of huge mussels Mytilus edulis in Svalbard after a 1000 year absence. Marine Ecology Progress Series, 303, 167–175. https://doi.org/10.3354/meps303167

Beuchel, F., Guilliksen, B., & Carroll, M. L. (2006). Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). Journal of Marine Systems, 63, 35–48. https://doi.org/10.1016/j.jmarsys.2006.05.002

Bousfield, E. L. (1969). New records of Gammarus (Crustacea: Amphipoda) from the Middle Atlantic Region. Chesapeake Science, 10(1), 1–17. https://doi.org/10.2307/1351207

Chapelle, G., & Peck, L. S. (1999). Polar gigantism dictated by oxygen availability. Nature, 399, 114–115. https://doi.org/10.1038/20099

Dobrzycka-Krahel, A., Kendzierska, H., & Szaniawska, A. (2013). Pontos-caspian gammarids – new species in the Gulf of Gdańsk (Southern Baltic Sea). Journal of Ecology and Health, 17(3), 110–114.

Fleischer, D., Schaber, M., & Piepenburg, D. (2007). Atlantic snake pipefish (Entelurus aequoreus) extends its northward distribution range to Svalbard (Arctic Ocean). Polar Biology, 30, 1359–1362. https://doi.org/10.1007/s00300-007-0322-y

Fredette, T. J., & Diaz, R. J. (1986). Life history of Gammarus mucronatus Say (Amphipoda: Gammaridae) in warm temperate estuarine habitats, York River, Virginia. Journal of Crustacean Biology, 6(1), 57–78. https://doi.org/10.1163/193724086X00730

Gable, M. F., & Croker, R. A. (1977). The Salt Marsh Amphipod, Gammarus palustris Bousfield, 1969 at the Northern Limit of its Distribution I. Ecology and Life Cycle. Estuarine and Coastal Marine Sciences, 5, 123–134. https://doi.org/10.1016/0012-3524(77)90077-9

Gaston, K. J. (1998). Species range size distributions: Products of speciation, extinction and transformation. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1366), 219–230. https://doi.org/10.1098/rstb.1998.0204

Gaston, K. J. (2000). Global patterns of biodiversity. Nature, 405, 220–227. https://doi.org/10.1038/35012228

Golikov, A. N., Dolgolenko, M. A., Maximovich, N. N., & Scarlato, O. A. (1990). Theoretical approaches to marine biogeography. Marine Ecology Progress Series, 63, 289–301. https://doi.org/10.3354/meps63289

Grabowski, M., Jabłońska, A., Weydmann-Zwolicka, A., Gantsevich, M., Strelkov, P., Skazina, M., & Węsławski, J. M. (2019). Contrasting molecular diversity and demography patterns in two intertidal amphipod crustaceans reflect Atlantification of High Arctic. Marine Biology, 166, 155. https://doi.org/10.1007/s00227-019-3603-4

Grabowski, M., Jażdżewski, K., & Konopacka, A. (2007). Alien Crustacea in Polish waters - Amphipoda. Aquatic Invasions, 2(1), 25–38. https://doi.org/10.3391/ai.2007.2.1.3

Greze, J. (1985). Invertebrate fauna of Ukraine in the 40 volumes. Tom 26. Higher crustaceans. Issue 5. Amphipoda. Kijev, Ukraine: Naukova Dumka.

Grintsov, V. A. (2009). A new amphipod species Echinoamphipus karadagiensis sp. n. (Amphipoda, Gammaridae) from Crimean Coasts (Black Sea, Ukraine). Vestnik Zoologii, 43(2), 23–26. https://doi.org/10.2478/v10058-009-0007-9

Grintsov, V. A. (2016). Dynamics of population structure of two species of Echinogammarus genus (Gammaridae, Amphipoda) from Laspi Bay (Crimea, Black Sea). Marine Biological Journal, 1(3), 22–26. https://doi.org/10.21072/mbj.2016.01.3.03

Gurjanova, E. P. (1951). Ampipoda Gammaridea from the seas of the USSR and vicinity. Opredeliteli Faune SSSR (pp. 1–10029). Zoologicheskii Institut Akademii Nauk SSSR.

Irigoen, X., Head, R. M., Cummings, D., & Harbour, D. (2000). Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnology and Oceanography, 45, 44–54. https://doi.org/10.4319/lo.2000.45.1.0044

Jażdżewski, K. (1970a). Biology of Crustacea Malacostraca in the Bay of Puck, Polish Baltic Sea. Zoological Poloniae, 20, 423–480.

Jażdżewski, K. (1970b). Gammarus inaequicauda Stock in the Baltic Sea (Amphipoda, Gammaroidea). Crustacea, 19, 216–217.

Kosztyn, J., Timofeev, S., Węsławski, J. M., & Malinga, B. (1995). Size structure of Themisto abyssorum Boeck and T. libellula Mandt populations in European-Arctic Seas. Polar Biology, 15, 85–92. https://doi.org/10.1007/BF00241046

Kotta, J., Pärnoja, M., Katajisto, T., Lehtiniemi, M., Malavin, S. A., Reisalu, G., & Panov, V. E. (2013). Is a rapid expansion of the invasive amphipod Gammarus tigrinus Sexton, 1939 associated with its niche selection: A case study in the Gulf of Finland, the Baltic Sea. Aquatic Invasions, 8(3), 319–332.

Lincoln, R. J. (1979). British marine Amphipoda: Gammaridea. London, UK: British Museum of Natural History.
Lydersen, C., Gjertz, I., & Węsławski, J.M. (1989). Stomach content of autumn feeding marine vertebrates from Hornsund, Svalbard. Polar Record, 25, 107–114. https://doi.org/10.1017/S0032247400010408.

Macneil, C., Dick, J. T. A., & Elwood, R. W. (1999). The dynamics of predation on Gammarus spp. (Crustacea: Amphipoda). Biological Reviews, 74, 375–395. https://doi.org/10.1111/j.1469-185X.1999.tb00035.x

Mazurkiewicz, M., Górska, B., Renaud, P. E., & Włodarska-Kowalczuk, M. (2020). Latitudinal consistency of biomass size spectra - benthic resilience despite environmental, taxonomic and functional trait variability. Scientific Reports, 10(4164), https://doi.org/10.1038/s41598-020-60889-4

Poltermann, M. (1998). Abundance, biomass and small scale distribution of cryopelagic amphipods in the Franz Josef Land area (Arctic). Berichte zum Polarforschung, 225, 1–170.

Poltermann, M. (1997). Biology and ecology of cryopelagic amphipods from Arctic sea ice. Berichte zum Polarforschung, 225, 1–170.

Piscart, C., Maazouzi, C., & Marmonier, P. (2008). Range expansion of the North American alien amphipod Gammarus tigrinus Sexton, 1939 (Crustacea: Gammaridae) in Brittany, France. Aquatic Invasions, 3(4), 449–453.

Piscart, C., Maazouzi, C., & Marmonier, P. (2008). Range expansion of the North American alien amphipod Gammarus tigrinus Sexton, 1939 (Crustacea: Gammaridae) in Brittany, France. Aquatic Invasions, 3(4), 449–453.

Zettler, M. L., & Zettler, A. (2017). European Arctic marine climate. ICES Journal of Marine Science, 69, 864–869. https://doi.org/10.1093/icesjms/fsx068

Węsławski, J. M. (1994). Gammarus (Crustacea, Amphipoda) from Svalbard and Franz Josef Land. Distribution and density. Sarsia, 79, 145–150. https://doi.org/10.1080/00364827.1994.10413553

Węsławski, J. M., Dragańska-Deja, K., Legeżyńska, J., & Walczowski, W. (1998). Abundance, biomass and small scale distribution of cryopelagic amphipods in the Franz Josef Land area (Arctic). Polish Polar Research, 10, 241–250.

Węsławski, J. M., & Legeżyńska, J. (2002). Life cycles of some Arctic amphipods. Polish Polar Research, 23, 253–264.

Węsławski, J. M., Opanowski, A., Legeżyńska, J., Maciejewsk, B., Włodarska-Kowalczuk, M., & Kędra, M. (2010). How many roles can a species play? Hidden diversity in Arctic crustaceans. Polish Polar Research, 31, 205–216.

Węsławski, J. M., Wiktor, J., Zajączkowski, M., & Swerpel, S. (1993). Intertidal zone of Svalbard: Macroorganism distribution and biomass. Polar Biology, 13, 73–79. https://doi.org/10.1007/BF00238538

Whiteley, N. M., Rastrick, S. P. S., Lunt, D. H., & Rock, J. (2011). Latitudinal variations in the physiology of marine gammarid amphipods. Journal of Experimental Marine Biology and Ecology, 400, 70–77. https://doi.org/10.1016/j.jembe.2011.02.027

Wolska M. (1983). Biologia i skład populacji Gammarus oceanicus Segerstrale 1974 Zatoki Puckiej. Unpublished, master thesis, Institute of Oceanography, University of Gdansk, in Polish.

Zettler, M. L., & Zettler, A. (2017). Marine and freshwater Amphipoda from the Baltic Sea and adjacent territories. Harxheim, Germany: ConchBooks.

How to cite this article: Węsławski JM, Legeżyńska J, Włodarska-Kowalczuk M. Will shrinking body size and increasing species diversity of crustaceans follow the warming of the Arctic littoral? Ecol Evol. 2020;10:10305–10313. https://doi.org/10.1002/ece3.6780