Application of BDq method to complex tropical mixed forest ecosystems in Nigeria

Friday Nwabueze OGANA¹
José Javier GORGOSO-VARELÀ²
Alfred Ossai ONEFELI³

¹ University of Ibadan
Department of Social and Environmental Forestry
Ibadan
Nigeria

² University of Santiago de Compostela
Campus de Lugo
Lugo
Spain

³ University of Ibadan
Department of Forest Production and Products
Ibadan
Nigeria

Auteur correspondant / Corresponding author:
Friday Nwabueze OGANA – fn.ogana@ui.edu.ng

Photo 1. Tropical mixed forest ecosystem in Nigeria. Photo F. N. Ogana.

Doi : 10.19182/bft2021.349.a36779 – Droit d’auteur © 2021, Bois et Forêts des Tropiques – © Cirad – Date de soumission : 10 décembre 2020 ; date d’acceptation : 5 mai 2021 ; date de publication : 1er septembre 2021.

Citer l’article / To cite the article
Ogana F. N., Gorgoso-Varela J. J., Onefeli A. O., 2021. Application of BDq method to complex tropical mixed forest ecosystems in Nigeria. Bois et Forêts des Tropiques, 349 : 37-50. Doi : https://doi.org/10.19182/bft2021.349.a36779
L’absence de pratiques de gestion et de traitements sylvicoles dans les forêts tropicales mixtes complexes du Nigeria conduit à leur exploitation incontrôlée et au déclin de leur biodiversité. Pour assurer le maintien de la production, de la protection et de la conservation de ces peuplements mixtes complexes, la présente étude propose l’application d’une méthode de sélection, dite méthode BDq (B : surface terrière ; D : diamètre maximal ; q-ratio) pour leur gestion. Un essai pilote a porté sur deux strates, comportant 15 parcelles par la strate 1 et 7 parcelles pour la strate 2, chacune avec une superficie de 0,25 ha. Seuls les arbres avec un diamètre à hauteur de poitrine D ≥ 10,0 cm ont été pris en compte pour cette étude. La récolte de bois avec la méthode BDq a été quantifiée selon l’intensité d’exploitation, avec B à 20 m², 25 m² et 30 m²/ha correspon- diant respectivement à un régime intensif, modéré et peu intense, pour un diamètre D à 65 cm. Le q-ratio a été calculé pour chacune des parcelles. Les résultats montrent que les trois régimes BDq prescrits (intensif, modéré et peu intense) permettent des intensités d’abattage (Fl) raisonnables, en pourcentage du volume extrait (V_ext) et de la biomasse (W_ext). V_ext et Fl pour la strate 1 ont varié entre 39,94-62,30 m³/ha et 11,22-18,18 % et entre 30,44-51,33 m³/ha et 10,02-17,57 % pour la strate 2. Pour la biomasse, W_ext et Fl varient entre 18,46-29,82 t/ha et 9,40-15,95 % pour la strate 1 et entre 14,16-24,82 t/ha et 9,73-17,50 % pour la strate 2. Ces constats indiquent que l’application de la méthode BDq dans les forêts tropicales mixtes et complexes du Nigeria permettrait d’obtenir des peuplements intéressants.

Mots-clés : gestion sylvicole à couvert continu, peuplements forestiers naturels, surface terrière résiduelle, traitement sylvicole, bois, distribution de Weibull, Nigeria.

RÉSUMÉ
Application de la méthode BDq dans les écosystèmes tropicaux à forêt mixte complexe au Nigeria

The absence of management practice/silvicultural treatments in the complex tropical mixed forests of Nigeria has led to uncontrolled logging in natural forest stands and loss of biodiversity. To sustain production, protection and conservation in these complex tropical mixed stands, this study proposes the application of a selection method — the BDq method (B: basal area, D: maximum diameter, q-ratio) to manage these stands. Two strata were used as a pilot test: stratum 1 consisted of 15 plots and stratum 2 of 2 plots, each with an area of 0.25 ha. Only trees with a diameter at breast height (d) ≥ 10.0 cm were considered in this study. Harvesting with the BDq method was quantified, by setting B at 20 m², 25 m² and 30 m²/ha corresponding respectively to heavy, medium and light harvesting regimes. D was set at 65 cm and the q-ratio was computed for each plot. The results showed that the three BDq regimes prescribed (heavy, medium and light) yielded reasonable felling intensities (Fl), derived as the percentage of extracted volume (V_ext) and biomass (W_ext). The V_ext and Fl for stratum 1 ranged from 39,94-62,30 m³/ha and 11,22-18,18%; the results for stratum 2 were 30,44-51,33 m³/ha and 10,02-17,57%. For biomass, the W_ext and Fl ranged from 18,46-29,82 t/ha and 9,40-15,95% for stratum 1 and 14,16-24,82 t/ha and 9,73-17,50% for stratum 2. These findings show that applying the BDq method to the complex tropical mixed forests of Nigeria would yield attractive stands.

Keywords: continuous cover forestry, natural forest stands, residual basal area, silvicultural treatment, timber, Weibull distribution, Nigeria.

ABSTRACT
Application of the BDq method to complex tropical mixed forest ecosystems in Nigeria

La ausencia de prácticas de gestión y tratamientos silvícolos en los complejos bosques mixtos tropicales de Nigeria ha provocado la tala incontrolada en las masas forestales naturales y la pérdida de biodiversidad. Con el objetivo de favorecer la producción, la protección y la conservación de estas complejas masas mixtas tropicales, este estudio propone la aplicación de un método de selección —el método BDq (B: área basal, D: diámetro máximo, ratio q)— para gestionarlas. Se utilizaron dos estratos como prueba piloto: el estrato 1 constaba de 15 parcelas y el estrato 2, de 7 parcelas, cada una con una superficie de 0,25 ha. En este estudio sólo se consideraron los árboles con un diámetro a la altura normal (D) ≥ 10,0 cm. Se cuantificó el aprovechamiento maderero con el método BDq, fijando B en 20 m²/ha, 25 m²/ha y 30 m²/ha, correspondientes respectivamente a los regímenes de cosecha intensiva, media y ligera. D se fijó en 65 cm y se calculó el ratio q para cada parcela. Los resultados mostraron que los tres regímenes de BDq prescritos (intensivo, medio y ligero) dieron lugar a intensidades de tala (Fl) razonables, derivadas del porcentaje de volumen extraído (V_ext) y de la biomasa extraída (W_ext). El V_ext y el Fl del estrato 1 obtenidos fueron de 39,94-62,30 m³/ha y 11,22-18,18% y de 30,44-51,33 m³/ha y 10,02-17,57% para el estrato 2. Los resultados del estrato 2 fueron de 18,46-29,82 t/ha y 9,40-15,95% para el estrato 1 y 14,16-24,82 t/ha y 9,73-17,50% para el estrato 2. Estos resultados muestran que la aplicación del método BDq a los complejos bosques mixtos tropicales de Nigeria permitiría obtener producciones de masas forestales interesantes.

Palabras clave: silvicultura de cobertura continua, masas forestales naturales, área basal residual, tratamiento silvícola, madera, distribución de Weibull, Nigeria.

RESUMEN
Aplicación del método BDq a los ecosistemas forestales mixtos tropicales complejos de Nigeria

Weibull, Nigeria.
Introduction

The tropical rain forest is one of the most diverse biomes of the world (Dupuy et al., 1999; Turner, 2001). It is characterised by multiple species composition and multi-layered structure (Temesgen et al., 2014). Such complex ecosystems provide a wider array of benefits and can address some ecological and environmental issues compared to monoculture stands (Schütz et al., 2012). To sustain production, protection and conservation in the tropical forest ecosystem, there is a need to adopt effective management practice(s). Up to the present time, there is little or no management practice/silvicultural treatments in the complex tropical mixed forests of Nigeria. This is evidence in the uncontrolled exploitation of natural forest stands in the country.

A well-known management system that will ensure the sustainability of production, protection and conservation in the tropical mixed forest stand is Continuous Cover Forestry (CCF). CCF is a management system that is “characterised by selective harvesting and natural regeneration” (Schütz et al., 2012). Its operability is based on certain principles which include: continuous cover (avert large clear-felling), stability (sustain stable forest structure) and naturalness (biodiversity) (Davies et al., 2008). Mason et al. (1999) asserted that to ensure continuous cover, trees on stand > 0.25 ha should not be completely harvested. The benefits of managing forest stand under the CCF systems include but not limited to improve ecological resilience, maintain the biodiversity of habitats, enhance the stands capacity to resist climate change, improve carbon sequestration potential, aesthetic and recreational value etc. (Guldin, 2011; von Gadow et al., 2012; Schütz et al., 2012). Despite the importance of the CCF system, the system has not been applied to the forest ecosystems of Nigeria.

The selection method in the CCF systems can best be achieved with the BDq method (Guldin, 1991). The “BDq method refers to the stand structure that can be uniquely determined for any combination of residual basal area (B), maximum retained diameter class (D), and negative exponential constant between diameter classes (q)” (Guldin, 1991). Under the BDq method, the harvest is quantified by specifying values for the residual basal area (B), maximum diameter (D) and the q-factor (q). The B, D and q parameters are then used to derive the target (ideal) stand (Graz and von Gadow, 2005; Guldin, 1991). The distribution of the target stand is then compared to the actual stand; and harvest (allowable cut) is prescribed by the difference between the two stands (Guldin, 1991). Harvest is only permitted for those trees that exceed the diameter distribution of the target stand. The BDq has been consistently used in the management of uneven-aged stands in different parts of the world (Guldin, 1991; Baker et al., 1996; Cancino and von Gadow, 2002; Graz and von Gadow, 2005; Brzeziecki and Kornat, 2011; Drozdowski et al., 2014; Sharma et al., 2014).

To date, there is neither any proper management system nor silvicultural treatment been carried out in the complex tropical mixed stands in Nigeria. It is expected that the use of the BDq method will help to sustain production, protection and conservation in the complex tropical mixed forest ecosystem of the region. Therefore, the main objective of this study is to evaluate the use of BDq method in the management of the complex mixed stand in Nigeria.
Methodology

Data

The data for the study were collected from two strata located in Cross River State and Ondo State of Nigeria. Both states are within the tropical rain forest zone of the country. Stratum 1 consisted of 15 plots systematically demarcated in Ikrigon and Cross River State Forest Reserves (Ikrigon+CRSFR). Whilst stratum 2 comprised of 7 plots demarcated in the natural stand of Oluwa Forest Reserve, Ondo State (see figure 1). Each plot has an area of 0.25 ha (i.e., 50 m x 50 m). Systematic sampling technique was used for the sample plots. Trees within each plot were identified and enumerated by expert taxonomist to the species level. Flora of West Tropical Africa (Hutchinson et al., 2014) was used for the authentication of the identified species. Only trees with diameter at breast height (d) ≥ 10.0 cm that were considered in this study. Diameters at base and breast of individual tree were measured using a diameter tape while the measurement of tree height was achieved using a vertex. Important stand variables such as the number of trees per ha, basal area per ha, quadratic mean diameter, volume per ha and aboveground biomass in tonnes per ha were computed from the data sets (table I). The individual tree volume was estimated using the volume equations developed for tropical forest trees in Nigeria by Akindele and LeMay (2006). The pan tropical aboveground biomass equation (Chave et al., 2014) was used to estimate the tree biomass. The biomass function requires diameter, height and wood density as input variables. Wood density of individual tree species was retrieved from the global wood density database (Zanne et al., 2009).

Before the application of the BDq method, the tree species were classified as timber, non-commercial timber and trees for fruits. The BDq method was then applied to the timber species. A list of the commercial timber species is presented in the appendix (tables A.1. and A.2.).

Tree diameter characterisation

Fitting the 3-parameter Weibull function (3P-Weibull)

The 3-parameter Weibull function (3P-Weibull) was used to describe the diameter distribution of the timber species in the complex mixed tropical forest ecosystems. This model is simple and flexible and is more suitable than the 2-parameter Weibull function for describing theoretical uneven-aged (or irregular) truncated stands, namely with a minimum diameter inventory. The probability density function (pdf) and cumulative distribution function (cdf) are expressed as (Gorgoso-Varela and Rojo-Alboreca, 2014):
where \(f(x) \) is the relative frequency of tree; \(x \) represents the continuous random variable (i.e., tree diameter); \(\alpha \) is the shape parameter \((\alpha > 0)\); \(\beta \) represents the scale parameter \((\beta > 0)\); \(\gamma \) is the location parameter. Three frequently used methods were used to fit the 3P-Weibull to the individual plot data from both zones: maximum likelihood (ML), moments (MOM) and percentile. A general adjustment was used for all methods by taking the location \((\gamma)\) as the minimum observed tree diameter in each plot due the suitability of this value for theoretical distributions with “J reversed” shape.

Maximum likelihood (ML) estimation

The ML estimator defined by equations (3) and (4) was used to estimate the shape and scale parameter of the 3P-Weibull. This method was recently used by Gorgoso-Varela et al. (2020):

\[
\frac{1}{n} \sum_{i=1}^{n} (x_i - \gamma)^\alpha \ln(x_i - \gamma) = \frac{1}{\alpha} \sum_{i=1}^{n} (x_i - \gamma) \] \[3\]

\[
\beta = \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \gamma)^\alpha \right)^{\frac{1}{\alpha}} \] \[4\]

where \(x \) represents tree diameter and \(n \) is the number observation in a plot. The LIFEREG procedure in SAS/STAT™ (SAS Institute Inc., 2004) was used to estimate the shape and scale parameters.

Moments

This method is based on the relationship between the parameters of 3P-Weibull and the first and second diameter moment i.e., arithmetic mean and variance, respectively; expressed as equation (5) and (6). This method was recently used by other researchers (Gorgoso-Varela et al., 2020; Pogoda et al., 2020; Sun et al., 2019):

\[
\beta = \frac{\bar{d} - \gamma}{\Gamma\left(1 + \frac{2}{\alpha}\right)} \] \[5\]

\[
\sigma^2 = \frac{(\bar{d} - \gamma)^2}{\Gamma^2\left(1 + \frac{1}{\alpha}\right)} - \frac{\Gamma\left(1 + \frac{2}{\alpha}\right) - \Gamma^2\left(1 + \frac{1}{\alpha}\right)}{\Gamma^2\left(1 + \frac{1}{\alpha}\right)} \] \[6\]

where \(\gamma \) represents the location parameter – taken as the smallest diameter of the plot (i.e., 10 cm); \(\bar{d} \) is the arithmetic mean diameter; \(\sigma^2 \) is the variance and \(\Gamma(\cdot) \) is the gamma function. The bisection iterative procedure (Gerald and Wheatley, 1989) was used to solve equations (5) and (6) in SAS/STAT™ (SAS Institute Inc., 2004).

Percentile

This method is based on the relationship between the parameters of 3P-Weibull and the diameter percentiles. The Dubey (Dubey, 1967) percentile method was used in this study. In this method the scale \((\beta)\) and shape \((\alpha)\) parameters of the 3P-Weibull function were estimated with the following equations:

\[
\beta = P_{03} - \gamma \] \[7\]

\[
\alpha = \ln \left[\frac{\ln \left(\frac{1 - r}{\ln \left(\frac{1 - r}{p_r} \right)} \right)}{\ln \left(\frac{p_r - \gamma}{p_\gamma - \gamma} \right)} \right] \] \[8\]

Table I.

Descriptive statistics of the stand variables from the two strata.

Strata	Statistics	N (trees/ha)	G (m²/ha)	Dg (cm)	V (m³/ha)	W (tons/ha)
1 (15 plots)	Mean	282	24.1	32.6	515	238
	SD	78	9.1	3.5	209	71
	Minimum	168	11.0	27.3	195	121
	Maximum	440	40.9	39.6	919	372
2 (7 plots)	Mean	278	19.8	29.9	390	162
	SD	57	6.5	2.4	163	73
	Minimum	200	14.5	27.2	267	98
	Maximum	352	31.7	34.5	711	306

N: number of trees per ha; G: basal area per ha; Dg: quadratic mean diameter; V: volume per ha; W: aboveground biomass; SD: standard deviation.
where \(d_{63} \) is the diameter corresponding to the 63rd percentile; \(\gamma \) is location parameter; \(r \) is equal to 0.97; \(t \) is 0.17; \(p \), and \(p' \) represent the diameters corresponding to the 97th and 17th percentiles, respectively.

Evaluation statistics

The consistency of the 3P-Weibull function fitted with MLP, moments and percentile was evaluated with Kolmogorov-Smirnov statistic (Dn), Cramér-von Mises statistic (\(\omega^2 \)), mean square error (MSE) and bias. The smaller value of the evaluation of all statistics indicates a better fit:

\[
Dn = \max \{ \max_{x \in \mathcal{X}} |F(x) - F_0(x)|, \max_{x \in \mathcal{X}} |F_0(x) - F(x)| \} \quad [9]
\]

\[
\omega^2 = \sum_{i=1}^{n} \left(\frac{F(x_i) - \left(t - 0.5 \right)}{n} \right)^2 + \frac{1}{12n} \quad [10]
\]

\[
MSE = \frac{\sum_{i=1}^{n} (f(x_i) - f_0(x_i))^2}{n} \quad [11]
\]

\[
Bias = \frac{\sum_{i=1}^{n} (f(x_i) - f_0(x_i))}{n} \quad [12]
\]

where \(F(x) \) and \(f(x) \) are the observed cumulative frequency distribution and theoretical cumulative frequency distribution, respectively; \(x \) (in cm) represents the diameter \(i \) ranged from 1 to \(n \); \(n \) is the number of observations; \(f(x) \) and \(f_0(x) \) are the observed and predicted relative frequency of trees, respectively.

The ideal irregular structures and the BDq method

The diameter distribution of uneven-aged forests can be expressed as (Cancino and von Gadow, 2002):

\[
N_i = k_0 e^{-k_i d_i} \quad [13]
\]

where \(N_i \) represents the number of trees in \(i \)th diameter class; \(d_i \) is the diameter class midpoint (in cm); \(k_0 \), the intercept and \(k_i \) represents the rate of change.

The constant rate of change between successive diameter class is defined by the quotient \(q \) (equation [14]). It provides information on the characteristics such as steepness or flatness of the inverse J-shaped distribution (Schütz et al., 2012):

\[
q = \frac{N_i}{N_{i+1}} \quad [14]
\]

Substituting \(N \) of equation (13) into equation (14) will give equation (15):

\[
q = k_0 e^{-k_i d_i} / k_0 e^{-k_{i+1} d_i} \quad [15]
\]

\[
q = e^{-k_i w} \quad [16]
\]

where \(w \) (in cm) is the width of the diameter class. Other parameters are previously defined. From equation (14), \(N_{i+1} \), can be defined as: \(N_i \times q \). Thus, given a specific value of \(q \) and with \(N_{i+1} \) known, the number of trees in individual diameter class can be computed (Graz and von Gadow, 2005).

This can be achieved with the general expression: \(N = N_i \times q^{(i-1)} \) where \(N_i \) is the number of trees in the largest diameter class (Cancino and von Gadow, 2002).

To quantify the available growing stock for the complex mixed tropical stands with a specified residual basal \(B, \) \(m^2/ha \) the following expression that is based on diameter class midpoint \(d_i \) was applied:

\[
B = K_2 \sum_{i=1}^{n} N_i \times d_i^2 ; \quad \text{where} \quad K_2 = \pi/40000 \quad [17]
\]

Substituting \(N_i = N_i \times q^{(i-1)} \) into equation (17) give:

\[
B = K_2 \sum_{i=1}^{n} N_i \times q^{(i-1)} \times d_i^2 \quad [18];
\]

which when rearrange will give:

\[
B = N_i \times K_3 \sum_{i=1}^{n} q^{(i-1)} \times d_i^2 \quad \equiv N_i \times K_3 \quad \text{where} \quad K_3 = K_2 \sum_{i=1}^{n} q^{(i-1)} \times d_i^2 \quad [19]
\]

If \(B = N_i \times K' \), then \(N_i = B/K'_i \). Thus \(K'_i \) is also relevant in the computation of the diameter distributions.

Specifying the residual basal area \(B, \) cm, maximum diameter \((D, \) cm) and \(q \)-ratio for the tropical mixed forest

Under the BDq method, the harvest is often specified first by defining: the residual basal area per ha \(B, \) \(m^2/ha \), maximum diameter \((D, \) cm) and \(q \)-ratio (i.e., the quotient).

In this study, three BDq regimes were evaluated for the tropical mixed forests based on the residual basal area \(B, \) \(m^2/ha \). Since there are no previous studies in this region to support the choice of residual basal, \(B \) was intuitively set at 20, 25 and 30 m/ha corresponding to heavy, medium and light-harvesting regimes, respectively. For beech (Fagus sylvatica L) stands in Central Europe Schütz et al. (2016) proposed closely values of 20 and 24 m/ha. The proportional residual basal area \(B \) corresponding to the managed trees (timber species) was used for the calculations. This is to minimize overexploitation in as much as moderate allowable cut will be possible in the smaller diameter class. Since the minimum harvesting diameter for industrial roundwood is between 30 and 35 cm (Dupuy et al., 1999), the maximum diameter \((D) \) was set at 65 cm for the tropical forest. This is the diameter beyond which it is expected that a tree should not be considered for timber purpose. Such commercial timber trees with diameter \(D \) will be retained under the ecological system called “Green Tree Retention (GTR)” Vanha-Majamaa and Jalonen, 2001. Other non-timber species such as Ricinodendron heudelotii (Baill.) Heckel, Parkia bicolor A. Chev., Diospyros crassiflora Hiern will also be managed under GTR.

The quotient \(q \) was computed for each plot from the tropical forest data as the arithmetic mean of the values obtained from two successive diameter classes. A large value (\(\geq 1.69 \)) will yield a high ratio of small trees to larger ones – implies the production of smaller sawn-timber. Whilst a small value (\(\leq 1.1 \)) will produce a high ratio of small trees to larger ones – implies the production of larger sawn-timber (Guldin, 1991).
Application of the BDq: the felling intensity (FI), volume (V, m3/ha) and biomass (W, tons/ha) to extract

Diameter distribution of the target (i.e., ideal) stand derived was compared by the BDq parameters and the actual distribution derived from the inventory data. The difference between the two distributions was used to determine the number of trees per ha to extract from the stand (Guldin, 1991) and the corresponding volume and biomass. To ensure sustainability, the felling intensity (FI) was defined as:

$$FI = \begin{cases} \frac{\sum_{i=1}^{n}(N_i - N_{(i+1)i}P_i)}{P_i} : & \text{if } (N_i - N_{(i+1)i}) > 0 \\ 0 : & \text{Otherwise} \end{cases}$$

[20]

where FI is the felling intensity; N_i represents the number of trees per ha in diameter class in actual diameter distribution; $N_{(i+1)i}$ number of trees per ha in diameter class directly higher to i in the target (ideal) diameter distribution; P_i represents the product (i.e., volume or biomass) of diameter class i and P_t represents the total actual products (volume or biomass).

Results and discussion

The descriptive statistics of the estimated location (γ), scale (β) and shape (α) parameters of the Weibull distribution by maximum likelihood, moments and percentiles are presented in Table II. The computed Weibull location parameter was the same for all methods because the parameter was taken as the minimum observed diameter per inventory plot. The mean values of the location parameter for stratum 1 (Ikrigon+CRSFR) and stratum 2 (Oluwa FR) were 10.8467 and 10.4428, respectively. This parameter marks the beginning of the diameter distribution. A similar adjustment has been used to achieve good performance with Weibull distribution in the tropical rain forest zone (Ogana et al., 2015; Ogana and Gorgoso-Varela, 2015). The estimated scale and shape parameters varied across the estimation methods. The values of the estimated parameters reflect an ideal structure of all-aged natural forest i.e., inverse J-shaped diameter distributions. Of the three parameters of the Weibull distribution, the shape parameter is the most important with respect to the BDq method. This is based on the fact that it determines the shape of the diameter distributions. A value of $\alpha \leq 1$ produces an inverse J-shaped (Vinet and Zhedanov, 2011). The mean values of the shape parameter (α) for stratum 2 were within the limit $\alpha \leq 1$ especially, estimates from moments and percentile methods.

Table II.
Parameter values for the Weibull distribution fitted using three estimation methods.

Strata	Method	Par.	Mean	SD	Minimum	Maximum
1 (N=15)	ML	γ	10.8467	1.0343	10.0000	14.0000
		β	20.0789	4.1944	14.5138	29.7753
		α	1.2091	0.2410	0.8387	1.8861
	Moment	γ	10.8467	1.0343	10.0000	14.0000
		β	19.4796	4.5537	13.1217	29.7334
		α	1.1856	0.2818	0.8529	1.9288
	Percentile	γ	10.8467	1.0343	10.0000	14.0000
		β	19.9762	5.8586	12.5420	31.3400
		α	1.1210	0.2448	0.7850	1.7595
2 (N=7)	ML	γ	10.4428	0.3047	10.0000	10.9000
		β	14.0344	1.9001	11.6868	17.6960
		α	1.0266	0.0905	0.8854	1.1814
	Moment	γ	10.4428	0.3047	10.0000	10.9000
		β	12.9714	1.9798	10.7358	16.6752
		α	0.9303	0.1489	0.7180	1.1855
	Percentile	γ	10.4428	0.3047	10.0000	10.9000
		β	11.5551	1.9195	9.6640	15.3800
		α	0.9870	0.1188	0.8604	1.1721

Par.: parameter; SD: standard deviation; ML: maximum likelihood.
Characterisation of the natural mixed strata considering timber species according to shape parameter α of the Weibull distribution fitted by moments.

Strata	Uneven-aged ($\alpha \leq 1$)	Two-aged ($1 < \alpha \leq 1.35$)	Even-aged ($\alpha > 1.35$)	Total plots
1	6 (40%)	5 (33.3%)	4 (26.7%)	15
2	6 (85.7%)	1 (14.3%)	0 (0%)	7

Characterisation of the natural stand strata considering timber species according to the shape parameter α of the Weibull distribution fitted by moments showed that 40% of the plots was classified as uneven-aged ($\alpha \leq 1$), 33.3% as two-aged i.e., “semi-regular” ($1 < \alpha \leq 1.35$) and 26.7% as even-aged ($\alpha > 1.35$) in stratum 1 (Ikrigon+CSFR) (table III). However, in stratum 2 (Oluwa forest FR), 85.7% of the plots were classified as uneven-aged and 14.3% as two-aged. No plot was in the class of even-aged. It is essential to recognise two-aged stands because they could be changed to uneven-aged without considerable alteration of their present structure.

The result of the evaluation statistics showed that the Weibull distribution fitted by maximum likelihood, moments and percentile performed better in the first stratum (Ikrigon+CRSFR) compared with the second stratum (Oluwa forest) (table IV). The Weibull distribution fitted by moments had the smallest Kolmogorov-Smirnov statistic (D_n) (0.105100) and Cramér-von Mises statistic (ω^2) (0.110735) in stratum 1 (Ikrigon+CSFR) and biomass (W_{ext}) (0.115378) in stratum 1 (Ikrigon+CSFR) (table IV). It also presented the smallest Cramér-von Mises statistic (ω^2) (0.115378) and bias (0.000173) in stratum 1 (Ikrigon+CSFR) (table IV). It also presented the smallest Cramér-von Mises statistic (ω^2) (0.082868) and bias (0.000039) in stratum 1 (Ikrigon+CSFR) (table IV). The three regimes specified were heavy (20 m2/ha), medium (25 m2/ha) and light (30 m2/ha). For each regime and stratum, the ideal basal area per ha applied ($B_{applied}$) was lower compared with the specification for that regime. The values only correspond to the quantity of timber species in the stratum. Only timber species are managed under the BD_q method; whilst some species will be retained as GTR, including non-timber and fruit trees. If a heavy BD_q regime is to be considered for the uneven-aged plots in stratum 1, the number of trees per ha to extract (N_{ext}) is 28.56 N/ha with corresponding volume (V_{ext}) of 62.30 m3/ha and biomass (W_{ext}) of 29.82 tons/ha, respectively. The required felling intensities in % volume and biomass of the total of the managed species (F_i) will be 18.18 and 15.95, respectively. In the case of stratum 2 using heavy BD_q regime, using moments can be disaggregated from a yield table and apply. A parallel study by Sun et al. (2019) also reported good fit with the Weibull function fitted by moment for characterising diameter distributions in uneven-aged mixed stands of pine and oak. In Nigeria, Ogana (2020) also observed that using moment-based estimator to fit the Weibull distribution produced results comparable to other complex estimators. The author evaluated ten estimators used for the Weibull distribution in the study.

The line plots of the mean square error statistic describing the fit of the Weibull distribution fitted by ML, moments and percentile across the diameter classes are presented in figures 2 and 3. The line patterns produced by the Weibull distribution fitted by the three methods were the same – characterised by increasing and decreasing behaviour. However, the MSE declined steadily in the larger diameter classes in both strata.

The mean statistics of the q-ratio for the total plots and the uneven-aged plots (i.e., plots considering timber species) in the two strata are shown in table V. The mean values of the q-ratio for the uneven-aged plots in stratum 1 and stratum 2 were 1.479 and 1.487, respectively. The ratio will ensure the sustainable production of both sawn-timber in the mixed stands. Guldin (1991) asserted that a larger ”q-ratio will steepen the ideal (target) distribution, retaining more small trees than larger ones and in consequence, increasing harvesting volume in the mixed stands”. An ideal q-ratio could be intuitively chosen for a stand depending on the economic policy or management goal (Graz and von Gadow, 2005). However, it is more suitable to compute q-ratio for the individual plot, such a procedure will improve accuracy and provide flexibility.

The results of a simulated logging by applying the three regimes of BD_q to the two strata in which the maximum diameter (D) was set at 65 cm and q-ratio derived by plot is shown in table VI. The three regimes specified were heavy (20 m2/ha), medium (25 m2/ha) and light (30 m2/ha). For each regime and stratum, the ideal basal area per ha applied ($B_{applied}$) was lower compared with the specification for that regime. The values only correspond to the quantity of timber species in the stratum. Only timber species are managed under the BD_q method; whilst some species will be retained as GTR, including non-timber and fruit trees. If a heavy BD_q regime is to be considered for the uneven-aged plots in stratum 1, the number of trees per ha to extract (N_{ext}) is 28.56 N/ha with corresponding volume (V_{ext}) of 62.30 m3/ha and biomass (W_{ext}) of 29.82 tons/ha, respectively. The required felling intensities in % volume and biomass of the total of the managed species (F_i) will be 18.18 and 15.95, respectively. In the case of stratum 2 using heavy BD_q regime,
Figure 2. Behaviour of the MSE for the fits by maximum likelihood, moments and percentile in each diameter class for stratum 1.

Figure 3. Behaviour of the MSE for the fits by maximum likelihood, moments and percentile in each diameter class for stratum 2.
Next will equal to 34.60 N/ha and will yield V_{ext} and W_{ext} of 51.33 m3/ha and 24.68 tons/ha, respectively. The FI_M for volume and biomass in the simulated logging will be 17.57 and 17.50, respectively. To our knowledge, this is the first application of the BDq method to a complex mixed tropical forest ecosystem, especially in Nigeria.

The graph of the observed and target (ideal) diameter distributions of timber species derived by applying three regimes of B, with $D = 65$ cm and q computed for each plot in the two strata is presented in figure 4. Four representative plots (2 each from stratum 1 and stratum 2) with the highest density were used. From stratum 1, plot 4 with a q factor = 1.43, harvesting is only possible in diameter classes of 37.5, 47.5 and 52.5 cm. The commercial timber species in those classes are *Cola gigantea* A. Chev., and *Gmelina arborea* Roxb. Other commercial timber species such as *Dialium pachyphyllum* Harms, *Dialium guineense* Willd. could also be harvested in the stratum (plot 6). The commercial timber such as *Albizia perrieri* (Drake) R. Vig., *Afzelia africana* Sm., *Dialium guineense* Willd., *Milicia excelsa* (Welw.) C.C. Berg, *Triplochiton scleroxylon* K. Schum., *Malacantha alnifolia* (Baker) Pierre, *Cedrela odorata* L., *Cleistopholis patens* (Benth.) Engl. & Diels, *Antiaris toxicaria* Lesch., and *Hannoa klaineana* Pierre ex Engl.

Adoption of the BDq selection method will ensure sustainable management of the mixed stands. And as part of the CCF systems, the method will enhance the stands’ capacity to resist climate change, improve carbon sequestration potential, promote better biodiversity of habitats, etc. (Schütz et al., 2012).

Table V.
Mean statistics of the q factor for total plots and uneven-aged plots in both strata.

Strata	Mean	SD	Maximum	Minimum
1 (total plots)	1.479	0.150	1.750	1.200
1 (uneven-aged plots)	1.479	0.171	1.678	1.200
2 (total plots)	1.489	0.137	1.778	1.361
2 (uneven-aged plots)	1.487	0.149	1.778	1.361

Table VI.
Mean values in each stratum after application of three regimes of the BDq method for $D = 65$ cm and q calculated by plot.

Strata	Regime	B_{total} (m2/ha)	$B_{applied}$ (m2/ha)	N_{ext} (Pies/ha)	V_{ext} (m3/ha)	FI_M (%V)	FI_T (%V)	W_{ext} (tons/ha)	FI_M (%W)
1 (total plots)	Heavy	20	15.52	69.43	190.66	37.19	30.94	82.05	36.53
	Medium	25	19.41	52.94	166.11	31.47	26.20	70.77	30.77
	Light	30	23.29	41.99	147.07	27.15	22.59	62.32	26.47
1 (uneven-aged plots)	Heavy	20	15.52	28.56	62.30	18.18	14.62	29.82	15.95
	Medium	25	19.41	15.55	47.65	13.23	10.98	22.22	11.63
	Light	30	23.29	9.84	39.94	11.22	8.88	18.46	9.40
2 (total plots)	Heavy	20	14.69	30.36	44.74	15.70	11.69	21.56	15.72
	Medium	25	18.37	18.66	33.84	11.34	8.79	15.97	11.14
	Light	30	22.04	12.49	26.09	8.59	6.77	12.14	8.34
2 (uneven-aged plots)	Heavy	20	14.69	34.60	51.33	17.57	13.32	24.68	17.50
	Medium	25	18.37	21.77	39.48	13.23	10.26	18.63	12.99
	Light	30	22.04	14.57	30.44	10.02	7.90	14.16	9.73

B: residual basal area for the commercial managed species; N_{ext}: number of trees to extract; V_{ext}: volume to extract; FI_M: felling intensity in % volume and biomass of the total of the managed species; FI_T: felling intensity in % of the total volume of species in the stratum (timber, non-timber and trees for fruits); W_{ext}: biomass to extract.
Figure 4.
Observed and ideal diameter distributions of timber species derived by applying BDq method for three values of B, $D = 65$ cm and q computed for the individual plots in the two strata.
Table A.1.
Commercial timber species in stratum 1.

S/N	Species	S/N	Species	S/N	Species
1	Afzelia africana	26	Dialium guineense	51	Pterocarpus mibbreadii
2	Albizia gummifera	27	Dialium pachyphyllum	52	Pterocarpus osun
3	Albizia lebbeck	28	Distemonanthus benthamianus	53	Pterocarpus santanaloides
4	Albizia perrieri	29	Dracaena mannii	54	Pterocarpus soyaux
5	Albizia zygia	30	Entandrophragma cylindricum	55	Pterygota macrocarpa
6	Allanblackia floribunda	31	Funumia africana	56	Pycnanthus angolensis
7	Alstonia boonii	32	Funumia elastica	57	Spathodea campanulata
8	Anthocleista vogelli	33	Gmelina arborea	58	Staudtia stipitata
9	Antiaris toxicaria	34	Gossweilerodendron balsamiferum	59	Sterculia setigera
10	Baillonella toxisperma	35	Hylodendron gabunense	60	Strombosia pustulata
11	Barteria nigritana	36	Khaya grandifoliola	61	Symphonia globulifera
12	Berlinia confusa	37	Khaya ivorensis	62	Tectona grandis
13	Blighia sapida	38	Klainedoxa gabonensis	63	Terminalia superba
14	Borassus aethiopium	39	Lannea welwitschii	64	Tetrapleura tetraptera
15	Brachystegia nigerica	40	Lophira alata	65	Treculia obovoidea
16	Carapa procera	41	Lova trichilioides	66	Uapaca guineensis
17	Ceiba petandra	42	Margaritaria discoidea	67	Uapaca staudtii
18	Celtis zenkeri	43	Milicia excelsa	68	Xylopia aethiopica
19	Chrysophyllum giganteum	44	Musanga cecropioides	69	Zanthoxylum zanthoxyloides
20	Cleistopholis patens	45	Pausinystalia talbotii		
21	Coelocarya preussii	46	Pentaclethra macrophylla		
22	Cola gigantea	47	Pentadesma butyracea		
23	Combretodendron macrocarpum	48	Pierroedendor africana		
24	Cyclocidiscus gabunnessis	49	Piptadeniastrum africanum		
25	Daniella ogea	50	Pseudospondias microcarpa		

Table A.2.
Commercial timber species in stratum 2.

S/N	Species	S/N	Species	S/N	Species
1	Afzelia bipindensis	22	Lova trichilioides	23	Malacantha alnifolia
2	Albizia ferruginea	24	Mansonia altissima	25	Maranthes robusta
3	Anthocleista djalonensis	26	Milicia excelsa	27	Mitragyna stipulosa
4	Antiaris toxicaria	28	Musanga cecropioides	29	Nesogordonia papaverifera
5	Bombax buonopozense	30	Pausinystalia talbotii	31	Picralima nitida
6	Brachystegia eurycoma	32	Pterygota bequaertii	33	Pterygota macrocarpa
7	Carapa procera	34	Pycnanthus angolensis	35	Staudtia stipitata
8	Cedrela odorata	36	Spathodea campanulata	37	Sterculia rhinopetala
9	Ceiba pentandra	38	Sterculia tragacantha	39	Strombosia pustulata
10	Celtis zenkeri	40	Triplochiton scleroxylon	41	Uapaca heudelotii
11	Cleistopholis patens	42			
12	Cordia millenii	43			
13	Distemonanthus benthamianus	44			
14	Entandrophragma angolense	45			
15	Entandrophragma cylindricum	46			
16	Ficus mucuso	47			
17	Funtumia elastica	48			
18	Guarea cedrata	49			
19	Hannoa klaineana	50			
20	Khaya ivorensis	51			
Conclusion

This study has successively applied the BDq method to the complex mixed tropical forests of Nigeria. Harvest in the stands was defined using three regimes of residual basal area (20, 25 and 30 m²/ha) with desirable felling intensities that would ensure the sustainability of the timber species. The number of trees to extract from the stand and the corresponding volume and aboveground biomass by using the BDq method were rational. Commercial timber species with a diameter greater than the 65 cm, together with other non-timber and trees for fruits will comprise the GTR system. Thus, with the adoption of BDq method more attractive stand will be produced.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Akindele S. O., LeMay V. M., 2006. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management, 226 (1-3): 41-48. https://doi.org/10.1016/j.foreco.2006.01.022

Baker J. B., Cain M. D., Guldin J. M., Murphy P. A., Shelton M. G., 1996. Uneven-aged silviculture for the loblolly and short-leaf pine forest cover types. In: General Technical Report Southern Research Station, USDA Forest Service, 50-118: iv, 65 p. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. https://doi.org/10.2737/so-grt-118

Brzeziecki B., Kornat A., 2011. Application of the BDq method in uneven-aged stands silviculture. Sylwan, 155 (9): 589-598. https://www.cabdirect.org/cabdirect/abstract/20113395708

Cancino J., von Gadaw K., 2002. Stem number guide curves for uneven-aged forests development and limitations. In: von Gadaw K., Nagel J., Saborowski J. (eds). Continuous Cover Forestry. Managing Forest Ecosystems, vol. 4, 163-174. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-015-9886-6_13

Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M. S., Delitti W. B. C., et al., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20 (10): 3177-3190. https://doi.org/10.1111/gcb.12629

Davies O., Haufe J., Pommerening A., 2008. Silvicultural principles of continuous cover forestry: a guide to best practice. Forestry Commission Wales, England, 111 p.

Drozdowski S., Bielak K., Buraczyk W., Gawron L., Jaros R., Zybara H., 2014. Silvicultural planning in complex structures of silver fir by means of the BDq method in Zagnańsk Forest District. Sylwan, 158 (9): 651-660. https://www.researchgate.net/profile/Stanislaw_Drozdowski2/publication/286935815_Silvicultural_planning_in_complex_structures_of_silver_fir_by_means_of_the_BDq_method_in_Zagnansk_Forest_District/links/56715f2408ae0d8b0cc2f0a0.pdf

Dubey S. D., 1967. Some Percentile Estimators for Weibull Parameters. Technometrics, 9 (1): 119-129. https://doi.org/10.1080/00401706.1967.10490445

Dupuy B., Maitre H.-F., Amsallem L., 1999. Tropical forest management techniques: a review of the sustainability of forest management practices in tropical countries. Working Paper, FAO/FPIRS/04. http://www.fao.org/3/a-x4110e.pdf

von Gadaw K., Zhang C. Y., Wehenkel C., Pommerening A., Corral-Rivas J., Korol M., et al., 2012. Forest Structure and Diversity. In: Pukkala T., von Gadaw K. (eds). Continuous Cover Forestry. Managing Forest Ecosystems, vol. 23, 29-83. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-007-2202-6_2

Gerald C. F., Wheatley P. O., 1989. Applied numerical analysis. 4th edition. Reading, MA, USA, Addison-Wesley Publishing Co.

Gorgoso-Varela J. J., Rojo-Alboreca A., 2014. Use of Gumbel and Weibull functions to model extreme values of diameter distributions in forest stands. Annals of Forest Science, 71: 741-750. https://doi.org/10.1007/s13595-014-0369-1

Gorgoso-Varela J. J., Ogana F. N., Ige P. O., 2020. A comparison between derivative and numerical optimization methods used for diameter distribution estimation. Scandinavian Journal of Forest Research, 35 (3-4): 156-164. https://doi.org/10.1080/02827581.2020.1760343

Graz F. P., von Gadaw K., 2005. Application of a 'stem number guide curve' for sustainable harvest control in the dry woodland savanna of northern Namibia. Southern African Forestry Journal, 204 (1): 37-44. https://doi.org/10.2989/10295920509505225

Guldin J. M., 1991. Uneven-aged BDq regulation of Sierra Nevada mixed conifers. Western Journal of Applied Forestry, 6 (2): 27-32. https://doi.org/10.1080/00401706.1967.10490445

Dubey S. D., 1967. Some Percentile Estimators for Weibull Parameters. Technometrics, 9 (1): 119-129. https://doi.org/10.1080/00401706.1967.10490445

Hutchinson J., Datziel J. M., Keay R. W. J., Hepper F. N., 2014. Flora of West Tropical Africa. Vol.1, Part 2. London, UK, Royal Botanical Gardens, Kew, 330 p.

Mason B., Kerr G., Simpson J., 1999. What is continuous cover forestry? Forestry Commission Information, Note 29. Forestry Commission, Edinburgh.
Ogana F. N., 2020. An evaluation of ten estimators for fitting two-parameter weibull function to Nigerian forest stands. Eurasian Journal of Forest Science, 8 (2): 129-139. https://doi.org/10.31195/ejeifs.712992

Ogana F. N., Gorgoso-Varela J. J., 2015. Comparison of estimation methods for fitting Weibull distribution to the natural stand of Oluwa forest reserve, Ondo State, Nigeria. Journal of Research in Forestry, Wildlife and Environment, 7 (2): 81-90. https://www.aajl.info/index.php/jrwe/article/view/125077

Ogana F. N., Osho J. S. A., Gorgoso-Varela J. J., 2015. Comparison of beta, gamma Weibull distributions for characterising tree diameter in Oluwa forest reserve, Ondo State, Nigeria. Journal of Natural Sciences Research, 5 (4): 28-36. https://iiste.org/Journals/index.php/JNSR/article/view/20167

Pogoda P., Ochał W., Orzeł S., 2020. Performance of Kernel estimator and Johnson SB function for modeling diameter distribution of black alder (Alnus glutinosa (L.) Gaertn.) stands. Forests, 11 (6). https://doi.org/10.3390/F11060634

SAS Institute Inc., 2004. SAS/STAT 9.1 User’s Guide (Vol. 1-7). Cary, NC, USA, SAS Institute Inc. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/References-Papers.aspx?ReferenceID=1625989

Schütz J. P., Pukkala T., Donoso P. J., von Gadow K., 2012. Historical emergence and current application of CCF. In: Pukkala T., von Gadow K. (eds). Continuous Cover Forestry. Managing Forest Ecosystems, vol. 23, 1-28. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-007-2202-6_1

Schütz J. P., Saniga M., Diaci J., Vrska T., 2016. Comparing close-to-nature silviculture with processes in pristine forest: lessons from Central Europe. Annals of Forest Science, 73: 911-921. https://doi.org/10.1007/s13595-016-0579-9

Sharma A., Bohn K., Jose S., Cropper W. P., 2014. Converting even-aged plantations to uneven-aged stand conditions: A simulation analysis of silvicultural regimes with slash pine (Pinus elliottii Engelm.). Forest Science, 60 (5): 893-906. https://doi.org/10.5849/forsci.13-097

Sun S., Cao Q. V., Cao T., 2019. Characterizing diameter distributions for uneven-aged pine-oak mixed forests in the Qinling Mountains of China. Forests, 10 (7): 596. https://doi.org/10.3390/f10070596

Temesgen H., Zhang C. H., Zhao X. H., 2014. Modelling tree height-diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316: 78-89. https://doi.org/10.1016/j.foreco.2013.07.035

Turner I. M., 2001. The Ecology of Trees in the Tropical Rain Forest. In: The Ecology of Trees. Cambridge Tropical Biology Series, Cambridge University Press, 298 p. https://doi.org/10.1017/cbo9780511542206

Vanh-Majamaa I., Jalonen J., 2001. Green tree retention in Fennoscandian forestry. Scandinavian Journal of Forest Research, 16 (1): 79-90. https://doi.org/10.1080/028275801300004433

Vinet L., Zhedanov A., 2011. A “missing” family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44: 085201. https://doi.org/10.1088/1751-8113/44/8/085201

Zanne A. E., Lopez-Gonzalez G., Coomes D. A., Ilic J., Jansen S., Lewis S. L., et al., 2009. Data from: Towards a worldwide wood economics spectrum. Global wood density database. Dryad, Dataset. https://doi.org/10.5061/dryad.234

Ogana et al. – Contribution des auteurs

Rôle du contributeur	Noms des auteurs
Conceptualization	F. N. Ogana
Data Curation	F. N. Ogana
Formal Analysis	J. J. Gorgoso-Varela
Methodology	F. N. Ogana
Resources	A. O. Onefeli
Visualization	F. N. Ogana, J. J. Gorgoso-Varela
Writing – Original Draft Preparation	F. N. Ogana
Writing – Review & Editing	J. J. Gorgoso-Varela, A. O. Onefeli