Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2018

Protein–Protein Interfaces Probed by Methyl Labeling and Proton-Detected Solid-State NMR Spectroscopy

Maximilian Zinke, Pascal Fricke, Sascha Lange, Sophie Zinn-Justin, and Adam Lange*© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Experimental Section
Sample preparation:

Three different protein samples were prepared: 1.) Isoleucine-C\(\delta\)1-methyl group-(\(^1\)H\(\delta\)1, \(^{13}\)C\(\delta\)1)-u-\(^{15}\)N-labeled gp17.1; 2.) Isoleucine-(\(^1\)H\(\delta\)1, \(^{13}\)C\(\delta\)1, \(^{13}\)C\(\gamma\)1, \(^{13}\)C\(\alpha\), \(^{13}\)CO)-u-\(^{15}\)N-labeled gp17.1; and 3.) A mixed sample containing 50% Isoleucine-C\(\delta\)1-methyl group-(\(^1\)H\(\delta\)1, \(^{13}\)C\(\delta\)1)-labeled gp17.1 and 50% u-\(^{15}\)N-labeled gp17.1. Protons at labile sites were 100% back-exchanged in all samples. Generally, gp17.1 protein was expressed and purified as described in Zinke et al. 2017, with the exception that \(^{12}\)C\(_6\)D\(_7\)-glucose was used instead of \(^{13}\)C\(_6\)D\(_7\)-glucose.

For either isoleucine labeling scheme, 60 mg/L of the precursor molecules 2-Ketobutyric acid-4-\(^{13}\)C-3,3-d\(_2\) (Sigma-Aldrich) or 2-Ketobutyric acid-\(^{13}\)C\(_4\)-3,3-d\(_2\) (“assignment precursor”, Sigma-Aldrich) (Supporting Information Figure S3) were added to the bacterial cultures 1 h prior to induction. Protein expression after IPTG induction was conducted for 3h. After protein purification, gp17.1 was stored at room temperature for 3 weeks to polymerize. Polymers were pelleted by ultracentrifugation at 500,000 x g for at least 10 h. From 2 L of bacterial culture, protein pellets of ~140 mg could be isolated after centrifugation for each sample.

For the mixed sample, isoleucine-C\(\delta\)1-methyl group-(\(^1\)H\(\delta\)1, \(^{13}\)C\(\delta\)1)-labeled gp17.1 was expressed from 0.5 L of bacterial culture as described above but with \(^{14}\)ND\(_4\)Cl instead of \(^{15}\)ND\(_4\)Cl as the sole nitrogen source. \(^{15}\)N-labeled gp17.1 was expressed from 0.5 L bacterial culture containing \(^{12}\)C\(_6\),D\(_7\)-glucose and \(^{15}\)ND\(_4\)Cl as the sole carbon and nitrogen sources. After purification, both gp17.1 species were united in a protein amount ratio of 1:1 before dialysis. Polymerization and ultracentrifugation were conducted as described above. A protein pellet of ~80 mg could be isolated after centrifugation. 1.9 mm rotors equipped with bottom spacers were filled with pelleted protein, a few DSS crystals for spectral referencing and temperature control\(^{[2]}\), and 1 \(\mu\)L of D\(_2\)O for field locking.
Solid-state NMR spectroscopy:

Solid-state NMR spectroscopy was conducted at an external magnetic field strength according to 900 MHz 1H Larmor frequency and with a 1.9 mm, four-channel (1H, 13C, 15N, 2H) probe. The magic angle spinning (MAS) frequency was set to 40 kHz for all experiments and the temperature calibrated to around +18°C by means of internally added DSS. Pulse program parameters, acquisition parameters and processing parameters for the presented experiments are summarized in Supporting Information Tables S1-S3.

The procedure for setting up the HccanH experiment for the isoleucine Cδ1 methyl assignment is not straightforward and thus explained in the following in detail: The hCγ1-CP is optimized with a 13C-detected 1D experiment for maximum signal on Cγ1. Note: This experiment might require many scans due to low signal-to-noise (S/N) ratio from the limited number of isoleucines in the protein and 13C detection with a 1.9 mm probe. Next, following an offset switch from Cγ1 to Cα, a DREAM pulse is further included in the pulse program, which is also optimized in a 1D 13C-detected experiment. Note: The S/N of this experiment is even lower and the magnetization stemming from the DREAM transfer is negative. An hCANH 1D experiment has to be set up following the conditions described in detail in Fricke et al. 2017.[3] After successful optimization, all steps can be assembled into the final HccanH experiment (hCγ1-CP, cγ1Cα DREAM, cαN-CP and nH-CP).

Analytical size-exclusion chromatography:

ΔC-7 and ΔC-14 gp17.1 mutants were expressed in 0.5 L M9 medium containing 15ND4Cl and 13C6,D7-glucose as the sole carbon and nitrogen sources, and purified as described previously. Storing the protein samples for 3 weeks at room temperature did not result in the protein solution undergoing a transition into a gel-like state (as observed for polymerizing gp17.1 at these concentrations usually). 200 µl of the protein samples (at a protein concentration of ~5 mg/mL) were directly loaded onto a Superdex
Increase 200 10/300 GL (GE Healthcare) column and equilibrated in the dialysis buffer (20 mM sodium phosphate, 500 mM sodium chloride, 1 mM EDTA, pH 7.4) using an Äkta pure 25 system (GE Healthcare). For molecular weight calibration, a Protein Standard Mix 15-600 kDa from Sigma-Aldrich was used.

Solution NMR spectroscopy:

Further 500 µl of these protein solutions were supplemented with 50 µl D$_2$O for field locking and used for solution NMR spectroscopy. Liquid-state NMR spectroscopy was conducted at an external magnetic field strength according to 750 MHz 1H Larmor frequency and a temperature of 25 °C. The protein correlation times were approximated by a method introduced by Anglister et al (via the amide proton T$_2$ values).[4]
Figure S1. Scheme of the 3D HNhH pulse program. White rectangles represent 90° pulses and black rectangles 180° pulses, unless stated otherwise. The blue box represents water suppression.

Figure S2. Scheme of the 2D HccanH pulse program. White rectangles represent 90° pulses and black rectangles 180° pulses, unless stated otherwise. The blue box represents water suppression.
Figure S3. Isoleucine precursors. 2-Ketobutyric acid-4-13C-3,3-d$_2$ is used to selectively label the Cβ1 methyl group of isoleucines for the collection of long-distance restraints. 2-Ketobutyric acid-13C$_4$-3,3-d$_2$ introduces multiple 13C labels into the isoleucine side chain allowing for the assignment of the Cβ1 methyl groups ("Assignment precursor").
Figure S4. Unambiguous (based on chemical shifts; cutoffs 15N \sim0.15 ppm, HN \sim0.05 ppm, H$^\delta 1$ \sim0.03 ppm) long-distance restraints visualized in a residue-residue plot. The horizontal axis represents the NH-groups, the vertical axis the isoleucine-C$^\delta 1$ groups. Intermolecular restraints are highlighted in magenta.
Figure S5. Size-exclusion chromatogram of ΔC-7 and ΔC-14 mutants of gp17.1. Protein samples were applied to a Superdex 200 Increase 10/300 GL column and separated with dialysis buffer (20 mM sodium phosphate, 500 mM sodium chloride, 1 mM EDTA, pH 7.4) using an Äkta system. For molecular weight calibration, a Protein Standard Mix 15-600 kDa from Sigma-Aldrich was used. The unit on the vertical axis is arbitrary.

Figure S6. Solution NMR HSQC spectra of ΔC-7 and ΔC-14 mutants of gp17.1 at 25 °C and 750 MHz external magnetic field. Correlation times of ~18 ns could be approximated for both mutants.
Table S1. Pulse program parameters for all required steps of the described experiments. All experiments were conducted at a magic angle spinning rate of 40.0 kHz and an external B₀ field corresponding to 900 MHz ¹H Larmor frequency.

Parameter	Value		
Experiment	**2D hCH**	**3D HNNH**	**2D HccanH**
Recycle delay	1 s	1.15 s	1 s
90° initial ¹H excitation pulse			
R.f. power	100 kHz	100 kHz	100 kHz
Duration	2.5 µs	2.5 µs	2.5 µs
Carrier position	0.4 ppm	8.5 ppm	0.4 ppm
¹H evolution time			
WALTZ r.f. power	3.4 kHz (¹N)	13.8 kHz (¹3C)	
WALTZ pulse duration	60 µs	60 µs	
WALTZ carrier position	117.7 ppm		
¹H-¹5N CP step			
¹H r.f. power	81 kHz		
¹H carrier position	8.5 ppm		
¹5N r.f. power	29.6 kHz		
¹5N carrier position	117.7 ppm		
Ramp shape	Ramp 80-100% on ¹H		
Duration	1400 µs		
¹5N evolution time			
WALTZ r.f. power	9.5 kHz (¹H)		
WALTZ pulse duration	40 µs		
WALTZ carrier position	8.5 ppm		
¹H-¹3CX CP step			
¹H r.f. power	52.5 kHz		
¹H carrier position	0.4 ppm		
¹3CX r.f. power	10.2 kHz		
¹3CX carrier position	60.3 ppm		
Ramp shape	Ramp 80-100% on ¹H		
Duration	6 ms		
¹3CX evolution time			
WALTZ r.f. power	2.8 kHz (¹H)		
WALTZ pulse duration	40 µs		
WALTZ carrier position	0.4 ppm		
¹H-¹5 CG1 CP step			
¹H r.f. power	52.5 kHz		
¹H carrier position	0.4 ppm		
¹5 CG1 r.f. power	10.2 kHz		
¹5 CG1 carrier position	28.4 ppm		
Ramp shape	Ramp 80-100% on ¹H		
Duration	1 ms		
¹5 CG1-¹5 CA DREAM/HORROR transfer			
DREAM pulse r.f. power	20.2 kHz		
DREAM pulse shape	Ramp 100-80%		
DREAM pulse duration	15 ms		
DREAM pulse carrier position	61.5 ppm		
¹5 CA-¹5 N CP step			
¹5 CA r.f. power	26.2 kHz		
¹5 CA carrier position	61.5 ppm		
¹5 N r.f. power	14.8 kHz		
¹5 N carrier position	117.7 ppm		
Ramp shape	Ramp 80-100% on ¹5 N		
Duration	10.5 ms		
90° ¹5 N-¹3 C flip pulses			
Table S2. Acquisition parameters for 2D and 3D spectra. The highest dimension is always the direct dimension.

Experiment	F1	F2	F3	ns	Total Number of acquired points	Total Time
2D hCH	10 ms (600) (15N)	30 ms (1610) (1H)	N/A	80	600	18 h 18 min
2D HccanH	10 ms (220) (1H)	8 ms (800) (1H)	N/A	360	220	1 d 6 h 35 min
3D HNhH	15 ms (104) (15N)	10 ms (80) (1H)	20.8 ms (1118) (1H)	24	8320	3 d 14 h 59 min
3D HNhH (mixed)	15 ms (104) (15N)	7.5 ms (60) (1H)	20.8 ms (1118) (1H)	32	6240	2 d 19 h 15 min
Table S3. Processing parameters. The highest dimension is always the direct dimension.

Experiment	Points after FT	Window function				
	F1	F2	F3	F1	F2	F3
2D hCH	2k (13C)	4k (1H)	N/A	sin², ϕ=60°	sin², ϕ=60°	N/A
2D HccanH	2k (1H)	2k (1H)	N/A	sin², ϕ=60°	sin², ϕ=60°	N/A
3D HNH	128 (15N)	128 (1H)	4k (1H)	sin², ϕ=60°	sin², ϕ=60°	sin², ϕ=60°
3D HNH (mixed)	128 (15N)	128 (1H)	4k (1H)	sin², ϕ=60°	sin², ϕ=60°	sin², ϕ=60°

Table S4. Determined chemical shift values for gp17.1 isoleucines (deposited in the BMRB: ID 27468). Chemical shifts were referenced using internal DSS and are given in ppm. For some residues, a second set of resonances was identified and is marked with grey background color. The backbone assignment for gp17.1 is deposited in the BMRB: ID 27099.

Residue	¹H	¹⁵N	¹³Cα	¹³Cy1	¹³C51	¹H51	
6	Ile	8.41	122.31	62.43	27.74	14.18	0.91
18	Ile	9.49	122.07	64.2	23.86	15.85	1.01
53	Ile	9.51	130.12	59.79	25.94	12.81	0.52
79	Ile	7.36	120.20	65.21	29.69	12.96	-0.09
89	Ile	9.22	117.81	60.37	28.85	15.16	0.97
128	Ile	9.68	129.16	59.89	27.64	14.59	1.13
128	Ile	9.46	130.90	60.02	28.19	14.59	1.10
130	Ile	8.95	121.18	57.88	24.85	14.04	0.80
135	Ile	9.01	129.06	61.46	27.99	14.15	0.58
135	Ile	9.15	130.04	63.52	28.29	14.16	0.86
143	Ile	9.81	124.78	60.18	28.28	13.39	0.36
150	Ile	7.54	116.75	62.79	28.19	14.04	0.78
150	Ile	7.54	116.75	62.66	28.10	14.04	0.72
[1] M. Zinke, P. Fricke, C. Samson, S. Hwang, J. S. Wall, S. Lange, S. Zinn-Justin, A. Lange,
Angew. Chemie Int. Ed. 2017, 1–6.

[2] A. Böckmann, C. Gardiennet, R. Verel, A. Hunkeler, A. Loquet, G. Pintacuda, L. Emsley,
B. H. Meier, A. Lesage, J. Biomol. NMR 2009, 45, 319–327.

[3] P. Fricke, V. Chevelkov, M. Zinke, K. Giller, S. Becker, A. Lange, Nat. Protoc. 2017, 12,
764–782.

[4] J. Anglister, S. Grzesiek, H. Ren, C. B. Klee, A. Bax, J. Biomol. NMR 1993, 3, 121–126.