ISOLATION OF PROTEIN FROM THE SPINE VENOM OF PTEROIS VOLITANS FOUND IN THE INDONESIAN OCEAN, USING A HEATING PROCESS, FOR ANTICANCER, ANTIRETROVIRAL, ANTIBACTERIAL, AND ANTIOXIDANT ASSAYS

FERA IBRAHIM1, MUHAMAD SAHLAN2,3, MIKAEL JANUARDI GINTING4, DIAH KARTIKA PRATAMI5, HERI HERMANSYAHF, ANONDHO WIJANARKO6

1Virology and Cancer Pathobiology Research Centre, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, 10320, Indonesia, 2Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java, 16424, Indonesia, 3Research Centre for Biomedical Engineering, Faculty of Engineering Universitas Indonesia, Depok, West Java, 16424, Indonesia, 4Marine Science Postgraduate Program, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java, 16424, Indonesia, 5Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, South Jakarta, 12640, DKI Jakarta, Indonesia
*Email: anondho.wijanarko@yahoo.com

Received: 06 Sep 2020, Revised and Accepted: 09 Oct 2020

ABSTRACT

Objective: This research investigates the antibacterial, anticancer, antioxidant, and antiretroviral activities of the lionfish spine poison extract.

Methods: Isolation and purification of the phospholipase A2 (PLA2) protein obtained from the spine poison were conducted through the following stages, including isolation of the venom by sonication, heating, and purification using gradual saturation levels of ammonium sulfate. Furthermore, the purity and concentration of PLA2 were analyzed using the Lowry test and Marinetti’s method, respectively, while its protein content was ascertained through SDS-PAGE. Toxicity was then evaluated employing the brine shrimp lethality test (BSLT), and its anticancer activity was assessed in human cervical carcinoma cells (HeLa cells). Finally, its antioxidant, antibacterial, and antiretroviral activities were analyzed using the DPPH method, agar diffusion test against Salmonella sp. and E. coli, and SRV-2 and RT-qPCR tests, respectively.

Results: The protein demonstrated 37.79% inhibition for anticancer activity, IC50 1312 ppm for antioxidant activity, 98.81%, and 89.28% inhibition of E. coli and Salmonella sp. respectively for antibacterial activity and 98.13% inhibition for antiretroviral activity.

Conclusion: It can be concluded that lion fish (Pterois volitans) has the potential to be developed as an antioxidant, anticancer, antibacterial, and antiretroviral agent. Furthermore, the pharmacological activity of its spine venom was determined by isolating PLA2 protein from its extract, using an optimum heating temperature of 70 °C and an ammonium sulfate saturation level of 80%.

Keywords: Pterois volitans, Crude venom, Anticancer, Antioxidant, Antibacterial, Antiretroviral

INTRODUCTION

Pterois volitans commonly known as Lionfish are a predator species that hunts its prey such as crustaceans, small fishes, and crabs at night because it is nocturnal [1]. Although they may look unique and have an attractive shape, they sit at the top of the food chain in the ocean because their sting is a threat to other marine life forms [2]. Reports have shown that they are capable of damaging coral reefs and altering the food chain, therefore causing imbalances in the ecosystem, which leads to population changes [3, 4]. Consequently, this fish can pose a threat to the marine life forms in countries that are close to the Indo-Pacific Ocean, which lies adjacent to the Indian Ocean, of which Indonesia is one such [5].

The thorns of lionfishes produce highly toxic venom, which on entering a victim first induces a burning sensation that lasts for about 15–20 min, then limb paralysis within 3 h [6] and sometimes cardiovascular, neuromuscular, and cytolytic effects which can lead to cell death. Moreover, its poisonous effect is abetted by the presence of toxic proteins and other active components, such as pore-forming venoms and acetylcholine [7]. Nevertheless, this poison has the potential to be used for beneficial purposes.

Another fish that happens to be related to this fish and also produces poison containing PLA2 that is believed to possess antibacterial activity is P. russelli [8, 9]. Moreover, the poison of lionfishes also expresses anti-cancer, antioxidant, and antiretroviral activities [10].

PLA2 proteins can be isolated from the poison of this fish using the extraction method as follows: A sonicator is applied to the poisons using a phosphate buffer solution [11], then the mixture is heated, and purified by precipitation using ammonium sulfate [12].

MATERIALS AND METHODS

Materials sample

The spine venom of P. Volitans spine found in the Indonesian Ocean was used in this research.

Sample preparation and venom extraction

The preparation of samples was carried out according to the method reported by Saritri et al. [12], which involved first the cutting of the spines of the lionfish under cold conditions, and then rinsing them in 0.01 M phosphate buffer (pH 7.0). 50 g of the spines were submerged in phosphate buffer (pH 7.0) containing CaCl2 and an extract was prepared by sonication for 2 × 8 min with 80% pulses and an output of 10 at 20 kHz, during which the cold temperature conditions were maintained. Centrifugation of the extract was then carried out at temperatures of 4 °C and a speed of 4500 rpm. The resultant extract was then dissolved and named ‘crude venom (CV)’.

Venom protein isolation

Proteins were isolated following to procedures reported by Sommeng et al. [13], which involved first the heating of the CV sample at temperature variations of 50 °C, 55 °C, 60 °C, 65 °C, and 70 °C for 30 min to determine the optimum results of protein purity, and then, centrifuging it at 4500 rpm for 30 min. Purification was then conducted following a method called ammonium sulfate fractionation. This method involved the addition of small amounts of ammonium sulfate to the pre-heated venom with the saturation of 20%, 40%, 60%, and 80%. Afterward, centrifugation was carried out for 30 min and at speeds of 4500
rpm, and the resultant sediments were submerged in a 0.01 M phosphate buffer solution (pH 7.0) which contained 0.001 M CaCl₂.

Determination of protein concentration

Lowry method which involved the used of both a 0.5 ml of Folin–Ciocalteu phenol 1 N Folin reagent and a biuret solution (1 ml of 1% CuSO₄, and Na₄-tartrate solution each in 100 ml of 2% Na₂CO₃ in 0.1 N NaOH) were used to ascertain the concentration of protein contained in the sample [14]. Besides, using 200 µg/ml of bovine serum albumin (BSA), the standard curves were plotted. Lastly, the absorbance values of the sample were measured using an ultraviolet-visible (UV-VIS) spectrophotometer, at a wavelength of 750 nm.

PLA₂ activity

The Marinetti method was employed after the determination of the protein concentration in other to investigate the activity of the PLA₂ protein using the enzymatic activity of the yolk of an egg [15]. Meanwhile, this as conducted because a type of lecithin in which the yolk is found in egg yolk. Nevertheless, using the UV-VIS spectrophotometer for 5 min and at a wavelength of 900 nm, it was observed that there was a reduction in the absorbance value without the addition of the enzyme sample.

Anticancer test using MTT assay

Through the MTT assay, using HeLa Cells, the anticancer effect of this venom sample was evaluated according to the instruction of the CellTiter 96 ° Non-Radioactive Cell Proliferation Assay [16]. Furthermore, the reagent used was Promega G400.

Dilution of both the heated (50 °C, 55 °C, 60 °C, 65 °C 70 °C) and the unheated (control) samples was carried out in triplicate. Following the method described by Wiegand et al. (103 CFU/ml) and homogenized by vortexing. Afterward, 100 µl each of the samples and controls were collected into sterile Petri dishes, and 20–25 ml of TSA was added to them. The mixture was then homogenized and incubated at 30 °C–35 °C for 24 h. Finally, the growth of Bacterial sp was observed, and the minimum inhibitory concentration was determined when the Petri dish was not completely overgrown with microbes. Meanwhile, the particular area of the chromatogram shows the inhibition of bacterial growth.

Antiretroviral activity test using SRV-2

To ascertain the antiretroviral activity, three tests as follows: MTT assay, RT-qPCR test, and antiretroviral activity SRV-2 test were conducted [21, 22]. Meanwhile, the MTT assay aims to ascertain how toxic the sample is to the human A549 cells (lung cancer cells) that were prepared in the Dulbecco's modified Eagle's medium (DMEM), which contained 100 µg/ml streptomycin, 5% fetal bovine serum (FBS), and 1000 U/ml penicillin.

The cells were first grown at concentrations of 5000 cells in 100 µl, and later (24 h), into them was added the extract, when the cell confluence was at 50%. Then, on the third day, to carry out the MTT test, MTT at a concentration of 5 mg/ml, and a volume of 10 µl was added to each well, and the mixture was incubated at 37 °C for 4 h, while the formazan crystals were dissolved in ethanol. Furthermore, after heating 20m of the sample for 20 min, 25m for 25 min, 30m for 30 min and 35m for 35 min, and adding 0.5 ml and 1.5 ml of caprylic acid (20 m, CA 0.5 ml), six types of sedimentation samples of 20% ammonium sulfate were obtained, and this test was conducted on them. Finally, the samples were tested using four concentration variations, including 1, 2, 3, and 4 ppm in triplicate.

RESULTS AND DISCUSSION

The effect of heating temperature on protein concentration

It can be seen from the results, as shown in fig. 1 that temperature is directly proportional to the concentration of the resulting protein. Therefore, with an increase in the heat, the more concentrated the protein produced is. Furthermore, fig. 2 shows the effect of temperature on the specific activity of this protein, and it suggests that the activity of the sample increases with an increase in heating time. It was discovered the heating temperature affects protein concentration, as it increases caused a simultaneous rise in the concentration of protein produced. Therefore, it confirms that a higher heating temperature caused the isolation of more protein because the proteins which are denatured during heating get accumulated during fractionation using ammonium sulfate [13]. Furthermore, an increase in the cycles of fractionation using ammonium sulfate at higher saturation levels causes the isolation of lower concentrations of protein [23]. Lastly, it confirms that more stages of fractionation using ammonium sulfate would lead to the isolation of less protein, and this is because the maximum amount of protein could have been isolated during the previous fractionation stages using ammonium sulfate, just as it was observed with 0%-20% ammonium sulfate saturation. Meanwhile, according to Matulis (2016), ammonium sulfate fractionation stages can cause the production of protein in a more pure form [24].
PLA2 activity was found to increase with every rise in heating temperature. Furthermore, a more effective was to obtain pure protein from the extract of Lionfish venom is through heating [16]. The CV obtained after heating at 70 °C, and fractionation using 80% ammonium sulfate, can potentially be developed into an anticancer agent since, at 750 ppm, it resulted in 37.79% inhibition. Furthermore, phospholipase A2 protein was found to be affected by the duration of heating.

Anticancer activity of *Pterois volitans* spine venom

To enhance the results, the samples were investigated for cytotoxic Anti-cervical cancer activity, using the MTT method. Moreover, according to Sommeng (2019), the values of inhibition increases with every increase in temperature and concentration [16]. Fig. 3 shows the effect of heating temperature on the inhibition of HeLa cells.
The investigation of the cytotoxic Anti-cervical cancer activity of PLA2 through the MTT procedure aims to ascertain the toxicity of this protein by observing whether it induces a reduction in cell viability. Furthermore, as reported in previous research by Raetz and Dowhan (1999), this procedure is colorimetric and is based on alterations in these tetrazolium salts (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)), changing into formazan in the mitochondria of living cells [25]. Purple formazan crystals are then formed after the degradation of MTT, and the number formed denotes the rate of cell inhibition. Moreover, the inhibition values increase with an increase in concentration and temperature [16].

HeLa cells are affected by heating. Meanwhile, the heating process is an effective procedure used in obtaining purer protein samples from the extract of lionfish venom. The CV, which was isolated by heating at 70 °C, and fractionated using ammonium sulphate (AS) at a saturation level of 80% can potentially be developed into an anticancer agent because at 75 ppm it resulted in 37.79% inhibition. Moreover, the results of the SDS PAGE analysis showed that this fish (P. volitans) has several proteins which can cause an apoptotic effect on HeLa cells. This occurs when the toxin from the venom of this fish activates caspase-8, which in turn activates procaspase-3 that leads to the stimulation of caspase-3 activation [26]. The caspase cascade activation then causes the fragmentation of DNA. Meanwhile, during the apoptotic process, a specific nuclease cuts genomic DNA between the nucleosome to obtain DNA fragments, and these fragments serve as markers that help in the identification of cells that die from apoptosis [27].

Antioxidant activity of Pterois volitans spine venom

The number of saturation demands needed for fractionation using ammonium sulphate is influenced by several factors, one of which is the heating temperature (fig. 3). Furthermore, a temperature of 75 °C and ammonium sulphate with concentrations of 40%–60% was found to be the best conditions for this assay because they caused the highest inhibition (76.13%). Therefore, it can be suggested that proteins isolated at this temperature have the highest antioxidant activity. The IC50 values obtained from each sample can be seen in table 1.

The heating temperature affects the number of saturation requirements needed in fractionation using ammonium sulphate. Furthermore, the greatest inhibition percentage value of 76.13% was observed in samples that were heated at a temperature of 75 °C and a saturation level of 40%–60% of ammonium sulphate. This value shows that the best temperature for demonstrating the antioxidant activity of this venom is 75 °C. Furthermore, following the ammonium sulphate-grade fractionation, the most effective isolated protein was at 40%–60% ammonium sulphate saturation [17]. Therefore, a combination of the following is the best conditions for the proteins to be isolated: an ammonium sulphate saturation level of 40%–60%, and a heating temperature of 75 °C, including an IC50 value of 1312 ppm. Nevertheless, this IC50 value was the least requirement since it was obtained at 200 ppm [28]. Meanwhile, it was similar to what was obtained by Sommeng (2019), which reported a value 1563.06 ppm, which shows a greater antioxidant activity [17]. At this optimum isolation temperature, which also supports maximum antioxidant activity, the protein composition was 7.9, 46.2 kD. Moreover, for every change in temperature, a new saturation of ammonium sulphate is needed.

Antibacterial activity of Pterois volitans spine venom

It can be seen in table 2, which shows the results of the antibacterial activity test that a saturation level of AS50% is necessary for samples to inhibit bacterial growth; therefore, it can be suggested that saturation has an influence on the antibacterial activity of the samples. Meanwhile, the most potent concentration of the 35m sample was 3.77 µg/ml. Furthermore, it inhibited 98.81% of E. coli activity, which is very close to the LD99%, and 89.28% of Salmonella sp. activity, which is also very close to LD 90%. Therefore, PLA2 from the venom of lionfish can potentially be developed into an antibacterial agent.

Table 1: IC50 values obtained from each sample

Variable	IC50 (ppm)			
Heating temperature (°C)	25 (CV)	60	75	90
AS 0%	13888.890	11627.910	4504.505	4672.897
AS 0%–20%	15625.000	8474.576	2857.143	3731.343
AS 20%–40%	10204.080	7246.377	2325.581	1280.510
AS 40%–60%	8474.576	3472.222	1312.336	3846.154
AS 60%–80%	3623.188	1742.160	6172.840	71428.710

Table 2: Antibacterial activity test results

Sample	Number of colonies of E. coli (CFU/100 µl)	Number of colonies of Salmonella sp. (CFU/100 µl)		
	I	II	I	II
AS 20%, 35m	>300	>300	>300	>300
AS 40%, 40m	>300	>300	>300	>300
AS 60%, 40m	>300	>300	>300	>300
AS 80%, 30m	116	96	317	300
AS 80%, 35m	23	48	338	305
AS 80%, 40m	142	101	321	298
K+(Chloramphenicol 1000 ppm)	0	0	0	0
K–(Sterile Aq.)	2.4 × 10²	2.1 × 10¹	3.8 × 10²	4.2 × 10²

Since the samples with saturations of AS80% inhibits bacterial multiplication, it can be suggested that saturation has a role to play in antibacterial activity. Furthermore, the E. coli bacteria was significantly impacted when compared to Salmonella sp. because a large amount of phospholipid in its cell membrane is phosphatidylethanolamine, which is a preferred substrate by the PLA2, even though this enzyme is not substrate-specific [29]. Comparatively, the venom obtained from Naja naja, commonly known as Indian cobra, was found to be more potent at a lower concentration of 19.3 µg/ml for E. coli and 22.1 µg/ml for Salmonella sp [29].

Due to the myotoxic activities of phospholipids A2 homologs proteins, their potential antimicrobial activity has been studied [30]. Therefore, PLA2 can potentially be developed as an antibacterial agent.
Antiretroviral activity test using SRV-2

It can be seen in table 3, which shows the result of the antiretroviral activity SRV-2 test, that at concentrations of 1-4 ppm, the 20m CA 0.5 ml sample caused a significant reduction in the viral activity when compared to the negative controls. This reduction was found to be at 98.13% inhibition, which is very similar to that of the positive control where lamivudine 100 ppm was used, and which showed inhibition of 99.51%. It was also purified using the purification method, which involved salting with 20% ammonium sulfate and acidifying with 0.5 ml caprylic acid by heating at a temperature of 60 °C for 20 min. Finally, it caused a greater inhibition compared to the 30m sample, which was purified as stated above, but without acidification with caprylic acid by heating at a temperature of 60 °C for 30 min, as this showed inhibition of 88.01%.

Table 3: Summary of preliminary test results of the isolation of phospholipase A2

No	Sample	Copy number	%Inhibition
1	Negative Control	3,942,355	0%
2	Positive Control (Lamivudine 100 ppm)	18,973	99.51%
3	20m CA 0.5 ml 1 ppm	645,344	83.63%
4	20m CA 0.5 ml 2 ppm	533,727	86.46%
5	20m CA 0.5 ml 3 ppm	290,223	92.63%
6	20m CA 0.5 ml 4 ppm	73,593	98.13%
7	30m 1 ppm	775,363	80.33%
8	30m 2 ppm	583,224	85.20%
9	30m 3 ppm	556,011	85.99%
10	30m 4 ppm	472,334	88.01%

A greater percentage for the inhibition of Simian retrovirus serotype-2 was observed when compared to that reported by Ramadhan (2018), which showed that there was 97% inhibition using the purification method of ammonium sulfate salting gradually at a saturation level of 80% [22]. This suggests that the 20m sample has better antiretroviral activity when compared to that of lamivudine, and also, it has capabilities that are not much different from those of standard antiretroviral drugs available on the market. The potential of antiretroviral from natural product medicine must be monitored its side effects by appropriate monitoring [31].

CONCLUSION

In this research, the potential of the lionfish spine venom to be developed as an anticancer, antioxidant, antibacterial, and antiretroviral agent was determined by isolating the PLA2 protein from the venom extract. Furthermore, an optimum heating condition of 70 °C and an ammonium sulfate saturation level of 80% was used for the isolation of proteins that have the potential pharmaceutical activity. Lastly, the results showed 37.79% inhibition for anticancer activity, IC50 1312 ppm for antioxidant activity, 98.81%, and 89.28% inhibition of E. coli and Salmonella sp. respectively for antibacterial activity and 98.13% inhibition for antiretroviral activity.

ACKNOWLEDGEMENT

This research and article’s publication is supported by the Grant of Indexed International Publication (Publikasi Internasional Terindeks-PIT) No. 0043/UN2. R31/HKP.05.00/2019.

FUNDING

Funding from DRPM Universitas Indonesia

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

The authors declare no conflict of interest.

REFERENCES

1. Ritger AL, Fountain CT, Bourne K, Martin Fernandez JA, Pierotti MER. Diet choice in a generalist predator, the invasive lionfish (Pterois volitans and P. miles). J Exp Mar Biol Ecol 2020;524:15 1311.
2. Eddy C, Pitt J, Oliveira K, Morris JA, Potts J, Bernal D. The life history characteristics of invasive lionfish (Pterois volitans and P. miles) in Bermuda. Environ Biol Fishes 2019;102:887-900.
3. Albins MA. Invasive Pacific lionfish Pterois volitans reduce the abundance and species richness of native bahamian coral-reef fishes. Mar Ecol Prog Ser 2015;522:231–43.
4. Cote JM, Malikovic A. Predation rates of Indo-pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 2010;404:219–25.
5. Kulbicki M, Beets J, Ghabanet P, Cure K, Darling E, Floeter SR, et al. Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion. Mar Ecol Prog Ser 2012;446:189–205.
6. Vetrano SJ, Labovitz JB, Marcus S. Lionfish envenomation. J Emerg Med 2002;23:579–82.
7. Church JE, Hodgson WC. The pharmacological activity of fish venoms. Toxicon 2002;40:1083–93.
8. Memar B, Jamii S, Shahbazzadeh D, Bagheri KP. The first report on coagulation and phospholipase A2 activities of persian gulf lionfish, Pterois russelli, an Iranian venomous fish. Toxicon 2016;113:25–31.
9. Nevalainen TJ, Graham GG, Scott KF. Antibacterial actions of secreted phospholipases A2 review. Biochim Biophys Acta (BBA)-Molecular Cell Biol Lipids 2008;1781:1–9.
10. Cipolari OC, de Oliveira Neto XA, Coneciacao K. Fish bioactive peptides: a systematic review focused on sting and skin. Aquaculture 2019;515:734598.
11. Savitri IKE, Ibrahim F, Sahlan M, Wijanarko A. Rapid and efficient purification method of phospholipase A2 from Acanthaster planci. Int J Pharm Sci 2011:2:401–6.
12. Savitri IKE, Sahlan M, Ibrahim F, Wijanarko A. Isolation and characterization of phospholipase A2 from the spines venom of the crown-of-thorns starfish isolated from papua island. Int J Pharma Bio Sci 2012;3:603–8.
13. Sommeng AN, Pratiwi I, Ginting MJ, Sahlan M, Hermansyah H, Wijanarko A. The effects of heating process on protein isolation of lionfish (Pterois volitans) spines venom extract to antioxidant activity assay. In: AIP Conference Proceedings 2019;2193:20007.
14. Dawson JM, Heattle PL. Lowry method of protein quantification: evidence for photosensitivity. Anal Biochem 1984;140:391–3.
15. Marinetti GV. The action of phospholipase a on lipoproteins. Biochim Biophys Acta Lipid Mem 1965;98:554–65.
16. Sommeng AN, Sari M, Ginting MJ, Sahlan M, Hermansyah H, Wijanarko A. The influence of heating process on anticancer activity of Pterois volitans (red lionfish) venom extraction against human cervical carcinoma cell. In: AIP Conference Proceedings 2019:2193:03002217.
17. Sommeng AN, Larasati R, Ginting MJ, Pebranii S, Sahlan M, Hermansyah H, et al. Extraction, antioxidant, and bioactive component assay of lionfish venom Pterois volitans. In: AIP Conference Proceedings 2019;2193:030008.
18. Molynieux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 2004:26:211–9.
19. Sharma P, Kumar P, Sharma R, Dhot PS. Futuristic scope of stem cells in medicine. Asian J Pharm Clin Res 2016;9 Suppl 1:13–6.
20. Balouiri M, Sadiki M, Ihsounia SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 2016;6:71–9.

21. Sommeng AN, Tafsili MAB, Ginting MJ, Sahlan M, Hermansyah H, Wijanarko A. Utilization of lionfish (Pterois volitans) venomous spines with effective purification as an alternative antiretroviral HIV/AIDS. AIP Conference Proceedings 2019;2193:30016.

22. Sommeng AN, Arya RMY, Ginting MJ, Pratami DK, Hermansyah H, Sahlan M, et al. Antiretroviral activity of Pterois volitans (red lionfish) venom in the early development of human immunodeficiency virus/acquired immunodeficiency syndrome antiretroviral alternative source. Vet World 2019;12:309-15.

23. Sommeng AN, Eka AK, Ginting MJ, Pebriani S, Sahlan M, Hermansyah H, et al. The effect of ammonium sulfate concentration in protein isolation of lionfish (Pterois volitans) spines venom extract for antitumor test. AIP Conference Proceedings 2019;2193:30009.

24. Matulis D. Selective precipitation of proteins. Curr Protoc Sci 2016;83:4–5.

25. Raetz CR, Dowhan W. Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 1990;265:1235–46.

26. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes Alnemri T, Alnemri ES. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 2019;10:1–17.

27. Dahham SS, Al-Rawi SS, Ibrahim AH, Majid ASA, Majid AMSA. Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi J Biol Sci 2018;25:1524–34.

28. Li H, Zhang Z, Li M, Li X, Sun Z. Yield, size, nutritional value, and antioxidant activity of oyster mushrooms grown on perilla stalks. Saudi J Biol Sci 2017;24:347–54.

29. Sudarshan S, Dhananjaya BL. Antibacterial activity of an acidic phospholipase A2 (NN-Xlb-PL A2) from the venom of Naja naja (Indian cobra). Springerplus 2016;5:112.

30. Diniz Sousa R, Caldeira CAS, Kayano AM, Paloschi MV, Pimenta DC, Simoes Silva R, et al. Identification of the molecular determinants of the antibacterial activity of LmTX, a Lys49 phospholipase A2 homologue isolated from Lachesis muta muta snake venom (Linnaeus, 1766). Basic Clin Pharmacol Toxicol 2018;122:413–23.

31. Sari SP, Isnaini SR, Puspitasari AW. Monitoring side effects of antiretroviral therapy in patients with human immunodeficiency virus/acquired immunodeficiency syndrome. Int J Appl Pharm 2018;10 Special Issue 1:321–4.