Identifying accurate metagenome and amplicon software via a meta-analysis of sequence to taxonomy benchmarking studies

Paul P Gardner Comps., 1, 2, Renee J Watson 1, Xochitl C Morgan 3, Jenny L Draper 4, Robert D Finn 5, Sergio E Morales 3, Matthew B Stott 1

1 Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
2 Department of Biochemistry, University of Otago, Dunedin, New Zealand
3 Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
4 Institute of Environmental Science and Research, Porirua, New Zealand
5 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK

Corresponding Author: Paul P Gardner
Email address: paul.gardner@canterbury.ac.nz

Metagenomic and meta-barcode DNA sequencing has rapidly become a widely-used technique for investigating a range of questions, particularly related to health and environmental monitoring. There has also been a proliferation of bioinformatic tools for analysing metagenomic and amplicon datasets, which makes selecting adequate tools a significant challenge. A number of benchmark studies have been undertaken; however, these can present conflicting results. In order to address this issue we have applied a robust Z-score ranking procedure and a network meta-analysis method to identify software tools that are consistently accurate for mapping DNA sequences to taxonomic hierarchies. Based upon these results we have identified some tools and computational strategies that produce robust predictions.
Identifying accurate metagenome and amplicon software via a meta-analysis of sequence to taxonomy benchmarking studies

Paul P. Gardner¹,², Renee J. Watson¹, Xochitl C. Morgan³, Jenny L. Draper⁴, Robert D. Finn⁵, Sergio E. Morales³, Matthew B. Stott¹

¹. Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
². Department of Biochemistry, University of Otago, Dunedin, New Zealand.
³. Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
⁴. Institute of Environmental Science and Research, Porirua, New Zealand.
⁵. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

Abstract

Metagenomic and meta-barcode DNA sequencing has rapidly become a widely-used technique for investigating a range of questions, particularly related to health and environmental monitoring. There has also been a proliferation of bioinformatic tools for analysing metagenomic and amplicon datasets, which makes selecting adequate tools a significant challenge. A number of benchmark studies have been undertaken; however, these can present conflicting results. In order to address this issue we have applied a robust Z-score ranking procedure and a network meta-analysis method to identify software tools that are consistently accurate for mapping DNA sequences to taxonomic hierarchies. Based upon these results we have identified some tools and computational strategies that produce robust predictions.

Introduction

Metagenomics, meta-barcoding and related high-throughput environmental DNA (eDNA) or microbiome sequencing approaches have accelerated the discovery of small and large scale interactions between ecosystems and their biota. Metagenomics is frequently used as a catch-all term to cover metagenomic, meta-barcoding and other environmental DNA sequencing methods, which we will also apply apply. The application of these methods has advanced our understanding of microbiomes, disease, ecosystem function, security and food safety (Cho & Blaser, 2012; Baird & Hajibabaei, 2012; Bohan et al., 2017). The classification of DNA sequences can be broadly divided into amplicon (barcoding) and genome-wide (metagenome) approaches. The amplicon, or barcoding, -based approaches target genomic marker sequences such as ribosomal RNA genes (Woese, 1987; Woese, Kandler & Wheelis, 1990; Hugenholtz & Pace, 1996; Tringe & Hugenholtz, 2008) (16S, 18S, mitochondrial 12S), RNase P RNA (Brown...
et al., 1996), or internal transcribed spacers (ITS) between ribosomal RNA genes (Schoch et al., 2012). These regions are amplified from extracted DNA by PCR, and the resulting DNA libraries are sequenced. In contrast, genome-wide, or metagenome, -based approaches sequence the entire pool of DNA extracted from a sample with no preferential targeting for particular markers or taxonomic clades. Both approaches have limitations that influence downstream analyses. For example, amplicon target regions may have unusual DNA features (e.g. large insertions or diverged primer annealing sites), and consequently these DNA markers may fail to be amplified by PCR (Brown et al., 2015). While the metagenome-based methods are not vulnerable to primer bias, they may fail to detect genetic signal from low-abundance taxa if the sequencing does not have sufficient depth, or may under-detect sequences with a high G+C bias (Tringe et al., 2005; Ross et al., 2013).

High-throughput sequencing (HTS) results can be analysed using a number of different strategies (Supplementary Figure 1) (Thomas, Gilbert & Meyer, 2012; Sharpton, 2014; Oulas et al., 2015; Quince et al., 2017). The fundamental goal of many of these studies is to assign taxonomy to sequences as specifically as possible, and in some cases to cluster highly-similar sequences into “operational taxonomic units” (OTUs) (Sneath & Sokal, 1963). For greater accuracy in taxonomic assignment, metagenome and amplicon sequences may be assembled into longer “contigs” using any of the available sequence assembly tools (Olson et al., 2017; Breitwieser, Lu & Salzberg, 2017). The reference-based methods (also called “targeted gene assembly”) make use of conserved sequences to constrain sequence assemblies. These have a number of reported advantages including reducing chimeric sequences, and improving the speed and accuracy of assembly relative to de novo methods (Zhang, Sun & Cole, 2014; Wang et al., 2015; Huson et al., 2017; Nurk et al., 2017).

Metagenomic sequences are generally mapped to a reference database of sequences labelled with a hierarchical taxonomic classification. The level of divergence, distribution and coverage of mapped taxonomic assignments allows an estimate to be made of where the sequence belongs in the established taxonomy. This is commonly performed using the lowest common ancestor approach (LCA) (Huson et al., 2007). Some tools, however, avoid this computationally-intensive sequence similarity estimation, and instead use alignment-free approaches based upon sequence composition statistics (e.g. nucleotide or k-mer frequencies) to estimate taxonomic relationships (Gregor et al., 2016).

In this study we identified seven published evaluations, of tools that estimate taxonomic origin from DNA sequences (Bazinet & Cummings, 2012; Peabody et al., 2015; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017; McIntyre et al., 2017; Sczyrba et al., 2017; Almeida et al., 2018). Of these, four evaluations met our criteria for a neutral comparison study (Boulesteix, Lauer & Eugster, 2013) (see Supplementary Table 1). These are summarised in Table 1 (Bazinet & Cummings, 2012; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017; Almeida et al., 2018) and include accuracy estimates for 25 eDNA classification tools. We have used network meta-analysis techniques and non-parametric tests to reconcile variable and sometimes conflicting reports from the different evaluation studies. Our result is a short list of methods that have been consistently reported to produce accurate interpretations of
metagenomics results. This study reports one of the first meta-analyses of neutral comparison
studies, fulfilling the requirement for an apex study in the evidence pyramid for benchmarking
(Boulesteix, Wilson & Hapfelmeier, 2017).

Overview of environmental DNA classification evaluations

Independent benchmarking of bioinformatic software provides a valuable resource for
determining the relative performance of software tools, particularly for problems with an
overabundance of tools. Some established criteria for reliable benchmarks are: 1. The main
focus of the study should be the evaluation and not the introduction of a new method; 2. The
authors should be reasonably neutral (i.e. not involved in the development of methods included
in an evaluation); and 3. The test data, evaluation and methods should be selected in a rational
way (Boulesteix, Lauer & Eugster, 2013). Criteria 1 and 2 are straightforward to determine, but
criterion 3 is more difficult to evaluate as it includes identifying challenging datasets and
appropriate metrics for accurate accuracy reporting (Boulesteix, 2010; Jelizarow et al., 2010;
Norel, Rice & Stolovitzky, 2011). Based upon our literature reviews and citation analyses, we
have identified seven published evaluations of eDNA analysis, we have assessed these against
the above three principles and four of these studies meet the inclusion criteria (assessed in
Supplementary Table 1) (Bazinet & Cummings, 2012; Lindgreen, Adair & Gardner, 2016;
Siegwald et al., 2017; Almeida et al., 2018). These studies are summarised in Table 1.

In the following sections we discuss issues with collecting trusted datasets, including the
selection of positive and negative control data that avoid datasets upon which methods may
have been over-trained. We describe measures of accuracy for predictions and describe the
characteristics of ideal benchmarks, with examples of published benchmarks that meet these
criteria.

Positive and negative control dataset selection

The selection of datasets for evaluating software can be a significant challenge due to the need
for these to be independent of past training datasets, reliable, well-curated, robust and
representative of the large population of all possible datasets (Boulesteix, Wilson &
Hapfelmeier, 2017). Positive control datasets can be divided into two different strategies,
namely the in vitro and in silico approaches for generating mock communities.

In vitro methods involve generating microbial consortia in predetermined ratios of microbial
strains, extracting the consortium DNA, sequencing and analysing these using standard eDNA
pipelines (Jumpstart Consortium Human Microbiome Project Data Generation Working Group,
2012; Singer et al., 2016b). Non-reference sequences can also be included to this mix as a form
of negative control. The accuracy of the genome assembly, genome partitioning (binning) and
read depth proportional to consortium makeup can then be used to confirm software accuracy.
In principle, every eDNA experiment could employ in vitro positive and negative controls by
“spiking” known amounts of DNA from known sources, as has been widely used for gene
expression analysis (Yang, 2006) and increasingly for eDNA experiments (Bowers et al., 2015;
In silico methods use selected publicly-available genome sequences. Simulated metagenome sequences can be derived from these (Richter et al., 2008; Huang et al., 2012; Angly et al., 2012; Caboche et al., 2014). It is important to note that ideally-simulated sequences are derived from species that are not present in established reference databases, as this is a more realistic simulation of most eDNA surveys. A number of different strategies have been used to control for this (Peabody et al., 2015; Lindgreen, Adair & Gardner, 2016; Sczyrba et al., 2017). Peabody et al. used “clade exclusion”, in which sequences used for an evaluation are removed from reference databases for each software tool (Peabody et al., 2015). Lindgreen et al. used “simulated evolution” to generate simulated sequences of varying evolutionary distances from reference sequences (Lindgreen, Adair & Gardner, 2016), similarly Almeida et al. simulated random mutations for 2% of nucleotides in each sequence (Almeida et al., 2018). Sczyrba et al. restricted their analysis to sequences sampled from recently-deposited genomes, increasing the chance that these are not included in any reference databases (Sczyrba et al., 2017). These strategies are illustrated in Figure 1.

Another important consideration is the use of negative controls. These can be randomised sequences (Lindgreen, Adair & Gardner, 2016), or from sequence not expected to be found in reference databases (McIntyre et al., 2017). The resulting negative-control sequences can be used to determine false-positive rates for different tools. We have summarised the positive and negative control datasets from various published software evaluations in Table 1, along with other features of different evaluations of DNA classification software.

<<PLACE FIGURE 1 HERE>>

Metrics used for software benchmarking.

The metrics used to evaluate software play an important role in determining the fit for different tasks. For example, if a study is particularly interested in identifying rare species in samples, then a method with a high true-positive rate (also called sensitivity or recall) may be preferable. Conversely, for some studies, false positive findings may be particularly detrimental, in which case a good true positive rate may be sacrificed in exchange for a lowering the false positive rate. Some commonly used measures of accuracy, including sensitivity (recall/true positive accuracy), specificity (true negative accuracy) and F-measure (the trade-off between recall and precision) are summarised in Table 2.

The definitions of “true positive”, “false positive”, “true negative” and “false negative” (TP, FP, TN and FN respectively) are also an important consideration. There are two main ways this has been approached, namely per-sequence assignment and per-taxon assignment. Estimates of per-sequence accuracy values can be made by determining whether individual sequences were correctly assigned to a particular taxonomic rank (Peabody et al., 2015; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017). Alternatively, per-taxon accuracies can be determined by comparing reference and predicted taxonomic distributions (Sczyrba et al., 2017). The per-taxon approach may lead to erroneous accuracy estimates as sequences may be incorrectly assigned to included taxa. Cyclic-errors can then cancel, leading to inflated accuracy estimates. However, per-sequence information can be problematic to extract from tools that only report profiles.
Successfully recapturing the frequencies of different taxonomic groups as a measure of community diversity is a major aim for eDNA analysis projects. There have been a variety of approaches for quantifying the accuracy of this information. Pearson’s correlation coefficient (Bazinet & Cummings, 2012), L1-norm (Sczyrba et al., 2017), the sum of absolute log-ratios (Lindgreen, Adair & Gardner, 2016), the log-modulus (McIntyre et al., 2017) and the Chao 1 error (Siegwald et al., 2017) have each been used. This lack of consensus has made comparing these results a challenge.

The amount of variation between the published benchmarks, including varying taxonomies, taxonomic levels and whether sequences or taxa were used for evaluations can also impede comparisons between methods and the computation of accuracy metrics. To illustrate this we have summarised the variation of F-measures (a measure of accuracy) between the four benchmarks we are considering in this work (Figure 2).

Methods

Literature search: In order to identify benchmarks of metagenomic and amplicon software methods, an initial list of publications was curated. Further literature searches and trawling of citation databases (chiefly Google Scholar) identified a comprehensive list of seven evaluations (Table 1), in which “F-measures” were either directly reported, or could be computed from supplementary materials. These seven studies were then evaluated against the three principles of benchmarking (Boulesteix, Lauer & Eugster, 2013), four studies meeting all three principles and were included in the subsequent analyses (see Supplementary Table 1 for details).

A list of published eDNA classification software was curated manually. This made use of a community-driven project led by Jonathan Jacobs (Jacobs). The citation statistics for each software publication were manually collected from Google Scholar (in July 2017). These values were used to generate Figure 2.

Data extraction: Accuracy metrics were collected from published datasets using a mixture of manual collection from supplementary materials and automated harvesting of data from online repositories. For a number of the benchmarks, a number of non-independent accuracy estimates were taken, for example different parameters, reference databases or taxonomic levels were used for the evaluations. We have combined all non-independent accuracy measurements using a median value, leaving a single accuracy measures for each tool and benchmark dataset combination. The data, scripts and results are available from: https://github.com/Gardner-BinfLab/meta-analysis-eDNA-software

Data analysis: Each benchmark manuscript reports one or more F-measures for each software method. Due to the high variance of F-measures between studies (see Figure 2C and Supplementary Figure 3 for a comparison), we renormalised the F-measures using the following
Robust Z-score = \frac{x_i - \text{median}(X)}{\text{mad}(X)}

Where the "mad" function is the median absolute deviation, "X" is a vector containing all the F-measures for a publication and "x_i" is each F-measure for a particular software tool. Robust Z-scores can then be combined to provide an overall ranking of methods that is independent of the methodological and data differences between studies (Figure 3). The 95% confidence intervals for median robust Z-scores shown in Figure 3 were generated using 1,000 bootstrap resamplings from the distribution of values for each method, extreme (F={0,1}) values seeded into each X in order to capture the full range of potential F-measures.

Network meta-analysis was used to provide a second method that accounts for differences between studies. We used the "netmeta" and "meta" software packages to perform the analysis. As outlined in Chapter 8 of the textbook “Meta-Analysis with R”, (Schwarzer, Carpenter & Rücker, 2015), the metacont function with Hedges’ G was used to standardise mean differences and estimate fixed and random effects for each method within each benchmark. The ‘netmeta’ function was then used to conduct a pairwise meta-analysis of treatments (tools) across studies. This is based on a graph-theoretical analysis that has been shown to be equivalent to a frequentists network meta-analysis (Rücker, 2012). The ‘forest’ function was used on the resulting values to generate Figure 4A.

Review of Results

We have mined independent estimates of sensitivity, positive predictive values (PPV) and F-measures for 25 eDNA classification tools, from three published software evaluations. A matrix showing presence-or-absence of software tools in each publication is illustrated in Figure 3A. Comparing the list of 25 eDNA classification tools to a publicly available list of eDNA classification tools based upon literature mining and crowd-sourcing, we found that 29% (25/88) of all published tools have been evaluated in the four of seven studies we have identified as neutral comparison studies (details in Supplementary Table 1) (Boulesteix, Lauer & Eugster, 2013). The unevaluated methods are generally recently published (and therefore have not been evaluated yet) or may no longer be available, functional, or provide results in a suitable format for evaluation (see Figure 2A). Several software tools have been very widely cited (Figure 2B), yet caution must be used when considering citation statistics, as the number of citations is not correlated with accuracy (Figure 2D) (Lindgreen, Adair & Gardner, 2016; Gardner et al., 2017). For example, the tools that are published early are more likely to be widely cited, or it may be that some articles are not necessarily cited for the software tool. For example, the MEGAN1 manuscript is often cited for one of the first implementations of the lowest-common-ancestor (LCA) algorithm for assigning read-similarities to taxonomy (Huson et al., 2007).

After manually extracting sensitivity, PPV and F-measures (or computing these) from the tables...
and/or supplementary materials for each publication (Bazinet & Cummings, 2012; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017; Almeida et al., 2018), we have considered the within-publication distribution of accuracy measures (see Figure 2C, Supplementary Figure 2 & Supplementary Figure 3). These figures indicate that each publication has differences in F-measure distributions. These can be skewed and multimodal, and different measures of centrality and variance. Therefore, a correction needs to be used to account for between-benchmark variation.

Firstly, we use a non-parametric approach for comparing corrected accuracy measures. We converted each F-measure to a “robust Z-score” (see Methods). A median Z-score was computed for each software tool, and used to rank tools. A 95% confidence interval was also computed for each median Z-score using a bootstrapping procedure. The results are presented in Figure 3B (within-benchmark distributions are shown in Supplementary Figure 3).
The second approach we have used is a network meta-analysis to compare the different results. This approach is becoming widely used in the medical literature, predominantly as a means to compare estimates of drug efficacy from multiple studies that include different cohorts, sample sizes and experimental designs (Lumley, 2002; Lu & Ades, 2004; Salanti et al., 2008; Higgins et al., 2012; Greco et al., 2015). This approach can incorporate both direct and indirect effects, and incorporates diverse intersecting sets of evidence. This means that indirect comparisons can be used to rank treatments (or software tool accuracy) even when a direct comparison has not been made.

We have used the “netmeta” software utility (implemented in R) (Rücker et al., 2015) to investigate the relative performance of each of the 25 software tools for which we have data, using the F-measure as a proxy for accuracy. A random-effects model and a rank-based approach were used for assessing the relative accuracy of different software tools. The resulting forest plot is shown in Figure 4A.

The two distinct approaches for comparing the accuracies from diverse software evaluation datasets resulted in remarkably consistent software rankings in this set of results. The Pearson’s correlation coefficient between robust Z-scores and network meta-analysis odds-ratios is 0.91 (P-value=4.9x10^{-10}), see Supplementary Figure 6.

Conclusions

The analysis of environmental sequencing data remains a challenging task despite many years of research and many software tools for assisting with this task. In order to identify accurate tools for addressing this problem a number of benchmarking studies have been published (Bazinet & Cummings, 2012; Peabody et al., 2015; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017; McIntyre et al., 2017; Sczyrba et al., 2017; Almeida et al., 2018). However, these studies have not shown a consistent or clearly optimal approach.

We have reviewed and evaluated the existing published benchmarks using a network meta-analysis and a non-parametric approach. These methods have identified a small number of tools that are consistently predicted to perform well. Our aim here is to make non-arbitrary software recommendations that are based upon robust criteria rather than how widely-adopted a tool is or the reputation of software developers, which are common proxies for how accurate a software tool is for eDNA analyses (Gardner et al., 2017). Based upon this meta-analysis, the k-mer based approaches, CLARK (Ounit et al., 2015), Kraken (Wood & Salzberg, 2014) and One Codex (Minot, Krumm & Greenfield, 2015) consistently rank well in both the non-parametric, robust Z-score evaluation and the network meta-analysis. The confidence intervals for both evaluations were comparatively small, so these estimates are likely to be reliable. In particular, the network meta-analysis analysis showed that
these tools are significantly more accurate than the alternatives (i.e. the 95% confidence intervals exclude the odds-ratio of 1). Furthermore, these results are largely consistent with a recently published additional benchmark of eDNA analysis tools (Escobar-Zepeda et al., 2018).

There were also a number of widely-used tools, MG-RAST (Wilke et al., 2016), MEGAN (Huson et al., 2016) and QIIME 2 (Bokulich et al., 2018) that are both comparatively user-friendly and have respectable accuracy (Z>0 and narrow confidence intervals, see Figure 3B and Supplementary Figure 5). However, the new QIIME 2 tool has only been evaluated in one benchmark (Almeida et al., 2018), and so this result should be viewed with caution until further independent evaluations are undertaken. Therefore QIIME2 has a large confidence interval on the accuracy estimate based upon robust Z-scores (Figure 3) and ranked below high-performing tools with the network meta-analysis (Figure 4). The tools Genometa (Davenport et al., 2012), GOTTCHA (Freitas et al., 2015), LMAT (Ames et al., 2013), mothur (Schloss et al., 2009) and taxator−tk (Dröge, Gregor & McHardy, 2015), while not meeting the stringent accuracy thresholds we have used above were also consistently ranked well by both approaches.

The NBC tool (Rosen, Reichenberger & Rosenfeld, 2011) ranked highly in both the robust Z-score and network analysis, however the confidence intervals on both accuracy estimates were comparably large. Presumably, this was due to its inclusion in a single, early benchmark study (Bazinet & Cummings, 2012) and exclusion from all subsequent benchmarks. To investigate this further, the authors of this study attempted to run NBC themselves, but found that it failed to run (core dump) on test input data. It is possible that with some debugging, this tool could compare favourably with modern approaches.

These results can by no means be considered the definitive answer to how to analyse eDNA datasets since tools will continue to be refined and results are based on broad averages over multiple conditions. Therefore, some tools may be more suited for more specific problems than those assessed in these results (e.g. human gut microbiome). Furthermore, we have not addressed the issue of scale -- i.e., do these tools have sufficient speed to operate on the increasingly large-scale datasets that new sequencing methods are capable of producing?

Our analysis has not identified an underlying cause for inconsistencies between benchmarks. We found a core set of software tools that have been evaluated in most benchmarks. These are CLARK, Kraken, MEGAN, and MetaPhyler, but the relative ranking of these tools differed greatly between some benchmarks. We did find that restricting the included benchmarks to those that satisfy the criteria for a “neutral comparison study” (Boulesteix, Lauer & Eugster, 2013), improved the consistency of evaluations considerably. This may point to differences in the results obtained by “expert users” (e.g. tool developers) compared and those of “amateur users” (e.g. bioinformaticians or microbiologists).

Finally, the results presented in Supplementary Figure 4 indicate that most eDNA analysis tools have a high positive-predictive value (PPV). This implies that false-positive matches between eDNA sequences and reference databases are not the main source of error for these analyses. However, sensitivity estimates can be low and generally cover a broad range of values. This implies that false-negatives are the main source of error for environmental analysis. This shows
that matching divergent eDNA and reference database nucleotide sequences remains a significant research challenge in need of further development.

Acknowledgements

We are grateful to Jonathan Jacobs (@bioinformer) for maintaining a freely accessible list of metagenome analysis methods. We thank the authors of the benchmark studies used for this work, all of whom were offered an opportunity to comment on this work before it was released. In particular: Adam Bazinet, Christopher E. Mason, Alexa McIntyre, Fiona Brinkman, Alice McHardy, Alexander Sczyrba, David Koslicki and Léa Siegwald for discussions and feedback on our early results. We are grateful to Anne-Laure Boulesteix for valuable suggestions on how to conduct the analyses.
References

Abubucker S., Segata N., Goll J., Schubert AM., Izard J., Cantarel BL., Rodriguez-Mueller B., Zucker J., Thiagarajan M., Henrissat B., White O., Kelley ST., Methé B., Schloss PD., Gevers D., Mitreva M., Huttenhower C. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. *PLoS computational biology* 8:e1002358.

Almeida A., Mitchell AL., Tarkowska A., Finn RD. 2018. Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments. *GigaScience* 7. DOI: 10.1093/gigascience/giy054.

Ames SK., Hysom DA., Gardner SN., Lloyd GS., Gokhale MB., Allen JE. 2013. Scalable metagenomic taxonomy classification using a reference genome database. *Bioinformatics* 29:2253–2260.

Angly FE., Willner D., Rohwer F., Hugenholtz P., Tyson GW. 2012. Grinder: a versatile amplicon and shotgun sequence simulator. *Nucleic acids research* 40:e94.

Baird DJ., Hajibabaei M. 2012. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. *Molecular ecology* 21:2039–2044.

Bazinet AL., Cummings MP. 2012. A comparative evaluation of sequence classification programs. *BMC bioinformatics* 13:92.

Bohan DA., Vacher C., Tamaddoni-Nezhad A., Raybould A., Dumbrell AJ., Woodward G. 2017. Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks. *Trends in ecology & evolution* 32:477–487.

Bokulich NA., Kaehler BD., Rideout JR., Dillon M., Bolyen E., Knight R., Huttley GA., Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. *Microbiome* 6:90.
Boulesteix A-L. 2010. Over-optimism in bioinformatics research. *Bioinformatics* 26:437–439.

Boulesteix A-L., Lauer S., Eugster MJA. 2013. A plea for neutral comparison studies in computational sciences. *PloS one* 8:e61562.

Boulesteix A-L., Wilson R., Hapfelmeier A. 2017. Towards evidence-based computational statistics: lessons from clinical research on the role and design of real-data benchmark studies. *BMC medical research methodology* 17:138.

Bowers RM., Clum A., Tice H., Lim J., Singh K., Ciobanu D., Ngan CY., Cheng J-F., Tringe SG., Woyke T. 2015. Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. *BMC genomics* 16:856.

Brady A., Salzberg S. 2011. PhymmBL expanded: confidence scores, custom databases, parallelization and more. *Nature methods* 8:367.

Breitwieser FP., Lu J., Salzberg SL. 2017. A review of methods and databases for metagenomic classification and assembly. *Briefings in bioinformatics*. DOI: 10.1093/bib/bbx120.

Brown CT., Hug LA., Thomas BC., Sharon I., Castelle CJ., Singh A., Wilkins MJ., Wrighton KC., Williams KH., Banfield JF. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. *Nature* 523:208–211.

Brown JW., Nolan JM., Haas ES., Rubio MA., Major F., Pace NR. 1996. Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. *Proceedings of the National Academy of Sciences of the United States of America* 93:3001–3006.

Caboche S., Audebert C., Lemoine Y., Hot D. 2014. Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data. *BMC genomics* 15:264.

Callahan BJ., McMurdie PJ., Rosen MJ., Han AW., Johnson AJA., Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature methods* 13:581–583.
Peña AG., Goodrich JK., Gordon JL., Huttley GA., Kelley ST., Knights D., Koenig JE., Ley RE., Lozupone CA., McDonald D., Muegge BD., Pirrung M., Reeder J., Sevinsky JR., Turnbaugh PJ., Walters WA., Widmann J., Yatsunenko T., Zaneveld J., Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. *Nature methods* 7:335–336.

Cho I., Blaser MJ. 2012. The human microbiome: at the interface of health and disease. *Nature reviews. Genetics* 13:260–270.

Dalquen DA., Anisimova M., Gonnet GH., Dessimoz C. 2012. ALF—A Simulation Framework for Genome Evolution. *Molecular biology and evolution* 29:1115–1123.

Davenport CF., Neugebauer J., Beckmann N., Friedrich B., Kameri B., Kokott S., Paetow M., Siekmann B., Wieding-Drewes M., Wienhöfer M., Wolf S., Tümmler B., Ahlers V., Sprengel F. 2012. Genometa--a fast and accurate classifier for short metagenomic shotgun reads. *PloS one* 7:e41224.

Dröge J., Gregor I., McHardy AC. 2015. Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. *Bioinformatics* 31:817–824.

Escobar-Zepeda A., Godoy-Lozano EE., Raggi L., Segovia L., Merino E., Gutiérrez-Rios RM., Juarez K., Licea-Navarro AF., Pardo-Lopez L., Sanchez-Flores A. 2018. Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. *Scientific reports* 8:12034.

Freitas TAK., Li P-E., Scholz MB., Chain PSG. 2015. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. *Nucleic acids research* 43:e69.

Gardner PP., Paterson JM., Ghomi FA., Umu SUU., McGimpsey S., Pawlik A. 2017. A meta-analysis of bioinformatics software benchmarks reveals that publication-bias unduly influences software accuracy. *bioRxiv*:092205. DOI: 10.1101/092205.
Gerlach W., Stoye J. 2011. Taxonomic classification of metagenomic shotgun sequences with CARMA3. *Nucleic acids research* 39:e91.

Greco T., Biondi-Zoccai G., Saleh O., Pasin L., Cabrini L., Zangrillo A., Landoni G. 2015. The attractiveness of network meta-analysis: a comprehensive systematic and narrative review. *Heart, lung and vessels* 7:133–142.

Gregor I., Dröge J., Schirmer M., Quince C., McHardy AC. 2016. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. *PeerJ* 4:e1603.

Hardwick SA., Chen WY., Wong T., Kanakamedala BS., Deveson IW., Ongley SE., Santini NS., Marcellin E., Smith MA., Nielsen LK., Lovelock CE., Neilan BA., Mercer TR. 2018. Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. *Nature communications* 9:3096.

Higgins JPT., Jackson D., Barrett JK., Lu G., Ades AE., White IR. 2012. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. *Research synthesis methods* 3:98–110.

Huang W., Li L., Myers JR., Marth GT. 2012. ART: a next-generation sequencing read simulator. *Bioinformatics* 28:593–594.

Hugenholtz P., Pace NR. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. *Trends in biotechnology* 14:190–197.

Huson DH., Auch AF., Qi J., Schuster SC. 2007. MEGAN analysis of metagenomic data. *Genome research* 17:377–386.

Huson DH., Beier S., Flade I., Górska A., El-Hadidi M., Mitra S., Ruscheweyh H-J., Tappu R. 2016. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. *PLoS computational biology* 12:e1004957.

Huson DH., Tappu R., Bazinet AL., Xie C., Cummings MP., Nieselt K., Williams R. 2017. Fast and simple protein-alignment-guided assembly of orthologous gene families from
microbiome sequencing reads. *Microbiome* 5:11.

Jacobs J. Metagenomics - Tools, Methods and Madness. *Available at https://goo.gl/2gyNxK* (accessed August 21, 2017).

Jelizarow M., Guillemot V., Tenenhaus A., Strimmer K., Boulesteix A-L. 2010. Over-optimism in bioinformatics: an illustration. *Bioinformatics* 26:1990–1998.

Jumpstart Consortium Human Microbiome Project Data Generation Working Group. 2012. Evaluation of 16S rDNA-based community profiling for human microbiome research. *PloS one* 7:e39315.

Kelley DR., Liu B., Delcher AL., Pop M., Salzberg SL. 2012. Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering. *Nucleic acids research* 40:e9.

Langille MGI., Zaneveld J., Caporaso JG., McDonald D., Knights D., Reyes JA., Clemente JC., Burkepile DE., Vega Thurber RL., Knight R., Beiko RG., Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. *Nature biotechnology* 31:814–821.

Lever J., Krzywinski M., Altman N. 2016. Points of Significance: Classification evaluation. *Nature methods* 13:603–604.

Lindgreen S., Adair KL., Gardner PP. 2016. An evaluation of the accuracy and speed of metagenome analysis tools. *Scientific reports* 6:19233.

Liu B., Gibbons T., Ghodsi M., Pop M. 2010. MetaPhyler: Taxonomic profiling for metagenomic sequences. In: *2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*. 95–100.

Liu J., Wang H., Yang H., Zhang Y., Wang J., Zhao F., Qi J. 2013. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. *Nucleic acids research* 41:e3.

Lu G., Ades AE. 2004. Combination of direct and indirect evidence in mixed treatment
comparisons. *Statistics in medicine* 23:3105–3124.

502 Lu J., Breitwieser FP., Thielen P., Salzberg SL. 2017. Bracken: estimating species abundance in metagenomics data. *PeerJ Computer Science* 3:e104.

504 Lumley T. 2002. Network meta-analysis for indirect treatment comparisons. *Statistics in medicine* 21:2313–2324.

506 McIntyre ABR., Ounit R., Afshinnekoo E., Prill RJ., Hénaff E., Alexander N., Minot SS., Danko D., Foom J., Ahsanuddin S., Tighe S., Hasan NA., Subramanian P., Moffat K., Levy S.,

508 Lonardi S., Greenfield N., Colwell RR., Rosen GL., Mason CE. 2017. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. *Genome biology* 18:182.

510 Minot SS., Krumm N., Greenfield NB. 2015. One codex: a sensitive and accurate data platform for genomic microbial identification. *bioRxiv*.

512 Norel R., Rice JJ., Stolovitzky G. 2011. The self-assessment trap: can we all be better than average? *Molecular systems biology* 7:537.

515 Nurk S., Meleshko D., Korobeynikov A., Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. *Genome research* 27:824–834.

517 Olson ND., Treangen TJ., Hill CM., Cepeda-Espinoza V., Ghurye J., Koren S., Pop M. 2017. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. *Briefings in bioinformatics*. DOI: 10.1093/bib/bbx098.

521 Oulas A., Pavloudi C., Polymenakou P., Pavlopoulos GA., Papanikolaou N., Kotoulas G.,

522 Arvanitidis C., Iliopoulos I. 2015. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. *Bioinformatics and biology insights* 9:75–88.

525 Ounit R., Wanamaker S., Close TJ., Lonardi S. 2015. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. *BMC genomics* 16:236.
Patil KR., Haider P., Pope PB., Turnbaugh PJ., Morrison M., Scheffer T., McHardy AC. 2011. Taxonomic metagenome sequence assignment with structured output models. *Nature methods* 8:191–192.

Peabody MA., Van Rossum T., Lo R., Brinkman FSL. 2015. Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities. *BMC bioinformatics* 16:363.

Quince C., Walker AW., Simpson JT., Loman NJ., Segata N. 2017. Shotgun metagenomics, from sampling to analysis. *Nature biotechnology* 35:833–844.

Rho M., Tang H., Ye Y. 2010. FragGeneScan: predicting genes in short and error-prone reads. *Nucleic acids research* 38:e191.

Richter DC., Ott F., Auch AF., Schmid R., Huson DH. 2008. MetaSim: a sequencing simulator for genomics and metagenomics. *PloS one* 3:e3373.

Rosen GL., Reichenberger ER., Rosenfeld AM. 2011. NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads. *Bioinformatics* 27:127–129.

Ross MG., Russ C., Costello M., Hollinger A., Lennon NJ., Hegarty R., Nusbaum C., Jaffe DB. 2013. Characterizing and measuring bias in sequence data. *Genome biology* 14:R51.

Rücker G. 2012. Network meta-analysis, electrical networks and graph theory. *Research synthesis methods* 3:312–324.

Rücker G., Schwarzer G., Krahn U., König J. 2015. netmeta: Network meta-analysis using frequentist methods. *R package version 0. 8-0. Available at* (Accessed December 1, 2016).

Salanti G., Higgins JPT., Ades AE., Ioannidis JPA. 2008. Evaluation of networks of randomized trials. *Statistical methods in medical research* 17:279–301.

Schloss PD., Westcott SL., Ryabin T., Hall JR., Hartmann M., Hollister EB., Lesniewski RA., Oakley BB., Parks DH., Robinson CJ., Sahl JW., Stres B., Thallinger GG., Van Horn DJ., Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Applied and
environmental microbiology 75:7537–7541.

Schoch CL., Seifert KA., Huhndorf S., Robert V., Spouge JL., Levesque CA., Chen W., Fungal Barcoding Consortium., Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proceedings of the National Academy of Sciences of the United States of America* 109:6241–6246.

Schwarzer G., Carpenter JR., Rücker G. 2015. *Meta-Analysis with R*. Springer.

Sczyrba A., Hofmann P., Belmann P., Koslicki D., Janssen S., Dröge J., Gregor I., Majda S., Fiedler J., Dahms E., Bremges A., Fritz A., Garrido-Oter R., Jørgensen TS., Shapiro N., Blood PD., Gurevich A., Bai Y., Turaev D., DeMaere MZ., Chikhi R., Nagarajan N., Quince C., Meyer F., Balvočiūtė M., Hansen LH., Sørensen SJ., Chia BKH., Denis B., Froula JL., Wang Z., Egan R., Don Kang D., Cook JJ., Deltel C., Beckstette M., Lemaitre C., Peterlongo P., Rizk G., Lavenier D., Wu Y-W., Singer SW., Jain C., Strous M., Klingenberg H., Meinicke P., Barton MD., Lingner T., Lin H-H., Liao Y-C., Silva GGZ., Cuevas DA., Edwards RA., Saha S., Piro VC., Renard BY., Pop M., Klenk H-P., Göker M., Kyrpides NC., Woyke T., Vorholt JA., Schulze-Lefert P., Rubin EM., Darling AE., Rattei T., McHardy AC. 2017. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. *Nature methods* 14:1063–1071.

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*. DOI: 10.1093/bioinformatics/btu153.

Sharpton TJ. 2014. An introduction to the analysis of shotgun metagenomic data. *Frontiers in plant science* 5:209.

Siegwald L., Touzet H., Lemoine Y., Hot D., Audebert C., Caboche S. 2017. Assessment of Common and Emerging Bioinformatics Pipelines for Targeted Metagenomics. *PloS one* 12:e0169563.

Singer E., Andreopoulos B., Bowers RM., Lee J., Deshpande S., Chiniquy J., Ciobanu D., Klenk
H-P., Zane M., Daum C., Clum A., Cheng J-F., Copeland A., Woyke T. 2016a. Next generation sequencing data of a defined microbial mock community. *Scientific data* 3:160081.

Singer E., Bushnell B., Coleman-Derr D., Bowman B., Bowers RM., Levy A., Gies EA., Cheng J-F., Copeland A., Klenk H-P., Hallam SJ., Hugenholtz P., Tringe SG., Woyke T. 2016b. High-resolution phylogenetic microbial community profiling. *The ISME journal* 10:2020–2032.

Sneath A., Sokal RR. 1963. Principles of numerical taxonomy. *San Francisco and London* I 963.

Stoye J., Evers D., Meyer F. 1998. Rose: generating sequence families. *Bioinformatics* 14:157–163.

Stranneheim H., Käller M., Allander T., Andersson B., Arvestad L., Lundeberg J. 2010. Classification of DNA sequences using Bloom filters. *Bioinformatics* 26:1595–1600.

Thomas T., Gilbert J., Meyer F. 2012. Metagenomics - a guide from sampling to data analysis. *Microbial informatics and experimentation* 2:3.

Tringe SG., Hugenholtz P. 2008. A renaissance for the pioneering 16S rRNA gene. *Current opinion in microbiology* 11:442–446.

Tringe SG., von Mering C., Kobayashi A., Salamov AA., Chen K., Chang HW., Podar M., Short JM., Mathur EJ., Detter JC., Bork P., Hugenholtz P., Rubin EM. 2005. Comparative metagenomics of microbial communities. *Science* 308:554–557.

Truong DT., Franzosa EA., Tickle TL., Scholz M., Weingart G., Pasolli E., Tett A., Huttenhower C., Segata N. 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. *Nature methods* 12:902–903.

Wang Q., Fish JA., Gilman M., Sun Y., Brown CT., Tiedje JM., Cole JR. 2015. Xander: employing a novel method for efficient gene-targeted metagenomic assembly. *Microbiome* 3:32.

Wilke A., Bischof J., Gerlach W., Glass E., Harrison T., Keegan KP., Paczian T., Trimble WL.,
Bagchi S., Grama A., Chaterji S., Meyer F. 2016. The MG-RAST metagenomics database and portal in 2015. *Nucleic acids research* 44:D590–4.

Woese CR. 1987. Bacterial evolution. *Microbiological reviews* 51:221–271.

Woese CR., Kandler O., Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proceedings of the National Academy of Sciences of the United States of America* 87:4576–4579.

Wood DE., Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome biology* 15:R46.

Yang IV. 2006. [4] Use of External Controls in Microarray Experiments. *Methods in enzymology* 411:50–63.

Zhang Y., Sun Y., Cole JR. 2014. A scalable and accurate targeted gene assembly tool (SAT-Assembler) for next-generation sequencing data. *PLoS computational biology* 10:e1003737.

Zhu W., Lomsadze A., Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. *Nucleic acids research* 38:e132.
Figure 1: Three different strategies for generating positive control sequencing datasets, i.e. genome/barcoding datasets of known taxonomic placement that are absent from existing reference databases. These are: A “clade exclusion”, where positive control sequences are selectively removed from reference databases (Peabody et al., 2015); B “simulated evolution”, where models of sequence evolution are used to generate sequences of defined divergence times from any ancestral sequence or location on a phylogenetic tree e.g. (Stoye, Evers & Meyer, 1998; Dalquen et al., 2012); and C “new genome sequences” are genome sequences that have been deposited in sequence archives prior to the generation of any reference sequence database used by analysis tools (Sczyrba et al., 2017).

Figure 2: A: More than 80 metagenome classification tools have been published in the last 10 years (Jacobs). A fraction of these (29%) have been independently evaluated. B: The number of citations for each software tool versus the year it was published. Software tools that have been evaluated are coloured and labelled (using colour combinations consistent with evaluation paper(s), see right). Those that have not been evaluated, yet have been cited >100 times are labelled in black. C: Box-whisker plots illustrating the distributions of accuracy estimates based upon reported F-measures using values from 4 different evaluation manuscripts (Bazinet & Cummings, 2012; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017; Almeida et al., 2018). D: The relationship between publication citation counts and the corresponding tool accuracy estimate, as measured by a normalised F-measure (see Methods for details).

Figure 3: A: a matrix indicating eDNA analysis tools in alphabetical order (named on the right axis) versus a published benchmark on the bottom axis. The circle size is proportional to the number of F-measure estimates from each benchmark. B: a ranked list of eDNA classification tools. The median F-measure for each tool is indicated with a thick black vertical line. Bootstrapping each distribution (seeded with the extremes from the interval) 1000 times, was used to determine a 95% confidence interval for each median. These are indicated with thin vertical black lines. Each F-measure for each tool is indicated with a coloured point, colour indicates the manuscript where the value was sourced. Coloured vertical lines indicate the median F-measure for each benchmark for each tool.

Figure 4: A. A forest plot of a network analysis, indicating the estimated accuracy range for each tool. The plot shows the relative F-measure with a 95% confidence interval for each software tool. The tools are sorted based upon relative performance, from high to low. Tools
with significantly higher F-statistics have a 95% confidence interval that does not cover the null odds-ratio of 1.

B. A network representation of the software tools, published evaluations, ranks for each tool and the median F-measure. The edge-widths indicate the rank of a tool within a publication (based upon median, within-publication, rank). The edge-colours indicate the different publications, and node-sizes indicate median F-measure (based upon all publications). An edge is drawn between tools that are ranked consecutively within a publication.
Three different strategies for generating positive control sequencing datasets, i.e. genome/barcoding datasets of known taxonomic placement that are absent from existing reference databases. These are: “clade exclusion”, where positive control sequences are selectively removed from reference databases (Peabody et al., 2015); “simulated evolution”, where models of sequence evolution are used to generate sequences of defined divergence times from any ancestral sequence or location on a phylogenetic tree e.g. (Stoye, Evers & Meyer, 1998; Dalquen et al., 2012); and “new genome sequences” are genome sequences that have been deposited in sequence archives prior to the generation of any reference sequence database used by analysis tools (Sczyrba et al., 2017).
A. Clade exclusion

- Positive control genome (sampled)
- Reference database genome
- Sequences masked from the reference database
- Simulated sequence evolution
- New genome sequences

B. Simulated evolution

C. New genome sequences
Summary of software tools, publication dates, citations and benchmarks.

More than 80 metagenome classification tools have been published in the last 10 years (Jacobs) . A fraction of these (29%) have been independently evaluated. **B:** The number of citations for each software tool versus the year it was published. Software tools that have been evaluated are coloured and labelled (using colour combinations consistent with evaluation paper(s), see right). Those that have not been evaluated, yet have been cited >100 times are labelled in black. **C:** Box-whisker plots illustrating the distributions of accuracy estimates based upon reported F-measures using values from 4 different evaluation manuscripts (Bazinet & Cummings, 2012; Lindgreen, Adair & Gardner, 2016; Siegwald et al., 2017; Almeida et al., 2018) . **D:** The relationship between publication citation counts and the corresponding tool accuracy estimate, as measured by a normalised F-measure (see Methods for details).
Figure 3 (on next page)

Robust Z score based comparison of software tools

A: A matrix indicating metagenome analysis tools in alphabetical order (named on the right axis) versus a published benchmark on the bottom axis. The circle size is proportional to the number of F-measure estimates from each benchmark. **B**: a ranked list of metagenome classification tools. The median F-measure for each tool is indicated with a thick black vertical line. Bootstrapping each distribution (seeded with the extremes from the interval) 1000 times, was used to determine a 95% confidence interval for each median. These are indicated with thin vertical black lines. Each F-measure for each tool is indicated with a coloured point, colour indicates the manuscript where the value was sourced. Coloured vertical lines indicate the median F-measure for each benchmark for each tool.
Figure 4 (on next page)

Network based comparison of metagenome analysis software tools

A. A forest plot of a network analysis, indicating the estimated accuracy range for each tool. The plot shows the relative F-measure with a 95% confidence interval for each software tool. The tools are sorted based upon relative performance, from high to low. Tools with significantly higher F-statistics have a 95% confidence interval that does not cover the null odds-ratio of 1.

B. A network representation of the software tools, published evaluations, ranks for each tool and the median F-measure. The edge-widths indicate the rank of a tool within a publication (based upon median, within-publication, rank). The edge-colours indicate the different publications, and node-sizes indicate median F-measure (based upon all publications). An edge is drawn between tools that are ranked consecutively within a publication.
A. Comparison: other vs ‘EBI−mg’ (Random Effects Model)

B. Prediction interval

Manuscript to be reviewed
Table 1 (on next page)

A summary of the main features of the four software evaluations used for this study, including the positive controls employed (the sources of sequences from organisms with known taxonomic placements, whether negative control sequences were used, the approaches for excluding reference sequences from the positive control sequences, and the metrics that were collected for tool evaluation. The accuracy measures are defined in Table 2, the abbreviations used above are Matthews Correlation Coefficient (MCC), Negative Predictive Value (NPV), Positive Predictive Value (PPV), Sensitivity (Sen), Specificity (Spec).
Paper	Positive controls	Negative controls	Reference exclusion method	Metrics
Almeida et al. (2018)	12 in silico mock communities from 208 different genera.	-	2% of positions "randomly mutated"	Sequence Level (Sen., F-measure)
Bazinet et al. (2012)	Four published in silico mock communities from 742 taxa (Stranneheim et al., 2010; Liu et al., 2010; Patil et al., 2011; Gerlach & Stoye, 2011)	-	-	Sequence Level (Sen., PPV)
Lindgreen et al. (2016)	Six in silico mock communities from 417 different genera.	Shuffled sequences	Simulated evolution	Sequence Level (Sen., Spec., PPV, NPV, MCC)
Siegwald et al. (2017)	36 in silico mock communities from 125 bacterial genomes.	-	-	Sequence Level (Sen, PPV, F-measure)

Table 1: A summary of the main features of the four software evaluations used for this study, including the positive controls employed (the sources of sequences from organisms with known taxonomic placements, whether negative control sequences were used, the approaches for excluding reference sequences from the positive control sequences, and the metrics that were collected for tool evaluation. The accuracy measures are defined in Table 2, the abbreviations used above are Matthews Correlation Coefficient (MCC), Negative Predictive Value (NPV), Positive Predictive Value (PPV), Sensitivity (Sen), Specificity (Spec).
Some commonly used measures of “accuracy” for software predictions.

These are dependent upon counts of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) which can be computed from comparisons between predictions and ground-truths (Lever, Krzywinski & Altman, 2016).
Table 2: Some commonly used measures of “accuracy” for software predictions. These are dependent upon counts of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) which can be computed from comparisons between predictions and ground-truths (Lever, Krzywinski & Altman, 2016).

Measure	Formula	Definition
Sensitivity	$\text{Sensitivity} = \frac{\text{TP}}{\text{TP} + \text{FN}}$ (a.k.a. recall, true positive rate)	
Specificity	$\text{Specificity} = \frac{\text{TN}}{\text{TN} + \text{FP}}$ (a.k.a. true negative rate)	
PPV	$\text{PPV} = \frac{\text{TP}}{\text{TP} + \text{FP}}$ (a.k.a. positive predictive value, precision, sometimes mis-labelled “specificity”)	
F measure	$\text{F measure} = \frac{2 \times \text{Sensitivity} \times \text{PPV}}{\text{Sensitivity} + \text{PPV}}$ (a.k.a. F1 score)	
Accuracy	$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$	
FPR	$\text{FPR} = \frac{\text{FP}}{\text{FP} + \text{TN}}$ (a.k.a. false positive rate)	