Entanglement distribution in multi-particle systems in terms of unified entropy

Yu Luo\(^1\), Fu-Gang Zhang\(^2\) & Yongming Li\(^1,2\)

We investigate the entanglement distribution in multi-particle systems in terms of unified \((q, s)\)-entropy. We find that for any tripartite mixed state, the unified \((q, s)\)-entropy entanglement of assistance follows a polygamy relation. This polygamy relation also holds in multi-particle systems. Furthermore, a generalized monogamy relation is provided for unified \((q, s)\)-entropy entanglement in the multi-qubit system.

Quantum entanglement is an important resource in quantum information theory. Different from classical correlations, this restricted shareability of entanglement in multi-particle systems is known as monogamy property. The more entanglement shared between two parties implies the less entanglement shared with the rest of the system. Monogamy property plays a crucial role in quantum cryptography: which restricts the quantity of information captured by an eavesdropper about the secret key to be extracted\(^1\)–\(^3\). Monogamy property has also been discussed in the device-independent quantum information processing\(^4\), condensed matter physics\(^5\) and black-hole physics\(^6\)–\(^7\).

The study of monogamy property has a long history. The first monogamy relation was found by Coffman et al., who considered a three-qubit system \(ABC\)\(^8\), and showed that the amount of entanglement (which is quantified by the squared concurrence) between A and B, plus the amount of entanglement between A and C, cannot be greater than the amount of entanglement between A and the pair BC. Further, Osborne et al. proved the squared concurrence follows a general monogamy inequality for the \(N\)-qubit system\(^1\). Monogamy inequalities for different entanglement measures have been noted, such as concurrence\(^9\)–\(^12\), entanglement of formation\(^13\), \(^14\), negativity\(^15\)–\(^19\), Rényi entropy entanglement\(^20\),\(^21\), and Tsallis entropy entanglement\(^22\)–\(^24\). For the other physical resources, such as discord and steering, the monogamy property of them has also been discussed\(^25\)–\(^28\).

As dual to monogamy property, polygamy property in multi-particle systems has arisen many interests by researchers\(^15\),\(^19\),\(^22\),\(^29\),\(^30\). Polygamy property was first provided by using the concurrence of assistance to quantify the distributed bipartite entanglement in multi-qubit systems\(^29\),\(^30\). Polygamy property has also considered in many entanglement measures, such as Rényi entropy\(^20\), Tsallis entropy\(^22\),\(^23\) and convex-roof extended negativity\(^19\).

Unified \((q, s)\)-entropy is an important entropic measure, which can be used in many areas of quantum information theory. In this paper, we investigate the entanglement distribution in multi-particle systems in terms of unified \((q, s)\)-entropy. We find that for any tripartite mixed state, the unified \((q, s)\)-entropy entanglement of assistance follows a polygamy relation. This polygamy relation also holds in multi-particle systems. Furthermore, a generalized monogamy relation is provided for unified \((q, s)\)-entropy entanglement in the multi-qubit system.

Results

This paper is organized as follows. In the first subsection, we recall the definition of unified \((q, s)\)-entropy and discuss the properties of unified \((q, s)\)-entropy entanglement. In the second subsection, we give our main results. We summarize our results in the third subsection.

Unified \((q, s)\)-entropy entanglement and unified \((q, s)\)-entropy entanglement of assistance.

Given a quantum state \(\rho\) in the Hilbert space \(\mathcal{H}\). The unified \((q, s)\)-entropy is defined as\(^32\)

\[
S_{q,s}(\rho) = \frac{1}{(1-q)s} [\text{Tr}(\rho^s)^q - 1]
\]

\(^1\)College of Computer Science, Shaanxi Normal University, Xi’an, 710062, China. \(^2\)School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, China. Correspondence and requests for materials should be addressed to Y.L. (email: liyongm@snnu.edu.cn)
for any \(q, s \geq 0 \) such that \(q = 1 \) and \(s = 0 \).

When \(s \) tends to 1, the unified \((q, s)\)-entropy converges to Tsallis entropy \(T_q(\rho) \)\(^{33}\)
\[
\lim_{s \to 1} S_{q,s}(\rho) = \frac{1}{1 - q} \left[\text{Tr}(\rho^q) - 1 \right].
\] (2)

When \(s \) tends to 0, the unified \((q, s)\)-entropy converges to Rényi entropy \(R_q(\rho) \)\(^{34}\)
\[
\lim_{s \to 0} S_{q,s}(\rho) = \frac{1}{1 - q} \ln \text{Tr}(\rho^q).
\] (3)

When \(q \) tends to 1, the unified \((q, s)\)-entropy converges to von Neumann entropy \(S(\rho) \)\(^{35}\)
\[
\lim_{q \to 1} S_{q,s}(\rho) = - \text{Tr} \rho \ln \rho.
\] (4)

Because the limits exist in the case of \(q \to 1 \) and \(s \to 0 \), we will use \(q = 1 \) and \(s = 1 \) to represent the limits in this paper. Now, let’s consider the entanglement in terms of the unified \((q, s)\)-entropy. For any pure state \(|\psi\rangle_{AB} \) in the Hilbert space \(\mathcal{H}_A \otimes \mathcal{H}_B \) (it’s does not matter for the sizes of subsystem \(A \) and \(B \)), the unified \((q, s)\)-entropy entanglement is defined as\(^{36}\)
\[
E_{q,s}(|\psi\rangle_{AB}) = S_{q,s}(\rho_A)
\] (5)
for any \(q, s \geq 0 \).

For a mixed state \(\rho_{AB} \), the unified \((q, s)\)-entropy entanglement can be defined via the convex-roof extension
\[
E_{q,s}(\rho_{AB}) = \min \sum_i p_i E_{q,s}(|\psi_i\rangle_{AB})
\] (6)
where the minimum is taken over all possible ensembles \(\{p_i, |\psi_i\rangle_{AB}\} \) of \(\rho_{AB} \) with \(\sum p_i = 1 \) and \(p_i \geq 0 \). It is straightforward to verify that \(E_{q,s}(\rho_{AB}) = 0 \) if and only if \(\rho_{AB} \) is a separable state for \(q, s \geq 0 \).

When \(s \) tends to 1, the unified \((q, s)\)-entropy entanglement becomes Tsallis entanglement\(^{31}\). When \(s \) tends to 0, the unified \((q, s)\)-entropy entanglement becomes Rényi entanglement\(^{35}\). Especially, The unified \((q, s)\)-entropy entanglement becomes entanglement of formation when \(q \) tends to 1. The entanglement of formation is defined as\(^{37,38}\)
\[
E(\rho_{AB}) = \min \sum_i p_i E_i(|\psi_i\rangle_{AB})
\] (7)
where \(E_i(|\psi_i\rangle_{AB}) = - \text{Tr} \rho_i \ln \rho_i = - \text{Tr} \rho_i \ln \rho_i \) is the von Neumann entropy, the minimum is taken over all possible ensembles \(\{p_i, |\psi_i\rangle_{AB}\} \) of \(\rho_{AB} \) with \(\sum p_i = 1 \) and \(p_i \geq 0 \).

As a dual quantity to the unified \((q, s)\)-entropy entanglement, the unified \((q, s)\)-entropy entanglement of assistance \((q, s)\)-EOA) can be defined as
\[
E^a_{q,s}(\rho_{AB}) = \max \sum_i p_i E_i(|\psi_i\rangle_{AB})
\] (8)
where the maximum is taken over all possible ensembles \(\{p_i, |\psi_i\rangle_{AB}\} \) of \(\rho_{AB} \) with \(\sum p_i = 1 \) and \(p_i \geq 0 \). To understand \((q, s)\)-EOA better, consider a tripartite pure state \(|\psi\rangle_{ABC} \) shared among three parties referred to as Alice, Bob, and Charlie\(^{35}\). The entanglement supplier, Charlie, performs a measurement on his share of the tripartite state, which yields a known bipartite entangled state for Alice and Bob. Tracing over Charlie’s system yields the bipartite mixed state \(\rho_{AB} = \text{Tr}_C(|\psi\rangle_{ABC} \langle \psi|) \) shared by Alice and Bob. Charlie’s aim is to maximize entanglement for Alice and Bob, and the maximum average entanglement he can create is the \((q, s)\)-EOA.

Concurrence and concurrence of assistance. For any pure state \(|\psi\rangle_{AB} \) in the Hilbert space \(\mathcal{H}_A \otimes \mathcal{H}_B \), the concurrence is defined as\(^{40}\)
\[
C(\rho_{AB}) = \sqrt{2(1 - \text{Tr} \rho_A^2)},
\] (9)
where \(\rho_A = \text{Tr}_B(\rho_{AB}) \).

For a mixed state \(\rho_{AB} \), the concurrence can be defined via the convex-roof extension
\[
C(\rho_{AB}) = \min \sum_i p_i C(|\psi_i\rangle_{AB})
\] (10)
where the minimum is taken over all possible ensembles \(\{p_i, |\psi_i\rangle_{AB}\} \) of \(\rho_{AB} \) with \(\sum p_i = 1 \) and \(p_i \geq 0 \).

As a dual quantity to concurrence, the concurrence of assistance (COA) can be defined as
\[
C^a(\rho_{AB}) = \max \sum_i p_i C(|\psi_i\rangle_{AB})
\] (11)
where the maximum is taken over all possible ensembles \(\{p_i, |\psi_i\rangle_{AB}\} \) of \(\rho_{AB} \) with \(\sum p_i = 1 \) and \(p_i \geq 0 \).
Analytical formula for two-qubit states. For a two-qubit mixed state ρ_{AB}, concurrence and COA are known to have analytic formula\(^{30, 40}\)

$$C(\rho_{AB}) = \max \{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\},$$

$$C^s(\rho_{AB}) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4,$$

where λ_i being the eigenvalues, in decreasing order, of matrix $\sqrt{\rho_{AB}(\sigma_y \otimes \sigma_y)\rho_{AB}^\dagger(\sigma_y \otimes \sigma_y)}$.

In ref. 40, Wootters derived an analytical formula of entanglement of formation for a two-qubit mixed state ρ_{AB}

$$E_f(\rho_{AB}) = h\left(1 + \frac{1 - C^2(\rho_{AB})}{2}\right),$$

where $h(x) = -x \ln x - (1 - x) \ln(1 - x)$ is the binary entropy.

In ref. 36, Kim found $E_{q_{AB}}(\rho_{AB})$ has an analytical formula for a two-qubit mixed state, which can be expressed as a function of concurrence C_{AB} for $q \geq 1, 0 \leq s \leq 1$ and $qs \leq 3$

$$E_{q_s}(\rho_{AB}) = f_s\left[C(\rho_{AB})\right],$$

where the function $f_s(x)$ has the form

$$f_s(x) = \frac{[1 + \sqrt{1 - x^2}]x + (1 - x^2)^{1/2} - 2x}{(1 - q)x^{2q}} ,$$

where $0 \leq x \leq 1$.

Main Results. In this section, we will provide our main results. First, we have following result:

Theorem 1. For any tripartite mixed state ρ_{ABC} in the Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, we have

$$E^a_{q_{AB}}(\rho_{ABC}) \leq E^a_{q_{A|BC}}(\rho_{A|BC}) + E^a_{q_{B|AC}}(\rho_{B|AC}) + E^a_{q_{C|AB}}(\rho_{C|AB}),$$

where $q \geq 1$ and $qs \geq 1$.

Proof: Let $\rho_{ABC} = \max \sum_i E_{\psi_i}(\rho_{A|BC})$ be an optimal decomposition of $E^a_{q_{AB}}(\rho_{ABC})$. That is

$$E^a_{q_{A|BC}}(\rho_{ABC}) = \max \sum_i E_{\psi_i}(\rho_{A|BC}).$$

For any bipartite pure state $|\psi\rangle_{A|BC}$, the unified (q, s)-entropy entanglement $E_{q_s}(|\psi\rangle_{A|BC}) = S_{q_s}(\rho_{A|BC})$. In ref. 41, Rastegin proved that for any $q \geq 1$ and $qs \geq 1$, the unified (q, s)-entropy is subadditive, that is

$$S_{q_s}(\rho_{A|BC}) \leq S_{q_{AB}}(\rho_{A|BC}) + S_{q_{AC}}(\rho_{A|BC}).$$

Combining Eq. (18) with Eq. (19), we have

$$E^a_{q_{AB}}(\rho_{ABC}) \leq \sum_i S_{q_{A|BC}}(\rho_{A|BC})$$

$$\leq \sum_i S_{q_{A|BC}}(\rho_{A|BC}) + \sum_i S_{q_{B|AC}}(\rho_{B|AC})$$

$$\leq E^a_{q_{A|BC}}(\rho_{A|BC}) + E^a_{q_{B|AC}}(\rho_{A|BC}) + E^a_{q_{C|AB}}(\rho_{A|BC}).$$

Thus, the proof is completed.

Theorem 1. Shows a simple but interesting polygamy relation of (q, s)-EOA in a tripartite quantum system. The upper bound of (q, s)-EOA of $A|BC$ can’t be greater than the sum of (q, s)-EOA of $B|AC$ and (q, s)-EOA of $C|AB$. In particular, for a tripartite pure state $|\psi\rangle_{A|BC}$, the unified (q, s)-entropy entanglement $E_{q_s}(|\psi\rangle_{A|BC}) \leq E_{q_{A|BC}}(\rho_{A|BC}) + E_{q_{B|AC}}(\rho_{B|AC}) + E_{q_{C|AB}}(\rho_{C|AB})$.

We also have the following corollary:

Corollary 1. For any mixed state $\rho_{A_1|A_2\cdots A_n}$ in the Hilbert space $\mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2} \otimes \cdots \otimes \mathcal{H}_{A_n}$, we have

$$E^a_{q_s}(\rho_{A_1|A_2\cdots A_n}) \leq \sum_{i=1}^n E^a_{q_s}(\rho_{A_1|A_2\cdots A_{i-1}A_{i+1}\cdots A_n}).$$

where $q \geq 1$ and $qs \geq 1$.

Corollary 1. Shows a constrained relationship of (q, s)-EOA in the multi-particle system, and gives an upper bound of (q, s)-EOA of $A_1|A_2\cdots A_n$. In particular, for any pure state $|\psi\rangle_{A_1|A_2\cdots A_n}$, the unified (q, s)-entropy entanglement $E_{q_s}(|\psi\rangle_{A_1|A_2\cdots A_n}) \leq \sum_{i=1}^n E_{q_s}(|\psi\rangle_{A_1|A_{i+1}\cdots A_n})$.
Example 1: Let’s consider the general GHZ state $|\text{GHZ}\rangle = \alpha |0\rangle^\otimes n + \beta |1\rangle^\otimes n$, where $|\alpha|^2 + |\beta|^2 = 1$ and $n \geq 3$. It’s easy to show that $\sum_{i=1}^{n-2} E^q_{\psi}(\rho_{A_1\cdots A_{i-1}A_{i+1}\cdots A_n}) - E^q_{\psi}(|\text{GHZ}\rangle_{A_1\cdots A_n}) = \frac{n-2}{n-1} |\alpha|^4 + |\beta|^4 - 1 \geq 0$.

Example 2: Consider a four-qubit cluster state $|C_4\rangle = \frac{1}{\sqrt{2}}(0000 + 0011 + 1100 - 1111)$, which is a type of highly entangled state of four-qubit 42,43. The reduced states of $|C_4\rangle$ are $\rho_A = \rho_B = \rho_C = \rho_D = \frac{I}{4}$, thus $\sum_{i=1}^{n-2} E^q_{\psi}(\rho_{A_1\cdots A_{i-1}A_{i+1}\cdots A_n}) - E^q_{\psi}(|C_4\rangle) = \frac{1}{8} \left(\frac{1}{q-1}\right) - 1$ which is nonnegative for $q \geq 1$ and $q^2 \geq 1$.

We note that for any n-qubit mixed state $\rho_{A_1\cdots A_n}$, the polygamy relation holds:

$$E^q_{\psi}(\rho_{A|A_1\cdots A_n}) \leq \sum_{i=1}^{n} E^q_{\psi}(\rho_{A_i})$$ \hspace{1cm} (22)

for $1 \leq q \leq 2$ and $-q^2 + 4q - 3 \leq s \leq 1$.44 Combining Eq. (17) with Eq. (22), we have

Corollary 2. For any multi-qubit mixed state $\rho_{A_1\cdots A_n}$, the following inequality holds:

$$E^q_{\psi}(\rho_{A|B|C_1\cdots C_n}) \leq E^q_{\psi}(\rho_{A|B|C_1\cdots C_n}) + E^q_{\psi}(\rho_{A|C_1\cdots C_n})$$

$$\leq 2E^q_{\psi}(\rho_{AB}) + \sum_{i=1}^{n} E^q_{\psi}(\rho_{AC_i}) + \sum_{i=1}^{n} E^q_{\psi}(\rho_{BC_i}),$$ \hspace{1cm} (23)

where $1 \leq q \leq 2$, $s = 1$. In this case, (q, s)-EOA becomes Tsallis entropy entanglement of assistance which has discussed in ref. 22.

Before our second main result, we have following lemma:

Lemma 1. For $q = 2$ and $\frac{1}{2} \leq s \leq 1$, the function $f_{q,s}(x)$ in Eq. (16) satisfies

$$f_{q,s}(\sqrt{x^2 + y^2}) = f_{q,s}(x) + f_{q,s}(y).$$ \hspace{1cm} (24)

Proof: For $q \geq 2$, $0 \leq s \leq 1$, and q^2 is even, we have $f_{q,s}(\sqrt{x^2 + y^2}) = f_{q,s}(x) + f_{q,s}(y)^{36}$. On the other hand, for $1 \leq q \leq 2$ and $0 \leq s \leq 1$, we have $f_{q,s}(\sqrt{x^2 + y^2}) \leq f_{q,s}(x) + f_{q,s}(y)^{44}$. The equality holds if and only if $q = 2$ and $\frac{1}{2} \leq s \leq 1$. This completes the proof.

Next, the following result will provide a lower bound of unified (q, s)-entropy entanglement of $|\psi\rangle_{AB|C_1\cdots C_n}$, with respect to the bipartition between AB and $C_1\cdots C_n$.

Theorem 2. For any multi-qubit pure state $|\psi\rangle_{A_1\cdots A_n}$ in the Hilbert space, we have

$$E^q_{\psi}(|\psi\rangle_{AB|C_1\cdots C_n})$$

$$\geq \max \left[\sum_{i=1}^{n} E^q_{\psi}(\rho_{C_i}) - E^q_{\psi}(\rho_{AB}) \right] \sum_{i=1}^{n} E^q_{\psi}(\rho_{AC_i}) - E^q_{\psi}(\rho_{AC_i}),$$ \hspace{1cm} (25)

where $q = 2$ and $\frac{1}{2} \leq s \leq 1$.

Proof: Given a multi-qubit pure state $|\psi\rangle_{AB|C_1\cdots C_n}$, the unified (q, s)-entropy is subadditive for any $q \geq 1$ and $q^2 \geq 1$. Thus, the following equality holds

$$S_{q,s}(\rho_{C_1\cdots C_n}) = S_{q,s}(\rho_{A})$$

$$\leq S_{q,s}(\rho_{A}) + S_{q,s}(\rho_{B})$$

$$= S_{q,s}(\rho_{C_1\cdots C_n})$$ \hspace{1cm} (26)

which implies $S_{q,s}(\rho_{C_1\cdots C_n}) - S_{q,s}(\rho_{B}) \leq S_{q,s}(\rho_{AC_1\cdots C_n})$, and similarly, $S_{q,s}(\rho_{A}) - S_{q,s}(\rho_{C_1\cdots C_n}) \leq S_{q,s}(\rho_{AC_1\cdots C_n})$.

Combine with the two equalities above, one obtain

$$|S_{q,s}(\rho_{A}) - S_{q,s}(\rho_{C_1\cdots C_n})| \leq S_{q,s}(\rho_{AC_1\cdots C_n}),$$ \hspace{1cm} (27)

From the definition of unified (q, s)-entropy entanglement of $|\psi\rangle_{AB|C_1\cdots C_n}$, with respect to the bipartition between AB and $C_1\cdots C_n$, we have

$$E^q_{\psi}(|\psi\rangle_{AB|C_1\cdots C_n}) = S_{q,s}(\rho_{A})$$

$$\geq S_{q,s}(\rho_{A}) - S_{q,s}(\rho_{B})$$

$$= E^q_{\psi}(\rho_{ABC_1\cdots C_n}) - E^q_{\psi}(\rho_{BAC_1\cdots C_n}).$$ \hspace{1cm} (28)

Note that for any pure state $|\psi\rangle_{ABC}$ in a $2 \otimes 2 \otimes d$ system, the following equality holds45,46

$$C^2(|\psi\rangle_{ABC}) = |C^q(\rho_{AB})|^2 + C^q(\rho_{AC}),$$ \hspace{1cm} (29)
where ρ_{AB} and ρ_{AC} are the reduced matrices of state $|\psi\rangle_{ABC}$ respectively. For $q = 2$ and $\frac{1}{2} \leq s \leq 1$, we have

$$E_{q,s}(\langle \psi \rangle_{ABC}) = f_{q,s}(\mathcal{C}(\langle \psi \rangle_{ABC}))$$

$$= f_{q,s}\left(\mathcal{C}(\rho_{AB}) + \mathcal{C}(\rho_{AC})\right)$$

$$= f_{q,s}\left(\mathcal{C}(\rho_{AB}) + \mathcal{C}(\rho_{AC})\right)$$

where we have used Eq. (29) in the second equality, the third equality holds is due to lemma 1. Therefore,

$$E_{q,s}(\langle \psi \rangle_{ABC}) = f_{q,s}(\mathcal{C}(\langle \psi \rangle_{ABC}))$$

$$\leq f_{q,s}\left(\sqrt{n|\mathcal{C}(\rho_{AB})|^2 + \sum_{i=1}^{n} \mathcal{C}(\rho_{AC})^2}\right)$$

$$\leq f_{q,s}(\mathcal{C}(\rho_{AB})) + f_{q,s}\left(\sum_{i=1}^{n} \mathcal{C}(\rho_{AC})^2\right).$$

(30)

Compare Eq. (30) with Eq. (31), it's easy to see that

$$E_{q,s}(\langle \psi \rangle_{ABC}) - E_{q,s}(\langle \psi \rangle_{BC}) \geq f_{q,s}(\mathcal{C}(\rho_{AC})) - f_{q,s}\left(\sum_{i=1}^{n} \mathcal{C}(\rho_{BC})^2\right).$$

(31)

We also note that

$$f_{q,s}(\mathcal{C}(\rho_{AC})) \geq f_{q,s}\left(\sum_{i=1}^{n} \mathcal{C}(\rho_{BC})^2\right)$$

$$= \sum_{i=1}^{n} f_{q,s}(\mathcal{C}(\rho_{BC}))$$

$$= \sum_{i=1}^{n} E_{q,s}(\rho_{BC}).$$

(33)

where the first equality holds is due to the monogamy of concurrence1 and $f_{q,s}(x)$ is an increasing function for $q \geq 2$, $0 \leq s \leq 1$, and $q^s \leq 3^s$.

On the other hand, we have

$$f_{q,s}\left(\sum_{i=1}^{n} \mathcal{C}(\rho_{BC})^2\right) = \sum_{i=1}^{n} f_{q,s}(\mathcal{C}(\rho_{BC}))$$

$$\leq \sum_{i=1}^{n} E_{q,s}(\rho_{BC})$$

(34)

Combine Eqs (32) and (33) with Eq. (34), we have

$$E_{q,s}(\langle \psi \rangle_{ABC}) - E_{q,s}(\langle \psi \rangle_{BC}) \geq \sum_{i=1}^{n} E_{q,s}(\rho_{BC}) - E_{q,s}(\rho_{BC})$$

(35)

Putting Eq. (35) into Eq. (32), we obtain our result. Similarly, we have

$$E_{q,s}(\langle \psi \rangle_{ABC}) \geq \sum_{i=1}^{n} E_{q,s}(\rho_{BC}) - E_{q,s}(\rho_{BC})$$

(36)

Thus, the proof is completed.

Theorem 2 shows a monogamy relation for a multi-qubit pure state $|\psi\rangle_{ABC}$. The lower bound of the unified (q, s)-entanglement for $AB\{C_1, \ldots, C_n\}$ can't be less than the sum of the two-qubit entanglement between bipartitions of the system. In particular, if $|\psi\rangle_{ABC} = |\psi\rangle_{AC_1, \ldots, C_n} \otimes |\psi\rangle_{BC}$, the entanglement of $AB\{C_1, \ldots, C_n\}$ is equal to the entanglement of $A\{C_1, \ldots, C_n\}$. In this case, $E_{q,s}(\rho_{BC}) = 0$ for $i = 1, 2, \ldots, n$. Theorem 2 becomes $E_{q,s}(\langle \psi \rangle_{ABC}) \geq \sum_{i=1}^{n} E_{q,s}(\rho_{BC})$, which is a CKW-type monogamy relation$^{1-4}$.

Example 3: Consider a pure state $|\psi\rangle_{ABC} = \frac{1}{\sqrt{3}} (|0000\rangle + |0001\rangle)$ in the four-qubit system. For the range $q \geq 2$ and $\frac{1}{2} \leq s \leq 1$, we have $E_{q,s}(\rho_{AC}) = E_{q,s}(\rho_{AC}) = 0$, and $E_{q,s}(\rho_{AC}) = E_{q,s}(\rho_{AC}) = \frac{s}{2} (1 - \frac{s}{2})$.
A generalized monogamy relation is provided for s in the multi-qubit system. In particular, if
\[E_{AB}'(\rho_{BC}) = E_{AB}'(\rho_{BC}) = 0 \] for $i = 1, 2$ and $E_{AB}'(\rho_{AB}) = \frac{1}{2}(1 - \frac{1}{n})$. Therefore, we can see $|\psi\rangle_{ABC:C_2}$ saturates the inequality Eq. (25).

Example 4: Finally, let’s consider a general W state $|W\rangle_{A_1A_2A_3} = a_1|00\cdots01\rangle + a_2|00\cdots10\rangle + \cdots + a_n|10\cdots00\rangle$ in the n-qubit system, where $\sum_i|a_i|^2 = 1$. The reduced state of subsystem A_iA_i is
\[
\rho_{A_iA_i} = \begin{pmatrix}
1 - |a_{n-i}|^2 & 0 & \cdots & 0 \\
0 & |a_{n-i}|^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & |a_n|^2
\end{pmatrix}
\]
which implies $E_{AB}'(\rho_{A_iA_i}) = \frac{1}{2}$. It’s also easy to show that the reduced state $\rho_{A_iA_i}$ is separable, where $i, j = [1, 2, \ldots, n]$. Thus $E_{AB}'(\rho_{A_iA_i}) = E_{AB}'(\rho_{A_iA_j}) = E_{AB}'(\rho_{A_iA_A}) = E_{AB}'(\rho_{A_A}) = 0$. We find that the right side of the inequality Eq. (25) is $\sum_{i=1}^{n-1} E_{AB}'(\rho_{A_iA_i}) = \sum_{i=1}^{n} E_{AB}'(\rho_{A_iA_A}) = 0$ which implies the inequality Eq. (25) holds for the general W state.

Conclusion
Unified (q, s)-entropy is an important generalized entropy in quantum information theory. Many entropies such as Tsallis entropy, Rényi entropy, and von Neumann entropy can be seen as a special case for unified (q, s)-entropy.

In this paper, we have investigated the entanglement distribution in multi-particle systems in terms of unified (q, s)-entanglement. We find that for any tripartite mixed state, the (q, s)-Eq. 4.1 follows a polygamy relation for $q \geq 1$ and $qs \geq 1$. This polygamy relation provides an upper bound for the bipartition $A|BC$, which also holds in multi-particle systems. Furthermore, for $q = 2$ and $1 \leq s \leq 1$, a generalized monogamy relation is provided for unified (q, s)-entanglement. This monogamy relation provides a lower bound for the bipartition $AB|C_i$ in the multi-qubit system. In particular, if $|\psi\rangle_{ABC:C_i} = |\psi\rangle_{AC:C_i} \otimes |\psi\rangle_B$, the unified monogamy relation becomes a CKW-type monogamy relation.

Both monogamy property and polygamy property are fundamental properties of multipartite entangled states. We have studied the properties above in detail, and provided a two-parameters entropy function to study the entanglement distribution. We believe our result provides a useful methodology to understand the entanglement distribution of multi-particle entanglement.

References
1. Osborne, T. J. & Verstraete, F. General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006).
2. Kay, A., Kaszlikowski, D. & Ramanathan, R. Optimal cloning and singlet monogamy. Phys. Rev. Lett. 103, 050501 (2009).
3. Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).
4. Augusiak, R. et al. Elemental and tight monogamy relations in nonsignaling theories. Phys. Rev. A 90, 052332 (2014).
5. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008).
6. Suskind, L. Black hole complementarity and the Harlow-Hayden conjecture. arXiv:1301.4505 (2013).
7. Lloyd, S. & Preskill, J. Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 0812 (2014).
8. Coffman, V., Kundu, J. & Wootters, W.K. Distinguishability of multipartite quantum states. J. Math. Phys. 41, 1439 (2000).
9. Regula, B., Martino, S. D., Lee, S. & Adesso, G. Strong Monogamy Conjecture for Multipartite Entanglement: The Four-Qubit Case. Phys. Rev. Lett. 113, 100501 (2014).
10. Ou, Y.-C., Fan, H. & Fei, S.-M. Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78, 012311 (2008).
11. Zhu, X.-N. & Fei, S.-M. Generalized monogamy relations of concurrence for N-qubit systems. Phys. Rev. A 92, 062345 (2015).
12. Eltschka, C. & Siewert, J. Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114, 140402 (2015).
13. Bai, Y.-K., Xu, Y.-F. & Wang, Z. D. Monogamy relation of multi-qubit systems for squared Tsallis-entropy. Phys. Rev. Lett. 113, 100503 (2014).
14. Bai, Y.-K., Xu, Y.-F. & Wang, Z. D. Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems. Phys. Rev. A 90, 062343 (2014).
15. Kim, J. S., Das, A. & Sanders, B. C. Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009).
16. Ou, Y.-C. & Fan, H. Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007).
17. Luo, Y. & Li, Y.-M. Monogamy of αth power entanglement measurement in qubit systems. Ann. Phys. 362, 511 (2015).
18. He, H. & Vidal, G. Entanglement theorem and monogamy for entanglement negativity. Phys. Rev. A 91, 012339 (2015).
19. Tian, W., Luo, Y. & Li, Y. Generalised monogamy relation of convex-roof extended negativity in multi-level systems. Sci. Rep. 6, 36700 (2016).
20. Kim, J. S. & Sanders, B. C. Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theor. 43, 445305 (2010).
21. Song, W. et al. General monogamy relation of multipartit quantum systems in terms of squared Rényi-α entanglement. Phys. Rev. A 93, 022306 (2016).
22. Kim, J. S. Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Ann. Phys. 373, 197 (2016).
23. Yuan, G.-M. et al. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement. Sci. Rep. 6, 28719 (2016).
24. Luo, Y., Tian, T., Shao, L.-H. & Li, Y.-M. General monogamy of Tsallis-q entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016).
25. Bai, Y.-K., Zhang, N., Ye, M.-Y. & Wang, Z. D. Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013).
26. Streltsov, A., Adesso, G., Piani, M. & Bruß, D. Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012).
27. He, Q.-Y. & Reid, M. D. Genuine multipartite Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 111, 250403 (2013).
28. Pramanik, T., Kaplan, M. & Majumdar, A. S. Fine-grained Einstein-Podolsky-Rosen–steering inequalities. Phys. Rev. A. 90, 050305(R) (2014).
29. Gour, G., Bandyopadhyay, S. & Sanders, B. S. Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012208 (2007).
30. Laustsen, T., Verstraete, F. & van Enk, S. J. Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003).
31. Kim, J. S. Tsallis entropy and entanglement constraints in multipartit quantum systems. Phys. Rev. A 81, 062328 (2010).
32. Hu, X.-H. & Ye, Z.-X. Generalized quantum entropy. *J. Math. Phys.* **47**, 023502 (2006).
33. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. *J. Stat. Phys.* **52**, 479 (1988).
34. Horodecki, R., Horodecki, P. & Horodecki, M. Quantum α-entropy inequalities: independent condition for local realism? *Phys. Lett. A* **210**, 377 (1996).
35. Nielsen M. A. & Chuang, I. L. *Quantum Computation and Quantum Information* (Cambridge: Cambridge Univ. Press 2000).
36. Kim, J. S. & Sanders, B. C. Unified entropy, entanglement measures and monogamy of multi-party entanglement. *J. Phys. A: Math. Theor.* **44**, 295303 (2011).
37. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. *Phys. Rev. A.* **53**, 2046 (1996).
38. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. *Phys. Rev. A* **54**, 3824 (1996).
39. Gour, G., Meyer, D. A. & Sanders, B. C. Deterministic entanglement of assistance and monogamy constraints. *Phys. Rev. A* **72**, 042329 (2005).
40. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. *Phys. Rev. Lett.* **80**, 2245 (1998).
41. Rastegin, A. E. Some general properties of unified entropies. *J. Stat. Phys.* **143**, 1120 (2011).
42. Briegel, H. J. & Raussendorf, R. Persistent Entanglement in Arrays of Interacting Particles. *Phys. Rev. Lett.* **86**, 910 (2001).
43. Kiesel, N. *et al.* Experimental Analysis of a Four-Qubit Photon Cluster State. *Phys. Rev. Lett.* **95**, 210502 (2005).
44. Kim, J. S. Unification of multiqubit polygamy inequalities. *Phys. Rev. A* **85**, 032335 (2012).
45. Yu, C.-S. & Song, H.-S. Measurable entanglement for tripartite quantum pure states of qubits. *Phys. Rev. A* **76**, 022324 (2007).
46. Yu, C.-S. & Song, H.-S. Entanglement monogamy of tripartite quantum states. *Phys. Rev. A* **77**, 032329 (2008).

Acknowledgements

The authors are grateful to the anonymous referees for their comments and suggestions. This work is supported by the NSFC (Grants No. 11271237, No. 11671244, No. 61303009, No. 61671280, and No. 61673250), the Higher School Doctoral Subject Foundation of Ministry of Education of China (Grant No. 20130202110001), and Fundamental Research Funds for the Central Universities (Grants No. 2016TS060 and No. 2016CBY003).

Author Contributions

Y. Luo performed the calculations and wrote the main manuscript. F.-G. Zhang checked the calculations. Y. Li improved the manuscript. All authors contributed to the discussion and reviewed the manuscript.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017