Application of ZnO-Functionalised-Sepiolite in weaning piglet diets

B. Vilà †, F. Escribano †, A. Esteban †, A. Fontgibell *, E. Esteve-Garcia *, and J. Brufau *.

* IRTA, Animal Nutrition, Mas de Bover, ctra Reus-El Morell km 3.8, 43120-Constantí, Spain
† TOLSA S.A., Dept. I+D, Ctra Vallecas a Mejorada del Campo, km 1.6, Apartado de Correos 38017, 28080-Madrid, Spain

ABSTRACT

The objective was to evaluate the effect of ZnO-Functionalised-sepiolite (ZnO-Sepiolite) to fulfil Zn requirements and health status of weaning piglets. Pre-starter Basal Diet (BD, corn-soybean based, from weaning till 14 days on trial) was calculated to provide 27 mg Zn/kg feed from raw materials and had no added ZnO and no antibiotics or organic acids. Treatments during pre-starter period were: 1) BD + 90% of NRC Zn requirements completed with ZnO (ZnO90); 2) BD + 90% of NRC Zn requirements completed with ZnO-Sepiolite (ZnOS90); 3) BD + 3000 mg ZnO/kg of diet (ZnO3000); 4) BD + 150 mg added Zn/kg diet from ZnO-Sepiolite (ZnOS150). The starter feed (corn-soybean based, from 14 till 31 days on trial) was common for all piglets, and met 90% NRC Zn requirements by adding ZnO. Diarrhea affected more than 50% of the animals of ZnO90, ZnOS90 and ZnOS150, and 33% of the ZnO3000 animals. Animals from ZnOS90 tended (P<0.10) to improve Gain to Feed ratio (G:F) compared to animals from ZnO90 (0.830 kg/kg vs. 0.811 kg/kg for G:F). Performance of animals from ZnO3000 was not significantly different from the other treatments, and numerically similar to animals from ZnOS90. The inclusion of ZnO at 3000 mg/kg of feed in the pre-starter period numerically decreased P in serum at the end of this period,

*1 presenting and corresponding author: telf. +34 977 603 214, e-mail borja.vila@irta.cat
with no effect on Ca level; normal levels were restored after 2 weeks of feeding the same levels of Zn than other animals. Animals fed ZnO-Sepiolite diets had numerically higher serum Ca than ZnO90 and ZnO3000 at 12 days and higher than ZnO90 at 28 days. Serum Zn levels were significantly higher for ZnO3000 than the other treatments.

INTRODUCTION

Zinc oxide is fed at pharmacological levels to weaning piglets to decrease diarrhea incidence and increase performance (Hahn and Baker, 1993; Hill et al., 2001). Zinc has been described to keep the integrity of the intestinal mucosa at weaning, favouring villi development and nutrient absorption. Li et al. (2006) detected increased villi height when ZnO was supplemented at 3000 mg Zn/kg. ZnO also modifies the intestinal microflora. Weaning piglets fed 2500 mg/kg ZnO kept the stability of the intestinal microflora and the diversity of coliforms for the first two weeks post weaning (Katouli et al., 1999) increasing resistance to pathogen colonization (Owusu-Asiedu et al., 2003). According to Højberg et al. (2005) the influence of ZnO at 2500 mg Zn/kg on the intestinal microflora could be similar to the mechanism of action of antibiotic growth promoters, suppressing gram + commensal bacteria and consequently reducing the fermentation of digestible nutrients in the proximal part of the gastrointestinal tract rendering more energy for the host.

However, the increasing concern about zinc content of slurry led to search for alternatives. Organic sources, like Zn methioninate or Zn polysaccharide products have been studied with variable efficacy in piglets (Hollis et al., 2005; Buff et al., 2005).

Sepiolite (Mg₈Si₁₂O₃₀(OH)₄(H₂O)₄·8H₂O) is a clay mineral of the phyllosilicates group with a characteristic chain-like structure that confers capillary arrangement and special physical-chemical properties such as high porosity and surface area. Furthermore
sepiolite has been used to improve nutrient utilization in pigs (Parisini et al., 1999) and decrease the incidence and severity of diarrhea in weaning piglets (Sardi et al., 2004). Zinc oxide can be deposited onto sepiolite’s surface; the resulting compound (functionalized sepiolite) has novel properties as antibacterial activities (Jones et al., 2008). The effect of ZnO functionalized with sepiolite on piglets’ performance and health has not been studied yet. Sepiolite was functionalized with ZnO by a controlled precipitation method (Pecharromán et al., 2006; Esteban-Cubillo et al., 2008) to obtain a surface effect of ZnO by its homogeneous dispersion onto sepiolite. The hypotheses were that ZnO-Functionalized-sepiolite (ZnO-Sepiolite) could fulfill the Zn nutrient requirements of piglets at weaning at lower Zn levels than ZnO, and could also exert the same health benefits than pharmacological levels of ZnO at much lower Zn level.

MATERIAL AND METHODS

Animals and housing

The experiments followed the EU principals for animal care and experimentation, and procedures used were approved by the Ethical Committee for Animal Care and Experimentation. The trial was performed with 144 entire male piglets (Duroc x Landrace), weaned at 21 days (6.1 kg average Body Weight -BW).

Experimental design

The experiment was set as completely randomized design, blocked by piglets’ initial BW. Each treatment was assigned to 6 pens with 6 piglets each. Feeds were corn-soybean based and formulated according to animal requirements except for Zn requirements, in two periods (pre-starter -Basal Diet, BD- from weaning till 14 days on trial, 3375 kcal/kg ME; 1.50% lysine; and starter from 14 till 31 days on trial, 3300 kcal/kg ME; 1.25% lysine); no antibiotics or organic acids were included in the feeds. Treatments during pre-starter period were: 1) BD + 90% of NRC Zn
requirements completed with ZnO (ZnO90); 2) BD + 90% of NRC Zn requirements completed with ZnO-Sepiolite (ZnOS90); 3) BD + 3000 mg ZnO /kg of diet (ZnO3000); 4) BD + 150 mg added Zn/kg diet from ZnO-Sepiolite (ZnOS150). The starter feed was common for all piglets, and met 90% NRC Zn requirements by adding ZnO.

Pigs were weighed at the start of the trial (weaning), on day 14 and 31. Average daily gain (ADG), average daily feed intake (ADFI) and gain to feed ratio (G:F) were calculated for each period and for the overall experiment. Appearance of diarrhea was individually controlled and recorded, animals were not medicated against diarrhea. On day 12 and 28, individual blood samples were collected from the anterior vena cava of two pigs per pen (12 pigs per treatment) for atomic absorption spectrophotometry analysis of Ca, P and Zn serum content.

Statistical Analysis
Data were analyzed according the design of the experiment. One pen was considered the experimental unit for performance variables while one pig was considered the experimental unit for serum Ca, P and Zn content. Analysis was performed using the following procedures of SAS System for Windows V9.1.3 (SAS, 2003): GLM for performance variables, NPAR1WAY for number of dead animals or animals with diarrhea, MIXED for serum analysis. Level of significance was set at P=0.05.

RESULTS AND DISCUSSION
Results of performance and diarrhea appearance are presented in Table 1. During the pre-starter period diarrhea affected approximately half of the animals of Treatments ZnO90, ZnOS90 and ZnOS150, and less than one third of the animals of ZnO3000. Similar results were obtained by Hahn and Baker (1993) and Hill et al. (2001). However all the animals gained weight during this period and no animal had to be taken
off trial due to diarrhoea. Animals from ZnOS90 significantly improved G:F compared
to animals from ZnO90 (0.825 vs. 0.742); ADG was also improved by 6%, although
differences did not reach significance. Animals from ZnO3000 significantly improved
G:F compared to animals from ZnO90, and ADG was numerically improved by 17%.
Incidence of diarrhea was lower in the starter than in the pre-starter period for all
treatments except for ZnO3000 which presented the same incidence in both periods. In
the starter period animals from ZnO3000 had similar ADG to animals from ZnO90, but
G:F was significantly impaired compared to ZnO90 and ZnOS150 (0.818 vs. 0.847 vs.
0.847).
For the whole trial period diarrhea affected more than half of the animals of Treatments
ZnO90, ZnOS90 and ZnOS150, while only about one third of the animals from
ZnO3000. Animals from ZnOS90 numerically improved G:F compared to animals from
ZnO90 (0.830 vs. 0.811). Animals from ZnO3000 numerically improved G:F and ADG
compared to animals from ZnO90 (by 2% and 6% respectively). Performance of
animals from ZnOS150 was not significantly different from the other treatments, and
numerically close to animals from ZnOS90.
The inclusion of ZnO at 3000 mg/kg of feed in the pre-starter period numerically
decreased the Phosphorus in serum at the end of this period, with no effect on Ca level,
and significantly increased the ratio Ca:P (Table 2). This effect has been shown in
previous trials and in some cases might imply severe P deficiencies and impaired
performance as found by Lizardo et al. (2004). Levels of P were restored after 2 weeks
of feeding the same levels of Zn than other animals. Serum calcium was numerically
higher at 28 days for ZnOS90 compared to ZnO90 animals; however serum Ca level
was intermediate for ZnOS150 animals. Zinc levels were significantly higher for
ZnO3000 than the other treatments, both at 12 and 28 days; differences were more
extreme at 12 days though. Zinc was restricted in feed to 90% of NRC requirement for a theoretical ADFI of 500 g in the pre-starter period, but actual ADFI was much lower (308 g as global average) and consequently actual Zn ingestion was approximately 40% of NRC requirement. However no differences in serum Zn were detected among ZnO90, ZnOS90 and ZnOS150 animals. Levels of Zn in serum were in accordance with results obtained by Hill et al. (2001) with animals fed pharmacological and 118% NRC requirement levels.

Feeding 90% NRC Zn requirements as ZnO-Functionalised Sepiolite instead of ZnO significantly improved G:F in the pre-starter period, and numerically improved G:F in the overall experiment. Addition of ZnO at 3000 mg/kg improved ADG in the pre-starter period, but impaired G:F in the starter period compared to ZnOS150. Therefore these results might suggest that animals’ Zn requirement was already met in the conditions of the experiment (actually 40% NRC requirement), and the objective to compare Zn efficacy between ZnO90 and ZnOS90 could not be assessed; further research is warranted on ZnO-Functionalised-Sepiolite to assess its effect on a longer term period.

REFERENCES

Buff, C.E., D.W. Bollinger, M.R. Ellersieck, W.A. Brommelsiek and T.L. Veum. 2005. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. Journal of Animal Science 83: 2380-2386.

Esteban-Cubillo, A. Pina-Zapardiel, R., Moya, J.S., Barba, M.F., Pecharromán, C. 2008. The role of magnesium on the stability of crystalline sepiolite structure. Journal of the European Ceramic Society 28: 1763–1768.
Hahn, J.D. and D.H. Baker. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. Journal of Animal Science 71: 3020-3024.

Hill, G.M., D.C. Mahan, S.D. Carter, G.L. Cromwell, R.C. Ewan, R.L. Harrold, A.J. Lewis, P.S. Miller, G.C. Shurson and T.L. Veum. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. Journal of Animal Science 79: 934-941.

Højberg, O., N. Canibe, H.D. Poulsen, M.S. Hedemann and B.B. Jensen. 2005. Influence of Dietary Zinc Oxide and Copper Sulfate on the Gastrointestinal Ecosystem in Newly Weaned Piglets. Applied and Environmental Microbiology 71: 2267-2277.

Hollis, G.R., S.D. Carter, T.R. Cline, T.D. Crenshaw, G.L. Cromwell, G.M. Hill, S.W. Kim, A.J. Lewis, D.C. Mahan, P.S. Miller, H.H. Stein and T.L. Veum. 2005. Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs. Journal of Animal Science 83: 2123-2129.

Jones, N., Ray, B., Ranjit, K.T. and Manna, A.C. 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters 279, 71-76.

Katouli, M., L. Melin, M. Jensen-Waern, P. Wallgren and R. Möllby. 1999. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs. Journal of Applied Microbiology 87: 564-573.
Li, X., J. Yin, D. Li, X. Chen, J. Zang and X. Zhou. 2006. Dietary supplementation with zinc oxide increases IGF-I and IGF-I receptor gene expression in the small intestine of weanling piglets. Journal of Nutrition 136: 1786-1791.

Lizardo, R., D. Torrallardona and J. Brufau. 2004. Zinc oxide in phytase-low phosphorus diets impairs performance of weanling pigs. In 55th Annual Meeting of EAAP (ed EAAP), pp. 1-4. Bled.

National Research Council. 1998. Nutrient Requirements of Swine. 10th Rev. Ed. (10th edn). Washington DC, USA.

Owusu-Asiedu, A., C.M. Nyachoti, S.K. Baaidoo, R.R. Marquardt and X. Yang. 2003. Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody. Journal of Animal Science 81: 1781-1789.

Parisini, P., G. Martelli, L. Sardi and F. Escribano. 1999. Protein and energy retention in pigs fed diets containing sepiolite. Animal Feed Science and Technology 79: 155-162.

Pecharromán, C., Esteban-Cubillo, A., Montero, I., Moya, J.S., Aguilar, E., Santarén, J and Alvarez, A. 2006. Monodisperse and Corrosion-Resistant Metallic Nanoparticles Embedded into Sepiolite Particles for Optical and Magnetic Applications. Journal of the American Ceramic Society 89 [10] 3043–3049

Sardi, L., G. Martelli, F. Escribano, P. Parazza and P. Parisini. 2004. The effects of Sepiolite-SPLF on piglet and heavy pig production. Italian Journal of Animal Science 3: 225-234.

SAS. 2003. SAS System for Windows V.9.1.3. Cary, NC, USA.
Table 1. Summary results of performance variables (n=6 replicates (pens) with 6 piglets each per treatment) ¹

	BW² (kg)	ADG² (g)	ADFI² (kg/kg)	G:F²	diarrhea ³
Pre-starter period (from weaning till 14 days)					
ZnO90	9.41 ±0.443	235 ±14.5	315 ±14.8	0.742 ±0.0140⁵	19
ZnOS90	9.61 ±0.594	249 ±25.3	299 ±23.2	0.825 ±0.0288⁴	23
ZnO3000	9.98 ±0.366	274 ±11.3	337 ±13.7	0.814 ±0.0170⁴	10
ZnOS150	9.25 ±0.567	222 ±24.9	282 ±25.5	0.780 ±0.0250⁴	18
P value	0.203	0.207	0.137	0.067	
Starter period (from 14 to 31 days)					
ZnO90	16.56 ±0.714	419 ±16.2	496 ±23.3	0.847 ±0.0083⁴	6
ZnOS90	16.19 ±1.043	387 ±28.2	466 ±37.2	0.834 ±0.0081⁴	10
ZnO3000	17.15 ±0.432	421 ±11.0	515 ±12.6	0.818 ±0.0094⁴	10
ZnOS150	16.28 ±1.051	411 ±28.3	488 ±39.7	0.847 ±0.0116⁴	13
P value	0.547	0.476	0.516	0.084	
Whole trial					
ZnO90	16.56 ±0.714	336 ±15.1	414 ±19.4	0.811 ±0.0037	20
ZnOS90	16.19 ±1.043	325 ±26.3	391 ±30.3	0.830 ±0.0066	25
ZnO3000	17.15 ±0.432	355 ±5.5	435 ±9.4	0.817 ±0.0078	14
ZnOS150	16.28 ±1.051	326 ±26.3	395 ±33.1	0.826 ±0.0096	22
P value	0.547	0.519	0.363	0.176	0.064

¹ No antibiotics were included in the feeds. Treatments during the pre-starter period were: 1) Basal diet (BD) with 90% NRC Zn requirement completed with ZnO (ZnO90); 2) BD with 90% NRC Zn requirement completed with ZnO-Sepiolite (ZnOS90); 3) BD with ZnO added at 3000 mg/kg (ZnO3000); and 4) BD with ZnO-Sepiolite to provide 150 mg Zn/kg (ZnOS150). A common feed was provided during the starter period that met 90% NRC Zn requirement completed with ZnO.

² BW = Body weight at the end of period; ADG = Average Daily Gain; ADFI = Average Daily Feed Intake; G:F = Gain to Feed ratio

³ Number of different animals that presented diarrhea on the scoring days during the trial (10 days from the pre-starter period; 6 days from the starter period) (Kruskal-Wallis test)

0.01 < * ≤ 0.05

ab values in the same column with uncommon superscripts differ (P ≤ 0.05)

AB values in the same column with uncommon superscripts differ (P ≤ 0.10)
	Ca (mmol/L)	P (mmol/L)	Ca:P	Zn (μg/dL)
day 12				
ZnO90	1.47 ±0.082	1.94 ±0.121	0.77 ±0.022b	71.9 ±3.00b
ZnOS90	1.63 ±0.132	1.96 ±0.153	0.83 ±0.029b	84.4 ±7.02b
ZnO3000	1.47 ±0.039	1.57 ±0.061	0.95 ±0.029a	170.7 ±12.52a
ZnOS150	1.65 ±0.085	2.10 ±0.126	0.79 ±0.019b	81.4 ±5.18b
day 28				
ZnO90	1.69 ±0.049	2.06 ±0.053	0.82 ±0.018AB	60.4 ±3.73b
ZnOS90	1.87 ±0.075	2.17 ±0.134	0.89 ±0.047A	60.9 ±4.22b
ZnO3000	1.82 ±0.060	2.23 ±0.061	0.82 ±0.026AB	84.4 ±6.42a
ZnOS150	1.75 ±0.077	2.17 ±0.072	0.80 ±0.014B	65.3 ±3.76b

	Treatment P value	day P value	interaction P value
day 12	0.217	0.199	0.420
day 28	***	***	***

1 No antibiotics were included in the feeds. Treatments during the pre-starter period were: 1) Basal diet (BD) with 90% NRC Zn requirement completed with ZnO (ZnO90); 2) BD with 90% NRC Zn requirement completed with ZnO-Sepiolite (ZnOS90); 3) BD with ZnO added at 3000 mg/kg (ZnO3000); and 4) BD with ZnO-Sepiolite to provide 150 mg Zn/kg (ZnOS150). A common feed was provided during the starter period that met 90% NRC Zn requirement completed with ZnO.

\(0.01< * \leq 0.05; \ *** \leq 0.001\)

\(^a\) values in the same column within day with uncommon superscripts differ (P \leq 0.05)

\(^A\) values in the same column within day with uncommon superscripts differ (P \leq 0.10)