INTRODUCTION

Nasopharyngeal carcinoma (NPC) was one of the major invasive malignant neoplasms of the head and neck (Clifford, 1970; Huang, 1990; Yu, Ho, Henderson, & Armstrong, 1985). It was especially prevalent in China, southeastern Asia, the natives of the Artic region, and the Arabs of North Africa and parts of the Middle East (Kamal & Samarrai, 1999; Yu & Yuan, 2002). In Indonesia, the mean prevalence was 6.2/100,000, with 13,000 yearly new NPC cases (Adham,...)
et al., 2012). While in southern China it is much greater, with annual rates between 15 and 30 NPC cases per 100,000 (Kamran, Riaz, & Lee, 2015). Radiotherapy alone or chemoradiotherapy, is an important component of the primary therapy of NPC for its highly radio-sensitivity (Miao et al., 2019; Zhan, Zhang, Wei, Fu, & Zheng, 2019). However, predictors of the efficacy and toxicity response to radiotherapy of NPC have not been yet fully identified (Chen et al., 2019; Kamran et al., 2015; Miao et al., 2019).

The discovery of suitable biomarkers is needed to predict efficacy and toxicity of radiotherapy in patients with NPC. Recently, single nucleotide polymorphisms (SNPs) of candidate genes have been to be associated with the outcomes and toxicity in patients accepting radiotherapy of many cancers, including lung cancer, NPC, prostate cancer, breast cancer, oropharyngeal cancer, thyroid cancer, and so on (Kerns et al., 2019; Lewin et al., 2019; Liu et al., 2018; Tao et al., 2018; Wang et al., 2017; Wen et al., 2018). Studies showed that autophagy played an important role in various stages of cancer development, progression, radio-sensitivity and toxicity, including NPC (Liang et al., 2018; Lin et al., 2014; Qin et al., 2013; Wen et al., 2018; K. Xie et al., 2016; Yang et al., 2018; Yuan et al., 2017; Zhu et al., 2018). Autophagy could selectively target dysfunctional organelles, intracellular microbes, and pathogenic proteins, and deficiencies in these processes might lead to occurrence of cancers (Levine & Kroemer, 2019). During this process, autophagy-related genes (ATG) play an essential role in autophagy, and directly or indirectly accelerate cancer development and progression (Levine & Kroemer, 2019; Tsuboyama et al., 2016). The ATG family is a big family, and only a small part of the family members are currently known in humans (Klionsky, 2007). Some potentially functional variants of ATGs have been identified to be associated with the development, progression, radio-sensitivity and toxicity of other cancers, like lung cancer, hepatocellular carcinoma, prostate cancer, bladder cancer, breast cancer, and so on (Budak Diler & Aybuga, 2018; Li et al., 2019; Nikseresht et al., 2018; Zhou et al., 2017). Inspired by these findings, the present study was conducted to establish the relationships, if any, between potentially functional variants of ATGs and the efficacy of radiotherapy, as well as radiation-induced toxicity reaction in NPC patients.

2 | PATIENTS AND METHODS

2.1 | Study populations

The current study totally recruited 468 pathological diagnosed NPC patients treated with radiotherapy. The inclusion criteria was a first-time diagnosis of NPC, no prior treatment of anticancer therapies, no severe disorders of lung, heart, liver, pancreas, or kidney diseases. At recruitment, each participant or family members signed the informed consent form and a 5 ml of blood sample from the patients was collected. Genetic DNA of all patients was extracted using Wizard Genomic DNA Purification Kit (Promega), and stored at −80°C for further evaluation. Questionnaires on patient demographics were collected prior to treatment. The present study’s protocol was approved by the ethics committee of the Shengjing Hospital Affiliated to China Medical University.

2.2 | Treatment efficacies and toxic reactions

All the patients were treated with intensity modulated radiation-therapy (IMRT), with a tumoricidal radiation dose of

Characteristics	Patients (%)/values (N = 468)								
Age	49 ± 11								
Gender									
Male	319 (68.2%)								
Female	149 (31.8%)								
BMI	23.1 ± 4.3								
Smoking									
Yes	128 (27.3%)								
No	340 (72.7%)								
Drinking									
Yes	153 (32.7%)								
No	315 (67.3%)								
EBV-DNA									
Positive	330 (70.5%)								
Negative	138 (29.5%)								
Family history of cancer									
Yes	82 (17.5%)								
No	386 (82.5%)								
Chemotherapy									
Yes	349 (74.6%)								
No	119 (25.4%)								
TNM stage									
I, II	61 (13.0%)								
III	284 (60.7%)								
IV	123 (26.3%)								
Non-CMR after radiotherapy									
Primary tumor	95 (20.5%)								
Lymph node	80 (17.1%)								
Grade 3–4 radiation-induced toxic reactions									
Dermatitis	55 (11.8%)								
Oral mucositis	242 (51.7%)								
Myelosuppression	118 (25.2%)								
Variants	Primary tumor			Lymph node					
---	---	---	---	---	---	---			
	CMR	Non-CMR	OR (95% CIs)	p value	CMR	Non-CMR	OR (95% CIs)	p value	
ATG2B rs17784271									
AA	160	41	1.00 (Reference)		162	39	1.00 (Reference)		
AG	152	35	1.16 (0.6–2.22)	.661	158	29	1.36 (0.77–2.42)	.290	
GG	61	19	0.88 (0.56–1.39)	.583	68	12	1.48 (0.7–3.15)	.307	
G versus A			0.98 (0.89–1.08)	.721				1.31 (0.87–1.95)	.194
ATG2B rs4900321									
AA	246	68	1.00 (Reference)		255	59	1.00 (Reference)		
AT	103	23	1.26 (0.69–2.3)	.452	107	19	1.32 (0.71–2.46)	.382	
TT	24	4	1.68 (0.55–5.09)	.359	26	2	2.99 (0.76–11.69)	.116	
T versus A			1.33 (0.83–2.12)	.234				1.56 (0.95–2.54)	.078
ATG10 rs10514231									
AA	311	68	1.00 (Reference)		322	57	1.00 (Reference)		
AG	40	16	0.56 (0.32–0.99)	.045	43	13	0.6 (0.33–1.09)	.095	
GG	22	11	0.47 (0.23–0.93)	.029	23	10	0.43 (0.21–0.88)	.021	
G versus A			0.53 (0.37–0.78)	.001				0.52 (0.35–0.78)	.001
ATG10 rs1864183									
AA	311	68	1.00 (Reference)		324	55	1.00 (Reference)		
AG	50	20	0.56 (0.34–0.94)	.028	51	19	0.47 (0.28–0.8)	.005	
GG	12	7	0.41 (0.17–0.97)	.042	13	6	0.40 (0.16–0.99)	.049	
G versus A			0.53 (0.36–0.79)	.002				0.48 (0.32–0.73)	<.001
ATG10 rs1864182									
AA	316	77	1.00 (Reference)		331	62	1.00 (Reference)		
AC	47	14	0.86 (0.53–1.41)	.552	46	15	0.61 (0.34–1.06)	.081	
CC	10	4	0.63 (0.22–1.76)	.376	11	3	0.71 (0.23–2.13)	.538	
C versus A			0.79 (0.52–1.19)	.261				0.66 (0.42–1.04)	.076
ATG10 rs4703533									
CC	231	45	1.00 (Reference)		242	34	1.00 (Reference)		
CG	118	36	0.66 (0.43–1.01)	.053	120	34	0.51 (0.32–0.81)	.005	
GG	24	13	0.36 (0.19–0.7)	.003	26	11	0.33 (0.17–0.67)	.002	
G versus C			0.6 (0.44–0.81)	.001				0.53 (0.38–0.73)	<.001
ATG12 rs1058600									
CC	141	37	1.00 (Reference)		148	30	1.00 (Reference)		
CT	172	43	1.08 (0.41–2.82)	.875	178	37	1.00 (0.99–1.02)	.882	
TT	60	15	1.1 (0.36–3.38)	.874	62	13	1.01 (0.82–1.25)	.932	
T versus C			1.07 (0.52–2.22)	.853				1.02 (0.75–1.39)	.905
ATG12 rs26538									
CC	134	30	1.00 (Reference)		139	25	1.00 (Reference)		
CT	192	51	0.86 (0.59–1.26)	.449	200	43	0.86 (0.57–1.29)	.457	
TT	47	14	0.79 (0.44–1.41)	.421	49	12	0.77 (0.41–1.45)	.414	
T versus C			0.91 (0.73–1.13)	.388				0.9 (0.71–1.14)	.386
ATG16L2 rs1126205									
GG	113	27	1.00 (Reference)		119	21	1.00 (Reference)		
(Continues)									
66–70 Gy in 30–33 fractions for nasopharyngeal primary focus and the positive lymph nodes. All the patients underwent fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) after treatment. Treatment efficacies at the primary tumor and lymph node were evaluated in line with the Response Criteria in Solid Tumors (PERCIST), which defined treatment efficacy as complete metabolic response (CMR). Radiation-induced toxic reactions, including dermatitis, oral mucositis and myelosuppression, were evaluated according to the radiation toxicity grading criteria of the Radiation Therapy Oncology Group or European Organization for Research and Efficacy of Cancer (RTOG/EORTC). Patients were defined as “non-sensitive or mildly radiosensitive” group (grade 0–2) and “highly radiosensitive” group (grade 3–4).

2.3 | Selection of SNPs and genotyping

The selection of candidate SNPs were mainly based on study previously published by Wen et al. (2018). Eight of the nine functional SNPs [ATG2B rs17784271 (3'UTR) and rs4900321 (3'UTR); ATG10 rs10514231 (intron 2), and rs4703533 (the promoter region); ATG12 rs26538 (the promoter region) and rs1058600 (3'UTR); ATG16L2 rs1126205 (the promoter region) and rs10898880 (the promoter region)], were included (MAF of rs6884232 in Chinese was 0). We also included two widely reported SNPs in ATG10 gene, rs1864182 and rs1864183. This means totally 10 SNPs were included in this study. The genotyping was performed using the TaqMan methodology and read with the Sequence Detection Software on an ABI-Prism 7,900 instrument according to the manufacturer's instructions (Applied Biosystems, Foster City, CA).

2.4 | Statistical analysis

All statistical tests were two-sided and a p value of .05 was considered significant, and all analyses were performed using SAS software version 9.2 (SAS Institute). Univariate logistic regression was performed to determine the association of the 10 SNPs with the efficacy at the primary tumor and lymph node, as well as the radiation-induced toxicity reaction in NPC patients adjustment for age, gender, BMI, smoking, drinking, family history of cancer, EBV-DNA, chemotherapy, and TNM stage.

3 | RESULTS

3.1 | Population characteristics and clinical outcomes

The baseline demographics and clinical profiles are presented in Table 1. Totally 468 histopathological confirmed NPC cases, with a mean age of 49 (SD = 11), 319 male cases (68.2%), and a mean BMI of 23.1 (SD = 4.3), were included in this study. Among them, 128 (27.3%) were smokers, while 153 (32.7%) were drinkers. Plasma level of Epstein Barr virus (EBV) was detectable in 330 (70.5%) cases. Eighty-two (17.5%) cases had family history of cancer, and 349 (74.6%) accepted chemotherapy meanwhile. The TNM stage distribution of all NPC patients were 61 (13.0%) for I or II, 284 (60.7%) for III, and 123 (26.3%) for IV, respectively. Overall, there were 95 (20.5%) and 80 (17.1%) patients who did not get CMR after radiotherapy at their primary tumors and lymph nodes, respectively. For the toxic reactions, 55 (11.8%), 242 (51.7%), and 118 (25.2%) patients experienced grade 3–4 acute radiation-induced dermatitis, oral mucositis, and myelosuppression, respectively.

3.2 | Associations between candidate SNPs and the efficacy of radiotherapy

Table 2 presents the associations between candidate SNPs and the efficacy of radiotherapy at the primary tumor and lymph node in NPC patients. We found ATG10 rs10514231, rs1864182, and rs4703533, were significantly associated with worse efficacy of radiotherapy at both the primary
While ATG16L2 rs10898880 was significantly associated with better efficacy of radiotherapy at both the primary tumor (allelic model, for rs10514231: OR = 1.84, 95% CIs = 1.32–2.56, \(p < .001\)) and lymph node (allelic model, OR = 1.82, 95% CIs = 1.28–2.59, \(p = .001\)).

3.3 Associations between the candidate SNPs and grade 3–4 radiation-induced toxic reactions

Tables 3 and 4 presents the associations between the candidate SNPs and grade 3–4 radiation-induced oral mucositis and myelosuppression, respectively. We found ATG10 rs10514231 and ATG16L2 rs10898880 were significantly associated with the occurrence of grade 3–4 oral mucositis (allelic model, for rs10514231: OR = 1.95, 95% CIs = 1.31–2.9, \(p = .001\)) and grade 3–4 myelosuppression (allelic model, for rs10514231: OR = 2.08, 95% CIs = 1.39–2.09, \(p < .001\)).

We did not find significant associations for grade 3–4 radiation-induced dermatitis, due to the small sample size.

4 DISCUSSION

In present study, we investigated the associations of 10 potentially functional SNPs in ATG2B, ATG10, ATG12, and ATG16L2 with the efficacy and toxicity of radiotherapy in 468 NPC patients. We found ATG10 rs10514231, rs1864183,
and rs4703533 were significantly associated with worse efficacy of radiotherapy at both at the primary tumor and lymph node, while ATG16L2 rs10898880 was significantly associated with better efficacy of radiotherapy at both at the primary tumor and lymph node. Besides, we also found ATG10 rs10514231 and ATG16L2 rs10898880 were significantly associated with the occurrence of grade 3–4 oral mucositis and myelosuppression. These results suggest that potentially functional variants of ATGs might be useful biomarkers for predicting efficacy and toxicity of radiotherapy in NPC patients, once these results were validated by additional investigations.

With the rapid development of radio‐genomics, many studies have presented significant associations between genetic variants of candidate gene with the efficacy and toxicity of radiotherapy in NPC patients (Guo et al., 2017; Ma et al., 2017; Xie et al., 2014; Yu et al., 2016). Xie et al. (2014) found that the p53 codon 72 polymorphism could be an independent prognostic marker for locoregionally advanced NPC. Guo et al. (2017) reported that CDKN2A rs3088440 was significantly related with a poorer treatment efficacy on the primary tumor and cervical lymph node after radiotherapy, and also with a decreased risk of grade 3–4 acute radiation‐induced myelosuppression. Ma et al. (2017) found that polymorphisms in angiogenesis related genes could contribute to clinical outcomes of radiotherapy in NPC patients. Yu et al. (2016) detected that CTNNB1 rs1880481 and rs3864044, and GSK3β rs3755557 were significantly associated with poorer efficacy of radiotherapy in NPC patients, while GSK3β rs375557 and APC rs454886 were correlated with acute grade 3–4 radiation‐induced dermatitis and oral mucositis, respectively. These findings above revealed that genetic variants could potentially work as the indicator of efficacy and toxicity of radiotherapy in NPC patients.

Emerging evidence has revealed that autophagy process, which degrades intracellular components through the lysosomal machinery, plays an essential role in the process of cancer development and progression (Avalos et al., 2014; Mizushima, 2014; and Table 4).

Table 4

Variants	Grade 3–4	Grade 0–2	OR (95% CIs)*	p value
ATG2B rs17784271				
AA	47	154	1.00 (Reference)	
AG	49	138	1.21 (0.72–2.1)	.500
GG	22	58	1.3 (0.67–2.52)	.429
G versus A			1.19 (0.82–1.73)	.353
ATG2B rs4900321				
AA	76	238	1.00 (Reference)	
AT	33	93	1.15 (0.61–2.16)	.665
TT	9	19	1.53 (0.64–3.66)	.336
T versus A			1.24 (0.81–1.89)	.321
ATG10 rs10514231				
CC	85	294	1.00 (Reference)	
CT	20	36	1.99 (1.1–3.61)	.024
TT	13	20	2.37 (1.15–4.88)	.020
T versus C			2.08 (1.39–3.09)	<.001
ATG10 rs1864183				
AA	95	284	1.00 (Reference)	
AG	18	52	1.07 (0.32–3.81)	.914
GG	5	14	1.13 (0.26–4.87)	.866
G versus A			1.09 (0.49–2.42)	.831
ATG10 rs4703533				
CC	73	203	1.00 (Reference)	
CG	37	117	0.91 (0.67–1.24)	.553
GG	8	29	0.79 (0.4–1.54)	.485
G versus C			0.89 (0.71–1.14)	.376
ATG12 rs1058600				
CC	45	133	1.00 (Reference)	
CT	53	161	1.01 (0.84–1.22)	.902
TT	20	56	1.1 (0.43–3.01)	.856
T versus C			1.06 (0.41–2.73)	.908
ATG12 rs26538				
CC	42	122	1.00 (Reference)	
CT	61	182	1.01 (0.89–1.14)	.891
TT	15	46	0.99 (0.84–1.16)	.874
T versus C			1.01 (0.86–1.2)	.866
ATG16L2 rs1126205				
GG	39	101	1.00 (Reference)	

Note: p value in bold means statistically significant.

*Age, gender, BMI, smoking, drinking, family history of cancer, EBV-DNA, chemotherapy, and TNM stage.
Levine, Cuervo, & Klionsky, 2008), while ATGs could control autophagic formation, and directly or indirectly accelerate cancer development and progression (Levine & Kroemer, 2008). Xie et al. (2016) identified that ATG10 rs10514231, rs1864182 and rs1864183 were associated with poor lung cancer survival and positively correlated with ATG10 expression. In current study, we also found ATG10 rs10514231, rs1864183, and rs4703533 were significantly associated with worse efficacy of radiotherapy at both primary tumor and lymph node. Qin et al. (2013) reported that ATG10 rs1864182 and rs10514231 were significantly associated with a decreased risk of breast cancer in Chinese population. Yuan et al. (2017) also revealed that genetic variations in ATGs were significantly associated with clinical outcomes of advanced lung adenocarcinoma treated with gefitinib. Recently, Wen et al. (2018) found clinical outcomes of advanced lung adenocarcinoma treated with gefitinib. Recently, Wen et al. (2018) found genetic variations in ATGs significantly associated with a decreased risk of breast cancer.

ATG10 (2013) reported that rs4703533 were significantly associated with worse efficacy of radiotherapy at both at the primary tumor and lymph node, and had a greater risk of developing severe radiation pneumonitis. This results were similar to the findings in current study, which revealed that ATG16L2 rs10898880 was significantly associated with better efficacy of radiotherapy at both at the primary tumor and lymph node, and had a greater risk of developing grade 3–4 oral mucositis and myelosuppression.

5 | CONCLUSIONS

Conclusively, we identified ATG10 rs10514231, rs1864183, rs4703533, and ATG16L2 rs10898880 could contribute to the efficacy and toxicity of radiotherapy in NPC patients. Further investigation of the underlying molecular mechanisms to explain how these polymorphisms affect response to radiotherapy and prospective clinical trials in NPC patients are needed to validate our results.

ACKNOWLEDGMENT

This study was funded by a grant from the National Natural Science Foundation of China (project No. 81470086).

CONFLICTS OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

L.Z. and Y.Z. conceived and designed the experiments. L.Z. and Y.Z. performed the experiments. L.Z. and Y.Z. analyzed the data and wrote the paper.

ORCID

Zhaoyu Liu https://orcid.org/0000-0002-6172-4155

REFERENCES

Adham, M., Kurniawan, A. N., Muhtadi, A. I., Roeczyn, A., Hermans, B., Gondhowiarjo, S., … Middeldorp, J. M. (2012). Nasopharyngeal carcinoma in Indonesia: Epidemiology, incidence, signs, and symptoms at presentation. Chin J Cancer, 31(4), 185–196. https://doi.org/10.5732/cjc.011.10328

Avalos, Y., Canales, J., Bravo-Sagua, R., Criollo, A., Lavandero, S., & Quest, A. F. (2014). Tumor suppression and promotion by autophagy. BioMed Research International, 2014, 1–15. https://doi.org/10.1155/2014/603980

Budak Diler, S., & Aybuga, F. (2018). Association of autophagy gene ATG16L1 polymorphism with human prostate cancer and bladder cancer in Turkish population. Asian Pacific Journal of Cancer Prevention, 19(9), 2625–2630. https://doi.org/10.22034/APJCP.2018.19.9.2625

Chen, Q., Hu, W., Xiong, H., Ying, S., Ruan, Y., Wu, B., & Lu, H. (2019). Changes in plasma EBV-DNA and immune status in patients with nasopharyngeal carcinoma after treatment with intensity-modulated radiotherapy. Diagn Pathol, 14(1), 23. https://doi.org/10.1186/s13000-019-0798-0

Clifford, P. (1970). A review on the epidemiology of nasopharyngeal carcinoma. International Journal of Cancer, 5(3), 287–309.

Guo, C., Huang, Y., Yu, J., Liu, L., Gong, X., Huang, M., … Li, J. (2017). The impacts of single nucleotide polymorphisms in genes of cell cycle and NF-kB pathways on the efficacy and acute toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget, 8(15), 25334–25344. https://doi.org/10.18632/oncotarget.15835

Huang, D. P. (1990). Epidemiology of nasopharyngeal carcinoma. Ear, Nose, and Throat Journal, 69(4), 222–225.

Kamal, M. F., & Samarrai, S. M. (1999). Presentation and epidemiology of nasopharyngeal carcinoma in Jordan. Journal of Laryngology and Otology, 113(5), 422–426. https://doi.org/10.1017/S002221510144135

Kamran, S. C., Riaz, N., & Lee, N. (2015). Nasopharyngeal carcinoma. Surgical Oncology Clinics of North America, 24(3), 547–561. https://doi.org/10.1016/j.soc.2015.03.008

Kerns, S. L., Fachal, L., Dorling, L., Barnett, G. C., Baran, A., Peterson, D. R., … West, C. M. L. (2019). Radiogenomics Consortium Genome-Wide Association Study Meta-analysis of Late Toxicity after Prostate Cancer Radiotherapy. Journal of the National Cancer Institute, [Epub ahead of print]. https://doi.org/10.1093/jnci/djz075

Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937. https://doi.org/10.1038/nrm2245

Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42. https://doi.org/10.1016/j.cell.2007.12.018

Levine, B., & Kroemer, G. (2019). Biological functions of autophagy genes: A disease perspective. Cell, 176(1–2), 11–42. https://doi.org/10.1016/j.cell.2018.09.048

Lewin, N. L., Luetragoon, T., Andersson, B.-å., Oliva, D., Nilsson, M., Strandeus, M., … Lewin, F. (2019). The influence of single nucleotide polymorphisms and adjuvant radiotherapy on systemic inflammatory proteins, chemokines and cytokines of patients with breast cancer. Anticancer Research, 39(3), 1287–1292. https://doi.org/10.21873/anticancer.13240

Li, N. A., Fan, X., Wang, X., Deng, H., Zhang, K., Zhang, X., … Liu, Z. (2019). Autophagy-related 5 Gene rs510432 polymorphism is...
associated with hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Immuno-logical Investigations, 48(4), 378–391. https://doi.org/10.1080/08820139.2019.1567532

Liang, Z. G., Lin, G. X., Yu, B. B., Su, F., Li, L., Qu, S., & Zhu, X. D. (2018). The role of autophagy in the radiosensitivity of the radiosensitive human nasopharyngeal carcinoma cell line CNE-2R. Cancer Manag Res, 10, 4125–4134. https://doi.org/10.2147/CMAR.S176536

Lin, D.-C., Meng, X., Hazawa, M., Nagata, Y., Varela, A. M., Xu, L., … Koeffler, H. P. (2014). The genomic landscape of nasopharyngeal carcinoma. Nature Genetics, 46(8), 866–871. https://doi.org/10.1038/ng.3006

Liu, J., Tang, X., Shi, F., Li, C., Zhang, K., Liu, J., … Li, Z. (2018). Genetic polymorphism contributes to (131)I radiotherapy-induced toxicities in patients with differentiated thyroid cancer. Pharmacogenomics, 19(17), 1335–1344. https://doi.org/10.2217/pgs-2018-0070

Ma, W.-L., Liu, R., Huang, L.-H., Zou, C., Huang, J., Wang, J., … Guo, C.-X. (2017). Impact of polymorphisms in angiogenesis-related genes on clinical outcomes of radiotherapy in patients with nasopharyngeal carcinoma. Clinical and Experimental Pharmacology and Physiology, 44(5), 539–548. https://doi.org/10.1111/1440-1681.12738

Miao, J., Wang, L., Zhu, M., Xiao, W., Wu, H., Di, M., … Zhao, C. (2019). Reprint of Long-term survival and late toxicities of elderly nasopharyngeal carcinoma (NPC) patients treated by high-total- and fractionated-dose simultaneous modulated accelerated radiotherapy with or without chemotherapy. Oral Oncology, 90, 126–133. https://doi.org/10.1016/j.oraloncology.2019.01.005

Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2016). The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Journal of Cellular Biochemistry, 120(2), 1924–1931. https://doi.org/10.1002/jcb.27467

 Qin, Z., Xue, J., He, Y., Ma, H., Jin, G., Chen, J., … Shen, H. (2013). Potentially functional polymorphisms in ATG10 are associated with risk of breast cancer in a Chinese population. Gene, 527(2), 491–495. https://doi.org/10.1016/j.gene.2013.06.067

Tung, Y., Sturgis, E. M., Huang, Z., Wang, Y., Wei, P., Wang, J. R., … Li, G. (2018). TGFbeta1 genetic variants predict clinical outcomes of HPV-positive oropharyngeal cancer patients after definitive radiotherapy. Clinical Cancer Research, 24(9), 2225–2233. https://doi.org/10.1158/1078-0432.CCR-17-1904

Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., & Mizushima, N. (2016). The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science, 354(6315), 1036–1041. https://doi.org/10.1126/scien-ce.aaef6136

Wang, J., Guo, C., Gong, X., Ao, F., Huang, Y., Huang, L., … Li, J. (2017). The impacts of genetic polymorphisms in genes of base excision repair pathway on the efficacy and acute toxicities of (chemo)radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget, 8(45), 78633–78641. https://doi.org/10.18632/oncotarget.20203

Wen, J., Liu, H., Wang, L., Wang, X., Gu, N., Liu, Z., … Wei, Q. (2018). Potentially functional variants of ATG16L2 predict radiation pneumonitis and outcomes in patients with non-small cell lung cancer after definitive radiotherapy. Journal of Thoracic Oncology, 13(5), 660–675. https://doi.org/10.1016/j.jtho.2018.01.028

Xie, K., Liang, C., Li, Q., Yan, C., Wang, C., Gu, Y., … Hu, Z. (2016). Role of ATG10 expression quantitative trait loci in non-small cell lung cancer survival. International Journal of Cancer, 139(7), 1564–1573. https://doi.org/10.1002/ijc.30205

Xie, X., Jin, H., Hu, J., Zeng, Y., Zhou, J., Ouyang, S., … Wang, H. (2014). Association between single nucleotide polymorphisms in the p53 pathway and response to radiotherapy in patients with nasopharyngeal carcinoma. Oncology Reports, 31(1), 223–231. https://doi.org/10.3892/or.2013.2808

Yang, Q. I., Zhang, M.-X., Zou, X., Liu, Y.-P., You, R., Yu, T., … Chen, M.-Y. (2018). A prognostic bio-model based on SQSTM1 and N-stage identifies nasopharyngeal carcinoma patients at high risk of metastasis for additional induction chemotherapy. Clinical Cancer Research, 24(3), 648–658. https://doi.org/10.1158/1078-0432.CCR-17-1963

Yu, J., Huang, Y., Liu, L., Wang, J., Yin, J., Huang, L., … Guo, C. (2016). Genetic polymorphisms of Wnt/beta-catenin pathway genes are associated with the efficacy and toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget, 7(50), 82528–82537. https://doi.org/10.18632/oncotarget.12754

Yu, M. C., Ho, J. H., Henderson, B. E., & Armstrong, R. W. (1985). Epidemiology of nasopharyngeal carcinoma in Malaysia and Hong Kong. Natl Cancer Inst Monogr, 69, 203–207.

Yu, M. C., & Yuan, J. M. (2002). Epidemiology of nasopharyngeal carcinoma. Seminars in Cancer Biology, 12(6), 421–429. https://doi.org/10.1016/S1044-579X(02)00085-X

Yuan, J., Zhang, N., Yin, L., Zhu, H., Zhang, L., Zhou, L., & Yang, M. (2017). Clinical implications of the autophagy core gene variations in advanced lung adenocarcinoma treated with Gefitinib. Scientific Reports, 7(1), 17814. https://doi.org/10.1038/s41598-017-18165-5

Zhan, J., Zhang, S., Wei, X., Fu, Y., & Zheng, J. (2019). Etiology and management of nasopharyngeal hemorrhage after radiotherapy for nasopharyngeal carcinoma. Cancer Manag Res, 11, 2171–2178. https://doi.org/10.2147/CMAR.S183537

Zhou, J., Hang, D., Jiang, Y., Chen, J., Han, J., Zhou, W., … Dai, J. (2017). Evaluation of genetic variants in autophagy pathway genes as prognostic biomarkers for breast cancer. Gene, 627, 549–555. https://doi.org/10.1016/j.gene.2017.06.053

Zhu, J.-F., Huang, W., Yi, H.-M., Xiao, T. A., Li, J.-Y., Feng, J., … Xiao, Z.-Q. (2018). Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Cell Death & Disease, 9(12), 1154. https://doi.org/10.1038/s41419-018-1204-7

How to cite this article: Yang Z, Liu Z. Potentially functional variants of autophagy-related genes are associated with the efficacy and toxicity of radiotherapy in patients with nasopharyngeal carcinoma. Mol Genet Genomic Med. 2019;7:e1030. https://doi.org/10.1002/mgg3.1030.