Molecular hydrogen in the treatment of acute and chronic neurological conditions: mechanisms of protection and routes of administration

Kenji Dohi, Kazue Satoh, Kazuyuki Miyamoto, Shusuke Momma, Kenichiro Fukuda, Ryo Higuchi, Hirokazu Ohtaki and Williams A Banks

Oxidative stress caused by reactive oxygen species (ROS) is a major mediator of tissue and cellular injuries in various neuronal conditions, including neurological emergencies and neurodegenerative diseases. Molecular hydrogen is well characterized as a scavenger of hydroxyl radicals and peroxynitrite. Recently, the neuroprotective effects of treatment with molecular hydrogen have been reported in both basic and clinical settings. Here, we review the effects of hydrogen therapy in acute neuronal conditions and neurodegenerative diseases. Hydrogen therapy administered in drinking water may be useful for the prevention of neurodegenerative diseases and for reducing the symptoms of acute neuronal conditions.

Key Words: hydrogen, central nervous system, neurodegenerative disease, oxidative stress, neuroinflammation

Oxidative stress caused by reactive oxygen species (ROS) is a major mediator of tissue and cellular injuries in various neuronal conditions, including neurological emergencies and neurodegenerative diseases. Control of oxidative stress is a major therapeutic strategy for various neuronal conditions. There are many methods for controlling oxidative stress with the use of free radical scavengers being the most common approach. Evidence from animal experiments support the notion that free radical scavengers being the most common approach. Edaravone (MCI-186), a novel free radical scavenger, was developed to prevent lipid peroxidation in pathological neuronal conditions. Edaravone is currently the only antioxidant drug approved for treating cerebral infarction that improves the functional outcome of ischemic stroke. Brain hypothermia therapy (targeted temperature management) can also effectively control oxidative stress. Brain hypothermia therapy is effective in patients with various acute neuronal diseases.

In 2007, Ohsawa et al. reported that molecular hydrogen (H₂) can act as an antioxidant to prevent and treat middle cerebral artery occlusion–reperfusion injury in rats. This effect has been supported by additional reports. Recently, the beneficial effect of H₂ has been reported in many other organs, including the brain. The first major therapeutic effect of H₂ was that of an antioxidant, combining with hydroxyl ions to produce water. Recently, other biological mechanisms of H₂ (anti-inflammatory, anti-apoptosis, anti-cytokine, DNA expression, and energy metabolism) have been proposed (Fig. 1 and 2). Therefore, the biology of H₂ is not simple. In this review, we discuss the role of H₂ in various neuronal conditions.

Neurological Diseases

Ischemic brain injury. It has been reported that H₂ prevents ischemic brain damage in animal experiments. Ohsawa et al. reported that inhalation of 2% H₂ gas strongly suppressed infarct volume after middle cerebral artery ischemia–reperfusion in rats. In an electron spin resonance (ESR) study, they showed that H₂ had hydroxyl radical scavenging activity. Hydroxynonenal (HNE) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) immunoreactivity was suppressed in the damaged brain after treatment with 2% H₂. H₂ inhalation reduced ischemic damage and hemorrhagic volume after transient middle cerebral artery occlusion (MCAO) ischemia.

Free radical generation after ischemia induces matrix metalloproteinase (MMP) expression. MMP-9 promotes hemorrhagic infarction by disrupting cerebral vessels. H₂ inhalation has been found to reduce MMP-9 expression in an MCAO rat model. H₂ also has a neuroprotective effect against global ischemia. Ji et al. reported that H₂-rich saline injection [5 ml/kg intra-peritoneal (i.p.) administration] after global ischemia reduced neuronal cell death in hippocampal Cornet d’Ammon 1 (CA1) lesions in rats. Cerebral hypoxia–ischemia and neonatal asphyxia are major causes of brain damage in neonates. H₂ gas inhalation and H₂-rich saline injection provide early neuroprotection from neonatal neurological damage.

Nagatani et al. reported that an H₂-enriched intravenous solution is safe for patients with acute cerebral infarction, including patients treated with tissue plasminogen activator (t-PA) therapy. Metabolic syndrome is a strong risk factor of stroke. It has been reported that H₂ therapy can improve metabolic syndrome in basic and clinical settings. H₂ therapy may reduce stroke in patients with metabolic syndrome involving diabetes mellitus.

Hemorrhagic stroke. Hemorrhagic stroke involving intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is a critical neurological condition, and the mortality rate of hemorrhagic stroke is still high. Manaenko et al. reported a neuroprotective effect of H₂ gas inhalation using an experimental ICH animal model. H₂ gas inhalation suppresses redox stress and blood brain barrier (BBB) disruption by reducing mast cell activation and degranulation. Brain edema and neurological deficits were also suppressed. In SAH, there are several studies demonstrating

To whom correspondence should be addressed. E-mail: kdop@med.showa-u.ac.jp

He received “SFRR Japan Award of Scientific Excellent” in 2015 in recognition of his outstanding work.
Fig. 1. Beneficial effects of molecular hydrogen in pathophysiology of various acute neuronal conditions. ATP, adenosine triphosphate; miR-200, microRNA-200; ROS, reactive oxygen species.

Fig. 2. Effect of consumption of hydrogen-rich water as functional water in pathophysiology of neurodegenerative diseases. ATP, adenosine triphosphate; miR-200, microRNA-200; ROS, reactive oxygen species.

Table 1. Clinical trials of molecular hydrogen in central nervous system (CNS) diseases

Disease	Hydrogen administration	Reference number
Subarachnoid hemorrhage	Intravenous infusion	(32)
Post cardiac arrest encephalopathy	2% H₂ gas inhalation	(none)
Parkinson’s disease	water	(49, 50)
the neuroprotective effect of H₂ therapy. Clinical trials have also been reported.

Traumatic brain injury (TBI). The efficacy of H₂ for treating TBI has been investigated in several studies. Ji et al. reported that in a rat TBI model, H₂ gas inhalation has been found to protect BBB permeability and regulate postrauematic brain edema, leading to improved neurological outcomes. H₂ gas inhalation also inhibits the decrease in superoxide dismutase (SOD) activity and catalase (CAT) activity. These are antioxidant enzymes in postrauematic brains that inhibit the production of malondialdehyde (MDA) and 8-iso-prostaglandin F₂α (8-iso-PGF₂α). Eckermann et al. reported that in a surgical trauma mouse model involving right frontal lobectomy, H₂ gas inhalation has been found to inhibit postoperative brain edema and improve the postoperative neurobehavioral score. The same report also showed that lipid peroxidation and the production of oxidative stress substances were not inhibited by H₂ gas inhalation. The therapeutic effect of H₂-rich water following TBI and in postrauematic onset of Alzheimer’s disease (AD) was investigated by Dohi et al. in 2014,18 who investigated whether the consumption of H₂-rich water 24 h prior to trauma can inhibit neuronal damage in a surged cortical injury model using mice. The authors found that the expression of the phosphorylated tau proteins AT8 and Alz50 in the hippocampus and cortex was blocked in mice that consumed H₂-rich water. Moreover, the activity of astrocytes and microglia were inhibited in mice TBI model consuming H₂-rich water. The expression of genes induced by TBI, particularly those that are involved in oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, and adenosine triphosphate (ATP) and nucleotide binding, was inhibited by consuming H₂-rich water. Dohi et al. specifically reviewed the role of H₂-rich water in neuroinflammation following brain trauma. The consumption of H₂-rich water influenced the production of cytokines and chemokines in the damaged brain and inhibited the production of hypoxia inducible factor-1 (HIF-1), MMP-9, and cyclophilin A. However, H₂-rich water did not affect the production of amyloid precursor protein (APP), Aβ-40, or Aβ-42. They also investigated the relationship between H₂ and ATP production and reported that H₂ increased basal respiration, reserve capacity, and nonmitochondrial respiration but did not increase aerobic ATP production. It has thus been demonstrated that the inhibitory effects of H₂ on nerve damage are not solely due to its simple function as a free radical scavenger (Fig. 1 and 2).

Spinal cord injury. Chen et al. reviewed the effects of H₂-rich saline administration (i.p.) in a rat traumatic spinal cord injury model. They found that postrauematic neurological symptoms were improved by H₂-rich saline treatment. Furthermore, H₂-rich saline treatment has been found to reduce inflammatory cell infiltration, TdT-mediated dUTP nick and labeling (TUNEL)-positive cells, and hemorrhage. In addition, oxidative stress was inhibited and the expression of brain derived neurotrophic factor (BDNF) was increased. The effects of H₂ administration on spinal cord ischemia have also been reported. Huang et al. investigated the effects of H₂ gas inhalation in a rabbit spinal cord ischemia–reperfusion model. They reviewed the effects of H₂ inhalation with different concentrations (1, 2, and 4%) and reported that H₂ gas inhalation at concentrations of 2% and 4% inhibited neuronal death. However, they did not observe significant differences between the two groups in terms of effects with 2% and 4% being equally effective. It has been reported that the inhalation of 2% H₂ gas inhibits apoptosis following spinal cord injury caused by ischemia–reperfusion. In addition, H₂ gas inhalation regulates caspase-3 activity, the production of inflammatory cytokines, oxidative stress, and the decrease in endogenous antioxidant substances. Zhou et al. also reported that H₂-rich saline administration (i.p.) has beneficial effects on spinal cord ischemia–reperfusion injury in rabbits.

Other acute neurological conditions. In recent years, research has shown that there is a high incidence of comorbid central nervous system symptoms in sepsis cases. Using a mice cecal ligation and puncture (CLP) model, Liu et al. reported that H₂ gas inhalation improves septic encephalopathy. They reported that 99% H₂ gas inhalation inhibited post-CLP apoptosis, brain edema, BBB permeability, and proinflammatory cytokine production in the CA1 hippocampus region as well as improves cognitive function. Nakano et al. reported that maternal administration of H₂ has a suppressive effect on fetal brain injury caused by intraperine inflammation with maternal intraperitonal injection of lipopolysaccharide (LPS).

The treatment of carbon monoxide (CO) poisoning encephalopathy, which is a common gas poisoning, is yet to be established. Sun et al. and Shen et al. investigated the effects of H₂-rich saline. They reported that in a CO poisoning model, the administration of H₂-rich saline decreased glial activation, cytokine production, oxidative stress, and caspase 3 and 9 production as well as inhibited nerve cell death.

It is known that stress causes nerve cell impairments. The consumption of H₂-rich water inhibits oxidative stress and thereby inhibits the onset of stress-induced brain damage.

Hypoxic brain injury caused by asphyxiation, hypoxic ischemic encephalopathy, neonatal asphyxia, and other similar hypoxia-mediated event is a common clinical condition in medical emergencies. H₂ treatment has been found to inhibit cell death in an in vitro hypoxia/reoxygenation model using immortalized mouse hippocampal (HT-22) cells. H₂ treatment increased phosphorylated Akt (p-Akt) and B-cell leukemia/lymphoma-2 (BCL-2), while it decreased Bax and cleaved caspase-3. In recent years, it has been found that the microRNA-200 (miR-200) family regulates oxidative stress. The inhibition of miR-200 suppresses H/R-induced cell death, reducing ROS production and MMP. H₂ treatment suppressed H/R-induced expression of miR-200. In Japan, a double blind randomized controlled trial for post cardiac arrest syndrome has started from 2017 (Table 1).

Neurodegenerative Diseases

Parkinson’s disease (PD). PD is a disorder that presents with extrapyramidal symptoms caused by the degeneration and loss of dopamine-producing cells in substantia nigra. Oxidative stress is known to be involved in the clinical condition of PD. Moreover, the involvement of mitochondrial dysfunction in PD has been reported. The effects of H₂ on PD have been reported in animal models of PD as well as in clinical studies. Eckermann et al. in 2009, Fujita et al. and Fu et al. reported that consuming H₂-rich water inhibits oxidative stress on the nigrostriatal pathway and prevents the loss of dopamine cells in a PD animal model. With the consumption of H₂-rich-water-drinking, oxidative stress in the nigrostriatal pathway was inhibited and loss of dopamine cells was decreased. These results suggest that consuming H₂-rich water could affect the onset of PD. In recent years, the results of a clinical trial on the effects of consuming H₂-rich water for PD have been reported. A randomized double-blind study showed that consuming H₂-rich water (1,000 ml/day) for 48 weeks significantly improved the total Unified Parkinson’s Disease Rating Scale (UPDRS) score of PD patients treated with levodopa. A double-blind multi-center trial of H₂ water is currently underway (Table 1).

Alzheimer’s disease (AD). AD, an age-related neurodegenerative disease, is the most common cause of dementia. Pathologically, it is characterized by the deposition of Aβ protein outside nerve cells and the accumulation of phosphorylated tau protein inside nerve cells. There is also a marked loss of nervous cells in the cerebral cortex. In recent years, oxidative stress and neuroinflammation have been reported to be involved in AD. To date, reports have centered on the involvement of oxidative...
stress in brain parenchyma.\(^{(1,5,13)}\) The accumulation of Aβ protein is strongly associated with the failure of Aβ clearance that is closely related to the pathogenesis of AD.\(^{(5)}\) It is known that low-density lipoprotein receptor-related protein 1 (LRP1) is involved in Aβ protein elimination. LRP dysfunction caused by oxidative stress and neuroinflammation is involved in the onset of AD.\(^{(5)}\)

The regulation of oxidative stress and neuroinflammation may prevent the onset or progression of AD. A number of reports have investigated the effects of H\(_2\) for the prevention of AD onset.\(^{(5,13)}\) In a rat AD model, it has been reported that the administration of H\(_2\)-rich saline (5 ml/kg, i.p., daily) inhibited oxidative stress, cytokine production, and nuclear factor-κB (NF-κB) production in the hippocampus and cerebral cortex, and improved impaired memory.\(^{(5,13)}\) It has also been reported that consuming H\(_2\)-rich water inhibits age-related brain alterations and spatial memory decline.\(^{(54)}\)

Method and Route of Administration in H\(_2\) Therapy

As a small (2 Da), uncharged molecule H\(_2\) would be expected to readily distribute throughout the body, including being able to easily penetrate cell membranes. However, we are unable to determine the distribution of H\(_2\) among organs and its concentrations in each organ and serum based on the administration methods and dosage. This problem was investigated in 2014.\(^{(55)}\) A comparative review was conducted on the consumption of H\(_2\)-rich water, i.p. or intravenous administration of H\(_2\)-rich saline, and inhalation of H\(_2\) gas. The results showed that the highest concentrations are reached in arteries and brain tissues after the inhalation of H\(_2\) gas. They found that arterial H\(_2\) levels peaked at 30 min after administration, whereas venous and brain tissue H\(_2\) levels peaked at 45 min after administration. They reported that H\(_2\) levels were similar in arteries and brain tissues. This demonstrated that H\(_2\) migrates to the brain tissue regardless of the method of administration. These results suggest that the consumption of H\(_2\)-rich water prevents neurodegenerative disease and that H\(_2\)-rich drinking water could be used to treat acute brain disorders (Fig. 1 and 2).

Conclusions

We have examined the effects of H\(_2\) treatment on acute central nervous system diseases and on chronic neurodegenerative diseases. We have also examined the various mechanism by which H\(_2\) exerts its neuroprotective effects. H\(_2\) acts as a scavenger for OH\(^-\) and ONOO\(^-\), affects neuroinflammation, preserves mitochondrial energy production, and possesses neuroprotective properties. Unlike more conventional drugs, H\(_2\) treatment, particularly the consumption of H\(_2\)-rich water, has no known serious side effects and is effective for preventing the onset of neurodegenerative disease and aggravation of acute neuronal conditions.

Acknowledgments

Many People have made contributions to this review. We thank for their contributions. First, we wish to thank the member of our laboratory members, and we also wish to thank the Society of Free Radical Research Japan for their thoughtful suggestions and contributions. This work was supported by JSPS KAKENHI Grant Numbers JP 23592683, JP26462769.

Abbreviations

Abbreviations

AD Alzheimer’s disease APP amyloid precursor protein ATP adenosine triphosphate BBB blood brain barrier CA1 Cornet d’Armon1 CLP cecal ligation and puncture CO carbon monoxide ICH intracerebral hemorrhage LRP lipoprotein receptor-related protein MCAO middle cerebral artery occlusion miR-200 microRNA-200 MMP matrix metalloproteinase PD Parkinson’s disease ROS reactive oxygen species SAH subarachnoid hemorrhage TBI traumatic brain injury

Conflict of Interest

No potential conflicts of interest were disclosed.

References

1. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. *Biomed Rep* 2016; 4: 519–522.
2. Dohi K, Ohtaki H, Nakamachi T, et al. G9p1phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. *J Neuroinflammation* 2010; 7: 41.
3. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. *J Neurotrauma* 2000; 17: 871–890.
4. Gaetani P, Pasqualin A, Rodriguez y Baena R, Borasio E, Marzatico F. Oxidative stress in brain parenchyma. *J Neuroinflammation* 2012; 19: 121–130.
5. Dohi K, Miyamoto K, Fukuda K, et al. Status of systemic oxidative stress during therapeutic hypothermia in patients with post-cardiac arrest syndrome. *Oxid Med Cell Longev* 2013; 2013: 562429.
6. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxyxynonenal protein adducts in Parkinson disease. *Proc Natl Acad Sci U S A* 1996; 93: 2696–2701.
7. Dohi K, Satoh K, Mihara Y, et al. Alkoxyl radical-scavenging activity of edaravone in patients with traumatic brain injury. *J Neurotrauma* 2006; 23: 1591–1599.
8. Dohi K, Satoh K, Nakamachi T, et al. Does edaravone (MCI-186) act as an antioxidant and a neuroprotector in experimental traumatic brain injury? *Antioxid Redox Signal* 2007; 9: 281–287.
9. Kaneko T, Kasaoka S, Nakahara T, et al. Effectiveness of lower target temperature therapeutic hypothermia in post-cardiac arrest syndrome patients with a resuscitation interval of ≤30 min. *J Intensive Care* 2015; 3: 28.
10. Silveira RC, Rocianoy RS. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy. *J Pediatr (Rio J)* 2015; 91 (6 Suppl 1): S78–S83.
11. Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. *Nat Med* 2007; 13: 688–694.
12. Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. *Pharmacol Ther* 2014; 144: 1–11.
