Low 2016/17 season vaccine effectiveness against hospitalised influenza A(H3N2) among elderly: awareness warranted for 2017/18 season

Marc Rondy¹, Alin Gherasim²,³, Itziar Casado⁴,⁵, Odile Launay⁶,⁸, Caterina Rizzo⁷, Daniela Pitigoi⁸, Aukse Mickiene⁹, Sierk D Marbus¹⁰, Ausenda Machado¹¹, Ritva K Syrjänen¹², Iva Pem-Novose¹³, Judith Krisztina Horváth¹⁴, Amparo Larrauri¹⁻¹³, Jesús Castilla¹⁻¹³, Philippe Vanhems¹⁴,¹⁵,¹⁶, Valeria Alfonsi¹⁷, Alina E Ivanciuc¹⁷, Monika Kuliese⁹, Rianne van Gageldonk-Lafeber¹⁷, Veronica Gomez¹⁷, Niina Ikonen¹⁸, Zvjezdana Lovric¹ⁱ, Annamária Ferenczi¹⁷, I-MOVE+ hospital working group¹⁹, Alain Moren¹.

Rapid communications

In 2016/17, the influenza season in Europe was characterised by an early start (week 46, 2016) and a predominance of A(H3N2) viruses. Overall, 89% of strains reported to the European Centre for Disease Prevention and Control (ECDC) were A(H3N2) viruses [1]. High hospitalisation rates and case fatality ratios were reported among persons aged 65 years and above [2]. These factors, along with the high vaccine effectiveness (VE) observed against A(H3N2) in the 2016/17 season, suggest that the A(H3N2) vaccine component has not changed for 2017/18 season, and physicians and public health experts should be aware that VE can be low where A(H3N2) viruses predominate.

In a multicentre European hospital study we measured influenza vaccine effectiveness (IVE) against A(H3N2) in 2016/17. Adjusted IVE was 17% (95% confidence interval (CI): 1 to 31) overall; 25% (95% CI: 2 to 43) among 65–79-year-olds and 13% (95% CI: −15 to 30) among those ≥ 80 years. As the A(H3N2) vaccine component has not changed for 2017/18, VEs against A(H3N2) should be similar to those observed in 2016/17, which are lower than expected against A(H1N1) and A(H3N1) strains.

Since the A(H3N2) vaccine component has not changed in 2017/18, we present the final 2016/17 season IVE against hospitalisation with influenza A(H3N2) among persons aged 65 years and above in Europe, to inform on the level of IVE that can be expected against A(H3N2) in the upcoming 2017/18 season.

Study design

We conducted a multicentre hospital-based test-negative design (TND) case-control study in 27 hospitals from 10 countries (Croatia, Finland, France, Hungary, Italy, Lithuania, the Netherlands, Portugal, Romania and Spain) according to a generic protocol adapted to each local setting [4]. The detailed methods are described elsewhere [5]. In brief, hospital teams identified and swabbed patients aged 65 years and above,
Table 1
Characteristics of influenza A(H3N2) hospitalised cases (n = 1,073) and test-negative controls (n = 1,541), I-MOVE + study, Europe, influenza season 2016/17

Characteristic	Influenza A(H3N2) cases (n = 1,073)	Controls (n = 1,541)
Median age in years (range)	81 (65–102)	80 (65–102)
Aged 65–69 years	457/1,073 42.6	770/1,541 50.0
Sex = male	516/1,072 48.1	815/1,535 53.1
2016/17 seasonal influenza vaccination	556/1,073 51.8	894/1,541 58.0
2015/16 seasonal influenza vaccination	578/1,054 54.8	896/1,525 58.8
Current and previous vaccination status		
2016/17 seasonal vaccine only	46/1,054 4.4	99/1,525 6.5
2015/16 seasonal vaccine only	73/1,054 6.9	112/1,525 7.3
2015/16 and 2016/17 seasonal vaccines	505/1,054 47.9	784/1,525 51.4
Type of 2016/17 vaccine		
Not vaccinated	517/1,007 48.2	647/1,421 42.0
Inactivated subunit egg	243/1,007 22.6	431/1,421 28.0
Inactivated split virion egg	229/1,007 21.3	321/1,421 20.8
Adjuvanted	18/1,007 1.7	22/1,421 1.4
Underlying conditions		
Diabetes mellitus	325/1,072 30.3	473/1,540 30.7
Heart disease	710/1,070 66.4	1,032/1,541 67.0
Lung disease	392/1,069 36.7	672/1,534 43.8
Cancer	201/1,069 18.8	369/1,533 24.1
Renal disease	223/1,071 20.8	319/1,539 20.7
Stroke	125/879 14.2	176/1,287 13.7
Rheumatologic disease	157/1,070 14.7	341/1,539 22.2
Obesity[b]	124/1,062 11.7	154/1,527 10.1
Any underlying condition	996/1,063 93.7	1,456/1,531 95.1
At least two underlying conditions	776/1,025 75.7	1,206/1,491 80.9
Functional impairment	399/1,066 37.4	588/1,529 38.5
Hospitalisations in past 12 months	353/1,063 33.2	668/1,526 43.8
Current smoker	182/901 20.2	318/1,220 26.1
Potential for misclassification		
Antivirals received before swabbing	177/1,069 16.0	90/1,535 5.8
Swabbing within 3 days of symptom onset	653/1,073 58.7	876/1,541 56.2
Study sites		
Croatia	31/1,073 2.9	13/1,541 0.8
Finland	20/1,073 1.9	50/1,541 3.2
France	119/1,073 11.1	209/1,541 13.6
Hungary	8/1,073 0.7	19/1,541 1.2
Italy	73/1,073 6.8	136/1,541 8.8
Lithuania	67/1,073 6.2	58/1,541 3.8
Navarre, Spain	242/1,073 22.6	290/1,541 18.8
The Netherlands	40/1,073 3.7	63/1,541 4.1
Portugal	49/1,073 4.6	29/1,541 1.9
Romania	90/1,073 8.4	103/1,541 6.7
Spain[^]	334/1,073 31.1	571/1,541 37.1

[^] MOVE+: Integrated Monitoring of Vaccines in Europe plus.

[a] N represents the total number of cases or controls with available information.

[b] Defined as body mass index ≥ 30 kg/m^2.

[^] Excluding Navarre.
hospitalised with signs compatible with a severe acute respiratory infection (SARI) defined as at least one systemic and one respiratory sign or symptom. Swabs were tested with reverse-transcriptase polymerase chain reaction (RT-PCR) for influenza A(H3N2), A(H1N1)pdm09 and B. We compared the odds of vaccination between patients positive for influenza A(H3N2) virus and those negative for any influenza virus. We calculated IVE as (1-odds ratio (OR)).

We measured IVE stratified by age group (65–79 year-olds and ≥ 80 year-olds), presence of underlying conditions (diabetes mellitus, cancer, heart or lung disease, and presence of at least two underlying chronic diseases) and 2015/16 seasonal influenza vaccination status. In a one-stage approach, using logistic regression with the study site as a fixed effect, we adjusted IVE estimates for date of symptoms onset, age (as cubic splines) and individual underlying conditions. We excluded these 22 records from all analyses.

The median age of A(H3N2) cases was 81 years (range: 65–102 years) while that of controls was 80 (range: 65–102 years). Ninety-four percent of cases and 95% of controls had at least one underlying condition (p = 0.14). Controls were more likely than cases to have underlying lung disease (44 vs 37%, p < 0.05), rheumatologic disease (22 vs 15%, p < 0.05) and cancer (24 vs 19%, p < 0.05), to have been hospitalised in the past 12 months (44 vs 33%, p < 0.05) and to be current smokers (26 vs 20%, p < 0.05) (Table 1).

Due to the small number of cases, we were not able to measure IVE against influenza A(H1N1)pdm09 and B. We excluded these 22 records from all analyses.

The one-stage pooled adjusted IVE was 17% (95% confidence interval (CI): 1 to 31) overall; 25% (95% CI: 2 to 43) among patients aged 65–79 years and 10% (95% CI: −15 to 30) among those aged 80 years and above. Among patients with specific underlying conditions, IVE ranged between 19% (95% CI: −1 to 35) among patients with heart disease and 35% (95% CI: 14 to 51) among patients with lung disease (Table 2).

The 2016/17 seasonal IVE was −2% (95% CI: −44 to 28) among patients who had received 2015/16 seasonal influenza vaccine and 39% (95% CI: −3 to 59) among patients not vaccinated in 2015/16 (Table 2). Taking as a reference patients unvaccinated in 2015/16 and

Table 2

Population and patient characteristics	Vaccinated /cases	%	Vaccinated /controls	%	Adjusted IVE	95% CI
Aged 65 years and above - age/time	556/1,073	52	894/1,541	58	17	1 to 31
Aged 65 years and above - full model	544/1,041	52	868/1,494	58	14	−3 to 29
Aged 65–79 years - age/time	175/457	38	382/770	50	25	2 to 43
Aged 80 years and above - age/time	381/616	62	512/771	66	13	−12 to 32
According to underlying diseases						
Diabetes mellitus	183/320	57	295/468	63	22	−8 to 44
Heart disease	378/703	54	622/1,024	61	19	−1 to 35
Lung disease	209/386	54	440/668	66	35	14 to 51
Cancer	105/198	53	227/362	63	21	−19 to 47
At least two underlying chronic diseases	414/767	54	732/1,196	61	17	−2 to 33
According to previous vaccination						
Not vaccinated in 2015/16	46/473	10	99/623	16	39	−3 to 59
Vaccinated in 2015/16	502/572	88	776/887	87	−2	−44 to 28
Sensitivity analyses						
Swabbed within 3 days	502/872	58	333/629	53	8	−16 to 28
No antivirals before swabbing	867/1,446	60	509/904	56	14	−3 to 29

I MOVE+: Integrated Monitoring of Vaccines in Europe plus.

* Variables used for adjustment:
 - age/time: adjusted for study site, age and onset date (modelled as a restricted cubic spline with 3 and 4 knots respectively);
 - full model: adjusted for study site, onset date, age (modelled as a restricted cubic spline with 3 and 4 knots respectively), lung diseases, heart diseases, diabetes, obesity, renal diseases, cancer and hospitalisation in the past 12 months;
 - other estimates were adjusted for study site, onset date, age (modelled as a restricted cubic spline with 3 and 4 knots respectively) and hospitalisation in the past 12 months.

Vaccine effectiveness against influenza A(H3N2) in 2016/17

We included 1,073 influenza A(H3N2) cases, nine A(H1N1)pdm09 cases, 13 cases of influenza B and 1,541 controls between week 47, 2016 and week 14, 2017.
same vaccine component A/Hong Kong/4801/2014 supported the WHO recommendation to maintain the vaccine component [10]. Consequently, European data were considered as antigenically similar to the 2016/17 that most circulating viruses that could be analysed week 5/2017, available antigenic data from the World Based on specimens received from week 40/2016 to influenza A(H1N1)pdm09 and 38% (95% CI: 25 to 53) against influenza B [9]. It was 43% (95% CI: 33 to 53) in seasons when circulating and vaccine A(H3N2) strains were antigenically different was 14% (95% CI: −3 to 30) among persons aged 65 years and above. They also suggest a modifying effect of 2015/16 vaccination modified the 2016/17 IVE. Although too imprecise to be conclusive, our results could suggest that patients vaccinated in both seasons benefited from a residual protection from the 2015/16 vaccine, with no additional effect of the 2016/17 vaccine uptake.

Discussion

In the 2016/17 influenza season, A(H3N2) viruses largely predominated. IVE against hospitalisation with influenza A(H3N2) virus infection among persons aged 65 years and above was low at 17%. The IVE point estimate was even lower (10%) among patients aged 80 years and above. IVE was similar among patients with heart disease, diabetes mellitus and cancer. The IVE point estimate was higher among patients with lung disease. While 95% CIs were largely overlapping, the 2016/17 IVE point estimate was lower (IVE: −2%) among patients vaccinated also in 2015/16 than among those unvaccinated in 2015/16 (IVE: 39%).

Low IVE against influenza A(H3N2) among persons aged 65 years and above has been previously observed in hospital settings [6-8]. A recent meta-analysis measured that the pooled IVE against hospitalisation with influenza A(H3N2) in seasons when circulating and vaccine strains were antigenically different was 14% (95% CI: −3 to 30) among persons aged 65 years and above [9]. It was 43% (95% CI: 33 to 53) in seasons when circulating and vaccine A(H3N2) strains were antigenically similar; 48% (95% CI: 37 to 59) against influenza A(H1N1)pdm09 and 38% (95% CI: 25 to 53) against influenza B [9].

Based on specimens received from week 40/2016 to week 5/2017, available antigenic data from the World Health Organization (WHO) European Region indicated that most circulating viruses that could be analysed were considered as antigenically similar to the 2016/17 vaccine component [10]. Consequently, European data supported the WHO recommendation to maintain the same vaccine component A/Hong Kong/4801/2014 (clade 3C.2a) for influenza A(H3N2) in the 2017/18 season vaccine for the northern hemisphere [11]. However, one third of viruses isolated during the above-mentioned period could not be assigned to an antigenic reporting category, reflecting technical challenges or antigenic changes in circulating viruses. Genetic data from Europe centralised at the ECDC suggested that circulating A(H3N2) viruses had undergone considerable genetic diversification during the above-mentioned period, with the emergence of subclusters within clade 3C.2a and subclade 3C.2a1 [10].

In September 2017, WHO updated the A(H3N2) component to A/Singapore/INFIMH-16-0019/2016 (subclade 3C.2a1) in the 2018 seasonal vaccine for the southern hemisphere [12]. The latest WHO update on 2 October 2017, reported that influenza A(H3N2) viruses were still predominating worldwide in September 2017. Further genetic information was not provided at this stage [13].

Conclusion

Our results suggest a low IVE against hospitalised influenza A(H3N2) among persons aged 65 years and above, particularly among patients aged 80 years and above. They also suggest a modifying effect of 2015/16 influenza vaccination on 2016/17 IVE. The A(H3N2) virus component included in the 2017/18 vaccine will remain the same as in the 2016/17 season. The latest WHO influenza surveillance report suggests that influenza A(H3N2) viruses were predominating worldwide in August 2017. Low IVE may be expected during the 2017/18 season in case of predominant circulation of A(H3N2) viruses. However, IVE against influenza A(H1N1)pdm09 and B are usually reported to be higher. Close monitoring of virological surveillance data will be required to prompt early promotion of complementary measures such as the use of antivirals or non-pharmaceutical interventions.

Members of the I-Move + hospital working group

EpiConcept: Marta Valenciano

Spain: F. Pozo (National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III), M. Garcia, M. Latorre (Dirección General de Salud Pública, Aragón), M. Omeñaca (H.U. Miguel Servet, Aragón), M. Oribe Amores, N. Muñoz (Subdirección de Salud Pública Gipuzkoa, País Vasco), G. Cilla (H. U. Donostia, País Vasco)
Navarre: L Fernandino, I Martínez-Baz (Instituto de Salud Pública de Navarra, Pamplona), A Navascués, A Pérez-García, A Aguínaga, C Ezepeleta (Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain)

Italy: A. Bella, Eva Charlotte Appelgren, M.R. Castrucci, S. Puzelli (Istituto Superiore di Sanità, Rome), M. Chironna, C. Germinario (Polliclinico Hospital, University of Bari); F. Ansaldi, I. Manini, E. Montomoli (Department of Molecular and Developmental Medicine, University of Siena)

Romania: E. Lupulescu, M. Lazar, M.E. Mihai, C.M Chericiu, S. Dinu, C. Tecu (National Institute for Research Cantacuzino), M. Nitescu, R. Bacruban, D. Azamfire, A. Dumitrescu, E. Iosanik. (INBI Prof Dr Matei Bals, Bucuresti), E. Ceausu, C. P. Popescu, SA. Florescu, G. Târdei (Spatulul Clinic de Boli Infectioase si Tropicale Victor Babes, Bucuresti), C. Bejan, A. Teodor, G. Jugaranu, C. Plesca, E. Duca (Spatulul Clinic de Boli Infectioase SF, Parascbeva, Iasi)

France: N. Lenzi, Z. Lesieur [Inserm, F-CRIN, Innovative clinical research network in vaccination (I-REIVAC)], P. Louergue (CIC De Vaccinologie, Cochin-Pasteur Paris, I-REIVAC), F. Galliér (Hôpital Saint-Eloi, CHU de Montpellier, I-REIVAC), C. Agostini, M. Ray, C. Merle, V. Foulonge (CHU de Montpellier), B. Lina (Université Lyon 1, CNR Virus Influenza France Sud, Lyon), F. Lainé (Hôpital Pontchaillou, CHU de Rennes, I-REIVAC), S. De Guilbert, G. Lagathu, P. Tattevin, S. Jouneau, A. Esvant, T. le Gallou (Hôpital Pontchaillou, CHU de Rennes), F. Carrat (UPMC Univ Paris 06, ILESP UMRS 1136, Public health department, Hôpital Saint-Antoine, Paris), G. Mauvui, F. CHAU (UMRS 1136, Paris).

Finland: H. Nohynek, A. Haveri (National Institute for Health and Welfare)

Lithuania: G. Gefenaite, D. Velvytyte (Department of Infectious Diseases of Lithuanian University of Health Sciences, Kaunas, Lithuania) L. Jancorienie, B. Zablockiene, A. Ambrozaitis (Clinic of Infectious, Chest Diseases, Dermatovenerology and Allergology, Vilnius University Faculty of Medicine, Vilnius, Lithuania; Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania), R. Grimalauskaite, G. Damuleviciene, V. Lesauskaite (Department of Geriatrics, Lithuanian University of Health Sciences, Kaunas, Lithuania), A. Bagdonas (Department of Internal Medicine, Lithuanian University of Health Sciences)

Portugal: B. Nunes, I. Kislaya, A.P. Rodrigues (National Health Institute Doutor Ricardo Jorge, Lisbon), V. Gomes, R. Córte-Real (Centro Hospitalar de Lisboa Central, Lisbon), J. Roças, M.J. Peres (Centro Hospitalar de Setúbal, Setúbal)

Croatia: Bernard K., S. Kurecic-Filipovic, V. Viscekruna Vucina (Croatian Institute of Public Health), A. Topic, N. Papic, J. Budimir (University Hospital for Infectious Diseases “Dr.Fran Mihaljevic”)

Hungary: B. Oroszi (Office of the Chief Medical Officer, Budapest)

The Netherlands: A. Meijer, W. van der Hoek (National Institute for Public Health and the Environment (RIVM), Bilthoven), P.M. Schneебeger (Jeroen Bosch Hospital, ‘s Hertogenbosch)

Acknowledgements

Funding: The I-MOVE+ project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 634446. The Lithuanian I-MOVE+ study sites were supported by a grant from the Research Council of Lithuania (SEN-03/2015). We are grateful to all patients, medical staff, study nurses and epidemiologists from the 12 study sites who actively participated in the study.

Poland: Iwona Paradowska-Stankiewicz, Monika Korczyńska, Lidia Brydak, Katarzyna Cieślak, Dorota Kowalczyn, Karol Szymański, NIPH, NIH Poland. All participating GPs, Epidemiologists and Virologists from SES in Poland

Finland: Jukka Jokinen, Outi Lyytikäinen and Arto Palmu (study design, protocol writing), Päivi Sirén (clinical data collection), Esa Ruokokoski (data management), The laboratory staff in Viral Infections Unit of THL, Tampere University Hospital, Hatanpää Hospital (collaboration with the clinical work and data collection).

France: Hôpital Cochin, Paris: J. Charpentier, N. Marin, B. Doumerc, C. Le jeune, A. Krivine, D. Dusser, S. Momcilovic, F. Terrier. CHU de Rennes: N. Belhomme, S. Simon, S. Cochennece, A. Reilhac, F. Erhel, C. Doudnikoff, J. Fouchard, B. Lefeuvre. Hôpital Édouard Herriot, Lyon: T. Benet, S. Amour, L. Henaff. Hôpital Saint-Eloi, Montpellier: P. Géraud, M. Berthelot, V. Driss, A. le Quellec, A. Bourdin, L. Landreau, A. Konaté, P. Corne, M. Sebbane, K. Klouche, M.S. Léglise, H. Goin.

Conflict of interest

None declared.

Authors’ contributions

Marc Rondy was involved in the original methodological design of the study (generic protocol). He coordinated the European hospital IVE network, undertook the statistical analysis on which the research article is based and led the writing of the research article.

Alain Moren initiated the original methodological design of the study. He coordinated the European hospital IVE network and contributed to the writing of the research article.

Aline Gherasim, Itziar Casado, Odile Launay, Caterina Rizzo, Daniela Pitigoi, Aukse Mickiene, Sierk D. Marbus, Ausenda Mawuvi, F. CHAU (UMRS 1136, Paris). Rennes), F. Carrat (UPMC Univ Paris 06, ILESP UMRS 1136, Public health department, Hôpital Saint-Antoine, Paris), G. Mauvui, F. CHAU (UMRS 1136, Paris).

Europe). Joint ECDC-WHO/Europe weekly influenza update - Week 20/2017 (15 – 21 May 2017). ECDC-WHO/Europe. [Accessed 20 Jun 2017]. Available from: https://flunewseurope.org/Archives

References

1. European Centre for Disease Prevention and Control (ECDC) / World Health Organization Regional Office for Europe (WHO/ Europe). Joint ECDC-WHO/Europe weekly influenza update - Week 20/2017 (15 – 21 May 2017). ECDC-WHO/Europe. [Accessed 20 Jun 2017]. Available from: https://flunewseurope.org/Archives
2. European Centre for Disease Prevention and Control (ECDC). Risk assessment of seasonal influenza, EU/EEA, 2016-2017 - Update. Stockholm: ECDC; 25 Jan 2017. Available from: http://ecdc.europa.eu/en/publications/Publications/Risk-assessment-seasonal-influenza-2016-2017-update.pdf

3. Kissling E, Rondy M-I-MOVE/I-MOVE+ study team. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-MOVE multicentre case control studies at primary care and hospital levels in Europe. Euro Surveill. 2017;22(7):30464. https://doi.org/10.2807/1560-7917.ES.2017.22.7.30464 PMID: 28230524

4. Integrated Monitoring of Vaccines in Europe plus (I-MOVE+). [Internet]. [Accessed 10 October 2017]. Available from: http://www.i-moveplus.eu/wp

5. Rondy M, Larrauri A, Casado I, Alfonso V, Pitigoi D, Launay O, et al. 2015/16 seasonal vaccine effectiveness against hospitalisation with influenza A(H3N2)pdm09 and B among elderly people in Europe: results from the I-MOVE+ project. Euro Surveill. 2017;22(30):30580. https://doi.org/10.2807/1560-7917.ES2017.22.30.30580 PMID: 28797322

6. McNeil SA, Andrew MK, Ye L, Haguinet F, Hatchette TF, ElSherif M, et al. Interim estimates of 2014/15 influenza vaccine effectiveness in preventing laboratory-confirmed influenza-related hospitalisation from the Serious Outcomes Surveillance Network of the Canadian Immunization Research Network, January 2015. Euro Surveill. 2015;20(5):21024. https://doi.org/10.2807/1560-7917.ES2015.20.5.21024 PMID: 25677652

7. Puig-Barbera J, Mira-Iglesias A, Tortajada-Girbes M, Lopez-Labrador FX, Belenguer-Varea A, Carballido-Fernandez M, et al. Effectiveness of influenza vaccination programme in preventing hospital admissions, Valencia, 2014/15 early results. Euro Surveill. 2015;20(8):21044. https://doi.org/10.2807/1560-7917.ES2015.20.8.21044 PMID: 25742432

8. Rondy M, Puig-Barbera J, Launay O, Duval X, Castilla J, Guevara M, et al. 2015-16 seasonal influenza vaccines effectiveness against confirmed A(H3N2) influenza hospitalisation: pooled analysis from a European network of hospitals. A pilot study. PLoS One. 2013;8(4):e59681. https://doi.org/10.1371/journal.pone.0059681 PMID: 23565159

9. Rondy M, El Omeiri N, Thompson MG, Levêque A, Moren A, Sullivan SG. Effectiveness of influenza vaccines in preventing severe influenza illness among adults: A systematic review and meta-analysis of test-negative design case-control studies. J Infect. 2017;***:S0163-4453(17)30299-2.; Epub ahead of print. https://doi.org/10.1016/j.jinf.2017.09.010 PMID: 28935236

10. Melidou A, Broberg EEuropean region influenza surveillance network. Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European Region to the WHO vaccine composition consultation for northern hemisphere 2017/18. Vaccine. 2017;35(37):4828-35. https://doi.org/10.1016/j.vaccine.2017.07.057 PMID: 28760977

11. World Health Organization (WHO). Recommended composition of influenza virus vaccines for use in the 2017-2018 northern hemisphere influenza season. Geneva: WHO; 1 Mar 2017. Available from: http://www.who.int/influenza/vaccines/virus/recommendations/2017_north/en/

12. World Health Organization (WHO). Recommended composition of influenza virus vaccines for use in the 2018 southern hemisphere influenza season. Geneva: WHO; 28 Sep 2017. Available from: http://www.who.int/influenza/vaccines/virus/recommendations/2018_south/en/

13. World Health Organization (WHO). Influenza Update N°299. Geneva: WHO; 2 Oct 2017. Available from: http://www.who.int/influenza/surveillance_monitoring/updates/latest_update_GIP_surveillance/en

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2017.