Radical layer length and syzygy-finite algebras *†

Junling Zheng ‡

Department of Mathematics, China Jiliang University, Hangzhou, 310018, P. R. China

Abstract

Let Λ be an artin algebra. We obtain that Λ is syzygy-finite when the radical layer length of Λ is at most two; as two consequences, we give a new upper bound for the dimension of the bounded derived category of the category mod Λ of finitely generated right Λ-modules in terms of the projective of certain class of simple right Λ-modules and also get the left big finitistic dimension conjecture holds.

Contents

1 Introduction 1

2 Preliminaries 2

2.1 The dimension of a triangulated category .. 2

2.2 Radical layer lengths and torsion pairs ... 3

2.3 Some facts ... 4

2.4 Short exact sequences and radical layer length .. 4

3 Main results 6

1 Introduction

Given a triangulated category \mathcal{T}, Rouquier introduced in [18] the dimension $\dim \mathcal{T}$ of \mathcal{T} under the idea of Bondal and van den Bergh in [6]. This dimension and the infimum of the Orlov spectrum of \mathcal{T} coincide, see [16, 4]. Roughly speaking, it is an invariant that measures how quickly the category can be built from one object. Many authors have studied the upper bound of $\dim \mathcal{T}$, see [4, 5, 7, 8, 12, 15, 18, 19, 21, 23, 22] and so on. There are a lot of triangulated categories having infinite dimension, for instance, Oppermann and Šťovíček proved in [15] that all proper thick subcategories of the bounded derived category of finitely generated modules over a Noetherian algebra containing perfect complexes have infinite dimension.

Let Λ be an artin algebra. Let mod Λ be the category of finitely generated right Λ-modules and let $D^b(\text{mod } \Lambda)$ be the bounded derived category of mod Λ. The upper bounds for the dimensions of the bounded derived category of mod Λ can be given in terms of the Loewy length $\text{LL}(\Lambda)$ and the global dimension $\text{gl.dim } \Lambda$ of Λ.

*2010 Mathematics Subject Classification: 18G25, 16E30, 16E10.
†Keywords: derived categories, left big finitistic dimension, radical layer length, syzygy-finite
‡Email: zhengjunling@cjlu.edu.cn
For a length-category \(C \), generalizing the Loewy length, Huard, Lanzilotta and Hernández introduced in \([9, 11]\) the (radical) layer length associated with a torsion pair, which is a new measure for objects of \(C \). Let \(\Lambda \) be an artin algebra and \(V \) a set of some simple modules in \(\text{mod} \Lambda \). Let \(t_V \) be the torsion radical of a torsion pair associated with \(V \) (see Section 3 for details). We use \(\ell_{t_V}(\Lambda) \) to denote the \(t_V \)-radical layer length of \(\Lambda \). For a module \(M \) in \(\text{mod} \Lambda \), we use \(\text{pd} M \) to denote the projective dimensions of \(M \); in particular, set \(\text{pd} M = -1 \) if \(M = 0 \). For a subclass \(B \) of \(\text{mod} \Lambda \), the projective dimension \(\text{pd} B \) of \(B \) is defined as

\[
\text{pd} B = \begin{cases}
\sup \{ \text{pd} M \mid M \in B \}, & \text{if } B \neq \emptyset; \\
-1, & \text{if } B = \emptyset.
\end{cases}
\]

Note that \(V \) is a finite set. So, if each simple module in \(V \) has finite projective dimension, then \(\text{pd} V \) attains its (finite) maximum.

Now, let us list some results about the upper bound of the dimension of bounded derived categories.

Theorem 1.1. Let \(\Lambda \) be an artin algebra and \(V \) a set of some simple modules in \(\text{mod} \Lambda \). Then we have

1. \((19 \text{ Proposition 7.37})\) \(\dim D^b(\text{mod} \Lambda) \leq \text{LL}(\Lambda) - 1; \)
2. \((19 \text{ Proposition 7.4} \text{ and } 12 \text{ Proposition 2.6})\) \(\dim D^b(\text{mod} \Lambda) \leq \text{gl.dim} \Lambda; \)
3. \((22 \text{ Theorem 3.8})\) \(\dim D^b(\text{mod} \Lambda) \leq (\text{pd} V + 2)(\ell_{t_V}(\Lambda) + 1) - 2; \)
4. \((21)\) \(\dim D^b(\text{mod} \Lambda) \leq 2(\text{pd} V + \ell_{t_V}(\Lambda)) + 1. \)

For an integer \(m \geq 0 \), we denote by \(\Omega^m(X) \) the \(m \)-th syzygy of \(X \in \text{mod} \Lambda \) and we denote by

\[
\Omega^m(\text{mod} \Lambda) = \{ M \mid M \text{ is a direct summand of } \Omega^m(N) \text{ for some } N \in \text{mod} \Lambda \}.
\]

Following \(20 \text{ P. 834} \), \(\Lambda \) is called \emph{\(m \)-syzygy-finite} if there are only finitely many non-isomorphic indecomposable modules in \(\Omega^m(\text{mod} \Lambda) \). If there is some nonnegative integer \(m \), such that \(\Lambda \) is \(m \)-syzygy-finite, then \(\Lambda \) is said to be syzygy-finite.

The aim of this paper is to prove the following

Theorem 1.2. (see Theorem 3.4 and Corollary 3.7) Let \(A \) be an artin algebra. Let \(V \subseteq S^{<\infty} \). If \(\ell_{t_V}(A_A) \leq 2 \), then \(A \) is \((\text{pd} V + 2)\)-syzygy-finite and \(\dim D^b(\text{mod} A) \leq \text{pd} V + 3 \) and the left big finitistic dimension conjecture holds.

We also give examples to explain our results. In this case, we may be able to get a better upper bound on the dimension of the bounded derived category of \(\text{mod} \Lambda \).

2 Preliminaries

2.1 The dimension of a triangulated category

We recall some notions from \([18, 19, 14]\). Let \(T \) be a triangulated category and \(\mathcal{I} \subseteq \text{Ob} T \). Let \(\langle \mathcal{I} \rangle \) be the full subcategory consisting of \(T \) of all direct summands of finite direct sums of shifts
of objects in \mathcal{I}. Given two subclasses $\mathcal{I}_1, \mathcal{I}_2 \subseteq \text{Ob}\mathcal{T}$, we denote $\mathcal{I}_1 \ast \mathcal{I}_2$ by the full subcategory of all extensions between them, that is,

$$\mathcal{I}_1 \ast \mathcal{I}_2 = \{ X \mid X_1 \to X \to X_2 \to X_1[1] \text{ with } X_1 \in \mathcal{I}_1 \text{ and } X_2 \in \mathcal{I}_2 \}.$$

Write $\mathcal{I}_1 \diamond \mathcal{I}_2 := \langle \mathcal{I}_1 \ast \mathcal{I}_2 \rangle$. Then $(\mathcal{I}_1 \diamond \mathcal{I}_2) \diamond \mathcal{I}_3 = \mathcal{I}_1 \diamond (\mathcal{I}_2 \diamond \mathcal{I}_3)$ for any subclasses $\mathcal{I}_1, \mathcal{I}_2$ and \mathcal{I}_3 of \mathcal{T} by the octahedral axiom. Write

$$\langle \mathcal{I} \rangle_0 := 0, \langle \mathcal{I} \rangle_1 := \langle \mathcal{I} \rangle \text{ and } \langle \mathcal{I} \rangle_{n+1} := \langle \mathcal{I} \rangle_n \diamond \langle \mathcal{I} \rangle_1 \text{ for any } n \geq 1.$$

Definition 2.1. ([18 Definition 3.2]) The dimension $\dim \mathcal{T}$ of a triangulated category \mathcal{T} is the minimal d such that there exists an object $M \in \mathcal{T}$ with $\mathcal{T} = \langle M \rangle_{d+1}$. If no such M exists for any d, then we set $\dim \mathcal{T} = \infty$.

2.2 Radical layer lengths and torsion pairs

We recall some notions from [9]. Let \mathcal{C} be a length-category, that is, \mathcal{C} is an abelian, skeletally small category and every object of \mathcal{C} has a finite composition series. We use $\text{End}_Z(\mathcal{C})$ to denote the category of all additive functors from \mathcal{C} to \mathcal{C}, and use rad to denote the Jacobson radical lying in $\text{End}_Z(\mathcal{C})$. For any $\alpha \in \text{End}_Z(\mathcal{C})$, set the α-radical functor $F_\alpha := \text{rad} \circ \alpha$.

Definition 2.2. ([9 Definition 3.1]) For any $\alpha, \beta \in \text{End}_Z(\mathcal{C})$, we define the (α, β)-layer length $\ell_{\alpha \beta} : \mathcal{C} \to \mathbb{N} \cup \{\infty\}$ via $\ell_{\alpha \beta}(M) = \inf\{ i \geq 0 \mid \alpha \circ \beta^i(M) = 0 \}$; and the α-radical layer length $\ell_\alpha := \ell_{\alpha \alpha}$.

For more information about radical layer length, we can see [11] [9] [22] [23].

Lemma 2.3. ([22 Lemma 2.6]) Let $\alpha, \beta \in \text{End}_Z(\mathcal{C})$. For any $M \in \mathcal{C}$, if $\ell_{\alpha \beta}(M) = n$, then $\ell_{\alpha \beta}(M) = \ell_{\alpha \beta}(\beta^j(M)) + j$ for any $0 \leq j \leq n$; in particular, if $\ell_{\alpha \beta}(M) = n$, then $\ell_{\alpha \beta}(\mathcal{F}_\alpha^n(M)) = 0$.

Recall that a torsion pair (or torsion theory) for \mathcal{C} is a pair of classes $(\mathcal{T}, \mathcal{F})$ of objects in \mathcal{C} satisfying the following conditions.

1. $\text{Hom}_\mathcal{C}(M, N) = 0$ for any $M \in \mathcal{T}$ and $N \in \mathcal{F}$;
2. an object $X \in \mathcal{C}$ is in \mathcal{T} if $\text{Hom}_\mathcal{C}(X, -)|_{\mathcal{F}} = 0$;
3. an object $Y \in \mathcal{C}$ is in \mathcal{F} if $\text{Hom}_\mathcal{C}(-, Y)|_{\mathcal{T}} = 0$.

For a subfunctor α of $1_\mathcal{C}$, we write $q_\alpha := 1_\mathcal{C}/\alpha$. Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair for \mathcal{C}. Recall that the torsion radical t is a functor in $\text{End}_Z(\mathcal{C})$ such that

$$0 \to t(M) \to M \to q_t(M) \to 0$$

is a short exact sequence and $q_t(M)(= M/t(M)) \in \mathcal{F}$.

2.3 Some facts

In this section, Λ is an artin algebra. Then $\text{mod } \Lambda$ is a length-category. For a module M in $\text{mod } \Lambda$, we use $\text{rad } M$ and $\text{top } M$ to denote the radical, socle and top of M respectively. For a subclass \mathcal{W} of $\text{mod } \Lambda$, we use $\text{add } \mathcal{W}$ to denote the subcategory of $\text{mod } \Lambda$ consisting of direct summands of finite direct sums of modules in \mathcal{W}, and if $\mathcal{W} = \{M\}$ for some $M \in \text{mod } \Lambda$, we write $\text{add } M := \text{add } \mathcal{W}$.

Let \mathcal{S}^{∞} be the set of the simple modules with infinite projective dimension and $\mathcal{S}^{<\infty}$ be the set of the simple module with finite projective dimension. Let \mathcal{S} be the set of the simple modules in $\text{mod } \Lambda$, and let \mathcal{V} be a subset of \mathcal{S} and \mathcal{V}' the set of all the others simple modules in $\text{mod } \Lambda$, that is, $\mathcal{V}' = \mathcal{S} \setminus \mathcal{V}$. We write $\mathfrak{F}(\mathcal{V}) := \{M \in \text{mod } \Lambda \mid \text{there exists a finite chain} \}$ of submodules of M such that each quotient M_i/M_{i-1} is isomorphic to some module in $\mathcal{V}\}$. By \cite{9} Lemma 5.7 and Proposition 5.9, we have that $(\mathcal{T}_\mathcal{V}, \mathfrak{F}(\mathcal{V}))$ is a torsion pair, where

$$\mathcal{T}_\mathcal{V} = \{M \in \text{mod } \Lambda \mid \text{top } M \in \text{add } \mathcal{V}'\}.$$

We use $t_{\mathcal{V}}$ to denote the torsion radical of the torsion pair $(\mathcal{T}_\mathcal{V}, \mathfrak{F}(\mathcal{V}))$. Then $t_{\mathcal{V}}(M) \in \mathcal{T}_\mathcal{V}$ and $q_{t_{\mathcal{V}}}(M) \in \mathfrak{F}(\mathcal{V})$ for any $M \in \text{mod } \Lambda$.

2.4 Short exact sequences and radical layer length

Lemma 2.4. For any module $X \in \text{mod } \Lambda$. We have

1. $t_{\mathcal{V}}(\Lambda \Lambda)$ is a two side ideal and $t_{\mathcal{V}}(X) = X t_{\mathcal{V}}(\Lambda \Lambda)$.
2. $\text{rad } X = X \text{rad}(\Lambda \Lambda)$.
3. $\text{rad } t_{\mathcal{V}}(\Lambda \Lambda) = t_{\mathcal{V}}(\Lambda \Lambda) \text{rad}(\Lambda \Lambda)$.
4. $t_{\mathcal{V}} \text{rad } t_{\mathcal{V}}(\Lambda \Lambda) = t_{\mathcal{V}}(\Lambda \Lambda) \text{rad}(\Lambda \Lambda)t_{\mathcal{V}}(\Lambda \Lambda)$.
5. $t_{\mathcal{V}} F^i_{t_{\mathcal{V}}}(\Lambda \Lambda)$ is an ideal of Λ for each $i \geq 0$.

Proof. (1) See \cite{9} Proposition 5.9(c)].
(2) See \cite{3} Proposition 3.5].
(3) Let $X = t_{\mathcal{V}}(\Lambda \Lambda)$ and By(2).
(4) By (1)(3).
(5) By (1)(2)(3)(4). \qed

Lemma 2.5. For any module $X \in \text{mod } \Lambda$, we have $t_{\mathcal{V}} F^i_{t_{\mathcal{V}}}(X) = X(t_{\mathcal{V}} F^i_{t_{\mathcal{V}}}(\Lambda \Lambda))$ for each $i \geq 0$.

Proof. If $i = 0$, by Lemma 2.4(1).
Suppose that if $i = n$, we have $t_{\mathcal{V}} F^n_{t_{\mathcal{V}}}(X) = X(t_{\mathcal{V}} F^n_{t_{\mathcal{V}}}(\Lambda \Lambda))$.
Theorem 2.10. Let

\[\text{rad} \text{ preserve monomorphism and epimorphism} \] (see [9, Lemma 3.6(a)]) and epimorphism (see [2, Chapter V, Lemma 1.1]).

Proof. Note that rad preserve monomorphism (see [9, Lemma 3.6(a)]) and epimorphism (see [2, Chapter V, Lemma 1.1]).

Lemma 2.6. ([22, Lemma 3.3]) The functor \(t_V \) preserve monomorphism and epimorphism.

Lemma 2.7. The functor rad preserve monomorphism and epimorphism.

Proof. Note that rad preserve monomorphism (see [9, Lemma 3.6(a)]) and epimorphism (see [2, Chapter V, Lemma 1.1]).

Lemma 2.8. For each \(i \geq 0 \), \(F_{iV} = \text{rad} \circ t_V \) and \(t_V F_{iV} = \text{rad} \circ t_V \) preserve monomorphism and epimorphism.

Proof. By Lemma 2.6 and Lemma 2.7.

By Definition 2.2, we have the following observation.

Lemma 2.9. For any module \(X \in \text{mod} \Lambda \), we have \(t_V F_{iV} L^{\ell_iV}(X) = 0 \).

Now, we give the main theorem in this paper.

Theorem 2.10. Let \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) be an exact sequence in \(\text{mod} \Lambda \). Then

\[
\max\{\ell_iV(M), \ell_iV(N)\} \leq \ell^{\ell_iV}(M) \leq \ell^{\ell_iV}(L) + \ell^{\ell_iV}(N).
\]

In particular, if \(\ell^{\ell_iV}(L) = 0 \), then \(\ell^{\ell_iV}(N) = \ell^{\ell_iV}(M) \); if \(\ell^{\ell_iV}(N) = 0 \), then \(\ell^{\ell_iV}(L) = \ell^{\ell_iV}(M) \).

Proof. By Lemma 2.8, we know that \(F_{iV} = \text{rad} \circ t_V \) preserve monomorphism and epimorphism. Thus by [9, Lemma 3.4(b)(c)], we can obtain that \(\ell^{\ell_iV}(L) \leq \ell^{\ell_iV}(M) \) and \(\ell^{\ell_iV}(N) \leq \ell^{\ell_iV}(M) \), that is,

\[
\max\{\ell^{\ell_iV}(L), \ell^{\ell_iV}(N)\} \leq \ell^{\ell_iV}(M).
\]

Next, we will prove the second \('\leq' \).

By Lemma 2.6(5), we know that \(t_V F_{iV}(\Lambda) \) is an ideal of \(\Lambda \) for each \(i \geq 0 \). By assumption, we have \(M/L \cong N \). Moreover, we get

\[
(t_V F_{iV}^{\ell_{iV}}(N) + L)/L = (M(t_V F_{iV}^{\ell_{iV}}(N)(\Lambda)) + L)/L
\]

(by Lemma 2.5)

\[
= (M/L)(t_V F_{iV}^{\ell_{iV}}(N)(\Lambda))
\]

\[
\cong N(t_V F_{iV}^{\ell_{iV}}(N)(\Lambda))
\]

(by \(M/L \cong N \))

\[
= t_V F_{iV}^{\ell_{iV}}(N)
\]

(by Lemma 2.5)

\[
= 0
\]

(by Lemma 2.9).
Corollary 2.12. Let $t_Y F^\ell t_Y(N)(M) + L = L$. Moreover, $t_Y F^\ell t_Y(N)(M) \subseteq L$. And by Lemma 2.8 and Lemma 2.10, we have

$$t_Y F^\ell t_Y(L)(t_Y F^\ell t_Y(N)(M)) \subseteq t_Y F^\ell t_Y(L)(L) = 0,$$

where we use the fact that t_Y is idempotent, that is, $t_Y^2 = t_Y$. That is,

$$t_Y F^\ell t_Y(L + \ell t_Y(N))(M) = t_Y F^\ell t_Y(L)(t_Y F^\ell t_Y(N)(M)) \subseteq t_Y F^\ell t_Y(L)(L) = 0.$$

Thus, $\ell t_Y(M) \leq \ell t_Y(L) + \ell t_Y(N)$ by Definition 2.2. \hfill \Box

Remark 2.11. Note that the functions Loewy length LL and infinite layer length ℓt_{∞} are particular radical layer length, more details see [9, 11]. Corollary 2.12(1) is a classical result. The first “\leq” in Corollary 2.12(2) is first established in [11, Proposition 4.5(a)(b)].

Corollary 2.12. Let $0 \to L \to M \to N \to 0$ be an exact sequence in $\text{mod } \Lambda$. Then

1. $\max\{\text{LL}(L), \text{LL}(N)\} \leq \text{LL}(M) \leq \text{LL}(L) + \text{LL}(N)$.
2. $\max\{\ell t_{\infty}(L), \ell t_{\infty}(N)\} \leq \ell t_{\infty}(M) \leq \ell t_{\infty}(L) + \ell t_{\infty}(N)$.
3. If $\ell t_{\infty}(L) = 0$, then $\ell t_{\infty}(N) = \ell t_{\infty}(M)$; if $\ell t_{\infty}(N) = 0$, then $\ell t_{\infty}(L) = \ell t_{\infty}(M)$.

Proof. (1) are particular cases of Theorem 2.10. (3) if $\ell t_{\infty}(L) = 0$, by (2), we have

$$\ell t_{\infty}(N) = \max\{\ell t_{\infty}(L), \ell t_{\infty}(N)\} \leq \ell t_{\infty}(M) \leq \ell t_{\infty}(L) + \ell t_{\infty}(N) = \ell t_{\infty}(N),$$

that is, $\ell t_{\infty}(N) = \ell t_{\infty}(N)$. Similarly, if $\ell t_{\infty}(N) = 0$, then $\ell t_{\infty}(L) = \ell t_{\infty}(M)$. \hfill \Box

3 Main results

Lemma 3.1. ([10, Lemma 3.6]) Let $0 \to X \to Y \to Z \to 0$ be an exact sequence in $\text{mod } \Lambda$. Then we have the following:

1. If $\text{pd } Z$ is finite, then, for any m with $\text{pd } Z \leq m$, there are projective Λ-modules P_m and P'_m such that $\Omega^m(X) \oplus P_m \cong \Omega^m(Y) \oplus P'_m$
2. If $\text{pd } X$ is finite, then, for any m with $\text{pd } X \leq m$, there are projective Λ-modules P_m and P'_m such that $\Omega^{m+1}(Y) \oplus P_m \cong \Omega^{m+1}(Z) \oplus P'_m$

The following lemma is a special case of [9, Lemma 6.3].

Lemma 3.2. ([9, Lemma 6.3]) Let $\mathcal{V} \subseteq S^{<\infty}$ and $M \in \text{mod } \Lambda$. If $t_Y(M) \neq 0$, then $\ell t_{\infty}(\Omega t_Y(M)) \leq \ell t_{\infty}(A_{\Lambda}) - 1$.

Lemma 3.3. Let $M, N \in \text{mod } \Lambda$. If $M \in \text{add}(N)$, then for any $n \geq 0$, we have $\Omega^n(M) \in \text{add}(\Omega^n(N))$.

Proof. Since $M \in \text{add}(N)$, we can set $M \oplus L \cong N^s$ for some positive integer n and $L \in \text{mod } \Lambda$. Thus, $\Omega^n(M) \oplus \Omega^n(L) \cong \Omega^n(M) \oplus \Omega^n(L) \cong \Omega^n(N^s) \cong (\Omega^n(N))^s$. That is, $\Omega^n(M) \in \text{add}(\Omega^n(N))$. \hfill \Box

Theorem 3.4. Let $\mathcal{V} \subseteq S^{<\infty}$. If $\ell t_{\infty}(A_{\Lambda}) \leq 2$, then $\text{mod } \Lambda$ is $\text{(pd } \mathcal{V} + 2)-\text{syzygy-finite}$.
Proof. We set \(\delta = \text{pd} V \). If \(\ell^t_v(A_A) = 0 \). For any module \(M \in \text{mod} A \), we have \(\ell^t_v(M) \leq \ell^t_v(A_A) = 0 \), that is, \(\ell^t_v(M) = 0 \). And then \(M \in \mathcal{F}(V) \), moreover, \(\text{pd} M \leq \delta \).

Now consider the case \(1 \leq \ell^t_v(A_A) = 2 \). We have the following two canonical two short exact sequences

\[
0 \longrightarrow t_V(M) \longrightarrow M \longrightarrow q_{t_V}(M) \longrightarrow 0, \tag{3.1}
\]

\[
0 \longrightarrow t_V\Omega_t V(M) \longrightarrow \Omega t_V(M) \longrightarrow q_{t_V}\Omega t_V(M) \longrightarrow 0, \tag{3.2}
\]

\[
0 \longrightarrow \text{rad}_t V\Omega t_V(M) \longrightarrow t_V\Omega t_V(M) \longrightarrow \text{top}_t V\Omega t_V(M) \longrightarrow 0. \tag{3.3}
\]

For any module \(M \in \text{mod} A \).

If \(\ell^t_v(\Omega t_V(M)) = 0 \), by Lemma 2.10 and sequence (3.2) we know that

\[
\ell^t_v(t_V\Omega t_V(M)) = \ell^t_v(\Omega t_V(M)) = 0;
\]

and by Lemma 2.10 and sequence (3.3) we know that

\[
0 \leq \ell^t_v(\text{rad}_t V\Omega t_V(M)) \leq \ell^t_v(\Omega t_V(M)) = 0.
\]

That is, \(\ell^t_v(\text{rad}_t V\Omega t_V(M)) = 0 \). And then \(\text{pd} \text{rad}_t V\Omega t_V(M) \leq \delta \).

If \(\ell^t_v(\Omega t_V(M)) = 1 \). By Lemma 2.10 and sequence (3.2) we have \(\ell^t_v(t_V\Omega t_V(M)) = \ell^t_v(\Omega t_V(M)) = 1 \). By Lemma 2.3 we have

\[
\ell^t_v(\text{rad}_t V\Omega t_V(M)) = \ell^t_v(t_V\Omega t_V(M)) - 1 = 1 - 1 = 0.
\]

Thus, \(\text{pd} \text{rad}_t V\Omega t_V(M) \leq \delta \).

By the short exact sequence (3.1) and Lemma 3.1(1), we have

\[
\Omega^{\delta+1}t_V(M) \oplus P_1 = \Omega^\delta(\Omega t_V(M)) \oplus P_1 \cong \Omega^{\delta+1}(M) \oplus P_2. \tag{3.4}
\]

By the short exact sequence (3.2) and Lemma 3.1(1), we have

\[
\Omega^{\delta+1}(t_V\Omega t_V(M)) \oplus P_3 \cong \Omega^{\delta+1}(\Omega t_V(M)) \oplus P_4 = \Omega^{\delta+2}t_V(M) \oplus P_4. \tag{3.5}
\]

By the short exact sequence (3.3) and Lemma 3.1(2), we have

\[
\Omega^{\delta+1}(t_V\Omega t_V(M)) \oplus P_3 \cong \Omega^{\delta+1}\text{top}_t V\Omega t_V(M) \oplus P_6. \tag{3.6}
\]

And then we have the following isomorphisms

\[
\Omega^{\delta+2}(M) \oplus P_4 \oplus P_5 \cong \Omega(\Omega^{\delta+1}(M) \oplus P_2) \oplus P_4 \oplus P_5 \\
\cong \Omega(\Omega^{\delta+1}t_V(M) \oplus P_1) \oplus P_4 \oplus P_5 \ (\text{by (3.4)}) \\
\cong \Omega^{\delta+2}(t_V(M)) \oplus P_4 \oplus P_5 \\
\cong (\Omega^{\delta+1}t_V\Omega t_V(M) \oplus P_3) \oplus P_5 \ (\text{by (3.5)}) \\
\cong (\Omega^{\delta+1}t_V\Omega t_V(M) \oplus P_3) \oplus P_3 \\
\cong (\Omega^{\delta+1}\text{top}_t V\Omega t_V(M) \oplus P_6) \oplus P_3 \ (\text{by (3.6)}) \\
\in \text{add}(\Omega^{\delta+2}(A/\text{rad} A) \oplus A). \ (\text{by Lemma 3.3})
\]
By assumptions and Lemma 3.2, we always have $\ell^v(\Omega V(M)) \leq 1$. Thus, for any module $M \in \text{mod } A$, we have $\Omega^\delta + 2(M) \in \text{add}(\Omega^\delta + 2(A/\text{rad } A) \oplus A)$. That is, $\text{mod } A$ is $(\delta + 2)$-syzygy-finite.

Corollary 3.5. If $\ell^v(A_A) \leq 2$, then A is syzygy-finite.

Proof. Let $V = S^{<\infty}$, we have $\ell^v(A_A) = \ell^v(A_A) \leq 2$ by [9, Example 5.8(1)]. And then by 3.4 we know that A_A is syzygy-finite. □

The notion of the left big finitistic dimension conjecture can be seen in [17].

Corollary 3.6. Let A be a finite dimensional algebra over a field K. Let $V \subseteq S^{<\infty}$. If $\ell^v(A_A) \leq 2$, then

$$1.\text{Fin.dim } A < \infty,$$

where $1.\text{Fin.dim } A = \sup\{\text{pd } M \mid M \text{ is a left } A\text{-module with } \text{pd } M < \infty\}$; that is, the left big finitistic dimension conjecture holds.

Proof. By [17] Definition 4.1, Definition 4.2, Corollary 7.3, Theorem 4.3 and Theorem 3.4. □

As a consequence we have the following upper bound on the dimension $\text{dim } D^b(\text{mod } A)$ of the bounded derived category of $\text{mod } A$ in the sense of Rouquier (see [19, 18, 12]). Here, we have an interesting corollary as follows

Corollary 3.7. Let $V \subseteq S^{<\infty}$. Suppose that $\ell^v(A_A) \leq 2$. Then $\text{dim } D^b(\text{mod } A) \leq \text{pd } V + 3$.

Proof. By Theorem 3.4 and [1] Corollary 3.6. □

Corollary 3.8. Let A be an artin algebra. Let $V \subseteq S^{<\infty}$. If $\ell^v(A_A) \leq 2$, then

$$\Psi \text{dim(} \text{mod } A) < \infty,$$

where $\Psi \text{dim(} \text{mod } A)$ is defined in [13].

Proof. By Corollary 3.5 and [13] Theorem 3.2. □

Example 3.9. ([22]) Consider the bound quiver algebra $\Lambda = kQ/I$, where k is an algebraically closed field and Q is given by

```plaintext
\begin{align*}
&1 \quad \alpha_1 \\
\alpha_{m+1} &\quad 2 \quad \alpha_2 \\
\alpha_{m+2} &\quad 3 \quad \alpha_3 \\
m + 1 &\quad 4 \quad \alpha_4 \\
m + 2 &\quad \ldots \quad \alpha_m \\
&\quad m
\end{align*}
```
and I is generated by $\{\alpha_1^2, \alpha_1 \alpha_{m+1}, \alpha_1 \alpha_{m+2}, \alpha_2 \alpha_3 \cdots \alpha_m\}$ with $m \geq 10$. Then the indecomposable projective Λ-modules are

$$
\begin{align*}
P(1) = & \begin{array}{c}
1 \\
2 \\
m-1
\end{array} & P(2) = & \begin{array}{c}
2 \\
3 \\
m
\end{array} & P(3) = & \begin{array}{c}
3 \\
3 \\
m
\end{array} & P(m+1) = m+1, & P(m+2) = m+2
\end{align*}
$$

and $P(i+1) = \text{rad} P(i)$ for any $2 \leq i \leq m-1$.

We have

$$
\text{pd} S(i) = \begin{cases}
\infty, & \text{if } i = 1; \\
1, & \text{if } 2 \leq i \leq m-1; \\
0, & \text{if } m \leq i \leq m+2.
\end{cases}
$$

So $S^\infty = \{S(1)\}$ and $S^{<\infty} = \{S(i) \mid 2 \leq i \leq m+2\}$.

Let $V := \{S(i) \mid 3 \leq i \leq m-1\} \subseteq S^{<\infty}$. Then $\text{pd} V = 1$ and $\ell \ell^t V(\Lambda) = 2$ (see [22, Example 4.1])

(1) By Theorem 1.1(1), we have $\dim D^b(\text{mod } \Lambda) \leq \ell \ell(\Lambda) - 1 = m - 2$.

(2) By Theorem 1.1(3), we have $\dim D^b(\text{mod } \Lambda) \leq (\text{pd} V + 2)(\ell \ell^t V(\Lambda) + 1) - 2 = 7$.

(3) By Theorem 1.1(4), we have $\dim D^b(\text{mod } \Lambda) \leq 2(\text{pd} V + \ell \ell^t V(\Lambda)) + 1 = 7$.

(4) By Corollary 3.7, $\dim D^b(\text{mod } \Lambda) \leq \text{pd} V + 3 = 4$. That is, we can get a better upper bound.

Example 3.10. ([23, Example 3.21]) Consider the bound quiver algebra $\Lambda = kQ/I$, where k is a field and Q is given by

$$
\begin{align*}
\begin{array}{c}
2n + 1 \\
2n \\
n + 1
\end{array} & \begin{array}{c}
\alpha_2n+1 \\
\alpha_1 \\
\alpha_{n+1}
\end{array} & \begin{array}{c}
2 \\
\alpha_2 \\
\alpha_{n+2}
\end{array} & \begin{array}{c}
3 \\
\alpha_3 \\
\alpha_{n+3}
\end{array} & \cdots & \begin{array}{c}
\alpha_{n-1} \\
\alpha_{n+4} \\
\alpha_{2n-1}
\end{array} & \begin{array}{c}
n \\
n + 2 \\
n + 3
\end{array} & \cdots & \begin{array}{c}
n \\
n + 2 \alpha_{n+1} \\
\cdots
\end{array}
\end{align*}
$$

and I is generated by $\{\alpha_i \alpha_{i+1} \mid n + 1 \leq i \leq 2n - 1\}$ with $n \geq 6$. Then the indecomposable
projective Λ-modules are

\[
\begin{array}{c c c c c}
1 & 2 & 2n & 2n + 1 & 2 \\
n + 1 & 3 & 3 & j & j \\
P(1) = 3 & P(2) = 4 & P(3) = 4 & P(j) = j + 1 & P(l) = l,
\end{array}
\]

where $n + 1 \leq j \leq 2n - 2$, $2n - 1 \leq l \leq 2n + 1$ and $P(i + 1) = \text{rad} P(i)$ for any $2 \leq i \leq n - 1$.

We have

\[
\text{pd} S(i) = \begin{cases}
 n - 1, & \text{if } i = 1; \\
 1, & \text{if } 2 \leq i \leq n - 1; \\
 0, & \text{if } i = n, 2n, 2n + 1; \\
 2n - 1 - i, & \text{if } n + 1 \leq i \leq 2n - 1.
\end{cases}
\]

So $S^{\leq \infty} = \{\text{all simple modules in mod } \Lambda\}$. Let $\mathcal{V} := \{S(i) \mid 2 \leq i \leq n\}(\subseteq S^{\leq \infty})$. Then $\text{pd} \mathcal{V} = 1$ and $\ell^\mathcal{V}(\Lambda) = 2$ (see [23, Example 3.21])

1. By Theorem 1.1(1), we have $\dim D^b(\text{mod } \Lambda) \leq LL(\Lambda) - 1 = n - 1$.
2. By Theorem 1.1(2), we have $\dim D^b(\text{mod } \Lambda) \leq \text{gl.dim } \Lambda = n - 1$.
3. By Theorem 1.1(3), we have $\dim D^b(\text{mod } \Lambda) \leq (\text{pd } \mathcal{V} + 2)(\ell^\mathcal{V}(\Lambda) + 1) - 2 = 7$.
4. By Theorem 1.1(4), we have $\dim D^b(\text{mod } \Lambda) \leq 2(\text{pd } \mathcal{V} + \ell^\mathcal{V}(\Lambda)) + 1 = 7$.
5. By Corollary 3.7, $\dim D^b(\text{mod } \Lambda) \leq \text{pd } \mathcal{V} + 3 = 4$.

That is, we also can get a better upper bound than [22, Example 4.1].

Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant No. 12001508).

References

[1] J. Asadollahi and R. Hafezi. On the derived dimension of abelian categories. *Kyoto Journal of Mathematics*, 54(3), 2012.

[2] I. Assem, D. Simson, and A. Skowronski. *Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory*. Cambridge University Press, 2006.

[3] M. Auslander, I. Reiten, and S. O. Smalo. *Representation theory of Artin algebras*, volume 36. Cambridge university press, 1997.

[4] M. Ballard, D. Favero, and L. Katzarkov. Orlov spectra: bounds and gaps. *Inventiones mathematicae*, 189(2):359–430, 2012.
[5] P. A. Bergh, S. Oppermann, and D. A. Jorgensen. The gorenstein defect category. The Quarterly Journal of Mathematics, 66(2):459–471, 2015.

[6] A. I. Bondal and M. Van den Bergh. Generators and representability of functors in commutative and noncommutative geometry. Moscow Mathematical Journal, 3(1):1–36, 2003.

[7] X.-W. Chen, Y. Ye, and P. Zhang. Algebras of derived dimension zero. Communications in Algebra, 36(1):1–10, 2008.

[8] Y. Han. Derived dimensions of representation-finite algebras. arXiv preprint arXiv:0909.0330, 2009.

[9] F. Huard, M. Lanzilotta, and O. M. Hernández. Layer lengths, torsion theories and the finitistic dimension. Applied Categorical Structures, 21(4):379–392, 2013.

[10] F. Huard, M. Lanzilotta, and O. Mendoza. An approach to the finitistic dimension conjecture. Journal of Algebra, 319(9):3918–3934, 2008.

[11] F. Huard, M. Lanzilotta, and O. Mendoza. Finitistic dimension through infinite projective dimension. Bulletin of the London Mathematical Society, 41(2):367–376, 2009.

[12] H. Krause and D. Kussin. Rouquier’s theorem on representation dimension. Contemporary Mathematics, 406:95, 2006.

[13] M. Lanzilotta and G. Mata. Igusa-Todorov functions for artin algebras. Journal of Pure and Applied Algebra, 2017.

[14] S. Oppermann. Lower bounds for Auslander’s representation dimension. Duke Mathematical Journal, 148(2):211–249, 2009.

[15] S. Oppermann and J. Štovíček. Generating the bounded derived category and perfect ghosts. Bulletin of the London Mathematical Society, 44(2):285–298, 2012.

[16] D. O. Orlov. Remarks on generators and dimensions of triangulated categories. Moscow Mathematical Journal, 9(1):143–149, 2009.

[17] J. Rickard. Unbounded derived categories and the finitistic dimension conjecture. Advances in Mathematics, 354:106735, 2019.

[18] R. Rouquier. Representation dimension of exterior algebras. Inventiones mathematicae, 165(2):357–367, 2006.

[19] R. Rouquier. Dimensions of triangulated categories. Journal of K-theory, 1(2):193–256, 2008.

[20] C. Wang and C. Xi. Finitistic dimension conjecture and radical-power extensions. Journal of Pure and Applied Algebra, 221(4):832–846, 2017.

[21] J. Zheng and Z. Huang. The derived and extension dimensions of abelian categories. preprint.
[22] J. Zheng and Z. Huang. An upper bound for the dimension of bounded derived categories. *Journal of Algebra*, 556:1211–1228, 2020.

[23] J. Zheng, X. Ma, and Z. Huang. The extension dimension of abelian categories. *Algebras and Representation Theory*, 23(3):693–713, 2020.