Dabrafenib plus trametinib for compassionate use in metastatic melanoma

A STROBE-compliant retrospective observational postauthorization study

Salvador Martín Algarra, MD*, Virtudes Soriano, MD†, Luis Fernández-Morales, MD‡, Miquel-Àngel Berciano-Guerrero, MD§, Karmele Mujika, MD¶, José Luis Manzano, MD¶, Teresa Puértolas Hernández, MD¶, Aina Soria, MD¶, Delvys Rodríguez-Abreu, MD¶, Enrique Espinosa Arranz, MD¶, Javier Medina Martínez, MD¶, Ivan Márquez-Rodas, MD¶, Jordi Rubió-Casadevall, MD¶, María Eugenia Ortega, MD¶, José Miguel Jurado García, MD¶, María José Lecumberri Biurrun, MDp, Isabel Palacio, MDq, María Rodríguez de la Borbolla Artacho, MDr, Teresa Puértolas Hernández, MD¶, Ainara Soria, MD¶, Delvys Rodríguez-Abreu, MD¶, Enrique Espinosa Arranz, MD¶, Javier Medina Martínez, MD¶, Ivan Márquez-Rodas, MD¶, Jordi Rubió-Casadevall, MD¶, María Eugenia Ortega, MD¶, José Miguel Jurado García, MD¶, Maria José Lecumberri Biurrun, MDp, Isabel Palacio, MDq, María Rodríguez de la Borbolla Artacho, MDr, Teresa Puértolas Hernández, MD¶, Ainara Soria, MD¶, Delvys Rodríguez-Abreu, MD¶, Enrique Espinosa Arranz, MD¶, Javier Medina Martínez, MD¶, Ivan Márquez-Rodas, MD¶, Jordi Rubió-Casadevall, MD¶, María Eugenia Ortega, MD¶, José Miguel Jurado García, MD¶, Anabel Ballesteros, MDw, Ovidio Fernández, MDx, Jose Antonio López Martín, MDy, Alfonso Berrocal, MDz, Ana Arance, MDaa

Abstract

The main objective of the study was to evaluate the efficacy and safety of dabrafenib alone or combined with trametinib for compassionate use in patients with metastatic melanoma. This retrospective, observational study involved 135 patients with unresectable stage IIIC or stage IV melanoma from an expanded-access program at 30 Spanish centers.

Forty-eight patients received dabrafenib monotherapy and 87 received combination dabrafenib and trametinib; 4.4% and 95.6% of the patients had stage IIIC and IV melanoma, respectively. All patients showed BRAF mutations in their primary or metastatic lesions; 3 were positive for V600K while the remainder had V600E or V600+. A positive response to treatment was reported in 89.3% of the patients. Overall survival rates at 12 and 24 months were 59.6% (95% confidence interval [CI], 52.5–68.9%) and 36.4% (95% CI, 27.8–45%), respectively. Progression-free survival rates at 12 and 24 months were 39.3% (95% CI, 31.1–47.5%) and 21.6% (95% CI, 14.5–28.7%), respectively. Fifty-seven patients (42.2%) reported cutaneous toxicity of any type, mainly hyperkeratosis (14.8%) and rash (11.9%). The most frequent adverse events were pyrexia (27.4%), asthenia (19.3%), arthralgia (16.9%), and diarrhea (13.2%).

Our results suggest that both dabrafenib alone or in combination with trametinib are effective for compassionate use in terms of response and/or survival rates. However, differences in patients’ prognostic features ought to be considered. No new findings were revealed regarding the safety profiles of either regimen. This is the first study to evaluate the efficacy of these 2 selective BRAF and mitogen-activated extracellular signal-regulated kinase inhibitors in a real-world setting in Spain.

Editor: Saeed Alzghari.

Funding: Novartis have provided funding for this observational study.

The authors have no conflicts of interest to disclose.

©Correspondence: Salvador Martin Algarra, Clinica Universitaria de Navarra, Pamplona, Spain (e-mail: secretaria@groupgem.org).

*Medical Oncology, Clínica Universitaria de Navarra, Pamplona, †Instituto Valenciano de Oncología, Valencia, ‡Medical Oncology, Parc Taulí Sabadell Hospital Universitari, Sabadell, §Oncología Intercentros, Hospital Universitario Insular de即可, Tiradentes, ¶Medical Oncology, Hospital Universitario Arnau de Vilanova, Lleida, Medical Oncology, Hospital Universitario San Cecilio, Granada, Medical Oncology, Hospital Universitario Central de Asturias, Oviedo, Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Medical Oncology, Complejo Hospitalario Universidad de Extremadura―Mateo Inurria, Huesca, Medical Oncology, Hospital Universitario La Paz, Madrid, Medical Oncology, Hospital Universitario La Salud, Toledo, Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Medical Oncology, Hospital Universitario de Gasteiz, San Sebastián, Medical Oncology, Hospital Universitario de la Princesa, Madrid, Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Medical Oncology, Hospital General Universitario de Valencia, Valencia, Medical Oncology, Hospital Clinic Barcelona, Barcelona, Spain.

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution-NoDerivatives License 4.0, which allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Medicine (2017) 96(52):e9523

Received: 23 August 2017 / Received in final form: 3 December 2017 / Accepted: 6 December 2017

http://dx.doi.org/10.1097/MD.0000000000009523
1. Introduction
Cutaneous melanoma is the most frequent type of malignant melanoma,[11] with incidence and mortality rates of approximately 13.0 and 2.2 per 100,000 inhabitants, respectively, in European countries.[12] Sun exposure, host characteristics (such as the numbers and types of nevi or skin phototypes) and specific environmental factors have been clearly associated with an increased risk for the development of this disease.[13] Evidence suggests that 15% to 25% of patients with a primary tumor will develop metastasis, with 5-year survival rates of less than 15%.[14,15] In cases of metastatic melanoma, the tumor location as well as other variables such as the Eastern Cooperative Oncology Group performance status (ECOG PS) and serum lactate dehydrogenase (LDH) levels have been identified as prognostic factors.[16] Current treatment strategies include surgery (for isolated lesions), targeted therapies, immunotherapy, and palliative radiotherapy. Chemotherapy is currently reserved for further lines of treatment; however, most regimens are frequently associated with the development of adverse events (AEs) and the deterioration of the quality of life.[17] The discovery that approximately half of melanomas harbor mutations in the BRAF oncogene has changed the paradigm of treatment in patients with advanced stages.[18–20] The presence of such mutations has also been associated with worse outcomes in patients with metastatic melanoma.[14,21] The use of selective BRAF inhibitors, such as dabrafenib and vemurafenib, has achieved response rates of approximately 50%, and has also prolonged overall survival (OS) compared with dacarbazine, in patients with the BRAF V600E mutation.[12–14] Dabrafenib, whose activity inhibits the mitogen-activated extracellular signal-regulated kinase (MEK) 1 and 2, is currently indicated as a monotherapy or in combination with trametinib for the treatment of adult patients with unresectable metastatic melanoma and confirmed BRAF V600 mutation.[12,14,22] Vemurafenib and cobimetinib are similarly indicated.[23] Based on currently published data of dabrafenib and trametinib use in metastatic melanoma, these targeted therapies have been introduced in compassionate use programs in different countries, including Spain. Currently, data regarding the use of dabrafenib in a real-world setting, with or without trametinib, are scarce.[17–23] Therefore, the Spanish Melanoma Group (Grupo Español Multidisciplinar de Melanoma) has developed a centralized database documenting the clinical experiences of both dabrafenib in monotherapy and in combination with trametinib for compassionate use in patients with metastatic melanoma treated in Spain. The main objective of this study was to evaluate the efficacy and safety of compassionate-use dabrafenib alone or in combination with trametinib for the treatment of metastatic melanoma in an expanded access program in Spain.

2. Materials and methods
This retrospective observational expanded access program study involved 149 patients with metastatic melanoma from 30 Spanish medical centers (Table 1). Patients considered for chart review included those diagnosed with an unresectable stage III/IV melanoma and who commenced treatment any time before April 30, 2014 with at least 1 dose of dabrafenib alone or in combination with trametinib as part of the compassionate use program. Criteria for exclusion were the absence of a complete clinical history, treatments administered outside of the previously established time-frame, and absence of informed consent to participate. The study was performed between September 2014 and March 2016 in accordance with the Declaration of Helsinki, Good Clinical Practice Guidelines, and applicable regulatory requirements; the protocol was approved by both the Ethical Committee of the Hospital Clinic Barcelona and each of the committees at the participating sites. All treatment-related decisions were according to the discretion of the physician.

2.1. Endpoints and study variables
Primary endpoints included the overall response rate (ORR) of both treatment alternatives, as well as the safety profiles of both dabrafenib alone or when combined with trametinib. The ORR was defined as the best tumor response (according to the Response Evaluation Criteria in Solid Tumours version 1.1) that was observed between the time of first treatment dose and the last available evaluation or the date of commencing a new treatment. Patients with positive responses to treatment included all those with complete response, partial response, and stable disease as documented in their clinical records. Secondary endpoints included progression-free survival (PFS) and OS. The PFS was calculated as the time between the initial administration of treatment and the date of detection of progression of disease (PD) or death by any cause; OS was calculated as the time between the initial administration of treatment and death by any cause. Both variables were analyzed and classified based on: the treatment strategy (dabrafenib monotherapy, dabrafenib plus trametinib initiated simultaneously, and combination therapy with dabrafenib preceding trametinib); whether the patient had undergone previous therapy, and the number of previous lines of therapy (1, 2, 3, or >3).

OS data of patients who were alive at the end of follow-up or whose follow-up information was unavailable were censored. PFS data of patients with no PD at the time of analysis were also censored. Other results, such as serum LDH levels and ECOG PS at 6 and 12 months, were assessed. The AEs were graded according to the Common Terminology Criteria for AEs, version 3.0. Because of their relevance to this field of the study, cutaneous toxicities were analyzed independently of other AEs.

2.2. Statistical analyses
Categorical variables were expressed as absolute and relative frequencies (%), and continuous variables as medians and ranges (minimum–maximum values). Percentages were compared by using the Chi-squared test, t test, and Fisher or Mann–Whitney U test. Kaplan–Meier survival curves were used to estimate OS,
Table 1

Total patients screened and included at each participating site.	Eligible, N (%)	Included, N (%)
Clinica Universidad Navarra, Pamplona	3 (2.0)	3 (2.2)
Hospital Clinic Barcelona, Barcelona	13 (8.7)	12 (8.9)
Instituto Valenciano de Oncología, Valencia	13 (8.7)	12 (8.9)
Hospital Universitario 12 de Octubre, Madrid	1 (0.7)	1 (0.7)
Onkologicoa, Instituto Oncológico de Kutxoa, San Sebastián	8 (5.4)	8 (5.9)
Hospital Universitario Insular de Gran Canaria, Las Palmas de	5 (3.4)	5 (3.7)
Canaria, Instituto Oncológico de Las Palmas de Gran Canaria		
Corporación Sanitaria Parc Taulí, Barcelona	11 (7.4)	11 (8.1)
Hospital Universitario Miguel Servet, Zaragoza	7 (4.7)	7 (5.2)
Hospital Universitario La Paz, Madrid	5 (3.4)	5 (3.7)
Hospital Can Misses Inca/Hospital Son Espases, Mallorca	3 (2.0)	2 (1.5)
Hospital Universitario Ramón y Cajal, Madrid	8 (5.4)	6 (4.4)
Hospitales Universitarios Regionales y Virgen de la Victoria, Málaga	12 (8.1)	11 (6.1)
Hospital Virgen de la Salud, Toledo	7 (4.7)	5 (3.7)
ICO Girona, Girona	4 (2.7)	4 (3.0)
Hospital Universitario Arnau de Vilanova, Lleida	4 (2.7)	4 (3.0)
ICO Badalona, Barcelona	9 (6.0)	8 (5.9)
ICO L’Hospitalet de Llobregat, Barcelona	1 (0.7)	0 (0.0)
Hospital Universitario La Princesa, Madrid	2 (1.3)	1 (0.7)
Hospital General Universitario de Valencia, Valencia	1 (0.7)	1 (0.7)
Hospital de Navarra, Pamplona	3 (2.0)	3 (2.2)
Hospital Universitario Central de Asturias, Asturias	4 (2.7)	3 (2.2)
Hospital Universitario Nuestra Señora de Valme, Sevilla	3 (2.0)	3 (2.2)
Hospital General Universitario de Elche, Alicante	3 (2.0)	3 (2.2)
Hospital Torremadrid, Almeria	3 (2.0)	3 (2.2)
Hospital Universitario Gregorio Marañón, Madrid	5 (3.4)	5 (3.7)
Hospital Marqués de Valdecilla, Santander	3 (2.0)	3 (2.2)
Complejo Hospitalario Universitario Ourense, Ourense	2 (1.3)	2 (1.5)
Hospital Universitario San Cecilio, Granada	6 (4.0)	4 (3.0)
Total	149 (100.0)	135 (100.0)

ICO = Institut Català d’Oncologia/Oncology Catalan Institute.

expressed as means and the 95% confidence intervals (CIs). A P value of <.05 was considered statistically significant. All statistical procedures were performed using the SPSS 21.0 software for Windows (IBM, Chicago, IL).

3. Results

3.1. Patient characteristics

Of the 149 patients initially screened, 14 did not meet the inclusion criteria; therefore, data from 135 patients were analyzed (Table 2). Forty-eight patients (35.6%) received dabrafenib monotherapy and 87 (64.4%) were treated with combination dabrafenib and trametinib. Eighty patients (58.8%) initiated dabrafenib and trametinib simultaneously, while 7 (5.1%) initiated dabrafenib 1.1 to 13 days before trametinib. Overall, patients had a median age of 55.2 years (range: 24.8–84.3 years; Table 2). The most frequent locations of the primary tumors were the trunk (44.4%) and extremities (25.9%); furthermore, 4.4% and 95.6% of the patients had stage IIC and IV melanoma, respectively. All patients treated with the combined regimen had stage IV melanoma, as did 87.5% of the patients in the dabrafenib monotherapy group. The remaining patients had stage IIC melanoma.

All patients had a BRAF mutation in their primary or metastatic melanoma; 3 patients were positive for V600K, while the remainder had V600E or V600+. The percentage of patients who underwent previous therapies was 68.9% (72.9% from the dabrafenib monotherapy group and 66.7% from the combination group); details are shown in Table 2. The median LDH level at baseline was 281.0 IU/L (range: 137.0–2353.0 IU/L), and 63.0% of the patients had an ECOG PS of 0; neither of these variables significantly changed after 6 or 12 months of treatment (LDH: 250.5 [131–1714] IU/L; ECOG PS 0: 68% and 62.4%, respectively). The median length of treatment was 7.2 months (range: 0.1–24.7 months). Surgical rescue of residual disease after treatment was performed in 12.6% of the patients (10.4% and 13.8% in the monotherapy and combined groups, respectively).

3.2. Efficacy analyses

The treatment ORRs are shown in Table 3. Complete response, partial response, and stable disease were achieved in 19.1%, 48.9%, and 21.4% of all patients, respectively. A clinical benefit was observed in 89.3% of patients (89.4% in the monotherapy group and 89.3% in the combined group).

PD was observed in 10.7% of patients (10.6% and 10.7% in the monotherapy and combined therapy groups, respectively). Information regarding the radiological response to treatment was not available for 4 patients. Survival (Fig. 1) at 12 months was 60.5% (95% CI, 52.2–68.8%); 56.9% (95% CI, 45.6–73.6%) in patients who received dabrafenib monotherapy and 69.9% (95% CI, 50.6–71.2%) in patients who received combination therapy. Survival at 24 months (Fig. 1) was 36.4% (95% CI, 27.8–45.0%); 39.7% (95% CI, 25.5–53.9%) in patients treated with dabrafenib monotherapy, and 34.0% (95% CI, 23.1–44.9%) in those who received combination therapy. The median OS was 15.3 months (range: 0.2–33.2 months): 17.5 months (range: 0.85–31.5 months) with dabrafenib monotherapy and 15.3 months (range: 10.1–20.5 months) with dabrafenib plus trametinib. Survival beyond 2 years was reported in 32.7% and 14.9% of patients in the monotherapy and combined therapy groups, respectively. A total of 61.5% of patients died (59.2% in the monotherapy and 62.1% in the combination therapy groups). The median follow-up was 15.0 months (range: 0.2–33.2 months). A similar trend was observed when patients were...
Table 2
Baseline demographic and clinical characteristics of patients.

	Dabrafenib monotherapy (N=49)	Dabrafenib plus trametinib (N=87)	Total (N=135)
Gender, male, N (%)	30 (62.5)	41 (47.1)	71 (52.6)
Age, median years (range)	56.8 (26.2–84.3)	53.2 (24.8–81.3)	54.8 (24.8–84.3)
Fitzpatrick skin phototype, N (%)			
Type I	2 (4.2)	10 (11.5)	12 (9.9)
Type II	13 (27.1)	22 (25.3)	35 (25.9)
Type III	14 (29.2)	16 (18.4)	30 (22.2)
Type IV	2 (4.2)	6 (6.9)	8 (5.9)
Unknown	17 (35.4)	33 (37.9)	50 (37.0)
History of primary melanoma			
Main localizations, N (%)			
Trunk (cheek and axilla)	21 (43.8)	39 (44.8)	60 (44.4)
Extremities	14 (29.2)	21 (24.1)	35 (25.9)
Head and neck	5 (10.4)	15 (17.2)	20 (14.8)
Breslow’s thickness, mm			
<1	3 (6.3)	4 (4.6)	7 (5.2)
1–2	4 (8.3)	15 (17.2)	19 (14.1)
2–4	12 (25.0)	15 (17.2)	27 (20.0)
>4	15 (31.3)	25 (28.7)	40 (29.6)
Lymph node involvement, N (%)	23 (52.3)	35 (42.2)	58 (45.7)
Ulceration, N (%)	18 (41.9)	23 (28.4)	41 (33.1)
Mitotic rate, median mitoses/mm²		7.0 (2.0–2.1)	7.0 (1.0–37.0)
(range: minimum–maximum)			
Baseline metastatic melanoma			
Tumor stage, N (%)			
IIC	6 (12.5)	0 (0.0)	6 (4.4)
N	42 (87.5)	87 (100.0)	129 (95.6)
Metastasis stage, N (%)			
M1a	7 (16.3)	12 (13.8)	19 (14.6)
M1b	8 (16.8)	19 (21.8)	27 (20.8)
M1c	28 (56.1)	56 (64.4)	84 (64.8)
ECOG performance status, N (%)			
0	28 (56.5)	57 (65.5)	85 (63.0)
1	12 (25.0)	26 (29.9)	38 (28.1)
2	7 (14.6)	2 (2.3)	9 (6.7)
3	1 (2.1)	2 (2.3)	3 (2.2)
LDH levels, median IU/L (range)	285.0 (141.0–2275.0)	280.0 (157.0–2353.0)	281.0 (157.0–2353.0)
BRAF mutation status, N (%)			
V600E	34 (70.6)	39 (44.8)	73 (54.1)
V600	14 (29.2)	44 (50.6)	58 (43.0)
V600K	0 (0.0)	3 (3.4)	3 (2.2)
Previous therapies, N (%)			
No previous treatment, N (%)	13 (27.1)	29 (33.3)	42 (31.1)
1 previous line, N (%)	15 (31.3)	39 (44.8)	54 (40.0)
2 previous lines, N (%)	6 (12.5)	17 (19.5)	23 (17.0)
3 previous lines, N (%)	8 (16.7)	1 (1.1)	9 (6.7)
>3 previous lines, N (%)	6 (12.6)	1 (1.1)	7 (5.1)
Number of previous lines, median (range)	1.0 (0.0–10.0)	1.0 (0.0–7.0)	1.0 (0.0–10.0)
Chemotherapy	9 (18.8)	14 (16.1)	23 (17.0)
Radiotherapy	9 (18.8)	13 (14.9)	22 (16.3)
Immunotherapy	11 (22.9)	8 (9.2)	19 (14.1)
Length of treatment, median months (range)	6.4 (0.6–24.3)	7.3 (0.1–24.7)	7.2 (0.1–24.7)

ECOG PS = Eastern Cooperative Oncology Group performance status, IU = international units, LDH = lactate dehydrogenase, N % = total patients (percentage).

Table 3
Response rates achieved during the treatment period.

	Dabrafenib monotherapy (N=49)	Dabrafenib plus trametinib (N=84)	Total (N=132)
Best response to treatment, N (%)			
Complete response	7 (14.9)	18 (21.4)	25 (19.1)
Partial response	21 (44.7)	43 (51.2)	64 (48.9)
Stable disease	14 (29.1)	14 (16.7)	29 (22.0)
Progressive disease	5 (10.6)	9 (10.7)	14 (10.6)
Clinical benefit, N (%)	43 (89.6)	75 (89.3)	117 (89.3)
Time from onset of treatment to best response, median months (range)	2.8 (0.8–27.4)	2.8 (0.1–21.2)	2.8 (0.1–27.4)

N = total patients.
classified according to their history of previous therapy with 1 to 2 lines, with 52.4% (95% CI, 31.0–73.8%) alive with monotherapy and 62.5% (95% CI, 49.8–75.2%) alive with the combined treatment.

Global PFS rates at 12 and 24 months was 38.8% (95% CI, 30.5–47.1%) and 20.9% (95% CI, 13.9–27.9%), respectively (Fig. 2). The PFS rates at 12 and 24 months were 33.3% (95% CI, 20.0–46.6%) and 20.8% (95% CI, 9.3–32.3%), respectively, in patients receiving dabrafenib; and 42.5% (95% CI, 32.1–52.9%) and 21.8% (95% CI, 12.8–30.8%), respectively, in those treated with the combination regimen. The median global PFS was 9.5 months (range: 0.1–31.8 months); PFS rates were 8.1 months (range: 0.8–31.5 months) for the dabrafenib monotherapy group and 10.2 months (range: 0.1–31.8 months) for the combination dabrafenib plus trametinib group. Other data of postoncological treatments were also recorded: therapy of any line was prescribed for 64 patients, chemotherapy (32 patients) and immunotherapy treatments were also recorded: therapy of any line was prescribed for 64 patients, chemotherapy (32 patients) and immunotherapy (77 patients) were the most frequently used.

3.3. Safety profile

Cutaneous toxicity of any type was reported in 42.2% of patients overall (58.3% and 33.3% in the monotherapy and combination groups, respectively). The toxicity profiles are shown in Table 4. The most frequent cutaneous toxicities were hyperkeratosis (14.8%) and rash (11.9%). The most frequent AEs were pyrexia (27.4% of patients), asthenia (19.3%), arthralgia (17.0%), and diarrhea (13.2%). In total, 18.3% of patients (18.8% and 18.4% from the monotherapy and combination groups, respectively) experienced at least a single grade 3/4 AE; however, each of these events was reported in at least 2 patients.

4. Discussion

Dabrafenib and trametinib, used as single agents or in combination, have produced a significant improvement on the outcomes of patients with metastatic melanoma harboring BRAF mutations, and have changed the scope of treatment in this setting.

The impressive results of the early studies with dabrafenib, as well as the subsequent phase II–III clinical trials demonstrated significant improvements in PFS and OS rates compared with conventional chemotherapy; however, tumor progression occurred in approximately 50% of patients by 6 months after commencing treatment.

The reactivation of the mitogen-activated protein kinase pathway through various mechanisms of drug resistance has been implicated in recurrence, and combining BRAF and MEK inhibitors was therefore postulated to avoid or delay the development of treatment refractoriness, as well as to prolong survival.

To that end, combining dabrafenib and trametinib has shown promising results in randomized phase III trials, including improved and prolonged PFS and OS when compared to monotherapy with dabrafenib or vemurafenib.

The COMBI-d multicenter double-blinded phase-III clinical trial of 423 patients with BRAF V600E or V600K stage IIIC or IV unresectable melanoma, who had not undergone previous systemic therapy, showed a 3-year PFS of 22% with dabrafenib plus trametinib versus 12% with monotherapy; the 3-year OS rates were 44% versus 32%, respectively.

Dabrafenib alone or in combination with trametinib expanded access programs were initiated in Spain following their subsequent approval by the European Medical Agency, and make the basis for this retrospective, observational study. This early, multicenter and standard clinical-setting experience, with unselected series of BRAF V600E/K melanoma patients, are consistent with the efficacy and toxicity data previously described in the pivotal trials. However, comparison between these treatments was not, indeed, considered at the time of study design, neither as objective of this retrospective and real-life series of patients. Differences in results should take into account the recruitment procedures and the variability of experience among the recruiting centers.

Given these factors, data revealed a PFS rate of 8.1 months for the dabrafenib monotherapy group and of 10.8 months for the combination group of patients. These results are similar to those described in the COMBI-d trial (8.8 and 11.0 months, respectively).

Contrary to the PFS, the OS results obtained in our series cannot be compared with those reported in the COMBI-d trial (in our study, 60.3% and 60.4%, dabrafenib and combined therapy at 12 months, respectively; 68% and 74% for the COMBI-d trial); this is not only because of the above-mentioned factors, but also because patients in our study received prior lines of treatments, and also because our study was observational and based on real-life settings. Notably, 14% of our patients previously received immunotherapy and 40.5% (out of 84 patients with any metastasis) had brain metastases when treatment was initiated. However, even considering these high-

![Figure 1](image1.png)

Figure 1. Overall survival for patients receiving dabrafenib in monotherapy or in combination with trametinib.

![Figure 2](image2.png)

Figure 2. Progression-free survival for patients receiving dabrafenib in monotherapy or in combination with trametinib.
Table 4

Description of adverse events reported during the treatment period.	Dabrafenib monotherapy (N = 49)	Dabrafenib plus trametinib (N = 87)	Total (N = 136)						
	G1	G2	G3/4	G1	G2	G3/4	G1	G2	G3/4
Cutaneous toxicity, N (%)	19 (3.8)	6 (12.5)	3 (6.3)	17 (19.5)	10 (11.5)	2 (2.3)	36 (26.7)	16 (11.9)	4 (3.0)
Hyperkeratosis	14 (29.2)	2 (4.2)	1 (2.1)	3 (5.4)	0 (0.0)	0 (0.0)	17 (12.6)	2 (1.5)	1 (0.7)
Rash	4 (8.3)	2 (4.2)	0 (0.0)	8 (9.2)	2 (2.3)	0 (0.0)	12 (8.9)	4 (3.0)	0 (0.0)
Most frequent AEs, N (%)									
Pyrexia	11 (22.9)	0 (0.0)	0 (0.0)	14 (16.1)	11 (12.6)	1 (1.1)	25 (18.5)	11 (8.1)	1 (0.7)
Arthralgia	9 (18.8)	1 (2.1)	0 (0.0)	11 (12.6)	2 (2.3)	0 (0.0)	20 (14.8)	3 (2.2)	0 (0.0)
Asthenia	9 (18.8)	2 (4.2)	1 (2.1)	10 (11.5)	4 (4.6)	0 (0.0)	19 (14.1)	6 (4.4)	1 (0.7)
Diarrhea	6 (12.5)	0 (0.0)	0 (0.0)	10 (11.5)	2 (2.3)	0 (0.0)	16 (11.9)	2 (1.5)	0 (0.0)
Alopecia	4 (8.3)	1 (2.1)	0 (0.0)	2 (2.3)	0 (0.0)	0 (0.0)	6 (4.4)	1 (0.7)	0 (0.0)
Hand-foot syndrome	2 (4.2)	2 (4.2)	2 (4.2)	1 (1.1)	2 (2.3)	0 (0.0)	3 (2.2)	4 (3.0)	2 (1.5)

AEs = adverse events, G = grade of toxicity, N = number of patients.

risk factors, our OS results were similar to those of an earlier trial that investigated 78 patients with BRAF V600 mutation-positive metastatic melanoma who were naïve to previous BRAF inhibitors and who received dabrafenib plus trametinib; their PFS rates were 44%, 22%, and 18% at 12, 24, and 36 months of treatment, respectively.

In summary, our results suggest that the use of dabrafenib and trametinib alone or in combination with trametinib is safe and effective in terms of toxicity, response, and survival rates.

Acknowledgments

The authors would like to thank the patients that participated in the study and their families, as well as all the DEIS project collaborators. The authors especially thank the MFAR Clinical Research team for regulatory, monitoring, and quality assurance activities, and Cindy L. Larios, M.D., for manuscript and language editing.

References

[1] Miller AJ, Mihm MCJr. Melanoma. N Engl J Med 2006;355:51–65.
[2] Ferlay J, Steineckova-Foucher E, Lorret-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013;49:1374–403.
[3] Berwick M, Buller DB, Cast A, et al. Melanoma epidemiology and prevention. Cancer Treat Res 2015;165:19–49.
[4] Jennings L, Murphy GM. Predicting outcome in melanoma: where are we now? Br J Dermatol 2009;161:496–503.
[5] Tas F. Metastatic behaviour in melanoma: timing, pattern, survival, and influencing factors. J Oncol 2012;2012:647894.
[6] Ugurel S, Loquai S, Kahler K, et al. A multicenter DeCOG study on predictors of vemurafenib therapy outcome in melanoma: pretreatment impacts survival. Ann Oncol 2015;26:573–82.
[7] Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 2009;23:488–96.
[8] Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949–54.
[9] Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet 2003;33:19–20.
[10] Kirschner M, Helmke B, Starz H, et al. Preponderance of the oncogenic V599E and V599K mutations in the B-raf kinase domain is enhanced in melanoma lymph node metastases. Melanoma Res 2005;15:427–34.
[11] Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 2011;29:1239–46.
[12] Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010;363:809–19.
[13] Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012;366:707–14.
[14] Hauschild A, Grob J, Demidov LV, et al. Dabrafenin in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012;380:558–65.
[15] European Medicines Agency. Tafinlar. Summary of product characteristics. Available at: https://us.gsk.com/media/189802/Combination-Tafinlar-Mekinist-Data-Backgrounder.pdf (accessed 15th May 2016).
[16] Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 2014;371:1867–76.
[17] Garrett GL, He SY, Sabouni N, et al. Combined dabrafenin and trametinib therapy in metastatic melanoma and organ transplantation: case report and review of the literature. JAAD Case Rep 2015;1:23–5.
[18] Lindsay JN, Barras M. Facing the challenges of new melanoma-targeted therapies: treatment of severe fevers associated with dabrafenib/trametinib combination therapy. J Oncol Pharm Pract 2015;21:293–5.
[19] Kim DW, Barcena E, Mehta UN, et al. Prolonged survival of a patient with metastatic leptomeningeal melanoma treated with BRAF inhibition-based therapy: a case report. BMC Cancer 2015;15:400.
[20] Gaulliker NA, Murer C, Kamarashev J, et al. Clinical observation of panniculitis in two patients with BRAF-mutated metastatic melanoma treated with a combination of a BRAF inhibitor and a MEK inhibitor. Eur J Dermatol 2015;25:177–80.
[21] Atkinson V, Thienen JV, Mc Arthur G, et al. Safety and effectiveness analysis of V600 BRAF-mutated metastatic melanoma (MMR) patients (pts) from the dabrafenib (D) plus trametinib (T) named patient programme (NPP)—DESCRIBE study. J Clin Oncol 2014;32:3697–704.
[22] Cavaliere S, Di Guardo L, Cininniello C, et al. Combined therapy with dabrafenib and trametinib in BRAF-mutated metastatic melanoma in a real-life setting: the INT Milan experience. Tumori 2016;102:501–7.
[21] Martin-Algarra SCJ, Neynset B. Safety and efficacy analysis of patients (pts) from the dabrafenib (D) named patient programme (NPP) in patients with V600 BRAF-mutated metastatic melanoma (MM)—DESCRIBE study. Pigment Cell Melanoma Res 2014;27:1211–2.

[24] Menzies AM, Long GV. Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res 2014;20:2035–43.

[25] Montagut C, Sharma SV, Shioda T, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008;68:4853–61.

[26] Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to BRAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010;468:973–7.

[27] Spain L, Julve M, Larkin J. Combination dabrafenib and trametinib in the management of advanced melanoma with BRAFV600 mutations. Expert Opin Pharmacother 2016;17:1031–8.

[28] Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 2014;371:1877–88.

[29] Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015;386:444–51.

[30] Long GV, Weber JS, Infante JR, et al. Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib. J Clin Oncol 2016;34:871–8.