A NOTE ON CUSP FORMS AND REPRESENTATIONS OF $\text{SL}_2(\mathbb{F}_p)$

ZHE CHEN

Abstract. Cusp forms are certain holomorphic functions defined on the upper half-plane, and the space of cusp forms for the principal congruence subgroup $\Gamma(p)$, p a prime, is acted by $\text{SL}_2(\mathbb{F}_p)$. Meanwhile, there is a finite field incarnation of the upper half-plane, the Deligne–Lusztig (or Drinfeld) curve, whose cohomology space is also acted by $\text{SL}_2(\mathbb{F}_p)$. In this note we study the relation between these two spaces in the weight 2 case.

Contents

1. Introduction
2. Comparing the spaces
3. A further remark
References

1. Introduction

Given a prime p — for convenience we assume $p \geq 7$ — the cusp forms of weight k for the principal congruence subgroup $\Gamma(p) := \text{Ker}(\text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{F}_p))$ form a finite dimensional linear space over \mathbb{C}, denoted by $S_k(\Gamma(p))$; these holomorphic functions defined on the upper half-plane are objects of considerable interests in number theory. Here we focus on the case $k = 2$. The space $S_2(\Gamma(p))$ is acted by $\text{SL}_2(\mathbb{F}_p)$ in a natural way. We want to understand this space by viewing $\text{SL}_2(\mathbb{F}_p)$ as a finite reductive group.

On the other hand, there is a finite field analogue of the upper half-plane, $\mathbb{P}^1 \backslash \mathbb{P}^1(\mathbb{F}_p)$, which is an algebraic curve over \mathbb{F}_p. The group $\text{SL}_2(\mathbb{F}_p)$ also acts on this curve and its ℓ-adic cohomology in a natural way. This is one of the starting points of Deligne–Lusztig theory, a geometric approach to the representations of reductive groups over finite fields. Indeed, $\mathbb{P}^1 \backslash \mathbb{P}^1(\mathbb{F}_p)$ is a very special example of Deligne–Lusztig varieties, and also referred to as Drinfeld curve. The original reference for this beautiful subject is [DL76].

Consider the algebraic group $G = \text{SL}_2$ over $\overline{\mathbb{F}}_p$. Let F be the standard geometric Frobenius endomorphism on G over $\overline{\mathbb{F}}_p$, so we have $G^F := G(\overline{\mathbb{F}}_p)^F = \text{SL}_2(\mathbb{F}_p)$. In the below we give a brief review on our basic objects.

Cusp form representations. Let $Z = \{\pm 1\}$ be the centre of G, then $\text{PSL}_2(\mathbb{F}_p) = G^F/Z$ is the Galois group of the finite cover $X(p) \to X(1)$, where $X(_)$ denotes the corresponding modular curve of the principal congruence subgroup $\Gamma(_)$, and $\Gamma(p)$ via the identification $S_2(\Gamma(p)) \cong H^0(X(p),\Omega^1)$, where Ω^1 is the sheaf of relative differentials of degree 1. Explicitly, the action of a matrix g on a 1-form $f(z)dz$ on $X(p)$ is given by

$$g : f(z)dz \to f(g^{-1}(z))dg^{-1}(z),$$
where $g^{-1}(z)$ is the corresponding Möbius transformation. (This action is well-defined by basic properties of factors of automorphy.) We denote by $S_2(\Gamma(p))$ the dual space of $S_2(\Gamma(p))$. More details can be found e.g. in [DS05].

Deligne–Lusztig representations. Fix a prime $\ell \neq p$. In our case, there are two types of F-stable maximal tori of G involved, the anisotropic type and the split type; we denote a fixed anisotropic torus by T_a and a fixed split one by T_s. Note that $T_a \cap T_s = \mathbb{Z}$. For an irreducible $\overline{\mathbb{Q}_\ell}$-character $\theta_s \in \hat{T}_s^F$, we put $R^\theta_{Ts} := \text{Ind}_{B^F}^{G^F}\hat{\theta}_s$, where B is an F-stable Borel subgroup containing T_s, and $\hat{\theta}_s$ is the trivial extension of θ_s; they provide the principal series representations of G^F. The non-principal series representations are called cuspidal representations, which are far more interesting and can be constructed via ℓ-adic characters of T_a^F on the curve $\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_p)$: For each $\theta_a \in \hat{T}_a^F$ there is an ℓ-adic local system \mathcal{F}_{θ_a} on $\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_p)$, such that

$$H^i_c(\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_p), \mathcal{F}_{\theta_a}) \cong H^i_c(xy^p - x^py - 1 = 0, \overline{\mathbb{Q}_\ell}) \otimes_{\mathbb{Q}[T_a^F]} \theta_a$$

as representations of G^F; we denote the alternating sum $\sum (-1)^i H^i_c(\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_p), \mathcal{F}_{\theta_a})$, a virtual representation of G^F, by R^θ_{Ta}. These R^θ_{Ta} and R^θ_{Ts} are called Deligne–Lusztig representations of G^F. More details can be found in [Bon11].

We show that (see Theorem 2.7), as a representation of $\text{SL}_2(\mathbb{F}_p)$, the structure of $S_2(\Gamma(p)) + S_2(\Gamma(p))$ depends on the residue of p modulo 12, and this space is a linear combination of Deligne–Lusztig representations, whose coefficients can be chosen to be linear polynomials in p and can be determined explicitly. Moreover, the involved coefficients imply that the single space $S_2(\Gamma(p))$ is usually not uniform (see Corollary 2.8), and every non-trivial irreducible representation of $\text{PSL}_2(\mathbb{F}_p)$ appears in $S_2(\Gamma(p)) + S_2(\Gamma(p))$ when p is big enough (see Corollary 2.10). Our argument is computational, and based on a formula due to Jared Weinstein and a property of the Steinberg representation.

Acknowledgement. During the preparation of this work, the author is partially supported by the STU funding NTF17021.

2. Comparing the spaces

Let T be an F-stable maximal torus of G, and let $\theta \in \hat{T}^F$ be such that $\theta|_Z = 1$; we always assume T is T_a or T_s. We denote by $\epsilon(T)$ the \mathbb{F}_p-rank of T, that is, $\epsilon(T) = 0$ if $T = T_a$, and $\epsilon(T) = 1$ if $T = T_s$. We first give the decomposition rule of $\text{St} \otimes R^\theta_T$, where St is the Steinberg representation.

Lemma 2.1. Let $T_i, i = 1, 2$, be two F-stable maximal tori of G, and pick $\theta_i \in \hat{T}_i^F$ with $\theta_i|_Z = 1$. We have

$$(-1)^{(T_1)+\epsilon(T_2)} \cdot \langle \text{St} \otimes R^\theta_{T_1}, R^\theta_{T_2} \rangle_{G^F} = \begin{cases} 2, & T_1 \neq T_2 \\ 2 + (\theta_1, \theta_2)_{T_s^F} + (\theta_1, \theta_2^{-1})_{T_s^F}, & T_1 = T_2 = T_s \\ 2 - (\theta_1, \theta_2)_{T_s^F} - (\theta_1, \theta_2^{-1})_{T_s^F}, & T_1 = T_2 = T_a \end{cases}$$

Proof. We use extensively the character table of $\text{SL}_2(\mathbb{F}_p)$ (which can be found e.g. in [DM91, Chapter 15] and [Bon11, Chapter 5]). First, as the character values of St are zero at the non-semisimple elements, we have:
(-1)^{(T_1)+e(T_2)} \cdot \langle \text{St} \otimes R_{T_1}^{\theta_1}, R_{T_2}^{\theta_2} \rangle_{G^F} \\
= \frac{1}{|G^F|} \cdot (-1)^{(T_1)+e(T_2)} \cdot \left(\sum_{g \in G^F} \text{Tr}(g, \text{St} \otimes R_{T_1}^{\theta_1}) \cdot \text{Tr}(g^{-1}, R_{T_2}^{\theta_2}) \right) \\
= \frac{1}{|G^F|} \cdot (-1)^{(T_1)+e(T_2)} \cdot \left(\sum_{g \in (G_{ss})^F} \text{Tr}(g, \text{St}) \cdot \text{Tr}(g, R_{T_1}^{\theta_1}) \cdot \text{Tr}(g^{-1}, R_{T_2}^{\theta_2}) \right),

where $G_{ss} \subseteq G$ denotes the subset of semisimple elements.

Note that, when f is a class function on G^F, we have

\[
\sum_{g \in (G_{ss})^F} f(g) = \sum_{g \in Z} f(g) + \frac{p(p+1)}{2} \sum_{g \in T^F \setminus Z} f(g) + \frac{p(p-1)}{2} \sum_{g \in T^F \setminus Z} f(g).
\]

Using this decomposition we get: (Let e' be short for $(-1)^{(T_1)+e(T_2)}$)

\[
\sum_{g \in (G_{ss})^F} \text{Tr}(g, \text{St}) \cdot \text{Tr}(g, R_{T_1}^{\theta_1}) \cdot \text{Tr}(g^{-1}, R_{T_2}^{\theta_2}) \\
= 2p \frac{(p^2 - 1)^2}{|T_1^F||T_2^F|} \cdot e' + \frac{p(p+1)}{2} \sum_{g \in T^F \setminus Z} \text{Tr}(g, R_{T_1}^{\theta_1}) \cdot \text{Tr}(g^{-1}, R_{T_2}^{\theta_2}) \\
- \frac{p(p-1)}{2} \sum_{g \in T^F \setminus Z} \text{Tr}(g, R_{T_1}^{\theta_1}) \cdot \text{Tr}(g^{-1}, R_{T_2}^{\theta_2}) \\
= 2p \frac{(p^2 - 1)^2}{|T_1^F||T_2^F|} \cdot e' + \frac{p(p+1)}{2} \sum_{g \in T^F \setminus Z} e(T_1)e(T_2) \cdot (\theta_1(g) + \theta_1(g^{-1})) \cdot (\theta_2(g) + \theta_2(g^{-1})) \cdot (1 - e(T_1))(1 - e(T_2)) \\
- \frac{p(p-1)}{2} \sum_{g \in T^F \setminus Z} (1 - e(T_1))(1 - e(T_2)) \cdot (\theta_1(g) + \theta_1(g^{-1})) \cdot (\theta_2(g) + \theta_2(g^{-1})) \\
= 2p \frac{(p^2 - 1)^2}{|T_1^F||T_2^F|} \cdot e' + p|T^F_{a^1}| \sum_{g \in T^F \setminus Z} e(T_1)e(T_2) \cdot (\theta_1(g)\theta_2(g^{-1}) + \theta_1(g)\theta_2(g)) \\
- p|T^F_{a^1}| \sum_{g \in T^F \setminus Z} (1 - e(T_1))(1 - e(T_2)) \cdot (\theta_1(g)\theta_2(g^{-1}) + \theta_1(g)\theta_2(g)).
\]
By putting the above formula into (1) we see that (recall that $|G^F| = p|T_a^F||T_s^F|$)
\[(1) \cdot \epsilon' = \frac{2(p^2 - 1)}{|T_s^F||T_a^F|} \cdot \epsilon + \frac{1}{|T_a^F|} \sum_{g \in T_a^F \setminus Z} \epsilon(T_1)\epsilon(T_2) \cdot (\theta_1(g)\theta_2(g^{-1}) + \theta_1(g)\theta_2(g)) \\
- \frac{1}{|T_a^F|} \sum_{g \in T_a^F \setminus Z} (1 - \epsilon(T_1))(1 - \epsilon(T_2)) \cdot (\theta_1(g)\theta_2(g^{-1}) + \theta_1(g)\theta_2(g)) \\
= \frac{2(p^2 - 1)}{|T_s^F||T_a^F|} \cdot \epsilon' + \epsilon(T_1)\epsilon(T_2) \cdot \left(\langle \theta_1, \theta_2 \rangle_{T_s^F} + \langle \theta_1, \theta_2^{-1} \rangle_{T_a^F} - \frac{4}{|T_a^F|} \right) \\
- (1 - \epsilon(T_1))(1 - \epsilon(T_2)) \cdot \left(\langle \theta_1, \theta_2 \rangle_{T_s^F} + \langle \theta_1, \theta_2^{-1} \rangle_{T_a^F} - \frac{4}{|T_a^F|} \right),
\]
from which the assertion follows by specialising T_1 to T_s and T_a respectively. \(\square\)

From [DL76] we know that:

(i) If $\theta^2 \neq 1$, then $(-1)^{c(T)+1} R_T^\theta \cong (-1)^{c(T)+1} R_T^{\theta^{-1}}$ is an irreducible representation;
(ii) if $\theta = 1$, then $R_T^{\theta} = 1 + (-1)^{c(T)+1} \text{St}$;
(iii) if $\theta^2 = 1$ but $\theta \neq 1$, then $(-1)^{c(T)+1} R_T^\theta$ is the sum of two non-isomorphic irreducible representations.

The character in (iii) is the unique character of order 2; we denote it by α (and, when specialising T to T_s or T_a, we also use the notation α_s or α_a). We shall need some complementary rules for the representations in (ii) and (iii).

Lemma 2.2. Let (T_1, θ_1) be as in Lemma 2.1. We have $(-1)^{c(T_1)+1} \langle \text{St} \otimes R_{T_1}^\theta, 1 \rangle = \langle \theta_1, 1 \rangle$ and $(-1)^{c(T_1)+1} \langle \text{St} \otimes R_{T_1}^\theta, \text{St} \rangle = 2 + (-1)^{c(T_1)+1} \langle \theta_1, 1 \rangle$. And, if $\alpha|_Z = 1$, then the two irreducible constituents of $(-1)^{c(T_1)+1} R_{T_1}^\alpha$ have same multiplicities in $(-1)^{c(T_1)+1} \text{St} \otimes R_{T_1}^\theta$.

Proof. The first two assertions follow from the same method of Lemma 2.1. For the last assertion, note that the character values of the two constituents of $R_{T_1}^\alpha$ are only different on non-semisimple elements, on which the Steinberg character vanishes, so we see from the argument of Lemma 2.1 that the multiplicities are the same. \(\square\)

Remark 2.3. Note that α is actually the “quadratic residue symbol”, i.e. $\alpha(t) = 1$ if and only if t is a square in T^F. In particular, we see that: If $T = T_s$, then $\alpha|_Z = 1$ if and only if $p = 1 \mod 4$; if $T = T_a$, then $\alpha|_Z = 1$ if and only if $p = 3 \mod 4$.

Summarising the above results we obtain:

Lemma 2.4. Let (T_1, θ_1) be as in Lemma 2.1. The virtual representation $\text{St} \otimes R_{T_1}^\theta$ is a \mathbb{Z}-linear combination of Deligne–Lusztig representations, and the coefficient of R_T^θ for each θ can be arranged to be: (Note that we do not identify R_T^θ with $R_T^{\theta^{-1}}$ unless $\theta = \alpha$.)

(a) The coefficient for R_T^θ with $\theta|_Z \neq 1$ is zero;
(b) let $\theta_s \neq 1 \in \hat{T}_s^F$ be such that $\theta_s|_Z = 1$. If $T_1 = T_s$, then the coefficient for $R_{T_1}^\theta$ is $1 + \langle \theta_1, \theta_s \rangle_{T_s^F}$;
(c) let $\theta_a \neq 1 \in \hat{T}_a^F$ be such that $\theta_a|_Z = 1$. If $T_1 = T_a$, then the coefficient for $R_{T_1}^\theta$ is -1;
(d) let $\theta_a \neq 1 \in \hat{T}_a^F$ be such that $\theta_a|_Z = 1$. If $T_1 = T_a$, then the coefficient for $R_{T_1}^\theta$ is $1 - \langle \theta_1, \theta_a \rangle_{T_a^F}$;

Remark 2.3...
(e) let \(\theta_a \neq 1 \in \hat{T}_a^F \) be such that \(\theta_a|_Z = 1 \). If \(T_1 = T_s \), then the coefficient for \(R_{T_s}^\theta \) is \(-1\);
(f) if \(T_1 = T_s \), then the coefficient of \(R_{T_s}^1 \) is \(1 + \langle \theta_1, 1 \rangle_T \) and the coefficient of \(R_{T_s}^1 \) is \(-1\);
(g) if \(T_1 = T_a \), then the coefficient of \(R_{T_a}^1 \) is \(-1\) and the coefficient of \(R_{T_a}^1 \) is \(1 - \langle \theta_1, 1 \rangle_T \).

Proof. This is a simple combination of Lemma 2.1, Lemma 2.2, the above (i)-(iii), and the character table of \(SL_2(\mathbb{F}_p) \) (note that \(1 = \langle R_{T_s}^1 + R_{T_s}^1 \rangle / 2 \) and \(St = \langle R_{T_s}^1 - R_{T_s}^1 \rangle / 2 \)).

Using the equivariant Riemann–Roch formula, Weinstein find a nice expression of the space \(S_2(\Gamma(p)) + S_2(\Gamma(p)) \) in terms of representations induced from certain small subgroups of \(G^F/Z = \text{PSL}_2(\mathbb{F}_p) \). More precisely, let \(G_{1728} \subseteq G^F/Z \) be the subgroup (of order 2) generated by \(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \), \(G_0 \subseteq G^F/Z \) the subgroup (of order 3) generated by \(\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \), and \(G_\infty \subseteq G^F/Z \) the subgroup (of order \(p \)) generated by \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \), then according to the argument in [Wei07, Page 31] we have:

\[
(2) \quad S_{2,p} \cong \mathbb{Q}_\ell[G^F/Z] - \text{Ind}_{G_{1728}}^{G^F/Z} 1_{G_{1728}} - \text{Ind}_{G_0}^{G^F/Z} 1_{G_0} - \text{Ind}_{G_\infty}^{G^F/Z} 1_{G_\infty} + 2 \cdot 1_{G^F/Z},
\]

where \(S_{2,p} := S_2(\Gamma(p)) + S_2(\Gamma(p)) \). (Note that this is the corrected version of the formula for a single \(S_2(\Gamma(p)) \) appeared in [Wei07, 3.4.1]; see also [Wei09, 4.3], in which the formula is established in the framework of parabolic cohomology.)

In order to put the space of cusp forms into the picture of representation theory of a finite reductive group, we need to decompose the above large representations; there is the following nice property of the Steinberg representation:

Lemma 2.5. We have \((-1)^{1+\psi(T)} St \otimes R_T^\theta = \text{Ind}_{T_s}^{G^F} \theta\).

Proof. See [DL76, 7.3].

Now let \(\tilde{G}_s \) be the preimage of \(G_s \) along the surjection \(G^F \to G^F/Z \) for each \(* \in \{1728, 0, \infty\} \), then (2) becomes

\[
(3) \quad S_{2,p} \cong \text{Ind}^{G^F}_Z 1_Z - \text{Ind}^{G_{1728}}_{G_{1728}} 1_{G_{1728}} - \text{Ind}^{G_0}_{G_0} 1_{G_0} - \text{Ind}^{G_\infty}_{G_\infty} 1_{G_\infty} + 2 \cdot 1_{G^F}.
\]

Here a basic observation is that the generators of \(G_{1728} \) and \(G_0 \) are semisimple (as elements in the algebraic group \(G \)), so we can conjugate \(\tilde{G}_{1728} \) and \(\tilde{G}_0 \) into \(T_s^F \cong \mathbb{F}_p^\times \) or \(T_a^F \cong \mu_{p+1} \), which depends on \(p \mod 12 \):

Lemma 2.6. We have (up to conjugations in \(G^F \)):

- If \(p = 1 \mod 12 \), then both \(\tilde{G}_{1728} \) and \(\tilde{G}_0 \) are in \(T_s^F \);
- if \(p = 5 \mod 12 \), then \(\tilde{G}_{1728} \) is in \(T_s^F \) and \(\tilde{G}_0 \) is in \(T_a^F \);
- if \(p = 7 \mod 12 \), then \(\tilde{G}_{1728} \) is in \(T_a^F \) and \(\tilde{G}_0 \) is in \(T_a^F \);
- if \(p = 11 \mod 12 \), then both \(\tilde{G}_{1728} \) and \(\tilde{G}_0 \) are in \(T_a^F \).

Proof. This follows from direct computations.

\[\square\]
For \(* \in \{1728, 0\}\), let \(T_s\) be one of \(T_s\) and \(T_a\), and suppose \(\tilde{G}_s\) lies in \(T_s\). Then (3) becomes (note that \(B^F/\tilde{G}_\infty = T_s^F/\mathbb{Z}\))

\[
S_{2,F} \cong \text{Ind}_{\mathbb{Z}}^F 1_{\mathbb{Z}} - \text{Ind}_{\tilde{G}_\infty}^F 1_{\tilde{G}_\infty} + 2 \cdot 1_{G^F} - \sum_{\theta \in \tilde{T}_{1728}} \text{Ind}_{\tilde{T}_{1728}}^F \theta - \sum_{\theta \in \tilde{T}_0} \text{Ind}_{\tilde{T}_0}^F \theta
\]

\[(4) \cong \sum_{\theta \in \tilde{T}_0^F; \theta \mid z = 1} \text{St} \otimes R^\theta_{T_s} - \sum_{\theta \in \tilde{T}_0^F; \theta \mid z = 1} R^\theta_{T_a} + 2 \cdot 1_{G^F} - (-1)^{\epsilon(T_{1728})+1} \sum_{\hat{\theta} \in \tilde{T}_0^F; \hat{\theta} \mid \tilde{G}_0 = 1} \text{St} \otimes R^\hat{\theta}_{T_{1728}} - (-1)^{\epsilon(T_0)+1} \sum_{\hat{\theta} \in \tilde{T}_0^F; \hat{\theta} \mid \tilde{G}_0 = 1} \text{St} \otimes R^\hat{\theta}_{T_0},
\]

where the second equality follows from Lemma 2.5.

Theorem 2.7. As a representation of \(G^F = \text{SL}_2(F_p)\), the structure of the space \(S_2(\Gamma(p)) + S_2(\Gamma(p))\) depends on \(p\) mod 12, and it can be written as a linear combination of \(R^\theta_{T}\) for various \((T, \theta)\) with \(\theta \mid z = 1\) (hence uniform in the sense of [Lus78, 2.15]), whose coefficients can be chosen to be rational linear polynomials in \(p\):

\[
S_2(\Gamma(p)) + S_2(\Gamma(p)) = \sum_{\theta \in \tilde{T}_0^F; \theta \mid z = 1} c_0 R^\theta_{T_s} + \sum_{\theta \in \tilde{T}_0^F; \theta \mid z = 1} c_0 R^\theta_{T_a},
\]

where \(c_0 \in \frac{1}{12}\mathbb{Z}[p]/p^2\) are linear polynomials in \(p\) depending on \(p\) mod 12.

Proof. We can write out these \(c_0\). Consider the following (possibly empty) subsets of \(\tilde{T}_s^F\) for each \(* \in \{s, a\}\): First, let \(A_*\) be consisting of those \(\theta\) such that \(\theta\) is defined and non-trivial on both \(\tilde{G}_{1728}\) and \(\tilde{G}_0\), then let \(B_*\) be consisting of those \(\theta \neq 1\) such that \(\theta\) is defined and trivial on both \(\tilde{G}_{1728}\) and \(\tilde{G}_0\); let \(C_* \subseteq \tilde{T}_s^F \setminus (A_* \cup B_*)\) be consisting of those \(\theta \neq 1\) such that \(\theta\) is defined and trivial on \(\tilde{G}_{1728}\); let \(D_* \subseteq \tilde{T}_s^F \setminus (A_* \cup B_* \cup C_*)\) be consisting of those \(\theta \neq 1\) such that \(\theta\) is defined and trivial on \(\tilde{G}_0\); let \(E_* = \{1\}\).

Then, by applying Lemma 2.4, Lemma 2.6, and Remark 2.3 to (4) we see

\[
S_2(\Gamma(p)) + S_2(\Gamma(p)) = \sum_{\theta \in \tilde{T}_0^F; \theta \mid z = 1} c_0 R^\theta_{T_s} + \sum_{\theta \in \tilde{T}_0^F; \theta \mid z = 1} c_0 R^\theta_{T_a},
\]

where the non-zero \(c_0\) can be chosen as:

- The case \(p = 1\) mod 12:
 - If \(\theta \in A_*,\) then \(c_0 = \frac{\nu_1}{12} + 1;\)
 - If \(\theta \in B_*,\) then \(c_0 = \frac{\nu_1 - 1}{12} - 2;\)
 - If \(\theta \in C_* \cup D_*,\) then \(c_0 = \frac{\nu_1 - 1}{12} - 1;\)
 - If \(\theta \in E_*,\) then \(c_0 = \frac{\nu_1 - 1}{12} - 1;\)
 - If \(\theta \neq 1 \in \tilde{T}_a^F,\) then \(c_0 = -\frac{\nu_1 - 1}{12};\)
 - If \(\theta \in E_a,\) then \(c_0 = 1 - \frac{\nu_1 - 1}{12};\)

- The case \(p = 5\) mod 12:
 - If \(\theta \in C_*,\) then \(c_0 = -\frac{5}{12} - 1;\)
if \(\theta \in \widehat{T}^F_s \setminus (C_s \cup E_s) \), then \(c_\theta = \frac{p-5}{12} \);
if \(\theta \in E_s \), then \(c_\theta = \frac{p-5}{12} \);
if \(\theta \in D_s \), then \(c_\theta = -\frac{p-5}{12} \);
if \(\theta \in \widehat{T}^F_a \setminus (D_a \cup E_a) \), then \(c_\theta = -\frac{p-5}{12} + 1 \);
if \(\theta \in E_a \), then \(c_\theta = -\frac{p-5}{12} \).

- The case \(p = 7 \mod 12 \):
 If \(\theta \in D_s \), then \(c_\theta = \frac{p-7}{12} - 1 \);
if \(\theta \in \widehat{T}^F_s \setminus (D_s \cup E_s) \), then \(c_\theta = \frac{p-7}{12} \);
if \(\theta \in E_s \), then \(c_\theta = \frac{p-7}{12} \);
if \(\theta \in C_s \), then \(c_\theta = -\frac{p-7}{12} - 1 \);
if \(\theta \in \widehat{T}^F_s \setminus (C_s \cup E_a) \), then \(c_\theta = -\frac{p-7}{12} \);
if \(\theta \in E_a \), then \(c_\theta = -\frac{p-7}{12} \).

- The case \(p = 11 \mod 12 \):
 If \(\theta \neq 1 \in \widehat{T}^F_s \), then \(c_\theta = \frac{p-11}{12} \);
if \(\theta \in E_s \), then \(c_\theta = 1 + \frac{p-11}{12} \);
if \(\theta \in A_s \), then \(c_\theta = -\frac{p-11}{12} \);
if \(\theta \in B_s \), then \(c_\theta = -\frac{p-11}{12} - 2 \);
if \(\theta \in C_s \cup D_s \), then \(c_\theta = -\frac{p-11}{12} - 1 \);
if \(\theta \in E_s \), then \(c_\theta = -1 - \frac{p-11}{12} \).

So the theorem follows. \(\square \)

The coefficients in the above argument also imply that, unlike the sum \(S_2(\Gamma(p)) + \overline{S}_2(\Gamma(p)) \), the single space \(S_2(\Gamma(p)) \) is usually not uniform. For instance, we have:

Corollary 2.8. The representation \(S_2(\Gamma(p)) \) of \(G^F = \text{SL}_2(\mathbb{F}_p) \) is not a linear combination of Deligne–Lusztig representations of \(\text{SL}_2(\mathbb{F}_p) \) if \(p = 23 \mod 24 \).

Proof. From the argument of Theorem 2.7, we see that the multiplicity of each irreducible constituent of \(R^\alpha_{T_s} \) in \(S_2(\Gamma(p)) + \overline{S}_2(\Gamma(p)) \) is an odd integer. As these constituents are not linear combinations of the \(R^\alpha_{T_s} \)'s, the corollary follows. \(\square \)

Example 2.9. There is an accidental case: Let \(p = 7 \), then \(S_2(\Gamma(7)) \) is an irreducible constituent of \(R^\alpha_{T_s} \), hence not uniform. However, note that \(\text{PSL}_2(\mathbb{F}_7) \cong \text{GL}_3(\mathbb{F}_2) \), so we can also view \(S_2(\Gamma(7)) \) as a representation of \(\text{GL}_3(\mathbb{F}_2) \), of which it is a cuspidal Deligne–Lusztig representation of dimension 3.

Corollary 2.10. Suppose \(p \geq 23 \). An irreducible representation \(\rho \) of \(G^F/Z = \text{PSL}_2(\mathbb{F}_p) \) appears in \(S_2(\Gamma(p)) + \overline{S}_2(\Gamma(p)) \) if and only if \(\rho \neq 1_{G^F/Z} \).

Proof. The representations of \(\text{PSL}_2(\mathbb{F}_p) \) can be viewed as the representations of \(G^F \) factored through \(Z \), so the corollary follows from the coefficients in the argument of Theorem 2.7. \(\square \)

3. A further remark

It would be interesting to know whether there is a similar result for the principal congruence subgroup \(\Gamma(p^r), r \in \mathbb{Z}_{>0} \), in which case the representations of \(\text{SL}_2(\mathbb{Z}/p^r) \cong \text{SL}_2(\mathbb{Z}/p) \) are involved. Note that there are generalisations of Deligne–Lusztig theory to this setting;
see e.g. [Lus04], [Sta11], and [Che18]. Moreover, Weinstein’s formula (2) still holds, and there are also possible candidates of the Steinberg representation, like the ones given in [Lee78] and [Cam07]. However, we are yet lacking of a good knowledge of values of the generalised Deligne–Lusztig characters.

References

[Bon11] Cédric Bonnafé. Representations of $\text{SL}_2(F_q)$, volume 13 of Algebra and Applications. Springer-Verlag London, Ltd., London, 2011.

[Cam07] Peter S. Campbell. Steinberg characters for Chevalley groups over finite local rings. J. Algebra, 313(2):486–530, 2007.

[Che18] Zhe Chen. On the inner products of some Deligne–Lusztig-type representations. Accepted by International Mathematics Research Notices, page rny195, 2018.

[DL76] Pierre Deligne and George Lusztig. Representations of reductive groups over finite fields. Ann. of Math. (2), 103(1):103–161, 1976.

[DM91] François Digne and Jean Michel. Representations of finite groups of Lie type, volume 21 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.

[DS05] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.

[Lee78] Paul Lees. A Steinberg representation for $\text{GL}_n(\mathbb{Z}/p^k\mathbb{Z})$. Proc. London Math. Soc. (3), 37(3):459–490, 1978.

[Lus78] George Lusztig. Representations of finite Chevalley groups, volume 39 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977.

[Lus04] George Lusztig. Representations of reductive groups over finite rings. Represent. Theory, 8:1–14, 2004.

[Sta11] Alexander Stasinski. Extended Deligne-Lusztig varieties for general and special linear groups. Adv. Math., 226(3):2825–2853, 2011.

[Wei07] Jared Weinstein. Automorphic representations with local constraints. ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)–University of California, Berkeley.

[Wei09] Jared Weinstein. Hilbert modular forms with prescribed ramification. Int. Math. Res. Not. IMRN, (8):1388–1420, 2009.

Department of Mathematics, Shantou University, Shantou, China
E-mail address: zhechencz@gmail.com