Prevalence of intestinal parasitic infestation in Ma’an governorate, Jordan

Khalil I Altaif

College of Aisha Bint Al-Hussein for Nursing Al-Hussein Bin Talal University, Ma’an, Jordan

1. Introduction

Parasitic infestations are one of many factors that cause gastrointestinal syndromes such as, diarrhea, weight loss, abdominal discomforts and pain in many tropical and subtropical countries of the world[1-2]. Many environmental and socioeconomic factors such as poverty, malnutrition, potable water, low health status, poor sanitary facilities and other factors are the major causes of the increasing incidence of parasitic infections in these areas[2].

Epidemiological surveys carried out in many countries have demonstrated the importance of parasitic infections and some of these studies showed that there is correlation between the incidence of parasitic infections and seasons of the year[2-5].

It appears that summer months are a favorable period for the development and survival of many parasitic species and accordingly the rate of incidence increases during this season[6,7].

All the published reports on the prevalence and the importance of parasitic infections in Jordan indicated that Entamoeba histolytica (E. histolytica) and Giardia lamblia (G. lamblia) are among the most common parasites[8-10]. However, very little information is available concerning the incidence of parasitic infestations in Ma’an governorate. Therefore, the aim of the present study was to determine the incidence among people referred to Ma’an hospital in order to help the health authorities in Ma’an governorate in planning for the prevention and control of such diseases.

2. Materials and methods

The results from the examination of the stool samples of 1999 patients suffering from different abdominal disorders, who had been referred to Ma’an hospital, Ma’an south of Jordan during the period between 1st January to 31st December 2009 were retrospectively reviewed and the incidence and percentages of parasitic infections were determined.

All the specimens were examined by direct fecal smear
Table 3
Monthly distribution of intestinal parasites [n (%)].

Month	No. of cases	Infection cases	E. histolytica	G. lamblia
Jan	132	20 (15.2)	13 (9.8)	5 (3.8)
Feb	142	15 (10.6)	13 (9.2)	2 (1.4)
March	136	22 (16.2)	16 (11.8)	4 (2.9)
April	181	27 (14.9)	23 (12.7)	4 (2.2)
May	212	29 (13.7)	23 (10.8)	4 (1.9)
June	195	38 (19.5)	34 (17.4)	3 (1.5)
July	275	61 (22.2)	49 (17.8)	11 (4.0)
Aug	185	35 (18.9)	30 (16.2)	4 (2.2)
Sept	141	37 (26.2)	31 (22.0)	5 (3.5)
Oct	156	31 (19.9)	26 (16.7)	5 (3.2)
Nov	86	7 (8.1)	5 (5.8)	1 (1.2)
Dec	158	16 (10.1)	10 (6.3)	5 (3.2)
Total	1999	338 (16.9)	273 (13.7)	53 (2.7)

The result also showed that the total number of subjects admitted to the hospital was increased during summer months. This was accompanied by a much higher prevalence with both *E. histolytica* and *G. lamblia* during the same period which extended from June to October (Tables 3 and Figure 1).

4. Discussion

The overall prevalence and percentage of intestinal parasitic infections in this study 338 (16.9%) is higher than the overall prevalence rate (9.9%) reported by the Ministry of Health in Jordan, Directorate for Disease Prevention and Control in 1996[8] and that of Al–Momani et al in their retrospective study in Jordan (4.4%)[9]. However, the overall prevalence is lower than that reported from Southern Jordan (28.5%)[10]. Several reports from neighboring countries showed that the prevalence rate varies between these countries and our findings[2,5,6]. It seems that these differences can be attributed to a number of factors such as geographic, socioeconomic, climate, poverty, malnutrition, personal hygiene, population density, potable water and sanitation facilities. These factors play a key role in determining the prevalence of any parasite population in any geographical region of the world[2].

Six types of different intestinal parasites were detected...
during this retrospective study. *E. histolytica* is by far the most common species in both male and female patients as well as in adults and children. In general protozoal infections with *E. histolytica* and *G. lamblia* were found to be much higher than helminth infestations. This is in agreement with reports from Palestine[2], Iran[3] and Jordan[15]. However, *G. lamblia* seems to be the commonest species in south Jordan with a prevalence rate of 42.6%[16]. The low prevalence of helminth parasites such as *Ascaris lumbricoides*, hookworms and *S. stercoralis* is probably due to adverse conditions in this area of Jordan where the climate is characterized by a desert environment. Such weather is not suitable for the survival of eggs and larvae of helminth parasites in the environment. However, the unexpected result of a low incidence of *E. vermicularis* in children is probably due to the method employed in the stool examination. A higher percentage (5.9%) from southern Jordan was reported with *E. vermicularis*[16]. This difference is probably due to both sample groups which were selected from a community population (school children) and the technique employed (scotch tape exam).

With regard to the seasonal effect on the prevalence of parasites, a remarkable seasonal fluctuation was observed. The highest numbers and percentage occurred in summer months with a peak incidence in September (26.2%), while the lowest occurrence of parasitic infestations was evident in winter season (November–February). The prevalence showed the lowest percentage during November (8.1%). A similar finding was reported from Palestine that a peak of incidence occurred during summer months[6,7]. The incidence of intestinal parasitism in Ma’an Governorate is therefore considered to be comparatively low as compared with other parts of Jordan and other Arab countries and countries in middle east[2–5].

Though the prevalence of intestinal parasites in Ma’an governorate Southern Jordan is low, it is necessary to develop a comprehensive health education program and sanitation improvements to keep this problem under control and at a low level. To confirm these results a further survey is needed in order to obtain reliable data on the prevalence of intestinal parasites in different health care centers in the governorate.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The author would like to thank Professor Holmes P, University of Glasgow for reviewing the manuscript. Also special thanks go to Dr. Waleed Al–Rowad the director of Ma’an General Hospital for his cooperation in the preparation of this study.

References

[1] WHO. Intestinal parasites. [Online] Available from: http://apps.who.int/ctd/intpara/burdens.htm. [Accessed on July 7, 2010]
[2] Bdir S, Adwan G. Prevalence of intestinal parasitic infections in Jenin Governorate, Palestine. *Asian Pac J Trop Med* 2010; 3: 745–747.
[3] Niyyati M, Rezaeian M, Zahabion F, Hajarzadeh R, Kia EB. A survey on intestinal parasitic infections in patients referred to a hospital in Tehran. *Pak J Med Sci* 2009; 25: 87–90.
[4] Razi HH, Sami HH. Epidemiological study on gastrointestinal parasites among different sexes, occupations and age groups in Sulaimania district. *J Duhokuni* 2009; 12: 317–323.
[5] Yassin MM, Shubair ME, Al–Hindi AL, Jadallah SY. Prevalence of intestinal parasites among school children in Gaza city, Gaza strip. *J Egypt Soc Parasitol* 1999; 29: 365–373.
[6] Ali–Shtayeh MS, Hamdan AH, Shaheen SF, Abu–Seid I, Faidy YR. Prevalence and seasonal fluctuations of intestinal parasites infections in Nablus area West Bank of Jordan. *Ann Trop Med Parasitol* 1989; 83: 67–72.
[7] Fadel A. Sharif– prevalence and seasonal fluctuations of common intestinal parasites in Khan Younas. *J Islam Univ Gaza* 2002; 10: 1–11.
[8] Ministry of Health. Annual report of the directorate of the disease control and prevention. 2002, p. 50.
[9] Bava AJ, Romero MM, Prieto R, Troncoso A. A case report of pulmonary coinfection of *Strongyloides stercoralis* and *Pneumocystis jiroveci*. *Asian Pac J Trop Biomed* 2011; 1(4): 334–336.
[10] Purwaningsih E. Nematede parasit, *Auchen vaccantha* spp of flying lemur, *Cynocephalus variegatus* (Audebert, 1799) from Indonesia: Morphological study with SEM. *Asian Pac J Trop Biomed* 2011; 1(6): 434–438.
[11] Reza YM, Taghi RM. Prevalence of malaria infection in Srbaz, Sistan and Bluchistan province. *Asian Pac J Trop Biomed* 2011; 1(6): 491–492.
[12] Purwaningsih E, Mumpuni. New host and locality records of snake intestinal nematode *Kalicephalus* spp in Indonesia. *Asian Pac J Trop Biomed* 2011; 1(2): 121–123.
[13] Krungkrai SR, Krungkrai J. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. *Asian Pac J Trop Biomed* 2011; 1(3): 233–242.
[14] Hassan V, Zakkyeh T, Mozafar S, Alireza M, Maryam K, Mojtaba A. Ectoparasites of lesser mouse eared bat, *Myotis blythii* from Kermanshah Iran. *Asian Pac J Trop Med* 2010; 3(5): 371–373.
[15] Al–Momani T, Jabher MB, Abdallat H, Abbadi M. Frequency of intestinal parasites at Princess Aysha Medical Complex, Marka, Jordan. *J Islam Univ Gaza* 2006; 13: 70–73.
[16] Ammoura AM. Impact of hygenic level on parasite infection. *Asian Pac J Trop Med* 2010; 3: 148–149.