The Emotional, Environmental, Physical and Chemical Triggers of Acute Myocardial Infarction: An Analytical Demographic Study

Akut Kalp Krizinin Duygusal, Çevresel, Fiziksel ve Kimyasal Tetkileyicileri: Analitik Bir Demografik Çalışma

Majid Pourshaikhian¹, Mohammad Taghi Moghadamnia², Maryam Ghiasmand³

¹ Department of Anesthesia, Social Determinants of Health Research Centre, Guilan University of Medical Sciences, Rasht, Iran
² Department of Nursing, Social Determinants of Health Research Centre, Guilan University of Medical Sciences, Rasht, Iran
³ Critical Care Nursing, Guilan Social Security Organization, Rasool-Akram Hospital, Rasht, Iran

ABSTRACT

Objective: Acute triggers are external stimuli that produce acute pathophysiological changes directly leading to the onset of myocardial infarction (MI). Acute myocardial infarction (AMI) is one of the main causes of mortality. Recent studies have confirmed the impact of acute triggers on the occurrence of AMI, but have not evaluated their differences in terms of demographic characteristics. This study was conducted to investigate the impact of acute triggers on AMI in various demographic groups.

Methods: This is an analytical cross-sectional study on 269 patients affected by AMI in two hospitals in 2015 and 2016 in Iran. To attain the goals of the study, acute triggers were divided into four groups of emotional, environmental, physical, and chemical. A researcher-developed questionnaire and interview were used to collect data. The risk and control periods were also evaluated for each trigger. The data were analyzed by descriptive statistics and inferential statistics such as statistical logistic regression and McNemar’s test using SPSS 21. The P-value was set at 0.05.

Results: The results showed that sudden exposure to hot/cold weather in men (P=0.03, OR=3.4), underlying diseases (P=0.03, OR=1.8), heavy activities (P=0.03, OR=1.6) and consuming tea/coffee in men (P=0.01, OR=1.8) increased the chance of AMI. It was also discovered that triggers such as pulmonary infections, overeating and/or eating high-fat foods that are not dependent on demographic variables promoted the chance of AMI (P<0.05).

Conclusion: All people - regardless of age, sex, and the presence/lack of underlying illness - are at risk of developing MI in the face of respiratory infections, overeating, and intake of high-fat foods. Also, sudden exposure to hot and / or cold weather, heavy activity and high consumption of coffee and/or tea, can increase the risk of MI in men.

Key Words: Demography, acute triggers, myocardial infarction

ÖZET

Amaç: Akut tetkileyiciler doğrudan kalp krizinin başlangıcına yol açan akut patofizyolojik değişiklikler üreten dış uyaranlardır. Akut kalp krizi mortalitenin başlıca nedenlerinden biridir. Son yıllarda yapılan çalışmalar, akut tetkileyicilerin akut kalp krizi oluşumudaki etkisini doğrulamaktadır ancak demografik özellikler açısından farklılıklarını değerlendirmemiştir. Bu çalışma, çeşitli demografik gruplarda akut tetkileyicilerin akut kalp krizi üzerindeki etkisini araştırmak için yürütülmüştür.

Yöntemler: Bu, 2015 ve 2016 yıllarında Iran’da iki hastanede akut kalp krizinden etkilenen 269 hasta üzerinde yapılan analitik kesitsel bir çalışmadır. Çalışmanın amaçlarına ulaşmak için, akut tetkileyiciler duyusyal, çevresel, fiziksel ve kimyasal olmak üzere dört gruba ayrıldı. Veri toplamak için araştırma grupları oluşturuldu. Veriler, araştırmacı tarafından geliştirilen bir anket ve mülakatla toplanmıştır. Veriler, bedensel istatistikler ve istatistiksel lojistik regresyon gibi çapansal istatistikler ve SPSS 21’i kullanarak McNemar testi ile analiz edildi. P-değeri 0.05’e ayarlanmıştır.

Bulgular: Sonuçlar, erkeklerde sıcak/soğuk havaya ani maruziyetin (P = 0.03, OR = 3.4), altta yatan hastalıkların (P = 0.03, OR = 1.8) ve erkeklerde tüketilen çay/kahve (P = 0.01, OR = 1.8) akut kalp krizi riskini artırığını gösterdi. Pulmoner enfeksiyonlar, aşırı yeme ve/veya aşırı yağlı gıdaların (P<0.05) akut kalp krizi riskini artırdığı da keşfedildi.

Sonuç: Yaş, cinsiyet ve altta yatan hastalığın varlığı/vargını ne olursa olsun tüm insanlar solunum yolu enfeksiyonları, aşırı yorulma ve yüksek yağlı gıdalar alımı karşısında kalp krizi gelişme riskini artırdığı görüldü. Ayrıca, erkeklerde ve/veya soğuk havaya maruz kalma, yoğun aktivite ve yüksek kahve ve/veya çay tüketimi erkeklerde lap krizi riskini artırdı.

Anahtar Sözcükler: Demografi, akut tetkileyiciler, kalp krizi

Geliş Tarihi: 28.04.2017
Kabul Tarihi: 17.08.2017
INTRODUCTION

The most prevalent cardiovascular disease in adults is coronary artery disease (CAD)(1). This disease has caused death in 16 million people, 82% of which is seen in developed countries(2). Despite rapid diagnostic and therapeutic advances, still, one-third of patients who get affected by heart stroke die. The incidence of CAD & MI in Iran are upward trend(3). These diseases impose excessive costs on health services. In spite of all these, cardiovascular diseases are considered as one of the most preventable non-contagious diseases of human(4). Cardiovascular diseases could happen suddenly and are mostly initiated by acute physical activities and mental stresses(5, 6). The effects caused by demographic and psychological properties are among the factors that are known to the incidence of ischemic and chronic cardiovascular diseases. It is assumed that several external triggers cause ACS, and these factors include heavy physical activities, emotional stresses, sexual activities, and overeating. Some of these triggers like physical activities are present in half of the initiation cases of acute coronary syndromes in men. Acute triggers include emotional, physical, environmental and chemical triggers(7-9). Triggers lead into the start of hemodynamic, prothrombotic, and vascular constrictional procedures which are accompanied by an increase in the risk of cardiovascular diseases and all occur in some hours(7, 10).

Interventional studies demonstrated that reducing the risk factors results in the diminished rate of CAD, brain stroke, and other cardiovascular issues (11). Triggers start the attack during a timeframe of some minutes or hours and this attack might differ based on the severity if trigger mechanism (7). Indeed, triggers start the action some minutes to 24 hours before ACS and this time period is called as risk period, and recently 1-2 hours before symptoms initiation has been emphasized(12). The presence of plaques susceptible to atherosclerosis, disturbance in the conductive system of the heart, and small arteries diseases along with physical and emotional trigger stressors, could transiently cause vasoconstriction and prothrombic effects which all finally lead into plaque rupture and thrombosis. The trigger can cause ventricular fibrillation and sudden death by decreasing the cardiac electrical resistance threshold and increasing sympathetic activity through releasing central mediators such as catecholamine(7, 13).

Despite the high prevalence of AMI, few if any studies have been conducted the effects of all types of triggers on the incidence of AMI in terms of demographic conditions. Therefore, the current study was concluded to investigate the correlation between the emotional, environmental, physical, and chemical triggers and the incidence of AMI based on demographic indices.

METHODS

Data

This is a descriptive-analytical study which has been performed by a cross-sectional method on 269 patients affected by AMI and hospitalized in to the Dr Heshmat and Rasoule-Akram hospitals in the city of Rasht in north of Iran, from September 2015 to February 2016. Required sample size was determined based on results of Lankyp et al. study (14). The study was conducted after the permission (No. 9624/19/145/3) of the Ethics Committee of Guilan University of Medical Sciences. The sampling was performed using the non-probability or convenient method, and the data were collected using researcher-designed questionnaires and interview after getting the written informed consent from the patients. The included criteria were age under 18, AMI diagnosis by a cardiologist based on the documents, and control period was considered as the risk period. In others triggers such as losing a job and pulmonary disease, the risk period was the first week and control period was considered as more than one month. In none of the cases, the control period was more than a year before AMI.

Analysis

To check scientific validity of the questionnaire, it was given to 10 members of the faculty members of the university and the content validity index was estimated at 98.6%. The test-retest method and kappa coefficient were utilized for calculating the tool's reliability, and agreement coefficient was obtained as 1. Demographic information was examined using descriptive statistics method (frequency, mean, and standard deviation). McNemar’s test was also utilized to check whether there is a significant difference between the risk period and control period. To determine the chance of AMI occurrence, logistic regression GEE model was used. Data were analyzed by SPSS21 and p<0.05 was considered as statistically significant.

RESULTS

According to the results, 37.2% and 78.4% of the patients were women and men of whom 78.4% were married, and the mean of age was 60.3±12.2 years. Half of the patients consumed more than 3 cups of tea per day. In addition, about 36% of the patients had diabetes, 44% of them had high blood pressure and 60%, of them were overweight (Table 1).

Table 1. Frequency of Demographic/Medical factors

Variables	Number	%
Sex		
Female	100	37.2
Male	169	62.8
Marital status		
Single	55	20.4
Married	211	78.4
Separated	3	1.1
Diabetes history		
Yes	98	36.4
Hypertension history		
Yes	118	43.9
Overweight: BMI>25		
Yes	160	59.5
Smoking		
Yes	101	37.5
Alcohol consumption		
Yes	22	8.2
Narcotics consumption		
Yes	52	19.3
Tea consumption >3 cup/day		
Yes	135	50.2
MI history		
Yes	44	16.4

Regarding the frequency of occurrence of the acute triggers of AMI, in the emotional group, anger was observed in 57% of men and insomnia in 44.8% of the people under the age of 60, insomnia was also seen in 40% of the people with underlying diseases. With regard to the environmental triggers, 32% and 35% of men had faced heavy/semi-heavy traffic and hot or cold weather, respectively. Moreover, exposure to pulmonary infections and the hot or cold weather were noticed in 36% of the people under the age of 60 and 34.3% of the people with underlying diseases.

About physical and chemical triggers, 74% of men and 51% of people <60 years age had heavy activities during risk period. Consuming fewer than three cups of tea per day was observed in 77.5% of men, and overeating was discovered in 40% of people <60 years age. Additionally, overeating was present in 37% of patients with the underlying disease during the risk period (Table 2).
According to Table 3, anger increased the chance for AMI by 2.5 times in people without underlying disease that was statistically significant (P=0.03). Chance of AMI was significant in the case of exposure triggers such as pulmonary infections, overeating and consuming high-fat foods in people under 60 years (P=0.001) and increased 2.7 and 3.5 times, respectively. The exposure of pulmonary infections was predictive of AMI and increased its rate in people over 60 years, women, men, those with underlying diseases and without underlying diseases by 3.3, 2.5, 3.4, 3, and 2.8, respectively.

The exposure to hot or cold weather was just significant in men with underlying diseases (P=0.03) and increased the chance of AMI up to 3.4 times in men and to 1.8 in people with underlying diseases. Heavy activities (P=0.03) and consuming tea or coffee (P=0.01) increased the chance of AMI up to 3.4 times in men and to 1.8 in people with underlying diseases.

Table 2: Frequency of exposure with trigger, based on risk and control period and Odds Ratio of AMI

Triggers	Exposure Number	Exposure based on underlying disease (%)	Exposure based on sex (%)	Exposure based on age (year) (%)	P value	Odds Ratio				
	Risk period	Control period	Without	With	Male	Female	>60	<60		
Anger	99	75	41	35.7	57	42	31.5	41.4	0.02	1.5
Insomnia	107	94	39	40	55	52	33.9	44.8	0.2	1.2
Quarrel	48	32	25	16	24	24	13	22	0.05	1.6
Sudden Bad News	60	44	25	21.6	34	26	18	26	0.08	1.4
Losing job	0	4	5.4	-	-	-	-	-		
Loss of loved one	26	37	3.6	11	16	10	10	9	0.1	1.1
Watching Sport Games	9	3	-	-	-	-	-	-		
Exposure to Traffic Jam	35	31	10.7	13.6	18.9	3	3.2	21.4	0.5	1.1
Witness Car Accidents	4	4	4	1.9	2.4	-	-	2.8	0.9	1
Respiratory Infections	89	38	28.6	34.3	31.4	36	36.3	30	0.0001	3
Exposure to Hot/Cold Weather	45	26	14.3	17.4	20.7	10	12	20.7	0.01	1.8
Physical Activities	111	86	37.5	42.3	43.8	37	30	51	0.02	1.5
Sexual Activities	43	33	10.7	17.4	20	9	5	25.5	0.2	1.3
Overeating & High-fat Food	90	37	19.6	37	39.6	23	25.8	40	0.001	3
Consumption	172	142	66	63	77.5	41	59	63	0.008	1.6

Table 3: Frequency of significant triggers based on odds ratio of AMI and demographic variables

Trigger Type	Variables	Exposure/Highazard Period	Exposure/Risk Period	Odd ratio	Confidence Interval of 95%	P value					
Anger	Underlying disease	Without	23	41.1	12	21.4	2.55	1.11	5.86	0.03	
Age (years)		<60	44	44	20	13.8	2.72	1.51	4.91	0.001	
Sex		>60	45	36.3	18	14.5	3.35	1.81	6.23	0.001	
Male		Female	36	36	18	18	2.5	1.33	4.92	0.01	
Sex		Underlying disease	Male	53	31.4	20	11.8	3.4	1.93	6.01	0.001
Age (years)		<60	12	28.6	7	12.5	2.8	1.05	7.47	0.04	
Sex		>60	45	36.3	18	14.5	3.54	2.03	6.17	0.001	
Male		Female	32	25.8	14	11.3	2.73	1.38	5.43	0.001	
Overeating & High-fat Food	Underlying disease	Without	23	23	12	12	2.19	1.02	4.69	0.04	
Consumption		<60	67	39.6	25	14.8	3.78	2.24	6.39	0.001	
Sex		>60	79	37.1	35	16.4	3	1.9	4.74	0.001	
Male		Underlying disease	With	11	19.6	2	3.6	6.6	1.39	31.34	0.02
Sex		Male	35	20.7	20	11.8	3.4	1.93	6.01	0.03	
Exposure to Hot or Cold Weather	Underlying disease	Female	37	17.4	22	10.3	1.83	1.04	3.22	0.03	
Heavy Activity	Sex	Male	74	43.8	55	32.5	1.61	1.04	2.51	0.03	
Coffee/Tea drink	Sex	Male	131	77.5	130	65.1	1.85	1.14	2.99	0.01	

1 McNemar test
DISCUSSION

This study was conducted in order to evaluate the relationship between the demographic characteristics of people and acute triggers contributing to the incidence of AMI. Among the 17 triggers which were investigated, pulmonary infections, overeating and high-fat food consumption, hot or cold weather, heavy activities, and drinking tea or coffee correlated with demographic properties and underlying diseases and increased the chance for AMI.

Considering the results of current study, among the environmental triggers, pulmonary infections elevated the chance of AMI in women and men by 2.5 and 4.3, respectively. Warren-Gash et al., have reported chance of AMI 4 times in women and 4.3 times in men, 1-3 days after facing the acute pulmonary infections (especially influenza) (15). In our study, the chance of AMI in people >60 years increased by 3.3 times by pulmonary infections and by 2.7 in people under 60 years age. Warren-Gash reported this percentage as 5.9 times in people over 80 years (15). It seems that pulmonary infections could elevate AMI chance older ages and the chance for the disease and with sex. Hence, it is recommended to treat the respiratory infections rapidly. Sudden exposure to hot or cold weather increased the chance of AMI by 3.4 times in men and 1.8 in people with underlying diseases.

Moghadamnia et al. showed that the short-term effects of cold and heat exposure on the risk of cardiovascular mortality in males were 3.8% and 1.1% respectively. Moreover, the effects of cold and heat exposure on risk of cardiovascular mortality in males were 4.1% and 1.4% respectively (16). The cold seasons causes physiological changes including increases in blood sugar, levels of cholesterol, fibrinogen concentration and platelet aggregation. Fibrinogen plays an important role in the formation of clots in the coronary artery, the start of acute myocardial infarction and life-threatening arrhythmias (7). Exposure to high temperature could increase the viscosity of plasma and cholesterol levels in serum (17).

In the group of physical triggers, our study showed that overeating and consumption of high-fat foods increased the chance for AMI by 3.5 times in the individuals under the age of 60 years, and by 2.7 in those over 60 years. Additionally, it increased this chance by 2 times in women and 3.7 in men, and also 6.6 in people who did not have underlying disease. Lipovetzky et al. reported the increased chance of AMI following overeating by 7 times (18). In our study, mean body weight of overweight men (BMI >25) was 19.2 kg/m². This means that most of the men who have diabetes and high blood pressure history. It appears that in lower ages, the chance for AMI is higher and this trigger is more effective in men compared to women because of more overeating. In addition, in people who do not have underlying diseases, the mentioned trigger has more profound effects due to lack of limitation in food consumption.

In the group of physical triggers, our study showed that heavy activities increased the chance of AMI by 2.6 in men. Mittelmann et al. have addressed the chance for AMI occurrence as 2.4 times more with increased heavy physical activities (13). In a study by Massomy, heavy physical activities did not have any significant correlation with the trigger of angina related to AMI (8) and it seems that the reason for the contradiction between the current study and the Massomy’s study might be the less exposure with this trigger in that study. The vigorous physical activity especially in who have nor regular exercise may be effect on atheroma and causes rupture of plaque and finally myocardial infarction.

Among the emotional triggers, the current study showed that anger in people who lacked any underlying disease increased the chance of AMI by 2.5 times. In three separate studies performed by Mostofsky (19), Edmondson (20), and Buckley (21) also the chance for AMI has been reported as 2.3, 3 and 8.5 times more with anger trigger. It seems that men who do not have a history of another disease had more relative chance for AMI with anger as a trigger. Hence, the findings of this study were consistent with the mentioned studies.

The current study demonstrated that drinking tea or coffee increased the chance for AMI by 1.8 times and consuming much tea increased the AMI occurrence chance in men. Bylin et al. reported the chance for by AMI 1.1 folds with drinking coffee (22), and since the type of drink differs between this study and in the one by Bylin, no similarity could be mentioned between these two studies.

CONCLUSION

Exposure to respiratory infections and eating high-fat foods could lead to AMI in both sexes and all age groups and people with or without underlying diseases. Heavy activities, sudden exposure to cold or hot weather, and anger are especially in men and also psychosocial factors (AMI); all should be avoided. Anger could also cause AMI even in people without underlying diseases, and it is essential to recommend learning and employing calming techniques and anger management strategies to all people.

Conflict of interest

No conflict of interest was declared by the authors.

REFERENCES

1. Brunner LS, Smetzer SC, Bare BG, Hinle JL, Cheever KH. Brunner & Suddarth’s textbook of medical-surgical nursing. 12nd ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p.17-22.
2. Beyranvand M-R, Lovand A, Parsa SA, Mostafemi M-R, Kolahi A-A. The quality of life after first acute myocardial infarction. Pajoohandeh J. 2011;15:264-72.
3. Ahmadi A, Khaledfar A, Sajjadi H, Soori H. Relationship between risk factors and hospital mortality due to myocardial infarction by educational level: a national prospective study in Iran. Int J equal health. 2014;13:116.
4. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics-2012 update. A report from the American Heart Association. Circulation. 2012;125:188-197.
5. Čulić V, Eterović D, Minic D, Rambold Z, Hao I. Gender differences in triggering of acute myocardial infarction. Am J Cardiol. 2000;85:753-6.
6. Schwartz B, French W, Mayeda G, Burststein S, Economides C, Bhandari A, et al. Emotional stressors trigger cardiovascular events. Int J Clin Pract. 2012;66:631-9.
7. Čulić V. Acute risk factors for myocardial infarction. Int J Cardi. 2007;82:126-30.
8. Masoomi M, Zare I, Kahnooj M, Mirzazadeh A, Sheikhvatian M. Sex differences in potential daily triggers of the onset of acute myocardial infarction: a case-crossover analysis among an Iranian population. J Cardiovasc Med. 2010;11:723-6.
9. Colombo A, Proietti R, Čulić V, Lipovetzky N, Vecchia M, Danna P. Triggers of acute myocardial infarction: a neglected piece of the puzzle. J Cardiovasc Med. 2014;15:1-7.
10. Glozier N, Toffer GH, Colquhoun DM, Bunker SJ, Clarke DM, Hare DL, et al. Psychosocial risk factors for coronary heart disease. Med J Aust. 2013;199:179-80.
11. Čulić V, Jovanović N, Bonić D, Stojimirovíc M. Hypertension in peritoneal dialysis patients. Medicinski pregled. 2005;59:130-4.
12. Strike PC, Steptoe A. Behavioral and emotional triggers of acute coronary syndromes: a systematic review and critique. Psychosom Med. 2005;67:179-86.
13. Mittelmann MA, Mostofsky E. Physical, psychological and chemical triggers of acute cardiovascular events. Circulation. 2011;124:346-54.
14. Lakni T, Pekkanen J, Aalto P, Elovaara R, Berglund L, D’ipolito D, et al. Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPS study. Occup environ med. 2006;63:844-51.
15. Warren-Gash C, Hayward AC, Hemingway H, Denaxas S, Thomas SL, Timmis AD, et al. Influenza infection and risk of acute myocardial infarction in England and Wales: a Caliber self-controlled case series study. J Infect Dis. 2012;205:597.
16. Moghadamnia MT, Ardalan A, Mehdinia A, Keshkar A, Naddafi K, Yekaninejad MS. Ambient temperature and cardiovascular mortality: a systematic review and meta-analysis. PeerJ. 2017;5:e3574.
17. Lin Y-Y, Wang Y-C, Lin P-L, Li M-H, Ho T-J. Relationships between cold-temperature indices and all causes and cardiopulmonary morbidity and mortality in a subtropical island. Sci Total Environ. 2013;461:627-35.
18. Bhaskaran K, Armstrong B, Hajat S, Haines A, Wilkinson P, Smeeth L. Heat and risk of myocardial infarction: hourly level case-crossover analysis of MINAP database. Brit Med J. 2012;345:e8050.
19. Mostofsky E, Penner EA, Mittelmann MA. Outbursts of anger as a trigger of acute cardiovascular events: a systematic review and meta-analysis. Eur Heart J. 2014:euh033.
20. Edmondson D, Newman JD, Whang W, Davidson KW. Emotional triggers in myocardial infarction: a five-year study of the Heart and Stroke Foundation of Canada. Eur Heart J. 2012:euh388.
21. Buckley T, Hoo SYS, Fetthley J, Shaw E, Hanson TS, Toffer GH. Triggering of acute coronary occlusion by episodes of anger. Eur Heart J: Acute Cardiovascular Care. 2015;4:493-8.
22. Baylin A, Hernandez-Diaz S, Kabagambe EEK, Siles X, Campos H. Transient exposure to coffee as a trigger of a first nonfatal myocardial infarction. Epidemiology. 2006;17:506-11.