On the Direct Product of Intuitionistic Fuzzy Topological d-algebra

Ali Khalid Hasan
Directorate General of Education in Karbala province, Ministry of Education, Iraq

ABSTRACT
We applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with the investigation of some theorems. Also, we studied the notation of direct product of intuitionistic fuzzy topological d-algebra, with the notation of relatively intuitionistic continuous mapping, on the direct product of intuitionistic fuzzy topological d-algebra.

Keywords: direct product, topological d-algebra, semi d-ideal, intuitionistic set, d-algebra.

1. Introduction
A d-algebra is the classes of abstract algebra introduced by Negger and Kim [1] as a useful generalization of BCK-algebra. While the idea of fuzzy set, introduced by Zadeh [2] and Atanassov [3] generalized it to the concept of intuitionistic fuzzy set. Jun et al. [4] applied this notion on d-algebra. In another line, Abdullah and Hassan [5] studied the concept of semi d-ideal on d-algebra. After that, Hasan [6] introduced the concept of intuitionistic fuzzy semi d-ideals. Here, we applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra, with several interesting results. We also studied the notation of the direct product of intuitionistic fuzzy topological d-algebra.

2. Preliminaries
We will offer here some basic concepts which we need for this study.

Definition (2.1): [1] A d-algebra is a non-empty set \(H \) with a constant \(0 \) and a binary operation \(* \) with the conditions below:

i. \(v * v = 0 \)

ii. \(0 * v = 0 \)

iii. \(v * u = 0 \) and \(u * v = 0 \), which implies that \(v = u \), such that \(v, u \in H \). We will refer to \(v * u \) by \(vu \) and \(v \leq u \) iff \(vu = 0 \).

*Email: alimathfruit@gmail.com
Every H or G will denote for a d-algebra in this paper.

Definition (2.2): [5] We define the semi d-ideal of H as a subset $V \neq \emptyset$ of H with:

(i) $v, u \in V$ implies $vu \in V$,
(ii) $vu \in V$ and $u \in V$ implies $v \in V$, $\forall \ v, u \in H$

Definition (2.3): [2] A fuzzy set ω in any set with $H \neq \emptyset$ is a function $\omega: H \rightarrow [0,1]$. Also, for all $t \in [0,1]$, the set $\omega_t = \{v \in H, \omega(v) \geq t\}$ is a level subset of ω.

Definition (2.4): [7] We define a fuzzy set ω as fuzzy d-subalgebra with the following condition:

For any $v \in H$, $\forall u \in H$, $\omega(vu) \geq \min\{\omega(v), \omega(u)\}$.

Definition (2.5): [6] We call the fuzzy set ω as a fuzzy semi-d-ideal if these conditions hold:

$(FI_1) \omega(vu) \geq \min\{\omega(v), \omega(u)\}$ and $(FI_2) \omega(v) \geq \min\{\omega(v), \omega(u)\}$, for all $v, u \in H$.

Definition (2.6): [3] A function S in H is called intuitionistic fuzzy set, with the form $S = \{<x, \alpha_S(v), \beta_S(v): v \in H\}$, such that $\alpha_S: H \rightarrow [0,1]$, $\beta_S: H \rightarrow [0,1]$, is the membership degree $\alpha_S(v)$ and non-membership degree $\beta_S(v)$ $\forall \ v \in H$ to the set S, and $0 \leq \alpha_S(v) + \beta_S(v) \leq 1$, $\forall \ v \in H$.

We will use $S = \{<\alpha_S, \beta_S > \}$ instead of $S = \{<v, \alpha_S(v), \beta_S(v): v \in H\}$ and call it IFS for short.

Definition (2.7):[8] Let $f: H \rightarrow G$ be a mapping. If $S = \{<u, \alpha_S(u), \beta_S(u): u \in G\}$, then $f^{-1}(S)$ is the IFS in H defined by:

$$f^{-1}(S) = \{<v, f^{-1}(\alpha_S(v)), f^{-1}(\beta_S(v)) : v \in H\}$$

Also, if $D = \{<v, \alpha_D(v), \beta_D(v) : v \in H\}$ is an IFS in H, then $f(D)$ is denoted by

$$f(D) = \{<u, f_{\sup}(\alpha_D(u)), f_{\inf}(\beta_D(u)) : u \in G\},$$

where

$$f_{\sup}(\alpha_D(u)) = \sup_{v \in f^{-1}(u)} \alpha_D(v) \text{ if } f^{-1}(u) \neq \emptyset,$$

and

$$f_{\inf}(\beta_D(u)) = \inf_{v \in f^{-1}(u)} \beta_D(v) \text{ if } f^{-1}(u) \neq \emptyset,$$

for each $u \in G$.

Definition (2.8): [9] If D is an IFS in H, then

(i) $\square D = \{<v, \alpha_D(v) : v \in H\} = \{<v, \alpha_D(v), \bar{\alpha_D(v)} : v \in H\} = \{<v, \alpha_D(v), \bar{\alpha_D(v)} : v \in H\}$

(ii) $\Diamond D = \{<v, 1 - \beta_D(v) : v \in H\} = \{<v, 1 - \beta_D(v), \beta_D(v) : v \in H\} = \{<v, \bar{\beta_D(v)}, \beta_D(v) : v \in H\}$

Definition (2.9): [3] Let $C = \{<\alpha_C, \beta_C > \}$ and $S = \{<\alpha_S, \beta_S > \}$ are IFS of H, then the cartesian product

$C \times S = \{<\alpha_C \times \alpha_S, \beta_C \times \beta_S > \}$ of $H \times H$ is defined by the following:

$(\alpha_C \times \alpha_S)(a, b) = \min(\alpha_C(a), \alpha_S(b))$ and $(\beta_C \times \beta_S)(a, b) = \max(\beta_C(a), \beta_S(b)),$

where $(\alpha_C \times \alpha_S)(a, b) : H \times H \rightarrow [0,1]$ and $(\beta_C \times \beta_S)(a, b) : H \times H \rightarrow [0,1]$.

Definition (2.10): [3] Let $C = \{<\alpha_C, \beta_C > \}$ and $S = \{<\alpha_S, \beta_S > \}$ are IFS of H, for any $t \in [0,1]$. The set

$U(\alpha_C \times \alpha_S, t) = \{(v, u) \in H \times H, (\alpha_C \times \alpha_S)(v, u) \geq t\}$

is called the upper level of $(\alpha_C \times \alpha_S)(v, u)$ and the set

$L(\beta_C \times \beta_S, t) = \{(v, u) \in H \times H, (\beta_C \times \beta_S)(v, u) \geq t\}$

is the lower level of $(\beta_C \times \beta_S)(v, u)$.

Definition (2.11): [4] An IFS $D = \{<\alpha_D, \beta_D > \}$ in H is called intuitionistic fuzzy d-algebra with the conditions $\alpha_D(vu) \geq \min(\alpha_D(v), \alpha_D(u))$ and $\beta_D(vu) \leq \max(\beta_D(v), \beta_D(u))$, for all $v, u \in H$.

Definition (2.12): [10] An intuitionistic fuzzy semi d-ideal of H, shortly $IFSd - ideal$, is an IFS, where $D = \{<\alpha_D, \beta_D > \}$ in H satisfies the following inequalities:

$(IFSd_1) \alpha_D(v) \geq \min(\alpha_D(vu), \alpha_D(u))$ and $(IFSd_2) \beta_D(v) \leq \max(\beta_D(vu), \beta_D(u))$

$(IFSd_3) \alpha_D(vu) \geq \min(\alpha_D(v), \alpha_D(u))$ and $(IFSd_4) \beta_D(vu) \leq \max(\beta_D(v), \beta_D(u))$, for all $v, u \in H$.

Proposition (2.13): [4] Every IFS d-algebra $IFSd - ideal$ $D = \{<\alpha_D, \beta_D > \}$ of H satisfies the inequalities $\alpha_D(0) \geq \alpha_D(v)$ and $\beta_D(0) \leq \beta_D(v)$, $\forall v \in H$.

3. Direct product of IFS d-ideal

We apply here the notation of direct product for intuitionistic set on intuitionistic fuzzy d-algebra and intuitionistic semi d-ideal.

Proposition (3.1): Let $C = \{<\alpha_C, \beta_C > \}$ and $S = \{<\alpha_S, \beta_S > \}$ are $IFSd - ideal$ of H, then $C \times S = \{<\alpha_C \times \alpha_S, \beta_C \times \beta_S > \}$ is $IFSd - ideal$ of $H \times H$.

Proof: We know that for any $(a_1, b_1), (a_2, b_2) \in H \times H$, we have
\[(a_c \times a_s)(a_1, b_1) = \min\{a_c(a_1), a_s(b_1)\} \geq \min\{\min\{a_c(a_1 a_2), a_c(a_2)\}, \min\{a_s(b_1 b_2), a_s(b_2)\}\} \]

\[= \min\{\min\{a_c(a_1 a_2), a_s(b_1 b_2)\}, \min\{a_c(a_2), a_s(b_2)\}\} \]

and

\[(a_c \times a_s)((a_1, b_1), (a_2, b_2)) \]

Also, we have

\[(a_c \times a_s)((a_1, b_1), (a_2, b_2)) = \min\{a_c(a_1, a_2), a_c(a_1, b_2), a_s(b_1, b_2)\} \]

\[\geq \min\{\min\{a_c(a_1, a_2), a_c(a_1, b_2)\}, \min\{a_s(b_1, b_2)\}\} \]

Also, we have

\[(a_c \times a_s)((a_1, b_1), (a_2, b_2)) = \max\{\beta_c(a_1 a_2), \beta_c(a_2), \beta_s(b_1 b_2)\} \]

\[\leq \max\{\max\{\beta_c(a_1 a_2), \beta_s(b_1 b_2)\}, \max\{\beta_c(a_2), \beta_s(b_2)\}\} \]

Proposition (3.2): Let \(C \times S = \langle a_c \times a_s, \beta_c \times \beta_s \rangle \) be an IFSD-d-ideal of \(H \times H \), then \((a_c \times a_s)((0,0), (a, b)) \geq (a_c \times a_s)(a, b) \) and \((\beta_c \times \beta_s)(0,0) \leq \beta_c \times \beta_s)(a, b) \).

Proof: We know that \((a_c \times a_s)(0,0) = \min\{a_c(0), a_s(0)\} \geq \min\{a_c(a), a_s(b)\} = (a_c \times a_s)(a, b) \) and \((\beta_c \times \beta_s)(0,0) = \max\{\beta_c(0), \beta_s(0)\} \leq \max\{\beta_c(a), \beta_s(b)\} = (\beta_c \times \beta_s)(a, b) \).

Proposition (3.3): Let \(C \times S = \langle a_c \times a_s, \beta_c \times \beta_s \rangle \) be an IFSD-d-ideal of \(H \times H \). If \((a, b) \leq (x, y) \), then \((a_c \times a_s)(a, b) \geq (a_c \times a_s)(x, y) \) and \((\beta_c \times \beta_s)(a, b) \leq (\beta_c \times \beta_s)(x, y) \).

Proof: Let \((a, b), (x, y) \in H \times H \) such that \((a, b) \leq (x, y) \). This implies that \((a, b)(x, y) = (0,0) \).

Now, \((a_c \times a_s)((a, b)) \geq \min\{a_c(a, b)(x, y), (a_c \times a_s)(a_1, b_2)\} \)

\[\geq \min\{a_c(a_1, a_2), a_s(b_1, b_2)\} \geq (a_c \times a_s)((a, b)) \]

and \((\beta_c \times \beta_s)((a, b)) \leq \max\{\beta_c \times \beta_s)(a_1, a_2), a_c \times a_s)(a_1, b_2)\} \)

\[\leq \max\{\beta_c \times \beta_s)(0,0), (\beta_c \times \beta_s)(x, y)\} \]

Lemma (3.4): Let \(C \times S = \langle a_c \times a_s, \beta_c \times \beta_s \rangle \) be an IFSD-d-ideal of \(H \times H \). If \((a, b)(c, d) \leq (e, f) \) holds in \(H \times H \), then \((a_c \times a_s)(a, b) \geq \min\{a_c \times a_s)(c, d), (a_c \times a_s)(e, f)\) and \((\beta_c \times \beta_s)(a, b) \leq \max\{\beta_c \times \beta_s)(c, d), (\beta_c \times \beta_s)(e, f)\} \).

Proof: Let \((a, b), (c, d), (e, f) \in H \times H \) with \((a, b)(c, d) \leq (e, f) \). Then, \((a, b)(c, d)) (e, f) = (0,0) \).

\[(a_c \times a_s)(a, b) \geq \min\{a_c \times a_s)(a, b)(c, d), (a_c \times a_s)(c, d)\} \]

\[\geq \min\{a_c \times a_s)\left(\left((a, b)(c, d)) (e, f)\right)\right), (a_c \times a_s)(c, d)\} \]

\[\geq \min\{a_c \times a_s)(0,0), (a_c \times a_s)(e, f), (a_c \times a_s)(c, d)\} \]

\[\geq \min\{a_c \times a_s)(e, f), (a_c \times a_s)(c, d)\} \).

\[(\beta_c \times \beta_s)(a, b) \leq \max\{\beta_c \times \beta_s)(a, b)(c, d), (\beta_c \times \beta_s)(c, d)\} \]

\[\leq \max\{\beta_c \times \beta_s)(0,0), (\beta_c \times \beta_s)(e, f), (\beta_c \times \beta_s)(c, d)\} \]

\[\leq \max\{\beta_c \times \beta_s)(e, f), (\beta_c \times \beta_s)(c, d)\} \). The proof is completed.
\textbf{Theorem (3.5)}: Let $C \times S = \langle \alpha_c \times \alpha_s, \beta_c \times \beta_s \rangle$ be an IFSd-ideal of $H \times H$, then for any $(a, b), (v_1, u_1), (v_2, u_2), \ldots, (v_n, u_n) \in H \times H$, such that \[
abla \left(\ldots \left(\left(\left((a, b), (v_1, u_1)\right) \left(v_2, u_2\right)\right), \ldots\right) \left(v_n, u_n\right)\right) = (0, 0),\]
implies that \[
\alpha_c \times \alpha_s(a, b) \geq \min\left\{\alpha_c \times \alpha_s(v_1, u_1), \beta_c \times \beta_s(v_2, u_2), \ldots, (\alpha_c \times \alpha_s)(v_n, u_n)\right\}\]
and \[
(\beta_c \times \beta_s)(a, b) \leq \max\left\{\beta_c \times \beta_s(v_1, u_1), (\beta_c \times \beta_s)(v_2, u_2), \ldots, (\beta_c \times \beta_s)(v_n, u_n)\right\}.
\]
Proof: We can obtain this directly from lemma 3.4 and theorem 3.5.

\textbf{Lemma (3.6)}: Let $C \times S = \langle \alpha_c \times \alpha_s, \beta_c \times \beta_s \rangle$ be an IFSd-ideal of $H \times H$, then $\square (C \times S) = \{\alpha_c \times \alpha_s, \overline{\alpha_c} \times \overline{\alpha_s} \} \square$ is an IFSd -ideal of $H \times H$.

Proof: We know that $(\alpha_c \times \alpha_s)(a, b) = \min\{\alpha_c(a), \alpha_s(b)\}$, therefore \[
1 - \left(\alpha_c \times \alpha_s\right)(a, b) = \min\{1 - \alpha_c(a), 1 - \alpha_s(b)\}.
\]
Thus, \[
(\alpha_c \times \alpha_s)(a, b) = 1 - \min\left\{\alpha_c(a), \alpha_s(b)\right\}, \text{ moreover we get } (\alpha_c \times \alpha_s)(a, b) = \max\left\{\alpha_c(a), \alpha_s(b)\right\}.
\]
Hence, $\square (C \times S) = \{\alpha_c \times \alpha_s, \overline{\alpha_c} \times \overline{\alpha_s} \}$ is an IFSd -ideal of $H \times H$.

\textbf{Lemma (3.7)}: Let $C \times S = \langle \alpha_c \times \alpha_s, \beta_c \times \beta_s \rangle$ be an IFSd-ideal of $H \times H$, then $\checkmark (C \times S) = \{\beta_c \times \beta_s, \overline{\beta_c} \times \overline{\beta_s} \}$ is an IFSd -ideal of $H \times H$.

Proof: We know that $(\beta_c \times \beta_s)(a, b) = \max\{\beta_c(a), \beta_s(b)\}$, therefore \[
1 - (\beta_c \times \beta_s)(a, b) = \max\{1 - \beta_c(a), 1 - \beta_s(b)\}.
\]
Thus, \[
(\beta_c \times \beta_s)(a, b) = 1 - \max\{\beta_c(a), \beta_s(b)\}. \text{ Moreover, we get } (\beta_c \times \beta_s)(a, b) = \min\{\overline{\beta_c}(a), \overline{\beta_s}(b)\}.
\]
Hence, $\checkmark (C \times S) = \{\beta_c \times \beta_s, \overline{\beta_c} \times \overline{\beta_s} \}$ is an IFSd -ideal of $H \times H$.

From these two lemmas, it is not difficult to verify that the following theorem is valid.

\textbf{Theorem (3.8)}: If $C = \langle \alpha_c, \beta_c \rangle$ and $S = \langle \alpha_s, \beta_s \rangle$ is an IFSd-ideal of H, then $\square (C \times S)$ and $\checkmark (C \times S)$ are IFSd -ideal of $H \times H$.

\textbf{Theorem (3.9)}: Let $C = \langle \alpha_c, \beta_c \rangle$ and $S = \langle \alpha_s, \beta_s \rangle$ are IFS of H, then $C \times S$ is IFSd -ideal of $H \times H$ if and only if $\forall t \in [0, 1], U(\alpha_c \times \alpha_s, t) \neq \emptyset$ and $L(\beta_c \times \beta_s, r) \neq \emptyset$ for any $r, t \in [0, 1]$. Let $(v_1, u_1), (v_2, u_2) \in H \times H$, such that $(v_1, u_1)(v_2, u_2) \in U(\alpha_c \times \alpha_s, t)$ and $(v_2, u_2) \in U(\alpha_c \times \alpha_s, t)$, then $(\alpha_c \times \alpha_s)((v_1, u_1)(v_2, u_2)) \geq t$ and $(\alpha_c \times \alpha_s)((v_2, u_2)) \geq t$, which implies that $(\alpha_c \times \alpha_s)((v_1, u_1)) \geq \min\{\alpha_c \times \alpha_s((v_1, u_1)(v_2, u_2)), (\alpha_c \times \alpha_s)((v_2, u_2))\} \geq t$, so that $(\alpha_c \times \alpha_s)((v_1, u_1)) \geq t$. Also, let $(v_1, u_1), (v_2, u_2) \in U(\alpha_c \times \alpha_s, t)$. Then \[
(\alpha_c \times \alpha_s)((v_1, u_1)) \geq t \text{ and } (\alpha_c \times \alpha_s)((v_2, u_2)) \geq t.
\]
But $(\alpha_c \times \alpha_s)((v_1, u_1)) \geq \min\{\alpha_c \times \alpha_s((v_1, u_1)), (\alpha_c \times \alpha_s)((v_2, u_2))\} \geq t$, so $(v_1, u_1)(v_2, u_2) \in U(\alpha_c \times \alpha_s, t)$. Therefore, $U(\alpha_c \times \alpha_s, t)$ is semi d-ideal in $H \times H$.

Let $(v_1, u_1), (v_2, u_2) \in H \times H$ such that $(v_1, u_1)(v_2, u_2) \in L(\beta_c \times \beta_s, r)$ and $(v_2, u_2) \in L(\beta_c \times \beta_s, r)$, then $(\beta_c \times \beta_s)((v_2, u_2)) \leq r$, and $(\beta_c \times \beta_s)((v_2, u_2)) \leq r$. Then $(\beta_c \times \beta_s)((v_2, u_2)) \leq \max\{\beta_c \times \beta_s((v_1, u_1)(v_2, u_2)), (\beta_c \times \beta_s)((v_2, u_2))\} \leq r$, so that $(v_1, u_1) \in L(\beta_c \times \beta_s, r)$. Also, let $(v_1, u_1), (v_2, u_2) \in L(\beta_c \times \beta_s, r)$. Then, $(\beta_c \times \beta_s)((v_1, u_1)) \leq r$ and $(\beta_c \times \beta_s)((v_2, u_2)) \leq r$.

Then $(v_1, u_1)(v_2, u_2) \in L(\beta_c \times \beta_s, r)$. Hence, $L(\beta_c \times \beta_s, r)$ is semi d-ideal in $H \times H$.

In a converse way, assume that for any $r, t \in [0, 1], U(\alpha_c \times \alpha_s, t)$ and $L(\beta_c \times \beta_s, r)$ are empty or semi d-ideal of $H \times H$. And $\forall (v_1, u_1) \in H \times H$ Let $(\alpha_c \times \alpha_s)((v_1, u_1)) = t$ and $(\beta_c \times \beta_s)((v_1, u_1)) = r$. Then $(v_1, u_1) \in U(\alpha_c \times \alpha_s, t) \cap L(\beta_c \times \beta_s, r) \neq \emptyset$.

Since $U(\alpha_c \times \alpha_s, t)$ and $L(\beta_c \times \beta_s, r)$ are semi-d-ideal, if there exist $(p_1, q_1), (p_2, q_2) \in H \times H$ such that $\alpha_c \times \alpha_s((p_1, q_1)) < \min\{\alpha_c \times \alpha_s((p_1, q_1)(p_2, q_2)), (\alpha_c \times \alpha_s)((p_2, q_2))\}$, then by taking \[
t_0 = \frac{1}{2}\left((\alpha_c \times \alpha_s)((p_1, q_1)) + \min\{\alpha_c \times \alpha_s((p_1, q_1)(p_2, q_2)), (\alpha_c \times \alpha_s)((p_2, q_2))\}\right),
\]
we have $(\alpha_c \times \alpha_s)((p_1, q_1)) < t_0 < \min\{\alpha_c \times \alpha_s((p_1, q_1)(p_2, q_2)), (\alpha_c \times \alpha_s)((p_2, q_2))\}$.

Hence, $(p_1, q_1) \notin U(\alpha_c \times \alpha_s, t_0)$, $(p_1, q_1)(p_2, q_2) \notin U(\alpha_c \times \alpha_s, t_0)$ and $(p_2, q_2) \notin U(\alpha_c \times \alpha_s, t_0)$.

That is, $U(\alpha_c \times \alpha_s, t_0)$ is not semi d-ideal, which is a contradiction.
Now, suppose that \((\alpha_c \times \alpha_s)((p_1, q_1), (p_2, q_2)) < \min\{(\alpha_c \times \alpha_s)((p_1, q_1), (\alpha_c \times \alpha_s)((p_2, q_2))\}.

Then, by taking:
\[t_0 = \frac{1}{2}((\alpha_c \times \alpha_s)((p_1, q_1), (p_2, q_2)) + \min\{(\alpha_c \times \alpha_s)((p_1, q_1), (\alpha_c \times \alpha_s)((p_2, q_2))\} ,\]
we have
\[(\alpha_c \times \alpha_s)((p_1, q_1), (p_2, q_2)) < t_0 < \min\{(\alpha_c \times \alpha_s)((p_1, q_1), (\alpha_c \times \alpha_s)((p_2, q_2))\} .\]

Hence, \((p_1, q_1), (p_2, q_2) \in U(\alpha_c \times \alpha_s, t_0)\), but \((p_1, q_1), (p_2, q_2) \not\in U(\alpha_c \times \alpha_s, t_0)\).

That is, \(U(\alpha_c \times \alpha_s, t_0)\) is not semi d-ideal, which is a contradiction.

Now, assume that \((p_1, q_1), (p_2, q_2) \in H \times H\) such that:
\[
\beta_c \times \beta_s((p_2, q_2)) > \max\{\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)), \beta_c \times \beta_s((p_2, q_2))\},
\]
By taking \(r_0 = \frac{1}{2}(\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)) + \max\{\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)), \beta_c \times \beta_s((p_2, q_2))\}\),
then \(\max\{\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)), \beta_c \times \beta_s((p_2, q_2))\} < r_0 < \beta_c \times \beta_s((p_1, q_1))\) and there are \((p_1, q_1), (p_2, q_2) \in L(\beta_c \times \beta_s, r_0)\) and \((p_2, q_2) \in L(\beta_c \times \beta_s, r_0)\), but \((p_1, q_1) \not\in L(\beta_c \times \beta_s, r_0)\), and this is a contradiction.

Also, if we take \((p_1, q_1), (p_2, q_2) \in H \times H\) such that:
\[
\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)) > \max\{\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)), \beta_c \times \beta_s((p_2, q_2))\},
\]
then, by taking \(r_0 = \frac{1}{2}(\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)) + \max\{\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)), \beta_c \times \beta_s((p_2, q_2))\}\),
we have \(\max\{\beta_c \times \beta_s((p_1, q_1), (p_2, q_2)), \beta_c \times \beta_s((p_2, q_2))\} < r_0 < \beta_c \times \beta_s((p_1, q_1))\) and \((p_2, q_2) \in L(\beta_c \times \beta_s, r_0)\), but \((p_2, q_2) \not\in L(\beta_c \times \beta_s, r_0)\), and this is a contradiction.

Theorem (3.10): Let \(C \times S \subseteq \alpha_c \times \alpha_s, \beta_c \times \beta_s > \) be an IFSD \(\text{d-ideal of } H \times H\), then the sets
\[H_{\alpha_c \times \alpha_s} = \{(a, b) \in H \times H : \alpha_c \times \alpha_s(a, b) = \alpha_c \times \alpha_s(0, 0)\}
\]
and
\[H_{\beta_c \times \beta_s} = \{(a, b) \in H \times H : \beta_c \times \beta_s(a, b) = \beta_c \times \beta_s(0, 0)\}
\]
are semi d-ideal in \(H \times H\).

Proof: If we take \((a, b), (x, y) \in H \times H\), let \((a, b), (x, y) \in H_{\alpha_c \times \alpha_s}\) and \((x, y) \in H_{\alpha_c \times \alpha_s}\). Then,
\[\alpha_c \times \alpha_s((a, b), (x, y)) = \alpha_c \times \alpha_s(0, 0) = \alpha_c \times \alpha_s((a, x), y), \]
so
\[\alpha_c \times \alpha_s((a, b), (x, y)) \geq \min\{\alpha_c \times \alpha_s((a, b), (x, y)), \alpha_c \times \alpha_s((a, x), y)\} = \alpha_c \times \alpha_s(0, 0).
\]
Knowing that \(\alpha_c \times \alpha_s((a, b)) = \alpha_c \times \alpha_s(0, 0)\) (proposition (3.1)), thus \((a, b) \in H_{\alpha_c \times \alpha_s}\).

Let \((a, b), (x, y) \in H_{\alpha_c \times \alpha_s}\). Then, \(\alpha_c \times \alpha_s((a, b), (x, y)) = \alpha_c \times \alpha_s(0, 0)\), so \(\alpha_c \times \alpha_s((a, b), (x, y)) \geq \min\{\alpha_c \times \alpha_s((a, b), (x, y)), \alpha_c \times \alpha_s((a, x), y)\} = \alpha_c \times \alpha_s(0, 0)\) (proposition (3.3)).

Knowing that \(\alpha_c \times \alpha_s((a, b), (x, y)) = \alpha_c \times \alpha_s(0, 0)\) (proposition (3.3)), thus \((a, b) \in H_{\alpha_c \times \alpha_s}\).

Also, let \((a, b), (x, y) \in H_{\beta_c \times \beta_s}\) and \((x, y) \in H_{\beta_c \times \beta_s}\). Then, \(\beta_c \times \beta_s((a, b), (x, y)) = \beta_c \times \beta_s(0, 0)\), so \(\beta_c \times \beta_s((a, b), (x, y)) \leq \max\{\beta_c \times \beta_s((a, b), (x, y)), \beta_c \times \beta_s((a, x), y)\} = \beta_c \times \beta_s(0, 0)\) (proposition (3.3)).

Knowing that \(\beta_c \times \beta_s((a, b), (x, y)) = \beta_c \times \beta_s(0, 0)\) (proposition (3.3)), so we get \((a, b) \in H_{\beta_c \times \beta_s}\).

Let \((a, b), (x, y) \in H_{\beta_c \times \beta_s}\). Then, \(\beta_c \times \beta_s((a, b), (x, y)) = \beta_c \times \beta_s(0, 0)\), so \(\beta_c \times \beta_s((a, b), (x, y)) \leq \max\{\beta_c \times \beta_s((a, b), (x, y)), \beta_c \times \beta_s((a, x), y)\} = \beta_c \times \beta_s(0, 0)\) (proposition (3.3)).

Hence, from proposition (3.3), we get \(\beta_c \times \beta_s((a, b), (x, y)) = \beta_c \times \beta_s(0, 0)\). Then, \((a, b), (x, y) \in H_{\beta_c \times \beta_s}\). Thus, \(\beta_c \times \beta_s\) is semi d-ideal.

The next theorems are easy to prove.

Theorem (3.11): In a d-homorphism \(f: H \times H \rightarrow G \times G\), if \(C \times S\) is an IFSD \(\text{d-ideal of } G \times G\), then \(f^{-1}(C \times S)\) is an IFSD \(\text{d-ideal of } H \times H\).

Theorem (3.12): Let \(f: H \times H \rightarrow G \times G\) be an d-homorphism and let \(C \times S\) be a direct product of IFSD \(C\) and \(S\) in \(G \times G\). If \(f^{-1}(C \times S) =< \alpha_{f^{-1}(C \times S)}, \beta_{f^{-1}(C \times S)} >\) is an IFSD \(\text{d-ideal of } H \times H\), then \(C \times S =< \alpha_{C \times S}, \beta_{C \times S} >\) is an IFSD \(\text{d-ideal of } G \times G\).

4. **Direct product of Intuitionistic fuzzy topological d-algebra**

In this section, we apply the concept of direct product for intuitionistic set on the notation of intuitionistic fuzzy topological d-algebra with some theorems of continues maps.

Definition (4.1) [3]: An intuitionistic fuzzy topology (IFT shortly) on a non-empty set \(H\) is a family \(\mathfrak{S}\) of IFSS in \(H\) that satisfies:

\[
\begin{align*}
(IFT_0) & \quad 0, 1 \in \mathfrak{S}, \\
(IFT_1) & \quad N_1 \cap N_2 \in \mathfrak{S} \text{ for any } N_1, N_2 \in \mathfrak{S}, \\
(IFT_2) & \quad \bigcup_{i \in \Delta} \mathfrak{N}_i \in \mathfrak{S} \text{ for any family } \{N_i, i \in \Delta\} \subseteq \mathfrak{S}.
\end{align*}
\]

So, we call the pair \((H, \mathfrak{S})\) as an intuitionistic fuzzy topological space (IFTS shortly) and the IFS in \(\mathfrak{S}\) as an intuitionistic fuzzy open (shortly IFOS) .
If we have a map \(f : H \rightarrow G \) such that \((H, \mathcal{S})\), \((V, \vartheta)\) are two IFTS, then \(f \) is called intuitionistic fuzzy continuous (IFC) if the inverse image for any IFS in \(\vartheta \) being IFS in \(\mathcal{S} \). Also, if the image for any IFS in \(\mathcal{S} \) is an IFS in \(\vartheta \), then we call \(f \) as an intuitionistic fuzzy open (IFO). \([1]\)

Definition (4.2) [10]: For an IFS \(\mathcal{K} \) in an IFTS \((H, \mathcal{S})\), we say that the induced intuitionistic fuzzy topology (shortly IIFT) on \(\mathcal{K} \) is a family of IFSs in \(\mathcal{K} \) such that the intersection of it with \(\mathcal{K} \) is an IFOS in \(H \). The IIFTs are denoted by \(\mathcal{S}_{\mathcal{K}} \) and \((\mathcal{K}, \mathcal{S}_{\mathcal{K}})\) is an intuitionistic fuzzy subspace (IFS ub) of \((H, \mathcal{S})\).

Definition (4.3) [10]: Take \((\mathcal{K}, \mathcal{S}_{\mathcal{K}})\) and \((\mathcal{M}, \vartheta_{\mathcal{M}})\) as IFSub of IFTSs \((H, \mathcal{S})\) and \((G, \vartheta)\), respectively, with the mapping \(f : H \rightarrow G \) be a mapping. Then, \(f \) is a mapping \(\mathcal{K} \) into \(\mathcal{M} \) if \(f(\mathcal{K}) \subseteq \mathcal{M} \). Also, \(f \) is called relatively intuitionistic fuzzy continuous (RIFC) if, for any IFS \(V_{\mathcal{M}} \) in \(\vartheta_{\mathcal{M}} \), the intersection \(f^{-1}(V_{\mathcal{M}}) \cap \mathcal{K} \) is an IFS in \(\mathcal{S}_{\mathcal{K}} \); and \(f \) is called relatively intuitionistic fuzzy open (RIFO) if, for any IFS \(U_{\mathcal{K}} \) in \(\mathcal{S}_{\mathcal{K}} \), the image \(f(U_{\mathcal{K}}) \) is IFS in \(\vartheta_{\mathcal{M}} \).

Proposition (4.4): Let \((\mathcal{K} \times \mathcal{M}, \mathcal{S}_{\mathcal{K} \times \mathcal{M}})\) and \((F \times \mathcal{L}, \vartheta_{F \times \mathcal{L}})\) be direct products of IFSub of direct product of IFTSs \((H \times \mathcal{S})\) and \((G \times \vartheta)\), respectively, and let \(f : H \times H \rightarrow G \times G \) be an intuitionistic fuzzy continuous mapping, such that \(f(\mathcal{K} \times \mathcal{M}) \subseteq (F \times \mathcal{L}) \). Then, \(f \) is RIFC mapping of \((\mathcal{K} \times \mathcal{M})\) into \((F \times \mathcal{L})\).

Proof: Let \((U_{2} \times V_{2})(F \times \mathcal{L})\) be IFS in \(\vartheta_{F \times \mathcal{L}} \), then there exists \(U \times V \in \vartheta \), such that

\[
(U_{2} \times V_{2})(F \times \mathcal{L}) = (U \times V) \cap (F \times \mathcal{L})
\]

Since \(f \) is IFC, so it follows that \(f^{-1}(U \times V) \) is an IFS in \(\mathcal{S} \). So \(f^{-1}((U_{2} \times V_{2})(F \times \mathcal{L})) \cap (\mathcal{K} \times \mathcal{M}) = f^{-1}((U \times V) \cap (F \times \mathcal{L})) \cap (\mathcal{K} \times \mathcal{M}) = f^{-1}(U \times V) \cap f^{-1}(F \times \mathcal{L}) \cap (\mathcal{K} \times \mathcal{M}) = f^{-1}(U \times V) \cap (\mathcal{K} \times \mathcal{M}) \) is IFS in \(\mathcal{S}_{\mathcal{K} \times \mathcal{M}} \). This completes the proof.

Definition (4.5): For any \(H \) and any order pair \((a, b)\) of \(H \times H \), we define the self-map \((a, b)_{r}\) of \(H \times H \) by \((a, b)_{r}((x, y)) = (x, y)(a, b)\) for all \((x, y) \in H \times H\).

Definition (4.6) [10]: For an IFT \(\mathcal{S} \) on \(H \), if \(\mathcal{K} \) is an IFd-algebra with IIFT \(\mathcal{S}_{\mathcal{K}} \), then we say that \(\mathcal{K} \) intuitionistic fuzzy topology (shortly d-algebra) (IFTd-algebra). For any \(h \in H \), the mapping \(h_{r} : (\mathcal{K}, \mathcal{S}_{\mathcal{K}}) \rightarrow (\mathcal{K}, \mathcal{S}_{\mathcal{K}}) \), \(x \rightarrow xh \) is relatively intuitionistic fuzzy continuous.

Definition (4.7): For an IFT \(\mathcal{S} \) on \(H \), if \(\mathcal{K}, \mathcal{M} \) are IFd-algebras with IIFTs \(\mathcal{S}_{\mathcal{K}}, \mathcal{S}_{\mathcal{M}} \), respectively. Then, \(\mathcal{K} \times \mathcal{M} \) is called a direct product of IFTd-algebra if for any \((a, b) \in H \times H \) the mapping \((a, b)_{r} : (\mathcal{K} \times \mathcal{M}, \mathcal{S}_{\mathcal{K} \times \mathcal{M}}) \rightarrow (\mathcal{K} \times \mathcal{M}, \mathcal{S}_{\mathcal{K} \times \mathcal{M}}) \), \((x, y) \rightarrow (x, y)(a, b)\) is relatively intuitionistic fuzzy continuous.

Theorem (4.8): Let \(\delta : H \rightarrow G \) be a d-homomorphism and \(\mathcal{S}, \vartheta \) be IFTs on \(H \) and \(G \), respectively, such that \(\mathcal{S} = \delta^{-1}(\vartheta) \). If \(\mathcal{K} \times \mathcal{M} \) is a direct product of IFTd-algebra in \(G \times G \), then \(\delta^{-1}(\mathcal{K} \times \mathcal{M}) \) is an IFTd-algebra in \(H \times H \).

Proof: Suppose that \((a, b) \in H \times H \) and let \(U_{1} \times V_{1} \) be IFS in \(\mathcal{S}_{\delta^{-1}(\mathcal{K} \times \mathcal{M})} \). We know that \(\delta^{-1} \) is an IFC mapping of \((H \times H, \mathcal{S})\) into \((G \times G, \vartheta)\), so we have from (4.4) that \(\delta \) is an IFC mapping of \((\delta^{-1}(\mathcal{K} \times \mathcal{M}), \mathcal{S}_{\delta^{-1}(\mathcal{K} \times \mathcal{M})}) \) into \((\mathcal{N} \times \mathcal{M}, \mathcal{S}_{\delta^{-1}(\mathcal{K} \times \mathcal{M})}) \). Note that there exists an IFS \(U_{2} \times V_{2} \) in \(\mathcal{S}_{\delta^{-1}(\mathcal{K} \times \mathcal{M})} \) such that \(\delta^{-1}(U_{2} \times V_{2}) = U_{1} \times V_{1} \). Then

\[
\alpha_{(a,b)_{r}^{-1}(U_{1} \times V_{1})}((x, y)) = \alpha_{U_{1} \times V_{1}}((x, y)(a, b)) = \alpha_{U_{1} \times V_{1}}((x, y)(a, b)) = \alpha_{U_{2} \times V_{2}}(\delta((x, y)(a, b))) = \alpha_{U_{2} \times V_{2}}(\delta((x, y)(a, b)))
\]

and

\[
\beta_{(a,b)_{r}^{-1}(U_{1} \times V_{1})}((x, y)) = \beta_{U_{1} \times V_{1}}((x, y)(a, b)) = \beta_{U_{1} \times V_{1}}((x, y)(a, b)) = \beta_{U_{2} \times V_{2}}(\delta((x, y)(a, b))) = \beta_{U_{2} \times V_{2}}(\delta((x, y)(a, b))).
\]
Since $\mathbb{R} \times \mathcal{M}$ is a direct product of IFTd-algebra in $\times G$, then we have the RIFC mapping $(b_1, b_2)_\gamma: (\mathbb{R} \times \mathcal{M}, \delta_{\mathbb{R} \times \mathcal{M}}) \to (\mathbb{R} \times \mathcal{M}, \delta_{\mathbb{R} \times \mathcal{M}})$, $(y_1, y_2) \to (y_1, y_2)(b_1, b_2)$, for every (b_1, b_2) in $G \times G$. Hence,

$$
\alpha_{(a,b)\gamma^{-1}\theta}(x_1, y_1) = \alpha_{(a,b)\gamma}(\delta(x_1, y_1)) = \alpha_{(a,b)\gamma}(\delta(a, b)) = \alpha_{(a,b)\gamma}(\delta((a, b)))
$$

and

$$
\beta_{(a,b)\gamma^{-1}\theta}(x_1, y_1) = \beta_{(a,b)\gamma}(\delta(x_1, y_1)) = \beta_{(a,b)\gamma}(\delta((a, b)))
$$

Therefore, $(a, b)\gamma^{-1}\theta(U_1 \times V_1) = \delta^{-1}(\delta((a, b)\gamma(U_2 \times V_2)))$.

So, $(a, b)\gamma^{-1}\theta(U_1 \times V_2) \cap \delta^{-1}(\mathbb{R} \times \mathcal{M}) = \delta^{-1}(\delta((a, b)\gamma(U_2 \times V_2))) \cap \delta^{-1}(\mathbb{R} \times \mathcal{M})$ is an IFS in \mathcal{M}.

Theorem (4.9): For a d-homorphism $\delta: H \to G$ and δ_1, δ being IFTs on H and G, respectively, such that $(\delta_1) = \delta$. If $D \times C$ is a direct product of IFTd-algebra in $H \times H$, then $\delta(D \times C) \gamma$ is an IFTd-algebra in $G \times G$.

Proof: We need to show that the mapping $(b_1, b_2)_\gamma: (D \times C, \theta_{D \times C}) \to (D \times C, \theta_{D \times C})$. $(y_1, y_2) \to (y_1, y_2)(b_1, b_2)$ is relatively intuitionistic fuzzy continuous for every (b_1, b_2) in $H \times H$. Let $(U_1 \times V_1)_{D \times C}$ be IFS in \mathcal{M}.

Then, there exists an IFS $U_2 \times V_2$ in \mathcal{M} such that $(U_1 \times V_1)_{D \times C} = (U \times V) \cap D \times C$.

Since δ is one-one, it follows that $\delta((U_1 \times V_1)_{D \times C}) = \delta((U \times V) \cap D \times C) = \delta((U \times V)) \cap \delta(D \times C)$, which is an IFS in \mathcal{M}. This shows that δ is RIFC.

Let $(U_1 \times V_1)_{D \times C}$ be an IFS in \mathcal{M}. Since δ is surjective, so we have for every (b_1, b_2) in $G \times G$, there exists (a_1, a_2) in $H \times H$ such that $(b_1, b_2) = \delta((a_1, a_2))$. Hence,

$$
\alpha_{\delta^{-1}(b_1, b_2)\gamma^{-1}(U_2 \times V_2)_{D \times C}}((x, y)) = \alpha_{\delta^{-1}(b_1, b_2)\gamma^{-1}(U_2 \times V_2)_{D \times C}}((x, y))
$$

and

$$
\beta_{\delta^{-1}(b_1, b_2)\gamma^{-1}(U_2 \times V_2)_{D \times C}}((x, y)) = \beta_{\delta^{-1}(b_1, b_2)\gamma^{-1}(U_2 \times V_2)_{D \times C}}((x, y))
$$

2349
\[
\beta_{(a_1,a_2)}^{-1}(\delta^{-1}((U_2 \times V_2)_{\delta(D \times C)})) (x,y) = \beta_{(a_1,a_2)}^{-1}(\delta^{-1}((U_2 \times V_2)_{\delta(D \times C)})) (x,y).
\]

Therefore, \(\delta^{-1}((b_1,b_2))^{-1}((U_2 \times V_2)_{\delta(D \times C)}) = (a_1,a_2)^{-1}((U_2 \times V_2)_{\delta(D \times C)}) \).

By hypothesis, the mapping \((a_1,a_2) : (D \times C, \mathcal{S}_{D \times C}) \to (\delta(D \times C), \mathcal{S}_{D \times C}) \), \((x,y) \to (x,y)(a_1,a_2)\) is RIFC and \(\delta\) is RIFC map such that \(\delta : (D \times C, \mathcal{S}_{D \times C}) \to (\delta(D \times C), \mathcal{S}_{D \times C}) \).

Thus, \(\delta^{-1}((b_1,b_2))^{-1}((U_2 \times V_2)_{\delta(D \times C)}) \cap (D \times C) = (a_1,a_2)^{-1}((U_2 \times V_2)_{\delta(D \times C)}) \cap (D \times C) \) is an IFS in \(\mathcal{S}_{D \times C} \).

Since \(\delta\) is RIFO, then
\[
\delta\left(\delta^{-1}((b_1,b_2))^{-1}((U_2 \times V_2)_{\delta(D \times C)}) \cap (D \times C) \right) = (b_1,b_2)^{-1}((U_2 \times V_2)_{\delta(D \times C)}) \cap \delta((D \times C))
\]
is IFS in \(\delta_{D \times C} \). This completes the proof.

Conclusions

We showed in this paper that the definition of relatively intuitionistic fuzzy continuous has led us to define the notation of the direct product of intuitionistic fuzzy topological d-algebra. We also found that the homomorphism map \(\delta\) provides the notion that the primage for the direct product of intuitionistic fuzzy topological d-algebra is also a direct product of intuitionistic fuzzy topological d-algebra. Also, the image for the direct product of intuitionistic fuzzy topological d-algebra is a direct product of intuitionistic fuzzy topological d-algebra.

We believe that this work can enhance further studies in this field for the generation of direct products of finite and infinite intuitionistic fuzzy semi d-ideals on d-algebra as well as intuitionistic topological d-algebra. We hope that this work can impact upcoming research in this field or in other algebraic structures.

REFERENCES

1. Neggers J. and Kim H. S. 1999. " on d-algebra ", *Math. Slovaca*. 49(1): 19-26.
2. Zadeh L. A. 1965. " Fuzzy set ", *Inform. And Control*. 8: 338-353.
3. Atanassov K. T. 1986. " Intuitionistic fuzzy sets ", *Fuzzy sets and Systems*. 35: 87–96.
4. Jun Y. B., Kim H. S. and Yoo D.S. 2006. " Intuitionistic fuzzy d-algebra ", *Scientiae Mathematicae Japonicae* Online, e-(2006), 1289–1297.
5. Abdullah H. K., Hassan A. K. 2013. " semi d-ideal in d-algebra ", *journal of Kerbala Scientific*. 11(3): 192-197.
6. Hassan A. K. 2014. "fuzzy filter spectrum of d-algebra ", M.Sc. Thesis, Faculty of Education for Girls, University of Kufa, Iraq.
7. Akram M., Dar K. H. 2005. " On Fuzzy d-algebras ", *Journal of Mathematics*. 37: 61-76.
8. Coker D. 1997. " An introduction to intuitionistic fuzzy topological spaces", *Fuzzy Sets and Systems*. 88: 81–89.
9. Ejegwa P. A., Akowe S.O., Otene P.M., Ikyule J.M. 2014. "An Overview On Intuitionistic Fuzzy Sets " *International Journal of scientific & technology research*. 3(3): 2277-8616.
10. Hasan A. K. 2017. "Intuitionistic fuzzy semi d-ideal of d-algebra ", *Journal of Iraqi AL-Khwarizmi society*. 1(1): 85-91.