Lipide sind wichtig für die postnatale Lungenentwicklung

Srikanth Karnati

Lipide bilden eine vielfältige Gruppe von Biomolekülen, die in der Lungenbiologie eine wichtige Rolle spielen. Sie sorgen für eine Verringerung der Oberflächenspannung von Alveolen, um die Kollabierung der Alveolen zu verhindern und dadurch das Lungenparenchym zu stabilisieren. Die Hauptlipidklassen der Lunge, die entweder aus dem Surfactant oder aus der bronchoalveolären Lavage Flüssigkeit (BALF) stammen, wurden bisher nur teilweise charakterisiert. Jedoch ist eine detaillierte Verteilung der Gesamtlipidklassen und ihrer individuellen Lipidmolekülspezies zusammensetzung in der Mauslunge während ihrer postnatale Entwicklung nicht vollständig verstanden. In unserer aktuellen Studie verwendeten wir die Elektrospray-Ionisationstandem-Massenpektrometrie mit Direkteinspritzung, um die Gesamtmenge und detaillierte Zusammensetzung der verschiedenen Stadien während des Prozesses der postnatalen Lungenentwicklung bei Mäusen zu charakterisieren. Darüber hinaus haben wir das Verteilungsmuster der Lipidklassen in Abhängigkeit von ihrer Kohlenstoffkettenlänge und dem Grad der Sättigung während des Entwicklungsprozesses evaluiert.

Lungenlipidom der Lunge: Umfassende Charakterisierung in der Maus

Wir analysierten und quantifizierten insgesamt 202 Lipidspezies (GP, SP und CE) und Cholesterin des Lungenlipidoms aus Homogenisat von Mäuselungen P1-, P15- und adulter Lunge (Abb. 1). Im Allgemeinen ist eine Erhöhung der Gesamtmenge (nmol / mg Feuchtgewicht) des Lungengewebes eine charakteristische Änderung während des Lungenentwicklungsprozesses. Unsere Ergebnisse zeigten einen erhöhten Gehalt an Phospholipiden und Cholesterin während der Entwicklung. Ferner ist eine signifikante Zunahme der Häufigkeit von PC 30: 0 während der Alveolarisation (P1 bis P15) zu verzeichnen.

Unsere Studie zeigte ein umfangreiches quantitatives Lipidom des gesamten Lungengewebes der Maus (einschließlich weniger häufig vorkommender Lipidspezies, neutraler Lipidkomponenten wie Cholesterin und deren Ester), das als Referenz für das Verständnis von Lipidveränderungen bei Störungen der Lungenentwicklung oder auch erworbenen Lungenkrankungen dienen kann.

Weitere Informationen

Institut für Anatomie und Zellbiologie
Julius-Maximilians-Universität Würzburg
Email: Srikanth.karnati@uni-wuerzburg.de