Nitrosatable amines and amine derivatives have an important role in many industrial processes. Handling, production, and use of these chemicals may result in exposure to the corresponding N-nitroso products, which could have mutagenic or carcinogenic activity (1). Cutting fluids are widely used to reduce the temperature of the metal–tool interface during metal cutting or grinding and have been found to contain some N-nitrosamines. N-nitosodiethanolamine (NDELA) is the most common N-nitrosoamine in cutting fluids, which are formulated with ethanolamine and nitrite, the precursors of NDELA (2). NDELA is a strong animal carcinogen (3–6), a mutagen in the Ames test after activation with alcohol dehydrogenase (7,8), and a potent inducer of DNA damage in primary hepatocytes in vitro (7,9). For these reasons NDELA could represent a health risk for workers in the metal industry, who are exposed by direct skin contact or by inhalation of the oil mist.

Following an integrated environmental/biological monitoring approach previously used by our research group in different working environments (10) and drawing from published studies of NDELA monitoring in metal industries (11–13), we evaluated exposure of metal workers to NDELA and other potentially genotoxic compounds found in cutting fluids. We analyzed cutting fluids sampled in different metal factories in central Italy for nitrite and NDELA content and mutagenic activity. Biological monitoring was carried out on workers who used cutting fluids that were positive for NDELA by analyzing NDELA content of urine, assessing mutagenicity, determining thioether and D-glucaric levels, and determining sister chromatid exchanges (SCE) in peripheral blood lymphocytes. This paper deals only with the environmental monitoring phase. Biological monitoring data are still being gathered.

We collected new and used cutting fluid samples (N = 63) during working hours in several metal factories, took them to the laboratory, and tested them for nitrite content by a rapid and semiquantitative method. The samples that were positive for nitrite, a NDELA precursor, were analyzed for nitrite content by a quantitative method, NDELA content, and mutagenic activity. Nitrite-negative samples were analyzed only for mutagenicity to detect mutagens other than NDELA. The scheme of the environmental monitoring approach followed is given in Figure 1.

Nitrite detection was first performed using a rapid and semiquantitative screening method (Merrickquant, nitrite test, Merck, Germany), where test strips were immersed in the emulsions. We performed the quantitative nitrite determination only on nitrite-positive samples, using an analytical procedure that is an adaptation of standard nitrite/nitrate determination to a continuous flow analyzer. A 1-ml aliquot was used for the determination of nitrite using a dual-channel, continuous-flow nitrite/nitrate analyzer (14). Samples positive for nitrite were combined with 1–2 g/100 ml of NaOH and analyzed for NDELA determination. We treated 0.5 g of cutting fluids with about 2 g sulfamic acid to destroy the nitrite and added distilled water to yield 15 ml. Extraction was done using a silica column containing a layer of ascorbic acid (to trap ethanolamines) and a layer of potassium carbonate (to trap ascorbic acid), eluted with 50 ml ethyl formate containing 2% methanol. We evaporated extracts to dryness under a stream of nitrogen and reacted the residue with 0.3 ml of a silylating agent (N-methyl-N-trimethylsilylheptafluorobutyramide) at 80°C for 2 hr. NDELA quantification was carried out by gas chromatography/chemiluminescence detection (TEA 502) (12,13). The gas chromatograph conditions were: injector, 200°C; on-column injection; column, 0.635 cm o.d., 0.2 cm i.d. X 140 cm silanized boro-silica glass filled with 6% OV275 on Volashop A2 (Merk, Germany); oven, initial temperature 110°C, 5 min, temperature program 10°C/min, final temperature 220°C, 5 min. We assessed the mutagenic activity of the samples directly, as in toto samples, and as basic fractions, presumably containing nitrosamines. The in toto samples were filtered sterilized, added with Tween 80 and tested at increasing doses (up to 150 µl/plate), with the plate-test version of the Ames test (15), according to the Hermann.

Figure 1. Scheme of the analysis of cutting fluids (N = 63) sampled in Italian metal factories.
Table 1. Concentrations of nitrite, N-nitosodiethanolamine (NDELA), and mutagenicity in new or used cutting fluids found to contain nitrite by means of a rapid and semiquantitative method

Factory	Sample	Used/ New	Nitrite (mg/kg)	NDELA (mg/kg)	Mutagenicity, TA100 in toto	Mutagenicity, TA100 Basic fractions		
					-S9	+S9	+S9	+ADH
A	A1	New	13	5.0	-	-	+	-
	A2	Used	55	24.0	-	-	+	-
	A3	Used	2540	1900	-	+	+	-
B	B1	New	2600	17.9	-	-	+	-
	B2	Used	1800	9.1	-	-	+	-
C	C1	New	6500	5.3	-	-	+	-
	C2	Used	5700	6.5	-	-	+	-
D	D1	New	2	0.4	-	-	+	-
	D2	Used	4	0.3	-	-	+	-
E	E1	New	70	2.4	-	-	+	-
	E2	Used	10	0.3	-	-	+	-
F	F1	Used	60	1.0	-	-	+	-
G	G1	New	19,600	30.7	-	-	+	-

See text for details on methods. Mutagenicity results were obtained with the Ames plate test (19) for the in toto samples and with the preincubation modification of the Ames test (17) for the basic fractions, using TA100 strain with either a post-mitochondrial liver fraction obtained from Aroclor-induced rats (+S9 mix), or alcohol dehydrogenase (ADH) activation. These data are expressed only qualitatively (see Table 2 for dose-response results; the samples showing dose-response results and a mutagenicity ratio > 2 were considered mutagenic). All the nitrite-negative samples were nonmutagenic.

Table 2. Mutagenicity of basic extracts of some nitrite-positive cutting fluids

Samples	Dose (ml/plate)	Revertants/plate	Mutagenicity ratio	Net revertants/ml
A1	6.25	134	1.2	6
	12.50	213	1.9	12
	25.00	246	2.2	2.9
	37.50	287	3.4	3.7
A2	6.25	143	1.4	4
	12.50	227	2.3	8
	25.00	287	2.9	2.9
	37.50	392	3.4	4.4
A3	6.25	119	1.2	2
	12.50	218	2.2	8
	25.00	280	2.8	3
	37.50	127	3	3
B1	6.25	112	1.0	2
	12.50	214	1.8	12
	25.00	392	3.4	3.4
	37.50	119	1.2	1
B2	6.25	296	2.5	5
	12.50	514	4.4	20
	25.00	608	5.2	5.2
	37.50	127	3	3
C1	6.25	181	2.2	3
	12.50	238	3.6	11
	25.00	364	4.5	4.5
	37.50	280	3	3
C2	6.25	1184	14.4	176
	12.50	2280	27.8	27.8
	25.00	420	33	33
	37.50	600	3	3
G1	1.25	102	1.1	3
	2.50	108	1.2	3
	6.25	296	3.0	3
	12.50	760	5	5

The results were obtained from preincubation assay with S. typhimurium TA98 and TA100 strains, ± S9 or as basic fractions (TA100 + S9 or + alcohol dehydrogenase). In contrast, 61% of the nitrite- and NDELA-positive samples (8 samples, 12.7% of the total samples) were mutagenic to TA100 + S9 in the basic extracts (Table 2). When tested in toto, only one sample was mutagenic to TA100 + S9. It must be pointed out that even though nitrates are mutagenic to TA100 + S9, all the samples were negative when tested using TA100 + S9 or TA98 + S9.

Activation by alcohol dehydrogenase gave positive results only in the A3 sample, which had the highest concentration of NDELA (1900 mg/kg; Fig. 2). The negative results for the other samples could be due to the lower NDELA concentrations. Sample A3 was also the only positive sample when tested in toto with TA100 + S9.

The mutagenicity ratio and specific mutagenicity data revealed extremely high activity for sample C2 and high activity for samples B2 and G1. The highest doses tested (37.5 ml/plate) of all the samples were toxic to bacteria.
It should be pointed out that mutagenicity was found among the samples with the highest NDELA content (25 mg/kg). However, because tests with the alcohol dehydrogenase activating system were positive for only one sample, mutagenicity is probably due to other basic compounds different from NDELA. These unknown mutagens were not found in the nitrite-negative samples. Thus, unknown mutagenic substances are present in the basic extracts of these products. Identification of these compounds could lead to better estimation of the health hazards associated with exposure to cutting fluids.

In conclusion, preventive programs based on nitrite screening in the field, together with mutagenicity testing of cutting fluids, are important for identifying samples that could potentially contain NDELA and other unknown mutagens. All cutting fluids should be monitored for nitrite content before use in factories by using rapid nitrite screening tests, and the positive samples should be rejected or, as mandated in some countries, the nitrite in cutting fluids should be banned or restricted to those products that do not contain amine precursors. However, the presence of unknown potential mutagens in these fluids should be monitored using short-term mutagenicity tests both in in toto samples and in the basic extracts. All these measures should be carried out along with more general preventive measures in the workplace to minimize the health hazards associated with occupational exposure to cutting fluids. These results will be completed with further data, obtained from the biological monitoring program carried out among the workers of the metal factories where NDELA-positive cutting fluids are used.

REFERENCES

1. IARC. N-nitroso compounds: occurrence, biological effects and relevance to human cancer. IARC Scientific Publications No. 57. Lyon: International Agency for Research on Cancer, 1984.
2. Chellis BC, Kryptopoulos SA. Rapid formation of carcinogenic N-nitrosoamine in aqueous alkaline solution. Br J Cancer 35:696–696 (1977).
3. Druckrey H, Preussmann R, Ivanovski S, Schmahl D. Organo trope carcinogene Wirkung bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Z Krebsfor sch Klin Onkol 69:103–201 (1967).
4. Hilftrich J, Schmelz T, Hoffmann D. Tobacco carcinogenesis. 17. Effects of N-nitrosodiethanolamine and 1,1-dithio- 2-amine in Syrian golden hamsters. Cancer Lett 4:55–60 (1977).
5. Lijinsky W, Reuber MD, Manning WB. Potent carcinogenicity of nitrosodiethanolamine in rats. Nature 268:589–590 (1980).
6. Preussmann P, Habs M, Schmahl D. Carcinogenicity of N-nitrosodiethanolamine in rats at 5 different dose levels. Cancer Res 42:5167–5171 (1982).
7. Denkel E, Pool BL, Schlehofer JR, Eisenbrand G. Biological activity of N-nitrosodietanolamine and potential metabolites which may arise after activation by alcohol dehydrogenase in Salmonella typhimurium, in mammalian cells, and in vivo. J Cancer Res Clin Oncol 111:149–153 (1986).
8. Eisenbrand G, Denkel E, Pool B. Alcohol-dehydro genase as an activating enzyme for N-nitrosodietanolamine (NDELA); in vitro activation of NDELA to a potent mutagen in Salmonella typhimurium. J Cancer Res Clin Oncol 106:76–80 (1984).
9. Sina JS, Bean CL, Dysart GR, Taylor VI, Bradley MO. Evaluation of the alkaline elution/ret hepatocyte assay as a predictor of carcinogenic/mutagenic potential. Mutat Res 113:357–391 (1983).
10. Scessellati Sforzolini G, Monaca R, Paquini R, Savino A, Angeli G. Environmental and biological monitoring of mutagenic/carcinogenic hazards in working environments exposed to petroleum derivatives. In: Monitoring of occupational exposure to genotoxicants. New York: Alan R. Liss, 1986:171–182.
11. Fan TY, Morrison J, Rounbehler DP, Ross R, Fine H, Miles W, Sen NP. N-nitrosodiethanolamine in synthetic cutting fluids: a partner-hundred impurity. Science 196:70–71 (1977).
12. Spiegelhalder B, Preussmann R. Biological monitoring in the metal working industry. In: N-nitroso compounds: occurrence, biological effects and relevance to human cancer. IARC Scientific Publications No. 57. Lyon: International Agency for Research on Cancer, 1984:943–946.
13. Spiegelhalder B, Muller J, Drausch H, Preussmann R. N-nitrosodiethanolamine excretion in metal grinders. In: Relevance of N-nitroso compounds to human cancer: exposure and mechanisms. IARC Scientific Publications No. 84. Lyon: International Agency for Research on Cancer, 1987:590–593.
14. Spiegelhalder B, Eisenbrand G, Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol 14:543–548 (1976).
15. Ames BN, McCann J, Yamagishi E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–367 (1975).
16. Hermann M, Chaud O, Weil N, Bedouelle H, Hofnung M. Adaption of the Salmonella mammalian microsome test to the determination of the mutagenic properties of mineral oils. Mutat Res 77:327–339 (1980).
17. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215 (1983).

Free information from the Federal Government is available to you at more than 1,380 Depository Libraries across the country. Congress established the Depository Library Program in 1814 to provide free access to Government information.

To find the Federal Depository in your area, contact your local library or write to the Federal Depository Library Program, Office of the Public Printer, Washington, DC 20401.