Multigene phylogeny and taxonomic revision of yeasts and related fungi in the *Ustilaginomycotina*

Q.-M. Wang¹, D. Begerow², M. Groenewald³, X.-Z. Liu¹, B. Theelen³, F.-Y. Bai³,⁴ and T. Boekhout¹,⁵,⁶

¹State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; ²Ruhr-Universität Bochum, AG Geobotanik, ND 03/174, Universitätsstr. 150, 44801 Bochum, Germany; ³CBS-KNAW Fungal Biodiversity Centre, Yeast Division, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; ⁴Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China

Correspondence: F.-Y. Bai, baify@im.ac.cn; T. Boekhout, t.boekhout@cbs.knaw.nl

Abstract: The subphylum *Ustilaginomycotina* (Basidiomycota, *Fungi*) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the ‘One Fungus = One Name’ principle. The results confirmed that the yeast-containing classes Malasseziales, Moniliellales and *Ustilaginomycotina* are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalma- nozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate *Pseudozyma* and *Tilletiopsis* species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaeaceae fam. nov. and Robbauerales ord. nov. with Robbaueraeaceae fam. nov. are proposed to accommodate the sisterhood of *Golubevia* gen. nov. and Robbauer gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorph genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few *Pseudozyma* species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term *pro tempore* or *pro tm* in abbreviation to indicate the single-species lineages that are temporarily maintained.

Keywords: Fungi, Molecular phylogeny, Smuts, Taxonomy, Yeasts.

Taxonomic novelties: New orders: *Golubeviales* Q.M. Wang, F.Y. Bai, Begerow & Boekhout, *Robbauerales* Boekhout, Begerow, Q.M. Wang & F.Y. Bai; New families: *Golubeviaeae* Q.M. Wang, F.Y. Bai, Begerow & Boekhout, *Robbaueraeae* Boekhout, Begerow, Q.M. Wang & F.Y. Bai; New genera: *Dirkmeia* F.Y. Bai, Q.M. Wang, Begerow & Boekhout, *Golubevia* Q.M. Wang, F.Y. Bai, Begerow & Boekhout, *Robbauera* Boekhout, Begerow, Q.M. Wang & F.Y. Bai, *Kalmanozyma* Q.M. Wang, F.Y. Bai, Begerow & Boekhout; New combinations: *Anthracocystis* parmpara (Speg.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout, *Dirkmeia* churashimaensis (T. Morita, Y. Ogura, M. Takash., N. Hirose, Fukuoka, Imura, Y. Kondo & Kitamoto) F.Y. Bai, Q.M. Wang, Begerow & Boekhout, *Farysia* achenorium (Buhagiar & Barnett) F.Y. Bai, Q.M. Wang, Begerow & Boekhout, *F. itapuensis* (Landelli & Valente) Begerow, Q.M. Wang, F.Y. Bai & Boekhout, *F. setulabalis* (Fonseca & Inácio) Begerow, Q.M. Wang, F.Y. Bai & Boekhout, *F. taiwaniana* (P.-H. Wang, Y.-T. Wang & S.-H. Yang) Begerow, Q.M. Wang, F.Y. Bai & Boekhout, *Gjerencia* minor (Nyland) Q.M. Wang, F.Y. Bai, Begerow & Boekhout, *Kalmanozyma* brasiliensis (J.V.C. Oliveira, T.A. Borges, R.A.C. Santos, L.F.D. Freitas, C.A. Rosa, G.H. Goldman & D.M. Ria). The majority of remaining anamorphic yeast species are transferred to corresponding teleomorph genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few *Pseudozyma* species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term *pro tempore* or *pro tm* in abbreviation to indicate the single-species lineages that are temporarily maintained.

INTRODUCTION

The subphylum *Ustilaginomycotina* (Basidiomycota, *Fungi*) comprises mainly plant pathogenic fungi usually known as smuts, which are mostly dimorphic and present a yeast stage during part of their life cycle (Bauer et al. 2001a, Begerow et al. 2014). As this yeast stage sometimes not only consists of unicellular budding cells, but also includes cultures that might eventually produce hyphae or divide in other modes than budding, these fungi are often summarised as yeasts or yeast-like fungi. For simplicity of reading we will refer to ‘yeasts’ only, as long a differentiation is not necessary. A considerable number of *Ustilaginomycotina* fungi known from yeast stages only are described as assexual yeast species that are currently classified into 12 genera with 71 species (Boekhout et al. 2011, Begerow et al. 2014, Nasr et al. 2014, Wang et al. 2014). These genera are *Acaromyces*, *Farysizyge*, *Fereydounia*, *Jaminiaea*, *Malassezia*, *Meira*, *Moniliella*, *Pseudozyma*, *Rhodotorula* (pro
parte), **Sympodiomycopsis**, **Tilletia** and **Tilletiosis** (Stolk & Dakin 1966, Gokhale 1972, Boekhout 1991, 1995, Boekhout et al. 1995, 2003, 2011, Begerow et al. 2000, 2006, Inácio et al. 2008, Sipiczki & Kajdacsi 2009, Nasr et al. 2014, Wang et al. 2014). Species of these 12 genera occur in four classes currently recognised in **Ustilaginomycotina**, namely **Exobasidiomycetes**, **Malasseziomycetes**, **Moniliellomycetes** and **Ustilaginomycetes** (Bauer et al. 2001a, Begerow et al. 2006, 2014, Hibbett et al. 2007, Nasr et al. 2014, Wang et al. 2014). Many of ustilaginomycetous genera described from teleomorphic stages are cultivable, like members of **Ustilago**, **Exobasidium** and **Microstoma**, but their yeast stages have not been studied with respect to their physiological characteristics in depth as it is typically done for yeasts.

The genera **Acaromyces** and **Meira** contain probably mite-associated species, which are morphologically similar to **Pseudozyma** species, but phylogenetically belong to different lineages within **Exobasidiomycetes** (Boekhout et al. 2003, 2011, Rush & Aime 2013). The genus **Pseudozyma** is a polyphyletic anamorphic genus with species occurring in various clusters together with teleomorphic species of **Ustilago**, **Sporisorium** and **Moeszziomyces** in the **Ustilaginales** (**Ustilaginaceae**) (Begerow et al. 2000, 2006, 2014, Stoll et al. 2003, 2005, Liou et al. 2009, McTaggart et al. 2012a, b, Chamanpao et al. 2013, Shivas et al. 2013, Oliveira et al. 2014). The genus **Faryszyma** is an anamorphic genus in the **Anthracoideaceae** (**Ustilaginales**) described by Inácio et al. (2008) that clusters with teleomorphic species of the genus **Farysia** containing dimorphic smut fungi. The genus **Fereydounia** represents the first yeast lineage within **Urocystidiales** (Nasr et al. 2014). The genus **Jaminiaea** represents a basal lineage in the **Microstromatales** (**Exobasidiomycetes**) based on ribosomal RNA (rRNA) gene sequence analysis (Sipiczki & Kajdacsi 2009). **Sympodiomycopsis** is an anamorphic genus and its basidiomycetous affinity was discussed for a long time based on the ubiquinone system, type of cell wall and sepal pore ultrastructure (Sugiyama et al. 1991). Sequence analyses of the small subunit ribosomal RNA (SSU rRNA) and the large subunit rRNA (LSU rRNA) D1/D2 domains indicated that **Sympodiomycopsis** is a member of **Exobasidiomycetes** (Suh & Sugiyama 1994, Fell et al. 2000). **Tilletiaria** is a teleomorphic genus characterised by the presence of telospores and narrow hyphae without clamp connections (Bandoni & Johri 1972). This genus was tentatively placed in the **Tilletiales** (Boekhout et al. 1992), but was later proposed to represent the family **Tilletiariaceae** in the **Georgefisicherales** (**Exobasidiomycetes**) based on molecular phylogenetic analyses and morphology of its basidium (Begerow et al. 2006, Boekhout et al. 2006, Hibbett et al. 2007, Boekhout et al. 2011). **Tilletiosis** species occur in different orders of **Exobasidiomycetes** and this genus was often used as a ‘catch all’ genus for anamorphic members of **Exobasidiomycetes** (Begerow et al. 2000, 2006, 2014, Fell et al. 2000, Boekhout et al. 2011). Although most **Rhodotorula** species belong to **Puccinicipynomentina** (Fell et al. 2000, Sampaio 2011). In addition to **Rhodotorula acheniorum** which has been transferred to **Faryszyma** (Inácio et al. 2008), three other **Rhodotorula** species are located in the **Microstromatales** (**Exobasidiomycetes**) (Sampaio 2004, 2011, Boekhout et al. 2011, Begerow et al. 2014). Recently, multiple gene sequence analyses showed that the genera **Malassezia** and **Moniliella** represent two deeply rooted lineages within **Ustilaginomycotina** and, subsequently, two classes **Malasseziomycetes** and **Moniliellomycetes** were proposed to accommodate them (Wang et al. 2014).

Based on several studies, it has been clear that many anamorphic yeast species are phylogenetically closely related with teleomorphic smut fungi and that some of the former represent a saprophytic stage of the latter (Begerow et al. 2000, 2014, Boekhout et al. 2011). However, as is the case in other groups of **Basidiomycota**, ustilaginomycetous yeasts have been conventionally classified mainly based on physiological and biochemical criteria, resulting in a taxonomic system independent from, and largely incompatible with that of the smut fungi, which were classified mainly based on morphological characters and host range of the teleomorphic stage (Boekhout 1991, Boekhout et al. 2011, Begerow et al. 2014). Additionally, although many species of smut fungi are cultivable only very few teleomorphic species are available as reference cultures. Integrated taxonomic revisions of **Ustilaginomycotina** unifying anamorphic and teleomorphic taxa have been made in recent years based on molecular data (Begerow et al. 2000, 2006, 2014, Bauer et al. 2001a, Weiß et al. 2004, Matheny et al. 2006, Boekhout et al. 2011). The process is, however, hampered by the lack of a robust and integrated phylogenetic analysis and by use of the dual nomenclature code for teleomorphic fungi. Recent studies have shown that the **Exobasidiomycetes** may not represent a monophyletic group (Begerow et al. 2006, 2014, Hibbett et al. 2007, Boekhout et al. 2011, Wang et al. 2014) and a considerable number of currently recognised genera of both yeasts and dimorphic smut fungi in **Ustilaginomycotina** are polyphyletic (Begerow et al. 2000, 2014, Boekhout et al. 2011, McTaggart et al. 2012a, b). The fine phylogenetic relationships between the yeast and filamentous taxa remain to be resolved. Here we used phylogenetic analyses of seven genes to address the phylogenetic relationships of ustilaginomycetous yeast species with each other and with their filamentous counterparts. Consequently, taxonomic revisions for the majority of the ustilaginomycetous yeasts employed were proposed according to the ‘One Fungus = One Name’ principle (Hawksworth 2011, Taylor 2011, McNeill et al. 2012).

MATERIALS AND METHODS

Taxon sampling

All ustilaginomycetous yeast species listed in the 5th edition of *The Yeasts, A Taxonomic Study* (Kurtzman et al. 2011) were employed (Tables 1 and 2). The yeast and smut culture strains used came from the CBS Fungal Biodiversity Centre (CBS-KNAW), Utrecht, Netherlands; the China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and Ruhr-Universität Bochum, AG Geobotanik, Germany.

PCR and DNA sequencing

Genomic DNA was extracted from cultures grown on yeast extract peptone dextrose (YPD) plates using the method described by Bolano et al. (2001). Seven loci were selected, including four protein-coding genes, namely the two RNA polymerase II subunits (**RPB1** and **RPB2**), the translation elongation factor 1-α (**TEF1**) and the mitochondrial cytochrome b (**CYTB**); and three rRNA
Table 1. Taxa and sequence accession numbers employed in the combined seven genes sequence analysis (those in bold are determined in this study).

Species	Strains number	D1D2	ITS	SSU	RPB1	RPB2	EF1	CytB
Exobasidiomycetes								
Tilletiaria anomala	CBS 436.72	AJ235284	DQ234558	AY803752	DQ234571	AY803750	DQ835991	KP323046
Tilletiopsis derrxi	CBS 110078 T	AB052823	AB045707	AB045704	KP322926	KP323086	KP323138	KP323020
Tilletiopsis flavus	CBS 401.84 T	AJ235285	KP322987	KP322970	—	—	KP323126	KP323004
Tilletiopsis fulvescens	CBS 607.83 T	AJ235282	KP322988	KP322971	—	—	—	KP323045
Tilletiopsis minor	CBS 543.50 T	AJ235287	KP322989	KP322972	KP322938	KP323097	KP323114	KP323008
Tilletiopsis penniseti	CBS 110032 T	AB052825	—	KP322975	KP322917	KP323085	KP323143	KP322995
Microstromatales								
Jaminia angkorensis	CBS 10918	EJ587489	EJ604147	EJ604148	KP322907	KP323082	KP323152	KC628747
Jaminia lanaiensis	CBS 10858 T	DQ990016	DQ990017	KP322964	—	KP323080	KP323144	KP323021
Microstoma juglandidis	CBS 287.63	AF09867	DQ789988	DQ789987	DQ789990	DQ789991		—
Microstoma albizae	CMV 36935	KP322982	KP322982	KP322947	—	KP323079	KP323150	KP323016
Quambalaria cyanescens	CBS 876.73	DQ317616	DQ317623	KF706440	—	KP706845	KP323031	—
Rhodotorula bacarum	CGMCC 2.3190 T	AF190002	DQ317629	AJ496257	KP322937	KP323098	KP323120	AB040618
Rhodotorula hinnulae	JCM 9030 T	AF190003	AB038130	AB038130	KP322905	KP323062	KP323121	AB041050
Rhodotorula phylloplana	JCM 9035 T	AF190004	AB038131	AJ496258	KP322906	KP323063	KP323116	AB041051
Sympodiomycopsis kandeliae	CBS 11676	GU047881	GQ465043	KP322963	KP322925	KP323077	KP323149	KP323047
Sympodiomycopsis papilipes	CGMCC 2.1398 T	AF352054	DQ317631	KP322941	KP323099	KP323117	—	—
Tilletiales								
Erratomyces patellii	CBS 669.70	DQ094784	DQ846894	DQ846895	DQ846897	DQ846896	DQ846898	—
Tilletia goloskokovii	LMC 321	AY818998	DQ32248	DQ32247	DQ832250	DQ832249	DQ832251	—
Entylomatales								
Entyloma amoseridis	CBS 203.36	DQ645528	DQ911699	DQ645529	—	DQ645530	DQ645531	—
Entyloma calendulae	CBS 74.85	DQ663687	DQ663689	KP322948	—	DQ663690	KP323124	KP323056
Entyloma ficariae	CBS 480.91	AJ235295	JQ86199	KP322949	KP322944	—	KP323125	—
Tilletiopsis creema	CBS 605.83 T	AJ235279	AB025690	KP322969	—	KP323108	KP323129	KP323006
Tilletiopsis lilacina	CBS 435.92 T	KP322984	KP322966	—	KP323110	KP323112	KP323002	—
Tilletiopsis washingtonensis	CBS 544.50 T	AJ235278	DQ835994	KP322976	—	DQ835995	DQ835996	KP322997
Doassansiales								
Rhamphospora nymphaeae	CBS 72.38	DQ831032	DQ831034	DQ831033	—	DQ831035	DQ831036	—

(continued on next page)
Species	Strains number	D1D2	ITS	SSU	RPB1	RPB2	EF1	CytB
Exobasidiales								
Acaromyces ingoldii	CBS 110050 T	AY158665	AY158671	?	KP322920	KP323078	KP323145	KP323019
Exobasidium gracile	DSM 4460	DQ663699	DQ663700	DQ785786	DQ663702	DQ663701	DQ663703	—
Exobasidium rhododendri	CBS 101457	DQ667151	DQ667153	DQ667152	DQ667155	DQ667154	DQ667156	—
Exobasidium vaccini	DB 160d	KP322983	KP322983	KP322984	KP322924	KP323076	KP323146	—
Meira argoae	CBS 110053 T	AY158669	AY158675	KP322953	KP322922	KP323081	KP323139	KP323017
Meira geulakonigii	CBS 110052 T	AY158668	AY158674	KP322954	KP322919	KP323083	KP323141	KP323011
Meira nashicola	CBS 117161 T	AB185157	AB185159	KP322955	KP322921	KP323084	KP323140	KP323014
Species incertae sedis in the Exobasidiomycetes								
Tilletiopsis alsbescens	CBS 608.83 T	AJ235289	KP322986	KP322968	KP322942	KP323095	KP323127	KP323028
Tilletiopsis pallescens	CBS 364.85 T	AJ235292	DQ317636	KP322973	KP322943	KP323075	KP323123	KP323092
Ustilaginomycetes								
Urocystales								
Urocystis colchici	CBS 283.28	DQ838576	DQ839596	DQ839595	—	DQ839597	DQ839598	—
Urocystis pallescens	CBS 364.85 T	AJ235292	DQ317636	KP322973	KP322943	KP323075	KP323123	KP323092
Ustilaginales								
Anthracocystis axicola	MP 3490	DQ631906	DQ631908	DQ631907	—	DQ631909	DQ631910	—
Cintractia axicola	HAJB 10488	DQ645506	DQ645508	DQ645507	DQ645510	DQ645509	DQ645511	—
Cintractia limitata	CGMCC 2.3198 T	AF190001	AB038128	AJ496256	KP322927	KP323064	KP323131	AB041047
Farysizyma acheniorum	CBS 10428 T	DQ767831	DQ767831	DQ767831	KP322915	KP323075	KP323161	KP323054
Farysizyma itapuensis	CBS 10241 T	EU002887	EU002888	KP322950	KP322913	KP323073	KP323147	KP323013
Farysizyma taiwianica	CBS 9927 T	AY551270	AY555071	KP322951	KP322914	KP323071	KP323148	KP323033
Schizonella melanogramma	CBS 174.42	DQ832210	DQ832211	DQ832211	DQ832214	DQ832213	DQ832215	—
Ustanciosporium gigantosporum	CBS 131478	JN367325	JN367329	JN367352	JN367428	—	JN367375	—
Ustanciosporium standleyanum	JAG 73	DQ846888	DQ846890	DQ846892	DQ846891	DQ846893	—	—
Anthracocystis anthracoidespora	HUV 18350	JN367315	JN367290	JN367344	JN367420	—	JN367367	—
Anthracocystis apludae	KVU 967	JN367319	JN367294	JN367348	JN367424	—	JN367371	—
Anthracocystis walkeri	KVU 975	JN367322	JN367297	JN367390	JN367426	—	JN367373	—
Anthracocystis pampera	JCM 2007	KP322980	KP322980	KP322961	KP322908	KP323066	—	—
Langdonia aristidae	HUV 19145	JN367317	JN367292	JN367346	JN367422	—	JN367369	—
Macalpinomyces eraschnes	CBS 131454	JN367312	JN367287	JN367340	JN367417	KP323074	KP323142	KP323022
Table 1. (Continued).

Species	Strains number	D1D2	ITS	SSU	RPB1	RPB2	EF1	CytB
Macalpinomyces spermophorus	HUV 20717/F 565	AY740171	AY740171	JN367358	JN367433	—	JN367381	—
Melanopichium pennsylvanicum	UMa704	JN367313	JN367288	JN367341	JN367418	—	JN367364	—
Ustilago maydis	CBS 504.76	AF453938	AY854090	KP322979	KP322928	KP323090	KP323130	KP322996
Ustilago maydis	FB1	KP866233	KP866233	KP322952	KP322912	KP323067	KP323154	KP323003
Moeszziomyces bullatus	CBS 425.34	DQ831011	DQ831012	DQ831015	DQ831015	—	—	—
Sporisorium andropogonis	CBS 192.26/KVU 841	AY740095	AY740042	KP322962	JN367419	KP323065	JN367366	—
Sporisorium exertum	KVU 965	JN367318	JN367293	JN367437	JN367423	—	JN367370	—
Sporisorium reilianum	CBS 131460	KF706430	KF706438	KF322910	KF706511	KF706472	KP323058	—
Sporisorium sotamineum	CBS 131463	JN367321	JN367296	KP322965	JN367425	KP323070	JN367372	—
Sporisorium sorghi	CBS 104.17	AY745726	DQ200931	KP323105	DQ285784	KP323060	—	—
Stollia bursa	KVU 844	JN367316	JN367291	JN367345	JN367421	—	JN367368	—
Pseudozyma abaconensis	CBS 6380	FJ008047	FJ008053	KP322956	KP322916	KP323092	KP323159	KP323051
Pseudozyma antarctica	CBS 5955	AJ235302	AB089358	KP322960	KP322935	KP323093	KP323118	KP323048
Pseudozyma flocculosa	CBS 167.88 T	AJ235299	AF294690	KP322931	KP323016	—	JN367368	—
Pseudozyma hubeiensis	CGMC 2.2493 T	DQ008953	DQ008954	KP322957	—	KP323103	KP323111	KP322990
Pseudozyma parantarctica	CBS 10005 T	AB089357	AB089356	JN904507	JN992528	KP323093	KP323151	KP322991
Pseudozyma prolifica	CBS 319.87 T	AJ235298	AF294700	AF294724	DQ352825	KP323089	KP323093	KP323009
Pseudozyma prinii	CBS 10937 T	EU379943	EU379942	KP322958	KP322911	KP323087	KP323155	KP323050
Pseudozyma rugulosa	JCM 10323 T	JN405423	JN405458	KP323091	KP323133	KP323049	—	—
Pseudozyma shaxiensis	CGMC 2.2523 T	DQ008955	DQ008956	KP322932	KP323014	KP323113	KP323005	—
Pseudozyma thailandica	CBS 10069 T	AB089355	AB089354	KP322959	KP322909	KP323088	KP323157	KP322999
Tranzscheliella hypodytes	RK074 T	JN367323	JN367298	JN367351	JN367427	—	JN367374	—
Tranzscheliella williamssii	CBS 131475	JN367338	JN367310	KP322974	KP322923	KP323068	KP323156	KP323052
Ustilago cyanodontis	HRK 040/MS 1	AY740168	AY740168	JN367355	JN367430	—	JN367378	—
Ustilago filiformis	HRK 025 T	JN367328	JN367302	JN367356	JN367431	—	JN367379	—
Ustilago hordei	CBS 131470	KF706429	KF706437	KP322978	KF706498	KF706521	KF706473	KP323055
Ustilago hordei	DB 1526	JN367329	JN367303	JN367357	JN367432	—	JN367380	—
Ustilago striiformis	HUV 18286 T	DQ875375	AY740172	JN367359	JN367434	—	JN367382	—
Ustilago tritici	CBS 669.70	DQ948784	DQ846894	DQ846895	DQ846897	DQ846896	—	—
Ustilago xerochloae	KVU 1000 T	JN367339	JN367311	JN367362	JN367436	—	JN367385	—
Ustilago vetiveriae	HUV 17954 T	JN367337	AY345011	JN367360	JN367435	—	JN367383	—

(continued on next page)
Table 1. (Continued).

Species Strains number	D1D2	ITS	SSU	RPB1	RPB2	EF1	CytB	
Malasseziomycetes								
Malasseziales								
Malassezia caprae	CBS 10434 T	AY743616	AY743656	KF706456	KF706495	KF706513	KF706467	KP323001
Malassezia dermatis	CBS 9169 T	AB070365	AY390284	KF706452	KF706490	KF706532	KF706461	KP323000
Malassezia equina	CBS 9969 T	AY743621	KF706439	KF706454	KF706492	KF706515	KP323100	
Malassezia furfur	CBS 1878 T	AF063214	AY743634	KF706457	KF706497	KF706516	KF706469	KP323024
Malassezia globosa	CBS 7966 T	AF064025	AY387132	—	KF706493	KF706518	KF706465	KP323018
Malassezia japonica	CBS 9431 T	EF140672	EF140669	KF706458	—	KF706514	KF323153	KP323026
Malassezia nana	CBS 9558 T	EF140673	EF140667	KF706453	KF706491	KF706510	KF706462	KP323015
Malassezia obtusa	CBS 7876 T	AB105197	AY738137	KF706455	—	KF706519	KF706470	KP323030
Malassezia pachydermatis	CBS 1879 T	AY743605	AB118941	DQ457640	DQ785792	DQ408140	—	—
Malassezia restricta	CBS 787 T	AF064026	AY743636	EU192367	KF706496	KF706520	KF706471	KP323027
Malassezia slooffiae	CBS 9966 T	AJ249956	AY743633	KF706459	—	—	—	—
Malassezia sympodialis	CBS 722 T	AF064024	AY743632	KF706460	—	KP323094	KP323158	KP323023
Malassezia yamatoensis	CBS 9725 T	AB125263	AB125261	KF706494	KF706512	KF706466	KP323012	
Moniliellomycetes								
Moniliellales								
Moniliella acetoabutens	CBS 169.66 T	AF335523	EU252153	KF706443	KF706500	KF706523	KF706476	KP323032
Moniliella madda	CBS 240.79 T	AF335522	—	KF706447	KF706502	KF706525	KF706478	KP323038
Moniliella megachiliensis	CBS 190.92 T	EF137916	KF706433	KF706448	KF706501	KF706524	KF706477	KP323037
Moniliella melis	CBS 350.33 T	EU545185	—	KF706446	—	KF706528	KF706481	KP323041
Moniliella nigrescens	CBS 269.81 T	AF335527	KF706436	—	KF706504	KF706527	KF706480	KP323040
Moniliella oedocephalis	CBS 649.66 T	AF335521	KF706435	KF706449	—	KP323039	KP323107	KP323042
Moniliella pollinis	CBS 461.67 T	AF335525	KF706434	KF706450	KF706505	KF706529	KF706482	KP323039
Moniliella spathulata	CBS 241.79 T	AF335526	KF706432	KF706444	KF706503	KF706526	KF706479	KP323036
Moniliella suaveolens	CBS 126.42 T	AF335520	KF706431	KF706445	—	—	—	—

1 Cultures and herbarium specimen are available from the respective collections (CBS, Centraalbureau voor Schimmelcultures; CGMCC, the China General Microbiological Culture Collection Center; CMW, DB, DSM, and FB, Dominik Begerow, Ruhr-Universität Bochum; F, Herbarium Franz Oberwinkler; HAJB, Herbarium Havanna Jardin botánico; HMK, Herbarium Martin Kemler; HRK, Herbarium Ronny Kelner; HUV, Herbarium Ustilaginales Vanký; JAG, Herbarium J.A. Gossmann; JCM: the Japan Collection of Microorganisms (JCM); KVU: Kálmán Vánky Ustilaginales; LMC: Herbarium L. M. Carris; MP, Herbarium Meike Piepenbring; RK, strain collection Ronny Kelner; UMa, Marco Thines).
Table 2. Overview of the classification of the ustilaginomycetous yeasts and related fungi in the Ustilaginomycotina. Only the species compared in this study are included. For the details on the taxonomy of teliomorphs see Vanky (2012) and Begerow et al. (2014). Type species of genera, genera, families, orders and classes are in bold.

Species	Basionym or important synonym	Strain/Herbarium number	D1/D2	ITS
Exobasidiomycetes				
Doassansiales				
Rhamphosphoraceae				
Rhamphospora	*Rhamphospora nymphaeae*	CBS 72.38	DQ831032	DQ831034
Entylomatales				
Entylomataceae				
Entyloma		CBS 203.36	DQ645528	DQ911609
E. calendulae	*Protomyces calendulae*	CBS 746.85	DQ663687	DQ663689
E. ficariae		CBS 480.91	AJ235295	JQ561999
Tilletiopsis		CBS 605.83	AJ235279	AB025690
T. cremaea		CBS 435.92	KP322984	KP322984
T. washingtonensis		CBS 544.50	AJ235278	DQ835994
Exobasidiales				
Brachybasidiaceae				
Meira		CBS 110053	AY158669	AY158675
M. argovae		CBS 110052	AY158668	AY158674
M. geulakonigii		MCA 3882	JX432962	JX432962
M. miltonrushii		CBS 117161	AB185157	AB185159
Cryptobasidiaceae				
Acaromyces		CBS 110050	AY158665	AY158671
Laurobasidium				
L. lauri	*Exobasidium lauri*	MAFF238685	AB177562	AB180359
Exobasidiaceae				
Exobasidium				
E. gracile	*Exobasidium camelliae var. gracile*	DSM4460	DQ663690	DQ663700
E. rhododendri	*Exobasidium vaccinii var. rhododendri*	CBS 101457	DQ667151	DQ667153
E. vaccinii		TUB019109	FJ644526	AB180362
Georgefischeriales				
Gjaerumia				
G. penniseti	*Tilletiopsis penniseti*	CBS 110032	AB052825	—
G. minor	*Tilletiopsis minor*	CBS 543.50	AJ235287	KP322989
Tilletiariaceae				
Phragmotaenium				
P. derrxi	*Tilletiopsis derrxi*	CBS 110078	AB052823	AB045707
P. flavum	*Tilletiopsis flavum*	CBS 401.84	AJ235285	KP322987
P. fulvescens	*Tilletiopsis fulvescens*	CBS 607.83	AJ235282	KP322988
P. oryzicola	*Tilletiopsis oryzicola*	CBS 110079	AB052825	AB045708
Tilletiaria		CBS 436.72	AJ235284	DQ234558
Golubeviales				
Golubeviae				
(continued on next page)				
Species	Basionym or important synonym	Strain/Herbarium number	D1/D2	ITS
---------	-------------------------------	-------------------------	-------	-----
Golubevia gen. nov.¹				
G. pallescens comb. nov.¹	Tilletopsis pallescens¹	CBS 111626	AY879271	AY879278
		CBS 364.85¹	AJ235292	DQ317636
Microstromatales				
Microstromataceae				
M. albiziae		CMW 36935	KP322982	KP322982
M. album	Fusisporium album	RB2072	AF352052	DQ317624
	Rhodotorula bacarum	CGMCC 2.3190¹	AF190002	DQ317629
	Tilletopsis bacarum			
M. phlyloplanum comb. nov.¹	Cryptococcus phlyloplanus¹	JCM 9035¹	AF190004	AB038131
	Rhodotorula phlyloplana¹			
	Cryptococcus hinnuleus¹	JCM 9030¹	AF190003	AB038130
	Rhodotorula hinnulea¹			
M. juglandis	Fusidium juglandis	CBS 287.63	AF009867	DQ789988
Volvocisporiaceae				
Volvocisporium				
V. triumfetticola	Munbasidiospora triumfetticola	RB2070	AF352053	DQ317637
Quambalariaeae				
Q. cyanescens	Sporothrix cyanescens	CBS 876.73	DQ317616	DQ317623
Microstromatales incertae sedis				
Jaminiae¹				
J. angkorensis¹		CBS 10918¹	EU587499	EU604147
J. lanaiensis¹	Sympodiomycopsis lanaiensis¹	CBS 11676¹	GU047881	GQ465043
Sympodiomycopsis¹				
S. kandelliae¹		CBS 10858¹	DQ990016	DQ990017
S. paphiopedilii¹		AS 2.1398¹	AF352054	DQ317631
Robbaueraceae ord. nov.¹				
Robbaueraceae fam. nov.¹				
Robbauer a gen. nov.¹				
R. albescens comb. nov.¹	Tilletopsis albescens¹	CBS 608.83¹	AJ235289	KP322986
Tilletiales				
Tilletiaceae				
E. patelli	Protomyces patelli	CBS 669.70	DQ94784	DQ846894
Tilletia				
T. caries	Uredo caries	CBS 160.85	AJ235307	AY496450
T. controversa	Tilletia controversa	MP2525	DQ832244	DQ832246
T. goloskokovii		LMC321	AY819998	DQ832248
T. iowensis	Neovossia iowensis	BP1863664	AY819988	DQ832253
Ustilaginomycetes				
Urocystales				
Doassansiopsaceae				
Doassansiops transformis	Doassansa limbocaridis	HUV15198	AF09850	DQ873544
Fereydouniaceae¹				
Fereydounia				
F. khargensis¹		IBRCM30116¹	KJ490642	KJ490641
Glomosporiaceae				
Thecaphora				

¹: Authors' synonyms or basionyms.
Table 2. (Continued).

Species	Basionym or important synonym	Strain/Herbarium number	D1/D2 ITS
T. spilanthis		JAG53	DQ832241 DQ832243
Urocystaceae	**Melanoxa**		
M. oxalidiella		TUB 015007	EF635905 EF635906
M. oxalidis	Melanotaenium oxalidis	HUV1436	EF635908 EF635907
Mundkurella	*M. kalopanacis*	HUV16732	AF009869 DQ875351
Urocystis	*U. colchici*	CBS 283.28	DQ838576 DQ839596
	U. eranthidis	hmk292	JN367324 JN367299
Ustacystis	*U. waldsteiniæ*	FO38439	AF009880 DQ875356
Vankyta	*V. heufleri*	HUV15007	EF653981 EF667965
	V. ornithogali		
Ustilaginales	**Anthracoideaceae**		
Cintractia	*C. amazonica*	MP200	AJ236142 DQ875342
	C. axicola	MP3490	DQ631906 DQ631908
	C. limitata	HAJB10488	DQ645506 DQ645508
Dermatosorus	*D. cypér*	HUV15991	AJ236157 DQ875343
Farysia	*F. acheniorum comb. nov.*	AS 2.3198T	AF190001 AB038128
	F. chardoniana	MP2062	AF009859 AY344968
	F. itapuensis comb. nov.	CBS 10428T	DQ767831 DQ767831
	F. setubalensis comb. nov.	CBS 10241T	EU002857 EU002888
	F. taiwaniana comb. nov.	CBS 992T	AY551270 AY555071
Leucocintractia	*L. leucodermoides*	MS482	DQ875363 DQ875346
	L. scleriae	MP2074	AJ236154 AY740025
Moreaua	*M. bulbostylidis*	56581 (M)	DQ875366 DQ875349
	M. fimbristyldis	56582 (M)	DQ875367 DQ875350
Schizonella	*S. melanogramma*		
	S. luzulæ		
Stegocintractia	*Ustilago luzulæ*	MP2340	AJ236148 DQ875353
Tolyposporium	*T. isolepidis*	HUV14720	EU246949 EU246950
	T. neillii	HUV18533	EU246952 EU246951
	T. junci	HUV17168	AF009876 AY344994
Ustanciosporium	*Cintractia gigantospora*	HRK023	JN367325 JN367300
	Cintractia standleyana	JAG73	DQ846888 DQ846890
Melanotaeniaceae	**Melanotaenium**		

(continued on next page)
Table 2. (Continued).

Species	Basionym or important synonym	Strain/Herbarium number	D1/D2	ITS
M. cingens	Ustilago cingens	L.E.Kari191(M)	DQ875364	DQ875347
M. endogenum	Protomyces endogenus	CBS 481.91	DQ789979	DQ789981
M. euphorbiae	Tilletia euphorbiae	HUV17733	JN367314	JN367289
Ustilaginaceae				
Anomalomyces				
A. panici		BRIP46421	DQ459347	DQ459348
A. yakirrae		HUV 2198	KC184906	KC184907
Anthracocystis				
A. anthracoidespora	Sporisorium anthracoidespora	HUV18350	JN367315	JN367290
A. apulidae	Sorosporium apulidae	KVU967	JN367319	JN367294
A. apulidae-aristatae	Sorosporium apulidae-aristatae	MS287	AY740098	AY740045
A. cenchri	Ustilago cenchri	MP1974	AF453943	AY344972
A. cenchri-elymoidis	Sorosporium cenchri-elymoidis	BRIP 26491	HCO13122	HCO13094
A. destruens	Ust. exs. 472 (M)	UST74077	AY344976	
A. elionuri	Ustilago elionuri	MP2601 (LPB)	AY740157	AY740157
A. fasicularis		MS198	AY740088	AY740035
A. formosana	Ustilago formosana	Ust. Exs. 688 (M)	AY740134	AY344979
A. flocculosa	Pseudozyma flocculosa	CBS 167.88	AJ235299	AF294690
A. heteropogonica	Sorosporium heteropogonica	BRIP51822	HCO13135	HCO130101
A. hwangensis	Sorosporium hwangense	MS267	AY740104	AY740051
A. loudetiae-pedicellatae	Sorosporium loudetiae-pedicellatae	MS252	AY740106	AY740053
A. ovaria	Sorosporium ovarium	MP1871	AJ236137	AY740020
A. pampara comb. nov.	Ustilago pamparum	JCM 2007	AY740088	AY740056
A. polliniae	Sorosporium polliniae	MS32	AY740138	AY344987
A. provincialis	Sorosporium elisii var. provinciale	Ust.exs.759 (M)	AY747078	AY344988
A. pseudanthistriatae	Sorosporium pseudanthistriatae	KVU967	JN367320	JN367285
A. themedae-argentei	Sorosporium themedae-argentei	Ust. Exs. 855	AY740140	AY344991
A. tumefaciens	Sorosporium tumefaciens	MS139	AY740128	AY344969
A. walkeri	Sorosporium walkeri	KVU975	JN367322	JN367297
Dirkmeia gen. nov.				
D. churashimensis comb. nov.	Pseudozyma churashimensis	OK98	AB548955	AB548947
Kalmanolza gen. nov.				
K. fusiformata comb. nov.	Pseudozyma fusiformata	CBS 6951	AB089367	AB089366
K. brasiliensis comb. nov.	Pseudozyma brasiliensis	GHG001	KF737866	KF737866
K. vetiver comb. nov.	Pseudozyma vetiver	DMKU-LV99	AB809649	AB809652
Langdonia				
L. aristidae	Ustilago aristidae	HUV19145	JN367317	JN367292
L. confusa	Sorosporium confusum	BRIP42670	HCO13132	HCO13095
L. jejuensis comb. nov.	Pseudozyma jejuensis	CBS 10454	FN286865	EF079966
Macalpinomyces				
M. eragrostiellae		Ust.Exs.960(M)	AY740089	AY740036
M. eriachnes	Sorosporium eriachnes	CBS 131454	JN367312	JN367287
M. loudetiae	Sorosporium loudetiae	MS250	AY740152	AY740151
M. mackinlayi	Sorosporium mackinlayi	BRIP50249	HCO13131	GU014817
M. neglectus	Ustilago neglecta	RB0256 (TUB)	AY740109	AY740056
M. spermophorus		F565	AY740171	AY740171
M. trichophyta		MS248	AY740092	AY740039
M. tristachyae		MS15	AY740164	AY740164
Species	Basionym or important synonym	Strain/Herbarium number D1/D2	ITS	
---------	-------------------------------	-------------------------------	-----	
M. viridans	*Melanopsichium pennsylvanicum*	BRIP 49133	HQ013125 HQ013089	
M. pennsylvanicum	*Melanopsichium pennsylvanicum*	HUV17548 (TUB)	AY740093 AY740040	
M. antarcticus comb. nov.	*Candida antarctica*	CBS 5865	AJ235302 AB089358	
M. aphidis comb. nov.	*Pseudozyma aphidis*	JCM 10317	JN940521 JN942668	
M. bullatus	*Sorosporium bullatum*	CBS 425.34	DQ931011 DQ931013	
M. parantarcticus comb. nov.	*Pseudozyma parantarctica*	CBS 10005	AB089357 AB089356	
M. rugulosus comb. nov.	*Pseudozyma rugulosa*	CBS 170.88	JN940523 JN942670	
S. aegypticum	*Ustilago aegyptica*	Ust.Exs.756(M)	AY740129 AY344970	
S. andropogonis	*Uredo andropogonis*	MS283	AY740095 AY740042	
S. arthraxonis	*Ustilago arthraxonis*	MS338	AY740099 AY740046	
S. cordobense	*Ustilago cordobensis*	MS159	AY740155 AY740155	
S. cruentum	*Ustilago cruenta*	MS14	AY740156 AY740156	
S. culmipерdum	*Ustilago culmipерd*	MP2060	AF135860 AY344975	
S. dimeniae-ornithopodae	*Ustilago*	Ust.exs. 472	AY740132 AY344977	
S. erythraeense	*Ustilago erythraeensis*	Ust.Exs.849 (M)	AY740102 AY740049	
S. exsertum	*Cintractia exserta*	KV0965	JN963718 JN976293	
S. fastigiatum	*Sphacelotheca fastigiatum*	MS21	AY740133 AY344978	
S. foveolati	*Sphacelotheca foveolati*	MS283	AY740095 AY740042	
S. graminicola comb. nov.	*Pseudozyma graminicola*	LII0	AB108728 AB108728	
S. holwayii	*Sphacelotheca holwayii*	MP1271	AY453941 AY344990	
S. lacrymae-jobi	*Ustilago lacrymae-jobi*	MS6611	AY740105 AY740052	
S. lepturi	*Ustilago carbo var. lepturi*	Ust.exs.966 (M)	AY740135 AY344981	
S. manilense	*Ustilago manilensis*	Ust.Exs.854 (M)	AY740112 AY740059	
S. modestum	*Ustilago modesta*	MS337	AY740107 AY740054	
S. moniliferum	*Ustilago monilifera*	MS 98	AY453940 AY344984	
S. nervosum	*Ustilago nervosa*	MS241	AY740110 AY740057	
S. occidentale	*Sphacelotheca occidentalis*	Ust.exs.758 (M)	AY740137 AY344985	
S. ophiuri	*Ustilago ophiuri*	HB20	AY740019 AY740019	
S. pseudochinolaenae	*Ustilago pseudochinolaenae*	Ust.exs.853 (M)	AY740139 AY344989	
S. puellare	*Ustilago puellaris*	MP2372	AY740111 AY740058	
S. reilianum	*Ustilago reiliana*	Ust.exs. 527	AY740163 AY740163	
S. sclatamineum	*Ustilago sclataminea*	MP541	AY740147 AY740070	
S. sorghi	*Ustilago sorghi*	MP2036a	AY740141 AY344992	
S. trachypogonicola	*Sphacelotheca trachypogonicola*	MS283	AY740113 AY740060	
S. trachypogonis-splumosi	*Sphacelotheca trachypogonis-splumosi*	MS283	AY740113 AY740060	
S. veracruzanum	*Sphacelotheca veracruzanum*	MP960	AY740104 AY344993	
S. vermiculum	*Ustilago vermiculums*	BRIP49748	HQ013134 HQ013114	
S. wynaadens	*Ustilago wynaadensis*	BRIP27640	HQ013124 HQ013116	
Stollia	*Ustilago bursa*	KVU844	JN967316 JN967291	
S. ewartii	*Ustilago ewartii*	BRIP51818	HQ013127 HQ013087	
Tranzscheliella	*Caeoma hypodytes*	MS342	DQ191256 DQ191250	
T. hypodytes	*Caeoma hypodytes*	MS342	DQ191256 DQ191250	

(continued on next page)
Species	Basionym or important synonym	Strain/Herbarium number	D1/D2	ITS
T. williamsii	Sorosporium williamsii	CBS 131475	JN367338	JN367310
Triodiomyces				
T. altillis	Ustilago altillis	BRIP52543	H0013136	AY740166
T. crassus comb. nov.	Pseudozyma crassa	DMST17136	A1117962	A1117962
T. trioides	Ustilago trioides	HUV17662	AY740128	AY740074
Tubisorus				
T. pachycarpus	Sorosporium pachycarpum	HUV 21891	JN871718	JN871717
Ustilago				
U. abaconensis comb. nov.	Pseudozyma abaconensis	CBS 8380	FJ008047	FJ008053
U. affinis		MP982	A133581	AY344995
U. austro-africana		MS316	AY740115	AY740061
U. avaneae	Ustilago carbo var. avaneae	DB559	AY740117	AY740063
U. bromivora	Ustilago carbo d bromivora	MS175	AY740118	AY740064
U. bullata		MP2363	AY453935	AY344998
U. bouquetii		MS315	A740167	
U. calamagrostidis	Tileta calamagrostidis	MS314	AY740119	AY740065
U. crameri		MS72	AY740143	AY344999
U. cynodontis	Ustilago carbo b cynodontis	MS199	AY740168	AY740168
U. davisi		HUV19252	AY740169	AY740169
U. echinata		MS132	AY740144	AY345001
U. esculenta		Ust.exs. 540	A453937	AY345002
U. filiformis	Lycoperdon filiforme	RB3011	AY740120	AY740066
U. hordei	Uredo segetum a hordei	Ust.exs. 784	A453934	AY345003
U. hordei		CBS 131470	KF706429	KF706437
U. ixophori		MP2194 (USJ)	AY740121	AY740067
U. maydis	Mycosarcoma maydis	CBS 504.76	A453938	AY854090
U. maydis		FB1	K866233	K866233
U. maydis	Pseudozyma prolifica	CBS 319.87	A235298	AF294700
U. nuda	Ustilago segetum var. nuda	HUV17782	JN367324	JN367307
U. pamirica		Ust.exs.789 (M)	AY740145	AY345005
U. shanxiensis comb. nov.	Pseudozyma shanxiensis	AS 2.2523	D008955	D008956
U. schmidtae		BRIP1848	HQ013129	HQ013121
U. Schroeteriana		Ust.exs.887 (M)	AY740146	AY345006
U. siamensis comb. nov.	Pseudozyma siamensis	DMST17137	A1117963	A1117963
U. sparsa		KUV892	JN367335	JN367308
U. striiformis		HUV18286	D8753175	AY740172
U. synthetismae	Caeoma synthetismae	Ust.Exs.998 (M)	AY740123	AY740071
U. tragana		MS320	AY740124	AY740072
U. trichophora	Caeoma trichophorum	MS336	AY740125	AY740073
U. tritici	Uredo segetum & tritici	CBS 669.70	DQ094784	DQ846894
U. vetiveriae		HUV17954	JN367337	JN345501
U. xerocloae		Ust.exs.1000 (M)	AY740150	AY345012
Species remain to be reclassified				
Pseudozyma alboarmeniaca pro tem.		DMST17135	A1117961	A1117961
P. hubeiensis pro tem.		AS 2.2493	D008953	D008954
P. pruni pro tem.		CBS 10937	EU379943	EU379942
P. thaiandica pro tem.		CBS 10006	AB089355	AB089354
P. tsukubaensis pro tem.		JCM 10324	AB089373	AB089372

Websdaneaceae

Websdanea

66
gene regions, namely the small subunit nuclear ribosomal RNA (SSU or 18S rRNA), the D1/D2 domains of the large subunit (LSU or 26S rRNA) and the ITS 1+2 regions (including 5.8S rRNA). PCR and sequencing of the three rRNA gene regions and three protein genes, \(RPB1 \), \(RPB2 \) and \(TEF1 \), we performed as described in Wang et al. (2014). PCR and sequencing of the CYTB gene were performed according to Wang & Bai (2008).

Cycle sequencing was performed using the ABI BigDye cycle sequencing kit (Applied Biosystems, Foster, California). Electrophoresis was done using an ABI PRISM 3730 DNA sequencer.

Molecular phylogenetic analyses

Five data sets consisting of the D1/D2 domains of the LSU rRNA gene, the combined ITS (including 5.8S rRNA gene) and D1/D2 domains of the LSU rRNA gene, the combined three rRNA regions, the combined four protein coding genes, and the combined seven genes, respectively, were constructed. Introns were deleted from all sequences before the alignment performed. Sequences of those data sets were aligned with the MAFFT program (Standley 2013). The alignments of different genes were concatenated in the respective analyses. The alignment data sets were first analysed with Modeltest version 3.04 (Posada & Crandall 1998) using the Akaike information criterion (AIC) to find the most appropriate model of DNA substitution. A general time-reversible model of DNA substitution additionally assuming a percentage of invariable sites and \(\Gamma \)-distributed substitution rates at the remaining sites (GTR + I + G) was selected for further analyses. Maximum likelihood (ML) analysis was conducted in RAxML-HPC2 7.2.8 (Stamatakis 2006) using

Table 2. (Continued).

Species	Basionym or important synonym	Strain/Herbarium number	D1/D2	ITS
\(W. \) \(l y g i n i e \)	\(Ustilago \) \(l y g i n i e \)	HUV 17900	AJ23619	DQ875357
Malasseziomycetes\(^1\)	\(Malassezia\)	\(CBS 10434\)\(^2\)	\(AY743616 \) \(AY743656 \)	
\(M. \) \(c a p r a e \)\(^1\)	\(CBS 11721\)\(^3\)	\(GU733708 \) \(GU733709 \)		
\(M. \) \(d e r m a t i s \)\(^1\)	\(CBS 9169\)\(^7\)	\(AB070365 \) \(A390284 \)		
\(M. \) \(e q u i n a \)\(^1\)	\(CBS 9969\)\(^7\)	\(AY743621 \) \(KF706439 \)		
\(M. \) \(f u r f u r \)\(^1\)	\(Microsporum \) \(f u r f u r \)\(^1\)	\(CBS 1878\)\(^X\)	\(AFO65324 \) \(AY743634 \)	
\(M. \) \(g l o b o s a \)\(^1\)	\(CBS 7966\)\(^7\)	\(AFO64025 \) \(A387132 \)		
\(M. \) \(j a p o n i c a \)\(^1\)	\(CBS 9431\)\(^7\)	\(EF140672 \) \(EF140669 \)		
\(M. \) \(n a n a \)\(^1\)	\(CBS 9558 \)	\(EF140673 \) \(EF140667 \)		
\(M. \) \(o b l u s a \)\(^1\)	\(CBS 7878\)\(^7\)	\(AB105197 \) \(A387137 \)		
\(M. \) \(p a c h y d e r m a t i s \)\(^1\)	\(Pityosporum \) \(p a c h y d e r m a t i s \)\(^1\)	\(CBS 1879\)\(^7\)	\(AY743605 \) \(A118941 \)	
\(M. \) \(r e s t r i c t a \)\(^1\)	\(CBS 7877\)\(^X\)	\(AFO64026 \) \(AY743636 \)		
\(M. \) \(s l o c i f i a e \)\(^1\)	\(CBS 7956\)\(^7\)	\(A249956 \) \(AY743633 \)		
\(M. \) \(s y m p o d i a l i s \)\(^1\)	\(CBS 7222\)\(^7\)	\(AFO64024 \) \(AY743632 \)		
\(M. \) \(y a m a t o e n t i s \)\(^1\)	\(CBS 9725\)\(^7\)	\(AB125263 \) \(AB125261 \)		

\(^1\) Yeast species.
RESULTS AND DISCUSSION

Based on the sequences determined in this study and those retrieved from GenBank (http://www.ncbi.nlm.nih.gov/genbank) two datasets comprising concatenated sequences of the seven genes and of the four protein-coding genes solely were constructed for the analysis of the phylogeny of yeast and representative teleomorphic taxa and to visually examine the topological concordance of the trees generated using different algorithms. In order to further examine the fine phylogenetic relationships of yeast species with teleomorphic taxa, a dataset consisting of the combined ITS (including 5.8S rRNA gene) and LSU rRNA gene sequences and a dataset consisting of only LSU rRNA gene sequences were constructed and analysed.

The analysis of the combined seven genes, the combined ITS and LSU rRNA genes and the four protein genes (Figs 1, 2 and 3) were recognised in Nasr et al. (2011), proposed by Farysia species representing anamorphic stages of the genus Farysia. Therefore, we consider Farysizyma species representing anamorphic stages of the genus Farysia.

The Pseudozyma species were located mainly in various clades together with teleomorphic species from the so called Ustilago-Sporisorium-Macalpinomyces complex (McTaggart et al. 2012a, b) in the trees made from the seven gene and the four protein gene datasets (Figs 1 and 3), being in agreement with previous studies based on rRNA gene sequence analysis (Boekhout et al. 2011). The three teleomorphic genera were also found to be polyphyletic (Stoll et al. 2003, 2005), McTaggart et al. (2012a) reconstructed the phylogeny of the complex using four nuclear loci including ITS, LSU rRNA gene, GAPDH and TEF1 and defined eight groups, Clade 1 to Clade 8. Each of the clades was also characterised by host specificity and soral synapomorphies (McTaggart et al. 2012a). Consequently, the authors re-classified the complex by emending the genera Sporisorium (Clade 1), Stollia (Clade 3), Anthracocystis (Clade 4), Triodiomyces (Clade 5), Langdonia (Clade 8) and Stollia (Clade 3) and Triodiomyces (Clade 5) to reflect morphological synapomorphies (McTaggart et al. 2012b).

The fine phylogenetic relationships of the Pseudozyma species with the teleomorphic taxa in the Ustilaginales are shown in the tree constructed from the ITS and LSU dataset which contained the species employed in McTaggart et al. (2012a, b) and other smut fungi (Fig. 2). Sporisorium (Clade 1), Stollia (Clade 3), Anthracocystis (Clade 4), Triodiomyces (Clade 5), Langdonia (Clade 8) and Clade 7 were resolved as well supported monophyletic clades here, being in agreement with McTaggart et al. (2012a, b). However, Clade 2 and Clade 6 as defined by McTaggart et al. (2012a) were shown to be polyphyletic in this study (Fig. 2A). Species from Clade 2 were located in two different subgroups and those from Clade 6 in three subgroups (Fig. 2A). The phylogenetic relationships among these subgroups were not resolved due to the lack of support. The statistical support values for Clade 2 and Clade 6 were weak in the previous study (McTaggart et al. 2012a). Clade 2 lacked Bayesian PP support and Clade 6 with three sub-clades lacked both ML BP and Bayesian PP support. The Ustilago davisi and Ustilago esculenta sub-clades defined by McTaggart et al. (2012a) in Clade 6 also lacked statistical support.

As shown in previous studies based on rRNA gene sequence analyses (Fell et al. 2000, Boekhout et al. 2011), the type species of the genus Pseudozyma, P. proliifica, clustered together with Ustilago maydis in the trees reconstructed from the seven gene, the four protein gene and the two rRNA genes datasets (Figs 1, 2B and 3). The type strain of P. proliifica shared identical ITS and LSU rRNA gene sequences with Ustilago maydis CBS 504.76, suggesting that P. proliifica represents the saprobic asexual stage of Ustilago maydis and should be treated as a synonym of the latter according to the new nomenclature for fungi (McNeill et al. 2012). As a consequence, the genus name Pseudozyma is not available any more.

Four Pseudozyma species, namely P. antarctica, P. aphidis, P. parantarctica and P. rugulosa, clustered together with Moesziomyces bullatus, the sole described species of this teleomorphic genus (Begerow et al. 2014) with strong BP and PP support values in the tree constructed from the ITS and LSU dataset (Fig. 2C). The close affinity of the four Pseudozyma species with Moesziomyces bullatus was also resolved and strongly supported in the trees made from the seven genes and the four protein genes datasets (Figs 1 and 3). Another
Fig. 1. Phylogenetic tree constructed using maximum likelihood analysis from combined sequences of the SSU rRNA gene, LSU rRNA D1/D2 domains, ITS1+2 regions (including 5.8S rRNA gene), RPB1, RPB2, TEF1 and CYTB depicting the phylogenetic placements of yeast genera within Ustilaginomycotina. Branch lengths are scaled in terms of expected numbers of nucleotide substitutions per site. Bayesian posterior probabilities (PP) and bootstrap percentages (BP) from 1 000 replicates of maximum likelihood and maximum parsimony analyses are shown respectively from left to right on the deep and major branches resolved. Taxa in bold are yeast and yeast-like fungi. Note: nm, not monophyletic; ns, not supported (PP < 0.9 or BP < 50 %).
Fig. 2. Phylogenetic tree constructed using maximum likelihood analysis from the combined sequences of the LSU rRNA D1/D2 domains and ITS1+2 regions (including 5.8S rRNA gene) depicting the phylogenetic relationships of yeast taxa with teleomorphic taxa within Ustilaginomycotina. Branch lengths are scaled in terms of expected numbers of nucleotide substitutions per site. Bayesian posterior probabilities (PP) and bootstrap percentages (BP) from 1 000 replicates of maximum likelihood and maximum parsimony analyses are shown respectively from left to right on the deep and major branches resolved. A. The outline of the tree showing the phylogenetic relationships of the genera or clades within Ustilaginomycotina. B. A part of the tree showing the phylogenetic relationships of a part of taxa within the Ustilaginales. C. A part of the tree showing the phylogenetic relationships of another part the taxa within the Ustilaginales and the taxa in the Urocystales. D. A part of the tree showing the phylogenetic relationships of the taxa within Exobasidiomycetes. Taxa in bold are yeast and yeast-like fungi. Notes: nm, not monophyletic; ns, not supported (PP < 0.9 or BP < 50%).
B

Fig. 2. (Continued).
Stollia ewartii Stollia bursa Ustilago trichophora Ustilago schroeteriana Ustilago davisii Ustilago filiformis Ustilago tragana Melanopsisichium pennsylvanicum Sporisorium aegypticum Sporisorium modestum Ustilago schmidtiae Ustilago esculenta Pseudozyma rugulosa Pseudozyma aphidis Pseudozyma antarctica Pseudozyma parantarctica U. davisii sub-clade U. esculenta sub-clade (Clade 6) Moesziomyces Farysizyma taiwaniana Farysizyma chardoniana Farysizyma acheniorum Schizonella melanogramma Stegocintractia luzulae Cintractia axicola Cintractia amazonica Dermatosorus cypri Tolypoosporium nelli Tolypoosporium isolepidis Tolypoosporium juncl Farysizyma itapuensis Ustanciosporium standleyanum Ustanciosporum gigantosporum Leucocintractia scleriae Leuconectria leucodermoides Moreaua fimbriystilids Moreaua bulbostyliids Websdanea lyginiae Fereydounia khargensis Doassansiops limnocharidis Thecaphora splantihs

Fig. 2. (Continued).
teleomorphic species, *Macalpinomyces eriachnes*, occurred as a basal branch to the *Moesziomyces* clade (Figs 1 and 3). The close phylogenetic relationship of the four *Pseudozyma* species with the monotypic genus *Moesziomyces* suggests that the former represent anamorphic and culturable stages of *Moesziomyces* species and can be transferred to the genus *Moesziomyces*.

Pseudozyma graminicola clustered in the recently emended genus *Sporisorium* (McTaggart et al. 2012b). The closest relative of this species was *S. holwayii* (Fig. 2B). *P. graminicola* differed from *S. holwayii* by 47 (7 %) and 6 (1 %) mismatches in the ITS and LSU rRNA gene regions, respectively, suggesting that the former represents a distinct species in the genus *Sporisorium* and a new combination is proposed.

The close relationship between *Pseudozyma flocculosa* and *An thracocystis apludae* was shown in the seven genes and the four protein genes based trees (Figs 1, 3). The affinity of *P. flocculosa* with *An thracocystis* was confirmed by the phylogenetic analysis based on the ITS and LSU dataset (Fig. 2B). This species has been recently transferred into the genus *Anthracocystis* by Piątek et al. (2015).

Pseudozyma crassa occurred in the *Triodiomyces* clade with 75–89 % BP and 1.0 PP support values (Fig. 2C). *P. crassa* was most closely related to *T. altillis* with 3 and 92
Fig. 3. Phylogenetic tree constructed from maximum likelihood analysis based on the combined sequences of protein-coding genes including RPB1, RPB2, TEF1 and CYTB, showing the phylogenetic relationships of yeast genera within Ustilaginomycotina. Branch lengths are scaled in terms of expected numbers of nucleotide substitutions per site. Bayesian posterior probabilities (PP) and bootstrap percentages (BP) from 1 000 replicates of maximum likelihood and maximum parsimony analyses are shown respectively from left to right on the deep and major branches resolved. Taxa in bold are yeast and yeast-like fungi. Note: nm, not monophyletic; ns, not supported (PP < 0.9 or BP < 50 %).
Fig. 4. Phylogenetic tree constructed from maximum likelihood analysis based on the D1/D2 domains of the LSU rRNA, showing the relationships of taxa within the Exobasidiomycetes. Bootstrap percentages over 50 % from 1000 replicates are shown. Taxa in bold are yeast and yeast-like fungi.
mismatches in the LSU rRNA gene and ITS region, respectively. The result suggests that *P. crassa* belongs to the genus *Triodiotomyces*. *Pseudozyma jejuniensis* was located in the *Langdonia* clade with 56–58 % BP and 0.99 PP support values (Fig. 2B), indicating that this species can be transferred to the genus *Langdonia*.

Pseudozyma abaconensis, *P. sharxiensis* and *P. siamensis* occurred in the *Ustilago sensu stricto* sub-clade (Clade 6) containing *U. hordei*, the type species of *Ustilago* (McTaggart et al. 2012a), with strong BP (90–95 %) and PP (1.0) support values (Fig. 2B). *P. siamensis* branched first in the *Ustilago sensu stricto* sub-clade while the phylogenetic positions of *P. abaconensis* and *P. sharxiensis* within this sub-clade were not resolved. The *Ustilago sensu stricto* sub-clade was also resolved as a strongly supported monophyletic group by McTaggart et al. (2012a). Due to the presence of *U. hordei*, the generic type, the genus name *Ustilago* will be used for this sub-clade. Therefore, it is reasonable to transfer these three *Pseudozyma* species to the genus *Ustilago*.

Three *Pseudozyma* species, including *P. brasiliensis*, *P. fusiformata* and *P. vetiveri*, clustered together in an independent clade with 79–87 % BP and 1.0 PP support values (Fig. 2B). The phylogenetic relationship of this clade with other clades in the *Ustilaginales* were not resolved based on the phylogenetical analysis of the ITS and LSU datasets, being in agreement with Chamanapa et al. (2013) and Oliveira et al. (2014). The result suggests that this clade represents a distinct genus. *Pseudozyma churashimaensis* occurred in an isolated deep branch within *Ustilaginaeae* in the tree drawn from the ITS and LSU dataset (Fig. 2C). The affinity of this species to any teleomorphic taxa was not resolved, suggesting that this species represents another genus.

Three *Pseudozyma* species, including *P. alboarmeniaca*, *P. thailandica* and *P. tsukubaensis* clustered in Clade 7 recognised by McTaggart et al. (2012a) with 73 % ML BP and 1.0 PP support values (Fig. 2C). This clade containing mixed smut species from the genera *Macalpinomyces*, *Sporisorium* and *Ustilago*, was also resolved by Stoll et al. (2003, 2005). *P. thailandica* was most closely related to *Macalpinomyces viridians*; *P. tsukubaensis* had identical LSU rRNA gene sequences with *Ma. spermophorus*; and *P. alboarmeniaca* showed close affinity to *Ustilago austro-africana, Ma. spermophorus* and *P. tsukubaensis*. Because of the taxonomic confusion between the teleomorphic genera, the taxonomic treatment of these three *Pseudozyma* species should be made together with the taxonomic revision of the teleomorphic species in this clade.

Pseudozyma pruni clustered together with the teleomorphic species *Anomalomycetes yakirae*, *Anomalomycetes panicii* and *Sporisorium trachypogonis-plumosii* without significant support (Fig. 2B). *P. pruni* was proposed as a close relative of *P. fusiformata* by Liu et al. (2009). The former exhibited a close affinity to *A. yakirae* in previous studies based on sequence analysis of the ITS and LSU rRNA gene regions (Chamanapa et al. 2013, Oliveira et al. 2014). *A. panicii*, the type species of the genus *Anomolomycetes*, was located in an isolated branch in the *Ustilaginales in McTaggart et al. (2012a)*. *A. yakirae* was proposed as the second member in *Anomalomycetes* by Shivas et al. (2013) because it was located in the same clade with *A. panicii* in the ITS and LSU rRNA gene based tree. *A. yakirae* and *A. panicii* also shared some morphological characters and occurred on closely related hosts. However, the close relationship between *A. yakirae* and *A. panicii* was not confidently resolved in this study and was only weakly supported by previous molecular data compared in Shivas et al. (2013). Thus, a more robust phylogenetic analysis using more genes will be required for a taxonomic treatment of *P. pruni* and related teleomorphic species.

In the tree based on the seven genes dataset (Fig. 1), the position of *Pseudozyma hubeiensis* remained uncertain probably because of the limited sampling of teleomorphic taxa. In the ITS and LSU dataset based tree, this species was located in Clade 2 (McTaggart et al. 2012a) together with *Ustilago maydis*, *Ustilago boucheti*, *Tubisorus pachycarpus*, *Ustilago vetiveriae* and *Macalpinomyces mackinlayi*, but the phylogeny lacked statistical support (Fig. 2B). Thus, the taxonomic position of *P. hubeiensis* remains to be determined.

Exobasidiomycetes

Eight orders were previously proposed in this class (Begerow et al. 2006, 2014, Boekhout et al. 2011). After the proposal of class *Malasseziomycales* to accommodate the *Malasseziales* (Wang et al. 2014), *Exobasidiomycetes* currently contains four orders, *Entylomatales*, *Exobasiales*, *Georgoschleriales* and *Microstromatales*, that have species with a yeast state and three orders, *Ceraceosorales*, *Doassansiales* and *Tilletiales*, that do not have any known yeast species (Boekhout et al. 2011). Begerow et al. (2006) proposed the order *Ceraceosorales* for *Ceraceosorus bombaci* which appeared to be closely related to a yeast-like species *Tilletiopsis ablescens*. However, in the tree drawn form the LSU dataset in this study, *T. ablescens* is not closely related to *C. bombaci* (Fig. 4). The phylogenetic position of *C. bombaci* and its relationship with *T. ablescens* remain controversial (Hibbett et al. 2007, Boekhout et al. 2011, Begerow et al. 2014).

In the trees constructed from the seven genes, the four protein coding genes and the two rRNA genes, each of the four yeast containing orders, *Entylomatales*, *Exobasiales*, *Georgoschleriales* and *Microstromatales*, was resolved as a strongly supported monophyletic clade. The three orders without yeast species were also resolved as separate clades in these analyses (Figs 1–4). However, these orders assigned to *Exobasidiomycetes* did not form a monophyletic lineage. In the trees drawn from the seven genes and the four protein coding genes, the *Georgoschleriales* occurred as a sister lineage to *Moniliellomycetes* with strong support (Figs 1 and 3). The orders *Entylomatales*, *Exobasiales* and *Doassansiales* formed a monophyletic lineage together but with weak BP support; while *Microstromatales* and *Tilletiales* formed distinct lineages with paraphyletic relationships to the other orders in *Exobasidiomycales* (Figs 1 and 3). The results confirmed that *Exobasidiomycetes* is not monophyletic, but might support the originally described superorder *Exobasidiana* including the three orders *Entylomatales*, *Doassansiales* and *Exobasiales* based on morphological similarities of the interaction apparatus as suggested by Bauer et al. (1997).

Seven genera of yeasts or yeast-like fungi, namely *Acaromyces*, *Jaminiaea*, *Meira*, *Rhodotorula* (*pro parte*), *Symposiumycopsis*, *Tilletiaria* and *Tilletiopsis* are currently included in the *Exobasidiomycetes*. Since the protein coding gene and even the SSU and ITS rRNA gene sequences of many teleomorphic taxa of *Exobasidiomycetes* are not available at present, a supplementary dataset containing only LSU rRNA gene sequences was not attempted.
sequences was used for analysing the phylogenetic relationships of yeast species with teleomorphic species in the *Exobasidiomycetes*.

In the trees drawn from the seven genes, the four protein genes and the ITS dataset, *Acaramyces ingoldii* and three *Meira* species were located together with three *Exobasidiales* in the *Exobasidiomycetes* with strong support (Figs 1, 2D and 3), being in agreement with Boekhout et al. (2011). However, in the tree made from the LSU dataset containing more teleomorphic species, the taxa of *Exobasidiales* as defined by Begerow et al. (2014) were separated into two clades (Fig. 4). *Ac. ingoldii* occurred in a well supported clade together with species of the teleomorphic genus *Conicinodium*, *Conidiotrichum*, *Drepanosporis* and *Laurobasidium*. *Ac. ingoldii* was closely related with *Laurobasidium lauri* and shared an identical LSU rRNA gene sequence with a GenBank entry (AB177562) labelled as ‘Laurobaedium hachijoense’ (*Exobasidium hachijoense*). The name *Laurobasidium hachijoense* has not been validly published and *L. lauri* is presently the solely species published in the genus *Laurobasidium* (Begerow et al. 2014). It is not sure whether *Ac. ingoldii* represents an anamorphic species of *Laurobasidium* because the ML BP support for a close affinity of *Ac. ingoldii* and *L. lauri* remained weak (62 %) (Fig. 4). Besides, the sequence difference between *Ac. ingoldii* and *L. lauri* appeared greater than that between the two teleomorph species *Conicinodium bullatum* and *Drepanosporis larviformis* presently classified into different genera. Therefore, the genus *Acaramyces* will be maintained at present. In the LSU rRNA gene-based tree, the *Meira* species were located in another clade together with teleomorphic species from *Exobasidium* and other genera of the *Exobasidiomycetes*, including *Dicellomyces*, *Graphiola* and *Kordyana* (Fig. 4). In this clade, the four *Meira* species formed a distinct sub-clade with 100 % ML BP value, supporting the recognition of this genus.

The *Jamineae* and *Sympodiomycopsis* species and three *Rhodotorula* species clustered in the *Microstromatales* together with teleomorphic species of *Microstoma*, *Quambalaria* and *Volvocisporium* (Figs 1, 2D and 4). The two *Jamineae* species formed a first branched clade in the *Microstromatales* in the seven genes and the four protein genes based trees (Figs 1 and 3). A close relationship of the *Jamineae* species with *Microstoma albiziae* was shown in the trees drawn from the combined seven gene sequences (Fig. 1) and the LSU rRNA gene sequences alone (Fig. 4), but not supported in the combination of ITS and LSU datasets (Fig. 2D). The genus *Microstoma* is polyphyletic as shown previously (Begerow et al. 2006, 2014, Boekhout et al. 2011) and in the present study. *M. albiziae* is not the type species of the genus, and, therefore, the genus *Jamineae* should be remained. However, the affiliation to *Jaminea* or *Sympodiomycopsis* lacks fundamental support and further data are needed before a new combination can be proposed. Begerow et al. (2014) assigned *Jaminea* to the family *Quambaliariaceae*, but the close relationship of this genus with the teleomorphic species *Quambalaria cyanescens* was not shown in any of the trees constructed in this study. Therefore and due to the lack of other *Quambalaria* species in our dataset, it is preferred to treat *Jaminea* as ‘incertae sedis’ within *Microstromatales* as Spiczki & Kajdacsi (2009) suggested before.

The affiliation of *Sympodiomycopsis* species within the *Microstromatales* was confirmed in this study, but the relationship of this genus with the other members of the order was not resolved (Figs 1, 2D, 3 and 4), being in agreement with Begerow et al. (2014) who treated the genus as ‘incertae sedis’ in the *Microstromatales*.

Among the three *Rhodotorula* species belonging to the *Microstromatales*, *R. bacarum* had almost identical ITS and LSU rRNA gene sequences with *Microstoma album*, the type species of the genus *Microstoma* (Figs 2D and 4). As commented by Sampaio (2011), *R. bacarum* should be regarded as representing the asexual stage of *M. album* and thus should be treated as a synonym of the latter. The other two *Rhodotorula* species, *R. hinnulea* and *R. phyllolopa*, exhibited a close relationship with *Microstoma juglandis* in all the trees constructed in this study (Figs 1, 2D, 3 and 4). *R. hinnulea* was considered a synonym of *R. phyllolopa* in Sampaio (2011) because of identical ITS and LSU rRNA gene sequences. In this study we showed that the type strains of the two species also shared similar protein gene sequences (Fig. 3), supporting their assumed conspecificity (Fig. 2D). In the LSU rRNA gene based tree, *R. phyllolopa* was located together with *M. juglandis* (Fig. 4). In the seven genes and the four protein genes based trees, the close affinity of *R. phyllolopa* and *M. juglandis* with *R. bacarum* (the anamorph of *M. album*) was resolved (Figs 1 and 3). The result suggests that *R. phyllolopa* represents an anamorphic species in the genus *Microstoma*.

In agreement with previous studies (Fell et al. 2000) the genus *Tilletiopsis* was shown to be polyphyletic in this study. Three *Tilletiopsis* species, including the type species of the genus, *T. washingtonensis*, formed a well supported (100 % BP and 1.0 PP) clade in the *Entylomales* in all the trees constructed using different datasets (Figs 1, 2D, 3 and 4). This clade was resolved as a sister group of the genus *Entyloma*. The result suggests that this clade represents a distinct genus which should keep the name *Tilletiopsis*.

Six *Tilletiopsis* species belonged to the *Georgenfischeriales* (Fig. 4). As shown in Boekhout et al. (2011), *T. derxii*, *T. flava*, *T. fulvescens* and *T. oryzicola* formed a clade together with two teleomorphic species *Tilletiaria anomala* and *Phragmotaenia indicum* in the tree constructed from the LSU rRNA gene sequences (Fig. 4). The latter two teleomorphic species differ remarkably in the morphology of teliospores (Bauer et al. 2001b) and the genetic distance between them is similar with those between other genera, suggesting they represent two different genera. *Tilletiaria anomala* formed a basal position in this clade. The four *Tilletiopsis* species were resolved to be more closely related to *Phragmotaenia indicum* with 90 % ML BP support, suggesting that they belong to the genus *Phragmotaenum*.

The other two *Tilletiopsis* species in the *Georgenfischeriales*, *T. minor* and *T. penniseti*, formed another clade with a teleomorphic species *Gjaerumia ossifragi*, the type of the genus, as a basal branch with 61 % ML BP support (Fig. 4). Bauer et al. (2005) also showed that *G. ossifragi* formed a statistically supported cluster with *T. minor*, *T. penniseti*, and two undescribed *Tilletiopsis* species based on the Bayesian inference analysis of the LSU rRNA genes. The results support transferring *T. minor* and *T. penniseti* into *Gjaerumia*.

Two *Tilletiopsis* species, *T. albescens* and *T. pallescens*, could not be assigned to any recognised orders in the *Exobasidiomycetes*. In the ML trees constructed from the seven gene and four protein gene datasets, they clustered together in a deep lineage with 93 % and 94 % BP support, but their
phylogenetic relationship with other lineages of Exobasidiomycetes was not resolved. The MP and BI analyses of the two datasets did not support a close relationship between the two Tilletiopsis species (Figs 1 and 3). In the trees generated from the other datasets, these two species formed independent deep branches with uncertain phylogenetic positions (Figs 2D and 4). These two Tilletiopsis species were also treated as 'incertae sedis' in the Exobasidiomycetes by Begerow et al. (2006, 2014) and Hibbett et al. (2007). Our results suggested that T. abescens and T. pallescens represent two separate genera belonging to two different orders.

Taxonomy

The phylogenetic analyses described above confirm that the class Exobasidiomycetes is polyphyletic. However, it is immature to redefine this class at present because molecular data, especially protein gene sequences from the majority of the teleomorphic taxa in this class, will offer a more robust phylogenetic analysis integrating the yeasts, are not available. It is, however, needed to make taxonomic revisions for yeasts taxa at the genus level based on the phylogenetic data presented here. Fereydounia, Jaminiaea, Meira, Sympodiomycopsis and Tilletiaria together with Malassezia and Moniliella as shown in Wang et al. (2014) and Nasr et al. (2014) are monophyletic genera. In order to avoid possible name changes in the future, Acaromycetes will be remained at present before a taxonomic revision can be made that need to include more teleomorphic genera.

We propose to transfer the Farysyzma species to the genus Farysia and Rhodorotula phylloplana to Microstroma. For the Pseudozyma species, it is clear that P. prolifica, the type species of the genus, is a synonym of Ustilago maydis. We propose to transfer 1) P. abaconensis, P. shanxiensis and P. siamensis to the genus Ustilago; 2) P. antarctica, P. aphidis, P. parantarctica and P. rugulosa to Moesziomyces; 3) P. crassa to Triodiyomycetes; 4) P. graminicola to Sporisorium; and 5) P. jeuenensis to Langdonia. P. brasiilensis, P. fusiformata, and P. vetiver represent a new genus for which we propose Kalmanoxzyma gen. nov. Pseudozyma churashimaensis represents another new genus for which Dirkmeia gen. nov. is proposed. The taxonomic treatment for the remaining Pseudozyma species, including P. aboam endeavour, P. thailandica, P. tsukubaensis, P. hubeiensis and P. pruni remains to be determined. These species are embedded in groups with lots of teleomorphic species, where only very few specimens have been sequenced so far, thus we expect, that they probably have already a synonym, which we just did not identify so far. Because the genus name Pseudozyma is not available any more, we suggest to use 'pro tempore' or 'pro tem.' in abbreviation to indicate that these species names are temporarily remained.

We propose to emend the genus Tilletiopsis in the order Entylomatoidales by retaining the genus name for the monophyletic clade represented by the type species T. tungstenensis. For the taxonomic treatment of the remaining Tilletiopsis species, we propose to transfer T. derxii, T. vata, T. fulvescens and T. oryzae to the genus Phragmatozoon; and T. minor and T. penisseli to Gjaerumia. Two new generic names, Robbauera gen. nov. and Golubevia gen. nov., are proposed for T. abescens and T. pallescens, respectively. Two new orders are also proposed for them to accommodate the sisterhood of these two new genera with other orders of Exobasidiomycetes.

Golubeviales Q.M. Wang, F.Y. Bai, Begerow & Boekhout ord. nov. MycoBank MB812083.

Member of Exobasidiomycetes. The diagnosis of the order Golubeviales is based on the description of the genus Golubevia. The nomenclature of the order is based on the genus Golubevia.

Type family: Golubeviaceae Q.M. Wang, F.Y. Bai, Begerow & Boekhout

Golubeviaceae Q.M. Wang, F.Y. Bai, Begerow, & Boekhout fam. nov. MycoBank MB812692.

Member of Golubeviales (Exobasidiomycetes). The diagnosis of the family Golubeviaceae is based on the description of the genus Golubevia. The nomenclature of the family is based on the genus Golubevia.

Type genus: Golubevia Q.M. Wang, F.Y. Bai, Begerow & Boekhout

Golubevia Q.M. Wang, F.Y. Bai, Begerow & Boekhout gen. nov. MycoBank MB812694.

Etymology: The genus is named in honour of W.I. Golubev for his pioneering contributions to the taxonomic of basidiomycetaceous yeasts.

This genus is proposed for the single species clade formed by Tilletiopsis pallescens as resolved by multiple gene sequence analyses. It occurred as a sister lineage of the other orders within Exobasidiomycetes (Figs 1, 2D, 3 and 4).

Sexual reproduction unknown, but chlamydospore-like structures germinating with a holobasidium-like structure that forms ballistospores on the apex, have been observed (Begerow et al. 2000). Colonies pale yellowish-brown or cream and have an eroded margin. Budding cells present. Hyphae regularly branched, narrow and cylindrical, and with retraction septa, but lack clamp connections. Chlamydospores may occur terminally or intercalarily. Ballistoconidia present. Xylose absent, but glucose, galactose and mannose present in whole-cell hydrolysates. The major ubiquinone Q-10. Starch-like compounds are not produced.

Type species: Golubevia pallescens (Gokhale) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812695.

Robbauerales Boekhout, Begerow, Q.M. Wang & F.Y. Bai ord. nov. MycoBank MB812696.

Member of Exobasidiomycetes. The diagnosis of the order Robbauerales is based on the description of the genus Robbauera. The nomenclature of the order is based on the genus Robbauera.

Type family: Robbaueraeaceae Boekhout, Begerow, Q.M. Wang & F.Y. Bai
Robbauerae Boekhout, Begerow, Q.M. Wang & F.Y. Bai fam. nov. MycoBank MB812697.

Member of Robbauerales (Exobasidiomycetes). The diagnosis of the family Robbaueraceae is based on the description of the genus Robbauera. The nomenclature of the family is based on the genus Robbauera.

Type genus: **Robbauera** Boekhout, Begerow, Q.M. Wang & F.Y. Bai

Robbauera Boekhout, Begerow, Q.M. Wang & F.Y. Bai gen. nov. MycoBank MB812698.

Etymology: The genus is named in honour of Robert Bauer for his contributions to the taxonomy and ultrastructure of smuts.

This genus is proposed for the single species clade formed by *Tilletiopsis albescens* as resolved by multiple gene sequence analyses. It occurred as a sister lineage of the other orders within Exobasidiomycetes (Figs 1, 2D, 3 and 4).

Sexual reproduction unknown. Colonies are whitish-cream and with an eroded margin. Hyphae regularly branched, narrow, with retraction septa, but lack clamp connections. Chlamydospores may be present. Ballistoconidia present. Xylose absent, but glucose, galactose and mannose present in whole-cell hydrolysates. The major ubiquinone Q-10. Starch-like compounds not produced.

Type species: **Robbauera albescens** (Gokhale) Boekhout, Begerow, Q.M. Wang & F.Y. Bai comb. nov. MycoBank MB812699.

Basionym: *Tilletiopsis albescens* Gokhale, Nova Hedwigia 23: 803. 1972.

Dirkmeia F.Y. Bai, Q.M. Wang, Begerow & Boekhout gen. nov. MycoBank MB812700.

Etymology: the genus is named in honour of Dirk van der Mei who was a former director of CBS Fungal Biodiversity Centre (CBS-KNAW).

Member of Ustilaginaeae (Ustilaginales, Ustilaginomycetes). This genus is proposed to accommodate *Pseudozyma churashimaensis* which belongs to an isolated branch in the Ustilaginomycetes based on the combined ITS and LSU rRNA gene sequence analysis (Fig. 2C).

Sexual reproduction unknown. Colonies cream-coloured, shiny, smooth, and with an eroded margin. Budding cells present. Ballistoconidia absent. Cell carbohydrates not determined. The major ubiquinone unknown. Starch-like compounds not produced.

Type species: **Dirkmeia churashimaensis** (T. Morita, Y. Ogura, M. Takash., N. Hirose, Fukuoka, Imura, Y. Kondo & Kitamoto) F.Y. Bai, Q.M. Wang, Begerow & Boekhout comb. nov. MycoBank MB812727.

Basionym: *Pseudozyma churashimaensis* T. Morita, Y. Ogura, M. Takash., N. Hirose, Fukuoka, Imura, Y. Kondo & Kitamoto, J. Biosci. Bioeng. 112: 142. 2011.

Kalmanozyma Q.M. Wang, F.Y. Bai, Begerow & Boekhout gen. nov. MycoBank MB812702.

Etymology: The genus is named in honour of Kálmán Vánky for his contributions to the taxonomy of smuts.

Member of Ustilaginaeae (Ustilaginales, Ustilaginomycetes). This genus is proposed to accommodate *Pseudozyma fusiformata*, *Pseudozyma brasiliensis* and *Pseudozyma vetiver* that form a distinct clade in the Ustilaginaceae based on the phylogenetic analysis of the ITS and LSU rRNA gene sequences (Fig. 2B).

Sexual reproduction unknown. Colonies whitish, cream to light salmon, shiny, smooth, and with an eroded margin. Budding cells present. Ballistoconidia absent. Pseudomycelium and true mycelium may be formed. Cell carbohydrates not determined. The major ubiquinone Q-10. Starch-like compounds not produced.

Type species: **Kalmanozyma fusiformata** (Buhagiar) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812703.

Basionym: *Candida fusiformata* Buhagiar, J. Gen. Microbiol. 110: 95. 1979.

New combinations in *Kalmanozyma*

Kalmanozyma brasiliensis (J.V.C. Oliveira, T.A. Borges, R.A.C. Santos, L.F.D. Freitas, C.A. Rosa, G.H. Goldman & D.M. Riano-Pachón) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812704.

Basionym: *Pseudozyma brasiliensis* J.V.C. Oliveira, T.A. Borges, R.A.C. Santos, L.F.D. Freitas, C.A. Rosa, G.H. Goldman & D.M. Riano-Pachón, Int. J. Syst. Evol. Microbiol. 64: 2159. 2013.

Kalmanozyma vetiver (Chamnanpa & Limtong) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812735.

Basionym: *Pseudozyma vetiver* Chamnanpa & Limtong, Antonie van Leeuwenhoek 104: 637. 2013.

Tilletiopsis Derx, Bulletin du Jardin Botanique de Buitenzorg 17: 471. 1948. emend. Begerow, Q.M. Wang, F.Y. Bai & Boekhout.

Member of Entylomatales (Exobasidiomycetes). This genus is emended to include only the species in the clade represented by *T. washingtonensis*, *T. lilacinax* and *T. cremea*.

Sexual reproduction unknown. Colonies cream coloured and with an entire or eroded margin. Budding cells present. Hyphae narrow, with retraction septa, but lack clamp connections. Chlamydospores may be present. Ballistoconidia present. Xylose in cell wall hydrolysate absent. The major ubiquinone Q-10. Starch-like compounds not produced.

Type species: *Tilletiopsis washingtonensis* Nyland, Mycologia 42: 488. 1950.
This genus was originally described for teleomorphic smut fungi occurring on Cyperaceae plants and was redefined Vánky (2002, 2012). Here it is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2C).

New combinations in Anthracocystis

Anthracocystis pampara (Speg.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812705.

Basionym: Ustilago pamparana Speg., Boln Acad. nac. Cienc. Córdoba 11: 28. 1887.

≡ Sphacelotheca pamparana (Speg.) G.P. Clinton, J. Mycol. 8: 140. 1902.

Farysia Racib., Bull. int. Acad. Sci. Lett. Cracovie, Cl. sci. math. nat. Sér. B, sci. nat. 3: 354. 1909. *emend.* Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

≡ Elateromyces Bubák, Arch. Prírodov. Výzk. Čech. 15: 32. 1912.

≡ Farysizyma A. Fonseca, FEMS Yeast Res. 8: 505. 2008.

Type species: *Farysia butleri* (H. & P. Sydow) H. & P. Sydow.

This genus was originally described for teleomorphic smut fungi occurring on Cyperaceae plants and was redefined Vánky (2002, 2012). Here it is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2C).

New combinations in *Farysia*

Farysia itapuensis (Landell & Valente) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812706.

Basionym: Farysizyma itapuensis Landell & Valente, FEMS Yeast Res. 8: 506. 2008.

Farysia taiwaniana (P.-H. Wang, Y.-T. Wang & S.-H. Yang) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812707.

Basionym: Farysizyma taiwaniana P.-H. Wang, Y.-T. Wang & S.-H. Yang, FEMS Yeast Res. 8: 506. 2008.

Farysia setubalensis (Fonseca & Inácio) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812708.

Basionym: Farysizyma setubalensis Fonseca & Inácio., FEMS Yeast Res. 8: 507. 2008.

Farysia acheniorum (Buhagiar & Barnett) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812709.

Basionym: Sterigmatomyces acheniorum Buhagiar & Barnett., J. Gen. Microbiol. 77: 78. 1973.

≡ Farysizyma acheniorum (Buhagiar & Barnett) Fonseca, FEMS Yeast Res. 8: 499. 2008.

≡ Rhodotorula acheniorum (Buhagiar & Barnett) Rodrigues de Miranda, Stud. Mycol. 14: 28. 1977.

Gjaerumia R. Bauer, M. Lutz & Oberw., Mycol. Res. 109: 1257. 2005. *emend.* Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: *Gjaerumia ossifragi* (Rostr.) R. Bauer, M. Lutz & Oberw.

This genus was originally proposed for teleomorphic smut fungi occurring on Asparagaceae, Melanthiaceae and Xanthorrhoeaceae (Bauer et al. 2005) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 4).

New combinations in *Gjaerumia*

Gjaerumia minor (Nyland) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812710.

Basionym: Tilletiopsis minor Nyland, Mycologia 42: 489. 1950.

Gjaerumia penniseti (Takashima & Nakase) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812711.

Basionym: Tilletiopsis penniseti Takashima & Nakase, Antonie van Leeuwenhoek 80: 43. 2001.

Langdonia McTaggart & R.G. Shivas, Persoonia, 29: 130. 2012. *emend.* Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: *Langdonia fraseriana* (Syd.) McTaggart & R.G. Shivas.

This genus was originally proposed for teleomorphic smut fungi occurring on Poaceae (McTaggart et al. 2012b) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2B).

New combination in *Langdonia*

Langdonia jejuensis (Seo, Um, Min, Rhee, Cho, Kim & Lee) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812712.

Basionym: Pseudozyma jejuensis H.S. Seo, H.J. Um, J. Min, S.K. Rhee, T.J. Cho, Y. H. Kim & J. Lee, FEMS Yeast Res. 7: 1039. 2007.

Microstroma Niessl, Öst. bot. Z. 11: 250. 1861. *emend.* Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Microstroma album (Desm.) Sacc.

This genus was originally proposed for teleomorphic smut fungi occurring on Juglandaceae, Fabaceae and Fagaceaeas (Begerow et al. 2014) as defined by Pires (1928) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2D).

New combinations in *Microstroma*

Microstroma phylloplanum (R.G. Shivas & Rodr. Mir.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812713.
Basionym: Cryptococcus phylloplanus R.G. Shivas & Rostr. Mir.,
Antonie van Leeuwenhoek 49: 153. 1983.
≡ Rhodotorula phyloplana (R.G. Shivas & Rostr. Mir.) Rostr. Mir. &
Weijman, Antonie van Leeuwenhoek 54: 549. 1988.
≡ Cryptococcus hinnuleus R.G. Shivas & Rostr. Mir., Antonie van
Leeuwenhoek 49: 155. 1983.
≡ Rhodontorula hinnulea (R.G. Shivas & Rostr. Mir.) Rostr. Mir. &
Weijman, Antonie van Leeuwenhoek 54: 549. 1988.

Moesziomyces Vánky, Bot. Notiser 130: 133. 1977. **emend.**
Q.M. Wang, Begerow, F.Y. Bai & Boekhout.

Type species: Moesziomyces bullatus (J. Schrötl.) Vánky

This genus was originally proposed for a teleomorphic smut fungus
occurring on Poaceae as defined by Vánky (2002, 2012) and is
emended to include free-living yeast species with unknown sexual
states as shown by molecular phylogenetic analysis (Fig. 2C).

New combinations in Moesziomyces

Moesziomyces antarcticus (Goto, Sugiyama & Iizuka) Q.M.
Wang, Begerow, F.Y. Bai & Boekhout **comb. nov.** MycoBank
MB812714.

Basionym: Sporobolomyces antarcticus Goto, Sugiyama &
Iizuka, Mycologia 61: 759. 1969.
≡ Pseudozyma antarctica (Goto, Sugiyama & Iizuka) Boekhout, J. Gen.
Appl. Microbiol. 41: 364. 1995.
≡ Candida antarctica (Goto, Sugiyama & Iizuka) Kurtzman, M.J. Smiley,
C.J. Johnson & M.J. Hoffman, Yeasts: Characteristics and Identification
(Cambridge): 86. 1983.
≡ Vaniija antarctica (Goto, Sugiyama & Iizuka) R.T. Moore, Bibl. Mycol.
108: 167. 1987.
≡ Trichosporon oryzicola H. Ito, Iizuka & T. Sato, Agric. Biol. Chem. 38: 1599. 1974.

Moesziomyces aphidis (Henning & Windisch) Q.M.
Wang, Begerow, F.Y. Bai & Boekhout **comb. nov.** MycoBank
MB812715.

Basionym: Sterigmatomyces aphidis Henning & Windisch,
Arch. Mikrobiol. 105: 50. 1975.
≡ Pseudozyma aphidis (Henning & Windisch) Boekhout, J. Gen. Appl.
Microbiol. 41: 364. 1995.

Moesziomyces rugulosus (Traquair, L.A. Shaw & Jarvis) Q.M.
Wang, Begerow, F.Y. Bai & Boekhout **comb. nov.** MycoBank
MB812716.

Basionym: Sporothrix rugulosa Traquair, L.A. Shaw & Jarvis,
Can. J. Bot. 66: 929. 1988.
≡ Pseudozyma rugulosa (Traquair, L.A. Shaw & Jarvis) Boekhout &
Traquair, J. Gen. Appl. Microbiol. 41: 364. 1995.
≡ Stephaniomyces rugulosus Traquair, L.A. Shaw & Jarvis, Can. J. Bot.
66: 929. 1988.

Moesziomyces parantarcticus (Sugita, Takashima, Mekha &
Poornwan) Q.M. Wang, Begerow, F.Y. Bai & Boekhout **comb. nov.**
MycoBank MB812717.

Basionym: Pseudozyma parantarctica Sugita, Takashima,
Mekha & Poornwan, Microbiol. Immun. 47: 156. 2003.

Phragmotaenium R. Bauer, Begerow, A. Nagler & Oberw.,
Mycol. Res. 105: 423. 2001. **emend.** Q.M. Wang, Begerow, F.Y.
Bai & Boekhout.

Type species: Phragmotaenium indicum (Vánky, M.S. Patil &
N.D. Sharma) R. Bauer, Begerow, A. Nagler & Oberw.

This genus was originally proposed for a teleomorphic smut
fungus occurring on Poaceae (Bauer et al. 2001b) and is
emended to include free-living yeast species with unknown sexual
states as shown by molecular phylogenetic analysis (Fig. 4).

New combinations in Phragmotaenium

Phragmotaenium flavum (Tubaki) Q.M. Wang, Begerow, F.Y.
Bai & Boekhout **comb. nov.** MycoBank MB812726.

Basionym: Tilletiopsis minor Nyland var. flava Tubaki, Nagaoka 1:
28. 1952.
≡ Tilletiopsis flavida (Tubaki) Boekhout, Stud. Mycol. 33: 151. 1991.

Phragmotaenium derxii (Takashima & Nakase) Q.M. Wang,
Begerow, F.Y. Bai & Boekhout **comb. nov.** MycoBank MB812718.

Basionym: Tilletiopsis derxii Takashima & Nakase, Antonie van
Leeuwenhoek 80: 43. 2001.

Phragmotaenium oryzicola (Takashima & Nakase) Q.M.
Wang, Begerow, F.Y. Bai & Boekhout **comb. nov.** MycoBank
MB812719.

Basionym: Tilletiopsis oryzicola Takashima & Nakase, Antonie van
Leeuwenhoek 80: 43. 2001.

Phragmotaenium fulvescens (Gokhale) Q.M. Wang, Begerow,
F.Y. Bai & Boekhout **comb. nov.** MycoBank MB812720.

Basionym: Tilletiopsis fulvescens Gokhale, Nova Hedwigia 23:
805. 1972.

Sporisorium Ehrenb. ex Link, in Willdenow, Sp. pl., Edn 4 6: 86.
1825. **emend.** Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Sporisorium sorghi Ehrenb. ex Link

This genus was originally proposed for teleomorphic smut fungi
occurring on Poaceae. It was emended by McTaggart et al.
(2012b) to include only the **Sporisorium sensu stricto** clade.
Here it is emended further to include free-living yeast species
with unknown sexual states as shown by molecular phylogenetic
analysis (Fig. 2B).

New combination in Sporisorium

Sporisorium graminicola (W. Golubev, Sugita & N. Golubev)
Q.M. Wang, F.Y. Bai, Begerow & Boekhout **comb. nov.** MycoBank
MB812721.

Basionym: Pseudozyma graminicola W. Golubev, Sugita & N.
Golubev, Mycoscience 48: 30. 2007.

Triodiomyces McTaggart & R.G. Shivas, Persoonia 29: 131.
2012. **emend.** Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Triodiomyces altillis (Syd.) McTaggart & R.G. Shivas

PHYLOGENY AND TAXONOMY OF USTILAGINOMYCETOUS YEASTS
This genus was originally proposed to accommodate a group of teleomorphic smut fungi occurring on grasses of the genus Triodia (McTaggart et al. 2012b) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2C).

New combination in Triodiomyces

Triodiomyces crassus (Mekha, Takashima & Sugita) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812722.

Basionym: Pseudozyma crassa Mekha, Takashima & Sugita, Microbiol. Immunol. 58: 9. 2014.

New combinations in Ustilago (Pers.) Roussel, Fl. Calvados, Edn 2: 47. 1806.

Type species: Ustilago hordei (Pers.) Lagerh.

The genus Ustilago is polyphyletic and remains to be redefined (McTaggart et al. 2012a, b). It is immature to emend this genus at present but it is reasonable to transfer the three Pseudozyma species to this genus because they are located in the monophyletic Ustilago sensu stricto clade containing the type species of the genus (Fig. 2B). Thus the genus Ustilago also contains anamorphic fungi.

Ustilago abaconensis (Statzell, Scorzetti & Fell) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812723.

Basionym: Pseudozyma abaconensis Statzell, Scorzetti & Fell, Int. J. Syst. Evol. Microbiol. 60: 1983. 2010.

Ustilago shanxiensis (F.Y. Bai & Q.M. Wang) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812724.

Basionym: Pseudozyma shanxiensis F.Y. Bai & Q.M. Wang, Int. J. Syst. Evol. Microbiol. 56: 292. 2006.

Ustilago siamensis (Sugita, Takashima, Poonwan & Mekha) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812725.

Basionym: Pseudozyma siamensis Sugita, Takashima, Poonwan & Mekha, Microbiol. Immun. 58: 9. 2014.

ACKNOWLEDGEMENTS

We thank Walter Gams for his nomenclatural advice. This study was supported by grants No. 31010103902, No. 30970013 and No. 31570016 from the National Natural Science Foundation of China (NSFC), grant No. 10CDP019 from the Royal Netherlands Academy of Arts and Sciences (KNAW) and No. 2012076 from the Youth Innovation Promotion Association of the Chinese Academy of Sciences. TB is supported by grant NPRP 5-298-3-086 from the Qatar National Research Fund, a member of Qatar Foundation. The authors are solely responsible for the content of this work.

REFERENCES

Bandoni RJ, Johri BN (1972). Tilletia is a new genus in the Ustilaginales. Canadian Journal of Botany 50: 39–43.
McTaggart AR, Shivas RG, Geering AD, et al. (2012a). Soral synapomorphies are significant for the systematics of the Ustilago-Sporisorium-Macrophomycetes complex (Ustilaginaceae). Persoonia 29: 63–77.

McTaggart AR, Shivas RG, Geering AD, et al. (2012b). Taxonomic revision of Ustilago, Sporisorium and Macrophomycetes. Persoonia 29: 116–132.

Naar S, Soudi MR, Fazeli SAS, et al. (2014). Expanding evolutionary diversity in the Ustilaginomycetales: Fereydouniaceae fam. nov. and Fereydounia gen. nov., the first unicosydioid yeast lineage. Mycological Progress 13: 1217–1226.

Oliveira JV, Borges TA, Corrêa dos Santos RA, et al. (2014). Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. International Journal of Systematic and Evolutionary Microbiology 64: 2159–2168.

Plańtek M, Matthias Lutz M, Yorou NS (2015). A molecular phylogenetic framework for Anthracocystis (Ustilaginales), including five new combinations (inter alia for the asexual Pseudozyma flocculosa), and description of Anthracocystis grodzinskae sp. nov. Mycological Progress 14: 88.

Pires VM (1928). Concerning the morphology of Microstroma and the taxonomic position of the genus. American Journal of Botany 15: 132–140.

Posada D, Crandall KA (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817–818.

Raciborski M (1909). Parasitische und epiphytische Pilze Javas. Bulletin International de l'Académie des Sciences de Cracovie Classe des Sciences Mathématiques et Naturelles 3: 346–394.

Ronquist F, Teslenko M, van der Mark P, et al. (1909). Parasitische und epiphytische Pilze Javas. Bulletin International de l'Académie des Sciences de Cracovie Classe des Sciences Mathématiques et Naturelles 3: 346–394.

Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

Rush TA, Aime MC (2013). The genus Meira: phylogenetic placement and description of a new species. Antonie van Leeuwenhoek 103: 1097–1106.

Sampaio JP (2004). Diversity, phylogeny and classification of basidiomycetous yeasts. In: Frontiers in basidiomycote mycology (Agerer R, Piepenbring M, Blanz P, eds). IHW Verlag, Eching: 49–60.

Sampaio JP (2011). Rhodotorula Harrison (1928). In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1873–1927.

Shivas RG, Lutz M, McTaggart AR, et al. (2013). Emended description of Anomolomycetes (Ustilaginales), including Anomolomycetes yakirae sp. nov. on Yakirra pauciflora (Poaceae) from Australia. Mycobiota 1: 17–24.

Sipiczki M, Kádácsi E (2009). Jaminiae angkorensis gen. nov., sp. nov., a novel anamorphic fungus containing an S943 nuclear small-subunit RNA group I8 intron represents a basal branch of Microstromatales. International Journal of Systematic and Evolutionary Microbiology 59: 914–920.

Stamatakis A (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

Stanley K (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

Stolk AC, Dakin JC (1966). Moniliella, a new genus of Moniliiales. Antonie van Leeuwenhoek 32: 399–409.

Stoll M, Begerow D, Obenwinkler F (2005). Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycological Research 109: 342–356.

Stoll M, Piepenbring M, Begerow D, et al. (2003). Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Canadian Journal of Botany 81: 976–984.

Sugiyma J, Tokouka K, Suh SO, et al. (1991). Sympodiomyces: a new yeast-like anamorph genus with basidiomycetous nature from orchid nectar. Antonie van Leeuwenhoek 59: 95–108.

Suh SO, Sugiyma J (1994). Phylogenetic placement of the basidiomycetous yeasts Kondoia malvinella and Rhodospiridium dacryoidum, and the anamorphic yeast Sympodomyces paphiopeidii by means of 18S gene sequence analysis. Mycologia 35: 367–375.

Swofford DL (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland MA.

Taylor JW (2011). One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus 2: 113–120.

Vanýk K (2002). Illustrated genera of smut fungi, 2nd edn. APS Press, St Paul.

Vanýk K (2012). Smut fungi of the world. APS Press, St Paul.

Wang QM, Theelen B, Groenewald M, et al. (2014). Moniliellomycetes and Malasseziales, two new classes in Ustilaginomycota. Persoonia 33: 41–47.

Weiß M, Bauer R, Begerow D (2004). Spotlights on heterobasidiomycetes. In: Frontiers in basidiomycote mycology (Agerer R, Piepenbring M, Blanz P, eds). IHW Verlag, Eching: 7–48.