Prospects for practical use of kaminskii thermovoltaic effect

Perspectivas de uso prático do efeito termovoltaico de kaminskii

DOI:10.34117/bjdv8n11-381

Recebimento dos originais: 28/10/2022
Aceitação para publicação: 30/11/2022

Vinogradov Anatoly
PhD em Ciências Físico-Matemáticas
Instituição: Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC)
Endereço: Av. Luanda Sul, Rua Lateral, Via S10, Talatona, Luanda Sul - Angola
E-mail: vinluan@mail.ru

ABSTRACT
The effect discovered by Kaminskii V. V. in 1999 represents one of the new principles of transformation of thermal energy into electrical energy. It was observed in samarium monosulfide, the results of investigation of the tensorresistive effect in which were presented at the 1st CP-CPLP. The tensorresistive sensitivity was maximum among all semiconductors. Qualitative theoretical analysis of the formidable properties of SmS is made from the relations between ionization energy of impurities and ionization potentials and ionic radii, which are more favorable in rare earth elements. This is explained by the presence in the atoms of the 4-f electronic layers, which have the maximum electron density. This exclusivity determines the most rational area of practical applications of rare-earth semiconductors in quality of sensitive elements of transducers of physical quantities of resistive type. In the thermovoltaic effect, the samples located in the temperature field without gradient generate the electromotive force. The nature of the effect is related to the variation of the valence of Sm ions and the gradient of the concentration of impurities in the samples. The comparison of the parameters of Kaminskii's effect and Seebek's classical thermoelectric effect is given. Between them, the maximum values of the thermoelectric yield are 36% and 10%, respectively. The thermovoltaic effect, by virtue of its energy efficiency, absence of the need for the creation of the temperature gradient in the working element of the transducer, ecological purity and the possibility of the use of the unspecialized secondary thermal energy sources, has high prospects for practical use. The obtained results are explained by the fundamental causes related to the position of rare earth elements in Mendeleev's periodic table of elements.

Keywords: rare-earth semiconductors, thermovoltaic effect.

RESUMO
O efeito descoberto por Kaminskii V. V. em 1999 representa um dos novos princípios da transformação da energia térmica em eléctrica. Observou-se no monosulfeto de samário, os resultados de investigação do efeito tensorresistivo em qual foram apresentados na 1ª CP-CPLP. A sensibilidade tensorresistiva foi máxima entre todos os semicondutores. É feita análise teórica qualitativa das propriedades formidáveis de SmS a partir dos relações entre energia de ionização das impurezas e os potenciais de ionização e raios iónicos, que são mais favoráveis nos elementos das terras raras. Isso explica-se pela presença nos átomos das 4-f camadas electrónicas, que têm a
densidade máxima dos electrões. Essa exclusividade determina a área mais racional das aplicações práticas dos semicondutores das terras raras em qualidade dos elementos sensíveis dos transdutores das grandezas físicas de tipo resistivo. No efeito termovoltaico, as amostras situadas no campo de temperatura sem gradiente geram a força electromotriz. A natureza do efeito é relacionada com a variação da valência de íons de Sm e com o gradiente da concentração das impurezas nas amostras. É dada a comparação dos parâmetros do efeito de Kaminskii e do efeito termoeletérico clássico de Seebek. Entre eles, os valores máximos do rendimento dos termoelementos são 36% e 10%, respectivamente. O efeito termovoltaico, em virtude da sua eficiência energética, ausência da necessidade da criação do gradiente de temperatura no elemento de trabalho do transdutor, pureza ecológica e possibilidade da utilização das fontes de energia térmica secundárias não especializadas, tem altas perspectivas de uso prático. Os resultados obtidos explicam-se pelas causas fundamentais relacionadas com a posição dos elementos de terras raras na Tabela periódica de elementos de Mendeleev.

Palavras-chave: semicondutores de terras raras, efeito termovoltaico.

1 EXTENDED ABSTRACT

Thermovoltaic effect discovered by Kaminskii V.V. with colleagues in 1999, represents one of the new principles for converting thermal energy into electrical energy. Samarium monosulfide (SmS) samples located in a uniform temperature field without any temperature gradient generated an electromotive force.

The results of a study of the tensoresistive effect discovered by Kaminskii V. V. and author of this report in this rare-earth semiconductor were presented earlier at the first CPLP physics conference. SmS had the highest tensosensitivity among all semiconductor materials.

A qualitative theoretical analysis of the remarkable properties of samarium monosulfide and other rare-earth semiconductors was carried out on the basis of consideration of their features arising from the position of rare-earth elements in the periodic table of elements.

The value of the ionization potential of an impurity element should be considered the most important parameter for the transition of an electron to a free state (conduction band) in semiconductors. This follows from the fact that, with a rough estimate of the depth of the impurity donor level in the semiconductor material, they are proportional. Consideration of the second and third ionization potentials of the elements of the periodic system showed that rare-earth elements have the lowest values of ionization potentials.
We can draw a conclusion that a rare-earth element introduced into the matrix from some compound will give its electron most easily in comparison with all other elements. In semiconductors, the electron will fall into the conduction band and lead to the appearance of effects associated with such a transition. The reason of the smallness of ionization potentials in comparison with other elements may be due to the fact that the ions of rare-earth elements have the largest sizes of ionic radii. Large radii of atoms and ions of rare-earth elements are related with the presence of electrons localized on 4f shells. These shells are located most closely to the nucleus of the element, and their electrons substantially screen the Coulomb potential of the nucleus, which leads to an increase in the ionic radius.

The described feature of the properties of rare-earth compounds allows us to determine the range of the most appropriate practical applications of rare-earth semiconductors. Since the rare-earth ion in these compounds most easily gives its electron under various external influences, these materials can be used as sensitive elements in the manufacture of sensors of various physical quantities of the resistive type (mechanical, thermal and gas sensors), as well as in converters of various types of energy into electrical energy. Samarium monosulfide is of greatest interest in this regard, since 4f levels of the samarium ion in this semiconductor are localized in the forbidden band most closely to the bottom of the conduction band (~ 0.2 eV) among other rare-earth semiconductors.

The nature of the thermovoltaic effect is associated with a change in the valency of defective Sm ions in vacancies of the sulfur sublattice, Sm$^{2+}$→Sm$^{3+}$ + e$^-$. In this case, the electrons pass from the 4f levels to the conduction band and create large local concentrations of charge carriers. Such electron transitions are collective. Electron transitions are accompanied by the appearance of electrical voltage pulses and synchronized with them thermal processes. The effect of emf generation in SmS was observed when samples were heated to a temperature of 470 K. At higher temperatures, impurity levels with the activation energy of 0.04 eV are depleted, which concentration gradient in terms of sample volume causes the presence of thermovoltaic effect. The following characteristics of the effect were achieved on bulk SmS samples: an emf of 2.5 V in pulse mode with pulse duration of 1.3 s and emf of 0.05 V in continuous mode.

The comparison of the already achieved values of the parameters of thermoelements based on the Kaminskii effect and on the basis of the classical thermoelectric Seebeck effect was carried out. Maximum values of the efficiency were
36% and 10%, respectively. Thus, the thermovoltaic effect, due to its energy efficiency, unnecessity to create a temperature gradient on the working element of the converter, environmental cleanliness and the possibility of using associated heat sources, deserves close attention of researchers. A further increase in the conversion characteristics based on the concerned effect is associated with the working formula of the generation voltage of the effect and can be carried out by increasing the maximum working temperature and by developing effective technological methods for obtaining higher concentration gradients of impurity donor levels in the volume of the generating element.

Assessing the prospects for improving the parameters of thermoelements and their practical use as quite high, the Kaminskii effect can be considered as an effective method of converting thermal energy into electrical energy already on the basis of the results achieved. This reflects the current trend of the transition to environmentally friendly and resource-saving energy. The maximum effect is obtained on SmS. Such results cannot be achieved using the compounds of other elements for fundamental reasons related to the structure of the electronic shells of rare-earth elements, which fact is reflected in their location in the periodic table.

2 ENERGIA

2.1 PARTICULARIDADES DOS SEMICONDUTORES DAS TERRAS RARAS

Na 1ª Conferência de Física da CPLP, (Comunidade dos Países de Língua Portuguesa) foram apresentados os resultados da investigação do efeito tensorresistivo num semicondutor das terras raras, o monosulfeto de samário (SmS), descoberto com os autores de comunicação (Vinogradov & Kaminskii, 2010). A sensibilidade tensorresistiva foi máxima entre todos os materiais semicondutores (o coeficiente tensorresistivo teve valor de 850 à temperatura 77 K e mais de 200 à temperatura do meio ambiente). Propriedades admiráveis do monosulfeto de samário revelam-se em um efeito absolutamente novo, descoberto por Kaminskii V. V. com colegas em 1999 (Kazanin, Kaminskii & Solov’ev, 2000) –efeito termovoltaico.

O SmS pertence à classe dos semicondutores das terras raras, isto é, compostos dos elementos das terras raras que possuem as propriedades semicondutores. As propriedades dos semicondutores das terras raras foram descritas em artigo (Kaminskii &
Sharenkova, 2018). Tratamos de explicar no nível qualitativo as particularidades dos compostos dos elementos das terras raras e dos semicondutores das terras raras não entrando em pormenores e não focalizando a atenção em alguns detalhes e exceções da tendência principal que se encontram no caminho de tal exposição do problema.

Nos semicondutores como o parâmetro mais importante para transição do electrão no estado livre (em banda de condução), é necessário considerar o valor do potencial de ionização (I) do elemento. Isso segue-se da matéria teórica (Ioffe, 1957) em que a avaliação aproximada da profundidade do nível da impureza doador no material semicondutor é dada por \(E_i = I/\varepsilon^2 \), onde \(\varepsilon \) é a permeabilidade dielétrica do material. Consideremos os potenciais de ionização dos elementos da Tabela periódica. Visto que nós não analisamos os elementos, mas analisamos os compostos, que consistem de íons, ficamos interessados somente nos valores do segundo (I\(_2\)) e terceiro (I\(_3\)) potenciais de ionização (o primeiro tem razão para os átomos). Além disso, não consideramos os elementos, que não representam nenhum interesse para fabricação dos materiais praticamente aplicáveis. Esses são, antes de mais nada, os elementos radioativos com o número atómico \(Z \geq 83 \) e gases nobres. O segundo e o terceiro potenciais de ionização praticamente de todos os elementos da Tabela periódica são apresentados nas Figuras 1 e 2. Como vemos, os elementos das terras raras têm os valores menores de potenciais de ionização em comparação com os outros elementos. A partir disso, podemos concluir que o elemento das terras raras implantado em matriz de qualquer composto (não obrigatoriamente semicondutor) vai libertar mais facilmente seu electrão em comparação com os outros elementos. Nos semicondutores, o electrão aparece na banda de condução e leva ao surgimento dos efeitos relacionados com essa transição.
Figura 1. Dependência do segundo potencial de ionização de número atómico. REE – rare-earth elements (elementos das terras raras).

Figura 2. Dependência do terceiro potencial de ionização de número atómico. REE – rare-earth elements (elementos das terras raras).

A causa do valor pequeno dos potenciais de ionização em comparação com os outros elementos pode ser explicada pelo facto de que os iões dos elementos das terras raras têm maiores valores dos raios iónicos (olhe, por exemplo, estes para os iões trivalentes na Figura 3). Isso está em correspondência com a tendência geral da diminuição dos potenciais de ionização com o aumento dos raios dos átomos (r₀) de vários elementos apresentada na Figura 4. O mesmo observa-se para os iões (r³⁺). Grandes raios dos átomos e iões dos elementos das terras raras são relacionados com a presença dentro dos átomos dos electrões localizados nas 4f-camadas. Essas camadas ficam mais próximas ao núcleo do átomo do elemento e seus electrões em grau essencial blindam o potencial coulombiano do núcleo, que leva ao aumento do raio iónico. Na Figura 5, na
qualidade de um exemplo, é mostrada a distribuição radial da densidade de carga para 4f-, 5s-, 5p- e 6s-electrônes do íon Gd\(^{3+}\) (Taylor & Darby, 1972). Como vemos, 4f-camada tem a densidade máxima dos electrônes e eles estão situados mais próximos ao núcleo (r = 0,3\(\text{Å}\)). Assim, a existência da 4f-camada determina a exclusividade das propriedades dos semicondutores das terras raras.

Figura 3. Dependência dos raios de íons trivalentes de número atómico. REE – rare-earth elements (elementos das terras raras).

Figura 4. Dependência do primeiro potencial de ionização de raio atómico.
Figura 5. Distribuição radial da densidade de carga para 4f-, 5s-, 5p- e 6s-electrões do ião Gd$^{3+}$.

2.2 EFEITO TERMOVOLTAICO

Descrita particularidade das propriedades dos compostos das terras raras permite determinar a área mais racional de aplicações práticas dos semicondutores das terras raras. Sendo que o ião das terras raras nesses compostos mais facilmente deixa sair o seu electrão à presença de várias acções externas, esses materiais podem ser usados em qualidade dos elementos sensíveis à fabricação dos transdutores das grandezas físicas do tipo resistivo (sensores mecânicos, térmicos e de gás) e também conversores de vários tipos de energia em eléctrica. O monosulfeto de samário (SmS) representa o maior interesse neste sentido, visto que neste semicondutor os 4f-níveis do ião de samário são localizados em zona proibida ao máximo próximo para o fundo da banda de condução (~0,2 eV) em comparação com outros semicondutores das terras raras.

O efeito termovoltaico representa um dos novos princípios de transformação da energia térmica em energia eléctrica. As amostras de SmS colocadas no campo homogéneo de temperatura (Figura 6) geraram a força electromotriz. O exemplo do sinal gerado durante um período de tempo de mais de 5 horas é mostrado na Figura 7. A natureza do efeito está relacionada com a variação da valência dos iões de defeito de Sm, que ficam nas vacâncias da sub-rede de enxofre, Sm$^{2+}$ → Sm$^{3+}$ + e⁻. Com isso, os electrões passam de 4f-níveis para a banda de condução e criam grandes concentrações locais de portadores de carga. Tais transições de electrões têm um carácter coletivo.
As transições de elétrons são acompanhadas com o surgimento dos impulsos da tensão elétrica e sincronizadas com esses processos térmicos. O efeito de geração da força electromotriz em SmS observou-se durante o aquecimento das amostras até a temperatura de 470 K. Às temperaturas mais altas tem lugar o esgotamento dos níveis de impureza com a concentração de N_i e energia de activação de 0,04 eV, gradiente de concentração dos quais, no volume de amostra e respectivo gradiente de concentração dos elétrons livres, provoca o surgimento do efeito termovoltaico

$$E = K \cdot \text{grad}N_i,$$

(1)
onde E é a intensidade do campo elétrico gerado. O coeficiente do efeito K, de modo complexo, depende da temperatura e dos seguintes parâmetros do semicondutor: massa efectiva, permeabilidade dieléctrica, energia de activação e concentração dos níveis de doadores e também do mecanismo de espalhamento dos electrões de condução. Por isso, o valor de K precisa de uma determinação empírica (Kaminskii, Golubkov & Vasil’ev, 2002).

2.3 CARACTERÍSTICAS E PERSPECTIVAS DO USO DO EFEITO DE KAMINSKII

Nas amostras volumétricas de SmS foram obtidas as seguintes características do efeito: a força electromotriz de valor de 2,5 V no regime de impulso com a sua duração de 1,3 s e a força electromotriz de valor de 0,05 V no regime contínuo (Kaminskii & Solov’ev, 2001). As medições directas do rendimento do termoelemento com base no efeito termovoltaico mostraram o valor de 28% (Egorov, Kaminskii, Kazanin, Solov’ev & Golubkov, 2013). Posteriormente, foram atingidos os valores do rendimento até 36%. Isso significativamente supera o valor do rendimento do efeito clássico termoeléctrico de Seebek, que não excede 10%. Deste modo, o efeito termovoltaico em virtude da sua eficiência energética, a ausência da necessidade da criação do gradiente de temperatura no elemento de trabalho do transdutor, a pureza ecológica e a possibilidade da utilização das fontes de energia térmica não especializadas colaterais merecem a atenção acrescida dos investigadores.

Posteriormente, o efeito termovoltaico foi descoberto também nos outros materiais semicondutores: ZnO, Ge, Si e vários semicondutores dos compostos complexos. Entretanto, o valor de tensão gerado neles foi menor que em SmS. A elevação posterior das características da transformação com base no efeito considerado está relacionada com a fórmula de trabalho da força electromotriz do efeito (Kaminskii, Soloviev, Sharenkova, Hirai & Kubota, 2018):

\[U = \frac{kT}{e} \ln \frac{n_2}{n_1}, \]

onde T é a temperatura de trabalho de geração e n_1 e n_2 as concentrações dos electrões de condução nos espaços em proximidade dos contactos do gerador. A
temperatura máxima para o processo de geração determina-se pela posição dos níveis energéticos do íon doador. Quanto mais profundo ficam os níveis de doadores, à maior temperatura eles esgotam-se e até maiores temperaturas é possível o processo da geração da força electromotriz por conta do efeito termovoltaico. Por exemplo, em SmS dopado com íões de Sm a geração ocorre até T = 470 K. Para baixar os níveis de doadores é necessário fabricar as soluções sólidas Sm$_{1-x}$Eu$_x$S, nas quais a energia de activação da condutibilidade por impurezas aumenta de 0,04 até 0,4 eV na variação de x de 0 até 1 (Kaminskii, Kazanin, Romanova, Kamenskaya & Sharenkova, 2016). Também podem ser usadas as soluções sólidas SmSe$_x$S$_{1-x}$, Sm$_{1-x}$YbS e algumas outras, que baixam os níveis de doadores. O segundo sentido do aumento da tensão da geração, de acordo com as fórmulas (1) e (2), pode ser relacionado com a elaboração dos métodos tecnológicos efectivos da obtenção dos gradientes mais altos das concentrações dos níveis das impurezas doadoras no volume do elemento gerador.

Avaliando as perspectivas do melhoramento dos parâmetros dos termoelementos como bastante altas, já com base nos resultados conseguidos apresentados na tabela, o efeito de Kaminskii pode ser considerado como um método efectivo da transformação da energia térmica em eléctrica, que reflecte a tendência moderna da transição para energética ecologicamente pura e de economia de recursos. O efeito máximo foi obtido em SmS (Kaminskii, Kazanin, Kazakov, Grevcev & Sharenkova, 2017). É impossível conseguir tais resultados, como foi mostrado acima, nos compostos de outros elementos pelas causas fundamentais relacionadas com a estrutura das camadas electrónicas dos elementos das terras raras, o que tem a sua reflexão na posição dos elementos das terras raras na Tabela periódica dos elementos de Mendeleev.

Parâmetro	Termoelemento com base no efeito de Kaminskii	Termoelemento com base no efeito de Seebeck
Potência gerada específica, W/g	até 1,8	≤ 0,2
Tensão gerada com um termoelemento, V	até 5	≤ 0,1
Resistência interna, Ω	0,2 ± 2	0,2 ± 2
Estabilidade à radiação dos parâmetros elétricos, dose de exposição até a variação do parâmetro por 1%, 10ºRoentgen	10	1
Potência máxima obtida de um termoelemento, W	5 mW	unidades de W
Rendimento máximo, %	até 36	até 10

Tabela 1. Resultados máximos obtidos
REFERÊNCIAS

Egorov, V. M., Kaminskii, V. V., Kazanin, M. M., Solov’ev, S. M. & Golubkov, A. V. (2013). Rendimento da transformação da energia térmica em energia elétrica por conta do efeito termovoltaico. *Technical Physics Letters*, 39, 650-652.

Ioffe, A. F. (1957). *Física dos semicondutores*. Moscovo-Leningrad: Ed. Acad. Ciências URSS.

Kaminskii, V. V. & Solov’ev, S. M. (2001). Fem induzida pela variação da valência do íon de samário como o resultado da transição de fase em monocristais de SmS. *Phys. Solid State*, 43, 439-442.

Kaminskii, V. V., Golubkov, A. V. & Vasil’ev, L. N. (2002). Íones de samário de defeitos e geração da força electromotriz em SmS. *Phys. Solid State*, 44, 1574-1578.

Kaminskii, V. V., Kazanin, M. M., Romanova, M. V., Kamenskaya, G. A. & Sharenkova, N. V. (2016). Parâmetros eléctricos dos policristais dos semicondutores das terras raras Sm1-xEu,xS. *Semiconductors*, 50, 1141-1144.

Kaminskii, V. V., Kazanin, M. M., Kazakov, S. A., Grevcev, M. A. & Sharenkova, N. V. (2017). Processo de fabricação do gerador termoeléctrico. Patente para invenção da Federação Russa Nº 2628677 (requisição Nº 2016107499). Prioridade desde 01/0372016. Prazo de acção da patente até 01/03/2036. *Boletim Nº 24*.

Kaminskii, V. V. & Sharenkova, N. V. (2018). Particularidades das propriedades dos semicondutores das terras raras. *Física e técnica dos semicondutores*, 53, 158-160.

Kaminskii, V. V., Solov’ev, S. M., Sharenkova, N. V., Hirai, S. & Kubota, Y. (2018). Efeito termovoltaico em sesquisulfito de cério. *Technical Physics Letters*, 44, 1087-1088.

Kazanin, M. M., Kaminskii, V. V. & Solov’ev, S. M. (2000). Força electromotriz térmica anómala em monosulfeto de samário. *Technical Physics*, 45, 659-661.

Taylor, K. N. R. & Darby, M. I. (1972). *Physics of Rare Earth Solids*. London: Ed. Chapman and Hall Ltd.

Vinogradov, A. & Kaminskii, V. (2010). Efeito tensorresistivo e sensores das grandezas mecânicas com base em monosulfeto de samário. In *Anais da 1ª CF-CPLP. O papel da física e das suas aplicações na educação e no desenvolvimento nos países de língua portuguesa*. Maputo, Moçambique: Ed. Univ. Eduardo Mondlane.