Does serum B lymphocyte chemoattractant protein13 (CXCL13) level correlate with parameters of disease activity and severity in rheumatoid arthritis? Clinical and musculoskeletal ultrasonographic assessment

Eman A. Baraka 1*, Sami A. Egilla 1, Gamal A. Hamad 1, Maiada A. Khalil 1, Sheneen H. Ahmed 2 and Mona M. Elbehisy 3

Abstract

Background: Rheumatoid arthritis (RA) affects about 1–3% of the population making it one of the most popular autoimmune diseases. Chemokines through switching on their receptors exert a climacteric role in RA pathogenesis. The purpose of this cross-sectional study was to quantify the serum levels of serum B lymphocyte chemoattractant protein13 (CXCL13) chemokine in recent onset RA patients and to correlate its levels with clinical, laboratory, and musculoskeletal ultrasonographic parameters (MSUS) of disease activity and severity.

Results: The mean serum CXCL13 value showed a significant increase in the RA patients (388.86 ± 283.63 pg/ml) than in the controls (62.94 ± 31.62 pg/ml) (P < 0.001). Highly active RA patients had significantly the highest mean of CXCL13 (mean ± SD 819.13 ± 191.05) compared with the moderately active RA patients (mean ± SD 284.95 ± 137.93) (P < 0.001) and the RA patients with low disease activity (mean ± SD 129.5 ± 21.27) (P < 0.001) and its levels were positively related with clinical disease activity and musculoskeletal ultrasonographic severity parameters.

Conclusion: Serum CXCL13 is correlated with clinical disease activity and MSUS disease severity that encourages its use for monitoring the activity and severity of synovitis in recent onset RA patients. Future studies to detect the effect of disease activity control by medications on CXCL13 levels and the effect of the CXCL13 antagonist on controlling RA disease activity and severity are recommended.

Keywords: Rheumatoid arthritis, CXCL13 chemokine, Disease activity, Disease severity, Musculoskeletal ultrasound
Background
Rheumatoid arthritis (RA) affects about 1–3% of the world’s population, and it is considered one of the most popular autoimmune diseases. Hands and feet’s small synovial joints are primarily involved [1]. It is characterized by synovitis extending to the adjacent articular cartilage leading to erosion and further tissue damage. It is not just an articular disease, extra-articular organs could be affected thereby worsening disease prognosis and leading to lifelong disability and discomfort [2].

Etiopathogenesis for RA is obscure, it is a prototypic inflammatory disease that results from the interplay between genetic and environmental factors which alter the immunological homeostasis, wherein immunological stimulation and unwanted inflammation predominate. Inflammatory changes involving the synovium of the inflamed joints leading to pain, warmth, swelling, and stiffness that usually experienced early in the morning or after prolonged inactivity that lasts more than 30 min [3].

Chemotactic cytokines and their receptors exert a climacteric role in the pathogenesis of RA. They synchronize and induce the immune cells migration that direct not just the ordinary turn of events and homeostasis of the immune system but also responsible for diverse immune system intolerance reactions leading to inflammatory and destructive immune responses in many rheumatic disorders [4]. Chemokines super family are grouped according to the gathering of cysteine molecule in their two amino acid terminals. The names remain on the position of the two cysteine buildups differentiating them into 4 groups: CC, CXC, CX3C, and XC. No other amino acid isolates the two cysteine depositories in the CC chemokines while at least an amino acid isolates the cysteine buildups in the CXC chemokines [5].

Contribution of the CXCL13 in the pathogenesis of synovitis in RA has been recently revealed. At the point when it is created locally, it is related with extra nodal lymphoid aggregates that house ectopic B lymphocyte responders with other cell subsets and intercede development of the immunoglobulin genes. It follows up on various cell having CXCR5 receptors like dendritic cells and B cells and aids chemotaxis of CD4+ follicular T helper cells. CXCL13 has been thus proposed as a proxy marker of synovitis [1].

Initial outcomes recommended that CXCL13 serum levels and its mRNA expression in the synovium are associated, proposing that the inflamed synovium is a significant wellspring of the circuling CXCL13 and clinically, this makes it conceivable and simple to identify and measure this chemokine not just from the synovial membrane, anyway additionally in the synovial liquid and circulation [6].

Early and strict control of the inflammation and the possibility to predict severity of synovial inflammation is vital to set proper algorithm to treat the patients with RA [7].

Remission that is detected clinically does not necessarily mean actual concealment of the inflammation, as remittent patients may proceed to have subclinical active synovitis that can be identified and scored specifically by power doppler (PD) musculoskeletal ultrasonography (MSUS) mode. PD recognized signals in the synovium can anticipate joint harm and short-term relapse in treated patients who are considered to be clinically remittent [8, 9]. In this manner identification of surrogate markers dependent on understanding RA pathogenesis and to correlate with the seriousness of synovitis at the clinical and sub-clinical level, is required [10]. We planned to quantify levels of CXCL13 chemokine in the sera of recent onset RA patients and to associate it with general clinical, laboratory, and musculoskeletal ultrasonographic findings of disease activity and severity.

Methods
This cross-sectional study included 50 recent onset RA patients who fulfilled the updated American College of Rheumatology/European League Against Rheumatism criteria for the classification of RA [11].

They had disease duration ≤ 12 months attending the outpatients’ clinic and the in-patients’ units of our department. Exclusion criteria included patients with liver or endocrine disorders, metabolic diseases, recent infections, trauma and, malignancy or any other rheumatic disease.

RA patients had intra-articular steroid injection in the examined joints since 3 months of the study were also excluded.

Forty apparently healthy subjects were filled in as a benchmark group. The study was endorsed in concordance to the 1983 Helsinki Declaration Statement. All members gave an oral consent before partaking in the study.

Full history was taken from the patients including the age, sex, disease duration, morning stiffness duration, patient global health assessment based on visual analog scale from 0 to 10 (pVAS) and medical treatments.

Thorough clinical examination was done, disease activity 28-joint (DAS-28) score was used to assess RA disease activity. Remission was considered if DAS-28 is < 2.6, low activity was considered if DAS-28 was ≥ 2.6 and < 3.2, moderate activity was considered if DAS-28 was ≥ 3.2 and < 5.1 and high activity was considered if DAS-28 was ≥ 5.1 [12].
Musculoskeletal ultrasonography (MSUS)/power doppler assessment (PD):
RA patients were scanned by MSUS that was done by a rheumatologist experienced in MSUS who didn’t know the clinical information of the patients, using a GE Logiqe 9 scanner (General Electric Medical Systems, USA) with a linear transducer (8–13 MHZ).

Gray-scale (GS) and power doppler (PD) examination were done in both longitudinal and transverse scan for 6 joints in every RA patient; the wrist (dorsal radiocarpal and midcarpal joints), 2nd MCP and supra patellar recess of the knee joint bilaterally [14]. The gain and depth were adjusted according to examined joint.

Each joint was assessed by GS mode for the presence of synovial hypertrophy (SH) and erosions. According to European League against rheumatism- Outcome Measures in Rheumatology (EULAR-OMERACT), synovitis was diagnosed by the presence of a hypoechoic synovial hypertrophy (SH) regardless of the presence or effusion or any grade of PD signal [15]. US-SH was defined as presence of abnormal hypoechoic synovial tissue within the capsule that was not displaceable and poorly compressible and it may exhibit PD signals. US-SH was graded from 0 to 3; grade 0 (normal), US-SH regardless of the presence of effusion, grade 1: minimal hypoechoic SH up to the level of the horizontal line joining bone surfaces, grade 2: moderate hypoechoic SH extending out the joint line but with the upper surface concave, grade 3: severe hypoechoic SH with or without effusion extending above the joint line but with the upper surface convex.

US detected erosions were defined as intra- and/or extra-articular discontinuity of bone surface that should be seen in two perpendicular planes [15]. US synovitis activity was assessed by PD mode for detecting US-PD signal in the SH of each joint that was graded from 0 to 3; grade 0: no PD signal, grade 1: from one to three single spots or one confluent spot and two single spots or up to two confluent spots, grade 2: > grade 1 but < 50% of doppler signals in the background, grade 3: more than grade 2; > 50% of the total gray-scale back ground [15]. For each patient the total US-SH and US-PD score ranged from 0 to 18. Total musculoskeletal score (0 to 36) is the sum of US-SH and US-PD grades of the 6 joints for the patient [14].

Laboratory investigations
Complete blood cell count (CBC), hemoglobin (HB) concentration (gm/dl), erythrocyte sedimentation rate in the 1st hour (ESR mm/1st hour), C-reactive protein (CRP mg/dl), rheumatoid factor (RF u/ml), and anticyclic citrullinated antibody (Anti-CCP Abs u/ml) were measured.

Quantitative detection of serum CXCL13 level
Serum samples from all enrolled subjects were gathered and were put away at −20°C until investigation. Levels were estimated by enzyme-linked immunosorbent assay (ELISA) (Boster Biological Technology Co) recorded in pg/ml [16]. Serum CXCL13 levels were evaluated by the manufacturer’s guidelines utilizing a commercially accessible ELISA unit (Quantikine human CXCL13/BCL/BCA-1, #DCX130 R&D systems, USA) that was previously validated [17]. All tests were diluted 1:2 in Calibrator Diluent RD6-41 enhanced with mouse and bovine immunoglobulin G to guarantee preaggregation of heterophilic antibodies. Tests were examined in duplicates and the cutoff unit was determined as two standard deviations of the blanks.

Statistical methods
Data were presented as means ± standard deviation (SD), median and interquartile range (IQR), or numbers and percentage. The significance of difference was tested using Student’s t test to compare between the mean of two groups of parametric data. For continuous non-parametric data, Mann-Whitney U test was used. Chi-square test was used for categorical parameters. Spearman’s relationship coefficient was considered. Regression analysis was used to identify the independent parameters that could predict the US-SH activity being the dependent factor. The receiver operating characteristics (ROC) curve was done to evaluate the diagnostic value of serum CXCL13 levels in recent onset RA. A statistical significance is considered when a P value was < 0.05 and a P value < 0.001 was considered highly significant. All data were tabulated, coded, and analyzed using STATA/SE version 11.2 for Windows.

Results
This study included 50 RA patients; 37 (74%) females and 13 (26%) males with ages extended in the range between 19 and 63 years and a mean of 36.82 ± 13.66 years. They had disease duration ranged between 3 months and 12 months with a mean of 8.9 ± 3.09 months. Forty apparently healthy volunteers: 28 (70%) female and 12 (30%) male with ages ranging between 21 and 63 years with a mean of 39.3 ± 13.07 years were included as a control group. Both patients and controls were age (P = 0.8) and gender matched.
Table 1 Demographic, clinical, laboratory, and ultrasonographic characteristics of the RA patient group

Variables	Range (mean ± SD)	No. (%)
Age (years)	19-63 (36.82 ± 13.66)	37 (74%)
F/M	No. (%)	37 (74%)/13 (26%)
Disease duration (months)	Range (mean ± SD)	3–12 (8.9 ± 3.09)
MS duration (min) range,	Range (mean ± SD)	15–120 (44.2 ± 27.15)
SJC	Median (IQR)	2 (2–3)
TJC	Median (IQR)	2.5 (2–3)
pVAS (0–10)	Median (IQR)	4 (3–5)
Extra-articular manifest	(No, %)	18 (36%)
HB (gm/dl)	Mean ± SD	10.7 ± 1.2
Platelet count (× 10^9/UL)	Mean ± SD	268 ± 94
ESR, mm/1st h	Mean ± SD	20 ± 18
CRP, mg/dl	Mean ± SD	13.66 ± 9.89
DAS-28	Range (mean ± SD)	12.9–6.3 (4.25 ± 0.99)
DAS-28 Low	No. (%)	7 (13%)
Moderate	31 (62%)	
High	12 (24%)	
RF-positive	No. (%)	36 (72%)
RF titer u/ml	Median (IQR)	16 (8–64)
Anti-CCP Abs-positive	No. (%)	24/50 (48%)
Anti-CCP Abs titer u/ml	Median (IQR)	20 (16.25–56)
Total MOUS (0–100)	Median (IQR)	8.5 (6–12)
US, SH pre (0–6)	Median (IQR)	6 (4–8)
PD (0–18)	Median (IQR)	2 (1–5)
Larsen score (0–100)	Median (IQR)	16 (4.25–20)
Erosion in X-ray	No. of patients (%)	17/50 (34%)
Erosion in US	No. of patients (%)	23/50 (46%)

*Female, M male, NO number, MS morning stiffness, SJC number of swollen joints, TJC number of tender joint, p VAS patient global assessment by visual analog scale, HB hemoglobin, ESR/1st h erythrocyte sedimentation rate in the first hour, CRP C-reactive protein, DAS-28-28-joint disease activity score, RF rheumatoid factor, Anti-CCP Abs anti-cyclic citrullinated peptide antibodies, MSUS musculoskeletal ultrasoundography, US ultrasound, SH synovial hypertrophy, PD power doppler, SD standard deviation, IQR inter quartile range

Comtion of MTX, Sulfasalazine, and Leflunomide (5 patients). Fifteen RA patients were receiving bDMARDs: 9 patients were receiving Adalimumab and 6 patients were on Etanercept ± MTX.

Periarticular erosions were detected in the hand and feet X-ray in 17 patients (34%) while erosions were detected by MSUS examination in 23 (46%) patients.

The mean CXCL13 value was fundamentally higher in the RA patients (388.86 ± 283.63 pg/ml), than in the controls (62.96 ± 32.5 pg/ml) (**P < 0.001**) (Fig. 1).

No significant differences in the mean serum CXCL13 levels were found according to the gender (**P = 0.26**), extra-articular organ involvement (**P = 0.75**), seropositivity for RF (**P = 0.23**) or Anti-CCP Abs (**P = 0.83**) in RA patients’ group but its levels were statistically significantly increased in the erosive RA patients detected by X-ray or MSUS (553.18 ± 291.85) than patients without erosions (201.07 ± 99.84) (**P < 0.001**) (Table 2).

The mean CXCL13 serum level was significantly the highest in the highly active RA patients’ group (mean ± SD 819.13 ± 191.05) compared with the moderately active RA patients (mean ± SD 284.95 ± 137.93) (**P < 0.001**) and the RA patients with Low disease activity (mean ± SD 129.5 ± 21.27) (**P < 0.001**) (Table 2).

Serum levels CXCL13 levels were significantly positively correlated with MS durations (**r = 0.68**) (**P < 0.001**), SJCs (**r = 0.85**) (**P < 0.001**), TJC’s (**r = 0.84**) (**P < 0.001**), patient global assessment scores (pVASs) (**r = 0.28**) (**P < 0.001**), ESR 1st h values (**r = 0.70**) (**P < 0.001**), platelets counts (**r = 0.56**) (**P < 0.003**), RF (**r = 0.66**) (**P < 0.001**).
Table 2 Comparison between the mean serum CXCL13 of the RA patients’ group regarding sex, extra-articular affection, seropositivity, and presence of erosion

Variable	CXCL13 (pg/ml) Mean ± SD	P value
Sex		
Female	394.5 ± 239.5	0.26
Male	373.3 ± 400.9	
Extra-articular manifestation		
Yes	338.81 ± 200.5	0.75
No	417.84 ± 323.82	
RF u/ml		
Positive	403.42 ± 287.74	0.23
Negative	185 ± 91.92	
Anti-CCP Abs u/ml		
Positive	392.31 ± 322.71	0.83
Negative	384.92 ± 243.43	
DAS-28		
High	819.13 ± 191.05	< 0.001**
Moderate	284.95 ± 137.93	
Low	129.5 ± 21.27	
Erosion		
Positive	553.18 ± 291.85	< 0.001**
Negative	201.07 ± 99.84	

Table 3 Correlations of the B cell chemokine CXCL13 levels with clinical, laboratory, and radiological parameters in RA patient group

Parameters	r	P
Age (years)	0.15	0.26
Disease duration (months)	0.16	0.09
MS (min)	0.68	< 0.001**
SJC count	0.85	< 0.001**
TJC count	0.84	< 0.001**
pVAS	0.28	< 0.001**
ESR (mm/1st h)	0.6	< 0.001**
CRP level (mg/L)	0.13	0.09
HB (gm/dl)	0.40	0.01*
Platelets count (x 103/ul)	0.5	< 0.001**
RF u/ml	0.66	< 0.001**
Anti-CCP Abs titer u/ml	0.64	< 0.001**
DAS-28	0.85	< 0.001**
Total MSUS (0–36)	0.64	< 0.001**
US - SH (0–18)	0.46	< 0.001**
US-PD (0–18)	0.30	0.11
Disease duration (months)	0.46	< 0.001**
CRP level (mg/L)	0.46	< 0.001**
RF u/ml	0.65	< 0.001**
Anti-CCP Abs titer u/ml	0.64	< 0.001**
DAS-28	0.85	< 0.001**
Total MSUS (0–36)	0.64	< 0.001**
US - SH (0–18)	0.46	< 0.001**
US-PD (0–18)	0.30	0.11
Disease duration (months)	0.46	< 0.001**
CRP level (mg/L)	0.46	< 0.001**
RF u/ml	0.65	< 0.001**
Anti-CCP Abs titer u/ml	0.64	< 0.001**
DAS-28	0.85	< 0.001**
Total MSUS (0–36)	0.64	< 0.001**
US - SH (0–18)	0.46	< 0.001**
US-PD (0–18)	0.30	0.11
Disease duration (months)	0.46	< 0.001**
CRP level (mg/L)	0.46	< 0.001**
RF u/ml	0.65	< 0.001**
Anti-CCP Abs titer u/ml	0.64	< 0.001**
DAS-28	0.85	< 0.001**
Total MSUS (0–36)	0.64	< 0.001**
US - SH (0–18)	0.46	< 0.001**
US-PD (0–18)	0.30	0.11
Disease duration (months)	0.46	< 0.001**
CRP level (mg/L)	0.46	< 0.001**
RF u/ml	0.65	< 0.001**
Anti-CCP Abs titer u/ml	0.64	< 0.001**
DAS-28	0.85	< 0.001**
Total MSUS (0–36)	0.64	< 0.001**
US - SH (0–18)	0.46	< 0...
and individual disease activity parameters as morning stiffness (MS) duration, the number of swollen and tender joints, p VAS scores for global patient assessment added to ESR values.

Collectively, these results supported other investigators who found that serum CXCL13 levels were significantly associated with various measures of disease activity, such as the SJC, the disease activity global assessment, and ESR values [22–24].

Our results are consistent with Greisen et al., who detected raised serum CXCL13 levels in untreated early RA active patients and found that their disease activity had been reduced in those patients after treatments that supports the hypothesis that CXCL13 is a surrogate

Fig. 2 a–c Dorsal longitudinal MSUS dorsal scan of radiocarpal joint in two different RA patients. a Gray-scale dorsal longitudinal musculoskeletal ultrasonographic scan of a 2nd metacarpophalangeal joint (m: metacarpal bone, p: proximal phalanx) shows synovial hypertrophy (black arrow) grade 2 and an erosion (e) in RA patient with increased serum CXCL13 level of 120 pg/ml. b Gray-scale dorsal longitudinal midline musculoskeletal ultrasonographic scan of the wrist joint (radiocarpal and midcarpal joints) of the same patient shows an erosion (arrow) in the lunate bone (r: radius bone, L: lunate bone, C: capitate bone). c Dorsal PDUS longitudinal midline musculoskeletal ultrasonographic scan of a wrist joint (radiocarpal and midcarpal joints) (r: radius bone, L: lunate bone, C: capitate bone) shows severe synovitis marked by synovial hypertrophy grade 3 and power doppler activity grade 3 in RA patient with increased serum CXCL13 level of 803 pg/ml. CXCL13: serum B lymphocyte chemoattractant protein13, PDUS power doppler ultrasound.

Fig. 3 ROC analysis of CXCL13 as a diagnostic test for RA. This figure showed that at a cut-off point 111 pg/ml CXCL13 chemokine has a sensitivity of 96.67%, a specificity of 95%, positive predictive value (PPV) of 96.57%, and negative predictive value (NPV) of 96% for diagnosis of RA. CXCL13 serum B lymphocyte chemoattractant protein13, RA rheumatoid arthritis.
CXCL13 was associated with RF in RA patients [28, 29].

increased in Anti-CCP Abs-positive compared to seronegative patients compared with seronegative patients. Our findings increased in RF and Anti-CCP Abs seropositive RA patients compared with MRI [32]. In our study, regression analysis showed that serum CXCL13 level was the only factor that is strongly associated with SH score and hence it can be used to predict the severity of the actively inflamed joints which confirmed what was stated before about its usefulness in grading the severity of synovitis in comparison to ESR, C-reactive proteins, RF, or Anti-CCP abs [16]. In our study, we found that serum CXCL13 at a cut-off point of 111 pg/ml had sensitivity of 96.67% and specificity of 95.0% as a diagnostic test of RA that is in line and supports previous researcher who concluded that serum CXCL13 levels could be helpful confirming the diagnosis of active recent onset RA when they detected elevated levels in a remarkable number of recent onset seronegative RA patients [22].

Conclusion
We concluded that serum CXCL13 is correlated with clinical disease activity and MSUS disease severity; thus,
we encourage its use in monitoring the activity and severity of synovitis in recent onset RA patients. Future studies to detect the effect of disease activity control by medications on CXCL13 levels and the effect of the CXCL13 antagonist on controlling RA disease activity and severity are recommended.

Abbreviations
CXCL13: Serum B lymphocyte chemoattractant protein13; RA: Rheumatoid arthritis; CXCR5: Chemokine (C-X-C motif) receptor 5; MSUS: Musculoskeletal ultrasound; PD: Power doppler; GS: Gray-scale; US-SE: Ultrasound synovial effusion; US-SH: Ultrasound synovial hypertrophy

Acknowledgements
Not applicable.

Presentation at a meeting
As an abstract in Annals of the Rheumatic Diseases 76(Suppl 2):781.2-781.2017. Under the title: SAT0038 Serum B lymphocyte chemoattractant protein 13 (CXCL13) and musculoskeletal ultrasonographic findings in early rheumatoid arthritis. Conference: Annual European Congress of Rheumatology, place: Italy. Date: 14–17 June, 2017

Authors’ contributions
EAB, SAE, GAH, MAK, SHA, and MME had contributed to the conception, design of the work and definitions of the intellectual contents. EAB, MAK, SHA, and MME were concerned with analysis, and interpretation of statistical data and writing the results. The manuscript has been read and approved by all the authors, the requirements for authorship have been met, and each author believes that the manuscript represents honest work.

Funding
The research was not funded. Costs were the responsibility of the authors.

Availability of data and materials
All are available.

Ethics approval and consent to participate
This research was accepted by Research Ethics Committee (REC) of Faculty of Medicine, Benha University in accordance the 1983 Helsinki Declaration. This research was accepted by Research Ethics Committee (REC) of Faculty of Medicine, Benha University in accordance the 1983 Helsinki Declaration. The study was clarified to all the participant who gave a verbal consent before participating in the study according to the ethics committee for scientific research in our faculty to date.

The reference number is not available as this paper was done from a MD scientific research in our faculty to date.

Consent for publication
Not applicable.

Competing interests
All authors declare conflict of interest.

Author details
1Rehabilitation and Physical medicine, Benha Faculty of Medicine, Benha University, Benha, Egypt. 2Medical Microbiology and Immunology, Benha Faculty of Medicine, Benha University, Benha, Egypt. 3Clinical Pathology Department, Benha Faculty of Medicine, Benha University, Benha, Egypt.
21. Rioja I, Hughes FJ, Sharp CH, Warnock LC, Montgomery DS, Akil M, et al. (2008) Potential novel biomarkers of disease activity in rheumatoid arthritis patients: CXCL13, CCL23, transforming growth factor α, tumor necrosis factor receptor superfamily member 9, and macrophage colony-stimulating factor. Arthritis Rheum 58:2257–2267.

22. Allam SA, Sallam RA, Elghannam DM, El-Ghaweet AI (2019) Clinical significance of serum B cell chemokine (CXCL13) in early rheumatoid arthritis patients. Egypt Rheumatol 41:11–14.

23. Szukulak M, Narvestad E, Klarlund M, Court-Payen M, Thomsen HS, Ostergaard M (2004) Ultrasonography of the metatarsophalangeal joints in rheumatoid arthritis: comparison with magnetic resonance imaging, conventional radiography, and clinical examination. Arthritis Rheum 50:2103–2112.

24. Greisen SR, Schelda KK, Rasmussen TK, Gragstrup TW, Stengarda-Pedersen K, Hetland ML, et al. (2014) CXCL13 predicts disease activity in early rheumatoid arthritis and could be an indicator of the therapeutic window of opportunity. Arthritis Res Ther 24(16)(S4):434.

25. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM et al (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167:1072–1080.

26. Shi K, Hayashida K, Kaneko M, Hashimoto J, Tomita T, Lipsky PE et al (2001) Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 166:650–655.

27. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454.

28. Bugatti S, Manzo A, Bombardieri M, Vitolo B, Humfy B, Kelly S et al (2011) Synovial tissue heterogeneity and peripheral blood biomarkers. Curr Rheumatol Rep 13:440–448.

29. Jones JD, Hamilton BJ, Challenger GJ, de Brum-Fernandes AJ, Cossette P, Liang P et al (2014) Serum C-X-C motif chemokine 13 is elevated in early and established rheumatoid arthritis and correlates with rheumatoid factor levels. Arthritis Res Ther 16(2)(R103).

30. Mewar D, Coote A, Moore DJ, Marinou I, Keyworth J, Dickson MC et al (2006) Independent associations of anti-cyclic citrullinated peptide antibodies and rheumatoid factor with radiographic severity of rheumatoid arthritis. Arthritis Res Ther 8(4):R128.

31. Naredo E, Collado P, Cruz A, Palop MJ, Cabero F, Rich P et al (2007) Longitudinal power Doppler ultrasonographic assessment of inflammatory activity in early rheumatoid arthritis: predictive value of disease activity and radiologic progression. Arthritis Rheum 57:116–124.

32. Wakefield RJ, Balint PV, Szkudlarek M, Filippuccio M, Backhaus M, D’Agostino MA et al (2005) Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol 32(12):2466–2468.

33. Meeuwisse CM, van der Linden MP, Romeny TA, Allaart CF, Nelissen R, Huizinga TW et al (2011) Identification of CXCL13 as a marker for rheumatoid arthritis outcome using an in silico model of the rheumatic joint. Arthritis Rheum 63:1265–1273.

34. Ahmed SF, Badr T, Hosny SM, Aboul-Hamayed HF (2013) Assessment of synovitis in early rheumatoid arthritis by CXCL13 serum levels and power Doppler ultrasonography: correlations with disease activity. Egypt Rheumatol 35(1):21–27.

35. Bugatti S, Manzo A, Vitolo B, Benaglio F, Binda E, Scabellini M et al (2014) High expression levels of the B cell chemoattractant CXCL13 in rheumatoid synovium are a marker of severe disease. Rheumatology (Oxford) 53(10):1860–1866.

36. Meacham RC, Redina T, Reilly C, Torno S, Bussler H, Scrivers M et al (2015) CXCL13 antibody for the treatment of autoimmune disorders. BMC Med 13:166.

37. D’Agostino MA, Nyberg LM, Herbst R, Sleeman MA (2013) Effects of CXCL13 inhibition on lymphoid follicles in models of autoimmune disease. Eur J Clin Invest 43:501–509.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.