Characterization of Lipschitz continuous DC functions

A. Hantoute1,\dagger, J.E. Martínez-Legaz2,\dagger

1Universidad de Chile, Centro de Modelamiento Matemático (CMM)
Avda Blanco Encalada 2120, Piso 7, Santiago, Chile

2Universitat Autònoma de Barcelona
Departament d’Economia i d’Història Econòmica, 08193 Bellaterra, Spain

Abstract
We give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a locally convex space, to be Lipschitz continuous. Our criterion relies on the intersections of the ε-subdifferentials of the involved functions.

Key words. DC functions, Lipschitz continuity, Integration formulas, ε-subdifferential

Mathematics Subject Classification (2010): 26B05, 26J25, 49H05.

1 Introduction

In this paper, we work with a (Hausdorff) real locally convex topological vector space X whose dual is denoted by X^\ast. The duality product is denoted by $\langle \cdot, \cdot \rangle : X \times X^\ast \rightarrow \mathbb{R}$, and the zero vector (in X and X^\ast) by θ.

Classical integration formulas ([8, 9]) have been first established in the Banach spaces setting for proper lower semicontinuous (lsc, for short) convex functions using the Fenchel subdifferential, which is defined for a given function $f : X \rightarrow \mathbb{R} \cup \{+\infty\}$ and a point x in the domain of f, $\text{dom} \, f := \{x \in X \mid f(x) < +\infty\}$, by

$$\partial f(x) := \{x^\ast \in X^\ast : f(y) - f(x) \geq \langle y - x, x^\ast \rangle \text{ for all } y \in X\}.$$

These results have been extended outside the Banach space ([1, 7]) and the non-convex settings ([3]) by using the ε-subdifferential mapping, defined for $\varepsilon > 0$

\daggerahantoute@dim.uchile.cl
\daggerjuanenrique.martinez.legaz@uab.cat
In this paper we exploit an idea, recently used in [6], to establish several characterizations for the Lipschitz character of the difference of convex (DC, for short) functions. As a consequence, if the Lipschitz constant is equal to 0 then we obtain an integration formula guaranteeing the coincidence of the involved functions up to an additive constant. The main result is presented in Theorem 1 in a slightly more general form, valid in the locally convex spaces setting, which characterizes the domination of the variations of DC functions by means of a convex continuous functions. The desired integration formula is obtained in Theorem 5.

2 The main result

The desired results providing the characterization of Lipschitz DC functions will be given in Theorem 2 which is a consequence of the following theorem.

In what follows, \(f, g : X \to \mathbb{R} \cup \{+\infty\} \) are two given functions with a common domain
\[
D := f^{-1}(\mathbb{R}) = g^{-1}(\mathbb{R}),
\]
assumed nonempty and convex.

Theorem 1 Let \(h : X \to \mathbb{R} \) be a continuous convex function such that \(h(\theta) = 0 \). Then, the following statements are equivalent:

(i) \(f \) and \(g \) are convex, lsc on \(D \), and satisfy
\[
f(x) - g(x) \leq f(y) - g(y) + h(x - y) \quad \text{for all } x, y \in D.
\]

(ii) For each \(x \in D \)
\[
\emptyset \neq \partial \varepsilon f(x) \subset \partial \varepsilon g(x) + \partial \varepsilon h(\theta) \quad \text{for all } \varepsilon > 0.
\]

(iii) For each \(x \in D \) there exists \(\delta > 0 \) such that
\[
\emptyset \neq \partial \varepsilon f(x) \subset \partial \varepsilon g(x) + \partial \varepsilon h(\theta) \quad \text{for all } \varepsilon \in (0, \delta).
\]

(iv) For each \(x \in D \)
\[
\partial \varepsilon f(x) \cap (\partial \varepsilon g(x) + \partial \varepsilon h(\theta)) \neq \emptyset \quad \text{for all } \varepsilon > 0.
\]

(v) For each \(x \in D \) there exists \(\delta > 0 \) such that
\[
\partial \varepsilon f(x) \cap (\partial \varepsilon g(x) + \partial \varepsilon h(\theta)) \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).
\]
Proof. (i) \implies (ii). Since f is proper (dom $f \neq \emptyset$), convex and lsc on D, for any given $\varepsilon > 0$ the ε-subdifferential operator $\partial_{\varepsilon} f$ is nonempty on D ([11] Prop. 2.4.4(iii)). For $x \in D$, we define the function $\tilde{g} : X \to \mathbb{R} \cup \{+\infty\}$ as

$$\tilde{g} := g + f (x) - g (x)$$

so that by (i) the inequality $f \leq \tilde{g} + h (-x)$ holds, as well as $f(x) = \tilde{g}(x) + h(\theta) = \tilde{g}(x)$. Notice that $\operatorname{cl} \tilde{g} = \operatorname{cl} g + f(x) - g(x)$, where cl refers to the corresponding lsc envelope. Hence, as g is lsc on D, $\operatorname{cl} \tilde{g}$ coincides with $g + f (x) - g (x)$ on D, which implies that it is proper. Therefore, since ([4, Lemma 15])

$$\operatorname{cl}(\tilde{g} + h(-x)) = \operatorname{cl} \tilde{g} + h(-x) = \operatorname{cl} g + h(-x) + f(x) - g(x)$$

and $\partial_{\delta}(\operatorname{cl} \tilde{g})(x) = \partial_{\delta} \tilde{g}(x) = \partial_{\delta} g(x)$ (for all $\delta > 0$), by appealing to the sum rule of the ε-subdifferential (e.g., [11] Theorem 2.8.3) we get

$$\partial_{\varepsilon} f (x) \subset \bigcup_{\varepsilon_1, \varepsilon_2 \geq 0 \quad \varepsilon_1 + \varepsilon_2 = \varepsilon} (\partial_{\varepsilon_1}(\operatorname{cl} \tilde{g})(x) + \partial_{\varepsilon_2} h(\theta))$$

$$\quad = \bigcup_{\varepsilon_1, \varepsilon_2 \geq 0 \quad \varepsilon_1 + \varepsilon_2 = \varepsilon} (\partial_{\varepsilon_1} g(x) + \partial_{\varepsilon_2} h(\theta)) \subset \partial_{\varepsilon} g(x) + \partial_{\varepsilon} h(\theta);$$

showing that (ii) holds.

The implication (ii) \implies (iii) \implies (v) and (ii) \implies (iv) \implies (v) are obvious.

(v) \implies (i). We fix $x, y \in D$ and take an arbitrary number $\varepsilon > 0$. For $m = 1, 2, \cdots$ we denote

$$x_{m,i} := x + \frac{i}{m} (y - x) \quad \text{for } i = 0, 1, \cdots, m.$$

Then, by the current assumption (v) for each i and m there exists $\gamma_{m,i} \in (0, m^{-1})$ such that

$$\partial_{m^{-1}\gamma_{m}} f (x_{m,i}) \cap [\partial_{m^{-1}\gamma_{m}} g(x_{m,i}) + \partial_{m^{-1}\gamma_{m}} h(\theta)] \neq \emptyset \quad \text{for all } \gamma \in (0, \gamma_{m,i}).$$

Set

$$\gamma_m := \min_{i \in \{1, \cdots, m\}} \gamma_{m,i},$$

so that $\gamma_m > 0$, and choose $u_{m,i}^* \in \partial_{m^{-1}\gamma_{m}} f (x_{m,i})$, $v_{m,i}^* \in \partial_{m^{-1}\gamma_{m}} g(x_{m,i})$ and $w_{m,i}^* \in \partial_{m^{-1}\gamma_{m}} h(\theta)$ such that $u_{m,i}^* = v_{m,i}^* + w_{m,i}^*$ for $i = 1, \cdots, m - 1$. In this way, if $u^* \in \partial_{\varepsilon} f(x)$ and $v^* \in \partial_{\varepsilon} g(y)$ are given we write

$$f (x_{m,1}) - f (x) \geq \frac{1}{m} \langle y - x, u^* \rangle - \varepsilon$$

$$f (x_{m,i+1}) - f (x_{m,i}) \geq \frac{1}{m} \langle y - x, u_{m,i}^* \rangle - m^{-1}\gamma_m \varepsilon \quad (i = 1, \cdots, m - 1)$$

$$g (x_{m,i+1}) - g (x_{m,i}) \geq - \frac{1}{m} \langle y - x, v_{m,i}^* \rangle - m^{-1}\gamma_m \varepsilon \quad (i = 1, \cdots, m - 1)$$

$$g (x_{m,m-1}) - g (y) \geq - \frac{1}{m} \langle y - x, v^* \rangle - \varepsilon.$$
Adding up these inequalities and using the facts that $x_{m,m} = y$ and $x_{m,0} = x$, together with $u_{m,i}^* = v_{m,i}^* + w_{m,i}^*$, we obtain that

$$f(y) - f(x) + g(x) - g(y) \geq \frac{1}{m} \langle y - x, u^* - v^* \rangle + \frac{1}{m} \sum_{i=1}^{m-1} \langle y - x, w_{m,i}^* \rangle - 2 (m - 1) m^{-1} \gamma_m \varepsilon - 2 \varepsilon.$$

Thus, since $w_{m,i}^* \in \partial_{m-1,\varepsilon} h(\theta)$ we deduce that

$$f(y) - f(x) + g(x) - g(y) \geq \frac{1}{m} \langle y - x, u^* - v^* \rangle - \frac{m-1}{m} h(x - y) - 2 (m - 1) m^{-1} \gamma_m \varepsilon - 2 \varepsilon$$

which gives us, as m goes to ∞ (recall that $0 < \gamma_m \leq m^{-1}$),

$$f(y) - f(x) + g(x) - g(y) \geq -h(x - y) - 2 \varepsilon.$$

Hence, by letting ε go to 0 we get

$$f(x) - g(x) \leq f(y) - g(y) + h(x - y);$$

that is, (i) follows.

The particular case $h := 0$ in Theorem 1 yields a new integration result, which relies on the intersection of the ε-subdifferentials of the nominal functions. We will denote by f_D and g_D the restrictions of f and g to D, respectively.

Corollary 2 (cf. [2, Corollary 2.5]) The following statements are equivalent:

(i) f and g are convex, lsc on D, and $f_D - g_D$ is constant.

(ii) For each $x \in D$

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) \quad \text{for all } \varepsilon > 0.$$

(iii) For each $x \in D$ there exists $\delta > 0$ such that

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) \quad \text{for all } \varepsilon \in (0, \delta).$$

(iv) For each $x \in D$

$$\partial_\varepsilon f(x) \cap \partial_\varepsilon g(x) \neq \emptyset \quad \text{for all } \varepsilon > 0.$$

(v) For each $x \in D$ there exists $\delta > 0$ such that

$$\partial_\varepsilon f(x) \cap \partial_\varepsilon g(x) \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

The following corollary, giving a criterion for integrating the Fenchel subdifferential, is an immediate consequence of Corollary 2 in view of the straightforward relationships $\partial f(x) \subset \partial_\varepsilon f(x)$ and $\partial g(x) \subset \partial_\varepsilon g(x)$ for every $x \in D$ and every $\varepsilon > 0$.

4
Corollary 3 (cf. [6, Theorem 1]) The following statements are equivalent:

(i) For each $x \in D$
$$\emptyset \neq \partial f(x) \subset \partial g(x).$$

(ii) For each $x \in D$
$$\partial f(x) \cap \partial g(x) \neq \emptyset.$$

(iii) For each $x \in D$
$$\emptyset \neq \partial f(x) = \partial g(x).$$

If these statements hold, then f and g are convex, lsc on D, and $f_D - g_D$ is constant.

Remark 4 a) The preceding results remain true if X is an arbitrary locally convex real topological vector space, not necessarily Hausdorff. Indeed, the equivalence between the convex and lsc character of a function and the nonemptiness of its ε-subdifferentials is a reformulation of the Fenchel-Moreau Theorem, the validity of which in non-Hausdorff spaces has been proved by S. Simons [11, Theorem 10.1].

b) The equivalence between (i) and (ii) in Corollary 2 also follows from a well-known characterization of global minima of DC functions due to J.-B. Hiriart-Urruty [5, Theorem 4.4]. Indeed, according to this characterization, if f and g are convex then one has $\partial \varepsilon f(x) \subset \partial \varepsilon g(x)$ for all $\varepsilon > 0$ if and only if x is a global minimum of $f_D - g_D$. Hence, that condition holds for every $x \in D$ if and only if every $x \in D$ is a global minimum of $f_D - g_D$, which is obviously equivalent to $f_D - g_D$ being constant on D.

From now on we suppose that X is a normed space with a norm denoted by $\|\cdot\|$ whose the dual norm is $\|\cdot\|_*$. We use $B_*(\theta, K)$ to denote the closed ball in $(X^*, \|\cdot\|_*)$ with center θ and radius $K \geq 0$, and for $A, B \subset X^*$ we set
$$d(A, B) := \inf \{\|a - b\|_* : a \in A, b \in B\},$$
with the convention that $d(A, B) := +\infty$ if A or B is empty.

At this moment, we easily get the main result of the paper by taking $h := K \|\cdot\|$ in Theorem 1.

Theorem 5 Let $K \geq 0$. Then, the following statements are equivalent:

(i) f and g are convex, lsc on D, and $f_D - g_D$ is Lipschitz with constant K.

(ii) For each $x \in D$
$$\emptyset \neq \partial \varepsilon f(x) \subset \partial \varepsilon g(x) + B_*(\theta, K) \quad \text{for all } \varepsilon > 0.$$

(iii) For each $x \in D$ there exists $\delta > 0$ such that
$$\emptyset \neq \partial \varepsilon f(x) \subset \partial \varepsilon g(x) + B_*(\theta, K) \quad \text{for all } \varepsilon \in (0, \delta).$$
(iv) For each $x \in D$
$$\partial_{\varepsilon} f(x) \cap [\partial_{\varepsilon} g(x) + B_*(\theta, K)] \neq \emptyset \quad \text{for all } \varepsilon > 0.$$

(v) For each $x \in D$ there exists $\delta > 0$ such that
$$\partial_{\varepsilon} f(x) \cap [\partial_{\varepsilon} g(x) + B_*(\theta, K)] \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

(vi) For each $x \in D$
$$d(\partial_{\varepsilon} f(x), \partial_{\varepsilon} g(x)) \leq K \quad \text{for all } \varepsilon > 0.$$

(vii) For each $x \in D$ there exists $\delta > 0$ such that
$$d(\partial_{\varepsilon} f(x), \partial_{\varepsilon} g(x)) \leq K \quad \text{for all } \varepsilon \in (0, \delta).$$

Proof. The proofs of the equivalences (i) \iff (ii) \iff (iii) \iff (iv) \iff (v) follow from Theorem 1 by observing that $\partial_{\varepsilon}(K \parallel \cdot)(\theta) = B_*(\theta, K)$. The implications (iv) \implies (vi) \implies (vii) are obvious. To prove (vii) \implies (i), given $x \in D$ we notice that (vii) implies the existence of $\delta > 0$ such that, for all $\gamma > 0$,
$$\partial_{\varepsilon} f(x) \cap [\partial_{\varepsilon} g(x) + B_*(\theta, K + \gamma)] \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

Hence, by the equivalence between (v) and (i), f and g are convex, lsc on D, and $f_D - g_D$ is Lipschitz with constant $K + \gamma$. Therefore, since γ is arbitrary, $f_D - g_D$ is Lipschitz with constant K. \quad \blacksquare

Observing that statements (i), (iv), (v), (vi) and (vii) in Theorem 5 are symmetric in f and g, it turns out that, under the assumptions of this theorem, statements (ii) and (iii) are also symmetric; therefore, if one has $\emptyset \neq \partial_{\varepsilon} f(x) \subset \partial_{\varepsilon} g(x) + B_*(\theta, K)$ for all $\varepsilon > 0$ for each $x \in D$, then one also has $\emptyset \neq \partial_{\varepsilon} g(x) \subset \partial_{\varepsilon} f(x) + B_*(\theta, K)$ for all $\varepsilon > 0$ for each $x \in D$. We thus obtain the following corollary:

Corollary 6 Let $K \geq 0$. If some (hence all) of the statements (i)–(vii) of Theorem 5 holds, then for every $x \in D$ and every $\varepsilon > 0$ the Hausdorff distance between $\partial_{\varepsilon} f(x)$ and $\partial_{\varepsilon} g(x)$ does not exceed the constant K.

Corollary 7 The following statements are equivalent:
(i) f and g are convex, lsc on D, and $f_D - g_D$ is constant.
(ii) For each $x \in D$
$$d(\partial_{\varepsilon} f(x), \partial_{\varepsilon} g(x)) = 0 \quad \text{for all } \varepsilon > 0.$$
(iii) For each $x \in D$ there exists $\delta > 0$ such that
$$d(\partial_{\varepsilon} f(x), \partial_{\varepsilon} g(x)) = 0 \quad \text{for all } \varepsilon \in (0, \delta).$$
From the previous result we obtain a complement to Corollary 3:

Corollary 8 The following statements are equivalent:

(i) For each \(x \in D \),
\[
\emptyset \neq \partial f(x) = \partial g(x).
\]

(ii) For each \(x \in D \),
\[
d(\partial f(x), \partial g(x)) = 0.
\]

References

[1] Bachir, M., Daniilidis, A., Penot, J.-P. *Lower subdifferentiability and integration*. Set-Valued Anal. 10 (2002), no. 1, 89–108.

[2] Burachik, R. S., Martínez-Legaz, J. E., Rocco, M. *On a sufficient condition for equality of two maximal monotone operators*, Set-Valued Var. Anal. 18 (2010), no. 3-4, 327–335.

[3] Correa, R., Garcia, Y., Hantoute, A. *Integration formulas via the Fenchel Subdifferential of nonconvex functions*, Nonlinear Analysis (2011), doi: 10.1016/j.na.2011.05.085.

[4] Hantoute, A., López, M. A., Zălinescu, C. *Subdifferential calculus rules in convex analysis: a unifying approach via pointwise supremum functions*, SIAM J. Optim. 19 (2008), no. 2, 863–882.

[5] Hiriart-Urruty, J.-B. *From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality*, Nonsmooth optimization and related topics (Erice, 1988), 219–239, Ettore Majorana Internat. Sci. Ser. Phys. Sci., 43, Plenum, New York, 1989.

[6] Kocourek, P. *An elementary new proof of the determination of a convex function by its subdifferential*, Optimization 59 (2010), no. 8, 1231–1233.

[7] Marcellin, S., Thibault, L. *Integration of \(\varepsilon \)-Fenchel subdifferentials and maximal cyclic monotonicity*. J. Global Optim. 32 (2005), no. 1, 83–91.

[8] Moreau, J. J. *Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles*. Collège de France, 1966.

[9] Rockafellar, R. T. *On the maximal monotonicity of subdifferential mappings*. Pacific J. Math. 33 (1970), 209–216.

[10] Simons, S. *Banach SSD spaces and classes of monotone sets*, J. Convex Anal. 18 (2011), no. 1, 227–258.

[11] Zălinescu, C. *Convex analysis in general vector spaces*, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.