Hand Volume as a Diagnostic Tool in Carpal Tunnel Syndrome

David T Burke¹, Regina Bell¹, Daniel P Burke² and Samir Al-Adawi³

¹Emory University School of Medicine, 1441 Clifton Road, Suite 118, Atlanta, Georgia 30322, USA
²Georgia College and State University, 231 W Hancock Street, Milledgeville, Georgia 31061, USA
³Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman

Corresponding author: David T Burke, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, Suite 118, Atlanta, Georgia 30322, USA, Tel: 404-290-8715; E-mail: Dburke2@emory.edu

Received date: October 30, 2015; Accepted date: June 26, 2015; Published date: June 29, 2015

Copyright: © 2015 Burke DT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objectives: To determine whether patients with carpal tunnel syndrome have an objective swelling of their hands.

Design: A prospective, cross-sectional study of consecutive patients.

Setting: Two independent electromyographic laboratories.

Participants: Sixty-three patients referred for electrodiagnostic work-up.

Interventions: NCS/EMG testing and volumetric analysis. Limb volume was measured using the water displacement method using a volumeter.

Main Outcome Measures: Differences in volume (DHV) and EMG/NCS data.

Results: EMG results indicated that 24 subjects (38%) had findings consistent with CTS. Data concerning subjective swelling was available for only six of these 24 subjects. The data, which are limited by low power, indicate that there was no difference 1) between the volume of the affected hand and the unaffected hand among those with CTS; 2) between the DHV of those with CTS and those without; 3) Patients with lower extremity complaints had significantly less DHV than those with an upper extremity complaint (p<0.0034, excluding patients with both upper and lower extremity complaints).

Conclusions: Though a patients' perception of hand swelling has previously been determined to be an indicator of CTS severity, there was no correlation found in this study between CTS and objective measures of swelling. However patients with an upper extremity complaints had a statistically larger DHV than those with a lower extremity complaint (p<0.0034), suggesting that objective swelling might be present under some unknown circumstances. As this study was limited by a low power, further investigation is warranted in this area.

Keywords: Carpal tunnel syndrome; Orthopaedic surgeons; Neuropathy; Diagnosis of CTS

Introduction

Carpal Tunnel Syndrome (CTS) is the most common compressive neuropathy in the upper extremity. The American Academy of Orthopaedic Surgeons (AAOS) Clinical Guideline on the Diagnosis of Carpal Tunnel Syndrome defines CTS as a symptomatic compression neuropathy of the median nerve at the level of the wrist, characterized physiologically by evidence of increased pressure within the carpal tunnel and decreased function of the nerve at that level [1]. The syndrome is also defined as a constellation of signs and symptoms that result from median nerve damage at the carpal tunnel, including pain, numbness, or tingling in the median nerve distribution of the hand [2]. Carpal Tunnel Syndrome affects approximately 3-6% of the overall population [3]. The diagnosis of CTS has traditionally relied on one or more of three physical signs or symptoms: (1) hypoesthesia in the median nerve distribution of the hand; (2) Tinel’s sign: a tingling sensation in the median nerve distribution of the hand after light percussion of the median nerve at the wrist; and (3) Phalen’s test: numbness and paresthesias in the median nerve distribution after flexing the wrist completely for 60 seconds [4,5]. A recent meta-analysis of diagnostic tests for CTS by Massy-Westropp supports the use of Tinel’s sign and Phalen’s test as diagnostic tools [6]. Yet studies have demonstrated a wide range of sensitivities and specificities for Phalen’s test and Tinel’s sign, 30%-100% [7,8]. Studies have demonstrated the inconsistency of clinical evaluations [9]. Investigators have thus searched for other diagnostic tools for CTS. Durkan introduced the carpal tunnel compression test [10]. In his 1991 study, he compared nerve conduction studies with carpal tunnel compression and found 87% sensitivity and 90% specificity, superior to most studies of Tinel’s and Phalen’s test [10]. The scratch-collapse test was developed by Beck JL. While trying to complete a resistive-type motor task, the patient is scratched by the clinician at the location of the peripheral nerve compression. Upon completion of the exam, the patient will then try to replicate the task. A short-term loss of proximal postural stability will occur if the test is positive [11]. Early studies of this method have shown sensitivity and specificity of
scratch-collapse test comparable and even in some studies greater than Tinel’s and Phalen’s test. Others have challenged these results. Miedany et al. even suggested that Tinel’s, Phalen’s, Reverse Phalen’s and carpal tunnel compression tests are more sensitive, as well as being specific tests for the diagnosis of tenosynovitis of the flexor muscles of the hand, rather than being specific tests for carpal tunnel syndrome [12]. In our previous study of CTS splinting, many of the patients offered the unsolicited complaint of swelling of the affected hand [13]. A follow-up study of 186 patients referred for splinting for CTS demonstrated that the subjective complaint of swelling in the hand or wrist was comparable diagnostically to the Phalen test and carpal tunnel compression test [14]. Additionally, subjective swelling was predictive of a poor response to splinting, providing useful prognostic information. While the complaint of subjective swelling has been mentioned in the literature, to our knowledge no research has addressed the objective difference in hand volumes of patients and its subsequent diagnostic and prognostic value. This study is designed to further investigate the issue of swelling of the hand by providing quantifiable volumetric data and comparing this established diagnostic tests.

Methods

This prospective, cross-sectional study included sixty-three consecutive patients sent for electrodagnostic work-up to confirm a diagnosis of CTS. All subjects were referred to the clinic with a clinical history consistent with CTS. EMG/NCS were completed for each patient at one of two university based electromyographic laboratories. The two locations were Massachusetts General Hospital and Louisiana State University Rehabilitation.

Before testing, all subjects underwent volumetric analysis. The upper extremity limb volume was measured using the water displacement method in a volumeter. For this test, each hand was placed in a fluid filled cylinder, with the fingers slightly apart, and the hand submerged to the level of the styloid process of the radius. Volume was determined by fluid displacement. Volumes of the affected and unaffected hands were compared. The DHV and EMG/NCS data were compared for this study’s main outcome measure.

Results

EMG results indicated that 24 (38%) of the 64 subjects had EMG/NCS evidence of CTS (Table 1).

There was no difference found between the volume of the affected hand and the unaffected hand among those with EMG/NCS diagnosis of CTS and hose with EMG/NCS results negative for CTS (Table 2).

Of the patients queried, 22.5% of these subjects reporting a sensation of swelling in their hands.

ID	Gender	CTS	Vol R (mL)	Vol L (mL)
Patient 1	Female	No	375	370
Patient 2	Female	No	450	435
Patient 3	Female	Yes	360	370
Patient 4	Female	No	430	410
Patient 5	Female	No	440	440
Patient 6	Female	No	365	360
Patient 7	Male	No	515	475
Patient 8	Female	No	535	555
Patient 9	Male	No	615	590
Patient 10	Female	Yes	525	500
Patient 11	Female	Yes	410	375
Patient 12	Male	No	645	600
Patient 13	Male	No	540	545
Patient 14	Female	Yes	535	520
Patient 15	Female	Yes	525	500
Patient 16	Male	No	570	560
Patient 17	Male	Yes	570	520
Patient 18	Male	No	485	485
Patient 19	Female	No	440	445
Patient 20	Male	No	625	615
Patient 21	Male	No	510	550
Patient 22	Male	Yes	650	630
Patient 23	Female	No	380	360
Patient 24	Female	No	460	445
Patient 25	Male	No	550	525
Patient 26	Male	No	645	675
Patient 27	Female	Yes	435	485
Patient 28	Male	Yes	655	675
Patient 29	Female	Yes	550	505
Patient 30	Female	Yes	510	495
Patient 31	Male	Yes	710	700
Patient 32	Female	Yes	360	350
Patient 33	Female	No	380	370
Patient 34	Female	Yes	418	391
Patient 35	Female	No	410	375
Patient 36	Male	No	460	445
Patient 37	Male	Yes	655	595
Patient 38	Male	No	445	380
Patient 39	Male	Yes	725	702
Patient 40	Male	No	470	435
Patient 41	Female	No	378	360
Patient 42	Female	No	365	420
Patient 43	Male	No	585	590
Patient 44	Male	No	558	506
Various studies have documented hand edema in CTS; however, these reports are for the most part limited to observations from surgical procedures, with investigators noting soft tissue and perineural edema [15,16]. Vascular sclerosis and edema were consistent findings, present in 98% and 85%, respectively, in one study [16,17]. This study also demonstrated that edema varies with the degree of carpal tunnel syndrome; increasing from mild to moderate disease and then decreasing with advanced disease. This association between edema and nerve entrapment has been seen in other conditions including gestational edema, colles' fracture and postmastectomy lymphedema [18,19].

Table 1: EMG/NCS evidence of CTS.

Group	Frequency	Mean Hand Volume Difference	Standard Deviation	95% Confidence	Interval
No CTS	40	22.92308	16.62811	17.53287	28.3132
CTS	24	24.25	3.156687	17.7199	30.7801
Combined	64	23.42857	2.026036	19.37858	27.4785
Difference	-1.32692	4.202677	-9.730696	7.07685	

Table 2: Two-sample t test with equal variances. P > 0.7533.

Group	Frequency	Mean Hand Volume Difference	Standard Deviation	95% Confidence	Interval
Lower Extremity Swelling	6	13.83333	15.03884	-1.94896	29.61563
Upper Extremity Swelling	10	29.4	17.34102	16.99498	41.80502
Combined	16	23.5625	17.78752	14.0842	33.0408

Table 3: Two-sample t test with unequal variances. P > 0.0831.

Discussion

One study may have indirectly quantified edema in CTS. Winn, et al. assessed carpal tunnel area as a risk factor for CTS using computerized axial tomography [20]. The authors hypothesized that a small canal area would be a risk factor for the development of CTS; however, their findings suggested that CTS patients demonstrated significantly larger carpal tunnel areas than did controls. It is possible that they were documenting edema of the carpal tunnel. Previous studies of hand and wrist dimensions have reported a higher wrist index (wrist depth/wrist width) in patients with CTS when compared with controls [21]. In one study by Farmer, the findings provided some support for an association between a high wrist index and CTS [22]. This study took 50 patients with CTS and compared them with 50 age and sex matched controls. The wrist index was greater in the CTS group than the control group. However as in the previous studies, the difference between the wrist index in the CTS and control groups was small and there was much overlap between the two populations, as shown by their standard deviation. Thus, the wrist index has little value in clinical practice as a diagnostic tool and cannot be used to identify subjects at risk of developing CTS in the future. More recent volume estimates have employed ultrasonography. In one study the 27 patients with CTS were compared to 30 controls. Cross sectional area and AP diameter of median nerve at carpal tunnel outlet. Results showed significant differences between the control and CTS group with CTS groups have larger area and diameter [23].

Diagnostically, volumetric analysis of patients with CTS has the potential to objectively establish the presence of hand edema by comparing the volume of the affected hand to that of the contralateral hand. However, in our study we did not detect any significant difference in the volume of affected and non-affected hands. Several limitations exist that may have affected our analysis.

An earlier study established a 3.4% volume discrepancy between normal subjects’ dominant and non-dominant hands [24]. Our analysis did not take into account whether patient’s affected hand was their dominant or their non-dominant hand. Therefore, it is possible that CTS of the non-dominant hand resulted in swelling that was not considered significant when compared to the dominant hand, effectively masking the baseline volume differences in hands. Future work should note if the dominant hand is involved or study only those with dominant hand CTS. Hand-to-hand comparison is also problematic if the disease is bilateral. Our study population consisted of several bilateral CTS cases. Similarly, with bilateral disease one may detect similar hand volumes, yet hand edema cannot be excluded.
Further limitations may be attributed to the pathophysiology of carpal tunnel syndrome. The presence of thenar atrophy, usually present in severe disease, may mask edema when assessing total hand volume. In future studies, a method of discriminating this phenomenon is to assess strength as well as volume in the affected and unaffected hand; with thenar atrophy one would expect similar volumes but disparate strength measurements. Also, swelling may wax and wane throughout the day as do the symptoms, therefore a single measure of hand volume is not sufficient to detect edema. Other confounding factors include foreign causes of edema, such as constrictive hand jewelry and preexisting hand deformity.

This study implemented a cross-sectional data analysis and therefore did not allow for a temporal comparison of hand volume. Future studies should measure hand volumes before and after the onset of CTS. This would circumvent the need to compare one’s hand to the contralateral side as a form of baseline information, therefore reducing the limitations caused by handedness, deformity and bilateral disease. It also would provide multiple data points, thereby increasing the chance of detecting swelling in a waxing and waning disease course.

Lastly, the small number of study subjects resulted in difficulty stratifying the study population based on sex, age, lifestyle, degree of disease progression, volume vs. severity of injury, and time since surgery.

Although prior research has documented subjective swelling, this study did not find an objective volumetric measure of swelling in CTS patients [14]. However, there were significant limitations to our study. Therefore, future work is still needed to clarify the incidence and significance of swelling and its relationship with patients’ subjective complaints. Such studies may employ a temporal volumetric comparison or use other methods of assessing swelling, such as computed tomography or magnetic resonance imaging.

Acknowledgment

We thank Richard Goldstein for statistical analysis of this study.

References

1. American Academy of Orthopaedic Surgeons. Clinical Practice Guideline on the Diagnosis of Carpal Tunnel Syndrome.
2. Bickel KD (2010) Carpal tunnel syndrome. See comment in PubMed Commons below J Hand Surg Am 35: 147-152.
3. LeBlanc KE, Cestia W (2011) Carpal tunnel syndrome. See comment in PubMed Commons below Am Fam Physician 83: 952-958.
4. Ntani G, Palmer KT, Linaker C, Harris EC, Van der Star R, et al. (2013) Symptoms, signs and nerve conduction velocities in patients with suspected carpal tunnel syndrome. BMC Musculoskelet Disord 14: 242.
5. Schmid AB, Soon BT, Waser G, Coppieters MW (2012) Can widespread hypersensitivity in carpal tunnel syndrome be substantiated if neck and arm pain are absent? See comment in PubMed Commons below Eur J Pain 16: 217-228.
6. Massy-Westropp N, Grimmer K, Bain G (2000) A systematic review of the clinical diagnostic tests for carpal tunnel syndrome. See comment in PubMed Commons below J Hand Surg Am 25: 120-127.
7. Wiesman JM, Novak CB, Mackinnon SE, Winograd JM (2003) Sensitivity and specificity of clinical testing for carpal tunnel syndrome. See comment in PubMed Commons below Can J Plast Surg 11: 70-72.
8. LaJoie AS, McCabe SJ, Thomas B, Edgell SE (2005) Determining the sensitivity and specificity of common diagnostic tests for carpal tunnel syndrome using latent class analysis. See comment in PubMed Commons below Plast Reconstr Surg 116: 502-507.
9. Graham B, Dvali L, Regehr G, Wright JG (2006) Variations in diagnostic criteria for carpal tunnel syndrome among Ontario specialists. See comment in PubMed Commons below Am J Ind Med 49: 8-13.
10. Durkan JA (1991) A new diagnostic test for carpal tunnel syndrome. See comment in PubMed Commons below J Bone Joint Surg Am 73: 535-538.
11. Cheng CJ, Mackinnon-Patterson B, Beck JL, Mackinnon SE (2008) Scratch collapse test for evaluation of carpal and cubital tunnel syndrome. See comment in PubMed Commons below J Hand Surg Am 33: 1518-1524.
12. El Miedany Y, Ashour S, Youssef S, Mehanna A, Meky FA (2008) Clinical diagnosis of carpal tunnel syndrome: old tests-new concepts. See comment in PubMed Commons below J Hand Surg Am 33: 1518-1524.
13. Burke DT, Burke MM, Stewart GW, Cambré A (1994) Splitting for carpal tunnel syndrome: in search of the optimal angle. See comment in PubMed Commons below Arch Phys Med Rehabil 75: 451-457.
14. Burke DT, Burke MA, Bell R, Stewart GW, Mehdi RS, et al. (1999) Subjective swelling: a new sign for carpal tunnel syndrome. See comment in PubMed Commons below J Hand Surg Am 24: 753-758.
15. Chabok HA (2013) Giant median nerve in bilateral carpal tunnel syndrome. See comment in PubMed Commons below Indian J Plast Surg 46: 140-142.
16. Fuchs PC, Nathan PA, Myers LD (1991) Synovial histology in carpal tunnel syndrome. See comment in PubMed Commons below J Hand Surg Am 16: 753-758.
17. Tunçali D, Barutçu AY, Terzioglu A, Aslan G (2005) Carpal tunnel syndrome: comparison of intraoperative structural changes with clinical and electrodagnostic severity. See comment in PubMed Commons below Br J Plast Surg 58: 1136-1142.
18. Ghasemi-Rad M, Nosair E1, Vough A, Mohammadi A1, Akkad A1, et al. (2014) A handy review of carpal tunnel syndrome: From anatomy to diagnosis and treatment. See comment in PubMed Commons below World J Radiol 6: 284-300.
19. Katz JN, Simmons BP (2002) Clinical practice. Carpal tunnel syndrome. See comment in PubMed Commons below N Engl J Med 346: 1807-1812.
20. Winn FJ, Habes DJ (1990) Carpal tunnel area as a risk factor for carpal tunnel syndrome. See comment in PubMed Commons below Muscle Nerve 13: 254-258.
21. Boz C, Ozmenoglu M, Altunayoglu V, Velioglu S, Alioglu Z (2004) Individual risk factors for carpal tunnel syndrome: an evaluation of body mass index, wrist index and hand anthropometric measurements. See comment in PubMed Commons below Clin Neurol Neurosurg 106: 294-299.
22. Farmer JE, Davis TR (2008) Carpal tunnel syndrome: a case-control study evaluating its relationship with body mass index and hand and wrist measurements. See comment in PubMed Commons below J Hand Surg Eur Vol 33: 445-448.
23. Pinilla I, Martín-Hervás C, Sordo G, Santiago S (2008) The usefulness of ultrasonography in the diagnosis of carpal tunnel syndrome. See comment in PubMed Commons below J Hand Surg Eur Vol 33: 435-439.
24. van Velze CA, Kluever I, van der Merwe CA, et al. (1991) The Difference in Volume of Dominant and nondominant hands. J Hand Ther 4: 6-9.