Multiplexed endoscopic imaging of Barrett’s neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study

Jing Chen, Yang Jiang, Tse-Shao Chang, Bishnu Joshi, Juan Zhou, Joel H Rubenstein, Erik J Wamsteker, Richard S Kwon, Henry Appelman, David G Beer, Danielle K Turgeon, Eric J Seibel, Thomas D Wang

MESSAGE
Improved methods for early cancer detection arising from Barrett’s oesophagus (BE) are still needed. Imaging molecular expression patterns in BE patients can target neoplasia. We demonstrate a multiplexed fluorescence imaging approach to detect premalignant lesions with two fluorescently labeled heptapeptides specific for EGFR and ErbB2. Twenty-two BE patients underwent endoscopic imaging with a multimodal scanning fiber endoscope (mmSFE). In this pilot study, 92% of neoplastic lesions could be imaged by comparison with pathology, with only 11% false positives. This first-in-human study demonstrates feasibility to concurrently detect multiple targets in vivo and potential for early detection of cancers that are molecularly heterogeneous.

INIEMDMORE DETAIL
Background
Oesophageal adenocarcinoma (EAC) is a deadly disease that has increased dramatically in incidence over the past several decades. Endoscopic screening with white light illumination and random biopsy is limited by sampling error. Dysplasia often presents with flat architecture and patchy distribution. EGFR and ErbB2 are transmembrane tyrosine kinase receptors that stimulate epithelial cell growth, proliferation and differentiation. Over-expression of these targets reflects a higher risk for cancer progression. Multiplexing imaging methods take advantage of the broad spectrum of light over the visible and near-infrared (NIR) range. We aim to demonstrate clinical feasibility to visualise EGFR and ErbB2 expression simultaneously in vivo to detect Barrett’s neoplasia.

Methods
Consecutive patients referred for either evaluation or therapy of Barrett’s neoplasia were recruited for the study (NCT03589443). An mmSFE was designed to collect multiplexed fluorescence images concurrently. Target/background (T/B) ratios were calculated for each fluorescence image. More details on the methods and the multiplexed imaging technology can be found in the online supplemental file.

Results
The peptide QRHKPRE specific for EGFR was labelled with Cy5 via a GGGSK linker, (figure 1A). KSPNPF, specific for ErbB2, was labelled with IRDye800 via a GGGSC linker (figure 1B). These fluorophores were chosen to minimise overlap between absorbance and emission spectra (figure 1C). The characteristics and stability of fluorescently labelled peptides were shown in online supplemental tables S1–S4. The pharmacology/toxicology study shows no acute adverse effects in animals (online supplemental tables S5 and S6). The phase 1 safety study was performed in n=25 human, and no abnormalities were identified in the laboratory results, urinalysis and ECG for either peptide, and no adverse events were found. The mmSFE was designed to collect multiplexed fluorescence images (figure 1D–H). Contrast agents were administered, and real-time images were collected from n=22 subjects, table 1 (online supplemental videos S1–S23). Representative white light images are shown for squamous (SQ) and nondysplastic BE (NDBE) (figure 2A,B). Minimal background was seen following peptide administration. Fluorescence images were collected in separate channels, and coregistered reflectance provided anatomic landmarks for image interpretation. A representative set of in vivo images for HGD and EAC is shown (figure 2C,D). Increased fluorescence intensities were seen from regions of HGD and EAC, and were confirmed by pathology. Immunohistochemistry (IHC) was performed to validate expression of EGFR and ErbB2 on excised specimens (online supplemental figure S1).

The T/B ratios using QRH*-Cy5 and KSP*-IRDye800 were measured from individual patients (figure 3A,B). For SQ (n=2) or NDBE (n=3), a mean (±SD) T/B ratio of 1.28±0.07 for QRH*-Cy5 and 1.33±0.15 for KSP*-IRDye800, respectively, was calculated. The T/B for (n=4) LGD was 1.23±0.05 and 1.18±0.10, respectively. For HGD (n=7) and EAC (n=6), a mean (±SD) T/B ratio of 1.61±0.21 and 1.68±0.24, respectively, was found. Leave-one-out cross-validation (LOOCV) was used to classify results (online supplemental table S7). Support vector machine (SVM) and logistic regression (LR) provided the highest classification accuracy of 91%. The imaging results revealed n=12, 1, 8 and 1 true positives, false positives, true negatives and false negatives, respectively, resulting in 92% sensitivity and 89% specificity. The decision
Figure 1 Fluorescently labelled peptides for multiplexed imaging. Biochemical structures are shown for (A) QRH*-Cy5 and (B) KSP*-IRDye800. (C) Peak absorbance of QRH*-Cy5 and KSP*-IRDye800 occurs at abs=648 and 776 nm, respectively. Peak fluorescence emits at em=675 and 812 nm, respectively. (D) Schematic diagram for the multimodal scanning fibre endoscope (mmSFE) is shown. Excitation at ex=638 and 785 nm is delivered through a single-mode fibre (SMF) that is scanned in a spiral pattern by a piezo tube actuator. The beam is focused onto the tissue surface (illumination plane) by a lens assembly. (E) Fluorescence is collected by a ring of large core multi-mode fibres (MMF) mounted around the instrument periphery. (F) The dimensions of the rigid tip are 9 mm in length and 2.4 mm in diameter. (G) This instrument passes forward through the 2.7 mm working channel of a standard medical endoscope (Olympus #GIF-HQ190). (H) The system is contained within a portable cart.

Adequate signal was collected by using large core, high numerical optical fibre using a prototype-generated system. Two laser excitation powers were administered topically in the distal oesophagus of n=22 BE patients. With conventional white light illumination, structural abnormalities associated with Barrett’s neoplasia appeared subtle. EAC, esophageal adenocarcinoma; EMR, endoscopic mucosal resection; HGD, high-grade dysplasia; LGD, low-grade dysplasia; NDBE, non-dysplastic Barrett’s oesophagus; SQ, squamous.

Table 1 Patient demographics

Age	Gender	Prague/stage	Tissue sampling	Pathology
68	M	COM010	ERM/biopsy	SQ
57	M	COM010	biopsy	SQ
84	F	COM019	biopsy	NDBE
60	M	COM01	ERM/biopsy	NDBE
56	M	C1M3	ERM/biopsy	NDBE
57	M	C7M9	biopsy*	LGD
56	F	COM01	biopsy*	LGD
80	F	COM010	biopsy*	LGD
67	M	COM007	ERM/biopsy	LGD
79	F	COM02	biopsy	HGD
88	M	COM3	ERM/biopsy	HGD
79	M	COM11.5	ERM/biopsy	HGD
85	M	C12M13	biopsy	HGD
79	M	C4M5	biopsy	HGD
66	M	COM0	biopsy	HGD
60	M	C9M10	biopsy	HGD
75	M	T3M1	biopsy	EAC
73	F	COM002	ERM/biopsy	EAC
81	M	C10M0	biopsy*	EAC
71	M	C9M1213	ERM/biopsy	EAC
55	F	T1a	biopsy	EAC
64	F	COM01	ERM/biopsy	EAC

Multiplexed images were collected in vivo from the distal oesophagus of n=22 patients with a mean (±SD) age of 70.0±10.8 years. SQ, NDBE and LGD were identified in a total of n=7, 2, and 4 subjects, respectively. HGD and EAC were found in n=7 and 6 subjects, respectively. Modified Prague classification includes length in centimetres of circumferential Barrett’s oesophagus (C), maximal tongue (M) and any proximal island (I). These findings were confirmed by histopathology from either ERM or biopsy.

Comments

Here, we demonstrate feasibility to detect Barrett’s neoplasia endoscopically by imaging two targets concurrently in vivo. Fluorescently labelled peptides specific for epithelial growth factor receptor (EGFR) and epithelial growth factor receptor2 (ErbB2) were administered topically in the distal oesophagus of n=22 BE patients. With conventional white light illumination, structural abnormalities associated with Barrett’s neoplasia appeared subtle. By comparison, spatial patterns of target expression were visualised with high contrast using fluorescence. Two laser excitation wavelengths were delivered concurrently through a single flexible optical fibre using a prototype-wide-field endoscope accessory. Adequate signal was collected by using large core, high numerical aperture fibres. The regions imaged were compared with histopathology of specimens excised via either endoscopic mucosal resection or biopsy. IHC of these specimens confirmed heterogeneous expression of EGFR and ErbB2.

To our knowledge, this study first demonstrates clinical application of multiplexed fluorescence imaging during endoscopy. Many cancers, including EAC, are molecularly heterogeneous, thus detection of multiple targets is likely to be needed for accurate clinical diagnosis. Mucosal abnormalities with non-specific features, such as nodularity, ulceration and irregularities, may not be relied on to accurately locate Barrett’s neoplasia. Several medical societies recommend random 4-quadrant biopsies for EAC surveillance, but this sampling method is inefficient and has been poorly adopted by community physicians. Molecular biomarkers can be highly specific for disease, and are expressed well before neoplastic lesions become grossly apparent. Endoscopic imaging strategies for detecting these targets in vivo can be used to guide and prioritise high risk regions for resection, reduce surveillance frequency, and minimise over diagnosis.

Recently, detection of dysplasia and early EAC in BE patients was demonstrated using an antibody specific for vascular endothelial growth factor A. Bevacizumab was originally developed for cancer therapy, and was repurposed for diagnostic imaging by labelling with IRDye800. Compared with antibodies, peptides are smaller in size, have faster binding kinetics, and

2 Chen J, et al. Gut 2020;69:1–4. doi:10.1136/gutjnl-2020-322945
delivered to the mucosal surface in the distal oesophagus using topical administration of QRH*-Cy5 and KSP*-IRDye800. The merged images show high contrast regions-of-interest (ROI) where EGFR and ErbB2 (orange) are coexpressed. Coregistered reflectance images of interest (ROI) where EGFR and ErbB2 (orange) are coexpressed. Coregistered reflectance images provide anatomical landmarks to interpret the location of the ROI’s.

Figure 2 Barrett’s oesophagus. Representative in vivo images collected endoscopically are shown from patients with (A) squamous (SQ), (B) non-dysplastic Barrett’s oesophagus (NDBE), (C) high-grade dysplasia (HGD) and (D) oesophageal adenocarcinoma (EAC). The presence of NDBE is identified by the salmon red patches (arrows) in the white light images. Fluorescence images are collected after separate topical administration of QRH*-Cy5 and KSP*-IRDye800. The merged images show high contrast regions-of-interest (ROI) where EGFR and ErbB2 (orange) are coexpressed. Coregistered reflectance images provide anatomical landmarks to interpret the location of the ROI’s.

Figure 3 In vivo imaging performance. Scatter plot shows target/background (T/B) ratios measured for EGFR and ErbB2 expression in the fluorescence images collected in vivo from the distal oesophagus of n=22 patients. Decision boundaries show regions classified as either negative (blue) or positive (brown) for neoplasia using (A) support vector machine (SVM) and (B) logistic regression (LR) trained on all data. (C) ROC curves for classifying HGD/EAC from SQ/NDBE/LGD are shown using SVM and LR algorithms with leave-one-out cross-validation (LOOCV). (D) Average ROC curves from bootstrap using SVM (AUC=0.97) model trained on all data show that multiplexed detection provides improved performance than using either EGFR (AUC=0.95) or ErbB2 alone (AUC=0.94). AUC, area under curve; EGFR, epithelial growth factor receptor; ErbB2, epithelial growth factor receptor2; ROC, receiver-operator characteristic.

Table 1 Multimodal detection of neoplasia. Accuracy and reliability of the backscatter and fluorescence data are shown using (A) support vector machine (SVM) and (B) logistic regression (LR) trained on all data. Evaluated metrics include receiver-operator characteristic (ROC) area under curve (AUC), sensitivity, specificity, and accuracy. AUC, area under curve; EGFR, epithelial growth factor receptor; ErbB2, epithelial growth factor receptor2; ROC, receiver-operator characteristic.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Correspondence to Professor Richard S Linke, Imperial College London, London W2 1SB, UK; r.linke@imperial.ac.uk

Acknowledgements We thank E Brady, D Chandhrasekhar, and A Cawthon for clinical support, and BR Reisdorph for regulatory support.

Contributors JH, TSC, JHR, EJW and RSK performed the experiments. JHR, YJ and EJS contributed to image and data analysis. JC, YJ, EJS and TDW wrote the manuscript.

Funding This study was supported in part by the National Institutes of Health U54 CA163059 (DGB, JHR, EJS and TDW); U01 CA189291 (TDW) and R01 CA200007 (EJS, TDW).

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Figure 4 Inclusion of more non-neoplastic subjects would better reflect the prevalence of disease seen in the community. In conclusion, we demonstrated a proof-of-concept study for detecting multiple targets concurrently in patients with Barrett’s neoplasia and this strategy is promising for early detection of cancers in other hollow organs.

Figure 5 The clinical usefulness of this technology can be improved by addressing several study limitations. The peptides were administered separately to minimise potential binding interactions but can be combined to reduce time needed to reconstitute and prepare the peptides for delivery. After inserting the imaging accessory through the working channel, the fluorescence and HD-WLE images were not oriented. Accurate alignment would allow the fluorescence images to be more effective as a guide for tissue resection. This study was performed at a tertiary referral centre that specialises in treatment of patients with advanced BE, thus a cohort highly enriched with neoplasia was studied. Inclusion of more non-neoplastic subjects would better reflect the prevalence of disease seen in the community. In conclusion, we demonstrated a proof-of-concept study for detecting multiple targets concurrently in patients with Barrett’s neoplasia and this strategy is promising for early detection of cancers in other hollow organs.

Endoscopy News
REFERENCES

1 Thrift AP, Whiteman DC. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann Oncol 2012;23:3155–62.

2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30.

3 Sharma P, Savides TJ, Canto MI, et al. The American Society for gastrointestinal endoscopy PIVI (preservation and incorporation of valuable endoscopic innovations) on imaging in Barrett’s esophagus. Gastrointest Endosc 2012;76:252–4.

4 Spechler SJ, Sharma P, Souza RF, et al. American gastroenterological association technical review on the management of Barrett’s esophagus. Gastroenterology 2011;140:e18–52.

5 Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006;7:505–16.

6 Dulak AM, Schumacher SE, van Lieshout J, et al. Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res 2003;9:4819–25.

7 Zhou J, Joshi BP, Duan X, et al. EGFR overexpressed in colonic neoplasia can be detected on wide-field endoscopic imaging. Clin Transl Gastroenterol 2015;6:e101.

8 Miller CT, Muy JR, Lin L, et al. Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res 2003;9:4819–25.

9 Joshi BP, Zhou J, Pant A, et al. Design and synthesis of near-infrared peptide for in vivo molecular imaging of HER2. Bioconjug Chem 2016;27:481–94.

10 Kariv R, Pileggi TP, Goldblum JR, et al. The Seattle protocol does not more reliably predict the cancer of the esophagus from less than a less invasive surveillance protocol. Clin Gastroenterol Hepatol 2009;7:653–8.

11 Nagengast WB, Hartmans E, Garcia-Allende PB, et al. Near-infrared fluorescence molecular endoscopy detects dysplastic esophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut 2019;68:7–10.

12 Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 2010;110:3087–111.

13 Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunonjugates. Nat Biotechnol 2005;23:1137–46.

14 Conner KP, Rook BM, Kwon GK, et al. Evaluation of near infrared fluorescent labeling of monoclonal antibodies as a tool for tissue distribution. Drug Metab Dispos 2014;42:1906–13.

15 Sturm MB, Joshi BP, Lu S, et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med 2013;5:184ra161.

16 Bird-Lieberman EL, Neves AA, Lao-Sirieix P, et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med 2012;18:315–21.

17 Bungarra J, Kamerling IMC, Gordon PB, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against CD44. Nat Med 2015;21:955–61.

18 Joshi BP, Dai Z, Gao Z, et al. Wide-field endoscopic imaging of sessile serrated adenomas with fluorescent-labeled peptide probe. Gastroenterology 2017;152:1002–13.

19 van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 2011;17:1315–9.

20 Savastano LE, Zhou Q, Smith A, et al. Multimodal laser-based angiography for structural, chemical and biological imaging of atherosclerosis. Nat Biomed Eng 2017;1:0023.

21 Miller SL, Lee CM, Joshi BP, et al. Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy. J Biomed Opt 2012;17:021103.

22 Ntzannisisto V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003;13:195–208.