Immunotherapy in Combination with Well-Established Treatment Strategies in Pancreatic Cancer: Current Insights

Christo Kole, Nikolaos Charalampakis, Sergios Tsakatikas, Maximos Frountzas, Konstantinos Apostolou, Dimitrios Schizas

1First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece; 2Department of Medical Oncology, Metaxa Cancer Hospital, Athens, 185 37, Greece; 3First Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, 115 27, Greece

Correspondence: Dimitrios Schizas, First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece, Tel +306944505917, Fax +302132061766, Email schizasad@gmail.com

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and fourth most common cause of death in developed countries. Despite improved survival rates after resection combined with adjuvant chemotherapy or neoadjuvant chemotherapy, recurrence still occurs in a high percentage of patients within the first 2 years after resection. Immunotherapy aims to improve antitumor immune responses and reduce toxicity providing a more specific, targeted therapy compared to chemotherapy and has been proved an efficient therapeutic tool for many solid tumors. In this work, we present the latest advances in PDAC treatment using a combination of immunotherapy with other interventions such as chemotherapy and/or radiation both at neoadjuvant and adjuvant setting. Moreover, we outline the role of the tumor microenvironment as a key barrier to immunotherapy efficacy and examine how immunotherapy biomarkers may be used to detect immunotherapy’s response.

Keywords: pancreatic cancer, immunotherapy, immune checkpoint inhibitors, cancer vaccines, adoptive cellular immunotherapy, microsatellite instability

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer accounting for more than 90% of cases (commonly referred to as pancreatic cancer), other types being cystadenocarcinoma and acinar cell carcinoma. PDAC represents a substantial health problem as presented on GLOBOCAN 2020 with as many deaths (466,000) as cases (496,000), affecting both sexes equally and rating pancreatic cancer as the seventh leading cause of cancer death globally. Furthermore, especially in developed countries, PDAC is the fourth most common cause of death, however, the disease is predicted to reach second place within the next decade. PDAC is associated with an extremely poor prognosis with less than 5% of the patients reaching 5-year overall survival (OS) due to late diagnosis, rapid tumor progression and limited available treatments.

Novel approaches, such as immunotherapy, aim to improve antitumor immune responses providing a more specific targeted therapy compared to chemotherapy. In recent years, immunotherapy has established its role in the treatment of various solid tumors including PDAC. Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to block extracellular proteins expressed by the tumour or tumor-associated lymphocytes resulting in the suppression of antitumor immune response. Examples of such extracellular proteins which prevent the T cells from recognizing and eliminating cancer cells are, the programmed cell death protein-1 (PD-1), and its ligand PD-L1 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). PD-1 binds to PD-L1 and PD-L2 ligands therefore preventing T-cell activity in peripheral tissues. CTLA-4 is another inhibitory receptor that modulates the initial stages of T-cell activation and prevents immune hyperactivation by competitively inhibiting the binding of B7 ligands to the co-stimulatory receptor Cluster Differentiation 28 (CD-28). Both PD-L1 and CTLA-4 are overexpressed in a subset of PDACs and are associated with worse survival, therefore consisting of...
a promising therapeutic target. Furthermore, other strategies such as cancer vaccines use tumor-associated antigens (TAAs) to trigger immunization by activating the cytotoxic T-lymphocytes (CTLs). Tumor-associated antigens are derived either from whole-cell tumor lysates, recombinant tumor peptides or recombinant viruses. On the other hand, adoptive cell transfer (ACT) includes genetically engendered autologous immune cells from patients’ peripheral blood. These cells bind to specific cancer antigens leading to the immune destruction of tumor cells (Figure 1). In addition, the chemokine system, a key regulator for inflammatory responses and leukocyte trafficking with chemokine receptor 2 (CCR2) and chemokine receptor 5 (CCR5), is playing an important role in this process; CCR2 expression is relatively restricted to certain cell types, monocytes, NK and T lymphocytes, and it is shown to have a strong proinflammatory function, predominantly expressed by monocytes/macrophages, while when expressed in tumor microenvironments, it can be strongly immunosuppressive. Therefore, targeting the recruitment of immunosuppressive monocytes/macrophages in tumors by CCR2 antagonism is used as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. Despite the robust results in certain malignancies, neither immune checkpoint inhibitors nor vaccines or adoptive cell transfer have yet shown promising clinical efficacy in PDAC when used as single agent in most phases I and II clinical trials. On the other hand a combination of immunotherapy with chemoradiation regimens have shown encouraging results. The aim of our work is to present a state-of-the-art review of the latest advances in PDAC treatment using a combination of immunotherapy with other strategies such as chemotherapy and radiation therapy both in the neoadjuvant and adjuvant setting.

Neoadjuvant Therapy

The majority of patients with PDAC are diagnosed in late stage disease with the tumour being either unresectable or metastatic. Only 15% to 20% are candidates for immediate tumor resection. Adjuvant chemotherapy is considered the

![Figure 1](https://doi.org/10.2147/CMAR.S267260)

Figure 1 Therapeutic strategies target components of the tumor microenvironment in PDAC. Tumor microenvironment creates a barrier for immunotherapy and cytotoxic drugs in pancreatic cancer. Inhibition of the resistance mechanisms in pancreatic cancer by vaccine therapy and checkpoint inhibitors lead in activation of T-cells and tumor cell destruction. Adoptive cell transfer (ACT) lead to immune destruction of tumor cells while cytotoxic drugs and radiotherapy improve the efficacy of anticancer therapy. Adapted with permission from Schizas D, Charalampakis N, Kole C, et al. Immunotherapy for pancreatic cancer: a 2020 update. Cancer Treat Rev. 2020;86:102016.

Abbreviations: ECM, extracellular matrix; PDAC, pancreatic adenocarcinoma; CAF, carcinoma-associated fibroblasts; MDSC, myeloid-derived suppressive cells; TAM, tumor-associated macrophages; CTL, cytotoxic T-lymphocytes; PSC, pancreatic stellate cells; CCL2/CCR2, C-C motif chemokine ligand/receptor.
current standard-of-care after surgical resection of PDAC.29 However, recurrence still occurs in more than 75% of patients within the first 2 years after resection probably due to micrometastases,30 increasing the need for optimization of neoadjuvant strategies and the development of new drug targets.28 Neoadjuvant therapy is a systemic treatment prior to definitive surgical therapy which is supposed to provide an improved local and distant control.31 According to the current clinical practice guidelines for pancreatic cancer,29 neoadjuvant therapy is indicated for patients with borderline resectable and locally advanced PDAC, whereas its role for resectable PDAC is still under investigation. Immunotherapy was associated with tumor regression and improved OS in preclinical studies of PDAC when used in combination with other treatments.32 However, there was no significant difference in the median OS for neoadjuvant or adjuvant immunotherapy. Nevertheless, in the neoadjuvant subset analysis, immunotherapy was associated with significantly improved OS compared to no immunotherapy.33 Moreover, neoadjuvant immunotherapy may increase the presence of TILs in the PC microenvironment34 and reduce the immunosuppressive effects of surgery by systemic release of glucocorticoids which induce apoptosis of naïve T cells and suppression of T-cell proliferation.35,36 Together these limit the probability of recurrence.34 Several clinical trials using a combination of immunotherapy and chemotherapy or chemoradiotherapy in the neoadjuvant setting are currently ongoing (Table 1). In a retrospective analysis studying the impact of neoadjuvant and adjuvant immunotherapy in the survival of pancreatic cancer patients, no significant difference in OS between neoadjuvant and adjuvant immunotherapy was found (HR: 1.06, 95% confidence interval (CI): 0.79–1.41; p < 0.714). However, multivariable Cox regression analysis revealed that neoadjuvant immunotherapy was associated with significantly improved OS (HR: 0.86, 95% CI: 0.74–0.99; p < 0.04) compared to no immunotherapy only in patients with a high-level of education, but not in patients with a low-level of education.33 This difference between populations may be due to the fact that high-level of education patients are more prone to stick to the therapeutic plan and follow doctor instructions compared to low-level of education patients.

In phase Ib/II trial (NCT02305186), Rahma et al reported that pembrolizumab, an immune checkpoint inhibitor (anti-PD-1 IgG4 antibody), in combination with capicitabine and radiation as neoadjuvant regimen resulted in increased median recurrence free survival (RFS), 18.2 vs 14.1 months (p = 0.41), and overall survival (OS), 27.8 vs 24.3 months (p = 0.68), compared to chemoradiation alone (Table 1).37 Moreover, the authors reported that 70% of the patients treated with pembrolizumab plus chemoradiation compared to 53% receiving chemoradiation alone underwent surgery.37 This study is currently enrolling 25 more patients who will receive FOLFIRINOX prior to randomization to CRT± pembrolizumab, which will help to further investigate the immune modulatory effect of chemotherapy followed by CRT. FOLFIRINOX is also used as a neoadjuvant chemotherapy backbone in the NCT03983057 phase 3 trial in patients with locally advanced or borderline resectable PDAC. Contrary to the previous trial, this study evaluates chemoimmunotherapy without the addition of preoperative radiation.38

Immunotherapy agents have been successfully combined with other targeted therapies in several cancer types. Preclinical data suggest the existence of a synergistic effect between immunotherapy and certain targeted agents such as antiangiogenic factors and TKIs.39 An ongoing phase II study examines the efficacy of the focal adhesion kinase (FAK) inhibitor defactinib in combination with pembrolizumab in patients with PDAC in the perioperative setting. FAK is a protein tyrosine kinase which is frequently overexpressed in various malignancies. FAK inhibition affects several intracellular pathways associated with cell survival and is involved in the immunomodulation of tumor microenvironment,40 thus representing a promising therapeutic partner for immunotherapy regimens. Accordingly, a phase I safety trial in patients with various solid tumors, including PDAC has also produced encouraging safety and efficacy results when defactinib was combined with pembrolizumab.41

Likewise, treatment options have been significantly expanded with the addition of cancer vaccines and adoptive cell therapy, which use either cancer related antigens to sensitize the host’s immune system against tumor cells, or in-vitro enhance patient’s lymphocytes to identify and target tumor cells.42 Since the efficacy of checkpoint inhibitors in PDAC seems limited, at least based on available results from completed clinical trials, attention has partially shifted towards the development of effective cancer vaccines. GVAX is a whole tumor cell vaccine genetically engineered to express granulocyte-macrophage colony-stimulating factor (GM-CSF).43 The efficacy of GVAX in combination with CY has been studied as neoadjuvant therapy in stage I/II (resectable or borderline resectable) pancreatic cancer (Table 1).44 Combination with CY resulted in lower disease free survival (DFS) and OS compared to GVAX monotherapy; ie 8.54
Another ongoing phase 2 study combined GVAX with pembrolizumab and SBRT in 58 patients with locally advanced PDAC. Among them, 35 patients underwent surgery and the median distant metastases free for the entire cohort reached 9.7 months, while a phase 2 study in a similar population combines GVAX with pembrolizumab, cyclophosphamide and SBRT with results still pending.

Table 1 Adjuvant Immunotherapy in Surgically Resected Pancreatic Adenocarcinoma

Intervention	Cancer Stage	Clinical Phase/Identifier	Outcomes: Disease Free Survival (Months) (95% CI)	Outcomes: Median Overall Survival (Months) (95% CI)	Reference
GVAX/5-FU/radiation	Whole-cell vaccine, Cytotoxic drugs	Phase II, NCT00084383	17.3 (14.6–22.8)	24.8 (21.2–31.6)	Lutz et al 2011
GVAX/Chemoradiation	Whole-cell vaccine, Cytotoxic drugs	Phase I	13	20	Jaffee et al 2001
Algenpantucel-L/Chemoradiation	Multi-peptide vaccine, Chemoradiation	Phase II, NCT00569387	62% 12-month DFS	86% 12-month OS	Hardacre et al 2013
Algenpantucel-L, Gemcitabine/5-FU/	Multi-peptide vaccine, Cytotoxic drugs, radiation	Phase III, NCT01072981	Completed No results posted	Completed No results posted	McCormick et al 2016
Radiation					
K-Ras vaccine/GM-CSF	Peptide vaccine, Costimulatory molecule	Phase I/II, NCTN995002, NCTN97004	No results posted	25.6 (10–39) for Res	Gjertsen et al 2001
Ras-peptide/GM-CSF/Chemotherapy	Peptide vaccine, Costimulatory molecules, chemotherapy	Resected KRAS mutant pancreatic cancer	NA	20.3 (95% CI, 11.6–45.3)	Abou-Alfa et al 2011
TG01/GM-CSF/Gemcitabine	Vaccine, Costimulatory molecules, chemotherapy	Phase I/II, NCT02261714	16.1 (11.1–19.6)	33.3 (24.0–40.0)	ASA 2012
GI-4000/ Gemcitabine Placebo/Gemcitabine	Mutated RAS Protein vaccine, Cytotoxic drugs	Resected pancreatic cancer	Phase II	9.4 (8.3)	Muscarella et al 2012
Nivolumab/GVAX/CRS-207/CY	PD-1 inhibitor, Whole-cell vaccine, Listeria vaccine, Cytotoxic drugs	Previously treated metastatic pancreatic adenocarcinoma	Phase II, NCT2243371, 2.23 (2.14–2.33) 2.17 (2.00–2.30)	5.88 (4.73–8.64) 6.11 (3.52–7.00)	Hopkins et al 2015
Nivolumab	PD-1 inhibitor, CCR2/CC5 dual antagonist, Whole-cell vaccine	Locally advanced pancreatic cancer	Phase II, NCT03767582, Recruiting	Recruiting	Hopkins 2019
Nivolumab, MS-813160, GVAX	PD-1 inhibitor, CCR2/CC5 dual antagonist, Whole-cell vaccine	Locally advanced pancreatic cancer	Phase II, NCT03496662, Recruiting	Recruiting	Medicine WUSo et al 2018

Abbreviations: 5-FU, fluorouracil; GM-CSF, granulocyte-macrophage colony-stimulating factor; CT, cyclophosphamide; KIF20A, kinesin family member 20A; VEGFR1/R2, vascular endothelial growth factor receptor ½; CI, confidence interval; Res, resected; NonRes, non-resected; NR, not reached; NA, not applicable.

months (95% CI, 2.66–17.1) compared to 18.92 months (95% CI, 13.87–34.1). OS was also lower, 15.4 months (95% CI, 13.2–26.5) compared to 34.2 months (95% CI, 21.6–45.7) respectively. Another ongoing phase 2 study combined GVAX with pembrolizumab and SBRT in 58 patients with locally advanced PDAC. Among them, 35 patients underwent surgery and the median distant metastases free for the entire cohort reached 9.7 months, while a phase 2 study in a similar population combines GVAX with pembrolizumab, cyclophosphamide and SBRT with results still pending. The NCT03153410 early Phase 1 trial adds IMC CS4, a monoclonal antibody blocking the colony-stimulating factor receptor, to the aforementioned combination in patients with borderline resectable PDAC. Additional strategies have
been employed including a combination of cancer vaccines, checkpoint inhibitors and chemoradiation to increase the efficacy of neoadjuvant therapy, however, no results have been reported so far. On the other hand, the safety and efficacy of CCX872-B, a CCR2 Inhibitor, is currently evaluated in patients with histologically or cytologically confirmed non-resectable pancreatic adenocarcinoma with or without metastases also receiving FOLFIRINOX (NCT02345408). Another phase 1b trial (NCT03778879) was designed to evaluate the efficacy of CCX872-B in combination with stereotactic body radiotherapy for preoperative treatment of resectable pancreatic cancer, however, the study was discontinued due to an insufficient quantity of the CCX872-B drug to conduct the study. Furthermore, another phase I trial (NCT01413022) studies the side effects and optimal dose of PF-04136309 (a CCR2 inhibitor) in combination with chemotherapy (FOLFIRINOX) in patients with locally advanced or borderline resectable pancreatic cancer, who are not candidates for surgical resection. During this study, no treatment-related deaths occurred while grade 3 or higher adverse events were reported in at least 10% of the patients receiving PF-04136309. Six out of 33 (49%) patients receiving FOLFIRINOX plus PF-04136309 who had undergone repeat imaging achieved an objective tumor response, while in the FOLFIRINOX alone group, none of the five patients with repeat imaging achieved an objective response.

Adjuvant Therapy

Since surgery alone is associated with short-term survival and early tumor relapse, the implementation of systemic therapy is needed in the majority of patients. A phase II clinical study in resected, stage I or II pancreatic adenocarcinoma patients, showed an increased DFS of 17.3 months (95% CI, 14.6–22.8), and OS of 24.8 (95% CI, 21.2–31.6) when patients were treated with whole-cell vaccine GIVAX in combination with chemoradiation in an adjuvant setting (Table 2). These findings were also supported by Jaffee et al, although this was a phase I trial performed in stage II or III pancreatic cancer patients with both positive and negative resection margins, and so was not designed to test clinical benefit. A phase 2 multi-institutional trial, evaluated the use of algenpantucel-L immunotherapy in addition to chemotherapy and chemoradiotherapy in the adjuvant setting for resected pancreatic

Table 2 Neoadjuvant Immunotherapy in Resectable or Borderline Resectable Pancreatic Adenocarcinoma
Intervention
Pembrolizumab/Capecitabine/Radiation
Pembrolizumab/Defactinib
Pembrolizumab/GVAX/IMC-CS4/CY
GVAX/CY
Nivolumab/GVAX/CY/Urelumab

(Continued)
Table 2 (Continued).

Intervention	Cancer Stage	Clinical Phase/Identifier	Outcomes: Disease Free Survival (Months) (95% CI)	Outcomes: Median Overall Survival (Months) (95% CI)	Reference	
Nivolumab/FOLFIRINOX (FFX)	PD-1 inhibitor, chemotherapy regimen	Borderline Resectable Adenocarcinoma	Phase 1/2, NCT03970252	Recruiting	Recruiting	Center; Squibb et al 2019\(^\text{92}\)
Nivolumab/GVAX/BMS-813160/SBRT	PD-1 inhibitor, Whole-cell vaccine, Antineoplastic agent, Radiation	Locally Advanced Adenocarcinoma	Phase 1/2, NCT03767582	Recruiting	Recruiting	Hopkins 2019\(^\text{94}\)
GMCI/Chemotherapy/Radiation	Adenoviral vector, Chemoradiation	Advanced Non-Metastatic Pancreatic Adenocarcinoma	Phase 1/2, NCT02446093	Recruiting	Recruiting	Candel Therapeutics and University 2015\(^\text{53}\)
M7824/ M9241/ SBRT	PD-L1 inhibitor, Immunocytokine	Advanced Pancreas Cancer	Phase 1/2, NCT04327986	Recruiting	Recruiting	Institute and Center 2021\(^\text{48}\)
Algenpantucel-L/ FOLFIRINOX/ Gemcitabine/S-FU	Multi-peptide vaccine, Cytotoxic drugs	Borderline resectable pancreatic cancer	Phase II, NCT02405585	Study terminated	No results posted	Corporation and Pharma 2015\(^\text{49}\)
Algenpantucel-L/ FOLFIRINOX/ Gemcitabine/Nab-paclitaxel/Capcitabine/ S-FU	Multi-peptide vaccine, Cytotoxic drugs	Resectable (stage II), Unresectable (stage III)	Phase III, NCT01836432	Study terminated	No results posted	Corporation and Pharma 2013\(^\text{50}\)
CCX872-B/FOLFIRINOX	CCR2 Inhibitor, Cytotoxic drugs	Patients With Pancreatic Adenocarcinoma	Phase 1b, NCT02345408	Active, not recruiting	No results posted	ChemoCentrx\(^\text{51}\)
CCX872-B/SBRT	CCR2 Inhibitor, Radiation	Resectable pancreatic cancer	Phase 1b, NCT03778879	Withdrew	No results posted	Katz and Rochester 2019\(^\text{16}\)
PF-04136309/ FOLFIRINOX	CCR2 Inhibitor, Cytotoxic drugs	Borderline resectable and locally advanced pancreatic cancer	Phase 1, NCT01413022	CCR2-targeted therapy plus FOLFIRINOX is safe and tolerable	Nywening et al 2016\(^\text{58}\) Medicine, W. U. S. o., and Institute, N. C.\(^\text{57}\)	

Abbreviations: CY, cyclophosphamide; FOLFIRINOX (FFX), oxaliplatin, leucovorin, irinotecan, 5-fluorouracil; SBRT, stereotactic body radiation; GMCI, gene mediated cytotoxic immunotherapy (aglatimagene besadenovec plus valacyclovir); S-FU, fluorouracil; CI, confidence interval.

cancer, resulted in 62% 12-month disease-free survival and 86% 12-month overall survival.\(^\text{62}\) However, encouraging results from this phase II trial did not translate into clinical benefit in the phase III IMPRESS clinical trial, where the addition of algenpantucel-L to chemotherapy did not improve OS in patients with resected PDAC. Algenpantucel-L has also failed to prove its effectiveness in the treatment of locally advanced PDAC in the PILLAR phase III trial.\(^\text{63}\) Nevertheless, phase III trial assessing overall survival after treatment with Algenpantucel-L, chemotherapy and radiation is completed however no results have been reported so far.\(^\text{64}\)

The majority of pancreatic adenocarcinoma patients have mutations in KRAS oncogene.\(^\text{65}\) In order to enhance the immune response, synthetic mutant RAS peptides plus GM-CSF were used as adjuvant treatment in a phase I/II trial, leading in peptide-specific immunity induction in 58% of the patients.\(^\text{66}\) Patients that responded to the peptide vaccine
had higher OS (4.9 months) compared to non-responders (2 months). Another study, however, yielded low immune response (1 out of 9 patients) and a median OS of 20.3 months.67 TG01 is injectable antigen-specific cancer immunotherapy which induces RAS-mutant-specific T-cell responses, enhanced by co-administration of GM-CSF. Patients with stage I or II pancreatic adenocarcinoma (R0 or R1) receiving adjuvant gemcitabine with TG01/GM-CSF presented a median OS of 33.1 (95\% CI 24.0–40.0) months, and median DFS of 16.1 months (95\% CI, 11.1–19.6)68 (Table 2). Improved outcomes are also observed after an inactivated recombinant saccharomyces cerevisiae expressing mutant RAS protein (GI-4000) combined with gemcitabine in an adjuvant setting.69 The phase II clinical study showed improvement in survival in R1 subjects with RAS mutant positive pancreas cancer and a significantly higher rate of mutation specific T cell response. The median OS was reported at 17.2 and 14.5 months and RFS at 9.4 and 8.3 months for GI-4000 group and placebo group respectively.66 In addition, peptide cocktail vaccine (OCV-C01) plus gemcitabine in patients with resected pancreatic cancer presented a median DFS at 15.8 (95\% CI, 11.1–20.6) months with OS while OS at 18 months was 69\% (95\% CI, 48.8–82.5).70 In addition, all four patients who underwent R0 resection with KIF20A expression had no recurrence of pancreatic cancer with KIF20A-specific CTL responses.70 Concerning CCL2/CCR2 Axis, a phase I/II study (NCT03767582) was established to evaluate the combination of nivolumab and a CCR2/CCR5 dual antagonist (BMS-813160) with GVAX in patients with locally advanced pancreatic cancer (LAPC) who have received chemotherapy and radiotherapy. Safety profile is checked as well as whether this combination therapy enhances the infiltration of CD8+CD137+ cells in PDACs.139 Another phase I/II study (NCT03496662) which is currently under recruitment status evaluates the tolerability and efficacy of bms-813160 with nivolumab, gemcitabine and nab-paclitaxel in borderline resectable and locally advanced PDAC.72

Advanced Metastatic

The majority of patients with PDAC are diagnosed at late stages with the tumor being either unresectable or metastatic.28 For patients with locally advanced and metastatic pancreatic cancer the treatment of choice is palliative chemotherapy, although very few improvements are seen in survival.29,59 However, recent combination therapies including immunootherapy have shown some promising outcomes (Table 3). A phase Ib clinical trial in unresectable (Stage III) or metastatic pancreatic cancer patients treated with CTLA-4 inhibitor, ipilimumab, showed improved outcomes when ipilimumab was combined with gemcitabine.73 Patients who received ipilimumab at 6 mg/kg in weeks 1, 4, 7 and 10 and gemcitabine hydrochloride at 1, mg/m2 in weeks 1–7 and 9–11, showed 3.86 months (95\% CI, 0.75 to 22.41) and 8.99 months (95\% CI, 0.75–30.04) of progression free survival (PFS) and OS respectively.73 In another study, a combination of ipilimumab with a PD-1 inhibitor, nivolumab, and MEK inhibitor, cobimetinib (arm 2), reported improved objective response rate (ORR) compared to ipilimumab plus nivolumab (arm 1), at 6.7 (95\% CI, 0.8–22.1) versus 0.0 (95\% CI, 0.0–18.5) months respectively.74 Nevertheless, patients in arm 2 were treated at 3 mg/kg nivolumab plus cobimetinib, compared to arm 1 where nivolumab was used at 1 mg/kg.75 Ipilimumab also improved OS when combined with GVAX, administrated in locally advanced or metastatic pancreatic cancer, resulting in OS of 5.7 months (95\% CI, 4.3–14.7) compared to 3.6 months (95\% CI, 2.5–9.2) when used as monotherapy.76 On the other hand, a combination of nivolumab and GVAX, listeria vaccine CRS-207 and CY, resulted in no survival differences compared to GVAX/CRS-207/CY in patients with previously treated metastatic pancreatic adenocarcinoma.77 These poor results may be due to the increased progression of metastatic pancreatic adenocarcinoma and therefore failure of treatment. The use of tremelimumab, another CTLA-4 inhibitor in combination with PD-1 inhibitor, durvalumab, or gemcitabine showed modest but higher OS and DFS compared to tremelimumab or durvalumab monotherapy in advanced/metastatic tumors (Table 3).27,78 However, no differences were observed when tremelimumab plus durvalumab were used in metastatic adenocarcinoma patients with progression after fluoropyrimidine or gemcitabine first-line chemotherapy.27 Another study performed in advanced or metastatic pancreatic cancer patients treated with pembrolizumab plus gemcitabine and Nab-paclitaxel resulted in improved PFS and OS at 9.1 months (95\% CI, 4.9–13.3) and 15.0 months (95\% CI, 6.8–22.6) respectively.79,80 Further clinical trials using PD-1 inhibitors in combination with chemotherapies are currently ongoing. The NCT03977272 trial uses the anti-PD-1 immune checkpoint inhibitor camrelizumab in combination with FOLFIRINOX in patients with metastatic PDAC that have received either no previous treatment or only gemcitabine-based first-line chemotherapy.81 Another single arm study evaluated the safety and efficacy of camrelizumab
Table 3 Clinical Trials in Locally Advanced or Metastatic Pancreatic Adenocarcinoma

Intervention	Cancer Stage	Clinical Phase/Identifier	Outcomes: Disease Free Survival (Months) (95% CI)	Outcomes: Median Overall Survival (Months) (95% CI)	Reference	
Ipilimumab/ Gemcitidine	Unresectable (Stage III/IV) or metastatic pancreatic cancer	Phase Ib, NCT01473940	3.8 (0.7–22.4)	8.9 (0.7–30.0)	University and Center 2012⁷³	
Ipilimumab/ Nivolumab/ Cabometytinib	Advanced/metastatic Tumor	Phase II, NCT0128394	ORR 6.7 (95% CI 0.8–22.1)		Squibb 2013⁷⁵	
Ipilimumab/ GVAX	Locally advanced, unresectable or metastatic pancreatic	Phase I, NCT0083407	No results posted	5.7 (4.3–14.7)	Le et al 2013⁷⁶	
Tremelimumab/ Durvalumab	Advanced/Metastatic Tumor	Phase II, NCT02527434	2.86 (1.87–3.52)	7.18 (3.98–18.76)	AstraZeneca 2015⁷⁷	
Tremelimumab/ Durvalumab	Metastatic adenocarcinoma/progression after fluoropyrimidine or gemcitabine first-line chemotherapy	Phase II, NCT02558984	1.5 (1.3–1.5)	3.1 (2.2–6.1)	AstraZeneca 2015⁷⁷	
Tremelimumab/ Gemcitidine	Advanced Metastatic Pancreatic Cancer	Phase I, NCT00556023	No results posted	7.4 (5.8–9.4)	Aglietta et al 2014⁷⁸	
Pembrolizumab/ Gemcitidine/ Nab-paclitaxel	Locally Advanced or Metastatic Pancreatic Cancer	Phase Ib/II, NCT02331251	9.1 (4.9–13.3)	15.0 (6.8–22.6)	Weiss et al 2019⁷⁹ Weiss et al 2018⁸⁰	
Nivolumab/ OSE2101/ FOLFIRI	PD-1 inhibitor, multi-neopetope vaccine, Cytotoxic drugs	Phase 2, NCT03806309	Recruiting	Recruiting	Group, Immunotherapeutics et al 2019⁸¹	
Atezolizumab, KY1044	PD-L1 inhibitor, Inducible T cell co-stimulator	Advanced Metastatic Pancreatic Cancer	Phase III, NCT03829501	Recruiting	Recruiting	Limited and Sanofi 2019⁸²
GVAX/CRS-207/CY	Whole-cell vaccine, Listeria vaccine, Cytotoxic drugs	Metastatic pancreatic adenocarcinoma	Phase 2a, NCT01417000	No results posted	6.28 (4.47–9.40)	Whiting et al 2015⁸³
GVAX/CRS-207/CY	Whole-cell vaccine, Listeria vaccine, Cytotoxic drugs	Previously treated metastatic pancreatic adenocarcinoma	Phase Ib, NCT02004262	No results posted	3.7 (2.9–5.3)	Le et al 2019⁸⁴
KIF20A-66 BSC	Peptide vaccine	Metastatic pancreatic adenocarcinoma, previously treated with gemcitabine	Phase III, UMIN000004919	No results posted	4.7 ± 0.8 2.7 ± 1.1	Asahara et al 2013⁸⁵
KIF20A/ VEGFR1/ VEGFR2/ Gemcitidine	Advanced and/or metastatic pancreatic cancer	Phase II, UMIN000008082	4.7, HLA-matched 5.2, HLA-unmatched	9.0, HLA-matched 10.0, HLA-unmatched	Suzuki et al 2017⁸⁶	

(Continued)
in combination with gemcitabine and nab-paclitaxel in 20 patients with advanced PDAC. More than half of the study’s population responded to the treatment regimen and almost all patients achieved disease control. Toripalimab is another anti PD-L1 antibody used as first line treatment in combination with nab-paclitaxel and gemcitabine as first-line treatment for advanced pancreatic adenocarcinoma in a phase Ib/II trial of 20 untreated patients with advanced PDAC. ORR was35.3% and DCR 82.4% and PFS and OS reached 5 months and 14 months respectively.

Results from another early phase trial of the PD-1 inhibitor sintilimab showed a similar efficacy rate and a predictable toxicity profile.

The development of monoclonal antibodies targeting immune checkpoints in order to counter the immunosuppression of tumor microenvironment represents a significant development in the treatment of solid tumors and has significantly augmented the therapeutic armamentarium. This notion is further advanced with the development of bispecific proteins that bind to multiple receptor simultaneously and link tumor cells to lymphocytes, facilitating lymphocyte-mediated tumor cell destruction. Few trials are currently exploring bispecific molecules in patients with metastatic PDAC. Envafolimab is a bispecific PD-L1/CTLA-4 antibody currently tested in a phase II trial in combination with gemcitabine and nab-paclitaxel in the advanced setting. Preliminary results from 17 patients show a 55% ORR and 88.9% DCR, while around one-third of patients experienced grade 3 or higher treatment related adverse events, mainly hepatic toxicity and nausea.

Another bispecific molecule tested in pretreated patients with mPDAC is the bispecific fusion protein targeting PD-L1 and the TGF-β receptor. An ongoing phase II trial combines this novel molecule with the multi-potent TKI farnitinib in patients with pretreated PDAC and preliminary safety data have not reported grade 4 or 5 toxicities till now.

Table 3 (Continued).

Intervention	Cancer Stage	Clinical Phase/ Identifier	Outcomes: Disease Free Survival (Months) (95% CI)	Outcomes: Median Overall Survival (Months) (95% CI)	Reference
MUC1, HLA-A2, ICAM-1, LFA-3, GM-CSF	Vaccinia virus-tumor antigens, Costimulatory molecules	Phase I	No results posted	15.3, anti CEA MUC-1 positive 3.9, anti CEA MUC-1 negative	Kaufman et al 200795
w/ Poly-ICLC plus peptide-pulsed DC-CIK	Immunostimulant DC-CIK vaccination	Phase I NCT0141968	No results posted	7.7 months	Mehrotra et al 201796
DC-CIK /Chemotherapy S-1 DC-CIK Chemotherapy S-1 BSC	DC-CIK vaccination, Cytotoxic drugs	Phase I/II NCT01781520	4.5	7	Jiang et al 201797
			2.8	4.2	
			3	4.7	
			1.4	1.73	
GV1001/ Gemcitabine/ Capecitabine Gemcitabine/ Capecitabine	Peptide vaccine, Cytotoxic drugs	Phase III, NCT02854072	No results posted	6.9 (6.4–7.6)	Middleton et al 201496
				7.9 (7.1–8.8)	
MORAb-009, Gemcitabine Placebo/ Gemcitabine	Monoclonal antibody, Cytotoxic drugs	Phase II, NCT00570713	No results posted	6.5 (4.5–8.10)	Morphotek 20079711
				6.9 (5.4–8.8)	

Abbreviations: FOLFIRI, fluorouracil, leucovorin, irinotecan, and oxaliplatin; BSC, best supportive care; CY, cyclophosphamide; KIF20A, kinesin family member 20A; VEGFR1/R2, vascular endothelial growth factor receptor 1/2; MUC1, mucin 1; ICAM-1, intercellular adhesion molecule 1; LFA-3, lymphocyte function-associated antigen 3; GM-CSF, granulocyte-macrophage colony-stimulating factor; CI, confidence interval; ORR, objective response rate; NR, not reached.
Cytokines are molecules that regulate intercellular interaction and play a major role in orchestrating the immune response to infections as well as to tumor cells. Use of cytokines such as interferon-alpha and interleukin-2 have been one of the first attempts to sensitize the host’s immune system to tumor cells to induce lymphocyte mediated cell lysis.\(^8\) The optimal role of cytokines in cancer treatment is still being investigated in several clinical trials, especially in immunosensitive tumors such as melanoma and renal cell carcinoma. Since PDAC is relatively resistant to ICIs, attempts are being made to enhance their activity with the addition of cytokines in recent clinical trials. The phase II NCT04390763 study examines the safety and efficacy of the anti-TGF-β monoclonal antibody NIS793 with and without the PD-1 inhibitor spartalizumab in combination with nab-paclitaxel and gemcitabine versus chemotherapy alone in patients with untreated metastatic PDAC.\(^8\) Similarly, nadoxorilimab, an interleukin-1 receptor accessory protein inhibitor, was combined with chemotherapy in 36 untreated patients with advanced PDAC. ORR and DCR were 27% and 57.6% respectively, while mPFS reached 7.8 months.\(^9\) Unfortunately, the phase III SEQUOIA trial showed no benefit in OS or PFS with the addition of pegilodecakin, a pegylated IL-10 formation drug, to standard of care FOLFOX chemotherapy after progression on gemcitabine-based chemotherapy.\(^9\)

Cancer vaccines have been used in several clinical studies (Table 3). The addition of listeria vaccine to GVAX plus CY resulted in improved OS compared to GVAX/CY regimen, 6.28 (95% CI, 4.47–9.40) and 4.07 (95% CI, 3.32–5.42) months respectively.\(^9\) On the other hand, the combination of Cy/GVAX + CRS-207 did not improve survival over chemotherapy as presented by a phase IIb trial (NCT02004262).\(^2\) A previously conducted phase I clinical trial combining the HLA-A*2402-restricted KIF20A-derived peptide vaccine with gemcitabine for advanced pancreatic cancer confirmed its safety and immunogenicity increasing the OS compared to best supportive care (BSC) (Table 3).\(^3\) The VENUS-PC study, a single-armed, phase II trial used two antiangiogenic cancer vaccines targeting VEGFR1 and VEGFR2 in addition to the KIF20A peptide. In this study, authors evaluated the clinical benefit of the cancer vaccination in combination with gemcitabine.\(^4\) No differences were observed either in median OS or in median PFS between the HLA-matched and HLA-unmatched group.\(^4\) Nevertheless, patients in the HLA-matched group with peptide-specific CTL induction for KIF20A or VEGFR1 had a better prognosis compared to those without such induction.\(^4\)

Ten patients with advanced pancreatic cancer were treated in a phase I clinical trial with vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F).\(^5\) Median overall survival was reported at 6.3 months with a significant increase in overall survival noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; \(P = 0.002\)). Moreover, antibody responses were observed in all 10 patients while 62.5% of the patients had antigen-specific T cell responses.\(^5\) Another, open-label, randomised, phase 3 trial on locally advanced or metastatic pancreatic cancer patients using a combination of GV1001 peptide vaccine with gemcitabine and capecitabine failed to improve survival compared to chemotherapy alone.\(^6\) 358 patients were allocated to the chemotherapy group, 350 to the sequential chemoimmunotherapy group, and 354 to the concurrent chemoimmunotherapy group. Median overall survival was reported at 7.9 months (95% CI, 7.1–8.8) for chemotherapy group, 6.9 months (95% CI, 6.4–7.6) for sequential chemoimmunotherapy group and 8.4 months (95% CI, 7.3–9.7) for concurrent chemoimmunotherapy group.\(^6\)

On the other hand, immunostimulant DC-CIK vaccination in combination with the S-1 chemotherapy regimen in 47 patients with advanced pancreatic cancer resulted in favorable PFS and OS compared to monotherapy or best supportive care.\(^7\) Moreover, analysis of peripheral blood demonstrated that the \(\text{CD3}^+\) T-cell subsets were significantly elevated, while the \(\text{CD3}^+\text{CD8}^+\), \(\text{CD3}^+\text{CD4}^+\text{CD8}^+\) and \(\text{CD3}^+\text{CD4}^+\text{CD8}^+\text{CD28}^+\) T-cell subsets were significantly decreased after DC-CIK cell therapy.\(^7\)

A recent breakthrough in adoptive cell therapy has been the development of chimeric antigen receptor (CAR) T-cells. These patient-derived lymphocytes have been genetically engineered and expanded ex-vivo to express receptors that target specific tumor antigens.\(^8\) When reinfused into patients, they cause tumor-cell destruction through multiple mechanisms, exploiting both the inhibition of tumor signaling pathways and the cytotoxic effect of T-cells. This new treatment modality has shown promising results, mainly in the treatment of hematologic malignancies.\(^9\) Several trials are currently exploring the efficacy and safety of CAR-T cells with various chimeric receptors in PDAC binding to already known tumor antigens.
such as Nectin4/FAP, mesothelin, HER2 and CEA, based on promising data from preclinical trial. A phase I trial of mesothelin targeting CAR-T cells tested in 6 patients with pretreated PDAC showed clinical benefit in 3 out of 6 patients NCT04037241, NCT03323944.

Several novel molecules that target immune checkpoints have been developed and are being tested in the clinical setting. The combination of the novel CD40 agonist sotigalimab with gemcitabine and nab-paclitaxel with or without nivolumab produced some interesting results and showed promising efficacy in a phase 2 study. Interestingly though, the combination of sotigalimab and nivolumab led to worse outcomes than either of these drugs alone, suggesting a possible antagonistic effect among immunotherapy drugs.

In addition to novel agents, other drugs that have been investigated or frequently used in different diseases have been employed in the treatment of PDAC. Masitinib is a TKI with activity against c-KIT, PDGFR and FGFR3 and has been investigated in the treatment of systemic mastocytosis due to its activity on mast cell and macrophage function, which may have an immunomodulatory effect on tumor microenvironment.

The phase 3 AB12005 trial evaluated masitinib plus chemotherapy in 384 untreated patients with advanced or metastatic PDAC which suffered from cancer pain. Addition of masitinib improved PFS and OS in patients with locally advanced PDAC but not in the overall study population. The hypomethylating agent azacitidine is being investigated in a phase II trial NCT03264404 in combination with pembrolizumab in patients with pretreated PDAC. Finally, the phase I MEDIPLEX study is examining the TKI and colony-stimulating factor-1 receptor inhibitor pexidartinib, which is currently used for the treatment of tenosynovial giant cell tumor in combination with durvalumab in patients with advanced PDAC and colorectal cancer.

The combination of chemotherapy and immunotherapy with local radiation has been explored as a preoperative approach in an attempt to downstage large invasive tumors and facilitate R0 resection. Exploiting the systemic biological synergy between immunotherapy and radiation, as suggested by several preclinical studies, a few trials have incorporated radiotherapy combinations in the advanced and metastatic setting. For example, the phase II/III QUILT 88 combines standard of care chemotherapy with low-dose chemoradiation and immunotherapy which consists of an infusion of NK-cells with high affinity for PD-L1 and an IL-15 cytokine fusion protein. Another phase II study uses camrelizumab in combination with chemotherapy and local ablation in patients with PDAC and liver metastases.

Immunotherapy Biomarkers in PDAC

The tumor microenvironment (TME) acts as a physical barrier against effective delivery of systemic chemotherapy. Moreover, immune-suppressing mechanisms induced by regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) accumulation, play a central role in suppressing antigen-presenting cells. Tregs lead in T-cell apoptosis and inhibit dendritic cell maturation and function, moreover, immune tolerance is also due to CTLA-4 which is constantly expressed on Tregs (Figure 1). On the other hand, MDSC inhibit both innate and adaptive antitumor immunity in pancreatic cancer while TAMs prevent dendritic cell-mediated antitumor immune responses by secreting a variety of growth factors. Moreover, the presence of regulatory (FOXP3+) T-cells prevents active T-cells through PD-L1/ PD-L1 checkpoint inhibitor expression (Figure 1). Understanding of tumor microenvironments may lead in the identification of subgroups of patients who will have better outcome from certain therapies.

Accumulation of somatic mutations leads to increased neoantigen formation therefore renders tumors susceptible to immunotherapy through inflammatory cytokines and T-cell activation. The mismatch repair (MMR) system is a family of proteins (MLH1, MSH2, MSH3, MSH6, PMS1 and PMS2) playing an important role in error repair during DNA replication. Defects in this system (dMMR) leads to random mutations occurring in specific regions of short DNA sequences of repetitions (microsatellites), a mechanism known as microsatellite instability (MSI). In the majority of pancreatic cancer patients neoantigen formation is caused, however, due to the immunosuppressive tumor microenvironment, as effective immune responses fail to be generated. Despite the limited and inconsistent literature of mismatch repair deficiency/ microsatellite instability in pancreatic cancer, a comparatively better prognosis and significantly prolonged survival for microsatellite instability high (MSI-H) compared to low (MSI-L) pancreatic cancer patients has been demonstrated. Several studies have evaluated the expression of PD-L1 in PDAC. As presented in a meta-
analysis of nine studies, PD-L1 positive rate was found in 19% to 62.5% of PDAC patients. Although an association between checkpoint inhibitors PD-L1 and dMMR/MSI-H as well as with tumor mutational load (TML) has not been extensively studied, PD-L1 expression was seen in 38.9% of dMMR tumors and 15.2% of MMR proficient tumors, emerging with the potential role of MSI-H status as predictive of a response to immunotherapy. TML express the total number of somatic/acquired mutations per coding area of a tumor genome. It is associated with increased sensitivity to immunotherapy and MSI-H tumors. The clinical benefit of anti-programmed death-1 therapy with pembrolizumab has been evaluated in dMMR/MSI-H previously treated unresectable or metastatic noncolorectal cancer patients. Among 233 enrolled patients with MSI-H/dMMR, advanced pancreatic cancer has been the most common, followed by endometrial cancer, gastric cancer and cholangiocarcinoma. PFS and OS was evaluated at 2.1 (95% CI 1.9–3.4) and 4.0 (95% CI 2.1–9.8) months respectively. Currently there are several clinical trials conducted in MSI-high pancreatic ductal adenocarcinoma patients in combination with chemotherapy or immunotherapy agents, nevertheless no result have been posted yet (Table 4).

Homologous recombination deficiency (HRD) represents a prominent new biomarker in metastatic PDAC. Patients with HRD positive tumors are characterized by deregulation of DNA repair enzymes which makes these tumors highly susceptible to DNA damaging chemotherapy drugs, such as platinum derivatives, alkylating agents, and mitomycin C. Patients with HRD are also highly-sensitive to PARP inhibitors, as demonstrated by numerous trials in ovarian cancer.

Table 4 Clinical Trials in Pancreatic Cancer Patients with High Microsatellite Instability

Intervention	Cancer Stage	Clinical Phase/ Identifier	Outcomes: Disease Free Survival (Months) (95% CI)	Outcomes: Median Overall Survival (Months) (95% CI)	Reference
Pembrolizumab	PD-1 inhibitor	MSI High/advanced pancreatic cancer	Phase II, NCT02628067	Recruiting/2.1 (1.9–3.4)	Marabelle et al 2020
Pembrolizumab/Sonidegib	PD-1 inhibitor, Hh-pathway inhibitor	MSI High/advanced pancreatic cancer	Phase I, NCT04007744	Recruiting	Recruiting
Pembrolizumab/DEBIO1143	PD-1 inhibitor, IAP inhibitor	Non-MSI-high advanced/metastatic	Phase I, NCT03871959	Recruiting	Recruiting
Pembrolizumab/XmAb22841	PD-1 inhibitor, CTLA-4/LAG-3 inhibitor	MSI High/advanced or metastatic pancreatic cancer	Phase I, NCT03849469	Recruiting	Recruiting
Nivolumab/Iplimumab/Radiation	PD-1 inhibitor, CTLA-4 inhibitor, Radiation	MSI High/pancreatic adenocarcinoma	Phase II, NCT03104439	Recruiting	Recruiting
Nivolumab/Pembrolizumab/Atezolizumab/FT500/CY/Fludarabine	PD-1 inhibitor, PD-1 inhibitor, PD-L1 inhibitor, iPSC-NK cell, Cytotoxic drugs	MSI High/advanced pancreatic cancer	Phase I, NCT03841110	Recruiting	Recruiting
LY3300054/Ramucirumab/Abernacilib/Merestinib/LY3321367	PD-1 inhibitor, VEGFR2 antagonist, CDK inhibitor, HGFR inhibitor, anti-TIM3	MSI High/pancreatic cancer	Phase I, NCT02791334	Recruiting	Recruiting
TIL Fludarabine/CY	Adoptive cell transfer Cytotoxic drugs	MSI High/advanced, recurrent, or metastatic pancreatic cancer	Phase II, NCT039335893	Recruiting	Recruiting

Abbreviations: MSI, microsatellite instability; Hh-pathway, hedgehog signaling pathway; IAP, inhibitor of apoptosis proteins; VEGFR2, vascular endothelial growth factor receptor 2; CDK, cyclin-dependent kinase; HGFR, hepatocyte growth factor receptor; TIM3, T-cell immunoglobulin and mucin domain-3; TIL, tumor infiltrating lymphocytes; CY, Cyclophosphamide; iPSC-NK, induced pluripotent stem cells-derived Natural Killer cell.
and to a lesser extent in other solid tumors, such as breast and prostate cancer. When it comes to PDAC, about 14–44% of patients carry mutations in at least one HRD gene, with BRCA and ATM being the most frequent study. Moreover, the use of the PARP inhibitor olaparib as maintenance therapy after response to platinum-based chemotherapy in patients with BRCA-mutated metastatic PDAC has led to improved PFS over treatment with a placebo. Similarly, rucaparib, another PARP inhibitor has shown promising results as maintenance treatment in patients with mutations in BRCA1, BRCA2 and PALB2 in a phase II trial.

These promising results in a malignancy associated with poor prognosis and scarce therapeutic options led to the investigation of PARP-based combination treatments. The synergy of immunotherapy and PARP inhibitors has been the subject of many preclinical studies which have generated encouraging results that, in turn, formed the base for many ongoing clinical trials in solid tumors. In PDAC, exploratory results from a Canadian phase II study showed improved clinical outcomes in patients with ATM mutated metastatic PDAC receiving a combination of durvalumab and tremelimumab with chemotherapy over those that received chemotherapy alone. The phase II POLAR trial is currently exploring the safety and efficacy of a combination of pembrolizumab and olaparib as maintenance treatment in patients with metastatic PDAC and HRD or major response to platinum-based chemotherapy NCT04666740. Another phase I/IIb trial is examining the combination of niraparib with either ipilimumab or nivolumab in a similar population NCT03404960.

Emerging molecular targets such as CXCR4, LAG-3 and TIGIT have been suggested as predictive biomarkers to immunotherapy response in preclinical studies and are currently explored in various solid tumors in combination with immunotherapy or other treatment modalities. CXCR4 has been associated with higher pro-inflammatory cytokine expression and with improved OS, suggesting a possible benefit with immunotherapy in CXCR4 high patients. There is also an ongoing phase II trial (NCT02826486) currently evaluating an CXCR4 inhibitor in metastatic PDAC. LAG-3 expression in tumor infiltrating T-cells was associated with worse DFS in a sample of 69 patients with resected PDAC. Data from pre-clinical models link CD155/TIGIT activity with immune evasion of pancreatic tumor cells. Finally, experimental immune checkpoints such as IDO, VISTA, TIM3 represent potential targets for novel checkpoint inhibitors and may lead to advancements in the barren field of pancreatic cancer immunotherapy.

Conclusion
Regardless of recent advances in cancer treatment, pancreatic duct adenocarcinoma is associated with extremely poor prognosis, still remaining a challenging disease to treat. So far, surgical resection in combination with either adjuvant or neoadjuvant chemotherapy, depending on stage of the disease, offers modest improvement in survival rates. Nevertheless, the overall prognosis for patients of all stages combined remains poor. Although advances in immunotherapy have provided an effective and safe treatment regimen in several cancer types, results of clinical trials for pancreatic cancer treatment have uniformly been disappointing for the majority of these regimens when used as monotherapy. On the other hand, both neoadjuvant and adjuvant immunotherapy have shown promising results, so far, when combined with cytotoxic drugs and/or radiotherapy. It seems that neoadjuvant immunotherapy increases the presence of TILs in the PC microenvironment and reduces the apoptosis of naïve T cells as well as the suppression of T-cell proliferation caused by surgical stress. Moreover, tremendous improvements in our knowledge, concerning the complex molecular and cellular microenvironment of pancreatic cancer cells, have occurred during the last decade. This knowledge will probably lead to the identification of subgroups of patients who will gain more benefit from specific therapies, in accordance with the concept of personalized treatment. Identification of valid biomarkers may guide treatment options in a pathway of targeted therapies which, in combination with immunotherapy, may reduce toxicity and improve outcomes. Further clinical studies are important in order to overcome microenvironment resistance and enhance effective treatment.

Disclosure
The authors report no conflicts of interest in this work.
References

1. Kleeff J, Kore M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:16022. doi:10.1038/nrdp.2016.22
2. Puckett Y, Garfield K. Pancreatic Cancer. StatPearls; 2021.
3. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
4. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–2921. doi:10.1158/0008-5472.CAN-14-0155
5. Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5e29.
6. Reyes-Gibby CC, Chan W, Abbruzzese JL, et al. Patterns of self-reported symptoms in pancreatic cancer patients receiving chemoradiation. J Pain Symptom Manage. 2007;34(3):244–252. doi:10.1016/j.jpainsymman.2006.11.007
7. Löhrl M. Is it possible to survive pancreatic cancer? OncoImmunology. 2016;6(1):202016.
8. Disis ML. Mechanism of action of immunotherapy. Nat Rev Clin Oncol. 2012;9(3):630–632. doi:10.1038/nrclinonc.2014.174
9. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi:10.1038/nrc3239
10. Zhang Y, Velez-Delgado A, Mathew E, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66(1):124–136. doi:10.1136/gutjnl-2016-312078
11. Aranda F, Vacchelli E, Eggermont A, et al. Trial watch: peptide vaccines in cancer therapy. Cancer Treat Rev. 2020;86:102016. doi:10.1016/j.ctrv.2020.102016
12. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Curr Opin Oncol. 2016;28(10):108–120. doi:10.1097/01.neo.0000492819.04667.2b
13. Disis ML. Mechanism of action of immunotherapy. OncoImmunology. 2013;2(12):e26621. doi:10.4161/onci.26621
14. Akce M, Zaidi MY, Waller EK, El-Rayes BF, Lesinski GB. The potential of CAR T cell therapy in pancreatic cancer. Curr Opin Hematol. 2020;27(6):326–332. doi:10.1097/MOH.0000000000000260
15. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702. doi:10.1146/annurev-immunol-032613-110145
16. Moro D, Nurmikko AM, Tsai C, et al. Optimal treatment timing of erlotinib and panitumumab in advanced pancreatic cancer. Ann Oncol. 2008;19(2):108–120. doi:10.1093/annonc/dmn303
17. Aranda F, Vacchelli E, Eggermont A, et al. Trial watch: peptide vaccines in cancer therapy. OncoImmunology. 2013;2(12):e26621. doi:10.4161/onci.26621
18. Puckett Y, Garfield K, El-Rayes BF, Lesinski GB. The potential of CAR T cell therapy in pancreatic cancer. Curr Opin Hematol. 2020;27(6):326–332. doi:10.1097/MOH.0000000000000260
19. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702. doi:10.1146/annurev-immunol-032613-110145
20. Stein P, Westby M, Dobbs S, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005;49(11):4721–4732. doi:10.1128/AAC.49.11.4721-4732.2005
21. Slowinski SB, Blom J, Thanopooulou A. The CCL2/CCR2 axis in the pathogenesis of viral hepatitis: a novel therapeutic target? Curr Drug Targets. 2016;17(1):76–110. doi:10.2174/138945010701151217119017
22. Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 axis in cancer immunotherapy: one stone, three birds? Front Immunol. 2021;12:771210. doi:10.3389/fimmu.2021.771210
23. Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic cancer. Pancreas. 2021;50(6):828–833. doi:10.1097/MPA.0000000000002164
24. AstraZeneca. Study of tremelimumab in patients with advanced solid tumors. Available from: https://clinicaltrials.gov/show/NCT02527434. Accessed May 3, 2021.
25. Klaiher U, Hackert T, Neoptolemos JP. Adjuvant treatment for pancreatic cancer. Transl Gastroenterol Hepatol. 2019;4:27. doi:10.21037/tgh.2019.04.04
26. Okusaka T, Nakamura M, Yoshida M, et al. Clinical practice guidelines for pancreatic cancer 2019 from the Japan Pancreas Society: a synopsis. Pancreas. 2020;49(3):326–335. doi:10.1097/MPA.0000000000001513
27. Kayahara M, Funaki K, Tajima H, et al. Surgical implication of micrometastasis for pancreatic cancer. Pancreas. 2010;39(6):884–888. doi:10.1097/MPA.0b013e3181ee2daa
28. Trimble EL, Ungerleider RS, Abrams JA, et al. Neoadjuvant therapy in cancer treatment. Am J Cancer Res. 2016;72(11 Suppl):3515–3524.
29. Byrne KT, Vonderheide RH. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 2016;15(12):2719–2723. doi:10.1016/j.celrep.2016.05.058
30. Amin S, Baine M, Meza J, Lin C. The impact of neoadjuvant and adjuvant immunotherapy on the survival of pancreatic cancer patients: a retrospective analysis. BMC Cancer. 2020;20(1):538. doi:10.1186/s12885-020-07016-8
31. Teng F, Mu D, Meng X, et al. Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer. Am J Cancer Res. 2015;5(6):2064–2074.
35. Ogawa K, Hirai M, Katsube T, et al. Suppression of cellular immunity by surgical stress. *Surgery*. 2000;127(3):329–336. doi:10.1067/msy.2000.103498
36. Hogan BV, Peter MB, Shenoy HG, Horgan K, Hughes TA. Surgery induced immunosuppression. *Surgery*. 2011;9(1):38–43. doi:10.1016/j.surge.2010.07.011
37. Rahma OE, Katz MHG, Wolpin BM, et al. Randomized multicenter phase Ib/II study of neoadjuvant chemoradiation therapy (CRT) alone or in combination with pembrolizumab in patients with resectable or borderline resectable pancreatic cancer. *J Clin Oncol*. 2021;39(15_suppl):4128. doi:10.1200/JCO.2021.39.15_suppl.4128
38. University Z. Combination of anti-CD40 monoclonal antibodies and chemoradiation in patients with locally advanced pancreatic cancer: a phase II study. Available from: https://clinicaltrials.gov/show/NCT03983057. Accessed February 14, 2022.
39. Zhou X, Hou W, Gao L, Shui L, Yi C, Zhu H. Synergies of antiangiogenic therapy and immune checkpoint blockade in renal cell carcinoma: from theoretical background to clinical reality. *Front Oncol*. 2020;10:1321. doi:10.3389/fonc.2020.01321
40. Murphy JM, Rodriguez YAR, Jeong K, Ahn EE, Lim SS. Targeting ficol adhesion kinase in cancer cells and the tumor microenvironment. *Exp Mol Med*. 2020;52(6):877–886. doi:10.1038/s41327-020-0447-4
41. Hopkins SK, Sharp M, Corp D, Verastem. I. Study of pembrolizumab with or without defactinib following chemotherapy as a neoadjuvant and adjuvant treatment for resectable pancreatic ductal adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT037277880. Accessed March 26, 2021.
42. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. *Nat Rev Cancer*. 2021;21(6):360–378. doi:10.1038/s41568-021-00346-0
43. Rosenberg A, Mahalingam D. Immunotherapy in pancreatic adenocarcinoma--overcoming barriers to response. *J Gastrointest Oncol*. 2018;9(1):143–159. doi:10.21037/jgo.2018.01.13
44. Hopkins SK, Institute NC. Vaccine therapy with or without cyclophosphamide in treating patients undergoing chemotherapy and radiation therapy for stage I or stage II pancreatic cancer that can be removed by surgery. Available from: https://clinicaltrials.gov/show/NCT00727441. Accessed February 25, 2020.
45. Lee V, Ding D, Rodriguez C, et al. A phase 2 study of cyclophosphamide (CY), GVAX, pembrolizumab (Pembro), and stereotactic body radiation (SBRT) in patients with locally advanced pancreatic cancer (LAPC). *J Clin Oncol*. 2021;39(suppl 15):abstr 4134. doi:10.1200/JCO.2021.39.15_suppl.4134
46. Lee V, Rodriguez C, Shupe EM, et al. Phase II study of GM-CSF secreting allogeneic pancreatic cancer vaccine (GVAX) with PD-1 blockade antibody and stereotactic body radiation therapy (SBRT) for locally advanced pancreas cancer (LAPC). *J Clin Oncol*. 2017;35(suppl 15):TPS4154. doi:10.1200/JCO.2017.35.15_suppl.TPS4154
47. Hopkins SK, Sharp M, Corp D, Lilly E. Pilot study with CY, pembrolizumab, GVAX, and IMC-CS4 in patients with borderline resectable adenocarcinoma of the pancreas. Available from: https://clinicaltrials.gov/show/NCT03153410. Accessed March 30, 2021.
48. Institute NC, Center NiOHC. Immune checkpoint inhibitor M7824 and the immunocytokine M9241 in combination with stereotactic body radiation therapy (SBRT) in adults with advanced pancreas cancer. Available from: https://clinicaltrials.gov/show/NCT04327986. Accessed June 18, 2021.
49. Corporation NG, Pharma L. Immunotherapy and SBRT study in borderline resectable pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT02405585. Accessed May 28, 2020.
50. Corporation NG, Pharma L. Immunotherapy study in borderline resectable or locally advanced unresectable pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT031836432. Accessed May 28, 2020.
51. Hopkins SK, Institute NC, Squibb B-M. Neoadjuvant/adjuvant GVAX pancreas vaccine (with CY) for locally advanced or metastatic pancreatic ductal adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT02451982. Accessed February 14, 2022.
52. Center JCC, Squibb B-M, Ltd. N. Nivolumab in combination with chemotherapy before surgery in treating patients with borderline resectable pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT03970252. Accessed May 14, 2021.
53. Central Therapeutics I, University OS. Neoadjuvant GMCI plus chemoradiation for advanced non-metastatic pancreatic adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT02446693. Accessed December 7, 2020.
54. Hopkins SK, Squibb BM. Trial of neoadjuvant and adjuvant nivolumab and BMS-813160 with or without GVAX for locally advanced pancreatic ductal adenocarcinomas. Available from: https://clinicaltrials.gov/show/NCT03767582. Accessed March 26, 2021.
55. ChemoCentryx. Phase 1b study of CCX872-B in patients with pancreatic adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT02345408. Accessed August 16, 2019.
56. Katz A, Rochester UC. Pre-operative stereotactic body radiotherapy for pancreatic adenocarcinoma with or without CCX872-B. Available from: https://clinicaltrials.gov/show/NCT03778879. Accessed July 19, 2019.
57. Medicine WUSO, Institute NC. FOLFIRINOX plus PF-04136309 in patients with borderline resectable and locally advanced pancreatic adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT01413022. Accessed September 19, 2016.
58. Nyweining TM, Wang-Gillam A, Sanford DE, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. *Lancet Oncol*. 2016;17(5):e51–e62. doi:10.1016/S1470-2045(16)00078-4
59. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. *Nat Rev Gastroenterol Hepatol*. 2018;15(6):333–348. doi:10.1038/s41575-018-0005-x
60. Lutz E, Yeo CJ, Lillemoe KD, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. *Ann Surg*. 2011;253(2):328–335. doi:10.1097/SLA.0b013e3181f2d73c
61. Jaffee EM, Hruban RH, Biedrzycki B, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase I trial of safety and immune activation. *J Clin Oncol*. 2001;19(1):145–156. doi:10.1200/JCO.2001.19.1.145
62. Hardacre JM, Muleahy M, Small W, et al. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: a phase 2 study. *J Gastrointest Surg*. 2013;17(1):94–100. doi:10.1007/s11605-012-2064-6
63. Hewitt DB, Nissen N, Hatoum H, et al. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-L (hyperacrylate-pancreateus) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer. Ann Surg. 2020;271:1072–1079. doi:10.1097/SLA.0000000000004669

64. McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorian EG. Pancreatic cancer: update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother. 2016;12(3):563–575. doi:10.1080/21645515.2015.1093264

65. Zeitouni D, Palvevaya-Gupta Y, Der CJ, Bryant KL. KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers (Basel). 2016;8(4):45. doi:10.3390/cancers804045

66. Gjertsen MK, Buannes T, Rosseland AR, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer. 2001;92(3):441–450. doi:10.1002/ijc.1205

67. Abou-Alfa GK, Chapman PB, Feilchenfeldt J, et al. Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant therapy. Am J Clin Oncol. 2011;34(3):321–325. doi:10.1097/COC.0b013e3181e4841f

68. ASA T. Antigen-specific cancer immunotherapy (TG01) and gemcitabine as adjuvant therapy in resected pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT02261714. Accessed May 14, 2020.

69. Muscarella P, Wilfong LS, Ross SB, et al. A randomized, placebo-controlled, double blind, multicenter phase II adjuvant trial of the efficacy, immunogenicity, and safety of GI-4000 plus gem versus gem alone in patients with resected pancreatic cancer with activating RAS mutations/ survival and immunology analysis of the R1 subgroup. J Clin Oncol. 2012;30(15_suppl):e14501. doi:10.1200/jco.2012.30.15_suppl.e14501

70. Miyazawa M, Katsuda M, Maguchi H, et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant for surgically resected pancreatic cancer patients. Int J Cancer. 2017;140(4):973–982. doi:10.1002/ijc.30510

71. Hopkins SK, Squibb BM. Trial of neoadjuvant and adjuvant nivolumab and BMS-813160 with or without GVAX for locally advanced pancreatic ductal adenocarcinomas. Available from: https://clinicaltrials.gov/show/NCT03767582. Accessed August 20, 2020.

72. Medicine WUSo, Squibb B-M, Hospital TFB-J, Health Nlo, Institute NC. BMS-813160 with nivolumab and gemcitabine and Nab-paclitaxel in borderline resectable and locally advanced pancreatic ductal adenocarcinoma (PDAC). Available from: https://clinicaltrials.gov/show/NCT03496662. Accessed November 3, 2021.

73. University N, Center RHL. Ipilimumab and gemcitabine hydrochloride in treating patients with stage III-IV or recurrent pancreatic cancer that cannot be removed by surgery. Available from: https://clinicaltrials.gov/show/NCT01473940. Accessed March 6, 2020.

74. Squibb BM. An investigational study of immunotherapy combinations with chemotherapy in patients with gastric or gastroesophageal junction (GEJ) cancers. Available from: https://clinicaltrials.gov/show/NCT03662659. Accessed August 27, 2020.

75. A study of nivolumab by itself or nivolumab combined with ipilimumab in patients with advanced or metastatic solid tumors. Available from: https://clinicaltrials.gov/show/NCT01928394. Accessed February 14, 2022.

76. Le DT, Lutz E, Urn JN, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2011;34(7):382–389. doi:10.1097/CJI.0b013e318292b7a2

77. Hopkins SKCCCa, Squibb B-M, Cancer SUT, Aduro Biotech I, Research AAFC, Foundation L. GVAX pancreas vaccine (with CY) and CRS-207 with or without nivolumab. Available from: https://clinicaltrials.gov/show/NCT02243371. Accessed April 6, 2021.

78. Aglietta M, Barone C, Sawyer MB, et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol. 2014;25(9):1750–1755. doi:10.1093/annonc/mdu205

79. Weiss GJ, Blyadorn L, Beck J, et al. Correction to: phase I/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs. 2019;37:979. doi:10.1007/s10637-019-00763-x

80. Weiss GJ, Blyadorn L, Beck J, et al. Phase I/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs. 2018;36(1):96–102. doi:10.1007/s10637-017-0525-1

81. University Z. Combination of anti-PD-1 antibody and chemotherapy in metastatic pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT03977722. Accessed December 11, 2019.

82. Cheng K, Lv WR, Li X, Tian B, Cao D. Toripalimab with nab-paclitaxel/gemcitabine as first-line treatment for advanced pancreatic adenocarcinoma: updated results of a single-arm, open-label, phase Ib/II clinical study. J Clin Oncol. 2021;39(suppl15):abstr e16213. doi:10.1200/JCO.2021.39.15_suppl.e16213

83. Zhu H, Sun X, Pan X, Wu P, Chen J. Sindilimab combined with gemcitabine plus pembrolizumab as first-line treatment for patients with advanced pancreatic cancer. J Clin Oncol. 2015;33(15_suppl):abstr e16257. doi:10.1200/JCO.2015.33.15_suppl.e16257

84. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bspecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–119. doi:10.1016/j.pharmthera.2019.04.006

85. Jin D, Guo S, Zhang Y, et al. Efficacy and safety of KN046 plus nab-paclitaxel/gemcitabine as first-line treatment for unresectable locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2021;39(suppl15):abstr 4138. doi:10.1200/JCO.2021.39.15_suppl.4138

86. Xie J, Chen L, Hua Y, Li H, Meng Z. 982P - A phase II study of SHR-1701 plus farnitinib for patients with previously treated advanced pancreatic cancer or biliary tract cancer. Ann Oncol. 2021;32(suppl_5):S829–S866. doi:10.1016/annonc/annonc7705

87. Berraondo P, Samamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15. doi:10.1038/s41416-018-0328-y

88. Grell P, Lin CC, Milella M, et al. Phase II study of the anti-TGF-β monoclonal antibody (mAb) NIS793 with and without the PD-1 inhibitor spartalizumab in combination with nab-paclitaxel/gemcitabine (NG) versus NG alone in patients (pts) with first-line metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol. 2021;39(suppl15):abstr TP56173.

89. Awada AH, Zematis M, Ochsensreither S, et al. 538P - nadinolimab (CAN04), a first-in-class monoclonal antibody against IL1R/IL4, in combination with chemotherapy in subjects with pancreatic cancer (PDAC) and non-small cell lung cancer (NSCLC). Ann Oncol. 2021;32(5):S583–S620. doi:10.1016/annonc/annonc699

90. Hecht JR, Lonardi S, Bendell JC, et al. Randomized phase III study of FOLFOX alone and with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer (SEQUOIA). J Clin Oncol. 2020;38(4_suppl):637. doi:10.1200/JCO.2020.38.4_suppl.637
91. Whiting C, Lutz E, Nair N, et al. Phase II, randomized study of GVAX pancreas and CRS-207 immunotherapy in patients with metastatic pancreatic cancer: clinical update on long term survival and biomarker correlates to overall survival. *J Clin Oncol*. 2015;33(suppl):261. doi:10.1200/jco.2015.33.3_suppl.261

92. Le DT, Picozzi VJ, Ko AH, et al. Results from a phase Ib, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE study). *Clin Cancer Res*. 2019;25:5493–5502. doi:10.1158/1078-0432.CCR-18-2992

93. Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H. Phase II/III clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. *J Transl Med*. 2013;11:291. doi:10.1186/1479-5876-11-291

94. Suzuki N, Hazama S, Iguchi H, et al. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: venus-PC study. *Cancer Sci*. 2017;108(1):73–80. doi:10.1111/cas.13113

95. Kaufman HL, Kim-Schulze S, Manson K, et al. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. *J Transl Med*. 2005;7:560. doi:10.1186/1479-5876-5-60

96. Middleton G, Silcock P, Cox T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomized, phase 3 trial. *Lancet Oncol*. 2014;15(8):829–840. doi:10.1016/S1474-415X(14)70236-0

97. Jiang N, Qiao G, Wang X, et al. Dendritic cell/cytokine-induced killer cell immunotherapy combined with S-1 in patients with advanced pancreatic cancer: a prospective study. *Clin Cancer Res*. 2017;23(17):5066–5073. doi:10.1158/1078-0432.CCR-17-0492

98. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. *Am J Hematol*. 2019;94(S1):S3–S9. doi:10.1002/ajh.25418

99. Raj D, Yang MH, Rodgers D, et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. *Gut*. 2019;68(6):1052–1064. doi:10.1136/gutjnl-2018-316595

100. Chi J, Patel R, Rehm H, Goyal S, Saif MW. Recent advances in immunotherapy for pancreatic cancer. *J Cancer*. 2019;10(5):503–512. doi:10.20517/2394-4722.2020.90

101. Beatty GL, O’Hara MH, Lacey SF, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. *Gastrointest. Oncol*. 2018;15(1):29–32. doi:10.1053/j.gastro.2018.02.029

102. O’Hara MH, O’Reilly EM, Wolff RA. Gemcitabine (Gem) and nab-paclitaxel (NP) ± nivolumab (nivo) ± CD40 agonistic monoclonal antibody APX005M (Sotigalimab), in patients (Pts) with untreated metastatic pancreatic adenocarcinoma (mPDAC): phase (Ph) 2 final results. *J Clin Oncol*. 2021;39(suppl15):abstr 4019. doi:10.1200/JCO.2021.39.15_suppl.4019

103. Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. *Pharmacol Rep*. 2009;61(6):725S. doi:10.1371/journal.pone.0007258

104. Ezenfis J, Hermine O, Group AS. Masitinib plus gemcitabine as first-line treatment of pancreatic cancer with pain: results from phase 3 study AB102005. *J Clin Oncol*. 2021;39(suppl15):abstr TPS4174. doi:10.1200/JCO.2021.39.15_suppl.TPS4174

105. Li Z, Li Q, Ma Z, et al. Camrelizumab combined with ablation and chemotherapy for pancreatic cancer with liver metastases: a single-arm, phase II, prospective clinical study. *J Clin Oncol*. 2021;39(suppl15):abstr TPS4169. doi:10.1200/JCO.2021.39.15_suppl.TPS4169

106. Cassier PA, Garin G, Eberst L, et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (Pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). *J Clin Oncol*. 2019;37(suppl):2579. doi:10.1200/JCO.2019.37.15_suppl.2579

107. Wang Y, Deng W, Li N, et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. *Front Pharmacol*. 2018;9:185. doi:10.3389/fphar.2018.00185

108. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. *Arch Toxicol*. 2015;89(6):899–921. doi:10.1007/s00204-015-1474-0

109. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. *Immunity*. 2014;41(1):49–61. doi:10.1016/j.immuni.2014.06.010

110. Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. *Ann Gastroenterol Surg*. 2019;3(2):130–137. doi:10.1016/j.agsu.2018.12.022

111. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. *Nat Rev Immunol*. 2013;13(5):49–57. doi:10.1038/nri3433

112. Walker LS, Treg and CTLA-4: two intertwining pathways to immune tolerance. *J Autoimmun*. 2015;63:150–157. doi:10.1016/j.jaut.2015.09.006

113. Bailey P, Chang DK, Forget MA, et al. Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. *Sci Rep*. 2016;6:35848. doi:10.1038/srep35848

114. Kasturi L, Olechnowicz J, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. *Proc Natl Acad Sci U S A*. 1998;95:8698–8702. doi:10.1073/pnas.95.15.8698
122. Hu ZI, Shia J, Stadler ZK, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res. 2018;24(6):1326–1336. doi:10.1158/1078-0432.CCR-17-3099
123. Nakata B, Wang YQ, Yashiro M, et al. Prognostic value of microsatellite instability in resectable pancreatic cancer. Clin Cancer Res. 2002;8(8):2536–2540.
124. Fraune C, Burandt E, Simon R, et al. MMR deficiency is homogeneous in pancreatic carcinoma and associated with high density of e8-positive lymphocytes. Ann Surg Oncol. 2020;27:3997–4006. doi:10.1245/s10434-020-08209-y
125. Yamamoto H, Itoh F, Nakamura H, et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res. 2001;61(7):3139–3144.
126. Eatriides JM, Coppola D, Diffalha SA, Kim RD, Springett GM, Mahipal A. Microsatellite instability in pancreatic carcinoma. J Clin Oncol. 2016;34(15_suppl):e15753. doi:10.1200/JCO.2016.34.15_suppl.e15753
127. Wang L, Ma Q, Chen X, Guo K, Li J, Zhang M. Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma. World J Surg. 2010;34(5):1059–1065. doi:10.1007/s00268-010-0448-x
128. Chen Y, Sun J, Zhao H, et al. The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer. Onco Targets Ther. 2014;7:1465–1472. doi:10.2147/OTT.S66809
129. Loos M, Giese NA, Kleeff J, et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett. 2008;268(1):98–109. doi:10.1016/j.canlet.2007.03.056
130. Geng L, Huang D, Liu J, et al. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol. 2008;134(9):1021–1027. doi:10.1007/s00432-008-0364-8
131. Birnbaum DJ, Finetti P, Lopresti A, et al. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget. 2016;7(44):71198–71210. doi:10.18632/oncotarget.11685
132. Gao HL, Liu L, Qi ZH, et al. The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer: a meta-analysis. Hepatobiliary Pancreat Dis Int. 2018;17(2):95–100. doi:10.1016/j.hbpd.2018.03.007
133. Salem ME, Puccini A, Grothey A, et al. Landscape of tumor mutation load, mismatch repair deficiency, and PD-L1 expression in a large patient cohort of gastrointestinal cancers. Mol Cancer Res. 2018;16(5):805–812. doi:10.1158/1541-7786.MCR-17-0735
134. Kim ST, Klemperer SJ, Park SH, et al. Correlating programmed death ligand 1 (PD-L1) expression, mismatch repair deficiency, and outcomes across tumor types: implications for immunotherapy. Oncotarget. 2017;8(44):77415–77423. doi:10.18632/oncotarget.20492
135. Champiat S, Ferte C, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenetics: bridging mutational load and immune checkpoints efficacy. Oncoimmunology. 2014;3(1):e27817. doi:10.34167/onci.27817
136. Marabelle A, Le DT, Ascierio PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. doi:10.1200/jco.19.02105
137. Pokataev I, Fedyanin M, Polyanyskaya E, et al. Efficacy of platinum-based chemotherapy and prognosis of patients with pancreatic cancer with homologous recombination deficiency: comparative analysis of published clinical studies. ESMO Open. 2020;5(1):e000578. doi:10.1136/esmoopen-2019-000578
138. Nguyen L, W. M. Martens J, Van Hoeck A, Cuppen E. Pan-cancer landscape of homologous recombination deficiency. Nat Commun. 2020;11(1):5584. doi:10.1038/s41467-020-19406-4
139. Casolino R, Paiella S, Azzolina D, et al. Homologous recombination deficiency in pancreatic cancer: a systematic review and prevalence meta-analysis. J Clin Oncol. 2021;39(23):2617–2631. doi:10.1200/jco.20.03238
140. Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–327. doi:10.1056/NEJMoa1903387
141. Reiss KA, Mick R, O'Hara MH, et al. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. J Clin Oncol. 2021;39(22):2497–2505. doi:10.1200/JCO.20.00003
142. Vikas P, Borchering N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol. 2020;10:570. doi:10.3389/fonc.2020.00570
143. Shan C, Li X, Zhang J. Progress of immune checkpoint LAG-3 in immunotherapy. Oncol Lett. 2020;20(5):207. doi:10.3892/ol.2020.12070
144. Seeber A, Kocher F, Pircher A, et al. High CXCR4 expression in pancreatic ductal adenocarcinoma as characterized by an inflammatory tumor phenotype with potential implications for an immunotherapeutic approach. J Clin Oncol. 2021;39(suppl15):abstr 4021. doi:10.1200/JCO.2021.39.15_suppl.4021
145. Seifert L, Plesca I, Muller L, et al. LAG-3-expressing tumor-infiltrating t cells are associated with reduced disease-free survival in pancreatic cancer. Cancers (Basel). 2021;13(6):1297. doi:10.3390/cancers13061297
146. Freed-Pastor WA, Lambert LJ, Ely ZA, et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell. 2021;39:1342–1360.e14. doi:10.1016/j.ccell.2021.07.007
147. Popp FC, Capino I, Bartels J, et al. Expression of immune checkpoint regulators IDO, Vista, LAG3, and TIM3 in resected pancreatic ductal adenocarcinoma. Cancers (Basel). 2021;13(11):2689. doi:10.3390/cancers13112689
148. Group G-MOC, Immunotherapeutics O, Squibb B-M. Maintenance therapy with OSE2101 vaccine alone or in combination with nivolumab, or FOLFIIRI after induction therapy with FOLFIRINOX in patients with locally advanced or metastatic pancreatic ductal adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT03806309. Accessed February 12, 2020.
149. Limited K, Sanofi. Safety and efficacy of KY1044 and aezolizumab in advanced cancer; 2019. Available from: https://clinicaltrials.gov/show/NCT03829501. Accessed February 14, 2022.
150. Mehrotra S, Britten CD, Chin S, et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol. 2017;10(1):82. doi:10.1186/s13045-017-0459-2
151. Morphotek. An efficacy study of MORAb-009 in subjects with pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT00570713. Accessed September 9, 2015.
152. Clinic M, Institute NC, Sonidegib and pembrolizumab in treating patients with advanced solid tumors. Available from: https://clinicaltrials.gov/show/NCT04007744. Accessed January 15, 2021.
153. Berard CL, Sharp M, Corp D, Sa DI. Pembrolizumab in combination with debio 1143 in pancreatic and colorectal advanced/metastatic adenocarcinoma. Available from: https://clinicaltrials.gov/show/NCT03871959. Accessed May 10, 2021.

154. Xencor I, Research IC. A study of XmAb®22841 monotherapy & in combination w/ pembrolizumab in subjects w/ selected advanced solid tumors. Available from: https://clinicaltrials.gov/show/NCT03849469. Accessed May 5, 2021.

155. Hospital MG, Squibb B-M. Nivolumab and ipilimumab and radiation therapy in MSS and MSI high colorectal and pancreatic cancer. Available from: https://clinicaltrials.gov/show/NCT03104439. Accessed March 25, 2021.

156. Therapeutics F. FT500 as monotherapy and in combination with immune checkpoint inhibitors in subjects with advanced solid tumors. Available from: https://clinicaltrials.gov/show/NCT03841110. Accessed February 14, 2022.

157. Lilly and Company. A study of anti-PD-L1 checkpoint antibody (LY3300054) alone and in combination in participants with advanced refractory solid tumors. Available from: https://clinicaltrials.gov/show/NCT02791334. Accessed December 17, 2020.

158. Kammula U, Pittsburgh UO. Adoptive transfer of tumor infiltrating lymphocytes for advanced solid cancers. Available from: https://clinicaltrials.gov/show/NCT03935893. Accessed February 14, 2022.