Characterizing the cytotoxic effects and several antimicrobial phytochemicals of *Argemone mexicana*

Helene Bee*, Lanna Sirhan*, Emily Gonzalez, Ashley Wasserman, Katelyn Shouse, Alexis Dres, Caleb VanArragon, Jeffrey Pruett and Danielle Orozco-Nunnelly

INTRODUCTION

Plants naturally produce a robust supply of novel metabolic compounds that can be used to treat a variety of human diseases. From 1981 to 2010, it is estimated that nearly 50% of all cancer drugs originated from natural products [1], many of which were derived from terrestrial plants [2]. Likewise, plants produce many antimicrobial agents, which include a wide variety of natural defense compounds, such as phenolics, terpenoids, alkaloids, polycytylenes, lectins and polypeptides [3].

With the advent of modern antibiotic drugs mainly of bacterial, fungal and synthetic sources, many of these natural plant-derived antibiotic compounds have been left unexplored. Yet with the high number of antibiotic-resistant pathogenic microorganisms, there is a pressing need for the development of new classes of antibiotic drugs (Fig. 1).

METHODS & RESULTS

Figure 2: Extraction Procedure

Extract Preparation. Whole *Argemone mexicana* plants were separated into leaves, seeds, inner or outer roots and allowed to dry in paper bags at 22°C. 2 grams of each dried sample was homogenized using a mortar and pestle. The powdered sample was then macerated in methanol or hexane using a 1:4 (plant material:solvent) ratio at 200 rpm, 35°C for 48 hours. The mixture was centrifuged at 5,000 x g for 5 minutes, and the supernatant was filtered through a 0.2 μm PTFE membrane. The filtrate was then dried-hydrated, quantified and tested for biological activity.

Figure 3: Antimicrobial & Anticancer Experiments

Figure 4: Chemical Characterization

CONCLUSIONS & ON-GOING WORK

- Outer root methanol extracts possess antimicrobial activity, with greatest effects against gram-positive bacteria (Fig. 3).
- Outer root methanol and seed hexane extracts have inhibitory effects against T84 human colon cancer cells (Fig. 3).
- mRNA levels of c-MYC (oncogene) and APC (tumor suppressor) were quantified.
- Chelerythrine and berberine were found as main antibiotic compounds in the roots and/or leaves of *A. mexicana* (Fig. 4).
- Recent work on synthesizing and testing new berberine and chelerythrine variants can be found at posters #35 and #68.

This work was supported by Valpo start-up funds and an O.P. Kretzmann Memorial Fund grant to co-PIs Jeffrey Pruett and Danielle Orozco-Nunnelly.

REFERENCES

1. Newman and Cragg (2012). Natural Products as Sources of New Drugs over the 30 Years From 1981 to 2010. J Nat Prod. 75(3): 315-335.

2. Cragg and Pezzuto (2015). Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med Prac. Prac. 25(suppl 2): 41-59.

3. Cowan (1999). Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 12(4): 564-582.

4. Clyne and Pezzuto (2003). Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology. 3: 541-548.

5. Emmart (1940). The Badianus Manuscript: an Aztec Herbal of 1552. John Hopkins Press: Baltimore, MD.

6. Brahmacrani and et al. (2013) *Argemone mexicana*: chemical and pharmacological aspects. Brazilian Journal of Pharmacognosy. 23(3): 559-571.

7. Orozco-Nunnelly, Pruett, et al. (2021). Characterizing the cytotoxic effects and several antimicrobial phytochemicals of *Argemone mexicana*. PLGOS ONE. 10(4): e0243704.