Cotorsion pairs and a K-theory localization theorem

Maru Sarazola
Cornell University

January 24, 2021
Outline

▶ The Problem

▶ Abelian, exact, and Waldhausen categories

▶ Cotorsion pairs

▶ Waldhausen categories from cotorsion pairs

▶ Localization theorem

▶ Examples
The problem: background

Algebraic K-theory is very hard to compute! For that reason, it’s useful to have results relating the K-theory groups of different categories.
The problem: background

Algebraic K-theory is very hard to compute! For that reason, it’s useful to have results relating the K-theory groups of different categories.

A major tool in this direction: finding homotopy fiber sequences

$$K(A) \rightarrow K(B) \rightarrow K(C)$$

relating the K-theory spaces of categories A, B and C.

Maru Sarazola

Cotorsion pairs and a K-theory localization theorem
The problem: background

Algebraic K-theory is very hard to compute! For that reason, it’s useful to have results relating the K-theory groups of different categories.

A major tool in this direction: finding homotopy fiber sequences

$$K(A) \to K(B) \to K(C)$$

relating the K-theory spaces of categories A, B and C.

These induce long exact sequences

$$\cdots \to K_{n+1}(C) \to K_n(A) \to K_n(B) \to K_n(C) \to K_{n-1}(A) \to \cdots$$

ending in $K_0(A) \to K_0(B) \to K_0(C) \to 0$.

Maru Sarazola
Cotorsion pairs and a K-theory localization theorem
The problem: background

Among these results:

Localization (Quillen)

Let \(\mathcal{A} \) be a Serre subcategory of an abelian category \(\mathcal{B} \). Then there exists a quotient abelian category \(\mathcal{B}/\mathcal{A} \) such that

\[
K(\mathcal{A}) \rightarrow K(\mathcal{B}) \rightarrow K(\mathcal{B}/\mathcal{A})
\]

is a homotopy fiber sequence.
The problem: background

Among these results:

Localization (Quillen)

Let \mathcal{A} be a Serre subcategory of an abelian category \mathcal{B}. Then there exists a quotient abelian category \mathcal{B}/\mathcal{A} such that

$$K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}/\mathcal{A})$$

is a homotopy fiber sequence.

Very useful! **But:**
The problem: background

Among these results:

Localization (Quillen)

Let \mathcal{A} be a Serre subcategory of an abelian category \mathcal{B}. Then there exists a quotient abelian category \mathcal{B}/\mathcal{A} such that

$$K(\mathcal{A}) \rightarrow K(\mathcal{B}) \rightarrow K(\mathcal{B}/\mathcal{A})$$

is a homotopy fiber sequence.

Very useful! **But:** only applies to *abelian* cat’s, while many of the cat’s of interest to K-theory are exact (e.g. $K(R) = K(\text{proj})$).
The problem: background

Different authors have successfully generalized Quillen’s localization theorem to exact categories:
The problem: background

Different authors have successfully generalized Quillen’s localization theorem to exact categories:

Exact localization (Cárdenas, Schlichting)

Same as Quillen’s, now $\mathcal{A} \subseteq \mathcal{B}$ are exact, and \mathcal{A} is Serre + more conditions. Then \mathcal{B}/\mathcal{A} is exact, and there is a homotopy fiber sequence

$$K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}/\mathcal{A})$$
The problem: background

Different authors have successfully generalized Quillen’s localization theorem to exact categories:

Exact localization (Cárdenas, Schlichting)

Same as Quillen’s, now $A \subseteq B$ are exact, and A is Serre + more conditions. Then B/A is exact, and there is a homotopy fiber sequence

$$K(A) \to K(B) \to K(B/A)$$

Allows for more applications, but may still be quite restrictive!
The problem: background

For example, given a well-behaved ring R, one would like to apply the Localization theorem to

$$\text{proj} \subseteq R\text{-mod}$$

and obtain a long exact sequence relating $K(R) = K(\text{proj})$ and $G(R) = K(R\text{-mod})$.
The problem: background

For example, given a well-behaved ring R, one would like to apply the Localization theorem to

$$\text{proj} \subseteq R\text{-mod}$$

and obtain a long exact sequence relating $K(R) = K(\text{proj})$ and $G(R) = K(R\text{-mod})$.

However, proj is never a Serre subcategory unless R is such that every finitely generated R-module is projective, in which case the comparison is trivial!
The problem: my goal

My goal: prove an exact version of the Localization theorem that allows for a different type of subcategory, other than Serre subcategories.
The problem: my goal

My goal: prove an exact version of the Localization theorem that allows for a different type of subcategory, other than Serre subcategories.

Immediate obstruction: this property is vital when proving that the quotient category B/A is exact.
The problem: my goal

My goal: prove an exact version of the Localization theorem that allows for a different type of subcategory, other than Serre subcategories.

Immediate obstruction: this property is vital when proving that the quotient category \mathcal{B}/\mathcal{A} is exact.

We take a different approach: instead of looking for an exact quotient category \mathcal{B}/\mathcal{A} whose morphisms encode the vanishing of \mathcal{A} on K-theory, we construct a *Waldhausen* category structure on \mathcal{B} whose weak equivalences encode the vanishing of \mathcal{A} on K-theory.
Abelian, exact, and Waldhausen categories

Abelian categories: they all behave like categories of modules over a ring. Every map has a kernel and a cokernel, and we have short exact sequences.

Prototype example: the category of abelian groups.

Exact categories: they are nicely behaved full subcategories $E \subseteq A$ of an abelian category. Since we don't have all objects, some maps in E won't have kernel/cokernel in E, and so we have a restricted class of short exact sequences.

Prototype example: the category of projective modules over a ring.

The monos (epis) that do have a cokernel (kernel) in the exact category are called *admissible*.
Abelian, exact, and Waldhausen categories

Abelian categories: they all behave like categories of modules over a ring. Every map has a kernel and a cokernel, and we have short exact sequences. Prototype example: the category of abelian groups.
Abelian, exact, and Waldhausen categories

Abelian categories: they all behave like categories of modules over a ring. Every map has a kernel and a cokernel, and we have short exact sequences. Prototype example: the category of abelian groups.

Exact categories: they are nicely behaved full subcategories $\mathcal{E} \subseteq \mathcal{A}$ of an abelian category. Since we don’t have all objects, some maps in \mathcal{E} won’t have kernel/cokernel in \mathcal{E}, and so we have a restricted class of short exact sequences.
Abelian, exact, and Waldhausen categories

Abelian categories: they all behave like categories of modules over a ring. Every map has a kernel and a cokernel, and we have short exact sequences. Prototype example: the category of abelian groups.

Exact categories: they are nicely behaved full subcategories $\mathcal{E} \subseteq \mathcal{A}$ of an abelian category. Since we don’t have all objects, some maps in \mathcal{E} won’t have kernel/cokernel in \mathcal{E}, and so we have a restricted class of short exact sequences. Prototype example: the category of projective modules over a ring.
Abelian categories: they all behave like categories of modules over a ring. Every map has a kernel and a cokernel, and we have short exact sequences. Prototype example: the category of abelian groups.

Exact categories: they are nicely behaved full subcategories $\mathcal{E} \subseteq \mathcal{A}$ of an abelian category. Since we don’t have all objects, some maps in \mathcal{E} won’t have kernel/cokernel in \mathcal{E}, and so we have a restricted class of short exact sequences. Prototype example: the category of projective modules over a ring.

The monos (epis) that do have a cokernel (kernel) in the exact category are called *admissible*.
Abelian, exact, and Waldhausen categories

Waldhausen categories: they are pointed categories, together with distinguished classes of morphisms (cofibrations and weak equivalences) + axioms.

Example: exact (and abelian) categories can be seen as Waldhausen categories, with cofibrations = admissible monos, and weak equivalences = isos.

Prototype example: chain complexes, with cofibrations = degreewise monos, and weak equivalences = quasi-isos.
Abelian, exact, and Waldhausen categories

Waldhausen categories: they are pointed categories, together with distinguished classes of morphisms (cofibrations and weak equivalences) + axioms.

Example: exact (and abelian) categories can be seen as Waldhausen categories, with cofibrations = admissible monos, and weak equivalences = isos.
Abelian, exact, and Waldhausen categories

Waldhausen categories: they are pointed categories, together with distinguished classes of morphisms (cofibrations and weak equivalences) + axioms.

Example: exact (and abelian) categories can be seen as Waldhausen categories, with cofibrations = admissible monos, and weak equivalences = isos.

Prototype example: chain complexes, with cofibrations = degree-wise monos, and weak equivalences = quasi-isos.
Cotorsion pairs

As in abelian categories, one can construct the Yoneda bifunctor $\operatorname{Ext}^1_{\mathcal{E}}$ in any exact category \mathcal{E}:

$\operatorname{Ext}^1_{\mathcal{E}}(A, B)$ is the abelian group of equivalence classes of extensions

$$0 \to B \to C \to A \to 0$$
Cotorsion pairs

As in abelian categories, one can construct the Yoneda bifunctor $\text{Ext}^1_{\mathcal{E}}$ in any exact category \mathcal{E}:

$\text{Ext}^1_{\mathcal{E}}(A, B)$ is the abelian group of equivalence classes of extensions

\[0 \rightarrow B \rightarrow C \rightarrow A \rightarrow 0 \]

Definition: cotorsion pair

A **cotorsion pair** in an exact category \mathcal{E} is a pair $(\mathcal{P}, \mathcal{I})$ of two classes of objects that are the orthogonal complement of each other with respect to the $\text{Ext}^1_{\mathcal{E}}$ functor.
Cotorsion pairs

As in abelian categories, one can construct the Yoneda bifunctor $\text{Ext}^1_{\mathcal{E}}$ in any exact category \mathcal{E}:

$\text{Ext}^1_{\mathcal{E}}(A, B)$ is the abelian group of equivalence classes of extensions

$$0 \to B \to C \to A \to 0$$

Definition: cotorsion pair

A **cotorsion pair** in an exact category \mathcal{E} is a pair $(\mathcal{P}, \mathcal{I})$ of two classes of objects that are the orthogonal complement of each other with respect to the $\text{Ext}^1_{\mathcal{E}}$ functor. More explicitly,

(i) $P \in \mathcal{P}$ if and only if $\text{Ext}^1_{\mathcal{E}}(P, I) = 0$ for every $I \in \mathcal{I}$,
Cotorsion pairs

As in abelian categories, one can construct the Yoneda bifunctor $\text{Ext}^1_{\mathcal{E}}$ in any exact category \mathcal{E}:

$\text{Ext}^1_{\mathcal{E}}(A, B)$ is the abelian group of equivalence classes of extensions

$$0 \to B \to C \to A \to 0$$

Definition: cotorsion pair

A **cotorsion pair** in an exact category \mathcal{E} is a pair $(\mathcal{P}, \mathcal{I})$ of two classes of objects that are the orthogonal complement of each other with respect to the $\text{Ext}^1_{\mathcal{E}}$ functor. More explicitly,

(i) $P \in \mathcal{P}$ if and only if $\text{Ext}^1_{\mathcal{E}}(P, I) = 0$ for every $I \in \mathcal{I}$, and

(ii) $I \in \mathcal{I}$ if and only if $\text{Ext}^1_{\mathcal{E}}(P, I) = 0$ for every $P \in \mathcal{P}$.
Cotorsion pairs

Prototype example: injective and projective objects.
Cotorsion pairs

Prototype example: injective and projective objects.

Indeed, an object P is projective iff $\text{Ext}^1(P, A) = 0$ for every $A \in \mathcal{E}$.
Cotorsion pairs

Prototype example: injective and projective objects.

Indeed, an object P is projective iff $\Ext^1(P, A) = 0$ for every $A \in \mathcal{E}$. Then, $(\text{proj}, \mathcal{E})$ is a cotorsion pair. Similarly, $(\mathcal{E}, \text{inj})$.
Cotorsion pairs

Prototype example: injective and projective objects.

Indeed, an object P is projective iff $\text{Ext}^1(P, A) = 0$ for every $A \in \mathcal{E}$. Then, $(\text{proj}, \mathcal{E})$ is a cotorsion pair. Similarly, $(\mathcal{E}, \text{inj})$.

Interpretation: $\text{Ext}^1(P, \mathcal{I}) = 0$ iff for every epi g with $\ker g \in \mathcal{I}$,

\[
\begin{array}{c}
X \\
\rightarrow \\
\downarrow g \\
\quad g
\end{array}
\]

\[
\begin{array}{c}
P \\
\rightarrow
\end{array}
\]

\[
\begin{array}{c}
Y
\end{array}
\]

Maru Sarazola

Cotorsion pairs and a K-theory localization theorem
Waldhausen categories from cotorsion pairs

The relation between cotorsion pairs and model categories was studied by Hovey
The relation between cotorsion pairs and model categories was studied by Hovey.

Theorem (Hovey)

Given an abelian category \mathcal{A}, there is a one-to-one correspondence

\[
\{ \text{pairs of cotorsion pairs} \ (C, \mathcal{F} \cap \mathcal{Z}), (C \cap \mathcal{Z}, \mathcal{F}) \} \leftrightarrow \{ \text{abelian model structures on } \mathcal{A} \}
\]
Waldhausen categories from cotorsion pairs

The relation between cotorsion pairs and model categories was studied by Hovey

Theorem (Hovey)

Given an abelian category \mathcal{A}, there is a one-to-one correspondence

\[
\{ \text{pairs of cotorsion pairs} \quad (\mathcal{C}, \mathcal{F} \cap \mathcal{Z}), (\mathcal{C} \cap \mathcal{Z}, \mathcal{F}) \} \quad \leftrightarrow \quad \{ \text{abelian model structures on } \mathcal{A} \}
\]

Inspired by Hovey’s result, we study the relation between cotorsion pairs and Waldhausen categories.
Our main result explains how to produce a Waldhausen category from a cotorsion pair and a chosen subcategory \mathcal{Z} which, in line with our original motivation, will form the class of acyclic objects.
Waldhausen categories from cotorsion pairs

Our main result explains how to produce a Waldhausen category from a cotorsion pair and a chosen subcategory \mathcal{Z} which, in line with our original motivation, will form the class of acyclic objects.

Theorem (S.)

Let \mathcal{E} be an exact category, and \mathcal{C}, \mathcal{Z} two full subcategories of \mathcal{E} such that \mathcal{Z} is closed under extensions and cokernels of monos, and \mathcal{C} is part of a complete cotorsion pair $(\mathcal{C}, \mathcal{C}^\perp)$. Assume also that $\mathcal{C}^\perp \subseteq \mathcal{Z}$.
Our main result explains how to produce a Waldhausen category from a cotorsion pair and a chosen subcategory \mathcal{Z} which, in line with our original motivation, will form the class of acyclic objects.

Theorem (S.)

Let \mathcal{E} be an exact category, and \mathcal{C}, \mathcal{Z} two full subcategories of \mathcal{E} such that \mathcal{Z} is closed under extensions and cokernels of monos, and \mathcal{C} is part of a complete cotorsion pair $(\mathcal{C}, \mathcal{C}^\perp)$. Assume also that $\mathcal{C}^\perp \subseteq \mathcal{Z}$. Then \mathcal{C} admits a Waldhausen structure, with

- cofibrations: admissible monos,
Waldhausen categories from cotorsion pairs

Our main result explains how to produce a Waldhausen category from a cotorsion pair and a chosen subcategory \mathcal{Z} which, in line with our original motivation, will form the class of acyclic objects.

Theorem (S.)

Let \mathcal{E} be an exact category, and \mathcal{C}, \mathcal{Z} two full subcategories of \mathcal{E} such that \mathcal{Z} is closed under extensions and cokernels of monos, and \mathcal{C} is part of a complete cotorsion pair $(\mathcal{C}, \mathcal{C}^{\perp})$. Assume also that $\mathcal{C}^{\perp} \subseteq \mathcal{Z}$. Then \mathcal{C} admits a Waldhausen structure, with

- cofibrations: admissible monos,
- weak equivalences: maps that factor as a mono with cokernel in $\mathcal{C} \cap \mathcal{Z}$ followed by an epi with kernel in $\mathcal{C} \cap \mathcal{Z}$
Waldhausen categories from cotorsion pairs

These Waldhausen categories relax the notion of exactness, while still exhibiting an algebraic nature.

As a consequence, they are well-behaved and have many desired properties:
Waldhausen categories from cotorsion pairs

These Waldhausen categories relax the notion of exactness, while still exhibiting an algebraic nature.

As a consequence, they are well-behaved and have many desired properties:

▶ they are proper,
Waldhausen categories from cotorsion pairs

These Waldhausen categories relax the notion of exactness, while still exhibiting an algebraic nature.

As a consequence, they are well-behaved and have many desired properties:

- they are proper,
- satisfy the extension axiom,
Waldhausen categories from cotorsion pairs

These Waldhausen categories relax the notion of exactness, while still exhibiting an algebraic nature.

As a consequence, they are well-behaved and have many desired properties:

- they are proper,
- satisfy the extension axiom,
- every map factors as a cofibration followed by a weak equivalence,
Waldhausen categories from cotorsion pairs

These Waldhausen categories relax the notion of exactness, while still exhibiting an algebraic nature.

As a consequence, they are well-behaved and have many desired properties:

- they are proper,
- satisfy the extension axiom,
- every map factors as a cofibration followed by a weak equivalence,
- the acyclic objects are precisely the objects of \mathcal{Z},
Waldhausen categories from cotorsion pairs

These Waldhausen categories relax the notion of exactness, while still exhibiting an algebraic nature.

As a consequence, they are well-behaved and have many desired properties:

- they are proper,
- satisfy the extension axiom,
- every map factors as a cofibration followed by a weak equivalence,
- the acyclic objects are precisely the objects of \(\mathcal{Z} \),
- weak equivalences satisfy 2-out-of-3 iff \(\mathcal{Z} \) has 2-out-of-3 for short exact sequences.
Localisation theorem

Localization Theorem (S.)

Let \mathcal{B} be an exact category with enough injectives, and $\mathcal{A} \subseteq \mathcal{B}$ a full subcategory having 2-out-of-3 for short exact sequences and containing all injectives.

Then there exists a Waldhausen structure on \mathcal{B} with admissible monos as cofibrations, denoted $(\mathcal{B}, w\mathcal{A})$, s.t. $K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}, w\mathcal{A})$ is a homotopy fiber sequence.
Localization theorem

Localization Theorem (S.)

Let \mathcal{B} be an exact category with enough injectives, and $\mathcal{A} \subseteq \mathcal{B}$ a full subcategory having 2-out-of-3 for short exact sequences and containing all injectives. Then there exists a Waldhausen structure on \mathcal{B} with admissible monos as cofibrations, denoted $(\mathcal{B}, w_\mathcal{A})$, s. t. $K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}, w_\mathcal{A})$ is a homotopy fiber sequence.
Localization theorem

Localization Theorem (S.)

Let \mathcal{B} be an exact category with enough injectives, and $\mathcal{A} \subseteq \mathcal{B}$ a full subcategory having 2-out-of-3 for short exact sequences and containing all injectives. Then there exists a Waldhausen structure on \mathcal{B} with admissible monos as cofibrations, denoted $(\mathcal{B}, w_\mathcal{A})$, s. t. $K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}, w_\mathcal{A})$ is a homotopy fiber sequence.

Theorem (S.)

Let \mathcal{E} be an exact cat, and \mathcal{C}, \mathcal{Z} two full subcats of \mathcal{E} s.t. \mathcal{Z} is closed under extensions and cokernels of monos, and \mathcal{C} is part of a complete cotorsion pair $(\mathcal{C}, \mathcal{C}^\perp)$. Assume also that $\mathcal{C}^\perp \subseteq \mathcal{Z}$. Then \mathcal{C} admits a Waldhausen structure, with

- cofibrations: admissible monos,
- weak equivalences: maps that factor as a mono with cokernel in $\mathcal{C} \cap \mathcal{Z}$ followed by an epi with kernel in $\mathcal{C} \cap \mathcal{Z}$
Localization theorem

Localization Theorem (S.)

Let \mathcal{B} be an exact category with enough injectives, and $\mathcal{A} \subseteq \mathcal{B}$ a full subcategory having 2-out-of-3 for short exact sequences and containing all injectives. Then there exists a Waldhausen structure on \mathcal{B} with admissible monos as cofibrations, denoted $(\mathcal{B}, w_\mathcal{A})$, s. t. $K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}, w_\mathcal{A})$ is a homotopy fiber sequence.

Sketch: Apply the previous theorem to construct a Waldhausen category $(\mathcal{B}, w_\mathcal{A})$ from the cotorsion pair $(\mathcal{B}, \text{inj})$.
Localization theorem

Localization Theorem (S.)

Let \mathcal{B} be an exact category with enough injectives, and $\mathcal{A} \subseteq \mathcal{B}$ a full subcategory having 2-out-of-3 for short exact sequences and containing all injectives. Then there exists a Waldhausen structure on \mathcal{B} with admissible monos as cofibrations, denoted $(\mathcal{B}, w_\mathcal{A})$, s. t. $K(\mathcal{A}) \to K(\mathcal{B}) \to K(\mathcal{B}, w_\mathcal{A})$ is a homotopy fiber sequence.

Sketch: Apply the previous theorem to construct a Waldhausen category $(\mathcal{B}, w_\mathcal{A})$ from the cotorsion pair $(\mathcal{B}, \text{inj})$.

Extension + 2-out-of-3 + factorizations mean we can apply Schlichting’s cylinder-free version of Waldhausen’s fibration theorem to get a homotopy fiber sequence

$$K(\mathcal{B}^w, \text{isos}) \to K(\mathcal{B}, \text{isos}) \to K(\mathcal{B}, w_\mathcal{A})$$
Localization theorem

Localization Theorem (S.)

Let \mathcal{B} be an exact category with enough injectives, and $\mathcal{A} \subseteq \mathcal{B}$ a full subcategory having 2-out-of-3 for short exact sequences and containing all injectives. Then there exists a Waldhausen structure on \mathcal{B} with admissible monos as cofibrations, denoted $(\mathcal{B}, w_\mathcal{A})$, s. t. $K(\mathcal{A}) \rightarrow K(\mathcal{B}) \rightarrow K(\mathcal{B}, w_\mathcal{A})$ is a homotopy fiber sequence.

Sketch: Apply the previous theorem to construct a Waldhausen category $(\mathcal{B}, w_\mathcal{A})$ from the cotorsion pair $(\mathcal{B}, \text{inj})$.

Extension + 2-out-of-3 + factorizations mean we can apply Schlichting’s cylinder-free version of Waldhausen’s fibration theorem to get a homotopy fiber sequence

$$K(\mathcal{A}) \rightarrow K(\mathcal{B}) \rightarrow K(\mathcal{B}, w_\mathcal{A})$$
Localization theorem

Our construction is also universal in the following sense:

\[\text{Theorem (S.)} \]

The functor \(B \rightarrow (\mathbb{B}, w_A) \) is universal among exact functors \(F : B \rightarrow C \) such that \(0 \rightarrow FA \) is a weak equivalence for each \(A \in A \), where \(C \) is a Waldhausen category satisfying extension and 2-out-of-3.
Our construction is also universal in the following sense:

Theorem (S.)

The functor $\mathcal{B} \overset{\text{id}_{\mathcal{B}}}{\rightarrow} (\mathcal{B}, w_A)$ is universal among exact functors $F : \mathcal{B} \rightarrow \mathcal{C}$ such that $0 \rightarrow FA$ is a weak equivalence for each $A \in \mathcal{A}$, where \mathcal{C} is a Waldhausen category satisfying extension and 2-out-of-3.
Examples

We can use our cotorsion pair machinery to recover familiar Waldhausen categories, like the one for chain complexes and quasi-isomorphisms.
Examples

We can use our cotorsion pair machinery to recover familiar Waldhausen categories, like the one for chain complexes and quasi-isomorphisms.

This is obtained from the cotorsion pair \((\text{Ch}_b(R), \text{inj})\), and \(\mathcal{Z} = \)
Examples

We can use our cotorsion pair machinery to recover familiar Waldhausen categories, like the one for chain complexes and quasi-isomorphisms.

This is obtained from the cotorsion pair \((\text{Ch}^b(R), \text{inj})\), and \(\mathcal{Z} = \text{exact complexes}\).
Examples

We can use our cotorsion pair machinery to recover familiar Waldhausen categories, like the one for chain complexes and quasi-isomorphisms.

This is obtained from the cotorsion pair \((\mathsf{Ch}^b(\mathcal{R}), \mathsf{inj})\), and \(\mathcal{Z} = \) exact complexes. The weak equivalences from the theorem are the quasi-isos: a map is a quasi-iso iff it factors as a degree-wise mono with exact cokernel, followed by a degree-wise epi with exact kernel.
Examples

We can use our cotorsion pair machinery to recover familiar Waldhausen categories, like the one for chain complexes and quasi-isomorphisms.

This is obtained from the cotorsion pair $(\text{Ch}^b(R), \text{inj})$, and $\mathcal{E} = \text{exact complexes}$. The weak equivalences from the theorem are the quasi-isos: a map is a quasi-iso iff it factors as a degree-wise mono with exact cokernel, followed by a degree-wise epi with exact kernel.

More interestingly, we can use the new set of constraints in our Localization theorem to compare $K(R) = K(\text{proj})$ and $G(R) = K(\text{R-mod})$ for certain classes of rings.
Examples

Let R be quasi-Frobenius (a ring such that $\text{proj} = \text{inj}$). In this case, we can take $\mathcal{A} = \text{proj} = \text{inj}$, $\mathcal{B} = R\text{-mod}$ and get a Waldhausen structure on $R\text{-mod}$, $(R\text{-mod}, w_{\text{proj}})$ with monos as cofibrations, and projective-injectives as acyclic objects.

Furthermore, our Localization theorem yields a homotopy fiber sequence $K(R) \rightarrow K(R\text{-mod}) \rightarrow K(R\text{-mod}, w_{\text{proj}})$.
Examples

Let R be quasi-Frobenius (a ring such that $\text{proj} = \text{inj}$). In this case, we can take $\mathcal{A} = \text{proj} = \text{inj}$, $\mathcal{B} = R\text{-mod}$ and get a Waldhausen structure on $R\text{-mod}$, $(R\text{-mod}, w_{\text{proj}})$ with monos as cofibrations, and projective-injectives as acyclic objects.

Furthermore, our Localization theorem yields a homotopy fiber sequence

$$K(R) \to K(R\text{-mod}) \to K(R\text{-mod}, w_{\text{proj}})$$
Examples

Let R be quasi-Frobenius (a ring such that $\text{proj} = \text{inj}$). In this case, we can take $\mathcal{A} = \text{proj} = \text{inj}$, $\mathcal{B} = R\text{-mod}$ and get a Waldhausen structure on $R\text{-mod}$, $(R\text{-mod}, w_{\text{proj}})$ with monos as cofibrations, and projective-injectives as acyclic objects.

Furthermore, our Localization theorem yields a homotopy fiber sequence

$$K(R) \to K(R\text{-mod}) \to K(R\text{-mod}, w_{\text{proj}})$$

Some quasi-Frobenius rings: $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{k}[G]$ for \mathbb{k} any field and G a finite group, or any finite dimensional Hopf algebra.
Examples

Let R be an Artin algebra that is also a Gorenstein ring, and let \(\text{CM} \) denote the class of maximal Cohen-Macaulay modules.

Fact: every R-module admits a finite resolution by objects in CM. Then, $K(\text{CM}) \cong G(R)$ by Quillen's Resolution theorem, and this fiber sequence again compares $K(R)$ and $G(R)$.
Examples

Let R be an Artin algebra that is also a Gorenstein ring, and let CM denote the class of maximal Cohen-Macaulay modules.

Then all conditions of the Localization theorem hold, and we get a homotopy fiber sequence

$$K(\text{proj}) \rightarrow K(CM) \rightarrow K(CM, w_{\text{proj}})$$
Examples

Let R be an Artin algebra that is also a Gorenstein ring, and let CM denote the class of maximal Cohen-Macaulay modules.

Then all conditions of the Localization theorem hold, and we get a homotopy fiber sequence

$$K(\text{proj}) \rightarrow K(\text{CM}) \rightarrow K(\text{CM}, w_{\text{proj}})$$

Fact: every R-module admits a finite resolution by objects in CM.

Then, $K(\text{CM}) \simeq G(R)$ by Quillen’s Resolution theorem, and this fiber sequence again compares $K(R)$ and $G(R)$.
Thanks for your time!
