Analyzation of the Handling Skills Training Level in Children Suffering from the Down Syndrome

Popescu Ofelia 1*
Leonte Nicoleta 2

1,2 University Polytechnic of Bucharest, Splaiul Independentei, 313, Romania

DOI: 10.29081/gsjesh.2019.20.1.01

Keywords: handling skills, children, Down Syndrome

Abstract

Intellectual disability is one of the most complex phenomena, involving interventions from the medical, psychological, pedagogical and sociological spheres, interventions that must be carried out as early as possible and that lead to the shaping of the child's personality. Despite the large number of problems and limitations, children with intellectual disabilities can acquire motor skills, but, for this, they need special conditions adapted to their own abilities, coupled with permanent supervision. This paper aims to analyze the level of handling skills training in children who suffer from the Down syndrome, following the implementation of a kinetic stimulation program that uses applicative paths. The research brought together a sample of 19 children suffering from the Down syndrome aged 3 to 8. The results obtained showed an improvement in the level of the fundamental motor skills training (objects handling) of the research subjects.

1. Introduction

The education of people with intellectual disabilities is not only a concern of parents, teachers, physical therapists, psychologists, etc., the specialists insisting on the connections between the educational and the medical, cultural, economic space in promoting the increase of the quality of life of each individual by developing educational strategies and coherent health care that put the child at their heart and his needs of full development.

The negative impact of intellectual disability reflects the difficulty in setting goals, planning, controlling, and executing the motor activity (Eminovic, & Gajevic, 2011). The educational intervention develops the communication ways, the child's information-energy connections with the environment, facilitating "his integration in the natural and social macrosystem - a premise of the harmonious

* E-mail: ofeliapopescu2002@yahoo.com, tel.0721.377.505
development and the assertion of the personality, as well as of acquiring the psychic balance". (Mitrache, & Bejan, 2011.

The process of learning and using motor skills begins early, with the control of the body posture and of grabbing-catching skills, and continues, with the acquisition of mobility and handling skills. (Dragnea, et al., 2006).

The study by Mahoney, Robinson, and Fewell, (2001) highlighted that early-onset motor intervention underwent significant changes in the motor development age and the quality of the movement during the intervention.

Ulrich, Ulrich, Angulo-Kinzler, and Yun, (2001) demonstrated that the locomotor skills of Down syndrome children improved in the use of a treadmill in the sense of learning independent walking. Thus, the experimental group learned to walk with help and walk independently faster (73.8 days and 101 days) than the control group.

Guilmain (quoted by Horghidan, 2000) notes the connection between the child’s general behavior and the psychomotor behavior, and considers that a psychomotricity therapy should comprise three aspects:

- **reeducation of the tonic activity** (through attitude, balance, mimic exercises);
- **reeducation of the relationship activity** (using exercises to develop coordination);
- **reeducation of the intellectual control on the affective-active functions** (rhythmic, dysrhythmic and arrhythmic movements).

According to Păunescu, and Muşu, (1997) the concept of reeducation is strictly used with reference to the type of mental disability. Thus, the taxonomy of the psychomotricity education objectives is structured into three categories of general objectives: general motor organizing and conducting, conducts and perceptual motor structures organizing, actions organizing.

According to Neagu (2012), psychomotor education aims to improve the tonic, static and dynamic function so that the child is able to better organize his gestures in time and space.

Motor activity, by using applicative paths, is a support of the learning processes and contributes to the overall development of motor, posture, locomotion or handling skills that are the origin of the body scheme formation. (Rigal, Nader, Bolduc, & Chevaler, 2010).

### 2. Material and methods

**Research purpose**

The aim of the study is to analyze the handling skills training level of Down syndrome children, following specially designed tests, based on behavioral theories and standards of good practice in the science of physical education and sport.

In accordance with the research purpose, the tasks were carried out in this way:

- Designing stimulative kinetic programs, aiming to improve the handling skills training level;
Assessing the objects handling skills training level (balls) by applying the tests;
Calculation of the statistical indicators and determination of the subjects' evolution between the initial and final tests.

Research Hypothesis

Engaging pre-school Down Syndrome children in organized, systematic and individualized physical activities fosters psychomotor development (by improving the handling skills training level).

Subjects and location

In the experimental research, we dealt with a sample of subjects consisting of Down syndrome children aged 3 to 8. They participated in the psycho-motor stimulation activities organized by the Special Olympics Romania Foundation through the Young Athletes program.

The subjects’ sampling was random, using the random selection technique. In psycho-pedagogical / methodical research, those subjects who signed up for volunteering in the program were considered as an experimental group, taking into account that the "random" factor acted upon the initial constitution of the group. (Thomas, & Nelson, 1996).

Prior to the experiment, the parents of the children were informed about the objectives of the kinetic stimulation program, and they expressed their verbal and written consent.

The Young Athletes program was run for 3 months (September, October and November, 2017) in the UNEFS/NUPES halls. The sessions, lasting 45-60 minutes, took place rhythmically, twice a week. The content of the activities was established by the program organizers, each child benefiting from the direct supervision of a volunteer.

Research methods

In order to know the vast and complex problems of the psychomotricity components assessment, we used the following research methods: the bibliographic documentation, direct observation, experimental method, test and measurement method, statistical and mathematical method and graphic method.

The psycho-pedagogical methods used in the intervention program were as follows: the (verbal and non-verbal) communication, demonstration, explanation, exercise, imitation.

The assessment of the handling skills training level was done through ten tests included in the Young Athletes Program. In Table 1, to exemplify, we present some of the tests.
Table 1  Tests for assessing the objects handling skills training level

| HANDLING SKILLS | PROCEDURE | MODALITIES OF APPRECIATION |
|-----------------|-----------|----------------------------|
| 1. Roll the ball | Demonstration: Sit the child with the legs apart and place yourself 1 meter away from the child in the same position. Roll the ball towards the partner. Verbal command: „Do the same as me, roll the ball to me”! | No: The child is unable to roll the ball. Yes: The child is able to perform the task. |
| 2. Catch the big ball - beginners | Demonstration: Stay 1.5 meters from the child and throw the ball so that he will catch it at the chest level. Verbal command: „Catch the ball!” | No: The child does not react to the movement of the ball, his arms remain near the body or he does not catch the ball. Yes: The child stretches his arms and grabs the ball using his chest and arms alike. |
| 3. Catch the big ball - advanced | Demonstration: Stay 1.5 meters from the child and throw the ball so that he will catch it at the chest level. Verbal command: „Catch the ball!” | No: The child does not react to the movement of the ball, his arms remain near the body or he does not catch the ball. Yes: the child catches the ball using only the hands. |
| 4. Throw the ball from the down position at a short distance (1 meter) | Demonstration: Throw the ball from the down position at least 1 meter away. Verbal command: „Do the same as me, throw the ball from the down position as hard as you can.” | No: The child drops the ball or throws it in any other direction less forward. Yes: The child stretches his arms and catches the ball using his chest and arms alike. |
| 5. Throw the ball from the down position at a long distance (3 meters) | Demonstration: Throw the ball from the down position at least 3 meters away. Verbal command: „Do the same as me, throw the ball from the down position as hard as you can.” | No: The child drops the ball or throws it in any other direction less forward. Yes: The child stretches his arms and catches the ball using his chest and arms alike. |

Experimental design

The study was an applicative one (experimental), which aimed at the objective and complete assessment of the research subjects, each test having a numerical scale from 1 to 10. Through this scale, points were obtained at the initial and final assessment, which demonstrated the favorable evolution of the subjects, the stagnation or the regression. The independent variable of the research was represented by the applicative path, which was individualized according to psychomotor development, cognitive development, etc. In the research, the primary data was obtained, which was collected in a database and statically processed by means of the SPSS program. The statistical parameters used were as follows: the arithmetic mean, median, coefficient of variability, Student test.
The results obtained were presented in tabular and graphical form.

3. Results and Discussions

Highlighting the level of motor development and rate of progress was done by means of the central trend indicators and the dependent signification test T.

At the objects handling skills trial, between the initial and the final tests, there was an increase of 2.11 units, which is statistically significant ($t=-5.21$, $p=0.0001$, $p<0.05$). The degree of spreading of the string values represented by the standard deviation "σ" has the values of 2.21 for the initial test and of 1.80 for the final test (Table 2, Figure 1). The coefficient of variability "Cv" in the initial test is of 34.80% and of 21.31% in the final test, with these aspects showing that there is no homogeneity at the group level. The difference between the results of the two tests is statistically significant ($t$-Fischer$= 2.101< t=5.21$).

Table 2 Statistical indicators for the objects handling skills - initial and final tests

| Statistical Indicators          | Objects Handling | Objects Handling |
|---------------------------------|------------------|------------------|
|                                 | Initial Test     | Final Test       |
| Average                         | 6,36             | 8,47             |
| Medium Deviation                | 1,68             | 1,45             |
| Maximum                         | 10               | 10               |
| Median                          | 6                | 9                |
| Minimum                         | 2                | 4                |
| Module                          | 6                | 10               |
| Standard Deviation              | 2,21             | 1,8              |
| Coefficient of variability      | 34,8             | 21,31            |
| Dependent Student Test          | 5,21             | 0,0001           |

Figure 1 The results obtained by the children in the initial and final tests applied for the objects handling skills
While catching the ball is a skill that is learned, it is successful among children; two-thirds of them managed to catch the ball with two hands. In the final test, this skill was performed by the majority of children, the difference between the averages in the two tests being statistically insignificant (t-Fischer = 2,101> t = 1,91) because three of the children had less correct executions, than in the first test (Table 3, Figure 2).

**Table 3** Statistical indicators for catching the ball initial and final tests

| Statistical Indicators   | Catch the ball Initial Test | Catch the ball Final Test |
|--------------------------|----------------------------|---------------------------|
| Average                  | 1,11                       | 1,53                      |
| Medium Deviation         | 0,75                       | 0,60                      |
| Maximum                  | 2,00                       | 2,00                      |
| Median                   | 1,00                       | 2,00                      |
| Minimum                  | 0,00                       | 1,00                      |
| Module                   | 2,00                       | 2,00                      |
| Standard deviation       | 0,88                       | 0,70                      |
| Coefficient of variability| 0,85                       | 0,50                      |
| Dependent student test   | 1,91                       | 0,072                     |

**Figure 2** The results obtained by the children in the initial and final tests applied to catching the ball

**Discussions**

The delays in the cognitive development are detectable during early development in Down syndrome children, while the neuropsychological and biomedical bases for acquisition and for cognitive skills in this population are hard to understand. (Fidler., Schworer, Will, Patel, & Daunhauer, 2018).

Despite the recognized relevance of physical activity in children's
development and health, the assessment of the physical activity levels in childhood is limited, particularly in the Down syndrome children. Increasing the level of physical activity by means of an intervention program can reduce the delay in the onset of motor handling skills. (Angulo-Barroso, Burghardt, Lloyd, & Ulrich, 2008). We highlight the results of the Down syndrome children who participated in the Young Athletes' motor stimulation activities for only three months, the advantage being given by the relatively young age (3-8 years old), individualized work and family support.

4. Conclusions

At the end of the three months of intense and individualized training, the children progressed, recording superior values in most of the applied tests. Statistically significant differences between the two tests were recorded for the handling skills, except for the ball catching and ball throwing, as well as ball kicking, where the difference between the averages was insignificant.

This, we can say it is due to the appearance of objects with different sizes, colors and textures, with which children tend to play from younger ages.

We highlight the fact that the group’s heterogeneity also made a mark on the rate of progress registered by the children during the training months, but, despite that, all of them showed a positive evolution, not only in the motor plane but also emotionally and socially. This confirms the research hypothesis that "engaging Down Syndrome preschool children in organized, systematic and individualized physical activities promotes psychomotor development (by improving the handling skills training level)."

Rolling, throwing and catching the ball, throwing away the ball, help to develop and strengthen the muscles, the scapulo-humerus belt, and the upper limbs.

Acknowledgements

All the authors have equally contributed to this article.

References

1. DRAGNEA, A., BOTA, A., TEODORESCU, S., STĂNESCU, M., ȘERBĂNOIU, S., & TUDOR, V., (2006). Educație Fizică Și Sport – Teorie Și Didactică, București: Ed. Fest, p. 43;
2. EMINOVIC, F., & GAJEVIC, A., (2011). Diferences in physical development and physical abilities of Serbian elementary school children,” The first international conferences of students in special education / rehabilitation. Special education and rehabilitation,” Faculty for Special Education and Rehabilitation, University of Belgrade, p.122-131;
3. HORGHIDAN, V. (2000). Problematica Psihomotricității, București: Ed. Globus, p. 41-42;
4. MAHONEY, G., ROBINSON, C., & FEWELL, R.R. (2001). The effects of early motor intervention on children with Down syndrome or cerebral palsy: a field-based study. Journal of Developmental & Behavioral pediatrics, 22(3), p 153-162;
5. MITRACHE, G., & BEJAN, R. (2011). Dezvoltarea Motrică Și Psihomotrică
A Copiilor De 7-11 Ani, București: Ed. Discobolul, p. 18;

6. NEAGU, N. (2012). Motricitatea Umană Fundamente Psihopedagogice. Târgu-Mureș: Ed. University Press, p. 123;

7. PĂUNESCU, C., & MUȘU, I. (1997). Psihopedagogie Specială Integrată. București: Ed. Pro Humanitate, p. 239;

8. RIGAL, R., NADER, L., BOLDUC, G., & CHEVALER, N. (2010). L’education Motrice Et L’education Psychomotrice Au Prescolaireet Au Primaire, Quebec: Presses De L’universite Du Quebec, p. 9;

9. THOMAS, J., NELSON, R., & JACK, K. (1996). Metodologia cercetării în activitatea fizică (vol. I), Sportul de Performanță, 375-377, p. 65;

10. ULRICH, D.A., ULRICH, B.D., ANGULO-KINZLER, R.M., & YUN, J. (2001). Treadmill training of infants with Down syndrome: evidence-based developmental outcomes. Pediatrics, 108(5), e84-e84;

11. FIDLER, D.J., SCHWORER., E., WILL., E.A., PATEL., L., & DAUNHAUER, L.A. (2018). Correlates of early cognition in infants with Down syndrome: Cognition in infants with Down syndrome Correlates of early cognition in infants with Down syndrome: Cognition in infants with Down syndrome, Journal of Intellectual Dissability;

12. ANGULO-BARROSO, R., BURGHARDT, A. R., LLOYD, M., & ULRICH, D.A. (2008). Physical activity in infants with Down syndrome receiving a treadmill intervention. Infant Behavior and Development, 31(2), 255-269.

Analiza nivelului de formare a deopinderilor de manipulare la copiii cu sindrom Down

Ofelia Popescu ¹
Nicoleta Leonte ²

¹,²Universitatea Politehnica București, Splaiul Independentei 313, Romania

Keywords: handling skills, children, Down Syndrom.

Abstract

Disabilitatea intelectuală reprezintă unul dintre fenomenele cele mai complexe, implicând intervenții din sferele medicală, psihologică, pedagogică, sociologică, intervenții ce trebuie realizate cât mai timpuriu posibil și care conduc la conturarea personalității copilului. În ciuda prezenței unui număr mare de probleme și limitări, copiii cu disabilități intelectuale pot învăța deprinderi motrice, dar pentru acest lucru, au nevoie de condiții speciale, adaptate propriilor abilități, dublate de o supraveghere permanentă. Lucrarea de față are ca scop analiza nivelului de formare a deprinderilor de manipulare la copiii cu sindrom Down, în urma implementării unui program kinetic de stimulare folosind traseele aplicative. Cercetarea a reunit un eșantion de 19 copii cu sindrom Down, cu vârsta cuprinsa între 3 și 8 ani. Rezultatele obținute au evidențiat o ameliorare a nivelului de formare a deprinderilor motrice fundamentale (de manipulare a obiectelor) a subiecților cercetării.
1. Introducere

Educația persoanelor cu disabilități intelectuale nu reprezintă numai o preocupare a părinților, profesorilor, kinetoterapeuților, psihologilor ș.a., specialiștii insistând asupra conexiunilor dintre spațiul educațional și cel medical, cultural, economic în promovarea creșterii calității vieții fiecărui individ, prin elaborarea unor strategii educaționale și de sănătate coerente, care pun în centrul lor copilul și nevoile acestuia de dezvoltare integrală.

Impactul negativ al disabilității intelectuale reflectă dificultatea în a stabili obiective, de a planifica, controla și executa activitatea motrică (Eminovic, & Gajevic, 2011).

Intervenția educativă dezvoltă căile de comunicare, legăturile informațional-energetice ale copilului cu mediul, facilitând integrarea acestuia macrosistemului natural și social - premisă a dezvoltării armonioase și a afirmării personalității, a dobândirii echilibrului psihic”. (Mitrache, & Bejan, 2011).

Procesul de învățare și folosire a deprinderilor motrice începe timpuriu, cu realizarea controlului posturii corporale și a deprinderilor de apucare – prindere și continuă cu achiziția deprinderilor de deplasare și manipulare. (Dragnea, Bota, Teodorescu, Stănescu, Șerbănoiu, & Tudor, 2006)

Studiul realizat de Mahoney, Robinson, și Fewell, (2001) a evidențiat faptul că intervenția motorie începută la vârsta timpurie a înregistrat modificări semnificative în ceea ce privește vârsta de dezvoltare motorie și calitatea mișcării pe parcursul intervenției.

Ulrich, Ulrich, Angulo-Kinzler, & Yun, (2001) au demonstrat că deprinderile de locomotie a copiilor cu sindrom Down au înregistrat îmbunătățiri în cazul folosirii unei benzi de alergare, în sensul învățării mersului independent. Astfel, grupul experimental a învățat să meargă cu ajutor și să meargă independent mai rapid (73,8 zile și 101 zile) decât grupul de control.

Guilmain (citat de Horghidan, 2000) sesizează legătura dintre comportamentul general al copilului și comportamentul psihomotor și consideră că, o terapie a psihomotricității trebuie să cuprindă trei aspecte:

- reeducarea activității tonice (prin intermediul exercițiilor de atitudine, echilibru, mimică);
- reeducarea activității de relație (folosind exerciții pentru dezvoltarea coordonării);
- reeducarea controlului intelectual asupra funcțiilor afectiv-active (mișcări ritmice, dinrîmice și aritmice).

Conform lui Păunescu și Mușu (1997), conceptul de reeducare se utilizează strict cu referire la tipul de handicap mintal. Astfel, taxonomia obiectivelor educații psihomotricității este structurată pe trei categorii de obiective generale: organizarea și conducerea motorie generală, organizarea conduitelor și structurilor perceptiv motrice, organizarea acțiunii. În aceștia ultimului Neagu (2012), educația psihomotrică urmărește îmbunătățirea funcției tonice, statice și dinamice, astfel încât copilul să fie capabil să-și organizeze mai bine gesturile în timp și spațiu.
Activitatea motrică, prin folosirea traseelor aplicative, este un suport al proceselor de învățare și contribuie la dezvoltarea globală a deprinderilor motrice de postură, de locomotie sau de manipulare, ce stau la originea formării schemei corporale. (Rigal, Nader, Bolduc, & Chevaler, 2010).

2. Materiale și metode

*Scopul cercetării*

Scopul studiului este de a analiza nivelul de formare a deprinderilor de manipulare a copiilor cu sindrom Down, în urma parcursurii unor teste special concepute, bazate pe teoriile comportamentale și pe standardele de bună practică existence în știința educației fizice și sportului.

În concordanță cu scopul cercetării, sarcinile au fost realizate astfel:
- Conceperea programelor kinetice stimulative, având scopul de a îmbunătăți nivelul formării deprinderilor de manipulare;
- Evaluarea nivelului de formare a deprinderilor de manipulare a obiectelor (mingi) prin aplicarea testelor;
- Calcularea indicatorilor statistici și constatarea evoluției subiecților între testarea inițială și cea finală.

*Ipoteza*

Angrenarea copiilor cu Sindrom Down de vârstă preșcolară în activități fizice organizate, desfășurate sistematic și individualizate favorizează dezvoltarea psiho-motorică (îmbunătățirea nivelului de formarea a deprinderilor de manipulare).

*Subiecți și locație*

La cercetarea experimentală a participat un eșantion de subiecți constituit din copii cu sindrom Down, cu vârsta cuprinsă între 3 și 8 de ani. Aceștia au participat la activitățile de stimulare psiho-motorică organizate de către Fundația Special Olympics România, prin programul Young Athletes.

Eșantionarea subiecților a fost aleatoare, folosindu-se tehnică selectiei întâmplătoare. În cercetarea cu caracter psiho-școlar/metodic, s-a luat drept grup de experiment acei subiecți care s-au înscrier voluntari în program, considerând că factorul „întâmplare” a acționat la constituirea inițială a grupului. (Thomas, & Nelson, 1996).

Premergător experimentului, părinții copiilor au fost informați cu privire la obiectivele programului kinetic de stimulare, aceștia exprimându-și acordul verbal și scris. Programul Young Athletes s-a derulat timp de 3 luni (septembrie, octombrie și noiembrie, 2017), în sălile din incinta UNEFS. Ședințele, cu o durată de 45-60 de minute s-au desfășurat ritmic, de două ori pe săptămână. Conținutul activităților a fost stabilit de către organizație programului fiecare copil beneficiind de supravegherea directă a unui voluntar.

*Metode cercetării*

În scopul cunoașterii problematicii vaste și complexe a evaluării componentelor psihomotricității, s-a recurs la folosirea următoarelor metode de cercetare: documentarea bibliografică, observația directă, metoda experimentală, metoda testării și măsurării, metoda statistică și matematică, metoda grafică.
Metodele psiho-pedagogice folosite în programul de intervenție au fost: comunicarea (verbală și non-verbală), demonstrația, explicația, exercițiul, imitația. Evaluarea nivelului de formare a deprinderilor de manipulare s-a realizat prin intermediul a zece teste cuprinse în Programul Young Athletes. În tabelul 1, spre exemplificare, sunt prezentate o parte din teste.

**Tabelul 1 Teste pentru evaluarea nivelului de formare a deprinderilor de manipulare a obiectelor**

| DEPRINDERI DE MANIPULARE | PROCEDURĂ | MODALITĂȚI D APRECIERE |
|--------------------------|-----------|------------------------|
| **1. Rostogolirea**      | Demonstrăție: Așezați copilul cu picioarele depărtați și plasați-vă la 1 metru depărtare de acesta în aceeași poziție. Rostogolirea mingii către partener. Comandă verbală: „Fă la fel ca mine, rostogolește mingea către mine”! | Nu: Copilul este incapabil să rostogolească mingea. Da: Copilul este capabil să execute sarcina. |
| **2. Prinderea mingii mari - începători** | Demonstrăție: Stați la 1,5 metri de copil și aruncați mingea astfel încât acesta să o prindă la nivelul pieptului. Comandă verbală: „Prinde mingea!” | Nu: Copilul nu reacționează la deplasarea mingii, brațele sale rămân pe lângă corp sau acesta nu prinde mingea. Da: Copilul întinde brațele și prinde mingea folosind pieptul și brațele deopotrivă. |
| **3. Prinderea mingii mari - avansați** | Demonstrăție: Stați la 1,5 metri de copil și aruncați mingea astfel încât acesta să o prindă la nivelul pieptului. Comandă verbală: „Prinde mingea!” | Nu: Copilul nu reacționează la deplasarea mingii, brațele sale rămân pe lângă corp sau acesta nu prinde mingea. DA : copilul prinde mingea folosind doar mâinile. |
| **4. Aruncarea mingii de jos la distanță scurtă (1 metru)** | Demonstrăție: Aruncarea mingii de jos la cel puțin 1 metru distanță. Comandă verbală: „Execută la fel ca mine, aruncă mingea de jos cât poți”. | Nu: Copilul scapă mingea sau aruncă în orice altă direcție mai puțin spre înainte sau aruncarea. Da: Copilul întinde brațele și prinde mingea folosind pieptul și brațele deopotrivă. |
| **5. Aruncarea mingii de jos la distanță lungă (3 metri)** | Demonstrăție: Aruncarea mingii de jos la cel puțin 3 metri distanță. Comandă verbală: „Execută la fel ca mine, aruncă mingea de jos cât poți”. | Nu: Copilul scapă mingea sau aruncă în orice altă direcție mai puțin spre înainte sau aruncarea. Da: Copilul întinde brațele și prinde mingea folosind pieptul și brațele deopotrivă. |

*Design experimental*

Studiul realizat a fost unul aplicativ (experimental), care a urmărit evaluarea cât mai obiectivă și completă a subiecților cercetării, fiecare test având o scală numerică de la 1 la 10. Prin intermediul acestei scale s-au obținut anumite puncte la
evaluarea inițială și finală, care au demonstrat evoluția favorabilă a subiecților, staționarea sau regresul. Variabila independentă a cercetării a fost reprezentată de traseul aplicativ, care a fost individualizat în funcție de dezvoltarea psiho-motrică, de dezvoltarea cognitivă, etc. În cadrul cercetării au fost obținute date primare, care s-au colectat într-o baza de date și prelucrate statistic prin intermediul programului SPSS. Parametrii statistici utilizati au fost: media aritmetică, mediana, coeficientul de variabilitate, testul Student.

Rezultatele obținute au fost prezentate în formă tabelară și grafică.

3. Resultate și Discuții

Evidențierea nivelului de dezvoltare motrică și a ratei de progres a fost realizată prin intermediul indicatorilor tendinței centrale și a testului de semnificație T dependent.

La proba deprinderilor de manipulare obiecte între testarea inițială și cea finală s-a înregistrat o creștere de 2.11 unități, semnificativă statistic (t=-5.21, p=0.0001, p<0.05). Gradul de împroăștiere a valorilor şirului reprezentat de abaterea standard „σ” are valorile de 2.21 pentru testarea inițială și 1.80 pentru testarea finală (tabel 2, fig. 1). Coeficientul de variabilitate „Cv” în cazul testării inițiale are o valoare 34.80 % și o valoare de 21.31 % pentru testarea finală, aceste aspecte punând în evidența faptul că nu există omogenitate la nivelul grupului. Diferența între rezultatele celor două testări este semnificativă din punct de vedere statistic (t-Fischer= 2.101< t=5.21).

**Tabelul 2 Indicatori statistici pentru deprinderile de manipulare obiecte- testarea inițială și finală**

| Indicatori statistici | Manipulare Obiecte |               | Manipulare Obiecte |               |
|-----------------------|-------------------|---------------|-------------------|---------------|
|                       | Testare Inițială  | Testare Finală|
| Media                 | 6,36              | 8,47          |
| Abaterea medie        | 1,68              | 1,45          |
| Maxim                 | 10                | 10            |
| Median                | 6                 | 9             |
| Minim                 | 2                 | 4             |
| Modul                 | 6                 | 10            |
| Abaterea standard     | 2,21              | 1,8           |
| Coeficient de variabilitate | 34,8            | 21,31        |
| Testul student dependent | 5,21             | 0,0001       |
Prinderea mingii, deși este o deprindere care se învață, se bucură de succes în rândul copiilor, care au reușit în proporție de două treimi să efectueze prinderea cu două mâini a mingii. La testarea finală, această deprindere a fost executată de majoritatea copiilor, diferența dintre medii la cele două testări fiind nesemnificativă din punct de vedere statistic (t-Fischer=2,101>t=1,91), deoarece trei dintre copii au avut evoluții mai puțin corecte, decât la prima testare (tabelul 3, fig. 2).

**Tabelul 3** Indicatori statistici pentru prinderea mingii testarea inițială și finală

| Indicatori statistici | Prinderea mingii Testare Inițială | Prinderea mingii Testare Finală |
|-----------------------|----------------------------------|---------------------------------|
| Media                 | 1,11                             | 1,53                            |
| Abaterea medie        | 0,75                             | 0,60                            |
| Maxim                 | 2,00                             | 2,00                            |
| Median                | 1,00                             | 2,00                            |
| Minim                 | 0,00                             | 1,00                            |
| Modul                 | 2,00                             | 2,00                            |
| Abaterea standard     | 0,88                             | 0,70                            |
| Coeficient de variabilitate | 0,85                       | 0,50                            |
| Testul student dependent | 1,91                         | 0,072                           |
**Rezultatele obținute de copii la testările inițiale și finale**

**Aplicație la prinderea a mingii**

**Discuții**

Întârzierile în dezvoltarea cognitivă sunt detectabile în timpul dezvoltării timpurii la copilul cu sindromul Down, bazele neuropsihologice și biomedicale de achiziție, de îndemânare cognitivă, la această populație rămân greu de înțeles. (Fidler, Schworer, Will, Patel, & Daunhauer, 2018).

În ciuda relevanței recunoscute a activității fizice în dezvoltarea și sănătatea copiilor, evaluarea nivelurilor de activitate fizică în copilărie este limitată, în special la copiii cu sindrom Down. Creșterea nivelului de activitate fizică folosind un program de intervenție poate reduce întârzierea în debutul deprinderilor motrice de manipulare. (Angulo-Barroso, Burghardt, Lloyd, & Ulrich, 2008).

Evidențiem rezultatele obținute de copiii cu sindrom Down, care au participat la activități de stimulare motrică în cadrul programului Young Athletes, pe o durată de numai trei luni, avantajul fiind dat de vârsta relativ mică (3-8 ani), de lucrul individualizat și susținerea familiei.

**4. Conclusions**

La finalul celor trei luni de pregătire intensivă și individualizată, copiii au progresat, înregistrând valori superioare la majoritatea testelor apicate. Diferențe semnificative din punct de vedere statistic, între cele două testări, fiind înregistrate la deprinderile de manipulare, cu excepția variantelor de prindere și de aruncare a mingii, lovirea mingii cu piciorul, la care diferența dintre mediile a fost nesemnificativă. Acest fapt, îl putem pune pe apariția obiectelor, de dimensiuni, culori și texturi diferite, cu care copiii au tendința să se joace de la vârste mici.

Evidențiem faptul că heterogenitatea grupului și-a pus amprenta și asupra ratei de progres înregistrată de către copii, pe parcursul lunilor de pregătire, dar cu toate acestea, toți au înregistrat o evoluție pozitivă, nu numai pe plan motric, ci și...
emoțional și social. Astfel, se confirmă ipoteza cercetării conform căreia „angrenarea copiilor cu Sindrom Down de vârstă preșcolară în activități fizice organizate, desfășurate sistematic și individualizate favorizează dezvoltarea psihomotorică (îmbunătățirea nivelului de formarea a deprinderilor de manipulare).

Rostogolirile, aruncările și prinderile mingiilor, aruncările mingii la distanță, ajută la dezvoltarea și întărirea musculaturii, a centurii scapulo-humerale, precum și a membrilor superioare.