Parity-violating hybridization in heavy Weyl semimetals

Po-Yao Chang$^{1, \ast}$ and Piers Coleman$^{1, 2}$

1Center for Materials Theory, Rutgers University, Piscataway, New Jersey, 08854, USA
2Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

We introduce a simple model to describe the formation of heavy Weyl semimetals in non-centrosymmetric heavy fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of interaction-driven heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected to give rise to a temperature-dependent re-configuration of the Fermi arcs and the Weyl cyclotron orbits which connect them via the chiral bulk states. Our theory predicts a strong temperature dependent transformation in the quantum oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the renormalization effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport measurements.

Heavy fermion materials are a tunable class of compounds in which strong electron correlations give rise to a wealth of metallic, superconducting, magnetic and insulating phases. A new aspect of these materials is the possibility of topological behavior, epitomized by the topological Kondo insulator (TKI) SmB$_6$$^{[1–6]}$, in which a topologically non-trivial entanglement between local moments and conduction electrons, gives rise to Dirac surface states$^{[7–10]}$. An important second class of topological behavior occurs in the presence of broken inversion or time-reversal symmetry, which transforms the quantum critical point between normal and topological insulators into a Weyl semimetal phase, with relativistic chiral fermions in the bulk and Fermi arc states$^{[11–13]}$ on the surface. Various Weyl semimetallic phases have been proposed and discovered in weakly interacting systems$^{[14–16]}$. Most Weyl semimetals are non-centrosymmetric crystals$^{[11]}$.

Four candidates have already come to light: CeRu$_4$Sn$_6$$^{[19]}$, Ce$_3Bi_4Pd_3$$^{[20]}$, CeRu$_4Sb_{12}$$^{[21, 22]}$ and YbPtBi$^{[23]}$. Optical measurements on CeRu$_4$Sn$_6$$^{[19]}$ and transport measurements on CeRu$_4$Sb$_{12}$$^{[21, 22]}$ indicate anisotropic semimetallic behavior. More remarkably, the recent observation of a giant T^3 component to the specific heat of Ce$_3$Bi$_4$Pd$_3$$^{[20]}$ and YbPtBi$^{[23]}$ reveals the presence of point-node excitations.

Recent density functional calculations$^{[17, 24]}$ confirm that heavy fermion systems are expected to host Weyl points with surface Fermi arcs. Lai et al.$^{[18]}$ have recently proposed a tight-binding model for heavy Weyl semimetals$^{[18]}$, predicting that the density of states near the Weyl nodes is strongly renormalized by the hybridization with f-electrons. These works raise a number of open questions:

- what is the relationship between heavy Weyl semimetals and topological Kondo insulators?
- beyond renormalization, what are the qualitative effects of strong interactions?

In this letter, we propose a simple two-band model which links the emergence of heavy Weyl semi-metals at the topological quantum critical point (tQCP) between Kondo and topological Kondo insulators to the development of a parity-breaking on-site hybridization between d- and f-states in non-centrosymmetric Kondo lattices[Fig. 1(a)].

One of the qualitative effects predicted by our model, is the phenomenon of Kondo breakdown, whereby the loss of coordination of local moments at the surface leads to a reduction of the surface Kondo temperature. This phenomenon has been proposed as the origin of light surface quasiparticles observed in SmB$_6$$^{[25]}$. The analogous effect on the Fermi arcs causes them to reconfigure their geometry [Fig. 2] as a function of temperature, giving rise to a strong temperature dependence in the inter-surface cyclotron orbits$^{[26–28]}$.

Dzero et al. have emphasized that the spin-orbit driven topological behavior in heavy fermion systems derives from the odd-parity hybridization between d- (ϕ_d) and f-orbitals (ϕ_f)$^{[1–3]}$ given by the Slater-Koster overlap integral

$$\tilde{V}_{\alpha\beta}(R) = \int d^3 x \phi^*_d(x - R) V(x) \phi_f(x), \quad (1)$$

A preponderance of noncentrosymmetric heavy fermion materials offers an exciting opportunity to explore strongly interacting, or “heavy Weyl semimetals” (hWSMs)$^{[17, 18]}$. Four candidates have already come to light: CeRu$_4$Sn$_6$[19], Ce$_3$Bi$_4$Pd$_3$[20], CeRu$_4$Sb$_{12}$[21, 22] and YbPtBi[23]. Optical measurements on CeRu$_4$Sn$_6$[19] and transport measurements on CeRu$_4$Sb$_{12}$[21, 22] indicate anisotropic semimetallic behavior. More remarkably, the recent observation of a giant T^3 component to the specific heat of Ce$_3$Bi$_4$Pd$_3$[20] and YbPtBi[23] reveals the presence of point-node excitations.

Recent density functional calculations[17, 24] confirm that heavy fermion systems are expected to host Weyl points with surface Fermi arcs. Lai et al.[18] have recently proposed a tight-binding model for heavy Weyl semimetals[18], predicting that the density of states near the Weyl nodes is strongly renormalized by the hybridization with f-electrons. These works raise a number of open questions:

- what is the relationship between heavy Weyl semimetals and topological Kondo insulators?
- beyond renormalization, what are the qualitative effects of strong interactions?

In this letter, we propose a simple two-band model which links the emergence of heavy Weyl semi-metals at the topological quantum critical point (tQCP) between Kondo and topological Kondo insulators to the development of a parity-breaking on-site hybridization between d- and f-states in non-centrosymmetric Kondo lattices[Fig. 1(a)].

One of the qualitative effects predicted by our model, is the phenomenon of Kondo breakdown, whereby the loss of coordination of local moments at the surface leads to a reduction of the surface Kondo temperature. This phenomenon has been proposed as the origin of light surface quasiparticles observed in SmB$_6$[25]. The analogous effect on the Fermi arcs causes them to reconfigure their geometry [Fig. 2] as a function of temperature, giving rise to a strong temperature dependence in the inter-surface cyclotron orbits [26–28].

Dzero et al. have emphasized that the spin-orbit driven topological behavior in heavy fermion systems derives from the odd-parity hybridization between d- (ϕ_d) and f-orbitals (ϕ_f)[1–3] given by the Slater-Koster overlap integral

$$\tilde{V}_{\alpha\beta}(R) = \int d^3 x \phi^*_d(x - R) V(x) \phi_f(x), \quad (1)$$

A preponderance of noncentrosymmetric heavy fermion materials offers an exciting opportunity to explore strongly interacting, or “heavy Weyl semimetals” (hWSMs)[17, 18].
where $V(x)$ is the electronic potential. Inversion symmetry in centrosymmetric crystals fully eliminates the onsite hybridization between the opposite parity d and f states ($V_{\alpha\beta}(0) = 0$) [Fig. 1(b)], and in momentum space, the residual intersite components of the hybridization then acquire the odd-in time, odd-in momentum, relativistic form $V_{\alpha\beta}(\mathbf{k}) \sim \mathbf{k} \cdot \mathbf{\sigma}$ near the high symmetry points. The band-crossing permitted by this nodal hybridization drives the formation of topological Kondo insulators. On the other hand, in non-centrosymmetric crystals, the asymmetric potential $V(x) \neq V(-x)$ distorts the f and d orbitals and eliminates parity conservation, giving rise to a finite onsite d-f hybridization $W_{\alpha\beta} = V_{\alpha\beta}(\mathbf{R} = 0)$ [Fig. 1(b)]. Under the influence of this perturbation, topological Kondo insulators become heavy Weyl semimetals as shown in Fig. 1(a). A minimal model for the hybridization that captures these features in a two-band model is obtained by generalizing the nearest-neighbor model introduced by Alexandrov, Coleman, and Erten [25] (ACE) to include an additional onsite term as follows:

$$V(\mathbf{R})_{\alpha\beta} = \begin{cases} -i \hat{\mathbf{v}}_{\mathbf{R}} \cdot \mathbf{\sigma}_{\alpha\beta}, & \mathbf{R} \in \text{n.n.} \\ w_0 + i \hat{\mathbf{v}} \cdot \mathbf{\sigma}, & \mathbf{R} = 0. \end{cases}$$

where

$$V(\mathbf{R})_{\alpha\beta} = \begin{cases} -i \hat{\mathbf{v}}_{\mathbf{R}} \cdot \mathbf{\sigma}_{\alpha\beta}, & \mathbf{R} \in \text{n.n.} \\ w_0 + i \hat{\mathbf{v}} \cdot \mathbf{\sigma}, & \mathbf{R} = 0. \end{cases}$$

where

$$V(\mathbf{R})_{\alpha\beta} = \begin{cases} -i \hat{\mathbf{v}}_{\mathbf{R}} \cdot \mathbf{\sigma}_{\alpha\beta}, & \mathbf{R} \in \text{n.n.} \\ w_0 + i \hat{\mathbf{v}} \cdot \mathbf{\sigma}, & \mathbf{R} = 0. \end{cases}$$

where

$$\mathbf{H}_{ij,\sigma\sigma'} = \begin{pmatrix} -t_{ij}^c - \mu \delta_{ij} & \tilde{V}_{\sigma\sigma'}(\mathbf{R}_i - \mathbf{R}_j) \\ \tilde{V}_{\sigma\sigma'}(\mathbf{R}_i - \mathbf{R}_j) & -t_{ij}^f - \mu \delta_{ij} \end{pmatrix}. \tag{4}$$

Here $\Psi_{\alpha\sigma}^\dagger = (c_{\alpha\sigma}^\dagger, f_{\alpha\sigma}^\dagger)$ with $c_{\alpha\sigma}$ and $f_{\alpha\sigma}$ are the creation operators for conduction and f-electrons. t_{ij}^c is the hopping amplitude and $\mu c/f$ is the chemical potential for c/f electrons. U is the onsite Coulomb repulsion between f-electrons.

In the large U limit, a slave-boson approach leads to the mean-field Hamiltonian [29], $H = \sum_{\mathbf{k}} \Psi_{\alpha\sigma}^\dagger \mathcal{H}(\mathbf{k}) \Psi_{\alpha\sigma}(\mathbf{k}) + \mathcal{N}_s(\lambda - \tilde{\epsilon}_f)(|b|^2 - Q)$ with

$$\mathcal{H}(\mathbf{k}) = \left(\begin{array}{cc} \epsilon_c(\mathbf{k}) - \mu & \frac{1}{2} \sum_{\mathbf{j}} V_{\mathbf{j}} \sigma_{\mathbf{j}} \sin k_{\mathbf{j}} \\ \frac{1}{2} \sum_{\mathbf{j}} V_{\mathbf{j}} \sigma_{\mathbf{j}} \sin k_{\mathbf{j}} & \epsilon_f(\mathbf{k}) + \lambda \end{array} \right) \tag{5}$$

\[V_{\mathbf{j}} = v_{\mathbf{j}} b \text{ and } W_{\mathbf{j}} = w_{\mathbf{j}} b \text{ are the renormalized hybridization terms, } b \text{ is the slave boson projection amplitude. The f-hopping amplitude becomes } b^2 t_f. \text{ The dispersion of the conduction electrons is taken as } \epsilon_c(\mathbf{k}) = -2 \sum_i \hat{\mathbf{v}}_i \cos k_i \text{ and } \epsilon_f(\mathbf{k}) = \alpha \epsilon_c(\mathbf{k}) \text{ for simplicity. The constraint field } \lambda \text{ imposes the mean-field constraint } Q = n_f + b^2 Q \text{ with } Q \text{ being the local conserved charge associated with the slave boson approach in the infinite } U \text{ limit, and is taken to be } Q = 1. \mathcal{N}_s \text{ is the total number of sites.}

The spectrum of the Hamiltonian [Eq. (5)] is

$$E(\mathbf{k}) = h_0 \pm \sqrt{h_0^2 + W_{\mu}^2 + V_k^2} \pm 2 \sqrt{W_{\mu} V_k^2 - (\tilde{\mathbf{V}} \cdot \hat{\mathbf{V}}_k)^2}, \tag{6}$$

where $h_{0/1} = \frac{1}{2} \epsilon_f(\mathbf{k}) + \lambda \pm (\epsilon_c(\mathbf{k}) - \mu)$, $W_{\mu} = W_\mu^0 + \tilde{W}$ and $W_k = (V_1 \sin k_1, V_2 \sin k_2, V_3 \sin k_3)$.

The energy spectrum has line or point nodes determined by the intersections between three surfaces: S_I where $h_1 = 0$, S_{II}, where $(W_\mu^2 - V_k^2)^2 = 0$ and S_{III} where $\tilde{W} \cdot \hat{V}_k = 0$. When there is no common intersection between these surfaces, the ground-state remains a fully gapped insulator. However, once W exceeds a critical value, a semi-metallic state develops. There are two cases:

- Line-node semimetal ($\tilde{W} = 0$) for which the constraint S_{III} is trivial. Since S_I and S_{II} are spheroids that share the same center, they intersect to form two rings $\{r_1, r_2\} = S_I \cap S_{II}$ of gapless excitations [30] [Fig. 3(a)].

- Weyl semimetal ($\tilde{W} \neq 0$). Here S_{III} is the plane normal to \tilde{W}, intersecting with rings $\{r_1, r_2\}$ at four Weyl points [Fig. 3(b)].

Time reversal and reflection symmetries play an important role in Weyl semimetals. Our model preserves time-reversal

FIG. 2. (a) Kondo Breakdown in a heavy Weyl semimetal, contrasting the spectrum before (solid lines) and after (dashed lines) surface Kondo breakdown as a function of k_z at $k_x = 0$. Surface spectrum (b) before and (c) after surface Kondo breakdown: red and blue lines indicate the Fermi arcs on the top and bottom surfaces respectively. Green dots indicate the projection of the Weyl nodes onto the surface. Parameters were taken to be $(\epsilon_0, \epsilon_f, \mu, V_x, V_y, V_z, W_x, W_y, W_z) = (2, 1.1, -6, -0.1, 0.7, 0.7, 1.05, 0.8)$ in Eq. (5). (d) Schematic of the Weyl orbits, where arrows indicate the quasiparticle trajectory.
The energy spectrum has four Weyl points located in the \(k_{c,f} \) plane perpendicular to \(\hat{\mathbf{R}} \) along a crystal axis \(\hat{\mathbf{W}} \) from Eq. (5) by projecting it onto the eigenvectors of the \(\hat{\mathbf{T}} \hat{\mathbf{k}}_0 \) and \(\hat{\mathbf{S}} \) matrices, respectively. The effective Hamiltonian can be expressed in a general form

\[
\hat{H}_\text{eff}(\mathbf{k}_0, \mathbf{\delta k}) = \mathcal{A}(\mathbf{k}_0) |i\alpha\delta k_i\sigma_\alpha. \tag{7}
\]

with implied summation on \(i \in \{x, y, z\} \) and \(\sigma_\alpha \in \{0, 1, 2, 3\} \) with \(\sigma_0 = \mathbf{I}_{2\times2} \). Here \(\mathcal{A}(\mathbf{k}_0) \) is a three by four matrix defined at each Weyl point \(\mathbf{k}_0 \), each proportional to the hybridization amplitudes \(V_i \). These four effective Hamiltonians are related by reflection and time-reversal symmetries (\(R_{x(z)} : \hat{H}_\text{eff}(\mathbf{k}_0, \mathbf{\delta k}) \rightarrow \hat{H}_\text{eff}(R_{x(z)}\mathbf{k}_0, R_{x(z)}\mathbf{\delta k}) \) and \(T : \hat{H}_\text{eff}(\mathbf{k}_0, \mathbf{\delta k}) \rightarrow \hat{H}_\text{eff}(\mathbf{-k}_0, -\mathbf{\delta k}) \)) which constrains the four Weyl points to lie at the same energy.

We now examine the effect of “Kondo breakdown” on the Fermi arcs. The topological charges \(C = \pm 1 \) associated with the Weyl points give rise to the formation of Fermi arcs which link the projections of oppositely charged Weyl points onto the surface Brillouin zone (BZ). In the presence of interactions, the reduction in co-ordination number of the f-electrons at the surface suppresses the Fermi level below that of the bulk, \(T_{K}^B < T_K \). In the intermediate temperature regime \(T_{K}^B < T < T_K \), the bulk is topological but the conduction electrons at the surface are liberated from the local moments, leading to surface Kondo breakdown. To model this effect, we suppress the slave boson amplitude \(b \) to zero on the surface layer of hWSMs and recompute the Fermi arcs.

The effect of Kondo breakdown on the surface spectra for a (010) slab geometry is shown in Figs. (2a)-(c): we see that the intersections between two surface chiral modes sink beneath the Fermi sea. This effect causes the right and left chiral modes to bulge outwards, leading to a differential reconfiguration of the Fermi arcs on opposite surfaces as shown in Fig. 2(c).

The reconfiguration of the Fermi arcs will have various distinct signatures in both angle-resolved photoemission spectroscopy and quantum oscillation measurements. In a field, quasiparticles on the surface move under the influence of the Lorentz force \(\mathbf{k} = -e\mathbf{v}_S \times \mathbf{B} \), where \(\mathbf{v}_S \) is their velocity, processing from one projected Weyl point to another. When they reach a Weyl point, the gapless bulk chiral Landau level provides a transport channel to coherently move the quasiparticles between surfaces, giving rise to closed inter-plane Weyl orbits, [26, 27] as shown in Fig. 2(d). Quantization of the Weyl orbital motion leads to discrete energy levels \(E_n = \frac{n\hbar}{L+(k_0)(eB)} \), where \(k_0 \) is the length of the Fermi arcs, \(\mu \) is the chemical potential, \(L \) is the thickness of the sample, \(\gamma \) is a constant, and \(\beta = v_B/v_S \) with \(v_B \) being the bulk velocity. Such Landau levels have been observed in Shubnikov-de Haas oscillations in Cd_3As_2, a weakly interacting Dirac semimetal which is the crystal-symmetry-protection analogy of a Weyl semimetal[28].

One of the most dramatic consequences of the differential reconfiguration is the merger of two small orbits into a single large orbit as shown in Fig. 2(d), and the effect that will modify the quantum oscillations. Suppose the chemical potential is fixed to be \(\mu \) and vary the magnetic field \(B \), the \(n \)th energy level crosses the \(\mu \) with the condition

\[
\frac{1}{B_n} = \begin{cases} \frac{e}{\pi\hbar\gamma} \left(\frac{\nu_B\hbar}{\mu} (n + \gamma) - L \right), & T < T_K^B < T_K \\ \frac{e}{\pi\hbar\gamma} \left(\frac{\nu_B\hbar}{\mu} (n + \gamma) - 2L \right), & T_K^B < T < T_K, \end{cases} \tag{8}
\]

where \(k_0^B \) and \(k_1 \) are the arc-lengths on the bottom and top surfaces respectively [see right panel in Fig. 2(d)], while \(\beta' = v_B/v_S' \) with \(v'_S \) being the surface velocity of quasiparticles with surface Kondo breakdown.

During the transition of surface Kondo breakdown, the spacing of the density of states as a function of \(1/B \) has a dramatic change, \(\omega_{B^{-1}} = \frac{e\pi\hbar}{\mu\beta k_0} \rightarrow \frac{e\pi\hbar}{\mu\beta(k_0+k_1)} \). The magnetic field \(1/B \) threshold of observing this oscillation also changes from \(eL/\beta k_0 \rightarrow 2eL/\beta'(k_0^B + k_1) \). The differential reconfiguration of the Fermi arc states can be detected by measuring the change of oscillation frequency and a threshold of the magnetic field in Shubnikov-de Haas oscillations.

The renormalized velocity of the Weyl semimetals described in Eq. (7) is proportional to the hybridization amplitude \(V_i \propto \sqrt{T_K D} \) where \(T_K \) is the Kondo temperature and \(D \) is the band width of the conduction electrons[31]. This “square-root” renormalization effect is weaker than that seen in heavy fermion metals, due to the hybridization origin of the nodes. From Ref.[17], the velocity of Weyl fermion in
CeRu$_4$Sn$_6$ is $v^* \sim 0.2$ eVÅ. For the weakly interacting Weyl semimetals such as TaAs[32] and TaP[14], the velocity of Weyl fermion $v \sim 2 - 3$ eVÅ. The renormalization effect in hWSMs is about a factor of ten.

Many of the thermodynamic and transport properties in hWSMs are affected by this quasiparticle renormalization effect. One of the most dramatic effects, is the renormalization of the cubic specific heat. A large T^3 specific heat has been reported in the candidate hWSM materials Ce$_3$Bi$_4$Pd$_3$[20] and YbPtBi[23]. As pointed out by Lai et al.[18] this significant enhancement of specific heat likely derives from the cubic dependence on renormalized velocity

$$\frac{\partial}{\partial T} \int \epsilon f(\epsilon)g(\epsilon)d\epsilon \propto (T/v^*)^3$$

with $g(\epsilon) = \frac{\epsilon^2}{2\pi^2 v^*}$ being the density of states. In addition to this temperature effect, an enhancement of the high-field thermopower[33] is also expected. The high-field thermoelectric properties of the Weyl/Dirac semimetals contrast dramatically with those of doped semiconductors, with a thermopower that grows linearly, without saturation, in a the magnetic field, $\alpha := \Delta V/\Delta T \propto BT/v^*$, where ΔV and ΔT are the voltage and temperature difference, respectively. The non-saturating behavior leads to a large thermopower which has been observed in weakly interacting Dirac semimetal Pb$_{1-x}$Sn$_x$Se[34]. The high-field thermopower is thus enhanced by the mass renormalization in hWSMs.

Concluding, we have proposed a hybridization-driven model for heavy Weyl semimetals, arguing that the onsite hybridization between f and d orbitals in non-centrosymmetric crystals drives topological Kondo insulators into hWSMs. One of the effects of the strong interactions is surface Kondo breakdown, which leads to a reconfiguration of Fermi arcs on both surfaces that should appear in quantum oscillations, while the renormalization of velocity in hWSMs affects thermodynamic and transport properties.

There are a number of interesting new directions for research into hWSMs that deserve mention. One aspect that deserves exploration is the influence of non-symmorphic space group symmetries. According to topological band theory,[35] such symmetries can lead to nodel points with much higher multiplicities, giving rise to a cluster of nested Dirac cones. A particularly interesting case is the candidate hWSM Ce$_3$Bi$_4$Pd$_3$, the space group No. 220 (I43d) is expected to produce an eight-fold degenerate double Dirac point. These nodal lines are expected to give rise to “drumhead surface states”[13, 30, 36, 37], which can potentially cause charge/spin density wave and superconducting instabilities. A second interesting direction, is the possible use of molecular beam epitaxy (MBE) techniques [38], which open up the possibility of artificially engineered hWSMs where tuning the degree of inversion symmetry breaking can be used to explore the vicinity, and possible instabilities of the topological quantum critical point[39, 40].

The authors would like to thank James Analytis, Elio König, Silke Paschen and Yuanfeng Xu for valuable discussions. This work was supported by the Rutgers Center for Materials Theory group postdoc grant (Po-Yao Chang) and US Department of Energy grant DE-FG02-99ER45790 (Piers Coleman).

References:
[1] N. Mott, Philosophical Magazine 30, 403 (1974).
[2] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Phys. Rev. Lett. 104, 106408 (2010).
[3] M. Dzero, K. Sun, P. Coleman, and V. Galitski, Phys. Rev. B 85, 045130 (2012).
[4] V. Alexandrov, M. Dzero, and P. Coleman, Phys. Rev. Lett. 111, 226403 (2013).
[5] F. Lu, J. Zhao, H. Weng, Z. Fang, and X. Dai, Phys. Rev. Lett. 109, 096401 (2013).
[6] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Annual Review of Condensed Matter Physics 7, 249 (2016), arXiv:1506.05635 [cond-mat.str-el].
[7] J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, and D. L. Feng, Nat. Commun. 4, 3010 (2013).
[8] M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T.-R. Chang, H.-T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M. Z. Hasan, Nat. Commun. 4, 2991 (2013).
[9] N. Xu, X. Shi, P. K. Biswas, C. E. Matt, R. S. Dhaka, Y. Huang, N. C. Plumb, M. Radovic, J. H. Dil, E. Pomjakushina, K. Conder, A. Amato, Z. Salman, D. M. Paul, J. Mesot, H. Ding, and M. Shi, Phys. Rev. B 88, 121102 (2013).
[10] E. Franzezakakis, N. de Jong, B. Zwartsenberg, Y. K. Huang, Y. Pan, X. Zhang, J. X. Zhang, F. X. Zhang, L. H. Bao, O. Tegus, A. Varykhalov, A. de Visser, and M. S. Golden, Phys. Rev. X 3, 041024 (2013).
[11] S. Murakami, New Journal of Physics 9, 336 (2007), arXiv:0710.0930.
[12] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
[13] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
[14] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang, C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, P. P. Shibaev, M. L. Prokopyvych, N. Alidoust, H. Zheng, C.-C. Lee, S.-M. Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, V. N. Strocov, H. Lin, S. Jia, and M. Z. Hasan, Science Advances 1, e1501092 (2015), arXiv:1508.03102 [cond-mat.mes-hall].
[15] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).
[16] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).
[17] Y. Xu, C. Yue, H. Weng, and X. Dai, Phys. Rev. X 7, 011027 (2017).
[18] H.-H. Lai, S. E. Greffe, S. Paschen, and Q. Si, ArXiv e-prints (2016), arXiv:1612.03899 [cond-mat.str-el].
[19] V. Guritanu, P. Wissgott, T. Wieg, H. Winkler, J. Sichelschmidt, M. Scheffler, A. Prokofiev, S. kimura, T. Iizuka, A. M. Strydom, M. Dressel, F. Steglich, K. Held, and S. Paschen, Phys. Rev. B 87, 115129 (2013).
[20] S. Dzsaber, L. Prochaska, A. Sidorenko, G. Eguchi, R. Svagera, M. Waas, A. Prokofiev, Q. Si, and S. Paschen, Phys. Rev. Lett.
[21] H. Okamura, R. Kitamura, M. Matsunami, H. Sugawara, H. Harima, H. Sato, T. Moriwaki, Y. Ikemoto, and T. Nanba, Journal of the Physical Society of Japan 80, 084718 (2011), arXiv:1103.0811 [cond-mat.str-el].

[22] A. Shankar, D. P. Rai, S. Chettri, R. Khenata, and R. K. Thapa, Journal of Solid State Chemistry France 240, 126 (2016).

[23] C. Y. Guo, F. Wu, M. Smidman, F. Steglich, and H. Q. Yuan, ArXiv e-prints (2017), arXiv:1710.05522 [cond-mat.str-el].

[24] P. Wissgott and K. Held, European Physical Journal B 89, 5 (2016), arXiv:1505.02055 [cond-mat.str-el].

[25] V. Alexandrov, P. Coleman, and O. Erten, Phys. Rev. Lett. 114, 177202 (2015).

[26] X. Dai, Nat Phys 12, 727 (2016).

[27] A. C. Potter, I. Kimchi, and A. Vishwanath, Nature Communications 5, 5161 (2014).

[28] P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G. Analytis, Nature (London) 535, 266 (2016), arXiv:1505.02817 [cond-mat.mes-hall].

[29] P. Coleman, Phys. Rev. B 35, 5072 (1987).

[30] Supplementary material.

[31] P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015).

[32] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, F. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Physical Review X 5, 031013 (2015), arXiv:1502.04684 [cond-mat.mtrl-sci].

[33] B. Skinner and L. Fu, ArXiv e-prints (2017), arXiv:1706.06117 [cond-mat.str-el].

[34] T. Liang, Q. Gibson, J. Xiong, M. Hirschberger, S. P. Koduvayur, R. J. Cava, and N. P. Ong, Nature Communications 4, 2696 (2013), arXiv:1307.4022 [cond-mat.str-el].

[35] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Science 353 (2016), 10.1126/science.aaf5037, http://science.sciencemag.org/content/353/6299/aaf5037.full.pdf.

[36] S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, New Journal of Physics 15, 065001 (2013), arXiv:1212.2673 [cond-mat.supr-con].

[37] G. Bian, T.-R. Chang, H. Zheng, S. Velury, S.-Y. Xu, T. Neupert, C.-K. Chiu, S.-M. Huang, D. S. Sanchez, I. Belopol'ski, N. Alidoust, P.-J. Chen, G. Chang, A. Bansil, H.-T. Jeng, H. Lin, and M. Z. Hasan, Phys. Rev. B 93, 121113 (2016).

[38] T. Ishii, R. Toda, Y. Hanaoka, Y. Tokiwa, M. Shimozawa, Y. Kasahara, R. Endo, T. Terashima, A. H. Nevidomskyy, T. Shibatauchi, and Y. Matsuda, Phys. Rev. Lett. 116, 206401 (2016).

[39] B.-J. Yang, E.-G. Moon, H. Isobe, and N. Nagaosa, Nat Phys 10, 774 (2014).

[40] H. Isobe and L. Fu, Phys. Rev. B 93, 241113 (2016).
SUPPLEMENTARY MATERIAL

Effective two dimensional Hamiltonian near the Weyl points

Now we analyze the effective Hamiltonian around the Weyl points. We consider the inversion breaking hybridization \(W_2 \neq 0 \) such that the Weyl points are located at \(k_y = 0 \) plane. The momenta where Weyl points located satisfy

\[
-2t_x \cos k_{x_0} - 2t_z \cos k_{z_0} - (\mu + 2t_y) = 0, \quad W_2^2 = V_1^2 \sin^2 k_{x_0} + V_3^2 \sin^2 k_{z_0}.
\]

We can expand the Hamiltonian around the Weyl points up to linear terms in \(k \).

\[
\mathcal{H}(\delta k) \sim \mathcal{H}_0 + \mathcal{H}_1(\delta k),
\]

where

\[
\mathcal{H}_0 = [V_1(\sin k_{x_0})\sigma_1 + V_3(\sin k_{z_0})\sigma_3]|\tau_1 + W_2\sigma_2 \tau_2,
\]

and

\[
\mathcal{H}_1(\delta k) = \frac{1}{2}(1 + \alpha)[2t_x \sin k_{x_0} \delta k_x + 2t_z \sin k_{z_0} \delta k_z]|\tau_3 + [V_1(\cos k_{x_0} \delta k_x)\sigma_1 + V_2 \delta k_y]
\]

\[
+ V_3(\cos k_{z_0} \delta k_z)\sigma_3]|\tau_1.
\]

For simplicity, we express the Hamiltonian as

\[
\mathcal{H}_{\text{eff}}(\delta k) = -h_{0,k_0} \sigma_z - V_{2,k_0} \delta k_y \sigma_x + \frac{V_{1,k_0} + \sqrt{V_{1,k_0}^2 + V_{3,k_0}^2}}{V_{1,k_0}^2 + V_{3,k_0}^2 + V_{1,k_0} \sqrt{V_{1,k_0}^2 + V_{3,k_0}^2}} [V_{1,k_0} \tilde{V}_{1,k_0} \delta k_x + V_{3,k_0} \tilde{V}_{3,k_0} \delta k_z] \sigma_y,
\]

where \(h_{0,k_0} = \frac{1}{2}(1 + \alpha)[2t_x \sin k_{x_0} \delta k_x + 2t_z \sin k_{z_0} \delta k_z], \) and \(\tilde{V}_{1(3),k_{x(0)}} = V_{1(3)} \cos k_{x(0)}. \)

For simplicity, we express the Hamiltonian as

\[
\mathcal{H}_{\text{eff}}(\delta k) = (A \delta k_x + B \delta k_z)\sigma_x + (C \delta k_x + D \delta k_z)\sigma_y + E \delta k_y \sigma_z,
\]

where

\[
A = -\frac{1 + \alpha}{2} (2t_x \sin k_{x_0}), \quad B = -\frac{1 + \alpha}{2} (2t_z \sin k_{z_0}), \quad C = \frac{V_{1,k_0} + \sqrt{V_{1,k_0}^2 + V_{3,k_0}^2}}{V_{1,k_0}^2 + V_{3,k_0}^2 + V_{1,k_0} \sqrt{V_{1,k_0}^2 + V_{3,k_0}^2}} V_{1,k_0} \tilde{V}_{1,k_0},
\]

\[
D = \frac{V_{1,k_0} + V_{3,k_0}}{V_{1,k_0}^2 + V_{3,k_0}^2 + V_{1,k_0} \sqrt{V_{1,k_0}^2 + V_{3,k_0}^2}} V_{3,k_0} \tilde{V}_{3,k_0}, \quad E = -V_{2,k_0}.
\]

Topological invariance of the Weyl points—Berry curvature

The topological invariance of the Weyl points is the Berry curvature computed from a two-dimensional surface encircling the Weyl point. The definition of the Berry curvature
is
\[C = \frac{i}{2\pi} \sum_{\alpha \in \text{oec}} \left(\int d^2 k \langle \partial_k u_{\alpha} | \partial_k u_{\alpha} \rangle - (k_i \leftrightarrow k_j) \right), \] (17)

where \(u_{\alpha} \) are the occupied bands and the two dimensional integral is a closed surface around one Weyl point.

Now we compute the Berry curvature around the Weyl point by using Eq. (14). Without loss of generality, we define \(k_x = A\delta k_x + B\delta k_z, k_z = C\delta k_x + D\delta k_z \), and \(k_y = E\delta k_y \).

We now choose a fixed radius \(R \) around the Weyl point with \(R^2 = \sum_{i=x,y,z} \tilde{k}_i^2 \). The occupied band with energy \(-R\) is
\[u_{-}(\theta, \phi) = \left(-\sin \frac{\theta}{2} e^{-i\phi} \cos \frac{\theta}{2} \right), \] (18)

where we parameterize \(k_x = R \cos \theta, \tilde{k}_x = R \sin \theta \cos \phi \), and \(\tilde{k}_y = R \sin \theta \sin \phi \).

The only non-vanishing component of the Berry connection
\[A_\phi = \frac{1}{R \sin \theta} (u_{-}(\theta, \phi) | \partial_\phi u_{-}(\theta, \phi)) = \frac{i}{2R} \cot \theta, \] (19)

The Berry curvature around the Weyl point is
\[C = \frac{i}{2\pi} \int_{\text{sphere}} (\nabla \times \tilde{A}) = \frac{i}{2\pi} \int R^2 \sin \theta d\theta d\phi \frac{-i}{2R^2} = 1. \] (20)

Notice that for the other time-reversal related Weyl points at \(-\tilde{k}_0\), the Berry curvature is \(C = -1 \).

Fermi arc states in effective Hamiltonian

We analyze the Fermi arc state from the effective two-dimensional Hamiltonian in Eq. (14). In the presence of (010) surface, the effective Hamiltonian around the Weyl point is expressed as
\[H_{\text{eff}} = \begin{pmatrix} A\delta k_x + B\delta k_z & C\delta k_x + D\delta k_z - iE \partial_y \\ iC\delta k_z + iD\delta k_z - iE \partial_y & -A\delta k_x + B\delta k_z \end{pmatrix}. \] (21)

We consider a cylindrical surrounds the Weyl point with radius \(k_0 \). The effective Hamiltonian becomes
\[H_{\text{eff}} = \begin{pmatrix} A\delta k_0 \cos \theta + Bk_0 \sin \theta & -i k_0 \sqrt{C^2 + D^2} \cos(\theta - \phi) - iE \partial_y \\ i k_0 \sqrt{C^2 + D^2} \cos(\theta - \phi) - iE \partial_y & -A\delta k_0 \cos \theta - Bk_0 \sin \theta \end{pmatrix}, \] (22)

where \(\phi = \cos^{-1} \frac{C}{\sqrt{C^2 + D^2}}, \delta k_0 = k_0 \cos \theta \), and \(\delta k_z = k_0 \sin \theta \).

There are two boundary states on this cylinder encircling the Weyl point
\[u_{y>0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \sqrt{2\kappa} e^{-\kappa y} \quad \text{with} \quad E_R(\theta) = A\delta k_0 \cos \theta + Bk_0 \sin \theta, \] (23)
\[u_{y<0} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \sqrt{2\kappa} e^{\kappa y} \quad \text{with} \quad E_L(\theta) = -A\delta k_0 \cos \theta - Bk_0 \sin \theta, \]

where \(\kappa = -\frac{k_0}{\pi} \sqrt{C^2 + D^2} \cos(\theta - \phi) > 0 \). These two boundary states are the origin of the Fermi arc states.

Time-reversal symmetric nodal ring semimetallic phase

The Hamiltonian of hWSMs with non-vanishing \(W_0 \) can be expressed as
\[\mathcal{H}(k) = H_0(k) + H_1(k), \] (24)

where \(H_0(k) = \frac{1}{2} \left(\epsilon_i(k) + \epsilon_f(k) \right) \sigma^i \tau_0 \) and \(H_1(k) = \frac{1}{2} \left(\epsilon_i(k) - \epsilon_f(k) \right) \sigma^i \tau_3 + \sum_{i=1,2,3} V_i \sin k_i \sigma_i \tau_1 + W_0 \tau_1. H_1(k) \) has a chiral symmetry, \(S^{-1} \mathcal{H}(k) S = -\mathcal{H}(k) \), where \(S = \tau_2 \).

In the presence of chiral symmetry, one can off-block diagonalize \(H_1(k) \) by an unitary matrix \(V^{-1} H_1(k) V = H_1(k) \), where
\[V = \frac{1}{\sqrt{2}} \begin{pmatrix} I_{2 \times 2} & iI_{2 \times 2} \\ iI_{2 \times 2} & I_{2 \times 2} \end{pmatrix}, \quad \mathcal{H}(k) = \begin{pmatrix} 0 & D(k) \\ D^\dagger(k) & 0 \end{pmatrix}, \] (25)

with \(D(k) = i(\epsilon_i(k) - \epsilon_f(k)) + 2 \sum_i V_i \sin k_i \sigma_i + m_0 \). The eigenvectors of \(\mathcal{H}(k) \) satisfy
\[\begin{pmatrix} 0 & D(k) \\ D^\dagger(k) & 0 \end{pmatrix} \begin{pmatrix} \chi^+(k) \\ \eta^+(k) \end{pmatrix} = \pm \lambda(k) \begin{pmatrix} \chi^+(k) \\ \eta^+(k) \end{pmatrix}, \] (26)

These eigenvectors are also the eigenvector of \(H_0(k) \) and the topological invariant only depends on the eigenvectors. We pick \(\chi^+(k) = \frac{1}{\sqrt{2}} \eta(k) \). Then Eq. (26) leads to \(\eta^+(k) = \pm \frac{1}{\sqrt{2}} \lambda(k) D^\dagger(k) u(k) \). The flat band Hamiltonian \(Q(k) \) can be
FIG. 4. (a) Schematic plot of the bulk nodal rings centered at k_y axis. On the (011) surface, the surface flat bands will emerge inside the circles which are the projection of the bulk nodal rings. The surface spectrum as a function of $(k_x, k'_z = \frac{1}{\sqrt{2}}(k_z - k_y))$ from the Hamiltonian Eq. (5) with $(t_x, t_y, t_z, \mu, \alpha, W_x, W_y, W_z, W_0) = (2, 1, 1, -6.5, -0.1, 2, 2, 2, 1.8)$. (b) in the absence of surface Kondo breakdown and (c) in the presence of surface Kondo breakdown. The surface spectrum as a function of $k'_z = \frac{1}{\sqrt{2}}(k_z - k_y)$ at $k_x = 0$, (d) in the absence of surface Kondo breakdown and (e) in the presence of surface Kondo breakdown.

obtained from the projector

$$Q(k) = \mathbb{1} - 2 \sum_{\alpha \in \text{occ.}} |u_\alpha(k)\rangle \langle u_\alpha(k)|$$

$$= \mathbb{1} - \left(-\frac{1}{\lambda(k)} D^\dagger(k) u(k) \right) \left(u^\dagger(k) - \frac{1}{\lambda(k)} u^\dagger(k) D(k) \right)$$

$$= \frac{1}{\lambda(k)} \begin{pmatrix} 0 & u(k) u^\dagger(k) D(k) \\ D^\dagger(k) u(k) u^\dagger(k) & 0 \end{pmatrix}$$

$$= \begin{pmatrix} q^\dagger(k) & q(k) \\ 0 & 0 \end{pmatrix}. \quad (27)$$

The topological invariance of the nodal ring is characterized by a winding number of a one-dimensional loop encircling the ring. The winding number can be calculated by the q-matrix

$$\nu = \frac{1}{2\pi i} \oint_C d\mathbf{k} \text{Tr}[q^{-1}(k) \partial_k q(k)]. \quad (28)$$

In our model, the winding number of the nodal rings is $\nu = \pm 1$, which leads to surface flat bands bounded by the nodal rings projected on the surface Brillouin zone[13, 36]. As shown schematically in Fig. 4(a), two nodal rings are centered along k_y axis. On (011) surface, the flat band surface states emerge inside the bulk rings projected on the (011) surface Brillouin zone.

Now we investigate the Kondo breakdown on the surface flat bands. As shown in Fig. 4(b) and (d), in the absence of the surface Kondo breakdown, the surface flat bands emerge on (011) surface. In the presence of the surface Kondo breakdown, the surface flat bands sink beneath the Fermi sea as shown in Fig. 4(c) and (e).