SUBGROUPS GENERATED BY RATIONAL FUNCTIONS IN FINITE FIELDS

DOMINGO GÓMEZ-PÉREZ AND IGOR E. SHPARLINSKI

Abstract. For a large prime \(p \), a rational function \(\psi \in \mathbb{F}_p(X) \) over the finite field \(\mathbb{F}_p \) of \(p \) elements, and integers \(u \) and \(H \geq 1 \), we obtain a lower bound on the number consecutive values \(\psi(x) \), \(x = u+1, \ldots, u+H \) that belong to a given multiplicative subgroup of \(\mathbb{F}_p^* \).

1. Introduction

For a prime \(p \), let \(\mathbb{F}_p \) denote the finite field with \(p \) elements, which we always assume to be represented by the set \(\{0, \ldots, p-1\} \).

Given a rational function
\[
\psi(X) = \frac{f(X)}{g(X)} \in \mathbb{F}_p(X)
\]
where \(f, g \in \mathbb{F}_p[X] \) are relatively prime polynomials, and an ‘interesting’ set \(S \subseteq \mathbb{F}_p \), it is natural to ask how the value set
\[
\psi(S) = \{\psi(x) : x \in S, \ g(x) \neq 0\}
\]
is distributed. For instance, given another ‘interesting’ set \(\mathcal{T} \), our goal is to obtain nontrivial bounds on the size of the intersection
\[
N_{\psi}(S, \mathcal{T}) = \#(\psi(S) \cap \mathcal{T}) .
\]
In particular, we are interested in the cases when \(N_{\psi}(S, \mathcal{T}) \) achieves the trivial upper bound
\[
N_{\psi}(S, \mathcal{T}) \leq \min\{\#S, \#\mathcal{T}\} .
\]

Typical examples of such sets \(S \) and \(\mathcal{T} \) are given by intervals \(\mathcal{I} \) of consecutive integers and multiplicative subgroups \(\mathcal{G} \) of \(\mathbb{F}_p^* \). For large intervals and subgroups, a standard application of bounds of exponential and multiplicative character sums leads to asymptotic formulas for the relevant values of \(N_{\psi}(S, \mathcal{T}) \), see \cite{7, 11, 19}. Thus only the case of small intervals and groups is of interest.

Date: March 11, 2014.

2010 Mathematics Subject Classification. 11D79, 11T06.

Key words and phrases. polynomial congruences, finite fields.
For a polynomial \(f \in \mathbb{F}_p[X] \) and two intervals \(\mathcal{I} = \{u+1, \ldots, u+H\} \) and \(\mathcal{J} = \{v+1, \ldots, v+H\} \) of \(H \) consecutive integers, various bounds on the cardinality of the intersection \(f(\mathcal{I}) \cap \mathcal{J} \) are given in [7, 11].

To present some of these results, for positive integers \(d, k \) and \(H \), we denote by \(J_{d,k}(H) \) the number of solutions to the system of equations

\[
x_1^\nu + \ldots + x_k^\nu = x_{k+1}^\nu + \ldots + x_{2k}^\nu, \quad \nu = 1, \ldots, d,
\]
in positive integers \(x_1, \ldots, x_{2k} \leq H \). Then by [11, Theorem 1], for any \(f \in \mathbb{F}_p[X] \) of degree \(d \geq 2 \) and two intervals \(\mathcal{I} \) and \(\mathcal{J} \) of \(H < p \) consecutive integers, we have

\[
N_f(\mathcal{I}, \mathcal{J}) \leq H(H/p)^{1/2\kappa(d)+o(1)} + H^{1-(d-1)/2\kappa(d)+o(1)},
\]
as \(H \to \infty \), where \(\kappa(d) \) is the smallest integer \(\kappa \) such that for \(k \geq \kappa \) there exists a constant \(C(d, k) \) depending only on \(k \) and \(d \) and such that

\[
J_{d,k}(H) \leq C(d, k)H^{2k-d(d+1)/2+o(1)}
\]
holds as \(H \to \infty \), see also [7] for some improvements and results for related problems. In [7, 11] the bounds of Wooley [22, 23] are used that give the presently best known estimates on \(\kappa(d) \) (at least for a large \(d \)), see also [24] for further progress in estimating \(\kappa(d) \).

It is easy to see that the argument of the proof of [11, Theorem 1] allows to consider intervals of \(\mathcal{I} \) and \(\mathcal{J} \) of different lengths as well and for intervals

\[
\mathcal{I} = \{u+1, \ldots, u+H\} \quad \text{and} \quad \mathcal{J} = \{v+1, \ldots, v+K\}
\]
with \(1 \leq H, K < p \) it leads to the bound

\[
N_f(\mathcal{I}, \mathcal{J}) \leq H^{1+o(1)} \left((K/p)^{1/2\kappa(d)} + (K/H^d)^{1/2\kappa(d)} \right),
\]
see also a more general result of Kerr [15, Theorem 3.1] that applies to multivariate polynomials and to congruences modulo a composite number.

Furthermore, let \(K_{\psi}(H) \) be the smallest \(K \) for which there are intervals \(\mathcal{I} = \{u+1, \ldots, u+H\} \) and \(\mathcal{J} = \{v+1, \ldots, v+K\} \) for which \(N_{\psi}(\mathcal{I}, \mathcal{J}) = \#\mathcal{I} \). That is, \(K_{\psi}(H) \) is the length of the shortest interval, which may contain \(H \) consecutive values of \(\psi \in \mathbb{F}_p(X) \) of degree \(d \).

Defining \(\kappa^*(d) \) in the same way as \(\kappa(d) \), however with respect to the more precise bound

\[
J_{d,k}(H) \leq C(d, k)H^{2k-d(d+1)/2}
\]
(that is, without \(o(1) \) in the exponent) we can easily derive that for any polynomial \(f \in \mathbb{F}_p[X] \) of degree \(d \),

\[
K_f(H) = O(H^d).
\]
To see that the bound (1) is optimal it is enough to take $f(X) = X^d$ and $u = 0$. Note that the proof of (1) depends only on the existence of $\kappa^*(d)$ rather than on its specific bounds. However, we recall that Wooley [22, Theorem 1.2] shows that for some constant $\mathcal{S}(d,k) > 0$ depending only on d and k we have

$$J_{d,k}(H) \sim \mathcal{S}(d,k)H^{2k-d(d+1)/2}$$

for any fixed $d \geq 3$ and $k \geq d^2 + d + 1$. In particular, $\kappa^*(d) \leq d^2 + d + 1$.

Here we concentrate on estimating $N_{\psi}(I, G)$ for an interval I of H consecutive integers and a multiplicative subgroup $G \subseteq \mathbb{F}_p^*$ of order T. This question has been mentioned in [14, Section 4] as an open problem.

We remark that for linear polynomials f the result of [4, Corollary 34] have a natural interpretation as a lower bound on the order of a subgroup $G \subseteq \mathbb{F}_p^*$ for which $N_f(I, G) = \#I$. In particular, we infer from [4, Corollary 34] that for any linear polynomials $f(X) = aX + b \in \mathbb{F}_p[X]$ and fixed integer $\nu = 1, 2, \ldots$, for an interval I of $H \leq p^{1/(\nu^2 - 1)}$ consecutive integers and a subgroup G, the equality $N_f(I, G) = \#I$ implies $\#G \geq H^{\nu + o(1)}$.

We also remark that the results of [5, Section 5] have a similar interpretation for the identity $N_f(I, G) = \#I$ with linear polynomials, however apply to almost all primes p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2] gives a nontrivial bound on the intersection of an interval centered at 0, that is, of the form $I = \{0, \pm 1, \ldots, \pm H\}$ and a co-set aG (with $a \in \mathbb{F}_p^*$) of a multiplicative group $G \subseteq \mathbb{F}_p^*$, provided that $H < p^{1-\varepsilon}$ and $\#G \geq g_0(\varepsilon)$, for some constant $g_0(\varepsilon)$ depending only on an arbitrary $\varepsilon > 0$.

We note that several bounds on $\#(f(G) \cap G)$ for a multiplicative subgroup $G \subseteq \mathbb{F}_p^*$ are given in [19], but they apply only to polynomials f defined over \mathbb{Z} and are not uniform with respect to the height (that is, the size of the coefficients) of f. Thus the question of estimating $N_f(G, G)$ remains open. On the other hand, a number of results about points on curves and algebraic varieties with coordinates from small subgroups, in particular, in relation to the Poonen Conjecture, have been given in [6, 8, 9, 10, 17, 18, 20, 21].

We recall that the notations $U = O(V)$, $U \ll V$ and $V \gg U$ are all equivalent to the statement that the inequality $|U| \leq cV$ holds with some constant $c > 0$. Throughout the paper, any implied constants in these symbols may occasionally depend, where obvious, on $d = \deg f$ and $e = \deg g$, but are absolute otherwise.
2. Preparations

2.1. Absolute irreducibility of some polynomials. As usual, we use \(\overline{\mathbb{F}}_p \) to denote the algebraic closure of \(\mathbb{F}_p \) and \(X, Y \) to denote indeterminate variables. We also use \(\overline{\mathbb{F}}_p(X), \overline{\mathbb{F}}_p(Y), \overline{\mathbb{F}}_p(X, Y) \) to denote the corresponding fields of rational functions over \(\overline{\mathbb{F}}_p \).

We recall that the degree of a rational function in the variables \(X, Y \) is \(\deg F = \max\{s(X), t(X)\} \), where \(s(X), t(X) \in \overline{\mathbb{F}}_p(X, Y) \) and \(\gcd(s(X), t(X)) = 1 \).

It is also known that if \(R(X) \in \overline{\mathbb{F}}_p(X) \) is a rational function then
\[
\deg(R \circ F) = \deg R \cdot \deg F,
\]
where \(\circ \) denotes the composition.

We use the following result of Bodin [1, Theorem 5.3] adapted to our purposes.

Lemma 1. Let \(s(X, Y), t(X, Y) \in \overline{\mathbb{F}}_p[X, Y] \) be polynomials such that there does not exist a rational function \(R(X) \in \overline{\mathbb{F}}_p(X) \) with \(\deg R > 1 \) and a bivariate rational function \(G(X, Y) \in \overline{\mathbb{F}}_p[X, Y] \) such that,
\[
F(X, Y) = \frac{s(X, Y)}{t(X, Y)} = R(G(X, Y)).
\]
The number of elements \(\lambda \) such that the polynomial \(s(X, Y) - \lambda t(X, Y) \) is reducible over \(\overline{\mathbb{F}}_p[X, Y] \) is at most \((\deg F)^2\).

We say that a rational function \(f \in \overline{\mathbb{F}}_p(X) \) is a perfect power of another rational function if and only if \(f(X) = (g(X))^n \) for some rational function \(g(X) \in \overline{\mathbb{F}}_p(X) \) and integer \(n \geq 2 \). Because \(\overline{\mathbb{F}}_p \) is algebraic closed field, it is trivial to see that if \(f(X) \) is a perfect power, then \(af(X) \) is also a perfect power for any \(a \in \overline{\mathbb{F}}_p \). We need the following easy technical lemma.

Lemma 2. Let \(P_1(X), Q_1(X) \in \overline{\mathbb{F}}_p[X], P_2(Y), Q_2(Y) \in \overline{\mathbb{F}}_p[Y] \) by relatively prime polynomials. Then the following bivariate polynomial
\[
rP_1(X)Q_2(Y) - sQ_1(X)P_2(Y), \quad r, s \in \overline{\mathbb{F}}_p^*,
\]
is not divisible by any univariate polynomial.

Proof. Suppose that this polynomial was divisible by an univariate polynomial \(d(X) \). Take \(\alpha \in \overline{\mathbb{F}}_p \) any root of the polynomial \(d \) and substitute it getting,
\[
rP_1(\alpha)Q_2(Y) - sQ_1(\alpha)P_2(Y) = 0 \implies Q_2(Y) = \frac{sQ_1(\alpha)P_2(Y)}{rP_1(\alpha)}.
\]
Here, we have two different possibilities:

- If \(rP_1(\alpha) = 0 \), then \(Q_1(\alpha) = 0 \), and we get a contradiction,
- In other case, \(\gcd(Q_2(Y), P_2(Y)) \neq 1 \), contradicting our hypothesis.

This comment finishes the proof. \(\square \)

Now, we prove the following result about irreducibility.

Lemma 3. Given relatively prime polynomials \(f, g \in \mathbb{F}_p[X] \) and if a rational function \(f(X)/g(X) \in \mathbb{F}_p(X) \) of degree \(D \geq 2 \) is not a perfect power then \(f(X)g(Y) - \lambda f(Y)g(X) \) is reducible over \(\mathbb{F}_p[X,Y] \) for at most \(4D^2 \) values of \(\lambda \in \mathbb{F}_p^* \).

Proof. First we describe the idea of the proof. Our aim is to show that the condition of Lemma 1 holds for the polynomial \(f(X)g(Y) - \lambda f(Y)g(X) \). Indeed, we show that if

\[
\frac{f(X)g(Y)}{g(X)f(Y)} = R(G(X,Y)),
\]

with a rational function \(R \in \mathbb{F}_p(X) \) of degree \(\deg R \geq 2 \) and a bivariate rational function \(G(X,Y) \in \mathbb{F}_p(X,Y) \), then there exists another \(\tilde{R} \in \mathbb{F}_p(X) \) and \(\tilde{G}(X,Y) \in \mathbb{F}_p(X,Y) \)

\[
\frac{f(X)g(Y)}{g(X)f(Y)} = \left(\tilde{R} \left(\tilde{G}(X,Y) \right) \right)^m,
\]

for an appropriate integer \(m \geq 2 \). Comparing coefficients, it is easy to arrive at the conclusion that \(f(X)/g(X) \) is a perfect power.

Without loss of generality, we suppose \(R(0) = 0 \). So, indeed we have

\[
R(X) = a \frac{X \prod_{i=2}^k (X - r_i)}{\prod_{j=1}^m (X - s_j)}.
\]

Writing \(G(X,Y) = G_1(X,Y)/G_2(X,Y) \) in its lowest terms and by hypothesis, we have that the fraction on the right of this inequality,

\[
\frac{f(X)g(Y)}{g(X)f(Y)} = a \frac{G_2(X,Y)^{N-k}}{G_2(X,Y)^{N-m}} \cdot \frac{G_1(X,Y) \prod_{i=2}^k (G_1(X,Y) - r_i G_2(X,Y))}{\prod_{j=1}^m (G_1(X,Y) - s_j G_2(X,Y))},
\]

where

\[
N = \max\{k, m\}.
\]
is in its lowest terms. This means that \(G_1(X,Y) = P_1(X)P_2(Y) \) and \(G_2(X,Y) = s_1^{-1}(P_1(X)P_2(Y) - Q_1(X)Q_2(Y)) \), where \(P_1, P_2, Q_1, Q_2 \) are divisors of \(f \) or \(g \). Because \(\gcd(G_1(X,Y), G_2(X,Y)) = 1 \), we have that

\[
\gcd(P_1(X),Q_1(X)) = \gcd(P_2(Y),Q_2(Y)) = 1.
\]

Lemma 2 implies that \(m = k \) as otherwise \(G_2(X,Y) \) is divisible by an univariate polynomial. This implies,

\[
\frac{f(X)g(Y)}{g(X)f(Y)} = a \frac{G_1(X,Y) \prod_{i=2}^{m}(G_1(X,Y) - r_iG_2(X,Y))}{\prod_{j=1}^{m}(G_1(X,Y) - s_jG_2(X,Y))}.
\]

Now, suppose that there exists another value \(s \in \{r_2, \ldots, r_m, s_2, \ldots, s_m\} \), \(s \neq 0, s_1 \).

Then, the following polynomial

\[
G_1(X,Y) - sG_2(X,Y) = (1 - ss_1^{-1})P_1(X)P_2(Y) + s_1^{-1}Q_1(X)Q_2(Y)
\]

is divisible by an univariate polynomial which contradicts Lemma 2. So, this means that \(R(X) \) can be written in the following form,

\[
R(X) = \left(\frac{X}{X - s_1} \right)^m,
\]

and this concludes the proof.

Notice that the condition that \(f(X)/g(X) \) is not a perfect power of a polynomial is necessary, indeed if \(f(X) = (h(X))^n \) and \(g(X) = 1 \) with \(f(X), h(X) \in \mathbb{F}_p[X] \) then \(f(X) - \lambda^n f(Y) \) is divisible by \(h(X) - \lambda h(Y) \) for any \(\lambda \in \mathbb{F}_p \).

2.2. Integral points on affine curves. We need the following estimate of Bombieri and Pila \[2\] on the number of integral points on polynomial curves.

Lemma 4. Let \(C \) be a plane absolutely irreducible curve of degree \(n \geq 2 \) and let \(H \geq \exp(n^{6}) \). Then the number of integral points on \(C \) inside of the square \([0, H] \times [0, H] \) is at most \(H^{1/n} \exp(12\sqrt{n \log H \log \log H}) \).

2.3. Small values of linear functions. We need a result about small values of residues modulo \(p \) of several linear functions. Such a result has been derived in \[12\] Lemma 3.2 from the Dirichlet pigeon-hole principle. Here use a slightly more precise and explicit form of this result which is derived in \[13\] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric lattices.

Let \(b_1, \ldots, b_r \) be \(r \) linearly independent vectors in \(\mathbb{R}^s \). The set

\[
\mathcal{L} = \{ z : z = c_1b_1 + \ldots + c_rb_r, \quad c_1, \ldots, c_r \in \mathbb{Z} \}
\]
is called an \textit{r-dimensional lattice} in \mathbb{R}^s with a basis $\{b_1, \ldots, b_r\}$.

To each lattice \mathcal{L} one can naturally associate its \textit{volume}
\[
\text{vol} \mathcal{L} = (\det (B^t B))^{1/2},
\]
where B is the $s \times r$ matrix whose columns are formed by the vectors b_1, \ldots, b_r and B^t is the transposition of B. It is well known that $\text{vol} \mathcal{L}$ does not depend on the choice of the basis $\{b_1, \ldots, b_r\}$, we refer to [14] for a background on lattices.

For a vector u, let $\|u\|_\infty = \max\{|u_1|, \ldots, |u_s|\}$ denote its \textit{infinity norm} of $u = (u_1, \ldots, u_s) \in \mathbb{R}^s$.

The famous \textit{Minkowski theorem}, see [14, Theorem 5.3.6], gives an upper bound on the size of the shortest nonzero vector in any r-dimensional lattice \mathcal{L} in terms of its volume.

\textbf{Lemma 5.} For any r-dimensional lattice \mathcal{L} we have
\[
\min \{\|z\|_\infty : z \in \mathcal{L} \setminus \{0\}\} \leq (\text{vol} \mathcal{L})^{1/r}.
\]

For an integer a we use $\langle a \rangle_p$ to denote the smallest by absolute value residue of a modulo p, that is
\[
\langle a \rangle_p = \min_{k \in \mathbb{Z}} |a - kp|.
\]

The following result is essentially contained in [13, Theorem 2]. We include here a short proof.

\textbf{Lemma 6.} For any real numbers V_1, \ldots, V_s with
\[
p > V_1, \ldots, V_s \geq 1 \quad \text{and} \quad V_1 \ldots V_s > p^{s-1}
\]
and integers b_1, \ldots, b_s, there exists an integer v with $\gcd(v, p) = 1$ such that
\[
\langle b_i v \rangle_p \leq V_i, \quad i = 1, \ldots, s.
\]

\textit{Proof.} Without loss of the generality, we can take $b_1 = 1$. We introduce the following notation,
\[
(4) \quad V = \prod_{i=1}^{s} V_i
\]
and consider the lattice \mathcal{L} generated by the columns of the following matrix

$$B = \begin{pmatrix}
\frac{b_s V}{V_s} & 0 & \ldots & 0 & pV/V_s \\
\frac{b_{s-1} V}{V_{s-1}} & 0 & \ldots & pV/V_{s-1} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{b_2 V}{V_2} & pV/V_2 & \ldots & 0 & 0 \\
\frac{V}{V_1} & 0 & \ldots & 0 & 0
\end{pmatrix}.$$

Clearly the volume of \mathcal{L} is

$$\text{vol} \mathcal{L} = \frac{V}{V_1} \prod_{j=2}^{s} \frac{pV}{V_j} = V^{s-1} p^{s-1} \leq V^s$$

by (4) and the conditions on the size of the product $V_1 \ldots V_s$. Consider a nonzero vector with the minimum infinity norm inside \mathcal{L}. By the definition of \mathcal{L}, this vector is a linear combination of the columns of B with integer coefficients, that is, it can be written in the following way

$$\left(\frac{c_1 V}{V_1}, \frac{(c_1b_2 + c_2p)V}{V_2}, \ldots, \frac{(c_1b_s + c_sp)V}{V_s} \right), \quad c_1, \ldots, c_s \in \mathbb{Z}.$$

By Lemma 5 and the bound on the volume of \mathcal{L}, the following inequality holds,

$$\max \left\{ \left| \frac{c_1 V}{V_1} \right|, \left| \frac{(c_1b_2 + c_2p)V}{V_2} \right|, \ldots, \left| \frac{(c_1b_s + c_sp)V}{V_s} \right| \right\} \leq V.$$

From here, it is trivial to check that if we choose $v = c_1$, then

- $\langle v \rangle_p = \langle c_1 \rangle_p \leq V_1$,
- $\langle vb_i \rangle_p = \langle c_1b_i \rangle_p \leq V_i, \quad i = 2, \ldots, s,$

which finishes the proof.

3. Main Results

Theorem 7. Let $\psi(X) = f(X)/g(X)$ where $f, g \in \mathbb{F}_p[X]$ relatively prime polynomials of degree d and e respectively with $d + e \geq 1$. We define

$$\ell = \min\{d, e\}, \quad m = \max\{d, e\}$$

and set

$$k = (\ell + 1) (\ell m - \ell^2 + m^2 + m) \quad \text{and} \quad s = 2m\ell + 2m - \ell^2.$$

Assume that ψ is not a perfect power of another rational function over \mathbb{F}_p. Then for any interval I of H consecutive integers and a subgroup \mathcal{G} of \mathbb{F}_p^* of order T, we have

$$N_\psi(I, \mathcal{G}) \ll (1 + H^\rho p^{-\vartheta}) H^{r+o(1)} T^{1/2},$$
where
\[\vartheta = \frac{1}{2s}, \quad \rho = \frac{k}{2s}, \quad \tau = \frac{1}{2(\ell + m)}, \]
and the implied constant depends on \(d \) and \(e \).

Proof. Clearly we can assume that
\[H \leq cp^{2\vartheta/(2\rho - 1)} \]
for some constant \(c > 0 \) which may depend on \(d \) and \(e \) as otherwise one easily verifies that
\[H^{\rho - \frac{1}{2}} \geq 1 \]
and hence the desired bound is weaker than the trivial estimate
\[N_\psi(I, G) \ll \min\{H, T\} \leq H^{1/2}T^{1/2}. \]

Making the transformation \(X \mapsto X + u \), we can assume that \(I = \{1, \ldots, H\} \). Let \(1 \leq x_1 < \ldots < x_r \leq H \) be all \(r = N_\psi(I, G) \) values of \(x \in I \) with \(\psi(x) \in G \).

Let \(\Lambda \) be the set of exceptional values of \(\lambda \in \mathbb{F}_p \) described in Lemma 3. We see that there are only at most \(4m^3r \) pairs \((x_i, x_j) \), \(1 \leq i, j \leq r \), for which \(\psi(x_i)/\psi(x_j) \in \Lambda \). Indeed, if \(x_j \) is fixed, then \(\psi(x_i) \) can take at most \(4m^2 \) values of the form \(\lambda \psi(x_j) \), with \(\lambda \in \Lambda \).

Furthermore, each value \(\lambda \psi(x_j) \) can be taken by \(\psi(x_i) \) for at most \(D \) possible values of \(i = 1, \ldots, r \).

We now assume that \(r > 8m^3 \) as otherwise there is nothing to prove.

Therefore, there is \(\lambda \in G \setminus \Lambda \) such that
\[\psi(x) \equiv \lambda \psi(y) \quad (\text{mod } p) \]
for at least
\[\frac{r^2 - 4m^3r}{T} \geq \frac{r^2}{2T} \]
pairs \((x, y) \) with \(x, y \in \{1, \ldots, H\} \).

Let
\[f(X)g(Y) - \lambda f(Y)g(X) = \sum_{i=0}^{m} \sum_{j=0}^{m} b_{i,j}X^iY^j \]

Let
\[\mathcal{H} = \{(i, j) : i, j = 0, \ldots, m, \ i + j \geq 1, \ \min\{i, j\} \leq \ell\}. \]

Clearly the nonconstant terms \(b_{i,j}X^iY^j \) of \(f(X)g(Y) - \lambda f(Y)g(X) \) are supported only on the subscripts \((i, j) \in \mathcal{H} \). We have
\[\#\mathcal{H} = 2(m + 1)(\ell + 1) - (\ell + 1)^2 - 1 = s \]
We now apply Lemma 6 with \(s = \#\mathcal{H} \) and the vector \((b_{i,j})_{(i,j) \in \mathcal{H}} \).

...
We also define the quantities U and $V_{i,j}$, $(i, j) \in \mathcal{H}$ by the relations
\[V_{i,j}H^{i+j} = U, \quad (i, j) \in \mathcal{H}, \]
thus
\[\prod_{(i,j) \in \mathcal{H}} V_{i,j} = 2p^{s-1}. \]

By Lemma 6 there is an integer v with $\gcd(v, p) = 1$ such that
\[\langle b_{i,j}v \rangle_p \leq V_{i,j} \]
for every $(i, j) \in \mathcal{H}$. We have
\[
\sum_{(i,j) \in \mathcal{H}} (i + j) = 2 \sum_{i=0}^{m} \sum_{j=0}^{\ell} (i + j) - \sum_{i=0}^{\ell} \sum_{j=0}^{\ell} (i + j)
\]
\[
= 2 \sum_{i=0}^{m} \left((\ell + 1)i + \frac{\ell(\ell + 1)}{2} \right) - \sum_{i=0}^{\ell} \left((\ell + 1)i + \frac{\ell(\ell + 1)}{2} \right)
\]
\[
= 2 \left(\frac{(\ell + 1)m(m + 1)}{2} + \frac{\ell(\ell + 1)(m + 1)}{2} \right) - \frac{\ell(\ell + 1)^2}{2} - \frac{\ell(\ell + 1)^2}{2} = k.
\]

Certainly it is easy to evaluate $V_{i,j}$ and $V_{i,j}^{(\lambda)}$, $(i, j) \in \mathcal{H}$ explicitly, however it is enough for us to note that we have
\[U^s H^k = 2p^{s-1}. \]

Hence
\[U = 2^{1/3} p^{1-1/s} H^{k/s}. \]

We also assume that the constant c in (5) is small enough so the condition
\[\max_{(i,j) \in \mathcal{H}} \left\{ V_{i,j}, V_{i,j}^{(\lambda)} \right\} = UH^{-1} < p \]
is satisfied.

Let $F(X, Y) \in \mathbb{Z}[X]$ and $G(X, Y) \in \mathbb{Z}[X]$ be polynomials with coefficients in the interval $[-p/2, p/2]$, obtained by reducing $vf(X)g(Y)$ and $v\lambda f(Y)g(X)$ modulo p, respectively. Clearly (6) implies
\[F(x, y) \equiv G(x, y) \pmod{p}. \]

Furthermore, since for $x, y \in \{1, \ldots, H\}$, we see from (8) and the trivial estimate on the constant coefficients (that is, $|F(0)|, |G(0)| \leq p/2$) that
\[|F(x, y) - G(x, y)| \ll U + p \ll p^{1-1/s} H^{k/s} + p, \]
which together with (9) implies that
\[F(x, y) = G(x, y) + zp \]
for some integer \(z \ll p^{-1/s} H^{k/s} + 1 \).

Clearly, for any integer \(z \) the reducibility of \(F(X, Y) - G(X, Y) - pz \) over \(\mathbb{C} \) implies the reducibility of \(F(X, Y) - G(X, Y) \) over \(\mathbb{F}_p \), or equivalently \(f(X)g(Y) - \lambda f(Y)g(X) \) over \(\mathbb{F}_p \), which is impossible because \(\lambda \not\in \Lambda \).

Because \(F(X, Y) - G(X, Y) - pz \in \mathbb{C}[X, Y] \) is irreducible over \(\mathbb{C} \) and has degree \(d \), we derive from Lemma 4 that for every \(z \) the equation (10) has at most \(H^{1/(d+e)+o(1)} \) solutions. Thus the congruence (6) has at most \(O \left(p^{-1/s} H^{k/s} + 1 \right) \) solutions. This, together with (7), yields the inequality
\[
\frac{r^2}{2T} \ll H^{1/(d+e)+o(1)} \left(p^{-1/s} H^{k/s} + 1 \right),
\]
and concludes the proof. \(\square \)

Clearly, in the case when \(e = 0 \), that is, \(\psi = f \) is a polynomial of degree \(d \geq 2 \), the bound of Theorem 7 takes form
\[
N_\psi(\mathcal{I}, \mathcal{G}) \ll (1 + H^{(d+1)/4} p^{-1/4d}) H^{1/2d+o(1)} T^{1/2}.
\]

4. Comments

Clearly Theorem 7 also provides a bound for the case where rational function \(\psi = \varphi^s \), with \(\varphi \in \mathbb{F}_p(X) \). This comes from the fact that
\[
\psi(x) \in \mathcal{G} \implies \varphi(x) \in \mathcal{G}_0,
\]
where \(\mathcal{G}_0 \) is a multiplicative subgroup of \(\mathbb{F}_p \) of order bounded by \(sT \). However the resulting bound depends now on the degrees of the polynomials associated with \(\varphi \) rather than that of \(\psi \).

Another consequence from Theorem 7 is the following: given an interval \(\mathcal{I} \) and a subgroup \(\mathcal{G} \in \mathbb{F}_p^* \), satisfying \(N_\psi(\mathcal{I}, \mathcal{G}) = \#\mathcal{I} \) then
\[
\#\mathcal{G} \gg \min\{ (\#\mathcal{I})^{2-2\tau+o(1)}, (\#\mathcal{I})^{1-2p-2\tau+o(1)} p^{2\varphi} \}
\]
where the implied constant depends only on \(d \) and \(e \). However, we believe that this bound is very unlikely to be tight.

Acknowledgements

D. G-P. would like to thank Macquarie University for the support and hospitality during his stay in Australia.
During the preparation of this paper D. G-P. was supported by the Ministerio de Economia y Competitividad project TIN2011-27479-C04-04 and I. S. by the Australian Research Council Grants DP130100237 and DP140100118.

References

[1] A. Bodin, ‘Reducibility of rational functions in several variables’, *Israel J. Math.*, 164 (2008), 333–347.
[2] E. Bombieri and J. Pila, ‘The number of integral points on arcs and ovals’, *Duke Math. J.*, 59 (1989), 337–357.
[3] J. Bourgain, ‘On the distribution of the residues of small multiplicative subgroups of \mathbb{F}_p’, *Israel J. Math.*, 172 (2009), 61–74.
[4] J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, ‘On the hidden shifted power problem’, *SIAM J. Comp.*, 41 (2012), 1524–1557.
[5] J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, ‘Multiplicative congruences with variables from short intervals’, *J. d’Analyse Math.* , (to appear).
[6] J. F. Burkhart, N. J. Calkin, S. Gao, J. C. Hyde-Volpe, K. James, H. Maharaj, S. Manber, J. Ruiz and E. Smith, ‘Finite field elements of high order arising from modular curve’, *Designs, Codes and Cryptography*, 51 (2009), 301–314.
[7] M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernández, I. E. Shparlinski and A. Zumalacárregui, ‘Points on curves in small boxes and applications’, *Preprint*, 2011 (available from http://arxiv.org/abs/1111.1543).
[8] M.-C. Chang, ‘Order of Gauss periods in large characteristic’, *Taiwanese J. Math.*, 17 (2013), 621–628.
[9] M.-C. Chang, ‘Elements of large order in prime finite fields’, *Bull. Aust. Math. Soc.*, 88 (2013), 169–176.
[10] M.-C. Chang, B. Kerr, I. E. Shparlinski and U. Zannier, ‘Elements of large order on varieties over prime finite fields’, *Preprint*, 2013.
[11] J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, ‘On the concentration of points of polynomial maps and applications’, *Math. Zeit.*, 272 (2012), 825–837.
[12] J. Cilleruelo, I. E. Shparlinski and A. Zumalacárregui, ‘Isomorphism classes of elliptic curves over a finite field in some thin families’, *Math. Res. Letters*, 19 (2012), 335–343.
[13] D. Gómez-Pérez and J. Gutierrez, ‘On the linear complexity and lattice test of nonlinear pseudorandom number generators’, *Preprint*, 2013.
[14] M. Grötschel, L. Lovász and A. Schrijver, *Geometric algorithms and combinatorial optimization*, Springer, Berlin, Germany, 1993.
[15] B. Kerr, ‘Solutions to polynomial congruences in well shaped sets’, *Bull. Aust. Math. Soc.*, (to appear).
[16] D. Lorenzini, ‘Reducibility of polynomials in two variables’, *J. Algebra*, 156 (1993), 65–75.
[17] R. Popovych, ‘Elements of high order in finite fields of the form $\mathbb{F}_q[x]/\Phi_r(x)$’, *Finite Fields Appl.*, 18 (2012), 700–710.
[18] R. Popovych, ‘Elements of high order in finite fields of the form $\mathbb{F}_q[x]/(x^m-a)$’, *Finite Fields Appl.*, 19 (2013), 86–92.
[19] I. E. Shparlinski, ‘Groups generated by iterations of polynomials over finite fields’, *Proc. Edinburgh Math. Soc.*, (to appear).

[20] J. F. Voloch, ‘On the order of points on curves over finite fields’, *Integers*, 7 (2007), Article A49, 4 pp.

[21] J. F. Voloch, ‘Elements of high order on finite fields from elliptic curves’, *Bull. Aust. Math. Soc.*, 81 (2010), 425–429.

[22] T. D. Wooley, ‘Vinogradov’s mean value theorem via efficient congruencing’, *Ann. Math.*, 175 (2012), 1575–1627.

[23] T. D. Wooley, ‘Vinogradov’s mean value theorem via efficient congruencing, II’, *Duke Math. J.*, 162 (2013), 673–730.

[24] T. D. Wooley, ‘Multigrade efficient congruencing and Vinogradov’s mean value theorem’, *Preprint*, 2011 (available from http://arxiv.org/abs/1310.8447).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CANTABRIA, SANTANDER 39005, SPAIN

E-mail address: domingo.gomez@unican.es

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, SYDNEY, NSW 2052, AUSTRALIA

E-mail address: igor.shparlinski@unsw.edu.au