Study on wake effect of series fans

ZHANG Zhi-yang, HU Rong, WEI Min, ZHANG Li-xin, SHI Ning-qiang, ZHANG Xin-wang

1 School of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832000, China
2 Xinjiang Gold wind Sci & Tech Co.Ltd. 830000, China

Abstract. Within the range of finite land resources, in order to improve the power generation efficiency of wind farms and reduce the impact of wake effects on the output power of fans, the rationality of wind farm fan layout is very important. The wake velocity and output power of two 2.5MW experimental fans in series 5D spacing are obtained by means of Doppler measured anemometer of windcube2. Based on CFX numerical simulation method, the simulation of the wake field is carried out by ANSYS software. The results showed that the fan spacing of 5D, the simulation and experimental results were basically the same. As the axial distance increased, the axial velocity first decreased and then increased, gradually recovered the incoming wind speed. The radial velocity and the tangential velocity amplitude and frequency fluctuation of different sections at the same angle were gradually reduced. The amplitude and frequency fluctuation of the tangential velocity were the largest at 3D, and were the minimum at 8D. The amplitude and frequency fluctuation of the radial velocity were the largest at 5D, and were the minimum at 3D. The velocity at the center of the bub gradually increased, and the velocity variation was the most obvious at 3D. The simulation speed first appeared an upward trend. Due to the superposition of the upstream fan wake, the output power of the downstream fan was greatly affected. Therefore, in the actual planning of the wind farm, the downstream fan should not be completely arranged in the wake field of the upstream fan.

1. Introduction

At present, the total installed capacity of fans in China is increasing, and it is estimated that the new hoisting capacity of fans will exceed 60GW in 2019[1,2,3]. The wind power industry has become the third largest power source for China’s power system, and the maximization of wind farm power generation efficiency is becoming more and more important[4,11,12]. The wake effect is one of the main reasons affecting the power generation efficiency of wind farms. The downstream fan is arranged in the wake field of the upstream fan, which will affect the whole power generation efficiency of wind farm[12,13,14,15]. The downstream fan is generally in the wake field of the upstream fan, and the power loss of the downstream fan reaches 23%~45%[16,17,18,19]. In order to improve the power generation efficiency of the wind farm, the arrangement of wind farm fans is particularly important[20,21]. Therefore, it is of great significance to study the wake of two series fans.

The study of wake effects mainly uses numerical. Gustavo S. Böhme et al.[5] studied the wind farm power output of wake-up and wake-free in Brazil’s onshore wind farms with complex terrain under the condition of MCP, and found that the wake-up output is 64%~85% of that of wind farms wake-free. Mike T.van Dijk et al.[6] simulated the wake field of the yaw state, indicating that the yaw not increased the generating capacity of the wind farm, and at the same time reduced the unit load caused by the superposition of some wakes. Alfredo Peña[7] studied the wake effect of the Anhalt wind farm in
Denmark. Through the analysis of scale simulation and data acquisition (SCADA), which showed that SCADA data acquisition and analysis can better estimate the power generation efficiency of wind farm than the simulation of mesoscale-wake model. Liu Qingqing et al. [8] established a wind farm model by using Wasp10.0 wind resource assessment software, and compared with the wind farm without the optimization method. It was concluded that with the continuous increase of elevation difference between the front and rear wheel hubs of the main wind directions, the annual power generation of wind farms increased continuously. Li pin et al. [9] obtained the distribution law of wind speed in wake area by using CFD simulation. Shi Shuai et al. [10] used MATLAB software to calculate and simulate the wake effect of wind fans with different wind speeds and directions, and obtained the wake field changes of wind farms under different wind speeds and directions.

In this paper, the Doppler radar wind meter is used to measure the wake field changes of two series fans. By establishing the 3D model of the whole machine and the 3Dmodel of the wake field, the change of the wind fan’s wake field was verified by simulation experiments, and the change of the wind fan’s wake field and power parameters was discussed to provide a theoretical reference for the reasonable layout of wind farm fans.

2. Wind Farm Experiment

The experiment layout is shown in Figure1. The experiment uses Gold wind GW106/2500 horizontal axis fan, rated wind speed 10.3m/s, average wind speed 13.5m/s and single fan power of 2.5MW. The experimental equipment used is shown in Table1.

Equipment name	Type / measuring range	number	error
fan	GW106/2500	2	±0.5m/s
Doppler radar	Windcube2/300m	2	
Computer	Lenovo	1	
Indicator light	220V/100w	1	
Power source	NP12-38Ah	2	
GPS locator	LT500 H	1	

In order to ensure the rationality and accuracy of the experiment, a large measurement range is selected. With the horizontal axis of the hub as the measuring center, the measuring radius is 800m and is divided into 10 segments on average. Fives angles, 0°, 30°, 45°, 60°, 90°, are selected for measurement. The measuring range and distribution of measuring points are shown in Figure2.

(a) Experimental site layout
(b) Schematic diagram of experiment layout

Figure 1. Field layout diagram and schematic diagram of the series fans.
3. Simulation Experiment

3.1 3D geometric modeling of wind fan
Taking the gold wind Technology 2.5MW large onshore unit as a prototype, which is established through SolidWorks and imported into Ansys software for model repair. The model includes blade, hub, engine room and tower. In order to approach the running state of wind farm fan, consider the cone angle and elevation angle of the wind rotor, and establish the whole machine model at a 1:1 ratio, as shown in Figure 3. Table 2 shows the main parameters of the unit.

Table 2. Main parameters of GW106/2500 fan

Unit name	Parameter values
Wind wheel elevation cone angle	3°
diameter	106 D/m
Height of tower	90 H/m
Wind wheel cutting-in	3 m/s
cutting-out	25 m/s
rated (m/s)	10.3 m/s

(a) 3D Geometric model
(b) 3D Geometric model repair model

Figure 3. Wind fan 3D geometry machine model
The total length of the calculation domain is 14D, in which the distance from the upstream fan to the flow field inlet is 1D, the distance between the upstream fan and the downstream fan is 5D, the distance from the downstream fan to the flow field outlet is 8D, the width of the calculation domain is 4D, and the height is 4D. The whole calculation domain is divided into a static domain and a rotating domain. The cylinder calculation domain of the wind wheel is the rotating domain and the rest is a static domain. The rotating domain has a diameter of 1.1D and a thickness of 0.1D.

The unstructured grid of the whole flow field is established for the wake field model. The rotating domain adopts the grid type “Quad/tri-pave” and the static domain grid type “Tet/Hybrid-TGrid”. The total number of grids is about 5.8 million, and the maximum grid quality is 0.89, which meets the calculation requirements. Fig. 4 shows the 3D model of wake field and the results of global meshing.

![3D Model of wake field of series fans.](image)
![Global grid of wake field of series fans.](image)

Figure 4. 3D Wake field model and global grid of series fans.

3.2 Boundary Condition Setting and Numerical Calculation

The initial wind speed is the shear index wind speed, and the calculation formula is shown as formula (1), where θ is the wind shear index; z_1 is the known height; z_2 is the height of the wind speed after the change; v_1 is the wind speed at height z_1, v_2 is the wind speed at height z_2. In this paper, the onshore wind shear index is 0.14. The wind speed v_1 at the center of the wind wheel is set at 10.6 m/s, and the uniform turbulence intensity at the inlet is 12%.

$$v_2 = v_1 \left(\frac{z_2}{z_1} \right)^{\theta}$$

Surface setting, the inlet of the outflow field is set as the velocity “INLET”, the outlet of the outflow field and internal flow field and other surfaces are set as the “OPENING”; The contact surface of the outflow field and internal flow field is set as the “INTERFACE”; The hub, main engine room and tower are set as the “WALL”. When the inner flow field is set, the inner flow field of the upstream fan is set as the “XUANZHUAN1”, the inner flow field of the downstream fan is set as the “XUANZHUAN2”, and the outer flow field is set as “JING”. The turbulence model is selected from the model, and the pressure-velocity coupling algorithm is “SIMPLE”. The inlet velocity of the outflow field is set as 10.6 m/s, and the internal flow field is set as Moving Wall without slip. Unsteady Reynolds time-averaged numerical simulation method is adopted.

Initialize the flow field, set the accuracy of each parameter to 10-3, and finally save the file and perform iterative calculation.

4. Result Analysis

4.1 Analysis of Experimental Results

Under the 5D spacing of the series fans, the measurement results of the downstream fan were analyzed to obtain the corresponding velocity field distribution and the output power of the two series fans. The
axial velocity at 30°, 45°, 90°, the velocity and tangential velocity at 30° were selected for analysis.

Fig. 5a showed when the incoming flow through the fan, part of the energy was converted into electrical energy, and the axial velocity was missing. As the axial distance increased, the fluid in the wake field exchanged energy continuously, and the axial velocity gradually recovered until the flow was restored. Due to the turbulence changes in the wake field, the fan rotation would produce strong turbulence phenomenon and wake vortex phenomenon.

Fig. 5b showed when the radial velocity increased with the axial distance, the fluctuation of velocity amplitude and frequency gradually decreased, with the maximum at 5D and the minimum at 3D. The maximum influence of the wake field between 3D and 6D, and then the radial velocity first increased and then decreased, and the upstream fan wake superposition effect gradually decreased until it disappeared.

Fig. 5c showed when the tangential velocity increased with the axial distance at 30°, the fluctuation of velocity amplitude and frequency was the largest at 3D and the smallest at 8D. As the axial distance increased, the influence of fan rotation on the wake field became weaker until it disappeared.

4.2 Simulation Experiment Verification

In order to facilitate the experimental data processing, the axial velocity simulation values and experimental values at different sections of 30°, 45°, 90° were selected for analysis. Fig. 6a, 6b, 6c, the overall variation trend of the downstream fan wake field experiment and simulation results was basically consistent. At the same angle, due to the superposition of the upstream fan’s wake, as the axial distance increased, the downstream fan was more affected by the upstream fan, the speed defect was more. The axial velocity at the 3D, 5D, 8D sections was compared and analyzed. The experimental value was larger than the simulated value on the whole, but the velocity of the simulated value first showed an upward trend, which was mainly caused by the actual environment of the wind farm. The value of velocity at the center of each section of the simulated value and the experimental value was basically the minimum, but with the increase of axial distance, the velocity at the center of the hub increased gradually, and the change of velocity at the 3D section was the most obvious. For the same section, the simulation values of axial velocity at different angles were basically the same, and the experimental values showed large velocity fluctuations. However, the velocity fluctuation became gentle.

Fig. 7 showed a comparison of the power curve of the upstream fan and the downstream fan. The power of the downstream fan was 59.09% ~ 78% of the upstream fan power, mainly because of the superposition of the upstream fan wake, which had a great influence on the output power of the downstream fan, therefore, in the actual operation of the wind field, the downstream fan should be
avoided to be completely arranged in the wake field of the upstream fan.

![Figure 6(a). Comparison between the simulated and experimental values of axial velocity at 3D.](image)

![Figure 6(b). Comparison between the simulated and experimental values of axial velocity at 5D.](image)

![Figure 6(c). Comparison between the simulated and experimental values of axial velocity at 8D.](image)

![Figure 7. Comparison of power curves between upstream and downstream fans.](image)

5. Conclusion

1. 5D series fans spacing, with the increase of axial distance, axial velocity first decreased and increased. because the incoming wind speed through the fan, part of the energy was absorbed and converted into electrical energy, and because of the turbulent wake field existed, the rotation of the fan would produce strong turbulence phenomenon and the phenomenon of wake vortex, the fluid in the wake field exchanged energy continuously, and the axial velocity gradually recovered until the incoming wind speed was restored.

2. 5D series fans spacing, with the increase of axial distance, the amplitude and frequency of the radial velocity and tangential velocity fluctuate gradually until it was stable; the amplitude and frequency fluctuation of the tangential velocity were the largest at 3D, and were the minimum at 8D. the amplitude and frequency fluctuation of the radial velocity were the largest at 5D, and were the minimum at 3D.

3. 5D series fans spacing, the simulation experiment was basically the same as the experimental results. The overall experimental value of axial velocity was larger than the simulation value, and the simulation speed first rose, which was caused the actual operating environment of the wind farm. The velocity values at the center of each section of the simulated value and the experimental value were basically the minimum. With the axial distance increased, the velocity at the center of the hub gradually
increased, and the velocity change was most obvious at the 3D section. The magnitude of the axial velocity with the same section and different angles was basically the same in the simulation experiment, and the axial velocity fluctuated greatly. With the increase of the axial distance, the velocity fluctuation gradually alleviated.

4. 5D series fans spacing, the power of the downstream fan was 59.09%~78% of the upstream fan power. because the superposition of the upstream fan wake, which had a large influence on the output power of the downstream wind fan. Therefore, in the actual planning of the wind farm, the downstream fans should not be completely arranged in the wake field of the upstream fans.

Acknowledgement
The work was supported by National Natural Science foundation of China (No.54675354) and National Natural Science foundation of China (No.51665052).

References
[1] Zhou Xiaolan. Wind power: the industry ushered in an inflection point and bidding online started in an all-round way[J]. Energy, 2018(06):16
[2] Xu Liqiu, Lan Yi et al. Development, operation and maintenance of wind power industry and lubrication status of equipment[J]. Lubricating Oil, 2018,33(05):6-15.
[3] Cheng Ping, Huang Yang et al. Calculation and analysis of performance of pneumatic wake field of fan under the influence of tower shadow[J]. Hydrodynamics Research and Progress (A Series), 2018,33(05):545-551.
[4] Yang Rui, Zhang Zhongyi et al. Experimental study on three-dimensional wake field of tandem wind fan[J]. Journal of Lanzhou University of Technology, 2017,43(5).
[5] Gustavo S.Böhme, Eliane A. Fadigas, André L.V.Gimenes, Carlos E.M. Tassini. Wake effect measurement in complex terrain – A case study in Brazilian wind farms[J]. Energy 161(2018)277-283.
[6] Mike T.van Dijk, Jan-Willem van Wingerden, Turaj Ashuri, Yaoyu Li. Wind Farm Multi-Objective Wake Redirection for Optimizing Power Production and Loads[J]. Energy. 2017.
[7] Alfredo Peña, Kurt Schaldemose Hansen, SØren Ott, and Maarten Paul van der Lana. On wake modeling, wind-farm gradients, and AEP predictions at the Anhalt wind farm[J]. Wind Energy. Sci. 3, 191-202, 2018.
[8] Liu Qingqing, Wang Huajun et al. Optimization of Wind Farm Layout Based on Wake Effect in Low Wind Speed Region[J]. Science Technology and Engineering, 2018,18(1):34-39.
[9] Li Pin, Wang Dongsheng et al. Simulation of wake flow field in a single wind turbine [J]. Dongfang Steam Turbine, 2018.04.013.
[10] Ai yong, Cheng ping et al. Numerical simulation of wake flow field of staggered two fans based on actuating line model[J]. Ocean Engineering. 2018,36(01):27-36.
[11] Bin LOU, Shangjun YE, Gaofeng WANG, Zhilong HUANG. Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration[J]. Applied Mathematics and Mechanics (English Edition), 2019,40(01):1-12.
[12] Rajabu J. MANGARA, Zhenhai GUO, Shuanglin LI. Performance of the Wind Farm Parameterization Scheme Coupled with the Weather Research and Forecasting Model under Multiple Resolution Regimes for Simulating an Onshore Wind Farm[J]. Advances in Atmospheric Sciences, 2019,36(02):119-132.
[13] LUN Kun, YUAN RenYu, DONG XueQing, WANG JianWen, ZHANG SanXia, FAN JianRen, NI MingJiang, CEN KeFa. Large-eddy simulation and experimental study on the turbulent wake flow characteristics of a two-bladed wind turbine[J]. Science China (Technological Sciences), 2017,60(12):1861-1869.
[14] Zheng shun Cheng, Puyang Zhang. Characteristic Aerodynamic Loads and Load Effects on the Dynamics of a Floating Vertical Axis Wind Turbine[J]. Transactions of Tianjin University, 2017,23(06):555-561.
[15] O Eriksson, J Lindvall, S-P Breton, S Ivanell. Wake downstream of the Lillgrund wind farm - A Comparison between LES using the actuator disc method and a Wind farm Parametrization in WRF[J]. Journal of Physics: Conference Series,2015,625(1).

[16] H Olivares-Espinosa, S-P Breton, C Masson, L Dufresne. Turbulence characteristics in a free wake of an actuator disk: comparisons between a rotating and a non-rotating actuator disk in uniform inflow[J]. Journal of Physics: Conference Series,2014,555(1).

[17] Fitch, Anna C, Olson, Joseph B, Lundquist, Julie K. Parameterization of Wind Farms in Climate Models[J]. Journal of Climate,2013,26(17).

[18] Fitch, Anna C, Olson, Joseph B, Lundquist, Julie K, Dudhia, Jimy, Gupta, Alok K, Michalakes, John, Barstad, Idar. Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model[J]. EN,2012,140(9).

[19] H. Sarlak, T. Nishino, L.A. Martínez-Tossas, C. Meneveau, J.N. Sørensen. Assessment of blockage effects on the wake characteristics and power of wind turbines[J]. Renewable Energy,2016,93.

[20] Siri Kalvig, Eirik Manger, Bjørn Hjertager. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements[J]. Journal of Physics: Conference Series,2014,555(1).

[21] H. Sarlak, C. Meneveau, J.N. Sørensen. Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions[J]. Renewable Energy,2015,77.