This paper proposes an accurate, computationally efficient, and spectrum-free formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind our approach is to apply a \((r,r) \)-degree Padé–Chebyshev rational approximation to the solution of the heat diffusion equation. The proposed formulation is equivalent to solve \(r \) sparse, symmetric linear systems, is free of user-defined parameters, and is robust to surface discretization. We also discuss a simple criterion to select the time parameter that provides the best compromise between approximation accuracy and smoothness of the solution. Finally, our experiments on anatomical data show that the spectrum-free approach greatly reduces the computational cost and guarantees a higher approximation accuracy than previous work.

© 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
heat equation. This spectrum-free formulation converts the heat equation to a set of sparse, symmetric linear systems and the resulting computational scheme is independent of the evaluation of the Laplacian spectrum, the selection of a specific subset of eigenpairs, and multi-resolution prolongation operators. Our approach has a linear computational cost, is free of user-defined parameters, and works with sparse, symmetric, well-conditioned matrices. Since the computation is mainly based on numerical linear algebra, our method can be applied to any class of Laplacian weights and any data representation (e.g., 3D shapes, multi-dimensional data), thus overcoming the ambiguous definition of multi-resolution and prolongation operators on point-sampled or non-manifold surfaces. Bypassing the computation of the eigenvectors related to small eigenvalues, which are necessary to correctly recover local features of the input shape or signal, the spectrum-free computation is robust with respect to data discretization. As a result, it properly encodes local and global features of the input data in the heat diffusion kernel. For any data representation and Laplacian weights, the accuracy of the heat smoothing computed through the Padé–Chebyshev approximation is lower than 10⁻⁸, where \(r = 5.7 \) is the degree of the rational polynomial, and can be further reduced by slightly increasing \(r \). Finally (Section ‘Results and Discussion’), our experiments on surfaces and volumes representing anatomical data show that the spectrum-free approach greatly reduces the computational cost (from 32 up to 164 times) and guarantees a higher approximation accuracy than previous work.

Previous work

Let us consider the heat equation \((\partial_t + \Delta)F(t, \cdot) = 0 \), \(F(., 0) = f \), on a closed, connected manifold \(\mathcal{M} \) of \(\mathbb{R}^3 \), where \(f : \mathcal{M} \rightarrow \mathbb{R} \) defines the initial condition on \(\mathcal{M} \). The solution to the heat equation \((\partial_t + \Delta)F(p, t) = 0 \), \(F(., 0) = f \), is computed as the convolution \(F(p, t) := \mathcal{K}(p, \cdot) * f \) between the initial condition \(f \) and the heat kernel \(\mathcal{K}(p, q) := \sum_{n=0}^{\infty} \exp(-\lambda_n t) \phi_n(p)\phi_n(q) \). Here, \(\{(\lambda_n, \phi_n)\}_{n=0}^{\infty} \) is the Laplacian eigensystem \(\Delta \phi_n = \lambda_n \phi_n, \lambda_n \leq \lambda_{n+1} \).

The heat equation is solved through its FEM formulation [20] on a discrete surface \(\mathcal{M} \) (e.g., triangle mesh, point set) of \(\mathcal{M} \). Indicating with \(\mathbf{L} \), the Laplacian matrix, which discretizes the Laplace–Beltrami operator on \(\mathcal{M} \), the “power” method applies the identity \((\mathbf{K}_{m/m})^n = \mathbf{K} \), where \(m \) is chosen in such a way that \(t/m \) is sufficiently small to guarantee that the approximation \(\mathbf{K}_{m/m} \approx (1 - \frac{t}{\mathbf{L}}) \) is accurate. Here, \(\mathbf{I} \) is the identity matrix. However, the selection of \(m \) and its effect on the approximation accuracy cannot be estimated a-priori. In [17,18], the solution to the heat equation is computed through the Euler backward method \((\mathbf{L} + 1)\mathbf{F}_{t+1}(t) = \mathbf{F}_t(t) \), \(\mathbf{F}_0 = \mathbf{f} \). The resulting functions are over-smoothed and converge to a constant map, as \(k \rightarrow +\infty \). Krylov subspace projection [19], which replaces the Laplacian matrix with a full coefficient matrix of smaller size, has computational and memory bottlenecks when the dimension \(k \) of the Krylov space increases, still remaining much lower than \(n \) (e.g., \(k \approx 5 \kappa \)).

Once the Laplacian matrix has been computed, we evaluate its spectrum and approximate the heat kernel by considering the contribution of the Laplacian eigenvectors related to smaller eigenvalues, which are computed in superlinear time [21]. Such an approximation is accurate only if the exponential filter decays fast (e.g., large values of time). Otherwise, a larger number of eigenpairs is needed and the resulting computational cost varies from \(O(kn^2) \) to \(O(n^3) \) time, according to the sparsity of the Laplacian matrix. Furthermore, the number of eigenpairs is heuristically selected and its effect on the resulting approximation accuracy cannot be estimated without computing the whole spectrum. Finally, we can apply multi-resolution prolongation operators [13] and numerical schemes based on the Padé–Chebyshev polynomial [22,15]. However, previous work has not addressed this extension, convergence results, and the selection of the optimal scale.

Discrete heat diffusion smoothing

Let us discretize the input shape as a triangle mesh \(\mathcal{M} \), with vertices \(\mathcal{P} := \{\mathbf{p}_i\}_{i=1}^{n} \), which is the output of a 3D scanning device or a segmentation of a MRI acquisition of an anatomical structure. Let \(\mathbf{L} := \mathbf{B}^{-1} \mathbf{L} \) be the Laplacian matrix, where \(\mathbf{L} \) is a symmetric, positive semi-definite matrix and \(\mathbf{B} \) is a symmetric and positive definite matrix. On triangle meshes, \(\mathbf{L} \) is the Laplacian matrix with cotangent weights [23,24] or associated with the Gaussian kernel [25], and \(\mathbf{B} \) is the mass matrix of the Voronoi [18] or triangle [26] areas. For any class of weights, the Laplacian matrix \(\mathbf{L} \) is uniquely defined by the couple \((\mathbf{L}, \mathbf{B}) \) and is associated to the generalized eigensystem \((\mathbf{X}, \Lambda) \) such that

\[
\begin{align*}
\mathbf{LX} &= \mathbf{BX}, \quad \mathbf{X}^T \mathbf{BX} = \mathbf{I}, \\
\mathbf{X} := [x_1, \ldots, x_n], \quad \Lambda := \text{diag}(\lambda_i)_{i=1}^{n},
\end{align*}
\]

where \(\mathbf{X} \) and \(\Lambda \) are the eigenvectors’ and eigenvalues’ matrices. From the relation (1), we identify the identities \(\mathbf{B}^{-1} \mathbf{L} = \mathbf{X} \Lambda \mathbf{X}^T = \mathbf{X} \Lambda \mathbf{X} \mathbf{B} \) and \(\mathbf{B}^{-1} \mathbf{L}^f = (\mathbf{X} \Lambda \mathbf{X}^T \mathbf{B})^f = \mathbf{X} \Lambda (\mathbf{X} \mathbf{B}) \ldots (\mathbf{X} \mathbf{B}) \Lambda \mathbf{X} \mathbf{B} = \mathbf{X} \Lambda \mathbf{X} \mathbf{B}. \quad i \in \mathbb{N}.
\]

Then, the spectral representation of the heat kernel is

\[
\begin{align*}
\mathbf{K}_i &= \exp(-i \mathbf{L}) = \sum_{i=0}^{\infty} (-i)^i \mathbf{B}_{-i}^{1-i} = (2 \mathbf{X} \mathbf{D} \mathbf{X}^T \mathbf{B}, \\
\mathbf{D} &:= \text{diag}(\exp(-i \lambda_i))_{i=1}^{n}.
\end{align*}
\]

For a signal \(f : \mathcal{M} \rightarrow \mathbb{R}, \mathbf{f} := \{f(\mathbf{p}_i)\}_{i=1}^{n} \), sampled at \(\mathcal{P} \), the solution \(\mathbf{F}(t) = \mathbf{K} \mathbf{f}, \mathbf{F}(t) := \{ F(\mathbf{p}_i, t)\}_{i=1}^{n} \), to the heat equation \((\partial_t + \mathbf{L}) \mathbf{F}(t) = 0, \mathbf{F}(0) = \mathbf{f} \), is achieved by multiplying the heat kernel matrix \(\mathbf{K}_i := \exp(-i \mathbf{L}) \) with the initial condition \(\mathbf{f} \). Applying the Padé–Chebyshev approximation to the exponential of the Laplacian matrix in Eq. (3), we get

\[
\begin{align*}
\mathbf{K}_i \mathbf{f} &\approx \mathbf{z}_0 \mathbf{f} + \sum_{i=1}^{r} \mathbf{z}_i (\mathbf{L} + \theta \mathbf{B})^{-1} \mathbf{B} \mathbf{f} = \mathbf{z}_0 \mathbf{f} + \sum_{i=1}^{r} \mathbf{g}_i,
\end{align*}
\]

and the vector \(\mathbf{K}_i \mathbf{f} \) is the sum of the solutions of \(r \) sparse linear systems

\[
(\mathbf{L} + \theta \mathbf{B}) \mathbf{g}_i = -\mathbf{z}_i \mathbf{B} \mathbf{f}, \quad i = 1, \ldots, r.
\]

We briefly recall that the weights \(\{z_i\}_{i=1}^{r} \) and nodes \(\{\theta_i\}_{i=1}^{r} \) of the Padé–Chebyshev approximation (4) are precomputed for any polynomial degree [27]. Each vector \(\mathbf{g}_i \) is calculated as a mini-
mum norm residual solution [28], without pre-factorizing the matrices L and B. Algorithm 1 summarizes the main steps of the proposed computation.

Algorithm 1. Spectrum-free heat kernel smoothing.

Require: A noisy map $f : P \to \mathbb{R}$, $f := (f(x))_{x \in P}$.
Ensure: A smooth approximation $f(t) = K_t f$ of f.
1: Select the value of t (e.g., optimal value, Section ‘Discrete heat diffusion smoothing’).
2: for $i = 1, \ldots, r - 1$
3: \hspace{1em} Compute $g_i : (iL + \theta_i B)g_i = -\varphi_i Bf$.
4: end for
5: Approximate $K_t f$ as $z_0 f + \sum_{i=1}^r g_i$.

According to Varga [29], the L_2 approximation error between the exponential map and its rational polynomial approximation $	ilde{c}_r(t) = z_0 + \sum_{i=1}^r x_i (t - \theta_i)^{-1}$ is bounded by the uniform rational Chebyshev constant σ_r, which is independent of r and lower than $10^{-\tau}$. Assuming exact arithmetic, the approximation error is bounded as

$$\|K_t f - \tilde{c}_r(tL)f\|_2 = \left[\sum_{i=1}^r \exp(-i \lambda_i) - \tilde{c}_r(i \lambda_i)\right]^2 \|\tilde{f}\|_2^{1/2} \leq \sigma_r \|\tilde{f}\|_2 \leq 10^{-\tau} \|\tilde{f}\|_2.$$

(6)

In particular, selecting the degree $r := 7$ in Eq. (6) provides an error lower than $10^{-\tau}$, which is satisfactory for the approximation of $K_t f$ on 3D shapes. Iterative solvers of sparse linear systems are generally efficient and accurate for the computation of the diffusion smoothing; for several values of t, a factorization (e.g., LU) of the coefficient matrix of the linear systems can be precomputed and used for their solution in linear time.

Optimal time parameter

Among the possible time parameters, we select a value that provides a small residual $\|F(t) - f\|_2$ and a low value of the penalty term $\|F(t)\|_2^2$, which controls the smoothness of the solution. Rewriting these two functions in terms of the Laplacian spectrum as

$$\left\{\frac{\|F(t) - f\|_2}{\|f\|_2^2} = \sum_{i=1}^n (1 - \exp(-2 \lambda_i t))^2 \left|\frac{\tilde{f}(x_i)}{\|\tilde{f}\|_2}\right|^2 \right\} \right.$$

(7)

the residual and penalty terms are increasing and decreasing maps with respect to t, respectively. If t tends to zero, then the residual becomes null and the smoothness term converges to the energy $\|f\|_2$. If t becomes large, then the residual tends to $\|f\|_2$ and the solution norm converges to $\|\tilde{f}\|^2_2$. Indeed, the plot of $\epsilon(t)$ is L-shaped [30] and its corner provides the optimal regularization parameter, which is the best compromise between approximation accuracy and smoothness (Fig. 1a).

In previous work, the evaluation of the L-curve is computationally expensive, as it generally involves the evaluation of the Laplacian spectrum and/or the solution of a linear system with slowly converging iterative solvers. Through the Padé-Chebyshev approximation, we have an efficient way to evaluate the map $\epsilon(t)$ for several values of t, thus precisely estimating the optimal time parameter. In fact, the terms in Eq. (7) are evaluated by applying the Padé-Chebyshev approximation of $K_t f$ and computing $\|F(t) - f\|_2$ and $\|F(t)\|_2$. In this way, we avoid the evaluation of the spectral representations (7) through the computation of the Laplacian spectrum.

Results and Discussion

We consider the solution $K_t e_i$ to the heat diffusion process, whose initial condition takes value 1 at the anchor point p_i and 0 otherwise. For our tests on triangle meshes, we have selected the linear FEM weights [26,21]. In this case [15], the discretization of the $L_2(\mathcal{M})$ inner product is induced by the matrix B, which is intrinsic to the surface \mathcal{M} and is adapted to the local sampling through the variation of the triangles’ or Voronoi areas. In the paper examples, the level-sets are associated with iso-values uniformly sampled in the range of $\epsilon(t)$.

![Fig. 1](image)

(a) L-curve and ℓ_∞ discrepancy. (a) Optimal parameter and corresponding diffusion smoothing (upper right—Padé-Chebyshev approximation of degree $r = 7$) on the noisy 3D shapes of the teeth. (b) Error $\epsilon_\infty := \|K_t - K_t^{(k)}\|_\infty$ (y-axis) between the Padé-Chebyshev approximation ($r := 7$) of K_t and its truncated spectral approximation $K_t^{(k)}$ with k eigenpairs ($k \leq 10^3$, x-axis), and different values of t.
the solution to the heat equation, whose minimum and maximum are depicted in blue and red, respectively. Furthermore, the color coding represents the same scale of values for multiple shapes. Noisy examples have been achieved by adding a 20% Gaussian noise to the input shapes.

Truncated spectral and Padé–Chebyshev approximations

For the truncated spectral approximation $F_k(t) = \sum_{i=1}^{k} \exp(-\lambda_i t) f(x_i) x_i$, of the solution to the heat equation, the number k of eigenpairs must be selected by the user and the approximation accuracy cannot be estimated without extracting the whole spectrum. The different accuracy (Fig. 1b) of the truncated spectral approximation and the Padé–Chebyshev method of the heat kernel is analyzed by measuring the ℓ_∞ approximation error (y-axis) between the spectral representation of the heat kernel K, computed using a different number k (x-axis) of eigenfunctions, and the corresponding Padé–Chebyshev approximation. For small values of t, the partial spectral representation requires a large number k of Laplacian eigenvectors to recover local details. For instance, selecting 1K eigenpairs the approximation error remains higher than 10^{-2}; in fact, local shape features encoded by K are recovered for a small t using the eigenvectors associated with high frequencies, thus requiring the computation of a large part of the Laplacian spectrum. For large values of t, increasing k strongly reduces the approximation error until it becomes almost constant and close to zero. In this case, the behavior of the heat kernel is mainly influenced by the Laplacian eigenvectors related to the eigenvalues of smaller magnitude. Indeed, the spectral representation generally requires a high number of eigenpairs without achieving an accuracy of the same order of the spectrum-free approximation through the Padé–Chebyshev method.

Robustness to noise and sampling

Figs. 2–4 compare the diffusion smoothing of a noisy data set computed with the Padé–Chebyshev approximation of degree $r = 7$ and the truncated approximation with k Laplacian eigenpairs. A low number of eigenpairs oversmooth the shape details; increasing k reconstructs the surface noise. The ℓ_∞ error between (a) and the smooth approximation of (b) is lower than 1% for (c) the Padé–Chebyshev method and (d) varies from 12% ($k = 100$) up to 13% ($k = 1K$) for the truncated spectral approximation.

On irregularly-sampled and noisy shapes (Figs. 5 and 6), the spectrum-free computation provides smooth level sets, which are well-distributed around the anchor point p, and remain almost unchanged and coherent with respect to the original shape. A higher resolution of P improves the quality of the level-sets of the canonical basis function, which are always...
uniformly distributed around the anchor (black dot). Finally, an increase of the noise magnitude does not affect the shape and distribution of the level sets.

We also compare the accuracy of the heat kernel on the unitary sphere and computed with (i) the proposed approach; (ii) the spectral representation of the heat kernel K_t, with k eigenpairs; (iii) the Euler backward method; and (iv) the power method (Section ‘Previous work’). For all the scales (Fig. 7), the approximation accuracy of the Padé–Chebyshev method is higher than the truncated Laplacian spectrum with k eigenpairs, $k = 1, \ldots, 10^3$, the Euler backward method, and the power method. Reducing the scale, the accuracy of the Padé–Chebyshev remains almost unchanged while the other methods are affected by a larger discrepancy and tend to have an analogous behavior ($t = 10^{-4}$). Finally, the Euler backward method generally over-smooths the solution, which converges to a constant map as $k \to +\infty$, and the selection of m with respect to the shape details is guided by heuristic criteria.

Numerical stability

According to Section ‘Discrete heat diffusion smoothing’, the scale t influences the conditioning number of the coefficient
matrices \((tL + hB)\), \(i = 1, \ldots, r\), which are generally well-conditioned, as also confirmed by our experiments (Fig. 8). While previous work requires to heuristically tune the number of selected eigenpairs to the chosen scale, the Padé–Chebyshev approximation has a higher approximation accuracy, which is independent of the selected scale. Furthermore, those scales close to zero would require a larger number of eigenpairs, thus resulting in a larger computational cost for the truncated spectral approximation.

Computational cost

Approximating the exponential map with a (rational) polynomial of degree \(r\), the evaluation of the solution to the heat diffusion equation and the evaluation of the heat kernel \(K_t(\cdot, \cdot)\) at \(\{tL + 0B\}_{i=1}^h\), for different time parameters \(t\); the indices of the coefficients \(\{\theta\}_{i=1}^h\) are reported on the \(x\)-axis.

![Image](image1.png)

Fig. 8 Numerical stability of the Padé–Chebyshev approximation. With reference to Fig. 4, conditioning number \(\kappa_2\) (\(x\)-axis) of the matrices \(\{(tL + 0B)\}_{i=1}^h\), for different time parameters \(t\); the indices of the coefficients \(\{\theta\}_{i=1}^h\) are reported on the \(x\)-axis.

Teeth surf. (Fig. 3)	Brain (Fig. 5)						
\(n\) (K)	Eigs	Cheb.	\(\times\)	\(n\) (K)	Eigs	Cheb.	\(\times\)
10	39.01	0.32	122	20	99.77	0.61	164
50	154.13	2.50	62	50	189.02	2.08	91
80	188.21	4.12	46	100	299.20	4.98	60
100	307.03	6.21	49	200	658.11	11.20	59
200	450.21	10.03	45	400	850.11	18.21	47
500	670.31	21.11	32	500	1001.11	32.11	78

![Table 1](image2.png)

Table 1 Timings (in seconds) for the evaluation of the heat kernel on 3D shapes with \(n\) points, approximated with \(k = 500\) eigenpairs (Eigs) and the Padé–Chebyshev approximation (Cheb.). Column ‘\(\times\)’ indicates the number of times the computational cost is reduced. Tests have been performed on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory.

Conclusions and future work

We have presented an efficient computation of the diffusion soothing of medical data and the selection of the optimal scale, which provides the best compromise between approximation accuracy and smoothness of the solution. As future work, we foresee a specialization of the spectrum-free computation and the selection of the optimal time parameter for the analysis of brain structures and the smoothing of MRI images.

Conflict of interest

The author declares no conflict of interest.
Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Acknowledgments

Special thanks are given to the anonymous Reviewers for their valuable comments, which helped us to improve the presentation and content of the paper. This work has been partially supported by the Project “Methods and Techniques for the Development of Innovative Systems for Modeling and Analyzing Biomedical Data for Supporting Assisted Diagnosis” and the FAS Project I-REUMA, PO CRO Programme, European Social Funding Scheme, Regione Liguria.

References

[1] Alvarez L, Lions P-L, Morel J-M. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 1992;29(3):845–66.
[2] Morel J-M, Catté F, Lions P-L, Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 1992;29(1):182–93.
[3] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12(7):629–39.
[4] Spira A, Kimmel R, Sochen N. A short-time Beltrami kernel for smoothing images and manifolds. Trans Image Process 2007;16(6):1628–36.
[5] Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface smoothing via anisotropic diffusion of normals. In: Proc. of the conference on visualization, 2002. p. 125–32.
[6] Witkin AP. Scale-space filtering. In: Proc. of the intern. joint conference on artificial intelligence, 1983. p. 1019–22.
[7] Bajaj CL, Xu G. Anisotropic diffusion of subdivision surfaces and functions on surfaces. ACM Trans Graph 2002;22:4–32.
[8] Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. ACM Siggraph 1999:325–34.
[9] Chung MK, Robbins SM, Dalton FKM, Davidson CRJ, Alex AL, Evans AC. Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 2005;25:1256–65.
[10] Wang G, Zhang X, Su Q, Chen J, Wang L, Ma Y, et al. A heat kernel based cortical thickness estimation algorithm. In: MBIA, Lecture Notes in Computer Science, vol. 8159; 2013. p. 232–45.
[11] Rustamov RM. Multiscale biharmonic kernels. Comput Graph Forum 2011;30(5):1521–31.
[12] Rustamov RM. Interpolated eigenfunctions for volumetric shape processing. Vis Comput 2011;27(11):951–61.
[13] Vaxman A, Ben-Chen M, Gotsman C. A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans Graph 2010;29(4):1–10.
[14] Lafon S, Keller Y, Coifman RR. Data fusion and multicue data matching by diffusion maps. IEEE Trans Pattern Anal Mach Intell 2006;28(11):1784–97.
[15] Patané G. wFEM heat kernel: discretization and applications to shape analysis and retrieval. Comput Aid Geomet Des 2013;30(3):276–95.
[16] Kobbelt L, Campagna S, Vorsatz J, Seidel H-P. Interactive multi-resolution modeling on arbitrary meshes. In: ACM Siggraph, 1998. p. 105–14.
[17] Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In: IEEE visualization, 2000. p. 397–405.
[18] Desbrun M, Meyer M, Schröder P, Barr AH. Implicit fairing of irregular meshes using diffusion and curvature flow. In: ACM Siggraph, 1999. p. 317–24.
[19] Zhang F, Hancock ER. Graph spectral image smoothing using the heat kernel. Pattern Recogn 2008;41(11):3328–42.
[20] Allaire GG. Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation. In: Numerical mathematics and scientific computation. Oxford University Press; 2007 [Incorporated].
[21] Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Comput Graph Forum 2008;27(2):251–60.
[22] Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 2011;30(2):129–50.
[23] Alexa M, Wardetzky M. Discrete Laplacians on general polygonal meshes. ACM Trans Graph 2011;30(4).
[24] Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates. In: SIAM, CBMS-NSF regional conference series in applied mathematics, 1990.
[25] Belkin M, Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods. J Comput Syst Sci 2008;74(8):1289–308.
[26] Reuter M, Wolter F-E, Peinecke N. Laplace–Beltrami spectra as shape-DNA of surfaces and solids. Comput Aid Des 2006;38(4):342–66.
[27] Carpenter AJ, Ruttan A, Varga RS. Extended numerical computations on the 1/9 conjecture in rational approximation theory. In: Rational approximation and interpolation. Lect Notes Math, vol. 1105. Berlin (Heidelberg): Springer; 1984. p. 383–411.
[28] Golub G, VanLoan GF. Matrix computations. 2nd ed. John Hopkins University Press; 1989.
[29] Varga RS. Scientific computation on mathematical problems and conjectures. In: SIAM, CBMS-NSF regional conference series in applied mathematics, 1990.
[30] Hansen PC, O’Leary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 1993;14(6):1487–503.