Chapter 14
Modernities, Sciences, and Democracy

Sandra Harding

The “modern” in “modern science” is a relatively uninterrogated and untheorized concept within the sciences and in the philosophy, sociology, and history of science. This is so today at a time when other aspects of Western sciences have been fruitfully explored in critical and illuminating ways (see Christensen and Hansen, Chap. 13; and Skovsmose, Chap. 15). In particular, the exceptionalism and triumphalism characteristic of Western attitudes toward our sciences have been explicitly criticized and purportedly abandoned by many of the scholars working in science studies fields. By exceptionalism is meant the belief that Western sciences alone among all human knowledge systems are capable of grasping reality in its own terms – that these alone have the resources to escape the human tendency to project onto nature cultural assumptions, fears, and desires. By triumphalism is meant the assumption that the history of science consists of a history of achievements – that this history has no significant downsides. According to this view, Hiroshima, environmental destruction, the alienation of labour, escalating global militarism, the increasing gap between the “have” and the “have nots,” gender, race, and class inequalities – these and other undesirable social situations are all entirely consequences of social and political projects, to which the history of Western sciences makes no contribution. Such conventional Eurocentric assumptions can no longer gather the support either in the West or elsewhere that they could once claim.

In recent decades a huge amount of literature on modernity has emerged from the social sciences and humanities. Stimulated by the massive shifts in local and global social formations during the last half of the Twentieth Century, and by the post-modern response to such changes, social theorists, literary and other cultural critics, and, especially, historians have debated the uneven and complex origins, nature, and desirable futures of modernity, modernization, and modernism. Such controversies about modernity are first and foremost about a culture’s relation to its past and its possible futures. They arise as ways of asking what went wrong, and

Reprinted from Social Philosophy Today, Vol. 22 (2007) Ed. John Rowan, with permission of the author and The Philosophy Documentation Center (Charlottesville, VA, USA).

S. Harding
University of California, Los Angeles, USA

O. Skovsmose et al. (eds.), University Science and Mathematics Education in Transition, 301
© Springer Science+Business Media LLC 2009
what needs to be corrected. The last half a century has witnessed the global decline and fall of belief in the unquestionably legitimate authority of the white, bourgeois, male. Contributing to the epistemological, economic, political, and cultural rubble left by his demise – or, at least, deflation – have been compelling and influential counter-histories of social relations between the races, classes, genders, and within colonial and imperial eras.

In light of such extensive recent discussions of modernity and its woes, one might wonder whether yet another engagement with the topic could be worthwhile. I think there are two reasons to do so. Most of these accounts do not have modern science and technology clearly in focus, nor do they seem to think that gender relations are relevant to either modernity’s crisis or its possible successor. First, the science and technology issue. When these authors are from the humanities or classical social theory and its successors in the West, and whether they are politically on the Right, Left, or Centre, science and technology are usually to be found off at the periphery of such accounts. Modernity for them is about exclusion of the influence of religion and kinship in forms of government and citizenship, economy, and education, and about a shift from past to future in social orientation. Such exclusion makes the creation of autonomous, rational institutions, including those of value-free modern science and, consequently social progress possible. Since these scholars are largely unfamiliar with the critiques of exceptionalist and triumphalist science indicated above, they often treat modern sciences as if they played no role in whatever economic, social and political ills lead them to question modernity.

Yet interrogating what is meant by the modernity of Western sciences, and what have been the consequences and will be the likely futures of commitments to modernity in scientific institutions, their cultures and practices, is a more important intellectual and political task than such accounts reveal or comprehend. Such a project poses frustrating questions, which challenge familiar ethical and political assumptions, and even seem critical of the psychic framework that well-intentioned academics bring to such a project. Do we have the right to try to answer such questions? Can we, especially those of us who are U.S. citizens, contribute to creating the polycentric democratic political spaces, in Egyptian economist Amin’s (1997) phrase, called for by so many critics of the West’s modernity who want to encourage the design and emergence of desirable successors to the West’s global hegemony? On the other hand, what are the consequences of our neglecting to engage such issues?

A small handful of critics and defenders of modernity, its political realities and promises, have directly focused on the natural sciences and their technologies. In today’s world, they ask, do Western sciences promote or retard the growth of the democratic social relations and social progress, which have been taken to be distinctive marks of modernity? Some have argued that these sciences and their philosophies in some respects actually block important directions in the growth of scientific knowledge and toward social progress – though they have different visions of social progress. Here I look at the consideration of these issues by three such critics of modernity who focus on the sciences: the French ethnographer and philosopher of science Latour (1993), the German sociologist Beck (1992, 1999), and the Indian science studies intellectual Nandy (1988).
The analyses of these three are especially interesting in several respects. First, I selected each to represent a distinctive focus in science studies. Latour is an ethnographer and philosopher, one of the founders and continuing contributors to mainstream European-American science studies. Beck brings a background in the German environmental movement and in sociological theory to thinking about science’s role in “risk society.” Nandy has been a continuing contributor to postcolonial science studies and especially to its critique of the disastrous recent effects of Western sciences in the Third World. Second, while all are critics of modernity, all find postmodernism an unattractive alternative. Third, all three argue that science has become a kind of governance which illegitimately bypasses democratic processes. However, fourth, in contrast to postmodern critics of modernity and of philosophies of modern science, all three are optimistic about the possibilities for transforming the sciences into ones that are politically accountable for their practices and consequences and can contribute to social progress, and that are epistemologically less “underdeveloped.” All three call for more science, though they want different kinds of sciences than those favoured in the contemporary West. They each strategise about how to democratise science in the service of a radically democratized social order, and how to do so by strengthening and expanding the reach of the scientific impulse. This set of commitments and projects makes it difficult to categorize any of them as having fully modern or fully postmodern commitments.

There is one more feature shared by all three. They are all gender blind – the second reason to critically examine the assumptions and promises of modernity and of its possible successors. Yet accounts of modernity from the social sciences and cultural studies reveal that gender relations are something like the proverbial 800-pound gorilla standing in the living room of modernity but invisible to all but feminist scholars. In ignoring gendered aspects of both their objects of study and of their own accounts, all three deeply undermine the chances of success of their own projects. Those of us concerned with social justice need for their projects to succeed, so this lacuna requires attention.

The first section below outlines a few dimensions of current debates over modernity. The following ones sketch out main claims of these three theorists. Section 5 suggests that these theorists’ relations to modernity are even more complex than they have acknowledged in that their criticisms are themselves enlivened, for both better and worse, by central projects of the modern ethos, which presumably they would reject. The final section briefly identifies some of the gender issues that these and other participants in debates about modernity, science, and political theory need to address.

14.1 What Counts as Modern?

To begin, “modern” can refer to a temporal era such as the one following the European medieval era, or it can refer to substantive constituents of a society, its structures, practices, and discursive commitments or worldview (Wittrock, 2000).

The temporal notion currently is used in the West with three distinct referents. For philosophers and many historians of science, modern science begins with the
scientific revolution of Copernicus, Galileo, Boyle, Harvey and Newton, and modern philosophy begins with Hobbes and Descartes. The early modern philosophers often engaged with implications of the new features of the world which new sciences such as astronomy revealed, and they thought about the shifts in European social formations which they were experiencing. They thought about the new experimentalism in the sciences, and about the new science movements of their day (Van den Daele, 1977; Shapin and Schaffer, 1985).

Yet some historians of science would date the emergence of fully modern sciences later, in the bourgeois revolutions of the Eighteenth Century and the industrial revolution of the late Eighteenth and early Nineteenth Century. They are concerned especially with the increasing power of scientific technologies. Modernization theorists, who produce the second kind of temporal notion of modernity, draw especially on this kind of history of science. Those concerned with modernizing traditional societies, for example in the Third World development policies of national and international agencies and institutions after the Second World War, always focus on transferring to underdeveloped societies, as they were characterized, Western scientific and technological rationality in manufacturing, health care, agriculture and other economic sectors. They take Western forms of modernization to be the only ones, as did their Nineteenth Century forerunners such as Marx, Durkheim, and Weber. For such theorists, as well as for some of their critics, modernization is identical to Westernization. Modernization means Western modernization, and science refers only to Western science.¹ Like Nineteenth Century theorists of modernity such as Marx, Durkheim, and Weber, modernization theorists have expected a gradual homogenization of global societies as Western forms of modernity disseminate around the globe. By now, those Third World development policies are widely criticized for further immiserating the majority of the world’s poorest citizens whom such policies were supposed to benefit (Amin, 1997; Sachs, 1992; Escobar, 1995). Feminist work has been an important part of this critique, (Mies, 1986; Shiva, 1989; Sparr, 1994). Moreover, while modernity is now a global condition shaping how all societies engage with the world around them (Wittrock, 2000), the expected homogenization of societies around the world has not occurred (Amin, 1997; Eisenstadt, 2000).

Finally, for literary and cultural theorists, modernism is the late Nineteenth and early Twentieth Century movement which follows romanticism. T.S. Eliot, James Joyce, Picasso and Seurat are modernists. This literary and cultural movement has been the focus of what is perhaps the most developed analyses of the gender of modernity (e.g., Felski, 1995; Jardine, 1985), though particular aspects of modernity have long been the topic of feminist sociologists and political theorists. “Postmodernism,” also, can refer to any one of these three eras. No wonder discussions of “the modern” among people from different disciplines can get confusing.

Deciding just when such temporal eras begin and end, however, requires the specification of substantive criteria of the modern, which some particular era does or does not meet. Thus the temporal notion collapses into or depends upon the

¹ Yet see Skovsmose’s interesting discussion (Chap. 15).
disputed substantive criteria (Wittrock, 2000). Substantive conceptions focus on the emergence of a differentiated social structure with independent political, economic, religious/moral, educational (including scientific) and family structures, and such democratic institutions as representative government and a free press. They usually centre the presence of a secular worldview, the idealization of universal instrumental rationality, and a social orientation toward the future rather than toward the past. They also include several kinds of contradictory tendencies, such as the insistence on universal reason, yet also recognition and even toleration of the pluralism of rationalities, and a critical and self-critical attitude along with severe restrictions on the appropriate targets of such criticisms. And these substantive conceptions contain unarticulated tensions such as the promotion of a continuing global dissemination of the modern alongside tacit approval of a continual reconstitution of modernity’s other, the traditional – a point to which we return. (Eisenstadt, 2000; Wittrock, 2000).

This is the kind of complex and conflicted background against which Latour, Beck, and Nandy undertake their critiques of modernity and their examinations of the tensions between scientific practices and philosophies, on the one hand, and particular modern projects, on the other hand. This background enables them to revise modern sciences in illuminating ways. It also enables us to understand their work somewhat differently from how they understand it.

14.2 Latour: Where Is a Science for Our World of Hybrids and Networks?

Latour argues that modernity and its sciences have an ontology problem. They conceptualize our knowledge of nature as separate from matters of our interests, of justice, and of power, though it is in fact inseparable.

On page six [of my daily newspaper], I learn that the Paris AIDS virus contaminated the culture medium in Professor Gallo’s laboratory; that Mr. Chirac and Mr. Reagan had, however, solemnly sworn not to go back over the history of that discovery; that the chemical industry is not moving fast enough to market medications which militant patient organisations are vocally demanding; that the epidemic is spreading in sub-Saharan Africa […] [H]eads of state, chemists, biologists, desperate patients and industrialists find themselves caught up in a single uncertain story mixing biology and society.

(Latour, 1993, pp. 1–2)

We live in an incommensurable mix of nature, politics, and discourse. Yet no one seems to find this [story] troubling. Headings like Economy, Politics, Science, Books, Culture, Religion and Local Events remain in place as if there were nothing odd going on. The smallest AIDS virus takes you from sex to the unconscious, then to Africa, tissue cultures, DNA and San Francisco, but the analysts, thinkers, journalists and decision-makers will slice the delicate network traced by the virus for you into tidy compartments where you will find only science, only economy, only social phenomena, only local news, only sentiment, only sex… By all means, they seem to say, let us not mix up knowledge, interest, justice and power. Let us not mix up heaven and earth, the global stage and the local scene,
the human and the nonhuman. “But these imbroglios do the mixing,” you’ll say, “they weave our world together!” “Act as if they didn’t exist,” the analysts reply. (Latour, 1993, pp. 2–3)

Latour argues that the world we experience consists of networks linking aspects of nature, cultural legacies, states and nations, agencies, institutes, corporations, official and unofficial policies, de facto practices, mechanisms and other artefacts, and even deities. Reality consists of such hybrid networks. Yet modernity requires a representation of reality consisting only of images of purified objects. It delinks nature from culture, appropriate policies and practices from deities, and it delinks agencies, institutes and corporations from mechanisms and other material artefacts. Modernity, its epistemologies, philosophies of science, and its sciences represent a world of broken networks and dismembered hybrids that is not the one in which we live or about which we want explanations. Its sciences are intentionally isolated from the reality that needs explanation, and that practice itself is a culturally distinct one. We do not live in the modern world that the epistemologies and philosophies of science of modernity imagine in their claims to transcend cultural values. We, and our sciences, have never been modern, he proclaims. He implies that we, and our sciences, are as historically specific, as much in the thrall of our own culturally shaped reality, as any other culture and its knowledge-system.

Where, Latour asks, are sciences of these networks and hybrids? Not in the laboratories or field sites. Rather such sciences have been developed in the disciplines of science studies, he argues. Its histories, sociologies, ethnographies, and textual studies of moments in the history of Western sciences focus on the relations between knowledge-seeking and the social, cultural, economic, political and even psychic projects of an era (e.g., Biagioli, 1999). Latour is not a fan of feminist contributions to this field, but they have been significant (e.g., Braidotti et al., 1994; Haraway, 1989, 1991; Harding, 1986, 1991, 2003). Moreover, we can note, though Latour does not, that, such studies have been expanded by postcolonial scholars to include scientific, instead of triumphalist and Eurocentric, investigations of other cultures’ knowledge-systems and of relations between the knowledge projects of the West and those of other cultures. While Latour appears to be unaware of the increasingly large literature with just such a focus that has been developing in these extensions of science studies over the last three decades (Harding, 1998a; Hess, 1995; Petitjean et al., 1992; Sachs, 1992; Sardar, 1988; Selin, 1997), he is nevertheless critical of the West’s traditional negative attitude toward other cultures. And his account opens the door to understanding the necessity of re-evaluating other cultures’ knowledge-systems, though he does not himself step through that door or, more likely, even see the value of such a move.

Latour does not wish to abandon the West’s Enlightenment project, in contrast to some other critics of Western philosophies of science. Instead, he proposes that we redefine the Enlightenment to exclude its vision and practices of modernity. Thus he is opposed to both the illusion and what he understands as the ideal of modernity. However, he is not anti-modern, he says, since the modern never has
Latour proposes that we think instead in terms of the “a-modern.” More competent sciences as well as the political work of constructing democratic social relations both require reuniting aspects of the world which modernity keeps sundered. “Half of our politics is constructed in science and technology. The other half of Nature is constructed in societies. Let us patch the two back together, and the political task can begin again” (p. 144). The project will be difficult. But “[t]he task of our predecessors was no less daunting when they invented rights to give to citizens or the integration of workers into the fabric of our societies” (p. 145).

Thus Latour links failures of the modern political project to failures of its knowledge project, though he is vague about just what the former project and its failures have been. Advancing democratic social relations as well as restoring the environment, another important political project, both require a scientific study of kinds of objects around us that modernity has banished from view. It is the recently emerging field of science studies that has developed the resources to engage in such work, he argues. Such studies bring systematic scientific assumptions and methods to the description and explanation of the hybrids and networks that constitute reality.

In a later book Latour illuminatingly expands his criticism of the standard conceptual framework of modern sciences, which he delineated in the 1993 study. He also takes on the task of trying to redefine “the political,” recognizing that if sciences and what we know of nature are inevitably infused with social and political assumptions, interests, and desires, then revising science requires revising politics also. I recommend the part of this book on the faulty standard philosophy of science, but I think that the way he develops “the political” is excessively contained by distinctively French commitments to “republican democracy.” At least he understands the need to take on such a project.

14.3 Beck: The Incomplete First Modernity of Industrial Society

Ulrich Beck argues that a “risk society” has emerged alongside modernity’s industrial society. Modern sciences and technologies have enabled industrial society to create terrifying global risks. Now we live in a context of generalized
employment insecurity. We fear the kind of economic crises that have sunk national economies virtually overnight. We fear pandemics such as AIDS, SARS, or Asian Bird Flu which can quickly spread around the world with little warning, little possibility of immunity, and often few known remedies. New kinds of environmental destruction seem daily to threaten our lives and the natural resources upon which human life depends. Damaging forms of radiation, whether from armaments, power plants, or work sites, seem impossible to predict let alone to eliminate or control. “Everywhere pollutants and toxins laugh and play their tricks like devils in the Middle Ages. People are almost inescapably bound over to them. Breathing, eating, dwelling, wearing clothes – everything has been penetrated by them” (Beck, 1992, p. 73). Little appears to be known about the effects of genetically modified foods, yet it seems impossible to stop agribusiness from producing and selling them. And there are the dangers from second-hand smoke, mad cow disease, urban crime and violence, the unregulated global firearms trade, and a host of other contemporary phenomena – including, now, biological, chemical, and military terrorism – all of which are enabled through modernity’s sciences and technologies. However isolated from cultural, social, and political influences scientists may imagine their work to be, the consequences of their work today are always already embedded in cultural, social, economic, and political possibilities for those with the power to turn such possibilities into actualities.

Who is to blame? Everyone and thus no one seem responsible for these risks. No one is held accountable for them. It is impossible to prove with a reasonable degree of certainty that the toxic industry upstream, the tobacco industry, or agribusiness’s use of pesticides and chemical fertilizers was responsible for a particular pattern of increased cancer rates, or that blame for urban violence or terrorism should be placed on the hugely expanded, profitable, and minimally regulated arms industry. Scientific technologies seem out of control politically. Thus we all seem doomed to have to continue to countenance these increased threats to life and health. We live in an environment of manufactured uncertainties and institutional irresponsibility.

Beck argues that this risk society is not the consequence of failures of modern industrial societies but of their successes. Beck’s question is “How can the risks and hazards systematically produced as part of modernization be prevented, minimized, dramatized or channelled?” (p. 19). Modern sciences, their epistemologies and philosophies of science have permitted the development of only semi-modern societies, he proposes. Moreover, these sciences and their philosophies are not likely to look kindly on the kinds of transformations necessary to make possible fully-modern societies and their more self-critical, reflexive, sciences. They will resist those developments of sciences that stand a chance of eliminating or even diminishing the extent and power of the risk society. The problem is that modern sciences profit too much from risk society. “[S]cience is one of the causes, the medium of definition, and the source of solutions to risks, and by virtue of that very fact it opens up new markets of scientization for itself” (p. 155). The actual and perceived threats of the risk society are created by modern sciences and their
technologies. However, it is also modern scientific and technological experts who are asked to analyze and measure for us these risks. Finally, it is just such experts who are then called upon to “solve” the threats of the risk society. The risk society is knowledge-dependent. Thus modern sciences and technologies are profiteers dependent upon their monopoly on the production of truths, and thus on the continuation of the very risks their epistemologies and philosophies of science made possible in the first place. Here is another way in which we can see how science has become a form of governance, a way of “ruling” our lives. Decisions that will affect how we live (and die!) are made on scientific and technological grounds that bypass the democratic processes to which political decisions are supposed to be subjected.

How are we to escape this dreadful scenario? Beck’s solution calls for completing the modernity, which he argues industrial society only began. He conceptualizes the present moment as a break or shift in modernity. The risk society is the consequence of incomplete modernization.²

We have experienced only the first, industrial modernity, he argues. Only more strongly reflexive practices can open up scientific and technological decisions to appropriate democratic rule. We need the second, reflexive, modernity that can provide more extensive scientific knowledge seeking, broader rationality and greater objectivity. By “reflexive” he means here self-critical.

A “democratization of democracy” is needed, he argues. Beck pointed out why we should expect resistance to such an opening up of decision making. Yet he has another insight, which leads him to be optimistic about the possibility of such a transformation: it can occur through the expansion of science. There are three ways in which such a process is already under way, he points out. One is the dissemination of the scientific attitude and practices into the systematic study of sciences and technologies themselves: the development of “sciences of science” in the field of critical science and technology studies. This is one way in which the production of scientific knowledge has escaped the monopoly of laboratory and field scientists. Scientists do not and should not be given the “last word” on the nature of their own enterprise, the culture of science in which they are the natives. After all, one could point out, they always recommend against such a practice with respect to other groups of natives. Beck cites Latour’s work as an example of this kind of critical science and technology studies – while disagreeing with Latour’s claim that “we

²Here one could argue against Beck that the risk society is the result of a central failure of modernity, namely its restrictions on the modern project, its imposed limits on the scientific impulse, and its devaluation of the ethics and politics of science. Beck could respond that he means to point to how the modern project restricted its own goals to precisely the kinds of successes which have produced these problems.
have never been modern” (Beck, 1999, pp. 150–152). We need a reflexive modernity, he argues, one that can scientifically describe, understand, and explain its own principles and practices, which industrial modernity cannot.

A second way in which the risk society itself has inadvertently expanded scientific practice is that it makes us all participate in the production of reliable knowledge. We must do so because the first modernity proliferates experts who continually disagree with each other. “…[E]xperts dump their contradictions and conflicts at the feet of the individual and leave him or her with the well intentioned invitation to judge all of this critically on the basis of his or her own notions” (Beck, 1992, p. 137). Consequently, “science becomes more and more necessary, but at the same time, less and less sufficient for the socially binding definition of truth” (p. 156). Are smoking and second-hand smoke harmful or not? Do vitamins and herbal remedies improve our health and longevity? Which ones and how many should we take? Should we increase our intake of fish, since fish oils seem to provide protection against various forms of cancer, or decrease the amount of fish in our diet since fish seem to pass on environmental toxins? Should we take the radiation and chemotherapies recommended by Western biomedicine to stop the growth of cancers, or the herbal remedies recommended by German pharmacologists? Will the benefits of genetically modified foods outweigh their risks? Is global warming increasing, and if so what should we do about it? The proliferation of conflicting expert opinions on such topics requires that each of us must figure out how to make informed decisions about our own nutrition, health, and safety and that of our children and other dependents. We are forced to become part of the production of scientific knowledge. The production of scientific knowledge escapes the monopoly of scientist experts in this second way.

A third expansion of science can be found in the new emphasis on the importance of everyday experience to the formation of new scientific questions. Beck refers to this as a “science of questions.” We can note, though he does not, that daily experience comes in different social forms for the rich and the poor, for men and women, for colonizers and their objects of colonization. Thus the new social movements representing the oppressed groups in these dichotomies have produced important new questions for scientific research; they have produced sciences for oppressed groups, rather than primarily to serve the interests of militarists, profiteers, colonizers, and male supremacists – an issue to which we shall return.

All three cases of the expansion of scientific processes contribute to a democratization of science in which previously inaccessible political processes are made observable. Like Latour, Beck inveighs against the division of the world into nature, culture, and discourses. There is no pure nature or pure culture, let alone disembodied and de-cultured representations of either. Like Latour, Beck also rejects postmodernisms since they simply abandon the crises of the risk society:

A new kind of capitalism, a new kind of economy, a new kind of global order, a new kind of society and a new kind of personal life are coming into being […] This is not “post modernity” but a second modernity […]”

(Beck, 1999, p. 2)
Where most postmodern theorists are critical of grand narratives, general theory and humanity, I remain committed to all of these, but in a new sense. To me the Enlightenment is not a historical notion and set of ideas but a process and dynamics where criticism, self-criticism, irony and humanity play a central role [... My notion of “second reflexive modernity” implies that we do not have enough reason [...] in a new postmodern meaning to live and act in a Global Age [...] of manufactured uncertainties.

(Beck, 1999, p. 152)

Like Latour, Beck is also optimistic. Needed transformations of the first modernity’s sciences and social relations are already underway. Beck’s social theory is more robust and comprehensive than Latour’s; it provides more clues to how and where progressive transformations can and, perhaps, are already occurring. This project is pursued in later books, and especially in *The Reinvention of Politics: Rethinking Modernity in the Global Social Order* (Beck, 1997).

Beck’s controversial writings have had great influence on German and European social theory. He has also been criticized on a number of grounds, most notably for underestimating the continuing power of class (Draper, 1993; New 1994), especially in global contexts, for essentializing science and failing to sufficiently analyze its political/economic content (Boyd, 1993), for conflating the reality and the perception of risk, and for regarding as general a situation which is more distinctive to Germany than to other parts of the world. He has also been charged with overemphasizing the rift between a first and second modernity, and for taking the ideology of modern science for its reality. He responds to some of these criticisms directly in the last chapter of *Word Risk Society* (Beck, 1999), and indirectly in such other writings (see, e.g., Beck, 1997). Whatever the limitations of his account, he has conceptualized in provocative ways important questions about how contemporary science functions as a kind of governance of our daily lives behind the back, so to speak, of democratic political processes. He also offers alternatives to both the current politics of modernity and its sciences and to postmodernism’s fatalism. He points to valuable ways in which scientific expertise is already escaping the monopoly of natural scientists.

Both Beck and Latour mention science and Western modernity in their global contexts, and criticize Western attitudes toward other cultures. Indeed, Beck’s 1999 book focuses on this topic. Yet neither exhibits the kind of deep grasp of this issue that can be found in postcolonial science and technology theorists. There are deep differences between various tendencies in this now rich literature, (see, e.g., Harding, 1998a, 1998b and Hess, 1995 for overviews of central themes in these writings, and Harding, 2006, 2008 for further discussion of such issues). Yet Ashis Nandy articulates some themes common to most of them.

14.4 Ashis Nandy and Postcolonial Science and Technology Studies

Postcolonial science and technology studies have produced a distinctive vision of modern Western sciences and their philosophies. The origins of this field can be found in attempts to re-evaluate objectively – that is, outside the familiar Eurocentric
exceptionalist and triumphalist framework – indigenous scientific and technological traditions in ex-colonized societies. It can also be found in criticisms of the imperial and neo-colonial character of the new Third World development policies in the 1950s, and the role of Western sciences and technologies in such policies and subsequent practices. Development was from the beginning conceptualized as the transfer of Western sciences and technologies, and their distinctive rationality, to the so-called underdeveloped societies. Thus the practices and philosophies of Western sciences and technologies would be implicated in the successes and failures of Third World development. This point has been virtually invisible to Western philosophies of science, which still focus for the most part on what happens in laboratories in Europe and the United States. These postcolonial science and technology studies emerged as a distinctive field in English-language writings by the early 1980s, and so have now accumulated more than two decades of books, articles, journals, conferences, manifestos, websites, and a significant presence in ongoing projects of United Nations organizations as well as other national and international institutions and agencies. There has always been at least a sprinkling of Western activists and scholars involved in these projects.3

Meanwhile, studies of “multiple modernities” have appeared (Daedalus, 2000). Interestingly, modern sciences and technologies, Western or not, are barely mentioned in this work. Yet many of its assumptions and arguments also appear in postcolonial science and technology studies. One shared point is that modernity is not the same as Westernisation. At least some non-Western societies are clearly modern, with differentiated social institutions, multiple political parties, representative government, a free press, or some combination of these, as well as highly developed technology and science sectors (consider, for example, India and South Korea). Yet they look very different from modern Western societies. Often their sciences look different, for they overtly combine elements of modern Western sciences and of traditional knowledge systems, including their local values and interests. Many of the elements the theorists of modernity presumed were requisite for modernization are missing in these cases. For example, they often do not give up central elements of their traditional identities. Their sciences are often openly infused with traditional religious and cultural assumptions and projects.4 Thus, in spite of increasing global economic, political, and cultural linkages, global

3 A few of the important works here are Brockway (1979), Groonatilake (1984), Haraway (1989), Headrick (1981), Hess (1995), Joseph (1991), Kochhar (1992–93), Lach (1977), McClellan (1992), Nandy (1988), Needham (1954), Petitjean et al. (1992), Philip (2003), Prakash (1999), Reingold and Rothenberg (1987), Sabra (1976), Sachs (1992), Sardar (1988), Selin (1997), Shiva (1989), Third World Network (1988), Watson-Verran, and Turnbull (1995). See also Harding (1998a).

4 I say “openly” in contrast to the widespread but unacknowledged permeation of Christian assumptions in European/U.S. sciences and their philosophies, as historians of science point out. (Needham, 1969; Noble, 1992; 1995) And, of course, Western sciences and their philosophies also contain distinctively Western economic, political and social assumptions beyond the religious ones.
homogenization has not been the consequence of the dissemination of modernization, its sciences and their rationality. Instead we have a world of “indigenous modern knowledge systems.” Indeed, Latour and Beck, like the postcolonial theorists, both identified distinctively Western features of Western modernity’s sciences. Are these “incomplete modernities” (Ortiz, 2000) or simply different modernities? Does regarding them as incomplete invariably retain Western standards for modernity?

Here the focus will be on just one leading figure in the postcolonial science studies debates, the Indian psychologist and science theorist and activist, Ashis Nandy. His discussion of Western modernity’s sciences expresses kinds of criticism widely articulated in the various streams of postcolonial science and technology studies. Nandy’s work has made him a well-known and controversial intellectual in India as well as in the West. *The Intimate Enemy: Loss and Recovery of Self Under Colonialism* (Nandy, 1983) is the book most familiar to Westerners. He is the author or editor of some 13 other books, including one on racism in the West, reflections on Adorno and Marcuse, on environmentalism in India, and many other topics. In most of these writings he has focused on knowledge systems. As one observer puts his main point:

> How is it, as Nandy has asked, that the notions of modernity, science, development, and instrumental rationality have come to predominate in our understanding and ordering of the modern world, and what have been the consequences of imposing, largely through the mechanisms of colonialism, nationalism (the purported opposite of colonialism), and now the nation-state, these supposedly natural categories, upon the entire world?

(Lal, 2000, p. 7)

With this background in mind, I focus here on the particular issues he raises in his essay *Science as Reason of State* (1988). These bring into focus some themes shared with Latour and Beck’s criticisms of science and modernity and some that are distinctive to postcolonial science studies.

In this essay Nandy focuses on the fact that the Indian Government developed modern sciences and technologies, after the end of British colonisation, as a way of claiming the power and potential global influence of the Indian state. India saw the establishment of state-of-the-art scientific and technological institutes and the training of huge numbers of Indian scientists and engineers as the way for India to excel at activities highly valued by and politically advantageous to the West, and to insert itself into the highest level of global politics.

Today India has the third largest scientific and technological workforce in the world. Large segments of it are located in “off-shore” research elsewhere in Asia for U.S. corporations, in “silicon Valley” in California, in U.S. and European university science departments, and other science and technology sites in the West.

Nandy points out that like the space programs in the U.S., the Indian science and technology initiative clearly had military and commercial benefits. Also like the space programs, it also served nationalism, increasing the global status of the Indian state. Such a triumph justifies the means through which it was achieved which could not stand the scrutiny of democratic processes. That is, this state project was not the result of the democratic political processes to which the Indian
government is supposedly committed. The status of science and technology was used as an excuse for the Indian state to install political programs – science and technology programs – that bypassed democratic decision processes. Science became a ‘reason of state.’ But Nandy is not just making another ‘external’ criticism of modern science. Instead he asks what it is about modern science itself that permits it to invite the state to develop and use scientific knowledge outside democratic processes. He is concerned not only about modern science as practiced in India, but also in the West, of course.

This question about the nature of science is a crucial one, Nandy argues. Through the application of scientific and technological expertise justified by appeals to social progress, violence is permitted around the globe against nature, cultures, and the Third World. Purportedly progressive scientific and technology projects destroy the environments upon which the world’s poorest citizens directly depend for their daily subsistence, and upon which all of us, and the generations following, depend. They deny cultures’ democratic participation in decisions that have powerful effects upon their living conditions.

Modern science has the capacity within it to sustain a culture of science, which is incompatible with democratic governance as well as with the democratic rights of those who are turned into the subjects of modern science and technology.

(Nandy, 1988, p. 10)

Scientific projects produce a massive silence about the future of the Third World, which is being further immiserated through the practices and consequences of scientific and technological projects. He argues that in the imagination of Western states and their scientific and technological thinking, apparently the Third World is to be discarded. It is to exist for the extraction of raw materials, to serve tourism, as the recipient of toxic industries and toxic dumps, and as a source of labour in such projects there and to meet labour needs in the West, (see also Amin, 1997). We can add that it also serves as a consumer of the Western arms industry. Perhaps “exploited” is more accurate than “discarded” to characterize a segment of the world that is part of global networks so vital to Western interests; nevertheless, Nandy’s point is well taken.

Particularly disturbing to Nandy is “[…] the manner in which the link between science and violence in India has been strengthened by forces within the culture of Indian science, forces which in other cultures of science in some other parts of the world have been either less visible or less powerful” (p. 6). The Indian science establishment,

[…]on its own initiative, has taken advantage of the anxieties about national security and the developmental aspirations of a new nation to gain access to power and resources […] The privileged among Indian scientists have often been the most vigorous critics of civil rights group struggling for protection against the hazards of a callous nuclear establishment. (p. 6)

Thus it was not some totalitarian external power that forced the scientific establishment to state agendas. Rather, the scientific community used state and popular anxieties to advance its own status.
Nandy calls for the “repoliticization” of science. By this he means the establishment of an ongoing political audit of the effects of science projects by those external to the sciences and to the states at issue.

[T]he intellectual challenge is to build the basis of resistance to militarisation and organised violence, firstly by providing a better understanding of how modern science or technology is gradually becoming a substitute for politics in many societies, and secondly by defying the middle-class consensus against bringing the estate of science within the scope of public life or politics. (p. 10)

In this respect, protest movements and their critical science studies writings can help to make “every man his own scientist” – to democratise decisions about what kinds of scientific and technological knowledge to seek and who will receive the benefits and bear the costs of such projects. India needs to re-examine and reedit its own scientific traditions, incorporating aspects of Western sciences where desirable. Similarly, Western societies need to engage in such a project with respect to their own traditions.

India and other Third World societies could provide models for the West in this respect, Nandy argues. India has had some six centuries of interaction with the West, two of which were as colonies of England. It has a deep familiarity with Western knowledge systems as well as, of course, with its indigenous systems.

[…] the Indic civilisation today, because it straddles two cultures, has the capacity to reverse the usual one-way procedure of enriching modern science by integrating within it significant elements from all other sciences – pre-modern, non modern and postmodern – as a further proof of the universality and syncretism of modern science. Instead of using an edited version of modern science for Indian purpose, India can use an edited version of its traditional sciences for contemporary purposes. (p. 11)

Thus India, “by virtue of its bicultural experience, manages to epitomize the global problem of knowledge and power in our times” (p. 11). Its strategies for resisting the substitution of science for politics by democratizing science and technology, and for strengthening a modernity which is not identical to Western modernity, can serve as an important model or social experiment for Western societies.

14.5 Still Modern, Still Traditional

Each of these theorists of modernity and its sciences has drawn to our attention distinctive aspects of the current crisis. Each criticises the limitations of the modernity and its sciences that we have had. Each criticises the inability of postmodernism to provide solutions to these limitations. Each focuses on the tensions between the commitments of Western societies to democratic processes of governance, on the one hand, and, on the other hand, the authoritarian ways that scientific and technological decisions are made, decisions that “govern” our lives in powerful ways. Each calls for democratizing science in the sense of extending critical scientific
practices to the examination of sciences themselves, and providing an “audit” of which groups bear the costs and which receive the benefits of the practices and consequences of particular scientific projects. Each proposes ways to transform, update for the present world, and democratize modernity and its sciences, while Nandy also suggests that such projects in the Third World can serve as models for the Western ones. All three are optimistic about the possibilities for successfully engaging in such immensely challenging projects.

One could argue that the ways in which these theorists relate their concerns to issues about modernity, pro and con, are not the most important or valuable parts of their rich analyses for those interested in relations between systems of knowledge and of democratic governance. This may be so. Yet I suggest that because issues about how a culture thinks about modernity are issues about its relation to its past and to possibilities for the future, we should resist the temptation to dismiss the modernity issues as irrelevant to the scientific and political projects of these theorists. Moreover, it is interesting to note that the relationship of their accounts to modernity remains more complex than their pronouncements about it acknowledge.

14.5.1 Still Modern

For one thing, in several significant senses of the term all three of these analyses are fully inside modernity’s program. Of course Beck already frames his analysis as demonstrating the need for an even more completely modern program than the first modernity, industrial modernity, embraced. And Nandy calls for multiple modernities. As several commentators on Nandy’s work have pointed out, Nandy’s relation to modernity is far more complex than a simple rejection or affirmation can convey (Lal, 2000). Yet all three theorists’ projects can be understood as centrally modern ones in more conventional ways. This becomes clear once we keep firmly in mind the insistence of Nandy as well as of others that modernization does not have to – indeed, should not – mean only Westernisation (see, for example, Philip, 2003; Prakash, 1999; Eisenstadt, 2000).

Consider how all three accounts exhibit a good part of the classical set of substantive characteristics of modernity indicated earlier. All three emphasize the importance of active, human agency in transforming the sciences we have. All appeal

5It is useful to refer to this extension of critical scientific practices as ‘politicizing science’ by returning issues of governance to the realm of public discussion and political decision. Yet it would be as reasonable to refer to the processes by which scientific institutions come to monopolise scientific and technical decisions that have political consequences as the politicisation of science. Such processes surreptitiously redefine as merely scientific or technical issues fundamental political issues of how we shall live our lives, who shall receive the benefits and who bear the costs of scientific and technological work, which, incidentally (for financing is not the main issue here), is itself financially supported by the citizenry. The scientific monopolisation of what are fundamental political issues removes from the public realm discussion of how we shall be governed. I borrow this point from Proctor’s (1988) discussion of how the Nazis politicized science.
to the reasonableness, the rationality, of their proposals as a motivation for voluntary action. All three stress the importance of bringing the sciences and their philosophies under the control of commitments to a rational and democratic social order. Thus all three are committed to social progress. All three call for an expansion and intensification of science’s self-critical attitude and practices, specifying distinct aspects of science that need criticism. All articulate a historical consciousness, insisting on conceptions of sciences as fully inside not only the conventional intellectual histories, but also social, cultural, economic, and political histories.

Moreover, from its origins modernity has promoted pluralism and protest movements. All three specifically assert the value of multiple, culturally distinctive sciences. And all are engaged in precisely the kind of protest, and protest movements, that have been prominent in the history of modernity (whether or not one fully agrees with the agendas of these movements). Furthermore, all three contribute to contemporary struggles over the appropriate definition of the realm of the political. Contrary to the standard view that politics occurs only in and about formal governmental structures, these theorists argue that expert scientific decisions are inherently political, for they disenfranchise those groups which don’t count as experts from participating in decisions about the basic conditions of their lives – conditions which determine whether they will live or die.

Finally, one could argue that all three represent an unfortunate, but not accidental, tendency in modernity in that they ignore women’s issues and, in particular, women’s relation to modernity and its sciences. They treat women as if they existed outside the realm of the social and political. In their accounts we could be forgiven for thinking that perhaps women are just a natural phenomenon. And these theorists are writing not in the Nineteenth Century when they would have had to struggle to produce the kinds of feminist analyses which emerged three decades ago, but in the 1990s, when gender analyses are to be found virtually every day in the newspapers and other media. This is not to say that these authors have no appreciation at all of feminist work. Indeed Latour gestures to Donna Haraway’s work, Nandy has voiced support for some feminist issues, and Beck evidences a most fulsome appreciation of the political importance of women’s movements (Beck, 1997). Yet none engage with feminist science or modernity critiques; none take women to be agents of the transformations of science of interest to them.

Thus it appears that these three severe criticisms of conventional forms of modernity are still fully within the historical ethic and practice of modernity in a number of ways – a claim to which perhaps none of the three would object. Yet the plot thickens, for it turns out that modernity’s projects are always dependent on the persistence of pre-modern skills and practices.

14.5.2 Still Pre-Modern

The power of appeals to the modern always depend upon the continued discursive construction of its opposite, the traditional. “The modern” is always defined in relation to this partner. Or, to be more precise, modernity continually discursively recreates
the power of the threat of the traditional as its own rationale. This is one way in which modernity does and must continually reproduce the pre-modern as its necessary Other which is both outside it and yet inside its discursive framework.

But it is not the only way. Modernity also hides its reliance on actual pre-modern skills and practices. Modernity cannot make its way in the world without the skilled, “expert” work, one could say, of people who can and will continuously translate, network, or otherwise link modernity’s conceptions and activities to traditional ways of living in and interacting with the world around us. In this way also modernity perpetuates the pre-modern inside itself, so to speak. Or, to put the point another way, modernity can only exist within an unacknowledged cocoon of pre-modern skills and activities. A couple of examples can clarify this issue.

In an earlier essay I argued that if we take the standpoint of the economically and politically most vulnerable women in the Third World – those who have been a main target of First World so-called development aid – we can come to understand an aspect of modern scientific rationality which is hard to see from the perspective of those of us who most benefit from it here in the First World (Harding, 1998b). This is that modern scientific philosophies and modernization practices can only succeed if they continually reproduce social practices which they associate with the pre-modern. Pre-modern cultures and their knowledge-seeking practices are inside modernity and its sciences in this sense.

Consider how this phenomenon became visible to feminists engaged in the debates over women’s work, environmental destruction, and Third World development. Early feminist criticisms of development policies argued that women around the world were being left out of development. The kind of scientific and technological training which made possible greater access to agricultural and manufacturing jobs for export production had been restricted to men. This was because Europeans and Americans in the development agencies and their funders perceived such jobs as men’s work regardless of which gender had performed traditional forms of agricultural and manufacturing labour in Third World societies. Modern production was consistently gendered as masculine. Thus men were drawn into modernized work in distant cities or plantations, leaving women, children, the old and the sick behind to survive on their own largely without benefit of adult male economic or social assistance. The early feminist argument went that women, too, should be educated so that they could access such means of livelihood. Modern work did not have to be gendered. Androcentric development policies were unfairly leaving women behind with access only to pre-modern forms of work and community, and under conditions of deprivation at that.

However, it soon became apparent that there was another story to be told about such development processes. Mies (1986) argued that development policies succeeded, when they did, only because they legitimated the appropriation of both women’s and peasants’ land rights. They did so through processes much like the enclosing of the “commons” in industrializing Europe and the United States in which public grazing and agricultural lands were transferred to private owners. Moreover, the labour of women and peasants was appropriated from subsistence work for their own kin and communities into the capitalist agricultural and manufacturing export
economies favoured by Northern corporations and international agency sponsors. Mies pointed out that the Marxists were wrong; “primitive capital accumulation” had not ended by mid-Twentieth Century, but rather continued through Third World development policies and practices. The families and communities dependent on women’s domestic labour were left even more the responsibility of women alone, who now had to replace through low-paid labour for local and international industries, as well as through sex work and domestic labour far from home, the economic contributions that had been provided to them, their dependents and communities through their work and their men’s work on their own lands.

Thus the claimed social progress of modernization could only be achieved through social regress for women and peasants. Women and peasants lost their pre-modern rights and ways of living, though their pre-modern labour was and remains a necessary part of modern scientific agriculture and manufacturing. Indeed, someone must reproduce the next generation of agricultural and manufacturing labourers. The new forms of pre-modern labour of women and former peasants were created through modernization processes; they are not an anachronistic residue of pre-modern conditions. Beck made a similar point about women’s continuing contemporary “feudal” household labour in the North, modernity transformed a form of oppression and exploitation that existed outside capitalism into a different one that was central to the successes of capitalism (Beck, 1992).

Third World development policies and practices thus exemplified the pattern earlier detected by historians whereby women’s political and economic regress is often an enabling condition for “progress for humanity.” Kelly-Gadol (1976) had drawn attention to the persistence of this phenomenon, focusing in particular on how women consistently lost legal rights, economic power and social status at moments of so-called democratic progress from Fifth Century B.C. Greece through to the European industrial revolution and the Jacksonian era in the U.S. In spite of the benefits “social progress” has brought to some groups of women, on balance women in every class tend to lose social status and material benefits in such processes. Women’s losses thus constitute a “contribution” to so-called human progress.

This reproduction of the pre-modern within modernization processes has now also been described with respect to the introduction of modern sciences and technologies themselves into traditional societies. For example, Japanese philosopher and historian of technology Murata (2003) describes how the creativity of an advanced sector of modern technology has depended upon the restriction to culturally acceptable patterns of the flexible ways it may be interpreted or linked to local practices. One of the most conspicuous characteristics of the modernization process in Japan is the dual structure of its socio-technical network with an advanced sector of modern technology and a parallel domestic sector of traditional technology. The advanced sector functions as if transferred technology guides and determines the way of modernization. In reality, however, the advanced sector interacts with the domestic sector, where traditional technology plays a role of instrumental rationality, decreasing the gap between the two sectors sufficiently that advanced technology becomes adapted to local practices. Through this interaction, the scope of flexivity is restricted, the process is channelled in a certain direction, and rapid and continuous adaptation and development of technology becomes possible, (Murata, 2003, p. 263).
The very abstractness and generality of modernity’s sciences and technologies permit them to be interpreted in many different ways and thus to be practiced, applied, or interpreted in many different cultural contexts. But in each case, such abstract and general principles must be connected to local cultural resources, values, and interests. This task can only be done through pre-modern “craft labour.” In such accounts we can see another way in which the intellectual and social progress achieved by modern scientific and technological rationality in fact depends upon the continued nourishment of pre-modern, traditional local modes of thought and practice within modern practices.

My point here is, first, that it is a mistake to think that modern ways of thinking and acting could ever completely replace pre-modern ways, as the classical modernization theorists supposed. Thus the spread of modernization globally does not have a homogenizing effect on cultures, as the theorists predicted. Rather, the advance of modernization requires the continual culturally local adaptation and realignment of pre-modern thinking and acting. They do not disappear, but rather adjust themselves to “the modern” as they adjust their particular, local part of “the modern” to culturally distinctive values and interests.

Modernity’s commitment to trans-cultural abstractness and generality insures that it can only be practiced in ways pre-modern thinking and practice can interpret. This realization provides yet another reason to question the kind of temporal specification of modern societies, which locate them after traditional ones. Rather, it appears that the former emerge within or alongside traditional societies. Moreover, to the extent that the three science theorists discuss adopting the temporal specification of modernity, they fail to engage with modernity’s persistent and necessary dependence upon tradition skills and practices.

14.5.3 Two Missing Foci

This brings us to two issues under-engaged in these accounts. One is the role already being played by existing practices of social justice movements, such as some environmental movements, anti-racist movements, and feminist movements in developing and putting into practice precisely the programs recommended by these theorists. Of course Nandy speaks from the history and practices of the lively postcolonial science movement and points to its importance in agitating for political audits of science and technology programs. And Beck (1997) emphasizes the importance of environmental movements. Yet critical examinations of the gender of modernity (Felski, 1995; Gole, 2000; Jardine, 1985; Philip, 2003) and of androcentrism in science and technology projects and their philosophies, North and South, are virtually unacknowledged in the thought of all three theorists. (See earlier citations). Gender analyses have charted the distortions and political damages created by the hyper-masculinization of modernity and its scientific and technological projects. Third World feminist criticisms of development policies have specifically focused on their androcentrism as well as their racism, colonialism
and imperialism. These identify how such androcentrism further disempowers not only the half of the Third World constituted by women and girls, but also the other half, the male half, which depends upon the knowledge and labour of women to maintain families, the elderly and sick, and the community relations and resources upon which men and boys depend, as well as to produce cash income. The range and power of gender analyses is too big a topic to pursue further here, but its necessity should be noted. The “modernities” on which Latour, Beck, and Nandy focus are distinctively gendered, and the remedies to their scientific and political limitations must directly engage with these gendered aspects of the democracy to which these theorists aspire.

Another absence from these accounts is recognition of the relatively recent change in the economic status of the production and management of information. This kind of work has moved to the “base” of the global political economy thanks to the development of electronic media, especially the Internet (Castells, 1996). The production and delivery of goods (food supplies, manufacturing components, retail store stocks), as well as scientific research, and international environmental policy are now organized through the Web, e-mail, and cell phones. So are terrorism, criminal activity, and progressive political protests. New configurations of scientific communities have emerged following the 1989 end of the Cold War and the huge migration into expertise-hungry private industry of scientists whom university laboratories no longer had funds to employ (Gibbons et al., 1994; Nowotny et al., 2001). New forms of capitalist production are complicating the traditional understandings of modernity’s rationality in yet further ways (Kleinman and Vallas, 2001). A large-scale map of possible future directions of capitalist expansion and of possible effective forms of resistance to it are required for effective planning for democratic sciences in democratic societies (e.g., Amin, 1997). The West’s prevailing philosophies of science, modernity, and democracy are poorly equipped to enable democratic policies for directing these new social relations. Latour, Beck, and Nandy have provided helpful clues for how we might begin to rethink central aspects of this new production and management of information, but none provide the conceptual resources to grasp such phenomena in maximally inclusive and effective ways.

14.6 Conclusion

In conclusion, there is a tendency among both defenders and critics of modernity in the humanities and in social theory to neglect or undervalue the role that modern sciences have played in advancing modernity and modernization projects, and to misunderstand the relation between the modern and the traditional. Reflecting on

6The relations to feminism of Latour and Nandy deserve more critical assessment than I have here given them, as some readers will be aware. On the other hand, Beck is more eloquent in his overt appreciation for the power of the women’s movements than I have indicated. Nevertheless, he does not engage with their work on science or modernity. He doesn’t see them as making any distinctive contribution to the kind of project he is advancing.
the arguments of these three critics of modernity, Latour, Beck and Nandy, enables us to appreciate how historically specific forms of knowledge-production always are co-constituted with specific forms of governance and of public politics. Today, when the production and management of information have moved to the base of the global political economy, and when sciences’ power to govern behind the back of democratic political processes is at its all-time high, we certainly cannot afford to ignore identifying fully the actual links between scientific practices and democratic principles, nor can we ignore the need to debate in maximally democratic spaces goals and strategies for change. We cannot afford to turn our backs on our own actual and desirable embeddedness in a modernity which has consistently defined itself against the feminine and the traditional, both of which are firmly lodged, and necessarily so, in its very core.

Well-educated students in the sciences and mathematics now need a far richer understanding of how scientific and technological research and practices function in the changing world around us. Conventional philosophies of science, and the science and mathematics education curricula and pedagogy which they still guide, lead us only to an obsession in research with a mythical past that never could, even in principle, deliver the scientific and social benefits it promised.

References

Amin, S. (1997). *Capitalism in the Age of Globalisation: The Management of Contemporary Society*. New York: Zed Books.
Beck, U. (1992). *Risk Society: Towards a New Modernity*. London: Sage.
Beck, U. (1997). *The Reinvention of Politics: Rethinking Modernity in the Global Social Order*. Cambridge, UK: Polity.
Beck, U. (1999). *World Risk Society*. Oxford: Blackwell.
Biagioli, M. (Ed.) (1999). *The Science Studies Reader*. New York: Routledge.
Boyd, W. (1993). Risk Society: Towards a New Modernity. *Economic Geography*, 69(4), 432–436.
Braidotti, R. et al. (1994). *Women, the Environment, and Sustainable Development*. Atlantic Highlands, NJ: Zed.
Brockway, L.H. (1979). *Science and Colonial Expansion: The Role of the British Royal Botanical Gardens*. New York: Academic Press.
Castells, M. (1996–1998). *The Information Age: Economy, Society & Culture* (vol. 1–3). Oxford: Blackwell.
Draper, E. (1993). Risk, Society, and Social Theory. *Contemporary Sociology*, 22(5), 641–644.
Eisenstadt, S.N. (2000). Multiple Modernities. *Daedalus*, 129(1), 1–30.
Escobar, A. (1995). *Encountering Development: The Making and Unmaking of the Third World*. Princeton: Princeton University Press.
Felski, R. (1995). *The Gender of Modernity*. Cambridge, MA: Harvard University Press.
Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P. & Trow, M. (1994). *The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies*. Thousand Oaks: Sage.
Gole, N. (2000). Snapshots of Islamic Modernities. *Daedalus*, 129(1), 91–117.
Goonatilake, S. (1984). *Aborted Discovery: Science and Creativity in the Third World*. London: Zed.
Haraway, D. (1989). *Primate Visions: Gender, Race, and Nature in the World of Modern Science*. New York: Routledge.
Haraway, D. (1991). *Simians, Cyborgs, and Women*. New York: Routledge.
Harding, S. (1986). *The Science Question in Feminism*. Ithaca: Cornell University Press.

Harding, S. (1991). *Whose Science? Whose Knowledge? Thinking from Women’s Lives*. Bloomington: Indiana University Press.

Harding, S. (1998a). *Is Science Multicultural? Postcolonialisms, Feminisms, and Epistemologies*. Bloomington: Indiana University Press.

Harding, S. (1998b). Gender, Modernity, Knowledge: Postcolonial Standpoints. In *Is Science Multicultural? Postcolonialisms, Feminisms, and Epistemologies* (pp. X–XX). Bloomington: Indiana University Press.

Harding, S. (Ed.) (2003). *The Feminist Standpoint Theory Reader: Intellectual and Political Controversies*. New York: Routledge.

Harding, S. (2006). *Science and Social Inequality?: Feminist and Postcolonial Perspectives*. Edwardsville: University of Illinois Press.

Harding, S. (2008). *Sciences from Below: Feminisms, Postcolonialisms, and Modernities*. Durham: Duke University Press.

Headrick, D.R. (Ed.) (1981). *The Tool of Empire: Technology and European Imperialism in the Nineteenth Century*. New York: Oxford University Press.

Hess, D.J. (1995). *Science and Technology in a Multicultural World: The Cultural Politics of Facts and Artifacts*. New York: Columbia University Press.

Jardine, A. (1985). *Gynesis: Configurations of Woman and Modernity*. Ithaca: Cornell University Press.

Joseph, G.G. (1991). *The Crest of the Peacock: Non-European Roots of Mathematics*. New York: I.B.Tauris.

Kelly-Gadol, J. (1976). The Social Relation of the Sexes: Methodological Implications of Women’s History Signs. *Journal of Women in Culture and Society*, 1(4), X–XX.

Kleinman, D.L. & Vallas, S.P. (2001). Science, Capitalism, and the Rise of the ‘Knowledge Worker’: The Changing Structure of Knowledge Production in the United States. *Theory and Society*, 30, 451–492.

Kochhar, R.K. (1992–1993). Science in British India (parts I and II). *Current Science*, 63(11), 689–694; 64, 55–62.

Lach, D.F. (1977). *Asia in the Making of Europe* (vol. 2). Chicago: University of Chicago Press.

Lal, V. (Ed.) (2000). *Dissenting Knowledges, Open Futures: The Multiple Selves and Strange Destinations of Ashis Nandy*. New Delhi: Oxford University Press.

Latour, B. (1993). *We Have Never Been Modern*. Cambridge, MA: Harvard University Press.

McClellan, J.E. (1992). *Colonialism and Science: Saint Domingue in the Old Regime*. Baltimore: Johns Hopkins University Press.

Mies, M. (1986). *Patriarchy and Accumulation on a World Scale: Women in the International Division of Labor*. Atlantic Highlands, NJ: Zed.

Murata, J. (2003). Creativity of Technology and the Modernisation Process of Japan. In R. Figueroa & S. Harding (Eds.), *Science and Other Cultures: Issues in Philosophies of Science and Technology* (pp. X–XX). New York: Routledge.

Nandy, A. (1983). *The Intimate Enemy: Loss and Recovery of Self Under Colonialism*. New Delhi: Oxford University Press.

Nandy, A. (1988) Science as a Reason of State. In A. Nandy (Ed.), *Science, Hegemony, and Violence: A Requiem for Modernity* (pp. X–XX). New Delhi: Oxford University Press.

Needham, J. (1954) *Science and Civilisation in China* (7 vols). Cambridge, UK: Cambridge University Press.

Needham, J. (1969). *The Grand Titration: Science and Society in East and West*. Toronto: University of Toronto Press.

New, C. (1994). Class Society or Risk Society? *Radical Philosophy*, 66(56).

Noble, D. (1992). *A World Without Women: The Christian Clerical Culture of Western Science*. New York: Knopf.

Noble, D. (1995). *The Religion of Technology*. New York: Knopf.

Nowotny, H., Scott, P. & Gibbons, M. (2001). *Re-Thinking Science: Knowledge and the Public in an Age of Uncertainty*. Cambridge, UK: Polity.
Ortiz, R. (2000). From Incomplete Modernity to World Modernity. Daedalus, 29(1), 249–260.
Petitjean, P., Jami, C. & Moulin, A.M. (Eds.) (1992). Science and Empires: Historical Studies About Scientific Development and European Expansion. Dordrecht: Kluwer.
Philip, K. (2003). Civilising Natures: Race, Resources and Modernity in Colonial South India. New Delhi: Orient Longman.
Prakash, G. (1999). Another Reason: Science and the Imagination of Modern India. Princeton, NJ: Princeton University Press.
Proctor, R. (1988). Racial Hygiene: Medicine Under the Nazis. Cambridge: Harvard University Press.
Reingold, Nathan, and Marc Rothenberg, eds. (1987) Scientific Colonialism. Washington: Smithsonian Institution Press.
Sabra, I.A. (1976). The Scientific Enterprise. In B. Lewis (Ed.), The World of Islam. London: Thames and Hudson.
Sachs, W. (Ed.) (1992). The Development Dictionary: A Guide to Knowledge as Power. Atlantic Highlands, NJ: Zed.
Sardar, Z. (Ed.) (1988). The Revenge of Athena: Science, Exploitation, and the Third World. London: Mansell.
Selin, H. (Ed.) (1997). Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Dordrecht: Kluwer.
Shapin, S. & Schaffer, S. (1985). Leviathan and the Air Pump. Princeton: Princeton University Press.
Shiva, V. (1989). Staying Alive: Women, Ecology, and Development. London: Zed.
Sparr, P. (Ed.) (1994). Mortgaging Women’s Lives: Feminist Critiques of Structural Adjustment. London: Zed.
Third World Network (1988). Modern Science in Crisis: A Third World Response. Penang, Malaysia: Third World Network.
Van den Daele, W. (1977). The Social Construction of Science. In E. Mendelsohn, P. Weingart & R. Whitley (Eds.), The Social Production of Scientific Knowledge (pp. X–XX). Dordrecht: Reidel.
Watson-Verran, H. & Turnbull, D. (1995). Science and Other Indigenous Knowledge Systems. In S. Jasanoff, G. Markle, T. Pinch, & J. Petersen (Eds.), Handbook of Science and Technology Studies (pp. 115–139). Thousand Oaks: Sage.
Wittrock, B. (2000). Modernity: One, None, or Many? European Origins and Modernity as a Global Condition. Daedalus, 129(1), 31–60.