Alternating maps on Hatcher-Thurston graphs

Jesús Hernández Hernández

Abstract

Let S_1 and S_2 be connected orientable surfaces of genus $g_1, g_2 \geq 3$, $n_1, n_2 \geq 0$ punctures, and empty boundary. Let also $\varphi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ be an edge-preserving alternating map between their Hatcher-Thurston graphs. We prove that $g_1 \leq g_2$ and that there is also a multicurve of cardinality $g_2 - g_1$ contained in every element of the image. We also prove that if $n_1 = 0$ and $g_1 = g_2$, then the map $\tilde{\varphi}$ obtained by filling the punctures of S_2, is induced by a homeomorphism of S_1.

Introduction

Suppose $S_{g,n}$ is an orientable surface of finite topological type, with genus $g \geq 3$, empty boundary, and $n \geq 0$ punctures. The (extended) mapping class group is the group of isotopy classes of self-homeomorphisms of $S_{g,n}$.

In 1980 (see [4]), Hatcher and Thurston introduce the Hatcher-Thurston complex of a surface, which is the 2-dimensional CW-complex whose vertices are multicurves called cut systems, 1-cells are defined as elementary moves between cut systems, and 2-cells are defined as appropriate “triangles”, “squares” and “pentagons”. See Section 1 for the details. They used this complex to prove that the index 2 subgroup of $\text{Mod}^*(S_{g,n})$ of orientation preserving isotopy classes, is finitely presented. The 1-skeleton of this complex is called the Hatcher-Thurston graph, which we denote by $\mathcal{HT}(S_{g,n})$.

There is a natural action of $\text{Mod}^*(S_{g,n})$ on the Hatcher-Thurston complex by automorphisms, and in [9] Irmak and Korkmaz proved that the automorphism group of the Hatcher-Thurston complex is isomorphic to $\text{Mod}^*(S_{g,n})$. Inspired by the different results in combinatorial rigidity on other simplicial graphs (like the curve graph in [11] and [7], and the pants graph in [1]), we obtain analogous results concerning simplicial maps between Hatcher-Thurston graphs.

Let $S_1 = S_{g_1,n_1}$ and $S_2 = S_{g_2,n_2}$ with $g_1, g_2 \geq 2$ and $n_1, n_2 \geq 0$. A simplicial map $\varphi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ is alternating if the restriction to the star of any vertex, maps cut systems that differ in exactly 2 curves to cut systems that differ in exactly 2 curves. See Section 1 for the details. In Section 2 we prove our first result concerning this type of map:

Theorem A. Let S_1 and S_2 be connected orientable surfaces, with genus $g_1, g_2 \geq 2$ respectively, with empty boundary and $n_1, n_2 \geq 0$ punctures respectively. Let $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ be an edge-preserving and alternating map. Then we have the following:

1. $g_1 \leq g_2$.

2. There exists a unique multicurve M in S_2 with $g_2 - g_1$ elements such that $M \subset \phi(C)$ for all cut systems C in S_1.

A consequence of this theorem is that whenever we have an edge-preserving alternating map $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ (where the conditions of Theorem A are satisfied), we can then induce an edge-preserving alternating map $\varphi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2 \setminus M)$ where M is the multicurve obtained...
by Theorem A, and $S_2 \setminus M$ is connected (due to the nature of Theorem A) and has genus g_1. This means we can focus solely on the case where $g_1 = g_2$. However, due to the nature of $\mathcal{HT}(S_1)$ and the techniques available right now, it is quite difficult to study these maps if $n_1 > 0$, and it is possible to have edge-preserving alternating maps if $n_1 < n_2$ that are obviously not induced by homeomorphisms, e.g., creating $n_2 - n_1$ punctures in S_1.

A way around this particular complication is wondering if this is the only way for the edge-preserving alternating maps to be not induced by homeomorphisms, leading to the following question:

Question B. Let S_1, S_2 and S_3 be connected orientable surfaces, with genus $g \geq 3$, $n_1, n_2 \geq 0$ punctures for S_1 and S_2 respectively, and assume S_3 is closed. Let $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ be an edge-preserving alternating map. Is there a way to induce a well-defined map $\varphi : \mathcal{HT}(S_3) \to \mathcal{HT}(S_3)$ from ϕ by filling the punctures of S_1 and S_2? If so, is φ induced by a homeomorphism?

In Section 3 we answer this question for a particular case. If $\pi_{\mathcal{HT}}$ is the map induced by filling the punctures of S_2, we have the following result:

Theorem C. Let S_1 and S_2 be connected orientable surfaces, with genus $g \geq 3$ and empty boundary, and assume S_1 is closed. Let $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ be an edge-preserving and alternating map. Then

$$\tilde{\phi} := \pi_{\mathcal{HT}} \circ \phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_1)$$

is induced by a homeomorphism of S_1.

This implies that the only way to obtain a map from $\mathcal{HT}(S_1)$ to $\mathcal{HT}(S_2)$ that is edge-preserving and alternating, is to use a homeomorphism of S_1 and then puncture the surface to obtain S_2.

Theorem C is proved by using ϕ to induce maps between the underlying curves of the cut systems, and eventually induce an edge-preserving self-map of the curve graph of S_1 (see Section 3 for the details). Then, by the Theorem A of [7] (the second article of a series of which this work is also a part) we have that said self-map is induced by a homeomorphism.

Later on, in Section 4 we prove a consequence of Theorems A and C concerning isomorphisms and automorphisms between Hatcher-Thurston graphs.

Corollary D. Let S_1 and S_2 be connected orientable surfaces, with genus $g_1, g_2 \geq 2$ respectively, with empty boundary and $n_1, n_2 \geq 0$ punctures respectively. If $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ is an isomorphism, we have that ϕ is an alternating map and $g_1 = g_2$. Moreover, this implies that if $S = S_{g,0}$ with $g \geq 3$, then $\text{Aut}(\mathcal{HT}(S))$ is isomorphic to $\text{Mod}^*(S)$.

We must remark that this work is the published version of the fourth chapter of the author’s Ph.D. thesis (see [5]), and the results here presented are dependent on the results found in [7], which is the published version of the third chapter. There we prove that for any edge-preserving map between the curve graphs of a priori different surfaces (with certain conditions on the complexity and genus of the surfaces) to exist, it is necessary that the surfaces be homeomorphic and that the edge-preserving map be induced by a homeomorphism between the surfaces.

Acknowledgements: The author thanks his Ph.D. advisors, Javier Aramayona and Hamish Short, for their very helpful suggestions, talks, corrections, and specially for their patience while giving shape to this work.
1 Preliminaries and properties

In this section we give several definitions and prove several properties of the Hatcher-Thurston graph. Here we suppose \(S = S_{g,n} \) with genus \(g \geq 1 \) and \(n \geq 0 \) punctures.

A curve \(\alpha \) is a topological embedding of the unit circle into the surface. We often abuse notation and call “curve” the embedding, its image on \(S \) or its isotopy class. The context makes clear which use we mean.

A curve is essential if it is neither null-homotopic nor homotopic to the boundary curve of a neighbourhood of a puncture.

The (geometric) intersection number of two (isotopy classes of) curves \(\alpha \) and \(\beta \) is defined as follows:

\[
i(\alpha, \beta) := \min\{|a \cap b| : a \in \alpha, b \in \beta\}.
\]

Let \(\alpha \) and \(\beta \) be two curves on \(S \). Here we use the convention that \(\alpha \) and \(\beta \) are disjoint if \(i(\alpha, \beta) = 0 \) and \(\alpha \neq \beta \).

A multicurve \(M \) is either a single curve or a set of pairwise disjoint curves. A cut system \(C \) of \(S \) is a multicurve of cardinality \(g \) such that \(S \setminus C \) is connected.

Similarly, a curve \(\alpha \) is separating if \(S \setminus \{\alpha\} \) is disconnected, and is nonseparating otherwise. Note that a cut system can only contain nonseparating curves, and also \(S \setminus C \) has genus zero, thus a cut system \(C \) can be characterized as a maximal multicurve such that \(S \setminus C \) is connected.

Two cut systems \(C_1 \) and \(C_2 \) are related by an elementary move if they have \(g - 1 \) elements in common and the remaining two curves intersect once.

The Hatcher-Thurston graph \(\mathcal{H}(S) \) is the simplicial graph whose vertices correspond to cut systems of \(S \), and where two vertices span an edge if they are related by an elementary move. We will denote by \(\mathcal{V}(\mathcal{H}(S)) \) the set of vertices of \(\mathcal{H}(S) \).

If \(M \) is a multicurve on \(S \), we will denote by \(\mathcal{H}_M(S) \) the (possibly empty) full subgraph of \(\mathcal{H}(S) \) spanned by all cut systems that contain \(M \).

Remark 1.1. Let \(M \) and \(M' \) be multicurves on \(S \) such that neither \(\mathcal{H}_M(S) \) nor \(\mathcal{H}_{M'}(S) \) are empty graphs. Then \(\mathcal{H}_{M'}(S) \subset \mathcal{H}_M(S) \) if and only if \(M' \subset M \). Also, if \(M \) is a multicurve such that \(\mathcal{H}_M(S) \) is nonempty, then \(\mathcal{H}_M(S) \) is naturally isomorphic to \(\mathcal{H}(S \setminus M) \).

Recalling previous work on the Hatcher-Thurston complex we have the following lemma.

Lemma 1.2. Let \(S \) be an orientable connected surface of genus \(g \geq 1 \), with empty boundary and \(n \geq 0 \) punctures. Then \(\mathcal{H}(S) \) is connected.

Note that this lemma and Remark 1.1 imply that if \(M \) is a multicurve on \(S \) such that \(S \setminus M \) is connected, then \(\mathcal{H}_M(S) \) is connected.

1.1 Properties of \(\mathcal{H}(S) \)

Let \(C \) be a cut system on \(S \), and denote by \(\mathcal{A}(C) \) the full subgraph spanned by the set of cut systems on \(S \) that are adjacent to \(C \) in \(\mathcal{H}(S) \) (often called the link of \(C \) in \(\mathcal{H}(S) \)). Intuitively, we want to relate the elements of \(\mathcal{A}(C) \) that are obtained by replacing the same curve of \(C \); this is done defining the relation \(\sim_C \) in \(\mathcal{A}(C) \) by

\[
C_1 \sim_C C_2 \iff C_1 \cap C = C_2 \cap C.
\]

We can easily check \(\sim_C \) is an equivalence relation, and two cut systems are related in \(\mathcal{A}(C) \) if they are obtained by replacing the same curve of \(C \) as was desired. The equivalence classes of this relation will be called colours.

This definition implies that in \(\mathcal{A}(C) \) there are \(g \) colours, each corresponding to a curve in \(C \) that was substituted; thus, we use the elements of \(C \) to index these colours.
Remark 1.3. We should note that if \(C_1, C_2 \in \mathcal{A}(C)\) are such that \(C_1 \sim C_2\), then \(C_1\) and \(C_2\) share exactly \(g - 2\) curves.

![Diagram of cut systems \(\{\alpha_1, \beta, \alpha_3, \alpha_4\}\) and \(\{\alpha_1, \beta', \alpha_3, \alpha_4\}\) are in the same color with respect to \(\{\alpha_1, \ldots, \alpha_4\}\), while \(\{\alpha_1, \alpha_2, \beta'', \alpha_4\}\) is not.

Let \(\gamma\) be a nonseparating curve of \(S\). Following Irmak and Korkmaz’s work on the Hatcher-Thurston complex (for which we recall \(\mathcal{HT}(S)\) is the 1-skeleton) in [9], we define the graph \(X^S_1\) as the simplicial graph whose vertices are the nonseparating curves \(\beta\) on \(S\) such that \(i(\beta, \gamma) = 1\), and two vertices \(\alpha\) and \(\beta\) span an edge if \(i(\alpha, \beta) = 1\).

In [9], we obtain the following result, modifying the statement to suit the notation used here.

Lemma 1.4 ([9]). Let \(S = S_{g,n}\) such that \(g \geq 1\) and \(n \geq 0\), and \(\gamma\) be a nonseparating curve on \(S\). Then \(X^S_1\) is connected.

A **triangle** on \(\mathcal{HT}(S)\) is a set of three distinct cut systems on \(S\), whose elements pairwise span edges in \(\mathcal{HT}(S)\). Now we prove that for every triangle in \(\mathcal{HT}(S)\) there exists a convenient multicurve contained in each cut system.

Lemma 1.5. Let \(S = S_{g,n}\) such that \(g \geq 1\) and \(n \geq 0\) punctures, and \(T\) be a triangle on \(\mathcal{HT}(S)\). Then, there exists a unique multicurve \(M\), of cardinality \(g - 1\), such that \(M\) is contained in every element of \(T\).

Proof. Let us denote \(T = \{A, B, C\}\). Since \(A, B \in \mathcal{A}(C)\) then if \(A \sim_C B\), by Remark 1.3, \(|A \cap B| = g - 2\); but then \(A\) and \(B\) would not be able to span an edge, contradicting \(T\) being a triangle. Thus \(A \sim_C B\). Since \(A \neq B\) we have \(M = A \cap C = B \cap C\) is the desired multicurve of cardinality \(g - 1\).

Lemma 1.6. Let \(A, B, C\) be distinct cut systems on \(S\), such that \(A, B \in \mathcal{A}(C)\). Then \(A \sim_C B\) if and only if there exists a finite collection of triangles \(T_1, \ldots, T_m\) such that \(A, C \in T_1, B, C \in T_m\), and \(T_i\) and \(T_{i+1}\) share exactly one edge for \(i = 1, \ldots, m - 1\).

Proof. If \(g = 1\), then we obtain the desired result directly from Lemma 1.4, making \(C = \{\gamma\}\). So, suppose \(g > 1\).

If \(A \sim_C B\), let \(M = A \cap C = B \cap C\) be the multicurve of Lemma 1.5 with cardinality \(g - 1\). Let \(\alpha\) be the curve in \(A \setminus M\), \(\beta\) be the curve in \(B \setminus M\) and \(\gamma\) be the curve in \(C \setminus M\). Since \(A, B \in \mathcal{A}(C)\) then \(\alpha\) and \(\gamma\) intersect once, just the same as \(\beta\) and \(\gamma\); moreover, \(\alpha, \beta\) and \(\gamma\) are nonseparating curves of \(S \setminus M\) since \(A, B\) and \(C\) are cut systems. Thus \(\alpha\) and \(\beta\) are vertices in \(X^S_1\), and by Lemma 1.4 there exists a finite collection of nonseparating (in \(S \setminus M\)) curves \(c_0, \ldots, c_m\) with \(\alpha = c_0, \beta = c_m\) and \(c_i\) adjacent to \(c_{i+1}\) in \(X^S_1\). Since every \(c_i\) is a nonseparating curve of \(S_i\), then \(\{c_i\} \cup M\) is a cut system of \(S\) for each \(i\); in particular \(A = \{c_0\} \cup M\) and \(B = \{c_m\} \cup M\).
By construction, \(T_{i+1} := \{\{c_i \cup M, C, \{c_{i+1} \cup M\}\} \) is a triangle for \(i = 0, \ldots, m - 1 \), \(T_i \) and \(T_{i+1} \) share exactly one edge for \(i = 0, \ldots, m - 1 \), \(A, C \in T_1 \), and \(C, B \in T_m \).

Conversely, if \(T_1, \ldots, T_m \) is a finite collection of triangles such that \(A, C \in T_1 \), \(B, C \in T_m \) and \(T_i \) and \(T_{i+1} \) share exactly one edge for \(i = 1, \ldots, m - 1 \), we denote by \(M_i \) the multicurve corresponding to the triangle \(T_i \) obtained by Lemma 1.5. Let \(M \) be the cut systems in the triangle \(T_1 \) and \(T_2 \). Since \(D_i \cap D_j = M_i \) in \(T_i \) and \(D_i \cap D_j = M_j \) in \(T_j \), we have that \(M_i = M_j \) for \(i = 1, \ldots, m - 1 \). Thus \(M_i = M_j \) for \(i \neq j \), so \(A \cap C = B \cap C \) which by definition implies that \(A \sim C B \).

2 Proof of Theorem

In this section, let all surfaces be of genus at least 2, possibly with punctures.

An alternating square in \(HT(S) \) is a closed path with four distinct consecutive vertices \(C_1, C_2, C_3, C_4 \) such that \(C_1 \sim C_2 \sim C_3 \sim C_4 \). So, \(C_1 \) and \(C_3 \) have exactly \(g - 2 \) curves in common, and \(C_2 \) and \(C_4 \) have also exactly \(g - 2 \) curves in common. In Figure 1 the curves \(\{α_1, \α_3, \α_4\}, \{β_1, \β_3, \β_4\}, \{α_2, β_2, β''_4, α_4\} \) and \(\{α_1, β_2, β''_2, α_2\} \) form an alternating square.

Lemma 2.1. Let \(C_1, C_2, C_3, C_4 \) be consecutive vertices of an alternating square in \(HT(S) \). Then \(C_1 \cup C_2 \cap C_3 \cap C_4 \) has cardinality \(g - 2 \).

Proof. Since \(C_1, C_3 \in \mathcal{A}(C_2), C_1 \cap C_3 = C_1 \cap C_2 \cap C_3 \); analogously \(C_1 \cap C_3 = C_1 \cap C_4 \cap C_3 \). This implies that \(C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_3 \). Thus \(C_1 \cap C_2 \cap C_3 \cap C_4 = C_1 \cap C_3 \). Given that \(C_1 \sim C_2, C_3 \), we have \(|C_1 \cap C_2 \cap C_3 \cap C_4| = g - 2 \).

Lemma 2.2. Let \(C_1, C_2, C_3 \) be cut systems on \(S \), such that \(C_1, C_3 \in \mathcal{A}(C_2) \) and \(C_1 \sim C_2, C_3 \). There exists \(C_1', C_2', C_3' \in \mathcal{A}(C_2) \) with \(C_1' \sim C_2' \sim C_3' \), such that \(C_1, C_2, C_3' \) are consecutive vertices of an alternating square.

Proof. Let \(C_1, C_3 \), let \(M \) be the common multicurve of \(C_1, C_2 \) and \(C_3 \) obtained by Lemma 1.5. Let also \(α, β, α', β' \) be the curves such that \(C_1 = M \cup \{α', β\}, C_2 = M \cup \{α, β\} \) and \(C_3 = M \cup \{α, β'\} \).

Let \(T \) be a regular neighbourhood of \(\{α, α'\} \). Since \(i(α, α') = 1 \), \(T \) is homeomorphic to \(S_{1,1} \). Let \(β'' \) be a nonseparating curve of \(\mathcal{S}'(M) \) such that \(i(β', β'') = 1 \), and \(β'' \) is contained in \(\mathcal{S}'(T) \) (that is possible since \(S' \mathcal{M} \) has genus 2). By construction we have the following: \(C_1 = M \cup \{α, β''\} \) and \(C_2 = M \cup \{α', β''\} \) are cut systems such that \(C_1' = M \cup \{α, β''\} \in \mathcal{A}(C_2) \cap \mathcal{A}(C_4), C_4 \in \mathcal{A}(C_1) \cap \mathcal{A}(C_3), C_3 \sim C_2 C_3' \sim C_1 \sim C_2, C_3' \) and \(C_2 \sim C_3 C_4' \). Thus \(C_1, C_2, C_3, C_4 \) are the consecutive vertices of an alternating square.

Let \(S_1 = S_{g_1, n_1} \) and \(S_2 = S_{g_2, n_2} \) with genus \(g_1 \geq 2, g_2 \geq 1 \) and \(n_1, n_2 \geq 0 \).

A simplicial map \(φ : HT(S_1) \to HT(S_2) \) is said to be edge-preserving if whenever \(C_1 \) and \(C_2 \) are two distinct cut systems that span an edge in \(HT(S_1) \), their images under \(φ \) are distinct and span an edge in \(HT(S_2) \).

Remark 2.3. Note that if \(φ : HT(S_1) \to HT(S_2) \) is an edge-preserving map, then triangles are mapped to triangles.

The map \(φ \) is said to be alternating if for all cut systems \(C \) on \(S_1 \) and all \(C_1, C_2 \in \mathcal{A}(C) \) such that \(C_1 \) and \(C_2 \) differ by exactly two curves, then \(φ(C_1) \) and \(φ(C_2) \) differ by exactly two curves. Note that this condition says nothing about \(φ(C) \) and its relation with \(φ(C_1) \) and \(φ(C_2) \).
Lemma 2.4. Let $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ be an edge-preserving map, and C_1, C_2 and C_3 be cut systems on S_1 with $C_1, C_3 \in \mathcal{A}(C_2)$. If $C_1 \sim_{C_2} C_3$, then $\phi(C_1) \sim_{\phi(C_2)} \phi(C_3)$. If ϕ is also alternating, then $C_1 \sim_{C_2} C_3$ implies $\phi(C_1) \sim_{\phi(C_2)} \phi(C_3)$; in particular alternating squares go to alternating squares.

Proof. If $C_1 \sim_{C_2} C_3$, then by Lemma 1.6 there exists a finite collection of triangles T_1, \ldots, T_m with $C_1, C_2 \in T_1, \ldots, C_3 \in T_m$, and T_i, T_{i+1} share one edge. By Remark 2.3 $\phi(T_i)$ is a triangle for all $i = 1, \ldots, m$, with $\phi(C_1), \phi(C_2) \in \phi(T_1), \phi(C_2), \phi(C_3) \in \phi(T_m)$ and $\phi(T_i), \phi(T_{i+1})$ sharing one edge; thus, once again by Lemma 1.6 $\phi(C_1) \sim_{\phi(C_2)} \phi(C_3)$.

Let ϕ be also alternating, and $C_1 \sim_{C_2} C_3$. By Remark 1.3, C_1, C_3 differ by exactly 2 curves and since ϕ is an edge-preserving alternating map, we have that $\phi(C_1), \phi(C_3) \in N(\phi(C_2))$ and $\phi(C_1), \phi(C_3)$ differ by exactly 2 curves; so, $\phi(C_1) \sim_{\phi(C_2)} \phi(C_3)$.

Let ϕ be an edge-preserving alternating map, and S be an alternating square with consecutive vertices C_1, \ldots, C_4. Since $C_1, C_3 \in \mathcal{A}(C_2) \cap \mathcal{A}(C_4)$ then $\phi(C_1), \phi(C_3) \in N(\phi(C_2)) \cap N(\phi(C_4))$, and as proved above $\phi(C_1) \sim_{\phi(C_2)} \phi(C_3)$ and $\phi(C_2) \sim_{\phi(C_4)} \phi(C_4)$ (since $C_1 \sim_{C_2} C_3$ and $C_2 \sim_{C_3} C_4$). Therefore $\phi(S)$ is an alternating square.

Note that this lemma allows us to see the importance of the alternating requirement for ϕ. If ϕ were only edge-preserving (or locally injective), we would not have enough information to be certain that alternating squares are mapped to alternating squares, which is an important requirement if we ever want ϕ to be induced by a homeomorphism. Moreover, the rest of the results presented here would be much more complicated to prove if at all possible.

Now we are ready to prove Theorem [A] (which is quite similar to a result about locally injective maps for the Pants complex, that appears as Theorem C in [1], though we must note that for some of the arguments in the proof being an alternating map is a key requirement).

Proof of Theorem [A]. Let A be a vertex of $\mathcal{HT}(S_1)$. Then let $\{B_1, \ldots, B_{g_1}\} \subset \mathcal{A}(A)$ be a set of representatives for the colours of $\mathcal{A}(A)$. Since $B_i \sim_A B_j$ if and only if $i = j$ then $\phi(B_i) \sim_{\phi(A)} \phi(B_j)$ if and only if $i = j$, by Lemma 2.4 thus $\mathcal{A}(\phi(A))$ has at least a many colours as $\mathcal{A}(A)$, so $g_1 \leq g_2$.

This implies that $M = \phi(B_1) \cap \cdots \cap \phi(B_{g_1})$ has cardinality $g_2 - g_1$. We must also note that $M \subset \phi(A)$. We can easily check that if $B \sim_A B_i$ for some i, then $M \subset \phi(B)$; by Lemma 2.4 $\phi(B) \sim_{\phi(A)} \phi(B_i)$, which means they were obtained from $\phi(A)$ by replacing the same curve, so $\phi(A) \cap \phi(B_i) \subset \phi(B)$; since $M \subset \phi(A) \cap \phi(B_i)$, then $M \subset \phi(B)$.

With this we have proved that for all $B \in A \cup \mathcal{A}(A)$, $M \subset \phi(B)$. Given that $\mathcal{HT}(S_1)$ is connected, we only need to prove that given any element $B \in \mathcal{A}(A)$, for all $C \in \mathcal{A}(B)$, we have $M \subset \phi(C)$. Let B and C be such cut systems.

If $C \sim_B A$, then by Lemma 2.4 $\phi(C) \sim_{\phi(B)} \phi(A)$, which means $\phi(C)$ and $\phi(A)$ were obtained by replacing the same curve of $\phi(B)$, so $\phi(C) \cap \phi(B) = \phi(A) \cap \phi(B)$. Since we have already proved that $M \subset \phi(B)$ and $M \subset \phi(A)$ then $M \subset \phi(A) \cap \phi(B) = \phi(C) \cap \phi(B)$. Thus $M \subset \phi(C)$.

If $C \sim_B A$, then by Lemma 2.2 there exists $C' \in \mathcal{A}(B)$ with $C \sim_B C'$ and $C' \sim_B A$, such that A, B, C' are consecutive vertices of an alternating square Σ. By Lemma 2.4 $\phi(\Sigma)$ is also an alternating square. Let D the vertex of Σ different from A, B and C'; since $D \in \mathcal{A}(A)$, we have proved above that $M \subset \phi(D)$, thus $M \subset \phi(A) \cap \phi(B) \cap \phi(D)$ and as we have seen in the proof of Lemma 2.1 $\phi(A) \cap \phi(B) \cap \phi(C') \cap \phi(D) = \phi(A) \cap \phi(B) \cap \phi(D)$, so $M \subset \phi(C')$. Given that $C \sim_B C'$, this leaves us in the previous case, therefore $M \subset \phi(C')$.

\[\square\]
3 Proof of Theorem C

Hereinafter, let $S_1 = S_{g,0}$ and $S_2 = S_{g,n}$ with $g \geq 3$ and $n \geq 0$. Before giving the idea of the proof, we need the following definitions.

We define the complexity of $S_{g,n}$, denoted by $\kappa(S_{g,n})$ as $3g - 3 + n$. Note this is equal to the cardinality of a maximal multicurve.

If $S_{g,n}$ is such that $\kappa(S_{g,n}) > 1$, the curve graph $C(S_{g,n})$, introduced by Harvey in [3], is the simplicial graph whose vertices correspond to the curves of S, and two vertices span an edge if they are disjoint. We denote $\mathcal{V}(C(S_{g,n}))$ the set of vertices of $C(S_{g,n})$.

If $S_{g,n}$ is such that $g \geq 1$, the Schmutz graph $G(S_{g,n})$, introduced by Schmutz-Schaller in [10], is the simplicial graph whose vertices correspond to nonseparating curves of S, and where two vertices span an edge if they intersect once. We denote by $\mathcal{V}(G(S))$ the set of vertices of $G(S)$.

Idea of the proof: We proceed by using ϕ to induce a map $\psi : \mathcal{V}(G(S_1)) \to \mathcal{V}(G(S_2))$ in such a way that $\phi(\{\alpha_1, \ldots, \alpha_g\}) = \{\psi(\alpha_1), \ldots, \psi(\alpha_g)\}$. Then we induce two maps $\phi : \mathcal{H}(S_1) \to \mathcal{H}(S_2)$ and $\psi : \mathcal{V}(G(S_1)) \to \mathcal{V}(G(S_2))$ by filling the punctures of S_2. These maps also verify that $\phi(\{\alpha_1, \ldots, \alpha_g\}) = \{\psi(\alpha_1), \ldots, \psi(\alpha_g)\}$. Following the proofs of several properties of ψ and $\tilde{\psi}$, we extend $\tilde{\psi}$ to an edge-preserving map $\tilde{\psi} : C(S_1) \to C(S_1)$ which, by Theorem A in [7], is induced by a homeomorphism of S_1. Therefore $\tilde{\psi}$ is induced by a homeomorphism of S_1.

3.1 Inducing $\psi : G(S_1) \to G(S_2)$ and $\tilde{\psi} : G(S_1) \to G(S_1)$

Let α be a nonseparating curve. Recall that $\mathcal{H}(\alpha)(S_1)$ is isomorphic to $\mathcal{H}(S_1\backslash\{\alpha\})$. Then, given an edge-preserving alternating map $\phi : \mathcal{H}(S_1) \to \mathcal{H}(S_2)$ we can obtain an edge-preserving alternating map $\phi_{\alpha} : \mathcal{H}(S_1\backslash\{\alpha\}) \to \mathcal{H}(S_2)$. Applying Theorem A to ϕ_{α} we know there exists a unique multicurve on S_2 of cardinality 1, contained in the image under ϕ of every cut system containing α; we will denote the element of this multicurve as $\psi(\alpha)$. In this way we have defined a function $\psi : \mathcal{V}(G(S_1)) \to \mathcal{V}(G(S_2))$.

Lemma 3.1. Let $\phi : \mathcal{H}(S_1) \to \mathcal{H}(S_2)$ be an edge-preserving alternating map and $\psi : \mathcal{V}(G(S_1)) \to \mathcal{V}(G(S_2))$ be the induced map on the nonseparating curves. If α and β are nonseparating curves and C a cut system on S_1, then:

1. If $\alpha \in C$, then $\psi(\alpha) \in \phi(C)$.
2. If $\alpha \neq \beta$ and $\alpha, \beta \in C$, then $\psi(\alpha) \neq \psi(\beta)$.
3. If $i(\alpha, \beta) = 1$, then $i(\psi(\alpha), \psi(\beta)) = 1$.

Proof. (1) Follows directly from the definition.

(2) Let $C = \{\alpha, \beta, \gamma_1, \ldots, \gamma_{g-2}\}$ and let $C_{\alpha}, C_{\beta}, C_{\gamma_1}, \ldots, C_{\gamma_{g-2}}$ be representatives of the colours in $\mathcal{A}(C)$ indexed by $\alpha, \beta, \gamma_1, \ldots, \gamma_{g-2}$ respectively so that $\alpha \notin C_{\alpha}, \alpha \in C_{\beta}, \gamma_1, \ldots, C_{\gamma_{g-2}}, \beta \notin C_{\beta}$ and $\beta \in C_{\alpha}, C_{\gamma_1}, \ldots, C_{\gamma_{g-2}}$. Using Lemma 2.4 we have that $\phi(\beta), \phi(\gamma_1), \ldots, \phi(\gamma_{g-2})$ are representatives of all the colours of $\mathcal{A}(\phi(C))$. By (1) we have that $\psi(\alpha) \in \phi(C) \cap \phi(\beta) \cap \phi(\gamma_1) \cap \ldots \cap \phi(\gamma_{g-2})$, so $\psi(\alpha)$ cannot be an element of $\phi(C)$ and, since $\beta \in C_{\alpha}$, by (1) again we have that $\psi(\beta) \in \phi(C)$. Therefore $\psi(\alpha) \neq \psi(\beta)$.

(3) Using a regular neighbourhood of $\{\alpha, \beta\}$, we can find a multicurve M in S_1 such that $C' = \{\alpha\} \cup M$ and $C'' = \{\beta\} \cup M$ are cut systems; this implies that if C' and C'' span an edge in $\mathcal{H}(S_1)$, then $\phi(C')$ and $\phi(C'')$ span an edge in $\mathcal{H}(S_2)$. By (1) and (2), $\phi(C') = \{\psi(\alpha)\} \cup \psi(M)$ and $\phi(C'') = \{\psi(\beta)\} \cup \psi(M)$, therefore $i(\psi(\alpha), \phi(\beta)) = 1$. \qed
Note that this lemma implies that if $C = \{\alpha_1, \ldots, \alpha_g\}$, we have that $\phi(C) = \{\psi(\alpha_1), \ldots, \psi(\alpha_g)\}$.

By filling the punctures of S_2 and identifying the resulting surface with S_1, we obtain a map $\pi_C : V(Y(S_2)) \to V(C(S_1))$, where $Y(S_2)$ is the subcomplex of $C(S_2)$ whose vertices correspond to curves γ on S_2 such that all the connected components of $S_2 \setminus \{\gamma\}$ have positive genus. Observe that π_C sends nonseparating curves of S_2 into nonseparating curves of S_1, and separating curves of S_2 that separate the surface in connected components of genus $g' > 0$ and $g'' > 0$ into separating curves of S_1 that separate the surface in connected components of genus g' and g''. In particular, if C is a cut system, $\pi_C(C)$ is also a cut system, thus we obtain a map $\pi_{HT} : V(HT(S_2)) \to V(HT(S_1))$.

Now, from $\phi : HT(S_1) \to HT(S_2)$ we can obtain the map

$$\tilde{\psi} : \pi_{HT} \circ \psi : V(G(S_1)) \to V(G(S_1)),$$

and the map

$$\tilde{\phi} : \pi_{HT} \circ \phi : V(HT(S_1)) \to V(HT(S_1)).$$

Corollary 3.2. Let $\phi : HT(S_1) \to HT(S_2)$ an edge-preserving alternating map, $\psi : V(G(S_1)) \to V(G(S_2))$ be the induced map on the nonseparating curves, and $\tilde{\phi}$ and $\tilde{\psi}$ as above. If α and β are nonseparating curves and C a cut system on S_1, then:

1. If $\alpha \in C$ then $\tilde{\psi}(\alpha) \in \tilde{\phi}(C)$.
2. If $\alpha \neq \beta$ and $\alpha, \beta \in C$ then $\tilde{\psi}(\alpha) \neq \tilde{\psi}(\beta)$.
3. If $i(\alpha, \beta) = 1$ then $i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta)) = 1$.

Proof. (1) Follows from Lemma \ref{lemma:induced_map}

(2) If $\alpha \neq \beta$ and $\alpha, \beta \in C$ then by Lemma \ref{lemma:induced_map}, $\psi(\alpha), \psi(\beta) \in \phi(C)$ and $\psi(\alpha) \neq \psi(\beta)$. This implies that $\psi(\alpha)$ and $\psi(\beta)$ are disjoint curves that do not together separate S_2; these two properties together are preserved by π_C. Indeed, let S' be a subsurface of S_2 such that $\psi(\alpha), \psi(\beta) \in C(S')$ and S' is homeomorphic to S_2. Let γ be the boundary curve of $S_2 \setminus \text{int}(S')$, then γ separates S_2 in two connected components, each of positive genus. Thus S' is unaffected by π_C, i.e. $\pi_C|_{V(C(S'))} = \text{id}|_{V(C(S'))}$. Therefore $\tilde{\psi}(\alpha) \neq \tilde{\psi}(\beta)$.

(3) Since $i(\psi(\alpha), \psi(\beta)) = 1$, let T be a regular neighbourhood of $\{\psi(\alpha), \psi(\beta)\}$. Then T is homeomorphic to $S_{1,1}$. Let γ be the boundary curve in $S_2 \setminus \text{int}(T)$; then γ is a separating curve that separates S_2 in two connected components, each of positive genus. Thus, as in (2), T is unaffected by π_C. Therefore $i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta)) = 1$. \qed

Similarly to Lemma \ref{lemma:induced_map} this implies that if $C = \{\alpha_1, \ldots, \alpha_g\}$, we have that $\tilde{\phi}(C) = \{\tilde{\psi}(\alpha_1), \ldots, \tilde{\psi}(\alpha_g)\}$.

As a consequence of Lemma \ref{lemma:induced_map} and Corollary \ref{corollary:induced_map}, we have that the maps ψ, $\tilde{\psi}$ and $\tilde{\phi}$ are simplicial. Moreover, we have the following result.

Corollary 3.3. $\psi : G(S_1) \to G(S_2)$, $\tilde{\psi} : G(S_1) \to G(S_1)$ and $\tilde{\phi} : HT(S_1) \to HT(S_1)$ are edge-preserving maps. Also, $\tilde{\phi}$ is an alternating map.

A pants decomposition of S_i (for $i = 1, 2$) is a maximal multicurve of S_i, i.e. it is a maximal complete subgraph of $C(S_i)$. Note that any pants decomposition of S_i has exactly $\kappa(S_i)$ curves.

On the other hand, we say P is a punctured pants decomposition of S_2 if $\pi_C(P)$ is a pants decomposition of S_1. This implies that $S_2 \setminus P$ is the disjoint union of $3g - 3$ surfaces, with each connected component P_i homeomorphic to $S_{0,3+k_i}$, such that $\sum_i k_i = n$.

8
Lemma 3.4. Let P be a pants decomposition of S_1 such that no two curves of P together separate S_1. Then $\psi(P)$ is a punctured pants decomposition of S_2 and $\tilde{\psi}(P)$ is a pants decomposition of S_1.

Proof. Since for any two distinct curves $\alpha, \beta \in P$ we can always find a cut system containing both of them, by Lemma 3.1 and Corollary 3.2 we know that $\psi(\alpha)$ is disjoint from $\psi(\beta)$ and $\tilde{\psi}(\alpha)$ is disjoint from $\tilde{\psi}(\beta)$. Thus, both $\psi(P)$ and $\tilde{\psi}(P)$ are multicurves of cardinality $3g - 3$, which means $\tilde{\psi}(P)$ is a pants decomposition; then, by definition, $\psi(P)$ is a punctured pants decomposition. \hfill \square

Figure 2: Pants decompositions for the closed surfaces of genus 3 (left) and genus 5 (right), such that no two curves of P together separate.

The rest of this subsection consists of several technical definitions and lemmas, all of them leading to proving that both ψ and $\tilde{\psi}$ preserve disjointness and intersection number 1, which we later use to extend their definitions to the respective curve complexes.

Let α and β be two curve in S_1, and N be a regular neighbourhood of $\{\alpha, \beta\}$. We say they are spherical-Farey neighbours if N has genus zero and $i(\alpha, \beta) = 2$.

Let α and β be two nonseparating curves in S_1 that are spherical-Farey neighbours, and $N(\alpha, \beta)$ be their closed regular neighbourhood. Then $N(\alpha, \beta)$ is homeomorphic to a genus zero surface with four boundary components. Let $\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3$ be the boundary curves of $N(\alpha, \beta)$. We say ε_i and ε_j are connected outside of $\Sigma_{\alpha, \beta}$ to ε_j for all $i, j \in \{0, 1, 2, 3\}$ with one endpoint in ε_i and another in ε_j.

Remark 3.5. If ε_i is a nonseparating curve, it has to be connected outside of $N(\alpha, \beta)$ to at least one other ε_j (with $i \neq j$), since otherwise there would not exist any curve intersecting ε_i exactly once, and thus ε_i would not be nonseparating.

We say α and β are of type A if ε_i is a nonseparating curve for all i and ε_i is connected outside of $\Sigma_{\alpha, \beta}$ to ε_j for all $i, j \in \{0, 1, 2, 3\}$. See Figure 3.

Remark 3.6. Remember that while π_{HT} is an edge-preserving map it is not alternating. Also, π_C has the property that if α and β are disjoint nonseparating curves, then $i(\pi_C(\alpha), \pi_C(\beta)) = 0$, since forgetting the punctures only affects the connected components of $S\backslash\{\alpha, \beta\}$ by possibly transforming one of them into a cylinder.

Lemma 3.7. Let α and β be two nonseparating curves in S_1 that are spherical-Farey neighbours of type A. Then $i(\psi(\alpha), \psi(\beta)) \neq 0 \neq i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta))$.

9
Proof. This proof is divided in three parts: the first proves that \(\psi(\alpha) \neq \psi(\beta) \), the second proves that \(\tilde{\psi}(\alpha) \neq \tilde{\psi}(\beta) \), and finally the third proves that \(i(\psi(\alpha), \psi(\beta)) \neq 0 \neq i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta)) \).

First part: Since \(\alpha \) and \(\beta \) are of type A, we can always find curves \(\gamma \) and \(\delta \) such that:

- \(i(\alpha, \gamma) = i(\beta, \delta) = 1 \).
- \(i(\alpha, \delta) = i(\beta, \gamma) = i(\gamma, \delta) = 0 \).
- There exists a multicurve \(M \) of cardinality \(g - 2 \) such that \(C_1 = \{\alpha, \delta\} \cup M \), \(C_2 = \{\beta, \gamma\} \cup M \) and \(C_0 = \{\gamma, \delta\} \cup M \) are cut systems.

See Figure 4 for a way to obtain them.

Second part: Using the cut systems \(C_1, C_2 \) and \(C_0 \) from the first part of this proof, we can then apply Corollary \(\ref{cor:cut-systems} \) thus getting that \(\tilde{\psi}(\alpha) \) is disjoint from \(\tilde{\psi}(\delta) \) while \(i(\tilde{\psi}(\beta), \tilde{\psi}(\delta)) = 1 \). Then
\(\tilde{\psi}(\alpha) \neq \tilde{\psi}(\beta) \).

Third part: Let \(\tilde{P} \) be a multicurve such that \(P_1 = \tilde{P} \cup \{\alpha\} \) and \(P_2 = \tilde{P} \cup \{\beta\} \) are pants decompositions such that for \(i = 1, 2 \), any two curves of \(P_i \) do not separate the surface (see Figure 5 for an example). By Lemma 3.4 then \(\tilde{\psi}(P_1) \) and \(\tilde{\psi}(P_2) \) are pants decompositions of \(S_1 \) and, by the above paragraph, will differ in exactly one curve, \(\tilde{\psi}(\alpha) \) and \(\tilde{\psi}(\beta) \), meaning that they are contained in a complexity-one subsurface of \(S_1 \); given that by the second part of the proof, these two curves are different and yet they are contained in a subsurface of complexity one, we have that \(i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta)) \neq 0 \). Given that \(\tilde{\psi} = \pi_C \circ \psi \), by Remark 3.6 we have that \(i(\psi(\alpha), \psi(\beta)) \neq 0 \).

![Figure 5: \(\tilde{P} = \{\zeta_1, \ldots\} \) is a multicurve such that \(P_1 = \tilde{P} \cup \{\alpha\} \) and \(P_2 = \tilde{P} \cup \{\beta\} \) are pants decompositions such that for \(i = 1, 2 \), any two curves of \(P_i \) do not separate the surface.](image)

A **halving multicurve** of a surface \(S = S_{g,n} \) is a multicurve \(H \) whose elements are nonseparating curves on \(S \) such that: \(S \setminus H = Q_1 \sqcup Q_2 \), with \(Q_1 \) and \(Q_2 \) homeomorphic to \(S_{0,n_1} \) and \(S_{0,n_2} \) respectively, and \(n_1 + n_2 = 2(g + 1) + n \). Note that a halving multicurve has exactly \(g + 1 \) elements.

We define a **cutting halving multicurve** as a halving multicurve such that any \(g \) elements of it form a cut system. Note that there exist halving multicurves that are not cutting halving multicurves, see Figure 6 for an example.

![Figure 6: An example of a halving multicurve that is not a cutting halving multicurve.](image)

Lemma 3.8. If \(H \) is a cutting halving multicurve of \(S_1 \), then \(\psi(H) \) and \(\tilde{\psi}(H) \) are cutting halving multicurves of \(S_2 \) and \(S_1 \) respectively.
Proof. Since H is a cutting halving multicurve of S_1 then, by a repeated use of Lemma \ref{lem:intermediate} and Corollary \ref{cor:intermediate}, $\psi(H)$ and $\tilde{\psi}(H)$ will contain $g + 1$ elements and any g elements of $\psi(H)$ and $\tilde{\psi}(H)$ will form cut systems. Therefore $S_2 \setminus \psi(H)$ and $S_1 \setminus \tilde{\psi}(H)$ will have two connected components, each of genus zero; thus $\psi(H)$ and $\tilde{\psi}(H)$ are cutting halving multicurves of S_2 and S_1 respectively.

Lemma 3.9. Let α and β be two disjoint nonseparating curves such that $S_1 \setminus \{\alpha, \beta\}$ is disconnected. Then $\psi(\alpha)$ and $\psi(\beta)$ are disjoint in S_2 and $\tilde{\psi}(\alpha)$ and $\tilde{\psi}(\beta)$ are disjoint in S_1.

Proof. We claim $\psi(\alpha) \neq \psi(\beta)$ and $\tilde{\psi}(\alpha) \neq \tilde{\psi}(\beta)$.

Given the conditions, let γ be a nonseparating curve such that β and γ are spherical-Farey neighbours of type A, α and γ are disjoint, and $S_1 \setminus \{\alpha, \gamma\}$ is connected; then, by Lemmas \ref{lem:intermediate} and Corollary \ref{cor:intermediate}, $i(\psi(\alpha), \psi(\gamma)) = i(\tilde{\psi}(\alpha), \tilde{\psi}(\gamma)) = 0$ and $i(\psi(\beta), \psi(\gamma)) \neq 0 \neq i(\tilde{\psi}(\beta), \tilde{\psi}(\gamma))$. Therefore $\psi(\alpha) \neq \psi(\beta)$ and $\tilde{\psi}(\alpha) \neq \tilde{\psi}(\beta)$.

We claim $i(\psi(\alpha), \psi(\beta)) = i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta)) = 0$.

Let H be a cutting halving multicurve in S_1 such that α is contained in S_1' and β is contained in S_1'', where S_1' and S_1'' are the connected components of $S_1 \setminus H$, and also such that $S_1 \setminus \{\alpha, \gamma\}$ and $S_1 \setminus \{\beta, \gamma\}$ are connected for all $\gamma \in H$. By Lemma \ref{lem:intermediate}, $\psi(H)$ is a cutting halving multicurve; let S_2' and S_2'' be the corresponding connected components of $S_2 \setminus \psi(H)$. See Figure \ref{fig:cut} for examples. By construction $\psi(\alpha)$ and $\psi(\beta)$ are disjoint from every element in $\psi(H)$, so they are curves contained in $S_2 \setminus \psi(H)$.

If $\psi(\alpha)$ and $\psi(\beta)$ are in different connected components of $S_2 \setminus \psi(H)$ then they are disjoint. So, suppose (without loss of generality) that both representatives are in S_2''.

Let M be a multicurve of S_1 with the following properties.

1. Every element of M is also a curve contained in S_1'' and $S_1 \setminus \{\gamma, \delta\}$ is connected for all $\gamma, \delta \in M$.
2. $S_1 \setminus \{\gamma, \delta\}$ is connected for all $\gamma \in M$ and all $\delta \in H$.
3. For all $\gamma \in M$, β and γ are spherical-Farey neighbours of type A.
4. For all $\gamma \in M$, $S_1 \setminus \{\alpha, \gamma\}$ is connected.
5. M has $g - 2$ elements.

See Figure \ref{fig:cut} for an example. By Lemma \ref{lem:intermediate}, $\psi(M)$ satisfy conditions 1, 2, 4 and 5; also, by Lemma \ref{lem:intermediate} we have that for all $\gamma \in M$, $i(\psi(\beta), \psi(\gamma)) \neq 0$. This implies that every element of $\psi(M)$ is a curve contained in S_2''; thus $\psi(\gamma)$ intersects $\psi(\beta)$ at least twice for all $\gamma \in M$ (since S_2'' has genus zero, every curve contained in it is separating in S_2'').

Let U and V be the connected components of $S_2'' \setminus \{\psi(\alpha)\}$.

Now, we prove by contradiction that the elements of $\psi(M)$ are either all in U or all in V: Let $\gamma, \gamma' \in M$ be such that $\psi(\gamma)$ is contained in U and $\psi(\gamma')$ is contained in V. Then we can always find a curve δ contained in S_1'' such that the elements of $\{\gamma, \delta\}$ and of $\{\gamma', \delta\}$ satisfy the conditions of Lemma \ref{lem:intermediate} and such that $S_1 \setminus \{\delta, \delta'\}$ is connected for all $\delta' \in H \cup \{\alpha\}$. This implies $i(\psi(\gamma), \psi(\delta)) \neq 0 \neq i(\psi(\gamma'), \psi(\delta))$, and that $\psi(\delta)$ has to be either in U or V. These two conditions together imply that $\psi(\delta)$ is contained in both U and V, which is a contradiction.

Therefore, $\psi(M)$ consists of $g - 2$ nonseparating curves, no two of which separate S_2, and (up to relabelling) all these nonseparating curves are disjointly contained in U. But U can have at most $g - 3$ nonseparating (in S_2) curves that no pair of which separates S_2 (this number is actually the greatest possible cardinality of a punctured pants decomposition of U); so we have found a contradiction and thus $\psi(\alpha)$ and $\psi(\beta)$ are in different connected components and then
Figure 7: The cutting halving multicurve $H = \{\eta_1, \ldots, \eta_{g+1}\}$, the multicurve $M = \{\gamma_1, \ldots, \gamma_{g-2}\}$, and the spherical-Farey neighbours α and β for the closed surfaces of genus 5 (above) and genus 7 (below).

By Remark 3.6, since $i(\psi(\alpha), \psi(\beta)) = 0$, then $i(\tilde{\psi}(\alpha), \tilde{\psi}(\beta)) = 0$.

Thus, by using Lemmas 3.1, 3.9 and Corollary 3.2 we obtain the following corollary.

Corollary 3.10. ψ and $\tilde{\psi}$ preserve both disjointness and intersection 1.

3.2 Inducing $\hat{\psi} : C(S_1) \to C(S_1)$

To extend $\tilde{\psi}$, we proceed in the same way as Irmak in [8], using chains and the fact that every separating curve in S_1 is the boundary curve of a closed neighbourhood of a chain.

Using Lemmas 3.1, 3.9 and Corollary 3.2 we obtain the following lemma.

Lemma 3.11. If X is a chain of length k, then $\psi(X)$ and $\tilde{\psi}(X)$ are chains of length k.

Since S_1 is a closed surface, then every separating curve α on S_1 can be characterized as the boundary curve of a closed regular neighbourhood of a chain X_α. See Figure 8 for an example. We call X_α a defining chain of α. Recall that every defining chain of a separating curve always has even cardinality, $2k$, and its closed regular neighbourhood will then have genus k.

Lemma 3.12. Let β_1 and β_2 be separating curves in S_1, and X_1 and X_2 be defining chains of β_1 and β_2 respectively. If $\beta_1 = \beta_2$, then either every element of X_1 is disjoint from every element of X_2 and viceversa, or every curve in X_1 intersects at least one curve in X_2 and viceversa.

Proof. Since every element in X_1 and X_2 is by definition disjoint from $\beta = \beta_1 = \beta_2$, then all the elements in X_1 are contained in the same connected component of $S_1 \setminus \{\beta\}$, and analogously with all the elements of X_2. If the elements of X_2 are in a different connected component from those of X_1 then every element of X_1 is disjoint from every element of X_2 and viceversa. If the elements of X_2 are in the same connected component as those of X_1, since X_1 fills its
regular neighbourhood we have that every curve in \(X_1\) intersects at least one curve in \(X_2\) and vice versa.

To extend the definition of \(\tilde{\psi}\) to \(C(S)\), we define \(\hat{\psi}\) as follows: If \(\alpha\) is a nonseparating curve, then \(\hat{\psi}(\alpha) = \tilde{\psi}(\alpha)\); if \(\alpha\) is a separating curve, let \(X_\alpha\) be a defining chain of \(\alpha\) and then we define \(\hat{\psi}(\alpha)\) as the boundary curve of a regular neighbourhood of \(\tilde{\psi}(X_\alpha)\). This makes sense given that the regular neighbourhoods of \(X_\alpha\) are all isotopic, and thus the boundary curves of any two regular neighbourhoods are isotopic.

Lemma 3.13. The map \(\hat{\psi}\) is well-defined.

Proof. Let \(\alpha\) be a separating curve and \(X_1\) and \(X_2\) be two defining chains of \(\alpha\). We divide this proof in two parts, depending on whether \(X_1\) and \(X_2\) are in the same connected component of \(S_1\setminus\{\alpha\}\) or not.

Part 1: If \(X_1\) and \(X_2\) are in two different connected components, then due to Corollary [3.10] we have that every element in \(\hat{\psi}(X_1) = \tilde{\psi}(X_1)\) will be disjoint from every element in \(\hat{\psi}(X_2) = \psi(X_2)\); now, if \(X_1\) (and thus also \(\tilde{\psi}(X_1)\)) has length \(2k\), then \(X_2\) (and thus also \(\tilde{\psi}(X_2)\)) has length \(2(g-k)\). If we cut \(S_1\) along the boundary curve of the regular neighbourhood of \(\tilde{\psi}(X_1)\), we obtain a surface \(S'_1\) that has two connected components, one of genus \(k\) and another of genus \(g-k\). If we cut \(S'_1\) along the boundary curve of a regular neighbourhood of \(\hat{\psi}(X_2)\) (which means we are cutting \(S'_1\) in the connected component of genus \(g-k\)), we obtain a surface with three connected components: one of genus \(k\) (since it is where the elements of \(\tilde{\psi}(X_1)\) are contained), one of genus \(g-k\) (since it is where the elements of \(\tilde{\psi}(X_2)\) are contained), and an annulus. Therefore the two boundary curves of the regular neighbourhoods are isotopic, i.e. \(\hat{\psi}(\alpha)\) is well defined for these two chains.

Part 2: If \(X_1\) and \(X_2\) are in the same connected component, then we can find a defining chain \(X_3\) on the other connected component such that the pairs \((X_1,X_3)\) and \((X_2,X_3)\) satisfy the conditions of the previous part, so the boundary curves of the regular neighbourhoods of the chains \((\hat{\psi}(X_1),\hat{\psi}(X_3))\) and \((\hat{\psi}(X_2),\hat{\psi}(X_3))\) are isotopic. Therefore \(\hat{\psi}(\alpha)\) is well defined.

Now we prove that \(\hat{\psi}\) is an edge-preserving map, so that we can apply Theorem A from [7].

Lemma 3.14. \(\hat{\psi}\) is an edge-preserving map.

Proof. What we must prove is that given \(\alpha\) and \(\beta\) two disjoint curves, then \(\hat{\psi}(\alpha)\) and \(\hat{\psi}(\beta)\) are disjoint. If both \(\alpha\) and \(\beta\) are nonseparating curves, then we get the result from Corollary [3.10]. If \(\alpha\) is nonseparating and \(\beta\) is separating, let \(X\) be a defining chain of \(\beta\) such that \(\alpha \in X\). Then by definition \(\hat{\psi}(\alpha)\) is disjoint from \(\hat{\psi}(\beta)\).
If α and β are both separating, then we can always find two disjoint defining chains X_α and X_β of α and β respectively. Then by the two previous cases, every element of $\psi(X_\alpha)$ is disjoint from every element of $\hat{\psi}(X_\beta) \cup \{\hat{\psi}(\beta)\}$ and every element of $\psi(X_\beta)$ is disjoint from every element of $\hat{\psi}(X_\alpha) \cup \{\hat{\psi}(\alpha)\}$. Since by definition $\hat{\psi}(\alpha)$ is the boundary curve of a regular neighbourhood of $\psi(X_\alpha)$, if $\hat{\psi}(\beta)$ and $\hat{\psi}(\alpha)$ were to intersect each other, $\hat{\psi}(\beta)$ would have to intersect at least one element of $\psi(X_\alpha)$; thus $\hat{i}(\hat{\psi}(\beta), \hat{\psi}(\alpha)) = 0$.

To prove that $\hat{\psi}(\alpha) \neq \hat{\psi}(\beta)$, let X_1 and X_2 be chains such that X_1 is a defining chain of α and $X_1 \cup X_2$ is a defining chain of β. Thus $\psi(X_1)$ and $\hat{\psi}(X_1 \cup X_2)$ are defining chains of $\hat{\psi}(\alpha)$ and $\hat{\psi}(\beta)$ respectively. This implies that there exists (by the first case) an element in $\hat{\psi}(X_1 \cup X_2)$ that is disjoint from every element in $\hat{\psi}(X_1)$, and another element in $\hat{\psi}(X_1 \cup X_2)$ that intersects at least one element in $\hat{\psi}(X_1)$ (this happens since $\hat{\psi}|_{\hat{\psi}(S_1)} = \hat{\psi}$ and we can apply Corollary 3.10). Then by Lemma 3.12 $\hat{\psi}(\alpha) \neq \hat{\psi}(\beta)$. Therefore they are disjoint.

Now, for the sake of completeness, we first cite Theorem A from [7] and then finalize with the proof of Theorem C.

Theorem (A in [7]). Let $S_1 = S_{g_1,n_1}$ and $S_2 = S_{g_2,n_2}$ be two orientable surfaces of finite topological type such that $g_1 \geq 3$, and $\kappa(S_2) \leq \kappa(S_1)$; let also $\varphi : C(S_1) \to C(S_2)$ be an edge-preserving map. Then, S_1 is homeomorphic to S_2 and φ is induced by a homeomorphism $S_1 \to S_2$.

Proof of Theorem C We apply Theorem A from [7] to $\hat{\psi}$, obtaining an element h of $\text{Mod}^*(S_1)$ that induces it. Since $h|_{\hat{\psi}(S_1)} = \hat{\psi}|_{\hat{\psi}(S_1)} = \hat{\psi}$, we have that (by Corollary 3.2) for every cut system $C = \{\alpha_1, \ldots, \alpha_g\}$ in S_1, $\hat{\varphi}(C) = \{h(\alpha_1), \ldots, h(\alpha_g)\}$. Therefore h induces φ.

4 Proof of Corollary D

To prove Corollary D we first prove a consequence of Theorem C.

Corollary 4.1. Let $S = S_{g,0}$ be an orientable closed surface of finite topological type of genus $g \geq 3$, and $\phi : \mathcal{HT}(S) \to \mathcal{HT}(S)$ be an edge-preserving alternating map. Then ϕ is induced by a homeomorphism of S.

Proof. By supposing $S = S_1 = S_2$ we have that $\pi_{\mathcal{HT}}$ is the identity, and by applying Theorem C we obtain that $\phi = \phi$ is induced by a homeomorphism.

Proof of Corollary D Let $\phi : \mathcal{HT}(S_1) \to \mathcal{HT}(S_2)$ be an isomorphism. We first prove that it is alternating. By Lemma 2.4, we have that for all cut systems C in S_1, ϕ preserves the colours in $\mathcal{A}(C)$. Applying the same lemma to ϕ^{-1}, we have that two cut systems in $\mathcal{A}(C)$ are in the same colour if and only if their images are in the same colour in $\mathcal{A}(\phi(C))$. This implies that ϕ is an alternating map.

Given that ϕ and ϕ^{-1} are isomorphisms, then they are also edge-preserving maps, and by Theorem A applied to ϕ and ϕ^{-1}, we have that $g_1 = g_2$.

Now, let $S = S_{g,0}$ with $g \geq 3$. To prove that $\text{Aut}(\mathcal{HT}(S))$ is isomorphic to $\text{Mod}^*(S)$, we note there is a natural homomorphism:

$$
\Psi_{\mathcal{HT}(S)} : \text{Mod}^*(S) \to \text{Aut}(\mathcal{HT}(S)) \quad \text{[h]} \mapsto \varphi : \mathcal{HT}(S) \to \mathcal{HT}(S) \quad \{\alpha_1, \ldots, \alpha_g\} \mapsto \{h(\alpha_1), \ldots, h(\alpha_g)\}
$$
Injectivity: If h_1 and h_2 are two homeomorphisms of S such that $\Psi_{HT(S)}([h_1]) = \Psi_{HT(S)}([h_2])$, then the action of h_1 and h_2 on the nonseparating curves on S would be exactly the same. Recalling that Schmutz-Schaller proved in [10] that $\text{Aut}(\mathcal{G}(S))$ is isomorphic to $\text{Mod}^*(S)$, this implies that h_1 is isotopic to h_2.

Surjectivity: If $\phi \in \text{Aut}(\mathcal{HT}(S))$, then (as was proved above) it is an edge-preserving alternating map. Thus, by Corollary 4.1 we have that ϕ is induced by a homeomorphism. Therefore, $\text{Aut}(\mathcal{HT}(S))$ is isomorphic to $\text{Mod}^*(S)$.

References

[1] J. Aramayona. Simplicial embeddings between pants graphs. Geometriae Dedicata, 144 vol. 1, 115-128, (2010).

[2] B. Farb, D. Margalit. A primer on mapping class groups. Princeton University Press, (2011).

[3] W. J. Harvey. Geometric structure of surface mapping class groups. Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Notes Ser. 36, Cambridge University Press, Cambridge, 255-269, (1979).

[4] A. Hatcher, W. Thurston. A presentation for the mapping class group of a closed orientable surface. Topology, 19(3) p221-p237 (1980).

[5] J. Hernández Hernández. Combinatorial rigidity of complexes of curves and multicurves. Ph.D. thesis. Aix-Marseille Université, (2016).

[6] J. Hernández Hernández. Exhaustion of the curve graph via rigid expansions. Preprint, arXiv:1611.08010 [math.GT] (2016).

[7] J. Hernández Hernández. Edge-preserving maps of curve graphs. Preprint, arXiv:1611.08328 [math.GT] (2016).

[8] E. Irmak. Complexes of nonseparating curves and mapping class groups. Michigan Math. J., 81-110 54 No. 1 (2006).

[9] E. Irmak, M. Korkmaz. Automorphisms of the Hatcher-Thurston complex. Israel Journal of Math. 162 (2007).

[10] P. Schmutz-Schaller, Mapping class groups of hyperbolic surfaces and automorphism groups of graphs, Compositio Math. 122 (2000).

[11] K. J. Shackleton. Combinatorial rigidity in curve complexes and mapping class groups. Pacific Journal of Mathematics, 230, No. 1 (2007).

[12] B. Wajnryb. An elementary approach to the mapping class group of a surface. Geom. Top. 3 (1999).