Persistence of iterated partial sums

AMIR DEMBO∗ FUCHANG GAO†

February 1, 2011

Abstract
Let $S^{(2)}_n$ denote the iterated partial sums. That is, $S^{(2)}_n = S_1 + S_2 + \cdots + S_n$, where $S_i = X_1 + X_2 + \cdots + X_i$. Assuming X_1, X_2, \ldots, X_n are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities

$$p^{(2)}_n := \mathbb{P}\left(\max_{1 \leq i \leq n} S^{(2)}_i < 0\right) \leq c \sqrt{\mathbb{E}|S_{n+1}| \over (n+1)\mathbb{E}|X_1|},$$

with $c \leq 6\sqrt{30}$ (and $c = 2$ whenever X_1 is symmetric). Furthermore, the converse inequality holds whenever $\mathbb{P}(-X_1 > t) \asymp e^{-\alpha t}$ for some $\alpha > 0$ or $\mathbb{P}(-X_1 > t)^{1/t} \to 0$ as $t \to \infty$. Consequently, for these random variables we have that $p^{(2)}_n \asymp n^{-1/4}$ if X_1 has finite second moment. In contrast, we show that for any $0 < \gamma < 1/4$ there exist integrable, zero-mean random variables for which the rate of decay of $p^{(2)}_n$ is $n^{-\gamma}$.

1 Introduction

The estimation of probabilities of rare events is one of the central themes of research in the theory of probability. Of particular note are persistence probabilities, formulated as

$$q_n = \mathbb{P}\left(\max_{1 \leq k \leq n} Y_k < y\right),$$

(1.1)

where $\{Y_k\}_{k=1}^n$ is a sequence of zero-mean random variables. For independent Y_i the persistence probability is easily determined to be the product of $\mathbb{P}(Y_k < y)$ and to a large extent this extends to the case of sufficiently weakly dependent and similarly distributed Y_i, where typically q_n decays exponentially in n. In contrast, in the classical case of partial sums, namely $Y_k = S_k = \sum_{i=1}^k X_i$ with $\{X_j\}$ i.i.d. zero-mean random variables, it is well known that $q_n = O(n^{-1/2})$ decays as a power law. This seems to be one of the very few cases in which a power law decay for q_n can be proved and its exponent is explicitly known. Indeed, within the large class of similar problems where dependence between Y_i is strong enough to rule out exponential decay, the behavior of q_n is very sensitive to the precise structure of dependence between the variables Y_i and even merely determining its asymptotic rate can be very challenging (for example, see [3] for recent results in case $Y_k = \sum_{i=1}^n X_i(1-c_{k,n})^i$ are the values of a random Kac polynomials evaluated at certain non-random $\{c_{k,n}\}$).

∗The research was supported in part by NSF grant DMS-0806211.
†This research was partially done when the second named author visited Stanford university in March 2010. The authors also thank NSF grant DMS-0806211 for the support.
We focus here on iterated sums of i.i.d. squared integrable, zero-mean, random variables \(\{X_i\} \). That is, with \(S_n = \sum_{k=1}^{n} X_k \) and
\[
S_n^{(2)} = \sum_{k=1}^{n} S_k = \sum_{i=1}^{n} (n - i + 1)X_i,
\]
we are interested in the asymptotics as \(n \to \infty \) of the persistence probabilities
\[
p_n^{(2)}(y) := \mathbb{P}\left(\max_{1 \leq k \leq n} S_k^{(2)} < y \right), \quad \overline{p}_n^{(2)}(y) := \mathbb{P}\left(\max_{1 \leq k \leq n} S_k^{(2)} \leq y \right),
\]
where \(y \geq 0 \) is independent of \(n \). With \(y \ll n \) it immediately follows from Lindeberg’s CLT that \(p_n^{(2)}(y) \to 0 \) as \(n \to \infty \) and our goal is thus to find a sharp rate for this decay to zero.

Note that for any fixed \(y > 0 \) we have that \(\overline{p}_n^{(2)}(y) \sim p_n^{(2)}(y) \sim p_n^{(2)}(0) \) up to a constant depending only on \(y \). Indeed, because \(\mathbb{E}X^2 > s \), clearly \(\mathbb{P}(X_1 < -\varepsilon) > 0 \) for \(\varepsilon = y/k \) and some integer \(k \geq 1 \). Now, for any \(n \geq 1 \) and \(z \geq 0 \),
\[
\overline{p}_n^{(2)}(z) \geq p_n^{(2)}(z) \geq \mathbb{P}(X_n < -\varepsilon)p_{n-1}^{(2)}(z + \varepsilon) \geq \mathbb{P}(X_1 < -\varepsilon)p_n^{(2)}(z + \varepsilon)
\]
and applying this inequality for \(z = i\varepsilon, i = 0, 1, \ldots, k - 1 \) we conclude that
\[
p_n^{(2)}(0) \geq \mathbb{P}(X_1 < -\varepsilon)^{k}p_n^{(2)}(y).
\]
Of course, we also have the complementary trivial relations \(p_n^{(2)}(0) \leq \overline{p}_n^{(2)}(0) \leq p_n^{(2)}(y) \leq \overline{p}_n^{(2)}(y) \), so it suffices to consider only \(p_n^{(2)}(0) \) and \(\overline{p}_n^{(2)}(0) \) which we denote hereafter by \(p_n^{(2)} \) and \(\overline{p}_n^{(2)} \), respectively. Obviously, \(p_n^{(2)} \) and \(\overline{p}_n^{(2)} \) have the same order (with \(p_n^{(2)} = \overline{p}_n^{(2)} \) whenever \(X_1 \) has a density), and we consider both only in order to draw the reader’s attention to potential identities connecting the two sequences \(\{p_n^{(2)}\} \) and \(\{\overline{p}_n^{(2)}\} \).

Persistence probabilities such as \(p_n^{(2)} \) appear in many applications. For example, the precise problem we consider here arises in the study of the so-called sticky particle systems (c.f. [9] and the references therein). In case of standard normal \(X_i \) it is also related to entropic repulsion for \(\nabla^2 \)-Gaussian fields (c.f. [2] and the references therein), though here we consider the easiest version, namely a one dimensional \(\nabla^2 \)-Gaussian field. In his 1992 seminal paper, Sinai [8] proved that if \(\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2 \), then \(p_n^{(2)} \asymp n^{-1/4} \). However, his method relies on the fact that for Bernoulli \(\{X_k\} \) all local minima of \(k \mapsto S_k^{(2)} \) correspond to values of \(k \) where \(S_k = 0 \), and as such form a sequence of regeneration times. For this reason, Sinai’s method can not be readily extended to most other distributions. Using a different approach, more that Vysotsky [10] managed to extend Sinai’s result that \(p_n^{(2)} \asymp n^{-1/4} \) to \(X_i \) which are double-sided exponential, and a few other special types of random walks. At about the same time, Aurzada and Dereich [1] used strong approximation techniques to prove the bounds \(n^{-1/4}(\log n)^{-4} \lesssim p_n^{(2)} \lesssim n^{-1/4}(\log n)^4 \) for zero-mean random variables \(\{X_i\} \) such that \(\mathbb{E}[e^{\beta|X_i|}] < \infty \) for some \(\beta > 0 \). However, even for \(X_i \) which are standard normal variables it was not known before whether these logarithmic terms are needed, and if not, how to get rid of them. Our main result, stated below, resolves this question, at least when the lower tail of \(X_1^- \) decays exponentially:

Decay Assumption: We assume that there exist constants \(r > 0, \theta > 1/r \) and finite \(K, L \), such that for all \(t > 0, s > 0, \)
\[
\mathbb{P}(-X_1 > t + s) \leq K\mathbb{P}(-X_1 > t)\mathbb{P}(-X_1 > s) + L[\mathbb{P}(-X_1 > r)]^{\theta(l+s)},
\]
(1.5)
Remark 1.1. With $\beta = -\limsup_{t \to \infty} \frac{1}{t} \log P(\tau > t)$, it is easy to check that our condition holds (with $K = 0$), whenever $P(\tau > t) > e^{-\beta t}$ for some $t > 0$. Obviously this applies whenever $-X_1$ decays super-exponentially, that is, for $\beta = \infty$. Conversely, considering $K = L > 0$ and $t = s = \ell r, \ell = 0, 1, \ldots$ it is not hard to show that some exponential decay, namely $\beta > 0$, is necessary for our decay assumption. In the borderline case of an exponential decay, that is, when $\beta > 0$ is finite, our condition holds also whenever $P(\tau > t) \approx e^{-\beta t}$. (taking now $L = 0$ and $K > 0$, with $K = 1$ corresponding to X_1^- having a New Better than Used distribution).

In this paper, we will prove:

Theorem 1.2. For i.i.d. $\{X_k\}$ of zero mean and $E|X_1| < \infty$, let $S_n^{(2)} = S_1 + S_2 + \cdots + S_n$, where $S_i = X_1 + X_2 + \cdots + X_i$. Then,

$$
\sum_{k=0}^{n} p_k^{(2)} P_{n-k} \leq c_1^2 \frac{E|S_{n+1}|}{E|X_1|},
$$

where $c_1 \leq 6\sqrt{3\ell}$, and $c_1 = 2$ if X_1 is symmetric. Furthermore, if X_1^- satisfies the decay assumption (1.5), the converse inequality

$$
\sum_{k=0}^{n} p_k^{(2)} P_{n-k} \geq \frac{1}{c_2} \frac{E|S_{n+1}|}{E|X_1|}
$$

holds for some finite $c_2 = c_2(K, L, \theta, r)$. Taken together, these bounds imply that

$$
\frac{1}{4c_1c_2} \sqrt{\frac{E|S_{n+1}|}{(n+1)E|X_1|}} \leq p_n^{(2)} \leq c_1 \sqrt{\frac{E|S_{n+1}|}{(n+1)E|X_1|}}.
$$

Remark 1.3. If X_1 has finite second moment, then by the CLT, there exist finite constants $C_2 > C_1 > 0$ such that $C_2 \sqrt{n} \geq E|S_n| \geq C_1 \sqrt{n}$ for all $n \geq 1$. Consequently, we then have $p_n^{(2)} \sim n^{-1/4}$ under the decay assumption of Theorem 1.2. In contrast, for any $0 < \gamma < 1/4$ there exists integrable, zero-mean variable X_1 for which $p_n^{(2)} \sim n^{-\gamma}$. Indeed, considering $P(Y_1 > y) = y^{-\alpha} 1_{y \geq 1}$ with $1 < \alpha < 2$, our decay assumption applies for the bounded below, zero-mean, integrable random variable $X_1 = Y_1 - EY_1$. Setting $a_n = n^{1/\alpha}$, clearly $nP(|X_1| > a_n x) \to x^{-\alpha}$ as $n \to \infty$, hence $a_n^{-1}S_n - b_n$ converges in distribution to a zero-mean, one-sided Stable$_\alpha$ variable Z_α, and it is further easy to check that $b_n = a_n^{-1}nE[X_1|X_1| \leq a_n] \to b_\infty = -EY_1$. In fact, it is not hard to verify that $\{a_n^{-1}S_n\}$ is a uniformly integrable sequence and consequently $n^{-1/\alpha}E|S_n| \to E|Z_\alpha - EY_1| < \infty$ and positive. From Theorem 1.2 we then deduce that $p_n^{(2)} \sim n^{-\gamma}$ for $\gamma = (1 - 1/\alpha)/2$.

The sequences $\{S_k\}$ and $\{S_k^{(2)}\}$ are special cases of the class of auto-regressive processes $Y_k = \sum_{\ell=1}^{L} a_\ell Y_{k-\ell} + X_k$ with zero initial conditions, i.e. $Y_k \equiv 0$ when $k \leq 0$ (where S_k corresponds to $L = a_1 = 1$ and $S_k^{(2)}$ corresponds to $L = a_1 = 2, a_2 = -1$). While each of these stochastic processes is a time-homogeneous Markov chain of state space \mathbb{R} and $q_n = P(\tau > n)$ is merely the upper tail of the first hitting time τ of $[y, \infty)$ by the relevant chain, the general theory of Markov chains does not provide the precise decay of q_n, which even in case $L = 1$ ranges from exponential decay for $a_1 > 0$ small enough, via the $O(n^{-1/2})$ decay for $a = 1$ to a constant $n \mapsto q_n$ in the limit $a_1 \uparrow \infty$. While we do not pursue this here, we believe that
the approach we develop for proving Theorem 1.2 can potentially determine the asymptotic
behavior of \(q_n \) for a large collection of auto-regressive processes. This is of much interest, since
for example, as shown in [5], the asymptotic tail probability that random Kac polynomials
have no (or few) real roots is determined in terms of the limit as \(r \to \infty \) of the power law tail
decay exponents for the iterates \(S_k^{(r)} = \sum_{i=1}^{k} S_i^{(r-1)}, \ r \geq 3 \).

Our approach further suggests that there might be some identities connecting the sequences
\(\{p_n^{(2)}\} \) and \(\{\overline{p}_n^{(2)}\} \). Note that, if we denote
\[
p_n^{(1)} = \mathbb{P}\left(\max_{1 \leq k \leq n} S_k < 0 \right), \quad \overline{p}_n^{(1)} = \mathbb{P}\left(\max_{1 \leq k \leq n} S_k \leq 0 \right),
\]
then as we show in Section 2 there are indeed identities connecting the sequences \(\{p_n^{(1)}\} \) and
\(\{\overline{p}_n^{(1)}\} \). As we mentioned earlier, it is well-known that \(p_n^{(1)} \) is of the order \(n^{-1/2} \). The next
proposition provides the exact value of \(p_n^{(1)} \) for symmetric random variables with a density,
and the elegant argument of its proof serves as the starting point of our approach to the study of \(p_n^{(2)} \).

Proposition 1.4. If \(X_t \) are mean zero i.i.d. symmetric random variables then for all \(n \geq 1 \),
\[
p_n^{(1)} \leq \frac{(2n - 1)!!}{(2n)!!} \leq \overline{p}_n^{(1)}.
\] (1.9)

In particular, if \(X_1 \) also has a density, then
\[
p_n^{(1)} = \frac{(2n - 1)!!}{(2n)!!}.
\] (1.10)

Remark 1.5. Let \(B(s) \) denote a Brownian motion starting at \(B(0) = 0 \) and consider the inte-
grated Brownian motion \(Y(t) = \int_0^t B(s) ds \). Sinai [8] proved the existence of positive constants
\(A_1 \) and \(A_2 \) such that for any \(T > 0 \),
\[
A_1 T^{-1/4} \leq \mathbb{P}\left(\sup_{t \in [0,T]} Y(t) \leq 1 \right) \leq A_2 T^{-1/4}.
\] (1.11)

Upon setting \(\varepsilon = T^{-3/2} \) and \(t = uT \), by Brownian motion scaling this is equivalent up to a
constant to the following result that can be derived from an implicit formula of McKean [7]
(c.f. [4]):
\[
\lim_{\varepsilon \to 0^+} \varepsilon^{-1/6} \mathbb{P}\left(\sup_{u \in [0,1]} Y(u) \leq \varepsilon \right) = \frac{3\Gamma(5/4)}{4\pi \sqrt{2\varepsilon}}.
\]

Since the iterated partial sums \(S_n^{(2)} \) corresponding to i.i.d standard normal random variables
\(\{X_i\} \), forms a discretization of \(Y(t) \), the right-most inequality in (1.11) readily follows from
Theorem 1.2. Indeed, with \(\mathbb{E}[Y(k)Y(m)] = k^2(3m - k)/6 \) and \(\mathbb{E}[S_k^{(2)}S_m^{(2)}] = k(k+1)(3m-k+1)/6 \)
for \(m \geq k \), setting \(Z(k) = \sqrt{(1+1/k)(1+1/(2k))}Y(k) \), results with \(\mathbb{E}[Z(k)^2] = \mathbb{E}[Z(k)^2] \)
and it is further not hard to show that \(f(m,k) := \mathbb{E}[S_m^{(2)}S_k^{(2)}]/\mathbb{E}[Z(m)Z(k)] \geq 1 \) for all \(m \neq k \)
(as \(f(k+1,k) \geq 1 \) and \(df(m,k)/dm > 0 \) for any \(m \geq k + 1 \)). Thus, by Slepian’s lemma, we have that for any \(y \)
\[
\mathbb{P}\left(\max_{1 \leq k \leq n} Z(k) < y \right) \leq p_n^{(2)}(y),
\]
and setting \(n \) as the integer part of \(T \geq 1 \) it follows that

\[
\mathbb{P}\left(\sup_{t \in [0, T]} Y(t) \leq 1 \right) \leq \mathbb{P}\left(\max_{1 \leq k \leq n} Y(k) \leq 1 \right) \leq \mathbb{P}\left(\max_{1 \leq k \leq n} Z(k) < 2 \right) \leq p_n^{(2)}(2).
\]

Since \(p_n^{(2)}(2) \leq cp_n^{(2)} \) for some finite constant \(c \) and all \(n \), we conclude from Theorem 1.2 that

\[
\mathbb{P}\left(\sup_{t \in [0, T]} Y(t) \leq 1 \right) \leq 2c(n + 1)^{-1/4} \leq 2T^{-1/4}.
\]

2 Proof of Proposition 1.4

Setting \(S_0 = 0 \) let \(M_n = \max_{0 \leq j \leq n} S_j \) and consider the \(\{0, 1, 2, \ldots, n\} \)-valued random variable

\[
\mathcal{N} = \min \{ l \geq 0 : S_l = M_n \}.
\]

For each \(k = 1, 2, \ldots, n - 1 \) we have that

\[
\{ \mathcal{N} = k \} = \{ X_k > 0, X_k + X_{k-1} > 0, \ldots, X_k + X_{k-1} + \cdots + X_1 > 0; \\
X_{k+1} \leq 0, X_{k+1} + X_{k+2} \leq 0, \ldots, X_{k+1} + X_{k+2} + \cdots + X_n \leq 0 \}.
\]

By the independence of \(\{X_i\} \), the latter identity implies that

\[
\mathbb{P}(\mathcal{N} = k) = \mathbb{P}(X_k > 0, X_k + X_{k-1} > 0, \ldots, X_k + X_{k-1} + \cdots + X_1 > 0) \times \mathbb{P}(X_{k+1} \leq 0, X_{k+1} + X_{k+2} \leq 0, \ldots, X_{k+1} + X_{k+2} + \cdots + X_n \leq 0) = p_k^{(1)} \mathcal{P}_{n-k}^{(1)},
\]

where the last equality follows from our assumptions that \(X_i \) are i.i.d symmetric random variables. Also note that \(\mathbb{P}(\mathcal{N} = 0) = \mathcal{P}_0^{(1)} \) and

\[
\mathbb{P}(\mathcal{N} = n) = \mathbb{P}(X_n > 0, X_n + X_{n-1} > 0, \ldots, X_n + X_{n-1} + \cdots + X_1 > 0) = p_n^{(1)}.
\]

Thus, setting \(p_0^{(1)} = \mathcal{P}_0^{(1)} = 1 \) we arrive at the identity

\[
\sum_{k=0}^{n} p_k^{(1)} \mathcal{P}_{n-k}^{(1)} = \sum_{k=0}^{n} \mathbb{P}(\mathcal{N} = k) = 1,
\]

holding for all \(n \geq 0 \).

Fixing \(x \in [0, 1) \), upon multiplying (2.1) by \(x^n \) and summing over \(n \geq 0 \), we arrive at

\[
P(x)\overline{P}(x) = \frac{1}{1-x},
\]

where \(P(x) = \sum_{k=0}^{\infty} p_k^{(1)} x^k \) and \(\overline{P}(x) = \sum_{k=0}^{\infty} \mathcal{P}_k^{(1)} x^k \). Now, if \(X_1 \) also has a density then \(p_k^{(1)} = \mathcal{P}_k^{(1)} \) for all \(k \) and so by the preceding \(P(x) = \overline{P}(x) = (1 - x)^{-1/2} \). Consequently, \(p_n^{(1)} \) is merely the coefficient of \(x^n \) in the Taylor expansion at \(x = 0 \) of the function \((1 - x)^{-1/2} \), from which we immediately deduce the identity (1.10).

If \(X_1 \) does not have a density, let \(\{Y_i\} \) be i.i.d. standard normal random variables, independent of the sequence \(\{X_i\} \) and denote by \(S_k \) and \(\hat{S}_k \) the partial sums of \(\{X_i\} \) and \(\{Y_i\} \), respectively. Note that for any \(\varepsilon > 0 \), each of the i.i.d. variables \(X_i + \varepsilon Y_i \) is symmetric and
has a density, with the corresponding partial sums being $S_k + \varepsilon \tilde{S}_k$. Hence, for any $\delta > 0$ we have that
\[
P\left(\max_{1 \leq k \leq n} S_k < -\delta \right) \leq P\left(\max_{1 \leq k \leq n} (S_k + \varepsilon \tilde{S}_k) \leq 0 \right) + P\left(\max_{1 \leq k \leq n} \varepsilon \tilde{S}_k \geq \delta \right) = \frac{(2n-1)!}{(2n)!!} + P\left(\max_{1 \leq k \leq n} \varepsilon \tilde{S}_k \geq \delta \right).
\]
Taking first $\varepsilon \downarrow 0$ followed by $\delta \downarrow 0$, we conclude that
\[
P\left(\max_{1 \leq k \leq n} S_k < 0 \right) \leq \frac{(2n-1)!}{(2n)!!},
\]
and a similar argument works for the remaining inequality in (1.9).

Remark 2.1. The argument of the next section allows us to modify this proof and deduce order of $(n+1)^{-1/2}$ upper and lower bounds for $p^{(1)}_n$ even in the non-symmetric case. However, since this result is already known, we shall not do so here.

3 Proof of Theorem 1.2

By otherwise considering $X_i/\mathbb{E}|X_i|$, we assume without loss of generality that $\mathbb{E}|X_1| = 1$. To adapt the method of Section 2 for dealing with the iterated partial sums $S^{(2)}_n$, we introduce the parameter $t \in \mathbb{R}$ and consider the iterates $S^{(2)}_j(t) = S_0(t) + \cdots + S_j(t)$, $j \geq 0$, of the translated partial sums $S_k(t) = t + S^{(1)}_k$, $k \geq 0$. That is, $S^{(2)}_j(t) = (j+1)t + S^{(2)}_j$ for each $j \geq 0$.

Having fixed the value of t, we define the following $\{0, 1, 2, \ldots, n\}$-valued random variable
\[
K_t = \min \left\{ t \geq 0 : S^{(2)}_1(t) = \max_{0 \leq j \leq n} S^{(2)}_j(t) \right\}.
\]
Then, for each $k = 2, 3, \ldots, n-2$, we have the identity
\[
\{K_t = k\} = \{S_k(t) > 0, S_k(t) + S_{k-1}(t) > 0, \ldots, S_k(t) + S_{k-1}(t) + \cdots + S_1(t) > 0; S_{k+1}(t) \leq 0, S_{k+1}(t) + S_{k+2}(t) \leq 0, \ldots, S_{k+1}(t) + S_{k+2}(t) + \cdots + S_n(t) \leq 0\}
\bullet \{S_k(t) > 0, X_k < 2S_k(t), \ldots, (k-1)X_k + \cdots + X_2 < kS_k(t)\} \cap \{S_{k+1}(t) \leq 0\}
\cap \{X_{k+2} \leq -2S_{k+1}(t), \ldots, (n-k-1)X_{k+2} + \cdots + X_n \leq -(n-k)S_{k+1}(t)\}.
\]
Next, for $2 \leq k \leq n$ we define $Y_{k,2} \in \sigma(X_2, \ldots, X_k)$ and $Y_{k,n} \in \sigma(X_k, \ldots, X_n)$ such that
\[
Y_{k,2} = \max \left\{ \frac{X_k}{2}, \frac{2X_k + X_{k-1}}{3}, \ldots, \frac{(k-1)X_k + \cdots + X_2}{k} \right\},
Y_{k,n} = \max \left\{ \frac{X_k}{2}, \frac{2X_k + X_{k+1}}{3}, \ldots, \frac{(n-k+1)X_k + \cdots + X_n}{n-k+2} \right\}.
\]
It is then not hard to verify that the preceding identities translate into
\[
\{K_t = k\} = \{S_k(t) > 0 \geq S_{k+1}(t)\} \cap \{Y_{k,2} < S_k(t)\} \cap \{Y_{k+2,n} \leq -S_{k+1}(t)\}
= \{-S_k + (Y_{k,2})^+ < t \leq -X_{k+1} - S_k - (Y_{k+2,n})^+\}
\]
holding for each $k = 2, \ldots, n - 2$. Further, for $k = 1$ and $k = n - 1$ we have that

\[
\{K_t = 1\} = \{S_1(t) > 0\} \cap \{S_2(t) \leq 0\} \cap \{Y_{3,n} \leq -S_2(t)\},
\]
\[
\{K_t = n - 1\} = \{S_{n-1}(t) > 0\} \cap \{Y_{n-1,2} < S_{n-1}(t)\} \cap \{S_n(t) \leq 0\},
\]
so upon setting $Y_{1,2} = Y_{n+1,n} = -\infty$, the identities (3.1) and (3.2) extend to all $1 \leq k \leq n - 1$.

For the remaining cases, that is, for $k = 0$ and $k = n$, we have instead that

\[
\{K_t = 0\} = \{t \leq -X_1 - (Y_{2,n})^+\}, \tag{3.3}
\]
\[
\{K_t = n\} = \{-S_n + (Y_{n,2})^+ < t\}. \tag{3.4}
\]

In contrast with the proof of Proposition 1.4, here we have events \{(Y_{k,2})^+ < S_k(t)\} and \{(Y_{k+2,n})^+ \leq -S_{k+1}(t)\} that are linked through $S_k(t)$ and consequently not independent of each other. Our goal is to unhook this relation and in fact the parameter t was introduced precisely for this purpose.

3.1 Upper bound

For any integer $n > 1$, let

\[
A_n = \max_{1 \leq k \leq n} \{-S_{k+1}\}, \quad B_n = -\max_{1 \leq k \leq n} \{S_k\}.
\]

By definition $A_n \geq B_n$. Further, for any $1 \leq k \leq n - 1$, from (3.1) we have that the event $\{K_t = k\}$ implies that $\{S_k(t) > 0 \geq S_{k+1}(t)\} = \{-S_k < t \leq -S_{k+1}\}$ and hence that $\{B_{n-1} < t \leq A_{n-1}\}$. From (3.2) we also see that for any $1 \leq k \leq n - 1$,

\[
\int_{\mathbb{R}} 1_{\{K_t = k\}} dt \geq (X_{k+1})^{-1} 1_{\{Y_{k,2} < 0\}} 1_{\{Y_{k+2,n} \leq 0\}}
\]

and consequently,

\[
A_{n-1} - B_{n-1} = \int_{\mathbb{R}} 1_{\{B_{n-1} < t \leq A_{n-1}\}} dt \geq \sum_{k=1}^{n-1} \int_{\mathbb{R}} 1_{\{K_t = k\}} dt \geq \sum_{k=1}^{n-1} (X_{k+1})^{-1} 1_{\{Y_{k,2} < 0\}} 1_{\{Y_{k+2,n} \leq 0\}}.
\tag{3.5}
\]

Taking the expectation of both sides we deduce from the mutual independence of $Y_{k,2}$, X_{k+1} and $Y_{k+2,n}$ that

\[
\mathbb{E}[A_{n-1} - B_{n-1}] \geq \sum_{k=1}^{n-1} \mathbb{E}[(X_{k+1})^{-1}] \mathbb{P}(Y_{k,2} < 0) \mathbb{P}(Y_{k+2,n} \leq 0).
\]

Next, observe that since the sequence $\{X_i\}$ has an exchangeable law,

\[
\mathbb{P}(Y_{k,2} < 0) = \mathbb{P}(X_k < 0, 2X_k + X_{k-1} < 0, \ldots, (k - 1)X_k + \cdots + X_2 < 0)
\]
\[
= \mathbb{P}(X_1 < 0, 2X_1 + X_2 < 0, \ldots, (k - 1)X_1 + \cdots + X_{k-1} < 0) = p_{k-1}^{(2)}. \tag{3.6}
\]
Similarly, \(\mathbb{P}(Y_{k+2,n} \leq 0) = \mathbb{P}^{(2)}_{n-1-k} \). With \(X_{k+1} \) having zero mean, we have that \(\mathbb{E}[(X_{k+1})^-] = \mathbb{E}[(X_{k+1})^+] = 1/2 \) (by our assumption that \(\mathbb{E}|X_{k+1}| = \mathbb{E}|X_1| = 1 \)). Consequently, for any \(n \geq 2 \),

\[
\mathbb{E}[A_{n-1} - B_{n-1}] \geq \frac{1}{2} \sum_{k=1}^{n-1} p_k^{(2)} \mathbb{P}^{(2)}_{n-1-k} = \frac{1}{2} \sum_{k=0}^{n-2} p_k^{(2)} \mathbb{P}^{(2)}_{n-2-k}.
\]

With \(\mathbb{E}[S_{n+1}] = 0 \) and \(\{X_k\} \) exchangeable, we clearly have that

\[
\mathbb{E}[A_n - B_n] = \mathbb{E}\left[\max_{1 \leq k \leq n} S_k\right] + \mathbb{E}\left[\max_{1 \leq k \leq n} \{S_{n+1} - S_{k+1}\}\right] = 2\mathbb{E}\left[\max_{1 \leq k \leq n} S_k\right]. \tag{3.7}
\]

Recall Ottaviani’s maximal inequality that for a symmetric random walk \(\mathbb{P}(\max_{k=1}^n S_k \geq t) \leq 2\mathbb{P}(S_n \geq t) \) for any \(n, t \geq 0 \), hence in this case

\[
\mathbb{E}\left[\max_{1 \leq k \leq n} S_k\right] \leq 2 \int_0^\infty \mathbb{P}(S_n \geq t) dt = \mathbb{E}|S_n|.
\]

To deal with the general case, we replace Ottaviani’s maximal inequality by Montgomery-Smith’s inequality

\[
\mathbb{P}(\max_{1 \leq k \leq n} |S_k| \geq t) \leq 3 \max_{1 \leq k \leq n} \mathbb{P}(|S_k| \geq t/3) \leq 9\mathbb{P}(|S_n| \geq t/30)
\]

(see [6]), from which we deduce that

\[
\mathbb{E}\left[\max_{1 \leq k \leq n} S_k\right] \leq 9 \int_0^\infty \mathbb{P}(|S_n| \geq t/30) dt = 270\mathbb{E}|S_n| \tag{3.8}
\]

and thereby get (1.6). Finally, since \(n \mapsto p_n^{(2)} \) is non-increasing and \(p_n^{(2)} \leq \mathbb{P}^{(2)}_n \), the upper bound of (1.8) is an immediate consequence of (1.6).

3.2 Lower bound

Turning to obtain the lower bound, let

\[
m_n := -X_1 - (Y_{2,n})^+, \quad M_n := -S_n + (Y_{n,2})^+.
\]

Note that for any \(n \geq 2 \),

\[
Y_{n,2} + Y_{2,n} \geq \frac{1}{n}[(n-1)X_n + \cdots + X_2] + \frac{1}{n}[(n-1)X_2 + \cdots + X_n] = S_n - X_1,
\]

and consequently,

\[
M_n - m_n \geq X_1 - S_n + (Y_{n,2} + Y_{2,n})^+ \geq (X_1 - S_n)^+ = (X_2 + \cdots + X_n)^-. \tag{3.9}
\]

In particular, \(M_n \geq m_n \). From (3.3) and (3.4) we know that if \(m_n < t \leq M_n \) then necessarily \(1 \leq \kappa_t \leq n - 1 \). Therefore,

\[
M_n - m_n = \int_{\mathbb{R}} 1_{\{m_n < t \leq M_n\}} dt \leq \sum_{k=1}^{n-1} \int_{\mathbb{R}} 1_{\{\kappa_t = k\}} dt. \tag{3.10}
\]

8
In view of (3.2) we have that for any $1 \leq k \leq n - 1$,

$$b_k := E[\int_\mathbb{R} 1_{\{X_t = k\}} dt] = E\left[(X_{k+1} + (Y_{k,2})^+ + (Y_{k+2,n})^+) - \right].$$

By the mutual independence of the three variables on the right side, denoting by $F_{k,2}$ and $F_{k+2,n}$ the distribution functions of $(Y_{k,2})^+$ and $(Y_{k+2,n})^+$, respectively, we thus find that

$$b_k = \int_0^\infty \int_0^\infty E[(X_{k+1} + x + y)^-] dF_{k,2}(x) dF_{k+2,n}(y)$$

$$= \int_0^\infty \int_0^\infty g_{k+1}(x+y) dF_{k,2}(x) dF_{k+2,n}(y),$$

where $g_k(t) = \int_0^\infty \mathbb{P}(-X_k > t + u) du$. Since X_k have identical distributions, $g_k(t) = g_1(t)$ does not depend on k and we have already seen that $g_1(0) = E[(X_1)^+] = 1/2$. Thus, setting $\alpha = -\log \mathbb{P}(-X_1 > r)$, applying our decay assumption (1.5) first for $t = x + y$, $s = u$ and then for $t = x$, $s = y$, we find that

$$g_1(x + y) \leq K \mathbb{P}(-X_1 > x + y) g_1(0) + L \int_0^\infty e^{-\theta \alpha(x+y+u)} du$$

$$\leq \frac{K^2}{2} \mathbb{P}(-X_1 > x) \mathbb{P}(-X_1 > y) + L_1 e^{-\theta \alpha(x+y)}$$

where $L_1 = L[K/2 + (\theta \alpha)^{-1}]$. Consequently, we arrive at the bound

$$b_k \leq \frac{K^2}{2} \mathbb{P}(-X_1 > x) dF_{k,2}(x) \int_0^\infty \mathbb{P}(-X_1 > y) dF_{k+2,n}(y)$$

$$+ L_1 \int_0^\infty e^{-\theta \alpha x} dF_{k,2}(x) dF_{k+2,n}(y)$$

$$= \frac{K^2}{2} \mathbb{P}(X_{k+1} + (Y_{k,2})^+ < 0) \mathbb{P}(X_{k+1} + (Y_{k+2,n})^+ < 0) + L_1 \mathbb{E}[e^{-\theta \alpha(Y_{k,2})^+}] \mathbb{E}[e^{-\theta \alpha(Y_{k+2,n})^+}].$$

Next, observe that just as we did in deriving the identity (3.6),

$$\mathbb{P}(X_{k+1} + (Y_{k,2})^+ < 0) = \mathbb{P}(X_{k+1} < 0, 2X_{k+1} + X_k < 0, \ldots, kX_{k+1} + \cdots + X_2 < 0)$$

$$= \mathbb{P}(X_1 < 0, 2X_1 + X_2 < 0, \ldots, kX_1 + \cdots + X_k < 0) = p_k^{(2)}.$$

By a similar reasoning one verifies that $p_{k-1}^{(2)} = \mathbb{P}(X_{k+1} + (Y_{k+2,n})^+ < 0)$. Now, by exchange-ability of $\{X_k\}$, the sequence $k \mapsto \mathbb{P}(Y_{k,2} < z)$ is non-increasing for any fixed value of z. Furthermore, if $z \geq r > 0$ then

$$\mathbb{P}(Y_{k,2} < z - r) = \mathbb{P}(X_k < 2(z - r), \ldots, (k - 1)X_k + \cdots + X_2 < k(z - r))$$

$$\geq \mathbb{P}(X_k < -r) \mathbb{P}(X_{k-1} < 2z, \ldots, (k - 2)X_{k-1} + \cdots + X_2 < (k - 1)z)$$

$$= \mathbb{P}(-X_1 > r) \mathbb{P}(Y_{k-2,n} < z) \geq \mathbb{P}(X_1 < -r) \mathbb{P}(Y_{k,2} < z).$$

Iterating this inequality for $z = jr, j = 1, \ldots, k := \lfloor x/r \rfloor$ we deduce that for any $x > 0$,

$$\mathbb{P}(Y_{k,2} < x) \leq \mathbb{P}(Y_{k,2} < kr) \leq [\mathbb{P}(-X_1 > r)]^{-k} \mathbb{P}(Y_{k,2} < 0) \leq e^{\alpha(x/r+1)} p_k^{(2)}.$$
(relying on the identity (3.6) for the right-most inequality). Consequently,
\[
\mathbb{E}[e^{-\theta\alpha(Y_{k,2})^+}] = \theta \alpha \int_0^\infty \mathbb{P}(0 \leq Y_{k,2} < x) e^{-\theta \alpha x} \, dx \leq \kappa p_{k-1}^{(2)},
\]
with \(\kappa = e^\alpha \theta/(\theta - 1/r) \) finite. Similarly, we find that for any \(y > 0 \),
\[
\mathbb{P}(Y_{k+2,n} < y) = p_{n-k-1}^{(2)}(y) \leq e^{\alpha (y/r + 1)} p_{n-k-1}^{(2)},
\]
hence
\[
\mathbb{E}[e^{-\theta\alpha(Y_{k+2,n})^+}] \leq \kappa p_{n-k-1}^{(2)}.
\]
Combining all these bounds we have by the monotonicity of \(k \mapsto p_k^{(2)} \) that
\[
b_k \leq K^2 \frac{2}{p_k^{(2)} p_{n-k-1}^{(2)}} + L_1 \kappa^2 p_{k-1}^{(2)} p_{n-k-1}^{(2)} \leq c_2 \frac{2}{p_k^{(2)} p_{n-k-1}^{(2)}},
\]
where \(c_2 = K^2 + 2L_1 \kappa^2 \) is a finite constant. Thus, considering the expectation of both sides of (3.10) we deduce that for any \(n > 2 \),
\[
\mathbb{E}(M_n - m_n) \leq \frac{c_2}{2} \sum_{k=1}^{n-1} p_{k-1}^{(2)} p_{n-k-1}^{(2)}.
\]

In view of (3.9) we also have that \(\mathbb{E}(M_n - m_n) \geq \mathbb{E}[(S_{n-1})^-] = \frac{1}{2} \mathbb{E}|S_{n-1}| \), from which we conclude that (1.7) holds for all \(n \geq 1 \).

Turning to lower bound \(p_n^{(2)} \) as in (1.8), recall that \(n \mapsto p_n^{(2)} \) is non-increasing. Hence, applying (1.7) for \(n = 2m + 1 \) and utilizing the previously derived upper bound of (1.8) we have that
\[
\frac{1}{c_2} \mathbb{E}|S_{2(m+1)}| \leq 2 \sum_{k=0}^{m} p_k^{(2)} p_m^{(2)} \leq 2c_1 p_m^{(2)} \sum_{k=0}^{m} \sqrt{\frac{\mathbb{E}|S_{k+1}|}{k+1}}
\leq 4c_1 p_m^{(2)} \sqrt{(m+1)\mathbb{E}|S_{m+1}|},
\]
(3.11)
where in the last inequality we use the fact that for independent, zero-mean \(\{X_k\} \), the sequence \(|S_k| \) is a sub-martingale, hence \(k \mapsto \mathbb{E}|S_k| \) is non-decreasing. This proves the lower bound of (1.8).

References

[1] Aurzada, F. and Dereich, S., Universality of the asymptotics of the one-sided exit problem for integrated processes. Preprint (2009).

[2] Caravenna, F. and Deuschel, J.-D., Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction, *Ann. Probab.* 36 (2008), 2388-2433.

[3] Dembo, A., Poonen, B., Shao, Q. and Zeitouni, O., Random polynomials having few or no real zeros. *J. Amer. Math. Soc.* 15 (2002), 857-892.

[4] Devulder, A., Shi, Z. and Simon, T., The lower tail problem for the area of a symmetric stable process. Unpublished manuscript (2007).
[5] Li, W. and Shao, Q., On a family of Gaussian processes and the positivity exponent of random polynomials. Unpublished manuscript (2001).

[6] Montgomery-Smith, S. J. Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist. 14 (1993), no. 2, 281-285.

[7] McKean, Jr., H. P. A winding problem for a resonator driven by a white noise. Journal of Mathematics of Kyoto University, 2 (1963), 227-235.

[8] Sinai, Ya. G. Distribution of some functionals of the integral of a random walk. Theor. Math. Phys. 90 (1992), 219-241.

[9] Vysotsky, V., Clustering in a stochastic model of one-dimensional gas. Annals of Applied Probability 18 (2008), 1026-1058.

[10] Vysotsky, V., On the probability that integrated random walk stay positive. Preprint (2010).