Brucellosis is a common global zoonotic infection caused in small ruminants by a bacterium, *Brucella melitensis* (Kumar et al. 2016). Once introduced inside a mammalian host, the bacteria mainly reside within a vacuole in phagocytic cells (Roop et al. 2004). The presence of bacteria in the phagocytes induce a clinical or subclinical disease depending on its ability to survive and to multiply by inhibition of blending of phagocytic vacuoles with lysosomal contents and resistance to oxidative killing (Kumar et al. 2017). Depending upon the pathogenicity of the bacterial strain and the host factors (Rahal et al. 2014), localised/systemic brucellosis share variable clinical manifestations including inflammatory symptoms (Kumar et al. 2016) leading to triggering of interleukin (IL)-8, tumor necrosis factor (TNF)-alpha and IL-6. These chemical mediators induce an increased level of oxidative stress and inflammation in the tissues leading to cellular damage along with perpetuating the desirable immune response (Celli et al. 2003). Therefore, reducing the inflammatory response and the oxidative stress, may be an important intercession to thwart the pathological consequences of *Brucella* vaccinations (Baldi and Giambartolomei 2013). Based on this concept and to improve benefit-risk ratio, antigenic molecules of *Brucella* are being coupled with carrier molecules (Minas 2006) like biodegradable hydrophobic polymers as an ideal adjuvant for intranasal delivery of vaccines (Kumar et al. 2013). Thus, the present study was aimed at evaluating the erythrocytic and tissue specific oxidative stress response caused by killed *Brucella* whole cell protein antigen unified with a polymer gel adjuvant for offering protection against live virulent *Brucella*.

MATERIALS AND METHODS

Vaccine: The formalized killed polymer gel based *B. melitensis* biovar 3 IND1 vaccine (PGV) was prepared with the addition of polymer gel (MontanideTM Gel 1) in the ratio of 1:10 (V/V) to formalized killed virulent *Brucella melitensis* biovar 3 bacterial strain (Accession no. VTCCBAA228). The final vaccine had the bacterial load of 1.41×10⁸ CFU per shot (i.e. 10 µl). The vaccine was tested for its sterility, stability and safety prior to start of trial.

Experimental animals: For *in vivo* trial, female inbred BALB/c mice were procured from Indian Toxicological Research Centre (ITRC), Lucknow, India. All the mice were...
Table 1. Effect of vaccination, booster vaccination and *B. melitensis* challenge on oxidative stress biomarkers in erythrocytes of inbred BALB/c mice.

Group	Vaccination, booster vaccination and challenge schedule						
	0 day	7th day	14th day	28th day	35th day	49th day	56th day
NPGV							
Mice erythrocytes catalase activity (mM H$_2$O$_2$ utilized/min/mg of protein)	114.59±0.69	140.51±0.05	323.60±8.27	280.97±0.34	255.48±14.15		
NPGVB							
NPG							
NPGB							
Control							
CB							
Mice erythrocytes superoxide dismutase activity (SOD) activity	0.0064±0.0002	0.0057±0.0002	0.0038±0.0002	0.0042±0.0002	0.0033±0.0001		
NPGV							
NPGVB							
NPG							
NPGB							
Control							
CB							
Mice erythrocytes glutathione-S-transferase (GST) (mM CDNB conjugate/min/mg protein)	275.13±18.31	192.31±0.78	287.96±12.90	293.31±13.92	206.89±21.02		
NPGV							
NPGVB							
NPG							
NPGB							
Control							
CB							
Mice erythrocytes lipid peroxidation (LPO) (nM MDA/g tissue)	83.41±0.29	90.73±0.74	95.04±1.63	93.68±0.49	105.99±15.02		
NPGV							
NPGVB							
NPG							
NPGB							
Control							
CB							
Mice erythrocytes reduced glutathione (GSH) (mM GSH/g tissue)	0.0551±0.0023	0.041±0.0003	0.124±0.0138	0.101±0.0009	0.042±0.0020		
maintained as per the good management practices (GMP) of CPCSEA. The experimental protocol was approved by Institutional Animal Ethics Committee (IAEC) of U.P. Pt Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya, Mathura, UP, India.

Study design: The three groups of female BALB/c mice, designated as group A (10), B (10) and C (6) were inoculated 10 µl of vaccine through nasal routes designated as nasal polymer gel vaccine (NPGV); adjuvant (1:10 diluted polymer gel in PBS; pH 7.4) (PG) and PBS (pH 7.4) (Control), respectively. In all three groups, 50% of mice were challenged with live virulent *B. melitensis* biovar 3 IND1 cultures (10⁹ CFU) through I/P route (EP, 5.0) on 28th day post vaccination. The remaining half of the mice in each group received booster dose of vaccine, adjuvant and PBS (pH 7.4) (dose and routes as described previously) on 21st day of initial vaccination and were, later on challenged on 28th day of booster vaccination i.e. 49th day of initial vaccination. Blood samples were collected on 0, 7th, 14th, 28th and 35th day of initial vaccination and post booster vaccination (28th, 35th, 49th and 56th day of first vaccination) from retro-orbital plexus of mice with the help of glass capillary tubes (Sorg and Buckner 1964).

The mice were sacrificed as per the standard guidelines (OIE 2010) on 7th day of challenge (35th day post vaccination and 56th day for booster vaccination). The postmortem was conducted immediately after sacrifice of mice and vital organs, viz. lung, liver, spleen, and kidney were collected to estimate oxidative stress marker enzymes.

Estimation of oxidative stress parameters: The extent of lipid peroxidation (LPO) was evaluated in terms of malondialdehyde (MDA) production (Rehman 1984). Glutathione-S-transferase (GST) was estimated as described previously (Habig *et al.* 1974). Reduced glutathione (GSH) was estimated by the 5, 5'-dithiobis (2-nitrobenzoic acid) (DTNB) method (Prins and Loos 1969). The method of Bergmeyer (1983) was used for the estimation of catalase in erythrocyte and superoxide dismutase (SOD) was estimated as per the method described by Madesh and Balasubramanian (1998). The method of Lowry *et al.* (1951) was used for protein estimation. Oxidative stress biomarkers in kidney, liver, lung and spleen tissues were estimated as described for erythrocytes except for GSH. GSH was determined as per method described by Sedlak and Lindsay (1968).

Statistical analysis: Various parameters, oxidative stress related biochemical indices and serum enzymes were expressed as mean±SE (Snedecor and Cochran 1989).

RESULTS AND DISCUSSION

Administration of vaccine in the respiratory tract led to the exposure of the nasal mucosa to the *Brucella* whole cell antigen as well as polymer gel adjuvant molecule, which is likely to induce a protective immune reflex in the MALTs. During the reflex process, the rise in ROS level as well as the translation of defensive enzymes is a normal phenomenon. The excessive ROS may also be associated
with the local tissue damage which may further contribute to the rise in total protein levels (Table 1). With regard to the immune system, high levels of ROS, as suggested by the high LPO levels, can be advantageous; neutrophils generate ROS and play an essential role in the TLR4-dependent innate clearance of bacteria (Thoren et al. 2007).

The cell membrane damage is measured as lipid peroxidation, which in turn is calculated as the rise in malondialdehyde concentrations, a major oxidative product of peroxidized polysaturated fatty acids. The increase in LPO levels (Table 1) by vaccine, adjuvant, and challenge with virulent B. melitensis indicated significant induction of oxidative stress resulting in marked cellular damage with subsequent release of ROS. Further, prolonged and persistent oxidative stress leads to histopathological damage in the form of carbonylation of protein, lipid peroxidation and oxidation of DNA as reported earlier in ewes (Al-Khafaji and Al-Farwachi 2012). However, the booster doses of vaccine showed a further rise in LPO while booster inoculation of adjuvant showed decreasing pattern 7th day onward (Table 1). With regard to the immune system, high levels of ROS, as suggested by the high LPO levels, can be advantageous; neutrophils generate ROS and play an essential role in the TLR4-dependent innate clearance of bacteria (Thoren et al. 2007). Therefore, the marked rise in LPO following booster vaccination is a desirable one and in accordance with the targets of the vaccination. The rise in LPO following the challenge (Table 1) assures the competency of the immune system in tackling the virulent bacteria. Thus, the overall stimulation of LPO seems to be within the manageable range of the animal body with no visible signs of disease.

Glutathione (GSH) is a tri-peptide nonenzymic antioxidant that is employed to neutralize any excess ROS by the body. It also serves as a critical cofactor for glutathione-dependent antioxidant enzymes (Pacitti et al. 2013). GSH levels after vaccination, booster vaccination and challenge in erythrocytes are given in Table 1. The initial fall in GSH levels might be due to its participation in the redox cycle to neutralize the excess ROS generated however, restoration of GSH levels post vaccination was highly desirable for T cell activation and differentiation, and to maintain the active immune response (Pacitti et al. 2013). Further 2–3-fold increase in GSH values after vaccination was lower than the increase after adjuvant inoculation was expected as adjuvant lacked the antigenic component and therefore, better host defence response was generated. The post challenge sharp decline in GSH level in all groups (Table 1) was in accordance with the sharp rise in LPO and total protein following the challenge. Several studies implicate the role for GSH in T-cell functioning as thiols play an important role in T-cell function. Depletion of GSH in human and murine T cells have been correlated to a direct affiliation between iGSH levels and T-cell proliferation (Suthantheran et al. 1990). It is now recognized that changes in intracellular levels of ROS or altered redox state, as well as levels at the interface between APC and T cells at the cell surface, can impact on T-cell activation, proliferation and differentiation, thereby modulating their function (Yan et al. 2010). Therefore, it may be interpreted from the present findings that the sharp rise in the GSH levels are indicative of excellent T cell and dendritic cell activation which are a prerequisite for development of acquired immunity.

The first line of antioxidant enzymic defense consists of the antioxidant enzymes SOD and CAT, which converts superoxide radicals into hydrogen peroxide and then into water and molecular oxygen (Dorval and Hontela 2003). The induction of catalase activity was higher with adjuvant in comparison to vaccine after the initial dose (Table 1), perhaps due to the presence of antigenic component in the vaccine, some ROS signaling must have been utilized in producing a hyper-inflammatory state, in an effort to remove the antigen. After the booster dose, the catalase activity was higher in vaccinated animals, the animals being already sensitized to the antigen, not much effort were required to take care of it. The CAT activity showed a decline after the challenge in all the groups with an exception of booster adjuvant; may be due to sudden boost up in the inflammatory cascade in the cellular milieu. Reduction in SOD (Table 1) implies comparatively reduced levels of peroxides, as was desired by the body for effective immune development so catalytic activity of catalase might be responsible for H2O2 generation to maintain an optimum level. Moreover, SOD plays a role in moderating a low level of oxidative stress. Once the body shows severe stress, down regulation of expression of SOD is an observable fact, whereas CAT becomes more important in protecting against severe oxidant stress. The down-regulation of expression of SOD and SOD mRNA might have also been accelerated by the H2O2 upsurge post-challenge (Lu and Daret 2009). According to the oxidative stress theory of aging, the loss of SOD activity results in increased sensitivity to oxidative stress, which is desired for eliciting a most potent immune response. Over-expression of SOD has already been reported to demolish the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses (Jain et al. 2011).

There was an increase in overall oxidative stress following challenge (Table 1). This was in accordance with the prospects, as during the course of phagocytosis for antigens, glycolytic reactions are activated in the host which in turn increase the consumption of oxygen and induce the production of ROS to kill the bacterial microbes (Lambeth 2004). A study of Brucella abortus had earlier shown a direct relationship between catalase activity and virulence of the strain. Exogenous catalase or SOD has also been found to protect Brucella organisms from phagocyte killing in vitro (Jiang and Baldwin 1993). The over expression of antioxidant enzyme catalase (Table 1), may be viewed as an adaptive response and protective mechanism against a vaccine or polymer gel-induced oxidative stress.

The glutathione-S-transferase (GST) is an enzyme that is involved in detoxification as well as antioxidant pathway.
Increased GST activity (Table 1) implied that the consumption of GSH through the GST catalyzed reaction may play a role in the detoxification of generated free radicals and electrophiles. The sharp fall in GST levels (Table 1) might be due to inhibition of drug metabolizing enzymes by the antigen and/or polymer gel adjuvant. Several experiments suggest inhibition of drug-metabolizing enzymes owing to vaccines and their adjuvants. A direct, non-specific activation of macrophages with subsequent release of IL1 may account for this inhibition (Tkachenko et al. 2014).

Liver is a metabolically active organ with a powerful antioxidant potential. Therefore, higher MDA levels were expected in the liver than in the other tissues as reported earlier by other researchers (Tkachenko et al. 2014). However, lipid peroxidation (LPO) showed almost similar profile in all the groups with minor variation in tissues (Table 2). In contrast to findings of present study, significant increase of oxidative stress biomarkers level in liver and gills of vaccinated fish had also indicated susceptibility of lipid molecules to ROS and appreciable oxidative damage under the influence of vaccination (Tkachenko et al. 2014). Moreover, higher expression levels have been detected for genes coding for proteins involved in redox homeostasis and protection against ROS in vaccinated fish (Skugor et al. 2009).

Spleen is a secondary lymphoid organ and main predilection site for the bacteria after 2nd week of infection.
It filters the antigens in the blood rather than the lymphatics. Thus, it has a special importance in checking infections that have invaded the blood (Roop et al. 2004). The higher value of LPO in the spleen of the NPGVB group is as per the mandate of spleen mass. It is further substantiated by the lowest values of GSH in the spleen of vaccinated animals (Table 2). Both antigen and polymer gel were expected to initiate and promote the free radical production for activation of the lymphocytes for generation of an active immune response. The lung tissues are also involved in the immune defense through the mucosa-associated lymphoid tissues (MALT) that harbour macrophages, neutrophils, lymphocytes, and mast cells/eosinophilic granulocytes (Kirron 2012). The higher levels of LPO in booster groups as compared to initial vaccination and adjuvant inoculation groups prove the active role of MALTs in local inflammatory and immune stimulation mechanisms. Significant rise in LPO from 45th day in plasma, liver and spleen after Brucella inoculation have been reported earlier which subsequently declined to basal levels (Melek et al. 2006).

In addition to specialised antioxidant enzymes, the most important intracellular low-molecular-weight antioxidant is glutathione (GSH), which has a thiol moiety and is reactive with pro-oxidant species. Non significant differences in the GSH levels (Table 2) are indicative of the excellent management of the antigen and the adjuvant by the host immune system without imposing any threat to the defence homeostasis. The GSH levels in spleen were comparable to control values in adjuvant treated groups and slightly lower in vaccinated group. Expression of thiols on cell surface of T cells and release of cysteine into the extracellular space by dendritic cells to create a reducing environment, thereby facilitating an immune response has been considered as an integral part of active immunization to induce Tregs mediated immunosuppressive effect as an interference with this process (Yan et al. 2010). Therefore, maintenance of GSH levels in the spleen and lungs are indicative of efficient activation of lymphocytes for producing the desired immunological response. Liver is the main site of detoxification in the body. The higher level of GSH in liver of booster groups may be attributed to the previously induced enzyme systems leading to efficient management of xenobiotics and reduction of free radicals. The raised levels of GSH in kidney of single vaccinated animals were unexpected and needs to be further studied. The importance of the glutathione-mediated antioxidant defense system in protection against endosulfan-induced oxidative stress was also demonstrated in adrenocortical cells of rainbow trout (Dorval and Hontela 2003).

Induction of oxidative stress usually precipitates NF-kB mediated induction of mRNA species of SOD, catalase, and glutathione-S-transferase activities. These antioxidant enzymes convert superoxide anion \(\text{O}_2^- \) to \(\text{H}_2\text{O}_2 \) in the presence of SOD and prevent formation of highly pernicious hydroxyl radicals (Mitra et al. 2012). In general post vaccination reduction in superoxide dismutase (SOD) activity was recorded with highest values in liver tissues in all the groups (Table 2) followed by lungs and kidneys. The liver being the main xenobiotic biotransforming organ was expected to induce the free radical generation to persuade the xenobiotic metabolizing enzymes to remove the Brucella antigen as well as adjuvant gel (Mitra et al. 2012). The kidney works in support of liver to remove the metabolized water soluble xenobiotic metabolites and so, was also expected to show an increase in SOD activity in the booster groups in comparison to non booster and control group. The spleen and may be the lung tissues, being lymphoid organ, revealed lowest SOD activity among four tissues, perhaps, to make possible the activation of antigen presenting cells and thus, facilitate the generation of immune response (Table 2).

The \(\text{H}_2\text{O}_2 \) generated during neutralization of superoxide and peroxide radicals is a potent oxidant and induces oxidative damage to lipid, proteins, and DNA (Bergmeyer 1983). Its breakdown in the tissue is catalysed by the intracellular catalase activity. The decreased CAT activities (Table 2) indicate the reduced capacity to scavenge hydrogen peroxide produced in spleen and lung of vaccinated mice. In the absence of antigen, adjuvant elicited a better redox potential to stimulate the B and T lymphocytes and induce the immune response, which is a highly desirable feature for an adjuvant to be selected for vaccine production and that might be the reason for the highest activity in liver was shown by NPG group followed by NPGV and NPGVB (Table 2). In an earlier report, the \(B. \text{melitensis} \) infection did not change the antioxidant enzyme activities in the plasma, liver and spleen tissues with an exception of significantly increased catalase activity between days 30 and 45 post-infection in the liver (Melek et al. 2006).

Increased catalase and SOD activities (\(P<0.05 \)) have also been observed in \(B. \text{melitensis} \) affected buffaloes as compared to healthy buffaloes (Kataria et al. 2012). Very low concentration of \(\text{H}_2\text{O}_2 \), as usually observed at the early phase post-challenge or vaccination can’t be eliminated (Kataria et al. 2012). Probably, with the slow diffusion of \(\text{H}_2\text{O}_2 \) into cells, the accumulated \(\text{H}_2\text{O}_2 \) can accelerate the degradation rate of SOD protein leading to reduced activity of the enzyme. After 2nd week of infection, liver has a minimal role in clearing the \(B. \text{melitensis} \), this might have accounted for a reduced GST activity for the booster doses as compared to the initial vaccination or inoculation. In kidney tissues, minor variations were observed amongst the groups (Table 2). The GST levels showed trend similar to GSH in the various tissues and reflected their good antioxidant status. This carries special significance in case of spleen and liver which are the main sites for the \(B. \text{melitensis} \) organism.

As the route of inoculation was intranasal, all the groups showed a decline in antioxidant status in lungs, minimal levels being observed in vaccinated groups, perhaps due to release of local mediators against antigenic exposure. Intra nasal administration of vaccine as a rule leads to a vigorous local and systemic response with direct presentation to
NALT mucosal cells, facilitation of specific T and B-memory cells leading to ample production and release of IgA. There is preferentially induction of regulatory T cells that secrete IL-10 and TGF-β at the anatomic site where the mucosally administrated antigen is located, a phenomenon termed bystander suppression (Dan et al. 2004). Nasal antigen also generates a Th2 (IL-4/IL-10) - or a Th3 (TGF-β)-type response which prove to be suppressive for Th1 and other immune cells (Faria and Weiner 1999).

Endurance and replication of brucellae in host phagocytes are key mechanism of their virulence (Roop et al. 2004). Vaccine/adjuvant-induced increase in LPO depleted lipid soluble antioxidant system GSH/ROS scavengers and further disrupt the antioxidant enzymes activity but the modulation of parameters seems to be in favour of achieving the mandate of immunization. The spleen, considered as main predilection site, maintained a good antioxidant status after challenge and none of the parameters showed a likelihood of severe tissue stress that suggest effective vaccination against brucellosis.

From the present study, it is clear that both the glutathione mediated nonenzymic antioxidant defense system and endogenous CAT play a critical role in intracellular antioxidant defense in vaccinated animals along with maintaining an excellent milieu for inducing an active immune potential. At the same time, the antioxidant defenses in all the vital tissues, viz. erythrocytes, liver, kidneys, lungs and spleen of vaccinated mice were at par with the polymer gel adjuvant, probably due to maintenance of excellent redox homeostasis in these organs; liver and lungs being metabolically active, kidney being the main excretory organ and spleen playing a vital role in maintaining the immunological homeostasis in the body. Thus, it may be said that immunization with Brucella vaccine prepared using whole cell protein antigen with a polymer gel induces an oxidative stress with negligible signs of inflammatory pathophysiology in all the vital organs and can be further explored for intranasal inoculation in animals.

ACKNOWLEDGEMENTS

The authors are thankful to Dean, College of Veterinary Sciences and Hon’ble Vice Chancellor, DUVASU, Mathura for providing financial support and facilities to conduct this study. The adjuvant was provided by Seppic, France.

REFERENCES

Al-Khaafaji W S and Al-Farwachi M I. 2012. Antioxidant status in pregnant ewes vaccinated with Rev 1 against brucellosis. Iraqi Journal of Veterinary Sciences 26: 15–19.

Baldi P C and Giambartolomei G H. 2013. Immunopathology of Brucella infection. Recent Pattern in Antimicrobial Drug Discovery 8: 18–26.

Bergmeyer H U. 1983. UV method of catalase assay, p 273. Methods of Enzymatic Analysis. 3rd ed. Weinheim, Decrfield Beah, Florida, Basal.

Celli J, de Chastellier C, Franchini D M, Pizarro-Cerda J, Moreno E and Gorvel J P. 2003. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. Journal of Experimental Medicine 198: 545–56.

Dan F, Huang Z, Ruth M, Djordje N K, Wayne W H, Michael A, Moskowitz and Howard L W. 2004. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. Journal of Immunology 172: 6549–55.

Dorval J and Hontela A. 2003. Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Onchorhynchus mykiss). Toxicology and Applied Pharmacology 192: 191–200.

Faria A M C and Weiner H L. 1999. Oral tolerance: mechanisms and therapeutic applications. Advances in Immunology 73: 153.

Habig W H, Pabst M J and Jakoby W B. 1974. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biology and Chemistry 249: 7130–39.

Jain R, Dey B, Khera A, Srivastav P, Gupta U D, Katoch V M, Ramanathan V D and Tyagi A K. 2011. Over-expression of superoxide dismutase obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses. Vaccine 29: 8118–25.

Jiang X and Baldwin C L. 1993. Effects of cytokines on intracellular growth of Brucella abortus. Infection and Immunity 61: 124–34.

Kataria N, Kataria A K, Joshi A, Pandey N and Khan S. 2012. Serum antioxidant status to assess oxidative stress in Brucella infected buffaloes. Journal of Stress Physiology and Biochemistry 8: 5–9.

Kirron V. 2012. Fish immune system and its nutritional modulation for preventive health care. Annals of Feed Science and Technology 173: 111–33.

Kumar A, Gupta V K, Verma A K, Yadav S K and Rahal A. 2016. Vaccines for caprine brucellosis: status and prospective. International Journal of Vaccines and Vaccination 2: 00030.

Kumar A, Gupta V K, Verma A K, Mandil R, Rahal A and Yadav S K. 2017. Lipid peroxidation and antioxidant system in erythrocytes of Brucella vaccinated and challenged goats. International Journal of Vaccines and Vaccination 4(5): 00092.

Kumar A, Verma A K, Rahal A, Panwar P K and Dhama K. 2013. Recent trends in development of adjuvant of vaccine. Trends in Medical Research 8: 32–35.

Lambeth J D. 2004. Nox enzymes and the biology of reactive oxygen. Nature Review of Immunology 4: 181e9.

Lowry O H, Rosenbrough N J, Farr A L and Randall R J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biology and Chemistry 193: 265–75.

Lu M and Daret K S C. 2009. Regulation of superoxide dismutase using MTT reduction by superoxide. Trends in Medical Research 8: 32–35.

Madesh M and Balasubramanian K A. 1998. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian Journal of Biochemistry and Biophysics 35: 184–88.

Melek I M, Erdogan S, Celik S, Aslantas O and Duman T. 2006. Evaluation of oxidative stress and inflammation in long term Brucella melitensis infection. Molecular Cellular Biochemistry 293: 203–09.

Minas A. 2006. Control and eradication of brucellosis in small ruminants. Small Ruminant Research 62: 101–07.

Mitra E, Ghosh A K, Ghosh D, Mukherjee D, Chattopadhayay A, Dutta S, Pattari S K and Bandyopadhyay D. 2012. Protective effect of aqueous curry leaf extract (Murraya koenigii) extract against...
cadmium-induced oxidative stress in rat heart. *Food Chemistry and Toxicology* **50**: 1340–53.

Office International des Epizooties (OIE). 2010. Manual of Standards for Diagnostic Tests and Vaccines. 3rd ed. Office International des Epizooties, Paris, France. pp 251.

Pacitti D, Wang T, Page M M, Martin S A, Sweetman J, Feldmann J and Secombes C J. 2013. Characterization of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase genes in rainbow trout (*Oncorhynchus mykiss*) and their modulation by in vitro selenium exposure. *Aquatic Toxicology* **130**: 97–111.

Prins H K and Loos J A. 1969. Glutathione. *Biochemical Methods in Red Cell Genetics.* (Ed) Yunis J G. Academic Press, New York, pp 127–129.

Rahal A, Ahmad A H, Prakash A, Mandal R and Kumar A T. 2014. Environmental attributes to respiratory diseases of small ruminants. *Veterinary Medicine International.* Article ID 853627.

Rehman S U. 1984. Lead induced regional lipid peroxidation in brain. *Toxicology Letters* **21**: 333–37.

Roop R M, Bellaire B H, Valderas M W and Cardelli J A. 2004. Adaptation of the brucellae to their intracellular niche. *Molecular Microbiology* **52**: 621–30.

Sedlak J and Lindsay R H. 1968. Estimation of total protein bound NPSH groups in tissues with Ellaman’s reagent. *Analytical Biochemistry* **25**: 192–205.

Skugor S, Jørgensen S M, Gjerde B and Krasnov A. 2009. Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. *BMC Genomics* **10**: 503–18.

Snedecor G W and Cochran W G. 1989. Statistical methods. 7th edition. Oxford and IBH Publishing Company, New Delhi, India.

Sorg D A and Buckner B. 1964. A simple method of obtaining venous blood from small laboratory animals. *Proceedings of Society of Experimental Biology and Medicine* **115**: 1131–32.

Suthanthiran M, Anderson M E, Sharma V K and Meister A. 1990. Glutathione regulates activation dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. *Proceedings of National Academy of Sciences USA* **87**: 3343–47.

Thoren F B, Betten A, Romero A I and Hellstrand K. 2007. Cutting edge: antioxidative properties of myeloid dendritic cells: protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. *Journal of Immunology* **179**: 21–25.

Tkachenko H, Kurhaluk N, Grudniewska J and Andriichuk A. 2014. Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout (*Oncorhynchus mykiss*) during a vaccination against furunculosis. *Fish Physiology and Biochemistry* **40**: 1289–1300.

Yan Z, Garg S K and Banerjee R. 2010. Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. *Journal of Biology and Chemistry* **285**: 41525–32.