The effect of cell-attachment on the group of self-equivalences of an R-localized space

Mahmoud Benkhalifa · Samuel Bruce Smith

Received: 1 June 2013 / Accepted: 20 January 2014 / Published online: 25 February 2014
© Tbilisi Centre for Mathematical Sciences 2014

Abstract Let $R \subseteq \mathbb{Q}$ be a ring with least non-invertible prime p. Let $X = X^n \cup_\alpha (\bigcup_{j \in J} e^q)$ be a cell attachment with J finite and q small with respect to p. Let $\mathcal{E}(X_R)$ denote the group of homotopy self-equivalences of the R-localization X_R. We use DG Lie models to construct a short exact sequence

$$0 \to \bigoplus_{j \in J} \pi_q(X^n)_R \to \mathcal{E}(X_R) \to C^q \to 0$$

where C^q is a subgroup of $\text{GL}_{|J|}(R) \times \mathcal{E}(X_R^n)$. We obtain a related result for the R-localization of the nilpotent group $\mathcal{E}_e(X)$ of classes inducing the identity on homology. We deduce some explicit calculations of both groups for spaces with few cells.

Keywords Homotopy self-equivalences · Quillen model · Anick model · R-local homotopy theory Moore space · Nilpotent group

Mathematics Subject Classification (2000) 55P10

Communicated by Jim Stasheff.

M. Benkhalifa
Umm Al-Qura University, Mekka, Saudia Arabia
e-mail: makhalifa@uqu.edu.sa

S. B. Smith (✉)
Saint Joseph’s University, Philadelphia, PA 19131, USA
e-mail: smith@sju.edu

Springer
1 Introduction

Let X be a finite, simply connected CW complex. Let $\mathcal{E}(X)$ denote the group of homotopy equivalence classes of homotopy self-equivalences of X. Let $\mathcal{E}_s(X)$ denote the subgroup represented by self-equivalences that induce the identity map on $H_*(X; \mathbb{Z})$. The study of the groups $\mathcal{E}(X)$ and $\mathcal{E}_s(X)$ by means of a cellular decomposition of X is a difficult problem with a long history. See Rutter [16, Chapter 11] for a survey.

In [11], Dror-Zabrodsky proved $\mathcal{E}_s(X)$ is a nilpotent group. Maruyama [14] then proved $\mathcal{E}_s(X)_R \cong \mathcal{E}_s(X_R)$. These results together opened the door to the use of algebraic models for studying the localization of nilpotent self-equivalence groups. The group $\mathcal{E}_s(X)$ was studied in [5]. The rationalization of the subgroup $\mathcal{E}_s^*(X)$ of self-equivalences inducing the identity on homotopy groups has been studied extensively using Sullivan models (c.f. [3, 6, 12]).

The group $\mathcal{E}(X_\mathbb{Q})$ has emerged as a recent object of interest. Arkowitz-Lupton [4] gave the first examples of finite groups occurring as $\mathcal{E}(X_\mathbb{Q})$. Further examples were given by the first named author in [9]. Costoya-Viruel [10] then proved the remarkable result that every finite group G occurs as $G \cong \mathcal{E}(X_\mathbb{Q})$ for some finite X. Again, all this work was accomplished using Sullivan models. The purpose of this paper is to explore the use of Anick’s and Quillen’s DG Lie algebra models for studying the groups $\mathcal{E}(X_R)$ and $\mathcal{E}_s(X_R)$.

We briefly recall the main result of Anick's and Quillen’s theories now in order to establish our overriding hypotheses. Let $R \subseteq \mathbb{Q}$ be a subring with least non-invertible prime $p \in R$. When $R = \mathbb{Q}$ set $p = +\infty$. Let CW^{k+1}_m denote the category of m-connected, finite CW complexes of dimension no greater than $k + 1$ with m-skeleton reduced to a point. Let $\text{CW}^{k+1}_m(R)$ denote the category obtained by R-localizing the spaces in CW^{k+1}_m. By Anick [1, 2], when $k < \min(m + 2p - 3, mp - 1)$ the homotopy category of $\text{CW}^{k+1}_m(R)$ is equivalent to the homotopy category of $\text{DGL}^k_m(R)$ consisting of free differential graded (DG) Lie algebras $(L(V), \partial)$ in which V is a free R-module satisfying $V_n = 0$ for $n < m$ and $n > k$. When $R = \mathbb{Q}$ the corresponding result for $m = 1$ and any k is due to Quillen [15]. Summarizing, we have:

Hypothesis 1.1 We assume that $R \subseteq \mathbb{Q}$ is a ring with least non-invertible prime p. With R fixed, we take $1 \leq m < k$ satisfying $k < \min(m + 2p - 3, mp - 1)$. By a space X we always mean an object in CW^{k+1}_m, an m-connected finite CW complex with top degree cells of dimension $\leq k + 1$ When $R = \mathbb{Q}$ we assume $m = 1$ and k is finite.

Let X be an object in CW^{k+1}_m. Write X^n for the n-skeleton of X. We consider the situation in which

$$X = X^q = X^n \cup_{\alpha} \left(\bigcup_{i=1}^{j} e^q_i \right)$$

is the space obtained by attaching q-cells to a space X^n for $n < q \leq k + 1$ by a map $\alpha : \bigcup_{i} S^{q-1} \to X^n$.

\[Springer \]
Theorem 1 Given $R \subseteq \mathbb{Q}$ and X satisfying Hypothesis 1.1, there are short exact sequences

$$0 \to \bigoplus_{i=1}^{j} \pi_q(X^n_R) \to \mathcal{E}(X_R) \to \mathcal{C}^q \to 0$$ \hspace{1cm} (1)

$$0 \to \bigoplus_{i=1}^{j} \pi_q(X^n_R) \to \mathcal{E}_*(X_R) \to \mathcal{C}^q_* \to 0$$ \hspace{1cm} (2)

Here, $\mathcal{C}^q \subseteq \text{GL}_j(R) \times \mathcal{E}(X^n_R)$. The subgroup $\mathcal{C}^q_* \subseteq \mathcal{C}^q$ is contained in $\text{GL}_k(R) \times \mathcal{E}_*(X^n_R)$ with k the rank of the linking homomorphism $\pi_{n+1}(X^n, X^{n-1})_R \to \pi_n(X^n_R, X^{n-1})_R$ in the long exact sequence of the triple. In particular, $\mathcal{C}^q_* \subseteq \mathcal{E}_*(X^n_R)$ when $q > n + 1$.

We prove Theorem 1 in Sect. 2. In Sect. 3, we deduce some consequences for R-localized spaces.

Given a finitely generated abelian group G, let $M(G, m)$ denote the Moore space. Barcus–Barrett [8] proved the homology representation $\mathcal{E}(M(G, m)) \to \text{aut}(G)$ is surjective and identified the kernel as an Ext-group. It is a classical open problem to complete this calculation [13, Problem 8] with many partial results and extensions (cf. Rutter [op. cit] and Baues [7]). We obtain the following result in Anick’s category of R-local spaces:

Example 1.2 Let G_1, \ldots, G_r be finitely generated abelian groups and $R \subseteq \mathbb{Q}$. Let

$$X = M(G_1, m + 1) \lor M(G_2, m + 3) \lor \cdots \lor M(G_r, m + 2r - 1)$$

with $r \leq m/2$ and $m, k = m + 2r$ and R satisfying Hypothesis 1.1. Then

$$\mathcal{E}(X_R) \cong \prod_{i=1}^{r} \text{aut}((G_i)_R).$$

We obtain a related calculation for the group $\mathcal{E}_*(X_R)$:

Example 1.3 Let G be a finitely generated abelian group and $R \subseteq \mathbb{Q}$. Let X in CW_k^{k+1} and R be as in Hypothesis 1.1 with X having a cellular decomposition

$$M(G, m + 1) = X^{m+2} \subset X^{m+3} \subset \cdots \subset X^{2m} = X.$$

Assume that the linking homomorphisms $\pi_{r+1}(X^{r+1}, X^r)_R \to \pi_r(X^r, X^{r-1})_R$ vanish for $r = m + 2, \ldots, 2m - 1$. Let $j = \dim_R(H_{2m}(X, X^{2m-1}; R))$. Then

$$\mathcal{E}_*(X)_R \cong \bigoplus_{i=1}^{j} [G_R, G_R].$$

Here, $[G_R, G_R]$ is additive group corresponding to the sub R-module of $G_R \otimes G_R$ generated by elements of the form $x \otimes y - (-1)^m y \otimes x$.

\begin{center}
\textcopyright Springer
\end{center}
We give a complete calculation of both groups in a simple case. Let $R^* = \text{aut}(R)$ denote the group of units of R.

Example 1.4 Let $m, m + n + 1$ and $R \subseteq \mathbb{Q}$ satisfy Hypothesis 1.1. Then

\[\mathcal{E} \left((S^{m+1} \times S^{n+1})_R \right) \cong \begin{cases} R^* \times R^* & \text{for } n \neq 2m \text{ or } m \text{ even} \\ R \oplus (R^* \times R^*) & \text{for } n = 2m \text{ and } m \text{ odd} \end{cases} \]

\[\mathcal{E}_s(S^{m+1} \times S^{n+1})_R \cong \begin{cases} 0 & \text{for } n \neq 2m \text{ or } m \text{ even} \\ R & \text{for } n = 2m \text{ and } m \text{ odd} \end{cases} \]

We prove two results concerning the question of finiteness $\mathcal{E}(X_R)$. First:

Theorem 1.5 Let $R \subseteq \mathbb{Q}$ and X in \mathbf{CW}^{k+1}_m be as in Hypothesis 1.1. Suppose $\pi_{n+1}(X^{n+1}, X^n)_R \neq 0$ and the linking homomorphism $\pi_{n+1}(X^{n+1}, X^n)_R \to \pi_n(X^n, X^{n-1})_R$ vanishes. Then $\mathcal{E}(X^n_R)$ finite implies $\mathcal{E}(X^{n+1}_R)$ is infinite.

Finally, we give a calculation to indicate that finiteness of $\mathcal{E}(X_R)$ requires a reasonably large CW complex X.

Theorem 1.6 Let X be a simply-connected finite CW complex of dimension ≤ 5. Let $R \subseteq \mathbb{Q}$ have least invertible prime $p \geq 7$. If p is finite, assume the linking homomorphisms $\pi_{r+1}(X^{r+1}, X^r)_R \to \pi_r(X^r, X^{r-1})_R$ vanish for $r = 2, 3, 4$ vanish. Then $\mathcal{E}(X(R))$ is infinite.

2 Homotopy self-equivalences of DG Lie algebras

Let $(L(V), \partial)$ be an object in $\mathbf{DGL}^k_m(R)$. Recall this means V is a free graded R-module concentrated in degrees n with $m \leq n \leq k$ and $L(V)$ is the free graded Lie algebra over R. Write $V_{<n} = \bigoplus_{i=m}^{n-1} V_i$. The differential ∂ is of degree -1. For each $n \leq k$, ∂ induces a differential $\partial_{<n}$ on $L(V_{<n})$ making $(L(V_{<n}), \partial_{<n})$ a sub DG Lie algebra. We write the homology as $H_*(L(V_{<n}))$, suppressing the differential. The linear part of ∂ gives a differential d on V. The homology $H_*(V) = H_*(V, d)$ can be identified with the graded module of indecomposable generators of $(L(V), \partial)$.

Homotopies between maps α, α': $(L(V), \partial) \to (L(W), \delta)$ in $\mathbf{DGL}^k_m(R)$ are defined by means of the Tanré cylinder (cf. [17, Ch.II.5] and [1, pp. 425–6]). Let

\[(L(V), \partial)_I = (L(V, sV, V'), D) \]

be the DG Lie algebra with $V \cong V'$ and $(sV)_i = V_{i-1}$. Let S denote the derivation of degree +1 on $L(V, sV, V')$ with $S(v) = sv$ and $S(sv) = S(v') = 0$. The differential D is given by $D(v) = \partial(v)$, $D(sv) = v'$ and $D(v') = 0$. The degree zero derivation $\theta = D \circ S + S \circ D$ of $(L(V), \partial)_I$ gives rise to an automorphism e^θ of $(L(V, \partial)_I$. We note that for $v \in V$

\[e^\theta(v) = v + v' + \sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v). \]
Define $\alpha \simeq \alpha'$ if there is a DG Lie morphism

$$F : (L(V, sV, V'), D) \rightarrow (L(V, \partial))$$

satisfying $F(v) = \alpha(v)$ and $F \circ e^\theta(v) = \alpha'(v)$.

Quillen [15] and Anick [1] proved that, under Hypothesis 1.1, there is an assignment $X \mapsto (L(V, \partial))$ setting up an equivalence between the homotopy categories of $\text{CW}_m^{k+1}(R)$ and $\text{DGL}_m^k(R)$. The model $(L(V, \partial))$ recovers R-local homotopy invariants of X via isomorphisms (with shifts)

$$\tilde{H}_*(X; R) \cong H_{*-1}(V) \quad \text{and} \quad \pi_*(X)_R \cong H_{*+1}(L(V)).$$

As for self-equivalence groups, their results directly imply identifications:

$$E(X_R) = \text{aut}(L(V, \partial)) / \cong \quad \text{and} \quad E_*(X_R) = \text{aut}_*(L(V, \partial)) / \cong$$

for these algebraic equivalence groups.

Now consider a cellular attachment $X = X^n \cup (\bigcup_{i=1}^j e_q^i)$ as in Theorem 1. Let $(L(V, \partial))$ denote the DG Lie algebra model for X. Then $V = V_{q-1} \oplus V_{<n}$ where $\dim V_{q-1} = j$, the number of q-cells attached. A homotopy self-equivalence $f : X \rightarrow X$ induces a DG Lie algebra isomorphism $\alpha : (L(V, \partial)) \rightarrow (L(V, \partial))$. Let $\tilde{\alpha}_{q-1} : V_{q-1} \rightarrow V_{q-1}$ denote the map induced on V_{q-1} by restricting α and then projecting to V_{q-1}. Let $\alpha_{<n} : (L(V_{<n}, \partial_{<n})) \rightarrow (L(V_{<n}), \partial_{<n})$ denote the DG Lie algebra restriction map. We then obtain a commutative square of the form:

$$
\begin{array}{ccc}
V_{q-1} & \xrightarrow{\tilde{\alpha}_{q-1}} & V_{q-1} \\
| & & | \\
H_{q-2}(L(V_{<n})) & \xrightarrow{H(\alpha_{<n})} & H_{q-2}(L(V_{<n})) \\
| & & | \\
B_{q-1} & \xrightarrow{\partial_{q-1}} & B_{q-1}
\end{array}
$$

Here, $B_{q-1} : V_{q-1} \rightarrow H_{q-2}(L(V_{<n}))$ is given by

$$B_{q-1}(v_{q-1}) = \{\partial_{q-1}(v_{q-1})\} \in H_{q-2}(L(V_{<n})).$$

where $\{\}$ denotes the homology class of a cycle. We use this diagram to define the group C^q. Given a self-equivalence α of $L(V)$ we write $[\alpha]$ for the homotopy equivalence class in $E(L(V), \partial)$.
Definition 2.1 Let C^q the subset of pairs $(\xi, [\gamma]) \in \text{aut}(V_{q-1}) \times \mathcal{E}(L(V_{<n}), \partial_{<n})$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
V_{q-1} & \xrightarrow{\xi} & V_{q-1} \\
\downarrow R_{q-1} & & \downarrow R_{q-1} \\
H_{q-2}(L(V_{<n})) & \xrightarrow{H(\gamma)} & H_{q-2}(L(V_{<n}))
\end{array}
\]

Proposition 2.2 C^q is a subgroup of $\text{aut}(V_{q-1}) \times \mathcal{E}(L(V_{<n}), \partial_{<n})$

Proof Straightforward. \(\square\)

Define $\Psi_q : \mathcal{E}(L(V_{q-1} \oplus V_{<n}), \partial) \rightarrow C^q$ by setting:

\[\Psi_q([\alpha]) = (\tilde{\alpha}_{q-1}, [\alpha_{<n}])\]

Proposition 2.3 The map Ψ_q is a surjective homomorphism

Proof It is easy to see Ψ_q is a homomorphism. We prove surjectivity. Let $(\xi, [\gamma]) \in C^q$. Choose $\{v_i\}_{i \in J}$ as a basis of V_{q-1}. From the hypothesized commutative diagram we obtain $(\gamma \circ \partial - \partial \circ \xi)(v_i) \in \text{im} \partial_{<n}$. Choose $u_i \in L(V_{<n})$ of degree $q - 1$ with $(\gamma \circ \partial - \partial \circ \xi)(v_i) = \partial_{<n}(u_i)$. Define $\alpha : (L(V_{q-1} \oplus V_{<n}), \partial) \rightarrow (L(V_{q-1} \oplus V_{<n}), \partial)$ by setting $\alpha(v_i) = \xi(v_i) + u_i$ for $v_i \in V_{q-1}$ and $\alpha = \gamma$ on $V_{<n}$ and then extending. Then α is clearly an automorphism of $L(V)$. Observe

\[\partial \circ \alpha(v_i) = \partial(\xi(v_i)) + \partial_{<n}(u_i) = \gamma \circ \partial(v_i) = \alpha \circ \partial(v_i)\]

Thus α represents a class in $\mathcal{E}(L(V), \partial)$ satisfying $\Psi_q([\alpha]) = (\xi, [\gamma])$. \(\square\)

We next identify

\[\ker \Psi_q = \left\{[\alpha] \in \mathcal{E}(L(V), \partial) \mid \tilde{\alpha}_{q-1} = \text{id}_{V_{q-1}}, \alpha_{<n} \simeq \text{id}_{L(V_{<n})}\right\}\]

Let $[\alpha] \in \ker \Psi_q$. That $\tilde{\alpha}_{q-1} = \text{id}_{V_{q-1}}$ means for all $v \in V_q$ we have $\alpha(v) - v \in L_{q-1}(V_{<n})$. Here, $L_{q-1}(V_{<n})$ denotes the space of elements of $L(V_{<n})$ of degree $q - 1$. Define

$\varphi_{\alpha} : V_{q-1} \rightarrow L_{q-1}(V_{<n})$ by $\varphi_{\alpha}(v) = \alpha(v) - v \in L_{q-1}(V_{<n})$ for $v \in V_{q-1}$.

We next prove that the class $[\alpha]$ has a representative β such that $\varphi_{\beta}(V)$ is contained in the cycles of $L_{q-1}(V_{<n})$:

Lemma 2.4 Let $[\alpha] \in \ker \Psi_q$. Then there exists $[\beta] \in \ker \Psi_q$ satisfying

(i) $\partial(\varphi_{\beta}(v)) = 0$ for all $v \in V_{q-1}$
(ii) $\beta_{<n} = \text{id}_{L(V_{<n})}$.
(iii) $\alpha \simeq \beta$.

\(\copyright\) Springer
Proof Since, $\alpha_{<n} \simeq \text{id}_{L(V_{<n})}$ there is a homotopy $F: (L(V_{<n}), \partial_{<n}) \to (L(V_{<n}), \partial_{<n})$ satisfying $F(v) = v$ and $F \circ e^\theta(v) = \alpha_{<n}$ for $v \in V_{<n}$. Define β by setting

$$
\beta(v) = \begin{cases}
& v
& \text{for } v \in V_{<n} \\
& \alpha(v) - F \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right)
& \text{for } v \in V_{q-1}.
\end{cases}
$$

Given $v \in V_{q-1}$ we compute:

$$
\partial(\varphi_\beta(v)) = \partial \left(\alpha(v) - F \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right) \right) - \partial(v)
$$

$$
= \alpha_{<n}(\partial(v)) - \partial \circ F \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right) - \partial(v)
$$

$$
= F \circ e^\theta(\partial(v)) - F \circ D \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right) - \partial(v)
$$

$$
= F \circ D \circ e^\theta(v) - F \circ D \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right) - \partial(v)
$$

$$
= F \circ D(v + v') - \partial(v)
$$

$$
= 0.
$$

Thus β satisfies (i). For (ii), we define $G: (L(V), \partial) \to (L(V), \partial)$ by setting $G = F$ on $(L(V_{<n}), \partial_{<n})$ while, for $v \in V_{q-1}$, we set $G(v) = \beta(v)$ and $G(v') = G(sv) = 0$. It is easy to check that G is a DG Lie algebra map. Given $v \in V_{q-1}$, we have

$$
G \circ e^\theta(v) = G \left(v + v' + \sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right)
$$

$$
= G(v) + G \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right)
$$

$$
= \beta(v) + F \left(\sum_{n \geq 1} \frac{1}{n!} (S \circ D)^n(v) \right)
$$

$$
= \alpha(v).
$$

Using Lemma 2.4 (i), we define a map

$$
\Theta_q : \ker \Psi_q \to \text{Hom}(V_{q-1}, H_{q-1}(L(V_{<n}))) \text{ by } \Theta_q([\beta])(v) = \{\varphi_\beta(v)\} \text{ for } v \in V_{q-1}
$$

where β is chosen as in Lemma 2.4.
Proposition 2.5 The map
\[\Theta_q : \ker \Psi_q \to \text{Hom}(V_{q-1}, H_{q-1}(L(V_{<n}))) \]
is an isomorphism.

Proof First we prove that \(\Theta_q \) is well-defined. Suppose \(\beta \simeq \beta' \) satisfy the conclusion of Lemma 2.4. Since, both maps then restrict to the identity on \(L(V_{<n}) \), the homotopy \(F : (L(V), \partial)_I \to (L(V), \partial) \) between them can be chosen so that \(F(V_{<n}^') = F(sV_{<n}) = 0 \). Given \(v \in V_{q-1} \) suppose \(\varphi_{\beta}(v) = \{ y \} \) and \(\varphi_{\beta'}(v) = \{ y' \} \) for cycles \(y, y' \in L_{q-1}(V_{<n}) \). We then have
\[
y' - y = \beta'(v) - \beta(v)
= F \circ e^0(v) - F(v)
= F(v) + F(v') + F\left(\sum_{n \geq 1} \frac{1}{n!} (S \circ \partial)^n(v) \right) - F(v)
= F(D(sv)) + F\left(\sum_{n \geq 1} \frac{1}{n!} (S \circ \partial)^n(v) \right)
= \partial(F(sv))
\]
Thus \(y' - y \) is a boundary.

It is easy to check \(\Theta_q \) is a homomorphism. For injectivity, suppose \(\Theta_q([\beta])(v) = \Theta_q([\beta'])(v) \) in \(H_{n+1}(L(V_{<n-1}), \partial_{<n}) \) for all \(v \in V_{q-1} \). Then \(\text{im}\{\beta - \beta' : L(V) \to L(V)\} \) is contained in an acyclic sub DG Lie algebra of \((L(V), \partial) \). Thus \(\beta \simeq \beta' \) by [17, Prop.II.5(4)].

Finally, given a homomorphism \(\psi \in \text{Hom}(V_{q-1}, H_{q-1}(L(V_{<n}), \partial_{<n})) \), we define \(\beta : (L(V), \partial) \to (L(V), \partial) \) by:
\[\beta(v) = v + \psi(v) \text{ for } v \in V_{q-1} \text{ and } \beta = \text{id on } V_{<n}. \]
Then \(\beta \) is a DG Lie morphism with \(\Theta_q([\beta]) = \psi. \)

Summarizing, we have proven:

Theorem 2.6 Let \((L(V), \partial) \) be an object in \(DGL_{m}^k(R) \) with \(V = V_{q-1} \oplus V_{<n} \) for \(q > n \). Then, there exists a short exact sequence of groups:
\[
0 \to \text{Hom}(V_{q-1}, H_{q-1}(L(V_{<n}))) \to \mathcal{E}(L(V), \partial) \to C^q \to 0.
\]

The first exact sequence in Theorem 1 is a direct consequence.

Proof of Theorem 1 Part (1). The result follows from Theorem 2.6, the isomorphisms \(\mathcal{E}(X_R) \cong \mathcal{E}(L(V), \partial), \pi_q(X^n)_R \cong H_{q-1}(L(V_{<n})) \) and the identification of \(V_{q-1} \) with the free \(R \)-module with generators corresponding to the \(q \)-cells of \(X \). See [1, Theorem 8.5].

\(\Box \)
We now focus on the group $\mathcal{E}_s(L(V), \partial)$ and the proof of Theorem Part (2). Again, we take $(L(V), \partial)$ to be an object in $\text{DGL}^k_m(R)$ with $V = V_{q-1} \oplus V_{<n}$ for $m \leq n < q \leq k$. When $q = n + 1$ we must take into account the linear differential $d_n: V_n \to V_{n-1}$. Since V_n is a free R-module, we may choose a subspace W_n of V_n complementary to the d_n-cycles in V_n giving $V_n = (\ker d_n) \oplus W_n$. When $q > n + 1$ we set $W_{q-1} = V_{q-1}$.

Let $\alpha \in \text{aut}_s(L(V), \partial)$ be given and, as usual, let $\tilde{\alpha}_{q-1}: V_{q-1} \to V_{q-1}$ denote the induced map. Since, α induces the identity on $H_*(V)$, we see $\tilde{\alpha}_{q-1}$ fixes $\ker d_{q-1} = H_{q-1}(V)$. It follows that α induces a map $\tilde{\alpha}'_{q-1}: W_{q-1} \to W_{q-1}$.

Definition 2.7 Let C^q_s denote the subset of pairs $(\chi, [\eta]) \in \text{aut}(W_{q-1}) \times \mathcal{E}_s(L(V_{<n}), \partial_{<n})$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
W_{q-1} & \xrightarrow{\chi} & W_{q-1} \\
B_{q-1} \downarrow & & \downarrow B_{q-1} \\
H_{q-2}(L(V_{<n})) & \xrightarrow{H(\eta)} & H_{q-2}(L(V_{<n}))
\end{array}
\]

Remark 2.8 If $q > n + 1$ or if $d_n = 0$ then $W_n = \{0\}$. In this case $C^q_s = C^q \cap \mathcal{E}_s(L(V_{<n}), \partial_{<n})$.

We prove:

Theorem 2.9 Let $(L(V), \partial)$ be an object in $\text{DGL}^k_m(R)$ with $V = V_{q-1} \oplus V_{<n}$ for $q > n$. Then, there is a short exact sequence:

\[
0 \to \text{Hom}(V_{q-1}, H_{q-1}(L(V_{<n}))) \to \mathcal{E}_s(L(V), \partial) \to C^q_s \to 0
\]

Proof Define $\Gamma_q: \mathcal{E}_s(L(V), \partial) \to C^q_s$ by $\Gamma_q(\alpha) = (\tilde{\alpha}'_{q-1}, [\alpha_{<n}])$. We claim Γ_q is surjective. For given $(\chi, [\eta]) \in C^q_s$ as in Definition 2.7, we can extend χ to a map $\xi: V_{q-1} \to V_{q-1}$ by setting $\xi = \text{id}$ on $\ker d_{q-1}$. Then the pair $(\xi, [\eta]) \in C^q$ and so, by Proposition 2.3, there exists $[\alpha] \in \mathcal{E}(L(V), \partial)$ with $\Psi([\alpha]) = (\xi, [\eta])$ and, further, α may be chosen in $\text{aut}_s(L(V), \partial)$ since ξ and η fix $H_*(V)$. Thus $\Gamma_q([\alpha]) = (\chi, [\eta])$. Finally, observe that $\ker \Gamma_q = \ker \Psi_q$ and the result follows from Proposition 2.5. □

We deduce:

Proof of Theorem 1 Part (2). The result follows again from the Quillen-Anick identifications as in the proof of Theorem 1, above. In this case, we note that the linear differential $d_n: V_n \to V_{n-1}$ corresponds linking homomorphism $\pi_{n+1}(X^{n+1}, X^n)_R \to \pi_n(X^n, X^{n-1})_R$ in the long exact sequence of the triple. □

Remark 2.10 The exact sequences in Theorems 2.6 and 2.9 do not split in general. One simple criterion for splitting occurs when $\partial_{<n} = 0$. □
3 Self-equivalences of R-local spaces

We begin with a result on the full group $\mathcal{E}(X_R)$. The following was stated in the introduction as Example 1.2.

Theorem 3.1 Let G_1, \ldots, G_r be finitely generated abelian groups. Given $R \subseteq \mathbb{Q}$, suppose $X = M(G_1, m+1) \vee M(G_2, m+3) \vee \cdots \vee M(G_r, m+2r-1)$ for $r \leq m/2$ and X an object of $\mathbb{C}W_m^{k+1}$ satisfying Hypothesis 1.1. Then

$$\mathcal{E}(X_R) \cong \prod_{i=1}^{r} \text{aut}((G_i)_R).$$

Proof Recall $M(G, i)$ is $(i-1)$-connected and of dimension $\leq i + 1$. It follows that, in the Anick model $(L(V), \partial)$ for X, we have $V = V_m \oplus V_{m+1} \oplus \cdots \oplus V_{m+2r-1}$ with $\partial = d$ purely linear and taking the form

$$
v_{m+2r-1} \xrightarrow{d_{m+2r-1}} v_{m+2r-2} \xrightarrow{0} v_{m+2r-3} \xrightarrow{d_{m+2r-3}} v_{m+2r-4} \xrightarrow{0} \cdots
$$

$$
\cdots \xrightarrow{0} v_{m+3} \xrightarrow{d_{m+3}} v_{m+2} \xrightarrow{0} v_{m+1} \xrightarrow{d_m} v_{m} \xrightarrow{0} 0.
$$

Here,

$$(G_i)_R \cong \frac{V_m}{\text{im } d_{m+2i-1}}.$$

Note \mathcal{C}^{m+2} consists of pairs $(\xi_{m+1}, \lambda_m) \in \text{aut}(V_{m+1}) \times \text{aut}(V_m)$ with $d_{m+1} \circ \xi_{m+1} = \lambda_m \circ d_{m+1}$ Since $(G_1)_R \cong \frac{V_m}{\text{im } d_{m+1}}$ we deduce that $\mathcal{C}^{m+2} \cong \text{aut}(G_R)$. Since, $H_{m+1}(L(V_{\leq m})) = 0$, invoking Theorem 2.6 we deduce $\mathcal{E}(L(V_{\leq m+1})) \cong \text{aut}(G_R)$.

Now proceed by induction. Assume $r > 1$ and $r \leq m/2$, as hypothesized. The latter assumption ensures $H_{m+2r-1}(L(V_{\leq m+2r-2})) = H_{m+2r-2}(L(V_{\leq m+2r-3})) = 0$. Since, $d_{m+2r-2} = 0$ we have

$$\mathcal{C}^{m+2r-1} = \text{aut}(V_{m+2r-2}) \times \mathcal{E}(L(V_{\leq m+2r-3}), \partial_{\leq m+2r-3}).$$

Since, $H_{m+2r-2}(L(V_{\leq m+2r-3})) = 0$, by Theorem 2.6 and the induction hypothesis we obtain

$$\mathcal{E}(L(V_{\leq m+2r-2}), \partial_{\leq m+2r-2}) \cong \text{aut}(V_{m+2r-2}) \times \prod_{i=1}^{r-1} \text{aut}((G_i)_R),$$

Finally, note \mathcal{C}^{m+2r} is the set of triples

$$(\xi_{m+2r-1}, \lambda_{m+2r-2}, \alpha) \in \text{aut}(V_{m+2r-1}) \times \text{aut}(V_{m+2r-2}) \times \prod_{i=1}^{r-1} \text{aut}((G_i)_R)$$
such that the pair \((\xi_{m+2r-1}, \lambda_{m+2r-2}) \in \text{aut}(V_{m+2r-1}) \times \text{aut}(V_{m+2r-2})\) gives a commutative diagram:

\[
\begin{array}{ccc}
V_{m+2r-1} & \xrightarrow{\xi_{m+2r-1}} & V_{m+2r-1} \\
d_{m+2r-1} & \downarrow & d_{m+2r-1} \\
V_{m+2r-2} & \xrightarrow{\lambda_{m+2r-2}} & V_{m+2r-2}
\end{array}
\]

We conclude \(C^{m+2r} \cong \text{aut}((G_{r})_{R}) \times \prod_{i=1}^{r-1} \text{aut}((G_{i})_{R})\). Theorem 2.6 and the fact that \(H_{m+2r-1}(L(V_{\leq m+2r-2})) = 0\) now completes the induction and the proof. \(\square\)

We deduce the following direct consequence of Theorem 1 (2).

Corollary 3.2 Let \(R \subseteq \mathbb{Q}\) and \(X = X^{q} = X^{n} \cup_{a} \left(\bigcup_{i=1}^{j} e_{i}^{q} \right)\) satisfy Hypothesis 1.1. When \(q = n+1\) suppose further that the linking homomorphism \(\pi_{n+1}(X^{n+1}, X^{n})_{R} \rightarrow \pi_{n}(X^{n}, X^{n-1})_{R}\) vanishes. Then \(\mathcal{E}_{*}(X^{n})_{R} = 0\) implies \(\mathcal{E}_{*}(X^{q})_{R} \cong \bigoplus_{i=1}^{j} \pi_{q}(X^{n})_{R}\). \(\square\)

We apply this result to give a calculation of \(\mathcal{E}_{*}(X)_{R}\). Given \(R\)-modules \(H_{i}, H_{j}\), let \([H_{i}, H_{j}] \subseteq (H_{i} \otimes H_{j}) \oplus (H_{j} \otimes H_{i})\) denote the \(R\)-submodule given by:

\([H_{i}, H_{j}] = R(x_{i} \otimes x_{j} - (-1)^{(i-1)(j-1)}x_{j} \otimes x_{i} | x_{i} \in H_{i}, x_{j} \in H_{j}\)\]

Here, we write \(R\langle \rangle\) to denote a free \(R\)-module on given generators. Given subspaces \(V, W \subseteq L\) with \(L\) a graded Lie algebra we similarly write

\([V, W] = R\langle v, w | v \in V, w \in W\rangle\).

We prove

Theorem 3.3 Let \(R \subseteq \mathbb{Q}\) and \(X\) in \(\text{CW}_{m}^{k+1}\) satisfy Hypothesis 1.1. Suppose \(X\) has a cellular decomposition of the form

\(X^{m+1} \subset X^{m+2} \subset \cdots \subset X^{2m} = X\)

such that that the linking homomorphisms \(\pi_{r+1}(X^{r+1}, X^{r})_{R} \rightarrow \pi_{r}(X^{r}, X^{r-1})_{R}\) vanish for \(r = m+2, \ldots, 2m-1\). Suppose \(\mathcal{E}_{*}(X^{m+1})_{R} = 0\). Then

\(\mathcal{E}_{*}(X^{i})_{R} = 0, \text{ for } i \leq 2m - 1\) and \(\mathcal{E}_{*}(X^{2m})_{R} \cong \bigoplus_{i=1}^{j} \left[H_{m+1}(X; R), H_{m+1}(X; R) \right]\),

where \(j = \dim_{R}(H_{2m}(X, X_{2m-1}; R))\).

Proof By the freeness of the Anick model as DG Lie algebra over \(R\) we obtain

\(H_{m+1}(L(V_{\leq m})) = H_{m+2}(L(V_{\leq m+1})) = \cdots = H_{2m-1}(L(V_{\leq 2m-2})) = 0\).
Since, by hypothesis, $\mathcal{E}_*(X^{m+1})_R = 0$, applying Corollary 3.2 repeatedly gives

$$\mathcal{E}_*(X^{m+2})_R = \mathcal{E}_*(X^{m+3})_R = \cdots = \mathcal{E}_*(X^{2m-1})_R = 0.$$

Applying this result again then gives

$$\mathcal{E}_*(X^{2m})_R \cong \bigoplus_{i=1}^{j} \pi_{2m+1}(X)_R.$$

Using the Anick model, we compute

$$\pi_{2m+1}(X)_R \cong [V_m, V_m] \cong [H_{m+1}(X; R), H_{m+1}(X; R)].$$

\[\Box\]

The following result was stated as Example 1.3 in the introduction.

Corollary 3.4 Let G be a finitely generated abelian group and $R \subseteq \mathbb{Q}$ with least invertible prime p. Let X be in CW_m^{k+1} as in Hypothesis 1.1 with cellular decomposition of the form

$$M(G, m + 1) = X^{m+2} \subset X^{m+3} \subset \cdots \subset X^{2m} = X.$$

Assume that the linking homomorphisms $\pi_{r+1}(X^{r+1}, X^r)_R \to \pi_r(X^r, X^{r-1})_R$ vanish for $r = m + 2, \ldots, 2m - 1$ and that $\dim_R(H_{2m}(X, X^{2m-1}; R)) = j$. Then

$$\mathcal{E}_*(X)_R \cong \bigoplus_{i=1}^{j} [G_R, G_R]$$

where $G_R = H_{m+1}(M(G, m + 1); R)$ is of degree $m + 1$.

Proof By [5, Theorem 3.2], $\mathcal{E}_*(M(G, m + 1)) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$. By Hypothesis 1.1, the prime $p = 2$ is invertible in R. Thus $\mathcal{E}_*(M(G, m + 1))_R = 0$. The result now follows from Theorem 3.3.\[\Box\]

We can easily compute both groups for a tame product of spheres. The following was stated as Example 1.4 in the introduction.

Theorem 3.5 Let $R \subseteq \mathbb{Q}$ be a ring with least invertible prime p. Let $m \leq n$ be chosen so that $m, k = m + n + 1$ and p satisfy Hypothesis 1.1. Then

$$\mathcal{E}_*(S^{m+1} \times S^{n+1})_R \cong \begin{cases} R^* \times R^* & \text{for } n \neq 2m \text{ or } m \text{ even.} \\ R \oplus (R^* \times R^*) & \text{for } n = 2m \text{ and } m \text{ odd.} \end{cases}$$

$$\mathcal{E}_*(S^{m+1} \times S^{n+1})_R \cong \begin{cases} 0 & \text{for } n \neq 2m \text{ or } m \text{ even.} \\ R & \text{for } n = 2m \text{ and } m \text{ odd.} \end{cases}$$

\[\Box\]
Proof Let \(X = S^{m+1} \times S^{n+1} \). We can write the Anick model as \((L(u, v, w), \partial) \) where \(|u| = m, |v| = n, |w| = n+m+1 \) with \(\partial(u) = \partial(v) = 0 \) and \(\partial(w) = [u, v] \). Theorem 2.6 gives a short exact sequence:

\[
0 \rightarrow H_{m+n+1}(L(u, v)) \rightarrow \mathcal{E}(L(u, v), \partial) \rightarrow C^{m+n+2} \rightarrow 0.
\]

For degree reasons, \(H_{m+n+1}(L(u, v)) = 0 \). Thus \(\mathcal{E}(X_R) \cong C^{m+n+2} \) and we compute the latter group.

The group \(C^{m+n+2} \) consists of pairs \((\xi, [\alpha])\) \(\in\) \(\text{aut}(R\langle w\rangle) \times \mathcal{E}(L(u, v), 0)\) such that the following diagram commutes:

\[
\begin{array}{ccc}
R\langle w \rangle & \xrightarrow{\xi} & R\langle w \rangle \\
B_{m+n+1} \downarrow & & \downarrow B_{m+n+1}
\end{array}
\]

\[
\begin{array}{ccc}
R\langle [u, v] \rangle & \xrightarrow{H_{m+n}(\alpha)} & R\langle [u, v] \rangle \\
H_{m+n}(\alpha) \downarrow & & \downarrow H_{m+n}(\alpha)
\end{array}
\]

The map \(\xi \) is determined by \(H_{m+n}(\alpha) \). Thus \(C^{m+n+2} \cong \mathcal{E}(L(u, v), 0) \). Applying Theorem 2.6 again gives a short exact sequence:

\[
0 \rightarrow H_n(L(u)) \rightarrow \mathcal{E}(L(u, v), 0) \rightarrow C^{n+1} \rightarrow 0.
\]

The sequence splits since the differential vanishes. As above, \(C^{n+1} \cong \text{aut}(L(u, v)) \cong R^* \times R^* \). If \(n \neq 2m \) or \(m \) odd then \(H_n(L(u)) = 0 \). Otherwise, for \(n = 2m \) and \(m \) even, \(H_n(L(u)) = R \). The result for \(\mathcal{E}(X_R) \) follows.

The proof for \(\mathcal{E}_*(X)_R \) is similar. Theorem 2.9 gives \(\mathcal{E}_*(L(u, v, w), \partial) \cong C^{m+n+2}_* \). As above, \(C^{m+n+2}_* \cong \mathcal{E}_*(L(u, v); 0) \). Applying Theorem 2.9 again gives \(\mathcal{E}_*(L(u, v); 0) \cong H_n(L(u)) \) and the result follows.

We next give a general result showing that finiteness of \(\mathcal{E}(X_R) \) is not preserved by cell attachments in consecutive degrees:

Theorem 3.6 Let \(R \subset \mathbb{Q} \) and and \(X \in \text{CW}^{k+1} \) be as in Theorem 1. Suppose \(X = X^n \cup (\bigcup_{i=1}^j e^{n+1}_i) \) for \(j > 0 \). Assume that the linking homomorphism \(\pi_{n+1}(X^{n+1}, X^n)_R \rightarrow \pi_n(X^n, X^{n-1})_R \) vanishes. Then \(\mathcal{E}(X^n_R) \) finite implies \(\mathcal{E}(X^{n+1}_R) \) is infinite.

Proof Our hypothesis on the linking homomorphism ensures \(d_n : V_n \rightarrow V_{n-1} \) is zero. Thus given \(v \in V_n, \partial(v) \in L^{n-1}(V_{n-1}) \). Since, \(\mathcal{E}(X^n_R) \cong \mathcal{E}(L(V_{<n}), \partial_{<n}) \) is finite, applying Theorem 2.6 gives \(H_{n-1}(L(V_{<n})) = 0 \). It follows that the map \(B_n = 0 : V_n \rightarrow H_{n-1}(L(V_{<n})) \). Given \(v \in V_n, \gamma = \text{id} : (L(V_{<n}), \partial) \rightarrow (L(V_{<n}), \partial) \) and \(\xi^a \in \text{aut}(V_n), a \in R \) with \(\xi^a(v) = av \) for \(v \in V_n \). The following diagram is obviously commutative:

\[
\begin{array}{ccc}
V_n & \xrightarrow{\xi^a} & V_n \\
B_n = 0 \downarrow & & \downarrow B_n = 0 \\
H_{n-1}(L(V_{<n})) & \xrightarrow{H_{n-1}(\gamma)} & H_{n-1}(L(V_{<n})).
\end{array}
\]
Therefore, there exists an infinity of pairs \((\xi^a, [\text{id}]) \in C_{n+1}\). Since, \(C_{n+1}\) is infinite,
\(\mathcal{E}(X_R^{n+1}) \cong \mathcal{E}(L(V_{\leq n}, \partial_{\leq n})\) is infinite by Theorem 2.6. \(\square\)

When \(R = \mathbb{Q}\) the result becomes:

Corollary 3.7 Let \(X\) be a finite, simply connected CW complex. Suppose that \(\pi_{n+1}(X^{n+1}, X^n)_{\mathbb{Q}} \neq 0\). Then \(\mathcal{E}(X^n_{\mathbb{Q}})\) finite implies \(\mathcal{E}(X^{n+1}_{\mathbb{Q}})\) is infinite. \(\square\)

Finally, we show \(\mathcal{E}(X_R)\) is infinite for CW complexes of small dimension.

Theorem 3.8 Let \(X\) be a simply-connected finite CW complex of dimension \(\leq 5\). Let \(R \subseteq \mathbb{Q}\) have least invertible prime \(p \geq 7\). If \(p\) is finite, assume the linking homomorphisms \(\pi_{r+1}(X^{r+1}, X^r) \to \pi_r(X^r, X^{r-1})_R\) vanish for \(r = 2, 3, 4\). Then \(\mathcal{E}(X_R)\) is infinite.

Proof Let \((L(V), \partial)\) denote the Anick model for \(X\). Our hypothesis on the linking homomorphism implies \(d = 0\). Since, \(X_R\) is not contractible, \(V \neq 0\).

When \(X = X^3\) then for degree reasons \(\partial = 0\). It follows that \(\mathcal{E}(X^3_R) \cong \text{aut}(V)\) which is infinite since \(V \neq 0\).

Next suppose \(X = X^4\). By Theorem 1 (1), it suffices to show that \(\mathcal{C}^4\) is infinite. Here, \(V = V_3 \oplus V_2 \oplus V_1\) with \(\partial(V_3) \subseteq [V_1, V_1]\) and at least one \(V_i \neq 0\). The group \(\mathcal{C}^4\) consists of pairs \((\xi, \alpha)\) where \(\alpha : L(V_3 \oplus V_1) \to L(V_2 \oplus V_1)\) is an automorphism and \(\xi : V_3 \to V_3\) makes the diagram commute:

\[
\begin{array}{ccc}
V_3 & \xrightarrow{\xi} & V_3 \\
\partial_3 & & \partial_3 \\
[V_1, V_1] & \xrightarrow{\alpha} & [V_1, V_1]
\end{array}
\]

Given \(a \neq 0\), define \(\alpha^a(v) = av\) for \(V_{\leq 2}\) Define \(\xi^{a^2}(v) = a^2 v\) for \(v \in V_3\). This gives an infinity of distinct pairs \((\alpha^a, \xi^{a^2})\) in \(\mathcal{C}^4\).

For the case \(X = X^5\) we have \(V = V_{\leq 4}\). Again \(\partial_3(V_3) \subseteq [V_1, V_1]\) by minimality. We identify \(H_4(L(V_{\leq 3}))\) as vector space:

\[
H_4(L(V_{\leq 3})) = [\ker \partial_3, V_1] \oplus [V_2, V_2] \oplus \frac{[V_2, [V_1, V_1]]}{[\partial_3(V_3), V_2]} \oplus \frac{[V_1, [V_1, [V_1, V_1]]]}{[\partial_3(V_3), [V_1, V_1]]}.
\]

By Theorem 2.6, if \(H_4(L(V_{\leq 3})) \neq 0\) then \(\mathcal{E}(X^5_{\mathbb{Q}})\) is infinite. Thus we may assume \(H_4(L(V_{\leq 3})) = 0\) which forces \(\text{dim} V_2 \leq 1\). If \(V_1 = 0\) then \(\partial = 0\) and \(\mathcal{E}(X_R) \cong \text{aut}(V)\) is infinite. So assume \(V_1 \neq 0\). Then we must have \(\ker \partial_3 = 0\) and \(\partial_3(V_3) = [V_1, V_1]\). Again, it suffices to show \(\mathcal{C}^5\) is infinite. We note that

\[
H_3(L(V_{\leq 3})) = \ker \partial_3 \oplus [V_2, V_1] \oplus \frac{[V_1, [V_1, V_1]]}{[\partial_3(V_3), V_1]} \cong [V_2, V_1]
\]

\(\square\) Springer
Then C^5 is the set of pairs $(\xi, [\alpha])$ with $\xi \in \text{aut}(\mathbb{Q}(w))$ and $\alpha \in \text{aut}(L(V_{\leq 3}), \partial_{\leq 3})$ making the diagram commute:

$$
\begin{array}{ccc}
V_4 & \xrightarrow{\xi} & V_4 \\
\downarrow{\alpha_4} & & \downarrow{\alpha_4} \\
[V_2, V_1] & \xrightarrow{H(\alpha)} & [V_2, V_1].
\end{array}
$$

Given $a \in R^*$ define a DG Lie map $\alpha^a : (L(V_{\leq 3}), \partial_{\leq 3}) \to (L(V_{\leq 3}), \partial_{\leq 3})$ by setting

$$
\alpha(v) = av \text{ for } v \in V_1 \quad \text{and} \quad \alpha(u) = a^2u \text{ for } u \in V_3 \oplus V_2,
$$

and extending. We then obtain an infinity of pairs $(\xi^a, [\alpha^a]) \in C^5$ where $\alpha^a(x) = a^3x$ for $x \in V_4$. \hfill \Box

We conclude by proposing a problem. By Costoya–Viruel [10], every finite group G occurs as $\mathcal{E}(X_{\mathbb{Q}})$. The construction of X for a given G requires cells (cohomology classes) in a wide range of dimensions. This suggests the following:

Problem 3.9 Given $R \subseteq \mathbb{Q}$, find the smallest $n \geq 1$ such that there exists a simply connected CW complex X with $\dim X \leq n$, X_{R} non-contractible and $\mathcal{E}(X_{R})$ is finite.

References

1. Anick, D.J.: Hopf algebras up to homotopy. J. Amer. Math. Soc. 2(3), 417–453 (1989)
2. Anick, D.J.: R-local homotopy theory. Lecture Notes in Mathematics, 1418, 78–85 (1990)
3. Arkowitz, M., Lupton, G.: On the nilpotency of subgroups of self-equivalences. Progr. Math. 136, 1–22 (1996)
4. Arkowitz, M., Lupton, G.: Rational obstruction theory and rational homotopy sets. Math. Z. 235(3), 525–539 (2000)
5. Arkowitz, M., Maruyama, K.: Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups. Topol. Appl. 87(2), 133–154 (1998)
6. Arkowitz, M., Strom, J.: The group of homotopy equivalences of products of spheres and of Lie groups. Math. Z. 240(4), 689–710 (2002)
7. Baues, H.J.: Homotopy type and homology. Oxford Mathematical Monographs. Oxford University Press, New York (1996)
8. Barcus, W., Barratt, M.: On the homotopy classification of the extensions of a fixed map. Trans. Amer. Math. Soc. 88, 57–74 (1958)
9. Benkhalifa, M.: Realizability of the group of rational self-homotopy equivalences. J. Homotopy Relat. Struct. 5(1), 361–372 (2010)
10. Costoya, C., Viruel, A.: Every finite group is the group of self homotopy equivalences of an elliptic space. preprint: arXiv:1106.1087.
11. Dror, E., Zabrodsky, A.: Unipotency and nilpotency in homotopy equivalences. Topology 18(3), 187–197 (1979)
12. Federinov, J., Félix, Y.: Realization of 2-solvable nilpotent groups as groups of classes of homotopy self-equivalences. Topol. Appl. 154(12), 2425–2433 (2007)
13. Kahn, D.W.: Some research problems on homotopy-self-equivalences. Lecture Notes in Mathematics, vol. 1425, pp. 204–207. Springer (1990)
14. Maruyama, K.: Localization of a certain subgroup of self-homotopy equivalences. Pac. J. Math. 136(2), 293–301 (1989)
15. Quillen, D.: Rational homotopy theory. Ann. Math. (2) 90, 205–295 (1969)
16. Rutter, J.: Spaces of homotopy self-equivalences: a survey. Lecture Notes in Mathematics, vol. 162. Springer, Berlin (1997)
17. Tanré, D.: Homotopie rationnelle; modèles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, vol. 1025. Springer, Berlin (1983)