Antimicrobial Effects of Conditioned Medium From Amniotic Progenitor Cells \textit{in vitro} and \textit{in vivo}: Toward Tissue Regenerative Therapies for Bovine Mastitis

Anna Lange-Consiglio1,2, Claudia Gusmara1, Emanuela Manfredi3, Antonella Idda1, Alessio Soggiu1, Viviana Greco4,5, Luigi Bonizzi1, Fausto Cremonesi1,2,6 and Alfonso Zecconi1

1Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy, 2Reproduction Unit, Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università degli Studi di Milano, Milan, Italy, 3Private Practitioner, Milan, Italy, 4Institute of Biochemistry and Clinical Biochemistry, Università del Sacro Cuore Roma, Rome, Italy, 5Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy

There is increasing evidence to suggest that, in addition to their regenerative effect, mesenchymal stromal cells (MSCs), and their secretome have an anti-inflammatory and antimicrobial role in the innate immune response in conditions such as sepsis. However, there is no published information on the effect of MSCs in bovine mastitis. Mastitis often results in extensive tissue damage due to multi-microorganism co-infection. This study investigated the ability of amniotic-derived conditioned medium (CM), \textit{in vitro} and \textit{in vivo}, to counteract microbial action and restore healthy tissue capable of milk production. Following determination of a dose–response curve, 10,000 colony-forming units (CFU) of \textit{Staphylococcus aureus} (\textit{S. aureus}) were inoculated into bovine mammary epithelial cell culture with and without 10\% CM (supplemented either at the time of bacteria inoculation or after 4 h). Acridine orange staining was used to assess cell viability/apoptosis. Additionally, an \textit{in vivo} study was performed using 48 dairy cows with acute and chronic mastitis, treated with CM (treated group) or antibiotics (control group). \textit{In vitro} results showed that CM can attenuate bacterial growth, as evaluated by the number of CFU. After 24 h of culture with \textit{S. aureus}, 89.67\% of mammary epithelial cells treated with CM were still alive, whereas all cells cultured without CM were dead. Rates of epithelial cell survival (60.67\%) were similar when CM was added 4 h after bacteria inoculation. There was no difference in somatic cell count between cases of acute mastitis in the CM-treated or control group in the \textit{in vivo} study. However, relapses in chronic mastitis were less common in the group receiving CM. Our results show that CM is able to mitigate bacterial growth \textit{in vitro} and may be particularly useful in the treatment of chronic mastitis, aiding restoration of milk production in cows that would otherwise be removed from the production cycle.

Keywords: conditioned medium, mastitis, bacteria, regenerative medicine, bovine
INTRODUCTION

Regenerative medicine relies on transplantation of mesenchymal stromal cells (MSCs) for the treatment of pathology in both human and veterinary medicine. However, engraftment of the transplanted MSCs has only been documented in a few cases (1–3). Indeed, only a small percentage of transplanted MSCs are able to engraft and survive in the inhospitable environment of a lesion (4–7). Recent data suggest that the action of transplanted MSCs might involve the secretion of mediators that activate the regenerative processes in the injured tissue. Conditioned medium (CM), secreted by cells during culture, has been demonstrated to promote the structural and functional regeneration of cardiac (6, 8), renal (5, 9), spinal cord (10), lung (11), and tendon (12) tissues. Lange-Consiglio et al. (12) reported the process of healing in tendons treated with CM to be comparable to that achieved by the MSCs of origin. This suggests that the beneficial properties of MSCs are attributable to paracrine stimulation of tissue-resident stem cells. These effects may be ascribed to bioactive factors known to suppress apoptosis and fibrosis, improve angiogenesis, induce mitosis, promote stem cell differentiation, and modulate the innate immune response (13). In addition to releasing soluble factors into the CM, MSCs also release non-soluble factors, such as extracellular microvesicles (MVs) containing microRNAs. All these components can be considered as essential intermediaries of cell-to-cell communication (14). Thus, the substances produced by MSCs may be the main mediators of their regenerative action. Pereira et al. (15) showed that CM secreted by human cord blood cells has a high concentration of soluble factors with proliferative, chemotactic, and immunomodulatory action. The components of CM included growth factors, cytokines, chemokines, amino acids (valine, threonine, alanine, methionine, and glutamine), glucose, and molecules with low molecular weight (lactate, acetate, and pyruvate). Rossi et al. (16) identified soluble factors that had an inhibitory action on the proliferation of T lymphocytes in CM derived from cells isolated from human amniotic membrane and suggested that prostaglandins might be responsible for this effect.

Although it is now recognized that the regenerative effects of MSCs are mediated by paracrine stimulation of growth factors secreted in CM, less is known about their antimicrobial action. Some preclinical data indicate that MSCs and their secretome have antimicrobial properties (17–19). Studies using models of infection-induced organ damage have shown that MSCs can exhibit antibacterial properties by the release of soluble molecules, such as the peptides catelicidin LL-37 (20) and lipocalin-2 (21), which lead to the clearance of bacteria. Park et al. (22) demonstrated that MVs released by MSCs had an antimicrobial effect in post-mortem perfused human lung with severe bacteria pneumonia.

Bovine mastitis is an inflammatory process of the mammary gland predominantly associated with a bacterial infection and it is usually treated with intramammary antibiotics. Its effects on mammary cell numbers and function result in altered mammary secretion. The severity of the infection determines whether tissue damage can be reversed with treatment, and milk production comparable to that prior to the infection be regained. Therefore, a therapeutic approach that is both antimicrobial and regenerative would be ideal.

In view of the above, one aim of our study was to test the effects of CM on epithelial mammary cells stressed by Staphylococcus aureus (S. aureus). A further aim was to conduct a preclinical study to evaluate the potential of the in vivo administration of CM for regenerative based therapy of acute and chronic bovine mastitis.

CM from amniotic cells was used. These cells represent an intermediate state between embryonic and adult cells (23–26). Cells from extra-fetal tissues possess a greater proliferative and differentiative potential and have longer telomeres than cells derived from adult tissues (27–29). Furthermore, they are able to prevent fetal rejection due to their low immunogenicity and their immunomodulatory characteristics (30). Secretomes of amniotic derived cells have been shown to attenuate in vitro lipopolysaccharide (LPS)-induced inflammation in equine endometrial and tendon cells and in macrophages (31–33). These characteristics represent a promising therapeutic option in many inflammatory diseases.

METHODS

Chemicals, cell culture media, and supplements were obtained from Sigma Aldrich, Milan, Italy, unless otherwise specified, and tissue culture dishes were purchased from Euroclone, Milan, Italy.

In vitro Study

Amniotic Membrane Collection, Cell Isolation, and CM Production

Allanto-amniotic membranes were collected following standard methods and in accordance with 2010/63 EU directive on animal protection and Italian Law (D.L. No. 116/1992) as previously described by Corradetti et al. (34). Briefly: the allanto-amnion was kept at 4°C and processed within 12 h. The amniotic membrane was separated from its juxtaposed allantois and cut into small pieces (about 9 cm² each) that were digested with 0.93 mg/ml collagenase type I and 20 mg/ml DNase (Roche, Mannheim, Germany) for ~3 h at 38.5°C. Debris were removed using a 100-μm cell strainer and released cells were collected by centrifugation at 200 x g for 10 min. Amniotic membran...
cells (AMCs) were cultured in a medium composed of HG-
DMEM supplemented with 10% FBS, penicillin (100 U/ ml)–
streptomycin (100 mg/ml), 0.25 mg/ml amphotericin B, 2 mM
L-glutamine, and 10 ng/ml epidermal growth factor.

CM was obtained by culturing AMCs at passage 3 in ultra-
culture serum-free medium (Euroclone), without antibiotics, for
96 h without replacement of medium. The medium from each
flask was collected, pooled, centrifuged at 700×g to remove
 cellular fragments, and kept at −80°C. This method was carried
out for cells isolated from three placentas.

For the in vitro and the in vivo experiments, the CM was
lyophilized and preserved at 4°C until use. Before use, the
CM was resuspended in sterile water to one-quarter of the
initial volume.

Epithelial Mammary Cell Culture

A conventional clonal cell line (BME-UV) from udder primary
epithelial cells (35) was used. These cells are known to synthesize
several milk components.

BME-UV cells were cultured in medium containing 40% Ham
F-12 nutrient mixture, 30% Roswell Park Memorial
Institute (RPMI) 1640 medium, 20% NCTC 135 (Gibco,
Paisley, UK), 10% fetal bovine serum, 0.1% lactalbumin
hydrolysate, 1.2 mM glutathione, 1 µg/ml hydrocortisone,
1 µg/ml insulin, 0.1% lactose, 10 µg/ml L-ascorbic acid, and
1% penicillin/streptomycin.

The cells were seeded onto 12-well plates at a density of 3 ×
10³ cells/cm² and cultured at 38.5°C with 5% CO₂. All trials were
performed on 80% of confluence.

Staphylococcus aureus and Dose–Response Curve

The S. aureus strain used in this in vitro study was isolated from
a clinical mastitis case. This strain is resistant to beta-lactams.

S. aureus and Dose–Response Curve

The spectrum of antibiotic sensitivity of the microorganism
was assessed by the VITEK® 2 system using AST-GP79
test cards (BioMérieux, Marcy l’Étoile, France), following the
manufacturer’s instructions. Data on antibiotic sensitivity are
represented in Table 1.

The stress induced by S. aureus was evaluated by viability and
apoptotic staining on a dose–response curve in three replicates.
AMC-UV cells were seeded at a density of 3 × 10³ on 12-well
plates and S. aureus was inoculated at the rate of 100, 1,000,
and 10,000 CFU/ml for 4–8, 12, and 24 h at 38.5°C in 5% of CO₂.

In condition 3 (S. aureus and CM), the CM was added either
concurrently with the bacterium at time 0 or after 4 h to allow
bacterial growth.
Protein Identification in CM

Protein digestion was performed according to the filter-aided sample preparation (FASP) protocol that combines both protein purification and digestion (37, 38). Each biological sample was run in quadruplicate. Briefly, reduction (DTT 8 mM in urea buffer −8 M urea and 100 mM Tris), alkylation (IAA 50 mM in urea buffer −8 M urea and 100 mM Tris), and digestion by trypsin at a final concentration of 0.01 µg/µl (Promega Italia srl, Milan, Italy) were performed on filter tubes (Nanosep centrifugal device with Omega membrane-30 K MWCO, Sigma-Aldrich). LC-MS analysis was performed as previously described (39). First, 500 fmol/µl of digestion of enolase from Saccharomyces cerevisiae (P00924) was added to each sample as an internal standard, trypptic peptides were separated, and then 0.25 µg of each digested sample was loaded onto a Symmetry C18 5 µm, 180 µm × 20 mm precolumn (Waters Corp., Milford, MA, United States) and subsequently separated by a 90-min reversed-phase gradient at 300 nl/min (linear gradient, 2–85% CH3CN over 90 min) using a HSS T3 C18 1.8 µm, 75 µm × 150 mm nanoscale LC column (Waters Corp.) maintained at 40°C. The separated peptides were analyzed on a high-definition Synapt G2-Si Mass spectrometer directly coupled to the chromatographic system. Protein expression was evaluated via a label-free ion mobility–enhanced data-independent acquisition (DIA) proteomics analysis in expression configuration mode (HDMSE). Processing of low and elevated energy, added to the data of the reference lock mass [Glu1]-Fibrinopeptide B Standard (Waters Corp.), provided a time-aligned inventory of accurate mass-retention time components for both the low- and the elevated-energy exact mass retention time (EMRT). Protein quantification was performed using PLGS 3.03 (Waters Ltd., Newcastle upon Tyne). The samples were automatically aligned according to retention time. The peak processing method was performed in profile data mode and the peptide ion detection method was set in high-resolution mode. Database search was performed interrogating the UniProt B. taurus reference proteome (proteome ID: UP000009136, 37513 protein entries, last release 21/09/2019). Peptide mass tolerance was set to 10 ppm and fragment ion tolerance was set to 0.01 Da. Carbamidomethyl cysteine and oxidation of methionine were selected as fixed and variable modifications, respectively. The search results were filtered to obtain a protein false discovery rate (FDR) of 1%.

In vivo Study

Animals

Forty-eight Holstein Friesian cows enrolled for this study were selected in two privately owned farms. In both farms, the animals were divided into groups based on the lactation period and were fed with a total mixed ration ad lib. Herd size varied from 150 to 200 cows in milk.

The farmers and the veterinarian enrolled in this study identified milk alterations at milking time. After a detailed clinical examination, the eligibility of the affected animal for the study was assessed. Cows requiring systemic antibiotic treatment were not enrolled in this study. Mastitis was classified as acute or chronic based on clinical signs and milk analysis. Acute mastitis was defined by the presence of abnormal milk (flakes and clots) and clinical signs such as hot, swollen, and painful quarter. In acute mastitis, milk production usually decreases and milk composition is considerably altered (40).

In this study, chronic mastitis was diagnosed when the somatic cell count (SCC) in the milk sample from the affected mammary quarter was >500,000 for three consecutive months (41).

The animals were randomly allocated to four groups:

- Acute mastitis that was treated with intramammary antibiotic (control group, CTR) (16 quarters/16 animals)
- Acute mastitis that was treated with intramammary CM (16 quarters/16 animals)
- Chronic mastitis that was treated with intramammary antibiotic (CTR) (8 quarters/8 animals)
- Chronic mastitis that was treated with intramammary CM (8 quarters/8 animals)

Each udder quarter affected by mastitis was enrolled only once.

Indicators of udder inflammation

Somatic cells count. Somatic cell count was evaluated at different time points: day 0, 7, 14, and 30 of treatment. The count was performed with a DeLaval Cell counter DCC (Tumba, Sweden) that performs fluorometric measurements. The somatic cell count is expressed as a linear score (LS), which is a logarithmic function that transforms the values of somatic cells into a linear scale:

\[\text{Linear Score} = \log_2(n^\circ \text{cells} : 100) + 3 \]

Bacteriological analysis. The bacteriological assays were performed on quarter milk samples collected before milking at the start of the treatment (day 0) and at day 30 by an aseptic procedure. Bacteriological analysis was performed by plating milk on blood agar with esculine and Baird Parker RPF Agar. The plates were incubated at 37°C for 48 h, and the colonies were identified by routine methods according to the National Mastitis Council (42).

Intramammary administration of antibiotics or CM

All cows were treated after milking. CM was warmed to 38.5°C and inoculated intramammarily through the teat canal with a syringe connected to a sterile disposable teat cannula. In the CTR group, the antibiotic for local use, chosen on an antibiogram test, was inoculated using the same procedure. Following inoculation, the udder was gently rubbed with upwards movement of the hands to distribute the product.

Iodine teat-dip was performed. Three milliliters of CM alone or antibiotic alone was administered twice daily, after milking, for three consecutive days. The standard experimental volume of CM was set at 3 ml since, after lyophilization, CM was concentrated 4-fold, and a uniform treatment protocol was needed to compare to the antibiotic treatment.

After these treatments, an iodine teat-dip was performed.

In vivo results

An expert veterinarian defined clinical improvement when the quarter and milk secretion subjectively returned to normal, and
relapse was defined as a clinical mastitis that re-occurred from the time of last examination (30 days after the treatment) until the term of the same lactation. A quarter was considered clinically recovered when clinical improvement occurred and an SCC value at T30 reduced by at least 3 LS points compared to the value at T0.

Statistical Analysis
Data were analyzed by GraphPad Instat 3.00 for Windows (GraphPad Software, La Jolla, CA, USA).

For in vitro study, all experiments were replicated three times, and the data of viable, apoptotic, and necrotic epithelial mammary cells, collected in different experimental conditions, times, and the data of viable, apoptotic, and necrotic epithelial replications were compared using ANOVA.

For in vivo study, the between-subjects factor was represented by treatments (2 levels) and the within-subjects factor was represented by sampling time (4 levels) and the mixed-design analysis of variance model was applied.

For all tests, differences were considered statistically significant at p ≤ 0.05.

The ClueGO plugin v 2.5.5 (release 15.10.2019) for Cytoscape 3.7.2 (43) was used to obtain the ontology classification and functional interaction networks for the proteins identified (44). Functions associated with the groups were partitioned based on significant functional associations between terms and protein sets. Gene ontology (GO) categories and pathways that included biological processes (BPs), molecular functions (MFs), and Kyoto Encyclopedia of Genes and Genomes (KEGG) updated at the last release (11.01.2018) were used. A two-sided hypergeometric test with Bonferroni correction was used to select only significant annotations with a p ≤ 0.05.

RESULTS

In vitro Study
Cell Isolation and CM Production
Amniotic cells were chosen for their ability to adhere to plastic. Trypan blue exclusion assay showed an initial viability of AMCs >90% and >80% for BME-VU cells. As a characteristic of MSC phenotype, the AMCs at P3 express CD29, CD44, CD73, CD106, CD105, Oct-4, c-Myc, and MHCI, and lack CD34 and MHCI1. Moreover, AMCs are able to differentiate into mesenchymal (adipogenic, chondrogenic, and osteogenic differentiation) and ectodermic lineages (neurogenic differentiation) as reported by Corradetti et al. (34).

Cell Viability and Apoptosis
Figure 1A shows the different cell lines after staining for viability. Viable cells appear with normal green-colored nuclei and well-defined margins; apoptotic cells show green, or orange chromatin and have membranes with buds; necrotic cells have orange or red chromatin.

Dose–Response Curve
The dose–response curve of S. aureus on BME-UV cells showed that maximum stress, as estimated by cell apoptosis measurements, occurred with 10,000 CFU/ml and 24 h incubation (Figure 1B). At this time, cells invaded by S. aureus detached from the culture plate and appeared as brown clusters in the culture media.

Treatments
Table 4 shows the rate of quarters with a reduction of at least 3 LS compared to the starting point and the rate of relapses.
There was no difference in the improvement of clinically affected quarters treated with CM compared to antibiotic treatment but the rate of relapses was numerically different. Treatment with CM improved two quarters affected by chronic mastitis.

Table 5 shows the values of the somatic cells expressed in LS at the different time points for acute and chronic mastitis treated with antibiotics or CM. At time 0 (T0), the average value of SCC was 7.68 LS with a standard deviation (SD) of 0.30 in acute mastitis and 8.40 LS with a SD of 0.18 in chronic mastitis. There was no statistically significant difference between the antibiotic group compared to CM groups but, in the antibiotic treatment, the mean value of LS decreased constantly compared to the CM treatments. Indeed, in both acute and chronic mastitis, the reduction of LS values in the CM-treated group became evident at the 14th day from the beginning of treatment compared to the antibiotic alone in which the decrease started at the 7th day. The results of both treatments (CM and the antibiotic) were comparable.

DISCUSSION

In the present study, we hypothesized that the secretome produced by amniotic-derived cells might have anti-inflammatory roles that contribute to protection against infection by *S. aureus*. In this context, we investigated the effect of CM in an *in vitro* experiment on epithelial mammary cells infected by *S. aureus* and in an *in vivo* study on cows with acute and chronic mastitis. Mastitis is an inflammatory process of the mammary gland that results, not only in decreased milk production, but also in a reduction in milk quality. The action of pathogens, mainly bacteria, and the consequent inflammatory
process induce a change in the integrity and function of the mammary epithelial cells with a resultant decrease in milk production (45, 46). Therapy for mastitis (acute, chronic) and its prevention (for dry cows) is mainly based on the use of antibiotics but, in recent years, antibiotic resistance has been developing to *S. aureus*, which is the most prevalent and contagious etiologic agent in mastitis (47). Infections caused by these bacteria are difficult to treat, mainly due to evolved mechanisms of antimicrobial drug resistance and evasion of immune response (48–50). Because of the growing number of antibiotic-resistant *S. aureus* strains, there is an urgent need to investigate and develop alternative therapeutics.

Bovine mammary epithelial cells constitute a physical barrier and produce several antimicrobial substances and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-8 (IL-8), regulated on activation normal T cell expressed and secreted (RANTES), lactoferrin, serum amyloid A, and cyclooxygenase-2 (46, 51–53). When severe, mastitis induces a decrease of α-lactalbumin and casein mRNAs and an increase in mRNA levels for several growth factors previously cited. These results suggest the involvement of growth factors in tissue protection or repair processes (54). It seems that the mammary gland tries to regenerate itself and, in this context, the use of CM which is rich in growth factors, could help the regenerative process (as described in literature for other injured tissues) (55–58). To date, however, there are few documented reports of the antimicrobial properties of CM.
Our results show that CM is able to attenuate the proliferation of *S. aureus* in BME-VU cells either when added at time 0 or, to a lesser extent, when supplemented 4 h after the cells were exposed to this bacterium. In the presence of *S. aureus*, all BME-VU cells die within 12 h but when CM is added to the cell culture at the same time as the bacteria or 4 h later, 89.67 or 60.67% of cells, respectively, remain viable.

To confirm the ability of CM to counteract the proliferation of *S. aureus* and to verify its regenerative effect, an *in vivo* study was performed.

In vivo, the clinical diagnosis of mastitis is based on the physical examination of milk and udder and, above all, according to the recommendations of the International Dairy Federation (IDF), on SCC and on the microbiological status of the mammary quarter (59).

A positive bacterial culture was detected in 71.88% of animals with acute mastitis, while bacterial culture was positive in all cows with chronic mastitis.

Our results show that SCC values, expressed as LS, decreased significantly ($p \leq 0.05$) at 30 days of observation (T30) in both mastitis groups, and no statistically significant differences were observed between antibiotic and CM-treated quarters. However,
The CM group had a lower rate of relapses. Indeed, mastitis did not recur in any of the quarters after CM treatment.

The reduced recurrence rate in the CM group compared to the antibiotic group and the improvement of the quarters affected by chronic mastitis could be explained by the presence of growth factors in the CM with both regenerative and antibacterial effects. In fact, the number of quarters with positive evolution was higher in the CM-treated group compared to the antibiotic one.

Our proteomic study identified some BP terms associated with several identified proteins: in particular, the “negative regulation of inflammatory response” and “regulation of TNF production” could contribute via the action of the associated protein adiponectin (ADIPOQ), thrombospondin-1 (THBS1), lactoferrin (LTF), apolipoprotein E (APOE), apolipoprotein A1 (APOA1), and prothrombin (F2) to decrease TNF production and inflammation during the challenge with S. aureus. The presence of the term “killing of cells of other organism” associated with LTF, albumin (ALB), and F2 proteins suggests an antibacterial effect mediated mainly by F2 and LTF. The “endothelial cell proliferation” as well as “regulation of
smooth muscle cell proliferation” may support a potential regenerative effect at the cellular level by associated proteins thrombospondin-1 (THBS1), insulin-like growth factor-binding protein 5 (IGFBP5), ADIPQOQ, tropomyosin alpha-1 chain (TPM1) APOE, APOA1, and secreted protein acidic and cysteine rich (SPARC). Oxidant detoxification and related proteins could contribute to a decrease in oxidative stress and indirectly improve cell viability. The term platelet activation may be related to the release of proteins into the CM during growth. Taken together, all the functions and the related proteins associated with the CM support an anti-inflammatory, anti-bacterial, and proliferative effect of CM.

Many studies have confirmed the antimicrobial effects of CM. Studies using models of infection-induced organ damage have shown that MSCs have direct and indirect antimicrobial properties through the release of soluble factors, such as the peptide catelicidine LL-37 (\textit{LL-37}), which lead to bacterial clearance. The action of these growth factors, which attract neutrophils within the vascular compartment mediated by IL-10 (\textit{IL-10}), may help limit infection indirectly by recruiting and activating immune cells (\textit{IL-12}).

In summary, we suggest that CM contains growth factors with tissue regenerative and antimicrobial action, as well as chemokines, which could act, in synergy, to increase the host non-specific immune mechanism, promoting angiogenesis, fibroplasia, matrix deposition, and re-epithelialization.

\section*{Conclusion}

The use of CM for the treatment of mastitis would minimize the use of antibiotics, limiting antibiotic resistance, and avoiding ineffective and expensive treatments. Moreover, chronic mastitis cases are often not treated, and affected animals are culled from the herd. If our preliminary findings are confirmed in a larger study, it may be possible to restore milk production even in cows

\begin{table}[ht]
\centering
\caption{Somatic cells count values and rate of relapse for each treatment, and clinical distinction between acute and chronic mastitis.}
\begin{tabular}{lcccc}
\hline
Mastitis & Treatment & \multicolumn{1}{c}{Na treated quarters} & \multicolumn{1}{c}{Na quarters with >3 LS} & \multicolumn{1}{c}{Na quarters with improvement >3 LS} & \multicolumn{1}{c}{Na quarters with improvement <3 LS} \\
 & & \multicolumn{1}{c}{(\%)} & \multicolumn{1}{c}{(\%)} & \multicolumn{1}{c}{(\%)} & \multicolumn{1}{c}{(\%)} \\
\hline
\textit{ACUTE} & Antibiotic & 16 & 7/16 (43.75a) & 9/16 (56.25a) & 6/9 (66.67a) & 3/9 (33.33a) \\
 & CM & 16 & 8/16 (50.00b) & 8/16 (50.00b) & 0/8 (0.00b) & 8/8 (100b) \\
\textit{CHRONIC} & Antibiotic & 8 & 8/8 (100.00a) & 0/8 (0.00a) & 0/8 (0.00a) & 2/8 (100.00a) \\
 & CM & 8 & 6/8 (75.00a) & 2/8* (25.00a) & 0/8 (0.00a) & 2/8 (100.00a) \\
\hline
\end{tabular}
\begin{flushleft}
Different small letter superscripts (a,b) in the same column indicate statistically different comparisons (p \leq 0.05) between acute mastitis.

Different capital letter superscripts (A,B) indicate statistically different comparisons (p \leq 0.05) between chronic mastitis.

\textit{*}Two animals affected by chronic mastitis due to Staphylococcus aureus.
\end{flushleft}

\begin{table}[ht]
\centering
\caption{Mean values of the linear scores on days 0, 7, 14, and 30 in cows with acute and chronic mastitis treated with antibiotic or CM.}
\begin{tabular}{lcccc}
\hline
Mastitis & Treatment & Day 0 & Day 7 & Day 14 & Day 30 \\
\hline
\textit{Acute} & Antibiotic & 7.46 \pm 1.33a & 6.83 \pm 1.69a & 5.92 \pm 3.12a & 4.37 \pm 2.68a \\
 & CM & 7.89 \pm 1.11a & 7.63 \pm 1.45a & 6.78 \pm 1.28a & 4.75 \pm 2.22a \\
\textit{Chronic} & Antibiotic & 8.27 \pm 0.45a & 6.48 \pm 1.31a & 6.59 \pm 1.03a & 6.28 \pm 0.77a \\
 & CM & 8.52 \pm 1.12a & 7.98 \pm 1.26a & 7.08 \pm 1.21a & 6.11 \pm 1.15a \\
\hline
\end{tabular}
\begin{flushleft}
Different small letter superscripts (a,b) in the same line indicate significantly different comparisons (p \leq 0.05) within the same treatment at different days in acute or chronic mastitis.

Different capital letter superscripts (A,B) in the same column indicate significantly different comparisons (p \leq 0.05) among treatments in acute or chronic mastitis.
\end{flushleft}
that would normally be destined to leave the production cycle. The use of CM may have further economic advantages for the effective recovery of the glandular tissue and most importantly for the prevention of antibiotic residues in the milk. In our in vitro experiment, secretome produced by amniotic-derived cells had protective effects on epithelial mammary cells infected by *S. aureus*. Finally, the use of CM avoids the risk of rejection compared to the transplantation of original MSCs (69), but further studies will be needed to fully clarify antimicrobial effects of CM.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

ETHICS STATEMENT

The study was approved by the University of Milan Ethics Committee (Protocol No. 119-2017). All procedures were conducted following standard veterinary practice and in accordance with 2010/63 EU directive on animal protection. The informed client consent was obtained for collection placenta at term of cow pregnancies and for cow treatments.

AUTHOR CONTRIBUTIONS

AL-C: conception and design, isolation of amniotic cells and production of conditioned medium, mammary cell culture, coordination of all experiments, collection and assembly of all data, analysis and interpretation of data, manuscript writing, and final approval of manuscript. CG: in vitro experiment with *Staphylococcus aureus*, collection and assembly of data of CFU, bacteriological analysis, SCC, interpretation of data, and final approval of manuscript. EM: in vivo study with collection of sample for bacteriological analysis and SCC, in vivo administration of PRP, evaluation of outcomes, and final approval of manuscript. AI: cell cultures, cell staining, collection and assembly of data of vitality, and final approval of manuscript. AZ: conception and design, analysis and interpretation of data, financial support, and final approval of manuscript. AS, EM: cell cultures, cell staining, collection and administration of PRP, evaluation of outcomes, and final approval of manuscript. FC: conception and design, interpretation of data, financial support, and final approval of manuscript. FC: conception and design, interpretation of data, financial support, and final approval of manuscript.

FUNDING

This study was supported by grants from LINEA2_FCREM_AB_2017, Università degli Studi di Milano, Milan, Italy.

ACKNOWLEDGMENTS

We thank the Università degli Studi di Milano and the cow’s owners for their availability in this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fvets.2019.00443/full#supplementary-material

Supplementary File 1 | Forty-seven bovine taurus proteins identified in the conditioned medium.

REFERENCES

1. Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development. (2001) 128:5181–8.

2. Ortiz LA, Gambelli P, Gaupp D, Buddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. PNAS. (2003) 100:840–51. doi: 10.1073/pnas.1432929100

3. Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, Zhao RC. Flk-1+ adipose-derived mesenchymal cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. (2007) 16:695–706. doi: 10.1089/scd.2006.0118

4. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived cells. JCI. (2005) 115:1743–55. doi: 10.1172/JCI25593

5. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanism. Am J Physiol. (2005) 289:F31–42. doi: 10.1152/ajprenal.00007.2005

6. Bi B, Schmitt R, Irsairova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. JASN. (2007) 18:2486–96. doi: 10.1681/ASN.2007020140

7. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiomyocyte-derived cells transplanted into infarcted mice. Circ Res. (2010) 106:971–80. doi: 10.1161/CIRCRESAHA.109.210682

8. Gnecci M, He H, Noisieux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. (2006) 20:661–9. doi: 10.1096/fj.05-5211com

9. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA Piek JJ, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. (2007) 1:129–37. doi: 10.1016/j.scr.2008.02.002

10. Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neutrophilic and pro-angiogenic actions. PLoS ONE. (2012) 7:e39500. doi: 10.1371/journal.pone.0039500

11. Ionescu L, Byrne RN, van Haaften T, Vadivel A, Alphonse RS, Rey-Parra GJ, et al. Stem cell-conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Lung Cell Mol Physiol. (2012) 303:L967–77. doi: 10.1152/ajplung.00144.2011

12. Lange-Consiglio A, Corradietti B, Meucci A, Bizzaro D, Cremonesi F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. EVJ. (2013) 45:737–44. doi: 10.1111/evj.12052
31. Lange Consiglio A, Perrini C, Tasquier R, Deregibus MC, Camussi G, Pascucci L, et al. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in a tendon in vitro model. Stem Cells Dev. (2016) 25:610–21. doi: 10.1089/scd.2015.0348

32. Perrini C, Strillacci MG, Bagnato N, Espositi P, Marinì MG, Corradetti B, et al. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in vitro model. Stem Cells Dev. (2016) 7:1–15. doi: 10.1089/scd.2015.0429-6

33. Zucza E, Corsini E, Galierti V, Lange-Consiglio A, Ferrucci F. Evaluation of the in vitro effect of amniotic mesenchymal cells derivatives (conditioned medium and microvesicles) on cytokine production in equine alveolar macrophages: an in vitro approach to lung inflammation. Stem Cell Res Ther. (2016) 7:137. doi: 10.1186/s13287-016-0398-9

34. Corradetti B, Meucci A, Bizzaro D, Cremonesi F, Lange Consiglio A. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction. (2013) 145:391–400. doi: 10.1530/REP-12-0437

35. Zavizion B, van Duffelen M, Schaefer W, Politis I. Establishment and characterization of a bovine mammary epithelial cell line with unique properties. In Vitro Cell Dev Biol Anim. (1996) 32:138–48. doi: 10.1007/BF02723769

36. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. (2005) 5:12. doi: 10.1186/1472-6750-5-12

37. Winiewski JR, Zouman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. (2009) 6:359–62. doi: 10.1038/nmeth.1322

38. Distler U, Kuharev J, Navarro J, Prenzer T. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc. (2016) 11:795–812. doi: 10.1038/nprot.2016.042

39. Bottagisio M, Soggia A, Piras C, Bidossi A, Greco V, Pieroni L, et al. Proteomic analysis reveals a biofilm-like behavior of planktonic aggregates of staphylococcus epidermidis grown under environmental pressure/stress. Front Microbiol. (2019) 10:1909. doi: 10.3389/fmicb.2019.01909

40. Harmon RJ. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. (1994) 77:2103–12. doi: 10.3390/jds.s0022-0302(94)77153-8

41. Rahman M, Mazzilli M, Pennarossa G, Brevini TAL, Zecconi A, Gandolfi F. Isolation of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue. Stem Cells Dev. (2014) 23:1518–25. doi: 10.1089/scd.2014.0241

42. National Mastitis Council. Laboratory Handbook on Bovine Mastitis. Madison, WI: revised ed., National Mastitis Council Inc (1999).

43. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. (2003) 13: 2498–504. doi: 10.1101/gr.1239303

44. Bindea G, Milenic B, Hackl H, Charoentong P, Tosolini M, Kirillovsky A, et al. CleaveGo: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. (2009) 25:1091–3. doi: 10.1093/bioinformatics/btp101

45. Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci. (2008) 86:57–65. doi: 10.2527/jas.2007-0302

46. Zecconi M, Zecconi A. Assessment of epithelial cells’ immune and inflammatory response to Staphylococcus aureus when exposed to a macrolide. J Dairy Res. (2010) 77:404–10. doi: 10.1017/s0022029910000531

47. Zecconi A, Alvino LF, Fox KL. Staphylococcus aureus intramammary infections. IDF Bull. (2006) 408:1–2.

48. Köt B, Pichota M, Wolska KM, Frankowska A, Zdunek E, Binek T, et al. Phenotypic and genotypic antimicrobial resistance of staphylococci from bovine milk. Pol J Vet Sci. (2012) 15:677–83. doi: 10.2478/v10811-012-0105-4

49. Scali F, Camusso C, Alvino LF, Scali F, Zecconi A. Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci. (2015) 100:88–99. doi: 10.1016/j.rvsc.2015.03.019

50. Scali F, Zecconi A, Scali F, Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol. Lett. (2013) 150:12–22. doi: 10.1016/j.imlet.2013.01.004

51. Scarda N, Singh NK, Bhardwaj MS. Relationship of somatic cell count ad mastitis: an overview. Asian-Aust J Anim Sci. (2011) 24:429–38. doi: 10.5713/ajas.2011.10233

52. Zbinden C, Stephan R, Johler S, Bödel N, Bünter J, Bruckmaier RM, et al. The inflammatory response of primary bovine mammary epithelial cells to
Staphylococcus aureus strains is linked to the bacterial phenotype PLoS ONE. (2014) 9:e87374. doi: 10.1371/journal.pone.0087374

53. Curone G, Filipe J, Cremonesi P, Trevisi E, Amadori M, Pollera C, et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res Vet Sci. (2018) 116:88–98. doi: 10.1016/j.rvsc.2017.11.020

54. Sheffield LG. Mastitis increases growth factor messenger ribonucleic acid in bovine mammary glands. J Dairy Sci. (1997) 80:2020–24. doi: 10.3168/jds.S0022-0302(97)76146-0

55. Hathout Y. Approaches to the study of the cell secretome. Expert Rev Proteom. (2007) 4:239–48. doi: 10.1586/14789450.4.2.239

56. Toh WS, Foldager CB, Pei M, Hui JHP. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev Rep. (2014) 10:686–96. doi: 10.1007/s12015-014-9526-z

57. Tran C., Damaser M. Stem cells as drug delivery methods: applications of stem cell secretome for regeneration. Adv Drug Deliv Rev. (2015) 82:1–11. doi: 10.1016/j.addr.2014.10.007

58. Haumer A, Bourgine PE, Occhetta P, Tasso R, Martin I, Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev. (2018) 129:285–94. doi: 10.1016/j.addr.2018.01.010

59. Pyörälä S. Indicators of inflammation in the diagnosis of mastitis. Vet Res. (2003) 34:565–78. doi: 10.1051/vetres:2003026

60. Sung DK, Chang YS, Sung SI, Ahn SY, Park WS. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta-defensin-2 via toll-like receptor 4 signalling. Cell Microbiol. (2016) 18:424–36. doi: 10.1111/cmi.12522

61. Meisel R, Brockers S, Heseler K, Degenstirici O, Bull H, Woite C, et al. Human but not murine multipotent mesenchymal stromal cells exhibit broadspectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia. (2011) 25:648–54. doi: 10.1038/leu.2010.310

62. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. (2008) 26:151–62. doi: 10.1634/stemcells.2007-0416

63. Brandau S, Jakob M, Heneda H, Bruderek K, Janeschik S, Bootz F, Lang S. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils e enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol. (2010) 88:1005–015. doi: 10.1189/jlb.0410207

64. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance e improving survival in sepsis. Am J Respir Crit Care Med. (2010) 182:1047–57. doi: 10.1164/rccm.201001-0010OC

65. Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, et al. Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival e function of neutrophils. Stem Cells. (2011) 29:1001–11. doi: 10.1002/stem.651

66. Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, et al. Human mesenchymal stem cells reduce mortality e bacteremia in gramnegative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol. (2012) 302:L1003–013. doi: 10.1152/ajplung.00180.2011

67. Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthey MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med. (2013) 187:751–60. doi: 10.1164/rccm.201206-0990OC

68. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. (2009) 15:42–9. doi: 10.1038/nm.1905

69. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. (2014) 2014:1–14. doi: 10.1155/2014/965849

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lange-Consiglio, Gusmara, Manfredi, Idda, Soggiu, Greco, Bonizzi, Cremonesi and Zeconzi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.