Islet-Specific Expression of IL-10 Promotes Diabetes in Nonobese Diabetic Mice Independent of Fas, Perforin, TNF Receptor-1, and TNF Receptor-2 Molecules

Balaji Balasa, Kurt Van Gunst, Nadja Jung, Deepika Balakrishna, Pere Santamaría, Toshiaki Hanafusa, Naoto Itoh, and Nora Sarvetnick

Several death-signaling or death-inducing molecules have been implicated in β cell destruction, including Fas, perforin, and TNF-R1. In this study, we examined the role of each death-signaling molecule in the IL-10-accelerated diabetes of nonobese diabetic (NOD) mice. Groups of IL-10-NOD mice, each deficient in either Fas, perforin, or TNF-R1 molecules, readily developed insulitis, and subsequently succumbed to diabetes with an accelerated kinetics and incidence similar to that observed in their wild-type or heterozygous IL-10-NOD littermates. Similarly, a TNF-R2 deficiency did not block accelerated diabetes in IL-10-NOD mice and spontaneous diabetes in NOD mice. These results demonstrate that pancreatic IL-10 promotes diabetes independent of Fas, perforin, TNF-R1, and TNF-R2 molecules. Subsequently, when cyclophosphamide, a diabetes-inducing agent, was injected into insulitis-free NOD.lpr/lpr mice, none of these mice developed insulitis or diabetes. Our data suggest that cyclophosphamide—but not IL-10-induced diabetes is Fas dependent. Overall, these findings provide evidence that pancreatic expression of IL-10 promotes diabetes independent of the major death pathways and provide impetus for identification of novel death pathways precipitating autoimmune destruction of insulin-producing β cells.

The Journal of Immunology, 2000, 165: 2841–2849.
readily developed diabetes, CYP-injected NOD.lpr/lpr mice did not. This outcome suggests that IL-10-accelerated diabetes is Fas independent, whereas CYP-induced diabetes is Fas dependent. Finally, current findings may provide impetus for the delineation of additional death pathways, under the influence of cytokine-induced inflammation, precipitating autoimmune destruction of insulin-producing β cells.

Materials and Methods

Mice

NOD/shi mice were part of the rodent breeding colony at The Scripps Research Institute (La Jolla, CA). IL-10-BALB/c mice expressing the IL-10 transgene in their islets under control of the human insulin promoter were backcrossed to NOD/shi mice for 10–11 generations to produce IL-10-NOD mice (7). The presence of the transgene was verified by PCR. Mice were housed under specific pathogen-free conditions.

Generation of Fas-deficient NOD.lpr/lpr mice

Initially, we backcrossed B6.MRL.lpr/lpr mice to NOD mice for two generations. The heterozygous offspring were intercrossed to get NOD.lpr/lpr mice. IL-10-NOD mice were then backcrossed to these mice to generate N3 to N4 mice of appropriate combinations.

Subsequently, to generate a later generation of IL-10-NOD.lpr/lpr mice, IL-10-NOD mice were backcrossed to NOD.wt/lpr or NOD.lpr/lpr mice of an N9 backcross generation. The Fas mutation (lpr) was verified in tail DNA by using two pairs of primer sets (10). The first pair was composed of NIL-1, 5’-CAC CAG GAA TCC TAT GAG GT-3’ and NIL-2, 5’-CTC GCA ACG TGA ATG CGT CG-3’, yielding a band of 381 bp for the mutated allele. The second pair was composed of NIL-1, 5’-CAC CAG GAA TCC TAT GAG GT-3’ and NIL-4, 5’-GCA GAG ATG ATG CCA AGC AG-3’, yielding a 265 bp band for the wild-type allele and a band of 5.7 kb for the mutated allele.

Generation of perforin-deficient NOD mice

Perforin-deficient BALB/c mice were backcrossed onto NOD mice for two to three generations, and the resulting heterozygous mice of generation N2 or N3 were then intercrossed to generate perforin-deficient NOD mice and, subsequently, perforin-deficient IL-10-NOD mice. The perforin genotype was determined with PCR using three primers on DNA prepared from tail biopsies (perforin 12 primer, 5’-TGG CCT AGG GTT CAC ATC CAG-3’; perforin 17 primer, 5’-GAC GAG ATG CTA AGC GTG-3’; perforin 26 primer, 5’-ATA TTG GCT GCA GGG TCG TTC-3’). The PCR yielded a 500-bp fragment for wild-type mice, a 350-bp fragment for KO mice, and 350- and 500-bp fragments for heterozygous mice.

Generation of TNFR-1-deficient NOD mice

TNFR-1-deficient C57BL/6j mice (14) were purchased from The Jackson Laboratory (Bar Harbor, ME) and backcrossed onto NOD mice for three to four generations. NOD.TNFR-1 heterozygous mice of N3 or N4 generations were intercrossed to generate TNFR-1-deficient NOD mice, which were used to introduce the TNFR-1 gene deficiency into IL-10-NOD mice. TNFR-1 genotyping was determined by PCR using three primers on DNA prepared from tail biopsies in one PCR. o1MR448, 5’-TGG CCT AGG GTT CAC ATC CAG-3’; o1MR449, 5’-GAC GAG ATG CTA AGC GTG-3’; perforin 17 primer, 5’-GAC GAG ATG CTA AGC GTG-3’; perforin 26 primer, 5’-ATA TTG GCT GCA GGG TCG TTC-3’). The PCR yielded a 500-bp fragment for wild-type mice, a 350-bp fragment for KO mice, and 350- and 500-bp fragments for heterozygous mice.

Results

Pancreatic IL-10 promotes autoimmune insulinitis and diabetes in NOD.lpr/lpr mice

Autoimmune destruction of insulin-producing β cells involves Fas-FasL interaction, as evident because Fas-deficient NOD.lpr/lpr mice are free from spontaneous insulitis and diabetes (9, 10). Previous studies from our group demonstrated that IL-10-NOD mice rapidly develop insulitis and diabetes compared with their counterpart NOD mice (7). Because a Fas−/− mononuclear cell infiltrate in the pancreatic islets of 5-wk-old diabetic IL-10-NOD mice (not shown) was observed, we tested the requirement for Fas-FasL interaction in the accelerated diabetes of IL-10-NOD mice. After introducing the Fas deficiency into IL-10-NOD mice by breeding them with diabetes-resistant Fas-deficient NOD.lpr/lpr mice, we monitored their offspring for diabetes at weekly intervals. Surprisingly, IL-10-NOD.lpr/lpr mice of the N3-N4 backcross generations (n = 8; 88%) (Fig. 1A) and N8-N9 backcross mice (n = 13; 100%) (Fig. 1B) developed the accelerated diabetes. The kinetics and incidence of the disease in these mice duplicated that of the wild-type (Fas/Fas) (N3-N4 backcross n = 5; 100%; or N8-N9 backcross mice n = 12; 100%) as well as of the heterozygous littermates (Fas/pr) (N3-N4 backcross n = 9; 89%; or N8-N9 backcross mice n = 12; 83%). Statistical values (p values) for N3-N4 backcross mice were as follows: IL-10-NOD.lpr/lpr vs IL-10-NOD.Fas/pr 0.6145; IL-10-NOD.lpr/lpr vs IL-10-NOD.Fas/Fas 0.850. Statistical values for N8-N9 backcross mice were as follows: IL-10-NOD.lpr/lpr vs IL-10-NOD.Fas/pr 0.5370; IL-10-NOD.lpr/lpr vs IL-10-NOD.Fas/Fas 0.0751. However, during the same period of time, none of the non-tg littermates (Fas/Fas or
Fas/lpr or lpr/lpr) became diabetic. The NOD.Fas/Fas and NOD.
Fas/lpr mice developed diabetes after 14 wk of age. In agreement
with the published literature, NOD.lpr/lpr mice did not develop
diabetes over a 24-wk period (not shown). Therefore, the Fas/FasL
interaction was not necessary for IL-10-accelerated diabetes in
NOD mice. Analysis of pancreata from IL-10-NOD.lpr/lpr (−/−)
mice, by H&E staining, showed extensive lymphocytic infiltration
of the islets similar to that observed in IL-10-NOD.Fas/lpr (+/−)
littermates used as controls (Fig. 1C). The insulin-positive cells in
these infiltrated islets were completely destroyed (data not shown).

FIGURE 1. A and B, Incidence of autoimmune diabetes in IL-10-NOD.lpr/lpr mice and their littermate controls. C, H&E staining of the paraffin-
embedded pancreata from Fas-deficient IL-10-NOD.lpr/lpr (−/−) (N9 backcross) shows severe insulitis compared with that in Fas-sufficient IL-10-
NOD.Fas/Fas (+/+) littermates. Note that pancreata from NOD.lpr/lpr are free from insulitis (×200).
As expected, islets from pancreata of NOD.lpr/lpr mice were free from insulitis. Our results demonstrate that IL-10 promotes autoimmune insulitis and diabetes independent of the Fas/FasL pathway.

Splenocytes from diabetic IL-10-NOD.lpr/lpr mice transfer disease into NOD.scid/scid mice

Since, as Fig. 1 shows, IL-10-NOD.lpr/lpr mice readily developed diabetes, but the non-tg NOD.lpr/lpr mice did not, we tested whether splenocytes from diabetic 8-wk-old IL-10-NOD.lpr/lpr mice would transfer disease into NOD.scid/scid mice. As expected (Fig. 2A), splenocytes from littermate non-tg NOD.lpr/lpr mice did not cause diabetes in NOD.scid/scid mice (n = 4). Conversely, splenocytes from diabetic IL-10-NOD.lpr/lpr mice provoked diabetes in recipient NOD-scid/scid mice beginning at 16 wk post-transfer (n = 4) (p = 0.0082). Staining of pancreata by H&E revealed mononuclear cell infiltrates within islets from NOD-scid/scid recipients of splenocytes from diabetic IL-10-NOD.lpr/lpr mice, whereas islets in NOD-scid/scid recipients of splenocytes from NOD.lpr/lpr mice were free from insulitis (Fig. 2B). In a different set of experiments, splenocytes from 5-wk-old diabetic IL-10-NOD mice (Fas/lpr) transferred disease into NOD.scid/scid mice with same kinetics that was observed with 8-wk-old diabetic IL-10-NOD.lpr/lpr mice. Additionally, the kinetics of disease transfer observed with splenocytes from 5-wk-old diabetic IL-10-NOD mice is far different from that observed with splenocytes from 18-wk-old diabetic NOD mice. The results again indicate that the Fas/FasL pathway is not required for autoimmune diabetes in IL-10-NOD mice.

IL-10 promotes accelerated diabetes in perforin-deficient NOD mice

Next, we examined the role of perforin in autoimmune destruction of β cells of IL-10-NOD mice by introducing a perforin gene deficiency into IL-10-NOD mice. As Fig. 3A depicts, IL-10-NOD mice of the wild-type (+/+) (n = 8; 88% incidence) or heterozygous (+/−) (n = 15; 87% incidence) or KO (−/−) (n = 9; 89%) for the perforin gene developed the anticipated diabetes. Interestingly, a gene dose effect on the incidence of accelerated diabetes at 5 wk of age was noticed. As compared with 50% incidence of diabetes at 5 wk of age in IL-10-NOD wild-type (+/+) mice, only 7% of heterozygous and 11% of KO mice developed diabetes. However, the cumulative percentage of incidence of diabetes at 12 wk was similar among all the groups (p = 0.8185 for IL-10-NOD.perforin (−/−) vs IL-10-NOD.perforin (+/−); p = 0.3244 for IL-10-NOD.perforin (−/−) vs IL-10-NOD.perforin (+/+)). During the same interval, none of the non-tg perforin-deficient (−/−) NOD mice developed diabetes (n = 10). The pancreatic islets from diabetic IL-10-NOD mice that are heterozygous (+/−) or deficient (−/−) for perforin were completely infiltrated with mononuclear cells (Fig. 3B) and their insulin-producing β cells were destroyed (not shown).

To further confirm that perforin is not required for accelerated diabetes of IL-10-NOD mice, we performed adoptive transfer experiments. To this end, splenocytes from nondiabetic 32-wk-old perforin-deficient (−/−) NOD mice of the N10 backcross generation (12) were injected into tg IL-10-NOD-scid/scid mice (7) or non-tg NOD.scid/scid mice. When injected, these splenocytes readily caused diabetes in 13- to 14-wk-old IL-10-NOD-scid/scid mice (n = 4; 100% incidence) at 4 wk post-transfer. However, NOD.scid/scid mice (n = 4; 0% incidence) that received splenocytes from NOD.perforin-deficient (−/−) mice did not develop diabetes (Fig. 3C) (p = 0.0082). Additionally, IL-10-NOD-scid/scid mice not given splenocytes from NOD.perforin-deficient (−/−) mice did not develop diabetes (n = 5) (not shown). These results confirm that perforin is not essential for the accelerated diabetes of IL-10-NOD mice.

Analysis by H&E staining (Fig. 3D) revealed that the pancreatic islets from IL-10-NOD-scid/scid mice that were injected with NOD-perforin deficient (−/−) splenocytes were completely infiltrated with mononuclear cells, causing destruction of most of β cells, leaving few in place. Conversely, pancreatic islets from NOD-scid/scid mice that were injected with NOD.perforin KO mice did not readily cause diabetes in 13- to 14-wk-old IL-10-NOD.scid/scid mice (7). The results confirm that perforin is not essential for the accelerated diabetes of IL-10-NOD mice.

* B. Balasa et al. Submitted for publication.
FIGURE 3.

A. Incidence of autoimmune diabetes in N2-N3 backcross IL-10-NOD, perforin-deficient (−/−) mice and their littermate controls. B. H&E staining of the paraffin-embedded pancreata from IL-10-NOD, perforin-deficient (−/−) shows severe insulitis compared with that in perforin-sufficient (+/+) IL-10-NOD littermates (magnification, ×400). C. Adoptive transfer of splenocytes from female 32-wk-old nondiabetic perforin-deficient (−/−) NOD mice provokes disease in 8-wk-old female IL-10-NOD, scid/scid, but not NOD, scid/scid mice. Each recipient mouse was injected i.v. of 1 × 10⁷ splenocytes in PBS. D. H&E staining of pancreata from IL-10-NOD, scid/scid and NOD, scid/scid recipient mice injected with splenocytes from 32-wk-old nondiabetic perforin-deficient (−/−) NOD mice (×200).
(−/−) splenocytes exhibited only periinsulitis and contained intact insulin-producing β cells. These findings further confirm the data of Fig. 3A that IL-10 promotes diabetes independent of perforin pathway.

TNFR-1-deficient NOD mice are susceptible to IL-10-accelerated diabetes

Since neither Fas nor perforin molecules were essential for the diabetic state of IL-10-NOD mice, we questioned whether the TNFR-1 gene would fill that role. TNFR-1 gene function was disrupted in IL-10-NOD mice, after which their tg progeny and non-tg littermates were monitored for diabetes beginning at 5 wk of age. The results shown in Fig. 4A are from N3-N4 backcross generations. The findings show that IL-10-NOD mice that are wild type (+/+) (n = 9; 89%) or heterozygous (+/−) (n = 12; 83%) for TNFR-1 gene readily developed diabetes. Similarly, IL-10-NOD-TNFR-1-deficient (−/−) mouse (n = 10, 90%) developed diabetes with an accelerated kinetics and incidence like that in the tg littermate controls (p = 0.6790 vs IL-10-NOD.TNFR-1 +/+ mice; p = 0.3359 vs IL-10-NOD.TNFR-1 +/+ mice). In agreement with previous observations (13), NOD-TNFR-1-deficient mice (−/−) did not develop diabetes (n = 7) over a period of 24 wk. When pancreatic tissues from diabetic IL-10-NOD-TNFR-1 +/+ and IL-10-NOD-TNFR-1-deficient (−/−) mice were then stained with H&E, islets from both groups were completely infiltrated with mononuclear cells (Fig. 4B), and their insulin-producing β cells had been destroyed (not shown). Considering that the

FIGURE 4. A. Incidence of autoimmune diabetes in IL-10-NOD. TNFR-1-deficient (−/−) and sufficient (+/+, +/++) mice. Their non-tg TNFR-1-deficient (−/−) littermate controls are also included. The mice used were of the N3-N4 backcross generations. B, H&E staining of paraffin-embedded pancreatic sections from diabetic IL-10-NOD. TNFR-1-deficient (−/−) and sufficient (+/−) mice, respectively (×200).

FIGURE 5. A. Incidence of autoimmune diabetes in IL-10-NOD mice that are deficient (−/−) and sufficient (+/−) for TNFR-2 molecules. Their non-tg TNFR-1-deficient (−/−) littermate controls are also included. The mice used were of N3-N4 backcross generation. B, H&E staining of paraffin-embedded pancreatic sections from diabetic IL-10-NOD. TNFR-2-deficient (−/−) and sufficient (+/−) mice, respectively (×400).
pancreatic islets from age-matched non-tg TNFR-1-deficient littermates were free from insulitis (data not shown), and their inability to develop diabetes even at 24 wk of age (n = 8), clearly TNFR-1 signaling plays a role in spontaneous autoimmune diabetes of NOD mice, but not in the accelerated diabetes of IL-10-NOD mice.

TNFR-2-deficient NOD mice are susceptible to spontaneous and IL-10-accelerated diabetes

Subsequently, we introduced the disrupted TNFR-2 gene into IL-10-NOD mice. As shown in Fig. 5A, IL-10-NOD mice (generation N4 backcross) that were either heterozygous (+/-) (n = 8; 100%) or deficient (n = 6; 100%) for TNFR-2 gene developed diabetes beginning at 4–5 wk of age. There was no statistical significance between these two groups (p = 0.2059). However, their non-tg KO (n = 5) littermates were diabetes free for that 10-wk period. Furthermore, the pancreatic islets from both groups of mice were extensively infiltrated with autoreactive lymphocytes (Fig. 5B), and their insulin-producing β cells were destroyed (not shown). The islets from pancreata of 5-wk-old littermate NOD-TNFR-2-deficient (-/-) mice exhibited periinsulitis. These mice subsequently progressed to diabetes beginning at 18 wk of age and showed 60% incidence of diabetes by 24 wk of age (n = 5). These findings imply that TNFR-2 signaling is irrelevant for spontaneous and accelerated diabetes of NOD and IL-10-NOD mice, respectively.

CYP fails to provoke autoimmune insulitis and diabetes in the absence of pancreatic inflammation

Finally, to test whether CYP would induce diabetes in a Fas-dependent manner, we injected CYP into Fas-deficient NOD.Lpr/Lpr mice. To ensure the absence of TNFR-2 signaling, we injected a similar dose of CYP into NOD.Fas/Lpr mice. As shown in Fig. 6A, CYP injection failed to induce diabetes in insulitis-free NOD.Lpr/Lpr mice. NOD.Lpr/Lpr (-/-) (n = 10) and NOD.Fas/Lpr (+/-) (n = 10) mice were injected i.p. with CYP (200 mg/kg body weight) on days 0 and 14, then monitored for diabetes at weekly intervals. Mice were considered diabetic when the BG values were >300 mg/dl. B, The insulitis index for CYP-treated NOD.Lpr/Lpr (n = 10) and NOD.Fas/Lpr (n = 8) mice is shown. The values in the parentheses represent the number of islets scored for each category. C, Representative H&E-stained paraffin-embedded pancreatic sections from CYP-treated NOD.Lpr/Lpr and NOD.Fas/Lpr mice (×400).
DEATH PATHWAYS IN ACCELERATED AUTOIMMUNE DIABETES

(−/−) mice and their Fas-sufficient NOD.Fas/lpr (+/+−) littersmate controls on days 0 and 14. This protocol has been shown earlier to evoke or accelerate diabetes in NOD mice (17, 18). We found that, over a period of 8 wk, NOD.lpr/lpr mice were completely resistant to CYP-induced diabetes. As expected, heterozygous mice (Fas/lpr) (p = 0.004 vs lpr/lpr group) and wild-type (Fas/Fas) mice (p = 0.0019 vs lpr/lpr) rapidly developed diabetes beginning at 2 wk after the first CYP injection (Fig. 6A). Additionally, most of the heterozygous NOD mice (Fas/lpr) (+/−) became diabetic within 2–4 wk of receiving the first inoculation of CYP.

Although approximately 80% of the islets from CYP-injected heterozygous (Fas/lpr) mice (n = 10) showed severe insulitis, none of the islets from CYP-treated NOD.lpr/lpr mice (n = 8) had any sign of lymphocytic infiltration in or near the islets (Fig. 6B). Occasionally, a perivascular infiltrate occupied the pancreatic tissue of CYP-treated NOD.lpr/lpr mice, as pictured in representative H&E-stained sections from NOD.Fas/lpr (+/+−) and NOD.lpr/lpr (−/−) (Fig. 6C). Since the pancreatic islets of CYP-treated NOD.lpr/lpr mice were free from lymphocytic infiltration and stained positively for insulin, yet those of CYP-treated heterozygous NOD.Fas/lpr mice were filled with mononuclear cells and stained only weakly for insulin-positive cells, Fas expression is a prerequisite for CYP-induced diabetes in NOD mice.

Discussion

The results from this study demonstrate that the expression of IL-10 in pancreatic islets bypasses the requirement for Fas, perforin, TNFR-1, and TNFR-2 molecules and that IL-10 can otherwise precipitate the diabetic process. In contrast to IL-10-accelerated diabetes in NOD.lpr/lpr mice, CYP fails to provoke diabetes in NOD.lpr/lpr mice. Therefore, our findings demonstrate that IL-10-accelerated diabetes is Fas independent and that CYP-induced diabetes is Fas dependent. This current study also demonstrates that for the first time, in contrast to the role of TNFR-1 in diabetes of the NOD mouse, deficiency of TNFR-2 failed to block spontaneous diabetes of NOD mice.

Destruction of β cells in the spontaneous diabetes of NOD mice required Fas-FasL interaction. The Fas-FasL pathway appeared to be required for the initiation and/or effector phases of spontaneous autoimmune diabetes in former experiments with NOD mice (9, 10, 19), and with TCR tg NOD mice expressing islet-specific T cells (12, 20). The current study with CYP-induced diabetes of NOD mice further highlights a role for Fas-FasL pathway in destruction of β cells. However, islet transplantation experiments provided differing results. That is, the Fas-FasL pathway did not participate in the effector stages of diabetes, since NOD.lpr/lpr islets transplanted into recently diabetic NOD mice were completely destroyed by an autoimmune attack (21, 22) or following CYP injection (22). Apparently different mechanisms participate in the destruction of ectopically transplanted islet grafts and of β cells in situ. Our current findings demonstrated that expression of the IL-10 transgene in the pancreatic islets promoted accelerated diabetes of NOD mice in situ without a requirement for the Fas signaling. Additionally, we showed that splenocytes from diabetic IL-10-NOD.lpr/lpr mice transferred disease into NOD.scid/scid mice, reinforcing the implication that the Fas-FasL pathway is not required throughout this autoimmune process of IL-10-NOD mice.

If, as seems evident, the Fas-FasL pathway does not participate in this accelerated diabetes, presumably expression of the IL-10 transgene in the islets of NOD mice could awaken other death pathways such as those that use perforin or TNFR-1 or TNFR-2 molecules. However, our findings exclude that possibility. Therefore, the results described in this work contrast with earlier conclusions that perforin is required for spontaneous diabetes (11, 12) and CYP-induced diabetes (11). TNFR-1 molecules were also considered a requirement for the spontaneous and CYP-induced diabetes of NOD mice (13). Since TNFR-2-deficient NOD mice developed spontaneous diabetes, we did not study the effect of TNFR-2 deficiency on CYP-induced diabetes. In addition, our current findings demonstrate that Fas is also required for CYP-induced diabetes of NOD mice. However, the actual cause, for the absence of disease, may have been the lack of intense inflammation in the pancreatic environment that is necessary for efficient APC activation, Ag presentation, and T cell activation, leading to the production of inflammatory mediators.

For example, we have shown that CD40-CD40L pathway is essential for the spontaneous autoimmune insulitis and diabetes of NOD mice, as demonstrated by Ab-blocking studies. This pathway appears to play a role in the initiation but not the effector phase of this disease process (16). The requirement for this pathway in spontaneous diabetes was confirmed by Green and coworkers (23) using CD40L-deficient NOD mice. However, this pathway was found dispensable for the accelerated diabetes of tg IL-10-NOD (7) and TNF-α-NOD (23) mice. These findings and the results presented in the current study suggest that cytokine-induced inflammation in the pancreatic environment circumvented the requirement for the well-established costimulation pathways, thereby short-circuiting the onset of disease. This hypothesis is further supported by two additional observations: 1) Expression of the IL-10 transgene in diabetes-free BDC2.5 NOD mice leads to the development of diabetes. 2) CYP injection fails to provoke diabetes in insulitis-free NOD.lpr/lpr mice. We are of the opinion that the failure to observe diabetes in CYP-treated NOD.lpr/lpr mice is unrelated to the lpr-induced lymphoproliferative effect, because IL-10-NOD.lpr/lpr mice do develop diabetes, and their splenocytes can transfer diabetes into NOD.scid/scid mice with delayed kinetics.

It is well established that IL-10 promotes pathogenic cell-mediated and humoral autoimmunity. In fact, tg IL-10-C57BL/6 mice expressing IL-10 under control of the salivary amylase promoter developed a Sjögren’s-like syndrome via a Fas-FasL pathway (24). Depending on the circumstances, then, IL-10 could exhibit its autoimmune effect via Fas-dependent and Fas-independent pathways. IL-10 also seems to act as an immunostimulator in humoral autoimmunity through B cells (25). However, our previous findings demonstrate that, in T cell-mediated autoimmunity, IL-10 readily promotes autoimmune diabetes independent of B cells, because B cell-deficient IL-10-NOD mice also developed accelerated diabetes similar to that in their wild-type counterparts (7). Continuous administration of IL-10 to NZB/W F1 mice accelerated autoimmunity, whereas treatment with anti-IL-10 Ab delayed its onset (26). Apart from its pathogenic role in autoimmunity, IL-10 further exerted its immunostimulatory capacity with respect to tumor suppression, since IL-10 expressed under a class II promoter of C57BL/6 mice limited the growth of immunogenic tumors (27).

From the foregoing results, we conclude that accelerated diabetes in IL-10-NOD mice does not involve the classical death signaling molecules, Fas, perforin, and TNFR-1. Nor is the TNFR-2 molecule required for diabetes to arise in IL-10-NOD mice. Therefore, pancreatic IL-10 may promote diabetes via unique death pathways involving TRAIL, TWEAK, and LIGHT molecules (28–30), or its expression may promote diabetes via compensatory death pathways. To prevent such disease, these novel death pathways may be targets for autoimmune responses to destroy insulin-producing β cells must be uncovered along with molecules that interfere with their destruction.
Acknowledgments
We thank Antonio Lacava and Shyam Pakala for helpful discussions on the data presented in this article.

References
1. Tisch, R., and H. McDevitt. 1996. Insulin-dependent diabetes mellitus. Cell 85: 291.
2. Wicker, L. S., J. A. Todd, and L. B. Peterson. 1995. Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 13:179.
3. Delovitch, T. L., and B. Singh. 1997. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7:727.
4. Lee, M.-S., R. Mueller, L. S. Wicker, L. B. Peterson, and N. Sarvetnick. 1996. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homogosity. J. Exp. Med. 183:2663.
5. Moritani, M., K. Yoshimoto, F. Hashimoto, J. Miyazaki, S. Li, E. Kudo, H. Iwahana, Y. Hayashi, and T. E. A. Sano. 1994. Transgenic expression of IL-10 in pancreatic islet α cells accelerates autoimmune insulitis and diabetes in nonobese diabetic mice. Int. Immunol. 6:1927.
6. Wogensken, L., M.-S. Lee, and N. Sarvetnick. 1994. Production of interleukin 10 by islet cells accelerates immune-mediated destruction of β cells in nonobese diabetic mice. J. Exp. Med. 179:1779.
7. Balasa, B., J. D. Davies, J. Lee, A. Good, B. T. Yeung, and N. Sarvetnick. 1998. Interleukin-10 impacts autoimmune diabetes via a CD8+ T cell pathway circumventing the requirement for CD4+ T- and B-lymphocytes. J. Immunol. 161:14420.
8. Balasa, B., J. Lee, and N. Sarvetnick. 1999. Differential impact of T cell repertoire diversity in diabetes-prone or -resistant IL-10 transgenic mice. Cell Immunol. 193:170.
9. Chevronskey, A. V., Y. Wang, F. S. Wong, I. Visintin, R. A. Flavell, C. A. Janeway Jr., and L. A. Matis. 1997. The role of Fas in autoimmune diabetes. Cell 89:17.
10. Ihoh, N., A. Imagawa, T. Hanafusa, M. Waguri, K. Yamamoto, H. Iwahashi, M. Moriwaki, H. Nakajima, J. Miyagawa, M. Namba, et al. 1997. Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 186:613.
11. Kagi, D., B. Odermatt, P. Seiler, R. M. Zinkernagel, T. W. Mak, and H. Hengartner. 1997. Reduced incidence and delayed onset of diabetes in perforin-deficient NOD mice. J. Exp. Med. 186:980.
12. Amrani, A., J. Verdaguer, B. Anderson, T. Utsumi, S. Bou, and P. Santamaria. 1999. Perforin-independent β-cell death by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. J. Clin. Invest. 103:1201.
13. Kagi, D., A. Ho, B. Odermatt, A. Zakarian, P. S. Ohashi, and T. W. Mak. 1999. TNF receptor 1-dependent β cell toxicity as an effector pathway in autoimmune diabetes. J. Immunol. 162:4598.
14. Preffer, K., T. Matsuyama, T. M. Kundig, A. Wakeham, K. Ishihara, A. Shahnian, K. Wiegmann, P. S. Ohashi, M. Kronke, and T. W. Mak. 1993. Mice deficient for the 55 kD tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457.
15. Erickson, S. L., F. J. de Sauvage, K. Kikly, K. Carver-Moore, S. Pitts-Meek, N. Gillett, K. C. Sheehan, D. R. Schreiber, D. V. Goeddel, and M. W. Moore. 1994. Decreased sensitivity to tumor-necrosis factor but normal T-cell development in TNF receptor-1–deficient mice. Nature 369:727.
16. Balasa, B., T. Krahl, G. Patstone, J. Lee, R. Tisch, H. O. McDevitt, and N. Sarvetnick. 1997. CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J. Immunol. 159:4620.
17. Harada, M., and S. Makino. 1984. Promotion of spontaneous diabetes in nonobese diabetic-prone mice by cyclophosphamide. Diabetesologia 37:64.
18. Yasunami, R., and J.-F. Bach. 1988. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol. 18:481.
19. Su, X., Q. Hu, J. M. Kristan, C. Costa, Y. Shen, D. Gero, L. A. Matis, and Y. Wang. 2000. Significant role for Fas in the pathogenesis of autoimmune diabetes. J. Immunol. 164:2523.
20. Amrani, A., J. Verdaguer, S. Thiessen, S. Bou, and P. Santamaria. 2000. IL-1α, IL-1β, and IFN-γ mark β cells for Fas-dependent destruction by diabetogenic CD4+ T lymphocytes. J. Clin. Invest. 105:459.
21. Allison, J., and A. Strasser. 1998. Mechanisms of β cell death in diabetes: a minor role for CD95. Proc. Natl. Acad. Sci. USA 95:15818.
22. Kim, Y. H., S. Kim, K. A. Kim, H. Yagit, N. Kayagaki, K. W. Kim, and M. S. Lee. 1998. Apoptosis of pancreatic β-cells detected in accelerated diabetes of NOD mice: no role of Fas-Fas ligand interaction in autoimmune diabetes. Eur. J. Immunol. 29:455.
23. Green, E. A., F. S. Wong, K. Eshima, C. Mora, and R. A. Flavell. 2000. Neonatal tumor necrosis factor α promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8+ T cells. J. Exp. Med. 191:225.
24. Saito, I., K. Haruta, M. Shimuta, H. Inoue, H. Sakurai, K. Yamada, N. Ishimaru, H. Higashiyama, T. Sumida, H. Ishida, et al. 1999 Fas ligand-mediated exocrinopathy resembling Sjogren’s syndrome in mice transgenic for IL-10. J. Immunol. 162:2488.
25. Llorente, L., W. Zou, Y. Levy, Y. Richaud-Patin, J. Wijdenes, J. Alcocer-Varela, B. Morel-Fourrier, J. C. Bouet, D. Alarcon-Segovia, P. Galanaud, et al. 1995. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J. Exp. Med. 181:839.
26. Ishida, H., T. Muchamuel, S. Sakaguchi, S. Andrade, S. Menon, and M. Howard. 1994. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J. Exp. Med. 179:305.
27. Groux, H., F. Cottrez, M. Rouleau, S. Mauze, S. Bou, and P. Santamaria. 1999. IL-10 deletion in T cells for Fas-dependent destruction by diabetogenic CD8+ T lymphocytes. J. Exp. Med. 181:839.
28. Griffith, T. S., and D. H. Lynch. 1998. TRAIL: a molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 10:559.
29. Chicheportiche, Y., P. R. Bourdon, H. Xu, Y. M. Hsu, R. M. Zinkernagel, C. F. Ware. 2000. The lymphotoxin-β receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J. Biol. Chem. 275:14307.

The Journal of Immunology
2849