Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
identified several needed corrections to the published model which were confirmed with the lead published author. Our model was verified against all published numeric outcomes of Faltei (2020). Our modeling study included a hypothetical cohort of 5000 students – 4990 students without SARS-CoV-2 infection and ten with undetected, asymptomatic SARS-CoV-2 infection. The screening strategies that we evaluated were symptom-based screening and tests of varying frequency (i.e., every 1, 2, 3, and 7 days) and sensitivity (i.e., 40, 50, and 60%). These three levels of sensitivity were based on published values for rapid antigen tests, e.g., 35.8% for asymptomatic infections (mean of 64.2% for symptomatic infections) (Prince-Guerra et al. MMWR Morb Mortal Wkly Rep. 2021). Specificity was set to 98%, the test cost to $10, and reproductive number (Rt) to 2.5. Model projections were for an 80-day, abbreviated semester. Results: Within each sensitivity level (i.e., 40, 50, and 60%), screening frequency of every 7, 3, 2, and 1 day was associated with increasing costs (range $682,000-$4,639,200) and increasing infections averted (range 1202-4797). In terms of cost-effectiveness, for sensitivity levels 40 and 50%, the 7-day screening intervals were dominated. For each sensitivity level, the incremental cost-effectiveness ratio (ICER) per infection averted increased with increased testing frequency. In general, as the test sensitivity increased, ICERs increased, i.e., at higher sensitivities the cost to avert an infection increases as the test frequency increases. Conclusion: From an effectiveness standpoint, more frequent testing is preferable. From a cost-effectiveness standpoint, even for poorly sensitive tests, screening every three days is an attractive option.

EPH124

EPIDEMIOLOGICAL DISEASE BURDEN OF FEMALE INFERTILITY OF OTHER ORIGIN BASED ON REAL-WORLD HEALTH INSURANCE CLAIMS DATA

Pónusz-Kovács D.1 Elmer D.1 Csákvári T.1 Kajos L.1 Pónusz R.3 Kovács B.1 Endrei D.1 Boncz I.1 Bódis J.1

1University of Pécs, Pécs, BA, Hungary, 2University of Pécs, Budapest, PE, Hungary, 3University of Pécs, Pécs, Hungary

Objectives: Infertility affects approximately 80 million people worldwide. The prevalence ranges from 8-10% among developed countries. Infertility poses an increased challenge however, there are several medical interventions could be identified that could contribute to the successful conception. The aim of our study was to determine the epidemiological disease burden of female infertility of other origin in Hungary.

Methods: Data were derived from the database of the Hungarian National Health Insurance Fund Administration (NHIFA), for the year 2019. Database included annual number of patients, number of cases and the prevalence of the utilization according to the age groups per 100,000 inhabitants. The following health insurance treatment categories were included into our study: general practice care, home care, in- and outpatient care, medical imaging, laboratory diagnostics, pharmaceuticals and medical aids. Patients with female infertility of other origin were identified according to the following code of the International Classification of Diseases 10th revision: N9780. Results: The highest number of patients were found in outpatient care (3,780 women), followed by pharmaceuticals (1,759 women) and laboratory diagnostics (1,618 women). The mean age of the patients was 36.2 years in outpatient care. Based on number of patients related to the outpatient care, the prevalence among women was 70.4 patients in 100,000 inhabitants. Age specific prevalence was the highest within the age group of 30-39 years (158.5 women) and 40-49 years group (54.8 women). Conclusions: The results showed that the highest number of patients was in inpatient care in 2019. The prevalence of female infertility associated with male showed significant differences by age groups. The most affected age group was women in 30-39 years group, which was 2.7 times higher than number of patients in 40-49 years age group. Thus early diagnosis, proper medical intervention and medication affect the successful childbearing and the quality of life of women.