Phase diagram of 4He adsorbed in 1D 2.4 nm nanopores of FSM

Yuna Nakashima, Yusuke Minato, Taku Matsushita, Mitsunori Hieda and Nobuo Wada
Department of Physics, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

Abstract. In systematic studies of superfluid 4He adsorbed in nanochannels with various diameters, qualitative differences appear in narrow channels below about 2.2 – 2.8 nm, which is likely to relate with the one-dimensional properties of 4He superfluid in nanochannels. In order to determine how 4He are adsorbed in 2.4 nm channels on the boundary, we have measured the heat capacities down to 0.15 K and determined the phase diagram. Crossover from normal fluid to localized state is observed up to 20 μmol/m2, larger than 18 μmol/m2 where the first adsorption layer is completed. And the quantum Bose fluid film is observed above 25 μmol/m2. The superfluid region observed by a torsional oscillator appears to be inside of this Bose fluid region.

1. Introduction
In order to find out one-dimensional (1D) properties of superfluid 4He, systematic studies for 4He adsorbed in nanochannels have been done using a family of nanoporous silicates called FSM which have straight nanochannels with various diameters from 1.5 nm to 4.7 nm [1]. The heat capacities of quantum 4He films adsorbed in these nanochannels show that the phonon state crossovers to the 1D state at low temperatures where longitudinal excitations are dominant. The crossover temperature becomes lower in wider channels [2], which suggests that the temperature is determined by comparison between the channel diameter and thermal phonon wavelength [3].

In the torsional oscillator experiments, superfluid densities have been observed for 4He adsorbed in nanochannels with diameters larger than 1.8 nm [4]. In channels below 2.2 nm, the superfluid fraction is strongly suppressed compared with that above 2.8 nm, and qualitative differences in the temperature dependence and onset coverage are observed. Especially, gradual increase of the superfluid density with decreasing temperature is observed below 2.2 nm. It is likely to relate with the finite-length 1D superfluid which has been extensively studied in recent theoretical works [5–7]. A possible key to understand the whole channel-size dependences of superfluidity of 4He adsorbed in nanochannels and their relation with theoretical results is an experimental study of superfluid 4He in nanochannels with intermediate diameter 2.4 nm. Therefore, it is required to know how 4He are adsorbed in the channel, and in which condition quantum effects appear. This article shows results of heat capacity measurements for 4He adsorbed in nanochannels 2.4 nm in diameter. From these results, the phase diagram of the adsorbed 4He is determined down to 0.15 K.
2. Experimental details

The nanoporous substrates FSM (Folded Sheets Mesoporous materials) are silicate powders with grain size about 300 nm [8]. The grain has a honeycomb-like structure with straight nanochannels as long as the grain size. The channel diameter is uniform and selectable between 1.5 and 4.7 nm. In this study, FSM (C14) with nanochannels 2.4 nm in diameter was used.

FSM powder is packed into the sample cell with silver powder for good thermal contact. Since the cell is a torsional oscillator for superfluid density measurements with a platform for heat capacity measurements, consistency in coverage is kept between both measurements. Technical details of the heat-capacity measurement with a torsional oscillator are found in Ref. [9]. From estimation by the Brunauer-Emmett-Teller (BET) method for the nitrogen adsorption isotherm at 77 K, the surface area of FSM in the cell was determined as $S_{\text{BET}} = 110 \pm 1 \text{ m}^2$. The coverage n shown in this article was defined as an amount of adsorbed ^4He divided by S_{BET}.

The total heat capacities with the sample cell were measured by the adiabatic heat pulse method down to 0.15 K. The heat capacities of ^4He in FSM channels are estimated by subtraction of the empty cell heat capacity.

3. Results and discussion

Figure 1 shows temperature dependences of the heat capacities C of ^4He adsorbed in 2.4 nm nanochannels as a form of C/T. At coverages below 20 $\mu\text{mol/m}^2$, C/T decreases below a temperature T_L indicated by upward arrows in the figure. The shoulder around T_L suggests crossover to the localized state from normal fluid at higher temperatures. T_L lowers with increasing coverage, and then, disappears at 22 $\mu\text{mol/m}^2$, as seen in the figure. Above 25 $\mu\text{mol/m}^2$, more gentle shoulders appear again, which are marked by downward arrows as T_B. T_B increases with coverage, and is considered to be onset of quantum effects, as shown later. Similar temperature dependences of the heat capacity are commonly observed for ^4He films adsorbed in FSMS with various channel diameters above 1.8 nm [10,11].

![Figure 1](image1.png)

Figure 1. Temperature dependences of the heat capacity of ^4He film adsorbed in 2.4 nm nanochannels. Crossover temperatures T_L to the localized state and onset of quantum effect (T_B) are indicated by arrows.

The heat capacity isotherms of adsorbed ^4He are shown in Fig. 2. In these isotherms, the shoulders at T_L and at T_B seen in Fig. 1 correspond to shoulders around 15 $\mu\text{mol/m}^2$ and maxima...
around 25 μmol/m2 indicated as n_B, respectively. In measurements for FSMs with the other channel diameters [10, 11], it has been shown that the heat capacity of 3He film continuously increases even above n_B. Thus, n_B is considered to be an indication of onset of quantum Bose fluid region which has different quantum statistics from that of Fermi fluid 3He.

In Fig. 3, the temperature dependence of n_B (also corresponds to the coverage dependence of T_B) is plotted by open circles, together with those for 4He in 1.8 and 2.8 nm nanochannels [10, 11]. For the coverages in the horizontal axis, the underlying non-Bose-fluid layer coverages $n_B(0)$, which are respectively estimated by extrapolation of n_B to $T = 0$, are subtracted. As seen in the figure, n_B are almost linear in temperature. Though the slope depends on the channel size apparently, it is considered to be due to narrowing of the channels by the non-Bose-fluid-layer adatoms. Because of the curvature of channels, the effective adsorption area for the fluid-layer adatoms should be smaller than S_{BET} derived by the N$_2$-BET. Solid symbols in Fig. 3 are plotted using the coverages after correction of the adsorption area, given by $[d/(d-2\delta)(n-n_B(0))]$ where d is the channel diameter. Here δ is the film thickness at $n_B(0)$ and is assumed to be 0.5 nm, referring to vapor pressure results of 4He in 2.8 nm nanochannels [12]. As a result, all n_B are collapsed into the solid line in the figure, which is the temperatures where the thermal de Broglie wavelength of adatoms $\lambda_T = \sqrt{2\pi \hbar^2/mk_BT}$ exceeds 1.8 times the mean interatom distances of fluid layer $a = [(n-n_B(0))N_A]^{-1/2}$ (N_A is Avogadro’s number). It is known that when λ_T becomes about 1.8a, the heat capacity of ideal 2D Bose gas also crossovers from the gas constant for classical gas to T-linear one of quantum degenerate gas. This result suggests that first around T_B, the quantum effect appears in the 2D fluid layer by overlapping of wave packets, and then dimensionality of the collective modes, phonons, is determined by comparison between the wavelength and channel diameter. At low temperatures, phonon excitations crossover to the 1D state, as observed in previous measurements [2, 3].

Figure 3. Temperature dependences of n_B, or coverage dependences of T_B for 4He film adsorbed in nanochannels with various diameters. $n_B(0)$ is the coverage of background non-Bose-fluid layers. While coverages for open symbols are estimated from S_{BET}, solid symbols are plotted by coverages corrected on the surface area (see text). Below the solid line, the thermal de Broglie wavelength λ_T of 4He becomes longer than 1.8 times the fluid-layer mean interatom distance a.

The isotherms between 0.3 and 0.7 K in Fig. 2 have plateaus between 15 and 18 μmol/m2. Above 18 μmol/m2, the heat capacity increases steeply again. This increase is considered to be due to the heat capacity of adatoms promoted into the second adsorption layer. Thus it suggests that the coverage n_1 of the first adsorption layer completion is about 18 μmol/m2. Though such a kink at n_1 in the isotherm was not clearly observed for 4He in the other channel-size FSMs [10, 11], the precise measurement shown here enables us to determine it. In addition, upturns by heat of desorption can be seen above 30.5 μmol/m2 in the isotherms. From the analysis of the vapor pressure at 4.2 K similar to the shown in Ref. [12], it has been confirmed that 4He film in 2.4 nm nanochannels grows uniformly up to a coverage $n_f \sim 30 \pm 2$ μmol/m2. The appearance of desorption is likely to accompany the change in adsorption above n_f [9], and suggests $n_f \sim 30.5$ μmol/m2. The ratio n_f/n_1 is estimated to be 1.7 which is a reasonable value, compared to 1.7 in 2.2 nm channels and 2.0 in 2.8 nm [13].

From these analyses, the phase diagram of 4He adsorbed in FSM with 2.4 nm nanochannels...
has been determined as shown in Fig. 4. In the diagram, superfluid onset temperatures T_S measured by the torsional oscillator are also plotted. The slope of T_S becomes steeper above n_f, reflecting change in 4He adsorption suggested by upturns in the heat capacity isotherms. In this diagram, it can be seen that the region where superfluidity is observed is completely inside of quantum Bose fluid region determined by the heat capacity measurement.

Figure 4. Phase diagram of 4He adsorbed in 2.4 nm nanochannels. Crossover temperatures T_L to the localized state are extracted from Fig. 1. Onset coverages n_B of quantum Bose fluid, n_1, and n_f are derived from Fig. 2. In addition, superfluid onset temperatures observed by the torsional oscillator are plotted as T_S.

4. Summary

We have measured the heat capacity of 4He adsorbed in nanochannels 2.4 nm in diameter, and determined the phase diagram. From anomalies observed in the temperature dependence and isotherms of the heat capacity, we have found the coverage $n_1 = 18 \mu$mol/m2 of the first-layer completion, the upper-limit coverage of uniform film growth $n_f \sim 30.5 \mu$mol/m2 (1.7n_1), crossover temperatures T_L to the localized state, and onset coverages n_B (or temperatures T_B) of quantum Bose fluid. For a next step, crossover to the 1D phonon state should be determined by the heat capacity measurement at lower temperatures.

Acknowledgments

We would like to thank S. Inagaki and Y. Fukushima for providing the substrate FSM. We also thank H. Matsuoka and T. Kurokawa for technical support. This research was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. In addition, two of the authors (Y. N. and T. M.) were supported in part by JSPS Institutional Program for Young Researcher Overseas Visits.

References

[1] Wada N, Minato Y, Matsushita T and Hieda M 2011 *J. Low Temp. Phys.* 162 549
[2] Matsushita Y, Taniguchi J, Toda R, Ikegami H, Matsushita T, Hieda M and Wada N 2008 *J. Low Temp. Phys.* 150 342
[3] Matsushita Y, Toda R, Hieda M, Matsushita T and Wada N 2005 *J. Phys. Chem. Solids* 66 1520
[4] Ikegami H, Yamamoto Y, Okuno T, Taniguchi J, Wada N, Inagaki S and Fukushima Y 2007 *Phys. Rev. B* 76 144503
[5] Yamashita K and Hirashima D S 2009 *Phys. Rev. B* 79 014501
[6] Del Maestro A and Affleck I 2010 *Phys. Rev. B* 82 060515
[7] Tsukamoto M and Tsubota M 2011 *J. Low Temp. Phys.* 162 603
[8] Inagaki S, Koikai A, Suzuki N, Fukushima Y and Kuroda K 1996 *Bull. Chem. Soc. Jpn.* 69 1449
[9] Nakashima Y, Matsushita T, Hieda M, Wada N, Nishihara H and Kyotani T 2011 *J. Low Temp. Phys.* 162 565
[10] Wada N, Taniguchi J, Ikegami H, Inagaki S and Fukushima Y 2001 *Phys. Rev. Lett.* 86 4322
[11] Toda R, Hieda M, Matsushita T, Wada N, Taniguchi J, Ikegami H, Inagaki S and Fukushima Y 2007 *Phys. Rev. Lett.* 99 255301
[12] Toda R, Taniguchi J, Asano R, Matsushita T and Wada N 2005 *J. Low Temp. Phys.* 138 177
[13] Ikegami H, Okuno T, Yamamoto Y, Taniguchi J, Wada N, Inagaki S and Fukushima Y 2003 *Phys. Rev. B* 68 092501