PRINCIPAL BUNDLES ON COMPACT COMPLEX MANIFOLDS
WITH TRIVIAL TANGENT BUNDLE

INDRANIL BISWAS

Abstract. Let G be a connected complex Lie group and $\Gamma \subset G$ a cocompact lattice. Let H be a complex Lie group. We prove that a holomorphic principal H–bundle E_H over G/Γ admits a holomorphic connection if and only if E_H is invariant. If G is simply connected, we show that a holomorphic principal H–bundle E_H over G/Γ admits a flat holomorphic connection if and only if E_H is homogeneous.

1. Introduction

Let $T = \mathbb{C}^n/\Gamma$ be a complex torus, so Γ is a lattice of \mathbb{C}^n of maximal rank. For any $x \in T$, let $\tau_x : T \to T$ be the holomorphic automorphism defined by $z \mapsto z + x$. Let H be a connected linear algebraic group defined over \mathbb{C}. A holomorphic principal H–bundle E_H over T admits a holomorphic connection if and only if $\tau_x^* E_H$ is holomorphically isomorphic to E_H for every $x \in T$; also, if E_H admits a holomorphic connection, then it admits a flat holomorphic connection [3, p. 41, Theorem 4.1].

If Γ is a cocompact lattice in a connected complex Lie group G, then G/Γ is clearly a compact connected complex manifold with trivial tangent bundle. Let M be a connected compact complex manifold such that the holomorphic tangent bundle TM is holomorphically trivial. Then there is a connected complex Lie group G and a cocompact lattice $\Gamma \subset G$ such that G/Γ is biholomorphic to M. The manifold M is Kähler if and only if M is a torus. Our aim here is to investigate principal bundles on M admitting a (flat) holomorphic connection.

Let G be a connected complex Lie group and $\Gamma \subset G$ a cocompact lattice. For any $g \in G$, let

$$\beta_g : M := G/\Gamma \to G/\Gamma$$

be the automorphism defined by $x \mapsto gx$. Let H be a connected complex Lie group.

A holomorphic principal H–bundle E_H over M is called invariant if for each $g \in G$, the pulled back bundle $\beta_g^* E_H$ is isomorphic to E_H. A homogeneous holomorphic principal H–bundle on M is a pair (E_H, ρ), where $f : E_H \to M$ is a holomorphic principal H–bundle, and

$$\rho : G \times E_H \to E_H$$

is a holomorphic left–action on the total space of E_H, such that the following two conditions hold:

2000 Mathematics Subject Classification. 32L05, 53C30, 53C55.
Key words and phrases. Homogeneous bundle, invariant bundle, holomorphic connection.
(1) \((f \circ \rho)(g, z) = \beta_g(f(z))\) for all \((g, z) \in G \times E_H\), and
(2) the actions of \(G\) and \(H\) on \(E_G\) commute.

If \((E_H, \rho)\) is homogeneous, then \(E_H\) is invariant.

We prove the following theorem (see Theorem \ref{thm:1.1} and Proposition \ref{prop:3.2}):\n
Theorem 1.1. A holomorphic principal \(H\)-bundle \(E_H\) over \(M\) admits a holomorphic connection if and only if \(E_H\) is invariant.

Assume that the group \(G\) is simply connected. A holomorphic principal \(H\)-bundle \(E_H\) over \(M\) admits a flat holomorphic connection if and only if \(E_H\) is homogeneous.

If \(\text{Lie}(G)\) is semisimple and \(G\) is simply connected, then we prove that given any invariant principal \(H\)-bundle \(E_H\), there is a holomorphic action \(\rho : G \times E_H \to E_H\) such that \((E_H, \rho)\) is homogeneous (see Lemma \ref{lem:4.1}). This gives the following corollary (see Corollary \ref{cor:4.2}):

Corollary 1.2. Assume that \(\text{Lie}(G)\) is semisimple and \(G\) is simply connected. If a holomorphic principal \(H\)-bundle \(E_H \to M\) admits a holomorphic connection, then it admits a flat holomorphic connection.

The compact complex manifolds \(G/\Gamma\) of the above type with \(G\) non-commutative are the key examples of non-Kähler compact complex manifolds with trivial canonical bundle. Recently, these manifolds have started to play important role in string theory of theoretical physics (see \cite{5}, \cite{2}, \cite{6}). They have also become a topic of investigation in complex differential geometry (see \cite{8}, \cite{7}).

2. Homogeneous bundles and holomorphic connection

2.1. Holomorphic connection

Let \(G\) be a connected complex Lie group. Let \(\Gamma \subset G\) be a cocompact lattice. So
\[
M := G/\Gamma
\]
is a compact complex manifold. Let \(\mathfrak{g}\) be the Lie algebra of \(G\). Using the right-invariant vector fields, the holomorphic tangent bundle \(TM\) is identified with the trivial vector bundle \(M \times \mathfrak{g}\) with fiber \(\mathfrak{g}\), so
\[
TM = M \times \mathfrak{g} \to M.
\]
Let
\[
\beta : G \times M \to M
\]
be the left translation action. The map \(\beta\) is holomorphic. For any \(g \in G\), let
\[
\beta_g : M \to M
\]
be the automorphism defined by \(x \mapsto \beta(g, x)\).
Let H be a connected complex Lie group. The Lie algebra of H will be denoted by \mathfrak{h}. We recall that a holomorphic principal H–bundle over M is a complex manifold E_H, a surjective holomorphic submersion $f : E_H \rightarrow M$ and a right holomorphic action of H on E_H

$$\varphi : E_H \times H \rightarrow E_H$$

(so φ is a holomorphic map), such that the following two conditions hold:

1. $f \circ \varphi = f \circ p_1$, where p_1 is the projection of $E_H \times H$ to the first factor, and
2. the action of H on each fiber of f is free and transitive.

Let $f : E_H \rightarrow M$ be a holomorphic principal H–bundle. Let TE_H be the holomorphic tangent bundle of E_H. The group H acts on the direct image f^*TE_H. The invariant part

$$At(E_H) := (f^*TE_H)^H \subset f^*TE_H$$

defines a holomorphic vector bundle on M, which is called the Atiyah bundle for E_H. Let

$$K := \ker(df)$$

be the kernel of the differential $df : TE_H \rightarrow f^*TM$ of f. The invariant direct image $(f_K)^H$ coincides with the sheaf of sections of the adjoint vector bundle $\text{ad}(E_H)$. We recall that $\text{ad}(E_H) \rightarrow M$ is the vector bundle associated to E_H for the adjoint action of H on \mathfrak{h}. Using the inclusion of $(f_K)^H$ in $(f^*TE_H)^H$, we get a short exact sequence of holomorphic vector bundles on M

\begin{equation}
0 \rightarrow \text{ad}(E_H) \rightarrow At(E_H) \overset{df}{\rightarrow} TM \rightarrow 0.
\end{equation}

It is known as the Atiyah exact sequence for E_H. (See [1].)

A holomorphic connection on E_H is a holomorphic splitting of the short exact sequence in (5). In other words, a holomorphic connection on E_H is a holomorphic homomorphism

$$D : TM \rightarrow At(E_H)$$

such that $(df) \circ D = \text{Id}_{TM}$, where df is the homomorphism in (5) (see [1]).

Let D be a holomorphic connection connection on E_H. The curvature of D is the obstruction of D to be Lie algebra structure preserving (the Lie algebra structure of sheaves of sections of TM and $At(E_H)$ is given by the Lie bracket of vector fields). The curvature of D is a holomorphic section of $\text{ad}(E_H) \otimes \bigwedge^2(TM)^*$. (See [1] for the details.)

A flat holomorphic connection is a holomorphic connection whose curvature vanishes identically.

2.2. Invariant and homogeneous bundles. We will now define invariant holomorphic principal bundles and homogeneous principal bundles.

Definition 2.1. A holomorphic principal H–bundle E_H over M will be called invariant if for each $g \in G$, the pulled back holomorphic principal H–bundle $\beta_g^*E_H$ is isomorphic to E_H, where β_g is the map in (4).

Definition 2.2. A homogeneous holomorphic principal H–bundle on M is defined to be a pair (E_H, ρ), where
• $f : E_H \rightarrow M$ is a holomorphic principal H–bundle, and
• $\rho : G \times E_H \rightarrow E_H$ is a holomorphic left–action on the total space of E_H,
such that the following two conditions hold:

1. $(f \circ \rho)(g, z) = \beta_g(f(z))$ for all $(g, z) \in G \times E_H$, where β_g is defined in (4), and
2. the actions of G and H on E_G commute.

If (E_H, ρ) is a homogeneous holomorphic principal H–bundle, then E_H is invariant. Indeed, for any $g \in G$, the automorphism of E_H defined by $z \mapsto \rho(g, z)$ produces an isomorphism of E_H with $\beta_g^*E_H$.

3. AUTOMORPHISMS OF PRINCIPAL BUNDLES

We continue with the notation of the previous section. We will give a criterion for the existence of a (flat) holomorphic connection on a holomorphic principal H–bundle over M.

Theorem 3.1. A holomorphic principal H–bundle E_H over M admits a holomorphic connection if and only if E_H is invariant.

Proof. Let $f : E_H \rightarrow M$ be a holomorphic principal H–bundle. Let \mathcal{A} denote the space of all pairs of the form (g, ϕ), where $g \in G$, and

$$\phi : E_H \rightarrow E_H$$

is a biholomorphism satisfying the following two conditions:

1. ϕ commutes with the action of H on E_H, and
2. $f \circ \phi = \beta_g \circ f$, where β_g is defined in (4).

So ϕ gives a holomorphic isomorphism of the principal H–bundle $\beta_g^*E_H$ with E_H.

We note that \mathcal{A} is a group using the composition rule

$$(g_1, \phi_1) \cdot (g_2, \phi_2) = (g_1g_2, \phi_1 \circ \phi_2).$$

In fact, \mathcal{A} is a complex Lie group, and the Lie algebra

$$\mathfrak{a} := \text{Lie}(\mathcal{A})$$

is identified with $H^0(M, \text{At}(E_H))$. Note that from (2) it follows that all holomorphic vector fields on M are given by the Lie algebra of G using the action β in (3). The compactness of M ensures that \mathcal{A} is of finite dimension. As noted before, using the Lie bracket of vector fields, the sheaf of holomorphic sections of $\text{At}(E_H)$ has the structure of a Lie algebra. Hence the space $H^0(M, \text{At}(E_H))$ of global holomorphic sections is a Lie algebra.

Let

$$(6) \quad q : \mathcal{A} \rightarrow G$$

be the projection defined by $(g, \phi) \mapsto g$. The homomorphism of Lie algebras

$$dq : \mathfrak{a} = H^0(M, \text{At}(E_H)) \rightarrow \mathfrak{g} := \text{Lie}(G) = H^0(M, TM)$$
associated to \(q \) in (6) coincides with the one given by the homomorphism \(df \) in (5).

First assume that \(E_H \) admits a holomorphic connection. Recall that a holomorphic connection on \(E_H \) is a holomorphic splitting of the exact sequence in (5). Using a holomorphic connection, the vector bundle \(\text{At}(E_H) \) gets identified with the direct sum \(\text{ad}(E_H) \oplus TM \).

In particular, the homomorphism

\[
H^0(M, \text{At}(E_H)) \longrightarrow H^0(M, TM)
\]

induced by \(df \) in (5) is surjective. Hence the homomorphism \(dq \) in (7) is surjective. Since \(G \) is connected, this implies that the homomorphism \(q \) in (6) is surjective. This immediately implies that \(E_H \) is invariant (recall that for any \((g, \phi) \in A\), the map \(\phi \) is a holomorphic isomorphism of the principal \(H \)–bundle \(\beta^* g E_H \) with \(E_H \)).

To prove the converse, assume that \(E_H \) is invariant. Therefore, the homomorphism \(q \) in (6) is surjective. Hence the homomorphism \(dq \) in (7) is surjective. Let \(d \) be the dimension of \(G \). Since \(dq \) is surjective, and \(TM \) is the trivial vector bundle of rank \(d \), there are \(d \) sections

\[
\sigma_1, \ldots, \sigma_d \in H^0(M, \text{At}(E_H))
\]

such that \(H^0(M, TM) = g \) is generated by \(\{dq(\sigma_1), \ldots, dq(\sigma_d)\} \).

We have a holomorphic homomorphism

\[
D : TM \longrightarrow \text{At}(E_H)
\]

defined by \(\sum_{i=1}^{d} c_i \cdot dq(\sigma_i)(x) \mapsto \sum_{i=1}^{d} c_i \cdot \sigma_i(x) \), where \(x \in M \), and \(c_i \in \mathbb{C} \). It is straightforward to check that \((df) \circ D = \text{Id}_{TM} \), where \(df \) is the homomorphism in (5). Hence \(D \) defines a holomorphic connection on \(E_H \).

Proposition 3.2. Assume that the group \(G \) is simply connected. A holomorphic principal \(H \)–bundle \(E_H \) over \(M \) admits a flat holomorphic connection if and only if \(E_H \) is homogeneous.

Proof. Let \(f : E_H \longrightarrow M \) be a holomorphic principal \(H \)–bundle equipped with a flat holomorphic connection \(D \). Therefore, \(E_H \) is given by a homomorphism from the fundamental group \(\pi_1(M, (e, e\Gamma)) \) to \(H \). We will construct an action of \(G \) on \(E_H \).

Let \(p_2 : G \times M \longrightarrow M \) be the projection to the second factor. Since \(G \) is simply connected, the homomorphisms

\[
p_{2*}, \beta_* : \pi_1(G \times M, (e, e\Gamma)) \longrightarrow \pi_1(M, (e, e\Gamma))
\]

induced by \(p_2 \) and \(\beta \) (see (3)) coincide. Therefore, there is a canonical isomorphism of flat principal \(H \)–bundles

\[
\mu : p_{2*} E_H \longrightarrow \beta^* E_H
\]

which is the identity map over \(\{e\} \times M \).

This map \(\mu \) defines an action

\[
\rho : G \times E_H \longrightarrow E_H;
\]

for any \((g, x) \in G \times M\), the isomorphism

\[
\rho_{g,x} : (E_H)_x \longrightarrow (E_H)_{\beta g(x)}
\]
is the restriction of μ to (g,x), where β_g is the map in (4). This action ρ makes E_H a homogeneous bundle.

To prove the converse, take a homogeneous holomorphic principal H–bundle (E_H, ρ). For any $g \in G$, let

$$\rho_g : E_H \longrightarrow E_H$$

be the map defined by $z \longmapsto \rho(g, z)$. Consider the group A constructed in the proof of Theorem 3.1. Let

$$\delta : G \longrightarrow A$$

be the homomorphism defined by $g \longmapsto (g, \rho_g)$. It is easy to see that

$$q \circ \delta = \text{Id}_G,$$

where q is the homomorphism in (6).

Let

$$d\delta : \mathfrak{g} \longrightarrow \text{Lie}(A) = H^0(M, \text{At}(E_H))$$

be the homomorphism of Lie algebras associated to the homomorphism δ in (8). From (9) it follows that

$$(dq) \circ d\delta = \text{Id}_g,$$

where dq is the homomorphism in (7) (it is the homomorphism of Lie algebras corresponding to q).

Since TM is the trivial vector bundle with fiber \mathfrak{g}, the homomorphism $d\delta$ in (10) produces a homomorphism of vector bundles

$$d\delta : TM \longrightarrow \text{At}(E_H);$$

$$\tilde{d}\delta(x,v) = (d\delta)(v)(x),$$

where $v \in \mathfrak{g}$, and $x \in M$. Combining (11) and the fact that the homomorphism dq coincides with the one given by the homomorphism df in (5), we conclude that $(df) \circ d\delta = \text{Id}_{TM}$. Therefore, $d\delta$ defines a holomorphic connection on E_H. The curvature of this holomorphic connection vanishes identically because the linear map $d\delta$ is Lie algebra structure preserving.

\[\square\]

Remark 3.3. In Proposition 3.2, it is essential to assume that G is simply connected. To give examples, take G to be an elliptic curve and Γ to be the trivial group e. Take $H = \mathbb{C}^*$, and take $E_H = L$ to be a nontrivial holomorphic line bundle of degree zero. Then L admits a flat holomorphic connection because L is topologically trivial, while L does not admit any homogeneous structure because L is not trivial.

4. The semisimple case

In this section we assume that \mathfrak{g} is semisimple, and G is simply connected.

Let $f : E_H \longrightarrow M := G/\Gamma$ be an invariant holomorphic principal H–bundle.
Lemma 4.1. There is a holomorphic left-action of G
\[\rho : G \times E_H \longrightarrow E_H \]
such that (E_H, ρ) is homogeneous.

Proof. Consider the homomorphism
\[dq : a := \text{Lie}(A) \longrightarrow g \]
in (7). It is surjective because E_H is invariant implying that q is surjective. Since g is semisimple, there is a Lie algebra homomorphism
\[\theta : g \longrightarrow a \]
such that $(dq) \circ \theta = \text{Id}_g$ (see [4, p. 91, Corollaire 3]). Fix such a homomorphism θ.

Since G is simply connected, there is a unique homomorphism of Lie groups
\[\Theta : G \longrightarrow A \]
such that θ is the Lie algebra homomorphism corresponding to Θ. Now we have an action
\[\rho : G \times E_H \longrightarrow E_H \]
defined by $\Theta(g) = (g, \{ z \mapsto \rho(g, z) \})$. The pair (E_H, ρ) is a homogeneous holomorphic principal H–bundle. \qed

Combining Lemma 4.1 with Theorem 3.1 and Proposition 3.2, we get the following:

Corollary 4.2. If a holomorphic principal H–bundle $E_H \longrightarrow G/\Gamma$ admits a holomorphic connection, then it admits a flat holomorphic connection.

References
[1] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
[2] K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nuclear Phys. B 751 (2006), 108–128.
[3] I. Biswas and T. L. Gómez, Connections and Higgs fields on a principal bundle, Ann. Glob. Anal. Geom. 33 (2008), 19–46.
[4] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285, Hermann, Paris, 1960.
[5] M. Fernandez, S. Ivanov, L. Ugarte and R. Villacampa, Non-Kähler Heterotic String Compactifications with non-zero fluxes and constant dilaton, Comm. Math. Phys. 288 (2009), 677–697.
[6] E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Comm. Math. Phys. 251 (2004), 65–78.
[7] G. Grantcharov, Geometry of compact complex homogeneous spaces with vanishing first Chern class, Adv. Math. 226 (2011), 3136–3159.
[8] D. Grantcharov, G. Grantcharov and Y. Poon, Calabi-Yau connections with torsion on toric bundles, Jour. Diff. Geom. 78 (2008), 13–32.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in