Association between 24h Urinary Sodium and Potassium Excretion and Estimated Glomerular Filtration Rate (eGFR) Decline or Death in Patients with Diabetes Mellitus and eGFR More than 30 ml/min/1.73m²

Takanobu Nagata¹,², Hiroshi Sobajima², Norimi Ohashi², Akihiro Hirakawa³, Takayuki Katsuno¹,², Yoshinari Yasuda¹,², Seiichi Matsuo¹,², Naotake Tsuboi¹,², Shoichi Maruyama¹

¹ Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan, ² Department of Diabetology and Nephrology, Ogaki Municipal Hospital, Ogaki, Japan, ³ Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan

☯ These authors contributed equally to this work.
‡ These authors also contributed equally to this work.
* marus@med.nagoya-u.ac.jp

Abstract

Background

Data regarding the association between 24h urinary sodium and potassium excretion with kidney outcomes in patients with diabetes mellitus is currently scarce.

Methods

We conducted a single-center, retrospective cohort study in which 1230 patients with diabetes who had undergone a 24h urinary sodium and potassium excretion test were analyzed. Patients with incomplete urine collection were excluded based on 24h urinary creatinine excretion. Outcomes were the composite of a 30% decline in eGFR or death. Multivariate cox regression analysis was used to investigate the association between urinary sodium and potassium excretion and outcomes.

Results

With a mean follow up period of 5.47 years, 130 patients reached the outcomes (30% decline in eGFR: 124, death: 6). Mean (SD) eGFR and 24h urinary sodium and potassium excretion at baseline were 78.6 (19.5) ml/min/1.73m², 4.50 (1.64) g/day, and 2.14 (0.77) g/day. Compared with sodium excretion < 3.0 g/day, no significant change in risk of outcomes was observed with increased increments of 1.0 g/day. Compared with potassium excretion of < 1.5 g/day, 2.0–2.5 g/day, and 2.5–3.0 g/day were significantly associated with a lower risk of outcomes (hazard ratio [HR], 0.49 and 0.44; 95% confidence interval [CI], 0.28 to 0.84 and 0.22 to 0.87).
Conclusions

24h urinary sodium excretion was not significantly associated with a risk of 30% decline in eGFR or death in patients with diabetes. However, an increased risk of 30% decline in eGFR or death was significantly associated with 24h urinary potassium excretion < 1.5 g/day than with 2.0–2.5 g/day and 2.5–3.0 g/day.

Introduction

The prevalence of chronic kidney disease (CKD) is a major public health issue worldwide[1]. Diabetes mellitus is the leading cause of CKD, and therefore, prevention of occurrence or progression in patients with diabetes is an important clinical concern.

Previous studies have shown that high sodium intake leads to hypertension or incidence of cardiovascular disease (CVD) in healthy individuals, patients with hypertension, and those with a history of CVD and diabetes[2–4]. Thus, the American Diabetes Association recommends restricting sodium intake to <2.3 g/day in patients with diabetes[5], while KDIGO guidelines recommend <2 g/day in patients with CKD[1]. However, several observational or prospective studies have reported that not all patients (such as those with high cardiovascular risk or diabetes) benefit from sodium restriction[2,6–9]. Furthermore, several studies have shown that the amount of urinary sodium excretion (as a substitute for intake) is not significantly associated with kidney outcomes[8,10–12].

Increased potassium intake has many beneficial effects on blood pressure (BP)[3,13] and risk of CVD[2,4]. The World Health Organization’s guidelines recommend a dietary potassium intake of >3.51 g/day in adults[14], while the Kidney Disease Outcomes Quality Initiative recommends >4 g/day in patients with CKD stages 1 to 2 and 2–4 g/day in patients with CKD stages 3 to 4[15]. The majority of reports have indicated that increased urinary potassium excretion is associated with a reduced risk for kidney outcomes[8,12,16]. However, recent reports have shown that high urinary potassium excretion is associated with an increased risk of halving the estimated glomerular filtration rate (eGFR) or end-stage renal disease (ESRD) in patients with CKD[17]. These inconsistent results could be attributed to differing outcome measures, patients’ backgrounds, methods for estimation of 24h urinary excretion (spot urine or 24h urine collection), or adjusted variables. At present, data regarding the association between 24h urinary sodium and potassium excretion and kidney outcomes in patients with diabetes is scarce.

The aim of this study was to assess the association between 24h urinary sodium and potassium excretion and kidney outcomes in a single-center, retrospective cohort of patients with diabetes.

Materials and Methods

Patients

This was a retrospective and observational cohort study at a single diabetes center in Ogaki Municipal Hospital, Ogaki, Japan. This is a tertiary hospital and a major diabetic referral center in the medical district with a population of approximately 400,000. All patients with diabetes admitted to the center are generally recommended to undergo a 24h urine collection test at least once for the purposes of accurate diagnosis of diabetic nephropathy and evaluation of insulin secretion capacity and dietary status. All patients received standard medical care.
including personalized glycemic, blood pressure, and lipid control in accordance with recommended guidelines.

Patients with diabetes who underwent the 24h urine collection test between January 1, 2007 and December 31, 2011, were enrolled in this study. The actual time of the test was considered as the baseline.

Exclusion criteria included: (i) eGFR < 30 ml/min/1.73m²; (ii) incomplete urine collection, defined as urine creatinine excretion deviation by ±25% of the predicted value as calculated by age, sex, height, and weight[18][19]; (iii) unavailable data for urinary albumin, sodium, and potassium excretion; (iv) no follow up of serum creatinine at Ogaki Municipal Hospital after the 24h urine collection test was performed; (v) in-hospital 24h urine collection test; (vi) comorbidity with autoimmune disease, glomerulonephritis, cancer, or liver cirrhosis at baseline, where the disease or treatment could affect kidney function; and (vii) hospital-based treatment duration of less than six months prior to baseline. This final exclusion criterion was included, as it generally requires six months to complete initial patient education, treatment modification, and evaluation of diabetic complications or other comorbidities.

This study protocol was approved by the ethics committee at Ogaki Municipal Hospital according to the Declaration of Helsinki. This study was conducted using a linkable, anonymous data set. The waiver of informed consent provided to patients was approved by the ethics committee.

Outcomes

The primary outcome was a 30% decline in eGFR from baseline or death due to any causes. Where diseases listed under exclusion criteria occurred during follow up, patients were considered a censored case at the time of diagnosis.

Data collection

Baseline characteristics were collected from patients’ medical record. Serum creatinine was measured using an enzymatic method. The eGFR was calculated using the equation generated by the Japanese Society of Nephrology: eGFR (ml/min/1.73 m²) = 194 × Serum creatinine⁻¹.₀₉⁹₄ × Age⁻⁰.₂₆⁷ × 0.₇₃⁹ (for female patients)[20]. Blood and urine laboratory studies were performed as part of patients’ standard medical care. Follow-up data and outcomes were collected from patients’ medical records. Patients were studied until the following end points: a 30% decline in eGFR, death, lack of follow-up, or study end point (June 30, 2015).

Statistical analysis

Continuous variables were expressed as the mean ± standard deviation [SD] and categorical variables were expressed as the number and proportion. Inter-group comparisons of baseline characteristics were performed using one-way analysis of variance for continuous variables and the chi-squared test for categorical variables. We evaluated the association between 24h urinary sodium (or potassium) excretion and the primary outcome based on the Cox model as a restricted cubic spline function with 4 knots (located at the 5th, 35th, 65th, and 95th percentiles)[21]. We further categorized 24h urinary sodium excretion into 5 groups (<3.0 g/day, 3.0–4.0 g/day, 4.0–5.0 g/day, 5.0–6.0 g/day, and >6.0 g/day), while 24h urinary potassium excretion was similarly classified (<1.5 g/day, 1.5–2.0 g/day, 2.0–2.5 g/day, 2.5–3.0 g/day, and >3.0 g/day). Less than 3.0 g/day for sodium excretion and <1.5 g/day for potassium excretion were selected as the reference categories and univariate and multivariate Cox regression analyses were performed. A P-value < 0.05 was considered statistically significant. All statistical
analyses were performed using R (The R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org, version 3.2.2).

Results

A total of 4184 patients were screened for this study, and 1230 eligible patients were finally included and analyzed (Fig 1). During screening, 1078 patients were excluded due to incomplete 24h urine collection from 3793 patients with an eGFR > 30 ml/min/1.73m².

With a mean (SD) follow up period of 5.47 (2.28) years, 130 patients reached an outcome-based end point (30% decline of eGFR: n = 124, death: n = 6). Mean 24h sodium and potassium excretion at baseline were 4.50 (1.64) g/day and 2.14 (0.77) g/day, mean age was 62.2 (10.9) years, mean eGFR was 78.6 (19.5) ml/min/1.73m², mean glycated hemoglobin was 7.26 (0.95) %, and mean 24h urinary albumin excretion was 44.4 (117.9) mg/day (Tables 1 and 2).

Sodium excretion

When compared with the reference category of <3.0 g/day, the univariate cox regression model showed that 3.0–4.0 g/day and 5.0–6.0 g/day were significantly associated with a reduced risk of 30% decline in eGFR or death (hazard ratio [HR], 0.55 and 0.51; 95% confidence interval [CI], 0.31 to 0.95 and 0.28 to 0.90; respectively). However, this difference became nonsignificant when a multivariate cox regression model was applied (Table 3 and Fig 2).

Potassium excretion

When compared with the reference category of <1.5 g/day, 2.0–2.5 g/day and 2.5–3.0 g/day categories were significantly associated with a lower risk of 30% decline in eGFR or death in both univariate cox regression (hazard ratio [HR], 0.44 and 0.36; 95% confidence interval [CI], 0.26 to 0.74 and 0.19 to 0.70; respectively) and multivariate (HR, 0.49 and 0.44; 95% CI, 0.28 to 0.84 and 0.22 to 0.87; respectively) models. In contrast, categories 1.5–2.0 g/day and >3.0 g/day were nonsignificant in both univariate (HR, 0.71 and 0.70; 95% CI, 0.45 to 1.11 and 0.39 to 1.26; respectively) and multivariate (HR, 0.69 and 0.71; 95% CI, 0.43 to 1.10 and 0.37 to 1.34; respectively) models (Table 4 and Fig 2).
Subgroup analysis

In subgroup analysis limited to patients without CKD or those without CKD and CVD, the same associations between 24h urinary sodium and potassium excretion and outcomes were observed. In patients with an eGFR < 60 ml/min/1.73m², no significant associations were found (Tables 3 and 4). When the sodium to potassium ratio was expressed as a continuous variable, a cox regression model showed that association with the outcome was nonsignificant in both univariate (HR, 1.15; 95% CI, 0.92 to 1.36) and multivariate (HR, 1.15; 95% CI, 0.94 to 1.41) models.
Discussion

This retrospective study showed that 24h urinary sodium excretion was not significantly associated with either a risk of a 30% decline in eGFR or death in patients with diabetes. However, 24h urinary potassium excretion < 1.5 g/day was found to be significantly associated with an increased risk of a 30% decline in eGFR or death, when compared with the categories of 2.0–2.5 g/day and 2.5–3.0 g/day. Although this relationship was not significant, it does suggest a higher risk when compared with 24h urinary potassium excretion of 1.5–2.0 g/day and >3.0 g/day.

Table 2. Baseline characteristics categorized by 24h potassium excretion.

Variable	Overall	<1.5 g/day	1.5–2.0 g/day	2.0–2.5 g/day	2.5–3.0 g/day	>3.0 g/day	P-value
Number of patients	1230	242	349	301	194	144	
24h urinary potassium excretion, g/day							
Diastolic BP, mmHg	131.7 (17.5)	131.6 (18.5)	133.2 (18.7)	129.9 (16.6)	131.3 (16.2)	133.0 (16.3)	0.156
Systolic BP, mmHg	72.6 (12.2)	71.7 (12.9)	72.7 (12.7)	72.4 (11.7)	72.9 (10.7)	73.9 (12.6)	0.541
Type 2 diabetes, n (%)	1112 (90.4)	211 (87.2)	321 (92.0)	278 (92.4)	173 (89.2)	129 (89.6)	0.227
Diabetes duration, years	12.0 (8.0)	12.4 (8.6)	12.4 (8.2)	11.9 (7.8)	11.7 (7.5)	11.2 (7.7)	0.558
Diabetic retinopathy, n (%)	479 (38.9)	93 (38.4)	147 (42.1)	116 (38.5)	70 (38.1)	53 (36.8)	0.649
History of CVD, n (%)	182 (25.3)	50 (20.7)	81 (23.2)	69 (22.9)	34 (17.5)	16 (11.1)	0.021
Oral hypoglycemic agent, n (%)	818 (66.5)	154 (63.6)	242 (69.3)	201 (66.8)	130 (67.0)	91 (63.2)	0.576
Insulin, n (%)	408 (33.2)	89 (36.8)	118 (33.8)	92 (30.6)	59 (30.4)	50 (34.7)	0.520
RAAS blockade, n (%)	611 (47.9)	124 (51.2)	191 (54.7)	144 (47.8)	87 (44.8)	65 (45.1)	0.126
Calcium channel blocker, n (%)	456 (37.1)	99 (40.9)	135 (38.7)	109 (36.2)	67 (34.5)	46 (31.9)	0.384
Diuretics, n (%)	36 (11.1)	36 (11.1)	36 (11.1)	36 (11.1)	36 (11.1)	36 (11.1)	0.917
Statin, n (%)	240 (30.3)	60 (20.7)	81 (23.2)	69 (22.9)	34 (17.5)	16 (11.1)	0.021
Total protein, g/dl	7.48 (0.45)	7.47 (0.46)	7.44 (0.46)	7.50 (0.44)	7.48 (0.41)	7.54 (0.45)	0.254
Serum albumin, g/dl	4.39 (0.26)	4.35 (0.29)	4.37 (0.26)	4.41 (0.26)	4.44 (0.24)	4.43 (0.23)	<0.001
Serum uric acid, mg/dl	5.07 (1.37)	4.91 (1.39)	5.11 (1.35)	5.11 (1.36)	5.10 (1.39)	5.13 (1.40)	<0.001
Serum creatinine, mg/dl	0.70 (0.19)	0.72 (0.20)	0.73 (0.19)	0.73 (0.18)	0.73 (0.19)	0.70 (0.16)	0.441
Serum sodium/mEq/l	139.6 (18.5)	139.9 (18.9)	139.7 (19.3)	139.5 (18.1)	139.2 (18.9)	139.5 (16.6)	0.003
Serum potassium/mEq/l	4.44 (0.37)	4.31 (0.39)	4.42 (0.36)	4.48 (0.39)	4.50 (0.37)	4.51 (0.31)	<0.001
Serum chloride/mEq/l	104.3 (2.4)	104.4 (2.7)	104.6 (2.3)	104.2 (2.3)	104.0 (2.2)	104.1 (2.2)	0.03
Total cholesterol, mg/dl	198.8 (34.7)	197.1 (35.1)	201.8 (34.8)	198.3 (34.3)	198.2 (35.6)	196.6 (33.6)	0.425
HDL cholesterol, mg/dl	53.3 (14.0)	54.1 (14.5)	52.9 (13.6)	52.4 (13.4)	53.3 (13.1)	55.2 (15.9)	0.309
24h urinary albumin excretion, mg/day	44.4 (117.9)	41.5 (101.3)	57.7 (163.3)	34.7 (81.7)	34.7 (104.8)	50.6 (87.6)	0.080
24h urinary sodium excretion, g/day	4.50 (1.64)	3.51 (1.24)	4.23 (1.36)	4.63 (1.40)	4.99 (1.61)	5.87 (2.10)	<0.001

Categorical variables are expressed as the number (%) and continuous variables are expressed as the mean (SD).

BMI, body mass index; BP, blood pressure; CVD, cardiovascular disease; RAAS, renin-angiotensin-aldosterone system; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein

doi:10.1371/journal.pone.0152306.t002

Discussion

This retrospective study showed that 24h urinary sodium excretion was not significantly associated with either a risk of a 30% decline in eGFR or death in patients with diabetes. However, 24h urinary potassium excretion < 1.5 g/day was found to be significantly associated with an increased risk of a 30% decline in eGFR or death, when compared with the categories of 2.0–2.5 g/day and 2.5–3.0 g/day. Although this relationship was not significant, it does suggest a higher risk when compared with 24h urinary potassium excretion of 1.5–2.0 g/day and >3.0 g/day.
This association was found to be independent of additional factors that could affect kidney outcomes, including albuminuria.

With reference to urinary sodium excretion, no significant associations with outcomes were observed in this study. The results of previous studies that have examined the association between urinary sodium excretion and kidney outcomes were largely nonsignificant by multivariate analysis, even where these studies were heterogeneous with respect to study design, participants’ backgrounds, or outcomes definitions. Among them, He et al.[17] reported an association between increased 24h urinary sodium excretion and a high risk for kidney outcomes in their main analysis. However, these associations were found to be nonsignificant after adjustment for proteinuria. That study noted that BP and proteinuria were intermediate.
variables on the causal pathway for CKD progression, and therefore, did not adjust for them during primary analysis. The present study included albuminuria and BP in multivariate analysis, as dietary salt loading in an animal model has been reported to cause deterioration of GFR and increased proteinuria, independent of BP[22]. Sodium restriction has been found to reduce albuminuria, even when a clinically significant reduction in BP in patients with CKD has not been achieved[23]. Indeed, numerous previous studies have conducted multivariate analysis adjusted for albuminuria or proteinuria [8,10–12,16,17,24]. The results of the present study were consistent with these reports; however, a significant association may have been overlooked, due to the small number of patients analyzed.

As for potassium excretion, the results of this study largely correspond with past reports. A post hoc analysis of randomized clinical trials included 28,879 patients and indicated that a higher 24h urinary potassium excretion, as estimated by a fasting morning urine sample, was associated with lower odds of kidney outcomes (defined as a 30% decline in eGFR or chronic dialysis)[8]. Another report from a single-center, observational cohort study included 623 patients with type 2 diabetes and normal kidney function and found that higher urinary potassium excretion was associated with a slower decline in renal function and lower incidence of composite outcomes of kidney and CVD events[16]. In contrast, the Chronic Renal Insufficiency Cohort (CRIC) study showed that higher 24h urinary potassium excretion was associated with an increased risk for CKD progression, which was defined as a halved eGFR and ESRD. However, this association diminished after adjusting for proteinuria and no significant association was observed according to the amount of potassium excreted[17]. The results of our study correspond with two of the aforementioned studies; however, they are not in line with the results obtained in the CRIC study. This could be attributable to the mean eGFR of patients analyzed in both the present study and the corresponding studies by Smyth et al.[8] and Araki et al.[16], as this value was not as low as that of the CRIC study (mean eGFR: 43 ml/min/1.73m²). Indeed, in the present study, a subgroup analysis of patients with an eGFR < 60

Variable	<1.5 g/day	1.5–2.0 g/day	2.0–2.5 g/day	2.5–3.0 g/day	>3.0 g/day
Number of patients	242	349	301	194	144
Follow up duration, years	5.16 (2.31)	5.44 (2.32)	5.69 (2.29)	5.49 (2.29)	5.59 (2.08)
30% decline in eGFR or death, n (%)	36 (14.8)	41 (11.7)	24 (7.9)	12 (6.1)	17 (11.8)
Death, n	2	0	3	0	1

Analysis, HR (95% CI)

	Univariate analysis	Multivariate analysis	Multivariate analysis excluding A	Multivariate analysis excluding A or B	Multivariate analysis excluding C
Variable	1.00	1.00	1.00	1.00	1.00
24h urinary potassium excretion	0.71 (0.45–1.11)	0.69 (0.43–1.10)	0.63 (0.33–1.20)	0.63 (0.27–1.49)	0.49 (0.17–1.40)
30% decline in eGFR or death	0.44 (0.26–0.74)	0.49 (0.28–0.84)	0.33 (0.15–0.72)	0.28 (0.10–0.77)	0.49 (0.17–1.40)
Death	0.36 (0.19–0.70)	0.44 (0.22–0.87)	0.27 (0.09–0.76)	0.28 (0.10–0.77)	0.49 (0.17–1.40)
Analysis, HR (95% CI)	0.70 (0.39–1.26)	0.71 (0.37–1.34)	0.62 (0.24–1.58)	0.73 (0.22–2.40)	1.66 (0.42–6.54)

Analysis, HR (95% CI)	Univariate analysis	Multivariate analysis	Multivariate analysis excluding A	Multivariate analysis excluding A or B	Multivariate analysis excluding C
Variable	1.00	1.00	1.00	1.00	1.00
24h urinary potassium excretion	0.71 (0.45–1.11)	0.69 (0.43–1.10)	0.63 (0.33–1.20)	0.63 (0.27–1.49)	0.49 (0.17–1.40)
30% decline in eGFR or death	0.44 (0.26–0.74)	0.49 (0.28–0.84)	0.33 (0.15–0.72)	0.28 (0.10–0.77)	0.49 (0.17–1.40)
Death	0.36 (0.19–0.70)	0.44 (0.22–0.87)	0.27 (0.09–0.76)	0.28 (0.10–0.77)	0.49 (0.17–1.40)

| Analysis, HR (95% CI) | 0.70 (0.39–1.26) | 0.71 (0.37–1.34) | 0.62 (0.24–1.58) | 0.73 (0.22–2.40) | 1.66 (0.42–6.54) |

Categorical variables are expressed as number (%) and continuous variables are expressed as mean (SD).

Multivariate analysis adjusted for age, sex, body mass index, history of CVD, diabetic retinopathy, blood pressure, HbA1c, eGFR, uric acid, total cholesterol, high density lipoprotein, 24h urinary albumin excretion and 24h urinary sodium excretion.

A: eGFR < 60 ml/min/1.73m² or 24h urinary albumin excretion > 30 mg/day at baseline
B: A and history of CVD at baseline
C: eGFR > 60 ml/min/1.73m²

eGFR; estimated glomerular filtration rate; HR, hazard ratio, CI, confidence interval; CVD, cardiovascular disease; HbA1c, glycated hemoglobin

doi:10.1371/journal.pone.0152306.t004

24h Urinary Sodium and Potassium Excretion and Kidney Outcome
ml/min/1.73m² found no significant association between potassium excretion and outcomes. However, at this stage, conclusions should be withheld, considering the small number of patients concerned. Further study is needed in order to clarify the association between high urinary potassium excretion and kidney outcomes in patients with CKD.

The present study showed that potassium was significantly associated with kidney outcomes, whereas the sodium to potassium ratio was not. The trial of hypertension prevention follow up study showed that a higher sodium to potassium was associated with an increased risk of subsequent CVD in patients with prehypertension[25]. In contrast, recent reports in patients with type 2 diabetes and normal kidney function have shown that a high sodium to potassium was associated with a high risk of composite outcomes of kidney and CVD events [16]. However, that study did not assess the independent association with risk of kidney outcomes. The results of the present study suggest that sodium to potassium ratio may not be associated with kidney outcomes.

The inconsistent results reported in previous studies are because of several potential reasons. First, patients with a reduced eGFR may possibly present with altered potassium handling by the kidneys (reduced potassium filtration or tubular secretion)[26] or increased extrarenal excretion (such as, by the gastrointestinal route)[27]. Thus, urinary excretion may not reflect dietary potassium intake in patients with CKD. Secondly, high urinary potassium excretion reflects a high dietary potassium intake and can lead to hyperkalemia, which could result in increased risk of mortality or major cardiovascular events[28]. Finally, patients with CKD are often prescribed renin-angiotensin-aldosterone blockers, which could affect potassium homeostasis[29]. While all of these factors could confound results, high urinary potassium excretion in patients with diabetes is likely associated with reduced risk for kidney outcomes.

Several protective effects of potassium on kidney function have been reported. In animal models, increased serum potassium levels cause decreased vascular resistance[30], while potassium supplementation can reduce renal inflammation[31]. In humans, increased potassium intake reduces BP[32] and has a beneficial effect on the risk of CVD[8,33]. In addition, a high-potassium diet is generally equivalent to a healthy diet[34] containing many fruits and vegetables, which has been reported to improve kidney outcomes[12].

Compared with previous reports, this study design had several valuable strengths [8,10,12,16,17]. Firstly, a 24h urinary collection test was conducted in all patients with diabetes. Second, the accuracy of urine collection for analysis was ensured by urinary creatinine excretion, as opposed to self-reporting by patients. Notably, 1078 of 3793 patients with an eGFR > 30 ml/min/1.73m² were excluded from this study, as their 24h urinary creatinine deviated by ±25% of the predicted value (Fig 1). Finally, kidney outcomes were not based on the progression of albuminuria or proteinuria, but rather on a 30% decline in eGFR.

In addition, this study had several limitations that warrant discussion. First, this was a retrospective study design and a selection bias did exist, in that only patients who had received a 24h urine collection test were included. Second, we may have overestimated or, indeed, overlooked the associations with outcomes, as an insufficient number of patients were included in the analysis. Third, treatment content or BP and glycemic control during the follow up period were not considered. Finally, a single 24h urine collection test is insufficient for estimating a patient’s usual dietary status[35].

In conclusion, this retrospective study showed that 24h urinary sodium excretion was not significantly associated with either a risk of 30% decline in eGFR or death in patients with diabetes; whereas, 24h urinary potassium excretion less than 1.5 g/day was significantly associated with increased risk compared with 2.0–2.5 g/day and 2.5–3.0 g/day. Larger, prospective studies will elucidate the association between higher sodium or potassium intake and an increased or decreased risk of kidney outcomes in patients with diabetes.
Supporting Information

S1 Table. Anonymous data set of 1230 patients with diabetes.
(XLSX)

Acknowledgments

We express our special appreciation for the time and efforts of diabetologists and nephrologists who concerned and supported the present study: Dr. T Aoki, Dr. A Suzuki, Dr. T Shibata, Dr. M Yamauchi, Dr. A Kiyota, Dr. A Fujiya, Dr. H Ochiai, Dr. T Mizukoshi, Dr. S Takeuchi, Dr. Y Enomoto, Dr. E Miura, Dr. Y Itano, Dr. S Oshitani, and Dr. M Kato.

Author Contributions

Conceived and designed the experiments: TN. Performed the experiments: TN HS NO. Analyzed the data: TN AH. Contributed reagents/materials/analysis tools: TN AH. Wrote the paper: TN HS NO AH TK YY S. Matsuo NT S. Maruyama.

References

1. KDIGO (Disease Improving Global Outcomes). Abstract. Kidney Int Suppl. 2013; 3: 4–4. doi:10.1038/kisup.2012.76
2. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary Sodium and Potassium Excretion, Mortality, and Cardiovascular Events. N Engl J Med. 2014; 371: 612–623. doi:10.1056/NEJMoa1311889 PMID: 25119607
3. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013; 346: f1326. doi:10.1136/bmj.f1326 PMID: 2358163
4. Donnell MJO, Yusuf S, Gao P, Mann JF, Mcqueen M, Sleight P, et al. CLINICIAN’S CORNER Urinary Sodium and Potassium Excretion and Risk of Cardiovascular Events. 2011; 306: 2229–2238.
5. Ada. Standards of Medical Care in. J Clin Appl Res Educ. 2015; 38, suppl: s1–s94. doi:10.2337/dc13-S011
6. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K, Maclsaac RJ, et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care. 2011; 34: 703–709. doi:10.2337/dc10-1723 PMID: 21289228
7. Thomas MC, Moran J, Forsblom C, Harjutsalo V, Thorn L, Ahola A, et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care. 2011; 34: 861–866. doi:10.2337/dc10-1722 PMID: 21307382
8. Smyth A, Dunkler D, Gao P, Teo KK, Yusuf S, O’Donnell MJ, et al. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 2014; 879: 1–8. doi:10.1038/ki.2014.214
9. O’Donnell M, Mente A, Yusuf S. Sodium Intake and Cardiovascular Health. Circ Res. 2015; 116: 1046–1057. doi:10.1161/CIRCRESAHA.116.303771 PMID: 25767289
10. Dunkler D, Kohl M, Teo KK, Heinz G, Dehghani M, Clase CM, et al. Dietary risk factors for incidence or progression of chronic kidney disease in individuals with type 2 diabetes in the European Union. Nephrol Dial Transplant. 2015; 30: iv76–iv85. doi:10.1093/ndt/gfv086 PMID: 26209742
11. Fan L, Tighiouart H, Levey AS, Beck GJ, Sarnak MJ. Urinary sodium excretion and kidney failure in nondiabetic chronic kidney disease. Kidney Int. Nature Publishing Group; 2014; 86: 582–8. doi:10.1038/ki.2014.59
12. Dunkler D, Dehghani M. Diet and Kidney Disease in High-Risk Individuals With Type 2 Diabetes Mellitus. JAMA Intern. . 2013; 173: 1682–1692. doi:10.1001/jamainternmed.2013.9051
13. Stoliarz-Skrzypek K, Bednarski A, Czamecka D, Kawecka-Jaszcz K, Staessen JA. Sodium and potassium and the pathogenesis of hypertension. Curr Hypertens Rep. 2013; 15: 122–130. doi:10.1007/s11906-013-0331-x PMID: 23397214
14. World Health Organization. Guideline: Potassium intake for adults and children. 2011; 52.
15. Foundation NK. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis. Elsevier Inc.; 2012; 60: 850–886. doi:10.1053/j.ajkd.2012.07.005
16. Araki S-i., Haneda M, Koya D, Kondo K, Tanaka S, Arima H, et al. Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function. Clin J Am Soc Nephrol. 2015; 10. doi: 10.2215/CJN.00980115

17. He J, Mills KT, Appel LJ, Yang W, Chen J, Lee BT, et al. Urinary Sodium and Potassium Excretion and CKD Progression. J Am Soc Nephrol. 2015; 1–11. doi: 10.1681/ASN.2015010022

18. Kawasaki T, Itoh K, Uezono K, Sasaki H. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin Exp Pharmacol Physiol. 1993; 20: 7–14. PMID: 8432042

19. Mente A, O’Donnell MJ, Dagenais G, Wielgosz A, Lear S a, McQueen MJ, et al. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. J Hypertens. 2014; 32: 1005–15. doi: 10.1097/HJH.0000000000000122 PMID: 24569420

20. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised Equations for Estimated GFR From Serum Creatinine in Japan. Am J Kidney Dis. 2009; 53: 982–992. doi: 10.1053/j.akd.2008.12.034 PMID: 19339088

21. Harrell F. Regression Modelling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer-Verlag; 2001.

22. Matavelli LC, Zhou X, Varagic J, Susic D, Frohlich ED. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2007; 292: H814–H819. doi: 10.1152/ajpheart.00671.2006 PMID: 16997890

23. McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, et al. A Randomized Trial of Dietary Sodium Restriction in CKD. J Am Soc Nephrol. 2013; 24: 2096–2103. doi: 10.1681/ASN.2013030285 PMID: 24204003

24. Luther JM. Sodium Intake, ACE Inhibition, and Progression to ESRD. J Am Soc Nephrol. 2012; 23: 10–12. doi: 10.1681/ASN.2011111107 PMID: 22173698

25. Cook NR, Obarzanek E, Cutler J a, Buring JE, Rexrode KM, Kumanyika SK, et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch Intern Med. 2009; 169: 32–40. doi: 10.1001/archinternmed.2008.523 PMID: 19139321

26. Liamis G, Liberopoulos E, Barkas F, Elisaif M. Diabetes mellitus and electrolyte disorders. World J Clin cases. 2014; 2: 488–96. doi: 10.12998/wjcc.v2.i10.488 PMID: 25325058

27. Ahmed J, Welsberg LS. Hyperkalemia in dialysis patients. Semin Dial. 2001; 14: 348–356. doi: 10.1046/j.1525-139X.2001.00087.x PMID: 11679104

28. Luo J, Brunelli SM, Jensen DE, Yang A. Article Association between Serum Potassium and Outcomes in Patients with Reduced Kidney Function. Clin J Am Soc Nephrol. 2015; 11: 1–11.

29. Weir MR, Rolfe M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin J Am Soc Nephrol. 2010; 5: 531–548. doi: 10.2215/CJN.07821109 PMID: 20150448

30. Well ITIS. Stimulation of renin release by hyperkalemia in the nonfiltering kidney. 1991;

31. Wang W, Soltero L, Zhang P, Huang XR, Lan HY, Adrogue HJ. Renal inflammation is modulated by potassium in chronic kidney disease: possible role of Smad7. Am J Physiol Renal Physiol. 2007; 293, F123–30. doi: 10.1152/ajprenal.00104.2007 PMID: 17694402

32. Houston MC. The Importance of Potassium in Managing Hypertension. Curr Hypertens Rep. 2011; 13: 309–317. doi: 10.1007/s11906-011-0197-8 PMID: 21403995

33. Aburto N, Hanson S, Gutierrez H. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ Br Med 2013; 1378: 1–19. doi: 10.1136/bmj.f1378

34. Mente A, Irvine EJ, Honey RJ, Logan AG. Urinary potassium is a clinically useful test to detect a poor quality diet. J Nutr. 2009; 139: 743–9. doi: 10.3945/jn.108.088319 PMID: 19211830

35. Luft FC, Fineberg NS, Sloan RS. Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension. 1982; 4: 805–808. doi: 10.1161/01.HYP.4.6.805 PMID: 7141607