Evaluation of Mechanical Properties of Medium Carbon Low Alloy Forged Steels by Polymer Quenching

Chandan B R 1, Pramod V 2, Ramesha C M 3, and Sharanraj V 4

1. Research scholar, Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bangalore, chandanbrmech@gmail.com.
2. P.G. student, Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bangalore, pramod.pramod.vs@gmail.com.
3. Associate Professor, Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bangalore, cmramesha@gmail.com.
4. Research scholar, Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bangalore, sharanraj407@gmail.com.

Abstract: Medium carbon low alloy forged steels were investigated (EN18, EN19, EN 24, and EN25) with respect to their mechanical properties by polymer quenching. The effect of polyethylene glycol (PEG) H−(O−CH2−CH2)n−OH as a quenchant was studied by varying polymer concentration (10% and 30%) to investigate the mechanical properties and their metallographic structures. The study was carried out on the medium carbon low alloy forged steels in heat treated condition by hardening in the polymer quenchant. The quenched samples were step tempered at 575°C and at 220°C sequentially for 60 min each. Hardness, tensile strength, Charpy impact strength and metallographic were carried out on the untreated and heat treated specimens. The step tempering process of the specimen gives the high strength with high hardenability. The specimen quenched in the polymer solution exhibited the best mechanical properties, viz., as received samples. The mechanical properties are found increased in the polymer quenchant because of the slow and uniform cooling rate of the polymer. The microstructural examination of the specimens were found to have justified reason for the increment recorded in some of the mechanical properties, as it displayed a high proportion of the martensitic phase.

Keywords: EN Steels, Heat Treatment, Impact strength, Polymer Quenching.

1. INTRODUCTION

Medium carbon low alloy steels (MCLA) is used in the forged condition in the automobiles, aerospace and transportation industries. Reliability of critical components made of EN Series is directly based on the strength of the steel, which in turn is dependent on forging process. EN18 (AISI 5140), EN19 (AISI 4140), EN 24 (AISI 4340) and EN25 (3430) are medium carbon low alloy steels under HSLA categories. In some applications, there is need to increase the high strength along with the high ductility where the combination of these properties produces excellent products. In practice, heat treatment is the process by which change in mechanical
properties can be achieved. It is mainly depends on the microstructural transformation, the microstructural changes occur at different heat treatment condition with varying the holding time and with varying the tempering temperature. The heat treatment \[1\] of steels gives the improved mechanical properties. The final end structure of the heat treated components decides the applications where it can be used with the environmental conditions. The conventional quenching medium as water and oil are used for the quenching of the heat treated parts. The convention type quenchants have disadvantages as compare to the new generation synthetic quenchants such as PEG \[2\] results in less risk of cracking and less distortion in the parts which gives the good properties. The microstructure of the step tempered parts produces the fine tempered martensitic structure which yields the high strength. The effect of polyethylene glycol as quenchant was studied to investigate the mechanical properties and microstructural evaluation of steels.

2. Materials and Method

2.1 Materials and Equipment
Four steels, viz., EN 18, EN19, EN 24, and EN25 in the normalized condition were procured from Mumbai market. The chemical composition check of each steel given in the Table 1. Quenchant Polyethylene glycol \(H-(O-CH_2-CH_2)_n-OH\) [where \(n\) represent the average number of oxyethylene groups] was also procured to serve as the quenchant.

Element	EN18	EN19	EN24	EN25
C	0.380	0.393	0.431	0.350
Mn	0.700	0.660	0.605	0.700
P	0.012	0.014	0.023	0.04
S	0.012	0.019	0.030	0.04
Si	0.192	0.253	0.283	0.40
Ni	--	--	1.395	2.80
Cr	0.70	1.043	0.978	0.80
Mo	--	0.202	0.207	0.65
Fe	bal	bal	bal	bal

2.2 Test specimen preparation
A set of specimens was prepared for Hardness, Tensile, Impact, and Microstructural analyses. The standards used for samples to carry out the various tests are listed out in Table 2.

Test	Standard used
Hardness Test	ASTM 92
Tensile Test	ASTM E-8
Charpy Test	IS: 1499

2.3 Heat Treatment/ Quenching and Step Tempering
The electrical furnace with maximum heating temperature of 1200\(^{\circ}\)C were heated at a certain predefined temperature and held at a period of 60 min (soaking period), where the homogeneous transformation phase takes place. The proportion of the polymer to water \[4\] used was 10% and
30% ratio of 1:9 and 3:7. The heated treated specimens were quenched in a polymer solution for the hardening and step tempering is carried out. Table 2 shows the temperature and soaking time of the steels.

Table 2. Temperature and soaking time of steels

Process	Temp °C	Soaking time
Hardening	855	60 Min
Tempering I	575	60 Min
Tempering II	220	60 Min

2.4 Mechanical Tests

A standard Brinell Hardness Tester was used for measurement of indentation hardness. The tests were conducted using a 10mm diameter steel ball and 3000-kg load. The tensile tests were carried out using an electrically powered Hounsfield tensometer with a capacity of 20 KN. Impact energy to failure was found using a Charpy impact tester.

3. RESULTS AND DISCUSSIONS

Table 4 shows the mechanical properties of the as-received and heat treated steel samples with the varying polymer concentration. Figs. 1-4 are plots of variations of mechanical properties with polymer concentrations. Fig. 1 shows the variation of hardness for the EN steels of as-received and varying polymer concentration. It is observed that the maximum hardness value of 315 BHN is obtained in EN 25 for 30% polymer. 30% polymer quenching has the maximum impact on hardness followed by 10% as-received as the least defect. Fig. 2 depicts the defect of varying the quenchant on the UTS of EN steels. It is observed again that the highest UTS value is obtained in 30% polymer for EN 25 steel (1240 Mpa) which is more than the as-received and 10% polymer quenched sample. Figure 3 depicts the change of impact energy of the four EN steels. It is evident that step tempering after quenching improves the toughness of steels, also while elongation is reduced by maximum 20% only.

Table 4. Shows the Mechanical properties of as-received and quenched steel samples

EN Series	Sample quenching medium	Tempering Temperature (°C)	BHN	Tensile strength (MPa)	Impact Energy, J	% El
EN 18	As-received	188	580	42	32	
EN 18	10% Polymer 575,220	232	1020	60	26	
EN 18	30% Polymer 575,220	272	1050	78	27	
EN 19	As-received	252	900	56	31	
EN 19	10% Polymer 575,220	276	1102	71	25	
EN 19	30% Polymer 575,220	282	1135	88	26	
EN 24	As-received	265	920	55	29	
EN 24	10% Polymer 575,220	267	1025	82	24	
EN 24	30% Polymer 575,220	270	1198	100	25	
EN 25	As-received	280	1020	45	26	
EN 25	10% Polymer 575,220	295	1210	102	27	
EN 25	30% Polymer 575,220	315	1240	112	28	
3.1 Effects of variations of Mechanical Properties with varying Polymer concentrations.

Figure 1: Variation of BHN of EN steels with the different proportion of polymer

Figure 2: Variation of UTS of EN steels with the different proportion of polymer
3.2 Effects of Polymer Quenching on the Microstructure of Medium Carbon Low Alloy Forged Steels

The microstructural investigation of samples quenched in 10% and 30% polymer solution were performed using a Carl Zeiss optical microscope. In sequence, the steps include sectioning, mounting, coarse grinding, fine grinding, polishing, etching and microscopic examination, and the general procedure followed by earlier investigators was employed [6]. The samples were polished using a series of emery papers of grit size varying from 1000µm - 1500µm. The samples were etched with nitric solution, 100 ml ethanol and 1-10 ml nitric acid for about 10 – 20 seconds before observation in the optical microscope. Figs. 5-12 are the photomicrographs of EN18 and EN19, EN 24 and EN 25 respectively.
Figure 5: Microstructure of EN18 steel quenched in 10% Polymer solution.

Figure 6: Microstructure of EN18 steel quenched in 30% Polymer solution

Figure 7: Microstructure of EN19 steel quenched in 10% Polymer solution
Figure 8: Microstructure of EN19 steel quenched in 30% Polymer solution.

Figure 9: Microstructure of EN24 steel quenched in 10% Polymer solution.

Figure 10: Microstructure of EN24 steel quenched in 30% Polymer solution.

Figure 11: Microstructure of EN25 steel quenched in 10% Polymer solution.
Observation: 10% and 30% polymer quenched samples result with fine tempered martensite structure with small amount of ferrite due to steels are subjected to step tempering process. Thus polymer quenching would improve ductility, toughness and impact strength values.

4. CONCLUSION
1. It has been investigated that polymer can also be used as quenching medium for MCLA steels.
2. The study has shown that using of polymer as quenchants improves the mechanical properties when compared to the as received samples.
3. The mechanical properties increases with increase in polymer concentration, also there is lesser risk of cracking and distortion in the parts. The uniform low cooling rates also result in better mechanical properties for the polymer quenched steels.
4. Microstructural analysis corroborates the changes in mechanical properties observed.

ACKNOWLEDGMENT
The authors are thankful to the management of M.S. Ramaiah Institute of Technology, Bengaluru for facilitating this research work.

References
[1] Philip T.V. Thomas J. and Cafffery. “Properties and selection - Iron, Steels and high Performance Alloys”, ASM Hand Book Vol-1, ASM International, Ohio (1961) 1119 – 1127.
[2] M. Momoh, B. J. Bamike, A. M. Saliu, O. A. Adeyemi “Effects of Polyethylene Glycol on the Mechanical Properties of Medium Carbon Low Alloy Steel” Nigerian Journal of Technological Development, vol. 12, no.2, December 2015
[3] Designation: E8/E8M – 09, “Standard Test Methods for Tension Testing of Metallic Materials”.
[4] Jamiu Kolawole Odusote¹, Tajudeen Kolawole Ajiboye² and Abdulkarim Baba Rabiu³, “Evaluation of Mechanical Properties of Medium Carbon Steel Quenched in Water and Oil”AU J.T. 15(4): 218-224 (Apr. 2012)
[5] Becherer B.A. and Witheford T.J., “Heat Treating of Ultra-high-strength Steels, ASM Hand Book Vol-4, ASM International, Ohio (1961) 495.
[6] Donald C. Zipperian, Ph.D. Pace Technologies, Metallographic specimen preparation basic, www.metallographic.com

[7] C. M. Ramesha PhD thesis on “A study on suitability criteria of steels with lower alloy contents for semi critical application maintaining reliability and structural integrity by process modifications” 2003-2010.
[8] Philip T. V. Thomas J. and Caffery. “Properties and Selection – Iron, Steels and high performance Alloys”, ASM Hand Book Vol-1, ASM International, Ohio (1961) 1119-1127.
[9] ASM Handbook “Heat Treating” – Volume 4.
[10] Ahmed O. J. (2011). Study the effect of polymer solution and oil quenchants on hardening automotive camshaft. Journal of Thi-Qar University. 6 (2):134 – 146.
[11] Higgins A. R. (2004). Engineering Metallurgy - Part 1 - Applied Physical Metallurgy. 7th Edition. Edward Arnold. England.
[12] Khanna O. P. (2009). Material Science and Metallurgy. Dhanpat Rai Pub (P) Ltd.
[13] Martin J. W.; R. D. Doherty and B. Cantor (1997). Stability of Microstructure in Metallic Systems (2nd edition). Cambridge: Cambridge University Press, UK.
[14] Ndaliman M. B. (2006). An Assessment of Mechanical properties of Medium Carbon Steel under Different Quenching Medium. AU J.T. 10(2):100-104.
[15] Ramesh G. and Prabhu K.N. (2015). Comparative Study of Wetting and Cooling Performance of Polymer–Salt Hybrid Quench Medium with Conventional Quench Media. Experimental Heat Transfer, 8 (5): 464-492.