Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users

Gianfranco Romanazzi 1,*, Yann Orçonneau 2, Marwa Moumni 1,†, Yann Davillerd 2 and Patrice André Marchand 2

1 Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Breccio Bianche, 60131 Ancona, Italy; m.moumni@staff.univpm.it
2 Institut Technique de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de Bercy, 75012 Paris, France; y.orco17@gmail.com (Y.O.); yann.davillerd@itab.asso.fr (Y.D.); patrice.marchand@itab.asso.fr (P.A.M.)

* Correspondence: g.romanazzi@univpm.it; Tel.: +39-071-220-4336

Abstract: Synthetic pesticides are widely used to protect crops from pathogens and pests, especially for fruits and vegetables, and this may lead to the presence of residues on fresh produce. Improving the sustainability of agriculture and, at the same time, reducing the adverse effects of synthetic pesticides on human health requires effective alternatives that improve the productivity while maintaining the food quality and safety. Moreover, retailers increasingly request fresh produce with the amounts of pesticides largely below the official maximum residue levels. Basic substances are relatively novel compounds that can be used in plant protection without neurotoxic or immune-toxic effects and are still poorly known by phytosanitary consultants (plant doctors), researchers, growers, consumers, and decision makers. The focus of this review is to provide updated information about 24 basic substances currently approved in the EU and to summarize in a single document their properties and instructions for users. Most of these substances have a fungicidal activity (calcium hydroxide, chitosan, chitosan hydrochloride, Equisetum arvense L., hydrogen peroxide, lecithins, cow milk, mustard seed powder, Salix spp., sunflower oil, sodium chloride, sodium hydrogen carbonate, Urtica spp., vinegar, and whey). Considering the increasing requests from consumers of fruits and vegetables for high quality with no or a reduced amount of pesticide residues, basic substances can complement and, at times, replace the application of synthetic pesticides with benefits for users and for consumers. Large-scale trials are important to design the best dosage and strategies for the application of basic substances against pathogens and pests in different growing environments and contexts.

Keywords: European Union; fungicide residues; plant protection; regulation EU 1107/2009

1. Introduction

The world population continues to grow and will reach 9.7 billion by 2050 [1]. For this, increasing food production is the primary objective of all countries. According to the latest estimates of the Food and Agriculture Organization of the United Nations [2], up to 40% of food crops worldwide are lost every year due to pests and plant diseases. Crop losses caused by plant disease alone cost the global economy $220 billion annually [3]. Crop protection is essential to reduce yield losses, improve food quality, and increase grower profitability. The application of plant protection products (PPPs) is the main way to protect crops against pathogens, pests, and weeds [4]. However, human, animal, and environmental risks associated with the use of chemical PPPs are a growing concern. All these concerns have encouraged the onset of research to develop alternative approaches to control plant diseases [5]. Reducing the use of pesticides being a major challenge in
developed countries, European Union Member States are required to implement National Action Plans that set quantitative objectives, timetables, and indicators related to reducing the impact of pesticide use (Directive 2009/128/CE) [6,7]. The use of basic substances is approved in the European Union under Article 23 of EC Regulation No 1107/2009 and which are listed in Part C of the Annex of the Regulation (EC) No 540/2011 [8]. In the EU, Integrated Pest Management (IPM) has been mandatory since January 2014, and among the rules of the IPM is the reduction of the application of synthetic pesticides whenever possible [9]. For sustainable and qualitative food production, respectful of the need to produce in sufficient quantities, biocontrol has grown tremendously through the last few years [10]. The PPP EU Regulation (EC) 1107/2009 was established to ensure a level of protection of humans, animals, and the environment and, at the same time, to unify for the entire EU the rules on the placing on the market of plant protection products [11,12]. Basic substances are sources of interest for research as alternative to synthetic pesticides, since they are used in human medicine or as a food ingredient, so they have no residue concerns and then no maximum residue limit (MRL) and, usually, no preharvest interval [13,14]. The lack of MRL contributes to a better prevention of contamination in plant protection, a better control of the residues and a reduction of analytical problems, of decommissioning, and of market withdrawal [14]. Another benefit of basic substances, and perhaps the most important, is their very low ecologic impact. Basic substances are products that are used as ‘foodstuffs’, as defined in Article 2 of Regulation (EC) 178/2002 [15] cosmetic, and does not have an inherent capacity to cause endocrine-disrupting, neurotoxic or immunotoxic effects, but they are also plant protection means and not placed on the market as a plant protection product. Article 28 of Regulation (EC) No. 1107/2009 set the absence of marketing authorizations and usages allowance for basic substances. Regulation (EC) No. 1107/2009 introduced the new category of ‘basic substances’, which are defined by recital 18 as ‘certain substances which are not predominantly used as plant protection products may be of value for plant protection, but the economic interest of applying for approval may be limited. Therefore, specific provisions should ensure that such substances, as far as their risks are acceptable, may also be approved for plant protection use’. The properties of basic substances are described in Article 23 of the EU Regulation (EC) No 1107/2009 [11]. In 2021, the Euphresco project ‘BasicS’ contributed to demonstrate the effectiveness toward pests and pathogens of basic substances, with potential benefits for the farmers, the consumer, and the environment [16,17]. The basic substances have a positive impact on crop health when applied preventively. Certain basic substances, such as chitosan, stimulate the defense system of crops against several classes of pathogens, including fungi, viruses, bacteria, and phytoplasma [18]. According to the EU pesticides database, 24 basic substances were approved for use, 7 were withdrawn, 18 applications were not approved and 8 are still pending [19,20]. This review includes currently approved basic substances that have a protective potential and are a valuable addition to the range of measures and protection methods intended for use. Detailed information about basic substances and updates on new available compounds can be found at the page https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances (accessed on 23 May 2022). The standard-folder for approval of a basic substance, called ‘Basic Substance Application Template (BSAT)’, is based on the structure of the European Union evaluation report of an active substance that can be used for plant protection purposes. BSAT refers to all areas of risk assessment in the regulation of phytopharmaceutical product uses and shall be considered as a structured model to build a file collating all available information and enabling to demonstrate that the evaluated substance meets the eligibility criteria of a basic substance (SANCO 10,363 rev.10, 2021). Therefore, nowadays, a full deposit under International Uniform Chemical Information Database (IUCLID) software is mandatory since March 2021. Basic substances are submitted individually (Annex I inclusion dossier) at the first stage; then, later, an automatic inclusion was adopted for food/foodstuff basic substance from plant or animal origin [21,22]. Recently, an automatic consideration procedure (without any Annex I inclusion dossier) by Expert Group for Technical advice on
Organic Production (EGTOP)/Directorate-General for the Agriculture and Rural Development (DGAgri) of positive ongoing basic substance approval (from Directorate-General Health and Food Safety—DGSanté to DGAgri) to generate an automatic EGTOP/DGAgri outcome for inclusion (or not). This provision bypasses the traditional route of substances in organic production in plant protection through dossiers submitted to Member States, but so far, no basic substance has been rejected by the Regulatory Committee of Organic Production (RCOP), and with the current procedure, are no longer studied than substances of mineral origin (or non-foods).

This review aimed to highlight the properties of approved basic substances, summarize, and provide this information for phytosanitary consultants, scientists, growers, stakeholders, companies, and consumers.

2. Results

Out of the 86 basic substance application submitted to the European Commission until now, less than one-third have been approved (24) (Tables 1 and 2), 19 have been refused, 6 have been withdrawn during their assessment (Table 3), 8 are currently being processed by the EC (Table 4 and Figure 1), and 2 already successfully submitted via IUCLID software (Ginger extract and *Capsicum frutescens*).

Currently, 24 basic substances are approved, of which 21 are also approved in organic production; for example, talc was validated in 2021 following EGTOP PPP VII and is being currently voted on at RCOP [23] and clayed charcoal was submitted. Recently, voted chitosan does not seem to be acceptable directly in organic production as the basic substance from its microorganism’s origin, although in the context of food quality. Basic substances are approved by EU Regulations, so the application month, where reported in Table 1, is related to the Northern Hemisphere.

![Figure 1. Total of the basic substance applications (BSA) and extensions presented by the results (%).](image-url)
Table 1. Application of the basic substances approved.

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Posts or Group of Pest Stage	Application	Application Rates	PH1
Equisetum arvense L.	Reg. (EU) No 462/2014 ITAB	Fruit trees Apple fruit (Malus pumila, Malus domestica) Peach-tree (Prunus persica)	Foliar fungi like scab disease (Venturia inaequalis), Powdery mildews (Podosphaera leucotricha) Peach leaf curl (Taphrina deformans)	Foliar application spraying	From green leaf tip (BBCH 53) to flowers fading (BBCH 67) Spring	500–1000 1000-2000 g/ha	Na 1
Grapevine (Vitis vinifera)		Downy mildew (Plasmopara viticola), Powdery mildew (Erysiphe necator)		From 1st shoots (BBCH 10) to cluster tightening (BBCH 57) Spring to summer	200 g/ha	100–300 200–600 g/ha	Na
Cucumber (Cucumis sativus) roots		Cucumber (Cucumis sativus) roots	Powdery mildew (Podosphaera fusca) Root fungi like common root rot, seedling blight (Pythium spp.)	Root feeding application and foliar application spraying	From (9th leaf unfolded on main stem—BBCH 19) to 9 or more primary side shoots visible (BBCH 49)	300 600 g/ha	15
Tomato (Lycopersicum esculentum)		Tomato (Lycopersicum esculentum)	Early blight (Alternaria solani), Septoria blight (Septoria lycopersici)	Foliar application spraying	First inflorescence visible (BBCH 51) to BBCH 59 summer		
Strawberry (Fragaria x Ananassa)		Strawberry (Fragaria x Ananassa)	Gray mold (Botrytis cinerea), Powdery mildew (Podosphaera aphanis), red core (Phyllosticta fragariae), other fungi like Colletotrichum acutatum	Foliar application spraying 2	Growth restart till end of fructification Early spring till end of summer Stage BBCH 1 to BBCH 89	225 g/ha	300 675 g/ha
Raspberry (Rubus idaeus)		Raspberry (Rubus idaeus)	Late blight (Phyllosticta infestans), early blight (Alternaria solani), powdery mildew (Erysiphe cichoracearum)	Foliar application spraying 2	Stage BBCH 1 until BBCH 9		Na
Potato (Solanum tuberosum)		Ornamental trees use of which Prunus spp. Roses Rosa spp.	Ornamental fungal diseases, rose black spot (Marsonia spp.), Rose rust (Phragmidium mucronatum), leaf curl diseases, monilioses, oidium and mildew	Included in mulch	Not relevant		
Ornamental trees use of which Prunus spp. Roses Rosa spp.		Ornamental trees use of which Prunus spp. Roses Rosa spp.	Ornamental fungal diseases, rose black spot (Marsonia spp.), Rose rust (Phragmidium mucronatum), leaf curl diseases, monilioses, oidium and mildew	Included in mulch	Not relevant		

Plant homogenate extracted with hot water and filtered to be used 24 h after preparation.
Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Pest Group or Pests Target	Method	Growth Stage & Season	No. Min/Max	PHI (Days)	MIn–Max	Water L/ha Min–Max	Total Rate	Notes
Chitosan hydrochloride	Reg. (EU) 2021/1446 ChiPro	Fruits berries and small fruit	Elicitor, having a fungicide and bactericide effect via the stimulation of natural defence mechanisms	Plant elicitor, plant resistance against pathogenic fungi and bacteria	Low–Medium volume spraying	From 1 leaf development (main shoot) to 7 development of fruit	4–8 14	Na	50–200 g/hL	100–800 g/ha	200–400	100–400 g/ha
Chitosan hydrochloride	Reg. (EU) 2021/1446 ChiPro	Vegetables			Low volume spraying			50–100 g/hL				
Chitosan hydrochloride	Reg. (EU) 2021/1446 ChiPro	Cereals			Low volume spraying	Before sowing	1 Na		Na	Na	0	
Chitosan hydrochloride	Reg. (EU) 2021/1446 ChiPro	Spices			Low volume spraying/dipping			50–200 g/hL		Na	Na	
Chitosan hydrochloride	Reg. (EU) 2021/1446 ChiPro	Ornamental bulbous plants			Bulb treatment–Dipping/drenching	Germination (BBCH 00–01)		50–100 g/hL	200–800	100–800 g/ha		
Chitosan hydrochloride	Reg. (EU) 2021/1446 ChiPro	Cereals			Low–Medium volume spraying	Leaf development–senescence (BBCH 10–92)	1–8 5–7	50–200 g/hL	200–400			
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crop and/or Situation	Function in Plant Protection	Pest Group of the Target	Application	Application Rates	Notes				
					Method	Growth Stage & Season	PHI				
					No. Min/Max	IBA 1 (Days)	Mie- Max	Water L/ha	Max- Max	Total Rate	
Basic Substance					Method	Growth Stage & Season	PHI				
					No. Min/Max	IBA 1 (Days)	Mie- Max	Water L/ha	Max- Max	Total Rate	

Sucrose

Reg. (EU) No	Approval Regulation and Applicant	Crop and/or Situation	Function in Plant Protection	Pest Group of the Target	Application	Application Rates	Notes				
916/2014 ITAB IRBI					Method	Growth Stage & Season	PHI				
					No. Min/Max	IBA 1 (Days)	Mie- Max	Water L/ha	Max- Max	Total Rate	

Pome fruit

Reg. (EU) No	Approval Regulation and Applicant	Crop and/or Situation	Function in Plant Protection	Pest Group of the Target	Application	Application Rates	Notes				
2015/762 IFOAM					Method	Growth Stage & Season	PHI				
					No. Min/Max	IBA 1 (Days)	Mie- Max	Water L/ha	Max- Max	Total Rate	

Calcium hydroxide

Reg. (EU) No	Approval Regulation and Applicant	Crop and/or Situation	Function in Plant Protection	Pest Group of the Target	Application	Application Rates	Notes				
					Method	Growth Stage & Season	PHI				
					No. Min/Max	IBA 1 (Days)	Mie- Max	Water L/ha	Max- Max	Total Rate	

Reg. (EU) No

Approval Regulation and Applicant	Crop and/or Situation	Function in Plant Protection	Pest Group of the Target	Application	Application Rates	Notes				
				Method	Growth Stage & Season	PHI				
				No. Min/Max	IBA 1 (Days)	Mie- Max	Water L/ha	Max- Max	Total Rate	
Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group of Pests or Group of Pests Target	Application	Application Rates	Notes	PHI		
-----------------	----------------------------------	--------------------------	-----------------------------	---	-------------	-------------------	-------	------		
Vinegar	Reg. (EU) No 540/2011 Reg. (EU) 2015/1108 Reg. (EU) 2019/149 ITAB	Wheat seeds (Triticum vulgare), common wheat (Triticum aestivum), durum wheat (Triticum durum), spelt (Triticum spelta)	Fungicide, bactericide and herbicide	Common bunt (Tilletia caries, Tilletia foetida)	Autumn	25–50 Na per 100 kg of seed	24–100 7,8	Na		
Barley seeds (Hordeum vulgare)	Market vegetables Gardening like carrot (Daucus carota), tomato (Solanum lycopersicum), bell pepper (Capsicum spp.)	Fungicide, bactericide and herbicide	Seed treatment just before seeding	Alternaria spp.	1	Na	Not applicable	Na		
Barley leaf stripe (Pyrenophora graminea)	Market vegetables gardening like tomato (Solanum lycopersicum), bell pepper (Capsicum spp.), cabbage (Brassica oleracea)		Autumn to spring	Clavibacter michiganensis, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. vesicatoria, Botrytis aclada			Seeds are temporary soaked in the dilution then removed	Seeds are temporary soaked in the preparation then removed		
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group or Pest Target	Application	Application Rates	Notes
IBA					Na	400 g/L	
Na					Na	Na	Waiting period 30 s after washing

Notes:
- **IBA 1 (Days):** 1
- **Water L/ha Min–Max:** Na
- **Total Rate:** Na

Table 1 continues with additional entries:

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group or Pest Target	Application	Application Rates	Notes
Fire blight (Erwinia amylovora)	Tools application before sawing or cutting	Na	1 per day to each time before use	Na	Na	Na	

Notes:
- **Tools application before sawing or cutting:** 1

Table 1 continues with additional entries:

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group or Pest Target	Application	Application Rates	Notes
Fire blight (Erwinia amylovora)	Tools application before sawing or cutting	Na	1 per day to each time before use	Na	Na	Na	

Notes:
- **Tools application before sawing or cutting:** 1

Table 1 continues with additional entries:

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group or Pest Target	Application	Application Rates	Notes
Bacterial blight/canker (Pseudomonas syringae pv. syringae)	Tools application before sawing or cutting	Na	1 per day to each time before use	Na	Na	Na	

Notes:
- **Tools application before sawing or cutting:** 1

Table 1 continues with additional entries:

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group or Pest Target	Application	Application Rates	Notes
Rot fungi, especially phellins: Phellinus, Tinder poly pore and ruffled ([Fomes fomentarius](#))	Na	Na	Na	Na	Na	Na	

Notes:
- **Rot fungi, especially phellins:** Phellinus, Tinder poly pore and ruffled ([Fomes fomentarius](#))

Table 1 continues with additional entries:

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Group or Pest Target	Application	Application Rates	Notes
Vascular fungi: Ophiostoma spp.	Na	Na	Na	Na	Na	Na	

Notes:
- **Vascular fungi:** Ophiostoma spp.
| Basic Substance | Approval Regulation and Applicant | Crops and/or Situation | Function in Plant Protection | Target Group of Pest or Group of Pests | Application | Application Rates | Notes | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| ITAB/ITEIPMAI | Medicinal aromatic and perfume crops | Weeds | Spray¹⁰ | Pre crop emergence | 1 | Na | 10 kg/hL | 100 L vinegar (no dilution) | 10 kg/ha | >120 Phytotoxic to plant, may kill the young plants¹¹ |
| Charbonneaux-Brabant | paths, borders, sidewalks and terraces | Weeds | Direct spray (spot application) | Vegetation Period of the weeds | 1–2 | 7–21 | 6 kg/hL | 100 L (diluted vinegar) | 6–12 kg/ha | Na Temp > 20 °C phytotoxic to plant, may kill the young plants¹² |
| Fruit trees, Peach tree (Prunus persica) | Fungicide | Foliar fungi like <i>Taphrina deformans</i> | From 1st shoots (BBCH 10) to cluster tightening (BBCH 57) | spring | | | | 500-1000 L/ha | 1111.1-2222.2 g/ha | Plant homogenate extracted with hot water (infusion), filtered and diluted by 3, to be used up to a maximum of 24 h after preparation. The product cannot be applied in case of hot temperature. It is used in case of rainy period |
| Apple fruit (Malus pumila, Malus domestica) | Fungicide | Foliar fungi like scab disease (<i>Venturia inaequalis</i>), powdery mildew (<i>Podosphaera leucotricha</i>) | From green leaf tip (BBCH 53) to flowers fading (BBCH 63) | spring | | | | | |
| Grapevine (<i>Vitis vinifera</i>) | Fungicide | Downy mildew (<i>Plasmopara viticola</i>), Powdery mildew (<i>Erysiphe necator</i>) | From 1st shoots (BBCH 10) to cluster tightening (BBCH 57) | spring to summer | | | | | |

¹⁰ Spray: Method of application
¹¹ Phytotoxic: Effect on plants
¹² Temp > 20 °C: Temperature condition for application
Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Pest(s) or Group of Pests Target	Application	Application Rates	Notes		
Fruit trees				Powder mildew (Podosphaera leucotricha)	BBCH 03 to BBCH 79	3–12	75 g/hL	500–1000	
Apple fruit	Reg. (EU) No 540/2011 DAE			Peach leaf curl (Taphrina deformans)	BBCH 10 to BBCH 85	2–4	5	200 g/hL	1000–2000 g/ha
Peach tree	Reg. (EU) 2015/1116 DAE				BBCH 10 to BBCH 89	2	5	150 g/hL	1000–1500/1500–2250 g/ha
Gooseberry		Fruit trees		Powdery mildew (Microsphaera grossulariae)	BBCH 10 to BBCH 89	2	7	5	
Ribes uva-crispa					BBCH 10 to BBCH 90	1	5	35 g/hL	100–300/75–225 g/ha
Market vegetables gardening like cucumber (Cucumis sativus)				Powdery mildew (Podosphaera fusca)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Lettuce (Lactuca sativa)				Erysiphe cichoracearum	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Mash (Valerianella locusta)			Fungicide	Erysiphe polygoniae	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Tomato (Lycopersicum esculentum)				Tomato late blight (Phytophthora infestans)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Endive (Cichorium endivia L.)			Fungicide	Alternaria cichorii	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Ornamentals, especially roses				Powdery mildew and other fungal diseases	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Grapevine (Vitis vinifera)				Downy mildew (Plasmopara viticola), Powdery mildew (Erysiphe necator)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Strawberry (Fragaria × Ananassa)				Powdery mildew and other fungal diseases, i.e., Podosphaera aphanis, Red core (Phytophthora fragariae)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Raspberry (Rubus idaeus)					BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Potato (Solanum tuberosum)				Powdery mildew and other fungal diseases, i.e., Podosphaera aphanis, Red core (Phytophthora fragariae)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Carrot (Daucus carota subsp. sativus)				Powdery mildew (Leveillula torrisonii)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Strawberry (Fragaria × Ananassa)				Powdery mildew and other fungal diseases, i.e., Podosphaera aphanis, Red core (Phytophthora fragariae)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Raspberry (Rubus idaeus)				Powdery mildew and other fungal diseases, i.e., Podosphaera aphanis, Red core (Phytophthora fragariae)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Potato (Solanum tuberosum)				Powdery mildew and other fungal diseases, i.e., Podosphaera aphanis, Red core (Phytophthora fragariae)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Carrot (Daucus carota subsp. sativus)				Powdery mildew (Leveillula torrisonii)	BBCH 11 to BBCH 85	3–12	75 g/hL	100–300/75–225 g/ha	
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Target Pests or Group of Pests	Method	Application Growth Stage & Season	Application Rates	Notes
Fructose	Reg. (EU) 2015/1392, ITAB, IRBI	Apple fruit (Malus pumila, Malus domestica)	Fruits borer like Codling Moth (Cydia pomonella)	From spring BBCH stage 6 to summer BBCH stage 65	Foliar application spraying early in the morning before 9 AM (solar time)	No. Min/Max IBA 1 (Days)	Min–Max Water L/ha Min–Max Total Rate	PHI 1
		Maize (Corn grain) (Zea mays subsp. mays L.)	Sweet Maize (Sweet corn) (Zea mays L. conv. saccharata Koern)	Treatment in seedling line before 9 AM (solar time)	-	1	Na	
		Sweet Maize (Sweet corn) (Zea mays L. conv. saccharata Koern)	Elicitor, having an insecticidal and fungicidal effect via the stimulation of natural defence mechanisms					
		ZEA mays subsp. mays L.	Symphyllans (Scutigerella immaculata)					
		Grapevine (Vitis vinifera)	Vine leathopper (Scaphideus titanus)	From the BBCH stage 17 to 57	Foliar application spraying early in the morning before 9 AM (solar time)			
		Grapevine (Vitis vinifera)	Downy mildew (Plasmopara viticola)	From 1st shoots to cluster tightening Spring (BBCH 10–57)	Foliar application spraying early in the morning before 9 AM (solar time)			

1 Na
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crop and/or Situation	Function in Plant Protection	Pest or Group of Pests Target	Application	Application Rates	Notes					
Sodium hydrogen carbonate	Danish Environmental Protection Agency	Reg. (EU) 2015/2069	Fungicide and herbicide	Vegetable	Mildews (Sphaerotheca spp., Oidium spp.)	Broad cast using field spray or greenhouse spray	BBCH 12 to 89	1–8	333–1000 g/L	300–600	2000–5000 g/ha or 0.33–1.0% Max 1%	Dose adjusted depending on water volume
		Reg. (EU) 2015/2069	Grapevine (Vitis vinifera)	Powdery mildew (Erysiphe necator)	Broad cast using air blast orchard sprayer	BBCH 12 to 89	1–8	420–2000 g/L	200–600	2500–5000 g/ha or 0.42–2.0%	Volumes and doses will vary depending on crop canopy size. Concentrations higher than 1–2% can be phytotoxic	
		Reg. (EU) 2015/2069	Apple	Apple scab (Venturia inaequalis)	Broad cast using air blast orchard sprayer	BBCH 10 to 85	1–8	500–1000 g/L	500–1000	2500–5000 g/ha or 0.5–1.0%	Dose rates between 1–4% has been tested	
			Fruit of different types (oranges, cherries, apples, papayas)	Storage diseases like Blue mold (Penicillium italicum) Green mold (Penicillium digitatum)	Dipping or surface treatment Harvested fruit	1–2	1000–4000 g in 100 L water	1–4%				
			Liverwort/Bryophyte (thallose, Lunularia cruciata) Green thallus of liverwort plus, fruiting bodies	Direct application of powder Post emergence late summer or winter	1	Na	Na	Na	122 kg/ha	Na	The product is used for post emergence application. Phytotoxicity of this use was not tested, check on small number of plants before it is widely used	

1 Different crops have different sensitivity. Check concentrations for phytotoxic effects before widely used.
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Pest(s) or Group of Pests Target	Application	Application Rates	Notes	PHI 1				
Whey	ITAB Reg. (EU) 2016/560	Cucumber (Cucumis sativus), zucchini squash (Cucurbita pepo)	Podosphaera fusca, Podosphaera xanthii, Golovinomyces cichoracearum, Erysiphe orontii, Sphaerotheca fuliginea, Leveillula cucurbitacearum	From three weeks after sowing (9th leaf unfolded on main stem) to 9 or more primary side shoots visible (BBCH 19–49) 14	Foliar spray 12	7	0.6–3 L (0.036–0.24 kg/L)	1000–1500	6–30 L (0.36–2.4 kg/ha)	3–5	Na	Whey should be used rapidly after collection, not stored in metal vessel
		Grapevine (Vitis vinifera)	Powdery mildew (Erysiphe necator)	From 1st shoots to cluster tightening Spring 15	Foliar spray 12	3–5	0.6–3 L (0.36–2.4 kg/L)	100–30,0	6–30 L (0.36–2.4 kg/ha)	Na	Na	
	Vegetable Gardening, Tomato (Lycopersicum esculentum)	Vegetable Gardening, Tomato (Lycopersicum esculentum)	Tomato (Sinaloa) yellow leaf curl virus Begomovirus	First inflorescence visible Summer (BBCH 10–51) 15	Foliar spray 12	3–4	0.6–3 L (0.036–0.24 kg/L)	1000–1500	6–30 L (0.36–2.4 kg/ha)	Na	Na	
	Glove fingertips and mechanical cutting tools All crops	Glove fingertips and mechanical cutting tools All crops	Viruses (Mechanically transferable) e.g., Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV), Pepper mild mottle virus (PMMV), Cucumber green mottle mosaic virus (CGMMV), Tomato brown rugose fruit virus (ToBRFV)	Dipping	On tools and glove fingertips Before/after every plant contact 16	Na	Na	Na	Na	Dipping for 5 s for gloves and 5 min for mechanical cutting tools. For reasons of efficacy use whey protein powder with at least 80% protein content. Replace the whey solution regularly (e.g., after each crop row) to prevent cross contamination of the plant		
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Target Pests or Group of Pests	Method	Application	Application Rates	Notes	
Diammonium phosphate	Reg. (EU) 2016/548 ITAB	Orchards including cherry tree (Prunus spp.)	Attractant	Mediterranean fruit fly (Ceratitis capitata), Cherry fly (Rhagoletis cerasi)	Placed in physical traps	Na	Mass trapping: 1 trap per tree up to 100 traps/ha	42–56	max 4 kg/hL
		Olive trees (Olea europaea)		Olive fly (Bactrocera oleae)					
		Citrus spp.		Mediterranean fruit fly (Ceratitis capitata)					
Sunflower oil	Reg. (EU) 2016/1978 ITAB	Tomato (Lycopersicum esculentum)	Fungicide	Tomato powdery mildew (Pseudisporum neolycopersici)	Foliar application spraying	BBCH 32–37 then BBCH 61–71	2 to 4	8	0.092 kg/hL (0.1 L) to 0.46 kg/hL (0.5 L)

Precautions

1. Precautions must be taken to avoid overwatering and spilling of the dispersion.
2. Treatment should be avoided during flowering time.
| Basic Substance | Approval Regulation and Applicant | Crops and/or Situation | Function in Plant Protection | Target Group of Pest or Group of Pests | Application | Application Rates | Notes | | |
|---|---|---|---|---|---|---|---|---|---|
| Black bean aphid (Aphis fabae) | Roj. (EU) 2017/419 ITAB | Insecticide, fungicide, acaricide | Bean, for example: French bean (Phaseolus vulgaris) | Black bean aphid (Aphis fabae) | Spring Summer until BBCH 89 (fully ripe) | 4500–7500 g/ha | | |
| Peach-potato aphid (Myzus persicae) | Roj. (EU) 2017/419 ITAB | | Potato (Solanum tuberosum) | Peach-potato aphid (Myzus persicae) | Spring Summer until BBCH 49 (end of tuber formation) | Na | 4500–10,000 g/ha | |
| Aphids, for example: cabbage aphid (Brevicoryne brassicae), Nasonovia ribisi | | | Leaf Vegetables: Lettuce (Lactuca sativa), Cabbage (Brassica oleracea) | Aphids, for example: cabbage aphid (Brevicoryne brassicae), Nasonovia ribisi | Spring Summer until BBCH 19 (9 or more true leaves unfolded) | 4500–7500 g/ha | Preventive treatment is inefficient 24 h of maceration at 20 °C is enough | |
| Elder aphid (Aphis sambuci) | | | Elder tree (Sambucus racemosa) | Elder aphid (Aphis sambuci) | Foliar spraying or shoot spraying directly on aphids | 1–5 | 7–15 | 1500 g/L (dry matter) | |
| Rose aphid (Macrosyphum rosae) | | | Rose (Rosa sp.) | Rose aphid (Macrosyphum rosae) | Spring Summer | 400–800 | 6000–12,000 g/ha | |
| Aphids sp. | | | Spinacea sp. | Aphids sp. | | 300–600 | 4500–9000 g/ha | |
| Basic Substance | Approval Regulation and Applicant | Crops and/or Situation | Function in Plant Protection | Target Pests or Group of Pests | Application | Application Rates | Notes |
|-----------------|----------------------------------|------------------------|-----------------------------|-------------------------------|-------------|-----------------|-------|
| Brassicaceae | | (cabbage—Brassica oleracea, rapeseed—Brassica napus, radish—Raphanus sativus) | Fleabeeetle (Phyllotreta nemorum) | Spring Summer Until BBCH 19 (9 or more true leaves unfolded) | 1–6 | 300–500 | 4500–10,000 g/ha ^18 |
| | | | Diomndback moth (Platella xylostella) | Spring Summer until BBCH 49 (Typical leaf mass reached) | | | |
| Apple tree | (Malus domestica), Peer tree (Pyrus communis) | | Codling moth (Cydia pomonella) | 2 treatments in April, 1 treatment in May | 3 15 | 300–900 | 4500–13,500 g/ha ^18 |
| Bean, for example | French bean (Phaseolus vulgaris) | | Two-spotted spider mite (Tetranychus urticae) | Spring Summer Until BBCH 89 (fully ripe) | 1–6 (commonly 3) 7–21 | 300–500 | 4500–7500 g/ha ^18 | 7 24 h of maceration at 20 °C is enough |
| Grapevine | (Vitis vinifera) | | Two-spotted spider mite (Tetranychus urticae), red spider mite (Tetranychus telarius) | Spring Summer Until BBCH 89 stage | 1–6 (three before flowering, three after flowering) | 300–600 | 4500–8000 g/ha ^18 | |
| Brassicaceae | (Mustard family, Brassica sp., Sinapis sp., radish—Raphanus sativus) | | Alternaria sp. | Foliar spraying | Spring Summer until BBCH 49 (typical leaf mass reached) | 1–6 7–15 1500 g/L (Based on dry matter) ^18 | 300–500 | 4500–7500 g/ha ^18 | 7 |
| Cucurbitaceae | (Cucumber—Cucumis sativus) | | Powdery mildew (Erysiphe polygoni), Alternaria alternata f. sp. cucurbitae | Until BBCH 89 (typical fully ripe colour) | | | |
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Pest or Group of Pests Target	Application	Application Rates	Notes	PHI 1
Fruit trees (Apple trees—Malus domestica, Plum trees—Prunus domestica, Peach trees—Prunus persica, Sweet cherry tree—Prunus avium)			Leaf spot (Alternaria alternata), brown rot, blossom blight (Monilinia laxa), Botrytis cinerea, back bread mold (Bispora stolonifer)	Foliar and Fruit spraying	Spring Summer Until BBCH 87 (fruit ripe for picking)	300–900	450–13,500 g/ha \(^\text{18}\)	
Grapevine (Vitis vinifera)			Downy mildew (Plasmopara viticola)	Foliar spraying	Spring Summer Until BBCH 89 stage	300–600	4500–9000 g/ha \(^\text{18}\)	
Potato (Solanum tuberosum)			Late blight (Phytophthora infestans)					
Cucumber roots (Cucumis sativus)			Powdery mildew (Podosphaera fusca), Root fungi like common root rot, seedling blight (Pythium spp.)					
Tomato (Lycopersicum esculentum)			Early blight (Alternaria solani), Septoria blight (Septoria lycopersici)	Included in mulch	Not relevant	1	Na	
Ornamental trees use of which Prunus spp., Roses (Rosa spp.)			Ornamental cryptogramic diseases Rose black spot (Marsonia spp.), Rose rust (Phragmidium mucronatum), leaf curl diseases, monilioses, Oidium and mildew					

\(\text{18}\) Na Na Na 15 kg/ha \(^\text{18}\) Na Dry plant aerial parts
Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Pest(s) or Group of Pest(s) Target	Method	Application	Application Rates	Notes					
Clayed charcoal	Reg. (EU) 2017/428, Ets Christain Callegari	Grapevine (*Vitis vinifera*)	Protectant	Esca (black measles) caused by a complex of fungi that includes several species of *Phaeoacremonium* primarily by *Phaeoacremonium minimum* (Pm) (currently known as *P. ultimum*), and by *Phaeomoniella chlamydospora* (Pch)	Soil burying	Na	1/3 years	1095	Na	Na	500	Na	
Hydrogen peroxide	Reg. (EU) 2017/409, ITAB	Vegetables—*Solanaceae* like tomato (*Lycopersicon esculentum*), bell pepper (*Capsicum spp.*), *Lettuce* (*Lactuca sativa*), Horticulture flowers like common zinnia (*Zinnia elegans*)	Fungicide, bactericide	Soil bacteria (*Ralstonia solanacearum*, *Botrytis cinerea*), Bacterial leaf spot pathogen (*Xanthomonas campestris pv. vitianes*), Fungi, especially pathogenic *Alternaria zinnia*, *Alternaria alternata*, *Fusarium* spp.	Apply before cutting	Na	To be applied before every use of the tool	Na	Na	Na	Na	Na	Waiting period 30 s after washing
				Seeds are immersed in the prepared solution for 5 to 15 min (seed treatment)	Seed treatment before sowing	Na	1						
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Target Group of Pests or Group of Pests	Application	Method	Growth Stage & Season	No. Min/Max	PHI	Water L/ha Min–Max	Total Rate	Notes
Sodium chloride	Reg. (EU) 2019/556	Grapevine (Vitis vinifera)	Fungicide, insecticide, herbicide	Fungal diseases Powdery mildews (Erysiphe necator)	Foliar application spraying	From 1st shoots (BBCH 10) to cluster tightening (BBCH 57) Spring to summer	1–2 Na	60–2000 g/L	200	1200–4000	30	In case of 2 applications: one at 20 g/L + one at only 10 g/L. Maximum total rate of salt shall not exceed 6 kg/ha per year. Careful application should be controlled in terms of spray and target should be only the foliage. Low volumes are recommended in order to avoid spill. It is recommended not to spray every year, only in emergency cases. Maximum total rate of sodium chloride shall not exceed 6 kg/ha per year.
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crop(s) and/or Situation	Function in Plant Protection	Target Pests or Group of Pests	Application	Application Rates	Notes				
IBA		Mushrooms like *Agaricus bisporus*	Fungal diseases like cobweb disease (*Cladobotryum* strains—i.e., *Mycophilum*), dry bubble disease (*Leccosporium fungicola*), wet bubble disease (*Mycogone perniciosa*)	Hand trowel cup scoop	On finding the pathogen. No earlier than 16 days into grow cycle	1	Na	0.03 g/kg	-Dry	80–100 g/ha	Na

Salt is used as a spot treatment to cover incidents of disease. On a well-managed farm, disease will be spotted early with specialist teams identifying and spot treating. This avoids harvesters accidently spreading disease thorough contamination of personal protective equipment (PPE) and transfer to other areas. This in turn will keep on site disease levels low and avoid the use of large volumes of salt.
Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Pest Group or Pest Target	Application	Application Rates	Notes					
Grapevine (Vitis vinifera)	European grapevine moth (Lobesia botrana)	Foliar application spraying	1st late April to May (BBCH 55–57)	2nd July (BBCH 75–77)	3rd September (BBCH 83–91)	1–3	Depending on egg stage	600 g/ha	200	1200–3600 g/ha	30	
Salt swamps and salt marshes	Baccharis halimifolia	Spot application on drilled tree stump or on soil in direct vicinity of tree stump	November–February	1	Na	Na	Na	10–100 g per tree stump	Na			
Beer	Reg. (EU) 2017/2090 ITAB	All edible and nonedible crops	Molluscicide	Pest slugs and snails	Specific traps for slugs	At the beginning of infestation	1–5	Na	Not applicable (because ready to use liquid)	Na	Na	Na

Notes:
- Careful application should be controlled in terms of spray and target should be only the foliage. Low volumes are recommended to avoid spill. It is recommended not to spray every year, only in emergency cases.
- Treatment is allowed only in salt marshes and salt swamps zones as defined by national or local authorities. Treatment should be performed outside the rainy period.
| Basic Substance | Approval Regulation and Applicant | Crops and/or Situation | Function in Plant Protection | Pests or Group of Pests Target | Application | Application Rates | Notes | |
|---|---|---|---|---|---|---|---|---|
| Mustard seed powder | Reg. (EU) 2017/2066 ITAB | Wheat seeds (Triticum vulgare, Triticum aestivum), Durumk wheat (Triticum durum), Spelt (Triticum spelta) | Fungicide for seed treatment | Fungi like Common Bunt (Tilletia caries, Tilletia foetida) | Seed application before sowing | Summer to Autumn | 1 Na Na Na 1.5 kg/100 kg seeds Na | Mix 1.5 kg of mustard seeds powder with 4.5 L water. Treat 100 kg seeds with the slurry created |
| Talc E553B | Reg. (EU) 2018/691 COMPO Expert France SAS | Fruit trees i.e., Apple fruit (Malus Domestica), Pear tree (Pyrus sp.), Olive tree (Olea europea), etc. | Insectifuge, fungifuge | Physical barrier, Insectifuge: Insects and mites like Cacopsylla pyri, Cacopsylla fulgaralis, Drosophila suzukii, Panonychus ulmi, Bactrocera oleae | Foliar application spraying | From BBCH 41 1st application: 2-5 21–28 2.13 to 3.54 kg/hL succeeding applications: 1.7 to 2.83 kg/hL 600–1000 | 1st application: 21.25 kg/ha succeeding applications: 17 kg/ha Na | Water solution prepared just before application and maintained stirred |
| | | Fruit trees i.e., Apple fruit (Malus Domestica), Pear tree (Pyrus sp.) | Grapevine (Vitis vinifera) | Physical barrier, Fungifuge: Foliar fungi like mildews (Venturia inaequalis, Erysiphe necator) | Foliar application spraying | From BBCH 20 3-5 14–21 1.28–2.13 kg/hL | 12.75 kg/ha | |
| Onion oil | Reg. (EU) 2018/1295 Bionest | Carrots, celery, parsnip, parsley root | Repellent, scent masking | Carrot root fly (Psila rosae) | Masking the smell of the umbelliferous crop by onion oil evaporated from dispensers | Shortly after planting or crop emergence (around mid–April until end of November (before harvest)) | 1 Na Na 0.08–0.16 L/ha Granule Dispenser 17.6–35.2 g/ha | 4–8 dispensers per ha professional use only |
| Basic Substance | Approval Regulation and Applicant | Crops and/or Situation |
|----------------|----------------------------------|------------------------|
| L-cysteine | Reg. (EU) 2020/642 Soleo-EcoSolutions | All crops and forestry in tropical areas |
| | | Insecticide |
| | | Leaf cutting ants |
| | | Hand held spreader |
| | | Post swarming (July) |
| | | 1–3 |
| | | 30 |
| | | 3–36 kg granules/ha |
| | | Na |
| | | Min 0.015 kg/ha |
| | | Max 2.88 kg/ha |
| | | 21 |
| | | Na |
| | | Used as an insecticide against ants. Application is made by hand on nest of ants. The application can be renewed, if necessary, with a maximum of 3 applications. Minimum/Maximum number of nests by hectare: 10–120 |
| Cow milk | Reg. (EU) 2020/1004 Basic-EcoLogique | Vegetable Gardening pumpkin (Cucurbita pepo) |
| | | Flower Gerbera (Gerbera jamesonii) |
| | | Cucumber (Cucumis sativus), Zucchini squash (Cucurbita pepo) |
| | | Powdery mildew (Erysiphe cichoracearum) |
| | | From three weeks after sowing (9th leaf unfolded on main stem) to 9 or more primary side shoots visible (BBCH 19–49) 34 |
| | | 3–4 |
| | | 7 |
| | | 5–10 L/hL |
| | | 1000–1500 |
| | | 50–150 L/ha |
| | | Na |

Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crops and/or Situation
		Grapevine (Vitis vinifera)
		Powdery mildew (Erysiphe necator)
		From 1st shoots (BBCH 07) to inflorescences fully developed; flowers separating (BBCH 57) 22
		3–6
		6–8
		10–40 L/hL
		100–300
		10–120 L/ha
		Na
		From leaf development (BBCH 06) until flowering (BBCH 06) 23
		3–4
		7–12
		50 L/hL
		400
		200 L/ha
		Na
		No application in presence of fruits
		Before and during flowering (BBCH 51–69)
		3–4
		16 L/hL
		500–1000
		80–160 L/ha
		8

Application

Method	Growth Stage & Season	No.	Min/Max	IBA (Days)	MIF–Max	Water L/ha Min–Max	Total Rate	
Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Protection	Target Pests or Group of Pests	Application	Application Rates	Notes	
----------------	---------------------------------	------------------------	-----------------------------	-------------------------------	-------------	-------------------	-------	
Soybean (Glycine max (L.) Merr)	Soybean Powdery mildew (Erysiphe diffusa)	On leaves (BBCH 19–49)	3–4	7	18 L/hL	1000–1500	180–270 L/ha	**Dipping for 2 s.** For reasons of efficacy use milk with at least 3.5% protein content. Replace the milk regularly (e.g., after each crop row) to prevent cross-contamination of the plants.
Gloves fingertips and mechanical cutting tools	All crops	Virus (mechanically transferable) e.g., Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV), Pepper mild mottle virus (PMMV), Cucumber green mottle mosaic virus (CGMMV)	Dipping	On tools	Before/after every plant contact	Before/after every plant contact	Na Na	
Potatoes (Solanum tuberosum)	Early blight (Alternaria solani)	BBCH 21–85	7		600–1000	6–10 L/ha (0.3–0.5 kg onion bulb/ha)		
Vegetable Gardening Tomato (Lycopersicum esculentum)	Tomato late blight (Phytophthora infestans)	Spray	75 days after planting BBCH 21–75	3–5	1 kg/hL	1500	15 L/ha (0.75 kg onion bulb/ha)	Na
Cucumber (Cucumis sativus)	Cucumber gray mold (Bryotis cinerea)					7		
Table 1. Cont.

Basic Substance	Approval Regulation and Applicant	Crops and Situation	Function in Plant Protection	Target Pests or Group of Pests	Application Method	Growth Stage & Season	Application Rates	Notes	
Chitosan	Reg. (EU) 2022/456	Horticulture	Fungicide	Plant elicitor; plant resistance against pathogenic fungi and bacteria	Spray Low–Medium volume spraying	BBCH 09 to BBCH 89	4–8 2 weeks	50–100 g/hL	200–400 100–400 800–3200
		olive trees			From 1st new leaf development BBCH 10 to development of fruit BBCH 71	BBCH 09 to BBCH 89	200–600 800–7800	800–3200	
		grapes			Immersion bluff	Postharvest BBCH 89+	1 - 1 -	- - -	
		grass		Pathogenic fungi and bacteria				Na	

1 IBA: Interval between applications; PHI: minimum preharvest interval; Na: Data not available; 2 The product cannot be applied in case of hot temperature. It is used in case of rainy period; 3 Indirect actions, no direct insecticide and fungicide properties; 4 maximum of rate per application; 5 maximum total rate per crop/season; 6 The aqueous solutions in this application are applied with few or without dilution. Here the case without dilution is calculated. Usually, not all trees are treated with brush application but only injured trees. In the calculation of maximum rate, it was assumed that 3000 trees per ha are treated with 0.15 L product per tree. This means that all trees of an orchard would be treated with several big wounds, which would be really the maximum rate and in reality, is very improbable; 7 Express as acetic acid. 1/1 dilution of vinegar/water L/L; 8 Considering 0.9 to 2 qt of seeds per ha; 9 Expressed as acetic acid. 30 mL/1 L dilution of vinegar/water for vinegar at 8% acetic acid; 10 Of main active substance acetic acid for vinegar at 10% acetic acid; 11 Expressed as acetic acid in a preparation with 60% vinegar (diluted in water), for vinegar at 10% acetic acid; 12 Treatments must be delayed 24–48 h or more after rain; 13 Spray when there is sun (preferably morning); 14 Do not apply when any plant is at a later growth stage than BBCH 49; 15 With a maximum of 10% concentration (30 L in 300 L); 16 Do not apply on treating fingertips right before or during harvest of edible commodities; 17 Depending upon environmental factors such as climate and topography; 18 The quantities of fresh nettle (or dry matter) written represents the quantities of nettle used in the recipe, but not the quantities that are effectively put in field—there is a filtration before; 19 Treatment, just before sowing; 20 Assuming plant density of between 0.1/m² to 1/m²; 21 300 g of granules per nest multiplied by 120 nest/ha = 36 kg product/ha. Considering a maximum of 8% L-cysteine in the product, the maximum application rate per treatment of L-cysteine is 2.88 kg/ha; 22 Do not apply when any plant is at a later growth stage than BBCH 57; 23 Do not apply when any plant in the greenhouse is at a later growth stage than BBCH 06 and in presence of fruits; 24 Do not apply when any plant in the greenhouse is at a later growth stage than BBCH 49.
Table 2. Typical uses of the basic substances.

Substance Name	Use(s)	Application	Recipe	Formulation Type
Equisetum arvense	Fungicide	Spraying on crops	2–2.25% water dilution	Dispersible concentrate
			200 to 225 g/100 L water	
			The product cannot be	
			applied in case of hot	
			tem-perature. It is used	
			in case of rainy period	
			Dry	Mulch
Chitosan hydrochloride	Elicitor	Spraying on crops or	0.05–0.2% water dilution	Soluble powder, paste
		seeds	50 to 200 g/100 L water	
			Must be applied within	
			24 h	
Sodium hydrogen carbonate	Fungicide	Aerial parts spraying	0.33–2% water dilution	Soluble powder
			333 to 2000 g/100 L water	
		Postharvest dipping	1–4% water dilution	
			1 to 4 kg/100 L water	
Sunflower oil	Fungicide	Foliar spraying	0.1–0.5% water dilution	Oil dispersion
			100 to 500 mL/100 L water	
Hydrogen peroxide	Seed treatment	Seeds soaking	Ready-to-use solution (<5%)	Ready-to-use solution
Urtica spp.	Fungicide Insecticide	Spraying	3–4 days maceration in water	Dispersible concentrate
			at 20 °C	
			Fresh leaves (75 g/L) or	
			dried leaves (15 g/L)	
		Mulch incorporation	Addition of dried aerial parts.	Mulch
			83 g/kg of mulch	
Clayed charcoal	Protectant	Soil burying	Buried. 500 kg/hectare maximum	Pellet
Sodium chloride	Fungicide Insecticide	Foliar spraying	0.6–2% water dilution	Soluble powder
			600 to 2000 g/100 L water	
		Substrate burying	Mix salt in the substrate.	Pellet
			30 g/kg substrate (3%)	
Beer	Molluscicide	Trap	Covered slug traps. 1 trap per	Pure product
			m² maximum	
Di Ammonium Phosphate	Attractant	Trap	Place in traps/bottle, 30 g/L.	Soluble powder
Onion oil	Odor mask	Oil dispenser	Fill the dispenser with onion	Oil or pellet
			oil only (20 mL)	
			Fill the dispenser with oil	
			then add the pellets (4.4 g	
			oil per 30 g granule)	
L-cysteine	Insecticide	Hand-held spreader	Mixture with matrix (flour, food	Bait (ready for use)
			grade) at a concentration of	
			maximum 8%	
Table 2. Cont.

Substance Name	Use(s)	Application	Recipe	Formulation Type
Cow milk	Fungicide	Foliar spraying	5–50% water dilution = 0.5 to 5 L of cow milk filled up with water to 10 L	Soluble concentrate
		Dipping	Dipping tools for 2 s in undiluted cow milk. For reasons of efficacy use milk with at least 3.5% protein content	
Allium cepa L. bulb extract	Fungicide	Spray application	Boil 500 g of chopped onions in 10 L of water for ten minutes then let infuse for a quarter of an hour and filter the mixture	Dispersible concentrate
Chitosan	Fungicide	Spray application & Immersion	Preparation 1: added to a half-filled water tank, making sure the powder is evenly distributed over the water surface to avoid aggregation. The mixture should be stirred vigorously while adding the remaining water. The mixture should be used as soon as possible. Preparation 2: dissolved in water with pH < 5. The pH of water should be regulated by adding 7 mL vinegar (8% of acetic acid) per 1 L of water.	Soluble powder
Vinegar	Fungicide	Seed treatment	Vinegar to be diluted in compliance with the rates of application reported in Appendix II.	Liquid for seed treatment
		Tools disinfection		
	Herbicide	Spray or spot application/		Liquid
	pH modifier	In combination with chitosan	For the herbicidal use in spot applications on paths, borders, sidewalks and terraces, vinegar needs to be diluted to a concentration of 60% vinegar in water (60/40 vinegar/water).	Liquid

Some applications were not validated by DGSanté and Member States during discussion and votes. Some were withdrawn (Table 3) by applicants during evaluation or discussions with no regulatory trace, while some were processed up to the vote and finally non-approved with corresponding Implementing Regulations (Table 4).
Table 3. Basic substance applications retired during the evaluation process.

Substance Name	Intended Use(s)	EFSA Opinion	Reason(s)
Castanea and *Schinopsis* sp. tannins	Bactericide, fungicide and nematicide	EN 1363	Limited number of studies about toxicity and residues led to a doubt concerning exposure assessment. Non-dietary exposure considered as hazardous.
Honey from rhododendron	Rodenticide	EN 1155	Lack of studies concerning substance composition and efficacy on rodents. Rodents in traps might suffer ‘too long’.
Extract from rhododendron	Rodenticide	EN 1596	Lack of studies concerning substance composition and efficacy on rodents. Rodents in traps might suffer ‘too long’.
Quassiaamara extract	Insecticide and repellent	EN 1382	Data gaps were identified for genotoxicity, residues, environmental risk and exposure assessment. Concerns were raised regarding reproductive and endocrine toxicity.
Valeriana officinalis	Frost protection	None	Potential neurotoxicity. Valerian herbal tea makes it easier to fall asleep.
Citrus pulp	-	None	-
Potassium metabisulfite	-	None	-
Didecyl-dimethylammonium chloride (DDAC)	-	RN-214	Toxic to aquatic organisms.

Table 4. Basic substance applications refused (non-approval).

Substance Name	Intended Use(s)	Implementing Regulation	EFSA Opinion	Reason(s)
Achillea millefolium L.	Fungicide and insecticide	EU no. 2017/2057	EN 1093	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and substance is not considered as foodstuff.
Arctium lappa L. aerial parts	Fungicide and insecticide	EU no. 2082/2015	EN 699	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and substance is not considered as foodstuff.
Artemisia absinthium L.	Fungicide, nematicide and insecticide	EU no. 2015/2046	EN 665	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and Regulation (EC) 1334/2008 fixes limits for this substance.
Artemisia vulgaris L.	Insecticide/repellent	EU no. 2015/1191	EN 644	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and Regulation (EC) 1334/2008 fixes limits for this substance.
Table 4. Cont.

Substance Name	Intended Use(s)	Implementing Regulation	EFSA Opinion	Reason(s)
Capsicum annuum L. var. *annuum*, longum group, cayenne, extract (Oleoresin capsicum)	Repellent	EU no.2021/464	EN 1838	Risk assessment for toxicology show genotoxicity, causing serious eye damage, being harmful if swallowed and also as cause of skin irritation, although substance is considered as foodstuff
Caffeine	Molluscicide	EU no. 2022/xx	EN 6423	Proposal for non-approval under discussion
Carbon dioxide	Rodenticide	EU no. 2021/80	None	-
Comfrey steeping	Fungicide and insecticide	EU no. 2021/809	EN 1753	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and Regulation (EC) 1334/2008 fixes limits for this substance
Dimethyl Sulfide	Attractant	EU no. 2021/1451	EN 1911	Risk assessment for toxicology and ecotoxicology not provided for long-term toxicity and carcinogenicity concern
Grape (*Vitis vinifera*) cane tannins	Fungicide	EU no. 2020/29	EN 1414	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and substance is not considered as foodstuff
Landes pine tar	Protectant and repellent	EU no. 2018/1294	EN 1311	It may contain substances of concern, so there is a lack of data, so risk assessment is not comprehensive enough and left doubts
Origanum vulgare L. essential oil	Fungicide, bactericide and insecticide	EU no. 2017/241	EN 1054	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts
Paprika extract E160c	Repellent	EU no. 2017/2067	EN 1096	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts
Potassium sorbate	Fungicide	EU no. 2017/2058	EN 1232	Lack of data concerning residues lead to an impossibility concerning exposition assessment
Propolis (water soluble extract)	Fungicide and bactericide	EU no. 2020/640	EN-1494	Defined as a skin sensitizer, risk assessment for genotoxicity and endocrine disruption toxicity left doubts. No safe limit for the use. Substance is not considered as foodstuff
Rheum officinale roots extract	Fungicide	EU no. 2015/707	EN 617	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and substance is not considered as foodstuff
Table 4. Cont.

Substance Name	Intended Use(s)	Implementing Regulation	EFSA Opinion	Reason(s)
Saponaria officinalis L. roots	Acaricide and elicitor	EU no. 2020/643	EN 1263	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts
Satureja montana L. essential oil	Fungicide and bactericide	EU no. 2017/240	EN 1051	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts
Tanacetum vulgare L.	Repellent	EU no. 2015/2083	EN 666	Risk assessment for toxicology and ecotoxicology not comprehensive enough left doubts and substance is not considered as foodstuff
Willow bark and stem extract	Plant growth and defense elicitor	EU no.2022/	EN 1872	Previously proposed for non-approval since not sold for other uses, proposal under discussion, may be accepted.

The scientific literature dealing with basic substances is relatively limited but increasing in recent years (Figure 2), and there is poor information about the effectiveness in field trials of basic substances toward pests and pathogens.

![Figure 2](https://www.scopus.com)
Figure 2. Number of documents available on Scopus through searches with keywords ‘basic substances’ in ‘Article title, Abstract, and Keywords’ (histograms) or in ‘All fields’ (linear) published over the last 10 years (Source: Scopus, https://www.scopus.com, accessed on 11 May 2022).

In the last decade, MRLs for pesticides with agricultural trade are becoming important. In the EU, there are increasing requirements from retailers to their suppliers to provide fruits and vegetables with an amount of pesticide residue below the MRLs (Table 5).
Table 5. Examples of requests from the retailer of the amount of the Maximum Residue Level (MRL) and Acute reference doses (ARfD).

Retailer	Max. %MRL/Active Substance	Max. Sum %MRL/Sample	Max. %ARfD/Active Substance	Max. Sum %ARfD/Sample	Max. Number of Active Substances/Samples
ALDI/HOFER	70%	80%	70%	80%	3–5
ALBERT HEIJN	50%	-	50%	-	-
ASDA	80%	-	-	-	-
BILLA	100%	-	100%	-	-
DOHLA	-	70%	-	70%	3–5
EDEKA	70%	-	100%	-	5
EDEKA OWN BRANDS	50%	-	70%	-	5
GLOBUS	70%	-	70%	100%	5
LIDL	33.3%	80%	100%	-	5
KAUFLAND	33.3%	80%	50%	50%	5
NORMA	-	70%	-	70%	5
METRO	50%	80%	70%	100%	5
MIGROS	-	-	-	-	6
NETTO	70%	-	100%	-	5
REWE	50%	100%	70%	100%	5
REWE OWN BRANDS	50%	100%	50%	-	5
TEGUT	70%	-	70%	-	Max. 4 (>0.01 mg/kg)
TENGEL MANN	70%	150%	70%	100%	-
The substances tested during Casdar programs ’4P’, ‘Carie’, ‘Sweet’, ‘HE’, Ecophyto ‘Usage’ and some from projects have already been described (Marchand, 2016) (Table 6). New projects are ongoing to develop extensions of use, describe better efficacy through better positioning during the season or to investigate compatibility/incompatibility with other biocontrol agents (i.e., reduce copper and macro-organisms). This is the ongoing work for Coperreplace, ABAPIC (ITAB), Vitinnova (UNIVPM), and Euphresco BasicS (Euphresco Network).

Table 6. Examples of the applications of the basic substances in research projects.

Substance Name	Use(s)	Program	Reference
Horsetail (Equisetum arvense L.)	Fungicide	Casdar ‘4P’	[24–26]
White willow bark (Salix cortex)	Fungicide	Casdar ‘4P’	[24,25]
Vinegar	Seed treatment	Casdar ‘Carie’	[27]; http://itab.asso.fr/programmes/carie-bles.php, accessed on 23 May 2022.
Mustard seed powder	Seed treatment		
Sucrose	Elicitor	Ecophyto ‘Usage’ and Casdar ‘Sweet’, ABAPIC	[28]; https://ecophytopic.fr/cuivre-viticulture/proteger/micro-doses-de-sucre, accessed on 23 May 2022.
Fructose	Elicitor		[29]; https://ecophytopic.fr/sites/default/files/USAGE.pdf, accessed on 23 May 2022.
Talc	Fungicide	Casdar ‘HE’	[30]; https://ecophytopic.fr/recherche-innovation/proteger/projet-he, accessed on 23 May 2022.
Whey	Fungicide		[31]
Di-ammonium phosphate (DAP)	Attractant		[33]; https://ecophytopic.fr/pic/proteger/proteger-ses-oliviers-de-la-mouches-en-limitant-les-traitements, accessed on 23 May 2022.
Calcium hydroxide	Fungicide		[34]; https://www.researchgate.net/publication/279636728_The_post-infection_activity_of_hydrated_lime_against_conidia_of_Venturia_inaequalis, accessed on 23 May 2022.
Chitosan hydrochloride	Fungicide	Euphresco BasicS	[35]; www.vitinnova.it/en, accessed on 23 May 2022.
		PRIMA StopMedWaste	[36]; www.stopmedwaste.eu, accessed on 23 May 2022.
		ZeroSprechi	[37]; www.zerosprechi.info/en/zerosprechi, accessed on 23 May 2022.
		CleanSeed	[38]; https://www.cleanseed.it/en/cleanseed-2/, accessed on 23 May 2022.

Each use of plant extracts and natural products, such as decoctions, herbal teas, or aqueous solutions, have been defined and tested in the field or identified from the literature then controlled or cross-referenced with producer surveys. Whenever water is mentioned in these tests, it is either natural spring water or rainwater. Each basic substance preparation is described in Section 2.5 of Basic substances applications in EU 2012. The evaluation process of the basic substance application is getting longer, and legal delays fixed by EC are not consistently respected. The evaluation process lasts an average of 19 months (Supplementary Table S1 and Figure S1), while the legal maximum delay is fixed at 18 months until basic substance application admissibility. Even not considering admissibility evaluation delays that are considered outside of the evaluation process, this process becomes longer from year to year, resulting in a delay in availability of additional basic substances.

3. Discussion

The use of pesticides, if not appropriate, may lead to problems like contamination of the water, potential damage to sensitive species (e.g., bees), contamination of final food products and water, with up to 90% of applied pesticides not reaching the target species, and, also, because of the development of resistant pathogens and pests [39]. A high number of PPPs were not reauthorized (or companies did not provide the dossier for the reregistration
of products out of patent, due to high costs and uncertain benefits) and leaves a gap for several uses. It is important that authorities provide a good number of options to growers to protect their crops, since farmers cannot stand without PPPs for certain crops and uses, and there is an increasing need, because a lot of substance prohibition dates are fixed without substitution mean. Just as an example, this occurred with the fungicide mancozeb in January 2022 and a risk to occur in 2025 with copper, that is fundamental for plant protection in organic agriculture and a good support to prevent the appearing of resistant isolates in IPM. In France, the use of neonicotinoids, known as dangerous insecticides, is extended when there is no other way to preserve crops and productivity. With Farm to Fork Strategy of the European Green Deal, the European Commission is committed to reduce the use of the most dangerous synthetic pesticides of 50% and achieve at least 25% of the EU agricultural land under organic farming by 2030, although the decrease of synthetic pesticides is already ongoing. These trends, together with the implementation of sustainable development goals—SDGs by the United Nations—are demanding for new alternatives, such as basic substances, to tackle some of these issues. To achieve these goals, more research is needed to advance the design of better farming systems and the development of alternatives to synthetic pesticides and to copper formulations.

Three decades ago, the concept of MRLs was poorly known, while, in recent years, MRLs for pesticides arguably have become the first action growers should consider in their pest management decisions [40]. Trying to interpret consumer demands, retailers are increasingly required to reduce pesticide residues even more than the allowed thresholds (MRLs), which are defined considering a wide security factor (e.g., ×100) using the presence of pesticide residues as a factor of competition among companies. Requests from the retailers and consumer to reduce synthetic pesticide residues from fresh produce even more than the allowed threshold, such that the rules defined by the public administration have become more limiting for farmers in terms of the active ingredients allowed and MRLs [40,41]. The reduction of the presence of fungicide residues well beyond MRL may allow the pathogen to develop after harvest, resulting food loss and waste along the value chain. These developments have driven the search for alternative management strategies that are effective and not reliant just on conventional fungicide applications [5,42,43]. European regulation followed and carried this development with the introduction of new classes of phytosanitary products, in particular basic substances, but also new laws and simplification accompanied by the reduction of registration processes of low-risk substances, theoretically. Basic substances are approved for use in the EU and are products that are already sold for certain purposes, e.g., as a foodstuff or a cosmetic. Basic substances may be of major importance in biocontrol and several advantages can explain it. Basic substance regulatory application is simplified [44] and particularly reduced compared to other substances, therefore representing a lower cost to applicant (around 35-40 kEuro for approval of a basic substance and overall around 45 kEuro including approval for organic agriculture), thanks to the fact that these substances are already on the market for another purpose than plant protection, and safety is not an issue to be demonstrated. These substances are good alternatives available today and wide targets. Basic substances can be used in the crop protection as fungicide, bactericide, insecticide, etc., and most of them are allowed in organic production [18,45–47]. The basic substances are in order from 2014, when was the first approved application of Equisetum arvense L., chitosan hydrochloride, and sucrose until 2022, when a second chitosan formulation was approved. In some conditions basic substances were already at farm level, with a level of pest management not different than the standard. Just as example, chitosan hydrochloride was also applied in commercial conditions, in the field, and postharvest treatments, and several studies proved that it could have an effectiveness comparable to some commercial PPPs [42,48]. Basic substances, probably less efficient and practical to use than other active substances authorized as PPPs, are known and used by producers since decades as substitution means and have already demonstrated their effectiveness. Basic substances were the perfect tool to provide to producers as known, easy-to-use, less dangerous, and environmentally
more respectful. Today, there is a consensus among a wide range of stakeholders that synthetic pesticide used need to be gradually reduced to a level that is effectively required to ensure crop production and that risks of pesticide application should be reduced as far as possible. Basic substances are good alternatives available today in our hands. The use of these substances needs to be integrated in vocational education, training, and technical advice to farmers. Further research around the world on the efficacy of basic substances may prove in the future that these substances can replace pesticides without reducing yields or increasing production costs. To develop the uses and the field trials we listed here the main usages of basic substances. However, rates included in the approval schedule may not produce a significant containment of diseases and pests in specific pathosystems. Just as example, the advised application rate of chitosan hydrochloride is between 100 and 800 g/ha, equal to a concentration ranging among 0.05 and 0.2% with 200–400 L/ha, while trials in commercial vineyards found a good effectiveness delivering the chitosan hydrochloride, with a concentration of at least 0.5% and with a volume of at least 500 L/ha [34,49]. For this reasons, large-scale trials are very important to demonstrate the effectiveness toward pathogens and pests in different environments and growing contexts, and a flexibility could be required in suggested dosages to avoid that applying basic substances at suggested rates can lead to a lack of or poor effectiveness and then the disaffection of users toward these innovative compounds, and this is in contrast with the requirements of finding solutions alternatives to the application of synthetic pesticides keeping the standard quality and quantity of the production, which is one of the drivers of the Farm-to-Fork Strategy of European Green Deal. Moreover, the diluent allowed for basic substance, up to now concretely restricted to water, may be another substance. In this case, vinegar has just been authorized for chitosan. Finally, increasing the demand from growers and competition among companies can lead to the reduction of costs of the treatments that, nowadays, are often higher than standard treatments.

4. Materials and Methods

4.1. Collection of Data

A systematic literature search from 2009 to 2021 was performed using the database of Scopus with the keywords ‘basic substance’ and ‘basic substances’. In the EU, several retailers request an amount of pesticide residue on fruit and vegetables below the legal limit (MRL), and data on some protocols were collected through companies and plant doctors.

4.2. Legislation

Basic substance criteria are defined by article 23 of Regulation (EC) No. 1107/2009, cited in introduction. By way of derogation from Article 4 of this regulation, a basic substance is approved when all relevant evaluations conducted in accordance with other Community legislation, governing other uses of this substance, showing that it has neither an immediate or delayed harmful effect on human or animal health nor any unacceptable influence on the environment. Active substances that could be defined as ‘foodstuff’ are intrinsically considered as basic substances, following Article 2 of Regulation (EC) No. 178/2002. Basic substances shall be approved in accordance with paragraphs 2–6 of regulation (EC) No. 1107/2009 and by way of derogation from Article 5, the approval shall be for an unlimited period. By way of derogation from Article 7 of Regulation (EC) No. 1107/2009, an application for approval of a basic substance can be made by a Member State or any interested party. At the end of the evaluation process, basic substances shall be listed separately in the Regulation referred to in Article 13(4). The Commission may review the approval of an active substance at any time. It may take into account the request of a Member State to review the approval. Article 28 of Regulation (EC) No. 1107/2009 set the absence of marketing authorizations and usages allowance for basic substances. However, no formal authorization is required as long as the product contains exclusively basic substances (see corresponding Review Report) [49,50].
4.3. Approval Process

The approval process of a basic substance starts with a request for approval (Figure 3). The applicant estimates if the substance concerned fulfil all criteria of basic substances category and then complete the BSAT, in English, to obtain a Basic Substance Application. Several guidance documents, such as the official SANCO guide or the teaching guide from the ITAB, have been published to help applicants to build basic substance application correctly [50]. For the transmission of the basic substance application, once completed, the file should be sent to the DGSanté, representing the European Commission (EC). The Basic Substance Application can firstly be sent to national competent authorities for a reassessment and possibly a support. For example, in France, the Basic Substance Application can be sent to the Ministry of Agriculture (DGAl in France), who can ask for the National Authority’ opinion and then transfer the file to the EC. Upon receipt of the Basic Substance Application, EC implements the approval procedure detailed in Article 23 of Regulation (EC) No. 1107/2009. Admissibility may be pronounced at any time, directly or after questions from DGSanté. It constitutes the real start of the application (black line in Figure 3). The first stage is based on the Basic Substance Application evaluation by Member States and EFSA as scientific assistance leading to a request for corrections and questions. The request is sent to the applicant, and his answers shall be sent back within one month to the EFSA. For decision and approval, at the end of the basic substance application evaluation, EFSA will deliver its opinion, append a comment, and send the basic substance application to the DG Health within 3 months for the final vote of Member States in the PAFF committee (Figure 3). Approval, if accorded, is effective at the date of the publication of an implementing Regulation modifying Regulation (EU) No. 540/2011 [8].

![Basic Substance pathway](image)

Figure 3. Approval process and timeline of a Basic Substance Application (BSA).

The period of examination of the basic substance application is established in paragraph 1 of article 37 of Regulation (EC) No. 1107/2009. It is said: ‘The Member State examining the application shall decide within 12 months of receiving it whether the requirements for authorization are met. Where the Member State needs additional information, it shall set a period for the applicant to supply it. In that case, the 12-month period shall be extended by the additional period granted by the Member State. That additional period shall
be a maximum of 6 months and shall cease at the moment when the additional information is received by the Member State. Where at the end of that period the applicant has not submitted the missing elements, the Member State shall inform the applicant that the application is inadmissible.” [10]. The maximum delay is therefore set at 18 months. However, although clearly defined, these steps are not so straightforward in many cases [51].

4.4. Extension of Uses Process

The request for an extension is somehow similar, except the need of support from corresponding agricultural sectors at the deposit step. Some extensions were voted after submission, some others were granted with admissibility and voted rapidly after; some later were following the full approval pathway, including admissibility, evaluation, outcome, full vote at PAFF Committee (appearance in Part A (lecture, discussion), C (proposal) and B (effective vote)). This latter process sometimes takes the same amount of time compared to a new approval, which is considered very excessive by the applicants, having an approved substance at the beginning of their request and only asking for one line sometimes in the Good Agricultural Practices (GAP) table.

4.5. Regulation Analysis

The EU Pesticides Database [52] was used to detect basic substances and their status (approved, nonapproved, pending, and modifications of Review Reports). Corresponding linked Implementing Regulations [20] attached to each active substance were found using the same method and cross-verified with Implementing Regulation (EU) 540/2011. The EU law database for Eur-Lex was also used to track each Implementing Regulation publication. Furthermore, EFSA documents were also compiled to extract decisions supportive analyses.

5. Conclusions

Searching for alternative products for crop protection is an important strategy for promoting more sustainable food systems. The use of basic substances is in line with the restriction on the application of chemical PPPs and the principles of the European Green Deal and SDGs, mostly renewables and with no MRL. There is relatively poor information about the effectiveness of basic substances as compared to synthetic pesticides and biological PPPs. A higher testing and validation of the use of basic substances as a phytosanitary measure can lead to further reduction of application of synthetic pesticides. In addition, searching for the most effective dosage of the basic substance is critical and an important question for phytosanitary consultants (the plant doctors that are opinion leaders in application of innovations in pest management), growers, stakeholder, and companies to avoid that their application at the recommended dose can lead to a lack of or poor effectiveness of these substances. For this reason, a flexibility might be required in the suggested dosage of basic substances approved to ensure good maintenance of the quality and quantity of production, which is one of the keys of the Farm to Fork Strategy of the European Green Deal. Moreover, a defined timeline for approval is basilar to have the chance to increase the number of basic substances available for growers, the scientific community, and the whole agricultural sector, with final benefits for the consumers.

6. Patents

All Implementing Regulations may be considered as patents but with free exploitation, since no Marketing Authorizations are needed for basic substances.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27113484/s1, Figure S1: Time needed for Basic Substance Application admissibility evaluation over time (bars) and tendency line (dotted line); Table S1: Total time of basic substance application process within admissibility to Implementing Regulation publication in months.
Author Contributions: Conceptualization, G.R. and P.A.M.; methodology, Y.O. and M.M.; resources, G.R., Y.O., Y.D., M.M. and P.A.M.; writing—original draft preparation, G.R., Y.O., Y.D., M.M. and P.A.M.; writing—review and editing, G.R., Y.D., M.M. and P.A.M.; supervision, G.R. and P.A.M.; and funding acquisition, G.R. and P.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: For G.R. and M.M., this work was conducted within the framework of the PSR ZeroSprechi, PSR Vitinnova, PSR CleanSeed, and of PRIMA StopMedWaste projects, which are funded by PRIMA, a program supported by the European Union. For Authors Y.O., Y.D., and P.A.M., the French Ministry of Agriculture (CASDAR ‘4P’, ‘Contrat de branche Carie’, ‘Sweet’, and ‘HE’; Ecopephyto ‘Usage’, ‘Biocontrol’ ‘INADOM’, and ‘PARMA’), French Ministry of Ecology (Project ‘PNPP’ CT0007807, ‘SubDOMEx’, and ‘Jussie’). All authors worked within the “Euphresco BasicS (Objective 2020-C-353) project. Thanks are expressed to Antonello Lepore, Gianni Ceredi and other technicians for providing data about pesticide residues requested by retailers.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nation. Growing at a Slower Pace, World Population Is Expected to Reach 9.7 billion in 2050 and Could Peak at Nearly 11 billion around 2100. 2019. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 10 December 2021).
2. FAO. 2021. Available online: https://www.fao.org/news/story/en/item/1402920/icode/ (accessed on 1 December 2021).
3. Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [CrossRef] [PubMed]
4. Dietz-Pfeilstetter, A.; Mendelsohn, M.; Gathmann, A.; Klinkenbuß, D. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection. Front. Plant Sci. 2021, 12, 682387. [CrossRef] [PubMed]
5. Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 2016, 113, 69–76. [CrossRef]
6. Chèze, B.; David, M.; Martinet, V. Understanding farmers’ reluctance to reduce pesticide use: A choice experiment. Ecol. Econ. 2020, 167, 106349. [CrossRef]
7. Robin, D.; Marchand, P.A. Evolution of Directive (EC) No 128/2009 of the European parliament and of the council establishing a framework for Community action to achieve the sustainable use of pesticides. JRS 2019, 7, 1–7. [CrossRef]
8. EU. Commission Implementing Regulation No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European parliament and of the council as regards the list of approved active substances. Of 2011, L153, 1–186.
9. Matyjaszczyk, E. Problems of implementing compulsory integrated pest management. Pest Manag. Sci. 2019, 75, 2063–2067. [CrossRef]
10. Robin, D.; Marchand, P.A. Biocontrol active substances: Evolution since the entry in vigour of Reg. 1107/2009. Pest Manag. Sci. 2019, 75, 950–959. [CrossRef]
11. EC. Commission Regulation No 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. Of 2009, L309, 1–50.
12. Kowalska, J.; Roszkowski, S.; Krzynińska, J. Substancje podstawowe—Efektywne uzupełnienie metod ochrony upraw. Basic substances—An effective supplement to crop protection methods. Prog. Plant Prot. 2021, 61, 139–146. [CrossRef]
13. Marchand, P.A. Basic and low-risk substances under European Union pesticide regulations: A new choice for biorational portfolios of small and medium-sized enterprises. J. Plant Prot. Res. 2017, 57, 433–440. [CrossRef]
14. Charon, M.; Robin, D.; Marchand, P.A. The importance of substances without maximum residue limit (MRL) in integrated pest management (IPM). Biotechnol. Agron. Soc. Environ. 2019, 23, 22–29. [CrossRef]
15. EC. Regulation No 178/2002 of the European parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Of 2002, L31, 1–24.
16. Euphresco. BasicS Project. 2021. Available online: https://www.researchgate.net/project/EUPHRESCO-Basic-substances-as-an-environmentally-friendly-alternative-to-synthetic-pesticides-for-plant-protection-BasicS (accessed on 1 December 2021).
17. Marchand, P.A.; Daviller, Y.; Riccioni, L.; Sanzani, S.M.; Horn, N.; Matyjaszczyk, E.; Golding, J.; Roberto, S.R.; Mattiuz, B.-H.; Xu, D.; et al. BasicS, an euphresco international network on renewable natural substances for durable crop protection products. *Chron. Bioreaur. Manag.* 2021, 5, 77–80.

18. Romanazzi, G.; Feliziani, E.; Sivakumar, D.; Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. *Front. Microbiol.* 2018, 9, 2745. [CrossRef]

19. European Commission. Working Document on the Procedure for Application of Basic Substances to be Approved in Compliance with Article 23 of Regulation (EC) No 1107/2009; SANCO/10363/2012 rev. 10; European Commission: Brussels, Belgium, 25 January 2021.

20. EU. EU Pesticides Database (v.2.2) Search Active Substances, Safeners and Synergists (europa.eu). 2021. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as (accessed on 23 May 2022).

21. Matyjaszczyk, E. Plant protection means used in organic farming throughout the European Union. *Pest Manag. Sci.* 2018, 74, 505–510. [CrossRef]

22. Marchand, P.A. Basic substances under EU pesticide regulation: An opportunity for organic production? *Org. Farming* 2017, 3, 16–19. [CrossRef]

23. EU. Commission Implementing Regulation (EU) amending and correcting Implementing Regulation (EU) 2021/1165 authorising certain products and substances for use in organic production and establishing their lists. *Official J. Eur. Union* 2022, in press.

24. Marchand, P.A.; Isambert, C.A.; Jonis, M.; Parveaud, C.-E.; Chevolon, M.; Gomez, C.; Lambion, J.; Ondet, S.J.; Aveline, N.; Molot, B.; et al. Evaluation des caractéristiques et de l’intérêt agronomique de préparations simples de plantes, pour des productions fruitières, légumières et viticoles économes en intrants. *Innov. Agron.* 2014, 34, 83–96.

25. CASDAR 4P: Protéger les Plantes. 2014. Available online: https://ecophytopic.fr/recherche-innovation/proteger/projet-4p (accessed on 23 May 2022).

26. COPPERPLACE. 2015. Available online: https://coppereplace.com/fr/project-coppereplace/ (accessed on 23 May 2022).

27. Robin, N.; Bruyere, J. Traitements de semences: Contrôler la carie. In *Actes Journée Technique*; ITAB: Paris, France, 2012; pp. 31–40. Available online: http://www.itab.asso.fr/downloads/actes%20suite/carie-actes2012.pdf (accessed on 23 May 2022).

28. Arnault, I.; Bardin, M.; Ondet, S.; Furet, A.; Chevolon, M.; Kasprick, A.-C.; Marchand, P.; Clerc, H.; Davy, M.; Roy, G.; et al. Utilisation de micro-doses de sucres en protection des cultures. *Innov. Agron.* 2015, 46, 1–10.

29. Arnault, I.; Aveline, N.; Bardin, M.; Brisset, M.N.; Carriere, J.; Chevolon, M.; Delanoue, G.; Furet, A.; Frérot, B.; Lambion, J.; et al. Optimisation des stratégies de biocontrôle par la stimulation de l’immunité des plantes avec des applications d’infra-doses de sucres simples. *Innov. Agron.* 2021, 82, 411–423. [CrossRef]

30. Vidal, R.; Muchembled, J.; Deweer, C.; Tournant, L.; Corroyer, N.; Flammier, S. Évaluation de l’intérêt de l’utilisation d’huiles essentielles dans des stratégies de protection des cultures. *Innov. Agron.* 2018, 63, 1–20.

31. Compo Expert. Report 2015. In *LA PUGERE, 2011 Pear Psylla [Psylla piri], The TALC Efficiency Evaluation in a Preventive Control Strategy of the Pear Psylla Year*; Station d’experimentation La Pugere: Mallemort, France, 2015; pp. 1–68.

32. CA (Chambre d’Agriculture de l’Aude). *Réduction des coûts en viticulture. Produits Alternatifs: Lactoserum [Reducing Costs in Viticulture: Alternative Crop Protection: Lactoserum]*; Technical Report; Chambre d’Agriculture de l’Aude (CA11): Carcassonne, France, 2011; 123p.

33. Duriez, J.M. *Le phosphate di-ammonium, un attractant de la mouche de l’olive Journées Techniques In sanitaires*; ITAB: Paris, France, 2016. Available online: http://www.itab.asso.fr/downloads/jt-intrants-2016_10_duriez-afidol-pda.pdf (accessed on 23 May 2022).

34. Montag, J.; Schreiber, L.; Schönerr, J. The post-infection activity of hydrated lime against conidia of *Venturia inaequalis*. In Proceedings of the Ecofruit-12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 31 January–2February 2006.

35. Romanazzi, G.; Piancatelli, S.; D’Ignazi, G.; Moumni, M. Innovative approaches to grapevine downy mildew management on large and commercial scale. In Proceedings of the 9th International Workshop on Grapevine Downy and Powdery Mildew, Cremona, Italy, 20–22 July 2012.

36. Romanazzi, G.; Moumni, M. New challenges in preventing and managing fresh fruit loss and waste. In Proceedings of the VI International Symposium on Postharvest Pathology, Limassol, Cyprus, 29 May–2June 2022.

37. D’Ortenzio, A.L.; Fava, G.; Mazzoni, S.; Acciarri, P.; Baronciani, L.; Ceredi, G.; Romanazzi, G. Postharvest application of natural compounds and biocontrol agents to manage brown rot of stone fruit. In *Proceedings of the VI International Symposium on Postharvest Pathology*, Limassol, Cyprus, 29 May–2June 2022.

38. Piancatelli, S.; Moumni, M.; Binni, T.; Giardini, D.; Profili, R.; Napoleoni, D.; Morbidelli, M.; Fabbri, G.; Piersanti, G.; Nardi, S.; et al. Impiego di sostanze di origine naturale e a basso impatto ambientale nella protezione del cavolo cappuccio da seame. *Giornate Fitopatol.* 2022; in press.

39. Park, D.W.; Yang, Y.S.; Lee, Y.U.; Han, S.J.; Kim, H.J.; Kim, S.H.; Kim, J.P.; Cho, S.J.; Lee, D.; Song, N.; et al. Pesticide residues and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: A 15-year study. *Foods* 2021, 10, 425. [CrossRef]

40. El-Nahhal, I.; El-Nahhal, Y. Pesticide residues in drinking water, their potential risk to human health and removal options. *J. Environ. Manag.* 2021, 299, 113611. [CrossRef]

41. Hejazi, M.; Grant, J.H.; Peterson, E. Trade impact of maximum residue limits in fresh fruits and vegetables. *Food Policy* 2022, 106, 102203. [CrossRef]
42. Romanazzi, G.; Feliziani, E.; Baños, S.B.; Sivakumar, D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. *Crit. Rev. Food Sci. Nutr.* 2017, 57, 579–601. [CrossRef]

43. Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Gutierrez-Martinez, P.; Alkan, N. Induced resistance to control postharvest decay of fruit and vegetables. *Postharvest Biol. Technol.* 2016, 122, 82–94. [CrossRef]

44. Robin, D.; Marchand, P.A. Expansion of the low-risk substances in the framework of the European Pesticide Regulation (EC) No. 1107/2009. *Eur. J. Risk Regul.* 2022, 1–20. [CrossRef]

45. Marchand, P.A. Basic substances: An opportunity for approval of low-concern substances under EU pesticide regulation. *Pest Manag. Sci.* 2015, 71, 1197–1200. [CrossRef]

46. Marchand, P.A. Basic substances under EC 1107/2009 phytochemical regulation: Experience with non-biodegradable and food products as biorationals. *J. Plant Prot. Res.* 2016, 56, 312–318. [CrossRef]

47. Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. *Sci. Total Environ.* 2021, 795, 148625. [CrossRef] [PubMed]

48. Romanazzi, G.; Mancini, V.; Foglia, R.; Marcolini, D.; Kavari, M.; Piancatelli, S. Use of chitosan and other natural compounds alone or in different strategies with copper hydroxide for control of grapevine downy mildew. *Plant Dis.* 2021, 105, 3261–3268. [CrossRef] [PubMed]

49. EU. Working Document on the Procedure for Application of Basic Substances to be Approved in Compliance with Article 23 of Regulation (EC) No. 1107/2009 SANCO/10363/2012; (rev. 9 of 21 March 2014); EU: Brussels, Belgium, 2012.

50. EU. Commission Implementing Regulation (EU) 2022/456 of 21 March 2022 approving the basic substance chitosan in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. *OJ* 2022, L93, 138–141.

51. Marchand, P.A.; Carrière, J. Guide Pédagogique: Constituer un dossier d’approbation de substance naturelle au règlement (CE) n°1107/2009; ITAB: Paris, France, 2012. [CrossRef]

52. Vekemans, M.C.; Marchand, P.A. The fate of the Biocontrol agents under the European phytopharmaceutical regulation: A hindering for approval botanicals as new active substances? *Environ. Sci. Pollut. Res.* 2020, 27, 39879–39887. [CrossRef]