Use it or lose it! Cognitive activity as a protective factor for cognitive decline associated with Alzheimer’s disease

Panagiota Mistridi a, Jutta Mata b, Stefan Neuner-Jehle d, Jean-Marie Annoni a, Andreas Biedermann f, Irene Bopp-Kistler i, Dominique Brand h, Andrea Brioschi Guevara j, Hedi Decrey-Wick l, Jean-François Démonet m, Ulrich Hemmeter e, Reto W Kressig l, Brian Martin o, Luca Ramp a, Egemen Savaskan q, Andreas E. Stuck r, Philipp Tschopp t, Dina Zekry v, Andreas U. Monsch w

a Memory Clinic, University Centre for Medicine of Aging, Felix Platter Hospital, Basel, Switzerland
b Health Psychology, Department of Social Sciences, University of Mannheim, Germany
c Institute of Primary Care, University of Zurich and University Hospital Zurich, Switzerland
d Swiss College of Primary Care Medicine, Fribourg, Switzerland
e Neurology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Switzerland
f Public Health Services, Berne, Switzerland
g Memory Clinic, University Clinic of Geriatrics, Stadtpital Waid, Zurich, Switzerland
h General Practitioner, Internal Medicine and Geriatrics, Courtelary, Switzerland
i Leenaards Memory Centre, University Hospital Lausanne, Switzerland
j General Practitioner, Corseaux, Switzerland
k Psychiatric Services St Gallen-North, Centre of Education and Research (CŒUR), St Gallen, Switzerland
l University of Basel, Switzerland
m University Centre for Medicine of Aging, Felix Platter Hospital, Basel, Switzerland
n Chief Medical Officer of the Canton of Basel-Country, Liestal, Switzerland
o Institute of Epidemiology, Biostatistics and Prevention EBPI, University of Zurich, Switzerland
p University Hospital of Old Age Psychiatry, University of Bern, Switzerland
q University Hospital of Psychiatry Zurich, Department of Geriatric Psychiatry, Zurich, Switzerland
r Department of Geriatrics, Inselspital, Berne University Hospital, University of Berne, Switzerland
s General Practitioner, Basel, Switzerland
t Department of Internal Medicine, Rehabilitation and Geriatrics, University Hospitals and University of Geneva, Switzerland

Summary

Because of the worldwide aging of populations, Alzheimer’s disease and other dementias constitute a devastating experience for patients and families as well as a major social and economic burden for both healthcare systems and society. Multiple potentially modifiable cardiovascular and lifestyle risk factors have been associated with this disease. Thus, modifying these risk factors and identifying protective factors represent important strategies to prevent and delay disease onset and to decrease the social burden. Based on the cognitive reserve hypothesis, evidence from epidemiological studies shows that low education and cognitive inactivity constitute major risk factors for dementia. This indicates that a cognitively active lifestyle may protect against cognitive decline or delay the onset of dementia. We describe a newly developed preventive programme, based on this evidence, to stimulate and increase cognitive activity in older adults at risk for cognitive decline. This programme, called “BrainCoach”, includes the technique of “motivational interviewing” to foster behaviour change. If the planned feasibility study is successful, we propose to add BrainCoach as a module to the already existing “Health Coaching” programme, a Swiss preventive programme to address multiple risk factors in primary care.

Key words: Alzheimer’s disease; cognitive impairment; dementia; prevention; cognitive reserve; BrainCoach; protective factors; motivational interviewing

Introduction

The increase of life expectancy over the last century is paralleled by an elevated number of individuals with dementia, placing a enormous social and economic burden on society and healthcare systems, in addition to the devastating consequences for patients and their families. According to the World Alzheimer Report 2015, an estimated 47 million people worldwide suffer from dementia [1]. Based on current simulation models, the number of cases is expected to at least double every 20 years, reaching almost 132 million cases by 2050. However, recent reports suggest that the age-specific incidence of dementia might be decreasing in persons with at least a high school diploma, possibly owing to an improvement in cardiovascular health [2, 3]. Nevertheless, and irrespective of how fast the growth in the number of people with dementia will be, the economic impact associated with dementia is huge and increasing. Worldwide, the current total costs have increased by 35% in the last five years and were estimated to be USD 818 billion in 2015, representing 1% of the global gross domestic product [1]. These costs include direct medical care costs (dementia treatment in primary and secondary care), direct social care costs (community care professionals and residential homes) and informal care costs (unpaid care by family and others) [1].
In Switzerland, based on current simulation models, the number of people with dementia was estimated to be 119,000 in 2015, and this number is predicted to increase up to 300,000 by 2050 [4]. Annually, there are 27,000 new cases of dementia. The annual costs amount to approximately CHF 7 billion, imposing an enormous economic burden on Swiss society [5].

Although several causes of dementia exist, we will focus this review on its most common cause, Alzheimer’s disease. Alzheimer’s disease is clinically characterised by an insidious onset and a progressive deterioration of cognitive function, which typically starts with a decline in memory functions [6, 7]. Pathologically, Alzheimer’s disease is characterised by increased levels of extracellular amyloid-β, intracellular hyperphosphorylated tau proteins, and neuronal and synaptic loss in the neocortex [8, 9]. Despite decades of research, the pathological mechanisms underlying these disease-related changes still remain largely unclear. However, there is a broad consensus that Alzheimer’s disease has a complex multifactorial aetiology and is modulated by various risk factors [10–13]. While advancing age [14] and specific genetic predispositions (e.g., APOE-ε4 [15, 16]) are well-recognised unmodifiable main risk factors for sporadic Alzheimer’s disease, additional potentially modifiable factors have been linked to the development of the disease. Specifically, observational studies indicate that cardiovascular risk factors (e.g., hypertension, diabetes, cerebrovascular disease, obesity, metabolic syndrome), lifestyle factors (e.g., unhealthy diet, smoking, high alcohol intake, low cognitive, social and physical activity, chronic stress) and psychosocial factors (e.g., lack of a rich social network, depressive symptoms) have an impact on the risk for Alzheimer’s disease and other forms of dementia (for an overview see [12, 17–19]. Additionally, individual risk factors are often closely linked and thus co-occur during a person’s lifetime: A recent estimate by Norton et al. [11] implies that, taking into account the interdependency of these factors, about one third of Alzheimer’s disease cases worldwide may be attributable to seven potentially modifiable risk factors: diabetes, midlife hypertension, midlife obesity, depression, physical inactivity, smoking, and low educational attainment (fig. 1; see also [10]).
Cognitive activity as a modifiable protective factor for cognitive decline

As shown in figure 1, low educational attainment [11] or cognitive inactivity [10] constitutes the largest single risk factor for Alzheimer’s disease. Certainly, high educational attainment will not prevent pathological brain changes; however, a number of studies indicate that higher educational attainment is related with higher levels of cognitive performance and seems to buffer negative effects and mitigate clinical symptoms in everyday life [2, 39-43]. The rationale behind this observation is the hypothesis that higher educational attainment results in an increased cognitive reserve [42, 44]. This so-called cognitive reserve hypothesis implies that individuals with higher levels of brain activity (e.g., through individual or synergistic contributions of high educational/occupational attainment and maintained cognitive activity up until old age) may better cope with brain pathology and are able to compensate for brain damage much longer because of increased synaptic densities and a more complex and efficient structure of neural networks [42, 43]. Thus, people with the same extent of pathological brain changes may exhibit different clinical manifestations of the disease depending on their level of cognitive reserve [39] (fig. 3, [44]).

Importantly, a person with a high cognitive reserve will have a steeper decline once symptoms are manifest, as a result of higher pathological accumulations in the brain, until cognitive dysfunctions are clinically perceivable [44]. These findings are supported by several studies reporting reduced incidence rates of cognitive impairment and dementia in older adults with a high educational attainment [2, 39-43]. Additionally, an analysis from Barnes and Yaffe [10] indicates that the relative risk of developing dementia (the ratio of the probability of developing dementia in an at-risk group compared with a no-risk group) in people with a low education (primary education only) is 59% higher than in people with a higher education.

However, older adults experiencing a cognitive decline have obviously already completed their formal and occupational education. The cognitive reserve, however, is not influenced by education alone. Retrospective studies indicate that significant associations exist between cognitively activating leisure activities, engagement in social activities and the level of cognitive performance, and the risk of dementia [45-47]. Moreover, studies show that performing cognitive-stimulating leisure activities later in life may somewhat compensate for a low educational attainment [48, 49]. Thus, cognitive reserve is not a static condition, but can be influenced and enhanced at any point in someone’s lifetime.

The great diversity of cognitive tasks and the variability in the durations of exposure to cognitive tasks in different studies investigating the association between cognitive activity and risk of dementia meant that some studies also had inconclusive findings (see for example [50]). Nevertheless, there is substantial evidence that participating in cognitive activities conveys beneficial effects for the maintenance of brain health and may delay cognitive decline [46, 47]. Various experimental studies on rodents [50, 51] and imaging studies on humans [52-54] suggest that a mentally stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density. For example, a study by Lazarov et al. [55] with transgenic mice corroborated the idea that a cognitively stimulating environment promotes neurotrophic changes in the hippocampal formation, neurogenesis and synaptic density.

Swiss Medical Weekly - PDF of the online version - www.smw.ch

Published under the copyright license "Attribution - Non-Commercial - No Derivatives 4.0". No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.
hock, middle age and late life) exhibited a reduced rate of hippocam- pal atrophy compared with those with low levels.

A Cochrane review [56] examining the effect of cognitive training (the structured practice of tasks targeting specific domains of cogni- tive function) with 36 included studies involving healthy older participants or people with mild cognitive impairment provided evi- dence for an improvement in immediate and delayed verbal recall compared with participants without training. However, this positive effect did not exceed the improvements in active control groups receiving “only” non-specific cognitive stimulation, such as reading, playing board games or dancing, which may significantly reduce the risk for cognitive decline or dementia (see also for example [47, 48, 57]). Moreover, various studies revealed that musical activities (play- ing an instrument or singing) enhances performance in different cognitive domains (attention, executive functions) by promoting neural plasticity and increasing grey matter volume in frontal, motor, parietal and temporal (e.g., hippocampal) areas [53, 54, 57–59].

In summary, there is hopeful evidence that nonpharmacological interventions in stages with no or very little cognitive impairment may be effective in delaying (further) cognitive decline. Optimally, such a program (the Prevention of Dementia by Intensive Vascular Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) [60, 61], the Prevention of Dementia by Intensive Vascular Care (PREVENCIA) [62, 63], study and the study Multidimensional Alzheimer Preventive Trial (MAPT) [64–66]). Until now, only preliminary results from these studies have been published. In 2011, the European De- mentia Prevention Initiative (EDPI; http://www.edpi.org/) was launched to combine the valuable information generated in the three ongoing European trials mentioned above. The aim of this initiative is to improve and promote the collaboration between researchers in- volved in the field of dementia prevention to combine experience and datasets, and better to define target populations, intervention strategies and methodological challenges in large dementia prevention trials [24]. Based on the studies mentioned above, an innovative and inter- active Internet intervention platform for the treatment of cardiovasc u- lar disease in older people, called Healthy Ageing Through Internet Counselling in the Elderly (HATICE), was initiated as an additional project by the members of the EDPI (http://www.hatice.eu/). An additional initiative from Switzerland named “EviPrev” is based on current scientific data and focuses on evidence-based prevention and early detection of potentially chronic diseases (short interventions on physical activity, nutrition, smoking, alcohol consumption and screen- ing for high blood pressure, dyslipidaemia, diabetes, breast cancer, colon cancer, and others) in the primary healthcare setting. Although this project is not considered to be a prevention study with a multi- dimensional approach, it has an important impact on cognitive health by systematically recording cardiovascular risk factors. A systematic assessment of these risk factors, which significantly affect cognitive health, is crucial for effective treatments and successful lifestyle interventions [67, 68].

Health Coaching: a multidimensional counselling programme to promote health behaviour in the pri- mary care setting

Based on the findings summarised so far, an additional multidimen- sional and structured health programme of counselling in primary care practice called “Health Coaching” was developed by the Swiss Col- lege of Primary Care Medicine (http://www.gesundheitscoaching- khm.ch/) [38]. Designed for general practitioners (GPs), the primary aim of this programme is to promote health behaviour in the Swiss population and prevent chronic diseases (e.g., stroke, coronary heart disease, cardiovascular disease) by targeting the most important contributors to disease burden including smoking, alcohol consump- tion, body weight, dietary habits, level of physical activity, and coping strategies with stress [38, 69]. The aim is to give GPs the tools to motivate their patients and support them during the implementation of a healthier lifestyle. Patients are involved in the decision process and share the responsibility for their health with the practitioner. Thus, an important aspect of Health Coaching is that patient and health profes- sional meet on equal terms and jointly plan a step-by-step health programme based on the patient’s individual preferences and abilities [38]. The programme also emphasises the high importance of the GPs’ communication skills and offers specific training programmes in “motivational interviewing” (see below) within this programme [70]. In a nonrandomised study, the programme showed high acceptability, feasibility and improvements in health-related behaviour [38]. Alt- hough Health Coaching as a nonpharmacological programme is quite comprehensive and probably sufficient for individuals who are still in the workforce, it could benefit from an additional module focusing on cognitive activity for patients who are beyond retirement or who exhibit subtle cognitive problems.

BrainCoach: a programme to promote cognitive activity

Cognitive activity

Based on scientific data reviewed above we have developed a cogni- tive activity module to complement the Health Coaching programme. This programme, named “BrainCoach”, was specifically created for older adults at risk for cognitive impairment who might be, for example, in the so-called “silent phase” of Alzheimer’s disease [22]. It is meant to be implemented in the primary care setting and to be con- ducted by the GPs and other healthcare professionals (e.g., psycholo- gists). The primary purpose of this module is – in accordance with the theory of cognitive reserve described above and the rule of “Use it or lose it” – to support older adults and promote their motivation to maintain and increase brain health by increasing their cognitive activi- ty. The programme addresses especially older adults feeling cognitive- ly “bored” in everyday life, individuals shortly before retirement or individuals with subtle cognitive alterations. The promotion of the activity will be achieved by use of a specific folder (A4-format) including information about cognitive activity and its effects on brain health, communication skills (motivational interviewing) and a struc- tured questionnaire as a guideline (working sheet) to evaluating the patients’ current cognitive activity and increase their motivation to find and implement a cognitive activity in their daily life. The Brain- Coach intentionally does not include specific cognitive exercises, but highlights the importance of eliciting the patients’ motivation to find a cognitive activity that they like to perform regularly (e.g., something they performed earlier in their life). In case the patients cannot think of any cognitive activity they would like to engage in, the “Brain- Coach” module offers a range of different cognitive activities – a “cognitive buffet” (different activities depicted in colour photographs) – from which the patients may choose the ones they loved to perform. Possible activities include those that can be performed individually, such as doing artwork, solving crossword puzzles, singing, playing a musical instrument, or reading books/newspapers. Activities carried out in groups have an additional stimulating component, especially due to the need of social interactions. Examples of these kinds of activities include language courses, dancing classes, singing in a choir, reading circles, attending university for seniors, playing board games, or attending cultural events with friends (e.g., theatre, cinema, and
cognitive activity have been proposed to exert protective effects on and delay cognitive decline and dementia [13]. Various factors include these factors seem a viable and reasonable approach to mitigate thus, prevention programmes and strategies targeting the modifications with the potential to delay disease onset or progression would decrease Alzheimer’s disease prevalence by 8–15% by 2050 physical inactivity, depression, smoking, low educational attainment) Alzheimer’s disease (diabetes, midlife hypertension, midlife obesity, specifically, a 10–20% reduction of the seven main risk factors for dementia would have a huge impact on its incidence and prevalence. Because of demographic change, dementia represents a major

Conclusions
Because of demographic change, dementia represents a major healthcare issue for our society. Although the underlying pathogenesis of Alzheimer’s disease is not fully understood, a number of observational studies provide strong evidence for an adverse effect of multiple cardiovascular and lifestyle risk factors [12]. In this regard, prevention strategies are needed to manage and lower the increase of dementia cases influenced by these risk factors. Delaying cognitive decline and dementia would have a huge impact on its incidence and prevalence. Specifically, a 10-20% reduction of the seven main risk factors for Alzheimer’s disease (diabetes, midlife hypertension, midlife obesity, physical inactivity, depression, smoking, low educational attainment) would decrease Alzheimer’s disease prevalence by 8–15% by 2050 [11]. Additionally, estimates from a projection model imply that interventions with the potential to delay disease onset or progression by only 1 year would reduce the number of Alzheimer’s disease patients by about 11% (9 million cases [75]). Understanding the contribution and the impact of different lifestyle factors on disease development will have an important influence on future disease management and treatment since many of these risk factors are modifiable. Thus, prevention programmes and strategies targeting the modification of these factors seem a viable and reasonable approach to mitigate and delay cognitive decline and dementia [13]. Various factors including a healthy diet, smoking cessation, a physically active lifestyle and cognitive activity have been proposed to exert protective effects on both physical and mental health. The Health Coaching programme developed by the Swiss College of Primary Care Medicine represents a comprehensive concept simultaneously targeting multiple risk factors. However, scientific evidence supports the importance of cognitive activity to maintain or increase cognitive reserve. Therefore, the module BrainCoach may represent a promising tool. Motivational interviewing as an empathetic, nonconfrontational and collaborative communication method has been shown to be effective for long-term behavioural change in several areas. The Health Coaching programme together with the BrainCoach, using the motivation interviewing counselling technique, could be a valuable, effective and low-cost approach to maintain both, physical and mental health. These programmes have important and promising implications for preventive intervention against cognitive decline and dementia.

Correspondence:
Andreas U. Monsch
Memory Clinic
University Centre for Medicine of Aging Basel
Felix Platter Hospital
Burgfelderstrasse 101
CH-4012 Basel
Andreas.Monsch[at]unibas.ch

Financial disclosure
This article and the development of the BrainCoach programme are financially supported by an unrestricted grant from Vifor Pharma.

References
Alzheimer’s Disease International. World Alzheimer Report 2015. The Global Impact of Dementia. [Internet]. 2015. Available from: http://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
2 Satizabal CL, Besser AS, Chorvatsk Y, Chêne G, Depouw C, Sachdev S. Incidence of Dementia over Three Decades in the Framingham Heart Study. N Engl J Med. 2016;374(6):523–32. doi:http://dx.doi.org/10.1056/NEJMoa1504327. PubMed
3 Matthews FE, Stephen BIC, Robinson L, Jagger C, Barnes LE, Arthur A, et al.; Cognitive Function and Ageing Studies (CFAS) Collaboration. A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun. 2016;7:11398. doi:http://dx.doi.org/10.1038/ncomms11398. PubMed
4 Alzheimervereinigung S. Zahlen und Fakten zur Demenz [Internet]. 2015. Available from: http://www.alz.ch/index.php/zahlen-zur-demenz.html
5 Kraft E, Marti M, Werner S, Sommer H. Cost of dementia in Switzerland. Swiss Med Wkly. 2010;140:w10903. PubMed
6 McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr, CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9. doi:http://dx.doi.org/10.1016/j.jalz.2011.03.005. PubMed
7 Salmon DP. Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Curr Top Behav Neurosci. 2012;10:187–212.
8 Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991(82)(4):239–59. doi:http://dx.doi.org/10.1007/BF00302592. PubMed
9 Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 2004;62(11):1964–9. doi:http://dx.doi.org/10.1212/01.WNL.0000129697.01779.0A. PubMed
10 Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28. doi:http://dx.doi.org/10.1016/S1474-4422(11)70072-2. PubMed
11 Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94. doi:http://dx.doi.org/10.1016/S1474-4422(14)70136-X. PubMed
12 Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurosci. 2011;12(1):137–52. doi:http://dx.doi.org/10.1038/nrn3102. PubMed
13 Xu W, Tan L, Wang H-F, Jiang T, Tan M-S, Tan L, et al. Meta-analysis ofmodifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2015;86(12):1299–306. PubMed
14 Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):351–7. doi:http://dx.doi.org/10.1016/S0197-4588(97)00056-0. PubMed
15 Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3. doi:http://dx.doi.org/10.1126/science.8346443. PubMed

Published under the copyright license "Attribution - Non-Commercial - No Derivatives 4.0".
34 Rockwood K, Middleton L. Physical activity and the maintenance of Alzheimer disease. A meta-analysis. JAMA. 1997;278(16):1349–56. doi:http://dx.doi.org/10.1001/jama.1997.03550160094024. PubMed

32 Hayes SM, Alosco ML, Hayes JP, Cadden M, Peterson KM, Allsup K, et al. Exercise training in later life might protect against cognitive decline. Lancet Neurol. 2006;5(4):343–53. doi:http://dx.doi.org/10.1016/S1474-4422(04)00767-7. PubMed

30 Gillette-Guyonnet S, Secher M, Vellas B. Nutrition and neurodegeneration: a systematic review. J Nutr Health Aging. 2006;10(6):297–305. doi:http://dx.doi.org/10.1007/s12603-006-0007-7. PubMed

28 Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Advances in the prevention of Alzheimer's disease and dementia. J Am Geriatr Soc. 2006;54(9):1331–6. doi:http://dx.doi.org/10.1111/j.1532-5415.2006.54209.x. PubMed

23 Alzheimer's Disease International. World Alzheimer Report 2014. Dementia: a systematic review. In: Zerr I, editor. Understanding Alzheimer's Disease/prevention-of-alzheimer's-disease-intervention-studies

20 Andel R, Vigen C, Mack WJ, Clark LJ, Gatz M. The effect of education and occupational complexity on rate of cognitive decline in Alzheimer’s patients. J Int Neuropsychol Soc. 2006;12(3):211–7. doi:http://dx.doi.org/10.1016/j.jins.2005.07.020. PubMed

19 Mangialasche F, Xu W, von Strauss E. Prevention of Alzheimer’s disease and dementia. Major findings from the Kungsholmens Project. Physiother Rev. 2007;9(2-1):98–104. doi:http://dx.doi.org/10.1016/j.physrev.2007.05.059. PubMed

16 Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al.; APOE and Alzheimer Disease Meta Analysis Consortium. Effects of age and sex on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA. 1997;278(16):1349–56. doi:http://dx.doi.org/10.1001/jama.1997.03550160094024. PubMed

15 Bugos JA, Perlstein WM, McCrae CS, Brophy TS, Bedenbaugh PH, et al. Indi-
58 Gaser C, Schlaug G. Brain structures differ between musicians and non-
musicians. J Neurosci. 2003;23(27):9240–5. PubMed
59 Fotuhi M, Do D, Jack C. Modifiable factors that affect the size of the hippocampus with ageing. Nat Rev Neurol. 2012;8(4):189–202. PubMed
60 Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto
J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5(9):735–41. doi:http://dx.doi.org/10.1016/S1474-4422(06)70537-3. PubMed
61 Ngandu T, Lehtisaari J, Solomon A, Levalahd E, Ahlroofo S, Antikainen R, 
et al. A 2 year multidisciplinary intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63. doi:http://dx.doi.org/10.1016/S0140-6736(15)60461-5. PubMed
62 Ligthart SA, van den Eerenbeemt KD, Pols J, van Bussel EF, Richard E, van 
Charante EPM. Perspectives of older people engaging in nurse-led cardio-
vascular prevention programmes: a qualitative study in primary care in the 
Netherlands. Br J Gen Pract. 2015;65(630):e41–8. doi:http://dx.doi.org/10.3399/bjgp15X683149. PubMed
63 Richard E, Van den Heuvel E, van Charante EPM, Achthoven L, Vermeulen 
M, Bindels PJ, et al. Prevention of dementia by intensive vascular care 
(PreDHIVA): a cluster-randomized trial in progress. Alzheimer Dis Assoc 
Disord. 2009;23(3):198–204. doi:http://dx.doi.org/10.1097/WAD.0b013e31819783a4. PubMed
64 Gillette-Guyonet S, Andreu S, Dantoine T, Dartigues J-F, Touchon J, 
Vellas B; MAPT Study Group. Commentary on “A roadmap for the prevention 
of dementia II. Leon Thal Symposium 2008.” The Multidomain Alz-
heimer Preventive Trial (MAPT): a new approach to the prevention of Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2009;23(2):114–21. doi:http://dx.doi.org/10.1016/j.alz.2009.01.008. PubMed
65 Lilamand M, Cesar M, del Campo N, Cantor C, Soto M, Ousset P-J, et al.; 
MAPT Study Group. Brain Amyloid Deposition Is Associated With Lower 
Instrumental Activities of Daily Living Abilities in Older Adults. Results 
From the MAPT Study. J Gerontol A Biol Sci Med Sci. 2016;71(3):391–7. doi:http://dx.doi.org/10.1093/gerona/glv155. PubMed
66 Vellas B, Carrie I, Gillette-Guyonet S, Touchon J, Dantoine T, Dartigues 
JF, et al. MAPT Study: a multidomain approach for preventing Alzheimer’s 
disease: design and baseline data. J Prev Alzheimers Dis. 2014;1(1):13–22. PubMed
67 Cornu J, Rodondi N, Ospelet R, Zoller M, Durrer D, Tschirky E, et al. 
EviPrev, ein Programm zu Prävention und Gesundheitsförderung in der 
Hausarztpraxis. Schweiz Ärztezeitung. 2010;91(6):3. Article in German.
68 Cornu J, Auer R, Neuner-Jehle S, Humar J-P, Jacob-Sadowski I, Cardinaux 
R, et al. Schweizer Empfehlungen für den Check-up in der Arztprevention. Swiss Med Forum. 2015;15(43):974–80. Article in German.
69 Neuner-Jehle S, Schmid M, Grüninger U. Kurzarbeitung in der Arztprevention zur Verbesserung des Gesundheitsverhaltens: Probleme und Lösungen. Prax (Bern). 2014;103(5):271–7. Article in German.
70 Neuner-Jehle S, Grüninger U, Schmid M. Efficacy of a communication skill training fostering health promotion in primary care: a mixed method analy-
sis. J Community Med Health Educ. 2016;6(2):1000413. PubMed
71 Rollnick S, Miller W, Butler C. Motivational Interviewing in Health Care. 
New York: The Guildford Press; 2008.
72 Söderlund LL, Madson MB, Rubak S, Nilson P. A systematic review of 
motivational interviewing training for general health care practitioners. Pa-
tient Educ Couns. 2011;84(1):16–26. doi:http://dx.doi.org/10.1016/j.pec.2010.06.025. PubMed
73 Ng JYY, Ntoumanis N, Thøgersen-Ntoumani C, Deci EL, Ryan RM, Duda 
JL, et al. Self-Determination Theory Applied to Health Contexts: A Meta-
Analysis. Perspect Psychol Sci. 2012;7(4):325–40. doi:http://dx.doi.org/10.1177/1745691612447309. PubMed
74 Patrick H, Resnicow K, Teixeira PJ, Williams GC. Communication skills to 
elicit physical activity behavior change: How to talk to the client. In Nigg 
CR (editor). ACSM’s Behavioral Aspects of Physical Activity and Exercise. 
Philadelphia: Lippincott Williams & Wilkins; 2013. pp 129–52.
75 Teixeira PJ, Silva MN, Mata J, Palmeira AL, Markland D. Motivation, self-
determination, and long-term weight control. Int J Behav Nutr Phys Act. 
2012;9(1):22. doi:http://dx.doi.org/10.1186/1479-5868-9-22. PubMed
76 American Psychiatric Association. Diagnostic and statistical manual of 
mental disorders: DSM-5. 5th ed. Washington, DC: American Psychiatric 
Association Press; 2013.