TOWARDS A MAXIMAL MASS MODEL

V. G. Kadyshevsky

Joint Institute for Nuclear Research, Dubna, R-141980, Russia, and
CERN, PH-TH, 1211 Geneva, Switzerland.

M. D. Mateev

Faculty of Physics, University of Sofia "St. Kliment Ohridsky", 1164 Sofia,
Bulgaria, and CERN, PH-TH, 1211 Geneva, Switzerland.

V. N. Rodionov

Moscow State Geological Prospecting University, 118617 Moscow, Russia.

A. S. Sorin

Joint Institute for Nuclear Research, Dubna, R-141980, Russia.

Abstract

We investigate the possibility to construct a generalization of the
Standard Model, which we call the Maximal Mass Model because it
contains a limiting mass M for its fundamental constituents. The
parameter M is considered as a new universal physical constant of
Nature and therefore is called the fundamental mass. It is introduced
in a purely geometrical way, like the velocity of light as a maximal
velocity in the special relativity. If one chooses the Euclidean formul-

ath of quantum field theory, the adequate realization of the limiting
mass hypothesis is reduced to the choice of the de Sitter geometry as
the geometry of the 4-momentum space. All fields, defined in de Sitter
p-space in configurational space obey five dimensional Klein-Gordon
type equation with fundamental mass M as a mass parameter. The
role of dynamical field variables is played by the Cauchy initial conditions given at \(x_5 = 0 \), guaranteeing the locality and gauge invariance principles. The corresponding to the geometrical requirements formulation of the theory of scalar, vector and spinor fields is considered in some detail. On a simple example it is demonstrated that the spontaneously symmetry breaking mechanism leads to renormalization of the fundamental mass \(M \). A new geometrical concept of the chirality of the fermion fields is introduced. It would be responsible for new measurable effects at high energies \(E \geq M \). Interaction terms of a new type, due to the existence of the Higgs boson are revealed. The most intriguing prediction of the new approach is the possible existence of exotic fermions with no analogues in the SM, which may be candidate for dark matter constituents.

1 Introductory remarks

For decades we have witnessed the impressive success of the Standard Model (SM) in explaining properties and regularities observed in experiments with elementary particles. The mathematical basis of the SM is local lagrangian quantum field theory (QFT). The very concept of elementary particle assumes that it does not have a composite structure. In agreement with the contemporary experimental data such a structure has not been disclosed for no one of the fundamental particles of the SM, up to distances of the order of \(10^{-16} \) \(-\) \(10^{-17} \) cm. The adequate mathematical images of point like particles are the local quantized fields - boson and spinor. Particles are the quanta of the corresponding fields. In the framework of the SM these are leptons, quarks, vector bosons and the Higgs scalar, all characterized by certain values of mass, spin, electric charge, colour, isotopic spin, hypercharge, etc.

Intuitively it is clear that the elementary particle should carry small enough portions of different "charges" and "spins". In the theory this is guaranteed by assigning the local fields to the lowest representations of the corresponding groups.

As for the mass of the particle \(m \), this quantity is the Casimir operator of the noncompact Poincaré group and in the unitary representations of this group, used in QFT, they may have arbitrary values in the interval \(0 \leq m < \infty \). In the SM one observe a great variety in the mass values. For example, t-quark is more than 300000
times heavier than the electron. In this situation the question naturally arises: up to what values of mass one may apply the concept of a local quantum field? Formally the contemporary QFT remains logically perfect scheme and its mathematical structure does not change at all up to arbitrary large values of quanta’s masses. For instance, the free Klein-Gordon equation for the one component real scalar field $\varphi(x)$ has always the form:

$$ (\Box + m^2)\varphi(x) = 0. \tag{1} $$

From here after standard Fourier transform:

$$ \varphi(x) = \frac{1}{(2\pi)^{3/2}} \int e^{-ip_{\mu}x^{\mu}} \varphi(p) \, d^4p \quad (p_{\mu}x^{\mu} = p^0 x^0 - p \cdot x) \tag{2} $$

we find the equation of motion in Minkowski momentum 4-space:

$$ (m^2 - p^2)\varphi(p) = 0, \quad p^2 = p_0^2 - \mathbf{p}^2. \tag{3} $$

From geometrical point of view m is the radius of the "mass shell" hyperboloid:

$$ m^2 = p_0^2 - \mathbf{p}^2, \tag{4} $$

where the field $\varphi(p)$ is defined and in the Minkowski momentum space one may embed hyperboloids of the type (4) of arbitrary radius.

In 1965 M. A. Markov [1] pioneered the hypotheses according to which the mass spectrum of the elementary particles should be cut off at the Planck mass $m_{\text{Planck}} = 10^{19} \text{GeV}$:

$$ m \leq m_{\text{Planck}}. \tag{5} $$

The particles with the limiting mass $m = m_{\text{Planck}}$, named by the author "maximons" should play special role in the world of elementary particles. However, Markov’s original condition (5) was purely phenomenological and he used standard field theoretical techniques even for describing the maximon.

In [2] - [8] a more radical approach was developed. The Markov’s idea about existence of a maximal value for the masses of the elementary particles has been understood as a new fundamental principle of Nature, which similarly to the relativistic and quantum postulates should be put in the grounds of QFT. Doing this the condition of finiteness of the mass spectrum should be introduced by the relation:

$$ m \leq M, \tag{6} $$

3
where the maximal mass parameter M called the "fundamental mass" is a new universal physical constant.

A new concept of a local quantum field has been developed on the ground of (6) an on simple geometric arguments, the corresponding Lagrangians were constructed and an adequate formulation of the principle of local gauge invariance has been found. It has been also demonstrated that the fundamental mass M in the new approach plays the role of an independent universal scale in the region of ultra high energies $E \geq M$.

It is worth emphasizing that here, due to eq(6), the Compton wavelength of a particle $\lambda_C = \hbar/mc$ can not be smaller than the "fundamental length" $l = \hbar/Mc$. According to Newton an Wigner [15] the parameter λ_C characterizes the dimensions of the region of space in which a relativistic particle of mass m can be localized. Therefore the fundamental length l introduces into the theory an universal bound on the accuracy of the localization in space of elementary particles.

The objective of the present work, in few words, is to include the principle of maximal mass (6) into the basic principles of the Standard Model. The appearing in this way new scheme, which we called Maximal Mass Model, from our point of view is interesting already because in it are organically bound the trusted methods of the local gauge QFT and elegant, even not as popular, geometric ideas.

The paper is organized as follows. In the next section on the example of neutral scalar field it is demonstrated how on can use geometrical arguments to construct a version of a QFT internally consistent with the principle of a maximal mass (6). On the same example we describe the simplest mechanism of spontaneous breaking of discrete symmetry. Series of relations from the new formulation of the vector field theory are given.

Section 3. is dedicated to the description of the fermion fields in the new approach. A special attention is given to the new geometrical definition of chirality, which may be used at all values of energy, including the region $E \geq M$. The most intriguing prediction of the new approach implies that a new family of "exotic" fermions with non standard properties of polarizations have to exist in Nature. These earlier unknown Fermi fields, as we hypothesize, are the constituents of "dark matter".

In Section 4. some questions in relation to the description of the electro-weak interactions in the new version of the SM are considered and some high energy effects, whose magnitude depends on the
fundamental mass M, are predicted.

2 Boson fields in de Sitter momentum space.

Let us go back to the free one component real scalar field we considered above (1-3). We shall suppose that its mass m satisfies the condition (6). How should one modify the equations of motion in order that the existence of the bound (6) should become as evident as it is the limitation $v \leq c$ in the special theory of relativity? In the latter case everything is explained in a simple way: the relativization of the 3-dimensional velocity space is equivalent to transition in this space from Euclidean to Lobachevsky geometry, realized on the 4-dimensional hyperboloid \mathbb{H}^4. Let us act in a similar way and change the 4-dimensional Minkowski momentum space, which is used in the standard QFT, to anti de Sitter momentum space, realized on the 5-hyperboloid:

$$p_0^2 - p^2 + p_5^2 = M^2. \quad (7)$$

We shall suppose that in p-representation our scalar field is defined just on the surface (7), i.e. it is a function of five variables (p_0, p, p_5), which are connected by the relation (7):

$$\delta(p_0^2 - p^2 + p_5^2 - M^2) \varphi(p_0, p, p_5). \quad (8)$$

The energy p_0 and the 3-momentum p here preserve their usual sense and the mass shell relation (4) is satisfied as well. Therefore, for the considered field $\varphi(p_0, p, p_5)$ the condition (8) is always fulfilled.

Clearly in eq. (8) the specification of a single function $\varphi(p_0, p, p_5)$ of five variables (p_μ, p_5) is equivalent to the definition of two independent functions $\varphi_1(p)$ and $\varphi_2(p)$ of the 4-momentum p_μ:

$$\varphi(p_0, p, p_5) \equiv \varphi(p, p_5) = \begin{pmatrix} \varphi(p, p_5) \\ \varphi(p, -p_5) \end{pmatrix} = \begin{pmatrix} \varphi_1(p) \\ \varphi_2(p) \end{pmatrix}, |p_5| = \sqrt{M^2 - p^2}. \quad (9)$$

The appearance of the new discrete degree of freedom $p_5/|p_5|$ and the associated doubling of the number of field variables is a most important feature of the new approach. It must be taken into account in the search of the equation of motion for the free field in de Sitter

1 To be exact on the upper sheet of this hyperboloid.
momentum space. Because of the mass shell relation \((1)\) the Klein-Gordon equation \((3)\) should be also satisfied by the field \(\varphi(p_0, p, p_5)\):

\[
(m^2 - p_0^2 + p^2)\varphi(p_0, p, p_5) = 0.
\]

(10)

From our point of view this relation is unsatisfactory for 2 reasons:

1. It does not reflect the bounded mass condition \((6)\).
2. It cannot be used to determine the dependence of the field on the new quantum number \(p_5/|p_5|\) in order to distinguish between the components \(\varphi_1(p)\) and \(\varphi_2(p)\).

Here we notice that, because of \((7)\) eq. \((10)\) may be written as:

\[
(p_5 + M \cos \mu)(p_5 - M \cos \mu)\varphi(p, p_5) = 0, \quad \cos \mu = \sqrt{1 - \frac{m^2}{M^2}}.
\]

(11)

Now, following the Dirac trick we postulate the equation of motion under question in the form:

\[
2M(p_5 - M \cos \mu)\varphi(p, p_5) = 0.
\]

(12)

Clearly, eq. \((12)\) has none of the enumerated defects present in the standard Klein-Gordon equation \((3)\). However, equation \((3)\) is still satisfied by the field \(\varphi(p, p_5)\).

From eqs. \((12)\) and \((9)\) it follows that:

\[
2M(|p_5| - M \cos \mu)\varphi_1(p) = 0,
\]

(13)

\[
2M(|p_5| + M \cos \mu)\varphi_2(p) = 0,
\]

and we obtain:

\[
\varphi_1(p) = \delta(p^2 - m^2)\tilde{\varphi}_1(p)
\]

(14)

\[
\varphi_2(p) = 0
\]

Therefore, the free field \(\varphi(p, p_5)\) defined in anti de Sitter momentum space \((7)\) describes the same free scalar particles of mass \(m\) as the field \(\varphi(p)\) in Minkowski p-space, with the only difference that now we necessarily have \(m \leq M\). The two component structure \((9)\) of the new field does not manifest itself on the mass shell, owing to \((14)\). However, it will play an important role when the fields interact i.e. off the mass shell.

Now we face the problem of constructing the action corresponding to eq. \((12)\) and transforming it to configuration representation.
Due to mainly technical reasons\footnote{The corresponding comments on the topic will be given a bit later.} in the following we shall use the Euclidean formulation of the theory, which appears as an analytical continuation to purely imaginary energies:

\[p_0 \rightarrow ip_4. \] (15)

In this case instead of the anti de Sitter p-space (7) we shall work with de Sitter p-space:

\[-p_n^2 + p_5^2 = M^2, \quad n = 1, 2, 3, 4. \] (16)

Obviously:

\[p_5 = \pm \sqrt{M^2 + p^2}. \] (17)

If one uses eq. (16), the Euclidean Klein-Gordon operator \(m^2 + p^2 \) may be written, similarly to (11) in the following factorized form:

\[m^2 + p^2 = (p_5 + M \cos \mu)(p_5 - M \cos \mu). \] (18)

Clearly the non-negative functional:

\[S_0(M) = \pi M \times \int \frac{d^4p}{|p_5|} \left[\varphi_1^+(p)2M(|p_5| - M \cos \mu)\varphi_1(p) + \varphi_2^+(p)2M(|p_5| + M \cos \mu)\varphi_2(p) \right], \] (19)

\[\varphi_{1,2}(p) \equiv \varphi(p, \pm|p_5|), \] (20)

plays the role of the action integral of the free Euclidean field \(\varphi(p, p_5) \). The action may be written also as a 5 - integral:

\[S_0(M) = 2\pi M \times \int \varepsilon(p_5)\delta(p_Lp_L - M^2)d^5p [\varphi^+(p, p_5)2M(p_5 - M \cos \mu)\varphi(p, p_5)], \] (21)

where

\[\varepsilon(p_5) = \frac{p_5}{|p_5|}. \] (22)

The Fourier transform and the configuration representation have special role in this approach. First, we note that in the basic equation (16) which defines de Sitter p-space, all the components of the 5-momentum
enter on equal footing. Therefore the expression \(\delta(p_L p^L - M^2) \varphi(p, p_5) \), which now replaces (8) may be Fourier transformed:

\[
\frac{2M}{(2\pi)^{3/2}} \int e^{-ip_K x^K} \delta(p_L p^L - M^2) \varphi(p, p_5) d^5 p = \varphi(x, x_5), \quad K, L = 1, 2, 3, 4, 5. \tag{23}
\]

This function obviously satisfies the following differential equation in 5-dimensional configuration space:

\[
\left(\frac{\partial^2}{\partial x^5} - \Box + M^2 \right) \varphi(x, x_5) = 0. \tag{24}
\]

Integration over \(p_5 \) in (23) gives:

\[
\varphi(x, x_5) = \frac{2M}{(2\pi)^{3/2}} \int e^{i p_n x^n} d^4 p \left[e^{-i |p_5|x^5} \varphi_1(p) + e^{i |p_5|x^5} \varphi_2(p) \right], \tag{25}
\]

from which we get:

\[
i M \frac{\partial \varphi(x, x_5)}{\partial x_5} = \frac{1}{(2\pi)^{3/2}} \int e^{i p_n x^n} d^4 p \left[e^{-i |p_5|x^5} \varphi_1(p) - e^{i |p_5|x^5} \varphi_2(p) \right], \tag{26}
\]

The four dimensional integrals (25) and (26) transform the fields \(\varphi_1(p) \) and \(\varphi_2(p) \) to the configuration representation. The inverse transforms have the form:

\[
\varphi_1(p) = \frac{2M}{(2\pi)^{3/2}} \int e^{-i p_n x^n} d^4 x \left[\varphi(x, x_5) \frac{\partial e^{i |p_5|x^5}}{\partial x_5} - e^{i |p_5|x^5} \frac{\partial \varphi(x, x_5)}{\partial x_5} \right], \tag{27}
\]

\[
\varphi_2(p) = \frac{2M}{(2\pi)^{3/2}} \int e^{-i p_n x^n} d^4 x \left[\varphi(x, x_5) \frac{\partial e^{-i |p_5|x^5}}{\partial x_5} - e^{-i |p_5|x^5} \frac{\partial \varphi(x, x_5)}{\partial x_5} \right].
\]

We note that the independent field variables:

\[
\varphi(x, 0) \equiv \varphi(x) = \frac{2M}{(2\pi)^{3/2}} \int e^{i p_n x^n} d^4 p \frac{\varphi_1(p) + \varphi_2(p)}{|p_5|} \tag{28}
\]

and

\[
\frac{i}{M} \frac{\partial \varphi(x, 0)}{\partial x_5} \equiv \chi(x) = \frac{1}{(2\pi)^{3/2}} \int e^{i p_n x^n} d^4 p \left[|p_5| \varphi_1(p) - \varphi_2(p) \right] \tag{29}
\]

can be treated as initial Cauchy data on the surface \(x_5 = 0 \) for the hyperbolic-type equation (21).
Now substituting eq. (27) into the action (19) we obtain:

\[S_0(M) = \frac{1}{2} \int d^4 x \left[\left| \frac{\partial \varphi(x, x_5)}{\partial x_n} \right|^2 + m^2 |\varphi(x, x_5)|^2 + \left| i \frac{\partial \varphi(x, x_5)}{\partial x_5} - M \cos \mu \varphi(x, x_5) \right|^2 \right] \equiv \]

\[\equiv \int L_0(x, x_5) d^4 x. \] (30)

It is easily verified that due to eq. (24) the action (30) is independent of \(x_5 \):

\[\frac{\partial S_0(M)}{\partial x_5} = 0. \] (31)

Therefore the variable \(x_5 \) may be arbitrarily fixed and \(S_0(M) \) may be viewed as a functional of the corresponding initial Cauchy data for the equation (24). For example, for \(x_5 = 0 \) we have:

\[S_0(M) = \frac{1}{2} \int d^4 x \left[\left(\frac{\partial \varphi(x)}{\partial x_n} \right)^2 + m^2 |\varphi(x)|^2 + M (\chi(x) - \cos \mu \varphi(x))^2 \right] \equiv \]

\[\equiv \int L_0(x, M) d^4 x. \] (32)

We have thus shown that in the developed approach the property of locality of the theory does not disappear, moreover it becomes even deeper, as it is extended to dependence on the extra fifth dimension \(x_5 \).

The new Lagrangian density \(L_0(x, x_5) \) [see (30)] is a Hermitian form constructed from \(\varphi(x, x_5) \) and the components of the 5-component gradient \(\frac{\partial \varphi(x)}{\partial x_L} \), \(L = 1, 2, 3, 4, 5 \). It is clear that although \(L_0(x, x_5) \) depends explicitly on \(x_5 \), the theory essentially remains four-dimensional [see eq. (31) and (32)].

As may be seen from the transformations which have been made, the dependence of the action (32) on the two functional arguments \(\varphi(x) \) and \(\chi(x) \) is a direct consequence of the fact that in momentum space the field has a doublet structure \(\begin{pmatrix} \varphi_1(p) \\ \varphi_2(p) \end{pmatrix} \) due to the two possible values of \(p_5 \). However, the Lagrangian \(L_0(x, M) \) does not contain a kinetic term corresponding to the field \(\chi(x) \). Therefore, this variable is just auxiliary.

The special role of the 5-dimensional configuration space in the new formalism is determined by the fact that the gauge symmetry transformations are localized now in it. The initial data for the equa-
are subject to these transformations.

Let us now discuss this point in more detail, supposing that the field \(\varphi(x, x_5) \) is not Hermitian and some internal symmetry group is associated with it:

\[
\varphi' = U \varphi.
\]

Upon localization of the group in the 5-dimensional \(x \)-space:

\[
U \rightarrow U(x, x_5),
\]

the following gauge transformation law arises for the initial data (33) on the plane \(x_5 = 0 \):

\[
\begin{align*}
\varphi'(x) &= U(x, 0) \varphi(x), \\
\chi'(x) &= i \frac{1}{M} \frac{\partial U(x, 0)}{\partial x_5} \varphi(x) + U(x, 0) \chi(x).
\end{align*}
\]

The group character of the transformations (36) is obvious. The specific form of the matrix \(U(x, x_5) \) can be determined in the new theory of vector fields, which is a generalization of the standard theory in the spirit of our approach (see the end of this section).

It is clear that the equation (24) may be represented as a system of two equations of first order in the derivative \(\frac{\partial}{\partial x_5} \) [10]:

\[
\left\{ i \frac{M}{ \partial x_5} - \left[\sigma_3 \left(1 - \frac{\Box}{2M^2} \right) - i \sigma_2 \frac{\Box}{2M^2} \right] \right\} \phi(x, x_5) = 0,
\]

where

\[
\phi(x, x_5) = \begin{pmatrix}
\frac{1}{2} \left[\varphi(x, x_5) + i \frac{\partial \varphi(x, x_5)}{\partial x_5} \right] \\
\frac{1}{2} \left[\varphi(x, x_5) - i \frac{\partial \varphi(x, x_5)}{\partial x_5} \right]
\end{pmatrix} \equiv \begin{pmatrix}
\phi_I(x, x_5) \\
\phi_{II}(x, x_5)
\end{pmatrix},
\]

(\(\sigma_i, i = 1, 2, 3 \) are the Pauli matrices). If we compare (38) with (28) and (29) we find relations between the initial Cauchy data for the equation (24) and the system (37):

\[
\phi(x, 0) = \begin{pmatrix}
\phi_I(x, 0) \\
\phi_{II}(x, 0)
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} (\varphi(x) + \chi(x)) \\
\frac{1}{2} (\varphi(x) - \chi(x))
\end{pmatrix} \equiv \phi(x).
\]
It easy to show that in the basis (39) the Lagrangian \(L_0(x, M) \) from (32) looks like the following:

\[
L_0(x, M) = \frac{\partial \phi(x)}{\partial x_n} (1 + \sigma_1) \frac{\partial \phi(x)}{\partial x_n} + 2M^2 \phi(x)(1 - \cos \mu \sigma_3) \phi(x). \quad (40)
\]

Let us discuss now the question about the conditions of the transition of the new scheme into the standard Euclidean QFT (the so called "correspondence principle"). The Euclidean momentum 4-space is the "flat limit" of de Sitter p-space and may be associated with the approximation:

\[
|p_n| \ll M \\
p_5 \simeq M \quad (41)
\]

In the same limit in configuration space we shall have:

\[
\varphi(x, x_5) = e^{-iMx_5} \varphi(x) \\
\chi(x) = \varphi(x) \quad (42)
\]

or

\[
\phi(x) = \begin{pmatrix} \varphi(x) \\ 0 \end{pmatrix} \quad (43)
\]

With the help of (37) it is not difficult to obtain \[11, 12\] the corrections of the order of \(O(1/M^2) \) to the zero approximation (43):

\[
\phi(x) = \begin{pmatrix} 1 - \frac{\Box}{4M^2} \varphi(x) \\ \frac{\Box}{4M^2} \varphi(x) \end{pmatrix} \quad (44)
\]

from which (see eq. (39)) we have:

\[
\varphi(x) - \chi(x) = \frac{\Box \varphi(x)}{2M^2} \quad (45)
\]

Taking into account (45) and (11) one may conclude that in the "flat limit" (formally when \(M \to \infty \)) the Lagrangian \(L_0(x, M) \) from (32) coincides with its Euclidean counterpart.

A key role in the SM belongs to the scalar Higgs field, the interactions with which allows the other fields to get masses. As far as in our model the masses of all particles, including the mass of the Higgs boson itself, should obey the condition (6), one would presume that there exists a deep internal connection between the Higgs field and the fundamental mass \(M \). As a matter of fact, before the Higgs
mechanism is switched on, all fields by definition are massless and because of that the bound at this stage has no physical content. Only, together with the appearance of the mass spectrum of the particles the condition obtains sense and therefore the magnitude of M should be essentially fixed by the same Higgs mechanism.

In order to get some orientation in this situation let us consider, in the framework of our approach, the example of the simplest mechanism, connected with the spontaneous breaking of a discrete symmetry. In the beginning, in order to describe the scalar field, let us use the doublet $\phi(x)$. The total Lagrangian $L_{\text{tot}}(x)$, in analogy with the traditional approach, will include a free part at $\mu = 0$ and the well known interaction Lagrangian:

$$L_{\text{int}}(x) = \frac{\lambda^2}{4}(\phi^2 - v^2)^2.$$

(46)

Therefore, we have:

$$L_{\text{tot}}(x) = \frac{\partial\phi(x)}{\partial x_n}(1+\sigma_1)\frac{\partial\phi(x)}{\partial x_n} + 2M^2\phi(x)(1-\cos\mu\sigma_3)\phi(x) + \frac{\lambda^2}{4}(\phi^2 - v^2)^2.$$

(47)

Here we used the field $\phi(x)$ only to write the interaction (46) in the known symmetric form. Now in (47) we may go back to the variables $\varphi(x)$ and $\chi(x)$ (see (39)):

$$L_{\text{tot}}(x) = \frac{1}{2} \left(\frac{\partial\varphi(x)}{\partial x_n} \right)^2 + \frac{M^2}{2} (\varphi(x) - \chi(x))^2 + \frac{\lambda^2}{4} \left(\frac{\varphi^2(x) + \chi^2(x)}{2} - v^2 \right)^2.$$

(48)

The Lagrangian (48) remains invariant under the transformation:

$$\begin{align*}
\varphi(x) &\rightarrow -\varphi(x) \\
\chi(x) &\rightarrow -\chi(x)
\end{align*}$$

(49)

However, this symmetry is spontaneously broken. The transition to a stable "vacuum" is realized by the transformations:

$$\begin{align*}
\varphi(x) &= \varphi'(x) + v \\
\chi(x) &= \chi'(x) + v
\end{align*}$$

(50)

In the new variables $\varphi'(x)$ and $\chi'(x)$ the quadratic in the fields part of the Lagrangian (48) takes the form:

$$\begin{align*}
\frac{1}{2} \left(\frac{\partial\varphi'(x)}{\partial x_n} \right)^2 + \frac{1}{2}(M^2 + \frac{\lambda^2 v^2}{2}) (\varphi'^2(x) + \chi'^2(x)) - (M^2 - \frac{\lambda^2 v^2}{2})\varphi'(x)\chi'(x).
\end{align*}$$

(51)

3Higgs boson, as known, at this stage is with mass of a tachyon.
Comparing (51) and (32) we may conclude that:

1. In result of the spontaneous breaking of the symmetry (49) the fundamental mass M experiences renormalization:

$$M^2 \rightarrow M^2 + \frac{\lambda^2 v^2}{2}$$ \hspace{1cm} (52)

2. The considered scalar particle acquires mass:

$$m = \sqrt{2}\lambda v \frac{1}{\sqrt{1 + \frac{\lambda^2 v^2}{2M^2}}}$$ \hspace{1cm} (53)

which satisfies the condition \[4\]:

$$m \leq \sqrt{M^2 + \frac{\lambda^2 v^2}{2}}.$$ \hspace{1cm} (54)

Therefore, if we, in advance, take into account the renormalization (52), due to the Higgs mechanism we may write the Lagrangian (48) in the form \[5\]:

$$L_{\text{tot}}(x) = \frac{1}{2} \left(\frac{\partial \varphi(x)}{\partial x_n} \right)^2 + \frac{1}{2} (M^2 - \frac{\lambda^2 v^2}{2}) (\varphi(x) - \chi(x))^2 + \frac{\lambda^2}{4} (\varphi^2(x) + \chi^2(x) - v^2)^2.$$ \hspace{1cm} (55)

In this way we shall have instead of (53):

$$m = \sqrt{2}\lambda v \sqrt{1 - \frac{\lambda^2 v^2}{2M^2}} \equiv m_0 \sqrt{1 - \frac{m_0^2}{4M^2}}$$ \hspace{1cm} (56)

The quantity $m_0 = \sqrt{2}\lambda v$ is the maximal value of the mass of the considered scalar particle. It may be reached only in the "flat limit" $M \rightarrow \infty$, when the Lagrangian (55) because of (12) and (45) takes the usual form:

$$L_{\text{tot}}(x) = \frac{1}{2} \left(\frac{\partial \varphi(x)}{\partial x_n} \right)^2 + \frac{\lambda^2}{4} (\varphi^2(x) - v^2)^2.$$ \hspace{1cm} (57)

The concluding part of this section contains a summary of some results of the paper [5], in which the formulation of the gauge fields theory is developed in de Sitter momentum space (16).

\[4\] Let us note that (54) is equivalent to the inequality $\left(1 - \frac{\lambda v}{\sqrt{2M}}\right)^2 \geq 0$.

\[5\] In order the Lagrangian (47) remains positively definite, it is natural to suppose that $M^2 > \frac{\lambda^2 v^2}{2}$.

13
In the new scheme the electromagnetic potential, similarly to the momentum, becomes a 5-vector and in p-representation one may consider expressions like:

\[\delta(p_{1}^{2} + p_{2}^{2} - p_{5}^{2} - M^{2})A_{L}(p, p_{5}), \quad L = 1, 2, 3, 4, 5. \]

(58)

Its 5-dimensional Fourier transform (compare with (23)) has the form:

\[A_{L}(x, x_{5}) = \frac{2M}{(2\pi)^{5/2}} \int e^{-ip_{N}x_{N}}(p_{K}p^{K} - M^{2})A_{L}(p, p_{5})d^{5}p, \]

(59)

\[K, L, N = 1, 2, 3, 4, 5. \]

It is evident that (59) satisfies the equation (24):

\[\left(\frac{\partial^{2}}{\partial x_{5}^{2}} - \Box + M^{2} \right) A_{L}(x, x_{5}) = 0. \]

(60)

The action is given by the integrals (compare with (21) and (30))

\[S_{0}(M) = 2\pi M \times \]

\[\times \int \epsilon(p_{5})\delta(p_{L}p_{L} - M^{2})d^{5}p 2M(p_{5} - M) \left| A_{n}(p, p_{5}) - \frac{p_{n}A_{5}(p, p_{5})}{p_{5} - M} \right|^{2} = \]

\[= \int d^{4}x L_{0}(x, x_{5}) = \frac{1}{4} \int d^{4}xF_{KL}(x, x_{5})F^{KL}(x, x_{5}) + \]

\[+ \frac{1}{2} \int d^{4}x \left| \frac{\partial(e^{iMx_{5}A_{L}(x, x_{5})})}{\partial x_{L}} - 2iMe^{iMx_{5}}A_{5}(x, x_{5}) \right|^{2}, \]

\[n = 1, 2, 3, 4; \quad K, L = 1, 2, 3, 4, 5, \]

(61)

where the "field strength 5-tensor":

\[F^{KL}(x, x_{5}) = \frac{\partial(e^{iMx_{5}}A_{K}(x, x_{5}))}{\partial x_{L}} - \frac{\partial(e^{iMx_{5}}A_{L}(x, x_{5}))}{\partial x_{K}}. \]

(62)

is introduced. This quantity is obviously expressed in terms of the commutator of the 5-dimensional covariant derivatives:

\[D_{L} = \frac{\partial}{\partial x_{L}} - iqe^{iMx_{5}}A_{L}(x, x_{5}), \]

(63)

where \(q \) is the electric charge. It is easy to verify that the integral (61) is invariant under gauge transformations of the 5-potential \(A_{L}(x, x_{5}) \):

\[e^{iMx_{5}}A_{L}(x, x_{5}) \rightarrow e^{iMx_{5}}A_{L}(x, x_{5}) - \frac{\partial(e^{iMx_{5}}\lambda(x, x_{5}))}{\partial x_{L}} \]

(64)
with the condition:

\[\left(\frac{\partial^2}{\partial x_5^2} - \Box + M^2 \right) \lambda(x, x_5) = 0. \] \tag{65}

Let us notice that the gauge function \(\lambda(x, x_5) \) is defined by two initial
data \(\lambda(x) = \lambda(x, 0) \) and \(\mu(x) = \frac{i}{M} \frac{\partial \lambda(x, 0)}{\partial x_5} \). Therefore, the group \([66]\) is broader than the standard gauge group. This is due to the fact

that in the transition to the 5-dimensional description there appear

additional superfluous gauge degrees of freedom, subject to removal.

Similarly to its scalar analogue \([60]\), the action \([61]\), because of

\([60]\), does not depend on the coordinate \(x_5 \). For that reason it may

be considered as a functional of the Cauchy data:

\[A_L(x, 0) = A_L(x), \quad \frac{i}{M} \frac{\partial A_L(x, 0)}{\partial x_5} \equiv X_L(x). \] \tag{66}

Let us notice \([5]\), that:

\[A_n^+(x) = A_n(x), \quad A_5^+(x) = -A_5(x). \] \tag{67}

Coming back to the relations \([35] - [36]\) we may assert that in the

considered Abelian case, because of \([64]\) and \([65]\) we have:

\[U(x, x_5) = \exp \left(ie^{iMx_5} q \lambda(x, x_5) \right) \] \tag{68}

and therefore:

\[\varphi'(x) = e^{iq\lambda(x)} \varphi(x) \]

\[\chi'(x) = e^{iq\lambda(x)} [\chi(x) + iq(\mu(x) - \lambda(x)) \varphi(x)] \] \tag{69}

The considered technique allows us to formulate in our approach an

unique prescription for construction of the action integral of the Eu-

clidean scalar electrodynamics consistent with the requirements of lo-

cality, gauge invariance and de Sitter structure of momentum space:

1. In the action integral for the complex scalar field (use \([32]\)) as

a pattern) it is necessary to make the **minimal interaction substitution**

(see \([63]\)):

\[\frac{\partial}{\partial x^L} \rightarrow D_L = \frac{\partial}{\partial x^L} - i q e^{iMx_5} A_L(x, x_5) \] \tag{70}

and to take \(x_5 = 0 \).
2. Add to the obtained expression the action integral of the electromagnetic field \((61)\) after setting \(x_5 = 0\).

The total action integral remains invariant under simultaneous gauge transformations \((64)\) and \((69)\).

A similar algorithm will be applied also in the new version of the Standard Model.

If the neutral vector field has a mass \(m\) (the so called Proca field) in our approach it is described by the action (compare with \((61)\)):

\[
S_0(M) = 2\pi M \int \varepsilon(p_5) \delta(p_L p^L - M^2) d^5 p \times
\]

\[
\{ 2M(p_5 - M \cos \mu)|A_n(p,p_5)|^2 - 2p_n A_n(p_5) A_5(p,p_5) \} - \{ 2p_n \overline{A}_5(p,p_5) A_n(p,p_5) + 2(p_5 + M \cos \mu)|A_5(p,p_5)|^2 \},
\]

where:

\[
\cos \mu = \sqrt{1 - \frac{m^2}{M^2}}, \quad A_n^+(p,p_5) = A_n(p,p_5), \quad A_5^+(p,p_5) = -A_5(-p,p_5).
\]

(72)

In configurational space, using \((59)\) and introducing the notations (compare with \((28)\) and \((29)\)):

\[
A_L(x) = A_L(x,0)
\]

\[
X_L(x) = \frac{i}{M} \frac{\partial A_L(x,0)}{\partial x^5},
\]

we obtain from \((74)\):

\[
S_0(M) = \int L_0(x,M) d^4 x = \int d^4 x L_{Proca}^{(0)}(x) +
\]

\[
+ \frac{1}{2} \int d^4 x \left[\frac{\partial A_k(x)}{\partial x^k} - i M (A_5(x) + X_5(x)) \right]^2 +
\]

\[
+ \frac{M^2}{2} \int d^4 x \left[X_k(x) - \cos \mu A_k(x) + \frac{i}{M} \frac{\partial A_5(x)}{\partial x^5} \right]^2 -
\]

\[
- 2i M \sin^2 \frac{\mu}{2} \int d^4 x A_k(x) \frac{\partial A_5(x)}{\partial x^5} - 2M^2 \sin^2 \frac{\mu}{2} \int d^4 x A_5(x) X_5(x),
\]

where:

\[
L_{Proca}^{(0)}(x) = \frac{1}{4} F_{kl}^2(x) + \frac{m^2}{2} A_n^2(x).
\]

(75)

6 This relation must be taken on the plane \(x_5 = 0\).
If in our version of the Euclidean scalar electrodynamics, we shortly discussed above, a spontaneous breaking of the gauge $U(1)$ - symmetry is realized, using for this a boson potential of the type (compare with (48):

$$\frac{\lambda^2}{4} \left(|\varphi(x)|^2 + |\chi(x)|^2 - v^2\right),$$

(76)

then in result the electromagnetic field obtains a mass $m = qv$, i.e. transforms to a Proca field. The quadratic in the vector field part of the total Lagrangian will include $L_{Proca}^{(0)}(x)$ (see (75)), and also the terms:

$$\frac{1}{2} \left[\frac{\partial A_k(x)}{\partial x_k} - iM(A_5(x) + X_5(x)) \right]^2 + \frac{1}{2} \left[X_k(x) - A_k(x) + i \frac{\partial A_5(x)}{M \partial x_5} \right]^2$$

(77)

The difference between (77) and the last four terms in the Lagrangian $L_0(x,M)$ from (74) is not essential. It disappears after a shift of the auxiliary field variable $X_k(x)$ in (74):

$$X_k \rightarrow X_k - 2 \sin^2 \frac{\mu}{2} A_k$$

(78)

and fixing the gauge $A_5(x) = 0$.

In the theory of the Yang-Mills field in de Sitter p-space (15) the mechanism of generating mass of the vector particles as a result of spontaneous breaking of the symmetry is qualitatively the same as in the just discussed Abelean case. In particular, in the framework of Maximal Mass Model, which will be developed in detail in a separate publication (see section 1.), it turns out that the masses of W^\pm and Z^0 are the known SM expressions in terms of the coupling constants and the Higgs vacuum expectation value and do not contain M.

At the end of this section we would like to explain why we prefer to develop our approach in Euclidean terms and pass from anti de Sitter p-space (17) to de Sitter p-space (16).

Let us apply to (8) 5-dimensional Fourier transform (compare with (23)):

$$\varphi(x,x_5) \equiv \frac{2M}{(2\pi)^{3/2}} \int e^{-ip_0x_0 + p\cdot x} \delta(p_0^2 - p^2 + p_5^2 - M^2) \varphi(p,p_5) d^5p.$$

(79)

7 Let us notice, that this quantity does not depend of M and coincides with the standard expression (compare with (15)).

8 Let us emphasize that $L_{Proca}^{(0)}(x)$ does not depend on $A_5(x)$.
From here we find (compare with (28) and (29)):

$$\phi(x, 0) \equiv \phi(x) = \frac{M}{(2\pi)^{3/2}} \int_{p^2 \leq M^2} e^{-ipx} d^4p \frac{\phi(p, |p_5|) + \phi(p, -|p_5|)}{|p_5|}$$

$$\frac{i}{M} \frac{\partial \phi(x, 0)}{\partial x_5} \equiv \chi(x) = \frac{1}{(2\pi)^{3/2}} \int_{p^2 \leq M^2} e^{-ipx} d^4p \left[\phi(p, |p_5|) - \phi(p, -|p_5|) \right].$$

(80)

The principal difference of these expressions in comparison with (28) and (29) is that in (80) there is a limitation on the integration region: $p_0^2 - \mathbf{p}^2 \leq M^2$. This fact sharply restricts the class of functions $\phi(x)$ and $\chi(x)$ and does not allow, in particular, to construct from them local Lagrangians or to apply to them local gauge transformations. Rigorously speaking eqs. (80) can not be treated (without special reservations) as Cauchy data for the "ultra-hyperbolic" equation:

$$\left(\frac{\partial^2}{\partial x_0^2} + \frac{\partial^2}{\partial x_5^2} - \frac{\partial^2}{\partial x^2} + M^2 \right) \phi(x, x_5) = 0,$$

(81)

which (79) satisfies. In mathematical physics there are developed methods, which allow one to use partial differential equations of ultra-hyperbolic type with Cauchy initial data. In technical plan we consider this as more complicated procedure, than to work in the framework of Euclidean QFT. Moreover, thanks to the locality of the Euclidean formulation, coming back to the relativistic description is not a problem.

3 De Sitter fermion fields

As far as the new QFT is elaborated on the basis of de Sitter momentum space (16) it is natural to suppose that in the developed approach the fermion fields $\psi_\alpha(p, p_5)$ have to be de Sitter spinors, i.e to transform under the four dimensional representation of the group SO(4, 1).
Further on we shall use the following γ - matrix basis ($\gamma^4 = i\gamma^0$):

$$\gamma^L = (\gamma^1, \gamma^2, \gamma^3, \gamma^4, \gamma^5)$$

$$\{\gamma^L, \gamma^M\} = 2g^{LM},$$

$$g^{LM} = \begin{pmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.$$ \quad (82)

Obviously we have:

$$M^2 - p_Lp^L = M^2 + p^2 - p_5^2 = (M - p_L\gamma^L)(M + p_L\gamma^L) =$$

$$= (M + p^n\gamma^n - p^5\gamma^5)(M - p^n\gamma^n + p^5\gamma^5).$$ \quad (83)

In the “flat limit” $M \to \infty$ the quantities $\psi_{\alpha}(p, p_5)$ become Euclidean spinor fields, which are used in the construction of different versions of Euclidean QFT for fermions.

It is clear that the relations (23) - (29), which we considered in the theory of boson fields, exist also in its fermion version. Let us write some of them without comments:

$$\psi(x, x_5) = \frac{2M}{(2\pi)^{3/2}} \int e^{-ipKx} \delta(p_Lp^L - M^2)\psi(p, p_5)d^5p,$$ \quad (84)

$$\left(\frac{\partial^2}{\partial x_5^2} - \Box + M^2\right)\psi(x, x_5) = 0,$$ \quad (85)

$$\psi(x, 0) \equiv \psi(x) = \frac{2M}{(2\pi)^{3/2}} \int e^{ip_nx^n} d^4p \frac{\psi_1(p) + \psi_2(p)}{|p_n|} =$$

$$= \frac{1}{(2\pi)^{3/2}} \int e^{ip_nx^n} \psi(p) d^4p,$$ \quad (86)

$$\frac{i}{M} \frac{\partial \psi(x, 0)}{\partial x_5} \equiv \chi(x) = \frac{1}{(2\pi)^{3/2}} \int e^{ip_nx^n} d^4p [\psi_1(p) - \psi_2(p)] =$$

$$= \frac{1}{(2\pi)^{3/2}} \int e^{ip_nx^n} \chi(p) d^4p.$$ \quad (87)

The next step is the construction of the action integral for the fermion field $\psi_{\alpha}(p, p_5)$. Here we will not follow our work [6], where this problem has been solved in the spirit of the Schwinger’s approach [13].
with the use of 8-component real spinors and preserving the reality of
the action. Now we shall follow the formulation of Osterwalder and
Schrader \[14\] and write the Euclidean fermion Lagrangian in the form:
\[
L_{E}(x) = \bar{\zeta}_{E}(x) \left(-i \gamma_{n} \frac{\partial}{\partial x^{n}} + m \right) \psi_{E}(x),
\]
(88)
Here the spinor fields \(\bar{\zeta}_{E}(x) = \zeta_{E}^{+}(x) \gamma^{4} \) and \(\psi_{E}(x) \) are independent
Grassmann variables, which are not connected between themselves by
Hermitian or complex conjugation. Correspondingly the action is not
Hermitian. The Osterwalder and Schrader approach has been widely
discussed in the literature \[14\] and here we shall not go into details.
It is easy to convince oneself, that the expression \(2M(p_{5} - M \cos \mu) \),
which in our approach substitutes (see eq.(32)) the Euclidean Klein-
Gordon operator \(p^{2} + m^{2} \) may be represented as:
\[
2M(p_{5} - M \cos \mu) = \nonumber
\]
\[
= \left[p_{n} \gamma^{n} - (p_{5} - M) \gamma^{5} + 2M \sin \frac{\mu}{2} \right] \left[-p_{n} \gamma^{n} + (p_{5} - M) \gamma^{5} + 2M \sin \frac{\mu}{2} \right] \quad (89)
\]
In the Euclidean approximation \[41\] the relation (89) takes the form:
\[
p_{n}^{2} + m^{2} = (p_{n} \gamma^{n} + m)(-p_{n} \gamma^{n} + m). \quad (90)
\]
Therefore, we may use the expression:
\[
\mathcal{D}(p, p_{5}) \equiv p_{n} \gamma^{n} - (p_{5} - M) \gamma^{5} + 2M \sin \frac{\mu}{2} \quad (91)
\]
like the new Dirac operator.
As a result we come to an expression for the action of the Fermion
field in the de Sitter momentum space:
\[
S_{0}(M) = 2\pi M \int \varepsilon(p_{5}) \delta(p_{5} p^{L} - M^{2})d^{5}p \times \nonumber
\]
\[
\times \left[\bar{\zeta}(p, p_{5})(p_{n} \gamma^{n} - (p_{5} - M) \gamma^{5} + 2M \sin \frac{\mu}{2}) \psi(p, p_{5}) \right], \quad (92)
\]
\[9\] By the way in the paper \[15\] the so called Wick rotation is interpreted in terms of
5-dimensional space.
In the integral (92) it is possible to pass to the field variables:

\[\psi(p) = \frac{M}{|p|} (\psi(p, |p|) + \psi(p, -|p|)) \equiv M \frac{\psi_1(p) + \psi_2(p)}{|p|} \]

\[\chi(p) = \psi_1(p) - \psi_2(p) \]

\[\zeta(p) = M \frac{\zeta_1(p) + \zeta_2(p)}{|p|} \]

\[\xi(p) = \zeta_1(p) - \zeta_2(p), \]

which are the Fourier amplitudes of the local fields \(\psi(x), \chi(x), \zeta(x) \) and \(\xi(x) \) (compare with (88) and (87)). As result we get:

\[S_D^0 = -\pi \int d^4p \left(M + \frac{p^2}{M} \right) \zeta(p) \gamma^5 \psi(p) + \]

\[+ \pi \int d^4p \zeta(p) \left(\Phi + M \gamma^5 + 2M \sin \frac{\mu}{2} \right) \chi(p) + \]

\[+ \pi \int d^4p \zeta(p) \left(\Phi + M \gamma^5 + 2M \sin \frac{\mu}{2} \right) \psi(p) - \]

\[- \pi \int d^4p M \xi(p) \gamma^5 \chi(p) \]

In configuration space we shall have correspondingly:

\[S_D^0 = \int L_D^0(x, M)d^4x = \]

\[= \frac{1}{2} \int d^4x \zeta(x) \left(\frac{\Box}{M^2} - 1 \right) \gamma^5 \psi(x) + \]

\[+ \frac{1}{2} \int d^4x \zeta(x) \left(i\gamma^\mu \frac{\partial}{\partial x^\mu} + M \gamma^5 + 2M \sin \frac{\mu}{2} \right) \chi(x) + \]

\[+ \frac{1}{2} \int d^4x \zeta(p) \left(i\gamma^\mu \frac{\partial}{\partial x^\mu} + M \gamma^5 + 2M \sin \frac{\mu}{2} \right) \psi(x) - \]

\[- \frac{1}{2} \int d^4x \xi(x) \gamma^5 \chi(x). \]

Hence, the modified Dirac Lagrangian \(L_D^0(x, M) \) is a local function of the spinor field variables \(\psi(x), \chi(x), \zeta(x) \) and \(\xi(x) \). Here there is an obvious analogy with the boson case (compare with (32) and (74)).

However the fermion Lagrangian \(L_D^0(x, M) \) may be represented in an other form, if one use the relations (83). Indeed let us put:

\[\frac{1}{2M}(M - p_K \gamma^K) \psi(p, p_5) \equiv \Pi_L \psi(p, p_5) \equiv \psi_L(p, p_5) \]

\[\frac{1}{2M}(M + p_K \gamma^K) \psi(p, p_5) \equiv \Pi_R \psi(p, p_5) \equiv \psi_R(p, p_5) \]
Because of (16) the operators Π_L and Π_R are projectors:

\[
\Pi_L + \Pi_R = 1,
\]

\[
\Pi_L^2 = \Pi_L \quad \Pi_R^2 = \Pi_R, \tag{97}
\]

\[
\Pi_L \Pi_R = \Pi_R \Pi_L = 0.
\]

From other point of view they are the 5- analogue of the Dirac operator, and the fields $\psi_L(p, p_5)$ and $\psi_R(p, p_5)$ obviously satisfy the corresponding 5-dimensional Dirac equations:

\[
(M + p_K \gamma^K)\psi_L(p, p_5) = 0, \tag{98}
\]

\[
(M - p_K \gamma^K)\psi_R(p, p_5) = 0.
\]

Therefore, in this way the fermion field $\psi(p, p_5)$, given in the de Sitter momentum space (16), may be presented as a sum of two fields $\psi_L(p, p_5)$ and $\psi_R(p, p_5)$:

\[
\psi(p, p_5) = \psi_L(p, p_5) + \psi_R(p, p_5), \tag{99}
\]

which obey the 5-dimensional Dirac equations (98). Obviously the decomposition (99) is de Sitter invariant procedure.

It is easy to verify that in the flat limit (41):

\[
\Pi_{L,R} = \frac{1 \pm \gamma^5}{2}, \tag{100}
\]

This is the reason that we consider the fields $\psi_L(p, p_5)$ and $\psi_R(p, p_5)$ as the "chiral" components in the developed approach [12]. The new operator of chirality $\frac{p^{nk}}{M}$, similarly to its "flat counterpart" has eigenvalues equal to ± 1, but depends on the energy and momentum. The last circumstance, as we hope, should be revealed experimentally (see section 4).

It is worthwhile to pass in (98) to configurational representation. Applying (84) we get:

\[
\psi_L(x, x_5) = \frac{1}{2} \left(1 - \frac{i p_5}{M} \frac{\partial}{\partial x_5} - \frac{i p_5}{M} \frac{\partial}{\partial x_5} \right) \psi(x, x_5)
\]

\[
\psi_R(x, x_5) = \frac{1}{2} \left(1 + \frac{i p_5}{M} \frac{\partial}{\partial x_5} + \frac{i p_5}{M} \frac{\partial}{\partial x_5} \right) \psi(x, x_5) \tag{101}
\]
Setting in (101) \(x_5 = 0\) and taking into account (86) and (87) we shall have:

\[
\psi_L(x,0) \equiv \psi_L(x) = \frac{1}{2} \left[1 - \frac{i\gamma^5}{2M} \frac{\partial}{\partial x^5} \right] \psi(x) - \frac{\gamma^5}{2} \chi(x),
\]

(102)

\[
\psi_R(x,0) \equiv \psi_R(x) = \frac{1}{2} \left[1 + \frac{i\gamma^5}{2M} \frac{\partial}{\partial x^5} \right] \psi(x) + \frac{\gamma^5}{2} \chi(x).
\]

As far as the field \(\psi(x,x_5)\) obeys equation (24) the relations, which we obtained for the scalar field in the "flat" approximation and in particular (45), may be applied to it. Taking this into account, we find, that in this approximation the equalities (102) become:

\[
\psi_L(x) = \frac{1}{2} (1 - \gamma_5) \psi(x) - \frac{i\gamma^5}{2M} \frac{\partial}{\partial x^5} \psi(x) + \frac{\gamma^5}{2} (\psi(x) - \chi(x)) \simeq
\]

\[
\simeq \frac{1}{2} (1 - \gamma_5) \psi(x) - \frac{i\gamma^5}{2M} \frac{\partial}{\partial x^5} \psi(x) + \frac{\gamma^5}{4M^2} \Box \psi(x),
\]

\[
\psi_R(x) \simeq \frac{1}{2} (1 + \gamma_5) \psi(x) + \frac{i\gamma^5}{2M} \frac{\partial}{\partial x^5} \psi(x) - \frac{\gamma^5}{4M^2} \Box \psi(x).
\]

(103)

Representation, analogous to (99), may be introduced for the field \(\zeta(p,p_5)\), appearing in (92):

\[
\zeta(p,p_5) = \zeta_L(p,p_5) + \zeta_R(p,p_5),
\]

(104)

where

\[
\zeta_L(p,p_5) = \zeta(p,p_5) \Pi_R, \\
\zeta_R(p,p_5) = \zeta(p,p_5) \Pi_L.
\]

(105)

Further it is not difficult to obtain relations, similar to (101) and (103) for the fields \(\zeta_L(x)\) and \(\zeta_R(x)\):

\[
\zeta_L(x) = \frac{1}{2} \zeta(x) + \frac{i}{2M} \frac{\partial}{\partial x^5} \gamma^n \zeta(x) \frac{\gamma^5}{2},
\]

(106)

\[
\zeta_R(x) = \frac{1}{2} \zeta(x) - \frac{i}{2M} \frac{\partial}{\partial x^5} \gamma^n \zeta(x) \frac{\gamma^5}{2},
\]

\[
\zeta_L \simeq \zeta(x) \frac{1}{2} (1 + \gamma_5) + \frac{i}{2M} \frac{\partial}{\partial x^5} \zeta(x) \frac{\gamma^5}{2} - \frac{\Box}{4M^2} \zeta(x) \frac{\gamma^5}{2},
\]

\[
\zeta_R \simeq \zeta(x) \frac{1}{2} (1 - \gamma_5) - \frac{i}{2M} \frac{\partial}{\partial x^5} \zeta(x) \frac{\gamma^5}{2} + \frac{\Box}{4M^2} \zeta(x) \frac{\gamma^5}{2}.
\]

(107)
Now, substituting (102) and (106) in the action integral (95) we may pass to new variables \(\psi(L)(x) \), \(\psi(R)(x) \), \(\xi_L(x) \) and \(\xi_R(x) \):

\[
S^D_0 = \int L^D_0(x, M) d^4x =
\]
\[
= \int d^4x \left[\xi_L(x) i \gamma^n \frac{\partial}{\partial x^n} \psi(L)(x) + \xi_R(x) i \gamma^n \frac{\partial}{\partial x^n} \psi(R)(x) \right] +
\]
\[
+ \int d^4x \xi_L(x) \left[i \gamma^n \frac{\partial}{\partial x^n} + M(1 - \gamma^5) \right] \psi(L)(x) +
\]
\[
+ \int d^4x \xi_R(x) \left[i \gamma^n \frac{\partial}{\partial x^n} - M(1 + \gamma^5) \right] \psi(L)(x) +
\]
\[
+ 2M \sin \frac{\mu}{2} \int d^4x \left[\xi_L(x) \gamma^5 \psi(R)(x) - \xi_R(x) \gamma^5 \psi(L)(x) \right]
\]

The obtained expression is the basis for constructing gauge theory of interacting fermion field. This topic we shall discuss shortly in the next section. Concluding this part we would like to make one important remark [6].

The point is that for the quantity \(2M(p^5 - M \cos \mu) \), which substituted in our approach the Euclidean Klein-Gordon operator together with (89) there exists one more decomposition to matrix factors:

\[
2M(p^5 - M \cos \mu) =
\]
\[
= (p_n \gamma^n - \gamma^5(p^5 + M) + 2M \cos \frac{\mu}{2})(p_n \gamma^n + \gamma^5(p^5 + M) - 2M \cos \frac{\mu}{2})
\]

(109)

Therefore, if our approach is considered to be realistic, it may be assumed that in Nature exists some exotic fermion field, whose free action integral has the form:

\[
S^{(\text{exotic})}_0(M) = 2\pi M \int \varepsilon(p_5) \delta(p_L p^L - M^2) d^5p \times
\]
\[
\{ \xi_{\text{exotic}}(p, p_5) \left[p_n \gamma^n - (p_5 + M) \gamma^5 + 2M \cos \frac{\mu}{2} \right] \psi_{\text{exotic}}(p, p_5) \}
\]

(110)

Applying the above developed procedure it is easy to obtain \(S^{(\text{exotic})}_0(M) \) in a form analogous to (108). However, in contrast to \(S^D_0 \) this quantity does not have a limit at \(M \rightarrow \infty \), which justifies the chosen by us name for this field. The polarization properties of the exotic field, evidently, differ sharply from standard ones.
We would like to conjecture that the quanta of the exotic fermion field have a direct relation to the structure of the "dark matter."

4 The new geometrical approach to the Standard Model

To the complete formulation of the Standard Model, consistent with the principle of maximal mass \(\text{\footnotesize{(10)}} \) and its geometrical realization in terms of de Sitter momentum space \(\text{\footnotesize{(11)}} \) we shall devote a separate paper. Now we intend to make only several remarks, important for the understanding of our general strategy:

1. \(SU_L(2) \otimes U_Y(1) \) symmetry

The gauge \(SU_L(2) \otimes U_Y(1) \) - symmetry is one of the most important elements of the SM, which guaranteed its success. This is why it should be assumed as necessary to apply it also in our approach, taking into account our new definition of the chiral fields. However, in the new fermion Lagrangian \(L^D \) (see \(\text{\footnotesize{(108)}} \)) even for \(m = 0 \) there are crossed terms:

\[
\zeta(L) \left[i \gamma^n \frac{\partial}{\partial x^n} + M(1 - \gamma^5) \right] \psi(R)(x) + \\
+ \bar{\zeta}(R) \left[i \gamma^n \frac{\partial}{\partial x^n} - M(1 + \gamma^5) \right] \psi(L)(x),
\]

which, at first glance are insurmountable obstacle for the use of the group \(SU_L(2) \otimes U_Y(1) \). The solution of this difficulty is to make the expression \(\text{\footnotesize{(111)}} \) invariant form with the help of the Higgs field. In this way, considering as before the Higgs boson to be a \(SU_L(2) \)-doublet, introducing the doublet structure for the \(L \)-component of the fermion field and passing to covariant derivatives with the rules of the SM, we may write \(\text{\footnotesize{(111)}} \) in the form:

\[
\frac{1}{v} \left(\bar{\zeta}(L), H(x) \right) \left[i \gamma^n D^R_n + M(1 - \gamma^5) \right] \psi(R)(x) + \\
+ \frac{1}{v} \bar{\zeta}(R) \left[H^+(x). \left[i \gamma^n D^L_n - M(1 + \gamma^5) \right] \psi(L)(x) \right] + \text{conj.},
\]

where \(H(x) \) is the SM Higgs doublet and \(D^R \) and \(D^L \) are the SM covariant derivatives. After the Higgs mechanism is switched on from \(\text{\footnotesize{\text{\footnotesize{(10)}}}} \) Let us recall that namely this \textit{geometrized} SM we call in advance the Maximal Mass Model.
separate our cross terms and appear terms with interactions, which are not present in the SM. Together with the corrections, caused by the difference between the new and old definitions of chirality (see and) they may be the ground for predictions, which may be verified experimentally.

2. Chirality

In the SM to the boson fields it is prescribed to transform as representations of the group $SU_L(2)$, which for the vector fields is three-dimensional and two-dimensional for the Higgs scalar. Naively reasoning one may ask himself how the mentioned bosons should know about the existence of the 4×4 matrix γ^5, one of the eigenvalues of which, corresponds to the index L? In our approach all fields, boson and fermion, are given in de Sitter p-space on an equal footing, with the only difference that the boson fields obey the 5-equation of Klein-Gordon (see and), and the fermion 5-equations of Dirac. There is nothing strange in it that the field $\psi_L(x)$ and the Higgs scalar φ simultaneously have a doublet structure in respect to the $SU_L(2)$-symmetry. This has already happened in the old isospin symmetry. Let us recall the nucleon doublet and the K-meson doublet.

The new geometrical concept of chirality allows us to think that the discovered fifty years ago parity violation in weak interactions was a manifestation of the de Sitter nature of momentum 4-space.

3. Higgs mechanism

This important element of the SM, as we see already now is conserved in the generalized SM without considerable changes. The role of the spontaneous symmetry breaking mechanism in the formation of the fundamental mass M has been studied on a simple example in section 2.

5 Concluding remarks

Concluding this article, we would like to pay attention to one peculiarity of the developed here approach. All fields, independent of their spins, charges, masses etc. satisfy the free 5-equation of hyperbolic type, and the role of ”time” is played by the coordinate ”x_5”. The interaction between the fields is realized on the level of the Cauchy data, given on the plane $x_5 = 0$, i.e. in the four-dimensional (Euclidean) world. The right of such a ”free gliding” in the 5-space have only the elementary particles, described by local fields and with masses,
obeying the limitation $m \leq M$.

Acknowledgements. V. G. K. and M. D. M. would like to thank Luis Alvarez-Gaumé and the PH - TH division of CERN, where major part of this work was done, for the kind hospitality and stimulating atmosphere. Both authors would like to thank warmly Alvaro De Rújula for fruitful and highly useful discussions. The authors would like to thank also M. V. Chizhov and E. R. Popitz for discussions. This work has been supported in part by the Bulgarian National Science Fund under the contract Ph-09-05 (M.D.M.) and by the Russian Foundation for Basic Research (Grant No. 05-02-16535a) and the Program for Supporting Leading Scientific Schools (Grant No. NSh-5332.2006.2) (V. G. K. and V. N. R.).

References

[1] Markov M. A., Prog. Theor Phys. Suppl., Commemoration Issue for the Thirtieth Anniversary of Meson Theory and Dr. H. Yukawa, p. 85 (1965); Sov. Phys. JETP, 24, p. 584 (1967).

[2] Kadyshevsky V.G., Nucl. Phys., B141, p. 477 (1978); in Proceedings of International Integrative Conference on Group Theory and Mathematical Physics, Austin, Texas, 1978; Fermilab-Pub. 78/70-THY, Sept. 1978; Phys. Elem. Chast. Atom. Yadra, 11, p. 5 (1980).

[3] Kadyshevsky V.G., Mateev M. D., Phys. Lett., B106, p. 139 (1981).

[4] Kadyshevsky V.G., Mateev M. D., Nuovo Cimento, A87, p324, (1985).

[5] Chizhov M. V., Donkov A.D., Kadyshevsky V.G., Mateev M. D., Nuovo Cimento, 1985, A87, p. 350 (1985).

[6] Chizhov M. V., Donkov A.D., Kadyshevsky V.G., Mateev M. D., Nuovo Cimento, A87, p. 373, (1985).

[7] Kadyshevsky V.G., Phys. Part. Nucl. 29, p. 227 (1998).

[8] Kadyshevsky V.G., Mateev M. D., Rodionov, V. N., Sorin A. S. Doklady Physics 51, p.287 (2006), e-Print: [hep-ph/0512332](http://arxiv.org/abs/hep-ph/0512332).

[9] Newton T. D., Wigner E. P., Rev. Mod. Phys., 21, p.400 (1949).

[10] Kadyshevsky V. G., Fursaev D. V., JINR Rapid Communications, N 6, p.5 (1992).
[11] Ibadov R.M., Kadyshesvky V.G., Preprint JINR-P2-86-835 (1986).

[12] Kadyshevsky V. G., Fursaev D. V. JINR-P2-87-913 (1987); Sov.Phys.Dokl.34, p. 534 (1989).

[13] Schwinger J., Phys. Rev. 115, p.721 (1959).

[14] Osterwalder K., Schrader R., Phys. Rev. Lett. 29, p. 1423 (1973); Helv. Phys. Acta, 46, p.277 (1973), CMP 31,83 (1973); CMP 42,281 (1975).

[15] Van Nieuwenhuizen P. and Waldron A. Phys. Lett. B, 389, p. 29 (1996).