BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
A Multilevel Analysis of Grand Multiparity: Trend and its determinants in the Sidama National Region State of Ethiopia: Evidence from 2016 Ethiopia Demographic and Health Survey.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061697
Article Type:	Original research
Date Submitted by the Author:	03-Feb-2022
Complete List of Authors:	Dasa, Tamirat; Hawassa University College of Medicine and Health Sciences, ; Department of Midwifery, College of Medicine and Health Sciences, Hawassa University MA, Okunlola; University College Hospital Nigeria, Dessie, Yadeta; Haramaya University, Public Health
Keywords:	Community child health < PAEDIATRICS, Epidemiology < ONCOLOGY, Maternal medicine < OBSTETRICS, Prenatal diagnosis < OBSTETRICS, Antenatal < GENETICS
I, the Submitting Author, has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
A Multilevel Analysis of Grand Multiparity: Trend and its determinants in the Sidama National Region State of Ethiopia: Evidence from 2016 Ethiopia Demographic and Health Survey.

Tamirat Tesfaye Dasa1,2*, Michael. A. Okunlola3, Yadeta Dessie 4

Authors’ Affiliations
1Pan African University, Life and Earth Sciences Institute, (Including Agriculture and Health) Ibadan, Nigeria
2Hawassa University, College of Medicine and Health Sciences, P.O. Box 1165, Hawassa, Ethiopia
3Department of Obstetrics and Gynaecology, College of Medicine, University College Hospital, University of Ibadan, Ibadan, Nigeria.
4School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia

Authors email address
1. Tamirat Tesfaye Dasa- tamirathenna@gmail.com
2. Michael. A. Okunlola - biolaokunlola@gmail.com
3. Yadeta Dessie - yad_de2005@yahoo.com

*Corresponding author:
Tamirat Tesfaye Dasa, Reproductive Health Sciences, Department of Midwifery, College of Medicine and Health Sciences, Hawassa University.

Email: tamirathenna@gmail.com

P.O. Box 235, Phone: +251938611577

Word count= 3621
Abstract

Objective: The study was aimed at examining the magnitude, trends, and determinants of grand multiparity in the Sidama regional state of Ethiopia.

Design: We retrieved cross-sectional data from the Ethiopian demographic health survey 2016.

Setting: Community-based demographic health survey was conducted in Ethiopia.

Participants: The study population was women (aged 15 to 49 years) who had delivered children with available DHS data set.

Outcomes: Multilevel multivariate logistic regression analyses assessed the relationship between grand multiparity and its determinants.

Results: The magnitude of grand multiparity was 70.8% (95% CI: 68.5-72.9). The multilevel multivariable logistic regression model showed illiteracy [AOR=2; 95%CI:1.25-3.75], non-use of any contraceptive [AOR=3.8; 95% CI:1.2-12.2], early marriage [AOR=4.5; 95% CI: 2.6-7.9], polygamous marriage [AOR=4.2; 95% CI:2.0-9.3], short interbirth intervals [AOR=2.3; 95% CI:1.4-3.5] and husband low education status [AOR=5.8; 95%CI:2.1-16.1] were significantly associated with grand multiparity.

Conclusions: This study revealed that seven of ten women were grand multipara, and the magnitude did not show significant change over the last sixteen years. Early marriage and early age of first birth, low literacy level, low family planning utilization, polygamy, short interbirth interval, and unmet need of family planning were determinants of grand multiparity. We recommended to the stakeholders to design new strategies to address the root cause of high fertility factors in communities.
Keywords: High parity, High fertility, Grand multiparity, Multilevel analysis, Sidama, Ethiopia.

Strengths and Limitations of this study

- The strength of this study was that we used the recent Ethiopia demographic and health survey for Sidama national regional state.
- Also, we applied multilevel modeling to handle the hierarchical nature of the EDHS data. Despite the above strengths, the study might have recall bias since the participants were asked about the events that took place 5 years or more preceding the survey.
- Meanwhile, the data were cross-sectional studies, it could not display causal inferences concerning individual- and community-level factors with grand multiparity.
- Another limitation is that the management of missing data was also overlooked.

Background

Grand multiparity, a situation when a woman has at least five deliveries at gestational age greater than or equal to 20 weeks, is a major public health concern in developing countries particularly in sub-Saharan Africa [1-3]. Its obstetric performance is considered as high risk which is defined as the one in which the woman, fetus, and/or newborn are at increased risk of morbidity or mortality prenatal, intra-partum or postpartum [4]. In this regard, there is a high disparity in the fertility rates between the developed and developing countries [5]. The factors responsible for the huge disparity are usually neglected in existing family planning and reproductive health programs which causes the grand multi-parity to be a serious public health problem worldwide, particularly for developing countries including Ethiopia [6, 7].
While the global fertility rate declined from 3.2 live births per woman in 1990 to 2.5 in 2019, the magnitude increased to 4.6 in 2019 in sub-Saharan Africa including Ethiopia which indicates a high fertility rate [8-10].

Various factors have been identified to be associated with the grand multi-parity and these include early age at first marriage, low socio-economic status, polygamous marriage [11], husband's preference, culture, religion, and residence in a rural area. Others are low literacy level, poor mass media exposure, low level of awareness on health, and lack of access to modern contraceptives especially in most sub-Saharan Africa [1, 12, 13].

Even to date, the gap between previous studies is missing some variables, limited data on the factors, and a lack of adequate literature special from the study area. Furthermore, numerous numbers of previous studies were conducted at a health facility level which is less generalizable to the larger community. Also, there were inadequate studies carried out on the trend, magnitude, and associated factors of grand multiparity by using national representative demographic health survey data (DHS). Therefore, we addressed the above-mentioned gaps by using largely nationally representative data which were conducted at the community level and used large sample sizes.

Methods and materials

Study area and period

Sidama national regional state is one of the 10 national regional states in Ethiopia. The region is divided into 36 Districts (6 urban districts and 30 rural districts). Hawassa city is the capital of the region and it is situated in the Southern part, about 273 Kilometers away from Addis Ababa, Ethiopia’s capital. The Sidama people number 8.8 million (4.01% of the national population) and are the fifth most populous ethnic group in Ethiopia. Sidama national region state has 123 health
centers and 17 hospitals[10, 14-17]. For this study, we used secondary data from the 2016 Ethiopia demographic health and survey (DHS). The DHS data had been collected from January 18, 2016, to June 27, 2016, by the Ethiopian Central Statistical Agency (ECSA)[10].

Study design, data source, and sampling techniques

A cross-sectional survey data was obtained from 2016 (EDHS). The data were retrieved from the (DHS) program official database website (http://dhsprogram.com). It is a nationally representative household survey that collects information about population, health, and other important indicators. The sample of the EDHS study was designed to collect up-to-date information from each of the ten regions and the two administrative cities. Each region was stratified into urban and rural areas 21 sampling strata were obtained. Samples of enumeration areas (EAs) were selected independently in each stratum in two stages. In the first stage, a total EAs was selected with proportional sampling technique and with independent selection in each sampling stratum. The selection of households was the second stage. A fixed number of households per cluster were selected with an equal probability proportional allocation to sample size was done [10].

This study used the birth record dataset and the study population was women (aged 15 to 49 years) who had delivered children with available DHS data set. From the birth record dataset, the total number of multiparous (para 2 to 4) and grand multiparous (para 5 to 9) women was extracted for Sidama national region state from 2016 EDHS. The total sample was extracted for women who gave birth (parity 2 to 9) from the birth record dataset. The total number of women whose parity (2 to 9) in the study region of Ethiopia was included in 1,654 weighted samples. For trend analysis, grand multipara in all the four DHS data from 2000 to 2016 were extracted by using the quantitative method [10, 18-20].
Study variables

Dependent variable: The outcome variable of this study was grand multiparity which was categorized into “Yes = 1/ No = 0” form. These include all women who have five to nine deliveries as grand multi-parity categories [1, 2, 21].

\[Y_i = \begin{cases} 0; & \text{Multiparity, for the women had given birth 2 to 4 times.} \\ 1; & \text{Grand multiparity, for the women who had given birth 5 to 9 times.} \end{cases} \]

\[Y_i \] represent the parity of the \(i \)th ever born children.

Independent variables: The independent variables for this study were identified based on previous studies conducted on the factors affecting grand multiparity at the different places that were reviewed from the literature as associated factors of grand multiparity [11, 22-33]. The independent variables selected for analysis from the available dataset were the place of residence, maternal age, educational status of women, wealth index, current marital status, polygamy marriage, women currently working, religion, husband education level husband occupation status, women supported by husband, community media exposure, age of women at first birth, age at first sex, number of living children, preceding birth interval (months), the contraceptive method used, unmet need of contraceptive, the desire for more children, the child being alive, place of delivery, and husband’s desire for more children. In this analysis, independent variables were categorized into individual-level variables and community-level variables. Individual-level variables were the age of women, women education status, wealth index, women age of first birth, number of living children, current marital status, polygamy marriage, women age at first sex, desire for more children, contraceptive method, unmet need of contraceptive, women currently working, the child is alive, preceding birth interval (months), place of delivery, women supported by husband, husband education status, husband occupation status, husband desire for more
children. Community-level variables were religion, place of residence, and community media exposure.

Data Analysis

For analysis, the weighted samples data were used to ensure the survey results were representative of the regions. Based on each weighted variable, the descriptive statistics were reported with summary indices, frequency, and proportion. The trend analysis of grand multiparity was assessed using the Extended Mantel-Haenszel Chi-square test for linear trend using the OpenEpi (version 3.01)-Response program[34]. A P-value of less than 0.05 was used to declare a 95% significant probability of the existence of a trend. The degree of crude association for individual and community variables was checked by employing a χ^2 test.

For the nested structure of the EDHS data, multilevel multivariable logistic regression analysis was used. Also, the mixed effect (fixed effect for both the individual and community level factors and a random effect for the between cluster-variation), a two-level mixed-effect logistic regression analysis was used. The final findings were measured using an adjusted odds ratio (AOR). Within the multilevel multivariable logistical regression analysis, four models were fitted for the result variable. The primary model (null or empty model) was fitted without explanatory variables. The second model (individual model), third model (community model), and fourth model (final model) variables were fitted for individual level, community-level, and each individual- and community-level variable respectively. The final model was used to check for the independent effect of the individual and community level variables on grand multiparity.

The model fitness was assessed using Akaike Information Criterion (AIC), the Bayesian information criterion (BIC), and the Likelihood Ratio (LR) test. The values for each model of AIC and BIC were compared, the lowest one assumed to be a better explanatory model[35].
Multicollinearity between the individual- and community-level variables was checked using the Variance Inflation Factor (VIF). The mean value of VIF < 10 was the cut-off point[36]. In the present study, the mean VIF value was estimated to be 2.44 showing the absence of multicollinearity in the models. The data were analyzed using the STATA statistical software system package version 14.0 (StataCorp., College Station, TX, USA). It was considered statistically significant if the P-values were less than 0.05 with the 95% confidence intervals.

Patient and Public Involvement

No patient was involved in this study.

Results

Socio-demographic characteristics of study participants

In this study, a total weighted sample of 1,654 women was included in the analysis from the latest EDHS data (2016). The mean age (±SD) of the women was 35±6.7 years with the majority of women aged between 40-49 years. Almost all (99%) of women lived in a rural setting, and close to two-thirds (67%) of women were illiterate. Slightly more than half (55%) of the women were under a low level of socio-economic status. Almost all of them were married (93%) and follow the protestant religion (92%). More than three-fourths (77%) of the women were not supported by their husbands to do day-to-day chores. In addition, the majority of husbands had attended formal education and had different types of occupations. The summarized information of socio-demographic background is displayed below (table 1).
Table 1: Sociodemographic characteristics of study participants in the Sidama national region state, data from 2016 Ethiopia demographic health and survey.

Individual and community Variables	Categories	Weighted (No.)	Weight (%)
Place of residence	Urban	13	0.75
	Rural	1641	99.25
Age in years	20-29	329	19.87
	30-34	441	26.66
	35-39	413	25.00
	40-49	471	28.47
Mean ±SD	35±6.7		
Educational status	Have formal education	532	32.16
	No formal education	1122	67.84
Wealth index	Low	912	55.14
	Middle	357	21.58
	Higher	385	23.28
Current marital status	Other marital statuses	110	6.66
	Married	1544	93.34
Polygamy	No	1205	77.09
	Yes	357	22.91
Women currently working	No	942	56.94
	Yes	712	43.04
Religion	Orthodox	16	0.97
	Catholic	27	1.63
	Protestant	1535	92.80
	Muslim	76	4.59
Husband education level	Lack of formal education	504	32.28
	Primary education	944	60.41
	Secondary education and above	114	7.31
Husband occupation status	Professionals	187	11.96
	Merchant	262	16.74
	Agriculture/Farmer	1,114	71.30
Women supported by husband	No	1216	77.82
	Yes	347	22.18
Community media exposure	No	1122	67.82
	Yes	532	32.18

Sexual and reproductive health characteristics of study participants

The mean age (±standard deviation) of women at first delivery was 17.69 ± 2.75 years and at first coital exposure was 16±2.6 years. The women’s mean number of living children was 4.9 with a
±1.8 standard deviation. About two-thirds (64.8%) of women had short birth intervals within or less than 36 months. Among participants, a considerable proportion of women (45.81%) did not utilize modern contraceptives. Nearly, one-out of ten women (10.9%) had experienced child death in the survey. Slightly more than three-fourths (80%) of women gave birth at home (table 2).

Table 2: Fertility, sexual and reproductive health characteristics of study participants in Sidama regional state, data from 2016 Ethiopia Demographic and Health Survey.

Individual-level variables	Categories	Frequency	Percent (%)
Age of women at first birth	Less than 18 years	1,077	65.11
	Greater than or equal 18 years	577	34.89
	Mean ±SD	17.69±2.75	
Age at first sex	Less than or equal to 18 years	1,356	81.98
	Greater than 18 years	298	18.02
	Mean ±SD	16±2.6	
Number of living children	Mean ±SD	4.9±1.8	
Preceding birth interval (months)	Less than or equal to 36 months	844	64.8
	Greater than 36 months	459	35.2
	Mean ±SD	34.47±18.6	
Contraceptive method used	Not using any methods	758	45.81
	Short-acting family planning	680	41.13
	Long-acting family planning	216	13.06
Unmet need of contraceptive	Unmet of contraceptive	219	13.25
	Met of contraceptive	1,313	68.51
	Infecund/Menopausal	302	18.24
The desire for more children	Wants no more children	1,106	66.84
	Wants more children	548	33.16
Husband desire more child	Husband wants fewer	357	23.02
	Husband wants more	583	37.56
	Both want more	611	39.42
Child is alive	No	181	10.95
	Yes	1473	89.05
Place of delivery	Home	251	80.0
	Health facilities	62	20.0

The magnitude of grand multi-parous women

The prevalence of grand multiparity with the weighted sample was 70.8 % (95 % CI, 68.5 - 72.9), in the 5 years preceding the survey in the Sidama region. Evidence from 2016 EHDS (Figure 1).
The trend of grand multiparous women

The magnitudes of the grand multi-parity were 70.93 % in 2000 EDHS, 68.58 % in 2005 EDHS, 74.23 % in 2011 EDHS, and 70.82 % in 2016 DHS in the Sidama national region state. Over 16 years, the trend of grand multiparous women from four surveys showed no significant change (Extended Mantel-Haenszel chi-square for leaner trend= 1.13 and P-values= 0.29). Likewise, no percentage change was observed between 2000 and 2016 EDHS in the Sidama region (Figure 2).

Bivariate variables association with grand multi-para women

With regards to education status, the lack of formal education (75.8%) was significantly higher in grand multiparous women than in multipara (48.6%), (P<0.001). An enormous number of women in both groups were of poorest and poorer statuses on the wealth index. The unmet need for contraceptives and underutilization of long-acting family planning utilization was significantly higher in grand multipara than multipara (p<0.001). Among grand multipara, women in polygamous marriage were significantly higher compared with multipara women, (p<0.001). Likewise, the age of women at first birth, short birth intervals, husband education level, number of living children, and place of residence showed significant associations in both study groups, (p<0.001).

However, no significant differences were observed between grand multipara and multiparous regarding women currently working, place of delivery, the child is alive, current marital status, husband occupation status, and community media exposure, (P> 0.05), (table 3).
Table 3: Bivariate variables association of individual and community level variable with grand multipara and multiparous women in Sidama national region state, Ethiopia, data from EDHS 2016.

Individual and community variables	Categories	Multiparous No_ (%)	Grand Multipara No_ (%)	P-value
Age in year	Mean ± SD	29.4 ± 0.3	37.7 ± 0.2	p<0.001
Educational level	Lack of formal education	234(20.9)	888(79.1)	p<0.001
	Have formal education	248(46.7)	283(53.3)	
Wealth Index	Poorest	134(28.9)	329(71.1)	
	Poorer	146(32.5)	303(67.5)	
	Middle	89(24.8)	269(75.2)	
	Richer	54(25.2)	159(74.8)	
	Richest	61(35.2)	112(64.8)	
				p=0.049
Age of women at first birth	Mean ± SD	18.8±2.9	17.5± 2.6	p<0.001
Number of living children	Mean ± SD	2.8± 0.8	5.8 ±1.4	p<0.001
Current marital status	Other marital statues	30(26.8)	80(73.2)	P=0.74
	Married	453(93.9)	1,091(93.1)	
Polygamy marriage	No	426(35.3)	780(64.7)	p<0.001
	Yes	34(9.6)	322(90.4)	
Age at first sex	Mean ± SD	16.56±2.77	16.13±2.52	P=0.022
The desire for more children	Not want more children	178(16.1)	927(83.9)	p<0.001
	Want more children	305(55.5)	244(44.5)	
Unmet need of contraceptive	Unmet	36(16.6)	183(83.4)	p<0.001
	Met	414(36.5)	719(63.5)	
	Infecund/Menopausal	33(10.7)	269(89.3)	
Women currently working	No	270(28.6)	672(71.4)	P= 0.594
	Yes	213(29.9)	499(70.1)	
Child is alive	No	34(19.0)	147(81.0)	P=0.098
	Yes	448(30.4)	1,025(69.6)	
Preceding birth interval (months)	Mean ± SD	40±21.9	32.6±16.9	p<0.001
Place of delivery	Home	138(54.8)	114(45.2)	p=0.262
	Health facilities	34(12.5)	22(38.5)	
Religion	Orthodox	21(47.3)	23(52.7)	P=0.025
	Protestant	42(28.0)	1,106(72.0)	
	Muslim	33(43.8)	43(56.2)	
Women supported by husband	No	326(26.8)	890(73.2)	P=0.007
	Yes	132(38.6)	213(61.4)	
Husband education level	Lack of formal education	115(22.7)	390(77.3)	p<0.001
	Primary education	281(29.8)	663(70.2)	
	Secondary education and above	65(56.7)	50(43.3)	
Husband occupation status	Professionals	39(21.0)	148(79.0)	P = 0.064
	Merchant	90(34.5)	171(65.5)	
Determinants of grand multiparity

We applied a two-level mixed effect multivariable logistic regression using the extracted data from 2016 DHS for the Sidama national regional state that is aimed at identifying individual and community-level determinants of grand multiparity or women having high parity. Those four models were developed to analyze factors accordingly. The result was reported based on Model IV (combined individual and community level factors were fitted simultaneously) (Table 4).

The odds of grand multiparity compared to multiparity was 2 times \([AOR=2; 95 \% CI: 1.25-3.75]\) higher among women who were uneducated compared with women who were educated. The odds of grand multiparity compared to those multiparous women not using any contraceptive method was 3.85 times higher compared to those women using long-acting family planning \([AOR=3.8; 95\% CI: 1.2-12.2]\).

The odd of grand multiparity was 4.5 times higher among women who had their first births before 18 years old compared to those after 18 years old \([AOR=4.5; 95\% CI: 2.6–7.9]\). The odd of grand multiparity was 4.2 times higher for those who were in polygamous marriage compared to those in monogamy \([AOR=4.2; 95\% CI: 2.0–9.3]\). In addition, the likelihood of grand multiparity was 80% less likely to have met of contraceptive compared to those women who have met.
contraceptive) [AOR=0.2; 95% CI: 0.09-0.83]. The odd of grand multiparity was 2.3 times higher among women who had short birth intervals compared to those women with normal birth intervals [AOR=2.3; 95% CI: 1.4-3.5]. The odd of grand multiparity was 5.8 times higher among women whose husbands had primary education compared to those who attended secondary schools and above [AOR=5.8; 95% CI: 2.1-16.1]. Also, the odd of grand multiparity was 3.4 times higher among women whose husbands lack formal education compared to those women husbands had secondary level of education and above [AOR=3.4; 95% CI: 1.2-9.9].

According to random-effect analysis; Model-I had no individual- and community-level variables and it observed only the random and intercept variables. About model I, the ICC value was 20%. This indicates that the variation on the grand multiparity occurred at the community level (between-cluster variability) and is contributable to the community-level factors. The ICC in the null model greater than zero indicates that it guided the researcher to use multilevel modeling than the standard single-level regression model. Also, results in subsequent models, between cluster variability found to be 14.4% in Model II (individual-level factors), 18.6% in Model III (communities level factors), and 14.5% in Model IV (combined individual and community level factors). In another way, the proportional change in variance (PCV) results indicated that the predictor variables to the null model better explained the factors associated with grand multiparity. The PCV finding for Model-II was (33.7%), in Model-III was (9.6%) and for Model-IV was (33.7%). The final Model (combined individual and community level factors) indicated 33.7% of the community-level variation on grand multiparity was explained by the combined factors at both the individual and community levels (table 4).
Table 4: Multilevel logistic regression model of individual and community-level factors associated with grand multiparous women in Sidama national region state, Ethiopia using data from the 2016 EDHS.

Individual- and community-level variables	Model 1	Model 2	Model 3	Model 4	
Empty (Null)model					
Individual-level variables					
Educational level					
Have formal education	Ref.	2 (1.24-3.74)**	Ref.	2.2(1.3 -3.4)**	
Lack of formal education					
Sex of household head					
Female	Ref.	0.3(0.1 - 0.8) **	Ref.	0.3(0.1-0.8) *	
Male					
Wealth index combined					
Low	0.5(0.24 – 0.99) *	1.4 (0.66 – 2.96)	0.5(0.2-1)	1.4 (0.7-3.0)	
Middle					
High	Ref.				
Age of women at first birth					
Greater than or equal 18 years	Ref.	4.5 (2.6 – 7.9) ***	Ref.	4.5(2.6 –7.9) ***	
Less than 18 years					
Contraceptive methods used					
Not using any methods	3.8(1.2 -12.2) *	2.2(1.1- 4.5) *	3.8 (1.2- 12.2) *	2.2(1.1 -4.4) *	
Short-acting family planning					
Long-acting family planning					
Husband occupation status					
Professionals	2.2(1.0 -4.7)		2.2(1.03 -4.8) *		
Merchant	0.5(0.3 – 0.9) *		0.5(0.3-0.9) *		
Agriculture/Farmer	Ref.				
Husband desire more child					
Husband wants fewer	Ref.				
Husband wants more	1.4(0.7 - 2.6)		1.3(0.7-2.6)		
Both want more	1.3(0.7- 2.4)		1.3(0.7-2.4)		
Variable	Reference	Value	Value		
---	-----------	---------------------------	---------------------------		
Polygamy/ number of other wives	Ref.	4.2 (1.9 -9.3) ***	Ref.		
No			4.2 (2.0 – 9.3) *		
Yes					
Age at first sex	Ref.	3.8(1.9 - 7.9) ***			
Less than or equal to 18 years					
Greater than 18 years					
Unmet need of contraceptive	Ref.	0.2 (0.07 - 0.5) ***			
Unmet			0.2(0.1 -0.5) ***		
Met		1.1 (0.3 -3.3)	1.1(0.34-3.26)		
Preceding birth interval (months)	Ref.	2.3(1.4 -3.5) ***			
Greater than 36 months					
Less than or equal to 36 months					
Husband education level					
Lack of formal education		3.4 (1.2- 10.0) *	3.4(1.2-9.9) *		
Primary education		5.9(2.2 – 16.2) ***	5.8(2.1 – 16.1) ***		
Secondary education and above					
Religion	Ref.				
Orthodox			4.9(1.8 -13.4) **		
Protestant			2.6 (0.8 - 8.4)		
Muslim					
Type of place of residence	Ref.				
Urban			6.6(1.29 -33.8) *		
Rural			1.2(0.2- 10.7)		
Random effect					
Community-level variance (SE)	0.83***	(0.4)	0.55*** (0.3)		
ICC (%)	20%	14.4%	18.6%		
MOR	2.4	2.0	2.3		
PCV	Reference	33.7%	9.6%		
Random effect	0.75***	(0.4)	0.56 *** (0.3)		
Model fit statistics	Log-likelihood	AIC	BIC	AIC	BIC
--------------------------	----------------	--------	--------	--------	--------
	-523	1050	1059	-513	1059
	-281	602	692	1036	698
	-281	604	698		

Note: *significant at *P < 0.05; ** P < 0.01; *** P < 0.001; AOR = Adjusted Odds Ratio, CI = Confidence Interval, AIC = Akaike information criterion, BIC = Bayesian information criterion, Model 1 - Empty (null) model; Model 2 - Only individual-level explanatory variables included in the model; Model 3 - Only community-level explanatory variables included in the model; Model 4 - Combined model; PCV = Proportional Change in Variance, MOR = Median Odds Ratio and Ref. = reference.
Discussion

Seven out of ten reproductive-age women had experienced grand multi-parity. Age at marriage, literacy status of women, age of women at first birth, modern contraceptive method utilization, polygamy, husband education level, preceding birth interval and unmet need of contraceptive were significantly associated with women having high parity.

During the analysis, the ICC value was found to be 14.5% in the combined Model. This indicates that 14.5% of the chances of grand multiparous women were explained through cluster differences. The ICC in the null model greater than zero indicates that it guided the researcher to use multilevel modeling than the standard single-level regression model [35, 37, 38]. Similarly, the study indicates that the proportion change in variance of the final model was accountable for about 33.7% in the log odds of high parity in the communities. In addition to that, the results of median odds ratio, a measure of unexplained cluster heterogeneity, is 2.48, 3.51, 2.43, and 3.34 in models 1, 2, 3, and 4, respectively. Hence, the results of the median odds ratio showed that there is unexplained variation between the clusters of the community.

In the present study, the magnitude of grand multiparity was 70.8 %. This is similar to a study conducted community-based in Gedeo Zone 69.1 % and Tigray region, Ethiopia 51 % [22, 26]. This figure was quite higher than the prevalence reported by other investigators ranging from 9.4 % to 27% in Gambian, Cameroon, Nigeria, Tanzania, and India [2, 30, 31, 39, 40]. The fact that later studies were all carried out in health facilities and urban catchment areas could explain these low prevalence rates. The educational backgrounds, socioeconomic, sociodemographic, and cultural settings of these studies are different from the current findings[28]. Similarly, there are many contributing factors for high fertility, among which are early marriage, the perceived ideal number of children, and mass media exposure by women [22, 33]. While the prevalence of grand
multiparity in developed countries has significantly declined ranging from 3 to 4 % [41], it has
increased in the current study and this could be explained by lack of formal education (75.8%) and
a high number of early marriages. As individual health implications, the women are given more
subsequent births while they get more maternal and child health risks and many socioeconomic
challenges in their lifetime in low resource setting areas [21, 32, 42, 43].

The trends of grand multiparity over study periods showed no significant change. This finding was
consistent with a previous study done in rural Cameroon[28]. However; in Tanzania, the previous
study's findings showed a significant change of trend on grand multiparity [23]. This decline could
have been explained by the availability of higher education to women and increased community
awareness on the health risks of giving birth at an advanced maternal age and benefits of family
planning and empowerment of women on reproductive health decision making[23].

This study revealed that grand multiparity was higher among women who had their first births
before 18 years old compared to those women who started after 18 years. We realized that in the
study community where women start birth before 18 years, the period of fertility is longer, and
they have many ever-born children. As a result of these, the women have high parity. Similarly,
the women not using modern family planning appropriately and timely for spacing and limiting
the number of births have high fertility. This is similar to the previous study done in Gedeo Zone,
Ethiopia [22], Nigeria[44], Nepal [33], and Pakistan [25]. Nevertheless, the problem of early age
at first delivery is significantly alarming in the present study area than the previous findings.

The odds of grand multiparity compared to that of multiparity were higher among women who
were illiterate compared with literate women. This finding is in line with previous studies
conducted in Nigeria[44], Kenya[24], Nepal[33], and the Tigray region in Ethiopia[26]. In this
study, almost all of the women were rural dwellers (99%). Women who are rural inhabitants are
less likely to spend much time in school and would rather get married early. A possible explanation is that women residing in the urban area stay longer in school, thereby postponing the time for marital engagement[22]. On the other hand, researchers found that education is an important factor for high parity with several causal relationships from a theoretical perspective[45]. To sum up, education generally results in an improvement in the status of individuals in society in the form of a better understanding of health issues, and employment status [46]. The low social class found among the grand multiparous women are usually associated with illiteracy and low socioeconomic status which may be an encouraging factor to produce more children[11].

The grand multiparity was higher among women with short birth intervals (less than or equal to 36 months). This finding is also consistent with a study conducted in Wonago District, Gedeo Zone, Ethiopia [22]. The possible explanation might be due to women utilizing modern contraceptives that lead the women to get more children in a short period of time.

In our study, it was found that grand multiparity is significantly associated with polygamous marriage compared with monogamous marriage. This finding is similar to other studies conducted in Nigeria[1]. The variation could be due to competition amongst wives to have many children and to build large family sizes.

The grand multiparity among women not using any contraceptive and using short-acting contraceptive methods was higher compared to those women using long-acting contraceptives. Similar findings were reported in Nigeria [44], Cambodia[47], Pakistani [25], and Wonago District, Gedeo Zone[22]. Most factors in this study are directly or indirectly associated with the low utilization of contraceptives which indicated that it is the root cause for high fertility in the study setting. In addition, in one study, the women were not using contraceptives because their husbands did not allow them to make contraceptive decisions[47].
Conclusions

This study revealed that seven of ten women had experienced grand multiparity and the magnitude did not show significant change over the last sixteen years. Early marriage and early age of first birth, low literacy level, low family planning utilization, polygamy marital status, short birth interval, and unmet need of family planning were determinants of grand multiparity. We recommended to the stakeholders to design new strategies to address the root cause of high fertility factors in communities. Health ministry should focus on health education and create awareness about maternal health risks related to grand multiparity in the community. Furthermore, special attention should be given to improving the utilization of contraceptives in the community to reduce the prevalence of grand multiparity.

Author Contributions.

All authors made a significant contribution to the work reported, whether at the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas; took part in drafting, revising, or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Abbreviations

AIC, Akaike’s Information Criterion; AOR, Adjusted Odd Ratio; BIC, Bayesian Information Criterion; CI, Confidence Interval; DHS, Demographic and Health Survey; EDHS, Ethiopia Demographic Health Survey; LR, Likelihood Ratio; MOR, Median Odds Ratio; PCV, Proportional Change Variance; SD, Standard Deviation; VIF, Variance Inflation Factors and WHO, World Health Organization.
Data Sharing Statement

The data retrieved for this research are available upon request from the (DHS) program official database website (http://dhsprogram.com). All relevant data are in the paper and its Supporting Information files.

Acknowledgments

We would like to thank the MEASURE DHS Program and ICF International for providing us the permission to use the EDHS data. We would also like to acknowledge the African Union for supporting this study.

Ethical Approval

This study does not involve human participants. The data were retrieved from the DHS website (http://www.measuredhs.com) after permission was obtained (AuthLetter_145712). The accessed data were used for this registered research only. The data were preserved as confidential, and no effort was made to detect any household or individual respondent.

Funding

Not applicable

Disclosure

The authors report no conflicts of interest in this work.

References

1. Njoku, C.O., S.E. Abeshi, and C.I. Emechebe, Grand Multiparity: obstetric outcome in comparison with multiparous women in a developing country. Open Journal of Obstetrics and Gynecology, 2017. 7(07): p. 707.
2. Ajong, A.B., et al., Grand multiparity in rural Cameroon: Prevalence and adverse maternal and fetal delivery outcomes. BMC Pregnancy and Childbirth, 2019. 19(1).
3. Aliyu, M.H., et al., High parity and adverse birth outcomes: exploring the maze. Birth, 2005. 32(1): p. 45-59.
4. Shaista, T.A., S. Shazia, and B.S.a.R. Fouzia, B., Obstetrical Complication in Grand Multi Parity. Medical Channel 2009. 12: p. 53-58.
5. Bugg, G., G. Atwal, and M. Maresh, *Grandmultiparae in a modern setting*. BJOG: An International Journal of Obstetrics & Gynaecology, 2002. 109(3): p. 249-253.

6. Ndiaye, K., et al., *High-Risk Advanced Maternal Age and High Parity Pregnancy: Tackling a Neglected Need Through Formative Research and Action*. Glob Health Sci Pract, 2018. 6(2): p. 370-80.

7. Central Statistical Agency, *The work of a nation. The World factbook*. 2019.

8. Statista, *Sub-Saharan Africa: Fertility rate from 2008 to 2018*. 2020.

9. Nations, U., *World Fertility and Family Planning*. 2020.

10. Central Statistical Agency (CSA) [Ethiopia] and ICF, *Ethiopia Demographic and Health Survey 2016*. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF., in *The DHS Program ICF*. 2016: Rockville, Maryland, USA.

11. Emechebe, C., et al., *The social class and reasons for grand multiparity in Calabar, Nigeria*. Tropical Journal of Obstetrics and Gynaecology, 2016. 33(3): p. 327.

12. Ezra, Y., et al., *The outcome of grand-multiparous pregnancies of Arabic and Jewish populations in peripheral and central areas of Israel*. Acta obstetricia et gynecologica Scandinavica, 2001. 80(1): p. 30-33.

13. Oshodi, K.O. and K. Salami, *PREVALENCE AND RISKS/CHALLENGES OF GRAND MULTIPARITY TO WOMEN’S HEALTH IN OYO STATE NIGERIA* AFRICAN JOURNAL FOR THE PSYCHOLOGICAL STUDIES OF SOCIAL ISSUES, 2019. 22(2): p. 13-35.

14. Central Statistical Agency, *Census of Population and Housing. Csa.gov.et*. 2017-02-22. Retrieved 2019-11-20. 1984.

15. Wikipedia, *Southern Nations, Nationalities, and Peoples' Region*. 2020.

16. Federal Democratic Republic of Ethiopia Central Statistical Agency, *Population Projection of Ethiopia for All Regions At Wereda Level from 2014 – 2017*. Retrieved 4 June 2018. 2018.

17. Central Statistical Agency, *The 2007 Population and Housing Census of Ethiopia: Statistical Report for Southern Nations, Nationalities and Peoples’ Region; Part I: Population Size and Characteristics*. 2010.

18. Central Statistical Agency [Ethiopia] and ICF International, *Ethiopia Demographic and Health Survey 2011*. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ICF International. . 2012.

19. Central Statistical Agency/Ethiopia and ORC Macro, *Ethiopia Demographic and Health Survey 2005*. 2006, Central Statistical Agency/Ethiopia and ORC Macro: Addis Ababa, Ethiopia.

20. Central Statistical Authority/Ethiopia and ORC Macro, *Ethiopia Demographic and Health Survey 2000*. 2001, Central Statistical Authority/Ethiopia and ORC Macro: Addis Ababa, Ethiopia.

21. Al-Shaikh, G.K., et al., *Grand multiparity and the possible risk of adverse maternal and neonatal outcomes: a dilemma to be deciphered*. BMC Pregnancy Childbirth, 2017. 17(1): p. 310.

22. Reda, M.G., G.T. Bune, and M.F. Shaka, *Epidemiology of High Fertility Status among Women of Reproductive Age in Wonago District, Gedeo Zone, Southern Ethiopia: A Community-Based Cross-Sectional Study*. Int J Reprod Med, 2020. 2020.

23. Muniro, Z., et al., *Grand multiparity as a predictor of adverse pregnancy outcome among women who delivered at a tertiary hospital in Northern Tanzania*. BMC Pregnancy Childbirth, 2019. 19.

24. Mungai, S.W., *Explaining high fertility in the north eastern region of Kenya*. 2015, University of Nairobi.

25. Kamal, A. and M.K. Pervaiz, *Factors Affecting the Family Size in Pakistan: Clog-log Regression Model Analysis*. Journal of Statistics, 2011. 18(1).

26. Atsbaha, G., et al., *Determinants of high fertility among ever married women in Enderta district, Tigray Region, Northern Ethiopia*. J Health Med Informat, 2016. 7(5): p. 243-248.
The role of social support and parity on contraceptive use in Cambodia. International perspectives on sexual and reproductive health, 2010: p. 122-131.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig 1: The magnitude of grand multiparity in Sidama region, data from EDHS 2016.
Fig 2: Trend of grand multiparous women in Sidama national regional state, Ethiopia, DHS data from years 2,000 to 2016.
Fig 1:

![Pie chart showing proportions of Multiparity and Grand multiparity]

- Multiparity: 70.82%
- Grand multiparity: 29.18%
Fig 2:

![Graph showing the percentage of grand multiparous women from EDHS 2000 to EDHS 2016. The graph indicates a fluctuation in the percentage, peaking at 74.23% in EDHS 2011 and dropping to 68.58% in EDHS 2005.]
Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

Reporting Item	Page		
Title and abstract			
Title	#1a	Indicate the study’s design with a commonly used term in the title or the abstract	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Abstract #1b Provide in the abstract an informative and balanced summary of what was done and what was found.

Introduction

Background / rationale #2 Explain the scientific background and rationale for the investigation being reported.

Objectives #3 State specific objectives, including any prespecified hypotheses.

Methods

Study design #4 Present key elements of study design early in the paper.

Setting #5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection.

Eligibility criteria #6a Give the eligibility criteria, and the sources and methods of selection of participants.

#7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.

Data sources / measurement #8 For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for exposed and unexposed groups if applicable.
Bias #9 Describe any efforts to address potential sources of bias NA

Study size #10 Explain how the study size was arrived at 5

Quantitative #11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why 6

Statistical #12a Describe all statistical methods, including those used to control for confounding 7

Statistical #12b Describe any methods used to examine subgroups and interactions 7

Statistical #12c Explain how missing data were addressed NA

Statistical #12d If applicable, describe analytical methods taking account of sampling strategy 7

Statistical #12e Describe any sensitivity analyses NA

Results

Participants #13a Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable. 8

Participants #13b Give reasons for non-participation at each stage NA
Participants
Consider use of a flow diagram

Descriptive data
Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.

Descriptive data
Indicate number of participants with missing data for each variable of interest

Outcome data
Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.

Main results
Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included

Main results
Report category boundaries when continuous variables were categorized

Main results
If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

Other analyses
Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses

Discussion
Summarise key results with reference to study objectives
Limitations #19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. 2

Interpretation #20 Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. 18,19 & 20

Generalisability #21 Discuss the generalisability (external validity) of the study results. 21

Other Information

Funding #22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. 22

None The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist can be completed online using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai
A Multilevel Analysis of Grand Multiparity: Trend and its determinants in the Sidama National Region State of Ethiopia: A Cross Sectional Study Design from Demographic and Health Survey 2000 to 2016.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061697.R1
Article Type:	Original research
Date Submitted by the Author:	06-Jul-2022
Complete List of Authors:	Dasa, Tamirat; Pan African University Institute of Life and Earth Sciences, (Including Agriculture and Health) ; Hawassa University College of Medicine and Health Sciences, Midwifery Okunlola, Michael; University of Ibadan College of Medicine, Obstetrics and Gynecology Dessie, Yadeta; Haramaya University College of Health and Medical Sciences, Public Health
Primary Subject Heading:	Public health
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Community child health < PAEDIATRICS, Epidemiology < ONCOLOGY, Maternal medicine < OBSTETRICS, Prenatal diagnosis < OBSTETRICS, Antenatal < GENETICS
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
A Multilevel Analysis of Grand Multiparity: Trend and its determinants in the Sidama National Region State of Ethiopia: A Cross Sectional Study Design from Demographic and Health Survey 2000 to 2016.

Tamirat Tesfaye Dasa¹,²*, Michael A. Okunlola³, Yadeta Dessie ⁴

Authors’ Affiliations

¹Pan African University, Life and Earth Sciences Institute, (Including Agriculture and Health) Ibadan, Nigeria
²Hawassa University, College of Medicine and Health Sciences, P.O. Box 1165, Hawassa, Ethiopia
³Department of Obstetrics and Gynecology, College of Medicine, University College Hospital, University of Ibadan, Ibadan, Nigeria.
⁴School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia

Authors email address

1. Tamirat Tesfaye Dasa- tamirathenna@gmail.com
2. Michael. A. Okunlola - biolaokunlola@gmail.com
3. Yadeta Dessie -yad_de2005@yahoo.com

*Corresponding author:
Tamirat Tesfaye Dasa, Reproductive Health Sciences, Department of Midwifery, College of Medicine and Health Sciences, Hawassa University.
Email: tamirathenna@gmail.com

P.O. Box 235, Phone: +251938611577

Word count= 3621
Abstract

Objective: The study was aimed at examining the magnitude, trends, and determinants of grand multiparity in the Sidama regional state of Ethiopia.

Design: We retrieved cross-sectional data from the Ethiopian demographic health survey from 2000 to 2016.

Setting: Community-based demographic health survey was conducted in Ethiopia.

Participants: The study population was women (aged 15 to 49 years) who had delivered children with the available DHS data set.

Outcomes: Multilevel multivariate logistic regression analyses assessed the relationship between grand multiparity and its determinants.

Results: The magnitude of grand multiparity was 70.8% (95% CI: 68.5-72.9). The multilevel multivariable logistic regression model showed illiteracy [AOR=2; 95%CI:1.25-3.75], non-use of any contraceptive [AOR=3.8; 95% CI:1.2-12.2], early marriage [AOR=4.5; 95% CI: 2.6-7.9], polygamous marriage [AOR=4.2; 95% CI:2.0-9.3], short interbirth intervals [AOR=2.3; 95% CI:1.4-3.5] and husband low education status [AOR=5.8; 95%CI:2.1-16.1] were significantly associated with grand multiparity.

Conclusions: This study revealed that seven of ten women were grand multipara, and the magnitude did not show significant change over the last sixteen years. Early marriage and early age of first birth, low literacy level, low family planning utilization, polygamy, short inter-birth interval, and unmet need for family planning were determinants of grand multiparity. We
recommended to the stakeholders design new strategies to address the root cause of high fertility factors in communities.

Keywords: High parity, High fertility, Grand multiparity, Multilevel analysis, Sidama, Ethiopia.

Strengths and Limitations of this study

- The strength of this study included analyzing the most recent nationally representative data sets aided in providing a broad comparative picture of grand multiparity in the study setting, as well as significant predictors of children ever born among ever-married women.
- To avoid misleading inferences and thus valid interpretation of the results, clustering effects were considered using a mixed modeling approach.
- Despite the above strengths, the study may have had recall bias because participants were asked about events that occurred 5 years or more before the survey.
- Also, we used secondary datasets, we were limited in our ability to select exposure variables for statistical analysis.

Background

Grand multiparity, a situation when a woman has at least five deliveries at gestational age greater than or equal to 20 weeks, is a major public health concern in developing countries particularly in sub-Saharan Africa [1-3]. Its obstetric performance is considered as high risk which is defined as the one in which the woman, fetus, and/or newborn are at increased risk of morbidity or mortality prenatal, intra-partum or postpartum [4]. In this regard, there is a high disparity in the fertility rates between the developed and developing countries [5]. The factors responsible for the huge disparity are usually neglected in existing family planning and reproductive health programs which causes
the grand multi-parity to be a serious public health problem worldwide, particularly in developing
countries including Ethiopia [6, 7].

While the global fertility rate declined from 3.2 live births per woman in 1990 to 2.5 in 2019, the
magnitude increased to 4.6 in 2019 in sub-Saharan Africa including Ethiopia which indicates a
high fertility rate [8-10].

Various factors have been identified to be associated with the grand multi-parity and these include
early age at first marriage, low socio-economic status, polygamous marriage [11], husband's
preference, culture, religion, and residence in a rural area. Others are low literacy level, poor mass
media exposure, low level of awareness of health, and lack of access to modern contraceptives
especially in most sub-Saharan Africa [1, 12, 13].

According to studies conducted in some developing countries, grand multipara women have a
higher number of children than women in developed countries. Indeed, many factors contribute to
grand multiparity, but some published literature identified the factors for grand multiparity in low
and lower-middle-income countries [1, 14-16]. Still, grand multiparity has not been well-addressed
as there is a dearth of evidence on a larger scale. Also, there were inadequate studies carried out
on the trend, magnitude, and associated factors of grand multiparity by using national
representative demographic health survey data (DHS). Therefore, this study was carried out to
assess the trend and associated factors of grand multiparity using demographic and health survey
data for the Sidama region from 2000 to 2016. The findings will assist program managers and
policymakers in developing appropriate intervention strategies to effectively address the
challenges and problems of grand multipara women in order to prevent high parity in the
community in terms of reproductive health services at all levels.
Methods and materials

Study area and period

Sidama national regional state is one of the 10 national regional states in Ethiopia. The region is divided into 36 Districts (6 urban districts and 30 rural districts). Hawassa city is the capital of the region, and it is situated in the Southern part, about 273 Kilometers away from Addis Ababa, Ethiopia’s capital. The Sidama people number 8.8 million (4.01% of the national population) and are the fifth most populous ethnic group in Ethiopia. Sidama national region state has 123 health centers and 17 hospitals[10, 17-20]. For this study, we used secondary data from the 2000 to 2016 Ethiopia demographic health and survey (DHS). The DHS data had been collected from January 18, 2016, to June 27, 2016, by the Ethiopian Central Statistical Agency (ECSA)[10].

Study design, data source, and sampling techniques

A cross-sectional survey data was obtained from 2000 to 2016 (EDHS). The data were retrieved from the (DHS) program’s official database website (http://dhsprogram.com). It is a nationally representative household survey that collects information about population, health, and other important indicators. The sample of the EDHS study was designed to collect up-to-date information from each of the ten regions and the two administrative cities. Each region was stratified into urban and rural areas 21 sampling strata were obtained. Samples of enumeration areas (EAs) were selected independently in each stratum in two stages. In the first stage, a total of EAs was selected with a proportional sampling technique and with independent selection in each sampling stratum. The selection of households was the second stage. A fixed number of households per cluster were selected with an equal probability proportional allocation to sample size was done [10].
This study used the birth record dataset, and the study population was women (aged 15 to 49 years) who had delivered children with the available DHS data set. From the birth record dataset, the total number of multiparous (para 2 to 4) and grand multiparous (para 5 to 9) women was extracted for Sidama national region state from 2016 EDHS. The total sample was extracted for women who gave birth (parity 2 to 9) from the birth record dataset. The total number of women whose parity (2 to 9) in the study region of Ethiopia was included in 1,654 weighted samples. For trend analysis, grand multipara in all the four DHS data from 2000 to 2016 were extracted by using the quantitative method [10, 21-23].

Study variables

Dependent variable: The outcome variable of this study was grand multiparity which was categorized into “Yes = 1/ No = 0” form. These include all women who have five to nine deliveries as grand multi-parity categories [1, 2, 24].

\[Y_i = \begin{cases}
0; \text{Multiparity, for the women had given birth 2 to 4 times.} \\
1; \text{Grand multiparity, for the women who had given birth 5 to 9 times.}
\end{cases} \]

\(Y_i \) represent the parity of the \(i \)-th ever born children.

Independent variables: The independent variables for this study were identified based on previous studies conducted on the factors affecting grand multiparity at the different places that were reviewed from the literature as associated factors of grand multiparity [11, 14, 25-35]. The independent variables selected for analysis from the available dataset were the place of residence, maternal age, educational status of women, wealth index, current marital status, polygamy marriage, women currently working, religion, husband education level husband occupation status, women supported by husband, community media exposure, age of women at first birth, age at first sex, number of living children, preceding birth interval (months), the contraceptive method...
used, unmet need of contraceptive, the desire for more children, the child being alive, place of
delivery, and husband’s desire for more children. In this analysis, independent variables were
categorized into individual-level variables and community-level variables. Individual-level
variables were the age of women, women's education status, wealth index, women's age of first
birth, number of living children, current marital status, polygamy marriage, women's age at first
sex, desire for more children, contraceptive method, unmet need of contraceptive, women
currently working, the child is alive, preceding birth interval (months), place of delivery, women
supported by husband, husband education status, husband occupation status, husband desire for
more children. Community-level variables were religion, place of residence (rural or urban), and
community media exposure.

Data Analysis

For analysis, the weighted sample data were used to ensure the survey results were representative
of the regions. Based on each weighted variable, the descriptive statistics were reported with
summary indices, frequency, and proportion. The trend analysis of grand multiparity was assessed
using the Extended Mantel-Haenszel Chi-square test for linear trend using the OpenEpi (version
3.01)-Response program[36]. A P-value of less than 0.05 was used to declare a 95% significant
probability of the existence of a trend. The degree of crude association for individual and
community variables was checked by employing a χ^2 test.

For the nested structure of the EDHS data, multilevel multivariable logistic regression analysis
was used. Also, for the mixed effect (fixed effect for both the individual and community level
factors and a random effect for the between cluster-variation), a two-level mixed-effect logistic
regression analysis was used. The final findings were measured using an adjusted odds ratio
(AOR). Within the multilevel multivariable logistical regression analysis, four models were fitted
for the result variable. The primary model (null or empty model) was fitted without explanatory
variables. The second model (individual model), third model (community model), and fourth
model (final model) variables were fitted for individual level, community-level, and each
individual- and community-level variable respectively. The final model was used to check for the
independent effect of the individual and community level variables on grand multiparity. To show
cluster correlation within a model, the Intra-Cluster Correlation (ICC) was calculated. The
Proportional Change in Variance (PCV) was also calculated to determine the predictive power of
the variables included in each model. To identify the factors associated with grand multiparity, the
model with the highest PCV value was used.

The model fitness was assessed using Akaike Information Criterion (AIC), the Bayesian
information criterion (BIC), and the Likelihood Ratio (LR) test. The values for each model of AIC
and BIC were compared, the lowest one assumed to be a better explanatory model[37].
Multicollinearity between the individual- and community-level variables was checked using the
Variance Inflation Factor (VIF). The mean value of VIF < 10 was the cut-off point[38]. In the
present study, the mean VIF value was estimated to be 2.44 showing the absence of
multicollinearity in the models. The data were analyzed using the STATA statistical software
system package version 14.0 (StataCorp., College Station, TX, USA). It was considered
statistically significant if the P-values were less than 0.05 with the 95% confidence intervals.

Patient and Public Involvement

No patient was involved in this study.
Results

Socio-demographic characteristics of study participants

In this study, a total weighted sample of 1,654 women was included in the analysis from the latest EDHS data (2016). The mean age (±SD) of the women was 35±6.7 years with the majority of women aged between 40-49 years. Almost all (99%) of women lived in a rural setting, and close to two-thirds (67%) of women were illiterate. Slightly more than half (55%) of the women were under a low level of socio-economic status. Almost all of them were married (93%) and follow the protestant religion (92%). More than three-fourths (77%) of the women were not supported by their husbands to do day-to-day chores. In addition, the majority of husbands had attended formal education and had different types of occupations. The summarized information on socio-demographic background is displayed below (table 1).

Table 1: Sociodemographic characteristics of study participants in the Sidama national region state, data from 2016 Ethiopia demographic health and survey.

Individual and community Variables	Categories	Weighted (No_)	Weight (%)
Place of residence	Urban	13	0.75
	Rural	1641	99.25
Age in years	20-29	329	19.87
	30-34	441	26.66
	35-39	413	25.00
	40-49	471	28.47
	Mean ±SD	35±6.7	
Educational status	Have formal education	532	32.16
	No formal education	1122	67.84
Wealth index	Low	912	55.14
	Middle	357	21.58
	Higher	385	23.28
Current marital status	Other marital statues	110	6.66
	Married	1544	93.34
Polygamy	No	1205	77.09
	Yes	357	22.91
Women currently working	No	942	56.94
	Yes	712	43.04
Sexual and reproductive health characteristics of study participants

The mean age (±standard deviation) of women at first delivery was 17.69 ± 2.75 years and at first coital exposure was 16±2.6 years. The women’s mean number of living children was 4.9 with a ±1.8 standard deviation. About two-thirds (64.8%) of women had short birth intervals within or less than 36 months. Among participants, a considerable proportion of women (45.81%) did not utilize modern contraceptives. Nearly, one-out of ten women (10.9%) had experienced child death in the survey. Slightly more than three-fourths (80%) of women gave birth at home (table 2).

Table 2: Fertility, sexual and reproductive health characteristics of study participants in Sidama regional state, data from 2016 Ethiopia Demographic and Health Survey.

Individual-level variables	Categories	Frequency	Percent (%)			
Age of women at first birth	Less than 18 years	1,077	65.11			
Age of women at first birth	Greater than or equal to 18 years	577	34.89			
Age of women at first birth	**Mean ±SD**	17.69 ± 2.75				
Age at first sex	Less than or equal to 18 years	1,356	81.98			
Age at first sex	Greater than 18 years	298	18.02			
Age at first sex	**Mean ±SD**	16 ± 2.6				
Number of living children	Mean ±SD	4.9 ± 1.8				
Preceding birth interval (months)	Less than or equal to 36 months	844	64.8			
Preceding birth interval (months)	Greater than 36 months	459	35.2			
Preceding birth interval (months)	**Mean ±SD**	34.47 ± 18.6				
Contraceptive method used	Not using any methods	758	45.81			
	Short-acting family planning	Long-acting family planning	680	216	41.13	13.06
--------------------------------	-----------------------------	-----------------------------	-----	-----	-------	-------
Unmet need of contraceptive	Unmet of contraceptive	Met of contraceptive	219	1,313	13.25	68.51
		Infecond/Menopausal	302		18.24	
The desire for more children	Wants no more children	Wants more children	1,106	548	66.84	33.16
Husband desire more child	Husband wants fewer	Husband wants more	357	583	23.02	37.56
	Both want more		611		39.42	
Child is alive	No	Yes	181	1473	10.95	89.05
Place of delivery	Home	Health facilities	251	62	80.0	20.0

The magnitude of grand multi-parous women

The prevalence of grand multiparity with the weighted sample was 70.8 % (95 % CI, 68.5 - 72.9), in the 5 years preceding the survey in the Sidama region. Evidence from 2016 EHDS (Figure 1).

The trend of grand multiparous women

The magnitudes of the grand multi-parity were 70.93 % in 2000 EDHS, 68.58 % in 2005 EDHS, 74.23 % in 2011 EDHS, and 70.82 % in 2016 DHS in the Sidama national region state. Over 16 years, the trend of grand multiparous women from four surveys showed no significant change (Extended Mantel-Haenszel chi-square for leaner trend= 1.13 and P-values= 0.29). Likewise, no percentage change was observed between 2000 and 2016 EDHS in the Sidama region (Figure 2).

Bivariate variables association with grand multi-para women

With regards to education status, the lack of formal education (75.8%) was significantly higher in grand multiparous women than in multipara (48.6%), (P<0.001). An enormous number of women in both groups were of the poorest and poorer statuses on the wealth index. The unmet need for contraceptives and underutilization of long-acting family planning utilization was significantly
higher in grand multipara than multipara (p<0.001). Among grand multipara, women in polygamous marriages were significantly higher compared with multipara women, (p<0.001). Likewise, the age of women at first birth, short birth intervals, husband education level, number of living children, and place of residence showed significant associations in both study groups, (p<0.001).

However, no significant differences were observed between grand multipara and multiparous regarding women currently working, place of delivery, the child is alive, current marital status, husband occupation status, and community media exposure, (P> 0.05), (table 3).

Table 3: Bivariate variables association of individual and community level variable with grand multipara and multiparous women in Sidama national region state, Ethiopia, data from EDHS 2016.

Individual and community Variables	Categories	Multiparous No_ (%)	Grand Multipara No_ (%)	P-value
Age in year Mean ± SD		29.4 ± 0.3	37.7 ± 0.2	p<0.001
Educational level				
Lack of formal education		234(20.9)	888(79.1)	p<0.001
Have formal education		248(46.7)	283(53.3)	
Wealth Index				p=0.049
Poorest		134(28.9)	329(71.1)	
Poorer		146(32.5)	303(67.5)	
Middle		89(24.8)	269(75.2)	
Richer		54(25.2)	159(74.8)	
Richest		61(35.2)	112(64.8)	
Age of women at first birth	Mean ± SD	18.8±2.9	17.5±2.6	p<0.001
Number of living children	Mean ± SD	2.8± 0.8	5.8 ±1.4	p<0.001
Current marital status				P=0.74
Other marital statues		30(26.8)	80(73.2)	
Married		453(93.9)	1,091(93.1)	
Polygamy marriage				p<0.001
No		426(35.3)	780(64.7)	
Yes		34(9.6)	322(90.4)	
Age at first sex	Mean ± SD	16.56±2.77	16.13±2.52	P=0.022
The desire for more children				p<0.001
Not want more children		178(16.1)	927(83.9)	
Want more children		305(55.5)	244(44.5)	
Unmet need of contraceptive				p<0.001
Unmet		36(16.6)	183(83.4)	
Met		414(36.5)	719(63.5)	
Infecund/Menopausal		33(10.7)	269(89.3)	
Determinants of grand multiparity				

We applied a two-level mixed effect multivariable logistic regression using the extracted data from 2016 DHS for the Sidama national regional state that is aimed at identifying individual and community-level determinants of grand multiparity or women having high parity. Those four models were developed to analyze factors accordingly. According to random-effect analysis; Model-I had no individual- and community-level variables and it observed only the random and intercept variables. In model I, the ICC value was 20%. This indicates that the variation on the grand multiparity occurred at the community level (between-cluster variability) and is...				
contributable to the community-level factors. The ICC in the null model greater than zero indicates that it guided the researcher to use multilevel modeling than the standard single-level regression model. Also, results in subsequent models, between cluster variability were found to be 14.4% in Model II (individual-level factors), 18.6% in Model III (communities level factors), and 14.5% in Model IV (combined individual and community level factors). In another way, the proportional change in variance (PCV) results indicated that the predictor variables to the null model better explained the factors associated with grand multiparity. The PCV finding for Model-II was (33.7%), for Model-III was (9.6%) and for Model-IV was (33.7%). The final Model (combined individual and community level factors) indicated 34% of the community-level variation on grand multiparity was explained by the combined factors at both the individual and community levels. The result was reported based on Model IV (combined individual and community level factors were fitted simultaneously). As a result, variables such as educational level, age of women at first birth, contraceptive methods used, husband occupation status, polygamy, age of first sex, unmet need for contraception, preceding birth interval, and husband education level was significantly associated with grand multiparous women, according to Model IV findings.

The odds of grand multiparity compared to multiparity were 2 times [AOR=2; 95% CI:1.25-3.75] higher among women who were uneducated compared with women who were educated. The odds of grand multiparity compared to those multiparous women not using any contraceptive method were 3.85 times higher compared to those women using long-acting family planning [AOR=3.8; 95% CI:1.2-12.2].

The odd of grand multiparity was 4.5 times higher among women who had their first births before 18 years old compared to those after 18 years old [AOR=4.5; 95% CI: 2.6–7.9]. The odd of grand multiparity was 4.2 times higher for those who were in polygamous marriages compared to those
in monogamy [AOR=4.2; 95% CI: 2.0–9.3]. In addition, the likelihood of grand multiparity was 80% less likely to have met contraceptive compared to those women who have met contraceptive) [AOR=0.2; 95% CI: 0.09 -0.83]. The odd of grand multiparity was 2.3 times higher among women who had short birth intervals compared to those women with normal birth intervals [AOR=2.3; 95% CI: 1.4-3.5]. The odd of grand multiparity was 5.8 times higher among women whose husbands had primary education compared to those who attended secondary schools and above [AOR=5.8; 95%CI: 2.1–16.1]. Also, the odd of grand multiparity was 3.4 times higher among women whose husbands lack formal education compared to those women husbands who had a secondary level of education and above [AOR=3.4; 95%CI: 1.2-9.9]. (table 4).
Table 4: Multilevel logistic regression model of individual and community-level factors associated with grand multiparous women in Sidama national region state, Ethiopia using data from the 2016 EDHS.

Individual- and community-level variables	Model 1	Model 2	Model 3	Model 4		
	Empty (Null)model	Individual-level variables AOR (95% CI)	Community-level variables AOR (95% CI)	Individual- and community-level variables AOR (95% CI)		
Educational level						
Have formal education	Ref.			Ref.		
Lack of formal education	2 (1.24-3.74) **			2.2(1.3 -3.4) **		
Sex of household head						
Female	Ref.			Ref.		
Male	0.3(0.1 - 0.8) **			0.3(0.1-0.8) *		
Wealth index combined						
Low	0.5(0.24 – 0.99) *			0.5(0.2-1)		
Middle	1.4 (0.66 – 2.96)			1.4 (0.7-3.0)		
High	Ref.			Ref.		
Age of women at first birth						
Greater than or equal to 18 years	Ref.			Ref.		
Less than 18 years	4.5 (2.6 – 7.9) ***			4.5(2.6-7.9) ***		
Contraceptive methods used						
Not using any methods	3.8(1.2 -12.2) *			3.8 (1.2- 12.2) *		
Short-acting family planning	2.2(1.1 – 4.5) *			2.2(1.1 -4.4) *		
Long-acting family planning	Ref.			Ref.		
Husband occupation status						
Professionals	2.2(1.0 -4.7)			2.2(1.03 -4.8) *		
Merchant	0.5(0.3 – 0.9) *			0.5(0.3-0.9) *		
Agriculture/Farmer	Ref.			Ref.		
Husband desire more child						
Husband wants fewer	Ref.			Ref.		
Husband wants more	1.4(0.7- 2.6)			1.3(0.7-2.6)		
Both want more	1.3(0.7 - 2.4)			1.3(0.7-2.4)		
	Ref.	Ref.				
---------------------------	------------------	------------------				
Polygamy/ number of other wives						
No	4.2 (1.9 - 9.3) ***					
Yes		4.2 (2.0 – 9.3) *				
Age at first sex						
Less than or equal to 18 years	3.8 (1.9 - 7.9) ***					
Greater than 18 years		3.9 (1.9 - 8.1) ***				
Unmet need for contraceptive						
Unmet	0.2 (0.07 - 0.5) ***	0.2 (0.1 - 0.5) ***				
Met	1.1 (0.3 - 3.3)	1.1 (0.34 - 3.26)				
Preceding birth interval (months)						
Greater than 36 months	2.3 (1.4 - 3.5) ***	2.3 (1.4 - 3.5) ***				
Less than or equal to 36 months						
Husband education level						
Lack of formal education	3.4 (1.2 - 10.0) *	3.4 (1.2 - 9.9) *				
Primary education	5.9 (2.2 - 16.2) ***	5.8 (2.1 - 16.1) ***				
Secondary education and above						
Religion						
Orthodox		4.9 (1.8 - 13.4) **				
Protestant	2.6 (0.8 - 8.4)					
Muslim						
Type of place of residence						
Urban	6.6 (1.29 - 33.8) *					
Rural		1.2 (0.2 - 10.7)				
Random effect						
Community-level variance (SE)	0.83*** (0.4)	0.55*** (0.3)				
ICC (%)	20%	14.4%				
MOR	2.4	2.0				
PCV	Reference	33.7%	9.6%	33.7%		
Model fit statistics	Log-likelihood	AIC	BIC	Log-likelihood	AIC	BIC
----------------------	----------------	-------	-------	----------------	-------	-------
	-523	1050	1059	-281	602	692
	-513	1036	1059	-513	1036	1059
	-281	604	698	-281	604	698

Note: *significant at *P < 0.05; ** P < 0.01; *** P < 0.001; AOR = Adjusted Odds Ratio, CI = Confidence Interval, AIC = Akaike information criterion, BIC = Bayesian information criterion, Model 1- Empty (null) model; Model 2- Only individual-level explanatory variables included in the model; Model 3- Only community-level explanatory variables included in the model; Model 4- Combined model; PCV = Proportional Change in Variance, MOR = Median Odds Ratio and Ref. = reference.
Discussion

Seven out of ten reproductive-age women had experienced grand multi-parity. Age at marriage, literacy status of women, age of women at first birth, modern contraceptive method utilization, polygamy, husband education level, preceding birth interval, and unmet need for contraceptives were significantly associated with women having high parity.

During the analysis, the ICC value was found to be 14.5% in the combined Model. This indicates that 14.5% of the chances of grand multiparous women were explained through cluster differences. The ICC in the null model greater than zero indicates that it guided the researcher to use multilevel modeling than the standard single-level regression model [37, 39, 40]. Similarly, the study indicates that the proportion change in variance of the final model was accountable for about 33.7% of the log odds of high parity in the communities. In addition to that, the results of the median odds ratio, a measure of unexplained cluster heterogeneity, are 2.48, 3.51, 2.43, and 3.34 in models 1, 2, 3, and 4, respectively. Hence, the results of the median odds ratio showed that there is unexplained variation between the clusters of the community.

In the present study, the magnitude of grand multiparity was 70.8%. This is similar to a study conducted community-based in Gedeo Zone 69.1% and Tigray region, Ethiopia 51% [25, 29]. This figure was quite higher than the prevalence reported by other investigators ranging from 9.4% to 27% in Gambian, Cameroon, Nigeria, Tanzania, and India [2, 33, 34, 41, 42]. The fact that later studies were all carried out in health facilities and urban catchment areas could explain these low prevalence rates. The educational backgrounds, socioeconomic, sociodemographic, and cultural settings of these studies are different from the current findings[31]. Similarly, there are many contributing factors to high fertility, among which are early marriage, the perceived ideal number of children, and mass media exposure by women [14, 25]. While the prevalence of grand
309 multiparity in developed countries has significantly declined ranging from 3 to 4 % [43], it has increased in the current study and this could be explained by lack of formal education (75.8%) and a high number of early marriages. As individual health implications, the women are given more subsequent births while they get more maternal and child health risks and many socioeconomic challenges in their lifetime in low resource setting areas [24, 35, 44, 45].

314 The trends of grand multiparity over study periods showed no significant change. This finding was consistent with a previous study done in rural Cameroon[31]. However; in Tanzania, the previous study's findings showed a significant change in the trend of grand multiparity [26]. This decline could have been explained by the availability of higher education to women and increased community awareness of the health risks of giving birth at an advanced maternal age and the benefits of family planning and empowerment of women in reproductive health decision-making [26].

321 This study revealed that grand multiparity was higher among women who had their first births before 18 years old compared to those women who started after 18 years. We realized that in the study community where women start birth before 18 years, the period of fertility is longer, and they have many ever-born children. As a result of these, women have high parity. Similarly, the women not using modern family planning appropriately and timely for spacing and limiting the number of births have high fertility. This is similar to the previous study done in Gedeo Zone, Ethiopia [25], Nigeria[46], Nepal [14], and Pakistan [28]. Nevertheless, the problem of early age at first delivery is significantly more alarming in the present study area than in the previous findings.

330 The odds of grand multiparity compared to that of multiparity were higher among women who were illiterate compared with literate women. This finding is in line with previous studies
conducted in Nigeria[46], Kenya[27], Nepal[14], and the Tigray region in Ethiopia[29]. In this study, almost all of the women were rural dwellers (99%). Women who are rural inhabitants are less likely to spend much time in school and would rather get married early. A possible explanation is that women residing in the urban area stay longer in school, thereby postponing the time for marital engagement[25]. On the other hand, researchers found that education is an important factor for high parity with several causal relationships from a theoretical perspective[47]. To sum up, education generally results in an improvement in the status of individuals in society in the form of a better understanding of health issues, and employment status [48]. The low social class found among the grand multiparous women is usually associated with illiteracy and low socioeconomic status which may be an encouraging factor to produce more children[11]

The grand multiparity was higher among women with short birth intervals (less than or equal to 36 months). This finding is also consistent with a study conducted in Wonago District, Gedeo Zone, Ethiopia [25]. The possible explanation might be due to women utilizing modern contraceptives that lead the women to get more children in a short period of time.

In our study, it was found that grand multiparity is significantly associated with polygamous marriage compared with monogamous marriage. This finding is similar to other studies conducted in Nigeria[1]. The variation could be due to competition amongst wives to have many children and to build large family sizes.

The grand multiparity among women not using any contraceptive and using short-acting contraceptive methods was higher compared to those women using long-acting contraceptives. Similar findings were reported in Nigeria [46], Cambodia[49], Pakistani [28], and Wonago District, Gedeo Zone[25]. Most factors in this study are directly or indirectly associated with the low utilization of contraceptives which indicated that it is the root cause of high fertility in the
study setting. In addition, in one study, the women were not using contraceptives because their husbands did not allow them to make contraceptive decisions[49].

Conclusions

This study revealed that seven of ten women had experienced grand multiparity and the magnitude did not show significant change over the last sixteen years. Early marriage and early age of first birth, low literacy level, low family planning utilization, polygamy marital status, short birth interval, and unmet need for family planning were determinants of grand multiparity. We recommended to the stakeholder's design new strategies to address the root cause of high fertility factors in communities. Ministry of health should focus on health education and create awareness about maternal health risks related to grand multiparity in the community. Furthermore, special attention should be given to improving the utilization of contraceptives in the community to reduce the prevalence of grand multiparity.

Contributions

TTD, MAK, and YD conceptualized the idea and designed the study; TTD and YD carried out the execution, data acquisition, analysis, interpretation, and wrote the draft manuscript; MAK and YD provided intellectual comments and contributed to revising the manuscript. All authors contributed to the revision of the manuscript's content and approved the final version. TTD accepts responsibility for the study's conduct, has access to the data, and has control over the decision to publish and the overall content of the manuscript.

Abbreviations

AIC, Akaike’s Information Criterion; AOR, Adjusted Odd Ratio; BIC, Bayesian Information Criterion; CI, Confidence Interval; DHS, Demographic and Health Survey; EDHS, Ethiopia
Demographic Health Survey; LR, Likelihood Ratio; MOR, Median Odds Ratio; PCV, Proportional Change Variance; SD, Standard Deviation; VIF, Variance Inflation Factors and WHO, World Health Organization.

Data Sharing Statement

The data retrieved for this research are available upon request from the (DHS) program's official database website (http://dhsprogram.com). All relevant data are in the paper and its Supporting Information files.

Acknowledgments

We would like to thank the MEASURE DHS Program and ICF International for providing us the permission to use the EDHS data. We would also like to acknowledge the African Union for supporting this study.

Ethical approval

Not applicable

Funding

Not applicable

Disclosure

The authors report no conflicts of interest in this work.

References

1. Njoku, C.O., S.E. Abeshi, and C.I. Emechebe, *Grand Multiparity: obstetric outcome in comparison with multiparous women in a developing country*. Open Journal of Obstetrics and Gynecology, 2017. 7(07): p. 707.
2. Ajong, A.B., et al., *Grand multiparity in rural Cameroon: Prevalence and adverse maternal and fetal delivery outcomes*. BMC Pregnancy and Childbirth, 2019. 19(1): p. 1-7.
3. Aliyu, M.H., et al., *High parity and adverse birth outcomes: exploring the maze*. Birth, 2005. 32(1): p. 45-59.
4. Shaista, T.A., S. Shazia, and B.S.a.R. Fouzia, B., *Obstetrical Complication in Grand Multi Parity*. Medical Channel 2009. 12: p. 53-58.
1. Bugg, G., G. Atwal, and M. Maresh, *Grandmultiparae in a modern setting*. BJOG: An International Journal of Obstetrics & Gynaecology, 2002. 109(3): p. 249-253.

2. Ndiaye, K., et al., *High-Risk Advanced Maternal Age and High Parity Pregnancy: Tackling a Neglected Need Through Formative Research and Action*. Glob Health Sci Pract, 2018. 6(2): p. 370-80.

3. Central Statistical Agency, *The work of a nation. The World factbook*. 2019.

4. Statista, *Sub-Saharan Africa: Fertility rate from 2008 to 2018*. 2020.

5. Nations, U., *World Fertility and Family Planning*. 2020.

6. Central Statistical Agency (CSA) [Ethiopia] and ICF, *Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF*, in *The DHS Program ICF*. 2016: Rockville, Maryland, USA.

7. Emechebe, C., et al., *The social class and reasons for grand multiparity in Calabar, Nigeria*. Tropical Journal of Obstetrics and Gynaecology, 2016. 33(3): p. 327.

8. Ezra, Y., et al., *The outcome of grand-multiparous pregnancies of Arabic and Jewish populations in peripheral and central areas of Israel*. Acta obstetricia et gynecologica Scandinavica, 2001. 80(1): p. 30-33.

9. Oshodi, K.O. and K. Salami, *PREVALENCE AND RISKS/CHALLENGES OF GRAND MULTIPARITY TO WOMEN’S HEALTH IN OYO STATE NIGERIA*. AFRICAN JOURNAL FOR THE PSYCHOLOGICAL STUDIES OF SOCIAL ISSUES, 2019. 22(2): p. 13-35.

10. Adhikari, R., *Demographic, socio-economic, and cultural factors affecting fertility differentials in Nepal*. BMC pregnancy and childbirth, 2010. 10(1): p. 19.

11. Madubuchukwu, I.E and I.I. Ayuba, *Grandmultiparity: The Reasons Women Give for High Parity in South-South Nigeria*. Clinical Medicine Research, 2017. 6(3): p. 92.

12. Eugene, M.I. and O.A. Abedinego, *Grandmultiparity: Is it really an independent predictor of adverse pregnancy outcomes?* Saudi Journal for Health Sciences, 2017. 6(2): p. 77.

13. Central Statistical Agency CSA/Ethiopia, *Census of Population and Housing*. Csa.gov.et. 2017-02-22. Retrieved 2019-11-20. 1984.

14. Wikipedia, *Southern Nations, Nationalities, and Peoples’ Region*. 2020.

15. Federal Democratic Republic of Ethiopia Central Statistical Agency, *Population Projection of Ethiopia for All Regions At Wereda Level from 2014 – 2017. Retrieved 4 June 2018*. 2018.

16. Central Statistical Agency, *The 2007 Population and Housing Census of Ethiopia: Statistical Report for Southern Nations, Nationalities and Peoples’ Region; Part I: Population Size and Characteristics*. 2010

17. Central Statistical Agency [Ethiopia] and ICF International, *Ethiopia Demographic and Health Survey 2011. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ICF International*. 2012.

18. Central Statistical Agency/Ethiopia and ORC Macro, *Ethiopia Demographic and Health Survey 2005. 2006, Central Statistical Agency/Ethiopia and ORC Macro: Addis Ababa, Ethiopia.

19. Central Statistical Authority/Ethiopia and ORC Macro, *Ethiopia Demographic and Health Survey 2000. 2001, Central Statistical Authority/Ethiopia and ORC Macro: Addis Ababa, Ethiopia.

20. Al-Shaikh, G.K., et al., *Grand multiparity and the possible risk of adverse maternal and neonatal outcomes: a dilemma to be deciphered*. BMC Pregnancy Childbirth, 2017. 17(1): p. 310.

21. Reda, M.G., G.T. Bune, and M.F. Shaka, *Epidemiology of High Fertility Status among Women of Reproductive Age in Wonago District, Gedeo Zone, Southern Ethiopia: A Community-Based Cross-Sectional Study*. Int J Reprod Med, 2020. 2020.

22. Muniro, Z., et al., *Grand multiparity as a predictor of adverse pregnancy outcome among women who delivered at a tertiary hospital in Northern Tanzania*. BMC Pregnancy Childbirth, 2019. 19.
27. Mungai, S.W., Explaining high fertility in the north eastern region of Kenya. 2015, University of Nairobi.

28. Kamal, A. and M.K. Pervaiz, Factors Affecting the Family Size in Pakistan: Clog-log Regression Model Analysis. Journal of Statistics, 2011. 18(1).

29. Atsbah, G., et al., Determinants of high fertility among ever married women in Enderta district, Tigray Region, Northern Ethiopia. J Health Med Informat, 2016. 7(5): p. 243-248.

30. Atake, E.H. and P. Gnoukou Ali, Women’s empowerment and fertility preferences in high fertility countries in Sub-Saharan Africa. BMC Womens Health, 2019. 19.

31. Ajong, A.B., et al., Grand multiparity in rural Cameroon: prevalence and adverse maternal and fetal delivery outcomes. BMC Pregnancy Childbirth, 2019. 19.

32. Sultan, S. and J. Ojha, Grand multiparity still and obstetric challenge—a clinical study of grand multipara in a tertiary care center. J Evol Med Dent Sci, 2013. 12(39): p. 7423-7430.

33. Omole-Ohonsi, A. and A. Ashimi, Grand multiparity: obstetric performance in Aminu Kano teaching hospital, Kano, Nigeria. Nigerian journal of clinical practice, 2011. 14(1).

34. Idoko, P., G. Nkeng, and M. Anyawu, Reasons for current pregnancy amongst grand multiparous Gambian women—a cross sectional survey. BMC Pregnancy and Childbirth, 2016. 16(1).

35. Agrawal, S., A. Agarwal, and V. Das, Impact of grandmultiparity on obstetric outcome in low resource setting. Journal of Obstetrics and Gynaecology Research, 2011. 37(8): p. 1015-1019.

36. Dean, A., OpenEpi: open source epidemiologic statistics for public health, version 2.3. 1.

37. Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community Health, 2006. 60(4): p. 290-297.

38. Midi, H., S.K. Sarkar, and S. Rana, Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 2010. 13(3): p. 253-267.

39. Sommet, N. and D. Morselli, Keep calm and learn multilevel logistic modeling: A simplified three-step procedure using stata, R, Mplus, and SPSS. International Review of Social Psychology, 2017. 30: p. 203-218.

40. Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. Journal of Epidemiology & Community Health, 2005. 59(6): p. 443-449.

41. Roy, I., A. Burande, and R. Choubey, Obstetric outcome in grand multipara—a Meghalaya experience. Journal of OBGYN, 2019. 5(2): p. 103-6.

42. Muniro, Z., et al., Grand multiparity as a predictor of adverse pregnancy outcome among women who delivered at a tertiary hospital in Northern Tanzania. BMC Pregnancy and Childbirth, 2019. 19(1): p. 1-8.

43. Mgaya, A.H., et al., Grand multiparity: is it still a risk in pregnancy? BMC pregnancy and childbirth, 2013. 13(1): p. 241.

44. Ahmed, N., S. Akhter, and T. Das, Grand multipara with multiple encounters in a tertiary level hospital of Bangladesh. International Journal of Gynecology and Obstetrics, 2015. 131: p. E445.

45. Chavoshi, M.H., et al., THE HEALTH OF OLDER WOMEN AFTER HIGH PARITY IN TAFT, IRAN. Asian Popul Stud, 2011. 7(3): p. 263-74.

46. Alaba, O.O., O.E. Olubusoye, and J. Olaomi, Spatial patterns and determinants of fertility levels among women of childbearing age in Nigeria. South African Family Practice, 2017. 59(4): p. 143-147.

47. McCrory, J. and H.J.A.e.r. Royer, The effect of female education on fertility and infant health: evidence from school entry policies using exact date of birth. 2011. 101(1): p. 158-95.

48. Cochrane, S.H., Fertility and education: World Bank staff occasional papers. 1979.
499. Samandari, G., I.S. Speizer, and K. O’Connell, *The role of social support and parity on contraceptive use in Cambodia*. International perspectives on sexual and reproductive health, 2010: p. 122-131.

Fig 1: The magnitude of grand multiparity in Sidama region, data from EDHS 2016.

Fig 2: Trend of grand multiparous women in Sidama national regional state, Ethiopia, DHS data from years 2,000 to 2016.
Fig 1:

![Pie chart showing proportions of Multiparity and Grand multiparity](https://example.com/pie_chart.png)

Proportion

- Multiparity: 29.18%
- Grand multiparity: 70.82%

Legend:

- Multiparity
- Grand multiparity
Fig 2:

![Graph showing the percentage of grand multiparous women](image)

- **Y-axis:** Percentage of grand multiparous women
- **X-axis:** Year of survey conducted
- **Legend:**
 - Grand multiparity
 - Linear (Grand multiparity)
Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

Reporting Item	Page Number
Title and abstract	
Title	

#1a Indicate the study’s design with a commonly used term in the title or the abstract

1
Section	#	Description
Abstract	#1b	Provide in the abstract an informative and balanced summary of what was done and what was found.
Introduction		**Background / rationale** Explain the scientific background and rationale for the investigation being reported.
Objectives	#3	State specific objectives, including any prespecified hypotheses.
Methods		**Study design** Present key elements of study design early in the paper.
	#5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection.
		Eligibility criteria Give the eligibility criteria, and the sources and methods of selection of participants.
	#7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.
	#8	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment
		methods if there is more than one group. Give information separately for exposed and unexposed groups if applicable.
Bias

Describe any efforts to address potential sources of bias NA

Study size

Explain how the study size was arrived at 5

Quantitative

Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why 6

Statistical

Describe all statistical methods, including those used to control for confounding 7

Statistical

Describe any methods used to examine subgroups and interactions 7

Statistical

Explain how missing data were addressed NA

Statistical

If applicable, describe analytical methods taking account of sampling strategy 7

Statistical

Describe any sensitivity analyses NA

Results

Participants

Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable. 8

Participants

Give reasons for non-participation at each stage NA
Participants

Consider use of a flow diagram NA

Descriptive data

Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable. 9

Descriptive data

Indicate number of participants with missing data for each variable of interest

Outcome data

Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable. 11

Main results

Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included 15

Main results

Report category boundaries when continuous variables were categorized 12

Main results

If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 15

Other analyses

Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses NA

Discussion

Summarise key results with reference to study objectives 18
Limitations #19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. 2

Interpretation #20 Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. 18,19 & 20

Generalisability #21 Discuss the generalisability (external validity) of the study results 21

Other Information

Funding #22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 22

None The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist can be completed online using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai
A Multilevel Analysis of Grand Multiparity: Trend and its determinants in the Sidama National Region State of Ethiopia: A Cross Sectional Study Design from Demographic and Health Survey 2000 to 2016.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061697.R2
Article Type:	Original research
Date Submitted by the Author:	21-Jul-2022
Complete List of Authors:	Dasa, Tamirat; Pan African University Institute of Life and Earth Sciences, (Including Agriculture and Health) ; Hawassa University College of Medicine and Health Sciences, Midwifery Okunlola, Michael; University of Ibadan College of Medicine, Obstetrics and Gynecology Dessie, Yadeta; Haramaya University College of Health and Medical Sciences, Public Health
Primary Subject Heading:	Public health
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Community child health < PAEDIATRICS, Epidemiology < ONCOLOGY, Maternal medicine < OBSTETRICS, Prenatal diagnosis < OBSTETRICS, Antenatal < GENETICS
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
A Multilevel Analysis of Grand Multiparity: Trend and its determinants in the Sidama National Region State of Ethiopia: A Cross-Sectional Study Design from Demographic and Health Survey 2000 to 2016.

Tamirat Tesfaye Dasa¹,²*, Michael A. Okunlola³, Yadeta Dessie ⁴

Authors’ Affiliations

¹Pan-African University, Life and Earth Sciences Institute, (Including Agriculture and Health) Ibadan, Nigeria
²Hawassa University, College of Medicine and Health Sciences, P.O. Box 1165, Hawassa, Ethiopia
³Department of Obstetrics and Gynecology, College of Medicine, University College Hospital, University of Ibadan, Ibadan, Nigeria.
⁴School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia

Authors email address

1. Tamirat Tesfaye Dasa- tamirathenna@gmail.com
2. Michael. A. Okunlola - biolaokunlola@gmail.com
3. Yadeta Dessie - yad_de2005@yahoo.com

*Corresponding author:
Tamirat Tesfaye Dasa, Reproductive Health Sciences, Department of Midwifery, College of Medicine and Health Sciences, Hawassa University.

Email: tamirathenna@gmail.com

P.O. Box 235, Phone: +251938611577

Word count= 3621
Abstract

Objective: The study was aimed at examining the magnitude, trends, and determinants of grand multiparity in the Sidama regional state of Ethiopia.

Design: We retrieved cross-sectional data from the Ethiopian demographic health survey from 2000 to 2016.

Setting: Community-based demographic health survey was conducted in Ethiopia.

Participants: The study population was women (aged 15 to 49 years) who had delivered children with the available DHS data set.

Outcomes: Multilevel multivariate logistic regression analyses assessed the relationship between grand multiparity and its determinants.

Results: The magnitude of grand multiparity was 70.8% (95% CI: 68.5-72.9). The multilevel multivariable logistic regression model showed illiteracy [AOR=2; 95% CI:1.25-3.75], non-use of any contraceptive [AOR=3.8; 95% CI:1.2-12.2], early marriage [AOR=4.5; 95% CI: 2.6-7.9], polygamous marriage [AOR=4.2; 95% CI:2.0-9.3], short birth intervals [AOR=2.3; 95% CI:1.4-3.5] and husband low education status [AOR=5.8; 95% CI:2.1-16.1] were significantly associated with grand multiparity.

Conclusions: This study revealed that seven of ten women were grand multipara, and the magnitude did not show significant change over the last sixteen years. Early marriage and early age of first birth, low literacy level, low family planning utilization, polygamy, short inter-birth interval, and unmet need for family planning were determinants of grand multiparity. We
recommended to the stakeholders to design new strategies to address the root cause of high fertility factors in communities.

Keywords: High parity, High fertility, Grand multiparity, Multilevel analysis, Sidama, Ethiopia.

Strengths and Limitations of this study

- The strength of this study included analyzing the most recent nationally representative data sets aided in providing a broad comparative picture of grand multiparity in the study setting, as well as significant predictors of children ever born among ever-married women.

- To avoid misleading inferences and thus valid interpretation of the results, clustering effects were considered using a mixed modeling approach.

- Despite the above strengths, the study may have had recall bias because participants were asked about events that occurred 5 years or more before the survey.

- Also, we used secondary datasets, we were limited in our ability to select exposure variables for statistical analysis.

Background

Grand multiparity, a situation when a woman has at least five deliveries at gestational age greater than or equal to 20 weeks, is a major public health concern in developing countries, particularly in sub-Saharan Africa [1-3]. Its obstetric performance is considered as high risk which is defined as the one in which the woman, fetus, and/or newborn are at increased risk of morbidity or mortality prenatal, intrapartum or postpartum [4]. In this regard, there is a high disparity in the fertility rates between the developed and developing countries [5]. The factors responsible for the huge disparity are usually neglected in existing family planning and reproductive health programs, which causes
the grand multi-parity to be a serious public health problem worldwide, particularly in developing
countries including Ethiopia [6, 7].

While the global fertility rate declined from 3.2 live births per woman in 1990 to 2.5 in 2019, the
magnitude increased to 4.6 in 2019 in sub-Saharan Africa including Ethiopia, which indicates a
high fertility rate [8-10].

Various factors have been identified to be associated with the grand multi-parity and these include
early age at first marriage, low socioeconomic status, polygamous marriage [11], husband's
preference, culture, religion, and residence in a rural area. Others are low literacy level, poor mass
media exposure, low level of awareness of health, and lack of access to modern contraceptives
especially in most sub-Saharan Africa [1, 12, 13].

According to studies conducted in some developing countries, grand multipara women have a
higher number of children than women in developed countries. Indeed, many factors contribute to
grand multiparity, but some published literature identified the factors for grand multiparity in low
and lower-middle-income countries [1, 14-16]. Still, grand multiparity has not been well-addressed, as there is a dearth of evidence on a larger scale. Also, there were inadequate studies
carried out on the trend, magnitude, and associated factors of grand multiparity by using national
representative demographic health survey data (DHS). Therefore, this study was carried out to
assess the trend and associated factors of grand multiparity using demographic and health survey
data for the Sidama region from 2000 to 2016. The findings will assist program managers and
policymakers in developing appropriate intervention strategies to effectively address the
challenges and problems of grand multipara women in order to prevent high parity in the
community in terms of reproductive health services at all levels.
Methods and materials

Study area and period

Sidama national regional state is one of the 10 national regional states in Ethiopia. The region is divided into 36 Districts (6 urban districts and 30 rural districts). Hawassa city is the capital of the region, and it is situated in the Southern part, about 273 Kilometers away from Addis Ababa, Ethiopia’s capital. The Sidama people number 8.8 million (4.01% of the national population) and are the fifth most populous ethnic group in Ethiopia. Sidama national region state has 123 health centers and 17 hospitals[10, 17-20]. For this study, we used secondary data from the 2000 to 2016 Ethiopia demographic health and survey (DHS). The DHS data had been collected from January 18, 2016, to June 27, 2016, by the Ethiopian Central Statistical Agency (ECSA)[10].

Study design, data source, and sampling techniques

A cross-sectional survey data were obtained from 2000 to 2016 (EDHS). The data were retrieved from the (DHS) program's official database website (http://dhsprogram.com). It is a nationally representative household survey that collects information about population, health, and other important indicators. The sample of the EDHS study was designed to collect up-to-date information from each of the ten regions and the two administrative cities. Each region was stratified into urban and rural areas, 21 sampling strata were obtained. Samples of enumeration areas (EAs) were selected independently in each stratum in two stages. In the first stage, a total of EAs was selected with a proportional sampling technique and with independent selection in each sampling stratum. The selection of households was the second stage. A fixed number of households per cluster were selected with an equal probability proportional allocation to sample size was done [10].
This study used the birth record dataset, and the study population was women (aged 15 to 49 years) who had delivered children with the available DHS data set. From the birth record dataset, the total number of multiparous (para 2 to 4) and grand multiparous (para 5 to 9) women was extracted for Sidama national region state from 2016 EDHS. The total sample was extracted for women who gave birth (parity 2 to 9) from the birth record dataset. The total number of women whose parity (2 to 9) in the study region of Ethiopia was included in 1,654 weighted samples. For trend analysis, grand multipara in all the four DHS data from 2000 to 2016 were extracted by using the quantitative method [10, 21-23].

Study variables

Dependent variable: The outcome variable of this study was grand multiparity which was categorized in to "Yes = 1/ No = 0" form. These include all women who have five to nine deliveries as grand multi-parity categories [1, 2, 24].

\[Y_i = \begin{cases}
0; & \text{Multiparity, for the women had given birth 2 to 4 times.} \\
1; & \text{Grand multiparity, for the women who had given birth 5 to 9 times.}
\end{cases} \]

\[Y_i \] represent the parity of the \(i\)th ever born children.

Independent variables: The independent variables for this study were identified based on previous studies conducted on the factors affecting grand multiparity at the different places that were reviewed from the literature as associated factors of grand multiparity [11, 14, 25-35]. The independent variables selected for analysis from the available dataset were the place of residence, maternal age, educational status of women, wealth index, current marital status, polygamy marriage, women currently working, religion, husband education level husband occupation status, women supported by husband, community media exposure, age of women at first birth, age at first sex, number of living children, preceding birth interval (months), the contraceptive method
used, unmet need of contraceptive, the desire for more children, the child being alive, place of
delivery, and husband’s desire for more children. In this analysis, independent variables were
categorized into individual-level variables and community-level variables. Individual-level
variables were the age of women, women's education status, wealth index, women's age of first
birth, number of living children, current marital status, polygamy marriage, women's age at first
sex, desire for more children, contraceptive method, unmet need of contraceptive, women
currently working, the child is alive, preceding birth interval (months), place of delivery, women
supported by husband, husband education status, husband occupation status, husband desire for
more children. Community-level variables were religion, place of residence (rural or urban), and
community media exposure.

Data Analysis

For analysis, the weighted sample data were used to ensure the survey results were representative
of the regions. Based on each weighted variable, the descriptive statistics were reported with
summary indices, frequency, and proportion. The trend analysis of grand multiparity was assessed
using the Extended Mantel-Haenszel Chi-square test for linear trend using the OpenEpi (version
3.01)- Response program[36]. A P-value of less than 0.05 was used to declare a 95% significant
probability of the existence of a trend. The degree of crude association for individual and
community variables was checked by employing a χ² test.

For the nested structure of the EDHS data, multilevel multivariable logistic regression analysis
was used. Also, for the mixed effect (fixed effect for both the individual and community level
factors and a random effect for the between cluster-variation), a two-level mixed-effect logistic
regression analysis was used. The final findings were measured using an adjusted odds ratio
(AOR). Within the multilevel multivariable logistical regression analysis, four models were fitted
for the result variable. The primary model (null or empty model) was fitted without explanatory
variables. The second model (individual model), third model (community model), and fourth
model (final model) variables were fitted for individual level, community-level, and each
individual- and community-level variable respectively. The final model was used to check for the
independent effect of the individual and community level variables on grand multiparity. To show
cluster correlation within a model, the Intra-Cluster Correlation (ICC) was calculated. The
Proportional Change in Variance (PCV) was also calculated to determine the predictive power of
the variables included in each model. To identify the factors associated with grand multiparity, the
model with the highest PCV value was used.

The model fitness was assessed using Akaike Information Criterion (AIC), the Bayesian
information criterion (BIC), and the Likelihood Ratio (LR) test. The values for each model of AIC
and BIC were compared, the lowest one assumed to be a better explanatory model[37].

Multicollinearity between the individual- and community-level variables was checked using the
Variance Inflation Factor (VIF). The mean value of VIF < 10 was the cut-off point[38]. In the
present study, the mean VIF value was estimated to be 2.44 showing the absence of
multicollinearity in the models. The data were analyzed using the STATA statistical software
system package version 14.0 (StataCorp., College Station, TX, USA). It was considered
statistically significant if the P-values were less than 0.05 with the 95% confidence intervals.

Patient and Public Involvement

No patient was involved in this study.
Results

Sociodemographic characteristics of study participants

In this study, a total weighted sample of 1,654 women was included in the analysis from the latest EDHS data (2016). The mean age (±SD) of the women was 35±6.7 years, with the majority of women aged between 40-49 years. Almost all (99%) of women lived in a rural setting, and close to two-thirds (67%) of women were illiterate. Slightly more than half (55%) of the women were under a low level of socio-economic status. Almost all of them were married (93%) and follow the protestant religion (92%). More than three-fourths (77%) of the women were not supported by their husbands to do day-to-day chores. In addition, the majority of husbands had attended formal education and had different types of occupations. The summarized information on the sociodemographic background is displayed below (table 1).

Table 1: Sociodemographic characteristics of study participants in the Sidama national region state, data from 2016 Ethiopia demographic health and survey.

Individual and community Variables	Categories	Weighted (No_)	Weight (%)
Place of residence	Urban	13	0.75
	Rural	1641	99.25
Age in years	20-29	329	19.87
	30-34	441	26.66
	35-39	413	25.00
	40-49	471	28.47
	Mean ±SD	35±6.7	
Educational status	Have formal education	532	32.16
	No formal education	1122	67.84
Wealth index	Low	912	55.14
	Middle	357	21.58
	Higher	385	23.28
Current marital status	Other marital statues	110	6.66
	Married	1544	93.34
Polygamy	No	1205	77.09
	Yes	357	22.91
Women currently working	No	942	56.94
	Yes	712	43.04
Sexual and reproductive health characteristics of study participants

The mean age (±standard deviation) of women at first delivery was 17.69 ± 2.75 years and at first coital exposure was 16±2.6 years. The women’s mean number of living children was 4.9 with a ±1.8 standard deviation. About two-thirds (64.8%) of women had short birth intervals within or less than 36 months. Among participants, a considerable proportion of women (45.81%) did not utilize modern contraceptives. Nearly, one-out of ten women (10.9%) had experienced child death in the survey. Slightly more than three-fourths (80%) of women gave birth at home (table 2).

Table 2: Fertility, sexual and reproductive health characteristics of study participants in Sidama regional state, data from 2016 Ethiopia Demographic and Health Survey.

Individual-level variables	Categories	Frequency	Percent (%)
Age of women at first birth	Less than 18 years	1,077	65.11
	Greater than or equal to 18 years	577	34.89
	Mean ±SD	17.69±2.75	
Age at first sex	Less than or equal to 18 years	1,356	81.98
	Greater than 18 years	298	18.02
	Mean ±SD	16±2.6	
Number of living children	Mean ±SD	4.9 ±1.8	
Preceding birth interval (months)	Less than or equal to 36 months	844	64.8
	Greater than 36 months	459	35.2
	Mean ±SD	34.47 ± 18.6	
Contraceptive method used	Not using any methods	758	45.81
The magnitude of grand multiparous women

The prevalence of grand multiparity with the weighted sample was 70.8 % (95 % CI, 68.5 - 72.9), in the 5 years preceding the survey in the Sidama region. Evidence from 2016 EHDS (Figure 1).

The trend of grand multiparous women

The magnitudes of the grand multi-parity were 70.93 % in 2000 EDHS, 68.58 % in 2005 EDHS, 74.23 % in 2011 EDHS, and 70.82 % in 2016 DHS in the Sidama national region state. Over 16 years, the trend of grand multiparous women from four surveys showed no significant change (Extended Mantel-Haenszel chi-square for leaner trend= 1.13 and P-values= 0.29). Likewise, no percentage change was observed between 2000 and 2016 EDHS in the Sidama region (Figure 2).

Bivariate variables’ association with grand multi-para women

Regarding education status, the lack of formal education (75.8%) was significantly higher in grand multiparous women than in multipara (48.6%), (P<0.001). An enormous number of women in both groups were of the poorest and poorer statuses on the wealth index. The unmet need for contraceptives and underutilization of long-acting family planning utilization was significantly
higher in grand multipara than multipara (p<0.001). Among grand multipara, women in polygamous marriages were significantly higher compared with multipara women, (p<0.001).

Likewise, the age of women at first birth, short birth intervals, husband education level, number of living children, and place of residence showed significant associations in both study groups, (p<0.001).

However, no significant differences were observed between grand multipara and multiparous regarding women currently working, place of delivery, the child is alive, current marital status, husband occupation status, and community media exposure, (P> 0.05), (table 3).

Table 3: Bivariate variables association of individual and community level variables with grand multipara and multiparous women in Sidama national region state, Ethiopia, data from EDHS 2016.

Individual and community Variables	Categories	Multiparous No_ (%)	Grand Multipara No_ (%)	P-value
Age in year	Mean ± SD	29.4 ± 0.3	37.7 ± 0.2	p<0.001
Educational level	Lack of formal education	234(20.9)	888(79.1)	p<0.001
	Have formal education	248(46.7)	283(53.3)	
Wealth Index	Poorest	134(28.9)	329(71.1)	p=0.049
	Poorer	146(32.5)	303(67.5)	
	Middle	89(24.8)	269(75.2)	
	Richer	54(25.2)	159(74.8)	
	Richest	61(35.2)	112(64.8)	
Age of women at first birth	Mean ± SD	18.8±2.9	17.5±2.6	p<0.001
Number of living children	Mean ± SD	2.8±0.8	5.8±1.4	p<0.001
Current marital status	Other marital statues	30(26.8)	80(73.2)	P=0.74
	Married	453(93.9)	1,091(93.1)	
Polygamy marriage	No	426(35.3)	780(64.7)	p<0.001
	Yes	34(9.6)	322(90.4)	
Age at first sex	Mean ± SD	16.56±2.77	16.13±2.52	P=0.022
The desire for more children	Not want more children	178(16.1)	927(83.9)	p<0.001
	Want more children	305(55.5)	244(44.5)	
Unmet need of contraceptive	Unmet	36(16.6)	183(83.4)	p<0.001
	Met	414(36.5)	719(63.5)	
Determinants of grand multiparity

We applied a two-level mixed effect multivariable logistic regression using the extracted data from 2016 DHS for the Sidama national regional state that is aimed at identifying individual and community-level determinants of grand multiparity or women having high parity. Those four models were developed to analyze factors accordingly. According to random-effect analysis; Model-I had no individual- and community-level variables, and it observed only the random and intercept variables. In the model I, the ICC value was 20%. This indicates that the variation on the grand multiparity occurred at the community level (between-cluster variability) and is
contribute to the community-level factors. The ICC in the null model greater than zero indicates
that it guided the researcher to use multilevel modeling than the standard single-level regression
model. Also, results in subsequent models, between cluster variability were found to be 14.4% in
Model II (individual-level factors), 18.6% in Model III (communities level factors), and 14.5% in
Model IV (combined individual and community level factors). In another way, the proportional
change in variance (PCV) results indicated that the predictor variables to the null model better
explained the factors associated with grand multiparity. The PCV finding for Model-II was
(33.7%), for Model-III was (9.6%) and Model-IV was (33.7%). The final Model (combined
individual and community level factors) indicated that 34% of the community-level variation on
grand multiparity was explained by the combined factors at both the individual and community
levels. The result was reported based on Model IV (combined individual and community level
factors were fitted simultaneously). As a result, variables such as educational level, age of women
at first birth, contraceptive methods used, husband occupation status, polygamy, age of first sex,
unmet need for contraception, preceding birth interval, and husband education level were
significantly associated with grand multiparous women, according to Model IV findings.

The odds of grand multiparity compared to multiparity were 2 times [AOR=2; 95% CI:1.25-3.75]
higher among women who were uneducated compared with women who were educated. The odds
of grand multiparity compared to those multiparous women not using any contraceptive method
were 3.85 times higher compared to those women using long-acting family planning [AOR=3.8;
95% CI:1.2-12.2].

The odd of grand multiparity was 4.5 times higher among women who had their first births before
18 years old compared to those after 18 years old [AOR=4.5; 95% CI: 2.6–7.9]. The odd of grand
multiparity was 4.2 times higher for those who were in polygamous marriages compared to those
in monogamy [AOR=4.2; 95% CI: 2.0–9.3]. In addition, the likelihood of grand multiparity was
80% less likely to have met contraceptive compared to those women who have met contraceptive)
[AOR=0.2; 95% CI: 0.09 -0.83]. The odd of grand multiparity was 2.3 times higher among women
who had short birth intervals compared to those women with normal birth intervals [AOR=2.3;
95% CI: 1.4-3.5]. The odd of grand multiparity was 5.8 times higher among women whose
husbands had primary education compared to those who attended secondary schools and above
[AOR=5.8; 95%CI: 2.1–16.1]. Also, the odd of grand multiparity was 3.4 times higher among
women whose husbands lack formal education compared to those women husbands who had a
secondary level of education and above [AOR=3.4; 95%CI: 1.2-9.9].
(table 4).
Table 4: Multilevel logistic regression model of individual and community-level factors associated with grand multiparous women in Sidama national region state, Ethiopia, using data from the 2016 EDHS.

Individual- and community-level variables	Model 1	Model 2	Model 3	Model 4
	Empty (Null) model	Individual-level variables AOR (95% CI)	Community-level variables AOR (95% CI)	Individual- and community-variables AOR (95% CI)
Educational level				
Have formal education				
Lack of formal education				
Sex of household head				
Female	Ref.			
Male		0.3 (0.1 - 0.8) **		
Wealth index combined				
Low		0.5 (0.24 – 0.99) *		0.5 (0.2 -1)
Middle		1.4 (0.66 – 2.96)		1.4 (0.7-3.0)
High		Ref.		Ref.
Age of women at first birth				
Greater than or equal to 18 years				
Less than 18 years				
Contraceptive methods used				
Not using any methods		3.8 (1.2 -12.2) *		3.8 (1.2- 12.2) *
Short-acting family planning		2.2 (1.1 – 4.5) *		2.2(1.1 -4.4) *
Long-acting family planning		Ref.		Ref.
Husband occupation status				
Professionals		2.2(1.0 -4.7)		2.2(1.03 -4.8) *
Merchant		0.5(0.3 – 0.9) *		0.5(0.3-0.9) *
Agriculture/Farmer		Ref.		Ref.
Husband desire more child				
Husband wants fewer				
Husband wants more				
Both want more				
Category	Yes	No	Reference	
---------------------------------------	----------------------	---------------------	------------	
Polygamy/ number of other wives				
No	4.2 (1.9 - 9.3) ***	Ref.		
Yes				
Age at first sex				
Less than or equal to 18 years	Ref. 3.8(1.9 - 7.9) ***			
Greater than 18 years				
Unmet need for contraceptive				
Unmet	0.2 (0.07 - 0.5) ***	Ref.		
Met	1.1 (0.3 - 3.3)			
In fecund/Menopausal				
Preceding birth interval (months)				
Greater than 36 months	Ref. 2.3(1.4 - 3.5) ***			
Less than or equal to 36 months				
Husband education level				
Lack of formal education	3.4 (1.2 - 10.0) *	Ref.		
Primary education	5.9(2.2 - 16.2) ***			
Secondary education and above				
Religion				
Orthodox	Ref. 4.9(1.8 - 13.4) **			
Protestant	2.6 (0.8 - 8.4)			
Muslim				
Type of place of residence				
Urban	Ref. 6.6(1.29 -33.8) *			
Rural				
Random effect				
Community-level variance (SE)	0.83*** (0.4)	0.55*** (0.3)	0.75*** (0.4)	0.56 *** (0.3)
ICC (%)	20%	14.4%	18.6%	14.5%
MOR	2.4	2.0	2.3	2.0
PCV	Reference	33.7%	9.6%	33.7%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Model fit statistics	Log-likelihood	AIC	BIC
Empty (null) model	-523	1050	1059
Model 2	-281	602	692
Model 3	-513	1036	1059
Model 4	-281	604	698

Note: *significant at *P < 0.05; **P < 0.01; *** P < 0.001; AOR = Adjusted Odds Ratio, CI = Confidence Interval, AIC = Akaike information criterion, BIC = Bayesian information criterion, Model 1- Empty (null) model; Model 2- Only individual-level explanatory variables included in the model; Model 3- Only community-level explanatory variables included in the model; Model 4- Combined model; PCV = Proportional Change in Variance, MOR = Median Odds Ratio and Ref. = reference.
Discussion

Seven out of ten reproductive-age women had experienced grand multi-parity. Age at marriage, literacy status of women, age of women at first birth, modern contraceptive method utilization, polygamy, husband education level, preceding birth interval, and unmet need for contraceptives were significantly associated with women having high parity.

During the analysis, the ICC value was found to be 14.5% in the combined Model. This indicates that 14.5% of the chances of grand multiparous women were explained through cluster differences. The ICC in the null model greater than zero indicates that it guided the researcher to use multilevel modeling than the standard single-level regression model [37, 39, 40]. Similarly, the study indicates that the proportion change in variance of the final model was accountable for about 33.7% of the log odds of high parity in the communities. In addition to that, the results of the median odds ratio, a measure of unexplained cluster heterogeneity, are 2.48, 3.51, 2.43, and 3.34 in models 1, 2, 3, and 4, respectively. Hence, the results of the median odds ratio showed that there is unexplained variation between the clusters of the community.

In the present study, the magnitude of grand multiparity was 70.8%. This is similar to a study conducted community-based in Gedeo Zone 69.1% and Tigray region, Ethiopia 51% [25, 29]. This figure was quite higher than the prevalence reported by other investigators ranging from 9.4% to 27% in Gambian, Cameroon, Nigeria, Tanzania, and India [2, 33, 34, 41, 42]. The fact that later studies were all carried out in health facilities and urban catchment areas could explain these low prevalence rates. The educational backgrounds, socioeconomic, sociodemographic, and cultural settings of these studies are different from the current findings [31]. Similarly, there are many contributing factors to high fertility, among which are early marriage, the perceived ideal number of children, and mass media exposure by women [14, 25]. While the prevalence of grand
multiparity in developed countries has significantly declined ranging from 3 to 4 % [43], it has increased in the current study and this could be explained by lack of formal education (75.8%) and a high number of early marriages. As individual health implications, the women are given more subsequent births while they get more maternal and child health risks and many socioeconomic challenges in their lifetime in low resource setting areas [24, 35, 44, 45].

The trends of grand multiparity over study periods showed no significant change. This finding was consistent with a previous study done in rural Cameroon[31]. However, in Tanzania, the previous study's findings showed a significant change in the trend of grand multiparity [26]. This decline could have been explained by the availability of higher education to women and increased community awareness of the health risks of giving birth at an advanced maternal age and the benefits of family planning and empowerment of women in reproductive health decision-making [26].

This study revealed that grand multiparity was higher among women who had their first births before 18 years old compared to those women who started after 18 years. We realized that in the study community where women start birth before 18 years, the period of fertility is longer, and they have many ever-born children. As a result of these, women have high parity. Similarly, the women not using modern family planning appropriately and timely for spacing and limiting the number of births have high fertility. This is similar to the previous study done in Gedeo Zone, Ethiopia [25], Nigeria[46], Nepal [14], and Pakistan [28]. Nevertheless, the problem of early age at first delivery is significantly more alarming in the present study area than in the previous findings.

The odds of grand multiparity compared to that of multiparity were higher among women who were illiterate compared with literate women. This finding is in line with previous studies.
conducted in Nigeria[46], Kenya[27], Nepal[14], and the Tigray region in Ethiopia[29]. In this study, almost all the women were rural dwellers (99%). Women who are rural inhabitants are less likely to spend much time in school and would rather get married early. A possible explanation is that women residing in the urban area stay longer in school, thereby postponing the time for marital engagement[25]. On the other hand, researchers found that education is an important factor for high parity, with several causal relationships from a theoretical perspective[47]. To sum up, education generally results in an improvement in the status of individuals in society in the form of a better understanding of health issues, and employment status [48]. The low social class found among the grand multiparous women is usually associated with illiteracy and low socioeconomic status, which may be an encouraging factor to produce more children[11]

The grand multiparity was higher among women with short birth intervals (less than or equal to 36 months). This finding is also consistent with a study conducted in Wonago District, Gedeo Zone, Ethiopia [25]. The possible explanation might be due to women not utilizing modern contraceptives that lead the women to get more children in a short period.

In our study, it was found that grand multiparity is significantly associated with polygamous marriage compared with monogamous marriage. This finding is similar to other studies conducted in Nigeria[1]. The variation could be due to competition amongst wives to have many children and to build large family sizes.

The grand multiparity among women not using any contraceptive and using short-acting contraceptive methods was higher compared to those women using long-acting contraceptives. Similar findings were reported in Nigeria [46], Cambodia[49], Pakistani [28], and Wonago District, Gedeo Zone[25]. Most factors in this study are directly or indirectly associated with the low utilization of contraceptives, which indicated that it is the root cause of high fertility in the
study setting. In addition, in one study, the women were not using contraceptives because their husbands did not allow them to make contraceptive decisions [49].

Strengths and Limitations of this study

The strength of this study included analyzing the most recent nationally representative data sets aided in providing a broad comparative picture of grand multiparity in the study setting, as well as significant predictors of children ever born among ever-married women. In addition, to avoid misleading inferences and thus valid interpretation of the results, clustering effects were considered using a mixed modeling approach. Despite the above strengths, the study may have had recall bias because participants were asked about events that occurred 5 years or more before the survey. Also, we used secondary datasets, we were limited in our ability to select exposure variables for statistical analysis.

Conclusions

This study revealed that seven of ten women had experienced grand multiparity and the magnitude did not show significant change over the last sixteen years. Early marriage and early age of first birth, low literacy level, low family planning utilization, polygamy marital status, short birth interval, and unmet need for family planning were determinants of grand multiparity. We recommended to the stakeholders design new strategies to address the root cause of high fertility factors in communities. The Ministry of health should focus on health education and create awareness about maternal health risks related to grand multiparity in the community. Furthermore, special attention should be given to improving the utilization of contraceptives in the community to reduce the prevalence of grand multiparity.

Acknowledgments
We would like to thank the MEASURE DHS Program and ICF International for providing us the permission to use the EDHS data. We would also like to acknowledge the African Union for supporting this study.

Contributions

TTD, MAK, and YD conceptualized the idea and designed the study; TTD and YD carried out the execution, data acquisition, analysis, interpretation, and wrote the draft manuscript; MAK and YD provided intellectual comments and contributed to revising the manuscript. All authors contributed to the revision of the manuscript's content and approved the final version. TTD accepts responsibility for the study's conduct, has access to the data, and has control over the decision to publish and the overall content of the manuscript.

Funding

There are no funders to report for this submission.

Competing Interests

No, there are no competing interests for any author.

Ethical approval

This study does not involve human participants. The data were retrieved from the DHS website (http://www.measuredhs.com) after permission was obtained. The accessed data were used for this registered research only. The data were preserved as confidential, and no effort was made to detect any household or individual respondents.

Data availability statement

The data retrieved for this research are available upon request from the demographic and health survey (DHS) program's official database website (http://dhsprogram.com). All relevant data are in the paper and its Supporting information files.
Abbreviations

AIC, Akaike’s Information Criterion; AOR, Adjusted Odd Ratio; BIC, Bayesian Information Criterion; CI, Confidence Interval; DHS, Demographic and Health Survey; EDHS, Ethiopia Demographic Health Survey; LR, Likelihood Ratio; MOR, Median Odds Ratio; PCV, Proportional Change Variance; SD, Standard Deviation; VIF, Variance Inflation Factors and WHO, World Health Organization.

ORCID iDs

Tamirat Dasa https://orcid.org/0000-0001-8499-5057

Yadeta Bacha https://orcid.org/0000-0002-0303-1844

References

1. Njoku, C.O., S.E. Abeshi, and C.I. Emechebe, Grand Multiparity: obstetric outcome in comparison with multiparous women in a developing country. Open Journal of Obstetrics and Gynecology, 2017. 7(07): p. 707.
2. Ajong, A.B., et al., Grand multiparity in rural Cameroon: Prevalence and adverse maternal and fetal delivery outcomes. BMC Pregnancy and Childbirth, 2019. 19(1): p. 1-7.
3. Aliyu, M.H., et al., High parity and adverse birth outcomes: exploring the maze. Birth, 2005. 32(1): p. 45-59.
4. Shaista, T.A., S. Shazia, and B.S.a.R. Fouzia, B., Obstetrical Complication in Grand Multi Parity. Medical Channel 2009. 12: p. 53-58.
5. Bugg, G., G. Atwal, and M. Maresh, Grandmultiparae in a modern setting. BJOG: An International Journal of Obstetrics & Gynaecology, 2002. 109(3): p. 249-253.
6. Ndiaye, K., et al., High-Risk Advanced Maternal Age and High Parity Pregnancy: Tackling a Neglected Need Through Formative Research and Action. Glob Health Sci Pract, 2018. 6(2): p. 370-80.
7. Central Statistical Agency, The work of a nation. The World factbook. 2019.
8. Statista, Sub-Saharan Africa: Fertility rate from 2008 to 2018. 2020.
9. Nations, U., World Fertility and Family Planning. 2020.
10. Central Statistical Agency (CSA) [Ethiopia] and ICF, Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF., in The DHS Program ICF. 2016: Rockville, Maryland, USA.
11. Emechebe, C., et al., The social class and reasons for grand multiparity in Calabar, Nigeria. Tropical Journal of Obstetrics and Gynaecology, 2016. 33(3): p. 327.
12. Ezra, Y., et al., The outcome of grand-multiparous pregnancies of Arabic and Jewish populations in peripheral and central areas of Israel. Acta obstetricia et gynecologica Scandinavica, 2001. 80(1): p. 30-33.

13. Oshodi, K.O. and K. Salami, PREVALENCE AND RISKS/CHALLENGES OF GRAND MULTIPARITY TO WOMEN’S HEALTH IN OYO STATE NIGERIA. AFRICAN JOURNAL FOR THE PSYCHOLOGICAL STUDIES OF SOCIAL ISSUES, 2019. 22(2): p. 13-35.

14. Adhikari, R., Demographic, socio-economic, and cultural factors affecting fertility differentials in Nepal. BMC pregnancy and childbirth, 2010. 10(1): p. 19.

15. Maduabuchukwu, I.E. and I.I. Ayuba, Grandmultiparity: The Reasons Women Give for High Parity in South-South Nigeria. Clinical Medicine Research, 2017. 6(3): p. 92.

16. Eugene, M.I. and O.A. Abedinego, Grandmultiparity: Is it really an independent predictor of adverse pregnancy outcomes? Saudi Journal for Health Sciences, 2017. 6(2): p. 77.

17. Central Statistical Agency CSA/Ethiopia, Census of Population and Housing. Csa.gov.et. 2017-02-22. Retrieved 2019-11-20. 1984.

18. Wikipedia, Southern Nations, Nationalities, and Peoples' Region. 2020.

19. Federal Democratic Republic of Ethiopia Central Statistical Agency, Population Projection of Ethiopia for All Regions At Wereda Level from 2014 – 2017. Retrieved 4 June 2018. 2018.

20. Central Statistical Agency, The 2007 Population and Housing Census of Ethiopia: Statistical Report for Southern Nations, Nationalities and Peoples’ Region; Part I: Population Size and Characteristics. 2010

21. Central Statistical Agency [Ethiopia] and ICF International, Ethiopia Demographic and Health Survey 2011. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ICF International. 2012.

22. Central Statistical Agency/Ethiopia and ORC Macro, Ethiopia Demographic and Health Survey 2005. 2006, Central Statistical Agency/Ethiopia and ORC Macro: Addis Ababa, Ethiopia.

23. Central Statistical Authority/Ethiopia and ORC Macro, Ethiopia Demographic and Health Survey 2000. 2001, Central Statistical Authority/Ethiopia and ORC Macro: Addis Ababa, Ethiopia.

24. Al-Shaikh, G.K., et al., Grand multiparity and the possible risk of adverse maternal and neonatal outcomes: a dilemma to be deciphered. BMC Pregnancy Childbirth, 2017. 17(1): p. 310.

25. Reda, M.G., G.T. Bune, and M.F. Shaka, Epidemiology of High Fertility Status among Women of Reproductive Age in Wonago District, Gedeo Zone, Southern Ethiopia: A Community-Based Cross-Sectional Study. Int J Reprod Med, 2020. 2020.

26. Muniro, Z., et al., Grand multiparity as a predictor of adverse pregnancy outcome among women who delivered at a tertiary hospital in Northern Tanzania. BMC Pregnancy Childbirth, 2019. 19.

27. Mungai, S.W., Explaining high fertility in the north eastern region of Kenya. 2015, University of Nairobi.

28. Kamal, A. and M.K. Pervaiz, Factors Affecting the Family Size in Pakistan: Clog-log Regression Model Analysis. Journal of Statistics, 2011. 18(1).

29. Atsbaha, G., et al., Determinants of high fertility among ever married women in Enderta district, Tigray Region, Northern Ethiopia. J Health Med Informat, 2016. 7(5): p. 243-248.

30. Atake, E.H. and P. Gnakou Ali, Women’s empowerment and fertility preferences in high fertility countries in Sub-Saharan Africa. BMC Womens Health, 2019. 19.

31. Ajong, A.B., et al., Grand multiparity in rural Cameroon: prevalence and adverse maternal and fetal delivery outcomes. BMC Pregnancy Childbirth, 2019. 19.

32. Sultan, S. and J. Ojha, Grand multi parity still and obstetric challenge-a clinical study of grand multi Para in a tertiary care center. J Evol Med Dent Sci, 2013. 12(39): p. 7423-7430.

33. Omo-Ohonsi, A. and A. Ashimi, Grand multiparity: obstetric performance in Aminu Kano teaching hospital, Kano, Nigeria. Nigerian journal of clinical practice, 2011. 14(1).
481 34. Idoko, P., G. Nkeng, and M. Anyawu, Reasons for current pregnancy amongst grand multiparous Gambian women - a cross sectional survey. BMC Pregnancy and Childbirth, 2016. 16(1).
482 35. Agrawal, S., A. Agarwal, and V. Das, Impact of grandmultiparity on obstetric outcome in low resource setting. Journal of Obstetrics and Gynaecology Research, 2011. 37(8): p. 1015-1019.
483 36. Dean, A., OpenEpi: open source epidemiologic statistics for public health, version 2.3. 1. http://www.openepi.com, 2010.
484 37. Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community Health, 2006. 60(4): p. 290-297.
485 38. Midi, H., S.K. Sarkar, and S. Rana, Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 2010. 13(3): p. 253-267.
486 39. Sommet, N. and D. Morselli, Keep calm and learn multilevel logistic modeling: A simplified three-step procedure using stata, R, Mplus, and SPSS. International Review of Social Psychology, 2017. 30: p. 203-218.
487 40. Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. Journal of Epidemiology & Community Health, 2005. 59(6): p. 443-449.
488 41. Roy, I., A. Burande, and R. Choubey, Obstetric outcome in grand multipara—a Meghalaya experience. Journal of OBGYN, 2019. 5(2): p. 103-6.
489 42. Muniro, Z., et al., Grand multiparity as a predictor of adverse pregnancy outcome among women who delivered at a tertiary hospital in Northern Tanzania. BMC Pregnancy and Childbirth, 2019. 19(1): p. 1-8.
490 43. Mgaya, A.H., et al., Grand multiparity: is it still a risk in pregnancy? BMC pregnancy and childbirth, 2013. 13(1): p. 241.
491 44. Ahmed, N., S. Akhter, and T. Das, Grand multipara with multiple encounters in a tertiary level hospital of Bangladesh. International Journal of Gynecology and Obstetrics, 2015. 131: p. E445.
492 45. Chavoshi, M.H., et al., THE HEALTH OF OLDER WOMEN AFTER HIGH PARITY IN TAFT, IRAN. Asian Popul Stud, 2011. 7(3): p. 263-74.
493 46. Alaba, O.O., O.E. Olubusoye, and J. Olaomi, Spatial patterns and determinants of fertility levels among women of childbearing age in Nigeria. South African Family Practice, 2017. 59(4): p. 143-147.
494 47. McCrary, J. and H.J.A.e.r. Royer, The effect of female education on fertility and infant health: evidence from school entry policies using exact date of birth. 2011. 101(1): p. 158-95.
495 48. Cochrane, S.H., Fertility and education: World Bank staff occasional papers. 1979.
496 49. Samandari, G., I.S. Speizer, and K. O’Connell, The role of social support and parity on contraceptive use in Cambodia. International perspectives on sexual and reproductive health, 2010: p. 122-131.
497 50.
498 51.
499 52.
500 53.
501 54.
502 55.
503 56.
504 57.
505 58.
506 59.
507 60.
508 61.
509 62.
510 63.
511 64.
512 65.
513 66.
514 67.
515 68.
516 69.
517 70.
518 71.
519 72.
520 73.
521 74.

Fig 1: The magnitude of grand multiparity in Sidama region, data from EDHS 2016.

Fig 2: Trend of grand multiparous women in Sidama national regional state, Ethiopia, DHS data from years 2,000 to 2016.
Fig 1:

![Pie chart showing proportions]

- Proportion of multiparity: 70.82%
- Proportion of grand multiparity: 29.18%

Legend:
- Blue: Multiparity
- Orange: Grand multiparity
Fig 2:

![Graph showing the percentage of grand multiparous women over different years.](image-url)

Year of survey conducted

- **EDHS 2000**
- **EDHS 2005**
- **EDHS 2011**
- **EDHS 2016**

Percentage of grand multiparous women

- 70.83
- 68.58
- 74.23
- 70.82
Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

Reporting Item	Page Number		
Title and abstract			
Title	#1a	Indicate the study’s design with a commonly used term in the title or the abstract	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Abstract #1b Provide in the abstract an informative and balanced summary of what was done and what was found

Introduction

Background / rationale #2 Explain the scientific background and rationale for the investigation being reported

Objectives #3 State specific objectives, including any prespecified hypotheses

Methods

Study design #4 Present key elements of study design early in the paper

Setting #5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection 4&5

Eligibility criteria #6a Give the eligibility criteria, and the sources and methods of selection of participants. 5

#7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 5&6

Data sources / measurement #8 For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for exposed and unexposed groups if applicable. 5
Bias #9 Describe any efforts to address potential sources of bias NA

Study size #10 Explain how the study size was arrived at 5

Quantitative variables #11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why 6

Statistical methods #12a Describe all statistical methods, including those used to control for confounding 7

Statistical methods #12b Describe any methods used to examine subgroups and interactions 7

Statistical methods #12c Explain how missing data were addressed NA

Statistical methods #12d If applicable, describe analytical methods taking account of sampling strategy 7

Statistical methods #12e Describe any sensitivity analyses NA

Results

Participants #13a Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable. 8

Participants #13b Give reasons for non-participation at each stage NA
Participants #13c Consider use of a flow diagram NA

Descriptive data #14a Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable. 9

Descriptive data #14b Indicate number of participants with missing data for each variable of interest

Outcome data #15 Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable. 11

Main results #16a Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included 15

Main results #16b Report category boundaries when continuous variables were categorized 12

Main results #16c If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 15

Other analyses #17 Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses NA

Discussion

Key results #18 Summarise key results with reference to study objectives 18
Limitations #19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. 2

Interpretation #20 Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. 18,19 & 20

Generalisability #21 Discuss the generalisability (external validity) of the study results. 21

Other Information

Funding #22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. 22

None The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist can be completed online using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai