Development and research of hydraulic disk pump

V Cheremushkin1 and V Lomakin1,2

1Bauman Moscow State Technical University, 5 Second Baumanskaya Street, Moscow, 105005, Russian Federation

2E-mail: lomakin@bmstu.ru

Abstract. The article is devoted to the development of the disk pump driven by a hydraulic motor at Bauman Moscow State Technical University Department of Hydraulics. The relevance of the dynamic pumps of this type has been described, and the necessity to investigate the mechanism of disk impellers operation using the tools of numerical hydrodynamic modeling, has been shown. The article presents the mathematical model used in computer simulation of the flow and the description of the testing bench. A comparison of numerical and full-scale experiments to confirm the adequacy of the mathematical model is introduced. A research showing the influence of some basic parameters of disk impellers on their characteristics (head, efficiency) has been performed. The figures of the scalar physical quantities distribution in the flow part of the pump and graphs of the pressure and efficiency dependences on the studied parameters are presented for a visual illustration of the results.

1. Introduction

The dynamic pumps for various purposes: oil, water, chemical, food, slurry systems and other are widely used nowadays. It should be noted that most of these pumps are centrifugal. Their widespread use is caused by the relatively high efficiency. However, the design features of the impeller, as well as the mechanism of the working fluid flow in the inter-blade channel, limit their ability to pump viscous and highly contaminated liquids.

It is advisable to use disk impellers, the efficiency of which does not decrease with the viscosity increase [1] (figure 1), for viscous polluted liquids. Thus, in some enterprises, disc pumps have replaced successfully centrifugal slurry, screw pumps for pumping thickened sediment from the sumps of a water purification system. Some works are devoted to the use of disk pumps for blood pumping, including ones with imitation of the real heart pulsations. Such a field of application is justified by the ability of these pumps for gentle pumping, without introducing significant perturbations into the flow structure [2, 3, 4]. This property provided a niche for disc pumps in the food industry.

It should be noted, however, that there are few works devoted to the development of the theory of disk pumps at present days. Compared to the works that have been published quite a long time ago [5, 6, 7, 8], practically no changes were made to this theory. There are also very few works related to the numerical hydrodynamic simulation of disk pumps, which in its turn can significantly expand the understanding of the capabilities of these hydraulic machines.

This work is related to the research being conducted at the Department of Hydraulics of the Moscow Bauman State Technical University. Two variants of the design of a hydraulic disk drive
pump, shown in figure 2, were developed, manufactured and tested on the base of the department. In order to check the compliance of the flow part with the declared characteristics, a numerical hydrodynamic simulation of fluid flow in the pump was performed. According to the tests results, experimental characteristics of pumping units were compiled and compared with the results of computer analysis.

![Figure 1. The disk impeller with ribs.](image1)

![Figure 2. Variants of the disk hydraulic drive pump installed on the testing bench.](image2)

Also, numerical analysis has been carried out aimed at the research of the general influence of the disk impellers geometrical parameters on their characteristics.

2. Mathematical model and methods.
The method of numerical hydrodynamic modeling used in the work is based on solving discrete analogs of the equations of the continuous viscous medium dynamics. In the case of an incompressible fluid model ($p = \text{const}$), it can be found in [9, 10, 11]:

- Mass conservation equation (continuity equation)
\(\frac{\partial u_j}{\partial x_j} = 0, \)

where

\(\bar{u}_j \) – the averaged value of the fluid velocity in the projection on the \(j \)-th axis \((j = 1, 2, 3)\).

The equation of the momentum change (Reynolds averaging) in a nonstationary statement

\[
\rho \left[\frac{\partial U_j}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right] = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_i} \left[T_{ij}^{(v)} - \langle p u_i u_j \rangle \right],
\]

where

\(U, P \) – averaged speed and pressure;
\(T_{ij}^{(v)} \) – viscous stress tensor for incompressible fluid;
\(s_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] \) – instant strain rate tensor;
\(\langle p u_i u_j \rangle \) – Reynolds stresses;
\(\rho \) – fluid density;
\(\mu \) – fluid viscosity coefficient.

The Reynolds stresses were simulate using the \(k-\omega \) SST turbulence model, which was approved during dynamic pumps analysis [12, 13, 14, 15].

For the numerical solution by the finite element method in such software complexes, a mesh is used. In this case, the cells are polyhedral in the flow core and prismatic - near the walls (figure 3). The thickness of the prismatic layers which is necessary to ensure the value of \(Y^+ < 100 \), which is recommended for high-Reynolds models like \(k-\omega \) SST.

Tests of pumping units were carried out at the testing bench at the Hydraulics department, the scheme of which is shown in figure 4.
3. Results and analysis
The comparison of the results of flow part numerical simulation of the developed pumps and the results of bench tests are shown in figure 5. A fairly accurate coincidence of the characteristics of the head and efficiency shows the adequacy of the applied mathematical model with respect to disk pumps.
Figure 5. The graphs of the dependences of the head and the efficiency of the pump performance obtained experimentally (black) and by simulation (green).

After confirming the mathematical model performance, a simulation of many variants of flow parts with various geometrical characteristics was performed. As a result, it was found that the ribs located on its disks have a significant influence on the characteristics of the disk impellers. Figure 6 shows a comparison of these characteristics for impellers of 10 and 15 mm width with different configuration of the ribs.

Figure 6. The variants of the disk impeller ribs with a total height as a percentage of the distance between the disks: a) 50%; b) 100%.
Figure 7. Dependencies of head and efficiency at distances between the disks: a) 15mm; b) 10mm. Black color — the height of the edges is 50%, red and purple colors — 100% of the distance between the discs.

In each figure, each impeller configuration corresponds to 5 graphs for five different viscosities: 1, 1000, 3000, 5000 and 10,000 cSt (from top to bottom). The presented graphs show the working capacity of disk impellers with ribs, including the full width of the impeller, at high viscosities.

4. Conclusions

As a result of the conducted research, the applicability of the numerical simulation method with respect to disk pumps was shown. According to the results of the study of disk impellers with different geometrical parameters at several viscosities, it can be concluded that the addition of radial ribs to the disks leads to an increase in pump’s head and efficiency. At low viscosities, this increase is up to 20 m and 30%, respectively, and the blades retain their effectiveness up to 10,000 cSt. The obtained results require experimental studies, as well as further development of the numerical modelling.

References

[1] ZehevTadmor, Pradip S. Mehta, Lefteris N. Valsamis and Jan-Chin Yang. Corotating Disk Pumps for viscous LiquidsFarrel Company, Division of USM, Ansonia, Connecticut, 06401.
[2] Chernyavskii A M, Medvedev A E et al. 2017 Flow – rate – pressure characteristics of a disk blood pump Journal of Engineering Physics and Thermodynamics90 (6) November
[3] Miller G E and Sidhu Amrita 1992 Multiple disk centrifugal pump as an artificial ventricle Proceedings of Engineering Mechanics pp 976–9
[4] Miller G E, Etter B D and Dorsi J M 1990 A multiple Disk Centrifugal Pump as a Blood Flow Device IEEE Transactions on Biomedical Engineering37 (2) pp 157–163 DOI: 10.1109/10.46255
[5] Naumov I E, Prikhodko Yu M, Chekhov V P and Fomichev V P 2012 On dimensionless parameters for generalization pressure head and flow rate characteristics of centrifugal disk pumps Thermophysics and Aeromechanics19 (1)
[6] Misuyra V I, Osvyaninikov B V and Prisnyakov V F 1986 Diskovyenaxosy [Disk pumps] (Moscow, Mashinostroenie Publ.) 112 p
[7] Crawford M E and Rice W 1974 Calculated Design Data For The Multiple-Disk Pump Using Incompressible Fluid J Eng Power Trans ASME96Ser A (3) pp 274–82
[8] Ma X, Zhang R and Xiao C 2006 Application of disk friction pump in principal axis seal of hydroelectric generator ShuiliFadianXuebaoJournal of Hydroelectric Engineering25 (1) 3p 124–126+113
[9] Lomakin V, CherepeshkinV and Chaburko P 2018 Investigation of vortex and hysteresis effects in the inlet device of a centrifugal pump 2018 Global Fluid Power Society PhD Symposium, GFPS, no 8472374 DOI: 10.1109/GFPS.2018.8472374
[10] Lomakin V O, Chaburko P S and Kuleshova M S 2017 Multi-criteria Optimization of the Flow of a Centrifugal Pump on Energy and Vibroacoustic Characteristics Procedia Engineering176 pp 476–82 DOI: 10.1016/j.proeng.2017.02.347
[11] Lomakin V O 2015 Investigation of two-phase flow in axial-centrifugal impeller by hydrodynamic modeling methods Procedings of 2015 International Conference on Fluid Power and Mechatronics, FPM 2015 no 7337302 pp 1204–6
Gouskov A M, Sorokin F D and Banin E P 2016 Simulation of an Inlet Structure of an Implantable Axial Blood Pump Biomedical Engineering50 pp 15–19
DOI: 10.1007/s10527-016-9578-2

Gouskov A M, Lomakin V O, Banin E P and Kuleshova M S 2017 Minimization of Hemolysis and Improvement of the Hydrodynamic Efficiency of a Circulatory Support Pump by Optimizing the Pump Flow path Biomedical Engineering51 pp 229–33
DOI: 10.1007/s10527-017-9720-9

Baturin O, Popov G, Kolmakova D, Zubanov V, Novikova J and Korneeva A 2018 Optimization of Powerful Two-stage Screw Centrifugal Pump 2nd International Conference on Mechanical, System and Control Engineering, ICMSC 2018 (Moscow) 220
DOI: 10.1051/matecconf/201822003009

Tesch K, and Kaczorowska-Ditrich K 2018 Discrete-continuous optimization of an axial flow blood pump 23rd Fluid Mechanics Conference, FMC 2018 (Zawiercie, Poland) 1101
DOI: 10.1088/1742-6596/1101/1/012044