A note on factorisation of division polynomials

D. Sadornil

Departamento de Matemáticas, U. Salamanca
Pza. de la Merced 1-4, 37008 Salamanca, Spain.
email: sadornil@usal.es

Abstract

In [2], Verdure gives the factorisation patterns of division polynomials of elliptic curves defined over a finite field. However, the result given there contains a mistake. In this paper, we correct it.

1 Introduction

Let $p > 3$ be a prime number and q a power of p. Let E be an elliptic curve over the finite field \mathbb{F}_q. Thus, we can assume that E has equation $E : y^2 = x^3 + ax + b$.

The set of rational points on E, denoted by $E(\mathbb{F}_q)$, has group structure. If n is an integer, we denote by $E(\mathbb{F}_q)[n]$ (or $E[n]$ if the field is the algebraic closure $\overline{\mathbb{F}_q}$ of \mathbb{F}_q) the rational points of order n. If n is relatively prime with p, $E[n] \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Let $\psi_n(x)$ be the division polynomials of E (see [1]). As it is well known, the roots of the polynomial ψ_n are the abscissas of the n-torsion points, that is

$$P = (x, y) \in E[n] \iff \psi_n(x) = 0.$$

Hence, the factorisation patterns of these polynomial give information about the extension where the n-torsion points are defined.

The Frobenius endomorphism,

$$\varphi : E(\overline{\mathbb{F}_q}) \to E(\overline{\mathbb{F}_q}) \quad (x, y) \to (x^q, y^q)$$

characterizes the rationality of a point of the elliptic curve as follows

$$\forall P \in E(\overline{\mathbb{F}_q}), P \in E(\mathbb{F}_q^n) \iff \varphi^n(P) = P.$$

In the paper Factorisation of division polynomials (Proc. Japan Academy, Ser A. 80, no. 5, pp. 79-82), Verdure gives the degree and the number of factors of the division polynomial of an elliptic curve. However, the result present there contains a mistake. We correct it here.

2 Patterns of l-th division polynomials

Let l be an odd prime different from the characteristic of \mathbb{F}_q. We present here the factorisation patterns of division polynomial only when the l-torsion points generate different extension fields (the wrong result in [2]). If all l-torsion points are defined over the same extension field, the factorisation can be found in [2].
First of all, we fix the notation. Let f be a one variable polynomial over a field K of degree n. We say that the factorisation pattern of f is

$$((\alpha_1, n_1), \ldots, (\alpha_d, n_d))$$

if f factorizes over K as

$$f = k \prod_{i=1}^d \prod_{j=1}^{n_i} P_{i,j}$$

with $P_{i,j}$ an irreducible polynomial of degree α_i.

The next result shows how the Frobenius endomorphism acts on $E[l]$ when the l-torsion points are not all defined over the same extension of F_q.

Lemma 1 ([2]) Let E be an elliptic curve defined over F_q. Let α be the degree of the minimal extension over which an l-torsion point is defined, l an odd prime not equal to the characteristic of F_q. Assume that $E[l] \not\subset E(F_{q^\alpha})$. Then there exist $\rho \in F_l^*$ of order α and a basis P, Q of $E[l]$ over F_l in which the n-th power of the Frobenius endomorphism can be expressed, for all n, as:

$$\left(\begin{array}{cc} \rho^n & 0 \\ 0 & (\frac{2}{\rho})^n \end{array} \right) \left(\begin{array}{cc} \rho^n & n\rho^{n-1} \\ 0 & \rho^n \end{array} \right)$$

if $\rho^2 \neq q$ or $\rho^2 = q$ respectively. The number ρ is uniquely defined by the above properties.

The previous result helps us to determine the factorisation pattern of division polynomial $\psi_l(x)$ when its factors are not all of the same degree. The next proposition solves the mistake, in the function $i(x, y)$, made in [2].

Proposition 2 Let E be an elliptic curve defined over F_q. Let α be the degree of the minimal extension over which E has a non-zero l-torsion point. Assume that $E[l] \not\subset E(F_{q^\alpha})$. Let $\rho \in F_l^*$ be as defined in Lemma 1. Let β be the order of q/ρ in F_l^*. Then the pattern of the division polynomial ψ_l is:

$$((h(\alpha), \frac{l-1}{2h(\alpha)}), (h(\beta), \frac{l-1}{2h(\beta)}), (i(\alpha, \beta), \frac{(l-1)^2}{2h(\alpha, \beta)}))$$

if $q \neq \rho^2$,

$$((h(\alpha), \frac{l-1}{2h(\alpha)}), (h(\alpha)l, \frac{l-1}{2h(\alpha)}))$$

if $q = \rho^2$,

with

$$h(x) = \begin{cases} x, & x \text{ odd,} \\ \frac{x}{2}, & x \text{ even,} \end{cases}$$

and

$$i(x, y) = \begin{cases} \frac{lcm(x,y)}{2}, & x, y \text{ even and } v_2(x) = v_2(y), \\ lcm(x, y), & \text{otherwise.} \end{cases}$$

2
Remmark 3 Verdure gives the function \(i(x, y) = \text{lcm}(x, y)/2 \) when \(x \) and \(y \) are both even.

Proof.
We follow the proof given in [2] except for the wrong cases.

Let \(I \) be an irreducible factor \(\psi_1(x) \) of degree \(d \), and \(P \) a point of \(l \)-torsion corresponding to one of its roots, then \(d \) is the minimum positive integer \(n \) such that \(\varphi^n(P) = \pm P \). Let \((P, Q) \) be a basis of \(E[l] \) as in Lemma [1]. We distinguish the cases \(q \neq \rho^2 \) and \(q = \rho^2 \).

i) Suppose that \(q \neq \rho^2 \). If \(R \) is an \(l \)-torsion point which is a non-zero multiple of \(P \) (or \(Q \)), we have that the minimum \(n \) such that \(\varphi^n(R) = \pm R \) is \(n = h(\alpha) \) (or \(h(\beta) \)). Notice that, \(\varphi^n(R) = -R \) if and only if \(\alpha \) (or \(\beta \)) is even, and hence \(n = \alpha/2 \) (or \(\beta/2 \)).

Finally, let \(R \) be any non-zero \(l \)-torsion point not of the previous form, then \(R = k(P + jQ) \) with \(1 \leq j, k \leq l - 1 \). So, \(\varphi^n(R) = k(\varphi^n(P) + j\varphi^n(Q)) \). The subgroup generated by \(R (\langle R \rangle) \) is rational over \(\mathbb{F}_q \) if and only if \(\varphi^n(R) = \pm R \).

The minimum extension where \(\langle R \rangle \) is defined is \(\mathbb{F}_q^n \), with \(n \) minimum such that \(\varphi^n(R) = \pm R \).

It is easy to prove that \(\varphi^n(R) = R \) if and only if \(\varphi^n(P) = P \) and \(\varphi^n(Q) = Q \). Hence \(\text{lcm}(\alpha, \beta) \mid n \) and \(n = \text{lcm}(\alpha, \beta) \) is the minimum.

On the other hand, \(\varphi^n(R) = -R \) if and only if \(\varphi^n(P) = -P \) and \(\varphi^n(Q) = -Q \). This is only possible when \(\alpha \) and \(\beta \) are both even. Moreover, \(\text{lcm}(\alpha/2, \beta/2) \mid n \) and \(\alpha \) or \(\beta \) not divides \(\text{lcm}(\alpha/2, \beta/2) \) (if, for example, \(\alpha \mid \text{lcm}(\alpha/2, \beta/2) \), then \(\varphi^n(P) = P \)). On the other hand, \(\alpha/2 \) and \(\beta/2 \) have the same parity, otherwise, for example, if \(\alpha/2 \) is even and \(\beta/2 \) odd then \(\text{lcm}(\alpha/2, \beta/2) = \text{lcm}(\alpha/2, \beta) \) and \(\beta \) divides \(\text{lcm}(\alpha/2, \beta/2) \) which is a contradiction. If \(\nu_2(\alpha) = \nu_2(\beta) \), then \(n = \text{lcm}(\alpha/2, \beta/2) \) is the minimum integer such that \(\varphi^n(P) = -P \) and \(\varphi^n(Q) = -Q \). Otherwise, if both valuations are not equal, \(\text{lcm}(\alpha/2, \beta/2) \) is divisible by \(\alpha \) if \(\nu_2(\alpha) < \nu_2(\beta) \) (by \(\beta \) if \(\nu_2(\alpha) > \nu_2(\beta) \)) which contradicts \(\varphi^n(R) = -R \).

Counting the number of points of each type, namely \(l - 1 \), \(l - 1 \) and \((l - 1)^2 \), we have the number of factors of each type.

ii) Suppose that \(q = \rho^2 \). A point which is a non-zero multiple of \(P \) leads to factors of degree \(\alpha \) or \(\alpha/2 \) as before. If \(R \) is not a multiple of \(P \), then in order to have \(\varphi^n(R) = \pm R \), we have that \(\rho^n = \pm 1 \) and \(np^{n-1} = 0 \). Then, depending on the parity of \(\alpha \), we have \(n = \text{lcm}(\alpha, l) \) or \(n = \text{lcm}(\alpha/2, l) \). Finally, since \(\alpha \mid l - 1 \), it is relatively prime to \(l \). Therefore, these values are \(h(\alpha) \).

\[\square \]

Example 4 Consider the elliptic curve \(y^2 = x^3 + 3x + 6 \) over \(\mathbb{F}_{17} \) and take \(l = 5 \). Then \(\alpha = 2 \) and \(\beta = 4 \). According to [2], the pattern of \(\psi_5(x) \) should be \(((1, 2), (2, 1), (2, 4)) \), but in fact it is \(((1, 2), (2, 1), (4, 2)) \).
I am grateful to the referee, for this careful review and his suggestion at the preliminary version.

References

[1] J.H. Silverman. The arithmetic of elliptic curves. GTM 106. Springer-Verlag, New-York. 1986.

[2] H. Verdure. Factorisation of division polynomials. Proc. Japan Academy, Ser A. 80, no. 5, pp. 79-82. 2004.