Antibiotic Sensitivity against *Proteus Mirabilis* Isolated from Pus Samples in Tertiary Care Hospital of Quetta, Pakistan

Saif ur Rahman*,1, Zafar Ahmad1, Saadullah Jan1, Muhammad Shafee3, Ashiq Hussain1,2, Nishat Lateef3 and Munir Ahmad4

1Center for Advanced Studies in Vaccinology & Biotechnology, University of Balochistan, Quetta, Pakistan.
2Department of Pathology, Bolan University of Medical & Health Sciences, Quetta, Pakistan.
3Bolan University of Medical and Health Sciences Quetta, Pakistan.
4Department of Microbiology, University of Balochistan Quetta, Pakistan.

* Corresponding author: saffurehmanassar@gmail.com

INTRODUCTION

Genus *Proteus* is a member of family Enterobactericeae. It is a Gram-negative rod in gram staining. Many species are member of genus *Proteus*, i.e. *Proteus mirabilis*, *Proteus hauseri*, *Proteus penneri* and *Proteus vulgaris*. This genus is usually Saprophytic in nature but the Many Member of this genus are opportunistic pathogens i.e *Proteus mirabilis*, *Proteus penneri* and *Proteus vulgaris*. These are involved in septic diseases, nosocomial and genito urinary tract infections (1). *Proteus* is part of normal flora of Gastrointestinal tract. It is wide spread in nature and is 3rd major causitive agent of nosocomial (hospital acquired infections) (2,3).

Usually it is not a pathogenic organism by it self but play role in secondary bacterial infection and create problems when reaches in urinary tract or other uncommon places. *P. mirabilis* is involved in many urinary tract problem in thousands of patients along with other opportunistic bacteria (4).

It can be identified on blood agar by production of concentric bracelets due to its crawling association and indole production is another distinguishing character of *P. mirabilis* from other proteus species (5).

Proteus mirabilis is Gram-negative, facultative anaerobic bacilli. It is characteristically urease positive and shows swarming motility movement on blood agar. About 90% of all *Proteus* contaminations in humans are due to *Proteus mirabilis*. In many other infection the presence of *Proteus spp*. is notable such as ear, nose and throat (ENT) infection, respiratory tract, skin burns and gastroenteritis problems (1). Number of biochemical tests like indole, citrate, Molitiy, Oxidase, phenylalanine deaminase etc can be used for identification of *Proteus* species (6). A focused study on *Proteus mirabilis* causing nosocomial infection with emphasis on subclinical type is lacking in Quetta. It is therefore important to assess the effect of the *Proteus mirabilis* in case of pus infectious in Quetta and is necessary to estimate loss attributed to the disease. This study aims to isolateat *Proteus spp*. from Pus infection samples and to characterize it biochemically and evaluate antibiotic sensitivity profile.

MATERIAL AND METHODS

Study area and Population

The study was performed at (post graduate laboratory) Center for Advanced Studies in Vaccinology and Biotechnology (CASVAB) Brewery Road during June-Dec, 2016. A verbal consent was taken from 50 indoor patients that were included in this study.
Sample collection and media inoculation

A total of 50 pus samples were collected aseptically from wounds of indoor patients using swabs. All the samples streaked on Brain heart infusion (Oxoid, United Kingdom) agar, Blood agar base (Oxoid, United Kingdom) and CLED agar (Oxoid, United Kingdom).

The specimen were inoculated initially on BHI broth and on next day shifted on Blood agar and Mac-Conkey agar and and Cysteine-Lactose-Electrolyte-Deficient (CLED) agar for identification of proteus characters and incubated at 37°C for 24 hrs. Different characteristics features of colonies were also noted such as, shape, size, color, hemolytic nature and pigmentation pattern.

Biochemical Characterization

Suspected Proteus colonies were triple cloned and gram staining of the purified colonies was performed. Colonies showing swarming growth on blood agar were subjected to different Biochemical test like Indole, Methyl Red, Vogas prausker, Citrate utilization, Triple sugar iron, nitrate reduction, H2S gas production, Oxidase, Catalase and urease production test (7).

Quick Test Strip 12 (QTS 12)

For the identification of few oxidase positive and most oxidase negative i.e Enterobacteicae the test is successful (8). QTS 12 before inoculation is shown in (Fig. 1)

Antibiotic Sensitivity Test (AST)

Different antibiotic discs were used against P. mirabilis isolates following Kirby-Bauer disk diffusion method. The plates were then incubated at 37°C for 24 hrs and the zone of inhibition was measured in accordance with Clinical and Laboratory Standards Institute (CLSI). Commercially available Mueller-Hinton agar (Oxoid, UK) media and antimicrobial discs (Oxoid, UK) were used for the assay. The inoculum was prepared and matched with 0.5 Mc Farland standard as proposed by (7).

RESULTS

Out of 50 clinical samples total of 8 isolates were confirmed as Proteus mirabilis by different biochemical tests as shown in (Table I).

Cultural Characteristics

The isolates were grown on different media. Proteus gave swarming growth on Blood agar (Fig. 3) and non-lactose fermented colorless pale colonies on Mac Conkey agar were produced.

Microscopy and Biochemical Characteristics

Microscopically the isolates were gram negative pink rods when stained with gram stain. All the 8 purified triple cloned isolates of Proteus mirabilis were subjected to different test like Indole, Methyl red, Vogas prausker, Citrate utilization, H2S gas production, Triple sugar iron, nitrate reduction, Oxidase, Catalase, urease reactions and results of all biochemical test are illustrated in (Table II). Biochemical test results of QTS 12 are given in Fig 2 and Table III.

Antibiotic Sensitivity of Proteus Isolates

All isolates (n=8) were tested for sensitivity to four different antibiotics. Proteus mirabilis showed high sensitivity against ampicillin (23 mm), followed by Gentamicin (18 mm), Ciprofloxacin (17 mm), and Ceftazidime (18 mm). Detail is given in Table II.

Table I. Different biochemical tests performed for the isolation and characterization of Proteus mirabilis spp from pus infection in Quetta, Pakistan.

Sr #	Basic Characteristics	Result
1	Catalase	Positive
2	Citrate utilization	Positive
3	Gelatin Hydrolysis	Positive
4	Indole production	Negative
5	Methyl Red	Positive
6	Nitrate Reduction	Positive
7	Oxidase	Negative
8	Urease	Positive
9	Voges Proskauer	Negative
10	Motility	Positive

Table 2. Inhibitory zones against Proteus mirabilis of different antibiotics

Bacterial strain	Zone of inhibition (mm)			
Ampicillin	Gentamycin	Ceftazidime	Ciprofloxacin	
Proteus mirabilis	23	18	18	17

DISCUSSION

Nosocomial infections are serious problems acquired by patients during their visits to health care centers. Many predominant bacterial infection are associated with Staph aureus, E coli and Pseudomonas aerugena, proteus spp, etc. This study shows the occurrence of proteus mirabilis in wound infection. This organism is also present more frequently in urinary tract infection. Genus Proteus as a members of the Enterobacteriaceae occur widely in hman, animals and in the environment and can be readily recovered from sewage, soil
Followed by Gentamycin (18 mm) and Ciprofloxacin (17 mm) agar (Institute (CLSI) protocol) collected according to measurement of zone of inhibition using this organism.

Different biochemical and sugar tests were applied for occurrence in infections that may further complicate the cases. Despite the literature cited no such work has been reported in the Quetta area. As Proteus species are found in multiple environmental habitats including long term care facilities and hospitals and important clinical infections are produced due to this organism. It is important to have the surveillance and estimation program in order to plan strategy to combat such infections.

Different biochemical and sugar tests performed for the characterization of isolates.

Sr #	Test	Reaction status	Colour shown
1	Indole	-	yellow
2	Glucose	+	brown
3	ADH	+	Royal blue
4	Urease	+	Pink
5	Gel liquefaction	+	black
6	ONPG	+	yellow
7	Citrate	+	Blue
8	LDC	+	green
9	ODC	+	Royal blue
10	Hydrogen sulphide	+	black
11	Sucrose	+	yellow
12	Voges proskaur	+	Red ring

Table III. Different Biochemical and sugar tests performed for the characterization of isolates.

![Swarming of Proteus mirabilis on blood agar plate](image)

Fig 3. Swarming of Proteus mirabilis on blood agar plate and vegetables etc (9). It is important to minimize its occurrence in infections that may further complicate the cases. Proteus mirabilis (n=8) were isolated in present study from wound infection. Different biochemical tests were applied for identification. Several other researcher also isolated the proteus spp from wound infection using such type of traditional techniques (10-13).

Antibiotic sensitivity and resistivity profile was constructed using Kirby-Bauer disk diffusion method against P. mirabilis and data regarding measurement of zone of inhibition was collected according to Clinical and Laboratory Standards Institute (CLSI) protocol. AST was performed on Muller Hinton agar (Oxoid, UK) by using commercially available antimicrobial discs (14).

Highest inhibitory zone was shown by Ceftazidime (23 mm) followed by Gentamycin (18 mm) and Ciprofloxacin (17 mm) which confirms that these antibiotics can be used for clinical purposes for the treatment and management of wounds.

According to this study Gentamycine and Floroquinolones were found as sensitive and effective drugs in wound infection. IN addition this study also gives the common profile of infected wounds regarding bacterial infection and give a guideline for treatment of wound infection due to proteus. Review of literature also prove gentamycine as sensitive drug against proteus infections (15).

CONCLUSION

These findinds highlights that Genatmycin and Quinolones can be used in the treatment of wound infections complicated with proteus organisms. This study serves as base line and may be helpful for the clinicians while managing the treatment against wound infections.

ACKNOWLEDGEMENTS

The authors acknowledge the full support of Director CASAVB and guidance and help of other Lab members, especially Abdul Haq and Abdul Ghani during this research work.

REFERENCES

1. Jacobsen SMD, Stickler J, Mobley HLT, Shirltiff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. J Clin Micro, Rev. 2008;21(1): 26-59.

2. Guentzel MN. Proteus. In Barron’s 4th Ed.1996:60:123-127.

3. De champ C, Bonnet R, Sirot D, chanal C, Sirot J. Clinical relevance of Pr. Mirabilis in hospital patient. A two year survey J antimicrob chemot. 2000;45:537-539.

4. Gonzales Gus, Proteus Infections. E Medicine from WebMD. Last edited 2 March 2006. Accessed Nov. 30, 2008; 686-10.

5. Lund ME, John M, Matsen DJ, Blazevic. Rapid Identification of Swarming Proteus Using the PathoTec Ornithine Decarboxylase Test Strip. Journal of Clinical Microbiology. 1975; P. 478-9.

6. Shahzad F, Shafee M, Abbas F, Babar S, Tariq MM, Ahmad Z. Isolation and biochemical characterization of Rhizobium meliloti from root nodules of Alfalfa (Medicago sativa). The Journal of Animal and Plant Sciences. 2012;22(2):522-4.

7. Tariq H, Ahmad Z, Awan MA, Samad A, Muhammad S. Isolation and identification of pseudomonas aurogenosfrom nosocomial wound infection in Quetta, Pakistan. IJBAS. 2017;6(6):1220-1235.

8. Kazmi M. Development of i Quick test Strip (QTS) for rapid identification of medically important nonfermentative gram negative bacterial isolates. A PhD thesis, Department of Microbiology, University of Karachi. 2008.

9. Dharmadhikari SM, Peshwe AS. Molecular level studies on multiple Antibiotic and serum resistance in UTI pathogens. Ind J Biotech. 2009;8:40-50.
10. Umebese P, Wemambu SNC, Mordi RM. Microbial pattern in cultured deep surgical specimen in orthopaedic practices. A metropolitan hospital based study. JMBR. 2004;3:73-77.

11. Ravisekhar G, Bernu D, Vishnuv bartla S, Arti K, Ammini AC, Rama C. Clinical microbiological study of diabetic foot ulcers in an Indian tertiary-care hospital. Diabetic Care. 2006;29:1727-1732.

12. Jun IW, Kunikazu Y, Kelgo S, Hiroshi K, Naohiro S, Satowa Syohei D, Kouji K, Yasuyoshi I, Yoshichika A. Novel plasmid mediated 16s rRNA methylase RMTC, found in Proteus mirabilis isolate demonstrating extraordinary high level resistance against various aminoglycosides. Antimicrobial Agents Chemother. 2006;50:178-184.

13. Yah SC, Eghafona NO, Oranusi S, Abouo AM. Widespread resistance genes among Proteus species in diabetic wounds patients in ABUTH Zaria. Afr. J. Biotechnol. 2007;6(15):1757-1762.

14. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966;45:493-496.

15. Duguid JP, Marmon BP, Swain RHA. Medical Microbiology. 13th ed.1 Churchill Livingstone London. 1978;332-333.