Correction: A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner

Xiao-Jing Chen · Wen-Fei Wei · Zi-Ci Wang · Nisha Wang · Chu-Hong Guo · Chen-Fei Zhou · Luo-Jiao Liang · Sha Wu · Li Liang · Wei Wang

Published online: 10 September 2022
© The Author(s) 2022

Correction to: Angiogenesis (2021) 24:549–565
https://doi.org/10.1007/s10456-020-09766-2

The authors would like to correct Figs. 2 and 3, as errors were introduced in the preparation of the figures for publication. The authors declare that these corrections do not change the results or conclusions of this paper. The authors have provided the corrected version of Figs. 2 and 3 here. The authors also would like to correct the description of statistics in the Methodology Statistics section as “The results are expressed as the mean value ± SEM and were interpreted by the t-test or one-way analysis of variance

The original article can be found online at https://doi.org/10.1007/s10456-020-09766-2.

Sha Wu
shawu99@outlook.com

Li Liang
redsnow007@hotmail.com

Wei Wang
smugowwang@126.com

1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People’s Republic of China

2 Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou 510515, People’s Republic of China

3 Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou 510515, People’s Republic of China

4 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou 510515, People’s Republic of China
Figure 1

A Migrated cells/field

Group	THP-1	SiHa
M0-N		
M0-H		
TAM-N		
TAM-H		

B Length of tubes (X100 μm)

Group	LV	LVEM
M0-N		
M0-H		
TAM-N		
TAM-H		

C Lymphatic density

Group	LV	LVEM
M0-N		
M0-H		
TAM-N		
TAM-H		

D Tube formation in vitro

Group	M0-N	M0-H	TAM-N	TAM-H
D				

E LVE-1/CD206/DAPI

Group	M0-N	M0-H	TAM-N	TAM-H
E				

F Lymphatic node

Group	M0-N	M0-H	TAM-N	TAM-H
F				

G LN5

Group	M0-N	M0-H	TAM-N	TAM-H
G				

H Volume (mm³)

Group	M0-N	M0-H	TAM-N	TAM-H
H				

I % of specimens

Group	M0-N	M0-H	TAM-N	TAM-H
I				
Fig. 2 Hypoxic TAMs promote lymphangiogenesis and LVEM formation. a The function of CM from different macrophage-treated HDLECs on M2-polarized THP-1 macrophages and tumour cells (SiHa) was detected by transwell array in vitro. b Statistical analysis showing the length of tube formation in vitro. Average length of tubes per field were calculated. c Statistical analysis showing the expression of LV and LVEM in mouse footpad tumour. d Representative micrographs showing tube formation assay in vitro of HDLECs pretreated with different macrophage CM for 48 h. Scale bar, 50 μm. e–i Popliteal lymphatic metastasis model was established in female C57BL/6 mice by inoculating the footpad with TC-1 cells (5 × 10⁶). When footpad tumour size reached 50 mm³, macrophage supernatants of different treatment conditions (10 μL) were then injected into the center of the tumours (n=5/group, repeated twice) for 2 weeks daily. After 2 weeks of induction, primary tumours reached a comparable size of ~150 mm³, and then footpad tumours and popliteal LNs were collected for study. e Representative images of LYVE-1⁺ lymphatic vessel (red), CD206⁺ TAMs (green) and DAPI (blue) fluorescence staining in footpad tumour. Images are shown at ×400 magnification (Scale bar, 50 μm). f IHC Staining of CK7 in popliteal LNs. Representative micrographs are shown (Scale bar, 100 μm). Metastasis-positive LNs were identified by staining for epithelial marker CK7. g Photos of mouse popliteal LNs in different macrophage CM-primed tumour (n=5/group). h Statistical analysis showing the volume (mm³) of the LNs. i The ratio of metastasis-positive to total dissected popliteal LNs from mice treated with different macrophage supernatants. Error bars represent the mean ± SD of three independent experiments. *P < 0.05. N Normoxia, H Hypoxia
IL-10 derived from hypoxic TAMs is required to maintain LVEM. a The different cytokines expression profiles among M0-N, M0-H, TAM-N and TAM-H were analysed by cytokine array (Ray-Bio GSM-CAA-4000). b Screening and analysis of the differentially expressed cytokines. c The expressions of the five significant cytokines were analysed by qRT-PCR. d The secretions of the five significant cytokines were analysed by ELISA. e The migration effects of hypoxic TAMs-treated HDLECs on tumour cells (SiHa) and M2-polarized THP-1 macrophages were analysed by transwell assay in vitro. “Blank” represents the medium group. f Representative micrographs showing the tube formation in vitro (Scale bar, 50 μm). g Representative images showing the tube formation in vivo (Scale bar, 100 μm). h Statistical analysis showing the length of tube formation. Average length of tubes per field were calculated. i–l Popliteal lymphatic metastasis model was established in female C57BL/6 mice by inoculating the footpad with TC-1 cells (5×10⁶). When footpad tumour size reached 50 mm³, IL-10 (50 ng/mL) or PBS was then injected into the centre of the tumours (n=5/group, repeated twice) for 2 weeks daily. After 2 weeks of induction, primary tumours reached a comparable size of ~150 mm³, and then footpad tumours and popliteal LNs were collected for study. i Representative images of LYVE-1+ lymphatic vessel (red), CD206+ TAMs (green) and DAPI (blue) fluorescence staining in footpad tumour. j Metastasis-positive LNs were identified by IHC staining for epithelial marker CK7. k Statistical analysis showing the expression of peritumoural LV and LVEM in footpad tumour. l Statistical analysis showing the ratio of LNM. Error bars represent the mean±SD of three independent experiments. **P<0.01

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reference

1. Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH, Zhou CF, Liang LJ, Wu S, Liang L, Wang W (2021) A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner. Angiogenesis 24(3):549–565. https://doi.org/10.1007/s10456-020-09766-2 (Epub 2021 Jan 23)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.