On the Generalized Fibonacci-circulant-Hurwitz numbers

Ömür Deveci¹, Zafer Adıgüzel² and Taha Doğan³

¹ Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Turkey
e-mail: odeveci36@hotmail.com

² Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Turkey
e-mail: zafer-adiguzel36@hotmail.com

³ Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Turkey
e-mail: tahadogan8636@gmail.com

Received: 28 May 2019 Revised: 22 December 2019 Accepted: 30 December 2019

Abstract: The theory of Fibonacci-circulant numbers was introduced by Deveci et al. (see [5]). In this paper, we define the Fibonacci-circulant-Hurwitz sequence of the second kind by Hurwitz matrix of the generating function of the Fibonacci-circulant sequence of the second kind and give a fair generalization of the sequence defined, which we call the generalized Fibonacci-circulant-Hurwitz sequence. First, we derive relationships between the generalized Fibonacci-circulant-Hurwitz numbers and the generating matrices for these numbers. Also, we give miscellaneous properties of the generalized Fibonacci-circulant-Hurwitz numbers such as the Binet formula, the combinatorial, permanental, determinantal representations, the generating function, the exponential representation and the sums.

Keywords: Fibonacci-circulant-Hurwitz Sequence, Circulant matrix, Hurwitz matrix, Representation.

2010 Mathematics Subject Classification: 11K31, 11B50, 11C20, 20D60.
1 Introduction

The k-step Fibonacci sequence $\{F^k_n\}$ is defined by initial values $F^k_0 = F^k_1 = F^k_{k-2} = 0$, $F^k_{k-1} = 1$ and recurrence relation

$$F^k_{n+k} = F^k_{n+k-1} + F^k_{n+k-2} + \cdots + F^k_n$$ for $n \geq 0$.

For detailed information about the k-step Fibonacci sequence, see [9, 21].

In [5], Deveci et al. defined the Fibonacci-circulant sequence of the second kind as shown:

$$x^2_1 = \cdots = x^2_4 = 0, x^2_5 = 1$$ and

$$x^2_n = -x^2_{n-3} + x^2_{n-4} - x^2_{n-5}$$ for $n \geq 6$.

Note that the characteristic polynomial of the Fibonacci-circulant sequence of the second kind is as follows:

$$f(x) = -x^5 + x^2 + x - 1.$$

Let an n-th degree real polynomial f be given by

$$f^2(x) = c_0x^n + c_1x^{n-1} + \cdots + c_{n-1}x + c_n.$$

In [8], the Hurwitz matrix $H_n = [h_{i,j}]_{n \times n}$ associated to the polynomial f was defined as shown:

$$H_n = \begin{bmatrix}
c_1 & c_3 & c_5 & \cdots & \cdots & \cdots & 0 & 0 & 0 \\
c_0 & c_2 & c_4 & \cdots & \cdots & \cdots & \vdots & \vdots & \vdots \\
0 & c_1 & \cdots & \cdots & \cdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & c_0 & c_2 & \ddots & \ddots & \ddots & 0 & \vdots & \vdots \\
\vdots & 0 & c_1 & \ddots & \ddots & \ddots & c_n & \vdots & \vdots \\
\vdots & \vdots & c_0 & \ddots & \ddots & \ddots & c_{n-1} & 0 & \vdots \\
\vdots & \vdots & 0 & \cdots & \cdots & \cdots & c_{n-2} & c_n & \vdots \\
\vdots & \vdots & \vdots & \cdots & \cdots & \cdots & c_{n-3} & c_{n-1} & 0 \\
0 & 0 & 0 & \cdots & \cdots & \cdots & c_{n-4} & c_{n-2} & c_n
\end{bmatrix}$$

Consider the k-step homogeneous linear recurrence sequence $\{a_n\}$,

$$a_{n+k} = c_0a_n + c_1a_{n+1} + \cdots + c_{k-1}a_{n+k-1},$$

where $c_0, c_1, \ldots, c_{k-1}$ are real constants. In [9], Kalman derived a number of closed-form formulas for the sequence $\{a_n\}$ by matrix method as follows:

$$A^n \begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{k-1}
\end{bmatrix} = \begin{bmatrix}
a_n \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{bmatrix}$$
where

\[A = [a_{i,j}]_{k \times k} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_0 & c_1 & c_2 & c_{k-2} & c_{k-1}
\end{bmatrix}. \]

Number theoretic properties such as these obtained from Fibonacci numbers relevant to this paper have been studied by many authors [1, 4, 7, 11, 12, 20, 23, 27, 28]. Now we define the generalized Fibonacci-circulant-Hurwitz numbers and then, we obtain their miscellaneous properties using the generating matrix and the generating function of these numbers.

2 Significance

As it is well-known that recurrence sequences, circulant matrix and Hurwitz matrix appear in modern research in many fields from mathematics, physics, computer science, architecture to nature and art (see, for example, [6, 10, 13, 14, 17, 18, 22, 24, 25, 26]). This paper is expanded the concept to the generalized Fibonacci-circulant-Hurwitz sequence which is defined by using circulant and Hurwitz matrices.

3 The main results

By the polynomial \(f^2(x) \), we can write the following Hurwitz matrix:

\[M^2 = \begin{bmatrix}
0 & 1 & -1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1
\end{bmatrix}. \]

Using the matrix \(M^2 \), we define the Fibonacci-circulant-Hurwitz sequence of the second kind as shown:

\[a_1^2 = \cdots = a_4^2 = 0, \quad a_5^2 = 1 \quad \text{and} \quad a_{n+1}^2 = -a_n^2 + a_{n-1}^2 + a_{n-2}^2 + a_{n-4}^2 \quad \text{for} \quad n \geq 5. \]

Now we consider a new sequence which is a generalized form of the the Fibonacci-circulant-Hurwitz sequence of the second kind and is called the generalized Fibonacci-circulant-Hurwitz sequence. The sequence is defined by integer constants \(a_1^k = \cdots = a_{k-1}^k = 0, \quad a_k^k = 1 \) and the recurrence relation

\[a_{n+1}^k = -a_n^k + a_{n-1}^k + \cdots + a_{n-k+3}^k + a_{n-k+1}^k \quad \text{(1)} \]

for \(n \geq k \), where \(k \) is a positive integer such that \(k \geq 4 \).
From (1), we may write the following matrix:

\[
M_k = [m_{i,j}]_{k \times k} =
\begin{bmatrix}
-1 & 1 & 1 & \cdots & 1 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
\end{bmatrix}.
\]

(2)

The matrix \(M_k\) is called the generalized Fibonacci-circulant-Hurwitz matrix.

Note that \(\det(M_k) = (-1)^{k+1}\) for \(k \geq 4\).

By induction on \(n\), we get

\[
(M_4)^n =
\begin{bmatrix}
4^{4+4} & 4^{4+3} + 4^{4+1} & 4^{4+2} & 4^{4+3} \\
4^{4+3} & 4^{4+2} + 4^{4} & 4^{4+1} & 4^{4} \\
4^{4+2} & 4^{4+1} + 4^4 & 4^4 & 4^4 \\
4^{4+1} & 4^4 + 4^4 & 4^4 & 4^4 \\
\end{bmatrix}
\]

\[
(M_5)^n =
\begin{bmatrix}
5^{5+5} & 5^{5+4} + 5^{5+3} & 5^{5+2} + 5^{5+1} & 5^{5+1} & 5^{5} \\
5^{5+4} & 5^{5+3} + 5^{5+2} & 5^{5+1} & 5^{5} & 5^{5} \\
5^{5+3} & 5^{5+2} + 5^{5+1} & 5^{5+1} & 5^{5} & 5^{5} \\
5^{5+2} & 5^{5+1} + 5^{5} & 5^{5} & 5^{5} & 5^{5} \\
\end{bmatrix}
\]

and

\[
(M_k)^n =
\begin{bmatrix}
\begin{array}{cccc}
a_{n+k} & a_{n+k+1} + a_{n+k} & a_{n+k-1} + a_{n+k-3} & a_{n+k-2} + a_{n+k-1} \\
a_{n+k-2} & a_{n+k-1} + a_{n+k-3} & a_{n+k-2} + a_{n+k-4} & a_{n+k-3} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+1} & a_{n+2} + a_{n+1} & a_n + a_{n-2} & a_{n-1} + a_n \\
\end{array}
\end{bmatrix}
\]

(3)

for \(k \geq 6\), where \((M_k)^*\) is a matrix with \(k\) row and \(k-5\) column given below:

\[
\begin{bmatrix}
a_{n+k-1} + \cdots + a_{n+4} + a_{n+2} & a_{n+k-1} + \cdots + a_{n+5} + a_{n+3} & \cdots & a_{n+k-1} + a_{n+k-3} + a_{n+k-2} + a_{n+k-4} \\
a_{n+k-2} + \cdots + a_{n+3} + a_{n+1} & a_{n+k-2} + \cdots + a_{n+4} + a_{n+2} & \cdots & a_{n+k-2} + a_{n+k-3} + a_{n+k-5} \\
\vdots & \vdots & \ddots & \vdots \\
a_n + \cdots + a_{n-k+4} + a_{n-k+2} & a_n + \cdots + a_{n-k+5} + a_{n-k+3} & \cdots & a_n + a_{n-1} + a_{n-3} \\
\end{bmatrix}.
\]

Lemma 3.1. The characteristic equation of all the generalized Fibonacci-circulant-Hurwitz numbers \(x^k + x^{k-1} - x^{k-2} - \cdots - x^2 - 1 = 0\) does not have multiple roots for \(k \geq 4\).
Theorem 3.1. Let \(f(x) = x^k + x^{k-1} - x^{k-2} - \cdots - x^2 - 1 \). We easily see that \(f(1) \neq 1 \). Consider \(h(x) = (x - 1) f(x) \). Since \(f(1) \neq 1 \), \(1 \) is root but not a multiple root of \(h(x) \). Assume that \(u \) is a multiple root of \(h(x) \). Then \(h(u) = 0 \) and \(h'(u) = 0 \). So we get

\[
(1 - k) u^k + ku^3 + (k - 7) u^2 + (4 - 2k) u + 2 (k - 1) = 0.
\]

Using appropriate softwares such as Wolfram Mathematica 10.0 [29], one can see that this last equation does not have a solution which is a contradiction. This contradiction proves that the equation \(f(x) \) does not have multiple roots. \(\square \)

If \(x_1, x_2, \ldots, x_k \) are the eigenvalues of the generalized Fibonacci-circulant-Hurwitz matrix \(M_k \), then by Lemma 3.1, it is known that \(x_1, x_2, \ldots, x_k \) are distinct. Let a \(k \times k \) Vandermonde matrix \(V^k \) be given by

\[
V^k = \begin{bmatrix}
(x_1)^{k-1} & (x_2)^{k-1} & \cdots & (x_k)^{k-1} \\
(x_1)^{k-2} & (x_2)^{k-2} & \cdots & (x_k)^{k-2} \\
\vdots & \vdots & \ddots & \vdots \\
x_1 & x_2 & \cdots & x_k \\
1 & 1 & \cdots & 1
\end{bmatrix}.
\]

Now assume that \(W^k(i) \) is a \((p + 2) \times 1\) matrix as shown:

\[
W^k(i) = \begin{bmatrix}
(x_1)^{n+k-i} \\
(x_2)^{n+k-i} \\
\vdots \\
(x_{p+2})^{n+k-i}
\end{bmatrix}
\]

and \(V^k(i,j) \) is a \(k \times k \) matrix derived from the Vandermonde matrix \(V^k \) by replacing the \(j \)-th column of \(V^k \) by matrix \(W^k(i) \).

Now we give the Binet formulas for the generalized Fibonacci-circulant-Hurwitz numbers by the following Theorem.

Theorem 3.1. Let \(k \) be a positive integer such that \(k \geq 4 \) and let \((M_k)^{\alpha} = \begin{bmatrix} m_{i,j}^{(\alpha)} \end{bmatrix} \) for \(\alpha \geq 1 \), then

\[
m_{i,j}^{(\alpha)} = \frac{\det V^k(i,j)}{V^k}.
\]

Proof. Since the eigenvalues of the generalized Fibonacci-circulant-Hurwitz matrix \(M_k \) are distinct, \(M_k \) is diagonalizable. Then, we may write \(M_k V^k = V^k D_k \), where \(D_k = \text{diag}(x_1, x_2, \ldots, x_k) \). Since \(\det V^k \neq 0 \), we get

\[
(V^k)^{-1} M_k V^k = D_k.
\]

It will thus be seen that the matrices \(M_k \) and \(D_k \) are similar. Then we can write the matrix equation \((M_k)^{\alpha} V^k = V^k (D_k)^{\alpha} \) for \(\alpha \geq 1 \). Since \((M_k)^{\alpha} = \begin{bmatrix} m_{i,j}^{(\alpha)} \end{bmatrix} \), we get

\[
\begin{cases}
m_{i,1}^{(\alpha)} (x_1)^{k-1} + m_{i,2}^{(\alpha)} (x_1)^{k-2} + \cdots + m_{i,k}^{(\alpha)} = (x_1)^{\alpha+k-i} \\
m_{i,1}^{(\alpha)} (x_2)^{k-1} + m_{i,2}^{(\alpha)} (x_2)^{k-2} + \cdots + m_{i,k}^{(\alpha)} = (x_2)^{\alpha+k-i} \\
\vdots \\
m_{i,1}^{(\alpha)} (x_k)^{k-1} + m_{i,2}^{(\alpha)} (x_k)^{k-2} + \cdots + m_{i,k}^{(\alpha)} = (x_k)^{\alpha+k-i}
\end{cases}
\]

183
So we conclude that

\[m_{i,j}^{(\alpha)} = \frac{\det V^k(i,j)}{V^k} \]

for each \(i, j = 1, 2, \ldots, k \). \(\square \)

Thus by Theorem 3.1 and the matrix \((M_k)^n\), we have the following useful results.

Corollary 3.1. Let \(a_k^n \) be the \(n \)-th element of the generalized Fibonacci-circulant-Hurwitz sequence, then

\[a_k^n = \frac{\det V^k(k,k)}{V^k} = \frac{\det V^k(k-1,k-1)}{V^k} \]

for \(k \geq 4 \).

Now we consider the combinatorial representations for all the generalized Fibonacci-circulant-Hurwitz numbers.

Let a \(k \times k \) companion matrix \(C(c_1, c_2, \ldots, c_k) \) be given by

\[
C(c_1, c_2, \ldots, c_k) = \begin{bmatrix}
 c_1 & c_2 & \cdots & c_k \\
 1 & 0 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & 1 & 0
\end{bmatrix}.
\]

For more details on the companion type matrices, see [15, 16].

Theorem 3.2 (Chen and Louck [3]). The \((i,j)\) entry \(c_{i,j}^{(\alpha)}(c_1, c_2, \ldots, c_k) \) in the matrix \(C^{\alpha}(c_1, c_2, \ldots, c_k) \) is given by the following formula:

\[
c_{i,j}^{(\alpha)}(c_1, c_2, \ldots, c_k) = \sum_{(t_1, t_2, \ldots, t_k)} \frac{t_j + t_{j+1} + \cdots + t_k}{t_1 + t_2 + \cdots + t_k} \times \binom{t_1 + \cdots + t_k}{t_1, \ldots, t_k} c_1^{t_1} \cdots c_k^{t_k} \tag{4}
\]

where the summation is over nonnegative integers satisfying \(t_1 + 2t_2 + \cdots + kt_k = \alpha - i + j \), \(\binom{t_1 + \cdots + t_k}{t_1, \ldots, t_k} \) is a multinomial coefficient, and the coefficients in (4) are defined to be 1 if \(\alpha = i - j \).

Corollary 3.2. Let \(k \) be a positive integer such that \(k \geq 4 \) and let \(a_k^n \) be the \(n \)-th element of the generalized Fibonacci-circulant-Hurwitz sequence, then

\[
a_k^n = \sum_{(t_1, t_2, \ldots, t_k)} \frac{t_k}{t_1 + t_2 + \cdots + t_k} \times \binom{t_1 + \cdots + t_k}{t_1, \ldots, t_k} = \sum_{(t_1, t_2, \ldots, t_{p+2})} \frac{t_{k-1} + t_k}{t_1 + t_2 + \cdots + t_k} \times \binom{t_1 + \cdots + t_k}{t_1, \ldots, t_k}
\]

where the summation is over nonnegative integers satisfying \(t_1 + 2t_2 + \cdots + kt_k = n \).

Proof. In Theorem 3.2, if we choose \(i = j = k \) and \(i = j = k - 1 \), then the proof is immediately seen from (3). \(\square \)
Definition 3.1. An \(u \times v \) real matrix \(A = [a_{i,j}] \) is called a contractible matrix in the \(n \)-th column (resp. row) if the \(n \)-th column (resp. row) contains exactly two non-zero entries.

Let \(x_1, x_2, \ldots, x_u \) be row vectors of the matrix \(A \). If \(A \) is contractible in the \(n \)-th column such that \(a_{\tau,n} \neq 0, a_{\sigma,n} \neq 0 \) and \(\tau \neq \sigma \), then the \((u-1) \times (v-1) \) matrix \(A_{\tau,\sigma,n} \) obtained from \(A \) by replacing the \(\tau \)-th row with \(a_{\tau,n} x_\sigma + a_{\sigma,n} x_\tau \) and deleting the \(\sigma \)-th row. We call the \(n \)-th column the contraction in the \(n \)-th column relative to the \(\tau \)-th row and the \(\sigma \)-th row.

In [2], it was shown that \(\text{per}(A) = \text{per}(B) \) if \(A \) is a real matrix of order \(u > 1 \) and the matrix \(B \) is a contraction of \(A \).

Let \(u \geq k \) and let a \(u \times u \) super-diagonal matrix \(N^k_u = [n^k_{i,j}] \) be given by

\[
n^k_{i,j} = \begin{cases}
1 & \text{if } i = s \text{ and } j = s + 1 \text{ for } 1 \leq s \leq u - 1, \\
1 & i = s \text{ and } j = s + 2 \text{ for } 1 \leq s \leq u - 2, \\
\vdots & \vdots \\
1 & i = s \text{ and } j = s + k - 3 \text{ for } 1 \leq s \leq u - k + 3, \\
i = s \text{ and } j = s + k - 1 \text{ for } 1 \leq s \leq u - k + 1 & \text{and} \\
\vdots & \vdots \\
i = s + 1 \text{ and } j = s \text{ for } 1 \leq s \leq u - 1, \\
0 & \text{otherwise}, \\
-1 & \text{if } i = s \text{ and } j = s \text{ for } 1 \leq s \leq u,
\end{cases}
\]

where \(k \geq 4 \).

Now we give the permanental representations for the generalized Fibonacci-circulant-Hurwitz numbers by the following Theorems.

Theorem 3.3. Let \(a_n \) be the \(n \)-th element of the generalized Fibonacci-circulant-Hurwitz sequence, then

\[
\text{per}(N^k_u) = a^k_{u+k}
\]

for \(u \geq k \).

Proof. The assertion may be proved by induction on \(u \). Assume that the result hold for any integer greater than or equal to \(k \). Then we show the equation holds for \(u + 1 \). Expanding the \(\text{per}(N^k_u) \) by the Laplace expansion of permanent according to the first row gives us

\[
\text{per}(N^k_{u+1}) = -\text{per}(N^k_u) + \text{per}(N^k_{u-1}) + \cdots + \text{per}(N^k_{u-k+3}) + \text{per}(N^k_{u-k+1}).
\]

Since

\[
\text{per}(N^k_u) = a^k_{u+k}, \quad \text{per}(N^k_{u-1}) = a^k_{u+k-1}, \ldots, \quad \text{per}(N^k_{u-k+3}) = a^k_{u+3}, \quad \text{per}(N^k_{u-k+1}) = a^k_{u+1},
\]

by using the recurrence relation of the generalized Fibonacci circumulant-Hurwitz numbers, we obtain \(\text{per}(N^k_{u+1}) = a^k_{u+k+1}. \)
Suppose that $u > k$ and the $u \times u$ matrices $H_u^k = [h_{i,j}^k]$ and $T_u^k = [t_{i,j}^k]$ are defined by

$$h_{i,j}^k = \begin{cases} 1 & \text{if } i = s \text{ and } j = s + \rho \text{ for } 1 \leq s \leq u - k + 2, \\ 1 & \text{if } i = s \text{ and } j = s + k - 1 \text{ for } 1 \leq s \leq u - k + 1, \\ -1 & \text{if } i = s + 1 \text{ and } j = s \text{ for } 1 \leq s \leq u - l, \\ 0 & \text{otherwise} \end{cases}$$

and

$$T_u^k = \begin{bmatrix} (u - k) \cdot \text{th} \\ 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & \cdots & H_{u-1} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix},$$

$k \geq 4$.

Using the matrices $H_u^k = [h_{i,j}^k]$ and $T_u^k = [t_{i,j}^k]$ and the above results we can give more general permanental representations.

Theorem 3.4. For $u > k$,

$$\per(H_u^k) = a_u^k,$$

and

$$\per(T_u^k) = \sum_{\tau=0}^{u-1} a_\tau^k.$$

Proof. Consider the first part of the theorem. We prove this by the induction method. Suppose that the equation holds for $u > k$, then we show that the equation holds for $u + 1$. If we expand the $\per(H_u^k)$ by the Laplace expansion of permanent according to the first row, then we get

$$\per(H_{u+1}^k) = -\per(H_u^k) + \per(H_{u-1}^k) + \cdots + \per(H_{u-k+3}^k) + \per(H_{u-k+1}^k)$$

$$= -a_u^k + a_{u-1}^k + \cdots + a_{u-k+3}^k + a_{u-k+1}^k$$

$$= a_{u+1}^k.$$

Prove the second part of the theorem: Expanding the $\per(T_u^k)$ with respect to the first row, we can write

$$\per(T_u^k) = \per(T_{u-1}^k) + \per(H_{u-1}^p).$$

Thus, by the results and an inductive argument, the proof is easily seen. \qed
Using the definition of the generalized Fibonacci-circulant-Hurwitz numbers we find the generating function $g(x)$ as shown

$$g(x) = \frac{x^k}{1 + x - x^2 - \ldots - x^{k-2} - x^k}$$

where $k \geq 4$.

Now we investigate an exponential representation for the generalized Fibonacci-circulant-Hurwitz numbers.

Theorem 3.5. For $k \geq 4$, the generalized Fibonacci-circulant-Hurwitz numbers have the following exponential representation:

$$g(x) = x^k \exp \left(\sum_{n=1}^{\infty} \frac{x^n}{n} (-1 + x + \ldots + x^{k-3} + x^{k-1})^n \right).$$

Proof. We consider the generating function $g(x) = \frac{x^k}{1 + x - x^2 - \ldots - x^{k-2} - x^k}$. Since

$$\ln g(x) = \ln \left(\frac{x^k}{1 + x - x^2 - \ldots - x^{k-2} - x^k} \right),$$

$$\ln g(x) = \ln x^k - \ln (1 + x - x^2 - \ldots - x^{k-2} - x^k)$$

and

$$\ln (1 + x - x^2 - \ldots - x^{k-2} - x^k) = -[x (-1 + x + x^2 + \ldots + x^{k-3} + x^{k-1}) + \frac{1}{2} x^2 (-1 + x + x^2 + \ldots + x^{k-3} + x^{k-1})^2 + \ldots + \frac{1}{i} x^i (-1 + x + x^2 + \ldots + x^{k-3} + x^{k-1})^i + \ldots],$$

it is clear that

$$\ln \frac{g(x)}{x^k} = \sum_{n=1}^{\infty} \frac{x^n}{n} (-1 + x + \ldots + x^{k-3} + x^{k-1})^n. \quad \square$$

Now we consider the sums of all the generalized Fibonacci-circulant-Hurwitz numbers. Let the $k \times k$ matrix M_k be as in (2) and let the sums of the generalized Fibonacci-circulant-Hurwitz numbers from 1 to n, $(n > 1)$ be denoted by S_n, that is,

$$S_n = \sum_{i=1}^{n} a_i^k.$$

If we define the $(k+1) \times (k+1)$ matrix Z_k as in the following form:

$$Z_k = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & & & \vdots \\ \vdots & & & M_k \\ 0 & & & \end{bmatrix},$$

187
then by using induction on n, we may write

$$ (Z_k)^n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ S_{n+k-1} & S_{n+k-1} & \cdots & (M_k)^n \\ \vdots \\ S_n \end{bmatrix} $$

Acknowledgements

This Project was supported by the Commission for the Scientific Research Projects of Kafkas University, Project number 2017-FM-65.

References

[1] Atanassov, K. T., Atanassova, V. K., Shannon, A. G., & Turner, J. (2002). *New Visual Perspectives on Fibonacci Numbers*, World Scientific.

[2] Brualdi, R. A., & Gibson, P. M. (1997). Convex polyhedra of doubly stochastic matrices I: applications of permanent function, *J. Combin. Theory*, 22, 194–230.

[3] Chen, W. Y. C., & Louck, J. C. (1996). The combinatorial power of the companion matrix, *Linear Algebra Appl.*, 232, 261–278.

[4] Deveci, O. (2018). On the Fibonacci–circulant p-sequences, *Util Math.*, 108, 107–124.

[5] Deveci, O., Karaduman, E., & Campbell, C. M. (2017). The Fibonacci–circulant sequences and their applications, *Iran J. Sci. Technol. Trans. Sci.*, 41 (4), 1033–1038.

[6] El Naschie, M. S. (2005). Deriving the essential features of standard model from the general theory of relativity, *Chaos Solitons Fractals*, 24 (4), 941–946.

[7] Gogin, N. D., & Myllari, A. A. (2007). The Fibonacci–Padovan sequence and MacWilliams transform matrices, *Program. Comput Softw published in Programmirovanie*, 33 (2), 74–79.

[8] Hurwitz, A. (1895). Ueber die Bedingungen unter welchen eine gleichung nur Wurzeln mit negative reellen teilen besitzt, *Mathematische Annalen*, 46, 273–284.

[9] Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods, *Fibonacci Quart.*, 20 (1), 73–76.

[10] Kaluge, G. R. (2011). Penggunaan Fibonacci dan Josephus problem dalam algoritma enkripsi transposisi+substitusi, Makalah IF 3058 Kriptografi-Sem. II Tahun.
[11] Kilic, E. (2008). The Binet formula, sums and representations of generalized Fibonacci p-numbers, *European J. Combin.*, 29, 701–711.

[12] Kilic, E., & Tasci, D. (2007). On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, *Rocky Mountain J. Math.*, 37 (6), 1953–1969.

[13] Kirchoof, B. K., & Rutishauser, R. (1990). The phyllotaxy of costus (costaceae), *Bot Gazette*, 151 (1), 88–105.

[14] Kraus, F. J., Mansour, M., & Sebek, M. (1996). Hurwitz Matrix for Polynomial Matrices, In Jeltsch R Mansour M (eds) Stability Theory ISNM International Series of Numerical Mathematics 121 Birkhäuser Basel.

[15] Lancaster, P., & Tismenetsky, M. (1985). *The Theory of Matrices*, Academic Press.

[16] Lidl, R., & Niederreiter, H. (1986). *Introduction to Finite Fields and Their Applications*, Cambridge UP.

[17] Lipshitz, L., & van der, A. (1990). Poorten AJ Rational functions, diagonals, automata and arithmetic, Number Theory (Banff, AB, 1988) de Grutyer, Berlin, 339–358.

[18] Mandelbaum, D. M. (1972). Synchronization of codes by means of Kautz’s Fibonacci encoding, *IEEE Transactions on Information Theory*, 18 (2), 281–285.

[19] Matiyasevich, Y. V. (1993). *Hilbert’s Tenth Problem*, MIT Press, Cambridge, MA.

[20] Shannon, A. G., & Leyendekkers, J.V. (2011). Pythagorean Fibonacci patterns, *Int. J. Math. Educ. Sci. Technol.*, 43 (4), 554–559.

[21] Sloane, N. J. A. Sequences A000045/M0692, A000073/M1074, A000078/M1108, A001591, A001622, A046698, A058265, A086088, and A118745 in The On-Line Encyclopedia of Integer Sequences.

[22] Spinadel, V. W. (1999). The family of metallic means, *Vis Math*, 1(3) Mathematical Institute SASA.

[23] Stakhov, A. P., & Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas p-numbers, *Chaos Solitons Fractals*, 27 (5), 1162–1167.

[24] Stein, W. (1993). Modelling the evolution of Stelar architecture in Vascular plants, *Int. J. Plant. Sci.*, 154 (2), 229–263.

[25] Stewart, I. (1996). Tales of neglected number, *Sci. Amer.*, 274, 102–103.

[26] Stroeker, R. J. (1988). Brocard Points, Circulant Matrices, and Descartes Folium, *Math. Mag.*, 61 (3), 172–187.
[27] Tasci, D., & Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas \(p \)-numbers, *Math. Comput. Modelling*, 52, 1763–1770.

[28] Tuglu, N., Kocer, E. G., & Stakhov, A. P. (2011). Bivariate Fibonacci-like \(p \)-polynomials, *Appl. Math. Comput.*, 217 (24), 10239–10246.

[29] Wolfram Research, (2014). Inc Mathematica, Version 10.0: Champaign, Illinois.