The Lyα luminosity function at $z = 5.7$–6.6 and the steep drop of the faint end: implications for reionization

Sérgio Santos,1,2,3* David Sobral3,4 and Jorryt Matthee4

1Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, P-PT1349-018 Lisboa, Portugal
2Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, P-PT1749-016 Lisbon, Portugal
3Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
4Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

Received 2016 August 16; in original form 2016 June 23

ABSTRACT
We present new results from the widest narrow-band survey search for Lyα emitters at $z = 5.7$, just after reionization. We survey a total of 7 deg2 spread over the COSMOS, UDS and SA22 fields. We find over 11 000 line emitters, out of which 514 are robust Lyα candidates at $z = 5.7$ within a volume of 6.3×10^6 Mpc3. Our Lyα emitters span a wide range in Lyα luminosities, from faint to bright ($L_{\mathrm{Ly}\alpha} \sim 10^{42.5–44}$ erg s$^{-1}$) and rest-frame equivalent widths ($EW_0 \sim 25–1000$ Å) in a single, homogeneous data set. By combining all our fields, we find that the faint end slope of the $z = 5.7$ Lyα luminosity function is very steep, with $\alpha = -2.3^{+0.4}_{-0.3}$. We also present an updated $z = 6.6$ Lyα luminosity function, based on comparable volumes and obtained with the same methods, which we directly compare with that at $z = 5.7$. We find a significant decline of the number density of faint Lyα emitters from $z = 5.7$ to 6.6 (by 0.5 ± 0.1 dex), but no evolution at the bright end/no evolution in L^*. Faint Lyα emitters at $z = 6.6$ show much more extended haloes than those at $z = 5.7$, suggesting that neutral Hydrogen plays an important role, increasing the scattering and leading to observations missing faint Lyα emission within the epoch of reionization. Altogether, our results suggest that we are observing patchy reionization which happens first around the brightest Lyα emitters, allowing the number densities of those sources to remain unaffected by the increase of neutral Hydrogen fraction from $z \sim 5$ to 7.

Key words: galaxies: high-redshift – galaxies: luminosity function, mass function – cosmology: observations – dark ages, reionization, first stars.

1 INTRODUCTION
During the past two decades, considerable progress has been made in understanding the distant/early Universe (see reviews by e.g. Robertson et al. 2010; Dunlop et al. 2012; Madau & Dickinson 2014). Currently, the samples of $z > 6$ candidates are mostly composed by rest-frame ultraviolet- (UV) selected galaxies obtained from extremely deep surveys with the Hubble Space Telescope (HST); e.g. Bouwens et al. 2015; Finkelstein et al. 2015). However, spectroscopy and multiwavelength follow-up [e.g. with Atacama Large Millimeter/submillimeter Array (ALMA); Ouchi et al. 2013; Capak et al. 2015; Maiolino et al. 2015; Watson et al. 2015] of these sources still remains very limited as most candidates are too faint for a detailed analysis with current instrumentation (see also Dunlop et al. 2016). Alternatively, emission lines can be used to search for high-redshift galaxies to directly select galaxies by their brightest features, including several rest-frame optical and UV lines (e.g. Ouchi et al. 2008; Sobral et al. 2013; Khostovan et al. 2015, 2016), allowing for efficient follow-up strategies.

The Lyman α (Lyα) emission line (rest-frame 1215.67 Å) is emitted by both young star-forming galaxies and active galactic nuclei/quasars, being intrinsically the strongest emission line in the rest-frame optical to UV (e.g. Partridge & Peebles 1967; Pritchet 1994). As Lyα is redshifted into optical wavelengths (it can be observed from the ground at $z \approx 2–7$), many other strong lines are redshifted out of even the near-infrared (NIR; see e.g. Ly et al. 2007, 2011; Hayes, Schaerer & Østlin 2010; Sobral et al. 2013), making Lyα one of the only available means of spectroscopic confirmation, along with other weaker high-ionization UV lines (e.g. Sobral et al. 2015; Stark et al. 2016).

Several approaches have been used to find and study Lyα emitters (LAEs), including blind spectroscopy (e.g. Martin & Sawicki 2004; Stark et al. 2007; Rauch et al. 2008; Sawicki et al. 2008; Bayliss et al. 2010; Cassata et al. 2011), narrow-band surveys (e.g. Cowie & Hu 1998; Rhoads et al. 2000, 2003; Malhotra & Rhoads 2004;
Taniguchi et al. 2005; Iye et al. 2006; Shimasaku et al. 2006; Westra et al. 2006; Murayama et al. 2007; Nilsson et al. 2007; Ouchi et al. 2008, 2010; Sobral et al. 2009; Hu et al. 2010; Kashikawa et al. 2011; Shibuya et al. 2012; Konno et al. 2014; Matthee et al. 2014, 2015) and Integral Field Unit (IFU) observations (e.g. van Breukelen, Jarvis & Venemans 2005; Adams et al. 2011; Blanc et al. 2011; Bacon et al. 2015; Karman et al. 2015). Blind spectroscopy and IFU surveys can be very efficient at probing ultra-low luminosity sources at a variety of redshifts, but the current small volumes probed make them unable to reach even L^* sources, as the rarer (brighter) sources have number densities several times smaller than these studies can reach. Wide narrow-band surveys can be very competitive at efficiently probing large volumes at specific look-back times, and can be used to study a much larger luminosity range. For example, one Multi Unit Spectroscopic Explorer (MUSE) pointing (e.g. Bacon et al. 2015) probes a volume of $\sim 10^3$ Mpc^3 for $z \sim 3$–6, while one Subaru Suprime-Cam pointing with a typical narrow-band filter probes a volume of $\sim 10^5$ Mpc^3 (Hyper Suprime-Cam covers a volume ~ 7 times larger per pointing). Typically, narrow-band surveys have targeted a maximum of ~ 1 deg2 areas, corresponding to maximum volumes of $\sim 10^6$ Mpc^3 (e.g. Ouchi et al. 2008, 2010), but the next generation of surveys are now starting to probe much larger volumes (e.g. Matthee et al. 2015; Hu et al. 2016).

Due to its resonant nature, Lyα photons are easily scattered by neutral hydrogen (and also easily absorbed by dust; e.g. Hayes et al. 2011). As a consequence, the observability of Lyα can, in principle, be used as a probe of the neutral state of the intergalactic medium (IGM) during the epoch of reionization (e.g. Fontana et al. 2010; Caruana et al. 2012; Ono et al. 2012; Schenker et al. 2012; Caruana et al. 2014; Dijkstra 2014; Pentericci et al. 2014; Schmidt et al. 2016). However, in order to interpret Lyα observations (such as the distribution of equivalent widths (EW), the fraction of UV-selected galaxies with strong Lyα, or the evolution of the number density of LAEs) as consequences of reionization, one needs to accurately understand the contribution from potentially varying intrinsic interstellar medium (ISM) properties such as the Lyα escape fraction (cf. Matthee et al. 2016a), overdensities of galaxies (e.g. Castellano et al. 2016) or selection biases in UV-selected galaxy samples (cf. Oesch et al. 2015; Zitrin et al. 2015; Stark et al. 2016). Therefore, it is important to have a clear understanding of Lyα with only little influence from the IGM at $z \approx 6$, when reionization is close to complete and the fraction of neutral hydrogen becomes extremely low (Fan et al. 2006; Becker et al. 2015).

Previous studies found that the Lyα luminosity function (LF) seems to have little evolution at $z \sim 3$–6 (e.g. Ouchi et al. 2008). In contrast, the UV LF of Lyman-break galaxies (LBGs) strongly decreases for higher redshifts (e.g. Bouwens et al. 2015; Finkelstein et al. 2015). This difference in evolution is likely explained by an evolving escape fraction of Lyα photons, likely due to a lower dust content, younger stellar populations, lower metallicities and/or a combination of related phenomena. This is consistent with the observation that the fraction of LBGs with strong Lyα emission increases up to $z = 6$ (e.g. Stark et al. 2010; Cassata et al. 2015). At $z > 6$, the number density of faint LAEs is found to decline with redshift (Ouchi et al. 2010; Konno et al. 2014), likely due to reionization not being fully completed. However, by using the largest Lyα survey at $z \sim 7$ (~ 5 deg2), Matthee et al. (2015) show that the strong decrease/evolution in the number density of LAEs happens pre-dominantly at relative faint Lyα luminosities, while the bright end (with luminosities $L_{Ly\alpha} > 10^{43}$ erg s$^{-1}$) may not evolve at all. Matthee et al. (2015) finds that bright LAEs at $z = 6.6$ are much more common than previously thought, with spectroscopic confirmation presented in Sobral et al. (2015), and with independent studies finding consistent results (see e.g. Hu et al. 2016). However, one strong limitation in interpreting the potential evolution from $z = 6.6$ to 5.7 is the lack of comparably large ~ 5–10 deg2, multiple field surveys that can both trace a large enough number of bright sources and overcome cosmic variance.

In this work, we present the largest Lyα narrow-band survey at $z = 5.7$, covering a total of ~ 7 deg2 ($\sim 10^7$ Mpc^3). Previous studies have never probed beyond 2 deg2 (e.g. Murayama et al. 2007; Ouchi et al. 2008; Hu et al. 2010), and have mostly focused on specific, single fields. Here, we take advantage of previous data and add further ~ 4 deg2 of unexplored data. We also re-analyse the $z = 6.6$ LF presented in Matthee et al. (2015).

We structure this paper as follows: Section 2 presents the observations and data reduction. Section 3 explains the selection of line emitters and LAEs at $z = 5.7$. In Section 4, we present the method and procedures adopted to construct the $z = 5.7$ and 6.6 Lyα LFs. We present our results in Section 5, including a comparison with previous surveys. Section 6 discusses the results in the context of predicted effects from reionization. Finally, Section 7 presents the conclusions of this paper.

Throughout this work, we use a Λ cold dark matter cosmology with $H_0 = 70$ km s$^{-1}$ Mpc^{-1}, $\Omega_M = 0.3$ and $\Omega_\Lambda = 0.7$. All magnitudes in this paper are presented in the AB system. At $z = 5.7$, 1 arcsec corresponds to 5.9 kpc.

2 OBSERVATIONS AND DATA REDUCTION

2.1 Observations

We have reduced and analysed raw archival NB816 data in the COSMOS, UDS and SA22 fields. We use these three fields as they are completely independent (preventing any possible bias from probing the same region of the sky) and far enough from the galactic plane (avoiding bright foreground stars and dust). Additionally, the available deep multiwavelength coverage (including optical and NIR) allows a robust selection of candidates and identification of any lower redshift interlopers.

The NB816 filter has a central wavelength of 8150 Å and a full width at half-maximum (FWHM) of 120 Å. NB816 is contained in the red wing of the broad-band filter i (see Fig. 1). All NB816 data were collected with the Suprime-Cam instrument from the Subaru Telescope (Miyazaki et al. 2002). Suprime-Cam has 10 2048×4096 CCDs arranged in a 5×2 pattern, with a corresponding field of view of ~ 0.25 deg2. We use a total of 30 of these pointings. Suprime-cam images have a pixel scale of 0.2 arcsec pix$^{-1}$.

We retrieved all publicly available raw NB816 data for the UDS and SA22 fields from the SMOKA Archive.\(^1\) Fully reduced COSMOS NB816 images (original point spread function, PSF) were retrieved from the COSMOS Archive\(^2\) (Capak et al. 2007; Taniguchi et al. 2007).

We split SA22 data into two different sub-fields (SA22-deep and SA22-wide), which differ in depth by ≈ 1 mag and in area by a factor of ≈ 6. SA22-wide contains the largest area (larger than COSMOS and UDS combined). Narrow-band observations are summarized in Table 1.

Previous studies have separately used NB816 data in COSMOS (Murayama et al. 2007), UDS/SXDF (Ouchi et al. 2008) and

\(^1\) http://smoka.nao.ac.jp/

\(^2\) http://irsa.ipac.caltech.edu/data/COSMOS/
Figure 1. Normalized filter profiles of the NB816 and the i-band filters used in this study. We note that the shown i band is for Subaru’s Suprime-Cam after the upgrade to red sensitive CCDs, such that its peak is slightly shifted towards the red compared to the CFHT MegaCam i band used for SA22. Our NB correction in Section 2.4.1 takes this into account. NB816 is contained slightly red from the centre of i. The NB816 filter is located in a wavelength region free of strong atmospheric OH lines.

Table 1. Our NB816 data in the COSMOS, UDS and SA22 fields. The SA22 field was separated into two sub-fields, deep and wide, according to its significantly different NB816 depth. RA and Dec. are the central coordinates of the fields. FWHM is the average value for the seeing and is similar across our entire coverage. The NB816 depth is the 2σ depth measured in 2 arcsec apertures. Note that the quoted area already takes into account the removed/masked regions which are not used in this paper.

Field	RA (J2000)	Dec. (J2000)	Area (deg2)	FWHM (arcsec)	NB816 depth (2\sigma, 2 arcsec)
COSMOS	10 00 00	+02 10 00	2.00	0.7	26.2
UDS	02 18 00	−05 00 00	0.85	0.7	26.1
SA22-deep	22 18 00	+00 20 00	0.55	0.7	26.1
SA22-wide	22 15 00	+00 50 00	3.60	0.5	25.0

SA22-deep (\sim0.4 deg2; Hu et al. 2010). We note that while we explore new data and provide the largest survey of its kind, we are able to reproduce individual results from the literature using our own analysis. A comparison between our findings and previous studies is presented in Section 4.

2.2 Data reduction

We used the Subaru data reduction pipelines (SPRED and SPRED2; Ouchi et al. 2004) to reduce the NB816 data. The data reduction follows the same procedure as detailed in e.g. Matthee et al. (2015) and we refer the reader to that study for more details. Briefly, the reduction steps include: overscan and bias subtraction, flat fielding, PSF homogenization, sky background subtraction and bad pixel masking. After these steps, we apply an astrometric calibration using SCAMP (Bertin 2006) to correct astrometric distortions. The software matches our images with the 2MASS catalogue in the J band (Skrutskie et al. 2006) and fits polynomial functions that correct for any distortions along the CCD.

We calibrated the photometry in our data by matching relatively bright, un-saturated stars and galaxies to public catalogues for COSMOS (Laigle et al. 2016), UDS (Cirasuolo et al. 2007) and SA22 (Sobral et al. 2013, 2015; Matthee et al. 2014) using STILTS (Taylor 2006). NB816 images were calibrated using i-band photometry, but a further correction to this calibration was applied in Section 2.4.1. Co-added stacks of NB816 exposures were obtained using the SWARP software (Bertin et al. 2002).

We masked low-quality regions, bright haloes around bright stars, diffraction patterns and low S/N regions due to dithering strategy (particularly important in SA22-wide). We also removed regions with low quality or absent i-band coverage, regardless of the quality of the narrow-band.

We note that our masking is very conservative and, consequently, a relatively large area is removed from our study (hundreds of arcmin2), but that is still only a small fraction of our total area. After masking low-quality regions, our NB816 coverage contains a total area of 7 deg2 (Fig. 2), corresponding to a comoving volume of 6.3×10^8 Mpc3 at $z = 5.7$. All areas and volumes used and mentioned in this paper take into account these masks, unless stated otherwise.

Finally, we measure the depth of our images using randomly placed 2 arcsec apertures. In each image, we place 200 000 empty apertures in random positions. The average results per field are given in Table 1.

2.3 Multiwavelength imaging

A large collection of multiwavelength data are publicly available for our entire coverage. For the COSMOS field, we use optical $BVriz$ data taken with the Subaru Suprime-Cam (Capak et al. 2007; Taniguchi et al. 2007), retrieved from the COSMOS Archive and NIR $YHJK$ data from UltraVISTA DR2 (McCracken et al. 2012), taken with VISTA/VIRCAM. For the UDS field, we use optical $BVriz$ data from SXDF (Furusawa et al. 2008) and NIR JHK data from UKIDSS (Lawrence et al. 2007). For the SA22 field, we use optical $ugriz$ data from CFHTLS,3 taken with the MegaCam (Boulade et al. 2003) and NIR JK data from UKIDSS DXS (Warren et al. 2007), taken with UKIRT/WFCAM (Casali et al. 2007). All data which were not taken with the Subaru Suprime-Cam were degraded to a pixel scale of 0.20 arcsec pix$^{-1}$ using SWARP. A summary of the available filters for each field and their photometric depth is shown in Table 2.

2.4 Nb816 catalogue

The extraction of sources was conducted using SExtractor (Bertin & Arnouts 1996) in dual extraction mode, using NB816 as the detection image.

2.4.1 Narrow-band magnitude correction

The NB816 filter is located slightly to the red of the Subaru Suprime-cam i filter (with red sensitive CCDs) with a separation of ≈ 180 Å between the centre of the two filters. Calibrating the narrow-band magnitude directly to the i band may result in an offset in the magnitudes, particularly for sources with strong colours. We correct the narrow-band magnitudes by summing a small correction factor which is estimated from the colour of the two adjacent broadband, i and z. To compute this correction, we use sources with i, z and NB816 magnitudes between 19 and 24 (not saturated and with high enough S/N). The correction has the following expression

$$NB_{\text{corrected}} = NB + 0.4 \times (i - z),$$

3 http://www.cfht.hawaii.edu/Science/CFHTLS/
Evolution of the Lyα LF at $z = 5.7$–6.6

Figure 2. The spatial distribution of sources in the COSMOS, UDS and SA22 fields. Grey dots indicate all detections and red circles identify our $z = 5.7$ Lyα emitter candidates. A black line contour identifies SA22-deep, the deepest region in the SA22 field. The figure also highlights the regions masked due to bright stars, bad regions and/or low S/N due to dither strategy. It can be seen that UDS, COSMOS and SA22-deep are the deepest regions with a high concentration of sources and candidate LAEs.

Table 2. Multiwavelength depths (2σ; measured in 2 arcsec empty apertures) for the available broad-band filters across all three fields.

Field	Broad-band filters	Broad-band depth (2σ, 2 arcsec)
COSMOS	$BVgrizYJHK$	27.6, 27.0, 27.1, 27.0, 26.6, 25.7, 25.3, 24.6, 25.0, 24.7
UDS	$BVrizJK$	27.5, 27.2, 27.0, 26.8, 27.0, 25.3, 24.8
SA22	$ugrizJK$	26.2, 26.5, 25.9, 25.6, 24.5, 24.3, 23.8

where NB, i and z are the 2 arcsec magnitudes in the respective bands and $NB_{\text{corrected}}$ is the corrected NB816 magnitude. We apply this correction to sources with i and z detections. For the remaining sources, we apply a median correction of $+0.20$. As a result of this correction, there is less scatter in the excess diagram (Fig. 3). The correction also corrects for the fact that the CFHT MegaCam i band is slightly bluer than Suprime-cam’s i band, because this slightly different i band will result in slightly different i − z colours.

Our narrow-band correction is an alternative to the correction applied in Murayama et al. (2007) who used a corrected broad-band obtained from an iz interpolation. Our narrow-band correction corresponds to a $BB_{\text{corrected}} = 0.6i + 0.4z$ which is fully consistent with their interpolation.

2.4.2 Removal of sources with non-physical narrow-band detection

The wavelengths covered by NB816 are contained inside the i-band coverage. This means that sources with NB816 detection should be detected in i as long as the i image is deep enough. For each source,
Figure 3. Narrow-band excess diagram for COSMOS, UDS and SA22. We plot narrow-band excess (i broad-band magnitude minus NB816 magnitude) versus narrow-band NB816 magnitude. Grey points represent all detections after masking, removal of sources with non-physical narrow-band and cosmic rays. Green points represent line emitters, obtained by applying the EW and Σ cuts described in Section 3. For visual reference, we collapsed the points with no i detection in the top region of the plots. The Σ line shown in this figure is the median value from small sub-fields which we created inside each field.

we compute the expected i magnitude if it only had emission inside NB816. If the measured i magnitude of a source is fainter than this value and the depth of the i image is sufficient to detect it, we remove it from our sample. This step mainly removes variable sources (such as supernovae and moving sources) and spurious sources that are detected only in the narrow-band images and sources with boosted narrow-band emission from e.g. diffraction patterns.

2.4.3 Cosmic ray removal

Cosmic rays may become artefacts in images. This problem can be avoided through stacking of several frames. However, in our shallower SA22-wide data, the small number of frames causes a less efficient removal of such artefacts during stacking. We created an automated procedure to identify and remove cosmic rays from our sample.

For each source detected in the NB816 imaging, we measure the standard deviation in boxes of 5×5 pixels around each source. Cosmic rays can be easily identified by their high standard deviation, several times higher than any real source. We apply a cautious cut to make sure we do not lose any real sources. Since we were cautious with this step, we also visually inspect all the final LAE candidates to identify any cosmic ray that was not excluded.

3 SELECTING NB816 LINE EMITTERS

For the selection of line emitters, we apply similar criteria to e.g. Sobral et al. (2013) and Matthee et al. (2015), relying on two parameters: EW and Σ. The EW is the ratio between the flux of an emission line and the continuum flux. It can be expressed as

$$EW_{\text{obs}} = \frac{f_{\text{NB}} - f_{\text{BB}}}{f_{\text{BB}} - f_{\text{NB}}(\Delta \lambda_{\text{NB}}/\Delta \lambda_{\text{BB}})},$$

where $\Delta \lambda_{\text{NB}}$ and $\Delta \lambda_{\text{BB}}$ are the FWHM of the narrow-band and broad-band filters ($\Delta \lambda_{\text{NB}} = 120 \text{ Å}$; $\Delta \lambda_{\text{BB}} = 1349 \text{ Å}$) and f_{NB} and f_{BB} are the flux densities measured in the two filters.

The second parameter, Σ, (e.g. Bunker et al. 1995), is used to assure that the excess of the NB816 relative to the broad-band is significantly above the noise. It can be written as (Sobral et al. 2013)

$$\Sigma = \frac{1 - 10^{-0.4(BB-NB)}}{10^{-0.4(ZP-NB)} \sqrt{\text{rms}_{\text{BB}}^2 + \text{rms}_{\text{NB}}^2}},$$

where BB and NB are the broad-band and the corrected narrow-band magnitudes (in this case, NB816 and i), ZP is the zero-point of the image (set to 30) and rms is the root mean square of the background of the respective image.

To select our sample of line emitters, we apply the following selection criteria:

1. $i - NB816 > 0.8$
2. $\Sigma > 3$.

The narrow-band excess criteria $i - NB816 > 0.8$ corresponds to a rest-frame EW of 25 Å for a $z = 5.7$ LAE. This cut is similar to the one used by Hu et al. (2010) and Matthee et al. (2015) for...
In order to select LAEs and remove low-redshift interlopers, we use the Lyman-break technique and identify the break at rest frame 912 Å, blueward of the Lyman limit (although, in practice, at $z = 5.7$, radiation blueward of Lyα is almost fully absorbed by the Lyα forest, e.g. Madau 1995). LAEs at $z = 5.7$ should have no strong detection in optical wavelengths below the i band. A weak r-band detection is possible if the IGM is relatively transparent (and there are few Lyα forest lines). To summarize, we apply the following criteria, similar to Ouchi et al. (2008)

$$B > B_{250} \wedge V > V_{250} \wedge [r > r_{250} \lor (r < r_{250} \wedge r - i > 1.0)]$$

where B, V, r and i are the 2 arcsec magnitudes in the respective bands and the 250 subscript indicates the 2 arcsec depth for the images of the respective bands (see Table 2). As there are no available BV data over the full SA22, we apply a small variation of equation (4) where use ug instead:

$$u > u_{250} \wedge g > g_{250} \wedge [r > r_{250} \lor (r < r_{250} \wedge r - i > 1.0)]$$

where u, g are the 2 arcsec magnitudes in the respective bands. This criteria ensures we select sources with no detection in the BVg bands but can have some detection in r as long as there is a strong $i - r$ colour break.

In extreme cases, $z \sim 1$ line emitters with a strong Balmer-break could mimic the Lyman-break that we detect. Fortunately, those sources can be identified by their red colours. Similar to Matthee et al. (2015), we reject sources which have significant red colours in the observed NIR bands. Thus, we consider sources with $J - K > 0.5$ to be interlopers. This additional NIR criterion is most important in SA22, where the optical data are relatively shallow.

In order to ensure that our candidates are real detections and not spurious sources, we visually inspect each one of the remaining candidates. We first inspect sources in the narrow-band images and reject any fake detections (usually originated by e.g. diffraction patterns from bright sources which were not completely masked). We also visually check that each source does not have an optical detection blueward of the Lyman-break. To do so, we create an optical stack using the available optical bands for each field (BVg for COSMOS, BV for UDS and ug for SA22), which significantly increases the depth of our images.

To summarize, we select line emitters as Lyα at $z = 5.7$, if:

(i) They have no optical detection blueward of the Lyman-break (equation 4 or 5).

(ii) They satisfy $J - K < 0.5$, if detected in the NIR.

(iii) They pass visual inspection, which includes both reality of NB excess (and checking for variability and/or moving sources) and no detection in optical bands.

3.3 Comparison with other samples of LAEs at $z = 5.7$

We compare our sample of LAEs with the spectroscopically confirmed sources at $z = 5.7$ provided by Ouchi et al. (2008) (UDS), Hu et al. (2010) (SA22-deep) and Mallery et al. (2012) (COSMOS). We find that we recover 46 spectroscopically confirmed sources from previous studies which are above our conservative Σ detection threshold (other studies typically only apply an EW cut) and that are not in our conservative masked regions.

3.4 Final sample of LAEs at $z = 5.7$

Across the COSMOS, UDS and SA22 fields we identify a total of 514 $z = 5.7$ LAE candidates (currently 46 are spectroscopically confirmed), spanning a range of Lyα luminosities of $10^{42.5} - 10^{44}$ erg s$^{-1}$. We will explore the properties of these sources in the following sections. Table 3 shows a summary of the number of sources after each selection criterion. The spatial distribution of the LAEs in all fields can be seen in Fig. 2.

4 COMPUTING THE Lyα LF

4.1 Completeness correction

Faint sources and sources with weak emission lines may be missed by our selection criteria, causing the measured number density of
sources to be underestimated. To estimate the line-flux completeness, we follow Sobral et al. (2013), adapted for Ly\textsubscript{\alpha} studies by Matthee et al. (2015): we construct a sample of high-redshift non-line emitters selected through a simple colour break selection ($r - i > 1.5$) and add non-emitters with photometric or spectroscopic redshift greater than 4. Using these sources, in steps of increasing line-flux, we artificially increase their NB816 and r-band fluxes and then apply our selection criteria on these simulated sources. By determining the fraction that we retrieve as a function of added line-flux, we obtain a completeness estimation for each luminosity bin, which we apply to each bin in our LF. A higher completeness correction is measured for the fainter sources as they are much easier to be missed. The line-flux completeness per luminosity bin for each field is presented in Table A1. The completeness-corrected number counts in the different observed fields as a function of their Ly\textsubscript{\alpha} luminosity are shown in Fig. 5 and in Table A3.

4.2 Filter profile correction

The narrow-band filter transmission NB816 has a Gaussian distribution with a lower transmission in the wings (Fig. 1). Sources which have a redshift in the borders of the filter will only be observed at a fraction of their Ly\textsubscript{\alpha} luminosity (see e.g. Hu et al. 2010). It is necessary to apply a correction factor that compensates the fact that the filter is not top-hat, otherwise, the number densities of bright LAEs will be systematically underestimated. We apply a correction similar to Matthee et al. (2015). We use the Schechter fit from our data to generate the Ly\textsubscript{\alpha} luminosity of 1 million sources at a random redshift between $z = 5.65$ and 5.75 (corresponding to the edges of NB816). For each luminosity bin, the correction factor is determined from the detection ratio of these fake sources retrieved with the two different filter profiles. The effect of the filter profile correction of our LF is shown in Fig. A1. The correction is higher for the brightest bins as these LAEs will likely be observed at a fraction of their luminosity due to the filter not being top-hat.

4.3 Aperture corrections

Due to instrumental/observational effects (e.g. seeing/PSF) and mostly due to Ly\textsubscript{\alpha} photons easily scattering within haloes, Ly\textsubscript{\alpha} flux can be significantly extended (e.g. Momose et al. 2014; Borissova et al. 2016; Matthee et al. 2016a; Wisotzki et al. 2016). The 2 arcsec apertures we use are $3-4 \times$ the PSF, and thus for point-like sources, we do not expect aperture corrections to be important, but if sources are physically extended, 2 arcsec apertures may lead to missing flux. We investigate this by comparing the NB816 fluxes measured in 2 arcsec with those measured with MAG-AUTO and study any necessary correction as a function of observed 2 arcsec flux. We find little to no dependence up to at least the highest fluxes, and derive a median correction of $+0.02$ in Ly\textsubscript{\alpha} luminosity, which we apply (see further discussion in Section 5.3).

4.4 Interloper correction

While in COSMOS and UDS, the available broad-band data allow us to clearly identify and remove interlopers/lower redshift line emitters, in SA22 this is not necessarily the case, particularly for the sources with the faintest continuum. In order to mitigate this, we use our combined COSMOS and UDS with full information, but study the data set assuming the depths of broad-band imaging were the same as SA22-deep and SA22-wide. We find that, as expected, the contamination is higher (10 per cent higher) for SA22-like data sets. We therefore correct all our luminosity bins in SA22 for this expected extra contamination.

4.5 Obtaining a comparison LF at $z = 6.6$

In order to compare our results at $z = 5.7$, we explore the results and sample presented by Matthee et al. (2015) and apply any necessary...
corrections/modifications to derive a new, updated $z = 6.6 \text{ LF}$. We use the same methods for completeness and filter profile corrections. We compute the errors per bin by not only taking into account the Poissonian errors, but also by considering systematic errors due to the completeness and filter profile corrections. Furthermore, following our selection criteria, we also carefully check for any variable sources and/or moving sources which can contaminate the bright end. Matthee et al. (2015) applied a statistical correction for these potential contaminants, but we chose to investigate sources one by one, following what we do at $z = 5.7$. We note that such statistical correction works very well for COSMOS and UDS, but is a slight underestimation for SA22, as the number of moving sources in SA22 is significantly higher. None the less, we find that none of the results from Matthee et al. (2016a), which are based on spectroscopic follow-up (Sobral et al. 2015), have significantly changed: luminous LAEs ($L_{43.5} > 10^{43.5} \text{ erg s}^{-1}$) at $z = 6.6$ are more common ($\gtrsim 30$ times) than previously measured by smaller area studies (e.g. Ouchi et al. 2010). We note that we also apply an aperture correction to the $z = 6.6 \text{ LF}$ of $+0.11$, unchanged from Matthee et al. (2015).

5 RESULTS

5.1 The $z = 5.7 \text{ Ly} \alpha \text{ LF}$

5.1.1 Field to field variations

We group our LAEs in luminosity bins according to their Ly\,α luminosity. The observed number density in each bin is corrected for its corresponding line-flux completeness correction. We only include sources from sub-fields with a completeness higher than 25 per cent. The number density for each luminosity bin is calculated by multiplying the number of counts by the completeness factor, divided by the probed volume and bin width. The errors are Poissonian, but we add 30 per cent of the completeness correction in quadrature to obtain the final error per bin.

In Fig. 5, we show the $z = 5.7 \text{ Ly} \alpha$ luminosity computed per field. We find that there is significant scatter, of the order of ± 0.4 dex in the number densities, at least for the range of luminosities where we can compare results from all our fields. It may well be that such scatter is reduced for fainter sources, but our sample does not allow us to constrain that as we can only investigate that with a single field (UDS) – see Ouchi et al. (2008). Our results per field are also presented in Table A2. Our results highlight the importance of probing multiple fields and caution the overinterpretation of single field ‘over’ or ‘under’ densities, either in the context of reionization or of structure formation.

5.1.2 Comparison with other $z = 5.7$ surveys

Several surveys have published LFs of $z = 5.7$ LAEs, which we compare with our results (see Fig. 5). We compare our results with Westra et al. (2006), Murayama et al. (2007) (COSMOS), Ouchi et al. (2008) (UDS) and Hu et al. (2010) (SA22-deep, SSA17, A370 and GOODS-N) in Fig. 5. While there are some differences between our selection criteria and the ones applied in these studies, overall we find very good agreement. Moreover, the variance that we see from field to field (see Fig. 5) is sufficient to explain any subtle differences between our results per field and those in the literature.

For the COSMOS field, Murayama et al. (2007) applies a much more conservative Σ cut (corresponding to roughly $\Sigma > 5$) which leads to missing fainter LAEs. The different Σ cut, together with a different completeness correction (ours is based on line-flux or luminosity, while Murayama et al. 2007 does a correction based on detection completeness) easily explains why our fainter luminosity bin ($\log_{10} L_{43.5} = 42.9 \text{ erg s}^{-1}$) has a higher number density, which fully agrees with our UDS and SA22 estimates, along with those presented in Ouchi et al. (2008).

Within the errors, our results are also fully consistent with those by Ouchi et al. (2008), at all luminosities. Our brightest bin ($\log_{10} L_{43.5} = 43.7 \text{ erg s}^{-1}$) is populated only by our COSMOS and SA22-wide fields, as those have the largest areas (sufficiently large to probe the bright end), but we note that the estimates from COSMOS and SA22-wide fully agree, while we are also in very good agreement with the results from Hu et al. (2010). SA22-deep is both our smallest contiguous field and also the one with the highest number densities (although generally agreeing within the errors with the other fields, particularly given the variance seen). In the SA22-wide field, we find number densities consistent with Ouchi et al. (2008) up to $\log_{10} L_{43.5} = 43.5 \text{ erg s}^{-1}$ and a brighter bin consistent with our COSMOS number density. The bright end of the $\text{Ly} \alpha$ LF seems to point towards a deviation from the Schechter fit presented in Ouchi et al. (2008), better explained by a less accentuated exponential drop, or by a single power law.

5.1.3 The combined $z = 5.7 \text{ Ly} \alpha \text{ LF}$

We combine our data from the different fields to obtain a combined Ly\,α LF at $z = 5.7$. We show the results in Fig. 6 and Table A3.

We fit a Schechter function (Schechter 1976), defined by three parameters: the power-law slope α, the characteristic number density Φ^* and the characteristic luminosity L^*. In Table 4, we present best-fitting parameters of the Schechter function at $z = 5.7$. We find the faint end slope α to be particularly steep: $\alpha = -2.3^{+0.4}_{-0.3}$. This is in very good agreement with recent results from Dressler et al. (2015) at the same redshift who found α to be $-2.35 < \alpha < -1.95$ (while we find $-2.6 < \alpha < -1.9$, 1σ). It is therefore clear that the Ly\,α LF is very steep just after reionization and may be steeper than the UV LF at the same redshift ($\alpha \approx -1.9$; e.g. Bouwens et al. 2015). Note that such a steep faint-end slope at $z = 5.7$ is already preferred by the fit in Ouchi et al. (2008) and is consistent with theoretical expectations (Gronke et al. 2015).

We also fit our LF by fixing the faint-end slope to $\alpha = -2.0$ and -1.5 and allow Φ^* and L^* to vary. This allows our results to be directly compared with other studies which fixed α to the same values. The results are presented in Table 4.

5.2 Evolution from $z = 5.7$ to $z \sim 7$ and beyond

In Section 4.5, we discuss the steps we took to obtain a comparable and updated $z = 6.6 \text{ Ly} \alpha$ LF, based on Matthee et al. (2015). We show the recomputed $z = 6.6 \text{ Ly} \alpha$ LF, and a comparison with our $z = 5.7$ measurement in Fig. 6. The recomputed $z = 6.6 \text{ LF}$ is fully presented in Table A3.

We find that both $z = 6.6$ and 5.7 are best fit with a very steep α of ~ 2.3. At a fixed α, our results show a significant decline in the number density of the more ‘typical’/faint LAEs from $z = 5.7$ to 6.6, with ϕ^* declining by 0.5 dex. However, and in very good agreement with Matthee et al. (2015), we find little to no evolution at the bright end, with L^* showing no significant evolution, or only a very weak increase of ~ 0.05–0.1 dex from $z = 5.7$ to 6.6 (depending on α). In practice, our results show that the number density of bright LAEs ($L_{43.5} > 10^{41.5} \text{ erg s}^{-1}$) shows no significant
Figure 6. Evolution of the Lyα LF from z = 5.7 to 6.6. The z = 6.6 LF is our updated version from Matthee et al. (2015), see Section 4.5. The colored regions around the best Schechter fit show the 1σ error in L_\star. We observe a strong decrease in the number density of the fainter LAEs as we increase with redshift up to $z = 6.6$ and also $z > 7$ (Ota et al. 2010; Shibuya et al. 2012; Konno et al. 2014). This decrease can likely be explained by a more neutral IGM as we go deeper into the reionization epoch. However, there seems to be no evolution for the brighter sources, which can likely be explained by a preferential reionization around the brightest sources. There is currently a lack of comparable surveys at $z > 7$ at the brightest luminosities.

Table 4. Parameters for the best Schechter function fits for the Lyα LFs at $z = 5.7$ and 6.6 (recomputed Matthee et al. 2015). We allow α to vary, but we also fix α to -2.0 and -1.5.

Redshift	α	$\log_{10} L_{\text{Ly}\alpha}^\star$ (erg s^{-1})	$\log_{10} \Phi^\star$ (Mpc^{-3})
$z = 5.7$	$-2.3^{+0.4}_{-0.3}$	$43.46^{+0.50}_{-0.22}$	$-4.02^{+0.48}_{-0.93}$
$z = 5.7$	-1.5 (fix)	$43.06^{+0.05}_{-0.04}$	$-3.25^{+0.09}_{-0.10}$
$z = 5.7$	-2.0 (fix)	$43.25^{+0.09}_{-0.06}$	$-3.63^{+0.12}_{-0.16}$
$z = 6.6$	$-2.3^{+0.4}_{-0.3}$	$43.44^{+0.35}_{-0.18}$	$-4.48^{+0.43}_{-0.68}$
$z = 6.6$	-1.5 (fix)	$43.13^{+0.04}_{-0.03}$	$-3.73^{+0.07}_{-0.06}$
$z = 6.6$	-2.0 (fix)	$43.30^{+0.07}_{-0.05}$	$-4.13^{+0.10}_{-0.10}$

Figure 6 also presents results from several $z > 7$ narrow-band surveys from the literature, which we compare with $z = 6.6$ and 5.7. The trend that we see from $z = 5.7$ to 6.6 of significant decrease in the number density of faint LAEs seems to continue at a fast pace to $z \sim 7$ and beyond (Ota et al. 2010; Shibuya et al. 2012; Konno et al. 2014). We provide a more detailed discussion about the differential evolution of the Lyα as an imprint of reionization in Section 6. There is currently a lack of comparable surveys at $z > 7$ at the brightest luminosities, so it is not yet possible to test whether the lack of evolution at the bright end still holds at $z > 7$.

5.3 The Lyα sizes and evolution at $z = 5.7$–6.6

Since the Lyα transition is resonant, Lyα photons scatter in a medium with neutral hydrogen. Because of this, Lyα photons tend to escape over much larger radii than their UV and Hα counterparts, making them observable as Lyα haloes (e.g. Rauch et al. 2008; Steidel et al. 2011; Momose et al. 2014; Matthee et al. 2016a). Therefore, the aperture that is used to measure Lyα is critical (e.g. Wisotzki et al. 2016). Typically, LAE surveys have attempted to take extended Lyα emission into account by using MAG-AUTO measurements (e.g. Ouchi et al. 2010; Konno et al. 2016) or relatively large apertures (e.g. Murayama et al. 2007; Hu et al. 2010, who use 3 arcsec apertures at $z = 5.7$). However, the total measured magnitude with MAG-AUTO depends on the depth of the narrow-band imaging, such that a comparison between surveys and redshifts is challenging, particularly as Wisotzki et al. (2016) show that Lyα extends well beyond the typical limiting surface brightness of narrow-band surveys.

While we use fixed 2 arcsec apertures in similar excellent seeing conditions at both $z = 5.7$ and 6.6 (as this allows us to understand the completeness and selection function in an optimal way; cf. Matthee et al. 2015), we correct for any flux missed as described in Section 4.3.
The median difference in $\text{MAG}^\text{-AUTO}$ luminosity and luminosity within 2 arcsec apertures in bins of the 2 arcsec aperture $\text{Ly}\alpha$ luminosity for LAE samples at $z = 5.7$ and 6.6. The dashed and dash–dotted grey lines indicate the median of all LAEs in the sample, which is obviously dominated by low luminosity sources. At both redshifts, more centrally luminous LAEs also have relatively more flux at larger radii (which is captured by $\text{MAG}^\text{-AUTO}$). At faint central luminosities, LAEs at $z = 6.6$ appear more extended, which could be due to increased scattering in H I around galaxies. We note that this may be one of the causes for the apparent evolution in the $\text{Ly}\alpha$ LF, and may also be important to consider when interpreting the spectroscopic follow-up of UV-selected galaxies with low $\text{Ly}\alpha$ luminosities, as slits will recover even less of the total flux.

Matthee et al. (2015) found that 2 arcsec apertures systematically underestimate $\text{Ly}\alpha$ luminosities at $z = 6.6$ (compared to the $\text{MAG}^\text{-AUTO}$) with a median offset of 0.11 dex over the spectroscopically confirmed sample of LAEs (confirmed in Ouchi et al. 2010). Here, we extend this analysis to the full sample of sources at both $z = 5.7$ and 6.6. We find that the median offset between the $\text{MAG}^\text{-AUTO}$ luminosity and the 2 arcsec aperture offset at $z = 6.6$ is 0.11 dex, while it is only 0.02 dex at $z = 5.7$; see Fig. 7. The latter explains why our 2 arcsec measurements result in very similar spectroscopic number densities as literature studies with larger apertures at $z = 5.7$, see Fig. 5.

By splitting the sample of LAEs in bins of $\text{Ly}\alpha$ luminosity (in 2 arcsec apertures), we find that at $z = 5.7$, the offset increases slightly with increasing $\text{Ly}\alpha$ luminosity (see Fig. 7). Specifically, the most luminous LAEs have larger $\text{Ly}\alpha$ haloes (and more flux at larger radii) than the typical fainter ones. Interestingly, we find a different behaviour at $z = 6.6$. While the brightest $z = 6.6$ $\text{Ly}\alpha$ seem to be as extended as those at $z = 5.7$ (these are the ones that may have already been able to fully ionize the surrounding environment), fainter LAEs at $z = 6.6$ are all more extended than comparable sources at $z = 5.7$. Together with the differential evolution of the $\text{Ly}\alpha$ LF, our results provide strong evidence for reionization effects being much stronger for the faint sources than for the bright ones. We discuss this trend further in Section 6.

A similar but more careful analysis of the extent of $\text{Ly}\alpha$ emission at $z = 5.7$–6.6 than our own has been done by Momose et al. (2014), who created stacked narrow-band and broad-band images of the LAEs in UDS from Ouchi et al. (2008, 2010). They observed that $\text{Ly}\alpha$ is extended, being more extended than their UV counterpart (while also being more extended than the PSF of their images; a similar trend is found for individual LAEs by e.g. Wisotzki et al. 2016). Momose et al. (2014) found evidence of an increase in the scalelength of $\text{Ly}\alpha$ from $z = 5.7$ to 6.6. However, they did not separate their sample in bins of luminosity and their results are obtained with median stacking. This means that the faintest sources dominate (as there are more faint sources than luminous ones) and that these results are more representative of a ‘typical’ LAE, with $L_{L_{\text{Ly}\alpha}} \sim 10^{42.6}$ erg s$^{-1}$. The median evolution in the scalelength of $\text{Ly}\alpha$ haloes from LAEs estimated in Momose et al. (2014) is thus consistent with the difference between $\text{MAG}^\text{-AUTO}$ and 2 arcsec measurements that we find for relatively faint LAEs between $z = 5.7$ and 6.6.

6 DISCUSSION: IMPRINTS FROM REIONIZATION?

As noted before, the observed $\text{Ly}\alpha$ luminosity at a fixed spatial scale is expected to decrease in the reionization era, as an increasingly neutral IGM scatters $\text{Ly}\alpha$ photons into larger, extended haloes (e.g. Dijkstra 2014). Our results are consistent with witnessing such predictions directly. Here, we discuss the differences we observe in the $\text{Ly}\alpha$ LF between $z = 5.7$ and 6.6, and also our results on the extent of LAEs at $z = 5.7$ and 6.6. For earlier work, see e.g. Dijkstra, Lidz & Wyithe (2007), Ouchi et al. (2010) and Hu et al. (2010).

We observe strong differential evolution of the $\text{Ly}\alpha$ LF from $z \sim 6$ to 7, with a significant decrease (~ 0.5 dex) in the number density for $\text{Ly}\alpha$ luminosities below L^*. The drop in the observability of faint LAEs may well be explained by a larger fraction of neutral IGM at $z > 6$ caused by reionization not being completed. The brightest emitters would not suffer from such a decline because their strong $\text{Ly}\alpha$ emission is easier to be observed, as previously illustrated by the simple toy model in Matthee et al. (2015). This model assumes that the $\text{Ly}\alpha$ luminosity scales with the ionizing output and LAEs are only observed if they are either capable of ionizing the IGM around them, or are strongly clustered. To first order, a stronger ionizing output for brighter LAEs is expected because $\text{Ly}\alpha$ is a recombination line (such that at fixed escape fraction, a higher $\text{Ly}\alpha$ luminosity scales with the number of ionizing photons). Also, as shown in Matthee et al. (2016b), LAEs at $z = 2.2$ typically produce more ionizing photons per unit UV luminosity than more typical galaxies such as H 2 emitters. Furthermore, as hypothesized by Dijkstra & Gronke (2016), ISM conditions which favour the escape of $\text{Ly}\alpha$ photons also likely favour the escape of Lyman continuum (Lyc) photons (for example due to a porous ISM), such that in addition to producing more ionizing photons, LAEs could also leak more ionizing photons into the IGM.

Recent evidence from Stark et al. (2016) shows that the fraction of bright UV-selected galaxies (LBGs) with strong $\text{Ly}\alpha$ emission is much higher than was previously found (e.g. Pentericci et al. 2014; Schenker et al. 2014; Schmidt et al. 2016) when they are selected on strong nebular lines (e.g. Hβ/[O III]). This is likely because UV-bright galaxies are in overdense regions and emit copious amount of ionizing radiation (inferred from observed high-ionization UV lines as C III] and their high-EW optical nebular lines). Such conditions may also favour the production of $\text{Ly}\alpha$ photons and lead to larger ionized bubbles. Therefore, these observations are in principle consistent with the observed evolution of the $\text{Ly}\alpha$ LF, where we observe reionization completing first around luminous LAEs.

A unique benefit of narrow-band $\text{Ly}\alpha$ observations over (slit) spectroscopy is that narrow-band imaging gives information on the spatial extent of $\text{Ly}\alpha$ emission, which could be connected to the neutral fraction of the IGM (e.g. Dijkstra & Loeb 2008). As we show in Fig. 7, we find that the median difference between 2 arcsec apertures and the total magnitude (as observed with $\text{MAG}^\text{-AUTO}$) is
much smaller at $z = 5.7$ than at 6.6. Most interestingly, the major difference is found at the faintest luminosities. At $z = 6.6$, LAEs which have a low central luminosity have a relatively much larger total luminosity than at $z = 5.7$. This means that at a fixed surface brightness limit (note that the limiting surface brightness at $z = 6.6$ is actually even slightly higher), faint LAEs are more extended at $z = 6.6$ than at $z = 5.7$. For more luminous LAEs, the difference is much smaller. This effect can easily be explained in the framework of the Matthee et al. (2015) toy-model: faint LAEs are surrounded by a relatively more neutral IGM, such that there is more resonant scattering leading to more extended emission.

The evolution of the Lyα LF and the extent of Lyα for different luminosities may very well be explained by a patchy reionization scenario where the IGM is ionized first around luminous LAEs. However, internal effects from galaxies may also be important. Furthermore, studying the clustering of both bright and faint LAEs and how it evolves from e.g. $z = 5.7$ to 6.6 and beyond (e.g. Mesinger 2010; Ouchi et al. 2010) will provide the extra, necessary constraints. A similar analysis with future larger samples of LAEs (for example, from the Hyper Suprime-Cam survey) will be very useful to confirm the observed trends.

Our results also mean that a careful approach is required in order to interpret the observed Lyα fraction for samples of LBGs at different redshifts in terms of a varying neutral fraction due to reionization, because different samples of LBGs show very different Lyα fractions. Curtis-Lake et al. (2012) found a remarkably high fraction of strong LAEs amongst luminous LBGs, Stark et al. (2016) found a higher Lyα fraction for LBGs selected on strong nebular emission and Erb et al. (2016) found that $z \sim 2$ galaxies with extreme line ratios have high Lyα fractions. Moreover, our results show that typical, faint LAEs become more extended as we go into the reionization epoch, with the same (or even less) flux being spread over larger areas. This is an additional challenge for the traditional slit spectroscopy follow-up, which will struggle to detect any Lyα if the flux is significantly extended.

7 CONCLUSIONS

We have constructed the largest Lyα narrow-band survey at $z = 5.7$, when reionization is close to complete. We have surveyed a total area of 7 deg2 and a volume of 6.3×10^8Mpc3 at $z = 5.7$, covering the COSMOS, UDS and SA22 fields. Here we summarize the main conclusions.

(i) By identifying strong line emitters with a Lyman break, we find 514 LAE candidates at $z = 5.7$ with EW$_0 > 25$ Å (EW$_0 \sim 25$–1000 Å) and luminosities ranging from 10^{42} to 10^{46} erg s$^{-1}$, in a single, homogeneous data set.

(ii) We find that cosmic variance plays a major role, with variations of ± 0.4 dex in number densities of LAEs from field to field.

(iii) By combining all our fields and overcoming cosmic variance, we find that the faint-end slope of the $z = 5.7$ Lyα LF is very steep, with $\alpha = -2.3^{+1.0}_{-0.1}$. If we fix $\alpha = -2.0$, we find $L^* = 10^{43.2^{+2.0}_{-0.8}}$ erg s$^{-1}$ and $\Phi^* = 3.60^{+1.22}_{-0.16}$ Mpc$^{-3}$.

(iv) We also present an updated $z = 6.6$ Lyα LF, based on comparable volumes, and obtained with the same methods, which we directly compare with that at $z = 5.7$.

(v) We find significant evolution from $z = 5.7$ (after reionization) to $z = 6.6$ (within the epoch of reionization) at the faint end. We find that the fainter the luminosity, the stronger the drop in the number density of LAEs. The strong decrease of the number density of faint LAEs continues to $z \sim 7$.

(vi) At bright Lyα luminosities ($L_{Ly\alpha} > 10^{43.5}$ erg s$^{-1}$), we find no evolution in the number density of LAEs when we enter the reionization era. This is consistent with bright LAEs being preferentially observable because they already are in ionized bubbles even at $z \sim 7$.

(vii) Faint LAEs at $z = 6.6$ show more extended haloes than those at $z = 5.7$, suggesting that neutral Hydrogen plays a more important role of scattering Lyα photons at $z = 6.6$.

All together, our results indicate that we are observing patchy reionization happening first around the brightest LAEs, allowing the number densities of those sources to remain unaffected by the increase of neutral Hydrogen from $z \sim 5$ to 7. We observe a preferential evolution of the faint end of the Lyα LF from $z = 5.7$ to 6.6. There is a decrease in the faint end, while the bright end shows little to no evolution. We also observe no evolution in the sizes of the brighter emitters, which could be interpreted as showing no evidence of extra scattering around them from $z = 5.7$ to 6.6, while faint sources show a significant difference, presenting much more flux at larger radii, which could be explained by faint LAEs being located in a more neutral IGM leading to more resonant scattering and extended emission. The spectroscopic confirmation of relatively bright LAEs beyond $z \sim 7$ and approaching $z \sim 9$ (Oesch et al. 2015; Zitrin et al. 2015) may already be hinting that our results may hold to even higher redshifts.

The nature and diversity of bright Lyα sources at $z = 6.6$, which we find to have essentially the same number density as those at $z = 5.7$, are starting to be unveiled. Spectroscopic follow-up (e.g. Ouchi et al. 2013; Sobral et al. 2015; Zabl et al. 2015; Hu et al. 2016), detailed modelling (e.g. Hartwig et al. 2016; Agarwal et al. 2016; Dijkstra, Gronke & Sobral 2016; Smidt, Wiggins & Johnson 2016; Smith, Bromm & Loeb 2016; Visbal, Haiman & Bryan 2016) and other observations with HST and ALMA (Ouchi et al. 2013; Schaerer et al. 2015; Sobral et al. 2015; Bowler et al. 2016) are revealing a surprising diversity. Current results indicate that these sources may have a range of powering sources (from metal poor populations to multiple stellar populations and also AGN, including potentially direct collapse black holes). Regardless of their nature, their observability requires the production and emission of the necessary amount of ionizing LyC photons capable of ionizing a large enough local bubble to make them observable as bright Lyα sources already at $z = 6.6$. Thus, even though these sources are not as abundant as the more typical, faint sources, they may well play an important role in cosmic reionization, at least at very early stages, a scenario which would be in agreement with what is seen by Matthee et al. (2016b). Further observations of our sample of bright $z = 5.7$ sources and of much larger, statistical samples at $z \sim 5$–7 will certainly shed light over many of the current open questions, while the availability of JWST will provide a revolutionary window into the physical conditions within these sources.

ACKNOWLEDGEMENTS

We thank the anonymous referee for useful and constructive comments and suggestions which greatly improved the quality and clarity of our work. The authors acknowledge financial support from the Netherlands Organisation for Scientific research (NWO) through a Veni fellowship. SS and DS acknowledge funding from FCT through an FCT Investigator Starting Grant and Start-up Grant (IF/01154/2012/CP0189/CT0010). SS also acknowledges support from FCT through the research grants UID/FIS/04434/2013 and
are most fortunate to have the opportunity to conduct and explore observations from this mountain.

Finally, the authors acknowledge the unique value of the publicly available programming language PYTHON, including the NUMPY, PYFITS, MATPLOTLIB, SCIPY and ASTROPY (Astropy Collaboration et al. 2013) packages.

REFERENCES

Adams J. J. et al., 2011, ApJS, 192, 5
Agarwal B., Johnson J. L., Zachrisson E., Labbe I., van den Bosch F. C., Natarajan P., Khochfar S., 2016, MNRAS, in press
Astropy Collaboration et al., 2013, A&A, 558, A33
Bacon R. et al., 2015, A&A, 575, A75
Bayliss M. B., Wyits E., Sharon K., Gladders M. D., Hennawi J. F., Koester B. P., Dahle H., 2010, ApJ, 720, 1559
Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Vennmans B. P., 2015, MNRAS, 447, 3402
Bertin E., 2006, in Gabriel C., Arviset C., Ponz D., Enrique S., eds, ASP Conf. Ser. Vol. 351, Astronomical Data Analysis Software and Systems XI. Astron. Soc. Pac., San Francisco, p. 112
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Bertin E., Mellier Y., Radovich M., Missonnier G., Didelon P., Morin B., 2002, in Bohleender D. A., Durand D., Handley T. H., eds, XV. Astron. Soc. Pac., San Francisco, p. 112
Blanc G. A. et al., 2011, ApJ, 736, 31
Borisova E. et al., 2016, preprint (arXiv:1605.01422)
Boulade O. et al., 2003, in Iye M., Moorwood A. F. M., eds, Proc. SPIE Conf. Ser. Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes. SPIE, Bellingham, p. 72
Bouwens R. J. et al., 2015, ApJ, 803, 34
Bowler R. A., Dunlop J. S., McLaren R. J., McLeod D. L., 2016, preprint (arXiv:1605.05325)
Bunker A. J., Warren S. J., Hewett P. C., Clements D. L., 1995, MNRAS, 273, 515
Capak P. et al., 2007, ApJS, 172, 99
Capak P. L. et al., 2015, Nature, 522, 455

Evolution of the Lya LF at z = 5.7–6.6

Caruana J., Bunker A. J., Wilkins S. M., Stanway E. R., Lacy M., Jarvis M. J., Lorenzoni S., Hickey S., 2012, MNRAS, 427, 3055
Caruana J., Bunker A. J., Wilkins S. M., Stanway E. R., Lorenzoni S., Jarvis M. J., Ebert H., 2014, MNRAS, 443, 2831
Casali M. et al., 2007, A&A, 467, 777
Cassata P. et al., 2011, A&A, 525, A143
Cassata P. et al., 2015, A&A, 573, A24
Castellano M. et al., 2016, ApJ, 818, L3
Cirasuolo M. et al., 2007, MNRAS, 380, 585
Cowie L. L., Hu E. M., 1998, AJ, 115, 1319
Curtis-Lake E. et al., 2012, MNRAS, 422, 1425
Dijkstra M., 2014, Publ. Astron. Soc. Aust., 31, e040
Dijkstra M., Gronke M., 2016, preprint (arXiv:1604.08208)
Dijkstra M., Loeb A., 2008, MNRAS, 386, 492
Dijkstra M., Lidz A., Wyithe J. S. B., 2007, MNRAS, 377, 1175
Dijkstra M., Gronke M., Sobral D., 2016, ApJ, 823, 74
Dressler A., Henry A., Martin C. L., Sawicki M., McCarthy P., Villanueva E., 2015, ApJ, 806, 19
Dunlop J. S., McLaren R. J., Robertson B. E., Ellis R. S., Stark D. P., Cirasuolo M., de Ravel L., 2012, MNRAS, 420, 901
Dunlop J. S. et al., 2016, preprint (arXiv:1606.00227)
Erb D. K., Pettini M., Steidel C. C., Strom A. L., Rudie G. C., Trainor R. F., Shapley A. E., Reddy N. A., 2016, preprint (arXiv:1605.04919)
Fan X. et al., 2006, ApJ, 132, 117
Finkelstein S. L. et al., 2015, ApJ, 810, 71
Fontana A. et al., 2010, ApJ, 725, L205
Furusawa H. et al., 2008, ApJS, 176, 1
Gronke M., Dijkstra M., Trenti M., Wyithe S., 2015, MNRAS, 449, 1284
Hartwig T. et al., 2016, MNRAS, 462, 2184
Hayes M., Schaerer D., Ostdin G., 2010, A&A, 509, L5
Hayes M., Schaerer D., Ostdin G., Mas-Hesse J. M., Atek H., Kunth D., 2011, ApJ, 730, 8
Hu E. M., Cowie L. L., Barger A. J., Capak P., Kakazu Y., Trouille L., 2010, ApJ, 725, 394
Hu E. M., Cowie L. L., Songaila A., Barger A. J., Rosenthaler B., Wold I., 2016, ApJ, 825, L7
Iye M. et al., 2006, Nature, 443, 186
Karman W. et al., 2015, A&A, 574, A11
Kashikawa N. et al., 2011, ApJ, 734, 119
Khostovan A. A., Sobral D., Mobasher B., Best P. N., Smail I., Stott J. P., Hemmatti S., Nayyeri H., 2015, MNRAS, 452, 3948
Khostovan A. A., Sobral D., Smail I., Darvish B., Nayyeri H., Hemmatti S., Stott J. P., 2016, preprint (arXiv:1604.02456)
Kim J.-W., Im M., Lee S.-K., Edge A. C., Wake D. A., Merson A. I., Jeon Y., 2015, ApJ, 806, 189
Konno A. et al., 2014, ApJ, 797, 16
Konno A., Ouchi M., Nakajima K., Duval F., Kasakabe H., Ono Y., Shimakawa K., 2016, ApJ, 823, 20
Laigle C. et al., 2016, ApJ, 822, 24
Lawrence A. et al., 2007, MNRAS, 379, 1599
Ly C. et al., 2007, ApJ, 657, 738
Ly C., Lee J. C., Dale D. A., Momcheva I., Salim S., Staudaher S., Moore C. A., Finn R., 2011, ApJ, 726, 109
McCracken H. J. et al., 2012, A&A, 544, A156
Madau P., 1995, ApJ, 441, 18
Madau P., Dickinson M., 2014, ARA&A, 52, 415
Maiolino R. et al., 2015, MNRAS, 452, 54
Malhotra S., Rhoads J. E., 2004, ApJ, 617, L5
Mallery R. P. et al., 2012, ApJ, 760, 128
Matthee J. et al., 2014, MNRAS, 440, 2375
Matthee J., Sobral D., Santos S., Röttgering H., Darvish B., Mobasher B., 2015, MNRAS, 451, 400
Matthee J., Sobral D., Oteo I., Best P., Smail I., Röttgering H., Paulino-Alonso A., 2016a, MNRAS, in press
Matthee J., Sobral D., Best P., Khostavan A. A., Oteo I., Bouwens R., Röttgering H., 2016b, preprint (arXiv:1605.08782)
Mesinger A., 2010, MNRAS, 407, 1328

MNRAS 463, 1678–1691 (2016)
S. Santos, D. Sobral and J. Matthee

Miyazaki S. et al., 2002, PASJ, 54, 833
Momose R. et al., 2014, MNRAS, 442, 110
Murayama T. et al., 2007, ApJS, 172, 523
Nilsson K. K. et al., 2007, A&A, 471, 71
Oesch P. A. et al., 2015, ApJ, 804, L30
Ono Y. et al., 2012, ApJ, 744, 83
Ota K. et al., 2010, ApJ, 722, 803
Ouchi M. et al., 2004, ApJ, 611, 660
Ouchi M. et al., 2008, ApJs, 176, 301
Ouchi M. et al., 2010, ApJ, 723, 869
Ouchi M. et al., 2013, ApJ, 778, 102
Partridge R. B., Peebles P. J. E., 1967, ApJ, 147, 686
Pentericci L. et al., 2014, ApJ, 793, 113
Pritchet C. J., 1994, PASP, 106, 1052
Rauch M. et al., 2008, ApJ, 681, 856
Rhoads J. E., Malhotra S., Dey A., Stern D., Spinrad H., Jannuzi B. T., 2000, ApJ, 545, L85
Rhoads J. E. et al., 2003, AJ, 125, 1006
Robertson B. E., Ellis R. S., Dunlop J. S., McLure R. J., Stark D. P., 2010, Nature, 468, 49
Sawicki M. et al., 2008, ApJ, 687, 884
Schaerer D., Boone F., Zamojski M., Staguhn J., Dessauges-Zavadsky M., Finkelstein S., Combes F., 2015, A&A, 574, A19
Schechter P., 1976, ApJ, 203, 297
Schenker M. A., Ellis R. S., Konidaris N. P., Stark D. P., 2014, ApJ, 795, 20
Schmidt K. B. et al., 2016, ApJ, 818, 38
Shibuya T., Kashikawa N., Ota K., Iye M., Ouchi M., Furusawa H., Shimasaku K., Hattori T., 2012, ApJ, 752, 114
Shimasaku K. et al., 2006, PASJ, 58, 313
Skrutskie M. F. et al., 2006, AJ, 131, 1163
Smidt J., Wiggins B. K., Johnson J. L., 2016, preprint (arXiv:1603.00888)
Smith A., Bromm V., Loeb A., 2016, MNRAS, 460, 3143
Sobral D. et al., 2009, MNRAS, 398, L68
Sobral D., Smail I., Best P. N., Geach J. E., Matsuda Y., Stott J. P., Cirasuolo M., Kurk J., 2013, MNRAS, 428, 1128
Sobral D., Matthee J., Darvish B., Schaerer D., Mobasher B., Röttgering H. J. A., Santos S., Hemmati S., 2015, ApJ, 808, 139
Stark D. P., Ellis R. S., Chiu K., Ouchi M., Bunker A., 2010, MNRAS, 408, 1628
Stark D. P. et al., 2016, preprint (arXiv:1606.01304)
Steidel C. C., Bosgawițević M., Shapley A. E., Kollmeier J. A., Reddy N. A., Erb D. K., Pettini M., 2011, ApJ, 736, 160
Taniguchi Y. et al., 2005, PASJ, 57, 165
Taniguchi Y. et al., 2007, ApJS, 172, 9
Taylor M. B., 2006, in Gabriel C., Arviset C., Ponz D., Enrique S., eds, ASP Conf. Ser. Vol. 351, Astronomical Data Analysis Software and Systems XV, Astron. Soc. Pac., San Francisco, p. 666
van Breukelen C., Jarvis M. J., Venemans B. P., 2005, MNRAS, 359, 895
Visbal E., Haiman Z., Bryan G. L., 2016, MNRAS,460, 59
Warren S. J. et al., 2007, MNRAS, 375, 213
Watson D., Christensen L., Knudsen K. K., Richard J., Gallazzi A., Michalowski M. J., 2015, Nature, 519, 327
Westra E. et al., 2006, A&A, 455, 61
Wisotzki L. et al., 2016, A&A, 587, A98
Zabl J., Nørgaard-Nielsen H. U., Fynbo J. P. U., Laursen P., Ouchi M., Kjærgaard P., 2015, MNRAS, 451, 2050
Zitrin A. et al., 2015, ApJ, 810, L12

APPENDIX A: FILTER PROFILE CORRECTIONS AND LFS

Fig. A1 shows the effect of our filter profile corrections. We show the completeness corrected number densities of LAEs in bins of \Ly\α luminosity for individual fields at $z = 5.7$ (Table A2) and for the combined coverage at $z = 5.7$ and 6.6 (Table A3).

Figure A1. The number densities in luminosity bins from our survey in the UDS, COSMOS and SA22 fields (red squares) and the bins from Ouchi et al. (2008) in blue triangles. A small luminosity correction of $+0.02$ was applied to our luminosity bins to correct for extended emission (this correction is discussed in Section 5.3). The Schechter fits to the luminosity bins from our study agree very well with Ouchi et al. (2008). In green, we also show the luminosity bins from this work after we apply a filter profile bias correction (we estimate this correction in Section 4.2) and the corrected LF Schechter fit. The effect of this correction is strongest at the brightest bins.

Table A1. For each field, we present the median line-flux completeness per bin, which we use to correct the $z = 5.7$ number densities. We only consider number densities from sub-fields with a line-flux completeness higher than 25 per cent.

Luminosity bins $\log_{10}L_{\text{Ly}\alpha} (\text{erg s}^{-1})$	Line-flux completeness percentage (per cent)			
(UDS)	(COSMOS)	(SA22-deep)	(SA22-wide)	
42.5 ± 0.1	27	<25	<25	<25
42.7 ± 0.1	30	<25	<25	<25
42.9 ± 0.1	45	37	36	36
43.1 ± 0.1	53	54	56	56
43.3 ± 0.1	61	65	68	68
43.5 ± 0.1	73	73	77	77
43.7 ± 0.1	83	80	84	84
Table A2. The completeness-corrected number density of LAEs in the different surveyed fields at $z = 5.7$.

Field	Luminosity bin $\log_{10} L$ (erg s$^{-1}$)	Number density $\log_{10} \Phi/d\log L$ (Mpc$^{-3}$)
UDS	42.5 ± 0.1	$-2.57^{+0.15}_{-0.16}$
	42.7 ± 0.1	$-2.82^{+0.13}_{-0.13}$
	42.9 ± 0.1	$-3.37^{+0.13}_{-0.15}$
	43.1 ± 0.1	$-3.94^{+0.16}_{-0.20}$
	43.3 ± 0.1	$-4.37^{+0.21}_{-0.33}$
COSMOS	42.9 ± 0.1	$-3.30^{+0.12}_{-0.13}$
	43.1 ± 0.1	$-3.81^{+0.11}_{-0.13}$
	43.3 ± 0.1	$-4.40^{+0.11}_{-0.11}$
	43.5 ± 0.1	$-4.93^{+0.22}_{-0.39}$
	43.7 ± 0.1	$-5.42^{+0.32}_{-0.38}$
SA22-deep	42.9 ± 0.1	$-3.09^{+0.11}_{-0.12}$
	43.1 ± 0.1	$-3.37^{+0.09}_{-0.11}$
	43.3 ± 0.1	$-3.84^{+0.14}_{-0.18}$
	43.5 ± 0.1	$-4.50^{+0.21}_{-0.38}$
SA22-wide	43.3 ± 0.1	$-4.07^{+0.11}_{-0.13}$
	43.5 ± 0.1	$-4.41^{+0.12}_{-0.13}$
	43.7 ± 0.1	$-5.33^{+0.25}_{-0.56}$

Table A3. The completeness and filter profile bias-corrected luminosity functions at $z = 5.7$ and 6.6 from this study. Note that we corrected the bins for extended emission (see Section 5.3).

Redshift	Luminosity bin $\log_{10} L$ (erg s$^{-1}$)	Volume 10^8 Mpc3	Observed number density $\log_{10} \Phi/d\log L$ (Mpc$^{-3}$)	Corrected number density $\log_{10} \Phi/d\log L$ (Mpc$^{-3}$)
$z = 5.7$	42.52 ± 0.1	0.19	$-3.16^{+0.08}_{-0.09}$	$-2.65^{+0.16}_{-0.17}$
	42.72 ± 0.1	0.65	$-3.32^{+0.05}_{-0.06}$	$-2.77^{+0.12}_{-0.13}$
	42.92 ± 0.1	3.09	$-3.65^{+0.04}_{-0.04}$	$-3.15^{+0.10}_{-0.10}$
	43.12 ± 0.1	3.09	$-3.89^{+0.05}_{-0.05}$	$-3.54^{+0.08}_{-0.08}$
	43.32 ± 0.1	6.30	$-4.34^{+0.06}_{-0.11}$	$-3.91^{+0.09}_{-0.10}$
	43.52 ± 0.1	6.30	$-4.70^{+0.08}_{-0.10}$	$-4.27^{+0.11}_{-0.12}$
	43.72 ± 0.1	6.30	$-5.62^{+0.20}_{-0.37}$	$-5.12^{+0.22}_{-0.40}$
$z = 6.6$	42.61 ± 0.1	0.38	$-3.46^{+0.09}_{-0.08}$	$-3.18^{+0.08}_{-0.09}$
	42.81 ± 0.1	0.64	$-3.59^{+0.09}_{-0.07}$	$-3.32^{+0.08}_{-0.08}$
	43.01 ± 0.1	1.07	$-4.01^{+0.11}_{-0.09}$	$-3.74^{+0.09}_{-0.10}$
	43.21 ± 0.1	1.73	$-4.42^{+0.11}_{-0.09}$	$-4.10^{+0.10}_{-0.11}$
	43.41 ± 0.1	1.73	$-4.94^{+0.30}_{-0.18}$	$-4.60^{+0.14}_{-0.16}$
	43.61 ± 0.1	4.18	$-5.34^{+0.31}_{-0.18}$	$-4.97^{+0.14}_{-0.16}$
	43.81 ± 0.1	4.18	$-5.97^{+0.31}_{-0.26}$	$-5.51^{+0.20}_{-0.26}$

This paper has been typeset from a TeX/\LaTeX file prepared by the author.