As mentioned in the main text, in the interiors of NSs, neutrons form Cooper pairs and exhibit superfluidity [21] (see Refs. [22], [S1, S2] for recent reviews). Migdal considered an s-wave (1S_0; spin-singlet and s-wave with total angular momentum $J = 0$) paring [21] as conventional (s-wave) metallic superconductors. Although the 1S_0 channel is attractive dominantly in the low-density regime, it becomes repulsive in the high-density regime in the neutron star core. There, the attraction is provided by the 3P_2 channel with the spin-orbit (LS) force inducing the neutron 3P_2 (spin-triplet and p-wave with total angular momentum $J = 2$) superfluids [39-49, S3-S20]. The ground state at the weak coupling limit is in the so-called nematic phase [45, 46]. We also comment that, although the boundary between the s- and p-wave regions may not be sharp microscopically (in reality an overlap region is predicted to exist [S20]), from a macroscopic point of view one can assume the presence of such an interface.

The p-wave pairings are widely considered in condensed matter physics such as p-wave superconductors for which electrons form Cooper pairs and 3He superfluids for which 3He atoms form Cooper pairs. Recently, p-wave superconductors (superfluids) have attracted great interests as topological superconductors (superfluids) [S21, S22], allowing topologically protected Majorana fermions on the boundary surfaces and vortex cores. In fact, the 3P_2 neutron superfluids have also been shown to be topological superfluids admitting surface Majorana fermions [S16] and Majorana bound states in their vortex cores [53, 57]. Thus, neutron star cores may be the largest topological materials in our universe.

The order parameter for p-wave paring (for 3P_2 neutron superfluids) is described by a 3×3 traceless symmetric matrix A with complex components [45, 46]. Then, vortices take the following forms: an IQV is represented as

$$A = e^{i\theta}A_0$$

(S1)

with a spatial angle θ ($0 \leq \theta < 2\pi$) around the vortex core [44, 46, 47, 56], where A_0 is a constant matrix representing the ground state configuration. On the other hand, a HQV takes the form of

$$A = e^{i\frac{\theta}{2}}O(\theta)A_0O^T(\theta), \quad O(\theta) = \begin{pmatrix} \cos \frac{\theta}{4} & \pm \sin \frac{\theta}{4} & 0 \\ \mp \sin \frac{\theta}{4} & \cos \frac{\theta}{4} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

(S2)

with the D_4 biaxial nematic ground state $A_0 \sim \text{diag}(1, -1, 0)$, where the sign $\pm (\mp)$ corresponds to HQVs with different topological charges cancelling each other [52], denoted by red and blue in the main text. The exponential factors $e^{i\theta}$ and $e^{i\frac{\theta}{2}}$ for IQV and HQV are the origin of integer and half quantizations, respectively. Importantly, the HQVs were recently observed in 3He-A phase, as they were created with rotation or by the Kibble-Zurek mechanism and identified by the experimental technique on the nuclear magnetic resonance [S23].
2. A story of the boojum

Originally the boojum is a particular variety of the fictional animal species called \textit{snarks} created by Lewis Carroll in his nonsense poem “The Hunting of the Snark.” The similar structures found in helium superfluids were named boojums by Mermin [58]. See [S24] for the story how he made “boojum” an internationally accepted scientific term. Now boojums have been predicted to occur in 3He superfluids [S25] in particular at the A-B phase boundary [S26, S27], liquid crystals [S28], Bose-Einstein condensates [S29], quantum field theory [S30–S32] and high density quark matter relevant for neutron star cores [S33–S35].

3. Proposals for laboratory experiments

We further point out that our mechanism for glitches by vortex networks through boojums can be simulated by laboratory experiments. One is with ultracold atomic gases, a mixture of a scalar Bose-Einstein condensate (BEC) and a spin-2 nematic BEC [S36–S38] (see Ref. [S39] for a review of spinor BEC), where the Gross-Pitaevskii equation for the latter is the same as the Ginzburg-Landau equation for a 3P_2 superfluid: a scalar BEC sandwiched between two spin-2 BECs. The other is 3He superfluids with the A-B phase boundary on which one vortex in the A-phase is connected to two vortices in the B-phase through a boojum [S26], therefore an A-B-A phase configuration is relevant (a B-A-B phase configuration was experimentally realized [S27]).

4. Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is defined as

\[
AIC = 2k - 2\ln(\hat{L}),
\]

where \hat{L} is the maximum of the likelihood function L (often simply called the likelihood), which is formed from the joint probability distribution of a sample of data given a set of model parameter values; it is viewed and used as a function of the parameters given by the data sample. Generally, a lower AIC indicates a better fit.

[S1] N. Chamel. Superfluidity and superconductivity in neutron stars. \textit{J. Astrophys. Astron.}, 2017.
[S2] B. Haskell and A. Sedrakian. Superfluidity and Superconductivity in Neutron Stars. \textit{Astrophys. Space Sci. Libr.}, 457:401–454, 2018.
[S3] T. Fujita and T. Tsuneto. The ginzburg-landau equation for 3P_2 pairingsuperfluidity in neutron stars. \textit{Prog. Theor. Phys.}, 48(3):766–782, 1972.
[S4] L. Amundsen and E. Ostgaard. Superfluidity of neutron matter (II). triplet pairing. \textit{Nucl. Phys.}, A442:163–188, 1985.
[S5] T. Takatsuka and R. Tamagaki. Superfluidity in neutron star matter and symmetric nuclear matter. \textit{Prog. Theor. Phys. Suppl.}, 112:27–66, 1993.
[S6] M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo. Proton and neutron superfluidity in neutron star matter. *Nucl. Phys.*, A536:349–365, 1992.

[S7] O. Elgarøy, L. Engvik, M. Hjorth-Jensen, and E. Osnes. Triplet pairing of neutrons in beta stable neutron star matter. *Nucl. Phys.*, A607:425–441, 1996.

[S8] V. A. Khodel, V. V. Khodel, and J. W. Clark. Universalities of triplet pairing in neutron matter. *Phys. Rev. Lett.*, 81:3828–3831, 1998.

[S9] M. Baldo, O. Elgarøy, L. Engvik, M. Hjorth-Jensen, and H. J. Schulze. Triplet $3P_2$ to $3F_2$ pairing in neutron matter with modern nucleon-nucleon potentials. *Phys. Rev.*, C58:1921–1928, 1998.

[S10] V. V. Khodel, V. A. Khodel, and J. W. Clark. Triplet pairing in neutron matter. *Nucl. Phys.*, A679:827–867, 2001.

[S11] M. V. Zverev, J. W. Clark, and V. A. Khodel. $3P_2$-$3F_2$ pairing in dense neutron matter: The Spectrum of solutions. *Nucl. Phys.*, A720:20–42, 2003.

[S12] S. Maurizio, J. W. Holt, and P. Finelli. Nuclear pairing from microscopic forces: singlet channels and higher-partial waves. *Phys. Rev.*, C90(4):044003, 2014.

[S13] S. K. Bogner, R. J. Furnstahl, and A. Schwenk. From low-momentum interactions to nuclear structure. *Prog. Part. Nucl. Phys.*, 65:94–147, 2010.

[S14] S. Srinivas and S. Ramanan. Triplet Pairing in pure neutron matter. *Phys. Rev.*, C94(6):064303, 2016.

[S15] C. Chatterjee, M. Haberichter, and M. Nitta. Collective excitations of a quantized vortex in $3P_2$ superfluids in neutron stars. *Phys. Rev.*, C96(5):055807, 2017.

[S16] T. Mizushima, K. Masuda, and M. Nitta. $3P_2$ superfluids are topological. *Phys. Rev.*, B95(14):140503, 2017.

[S17] S. Yasui, C. Chatterjee, and M. Nitta. Symmetry and topology of the boundary of neutron $3P_2$ superfluids in neutron stars: boojums as surface topological defects. *Phys. Rev.*, C101(2):025204, 2020.

[S18] S. Yasui and M. Nitta. Domain walls in neutron $3P_2$ superfluids in neutron stars. *Phys. Rev.*, C101(1):015207, 2020.

[S19] T. Mizushima, S. Yasui, and M. Nitta. Critical endpoint and universality class of neutron $3P_2$ superfluids in neutron stars. *Phys. Rev. Res.*, 2(1):013194, 2020.

[S20] Shigehiro Yasui, Daisuke Inotani, and Muneto Nitta. Coexistence phase of $1S_0$ and $3P_2$ superfluids in neutron stars. *Phys. Rev. C*, 101(5):055806, 2020.

[S21] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig. Classification of topological insulators and superconductors in three spatial dimensions. *Phys. Rev. B*, 78:195125, 2008.

[S22] A. Kitaev. Periodic table for topological insulators and superconductors. *AIP Conf. Proc.*, 1134:22, 2009.

[S23] S. Autti, V. V. Dmitriev, J. T. Mäkinen, A. A. Soldatov, G. E. Volovik, A. N. Yudin, V. V. Zavjalov, and V. B. Eltsov. Observation of half-quantum vortices in topological superfluid 3He. *Phys. Rev. Lett.*, 117:255301, Dec 2016.

[S24] N. C. Mermin. *Boojums All the Way Through: Communicating Science in a Prosaic Age*. Cambridge University Press., 1990.

[S25] G. E. Volovik. *The Universe in a Helium Droplet*. International Series of Monographs on Physics. Clarendon Press, 2003.
[S26] R. Blaauwgeers, V. B. Eltsov, G. Eska, A. P. Finne, R. P. Haley, M. Krusius, J. J. Ruohio, L. Skrbek, and G. E. Volovik. Shear flow and kelvin-helmholtz instability in superfluids. Phys. Rev. Lett., 89:155301, 2002.

[S27] D. I. Bradley, S. N. Fisher, A. M. Guénault, R. P. Haley, J. Kopu, H. Martin, G. R. Pickett, J. E. Roberts, and V. Tsepelin. Relic topological defects from brane annihilation simulated in superfluid 3He. Nature Physics, 4:46–49, 2008.

[S28] J. M. Carlson, S. A. Langer, and J. P. Sethna. Frustration in Modulated Phases: Ripples and Boojums. Europhysics Letters, 5:327–331, 1988.

[S29] K. Kasamatsu, H. Takeuchi, and M. Nitta. D-brane solitons and boojums in field theory and Bose-Einstein condensates. J. Phys. Condens. Matter, 25:404213, 2013.

[S30] J. P. Gauntlett, R. Portugues, D. Tong, and P. K. Townsend. D-brane solitons in supersymmetric sigma models. Phys. Rev., D63:085002, 2001.

[S31] M. Shifman and A. Yung. Domain walls and flux tubes in N=2 SQCD: D-brane prototypes. Phys. Rev., D67:125007, 2003.

[S32] Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai. All exact solutions of a 1/4 Bogomol’nyi-Prasad-Sommerfield equation. Phys. Rev., D71:065018, 2005.

[S33] M. Cipriani, W. Vinci, and M. Nitta. Colorful boojums at the interface of a color superconductor. Phys. Rev., D86:121704, 2012.

[S34] Minoru Eto, Yuji Hirono, Muneto Nitta, and Shigehiro Yasui. Vortices and Other Topological Solitons in Dense Quark Matter. Prog. Theor. Exp. Phys., 2014(1):012D01, 2014.

[S35] C. Chatterjee, M. Nitta, and S. Yasui. Quark-hadron continuity under rotation: Vortex continuity or boojum? Phys. Rev., D99(3):034001, 2019.

[S36] J. L. Song, G. W. Semenoff, and F. Zhou. Quantum fluctuation-induced uniaxial and biaxial spin nematics. Phys. Rev. Lett., 98:160408, 2007.

[S37] S. Uchino, M. Kobayashi, M. Nitta, and M. Ueda. Quasi-Nambu-Goldstone Modes in Bose-Einstein Condensates. Phys. Rev. Lett., 105:230406, 2010.

[S38] M. O. Borgh and J. Ruostekoski. Core Structure and Non-Abelian Reconnection of Defects in a Biaxial Nematic Spin-2 Bose-Einstein Condensate. Phys. Rev. Lett., 117(27):275302, 2016. [Erratum: Phys. Rev. Lett.118,no.12,129901(2017)].

[S39] Y. Kawaguchi and M. Ueda. Spinor Bose-Einstein condensates. Phys. Rept., 520:253–381, 2012.