Agronomic performance and yield of hybrid rice genotypes in preliminary yield trial

Nita Kartina, Indrastuti Apri Rumanti, Satoto
Indonesian Center for Rice Research,
Jl. Raya No. 9, Sukamandi- Subang 41256, Indonesia
Email: nitakartina.nk@gmail.com

Abstract. Research on hybrid rice in Indonesia began in 1983 with the aim of exploring the prospects and constraints of this technology. Until 2019 the Indonesian government through Indonesia Agricultural Agencies Research and Development has released 21 hybrid rice varieties. 42 hybrid rice genotypes and one check variety namely Hipa 18 were tested during the season of 2014 in Sukamandi Experimental Station. Randomized complete block design (RCBD) with three replications was used in each season. The results showed that variation due to genotype were significant for all traits except panicle length. Genotype by season (GXS) interactions cause differences in productivity. Twenty one hybrid rice genotypes were selected on productivity and selection index based on contributed traits of yield i.e tiller number, number of filled grain per panicle, 1000-grain weight, and productivity according to their relative weight. Those selected hybrids were HRDC 1440, HRDC 1415, HRDC 1404, HRDC 1407, HRDC 1431, HRDC 1421, HRDC 1434, HRDC 1438, HRDC 1423, HRDC 1414, HRDC 1426, HRDC 1429, HRDC 1443, HRDC 1441, HRDC 1406, HRDC 1408, HRDC 1446, HRDC 1422, HRDC 1445, HRDC 1417 and HRDC 1419. The productivity range of those hybrids were 6.1 – 10.2 ton ha-1. The selected hybrid rice genotypes can be evaluated further in advanced yield trials.

1. Introduction
Rice (Oryza sativa L) is the second staple food for more than one-third of the world’s population [1]. The population in the world is estimated at 8 billion by 2030, so rice production must increase by 50% to meet food needs [2]. In Indonesia, the productivity of rice today seems stagnant, even in some regions it has decreased due to biotic, abiotic, and global climate change stresses. One alternative in increasing productivity is utilizing the symptoms of heterosis of hybrid rice [3]. Hybrid rice referred to as the F1, is the product of crossing two rice plants with superior qualities. These superior qualities of both parents are passed on to the seed and results in a phenomenon called ‘hybrid vigor’ or ‘heterosis’ [4]. The commercial hybrid refers to a superior F1, which not only outperforms the better parent but also shows significant (at least 1-ton ha−1) yield superiority over the best high-yielding inbred variety of similar duration and possesses acceptable grain quality. This technology has been applied successfully in China since 1976 [5].

Indonesia has been active in developing hybrid rice as an alternative strategy to improve rice yield. Research on hybrid rice in Indonesia began in 1983 with the aim of exploring the prospects and constraints of this technology. Up to 2011, Indonesian Center for Rice Research has released 17 hybrid rice varieties with some yield advantage over inbred varieties, Ciherang and IR64 as popular
varieties [6]. In 2013, Indonesia Center for Rice Research released two hybrid rice varieties i.e Hipa 18 and Hipa 19. Two other hybrid rice varieties have been released in early 2019 namely Hipa 20 and Hipa 21. In Indonesia, hybrid rice can be grown in the wet and dry season. The rainy season is generally characterized by a decrease in the average daily temperature, shorter solar radiation, and lower solar radiation, high rainfall, and cloudy sky (cloudy). Conversely, the dry season is characterized by high daily average air temperature, high solar radiation, longer solar radiation, and decreased air humidity [7]. Today there are frequent changes and irregularities in climate patterns that affect crop production [8, 9].

Improvement of rice grain yield is the main target of a breeding programs to develop rice varieties for diverse ecosystems including hybrid rice. In addition, grain yield also related with other characters such as plant type, growth duration, and yield components, hence direct selection is not much effective on this character [10], and it is very risky to select only based on productivity [11]. Interconnected characters were needed to increase the grain yield [12]. Selection of high yield genotypes may be more effective if it also involves the determination of traits contributing to or affecting the yield traits. Selection as a part of a breeding program will give an optimum response when using the appropriate selection criteria [13]. The use of selection index is one of the useful methods to overcome this problem. Selection can be done by using the selection index when considering several traits simultaneously because it is desirable to choose individuals with the best combination of these traits [14, 15, 16, 12]. The aims of this research were to conduct preliminary yield trial (PYT) to obtain potential hybrid rice genotypes that have good agronomic performance based on the selection index.

2. Materials and Methods

The materials consisted of 42 hybrid rice genotypes i.e HRDC 1401, HRDC 1402, HRDC 1403, HRCD 1404, HRDC 1405, HRDC 1406, HRDC 1407, HRDC 1408, HRDC 1409, HRDC 1410, HRDC 1414 to HRDC 1446 and one check variety Hipa 18 Experimental Procedures.

The research was conducted in two seasons (wet season and dry season) of 2014 in Sukamandi Experimental Station, Subang West Java Province. In each season, each genotype was planted in a plot of 2 m x 5 m with a planting space of 20 cm x 20 cm, so there will be 10 rows and 25 planting hills each plot (population per plot 250 hills). In each season, plant maintenance was carried out according to the appropriate standard practice of rice production. The seeds were planted 1-2 seedling plants per hill. Fertilizers used were NPK sources, namely urea with a dose of 300 kg ha\(^{-1}\), SP-36 100 kg ha\(^{-1}\) and KCl 100 kg ha\(^{-1}\). Fertilizers were given in three stages: (1). The first fertilization was given one week after planting (WAP), i.e. 100 kg ha\(^{-1}\) urea, 100 kg ha\(^{-1}\) SP-36 and 75 kg ha\(^{-1}\) KCl; (2). The second fertilization was given at four WAP (100 kg ha\(^{-1}\) urea); (3). The third fertilization was given at seven WAP (100 kg ha\(^{-1}\) urea and 25 kg ha\(^{-1}\) KCL). Harvesting was carried out when 80% of rice panicles in one plot turned yellow. Seeds were harvested to estimate grain yield per plot. The grain was dried to reach ±14% moisture content and later converted to dry grain yield per hectare (ton ha\(^{-1}\)).

Variables observed based on Standard Evaluation System for Rice from IRRI [17]. The productivity (P) was measured. The other productivity-related traits: tiller number (TN); filled grain number (FGN), and 1000-grain weight (TGW) and panicle length (PL). Grain yield data and the other yield related traits were subjected to a combined analysis of variance following Randomized Complete Block Design, format using STAR software.

The selection index was determined by the following formula [18]:

\[Y_{ij} = \mu + \tau_i + \beta_j + e_{ij} \]

where: \(Y_{ij}\): b1X1 + b2X2 + b3X3 + ... + bnXn; I: selection Index; B: the weight of the variable to n; Xn : standardized phenotype value for variables to n. The selected agronomic important traits (X) were weighted, i.e. productivity: +5, the tiller number: +1, the number of filled grain per panicle: +1, the percentage of filled grain per panicle (seedset): +1, total number of spikelet per panicle: +2, 1000-grain weight: +1 and days to harvest: -1 [13].
3. Results and Discussion

3.1. Analysis of Variance of Productivity and Related Traits

Analysis of variance showed that variation due to genotype were significant for all traits except panicle length (Table 1). Similar findings by Widyastuti et al. [6], that panicle length were not affected by genotype. The variation for the traits of tiller number filled grain number and productivity was also significant due to season. The Interaction between genotype and season (GXS) were significant except for tiller number and panicle length. Genotype x season (GXS) interactions cause differences in productivity. Based on this research, however, panicle length and number of tillers were not affected by this interaction. The significant values of analysis of variance showed that these genotypes were varied for the test traits, so the selection could be done [19].

Traits	F Values of Genotype (G)	Season (S)	GXS	CV %
Tiller number	1.77 **	12.63 *	1.33 ns	18.00
Filled grain number	2.53 **	20.91 *	1.56 *	16.29
1000 grain weight	4.08 **	22.11 ns	5.21 **	4.36
Panicle length	1.00 ns	0.37 ns	1.02 ns	67.97
Productivity	1.64 **	698.09 **	7.18 **	9.27

3.2. Agronomic Performances and Productivity

Agronomic performances are presented in Table 2, while productivity in Table 3. The mean of the tiller number ranged from 10.0 to 15.2 stems/hill. HRDC 1403 has the lowest tiller number and HRDC 1440 has the highest number of the productive tiller. The productive tiller number 10-19 stems/hill is grouped into a medium category, productive tiller number 20 to 25 stems into high category and productive tiller number more than 25 stems into very high category [20]. Productive tiller number in the tested of hybrid rice genotypes was medium. HRDC 1409, HRDC 1425, HRDC 1439, HRDC 1440 and HRDC 1444 have a higher number of productive tiller than Hipa 18 as check variety (Table 2).

Panicle length was one of the traits that contributed to shape and size [21]and an important component in rice productivity [6]. The mean of panicle length ranged from 24.9 cm to 32.7 cm. The shortest panicle length is owned by HRDC 1415, while the longest panicle is owned by Limboto and Inpago 10 HRDC 1418. Hipa 18 as check variety has a panicle length of 28.4 cm. HRDC 1418 was a hybrid genotype that potential to produce high production. Rice plants with long panicles potentially have a high number of grain total and high yield [22]. Panicle length is categorized into 3 classes, namely short (<25 cm), medium (25-30 cm) and long (> 30 cm) panicles [23]. Most of the tested hybrid genotypes were categorized as medium panicle length except HRDC 1418 (32.7 cm), HRDC 1432 (31.5cm) and HRDC 1445 (31.0 cm).

The Mean of a number of filled grain/panicles ranged from 148.3 to 234.0 (Table 3). Hipa 18 has 167.7 number per panicle. The lowest number of filled grain/panicle is owned by HRDC 1403, while the highest number of filled grain is owned by HRDC 1408. Twenty three hybrid rice genotypes have more number per panicle than Hipa 18 (167.7), (Table 3).
Table 2. Number of productive tiller number and panicle length of 43 hybrids rice

Genotypes	Productive tiller numbers	Panicle length (cm)								
	SKL, DS	SKL, WS	Mean	SKL, DS	SKL, WS	Mean				
HRDC 1401	11.7	12.0	11.9	27.2	26.8	27.0				
HRDC 1402	9.9	13.0	11.4	27.2	25.7	26.4				
HRDC 1403	10.7	9.3	10.0	25.7	26.8	26.2				
HRDC 1404	10.5	13.6	12.1	26.3	28.8	27.6				
HRDC 1405	11.1	13.4	12.2	26.5	29.1	27.8				
HRDC 1406	13.4	a	12.9	13.2	28.0	27.2	27.6			
HRDC 1407	10.4	12.4	11.4	26.2	27.9	27.0				
HRDC 1408	10.9	13.3	12.1	27.0	25.7	26.4				
HRDC 1409	12.4	16.3	a	14.3	a	27.0	28.5	27.8		
HRDC 1410	12.1	14.5	13.3	27.4	29.3	28.3				
HRDC 1411	10.5	11.3	10.9	24.5	26.5	25.5				
HRDC 1412	10.7	14.2	12.5	24.1	25.8	24.9				
HRDC 1413	11.2	13.8	12.5	27.0	28.1	27.5				
HRDC 1414	10.3	13.6	11.9	28.1	30.0	29.0				
HRDC 1415	10.2	13.4	11.8	28.2	37.2	a	32.7	a		
HRDC 1416	11.4	16.4	a	13.9	27.0	28.0	27.5			
HRDC 1417	10.5	14.6	12.6	29.2	29.8	29.5				
HRDC 1418	10.5	11.0	10.8	28.9	28.4	28.7				
HRDC 1419	10.4	12.8	11.6	27.7	29.7	28.7				
HRDC 1420	10.2	12.7	11.5	27.8	28.1	28.0				
HRDC 1421	9.7	13.8	11.7	29.6	29.4	29.5				
HRDC 1422	10.8	17.7	a	14.3	a	31.6	28.1	29.8		
HRDC 1423	9.0	11.2	10.1	28.0	28.0	28.0				
HRDC 1424	8.7	15.2	a	12.0	28.4	29.1	28.7			
HRDC 1425	9.8	13.3	11.6	27.8	28.9	28.3				
HRDC 1426	10.5	14.5	12.5	25.6	27.4	26.5				
HRDC 1427	10.4	13.2	11.8	27.6	28.3	28.0				
HRDC 1428	11.8	13.2	12.5	27.1	28.0	27.5				
HRDC 1429	9.3	12.8	11.0	26.6	36.3	a	31.5			
HRDC 1430	11.5	13.2	12.4	25.3	28.3	26.8				
HRDC 1431	10.5	13.1	11.8	25.5	27.6	26.6				
HRDC 1432	10.5	12.8	11.6	28.6	30.2	29.4				
HRDC 1433	10.2	13.7	12.0	25.3	26.8	26.1				
HRDC 1434	11.0	14.0	12.5	25.9	28.8	27.3				
HRDC 1435	12.2	a	17.4	a	14.8	a	27.1	28.3	27.7	
HRDC 1436	13.7	a	16.6	a	15.2	a	25.8	35.6	a	30.7
HRDC 1441	11.5	11.6	11.6	27.4	28.2	27.8				
HRDC 1442	11.8	11.1	11.5	25.5	26.4	25.9				
HRDC 1443	12.2	a	12.4	12.3	27.2	26.4	26.8			
HRDC 1444	13.8	a	14.1	14.0	130.0	27.6	29.3			
HRDC 1445	12.8	a	14.8	13.8	33.5	a	28.5	31.0		
HRDC 1446	12.2	a	12.1	12.1	24.2	28.0	26.1			
Hipa 18	11.9	14.0	12.9	27.4	29.4	28.4				

Mean	12.3		27.9
LSD 5%	0.6		4.9
CV (%)	17.9		67.7

Letter “a” indicate significantly higher than Hipa 18
SKI = Sukamandi; DS = dry season; WS = wet season

The 1000-grain weight in the hybrids ranged from 23.2-32.8 grams (Table 3). Fourteen hybrid rice showed significantly higher than Hipa 18 (25.7 g). Hybrids HRDC 1508 produced the minimum 1000-grain weight (23.2 g). Hybrid HRDC 1429 produced the highest (32.8 g) 1000 weight grain. Similarly, 1000-grain weight is also an important component that contributes towards the increase in yield.
Geno	Number of filled grain/panicle	1000 weight grain	Yield (ton ha⁻¹)						
	SKL, DS	SKL, WS	X	SKL, DS	SKL, WS	X	SKL, DS	SKL, WS	X
HRDC 1401	192.1 a	169.7 a	180.9 a	26.0	24.2	25.1	7.2	5	6.1
HRDC 1402	235.7 a	143.9 a	189.8 a	25.1	24.3	24.7	8	4.5	6.2
HRDC 1403	174.2 a	122.4 a	148.3 31.7 a	32.7 a	32.2 a	7.7	4.4	6	
HRDC 1404	244.5 a	198 a	221.3 a	28.2	28.5 a	28.3 a	7.4	6	a 6.7
HRDC 1405	185.5 a	164 a	174.8 25.4	22.8	24.1	7.2	6.2	a 6.7	
HRDC 1406	224.6 a	160.2 a	192.4 a	27.5	24.5	26.0	7.2	6.1	a 6.7
HRDC 1407	230.5 a	219.6 a	225.1 a	28.5 a	26.8	27.7 a	8.4 a	5.4	6.9
HRDC 1408	258.4 a	209.6 a b	234 a	26.1 a	20.3 a	23.2	6.5	5.6	6.1
HRDC 1409	194.3 a	150.1 a	172.2 25.5	23.0	24.2	7.8	5.4	6.6	
HRDC 1410	169.1 a	149.6 a	159.4 28.0 a	25.7	26.9	7.2	6 a 6.6		
HRDC 1411	178.1 a	164.1 a	171.1	31.8 a	29.0 a	30.4 a	8.4 a	6.2 a 7.3 a	
HRDC 1412	207.6 a	196.7 a	202.2 a	29.0 a	26.8 a	27.9 a	8.5 a	7.6 a 8 a	
HRDC 1413	188.5 a	144.9 a	166.7	31.6 a	27.8 a	29.7 a	6.9	5.9	6.4
HRDC 1414	215.5 a	174.9 a	195.2 a	28.1 a	24.8 a	26.5	6.8	6.4 a 6.6	
HRDC 1415	177.7 a	139.5 a	158.6 29.0 a	24.7	26.9	5.2	5.9	5.6	
HRDC 1416	154.7 a	173.2 a	163.9	30.7 a	26.6	28.7 a	7.7	6 a 6.9	
HRDC 1417	222.9 a	166.1 a	194.5 a	27.7 a	24.0 a	25.8	7.1	5.4	6.3
HRDC 1418	249.8 a	178 a	213.9 a	30.1 a	27.3 a	28.7 a	8	4.9	6.4
HRDC 1419	206 a	181.5 a	193.8 a	30.2 a	26.1	28.1 a	7.1	5.7	6.4
HRDC 1420	238.5 a	172.2 a	205.3 a	30.1 a	27.2 a	28.7 a	9.5 a	4	6.8
HRDC 1421	213.4 a	168 a	190.7 a	29.7 a	26.6	28.2 a	6	5.6	5.8
HRDC 1422	214.4 a	140.3 a	177.4 a	29 a	24.7	26.8	6.6	5	5.8
HRDC 1423	251 a	207.9 a	229.4 a	27.8 a	25.4 a	26.6	6.5	6.6 a 6.5	
HRDC 1424	182.7 a	159.3 a	171 a	28 a	24.7 a	26.3 a	6.7	5.3	6
HRDC 1425	184.2 a	159.2 a	171.7 27.6 a	24.3 a	25.9	7.1	5.3	6.2	
HRDC 1426	173 a	132.1 a	152.5 32.7 a	32.9 a	32.8 a	8.2	7 a 7.6 a		
HRDC 1427	193.2 a	163.9 a	178.6 a	24.7 a	24.8 a	24.7	5.9	4.4	5.2
HRDC 1428	163.9 a	149.3 a	156.6 28.5 a	29.6 a	29 a	10.2 a	6.5 a 8.3 a		
HRDC 1429	233.9 a	211.3 a	222.6 a	25 a	22.6	23.8	8	5.7	5.9
HRDC 1430	217.3 a	165.5 a	191.4 a	23 a	27.2 a	25.1	5.8	5	5.4
HRDC 1431	278.9 a	183.2 a	231.1 a	22.5 a	24.5 a	24.5	7.9	4.9	6.4
HRDC 1432	179 a	173.5 a	176.2 a	25.2 a	24.5 a	24.8	6.9	6.4 a 6.6	
HRDC 1433	192.1 a	160.8 a	176.5 a	23.1 a	24.6 a	23.9	8.4 a	3.2	5.8
HRDC 1434	178.3 a	161.4 a	169.8 a	29.2 a	29.3 a	29.2 a	9.2 a	6.4	7.8 a
HRDC 1435	178.4 a	133.5 a	160.9 a	25.2 a	26.2 a	25.7	8 a 6.3	7.1 a	
HRDC 1436	162.2 a	161.7 a	162 a	26.9 a	27 a	26.9 a	12.7 a	7.6 a 10.2 a	
HRDC 1437	189 a	168.8 a	178.9 a	26.3 a	26.3 a	26.3	7.1	5.5	6.3
HRDC 1438	168.5 a	139 a	153.2 a	26 a	27 a	26.5 a	6.8	5.2	6
HRDC 1439	167.6 a	196.1 a	181.9 a	26.7 a	21.6 a	24.2 a	8.2	5.7	6.9
HRDC 1440	173 a	132.9 a	152.9 a	27.6 a	25.6 a	26.6	7.5	4.9	6.2
In average, the yield of the hybrid rice was higher in dry season compared to rainy season (Table 4). Yield of hybrid rice in the dry season was 7.9 ton ha\(^{-1}\), while in the rainy season was 5.1 ton ha\(^{-1}\). The yield in two seasons was 6.6 ton ha\(^{-1}\). Thirty six hybrid rice genotypes have the similar productivity to Hipa 18, while there were seven hybrid rice higher productivity than to Hipa 18 (6.5 ton ha\(^{-1}\)). Those hybrids were HRDC 1414 (7.3 ton ha\(^{-1}\)), HRDC 1415 (8.0 ton ha\(^{-1}\)), HRDC 1429 (7.6 ton ha\(^{-1}\)), HRDC 1431 (8.3 ton ha\(^{-1}\)), HRDC 1438 (7.8 ton ha\(^{-1}\)), HRDC 1439 (7.1 ton ha\(^{-1}\)), and HRDC 1440 (10.2 ton ha\(^{-1}\)).

3.3. Selection Criteria based on weighted index

Ranks assessed by hybrid rice genotypes based on the weighted selection index are presented in Table 4. In this research several traits of agronomic importance such as productivity, number of tillers, number of filled grains per panicle, the percentage of filled grains per panicle, total number of spikelets per panicle, 1000-grain weight and days to harvest were chosen and weighted. The weighting should be based on the level of economic interests of each character in order to reduce subjectivity by breeders [13].

The weighted index value ranged from 16.3 (HRDC 1440) to 11.1 (HRDC 1418). Hipa 18 has a selection index value of 2.4 and a productivity of 6.5-ton ha\(^{-1}\). Based on the weighted selection index, 21 hybrid rice genotypes were obtained with a high selection index and positive values. Those hybrid rice were HRDC 1440, HRDC 1415, HRDC 1404, HRDC 1407, HRDC 1431, HRDC 1421, HRDC 1434, HRDC 1438, HRDC 1423, HRDC 1414, HRDC 1426, HRDC 1429, HRDC 1443, HRDC 1441, HRDC 1406, HRDC 1408, HRDC 1446, HRDC 1442, HRDC 1445, HRDC 1417 and HRDC 1419.

Genotype	TN	NFG	1000-WG	Productivity (ton ha\(^{-1}\))	Weighted index
HRDC 1440	15.2	162.0	26.9	10.2	16.3
HRDC 1415	12.5	202.2	27.9	8.0	9.8
HRDC 1404	12.1	221.3	28.3	6.7	8.5
HRDC 1407	11.4	225.1	27.7	6.9	7.9
HRDC 1431	12.5	156.6	29.0	8.3	6.3
HRDC 1421	10.8	213.9	28.7	6.4	6.1
HRDC 1434	11.8	231.1	23.5	6.4	5.5
HRDC 1438	12.5	169.8	29.2	7.8	5.1
HRDC 1423	11.5	205.3	28.7	6.8	3.9
HRDC 1414	10.9	171.1	30.4	7.3	3.4
HRDC 1426	10.1	229.4	26.6	6.5	3.2
Twenty-one hybrid rice genotypes selected were potential hybrids that have good agronomic performance based on the selection index. Those hybrids can be continued further in advance yield trials to get the best candidate for hybrid rice in the future.

4. Conclusion

Based on weighted index value, good agronomic performance and yield (6.1 – 10.2 ton ha\(^{-1}\)), there were 21 hybrid rice genotypes were selected (HRDC 1440, HRDC 1415, HRDC 1404, HRDC 1407, HRDC 1431, HRDC 1421, HRDC 1434, HRDC 1438, HRDC 1423, HRDC 1414, HRDC 1426, HRDC 1429, HRDC 1443, HRDC 1441, HRDC 1406, HRDC 1408, HRDC 1446, HRDC 1422, HRDC 1445, HRDC 1417 and HRDC 1419). The selected hybrid rice genotypes is recommended for further evaluation in advance yield trials.

Genotype	TN	NFG	WG	Index \(\times 100\)	Yield \(\times 100\)
HRDC 1429	12.5	152.5	32.8	7.6	3.1
HRDC 1443	12.3	181.9	24.2	6.9	2.4
HRDC 1441	11.6	178.9	26.3	6.3	2.0
HRDC 1406	13.2	192.4	26.0	6.7	1.5
HRDC 1408	12.1	234.0	23.2	6.1	1.3
HRDC 1446	12.1	164.7	26.3	6.8	1.1
HRDC 1422	11.6	193.8	28.1	6.4	0.7
HRDC 1445	13.8	148.3	26.0	6.9	0.6
HRDC 1417	11.9	195.2	26.5	6.6	0.6
HRDC 1419	13.9	163.9	28.7	6.9	0.4
HRDC 1439	14.8	160.9	25.7	7.1	0.0
HRDC 1403	10.0	148.3	32.2	6.0	-0.9
HRDC 1432	11.0	222.6	23.8	5.9	-1.3
HRDC 1420	12.6	194.5	25.8	6.3	-1.8
HRDC 1424	11.7	190.7	28.2	5.8	-1.8
HRDC 1402	11.4	189.8	24.7	6.2	-2.0
HRDC 1409	14.3	172.2	24.2	6.6	-2.3
HRDC 1410	13.3	159.4	26.9	6.6	-2.4
Hipa 18	12.9	167.7	25.7	6.5	-2.4
HRDC 1425	14.3	177.4	26.8	5.8	-3.0
HRDC 1416	12.5	166.7	29.7	6.4	-3.4
HRDC 1405	12.2	174.8	24.1	6.7	-3.6
HRDC 1444	14.0	152.9	26.6	6.2	-3.8
HRDC 1401	11.9	180.9	25.1	6.1	-4.5
HRDC 1436	11.6	176.2	24.8	6.6	-4.6
HRDC 1442	11.5	153.2	26.5	6.0	-4.7
HRDC 1428	11.6	171.7	25.9	6.2	-6.2
HRDC 1427	12.0	171.0	26.3	6.0	-6.4
HRDC 1433	12.4	191.4	25.1	5.4	-7.5
HRDC 1437	12.0	176.5	23.9	5.8	-7.6
HRDC 1430	11.8	178.6	24.7	5.2	-8.6
HRDC 1418	11.8	158.6	26.9	5.6	-11.1

Note: TN=tiller number; NFG=Number of filled grain; WG= weight grain
References

[1] Ajmera S, Sudheer S, Kumar, Ravindrababu 2017 Studies on stability analysis for grain yield and its attributes in rice (Oryza sativa L.) genotypes Int J Pure Appl Biosci 5 (4):892-908

[2] Villa JE, Henry A, Xie F, and Serraj R 2012 Hybirdrice performance in environments of increasing drought severity Field Crops Research 125:14-24

[3] Satoto, Widyastuti Y, Kartina N, Wibowo BP 2017 Analisis adopsi pengembangan padi hibrida di Indonesia Iptek Tanaman Pangan 12 (1):1-8

[4] Bhuiyan MHS, Zahan A., Khatun H., Iqbal M., Alam F., Manir MR 2014 Yield performance of newly developed test crossed hybrid rice variety Int. J. of Agronomy and Agricultural Research (IJAAR) 5 (4): 48-54

[5] Kueneman EA 2006 Improved rice production in a changing environment: from concept to practice. Intl. Rice Comm. Newsl 55: 1-20.

[6] Widyastuti Y, Satoto and Rumanti IA 2015 Performance of promising hybrid rice in two different elevations of irrigated lowland in Indonesia Agrivita 37 (2): 169-177

[7] Satoto, Widyastuti Y, Susanto U, dan Mejaya MJ 2013 Perbedaan hasil padi antarmusim di lahan sawah irigasi Iptek Tanaman Pangan 8 (2):55-61

[8] Bannayan M, Kobayashi K, Kim HY, Lieffering M, Okada M, and Miura S 2005 Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield. Field Crops Res.93: 237-25

[9] WinartoYT, Stigter K, Dwisatiro B, Nurhaga M, and Bowolaksono A 2013 Agrometeorological learning increasing farmers’ knowledge in coping with climate change and unusual risks Southeast Asian Studies 2 (2):323-349.

[10] Anshori M,F, Purwoko BS, Dewi IS, Ardie SW, Suwarno BW 2019 Selection index based on multivariate analysis for selecting doubled-haploid rice lines in lowland saline prone area SABRAO J. of Breeding and Genetics 51 (2) 161-174

[11] Selvaraj IC, P. Nagarajan K, Thiagarajan, Bharathi M, and Rabindran R 2011 Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes among rice blast disease resistant genotypes of rice (Oryza sativa L.) African J. of Biotechnology 10 (17): 3322-3334

[12] Islam MA, Kayess MO, Hasanuzzaman M, Rahman MW, Uddin MJ, Zaman MR 2017 Selection index for genetic improvement of wheat (Triticum aestivum L.) J. Chem. Biol. Phys. Sci. 7 (1): 1-8

[13] Hidayatullah A, Purwoko BS, Dewi IS, and Suwarno WB 2018 Agronomic performance and yield of doubled haploid rice lines in advanced yield trial. Sabrao J. of Breeding and Genetic. 50 (3) : 242-253

[14] Ibrahim EA, Abdalla AWH, Rahman MEA, Naim EAM, 2012 Path coefficient and selection indices in sixteen guar (Cyamopsis tetragonoloba L.) genotypes under rain-fed Internat. J. Agric. Forest 2 (1): 79-83.

[15] Fotokian, MH, Agahi K 2014 Genetic worth and stability of selection indices in rice (Oryza sativa L) Prog. Bio. Sci. 4:53-66

[16] Silva LA, Resende RT, Ferreira RADC, Silva GN, Kist V, Barbosa MHP, Nascimento M and Bhering LL 2016 Selection index using the graphical area applied to sugarcane breeding. Genet. Mol. Res. 15 (3): gmr.15038711

[17] IRRI (2013) Standard evaluation system for rice IRRI Los Banos

[18] Falconer DS, and Mackay TFC 1996 Introduction to quantitative genetics (4th ed). Longman. New York pp 186

[19] Akhmadi G, Purwoko BS, Dewi IS, Wirnas D 2017 Pemilihan karakter agronomi untuk seleksi pada galur-galur padi dihaploid hasil kultur antera J. Agron. Indonesia 45 (1): 1-8.

[20] IRRI (2002) Standard evaluation system for rice Manila (PH): INGER-IRRI.

[21] Dewi IS, Trilaksana AC, Purwoko BS, Koesoemaningtyas T 2009 Karakterisasi galur haploid ganda hasil kultur antera padi Bul. Plasma Nutfah 15 (1):1-12
[22] Nita K, Bayu PW, Indrastuti AR, Satoto 2017 Korelasi antara hasil gabah dan komponen hasil padi varietas hibrida *J. Penelitian Pertanian Tanaman Pangan* 1(1):1-10

[23] Juhriah A, Masniawati, Elis T, Astuti S 2013 Karakterisasi morfologi malai padi lokal asal kabupaten Tana Toraja Utara Sulawesi Selatan *J. Sainsmat* 11(1):22-31