Global cancer risk from unregulated polycyclic aromatic hydrocarbons

Noelle Eckley Selin
Professor, MIT
@noelleselin
selin@mit.edu

With Jamie Kelly (former MIT postdoc; now University College London) and others

Funding support: MIT Superfund Research Program (NIEHS)
What are PAHs?

Burning of organic matter

- **emission**
- **inhalation**
- **DNA damage**
- **cancer**

Global lung cancer risk results from exposure to PAHs, including local and long-range transport

Highly regulated pollutants nationally and internationally

Shen et al., *Scientific Reports*, 2014
Challenges of assessing and regulating a class of compounds

- Hundreds of different PAHs
- **Benzo(a)pyrene** often used as a proxy or marker for the entire mixture
 - WHO, UK, EU, Canada
 - Previous measurement studies estimate it comprises 40-80% of overall PAH risk
- US EPA prioritizes 16 emitted PAHs
- 4 PAHs used as indicators of emissions for Convention on Long-Range Transboundary Air Pollution (UNECE)

Polycyclic Aromatic Hydrocarbons (PAHs)

- Naphthalene
- Acenaphthylene
- Acenaphthene
- Fluorene
- Phenanthrene
- Anthracene
- Fluoranthene
- Pyrene
- Benzo(a)anthracene
- Chrysene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Benzo(a)pyrene
- Indeno(1,2,3-c,d)pyrene
- Benzo(g,h,i)perylene
- Dibenz[a,h]anthracene

Plus 100s of other emitted and produced compounds
Atmospheric reactions produce additional PAHs

- Increasing attention in environmental measurement and toxicology to degradation products and PAHs beyond the 16 EPA compounds (including higher molecular weight PAHs)

- Oxidation products can be orders of magnitude (10-1000x) more toxic than parent compounds

What is the relative importance of different PAHs to global cancer risk?
Global models of PAHs include few species.

Friedman and Selin (2012, ES&T): BaP, phenanthrene, pyrene

Shrivastava et al. (2017, PNAS): BaP only

Shen et al. (2014, Sci Rep): BaP only

Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol

Manish Shrivastava1,2,3, Sijia Lou4, Aila Zelenyuk4, Richard C. Easter5, Brian D. Throop6, Philip J. Rasch7, Jerome D. Fast7, Staci L. Mosey Simonish8, Haizhong Shen6, and Shu Tao

1Pacific Northwest National Laboratory, Richland, WA 99352, Department of Chemistry, Oregon State University, Corvallis, OR 97331; 2Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352; 3Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

Shrivastava et al. (2017, PNAS): BaP only
Our approach: A global model to examine the relative impacts of different PAHs

- Global-scale, 3-dimensional atmospheric chemistry and transport model
- Global emissions inventory for 16 PAHs (from Shen et al. 2013)
- Developed chemical mechanism for nitro- and dinitro-PAH formation and included in model (48 species)
- Evaluated vs. global database of atmospheric measurements (plus extensive uncertainty analysis)
- Used animal-based toxicity approach to avoid “double counting” cancer causes from multiple PAHs
 - Compared with epidemiological estimates of cancer risk
Finding #1: BaP is a poor indicator compound

BAP – the PAH usually used to represent the entire mixture

Fluoranthene – another emitted PAH
Finding #1: BaP is a poor indicator compound

Fraction of global cancer risk

- 17%: N-PAHs
- 11%: BaP
- 71%: other emitted PAHs

Compare with 40-80% estimate for BaP from measurement studies

Relative risk differences: BaP suggests 3.5x difference in risk, our method suggests 12x
Finding #2: PAH degradation products contribute substantially to cancer risk (\gtrapproxBaP)

Nitro-PYR – the oxidation product of PYR

- Likely even more than we calculate here, as we don’t account for oxy-PAHs and other degradation products, and limited info on toxicity for those included (12 out of 32)
- Unregulated, and largely unmonitored
- Different distribution than parent compounds
Implications: What are the best ways to reduce overall risk?

- Increased scientific and regulatory attention to degradation products and PAHs other than BaP – at global scale
- More measurements needed to quantify exposure
- Monitoring changes in BaP will not be an effective indicator of overall change in risk
- Changed identification of high priority source reductions?
- Better understanding of exposure to mixtures and their impacts