The Effect of Maternal Body Mass Index on In Vitro Fertilization-Intracytoplasmic Sperm Injection Treatment: A Prospective Comparative Study

Zeynep Ozturk Inal
Konya Education and Research Hospital

Hasan Ali Inal (dr.hasanaliinal@yahoo.com)
Konya Education and Research Hospital https://orcid.org/0000-0002-8361-7908

Research Article

Keywords: assisted reproductive techniques, body mass index, ovulation induction, clinical pregnancy rates

DOI: https://doi.org/10.21203/rs.3.rs-298772/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose: To evaluate whether or not maternal body mass index (BMI) has an effect on pregnancy rates following in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) treatment.

Methods: A total of 869 patients who had undergone IVF-ICSI treatment between 2012 and 2017 were included in this study. The participants were stratified according to maternal BMI as Group 1 (BMI < 25 kg/m²; n=394), Group 2 (25 kg/m² ≤ BMI < 30 kg/m²; n=303), and Group 3 (BMI ≥ 25 kg/m²; n=172). Basal parameters and IVF-ICSI outcomes were compared between the groups.

Results: While there were no differences between the groups in terms of age, smoking status, etiology of infertility, thyroid-stimulating hormone, prolactin levels, antral follicle count, and stimulation protocol (p>0.05), there was significant statistical difference (p<0.05) in terms of BMI, duration of infertility, baseline follicle-stimulating hormone, luteinizing hormone, estradiol (E₂), duration of stimulation, total gonadotropin dose required, peak E₂ levels, progesterone levels, endometrial thickness on hCG administration, and cycle cancellation rate. In addition, the numbers of MII and 2PN oocytes retrieved and the rates of clinical pregnancy, live births, and miscarriages were also different between the groups (p<0.05).

Conclusion: Our data suggest that there is an inverse impact of increased BMI on laboratory and reproductive outcome parameters of IVF-ICSI treatment. Taking cost-effectiveness into consideration, weight loss should be suggested before ovulation is induced.

Introduction

Obesity is a serious public health problem in developed and developing countries. Historically more prevalent in more advanced age groups, it is now seen with increasing frequency in reproductive ages where endocrinological effects such as hypothalamic-pituitary ovarian axis disorder can cause changes in the secretion of pulsatile gonadotropin, sex hormone-binding globulin, and ovarian androgen. This can prompt menstrual irregularity, anovulation, insulin resistance, have negative psychological and social effects, and can increase the risk of infertility by three times (1-3). It has also been demonstrated that weight loss can return women to spontaneous ovulation and pregnancy without any additional treatment (4-6).

Elsewhere, it has been reported that obesity reduces fecundity and increases the rate of miscarriage through a negative effect on endometrial receptivity (7). The adverse effects of pre-pregnancy obesity on perinatal (e.g., preeclampsia, gestational diabetes mellitus, preterm labor, and surgical delivery) and neonatal (e.g., macrosomic fetus) outcomes have also been reported (2). Additionally, obesity has been found to have a negative effect on serum testosterone and estrogen in men and to decrease sperm motility and quality (4,5).

There are conflicting results in the literature regarding the effects of maternal obesity on the success of assisted reproductive techniques (ART). Although some studies have found that maternal body mass index (BMI) has no negative effect on ART outcomes (8-11), others show that a higher BMI increases the amount of gonadotropin required, produces fewer oocytes, increases IVF-ICSI cancellation rate, decreases clinical pregnancy and live birth rates, and increases miscarriage rate (12-14). Since the effects of obesity on ART outcomes have not been fully elucidated, the current study sought to evaluate whether or not maternal BMI has an effect on pregnancy rates following in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) treatment.

Materials And Method

Study participants and data collection

This prospective study was carried out at Ali Kemal Belviranli Women's Health and Children's Hospital, IVF Unit. Outcomes of 757 fresh ICSI cycles were reviewed between January 2012 and December 2017. Inclusion criteria were participants aged 20–44 years, body mass index (BMI) between 18 and 35 kg/m², regular menstrual cycles, no uterine abnormalities in the
ultrasound, and normal baseline hormonal levels. Participants were excluded from the study if they were ≥45 years, any
diseases that affect the outcome of IVF/ICSI, such as hydrosalpinx and endometriosis. The ethical board approval was given
from the institutional review board (2012/57). Written and oral informed agreement was given from the participants.

Data were obtained for age, BMI (kg/m²), smoking status, infertility period, cause of infertility, the baseline at day 3 for
follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E₂) levels, thyroid-stimulating hormone (TSH),
prolactin, antral follicle count, stimulation parameters, cycle cancellation rate, IVF-ICSI outcomes, CPR, live birth, and
miscarriage rates.

Ovarian stimulation and oocyte retrieval

Controlled ovulation stimulation was negotiated using the gonadotropin-releasing hormone agonist (GnRHa) or the flexible
gonadotropin-releasing hormone antagonist (GnRHant) protocol.

ET Procedure

Two senior physicians performed the ETs accompanied ultrasonographic appearance (Logiq 200 Pro, General Electric, Seoul,
South Korea) using an embryo transfer catheter system. A sterile speculum was introduced to the vagina in the lithotomy
position and the vagina and the cervix were cleared using sterile cotton swabs.

An embryologist loaded the embryos into a soft transfer catheter which was advanced to the ET physician who deposited the
embryos approximately 10 mm from the uterine fundus under USG. The catheter was gently removed after 5 seconds. In
cases of ET with external guidance, an initial catheter with inner sheath was inserted into the external cervical os, and then
advanced through the cervical canal and internal os to 10 mm of the uterine fundus using USG. The internal sheath was
withdrawn, and a second catheter loaded with embryos was introduced in its place and advanced to approximately 10 mm
from the uterine fundus where the embryos were deposited. Difficult transfers required the use of a stylet in addition to this
form of external guidance.

All catheters were immediately checked for retained embryos, blood, and the patient remained in the Trendelenburg position
for about 10 minutes. Patients in whom tenaculum were excluded from the study. Luteal phase support was provided with
progesterone in the form of Crinone 8% gel (Serono, Istanbul, Turkey) at a daily dose of 90 mg. Baseline parameters and IVF-
ICSI outcomes were compared between the groups. Biochemical pregnancy was detected with a by hCG levels in venous
blood tests performed 12-14 days after embryo transfer, and clinical pregnancy was accepted as those with a gestational sac
accompanying fetal heart-beat on ultrasound examination at 4-5 weeks after embryo transfer. Live birth was defined as the
birth of a live fetus after 22 weeks of gestational age. The subjects were stratified according to the maternal BMI as Group 1
(BMI<25 kg/m²; n= 394), Group 2 (25 kg/m² ≤ BMI <30 kg/m²; n=303), and Group 3 (BMI ≥25 kg/m²; n=172). Basal
parameters, clinical and laboratory IVF-ICSI outcomes, and reproductive outcome parameters were compared between the
groups.

Statistical analysis

The statistical analyses were performed using SPSS 15.0 for Windows (SPSS, Chicago, IL, USA). The Kolmogorov-Smirnov
test was used for examining the continuous variables with normal and non-normal distributions. The one-way analysis of
variance (ANOVA) for normally distributed variables and the Kruskal-Wallis test for not-normally distributed variables were
used to compare groups. Categorical data were examined by Pearson’s chi-square test, and Fisher’s exact test was applied if
the expected frequency was less than 5 in >20% of all cells. The continuous variables were presented as the mean±standard
deviation (SD) and the categorical variables were demonstrated as the number of cases and percentages. The Bonferroni-
adjustment was used to control the type I errors for all possible multiple comparisons. A p<0.05 value was established as
statistically significant.
Results

A total of 51 patients were excluded from the study, specifically those with age >45 (n=19), BMI >35 kg/m² (n=14), systemic disease (n=9), endocrine or metabolic disorders (n=6), and concomitant medication (n=3). The remaining 869 participants were classified into the three groups and their outcomes analyzed (Figure 1).

A comparison of the sociodemographic and stimulation characteristics of the participants is provided in Table 1. While there were no differences between the groups in terms of age, smoking status, etiology of infertility, thyroid-stimulating hormone, prolactin levels, antral follicle count, and stimulation protocol (p>0.05), there was significant statistical difference (p<0.05) in terms of BMI, duration of infertility, baseline follicle-stimulating hormone, luteinizing hormone, estradiol (E₂), duration of stimulation, total gonadotropin dose required, peak E₂ levels, progesterone levels, endometrial thickness on hCG administration, and cycle cancellation rate.

The laboratory and reproductive outcomes of the participants are summarized in Table 2. The numbers of MII oocytes and 2PN retrieved and the rates of clinical pregnancy, live births, and miscarriages were also different between the groups (p<0.05).

Discussion

We found that overweight and obese patients with higher BMIs had worse responder rates, lower peak E₂ levels, and less endometrial thickness and required higher gonadotropin doses than the normal weight group. In addition, lower numbers of MII and 2PN oocytes were retrieved, the clinical pregnancy and live birth rates were lower, and the miscarriage rate was higher.

Obesity has historically been observed more frequently in adult and advanced age groups. It is now a global epidemic and has become an important public health problem in younger age groups, too (2). Infertile women, including obese patients, in the reproductive age group benefit from ART to fulfill their fertility requirements, and so the possible effects of increased BMI on ART are of great importance for the clinician, the patient, and public health (3).

Endocrinological and paracrinological factors play a role in the interaction between embryo and endometrium for successful implantation and live birth (15). Hyperandrogenemia, insulin resistance, and abnormal hormone levels that occur with increased BMI can negatively affect this process (1,16). A higher BMI also affects the levels of inflammatory markers such as insulin-like growth factors, tumor necrosis factor-alpha, and interleukine-6 which play roles in cell differentiation and differentiation, folliculogenesis, oocyte maturation, and embryo development. As a result, embryo implantation can be negatively affected and the risk of miscarriage can increase (17-19). Previous studies have shown that increased BMI is associated with poor IVF-ICSI outcomes through the effect of these endocrinological factors (2,20-21) with one study reporting that a reduction of one BMI unit can increase the chance of pregnancy by 19% (22). It has also been found that advanced maternal age and smoking negatively affect live birth rates (23), although the mean age and smoking rates were similar between the groups in our study.

In the literature, conflicting results exist regarding the effects of increased BMI on ART outcomes. For example, Fedorcsek et al. (13) evaluated 5019 IVF-ICSI cycles and found no significant difference in live birth rates between obese and normal-weight women (41.4% vs 50.3%). Similarly, Wittemer et al. (24) and Dokras et al. (25) show that BMI has no negative effect on rates of clinical pregnancy or live birth. On the other hand, however, Luke et al. (26) evaluated approximately 45,000 embryo transfers and show that an increased BMI decreases clinical pregnancy and live birth rates and that this effect is especially pronounced in women under 35 years of age. A separate meta-analysis of 33 studies and 47,967 IVF-ICSI cycles found that obese and overweight patient groups had poorer outcomes compared to normal weight women and that the obese group was worse than the overweight patient group (1). These findings were in agreement with our results. Sartorius et al. (25) demonstrate that an increased BMI can have other negative perinatal outcomes such as preeclampsia, preterm birth, and surgical delivery, as well as reducing live birth rates. Relatedly, Pinborg et al. (6) evaluate 1,417 IVF-ICSI cycles and show that
the cancellation rate increases with increased BMI, the two key reasons being that obesity makes the oocyte pick-up procedure more difficult and insufficient follicles are developed despite the use of high gonadotropin doses.

The possible negative effects of an increased BMI on ART should be explained to overweight and obese women who are scheduled for IVF-ICSI treatment. Before the process begins, it should also be explained that weight loss can increase the chance of success in terms of pregnancy and live birth. Overweight and obese women should consequently be encouraged to lose weight, and clinicians planning ART should implement weight loss programs involving diet and exercise. In addition, it should be understood that the gonadotropin dose required will increase with higher BMIs meaning that treatment costs will also grow despite the increasingly negative perinatal outcomes.

The strong point of the current study consist of its prospective arrangement, the adequate number of subjects in each group, and the prototypical sample from central Turkey. The results can be generalized to most of the country’s population. However, the potential limitations of the study are that it was conducted in a tertiary single care institution and that the cumulative CPR was not evaluated because no frozen ETs were included.

In conclusion, this study found that an increased BMI has a negative effect on ART outcomes as shown in decreasing clinical pregnancy and live birth rates and increasing miscarriage rates. Further studies with more participants are needed to elucidate this effect.

Declarations

Compliance with ethical standards

Ethics Committee Approval: Ethics committee approval was received for this study from the local ethics committee of Necmeddin Erbakan University Medical Faculty (reference number: 2012/57). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Author Contributions: Concept – Z.O.I., H.A.I.; Design – Z.O.I., H.A.I.; Supervision – Z.O.I., H.A.I.; Materials – Z.O.I., H.A.I.; Data Collection and/or Processing – Z.O.I., H.A.I. and/or Interpretation - Z.O.I., H.A.I.; Literature Review – Z.O.I., H.A.I.; Writer – Z.O.I., H.A.I.; Critical Review - Z.O.I., H.A.I.

Conflict of interest: Zeynep Ozturk Inal and Hasan Ali Inal declare that they have no conflict of interest.

Financial Support: None

Presented at a meeting: Presented as an oral presentation at 16th National Congress of Gynecology and Obstetrics, 9-13 May 2018, in Antalya, Turkey.

References

1. Rittenberg V, Seshadri S, Sunkara SK, Sobaleva S, Oteng-Ntim E, El-Toukhy T. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online. 2011;23:421-39.
2. Wang X, Hao J, Zhang F, Li J, Kong H, Guo Y. Effects of female and male body mass indices on the treatment outcomes and neonatal birth weights associated with in vitro fertilization/intracytoplasmic sperm injection treatment in China. Fertil Steril. 2016;106:460-6.
3. Gorkem U, Inal ZO, Inal HA, Bostanci MO. Serum progranulin levels are elevated in infertile women with obesity. Endokrynol Pol. 2018;69:661-6.
4. Davidson LM, Millar K, Jones C, Fatum M, Coward K. Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. Hum Fertil (Camb) 2015;18:184–93.

5. Inal HA, Kahyaoglu I, Turkkani A, Tuzluoglu D, Yilmaz N. Retrospective comparison of intracytoplasmic sperm injection outcomes of sperm retrieved from a testicular biopsy and freshly ejaculated semen in oligozoospermia. Rev Int Androl. 2018;16:131-6.

6. Pinborg A, Gaarslev C, Houggaard CO, Nyboe Andersen A, Andersen PK, Boivin J, Schmidt L. Influence of female bodyweight on IVF outcome: a longitudinal multicentre cohort study of 487 infertile couples. Reprod Biomed Online. 2011;23:490-9.

7. Sharifzadeh F, Kashanian M, Jouhari S, Sheikhsansari N. Relationship between pre-pregnancy maternal BMI with spontaneous preterm delivery and birth weight. J Obstet Gynaecol 2015;35:354–7.

8. Maheshwari A, Stofberg L, Bhattacharya S. Effect of overweight and obesity on assisted reproductive technology a systematic review. Hum. Reprod. Update 2007;13: 433–4.

9. Lashen H, Ledger W, Lopez Bernal A, Barlow D. Extremes of body mass do not adversely affect the outcome of superovulation and in vitro fertilization. Hum. Reprod 1999;14:712–5.

10. Dechaud H, Anahory T, Reyftmann L, Loup V, Hamamah S, Hedon B. Obesity does not adversely affect results in patients who are undergoing in vitro fertilization and embryo transfer. Eur J Obstet Gynecol Reprod Biol 2006;127:88–93.

11. Matalliotakis I, Cakmak H, Sakkas D, Mahutte NG, Koumantakis G, Arici A. Impact of body mass index on IVF and ICSI outcome: a retrospective study. Reprod Biomed Online 2008;16: 778–83.

12. Wang JX, Davies M, Norman RJ. Body mass and probability of pregnancy during assisted reproduction treatment: retrospective study. BMJ 2000;321:1320–1.

13. Fedorcsak P, Dale PO, Storeng R, Ertzeid G, Bjercke S, Oldereid N, Omland AK, AbyholmT, Tanbo T. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod 2004;19:2523–8.

14. Veleva Z, Tiitinen A, Vilska S, Hyde’n-Granskog C, Toma’s C, Martikainen H, Tapanainen JS. High and low BMI increase the risk of miscarriage after IVF/ICSI and FET. Hum Reprod 2008;23:878–84.

15. Inal ZO, Inal HA, Erdem S. The effect of serum and follicular fluid secreted frizzle-related protein-5 on in vitro fertilization outcomes in patients with polycystic ovary syndrome. Mol Biol Rep. 2018;45:2037-2044.

16. Brewer C, Balen A. The adverse effects of obesity on conception and implantation. Reproduction 2010;140:347–64.

17. Ozturk Inal Z, Yilmaz N, Inal HA, Hancerliogullari N, Coskun B. Are there any differences between antagonist administration on days <6 and ≥6 of Controlled Ovarian Hyperstimulation on assisted reproductive technique outcomes? J Chin Med Assoc. 2018;81:53-7.

18. Ma Y, Zhu MJ, Zhang L, Hein SM, Nathanielsz PW, Ford SP. Maternal obesity and overnutrition alter fetal growth rate and cotyledonal vascularity and angiogenic factor expression in the ewe. Am J Physiol Regul Integr Comp Physiol 2010;299:249–58.

19. Dimitriadis E, Nie G, Hannan NJ, Paiva P, Salamonsen LA. Local regulation of implantation at the human fetal–maternal interface. Int J Dev Biol 2010;54:313–22.

20. Bellver J, Melo MA, Bosch E, Serra V, Remohi J, Pellicer A. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril 2007;88:446–51.

21. Zhang JJ, Feret M, Chang L, Yang M, Merhi Z. Obesity adversely impacts the number and maturity of oocytes in conventional IVF not in minimal stimulation IVF. Gynecol Endocrinol 2015;31:409–13.

22. Ferlitsch K, Sator MO, Gruber DM, Rucklinger E, Gruber CJ, Huber JC. Body mass index, follicle-stimulating hormone and their predictive value in in vitro fertilization. J Assist Reprod Genet 2004;21:431–6.

23. Lintsen AM, Pasker-de Jong PC, de Boer EJ, Burger CW, Jansen CA, Braat DD, et al. Effects of subfertility cause, smoking and bodyweight on the success rate of IVF. Hum Reprod 2005;20:1867–75.
24. Wittemer C, Ohl J, Bailly M, Bettahar-Lebugle K, Nisand I. Does body mass index of infertile women have an impact on IVF procedure and outcome? J Assist Reprod Genet 2010;17:547–52.

25. Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A. Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol 2006;108:61–9.

26. Luke B, Brown MB, Stem JE, Missmer SA, Fujimoto VY, Leach R. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates A SART Writing Group. Hum Reprod 2011;26:245–52.

27. Sartorius GA, Nieschlag E. Paternal age and reproduction. Hum Reprod Update 2010;16:65–79.

Tables

Table 1. Demographic and stimulation characteristics of the patients.
	BMI<25 (Group 1) (n=394)	25≤BMI<30 (Group 2) (n=303)	BMI≥30 (Group 3) (n=172)	p	1 vs 2	1 vs 3	2 vs 3
Age (years)	30.03±4.55	30.31±4.96	30.94±4.56	0.109			
BMI (kg/m²)	21.9±81.99	27.23±1.43	32.88±2.38	<0.001	<0.001	<0.001	
Smoking rate (%)	7.4%	7.3%	5.8%	0.775			
Duration of infertility (years)	5.51±3.33	6.20±3.78	7.39±3.89	0.038	<0.001	0.004	
Etiology of infertility (%)							
Male factor	39.4%	38.1%	29.7%				
Tubal factor	1.3%	2.6%	1.7%				
Unexplained	34.4%	36.8%	36.1%	0.116			
Poor responder	24.9%	22.5%	32.6%				
Baseline-FSH (IU/mL)	7.45±2.28	7.14±2.52	6.74±2.45	0.205	0.003	0.187	
Baseline-LH (IU/mL)	5.93±2.77	5.14±2.80	5.08±3.11	0.001	0.003	0.975	
Baseline-Estradiol (pg/mL)	46.50±16.65	42.69±16.79	42.65±15.28	0.007	0.027	0.996	
Antral follicle count	6.06±2.60	6.41±2.72	5.67±2.55	0.064			
TSH (IU/µIU/mL)	2.22±1.12	2.09±1.03	2.29±1.23	0.144			
Prolactin (ng/mL)	16.70±9.40	16.0±28.01	15.34±9.37	0.231			
Stimulation protocol (%)							
Long	17.8%	19.5%	20.5%				
Antagonist	81.4%	80.1%	78.9%	0.875			
Microdose	0.8%	0.3%	0.6%				
Duration of stimulation (days)	9.76±1.52	9.62±1.51	10.17±1.86	0.528	0.147	0.001	
Gonadotropin dose (IU)	1929.63±912.79	2008.26±883.51	2234.60±1019.92	0.511	0.001	0.030	
Estradiol levels on day hCG (pg/mL)	2015.65±1140.77	1802.17±1063.92	1705.64±1323.19	0.043	0.010	0.660	
Progesterone levels on day hCG (pg/mL)	0.89±0.39	0.79±0.37	0.69±0.37	0.002	<0.001	0.031	
Endometrial thickness on day hCG (mm)	10.3±91.62	10.28±1.74	9.86±1.65	0.651	0.002	0.028	
Endometrial thickness on transfer day (mm)	10.52±1.66	10.44±1.83	10.02±1.74	0.042	0.006	0.019	
Cyle cancellation rate (%)	1.7%	2.6%	6.9%	0.444	0.004	0.031	

BMI: body mass index; FSH: follicle stimulating hormone; LH: luteinizing hormone; TSH: thyroid stimulating hormone; hCG: human chorionic gonadotropine

p<0.05 is statistically significant
Table 2. Laboratory and reproductive outcome parameters of the patients.

Parameter	BMI<25 (Group 1, n=387)	25≤BMI<30 (Group 2, n=295)	BMI≥30 (Group 3, n=160)	p
				1 vs 2
Number of oocytes retrieved	9.41±6.01	8.97±5.11	7.90±5.50	0.576
				1 vs 3
				0.011
				0.126
				2 vs 3
				0.712
				0.017
				0.115
Number of MII oocytes	7.46±4.45	7.19±4.22	6.33±4.58	0.868
				0.010
				0.030
2 Pronucleus	5.11±3.42	4.98±3.24	4.06±2.88	
Fertilization rate (%)	68.48±24.5	68.80±23.67	67.09±25.17	0.768
Grade I embryo (%)	67.2%	66.5%	65.1%	0.231
Number of embryo transfers (%)				0.105
	Single	82.7%	78.2%	
	Multiple	17.3%	21.8%	
			24.8%	
The days of embryo transfer (%)				0.117
	2	3.9%	5.1%	
	3	84.8%	85.6%	
	5	11.3%	9.3%	
			10.0%	
The embryo transfer technique (%)				0.173
	Easy transfer with a soft catheter	22.1%	21.5%	16.8%
	After external guidance transfer	71.9%	69.1%	78.5%
	Difficult transfer with a stylet	6.0%	9.4%	4.7%
Clinical pregnancy rate (%)	40.1%	33.2%	23.8%	0.042
				<0.001
				0.041
Live birth rate (%)	33.6%	23.7%	13.9%	0.005
				<0.001
				0.017
Miscarriage rate (%)	17.7%	28.6%	44.7%	0.045
				0.001

BMI: Body mass index

p<0.05 is statistically significant

Figures
Figure 1

Flowchart of the Study. Enrollment and follow-up of the study subjects.