How the Fukushima Daiichi accident changed (or not) the nuclear safety fundamentals?

Kazuo FURUTA
University of Tokyo
Anatomy of Fukushima

- Lack of defense-in-depth against tsunamis
 - Seawalls of an insufficient height
 - Safety-relevant equipment under the ground level
 - Insufficient backups for station blackout

- Unpreparedness for consequence mitigation
 - Efforts after JCO were ineffective
Safety management based on probabilistic concept of risk

Probability of damage

Risk retention

Risk transfer / retention

Risk reduction

Risk limit

Scale of damage
Enhancement of defense-in-depth

- Reevaluation of the maximum scale of earthquakes and tsunamis
- Installation of watertight structures and countermeasures against submerging
- Reinforcement of emergency power supply
- Reinforcement of emergency water supply including that for spent fuel pits
- Prevention of reactor containment vessel damage, e.g., installation of filtered containment venting
- Preventing dispersion of radioactivity
Essential characteristics of resilience

- **Margin**
 - How closely operating to a boundary

- **Buffering capacity**
 - Size of disruptions that system can absorb
 (Resilience triangle)

- **Tolerance**
 - System behavior near a boundary
 (Graceful degradation)

- **Flexibility**
 - Ability to restructure itself in response to changes

- **Safety boundary**

- **Functionality**

- **Adaptation**

Changes after *Fukushima*

- Preparedness for all-hazards and multiple disasters
 - Natural disasters other than seismic motion
 - Aircraft crashes, terrorists’ attacks, pandemic, etc.

- Administration of emergency response
 - Information sharing between different organizations
 - Agent-based organizational design, bio-inspired design of complex social systems
Simulation of organizational emergency response

INPUT: Scenario

Scenario Manager

OUTPUT: bg of information acquisition, action, and resource consumption of each agent
Task and communication

Information transfer

all activities

emergency medical activities
Resilience enhancement measures

Margin
- Conventional safety design
- Redundancy
- Fail safe & fool proof
- Risk-informed management

Tolerance
- Margin beyond design basis
- Accident management
- Nuclear disaster prevention

Buffering capacity
- Nuclear disaster prevention
- Restoration
- Decontamination
- Compensation

Flexibility
- Incident management
- Living PSA
- Technological back-fits
- Organizational restructuring
3 categories of unsafe events (1)

Manifestation	Category 1	Category 2	Category 3
Work accidents or single failures	Systemic or organizational accidents	Design basis events or anticipated incidents	
Frequency	Relatively high	Extremely low	Very low
Scale of damage	Local and limited	Medium ~ devastating	Devastating
Primary victims	Interested people	Interested people Third party	Interested people and/or third party
Complexity of scenarios	Simple	Complicated and non-linear	Complicated but linear

(Furuta, 2001)
3 categories of unsafe events (2)

	Category 1	Category 2	Category 3
Variety of scenarios	Diverse but classifiable	Extremely diverse	Limited and finite
Quantitative risk	Statistically possible	Impossible	Theoretically possible
assessment			
Safety goal	ALARP	ALARP	Absolute risk limit
Countermeasures	Quality assurance & work management	Systems approach	Engineered safety features
Trade-off with	Compatible	Partly compatible	Conflicting
economy			
Status in nuclear	Already resolved	Resilience?	Already resolved
industry			

(Furuta, 2001)
Conclusion

• The very basis of nuclear safety, defense-in-depth, has not changed after *Fukushima*.

• Enhancement of NPPs resilience
 – Preparedness for all-hazards and multiple disasters
 – Importance of administration of emergency response
 – Efforts targeting at Category 2 unsafe events