We review the construction, starting with the monoid \mathbb{N} of natural numbers, of the ring \mathbb{Z} of integers, of the field \mathbb{Q} of rational numbers, of the locally compact fields \mathbb{R} and \mathbb{Q}_p of real and p-adic numbers (p being a prime number), and of the complete closed fields \mathbb{C} and \mathbb{C}_p. We introduce Fontaine’s rings of periods and, finally, indicate the need for going beyond them for the purposes of outer galoisian actions.

1. (Numbers as sums). Mathematics starts with

Definition 1. — *The monoid \mathbb{N} is the free monoid on one generator, denoted 1.*

We grant that such a monoid exists. The elements of \mathbb{N} are 0, 1, $1 + 1$, $1 + 1 + 1$, . . . ; they are to be added for example as

$$(1 + 1) + (1 + 1 + 1) = 1 + 1 + 1 + 1 + 1$$

with the requirement that $n + 0 = n$ and $0 + n = n$ for every $n \in \mathbb{N}$. Given any monoid M and an element $m \in M$, there is a unique morphism of monoids $f : \mathbb{N} \to M$ such that $f(1) = m$.

Summary: $(\mathbb{N}, 1)$ is the initial object in the category of pointed monoids.

2. (Numbers as products). Let $\text{End}(\mathbb{N})$ be the additive monoid of endomorphisms of \mathbb{N}:

$$(f + g)(n) = f(n) + g(n).$$

The map $e : \text{End}(\mathbb{N}) \to \mathbb{N}$, $f \mapsto f(1)$ is an isomorphism of monoids; the reciprocal is the morphism $1 \mapsto (1 \mapsto 1)$, i.e. the unique morphism which sends 1 to $\text{Id}_\mathbb{N}$.

An endomorphism f is injective if and only if $f(1) \neq 0$, bijective if and only if $f(1) = 1$. As the composite of two injective maps is injective, e can be used to make the set \mathbb{N}^* (the complement of 0 in \mathbb{N}) into a monoid, by transport of structure; it is commutative.

For $m, n \in \mathbb{N}^*$, we say that m divides n, and write $m | n$, if the endomorphism $1 \mapsto n$ factors via the endomorphism $1 \mapsto m$.
Definition 2. — A number \(p \in \mathbb{N}^* \) is called prime if \(p \neq 1 \) and if the only divisors of \(p \) are 1 and \(p \).

The set of prime numbers is denoted by \(P \). The first few primes are 2, 3, 5, 7, 11, \ldots\) Multiples of 2 are called even numbers, the others are called odd. In particular, every prime \(\neq 2 \) is odd.

Theorem 1. — The map \(\mathbb{N}^{(P)} \to \mathbb{N}^* \) which send \(f \) to \(\prod_{p \in P} p^{f(p)} \) is an isomorphism, i.e. \(\mathbb{N}^* \) is the free commutative monoid on the set \(P \).

In other words, given any commutative monoid \(M \) and any map \(f : P \to M \), there is a unique morphism \(\mathbb{N}^* \to M \) which extends \(f \). Moreover, \(P \) is the only subset of \(\mathbb{N}^* \) with this property.

Theorem 2. — The monoid \(\mathbb{N}^* \) is not finitely generated: \(P \) is infinite.

Proof (Euclid) : Suppose that \(P \) were finite, and consider the number \(n = 1 + \prod_{p \in P} p \), which is \(> 1 \). If \(n \) is prime, we get a contradiction because \(P \) does not contain \(n \). If \(n \) is not a prime, we also get a contradiction, because it does not have any prime divisor: no \(p \in P \) is a divisor of \(n \).

Summary: \(\mathbb{N}^* \) is the monoid of injective endomorphisms of the monoid \(\mathbb{N} \); it is free commutative; the elements of its basis are called prime numbers.

3. (Numbers as differences). If \(f : \mathbb{N} \to M \) is a morphism of monoids such that \(f(1) \) has an (additive) inverse, then \(f(n) \) has an inverse for every \(n \in \mathbb{N} \). Conversely, if \(f(n) \) is invertible for some \(n \neq 0 \), then \(f(1) \) is invertible.

The trouble is that there is no \(n \in \mathbb{N} \) such that \(n + 1 = 0 \), i.e. the difference \(0 - 1 \) does not exist. Nor does the difference \(8 - 9 \), which is essentially the same. The way to make them exist is to declare these differences \(m - n \) (\(m, n \in \mathbb{N} \)) themselves as being new numbers and to identify any two differences which are essentially the same.

Formally, consider the equivalence relation \(\sim \) on the monoid \(\mathbb{N} \times \mathbb{N} \) of all pairs, defined as
\[
(m, n) \sim (m', n') \iff m + n = m' + n.
\]
Then the class of \((0, 1)\) is the same as the class of \((8, 9)\), and so on; it is denoted \(-1\). The pairs \((1, 0), (9, 8), \text{ etc.}, \) have the same class, which is identified with 1. Thus the equivalence classes consist of \(\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \) and we have obtained the group \(\mathbb{Z} \) of integers as the group of differences of the monoid \(\mathbb{N} \).
Theorem 3. — The group \mathbb{Z} is free on one generator; 1 and -1 are the only generators.

Summary: $\mathbb{N} \rightarrow \mathbb{Z}$ is the group of differences of \mathbb{N}, i.e. the initial object in the category of maps of the monoid \mathbb{N} into groups.

4. (Numbers as products, bis). Consider the ring $\text{End}(\mathbb{Z})$ of endomorphisms of the group \mathbb{Z}. The map $\text{End}(\mathbb{Z}) \rightarrow \mathbb{Z}$, $f \mapsto f(1)$ is an isomorphism of additive groups, allowing us to make the commutative group \mathbb{Z} into a ring; extending the multiplication from \mathbb{N} to \mathbb{Z}. This ring is commutative and integral, i.e., if $xy = 0$ ($x,y \in \mathbb{Z}$), then $x = 0$ or $y = 0$. Moreover, the sum and the product of two positive numbers is again positive.

Theorem 4. — The ring \mathbb{Z} is principal, i.e., every ideal can be generated by one element.

Given any ring A, there is a unique homomorphism of rings $\mathbb{Z} \rightarrow A$, a fact which is expressed by saying that the ring \mathbb{Z} is the initial object in the category of rings.

Theorem 5. — For every prime p, the ideal $p\mathbb{Z}$ is prime, indeed maximal. Conversely, every maximal ideal of \mathbb{Z} is generated by a prime number.

Notice that 0 is the only prime ideal of \mathbb{Z} which is not maximal. For every prime p, the field $\mathbb{Z}/p\mathbb{Z}$ is denoted \mathbb{F}_p.

Summary: The ring \mathbb{Z} is the ring of endomorphisms of the (commutative) group \mathbb{Z}. It is principal and the maximal ideal correspond to prime numbers.

5. (Numbers as fractions). We notice that fractions do not exist in \mathbb{Z}: there is no x such that $2x = 1$. In order to remedy this, we proceed as with difference: on the set $\mathbb{Z} \times \mathbb{Z}^*$ of pairs (m,n) ($n \neq 0$), we define an equivalence relation \sim as

$$(m,n) \sim (m',n') \Leftrightarrow mn' = m'n.$$

The equivalence class of (m,n) is written m/n; they are to be added and multiplied as

$$\frac{m}{n} + \frac{m'}{n'} = \frac{mn' + m'n}{nn'}, \quad \frac{m}{n} \cdot \frac{m'}{n'} = \frac{mm'}{nn'}.$$

These classes form a field \mathbb{Q}, called the field of fractions of the (integral) ring \mathbb{Z}.

3
Consider the multiplicative group \mathbb{Q}^\times of the field \mathbb{Q}, and its subgroup \mathbb{Z}^\times, which happens to be the torsion subgroup. One identifies P with its image in $\mathbb{Q}^\times/\mathbb{Z}^\times$.

Theorem 6. — The map $\mathbb{Z}^{(P)} \to \mathbb{Q}^\times/\mathbb{Z}^\times$ which sends f to $\prod_{p \in P} p^{f(p)}$ is an isomorphism, i.e. $\mathbb{Q}^\times/\mathbb{Z}^\times$ is the free \mathbb{Z}-module on the set P.

In other words, $\mathbb{Q}^\times/\mathbb{Z}^\times$ is the group of “differences” of the monoid \mathbb{N}^*.

Corollary. — The map $\{1, -1\} \times \mathbb{Z}^{(P)} \to \mathbb{Q}^\times$ which sends (ε, f) to $\varepsilon \prod_{p \in P} p^{f(p)}$ is an isomorphism of \mathbb{Z}-modules.

Sometimes it is more convenient to use the isomorphism which sends -1 to -1 and e_p to p^* for every prime p, where $(e_p)_{p \in P}$ is the canonical basis of $\mathbb{Z}^{(P)}$ and

$$2^* = 2, \quad p^* = p^{\frac{p-1}{2}} \quad (p \neq 2).$$

Summary: $\mathbb{Z} \to \mathbb{Q}$ is the field of fractions of \mathbb{Z}, i.e. the initial object in the category of injective homomorphisms of the ring \mathbb{Z} into fields. $\mathbb{N}^* \to \mathbb{Q}^\times/\mathbb{Z}^\times$ is the “group of differences” of \mathbb{N}^*.

6. *(Numbers as limits).* We notice that there are sequences $(x_n)_n$ of rational numbers which do not have a limit in \mathbb{Q}, although $|x_m - x_n|$ can be made as small as we please by taking m, n large enough. For example,

$$x_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$$

In order to make such limits exist, we consider the space of all fundamental sequences, i.e. sequences $(x_n)_n$ of rational numbers such that $|x_n - x_m|$ can be made as small as we please by taking m, n large enough. They can be added and multiplied, so they form a ring. Those fundamental sequences which tend to 0, i.e. such that $|x_n|$ is as small as we please for n large enough, form a maximal ideal of this ring. The quotient field \mathbb{R} has a natural order, hence a uniformity and a topology.

Theorem 7. — The space \mathbb{R} is connected, locally connected, locally compact and complete.

7. *(Numbers as roots).* The polynomial $X^2 + 1$ is irreducible over \mathbb{R} because $x^2 + 1 > 0$ for every $x \in \mathbb{R}$. Adjoining a root of this polynomial, we obtain the field $\mathbb{C} = \mathbb{R}[X]/(X^2 + 1)$ of complex numbers. Something miraculous happens:
Theorem 8. — The field \(\mathbb{C} \) of complex numbers is algebraically closed.

The proof rests on the fact that every real number \(> 0 \) has a square root, and that every real polynomial of odd degree has a root in \(\mathbb{R} \).

The group of \(\mathbb{R} \)-automorphisms of \(\mathbb{C} \) is generated by the involution \(i \mapsto -i \), where \(i \) is the image of \(X \) in \(\mathbb{C} \).

The field \(\mathbb{C} \) comes with an absolute value \(|\cdot|_{\infty} \) extending the one on \(\mathbb{R} \), which can be used to give it a uniformity, and hence a topology. Another miracle happens:

Theorem 9. — The space \(\mathbb{C} \) is simply connected, locally compact and complete.

Let us mention the field \(\mathbb{H} \) of quaternions, which is not commutative. It was discovered by Hamilton, who was trying to find an even bigger number system than \(\mathbb{C} \). It can now be defined as the unique (4-dimensional) \(\mathbb{R} \)-algebra \(A \), other than \(M_2(\mathbb{R}) \), such that \(A \otimes_{\mathbb{R}} \mathbb{C} \) is \(\mathbb{C} \)-isomorphic to \(M_2(\mathbb{C}) \). The absolute value \(|\cdot|_{\infty} \) extends to \(\mathbb{H} \), with respect to which it is complete.

Theorem 10. — The only fields complete with respect to an archimedean absolute value are \(\mathbb{R} \), \(\mathbb{C} \) and \(\mathbb{H} \).

In fact, these are the only locally compact connected fields. Notice that these three fields are different, as \(\mathbb{R} \) is commutative but not algebraically closed, \(\mathbb{C} \) is commutative and algebraically closed, whereas \(\mathbb{H} \) is not commutative.

Summary: \(\mathbb{Q} \to \mathbb{R} \) is the completion of \(\mathbb{Q} \) in the \(\infty \)-adic uniformity. It is connected, locally connected, locally compact and complete. \(\mathbb{R} \to \mathbb{C} \) is a quadratic extension and an algebraic closure, with a chosen 4\(^{th}\) root of 1.

8. (Numbers as limits, bis). It was noticed at the end of the XIX\(^{th}\) century that \(|\cdot|_{\infty} \) is not the only absolute value on \(\mathbb{Q} \). For every prime \(p \), there is an absolute value \(|\cdot|_p \) for which the sequence

\[
x_n = 1 + p + p^2 + p^3 + \cdots + p^n
\]

is a fundamental sequence! It is the unique homomorphism \(\mathbb{Q}^\times \to \mathbb{R}^\times \) (into the multiplicative group of real numbers \(> 0 \)) such that \(|p|_p = 1/p \) and \(|l|_p = 1 \) for every prime \(l \neq p \) (cf. Corollary to Theorem 6).
Theorem 11. — *Leaving aside the trivial one, every absolute value on \mathbb{Q} is equivalent to $| |_\infty$ or to $| |_p$ for some prime $p \in \mathbb{P}$.*

That none of these absolute values can be neglected is illustrated by the following result (the “product formula”) — almost a tautology — in which $\tilde{\mathbb{P}}$ denoted the set \mathbb{P} together with an additional element ∞:

Theorem 12. — *For every $x \in \mathbb{Q}^\times$, one has $|x|_v = 1$ for almost all $v \in \tilde{\mathbb{P}}$ and $\prod_{v \in \tilde{\mathbb{P}}} |x|_v = 1$.*

Indeed, it is sufficient to verify this for $x = -1$ and $x = p$ ($p \in \mathbb{P}$), cf. Corollary to Theorem 6.

There are fundamental sequences with respect to $| |_p$ which do not converge in \mathbb{Q}, for example the sequence $x_n = 2^{5^n}$ for $p = 5$, whose limit would be a primitive 4th root of 1.

As in the construction of real numbers, we can consider the ring of all fundamental sequences; those which converge to 0 form a maximal ideal. The quotient field \mathbb{Q}_p comes with an absolute value $| |_p$ (extending the one on \mathbb{Q}), hence a metric.

Theorem 13. — *The space \mathbb{Q}_p is locally compact, totally disconnected, and complete.*

The disc $|x|_p \leq 1$ is a compact subring \mathbb{Z}_p, with group of units \mathbb{Z}_p^\times the circle $|x|_p = 1$. Another simplification occurs in the multiplicative group (cf. Theorem 6).

Theorem 14. — *The valuation $v_p : \mathbb{Q}_p^\times \to \mathbb{Z}$ induces an isomorphism $\mathbb{Q}_p^\times / \mathbb{Z}_p^\times \to \mathbb{Z}$.*

Choosing a section of v_p, i.e. an element $e_p \in \mathbb{Q}_p^\times$ such that $v_p(e_p) = 1$ (for example $e_p = p$), we get an isomorphism $\mathbb{Z}_p^\times \times \mathbb{Z} \to \mathbb{Q}_p^\times$. For p odd, the torsion subgroup W of \mathbb{Z}_p^\times is cyclic of order $p - 1$; the quotient \mathbb{Z}_p^\times / W is a commutative pro-p-group, i.e. a \mathbb{Z}_p-module; it is free of rank 1; the image of $1 + e_p$ is a basis. What happens for $p = 2$?

What is the archimedean analogue of this theorem? The analogue of the units would be the kernel of the absolute value, i.e. the 0-sphere $\{1, -1\}$ in \mathbb{R}, the 1-sphere \mathbb{S}_1 in \mathbb{C} and the 3-sphere \mathbb{S}_3 in \mathbb{H}.

Theorem 15. — *The maps $(\varepsilon, x) \mapsto \varepsilon e^x$, $\{1, -1\} \times \mathbb{R} \to \mathbb{R}^\times$, $\mathbb{S}_1 \times \mathbb{R} \to \mathbb{C}^\times$ and $\mathbb{S}_3 \times \mathbb{R} \to \mathbb{H}^\times$ are isomorphisms of real-analytic groups.*

In other words, the topological groups $\mathbb{R}^\times / \{1, -1\}$, $\mathbb{C}^\times / \mathbb{S}_1$ and $\mathbb{H}^\times / \mathbb{S}_3$ are 1-dimensional vector spaces over \mathbb{R}, with canonical basis \bar{e}; they are
the same as the multiplicative group \mathbb{R}^\times of reals > 0.

Further, there is a unique $\pi > 0$ in \mathbb{R} such that $2i\pi \mathbb{Z}$ is the kernel of $e^{(\cdot)} : 2i\pi \mathbb{R} \to S_1$, i.e. one has the exact sequence

$$\{0\} \to 2i\pi \mathbb{Z} \to 2i\pi \mathbb{R} \to S_1 \to \{1\}.$$

What is the analogue for S_3? What is the liegebra \mathfrak{s}_3? What are the groups $\mathbb{C}^\times/\mathbb{R}^\times$, $\mathbb{H}^\times/\mathbb{R}^\times$, $\mathbb{H}^\times/\{1, -1\}$, $S_1/\{1, -1\}$, $S_3/\{1, -1\}$?

In all fairness, we should give a similar description of the multiplicative group of all fields complete with respect to the p-adic absolute value, and not just \mathbb{Q}_p. Let us leave that aside.

Summary : $\mathbb{Q} \to \mathbb{Q}_p$ is the completion of \mathbb{Q} in the p-adic uniformity; it is locally compact and totally disconnected. The closed unit disc \mathbb{Z}_p is a compact subring; the quotient $\mathbb{Q}_p^\times/\mathbb{Z}_p^\times$ is \mathbb{Z}.

9. (*Numbers as roots and limits, bis*). We saw that there is a drastic reduction in the number of irreducible polynomials when we completed \mathbb{Q} with respect to $| \cdot |_\infty$. The reduction is not so drastic when we complete with respect to $| \cdot |_p$: there are irreducible polynomials of every degree, but essentially only finitely many of them:

Theorem 16. — The field \mathbb{Q}_p has only finitely many extensions in each degree.

For example, the only quadratic extensions of \mathbb{Q}_5 are $\mathbb{Q}_5(\sqrt{5})$, $\mathbb{Q}_5(\sqrt{2})$ and $\mathbb{Q}_5(\sqrt{10})$.

Central simple \mathbb{Q}_p-algebras are classified by the group \mathbb{Q}/\mathbb{Z}, whereas central simple \mathbb{R}-algebras are classified by the group $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$. There is a very precise local-to-global principle in terms of these groups, of which a special case reads :

Theorem 17. — An n^2-dimensional central simple \mathbb{Q}-algebra A is isomorphic to $\mathbf{M}_2(\mathbb{Q})$ if $A \otimes_\mathbb{Q} \mathbb{Q}_p$ is isomorphic to $\mathbf{M}_2(\mathbb{Q}_p)$ for every $p \in P$; $A \otimes_\mathbb{Q} \mathbb{R}$ is then necessarily isomorphic to $\mathbf{M}_2(\mathbb{R})$.

Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p ; the group $\text{Gal}(\overline{\mathbb{Q}}_p|\mathbb{Q}_p)$, being pro-solvable, is simpler than $\text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, but it is considerably more complicated than the order-2 group $\text{Gal}(\mathbb{C}|\mathbb{R})$. The absolute value $| \cdot |_p$ extends uniquely to $\overline{\mathbb{Q}}_p$. Here is a minor embarrassment :

Theorem 18. — The field $\overline{\mathbb{Q}}_p$ is not complete (and not locally compact).
But we can complete $\overline{\mathbb{Q}}_p$ with respect to $| \cdot |_p$ to obtain a field \mathbb{C}_p, to which $| \cdot |_p$ extends uniquely, with the same group of values.

Theorem 19. — The field \mathbb{C}_p is algebraically closed.

So we don’t need to start all over again, taking an algebraic closure, etc.

Summary : $\overline{\mathbb{Q}}_p$ is an algebraic closure of \mathbb{Q}_p. \mathbb{C}_p is the completion of $\overline{\mathbb{Q}}_p$ in the p-adic uniformity; it is algebraically closed.

10. *(Numbers as periods).* Varieties have periods. Let us return briefly to the archimedean world of \mathbb{R} and \mathbb{C} to illustrate this.

A considerable effort has been spent, following Grothendieck’s insights, in the search for a universal cohomology theory for varieties over \mathbb{Q}. It was noticed that the various known cohomology theories share a number of properites, which led Grothendieck to suspect that there must be a universal cohomology theory — a theory of motives —, of which the known choosing theories are but various different “avatars”. In other words, the motive of a variety should carry every bit of cohomological information about the variety.

To be specific, let us take a smooth, projective, absolutely connected curve X of genus g over \mathbb{R}. Then $H^1(X(\mathbb{C}), \mathbb{Z})$ is a free \mathbb{Z}-module of rank $2g$, so all it knows about X is its genus. However, the \mathbb{C}-space $H^1(X(\mathbb{C}), \mathbb{Z}) \otimes \mathbb{C}$ has a natural filtration which carries much more information about X, and indeed enough information to recover the jacobian J of X. What I want to emphasize is that you need to tensor with \mathbb{C} to get this additional structure.

The miracle is that tensoring with \mathbb{C} suffices for varieties over \mathbb{R}. Another way of saying this is that the field \mathbb{C} contains the periods of all smooth projective \mathbb{R}-varieties. This is a miracle because \mathbb{C} was not designed to serve this purpose; it was merely designed to have a square root of -1.

11. *(Numbers as periods, bis).* Varieties over \mathbb{Q}_p have their periods too. The major difference with the archimedean world is that you have to go way beyond \mathbb{C}_p to get all the periods. Fontaine has pursued relentlessly this quest for the p-adic analogue of $2i\pi$; his solution is to construct several rings carrying many structures which play the role of rings of periods for different kinds of varieties : those with smooth reduction, those with semistable reduction, all (smooth proper) varieties.
The rings \mathcal{B} constructed by Fontaine are \mathbb{Q}_p-algebras which carry — among other structures — a representation of $G_\mathbb{Q} = \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$: the invariants $\mathcal{B}^{G_\mathbb{Q}}$ are a field. A p-adic representation E of $G_\mathbb{Q}$, i.e. a finite-dimensions vector \mathbb{Q}_p-space with a continuous linear action of $G_\mathbb{Q}$, is called \mathcal{B}-admissible if the dimension of $(\mathcal{B} \otimes \mathbb{Q}_p E)^{G_\mathbb{Q}}$ (as a vector space over $\mathcal{B}^{G_\mathbb{Q}}$) is the same as the dimension of E (as a vector space over \mathbb{Q}_p).

Notable examples of p-adic representations are provided by the p-adic étale cohomology of varieties over \mathbb{Q}_p — the analogue of the singular cohomology of varieties over \mathbb{R} and \mathbb{C}.

The rings of Fontaine have proved their utility beyond any doubt. A theorem of Colmez gives an idea of their coherence as p varies: he proves a product formula (cf. Theorem 12) for the periods of abelian varieties having complex multiplications, periods which may be transcendental!

I have chosen to illustrate their utility by taking for \mathcal{B} the crystalline ring of Fontaine; \mathcal{B}-admissible representations of $G_\mathbb{Q}$ are called crystalline.

Theorem (Faltings). — *For a smooth projective variety X having smooth reduction over \mathbb{Q}_p, the representation $H^n(X_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_p)$ is crystalline.*

The converse need not hold. Nevertheless, in the light of the Serre-Tate criterion (see below), one has a right to expect it to hold for abelian varieties.

Theorem (Coleman-Iovita). — *Let A be an abelian \mathbb{Q}_p-variety. If the p-adic representation $H^1(A_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_p)$ is crystalline, then A has abelian reduction.*

If we compare these two theorems with what goes on for l-adic étale cohomology, where l is a prime $\neq p$, the similarity is striking:

Theorem (Grothendieck). — *For a smooth projective variety X having smooth reduction over \mathbb{Q}_p, the representation $H^n(X_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_l)$ is unramified.*

Theorem (Serre-Tate). — *Let A be an abelian \mathbb{Q}_p-variety. If the l-adic representation $H^1(A_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_l)$ is unramified, then A has abelian reduction.*

Summary: For abelian varieties over a finite extension of \mathbb{Q}_p, there is an l-adic and a p-adic criterion for abelian reduction.

12. (*Anabelian periods*). These criteria of Serre-Tate and Coleman-Iovita fail for curves. Indeed, it is not very difficult to construct smooth
proper absolutely connected curves C over \mathbb{Q}_p which do not have smooth reduction but whose jacobian has abelian reduction. For such a curve C, the l-adic étale cohomology $H^1(C_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_l)$ is unramified and the p-adic étale cohomology $H^1(C_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_p)$ is crystalline, because these groups are the same for C and its jacobian.

Is there a criterion for the smooth reduction of curves? A very striking theorem was proved by Takayuki Oda, who gives an anabelian l-adic criterion. He replaces $H^1(C_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_l)$ by the maximal pro-l-quotient $\pi_1^{(l)}(C_{\overline{\mathbb{Q}}_p})$ of the fundamental group $\pi_1(C_{\overline{\mathbb{Q}}_p})$ of $C_{\overline{\mathbb{Q}}_p}$ (there is a choice of a base point involved; it will turn out to be immaterial). The fundamental group carries a natural outer action of the Galois group, i.e. there is a natural homomorphism $G_p \to \text{Out} \pi_1^{(l)}(C_{\overline{\mathbb{Q}}_p})$.

Theorem (Takayuki Oda). — *Let C be a smooth proper absolutely connected \mathbb{Q}_p-curve of genus > 1. If the the outer action $G_p \to \text{Out} \pi_1^{(l)}(C_{\overline{\mathbb{Q}}_p})$ on the pro-l π_1 is unramified, then C has smooth reduction.***

In fact, his theorem works over any finite extension of \mathbb{Q}_p.

Summary: For curves, there is an anabelian l-adic criterion for smooth reduction.

13. (Anabelian periods, bis). Let me end with a problem which I would very much like to solve. Anyone who has read this account cannot fail to ask himself: Is there an anabelian p-adic criterion for smooth reduction of curves over \mathbb{Q}_p? I happened to mention this to Kazuya Kato, and he said that this problem “goes straight to the heart”.

Problem. — *Give a necessary and sufficient condition on the outer action $G_p \to \text{Out} \pi_1^{(p)}(C_{\overline{\mathbb{Q}}_p})$ for the (smooth, projective, absolutely connected) \mathbb{Q}_p-curve C (of genus > 1) to have smooth reduction.*

In other words, one should complete the square:

l	$l \neq p$	$l = p$
abelian varieties	Serre-Tate (1968, “unramified”)	Coleman-Iovita (1999, “crystalline”)
curves of genus > 1	Takayuki Oda (1995, “unramified”)	??? (???)

The problem should be studied not just over \mathbb{Q}_p, but over every finite extension thereof.
Summary: Find an anabelian p-adic criterion for smooth reduction of curves.

14 (Semistable reduction). Notice that there is already a p-adic criterion for semistable reduction of curves and abelian varieties in terms of Fontaine's semistable ring. In effect, Fontaine has proved that if an abelian K-variety has semiabelian reduction, K being a finite extension of \mathbb{Q}_p, then the representation $H^1(A_K, \mathbb{Q}_p)$ of $\text{Gal}(\overline{K}|K)$ is semistable, \overline{K} being an algebraic closure of K. Later, Breuil proved the converse, at least for $p \neq 2$. Earlier, Deligne and Mumford had proved that for a curve to have semistable reduction, it is necessary and sufficient for its jacobian to have semiabelian reduction.