Modeling the light curves of ultraluminous X-ray sources as precession

T. Dauser1*, M. Middleton2,3, J. Wilms1
1 Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, 96049 Bamberg, Germany
2 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
3 School of Physics & Astronomy, University of Southampton, Southampton, UK

13 August 2018

ABSTRACT
We present a freely available XSPEC model for the modulations seen in the long-term light curves of multiple ultraluminous X-ray sources (ULXs). By incorporating the physics of multiple electron scatterings (ray traced with a Monte-Carlo routine), we go beyond analytical predictions and show that the geometrical beaming of radiation in the conical outflow can be more than a factor of 100 for opening angles smaller than 10°. We apply our new model to the long-term, well sampled Swift light curve of the recently confirmed ULX pulsar NGC 5907 X-1 with an established period of 78 days. Our results suggest that geometrical beaming together with a slight precession of the conical wind can describe the light curve with a consistent set of parameters for the wind. The small opening angle of roughly 10–13° implies a highly super-critical flow and boosting factors at the order of $B = 60–90$ that would yield a fairly low surface magnetic field strength of 2×10^{10} Gauss.

Key words: accretion, accretion discs — black hole physics — X-rays: binaries — pulsars: individual (NGC 5907 ULX-1)

1 INTRODUCTION
Ultraluminous X-ray sources (ULXs) have traditionally been defined by both their apparent X-ray luminosities exceeding 1×10^{39} erg/s and by their spectra showing a ‘break’ between 2 and 10 keV (see Stobbart, Roberts & Wilms 2006; Gladstone, Roberts & Done 2009; Bachetti et al. 2013). More recently, their short (typically < 10 ksec) and long (months-years) timescale variability has been used as a complementary lever arm to diagnose the nature of the accretion flow with spectral-timing results suggesting that the majority of the bright ($> 3 \times 10^{39}$ erg/s) ULXs can be successfully interpreted in the framework of super-critical accretion (see Shakura & Sunyaev 1973; Poutanen et al. 2007) onto stellar remnants ($< 100M_\odot$) (see Sutton, Roberts & Middleton 2013; Middleton et al. 2015a and references therein).

Numerical radiative magnetohydrodynamical (RMHD) studies of super-critical accretion (see Ohsuga 2007; Ohsuga & Mineshige 2011; Jiang, Stone & Davis 2013; Sadowski et al. 2014) confirm the analytical prediction that the scale-height of the accretion flow is very large (typically ~ 1) when the mass transfer rate through the disc (typically $\gtrsim 10^{-6} M/10 M_\odot$) results from unstable mass transfer occurring when the donor star evolves on a thermal timescale (King & Begelman 1999; King & Ritter 1999; King, Taam & Begelman 2000; Podsiadlowski & Rappaport 2000; Tauris, van den Heuvel & Savonije 2000). The large scale-height disc and subsequently radiation pressure driven winds are expected to precess on long timescales (see Middleton et al., in prep). The predicted spectral-timing signature of such precession (as well as changes in accretion rate) was formalised in Middleton et al. (2015a). Such predictions are consistent with the observed spectral-timing evolution seen in canonical systems (e.g. HoIX ULX-1 (Lanting, Roberts & Done 2016), whilst additional evidence for precession comes from the correlation between the strength of atomic features — indicating an outflowing, mass loaded wind (Middleton et al. 2014; Pinto, Middleton & Fabian 2016; Walton et al. 2016) — and the spectral hardness (Middleton et al. 2015b).

A corollary of such a large scale-height flow is that the emission from the inner regions is trapped and geometrically beamed out of the wind-cone (King 2009), which, depending on the opening angle should lead to orders of magnitude amplification in observed brightness. Such beaming must follow from the presence of an equatorial optically thick wind (Pinto, Middleton & Fabian 2016) and is consistent with the general lack of eclipses in ULXs (Middleton & King 2016, although see the recently discovered eclipsing ULXs by Eghbali et al. 2016).

Numerical simulations to-date have focused on how the radiation is generated in the flow (from dissipation due to magnetorotational turbulence) and the impact of vertical as well as radial advection (Jiang, Stone & Davis 2013) but not the impact of geometrical beaming as a function of the wind opening angle. In this paper we determine the observational impact of scattering off an optically thick wind cone and the shape such preces-
sion should leave in the long timescale light curves of such sources (Sect. 2). In Sect. 3 we present an XSPEC local model built from our simulations that can be used to model the light curve variations. We then apply this model successfully to data of the ULX pulsar NGC 5907 ULX-1 in Sect. 5 before providing conclusions and a summary in Sect. 6.

2 SIMULATIONS

While radiation MHD simulations show the outflowing winds in ULXs to be fairly complex on small scales (e.g., Takeuchi, Ohsuga & Mineshige 2013; Jiang, Stone & Davis 2014; Sudowski et al. 2014), they confirm the global geometry to be conical. In order to determine the impact of beaming for a given wind opening angle, we therefore employ a simple, but representative toy model. We assume that due to the extremely large accretion rate, the outflow lying above the radiation pressure supported accretion disc forms a cone and is fully ionised down to a Thomson depth greater than unity. Radiation emitted from the inner regions of the cone will be efficiently scattered off its surface. We do not consider the spectral changes (moderate Compton down-scattering) and so treat the geometrical beaming as achromatic. The scattering itself is modelled by the Klein-Nishina formula in a razor-thin layer of the conical surface, as will be described later in detail.

A sketch of the model geometry, including the definition of the parameters used to describe it, is depicted in Fig. 1. The geometry is very much in agreement with the model proposed by Middleton et al. (2015a) Fig. 1, focusing only on the radiation emitted in the cone and the scattering off its surface. We parameterize the cone by the angle, θ, between the rotational axis and the surface of the outflow. The opening angle of the cone is therefore 2θ. The height of the cone is described by the parameter h_{cone} which according to standard theory is related to the physical properties of the accretion flow by $h_{\text{cone}} \sim m_{\text{in}} r_{\text{in}}$, where m_{in} is the mass inflow rate through the disc, and r_{in} is the inner disc radius (approximately the ISCO). Note that this relation is only valid for the inflow (where the scale-height is radiation pressure supported and approximately unity) and does not necessarily hold for the direction and height of the outflow.

We assume the emission to originate isotropically from a disc-like region located h_{emit} above the central object (as shown in Figure 1), whilst $h_{\text{cone}} \gg h_{\text{emit}}$. This is an approximation to emission from the region where the outflow is optically thin (see Poutanen et al. 2007). As we will see, the resulting light curve is insensitive to the exact shape of the emission region. The emission itself is isotropic in all directions, i.e., also towards the black hole. The simulation and calculations for the model are performed using Monte Carlo simulations in three dimensions. The observer’s inclination to the system is defined to be the angle between the rotational axis of the black hole and the line-of-sight.

We locate the emitter at a height of $10 r_g$ to be of order the radial location of the inner photosphere $R_{\text{ph, in}}$ (see Poutanen et al. 2007), where the outflow is starting to become optically thick and form the surface of the cone in our model. This has the benefit of being large enough such that general relativistic effects are secondary to the scattering processes taking place in the cone and can be safely ignored. The photons are therefore assumed to travel on straight, Euclidean, trajectories between their interactions with the cone.

The physics of the surface of the accretion disc, especially in such an inflated state is currently not well constrained. As discussed in the introduction, due to the large quantity of photons trapped inside the cone it is expected that the surface is highly ionised (values expected up to $\xi > 10^6$, see, e.g., Middleton et al. 2015a). We therefore assume that the scattering on the surface of the cone is purely due to electron scattering, described using the Klein-Nishina differential cross section. While each encounter of a photon with the surface of the cone would actually lead to multiple scatterings inside the surface layer, in the current approach this is simplified to a single scattering event on a razor thin surface. This simplification can be made, as we are only interested in the direction of the photon and therefore the Klein-Nishina angle characteristic of the scattering will still be conserved. Note that choosing an isotropic scattering profile instead, does not largely influence the simulation results. A full treatment of the scattering including the energies is out of scope for this paper and will be subject of future investigations.

The simulation also includes special relativistic boosting of the photons, in order to model an outflowing surface of the cone (see Poutanen et al. 2007). It is taken into account by transforming the direction of a given photon from the rest frame of the cone, where the scattering is simulated, to the global, non-moving frame of the system. Rough observational constraints (lower limits) on the wind speed lie between $v \approx 0.2-0.4 c$ (see, e.g., Middleton et al. 2014; Pinto, Middleton & Fabian 2016).

We note that emission from the outflow itself (i.e. scattered emission from the underlying thick disc) is ignored. This is a reasonable first order assumption as the inner regions are those from which emission is most likely to be beamed.

3 RESULTS

The simulation set-up described above directly predicts the viewing angle-dependent flux from a specific system. The results for different parameter combinations are shown in Fig. 2. As mentioned in

Figure 1. Geometrical model of the super-critical accretion disc (drawn in red), labelling the important parameters of the model, the cone’s half opening angle, θ, the height of the cone, h_{cone}, and the observer’s inclination angle, i. The emitting region is shown as the blue region, which is located at a height h_{emit} above the black hole. The velocity of the wind at the surface of the cone is given by v_{wind}.

© 2016 RAS, MNRAS 000, 1–7
the previous section, velocities of the outflow are expected to be in the range of \(v \approx 0.2-0.4 \, c\) and we consider a height of the cone of \(1000 \, r_g\) as plausible. Note that even much larger values have been suggested for SS433 (Fabrika & Medvedev 2011). Currently there do not exist any constraints on the opening angle of such a cone.

The number of scatterings a single photon exhibits until escaping the cone strongly depends on the opening angle of the cone. In cones with small opening angles of \(10^\circ\) photons will usually scatter around \(\approx 50\) times. This number quickly drops to only around \(\approx 15\) scatterings for \(20^\circ\), and 1 scattering on average for \(45^\circ\). The exact number of scatterings depends on the height of the cone and also the velocity of the outflow.

We determine the effect of the boosting in the wind-cone by normalising the outgoing radiation relative to the flux of an isotropic source, defining the \textit{flux boost} as

\[
B = \frac{L_{\text{iso}}(i)}{L},
\]

where \(L\) is the actual luminosity of the source, and \(L_{\text{iso}}(i)\) the luminosity measured at a certain inclination \(i\) to the system assuming an isotropically emitting source. The latter value is generally quoted as the observed luminosity for ULXs due to the lack of geometrical information. Therefore \(B\) actually describes the amount by which the luminosity would be overestimated.

Figure 2 shows the flux boost for a stationary cone and different opening angles. It is immediately evident that for \(i \leq \theta\), i.e., when we directly look into the cone, the observed flux is constant, but boosted strongly depending on the opening angle. For values of \(\theta\) as small as \(5^\circ\), an effective flux boost of up to a factor \(\approx 100\) is possible simply by collimation. If the observer is not looking directly into the cone, the observed flux drops quickly below the value expected for isotropic emission. For larger observer inclination angles (i.e. \(i \geq \theta\)) the emissivity profile does not depend on the opening angle.

Besides the system inclination, the emissivity profile also depends on the geometrical and physical properties of the cone. The two parameters mainly influencing the profile are the velocity of the outflow (Fig. 2b) and the vertical extent of the cone (Fig. 2c). Generally the dependence of the boost on both parameters is not very strong, although a large parameter space is explored in the plots. Notably, a change in the height of the cone will be strongly degenerate with the normalisation of the curve and therefore introduces an uncertainty in the determination of the boosting factor. However, the inclination angle at which the steep drop in emissivity occurs is unaffected. The flux boost when looking directly into the cone can be large and of the order of a factor \(\approx 2\) for velocities up to \(v = 0.7 \, c\). Differences between the outflowing velocities at larger inclination angles are very small and hard to detect with current detector sensitivities. We also note that even a slightly different shape of the cone or variability might also produce differences of similarly small magnitudes.

From the previous figures we can conclude that there is a flat part of the emissivity profile when we look directly into the cone, where, due to collimation, or (as suggested in the case of M82 X-1 Pasham & Strohmayer 2013), more likely by a precession of the accretion disc. The existence of precessing discs has long been known (e.g. in Her X-1, see Petterson 1977) and also investigated from a theoretical point of view (see Pringle 1996, Maloney & Begelman 1997, Maloney, Begelman & Nowak 1998, Fragile et al. 2007). Recent studies beyond the basic theory suggest that also self-gravity of the disc influences the precession in the case of supermassive black holes (Tremaine & Davis 2014). In addition, the low-frequency quasi-periodic oscillations (QPOs) found in binaries have been recently connected to Lense-Thirring precession of the accretion flow (see Ingram, Done & Fragile 2009, Ingram & Done 2011).

We now study whether we can reproduce similar light curves using a precessing inflow/outflow, where the inclination with respect to the accretion disc’s angular momentum vector (or the system orbit) is varying. We will designate this variation by \(\Delta i\), i.e., effectively the system is viewed from angles in the range from \(i - \Delta i\) to \(i + \Delta i\).

Using the approach outlined above, we constructed an XSPEC local model (Arnaud 1995). The model is publicly available for download and can be readily used in any common X-ray data analysis software. The emissivity profiles are precalculated in a table on a fine grid, which allows for a fast evaluation. The height of the accretion disc is fixed to \(h_{\text{cone}} = 1000 \, r_g\), as for reasonable heights...
Inclination

Observed Flux

Observed Flux

Flux Ratio [compared to isotropic emission]

θ

amplification as a function of the half-opening angle, θ. The height of the cone is chosen at an intermediate value of \(h_{\text{cone}} = 1000 R_g \), and \(\theta = 5^\circ \). The inset shows a zoom into the low inclination angle region. (c) Emissivity profile for a non-moving surface (\(v = 0 \)) for increasing height \(h_{\text{cone}} \) of the cone, and again \(\theta = 5^\circ \).

Figure 2. Flux emerging from the outflow compared to an isotropically emitting source, shown for different inclination angles (a) Variation of the flux amplification as a function of the half-opening angle, θ. The height of the cone is chosen at an intermediate value of \(h_{\text{cone}} = 1000 R_g \) and \(\theta = 5^\circ \). The inset shows a zoom into the low inclination angle region. (c) Emissivity profile for a non-moving surface (\(v = 0 \)) for increasing height \(h_{\text{cone}} \) of the cone, and again \(\theta = 5^\circ \).

The light curve with the best fit model is shown in Fig. 6. In order to obtain reasonable results we had to allow a shift in phase between the different precession periods. Namely the 5th and the 6th peak are shifted by a Δphase \(\sim 0.2 \) (i.e. \(\sim 14 \) days) with respect to the preceding peaks (this was also visible in the light curve fitting of Walton et al. 2016). Afterwards, the remaining three peaks coincide directly with the first peaks (see Fig. 6b). Such a behaviour is not unreasonable given that the precession period should be dependent on \(m \) (Middleton et al. in prep).

5 APPLICATION TO DATA

From the predicted light curves (see Sect. 4), it is clear that small opening angles of around 10° are necessary in order to explain the boosting from a moderate luminosity of about the Eddington luminosity, \(L_{\text{Edd}} \), to an observed luminosity of larger than 100 \(L_{\text{Edd}} \).

In the following we apply our model to NGC 5907 ULX-1 (recently confirmed as a pulsar Israel et al. 2016a). As revealed by high-cadence Swift monitoring observations spanning several years, the source shows a remarkable pattern of variability, with repeated brightenings on timescales of \(\sim 78 \) days (Walton et al. 2016) and observed luminosities of over 100\(L_{\text{Edd}} \) (for a canonical neutron star mass). We obtain the data from the UK Swift science data centre (UKSSDC) for the XRT in photon counting mode and bin the resulting light curves to 4 days/bin. We convert the light curve into pha format using the FTOOL FLX2XSP which also creates a flat response file.

Figure 4. Simulated light curves with the ulxlc model, for a velocity of 0.4 \(c \), fixing the height of the cone to \(h_{\text{cone}} = 1000 R_g \). The orbit is arbitrarily assumed to be 100 days and we show the light curve for two precession periods for clarity. Different colours are for different half opening angles, \(\theta \), as indicated in the plot. Upper panel: Light curve for a larger viewing angle (\(\theta = 20^\circ \)) and larger precession angle amplitude \(\Delta \theta = 18^\circ \). Lower panel: Varying inclination angle according to \(i = \theta + 10^\circ \) with a fixed precession angle \(\Delta \theta = 10^\circ \).

The parameter is largely degenerate with changes in the flux normalisation and does not have a large effect on the overall emissivity profile (see Fig. 4).

An example of the model in action for certain parameter combinations is shown in Fig 4. As expected, the duration of the peaks increases with opening angle whilst the strength decreases. For extreme precession angles, a double peaked profile is in principle possible (as the observers line-of-sight passes fully over the face of the cone).

Note that the light curve predicted in this model assumes a constant mass accretion rate, \(\dot{m} \). If \(\dot{m} \) is varying, an additional flux variation is expected (Poutanen et al. 2007). In order to model light curves, we will assume that changes in \(\dot{m} \) are small enough to be ignored (or that variations at the spherisation radius are long compared to the precession) such that the intrinsic luminosity is constant over a precession period.

http://www.swift.ac.uk

© 2016 RAS, MNRAS 000, 1

[1] 5 APPLICATION TO DATA

From the predicted light curves (see Sect. 4), it is clear that small opening angles of around 10° are necessary in order to explain the boosting from a moderate luminosity of about the Eddington luminosity, \(L_{\text{Edd}} \), to an observed luminosity of larger than 100 \(L_{\text{Edd}} \).

In the following we apply our model to NGC 5907 ULX-1 (recently confirmed as a pulsar Israel et al. 2016a). As revealed by high-cadence Swift monitoring observations spanning several years, the source shows a remarkable pattern of variability, with repeated brightenings on timescales of \(\sim 78 \) days (Walton et al. 2016) and observed luminosities of over 100\(L_{\text{Edd}} \) (for a canonical neutron star mass). We obtain the data from the UK Swift science data centre (UKSSDC) for the XRT in photon counting mode and bin the resulting light curves to 4 days/bin. We convert the light curve into pha format using the FTOOL FLX2XSP which also creates a flat response file.

First we obtain the light curve in soft (0.3-1 keV) and hard (1-10 keV) energy bands in order to verify that the hard X-rays coming from the innermost accretion flow indeed produces the long-term variations. Figure 5a shows both light curves where it can clearly be seen that the quasi-periodic peaks are only found in the hard (red) light curve, which is also largely dominating the total observed flux. We can therefore safely apply our model to the full-band light curve (as the soft emission only provides a constant offset).

The light curve with the best fit model is shown in Fig. 6. In order to obtain reasonable results we had to allow a shift in phase between the different precession periods. Namely the 5th and the 6th peak are shifted by a Δphase \(\sim 0.2 \) (i.e. \(\sim 14 \) days) with respect to the preceding peaks (this was also visible in the light curve fitting of Walton et al. 2016). Afterwards, the remaining three peaks coincide directly with the first peaks (see Fig. 6b). Such a behaviour is not unreasonable given that the precession period should be dependent on \(m \) (Middleton et al. in prep).

http://www.swift.ac.uk

© 2016 RAS, MNRAS 000, 1
but only the normalisation of the peaks (i.e. the intrinsic luminosity of the object changes). Therefore in our initial fit (model 1) we assume the geometry to be stable and obtain a global half opening angle \(\theta \). As shown in Fig. 5, this model is able to describe the data with a goodness-of-fit of \(\chi^2 / \text{d.o.f.} = 156.2 / 94 = 1.66 \). We find an inclination of \(i = 6.40^{+0.22}_{-0.26} \) degrees and a precession angle of \(\Delta \tau = 7.30^{+0.12}_{-0.13} \) degrees. The half opening angle is determined to be \(\theta = 6.70^{+0.31}_{-0.29} \) degrees. The velocity of the outflow could not be well constrained. The boosting factor determined from this fit, assuming a representative outflow velocity of \(v = 0.2c \), is \(B \approx 58 \).

In a second, complementary fit (model 2), we assume that the intrinsic luminosity is constant. Therefore the change in shape and normalisation of the peaks will solely be described by a change in the opening angle, i.e., the parameter \(\theta \). Using these assumptions we can find a slightly better fit \(\chi^2 / \text{d.o.f.} = 149.0 / 94 = 1.58 \). In this case we find a smaller inclination of \(i = 5.02^{+0.09}_{-0.07} \) with \(\Delta \tau = 0.76^{+0.15}_{-0.18} \).

Figure 6 shows how the opening angle varies over the different peaks for the model with a fixed (intrinsic) normalisation (model 2). Generally, opening angles are found mainly around \(10^\circ \) (i.e., half opening angles around \(\theta = 5^\circ \)) with the opening angle remaining quite stable between the different precessing periods. In the case of a slightly smaller opening angle, we derive a large boosting factor of \(B \approx 87 \) for this model, again assuming a representative outflow velocity of \(v = 0.2c \).

From Fig. 6 it can be seen that both models are able to describe the data well and predict a similar shape for the peaks. The relatively poor reduced \(\chi^2 \) values are mainly driven by a few outlier data points, which clearly do not follow the general trend of each peak. Therefore we conclude that the simple geometrical light curve model is able to reproduce the overall shape of the light curve well.

These results suggest that NGC 5907 ULX-1 is viewed almost face-on and explains the hard X-ray spectrum (see Middleton et al. 2015a). Due to the extremely large accretion rate, it might be that the emission comes only from a very small cone with an opening angle of roughly 10 degrees. With our estimated boosting factor \((B = 60–90) \), the observed luminosity of \(L_{\text{iso}} \approx 8.5 \times 10^{40} \text{ erg/s} \) (for a distance of 17.1 Mpc, see Fuerst et al. 2016b for more details) is reduced significantly to an intrinsically emitted luminosity of \(L = 1.0–1.5 \times 10^{39} \text{ erg/s} \). Super-critical discs have luminosities which follow \(L_{\text{edd}} = (1 + \ln(m)) \) (Shakura & Sunyaev 1973) implying mass accretion rates into the disc of \(\lesssim 100-1000 \) times the Eddington rate \(\sim 1 \times 10^{-5} - 1 \times 10^{-5} M_\odot / \text{yr} \) assuming a radiative efficiency of 0.1% consistent with thermal timescale mass transfer (e.g. King & Begelman 1999, King & Ritter 1999).

6 SUMMARY AND CONCLUSIONS

In this paper we have presented a simple model for scattering in conical outflows, which are believed to exist in sources with a super-critical accretion rate. Importantly, our model includes a physical scattering process and so is more accurate than an analytical approach. For radiation emitted close to the black hole, our model predicts strong geometrical beaming of the radiation when viewing into the cone. This beaming can lead to an effective flux boost of up to a factor of 100 and, in cases where the conical outflow is moving at observed speeds \(\gtrsim 0.2 – 0.4 \) c, this value can be far higher. In order to reach such large boosting factors, opening angles of 10 degrees and smaller are necessary. We note, however, that for more...
moderate opening angles of up to 30 degrees boosting factors of up to 10 can still be achieved, hinting that the larger class of ULX sources observed around up to 10 can still be achieved, hinting that also the larger class of moderate opening angles of up to 30 degrees boosting factors of above 1000 to 13 G in this case. The above results use a pulsed fraction of 20% (see [Israel et al. 2016a]), which is comparable low for a high-mass X-ray binary (see [Bildsten et al. 1997]), but supporting our model where the hard X-ray radiation is produced at the inner regions close to the neutron star (see also [Klużniak & Lasota 2015]).

Our simple modelling of the conical surface requires a smooth and constant outflow, which is not expected in real RMHD flows which are subject to instabilities ([Jiang et al. 2013b], although the resulting stratification is expected to be small scale ([Takeuchi, Ohsuga & Mineshige 2013]) and can therefore be ignored to first order. However, a more dedicated analysis of light curves, the connection to the mass accretion rate, the expected spectral changes due to the scattering in the cone are necessary in order to further strengthen our findings.

Acknowledgements. TD acknowledges funding by the Deutsches Zentrum für Luft- und Raumfahrt contract 50 QR 1402. MJM acknowledges funding from STFC via an Ernest Rutherford advanced grant. We thank Matthias Kühnel for valuable discussions and John E. Davis for the development of the SLXfig module used to prepare the figures in this letter. This research has made use of ISIS functions provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/).

REFERENCES

Arnaud K. A., 1996, in Astronomical Data Analysis Software and Systems V, G. H. Jacoby & J. Barnes, ed., Astron. Soc. Pacific Conf. Ser. 101, pp. 17–20
Bachetti M. et al., 2014, Nat, 514, 202
Bachetti M. et al., 2013, ApJ, 778, 163
Bildsten L. et al., 1997, ApJS, 113, 367
Fabrika S., Medvedev A., 2011, in Jets at All Scales, Romero G. E., Sunyaev R. A., Belloni T., eds., pp. 280–284
Fragile P. C., Blaes O. M., Anninos P., Salmonson J. D., 2007, ApJ, 668, 417
Fuerst F. et al., 2016a, submitted to ApJ, arXiv:1609.07129
Fuerst F., Walton D. J., Stern D., Bachetti M., Barret D., Brightman M., Harrison F. A., Rana V., 2016b, submitted to ApJ, arXiv:1610.00258
Gladstone J. C., Roberts T. P., Done C., 2009, MNRAS, 397, 1836
Ingram A., Done C., 2011, MNRAS, 415, 2323
Ingram A., Done C., Fragile P. C., 2009, MNRAS, 397, L101
Israel G. L. et al., 2016a, ArXiv e-prints, submitted, arXiv:1609.07375
Israel G. L. et al., 2016b, submitted to MNRAS, arXiv:1609.06538
Jiang Y.-F., Stone J. M., Davis S. W., 2013, ApJ, 778, 65
Jiang Y.-F., Stone J. M., Davis S. W., 2014, ApJ, 796, 106
Kaastra P., Simet M. G., Lang C. C., 2006, Science, 311, 491
King A., Lasota J.-P., 2016, MNRAS, 458, L10
King A. R., 2009, MNRAS, 393, L41
King A. R., Begelman M. C., 1999, Astrophys. J., Lett., 519, L169
King A. R., Ritter H., 1999, MNRAS, 309, 253
King A. R., Taam R. E., Begelman M. C., 2000, Astrophys. J., Lett., 530, L25
Klużniak W., Lasota J.-P., 2015, MNRAS, 448, L43
Kong A. K. H., Hu C.-P., Lin L. C.-C., Li K. L., Jin R., Liu C. Y., Yen D. C.-C., 2016, MNRAS, 461, 4395
Luangtip W., Roberts T. P., Done C., 2016, MNRAS, 460, 4417
Maloney P. R., Begelman M. C., 1997, Astrophys. J., Lett., 491, L43
Maloney P. R., Begelman M. C., Nowak M. A., 1998, ApJ, 504, 77
Middleton M. J., Heil L., Pintore F., Walton D. J., Roberts T. P., 2015a, MNRAS, 447, 3243
Middleton M. J., King A., 2016, MNRAS, 462, L71
Middleton M. J. et al., 2013, Nat, 493, 187
Middleton M. J., Walton D. J., Fabian A., Roberts T. P., Heil L., Pinto C., Anderson G., Sutton A., 2015b, MNRAS, 454, 3134
Middleton M. J., Walton D. J., Roberts T. P., Heil L., 2014, MNRAS, 438, L51
Ohsuga K., 2007, ApJ, 659, 205
Ohsuga K., Mineshige S., 2011, ApJ, 736, 2
Pasham D. R., Strohmayer T. E., 2013, Astrophys. J., Lett., 774, L16
Peterson J. A., 1977, ApJ, 218, 783
Pinto C., Middleton M. J., Fabian A. C., 2016, Nat, 533, 64
Podsiadlowski P., Rappaport S., 2000, ApJ, 529, 946
Poutanen J., Lipunova G., Fabrika S., Butkevich A. G., Abolmasov P., 2007, MNRAS, 377, 1187
Pringle J. E., 1996, MNRAS, 281, 357
Sadowski A., Narayan R., McKinney J. C., Tchekhovskoy A., 2014, MNRAS, 439, 503
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Soria R., Kuntz K. D., Winkler P. F., Blair W. P., Long K. S.,
Plucinsky P. P., Whitmore B. C., 2012, ApJ, 750, 152
Stobbart A.-M., Roberts T. P., Wilms J., 2006, MNRAS, 368, 397
Sutton A. D., Roberts T. P., Middleton M. J., 2013, MNRAS, 435, 1758
Swartz D. A., Soria R., Tennant A. F., Yukita M., 2011, ApJ, 741, 49
Takeuchi S., Ohsuga K., Mineshige S., 2013, PASJ, 65, 88
Tauris T. M., van den Heuvel E. P. J., Savonije G. J., 2000, Astrophys. J., Lett., 530, L93
Tremaine S., Davis S. W., 2014, MNRAS, 441, 1408
Urquhart R., Soria R., 2016, ApJ, 831, 56
Walton D. J. et al., 2016, Astrophys. J., Lett., 827, L13