INTRODUCTION

Worldwide, 39% of adults 18 years or older were overweight (body mass index [BMI] ≥25 kg/m²) and 13% were considered to have obesity (BMI ≥30 kg/m²) in 2016¹. If this trend continues, almost half of the world’s adult population will be overweight or obese by 2030². Obesity is thought to be influenced by psychosocial and cultural fac-
tors, as well as by energy imbalance due to excess energy intake or a lack of energy expenditure. Obesity and psychological issues, such as binge eating disorders and depression, are highly comorbid, and are bi-directionally associated, although the strength of this association is greater when depression leads to obesity than visa-versa. Therefore, to successfully treat obesity and prevent recurrent weight gains, psychological symptoms should be managed alongside weight loss. Behavioral treatment (BT) is an approach used to help individuals develop skills to improve their weight problem with three components: diet, physical activity, and behavioral therapy. Cognitive behavioral therapy (CBT) is an intervention that combined with BT and cognitive approaches; Cognitive approaches are aimed at modifying dysfunctional emotions, behaviors, and thoughts. Therefore, CBT has the potential of being useful in obesity treatment to influence cognitions related to behavior change, including a low energy diet, high-activity lifestyle, and realistic expectations. It also assists patients to prevent possible relapses and manage critical situations with coping strategies.

The comparative effects of CBT and BT on weight loss or psychological outcomes in obesity treatment have been assessed in previous studies; however, the results have varied for obesity subtypes. Peckmezian and Hay stated that CBT and BT both led to weight loss with improvements in psychological aspects, such as cognitive restraint and binge eating, for uncomplicated obesity. However, there was no clear comparison of effect between CBT and BT. In a meta-analysis, CBT was more effective than BT for weight loss, increasing cognitive restraint, and reducing emotional eating in a population that pooled together different categories of obesity patients, including those with simple obesity and obesity with depression. In meta-analyses for obesity with binge eating disorder, CBT produced greater reduction than BT in binge eating frequency without weight reduction. However, the comparative effect of CBT in obesity with binge eating disorder remains unclear, since some previous results were obtained from a comparison with inactive interventions, such as a waitlist or comparison of only one type of CBT intervention. It was also more difficult to assess the effect of CBT in the obesity with depression group. Few studies have evaluated the effect of CBT in obesity with depression, since researchers have tended to exclude patients with depression from obesity treatment because of concerns regarding worsening of depressive symptoms during weight loss programs.

Given prior work and gaps in the field, the present study aimed to compare the effects of CBT and BT on obesity treatment and to examine whether the effect size of CBT varies across obesity subtypes. The obesity subtypes in this study were classified as simple obesity, obesity with binge eating disorder, and obesity with depression. Since CBT is the intervention that focuses mainly on emotional, cognitive, and psychological issues, one could suppose that obese patients with psychological problems such as binge eating or depression may have different results than those with simple obesity. The obesity subtypes in this study were defined as follows: simple obesity is the overweight or obese condition without any severe physical or psychological comorbidities, obesity with binge eating disorder or obesity with depression is the overweight or obese condition fulfilling binge eating or depressive disorder criteria without severe physical comorbidities. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria, binge eating disorder is characterized by recurrent binge eating accompanied with lack of control over eating, consumption of an excessive amount of foods in a discrete period, and distress over binge eating, without inappropriate compensatory weight control methods observed in bulimia nervosa. Depression is characterized by the presentation of depressed mood and/or loss of interest for 2 weeks, plus at least four additional symptoms of unintended weight changes, appetite changes, insomnia or hypersomnia, psychomotor changes, fatigue, feelings of worthlessness, difficulty concentrating, or suicidal ideation.
METHODS

1. Data sources and searches

A literature search was conducted using the following sources: Cochrane Central Register of Controlled Trials, PubMed, Embase, Research Information Sharing Service, and Korean Studies Information Service System, and included studies published in all journals on or before May, 2020. Additionally, reference lists from the selected studies, related studies, and grey literature were also searched. The search strategy followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol. The search terms used were entered as keywords or Mesh terms where possible, and used in English and Korean: (“cognitive behav*” OR “CBT”) AND (“weight los*” OR “obesity treat*” OR “weight manage*” OR “weight control” OR “dieting”) AND (“obes*” OR “overweight*” OR “binge-eating” OR “depress*”). Two reviewers searched for articles independently, and discrepancies, if any, identified in the search results were resolved through mutual discussion.

2. Study selection (inclusion and exclusion criteria)

To evaluate the effects of CBT versus BT on various individuals suffering from obesity, clinical randomized controlled trials (RCTs) that compared the effect of CBT with that of BT on weight loss were analyzed. The eligible population included (1) adults over 18 years, (2) overweight or obese individuals (BMI≥25 kg/m²), and (3) those with no severe physical or psychological comorbidities other than binge eating disorder and depression criteria. In selected studies, binge eating and depression were diagnosed through a specialist’s interview according to the DSM -IV18-22, DSM-IV-TR23, DSM-524 or Hamilton Depression Rating Scale (HDRS)25 criteria. For our inclusion criteria, we required that a study on CBT interventions included at least one cognitive therapy (e.g. cognitive restructuring, body image acceptance, and problem-solving) beyond general behavioral therapy (e.g. self-monitoring, stimulus control, and goal setting)26. BT interventions included at least one of the components: general behavioral therapy, diets (such as calorie restriction and nutrition education), exercise, and physical activity. If usual care for weight loss contained any BT component, usual care also was included in BT intervention group.

We excluded the developed CBT studies such as third-wave CBT from our CBT criteria. Third-wave CBTs such as mindfulness-based cognitive therapy and dialectical behavioral therapy have recently been used for treating obesity25,26; however, these focus on the processes of acceptance, mindfulness, attention, or value27 that exceeds the traditional CBT criteria. We excluded studies comparing CBT with no treatment, pharmacological intervention treatment, or surgical treatment.

3. Data extraction and quality assessment

A predefined data template was prepared to compile data from the included studies. The two co-first authors independently extracted and coded the following data based on the template: Study characteristics (author, publication year, and journal), participants (sample size, age, gender, weight, and BMI), interventions (time period, type of intervention, and type of control), and outcomes (change in mean and standard deviation of body weight, depressive symptom scores, number of binge eating days/episodes, dietary restraint scores, and diet/exercise self-efficacy scores). The data were cross-checked by the two co-first authors and any discrepancies were discussed until an agreement was reached. The methodological quality of each included study was assessed using Cochrane’s risk of bias (RoB) tool28.

4. Calculating effect sizes

A meta-analysis uses statistical methods to synthesize effect size and standardize quantitative findings from a range of studies29. In the present study, we calculated effect sizes based on the standardized mean change difference (SMD) from pre- to post-treatment in both the intervention and control groups30. The SMDs were computed using the following formula:
In this formula, Y^* and X^* are the post- and pre-treatment means of the intervention group, respectively, Y^* and X^* are the post- and pre-treatment means of the control group, respectively, and s^* is the post-test standard deviation of the intervention and control groups. The effect size corresponded to the SMDs using the following formula:

$$\Delta = \frac{Y^* - X^*}{s^*}$$

The estimated variance of the SMD (i.e. “Var (Δ)”) is defined as follow:

$$\text{Var} (\Delta) = \text{Var} (g') + \frac{4(1 - r^*) + (g')^2 + 4(1 - r^*) + (g')^2}{2n'}$$

In this formula, r^* and $r^'$ are estimates of the pre- and post-treatment correlations in the intervention and control groups, respectively.

Small-sample studies tend to overestimate effect sizes. Thus, a small-sample correction factor (Hedges’ g) involving SMD multiplied by a correction factor J, was used31. This correction factor J was computed using the following formula:

$$J = 1 - \left(\frac{3}{df - 1}\right), \text{ df } = (n_1 + n_2 - 2)$$

The weighted mean difference with 95% confidence intervals was used to determine effect size. The meta-analysis was conducted using Comprehensive Meta-Analysis software (version 3.0; Biostat Inc., Englewood, NJ, USA).

5. Data analyses

A nutritionist, clinician, and meta-analytical statistician collaborated on all aspects of this study. The primary outcome was BMI (kg/m2) or body weight (kg) change. The secondary outcomes were changes in scores/numbers of depressive symptoms, binge eating, dietary restraint, diet self-efficacy, and exercise self-efficacy. Body weight changes were calculated as the differences between pre- and post-treatment mean body weights (kg) or percent of body weight reductions. Secondary outcomes included assessments using the following scales: binge eating was assessed using the Eating Disorder Examination (EDE)19,20,23,24, or the Eating Disorder Examination-Questionnaire (EDE-Q)18,32, depressive symptoms using Beck’s Depression Index (BDI)18,20,23,24,33, BDI-II22,24, HDRS15, or Symptom Check List-2021, dietary restraint was measured using the EDE-Q18,20,32,35, diet self-efficacy was assessed via the Weight Efficacy Lifestyle Questionnaire$^{36-38}$ or an adopted scale based on a measure developed by Bandura39, and exercise self-efficacy was assessed through the exercise self-efficacy scale36,40, or an adopted scale based on a measure developed by Bandura39. Participants were classified into three obesity subgroups: simple obesity, obesity with binge eating disorder, and obesity with depression, and the effect size of outcomes was compared between subgroups. Heterogeneity in primary or secondary outcomes between studies was assessed using Q test and I^2.31 This meta-analysis was conducted using a random-effect model to assess effect size since there was significant heterogeneity in the types of intervention, participants, and treatment period between studies. A funnel plot31, Egger test41, and Begg and Mazumdar rank correlation42 were performed to assess publication bias and to synthetically analyze all the results. Subgroup analysis was conducted on the weight measuring time point divided by \leq12 weeks or $>$12 weeks. In obesity treatment studies, the difference between the time points of weight measurement is considered important given that it can affect the outcome.

RESULTS

1. Study description

The initial search compiled a total of 680 studies; 603 studies through databases and 77 studies through other sources. We initially screened articles using only the title and abstract; if these were insufficient for determining the appropriateness for inclusion, we then screened the full-text article. In addition, for data-insufficient studies, we contacted the corresponding authors requesting sufficient data to calculate the effect size, such as mean, standard deviation, and sample sizes; however, we received no response from any author. Ultimately, only 21 studies met the inclusion
criteria and were assessed (Fig. 1). This included 22 intervention arms, one of which included two intervention arms, and a total of 2,590 participants. Studies were classified into three categories according to obesity subtypes: simple obesity (13 studies; $n=1,752$), obesity with binge eating disorder (5 studies; $n=423$), and obesity with depression (3 studies; $n=415$). The characteristics of the included studies and comparisons of intervention details between the intervention and control groups are shown in Tables 1 and 2, respectively.

2. RoB and publication bias

1) Quality assessment

The RoB assessment for the 21 studies included here is summarized in Fig. 2. The RoB was rated ‘high’ in 19 studies and ‘some concerns’ in 2, 37, 45. In 16 studies, sequence generation or allocation concealment in the randomization process was not reported or was unclear. In all studies, blinding of one or both of the participants and assessors was not conducted or not mentioned. It is difficult to blind participants and assessors since RCTs involving CBT could not be placebo-controlled clinical trials. We increased the risk assessment rating if the imbalance of study interventions could be biased or if the self-reporting could be influenced.

2) Publication bias

No significant publication bias was observed on Begg and Mazumdar rank correlation ($P=0.797$) and on the Egger test ($P=0.775$). Moreover, symmetrical distribution was revealed on visual inspection of the funnel plots (Fig. 3). As
Table 1. Characteristics of Randomized Controlled Trials of Cognitive Behavioral Therapy

Author, Year	Population	Age (yr)	Female (%)	Initial BMI (kg/m^2) or BW (kg)	Number of participants randomized	Total number analyzed	CBT intervention period (wk)	Type of intervention group	Type of control group	Outcomes
Tanco, 1998¹⁰	Simple obesity	NR	100.0	39.5	42	37	8	CT	BT plus LED plus exercise	BMI, depression
Ramirez, 2001¹⁰	Simple obesity	44.0	78.5	33.78	88	65	16	CT plus NE plus PA	BT plus NE plus PA	BW, restraint
Ames, 2005¹⁰	Simple obesity	21.5	100.0	31.1	80	26	26	CT plus LED plus exercise	BT plus LED plus exercise	BW, depression
Stahre, 2007¹⁰	Simple obesity	48.6	100.0	100.3*	54	29	10	CT plus LED	Diet information and practice	BW
Befort, 2008¹⁰	Simple obesity	44.3	100.0	39.8	44	33	16	CT plus LED plus PA	BT plus LED plus PA	BMI, diet self-efficacy, exercise self-efficacy
Werrij, 2009¹⁰	Simple obesity	45.0	81.0	33.4	200	200	10	CT plus NE	BT plus NE plus exercise	BMI, binge eating, depression, restraint
Rodriguez-Hernandez, 2009¹⁰	Simple obesity	45.4	100.0	35.8	58	58	26	(1) CT plus LED (LF) plus exercise	(1) LED (LF) plus exercise	BMI
		45.3	100.0	36.4	47	47	26	(2) CT plus LED (LC) plus exercise	(2) LED (LC) plus exercise	BMI
Annesi, 2010¹⁰	Simple obesity	42.2	100.0	36.6	150	134	26	CT plus NE plus exercise	NE plus exercise	BW, exercise self-efficacy
Annesi, 2012¹⁰	Simple obesity	42.5	82.6	41.7	430	430	26	CT plus CR plus exercise	NE plus exercise	BW, exercise self-efficacy, diet self-efficacy
Annesi, 2013¹⁰	Simple obesity	43.4	80.6	40.3	324	324	26	CT plus CR plus exercise	NE plus exercise	BMI, diet self-efficacy
Jamal, 2016¹⁰	Simple obesity	40.5	72.7	32.4	194	194	24	CT plus LED plus PA	CR plus PA	BMI, diet self-efficacy
Manzoni, 2016¹⁰	Simple obesity	35.6	100.0	42.2	102	102	6	CT plus LED plus exercise	BT plus LED plus exercise	BW
Marcon, 2017¹⁰	Simple obesity	46.3	89.7	48.3	44	39	16	CT plus exercise	BT plus exercise	BW
Grilo, 2006¹⁰	Binge eating	46	81.3	34.7	75	75	12	CT	BT	BMI, binge eating, depression, restraint
Munsch, 2007¹⁰	Binge eating	45.9	88.8	36.5	80	80	16	CT	BT plus NE	BMI, binge eating
Wilson, 2010¹⁰	Binge eating	48.3	85.4	36.5	130	130	24	CT	BT plus CR plus exercise	BMI, binge eating
Grilo, 2011¹⁰	Binge eating	44.8	67.0	38.8	90	90	24	CT	BT plus CR plus PA	BMI, binge eating, depression, restraint
Grilo, 2013¹⁰	Binge eating	45.8	79.0	37.6	48	48	16	CT	BT	BMI, binge eating, depression
Linde, 2011¹⁰	Depression	52	100.0	39.5	203	203	26	CT plus LED plus exercise	BT plus LED plus exercise	BW, depression
Pagoto, 2013¹⁰	Depression	45.9	100.0	35.4	161	161	26	CT plus CR plus exercise	BT plus CR plus exercise	BW, depression
Faulconbridge, 2018¹⁰	Depression	49.5	92.2	36.3	51	48	20	CT plus LED plus exercise	BT plus LED plus exercise	BW, depression

BMI: body mass index, BW: body weight, CBT: cognitive behavioral therapy, NR: not reported, CT: cognitive therapy, BT: behavioral therapy, LED: low energy diet, NE: nutrition education, PA: physical activity, LF: low fat diet, LC: low carbohydrate diet, CR: calorie restriction.
Table 2. Comparison of Intervention Details between Intervention and Control Groups

Author, year	Type of intervention	Type of control
Tanco, 1998	CT therapeutic approaches based on cognitive principles, discussion regarding body ideals and appearances and encouraging to recognize psychological and physiological need	Daily records of their food intake (1,200-1,500 kcal/d, daily food diaries) and exercise, reviewed weekly
Ramirez, 2001	Cognitive restructuring to help them reduce negative self-talk and control self-defeating regarding appearances	Nutrition and behavioral self-management program to promote eating and exercise change
Ames, 2005	RCB intervention focused on establishing realistic weight goals and expectations for weight loss, correcting faulty assumptions regarding appearance, valuing aspects of self-unrelated to weight, and fostering acceptance of the weight and body shape achieved following treatment	SB intervention: Low-calorie intake (e.g., 1,200-1,500 kcal/d) and training in self-monitoring, goal setting, stimulus control, social support, and relapse prevention strategies. Structured exercise consisting of 30 min of moderate to high intensity activities (e.g., aerobics classes, brisk walking, jogging, cycling) for 5 or more days per week
Stahre, 2007	Cognitive group treatment to inform the probable causes of dysfunctional eating behavior and to focus on deficiencies in self-control, low self-esteem, and stress	Information on dieting and practical training
Befort, 2008	Motivational interviewing: changing behaviors by discussing past experiences, clarifying connections between core values and weight loss, as well as motivation to lose weight	Health education: Provision of health information and advice unrelated to weight loss
Werrij, 2009	First intervention: Same as the control group Second intervention: Provided with workbooks containing background information on cognitive intervention and homework including thought diaries (changing dysfunctional cognitions concerning eating, control, weight, and shape)	First intervention: Provided with nutritional education, food diaries, and learning when to stop eating, how to refuse food, how to find social support, and how to deal with parties, among others. Second intervention: Low intensity exercise program supervised by a physiotherapist
Rodriguez-Hernandez, 2009	Behavioral strategies, cognitive skills, and relapse prevention techniques to identify factors that trigger overeating Exercise: Walking, dancing, cycling, or swimming for 30 min/d, for at least 5 d/wk LED-LF/LC (30 kcal/kg/d)	Exercise: Walking, dancing, cycling, or swimming for 30 min/d, for at least 5 d/wk LED-LF/LC (30 kcal/kg/d)
Annesi, 2010	Exercise support based on each participant’s preference Cognitive behavioral method includes establishing caloric goals and logging daily food and calorie intake, regular self-weighing, cognitive restructuring, relapse prevention training, understanding cues to overeating, and relaxation strategies	Exercise support based on each participant’s preference Nutrition education include understanding carbohydrates, protein, fats, and calories, using the US Food Guide Pyramid, menu planning, and developing a plan for snacking
Annesi, 2012	Exercise support based on each participant’s preference (6, 1-hr individual sessions per week) Cognitive behavioral method included establishing caloric goals and logging daily food and calorie intake, regular self-weighing, cognitive restructuring, relapse prevention training, understanding cues to overeating, and relaxation strategies	Exercise support based on each participant’s preference (6, 1-hr individual sessions per week) Nutrition education included understanding carbohydrates, protein, fats, and calories, using the US Food Guide Pyramid, menu planning, and developing a plan for snacking
Annesi, 2013	Exercise support instructing additional behavioral skills, such as productive self-talk, addressing cues to exercise, and accommodating barriers to exercise (six, 45-60 min/wk) Cognitive behavioral nutrition education establishing caloric goals and logging daily food and caloric intake, practice restructuring, and leveraging cues to overeating	Exercise support instructing additional behavioral skills such as productive self-talk, addressing cues to exercise, and accommodating barriers to exercise (six, 45-60 min/wk) Standard nutrition education, including understanding carbohydrates, protein, fats, and calories, and developing a plan for snacking
Jamal, 2016	Cognitive behavior sessions regarding negative thoughts, challenges in lifestyle change, maintaining motivation, experience sharing Decrease caloric intake by 500 kcal/d Increase physical activity by 150 min/wk Trainers: Dietician, exercise specialist	Decrease caloric intake by 500 kcal/d Increase physical activity by 150 min/wk Trainers: dietician, exercise specialist
we synthetically analyzed all the results, including the funnel plot, rank correlation, and Egger test, publication bias was not indicated. A non-significant tau does not prove the absence of bias since the power of the Egger test was low, unless there was severe bias or a substantial number of studies. As a sensitivity analysis, we also assessed the trim and fill method on the impact of the small study effect.

3. Effects on obesity subtypes

Effects of CBT versus BT on different categories of individuals with obesity are summarized in Table 3.

1) Effects of CBT compared with BT in the simple obesity group

In the simple obesity group, the weight loss effect of CBT was significantly greater than BT even though the effect size was low (Fig. 4). Among the psychological outcomes, only the diet self-efficacy effect of CBT was statistically significant. The effects of CBT on depressive symptoms, binge eating, dietary restraint, and exercise self-efficacy were statistically insignificant compared to that of BT (Fig. 4).

The results of the subgroup analysis revealed that compared with BT, the effect of CBT on weight loss in the group ≤12 weeks (n=4) was not significantly different.

Table 2. Continued

Author, year	Type of intervention	Type of control
Manzoni, 2016	Self-monitoring of food intake and eating patterns, addressing barriers to weight loss and body image concerns, and learning problems in eating, mood, and thinking patterns	Low calorie diet (1,200 kcal/d) and physical training (minimum of 30 min of walking, twice a week)
Marcon, 2017	Reduction or elimination of undesirable behaviors, negative thoughts associated with diet, and physical activity	Information regarding the importance of changing eating habits and physical activity
Grilo, 2005	CBT self-help book including psychoeducational chapters (e.g., binge eating, associated problems, self-help approach) and how to change eating habits and associated features.	Behavioral weight loss self-help book focused on lifestyle changes with goals of moderate caloric restriction and increased physical activity to produce modest gradual weight losses.
Munsch, 2007	Education regarding treatment of binge eating, self-monitoring of eating behavior, daily food intake plan, body exposure training, and goal setting, regulating eating behavior, identifying binge eating cues, and modification body concept	Understanding etiology and treatment of obesity, weight loss goals, fat reduced nutrition, and increasing physical activity
Wilson, 2010	Education on binge eating and focus on self-monitoring, self-control, problem solving, and relapse prevention.	Self-monitoring of fat intake, stress related eating, and identifying and coping with risk situations
Grilo, 2011	Identifying and challenging maladaptive cognitions regarding eating and weight/shape, and thoughts that serve as binge eating triggers	Focused on making gradual lifestyle changes
Grilo, 2013	Education regarding binge eating, dieting, and health: development of coping skills for maladaptive eating triggers	Increase in physical activity
Linde, 2011	Setting of additional behavioral and cognitive change-related goals to improve depressive symptoms, and regular mood self-monitoring (55% for depression treatment + 45% for weight loss treatment)	Focus on behavioral goal setting and self-monitoring of caloric intake, physical activity, body weight
Pagoto, 2013	Improvements in thoughts, mood, and overall quality of life	Health education on topic of women’s health
Faulconbridge, 2018	Identify and modify negative automatic thoughts and core beliefs	Behavioral weight management skills, encouraged to record food intake and minutes of physical activity, self-monitoring, and stimulus control
	Cognitive restructuring, encouraged to use dysfunctional thought records	LCD: 1,200-1,300 kcal/d
	LED: 1,200-1,500 kcal/d	Exercise: Increase exercise until 2,500 kcal/wk
	Exercise: 25 min, 2 times/wk	Exercise: Increase exercise to 180 min/wk
	Exercise: Increase physical activity until 2,500 kcal/wk	Exercise: Increase exercise to 180 min/wk
	CR: to lose weight 0.5-1 kg/wk	CR: to lose weight 0.5-1 kg/wk
	Exercise: 30 min, 5 d/wk	Exercise: 30 min, 5 d/wk
	Exercise: 30 min, 5 d/wk	Exercise: Increase exercise to 180 min/wk
	Exercise: Increase exercise until 2,500 kcal/wk	Exercise: Increase exercise to 180 min/wk
	Exercise: Increase physical activity until 2,500 kcal/wk	Exercise: Increase exercise to 180 min/wk

CT: cognitive therapy, RCB: reformulated cognitive-behavioral, SB: standard behavioral, LED: low energy diet, LF: low fat diet, LC: low carbohydrate diet, CBT: cognitive behavioral therapy, CR: calorie restriction.
(Hedges’ g=0.038; CI=-0.166~0.243), but in the group >12 weeks (n=10), the effect of CBT was higher than that of BT (Hedges’ g=0.158; CI=0.050~0.266). Differences between the weight measurement time points affected CBT’s influence on weight loss. The subgroup analysis was conducted only in the simple obesity group since the other groups had few studies for conducting subgroup analysis.

2) Effects of CBT compared with BT in the obesity with binge eating disorder group

In the obesity with binge eating disorder group, the effects of CBT and BT were different for each outcome. CBT had a significantly favorable effect on reducing binge eating, while BT had a significant beneficial effect on reducing body weight and improving dietary restraint. The effects of CBT and BT on depressive symptoms was not significantly different (Fig. 4).

3) Effects of CBT compared with BT in the obesity with depression group

In the obesity with depression group, no significant differences in weight loss and depressive symptoms were ob-
DISCUSSION

This meta-analytic approach compared CBT to BT for obesity and divided patients into subgroups, including simple obesity, obesity with binge eating disorder, and obesity with depression. Our primary findings indicated that compared with BT, the effect of CBT on weight loss distinctly differed across all patient subgroups. Our subgroup assessment demonstrated that CBT, compared with BT, was effective in promoting weight loss in simple obesity, but in obesity with binge eating disorder, BT was more effective in promoting weight loss than CBT. Moreover, in obesity with depression.
Fig 4. Forest plot of cognitive behavioral therapy effect compared with behavioral treatment in simple obesity group, obesity with binge eating disorder group, and obesity with depression groups.
depression, there was no statistically significant difference between CBT and BT to reduce body weight. The effects of CBT and BT were different for each psychological outcome in each obesity subtype. In simple obesity, among the psychological outcomes, only the diet self-efficacy effect of CBT was statistically significant and the effects of CBT on depressive symptoms, binge eating, dietary restraint, and exercise self-efficacy were statistically insignificant than that of BT. In obesity with binge eating disorder, CBT had a significantly favorable effect on reducing binge eating. And in obesity with depression, no differences in the depressive symptoms were observed between CBT and BT groups.

Jacob et al.\(^7\) systematically reviewed studies that examined the effect of CBT weight loss interventions and psychological outcomes (cognitive restraint, emotional/binge eating, and depressive/anxiety symptoms) in adults who were overweight or obese, and reported that in addition to weight loss, CBT is an effective therapy for increasing cognitive restraint and reducing emotional eating; this supports our findings in simple obesity. However, in our study, CBT’s effect on weight loss was low, which might be attributed to the fact that we evaluated the comparative effect between CBT and BT only with active treatment. The small effects or non-significant differences between treatments do not imply a lack of significant positive effects\(^14,47-49\). Since both treatments produce significant effects, the results do not reflect superiority in comparisons across the various treatments\(^14\). CBT and BT both lead to weight loss during obesity treatment\(^11\) and indeed, all included studies reported significant weight reduction from baseline levels in CBT and BT groups. Moreover, even though the primary aim of several studies\(^32-37,39,40,43\) on simple obesity was to change psychological aspects or to prevent relapse, rather than weight loss, the result of our meta-analysis revealed that CBT is more effective for weight loss than BT. This implies that CBT may sufficiently affect both weight loss and psychological outcomes in simple obesity.

In obesity with binge eating disorder, CBT had a superior effect only on binge eating, similar to previous studies\(^12-14\), although we compared with only active control. BT produced weight loss accompanied by an increase in dietary restraint\(^18-20\). This could be explained by the fact that CBT in obesity with binge eating disorder primarily focused on the reduction of binge eating, while BT aimed at behavioral changes, including caloric restriction or increased physical activity.

In cases of obesity with depression, the effects on weight loss and depressive symptoms were not meaningfully different between the CBT and BT groups. Both cognitive or behavioral therapy for weight loss improved depressive symptoms. Since involvement in active treatment may also influence mood among patients with depression\(^50\), the type of treatment, whether CBT or BT, might not be important. We can also speculate that a small sample size can produce unimpressive P-values\(^48\), because of the small number of studies investigating obesity with depression.

1. Limitations

This study had several limitations. First, the number of studies classified into subgroups was small; thus, the comparison of outcomes between subgroups was limited, and even in simple obesity, the frequency of binge eating was assessed in only one study. Although we used the Hedges’ g method and Egger test to overcome the bias from a small number of studies, it remains a limitation of this study. Further studies with larger sample sizes are required to confirm the outcomes observed in this study. Second, obesity with binge eating disorder or depression tends to accompany other psychological conditions, and binge eating disorder in particular has a high comorbidity rate\(^51\). The selected study also included individuals with other psychological complications if not severe. In addition, the selected studies had heterogeneity at a measurement time point between 8 and 26 weeks. Therefore, it is necessary to interpret these results more carefully and apply them cautiously. Third, we limited the CBT criteria to the traditional CBT. Therefore, we could miss effective CBT interventions for obesity with binge eating disorder or depression. Lastly, research registration is recommended for systematic reviews based on the PRISMA reporting standard\(^52\), but this study
was not registered.

2. Suggestions for future research

We suggest that further research should expand to all psychological interventions to identify appropriate interventions for each obesity subtype, such as third-wave CBT beyond the traditional CBT. Additionally, the prevalence of comorbidities with other psychological problems among individuals with obesity and binge eating disorder or depression was high, and the number of studies in these groups was small. Therefore, to determine the clear effect of CBT in these populations, more RCTs with well-defined participants are required. It may also be possible to synthesize qualitative research or conduct network meta-analysis to obtain clear results regarding the effect of CBT in treating obesity.

CONCLUSIONS

Our study concluded that compared with BT, the effect of CBT on weight loss distinctly differed across all patient subgroups. Our subgroup assessment revealed that compared with BT, CBT was effective in promoting weight loss in simple obesity; however, in obesity with binge eating disorder, BT was more effective in promoting weight loss than CBT. In obesity with depression, the effect of CBT on weight loss was not statistically different from that of BT. The results also indicated that the effects of CBT and BT varied for each psychological outcome in each subgroup. Therefore, our findings suggest that CBT or BT should be selectively recommended as a treatment strategy for different obesity subtypes.

References

1. World Health Organization. Obesity and overweight [Internet]. Geneva: World Health Organization; 2020 [cited 2020 April 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
2. Dobbs R, Sawers C, Thompson F, Manyika J, Woetzel J, Child P, et al. Overcoming obesity: an initial economic analysis. London: McKinsey Global Institute. 2014.
3. Shaw K, O’Rourke P, Del Mar C, Kenardy J. Psychological interventions for overweight or obesity. Cochrane Database Syst Rev. 2005; 2: CD003818.
4. Castelnuovo G, Pietrabissa G, Manzoni GM, Cattivelli R, Rossi A, Novelli M, et al. Cognitive behavioral therapy to aid weight loss in obese patients: current perspectives. Psychol Res Behav Manag. 2017; 10: 165-73.
5. Darby A, Hay P, Mond J, Quirk F, Buttner P, Kennedy L. The rising prevalence of comorbid obesity and eating disorder behaviors from 1995 to 2005. Int J Eat Disord. 2009; 42(2): 104-8.
6. de Wit L, Luppolo F, van Straten A, Penninx B, Zitman F, Cuijpers P. Depession and obesity: a meta-analysis of community-based studies. Psychiatry Res. 2010; 178(2): 230-5.
7. Jacob A, Moullec G, Lavoie KL, Laurin C, Cowan T, Tissshaw C, et al. Impact of cognitive-behavioral interventions on weight loss and psychological outcomes: a meta-analysis. Health Psychol. 2018; 37(5): 417-32.
8. Mannan M, Mamun A, Doi S, Clavarino A. Is there a bi-directional relationship between depression and obesity among adult men and women? Systematic review and bias-adjusted meta-analysis. Asian J Psychiatr. 2016; 21: 51-66.
9. Wadden TA, Butryn ML. Behavioral treatment of obesity. Endocrinol Metab Clin North Am. 2003; 32(4): 981-1003.
10. Stahre L, Tärnell B, Håkanson CE, Hällström T. A randomized controlled trial of two weight-reducing short-term group treatment programs for obesity with an 18-month follow-up. Int J Behav Med. 2007; 14(1): 48-55.
11. Peckmezian T, Hay P. A systematic review and narrative synthesis of interventions for uncomplicated obesity: weight loss, well-being and impact on eating disorders. J Eat Disord. 2017; 5: 15.
12. Palavras MA, Hay P, Dos Santos CA, Claudino A. The efficacy of psychological therapies in reducing weight and binge eating in people with bulimia nervosa and binge eating disorder who are overweight or obese—a critical synthesis and meta-analyses. Nutrients. 2017;
9(3) : 299.

13. Brownley KA, Berkman ND, Peat CM, Lohr KN, Cullen KE, Bann CM, et al. Binge-eating disorder in adults: a systematic review and meta-analysis. Ann Intern Med. 2016 ; 165(6) : 409-20.

14. Peat CM, Berkman ND, Lohr KN, Brownley KA, Bann CM, Cullen K, et al. Comparative effectiveness of treatments for binge-eating disorder: systematic review and network meta-analysis. Eur Eat Disord Rev. 2017 ; 25(5) : 317-28.

15. Faulconbridge LF, Driscoll CFB, Hopkins CM, Benforado BB, Bishop-Gilyard C, Carvajal R, et al. Combined treatment for obesity and depression: a pilot study. Obesity (Silver Spring). 2018 ; 26(7) : 1144-52.

16. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington : American Psychiatric Association. 2013.

17. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009 ; 6 : e1000100.

18. Grilo CM, Masheb RM. A randomized controlled comparison of guided self-help cognitive behavioral therapy and behavioral weight loss for binge eating disorder. Behav Res Ther. 2005 ; 43(11) : 1509-25.

19. Wilson GT, Wilfley DE, Agras WS, Bryson SW. Psychological treatments of binge eating disorder. Arch Gen Psychiatry. 2010 ; 67(1) : 94-101.

20. Grilo CM, Masheb RM, Wilson GT, Gueorguieva R, White MA. Cognitive-behavioral therapy, behavioral weight loss, and sequential treatment for obese patients with binge-eating disorder: a randomized controlled trial. J Consult Clin Psychol. 2011 ; 79(5) : 675-85.

21. Linde JA, Simon GE, Ludman EJ, Ichikawa LE, Operskalski BH, Arterburn D, et al. A randomized controlled trial of behavioral weight loss treatment versus combined weight loss/depression treatment among women with comorbid obesity and depression. Ann Behav Med. 2011 ; 41(1) : 119-30.

22. Pagoto S, Schneider KL, Whited MC, Oleski JL, Merriam P, Appelhans B, et al. Randomized controlled trial of behavioral treatment for comorbid obesity and depression in women: the be active trial. Int J Obes (Lond). 2013 ; 37(11) : 1427-34.

23. Munsch S, Biedert E, Meyer A, Michael T, Schlup B, Tuch A, et al. A randomized comparison of cognitive behavioral therapy and behavioral weight loss treatment for overweight individuals with binge eating disorder. Int J Eat Disord. 2007 ; 40(2) : 102-13.

24. Grilo CM, White MA, Gueorguieva R, Barnes RD, Masheb RM. Self-help for binge eating disorder in primary care: a randomized controlled trial with ethnically and racially diverse obese patients. Behav Res Ther. 2013 ; 51(12) : 855-61.

25. Lawlor ER, Islam N, Bates S, Griffin SJ, Hill AJ, Hughes CA, et al. Third-wave cognitive behaviour therapies for weight management: a systematic review and network meta-analysis. Obes Rev. 2020 ; 21(7) : e13013.

26. Carrière K, Khoury B, Günak MM, Knüpper B. Mindfulness-based interventions for weight loss: a systematic review and meta-analysis. Obes Rev. 2018 ; 19(2) : 164-77.

27. Hayes SC, Villatte M, Levin M, Hildebrandt M. Open, aware, and active: contextual approaches as an emerging trend in the behavioral and cognitive therapies. Annu Rev Clin Psychol. 2011 ; 7 : 141-68.

28. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions, Version 6.0 (updated July 2019). London: Cochrane; 2019 [cited 2019 August 10]. Available from: http://www.training.cochrane.org/handb ook.

29. Lipsey MW, Wilson DB. Practical meta-analysis. Applied social research methods series (Vol. 49). Thousand Oaks, CA : Sage Publications. 2001.

30. Becker BJ. Synthesizing standardized mean-change measures. Br J Math Stat Psychol. 1988 ; 41(2) : 257-78.

31. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. London : Wiley. 2009.

32. Werrij MQ, Jansen A, Mulkens S, Elgersma HJ, Ament AJ, Hospers HJ. Adding cognitive therapy to dietetic treatment is associated with less relapse in obesity. J Psychosom Res. 2009 ; 67(4) : 315-24.

33. Tanco S, Linden W, Earle T. Well-being and morbid obesity in women: a controlled therapy evaluation. Int
34. Ames GE, Perri MG, Fox LD, Fallon EA, De Braganza N, Murawski ME, et al. Changing weight-loss expectations: a randomized pilot study. Eat Behav. 2005; 6(3): 259-69.

35. Ramirez EM, Rosen JC. A comparison of weight control and weight control plus body image therapy for obese men and women. J Consult Clin Psychol. 2001; 69(3): 440-6.

36. Annesi JJ. Supported exercise improves controlled eating and weight through its effects on psychosocial factors: extending a systematic research program toward treatment development. Perm J. 2012; 16(1): 7-18.

37. Annesi JJ, Tennant GA. Mediation of social cognitive theory variables in the relationship of exercise and improved eating in sedentary adults with severe obesity. Psychol Health Med. 2013; 18(6): 714-24.

38. Jamal SN, Moy FM, Mohamed MNA, Mukhtar F. Effectiveness of a group support lifestyle modification (GSLiM) programme among obese adults in workplace: a randomised controlled trial. PLoS One. 2016; 11(8): e0160343.

39. Befort CA, Nollen N, Ellerbeck EF, Sullivan DK, Thomas JL, Ahluwalia JS. Motivational interviewing fails to improve outcomes of a behavioral weight loss program for obese African American women: a pilot randomized trial. J Behav Med. 2008; 31(5): 367-77.

40. Annesi JJ. Relations of changes in self-regulatory efficacy and physical self-concept with improvements in body satisfaction in obese women initiating exercise with cognitive-behavioral support. Body Image. 2010; 7(4): 356-9.

41. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315(7109): 629-34.

42. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994; 50(4): 1088-101.

43. Manzoni GM, Cesa GL, Bacchetta M, Castelnuovo G, Conti S, Gaggioli A, et al. Virtual reality-enhanced cognitive-behavioral therapy for morbid obesity: a randomized controlled study with 1 year follow-up. Cyberpsychol Behav Soc Netw. 2016; 19(2): 134-40.

44. Marcon ER, Baglioni S, Bittencourt L, Lopes CL, Neumann CR, Trindade MR. What is the best treatment before bariatric surgery? exercise, exercise and group therapy, or conventional waiting: a randomized controlled trial. Obes Surg. 2017; 27(3): 763-73.

45. Rodriguez-Hernandez H, Morales-Amaya UA, Rosales-Valdés R, Rivera-Hinojosa F, Rodriguez-Moran M, Guerrero-Romero F. Adding cognitive behavioural treatment to either low-carbohydrate or low-fat diets: differential short-term effects. Br J Nutr. 2009; 102(12): 1847-53.

46. Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000; 53(11): 1119-29.

47. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019; 567(7748): 305-7.

48. Wasserstein RL, Lazar NA. The ASA’s statement on p-value: context, process, and purpose. Am Stat. 2016; 70(2): 129-33.

49. Ranganathan P, Pramesh CS, Buyse M. Common pitfalls in statistical analysis: Clinical versus statistical significance. Perspect Clin Res. 2015; 6(3): 169-70.

50. Markowitz S, Friedman MA, Arent SM. Understanding the relation between obesity and depression: causal mechanisms and implications for treatment. Clin Psychol Sci Prac. 2008; 15: 1-20.

51. Grilo CM, White MA, Masheb RM. DSM-IV psychiatric disorder comorbidity and its correlates in binge eating disorder. Int J Eat Disord. 2009; 42(3): 228-34.

52. Straus S, Moher D. Registering systematic reviews. CMAJ. 2010; 182(1): 13-4.