Nonlocal generalized quantum measurements of bipartite spin products without maximal entanglement

P Vidil and K Edamatsu

Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
* Author to whom any correspondence should be addressed.
E-mail: eda@riec.tohoku.ac.jp

Keywords: quantum measurements, quantum entanglement, generalized quantum measurements

Abstract

Measuring a nonlocal observable on a space-like separated quantum system is a resource-hungry and experimentally challenging task. Several theoretical measurement schemes have already been proposed to increase its feasibility, using a shared maximally-entangled ancilla. We present a new approach to this problem, using the language of generalized quantum measurements, to show that it is actually possible to measure a nonlocal spin product observable without necessarily requiring a maximally-entangled ancilla. This approach opens the door to more economical arbitrary-strength nonlocal measurements, with applications ranging from nonlocal weak values to possible new tests of Bell inequalities. The relation between measurement strength and the amount of ancillary entanglement needed is made explicit, bringing a new perspective on the links that tie quantum nonlocality, entanglement and information transmission together.

1. Introduction

Almost since its inception, the behavior of space-like separated quantum systems has been at the heart of multiple heated controversies around quantum mechanics [1–3], as well as the key to some of its most promising technological applications. These include superdense coding [4, 5], quantum teleportation [6, 7], entanglement swapping [8, 9] and device-independent quantum key distribution [10–12] among others. All have in common that they rely on the measurement of an operator that contains information about not just one, but several, possibly entangled, quantum particles.

Sometimes, one might be faced with a situation where those different parts are space-like separated and direct interaction between them is not available. The question of whether or not it is possible to measure such multipartite observables instantaneously in this case was first answered in the negative by Landau and Peierls [13] in 1931, on the grounds of locality constraints.

Yet it was proven much later that such nonlocal measurements are in fact possible for certain observables, given adequate resources [14–16]. When the different parts are separated, they are made to strongly interact with an additional maximally-entangled state, a precious resource in quantum information [17, 18], that is used to carry out the measurement and store the result.

This type of measurement scheme is often referred to as a von Neumann (VN) measurement [19], and the use of a maximally-entangled meter (MEM) state has been shown to solve the problem of achieving complete Bell state measurement [20, 21], even in linear-optical systems [22]. The interaction between the system and the meter leading to the final result can then be made instantaneous, even though retrieving said result from the entangled meter requires some finite amount of time, as dictated by special relativity.

Such a strong VN measurement of nonlocal variables has already been implemented using hyperentangled photonic quantum systems [23], and has also led to the direct measurement of a nonlocal wavefunction using the modular value formalism [24, 25]. Furthermore, if one is ready to part with the VN approach and discard the final state of the system, all nonlocal observables become measurable [26–28] via so-called verification measurements and finite entanglement consumption.
However VN measurements can be more than just strong (projective) measurements [29], which have been discussed so far. By suitably tailoring the system–meter interaction, as in figure 1, one can manage to only retrieve part of the information about a quantum state, in order to somewhat preserve it [30]. This has been successfully applied to local systems for quantum metrology [31, 32], or in quantum foundations when one wishes to limit the effects of the measurement back-action via weak measurements [33, 34].

One can naturally wonder if this type of interaction tuning can be extended to the nonlocal case. The quantum erasure scheme, developed by Brodutch and Cohen [35] and recently implemented by Li and al. [36], provides a solution by effectively reproducing a nonlocal arbitrary–strength VN interaction. It also extends the class of measurable nonlocal observables, by inserting a probabilistic element that prevents running afoul of causality.

This comes at a price however: on top of a MEM, an extra local meter is necessary to store the result, thus making this method difficult to implement experimentally, as the simplest case indeed requires a total of five distinct qubits. In this Paper, we present a simpler method that can be used to measure nonlocal spin products, yielding the same post-measurement state evolution and statistics as the quantum erasure method, while using less resources, with only four qubits necessary in total.

Our approach presents a complementary point of view to the problem of nonlocal measurements that relies on the language of generalized quantum measurements [29, 37] applied to spin product observables. We prove that in this particular case, it is possible to reproduce the behavior of an arbitrary–strength nonlocal measurement using a non-maximally-entangled meter (NMEM), a weaker resource than what was needed in previous schemes. In particular, we show that the optimal amount of meter entanglement necessary is directly related to the desired measurement strength, and that excessive entanglement may on the contrary degrade the purity of the post-measurement system state. One can then achieve a nonlocal weak measurement with only a limited amount of ancillary entanglement, which greatly increases experimental feasibility, notably for linear-optical implementations.

The structure of this paper is as follows. In section 2, we review one-qubit generalized measurements, which constitute the starting point for the later extension to the nonlocal case. We describe in section 3 the main result of this paper, namely how to measure a spin product observable on two qubits using an NMEM state. We then compare it to the quantum erasure scheme in section 4. In section 5, we study a possible alternative to the above using a maximally-entangled state and its impact on the post-measurement state of the system. In section 6, we draw from the previous sections to establish a relation between measurement strength and ancillary entanglement in the two-qubit case. Finally, we conclude in section 7 by exposing the advantages and applications of this approach, as well as possible extensions.

2. Generalized measurement of a single qubit

A VN generalized quantum measurement consists of an interaction between two quantum states, respectively called the system S, initially in the state $|\psi\rangle_S$, and a property of which we wish to measure; and the meter M, prepared in a known initial state, which we will use to measure S. The interaction is followed by a projective measurement on M, in order to read out the result. By designing an appropriate tunable interaction between the system and the meter, one can actually carry out measurements of different strengths, with much more flexibility than what is allowed by projective measurements.

Several such useful interactions have been proposed in the past for the measurement of single qubits (see [38] for instance). We here focus on the one described in [39], that can be used to measure the system spin σ_z, and which is represented in figure 1. It consists in a local rotation applied to M in order to obtain...
the following meter state:

\[R(\theta)|0\rangle_M = \cos \theta|0\rangle_M + \sin \theta|1\rangle_M \]

followed by a controlled-NOT (CNOT) gate between the meter and the system.

After, the result is retrieved via a projective measurement of \(\sigma_z^M \) on \(M \), the corresponding positive-operator valued measure (POVM) effects for the whole process are given by

\[E_{\pm 1} = \frac{1}{2} \left(\mathbb{1} \pm \cos(2\theta) \sigma_z \right), \]

where 1 designates the identity operator.

Computing the statistics associated to this POVM reveals that the \(S \equiv \cos(2\theta) \) factor acts as the measurement strength, with \(S = 1 \) corresponding to a strong measurement (perfect meter-system correlation) and \(S = 0 \) corresponding to no measurement at all (no correlations):

\[
\begin{align*}
S & \to 0 \\
P_{+1} & \to \frac{1}{2} \\
P_{-1} & \to \frac{1}{2} \\
S & \to 1 \\
P_{+1} & \to |\langle 0|\psi \rangle_S|^2 \\
P_{-1} & \to |\langle 1|\psi \rangle_S|^2.
\end{align*}
\]

This generalized measurement scheme for one qubit has the advantage of being implementable using linear optics for polarization qubits [40] and has been used to test experimentally Ozawa’s error-disturbance relations [41–43] as well as to measure weak values [44].

3. Generalized spin product measurement via a non-maximally entangled meter

We consider a bipartite qubit system where a pair of qubits is distributed between Alice (A) and Bob (B). For clarity, this pair of qubits is initially assumed to be in a pure (possibly entangled) state

\[\Phi \equiv |\Phi \rangle_M + \sin \theta |\Psi \rangle_M \]

where \(|\Phi \rangle_M \) and \(|\Psi \rangle_M \) are the usual maximally-entangled Bell states, corresponding to global measurement outcomes +1 and −1 respectively, \(\alpha = \frac{\pi}{4} - \theta \) and \(|\pm \rangle \equiv \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle) \).

However, interpreting equation (3c) as the Schmidt decomposition [37] for the state \(|\Phi \rangle_M \) shows that such a state is in general not maximally-entangled, hence not accessible from a initially prepared Bell state via local unitaries [45].

The state \(|\phi \rangle_M \) can however be easily obtained from the state \(|\Phi \rangle_M \) via some non-unitary operation that would discard unwanted amplitudes, in a fashion similar to a filter, in order to achieve the desired imbalance between the Schmidt coefficients of equation (3c).

Restricting ourselves to unitary operations, one can extract the state (3a) from a Bell state probabilistically with a 50% success rate, or deterministically using a classical communication channel between Alice and Bob as guaranteed by Nielsen’s majorization theorem [46]. An example of such a possible implementation will be presented in section 4.

In general, if one has an entangled qubit pair with known Schmidt coefficients \(\lambda_0 \) and \(\lambda_1 \), one can obtain the corresponding meter state starting from the Schmidt basis and applying a Hadamard gate \(H \) on
Figure 2. Quantum circuit representation of the method presented in this Paper. Alice and Bob each apply a CNOT interaction between their system qubits and their shared NMEM. The global measurement result is computed after the local outcomes are reunited and multiplied. This presents a clear advantage in terms of practicality in that it does not necessarily require maximal entanglement and can be achieved with only four qubits.

Figure 3. Schematic representation of the measurement process. Once Alice’s and Bob’s results are multiplied together and any remaining local information is discarded, the measurement process is described by the quantum instrument I.

Let us note that from the point of view of entanglement resource theory, non-maximally-entangled states are less costly than Bell states, and may be prepared directly without any need for a prior Bell state.

3.1. Description of the measurement scheme

Let us now assume that the NMEM state $|\Phi'_M\rangle$ has been successfully prepared for some θ between 0 and $\frac{\pi}{4}$. Alice and Bob can now proceed to couple their qubits with the meter via local CNOT gates, as depicted in figure 2, before each (projectively) measuring their meter qubit. For each of the four possible local outcomes, the final system state is given by the following measurement operators, where the measurement operator M_{ij} is by definition the operator which when applied to the system (and not the meter), yields the final system state when the measurement result is (i,j):

\[
M_{++} = M_{--} = \frac{1}{\sqrt{2}} \left\{ \cos \theta (\Pi_{00} + \Pi_{11}) + \sin \theta (\Pi_{01} + \Pi_{10}) \right\}
\]

\[
M_{+-} = M_{-+} = \frac{1}{\sqrt{2}} \left\{ \sin \theta (\Pi_{00} + \Pi_{11}) + \cos \theta (\Pi_{01} + \Pi_{10}) \right\},
\]

where Π_{ij} is the projector on $|ij\rangle$, i.e. $\Pi_{ij} = |ij\rangle \langle ij|$.

From the four different local outcomes, the global outcomes are computed classically by allowing Alice and Bob to share their results. Considering only the global outcomes and discarding any remaining local information, the evolution can be described by two different quantum operations, one for each result (see figure 3). The unnormalized post-measurement states of the system are given by the action of the following...
Figure 4. Comparison between the quantum circuit representations of the quantum erasure scheme (a) proposed in reference [35] and this paper’s approach (b) in the case of a spin product measurement. To make the comparison fair, we place ourselves under the same constraints as reference [35], where Alice and Bob are not allowed to communicate. (a) The quantum erasure method uses a MEM, post-selection (PS) and an additional erasure step. (b) The entanglement reduction method: starting from a MEM, one first needs to reduce the entanglement using an additional local qubit before proceeding with the measurement process. Comparing this approach with (a) shows how the two measurement schemes are complementary in this particular case.

superoperators on the initial density matrix $\rho = \langle \psi | \psi \rangle$:

$$I_{+1}[\rho] = M_{++} \rho M_{++}^\dagger + M_{+-} \rho M_{--}^\dagger \quad (5a)$$
$$I_{-1}[\rho] = M_{+-} \rho M_{+-}^\dagger + M_{--} \rho M_{--}^\dagger. \quad (5b)$$

These operations form the quantum instrument I [47, 48], which fully encapsulates the measurement process as it provides a complete description of both post-measurement states and measurement statistics, as we will see below.

The POVM effects can be obtained directly from the quantum instrument I, via the relation $E_r = I^* r [\mathbb{1}]$, where * designates the superoperator adjoint, obtained by taking the adjoints of the measurement operators M_{ij}. This yields:

$$E_{+1} = M_{++}^\dagger M_{++} + M_{+-}^\dagger M_{--} \quad (6a)$$
$$E_{-1} = M_{+-}^\dagger M_{+-} + M_{--}^\dagger M_{--}. \quad (6b)$$

Substituting with the expressions for the measurement operators (4), the POVM can be rewritten in the following more compact way:

$$E_{\pm 1} = \frac{1}{2} (1 \pm \cos(2\theta) \sigma_z \sigma_z). \quad (7)$$

This is the desired nonlocal generalization of the POVM of equation (2), which yields the statistics expected from a genuine nonlocal measurement.

Moreover, we have $M_{++} = M_{--}$ and $M_{+-} = M_{-+}$, hence for a given global result, the evolution of the system does not depend on the local results. This allows us to rewrite the state evolution (5) in terms of two effective measurement operators, one for each global result:

$$M_{+} = \cos \theta (\Pi_{00} + \Pi_{11}) + \sin \theta (\Pi_{01} + \Pi_{10}) \quad (8a)$$
$$M_{-} = \sin \theta (\Pi_{00} + \Pi_{11}) + \cos \theta (\Pi_{01} + \Pi_{10}). \quad (8b)$$

These operators only involve projectors on the two-dimensional eigenspaces of the observable being measured, as is to be expected in the case of a degenerate observable, first studied by Luders [49]. All eigenstates thus remain unchanged by the measurement and this process is not entanglement-breaking, which are characteristics of an ideal nonlocal measurement.

This is the core result of this paper: it is possible implement a nonlocal measurement of a spin product using only a meter state that need not be maximally-entangled. This is in sharp contrast with other nonlocal VN measurement schemes developed so far [15, 35].

4. Comparison with the quantum erasure method

The method we have just presented is deterministic, once the two parties are allowed to communicate. However if no communication between Alice and Bob is permitted whatsoever, Alice can still teleport her local result to Bob by post-selecting her part of the meter onto a known state. For causality reasons, this can only succeed with probability 50%. The result is then encoded in a single local meter on Bob’s side.
In this section, we will consider the case where the two parties share a previously prepared MEM and are not allowed to communicate, for comparison purposes with the protocol developed by Brodutch et al [35], namely the quantum erasure method. This is in no way the most efficient way of implementing our new scheme, as one could just directly prepare an NMEM without the need for an initial MEM.

The quantum erasure method consists of four steps (see figure 4(a)): first, a strong coupling between Alice’s and Bob’s systems and their shared MEM; followed by a post-selection on Alice’s part of the MEM to teleport her result to Bob. Then, Bob realizes a weak coupling between his remaining part of the MEM and an additional local meter. Finally, Bob needs to erase the excess information contained in the MEM by projecting his part on the unbiased state $|+\rangle_M$.

In our scheme, Alice (or Bob) first implement transformation (3a) to reduce the entanglement of the meter, using for instance an additional ancillary local state (see figure 4(b)). They subsequently proceed to strongly couple their systems with the resulting meter state. The result can finally be teleported from one side to the other by post-selecting one part of the meter on a known state, say $|0\rangle_M$.

We thus show an example of a weak measurement without weak coupling [50]: the weak coupling is replaced by a suitably prepared meter, in our case an NMEM. The reduced entanglement guarantees that no excess information is stored in the meter, which makes the erasure step unnecessary.

5. Generalized spin product measurement via a MEM

Before further discussing our results, it is interesting to study what might happen if we try to realize a nonlocal generalized measurement directly using a MEM, for instance the state $|\Phi^+\rangle$. Instead of trying to transform it into the state (3a), let us consider the meter state resulting from two local rotations implemented on Alice’s and Bob’s sides, of angles θ_1 and θ_2 respectively, as shown on figure 5.

We obtain (up to a global phase) the following state:

$$|\Phi^+\rangle_M^{R_A(\theta_1)R_B(\theta_2)} = \frac{1}{\sqrt{2}} (\cos(\theta_1) (|00\rangle + \sin(\theta_1) |01\rangle + \sin(\theta_2) |10\rangle + \cos(\theta_2) |11\rangle))$$

with $\theta \equiv \theta_2 - \theta_1$. As expected, this is different from the state (3b); this will have consequences on the post-measurement system state.

If Alice and Bob locally couple their meter qubits to their system qubits via CNOT gates and locally measure their meters (see figure 5), the corresponding measurement operators are:

$$M_{++} = \frac{1}{\sqrt{2}} (\cos(\theta) (\Pi_{00} + \Pi_{11}) + \sin(\theta) (\Pi_{01} - \Pi_{10}))$$

$$M_{+-} = \frac{1}{\sqrt{2}} (\cos(\theta) (\Pi_{01} + \Pi_{10}) + \sin(\theta) (\Pi_{00} - \Pi_{11}))$$

$$M_{-+} = \frac{1}{\sqrt{2}} (\cos(\theta) (\Pi_{01} + \Pi_{10}) - \sin(\theta) (\Pi_{00} - \Pi_{11}))$$

$$M_{--} = \frac{1}{\sqrt{2}} (\cos(\theta) (\Pi_{00} + \Pi_{11}) - \sin(\theta) (\Pi_{01} - \Pi_{10}))$$

Using equation (6), we obtain the same POVM as in section 3:

$$E_{\pm} = \frac{1}{2} (1 \pm \cos(2\theta) \sigma_{x_A} \sigma_{x_B})$$
Figure 6. Upper bound on the purity degradation $\Delta \gamma$ as a function of the meter concurrence C and the measurement strength S. The case $C = \Theta$ of equation (13) is represented as a straight line, and corresponds to an efficient measurement with zero classical noise.

However in this case, since $M_{++} \neq M_{--}$ and $M_{+-} \neq M_{-+}$, we see that a same global result can lead to two different state evolutions. Indeed, some knowledge about the local state of the system can be retrieved from the phase information in the final state. Ignoring the individual outcomes (coarse-graining) thus adds classical noise to the system: the post-measurement state is in general mixed even if the initial state of the system was pure. Such a measurement process is sometimes labeled as an inefficient quantum measurement [29].

The amount of classical noise introduced by the coarse-graining can be evaluated via the difference in purity between the initial and the final states $\Delta \gamma$. It is found to be maximal when the initial state is an equal (in modulus) superposition of states associated with different global results, for instance $|+\rangle_A|+\rangle_B$.

In this case, the purity degradation $\Delta \gamma$ (going from an initially pure state $\gamma = 1$ to a mixed state $\gamma < 1$) can be related to the measurement strength S:

$$\Delta \gamma = \frac{1 - \Theta^2}{2}. \quad (12)$$

We see that for a strong measurement ($\Theta = 1$) the system purity is unaffected, whereas for a weak measurement ($\Theta \rightarrow 0$), the system purity tends to $\frac{1}{2}$.

6. Generalization and discussion

We saw previously that for a nonlocal generalized measurement to be efficient, i.e. without added classical noise, the entanglement of the meter state need to be adjusted in accordance with the desired measurement strength. Hereafter, we shall use the concurrence [51] as our main measure of entanglement, defined as follows for a pure two-qubit state:

$$C \equiv 2\lambda_0\lambda_1, \quad (13)$$

where λ_0 and λ_1 are the Schmidt coefficients. The concurrence is a well-studied measure of entanglement that can be evaluated experimentally, using two copies of the state for instance [52].

As was shown in section 3, for a nonlocal measurement to be efficient, the meter state should be such that coefficients associated to same global outputs are equal, as in equation (3b):

$$\frac{1}{\sqrt{2}} \left(\cos \theta |00\rangle + \sin \theta |01\rangle + \sin \theta |10\rangle + \cos \theta |11\rangle \right). \quad (14)$$

It turns out that in this case, the resulting measurement strength Θ is directly equal to the concurrence C of the meter state:

$$C = \Theta. \quad (15)$$
Let us now turn to the case when, as in section 5, the entanglement C contained in the meter state is higher than the desired measurement strength \mathbb{S}. It is then impossible to generate an ideal meter state, but one can still obtain the desired strength by applying appropriate local unitaries in order to prepare the following state:

$$\frac{1}{\sqrt{2}} (\cos \theta |00\rangle + e^{i\phi} \sin \theta |01\rangle + \sin \theta |10\rangle + \cos \theta |11\rangle).$$

This is a generalized form of equation (9). The resulting phase ϕ is linked to the meter entanglement C and the measurement strength \mathbb{S} by the relation:

$$\cos^2 \left(\frac{\phi}{2} \right) = \frac{1 - C^2}{1 - \mathbb{S}^2}.$$

The ideal case of section 3 and the case of section 5 are recovered by setting $\phi = 0$ and $\phi = \pi$, respectively. The excess entanglement manifests itself through the added phase ϕ, which is in turn responsible for the purity degradation of the post-measurement system state. As in section 5, this additional classical noise is maximal when the system being measured is initially in the state $|+\rangle_A |+\rangle_B$. The purity degradation can then be written as:

$$\Delta C = \frac{1}{2} \left\{ 1 - \left(\cos^2 \frac{\phi}{2} + \mathbb{S} \sin^2 \frac{\phi}{2} \right) \right\}.$$

We recover the efficient measurement case ($\Delta C = 0$) by setting $\phi = 0$ and the extreme noisy case of section 5 ($\Delta C = \frac{1}{2}$) by setting $\phi = \pi$.

One can combine relations (17) and (18) to numerically evaluate the noise, as represented in figure 6. We see that in order to make a measurement of strength \mathbb{S}, one needs at least an amount of entanglement equal to \mathbb{S}. A consequence of this fact is that a nonlocal strong measurement can only be achieved using Bell states. We also notice that the noise increases non-linearly as the measurement strength deviates from the meter entanglement.

7. Conclusions

In this paper, we discussed a new approach to measure nonlocal spin products, using the formalism of generalized quantum measurements. We found that one can achieve an efficient genuine nonlocal measurement using an NMEM state. In particular, we established relations between the desired measurement strength and the necessary entanglement for the measurement to be efficient, that is to say without any additional classical noise. The effect of excessive entanglement was evaluated and found to be detrimental to the purity of the post-measurement state, but not to the overall measurement statistics. Another advantage of this new measurement scheme is that it does not require any quantum erasure step after the interaction. This approach is thus remarkably resource-efficient compared to other already existing schemes [25, 35] and does not involve probabilistic steps.

The method proposed here is also feasible using linear optics, using hyperentangled photon pairs for instance [23, 24], so that 2 photons suffice to realize all necessary 4 qubits and one does not need to implement CNOT gates between different photons. Non-maximally-entangled states can be generated with current technology with high purity, using spontaneous parametric-down conversion for instance [53]. It is also possible to distribute with high fidelity entangled photons over several dozens kilometers [54], in order to guarantee the nonlocality aspect of the experiment.

For clarity purposes, we focused our attention on the measurement of the spin product $\sigma_{z_A} \otimes \sigma_{z_B}$, but the proposed scheme can be easily adapted to measure any nonlocal spin product by applying appropriate one-qubit gates. Spin product measurement is a special case of nonlocal measurement as it is one of the few that can be directly measured in the VN paradigm without violating causality. Measuring spin products is crucial in tests of quantum nonlocality, such as testing Bell inequalities. Measuring a spin product is an easier task. The question of whether or not our approach can be extended to more general observables remains open. Another question of interest is the generalization to the multipartite case, where there are inequivalent types of entanglement, which is the subject of a separate work [55].

A promising application for this scheme resides in the measurement of weak values [3, 33] in a nonlocal setting, which can be obtained directly as the weak limit of postselected conditioned averages [56]. Measuring nonlocal observables is also important in quantum error correction [57] and variable measurement strength could be useful quantum computing without strong measurements [58].
Acknowledgments

The authors wish to thank Aharon Brodutch for valuable discussions and Lev Vaidman for pointing us to relevant references. This research was supported in part by JSPS KAKENHI Grant No. JP18J10639 and by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant No. JPMXS0118067581. PV thanks Tohoku University Division for Interdisciplinary Advanced Research and Education for their financial support.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

P Vidal https://orcid.org/0000-0002-1269-1860

References

[1] Einstein A, Podolsky B and Rosen N 1935 Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777–80
[2] Bell J S 1964 On the Einstein Podolsky Rosen paradox Physics 1 195–200
[3] Laloe F 2012 Do We Really Understand Quantum Mechanics? (Cambridge: Cambridge University Press)
[4] Bennett C H and Wiesner S J 1992 Communication by one- and two-particle operators on Einstein-Podolsky-Rosen states Phys. Rev. Lett. 69 2881–4
[5] Mattle K, Weinifurter H, Kwiat P G and Zeilinger A 1996 Dense coding in experimental quantum communication Phys. Rev. Lett. 76 4656–9
[6] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Phys. Rev. Lett. 70 1895–9
[7] Bouwmeeste D, Pan J-W, Matle K, Eibl M, Weinifurter H and Zeilinger A 1997 Experimental quantum teleportation Nature 390 575–9
[8] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 ‘Event-ready-detectors’ Bell experiment via entanglement swapping Phys. Rev. Lett. 71 4287–90
[9] Pan J-W, Bouwmeeste D, Weinifurter H and Zeilinger A 1998 Experimental entanglement swapping: entangling photons that never interacted Phys. Rev. Lett. 80 3891–4
[10] Barrett J, Hardy L and Kent A 2005 No signaling and quantum key distribution Phys. Rev. Lett. 95 010503
[11] Acín A, Gisin N and Masanes L 2006 From Bell’s theorem to secure quantum key distribution Phys. Rev. Lett. 97 120405
[12] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Device-independent security of quantum cryptography against collective attacks Phys. Rev. Lett. 98 230501
[13] Landau L and Peierls R 1931 Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie Z. Physik 69 56–69
[14] Aharonov Y and Albert D Z 1981 Can we make sense out of the measurement process in relativistic quantum mechanics? Phys. Rev. D 24 1359–70
[15] Aharonov Y, Albert D Z and Vaidman L 1986 Measurement process in relativistic quantum theory Phys. Rev. D 34 1805
[16] Popescu S and Vaidman L 1994 Causality constraints on nonlocal quantum measurements Phys. Rev. A 49 4331–8
[17] Bennett C H 1998 Quantum information Phys. Scr. T76 210
[18] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2007 Quantum entanglement Rev. Mod. Phys. 81 865–942
[19] von Neumann J 1935 Mathematische Grundlagen der Quantenmechanik Am. Math. Mon. 42 237
[20] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Mixed-state entanglement and quantum error correction Phys. Rev. A 54 3824–51
[21] Beckman D, Gottesman D, Nielsen M A and Preskill J 2001 Causal and localizable quantum operations Phys. Rev. A 64 052309
[22] Edamatsu K 2016 Complete and deterministic Bell state measurement using nonlocal spin products (arXiv:1612.08578)
[23] Xu X-Y et al 2019 Measurements of nonlocal variables and demonstration of the failure of the product rule for a pre- and postselected pair of photons Phys. Rev. Lett. 122 100405
[24] Pan W-W et al 2019 Direct measurement of a nonlocal entangled quantum state Phys. Rev. Lett. 123 150402
[25] Kedem Y and Vaidman L 2010 Modular values and weak values of quantum observables Phys. Rev. Lett. 105 230401
[26] Groisman B and Renzik B 2002 Measurements of semilocal and nonmaximally entangled states Phys. Rev. A 66 022110
[27] Vaidman L 2003 Instantaneous measurement of nonlocal variables Phys. Rev. Lett. 90 010402
[28] Clark S R, Connor A J, Jaksch D and Popescu S 2010 Entanglement consumption of instantaneous nonlocal quantum measurements New J. Phys. 12 083034
[29] Wiseman H M and Millburn G J 2009 Quantum Measurement and Control vol 798521804 (Cambridge: Cambridge University Press) pp 1–460
[30] Aharonov Y, Albert D Z, Casher A and Vaidman L 1987 Surprising quantum effects Phys. Lett. A 124 199–203
[31] Hosten O and Kwiat P 2008 Observation of the spin hall effect of light via weak measurements Science 319 787–90
[32] Ben Dixon P, Starling D J, Jordan A N and Howell J C 2009 Ultrasonic sensor beam deflection measurement via interferometric weak value amplification Phys. Rev. Lett. 102 173601
[33] Aharonov Y, Albert D Z and Vaidman L 1988 How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100 Phys. Rev. Lett. 60 1351–4
[34] Aharonov Y, Botero A, Popescu S, Renzik B and Tollaksen J 2002 Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values Phys. Lett. A 301 130–8
[35] Brodutch A and Cohen E 2016 Nonlocal measurements via quantum erasure Phys. Rev. Lett. 116 070404
[36] Yuan L, Zhong H-S, Luo Y-H, Peng L-C, Lu C-Y, Liu N-L, Zhang J, Li L and Pan J-W 2019 Experimental nonlocal measurement of a product observable Optica 6 1199
[37] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[38] Baek S-Y, Cheong Y W and Kim Y-H 2008 Minimum–disturbance measurement without postselection Phys. Rev. A 77 060308
[39] Lund A P and Wiseman H M 2010 Measuring measurement-disturbance relationships with weak values New J. Phys. 12 093011
[40] Pryde G J, O’Brien J L, White A G, Ralph T C and Wiseman H M 2005 Measurement of quantum weak values of photon polarization Phys. Rev. Lett. 94 220405
[41] Ozawa M 2003 Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement Phys. Rev. A 67 042105
[42] Baek S-Y, Kaneda F, Ozawa M and Edamatsu K 2013 Experimental violation and reformulation of the Heisenberg’s error–disturbance uncertainty relation Sci. Rep. 3 2221
[43] Edamatsu K 2016 Quantum measurement and uncertainty relations in photon polarization Phys. Scr. 91 073001
[44] Kaneda F, Baek S-Y, Ozawa M and Edamatsu K 2014 Experimental test of error–disturbance uncertainty relations by weak measurement Phys. Rev. Lett. 112 020402
[45] Hulpke F, Poulsen U V, Sanpera A, Sen A, Sen U and Lewenstein M 2006 Unitarity as preservation of entropy and entanglement in quantum systems Found. Phys. 36 477–99
[46] Nielsen M A 1999 Conditions for a class of entanglement transformations Phys. Rev. Lett. 83 436–9
[47] Davies E B and Lewis J T 1970 An operational approach to quantum probability Commun. Math. Phys. 17 239–60
[48] Ozawa M 2004 Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY 311 350–416
[49] Lüders G 1951 Concerning the state-change due to the measurement process Ann. Phys. 8 322–8
[50] Roik J, Lemr K, Černoch A and Bartkiewicz K 2019 Interplay between strong and weak measurement (arXiv:1903.00511)
[51] Wootters W K 1998 Entanglement of formation of an arbitrary state of two qubits Phys. Rev. Lett. 80 2245–8
[52] Zhou L and Sheng Y-B 2015 Concurrence measurement for the two-qubit optical and atomic states Entropy 17 4293–322
[53] White A G, James D F V, Eberhard P H and Kwiat P G 1999 Nonmaximally entangled states: production, characterization, and utilization Phys. Rev. Lett. 83 3103–7
[54] Hübel H, Vanner M R, Lederer T, Blauensteiner B, Lorünser T, Poppe A and Zeilinger A 2007 High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber Opt. Express 15 7853–62
[55] Vidil P and Edamatsu K 2021 Nonlocal variable-strength measurements of N qubits using GHZ-like entanglement (arXiv:2103.00443)
[56] Dressel J, Agarwal S and Jordan A N 2010 Contextual values of observables in quantum measurements Phys. Rev. Lett. 104 240401
[57] Gottesman D 1997 Stabilizer codes and quantum error correction PhD Thesis Caltech
[58] Lund A P 2011 Efficient quantum computing with weak measurements New J. Phys. 13 053024