Riemannian symmetric superspaces and their origin in random-matrix theory

Martin R. Zirnbauer*

Institute for Theoretical Physics, UCSB, Santa Barbara, U.S.A.
(March 31, 1996)

Gaussian random-matrix ensembles defined over the tangent spaces of the large families of Cartan’s symmetric spaces are considered. Such ensembles play a central role in mesoscopic physics as they describe the universal ergodic limit of disordered and chaotic single-particle systems. The generating function for the spectral correlations of each ensemble is reduced to an integral over a Riemannian symmetric superspace in the limit of large matrix dimension. Such a space is defined as a pair \((G/H, M)\) where \(G/H\) is a complex-analytic graded manifold homogeneous with respect to the action of a complex Lie supergroup \(G\), and \(M\) is a maximal Riemannian submanifold of the support of \(G/H\).

* Permanent address: Institut für Theoretische Physik, Universität zu Köln, Germany

I. INTRODUCTION

The mathematics of supersymmetry, though conceived and developed in elementary particle theory, has been applied extensively to the physics of disordered metals during the past decade. Improving on earlier work by Wegner \[1,2\], Efetov \[3\] showed how to approximately map the problem of calculating disorder averages of products of the energy Green’s functions for a single electron in a random potential, on a supersymmetric nonlinear \(\sigma\) model. Later it was shown \[4\] that the same nonlinear \(\sigma\) model describes the large-\(N\) limit of a random-matrix ensemble of the Wigner-Dyson \[5\] type. Since then, Efetov’s method has evolved into a prime analytical tool in the theory of disordered or chaotic mesoscopic single-particle systems. Competing methods are limited either to the diffusive regime (the impurity diagram technique), or to isolated systems in the ergodic regime (the Dyson-Mehta orthogonal polynomial method), or to quasi-one-dimensional systems (the DMPK equation). In contrast, Efetov’s method is applicable to isolated and to open systems in the diffusive, ergodic, localized, and even ballistic regime, to both spectral correlations and transport properties, and it can in principle be used in any dimension. This versatility has engendered a large body of nontrivial applications, many of which are outside the range of other methods. Of these, let me mention: (i) the Anderson transition on a Bethe lattice \[6,7\], (ii) localization in disordered wires \[8,9\], (iii) multifractality of energy eigenstates in two dimensions \[10,11\], (iv) weak localization and conductance fluctuations of chaotic billiards strongly coupled to a small number of scattering channels \[12,13\] and, most recently, (v) a theoretical physicist’s proof of the Bohigas-Giannoni-Schmit conjecture for chaotic Hamiltonian systems \[14,15\].

In spite of these manifest successes, Efetov’s supersymmetry method has been ignored (for all that I know) by mathematical physicists. This is rather unfortunate for several reasons. First, an infusion of mathematical expertise is needed to sort out some matters of principle and promote the method to a rigorous tool. Second, various extensions of currently available results seem possible but have been hindered by the lack of mathematical training on the part of the condensed matter theorists applying the method. And third, the geometric structures underlying Efetov’s nonlinear \(\sigma\) models are of exquisite beauty and deserve to be studied in their own right. Part of the reason why neither mathematicians nor mathematical physicists have monitored or contributed to the development, may be that there does not exist a concise status report that would appeal to a mind striving for clarity and rigor. Hence the first, and very ambitious, motivation for getting started on the present paper was to make an attempt and partially fill the gap.

Another objective is to report on a recent extension of the supersymmetry method to random-matrix theories beyond the standard Wigner-Dyson ones. In her study of Anderson localization in the presence of an A-B sublattice symmetry, Gade \[21\] noticed that the manifold of the nonlinear \(\sigma\) model is promoted to a larger manifold at zero energy. The same phenomenon occurs in the chiral limit of the QCD Dirac operator at zero virtuality \[22\]. For several years it remained unclear how to handle this enlargement of the manifold in the supersymmetric scheme. (Gade used the replica trick instead of supersymmetry.) The key to solving the problem can be found in a paper by Andreev, Simons, and Taniguchi \[23\] who observed that what one needs to do is to avoid complex conjugation of the anticommuting variables. In the present paper I will elaborate on this observation and cast it in a concise mathematical language. Moreover, I will show that the same technical innovation allows to treat the random-matrix theories that arose \[21,22\] in the stochastic modeling of mesoscopic metallic systems in contact with a superconductor.

An outline of the basic mathematical structure is as follows. Consider a homogeneous space \(G/H\), where \(G\) and \(H\) are complex Lie supergroups, and regard \(G/H\) as a complex-analytic \((p,q)\)-dimensional supermanifold in the sense of
Berezin-Kostant-Leites[26,27]. To integrate its holomorphic sections, select a closed, oriented and real p-manifold M_p contained in the support $M = G_0/H_0$ of the supermanifold. The natural (invariant) supergeometry of G/H induces a geometry on M_p by restriction. If this geometry is Riemann and M_p is a symmetric space, the pair $(G/H, M_p)$ is called a Riemannian symmetric superspace. This definition will be shown to be the one needed for the extension of the supersymmetry method beyond Wigner-Dyson. The difficulties disordered single-particle theorists had been battling with were caused by the fact that the exact sequence

$$0 \to \text{nilpotents} \to G/H \to M \to 0$$

does not, in general, reduce to an exact sequence of sheaves of real-analytic sections terminating at the Riemannian submanifold M_p.

When integrating the invariant holomorphic Berezin superform on G/H, one must pay careful attention to its coordinate ambiguity. This subtle point is reviewed in Sec. II A. After a brief reminder of the procedure of Grassmann-analytic continuation (in Sec. II B), the complex Lie supergroups $\text{GL}(m|n)$ and $\text{OSp}(m|2n)$ (in Sec. II C), and Cartan’s symmetric spaces (in Sec. II D), the details of the definition of Riemannian symmetric superspaces are given in Sec. II E. Table 2 lists the large families of these spaces.

Sec. II A, the largest of the paper, treats the Gaussian random-matrix ensemble defined over the symplectic Lie algebra $\text{sp}(N)$, by an adaptation of Efetov’s method. A simple example (Sec. II A) illustrates the general strategy. Details of the method, including a complete justification of all manipulations involved, are presented in Secs. II B - II E. Theorem 3.3 expresses the Gaussian ensemble average of a product of n ratios of spectral determinants as a superintegral. Theorem 3.4 reduces this expression to an integral over the Riemannian symmetric superspace $\text{Osp}(2n|2n)/\text{GL}(n|n)$ with $M_p = (SO^*(2n)/U(n)) \times (\text{Sp}(n)/U(n))$, in the limit $N \to \infty$.

According to Cartan’s list, there exists eleven large families of symmetric spaces. Ten of these correspond to universality classes that are known to describe disordered single-particle systems in the ergodic regime [24,25]. The remaining nine classes are briefly discussed in Sec. IV. Each of them is related, by the supersymmetry method, to one of the large families of Riemannian symmetric superspaces of Table 2. A summary is given in Sec. V.

II. RIEMANNIAN SYMMETRIC SUPERSPACES

A. The Berezin integral on analytic supermanifolds

Let $A(U)$ denote the algebra of analytic functions on an open subset U of p-dimensional real space. By taking the tensor product with the Grassmann algebra with q generators one obtains $A(U) \otimes \Lambda(R^q)$, the algebra of analytic functions on U with values in $\Lambda(R^q)$. Multiplication on $\Lambda(R^q)$ is the exterior one, so the algebra is supercommutative (or graded commutative). The object at hand serves as a model for what is called a real-analytic (p,q)-dimensional supermanifold (or graded manifold [28]) in the sense of Berezin, Kostant, and Leites (BKL) [26,27]; which, precisely speaking, is a sheaf of supercommutative algebras A with an ideal \mathcal{N} (the nilpotents), such that $M \simeq A/\mathcal{N}$ is an analytic p-manifold and on a domain $U \subset M$, A splits as $A(U) \otimes \Lambda(R^q)$. The global sections of the bundle $A \to M$ are called superfunctions, or functions for short. M is called the underlying space, or base, or support, of the supermanifold. M will be assumed to be orientable and closed ($\partial M = 0$).

The calculus on analytic supermanifolds is a natural extension of the calculus on analytic manifolds. Functions are locally expressed in terms of (super-)coordinates $(x; \xi) := (x^1, ..., x^p; \xi^1, ..., \xi^q)$ where x^i (ξ^j) are even (resp. odd) local sections of A. If $(x; \xi)$ and $(y; \eta)$ are two sets of local coordinates on domains that overlap, the transition functions $y^i = f^i(x; \xi)$ and $\eta^j = \varphi^j(x; \xi)$ are analytic functions of their arguments and are consistent with the \mathbb{Z}_2-grading of A.

In what follows the focus is on the theory of integration on analytic supermanifolds. Recall that on p-manifolds the objects one integrates are p-forms and their transformation law is given by

$$dy^1 \wedge ... \wedge dy^p = dx^1 \wedge ... \wedge dx^p \det \left(\frac{\partial y^i}{\partial x^j} \right).$$

The obvious (super-)generalization of the Jacobian $\det \left(\frac{\partial y^i}{\partial x^j} \right)$ is the Berezinian [28]

$$\text{Ber} (y, \eta/x; \xi) := \text{SDet} \left(\begin{array}{cc} \frac{\partial y^i}{\partial x^j} & \frac{\partial y^i}{\partial \xi^j} \\ \frac{\partial \eta^i}{\partial x^j} & \frac{\partial \eta^i}{\partial \xi^j} \end{array} \right),$$

where SDet is the symbol for superdeterminant. Guided by analogy, one postulates that an integral superform ought to be an object \mathcal{D} transforming according to the law

$$\mathcal{D} = \mathcal{D}_0 \text{Ber} (y, \eta/x; \xi),$$

where \mathcal{D}_0 is the symbolic expression of the form. The formalism and calculus for analytic supermanifolds are extended to general supermanifolds.
A natural candidate would seem to be

\[\hat{D}(y, \eta) = \hat{D}(x, \xi) \text{ Ber}(y, \eta/x, \xi). \] (1)

which is a linear differential operator taking superfunctions \(f \) into \(p \)-forms \(D[f] \) (\(\partial_{\xi_i} \) denotes the partial derivative with respect to the anticommuting coordinate \(\xi^i \)). The \(p \)-form \(D[f] \) can be integrated in the usual sense to produce a number. However, the transformation law for \(D(x, \xi) \) turns out to be not quite (1) but rather

\[D(y, \eta) = D(x, \xi) \text{ Ber}(y, \eta/x, \xi) + \beta. \] (2)

An explicit description of the term \(\beta \) on the right-hand side, here referred to as the anomaly, was first given by Rothstein [30]. It is nonzero whenever some even coordinate functions are shifted by nilpotent terms. Its main characteristic is that on applying it to a superfunction \(f \), one gets a \(p \)-form that is exact: \(\beta[f] = d(\alpha[f]) \).

The existence of an anomaly in the transformation law for \(D(x, \xi) \) leads one to consider a larger class of objects, namely \(\Lambda^p(M) \otimes_A \mathcal{D} \), the sheaf of linear differential operators on \(\mathcal{A} \) with values in the \(p \)-forms on \(M \). (\(\Lambda^p(M) \otimes_A \mathcal{D} \) naturally is a right \(\mathcal{A} \)-module.) To rescue the simple transformation law (2), one usually passes from \(\Lambda^p(M) \otimes_A \mathcal{D} \) to its quotient by the anomalies \(\beta \). In order for the integral to be well-defined over the quotient, one must take the functions one integrates to be compactly supported.

An explicit description of the term \(\beta \) on the right-hand side, here referred to as the anomaly, was first given by Rothstein [30]. It is nonzero whenever some even coordinate functions are shifted by nilpotent terms. Its main characteristic is that on applying it to a superfunction \(f \), one gets a \(p \)-form that is exact: \(\beta[f] = d(\alpha[f]) \).

Another way of avoiding the anomaly is to arrange for the transition functions never to shift the even coordinates by nilpotents, by constructing a restricted subatlas [31]. However, because the concept of a restricted subatlas is somewhat contrived, this approach has been found to be of limited use in the type of problem that is of interest here.

To arrive at a definition of superintegration that is useful in practice, we proceed as follows. The supermanifold is covered by a set of charts with domains \(U_i \) and coordinates \((x_{(i)}, \xi_{(i)}) \) \((i = 1, \ldots, n)\). On chart \(i \) let \(\omega_i := D(x_{(i)}, \xi_{(i)}) \circ \hat{\omega}_i \) with \(\hat{\omega}_i \) a local section of \(\mathcal{A} \), and let \(\alpha_i \in \Lambda^{p-1}(M) \otimes_A \mathcal{D}|_{U_i} \). Partition \(M \) into a number of consistently oriented \(p \)-cells \(D_1, \ldots, D_n \), with \(D_i \) contained in \(U_i \). For \(i < j \) put \(D_{ij} := \partial D_i \cap \partial D_j \) and, if \(D_{ij} \) is nonempty and is a \((p-1)\)-cell, fix its orientation by \(\partial D_i = D_{ij} + \ldots \).

Definition 2.1: A collection \(\{\omega_i, \alpha_i\}_{i=1, \ldots, n} \) is called a Berezin measure \(\omega \) if the conditions

\[\hat{\omega}_i/\hat{\omega}_j = \text{Ber}(i/j), \] (3)

\[\omega_i + d\alpha_i = \omega_j + d\alpha_j, \] (4)

are satisfied on overlapping domains. The Berezin integral \(f \mapsto \int_M \omega[f] \) is defined

\[\int_M \omega[f] = \sum_{i=1}^n \int_{D_i} \omega_i[f] + \sum_{i<j} \int_{D_{ij}} \alpha_{ij}[f] \] (5)

where \(\alpha_{ij} = \alpha_i - \alpha_j \). The quantities \(\omega_i \) and \(\alpha_i \) are called the principal term and the anomaly of the Berezin measure on chart \(i \).

Remark 2.2: The conditions (3) and (4) ensure the existence of a global section \(\omega \in \Lambda^p(M) \otimes_A \mathcal{D} \) whose local expression in chart \(i \) is \(\omega_i + d\alpha_i \). The existence of \(\omega \) means that the distribution (3) is independent of the coordinate systems and the cell partition chosen. Because (3) depends only on the differences \(\alpha_i - \alpha_j \), one can gauge the anomaly to zero on one of the charts without changing the Berezin integral.

Example 2.3: Consider the real supersphere \(S^{p|2} \), a \((p, 2)\)-dimensional supermanifold with support \(S^p \), which is the space of solutions in \((p + 1, 2)\) dimensions of the quadratic equation

\[\tilde{x}_0^2 + \tilde{x}_1^2 + \ldots + \tilde{x}_p^2 + 2\xi_1\xi_2 = 1. \]

Cover \(S^p \) by two domains 1 and 2 obtained by removing the south \((\tilde{x}_0 = -1)\) or north pole \((\tilde{x}_0 = +1)\). Introduce stereographic coordinates \((x_1, \ldots, x_p; \xi_1, \xi_2)\) and \((y_1, \ldots, y_p; \eta_1, \eta_2)\) for \(S^{p|2} \) on these domains with transition functions

\[y_1 = -x_1/R^2, \quad y_i = x_i/R^2 \quad (i = 2, \ldots, p), \quad \eta_j = \xi_j/R^2 \quad (j = 1, 2) \]

where \(R^2 = \sum_{i=1}^p x_i^2 + 2\xi_1\xi_2 \). (The minus sign preserves the orientation.) Consider
\[\omega_1 = D(x, \xi) \circ (1 + \sum x_i^2 + 2\xi_1 \xi_2)^{-p+2},\]
\[\omega_2 = D(y, \eta) \circ (1 + \sum y_i^2 + 2\eta_1 \eta_2)^{-p+2},\]
\[\alpha_{12} = -\Omega \frac{(\sum x_i^2)^{(p-2)/2}}{(1 + \sum x_i^2)^{p-2}} \otimes \partial \xi_1 \partial \xi_2\],

where \(\Omega = (\sum x_i^2)^{-p/2} \sum_{i=1}^{p} (-1)^i dx_1 \wedge ... \wedge dx_{i-1} \wedge x_i dx_{i+1} \wedge ... \wedge dx_p\) is the solid-angle \((p-1)\)-form in \(p\) dimensions. It is not difficult to check by direct calculation that \(\omega_1, \omega_2\) and \(\alpha_{12} = \alpha_{12}, \alpha_{2} \equiv 0\) obey the relations (3) and (4). Hence, they express a globally defined Berezin measure \(\omega\) in the sense of Definition 2.1. (The geometric meaning of \(\omega\) will be specified in Sec. 112.) For \(p \geq 3\), the anomaly \(\alpha_{12}\) scales to zero when \(\sum x_i^2 \to \infty\), so we may shrink cell 2 to a single point \((\text{a set of measure zero)}\) and compute the Berezin integral simply from

\[\int_{S^p} \omega[f] = \int_{S^2} D(x, \xi) \left(1 + \sum x_i^2 + 2\xi_1 \xi_2\right)^{-p+2} f(x; \xi).\]

In these cases we can get away with using only a single chart. The situation is different for \(p = 2\) and \(p = 1\). In the first case the anomaly is scale-invariant \((\text{the solid angle is)}\) and by again shrinking cell 2 to one point \((\text{the south pole})\) we get

\[\int_{S^2} \omega[f] = \int_{S^2} D(x, \xi) f(x; \xi) + 4\pi f\big|_{\text{south pole}}.\]

In particular, \(\int_{S^2} \omega[1] = 4\pi\). For \(p = 1\) the anomaly diverges at \(x = 0\) and \(x = \infty\). In this case the general formula (3) must be used, and one finds \(\int_{S^1} \omega[1] = 0\).

B. Grassmann-analytic continuation

In the formulation of BKL, the vector fields of a supermanifold do not constitute a module over \(A\) but are constrained to be even derivations of \(A\), which is to say that their coordinate expression is of the form

\[\hat{X} = f^i(x; \xi) \frac{\partial}{\partial x^i} + \varphi^j(x; \xi) \frac{\partial}{\partial \xi^j},\]

where \(f^i\) and \(\varphi^j\) are even and odd superfunctions respectively. Unfortunately, this formulation is too narrow for most purposes. The reason is that in applications one typically deals not with a single supermanifold but with many copies thereof \((\text{one per lattice site of a lattice-regularized field theory, for example)}\). So in addition to the anticommuting coordinates of the one supermanifold that is singled out for special consideration, there exist many more anticommuting variables associated with the other copies of the supermanifold. When the focus is on one supermanifold, these can be considered as “parameters”. Often one wants to make parameter-dependent coordinate transformations, leading to coefficients \(f_{i_1, ..., i_n}(x)\) in the expansion \(f(x; \xi) = \sum f_{i_1, ..., i_n}(x) \xi^{i_1} ... \xi^{i_n}\) that depend on extraneous Grassmann parameters. \((\text{For example, when the supermanifold is a Lie supergroup, it is natural to consider making left and right translations} \ g \mapsto g_L g R)\) The upshot is that one wants to take \(A\) as a sheaf of graded commutative algebras not over \(\mathbb{R}\) but over some \((\text{large)}\) parameter Grassmann algebra \(\Lambda\) \((\text{the Grassmann algebra generated by the anticommuting coordinates of the “other” supermanifolds)}\). Making this extension, which is called “Grassmann-analytic continuation” in [23], one is led to consider the more general class of vector fields of the form

\[\hat{X} = f^i(x; \xi; \beta) \frac{\partial}{\partial x^i} + \varphi^j(x; \xi; \beta) \frac{\partial}{\partial \xi^j}\]

where the symbol \(\beta\) stands for the extra Grassmann parameters and the dependences on these are such that \(f^i\) and \(\varphi^j\) continue to be even and odd respectively \((\text{the \(Z_2\)-grading of} \ A \ \text{after Grassmann-analytic continuation is the natural one).}\)

The vector fields (4) still are even derivations of the extended algebra. One can go further by demanding that \(\operatorname{Der} A\) be free over \(A\) and including the odd ones, too. When that development is followed to its logical conclusion, one arrives at Rothstein’s axiomatic definition [23] of supermanifolds, superseding an earlier attempt by Rogers [32, 33]. Although there is no denying the elegance and consistency of Rothstein’s formulation, we are not going to embrace it here, the main reason being that odd derivations will not really be needed. For the purposes of the present paper we will get away with considering vector fields of the constrained form (4).
C. The complex Lie supergroups $\text{Gl}(m|n)$ and $\text{Osp}(m|2n)$

The supermanifolds we will encounter all derive from the complex Lie supergroups $\text{Gl}(m|n)$ and $\text{Osp}(m|2n)$, by forming cosets. The definition of $\text{Gl}(m|n)$ rests on the notion of an invertible supermatrix $g = \begin{pmatrix} g_{00} & g_{01} \\ g_{10} & g_{11} \end{pmatrix}$ where g_{00}, g_{01}, g_{10} and g_{11} are matrices of size $m \times m$, $m \times n$, $n \times m$, and $n \times n$. The supermanifold structure of $\text{Gl}(m|n)$ comes from taking the matrix elements of g_{00} and g_{11} (g_{01} and g_{10}) for the even (resp. odd) coordinates on suitable domains of the base $M = \text{Gl}(m, \mathbb{C}) \times \text{Gl}(n, \mathbb{C})$. The Lie supergroup structure derives from the usual law of matrix multiplication.

For $m \neq n$, it is common practice to split off from $\text{Gl}(m|n)$ the $\text{Gl}(1)$-ideal generated by the unit matrix, so as to have an irreducible superalgebra $\mathfrak{gl}(m|n)$. For $m = n$, which turns out to be the case of most interest here, one ends up having to remove two $\text{Gl}(1)$’s, one generated by the unit matrix and the other one by the superparity matrix $\sigma = \text{diag}(1_n, -1_n)$. And even then the Lie superalgebra is not irreducible in a sense, for the Killing form $\text{STr} \text{ad}(X)\text{ad}(Y)$ vanishes identically. We therefore prefer to take $\text{Gl}(m|n)$ as it stands (with no ideals removed) and replace the Killing form by the invariant quadratic form $B(X, Y) = \text{STr} XY$, which is nondegenerate in all cases (including $m = n$).

The complex orthosymplectic Lie supergroup $\text{Osp}(m|2n)$ is defined as a connected subgroup of $\text{Gl}(m|2n)$ fixed by an involutory automorphism $g \mapsto \hat{\tau}(g) = \tau g^{-1T} \tau^{-1}$, where τ is supersymmetric ($\tau^T \sigma = \sigma \tau^T$). The support of $\text{Osp}(m|2n)$ is $\text{SO}(m, \mathbb{C}) \times \text{Sp}(n, \mathbb{C})$.

The action of a Lie supergroup on itself by left and right translations gives rise to right- and left-invariant vector fields. A Berezin measure on a Lie supergroup is said to be invariant, and is called a Berezin-Haar measure, if its Lie derivatives with respect to the invariant vector fields vanish.

Given a Lie supergroup G and a subgroup H, the coset superspace G/H is defined by decreeing that the structure sheaf of the coset superspace is a quotient of sheaves. The action of G on G/H by left translation gives rise to so-called Killing vector fields. A Berezin measure on G/H is called invariant if its Lie derivatives with respect to the Killing vector fields are zero.

If $\text{Osp}_\mathbb{R}(m|2n)$ denotes the orthosymplectic supergroup over the reals, the coset space $\text{Osp}_\mathbb{R}(m + 1|2n)/\text{Osp}_\mathbb{R}(m|2n)$ can be identified with the real supersphere $\mathbb{S}^{m|2n}$. The Berezin measure discussed in Example 2.3 is invariant with respect to the action of $\text{Osp}_\mathbb{R}(p + 1|2)$ on $\mathbb{S}^{p|2}$ and can be viewed as the “volume superform” of $\mathbb{S}^{p|2}$. Hence we can restate the results of that example as follows: $\text{vol}(\mathbb{S}^{1|2}) := \int_{\mathbb{S}^2} \omega[1] = 4\pi$ and $\text{vol}(\mathbb{S}^{1|1}) := \int_{\mathbb{S}^1} \omega[1] = 0$.

D. Holomorphic Berezin measures on complex-analytic supermanifolds

To go from real-analytic supermanifolds to complex-analytic ones, one replaces the structure sheaf \mathcal{A} by a sheaf of graded commutative algebras \mathcal{H} over \mathbb{C} such that $M \simeq \mathcal{H}/\mathcal{N}$ is a complex manifold and \mathcal{H} is locally modeled by $H(U) \otimes \Lambda(\mathbb{C}^q)$, where $H(U)$ is the algebra of holomorphic functions on $U \subset M$. The natural objects to consider then are holomorphic superfunctions, i.e. global sections of the bundle $\mathcal{H} \to M$. In local coordinates $z^1, \ldots, z^p; \zeta^1, \ldots, \zeta^q$ such sections are written $f(z; \zeta)$. Grassmann-analytic continuation is done as before when needed. A Berezin measure on a complex-analytic (p, q)-dimensional supermanifold is a linear differential operator ω that takes holomorphic superfunctions f into holomorphic p-forms $\omega[f]$ on M. The statements made in Sec. 1A about the anomalous transformation behavior of Berezin measures apply here, too (mutatis mutandi).

To define Berezin’s integral in the present context, one more piece of data must be supplied, namely a real p-dimensional submanifold $M_r \subset M$ over which the holomorphic p-form $\omega[f]$ can be integrated to produce a complex number. Thus, given ω and M_r, Berezin’s integral is the distribution

$$f \mapsto \int_{M_r} \omega[f].$$ \hfill (7)

Let me digress and mention that this definition, natural and simple as it is, was not “discovered” by the random-matrix and mesoscopic physics community (including myself) until quite recently. With one notable exception, all past superanalytic work on disordered single-particle systems employed some operation of “complex conjugation” of the Grassmann generators – namely an adjoint of the first or second kind to make the treatment of the ordinary

1 Supertransposition T is an operation with the properties $(AB)^T = B^T A^T$ and $A^{TT} = \sigma A\sigma$.

5
(“bosonic”) and anticommuting (“fermionic”) degrees of freedom look as much alike as possible. Presumably this was done because it was felt that such egalitarian treatment is what is required by the principle of “supersymmetry.” Specifically, a reality constraint was imposed not just on the underlying space \(M \) (fixing \(M_r \)) but on the entire structure sheaf to reduce \(\mathcal{H} \) to a sheaf of algebras over \(\mathbb{R} \). Although this reduction can be done with impunity in some cases (namely the classic Wigner-Dyson symmetry classes), it has turned out to lead to insurmountable difficulties in others (the chiral and normal-superconducting symmetry classes). A major incentive of the present paper is to demonstrate that the construction \(\boxed{\text{a}} \) is in fact the “good” one to use for the application of supermanifold theory to disordered single-particle systems in general. Although that construction may hurt the physicists’ aesthetic sense by “torturing supersymmetry”, it should be clear that we are not breaking any rules. Recall that according to Berezin, superintegration is a two-step process: first, the Fermi-integral (i.e. differentiation with respect to the anticommuting coordinates) is carried out, and it is only afterwards that the ordinary (Bose-) integrals are done. When the sequential nature of the Berezin integral is taken seriously, there is no compelling reason why one should ever want to “complex conjugate” a Grassmann variable. In the present paper, we take the radical step of abandoning complex conjugation of Grassmann variables altogether.

Example 2.4. The simplest nontrivial example \(\boxed{\text{b}} \) is given by \(\text{Gl}(1|1) \), the Lie supergroup of regular complex \(2 \times 2 \) supermatrices \(g = \begin{pmatrix} a & \beta \\ \gamma & d \end{pmatrix} \) with support \(M = \text{Gl}(1, \mathbb{C}) \times \text{Gl}(1, \mathbb{C}) \). The Berezin-Haar measure on \(\text{Gl}(1|1) \) is \(\omega = (2\pi i)^{-1} D(\text{ad}; \beta \gamma) \) where \(D(\text{ad}; \beta \gamma) = da \wedge dd \otimes \partial_{\beta \gamma} \). Solving the regularity conditions \(a \neq 0 \) and \(d \neq 0 \) by parameterizing \(\text{Gl}(1|1) \) through its Lie algebra, \(g = \exp \left(\frac{z_1}{\zeta_2} \right) \), one finds

\[
2\pi i \omega = D(z_1 z_2; \zeta_1 \zeta_2) \circ \left(\frac{(z_1 - z_2)^2}{(1 - e^{z_1 - z_2})(e^{z_2 - z_1} - 1)} \right) - \left(\frac{(z_1 - z_2)(dz_1 - dz_2)}{(1 - e^{z_1 - z_2})(e^{z_2 - z_1} - 1)} \right) \otimes \partial_{\zeta_1} \partial_{\zeta_2} \circ \zeta_1 \zeta_2. \tag{8}
\]

Note that this expression is holomorphic in a neighborhood of the origin \(z_1 = z_2 = 0 \). The first term on the right-hand side is the principal term, and the second one is the anomaly of \(\omega \) in these coordinates. To integrate \(\omega \), one might be tempted to choose for \(M_t \) the \(\text{U}(1) \times \text{U}(1) \) subgroup defined by \(\text{Re}(z_1) = 0 = \text{Re}(z_2) \). However, since the rank-two tensor \(\text{STr} \, d g d g^{-1} = d a a^{-1} - d d d d^{-1} + \text{nilpotents} = -d z_1^2 + d z_2^2 + \ldots \) is not Riemann on \(\text{U}(1) \times \text{U}(1) \), this will not be the best choice. A Riemannian structure is obtained by taking \(M_t = \mathbb{R}^+ \times S^1 \) defined by \(\text{Im}(z_1) = 0 = \text{Re}(z_2) \). To compute \(\int_{\mathbb{R}^+ \times S^1} \omega[f] \) we may use a single cell

\[
D : \quad -\infty < x < +\infty, \quad -\pi < y < +\pi,
\]

where \(x = \text{Re}(z_1) \) and \(y = \text{Im}(z_2) \). The boundary \(\partial D \) consists of the two lines \(y = -\pi \) and \(y = \pi \) \((x \in \mathbb{R}) \). Using \(\boxed{\text{c}} \), paying attention to the orientation of the boundary, and simplifying terms, one finds the following explicit expression for the integral of \(\omega \):

\[
\int_{\mathbb{R}^+ \times S^1} \omega[f] = \frac{1}{4} \int_{-\infty}^{\infty} dx \int_{-\pi}^{\pi} dy \frac{(x - iy)^2}{\cosh(x - iy) - 1} \partial_{\zeta_1} \partial_{\zeta_2} f \left(\exp \left(\frac{x}{\zeta_2} \right) \right) + \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{\cosh x + 1} f \left(\begin{pmatrix} e^x \zeta_2 & 0 \\ 0 & -1 \end{pmatrix} \right).
\]

By construction, this Berezin integral is invariant under left and right translations \(f(g) \mapsto f(g L g_R) \). Evaluation gives \(\int_{\mathbb{R}^+ \times S^1} \omega[1] = 1 \neq 0 \). The naive guess would have been \(\int \omega[1] = (2\pi i)^{-1} \int da \wedge dd \otimes \partial_{\beta \gamma} \cdot 1 = 0 \). Such reasoning is false because \(\int_{\mathbb{R}^+} da = \infty \).

E. Symmetric spaces: a reminder

A Riemannian (globally) symmetric space is a Riemannian manifold \(M \) such that every \(p \in M \) is an isolated fixed point of an involutive isometry. (In normal coordinates \(x^i \) centered around \(p \), this isometry is given by \(x^i \mapsto -x^i \).) This definition implies (cf. \(\boxed{\text{d}} \)) that the Riemann curvature tensor is covariantly constant, so that “the geometry is the same everywhere”. The curvature can be positive, negative or zero, and the symmetric space is said to be of compact, noncompact or Euclidean type correspondingly.
According to Cartan’s complete classification scheme, there exist ten large classes of symmetric spaces. Apart from some minor modifications the motivation for which is given presently, these are the entries of Table 1:

class	noncompact type	compact type
A	GL(N, C)/U(N)	U(N)
AI	GL(N, R)/O(N)	U(N)/O(N)
AH	U*(2N)/Sp(N)	U(2N)/Sp(N)
AII	U(p, q)/U(p) × U(q)	U(p + q)/U(p) × U(q)
BD	SO(p, q)/SO(p) × SO(q)	SO(p + q)/SO(p) × SO(q)
CII	Sp(p, q)/Sp(p) × Sp(q)	Sp(p + q)/Sp(p) × Sp(q)
BDI	SO(N, C)/SO(N)	SO(N)
C	Sp(N, C)/Sp(N)	Sp(N)
CI	Sp(N, C)/U(N)	Sp(N)/U(N)
DIII	SO*(2N)/U(N)	SO(2N)/U(N)

Table 1: the large families of symmetric spaces

The difference from the standard table is that some of the entries of Table 1, namely the spaces of type A, AI and AII, are not irreducible. They can be made so by dividing out a factor U(1) (R+) in the compact (resp. noncompact) cases. Division by such a factor is analogous to removing the center of mass motion from a mechanical system with translational invariance. It turns out that, with a view to superanalytic extensions (cf. Example 2.4), it is preferable not to insist on irreducibility but to “retain the center of mass motion”.

The next subsection introduces super-generalizations of Cartan’s symmetric spaces which have appeared in the theory of mesoscopic and disordered single-particle systems and have come to play an important role in that field.

F. Riemannian symmetric superspaces (definition)

Let G_A be a complex Lie supergroup that is realized as a group of supermatrices $g = \left(\begin{array}{cc} g_{00} & g_{01} \\ g_{10} & g_{11} \end{array} \right)$, with matrix elements that take values in a (sufficiently large) parameter Grassmann algebra $\Lambda = \Lambda_0 + \Lambda_1$. If $G_C = G_C^0 + G_C^1$ is the Lie superalgebra of G_A, the Lie algebra of G_A is obtained by taking the even part of the tensor product with Λ: $\text{Lie}(G_A) = \Lambda_0 \otimes G_C^0 + \Lambda_1 \otimes G_C^1 = (\Lambda \otimes G_C)_0$. Thus, if $\{e_i, \epsilon_j\}$ is a homogeneous basis of complex matrices in G_C, an element $X \in \text{Lie}(G_A)$ is expressed by $X = z^i e_i + \zeta^j \epsilon_j$ with $z^i \in \Lambda_0$ and $\zeta^j \in \Lambda_1$.

Let $\theta : G_A \to G_A$ be an involutory automorphism and let $H_A \subset G_A$ be the subgroup fixed by θ. The decomposition into even and odd eigenspaces of θ, $\theta : \text{Lie}(G_A) \to \text{Lie}(G_A)$, is written $\text{Lie}(G_A) = \text{Lie}(H_A) + M_A$. This decomposition is orthogonal with respect to the Ad(G_A)-invariant quadratic form $B : \text{Lie}(G_A) \times \text{Lie}(G_A) \to \mathbb{R}$, $B(X, Y) := \text{STR}XY$.

Both G_A and H_A are supermanifolds with underlying spaces that are Lie groups and are denoted by G_C and H_C. Passing to the coset spaces one obtains a graded commutative algebra $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ of (Grassmann-analytically continued) holomorphic sections of the bundle $G_A/H_A \to H_A/\mathcal{H}_C$. These sections are called (super-)functions (on G_A/H_A) for short. In local complex coordinates $z^1, ..., z^p; \zeta^1, ..., \zeta^q$ they are written $f(z^1, ..., z^p; \zeta^1, ..., \zeta^q) = \sum f_{\zeta_1...\zeta_q}(z^1, ..., z^p)\zeta^{\zeta_1}...\zeta^{\zeta_q}$ where the coefficients $f_{\zeta_1...\zeta_q}(z^1, ..., z^p)$ take values in Λ after Grassmann-analytic continuation. For coordinate-independent calculations the alternative notation $f(gH_A)$ or $f(g \cdot o)$ is used. In the following G_C/H_C is assumed to be connected.

Every $X \in \text{Lie}(G_A)$ is associated with a vector field (or even derivation) $\tilde{X} : \mathcal{H} \to \mathcal{H}$ by

$$\tilde{X} f(g \cdot o) = \frac{d}{ds} f(e^{-sX} g \cdot o).$$

Here $e^{sX} g$ means the usual product of supermatrices, and the function $f(e^{sX} g \cdot o)$ is determined from $f(g \cdot o)$ by Grassmann-analytic continuation. The Lie algebra of even derivations of \mathcal{H} is a left \mathcal{H}_0-module denoted by $\text{Der}_0 \mathcal{H}$.

2We here do not distinguish between the orthogonal groups in even and odd dimension.

3Since we always have the option of expanding with respect to the anticommuting parameters that may be contained in X, no information is lost by not considering the full left \mathcal{H}-module of superderivations of \mathcal{H}, cf. the last paragraph of Sec. [III].
A notion of supergeometry on G_Λ/H_Λ is introduced via a left-invariant tensor field $(\bullet, \bullet) : \text{Der}_0 \mathcal{H} \times \text{Der}_0 \mathcal{H} \to \mathcal{H}$. The details are as follows. G_Λ acts on G_Λ/H_Λ by left translation, $T^*_h : f(g \cdot o) \mapsto f((hg) \cdot o)$. The left-translate $dT_h(\hat{X})$ of a vector field \hat{X} is defined by the equation $T^*_h(dT_h(\hat{X}) f) = \hat{X}(T^*_h f)$, and one requires:

$$T^*_h \langle dT_h(\hat{X}), dT_h(\hat{Y}) \rangle = \langle \hat{X}, \hat{Y} \rangle.$$

This equation determines (\bullet, \bullet) uniquely within a multiplicative constant. For vector fields of the special form \hat{f} one obtains

$$\langle \hat{X}, \hat{Y} \rangle(g \cdot o) = c_0 \times B \left((\text{Ad}(g)^{-1} X)_{\mathcal{M}_\Lambda}, (\text{Ad}(g)^{-1} Y)_{\mathcal{M}_\Lambda} \right),$$

where the subscript \mathcal{M}_Λ means projection on the odd eigenspace of θ_s. Note that since $(\text{Ad}(gh)^{-1} X)_{\mathcal{M}_\Lambda} = \text{Ad}(h)^{-1}(\text{Ad}(g)^{-1} X)_{\mathcal{M}_\Lambda}$ for $h \in H_\Lambda$, this is well-defined as a function on G_Λ/H_Λ. The normalization is fixed by choosing $c_0 = 1$.

The metric tensor (\bullet, \bullet) induces a geometry on the ordinary manifold G_C/H_C by restriction (i.e. by setting all anticommuting variables equal to zero). Of course, since the groups G_C and H_C are complex, this geometry is never Riemann. However there exist submanifolds in G_C/H_C which are Riemannian symmetric spaces and can be constructed by selecting from the tangent space $T_o(G_C/H_C)$ a Lie-triple subsystem \mathcal{M} (i.e. $[\mathcal{M}, [\mathcal{M}, \mathcal{M}]] \subset \mathcal{M}$) such that the quadratic form B restricted to \mathcal{M} is of definite sign. It is then not hard to show \mathcal{M} that the image of \mathcal{M} under the exponential map $X \mapsto e^X H_\Lambda$ is Riemann in the geometry given by restriction of (\bullet, \bullet). Its completion is a symmetric space.

Definition 2.5: A Riemannian symmetric superspace is a pair $(G_\Lambda/H_\Lambda; M)$ where M is a maximal Riemannian submanifold of the base G_C/H_C.

Remark 2.6: The merit of this definition is that it avoids any use of an adjoint (or “complex conjugation”) of the Grassmann variables.

By the complex structure of G_C/H_C, the tangent space $\mathcal{M}_C := T_o(G_C/H_C)$ decomposes as $\mathcal{M}_C = \mathcal{M} + i\mathcal{M}$ where \mathcal{M} is taken to be the subspace of \mathcal{M}_C on which the quadratic form B is strictly positive. Now observe that, since an element $g \in G_C$ is of the form $g = \text{diag}(g_0, g_1)$, the group G_C is a Cartesian product of two factors, and the same is true for H_C. Hence, G_C/H_C factors as $G_C/H_C = M_0 \times M_1$, and \mathcal{M} is a sum of two spaces: $\mathcal{M} = M_0 \oplus M_1$, which are orthogonal with respect to the quadratic form B. (It may happen, of course, that one of these spaces is trivial.) For $Z \in \mathcal{M}$, let the corresponding orthogonal decomposition be written $Z = X + Y$. Then B restricted to \mathcal{M} is evaluated as

$$B(Z, Z) = \text{Tr}_0 X^2 - \text{Tr}_1 Y^2,$$

where the relative minus sign between traces is due to supersymmetry (STr = Tr₀ − Tr₁). The positivity of B on \mathcal{M} is seen to imply $X = X^\dagger$ and $Y = -Y^\dagger$ (the dagger denotes hermitian conjugation, i.e. transposition in conjunction with complex conjugation).

Given G_Λ/H_Λ, the condition that M be Riemann and maximal in G_C/H_C, fixes M uniquely up to two possibilities: either $T_o(M) = \mathcal{M}$, or $T_o(M) = i\mathcal{M}$. In either case, M is a product of two factors, $M = M_0 \times M_1$, both of which are Riemannian symmetric spaces. In the first case, M_0 is of noncompact type and M_1 is of compact type, while in the second case it is the other way around. We adopt the convention of denoting the compact space by M_F and the noncompact one by M_B.

In view of Cartan’s list of symmetric spaces (Table 1), we arrive at the following table of large families of Riemannian symmetric superspaces:

class	G_Λ/H_Λ	M_F	M_B			
$A	A$	$\text{Gl}(m	n)$	A	A	
$Al	Al$	$\text{Gl}(m	2n)/\text{Osp}(m	2n)$	Al	Al
$Al	Al$	$\text{Gl}(m	2n)/\text{Osp}(m	2n)$	Al	Al
$Al	Al$	$\text{Gl}(m	2n)/\text{Osp}(m	2n)$	Al	Al
$BD	C$	$\text{Osp}(m	2n)$	BD	C	
CD	$\text{Osp}(m	2n)$	CD	CD		
$CI	DIII$	$\text{Osp}(m	2n)/\text{Gl}(m	n)$	CI	$DIII$
$BD	CI$	$\text{Osp}(m	2n)/\text{Gl}(m	n)$	BD	CI
$CI	BD$	$\text{Osp}(m	2n)/\text{Gl}(m	n)$	CI	BD

Table 2: Riemannian symmetric superspaces
Although the entries $A|A$, $BD|C$ and $C|BD$ look extraneous because they are groups rather than coset spaces, they fit in the same framework by putting by $G_A = G \times G$ and $\theta(g_1, g_2) = (g_2, g_1)$, so $H_A = \text{diag}(G \times G) \simeq G$ and $G_A/H_A \simeq G$.

As far as applications to random-matrix theory and disordered single-particle systems are concerned, the most important structure carried by Riemannian symmetric superspaces is their G_A-invariant Berezin measure. Such a measure always exists by Definition 2.1 and the existence of local coordinates. To describe it in explicit terms, one introduces a local coordinate system by the exponential map $M_A \to G_A/H_A$, $Z \mapsto \exp(Z)/H_A$. By straightforward generalization (replace the Jacobian by the Berezinian) of a corresponding calculation (cf. [37]) for ordinary symmetric spaces, one obtains for the principal term of the invariant Berezin measure the expression

$$\text{det} G \mapsto \exp(\sum_{n=0}^{\infty} a_n (Z) \frac{2^n}{(2n+1)!})$$

the function $J(Z) = \text{SDet}T_Z$. (Note $\sum_{n=0}^{\infty} x^{2n}/(2n+1)! = x^{-1} \sinh x$.) A universally valid expression for the anomaly in these coordinates is not available at present.

III. SUPERSYMMETRY APPLIED TO THE GAUSSIAN RANDOM-MATRIX ENSEMBLE OF CLASS C

The goal of the remainder of this paper will be to demonstrate that Riemannian symmetric superspaces, as defined in Sec. II F, arise in a compelling way when Gaussian ensemble averages of ratios of spectral determinants for random matrices are considered in the large-N limit. The example to be discussed in detail will be the Gaussian ensemble defined over the symplectic Lie algebra $\text{sp}(N)$, which has recently been identified [24] as a model for the ergodic limit of normal-superconducting mesoscopic systems with broken time-reversal symmetry.

A. The supersymmetry method: a simple example

The pedagogical purpose of this first subsection is to illustrate our strategy at a simple example [38]. If $u(N)$ is the Lie algebra of the unitary group in N dimensions, consider on $iu(N)$ (the hermitian $N \times N$ matrices) the Gaussian probability measure with width \sqrt{N}. Denoting by H the elements of $iu(N)$ and by dH a Euclidean measure, we write the Gaussian probability measure in the form $d\mu(H) = \exp(-N\text{Tr}H^2/2\nu^2)dH$, $\int d\mu(H) = 1$. This measure is called the Gaussian Unitary Ensemble (GUE) in random-matrix theory. The object of illustration will be the average ratio of spectral determinants,

$$Z(\alpha, \beta) = \int_{iu(N)} \text{Det}(\frac{H - \beta}{H - \alpha})d\mu(H),$$

where α, β are complex numbers and α is not in the spectrum of H. Given the generating function Z, the GUE average resolvent is obtained by

$$\int_{iu(N)} \text{Tr}(H - z)^{-1}d\mu(H) = \frac{\partial}{\partial \alpha} Z(\alpha, \beta)\bigg|_{\alpha = \beta = z}.$$

We will now show how to compute Z using a formalism that readily generalizes to more complicated situations.

To avoid the introduction of indices and have a basis-independent formulation, we choose to interpret H as a self-adjoint endomorphism $H \in \text{End}(V)$ of N-dimensional complex space $V := \mathbb{C}^N$ with a hermitian quadratic form $(x, y) \mapsto \langle x, y \rangle_V$.

The supersymmetry method starts by introducing “bosonic space” $W_B = W_0 = \mathbb{C}$ and “fermionic space” $W_F = W_1 = \mathbb{C}$. Auxiliary space is the Z_2-graded sum $W = W_B \oplus W_F = \mathbb{C}^{1,1}$. The Cartesian basis of W is denoted by $e_B = (1, 0)$ and $e_F = (0, 1)$. Let $\text{Hom}_\lambda(W, V) := \lambda_0 \otimes \text{Hom}(W_B, V) + \lambda_1 \otimes \text{Hom}(W_F, V)$ where $\lambda = \lambda_0 + \lambda_1$ is the Grassmann algebra with $\text{dim}_\mathbb{C} \text{Hom}(W_F, V) = N$ generators. (Grassmann-analytic continuation will not be needed here.) $\text{Hom}_\lambda(W, V)$ is defined similarly, with another Grassmann algebra $\tilde{\lambda}$. The key idea is to utilize the Gaussian Berezin integral over the complex-analytic superspace $\text{Hom}_\lambda(W, V) \times \text{Hom}_{\tilde{\lambda}}(V, W)$. Let $D(\psi, \tilde{\psi})$ (with $\psi \in \text{Hom}_\lambda(W, V)$ and $\tilde{\psi} \in \text{Hom}_{\tilde{\lambda}}(V, W)$) denote a translation-invariant holomorphic Berezin measure on this linear space.
If \(\psi_B (\tilde{\psi}_B) \) is the restriction of \(\psi (\tilde{\psi}) \) to a map \(W_B \to V \) (resp. \(V \to W_B \)), fix a Berezin integral \(f \mapsto \int D(\psi, \tilde{\psi}) f(\psi, \tilde{\psi}) \) by choosing for the domain of integration the subspace \(M \), selected by the linear condition \(\tilde{\psi}_B = \psi^1_B \) (the adjoint \(\psi^1_B : C^N \to C \) being defined by \(\tilde{\psi}_B^1 = (\tilde{x}, \psi_B^1 \cdot 1)_V \)). Because \(\text{Hom}_X(W, V) \times \text{Hom}_X(V, W) \) has complex dimension \((2N, 2N) \), the integral \(\int D(\psi, \tilde{\psi}) f(\psi, \tilde{\psi}) \) does not change its value when \(f \) is replaced by the rescaled function \(f^s(\psi, \tilde{\psi}) = f(s\psi, s\tilde{\psi}) \) \((s \in \mathbb{R})\). Now with \(\text{End}_0(W) = \text{End}(W_B) \oplus \text{End}(W_F) \) and \(\text{End}_1(W) = \text{Hom}(W_B, W_F) \oplus \text{Hom}(W_F, W_B) \), let

\[
\text{End}_\Lambda(W) := \Lambda_0 \otimes \text{End}_0(W) + \Lambda_1 \otimes \text{End}_1(W),
\]

where \(\Lambda = \Lambda_0 + \Lambda_1 \) is the Grassmann algebra with \(\dim_{\mathbb{C}} \text{End}_1(W) = 2 \) generators, and pick \(A \in \text{End}(V), B \in \text{End}_\Lambda(W) \). \(B \) corresponds to what is called a \(2 \times 2 \) supermatrix in physics. An elementary but useful result is that, if we normalize \(D(\psi, \tilde{\psi}) \) by \(\int D(\psi, \tilde{\psi}) \exp \left(-s^2 \text{Tr} \psi \tilde{\psi} \right) = 1 \), the identity

\[
\int D(\psi, \tilde{\psi}) \exp \left(i \text{Tr}_V \lambda \psi \tilde{\psi} - i \text{STr}_W \omega \psi \tilde{\psi} \right) = \text{SDet}_{V \otimes W}(A \otimes 1 - 1 \otimes B)^{-c}
\]

holds with \(c = 1 \) provided that the integral exists. (The parameter \(c \) is introduced for later convenience.) When \(A \) and \(B \) are represented by diagonal matrices, verification of (10) is a simple matter of doing one-dimensional Gaussian integrals. The general case follows by the invariance of \(D(\psi, \tilde{\psi}) \) under unitary transformations of \(V \) and “superrotations” in \(W \).

Now introduce elements \(E_{BB} \) and \(E_{FF} \) of \(\text{End}_0(W) \) by \(E_{BB} \epsilon_B = \epsilon_B, E_{FF} \epsilon_F = \epsilon_F, \) and \(E_{BB} \epsilon_F = E_{FF} \epsilon_B = 0 \). By setting \(A := H \) and \(B := \alpha E_{BB} + \beta E_{FF} =: \omega \), and using

\[
\text{SDet}_{V \otimes W}(H \otimes 1 - 1 \otimes \omega) = \text{Det}(H - \alpha)/\text{Det}(H - \beta),
\]

we get a Gaussian integral representation of \(Z \):

\[
Z(\omega) := Z(\alpha, \beta) = \int \text{SDet}_{V \otimes W}(H \otimes 1 - 1 \otimes \omega)^{-c} d\mu(H) = \int D(\psi, \tilde{\psi}) \int \exp \left(i \text{Tr}_V H \psi \tilde{\psi} - i \text{STr}_W \omega \psi \tilde{\psi} \right) d\mu(H).
\]

In the next step, the GUE ensemble average is subjected to the following manipulations:

\[
\int \exp(i \text{Tr} H \psi \tilde{\psi}) = \int_{\text{tr}(N)} \exp \left(i \text{Tr} H \psi \tilde{\psi} - N \text{Tr} H^2/2\nu^2 \right) dH = \exp \left(-\frac{\nu^2}{2N} \text{Tr} (\psi \tilde{\psi})^2 \right) = \exp \left(-\frac{\nu^2}{2N} \text{STr}_W (\psi \tilde{\psi})^2 \right)
\]

\[
= \int_{\mathbb{R} \times i \mathbb{R}} \text{DFQ} \exp \left(i \text{STr}_Q \psi \tilde{\psi} - N \text{STr} Q^2/2\nu^2 \right) = \int D\mu(Q) \exp(i \text{STr}_Q \psi \tilde{\psi}).
\]

The fourth equality sign decouples the quartic term \(\text{STr}_W (\psi \tilde{\psi})^2 \) by introducing an auxiliary integration over \(Q \in \text{End}_\Lambda(W) \). In order for this Gaussian integral to converge, the integration domain for the BB-part \(Q_{BB} : W_B \to W_B \) (FF-part \(Q_{FF} : W_F \to W_F \)) is taken to be the real (resp. imaginary) numbers. By using the relations (11,11,12) we obtain

\[
Z(\omega) = \int D(\psi, \tilde{\psi}) \int \exp \left(i \text{Tr}_V H \psi \tilde{\psi} \right) d\mu(H) \exp -i \text{STr}_W \omega \psi \tilde{\psi} = \int D\mu(Q) \int D(\psi, \tilde{\psi}) \exp i \text{Tr}_V \psi (Q - \omega) \tilde{\psi} = \int D\mu(Q) \text{SDet}_{V \otimes W}(1_N \otimes (Q - \omega))^{-c} = \int D\mu(Q) \text{SDet}_W (Q - \omega)^{-N} = \int_{\mathbb{R} \times i \mathbb{R}} \text{DFQ} \exp -N \text{STr} (Q^2/2\nu^2 + \ln(Q - \omega)).
\]
These steps reduce an integral over the $N \times N$ matrix H to an integral over the 2×2 supermatrix Q. The large parameter N now appears in the exponent of the integrand, so that the Q-integral can be evaluated by a saddle-point approximation that becomes exact in the limit $N \to \infty$. By solving the saddle-point equation $-Q/\nu^2 = (Q - \omega)^{-1}$ and doing an elementary calculation, one obtains Wigner’s semicircle law for the GUE density of states [33]:

$$
\int \text{Tr}(E - H) d\mu(H) = \frac{N}{\pi \nu} \sqrt{1 - (E/2\nu)^2},
$$

which will be of use later.

B. Definition of the Gaussian Ensemble of type C

Having run through a simple and well-known example, we now treat in detail a less trivial case where the reduction to a Q-integral representation requires more care.

The “physical space” of our model is $V = \mathbb{C}^2 \otimes \mathbb{C}^N$. As before, let $x \mapsto \bar{x}$ denote complex conjugation, and fix a symmetric quadratic form $\langle \bullet, \bullet \rangle_V : V \times V \to \mathbb{C}$ such that the corresponding hermitian quadratic form $\langle \bar{x}, y \rangle_V = \langle y, x \rangle_V$ is strictly positive. The transpose and the adjoint of a linear transformation $L \in \text{End}(V)$ are defined by $\langle x, L^T y \rangle_V = \langle Lx, y \rangle_V$ and $\langle \bar{x}, L^\dagger y \rangle_V = \langle L\bar{x}, y \rangle_V$ as usual.

Consider now the space, P, of self-adjoint Hamiltonians $H \in \text{End}(V)$ subject to the linear condition

$$
H = -CH^T C^{-1},
$$

where C is skew and $C^2 = -1$. Clearly, iP is isomorphic to $\text{sp}(N) = C_N$ (the symplectic Lie algebra in $2N$ dimensions). Introducing an orthonormal basis of \mathbb{R} we can represent H by a $2N \times 2N$ matrix. The explicit form of such a matrix is

$$
H = \begin{pmatrix} a & b \\ b^T & -a^T \end{pmatrix}, \quad \text{if} \quad C = \begin{pmatrix} 0 & 1_N \\ -1_N & 0 \end{pmatrix},
$$

where a (b) is a complex hermitian (resp. symmetric) $N \times N$ matrix. The Gaussian ensemble to be studied is defined by the probability measure $d\mu(H) = \exp(-N\text{Tr}H^2/2\nu^2)dH$, $\int d\mu(H) = 1$. For any two $A, B \in \text{End}(V)$,

$$
\int_{i \times \text{sp}(N)} \text{Tr}(AH)\text{Tr}(BH) d\mu(H) = \frac{\gamma^2}{2N} \text{Tr} \left(AB - ACB^T C^{-1} \right).
$$

The joint probability density for the eigenvalues of H has been given in [24].

The physical motivation for considering a Gaussian random-matrix ensemble of the above type (type C) comes from the fact [24] that it describes the ergodic limit of mesoscopic normal-superconducting hybrid systems with time-reversal symmetry broken by the presence of a weak magnetic field. To deal with such systems, the Bogoliubov-deGennes (BdG) independent-quasiparticle formalism is used. The first factor in the tensor product $V = \mathbb{C}^2 \otimes \mathbb{C}^N$ accounts for the BdG particle-hole degree of freedom, which is introduced for the purpose of treating the pairing field of the superconductor within the formalism of first quantization. The second factor represents the orbital degrees of freedom of the electron. H is the Hamiltonian that enters into the BdG-equations, and the relation [13] expresses the particle-hole symmetry of the BdG-formalism.

Our goal is to compute the following ensemble average:

$$
Z_n(\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n) = \int_{\text{sp}(N)} \prod_{i=1}^n \text{Det} \left(\frac{H - \beta_i}{H - \alpha_i} \right) d\mu(H).
$$

By the particle-hole symmetry of H, Z_n is invariant under a reversal of sign for any pair (α_i, β_j), so no information is lost by restricting all α_i to one half of the complex plane. For definiteness, we require

$$
\text{Im} \alpha_i < 0 \quad (i = 1, \ldots, n).
$$

All information about the statistical correlations between the eigenvalues of H can be extracted from Z_n. For example, the probability that, given there is an eigenvalue at E_1, there exist $n - 1$ eigenvalues at E_2, \ldots, E_n (regardless of the positions of all other eigenvalues) is equal to

$$
R_n(E_1, \ldots, E_n) = \lim_{\epsilon \to 0} \left(\frac{-\epsilon}{\pi} \right)^n \prod_{i=1}^n \frac{\partial}{\partial \alpha_i} \bigg|_{\alpha_i = E_i - i\epsilon} \prod_{i=1}^n \frac{\partial}{\partial \alpha_{2i-1}} \bigg|_{\alpha_{2i-1} = -E_i - i\epsilon} Z_{2n}(\alpha_1, \ldots, \alpha_{2n}; E_1 - i\epsilon, -E_1 - i\epsilon, \ldots, E_n - i\epsilon, -E_n - i\epsilon).
$$

The function $R_n(E_1, \ldots, E_n)$ is called the n-level correlation function in random-matrix theory [34].
C. Symmetries of the auxiliary space

To transcribe the supersymmetry method of Sec. II A to the computation of \(Z_n \) (which involves \(n \) ratios of spectral determinants), a simple and natural procedure would be to enlarge the auxiliary space \(W \) by taking the tensor product with \(\mathbb{C}^n \). However, on using the formula

\[
\int \exp(i \text{Tr} H \psi) d\mu(H) = \exp \left(-\frac{1}{2} \int_{\text{sp}(N)} (\text{Tr} H \psi \psi)^2 d\mu(H) \right),
\]

one faces the complication that the second moment \(\int (\text{Tr} H \psi \psi)^2 d\mu(H) \) then is a sum of two terms, see the right-hand side of (14). Consequently, one needs two decoupling supermatrices \(Q \) (one for each term). Although this presents no difficulty of a principal nature, it does lead to rather complicated notations. An elegant remedy is to modify the definition of \(\psi \) and \(\tilde{\psi} \) so that \(\tilde{\psi} \psi \) shares the symmetry (15) of the BdG-Hamiltonian \(H \). The two terms then combine into a single one:

\[
\int (\text{Tr} H \psi \psi)^2 d\mu(H) = \frac{v^2}{N} \text{STr}_W(\tilde{\psi} \psi)^2,
\]

which can again be decoupled by a single supermatrix \(Q \). To implement the symmetry (15), we proceed as follows.

We enlarge the auxiliary space \(W = W_B \oplus W_F \) in some way (left unspecified for the moment) and fix a rule of supertransposition \(\text{Hom}_\lambda(W, V) \to \text{Hom}_\lambda(V, W), \psi \mapsto \psi^T \) and \(\text{Hom}_\lambda(V, W) \to \text{Hom}_\lambda(W, V), \tilde{\psi} \mapsto \tilde{\psi}^T \). Such a rule obeys \(\psi^{TT} = \psi \sigma \) and \(\tilde{\psi}^{TT} = \sigma \tilde{\psi} \), where \(\sigma \in \text{End}_0(W) \) is the operator for superparity, i.e. \(\sigma(x + y) = x - y \) for \(x + y \in W_B \oplus W_F = W \). It induces a rule of supertransposition \(\text{End}_\lambda(W) \to \text{End}_\lambda(W), Q \mapsto Q^T \) (no separate symbol is introduced). Combination with complex conjugation gives a rule of hermitian conjugation \(\dagger : \text{End}_0(W) \to \text{End}_0(W) \).

Now impose on \(\psi \in \text{Hom}_\lambda(W, V), \tilde{\psi} \in \text{Hom}_\lambda(V, W) \) the linear conditions

\[
\psi = C \tilde{\psi} \gamma^{-1}, \quad \tilde{\psi} = -\gamma \psi^T C^{-1}, \quad (20)
\]

with some invertible even element \(\gamma \) of \(\text{End}_0(W) \). The mutual consistency of these equations requires

\[
\gamma = \gamma^T \sigma. \quad (21)
\]

To see that, insert the transpose of the second equation in (20) into the first one. Using \(\psi^{TT} = \psi \sigma \) you obtain \(\psi = -CC^{-T} \sigma \gamma^{-T} \gamma^{-1} \). Since \(CC^{-T} = -1 \) and \(\sigma \gamma^T = \gamma^T \sigma \), Eq. (21) follows. The consistency condition can be implemented by taking \(W_B = W_F = \mathbb{C}^2 \otimes \mathbb{C}^n \), see below. By multiplying the equations (20) we obtain

\[
\tilde{\psi} \psi = -C(\psi \tilde{\psi})^T C^{-1}, \quad \tilde{\psi} \psi = -\gamma(\tilde{\psi} \psi)^T \gamma^{-1}. \quad (22)
\]

The first equation is the desired symmetry relation allowing us to combine terms. To appreciate the consequences of the second equation, note that by the fourth step in (12) the symmetries of \(\tilde{\psi} \psi \) get transferred onto \(Q \), so that the latter is subject to

\[
Q = -\gamma Q^T \gamma^{-1}. \quad (23)
\]

This symmetry reflects that of the BdG-Hamiltonian \(H \), see (13). The linear space \(\text{End}_\lambda(W) \), when given a Lie bracket by the commutator, can be identified with \(\text{gl}(2n|2n) = \text{Lie}((2n|2n)) \). As \(\gamma \) is supersymmetric \((\gamma = \gamma^T \sigma) \), \(22 \) fixes an osp(2n|2n)-subalgebra.

\(\gamma \) is not unique. For definiteness we choose it as follows. Let \(\{ E_{ij} \}_{i,j=1,\ldots,M} \) be a canonical basis of \(\text{End}(\mathbb{C}^M) \) satisfying \(E_{ij} E_{kl} = \delta_{jk} E_{il} \) (here \(M = 2 \) or \(M = n \)). For \(M = 2 \) define the Pauli spin operators \(\sigma_x = E_{12} + E_{21} \), \(\sigma_y = -iE_{12} + iE_{21} \), and \(\sigma_z = E_{11} - E_{22} \). The usual rule of supertransposition on \(\text{End}_\lambda(W) \) is given by (\(\mu, \nu = 1, 2 \) and \(i, j = 1, ..., n \))

\[
(E_{BB} \otimes E_{\mu \nu} \otimes E_{ij})^T = E_{BB} \otimes E_{\mu \nu} \otimes E_{ji}, \quad (E_{BF} \otimes E_{\mu \nu} \otimes E_{ij})^T = -E_{FB} \otimes E_{\nu \mu} \otimes E_{ji},
\]

\[
(E_{FB} \otimes E_{\mu \nu} \otimes E_{ij})^T = E_{BF} \otimes E_{\nu \mu} \otimes E_{ji}, \quad (E_{FF} \otimes E_{\mu \nu} \otimes E_{ij})^T = E_{FF} \otimes E_{\nu \mu} \otimes E_{ji}.
\]

With these conventions, one possible choice for \(\gamma \) is

\[
\gamma = \gamma_B + \gamma_F \quad \text{where} \quad \gamma_B = \sigma_x \otimes 1_n, \quad \gamma_F = i \sigma_y \otimes 1_n. \quad (24)
\]

This is the choice we make.
D. Gaussian Berezin integral

To repeat the steps of Sec. IIIA and derive a Q-integral representation for the generating function Z_n, we must first generalize the basic identity (10), whose left-hand side is

$$\int D(\psi, \tilde{\psi}) \exp \left(i \text{Tr}_V A \psi \tilde{\psi} - i \text{STr}_W B \psi \tilde{\psi} \right).$$

(25)

By (22) we have

$$\text{Tr} A \psi \tilde{\psi} = \text{Tr}(\psi \tilde{\psi})^T A^T = \frac{1}{2} \text{Tr}(A - CA^T C^{-1}) \psi \tilde{\psi},$$

$$\text{STr} B \psi \tilde{\psi} = \text{STr}(\psi \tilde{\psi})^T B^T = \frac{1}{2} \text{Tr}(B - \gamma B^T \gamma^{-1}) \psi \tilde{\psi}.$$

In view of this we demand that A and B satisfy:

$$A = -CA^T C^{-1}, \quad B = -\gamma B^T \gamma^{-1}. \quad (26)$$

When carrying out the calculation (11-13) we need to apply the identity (10) twice, the first time with $A = H, B = \omega$, and the second time with $A = 0, B = \omega - Q$. In order for (26) to be satisfied with these identifications, we choose to set

$$\omega = E_{BB} \otimes \sigma_z \otimes \sum_{i=1}^n \alpha_i E_{ii} + E_{FF} \otimes \sigma_z \otimes \sum_{j=1}^n \beta_j E_{jj}.$$

The presence of the factor $\sigma_z = \text{diag}(+1, -1)$ reverses the sign of the α_i and β_j on that subspace where σ_z acts by multiplication with minus one. As the imaginary parts of the α_i control the convergence of the integral, this sign reversal affects the correct choice of integration domain for ψ_B and $\tilde{\psi}_B$. To ensure convergence of the integral (25), we require $\text{ImSTr} \omega \tilde{\psi} \psi \leq 0$. This inequality is achieved by imposing the condition $\tilde{\psi}_B = (\sigma_z \otimes 1_n) \psi_B^1$, which is compatible with $C = i \sigma_y \otimes 1_N, \psi_B = C \psi_B^1 \gamma_B^{-1}$, and $\gamma_B = \sigma_x \otimes 1_n$.

Lemma 3.1: Let $D(\psi, \tilde{\psi})$ denote a translation-invariant holomorphic Berezin measure on the subspace of $\text{Hom}_A(W, V) \times \text{Hom}_A(V, W)$ defined by (21). Fix the integration domain by $\psi_B = (\sigma_z \otimes 1_n) \psi_B^1$, and normalize $D(\psi, \tilde{\psi})$ so that $\int D(\psi, \tilde{\psi}) \exp(-s^{2} \text{Tr} \psi \tilde{\psi}) = 1$ ($s \in \mathbb{R}$). Then if $A \in \text{End}(V)$ and $B \in \text{End}_A(W)$ are diagonalizable and satisfy the linear conditions (24), the identity (10) holds with $c = 1/2$ provided that the integral exists.

Proof: Assume that A and B are represented by diagonal matrices

$$A = \sigma_z \otimes \sum_{i=1}^N x_i E_{ii}, \quad B = E_{BB} \otimes \sigma_z \otimes \sum_{j=1}^n z_j E_{jj} + E_{FF} \otimes \sigma_z \otimes \sum_{j=1}^n y_j E_{jj},$$

which conforms with (26). The right-hand side of (11) then reduces to

$$\text{SDet}_V \otimes W(A \otimes 1 - 1 \otimes B)^{-1/2} = \prod_{i=1}^N \prod_{j=1}^n \frac{(x_i - y_j)(x_i + z_j)}{(x_i - z_j)(x_i + z_j)}. \quad (27)$$

To evaluate the left-hand side write

$$\psi_B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \psi_F = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

where a, b, c, d ($\alpha, \beta, \gamma, \delta$) are complex $N \times n$ matrices with commuting (resp. anticommuting) matrix elements. The constraint $\tilde{\psi} = -\gamma \psi^T C^{-1}$ results in

$$\tilde{\psi}_B = \begin{pmatrix} -d^T \\ -c^T \end{pmatrix}, \quad \tilde{\psi}_F = \begin{pmatrix} -\delta^T & \beta^T \\ \gamma^T & -\alpha^T \end{pmatrix},$$

and the reality condition $\tilde{\psi}_B = (\sigma_z \otimes 1_n) \psi_B^1$ means $d = -\bar{a}$ and $c = \bar{b}$. The exponent of the integrand is expressed by
\[
\frac{1}{2} \Tr A \psi \tilde{\psi} - \frac{1}{2} \Tr B \tilde{\psi} \psi = \sum_{i=1}^{N} \sum_{j=1}^{n} \left[(x_i - z_j)a_{ij}\bar{a}_{ij} - (x_i + z_j)b_{ij}\bar{b}_{ij}
ight] + (x_i + y_j)\alpha_{ij}\delta_{ij} - (x_i - y_j)\beta_{ij}\gamma_{ij}.
\]

Doing the Gaussian integrals one gets a result that is identical to (27), which proves the Lemma for diagonal \(A \) and \(B \). The general case follows by the invariance properties of \(D(\psi, \tilde{\psi}) \).

\textbf{Remark:} The condition of diagonalizability can of course be weakened but we won’t need that here. ■

To apply Lemma 3.1 to our problem, note

\[
SDet_{V \otimes W} (H \otimes 1 - 1 \otimes \omega)^{1/2} = \prod_{i=1}^{n} \Det_V \left(\frac{(H - \alpha_i)(H + \alpha_i)}{(H - \beta_i)(H + \beta_i)} \right)^{1/2} = \prod_{i=1}^{n} \Det \left(\frac{H - \alpha_i}{H - \beta_i} \right),
\]

where in the second step we used the invariance of the ratio of determinants under \(H \mapsto -H \), which is due to the particle-hole symmetry \(H = -CH^T C \). Moreover, note

\[SDet_{V \otimes W} (1 \otimes (Q - \omega))^{-1/2} = SDet_{W} (Q - \omega)^{-N}.\]

The previous calculation \([14,13]\) thus formally goes through with \(c = 1/2 \), and \(\text{isp}(N) \) for \(iu(N) \), and we arrive at the following representation of the generating function:

\[
 Z_n(\omega) = \int DQ \exp \left(-N \St \left(Q^2/2\nu^2 + \ln(Q - \omega)\right)\right), \tag{28}
\]

where the supermatrix \(Q = \begin{pmatrix} Q_{ss} & Q_{sf} \\ Q_{fs} & Q_{ff} \end{pmatrix} \) is subject to \([23]\). To make this rigorous, we have to specify the integration domain for \(Q \) and show that the interchange of the \((\psi, \tilde{\psi})\)- and \(Q \)-integrations is permitted.

E. Choice of integration domain

If the steps \([14,13]\) are to be valid, we must arrange for all integrals to be convergent, at least. This is easily achieved for \(Q_{FF} \), the FF-component of \(Q \), but requires substantial labor for \(\psi_B, \tilde{\psi}_B \) and \(Q_{BB} \). Consider \(Q_{FF} \) first. Since \(-\St Q^2 = -\Tr Q^2_{BB} + \Tr Q^2_{FF} \) are nilpotents, we want \(\Tr Q_{FF} Q_{FF} \leq 0 \), which leads us to require that \(Q_{FF} \) be antihermitian. Combination with \([23]\) gives

\[Q_{FF} = -\gamma_F Q_{FF}^{\top} \gamma = -Q_{FF}^{\dagger} \gamma_F^{-1}, \]

where \(\gamma_F = i\sigma_y \otimes 1_n \), see \([24]\). The solution space of these equations is \(\text{sp}(n) \), the symplectic Lie algebra in \(2n \) dimensions. Thus we choose \(H := \text{sp}(n) \) for the integration domain of \(Q_{FF} \), and of course the integration measure is taken to be the flat one.

The choice of integration domain for \(Q_{BB} \) is a much more delicate matter and will occupy us for the remainder of this section. Recall, first of all, that the convergence of

\[
\int D(\psi, \tilde{\psi}) \exp \left(i\Tr H \psi \tilde{\psi} - i\St \omega \psi \tilde{\psi}\right)
\]

requires taking \(\tilde{\psi}_B = \beta \psi_B^\dagger \) where \(\beta := \sigma_z \otimes 1_n \) cancels the minus signs that multiply the imaginary parts of the parameters \(\alpha_i \) in \(\omega \). To ensure the convergence of

\[
\int D(\psi, \tilde{\psi}) \exp i\Tr \psi(Q - \omega) \tilde{\psi},
\]

one is tempted to choose \(Q_{BB} \) in such a way that \(\Re \Tr \psi Q \tilde{\psi} = 0 \). Unfortunately, when this condition is adopted one gets \(Q_{BB} = \beta Q_{BB}^\dagger \beta \), which causes \(\Tr Q^2_{BB} = \Tr Q_{BB}^\dagger Q_{BB} \beta \) to be of indefinite sign, so that the integral over \(Q \) does not exist.

A way out of this difficulty was first described by Schäfer and Wegner \([2]\) in a related context. We are now going to formulate their prescription in a language that anticipates the geometric structure emerging in the large-\(N \) limit. To simplify the notation, we put \(Q_{BB} = iZ \). What we need to do is investigate the expression
The conditions on Q_{BB} translate into
\[Z = -\gamma_B Z^T \gamma_B^{-1} = -\beta Z^\dagger \beta^{-1}. \]

Because $\gamma_B = \sigma_x \otimes 1_n$ is symmetric, the solution space of the first equation is a complex Lie algebra $G_C \simeq \text{so}(2n, \mathbb{C})$. The matrix representation of an element $z \in G_C$ is of the form \(\begin{pmatrix} A & B \\ C & -A^T \end{pmatrix} \) where B and C are skew. The second equation ($Z = -\beta Z^\dagger \beta^{-1}$) means $A = -A^T$ and $C = B^1$, which fixes a real form $G = \text{so}^*(2n)$ of $G_C = \text{so}(2n, \mathbb{C})$. This real form is noncompact (i.e. $G = \text{Lie}(G)$ with G a noncompact Lie group), which is what causes all the trouble and is forcing us to work hard. Its maximal compact subalgebra K is the set of solutions of $X = \beta X \beta^{-1}$ in G. From $X = \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma^T \end{pmatrix}$ and $A = -A^T$ we see that $K \simeq \text{u}(n)$.

To display clearly the general nature of the following construction, we introduce a symmetric quadratic form $B : G_C \times G_C \to \mathbb{C}$ by $B(X, Y) = \text{Tr} XY$. The Cartan (orthogonal) decomposition of G with respect to this quadratic form is written $G = K \oplus M$. An element Y of M satisfies $Y = -\beta Y \beta^{-1}$. From this in conjunction with the equation fixing $K (X = +\beta X \beta^{-1})$ one deduces the commutation relations
\[[\mathcal{M}, \mathcal{M}] \subset K, \quad [K, \mathcal{M}] \subset \mathcal{M}, \quad [K, K] \subset K. \]

Note that the elements of M are hermitian while those of K are antihermitian. We will also encounter the complexified spaces $K_C = K + iK$ and $M_C = M + iM$. They, too, are orthogonal with respect to B and satisfy the commutation relations (39). The element $\beta = \sigma_x \otimes 1_n$ satisfies $\beta = -\gamma_B \beta^T \gamma_B^{-1}$ and can therefore be regarded as an element of G_C. Moreover, $\beta \in iK \subset G_C$.

Now we embed $G = K \oplus M$ into G_C by a map ϕ_b,
\[
\phi_b : K \times M \to G_C, \\
(X, Y) \mapsto \phi_b(X, Y) = b \times (X + e^Y \beta e^{-Y})
\]

where $b \neq 0$ is some constant that will be specified later.

Lemma 3.2: $\phi_b(K \times M)$ is an analytic manifold without boundary, and is diffeomorphic to G.

Proof: Analyticity is clear. To prove the other properties, we first establish that ϕ_b is injective. For that purpose, we write $e^Y \beta e^{-Y} = e^{a(Y)\beta}$ where $a(Y)\beta = [Y, \beta]$ is the adjoint action on G_C. Decomposing the exponential function according to $e^{x} = \cosh + \sinh$, we write $\phi_b = \phi_+ + \phi_-$ where
\[
\phi_+(X, Y) = b \times (X + \cosh \text{ad}(Y)\beta), \\
\phi_-(X, Y) = b \times \sinh \text{ad}(Y)\beta.
\]

From the commutation relations (39) and $\beta \in iK$ we see that ϕ_+ takes values $\phi_+(X, Y) \in K_C$ and $\phi_-(X, Y) \in M_C$. Since $G_C = K_C \oplus M_C$ (direct sum), injectivity is equivalent to the regularity of the maps $X \mapsto \phi_+(X, Y)$ (with Y viewed as a parameter) and $Y \mapsto \phi_-(X, Y)$. The function $\phi_+(X, \cdot) = X + \text{const}$ is obviously regular. By $Y = Y^\dagger$ the element Y is diagonalizable with real eigenvalues. The regularity of ϕ_- then follows from $\sinh : \mathbb{R} \to \mathbb{R}$ being monotonic and $Y \mapsto \text{ad}(Y)\beta$ being regular. This completes the proof that ϕ_b is injective. The injectivity of ϕ_b means that $\phi_b(K \times M)$ is diffeomorphic to $G = K \oplus M$. This in turn means that, since G has no boundary, $\phi_b(K \times M)$ has no boundary either.

We are now going to demonstrate that $\phi_b(K \times M)$ for any $b > 0$ may serve as a mathematically satisfactory domain of integration for the variable Z in (24). We begin by investigating the quadratic form $\text{Tr} Z^2 = B(Z, Z)$ on $\phi_b(K \times M)$. For this we set $Z = Z_+ + Z_-$ with $Z_{\pm} = \phi_{\pm}(X, Y)$. Using $B(Z_+, Z_-) = 0$ (recall $K_C \perp M_C$), $B(\text{ad}(Y)A, B) = -B(A, \text{ad}(Y)B)$ and $\cosh^2 - \sinh^2 = 1$, we obtain
\[
B(Z, Z)/b^2 = B(X, X) + 2B(X, \text{cosh ad}(Y)\beta) + B(\beta, \beta).
\]

The antihermiticity of $X \in K$ gives $B(X, X) \leq 0$. In contrast, $\cosh \text{ad}(Y)\beta \in iK$ is hermitian, so $B(X, \text{cosh ad}(Y)\beta) \in i\mathbb{R}$. It follows that $\exp(\text{NTr} Z^2/2v^2) = \exp(\text{NTr} \phi_b(X, Y)^2/2v^2)$ is decaying with respect to X and oscillatory w.r.t. Y.

We have not yet made any use of $b > 0$ yet. This inequality comes into play when the coupling term
\[
-\text{Tr} Z \tilde{\psi}_B \psi_B = -B(Z, \tilde{\psi}_B \psi_B) = -B(X, \tilde{\psi}_B \psi_B) - bB(e^Y \beta e^{-Y}, \tilde{\psi}_B \psi_B)
\]

is considered. From (23) and $\tilde{\psi}_B = \beta \psi_B^0$ we see that $\tilde{\psi}_B \psi_B$ satisfies
\[\hat{\psi}_B \psi_B = -\gamma_B (\hat{\psi}_B \psi_B)^T \gamma_B^{-1} + \beta (\hat{\psi}_B \psi_B)^\dagger \beta^{-1}, \]

so \(\hat{\psi}_B \psi_B \in i\mathcal{G} \). Since \(B \) is real-valued on \(\mathcal{G} \times \mathcal{G} \), the term \(B(X, \hat{\psi}_B \psi_B) \) is purely imaginary. The other term,

\[-bB(e^{\gamma} \beta e^{-\gamma}, \hat{\psi}_B \psi_B) = -b\text{Tr}(\psi_B e^{2\gamma} \psi_B^\dagger) \leq 0 \]

is never positive if \(b > 0 \). Hence the real part of the exponential in (22) is negative semidefinite for \(Q = iZ \in i\phi_0(K \times M) \) and \(b > 0 \). As a result, the integrals over \(Q \) and \(\psi, \hat{\psi} \) converge if the integration domain for \(Q \) is taken to be \(i\phi_0(K \times M) \times \mathcal{U} \) \((b > 0)\). Because \(i\phi_0(K \times M) \times \mathcal{U} \) is an analytic manifold without boundary and Cauchy’s theorem applies, we may perform the shift of integration variables that is implied by the fourth equality sign in (22). Moreover, the presence of the nonvanishing imaginary parts of the parameters \(\alpha_i \) in \(\omega \) ensures uniform convergence of the \((\psi, \hat{\psi})\)-integral with respect to \(Q \), so that we may interchange the order of integration (the second equality sign in (22)). Finally, any breakdown of diagonalizability of \(Q - \omega \) occurs on a set of measure zero, so that the identity (Lemma 3.1) may be used, and all steps leading to (28) are rigorous. In summary, we have proved the following result.

Theorem 3.3: For \(V = \mathbb{C}^2 \otimes \mathbb{C}^N \) and \(W = \mathbb{C}^{1|1} \otimes \mathbb{C}^2 \otimes \mathbb{C}^n \) define the generating function

\[Z_{n,N}(\omega) = \int_{i\phi_0(K \times M) \times \mathcal{U}} \text{SDet}_W (H \otimes 1 - 1 \otimes \omega)^{-1/2} \exp \left(-N\text{Tr}H^2/2\nu^2\right) dH, \]

\[\omega = E_{BB} \otimes \sigma_z \otimes \sum_{i=1}^{n} \alpha_i E_{ii} + E_{FF} \otimes \sigma_z \otimes \sum_{j=1}^{n} \beta_j E_{jj} \quad (\text{Im} \alpha_i < 0). \]

Let \(DQ \) denote a translation-invariant holomorphic Berezin measure of the complex-analytic superspace \(\text{osp}(2n|2n) \). Then for all \(N \in \mathbb{N}, n \in \mathbb{N} \) and \(b > 0 \), \(DQ \) can be normalized so that

\[Z_{n,N}(\omega) = \int_{i\phi_0(K \times M) \times \mathcal{U}} DQ \exp -N\text{STr} \left(Q^2/2\nu^2 + \ln(Q - \omega) \right), \quad (31) \]

where \(\mathcal{U} = \text{sp}(n), K \simeq u(n), M \) is determined by \(K \otimes M = \text{so}^*(2n) \), and \(\phi_0(X, Y) = \nu \left(X + \text{Ad}(e^Y) (\sigma_z \otimes 1_n) \right) \).

We conclude this subsection with a comment. In the literature a parameterization of the form \(Q = TPT^{-1} \) (cf. [1]) has been very popular. In our language, this factorization amounts to choosing for the integration domain of \(\phi_{BB} \) the image of \(\phi : \mathcal{G} = K \otimes M \rightarrow \mathcal{G}, X + Y \mapsto e^X X e^{-Y} \). This is not a valid choice as \(\phi(\mathcal{G}) \) does have a boundary, namely the light cone \(\{ Z | B(Z, Z) = 0 \} \) in \(\mathcal{G} \), so that shifting of integration variables is not permitted. (However, it turns out that the error made becomes negligible in the limit \(N \rightarrow \infty \), so that the final results remain valid if that limit is assumed.)

F. Saddle-point supermanifold

The result [11] holds for all \(N \in \mathbb{N} \). We are now going to use the method of steepest descent to show that in the limit \(N \rightarrow \infty \), the integral on the right-hand side reduces to an integral over a Riemannian symmetric superspace of type \(\text{DIII}[CI] \).

With our choice of normalization, the mean spacing between the eigenvalues of \(H \) scales as \(N^{-1} \) for \(N \rightarrow \infty \), see [14]. We are most interested in the eigenvalues close to zero as their statistical properties describe those of the low-lying Bogoliubov independent-quasiparticle energy levels of mesoscopic normal-superconducting systems [24]. To probe their statistical behavior, what we need to do is keep \(\hat{\omega} = N\omega/\pi\nu \) (i.e. \(\omega \) scaled by the mean level spacing) fixed as \(N \) goes to infinity. In this limit \(\omega \sim O(1/N) \) can be treated as a small perturbation and we may expand \(N\text{STr}(Q - \omega) = N\text{STr}(Q - \pi\nu\text{STr}Q^{-1} - \omega + O(1/N) \) if \(Q^{-1} \) exists.

To evaluate the integral (31) by the method of steepest descent, we first look for the critical points of the function \(NF(Q) = N\text{STr}(Q^2/2\nu^2 + \ln Q) \). These are the solutions of

\[F'(Q) = Q/\nu^2 + Q^{-1} = 0, \]

or \(Q^2 = -\nu^2 \). The solution spaces, the so-called “saddle-point supermanifolds”, are nonlinear subspaces of \(\text{osp}(2n|2n) \), which can be distinguished by the eigenvalues of \(Q \). Of these supermanifolds, which are the ones to select for the steepest-descent evaluation of the integral (31)?

To tackle this question, we start out by setting all Grassmann variables to zero. The BB-part of the saddle-point manifold(s) is uniquely determined by the forced choice of integration domain \(i\phi_0(K \times M) \) and by analyticity. This is

16
because the saddle-point manifold must be deformable (using Cauchy’s theorem) into the integration domain without crossing any of the singularities of \(\text{SDet}(Q - \omega)^{-N} \); and by inspection one finds that this condition rules out all saddle-point manifolds except for one, which is \(\text{id}_{\mathfrak{g}}((0 \times \mathcal{M}) \), the subspace of the integration domain \(\text{id}_{\mathfrak{g}}(K \times \mathcal{M})|_{b=v} \) obtained by dropping from \(\mathcal{G} = K \oplus \mathcal{M} \) the \(\mathcal{K} \) degrees of steepest descent. By an argument given in the proof of Lemma 3.2 we know that \(\text{id}_{\mathfrak{g}}((0 \times \mathcal{M}) \) is diffeomorphic to \(\mathcal{M} \). On general grounds the latter is diffeomorphic to a coset space \(G/K \) by the exponential map \(\mathcal{M} \rightarrow G/K, Y \mapsto e^{Y}K \); where in the present case \(G = \{ g \in \text{Gl}(2n, \mathbb{C})|g = \gamma_{\mathfrak{B}}g^{-1}\gamma_{\mathfrak{B}}^{-1} = \beta g^{-1}\beta^{-1}\} \), and \(K = \{ k \in G|k = \beta k\beta^{-1}\} \) (on setting \(g = \exp Z, k = \exp X \) and linearizing, we recover the conditions \(Z = -\gamma_{\mathfrak{B}}Z\gamma_{\mathfrak{B}}^{-1} = -\beta Z\beta^{-1} \) defining \(\mathcal{G} \) and the condition \(X = \beta X \beta^{-1} \) fixing the subalgebra \(\mathcal{K} \). We already know \(\mathcal{G} = \text{so}^{\ast}(2n) \) and \(K \simeq \{ u(n) \}, \) so \(G = \exp \mathcal{G} = \text{SO}^{\ast}(2n) \) and \(K = \exp K = U(n) \). Because \(K \) is a maximal compact subgroup, the coset space \(G/K \) is a Riemannian symmetric space of noncompact type. In Cartan’s notation, \(G/K = \text{SO}^{\ast}(2n)/U(n) \) is called type III\textsc{I}. For better distinction from its FF-analog, we will henceforth denote \(G/K \) by \(G/K_{\mathfrak{B}} \).

We turn to the FF-sector. Since \(\text{SDet}(Q - \omega)^{-N} \) does not have poles but only has zeros as a function of \(Q_{FF} \), analyticity provides no criterion for selecting any specific solution space of the saddle-point equation \(Q_{FF}^{2} = -iv^{2} \). Instead, the determining agent now is the limit \(N \rightarrow \infty \). From (31) it is seen that integration over the Gaussian fluctuations around the saddle-point manifold produces one factor of \(N^{-1}(N+1) \) for every commuting (resp. anti-commuting) direction of steepest descent. Therefore, the limit \(N \rightarrow \infty \) is dominated by that saddle-point manifold which has the minimal transverse (super-)dimension \(d_{\mathfrak{B}}^{\ast} - d_{\mathfrak{F}}^{\ast} \). A little thought shows that the transverse dimension is minimized by choosing \(Q_{FF} \) to possess \(n \) eigenvalues \(+iv \) and \(n \) eigenvalues \(-iv \). Thus, the dominant saddle-point manifold is unique and contains the special point \(\mathfrak{z}_{0} = iv\beta \) (\(\beta = \sigma_{z} \otimes 1_{n} \) now acts in the fermionic subspace).

Recall that the integration domain for \(Q_{FF} \) is a compact Lie algebra \(\mathcal{U} = \text{sp}(n) \). The corresponding Lie group \(U = \text{Sp}(n) \) operates on \(\mathcal{U} \) by the adjoint action \(\text{Ad}(U) : \mathcal{U} \rightarrow \mathcal{U}, X \mapsto uXu^{-1} \). Because the saddle-point equation \(Q_{FF} = -iv^{2}Q_{FF}^{2} \) is invariant under this action, the FF-part of the (dominant) saddle-point manifold can be viewed as the orbit of the action of \(\text{Ad}(U) \) on the special point \(\mathfrak{z}_{0} = 0 \). Let \(K_{F} \) be the stability group of \(\mathfrak{z}_{0} = 0 \), i.e. \(K_{F} = \{ k \in U|k\mathfrak{z}_{0}k^{-1} = \mathfrak{z}_{0}\} \). By \(\text{Ad}(K_{F})\mathfrak{z}_{0} = 0 \) the orbit \(\text{Ad}(U)\mathfrak{z}_{0} \) is diffeomorphic to the coset space \(U/K_{F} \). Arguing in the same way as for the BB-sector, one shows that \(K_{F} \simeq K_{B} \simeq U(n) \). Hence \(U/K_{F} = \text{Sp}(n)/U(n) \), in which Cartan’s notation is a compact Riemannian symmetric space of type \(\text{CI} \).

We are finally in a position to construct the full saddle-point supermanifold. Recall, first of all, that \(Q \) is subject to the condition \(Q = -\gamma Q^{T}\gamma^{-1} \), which defines an orthosymplectic complex Lie algebra \(\mathfrak{g}_{A} := \text{osp}(2n|2n) \) in \(\text{End}_{\mathfrak{A}}(W) \). The solution spaces in \(\mathcal{G}_{A} \) of the equation \(Q/v^{2} + Q^{-1} = 0 \) are complex-analytic supermanifolds that are invariant under the adjoint action of the complex Lie supergroup \(

\mathcal{G}_{A} := \text{osp}(2n|2n) \). They can be regarded as \(\text{Ad}(\mathcal{G}_{A}) \)-orbits of elements \(Q_{0} \in \text{Lie}(\mathcal{G}_{A}) \) that are solutions of \((Q_{0})^{2} = -v^{2} \). From the above analysis of the BB- and FF-sectors, we know that the saddle-point supermanifold that dominates in the large-\(N \) limit is obtained by setting \(Q_{0} = iv\Sigma_{z} \) where \(\Sigma_{z} = 1_{B/F} \otimes \beta = (E_{BB} + E_{FF}) \otimes \sigma_{z} \otimes 1_{n} \). If \(H_{A} \) is the stability group of \(Q_{0} \), the orbit \(\text{Ad}(\mathcal{G}_{A})Q_{0} \) is diffeomorphic to the coset space \(\mathcal{G}_{A}/H_{A} \). From \(\gamma_{\Sigma_{z}} + \Sigma_{z}\gamma = 0 \) and the equation \(h\Sigma_{z}h^{-1} = \Sigma_{z} \) (or, equivalently, \(h = \Sigma_{z}h\Sigma_{z} \) for \(h \in H_{A} \) one infers \(H_{A} \simeq \text{GL}(n) \)). Hence the unique complex-analytic saddle-point supermanifold that dominates the large-\(N \) limit is \(\mathcal{G}_{A}/H_{A} \simeq \text{osp}(2n|2n)/\text{GL}(n) \).

Turning to the integral (32) we note the relations \(\text{Str}Q_{0}^{2} = -v^{2}\text{Str}1 = 0 \) and \(\text{ln \text{SDet}}Q_{0} = \text{ln}1 = 0 \). These imply that the function \(F(Q) = \text{Str}(Q^{2}/2v^{2} + \ln Q) \) vanishes identically on \(\text{Ad}(\mathcal{G}_{A})Q_{0} \). Hence the exponent of the integral in (31) restricted to \(\mathcal{G}_{A}/H_{A} \) is

\[
\pi v \text{Str}Q^{-1}\omega|_{\mathcal{G}_{A}/H_{A}} + O(1/N) = -ivB(\omega, \text{Ad}(g)\Sigma_{z}) + O(1/N).
\]

To complete the steepest-descent evaluation of (31) we need to Taylor-expand the exponent of the integral up to second order and do a Gaussian integral. By the \(\text{Ad}(\mathcal{G}_{A}) \)-invariance of the function \(NF(Q) \) it is sufficient to do this calculation for one element of the saddle-point supermanifold, say \(Q = Q_{0} \). Putting \(Q = Q_{0} + Z \) \((Z \in \mathcal{G}_{A}) \) we get

\[
NF(Q_{0} + Z) = \frac{N}{2v^{2}} \text{Str}(Z^{2} + Z\Sigma_{z}Z\Sigma_{z}) + O(Z^{3}).
\]

Now we make the orthogonal decomposition \(\mathcal{G}_{A} = \text{Lie}(H_{A}) + M_{A}, \) \(Z = X + Y, \) where \(Y = -\Sigma_{z}Y\Sigma_{z} \) are the degrees of freedom tangent to the saddle-point supermanifold, and \(X = +\Sigma_{z}X\Sigma_{z} \) are the degrees of freedom transverse to it. The translation-invariant Berezin measure \(DZ \) of \(\mathcal{G}_{A} \) factors as \(DZ = D\text{Y}D\text{X} \). We thus obtain the transverse Gaussian integral

\[
\int D\text{X} \exp \left(-\text{NSTr}X^{2}/v^{2} + O(N^{0}) \right).
\]

The integration domain for \(X \) is \(iK_{B} \times K_{F} \simeq iv(u(n)) \times u(n) \). By \(\text{dim} \text{Lie}(H_{A}) = (p,q) \) and \(p = q, \) this integral reduces to a constant independent of \(N \) in the limit \(N \rightarrow \infty \).
What remains is an integral over the saddle-point supermanifold itself. Since D_{Y} is the local expression of the invariant Berezin measure of G_{Λ}/H_{Λ} at $\Ad(e^{Y})Q_{0}|_{Y=0} = Q_{0}$ we arrive at the following result.

Theorem 3.4: If D_{Y} is a suitably normalized invariant holomorphic Berezin measure of the complex-analytic supermanifold $G_{\Lambda}/H_{\Lambda} \simeq \text{Osp}(2n|2n)/\text{Gl}(n|n)$,

\[
\lim_{N \to \infty} Z_{n,N}(\pi \nu \hat{\omega}/N) = \int_{M_{n} \times M_{F}} Dg_{H} \exp \left(-i\pi B(\hat{\omega}, \Ad(g)\Sigma_{z})\right)
\]

where $\Sigma_{z} = 1_{B,F} \otimes \sigma_{z} \otimes 1_{n}$, $M_{B} \simeq \text{SO}^{\ast}(2n)/U(n)$, and $M_{F} \simeq \text{Sp}(n)/U(n)$.

Remark 3.5: This result expresses the generating function for $N \to \infty$ as an integral over a Riemannian symmetric superspace of type DIII/CI (see Tables 1 and 2) with $m = n$.

In [11] the n-level correlation function R_{n} is calculated exactly from (32) for all n.

IV. OTHER SYMMETRY CLASSES

There exist 10 known universality classes of ergodic disordered single-particle systems. These are the three classic Wigner-Dyson classes (GOE, GUE, GSE), the three “chiral” ones describing a Dirac particle in a random gauge field (chGUE, chGOE, chGSE), and the four classes that can be realized in mesoscopic normal-superconducting (NS) hybrid systems. In Ref. [25] it was noted that there exists a one-to-one correspondence between these universality classes and the large families of symmetric spaces (with the exception of the orthogonal group in odd dimensions). Specifically, the Gaussian random-matrix ensemble over the tangent space of the symmetric space describes the corresponding universality class, in the limit $N \to \infty$. In the notation of Table 1 the correspondences are $A \leftrightarrow \text{GUE}$, $A_{I} \leftrightarrow \text{GOE}$, $A_{II} \leftrightarrow \text{GSE}$, $A_{III} \leftrightarrow \text{chGUE}$, $BD_{I} \leftrightarrow \text{chGOE}$, $C_{I} \leftrightarrow \text{chGSE}$, and the four NS-classes correspond to C, D, C_{I}, and D_{III}.

We have shown in detail how to use the supersymmetry method for the Gaussian ensemble over $C_{N} = \text{sp}(N)$, the tangent space of the symplectic Lie group. There are nine more ensembles to study. We will now briefly run through all these cases, giving only a summary of the essential changes.

A. Class D

Recall the definitions given at the beginning of Sec. III B and replace the symplectic unit by $C = \sigma_{z} \otimes 1_{N}$. What you get is a Gaussian random-matrix ensemble over $D_{N} = \text{so}(2N)$, the orthogonal Lie algebra in $2N$ dimensions. The explicit form of the Hamiltonian is

\[
H = \begin{pmatrix}
a & b \\
b^{\dagger} & -a^{T}
\end{pmatrix}
\]

where a (b) is complex hermitian (resp. skew). The treatment of this ensemble closely parallels that of type C. A change first occurs in the consistency condition for γ, which now reads $\gamma = -\gamma^{T} \sigma$ (instead of $\gamma = \gamma^{T} \sigma$) by $CC^{-1} = +1$. The extra minus sign can be accommodated by simply exchanging the BB- and FF-sectors ($\gamma_{B} \leftrightarrow \gamma_{F}$). The linear constraint $Q = -\gamma Q^{T} \gamma^{-1}$ again defines an osp$(2n|2n)$ Lie algebra, the only difference being that the BB-sector is now “symplectic” while the FF-sector has turned “orthogonal”. Everything else goes through as before and we arrive at the statement of Theorem 3.3 with $U \simeq \text{so}(2n)$, $K \simeq u(n)$, and $K \oplus M \simeq \text{sp}(n, \mathbb{R})$.

A novel feature arises in the large-N limit, where instead of one dominant saddle-point supermanifold there now emerge two. One of them is the orbit with respect to the adjoint action of $\text{Osp}(2n|2n)$ on $Q_{0} = iv1_{B,F} \otimes \sigma_{z} \otimes 1_{n}$ as before, and the other one is the orbit of

\[
Q_{1} = ivE_{BB} \otimes \sigma_{z} \otimes 1_{n} + ivE_{FF} \otimes \sigma_{z} \otimes \left(E_{11} - \sum_{i=2}^{n} E_{ii}\right).
\]

(The orbits of Q_{0} and Q_{1} are disconnected because the Weyl group of $\text{so}(2n)$ is “too small”.) Consequently, the right-hand side of Theorem 3.4 is replaced by a sum of two terms, one for each of the two saddle-point supermanifolds. The integral is over a Riemannian symmetric superspace of type CI/DIII ($m = n$) in both cases.
B. Class CI

Let $V = \mathbb{C}^2 \otimes \mathbb{C}^N$ carry a hermitian inner product (as always), and consider the space, P, of self-adjoint Hamiltonians $H \in \text{End}(V)$ of the form

$$H = H^T = -CH^TC^{-1} = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \quad \text{where} \quad C = i\sigma_y \otimes 1_N = \begin{pmatrix} 0 & 1_N \\ -1_N & 0 \end{pmatrix}.$$

The $N \times N$ matrices a and b are real symmetric. It is easy to see that P is isomorphic to the tangent space of the symmetric space $\text{Sp}(N)/U(N)$ (type CI). A Gaussian measure $d\mu(H)$ on P is completely specified by its first two moments, $\int_P \text{Tr}(AH)d\mu(H) = 0$ and

$$\int_P \text{Tr}(AH)\text{Tr}(BH)d\mu(H) = \frac{e^2}{4N} \text{Tr}(A(B + B^T) - AC(B + B^T)C^{-1}).$$

To deal with the random-matrix ensemble defined by this measure, we take $W = \mathbb{C}^{4|1} \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^n$. Recall $\psi \in \text{Hom}_A(W, V)$ and $\psi \in \text{Hom}_A(V, W)$. The symmetries of H are copied to $\psi\psi$ by imposing the linear conditions

$$\psi = C\psi^T\gamma^T, \quad \psi = -\gamma\psi^TC^{-1}, \quad \psi = \psi^T\tau^{-1}, \quad \psi = \tau\psi^T.$$

In order for these conditions to be mutually consistent, $\tau, \gamma \in \text{End}_0(W)$ must satisfy

$$\gamma = \gamma^T\sigma, \quad \tau = \tau^T\sigma, \quad \gamma\tau^{-1} = -\tau\gamma^{-1}.$$

Without loss, we take γ and τ to be orthogonal. The consistency conditions can then be written in the form

$$\gamma^2 = \sigma = \tau^2, \quad \gamma\tau + \gamma\tau = 0.$$

If $\text{Gl}(W) \simeq \text{Gl}(4n|4n)$ is the Lie supergroup of regular elements in $\text{End}_A(W)$, the equation $\gamma^2 = \sigma$ in conjunction with $g^TT = \sigma g\sigma$ means that the automorphism $\hat{\gamma} : \text{Gl}(W) \rightarrow \text{Gl}(W)$ defined by $\hat{\gamma}(g) = \gamma g^{-1T}\gamma^{-1}$ is involutory. The same is true for $\hat{\tau}$ defined by $\hat{\tau}(g) = \tau g^{-1T}\tau^{-1}$ and, moreover, $\hat{\gamma}$ and $\hat{\tau}$ commute by $\gamma\tau + \gamma\tau = 0$. For definiteness we take

$$\gamma = E_{BB} \otimes \gamma_B + E_{FF} \otimes \gamma_F, \quad \gamma_B = \sigma_x \otimes \sigma_z \otimes 1_n, \quad \gamma_F = i\sigma_y \otimes 1_2 \otimes 1_n,$$

$$\tau = E_{BB} \otimes \tau_B + E_{FF} \otimes \tau_F, \quad \tau_B = 1_2 \otimes \sigma_z \otimes 1_n, \quad \tau_F = \sigma_z \otimes i\sigma_y \otimes 1_n.$$

(This choice is consistent with $\hat{\psi}_B = \beta\psi^T_B, \beta = \sigma_z \otimes 1_2 \otimes 1_n$.) Let

$$Q := \{Q \in \text{End}_A(W)|Q = -\gamma Q^T\gamma^{-1} = +\tau Q^T\tau^{-1}\}$$

be the subspace distinguished by the symmetry properties of $\hat{\psi}_B$. The group $\text{Gl}(W)$ acts on Q by $Q \mapsto gQg^{-1}$. We now ask what is the subgroup G_A of $\text{Gl}(W)$ that leaves the symmetries of Q invariant (the normalizer of Q in $\text{Gl}(W)$).

Lemma 4.1: G_A is isomorphic to $\text{Osp}(2n|2n) \times \text{Osp}(2n|2n)$.

Proof: The conditions on $g \in G_A$ can be phrased as follows:

$$\gamma = g\gamma g^T, \quad \tau = g\tau g^T.$$

Equivalently, G_A can be described as the simultaneous “fixed point set” of the involutory automorphisms $\hat{\gamma}$ and $\hat{\tau}$. We first describe the fixed point set of $\hat{\gamma} \circ \hat{\tau}$, which acts by $(\hat{\gamma} \circ \hat{\tau})(g) = \varepsilon g^{-1}$ where $\varepsilon = -i\gamma \tau^{-1}$. From the explicit expression $\varepsilon = 1_{4W} \otimes \sigma_x \otimes \sigma_y \otimes 1_n$ we see that ε has 4n eigenvalues equal to $+1, 4n$ eigenvalues equal to -1, and these are equally distributed over the bosonic and fermionic subspaces. Hence the subgroup of $\text{Gl}(W)$ fixed by $\hat{\gamma} \circ \hat{\tau}$ is isomorphic to $G_+ \times G_-$ where $G_+ \simeq \text{Gl}(2n|2n) \simeq G_-$. Denote the embedding $G_+ \times G_- \rightarrow \text{Gl}(W)$ by $\phi(g_+, g_-) = g$.

For lack of a better word we borrow the terminology from manifolds. Of course what is meant here is the supermanifold of solutions in $\text{Gl}(W)$ of the nonlinear equations $g = \hat{\gamma}(g) = \hat{\tau}(g)$.
The group G_{Λ} is the fixed point set of $\hat{\tau}$ (or, equivalently, of $\hat{\gamma}$) in $\varphi(G_+ \times G_-)$ ($\hat{\tau}$ commutes with $\hat{\gamma} \circ \hat{\tau}$ and therefore takes $\varphi(G_+ \times G_-)$ into itself). Note $\varepsilon \tau = -\tau \varepsilon$, $\varepsilon^{-1} T = -\varepsilon$, and for $g \in \varphi(G_+ \times G_-)$ do the following little calculation:

$$\varepsilon \hat{\tau}(g) = \varepsilon \tau g^{-1} T \tau^{-1} = -\tau \varepsilon g^{-1} T \tau^{-1} = \tau (\varepsilon g)^{-1} T \tau^{-1} = \hat{\tau}(\varepsilon g).$$

Combining this with $\varepsilon \varphi(g_+, g_-) = \varphi(g_+, -g_-)$ one infers that $\hat{\tau}$ acting on $\varphi(G_+ \times G_-)$ is of the form $\hat{\tau} \varphi(g_+, g_-) = \varphi(\hat{\tau}(g_+), \hat{\tau}(-g_-))$. By a short calculation (work in an eigenbasis of ε) one sees that the involutory automorphisms $\hat{\tau}_i: GL(2n|2n) \to GL(2n|2n)$ ($i = \pm$) are expressed by $\hat{\tau}_i(g) = \gamma_i g \gamma_i^{-1} T \gamma_i^{-1}$ with supersymmetric γ_i ($\gamma_i = \tau_i T \gamma_i$). It follows that $\hat{\tau}_i$ fixes an orthosymplectic subgroup of $G_i \simeq GL(2n|2n)$, so $G_{\Lambda} \simeq Osp(2n|2n) \times Osp(2n|2n)$ as claimed.

Corollary 4.2: The space \mathcal{Q} is isomorphic to the complement of $osp(2n|2n) \oplus osp(2n|2n)$ in $osp(4n|4n)$.

Proof: The solution space in $End_A(W)$ of $Q = -\gamma Q^T \gamma^{-1}$ is an $osp(4n|4n)$ algebra. Implementing the second condition $Q = +\tau Q^T \tau^{-1}$ amounts to removing from $osp(4n|4n)$ the subalgebra fixed by $X = -\tau X^T \tau^{-1}$. By linearization of the conditions $g = \hat{\gamma}(g) = \hat{\tau}(g)$, this subalgebra is identified as $Lie(G_{\Lambda}) \simeq osp(2n|2n) \oplus osp(2n|2n)$. ■

The Gaussian integral identity \(^{(10)}\) continues to hold, albeit with a different value of $c = 1/4$. The proof is essentially the same as before.

Since \mathcal{Q} is not a Lie algebra, the description of the correct choice of integration domain for the auxiliary variable Q is more complicated than before. In the FF-sector we take $\mathcal{U} := \{Q_{FF} \in Q_{ FF} | Q_{FF} = -Q_{FF}^T \}$. By Corollary 4.2, $sp(2n) \simeq (sp(n) \oplus sp(n)) \oplus \mathcal{U}$. To deal with the BB-sector we introduce the spaces

$$\mathcal{G} = \{X \in gl(2n, \mathbb{C}) \mid X = -\gamma B X^T \gamma B^{-1} = -\beta X^T \beta^{-1}, \}$$

$$\mathcal{M} = \{Y \in \mathcal{G} \mid Y = -\beta Y^T \beta^{-1}, \}$$

$$\mathcal{P}^\pm = \{X \in \mathcal{Q}_{BB} \mid X = -\beta X^T \beta^{-1} = \pm \beta X^T \beta^{-1} \}.$$

where $\beta = \sigma_1 \otimes 1_2 \otimes 1_n$. The Lie algebra \mathcal{G} is a noncompact real form of the BB-part of $Lie(G_{\Lambda})$. By $\beta \in i \mathcal{P}^+$ and the commutation relations $[\mathcal{M}, \mathcal{P}^+] \subset \mathcal{P}^-$ and $[\mathcal{M}, \mathcal{P}^-] \subset \mathcal{P}^+$, we have an embedding

$$\phi_b : \mathcal{P}^+ \times \mathcal{M} \to \mathcal{Q}_{BB} = \mathcal{P}^+_C + \mathcal{P}^-_C,$$

$$(X, Y) \mapsto b \times (X + e^{ad(Y)} \beta).$$

Similar considerations as in Sec. \(^{[10]}\) show that all integrals are rendered convergent by the choice of integration domain $\phi_b(\mathcal{P}^+ \times \mathcal{M}) \times \mathcal{U}$ ($b > 0$) for Q. With this choice we again arrive at Theorem 3.3.

The large-N limit is dominated by a single saddle-point supermanifold, which can be taken as the orbit of $Q_0 = i e \Sigma_\pi$ (here $\Sigma_\pi = 1_B \otimes \sigma_1 \otimes 1_2 \otimes 1_n$) under the adjoint action of G_{Λ}. This orbit is diffeomorphic to G_{Λ}/H_{Λ} where $H_{\Lambda} = \{h \in G_{\Lambda} \mid h \Sigma_\pi h^{-1} = \Sigma_\pi \}$. The stability group H_{Λ} can equivalently be described as the fixed point set of $\hat{\Sigma}_\pi : G_{\Lambda} \to G_{\Lambda}, \hat{\Sigma}_\pi(g) = \Sigma_\pi g \Sigma_\pi$. By the relations $\Sigma_\pi = \Sigma_\pi^T = -\gamma \Sigma_\pi \gamma^{-1} = \tau \Sigma_\pi \tau^{-1} (\Sigma_\pi \in \mathcal{Q})$, the element Σ_π anticommutes with $e = -i \gamma \tau^{-1}$, and Σ_π commutes with $\hat{\gamma} \circ \hat{\tau}$. These relations are compatible with the existence of an embedding $\phi : Osp(2n|2n) \times Osp(2n|2n) \to GL(W)$ such that $(\Sigma_\pi \circ \phi)(g_+, g_-) = \phi(g_-, g_+)$. (Such an embedding is easily constructed.) Hence $H_{\Lambda} \simeq diag(Osp(2n|2n) \times Osp(2n|2n)) \simeq Osp(2n|2n)$. In this way we arrive at Theorem 3.4 with $G_{\Lambda}/H_{\Lambda} \simeq Osp(2n|2n)$, and the maximal Riemannian submanifold $M_B \times M_F$ where $M_B \simeq SO(2n, \mathbb{C})/SO(2n)$ and $M_F \simeq Sp(n)$ (type $D(C)^T$).

C. Class DIII

Consider for $V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^N$ the linear space

$$P = \{H \in End(V) \mid H = H^t = -CH^T \Sigma C^{-1} = +T H^T T^{-1} \},$$

where $\Sigma = \sigma_x \otimes 1_2 \otimes 1_N$ and $T = 1_2 \otimes i \sigma_y \otimes 1_N$. It has been shown \(^{[28]}\) that P is isomorphic to the tangent space of $SO(4N)/U(2N)$ (a symmetric space of type DIII). Introducing an orthonormal real basis of V, we can represent H by a $4N \times 4N$ matrix. If \mathcal{C} and \mathcal{T} are given by

Since the orthogonal group here always appears with an even dimension, we use the simplified notation $D(C)$, instead of $BD(C)$ as in Table 2.
The present formalism). The Gaussian ensemble of random matrices H to $\text{Osp}(2n|\omega, \tau) = \text{diag}(1_p, \cdots, 1_p 1_q, \cdots, 1_q)$, where p and q are even, is taken to have second moment.

Given the auxiliary space $W := \mathbb{C}^i \otimes \mathbb{C}^j \otimes \mathbb{C}^2 \otimes \mathbb{C}^n$, we impose on $\psi \in \text{Hom}_\Lambda(W, V)$, $\tilde{\psi} \in \text{Hom}_\Lambda(V, W)$ the linear conditions

$$
\psi = \gamma \tilde{\psi}^T \sigma^1, \quad \tilde{\psi} = -C \psi^T \gamma^{-1},
$$

$$
\psi = \tau \tilde{\psi}^T \tau^{-1}, \quad \tilde{\psi} = T \psi^T \tau^{-1},
$$

with some invertible orthogonal elements γ, τ of $\text{End}_0(W)$. Consistency requires $\gamma^2 = -\sigma = \tau^2$ and $\gamma \tau + \tau \gamma = 0$. A possible choice is

$$
\gamma = (E_{BB} \otimes i \sigma_y \otimes 1_2 + E_{FF} \otimes \sigma_x \otimes 1_2) \otimes 1_n,
\tau = (E_{BB} \otimes \sigma_z \otimes i \sigma_y + E_{FF} \otimes 1_2 \otimes 1_2) \otimes 1_n.
$$

Because this differs from class CI only by the exchange of the bosonic and fermionic subspaces, the following development closely parallels that for CI, and we arrive at another variant of Theorem 3.3.

The large-N limit is dominated by a pair of complex-analytic saddle-point supermanifolds, each being isomorphic to $\text{Osp}(2n|2n)$ (The reason why there are two is that $O(2n, \mathbb{C}$) has two connected components.) The first one is the orbit under $\text{Ad}(\Gamma_{\Lambda})$ of $Q_0 = iv_1 \beta_F \otimes \sigma_z \otimes 1_2 \otimes 1_n$, and the second one is the orbit of

$$
Q_1 = iv \left(E_{BB} \otimes \sigma_z \otimes 1_2 \otimes 1_2 + E_{FF} \otimes (1_2 \otimes \sigma_x \otimes E_{11} + \sigma_z \otimes 1_2 \otimes \sum_{i=2}^n E_{ii}) \right).
$$

Both saddle-point supermanifolds are Riemannian symmetric superspaces of type $C|D$ with dimensionality $m = 2n$ (Table 2).

D. Class AIII

The tangent space at the origin of $\text{U}(p, q)/\text{U}(p) \times \text{U}(q)$ consists of the matrices of the form

$$
H = \begin{pmatrix} 0 & Z & \text{Z}^\dagger & 0 \\ Z^\dagger & 0 & 0 & 0 \end{pmatrix},
$$

where Z is complex and has dimension $p \times q$. Such matrices are equivalently described by $H^\dagger = H = -\mathcal{P} \mathcal{H} \mathcal{P}^{-1}$ where $\mathcal{P} = \text{diag}(1_p, -1_q)$. For simplicity, we will consider only the case $p = q$ (the general case has not yet been analyzed in the present formalism). The Gaussian ensemble of random matrices H is taken to have second moment

$$
\int \text{Tr}(AH) \text{Tr}(BH) \mu(H) = \frac{\omega^2}{2N} \text{Tr} (AB - A \mathcal{P} \mathcal{B} \mathcal{P}^{-1}).
$$

The physical space is $V = \mathbb{C}^2 \otimes \mathbb{C}^p$, and the auxiliary space is $W = \mathbb{C}^{\|i} \otimes \mathbb{C}^2 \otimes \mathbb{C}^n$. The definition of ω is unchanged from class C. To implement the symmetry condition $\psi \tilde{\psi} = -\mathcal{P} \psi \tilde{\psi} \mathcal{P}^{-1}$ we set...
\[\psi = i\mathcal{P}\psi^{-1}, \quad \tilde{\psi} = i\pi\tilde{\psi}^\mathcal{P}^{-1} \]

where \(\pi = 1_{1\text{BF}} \otimes i\sigma_y \otimes 1_n \). This choice is consistent with the relation \(\tilde{\psi}_B = \beta \psi_B^1 \) which ensures convergence of the \((\psi, \tilde{\psi})\)-integration. The auxiliary variable \(Q \) ranges over the complex-analytic superspace

\[Q = \{ Q \in \text{End}_A(W) | Q = -\pi Q\pi^{-1} \}, \]

and the normalizer of \(Q \) in \(\text{Gl}(W) \) is:

\[G_A = \{ g \in \text{Gl}(W) | g = \pi g \pi^{-1} \} \simeq \text{Gl}(n|n) \times \text{Gl}(n|n). \]

For the integration domain \(U \) in the FF-sector we again take the antihermitian matrices in \(Q_{\text{FF}} \). In the BB-sector we set

\[\mathcal{M} = \{ Y \in \text{End}_C(W_B) | Y = \pi Y \pi^{-1} = -\beta Y \beta^{-1} = Y^\dagger \}, \]
\[\mathcal{P}^\pm = \{ X \in \text{End}_C(W_B) | X = -\pi X \pi^{-1} = \pm \beta X \beta^{-1} = \mp X^\dagger \}. \]

The treatment of Sec. III E then goes through as before, leading again to Theorem 3.3.

There is a single dominant saddle-point supermanifold, which is the \(\text{Ad}(G_A) \)-orbit of \(Q_0 = iv1_{1\text{BF}} \otimes \sigma_z \otimes 1_n \) and is diffeomorphic to \(G_A/H_A \simeq \text{Gl}(2n|2n) \). The integration domain \(M_B \times M_F \) is given by \(M_B \simeq \text{Gl}(n, \mathbb{C})/\text{U}(n) \) and \(M_F = \text{U}(2n)/\text{Sp}(n) \). The symmetric Berezin measure of this Riemannian symmetric superspace of type \(A|A \) was discussed for \(n = 1 \) in Example 2.4.

E. Class BDI

The form of the random-matrix Hamiltonian \(H \) for class BDI can be obtained from the preceding case by taking the \(p \times q \) matrix \(Z \) to be real. Put in formulas, \(H \) is subject to \(H^\dagger = H = H^T = -\mathcal{P}H\mathcal{P}^{-1} \). We again make the restriction to \(p = q \). The basic correlation law of the Gaussian ensemble is

\[\int \text{Tr}(A H)\text{Tr}(B H) d\mu(H) = \frac{\nu^2}{4N} \text{Tr}(A(B + B^T) - A\mathcal{P}(B + B^T)\mathcal{P}^{-1}). \]

To accommodate the extra symmetry \(H = H^T \), auxiliary space is extended to \(W = \mathbb{C}^1 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^n \). The symmetry conditions on \(\psi, \tilde{\psi} \) are

\[\psi = i\mathcal{P}\psi^{-1}, \quad \tilde{\psi} = i\pi\tilde{\psi}^\mathcal{P}^{-1}; \quad \psi = \tilde{\psi}^\mathcal{T} \tau^{-1}, \quad \tilde{\psi} = \tau \psi^T, \]

where \(\pi = 1_{1\text{BF}} \otimes i\sigma_y \otimes 1_2 \otimes 1_n \) and \(\tau = (E_{BB} \otimes 1_2 \otimes \sigma_x + E_{FF} \otimes 1_2 \otimes i\sigma_y) \otimes 1_n \). The auxiliary integration space

\[Q = \{ Q \in \text{End}_A(W) | Q = -\pi Q\pi^{-1} = +\tau Q^T \tau^{-1} \} \]

has symmetry group (or normalizer)

\[G_A = \{ g \in \text{Gl}(W) | g = \pi g \pi^{-1} = \tau g^{-1T} \tau^{-1} \} \simeq \text{Gl}(2n|2n). \]

For the integration domain \(U \) in the FF-sector we once again take the antihermitian matrices in \(Q_{\text{FF}} \). In the BB-sector we set

\[\mathcal{M} = \{ Y \in \text{End}_C(W_B) | Y = \pi Y \pi^{-1} = -\tau Y^T \tau^{-1} = -\beta Y \beta^{-1} = Y^\dagger \}, \]
\[\mathcal{P}^\pm = \{ X \in \text{End}_C(W_B) | X = -\tau X \tau^{-1} = +\tau X^T \tau^{-1} = \pm \beta X \beta^{-1} = \mp X^\dagger \}. \]

The treatment of Sec. III E then goes through with modifications as in Sec. III B.

There is a single dominant saddle-point supermanifold, which is the \(\text{Ad}(G_A) \)-orbit of \(Q_0 = iv1_{1\text{BF}} \otimes \sigma_z \otimes 1_2 \otimes 1_n \) and is diffeomorphic to \(G_A/H_A \simeq \text{Gl}(2n|2n)/\text{Osp}(2n|2n) \). The integration domain \(M_B \times M_F \) is given by \(M_B \simeq \text{Gl}(2n, \mathbb{R})/\text{O}(2n) \) and \(M_F = \text{U}(2n)/\text{Sp}(n) \). This is a Riemannian symmetric superspace of type \(AI|AI \) with \(m = 2n \) (Table 2).
F. Class CII

The tangent space at the origin of \(\text{Sp}(N, N)/\text{Sp}(N) \times \text{Sp}(N) \) (a noncompact symmetric space of type CII) can be described by the equations

\[
H^1 = H = -\mathcal{P}HP^{-1} = -\mathcal{T}H^T\mathcal{T}^{-1},
\]

where \(\mathcal{P} = \sigma_z \otimes 1_2 \otimes 1_N \) and \(\mathcal{T} = 1_2 \otimes i\sigma_y \otimes 1_N \) (the physical space is \(V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^N \)). The explicit form of the matrices is

\[
H = \begin{pmatrix}
0 & 0 & a & b \\
0 & 0 & -\bar{b} & \bar{a} \\
a^T & b^T & 0 & 0 \\
b^T & a^T & 0 & 0
\end{pmatrix},
\]

\[
\text{if } \mathcal{P} = \begin{pmatrix}
1_N & 0 & 0 & 0 \\
0 & 1_N & 0 & 0 \\
0 & 0 & -1_N & 0 \\
0 & 0 & 0 & -1_N
\end{pmatrix}
\]

and \(\mathcal{T} = \begin{pmatrix}
0 & 1_N & 0 & 0 \\
-1_N & 0 & 0 & 0 \\
0 & 0 & 0 & 1_N \\
0 & 0 & -1_N & 0
\end{pmatrix} \),

where \(a \) and \(b \) are complex and have dimension \(N \times N \). The correlation law of the Gaussian random-matrix ensemble of type CII is

\[
\int \text{Tr}(AH)\text{Tr}(BH)d\mu(H) = \frac{\nu^2}{4N}\text{Tr}(A - \mathcal{P}AP^{-1})(B - \mathcal{T}B^T\mathcal{T}^{-1}).
\]

As before, \(W = \mathbb{C}^{1|1} \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^n \). The symmetry conditions on \(\psi, \tilde{\psi} \) are

\[
\psi = i\mathcal{P}\psi^{-1}, \quad \tilde{\psi} = i\mathcal{T}\tilde{\psi}^{-1}; \quad \psi = \mathcal{T}\tilde{\psi}^{-1}, \quad \tilde{\psi} = \tau\psi^T\tau^{-1},
\]

where \(\pi = 1_{BF} \otimes i\sigma_y \otimes 1_2 \otimes 1_n \) and \(\tau = (E_{BB} \otimes 1_2 \otimes i\sigma_y + E_{FF} \otimes 1_2 \otimes \sigma_x) \otimes 1_n \). This differs from class BDI only by the exchange of the bosonic and fermionic subspaces. Once more we arrive at another version of Theorem 3.3.

There is only one complex-analytic supermanifold of saddle-points that dominates for \(N \to \infty \). It is isomorphic to that for class BDI. The integration domain \(M_B \times M_F \) changes to \(M_B \simeq U^*(2n)/\text{Sp}(n) \) and \(M_F \simeq U(2n)/O(2n) \) (not \(U(2n)/\text{SO}(2n) \)). This is a Riemannian symmetric superspace of type AII|AI with \(m = 2n \) (Table 2). The group \(U^*(2n) \) is defined as the noncompact real subgroup of \(\text{GL}(2n, \mathbb{C}) \) fixed by \(g = \mathcal{C}g\mathcal{C}^{-1} \) where \(\mathcal{C} = i\sigma_y \otimes 1_n \).

G. Class A

This class for \(n = 1 \) was used to illustrate our general strategy in Sec. III.A. Let us now do the case of arbitrary \(n \),

\[
Z_n(\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n) = \int_{\text{in}(N)} \prod_{i=1}^{n} \text{Det} \left(\frac{H - \beta_i}{H - \alpha_i} \right) d\mu(H).
\]

The classes treated so far (\(C, D, CI, DIII, AIII, BDI, CII \)) all share one feature, namely the existence of a particle-hole type of symmetry (\(H = -\mathcal{P}HP^{-1} \) or \(H = -\mathcal{T}H^T\mathcal{T}^{-1} \)), which allows to restrict all \(\alpha_i \) to one half of the complex plane. Such a symmetry is absent for the Wigner-Dyson symmetry classes A, AI, and AII, which results in a somewhat different scenario as it now matters how many \(\alpha_i \) lie above or below the real axis. For definiteness let

\[
\text{Im} \alpha_i < 0 \quad (i = 1, \ldots, n_A), \quad \text{Im} \alpha_j > 0 \quad (j = n_A + 1, \ldots, n),
\]

and set \(n_R = n - n_A \).

Auxiliary space is taken to be \(W = \mathbb{C}^{1|1} \otimes \mathbb{C}^n \). The definition of \(\omega \) changes to

\[
\omega = E_{BB} \otimes \sum_{i=1}^{n} \alpha_i E_{ii} + E_{FF} \otimes \sum_{j=1}^{n} \beta_j E_{jj}.
\]

Recall that the imaginary parts of the \(\alpha_i \) steer the convergence of the \((\psi, \tilde{\psi})\)-integration. Since \(\omega \) couples to \(\psi, \tilde{\psi} \) by \(\exp -i\text{STr}_W \omega \tilde{\psi} \psi \), convergence forces us to take \(\tilde{\psi}_B = \beta \psi_B^+ \) where
\[\beta = \sum_{i=1}^{n_A} E_{ii} - \sum_{j=n_A+1}^{n} E_{jj}. \]

There are no further constraints on \(\psi, \tilde{\psi}, \) or \(Q \). Thus the complex-analytic auxiliary integration space is \(Q = \text{End}_{\mathbb{A}}(W) \), and \(G_A = \text{Gl}(W) \simeq \text{Gl}(n|n) \).

The integration domain for \(Q \) in the FF-sector is taken to be the antihermitian matrices \(U = u(n) \). In the BB-sector we introduce
\[G = \{ X \in \text{gl}(n, \mathbb{C}) | X = -\beta X^\dagger \beta^{-1} \}, \quad K = \{ X \in G | X = \beta X \beta^{-1} \}. \]

The Lie algebra \(G \) is a noncompact real form \(u(n_A, n_R) \) of \(\text{gl}(n, \mathbb{C}) \), and \(K = u(n_A) \oplus u(n_R) \) is a maximal compact subalgebra. The space \(M \) is defined by the Cartan decomposition \(G = K \oplus M \). The integration domain for \(Q_{BB} \) is taken to be \(i \phi_b(K \times M) \) where \(\phi_b(X, Y) = b(X + e^{i\alpha} Y) \) \((b > 0)\). This gives Theorem 3.3.

By simple power counting, the limit \(N \to \infty \) is again dominated by a single complex-analytic saddle-point supermanifold, which is the \(\text{Ad}(G_A) \)-orbit of \(Q_0 = iv1_{BB} \otimes \beta \). The stability group \(H_A \) of \(Q_0 \) is \(H_A = \text{Gl}(n_A|n_A) \times \text{Gl}(n_R|n_R) \), so
\[\text{Ad}(G_A)Q_0 \simeq G_A/H_A = \text{Gl}(n|n)/\text{Gl}(n_A|n_A) \times \text{Gl}(n_R|n_R). \]

The intersection of \(\text{Ad}(G_A)Q_0 \) with \(i\phi_b(K \times M) \times U \) is \(M_B \times M_F \) where \(M_B \simeq U(n_A, n_R)/U(n_A) \times U(n_R) \) and \(M_F \simeq U(n_A+n_R)/U(n_A) \times U(n_R) \). This is a Riemannian symmetric superspace of type \(AHI/AHI \) with \(n_1 = n_1 = n_A \) and \(m_2 = n_2 = n_R \) (see Table 2).

H. Class AI

The tangent space of \(U(N)/O(N) \) is the same as \((i \) times\) the real symmetric matrices \(H^\dagger = H = H^T \). It differs from the tangent space of \(SU(N)/SO(N) \), a symmetric space of type \(AI \), in an inessential way (just remove the multiples of the unit matrix). The Gaussian ensemble over the real symmetric matrices has its second moment given by
\[\int \text{Tr}(AH)\text{Tr}(BH)d\mu(H) = \frac{n^2}{2N}\text{Tr}(AB + AB^T). \]

This ensemble is related to type \(A \) in the same way that type \(CI \) is related to type \(C \).

To implement the symmetry \(H = H^T \) we set \(W = \mathbb{C}^{1|1} \otimes \mathbb{C}^2 \otimes \mathbb{C}^n \) and require \(\psi = \tilde{\psi}^T \tau^{-1}, \tilde{\psi} = \tau \psi^T \) where \(\tau = (E_{BB} \otimes \sigma_x + E_{EF} \otimes i\sigma_y) \otimes 1_n \). The auxiliary integration space
\[Q = \{ Q \in \text{End}_{\mathbb{A}}(W)|Q = \tau Q^T \tau^{-1} \} \]
has the symmetry group
\[G_A = \{ g \in \text{Gl}(W)|g = \tau g^{-1} \tau^{-1} \} \simeq \text{Osp}(2n|2n). \]

The intersection \(U \) of the FF-sector \(Q_{EF} \) with the antihermitian matrices is given by \(\text{sp}(n) \oplus U = u(2n) \). In the BB-sector we put
\[M = \{ Y \in \text{End}_{\mathbb{C}}(W_B)|Y = -\tau Y^T \tau^{-1} = -\beta Y \beta^{-1} = Y^\dagger \}, \]
\[P^\pm = \{ X \in \text{End}_{\mathbb{C}}(W_B)|X = +\tau X^T \tau^{-1} = \pm\beta X \beta^{-1} = \mp X^\dagger \}, \]
which leads to yet another version of Theorem 3.3.

The large-\(N \) limit is controlled by a single complex-analytic saddle-point supermanifold \(\text{Ad}(G_A)Q_0 \simeq G_A/H_A \) where
\[H_A \simeq \text{Osp}(2n_A|2n_A) \times \text{Osp}(2n_R|2n_R) \] is the stability group of \(Q_0 = iv1_{BB} \otimes \left(\sum_{i=1}^{n_A} E_{ii} - \sum_{j=n_A+1}^{n} E_{jj} \right) \). The intersection of \(\text{Ad}(G_A)Q_0 \) with the integration domain \(\phi_e(P^+ \times M) \times U \) is \(M_B \times M_F \) where \(M_B \simeq \text{SO}(2n_A, 2n_R)/\text{SO}(2n_A) \times \text{SO}(2n_R) \) and \(M_F \simeq \text{Sp}(n_A + n_R)/\text{Sp}(n_A) \times \text{Sp}(n_R) \). This is a Riemannian symmetric superspace of type \(BDI/CH \) (Table 2) with \(m_1 = 2n_1 = 2n_A \) and \(m_2 = 2n_2 = 2n_R \).
I. Class AII

Finally, the tangent space of $U(2N)/Sp(N)$ (a symmetric space of type AII, except for the substitution $SU(2N) \rightarrow U(2N)$) can be described as (i times) the subspace of $\text{End}(\mathbb{C}^2 \otimes \mathbb{C}^N)$ fixed by the linear equations $H^1 = H = TH^T T^{-1}$, $T = i\sigma_y \otimes 1_N$. The explicit matrix form of H is

$$H = \begin{pmatrix} a & b \\ b^* & a^T \end{pmatrix}$$

where b is skew and a is hermitian.

The conditions $\psi = T\tilde{\psi}^T T^{-1}$ and $\tilde{\psi} = \tau \psi \tilde{T}^{-1}$ are mutually consistent if, say, $\tau = (E_{BB} \otimes i\sigma_y + E_{FF} \otimes \sigma_z) \otimes 1_n$. The rest of the manipulations leading up to Theorem 3.3 are the same as for class AI, except for the exchange of the bosonic and fermionic subspaces ($\tau_B \leftrightarrow \tau_F$). The large-$N$ limit is controlled by a single saddle-point supermanifold $(G_A/H_A, M_B \times M_F)$ where

$$G_A/H_A = \text{Osp}(2n|2n)/\text{Osp}(2n_A|2n_A) \times \text{Osp}(2n_R|2n_R),$$

$$M_B = \text{Sp}(n_A, n_R)/\text{Sp}(n_A) \times \text{Sp}(n_R),$$

$$M_F = \text{SO}(2n_A + 2n_R)/\text{SO}(2n_A) \times \text{SO}(2n_R),$$

which is a Riemannian symmetric superspace of type CII|BDI (Table 2) with $m_1 = 2n_1 = 2n_A$ and $m_2 = 2n_2 = 2n_R$.

V. SUMMARY

When Dyson realized that the random-matrix ensembles he had introduced were based on the symmetric spaces of type A, AI and AII, he wrote: “The proof of [the] Theorem ... is a mere verification. It would be highly desirable to find a more illuminating proof, in which the appearance of the [final result] might be related directly to the structure of the symmetric space...”. The advent of the supersymmetry method of Efetov and others has improved the situation lamented by Dyson. The present work takes the Gaussian random-matrix ensembles defined over Cartan’s large families of symmetric spaces and, going to the limit of large matrix dimension, expresses their spectral correlation functions as integrals over the corresponding Riemannian symmetric superspaces. These correspondences are summarized in Table 3.

RMT	comments	RSS	dimensions
A	Wigner-Dyson (GUE)	AIII	$m = n$
AI	Wigner-Dyson (GOE)	AII	$m = n$
AII	Wigner-Dyson (GSE)	BDI	$m = n$
AIII ($p = q$)	chiral GUE	C	$m = n$
BDI ($p = q$)	chiral GOE	CI	$m = n$
CII ($p = q$)	chiral GSE	DIII	$m = n$

Table 3: The symmetric-space based random-matrix theories of the first column map onto the Riemannian symmetric superspaces listed in the third column. The notation for the dimensions is taken from Table 2.

The Riemannian symmetric superspaces that appear in Table 3 all have superdimension (p, q) with $p = q$. We say that they are “perfectly graded” or “supersymmetric”. An interesting question for future mathematical research is whether our procedure can be optimized by reducing it to a computation involving no more than the root system of the symmetric space, thereby obviating the space- and time-consuming need to distinguish cases. (Although I have treated all ten cases separately, it is possible, following Efetov, to shorten the derivation by starting from a large “master ensemble” of highest symmetry and then reducing it by the addition of symmetry-breaking terms. I chose not to follow this route as it involves handling large tensor products, which makes the computations less transparent and the identification of the spaces involved more difficult.)

25
The great strength of the supersymmetry method, as compared to other methods of mesoscopic physics, stems from the fact that it easily extends beyond the universal random-matrix limit to diffusive and localized systems. What one obtains for these more general systems are field theories of the nonlinear σ model type, with fields that take values in a Riemannian symmetric superspace. The method also extends beyond spectral correlations and allows the calculation of wave function statistics and of transport coefficients such as the electrical conductance (see the literature cited in the introduction).

Let me end on a provocative note. Mathematicians and mathematical physicists working on supermanifold theory have taken much guidance from developments in such esoteric subjects as supergravity and superstring theory. Wouldn’t it be just as worthwhile to investigate the beautiful structures outlined in the present paper, whose physical basis is not speculative but firmly established, and which are of direct relevance to experiments that are currently being performed in physics laboratories all over the world?

This research was supported in part by the National Science Foundation under Grant No. PHY94-07194.

[1] F. Wegner, “The mobility edge problem: continuous symmetry and a conjecture”, Z. Phys. B35, 207-210 (1979).
[2] L. Schäfer and F. Wegner, “Disordered system with n orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes”, Z. Phys. B38, 113-126 (1980).
[3] K.B. Efetov, “Supersymmetry and theory of disordered metals”, Adv. Phys. 32, 53-127 (1983).
[4] J.J.M. Verbaarschot, H.A. Weidenmüller, and M.R. Zirnbauer, “Grassmann variables in stochastic quantum physics: the case of compound-nucleus scattering”, Phys. Rep. 129, 367-438 (1985).
[5] F.J. Dyson, “Statistical theory of the energy levels of complex systems”, J. Math. Phys. 3, 140 (1962).
[6] K.B. Efetov, “Anderson metal-insulator transition in a system of metal granules: existence of a minimum metallic conductivity and a maximum dielectric constant”, Zh. Eksp. Teor. Fiz. 88, 1032-1052 (1985).
[7] M.R. Zirnbauer, “Localization transition on the Bethe lattice”, Phys. Rev. B34, 6394-6408 (1986).
[8] A.D. Mirlin and Yu.V. Fyodorov, “Localization transition in the Anderson model on the Bethe lattice: spontaneous symmetry breaking and correlation functions”, Nucl. Phys. B366, 507-532 (1991).
[9] K.B. Efetov and A.I. Larkin, “Kinetics of a quantum particle in a long metallic wire”, Zh. Eksp. Teor. Fiz. 85, 764-778 (1983).
[10] M.R. Zirnbauer, “Fourier analysis on a hyperbolic supermanifold of constant curvature”, Commun. Math. Phys. 141, 503-522 (1991).
[11] M.R. Zirnbauer, “Super Fourier analysis and localization in disordered wires”, Phys. Rev. Lett. 69, 1584-1587 (1992).
[12] A.D. Mirlin, A. Müller-Groeling, and M.R. Zirnbauer, “Conductance fluctuations of disordered wires: Fourier analysis on supersymmetric spaces”, Ann. Phys. 236, 325-373 (1994).
[13] P.W. Brouwer and K. Frahm, “Quantum transport in disordered wires: equivalence of the onedimensional σ model and the Dorokhov-Mello-Pereyra-Kumar equation”, Phys. Rev. B53, 1490-1501 (1996).
[14] B.A. Muzykantskii and D.E. Khmelnitskii, “Nearly localized states in weakly disordered conductors”, Phys. Rev. B51, 5480-5483 (1995).
[15] V.I. Falko and K.B. Efetov, “Statistics of pre-localized states in disordered conductors”, Phys. Rev. B52, 17413-17429 (1995).
[16] A.D. Mirlin, “Distribution of local density of states in disordered metallic samples: logarithmically normal asymptotics”, Phys. Rev. B53, 1186-1192 (1996).
[17] Z. Pluhar, H.A. Weidenmuller, J.A. Zuk, C.H. Lewenkopf and F.J. Wegner, “Crossover from orthogonal to unitary symmetry for ballistic electron transport in chaotic microstructures”, Ann. Phys. 243, 1-64 (1995).
[18] P.J. Forrester and J.A. Zuk, “Applications of the Dotsenko-Fateev integral in random-matrix models”, cond-mat/9602084.
[19] B.A. Muzykantskii and D.E. Khmelnitskii, “Effective action in the theory of quasi-ballistic disordered conductors”, Pis’ma Zh. Eksp. Teor. Fiz. 62, 68-74 (1995).
[20] A.V. Andreev, O. Agam, B.D. Simons and B.L. Altshuler, “Quantum chaos, irreversible classical dynamics and random matrix theory”, cond-mat/9601001.
[21] R. Gade, “Anderson localization for sublattice models”, Nucl. Phys. B398, 499-515 (1993).
[22] J.J.M. Verbaarschot, “Spectrum of the QCD Dirac operator and chiral random matrix theory”, Phys. Rev. Lett. 72, 2531-33 (1994).
[23] A.V. Andreev, B.D. Simons, and N. Taniguchi, “Supersymmetry applied to the spectrum edge of random matrix ensembles”, Nucl. Phys. B432, 487-517 (1994).
[24] A. Altland and M.R. Zirnbauer, “Random matrix theory of a chaotic Andreev quantum dot”, Phys. Rev. Lett. 76, 3420-3423 (1996).
[25] A. Altland and M.R. Zirnbauer, “Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures”, cond-mat/9602137.
[26] F.A. Berezin and D.A. Leites, “Supermanifolds”, Sov. Math. Dokl. 16, 1218-1222 (1975).
[27] B. Kostant, “Graded manifolds, graded Lie theory, and prequantization”, Lect. Notes Math. 570, 177-406 (1977).
[28] C. Bartocci, U. Bruzzo, and D. Hernández-Ruipérez, The geometry of supermanifolds (Kluwer, Dordrecht, 1991).
[29] F.A. Berezin, Introduction to Superanalysis (Reidel, Dordrecht, 1987).
[30] M. J. Rothstein, “Integration on noncompact supermanifolds”, Trans. Amer. Math. Soc. 299, 387-396 (1987).
[31] A. Rogers, “On the existence of global integral superforms on supermanifolds”, J. Math. Phys. 26, 2749-2753 (1985).
[32] M. J. Rothstein, “The axioms of supermanifolds and a new structure arising from them”, Trans. Amer. Math. Soc. 297, 159-180 (1986).
[33] A. Rogers, “A global theory of supermanifolds”, J. Math. Phys. 21, 1352-1365 (1980).
[34] A. Rogers, “Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras”, Commun. Math. Phys. 105, 375-384 (1986).
[35] V.G. Kac, “Lie superalgebras”, Adv. Math. 26, 8-46 (1977).
[36] M. Scheunert, “The theory of Lie superalgebras”, Lect. Notes Math. 716 (Springer, Berlin, 1979).
[37] S. Helgason, Differential geometry, Lie groups, and symmetric spaces (Academic Press, New York, 1978).
[38] E. Brézin, “Grassmann variables and supersymmetry in the theory of disordered systems”, Lect. Notes Phys. 216, 115-123 (1984).
[39] M.L. Mehta, Random Matrices (Academic Press, New York, 1991).
[40] A.A.W. Pruisken and L. Schäfer, “The Anderson model for electron localization, nonlinear σ model, asymptotic gauge invariance”, Nucl. Phys. B200, 20-44 (1982).
[41] M.R. Zirnbauer, “Supersymmetry for systems with unitary disorder: circular ensembles”, submitted to J. Phys. A (June 1996).
[42] F.J. Dyson, “Correlations between eigenvalues of a random matrix”, Commun. Math. Phys. 19, 235-250 (1970).