A neuroscientist’s guide to lipidomics

Daniele Piomelli*,1, Giuseppe Astarita* and Rao Rapaka§

Abstract | Nerve cells mould the lipid fabric of their membranes to ease vesicle fusion, regulate ion fluxes and create specialized microenvironments that contribute to cellular communication. The chemical diversity of membrane lipids controls protein traffic, facilitates recognition between cells and leads to the production of hundreds of molecules that carry information both within and across cells. With so many roles, it is no wonder that lipids make up half of the human brain in dry weight. The objective of neural lipidomics is to understand how these molecules work together; this difficult task will greatly benefit from technical advances that might enable the testing of emerging hypotheses.

Neuroscientists have a problem with fat. They know that the greasy substance makes up more than half of the human brain in dry weight, yet they don't seem to pay much attention to it. This peculiar form of cognitive neglect stems from deep-seated memories of university reading assignments that showed cell membranes as groups of interesting-looking proteins floating in a featureless bed of fat, and described ‘lipids’ in most unflattering terms as “Nucleic acids and proteins are informational macromolecules... On the other hand, polysaccharides and lipids do not have information-carrying function” (ref 1.) However, references to lipid-related topics are increasing in the neuroscience literature, suggesting that times are changing and that neural lipids may be finally getting the attention they deserve.

This revived interest in the fatty half of the brain has been fuelled by two converging sets of discoveries. On one hand, advances in the fields of cell biology, synaptic physiology and receptor pharmacology have demonstrated that lipids have broad information carrying roles in the CNS. These range from the development of the neocortex to the processing of complex behaviours, covering a territory as vast as those generally ascribed to neurotransmitters, neuropeptides and growth factors. On the other hand, progress in techniques such as mass spectrometry and atomic-force microscopy, has opened experimental opportunities that were unthinkable ten years ago (fig. 1). Indeed, we are at a point where the goal of profiling large-scale changes in lipid composition or determining the topographical distribution of individual lipid species in neural cells is no longer beyond reach.

But, as neuroscientists become increasingly aware of the importance of lipid-mediated signalling, they often feel unprepared to grapple with its peculiarities. To begin with, lipids are exceedingly gregarious: forced by hydrophobic effects, they assemble into complex membrane structures. They adapt to the membrane’s dynamic and interactive environment by changing their chemical structures and molecular shape of their lipid constituents, particularly of the phospholipids2,3. A major factor determining the shape of phospholipids is the nature of their hydrophobic tail, the fatty acid residues linked to the hydroxyl group on the glycerol backbone (fig. 2b,c). At physiological temperatures, the length of a phospholipid molecule is directly proportional to the number of carbon atoms and inversely proportional to the number of double bonds present in its fatty acid chains. In addition, the molecular shape of a phospholipid within the bilayer, although influenced by the surrounding environment, is ultimately determined by the compatibility between the size of its polar head group and that of its hydrophobic tail: if the two are fully compatible, the lipid has a cylindrical form; if not, it is either conical (when the tail is larger) or inverted conical (when the

Hydrophobic effect
The tendency of hydrophobic molecules to associate in order to diminish contact with water.

Lipidomics
The large-scale analysis of lipid profiles in cells and tissues.

*Department of Pharmacology, University of California, Irvine, California 92697, USA.
†Italian Institute of Technology, Genoa 16163, Italy.
‡National Institute on Drug Abuse, Bethesda, Maryland 20892, USA.
§Correspondence to D.P.
E-mail: piomelli@uci.edu
doi:10.1038/nrn2335

© 2007 Nature Publishing Group
Figure 1 | Strategies to identify, measure and image lipids in membranes. The complex nature of lipid signalling and its strict dependence on specific membrane localization imposes structural and topological constraints, which can be tackled using three revolutionary techniques. a | In electrospray ionization mass spectrometry (MS) a solution containing the analyte is sprayed through a needle forming charged droplets. After desolvation, these explode forming ions that are detected by MS (top panel). Single-stage MS separates ions according to their mass-to-charge ratio (m/z); tandem MS and multi-stage MS (MSn) allow multiple fragmentation to occur, generating fragments that are used to identify and quantify specific analytes in complex mixtures (bottom panel). b | In secondary ion MS, a beam of high-energy ions scans the membrane of a cell that is fixed by freeze-fracture (in this example, two mating Tetrahymena cells). The membrane emits ‘secondary’ ions, which are detected by MS and used to create a topographic map of a specific lipid analyte (in this case, the fusogenic 2-aminoethylphosphonolipid, shown in blue). c | In atomic force microscopy, a tip connected to a cantilever is brought into close proximity of a membrane. The force between the tip and the membrane causes a deflection of the cantilever, which is measured by a laser detector (photodetector). As the tip scans across the membrane, a topographic map of its surface is created. The panel on the right shows an artificial membrane containing sphingomyelin, phosphatidylcholine and cholesterol. The patchy appearance is due to the formation of nanosized liquid-ordered domains. Part b was modified, with permission, from REF. 5 © (2004) American Association for the Advancement of Science. Part c was modified, with permission, from REF. 103 © (2003) Biophysical Society.

Lysoosphopholipid

A phospholipid containing a single fatty-acid chain; examples include signalling lipids, such as 1-oleoyl-sn-glycerol-3-phosphate (lysophosphatidic acid).

A role for lipids in exocytosis? Synaptic vesicle exocytosis, the Ca²⁺-regulated process through which presynaptic vesicles fuse with the plasma membrane to release their neurotransmitter content, is our first example of how lipid geometry may influence neuronal function. Exocytosis proceeds through a series of docking and fusing events that involve a complex interplay among a specialized set of proteins (the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins), the cytoskeletal framework and lipids. A simplified model posits that the fusion of vesicles with presynaptic membranes occurs in two sequential steps (FIG. 3c). In the first step, the bilayers of the two adjoining structures partially merge forming an intermediate (the ‘stalk’) in which only the outer leaflets of the two membranes are connected; this requires the head is larger) (FIG. 3a). Conical lipids tend to form negatively curved monolayers, whereas inverted conical lipids tend to form positively curved monolayers (FIG. 3b). As we shall see in the following sections, changes in the geometrical attributes of membrane lipids have major consequences on the functional properties of neurons.
transient formation of a negatively curved monolayer, which can be promoted by the local accumulation of conical lipids (for example, fatty acids and 1,2-diacylglycerols (1,2-DAG)) — see FIG. 2a,b for chemical structures. In the second step, the stalk widens to generate a fusion pore that joins the aqueous volumes initially enclosed within the two membranes; this involves the generation of a positively curved monolayer, which can be favoured by the presence of inverted-conical lipids (for example, lysophospholipids and phosphoinositides).

These events occur within the lipid matrix but are driven by an evolutionarily conserved set of proteins.
Phospholipase A₂
An enzyme that hydrolyses the sn-2 position of phospholipids, producing fatty acids and lysophospholipids.

Figure 3 | Lipid geometry. a | Phospholipids in which the polar head group and the fatty acid chains have similar sizes are thought to adopt a cylindrical shape in membranes (filled circles symbolize the polar head groups, wavy lines represent the fatty-acid chains). Lipid hydrolases, such as phospholipase A₂ (PLA₂) convert phospholipids into conical (fatty acid) and inverted conical (lysophospholipid) products, whereas fatty acid transferases such as lysophospholipid acyl transferases (LPAT) catalyse the opposite reaction. b | In an aqueous environment, cylindrical lipids produce stable planar monolayers, whereas conical and inverted-conical lipids produce monolayers with negative or positive curvature, respectively. c | The two steps of membrane fusion: left, during stalk formation, two adjoining membranes merge their outer leaflets producing a negatively curved monolayer region (red) that is facilitated by cone-shaped lipids such as fatty acids; right, widening of the stalk generates a fusion pore that is lined by a positively curved monolayer region (blue), which is favoured by inverted cone-shaped lipids, such as lysophospholipids.

Although similar studies have not yet been attempted in neurons or glia, pharmacological evidence suggests that alterations in membrane-lipid composition may contribute to synaptic vesicle exocytosis. For example, muscle-paralysing poisons from various snake species contain phospholipase A₂, neurotoxins, which bind to the external layer of axon-terminal membranes and catalyse the cleavage of phospholipids to produce conical fatty acids and inverted-conical lysophospholipids (FIG. 3a). Owing to their ability to bend monolayers, these non-cylindrical lipids promote vesicle fusion while inhibiting vesicle fission. The combination of these two effects causes an initial outburst of acetylcholine release at the neuromuscular junction followed by blockade of release and ensuing muscle paralysis.

It is still unknown whether any of the lipid-modifying enzymes expressed in the mammalian brain (Supplementary information S1 (table)) influence exocytosis by generating a local membrane microenvironment enriched in monolayer-bending lipids. An enticing hint comes from genetic experiments in the fruitfly Drosophila melanogaster. Conditional loss of the rolling black out gene in temperature-sensitive Drosophila mutants suggests that the presynaptic membrane protein encoded by this gene catalyses the hydrolysis of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P₂) to produce 1,2-DAG (FIG. 2b,c). This change in biochemical phenotype develops in parallel with a rapid and reversible blockade of synaptic transmission, which is rescued by transgenic expression of rolling black out in neurons. One interpretation of these findings is that conversion of the inverted-conical PI(4,5)P₂ to the conical 1,2-DAG is necessary to create a membrane microenvironment conducive to exocytosis. An alternative (or perhaps complementary) possibility, discussed later in this article, is that PI(4,5)P₂ and 1,2-DAG bind to proteins required for exocytosis, recruiting them to the multimeric membrane-associated complex that drives the fusion process.

Ion channel regulation. Whereas the role of non-cylindrical lipids in exocytosis is still debated, the ability of these molecules to influence the activity of mechanosensitive ion channels is reasonably well established. The TRAAK (Twik 1-related arachidonic acid–stimulated K⁺) family of K⁺ channels is a case in point. TRAAK channels are reversibly opened by mechanical pressure as well as by administration of exogenous arachidonic acid or other unsaturated fatty acids. TRAAK channel activation by fatty acids does not reach a plateau even when high concentrations of lipid are applied; this suggests that it may be caused by membrane deformation rather than by the interaction of fatty acids with saturable binding sites on the channel protein. A plausible explanation for these results is that the fatty acids may concentrate preferentially in neurons or glia, pharmacological evidence suggests that alterations in membrane-lipid composition may contribute to synaptic vesicle exocytosis. For example, muscle-paralysing poisons from various snake species contain phospholipase A₂, neurotoxins, which bind to the external layer of axon-terminal membranes and catalyse the cleavage of phospholipids to produce conical fatty acids and inverted-conical lysophospholipids (FIG. 3a). Owing to their ability to bend monolayers, these non-cylindrical lipids promote vesicle fusion while inhibiting vesicle fission. The combination of these two effects causes an initial outburst of acetylcholine release at the neuromuscular junction followed by blockade of release and ensuing muscle paralysis.

It is still unknown whether any of the lipid-modifying enzymes expressed in the mammalian brain (Supplementary information S1 (table)) influence exocytosis by generating a local membrane microenvironment enriched in monolayer-bending lipids. An enticing hint comes from genetic experiments in the fruitfly Drosophila melanogaster. Conditional loss of the rolling black out gene in temperature-sensitive Drosophila mutants suggests that the presynaptic membrane protein encoded by this gene catalyses the hydrolysis of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P₂) to produce 1,2-DAG (FIG. 2b,c). This change in biochemical phenotype develops in parallel with a rapid and reversible blockade of synaptic transmission, which is rescued by transgenic expression of rolling black out in neurons. One interpretation of these findings is that conversion of the inverted-conical PI(4,5)P₂ to the conical 1,2-DAG is necessary to create a membrane microenvironment conducive to exocytosis. An alternative (or perhaps complementary) possibility, discussed later in this article, is that PI(4,5)P₂ and 1,2-DAG bind to proteins required for exocytosis, recruiting them to the multimeric membrane-associated complex that drives the fusion process.

Ion channel regulation. Whereas the role of non-cylindrical lipids in exocytosis is still debated, the ability of these molecules to influence the activity of mechanosensitive ion channels is reasonably well established. The TRAAK (Twik 1-related arachidonic acid–stimulated K⁺) family of K⁺ channels is a case in point. TRAAK channels are reversibly opened by mechanical pressure as well as by administration of exogenous arachidonic acid or other unsaturated fatty acids. TRAAK channel activation by fatty acids does not reach a plateau even when high concentrations of lipid are applied; this suggests that it may be caused by membrane deformation rather than by the interaction of fatty acids with saturable binding sites on the channel protein. A plausible explanation for these results is that the fatty acids may concentrate preferentially in neurons or glia, pharmacological evidence suggests that alterations in membrane-lipid composition may contribute to synaptic vesicle exocytosis. For example, muscle-paralysing poisons from various snake species contain phospholipase A₂, neurotoxins, which bind to the external layer of axon-terminal membranes and catalyse the cleavage of phospholipids to produce conical fatty acids and inverted-conical lysophospholipids (FIG. 3a). Owing to their ability to bend monolayers, these non-cylindrical lipids promote vesicle fusion while inhibiting vesicle fission. The combination of these two effects causes an initial outburst of acetylcholine release at the neuromuscular junction followed by blockade of release and ensuing muscle paralysis.

It is still unknown whether any of the lipid-modifying enzymes expressed in the mammalian brain (Supplementary information S1 (table)) influence exocytosis by generating a local membrane microenvironment enriched in monolayer-bending lipids. An enticing hint comes from genetic experiments in the fruitfly Drosophila melanogaster. Conditional loss of the rolling black out gene in temperature-sensitive Drosophila mutants suggests that the presynaptic membrane protein encoded by this gene catalyses the hydrolysis of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P₂) to produce 1,2-DAG (FIG. 2b,c). This change in biochemical phenotype develops in parallel with a rapid and reversible blockade of synaptic transmission, which is rescued by transgenic expression of rolling black out in neurons. One interpretation of these findings is that conversion of the inverted-conical PI(4,5)P₂ to the conical 1,2-DAG is necessary to create a membrane microenvironment conducive to exocytosis. An alternative (or perhaps complementary) possibility, discussed later in this article, is that PI(4,5)P₂ and 1,2-DAG bind to proteins required for exocytosis, recruiting them to the multimeric membrane-associated complex that drives the fusion process.

Ion channel regulation. Whereas the role of non-cylindrical lipids in exocytosis is still debated, the ability of these molecules to influence the activity of mechanosensitive ion channels is reasonably well established. The TRAAK (Twik 1-related arachidonic acid–stimulated K⁺) family of K⁺ channels is a case in point. TRAAK channels are reversibly opened by mechanical pressure as well as by administration of exogenous arachidonic acid or other unsaturated fatty acids. TRAAK channel activation by fatty acids does not reach a plateau even when high concentrations of lipid are applied; this suggests that it may be caused by membrane deformation rather than by the interaction of fatty acids with saturable binding sites on the channel protein. A plausible explanation for these results is that the fatty acids may concentrate preferentially in neurons or glia, pharmacological evidence suggests that alterations in membrane-lipid composition may contribute to synaptic vesicle exocytosis. For example, muscle-paralysing poisons from various snake species contain phospholipase A₂, neurotoxins, which bind to the external layer of axon-terminal membranes and catalyse the cleavage of phospholipids to produce conical fatty acids and inverted-conical lysophospholipids (FIG. 3a). Owing to their ability to bend monolayers, these non-cylindrical lipids promote vesicle fusion while inhibiting vesicle fission. The combination of these two effects causes an initial outburst of acetylcholine release at the neuromuscular junction followed by blockade of release and ensuing muscle paralysis.

It is still unknown whether any of the lipid-modifying enzymes expressed in the mammalian brain (Supplementary information S1 (table)) influence exocytosis by generating a local membrane microenvironment enriched in monolayer-bending lipids. An enticing hint comes from genetic experiments in the fruitfly Drosophila melanogaster. Conditional loss of the rolling black out gene in temperature-sensitive Drosophila mutants suggests that the presynaptic membrane protein encoded by this gene catalyses the hydrolysis of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P₂) to produce 1,2-DAG (FIG. 2b,c). This change in biochemical phenotype develops in parallel with a rapid and reversible blockade of synaptic transmission, which is rescued by transgenic expression of rolling black out in neurons. One interpretation of these findings is that conversion of the inverted-conical PI(4,5)P₂ to the conical 1,2-DAG is necessary to create a membrane microenvironment conducive to exocytosis. An alternative (or perhaps complementary) possibility, discussed later in this article, is that PI(4,5)P₂ and 1,2-DAG bind to proteins required for exocytosis, recruiting them to the multimeric membrane-associated complex that drives the fusion process.
transient negative curvature in the monolayer that stretches the TRAAK channel and causes it to open.

A similar mechanism probably operates in other instances of lipid regulation of mechanosensitive channels — including transient receptor potential vanilloid-1 (TRPV1) channels15, Twik-related K+ 1 (TREK) channels16 and glutamate N-methyl-D-aspartate (NMDA) receptor channels17,18. A recent series of experiments with purified NMDA receptors reconstituted in liposomes has shown that membrane stretch and arachidonic acid application reduce Mg2+ blockade of NMDA channel activity and concomitantly enhance ion currents through the channels19. As these results were obtained in a minimal system that lacks cellular proteins, they unambiguously demonstrate that mechanical deformation of the lipid bilayer is sufficient to modulate the gating properties of NMDA channels. The data further suggest that administration of exogenous arachidonic acid closely mimics the effects of membrane stretch, probably by bending the liposomal membrane20. In fact, a general role for lipid-mediated membrane flexing in mechanosensation has been proposed15. However, the available information does not allow us to exclude the possibility that arachidonic acid also binds to the NMDA receptor itself, which contains a lipid-recognition domain that is homologous to those found in intracellular fatty acid-binding proteins21. In a later section, we shall discuss how arachidonic acid may use its propensity to bind proteins to regulate voltage-dependent K+ channels in neurons.

Membrane domain formation. Cone-shaped lipids capture one's imagination because of their striking monolayer-flexing properties; however, cylindrical lipids, such as sphingomyelin, are far from being dull. Together with cholesterol, sphingomyelin promotes the assembly of lateral membrane domains that may have important roles in cells. The standard fluid-mosaic model of biological membranes does not predict this type of heterogeneity because it assigns complete freedom of lateral movement to lipids, and expects them to distribute randomly throughout the membrane22. Nevertheless, lateral partitioning has been demonstrated in both artificial and natural lipid bilayers and may constitute an important organizing principle for cell membranes.

Experimental support for this idea comes from studies with model membranes — artificial bilayers with a phospholipid composition similar to that of plasma membranes — in which the formation of lipid assemblies enriched in sphingomyelin and cholesterol can be observed using high-resolution techniques such as atomic-force microscopy (FIG. 1c). Needless to say, natural membranes are much more complex than these man-made systems. Nevertheless, evidence for lipid domain formation has also been obtained in cells by monitoring the lateral movement of transmembrane proteins or the partition of fluorescent membrane probes18–20. The entities visualized by these techniques, which are generally thought to correspond to the detergent-resistant ‘lipid rafts’ that are isolated from tissue extracts21–23, may regulate cell function by facilitating selective protein–protein interactions within the plasma membrane21. In neurons and glia, it has been proposed that they may be implicated in stabilizing clusters of neurotransmitter receptors with proteins involved in intracellular signalling and the promotion of clathrin-independent endocytosis, and influence the activity and localization of neurotransmitter transporters4–22.

Such proposals have not gone unchallenged, mainly because of the intrinsic difficulties involved in isolating and visualizing putative structures of nanometre- to-micrometre lengths and second-to-minute lifespans20–24. Despite these concerns, biophysical data support the idea that a cooperative molecular interaction between sphingomyelin and cholesterol drives the generation of lipid assemblies in natural membranes22.

Sphingomyelin differs from glycerol-containing phospholipids in that it is composed of long, mostly saturated fatty acid chains (FIG. 2a). These straight, hydrophobic tails allow sphingomyelin molecules to adopt a tight cylindrical shape, assemble into a highly ordered solid–like gel phase and separate from surrounding glycerophospholipids, which are more loosely packed owing to their kinked unsaturated chains. In fact, the formation of two distinct phases, one rich in saturated sphingomyelin, called solid ordered (S0) phase, and another rich in unsaturated glycerophospholipids, called liquid disordered (Ld) phase, is readily seen in artificial membranes that are prepared by mixing the two lipid species. The addition of cholesterol to these mixtures induces, through a yet uncertain mechanism23, the creation of a third phase in which a high degree of acyl chain ordering (typical of the S0 phase) is associated with an increased lateral mobility (characteristic of the Ld phase). Patches of this hybrid liquid ordered (L0) material have been found in membranes of non-neuronal cells24–26 where they may be stabilized by cytoskeletal and adaptor proteins to generate domains of varying sizes and lifetimes23. Thus, despite current controversies, the idea that mutual interactions between lipids and proteins promote lateral heterogeneity in membranes remains a core hypothesis in cell biology. Its value for neuroscience becomes even more apparent as we turn to consider the central role of membrane partitioning in brain lipid-messenger function.

Lipids as direct effectors

Until now we have focused our discussion on biological events — exocytosis, ion channel regulation and membrane domain formation — in which lipids indirectly regulate protein activity by influencing the curvature or supramolecular organization of membranes. However, lipids can also affect ion channels, receptors and other signal-transduction proteins by directly binding to them. This is, of course, the mechanism of action used by most information-carrying molecules in the brain, but lipids are different in one important way: whereas water-soluble neurotransmitters and second messengers have limited access to the hydrophobic core of the membrane, lipids are amphipathic compounds that are produced within the bilayer and have the option to operate either inside or outside its boundaries — for this

Liposome
An artificial membrane-bound vesicle generally composed of phospholipids and cholesterol.
class of biomolecules the membrane is a conduit rather than a barrier. To explain the functional implications of this property, we need to take a closer look at how neural lipid signalling works.

Lipid signalling in neurons. Let us consider, for example, the pathway that begins with the conversion of phosphatidylinositol to PI(4,5)P$_2$ (Fig. 4). Phosphatidylinositol is primarily localized on the inner leaflet of neuronal and glial plasma membranes, where its conversion to PI(4,5)P$_2$ is controlled by two activity-dependent phosphatidylinositol kinases — phosphatidylinositol 4 kinase and phosphatidylinositol(4)P 5 kinase — that are associated with membrane raft-like clusters (Supplementary information S1 (table)). The subsequent cleavage of PI(4,5)P$_2$ by phospholipase C (Fig. 2c, inset), which is also regulated by physiological stimuli, generates the second messengers inositol 1,4,5-trisphosphate (IP$_3$) and diacylglycerol (DAG). The actions of 1,2-DAG are terminated by the phosphorylation to phosphatidic acid (PA), which is catalysed by DAG kinases (DGK). PA serves as a phospholipid precursor and intracellular signal. Alternatively, DAG lipases (DGL) (1,2-DAG). The actions of 1,2-DAG are terminated by the phosphorylation to phosphatidic acid (PA), which is catalysed by DAG kinases (DGK). PA serves as a phospholipid precursor and intracellular signal. Alternatively, DAG lipases (DGL) (1,2-DAG). The actions of 1,2-DAG are terminated by the phosphorylation to phosphatidic acid (PA), which is catalysed by DAG kinases (DGK). PA serves as a phospholipid precursor and intracellular signal. Alternatively, DAG lipases (DGL) (1,2-DAG). The actions of 1,2-DAG are terminated by the phosphorylation to phosphatidic acid (PA), which is catalysed by DAG kinases (DGK). PA serves as a phospholipid precursor and intracellular signal. Alternatively, DAG lipases (DGL), such as DGL-α, hydrolyse 1,2-DAG to 2-arachidonoyl-sn-glycerol (2-AG), an endogenous cannabinoid messenger that activates the G-protein-coupled receptor (GPCR) CB$_1$R. 2-AG is hydrolysed by monoacylglycerol lipase (MGL) or other lipases to produce arachidonic acid, an intracellular messenger. 2-AG and arachidonic acid are substrates for prostaglandin endoperoxide synthases (PGS), which produce the prostanooids. These transcellular messengers activate GPCRs, such as prostaglandin and thromboxane receptors (EP and TP, respectively) (Fig. 5). Arachidonic acid can also be produced through phospholipase A$_2$ (PLA$_2$)-mediated cleavage of phosphatidylcholine (PC) and other phospholipids. Important aspects of membrane heterogeneity, including lateral heterogeneity and fatty acid diversity, are omitted for clarity. Glu, glutamate.
Phospholipid remodelling

Hydrolytic removal of fatty acids from the sn-1 or sn-2 positions of phospholipids (catalysed by phospholipases A₁ and A₂, respectively) followed by their replacement with new fatty acids (catalysed by lysophospholipid acyltransferases).

Box 1 | The docosahexaenoic acid puzzle

Docosahexaenoic acid (Fig. 2a) is the most abundant polyunsaturated fatty acid found in the mammalian brain. This ω-3 fatty acid is mainly obtained through the diet, although smaller amounts can be produced by chain elongation and desaturation of its precursor, linolenic acid. This process occurs in the liver as well as in brain astrocytes⁴⁰. Irrespective of its source, docosahexaenoic acid is rapidly internalized by neurons and incorporated into phospholipids, mainly phosphatidylserine and phosphatidyl ethanolamine^{41,43,47}. High levels of docosahexaenoic acid have been found in growth cones⁴⁴, synaptic plasma membranes and synaptic vesicles⁴⁵, but the functional significance of this localization is still unclear. Because of its high degree of unsaturation, phospholipids containing this fatty acid may increase membrane fluidity and regulate the functions of membrane-associated proteins^{46,47}. Docosahexaenoic acid itself may act as a signalling molecule by binding to retinoid X receptor (RXR), a ligand-activated transcription factor⁴⁸ (Fig. 5), or it may be oxygenated to produce various bioactive lipids. Docosahexaenoic acid oxygenation is thought to proceed through two main pathways: a lipoxygenase-mediated pathway, which converts docosahexaenoic acid to resolins and neuroprotectins (such as neuroprotectin D1 (REF. 94)), and a free-radical-mediated peroxidation pathway that leads to the production of neuroprostanes, which are involved in oxidative stress⁴⁹. Both mechanisms may be relevant to the alterations in docosahexaenoic acid levels observed in aging and Alzheimer’s disease^{45-47,90-92}.

Voltage-gated K⁺ channel

Voltage-gated K⁺ channel that controls action-potential repolarization, action-potential frequency and interspike interval in excitable cells.

Annulus

A thin ring-shaped sheet of lipids that separates transmembrane proteins from bulk membrane phospholipids.

Kv channel

Voltage-gated K⁺ channel that converts action-potential repolarization, action-potential frequency and interspike interval in excitable cells.

Neuroprotectin D1

An example of this molecule is shown in the diagram.

Lateral heterogeneity

As we noted before, the lipid kinases responsible for converting phosphatidlyinositol to PI(4,5)P₂ may be confined to raft-like clusters found in the cytoplasmic leaflet of neuronal and glial membranes⁵¹. Compared with phosphatidlyinositol, PI(4,5)P₂ has a remarkably low lateral mobility in the bilayer⁵² and may remain temporarily concentrated at these sites. What is the functional significance of this transient PI(4,5)P₂ segregation? It has been proposed that membrane foci enriched in PI(4,5)P₂ may serve as anchoring points for intracellular proteins that bind to this phosphoinositide with high affinity^{26,45} (Supplementary information S2 (Box)). This recruitment to specific membrane sites is well suited to guide cellular events that require a high degree of membrane localization, including synaptic vesicle exocytosis⁵². Experiments with permeabilized neuroendocrine cells have shown that two key proteins for PI(4,5)P₂ metabolism — phosphatidlyinositol-transfer protein, which transports phosphatidlyinositol across the cytosol, and PI(4)P5 kinase, which converts PI(4)P
Figure 5 | Representative bioactive neural lipids and their cellular receptors. Lipids might act as direct effectors of signal transduction by directly binding to G-protein-coupled receptors (green oval shape) and nuclear receptors (blue oval shape). Lipids have been divided into four colour-coded categories symbolizing different chemically functional backbones: fatty acyls (blue), prenol lipids (green), sterol lipids (yellow) and glycerophospholipids (pink); next to each structure, the receptor for each lipid is indicated in the coloured oval shape. AR, androgen receptor; BLT, leukotriene B receptor; CB, cannabinoid receptor; DP, prostaglandin type D receptor; EP, prostaglandin type E receptor; ER, oestrogen receptor; GPR, G-protein-coupled receptor; GR, glucocorticoid receptor; LPA, lysophosphatidic acid receptor; LXR, liver X receptor; PAF, platelet-activating factor receptor; PPAR, peroxisome proliferator-activated receptor; PR, progesterone receptor; RAR, retinoic acid receptor; RXR, retinoid X receptor; SP, sphingosine-1-phosphate receptor; TP, thromboxane A2 receptor; VDR, vitamin D receptor.
The enzyme responsible for the energy-dependent transfer of phospholipids across the membrane bilayer (flip-flop process).

2-AG — are required for the reconstitution of Ca$^{2+}$-dependent dense-core vesicle secretion$^{43-46}$. Two findings suggest that these results may be directly relevant to synaptic vesicle exocytosis. First, as previously mentioned, Drosophila mutants that lack the rolling black out lipase have both reduced PI(4,5)P$_2$ hydrolysis and impaired synaptic transmission44,45; second, the sequences of many essential proteins in the exocytosis machinery contain a phosphoinositide-binding C2-domain, which recognizes PI(4,5)P$_2$ in a Ca$^{2+}$-dependent manner46. Most lipids have greater lateral mobility in bilayers than PI(4,5)P$_2$ — it has been calculated, for example, that an unhindered lipid molecule could circumnavigate a cell of average size (about 10 micrometres in diameter) in less than 30 seconds2. But how many lipids are truly unhindered in neuronal or glial membranes? As evidence for lateral partitioning continues to accumulate, the number may turn out to be less than expected47.

Bilayer asymmetry. Whereas the functional role of lateral heterogeneity still remains somewhat speculative, the importance of bilayer asymmetry in lipid signalling is clearly documented. In most cells, including neurons and glia, the two plasma membrane monolayers have strikingly different lipid compositions: the inner leaflet is enriched in phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol, whereas the outer leaflet is enriched in phosphatidylcholine and sphingomyelin7.

The non-random distribution of phosphatidylserine across the membrane bilayer is due to the energy-dependent activity of aminophospholipid translocase, a member of the flipase family of enzymes48. During apoptosis or cell injury, a rise in intracellular Ca$^{2+}$ levels triggers two concomitant events that disrupt this normal arrangement: the inhibition of aminophospholipid translocase and the stimulation of scramblases, enzymes that facilitate the transbilayer randomization of phosphatidylserine49,50. In addition to membrane reshuffling, Ca$^{2+}$ also stimulates cytosolic enzymes that catalyse the synthesis of this phospholipid51. The net result of these convergent reactions is the appearance of phosphatidylserine on the outer membrane leaflet. The phospholipid is recognized by an as-yet-unidentified receptor on phagocytes, allowing the engulfment and elimination of apoptotic neural cells during brain development52,53 and neural inflammation53.

Anatomical specialization. Neurotransmitters and neuropeptides are released at chemical synapses — specialized junctions where these molecules are synthesized, secreted and eliminated. The fact that lipid messengers are produced on demand has led to the assumption that they can be released from virtually any site of a neuronal or glial cell membrane. However, this view appears to be simplistic as evidence for the existence of anatomically definable structures, which may be responsible for the production, release and deactivation of lipid messengers in the brain, accumulates. The endocannabinoid lipid 2-AG (FIG. 2b) offers a compelling illustration of this idea.

When principal neurons in the hippocampus are stimulated by glutamate released from adjacent excitatory terminals, the input received by these neurons is transiently depressed. This depression is initiated by the activation of postsynaptic type I metabotropic glutamate receptors (mGluRs), and results in the presynaptic inhibition of glutamate release. This suggests that a chemical messenger generated by mGluR activation travels backwards across the synapse to modulate excitatory inputs$^{54-56}$. A related form of retrograde signalling is initiated by a voltage-dependent influx of Ca$^{2+}$ into principal hippocampal neurons that leads to the inhibition of glutamate-mediated or GABA (γ-aminobutyric acid)-mediated inputs$^{54-56}$. This unconventional retrograde signalling mechanism appears to be widespread in the CNS, and there is evidence that it is mediated by a diffusible endocannabinoid lipid$^{57-59}$.

In particular, the endocannabinoid 2-AG has been directly implicated in mGluR-induced retrograde signalling in the hippocampus, cerebellum and other regions of the brain$^{60-62}$. It is envisaged that 2-AG may be produced in dendritic spines, through activation of type I mGluRs and the transducing G-protein G_{oq}, which are coupled to the phospholipase C/DAG lipase (DGL) pathway (FIG. 4).
The lipid messenger might diffuse across the synaptic cleft to activate CB, cannabinoid receptors (CB, R) on nearby axon terminals, reducing presynaptic Ca2+ channel activity and inhibiting glutamate release13,14 (FIG. 6a).

The fidelity of this signalling sequence appears to depend on the precise anatomical localization of DGL-α, a major biosynthetic enzyme for 2-AG in neural cells15,38. Immunogold electron-microscopy studies of hippocampal and cerebellar neurons have shown that this lipid hydrolase is primarily localized in a subdivision of the dendritic spine, called the perisynapse, which forms a thin border (100-200 nm thick) around the postsynaptic density36,64. Along with DAG lipase α, this same area also contains type I mGluRs65 and phospholipase C-β66, and might, thus, be viewed as a stable perisynaptic site for the receptor-operated release of 2-AG.

Facing DGLα, on the opposite side of the synaptic cleft, are both CB, Rs67 and monoacylglycerol lipase68, a presynaptic enzyme that cleaves 2-AG to terminate its actions39,40,41. We do not know precisely how 2-AG crosses the water-filled cleft to reach CB, R-containing terminals, but its amphipathic nature and/or its association with extracellular lipid-binding proteins69,70 are likely to be important. Another element that may facilitate the transsynaptic movement of 2-AG relates to the molecular structure of the CB, R. CB, R belongs to a subgroup of about 60 G-protein-coupled receptors that contain a characteristic alkyl-binding domain that is implicated in the recognition of lipid ligands71. This motif is positioned in a region of the receptor protein that is embedded within the membrane, suggesting that an incoming ligand may first enter the bilayer and then reach the receptor-binding site by lateral diffusion71. Accessing CB, R through the bilayer has three potential advantages: first, it would shorten the distance that 2-AG needs to cover in the aqueous medium; second, it would increase the density of 2-AG molecules surrounding the CB, R binding site; and, third, it would facilitate the subsequent deactivation of 2-AG by monoacylglycerol lipase associated with the cytoplasmic aspect of the presynaptic membrane72,87 (FIG. 6b).

Do other lipid messengers use stable signalling junctions similar to those described above? We do not know, but it is clear that most lipid signals in the brain operate, like 2-AG, by travelling short distances from their sites of production and engaging G-protein-coupled receptors on neighbouring neurons and glial cells. In addition to those already cited, other important examples include lysophosphatic acid (a neurotrophic signal also involved in the initiation of neuropathic pain72,73), platelet-activating factor (a retrograde messenger implicated in hippocampal long-term potentiation74 and anandamide (an endocannabinoid ligand)75 (FIG. 5). Interestingly, some lipid messengers do not require G-protein-coupled receptors to exert their function. For example, neurosteroids interact with membrane GABA-gated receptor channels to enhance neuronal inhibition76, whereas oleoylthanolamide and its analogue palmitoylethanolamide engage peroxisome proliferator-activated receptors-α in the cell cytosol and nucleus to regulate feeding77 and pain78,79 (FIG. 5).

Future directions

Time and space acquire special significance in lipid signalling. The time and space scales in which lipid-mediated signalling operates are dictated by transient changes in their chemical structures and the subcellular localization of ensembles of interconnected lipid signals. This *modus operandi* is not unique to lipids — genes and proteins undergo all sorts of rapid modifications and cellular movements that are essential to their function, but lipids appear to have adopted it as their primary information-carrying mechanism.

Thus, the first challenge that neural lipidomics needs to meet is the development of technologies that can uncover the information hidden beneath complex lipid signalling fluxes. Because the precise membrane localization of lipid-signals is crucial to their function, these molecules must be identified and quantified without altering their spatial organization in membranes. This is not a trivial task, because it requires technological advances in at least four areas: first, the development of tissue-fixation techniques that do not cause artefactual alterations in lipid profile and localization; second, the adaptation of cell-dissection tools, such as laser-capture microdissection80, and high-sensitivity analytical methods, such as nano-flow liquid chromatography or mass spectrometry80, for the analysis of neural lipids (FIG. 1a); third, tissue-imaging technologies, such as secondary-ion mass spectrometry or matrix-assisted laser desorption ionization mass spectrometry81,82, which allow the localization of individual lipids in their native membrane environment (FIG. 1b) to be applied to lipid analysis; and finally, the creation of software that is capable of handling and interpreting large volumes of complex data83.

Much progress has been recently made in these areas, and more is underway. By contrast, another challenge faced by neural lipidomics has attracted less attention. In the beginning of this Review, we noted that lipid affects neuronal and glial function in two distinct ways: by altering the geometric properties and the supramolecular organization of neural cell membranes, or by acting as ligands for effector proteins. However, the examples of PIP2, anandamide, and arachidonic acid, among others, show that these two modes of action are not mutually exclusive, as many lipid species can both bend membranes and modify protein activities. Are these two properties functionally related? Do lipid-driven changes in membrane shape and organization cooperate with protein-mediated lipid signalling events to affect the functions of neuronal and glial cells? And, if so, how? Answering these questions will require a research programme that is capable of merging the theoretical and experimental approaches of neuroscience with those of membrane biophysics and lipid biochemistry in an interdisciplinary framework.
Lipid rafts: at a crossroad between cell biology and cell structure and function. Nature Cell Biol. 8, 565–574 (2006).

Movahed, P. & Dinh, T. A putative fatty acid-binding domain of the NMDA receptor. J. Neurosci. 23, 5463–5468 (2003).

Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 515–521 (1984).

Valiyaveetil, F. & Martinac, B. Liposome reconstitution and modulation of arachidonic acid. J. Lipid Res. 42, 454–456 (2001).

Phillips, S. H., Singer, J. J. & Flavell, R. A. Phosphatidylethanolamine receptor is required for clearance of apoptotic cells. Science 302, 1560–1563 (2003).

De Simone, R., Ajmone-Cat, M. A. & Mignhetti, L. Atypical anti-inflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylethanolamine-phosphatidylserine receptor interaction. Mol. Neurobiol. 29, 197–212 (2004).

Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 267–286 (2002).

Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 415, 590–592 (2001).

Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto putative pyramidal cells. Neuron 29, 717–727 (2001).

Ohno-Shosaku, T., Maemura, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).

References 57–59 demonstrate the role of endocannabinoids as retrograde messengers in the brain.

Jung, K. M. et al. Molecular cloning of human membrane-bound 5-lipoxygenase. J. Biol. Chem. 277, 29341–29348 (2002).

Kraus, M. & Haucke, V. Phosphoinositide-metabolizing enzymes at a crossroad between membrane traffic and cell signaling. EMBO Rep. 8, 241–246 (2007).

Vanhaesebroeck, B. et al. Synthesis and function of 5-phosphatidylinositol lipids. Annu. Rev. Biochem. 70, 555–602 (2001).

Gaus, K. A. & Martinac, B. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic plasticity. J. Neurosci. 24, 10450–10458 (2004).

Gaus, K. A. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nature 438, 1139–1141 (2005).

Uchigashima, M. et al. Subcellular arrangement of molecules for 2-arachidonoylglycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J. Neurosci. 27, 5653–5676 (2007).

Katona, I. et al. Molecular composition of the endocannabinoid and endogenous fatty acid synthase systems. J. Neurosci. 26, 5628–5637 (2005).

Yoshida, T. et al. Localization of diacylglycerol lipase-α around postsynaptic spines suggests close proximity between production site of an endocannabinoid, 2-arachidonoylglycerol, and the presynaptic fatty-acid receptor. J. Neurosci. 26, 4740–4745 (2006).

References 63 and 64 are two electron-microscopy studies that demonstrate the structural organization of endocannabinoid signaling in brain synapses.

Luan, R., Nusser, Z., Roberts, J. D., Shigemoto, R. & Sakmann, B. Perineuronal location of metabotropic glutamate receptors mGluR, and mGluR6, on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 24, 1489–1498 (2006).

Nakamura, M. et al. Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1β1 receptors at the presynaptic and endoplasmic reticulum in the mouse brain. Eur. J. Neurosci. 20, 2929–2944 (2004).

Galvez, A. I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and post-synaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2005).

Hohmann, A. G. et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108–1112 (2005).

Pomorski, T. & Meron, A. K. Lipid Rippases and their biological functions. Cell. Mol. Life Sci. 62, 2908–2921 (2006).

Zhou, Q. et al. Molecular cloning of human plasma membrane lipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J. Biol. Chem. 272, 18420–18424 (1997).

Sahu, S. K., Gummadi, S. N., Manoj, N. & Aradhayam, G. K. Phospholipid scramblases: an overview. Arch. Biochem. Biophys. 462, 103–114 (2007).

VanFossen, J. E. & Vande Woude, G. F. Phosphoinositide metabolism in mammalian cells. Biochem. Cell Biol. 82, 113–128 (2004).

Li, M. Q., Sarkisian, M. R., Mehal, W. Z., Rakic, P. & Flavell, R. A. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302, 1560–1563 (2003).

De Simone, R., Ajmone-Cat, M. A. & Mignhetti, L. Atypical anti-inflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylethanolamine-phosphatidylserine receptor interaction. Mol. Neurobiol. 29, 197–212 (2004).

Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 267–286 (2002).

Freund, T. F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 85, 1017–1066 (2005).

Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated signaling. Annu. Rev. Neurosci. 29, 57–76 (2006).

Wilson, R. I. & Nicol, R. A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 415, 590–592 (2001).

Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto putative pyramidal cells. Neuron 29, 717–727 (2001).

Ohno-Shosaku, T., Maemura, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).

References 57–59 demonstrate the role of endocannabinoids as retrograde messengers in the brain.

Jung, K. M. et al. Stimulation of endocannabinoid formation in brain slices through activation of group I metabotropic glutamate receptors. Mol. Pharmacol. 68, 1196–1202 (2005).

Makra, K. J. et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Neurosci. 8, 1139–1141 (2005).

References 63 and 64 are two electron-microscopy studies that demonstrate the structural organization of endocannabinoid signaling in brain synapses.

Luan, R., Nusser, Z., Roberts, J. D., Shigemoto, R. & Sakmann, B. Perineuronal location of metabotropic glutamate receptors mGluR, and mGluR6, on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 24, 1489–1498 (2006).

Nakamura, M. et al. Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1β1 receptors at the presynaptic and endoplasmic reticulum in the mouse brain. Eur. J. Neurosci. 20, 2929–2944 (2004).

Galvez, A. I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and post-synaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2005).

Hohmann, A. G. et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108–1112 (2005).

© 2007 Nature Publishing Group

NATRE VIEWs | NEUROSCIENCE

VOLUME 8 | OCTOBER 2007 | 753
81. Urade, Y. & Hayaishi, O. Biochemical, structural, genetic, physiologic, and pathophysiologic features of lipocytic-prostaglandin D synthase. Biochim. Biophys. Acta 1482, 259–271 (2000).

70. Ransfurth, E. et al. Apolipoprotein D, Biochim. Biophys. Acta 1482, 185–198 (2000).

79. Lynch, D. L. & Reggio, P. H. Cannabinoid CB receptor antagonists via the lipid bilayer: molecular dynamics studies of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer. J. Comp. Aided Mol. Des. 20, 459–509 (2006).

78. Computational study that highlights important similarities among lipid-binding G-protein-coupled receptors.

77. Herr, D. & Chun, J. Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr. Drug Targets. 8, 155–167 (2007).

76. Inoue, M. et al. Initiation of neuropathic pain requires lysophosphatic acid receptor signaling. Nature Med. 10, 712–718 (2004).

75. Kato, K., Clark, G. D., Bagn, N. C. & Zorumski, C. F. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367, 179–179 (1994).

74. Pioneering study on the role of platelet-activating factor in synaptic function.

73. Belelli, D. et al. Novel vaso- and inhibitory neurotransmission: mechanisms of action and physiological relevance. Neuroscience 138, 821–829 (2006).

72. Fa, J. et al. Oxyolethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425, 58–63 (2003).

71. Camastro, A., La Faima, G., Giuffrida, A. & Piomelli, D. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281 (1998).

70. LoVerme, J. et al. Rapid broad-spectrum analgesia achieved through peroxisome proliferator-activated receptor-α. J. Pharmacol. Exp. Ther. 319, 1051–1061 (2006).

69. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998 (1996).

68. Want, J. E., Cravatt, B. F. & Szczesny, G. The expanding role of mass spectrometry in metabotolite profiling and characterization. Chembiochem 6, 1941–1951 (2005).

67. Williams, A. S. & Jackson, S. N. Brain tissue lipidoemesis: direct probing using matrix-assisted laser desorption/ ionization mass spectrometry. AAPSJ. 8, 591–595 (2006).

66. Sjollv, P., Lausma, J. & Johansson, B. Mass spectrometric imaging of lipids in brain tissue. Anal. Bioanal. Chem. 388, 1711–1721 (2006).

65. Ivanova, P. T., Milne, S. B., Forrester, J. S. & Brown, H. A. Lipid arrays: new tools in the understanding of membrane dynamics and lipid signaling. Molecular Membrane Biol. 23, 57–65 (2006).

64. Scott, B. L. & Bagn, N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. J. Nutr. 112, 945–959 (2002).

63. Moore, S. A., Yoder, E., Murphy, S. & Doody, A., Yoder, E., Murphy, S. & Alves, S. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 10, 136–141 (2007).

62. Montuschi, P., Barnes, P. J. & Roberts, L. J. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 18, 1791–1800 (2004).

61. Lawrence, J. C., Saslowsky, D. E., Edwardson, J. M. & Henderson, R. M. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Biochim. J. 384, 1827–1832 (2003).

60. Fahey, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 859–861 (2005).

59. The nomenclature of lipids recommendations 2016. JIRUPC-RUB Commission on Biochemical Nomenclature, Lipid Res. 11, 94–128 (1978).

58. Brown, W. J., Chambers, K. & Doody, A. Phospholipase A, (PLA) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4, 214–221 (2003).

57. Moolenaar, W. H., Kranenburg, O., Postma, F. R. & Zondag, G. C. Lipoxysphingolipid cascade: G-protein signalling and cellular responses. Curr. Opin. Cell Biol. 9, 168–173 (1997).

56. Bito, H. et al. Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuro 9, 285–294 (1992).

55. Bagn, N. G. Lipid signaling in neural plasticity, brain development and Alzheimer disease. J. Neurosci. Res. 21, 282–291 (2006).

54. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl Acad. Sci. USA 99, 13878–13882 (2002).

53. McEwen, B. S. & Alves, S. E. Estrogen actions in the central nervous system. Endocrine Rev. 20, 279–307 (1999).

52. Hammond, J. et al. Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. J. Neurochem. 77, 1519–1526 (2001).

51. de Korte, E. R., Vreugdenhil, E., Oitzl, M. S. & Joels, M. Brain corticosteroid receptor balance in health and disease. Endocrine Rev. 19, 260–301 (1998).

50. Rupprecht, R. et al. Progestosterone receptor-mediated effects of neuroactive steroids. Neuro 11, 523–530 (1995).

49. Kampf, J. P., Cupp, D. & Kleinfield, A. M. Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles. J. Biol. Chem. 281, 21566 (2006).

Acknowledgements

Supporting grants were made to D.P. from the Agilent Technologies Foundation and the National Institutes of Health.

Competing interests statement

The authors declare no competing financial interests.

DATABASES

Entrez Gene: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
Rolling Blackout

UniProtKB: http://ca.expasy.org/sprot
TRAP

http://ca.expasy.org/sprot/OPENYR

TREK1

http://ca.expasy.org/sprot/OPENR

FURTHER INFORMATION

Danielle Piomelli’s homepage

http://www.ucirf.edu/pharmaco/research/piomelli.html

Lipid MAPS: http://www.lipidmaps.org/

Cyberlipids: http://www.cyberlipid.org/

Lipid Library: http://www.lipidlibrary.co.uk/

SUPPLEMENTARY INFORMATION

See online article: 52 (table) | 52 (box)

ALL LINKS ARE ACTIVE IN THE ONLINE PDF