Incidence and outcomes of acute mesenteric ischaemia: a systematic review and meta-analysis

Kadri Tamme,1,2 Annika Reintam Blaser,1,3 Kaja-Triin Laisaar,1,4 Merli Mändul,1,5 Jaak Kals,6,7 Alastair Forbes,6,8 Olga Kiss,2 Stefan Acosta,10 Martin Bjorck,6,11 Joel Starkopf1,2

ABSTRACT

Objective To estimate the incidence of acute mesenteric ischaemia (AMI), proportions of its different forms and short-term and long-term mortality.

Design Systematic review and meta-analysis.

Data sources MEDLINE (Ovid), Web of Science, Scopus and Cochrane Library were searched up to 26 July 2022.

Eligibility criteria Studies reporting data on the incidence and outcomes of AMI in adult populations.

Data extraction and synthesis Data extraction and quality assessment with modified Newcastle-Ottawa scale were performed using predesigned standard forms. The outcomes were the incidence of AMI and its different forms in the general population and in patients admitted to hospital, and the mortality of AMI in its different forms.

Results From 3064 records, 335 full texts were reviewed and 163 included in the quantitative analysis. The mean incidence of AMI was 6.2 (95% CI 1.9 to 12.9) per 100 000 person years. On average 5.0 (95% CI 3.3 to 7.1) of 10 000 hospital admissions were due to AMI. Occlusive arterial AMI was the most common form constituting 68.6% (95% CI 63.7 to 73.2) of all AMI cases, with similar proportions of embolism and thrombosis. Overall short-term mortality (in-hospital or within 30 days) of AMI was 59.6% (95% CI 55.5 to 63.6), being 68.7% (95% CI 60.8 to 74.9) in patients treated before the year 2000 and 55.0% (95% CI 45.5 to 64.1) in patients treated from 2000 onwards (p<0.05). The mid/long-term mortality of AMI was 68.2% (95% CI 60.7 to 74.9). Mortality due to mesenteric venous thrombosis was 24.6% (95% CI 17.0 to 32.9) and of non-occlusive mesenteric ischaemia 58.4% (95% CI 48.6 to 67.7). The short-term mortality of revascularised occlusive arterial AMI was 33.9% (95% CI 30.7 to 37.4).

Conclusions In adult patients, AMI is a rarely diagnosed condition with high mortality, although with improvement of treatment results over the last decades. Two thirds of AMI cases are of occlusive arterial origin with potential for better survival if revascularised.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ This systematic review used a comprehensive search for articles on the incidence and outcomes of acute mesenteric ischaemia.
⇒ A considerable number of studies was identified and included for mortality outcome.
⇒ Included studies were mainly retrospective single-centre studies including patients recruited over a long time period.
⇒ Meta-analyses on mortality according to age group or gender, and assessment of other outcomes were not possible.

INTRODUCTION

Acute mesenteric ischaemia (AMI) is a potentially fatal vascular catastrophe.1 Inadequate flow to the intestine may result from mesenteric arterial embolism or thrombosis or by acute mesenteric venous thrombosis (MVT).2 Insufficient perfusion may also occur without an acute thrombo-embolic high-grade stenosis or occlusion of large mesenteric arteries—non-occlusive mesenteric ischaemia (NOMI).2 AMI is said to be a rare condition, yet the incidence is poorly documented. Few studies have addressed it among the general population or hospitalised patients, and recent guidelines have, therefore, relied on estimated levels.2 No systematic analysis on incidence of AMI is available. The most accurate report on the proportion of different forms of AMI comes from a population with an 87% autopsy rate studied between 1970 and 1982.3

In contrast to the lack of data on incidence, the poor outcome of AMI has been well demonstrated. The systematic analysis of 45 studies published before 2002 demonstrates an overall mortality of 74% or 64% depending on whether only supportive or unlimited care was applied.4 A review of 54 studies from 1956 to 2012 found in-hospital mortality of approximately 60% in the studies published from 2002 to 2012, and suggested a slight reduction in mortality over time.5 Data from the past decade suggest that some improvement may have taken place as a result of a multidisciplinary approach and...
developments in many medical fields (eg, better diagnostics, endovascular procedures, management of short bowel syndrome, home parenteral nutrition).\(^6,8\) Whether this has truly resulted in improved outcomes from AMI is unknown.

The aim of this study was to clarify the incidence of AMI and its different forms among adults in the general population, and in those admitted to hospital and presenting to hospital emergency departments, and to determine the outcomes of AMI and its different forms stratified as to whether treatment was before or after the year 2000.

MATERIALS AND METHODS
A study protocol, following the items presented in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines\(^9\) was developed. Details of the protocol were registered on PROSPERO and can be accessed at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247148.

Inclusion criteria for studies
Studies meeting the following criteria were included in the review:
1. Conducted in:
 - General adult (≥ 18 years old) population (whole country, sub-national area, administrative area, area served by hospital) in any of the 218 countries of the world,\(^10\)
 - Adult patients admitted to hospital and/or
 - Adult patients presenting to hospital emergency departments.
2. Presenting data on:
 - AMI incidence or containing data for the numerator and denominator of the estimation fraction, with the diagnosis of AMI based on clinical data, imaging, laparotomy and/or autopsy report. The incidence of AMI in this review was defined as the number of patients newly diagnosed with AMI in the population of interest over 12 months. The incidence of the subtypes of AMI—occlusive AMI, NOMI, and MVT, was also explored and/or
 - AMI outcomes: all-cause mortality (in-hospital, 30-day and the longest reported); intensive care unit length of stay, hospital length of stay and need for home parenteral nutrition.

Literature search
Biomedical literature databases MEDLINE (Ovid), Web of Science and Scopus were searched on 23 March 2021 (since inception) and the Cochrane Library on 24 March 2021 (since inception). An initial search strategy was developed for MEDLINE, which was then adapted for other databases. An additional search with the same strategy was performed on 26 July 2022. No publication status or language restrictions were set, but only articles in languages understood by at least one member of the study team were reviewed. Reading knowledge of the study team members involved in abstract and full-text assessment is as follows: KT—English, Russian and Ukrainian, ARB—English, Russian and German, JK—English and Russian, AF—English, French and Italian, OK—English, Russian and Ukrainian, JS—English and Russian. Although the initial search strategy was unlimited, letters, commentaries, editorials, case studies, case-series with<10 cases and reviews were subsequently excluded.

The electronic search strategy is presented in online supplemental file 1.

Systematic reviews, set aside in the full-text review phase, served as a source of potentially eligible original studies. In addition, the references of publications included in reviews were screened for additional reports of the same study and other relevant studies.

Definitions and study groups
We included studies where the diagnosis of AMI was based on clinical data, imaging (CT or angiography), and laparotomy and/or autopsy report as reported in the original study. During the review process, the studies were categorised as to whether they included patients with all forms of AMI, or patients only with occlusive arterial AMI, MVT or NOMI.

Subgroups
Further, the studies were classified according to patient selection as follows:
► Independent of management—studies including all patients independent of applied treatments, including no treatment.
► Operated patients—studies including only patients who underwent surgery for AMI (with or without revascularisation, including explorative laparotomy/laparoscopy).
► Revascularised patients—studies including only patients with revascularisation (endovascular, open or combined).

Selection of studies and assessment of the risk of bias
Records retrieved from the predefined electronic databases were merged and duplicates removed. The publications were first screened by title and abstract. Full texts of all potentially eligible publications were retrieved and read. Studies were included in the review when all the predefined inclusion criteria were met. Study characteristics were extracted, and their methodological quality assessed according to the Newcastle-Ottawa Scale (NOS).\(^11\)

We modified the scale as follows: first, under the Selection category the representativeness of the study population was evaluated instead of ‘exposed cohort’, while the selection of the non-exposed cohort and ascertainment of exposure were omitted. Thus, for this category, instead of four stars a study could receive a maximum of two stars. Second, when evaluating the Outcome category, we looked at the adequacy of follow-up of the study population instead of cohorts. Thus, the maximum total number...
of stars available was seven. Studies were considered at low risk of bias when receiving four or more stars.

For review, data extraction and quality assessment, standard forms were developed and used. All abstracts were reviewed by two independent researchers, whereas full-text articles were reviewed by one researcher and checked by the second reviewer when creating evidence tables for different outcomes. In the case of uncertainty or discrepancy at any step, consensus of the two researchers had to be reached, after consulting a third researcher if necessary.

Data synthesis

Random-effects meta-analyses were used to combine the estimates of AMI incidence, mortality and proportions in subgroups. Random-effects meta-analysis was preferred due to assumption that observed estimates of treatment effect vary across studies because of real differences in treatment effect in each study as well as sampling variability. By default, generic inverse variance was used for pooling the studies. If subgroup analyses were needed, the generalised linear mixed models method was used instead.

For incidence meta-analysis incidence per 100 000 person years was used. For outcomes of AMI and its different forms, proportion (in %) of all events was used.

The results are presented using forest plots along with I² statistic, τ² and Cochran’s Q-test to describe the heterogeneity. To compare two meta-analysis estimates, random-effects meta-regression was used.

If 95% CIs on incidence estimates were lacking for N<15, the exact method was used.

Analyses were performed using R software (V4.1.0. R Foundation for Statistical Computing, Vienna, Austria). Detailed description of data synthesis is presented in online supplemental file 2.

Patient and public involvement

Patients and the general public were not involved in the design or planning of the study.

RESULTS

Literature search and quality assessment

After removal of duplicates, 2591 records were obtained from the initial search, and an additional 178 records were identified through other sources, making 3064 potentially eligible articles (figure 1). On screening the titles and abstracts, 2729 records were excluded, leaving 335 studies for full-text assessment. Review of these articles excluded 172 of them for various reasons (figure 1). Twelve articles were systematic reviews; thus 163 were considered eligible for quantitative synthesis (meta-analysis): 152 retrospective and 11 prospective studies.

All studies included in meta-analyses received more than four points on the modified NOS, indicating low risk of bias (see online supplemental table 1). This is accounted for by the robustness of the outcomes we studied (AMI and mortality) and on the assumption that most patients with AMI were detected.

Four articles in Chinese were excluded as no member of the study team has command of this language.

Incidence of AMI and proportions of its different forms

General population

We found five studies (one of them a series of studies) that addressed the incidence of AMI in the general population. Analyses were performed using R software (V4.1.0. R Foundation for Statistical Computing, Vienna, Austria). Detailed description of data synthesis is presented in online supplemental file 2.

Patient and public involvement

Patients and the general public were not involved in the design or planning of the study.

RESULTS

Literature search and quality assessment

After removal of duplicates, 2591 records were obtained from the initial search, and an additional 178 records were identified through other sources, making 3064 potentially eligible articles (figure 1). On screening the titles and abstracts, 2729 records were excluded, leaving 335 studies for full-text assessment. Review of these articles excluded 172 of them for various reasons (figure 1). Twelve articles were systematic reviews; thus 163 were considered eligible for quantitative synthesis (meta-analysis): 152 retrospective and 11 prospective studies.

All studies included in meta-analyses received more than four points on the modified NOS, indicating low risk of bias (see online supplemental table 1). This is accounted for by the robustness of the outcomes we studied (AMI and mortality) and on the assumption that most patients with AMI were detected.

Four articles in Chinese were excluded as no member of the study team has command of this language.

Incidence of AMI and proportions of its different forms

General population

We found five studies (one of them a series of studies) that addressed the incidence of AMI in the general population.
population (figure 2).13–20 Among them, only one study reported a population-wide autopsy rate (87%).13–16

On average 6.2 (95% CI 1.9 to 12.9), new cases of AMI were diagnosed annually per 100 000 inhabitants. These studies cover 1970–2013 and are exclusively from high income countries.

It was not possible to perform quantitative synthesis on the incidence of different forms of AMI in general populations. This was, however, reported in the investigation of the population of Malmö, Sweden, in the years 1970–1982, and in a study from Finland, investigating the population of Kuopio in the years 2009–2013. They report 8.6 (95% CI 7.6 to 9.7) and 4.5 (95% CI 2.5 to 8.1) cases of occlusive arterial AMI, 2.0 (95% CI 1.5 to 2.5) and 2.0 (95% CI 0.8 to 4.8) cases of NOMI, and 1.8 (95% CI 1.3 to 2.2) and 0.5 (95% CI 0.21.1) cases of MVT per 100 000 person years, respectively.14–16 20

Thirty-eight studies reported the proportions of different forms of AMI in their cohorts.14 17 21–56 Quantitative analysis demonstrates that the most common form is occlusive arterial, constituting 68.6% (95% CI 63.7 to 73.2) of all AMI cases (online supplemental figure 1). NOMI accounts for 15.1% (95% CI 11.8 to 18.7) and MVT for 11.5% (95% CI 9.1 to 14.2) of cases. Arterial occlusion was roughly equally thrombotic and embolic (30.0% (95% CI 24.4 to 36.3) and 33.3% (95% CI 27.3 to 39.9) of all AMI cases, respectively), some studies simply reporting occlusive arterial AMI without distinguishing between the two.

Retrieved data were insufficient for quantitative synthesis in the incidence in different age groups. Single studies indicate that the occurrence of AMI increases with age. Acosta et al showed that in Swedish population occlusive arterial AMI increases dramatically with age in both men and women, reaching 85.8 (95% CI 61.5 to 110.0) per 100 000 person years at age 80–84 years, and 189.5 (95% CI 145.1 to 233.9) in those over 85 years, respectively.15 Similar exponential growth of all forms of AMI is demonstrated in the Finnish population, reaching 60 cases per 100 000 person years at ages over 80 years.20 The studies included in our analysis of the incidence in the general population, indicate a significantly higher proportion of women, at 58.3% (95% CI 56.5 to 60.2).13–20

Hospitalised patients
Five studies reported the proportion of patients with AMI among hospitalised patients and were included in the meta-analysis (figure 3).19 42 57–59 On average, 5.0 (95% CI 3.3 to 7.1) of 10 000 hospital admissions are due to AMI.

Emergency department patients
A meta-analysis was not possible. A single study demonstrated that 1.4% of patients admitted to an emergency department with abdominal pain suffered from AMI.60 Another study reported that 3.6% of patients ≥65 years who present to hospital for emergency surgery have intestinal ischaemia.61

Outcomes of AMI and its different forms
Short-term mortality
In total, 81 studies were included in meta-analysis of short-term mortality of AMI, defined as either in-hospital or within 30-days.17 19 22 24–28 32–37 39–43 45 47–52 56–58 60 62–112 The overall mortality was 59.6% (95% CI 55.5 to 63.6) and was only slightly lower in sub-analysis of the 33 studies, which included patients who had been operated on (figure 4).19 24 27 33 35 36 40 41 43 47 51 58 92–111 Short-term mortality was 51.7% (95% CI 37.5 to 65.5) in prospective

![Figure 2](https://example.com/image2.png) Incidence of acute mesenteric ischaemia in general population, cases per 100 000 person years.

![Figure 3](https://example.com/image3.png) Proportion of patients with acute mesenteric ischaemia (AMI) among hospitalised patients.
Figure 4 Short-term (hospital or 30 days) mortality of acute mesenteric ischaemia (all forms). Subgroup analyses of studies including all patients independent of treatment method (upper panel) and of studies including only operated patients (lower panel) are presented. In brackets, the period of patient inclusion is indicated. AMI, acute mesenteric ischaemia.
(n=9) 32 \pm 49 \pm 60 \pm 78 \pm 82 \pm 87 \pm 91, and 62.9% (95% CI 56.5 to 68.8) in retrospective (n=37) 17 25 26 28 37 42 45 \pm 48 \pm 50 \pm 57 \pm 62 \pm 67 \pm 79 \pm 81 85 \pm 86 \pm 88 \pm 90 \pm 91 studies (p=0.15). Table 1 illustrates the evolution of mortality over time. The pooled mortality in the 25 studies from before 2000 including patients independent of treatment method was 68.7% (95% CI 60.8 to 74.9) compared with 55.0% (95% CI 45.5 to 64.1) in the 18 studies where recruitment commenced later (p=0.027) (Table 1). Five studies with patients included from both before and after 2000 were excluded from this analysis because the published data did not permit allocation of individuals to one or other era. 46 72 78 Sensitivity analysis stratifying the studies only according to the date the first patient was enrolled, and thereby including all available studies, showed a difference in mortality from 65.5% to 52.5% (p=0.025).

Sixty-one studies addressed the short-term mortality of occlusive arterial AMI. 62 25 27 31–35 38 39 42 48 49 55 64 66 69 95 115–153 Meta-analysis showed an overall mortality of 51.8% (95% CI 47.3 to 57.3) (online supplemental figure 2). The sub-analysis of 24 studies on patients who underwent revascularisation demonstrated a mortality of 33.9% (95% CI 30.7 to 37.4). 6.59 131–144 150–153

Short-term mortality of patients with NOMI was reported in 22 studies, and 7 of these analyse the outcome of surgery (online supplemental figure 3). 22 25 27 31–33 35 38 39 42 48 49 93 154–162 The overall mortality of NOMI independent of treatment was 58.4% (95% CI 48.6 to 67.7) and was similar in the studies including operated patients.

Twenty-seven studies reported the short-term outcome of MVT with a pooled mortality rate of 24.6% (17.0–32.9) (online supplemental figure 4).

Mid-term and long-term mortality
Few studies reported longer outcomes, the follow-up period ranging from 6 months to 5 years. Analysis of six such studies showed 68.2% (95% CI 60.7 to 74.9) overall mortality at a minimum of 6 months (figure 5). 24 31 41 98 100 171 Eleven studies addressed only occlusive arterial patients with AMI, and meta-analysis demonstrated an overall mid-term/long-term mortality of 59.0% (95% CI 44.9 to 71.7) in this subgroup (figure 6). 6 121 127 129 131 137 140 144 146 151 172 MVT had better mid/long-term outcome, analysis of nine studies showing a mortality of 28.9% (95% CI 15.2 to 44.8) (figure 7).

DISCUSSION
This systematic review and meta-analysis showed that AMI occurred in 6/100 000 person-years and in 0.05% of hospital admissions. There were considerable differences in the incidences of AMI found in different studies, which might be explained by study methods, evolving of diagnostics over time and autopsy rate. There is likely to be a bias towards underestimation of incidence due to incomplete retrieval of cases detected at autopsy and low overall autopsy rates in the studied populations. 3 In a population-based study conducted between 1970 and 1982 with an autopsy rate of 87%, 79% of patients with occlusive arterial AMI were diagnosed at autopsy. 15 The current proportion of patients not diagnosed in life is very uncertain due to low autopsy rates. In the present review, AMI was more common in women, but the great majority of studies did not control for the longer life expectancy among women in most, if not all, of the studied countries. The different forms of AMI have variable incidence and mortality, with occlusive arterial AMI constituting two thirds of all AMI cases. Revascularised occlusive arterial AMI and MVT carry the best prognosis for survival, but the overall mortality of AMI remains very high, exceeding 50%. The real mortality rate is likely higher, since a substantial number of AMI cases are diagnosed only at autopsy, 15 17 and the autopsy rate in most studied countries is generally very low, and almost non-existent among the oldest age groups. 175 176

Incidence of AMI
The incidence of AMI in the general population and its proportion of hospital admissions have not been assessed in systematic reviews before. The results of this study illustrate the very low incidence of AMI when compared with other cardiovascular diseases such as stroke (up to 265/100 000 person-years) 177 or myocardial infarction (up to 1170/100 000 person-years). 178 Similarly, many other conditions requiring emergency surgery are more common (eg, acute appendicitis: 100/100 000, 179 gastro-intestinal bleeding: 19–57/100 000, or perforated peptic ulcer: 4–14/100 000). 180 However, AMI was more common than ruptured abdominal aortic aneurysm, and the age-specific incidence of AMI was higher than the incidence of acute appendicitis in patients over 75 presenting with an acute abdomen. 20 The studies included in the present meta-analysis were all retrospective and mostly single-centre studies originating from a wide time span, introducing risks of information bias. There are additional confounding factors, such as changes in demography and diagnostic methods and activity. Accordingly, it is not possible to draw any firm conclusions regarding changes in incidence of AMI over time.

Proportion of different forms of AMI
The great majority of the studies included for analyses of the proportions of different forms of AMI were also retrospective single-centre studies. Additionally, somewhat different definitions of AMI were used, with some studies excluding specific forms such as aortic dissection where others included all cases of AMI independent of mechanism. In our analysis, the forms other than occlusive arterial AMI, MVT and NOMI accounted for <5% of all reported cases of AMI and were not further addressed in detail. However, considering that not all studies considered these ‘other’ forms at all, the real proportion of ‘other’ is most probably higher than shown by our analysis. Also, in the literature, there is no uniform consensus...
Table 1 Hospital-day or 30-day mortality of acute mesenteric ischaemia in studies including patients treated before or after year 2000

Group	Study	Study years	Died	Number of patients	Mortality (%)
Patients treated before 2000	Jenson and Smith⁶²	1942–1954	39	51	76.47
	Vellar and Doyle⁶³	1958–1975	13	20	72.83
	Kairaluoma et al⁶⁴	1960–1974	38	51	74.51
	Ottinger and Austen⁵⁷	1960–1965	125	136	91.91
	Sachs et al²²	1965–1980	32	49	65.31
	Patterson⁸⁵	1968–1973	21	23	91.30
	Andersson et al⁶⁶	1969–1982	49	60	81.67
	Czerny et al⁶⁸	1970–1996	79	145	54.48
	Prager et al²⁶	1970–1997	70	151	46.36
	Järvinen et al⁶⁷	1972–1990	176	214	82.24
	Inderbitzi et al²⁸	1973–1990	68	100	68.00
	Wilson et al¹⁷	1973–1984	94	102	92.16
	Castelli et al⁶⁸	n/a	14	25	56.00
	Boley et al³²	n/a	16	35	45.71
	Voltolini et al⁸⁴	1979–1992	34	47	72.34
	Duron et al⁶⁹	1980–1995	561	797	70.39
	Paes et al⁸⁷	1981–1987	18	34	52.94
	Tsai et al⁷⁰	1981–1988	24	43	55.81
	Deehan et al⁷¹	1982–1992	29	43	67.44
	Giuliani et al⁷²	1982–1986	25	34	73.53
	Bapat et al⁷³	1984–1988	8	20	40.00
	Böttger et al³⁹	1985–1990	38	62	61.29
	Mamode et al⁷⁴	1987–1993	46	57	80.70
	Danse et al⁶⁰	n/a	3	13	23.08
	Schoefel et al⁴⁹	n/a	8	15	53.33
Subtotal				1628	2276
Mortality (95% CI)				68.67 (60.78 to 74.91)	

Patients treated after 2000	Aouini et al⁷⁹	2000–2008	18	26	69.23
	Kassahun et al⁸⁰	2000–2006	36	60	60.00
	Nonthasoot et al⁸¹	2000–2005	27	35	77.14
	Block et al⁸²	2001–2003	4	10	40.00
	Szabone Revesz⁵⁰	2001–2010	99	114	86.84
	Hussain et al⁸³	2002–2006	5	16	31.25
	Eltarawy et al⁸⁴	2004–2005	26	72	36.11
	Bagdasarov et al⁴⁵	2005–2011	41	72	56.94
	Kisaoglu et al⁸⁵	2005–2013	29	49	59.18
	Yang et al⁸⁶	2005–2014	35	199	17.59
	Haga et al¹²	2006–2007	51	115	44.35
	Chiu et al⁸⁷	2007–2009	13	23	56.52
	Bilgic et al³⁸	2008–2011	35	61	57.38
	Danylenko et al⁸⁹	2008–2011	178	248	51.90
	Sindall et al⁹⁰	2008–2015	55	221	24.89
	Augene et al⁹¹	2011–2019	72	106	67.92
	Anglaret et al⁹⁶	2014–2019	43	66	65.15

Continued
about the forms of mesenteric ischaemia that should be included in the definition of AMI. For example, the World Society of Emergency Surgery guidelines suggest considering only interruption of the blood supply to the small bowel in their definition of AMI, which is unfortunate since the superior mesenteric artery typically supplies not only the distal part of the duodenum and small bowel but also the large bowel up to the mid transverse colon, and NOMI may affect any part of the intestine as well as being responsible for extra-intestinal organ ischaemia. At the same time, the European Society of Vascular Surgery guidelines include acute colonic ischaemia, pointing out that acute colonic ischaemia is often erroneously labelled as ischaemic colitis. In present study, colonic ischaemia and/or ischaemic colitis were not included as specific key words in the literature search. Retrieved papers reporting acute inferior mesenteric artery ischaemia among all other forms of AMI were, however, included in the analysis.

Outcomes of AMI

Whereas outcomes of other vascular catastrophes such as acute coronary syndrome and stroke have improved substantially during the past few decades, the mortality after AMI remains high, although with some improvement observed. However, it remains possible that selection bias due to less consistent reporting of cases diagnosed post-mortem in more recent decades plays a role in this finding. The mortality data in the present review are, however, in accordance with two earlier systematic reviews. Inclusion of 78 studies from 1956 to 2020 in the present analysis leads to a pooled mortality of 59%, while Schoots et al calculated a pooled in-hospital mortality of 73% from 47 studies published from 1967 to 2002, and Adaba et al 63% from 52 articles published from 1956 to 2012. We were not able to analyse if AMI mortality has changed over the last decade as most of the studies included patients over long periods of time (10 years and more) and only three had cases between years 2012 and 2022.

Different forms of AMI at their different stages are encountered by different specialists and are often studied as separate entities. Thereby, progress in management of specific forms of AMI has been achieved, concerning mainly the endovascular and hybrid therapy of occlusive arterial AMI. In this review, intestinal revascularisation was seen to be associated with an almost halved mortality compared with the overall mortality in patients with occlusive arterial AMI. Considering that occlusive arterial AMI is the most common form of AMI, a larger effect on the reduction of overall mortality could have been expected with the development of endovascular therapy since the turn of the millennium; similarly to Adaba et

Group	Study	Study years	Died	Number of patients	Mortality (%)
Elsharkawy et al 112	29	50	58.00		
Subtotal	796	1543			
Mortality (95% CI)	54.97 (45.53 to 64.06)				
p=0.0266					

Table 1 Continued

Study	Dead	Total	Proportion	95% C.I.
AMI patients independent of treatment method	60.00 [44.33; 74.30]			
Kaech 1989 (1976-1987)	27	45	60.00 [44.33; 74.30]	
Moschetta 2016 (2012-2013)	30	47	63.83 [48.52; 77.33]	
Random effects model	61.96 [51.67; 71.27]			
Heterogeneity: I² = 89%, c² = 0, χ² = 1.14 (p = 0.71)				
Operated AMI patients (with or without revascularisation)	77.09 [72.11; 81.56]			
Acosta-Merida 2020 (1990-2015)	249	323	77.09 [72.11; 81.56]	
Park 2002 (1990-1999)	39	58	67.24 [53.66; 78.99]	
Marchena-Gomez 2009 (1990-2006)	138	184	75.00 [68.10; 81.08]	
Duran 2015 (2001-2014)	29	54	53.70 [39.61; 67.38]	
Random effects model	70.30 [61.36; 77.93]			
Heterogeneity: I² = 78%, c² = 0.1117, χ² = 13.67 (p < 0.01)				
Random effects model	68.22 [60.67; 74.93]			
Heterogeneity: I² = 73%, c² = 0.1021, χ² = 18.72 (p < 0.01)				
Test for subgroup differences: χ² = 1.80, df = 1 (p = 0.21)				

Figure 5 Long-term (6 months to 5 years) mortality of acute mesenteric ischaemia, all forms. Subgroup analyses of studies including patients independent of treatment method (upper panel) and of studies including only operated patients (lower panel) are presented. In brackets, the period of patient inclusion is indicated. AMI, acute mesenteric ischaemia.
al.58 we showed only a modest reduction. Late diagnosis despite round-the-clock availability of contrast-enhanced computed tomography (at least in high-income countries) contributes to the continued low rate of intestinal revascularisation and high mortality in patients with occlusive arterial AMI. This explanation is supported by two studies using data from a large nationwide database, reporting attempted revascularisation rates of only 2.9–4.2\%59,136 As clinical signs of AMI are non-specific and reliable specific biomarkers are lacking, the diagnosis is often delayed resulting in progression of intestinal ischaemia to transmural intestinal necrosis and peritonitis before the diagnosis is made.84,121

In this systematic review, we only focused on survival outcome, as data on other patient-relevant outcomes (presence of stoma, need of parenteral nutrition, quality of life) are scarce, justifying future prospective studies. We also omitted analysis of hospital length of stay, although this was initially planned, because it was greatly influenced by early and very high mortality, as well as lack of data. These outcomes are important, however, and should be considered when comparing different treatment methods.

Figure 6 Long-term (6 months to 5 years) mortality of occlusive arterial acute mesenteric ischaemia (OcclArtAMI). Subgroup analyses of studies including patients independent of treatment method (upper panel), of studies including only operated patients (middle panel), and of studies including only patients with revascularisation (lower panel) are presented. In brackets, the period of patient inclusion is indicated.

Figure 7 Long-term (2 months to 5 years) mortality of mesenteric vein thrombosis (MVT). In brackets, the period of patient inclusion is indicated.
Mid-term to long-term mortality was only slightly higher than short-term mortality in our analysis, suggesting that a high proportion of the patients surviving initial hospitalisation for AMI, actually have a favourable prognosis.

Strengths and limitations

This study has supplied data to assist in the planning of a prospective multicentre study (ClinTrials number NCT05218863). The aim of this planned study is to identify the incidence and outcome of AMI in hospitalised patients, describe clinical and laboratory variables of different forms of AMI at baseline and map the patterns of diagnosis and management. This international research programme should contribute to development of an algorithm for diagnosis and management of AMI. We believe that obtaining an overall picture of AMI rather than focusing on each form of AMI separately is needed to increase knowledge and awareness among physicians and ultimately to improve outcome. The main strength of the present study is provision of a broad overview of the existing literature on AMI. Among the limitations are: (1) by not including the term ‘colonic ischaemia’ or the misnomer ‘ischaemic colitis’ in the search strategy we might have missed some studies on AMI. However, reporting in articles is almost exclusively based on the forms of AMI differentiated based on pathophysiological mechanism, while both the small and large bowel are often affected in occlusive arterial AMI and NOMI; (2) the long study periods and single-centre retrospective nature of most of the studies, where the evidence can only be improved by future studies; (3) the pooling of studies with somewhat different definitions and management algorithms, where we created categories to minimise these differences; (4) the inherent risk of bias, both publication bias of the studies, and possible bias in the assessment of the studies, although no efforts were spared to avoid this.

In summary, the present systematic analysis estimated the incidence of AMI in the general population and hospitalised patients, forming basis for planning of future prospective studies. Two thirds of AMI cases are of occlusive arterial origin with the potential for better survival, if diagnosed promptly and revascularised in time. AMI due to MVT carries the best spontaneous prognosis. Despite some progress in revascularisation techniques, and improved survival since the millennium, emergency revascularisation rates remain low and mortality remains very high. There is great potential for future improvement.

Author affiliations

1Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
2Anaesthesiology and Intensive Care Clinic, Tartu University Hospital, Tartu, Estonia
3Department of Intensive Care Medicine, Luzerner Kantonsspital, Luzern, Luzern, Switzerland
4Department of Epidemiology and Biostatistics, Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
5Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
6Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
7Surgery Clinic, Tartu University Hospital, Tartu, Estonia
8Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
9Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
10Department of Clinical Sciences, Lund University, Malmö, Sweden
11Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

Contributors KT, ARB, K-TL and JS contributed equally to the study design. KT, ARB, K-TL, JK, AF, OK and JS collected the data and carried out the qualitative analysis. MM carried out the quantitative analysis. KT, ARB, K-TL and JS drafted the manuscript. KT, ARB, K-TL, JS, JK, MB and SA were involved in the critical discussion and interpretation of data. All authors approved this final version for publication. KT, as guarantor, accepts full responsibility for the finished article, has access to any data and controlled the decision to publish.

Funding This work was supported by Estonian Research Council grant number PRG1255.

Competing interests ARB has received consultancy fees from VIPUN Medical, and lecture fees from Nestle and Nutricia. AF has received lecture fees from B. Braun and Fresenius Kabi, payment for expert testimony from Takeda, and support for attending meetings from ESPEN. MM reports support for her work from Estonian Research Council grant number 1197. KT, K-TL, MB, JK, SA, OK and JS declare no competing interests.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Kadi Tamme http://orcid.org/0000-0001-6110-0417
Annika Reintam Blaser http://orcid.org/0000-0003-1211-7372
Kaja-Trin Laisaar http://orcid.org/0000-0002-6774-9601

REFERENCES

1. Oldenborg WA, Lau LL, Rodenberg TJ, et al. Acute mesenteric ischemia: a clinical review. *Arch Intern Med* 2004;164:1054–62.
2. Björck M, Koellemay M, Acosta S. Clinical practice guidelines of the European Society of vascular surgery (EVS). *Eur J Vasc Endovasc Surg* 2017;53:460–510.
3. Acosta S. Epidemiology of mesenteric vascular disease: clinical implications. *Semin Vasc Surg* 2010;23:4–8.
4. Schoots IG, Koffeman GI, Legemate DA, et al. Systematic review of survival after acute mesenteric ischaemia according to disease aetiology. *Br J Surg* 2004;91:17–27.
5. Adaba F, Askari A, Dastur J, et al. Mortality after acute primary mesenteric infarction: a systematic review and meta-analysis of observational studies. *Colorectal Dis* 2015;17:586–77.
6. Rousset A, Castier Y, Nuzzo A, et al. Revascularization of acute mesenteric ischemia after creation of a dedicated multidisciplinary center. *J Vasc Surg* 2015;62:1251–6.
Acosta S, Ögr, M, Sternby N-H, et al. Fatal colonic ischaemia: a population-based study. Scand J Gastroenterol 2006;41:1312–9.

Acosta S, Ögr, M, Sternby N-H, et al. Fatal nonocclusive mesenteric ischaemia: population-based incidence and risk factors. J Intern Med 2006;259:305–13.

Acosta S, Ögr, M, Sternby N-H, et al. Incidence of acute thrombomembolic occlusion of the superior mesenteric artery—a population-based study. Eur J Vasc Endovasc Surg 2004;27:145–50.

Acosta S, Ögr, M, Sternby N-H, et al. Mesenteric venous thrombosis with transmural intestinal infarction: a population-based study. J Vasc Surg 2005;41:59–63.

Wilson C, Gupta R, Gilmour DG, et al. Acute superior mesenteric ischaemia. Br J Surg 1987;74:279–81.

Huelter C, Rivero E, Montoro MA, et al. Risk factors for intestinal ischaemia among patients registered in a UK primary care database: a nested case-control study. Aliment Pharmacol Ther 2011;33:969–78.

Crawford RS, Harris DG, Klyushnenkova EN, et al. A statewide analysis of the incidence and outcomes of acute mesenteric ischemia reported to a statewide surveillance system. J Vasc Surg 2015;62:420–5.

Acosta-Mérida MA, Marchena-Gómez J, Saavedra-Santana P, et al. Surgical outcomes in acute mesenteric ischemia: has anything changed over the years? World J Surg 2020;44:100–7.

Czerny M, Trubel W, Claeys L. [Acute mesenteric ischaemia]. Zentralbl Chir 1997;122:192–8. German.

Prager M, Teufelsbauer H, Nanobashvili J, et al. [Surgical therapy of acute mesenterial ischaemia - unerstand or unhealbar?] Die akute mesenteriale Ischämie - unverstanden oder unheilbar? [The acute mesenteric ischaemia: unknown or unhealbar?]. Chirurgiia 2005;19:328–34. Russian.

Destek S, Yabaci A, Abik YN, et al. Predictive and prognostic value of L-lactate, D-dimer, leukocyte, C-reactive protein and neutrophil/lymphocyte ratio in patients with acute mesenteric ischemia.Ulus Travma Acil Cerrahi Derg 2020;26:86–92.

Braam L, Poon PC, et al. Clinical spectrum and surgical management of acute mesenteric ischemia in Singapore. Singapore Med J 2007;48:319–23.

Coffelli U, Baumgartner U, Imholz A, et al. The influence of ischismic bowel wall damage on translocation, inflammatory response, and clinical course. Am J Surg 1997;174:39–44.

Szaboné Révész E. Akut mesenterialis ischaemia: 10 év eseteinek elemzése [2001-2010] [Acute mesenteric ischemia: analysis of cases over a ten-years period (2001-2010)]. Orv Hetil 2012;153:1424–32. Hungarian.

Arnalich F, Maliddazzi MC, Cira E, et al. Association of cell-free plasma DNA with perioperative mortality in patients with suspected acute mesenteric ischemia. Clin Chim Acta 2010;411:1269–74.

Akyildiz HY, Sözüzoğlu U, Lütscher B, et al. The length of necrosis and renal insufficiency predict the outcome of acute mesenteric ischemia. Asian J Surg 2015;38:28–32.

Calame P, Malakia A, Turco C, et al. Transmural bowel necrosis from acute mesenteric ischemia and strangulated small-bowel obstruction: distinctive CT features. AJR Am J Roentgenol 2010;245:90–5.

Abu-Daff S, Abu-Daff N, Al-Shaked M. Mesenteric venous thrombosis and factors associated with mortality: a statistical analysis with five-year follow-up. J Gastrointest Surg 2009;13:1245–50.

Brunaud L, Antunes L, Collinet-Griffon V, et al. Acute venous thrombosis: case for nonoperative management. J Vasc Surg 2001;34:673–9.

Huang H-H, Chang Y-C, Yen DH-T, et al. Clinical and outcomes in patients with acute mesenteric ischemia in the emergency department. J Chin Med Assoc 2005;68:299–306.

Park WM, Głowiczki P, Cherry KJ, et al. Contemporary management of acute mesenteric ischemia: factors associated with survival. J Vasc Surg 2002;35:445–52.

Haga Y, Odo M, Homma M, et al. New prediction rule for mortality in acute mesenteric ischemia. Digestion 2009;80:104–11.

Dahle MH, Ashaiza J, Pan FC, et al. Mesenteric ischemia—outcome after surgical therapy in 83 patients. Dig Surg 2008;25:213–9.

Baeksho AA, Klumuk SA, Lushkevich VA. Acute disorders of mesenteric circulations: the etiology, risk factors and incidence of complications. Angiol Sotchi 2004;19:103–13. English. Russian.

Bagdasarav VV, Bagdasarova EA, Chernookov AI. [Tactics by the acute intestinal ischemia]. Khirurgija 2013;6:44–50. Russian.

Nuzzo A, Maggiori L, Ronot M, et al. Predictive factors of intestinal necrosis in acute mesenteric ischemia: prospective study from an Italian single center. Gastrointest Endosc 2017;85:607–615.

Volkolini F, Pricolo R, Naldini G. Ischemia mesenterica acuta. Analisi clinich e epidemiologiche. Acta Chir Belg 1979:97:173–6.
Guttman MP, Tillmann BW, Nathens AB, et al. Alive and at home: five-year outcomes in older adults following emergeney general surgery. J Trauma Acute Care Surg 2021;90:287–95.

Jenson CB, Smith GA. A clinical study of 51 cases of mesenteric infarction. Surgery 1956;40:930–7.

Vellar ID, Doyle JC. Acute mesenteric ischaemia. Aust N Z J Surg 1977;47:54–61.

Kairaluoma MI, Heikkilinen D, Karkola P, et al. Mesenteric infarction. Am J Surg 1977;133:188–93.

Patterson LT. Acute mesenteric infarction. Am J Surg 1976;42.

Andersson R, Påhlsson H, Isaksson B, et al. Acute intestinal ischemia. A 14-year retrospective investigation. Acta Chir Scand 1984;150:217–21.

Jrvinen O, Laurikka J, Salenius JP. Acute mesenteric ischemia. A 14-year retrospective investigation. Acta Chir Scand 1984;150:217–21.

Duron JJ, Peyrard P, Boukhoutouche S. Isthémie mésentérique aiguë: ce qui a changé durant la décennie 1985–1995. Associations de recherche en chirurgie [Acute mesenteric ischemia: changes in 1985–1995. Surgical Research Associations]. Chirurgie 1999;123:335–42. French.

Tsai CJ, Kuo YC, Chen PC, et al. The spectrum of acute intestinal vascular failure: a collective review of 43 cases in Taiwan. Br J Clin Pract 1990;44:603-8.

Deehan DJ, Hendi KS, Brittenden J, et al. Mesenteric ischaemia: prognostic factors and influence of delay upon outcome. J Coll Surg Edinb 1995;40:112–5.

Giulini S, Bonadelli S, Cangiotti L, et al. Factors affecting prognosis in acute intestinal ischemia. Int Angiol 1987;6:415–20.

Bapart RD, Ayer PM, Relekar RG, et al. Ischemic bowel disease. Indian J Gastroenterol 1990;13:275–8.

Mamode N, Pickford I, Leiberman P. Failure to improve outcome in acute mesenteric ischaemia: seven-year review. Eur J Surg 1999;165:203–8.

Haghighi RH, Lankarani KB, Taghavi SA, et al. Acute mesenteric ischemia: causes and mortality rates over sixteen years in southern Iran. Indian J Gastroenterol 2008;27:236–8.

Vokurka J, Olejnik J, Jedlicka V, et al. Acute mesenteric ischemia. Hepatogastroenterology 2008;55:1349–52.

Anadoli AZ, Ersoy E, Taneri F, et al. Laparoscopic "second-look" in the management of mesenteric ischemia. Surg Laparosc Endosc Percutan Tech 2004;14:191–3.

Gearhart SL, Delaney CP, Senagore AJ, et al. Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Am Surg 2003;69:324–9.

Aouini F, Bouhaffa A, Baaazouzi J. Isthémie mésentérique aigue : Etude des facteurs prédictifs de mortalité [Acute mesenteric ischemia: study of predictive factors of mortality]. Tunis Med 2012;90:533–6. French.

Kassahun WT, Schulz T, Richter O, et al. Unchanged high mortality rates from acute mesenteric ischemia: six year review. Langenbecks Arch Surg 2008;393:163–71.

Northasoot B, Tahan H, Sobh A. Les infarctus intestinaux. Une réévaluation des facteurs pronostiques de mortalité post-opératoire [Intestinal infarctions. A re-evaluation of prognostic factors of postoperative mortality]. Ann Chir 1995:49:607–12. French.

Goudet P, Michelin T, Rousseau P, et al. Intestinal infarction: a reappraisal of the factors predictive of operative mortality. Eur J Surg 1998;164:593–8.

Zan S, Giustetto A, Mastroianm, V. Ischmie intestinale acuta. Diagnosi e trattamento chirurgico [Acute intestinal ischemia Diagnosis and surgical treatment]. Minerva Chir 1993;48:543–8.

Wadam M, Syk i, Elmståhl S. Survival after operations for ischaemic bowel disease. Eur J Surg 2000;166:872–7.

Marchena-Gomez J, Acosta-Merida MA, Hammersbach-Miller M, et al. The age-adjusted Charlson comorbidity index as an outcome predictor of patients with acute mesenteric ischemia. Ann Vasc Surg 2009;23:458–64.

Unalp HR, Atahan K, Kamer E. Nekroz nedenileyi başırmsız, rezekisyonu uygulanmak antmekentik iskemi olgularında hastane mortalitesi için prognostik faktörler [Prognostic factors for hospital mortality in patients with acute mesenteric ischemia who undergo intestinal resection due to necrosis]. Ulus Travma Acil Cerrahi Derg 2010;16:63–70. Turkish.

Duran M, Pohl E, Grabitz K, et al. The importance of open emergency surgery in the treatment of acute mesenteric ischemia. World J Emerg Surg 2012;7:40.

Pudrozyskaia C, Celnik A, Pomorski L. Patients subject to surgery due to acute abdominal disorders during the period between 2001-2004. Pol Przegl Chir 2012;84:888–94.

Grottéüschen R, Bergmann W, Welte MN, et al. What predicts the outcome in patients with acute mesenteric ischemia? a single center experience. J Visc Surg 2019;156:405–11.

Aliosmanoglu I, Gül M, Kapan M, et al. Risk factors effecting mortality in acute mesenteric ischemia and mortality rates: a single center experience. Int Surg 2015;98:76–81.

Studer P, Vaucher A, Candinias D, et al. The value of serial serum lactate measurements in predicting the extent of ischemic bowel and outcome of patients suffering acute mesenteric ischemia. J Gastrointest Surg 2015;19:751–5.

Peris A, Zaglì G, Maccarrone N, et al. The use of modified early warning score may help anesthesists in postoperative level of care selection in emergency abdominal surgery. Minerva Anestesiol 2012;78:1034–8.

Tannaktu Y, Şen Tannuku C, Sabuncuoglu MZ, et al. Diagnostic utility of the neutrophil-lymphocyte ratio in patients with acute mesenteric ischemia: a retrospective cohort study. Ulus Travma Acil Cerrahi Derg 2016;22:344–9.

Wu W, Yang L, Zhou Z. Clinical features and factors affecting postoperative mortality for obstructive acute mesenteric ischemia in China: a hospital- based study. Vasc Health Risk Manag 2020;16:470–8.

Kulu R, Akyildiz H, Akcan A, et al. Plasma citrulline measurement in the diagnosis of acute mesenteric ischemia. ANZ J Surg 2017;87:E576–8.

Shah SY, Young PY, Churchill TA, et al. Urine intestinal fatty acid-binding protein predicts acute mesenteric ischemia in patients. J Surg Res 2017;209:258–65.

Yilmaz EM, Carti EB. Prognostic factors in acute mesenteric ischemia and evaluation with Mannheim peritonitis index and platelet-lymphocyte ratio. Ulus Travma Acil Cerrahi Derg 2017;23:301–5.

Lotti R, Perri G, Nardì M. La procedura ”second-look” nella terapia chirurgica dell’infarto intestinale ["Second-look" in the surgical therapy of mesenteric infarction]. Chirurgia 2003;16:63–6.

UNMH E, Abu Zeid MM, Ahmed MES. Clinical predictors of mortality in acute mesenteric ischemia. Egypt J Hosp Med 2021;82:479–86.
Planned versus on-demand relaparotomy strategy in initial surgery for Non-occlusive mesenteric ischemia. J Gastrointest Surg 2021;25:1837–46.

Rhee RY, Gliviczki P, Mendoza CT, et al. Mesenteric venous thrombosis: still a lethal disease in the 1990s. J Vasc Surg 1994;20:688–97.

Alvi AR, Khan S, Niazi SK, et al. Acute mesenteric venous thrombosis: improved outcome with early diagnosis and prompt anticoagulation therapy. Int J Surg 2009;7:210–3.

Acosta-Merida MA, Marchena-Gomez J, Hemmersbach-Miller M, et al. Mesenteric venous thrombosis, associated systemic disorders and hypercoagulability status of 21 surgical patients. Hepatogastroenterology 2007;54:1080–4.

Amitrano L, Guardascione MA, Scaglione M, et al. Prognostic factors in noncirrhotic patients with splanchic vein thromboses. Am J Gastroenterol 2007;102:2464–70.

Salim S, Zarrourk M, Elf J, et al. Improved prognosis and low failure rate with anticoagulation as first-line therapy in mesenteric venous thrombosis. World J Surg 2018;42:3803–11.

Yang S-F, Liu B-C, Ding W-W, et al. Initial transcatheter thrombolysis for acute superior mesenteric venous thrombosis. World J Gastroenterol 2014;20:5483–92.

Yang S, Fan X, Ding W, et al. Multidisciplinary stepwise management strategy for acute superior mesenteric venous thrombosis: an intestinal stroke center experience. Thromb Res 2015;135:36–45.

Moschetta M, Scardapane A, Telegrafo M, et al. Prognostic value of tissue transition projection 3D transparent wall CT reconstructions in bowel ischemia. Int J Surg 2016;34:137–41.

Wadman M, Block T, Ekberg O, et al. Impact of MDCT with intravenous contrast on the survival in patients with acute superior mesenteric artery occlusion. Emerg Radiol 2010;17:171–8.

Maldonado TS, Blumberg SN, Sheth SU, et al. Mesenteric vein thrombosis can be safely treated with anticoagulation but is associated with significant sequelae of portal hypertension. J Vasc Surg Venous Lymphat Disord 2016;4:400–6.

Al-Thani H, El-Mabrok J, El-Menyar A, et al. Clinical presentation and outcome of mesenteric vein thrombosis: a single-center experience. Angiology 2015;66:249–56.

Rosendahl A, Mjörnheim B, Eriksson LC. Autopsies and quality of cause of death diagnoses. SAGE Open Med 2021;9:20503121211037169.

CDC. Stroke. Available: https://www.cdc.gov/stroke/facts.htm [Accessed 19 Feb 2022].

CDC. Heart disease. Available: https://www.cdc.gov/heartdisease/facts.htm [Accessed 19 Feb 2022].

Reintam Blaser A, Forbes A, Acosta S, et al. The acute mesenteric ischaemia (AMESI) study: a call to participate in an international prospective multicentre study. Eur J Vasc Endovasc Surg 2022;63:902–3.
Global incidence and outcomes of acute mesenteric ischaemia: a systematic review and meta-analysis.

Supplement 1. Search strategy

Search dates – MEDLINE (Ovid), Web of Science and Scopus on March 23, 2021, Cochrane Library on March 24th, 2021; Updated July, 26, 2022

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily

Ovid MEDLINE(R)

1 Ischemia/
2 (ischemia or ischaemia or ishemia or ishaemia).ab,ti.
3 1 or 2
4 exp Mesentery/
5 exp Mesenteric Vascular Occlusion/
6 mesentery.ab,ti.
7 mesenteric.ab,ti.
8 4 or 5 or 6 or 7
9 3 and 8
10 exp Mesenteric Ischemia/
11 acute mesenteric ischemia.ab,ti.
12 acute mesenteric ischaemia.ab,ti.
13 acute mesentery artery ischaemia.ab,ti.
14 acute mesenteric artery ischaemia.ab,ti.
15 acute mesentery artery ischemia.ab,ti.
16 acute mesenteric artery ischemia.ab,ti.
17 acute mesenteric thrombosis.ab,ti.
18 acute mesenteric embolism.ab,ti.
19 bowel infarction.ab,ti.
20 acute mesenteric arterial thrombosis.ab,ti.
21 acute mesenteric arterial embolism.ab,ti.
22 acute mesenteric venous thrombosis.ab,ti.
23 nonocclusive mesenteric ischemia.ab,ti.
24 intestinal ischemia.ab,ti.
25 mesenteric infarction.ab,ti.
26 splanchnic ischemia.ab,ti.
27 bowel ischemia.ab,ti.
28 gut ischemia.ab,ti.
29 vascular insufficiency of intestine.ab,ti.
30 mesenteric thromboembolism.ab,ti.
31 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23
32 or 24 or 25 or 26 or 27 or 28 or 29 or 30
33 9 or 31
34 exp Prevalence/
35 prevalence.ab,ti.
36 population-based.ab,ti.
37 population based.ab,ti.
37 general population.ab,ti.
38 exp Incidence/
39 Incidence.ab,ti.
40 Epidemiology/
41 ep.fs.
42 mo.fs.
43 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42
44 32 and 43
45 exp Humans/
46 exp Animals/
47 45 and 46
48 46 not 47
49 44 not 48
50 exp Infant, Newborn/
51 (infant or newborn or neonate or baby).mp.
52 50 or 51
53 49 not 52
Set	Query
7	(((TITLE-ABS-KEY(ischemia OR ischaemia OR ischemia OR ishaemia)) AND (TITLE-ABS-KEY("Mesenteric Vascular Occlusion" OR mesentery OR mesenteric))) OR (TITLE-ABS-KEY("acute mesenteric ischemia" OR "acute mesenteric ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "bowel infarction" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "acute mesenteric venous thrombosis" OR "nonocclusive mesenteric ischemia" OR "intestinal ischemia" OR "mesenteric infarction" OR "splanchnic ischemia" OR "bowel ischemia" OR "gut ischemia" OR "vascular insufficiency of intestine"))) AND (TITLE-ABS-KEY(prevalence OR incidence OR "population based" OR "population-based" OR "general population"))
6	TITLE-ABS-KEY(prevalence OR incidence OR "population based" OR "population-based" OR "general population")
5	(((TITLE-ABS-KEY(ischemia OR ischaemia OR ischemia OR ishaemia)) AND (TITLE-ABS-KEY("Mesenteric Vascular Occlusion" OR mesentery OR mesenteric))) OR (TITLE-ABS-KEY("acute mesenteric ischemia" OR "acute mesenteric ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "bowel infarction" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "acute mesenteric venous thrombosis" OR "nonocclusive mesenteric ischemia" OR "intestinal ischemia" OR "mesenteric infarction" OR "splanchnic ischemia" OR "bowel ischemia" OR "gut ischemia" OR "vascular insufficiency of intestine")))
4	TITLE-ABS-KEY("acute mesenteric ischemia" OR "acute mesenteric ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "bowel infarction" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "acute mesenteric venous thrombosis" OR "nonocclusive mesenteric ischemia" OR "intestinal ischemia" OR "mesenteric infarction" OR "splanchnic ischemia" OR "bowel ischemia" OR "gut ischemia" OR "vascular insufficiency of intestine")
3	(TITLE-ABS-KEY(ischemia OR ischaemia OR ischemia OR ishaemia)) AND (TITLE-ABS-KEY("Mesenteric Vascular Occlusion" OR mesentery OR mesenteric))
2	TITLE-ABS-KEY("Mesenteric Vascular Occlusion" OR mesentery OR mesenteric)
1	TITLE-ABS-KEY(ischemia OR ischaemia OR ischemia OR ishaemia)
Cochrane Library Search Results

ID	Search	
#1	MeSH descriptor: [Mesenteric Ischemia] explode all trees	
#2	("acute mesenteric ischemia" OR "acute mesenteric ischemia" OR "acute mesenteric ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesenteric artery ischaemia" OR "acute mesentery artery ischaemia" OR "acute mesenteric artery ischemia" OR "acute mesenteric thrombosis" OR "acute mesenteric embolism" OR "bowel infarction" OR "acute mesenteric arterial thrombosis" OR "acute mesenteric arterial embolism" OR "acute mesenteric venous thrombosis" OR "nonocclusive mesenteric ischemia" OR "intestinal ischemia" OR "mesenteric infarction" OR "splanchnic ischemia" OR "bowel ischemia" OR "gut ischemia" OR "vascular insufficiency of intestine"):ti,ab,kw (Word variations have been searched)	
#3	#1 OR #2	
Set	Results	Query
-----	---------	-------
#7	1,073	#6 AND #5
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI		
Timespan=All years		
#6	1,690,501	TS=prevalence OR TI=prevalence OR TS= incidence OR
TI=incidence OR TI= population based OR TI= population-based OR		
TI=general population		
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI		
Timespan=All years		
#5	16,500	#4 OR #3
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI		
Timespan=All years		
#4	14,666	TS=(acute mesenteric ischemia OR acute mesenteric ischemia OR
acute mesenteric ischaemia OR acute mesentery artery ischaemia OR		
acute mesenteric artery ischaemia OR acute mesenteric artery ischemia OR		
acute mesenteric thrombosis OR acute mesenteric embolism OR bowel infarction OR acute		
mesenteric arterial thrombosis OR acute mesenteric arterial embolism OR acute mesenteric venous thrombosis OR nonocclusive mesenteric ischemia OR intestinal ischemia OR mesenteric infarction OR splanchnic ischemia OR bowel ischemia OR gut ischemia OR vascular insufficiency of intestine)		
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI		
Timespan=All years		
#3	7,099	#2 AND #1
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI		
Timespan=All years		
#2	52,671	TS=(Mesenteric Vascular Occlusion OR mesentery OR mesenteric)
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI		
Timespan=All years		
#1	280,395	TS=(ischemia OR ischaemia OR ischemia OR ishaemia)
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI
Timespan=All years |
Global incidence and outcomes of acute mesenteric ischaemia: a systematic review and meta-analysis.

Supplement 2. Statistical methods

In the context of random-effects meta-analysis we assume that the true effect sizes differ between studies. For example the true effect size θ_i for each study can be higher or lower in studies where participants are older, more educated, healthier etc. If we were to perform infinite number of studies, then the true effect sizes would be distributed normally around mean μ with variance τ^2, i.e $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. In random-effects meta-analysis it is assumed that the studies we have access to represent a random sample from this distribution.

In the random-effects model we assume that the observed mean Y_i for any study i is represented as

$$ Y_i = \mu + \xi_i + \epsilon_i, $$

where μ is the grand mean, ξ_i is the difference, between the grand mean (μ) and the true mean for study i (θ_i), and ϵ_i is the difference, between the true mean of i-th study and the observed mean, ie $\xi_i = \theta_i - \mu$ and $\epsilon_i = Y_i - \theta_i$. Here it is assumed that $Y_i \sim \mathcal{N}(\theta_i, V_i)$.

The inverse variance weights method assigns every study i some weight. As we have two sources of variance (from ξ_i and ϵ_i), we have two components to the overall study error variance. We will denote the within-study variance V_i and the between-study variance τ^2. The weight assigned to each study can be then calculated by

$$ W_i = \frac{1}{V_i + \tau^2} $$

where τ^2 is the sample estimate for τ^2.

The combined effect or weighted mean M across k studies is then calculated as

$$ M = \frac{\sum_{i=1}^{k} W_i Y_i}{\sum_{i=1}^{k} W_i} $$

The meta-analysis error variance V_M of the combined effect M is then represented as

$$ V_M = \frac{1}{\sum_{i=1}^{k} W_i} $$

(Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2010): A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods. 1, 97—111)

Now let the Y_i denote the number of patients with outcome in study i and N_i the total number of patients in study i. Denote variable of interest as proportion π, its log odds for i-th study as $\theta_i = \logit(\pi_i)$. The standard approach would be to estimate the effect parameter θ_i by $\log\left(\frac{Y_i}{N_i - Y_i}\right)$ with standard error $\sqrt{V_i} = \frac{1}{Y_i} + \frac{1}{N_i - Y_i}$. Instead the generalized linear mixed models approach works as follows.

Now the true distribution of Y_i is known to be
\[Y_i \sim \text{Binomial} \left(N_i, \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} \right). \]

As \(\theta_i \) is assumed to be distributed normally around the grand mean \(\mu \), then the model altogether is called binomial-normal model and it is a random intercept logistic regression model. Therefore, a generalized linear mixed model can be fitted in order to estimate the grand mean \(\mu \).

In context of subgroup analysis this approach considers subgroup to be a covariate and takes into account that some studies are more similar (belong to the same subgroup) and allows us to estimate the grand mean as well as subgroup mean \(\mu + \beta_{\text{subgroup}_j} \).

(Stijnen T, Hamza TH, Ozdemir P (2010): Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. *Statistics in Medicine*, 29, 3046—67)
Global incidence and outcomes of acute mesenteric ischaemia: a systematic review and meta-analysis

Supplement 3. Quality assessment of individual studies

In total, 163 studies were included in systematic analysis.

Supplementary Table 1. Quality assessment of individual studies included in quantitative synthesis. Maximum score of seven stars indicates a good quality, while studies receiving less than four stars are considered of weak quality.

Study	Selection rating (number of stars)	Comparability rating (number of stars)	Outcome rating (number of stars)	Study quality (total number of stars)	
Abu-Daff 2009	2	2	3	7	
Acosta 2003	2	2	3	7	
Acosta 2004	2	2	3	7	
Acosta 2005	2	2	3	7	
Acosta 2006	2	2	3	7	
Acosta 2006	2	2	3	7	
Acosta 2008	2	2	3	7	
Acosta 2010	2	2	3	7	
Acosta 2012	2	2	3	7	
Acosta-Merida 2020	2	2	3	7	
Acosta-Merida 2007	2	2	3	7	
Akyildiz 2015	2	2	2	6	
Alhan 2012	2	2	3	7	
Alosmanoglu 2013	2	2	2	6	
Al-Thani 2015	2	2	3	7	
Alvi 2009	2	2	3	7	
Amitrano 2007	2	2	3	7	
Anadol 2004	2	2	3	7	
Andersson 1984	2	2	3	7	
Andraska 2020	2	2	3	7	
Andraska 2022	2	2	3	7	
Anglaret 2021	1	2	3	6	
Aouini 2012	2	2	1	5	
Arnalich 2010	2	2	3	7	
Arthurs 2011	2	2	3	7	
Arya 2016	2	2	3	7	
Augene 2019	2	2	3	7	
Baeshko 2004	1	2	3	6	
Bagdasarov 2013	2	2	2	6	
Bapat 1990	2	2	2	6	
Beaulieu 2014	2	2	3	7	
Bergan 1975	2	2	3	7	
Beyaz 2022	1	2	3	6	
Bilgic 2015	2	2	3	7	
Björck 2002	2	2	3	7	
Block 2008	2	2	3	7	
Block 2010	2	2	3	7	
Boley 1977	2	2	3	7	
Boos 1992	2	2	3	7	
Böttger 1991	2	2	3	7	
Branco 2015	2	2	3	7	
Author	Year				
---------------	------				
Brunaud	2001				
Bryant	1997				
Bulut	2017				
Calame	2020				
Castelli	1974				
Char	2003				
Chiu	2009				
Chou	2021				
Clark	1984				
Clavien	1988				
Crawford	2016				
Czerny	1997				
Dahlke	2008				
Danse	1997				
Danylenko	2012				
Deehan	1995				
Destek	2020				
Dinc	2015				
Ding	2017				
Duran	2015				
Duron	1998				
Edwards	2003				
Elsharkawy	2021				
Eltarawry	2009				
Endean	2001				
Endo	2021				
Erben	2018				
Freeman	2005				
Freitas	2018				
Gawenda	1997				
Gearhart	2003				
Girault	2021				
Giulini	1987				
Goudet	1995				
Goudet	1998				
Groteluschen	2019				
Grothues	1996				
Gutman	2021				
Haga	2009				
Haghigi	2008				
Hagmüller	1988				
Hansen	1976				
Howard	1996				
Huang	2005				
Huerta	2011				
Hussain	2009				
Inderbitzi	1992				
Järvinen	1994				
Jensen	1956				
Kaech	1989				
Kairaluoma	1977				
Kärkkäinen	2015				
Kärkkäinen	2015				
Kaser	2015				
Kassahun	2008				
Kisaaglu	2014				
Klemptmaler	1997				
Krausz	1978				
Reference	Year	Page	Column 1	Column 2	Column 3
-----------------	------	------	----------	----------	----------
Kulu 2016	2	2	3	7	
Lotti 2003	1	2	3	6	
Luther 2002	2	2	3	7	
Maldonado 2016	2	2	3	7	
Mamode 1999	2	2	3	7	
Marchena-Gomez 2009	2	2	2	6	
Merle 2004	2	2	3	7	
Meyer 1998	2	2	3	7	
Moschetta 2016	2	2	3	7	
Naazar 2021	1	2	2	6	
Newton 2011	2	2	3	7	
Nonthasoot 2005	2	2	3	7	
Nuzzo 2017	2	2	3	7	
Ottinger 1967	2	2	3	7	
Ottinger 1978	2	2	3	7	
Paduszyńska 2012	2	2	3	7	
Paes 1988	2	2	3	7	
Park 2002	2	2	3	7	
Peris 2012	2	2	3	7	
Prager 2000	2	2	3	7	
Puippe 2015	2	2	3	7	
Raupach 2016	2	2	3	7	
Reissfelder 2011	2	2	3	7	
Rhee 1994	2	2	3	7	
Riemenschneider 1987	2	2	3	7	
Ritz 2005	2	2	3	7	
Rogers 1982	2	2	3	7	
Roussel 2015	2	2	3	7	
Ryer 2012	2	2	3	7	
Sachs 1982	2	2	3	7	
Safioleas 2006	2	2	3	7	
Salim 2016	2	1	3	6	
Salim 2018	2	2	3	7	
Schermerhorn 2009	2	2	3	7	
Schoeffel 1997	2	2	3	7	
Sindall 2020	2	2	3	7	
Singh 1996	2	2	3	7	
Smith J 1976	2	2	3	7	
Sreedharan 2007	2	2	3	7	
Stahl 2020	2	2	3	7	
Stockmann 2000	2	2	3	7	
Studer 2015	2	2	3	7	
Swendlow 2019	2	2	3	7	
Szabone Revesz 2012	2	2	3	7	
Takiguchi 2020	2	2	3	7	
Tang 2020	1	2	3	6	
Tanrikulu 2016	2	2	3	7	
Tsai 1990	1	2	3	6	
Ünalp 2010	2	2	1	5	
Vellar 1977	1	2	3	6	
Vokurka 2008	2	2	2	6	
Voltolini 1996	2	2	3	7	
Wadman 2000	2	2	3	7	
Wadman 2010	2	2	2	6	
Wilson 1987	2	2	3	7	
Wu 2020	2	2	2	6	
Yang 2014	2	2	2	6	
Yang 2015	2	2	3	7	
	2	2	2	2	2
-------	----	----	----	----	----
Yang 2019	2	2	3	7	
Yasuhara 2005	2	2	3	7	
Yilmaz 2017	2	2	3	7	
Zan 1993	2	2	3	7	
Zettervall 2017	2	2	3	7	
Zhang 2017	2	2	3	7	
Supplementary Figures.

Supplementary Figure 1. Proportions of different forms of acute mesenteric ischaemia.

a. Proportion (%) of occlusive arterial mesenteric ischaemia (OcclArtAMI)

Study	OcclArtAMI Proportion	95% C.I.

Study	OcclArtAMI Proportion	95% C.I.

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
b. Proportion (%) of non-occlusive mesenteric ischaemia (NOMI)

Study	NOMI	Total Proportion	95% C.I.
Hansen 1964-1973	13	18.84	[10.43; 30.06]
Sachs 1965-1980	7	14.29	[5.94; 27.24]
Kaeck 1965-1987	4	8.89	[2.48; 21.22]
Clavien 1968-1987	19	19.39	[12.10; 29.61]
Acosta 1970-1982	62	14.09	[10.98; 17.70]
Czerny 1970-1996	7	4.83	[1.96; 9.69]
Prager 1970-1997	8	5.30	[2.31; 10.17]
Grohues 1972-1993	12	13.33	[7.08; 22.13]
Inderbital 1973-1990	6	6.00	[2.23; 12.60]
Wilton 1974-1984	24	23.53	[15.69; 32.96]
Bocs 1974-1991	20	32.62	[20.94; 43.54]
Clark 1974-1981	11	40.74	[22.39; 61.20]
Boyler 1977	15	42.86	[26.32; 60.65]
Luther 1979-2000	5	7.81	[2.59; 17.30]
Alkan 2000-2010	17	10.28	[5.24; 17.65]
Puiz 1980-2002	25	13.37	[8.84; 19.10]
Paes 1981-1987	2	5.26	[0.64; 17.75]
Gawenda 1984-1996	3	7.50	[1.57; 20.39]
Botger 1985-1990	6	9.68	[3.63; 19.88]
Acosta-Merida 2020	28	8.67	[5.84; 12.28]
Huanga 1990-2000	32	25.81	[18.37; 34.43]
Park 2000-1999	5	8.62	[2.86; 18.98]
Sreedharan 2000	9	13.85	[6.53; 24.66]
Schoeffel 1997	4	26.67	[7.79; 55.10]
Szabone Revesz 2012	28	24.56	[16.98; 33.51]
Haga 2002-2007	4	3.48	[0.96; 8.67]
Dahile 2003-2005	9	16.67	[7.92; 29.29]
Arnaich 2004-2007	21	21.21	[13.64; 30.58]
Bao 2004-2004	23	7.52	[4.82; 11.06]
Bagdasarov 2005-2011	8	17.39	[7.82; 31.42]
Akyildiz 2008-2011	12	11.54	[6.11; 19.29]
Nuzzo 2009-2015	1	1.49	[0.04; 8.04]
Calame 2010-2017	29	58.00	[43.21; 71.81]
Anglaret 2014-2019	20	45.45	[33.14; 58.19]
Destek 2015-2019	6	13.64	[5.17; 27.35]

Random effects model: $I^2 = 87\%$, $I^2 = 0.0160$, $\chi^2 = 252.16$ ($p < 0.01$)
c. Proportion (%) of venous mesenteric thrombosis (MVT)

Study	MVT Total	Proportion	95% C.I.
Hansen 1976 (1964-1973)	9	69	13.04 [6.14; 23.32]
Sachs 1982 (1965-1980)	11	49	22.45 [11.77; 36.62]
Clavien 1986 (1968-1987)	13	98	13.27 [7.26; 21.62]
Czerny 1997 (1970-1996)	5	145	3.45 [1.13; 7.86]
Prager 2000 (1970-1997)	5	151	3.31 [1.08; 7.56]
Acosta 2005 (1972-1980)	55	440	12.50 [8.56; 15.96]
Grothues 1996 (1972-1993)	30	90	33.33 [23.74; 44.06]
Indebitzi 1992 (1973-1990)	19	100	19.00 [11.84; 28.07]
Boos 1992 (1976-1991)	3	62	4.84 [1.01; 13.50]
Clark 1984 (1976-1981)	5	27	16.52 [6.30; 38.08]
Kaeche 1989 (1976-1987)	5	45	11.11 [3.71; 24.05]
Boley 1977	1	35	2.86 [0.07; 14.92]
Luther 1979 (1999)	9	64	14.06 [6.64; 25.02]
Volotinii 1996 (1979-1992)	4	47	8.51 [2.37; 20.38]
Ritz 2005 (1980-2002)	22	187	11.76 [7.52; 17.27]
Paes 1988 (1981-1987)	4	38	10.53 [2.94; 24.80]
Abu-Daff 2009 (1984-2004)	31	638	4.86 [3.22; 6.83]
Gaweenda 1997 (1984-1996)	4	40	10.00 [2.79; 23.66]
Böttger 1991 (1985-1990)	20	62	32.26 [20.94; 45.34]
Brunau 2001 (1987-1999)	26	281	9.25 [6.13; 13.26]
Acosta-Merida 2020 (1990-2015)	44	323	13.62 [10.08; 17.85]
Huang 2005 (1990-2000)	12	124	9.68 [5.10; 16.29]
Sreedharan 2007 (1990-2003)	6	65	9.23 [3.46; 19.02]
Schoeffel 1997	2	15	13.33 [1.66; 40.46]
Szabone Revesz 2012 (2001-2010)	3	114	2.63 [1.05; 5.55]
Haga 2009 (2002-2007)	8	115	6.96 [3.05; 12.25]
Danile 2008 (2003-2005)	3	54	5.56 [1.16; 15.39]
Arnalich 2010 (2004-2007)	15	99	15.15 [8.74; 23.76]
Baeshko 2004	24	306	7.84 [5.09; 11.45]
Bagdasarov 2013 (2005-2011)	4	46	8.70 [2.42; 20.79]
Akylikiz 2015 (2000-2011)	15	104	14.42 [8.30; 22.67]
Nuzzo 2017 (2009-2015)	25	67	37.31 [25.80; 49.99]
Anglaret 2021 (2014-2019)	6	66	9.09 [3.41; 18.74]
Destek 2020 (2015-2019)	11	44	25.00 [13.19; 40.34]

Random effects model

Heterogeneity: $I^2 = 82\%$, $Q = 0.0095$, $\chi^2 = 183.77$ ($p < 0.01$)

11.52 [9.12; 14.15]
Supplementary Figure 2. Short-term (hospital or 30-days) mortality of occlusive arterial form of acute mesenteric ischaemia (OcclArtAMI). Selection of the studies is specified in the headings of the panels. In brackets, the period of patient inclusion is indicated.
Supplementary Figure 3. Short-term (hospital or 30-days) mortality of non-occlusive mesenteric ischaemia (NOMI). Subgroup analyses of studies including patients independent of treatment method (upper panel), and of studies including only operated patients (lower panel) are presented. In brackets, the period of patient inclusion is indicated.
Supplementary Figure 4. Short-term (hospital or 30-days) mortality of mesenteric vein thrombosis (MVT). In brackets, the period of patient inclusion is indicated.