Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editor

SARS-CoV-2 IGM and IGG rapid serologic test for the diagnosis of COVID-19 in the emergency department

Dear Editor,

We read with interest the article by Pan et al. on the performance of a serological immunochromatographic assay for SARS-CoV-2 diagnosis. As discussed by the authors, there is an urgent need for rapid tests for SARS-CoV-2 in the supplement to the current diagnosis. The gold standard is the molecular testing of upper or lower respiratory tract samples by reverse transcription polymerase chain reaction (RT-PCR), which suffers from several limitations: long turnaround times and up to 30% of false negatives, due to technical errors and time sampling. The serologic assays to detect antibodies against SARS-CoV-2 are of great interest as high levels of IgM and IgG can be detected from the second week of symptoms’ onset, although IgM can be positive from the fourth day and IgG after 8 days. In the French emergency departments (ED) there was a rising number of suspected cases of COVID-19 from mid-march and a huge effort was made in order to isolate these suspected patients to avoid hospital SARS-CoV spread and transmission. Molecular tests and classic serology immunoaassays have a relatively long turnaround times, which are not suitable for EDs to take fast disposition decisions. The recent development of rapid antibody detection tests for SARS-CoV2 (lateral flow immunoassay, LFI) can be very useful in this context.

The present study collected prospective data of 164 patients admitted in April 2020 to the ED of two academic hospitals in Paris, France, if: 1) COVID-19 was suspected on presenting symptoms and 2) a nasopharyngeal swab was prescribed for SARS-CoV-2 RT-PCR. Waived informed consent was obtained because of the routine care design. The LFI used for evaluation was SGTi-flex COVID-19 IgM/IgG (Sugentech, republic of Korea) which is a nanoparticle-based immunochromatographic test kit for qualitative determination of COVID-19’s IgM and IgG antibodies in human whole blood (finger prick or venous), serum or plasma. The results can be observed within 10 min after applying the sample and 3 drops of diluent. At the same time of first ED blood collection, a sample was also drawn in parallel for SARS-CoV-2 IgG detection with a chemiluminescent microparticle immunoassay (CMIA) in serum (Abbott Architect).

Seven patients were excluded because the result of either RT-PCR or LFI missed. The 157 remaining patients were divided in two groups according to the SARS-CoV-2 RT-PCR test results: positive or negative.

Table 1 shows the demographic characteristics, symptoms, laboratory and imaging test results in the ED. There were 20 (13%) patients tested positive for SARS-CoV-2 RT-PCR, of which 15 (75%) were positive for the LFI (2 for IgM, 3 for IgG and 10 for IgM + IgG) and 5 (25%) tested negative (Table 2). Among the 13 patients for whom the LFI showed an IgG band, 12 had IgG detected by CMIA. Three of the RT-PCR +/LFI- patients had their first symptoms in the 7 days and the 2 last before 14 days. These 5 false negative LFI were explained by either too early tests, a low antibody level below the detection limit of this LFI, or the immune response variability in individual antibodies production.

Among the 137 patients who tested negative for RT-PCR, there were 27 (20%) with a positive LFI, of whom 16 (59%) exhibited an IgM band, 4 (15%) an IgG band and 7 (26%) both bands. Among the 42 positive LFI, 18 (42.8%) were positive for IgM with symptoms onset varying from 0 to 21 days; 7 (16.7%) were positive for IgG, all with symptoms’ onset within the first 7 days; and 17 (40.5%) were positive for both, with symptoms onset varying from 0 to 30 days (9 had first symptoms in 7 days and 4 between 7 and 14 days).

Concordance between LFI and CMIA IgG calculated on 155 samples with conclusive results was 94.8% Globally, in these 157 suspected COVID-19 cases attending the ED, LFI had (Table 2) a sensitivity of 75% [95% CI 69.5–80.5], specificity 80.3% [95% CI 75.2–85.4], positive predictive value 35.7% [95% CI 29.6–41.8] and negative predictive value 95.7% [95% CI 93.1–98.3], compared to RT-PCR as the gold standard.

Cassani et al. compared a rapid IgM/IgG test with RT-PCR in the ED and reported that 8.3% exhibited a positive result for IgM/IgG LFI while RT-PCR was negative. Other studies found similar rates of 11%, which are slightly lower than our results but still suggesting an added value of LFI to identify some COVID-19 positive patients with negative RT-PCR.

There are few peer-reviewed publications that have reported the accuracy of COVID-19 diagnostic results obtained by LFI with respect to RT-PCR tests. Sensitivity and specificity varied from a study to another: Li et al. found 88.66% and 90.63%, respectively while Shen et al. found 71.1% and 96.2%. In our study the sensitivity and specificity are slightly lower than what was described by previous studies and that’s the reason why we recommend to use LFI together with RT-PCR in order to have the lowest false negative number of patients.

In conclusion, although LFIIs cannot confirm the virus presence and replace RT-PCR, they may be sensitive and specific enough to be used as a complementary assay to the existing RT-PCR in the ED. It has the advantage, in comparison with RT-PCR, of saving time without necessitating any extensive equipment; it is simple to use and requiring minimal training.

From our point of view, LFIIs should be used in the ED as a complementary assay to the existing SARS-Cov-2 RT-PCR, to better and quicker qualify COVID-19 patients.

https://doi.org/10.1016/j.jinf.2020.07.032
0163-4453/© 2020 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Table 1
Emergency Department’s patient’s characteristics according to group (RT-PCR positive or negative).

Characteristics	Total (n = 157)	RT-PCR negative (n = 137)	RT-PCR positive (n = 20)
Sex	Male 83 (52.9%)	74 (46%)	9 (45%)
	Female 74 (47.1%)	63 (54%)	11 (55%)
Median	70 (24.8%)	71 (24.8%)	0 (0%)
Age (years)	(54–80)	(54–81)	(52.5–75.8)
Symptoms onset	0–7 days 115 (73.3%)	101 (73.7%)	14 (70%)
	8–14 days 16 (10.2%)	12 (8.8%)	4 (20%)
	15–21 days 14 (8.9%)	12 (8.8%)	2 (10%)
	> 21 days 12 (7.6%)	12 (8.8%)	0 (0%)
Symptoms	Fever 39 (24.8%)	32 (23.4%)	7 (35%)
	Cough 57 (36.3%)	45 (32.8%)	12 (60%)
	Myalgia 17 (10.8%)	12 (8.8%)	5 (25%)
	Dyspnea 68 (43.3%)	57 (41.6%)	11 (55%)
	Chest pain 39 (24.8%)	34 (24.8%)	5 (25%)
	Diarrhea 22(14%)	20 (14.6%)	2 (10%)
	Vomiting 25 (15.9%)	23 (16.8%)	2 (10%)
	Ageusia 6 (3.8%)	5 (3.6%)	1 (5%)
	Anosmia 3 (2.2%)	3 (2.2%)	2 (10%)
	Arthralgia 40 (25.5%)	36 (26.3%)	4 (20%)
	Falling 11 (7%)	11 (8%)	0 (0%)
	Headache 21 (13.4%)	16 (11.7%)	5 (25%)
	Chest CT scan 106 (67.5%)	90 (65.7%)	16 (80%)
	Chest CT scan evocative COVID-19 n = 106 n = 90 n = 16		
	Male 26 (24.5%)	15 (16.7%)	11 (68.8%)
Median Leucocytes (Giga/L)	8.33	8.33	8.46
	(6.44–10.85)	(6.46–11.15)	(5.35–9.59)
Lymphocytes (Giga/L)	1.31	1.27	1.70
	(0.88–1.78)	(0.83–1.59)	(1.27–2.21)
Protein-C-reactive (mg/L)	16	16	27.5
	(3–54)	(3–54)	(14–71.1)

Table 2
Comparison of SARS-CoV-2 RT-PCR and LFI results.

RT-PCR	Positive	Negative	Rapid IgM/IgG	Sensitivity (95% CI)	Specificity (95% CI)	Positive predictive value (95% CI)	Negative predictive value (95% CI)
LFI IgM/IgG	15	27	80.3% (75.2–85.4%)	80.3% (75.2–85.4%)	35.7% (29.6–41.8%)	95.7% (93.1–98.3%)	
Negative	5	110	35.7% (29.6–41.8%)	95.7% (93.1–98.3%)	35.7% (29.6–41.8%)	95.7% (93.1–98.3%)	
Total	20	137					

References

1. Pan Y, Li Xinran, Yanga G, Fana J, Tanga Y, Zhaoa J, Longa X, Guoa S, Zhaoa Z, Liua Y, Hua H, Xuea H, Li Y. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect 2020;81(1):e28–e32.
2. Theel ES, Slev P, Wheeler S, Couturier MR, Wong SJ, Kadkhoda K. The Role of Antibody Testing for SARS-CoV-2: is There One? J Clin Microbiol. J Clin Microbiol. [Preprint] 2020;29 April Available from: https://doi.org/10.1128/JCM.00797-20.
3. Li Z, Yi Y, Luo X, Long X, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, Zhang Y, Wang J, Huang B, Lin Y, Yang J, Cai W, Wang X, Cheng J, Chen Z, Sun K, Pan W, Zhan Z, Chen L, Ye F. Development and clinical application of a rapid IgM/IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol [Preprint]. 2020 Feb 27 Available from: https://doi.org/10.1002/jmv.25727.
4. Xiao AT, Tong YX, Zhang S. False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. J Med Virol [Preprint]. 2020 April 9 Available from: http://doi.org/10.1002/jmv.25855.
5. Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, Zeng B, Li Z, Li X, Li H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol 2020;126:108961.
6. Sethuraman N, Jeremiah SS. Buyo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA [Preprint]. 2020. Mai 6 Available from: https://jamanetwork.com/journals/jama/fullarticle/2765837.
7. Cassarini I, Nowazzi F, Gardina F, Salinaro F, Sachi M, Perlini S, Bruno R, Mojoli F, Baldanti F. Performance of VivaDag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol [Preprint]. 2020 April 8 Available from: http://doi.org/10.1002/jmv.25800.
8. Döbla M, Boeckler C, Schulte B, Diegmann C, Sib E, Richter E, Eschbach-Blodau E, Aldabbagh S, Marx B, Eis-Hubinger A-M, Schmitthausen RM, Streeck H.

Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health 2020;182:170–2.
9. Shen B, Zheng Y, Zhang X, Zhang W, Wang D, Jin J, Lin R, Zhang Y, Zhu G, Zhu H, Li J, Xu J, Ding X, Chen S, Lu R, He Z, Zhao H, Ying L, Zhang C, Lv D, Chen B, Chen J, Zhu J, Hu B, Hong C, Xu X, Chen J, Liu C, Zhou K, Li J, Zhao G, Shen W, Chen C, Shao C, Chen X, Song J, Wang Z, Meng Y, Wang C, Han J, Chen A, Lu D, Qian B, Chen H, Gao H. Clinical evaluation of a rapid colloidal gold immunochromatography assay for SARS-CoV-2 IgM/IgG. Am J Transl Res 2020;12(4):1348–54.
10. Spicuzza L, Montinieri A, Manuele R, Crimi C, Pistorio MP, Campisi R, Vanarchi C, Crimi N. Reliability and usefulness of a rapid IgM-IgG antibody test for the diagnosis of SARS-CoV-2 infection: a preliminary report. J Infect [Preprint]. 2020 April 23 Available from: https://doi.org/10.1016/j.jinf.2020.04.022.

Marta Cancella de Abreu*, Christophe Choquet, Héloïse Petit, Donia Bouzid, Florence Dimanche, Stéphane Marot, Valentine Marie Ferre, Sonia Burrel, David Boutolleau, Nadhira Houdou-Fidouh, Anne-Geneviève Marcellin, Diane Descamps, Pierre Hausfater

Emergency Department, Hôpital Pitié-Salpêtrière, 7-83 Boulevard de l’Hôpital, 75013 Paris, France

*Corresponding author.

E-mail address: martabfca@gmail.com (M. Cancella de Abreu)