Contribution of the -160C/A Polymorphism in the E-cadherin Promoter to Cancer Risk: A Meta-Analysis of 47 Case-Control Studies

Lin Wang1*, Guiying Wang1, Chenqi Lu2, Bo Feng1*, Jiuhong Kang1*

1 Endocrinology Department, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China; 2 Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, SKLGE, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China

Abstract

Background: The -160C/A polymorphism (rs16260) of E-cadherin, a tumor repressor gene, has been shown to be a tumor susceptibility allele for various types of cancers. Because the significance of this polymorphism to cancer risk has been recognized, there are increasing studies investigating -160C/A in different types of cancers and ethnic populations. However, there is still uncertainty about the level of risk for a variety of cancers.

Methods: To resolve the controversial question raised by these studies as of March 2012 and provide more statistical power for detecting the significance of -160C/A, we performed a meta-analysis of 47 case-control studies in 16 types of cancers (18,194 cases and 20,207 controls). A meta-regression model and subgroup analysis were employed to identify the source of heterogeneity. Publication bias was evaluated, and sensitivity analysis and cumulative evidence assessment were also performed.

Results: Using fixed- and random-effects models, the -160AA homozygote was more susceptible to urothelial cancer compared with the -160CA heterozygote. Additionally, the -160A allele is an ethnicity-dependent risk factor for prostate and colorectal cancers. Carriers of the -160A allele in Asians and Europeans were more susceptible to prostate cancer, whereas their North American counterparts seemed tolerant. The -160AA homozygote plays a protective role for Europeans who develop colorectal cancer. The stability of these observations was confirmed by a one-way sensitivity analysis. However, the cumulative evidence for all cancer types was considered ‘weak’ using the Venice guidelines.

Conclusions: A meta-analysis indicated that the -160A allele of E-cadherin provides a higher risk for the development of prostate and urothelial cancers and a protective role for colorectal cancer in an ethnicity-dependent manner.

Introduction

E-cadherin, which has a widely acknowledged role in cell-cell adhesion, also functions as an invasion/tumor suppressor gene. Several immunohistochemical studies have reported a strong correlation between E-cadherin loss and the occurrence of tumors. The downregulation of E-cadherin is generally due to transcriptional repression [1]. The -160C/A polymorphism in the promoter region of the E-cadherin gene has been reported to have a direct effect on its transcriptional regulation and therefore may influence susceptibility to cancers [2]. To identify whether the -160C/A polymorphism of E-cadherin is involved in the pathogenesis of tumors in vivo, case-control studies concerning this allelic variation and cancer risk have been broadly performed. However, there is still uncertainty about the level of risk for a variety of cancers in a number of studies investigating the effect of -160C/A on different types of cancers and ethnic populations.

To resolve the controversial question raised by this evidence and provide more statistical power for detecting the significance of -160C/A to cancer risk, we performed a meta-analysis on the 160C/A polymorphism of E-cadherin and cancer risk with 47 case-control studies including 18,194 cases and 20,207 controls as of March 2012. The results indicated that the -160A allele of E-cadherin leads to a higher risk for the development of prostate and urothelial cancers and is an ethnicity-dependent risk factor for prostate and colorectal cancers. The significance of the -160C/A polymorphism in developing various types of cancer has received
increasing attention. However, further observation will be needed to improve the evaluation power of association.

Methods

Search Strategy

We conducted a systematic literature search using the databases MEDLINE (US National Library of Medicine, Bethesda, Maryland) and PubMed (National Center for Biotechnology, National Library of Medicine) as of March 2012 with the keywords “polymorphism of the E-cadherin gene,” “rs16260,” and “-160C/A,” in combination with “cancer,” “tumor,” “neoplasm,” or “carcinoma.” The full texts of the candidate articles were carefully examined for data extraction, and the reference lists were also reviewed to identify further relevant studies for our previous report [3].

Inclusion Criteria

Case-control studies with sufficient published data for estimating an odds ratio (OR) and corresponding 95 percent confidence interval (95% CI) were included in this meta-analysis. Published meta-analyses on the association of polymorphisms of E-cadherin with cancer risk were included in the assessment of evidence.

Data Extraction

The following information was independently extracted from each study by two investigators: 1) publication date, first author, year of publication, and country of origin; 2) polymorphism of the E-cadherin gene and cancer types; 3) characteristics of cases and controls and genotyping method; and 4) number of cases and controls with heterozygous and homozygous genotypes. This information is summarized in Tables 1, S1 and S2.

Meta-analysis

Based on the inclusion criteria, 47 case-control studies were included. In total, 59 datasets were extracted based on the original data, which were divided by either region or cancer type. Relevant information on the studies is summarized in Table S1. The review process and outcomes of inclusion and exclusion are illustrated in Figure S1.

Hardy-Weinberg equilibrium was tested in control samples of each dataset by the chi-square method to assess the latent bias resulting from the deviation of genotype distribution. ORs were considered as estimates of relative risk and were combined across studies using fixed- or random-effects meta-analysis for low and high heterogeneity, respectively. Heterogeneity was assessed using the I2 statistic, which describes the degree of genuine differences across studies in a meta-analysis [4]. A meta-regression model was used to identify the source of heterogeneity [5], and subgroup analysis was also carried out. One-way sensitivity analysis was performed by removing one dataset at a time, was carried out to confirm the stability of the estimated OR (Figure 1). As shown in Table 5, when the Venice guidelines were applied, cumulative evidence for all cancer types was considered ‘weak.’ Detailed information on the assessment of each cancer type is summarized in Table S3.

Compared with our previous study [3], evidence on seven new types of cancer was reported, including pancreatic [11], nasopharyngeal [12], endometrial [13], cervical [13], ovarian [14], oral [15], liver [16], and thyroid [17] cancers and lymphoma [18]. There was no change concerning evidence on lung [19] and esophageal [20,21] cancers.

Breast Cancer

One additional study [13] was added to previous breast cancer studies [22,23], which led to a total of 1,142 cases and 1,063 controls. The -160A carriers were still not more susceptible to breast cancer (OR = 1.14, 95% CI = 0.96–1.36) with a fixed-effects model, and no heterogeneity (Q = 0.61, P = 0.89, I2 = 0%) was detected among these data sets.

Colorectal Cancer

Six new datasets from four studies [13,24–26] were added to previous data [21,27,28], which included 7,117 cases and 7,157 controls altogether. Using a random-effects model, the -160A carriers were not more susceptible to colorectal cancer compared
Table 1. Estimates of odds ratios and the corresponding 95% confidence intervals for AA and CA genotype and A allele carriers versus the CC genotype for 16 types of cancers analyzed by fixed- or random-effects models divided by cancer type and ethnicity as of March 2012.

Cancer type	No. of data set	No. of cases	No. of controls	AA (95% CI)	CA (95% CI)	(AA+CA) (95% CI)
Gastric	19	3,453	4,775	1.14	0.85, 1.52	1.01
Asian	11	2,164	2,558	0.96	0.63, 1.46	0.92
European	6	1,102	2,046	1.15	0.78, 1.69	1.18
Others	2	187	171	2.95	0.90, 9.69	1.36
Healthy	11	1,929	2,100	1.19	0.84, 1.70	0.93
Healthy matched	3	356	367	1.14	0.14, 9.35	1.14
CAG	1	96	196	2.95	0.90, 9.69	1.36
Free of cancer	4	1,072	2,112	1.10	0.80, 1.52	1.06
Colorectal	9	7,117	7,157	0.85	0.71, 1.03	0.97
Asian	2	356	294	0.90	0.03, 25.97	1.22
European	7	6,761	6,863	0.85	0.74, 0.99	0.95
Healthy	5	6,325	5,877	0.82	0.63, 1.06	0.94
Free of CRC	3	686	1,034	0.85	0.58, 1.26	0.88
Free of cancer	1	106	246	1.49	0.64, 3.43	1.32
Esophageal	2	407	490	1.03	0.27, 3.93	1.30
Prostate	10	3,570	3,304	1.36	0.93, 1.99	1.32
Asian	3	655	726	1.85	0.98, 3.50	1.51
European	5	2,251	2,106	1.31	0.83, 2.07	1.34
Healthy	2	664	472	1.12	0.21, 5.88	1.12
Healthy matched	2	974	646	0.69	0.45, 1.06	1.12
Healthy and BPH	2	1,895	1,765	1.65	0.90, 3.02	1.18
BPH	1	200	159	1.85	0.74, 52.37	2.10
BPH and other	1	82	188	1.65	0.41, 6.62	3.83
Urothelial	5	1,064	1,124	2.58	1.40, 4.76	1.54
Asian	3	544	474	4.05	2.49, 6.60	1.82
Others	2	520	650	1.43	0.88, 2.34	1.17
Breast	4	1,142	1,063	1.14	0.83, 1.57	1.14
Pancreatic	1	254	101	1.25	1.21, 5.26	1.37
Nasopharyngeal	1	162	140	3.84	1.04, 14.15	1.81
Endometrial	1	92	246	1.25	0.46, 3.38	2.07
Cervical	1	101	246	2.08	0.96, 4.48	1.05
Ovarian	1	207	256	0.69	0.20, 2.40	0.95
Lung	1	95	85	12.56	0.68, 231.61	2.37
Oral	1	251	347	0.32	0.18, 0.57	0.66
Liver	1	131	347	0.77	0.42, 1.42	0.88
Thyroid	1	92	169	2.09	0.90, 4.87	2.42
Lymphoma	1	56	357	0.70	0.20, 2.47	0.94
Overall	59	18,194	20,207	1.21	1.03, 1.43	1.14

Statistically significant, with P<0.05 and a 95% confidence interval (CI) that does not include 1.0.

OR, odds ratio.

Stratified by ethnicity, including Asian, European, and others (North American and African).

Stratified by controls, including benign prostatic hyperplasia (BPH), BPH or visitors or requesting vasectomy (BPH and others), benign urological patients matched, chronic atrophic gastritis (CAG), free of colorectal cancer (free of CRC), free of cancer, healthy, healthy and BPH, healthy and free of cancer, healthy matched, and normal peritumoral tissues.

doi:10.1371/journal.pone.0040219.t001
with all genotypes (OR = 0.95, 95% CI = 0.85–1.05), and the heterogeneity among seven datasets was moderate \((Q = 12.09, P = 0.15, I^2 = 34\%)\). Then, we performed a subgroup analysis stratified by source of controls or ethnicity, and the source of heterogeneity was identified in the colorectal cancer-free control subgroup when it was divided by the source of controls \((Q = 4.82, P = 0.09, I^2 = 59\%)\) and in the European subgroup when it was divided by ethnicity \((Q = 9.31, P = 0.16, I^2 = 36\%)\). The heteroge-

Table 2. Heterogeneity test for studies of each genotype in different cancer types (as of March 2012) with Cochrane’s Q-test and the quantity \(I^2\).

Cancer type	AA	CA	(AA-CA)	No. of data sets						
	\(Q\) value	\(P\) value	\(I^2\) (%)	\(Q\) value	\(P\) value	\(I^2\) (%)				
Gastric	34.62	0.01	48	30.98	0.03	42	33.44	0.01	46	19
Asian#	19.74	0.03	49	14.67	0.14	32	13.89	0.18	28	11
European#	7.86	0.16	36	12.62	0.03	60	13.29	0.02	62	6
Others#	2.01	0.16	50	0.15	0.70	0	0.83	0.36	0	2
Healthy#	15.62	0.11	36	19.59	0.03	49	19.71	0.03	49	11
Healthy matched\(\#\)	16.95	0.00	88	4.32	0.12	54	8.50	0.01	77	3
CAG\(\#\)										
Free of cancer	1.41	0.70	0	3.85	0.28	22	2.61	0.46	0	4
Colorectal	10.06	0.26	20	12.28	0.14	35	12.09	0.15	34	9
Asian#	3.53	0.06	72	0.05	0.83	0	0.52	0.47	0	2
European#	6.35	0.39	5	10.12	0.12	41	9.31	0.16	36	7
Healthy#	6.69	0.15	40	5.71	0.22	30	4.38	0.36	9	5
Free of CRC	1.65	0.44	0	4.35	0.11	54	4.82	0.09	59	3
Free of cancer\(\#\)										
Esophageal	3.20	0.07	69	0.03	0.86	0	0.46	0.50	0	2
Prostate	24.66	0.003	63	22.57	0.007	60	26.18	0.002	66	10
Asian#	1.38	0.50	0	2.80	0.25	29	3.23	0.20	38	3
European#	12.75	0.01	69	16.83	0.002	76	17.47	0.002	77	5
Others#	7.88	0.005	87	0.00	0.95	0	0.88	0.35	0	2
Healthy#	1.26	0.26	21	0.01	0.94	0	0.22	0.64	0	2
Healthy matched\(\#\)	10.02	0.02	70	0.72	0.87	0	2.20	0.53	0	4
Healthy and BPH\(\#\)	0.14	0.71	0	0.92	0.34	0	0.43	0.51	0	2
BPH\(\#\)										
BPH and others\(\#\)										
Urothelial	14.28	0.006	72	9.83	0.04	59	20.37	0.0004	80	5
Asian#	2.30	0.32	13	8.94	0.01	78	16.37	0.0003	88	3
European#	1.22	0.27	18	0.38	0.54	0	0.78	0.38	0	2
Breast	1.68	0.64	0	0.89	0.83	0	0.61	0.89	0	4
Pancreatic										
Nasopharyngeal										
Endometrial										
Cervical										
Ovarian										
Lung										
Oral										
Liver										
Thyroid										
Lymphoma										
Overall	161.42	0.0001	64	138.89	0.0001	58	177.76	0.0001	67	59

\(\#\) Stratified by ethnicity, including Asian, European, and others (North American and African).

\(\#\) Stratified by controls, including benign prostatic hyperplasia (BPH), BPH or visitors or requesting vasectomy (BPH and others), benign urological patients matched, chronic atrophic gastritis (CAG), free of colorectal cancer (free of CRC), free of cancer, healthy, healthy and BPH, healthy and free of cancer, healthy matched, kindreds, and normal peritumoral tissues.

doi:10.1371/journal.pone.0040219.t002
neity could be attributed to one dataset from Grunhage et al. [24], in which the association was investigated between the -160C/A polymorphism and familial colorectal cancer. After exclusion of this dataset, the heterogeneity was effectively decreased to 'low' ($Q = 8.64, P = 0.28, I^2 = 19\%$), and the pooled OR estimated in the fixed-effects model was 0.93 (95% CI = 0.87–0.99, $P = 0.03$). The estimated OR of the -160A allele in Europeans was 0.85 (95% CI = 0.74–0.99, $P = 0.03$), with low heterogeneity ($Q = 6.35, P = 0.39, I^2 = 5\%$), indicating that it played protective roles in colorectal cancer.

Prostate Cancer

Two additional studies [29,30] were added to previous prostate cancer studies [31–38], resulting in a total of 3,570 cases and 3,304 controls. The genotype distribution in controls from two studies [31,32] was significantly deviated from Hardy-Weinberg equilibrium ($P < 0.05$). After excluding these datasets, the pooled OR estimated in -160A carriers was 1.33 (95% CI = 1.18–1.50), indicating the same predisposition to prostate cancer as before excluding these datasets (OR = 1.24, 95% CI = 1.13–1.37). To clarify the possible sources of the significant heterogeneity among these datasets ($Q = 26.18, P = 0.002, I^2 = 66\%$), we performed a subgroup analysis according to the source of controls and ethnicity, respectively. Stratification by source of controls effectively decreased the heterogeneity ($I^2_{healthy} = 0\%, I^2_{healthy-matched} = 0\%, I^2_{healthy and benign prostatic hyperplasia} = 0\%$); however, this decrease may also be due to a reduction in power for the Q-test. When stratified by ethnicity, the -160A allele was revealed to be an ethnicity-dependent risk factor for prostate cancer. ORs estimated using the random-effects model were greater than 1.0 for both Asians (OR = 1.56, 95% CI = 1.16–2.08) and Europeans (OR = 1.25, 95% CI = 1.02–1.55), while no relationship was found between the -160A allele and the progression of prostate cancer in North Americans (OR = 1.10, 95% CI = 0.86–1.41).

Table 3. Adjusted R^2 and corresponding I^2 from the meta-regression models.

Covariate	AA	CA	(AA-CA)	No. of datasets						
	I^2 (%)	Adjusted R^2	P value	I^2 (%)	Adjusted R^2	P value				
Ethnicityo	61	12	0.05	58	−6	0.67	66	−1	0.44	59
Cancer typei	50	46	0.04	46	55	0.08	54	49	0.03	59
Controli	58	25	0.12	46	47	0.01	54	53	0.002	59
Ethnicity and cancer type	46	59	0.02	48	41	0.17	56	41	0.07	59
Ethnicity and control	55	36	0.04	46	41	0.01	53	54	0.001	59
Cancer type and control	50	51	0.15	28	100	0.003	33	100	0.0003	59
Ethnicity, cancer type and control	45	63	0.07	30	80	0.01	33	88	0.001	59

oEthnicity, including Asian, European, and others (North American and African);

iCancer type, including breast, colorectal, esophageal, gastric, gynecological, lung, nasopharyngeal, pancreatic, prostate, urothelial, oral, liver, thyroid and lymphoma;

jControls, including benign prostatic hyperplasia (BPH), BPH or visitors or requesting vasectomy (BPH and others), benign urological patients matched, chronic atrophic gastritis (CAG), free of colorectal cancer (free of CRC), free of cancer, healthy and BPH, healthy and free of cancer, healthy matched, and normal peritumoral tissues.

doi:10.1371/journal.pone.0040219.t003

Table 4. Harbord test of each genotype in different cancer types (as of March 2012) with coefficient and standard error.

Cancer type	AA	CA	(AA-CA)	No. of datasets						
	Coef.	Std. err.	P value	Coef.	Std. err.	P value	Coef.	Std. err.	P value	
Breast	0.12	1.60	0.95	−0.15	1.23	0.91	0.08	1.02	0.94	4
Colorectal	−0.17	0.66	0.81	0.94	0.65	0.19	0.80	0.67	0.27	9
Gastric	1.01	0.92	0.29	1.10	0.90	0.24	1.44	0.91	0.13	19
Prostate	2.12	1.09	0.09	3.12	1.42	0.06	3.54	1.43	0.04	10
Urothelial	3.65	5.63	0.56	4.06	0.77	0.01	6.37	1.46	0.02	5
Overall	1.23	0.41	0.004	1.55	0.37	0.000	1.86	0.41	0.000	59

doi:10.1371/journal.pone.0040219.t004

Contribution of the -160C/A in CDH1 to Cancer Risk
Figure 1. One-way sensitivity analysis for the stability of observations in the meta-analysis. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) of the -160A allele carriers are evaluated by comparing to the CC genotype, omitting each dataset in each type of cancer (as of March 2012). The pooled ORs are calculated with a random-effects model. The numbers on the x-axis refer to the studies extracted. 22a, Sweden; 22b, Czech Republic; 24a, Familial; 24b, Sporadic; 26a, Phase 1; 26b, Phase 2; 41a, Beijing; 41b, Linqu; 51a, Canada; 51b, Germany; 51c, Portugal; total, no dataset omitted.

doi:10.1371/journal.pone.0040219.g001
stratification showed that heterogeneity in the European subgroup was significant \((Q=13.29, P=0.02, I^2=62\%)\). This finding might be mainly attributed to the dataset from Humar et al. [50], in which diffuse gastric cancer was investigated. As a special histological form of gastric cancer, diffuse gastric cancer was more prevalent in younger age groups. The heterogeneity was effectively removed after exclusion of this dataset \((Q=6.49, P=0.17, I^2=38\%)\), as expected. The OR estimated for the \(-160A\) carriers was 1.05 (95% CI = 0.90–1.18) in pooled datasets, 0.93 (95% CI = 0.80–1.08) in Asians, 1.20 (95% CI = 0.91–1.58) in Europeans, and 1.53 (95% CI = 0.99–2.36) in others. The association of \(-160A\) allele carriers with the progression of gastric cancer in Europeans disappeared, whereas susceptibility was still evident in Asians and pooled datasets \((P=0.05)\). The exact number of cases and controls across datasets for each cancer type is shown in Table 1. The estimated OR indicated that the \(-160A\) allele of the \(E\)-cadherin gene provided a higher risk for the development of lung, nasopharyngeal, thyroid, endometrial and oral cancer, but the credibility of these associations was considered ‘weak’ after application of the Venice interim guidelines [9]. Because of the significance of the \(-160C/A\) polymorphism in human cancers, much more data will be provided in the future to enhance the statistical power in these cancer types.

Discussion

The meta-analysis performed in this paper indicated that the \(-160A\) homozygote predisposed its carriers to urothelial cancer. Carriers of the \(-160A\) allele had an increased risk of prostate cancer. The ethnicity-dependent susceptibility of \(-160A\) carriers to gastric cancer [3] disappeared with the inclusion of updated evidence, whereas susceptibility was demonstrated in prostate cancer. The credibility of single studies that investigated the association of the \(-160A\) allele with lung, nasopharyngeal, pancreatic, thyroid, endometrial and oral cancer was considered ‘weak,’ which requires further verification. No evidence was found that the \(-160A\) allele predisposed its carriers to breast, colorectal, esophageal, gynecological, gastric, or liver cancer or lymphoma.

The meta-analysis, which is not maintained, may become out of date or misleading. Bias and greater heterogeneity arose because of the further inclusion of new evidence, which suggests the requirement for more studies concerning the \(-160C/A\) polymor-

Cancer type	\(AA\) scheme	evidence	\(CA\) scheme	evidence	\((AA+CA)\) scheme	evidence
Colorectal	ACB	weak	ACC	weak	ACC	weak
Gastric	BCC	weak	BCC	weak	BCC	weak
Prostate	BCC	weak	BCC	weak	BCC	weak
Urothelial	BCA	weak	BCC	weak	BCC	weak
Breast	BCC	weak	BCC	weak	BCC	weak
Esophageal	CCC	weak	CCB	weak	CCB	weak
Pancreatic	CCB	weak	CCB	weak	CCB	weak
Nasopharyngeal	CCB	weak	CCB	weak	CCB	weak
Endometrial	CCB	weak	CCB	weak	CCB	weak
Cervical	CCB	weak	CCC	weak	CCC	weak
Ovarian	CCB	weak	CCB	weak	CCB	weak
Lung	CCB	weak	CCB	weak	CCB	weak
Oral	CCB	weak	CCB	weak	CCB	weak
Liver	CCB	weak	CCB	weak	CCB	weak
Thyroid	CCB	weak	CCB	weak	CCB	weak
Lymphoma	CCB	weak	CCB	weak	CCB	weak

\(P=0.0005\), nasopharyngeal [12] \(OR=2.02, 95\% CI =1.20–3.41, P=0.0005\), thyroid [17] \(OR=2.33, 95\% CI =1.39–3.99, P=0.0001\), endometrial [13] \(OR=1.93, 95\% CI =1.19–3.14, P=0.0008\), oral [15] \(OR=0.57, 95\% CI =0.41–0.80, P=0.0001\), pancreatic [11] \(OR=1.62, 95\% CI =2.63, P=0.05\), liver [16] \(OR=0.85, 95\% CI =0.56–1.29, P=0.44\), cervical [13] \(OR=1.22, 95\% CI =0.77–1.95, P=0.39\), and ovarian [14] \(OR=0.93, 95\% CI =0.63–1.37, P=0.71\) cancer and lymphoma [18] \(OR=0.91, 95\% CI =0.51–1.60, P=0.74\).
phism and cancer risk, especially those with rigorous selection of case and control samples and the reporting of more studies with a large sample size and negative results. In addition to publication bias, which is popular in meta-analyses, different mechanisms can lead to asymmetry in funnel plots, including true heterogeneity resulting from improper study design [35].

The authors combined case-control studies, which are relatively more practical and inexpensive than prospective cohort studies in the investigation of relationships between suspected risk factors and diseases, especially those with low incidence, such as cancers. However, the crucial concern in the design of case-control studies is choosing case and control samples, especially a proper control population, given the explicit diagnostic criteria for cancers. Ideal controls should be a general group of persons without the disease of interest, from which qualified cases arise once diagnosed. This general group does not exclude those with other kinds of disease, whereas no relationship should be expected between the healthy status of the control and the investigated 'risk factor' because the correlation may exaggerate or understate the overall estimated OR [59].

Controls selected in studies investigating the association between the -160C/A polymorphism and prostate cancer risk could be divided into healthy [30,32], healthy matched [31,33,35,38], benign prostatic hyperplasia [29], healthy and benign prostatic hyperplasia [34,37] and benign prostatic hyperplasia or others [36]. Subsequent subgroup analysis stratified by controls in data sets of prostate cancer indicated homogeneity in each strata, indicating that the between-study variance in the prostate subgroup resulted from different controls. However, it should also be noted that the reduced heterogeneity may also result from a reduction in power for the Q-test because of the small sample size in some subgroups.

Furthermore, a question arose because of the low expression level of E-cadherin in benign prostatic hyperplasia [60,61] and urothelial diseases [62,63], which could also have resulted from the -160C/A polymorphism in the promoter region of E-cadherin. If the relationship between the -160C/A polymorphism of E-cadherin and benign prostatic hyperplasia and other urothelial diseases could not be excluded, the selection of patients with these diseases as controls may not be suitable. We tested Hardy-Weinberg equilibrium at the polymorphism site in the control samples, and deviation could be a symptom of disease association [64]. However, there was no guarantee that following Hardy-Weinberg equilibrium excluded a relationship between allele distribution and susceptible diseases [65].

Deviation from Hardy-Weinberg equilibrium in a random sample could be due to inbreeding, population stratification, or selection, and may be indicative of problematic assays [64,65]. Heterogeneity in evidence concerning urothelial cancer was successfully reduced to zero after the exclusion of studies that significantly deviated from Hardy-Weinberg equilibrium, what may indicate an inappropriate choice of control samples in those studies. We observed that the estimated OR qualitatively changed when the AA homozygote carriers are at a higher risk for the development of prostate and urothelial cancers. The association between the -160A allele and lung, nasopharyngeal, thyroid, endometrial and oral cancer indicated by single studies needs further validation.

Supporting Information

Figure S1 The flow diagram for the review process and outcomes of inclusion and exclusion. (TIF)

Figure S2 Meta-analysis of -160A association with fourteen types of cancers (as of March 2012). Odds ratios (ORs) and 95% confidence intervals (CIs) are displayed at a logarithmic scale. Events and total represent the number of -160A allele carriers and all the genotypes respectively. (TIF)

Table S1 Characteristics of the 47 case-control studies included in this meta-analysis. (DOC)

Table S2 Distribution of three genotypes at the E-cadherin -160C/A polymorphic site among case and control samples from 47 case-control studies in this meta-analysis. (DOC)

Table S3 Detailed information on the assessment of evidence in each cancer type. (DOC)

Author Contributions

Conceived and designed the experiments: LW GW. Performed the experiments: LW GW. Analyzed the data: LW GW CL. Contributed reagents/materials/analysis tools: CL BF JK. Wrote the paper: LW GW CL JK. Financial support: JK.
References

1. Wong AS, Gambhir BM (2003) Adhesion-independent mechanism for suppression of tumor cell migration by E-cadherin. J Cell Biol 161: 1191–1203.
2. Li LC, Chui RM, Suzuki M, Nakajima K, Prinegich G, et al. (2000) A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities. Cancer Res 60: 873–876.
3. Wang GY, Lu CQ, Zhang RM, Hu XH, Luo ZW (2008) The E-cadherin gene polymorphism -160C/A and cancer risk: A HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol 167: 7–14.
4. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.
5. Higgins JP, Thompson SG (2004) Contrasting the risk of spurious findings from meta-regression with that from subgroup analysis. Stat Med 23: 1663–1682.
6. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Statas Tech Bull 8: 15–17.
7. Tobias A (2000) Update of metafun (abstract). Statas Tech Bull 10: 15.
8. Nakajima K, Egawa T, Shima J, Itoh M, for the small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25: 2025; 3443–3457.
9. Ioannidis JP, Boffetta P, Little J, O’Brien TR, Unfalden AG, et al. (2003) A summary of evidence on genetic associations: interim guidelines. Int J Epidemiol 32(1): 120–132.
10. Langevin SM, Ioannidis JP, Vines P, Tauxel E (2010). Genetic Susceptibility to Environmental Carcinogens group (GSEC). Assessment of cumulative evidence for the association of E-cadherin polymorphisms with lung cancer: application of the Venice interim guidelines. Pharmacogenet Genomics 20(10): 586–597.
11. Fei Y, Hu J, Liu S, Liu X, Wang F, et al. (2010) E-cadherin-160 C/A promoter polymorphism and risk of pancreatic carcinoma in Chinese population. Cancer Genet Cyogente 197: 25–31.
12. Ben Nasr H, Hamrita B, Batbout M, Gabbouj S, Bouaouina N, et al. (2010) A C-160A promoter polymorphism and prostate cancer risk. Prostate 70: 1482–1487.
13. Ioannidis JP, Boffetta P, Little J, O’Brien TR, Uitterlinden AG, et al. (2008) Association of cyclin D1 G870A and E-cadherin C-160A polymorphisms with breast cancer risk. Int J Cancer 123: 1064–1069.
14. Fei Y, Hu J, Liu S, Liu X, Wang F, et al. (2010) E-cadherin-160 C/A promoter polymorphism and risk of pancreatic carcinoma in Chinese population. Cancer Genet Cyogente 197: 25–31.
15. Chen MH, Chou LS, Chung TT, Lin CH, Chou MY, et al. (2012) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of oral cancer. Head Neck 34: 405–411.
16. Chen MH, Yeh KT, Li YC, Hsieh YH, Lin CH, et al. (2011) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of hepatocellular carcinoma. J Surg Oncol 104: 299–304.
17. Wang YY, Zhao L, Wang XY, Liu CM, Yu SG (2011) Association between E-cadherin (CDH1) polymorphisms and papillary thyroid carcinoma risk in Han Chinese population. Endocrine. 2011 Dec 23. [Epub ahead of print].
18. Jacobs G, Helling S, Huse K, Trat A, Rianke A, et al. (2011) Polymorphisms in the promoter region of the E-cadherin gene are a risk factor for primary gastric diffuse large B-cell lymphoma. Haematologica. 96: 987–995.
19. Wang GY, Hu XH, Luo ZW (2008) The E-cadherin gene promoter polymorphisms and haplotype associated with the occurrence of oesophageal carcin in Chinese. Gynecol Oncol 108: 409–414.
20. Chien MH, Chou LS, Chung TT, Lin CH, Chou MY, et al. (2012) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of oral cancer. Head Neck 34: 405–411.
21. Chien MH, Yeh KT, Li YC, Hsieh YH, Lin CH, et al. (2011) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of hepatocellular carcinoma. J Surg Oncol 104: 299–304.
22. Cattaneo F, Venezio T, Molatore S, Russo A, Fiocco R, et al. (2006) Functional analysis and case-control study of -160C/A polymorphism in the E-cadherin gene promoter: association with cancer risk. Anticancer Res 26: 4627–4632.
23. Li Y, Liang J, Kang N, Dong Z, Wang N, et al. (2008) E-cadherin gene-polymorphisms and haplotype associated with the occurrence of oesophageal carcinoma in Chinese. Gynecol Oncol 108: 409–414.
24. Chien MH, Chou LS, Chung TT, Lin CH, Chou MY, et al. (2012) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of oral cancer. Head Neck 34: 405–411.
25. Chien MH, Yeh KT, Li YC, Hsieh YH, Lin CH, et al. (2011) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of hepatocellular carcinoma. J Surg Oncol 104: 299–304.
26. Wang WX, Zhao L, Wang XY, Liu CM, Yu SG (2011) Association between E-cadherin (CDH1) polymorphisms and papillary thyroid carcinoma risk in Han Chinese population. Endocrine. 2011 Dec 23. [Epub ahead of print].
27. Jacobs G, Helling S, Huse K, Trat A, Rianke A, et al. (2011) Polymorphisms in the promoter region of the E-cadherin gene are a risk factor for primary gastric diffuse large B-cell lymphoma. Haematologica. 96: 987–995.
28. Wang GY, Hu XH, Luo ZW (2008) The E-cadherin gene promoter polymorphisms and haplotype associated with the occurrence of oesophageal carcin in Chinese. Gynecol Oncol 108: 409–414.
29. Chien MH, Chou LS, Chung TT, Lin CH, Chou MY, et al. (2012) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of oral cancer. Head Neck 34: 405–411.
30. Chien MH, Yeh KT, Li YC, Hsieh YH, Lin CH, et al. (2011) Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of hepatocellular carcinoma. J Surg Oncol 104: 299–304.
31. Yang YQ, Wang WM, Wang R, Wei LZ, Li Y, et al. (2005) Correlation of E-cadherin polymorphism with esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma. [Article in Chinese]. Ai Zheng 24: 513–519.
32. Luo H, Zhang Y, Shima K, Shihata M, Matsunuma T, et al. (2002) Characterization of DNA polymorphisms in the E-cadherin gene (CDH1) promoter region. Mutat Res 502: 19–24.
33. Lei H, Sjoberg-Margolin S, Salahshor S, Werelin B, Jandrokova E, et al. (2002) CDH1 mutations are present in both ductal and lobular breast cancer, but promoter allelic variants show no detectable breast cancer risk. Int J Cancer 98: 199–204.
34. Yu JC, Hsu HM, Chen ST, Hsu GC, Huang CS, et al. (2006) Breast cancer risk associated with genetic variation at the E-cadherin gene and receptor-signaling pathway: a multigenic study on cancer susceptibility. J Biol Sci 11: 419–423.
35. Grunhage F, Jungck M, Lamberti C, Berg C, Becker U, et al. (2008) Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes. Int J Colorectal Dis 23: 147–154.
36. Tan XL, Nierman A, Kropp S, Hoffmeister M, Bremner H, et al. (2008) The association of cyclin D1 (CCND1) and E-cadherin (CDH1) polymorphisms with the risk of colorectal cancer in a case-control study and meta-analysis. Int J Cancer 122: 2573–2580.
37. Pittman AM, Twist P, Broderick P, Lubbe S, Chandler I, et al. (2009) The CDH1 -160C/A polymorphism is a risk factor for colorectal cancer. Int J Cancer 125: 1629–1635.
38. Porter TR, Richards FM, Houlston RS, Evans DG, Jankowski JA, et al. (2002) Contribution of cyclin D1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer. Oncogene 21: 1928–1933.
53. Zhang X, Ma X, Zhu QQ, Li LC, Chen Z, et al. (2003) Association between a C/A single nucleotide polymorphism of the E-cadherin gene promoter and transitional cell carcinoma of the bladder. J Urol 170: 1379–1382.
54. Ma X, Xu H, Zheng T, Li HZ, Shi TP, et al. (2008) DNA polymorphisms in exon 1 and promoter of the CDH1 gene and relevant risk of transitional cell carcinoma of the urinary bladder. BJU Int 102: 633–636.
55. Tsukino H, Kuroda Y, Nakao H, Inami H, Inatomi H, et al. (2003) E-cadherin gene polymorphism and risk of urothelial cancer. Cancer Lett 195: 53–58.
56. Kienenze LA, van Houwelingen KP, Bogaerts M, Witjes JA, Swinkels DW, et al. (2006) Polymorphisms in the E-cadherin (CDH1) gene promoter and the risk of bladder cancer. Eur J Cancer 42: 3219–3227.
57. Ricketts C, Zeegers MP, Lubinski J, Maher ER (2009) Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma. PLoS One 4: e6037.
58. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
59. Wang JH, ed. (2007) Epidemiology (in Chinese), 6th ed. Beijing: People’s Health Publishing House.
60. Akakura S, Huang C, Nelson P, Foster B, Gelman IH (2008) Loss of the S6eCKS/Gravin/AKAP12 gene results in prostatic hyperplasia. Cancer Res 68: 5096–5103.
61. Alonso-Magdalena P, Brouwer C, Reiner A, Cheng G, Sugiyama N, et al. (2009) A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proc Natl Acad Sci U S A 106: 2859–2863.
62. Kokal IT, Ishak Y, Usta M, Danisman A, Guntekin E, et al. (2007) Varicocele-induced testicular dysfunction may be associated with disruption of blood-testis barrier. Arch Androl 53: 43–48.
63. Shie JH, Kuo HC (2011) Higher levels of cell apoptosis and abnormal E-cadherin expression in the urothelium are associated with inflammation in patients with interstitial cystitis/painful bladder syndrome. BJU Int 108: E136–E141.
64. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7: 781–791.
65. Witke-Thompson JK, Pluzhnikov A, Cox NJ (2002) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76: 967–986.