HYDRODYNAMIC APPROACH TO CONSTRUCTING SOLUTIONS OF NONLINEAR SCHRODINGER EQUATION IN THE CRITICAL CASE

O.S. ROZANOVA

Abstract. Proceeding from the hydrodynamic approach, we construct exact solutions to nonlinear Schrödinger equation with special properties. The solutions describe collapse, in finite time, and scattering, over infinite time, of wave packets. They generalize known blow-up solutions based on the “ground state.”

1. Preliminaries

Consider the initial value problem for nonlinear Schrödinger equation (NLS) in \(\mathbb{R}^n \):

\[
i \Psi_t + \Delta \Psi + |\Psi|^\sigma \Psi = 0, \quad \Psi(x, t) : \mathbb{R}_x^n \times \mathbb{R}_t^+ \to \mathbb{C},
\]

\[
\Psi(0, x) = \Psi_0(x) \in H^1(\mathbb{R}^n).
\]

It is well known that the Cauchy problem (1),(2) has locally in time a solution of class \(C([0, T); H^1(\mathbb{R}^n)) \), \(T \leq \infty \) \([1],[2],[3]\). The Cauchy problem is also locally well-posed in \(L^2(\mathbb{R}^n) \) \([4]\), and this space is optimal \([5]\).

Moreover, \(T = \infty \) for \(\sigma < \frac{4}{n} \), where dispersion dominates, and for \(\sigma \geq \frac{4}{n} \) the solution may ”blow up” in finite time under certain initial conditions, e.g.\([6],[7]\).

More exactly, there exist initial data \(\Psi_0(x) \) and a positive constant \(T(\Psi_0(x)) < \infty \), such that

\[
\lim_{t \to T(\Psi_0(x))} \int_{\mathbb{R}^n} |\nabla \Psi(x, t)|^2 \, dx = \infty.
\]

The blow-up corresponds to self-trapping of beams in the laser propagation. A very good review with references can be found in \([8]\).

For solutions to (1),(2) the following quantities are conserved:

\[
N[\Psi] = \|\Psi(x, t)\|_{L^2(\mathbb{R}^n)} = \|\Psi_0(x)\|_{L^2(\mathbb{R}^n)} = N \quad (\text{the probability}),
\]

\[
P[\Psi] = \text{Im} \int_{\mathbb{R}^n} \Psi(x, t) \nabla \bar{\Psi}(x, t) \, dx = P \quad (\text{the linear momentum}),
\]

and

\[
H[\Psi] = \|\nabla \Psi(x, t)\|_{L^2(\mathbb{R}^n)}^2 - \frac{2}{\sigma + 2} \|\Psi(x, t)\|_{L^{\sigma+2}(\mathbb{R}^n)}^{\sigma+2} = H \quad (\text{the energy}).
\]

Received by the editors September 16, 2003.

1991 Mathematics Subject Classification. Primary 35Q55; Secondary 35K55.

Key words and phrases. nonlinear Schrödinger equation, hydrodynamic approach, integral functionals, exact solutions, blow up solutions.
Let $\sigma = \frac{4}{n}$. Assume additionally a stronger decay of initial data at infinity, namely, $|x|\Psi_0(x) \in L^2(\mathbb{R}^n)$. Then the following important identity holds:

$$M''(t) = 8H,$$

(3)

where $M(t) = \int_{\mathbb{R}^n} |\Psi(x,t)|^2 |x|^2 dx$. This identity appears in many papers, but [9] seems to be the earliest one. It implies a very simple sufficient condition for the blow-up. It is easy to see that $M(t) > 0$ for the solution of class $C([0,T); H^1(\mathbb{R}^n))$, $T \leq \infty$. At the same time (3) implies that

$$M(t) = 4Ht^2 + M'(0)t + M(0).$$

(4)

The blow-up corresponds to vanishing of $M(t)$. It signifies the concentration of the solution support in a set of zero measure. From elementary algebra arguments we get that $M(t) \to 0$ at a finite moment of time T if $K \leq 0$, where

$$K = 16HM(0) - (M'(0))^2.$$

(5)

This time T is positive if $H < 0$ or $H \geq 0$, $M'(0) < 0$.

In [10] it was proved that for radial initial conditions $\Psi_0(x)$ with $H < 0$ the solution blows up in finite time in $H^1(\mathbb{R}^n)$ with no integrability conditions on $|\Psi|^2|x|^2$ (see also [11] in the context).

2. Hydrodynamic interpretation

Below we use the hydrodynamic approach due to Madelung, e.g. [12]. Namely, we represent the solution in trigonometric form, that is $\Psi(t,x) = A(t,x) \exp(i\phi(t,x))$, where $A(t,x) \geq 0$ and $\phi(t,x)$ are real functions, the amplitude and the phase of the wave, respectively.

Note that if $A(t,x)$ is compactly supported, then $\Psi(t,x)$ is compactly supported, too. The support does not depend on the phase function ϕ.

Substituting this representation in (1) and taking the real and imaginary parts of the resulting equation, we obtain the following system

$$A_t' + 2(\nabla A, \nabla \phi) + A\Delta \phi = 0,$$

(6)

$$A\phi_t' + A|\nabla \phi|^2 = \Delta A + A^{\sigma+1}.$$

(7)

Further, we multiply (6) by $2A$ and apply the gradient operator to (7). Denote by ρ the probability density, $A^2 = |\Psi|^2$, and by V double the gradient of the phase function, $2\nabla \phi$. Thus, the final hydrodynamic form of (1) consists of two equations

$$\rho_t' + \rho \text{div} V + (V, \nabla \rho) = 0,$$

(8)

$$\rho(V_t' + (V, \nabla)V) = 2(A\nabla(\Delta A + A^{\sigma+1}) - \nabla A(\Delta A + A^{\sigma+1})), \quad A = \rho^{1/2}.$$

(9)

The only difference from the traditional gas dynamics is the ”exotic” pressure on the right-hand side of (9). This type of pressure changes the character of singularity completely, but allows to use the same methods as in the gas dynamics.

The data

$$\rho(0,x) = \rho_0(x), \quad V(0,x) = V_0(x)$$

complete the statement of the Cauchy problem for (8),(9).

It suffices to demand that

$$\rho_0^{1/2}(x) \in H^1(\mathbb{R}^n), \quad \rho_0^{1/2}(x)V_0(x) \in L^2(\mathbb{R}^n),$$
to ensure that the corresponding initial function $\Psi_0(\mathbf{x})$ belongs to the class $H^1(\mathbb{R}^n)$.

Note also that ρ vanishes as $|\mathbf{x}| \to \infty$, however, the same is not necessary for V.

The conservation laws (I–III) in the new terms are as follows:

\[\int_{\mathbb{R}^n} \rho d\mathbf{x} = N \quad \text{(the mass)}, \quad (I') \]

\[\int_{\mathbb{R}^n} \rho V d\mathbf{x} = \tilde{P} \quad \text{(the linear momentum)} \quad (II') \]

and

\[\int_{\mathbb{R}^n} \left(\frac{\rho|V|^2}{4} + \frac{|
abla \rho|^2}{4\rho} - \frac{2}{\sigma + 2} \rho^{\sigma/2+1} \right) d\mathbf{x} = H \quad \text{(the energy)}. \quad (III') \]

One can see that the "kinetic energy" component in H is the same as in gas dynamics (up to the multiplier).

Note that in gas dynamics terms we have

\[M(t) = \int_{\mathbb{R}^n} \rho(\mathbf{x}, t)|\mathbf{x}|^2 d\mathbf{x}, \]

by virtue of (8)

\[M'(t) = 2 \int_{\mathbb{R}^n} (\mathbf{x}, V(\mathbf{x}, t)) \rho(\mathbf{x}, t) d\mathbf{x}, \]

here \mathbf{x} is the radius-vector of point in the space.

Let us introduce one more functional:

\[Q_\Lambda(t) = \int_{\mathbb{R}^n} (\mathbf{x}, \Lambda) \rho(\mathbf{x}, t) d\mathbf{x}, \]

where Λ is a constant vector from \mathbb{R}^n. From (8) and the conservation of linear momentum (II') we have $Q_\Lambda'(t) = (\tilde{P}, \Lambda) := \tilde{P}_\Lambda = const$, and

\[Q_\Lambda(t) = \tilde{P}_\Lambda t + Q_\Lambda(0). \quad (10) \]

From the Hölder inequality we have also

\[Q_\Lambda^2(t) \leq |\Lambda|^2 N M(t). \]

In the domains where the amplitude $A > 0$, instead of (9) we consider the equivalent equation

\[V'_t + (V, \nabla)V = 2\nabla \left(\frac{\Delta A}{A} + A^\sigma \right). \]

Now we use the following idea, recently applied to construct solutions to the gas dynamics equations(see [13], [14], [15], [16]). Namely, let the "velocity field" have the form

\[V = a(t)\mathbf{x}, \quad (11) \]

where $a(t)$ is a time-dependent function. Thus, the phase function can be restored as

\[\phi(t, \mathbf{x}) = a(t)\frac{|\mathbf{x}|^2}{4} + \gamma(t), \]
with an unknown function $\gamma(t)$. Then, from the (linear in ρ) equation (8) we find the density as

$$\rho(t, x) = \exp(-n \int_0^t a(\tau)d\tau)\rho_0 \left(x \exp(-\int_0^t a(\tau)d\tau) \right),$$

or

$$A(t, x) = \exp\left(-\frac{n}{2} \int_0^t a(\tau)d\tau\right)A_0 \left(x \exp(-\int_0^t a(\tau)d\tau) \right),$$

with $A_0(x) = |\Psi_0(x)|$.

Note that in the critical case, $\sigma = \frac{4}{n}$,

$$\frac{\Delta A(t, x)}{A(t, x)} + A'(t, x) = \exp(-2 \int_0^t a(\tau)d\tau)\left(\frac{\Delta A_0(\xi)}{A_0(\xi)} + A_0^\sigma(\xi) \right),$$

where $\xi = x \exp(-\int_0^t a(\tau)d\tau)$.

Further, we have from (7) and (12)

$$(a'(t) + a^2(t)) \frac{|x|^2}{4} + \gamma'(t) = \exp(-2 \int_0^t a(\tau)d\tau) \left(\frac{\Delta A_0(\xi)}{A_0(\xi)} + A_0^\sigma(\xi) \right),$$

or

$$(a'(t) + a^2(t)) \frac{|x|^2}{4} + \gamma'(t) \exp(-2 \int_0^t a(\tau)d\tau) = \exp(-4 \int_0^t a(\tau)d\tau)\left(\frac{\Delta A_0(\xi)}{A_0(\xi)} + A_0^\sigma(\xi) \right).$$

The variables t and ξ can be separated if

$$\gamma'(t) = \gamma_0 \exp(-2 \int_0^t a(\tau)d\tau), \quad \gamma_0 \in \mathbb{R}^1.$$ \hspace{1cm} (13)

In this case

$$(a'(t) + a^2(t))|x|^2 = 4 \exp(-4 \int_0^t a(\tau)d\tau) \left(\frac{\Delta A_0(\xi)}{A_0(\xi)} + A_0^\sigma(\xi) - \gamma_0 \right).$$ \hspace{1cm} (14)

It follows from (14) that

$$a'(t) + a^2(t) = 4k \exp(-4 \int_0^t a(\tau)d\tau),$$ \hspace{1cm} (15)

$$\Delta A_0(x) + A_0^{\sigma+1}(x) = (k|x|^2 + \gamma_0)A_0(x),$$ \hspace{1cm} (16)

where k is a constant.

Thus, we seek a special solution to (1) in the form

$$\Psi(t, x) = \exp\left(-\frac{n}{2} \int_0^t a(\tau)d\tau\right)A_0 \left(x \exp(-\int_0^t a(\tau)d\tau) \right) \exp\left(i a(t) \frac{|x|^2}{4}\right) \exp\left(i\gamma_0 \int_0^t \exp(-2 \int_0^\tau a(\tau_1)d\tau_1)d\tau\right) \exp(i\theta),$$ \hspace{1cm} (17)
with \(\theta \in \mathbb{R}^1 \).

Because the origin is not a particular point, without loss in generality we may consider the velocity field \(V = a(t)(x - x_0) \), where \(x_0 \) is an arbitrary fixed point. Then the solution takes the form

\[
\Psi(t, x) = \exp(-\frac{n}{2} \int_0^t a(\tau) d\tau)A_0 \left[(x - x_0) \exp(-\int_0^t a(\tau) d\tau) \right]
\]

\[
\exp \left(i\gamma_\tau \int_0^t \exp(-2 \int_0^\tau a(\tau_1) d\tau_1) \right) \exp(i\theta). \tag{17'}
\]

The decay properties of the solution as \(|x| \to \infty \) depend on \(A_0(x) \). The physical sense requires that the solution should be of the class \(L^2(\mathbb{R}^n) \). If we wish to consider solutions from the space \(C([0, T); H^1(\mathbb{R}^n)) \), \(T \leq \infty \), natural for the existence and uniqueness to the Cauchy problem (1), (2), we have to choose the initial data

\[
\Psi_0(x) = A_0(x - x_0) \exp \left(i\gamma_0 \int_0^t \exp(-2 \int_0^\tau a(\tau_1) d\tau_1) \right) \exp(i\theta),
\]

where \(A_0(x) \) is a non-negative solution to (14) belonging to \(H^1(\mathbb{R}^n) \) and \(|x|A_0(x) \in L^2(\mathbb{R}^n) \). Note that with the function \(A_0 \) of this class we have also conservation laws (I - III) for solutions (17) and (17').

3. Time evolution

Let us investigate the qualitative behavior of \(a(t) \) governed by (15). It is easy to see that in the case \(k < 0 \) for any initial datum \(a(0) = a_0 \) there exists a moment \(T_0 \) such that \(a(t) \to -\infty, t \to T_0 \). Really, as \(a'(t) < \epsilon < 0 \), then under any \(a_0 \) there exists a moment \(T_1 \geq 0 \) when \(a(T_1) < 0 \). Further, the comparison theorem shows that \(a(t) \leq \tilde{a}(t) \), where \(\tilde{a}(t) \) is a solution to the Cauchy problem \(\tilde{a}'(t) = -\tilde{a}^2(t), \tilde{a}(T_1) = a(T_1), t \geq T_1 \). This means that if \(k < 0 \), the solution \(\Psi \) to (1) of the form (17), with the amplitude \(A_0 \) satisfying (16), localizes at the origin within a finite interval of time, provided \(N < \infty \).

We can also analyze the differential corollary of (15)

\[
a''(t) + 6a(t)a'(t) + 4a^3(t) = 0,
\]

with the initial data \(a(0) = a_0, a'(0) = -a_0^2 + 4k \). It gives us, in particular, that in the case \(k > 0 \) the solution vanishes at infinity as \(O(t^{-1}) \).

If \(k = 0 \), any nontrivial solution to (15) blows up at a finite time \(T = -a_0^{-1} \). The time is positive if \(a_0 < 0 \). Moreover, if \(|x|\Psi_0(x) \in L^2(\mathbb{R}^n) \), we can find \(a(t) \) explicitly for any \(k \). Observe that, if \(V = a(t)x \), then

\[
M'(t) = 2a(t)M(t),
\]

therefore \(a(t) = \frac{M'(t)}{2M(t)} \). The explicit form of \(M(t) \) is known, see (4). Thus,

\[
a(t) = \frac{8Ht + M'(0)}{2(4Ht^2 + M'(0)t + M(0))}. \tag{19}
\]

If \(K = 16HM(0) - (M'(0))^2 \leq 0 \) (see (5)), then \(M(t) \) tends to zero \((a(t) \) goes to infinity, respectively) within a finite interval of time. Moreover, this interval can be readily calculated. If \(K > 0 \), then \(a(t) \sim t^{-1}, t \to \infty \).
Now taking into account (15), (18), (19) we can compute
\[k = \frac{K}{16M^2(0)} = \frac{16HM(0) - (M'(0))^2}{16M^2(0)}. \] (20)

There are situations where we can express \(a(t) \) through \(Q_\Lambda(t) \). Namely, for \(V = a(t)x \) we get \(\tilde{P}_\Lambda = a(t)Q_\Lambda(t) \). Therefore, if there is \(\Lambda \in \mathbb{R}^n \) such that \(Q_\Lambda(t) \neq 0 (\tilde{P}_\Lambda \neq 0) \), then taking into account (10) we have
\[a(t) = \frac{1}{t + Q_\Lambda(0)\tilde{P}_\Lambda} = \frac{1}{t + a_0}. \]

From (18) we obtain now \(M(t) = M(0)a_0^2(t + a_0^{-1})^2 \). Comparing the result with (4) we can see that \(4H = M(0)a^2(0) \) and \(K = k = 0 \).

Note that if \(A_0 \) is radial, then \(Q_\Lambda(t) = 0 \) for any \(\Lambda \).

4. Evolution of wave packets

Summarizing the above results, we can formulate the following theorem:

Theorem 1. Suppose that (16) has at least one nonnegative solution \(A_0(x) \). Then equation (1) has a special solution given by the explicit formula (17)((17')), with the function \(a(t) \) governed by equation (15).

If \(xA_0(x) \in L^2(\mathbb{R}^n) \), then the formula (17') can be written as
\[\Psi(t, x) = \left(\frac{M(0)}{M(t)} \right)^{\frac{n}{4}} A_0 \left(\frac{M(0)}{M(t)} \right)^{\frac{1}{2}} (x - x_0) \]
\[\exp \left(i \frac{M'(t)}{8M(t)} |x - x_0|^2 \right) \exp \left(i\gamma_0 M(0) \int_0^t M^{-1}(\tau)d\tau \right) \exp(i\theta), \] (21)
with the quadratic function \(M(t) \) having the explicit form (4).

The behavior of the solution depends on the sign of the constant \(k \) (see (20)).

If \(k > 0 \), then the solution decays. Namely,
\[\max_{x \in \mathbb{R}^n} |\Psi(t, x)| = A^+ \left(\frac{M(0)}{4H} \right)^{\frac{n}{4}} t^{-n/2}, \quad A^+ = \max_{\mathbb{R}^n} A_0(x). \]

If \(k \leq 0 \), then the solution blows up at the point \(x_0 \) at a finite moment of time \(T \). This time is positive in the following cases:

(i) if \(H = 0, M'(0) < 0 \), then \(T = -\frac{M(0)}{M'(0)} \);

(ii) if \(H > 0, M'(0) < 0 \), then \(T = -\frac{M'(0) - \sqrt{|K|}}{2H} \);

(iii) if \(H < 0 \), then \(T = -\frac{M'(0) + \sqrt{|K|}}{2H} \).

Moreover, for \(k = 0 \),
\[\max_{x \in \mathbb{R}^n} |\Psi(t, x)| = A^+ \left(\frac{M(0)}{4H} \right)^{\frac{n}{4}} (T - t)^{-n/2}, \]
for \(k < 0 \),
\[\max_{x \in \mathbb{R}^n} |\Psi(t, x)| = A^+ \left(\frac{M(0)}{\sqrt{|K|}} \right)^{\frac{n}{4}} (T - t)^{-n/4}. \]
Remark 1. If there exists \(\Lambda \in \mathbb{R}^n \) such that \(Q_{\Lambda}(t) \neq 0 (\tilde{\mathbf{P}}_{\Lambda} \neq 0) \), then only the situation with \(k = 0 \) may be realized.

Remark 2. For the solution of form (19) we have

\[
\| \nabla \Psi(x, t) \|_{L^2(\mathbb{R}^n)}^2 = \exp(-2 \int a(t) dt) \| \nabla A_0(x) \|_{L^2(\mathbb{R}^n)}^2 + \frac{1}{4}a^2(t) \exp(2 \int a(t) dt) \| \nabla A_0(x) \|_{L^2(\mathbb{R}^n)}^2 = \frac{M(0)}{M(t)} \| \nabla A_0(x) \|_{L^2(\mathbb{R}^n)}^2 + \frac{(M'(t))^2}{16M(t)} = O(T - t)^{-\lambda},
\]

where \(\lambda = 1 \) (the lower estimate for the blow-up order, see [17]) for \(k < 0 \), and \(\lambda = 2 \) for \(k = 0 \).

5. Comparison with previous results

In the theory of NLS for the critical case \(\sigma = \frac{4}{n} \) the crucial role is played by the so-called ground state, i.e. the positive radially-decreasing solution to the elliptic problem

\[
\Delta u + |u|^\sigma u - u = 0, \quad u \in H^1(\mathbb{R}^n).
\]

It is known [18], that the solution with such properties is unique and exists at least for \(n = 1, 2, 3 \). The solution belongs to \(C^2(\mathbb{R}^n) \), and \(|D^n u| \leq C \exp(-\delta |x|) \), where \(C, \delta \) are positive constants. We denote it by \(R(x) \).

It is known that \(H[R(x)] = 0 \) [19].

It was proved [19] that if \(\| \Psi_0(x) \|_{L^2(\mathbb{R}^n)} < \| R(x) \|_{L^2(\mathbb{R}^n)} \), then the solution to the problem (1), (2) is global in time. If the solution blows up, then \(\| \Psi_0(x) \|_{L^2(\mathbb{R}^n)} > \| R(x) \|_{L^2(\mathbb{R}^n)} \). In the case \(\| \Psi_0(x) \|_{L^2(\mathbb{R}^n)} = \| R(x) \|_{L^2(\mathbb{R}^n)} \) the solution either blows up or not.

If it does blow up, it necessarily has the following special form based on the ground state [20] [21]:

\[
\Psi(x, t) = \exp(i\theta) \exp \left(i(\frac{\omega^2}{t - T} + \frac{|x - x_0|^2}{4(t - T)}) \right) \left(\frac{\omega}{t - T} \right)^\frac{\sigma}{2} R \left(\frac{\omega(x - x_0)}{t - T} - x_1 \right),
\]

with certain \(x_0 \in \mathbb{R}^n, x_1 \in \mathbb{R}^n, \theta \in \mathbb{R}, \omega \in \mathbb{R}^+, T \in \mathbb{R} \). However, (23) coincides with (21) for \(K = k = 0 \) and \(\gamma_0 = 1 \). Indeed, in this case \(R(x) \) is a solution to (14),

\[
M(t) = H(t + \frac{M'(0)}{M})^2 = H(t - \left(\frac{M'}{M} \right)^2, \omega^2 = \frac{M(0)}{M}, T = \omega = -\frac{M'}{M}. \]

Here we choose \(M'(0) < 0 \) to guarantee the positivity of \(T \). Note that \(H > 0 \) for solutions of the form (23).

It can be readily demonstrated that

\[
H[\Psi] = \frac{M(0)}{M(t)} \| \nabla A_0(x) \|_{L^2(\mathbb{R}^n)}^2 - \frac{2}{\sigma + 2} \| \nabla A_0(x) \|_{L^{\sigma+2}(\mathbb{R}^n)}^{\sigma+2} + \frac{(M'(t))^2}{16M(t)} = \frac{M(0)}{M(t)} H[\Psi] + \frac{(M'(t))^2}{16M(t)}.
\]

Thus, for \(A_0 = R \), we get \(H = \frac{(M'(0))^2}{16M(0)} > 0 \).

It follows from the above results that if \(A_0(x) \) is a solution to (16) with \(k < 0 \) from \(H^1(\mathbb{R}^n) \), then

\[
\| A_0(x) \|_{L^2(\mathbb{R}^n)} > \| R(x) \|_{L^2(\mathbb{R}^n)},
\]
because in this case the solution (17) blows up and it is not of the form (23).

The profile of our solution in the case \(k < 0 \) is different from that of the solution (23) (corresponding to \(k = 0 \)), and so is the rate of blow-up (see Remark 2 of Section 4).

Note that in the case \(k < 0 \) the solution to equation (16), considered in the space \(\mathbb{R}^n \), oscillates as \(|x| \to \infty \). For linearized equation \((n = 1) \) we can even get the explicit solution:

\[
n = \frac{1}{1/2}(C_1W_1(1/2 \sqrt{2k}, -1/2) + C_2W_2(1/2 \sqrt{2k}, -1/2)),
\]

where \(W_1, W_2 \) are the Whittaker functions, \(C_1, C_2 \) are constants. This highly oscillating function does not belong to \(L^2(\mathbb{R}^n) \). So we cannot hope that the solution to nonlinear perturbed problem (16) is positive and belongs to \(L^2(\mathbb{R}^n)(H^1(\mathbb{R}^n)) \).

However, we can consider (in higher dimensions too) the solution to (16) given in \(\Omega \subset \mathbb{R}^n \). To be exact, now we deal with the Dirichlet problem for (16) with zero boundary conditions. Regarding this Dirichlet problem, for example, there is the following result due to [22].

Theorem 2 ([22]). Let \(\Omega \) be a bounded, smooth domain in \(\mathbb{R}^n, n \geq 2 \), and \(g : \mathbb{R}^+ \times \Omega \to \mathbb{R}^+ \) a locally Lipshitzian map. Consider the elliptical boundary problem

\[
\Delta u + u^p + eg(x, u) = 0, \quad u|_{\partial\Omega} = 0.
\]

If \(1 < p < \frac{n+1}{n-2} \) (\(p > 1 \) for \(n = 1, 2 \)), there exists \(\epsilon > 0 \) such that, for \(0 < \epsilon < \epsilon_0 \), (*) has a solution \(u = u_\epsilon \), which is positive on \(\Omega \).

In our situation \(g(x, u) = -k|x|^2 \varphi_0 u \) satisfies to the theorem condition for \(k < 0 \) in a ball from \(\mathbb{R}^n \), for \(\gamma_0 < 0 \) this condition holds for all \(\mathbb{R}^n \).

The solution to the Dirichlet problem is classical, that is it belongs to \(C^2(\Omega) \cap C(\bar{\Omega}) \), therefore it can be extended to all over the space \(\mathbb{R}^n \) at least as solution from \(L^2(\mathbb{R}^n) \).

6. Further generalization

Let us consider the following velocity field:

\[
V = a(t)x + b(t),
\]

with a constant vector \(\Lambda \). Then the phase function takes the form

\[
\phi(t, x) = a(t)|x|^2/4 + b(t)(\Lambda, x) + \mu(t).
\]

Proceeding in the spirit of Section 2, we obtain

\[
A(t, x) = \exp(-n/2 \int_0^t a(\tau)d\tau)A_0 \left(x \exp(-\int_0^t a(\tau)d\tau) - \Lambda \int_0^t b(\tau)\exp(-\int_0^\tau a(\tau)d\tau)d\tau \right).
\]

Denote \(\xi = x \exp(-\int_0^t a(\tau)d\tau) - \Lambda \int_0^t b(\tau)\exp(-\int_0^\tau a(\tau)d\tau)d\tau \). From (7) and (12) we get

\[
\int_0^t \left[a'(t) + a^2(t) \right] \frac{[\xi]^2}{4} + \left[(a'(t) + a^2(t)) \int_0^t b(\tau)\exp(-\int_0^\tau a(\tau)d\tau)d\tau + (b'(t) + a(t)b(t))\exp(-\int_0^t a(\tau)d\tau) \right] \frac{(\Lambda, x)}{2}.
\]
where \(\gamma \) with the function \(A \) represented by formula (23).

The corresponding solution has the form

\[
\Psi(x,t) = \exp(i\gamma(t)) \exp\left(i(b(t) \frac{\langle x, A \rangle}{2} + \frac{|x|^2}{4(t + a_0^{-1})}) \right).
\]

There are two possibilities for the separation of variables.

I. The functions \(a(t), \gamma(t) \) and \(A_0(x_1), x_1 = x + \Lambda \) satisfy equations (15), (13) and (16), respectively, \(b(t) = a(t) \). So we return to the formula (17') considered above.

II. The functions \(a(t), b(t), \gamma(t) \) and \(A_0(x) \) satisfy the following equations:

\[
a'(t) + a^2(t) = 0,
\]

\[
b'(t) + a(t)b(t) = 2k_1 \exp(-3 \int_0^t a(\tau)d\tau),
\]

\[
\gamma'(t) = \gamma_0 \exp(-2 \int_0^t a(\tau)d\tau) - \frac{\Delta A_0(x) + A_0^\sigma(x)}{A_0(x)}.
\]

where \(\gamma_0 \) and \(k_1 \) are constants.

The functions \(a(t), b(t), \gamma(t) \) can be found explicitly.

Note that if \(k_1 = 0, \gamma_0 = 1, b(t) = 0 \), we obtain again a solution that can be represented by formula (23).

The simplest situation is \(a(t) = 0, b(t) = 2k_1 t + b_0, \gamma(t) = -\frac{|A|^2}{12k_1}(2k_1 t + b_0)^3 + \gamma_0 t + \gamma_1, \gamma_0, \gamma_1 \in \mathbb{R}^n \). The corresponding solution has the form

\[
\Psi(t, x) = A_0[x - \Lambda(t(k_1 t + b_0))] \exp (i(k_1 t + \frac{b_0}{2})(\Lambda, x) + \gamma(t)),
\]

with the function \(A_0(x) \) satisfying (28). For \(k_1 = 0, \gamma_0 = 1, b_0 = 0 \) we get the solitary wave solution \(R(t, x) \exp(i(t + \gamma_1)) \).

In the general case

\[
a(t) = \frac{1}{t + a_0^{-1}}, \quad b(t) = \frac{b_0 a_0^{-1} + 2k_1 a_0^2}{t + a_0^{-1}} - 2k_1 \frac{1}{(t + a_0^{-1})^2},
\]

\[
\gamma(t) = \int_0^t \left[\frac{\gamma_0}{(\tau + a_0^{-1})^{-2}} + \frac{k_1 |A|^2}{\tau + a_0^{-1}} \int_0^\tau b(\tau_1) d\tau_1 - \frac{1}{4} |A|^2 b^2(\tau) \right] d\tau.
\]

The corresponding solution has the form

\[
\Psi(x, t) = \exp(i\gamma(t)) \exp\left(i(b(t) \frac{\langle x, A \rangle}{2} + \frac{|x|^2}{4(t + a_0^{-1})}) \right).
\]
Further, from (3), (30), (31) we obtain

\[\left(\frac{1}{\left| t + a_0 \right|^2} \right)^{\frac{3}{2}} A_0 \left(\frac{x}{t + a_0} - \Lambda \int_0^t \frac{b(\tau)}{t + a_0} d\tau \right), \]

(29)

with the function \(A_0(x) \) satisfying (28). The solution (29) has an interesting feature in the case when \(k_1 \neq 0, A_0(x) \in L_2(\mathbb{R}^n) \) and \(a_0 < 0 \). At a finite time, \(T = -a_0^{-1}, \) the mass concentrates at a point which escapes to infinity.

If we suppose that \(A_0(x) x \in L_2(\mathbb{R}^n) \), we can express the solution through the functionals \(M(t), Q_\Lambda(t) \) and \(\tilde{P} \). Indeed, for the velocity field (24) we have

\[M'(t) = 2a(t)M(t) + b(t)Q_\Lambda(t), \]

(30)

\[\tilde{P}_\Lambda = a(t)Q_\Lambda(t) + b(t)N|\Lambda|^2. \]

(31)

Further, from (3), (30), (31) we obtain

\[a'(t) = a(t) \frac{2\tilde{P}_\Lambda Q_\Lambda(t) - M'(t)N|\Lambda|^2}{M(t)N|\Lambda|^2 - Q_\Lambda(t)} - \frac{\tilde{P}_\Lambda^2 - 8HN|\Lambda|^2}{M(t)N|\Lambda|^2 - Q_\Lambda(t)}. \]

Then we use (4) and (10) to get

\[a'(t) = -a(t) \frac{F'(t)}{F(t)} + \frac{C}{F(t)}, \]

(32)

where \(F(t) = At^2 + Bt + C, A = 8HN|\Lambda|^2 - \tilde{P}_\Lambda^2, B = M'(0)HN|\Lambda|^2 - 2\tilde{P}_\Lambda Q_\Lambda(0) \), \(C = M(0)N|\Lambda|^2 - Q_\Lambda(0) \). Note that by virtue of the Hölder inequality \(C \geq 0 \).

Further, we find from (32) and (31)

\[a(t) = \frac{Ct}{F(t)} + a_0, \quad b(t) = \frac{\tilde{P}_\Lambda(A - C)t^2 + (\tilde{P}_\Lambda(B - a_0) - CQ_\Lambda(0))t + (\tilde{P}_\Lambda C - a_0Q_\Lambda(0))}{F(t)N|\Lambda|^2}. \]

Acknowledgments. This work was partially supported by the Russian Foundation for Basic Researches Award No. 03-02-16263.

References

1. J.Ginibre, G.Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann.Inst.H.Poincaré. Anal.Non Lineare 2(1985), no.4, 309-327.
2. J.Ginibre, G.Velo, On a class of nonlinear Schrödinger equations. J.Funct.Anal.32(1979), no.1, 1-32.
3. T.Kato, On nonlinear Schrödinger equations. Ann.Inst.H.Poincaré. Phys.Theor. 46(1987), no.1, 113-129.
4. T.Gazave, F.Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18-29, Lecture Notes in Math., Springer, Berlin-New York, 1989.
5. B.Birnir, C.Kenig, G.Ponce, N.Svanstedt, L.Vega, On the ill-posedness of the IVP for the generalized Korteweg-de Vris and nonlinear Schrödinger equations. J.London Math. Soc.(2) 53(1996), no.3, 551-559.
6. M.I.Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm.Math.Phys. 87(1982/83), no.4, 567-576.
7. R.T.Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J.Math.Phys. 18(1977), no.9, 1794-1797.
8. F.Merle, Blow up phenomena for critical nonlinear Schrödinger and Zakharov equations. Documenta Mathematica, Extra volume ICM 1998, III (1998), 57-66.
9. V.I.Talanov, Self-focusing of wave beams in nonlinear media JETP Lett. 2(1965), 138.
10. T. Ogawa, Y. Tsutsumi, Blow-up of H^1 solutions for the nonlinear Schrödinger equation. J. Differential Equations 92(1991), no.2, 317-330.

11. H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power. Comm. Pure Appl. Math., 1999, v.52, no.2, 191-270.

12. E. Madelung, Quantentheorie in hydrodynamischer form, Z. Phys. 40(1926), 322.

13. D. Serre, Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Annales de l’Institut Fourier 47(1997), 139–153.

14. O.S. Rozanova, On classes of globally smooth solutions to the Euler equations in several dimensions LANL e-print math.AP/0203230.

15. O.S. Rozanova, On classes of globally smooth solutions to the Euler equations in several dimensions in: Hyperbolic problems: Theory, Numerics, Applications. Proceedings of 9th International Conference in Pasadena, Caltech, March 25-29, 2002. Springer, 2003, pp.861-871.

16. O.S. Rozanova, Application of integral functionals to the study of the properties of solutions to the Euler equations on riemannian manifolds, J. Math. Sci. 117(5)(2003), 4551–4584.

17. Y. Tsutsumi, Rate of L^2-concentration of blow up solutions for the Nonlinear Schrödinger equation with critical power. Nonlinear Analysis, Methods & Application, 15(1990), no.8, 719-724.

18. H. Berestycki, P.-L. Lions, Nonlinear scalar field equation. I,II. Arch. Rational Mech. Anal. 82(1983), no.4, 313-345 and 347-375.

19. M.I. Weinstein. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Communications in Partial Differential Equations 11(1986), no.5, 545-565.

20. F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power. Duke Math. J. 69(1993), no.2, 427-454.

21. F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Comm. Pure Appl. Math. 45(1992), no.2, 203-254.

22. W.-M. Ni, R.D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u + f(u,r) = 0$, Comm. on Pure Appl. Math., 1985, v.38, 67-108.

Department of Differential Equations, Mathematics and Mechanics Faculty, Moscow State University, GSP-2 Vorobiovy Gory Moscow 119992, Russia
E-mail address: rozanova@mech.math.msu.su