QUOTIENTS OF ONE-SIDED TRIANGULATED CATEGORIES BY RIGID SUBCATEGORIES AS MODULE CATEGORIES

ZENGQIANG LIN AND YANG ZHANG

Abstract. We prove that some subquotient categories of one-sided triangulated categories are abelian. This unifies a result by Iyama-Yoshino in the case of triangulated categories and a result by Demonet-Liu in the case of exact categories.

1. Introduction

Cluster tilting theory gives a way to construct abelian categories from some triangulated categories. Let H be a hereditary algebra over a field k, and \mathcal{C} be the cluster category defined in [1] as the factor category $D^b(\text{mod } H)/\tau^{-1}\Sigma$, where τ and Σ be the Auslander-Reiten translation and shift functor of $D^b(\text{mod } H)$ respectively. For a cluster tilting object T in \mathcal{C}, Buan, Marsh and Reiten [2] showed that $\mathcal{C}/\text{add } \tau T \cong \text{mod } \text{End}_{\mathcal{C}}(T)^{\text{op}}$. Keller and Reiten [3] generalized this result in the case of 2-Calabi-Yau triangulated categories by showing that $\mathcal{C}/\Sigma \tau T \cong \text{mod } T$, where T is a cluster tilting subcategory of \mathcal{C}. A general framework for cluster tilting is set up by Koenig and Zhu. They [4] showed that any quotient of a triangulated category modulo a cluster tilting subcategory carries an abelian structure. Let \mathcal{C} be a triangulated category and \mathcal{M} be a rigid subcategory, i.e. $\text{Hom}_\mathcal{C}(\mathcal{M}, \Sigma \mathcal{M}) = 0$. Iyama and Yoshino [5] showed that $\mathcal{M} * \Sigma \mathcal{M} / \Sigma \mathcal{M} \cong \text{mod } \mathcal{M}$. In particular, if \mathcal{M} is a cluster tilting subcategory, then $\mathcal{M} * \Sigma \mathcal{M} = \mathcal{C}$, thus the work generalized some former results in [2,3,4].

Recently, Cluster tilting theory is also permitted to construct abelian categories from some exact categories. Let \mathcal{B} be an exact category with enough projectives and \mathcal{M} be a cluster tilting subcategory. Demonet and Liu [6] showed that $\mathcal{B}/\mathcal{M} \cong \text{mod } \mathcal{M}$, which generalized the work of Koenig and Zhu in the case of Frobenius categories.

The main aim of this article is to unify the work of Iyama-Yoshino and Demonet-Liu, and give a framework for construct abelian categories from triangulated categories and exact categories. Our setting is one-sided triangulated category, which is a natural generalization.
of triangulated category. Left and right triangulated categories were defined by Beligiannis and Marmaridis in [7]. For details and more information on one-sided triangulated categories we refer to [7-9].

The paper is organized as follows. In Section 2, we review some basic material on module categories over \(k \)-linear categories and quotient categories etc. In Section 3, we prove that some subquotient categories of right triangulated categories are module categories, which unifies the Proposition 6.2 in [4] and the Theorem 3.5 in [5]. In Section 4, we prove that some subquotient categories of left triangulated categories are module categories, which unifies the Proposition 6.2 in [4] and the Theorem 3.2 in [5]. And we will see that the case of right triangulated categories and the case of left triangulated categories are not dual.

2. Preliminaries

Throughout this paper, \(k \) denotes a field. When we say that \(C \) is a category, we always assume that \(C \) is a Hom-finite Krull-Schmidt \(k \)-linear category. For a subcategory \(M \) of category \(C \), we mean \(M \) is an additive full subcategory of \(C \) which is closed under taking direct summands. Let \(f : X \to Y \), \(g : Y \to Z \) be morphisms in \(C \), we denote by \(gf \) the composition of \(f \) and \(g \), and \(f_\ast \) the morphism \(\text{Hom}_C(M, f) : \text{Hom}_C(M, X) \to \text{Hom}_C(M, Y) \) for any \(M \in C \).

Let \(C \) be a category and \(\mathcal{X} \) be a subcategory of \(C \). A right \(\mathcal{X} \)-approximation of \(C \) in \(C \) is a map \(f : X \to C \), with \(X \in \mathcal{X} \), such that for all objects \(X' \in \mathcal{X} \), the sequence \(\text{Hom}_C(X', X) \to \text{Hom}_C(X', C) \to 0 \) is exact. If for any object \(C \in C \), there exists a right \(\mathcal{X} \)-approximation \(f : X \to C \), then \(\mathcal{X} \) is called a contravariantly finite subcategory of \(C \). Dually we have the notions of left \(\mathcal{X} \)-approximation and covariantly finite subcategory. \(\mathcal{X} \) is called functorially finite if \(\mathcal{X} \) is contravariantly finite and covariantly finite.

Let \(C \) be a category. A pseudokernel of a morphism \(v : V \to W \) in \(C \) is a morphism \(u : U \to V \) such that \(vu = 0 \) and if \(u' : U' \to V \) is a morphism such that \(vu' = 0 \), there exists \(f : U' \to U \) such that \(u' = uf \). Pseudocokernels are defined dually.

Let \(C \) be a category. A \(C \)-module is a contravariant \(k \)-linear functor \(F : C \to \text{Mod} k \). Then \(C \)-modules form an abelian category \(\text{Mod} C \). By Yoneda’s lemma, representable functors \(\text{Hom}_C(-, C) \) are projective objects in \(\text{Mod} C \). We denote by \(\text{mod} C \) the subcategory of \(\text{Mod} C \) consisting of finitely presented \(C \)-modules. One can easily check that \(\text{mod} C \) is closed under cokernels and extensions in \(\text{Mod} C \). Moreover, \(\text{mod} C \) is closed under kernels in \(\text{Mod} C \) if and only if \(C \) has pseudokernels. In this case, \(\text{mod} C \) forms an abelian category (see [10]). For example, if \(C \) is a contravariantly finite subcategory of a triangulated category, then \(\text{mod} C \) forms an abelian category.

Let \(C \) be an additive category and \(\mathcal{B} \) be a subcategory of \(C \). For any two objects \(X, Y \in C \), denote by \(\mathcal{B}(X, Y) \) the additive subgroup
of $\text{Hom}_C(X,Y)$ such that for any morphism $f \in \mathcal{B}(X,Y)$, f factors through some object in \mathcal{B}. We denote by \mathcal{C}/\mathcal{B} the quotient category whose objects are objects of \mathcal{C} and whose morphisms are elements of $\text{Hom}_C(M,N)/\mathcal{B}(M,N)$. The projection functor $\pi : \mathcal{C} \to \mathcal{C}/\mathcal{B}$ is an additive functor satisfying $\pi(\mathcal{B}) = 0$, and for any additive functor $F : \mathcal{C} \to \mathcal{D}$ satisfying $F(\mathcal{B}) = 0$, there exists a unique additive functor $G : \mathcal{C}/\mathcal{B} \to \mathcal{D}$ such that $F = G\pi$. We have the following two easy and useful facts.

Lemma 2.1. Let $F : \mathcal{C} \to \mathcal{D}$ be an additive functor. If F is full and dense, and there exists a subcategory \mathcal{B} of \mathcal{C} such that any morphism $f : X \to Y$ in \mathcal{C} with $F(f) = 0$ factors through some object in \mathcal{B}, then F induces an equivalence $\mathcal{C}/\mathcal{B} \cong \mathcal{D}$.

Lemma 2.2. Let \mathcal{A} be an additive category, \mathcal{B} and \mathcal{C} be two subcategories of \mathcal{A} with $\mathcal{C} \subset \mathcal{B}$. Then there exists an equivalence of categories $(\mathcal{A}/\mathcal{C})/(\mathcal{B}/\mathcal{C}) \cong \mathcal{A}/\mathcal{B}$.

Proof. Let $\pi_\mathcal{B} : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ and $\pi_\mathcal{C} : \mathcal{A} \to \mathcal{A}/\mathcal{C}$ be the projection functors. Note that $\mathcal{C} \subset \mathcal{B}$, we have $\pi_\mathcal{B}(\mathcal{C}) = 0$, thus there exists a unique functor $F : \mathcal{A}/\mathcal{C} \to \mathcal{A}/\mathcal{B}$ such that $F\pi_\mathcal{C} = \pi_\mathcal{B}$. Since $\pi_\mathcal{B}$ is full and dense, F is full and dense too.

Let $f : X \to Y$ be a morphism in \mathcal{A} such that $F(\pi_\mathcal{C}(f)) = 0$, that is $\pi_\mathcal{B}(f) = 0$. Then f factors through some object in \mathcal{B}, thus $\pi_\mathcal{C}(f)$ factors through some object in \mathcal{B}/\mathcal{C}. According to Lemma 2.1, we have an equivalence of categories $(\mathcal{A}/\mathcal{C})/(\mathcal{B}/\mathcal{C}) \cong \mathcal{A}/\mathcal{B}$. \[\Box\]

3. **Subquotient categories of right triangulated categories**

Firstly, we recall some basics on right triangulated categories from [8].

Definition 3.1. A right triangulated category is a triple $(\mathcal{C}, \Sigma, \triangleright)$, or simply \mathcal{C}, where:

(a) \mathcal{C} is an additive category.

(b) $\Sigma : \mathcal{C} \to \mathcal{C}$ is an additive functor, called the shift functor of \mathcal{C}.

(c) \triangleright is a class of sequences of three morphisms of the form $U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U$, called right triangles, and satisfying the following axioms:

(RTR0) If $U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U$ is a right triangle, and $U' \xrightarrow{u'} V' \xrightarrow{v'} W' \xrightarrow{w'} \Sigma U'$ is a sequence of morphisms such that there exists a commutative diagram in \mathcal{C}

$$
\begin{array}{cccc}
U & \xrightarrow{u} & V & \xrightarrow{v} & W & \xrightarrow{w} & \Sigma U \\
\downarrow{f} & & \downarrow{g} & & \downarrow{k} & & \downarrow{\Sigma f} \\
U' & \xrightarrow{u'} & V' & \xrightarrow{v'} & W' & \xrightarrow{w'} & \Sigma U'
\end{array}
$$

$$
\begin{array}{cccc}
U & \xrightarrow{u} & V & \xrightarrow{v} & W & \xrightarrow{w} & \Sigma U \\
\downarrow{f} & & \downarrow{g} & & \downarrow{k} & & \downarrow{\Sigma f} \\
U' & \xrightarrow{u'} & V' & \xrightarrow{v'} & W' & \xrightarrow{w'} & \Sigma U'
\end{array}
$$

\]
where \(f, g, h\) are isomorphisms, then \(U' \xrightarrow{u'} V' \xrightarrow{v'} W' \xrightarrow{w'} \Sigma U'\) is also a right triangle.

(RTR1) For any \(U \in \mathcal{C}\), the sequence \(0 \to U \xrightarrow{1_U} U \to 0\) is a right triangle. And for any morphism \(u : U \to V\) in \(\mathcal{C}\), there exists a right triangle \(U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U\).

(RTR2) If \(U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U\) is a right triangle, then so is \(V \xrightarrow{v} W \xrightarrow{w} \Sigma U \xrightarrow{-u\Sigma} \Sigma V\).

(RTR3) For any two right triangles \(U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U\) and \(U' \xrightarrow{u'} V' \xrightarrow{v'} W' \xrightarrow{w'} \Sigma U'\) and any two morphisms \(f : U \to U'\), \(g : V \to V'\) such that \(gu = u'f\), there exists \(h : W \to W'\) such that the following diagram is commutative

\[
\begin{array}{c}
U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U \\
\downarrow f \quad \downarrow g \quad \downarrow h \quad \downarrow \Sigma f \\
U' \xrightarrow{u'} V' \xrightarrow{v'} W' \xrightarrow{w'} \Sigma U'.
\end{array}
\]

(RTR4) For any two right triangles \(U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U\) and \(U' \xrightarrow{u'} V' \xrightarrow{v'} W' \xrightarrow{w'} \Sigma U'\), there exists a commutative diagram

\[
\begin{array}{c}
U' \xrightarrow{u'} U \xrightarrow{v'} W \xrightarrow{w'} \Sigma U \\
\downarrow u \quad \downarrow f \quad \downarrow \Sigma f \\
U'' \xrightarrow{w'w} V \xrightarrow{p} V' \xrightarrow{q} \Sigma U'' \\
\downarrow v \quad \downarrow g \quad \downarrow \Sigma v'w \\
W \xrightarrow{w} W' \xrightarrow{\Sigma v'w} \Sigma W',
\end{array}
\]

where the second row and the third column are right triangles.

Example 3.2. A triangulated category \(\mathcal{C}\) is a right triangulated category, where the shift functor \(\Sigma\) is an equivalence. In this case, right triangles in \(\mathcal{C}\) are called triangles.

Example 3.3. (cf.[7,11]) Let \(\mathcal{B}\) be an exact category which contains enough injectives. The subcategory of injectives is denoted by \(\mathcal{I}\). Then the quotient category \(\overline{\mathcal{B}} = \mathcal{B}/\mathcal{I}\) is a right triangulated category. For any morphism \(f \in \text{Hom}_\mathcal{B}(X, Y)\), we denote its image in \(\text{Hom}_\overline{\mathcal{B}}(X, Y)\) by \(\overline{f}\). Let us recall the definitions of the shift functor \(\Sigma\) and of the distinguished right triangles. For any \(X \in \mathcal{B}\), there is a short exact sequence \(0 \to X \xrightarrow{i_X} I_X \xrightarrow{d_X} C_X \to 0\) with \(I_X \in \mathcal{I}\). For any morphism \(f : X \to Y\), we have the following commutative diagram with exact
rows

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & X & \overset{ix}{\longrightarrow} & I_X & \overset{d_X}{\longrightarrow} & C_X & \longrightarrow & 0 \\
0 & \longrightarrow & Y & \overset{iy}{\longrightarrow} & I_Y & \overset{d_Y}{\longrightarrow} & C_Y & \longrightarrow & 0,
\end{array}
\]

where \(I_X, I_Y \in I \). Define \(\Sigma(X) = C_X \) and \(\Sigma f = \overline{c_f} \). We can show that the functor \(\Sigma \) is well defined. For any morphism \(f : X \rightarrow Y \), we have the following commutative diagram with exact rows

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & X & \overset{ix}{\longrightarrow} & I_X & \overset{d_X}{\longrightarrow} & C_X & \longrightarrow & 0 \\
0 & \longrightarrow & Y & \overset{g}{\longrightarrow} & Z & \overset{h}{\longrightarrow} & C_X & \longrightarrow & 0,
\end{array}
\]

where \(Z \) is the pushout of \(f \) and \(i_X \). Then \(X \xrightarrow{\overline{f}} Y \xrightarrow{\overline{g}} Z \xrightarrow{\overline{h}} \Sigma X \), or equivalently \(X \xrightarrow{(\overline{f}, \overline{g} - \overline{h})} Y \oplus I_X \xrightarrow{\overline{\alpha}} Z \xrightarrow{\overline{\beta}} \Sigma X \) is a distinguished right triangle. In this case, there is a short exact sequence \(0 \rightarrow X \xrightarrow{(f, i_X)} Y \oplus I_X \xrightarrow{(g, i_f)} Z \rightarrow 0 \). And we have the following commutative diagram of short exact sequences

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & X & \xrightarrow{(f, i_X)} & Y \oplus I_X & \xrightarrow{(g, i_f)} & Z & \longrightarrow & 0 \\
0 & \longrightarrow & X & \overset{i_X}{\longrightarrow} & I_X & \overset{d_X}{\longrightarrow} & \Sigma X & \longrightarrow & 0,
\end{array}
\]

So a distinguished right triangle in \(\overline{B} \) give rise to a short exact sequence in \(B \). On the other hand, Let \(0 \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0 \) be a short exact sequence in \(B \), then we have the following commutative diagram with exact rows

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & X & \xrightarrow{f} & Y & \xrightarrow{g} & Z & \longrightarrow & 0 \\
0 & \longrightarrow & X & \overset{iy}{\longrightarrow} & I_Y & \overset{p}{\longrightarrow} & \Sigma X & \longrightarrow & 0,
\end{array}
\]

where \(I_Y \in I \), and \(X \xrightarrow{\overline{f}} Y \xrightarrow{\overline{g}} Z \xrightarrow{\overline{h}} \Sigma X \) is a right triangle in \(\overline{B} \) [11]. Thus, a short exact sequence in \(B \) give rise to a right triangle in \(\overline{B} \).

The following lemma can be found in [7].

Lemma 3.4. Let \(C \) be a right triangulated category, and \(U \xrightarrow{u} V \xrightarrow{v} W \xrightarrow{w} \Sigma U \) be a right triangle.

(a) \(v \) is a pseudocokernel of \(u \), and \(w \) is a pseudocokernel of \(v \).
(b) If Σ is fully faithful, then u is a pseudokernel of v, and v is a pseudokernel of w.

Definition 3.5. Let \mathcal{C} be a right triangulated category. A subcategory \mathcal{M} of \mathcal{C} is called a rigid subcategory if $\text{Hom}_\mathcal{C}(\mathcal{M}, \Sigma \mathcal{M}) = 0$.

Let \mathcal{M} be a rigid subcategory of \mathcal{C}. Denote by $\mathcal{M} \ast \Sigma \mathcal{M}$ the subcategory of \mathcal{C} consisting of all such $X \in \mathcal{C}$ with right triangles $M_0 \to M_1 \to X \to \Sigma M_0$, where $M_0, M_1 \in \mathcal{M}$.

Now we can state the main theorem of this section.

Theorem 3.6. Let \mathcal{C} be a right triangulated category, and \mathcal{M} be a rigid subcategory of \mathcal{C} satisfying:

1. (RC1) Σ is fully faithful when it is restricted to \mathcal{M}.
2. (RC2) For any two objects $M_0, M_1 \in \mathcal{M}$, if $M_0 \xrightarrow{f} M_1 \xrightarrow{g} X \xrightarrow{h} \Sigma M_0$ is a right triangle in \mathcal{C}, then g is a right \mathcal{M}-approximation of X.

Then there exists an equivalence of categories $\mathcal{M} \ast \Sigma \mathcal{M}/\Sigma \mathcal{M} \cong \text{mod}\mathcal{M}$.

Before prove the theorem, we prove the lemma as follow.

Lemma 3.7. Under the same assumption as in Theorem 3.6, for any right triangle $M_0 \xrightarrow{f} M_1 \xrightarrow{g} X \xrightarrow{h} \Sigma M_0$ where $M_0, M_1 \in \mathcal{M}$, there is an exact sequence in $\text{mod}\mathcal{M}$

$$\text{Hom}_{\mathcal{M}}(-, M_0) \xrightarrow{\text{Hom}_{\mathcal{C}}(-, f)} \text{Hom}_{\mathcal{M}}(-, M_1) \xrightarrow{\text{Hom}_{\mathcal{C}}(-, g)} \text{Hom}_{\mathcal{C}}(-, X)|_{\mathcal{M}} \to 0.$$

Thus, $\text{Hom}_{\mathcal{C}}(-, X)|_{\mathcal{M}} \in \text{mod}\mathcal{M}$.

Proof. Let $M_0 \xrightarrow{f} M_1 \xrightarrow{g} X \xrightarrow{h} \Sigma M_0$ be a right triangle with $M_0, M_1 \in \mathcal{M}$. For any $M \in \mathcal{M}$, we claim that the following sequence is exact

$$\text{Hom}_{\mathcal{C}}(M, M_0) \xrightarrow{f} \text{Hom}_{\mathcal{C}}(M, M_1) \xrightarrow{g_*} \text{Hom}_{\mathcal{C}}(M, X) \to 0. \quad (\ast)$$

In fact, by Lemma 3.4 (a), we have $gf = 0$, hence $\text{Im} f_* \subseteq \text{Ker} g_*$. For any $t \in \text{Ker} g_*$, we have the following commutative diagram of right triangles by (RTR3)

$$
\begin{array}{ccc}
M & \xrightarrow{0} & \Sigma M \\
\downarrow t & & \downarrow \Sigma t \\
M_1 & \xrightarrow{g} & \Sigma M_0 \\
\downarrow m' & & \downarrow \Sigma f \\
\end{array}
$$

Since $\Sigma|_{\mathcal{M}}$ is full, there exists a morphism $m : M \to M_0$ such that $m' = \Sigma m$, so $\Sigma t = \Sigma(fm)$. Since $\Sigma|_{\mathcal{M}}$ is faithful, $t = fm = f_*m \in \text{Im} f_*$, then $\text{Im} f_* \supseteq \text{Ker} g_*$. Hence $\text{Im} f_* \supseteq \text{Ker} g_*$. On the other hand, by (RC2), g_* is surjective. So (\ast) is exact. Since M is arbitrary in \mathcal{M}, there exists an exact sequence

$$\text{Hom}_{\mathcal{M}}(-, M_0) \xrightarrow{\text{Hom}_{\mathcal{C}}(-, f)} \text{Hom}_{\mathcal{M}}(-, M_1) \xrightarrow{\text{Hom}_{\mathcal{C}}(-, g)} \text{Hom}_{\mathcal{C}}(-, X)|_{\mathcal{M}} \to 0.$$

\qed
Proof of Theorem 3.6. By Lemma 3.7, we have an additive functor $F : \mathcal{M} \ast \Sigma \mathcal{M} \to \text{Mod}\mathcal{M}$, which is defined by $F(X) = \text{Hom}_C(-, X)|_{\mathcal{M}}$.

Firstly, we show that F is dense.

For any object $G \in \text{mod}\mathcal{M}$, there exists an exact sequence

$$
\text{Hom}_\mathcal{M}(-, M') \xrightarrow{\alpha} \text{Hom}_\mathcal{M}(-, M'') \to G \to 0
$$

with $M', M'' \in \mathcal{M}$. By Yoneda’s Lemma, there exists a morphism $f : M' \to M''$ such that $\alpha = \text{Hom}_\mathcal{M}(-, f)$. Then by (RTR1), there exists a right triangle $M' \xrightarrow{f} M'' \xrightarrow{g} Z \xrightarrow{h} \Sigma M'$. By Lemma 3.7, there exists an exact sequence $\text{Hom}_\mathcal{M}(-, M') \xrightarrow{\alpha} \text{Hom}_\mathcal{M}(-, M'') \to F(Z) \to 0$, thus $G = \text{Coker} \alpha \cong F(Z)$. Hence F is dense.

Secondly, we show that F is full.

For any morphism $\beta : F(X) \to F(Y)$ in $\text{mod}\mathcal{M}$, because $\text{Hom}_\mathcal{M}(-, M_1)$ is a projective object in $\text{mod}\mathcal{M}$, we have the following commutative diagram with exact rows in $\text{Mod}\mathcal{M}$

$$
\text{Hom}_\mathcal{M}(-, M_0) \xrightarrow{\text{Hom}_\mathcal{M}(-, f_1)} \text{Hom}_\mathcal{M}(-, M_1) \xrightarrow{\gamma_0} F(X) \xrightarrow{\beta} 0
$$

By Yoneda’s Lemma, for $i = 0, 1$, there exists a morphism $m_i : M_i \to N_i$ such that $\gamma_i = \text{Hom}_\mathcal{M}(-, m_i)$ and $m_1 f_1 = f_2 m_0$. Hence by (RTR3) we have the following commutative diagram of right triangles

$$
\begin{array}{ccc}
M_0 & \xrightarrow{f_1} & M_1 \\
\downarrow m_0 & & \downarrow m_1 \\
N_0 & \xrightarrow{f_2} & N_1
\end{array}
\xrightarrow{i}
\begin{array}{ccc}
X & \xrightarrow{h_1} & \Sigma M_0 \\
\downarrow s & & \downarrow s \\
Y & \xrightarrow{h_2} & \Sigma N_0
\end{array}
$$

Then by Lemma 3.7, we have the following commutative diagram with exact rows in $\text{Mod}\mathcal{M}$

$$
\text{Hom}_\mathcal{M}(-, M_0) \xrightarrow{\text{Hom}_\mathcal{M}(-, f_2)} \text{Hom}_\mathcal{M}(-, M_1) \xrightarrow{\gamma_0} F(X) \xrightarrow{F(s)} 0
$$

So $\beta = F(s)$. Hence F is full.

At last, in order to show $\mathcal{M} \ast \Sigma \mathcal{M}/\Sigma \mathcal{M} \cong \text{mod}\mathcal{M}$, by Lemma 2.1 we only need to prove that any morphism $t : X \to Y$ in $\mathcal{M} \ast \Sigma \mathcal{M}$ satisfying $F(t) = 0$ factors through some object in $\Sigma \mathcal{M}$.

In fact, let $M_0 \xrightarrow{f_1} M_1 \xrightarrow{g_1} X \xrightarrow{h_1} \Sigma M_0$ be a right triangle with $M_0, M_1 \in \mathcal{M}$, then $tg_1 = 0$ since $F(t) = 0$. Thus by Lemma 3.4(a), t factors through h_1, so t factors through $\Sigma M_0 \in \Sigma \mathcal{M}$. □

Applying Theorem 3.6, we can get the following two corollaries.
Corollary 3.8. ([4, Proposition 6.2]) Let C be a triangulated category with the shift functor Σ and M be a rigid subcategory of C. Then there exists an equivalence of categories $M \prec \Sigma M/\Sigma M \cong \text{mod} M$.

Proof. Since the shift functor Σ is an equivalence, we know that $\Sigma|_M$ is fully faithful. Let $M_0 \xrightarrow{f} M_1 \xrightarrow{g} X \xrightarrow{h} \Sigma M_0$ be a triangle in C, where $M_0, M_1 \in M$. Since M is rigid, we know that g is a right M-approximation of X by Lemma 3.4(b). Thus, condition (RC1) and (RC2) hold. \square

Definition 3.9. Let B be an exact category and M be a full subcategory of B. M is called rigid if $\text{Ext}^1_B(M, M) = 0$.

Corollary 3.10. ([6, Theorem 3.5]) Let B be an exact category which contains enough injectives, and M be a rigid subcategory of B containing all injectives. Denote by I the subcategory of injectives, and by \overline{M} the quotient category M/I. Denote by M_R the subcategory of objects X in B such that there exist short exact sequences $0 \rightarrow M_0 \rightarrow M_1 \rightarrow X \rightarrow 0$, where $M_0, M_1 \in M$. Denote by ΣM the subcategory of objects Y in B such that there exist short exact sequences $0 \rightarrow M \rightarrow I \rightarrow Y \rightarrow 0$, where $M \in M$, $I \in I$. Then $M_R/\Sigma M \cong \text{mod} \overline{M}$.

Proof. According to Theorem 3.6, we prove the corollary by several steps.

(a) \overline{M} is a rigid subcategory of the right triangulated category $\overline{B} = B/I$.

Let Σ be the shift functor of \overline{B}, then it is easy to see that $\Sigma \overline{M} = \overline{\Sigma M}$. We claim that $\text{Hom}_{\overline{B}}(\overline{M}, \overline{\Sigma M}) = 0$. In fact, for any $f \in \text{Hom}_{\overline{B}}(M, Y)$, where $M \in \overline{M}$ and $Y \in \overline{\Sigma M}$. There is a short exact sequence $0 \rightarrow M' \xrightarrow{i} I \xrightarrow{d} Y \rightarrow 0$, where $M' \in M$, $I \in I$. Since M is rigid in B, applying $\text{Hom}_B(M, -)$ to the short exact sequence, we have an exact sequence

$$0 \rightarrow \text{Hom}(M, M') \xrightarrow{\delta} \text{Hom}(M, I) \xrightarrow{d} \text{Hom}(M, Y) \rightarrow 0.$$

So d is a right M-approximation of Y. Thus, f factors through I, hence $f = 0$.

(b) $\overline{M}_R = \overline{M} \ast \Sigma \overline{M}$.

It follows from Example 3.3.

(c) $\overline{M}_R/\Sigma \overline{M} \cong \overline{M}_R/\Sigma \overline{M}$.

It follows from Lemma 2.2 since $I \subset \Sigma \overline{M} \subset \overline{M}_R$ and $\Sigma \overline{M} = \overline{\Sigma M}$.

(d) $\Sigma |_{\overline{M}}$ is fully faithful.

For any $M', M'' \in \overline{M}$, there exist two short exact sequences $0 \rightarrow M' \xrightarrow{i} I_{M'} \xrightarrow{d_{M'}} \Sigma M' \rightarrow 0$ and $0 \rightarrow M'' \xrightarrow{i_{M''}} I_{M''} \xrightarrow{d_{M''}} \Sigma M'' \rightarrow 0$, where $I_{M'}, I_{M''} \in I$, and $d_{M'}, d_{M''}$ are right M-approximations.

For any morphism $\alpha : \Sigma M' \rightarrow \Sigma M''$ in B, since $d_{M''}$ is a right M-approximation and $I_{M'} \in I \subset \overline{M}$, we have the following commutative
diagram with exact rows in \mathcal{B}

\[
\begin{array}{cccccc}
0 & \to & M' & \overset{i_{M'}}{\to} & I_{M'} & \overset{d_{M'}}{\to} & \Sigma M' & \to & 0 \\
& & \downarrow{i_{M}} & & \downarrow{j} & & \downarrow{\alpha} \\
0 & \to & M'' & \overset{i_{M''}}{\to} & I_{M''} & \overset{d_{M''}}{\to} & \Sigma M'' & \to & 0.
\end{array}
\]

Hence we have $\alpha = \Sigma \bar{m}$ by the definition of Σ, thus $\Sigma|_{\mathcal{M}}$ is full.

For any morphism $f : M' \to M''$ in \mathcal{B}, Since $I_{M'}$ is an injective object, we have the following commutative diagram of short exact sequences

\[
\begin{array}{cccccc}
0 & \to & M' & \overset{i_{M'}}{\to} & I_{M'} & \overset{d_{M'}}{\to} & \Sigma M' & \to & 0 \\
& & \downarrow{f} & & \downarrow{i_{f}} & & \downarrow{\Sigma f} \\
0 & \to & M'' & \overset{i_{M''}}{\to} & I_{M''} & \overset{d_{M''}}{\to} & \Sigma M'' & \to & 0.
\end{array}
\]

Suppose $\Sigma \bar{f} = 0$, then Σf factors through some object in \mathcal{I}. Because $d_{M''}$ is right \mathcal{M}-approximation, Σf factors through $I_{M''}$, i.e. there exists a morphism $a : \Sigma M' \to I_{M''}$ such that $\Sigma f = d_{M''}a$. Then $d_{M''}(i_f - ad_{M'}) = d_{M''}i_f - (\Sigma f)d_{M'} = 0$, thus there exists a morphism $b : I_{M'} \to M''$ such that $i_{M'}b = i_f - ad_{M'}$, so $i_{M''}(f - bi_{M'}) = i_{M''}f - i_{f}i_{M'} + ad_{M'}i_{M'} = 0$. Since $i_{M''}$ is a monomorphism, $f = bi_{M'}$, thus f factors through $I_{M'}$. Hence $\bar{f} = 0$ and $\Sigma|_{\mathcal{M}}$ is faithful.

(e) Let $M' \xrightarrow{f} M'' \xrightarrow{g} X \xrightarrow{h} \Sigma M'$ be a right triangle in \mathcal{B} with $M', M'' \in \mathcal{M}$, then \bar{g} is a right $\overline{\mathcal{M}}$-approximation of X.

According to Example 3.3 and $\mathcal{I} \subset \mathcal{M}$, we can assume that there is a short exact sequence $0 \to M' \xrightarrow{j} M'' \xrightarrow{g} X \to 0$. Since \mathcal{M} is rigid, there exists an epimorphism $\text{Hom}_{\mathcal{B}}(M, g) : \text{Hom}_{\mathcal{B}}(M, M'') \to \text{Hom}_{\mathcal{B}}(M, X)$ for any M in \mathcal{M}. Thus we have an epimorphism $\text{Hom}_{\mathcal{B}}(M, \bar{g}) : \text{Hom}_{\mathcal{B}}(M, M'') \to \text{Hom}_{\mathcal{B}}(M, X)$, i.e. \bar{g} is a right $\overline{\mathcal{M}}$-approximation of X. \hfill \qedsymbol

4. Subquotient categories of left triangulated categories

The definition of left triangulated category is dual to right triangulated category. For convenience, we recall the definition and some facts.

Definition 4.1. ([7]) A left triangulated category is a triple $(\mathcal{C}, \Omega, \preceq)$, or simply \mathcal{C}, where:

(a) \mathcal{C} is an additive category.

(b) $\Omega : \mathcal{C} \to \mathcal{C}$ is an additive functor, called the shift functor of \mathcal{C}.

(c) \preceq is a class of sequences of three morphisms of the form $\Omega Z \xrightarrow{\gamma} X \xrightarrow{\mu} Y \xrightarrow{\nu} Z$, called left triangles, and satisfying the following axioms:

(LTR0) If $\Omega Z \xrightarrow{\gamma} X \xrightarrow{\mu} Y \xrightarrow{\nu} Z$ is a left triangle, and $\Omega Z' \xrightarrow{\gamma'} X' \xrightarrow{\mu'} Y' \xrightarrow{\nu'} Z'$ is a sequence of morphisms such that there exists a
commutative diagram in \mathcal{C}

\[
\begin{array}{c}
\Omega Z \xrightarrow{x} X \xrightarrow{y} Y \xrightarrow{z} Z \\
\downarrow \Omega h \downarrow f \downarrow g \downarrow h \\
\Omega Z' \xrightarrow{x'} X' \xrightarrow{y'} Y' \xrightarrow{z'} Z',
\end{array}
\]

where f, g, h are isomorphisms, then $\Omega Z' \xrightarrow{x'} X' \xrightarrow{y'} Y' \xrightarrow{z'} Z'$ is also a left triangle.

(LTR1) For any $X \in \mathcal{C}$, the sequence $0 \to X \xrightarrow{1_X} X \to 0$ is a left triangle. And for every morphism $z : Y \to Z$ in \mathcal{C}, there exists a left triangle $\Omega Z \xrightarrow{\Omega z} X \xrightarrow{\Omega y} Y \xrightarrow{\Omega z} Z$.

(LTR2) If $\Omega Z \xrightarrow{\Omega z} X \xrightarrow{y} Y \xrightarrow{z} Z$ is a left triangle, then so is $\Omega Y \xrightarrow{\Omega y} \Omega Z \xrightarrow{\Omega z} X \xrightarrow{y} Y \xrightarrow{z} Z$.

(LTR3) For any two left triangles $\Omega Z \xrightarrow{\Omega z} X \xrightarrow{y} Y \xrightarrow{z} Z$ and $\Omega Z' \xrightarrow{\Omega z'} X' \xrightarrow{y'} Y' \xrightarrow{z'} Z'$, and any two morphisms $g : Y \to Y', h : Z \to Z'$ such that $hz = z'g$, there exists $f : X \to X'$ making the following diagram commutative

\[
\begin{array}{c}
\Omega Z \xrightarrow{x} X \xrightarrow{y} Y \xrightarrow{z} Z \\
\downarrow \Omega h \downarrow f \downarrow g \downarrow h \\
\Omega Z' \xrightarrow{x'} X' \xrightarrow{y'} Y' \xrightarrow{z'} Z'
\end{array}
\]

(LTR4) For any two left triangles $\Omega Z \xrightarrow{\Omega z} X \xrightarrow{y} Y \xrightarrow{z} Z$ and $\Omega Z' \xrightarrow{\Omega z'} X' \xrightarrow{y'} Y \xrightarrow{z'} Z'$, there exists a commutative diagram

\[
\begin{array}{c}
\Omega Y' \xrightarrow{\Omega y'} \Omega Z \\
\downarrow x \downarrow f \downarrow g \downarrow h \\
\Omega Z' \xrightarrow{u} X' \xrightarrow{v} Y \xrightarrow{z'} Z'
\end{array}
\]

where the third row and the second column are left triangles.

Example 4.2. A triangulated category is a left triangulated category.

Example 4.3. Let \mathcal{B} be an exact category with enough projectives. Denote by \mathcal{P} the subcategory of \mathcal{B} consisting of projectives. Then the quotient category $\mathcal{B} = \mathcal{B}/\mathcal{P}$ is a left triangulated category.

By (LTR0) and (LTR2), we have the following easy lemma.
Lemma 4.4. Let $\Omega Z \xrightarrow{\bar{x}} X \xrightarrow{\bar{y}} Y \xrightarrow{\bar{z}} Z$ be a left triangle, then so is $\Omega Y \xrightarrow{\bar{z}} \Omega Z \xrightarrow{\bar{x}} X \xrightarrow{\bar{y}} Y$.

Lemma 4.5. (cf. [8]) Let \mathcal{C} be a left triangulated category. Then for any left triangle $\Omega Z \xrightarrow{\bar{z}} X \xrightarrow{\bar{y}} Y \xrightarrow{\bar{z}} Z$ and any object U of \mathcal{C}, there exists an exact sequence

$$
\cdots \rightarrow \text{Hom}_\mathcal{C}(U, \Omega Z) \xrightarrow{\bar{z}} \text{Hom}_\mathcal{C}(U, X) \xrightarrow{\bar{y}} \text{Hom}_\mathcal{C}(U, Y) \xrightarrow{\bar{z}} \text{Hom}_\mathcal{C}(U, Z).
$$

Definition 4.6. Let \mathcal{C} be a left triangulated category. A subcategory \mathcal{M} of \mathcal{C} is called a rigid subcategory if $\text{Hom}_\mathcal{C}(\Omega M, \Omega M) = 0$.

Let \mathcal{M} be a rigid subcategory of \mathcal{C}. Denote by $\Omega \mathcal{M} \ast \mathcal{M}$ the subcategory of objects X in \mathcal{C} such that there exist left triangles $\Omega M_1 \xrightarrow{f} X \xrightarrow{g} M_0 \xrightarrow{h} M_1$ where $M_0, M_1 \in \mathcal{M}$. Now we consider the functor $H : \Omega \mathcal{M} \ast \mathcal{M} \rightarrow \text{Mod} \mathcal{M}$ defined by $H(X) = \text{Hom}_\mathcal{C}(\Omega(-), X)|_{\mathcal{M}}$.

Lemma 4.7. Let $(\mathcal{C}, \Omega, \triangleleft)$ be a left triangulated category and \mathcal{M} be a rigid subcategory of \mathcal{C}. If $\Omega|_\mathcal{M}$ is fully faithful, then for any left triangle $\Omega M_1 \xrightarrow{f} X \xrightarrow{g} M_0 \xrightarrow{h} M_1$ where $M_0, M_1 \in \mathcal{M}$, there is an exact sequence in $\text{Mod} \mathcal{M}$

$$
\text{Hom}_\mathcal{M}(-, M_0) \xrightarrow{\text{Hom}_\mathcal{M}(-, h)} \text{Hom}_\mathcal{M}(-, M_1) \rightarrow H(X) \rightarrow 0.
$$

Thus, $H(X) \in \text{mod} \mathcal{M}$.

Proof. For any $X \in \Omega \mathcal{M} \ast \mathcal{M}$, there exists a left triangle $\Omega M_1 \xrightarrow{f} X \xrightarrow{g} M_0 \xrightarrow{h} M_1$, where $M_0, M_1 \in \mathcal{M}$. Then $\Omega M_0 \xrightarrow{\Omega h} \Omega M_1 \xrightarrow{f} X \xrightarrow{g} M_0$ is a left triangle by Lemma 4.4. Thus there exists an exact sequence by Lemma 4.5

$$
\text{Hom}_\mathcal{C}(\Omega M, \Omega M_0) \xrightarrow{(\Omega h)_*} \text{Hom}_\mathcal{C}(\Omega M, \Omega M_1) \xrightarrow{f_*} \\
\text{Hom}_\mathcal{C}(\Omega M, X) \rightarrow \text{Hom}_\mathcal{C}(\Omega M, M_0) = 0.
$$

Since $\Omega|_\mathcal{M}$ is fully faithful, we have the following commutative diagram with exact rows

$$
\begin{array}{ccc}
\text{Hom}_\mathcal{C}(M, M_0) & \xrightarrow{h_*} & \text{Hom}_\mathcal{C}(M, M_1) \rightarrow \text{Hom}_\mathcal{C}(\Omega M, X) \rightarrow 0 \\
\text{Hom}_\mathcal{C}(\Omega M, \Omega M_0) & \xrightarrow{(\Omega h)_*} & \text{Hom}_\mathcal{C}(\Omega M, \Omega M_1) \rightarrow \text{Hom}_\mathcal{C}(\Omega M, X) \rightarrow 0,
\end{array}
$$

where $M \in \mathcal{M}$ and the vertical morphisms are isomorphisms. Thus we have an exact sequence in $\text{Mod} \mathcal{C}$

$$
\text{Hom}_\mathcal{M}(-, M_0) \xrightarrow{\text{Hom}_\mathcal{M}(-, h)} \text{Hom}_\mathcal{M}(-, M_1) \rightarrow H(X) \rightarrow 0.
$$

So $H(X) \in \text{mod} \mathcal{M}$. □
Theorem 4.8. Let C be a left triangulated category, and \mathcal{M} be a rigid subcategory of C satisfying:

(LC1) Ω is fully faithful when it is restricted to \mathcal{M}.

(LC2) Let $\Omega \mathcal{M}_1 \xrightarrow{f} X \xrightarrow{g} \mathcal{M}_0 \xrightarrow{h} \mathcal{M}_1$ be a left triangle, where $\mathcal{M}_0, \mathcal{M}_1 \in \mathcal{M}$. Let $Y \in \Omega \mathcal{M} \ast \mathcal{M}$ and a morphism $t : X \to Y$ such that $tf = 0$, then t factors through g.

Then there exists an equivalence of categories $\Omega \mathcal{M} \ast \mathcal{M} \cong \text{mod} \mathcal{M}$.

Proof. According to Lemma 4.7, we have a functor $H : \Omega \mathcal{M} \ast \mathcal{M} \to \text{mod} \mathcal{M}$.

Firstly, we show that H is dense.

For any object $G \in \text{mod} \mathcal{M}$, there exists an exact sequence

$$\text{Hom}_{\mathcal{M}}(-, M') \xrightarrow{\alpha} \text{Hom}_{\mathcal{M}}(-, M'') \to G \to 0$$

with $M', M'' \in \mathcal{M}$. By Yoneda’s Lemma, there exists a morphism $h : M' \to M''$ such that $\alpha = \text{Hom}_{\mathcal{M}}(-, h)$. Then by (LTR1), there exists a left triangle $\Omega M'' \xrightarrow{f} Z \xrightarrow{g} \mathcal{M}_0 \xrightarrow{h} \mathcal{M}_1$. Hence by Lemma 4.7, there exists an exact sequence

$$\text{Hom}_{\mathcal{M}}(-, M') \xrightarrow{\alpha} \text{Hom}_{\mathcal{M}}(-, M'') \to H(Z) \to 0,$$

so $G = \text{Coker} \alpha \cong H(Z)$. Hence H is dense.

Secondly, we show that H is full.

For any morphism $\beta : H(X) \to H(Y)$ in $\text{mod} \mathcal{M}$. By Lemma 4.7 and because $\text{Hom}_{\mathcal{M}}(-, M_1)$ is a projective object of $\text{mod} \mathcal{M}$, we have the following commutative diagram with exact rows in $\text{Mod} \mathcal{M}$

$$\begin{array}{c}
\text{Hom}_{\mathcal{M}}(-, M_0) \xrightarrow{\text{Hom}_{\mathcal{M}}(-, h_1)} \text{Hom}_{\mathcal{M}}(-, M_1) \xrightarrow{\gamma_0} H(X) \to 0 \\
\text{Hom}_{\mathcal{M}}(-, N_0) \xrightarrow{\text{Hom}_{\mathcal{M}}(-, h_2)} \text{Hom}_{\mathcal{M}}(-, N_1) \xrightarrow{\gamma_1} H(Y) \to 0.
\end{array}$$

By Yoneda’s Lemma, for $i = 0, 1$, there exists a morphism $m_i : M_i \to N_i$ such that $\gamma_i = \text{Hom}_{\mathcal{M}}(-, m_i)$ and $m_1 h_1 = h_2 m_0$. Hence by (LTR3), we have the following commutative diagram of left triangles

$$\begin{array}{c}
\Omega M_1 \xrightarrow{f_0} X \xrightarrow{g_1} \mathcal{M}_0 \xrightarrow{h_1} \mathcal{M}_1 \\
\Omega M_1 \xrightarrow{m_0} X \xrightarrow{m_1} Y \xrightarrow{g_2} N_0 \xrightarrow{h_2} N_1.
\end{array}$$
According to the proof of Lemma 4.7, for any object $M \in \mathcal{M}$, we have the following commutative diagram with exact columns.

Thus we have the following commutative diagram with exact rows in $\text{Mod } \mathcal{M}$

So $\beta = H(s)$. Hence H is full.

At last, let X, Y be objects of $\Omega \mathcal{M} \ast \mathcal{M}$. We have a left triangle $\Omega M_1 \xrightarrow{f} X \xrightarrow{g} M_0 \xrightarrow{h} M_1$, where $M_0, M_1 \in \mathcal{M}$. Let $t : X \to Y$ be a morphism with $H(t) = 0$, then $tf = 0$. Thus t factors through M_0 by (LC2). So $\Omega \mathcal{M} \ast \mathcal{M} / \mathcal{M} \cong \text{mod } \mathcal{M}$ by Lemma 2.2. \square

Since a triangulated category is a left triangulated category such that the shift functor is an equivalence, the conditions (LC1) and (LC2) holds automatically. Thus we have the following corollary.

Corollary 4.9. Let C be a triangulated category with the shift functor T and \mathcal{M} be a rigid subcategory of C, then $T^{-1} \mathcal{M} \ast \mathcal{M} / \mathcal{M} \cong \text{mod } \mathcal{M}$.

Corollary 4.10. ([5], Theorem 3.2) Let \mathcal{B} be an exact category which contains enough projectives, and \mathcal{M} be a rigid subcategory of \mathcal{B} containing all projectives. Denote by \mathcal{P} the subcategory of projectives, and by \mathcal{M}_L the quotient category $\mathcal{M} / \mathcal{P}$. Denote by \mathcal{M}_L the subcategory of objects X in \mathcal{B} such that there exist short exact sequences $0 \to X \to M_0 \to M_1 \to 0$, where $M_0, M_1 \in \mathcal{M}$. Then $\mathcal{M}_L / \mathcal{M} \cong \text{mod } \mathcal{M}$.
Proof. Similar to the proof of Corollary 3.10, we can prove that \(\mathcal{M} \) is a rigid subcategory of the left triangulated category \(\mathcal{B} \), and \(\mathcal{M}_L = \Omega \mathcal{M} \ast \mathcal{M} \), and \(\mathcal{M}_L/\mathcal{M} \cong \mathcal{M}_L/\mathcal{M} \), and \(\Omega |_{\mathcal{M}} \) is fully faithful. To end the proof, we only need to show that \(\mathcal{M} \) satisfies the condition (LC2).

In fact, let \(\Omega M'' \xrightarrow{f_1} X \xrightarrow{g_1} M' \xrightarrow{h_1} M'' \) be a left triangle in \(\mathcal{B} \), where \(M', M'' \in \mathcal{M} \). Since \(\mathcal{P} \subset \mathcal{M} \), we can assume that \(0 \to X \xrightarrow{g_1} M' \xrightarrow{h_1} M'' \to 0 \) is a short exact sequence. Let \(t : X \to Y \) be a morphism satisfying \(tf_1 = 0 \), where \(Y \in \mathcal{M}_L \). Then there exists a short exact sequence \(0 \to Y \xrightarrow{g_2} N' \xrightarrow{h_2} N'' \to 0 \), where \(N', N'' \in \mathcal{M} \). Since \(\mathcal{M} \) is rigid, it is easy to see that \(g_1 \) is a left \(\mathcal{M} \)-approximation, then we have the following commutative diagram with exact rows in \(\mathcal{B} \):

\[
\begin{array}{ccccccccc}
0 & \to & X & \xrightarrow{g_1} & M' & \xrightarrow{h_1} & M'' & \to & 0 \\
& & & \downarrow{t} & & \downarrow{m_1} & & \downarrow{m_2} \\
0 & \to & Y & \xrightarrow{g_2} & N' & \xrightarrow{h_2} & N'' & \to & 0 \\
\end{array}
\]

The lower exact sequence induces a left triangle \(\Omega N'' \xrightarrow{f_2} Y \xrightarrow{g_2} N' \xrightarrow{h_2} N'' \). We claim that \(tf_1 = f_2 \Omega m_2 \). In fact, we have the following diagram with exact rows in \(\mathcal{B} \):

\[
\begin{array}{ccccccccc}
0 & \to & \Omega M'' & \xrightarrow{i_{M''}} & P_{M''} & \xrightarrow{d_{M''}} & M'' & \to & 0 \\
0 & \to & X & \xrightarrow{g_1} & M' & \xrightarrow{h_1} & M'' & \to & 0 \\
0 & \to & \Omega N'' & \xrightarrow{i_{N''}} & P_{N''} & \xrightarrow{d_{N''}} & N'' & \to & 0 \\
0 & \to & Y & \xrightarrow{g_2} & N' & \xrightarrow{h_2} & N'' & \to & 0 \\
\end{array}
\]

where \(P_{M''}, P_{N''} \in \mathcal{P} \), and all squares are commutative except the left one and the middle one. Since \(h_2(m_1 p_M - p_{NP}) = m_2 d_{M''} - m_2 d_{M''} = 0 \), there exists a morphism \(q : P_{M''} \to Y \) such that \(g_2 q = m_1 p_M - p_{NP} \).

Then \(g_2 tf_1 - f_2 \Omega m_2 = (m_1 p_M - p_{NP}) i_{M''} - (m_1 p_M - p_{NP}) i_{M''} = 0 \). Since \(g_2 \) is a monomorphism, we get \(tf_1 = f_2 \Omega m_2 = q i_{M''} \). Thus \(tf_1 = f_2 \Omega m_2 \). Hence we have the following commutative diagram of left triangles in \(\mathcal{B} \):

\[
\begin{array}{cccc}
\Omega M'' & \xrightarrow{f_1} & X & \xrightarrow{g_1} & M' & \xrightarrow{h_1} & M'' \\
\Omega m_2 & \downarrow{f_1} & \downarrow{t} & \downarrow{m_1} & \downarrow{m_2} \\
\Omega N'' & \xrightarrow{f_2} & Y & \xrightarrow{g_2} & N' & \xrightarrow{h_2} & N'' \\
\end{array}
\]
By Lemma 4.4, we have the following commutative diagram of left triangles in B

\[
\begin{array}{c}
\Omega M' \xrightarrow{\Omega h_2} \Omega M'' \xrightarrow{f_1} X \xrightarrow{-g_1} M' \\
\Omega M' \xrightarrow{\Omega h_1} \Omega M'' \xrightarrow{f_1} X \xrightarrow{g_1} M' \\
\Omega N' \xrightarrow{\Omega h_2} \Omega N'' \xrightarrow{f_2} Y \xrightarrow{-g_2} N'.
\end{array}
\]

Since $f_2 \Omega m_2 = t f_1 = 0$, there exists a morphism $n' : \Omega M'' \to \Omega N'$ such that $\Omega m_2 = (\Omega h_2)n'$. Because $\Omega|_{M'}$ is fully faithful, there exists a morphism $n_1 : M'' \to N'$ such that $n'_1 = \Omega n_1$ and $m_2 = h_2 n_1$. Hence $m_2 - h_2 n_1$ factors through $P \in P$. Since h_2 is a epimorphism, we have the following commutative diagram in B:

\[
\begin{array}{c}
M'' \xrightarrow{a} P \\
\downarrow c \downarrow b \\
N' \xrightarrow{h_2} N''.
\end{array}
\]

Let $n = ca + n_1$. Then $m_2 = h_2 n_1 + ba = h_2 n_1 + h_2 ca = h_2 n$ and $n = n_1$. Since $h_2(m_1 - nh_1) = h_2 m_1 - m_2 h_1 = 0$, there exists a morphism $s : M' \to Y$ such that $g_2 s = m_1 - nh_1$. Hence $g_2(t - sg_1) = g_2 t - m_1 g_1 + nh_1 g_1 = 0$. Because g_2 is a monomorphism, $t = sg_1$, i.e. t factors through g_1. Hence f factors through g_1 in B. □

REFERENCES

[1] A Buan, R Marsh, M Reineke, I Reiten, G Todorov. Tilting theory and cluster combinatorics, preprint math. RT/0402054, (2004)
[2] A B Buan, R J Marsh, I Reiten. Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332.
[3] B Keller, I Reiten. Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, 123-151.
[4] S Koenig, B Zhu. From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258 (2008), no. 1, 143-160.
[5] O Iyama, Y Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117-168.
[6] L Demonet, Y Liu. Quotients of exact categories by cluster tilting subcategories as module categories. arXiv: 1208.0639v1.
[7] A Beligiannis, N Marmaridis. Left triangulated categories arising from contravariantly finite subcategories. Communications in algebra. 22(12), 5021-5036, 1994.
[8] I Assem, A Beligiannis, N Marmaridis. Right Triangulated Categories with Right Semi-equivalences. Canadian Mathematical Society Conference Proceeding. Volume 24, 1998.
[9] A Beligiannis, I. Reiten. Homological and homotopical aspects of torsion theories (English summary), Mem. Amer. Math. Soc. 188 (2007), no. 883.
[10] M Auslander. Coherent functors. 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) pp. 189-231 Springer, New York.
[11] D Happel. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Mathematical Society, LMN 119, Cambridge, 1988.

School of Mathematical sciences, Huaqiao University, Quanzhou 362021, China.
E-mail address: lzq134@163.com

School of Mathematical sciences, Huaqiao University, Quanzhou 362021, China.
E-mail address: zy100912@hqu.edu.cn