Identification of Targets of CD8⁺ T Cell Responses to Malaria Liver Stages by Genome-wide Epitope Profiling

Julius Clemence R. Hafalla¹*, Karolis Bauza², Johannes Friesen³, Gloria Gonzalez-Aseguinolaza⁴, Adrian V. S. Hill², Kai Matuschewski³,⁵

¹Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom, ²The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom, ³Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany, ⁴Department of Gene Therapy and Hepatology, Center for Investigation in Applied Medicine (CIMA), University of Navarra, Pamplona, Spain, ⁵Institute of Biology, Humboldt University, Berlin, Germany

Abstract

CD8⁺ T cells mediate immunity against Plasmodium liver stages. However, the paucity of parasite-specific epitopes of CD8⁺ T cells has limited our current understanding of the mechanisms influencing the generation, maintenance and efficiency of these responses. To identify antigenic epitopes in a stringent murine malaria immunisation model, we performed a systematic profiling of H²Kb-restricted peptides predicted from genome-wide analysis. We describe the identification of Plasmodium berghei (Pb) sporozoite-specific gene 20 (S20)- and thrombospondin-related adhesive protein (TRAP)-derived peptides, termed PbS20318 and PbTRAP130 respectively, as targets of CD8⁺ T cells from C57BL/6 mice vaccinated by whole parasite strategies known to protect against sporozoite challenge. While both PbS20318 and PbTRAP130 elicit effector and effector memory phenotypes in both the spleens and livers of immunised mice, only PbTRAP130specific CD8⁺ T cells exhibit in vivo cytotoxicity. Moreover, PbTRAP130-specific, but not PbS20318-specific, CD8⁺ T cells significantly contribute to inhibition of parasite development. Prime/boost vaccination with PbTRAP demonstrates CD8⁺ T cell-dependent efficacy against sporozoite challenge. We conclude that PbTRAP is an immunodominant antigen during liver-stage infection. Together, our results underscore the presence of CD8⁺ T cells with divergent potencies against distinct Plasmodium liver-stage epitopes. Our identification of antigen-specific CD8⁺ T cell responses will allow interrogation of the development of immune responses against malaria liver stages.

Introduction

Malaria is responsible for an estimated 250 million episodes of clinical disease and 600,000 to 1.2 million deaths each year [1,2]. Notwithstanding recent reductions in the burden of malaria in some endemic areas, sustained control, elimination or eradication of the disease will require a highly efficacious vaccine that prevents malaria transmission as well as reducing the burden of disease. As a benchmark in malaria vaccination, multiple immunisations of γ-radiation-attenuated Plasmodium sporozoites (γ-Spz) can protect both mice and humans against sporozoite challenge [3,4]. The elicited protection targets the development of liver stages and completely prevents blood stage infection, resulting in sterile immunity. This experimental vaccine approach has now been replicated using other whole sporozoite immunisation strategies that include infection under drug cover and genetically arrested parasites [3–8]. Naturally acquired pre-erythrocytic immunity is likely multifactorial [9], involving both antibodies and T cells. However, CD8⁺ T cells are the prime mediators of protection after γ-Spz vaccination in mice [10,11], and interferon (IFN)-γ is a signature of effector function [12].

How CD8⁺ T cells are primed, modulated, and maintained following immunisation, and how these cells execute protective functions, are key considerations for vaccine design and can only be addressed with antigen-specific tools. The circumsporozoite protein (CSP), the major surface protein of the sporozoite, has been at the forefront of vaccination studies for more than 20 years – being the basis of RTS,S, the most advanced malaria vaccine to date [13]. Furthermore, CSP-specific responses have been the standard in measuring cellular responses to malaria liver stages in fundamental immunological studies in mice [14,15].

Murine models of sporozoite immunisation have largely focused on two strains, BALB/c and C57BL/6 (B6). Immunisation with Plasmodium berghei (Pb) or P. yoelii (Py) γ-Spz induces highly protective, H²Kb-restricted CD8⁺ T cell responses to defined CSP epitopes in BALB/c mice [16,17]. However, protection can also be obtained in the absence of PyCSP-specific T cells: (a) PyCSP-transgenic BALB/c mice - that are tolerant to CSP - can be
Author Summary

Vaccination against malaria is feasible, as demonstrated with radiation-attenuated sporozoite vaccine, which protects experimental animals and humans by targeting the clinically silent liver stages. Potent protection largely depends on CD8+ T cells, a type of white blood cell that is tailored-made to kill obligate intracellular pathogens. Malaria-infected cells display fragments of parasite proteins, which are then recognised and targeted by CD8+ T cells. How CD8+ T cells are activated following immunisation and how they execute protective functions are key considerations for vaccination. However, characterisation of CD8+ T cells is hampered by the lack of identified malaria protein targets. Of concern, the circumsporozoite protein, which is the basis of the most advanced malaria vaccine candidate (RTS,S), is not an essential target of CD8+ T cells induced by attenuated sporozoites in several mouse strains. In this study, we have made considerable advances by identifying for the first time, fragments of malaria proteins that are targeted by CD8+ T cells generated by vaccination in a relevant mouse strain, C57BL/6. Notably, CD8+ T cells against one of the target proteins elicit partial protection against infection. Our study exemplifies how immunisation by complex pathogens can be dissected to identify distinct antigens for subunit vaccine development.

Results

Systematic profiling of CD8+ T cell epitopes in sporozoite-immune B6 mice

The data and tools available at the Immune Epitope Database and Analysis Resource (www.iedb.org) were used for the identification of putative CD8+ T cell epitopes [21]. Systematic epitope profiling has previously identified previously unrecognized CD8+ T cell responses to a number of viral infections including vaccinia, dengue and herpes viruses [22–24]. To assemble a genome-wide peptide library, Pb open-reading frames, based on published sporozoite and liver stage transcriptomic and proteomic data [25–29], were scanned in silico using artificial neural network methods [30] for major histocompatibility complex (MHC) Class I H2-Kb and Dβ restricted peptides. In addition, predictions were performed using stabilised matrix methods [31] on the entire Pb draft genome [32]. Finally, Pb orthologs of Pf proteins that were reported to be antigenic for either human antibodies or T cells from individuals immunised by irradiated Pf sporozoites (Pfγ-Spz) [33,34] were also analysed.

From this in silico analysis, 600 unique peptide sequences (288 H-2d, 311 H-2k and one 10-mer), which correspond to >350 Pb antigens, were identified and subsequently produced by solid phase synthesis (Table S1: Summary of datasets and Table S2: Complete list of peptides). Individual peptides were tested and CD8+ T cell-derived IFN-γ was quantified by two complementary read-outs: (1) an enzyme-linked immunospot (ELISpot) assay [35] (Figure 1A,C), and (2) direct peptide-stimulation followed by intracellular cytokine staining (ICS) (Figure 1B,C). Animals received two immunisation doses of one of four whole sporozoite vaccination strategies: (i) Pf γ-Spz [3] and live sporozoites (PbSpz) given concomitantly with anti-malaria drugs (ii) azithromycin (AZ) [8], (iii) primaquine (PQ) [7] or (iv) chloroquine (CQ) [6,36]. As negative controls, CD8+ T cells were isolated from mice immunised with heat-killed sporozoites (PbHKSpz), known to elicit sub-optimal T cell responses [37,38], and naive mice.

Liver stage antigen epitopes PbS20318 and PbTRAP130 correlate with CD8+ T cell-mediated protection

Two peptides consistently elicited robust IFN-γ responses in a proportion of CD8+ T cells isolated across all four whole sporozoite vaccine strategies (Figure 1A,B) but not from PbHKSpz (Figure 1B) and naive mice (data not shown). Several other peptides were weakly reactive during initial screens but were not confirmed upon re-screening.

The first peptide, VNYSFLYLF, contains motifs for Kb and is derived from amino acids 318–325 of the PbSpz protein [PbS20318 (or PbS20318.325)] (PBANKA_142920; gi: 40950503), an uncharacterised protein that is conserved in Pf [8,9]. PbS20318 is located within a galactose oxidase (central domain) superfAMILY motif of the protein (Figure S1). The second peptide, SALLNVDNKL, is restricted for Db and is derived from amino acids 130–138 of the PfTRAP [PfTRAP130 (or PfTRAP130.130)] (PBANKA_134980; gi: 18133253) [39], also known as sporozoite surface protein 2 [40] or sporozoite gene 8 (S8) [26] (Figure S1). Conserved in Pf (Figure S1), TRAP is a secreted transmembrane protein of sporozoites that plays a vital role in parasite motility and invasion of hepatocytes [41]. PbTRAP130 is located within the von Willebrand factor type A domain (Figure S1A), the key motif for parasite locomotion and target cell entry [42]. Reactive CD8+ T cells to PbTRAP130 are considerably more abundant than those reactive to PbS20318 (Figure 1A–C). The identification of a PfTRAP-derived peptide...
as a target of CD8+ T cells in B6 mice is of interest since PbTRAP has been a major target for malaria vaccine development in humans [43–46]. Thus far, no CD8+ T cell epitope in TRAP has been identified in a murine model, meaning that fundamental studies on the induction, differentiation and long-term persistence of protective TRAP-specific cells following parasite immunisation could not be carried out yet.

\(\text{PbS20}_{318-326} \) and \(\text{PbTRAP}_{130-138} \) specific CD8+ T cells persist to long-term memory

\(\text{PbS20}_{318-326} \) and \(\text{PbTRAP}_{130-138} \) represent the first reported endogenously processed CD8+ T cell epitopes of malaria liver stages in the B6 model. To determine expansion and contraction of \(\text{PbS20}_{318-326} \) and \(\text{PbTRAP}_{130-138} \)-specific CD8+ T cells over time, we quantified the responses in the spleen and the liver after one or two immunisations with \(\text{Pb} \) γ-Spz (Figure 2A). After a single immunisation, CD8+ T cell responses in both the spleen and the liver reach the highest magnitude on day 7 (Figure 2A,B). The responses were slightly decreased on day 14 as contraction of the response occurs but they remained quantifiable for up to 180 days after immunisation. The percentages of antigen-specific CD8+ T cells were generally higher in the liver that in the spleen. More robust responses were observed after two immunisations with \(\text{Pb} \) γ-Spz. Polyfunctional analysis of \(\text{PbS20}_{318-326} \) and \(\text{PbTRAP}_{130-138} \)-specific CD8+ T cells revealed the induction of IFN-γ positive cells and IFN-γ/tumour necrosis factor (TNF) double positive CD8+ T cells (Figure 2A,B). Consistent with the generation of effector and effector memory responses, \(\text{PbS20}_{318-326} \) and \(\text{PbTRAP}_{130-138} \)-specific IFN-γ-producing CD8+ T cells were immunophenotyped as CD62Llo, CD44hi, CD11ahi, and CD49dhi (Figure 3, S3). Cells stimulated with no peptide or cells from naïve mice stimulated with either peptide did not respond to either \(\text{PbS20}_{318-326} \) or \(\text{PbTRAP}_{130-138} \) (data not shown). Together, these results indicate that immunisation with \(\text{Pb} \) γ-Spz recruits antigen-specific CD8+ T cells to undergo differentiation, proliferation, and long-term persistence.

Figure 1. Systematic profiling of CD8+ T cell epitopes in sporozoite-immune B6 mice: Identification of \(\text{PbS20}_{318-326} \) and \(\text{PbTRAP}_{130-138} \) as targets of CD8+ T cell responses. (A) 600 peptides, which were predicted from \(\text{Pb} \) sequences to bind H-2b molecules, were screened by ELISpot for their ability to induce IFN-γ secretion in CD8+ T cells isolated and purified from mice immunised with \(\text{Pb} \) γ-Spz (top) and \(\text{PbS20}_{318-326} \) (bottom). The same peptides were used to stimulate spleen cells, and IFN-γ secretion from CD8+ T cells was measured by ICS. Data shown is based on a sub-set of 70 peptides. From top: Spleen cells were isolated from mice immunised twice with \(\text{Pb} \) γ-Spz, \(\text{PbS20}_{318-326} \), \(\text{PbS20}_{318-326} \), \(\text{PbS20}_{318-326} \), \(\text{PbS20}_{318-326} \), and \(\text{PbS20}_{318-326} \). For (A) and (B), dotted lines represent cut-offs calculated using a mixture model. (C) Representative ELISpot wells (left) and ICS flow cytometry plots (right) of CD8+ T cells isolated from mice immunized twice with \(\text{Pb} \) γ-Spz. Frequencies of IFN-γ' cells/total CD8+ T cells are indicated.

doi:10.1371/journal.ppat.1003303.g001

PLOS Pathogens | www.plospathogens.org 3 May 2013 | Volume 9 | Issue 5 | e1003303
PbTRAP130-specific CD8+ T cell responses exhibit in vivo cytotoxicity

To determine the in vivo cytotoxic potential of PbS20318- and PbTRAP130-specific CD8+ T cells, we utilised an assay that allows the quantification of rapid killing of adoptively transferred target cells by activated CD8+ T cells in vivo [47]. CFSE-labelled and peptide-pulsed syngeneic targets were transferred to Pb γ-Spz-immunised mice 14 days after the last immunisation (Figure 4A). We observed considerable (~90%) disappearance of PbTRAP130+-pulsed (Figure 4B,C), but not PbS20318+-pulsed, target cells when transferred to mice that were immunised twice with Pb γ-Spz. To corroborate our finding that PbTRAP130-specific CD8+ T cells exhibit significant cytotoxic activity, we repeated the cell transfer to mice that were immunised only once and to naïve controls (Figure S4). Cytotoxicity against cells presenting PbTRAP130, but not PbS20318, was already apparent after a single immunisation.
2 immunisations

PbS20318

	CD62L	CD11a	CD44	CD49d
Naive	0.04	0.01	0.03	0.01
2° d7	0.46	0.49	0.46	0.45
2° d14	0.30	0.40	0.32	0.35
2° d180	0.17	0.08	0.16	0.06

PbTRAP130

	CD62L	CD11a	CD44	CD49d
Naive	0.02	0.02	0.02	0.02
2° d7	1.23	1.36	1.29	1.33
2° d14	1.00	0.96	1.00	0.79
2° d180	0.16	0.09	0.15	0.07

Figure 3. Phenotyping PbS20318 and PbTRAP130-specific CD8+ T cell responses. B6 mice were immunised twice with Pb γ-Spz (see Figure 2A). On days 7, 14 and 180 after the last immunisation, PbS20318 and PbTRAP130-specific CD8+ T cell responses were quantified in the spleens and the livers by peptide stimulation followed by ICS. Figure shows flow cytometry plots of IFN-γ co-staining with markers of effector and effector memory phenotypes (CD62Llo, CD11ahi, CD44hi and CD49dhi).

doi:10.1371/journal.ppat.1003303.g003

PbTRAP130-specific CD8+ T cell responses contribute to protection against malaria liver stages

To test whether the newly identified targets of CD8+ T cells contribute to protection, we first performed peptide-tolerisation experiments. This method of depleting antigen-specific CD8+ T cells, being performed in a malaria model for the first time, was adapted from previous studies aimed at inducing and maintaining antigen-specific tolerance [48–51]. Mice were subjected to repeated high dose administrations of adjuvant-free PbS20318 and PbTRAP130 peptides prior to and during the immunisation protocol (two immunisations with Pb γ-Spz) (Figure 5A). These mice, along with sham-tolerised mice, were challenged with sporozoites and liver parasite loads were measured 42 hours later. As shown in Figure 5B, the levels of protection, i.e. very low parasite load, in PbS20318-tolerised mice were similar to sham-tolerised controls. In contrast, a significantly increased liver parasite load was observed in PbTRAP130-tolerised mice. These data indicate that a substantial degree of protection in whole sporozoite-immunised animals, measured by a reduction of parasite liver load over

Figure 4. PbTRAP130-specific CD8+ T cell responses are cytolytic in vivo. (A) Schematic diagram of methodology. Target cells were prepared by pulsing syngeneic spleen cells with PbS20318, PbTRAP130 or no peptides prior to labelling with CFSE. Target cells were transferred into naive or immunised mice 14 days from last Pb γ-Spz immunisation. Spleens of recipient mice were harvested 24 hours later and analysed for CFSE fluorescence. (B) Representative histogram plots showing the fates of transferred cells in naive (left) or immune (right) mice. The disappearance of a fluorescent peak signifies cytolysis of labelled splenocytes. (C) Quantification of in vivo cytolytic activity (**p<0.01, Mann-Whitney test). Figures are representative data from one of 3 experiments with 4 mice/group/experiment.

doi:10.1371/journal.ppat.1003303.g004
Figure 5. PbTRAP130-specific CD8+ T cell responses contribute significantly to protection against malaria liver stages. (A) Schematic diagram of methodology. Mice were injected with PbS20318 or PbTRAP130 peptides before and after immunisation with Pb γ-Spz. Two weeks after the last immunisation, mice were challenged with sporozoites and the parasite load in the liver was measured 42 hours later. (B) Quantification of parasite load in the livers of mice after challenge with sporozoites. Data shown are from two experiments (mean ± SD), *p<0.05 and **p<0.01 (Kruskal-Wallis test/Post-Dunn’s test for multiple comparison). (C) Spleens of peptide-treated mice were assayed for the presence of PbS20318 or PbTRAP130-specific CD8+ T cells by ICS (*p<0.05, Kruskal-Wallis test/Post-Dunn’s test for multiple comparison).

doi:10.1371/journal.ppat.1003303.g005

PbValera and colleagues [18] and others [51–54] have shown that multiple immunisations with foreign antigens contribute to protection in both the B6 and Balbc models. Taken together, it is likely that additional antigens contribute to protection in both the B6 and Balbc models.

Vaccination with PbTRAP elicits high levels of PbTRAP130-specific CD8+ T cell responses

Since PbTRAP130-specific, but not PbS20318-specific, CD8+ T cell responses are cytotoxic in vivo and contribute to protection after one or two immunisations with Pb γ-Spz, we evaluated the immunogenicity and protective efficacy of PbTRAP in a heterologous prime-boost vaccine regimen with viral vectors. Priming with adenovirus (Ad) carrying a foreign antigen and boosting with
orthopoxvirus modified vaccinia Ankara (M) expressing the same antigen has consistently been shown to induce strong T cell responses capable of inducing high levels of efficacy against intracellular pathogens [56–58].

Adenovirus chimpanzee serotype 63 (Ad) and Modified Vaccinia Ankara (M) vaccines expressing a mammalian codon-optimised fragment of PbTRAP were generated. Referred to as Ad-M PbTRAP combination vaccine, they were used to vaccinate B6 mice with an 8-week resting period between priming and boosting (Figure 6A). Since the recombinant PbTRAP vaccines contained sequences in addition to PbTRAP130, we used both PbTRAP130 and a pool of overlapping peptides to PbTRAP (PbTRAPpool; final concentration is 5 μg/mL for each peptide). (C) Flow cytometry plots of IFN-γ co-staining with other effector cytokines, TNF and IL-2. Figures are representative data from one of 4 experiments with 5 mice/group/experiment. (D) Polyfunctional analysis of cytokine secretion based on (C). Bars represent the mean value of the % of PbTRAP130-specific CD8+ cells. Individual data are also shown (blue diamond for PbTRAP130 and red diamond for PbS20318). Figures B, C and D are representative data from one of at least 4 experiments with 4–5 mice/experiment.

doi:10.1371/journal.ppat.1003303.g006

Figure 6. Vaccination with PbTRAP elicits high levels of PbTRAP130-specific CD8+ T cell responses. (A) Schematic diagram of methodology. B6 mice were immunised with Ad PbTRAP (or Ad vector control) and boosted eight weeks later with M PbTRAP (or M vector control). Two weeks later, the frequencies and quality of PbTRAP-specific CD8+ T cells on peripheral blood leukocytes were quantified by ICS. (B) Flow cytometry plots of IFN-γ co-staining with markers of effector and effector memory phenotypes (CD62Llo and CD11a hi). Cells were either not stimulated (no peptide) or stimulated with PbTRAP130 (5 μg/ml) or with a pool of 20-mer peptides overlapping by 10 amino acids spanning PbTRAP (PbTRAPpool; final concentration is 5 μg/mL for each peptide). (C) Flow cytometry plots of IFN-γ co-staining with other effector cytokines, TNF and IL-2. Figures are representative data from one of 4 experiments with 5 mice/group/experiment. (D) Polyfunctional analysis of cytokine secretion based on (C). Bars represent the mean value of the % of PbTRAP130-specific CD8+ cells. Individual data are also shown (blue diamond for PbTRAP130 and red diamond for PbS20318). Figures B, C and D are representative data from one of at least 4 experiments with 4–5 mice/experiment.

doi:10.1371/journal.ppat.1003303.g006

Antigenic Targets of Malaria-specific CD8+ T Cells

PLOS Pathogens | www.plospathogens.org 7 May 2013 | Volume 9 | Issue 5 | e1003303
Antigenic Targets of Malaria-specific CD8+ T Cells

Figure 7. Protective efficacy against sporozoite challenge in Ad-M PbTRAP-immunized mice. Mice immunised with Ad-M PbTRAP (or Ad-M vector control) were challenged with 5 x 10^5 PbGFP-Luc^-immunised Pb sporozoites (A) Imaging of mice 40 hours after challenge and after subcutaneous injection with D-luciferin. (B) Quantification of parasite development (**p<0.001, Mann-Whitney test). Dotted lines represent baseline measurement of livers from naïve mice. Figures are representative data from one of 4 experiments with 5 mice/group/experiment.

doi:10.1371/journal.ppat.1003303.g007

vaccinated with Ad-M PbTRAP show significant efficacy against sporozoite challenge as shown by a considerable decrease (−95% reduction in liver parasite load; range: 91%–99%) in liver parasite load as compared to mice given Ad-M vector controls (Figures 7). However, Ad-M PbTRAP-vaccinated mice did not develop sterile immunity; rather, they developed patent parasitaemia on day 3 after challenge. To further assess vaccine efficacy, we performed survival analysis by measuring time to reach 1% parasitaemia. This measurement has been reported to reflect the number of merozoites that egress from the liver under the assumption that the vaccine has no efficacy against malaria blood stage parasites [44]. Consistent with lower liver parasite load, Ad-M PbTRAP-vaccinated mice showed significant delay in parasite growth as compared to controls (Figure S6).

Finally, to establish whether the observed decrease in liver parasite load in mice vaccinated with Ad-M PbTRAP is solely mediated by CD8+ T cells, groups of vaccinated mice were administered CD8+ depleting antibodies or control rat IgG prior to sporozoite challenge (Figure 8). In addition, a group of mice vaccinated with Ad-M PbTRAP were given anti-CD4+ T cell antibodies. Efficacy was abrogated in the group that received anti-CD4+ T cell, but not anti-CD8+ T cell, antibodies after vaccination. Taken together, these results provide a striking correlation between the high levels of PbTRAPp130-specific CD8+ T cells and the CD8+ T cell-mediated efficacy elicited by Ad-M PbTRAP vaccination.

Discussion

Vaccination with malaria parasites elicits few protective T cell epitopes

Over 40 years have passed since the observation that immunisation of mice with a whole organism vaccine, i.e. Pb γ-Spz, induces complete protection against normal sporozoite challenge [3]. Although a crucial role for CD8+ T cells in this protection was demonstrated more than 25 years ago [10,11], information regarding the precise targets of these cells remains remarkably incomplete. This paucity of naturally processed parasite-specific epitopes of CD8+ T cell responses has thwarted efforts to characterise the induction of protective and possibly non-protective responses that can be rigorously studied in murine vaccination models for malaria liver stages [39]. CSP, the major protein that coats the sporozoite’s surface, has been at the forefront of malaria vaccination studies for more than two decades, and CSP-specific responses have been the benchmark in measuring cellular responses to malaria liver stages [20]. However, PbCSP and PycSP are targets of immunodominant and protective CD8+ T cell responses only in the BALB/c model [16,60]. The need to identify non-CSP targets of CD8+ T cell responses comes from accumulating evidence suggesting that protection against malaria infection can be obtained in the absence of T cell responses to CSP [18,19].

In this study, we employed an unbiased approach for screening Pb-derived peptides that are recognised by CD8+ T cells from BALB/c mice immunised with whole sporozoite strategies, which are known to induce protection. Out of 600 peptides predicted to contain H-2Kb motifs, we report for the first time the identification of two peptides as signature targets of CD8+ T cells from sporozoite-immunised BALB/c mice. Notably, we provide evidence that responses to PbTRAP confers partial efficacy in vivo. Thus, we
anticipate that pre-clinical development of an anti-malarial vaccine based on whole sporozoites or sub-unit vaccines that incorporate TRAP will be facilitated by the identification of quantifiable signatures of effective immunisation.

Plasmodium parasites are complex pathogens with a ~23 Mb genome [32,61]. The identification of targets of CD8+ T cells has important implications for understanding the hierarchy and the scope of responses to complex pathogens. When we initiated this study, we expected the CD8+ T cell responses to be relatively widely dispersed over many sporozoite and liver stage antigens that together can account for the protection offered by sporozoite immunisation. However, we only identified two targets - *PbS20318* and *PbTRAP130*. Our inability to identify additional targets is indicative of immune evasion once sporozoites invade target cells, a hallmark that might generally apply to parasitic infections. Coincidentally, vaccines against these complex pathogens remain elusive. In marked contrast, a similar epitope prediction approach revealed broad and abundant H2b-restricted CD8+ T cell epitopes of vaccinia virus [22].

One potential limitation in our *in silico* analysis is the inclusion of only the top hits of potential liver stage peptides. In addition, by utilising IFN-γ as a read-out of our assays, we cannot formally exclude other cytokines or cellular markers that may serve as additional signatures of protection. The quantification of IFN-γ expression by CD8+ T cells is a reliable read-out in murine and human vaccine studies. Consistent with the observation that few antigens are recognised by CD8+ T cells from immunised mice, an assessment of 34 candidate non-CSP sporozoite antigens in the BALB/c model failed to reveal any additional epitopes [62]. In experimental studies in humans, antigenic analysis of genomic and proteomic data revealed 16 new antigens recognised by volunteers immunised with *Pf* γ-Spz [33]. However, there was no significant overall difference between protected and non-protected volunteers, indicating that T cell proliferation is associated with pathogen exposure rather than protection.

Immunodominant epitopes diverge fundamentally in cytolytic efficacy

By measuring the responses to *PbS20318* and *PbTRAP130*, we report the first characterisation of the development of CD8+ T cell responses following sporozoite immunisation in B6 mice. *PbS20318* and *PbTRAP130*-specific CD8+ T cells persist to long-term memory while displaying effector and effector memory phenotypes in both the spleens and livers of immunised mice. The ability of *PbS20318* and *PbTRAP130*-specific CD8+ T cells to produce IFN-γ after peptide stimulation, coinciding with activation phenotypes, suggested their ability to exert cytotoxic functions in *vivo*. Remarkably, only *PbTRAP130*-specific, but not *PbS20318*-specific, CD8+ T cells, are able to lyse target cells pulsed with the respective peptides. These results provide the first evidence that liver stage infection evokes antigen-specific CD8+ T cells that are both cytolytic and non-cytolytic. In support of this notion, tolerisation induction via high dose intravenous injection of vaccinia virus [22].

In marked contrast, a similar epitope prediction approach revealed broad and abundant H2b-restricted CD8+ T cell epitopes of vaccinia virus [22].

One potential limitation in our *in silico* analysis is the inclusion of only the top hits of potential liver stage peptides. In addition, by utilising IFN-γ as a read-out of our assays, we cannot formally exclude other cytokines or cellular markers that may serve as additional signatures of protection. The quantification of IFN-γ expression by CD8+ T cells is a reliable read-out in murine and human vaccine studies. Consistent with the observation that few antigens are recognised by CD8+ T cells from immunised mice, an assessment of 34 candidate non-CSP sporozoite antigens in the BALB/c model failed to reveal any additional epitopes [62]. In experimental studies in humans, antigenic analysis of genomic and proteomic data revealed 16 new antigens recognised by volunteers immunised with *Pf* γ-Spz [33]. However, there was no significant overall difference between protected and non-protected volunteers, indicating that T cell proliferation is associated with pathogen exposure rather than protection.

Implications for malaria subunit vaccine development

The outcome of our work has obvious relevance for vaccine development. We provide a clearly defined model system, in which to investigate fundamental aspects of the CD8+ T cell response and to manipulate this response to enhance protective immunity. Our identification of TRAP as major target of protective CD8+ T cells in the *Pb*-B6 model lends strong support for *PbTRAP* as a lead vaccine candidate to elicit strong cellular immune responses. Initial and partial results from ongoing phase III clinical trials of the RTS,S/AS01 malaria vaccine candidate, which is based on *PcCSP*, demonstrated only modest efficacy [71,72]. RTS,S/AS01 immunisation elicits high concentrations of anti-CSP antibodies [73] and induces CD4+ but not CD8+ T cell responses [74]. Towards a second-generation, >80% effective malaria vaccine, rational vaccine design to elicit superior and lasting immune responses is critical.

TRAP has been identified as a viable target for *Pf* vaccines. While *PbTRAP* was suggested as a target of CD8+ T cells in BALB/c mice [66,75], the epitopes have been elusive so far. *PbTRAP* induces large numbers of polyclonal CD8+ T cells in experimental vaccination studies [76], and these T cells are associated with partial but significant efficacy in human vaccine trials [43,45]. However, when tested in larger Phase Ib trials in endemic areas, efficacy was lost despite moderate immunogenicity of the vaccine, suggesting that the T cell response that is induced is insufficient in some way [46]. Further work is needed to improve the immunogenicity of TRAP-based vaccines for malaria-exposed individuals. More recently, vaccination regimes with viral vectors have induced much stronger CD8+ T cell responses in phase I trials [76] and greater efficacy in controlled challenge studies [Ewer et al., submitted for publication]. Based on our identification of a major protective CD8+ T cell epitope in *PbTRAP*, we
propose that the parasite-host combination Pb-B6 is an attractive and relevant model to further systematically explore subunit vaccination strategies, focusing on the TRAP antigen with the aim of increasing potent and durable sterilising immunity.

Materials and Methods

Ethics and animal experimentation

Animal procedures were performed in accordance with the German ‘Tierschutzgesetz in der Fassung vom 18. Mai 2006 (BGBl. I S. 1207)’, which implements the directive 86/609/EEC from the European Union and the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. Animal protocols were approved by the ethics committee and the Berlin state authorities (LAGeSo Reg# G04/69/09). Experiments performed at the University of Oxford were performed under license from the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986 and approved by the Animal Care and Ethical Review Committee. Female B6 mice 6–8 weeks of age were purchased from either Charles River (Sulzfeld, Germany) or Harlan (Derbyshire, UK).

Pb ANKA inoculations

The complete life cycles of two parasite strains, Pb (strain ANKA, clone c15c1y1) and PbGFP-Luc_con (strain ANKA, clone 676m1ci1), were previously cloned and maintained by continuous cycling between rodent hosts and *Anopheles stephensi* mosquitoes [77]. Sporozoites were isolated from salivary glands. For Pb γ-Spz, the radiation dose was 1.2×10⁷ cGy, and mice were immunised intravenously with 1.5×10⁷ parasites. For Pb infection and treatment strategies, 1.5×10⁶ sporozoites were injected intravenously while anti-malaria drugs were given intraperitoneally: 160 mg AZ/kg (days 0, 1 and 2) [8], 60 mg PQ/kg (days 0, 1 and 2) [7] and 40 mg CQ/kg (days 0–7) [6]. For PbHKS, parasites were subjected to 95°C for 15 minutes [38]. Immunised mice were challenged with 10⁴ Pb sporozoites. In some experiments involving imaging, mice were challenged with 5×10⁵ PbGFP-Luc_con normal sporozoites. For mice receiving >1 immunisations, sporozoites were administered >7 days apart.

Peptides and peptide treatments

Peptide libraries were generated by solid phase synthesis (Peptides and Elephants, Potsdam). PbSS2018 (VNYSFILYLF) and PbTRAP130 (SALLNVDNL) peptides were additionally synthesised at large scale. Peptides were synthesised as peptide amides and lyophilised peptides were resuspended in DMSO at a concentration of at least 1 mg/ml and stored at −80°C. Purity was confirmed by mass spectrometry. Peptides were diluted in PBS and tested individually at 10 μg/ml for the ELISpot assay and T cell stimulations with the exception of Figure 6 in which peptides were used at 5×10⁵ μg/ml for each peptide. In the tolerisation experiments, mice received 300 μg peptide (either PbSS2018 or PbTRAP130) on day −7 and 100 mg on days −4 and −1 as described [51]. Mice were immunised on day 0 and received 100 μg peptide weekly until the end of the experiment.

Recombinant vectored vaccines

AdCh63 and MVA vaccines expressing a mammalian codon-optimised fragment of PbTRAP [39] (GeneArt, Regensburg, Germany) were constructed and propagated based on previously published viral vectors [76,78]. The TRAP signal peptide sequence was replaced with the human tissue plasminogen activator signal peptide sequence and the 3’ transmembrane region deleted. The viral vectors, referred to as Ad-M PbTRAP as a combination vaccine, were administered intramuscularly in endotoxin-free PBS at a concentration of 10⁸ viral particles for Ad PbTRAP and 10⁹ plaque-forming units for M PbTRAP.

Quantification of antigen-specific CD8⁺ T cell responses

ELISpot assay was performed as described [35] with minor modifications. CD8⁺ T cells were purified from spleen cells by positive selection using mouse CD8 microbeads (MACS Miltenyi Biotec, Bergisch Gladbach, Germany). Syngeneic spleen cells from naive B6 mice were coated with peptides and were used as antigen-presenting cells. Anti-IFN-γ [AN18] and biotin-anti-IFN-γ [R4-6A2] were obtained from Mabtech (Nacka Strand, Sweden).

For T cell stimulations followed by ICS, splenic and liver-infiltrating lymphocytes were incubated with peptides for 5–6 hours in the presence of Brefeldin A (eBioscience, California, USA), followed by standard surface and intracellular staining procedures. Data was acquired using either a LSRII or a LSRFortessa (BD Bioscience, Heidelberg/Oxford). Antibodies for stainings were obtained from eBioscience: anti-mouse CD8 [55-6.7], CD62L [MEL14], CD44 [5H7], CD11a [M17/4], CD49d [R1-2], IFN-γ [R4-6A2], TNF [MP6-XT22] and interleukin (IL)-2 [JE56-5H4].

Data analysis was performed using Flowjo 7.6.3 (Tree Star Inc., Oregon, USA), SPICE 5.21, a gift from Dr. Mario Roederer (NIAD, NIH, Maryland, USA) was used to analyse polyfunctional data.

In vivo cytotoxicity assay

The cytotoxic potential of antigen-specific CD8⁺ T cells was assayed as described [47].

Quantification of parasite development after challenge

Livers were excised 42 hours after challenge and total RNA was isolated. cDNAs, generated by reverse transcription, were used as templates for quantitative real-time PCR [8] of Pb 18S rRNA (gi: 160641) and GAPDH sequences (gi: 281199965) using the Applied Biosystem Step One Plus Real Time PCR System (Darmstadt, Germany). Relative parasite loads were calculated using the ΔΔCt method.

For in vivo imaging, an IVIS200 imaging system (Caliper Life Sciences, Chesire, United Kingdom) was utilised to monitor parasite development in the liver 42 hours after challenge [76]. Mice were anaesthetised, injected subcutaneously with D-luciferin (Synchem Sciences, Chesire, United Kingdom) was utilised to monitor parasite development. Bioluminescence in the liver was quantified using Living Imaging 4.2 software (Caliper Life Science) and expressed as total flux of photons per second of imaging time.

The development of patent parasitaemia was determined based on Giemsa-stained blood smears. Relationships between log percentage parasitemia and time after challenge were plotted. Kaplan Meier analysis was performed to compare the parasite growth rate, and protection was measured as a delay in reaching 1% parasitaemia [44].

Statistics

Statistical analysis (see Figure Legends), unless otherwise specified, was performed using Prism 5.0c (GraphPad Software Inc., CA, USA). Mixture model calculations were performed using Stata 12 (StataCorp LP, TX, USA).
Supporting Information

Figure S1 Initial characterisation of PbS20318 and P6TRAP130. Schematic diagrams of PbS20 and P6TRAP, and the location of the identified CD8+ T cell determinants. Genetically mobile domains and domain architectures were analysed using the Simple Modular Architecture Research Tool (SMART - http://smart.embl-heidelberg.de/).

Figure S2 Polyfunctional analysis of PbS20318 and P6TRAP130-specific CD8+ T cells in the spleen after one or two immunisations with Pb γ-Szp. Data is based on Figure 2. Bars represent the mean value of the % of antigen-specific CD8+ cells. Individual data are also shown.

Figure S3 Phenotyping PbS20318 and P6TRAP130-specific CD8+ T cell responses (one immunisation). B6 mice were immunised once with Pb γ-Szp similar to that in Figure 2. On days 7, 14 and 180 after the last immunisation, PbS20318 and P6TRAP130-specific CD8+ T cell responses were quantified in the spleens and the livers by peptide stimulation followed by ICS. Figure shows flow cytometry plots of IFN-γ co-staining with markers of effector and effector memory phenotypes (CD62Lhi, CD11ahi, CD44hi and CD49dhi).

Figure S4 P6TRAP130-specific CD8+ T cell responses are cytolytic in vivo (one immunisation). A. Schematic diagram of methodology. Target cells were prepared by pulsing syngeneic spleen cells with PbS20318, P6TRAP130 or no peptides prior to labelling with CFSE. Target cells were transferred into naive or mice immunised 14 days earlier with Pb γ-Szp. Spleens of recipient mice were harvested 24 hours later and analysed for CFSE fluorescence. B. Representative histogram plots showing the fates of transferred cells in naive (left) or immune (right) mice. The disappearance of a fluorescent peak signifies cytosis of labelled splenocytes. C: Quantification of in vivo cytolytic activity (***p<0.01, Mann-Whitney test). Figures are representative data from one of 3 experiments with 4 mice/group/experiment.

Figure S5 P6TRAP130-specific CD8+ T cell responses contribute significantly to protection against malaria liver stages (one immunisation). A) Schematic diagram of methodology. Mice were injected with PbS20318 or P6TRAP130 peptides before and after immunisation with Pb γ-Szp. Two weeks after immunisation, mice were challenged with sporozoites and the parasite load in the liver was measured 42 hours later. B) Quantification of parasite load in the livers of mice after challenge with sporozoites. Data shown are from two experiments (mean ± SD, *p<0.05 and **p<0.01 [Kruskal-Wallis test/Post-Dunn’s test for multiple comparison]). C) Spleens of peptide-treated mice were assayed for the presence of PbS20318 or P6TRAP130-specific CD8+ T cells by ICS (***p<0.05, Kruskal-Wallis test/Post-Dunn’s test for multiple comparison).

Figure S6 Protective efficacy against normal sporozoite challenge in Ad-M P6TRAP-immunized mice: analysis of time to patent parasitaemia. Figure shows Kaplan-Meier plots comparing time with patent parasitemia (by blood film) in Ad-M P6TRAP and Ad-M vector control-immunised mice. Data is based on Figure 7. Differences between two groups were analysed using the Log-rank (Mantel-Cox) test (**p<0.001).

Table S1 Summary of datasets used in the epitope analysis.

Table S2 Complete list of synthesised peptides.

Table S3 Toleration and multiple immunisation with Pb γ-Szp.

Acknowledgments

The authors would like to thank Alfredo Nicosia (Okaïros, Rome, Italy) for provision of the AdCh63 vector, Marko Knoll (Max Planck Institute for Infection Biology, Berlin, Germany) for initial flow cytometry analysis, Arturo Reyes-Sandoval (The Jenner Institute, Oxford University, UK) for discussions, and Eleanor Riley (London School of Hygiene and Tropical Medicine, UK) for discussions, support and guidance.

Author Contributions

Conceived and designed the experiments: JCRH KB AVSH KM. Performed the experiments: JCRH KB JF. Analyzed the data: JCRH KB JF AVSH KM. Contributed reagents/materials/analysis tools: GGA JF AVSH KM. Wrote the paper: JCRH KB AH KM.

References

1. World-Health-Organisation (2012) World Malaria Report 2012.
2. Murray CJ, Rosenfield LG, Lim SS, Andrews KG, Foreman KJ, et al. (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413–433.
3. Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216: 160–162.
4. Clyde DF, Most H, McCarthy VC, Vanderberg JP (1973) Immunization of man against sporozoite-induced falciparum malaria. Am J Med Sci 266: 169–177.
5. Mueller AK, Labaire M, Kaippe SH, Matsushewska K (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433: 164–167.
6. Behnose E, Costa FT, Frankenberg T, Vigario AM, Voza T, et al. (2004) Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol 172: 2487–2495.
7. Patrini ED, Silvie O, Kordes M, Bornmann S, Matsushewska K (2009) Vaccine-like immunity against malaria by repeated causal-prophylactic treatment of live-stage Plasmodium parasites. J Infect Dis 199: 899–903.
8. Friisen J, Silvie O, Patrini ED, Hafalla JC, Matsushewska K, et al. (2010) Natural immunization against malaria: causal prophylaxis with antibiotics. Sci Trans Med 2: 24va49.
9. Olöffdo V, Thathy V, Marsh K, Matsushewska K (2012) Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int J Parasitol 42: 355–348.
10. Schofield L, Villaquiran J, Ferreria A, Schellenkens H, Nussenzweig R, et al. (1987) Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330: 664–666.
11. Weiss WR, Sedegah M, Beaudoin RL, Miller LH, Good MF (1988) CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A 85: 573–576.
12. Ferreria A, Schofield L, Esca V, Schellenkens H, van der Melle P, et al. (1986) Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science 232: 831–834.
13. Cohen J, Nussenzweig V, Nussenzweig R, Veckmann J, Leach A (2010) From infection biology, Berlin, Germany) for initial flow cytometry analysis, Arturo Reyes-Sandoval (The Jenner Institute, Oxford University, UK) for discussions, and Eleanor Riley (London School of Hygiene and Tropical Medicine, UK) for discussions, support and guidance.

Antigenic Targets of Malaria-specific CD8+ T Cells

PLOS Pathogens | www.plospathogens.org

May 2013 | Volume 9 | Issue 5 | e1003303
32. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, et al. (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, proteomic and informatic approaches. PLoS Biol 3: 132.

25. Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, et al. (2002) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12: 1007–1017.

22. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, et al. (2006) A consensus epitope prediction approach identifies the breadth of murine T-cell responses to vaccinia virus. Nat Biotechnol 24: 819–825.

19. Gruner AC, Mauduit M, Tewari R, Romero JF, Depinay N, et al. (2007) Sterile protective immunity in malaria-naive adults against Plasmodium falciparum sporozoite challenge after loss of epitope presentation or chronic antigenic stimulation. Virology 315: 590–598.

18. Kumar KA, Sano G, Boscardin S, Nussenzevug M, et al. (2006) The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444: 937–940.

16. Reyes-Sandoval A, Berthoud T, Alder N, Siani L, Gilbert SC, et al. (2010) T cell repertoire in C57BL/6 mice. Nature 467: 73–83.

15. Webby RJ, Andreansky S, Stambas J, Rehg JE, Webster RG, et al. (2003) Identification of Theiler's virus infection depends on the ability to generate a CD8+ T cell response against a single immunodominant viral peptide. J Exp Med 198: 2501–2510.

14. Ingold KL, Martin DL, Tarleton RL (2010) CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of Trypanosoma brucei infection but are not required for protective immunity against Plasmodium berghei. J Immunol 185: 3048–3057.

13. van der Most RG, Murali-Krishna K, Lanier JG, Wherry EJ, Puglielli MT, et al. (2003) Changing immunodominance patterns in antiviral CD8+ T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology 315: 590–598.

12. Webb J, Andreansky S, Stambas J, Rehg JE, Webster RG, et al. (2003) Prime-boost immunization with adenoviral and modified vaccinia virus Ankara viruses expressing malaria CD8+ T-cell-mediated protective immunity in a mouse malaria model using a recombinant adenosine vaccinia in heterologous prime-boost immunization regimes. Vaccine 20: 1039–1045.

11. Reyes-Sandoval A, Berthoud T, Alder N, Siani L, Gilbert SC, et al. (2010) Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infection Immun 78: 145–153.

10. Hafalla JC, Silvio O, Matuschewski K (2011) Cell biology and immunology of malaria. Microbiol Rev 75: 297–316.

9. Gologorsky LB, Karp CL (1973) The role of the gene encoding sporozoite surface protein 2, a protective Plasmodium falciparum sporozoite antigen. Mol Biochem Parasitol 3: 53–51.

8. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, et al. (2006) A consensus epitope prediction approach identifies the breadth of murine T/CDC+ cell responses to vaccinia virus. Nat Biotechnol 24: 819–825.

7. Vaidya LM, Zhang X, Kotoura MF, Quinlan A, Sidney J, et al. (2009) A program for reliable detection for virus-specific CD8+ T cells. J Immunol 182: 4865–4873.

6. Bejon P, Warszaro J, Kai O, Mwangi T, Milligan P, et al. (2006) A phase 2b randomised trial of the candidate malaria vaccines F90 MP-1 and MVA MP-1 among children in Kenya. PLoS Clin Trials 1: e29.

5. Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: rapid in vivo killing by memory CD4+ T cells is required for protective immunity. J Immunol 171: 27–31.

4. Aichele P, Beduach-Riem K, Oehen S, Odermatt B, Zinkernagel RM, et al. (1997) Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunology 6: 519–529.

3. Schumacher WL, Marinek M, Tew, LLA (2005) Direct requirements for deletion versus anergy during CD8+ T cell responses. J Immunol 174: 2046–2053.

2. Mendez-Fernandez YV, Johnson AJ, Rodriguez M, Pease LR (2003) Clearance of Thriller's virus infection depends on the ability to generate a CD8+ T cell response against a single immunodominant viral peptide. Eur J Immunol 33: 2501–2510.

1. Bejon P, Warszaro J, Kai O, Mwangi T, Milligan P, et al. (2006) A phase 2b randomised trial of the candidate malaria vaccines F90 MP-1 and MVA MP-1 among children in Kenya. PLoS Clin Trials 1: e29.
Antigenic Targets of Malaria-specific CD8+ T Cells

Khusmith S, Sedegah M, Hoffman SL (1994) Complete protection against Plasmodium yoelii by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing sporozoite surface protein 2. Infect Immun 62: 2979–2983.

O’Hara GA, Duncan CJ, Ewer KJ, Collins KA, Elias SC, et al. (2012) Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J Infect Dis 205: 772–781.

Jasen CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, et al. (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145: 60–70.

Reyes-Sandoval A, Wyllie DH, Bauza K, Milicic A, Forbes EK, et al. (2011) CD8+ T effector memory cells protect against liver-stage malaria. J Immunol 187: 1347–1357.

1. Agnandji ST, Leil B, Fernandes JF, Abossolo BP, Methogo BG, et al. (2012) A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 367: 2284–2295.
2. Agnandji ST, Leil B, Souloumoudjina SS, Fernandes JF, Abossolo BP, et al. (2011) First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med 365: 1863–1875.
3. Bojang KA, Milligan PJ, Pinder M, Vigneron L, Allouche A, et al. (2001) Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 358: 1927–1934.
4. Reece WH, Pinder M, Gothard PK, Milligan P, Bojang K, et al. (2004) A CD4+ T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med 10: 406–410.

71. Khusmith S, Sedegah M, Hoffman SL (1994) Complete protection against Plasmodium yoelii by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing sporozoite surface protein 2. Infect Immun 62: 2979–2983.
72. O’Hara GA, Duncan CJ, Ewer KJ, Collins KA, Elias SC, et al. (2012) Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J Infect Dis 205: 772–781.
73. Janse CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, et al. (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145: 60–70.
74. Reyes-Sandoval A, Wyllie DH, Bauza K, Milicic A, Forbes EK, et al. (2011) CD8+ T effector memory cells protect against liver-stage malaria. J Immunol 187: 1347–1357.