A HIGH MERGER FRACTION IN THE RICH CLUSTER MS 1054–03 AT Z = 0.83: DIRECT EVIDENCE FOR HIERARCHICAL FORMATION OF MASSIVE GALAXIES$^{1,2}$

PIETER G. VAN DOKKUM$^3$,$^4$, MARJIN FRANX$^4$, DANIEL FABRICATION$^5$, DANIEL D. KELSON$^6$, AND GARTH D. ILLINGWORTH$^7$

Accepted for publication in ApJ Letters

ABSTRACT

We present a morphological study of the galaxy population of the luminous X-ray cluster MS 1054–03 at $z = 0.83$. The sample consists of 81 spectroscopically confirmed cluster members in a $3 \times 2 h^{-1}_0$ Mpc area imaged in F606W and F814W with WFPC2. We find thirteen ongoing mergers in MS 1054–03, comprising 17% of the $L \geq L_\ast$ cluster population. Most of these mergers will likely evolve into luminous ($\sim 2L_\ast$) elliptical galaxies, and some may evolve into S0 galaxies. Assuming the galaxy population in MS 1054–03 is typical for its redshift it is estimated that $\sim 50 \%$ of present-day cluster ellipticals experienced a major merger at $z < 1$. The mergers are preferentially found in the outskirts of the cluster, and probably occur in small infalling clumps. Morphologies, spectra, and colors of the mergers show that their progenitors were typically E/S0s or early-type spirals with mean stellar formation redshifts $z_* \geq 1.7$. The red colors of the merger remnants are consistent with the low scatter in the color-magnitude relation in rich clusters at lower redshift. The discovery of a high fraction of mergers in this young cluster is direct evidence against formation of ellipticals in a single “monolithic” collapse at high redshift, and in qualitative agreement with predictions of hierarchical models for structure formation.

Subject headings: galaxies: evolution, galaxies: elliptical and lenticular, cD, galaxies: structure of, galaxies: clusters: individual (MS 1054–03)

1. INTRODUCTION

We do not know how and when luminous elliptical galaxies were assembled. Traditional models assume that all ellipticals are $10^{10}$ years old, having experienced very little mass evolution after their initial collapse (e.g., Searle, Sargent, & Bagnulo 1973). In contrast, galaxy formation models in cold dark matter (CDM) cosmologies predict that massive galaxies were determined from mass measurements. An alternative approach is to determine the evolution of the merger fraction with redshift. Mergers in present-day rich clusters are rare because the probability of a low velocity encounter is small. If cluster ellipticals formed in mergers these must have occurred before or during the initial collapse of the cluster (Roos & Aarseth 1982; Merritt 1984).

Morphological studies of intermediate redshift clusters have shown that mergers were evident more common at earlier times (Lavery & Henry 1988 [LH88]; Lavery, Pierce, & McClure 1992 [LPM92]; Dressler et al. 1994 [D94]; Couch et al. 1998 [C98]). These studies indicate merger fractions of $\sim 5 \%$ in clusters at $0.2 < z < 0.4$. However, since these mergers are generally blue and of low luminosity they are probably not very massive (e.g., C98). Furthermore, Dressler et al. (1997) suggest that disturbed galaxies in intermediate redshift clusters are generally disrupted disks rather than major mergers. These results indicate that massive cluster ellipticals were assembled at even higher redshift.

Recently it has become possible to extend morphological studies of rich clusters to $z \approx 1$ (e.g., Lubin et al. 1998). In this Letter, we present results from a large area survey of the X-ray selected cluster MS 1054–03 at $z = 0.83$. We determine the merger fraction using an $I$ selected sample of 81 confirmed cluster members covered by a large HST WFPC2 mosaic. We assume $H_0 = 50 \text{ km s}^{-1}\text{ Mpc}^{-1}$, $\Omega_m = 0.3$, and $\Omega_\Lambda = 0$.

2. OBSERVATIONS

The MS 1054–03 field was observed with LRIS (Oke et al. 1995) on the 10m Keck II telescope. Objects were selected on the basis of their $I$ band magnitude in a 3$''$ diameter aperture ($20.0 < I < 22.7$). These magnitudes were measured from a 900 s Keck image, with 1$''$ seeing. Spectra were taken through six multi-slit masks on 1998 February 28 and March 1. The slit masks were designed to maximize the observed number of galaxies with $20.0 < I < 22.2$ in the area covered by our HST imaging. Typical exposure times were 2400 s. A cross-correlation program was used to determine redshifts for 186 galaxies; 80 are cluster members. Within the area covered by our HST imaging the completeness of our sample is 73% to $I = 22.2$. The new redshifts were combined with samples of Donahue et al. (1998) and Tran et al. (1999) giving a total of 89 confirmed cluster members.

---

$^1$Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5–26555.

$^2$Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the Californian Institute of Technology and the University of California.

$^3$Kapteyn Astronomical Institute, P.O. Box 800, NL-9700 AV, Groningen, The Netherlands

$^4$Leiden Observatory, P.O. Box 9513, NL-2300 RA, Leiden, The Netherlands

$^5$Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02318

$^6$Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington D.C., 20015

$^7$University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064
We obtained a large HST WFPC2 mosaic of MS 1054–03, consisting of six independent pointings in two filters (F606W and F814W). Integration times were 6,500 s in each passband and at each position. 81 confirmed cluster members are located within the HST mosaic. Accurate magnitudes and colors were determined from the WFPC2 images. Morphological classifications of the spectroscopically confirmed members were performed by Pvd, MF, and DF, using the F814W images (rest-frame ~ B). The classification methods and details of our survey are described in van Dokkum (1999). We note that it is difficult to distinguish ellipticals from S0s, even at low redshift (e.g., Jørgensen & Franx 1994).

3. Mergers at \( z = 0.83 \)

The most surprising result of our survey is the high fraction of galaxies classified as “merger/peculiar”. We classified 17% as mergers, compared to 22% ellipticals, 22% S0s, and 39% spirals. Merging galaxies are counted as one object. Images of the mergers are displayed in Fig. 1. The mergers display a variety of features: double nuclei (e.g., 997), tidal tails (e.g., 1760), and interacting doubles with distorted morphologies (e.g., 1340). We emphasize that all classified galaxies, including the mergers, are spectroscopically confirmed cluster members.

The merger fraction of 17% is significantly higher than in lower redshift clusters, as discussed in the Introduction. Furthermore, as demonstrated in Fig. 1a the mergers extend to high luminosities: five of the sixteen brightest galaxies were classified as mergers. Only seven out of sixteen were classified as ellipticals or S0s, two of which (1584 and 710) have a luminous companion within 20 h_{50}^2 kpc. The median luminosity of the mergers is \( M_B^{M} \approx -22 \) (\( \sim 2 L_\star \) at \( z = 0.83 \)).

The majority of the mergers will probably evolve into elliptical galaxies (e.g., Toomre & Toomre 1972, Barnes 1998), thereby increasing the number fraction of massive ellipticals at later times. However, not all mergers form ellipticals. Simulations indicate that disks can survive mergers between galaxies of very different mass (Barnes 1998), and so some mergers may evolve into S0s (e.g., galaxy 1583). Most mergers show no evidence for the presence of gas to form a new disk: only 15% of the mergers have EW O III] \( 3727 \) Å > 5 Å.

The merger fraction is remarkably high, given the short timescale for the merging process (< 1 Gyr; e.g., Rix & White 1989). From the fact that the merger fraction is similar to the elliptical fraction we estimate that \( \sim 50\% \) of present-day cluster ellipticals (and probably a small fraction of S0s) are assembled in mergers at \( z < 1 \). This implies that a significant fraction of cluster ellipticals have undergone major structural change at \( z < 1 \).

A possible concern is that some of the mergers are misclassified. Several show two galaxies separated by \( \sim 1'' \) (10 h_{50}^{-2} kpc) in a common envelope without obvious tidal features (e.g., galaxies 997 and 1163). One could argue that these objects are not bound, but chance projections along the line of sight. We have calculated the probability of chance projections from simulated galaxy distributions, by randomizing the position angles of galaxies with respect to the BCG and North. The expected number of galaxy pairs with separations < 1'' is smaller than one. Furthermore, both galaxies of most merging pairs were placed in the 1.5'' wide slits. No double peaks were seen in the cross-correlation functions, implying \( \Delta v < 500 \) km s\(^{-1}\) for the brightest merging pairs. Both arguments are strong evidence that the galaxies are bound, and that we are witnessing mergers in progress.

4. MECHANISM

The merger fraction in MS 1054–03 is surprisingly high, given the high velocity dispersion of the cluster (\( \approx 1170 \) km s\(^{-1}\); Tran et al. 1999). Since the progenitors of the mergers must have had low relative velocities, the mergers are probably taking place in cold subclumps which are falling into the cluster. This is supported by the spatial distribution of the mergers, shown in Fig. 2. The mergers occur preferentially in the outskirts of the cluster, consistent with recent infall. We note that the spatial distribution of the mergers is strong post-merger evidence against chance projections.

Furthermore, the cluster itself is irregular and elongated, as indicated by the iso-density contours in Fig. 2 and the X-ray distribution (Donahue et al. 1998). Our data suggest that the cluster consists of three clumps at the same radial velocity. We infer that the mergers are possible because the cluster is viewed before final virialization, and hence before stripping of the halos of infalling subclumps.

5. ASSEMBLY TIME VERSUS STAR FORMATION EPOCH

In most cases the merging galaxies are bulge-dominated, red, and have no detected O III] \( 3727 \) Å emission. Hence, they are mergers between ellipticals, S0s or S0s. The most striking examples of these gas poor mergers are galaxies 997 and 1163. In contrast to mergers in the nearby field (Liu & Kennicutt 1995), the star formation rate is very low, although several galaxies have enhanced Balmer lines indicating a modest recent star burst. A major puzzle is how and when the progenitors of the mergers lost their gas.
The ages of the mergers relative to the other cluster galaxies can be estimated from their location in the color-magnitude diagram (Fig. 3). Mergers are indicated with ∞ symbols. The median color of the mergers is modestly bluer (by ≈ 0.07 magnitudes in $U - B$) than the CM relation defined by the early-type galaxies, indicating their luminosity weighted ages are ≈ 40% lower (Worthey 1994). Assuming that galaxies on the CM relation formed their stars at $z > 3$ (van Dokkum et al. 1998b), the stars in the mergers have a luminosity weighted mean formation redshift $z_f > 1.7$. We conclude that the mean stellar ages of present-day cluster ellipticals are much larger than the ages of their last major mergers. We note in passing that only three of the mergers satisfy the Butcher & Oemler (1978) criteria for a blue galaxy. Assuming $\Delta(U - B) = 1.4\Delta(B - V)$ (Worthey 1994) we find the blue fraction in MS 1054–03 is $\sim 20\%$; $\sim 75\%$ of the blue galaxies are spirals.

![Color-magnitude relation of spectroscopically confirmed members of MS 1054–03.](image)

We test whether the colors of the mergers are consistent with measurements of the scatter in the CM relation at $z < 1$. The intrinsic scatter in the CM relation of the existing Es and E/S0s at $z = 0.83$ is low at $0.027 \pm 0.013$ in restframe $U - B$, consistent with the results of Stanford et al. (1998) for other high redshift clusters. The scatter in the combined sample of ellipticals and mergers (i.e., the sample of future ellipticals) is much higher, at $0.054 \pm 0.011$. This scatter will decrease at later times, because fractional age differences between galaxies will be smaller (e.g., van Dokkum et al. 1998a). We have evolved the CM relation forward in time using the simple models presented in van Dokkum et al. (1998a), and find that the $U - B$ scatter in the CM relation of ellipticals and mergers will be $\approx 0.035$ at $z = 0.5$, and only $\approx 0.015$ at $z = 0$. These numbers are consistent with the observed scatter in the CM relation at low and intermediate redshift (Bower, Lucey, & Ellis 1992; Ellis et al. 1997; Stanford et al. 1998; van Dokkum et al. 1998a).

![Evolution of the merger fraction in clusters.](image)

6. DISCUSSION

The large number of mergers in MS 1054–03 implies strong evolution in the merger fraction from $z = 0$ to $z = 0.83$. This is illustrated in Fig. 4, which shows the evolution of the merger fraction in rich clusters with redshift. Solid symbols are CL 1358+62 at $z = 0.33$ and MS 1054–03 at $z = 0.83$. We determined the merger fraction in CL 1358+62 from a sample of 194 confirmed cluster members imaged with WFPC2 (van Dokkum et al. 1998a). The merger fraction in this cluster can be compared directly to that in MS 1054–03, since the sample selection, field size (in Mpc) and classification method are identical. Merger fractions for other rich clusters were estimated from the literature; in order of increasing redshift from Dressler (1980), LH88, C98, LPM92, and D94. These merger fractions are based on ground based imaging of blue galaxies (LH88, LPM92) or visual classifications of HST images (D94, C98). The evolution of the merger rate can be parameterized by $f \propto (1 + z)^m$. We find $m = 6.0 \pm 2.0$. The best fit is indicated with the solid line.

It is interesting to compare the evolution of the merger fraction in clusters to that in the field. The broken line in Fig. 4 is a fit to the fraction of field galaxies in close pairs from Patton et al. (1997). Literature studies of rich clusters are indicated by open symbols. The solid line is a fit to the cluster data. The broken line is a fit to the fraction of field galaxies in close pairs from Patton et al. (1997). The merger fraction evolves rapidly in clusters and in the field, possibly even stronger in clusters.
be due to an enhanced accretion rate onto clusters at high redshift, and/or enhanced merging during the collapse of massive clusters. It will be interesting to see whether the merger fraction correlates with the dynamical state of clusters.

The increase with redshift of the merger rate of massive galaxies is in qualitative agreement with predictions from hierarchical galaxy formation models (e.g., Kauffmann 1996, Baugh et al. 1996), although it is a challenge to explain both the recent assembly of massive early-types and the early formation of their stars. The presence of the mergers in MS 1054−03 is direct evidence against formation of massive ellipticals in a “monolithic” collapse at very high redshift.

Assuming merging does not alter the shape of the mass function, the mergers cause an increase in $M_\ast$ of $\approx 15 \%$. This can be contrasted to the strong evolution in the number density of massive field galaxies inferred by Kauffmann & Charlot (1998) from the lack of luminous $K$-band selected galaxies at $z > 1$. Although this result is still uncertain, this may imply that massive galaxies in the field were assembled more recently than those in clusters.

This study demonstrates that large field studies with HST, in combination with deep spectroscopy from the ground, can show directly how galaxy formation proceeded. The large field was essential, since the mergers are preferentially located in the outskirts of the cluster. Similar observations of high redshift clusters and the field would be valuable to test whether the results for MS 1054−03 are typical.

We thank the referee for constructive and valuable comments. Support from the University of Groningen, the University of Leiden, the Leids Kerkhoven-Bosscha Fonds, and STScI grant GO07372.01-96A is gratefully acknowledged.

REFERENCES

Barnes, J. E. 1998, in After the Dark Ages: When Galaxies Were Young, 9th October Astrophysics Conference, University of Maryland, in press (astro-ph/9811242)

Baugh, C. M., Cole, S., & Frenk, C. S. 1996, MNRAS, 283, 1361

Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601

Butcher, H., & Oemler, A. 1978, ApJ, 219, 18

Couch, W. J., Barger, A. J., Smail, I., Ellis, R. S., Sharples, R. M. 1998, ApJ, 497, 188 [C98]

Donahue, M., Voit, G. M., Gioia, I., Lupino, G., Hughes, J. P., Stocke, J. T. 1998, ApJ, 502, 550

Dressler, A. 1980, ApJ, 236, 351

Dressler, A., Oemler, A., Jr., Sparks, W. B., & Lucas, R. A. 1994, ApJ, 435, L23 [D94]

Dressler, A., Oemler, A., Jr., Couch, W. J., Smail, I., Ellis, R. S., Barger, A., Butcher, H., Poggianti, B. M., & Sharples, R. M. 1997, ApJ, 490, 577

Ellis, R. S., Smail, I., Dressler, A., Couch, W. J., Oemler, A., Jr., Butcher, H., & Sharples, R. M. 1997, ApJ, 483, 582

Jørgensen, I., & Franx, M. 1994, ApJ, 433, 553

Kauffmann, G. 1996, MNRAS, 281, 487

Kauffmann, G., & Charlot, S. 1998, MNRAS, 297, L23

Lavery, R. J., & Henry, J. P. 1988, ApJ, 330, 596 [LH]

Lavery, R. J., Pierce, M. J., & McClure, R. D. [LPM] 1992, AJ, 104, 2067

Liu, C. T., & Kennicutt, R. C., Jr. 1995, ApJ, 450, 547

Lubin, L. M., Postman, M., Oke, J. B., Ratnatunga, K. U., Gunn, J. E., Hoessel, J. G., & Schneider, D. P. 1998, AJ, 116, 584

Merritt, D. 1984, ApJ, 276, 26

Oke, J. B., et al. 1995, PASP, 107, 375

Patton, D. R., Pritchet, C. J., Yee, H. K. C., Ellis, R. S., & Carlberg, R. G. 1997, ApJ, 475, 29

Rix, H-W. R., White, S. D. M. 1989, MNRAS, 240, 941

Roos, N., & Aarseth, S. J. 1982, A&A, 114, 1

Searle, L., Sargent, W. L. W., & Bagnuolo W. G. 1973, ApJ, 178, 461

Toomre, A., & Toomre, J. 1972, ApJ, 178, 623

Tran, K-V. H., Kelso, D. D., van Dokkum, P. G., Franx, M., Illingworth, G. D., & Magee, D. 1999, ApJ, in press

van Dokkum, P. G. 1999, PhD thesis, Groningen University

van Dokkum, P. G., Franx, M., Kelso, D. D., Illingworth, G. D. I., Fisher, D., & Fabricant, D. 1998a, ApJ, 500, 714

van Dokkum, P. G., Franx, M., Kelso, D. D., & Illingworth, G. D. 1998b, ApJ, 504, L17

Worthey, G. 1994, ApJS, 95, 107

NOTE: Figure 1 is available from

http://www.astro.rug.nl/~dokkum/preprints/merger_fig1.eps.gz
(gzipped postscript)

http://www.astro.rug.nl/~dokkum/preprints/merger_fig1.gif
(gif)

Fig. 1.— (a) The sixteen most luminous galaxies in the cluster, ordered by total F814W magnitude (shown in the lower right corner of each image). Total magnitudes of mergers were calculated from the sum of the luminosities of both merging galaxies. Of each galaxy a color image and the F814W image are shown. The size of each image is $5.9 \times 5.9$ ($56 \times 56 h_{50}^{-1}$ kpc); the pixel size is $0.07^\prime$. We find five mergers among the most luminous sixteen galaxies. (b) The eight fainter galaxies classified as “merger/peculiar”.
This figure "fig1.gif" is available in "gif" format from:

http://arXiv.org/ps/astro-ph/9905394v2