Preparation of avocado leaf simplicia macro/nano particles by using high energy ball mill

F Ridwan¹, M Fadel¹

¹Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Kampus Limau Manis, Pauh, Padang, West Sumatera 25163, Indonesia

Corresponding author: firmanridwan@ft.unand.ac.id

Abstract. Taguchi method was used to examine high energy ball mill characteristics when producing micro/nano-particles of Simplicia powder using Orthogonal Array (OA) L25. Two factors and five levels were selected for the smallest diameter. The average fineness of the powder produced by high energy ball mill was calculated using the ASTM E11 standard Retsch vibrating sieve machine. The smoothest's fineness value was obtained at a working time of 30 minutes and a shaft rotation speed of 578 rpm with a powder fineness of 181 µm. The coarsest fineness value was obtained at 10 minutes of working time and 488 rpm rotating speed with 336 µm powder fineness. Obtained the smallest particle diameter has the potential for better absorption of nutrients into the body.

1. Introduction

Nowadays, many researchers compete to create material according to what they want with a particular function. Powder-shaped materials are in great demand. We have encountered much use of powdered materials in medicine, food production, electronics, health, cosmetics, and many more.

The body very well digests powdered herbs because the drugs' absorption into the body is outstanding. One of the most popular medicinal plants and properties is an avocado leaf. Avocado leaf extract can significantly reduce blood pressure in people with hypertension and reduce urea and keratin levels in the kidneys. Avocado leaves contribute to lowering blood pressure through its vasorelaxant effect[1].

Avocado leaf powder, which is widely consumed in the community, is still rough in size. The body does not effectively digest the raw powder because its absorption into the body is not optimal. Finer particle is good for the body's digestion because of better absorption of the drug into the body.

High energy Ball Mill can reduce the powder's size in the grinding bowl by grinding balls by utilizing the impact energy on the grinding bowl to produce friction and impact effects[2]. The Ball mill machine works to destroy the material through a collision between grinding media (crushing balls). The rough material is put into the vial (tube), filled with the ball media, and the balls will collide with the material to be refined[3].
2. Materials and methods

2.1 Size Reduction
Size reduction reduces larger or coarser particles to smaller or finer particles [4]. There are two methods of reducing particle size, namely the Top-Down method and the Bottom-Up method. The Top-Down approach is a mechanical method for reducing the size of the material. This method uses mechanical and kinetic friction from the grinding media, which is transferred to the material to be reduced (reduction). This method is widely used by industry. The bottom-up method uses a chemical reaction, in which the material is made into a gas, after which the material is synthesized onto the substrate by stacking atoms with each other to form crystals, these crystals accumulate with each other, resulting in a very small synthesis of the material [5].

2.2 Size Reduction Methods
There are three kinds of forces used to reduce the size of the particle. The three types of forces are compressive, impact, and shear force [6]. The crushing method, which is often used to reduce particle size, is shown in table 1.

Method to Shrink Material Size	Metode	Machine	Approximate particle size (µm)
Cutting compression		Scissors shears	100 – 80.000
Impact		Roller mill	50 – 10.000
		Prestel-Mortar	
Attrition		Hammermill	50 – 8000
Impact and attrition fluid		Colloidal mill	1 – 5000
energy mill		Ball mill	1 - 2000

2.3 Particle Size Observation
To filter particle size produced by the unbalance mass ball mill machine, the Retsch vibratory sieve machine is used to filter the smallest size based on ASTM E11 standards [8]. For this purpose, sieve numbers 35, 60, 120, and 230 are selected. The parameters used in this process are the sifting time for 10 minutes and vibration amplitude of 80. The Retsch vibratory sieve machine can be seen in Figure 1.

Figure 1. Retsch Vibrating Sieve Machine.

The equation for determining the particle distribution can be seen in the equation [9].
No. Powder Fineness = \left(\frac{\sum (\text{weight} \times \text{multiplier})}{\sum \text{weight}} \right)

The average powder fineness measure was sought by interpolating the powder fineness value in the standard sieve analysis net by Standard sieve analysis mesh in Table 2 [10] and Multiplier Standard Sieve Analysis Mesh in Table 3 [9].

Table 2 Standard Sieve Analysis Mesh.

Mesh size	Aperture (µm)
18	1000
20	850
25	710
30	600
35	500
40	425
45	300
50	255
60	250
70	212
80	180
100	150
120	125
140	106
150	100
170	90
200	75
230	63
270	53
325	45
400	38
450	32
500	25
600	20

Table 3. Multiplier Standard Sieve Analysis Mesh.

Sieve size	Multiplier
6	3
12	5
20	10
30 20
40 30
50 40
70 50
100 70
140 100
200 140
270 200

2.4 Taguchi Method
In this study, the Taguchi method is used for the design of the experiment. The Taguchi method is chosen because this method can find the minimum number of experiments to be carried out from the selected factors and levels to produce more efficient, accurate, and straightforward investigations [11]. In this study, two factors and five levels are selected to be tested on a high energy ball mill. The factors are working time and shaft rotation speed. Each factor has five levels: 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, and 488 rpm, 511 rpm, 533 rpm, 555 rpm, and 578 rpm, respectively. Based on the orthogonal array for two factors and five levels, L25 (5\(^2\)) is chosen with 25 trials. In the experiments, the grinding media’s material is 304 stainless steel with 5 mm in diameter. For validation purposes, the test is repeated four times. Analysis of Variance (ANOVA) is used to see the most significant factors and to conclude the rejection or acceptance of the factors [12]. Table 4 shows the orthogonal array of various levels on 2 factors [13].

Taguchi, P=2, L=5	Taguchi, P=3, L=5	Taguchi, P=4, L=5	Taguchi, P=5, L=5																		
Run#	a	b	X	Run#	a	b	c	X	Run#	a	b	c	d	X	Run#	a	b	c	d	e	X
1	1	1	X_1	1	1	1	1	X_1	1	1	1	1	1	X_1	1	1	1	1	1	X_1	
2	1	2	X_2	2	1	2	2	X_2	2	1	2	2	2	X_2	2	1	2	2	2	X_2	
3	1	3	X_3	3	1	3	3	X_3	3	1	3	3	3	X_3	3	1	3	3	3	X_3	
4	1	4	X_4	4	1	4	4	X_4	4	1	4	4	4	X_4	4	1	4	4	4	X_4	
5	1	5	X_5	5	1	5	5	X_5	5	1	5	5	5	X_5	5	1	5	5	5	X_5	
6	2	1	X_6	6	2	1	2	X_6	6	2	1	2	3	X_6	6	2	1	2	3	X_6	
7	2	2	X_7	7	2	2	3	X_7	7	2	2	3	4	X_7	7	2	2	3	4	X_7	
8	2	3	X_8	8	2	3	4	X_8	8	2	3	4	5	X_8	8	2	3	4	5	X_8	
9	2	4	X_9	9	2	4	5	X_9	9	2	4	5	1	X_9	9	2	4	5	1	X_9	
10	2	5	X_{10}	10	2	5	1	2	X_{10}	10	2	5	1	2	X_{10}	10	2	5	1	2	X_{10}
11	3	1	X_{11}	11	3	1	3	X_{11}	11	3	1	3	5	X_{11}	11	3	1	3	5	2	X_{11}
12	3	2	X_{12}	12	3	2	4	X_{12}	12	3	2	4	1	X_{12}	12	3	2	4	1	3	X_{12}
13	3	3	X_{13}	13	3	3	5	X_{13}	13	3	3	5	2	X_{13}	13	3	3	5	2	4	X_{13}
14	3	4	X_{14}	14	3	4	1	X_{14}	14	3	4	1	3	X_{14}	14	3	4	1	3	5	X_{14}

Table 4. Orthogonal Array of Various Levels on 2 Factors.
3. Results and discussion

This experiment uses the Orthogonal Array L25 (5^2). ANOVA is used to determine which factors have the most influence on particle size. Since the desired tendency for the particles to be the smallest, the type S/N ratio of "the smaller, the better" is chosen. These factors were retested to confirm whether the experiment was still within the ANOVA tolerance limit of 5%. The experimental data can be shown in table 5.

No	Research variable	Working time	Shaft Rotation Speed	POWDER FINE
1	10 minutes	488 rpm	336 µm	
2	10 minutes	511 rpm	328 µm	
3	10 minutes	533 rpm	327 µm	
4	10 minutes	555 rpm	329 µm	
5	10 minutes	578 rpm	320 µm	
6	15 minutes	488 rpm	295 µm	
7	15 minutes	511 rpm	281 µm	
8	15 minutes	533 rpm	280 µm	
9	15 minutes	555 rpm	275 µm	
10	15 minutes	578 rpm	272 µm	
11	20 minutes	488 rpm	250 µm	
12	20 minutes	511 rpm	257 µm	
13	20 minutes	533 rpm	253 µm	
14	20 minutes	555 rpm	250 µm	
15	20 minutes	578 rpm	247 µm	
16	25 minutes	488 rpm	231 µm	
17	25 minutes	511 rpm	225 µm	
18 25 minutes 533 rpm 217 µm
19 25 minutes 555 rpm 228 µm
20 25 minutes 578 rpm 204 µm
21 30 minutes 488 rpm 202 µm
22 30 minutes 511 rpm 190 µm
23 30 minutes 533 rpm 200 µm
24 30 minutes 555 rpm 199 µm
25 30 minutes 578 rpm 181 µm

The relationship between the fineness of the powder obtained on the variation in working time and the shaft's rotational speed can be seen in figure 2 and figure 3.

Figure 2. Value of Powder Fineness Against Machine Working Time and Unbalance Shaft Rotation Speed.
In the graph shown in figure 2, it can be observed that the working time variable results in a more significant variation in particle. While variable of shaft rotational speed is not too substantial. The rough avocado leaf simplicia powder was obtained at a shaft rotational speed of 489 rpm and a working time of 10 minutes. The smallest avocado leaf simplicia powder was obtained at a shaft rotational speed of 578 rpm and a working time of 30 minutes.

The characteristics of the experimental data can be seen using Signal Noise to Ratio (SN Ratio). In this study, the type of SN Ratio quality characteristics chosen is the smaller is a better approach. This characteristic has a quality with a limit value of zero so that a value close to zero is the desired value [12].

Based on the graph shown in figure 3, the working time for 10 minutes and the shaft rotation speed of 489 rpm has the worst SN Ratio value because the SN Ratio value is farthest from the zero value, while the 30 minutes working time and 578 rpm shaft rotation speed have SN values. The ratio is close to zero. To determine whether the research variables were accepted or rejected, and to determine the most dominant variable, the Analysis of Variance (ANOVA) was used. ANOVA analysis of the refinement of avocado leaf simplicia powder can be seen in table 6.

Table 6. ANOVA for Response to Size of Powder Fineness (Smaller is Better)

Source	DF	Seq SS	Adj MS	F-Value	P-Value	% Contribution
Working time	4	62,6369	15,6592	346,06	0,000	97,05 %
Shaft rotational speed	4	1,1329	0,2832	6,26	0,003	2,95 %
Residual Error	16	0,7240	0,0452			
Total	24	64,4937				

Analysis of Variance is used to analyze the parameters that affect the experiment. ANOVA produces a p-value that needs to be compared with the hypothesis, which states, "H0 is residual data with a normal distribution (variables do not affect particle size) and H1 is residual data not normally distributed (variables affect particle size)". From the ANOVA response analysis for the refinement of avocado leaf Simplicia powder, it can be seen that the P-value on the working time variable has a value of 0.000. In contrast, the P-value on the shaft rotation speed variable has a value of 0.033. The hypothesis taken from this study is to reject H0 and accept H1 so that it can be said that the working time variable and the shaft rotation speed affect the fineness of the powder. Multiple regression analysis of the research variables can be written, as shown in Equation 1. The results of observations with a stereo microscope can be seen in figure 4.

Powder fineness = 472 - (6.54 working time) - (0.162 shaft rotation speed) \hspace{1cm} \text{Eq. 1}
Figure 4. The results of observations with a stereo microscope

4. Conclusion
Taguchi method was used to examine high energy ball mill characteristics when producing micro/nano-particle of Simplicia powder. Two factors and five levels are selected for the smallest diameter. The smoothest avocado leaf Simplicia powder was obtained at 181 µm with a shaft rotation speed of 578 rpm and a working time of 30 minutes from the data obtained. The coarsest avocado leaf Simplicia powder was obtained at 336 µm with a shaft rotation speed of 489 rpm and a working time of 10 minutes. The avocado leaf Simplicia powder's fineness was obtained at the longest working time and the fastest shaft rotation. Working time is very influential in the fineness of Simplicia powder. The contribution value of machine working time has a value of 97.18%. The shaft's rotation speed has a contribution value of 2.82%—smaller avocado leaf Simplicia powder results in faster drug absorption to the body.

References
[1] Owolabi M A 2010 Bioactivity of The Phytoconstituents of The Leaves Of Persea Americana J. Med. Plants Res. 4
[2] Fritsch G 2012 Operating Manual, Translation of the original, pulverisette 6 classic line Manuf. Lab. Instrum. Ind.
[3] Chusnul Azhari 2017 The Effect of Machine Rotation on the Result of Clay Powder in a Ceramic Grinding Machine (Sekolah Tinggi Teknologi Mandala Bandung)
[4] Rakesh P P 2008 An Overview Of Size Reduction Technologies In The Field Of Pharmaceutical Manufacturing Asian J. Pharmatic
[5] M.Arole S . M 2014 Fabrication Of Nanomaterial By Top-Down and Bottom-Up Approaches - An Overview mMaterial Sci.
[6] Aftin A 2013 Engineering for Processing and Preservation of Agricultural Products (Purkokerto)
[7] German M R 1984 Powder Metallurgy Science (USA: Metal Powder Industries Federation)
[8] Gerry D P 2016 Preparation and Characteristics of Nano-Bioceramic Powder from Eggshells Done by Ball Mill Process and Intermediate Heating (Universitas Andalas)
[9] Dwiyanto 2010 The Effect of Differences in Casting Modulus of Castings on Hardness and Microstructure of the Results of the Casting Process of Aluminum Alloy Sand Casting (Universitas Andalas)
[10] Feng H Test Sieve - Stainless steel or Base Frame
[11] Niebel 2017 Taguchi’s Robust Design Methods Manuf. Process Integer Prod. Process 1–9
[12] Wulandari A A 2016 Application of the Taguchi Method for Multi Response Cases Using the Gray Relational Analysis Approach and Principal Component Analysis J. Gussian 5
[13] Cimbala J 2014 Taguchi Orthogonal Arrays (Penn State University)
