Sirtuin functions and modulation: from chemistry to the clinic

Vincenzo Carafa¹, Dante Rotti², Mariantonietta Forgione²,³, Francesca Cuomo¹, Enrica Serretiello¹, Gebremedhin Solomon Hallu², Elina Jarho⁴, Maija Lahtela-Kakkonen⁴, Antonello Mai²,⁵* and Lucia Altucci¹,⁶*

Abstract

Sirtuins are NAD⁺-dependent histone deacetylases regulating important metabolic pathways in prokaryotes and eukaryotes and are involved in many biological processes such as cell survival, senescence, proliferation, apoptosis, DNA repair, cell metabolism, and caloric restriction. The seven members of this family of enzymes are considered potential targets for the treatment of human pathologies including neurodegenerative diseases, cardiovascular diseases, and cancer. Furthermore, recent interest focusing on sirtuin modulators as epigenetic players in the regulation of fundamental biological pathways has prompted increased efforts to discover new small molecules able to modify sirtuin activity. Here, we review the role, mechanism of action, and biological function of the seven sirtuins, as well as their inhibitors and activators.

Keywords: Epigenetics, Sirtuins, SIRT modulators, Drug discovery, Cancer, Neurodegeneration

Background

The mammalian sirtuin (SIRT) family, evolutionally conserved proteins belonging to class III histone deacetylases (HDACs), comprises seven members. SIRTs share a NAD⁺-binding catalytic domain and may act specifically on different substrates depending on the biological processes in which they are involved (Table 1). SIRTs differ in sequence and length in both their N- and C-terminal domains, partially explaining their different localization and functions. SIRTs can catalyze both deacetylation and ADP-ribosylation [1]. Their best-characterized activity is NAD⁺-dependent lysine deacetylation, but recent studies demonstrated that some SIRTs also remove other acyl groups such as succinyl, malonyl, glutaryl, and long-chain fatty acyl groups [2, 3] (Table 1). The last decade has seen growing interest in their association with and involvement in different pathologies, such as (but not restricted to) cancer and neurodegenerative diseases. Increasing evidences supporting the potential use of SIRT inhibitors (SIRTi) for the treatment of cancer, HIV infection, and muscular diseases and of SIRT activators (SIRTa) for age-related disorders have led to the identification of many SIRT modulators over recent years, mainly through chemical library screening and catalytic mechanism-based design approaches, often combined with structure-activity relationship (SAR) investigations. Here, we provide a summary of the most important SIRT activities and SIRT modulators, their latest analogs, and novel chemotypes (Tables 2 and 3).

Sirtuins in physiology and pathology

SIRT1 was the first SIRT family member to be discovered and is still the most studied. Its involvement in many neuronal processes [4, 5] prompted further investigations into its role in neurological disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) [6–8]. SIRT1 exerts a neuroprotective action and is involved in survival, neuropathology, and the expression of brain-derived neurotrophic factor. In a mouse model of HD, SIRT1 knockout results in exacerbation of the pathology, while its re-expression displays neuroprotective effects [9]. A correlation between nicotinamide phosphoribosyltransferase (NAMPT) and SIRT1 was recently shown. NAMPT is a therapeutic target against ischemic stroke, acting in

* Correspondence: antonello.mai@uniroma1.it; lucia.altucci@unina2.it
†Equal contributors
²Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, 00185 Roma, Italy
³Dipartimento di Chimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Napoli, Italy

Full list of author information is available at the end of the article

© 2016 Carafa et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
vascular repair and neurogenesis. SIRT1-mediated deacetylation of NAMPT at K53 increased its activity and secretion [10]. The first observations linking SIRT1 to tumorigenesis came from two studies showing p53 deacetylation and inhibition [11, 12], promoting cancer cell death. In tumorigenesis, SIRT1 seems to play a contradictory role, acting as both a tumor promoter and tumor suppressor (by inhibiting oncogenes and oncoproteins, similar to survivin) [13, 14]. SIRT1 regulates many tumor suppressors and DNA repair genes [15–18]. SIRT1 upregulation is described in many human malignancies [19]. Although its role in cancer remains contradictory [20], recent studies showed that patients expressing high levels of SIRT1 had a higher chance of being resistant to chemotherapy than patients with low SIRT1 expression [21, 22]. One report proposed a role for SIRT1 in melanoma and suggested the use of inhibitors (tenovins, EX-527, and sirtinol), either alone or in combination. These inhibitors act on a variety of SIRTs, strengthening the idea that the concomitant inhibition of several SIRTs may contribute to a reduction in malignant growth [23]. SIRT2, the second member of the SIRT family, seems to exert a neurodegenerative action in neurological disease [24]. Indeed, pharmacological or genetic inhibition of SIRT2 blocks of αSyn-mediated toxicity [25]. SIRT2 is involved in apoptosis control through p53 process regulation. Several studies confirm the role of SIRT2 in the control of cell cycle progression at many levels. It was demonstrated that it is a checkpoint for metaphase/anaphase processes and G2/M transition [26, 27]. Recent studies indicated that SIRT2 might also act as a tumor promoter or tumor suppressor in tumorigenesis, likely displaying a regulatory function [28, 29]. Moreover, studies about SIRT2 have shown its involvement in metabolism processes, like adipogenesis [30]. SIRT2 is capable to deacetylate the Glucokinase (GCK), an essential enzyme for maintaining homeostasis of glucose regulated by the binding of the glucokinase regulatory protein (GKRP). Acetylated GKRP is connected to diabetes mellitus [31]. Of the three mitochondrial SIRTs (SIRT3, 4, and 5), some evidence correlates SIRT3 with neurodegenerative disease. SIRT3 protects neurons in the cochlea against oxidative damage during calorie restriction [32] and in response to stress-regulating mitochondrial antioxidant manganese superoxide dismutase (MnSOD) in microglia [33]. A number of studies also hypothesize its involvement in cancer progression. SIRT3 mainly inhibits mitochondrial ROS production but also deacetylates and activates many mitochondrial proteins, regulating proliferation, differentiation, and survival [34, 35]. Recent data suggest that SIRT3 acts as a tumor suppressor by inhibiting glycolysis metabolism after the deacetylation and activation of pyruvate dehydrogenase; thus, also the role of SIRT3 in cancer is debatable. Much less is known about the remaining SIRTs. Unlike other family members, SIRT4 lacks NAD+-dependent deacetylase activity but exerts ADP-ribosyltransferase activity.

Table 1: Sirtuin location, activity, and effects on pathologies

Sirtuin	Localization	Enzymatic activity	Histone deacetylation target	Non-histone deacetylation target	Pathology
SIRT1	Nuclear/ cytoplasmatic	Deacetylase	H3K9ac, H1K26ac, H4K16ac	Hif-1α, Hif-2α	Neurodegenerative diseases, Cancer: acute myeloid leukemia, colon, prostate, ovarian, glioma, breast, melanoma, lung adenocarcinoma.
SIRT2	Nuclear/ cytoplasmatic	Deacetylase	H3K56ac, H4K16ac	Tubulin, Foxo3a, EIF5A, P53, G6PD, MYC	Neurodegenerative diseases, Cancer: brain tissue, glioma.
SIRT3	Mitochondrial	Deacetylase	H3K56ac, H4K14ac	SOD2, PDMC1a, IDH2, GO1, FoxO3a	Neurodegenerative diseases, Cancer: B cell chronic lymphocytic leukemia, mantle cell lymphoma, chronic lymphocytic leukemia, breast, gastric.
SIRT4	Mitochondrial	ADP-ribosyltransferase	Unknown	GDH, PDH	Cancer: breast, colorectal.
SIRT5	Mitochondrial	Malonyl, succinyl, glutaryl deacetylase	Unknown	CPS1	Cancer: pancreatic, breast, non-small cell lung carcinoma.
SIRT6	Nuclear	Deacetylase, ADP-ribosyltransferase, long-chain fatty acyl deacylase	H3K9ac, H3K56ac	Unknown	Cancer: breast, colon.
SIRT7	Nuclear	Deacetylase	H3K18ac	Hif-1α, Hif-2α	Cancer: liver, testis, spleen, thyroid, breast.
Compound	Structure	Enzyme activity	Biological Effects	Reference(s)	
----------	-----------	-----------------	--------------------	--------------	
1. splitomicin	![Structure](image1)	ySir2 IC_{50} = 60 μM SIRT1: no inhibition @500 μM	Minimal inhibitory concentration (MIC) in yeast of 0.49 μM.	[37]	
2. HR-73	![Structure](image2)	SIRT1 IC_{50} = < 5 μM	Decreased HIV transcription through viral Tat protein acetylation.	[38]	
3, 4	![Structure](image3)	3 SIRT2 IC_{50} = 1.5 μM 4 SIRT2 IC_{50} = 1.5 μM (racemate) SIRT2 IC_{50} = 1.0 μM (R enantiomer)	Weak antiproliferative effects and increased α-tubulin acetylation in MCF-7 breast cancer cells.	[39]	
5. EX-527, selisistat	![Structure](image4)	SIRT1 IC_{50} = 0.098 μM SIRT2 IC_{50} = 19.6 μM SIRT3 IC_{50} = 48.7 μM	Induction of p53 acetylation in different cell lines. Modulation of the acetylation status of the mutant huntingtin via SIRT1 inhibition shown to restore transcriptional dysregulation in models of Huntington’s disease (HD) treatment. In a first Phase II clinical trial found to be safe and well tolerated in early stage HD patients at plasma levels within the therapeutic concentration range in preclinical HD models.	[40–44]	
	Most relevant sirtuin inhibitors (Continued)				
---	--				
6.	Cambinol				
	SIRT1 $IC_{50} = 56 \mu M$				
	SIRT2 $IC_{50} = 59 \mu M$				
	SIRT3: no inhibition @300 \mu M				
	SIRT5: 42% inhibition @300 \mu M				
	Indicates apoptosis in BCL6-expressing Burkitt lymphoma cells.				
	Reduces tumor growth of Burkitt lymphoma in a mouse xenograft model.				
	Reduces neuroblastoma formation in N-Myc transgenic mice.				
7.	AGK2				
	SIRT1 $IC_{50} > 50 \mu M$				
	SIRT2 $IC_{50} = 3.5 \mu M$				
	SIRT3 $IC_{50} > 50 \mu M$				
	Protective against Parkinson's disease (PD) in different PD models.				
	Induces caspase-3-dependent apoptosis and necrosis of C6 glioma cells.				
8.	Tenovin-1				
	Tenovin-1: IC_{50} not determined due to lack of water solubility				
9.	Tenovin-6				
	Tenovin-6: $IC_{50} = 21 \mu M$				
	SIRT2 $IC_{50} = 10 \mu M$				
	SIRT3 $IC_{50} = 67 \mu M$				
	Cytotoxic to the ARN8 melanoma cells.				
	Delays the growth of xenograft tumors derived from ARN8 cells.				
	Decelerates the disease progression of chronic myelogenous leukemia in mice model.				
	Potent antitumor activity in various human gastric cancer cells via death receptor 5 (DR5) upregulation.				
Table 2 Most relevant sirtuin inhibitors (Continued)

	Compound	SIRT1 IC₅₀	SIRT2 IC₅₀	Description
10.	Sirtinol	-	-	Inhibits the viability of MCF-7, H1299, DU145, PC3 and HeLa cells. Enhances the chemosensitivity to camptothecin and cisplatin in DU145, PC3 and HeLa cells. Promotes a significant growth inhibition or apoptosis in cells from adult T-cell leukemia-lymphoma (ATL) and HTLV-1-related cell lines.
11.	Salermide	43 μM	25 μM	Induces apoptosis in various cancer lines (mainly MOLT4, KG1A, SW480, and Raji) but not in normal cells (MRC5) through inhibition of SIRT1 in a p53-independent manner. Induces apoptosis in NSCLC cells through upregulation of CDR5. Exerts potent antiproliferative effects on MOLT4, MDA-MB-231 and RKO cancer cells and in colorectal carcinoma (CRC) and glioblastoma multiforme (GBM) cancer stem cells (CSCs). Exerts cell protection effects in a C. elegans model of muscular dystrophy. Induces apoptosis and death of schistosomula, separation of adult worm pairs and reduction in egg laying, through inhibition of the S. mansoni specific sirtuin
12.	MC2141	9.8 μM	12.3 μM	Induces apoptosis in U937 cells. Exerts significant antiproliferative effects on Raji, DLD1, HeLa, and CRC and GBM CSCs.
	Most relevant sirtuin inhibitors (Continued)			
---	---	---		
13	inauhzin			
	IC}_{50} = 0.7-2 \mu M			
	SIRT2: no inhibition @50 \mu M			
	SIRT3: no inhibition @50 \mu M			
	Activates and stabilizes p53 by inhibiting SIRT1 activity with consequent p53 acetylation and prevention of MDM2-mediated p53 ubiquitylation.			
	Inhibits cell proliferation and promotes senescence and tumor-specific p53-dependent apoptosis without genotoxicity in different cell lines (mainly H460, HCT116, and A549 cells).			
	Represses the growth of xenograft tumors derived from p53-harbouring H460 and HCT116 cells.			
14	SirReal2			
	**IC}_{50} = 4 \text{nM} SIRT2			
	**IC}_{50} = 1 \text{nM} SIRT3			
	**IC}_{50} = 7 \text{nM} SIRT6			
	Not reported			
15	SirReal2			
	**IC}_{50} = 0.14-0.44 \mu M			
	SIRT2 22% inhibition @100 \mu M			
	SIRT3 no inhibition @100 \mu M			
	SIRT4 no inhibition @200 \mu M			
	SIRT5 no inhibition @200 \mu M			
	SIRT6 19% inhibition @200 \mu M			
	Hyperacetylation of α-tubulin and of the microtubule network in HeLa cells (≥20 \mu M).			
	Significant depletion of the SIRT2 substrate BubR1 (spindle assembly checkpoint protein) in HeLa cells.			
	No alteration of cell cycle distribution in HeLa cells.			
16-20	SIRT2 IC₅₀ = 0.18 μM			
SIRT1 29% inhibition @200 μM
17 SIRT2 IC₅₀ = 0.26 μM
SIRT1 no inhibition @200 μM
18 SIRT2 IC₅₀ = 0.21 μM
SIRT1 no inhibition @200 μM
19 SIRT2 IC₅₀ = 0.31 μM
SIRT1 no inhibition @200 μM
20 SIRT2 IC₅₀ = 0.32 μM
SIRT1 no inhibition @200 μM

Hyperacetylation of α-tubulin and of the microtubule network in HeLa cells (16 @10 μM).

| 21 | SIRT2 IC₅₀ = 48.3 nM
SIRT1 IC₅₀ = 12 μM
SIRT3 IC₅₀ = 44.2 μM

Time-dependent and dose-dependent hyperacetylation of α-tubulin in MCF-7 cells.
Modest cytotoxic effects (CC₅₀ 26-33 μM) in human cancer cell lines (MCF-7, K562 and DU145). |
No.	Compound	SIRT2 IC_{50}	SIRT1/3 IC_{50}	Pharmacological Effects	References
22	22	3.7 μM		Dose-dependent hyperacetylation of α-tubulin in MCF-7 cells. Dose-dependent antiproliferative effects on MCF-7 and A549 cancer cells.	[72, 73]
23	23	12.2 μM			
24	24	15.5 μM		Neuroprotective reduction of total neuronal cholesterol biosynthesis in a SIRT2 inhibition-dependent way. Neuroprotective effects in different models of Huntington’s disease and Parkinson’s disease.	[74–76]
25	25	700 nM		Not reported.	[77]
Table 2 Most relevant sirtuin inhibitors (Continued)

	SIRT6 IC50 = 89 µM	Hyperacetylation of SIRT6 substrate H3K9 in pancreatic adenocarcinoma BxPC-3 cells. Glucose uptake increase, dose-dependent upregulation of GLUT-1 expression and reduction of TNF-α secretion in BxPC-3 cells.
26	![Chemical Structure]	
	SIRT1 IC50 = 1578 µM	
	SIRT2 IC50 = 751 µM	
27, 28	SIRT1 IC50 = 3.9 µM	Not reported.
27	![Chemical Structure]	
28	![Chemical Structure]	
29	SIRT1 IC50 = 0.9 µM SIRT2 IC50 = 3 µM SIRT3 IC50 > 100 µM	Antiproliferative effect in A549 lung carcinoma and MCF-7 breast carcinoma cell lines.

References:
[78] Carafa et al. Clinical Epigenetics (2016) 8:61
Table 2: Most relevant sirtuin inhibitors (Continued)

30	![Chemical Structure](image)	SIRT1 IC\(_{50}\) = 6 \(\mu\)M	SIRT2 IC\(_{50}\) = 26 \(\mu\)M	SIRT3 IC\(_{50}\) = 29 \(\mu\)M	Antiproliferative effect in A549 lung carcinoma and MCF-7 breast carcinoma cell lines.	[86, 87]		
31-33	![Chemical Structure](image)	31 SIRT1 IC\(_{50}\) = 11 \(\mu\)M	SIRT2 IC\(_{50}\) = 77 \(\mu\)M	Not reported.	32 SIRT1 IC\(_{50}\) = 12 \(\mu\)M	SIRT2 IC\(_{50}\) = 30 \(\mu\)M	[88]	
	33 SIRT1 IC\(_{50}\) = 0.7 \(\mu\)M	SIRT2 IC\(_{50}\) = 4 \(\mu\)M	31 X = O, R1 = ![Chemical Structure](image)	32 X = O, R1 = ![Chemical Structure](image)	33 X = S, R1 = ![Chemical Structure](image)	31 X = O, R1 = ![Chemical Structure](image)	32 X = O, R1 = ![Chemical Structure](image)	33 X = S, R1 = ![Chemical Structure](image)
Compound	Structure	Enzyme activity	Biological Effects	Reference(s)				
----------	-----------	-----------------	--------------------	--------------				
34, resveratrol	![Structure Image]	SIRT1 EC₅₀ = 46.2 μM	Improves mitochondrial functions and protects against fat diet-induced obesity (DIO). In obese mice leads to increased health-span and lifespan. Promising effects and in clinical trials for the treatment of some diseases of aging (metabolic disorders, type 2 diabetes, etc.).	[91–96, 106–109]				
35-37	![Structure Image]	35 SIRT1 EC₅₀ = 2.9 μM SIRT1 max act^b 447% 36 SIRT1 EC₅₀ = 0.16 μM SIRT1 max act. 781% 37 SIRT1 EC₅₀ = 0.36 μM SIRT1 max act. 296%	All SRT compounds, with different potencies, improve insulin sensitivity in DIO and genetically obese mice (Lep^{Fob}), lower plasma glucose and increase mitochondrial capacity. In Zucker fa/fa rats, improve whole-body glucose homeostasis, insulin sensitivity in adipose tissue, skeletal muscle and liver, and mitochondrial bioenergetics in a SIRT-1 dependent manner. Very good activities in different age-related disease conditions.	[95, 97–101]				
35, SRT1460	![Structure Image]							
36, SRT1720	![Structure Image]							
37, SRT2183	![Structure Image]							
Table 3 Most relevant sirtuin activators (Continued)

	Compound	EC$_{1.5}$	SIRT1 max activity	Promising activities in different age-related disease models: obesity and metabolic disorders, inflammatory and autoimmune disorders, cardiovascular disease, hepatic steatosis, neurodegeneration, and cancer.	References
38	STAC-8	1.2 μM	890%		[99–101]
				[99–101]	
39		0.5 μM	220%	Not reported.	[99–102]
				[99–102]	
Table 3 Most relevant sirtuin activators (Continued)

40, 41	![Molecule 40](image)	\(EC_{1.5} = 0.3 \mu M \)	SIRT1 max act. 253%	Not reported.
	\(R = H \)			
41	![Molecule 41](image)	\(R = \text{Morpholin-4-yl} \)		
40	\(R = \text{Piperazin-1-yl} \)	\(EC_{1.5} < 250 \text{ nM} \)	SIRT1 max act. ≥300%	Not reported.
43	\(R = \text{Morpholin-4-yl} \)			
44	\(R = \text{OH} \)			

[99–102]
Table 3 Most relevant sirtuin activators (Continued)

Compound	Chemical Structure	EC_{1.5}	Max Activity	Activities
STAC-5	![Image](STAC-5.png)	SIRT1: EC_{1.5} = 0.4 μM, SIRT2: EC_{1.5} = 25 μM, SIRT3: EC_{1.5} = 50 μM	1310%	Promising activities in different age-related disease models: obesity and metabolic disorders, inflammatory and autoimmune disorders, cardiovascular disease, hepatic steatosis, neurodegeneration, and cancer. [99–101, 104]
MC2562 (Ar = Ph, R₁ = OEt, R₂ = benzyl)	![Image](MC2562.png)	SIRT1: EC_{1.5} ≈ 1 μM, SIRT2: EC_{1.5} ≈ 1 μM, SIRT3: EC_{1.5} ≈ 50 μM	Induce α-tubulin hypoacetylation in U937 cells and reduce the number of senescent cells of 30-40% in human mesenchymal stem cells. Increase NO release in HaCat cells, and accelerate tissue renewal in a mouse model of skin repair. In C2C12 myoblasts improve mitochondrial density and functions through activation of the SIRT1/AMPK axis. A water-soluble analog displays antiproliferative effect and increased H4K16 deacetylation in a panel of human cancer cells at 8-35 μM [111–113]	
Honokiol	![Image](Honokiol.png)	Increases SIRT3 levels by nearly two-fold @5 μM and 10 μM in cardiomyocytes after 24h treatment. Induces mitochondrial density and functions through activation of the SIRT1/AMPK axis. A water-soluble analog displays antiproliferative effect and increased H4K16 deacetylation in a panel of human cancer cells at 8-35 μM [114]		

^aConcentration of compound required to increase enzyme activity by 50 %
^bMaximum percentage of activation achieved at the highest tested dose
ribozymyltransferase activity on histones. SIRT4 is induced by DNA damage including chemotherapy and γ-irradiation and is capable of arresting the cell cycle by inhibiting mitochondrial glutamine metabolism. SIRT4 inhibits proliferation, invasion, and migration in colorectal cancer cells, and its low expression is correlated with a worse prognosis [36]. SIRT5 is reported to interact with carbamoyl phosphate synthetase 1 (CPS1), and it is deacetylated by SIRT5. The role of SIRT5 in carcinogenesis remains unclear, but a recent study showed its overexpression in non-small cell lung cancer tissues as a marker of low survival [37]. SIRT6 was reported to display actions controlling cellular homeostasis, DNA repair, telomere maintenance, and metabolism, acting as an epigenetic guardian for cellular differentiation [38]. Recent studies have highlighted SIRT7 as a promising target for epigenetic cancer therapy. SIRT7 catalyzes selective deacetylation of H3K18, an emerging epigenetic biomarker of aggressive tumors, controlling many tumor suppressor genes. High expression of SIRT7 has in fact been associated with aggressive cancers and low survival, whereas its depletion leads to a less aggressive phenotype [39]. A recent report described the use of chlorpromazine to inhibit cell cycle progression in rat glioma cells and induce autophagic cell death. The authors demonstrate that an FDA-approved drug used to treat schizophrenia and bipolar disorder is able to increase p53 Lys382 acetylation through a mechanism of SIRT1 inhibition [40].

SIRT inhibition—small molecules

Many SIRT modulators, used alone or in combination with other epigenetic modulators or known drugs, have been described as having beneficial effects against neurodegeneration and cancer [41]. Identified in 2001 from a yeast-based screening for inhibitors of Sir2, splitomicin (1, Table 2), despite being substantially inactive against hSIRTs, has been the starting point for the development of several SIRT1/2 inhibitors [42]. Among them, the compound with a phenyl ring on 2-position and a bromine on 8-position indicated as HR-73 (2, Table 2) is a single-digit micromolar SIRT1i that inhibits H4K16 acetylation in HeLa cells, AGK2 rescues dopaminergic neurons from α-synuclein toxicity and protects against PD in different PD models [25]. Likely through SIRT2 inhibition, AGK2 also induces caspase-3-dependent death in glioma cells [56]. A cell-based screen designed to detect SIRT1/2i that induces cancer-specific pro-apoptotic effects on different tumor cells (mainly MOLT4, KG1A, SW480, and Raji) through reactivation of pro-apoptotic genes (CASP8, TNF, TNFRSF10B, and PLIMA) previously repressed by SIRT1-mediated H4K16ac deacetylation [65] and through the upregulation of DRS2 [66]. Salermide and its analogs also show potent antiproliferative effects on cancer stem cells [67] and exert cell protection effects on a C. elegans model of muscular dystrophy [68]. In infectious diseases (Schistosoma mansoni), salermide was the
most potent among the tested SIRTi in inducing apoptosis and death of schistosomula, in separation of adult worm pairs and in reduction in egg laying, through inhibition of the S. mansoni specific siruin [69]. Identified in 2010 as result of cambinol manipulation, MC2141 (12, Table 2) is the prototype of a series of benzodeazoaxaflavins active as low micromolar SIRT1/2i. MC2141 displays significant pro-apoptotic and anti-proliferative properties in different cancer cell lines, including cancer stem cells [70, 71]. Identified in 2012 in a virtual screening for inhibitors of the p53-DM2/MDMX interaction, inauhzin (13, Table 2) is a (sub)micromolar SIRT1i selective over SIRT2/3 able to exert anti-proliferative and tumor-specific pro-apoptotic effects on various cancer lines by activating and stabilizing p53. Inauhzin represses the growth of xenograft tumors derived from p53-harboring H460 and HCT116 cells [72]. The most potent SIRTi reported to date are thieno[3,2-d]pyrimidine-6-carboxamides that resulted from a SAR analysis of the hit compounds deriving from a DNA-encoded small molecule library screen [73]. Although the most potent compound in the series (14, Table 2) is active in the single-digit nanomolar range against SIRT1–3 and its binding mode has been elucidated by X-ray crystallography, no biological activities are currently known for these compounds. Very recently, SirReal2 (15, Table 2) was reported as a submicromolar SIRT2i with >1000-fold selectivity over SIRT1/3/4/5/6 [74]. Its potency and selectivity, as revealed by X-ray crystallography, are based on a ligand-induced structural rearrangement of the SIRT2 active site revealing a previously unexploited binding pocket. The SIRT2 inhibition capability of SirReal2 has been confirmed in HeLa cells by the induction of α-tubulin hyperacetylation and the destabilization of the SIRT2 substrate BubR1. A subsequent SAR investigation on the prototype led to the development of some derivatives (16–20, Table 2) with improved SIRT2i potency [75].

An elegant fragment-based approach inspired by the structures of the SIRTi suramin and nicotinamide recently identified a nanomolar SIRT2-selective (over SIRT1/3) inhibitor (21, Table 2), which is able to induce clear time-dependent and dose-dependent hyperacetylation of α-tubulin in MCF-7 cells and shows cytotoxic effects on some cancer cell lines [76]. In recent years, a series of chroman-4-one derivatives as low micromolar SIRT2i selective over SIRT1/3 has been reported [77, 78]. Among them, compounds 22 and 23 (Table 2) are the most attractive in terms of their overall pharmacological profile as they display good dose-dependent α-tubulin hyperacetylation and significant anti-proliferative effects on cancer cells (MCF-7 and A549). From the screening of a panel of polyglutamine aggregate inhibitors, AK-7 (24, Table 2) was identified in 2011 as a brain-permeable micromolar SIRT2 selective (over SIRT1/3) inhibitor able to reduce neuronal cholesterol biosynthesis [79]. In addition, AK-7 displays other SIRT2 inhibition-dependent neuroprotective effects on various models of HD [80] and PD [81], supporting the development of SIRT2i as potential therapeutics for these disorders. Very recently, by high-throughput screening employing self-assembled monolayer desorption/ionization mass spectrometry, the first submicromolar small molecule inhibitor of SIRT3, SDX-437 (25, Table 2), was identified. SDX-437 is >100-fold selective over SIRT1 and could be a useful tool for studying SIRT3 biology and a promising lead for future med-chem optimization campaigns [82]. By a high-throughput molecular docking screen, compound 26 (Table 2) was recently identified as the first micromolar small molecule inhibitor of SIRT6 with >eightfold selectivity over SIRT1/2 [83]. Although this molecule needs optimization, it can be considered as a promising lead for the functional annotation of SIRT6 and the development of potential SIRT6-based therapeutics due to its ability to induce hyperacetylation of the SIRT6 substrate H3K9, to increase glucose uptake through the upregulation of GLUT-1, and to reduce TNF-α secretion (BxPC-3 cells).

SIRT inhibition—peptides and pseudopeptides

The first peptidic SIRTi was developed by replacing the Nα-acetyl-lysine with a thiaoacylated residue and by using the C-terminus of p53 protein (H2N-KKGQS TSRR(ThAcK)LMFKTEG-COOH) as a substrate peptide template [84]. Based on kinetic studies, this thiaoacylated peptide was able to form an intermediate tighter than the acetylated peptide [84–86], showing a strong SIRT1 inhibition (IC50 ~ 2 μM), and was also active against SIRT2/3 (IC50 ~ 2 and 67 μM, respectively) [87]. More thiaoacylated peptide inhibitors were developed from other SIRT substrates such as human α-tubulin and acetyl-coenzyme A synthetase 2 (AceCS2) [87, 88]. The α-tubulin [85–93]-based H2N-MPSD(ThAcK)-TIGG-COOH inhibited SIRT2 at a low micromolar level (IC50 ~ 11 μM), whereas it was less potent against SIRT1/3. The thiaoacylated AceCS2 (633–652) peptide showed low micromolar inhibition of SIRT1–3 (IC50 ~ 0.9, 4, and 5 μM, respectively) [87]. Thiaoacylated α-tubulin and p53-based tri-, tetra-, and pentapeptides were developed in 2009 [88]. Several peptides had submicromolar IC50s for SIRT1, such as tripeptide K(ThAcK)L (0.57 μM) and pentapeptide HK(ThAcK)LM (0.18 μM). The most potent inhibitor for SIRT2 was the pentapeptide HK(ThAcK)AM (IC50 ~ 3.9 μM). The first small pseudo-peptidic SIRTi was reported in 2009 [89]. The most potent compound, NCS-12k (27, Table 2), showed an IC50 of 3.9 μM for SIRT1. Further modifications produced the cell-active Cbz-Lys(ThAc)-NH-Ph (28, Table 2) with an IC50 of 2.7 μM for SIRT1, 23 μM for SIRT2, but
Interestingly, >100 μM for SIRT3 [90]. Among other N-
thioacetylated pseudopeptide inhibitors developed to improve potency, selectivity, and cell permeability, compounds 29 and 30 (Table 2) were found to be micromolar inhibitors of SIRT1-3 and showed antiproliferative effects on cancer cells [91, 92]. Some pseudopeptide inhibitors were also tested against SIRT6, but potency was lower [93]. Besides the thioacetyl group, several other lysine N-
modifications (such as propionyl, butyryl, α-hydroxyacetyl, monofluoroacetyl, homocitrulline, homarginine, difluoroacetyl, acetylimidoyl, methanesulfonylethyl, selenoacetyl, and trifluoroacetyl groups) have been reported [85, 86, 93–95]. Among the carbonyl-containing N-
modifications studied on the sequence Ac-AKA-OH, the most potent were N-3,3-dimethylacryl (31, Table 2) and N-isovaleryl (32, Table 2) with IC\textsubscript{50}s in the micromolar range against SIRT1/2, while N-isothiovaleryl (33, Table 2) improved potency giving SIRT1/2 IC\textsubscript{50}s in the (sub)micromolar range [95].

SIRT activators

The natural polyphenol resveratrol (34, Table 3) was the first SIRT1a described. Its administration extends lifespan in yeast, Caenorhabditis elegans, Drosophila, fishes, and bees [96–99]. Mice treated with resveratrol display improved mitochondrial functions and protection against high-fat diet-induced obesity [100], while in obese mice, treatment with resveratrol leads to increased healthspan and lifespan [101]. Identified in 2007 by high-throughput screening as a selective SIRT1a more potent than resveratrol, SRT compounds (35–37, Table 3) reproduce most of resveratrol beneficial effects in vivo. In diet-induced and genetically obese (Lob/ob) mice, compounds 35–37 (Table 3) improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. Moreover, in Zucker (fa/fa) rats, the same compounds improve whole-body glucose homeostasis and insulin sensitivity [95]. Due to their very promising activities, some of the most potent SRTs are currently in clinical trials for the treatment of different age-related diseases [102–106]. The most potent scaffolds proposed as sirtuin-activating in terms of SIRT1 activation (EC\textsubscript{1.5} values in the submicromolar range) and the most effective in the treatment of age-related conditions (obesity, metabolic and cardiovascular disorders, inflammatory/autoimmune diseases, neurodegeneration, and cancer) are pyrido[3,2-b][1, 4]oxazocines (38, Table 3) [104–106]; oxazolo[4,5-b]pyridines and benzo[d]imidazoles (39–41, Table 3) [104–107]; thiadiazopyridines (42–44, Table 3) [104–106, 108]; and aza-benzimidazoles (45, Table 3) [104–106, 109]. Over the past years, it has been highly debated the effective SIRT1 activation by resveratrol and SRT compounds, because only the use in the enzyme assays of aminomethylcoumarin (AMC)- or carboxytetramethylrhodamine (TAMRA)-labeled substrates allowed to see activation, whereas in the presence of natural substrates no activation was observed [110–112]. For this reason, it was questioned if the action of resveratrol and SRT compounds on SIRT1 is the result of a direct activation, or if rather it arises from the indirect modulation of other pathways, such as AMPK activation and/or PDE inhibition [113]. Recently, direct SIRT1 activation has been confirmed, and it has been shown that there are subtle structural and positional requirements to detect SIRT1 activation with some of its natural substrates (e.g., FOXO3a and PGC-1α) [104, 114]. Moreover, E230K or E230A SIRT1 mutation abolishes enzyme activation as well as binding of SRT compounds, suggesting an assisted allosteric activation mechanism in which the activators bind and stabilize the enzyme-substrate complex promoting the deacetylation reaction [104]. Lastly, the crystal structure of a SRT compound bound to an engineered minimally functional hSIRT1 has been reported, unambiguously confirming the direct allosteric activation of SIRT1 by small molecules [115]. The 1,4-dihydropyridine (DHP) scaffold with general formula 46 (Table 3) has been described as a new chemotype for SIRT activation. Selected DHPs induced hypoacetylation of α-tubulin in U937 cells, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In myoblasts, they improved mitochondrial density and functions through activation of the SIRT1/AMPK axis. A water-soluble analog displayed antiproliferative action and increased H4K16ac deacetylation in a panel of cancer cells at 8–35 μM [116–118]. Very recently, the cardiac antihypertrophic effects of the natural compound honokiol (47, Table 3) were reported to depend on the pharmacological activation (increased expression and activity) of SIRT3 [119].

Conclusions

A critical analysis of current knowledge and recent discoveries clearly indicates that SIRT modulation is beneficial against several diseases including cancer and neurodegeneration. Chronic diseases, such as obesity and diabetes, might also likely benefit from SIRT targeting, but further investigation is needed. The ubiquitous expression of some SIRTs, together with the fact that many studies primarily investigated SIRT1 only, and not all the other family members, still leaves room for some confusion. Currently, for example, activation or inhibition of SIRTs (even the same SIRT) is described as beneficial for pathologies such as neurodegeneration. Despite the apparent contradiction, this is theoretically possible when taking into account the role of
SIRT-containing complexes and not just the catalytic domain of the single enzyme. Furthermore, both the chemistry and biomedical characterization of SIRTs are at a much earlier stage of development than SIRT1, thus suggesting that new alternatives may arise in the near future. Finally, the potential selective modulation of SIRT family members will represent a promising area provided that new selective molecules can be designed.

Acknowledgements
This work was supported by EU: COST-Action: EPICHEMBIO (CM1406), FP7: BLUEPRINT (contract no 282510) and A-PARADIGMS (contract no 602080), PRIN-2012, RP-2010-2518330, IIT-Sapienza Project, Sapienza Award Project 2014, AIRC. (a) Fondazione Cariplo TRIODE Id. 17515 and (b) AIRC-IG (no 17217). We acknowledge C. Fisher for English editing.

Authors’ contributions
VC and DR reviewed the main literature for biology and chemistry. MF, FC, and ES reviewed the biological effects of sirtuins. GSH, EJ, and MLK studied the chemistry and the peptide-related part. AM and LA wrote the manuscript and the general concept of this review. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Departamento de Bioquímica, Biofísica y Patología Generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Napoli, Italy.
2 Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, 00185 Roma, Italy.
3 Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.
4 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland.
5 Istituto Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Roma, Italy.
6 Istituto di Genetica e Biofisica, Via P. Castellino 111, 80131 Napoli, Italy.

Received: 29 January 2016 Accepted: 4 May 2016

Published online: 25 May 2016

References
1. Carafa V, Nebbioso A, Attuici L. Sirtuins and disease: the road ahead. Front Pharmacol. 2012;3:4. doi:10.3389/fphar.2012.00004
2. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, et al. Lysine deacetylation is a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281(31):21745–21755.
3. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, et al. Sirt5 is a NAD-dependent protein deacetylase and desuccinylase. Science. 2011;334(6057):806–9. doi:10.1126/science.1207861.
4. Avaki T, Saka Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010–3. doi:10.1126/science.1098014.
5. Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, et al. Sirt1 promotes axonogonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol. 2013;48(3):409–9. doi:10.1007/s12035-013-8437-3.
6. Qin W, Yang T, Ho L, Zhao Z, Chen L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281(31):21745–54. doi:10.1074/jbc.M602992200.
7. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L. SIRT1 functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):137–48.
8. Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Autophagy induced by the class III histone deacetylase SIRT1 protects p53 from Sir2alpha promotes cell survival under stress. Cell. 2001;107(2):137–48.
9. Vacir H, Desain SK, Ng Eaton E, Imai S, Frye RA, Pandita TK, et al. Sirt5(SIRT1) functions as an NAD-dependent p3 deacetylase. Cell. 2001;107(2):149–59.
10. Deng CK. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 2009;5(2):147–52.
11. Bosch-Presseguer L, Vaquero A. The dual role of sirtuins in cancer. Genes Cancer. 2011;2(6):848–62. doi:10.1177/1947691111418762.
12. Cohen HY, Miller C, Bitterman KJ, Wall NR, Heikkin H, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390–2. doi:10.1126/science.1099196.
13. Motta MC, Divecha N, Lemieux M, Kame C, Chen D, Gu W, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–63.
14. Prutt K, Zinn RL, Ohn ME, McGarvey KM, Kang SH, Watkins DN, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006;2(3):e40. doi:10.1371/journal.pgen.0020040.
15. Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ. SIRT1 interacts with p73 and suppresses p73-dependent apoptosis. J Cell Physiol. 2007;201(1):161–6. doi:10.1002/jcp.20831.
16. Der RS, van Hoesel AQ, Benard A, Goossens-Beumer IJ, Sajet A, Dekker-Ensink NG, et al. High nuclear expression levels of histone-modifying enzymes LSD1, HDAC2 and SIRT1 in tumor cells correlate with decreased survival and increased relapse in breast cancer patients. BMC Cancer. 2014;14:604. doi:10.1186/1471-2407-14-604.
17. Chen X, Sun K, Jiao S, Cai N, Zhao X, Zou H, et al. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep. 2014;4:7481. doi:10.1038/srep07481.
18. Zhang T, Rong N, Chen J, Zou C, Jing H, Zhu X, et al. SIRT1 expression is associated with the chemotherapeutic response and prognosis of patients with advanced NSCLC. PLoS ONE. 2013;8(11):e79162. doi:10.1371/journal.pone.0079162.
19. Li C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma. Onco Targets Ther. 2015;8:797–84. doi:10.2147/OTT.S82378.
20. Wilking MJ, Singh CK, Nihal M, Ndiaye MA, Ahmad N. Sirtuin deacetylases: a new target for melanoma management. Cell Cycle. 2014;13(18):2821–6. doi:10.1386/15384101.2014.949085.
21. Harting K, Knoll B. SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur J Cell Biol. 2010;89(2–3):96–9. doi:10.1016/j.ejcb.2009.11.005.
22. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317(5837):516–9. doi:10.1126/science.1143870.
23. Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, et al. The tumor suppressor Sirt2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 2013;27(6):639–53. doi:10.1101/gad.211342.112.
24. Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene. 2007;26(7):945–57. doi:10.1038/joe.2007.9857.
25. Li Z, Xie QR, Chen Z, Lu S, Xia W. Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Lung Cancer. 2013;82(1):9–15. doi:10.1016/j.lungcan.2013.05.013.
26. McGloun LM, Zino S, MacDonald AI, Curie J, Reilly JE, Mohammed ZM, et al. SIRT2: tumour suppressor or tumour promoter in operable breast cancer? Eur J Cancer. 2014;50(2):290–301. doi:10.1016/j.ejca.2013.10.005.
27. Jing E, Gest A, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):149–59. doi:10.1016/j.cmet.2007.07.003.
28. Park JM, Kim TH, Jo SH, Kim MY, Ahn YH. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity. Sci Rep. 2015;5:17395. doi:10.1038/srep17395.
32. Someya S, Yu W, Hal lows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;141(5):802–12. doi:10.1016/j.cell.2010.02.002.

33. Rangarajan P, Karthikeyan A, Lu J, Ling EA, Dheen ST. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience. 2015;311:398–414. doi:10.1016/j.neuroscience.2015.10.048.

34. Tao R, Coleman MC, Pennington JD, Ozden Q, Park SH, Jiang H, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates Mnf1 activity in response to stress. Mol Cell. 2010;40(6):893–904. doi:10.1016/j.molcel.2010.12.013.

35. Finley LW, Haas W, Desquiet-Dumars V, Wallace DC, Proccavo V, Gygi SP, et al. Saccinate dehydrogenase is a direct target of sirtuin 3 deacetylation activity. PLoS ONE. 2011;6(8):e23295. doi:10.1371/journal.pone.0023295.

36. Miyo M, Yamamoto H, Konno M, Colvin H, Nishida N, Koseki J, et al. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer. 2015;113(3):492–9. doi:10.1038/bjc.2015.226.

37. Lu W, Zuo Y, Feng Y, Zhang M. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. 2014;35(11):10999–702. doi:10.1007/s13277-014-2372-4.

38. Etchegary JP, Chavez L, Huang Y, Ross KN, Choi J, Martinez-Paster B, et al. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of S-hydroxymethylcytosine. Nat Cell Biol. 2015;17(5):545–57. doi:10.1038/ncb3147.

39. Barber MP, Michishita-Koi E, Xi Y, Tasselli L, Koi M, Mortgard Z, et al. SIRT7 links H3K18 deacetylation to maintenance of euchromatin transformation. Nature. 2012;487(7405):114–8. doi:10.1038/nature11093.

40. Lee WY, Lee WT, Cheng CH, Chen KC, Chou CM, Chung CH, et al. Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1. Oncotarget. 2015;6(25):27580–95. doi:10.18632/oncotarget.4768.

41. Villalba JM, Alcain FJ. Sirtuin activators and inhibitors: Biofactors. 2012;38(5):349–59. doi:10.1002/biof.1032.

42. Bedalov A, Gabottoni T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A. 2001;98(26):15113–8. doi:10.1073/pnas.261574398.

43. Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005;3(2):e41. doi:10.1371/journal.pbio.0030041.

44. Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, et al. SIRT1 inhibitor, in patients with Huntington disease: a randomized, double-blind, placebo-controlled trial. J Neurol. 2009;256(10):1665–72. doi:10.1007/s00415-009-0511-z.

45. Napper AD, Hixon J, McDonagh T, Keavey K, Moqtaderi Z, et al. SIRT7 inhibition induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006;25(2):176–85. doi:10.1038/sj.onc.1209049.

46. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD(P)H-dependent deacetylation activity. PLoS ONE. 2012;7(6):e34950. doi:10.1371/journal.pone.0034950.

47. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Scheibler SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem. 2001;276(42):38837–43. doi:10.1074/jbc.M106779200.

48. Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D, et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012;119(8):1904–14. doi:10.1182/blood-2011-06-316691.

49. Hira S, Endo S, Saito R, Hirose M, Ueno T, Suzuki H, et al. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation. PLoS ONE. 2014;9(7):e102831. doi:10.1371/journal.pone.0102831.

50. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoual M, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule s35 inhibitor. Cancer Cell. 2008;13(5):654–63. doi:10.1016/j.ccc.2008.03.004.

51. Carafa MCT-12-0700.

52. Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, et al. A small molecule inhibitor of the iron-sulfur cluster protein sirtuin 1 induces senescence-like growth arrest in MCF-7 breast cancer cells. Cell.2010.10.002.
accelerates skin repair. J Biol Chem. 2013;288(16):11004–12. doi:10.1074/jbc.M112.441816.

118. Valente S, Mellini P, Spallotta F, Carafa V, Nebbioso A, Polletta L et al. 1,4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells. J Med Chem. 2016. doi:10.1021/acs.jmedchem.5b01117.

119. Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun. 2015;6:6656. doi:10.1038/ncomms7656.