MEASUREMENTS OF C_z, C_x FOR $K^+\Lambda$ AND $K^+\Sigma^0$ PHOTOPRODUCTION

ROBERT BRADFORD
Department of Physics and Astronomy
University of Rochester
500 Wilson Boulevard
Rochester, NY 14627-0171, USA
E-mail: bradford@pas.rochester.edu

REINHARD SCHUMACHER
Dept of Physics
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
E-mail: schumacher@cmu.edu

FOR THE CLAS COLLABORATION.

The CLAS collaboration has recently completed first measurements of the double polarization observables C_x and C_z for the reactions $\gamma p \rightarrow K^+\Lambda$ and $\gamma p \rightarrow K^+\Sigma^0$. C_x and C_z are the beam-recoil polarization asymmetries measuring the polarization transfer from incoming circularly polarized photons to outgoing hyperons along two orthogonal directions in the production plane of the K^+-hyperon system. The Λ is found to nearly maximally polarized along the direction of incident photon’s polarization for forward-going kaons. Polarization transfer to the Σ^0 is different from the Λ case.

1. Introduction

Measurement of polarization observables have long been recognized as key to unraveling baryon production mechanisms. This work represents the first measurement of C_x and C_z for $\gamma p \rightarrow K^+\Lambda$ and $\gamma p \rightarrow K^+\Sigma^0$.

2. C_x and C_z

C_x and C_z measure the polarization transfer from a circularly polarized incident photon beam to the recoiling Λ or Σ^0 baryons along two orthogonal directions in the production plane of the K^+-hyperon system. The \hat{x} and \hat{z}
directions are defined in the CM frame, with \(\hat{z} \) lying along the directions of the incident photon beam’s polarization. In this analysis, the polarization transfer was measured through the beam helicity asymmetry according to

\[
A_{x/z} (\cos \theta_p) = \frac{N^+ (\cos \theta_p) - N^- (\cos \theta_p)}{N^+ (\cos \theta_p) + N^- (\cos \theta_p)} = \alpha_{eff} \eta C_{x/z} \cos \theta_p
\]

where \(\cos \theta_p \) is the direction of the proton from the hyperon’s decay measured in the hyperon rest frame with respect to the \(\hat{x} \) or \(\hat{z} \) axis. \(\eta \) is the polarization of the incident photon beam, \(N^+ (\cos \theta_p) \) and \(N^- (\cos \theta_p) \) are the beam helicity dependent hyperon yields in a given \(\cos \theta_p \) bin. \(\alpha_{eff} \) is the effective weak decay asymmetry parameter, and has a value of 0.642 for \(K^+ \Lambda \) and -0.165 for \(K^+ \Sigma^o \). The value of \(\alpha_{eff} \) for the \(\Sigma^o \) decay arises from our technique of measuring the proton distribution in the rest frame of the \(\Sigma^o \), not the \(\Lambda \); this dilutes its value to less than the nominal -0.642/3.

3. Experimental Setup and Analysis

The data were taken using the CLAS spectrometer in Hall B at Jefferson Lab. The experiment used a circularly polarized photon beam incident on a liquid hydrogen target. Data were taken with endpoint photon energies of 2.4 and 2.9 GeV. From this dataset, we also measured differential cross sections, which are currently available in preprint\(^1\).

All analyzed events were required to have explicit detection of the \(K^+ \) and proton. The \(\Lambda \) or \(\Sigma^o \) hyperons were identified in the \(p(\gamma, K^+) Y \) missing mass. The data were binned in beam helicity, the cosine of the kaon angle in the CM frame \((\cos \theta_{KCM}) \), the cosine of the proton angle \((\cos \theta_p) \) and photon energy \((E_\gamma) \). Within kinematic each bin, yields were extracted by fitting a Gaussian peak to each hyperon in the missing mass spectrum. Backgrounds were modeled with a polynomial. The beam helicity asymmetry was plotted against \(\cos \theta_p \) and the slope of this distribution was extracted with a linear fit. Complete analysis details are available elsewhere\(^2\).

4. Results and Discussion

Sample results are presented in Figures 1 and 2. The data are plotted with predictions from the Kaon-MAID\(^4\) (solid line) and Janssen\(^3\) (dashed line) isobar models. The data plotted are for only a few representative bins in \(\cos \theta_{KCM} \). The full results include nine bins in \(\cos \theta_{KCM} \) for \(K^+ \Lambda \) and six bins for \(K^+ \Sigma^o \).
Figure 1. C_x and C_z for $K^+\Lambda$ in two different kaon-angle bins. Top: $\cos(\theta_K) = -0.75$, bottom: $\cos(\theta_K) = 0.25$. The data are a subset of the 2005 CLAS results. The curves are predictions from the Kaon-MAID (solid line, 4) and Janssen (dashed line, 3) isobar models.
Figure 2. C_x and C_z for $K^+\Sigma^0$ for $\cos(\theta_K) = 0.5$. The data are a subset the 2005 CLAS results. The curves are predictions from the Kaon-MAID (solid line, 4) and Janssen (dashed line, 3) isobar models.

The Λ results show some W-dependent structure at backward kaon angles and then stabilize at more forward-going kaon angles. For this hyperon, C_z is near one over most of the forward hemisphere of the kaon angle while C_z is near zero for the same range.

The $K^+\Sigma^0$ results show no preferred direction for the polarization over the kaon angle range. The precision of these results here appears worse due to the small value of α_{eff}.

Of the models shown, the Janssen does a good job of following the data. The MAID curve does not fair as well. This model has the oddity of predicting that C_z saturates at -1 in $K^+\Lambda$ for forward-going kaons.

References
1. R. Bradford, et al. Preprint available at: nucl-ex/0509033. Submitted to Phys. Rev. C.
2. R. Bradford, Measurement of differential cross sections and C_x and C_z for $\gamma p \rightarrow K^+\Lambda$ and $\gamma p \rightarrow K^+\Sigma^0$ using CLAS at Jefferson Lab. Ph.D. thesis, Carnegie Mellon University, 2005, to be published. Available on-line at: http://www.jlab.org/Hall-B/general/thesis/bradford/index.html
3. S. Janssen, Strangeness production on the nucleon. Ph.D. thesis, University of Gent, 2002.
4. F.X. Lee, et al., Nucl. Phys. A 695, 237 (2001).