Physical analysis of TiO₂ and bentonite nanocomposite as adsorbent materials

https://doi.org/10.1515/rams-2021-0076
received August 15, 2021; accepted October 17, 2021

Abstract: The research analyzed the physical properties of TiO₂ and bentonite nanocomposite as adsorbent materials. The TiO₂ synthesis method was carried out through a sol–gel process. Meanwhile the synthesis of bentonite was carried out by the ball mill, coprecipitation and addition of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction nanocomposite characterization showed that the particle size was 17.13 nm. Fourier transform infrared analysis showed the required absorption peak in photocatalysis because the OH group can react with holes and prevent electron–hole pair recombination. The morphology of the nanocomposite showed the occurrence of TiO₂ pillarization in bentonite. The results of the X-ray fluorescence nanocomposite showed that the content of TiO₂ and SiO₂ was 65.22 and 17.4%, respectively.

Keywords: nanocomposite, adsorbent, ball mill, sol–gel, coprecipitation

1 Introduction

Titanium dioxide (TiO₂) is a white pigment material with high brightness and refractive index. TiO₂ accounts for 70% of the total volume of pigment production worldwide and is one among the top five nanoparticles used [1–3]. TiO₂ materials can occur as paints, coatings, inks, pharmaceuticals, food products, cosmetics, and toothpaste. Currently, the production of TiO₂ nanoparticles is quite significant because it has photocatalytic properties. The photocatalyst properties of TiO₂ are functional as solar cells, adsorbent, self-cleaning, anti-fogging, and antibacterial [4–6].

The movement of electrons and holes in semiconductor nanomaterials depends on the effects of quantum confinement, size, and geometry of the material. The specific surface area and surface–volume ratio increase as the material size decreases. The photocatalytic activity of TiO₂ depends on several properties such as crystal phase, surface area, lattice defects, and degree of crystallinity. The use of precursors also affects the quality of TiO₂ nanoparticles. TiCl₄ is a commonly used precursor of TiO₂. It is because TiCl₄ has several advantages such as good thermal stability, being highly reactive and can be used over a wide temperature range, and has a high vapor pressure [7,8]. The mixing of TiO₂ through the synthesis of composite materials improves the properties of TiO₂. In addition, the TiO₂ composite structure can extend the absorption spectrum [9]. The manufacture of nano-TiO₂ with the sol–gel process has been carried out, among others [10,11]. This is because the method works at room temperature [12]. However, the wet phase or sol method is the best way to control particle size, shape, and composition [13].

Bentonite is composed of montmorillonite with colloidal silica produced from the alteration of volcanic glass. Bentonite has calcic variations as a sign that the parent material is basaltic or adhesive. The main content of bentonite is the mineral montmorillonite (80%) with the chemical formula M₆(Al₆₋ₓMgₓ)₂Si₄O₁₀(OH)₂·nH₂O. Other contents in bentonite are impurities from several minerals such as quartz, illite, calcite, mica, and chlorite. Montmorillonite structure consists of one layer of alumina (Al₂O₃) octahedral in the middle flanked by two layers of silica (SiO₄) in a tetrahedral shape [14]. Bentonite has unique catalytic and adsorption properties. Therefore, bentonite is one of the most promising types of material as a safe nanotechnology material [15]. The adsorption ability...
of natural bentonite will be maximized when modifying it. Modification of bentonite has been carried out with various solutions, including HCl, H₂SO₄, and HNO₃ [16–19]. Moreover, pillarization, intercalation of polycations, and calcination also produce a bentonite layer that is stable and constant at high temperatures.

Pillarization of bentonite with TiO₂ can increase the basal distance and specific surface area of the material. It is because TiO₂ has a large specific surface area. So it is possible to be combined with other materials without blocking the pores of these materials. In addition, the effect of GO/TiO₂ nanocomposite in a solution based on natural surfactants on rock samples can be a candidate adsorbent [20,21]. The results of this study are expected to be used as new candidates as adsorbent materials.

2 Materials and methods

2.1 Synthesis of TiO₂ nanoparticles

The TiCl₄ solution was mixed with distilled water and stirred for 2 h using a magnetic stirrer. While stirring, NH₄OH is added to the solution until it turns white. Then, the precipitate was dried at 70°C for 7 h. Figure 1 shows the schematic synthesis of TiO₂ nanoparticles.

2.2 Synthesis of bentonite nanoparticles

The synthesis of bentonite nanoparticles refers to refs. [22,23]. Bentonite was calcined at a temperature of 700°C for 5 h and milled with a ball mill type, planetary ball mill, for 10 h with a rotation of 250 rpm. Furthermore, the synthesis of bentonite was performed by the coprecipitation method by mixing 6 M HCl using a stirrer at a temperature of 70°C for 4 h. Bentonite was mixed with 7 M NaOH using a stirrer at 70°C for 4 h. CTAB was dissolved in distilled water, heated, and stirred at 80°C for 1 h. CTAB and bentonite were mixed at 70°C for 3 h. The preparation of bentonite nanoparticles is shown in Figure 2.

2.3 Synthesis of TiO₂ and bentonite nanocomposites

Figure 3 shows the preparation of TiO₂ and bentonite composites. TiO₂ and bentonite with a composition ratio (1:1) mixed with deionized water and ethanol were stirred using a magnetic stirrer for 5 h. Then, it was dried in an oven at 100°C for 4 h. Each sample is coded as shown in Table 1.

2.4 Characterization methods

The nanocomposite’s phase structure and particle size were investigated by X-ray diffraction (XRD) Goniometer Shimadzu 6000 type using X-ray source Cu/Kα1 at wavelength = 1.54056. The analysis was carried out at an angle of 2θ ranging from 7 to 70°. The diffraction pattern was identified by comparing the diffractogram with the Joint Committee on Powder Diffraction Standard database. Meanwhile, the crystal size (D) was determined using the Scherrer equation:

\[D = \frac{K \cdot \lambda}{\beta \cos \theta} \]
(1)
where D is the crystal size (Å), $\lambda = 1.54056$, θ is the Bragg angle, K is Scherrer’s constant with a general value of 0.9, and β is the half-width of the full width at half maximum peak in radians.

The functional group analysis was carried out using a Fourier transform infrared (FTIR) type Shimadzu IR-Prestige-21 made in Japan. The resolution used is 4.0, while the wavenumber ranges from 500 to 4,000 cm$^{-1}$. The scanning electron microscope (SEM) analysis was carried out using the EVO MA 10 Zeiss instrument, and the chemical composition was analyzed by energy-dispersive X-ray spectroscopy (EDS; Bruker Quantax 200). X-ray fluorescence (XRF) characterization was carried out using XRF PANalytical Manipal 4. This tool can be used to test the elemental content of a material ranging from sodium to uranium.

Table 1: Sample code

No	Materials	Sample code
1	Bentonite coprecipitation	Bt
2	Bentonite coprecipitation + CTAB	Bt–CTAB
3	TiO$_2$ sol–gel	TiO$_2$
4	TiO$_2$ + bentonite coprecipitation + CTAB	TiO$_2$–Bt–CTAB

3 Results

3.1 XRD characterization

The XRD pattern in Figure 4 shows a much lower peak broadening and the peak intensity in Bt–CTAB.
groups from CTAB surfactant residues. Figure 5c shows the peak of 747.72 corresponding to the Ti–O vibration in the crystal lattice [30]. Figure 2d shows the absorption bands at 2839.20 and 2926 cm\(^{-1}\) that are asymmetric and symmetrical strain vibrations of CH\(_3\) and CH\(_2\) of the CTAB aliphatic chain [23]. The absorption band 3621.59 represents the deformation and strain vibration of the OH group, and this band indicates the presence of weak molecules in TiO\(_2\). This property is required in photocatalysis because the OH group can react with holes and prevent the recombination of electron–hole pairs [31,32].

3.3 SEM analysis

The morphology in Figure 6a shows a non-uniform lump of particles. However in Figure 6b, the particles are seen to be distributed, and no streaking occurs. This is due to the interaction between CTAB particles and hydroxyl-Al cations inserted into bentonite, between these ions and the bentonite layer, thus causing the composition of the material, which mainly consists of a layer of bentonite [33].

Figure 6d shows the number of holes on the silicate surface almost entirely in the etched TiO\(_2\)-pillared bentonite. This surface implies that the TiO\(_2\)-pillared bentonite has many holes etched into the silicate externally and internally. In addition, the agglomeration due to the addition of CTAB forms a block layer [34]. The morphology of the pillared bentonite has a flat layered structure, with a large number of holes between the lamellae, showing good adsorption capacity. The phenomenon of delamination can be ascribed to the fact that TiO\(_2\) as a pillaring agent enters the bentonite interlayers, which can destroy the original structure and enlarge the distance between the layers [35]. In contrast to Figure 6c, which shows a smooth surface consisting of silicates, the surface has not been scratched with chemical reagents on TiO\(_2\) [36]. The number of elements in Table 4 obtained from the EDS analysis is in accordance with that obtained with XRF [37].

3.4 XRF analysis

XRF analysis of Bt and Bt–CTAB in Table 5 shows that SiO\(_2\) and Al\(_2\)O\(_3\) are the main constituents of bentonite, with small amounts of other metal oxides [38]. Decreasing the content of SiO\(_2\) and Al\(_2\)O\(_3\) with the addition of CTAB is in accordance with the results of previous studies [39].
Figure 6: Morphology of (a) Bt, (b) Bt–CTAB, (c) TiO$_2$, and (d) TiO$_2$–Bt–CTAB.
Meanwhile, the TiO2 content in the TiO2 sample synthesized by the sol–gel process was 87.89%, followed by 11.6% Cl. The Cl content probably comes from the TiCl4 precursor. In TiO2–Bt–CTAB, the content of TiO2 and SiO2 is 65.22 and 17.4%, respectively. The dominant amount of TiO2 content is probably caused by the distortion of TiO2 in bentonite.

A discussion of the physical properties obtained and the novelty of this article compared to previous studies are presented in Table 6.

4 Conclusion

Physical analysis of TiO2 and bentonite nanocomposite shows that these materials can be used as adsorbents. The results of the analysis with XRD show a decrease in the particle size of the nanocomposite. In addition, the FTIR shows deformation and strain vibration of the OH group, and these bands indicate the presence of water molecules that are weakly bound to TiO2. This characteristic is needed in photocatalysis because the OH group

Table 3: XRD analysis of Bt, Bt–CTAB, TiO2, TiO2–Bt–CTAB

Date	Bt	Bt–CTAB	TiO2	TiO2–Bt–CTAB
Crystal system	Trigonal (hexagonal axes)	Trigonal (hexagonal axes)	Tetragonal	Trigonal (hexagonal axes)
Space group	P 3 1 2 1 (152)	P 3 2 1 15	P42/mmm (136)	P 3 1 2 1 (152)
Unit cell	a = 4.6764 Å	a = 4.9160 Å	a = 4.594 Å	a = 4.8120 Å
c = 5.2475 Å	c = 5.6054 Å	c = 2.9589 Å	c = 5.3270 Å	
Density	3.01200 g cm⁻³	2.646 g cm⁻³	4.284 g cm⁻³	2.80200 g cm⁻³
2θ angle	26.47	26.48	27.67	27.37
Maximum d_hkl	011	110	110	011
Intensity I/I₀	1100	999	1000.0	100
Lattice distance d (Å)	3.2061	3.3663	3.2485	3.2823
2θ angle	19.81	30.78	32.74	31.15
Maximum d_hkl	100	100	211	100
Intensity I/I₀	1000	865.03	480.0	204.6
Lattice distance d (Å)	4.0499	2.9051	1.6876	4.1673
2θ angle	24.19	24.6	36.12	
Maximum d_hkl	200	100	101	112
Intensity I/I₀	527.3	456.40	436.0	107.5
Lattice distance d (Å)	2.0294	3.6537	2.4876	1.7854
2θ angle	34.82	19.68	41.09	54.51
Maximum d_hkl	110	011	111	012
Intensity I/I₀	375.8	371.77	171.0	103.0
Lattice distance d (Å)	2.3382	4.5113	2.1875	2.2443

Table 4: The number of elements detected through EDX analysis

No.	Elements	Bt wt(%)	Bt–CTAB wt(%)	TiO2 wt(%)	TiO2–Bt–CTAB wt(%)
1	Ti	0.70	—	34.91	40.82
2	O	51.40	47.33	45.66	30.00
3	Ba	—	—	15.21	25.35
4	F	—	—	—	1.39
5	Si	27.57	23.52	4.21	1.13
6	Al	11.24	14.77	—	0.90
7	Cl	—	—	—	0.39
8	Ag	1.37	4.37	—	—
9	Fe	3.53	3.61	—	—
10	Mg	2.38	2.85	—	—
11	Na	1	2.50	—	—
12	K	0.81	1.07	—	—
can react with holes and prevent the recombination of electron–hole pairs. SEM results describe the pillarization of TiO$_2$ on bentonite, which was confirmed by XRF.

Acknowledgment: This research was supported by the Ministry of Education and Culture, Research and Technology for basic research (PD) based on the Implementation Contract No. 003/UN33.8/PL/DRPM-DJ/2021, July 15, 2021.

Funding information: This research was supported by the Ministry of Education and Culture, Research and Technology for basic research (PD) based on the Implementation Contract No. 003/UN33.8/PL/DRPM-DJ/2021, July 15, 2021.

Author contributions: Nurdin Bukit: writing – original draft, writing – review and editing, methodology, and formal analysis; Eva Marlina Ginting: writing – original draft, formal analysis, visualization, and project administration; Erna Frida: formal analysis, visualization, and project administration; Bunga Fisikanta Bukit: formal analysis, visualization, and project administration

Conflict of interest: Authors state no conflict of interest.

References

[1] Shukla, R. K., V. Sharma, A. K. Pandey, S. Singh, S. Sultana, and A. Dhawan. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. *Toxicology in Vitro*, Vol. 25, 2011, pp. 231–241.

[2] Baan, R., K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, V. Cogliano, et al. Carcinogenicity of carbon black, titanium dioxide, and talc. *The Lancet Oncology*, Vol. 7, 2006, pp. 295–296.

[3] Amri, F., N. Septiani, M. Rezki, M. Iqbal, Y. Yamauchi, D. Golberg, et al. Mesoporous TiO$_2$-based architectures as promising sensing materials towards next-generation biosensing applications. *Journal of Materials Chemistry B*, Vol. 9, No. 5, 2021, pp. 1189–1207.

[4] Montazer, M. and S. Seifollahzadeh. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO$_2$ treated textile through enzymatic pretreatment. *Photochemistry and Photobiology*, Vol. 87, 2011, pp. 877–883.
bentonite for removing rhodamine b. *Indian Journal of Chemical Technology*, Vol. 27, No. 2, 2020, pp. 116–125.

[35] Liao, H., X. L. Xu, W. Q. Chen, Q. J. Shi, W. M. Liu, and X. Wang. Ni$_2$P catalysts supported on TiO$_2$-pillared sepiolite for thiophene hydrodesulfurization. *Wuli Huaxue Xuebao/Acta Physico-Chimica Sinica*, Vol. 28, No. 12, 2012, pp. 2924–2930.

[36] Supeno, M. and R. Siburian. Effect of TiO$_2$ for generation of H$_2$/O$_2$ gases, based on splited water and UV as initiator. *Oriental Journal of Chemistry*, Vol. 34, No. 2, 2018, pp. 973–980.

[37] Baek, M., J. Hong, J. Yoon, and J. Suh. Photocatalytic degradation of humic acid by Fe-TiO$_2$ supported on spherical activated carbon with enhanced activity. *International Journal of Photoenergy*, Vol. 2013, 2013, pp. 4–9.

[38] Rabie, A. M., E. A. Mohammed, and N. A. Negm. Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. *Journal of Molecular Liquids*, Vol. 254, No. 2018, 2018, pp. 260–266.

[39] Çiftçi, H., B. Ersoy, and A. Evcin. Purification of Turkish bentonites and investigation of the contact angle, surface free energy and zeta potential profiles of organo-bentonites as a function of CTAB concentration. *Clays and Clay Minerals*, Vol. 68, No. 3, 2020, pp. 250–261.

[40] Wang, S. Q., J. M. Li, and W. B. Liu. Effect of F, V and Mn co-doping on the catalytic performance of TiO$_2$-pillared bentonite in the photocatalytic denitrification. *Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology*, Vol. 48, No. 9, 2020, pp. 1131–1139.

[41] Laysandra, L., M. Sari, F. E. Soetaredjo, K. Foe, J. N. Putro, A. Kurniawan, et al. Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. *Heliyon*, Vol. 3, 2017, id. 00488. doi: 10.1016/j.heliyon.2017.e00488.