Abstract. Let \(p \) be a prime, \(k \) a finite extension of \(\mathbb{F}_p \) of cardinal \(q \), \(l \) a finite extension of \(k \) of group \(\Sigma = \text{Gal}(l|k) \), and \(T \) a subgroup of \(l^\times \). Using the method of "little groups", we classify irreducible \(\mathbf{F}_p \)-representations of the group \(G = T \times_q \Sigma \), the twisted product of \(\Sigma \) with the \(\Sigma \)-module \(T \). We then use these results to classify irreducible continuous \(\mathbf{F}_p \)-representations of the profinite group \(\text{Gal}(\bar{K}|K) \) of \(K \)-automorphisms of the maximal galoisian extension \(\bar{K} \) of a \(p \)-field \(K \) with residue field \(k \).

1. Introduction

(1) Let \(p \) be a prime and let \(K \) be a \(p \)-field, namely a local field with finite residue field of characteristic \(p \). Let \(\bar{K} \) be a maximal galoisian extension of \(K \). Let \(V \) be the maximal tamely ramified extension of \(K \) in \(\bar{K} \). All representations of the profinite groups \(\text{Gal}(\bar{K}|K) \) and \(\text{Gal}(V|K) \) appearing below are assumed to be continuous. The ramification group \(\text{Gal}(\bar{K}|V) \), which is a pro-\(p \)-group, acts trivially on any irreducible \(\mathbf{F}_p \)-representation of \(\text{Gal}(\bar{K}|K) \). So classifying irreducible \(\mathbf{F}_p \)-representations of \(\text{Gal}(\bar{K}|K) \) comes down to classifying irreducible \(\mathbf{F}_p \)-representations of \(\text{Gal}(V|K) \), which comes down to classifying irreducible \(\mathbf{F}_p \)-representations of \(\text{Gal}(L|K) \) for every finite tamely ramified galoisian extensions \(L \) of \(K \).

(2) For such \(L \) with group of \(K \)-automorphisms \(G = \text{Gal}(L|K) \) and inertia subgroup \(G_0 \), the projection \(G \to G/G_0 \) need not have a section, but \(L \) has finite unramified extensions \(L' \) for which the corresponding projections \(G' \to G'/G_0' \) (where \(G' \) is \(\text{Gal}(L'|K) \) and \(G_0' \) is its inertia subgroup) do have sections; the smallest such \(L' \) is the one whose degree over \(L \) is equal to the order in \(H^2(\text{Gal}(L'/K), G_0') \) of the class of the extension \(G \) of \(G/G_0 \) by the \((G/G_0) \)-module \(G_0 \); see for example [3, Lemma 2.3.4]. So it is enough to understand irreducible \(\mathbf{F}_p \)-representations of \(G \) in this

\textit{MSC2010} : Primary 11F80, 11S99, 20C20

\textit{Keywords} : Local fields, Galois representations, Little groups
split case; with a heavy heart, we choose a section of $G \to G/G_0$ in what follows.

(3) Our treatment, which is completely canonical and somewhat simpler than in the literature, is better adapted to this arithmetic application because the inertia group G_0 does not come with a generator, only a canonical character $\theta: G_0 \to l^\times$, where l is the residue field of L. It is based upon §7 of [9, p. 205] and the method of “little groups” of Wigner and Mackey as exposed in §8.2 of [11, p. 62]; I thank my friend UK Anandavardhanan for pointing out the latter reference. The material is also worked out in §4.1 of [7, p. 329].

(4) Let k be the residue field of K; the quotient $\Sigma = G/G_0$ can be identified with $\text{Gal}(l|k)$, which has the canonical generator $\sigma: x \mapsto x^q$ ($x \in l$), where $q = \text{Card} k$. The conjugation action of Σ on G_0 is given by $\sigma.t = t^q$ for every $t \in G_0$; the character θ is Σ-equivariant. To determine the F_p-representations of G, we may forget the fields K and L, and retain only p, k, l, and $e = \text{Card} G_0$. This is done in §2. In §3, we return to these local fields and make an observation which will be useful elsewhere [5].

2. Irreducible F_p-representations of little groups

(5) Notation. Let us restart and rename. Fix a prime number p, fix a finite extension k of F_p, put $q = \text{Card} k$, fix a finite extension l of k, put $f = [l : k]$, and denote by $\sigma: x \mapsto x^q$ ($x \in l$) the canonical generator of $\Sigma = \text{Gal}(l|k)$. Let $T \subset l^\times$ be a subgroup, let e be the order of T (so that $q^f \equiv 1 \pmod{e}$), and let $\theta: T \to l^\times$ be the inclusion (viewed as a character). Finally, let $G = T \times q \Sigma$ be the twisted product of Σ with the Σ-module T (for the galoisian action $\sigma.t = \sigma t \sigma^{-1} = t^q$ ($t \in T$)). Notice that the action is trivial, or equivalently G is commutative, if and only if $q \equiv 1 \pmod{e}$.

(6) The problem. Classify irreducible F_p-representations of G.

(7) Notation. For every character $\chi: T \to l^\times$, we denote by d_χ the order of χ and by r_χ (resp. s_χ) the order of the image \bar{p} (resp. \bar{q}) in $(\mathbb{Z}/d_\chi\mathbb{Z})^\times$. Put $T_\chi = T/\text{Ker}(\chi)$ and let Σ_χ be the kernel of the action of Σ on T_χ; the group Σ_χ is generated by σ^{s_χ}, and s_χ is also the size of the Σ-orbit $\bar{\chi}$ of χ. We have the subgroup $G_\chi = T \times q \Sigma_\chi$ of G and the quotient $\bar{G}_\chi = T_\chi \times \Sigma_\chi$ of G_χ which is commutative by construction. The numbers d_χ, r_χ, s_χ, the groups Σ_χ, G_χ, \bar{G}_χ, and some characters of these groups to be defined presently, depend only on the Σ-orbit $\bar{\chi}$ of χ; we keep the notation light by writing χ in the subscript instead of $\bar{\chi}$. Let χ also stand for the faithful character $T_\chi \to l^\times$ coming from χ.

2
(8) We begin by determining the irreducible \bar{l}-representations of G, where $\bar{l} = l(\sqrt{t}), f' = fp^{-v_p(f)}$, and $v_p(f)$ is the exponent of p in the prime decomposition of f; they will turn out to be absolutely irreducible. These representations will be parametrised by pairs $(\bar{\chi}, \lambda)$, where $\bar{\chi} \subset \text{Hom}(T, l^\times)$ is the Σ-orbit of a character $\chi: T \to l^\times$ (for the action $\sigma: \chi \mapsto \chi^q$) and $\lambda \in \bar{l}^\times$ is an element of order dividing fs_χ^{-1}. This is achieved in several steps.

(9) The \bar{l}-representation $\rho_{\bar{\chi}, \lambda}$ of G associated to a pair $(\bar{\chi}, \lambda)$. Choose $\chi \in \bar{\chi}$, and let $\psi_{\chi, \lambda}: \Sigma_\chi \to \bar{l}^\times$ be the unique character such that $\psi_{\chi, \lambda}(\sigma^{s_\chi}) = \lambda$. View the character $\chi \otimes \psi_{\chi, \lambda}$ of $G_\chi = T \times_{q} \Sigma_\chi$ as a character of $G_\chi = T \times_{q} \Sigma_\chi$, and take the induced representation $\rho_{\bar{\chi}, \lambda} = \text{Ind}_{G_\chi}^G(\chi \otimes \psi_{\chi, \lambda})$.

(10) To see that $\rho = \rho_{\bar{\chi}, \lambda}$ depends only on the pair $(\bar{\chi}, \lambda)$, and for later use, let us make all this explicit. The quotient G/G_χ is generated by the image of σ, so it can be identified with $Z/s_\chi Z$. By definition, the space $\text{Ind}_{G_\chi}^G(\chi \otimes \psi_{\chi, \lambda})$ has an \bar{l}-basis $(b_i)_{i \in Z/s_\chi Z}$ on which the action of G_χ is given by

$$\rho(t)(b_i) = \chi(\sigma^i, t)b_i = \chi^q(t)b_i \quad (t \in T, \ i \in Z/s_\chi Z),$$

and $\rho(\sigma^{s_\chi})(b_i) = \lambda b_i$. This action is extended to G by $\rho(\sigma)(b_i) = b_{i+1}$ for $i \neq -1$ (mod. s_χ) and $\rho(\sigma)(b_{-1}) = \lambda b_0$, which gives back, as it should, the action of σ^{s_χ}. Now it is clear that $\rho_{\bar{\chi}, \lambda}$ depends only on $(\bar{\chi}, \lambda)$.

(11) The \bar{l}-representation $\rho_{\bar{\chi}, \lambda}$ is absolutely irreducible and determines the pair $(\bar{\chi}, \lambda)$. Write $\rho = \rho_{\bar{\chi}, \lambda}$. None of the T-stable lines in ρ (the s_χ lines on which T acts respectively via the characters χ^{q^i}, which are distinct for distinct $i \in Z/s_\chi Z$) is stable under σ unless $s_\chi = 1$, in which case $G_\chi = G$ and $\rho = \chi \otimes \psi_{\chi, \lambda}$, so ρ is irreducible in every case, and in fact absolutely irreducible because the same argument works over any finite extension of \bar{l}. Note that the Σ-orbit $\bar{\chi}$ can be recovered from ρ because $\rho|_T = \bigoplus_{\eta \in \bar{\chi}} \eta$, and then $\lambda \in \bar{l}^\times$ can be recovered because $\rho(\sigma^{s_\chi})$ is the homothety of ratio λ.

(12) Every irreducible \bar{F}_p-representations ρ of G come from a pair $(\bar{\chi}, \lambda)$ as in (8). Here \bar{F}_p is a maximal galoisian extension of \bar{l}. Let $\bar{T} = T/\text{Ker}(\rho|_T)$, so that ρ comes from an (irreducible) \bar{F}_p-representation $\bar{\rho}$ of $\bar{G} = \bar{T} \times_{\bar{q}} \Sigma$ whose restriction to \bar{T} is faithful. Let P be the intersection of the Sylow p-subgroups of \bar{G}. The image $\rho(P)$ is trivial because P is a normal p-subgroup of \bar{G}, the characteristic of \bar{l} is p, and $\bar{\rho}$ is irreducible [11, Chapitre 8, Proposition 26]. So $\bar{\rho}$ comes from a representation $\bar{\rho}$ of G/P. Let Σ' denote the kernel of the action of Σ on \bar{T}, so that the subgroup $\bar{G}' = \bar{T} \times \Sigma'$ of \bar{G} is commutative. As $G' \cap P$ is the Sylow p-subgroup of Σ',
the order of $\hat{\rho}(G')$ divides the order of \tilde{l}^\times, by our definition of \tilde{l}. It follows that $\hat{\rho}|_{G'}$ is a direct sum of characters $G' \to \tilde{l}^\times$ such that the restriction to T of at least one of which — call it ξ — is faithful.

(13) View $\chi = \xi|_T$ as a character of T. Since the order e of T divides the order $q^l - 1$ of l^\times, we have $\chi(T) \subset l^\times$. Also, $\text{Ker}(\chi) = \text{Ker}(\rho|_T)$, so that $G' = G_\chi = T_\chi \times \Sigma_\chi$, in the previous notation. Recall that s_χ is the size of the Σ-orbit $\bar{\chi}$, and that Σ_χ is generated by σ^{s_χ}. Let $b_0 \neq 0$ be a vector (in the representation space of ρ) on which G_χ acts through ξ, and define $\lambda \in \tilde{l}^\times$ by $\xi(\sigma^{s_\chi})(b_0) = \lambda b_0$. We claim that $\rho = \rho_{\bar{\chi}, \lambda}$.

(14) Put $b_i = \rho(\sigma^i)(b_0)$ for $i \in [0, s_\chi[$. Note that $\rho(\sigma)(b_{s_\chi-1}) = \lambda b_0$ and

$$
\rho(t)(b_i) = \rho(t \sigma^i)(b_0) = \rho(\sigma^i t^{q^l i})(b_0) = \chi^{q^l}(t)b_i \quad (t \in T, i \in [0, s_\chi[).
$$

The characters χ^{q^l} are distinct for distinct $i \in [0, s_\chi[$, therefore the family $(b_i)_{i \in [0, s_\chi[}$ is linearly independent. Also, the subspace generated by the b_i is G-stable, and in fact equal to $\rho_{\bar{\chi}, \lambda} = \text{Ind}_{G_\chi}^G(\chi \otimes \psi_{\chi, \lambda})$ as described earlier. Since ρ is irreducible, we must have $\rho = \rho_{\bar{\chi}, \lambda}$, as claimed. Therefore:

(15) The set of irreducible \tilde{l}-representations of $G = T \times_q \Sigma$ is in natural bijection with the set of pairs $(\bar{\chi}, \lambda)$ consisting of the Σ-orbit $\bar{\chi}$ of a character $\chi : T \to l^\times$ and an element $\lambda \in \tilde{l}^\times$ of order dividing $f_{s_\chi-1}$, where $s_\chi = \text{Card} \bar{\chi}$. The pair $(\bar{\chi}, \lambda)$ gives rise to the induced representation $\rho_{\bar{\chi}, \lambda} = \text{Ind}_{G_\chi}^G(\chi \otimes \psi_{\chi, \lambda})$, where $G_\chi = T \times_q \Sigma_\chi$, Σ_χ is generated by σ^{s_χ}, and $\psi_{\chi, \lambda} : \Sigma_\chi \to \tilde{l}^\times$ is the character such that $\psi_{\chi, \lambda}(\sigma^{s_\chi}) = \lambda$. All these representations are absolutely irreducible.

(16) Some natural characters. The group T comes with the faithful character $\theta : T \to l^\times$, so G has a natural absolutely irreducible \tilde{l}-representation $\rho_{\bar{\theta}, 1}$ of degree equal to the order of $\bar{q} \in (\mathbb{Z}/e\mathbb{Z})^\times$. We could also consider θ^d for various divisors d of e. Notice that θ allows us to identify $\text{Hom}(T, l^\times)$ with $\mathbb{Z}/e\mathbb{Z}$, and the Σ-orbit of $\chi = \theta^i$ with the Σ-orbit of $i \in \mathbb{Z}/e\mathbb{Z}$ (for the action $\sigma \mapsto (j \mapsto jq)$).

(17) Let us now come to irreducible \mathbb{F}_p-representations π of G, which are also treated in [7, Proposition 4.2]. The group $\Phi = \text{Gal}(\tilde{l}/\mathbb{F}_p)$ acts on the set of irreducible \tilde{l}-representations ρ of G by conjugation. Let $\varphi : x \mapsto x^p$ ($x \in \tilde{l}$) be the canonical generator of Φ. If ρ corresponds to the pair $(\bar{\chi}, \lambda)$ as above, then $\varphi \rho$ corresponds to the pair $(\bar{\chi}^p, \lambda^p)$. The set of irreducible \mathbb{F}_p-representations π of G is in natural bijection with the set of Φ-orbits R for this action ; π and R correspond to each other if $\pi \otimes_{\mathbb{F}_p} \tilde{l} = \bigoplus_{\rho \in R} \rho$. If so, then $\deg \pi = (\deg \rho)(\text{Card} R)$, for any $\rho \in R$. Regarding this kind of “galoisian descent”, see for example [1, V.60].
(18) Let us compute Card R, or the size of the \(\Phi \)-orbit \(\overline{(\chi, \lambda)} \) of any pair \((\chi, \lambda)\) such that \(\rho_{\chi, \lambda} \in R \). Recall that \(d_\chi \) is the common order of every \(\chi \in \bar{\chi} \), and that \(r_\chi \) (resp. \(s_\chi \)) is the order of \(\overline{\bar{\rho}} \) (resp. \(\bar{\bar{q}} \)) in \((\mathbb{Z}/d_\chi \mathbb{Z})^\times \). (We already know that \(\deg \rho_{\chi, \lambda} = s_\chi \)). The size of the \(\Phi \)-orbit of the \(\Sigma \)-orbit \(\bar{\chi} \) is \(r_\chi s_\chi^{-1} \), so the number of \(\mathbb{F}_p \)-conjugates of the pair \((\bar{\chi}, \lambda)\) (or the size of the \(\Phi \)-orbit \(R = \overline{(\bar{\chi}, \lambda)} \)) is \(\text{lcm}(r_\chi s_\chi^{-1}, w_\lambda) \), where \(w_\lambda \) is the degree \([\mathbb{F}_p(\lambda) : \mathbb{F}_p] \) (which obviously depends only on the \(\Phi \)-orbit of \(\lambda \)), and the degree of \(\pi \) is \(s_\chi \text{lcm}(r_\chi s_\chi^{-1}, w_\lambda) = \text{lcm}(r_\chi, s_\chi w_\lambda) \). Therefore:

(19) The set of irreducible \(\mathbb{F}_p \)-representations \(\pi \) of \(G = T \times_q \Sigma \) is in natural bijection with the set of \(\Phi \)-orbits \(R = \overline{(\bar{\chi}, \lambda)} \) of pairs \((\bar{\chi}, \lambda)\) consisting of the \(\Sigma \)-orbit \(\bar{\chi} \) of a character \(\chi : T \to \ell^\times \) and an element \(\lambda \in \bar{\ell}^\times \) of order dividing \(fs_\chi^{-1} \), where \(s_\chi \) is the order of \(\bar{\bar{q}} \) in \((\mathbb{Z}/d_\chi \mathbb{Z})^\times \) and \(d_\chi \) is the order of \(\chi \), under the correspondence \(\pi \otimes_{\mathbb{F}_p} \bar{\ell} = \oplus_{(\bar{\chi}, \lambda) \in R} \rho_{\bar{\chi}, \lambda} \), where \(\rho_{\bar{\chi}, \lambda} \) is the absolutely irreducible \(\bar{\ell} \)-representation of \(G \) attached to \((\bar{\chi}, \lambda) \). If \(t_\chi \) denotes the order of \(\bar{\rho} \in (\mathbb{Z}/d_\chi \mathbb{Z})^\times \) and \(w_\lambda = [\mathbb{F}_p(\lambda) : \mathbb{F}_p] \), then \(\deg \pi = \text{lcm}(r_\chi, s_\chi w_\lambda) \).

(20) The field of definition. Let \(k_{\bar{\chi}, \lambda} \subset \bar{\ell} \) be the extension of \(\mathbb{F}_p \) of degree \(\text{lcm}(r_\chi s_\chi^{-1}, w_\lambda) \). It follows for similar reasons that there is a unique (absolutely) irreducible \(k_{\bar{\chi}, \lambda} \)-representation \(\rho'_{\bar{\chi}, \lambda} \) which gives back \(\rho_{\bar{\chi}, \lambda} \) upon changing the base to \(\bar{\ell} \) in the sense that \(\rho'_{\bar{\chi}, \lambda} \otimes_{k_{\bar{\chi}, \lambda}} \bar{\ell} = \rho_{\bar{\chi}, \lambda} \); we call \(k_{\bar{\chi}, \lambda} \) the field of definition of \(\rho_{\bar{\chi}, \lambda} \) and henceforth think of \(\rho_{\bar{\chi}, \lambda} \) as a \(k_{\bar{\chi}, \lambda} \)-representation.

(21) We denote the irreducible \(\mathbb{F}_p \)-representation of \(G \) associated to the \(\Phi \)-orbit \(\overline{(\bar{\chi}, \lambda)} \) by \(\pi_{\bar{\chi}, \lambda} \). The degree of \(\pi_{\bar{\chi}, \lambda} \) is \(r_\theta \) (the order of \(\bar{\rho} \) in \((\mathbb{Z}/e\mathbb{Z})^\times \)). The notation is somewhat ambiguous because it doesn’t refer to the group \(G \). Indeed, if \(l' \) is a finite extension of \(l \), then the same \(\Phi \)-orbit \((\bar{\chi}, \lambda) \) also gives rise to an irreducible \(\mathbb{F}_p \)-representation \(\pi' = \pi_{\bar{\chi}, \lambda} \) of the group \(G' = T \times_q \Sigma' \), where \(\Sigma' = \text{Gal}(l'[k]) \). The saving grace is that if we use the galoisian projection \(\gamma : \Sigma' \to \Sigma \) to view \(G \) as a quotient of \(G' \), then \(\pi' = \pi \circ \gamma \).

(22) We give some examples which will be useful later [5] in classifying quartic extensions \(E \) of a dyadic field \(K \) which have no intermediate quadratic extensions. The set of such \(E \) was parametrised in [4, 14] by the set of pairs \((\rho, D)\), where \(\rho \) is an irreducible \(\mathbb{F}_2 \)-representation of \(\text{Gal}(\bar{K}/K) \) (and \(\bar{K} \) is the maximal galoisian extension of \(K \)) and \(D \) is an \(\mathbb{F}_2^\times \)-extension of the fixed field \(\mathbb{F}_\rho \) of the kernel of \(\rho \) such that \(D \) is galoisian over \(K \) and the resulting conjugation action of \(\text{Gal}(\mathbb{F}_\rho/K) \) on \(\text{Gal}(D|\mathbb{F}_\rho) \) is given by \(\rho \). If so, the group \(\text{Gal}(\hat{E}|K) \) (where \(\hat{E} \) is the galoisian closure of \(E \) over \(K \)) is given by \(\mathbb{F}_2^2 \times_{\rho} \text{Gal}(\mathbb{F}_\rho/K) \) [4]. Here we merely construct all
degree-2 irreducible \mathbb{F}_2-representations ρ of certain groups G and identify the twisted product $\mathbb{F}_2^2 \times_\rho G$. Why it suffices to consider only these G was explained in [4, 15] and will also become clear at the very end.

(23) A $(\mathbb{Z}/3\mathbb{Z})^e$-example. Take $p = 2$, $f = 3$, $e = 1$, so that $T = \{1\}$, and $G = \Sigma = \mathbb{Z}/3\mathbb{Z}$. We have $\bar{l} = l(\sqrt[3]{1})$. The only $\chi : T \rightarrow l^\times$ is the trivial character 1; for it, there are three possible λ, namely $1, \sqrt[3]{1}$ and $\sqrt[3]{1}^2$. So we get three \bar{l}-characters, namely $\rho_{1,1}$, $\rho_{1,\sqrt[3]{1}}$ and $\rho_{1,\sqrt[3]{1}^2}$ of which the latter two are in the same Φ-orbit, and these are the only irreducible \bar{l}-representations of G. Thus we get two \mathbb{F}_2-representations, namely the trivial representation $\pi_{\bar{l},1}$ and the irreducible degree-2 representation $\pi = \pi_{\bar{l},\sqrt[3]{1}}$; the latter is not absolutely irreducible. The group $\mathbb{F}_2^2 \times_\pi G$ is isomorphic to A_4.

Or keep $p = 2$ and take $q \equiv 1 \pmod{3}$, $f = 1$, $e = 3$, so that $\bar{l} = l$. Then $G = T = A_3$ is cyclic of order 3, the three irreducible l-representations are $\rho_{1,1}$, $\rho_{3,1}$, $\rho_{2,1}$ (all three of degree 1) of which the latter two are in the same Φ-orbit, so the two irreducible \mathbb{F}_2-representations are $\pi_{1,1}$ (trivial) and $\pi = \pi_{3,1}$ (degree 2). The group $\mathbb{F}_2^2 \times_\pi G$ is isomorphic to A_4, as before.

(24) An S_3-example. Keep $p = 2$ and take $q \equiv -1 \pmod{3}$, $f = 2$, $e = 3$, so that $\Sigma = \mathbb{Z}/3\mathbb{Z}$, G is isomorphic to S_3, and $\bar{l} = l$. The only characters $T \rightarrow l^\times$ are 1 (of order $d = 1$) and θ, θ^2 (of order $d = 3$); they fall into two Σ-orbits, namely 1 (of size $s = 1$) and θ (of size $s = 2$). The only possible λ in either case is $\lambda = 1$. So $\rho_{1,1}$ (of degree 1) and $\rho_{3,1}$ (of degree 2) are the only two (absolutely) irreducible l-representations of G, each of which is its own Φ-orbit. Therefore there are two irreducible \mathbb{F}_2-representations of G, namely $\pi_{1,1}$ (the trivial representation) and $\pi = \pi_{3,1}$ (of degree 2). In fact, $\pi : G \rightarrow \text{GL}_2(\mathbb{F}_2)$ is an isomorphism, and $\mathbb{F}_2^2 \times_\pi G$ is isomorphic to S_4.

(25) Another general algebraic observation we need is the following lemma culled from [7, 4.9]; see also [8, p. 154]. Let G be any finite group, F any field, E a finite galoisian extension of F, W an absolutely irreducible E-representation of G such that the conjugates σW ($\sigma \in \text{Gal}(E|F)$) of W are all inequivalent. By galoisian descent, there is a unique (irreducible) F-representation V of G such that $V \otimes_F E = \bigoplus_{\sigma \in \text{Gal}(E|F)} \sigma W$. By Schur’s lemma, we have $\text{End}_{E[G]}(W) = E$ and also $\text{End}_{F[G]}(V) = E$.

Let $m > 0$ be an integer. For every $a = (a_i)_{i \in [1,m]}$ in E^m, we have the $F[G]$-morphism $\varphi_a : V \rightarrow V^m$ sending x to $(a_i x)_{i \in [1,m]}$; it is injective if and only if $a \neq 0$. For $a \neq 0$, the image $\varphi_a(V)$ depends only on the line $\tilde{a} \subset E^m$ generated by a.

6
(26) The map \(\bar{a} \mapsto \varphi_a(V) \) is a bijection of the set \(\mathbb{P}_{m-1}(E) \) of lines in \(E^m \) with the set of submodules of \(V^m \) isomorphic to \(V \). In particular, if \(E \) is finite and \(q = \text{Card}(E) \), then the number of such submodules is \((q^m - 1)(q-1)^{-1} \).

Proof. The map in question is injective: indeed, if \(a \neq 0 \) and \(b \neq 0 \) are in \(E^m \), and if \(\varphi_a(V) = \varphi_b(V) \), then (slightly abusing notation) \(\varphi_b^{-1} \circ \varphi_a \) is a \(G \)-automorphism of \(V \), so a homothety of some ratio \(\xi \in E^\times \), therefore \(a = \xi b \) and \(\bar{a} = \bar{b} \). Next, the map \(\bar{a} \mapsto \varphi_a(V) \) is surjective: if \(\psi : V \to V^m \) is an injective \(G \)-morphism, the maps \(\pi_i \circ \psi \), where the \(\pi_i : V^m \to V \) are the canonical projections, are homotheties of some ratio \(a_i \in E \) such that \(a = (a_i)_{i \in [1,m]} \) is \(\neq 0 \), and \(\psi = \varphi_a \).

3. Irreducible \(\mathbb{F}_p \)-representations over \(p \)-fields

(27) Let \(K \) be a \(p \)-field, \(k \) its residue field, \(q = \text{Card} k \), and let \(V_0 \) (resp. \(V \), resp. \(\bar{K} \)) be the maximal unramified (resp. tamely ramified, resp. galoisian) extension of \(K \). Put \(\Gamma_0 = \text{Gal}(V_0|K) \) and \(\Gamma = \text{Gal}(V|K) \). We have seen in the Introduction that every irreducible \(\mathbb{F}_p \)-representation of \(\text{Gal}(\bar{K}|K) \) factors through \(\Gamma \).

For every \(n > 0 \), put \(e_n = p^n - 1 \) and \(V_n = V_0(\sqrt[p^n]{\varpi}) \), where \(\varpi \) is a uniformiser of \(K \). It doesn’t matter which \(\varpi \) we choose because \(V_n \) is also obtained by adjoining the family \(\sqrt[p^n]{x} \) (indexed by \(x \in V_0^\times \)) to \(V_0 \). Every \(V_n \) is galoisian over \(K \); put \(\Gamma_n = \text{Gal}(V_n|K) \), so that \(V = \varprojlim V_n \) and \(\Gamma = \varprojlim \Gamma_n \). The salient quotients \(\Gamma_n \) of \(\Gamma \) have nothing to do with the ramification filtration on \(\Gamma \) which is quite simply \(\Gamma_0 \subset \Gamma \), where \(\Gamma_0 = \text{Gal}(V|V_0) \) is the inertia subgroup. If \(p = 2 \), then \(V_1 = V_0 \). Note that if \(K \) has characteristic 0, then the \(p \)-torsion subgroup \(pV_n^\times \) of \(V_n^\times \) has order \(p \) (because \(V_1 \) contains \(p^{1/2} \)).

(28) Note that \(V_n \) is the compositum of all finite extensions of \(K \) of ramification index dividing \(e_n \), so the indexing has something to do with ramification afterall. Note also that if \(a = v_p(q) \) is the exponent of \(p \) in \(q \), then \(V_a \) is the maximal tamely ramified abelian extension of \(K \).

(29) Let \(n > 0 \) be an integer. Every irreducible \(\mathbb{F}_p \)-representation of \(\Gamma \) of degree dividing \(n \) factors through the quotient \(\Gamma_n \) of \(\Gamma \).

Proof. Let \(\pi \) be such a representation, and let \(L \) be a finite unramified extension of the fixed field \(V^{\text{Ker}(\pi)} \) which is split over \(K \) in the sense the inertia subgroup \(G_0 \) of \(G = \text{Gal}(L|K) \) has a complement in \(G \); by hypothesis, \(\pi|_{G_0} \) is faithful. It suffices (27) to show that the ramification index \(e \) of \(L \) over \(K \) divides \(e_n \).
Let \(l \) be the residue field of \(L \). The filtration \(G_0 \subset G \) is split by hypothesis; the choice of a section \(G/G_0 \to G \) leads to an isomorphism of \(G \) with \(T \times_q \Sigma \), where \(\Sigma = \text{Gal}(l|k) \) and \(T \subset l^\times \) is the subgroup of order \(e \). Since \(\pi|_T \) is faithful, \(\chi|_T \) is faithful for any character \(\chi: T \to l^\times \) which occurs in \((\pi|_T) \otimes \tilde{l} \) as in (11). Therefore the order of \(\chi \) is \(e \). Let \(r \) be the order of \(\bar{p} \in (\mathbb{Z}/e\mathbb{Z})^\times \), so that \(p^r \equiv 1 \mod e \). Since \(n \) is a multiple of \(r \), we have \(p^n \equiv 1 \mod e \), and hence \(e \) divides \(e_n = p^n - 1 \).

(30) Since there are only finitely many irreducible \(\mathbb{F}_p \)-representations \(\pi \) of \(\Gamma \) of given degree \(n \) (because \(\Gamma \) is finitely generated and \(\text{GL}_n(\mathbb{F}_p) \) is finite), there are finite extensions \(M \) of \(K \) such that every irreducible \(\mathbb{F}_p \)-representation of \(\Gamma \) of degree \(n \) factors through \(\text{Gal}(M|K) \). For \(n = 1 \), the smallest possible \(M \) is clearly \(L_1 = K(\sqrt[p]{\overline{K}}) \), which was used in [2] (and in [6] in the characteristic-0 case); recently I’ve discovered that this observation was made already in [10, V.9].

(31) A partition. Notice that ramified irreducible \(\mathbb{F}_p \)-representations \(\pi \) of \(\Gamma \) of degree \(n > 0 \) can be partitioned into classes labelled by the divisors \(r \) of \(n \). The representation \(\pi \) belongs to the class labelled by \(r \) if \(r \) is the smallest (in the sense of divisibility) divisor of \(n \) such that \(\pi \) factors through \(\Gamma_r \); equivalently, \(r \) is the order of \(\bar{p} \in (\mathbb{Z}/e\mathbb{Z})^\times \), where \(e \) is the ramification index over \(K \) of the fixed field \(V^{\text{Ker}(\pi)} \). If \(p = 2 \), then the class of label 1 is \(\emptyset \) because \(\Gamma_1 = \Gamma_0 \) and \(\pi \) would be unramified.

(32) For every \(n > 0 \), \(K_n = K(\sqrt[s]{1}) \) is the unramified extension of \(K \) of degree equal to the order \(s_n \) of \(\bar{q} \in (\mathbb{Z}/e_n\mathbb{Z})^\times \); put \(L_n = K_n(\sqrt[s]{K_n^s}) \), so that \(L_n \subset V_n \) and indeed \(V_n = L_n V_0 \). Note that \(L_n \) is the maximal abelian extension of \(K_n \) of exponent dividing \(e_n \), so it is galoisian over \(K \); put \(G_n = \text{Gal}(L_n|K) \). We have

\[
V_0 = \lim_{\rightarrow} K_n, \quad V = \lim_{\rightarrow} L_n, \quad \Gamma = \lim_{\leftarrow} G_n.
\]

Note that if \(K \) has characteristic 0, then \(pL_n^\times \) has order \(p \) (because \(L_1 \) contains \(\sqrt[p-1]{-p} \)).

In the proof of the next proposition, we shall need to consider certain finite galoisian extensions \(M \) of \(K \). We denote the residue fields of \(K_n \) (resp. \(L_n \), resp. \(M \)) by \(k_n \) (resp. \(l_n \), resp. \(m \)). Note that \(L_n \) is split over \(K \) because \(L_n = L_{n,0}(\sqrt{\varpi}) \) for any uniformiser \(\varpi \) of \(K \), where \(L_{n,0} \) is the maximal unramified extension of \(K \) in \(L_n \). If \(M \) is unramified over \(L_n \), then \(M \) is also split over \(K \).

(33) Every irreducible \(\mathbb{F}_p \)-representation of \(\Gamma \) of degree dividing \(n \) factors through the finite quotient \(G_n = \text{Gal}(L_n|K) \) of \(\Gamma \).

Proof. Let \(\pi' \) be such a representation, and recall that it factors through \(\Gamma_n \) (28). Let \(M \) be a finite unramified extension of \(L_n \) such
that $H = \text{Gal}(M|K)$ has the property claimed for G_n; we have to show that $\text{Gal}(M|L_n) \subset \text{Ker}(\pi')$. Choose a uniformiser ϖ of K and identify H with $T \times q \text{Gal}(m|k)$ and G_n with $T \times q \text{Gal}(l_n|k)$ as above; these identifications are compatible with the galoisian projections $\gamma : H \to G_n$ and $\text{Gal}(m|k) \to \text{Gal}(l_n|k)$. The representation $\pi' = \pi_{\mu,\eta}$ of H in question is associated to the Φ-orbit of a pair $(\tilde{\eta},\mu)$ consisting of the $\text{Gal}(m|k)$-orbit of some character $\eta : T \to m^\times$ and some $\mu \in \tilde{m}^\times$ as in (19). We certainly have $\eta(T) \subset k^\times$, therefore $\tilde{\eta}$ can be viewed as the $\text{Gal}(l_n|k)$-orbit $\tilde{\chi}$ of a character $\chi : T \to l_n^\times$. Recall that the degree $w_\mu = [F_p(\mu) : F_p]$ divides n, therefore the order of μ divides e_n, and hence $\mu \in k_n^\times$; call it λ in this avatar. The Φ-orbit of this new pair $(\tilde{\chi},\lambda)$ gives a representation $\pi = \pi_{\chi,\lambda}$ of G_n, and π' factors through it ($\pi' = \pi \circ \gamma$), as in (21).

(34) Remark. We define the optimal quotient of Γ in degree n to be the smallest quotient of Γ through which every irreducible F_p-representation π of Γ of degree n factors. We also say that the corresponding extension M_n of K is the optimal extension in degree n; it is the compositum, over all π, of the extensions $V^{\text{Ker}(\pi)}$ of K. For $n = 1$, the quotient G_1 of Γ and the corresponding extension $L_1 = K(\sqrt[n]{K})$ of K are clearly optimal.

For $n > 1$, the extension M_n is introduced in [7] but we prefer working with L_n (which contains M_n by (33)) because L_n is very explicit, contains $\sqrt[n]{K}$ in characteristic 0, and it is split over K so that the general theory of little groups as explained above can be applied. Note that M_n contains the unramified extension of K of degree e_n and every totally ramified extension of K of degree dividing e_n. We haven’t checked whether $M_n = L_n$ in general.

(35) The $(\mathbb{Z}/3\mathbb{Z})$-, A_3- and S_3-examples. Consider the case $p = 2$ and $n = 2$, so that $e_2 = 3$. If $q \equiv 1$ (mod. 3), then we have $K_2 = K$ and $L_2 = K(\sqrt[3]{K})$, so that L_2 contains the unramified cubic extension and the three ramified cubic extensions (all three cyclic) of K. We thus get back the $(\mathbb{Z}/3\mathbb{Z})$- and A_3-examples of (23). If $q \equiv -1$ (mod. 3), then $[K_2 : K] = 2$, so that L_2 contains the unramified cubic extension and the unique S_3-extension (namely $K(\sqrt[3]{1}, \sqrt[3]{\varpi})$, where ϖ is a uniformiser) of K. We thus get back the $(\mathbb{Z}/3\mathbb{Z})$-example of (23) and the S_3-example of (24).

Bibliography

[1] Bourbaki (N). — Algèbre, Chapitres 4 à 7, Masson, Paris, 1981, 422 p.

[2] Dalawat (C). — Serre’s “formule de masse” in prime degree, Monatshefte Math. 166 (2012) 1, 73–92. Cf. arXiv:1004.2016v6.
[3] Dalawat (C) & Lee (JJ). — Tame ramification and group cohomology, J. Ramanujan Math. Soc. 32 (2017) 1, 51–74. Cf. arXiv:1305.2580v4.

[4] Dalawat (C). — Solvable primitive extensions, arXiv:1608.04673.

[5] Dalawat (C). — Wildly primitive extensions, arXiv:1608.04183.

[6] Del Corso (I) & Dvornicich (R). — The compositum of wild extensions of local fields of prime degree, Monatsh. Math. 150 (2007) 4, 271–288.

[7] Del Corso (I), Dvornicich (R) & Monge (M). — On wild extensions of a p-adic field, J. Number Theory 174 (2017), 322–342. Cf. arXiv:1601.05939.

[8] Doerk (K) & Hawkes (T). — Finite soluble groups, Walter de Gruyter & Co., Berlin, 1992. xiv+891 pp.

[9] Koch (H). — Classification of the primitive representations of the Galois group of local fields, Invent. Math. 40 (1977) 2, 195–216.

[10] Koch (H). — On the local Langlands conjecture, Séminaire de théorie des nombres de Grenoble 8 (1979-1980), 1–14.

[11] Serre (J-P). — Représentations linéaires des groupes finis, Hermann, Paris, 1978, 182 p.