Enhancement of Interfacial Superconductivity in the Eutectic System \(\text{Sr}_2\text{RuO}_4\)-Ru by Uniaxial Pressure

Hiroshi Yaguchia, b, Shunichiro Kittakaa and Yoshiteru Maenoa

aDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
bDepartment of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan

Abstract.
We have investigated effects of uniaxial pressure on superconductivity in the 3-K phase in the eutectic system \(\text{Sr}_2\text{RuO}_4\)-Ru. We have found a large enhancement of 3-K phase superconductivity particularly in volume fraction for both in-plane pressure \(P \parallel ab \) and the \(c \)-axis pressure \(P \parallel c \) in contrast to expectations for the 1.5-K phase in pure \(\text{Sr}_2\text{RuO}_4 \). Surprisingly, the effect of the in-plane pressure is even greater than that of the \(c \)-axis pressure. This could be related to the origin of the 3-K phase.

1. Introduction
\(\text{Sr}_2\text{RuO}_4 \) is the first layered perovskite superconductor without copper [1], isostructural to the cuprate high-temperature superconductor \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \). More importantly, taken key experiments together, it is now well believed that the superconductor \(\text{Sr}_2\text{RuO}_4 \) is a spin-triplet superconductor [2].

Amongst a number of remarkable features related to \(\text{Sr}_2\text{RuO}_4 \), an enhancement of the superconducting transition temperature \(T_c \) in the eutectic system \(\text{Sr}_2\text{RuO}_4\)-Ru is rather surprising. The original superconducting phase in pure \(\text{Sr}_2\text{RuO}_4 \) occurs with a sharp transition at a \(T_c \) of 1.5K, called the 1.5-K phase. However, the eutectic system, a two-phase composite structure of a single-crystalline \(\text{Sr}_2\text{RuO}_4 \) matrix and lamellar microdomains of ruthenium metal embedded in it (fig. 1), shows a broad superconducting transition with an enhanced onset of approximately 3 K, called the 3-K phase [3]. On further cooling, the 3-K phase transition is followed by the original superconducting transition in whole \(\text{Sr}_2\text{RuO}_4 \) (the 1.5-K phase). Several experimental facts suggest that 3-K phase superconductivity is filamentary and occurs in the \(\text{Sr}_2\text{RuO}_4 \) side of the interface between \(\text{Sr}_2\text{RuO}_4 \) and Ru [4, 5].

Whilst the origin of the 3-K phase still remains uncertain, Sigrist and Monien’s phenomenological theory [6] within the framework of Ginzburg Landau formalism, which assumes spin-triplet pairing similar to \(\text{Sr}_2\text{RuO}_4 \), successfully describes important aspects of the 3-K phase. Experimentally, the 3-K phase may be considered to be unconventional superconductivity since tunnelling measurements on S/N junctions at interfaces between \(\text{Sr}_2\text{RuO}_4 \) and Ru have observed zero bias conductance peaks [7, 8], which is a hallmark of unconventional superconductivity.

In the present work, we have investigated uniaxial pressure effects on the 3-K phase to obtain insight into the mechanism of the enhancement of the superconducting transition temperature associated with the 3-K phase.
2. Experimental

We used a uniaxial pressure cell with a SQUID (superconducting quantum interference device) magnetometer (MPMS, Quantum Design). The cell is piston-cylinder type, and is made of CuBe apart from the cylinder being made of oxygen-free copper to reduce the background signal. Applied pressures were determined from the forces applied to the samples at room temperature, which was confirmed to show a reasonable agreement with low-temperature pressure determined by the superconducting transitions of tin and lead [10]. SQUID measurements were performed in the order of increasing applied pressure for each sample. The samples used in the present study were grown by a floating-zone method [9] and chosen from a single growth batch. Approximate dimensions of the samples were 1.5 mm × 1.5 mm × 0.3 mm. Uniaxial pressure was applied almost parallel to the shortest dimension.

3. Results and Discussion

Figures 2(a) and (b) show the temperature dependence of the magnetisation (zero field cooling) of Sr$_2$RuO$_4$-Ru crystals for uniaxial pressure parallel to the a-axis ($P_{∥a}$) and to the c-axis ($P_{∥c}$), respectively. The applied DC field of was 2 mT and almost parallel to the direction of the applied pressure. In both figures, diamagnetic signals are observed, which are attributed to the superconductivity associated with the 3-K phase.

Let us compare the (apparent) volume fraction at the lowest temperature 1.8 K between figures 2(a) and (b). The volume fractions at 1.8 K for the $P_{∥a}$ and $P_{∥c}$ samples are about 0.4% and 0.3%, respectively, and are very close to each other. In both of the cases, the application of uniaxial pressure enhances the 3-K phase. However, the strength of the effect significantly differs. At a pressure of 0.4 GPa, in fact, these values increase to 13% (for $P_{∥a}$) and 1% (for $P_{∥c}$) . (Note that the vertical scales in figs. 2(a) and (b) differ by a factor of ten.)

Whilst uniaxial pressure experiments on the 1.5-K phase have not been reported as yet, hydrostatic pressure experiments on the original superconductivity in Sr$_2$RuO$_4$ (1.5-K phase) have been reported, yielding the pressure coefficient of the superconducting transition temperature $dT_c/dP \approx -0.2$ K/GPa [11, 12]. The basic relation in tetragonal symmetry

$$\frac{dT_c}{dP} = \frac{dT_c}{dP_{∥a}} + \frac{dT_c}{dP_{∥b}} + \frac{dT_c}{dP_{∥c}} = 2 \times \frac{dT_c}{dP_{∥a}} + \frac{dT_c}{dP_{∥c}},$$

consequently constrains at least either $dT_c/dP_{∥a}$ or $dT_c/dP_{∥c}$ to be negative, in contrast to results in the present study.
Figure 2. Temperature dependence of the DC magnetisation of Sr$_2$RuO$_4$-Ru in a field of 2 mT (zero field cooling) at different applied uniaxial pressures. (a) for pressure parallel to the a-axis. (b) for pressure parallel to the c-axis.

In addition to Eq. (1), the use of the Ehrenfest relation involving a discontinuity at T_c in a longitudinal elastic modulus observed in ultrasonic measurements has allowed the dependence of T_c on the uni-axial pressure along the a-axis ($dT_c/dP_{\|a}$) and that along the c-axis ($dT_c/dP_{\|c}$) to be determined to be negative and positive, respectively [13]. On theoretical grounds, this estimation is supported at least in a qualitative fashion. Under pressure along the c-axis, the γ-band (from the d_{xy} orbital) will be lowered relative to the α- and β-bands in energy. This causes the Fermi energy E_F to approach the van Hove singularity above the Fermi level, leading to an increase in the density of states at the Fermi level [14].

In the context of the above discussion, the results shown in fig. 2 are striking. Both $P_{\|a}$ and $P_{\|c}$ enhance the 3-K phase. Besides, the effect of in-plane pressure is even greater than that of c-axis pressure. The latter could be related to the origin of the 3-K phase: The enhancement of the superconductivity associated with the 3-K phase may be due to strain release at the interface between Sr$_2$RuO$_4$ and Ru, as suggested by Sigrist and Monien in ref. [6]. The in-plane pressure will affect the Ru-Ru lattice constant in the ab-plane directly whilst the c-axis pressure will affect it only indirectly.
4. Summary
We have investigated effects of uniaxial pressure on the interfacial superconductivity in the eutectic system Sr$_2$RuO$_4$-Ru. We have observed that both $P_{\parallel ab}$ and $P_{\parallel c}$ enhance 3-K phase superconductivity in volume fraction, in contrast to expectations for pure Sr$_2$RuO$_4$. The effect of the in-plane pressure is even greater than that of c-axis pressure. This might suggest the importance of strain release at the interface between Sr$_2$RuO$_4$ and Ru in the 3-K phase.

Acknowledgements
We thank K. Takizawa, N. Takeshita and M. Sigrist for their supports and discussions. This work was supported by the Grant-in-Aid for the 21st Century COE program "Center for Diversity and Universality in Physics" and the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. It was also supported by Grants-in-Aid for Scientific Research from MEXT and from the Japan Society for the Promotion of Science (JSPS).

References
[1] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532
[2] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[3] Maeno Y, Ando T, Mori Y, Ohmichi E, Ikeda S, Nishizaki S and Nakatsuji S 1998 Phys. Rev. Lett. 81 3765
[4] Ando T, Akima T, Mori Y and Maeno Y 1999 J. Phys. Soc. Jpn. 68 1651
[5] Yaguchi H, Wada M, Akima T, Maeno Y and Ishiguro T 2003 Phys. Rev. B 67 214519
[6] Sigrist M and Monien H 2001 J. Phys. Soc. Jpn. 70 2409
[7] Mao Z Q, Nelson K D, Jin R and Liu Y 2001 Phys. Rev. Lett. 87 037003
[8] Kawamura M, Yaguchi H, Kikugawa N, Maeno Y and Takayanagi H 2005 J. Phys. Soc. Jpn. 74 531
[9] Mao Z Q, Maeno Y and Fukazawa H 2000 Mat. Res. Bull. 35 1813
[10] Smith T F and Chu C W 1967 Phys. Rev. 159 353
[11] Shirakawa N, Murata K, Nishizaki S, Maeno Y and Fujita T 1997 Phys. Rev. B 56 7890
[12] Forsythe D, Julian S R, Bergemann C, Pugh E, Steiner M J, McMullan G J, Nakamura F, Haselwimmer R K W, Walker I R, Saxena S S, Lonzarich G G, Mackenzie A P, Mao Z Q and Maeno Y 2002 Phys. Rev. Lett. 89 166402
[13] Okuda N, Suzuki T, Mao Z Q, Maeno Y and Fujita T 2002 J. Phys. Soc. Jpn. 71 1134
[14] Nomura T and Yamada K 2002 J. Phys. Soc. Jpn. 71 1993