for aminoglycosides and all neonatal antibacterial agents. SAARs were compared using the NHSN Statistics Calculator.

Results. For third generation cephalosporins, there were 385 observed antimicrobial days (OAD) and 115 expected antimicrobial days (EAD) in the pre-implementation period compared to 597 OAD and 228 EAD in the post implementation period. This resulted in a SAAR of 3.34 and 2.62, respectively; a reduction of 22% (p = 0.001). For aminoglycosides, there were 713 OAD and 584 EAD compared to 1617 OAD and 1155 EAD. This resulted in a SAAR of 1.22 and 1.4; an increase of 15% (p = 0.002). For all neonatal antibacterial agents, there were 2716 OAD and 1739 EAD compared to 5321 OAD and 3488 EAD. This resulted in a SAAR of 1.56 and 1.55; indicating no change in use (p = 0.70). See Table 1 for results.

Table 1. Antibiotic Use

Pre-implementation	Post-implementation	Difference	p-value				
OAD	EAD	SAAR	OAD	EAD	SAAR		
Cephalosporins	385	119	33.94	297	228	1.22	>0.01
Aminoglycosides	713	584	1.22	1617	1155	1.34	0.002

Conclusion. While this initiative resulted in decreased use of third generation cephalosporins, this was not associated with a decrease in antibiotic use overall. Use of SAARs in the NICU may be helpful in both identifying opportunities to improve antibiotic use and monitoring antibiotic use over time.

Disclosures. Steven Smoke, PharmD, Karius (Advisor or Review Panel member) Shionogi (Scientific Research Study Investigator, Advisor or Review Panel member)
Methods. A retrospective, quasi-experimental cohort study was performed at Carolinas Medical Center in hospitalized patients with PLA with an HPB and/or infectious diseases consult. The primary outcome was antipseudomonal beta-lactam days of therapy (DOT) per 1000 patient days (PD) in the pre-versus post-intervention group. Secondary outcomes included rates of treatment failure at 90 days, 90-day all-cause and abscess-related hospital readmission, C. difficile and multi-drug resistant organism (MDRO) colonization at 90 days from diagnosis, and hospital length of stay (LOS). Additional a priori subgroup analyses of duration of therapy, treatment failure, all-cause and abscess-related readmissions were also conducted based on surgical intervention.

Results. A total of 93 patients were included, 49 patients in the pre-intervention group and 44 patients in the post-intervention group. Baseline characteristics were similar between the groups. The majority of liver abscesses were unilocular and monomicrobial. Anti-pseudomonal beta-lactam DOT per 1000 PD decreased by 13.8% (507.4 versus 437.5 DOT/1000 PD). Treatment failure occurred in 30.6% of pre-intervention patients and 18.2% of post-intervention patients (p = 0.165). Patients in the post-intervention group were discharged a median of 2.4 days sooner than the pre-intervention period (12.2 days vs. 9.8 days, p = 0.159). No significant differences resulted in 90-day readmission rates or 90-day C. difficile or MDRO rates.

Table 1. Primary Outcome for Patients with Pyogenic Liver Abscesses Treated Pre- and Post-Antibiotic Stewardship Algorithm

Table 2. Secondary Outcomes for Patients with Pyogenic Liver Abscesses Treated Pre- and Post-Antibiotic Stewardship Algorithm

Conclusion. The implementation of a PLA treatment and management algorithm led to a decrease in anti-pseudomonal beta-lactams without impacting clinical outcomes and a trend towards decreased LOS.

Disclosures. All Authors: No reported disclosures