Variation in nutritional components in roots from ahipa (Pachyrhizus ahipa (Wedd.) Parodi) accessions and an interspecific hybrid (P. ahipa × P. tuberosus (Lam.) Spreng.).

Eduardo O. Leidi-Montes¹, Youssef Ech-Liach¹, Sabina Rossini-Oliva², Marten Sørensen³

¹ IRNAS-CSIC, Av. de la Reina Mercedes, 10, 41012 Sevilla, Spain (eo.leidi@gmail.com) (ORCID: 0000-0003-3425-2030) (E.O.L.-M.); (ussf.frkout@gmail.com) (Y.E.-L.).
² Biología Vegetal y Ecología, University of Seville, Pabellón de Brasil. Paseo de las Delicias s/n. Sevilla, Spain. (sabinaruiz.es) (ORCID: 0000-0001-6774-4723) (S.R.-O.)
³ Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Sobi/Plen-KU, Thorvaldsensvej 40, 3., DK-1871 Frederiksberg C, Denmark (M.S.)

* Correspondence: ms@plen.ku.dk

Abstract: Among the many neglected underutilized species, tuberous Andean root crops like the ahipas (Pachyrhizus ahipa) constitute a promising alternative for increasing diversity in nutrient sources and food security at a regional level. In this study, we present the content of some functional compounds in tuberous roots from several ahipa accessions and the progenies of the interspecific hybrid X207 (P. ahipa × P. tuberosus). A significant objective was to determine protein and free amino acids in the roots to evaluate their food quality as protein supply. The interspecific hybrids have been found to possess the root quality to provide the crop with a higher dry matter content. The high dry matter content of the P. tuberosus Chuin materials is retained in the root quality of the hybrids. Food functional components like carbohydrates, organic acids, and proteins were determined in several ahipa accessions and a stable (non-segregating) progeny of the interspecific hybrid, X207. The X207 roots showed a significantly higher dry matter content and a lower content in soluble sugars, but no significant differences were found in starch content or organic acids compared to the ahipa accessions. About the root mineral contents, Fe and Mn concentrations in X207 were significantly raised compared to the average of ahipa accessions. Among the ahipa and the hybrid, no prominent differences in protein content or protein amino acids were found, being both partially defective in providing sufficient daily intake of some essential amino acids. Root weight, a central component of root yield, was significantly higher in X207, but thorough field studies are required to substantiate the hybrid’s superior yield performance.

Keywords: leguminous root crop, high quality protein, dry matter yield.

1. Introduction

In the Andean region, several crops have been improved by local farmers for centuries. However, they may yet be considered neglected and underutilized species (NUS). At present, they are subjected to a gradual loss of genetic variability or even verging extinction because of their reduced demand and the competition of readily marketable crops [1]. Potentially, they may contribute to regional food security while providing a wide range of functional elements for healthy diets [2,3]. For a long time, these crops have been almost ignored, but more recently, new interest appeared for being highly nutritious and sources of functional compounds [4,5,6]. Furthermore, they constitute essential components of farm agrobiodiversity, playing a significant role by
increasing food security and yield stability either by reducing pests impact [7] or providing nutrients to soils, e.g. N2-fixing legumes [8].

Among these NUS, the ahipa (*Pachyrhizus ahipa* [Wedd.] Parodi), is a legume with a tuberous root, that has been used from the time of the Incas and still cultivated locally in small areas in Southern Bolivia [9]. The species provides valuable starch for food or industrial applications [10–14]. The available ahipa landraces have shown competitive yield figures for Mediterranean irrigation agriculture compared to traditional starch sources, e.g. potato (*Solanum tuberosum* L.), and sugar-beet (*Beta vulgaris* L. subsp. *vulgaris* Cultivar group Altissima Group) [15]. The ahipa roots might also provide essential amino acids, vitamins, sugars, minerals, and antioxidants with a low content of anti-nutrients (phytic acid, oxalate, tannins) [15,16]. In a previous study, Forsyth and Shewry [10] did not find storage proteins in ahipa roots but proteins related to tuber metabolism and growth. Recently, root proteins have been characterized, and their possible food applications have been suggested [17].

Attempts to increase the crop dry matter yield have led to interspecific hybridization experiments involving the lowland South American species *P. tuberosus* (Lam.) Spreng., a related species complex where holding higher dry matter contents in their roots [18]. It should be stressed that the Chuin materials are the only cultivar group within the *P. tuberosus* complex known to possess this trait [19]. Breeding could improve crop competitiveness even further by delivering cultivars with desirable agronomic traits, e.g. reduced flowering, shorter cycles, and mono-tuberous roots. At present, ahipa may be an attractive food to complement other traditional sources, which might be defective in some functional elements. In this report, we have looked at the content of energy sources (starch, sugars, and organic acids) and have extended the analysis of structural compounds like protein amino acids.

2. Materials and Methods

Plant material

Ahipa genotypes evaluated in this work were six different accessions of *P. ahipa* (AC216, AC229, AC521, AC524, AC525, AC526) and an F7 progeny from a hybrid between *P. ahipa* AC524 and *P. tuberosus* TC361 Chuin genotype designated as X207. Hybrid seeds (F1), supplied by M. Sørensen, were multiplied annually for seven years and continuously selected for root size and dry matter content; i.e. during the seven years of cultivation, the progenies were segregated according to leaf and root morphology, shoot/root ratio, and root dry matter content. In this study, only F6 seeds of one line of the X207 hybrid, which remained stable regarding the desired traits (root size, high dry matter content), were used. The seeds were planted in 25-liter pots filled with potting mix and irrigated with drip-lines from April to October 2019. A peat-based rhizobial inoculant (PAC51) was used for coating seeds before planting [20]. Three replicates for each accession and hybrid progeny were grown outdoors at the Jardin Arvense (University of Seville). A slow-release fertilizer (5 g per pot, of 16-7-15 (2MgO), Floramid Permanent, Compo) was provided during the growth cycle. Traditional flower pruning recommended for increasing root yield [21] was not performed. Root harvest took place 210 days after sowing. Roots and shoots were separated and weighed; then after washing and peeling, the roots were diced for dry matter determination by drying in an oven at 65°C for 48 hours. Root samples of equal size were frozen and lyophilized for later determination of minerals and organic compounds.

Minerals

The concentration of N in the samples was determined after Kjeldahl digestion in a Technicon Autoanalyzer. The remaining macro and micronutrients content was analysed after acid digestion with HNO3 by ICP (Varian ICP 720-ES).
Starch analyses

Starch was measured following sample dilution and hydrolysis recommended in the R-Biopharm Starch kit (Boehringer Mannheim). Ground samples were dissolved with DMSO and 8 M HCl by incubation at 60°C for one h, cooled quickly, and adjusted to pH 4–5. Starch hydrolysis was performed with amylglucosidase to D-glucose. D-glucose was then determined by NADPH formation after incubation with hexokinase and glucose-6-phosphate-dehydrogenase. Starch concentration was then corrected by subtracting the initial content of soluble sugars in samples as recommended by the kit supplier, which substantially reduced the final starch concentration. The apparent content of amylose in starch from different accessions was determined according to Washington et al. [22].

Sugars

Sugars were measured in samples after extraction with hot water (90°C, one h). Enzymatic kits from R-Biopharm (Boehringer Mannheim) for sucrose, D-glucose, and D-fructose were used.

Organic acids

Malate and citrate were extracted from lyophilized samples in water and determined using enzymatic kits (L-malic and citric acid, R-Biopharm). Ascorbate content was analyzed in fresh or frozen samples. Ascorbate was assayed with a similar kit (L-ascorbic acid, R-Biopharm), but concentration was significantly reduced after freezing and thawing in comparison with fresh samples, and therefore recorded values may only be considered indicative.

Protein hydrolysis and amino acid analysis

For a complete analysis of root protein amino acids and free amino acids, only one accession of ahipa (AC521) and the X207 hybrid were used. Peeled roots were stored deep-frozen (-70°C) before drying in a vacuum freeze dryer. Freeze-dried samples were dissolved in 6.0 M HCl with D, L-α aminobutyric acid as internal standard. The samples in HCl acid were gassed with nitrogen and sealed in hydrolysis tubes under nitrogen, then incubated in an oven at 110°C for 24 h. Derivatisation and chromatography of amino acids were performed as in Alaiz et al. [23]. Dried samples of protein hydrolysates were dissolved in 1 M sodium borate buffer (pH 9) and derivatized with diethyl etoxymethyleneamonolate. Separation was performed in a reversed-phase column using sodium acetate and acetonitrile as eluents [23,24]. Tryptophan was measured separately by HPLC after alkaline hydrolysis of samples [25].

Protein determinations

Protein contents in the samples were estimated as the concentration of amino acids after the protein hydrolysis (in g amino acids 100 g dried sample-1) minus the concentration of free amino acids. In addition, estimation of root protein contents from Kjeldahl N concentration was also calculated using the conversion factor 5.1 reported by Dini et al. [17].

Statistical analysis

From each determination, data were analyzed using a statistical package (Statistica) to perform ANOVAs in a completely randomized model and further post-hoc comparisons between genotypes. Data means and their corresponding standard deviation are presented in Tables 1–5, 7 and 8. When F values were not statistically significant among ahipa accessions, they were pooled as ahipa replicates to compare with the hybrid.
3. Results

Variation in root morphology, dry matter content, and starch yield

Tuberous roots showed a significant variation in morphology among accessions (Fig. 1), from a single tuber (mono-tuberous root) to a divided root system (multi-tuberous root) with few thickened secondary roots. The X207 hybrid plants showed larger-sized tuberous roots from all ahipa accessions, except for ahipa AC229 (Fig. 1, Table 1). Root dry matter content in ahipa accessions ranged from 16.7 to 20.1 % (Table 1), while it reached up to 25.9 % in the hybrid progeny. Meanwhile, root starch content varied from 28.3 to 35.5%, with no significant differences between genotypes. The amylose content in root starches ranged from 9.6 to 13.5 (Table 1), but significant differences were found between ahipas (mean 10.8%) and the X207 hybrid (13.5%).

Figure 1. Root morphology in representative samples of the ahipa accessions and the interspecific hybrid X207.
Table 1. Root weight (g plant⁻¹) and root dry matter, starch and amylose content (in % dry weight) in six different ahipa accessions and the X207 *P. ahipa* × *P. tuberosus* hybrid. Mean ± standard deviation. Below, significance of Snedecor’s F for the genotypic source of variation.

Genotype	Root weight	Dry matter	Starch	Amylose
AC216	121.7 ± 67.4	20.1 ± 2.9	30.8 ± 11.4	10.7 ± 1.1
AC229	416.6 ± 88.8	18.4 ± 1.8	29.6 ± 2.2	11.4 ± 1.1
AC521	287.9 ± 23.2	17.7 ± 0.8	32.0 ± 1.9	10.5 ± 0.9
AC524	189.2 ± 38.8	19.1 ± 1.4	35.5 ± 6.1	10.8 ± 1.4
AC525	327.6 ± 107.1	16.7 ± 2.1	32.6 ± 6.9	9.6 ± 1.3
AC526	85.1 ± 40.2	19.9 ± 2.3	30.5 ± 1.2	11.8 ± 1.8
X207	429.4 ± 184.5	25.9 ± 1.8	28.3 ± 4.7	13.5 ± 2.2
ANOVA	Root weight	Dry matter	Starch	Amylose
Genotype	P<0.05	P<0.01	ns	P<0.01

ns, not significant.

Sugars

The root concentration of soluble sugars (sucrose and glucose) showed significant differences between the ahipas and the hybrid (Table 2), with the latter presenting a lower sugar concentration. No fructose was detected in the samples.

Table 2. Sucrose and glucose contents in roots of six different accessions and the *P. ahipa* × *P. tuberosus* hybrid X207 (in % dry weight). Mean ± standard deviation. Significance of Snedecor’s F for the genotypic source of variation.

Accession	Sucrose	Glucose
AC216-145	7.08 ± 0.27	2.33 ± 0.13
AC229-150	9.34 ± 1.30	3.50 ± 0.47
AC521	10.72 ± 0.84	4.27 ± 0.33
AC524	8.54 ± 0.89	3.46 ± 0.37
AC525-171	8.82 ± 0.49	2.11 ± 0.13
AC526	10.21 ± 0.60	3.94 ± 0.25
X207	6.22 ± 0.52	1.55 ± 0.12
ANOVA	Sucrose	Glucose
Genotype	P<0.001	P<0.01

Organic acids

No significant differences in malate, citrate and ascorbate contents were found between ahipa accessions and X207 (Table 3).

Table 3. Malate and citrate contents in roots of six different accessions and the X207 hybrid (*P. ahipa* × *P. tuberosus*). Means in % dry weight ± standard deviation. Significance of Snedecor’s F for the genotypic source of variation.
Protein and amino acids

Total root protein concentration of the ahipa and the hybrid was somewhat similar when converting Keldahl N into protein content using Dini’s factor or calculated from the sum of total amino acids after acidic protein digestion (Tables 4 and 5). A similar conclusion may be drawn from the assessment of roots protein quality (Table 6), where both AC521 (the only ahipa accession analyzed) and the interspecific hybrid X207 were defective in sulfur amino acids (cysteine and methionine) and tryptophan. However, they provided more than half of the nutritional requirements of several essential amino acids like leucine, lysine, threonine, and aromatic amino acids (phenylalanine and tyrosine). Furthermore, the analysis of free amino acids in the root flesh showed asparagine as the predominant amino compound in both the ahipa and the hybrid (Table 7).

Table 4.Root protein content in accession AC521 and the hybrid X207 (*P. ahipa × P. tuberosus*). Lipids and fibers determined only in ahipa AC521. Mean ± standard deviation. Values in g · 100 g dry matter⁻¹.

Genotype	Proteins¹	Proteins²	Lipids	Fibers
AC521	4.15 ± 0.04	4.87 ± 1.07	0.54 ± 0.02	7.91 ± 0.24
X207	4.36 ± 0.09	6.24 ± 1.77	nd	nd

¹, protein concentration calculated as the total amount of amino acids determined after protein digestion minus the free amino acids determined in similar samples.

², protein concentration calculated using the N to protein conversion factor of 5.1 [17].

nd, not determined.

Table 5. Protein amino acids in roots of ahipa AC521 and the interspecific hybrid X207. Means in g · 100 g dry weight⁻¹ ± standard deviation.

Amino Acid	AC521	X207
Asp + Asn	2.23 ± 0.017	3.29 ± 0.007
Glu + Gln	0.37 ± 0.002	0.30 ± 0.016
Table 6. Quality assessment of root proteins based on their essential amino acid scoring pattern from ahipa AC521 and interspecific hybrid P. ahipa × P. tuberosus X207.

Amino acid	pattern	AC521	X207
His	27	110	122
Ile	35	102	88
Leu	75	62	44
Lys	73	62	57
SAA²	35	23	17
AAA³	73	70	64
Thr	42	66	67
Trp	12	19	16
Val	49	101	114

¹Tissue amino acid pattern based on amino acid composition of whole-body protein (in mg · g protein⁻¹). Source: Milward [26].
²SAA, sulphur amino acids (met+cys); ³AAA, aromatic amino acids (Phe+Tyr)

Table 7. Free amino acids in roots of ahipa AC521 and the interspecific P. ahipa × P. tuberosus hybrid X207. Means in g · 100 g dry weight⁻¹ ± standard deviation.

Amino acid	AC521	X207
Asp	0.099 ± 0.004	0.100 ± 0.001
Glu	0.066 ± 0.002	0.065 ± 0.000
Asn	0.616 ± 0.018	1.097 ± 0.011
Ser	0.035 ± 0.000	0.030 ± 0.001
Gln	0.005 ± 0.000	0.000 ± 0.000
His	0.017 ± 0.001	0.023 ± 0.001
Gly 0.010 ± 0.000 0.009 ± 0.000
Thr 0.010 ± 0.001 0.031 ± 0.000
Arg 0.040 ± 0.001 0.134 ± 0.001
 Ala 0.016 ± 0.000 0.006 ± 0.000
Pro 0.000 ± 0.000 0.000 ± 0.000
Tyr 0.007 ± 0.002 0.015 ± 0.000
Val 0.031 ± 0.001 0.044 ± 0.005
Met 0.001 ± 0.002 0.000 ± 0.000
Cys 0.000 ± 0.000 0.000 ± 0.000
Ile 0.019 ± 0.001 0.024 ± 0.000
Trp 0.008 ± 0.001 0.000 ± 0.000
Leu 0.007 ± 0.000 0.016 ± 0.000
Phe 0.013 ± 0.001 0.010 ± 0.000
Lys 0.006 ± 0.000 0.018 ± 0.000

Minerals
From all the mineral elements determined in roots (Table 8), statistically, significant differences only were found in Fe and Mn concentration between the ahipa accessions and the X207 hybrid, which showed a higher concentration in both nutrients.

Genotype	K (g · 100 g dry matter⁻¹)	Ca (g · 100 g dry matter⁻¹)	Mg (g · 100 g dry matter⁻¹)	P (g · 100 g dry matter⁻¹)	S (g · 100 g dry matter⁻¹)
Ahipas	0.82 ± 0.06	0.08 ± 0.01	0.08 ± 0.01	0.16 ± 0.01	0.12 ± 0.02
X207	0.79 ± 0.11	0.13 ± 0.03	0.08 ± 0.01	0.19 ± 0.02	0.15 ± 0.03

Genotype	Fe (mg · kg dry matter⁻¹)	Mn (mg · kg dry matter⁻¹)	Cu (mg · kg dry matter⁻¹)	Zn (mg · kg dry matter⁻¹)	B (mg · kg dry matter⁻¹)
Ahipas	24.9 ± 2.1	2.3 ± 0.9	1.1 ± 0.3	8.4 ± 1.2	4.8 ± 0.5
X207	35.7 ± 3.6	6.7 ± 1.5	0.9 ± 0.6	10.3 ± 2.0	6.0 ± 0.8
	Co	Mo	Ni	V	Na
Ahipas	0.43 ± 0.1	1.8 ± 0.4	1.1 ± 0.1	0.3 ± 0.1	0.1 ± 0.0
X207	0.47 ± 0.1	2.5 ± 0.8	1.1 ± 0.2	0.2 ± 0.1	0.2 ± 0.1

4. Discussion
The interspecific hybrid showed higher root weight and a superior dry matter content compared to the different ahipa accessions. Interestingly, its sugar content was lower than in the ahipa accessions, but starch accumulation did not show significant differences between genotypes. Protein contents were relatively similar between ahipa and X207, as it was the composition of protein amino acids, defective in both cases in
essential sulfur amino acids. However, roots from X207 showed a significantly higher accumulation of Fe and Mn, whereas the content of other minerals was similar.

The hybridization of ahipa with a Chuin genotype of *P. tuberosus* proved to be a successful way of increasing root dry matter content in the ahipa species, as previously reported [18]. Although root dry matter content in the hybrid was significantly higher than in the evaluated ahipa accessions, other reports found significantly greater dry matter values in progenies of interspecific crossings [27]. In X207, root dry matter content was somewhat similar to the dry matter content of Chuin genotypes reported by Grüneberg et al. [28]. Interestingly, some ahipa accessions and the hybrid produced a significant high root yield despite not performing flower pruning. Starch contents in *P. ahipa* and X207 were higher than reported values of 9.1% for the cultivated *Pachyrhizus* relative, *P. erosus* (L.) Urb., or Mexican yam bean [29], species widely distributed and cultivated mainly in Central America and Southeast Asia [9]. The amylose content in X207 was higher than the amylose content in ahipas, but still, it was significantly lower than in jicama (*P. erosus*) (approx. 24%) [30] or other root crops like cassava (*Manihot esculenta* Crantz) [31]. Thus, amyllopectin, the main component of the stored starch in ahipas and X207, may provide interesting applications from the food to plastic industry [13,32].

Root sugars, which provide the characteristic sweet flavor of ahipa, were at a lower concentration in X207 (Table 2). The most popular use of ahipa roots is either as a fruit [33] or as fresh juice in urban markets consumed as a folk medicine [34]. Roots may supply from 8.8 ± 2.6 (X207) to 10.6 ± 2.1 (mean among ahipa accessions) mg of ascorbate in 100 g fresh weight, a concentration in the range provided by yambean or potato [29,35]. Malate and citrate contents (Table 3) reached values similar to other root or tuber crops [3,36].

Protein contents in the *Pachyrhizus* roots (Table 4) were significantly higher than in other roots crops used for human consumption as dietary energy sources [37]. The protein content in roots was not remarkably high. However, it was among values found in other root and tuber crops cultivated in the Andean region like potato, racacha (*Arracacia xanthorrhiza* Bancer), yacón (*Smallanthus sonchifolius* (Poeppl.) H.Rob.), cassava, or achira (*Canna indica* L.) [2,4,10,36]. For a human diet, the supply and composition of essential amino acids are deficient in sulphuric amino acids and tryptophan (Tables 4 and 5). Hence, the necessary essential amino acids may be acquired from other plant or animal sources [38]. In both ahipa and the X207 hybrid, the primary amino acid found in proteins was aspartate (Table 4), as it was also reported in proteins isolated from market-purchased ahipa roots [17]. The relatively high concentration of free amino acids provided by fresh roots (Table 6), where the amide asparagine was predominant, followed by the amino acids glutamate and arginine (Table 7), should not be despised for their nutritional, functional values. The role of non-essential amino acids in humans is a matter of interest for improving health like arginine as immuno-stimulant [39] or asparagine and its role in avoiding apoptosis when cellular glutamine-deficiency is induced by human tumors [40].

Mineral contents in roots are good sources for macro and micronutrients (Table 8) comparable to potato or other Andean root and tuber crops [3,36].
From an agronomic perspective, the interspecific hybrid X207 and a few of the ahipa accessions assessed in this study may indeed provide economic root yields if cultivated extensively without requiring the labour intensive field operation of flower pruning [41]. In addition, the dry matter yield obtained from X207 roots is similar to that of potatoes, and it may alter the DM content of other root and tuber crops, cassava and sweet potato (*Ipomoea batatas* (L.) Lam.) [42] after selection and appropriate management.

The tuberous roots of this genus provide a valuable food source to compensate for nutritional imbalances in the diet in different regions of the world [43,44]. They are also an alternative source of fresh products for the development of new food products, e.g. gluten-free bread, cookies and food additives [12,14] or even industrial uses like, e.g. biodegradable films [13,32].

Supplementary Materials: N/A

Author Contributions: Conceptualization, E.O.L-M.; design of the study and supervision, E.O.L.-M. and S.R.-O.; a collection of materials and maintenance of the field experiment Y.E.-L. and E.O.L.-M.; data acquisition Y.E.-L. and E.O.L.-M.; data curation and statistical analysis E.O.L.-M. and S.R.-O.; interpretation of results and drafting the first manuscript E.O.L.-M., S.R.-O. and M.S.; Writing, review and final editing E.O.L.-M. and M.S.; Funding acquisition E.O.L.-M. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: Partial funds from the Latincrop project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable, a review of research from the scientific literature has been used.

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgements: Director of Jardín Arvense, Cátedra Adama, University of Seville.

References

1. Jacobsen, S.E.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Using our agrobiodiversity: plant-based solutions to feed the world. *Agron. Sustain. Dev.* 2015 35, 1217–1235. https://doi.org/10.1007/s13593-015-0325-y
2. Leidi, E.O.; Monteros-Altamirano, A.; Mercado, G.C.; Rodríguez, J.P.; Ramos, A.; Alandia, G.; Sørensen, M.; Jacobsen, S.-E. Andean roots and tubers as sources of functional foods. *J. Funct. Foods* 2018 51, 86–93. https://doi.org/10.1016/j.jff.2018.10.007
3. Choquechambi, L.A.; Callisaya, I.R.; Ramos, A.; Bosque, H.; Mújica, A.; Jacobsen, S.E.; Sørensen, M.; Leidi, E.O. Assessing the nutritional value of root and tuber crops from Bolivia and Peru. *Foods* 2019 8, 526; https://doi.org/10.3390/foods8110526.
4. Espin, S.; Villacrés, E.; Brito, B. Caracterización físico-química, nutricional y funcional de raíces y tubérculos andinos. In: Raíces y tubérculos andinos: Alternativas para la conservación y uso sostenible en el Ecuador, Barrera, V.H., Tapia, C.G., Monteros, A.R., eds. pp. 91–116. INIAP-CIP, Ecuador, 2004. https://repositorio.iniap.gob.ec/bitstream/41000/3264/1/iniapsccd55p91.pdf
5. Graefe, S.; Hermann, M.; Manrique, I.; Golombe, S.; Buerkert, A. Effects of post-harvest treatments on the carbohydrate composition of yacon roots in the Peruvian Andes. *Field Crops Res.* 2004 86, 157–165. https://doi.org/10.1016/j.fcr.2003.08.003
6. Ojansivu, I.; Ferreira, C.L.; Salminen, S. Yacon, a new source of prebiotic oligosaccharides with a history of safe use. *Trends Food Sci. Technol.* 2011 22, 40–46. https://doi.org/10.1016/j.tifs.2010.11.005
7. Jacobsen S.-E.; Serensen M.; Pedersen S.M.; Weiner, J. Genetically modified crops versus agro-biodiversity — which strategy should we adopt to feed the world’s population? *Agron. Sustain. Dev.* 2013 33(4), 651–662. https://doi.org/10.1007/s13593-013-0138-9

8. Rodríguez, D.N.; Serensen, M.; Leidi, E.O. Ahipa, *Pachyrhizus ahipa*: a legume with edible roots. *Legum. Perspect.* 2020 19, 15–16. http://www.ias.cscis.es/grainlegumesmagazine/ legum_perspect_19.pdf

9. Serensen, M.; Grüneberg, W.J.; Ørting, B. Ahipa (*Pachyrhizus ahipa* (Wedd.) Parodi). In: Andean Tubers and Tubers: ahipa, arracacha, maca and yacon. Hermann M., Heller J., eds. 1997, pp 13–73. IPGRI, Rome.

10. Forsyth, J.L.; Shewry, P. Characterization of the major proteins of tubers of yam bean (*Pachyrhizus ahipa*), *J. Agric. Food Chem.* 2002 50 1939–1944. https://doi.org/10.1021/jf010117u

11. Doporto, M.C.; Mugridge, A.; García, M.A.; Viña, S.Z. *Pachyrhizus ahipa* (Wedd.) Parodi roots and flour: Biochemical and functional characteristics. *Food Chem.* 2011 126 1670–1678. https://doi.org/10.1016/j.foodchem.2010.12.053

12. Doporto, M.C.; Sacco, F.; Viña, S.Z.; Garcia M.A. Quality and technological properties of gluten-free biscuits made with *Pachyrhizus ahipa* flour as a novel ingredient. *Food Nutr. Sci.* 2017 8, 70–83. https://doi.org/10.4236/fns.2017.811005

13. López, O.V.; Viña, S.Z.; Pachas, A.N.A.; Sisterna, M.N.; Rohatsch, P.H.; Mugridge, A.; Fassola, H.E.; Garcia, M.A. Composition and food properties of *Pachyrhizus ahipa* roots and starch. *Int. J. Food Sci. and Technol.* 2010 45, 223–233. https://doi.org/10.1111/j.1365-2621.2009.02125.x

14. Malgor, M.; Viña, S.Z.; Dini, C. Root starches enriched with proteins and phenolics from *Pachyrhizus ahipa* roots as gluten-free ingredients for baked goods. *Int. J. Food Technol.* 2019 55(4), 1763–1772 https://doi.org/10.1111/i.jift.14457

15. Leidi, E.O.; Cobo, J.; Rodriguez-Navarro, D.N.; Fernández, M.; Semedo, J.; Marques, N.; Matos, A.; Ørting, B.; Serensen, M.; Matos, M.C. Factors affecting root and seed yield in ahipa (*Pachyrhizus ahipa* (Wedd.) Parodi), a multipurpose legume crop. *Eur. J. Agron.* 2004 20(4), 395–403. https://doi.org/10.1016/s1161-0301(03)00043-1

16. Dini, C.; Doporto, M.C.; García, M.A.; Viña, S.Z. Nutritional profile and anti-nutrient analyses of *Pachyrhizus ahipa* roots from different accessions. *Food Res. Int.* 2013 54, 255–261. https://doi.org/10.1016/j.foodres.2013.07.027

17. Dini, C.; Quiroga, A.V.; Viña, S.; Garcia, M.A. Extraction and Characterization of Proteins from *Pachyrhizus ahipa* Roots: an Unexploited Protein-Rich Crop. *Plant Foods Hum. Nutr.* 2021 76(1): 179–188. https://doi.org/10.1007/s11130-021-00890-y

18. Grüneberg, W.J.; Freynhagen-Leopold, P.; Delgado-Vázquez, O. A new yam bean (*Pachyrhizus spp.*) interspecific hybrid. *Genet. Resour. Crop. Ecol.* 2003 50, 757–766. https://doi.org/10.1017/S0014479703007461

19. Serensen, M. Yam bean (*Pachyrhizus DC*). Promoting the conservation and use of underutilized and neglected crops. 2 (Heller, J. series ed.) — Institute of Plant Genetics and Crop Plant Research, Gatersleben / International Plant Genetic Resources Institute, Rome, 1996, pp 1–141.[ISBN: 92-9043-282-9]

20. Washington, J.M.; Box, A.; Karakousis, A.; Barr, A.R. Developing waxy barley cultivars for food, feed and malt. *Barley Genet.* 2000 8, 303–306. https://www.researchgate.net/profile/ jennifer-washington-2/publication/235427616_Developing_Waxy_Barley_Cultivars_for_Food_Feed_and_Malt/links/0e415188b430729f00000000/Developing-Waxy-Barley-Cultivars-for-Food-Feed-and-Malt.pdf

21. Alaiž, M.; Navarro, J.L.; Girón, J.; Vioque, E. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. *J. Chromatogr.* 1992 591, 181–186. https://doi.org/10.1016/0021-9673(92)80236-n

22. Megías, C.; Cortés-Giraldo, I.; Girón-Calle, J.; Vioque, J.; Alaiž M. Determination of l-canavanine and other free amino acids in *Vicia dispera* (Fabaceae) seeds by precolumn derivatization using diethyl ethoxymethylenemalonate and reversed-phase high-performance liquid chromatography. *Talanta* 2015 131, 95–98, https://doi.org/10.1016/j.talanta.2014.07.077

23. Yust, M.M.; Pedroche, J.; Girón-Calle, J.; Vioque, J.; Millán, F.; Alaiž, M.; Yust, M.D.M. Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. *Food Chem.* 2004 85, 317–320, https://doi.org/10.1016/j.foodchem.2003.07.026

24. Millward, D.J. Amino acid scoring patterns for protein quality assessment. *Br. J. Nutr.* 2012 108(S2), S31–S43. https://doi.org/10.1017/S0007114512002462

25. Heider, B.; Tumwegamire, S.; Tukumahabwa, P.; Ndirigwe, J.; Bouwe, G.; Bararinya, A.; Hell, K.; Leclercq, J.; Lautié, E.; Wassens, R.; Burgos, G.; Zum Felde, T.; Thiele, G.; Grüneberg W. Nutritional improvement of yam bean and sustainability of farming systems in Central and West Africa. African Crop Science Conference Proceedings, (Uganda), 2011 10, 93–95. ISSN 1023-070X. https://hdl.handle.net/10568/67719

26. Grüneberg, W.J.; Büttner, G.; Delgado-Licon, E. Protein and starch quality of yam bean tubers. In: Eucarpia, International Symposium on Breeding of Protein and Oil Crops, 1–4 April 1998, Pontevedra, Spain, (1998) pp 95–97.

27. Noman, A.S.M.; Hoque, M.A.; Haque, M.M.; Pervin, F.; Karim, M.R. Nutritional and anti-nutritional components in *Pachyrhizus erosus* L. tuber. *Food Chem.* 2007 102, 1112–1118. https://doi.org/10.1016/j.foodchem.2006.06.055

28. Stevenson, D.G.; Jane, J.; Inglett, G.E. Characterisation of jicama (Mexican Potato) (*Pachyrhizus erosus* L. Urban) starch from taproots grown in USA and Mexico. *Starch/Stärke* 2007 59, 132–140. https://doi.org/10.1002/star.200600596
31. Odeku, O.A. Potentials of tropical starches as pharmaceutical excipients: A review. starch/Stärke 2013 65, 89–106. https://doi.org/10.1002/star.201200076
32. López, O.V.; García, M.A. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization. Mater. Sci. Eng. C 2012 32, 1931–1940. https://doi.org/10.1016/j.msec.2012.05.035
33. Grau, A. Ahipa, la legumbre tuberosa de los Andes. Ciencia Hoy 1997 7, 31–38. https://www.cienciaboy.org.ar/ch/boy42/ahipa1.htm
34. Rodríguez, J.P.; Ørting, B.; Andreasen, C.; Jacobsen, S.E.; Sørensen, M. Trends and drivers of on-farm conservation of the root legume ahipa (Pachyrhizus ahipa) in Bolivia over the period 1994/96–2012. Genet. Resour. Crop Evol. 2018 65, 449–469. https://doi.org/10.1007/s10722-017-0544-y
35. Burgos, G.; Auqui, S.; Amoros, W.; Salas, E.; Bonierbale, M. Ascorbic acid concentration of native Andean potato varieties as affected by environment, cooking and storage. J. Food Compos. Anal. 2009 22, 533–538. https://doi.org/10.1016/j.jfca.2008.05.013
36. Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 2009 22, 494–502. https://doi.org/10.1016/j.jfca.2009.09.001
37. Shewry, P. Tuber storage proteins. Ann. Bot. 2003 91, 755–769. https://doi.org/10.1010/aob.2003.0544
38. Hou, Y.; He, W.; Hu, S.; Wu, G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019 51, 1153–1165. https://doi.org/10.1007/s00726-019-02751-0
39. Andlauer, W.; Fürst, P. Nutraceuticals: a piece of history, present status and outlook. Food Res. Int. 2002 35, 171–176. https://doi.org/10.1016/S0960-8524(01)00179-X
40. Zhang, J.; Fan, J.; Venneti, S.; Cross, J.R.; Takagi, T.; Bhinder, B.; Djaballah, H.; Kanai, M.; Cheng, E.H.; Judkins, A.R.; Pawel, B.; Baggs, J.; Cherry, S.; Rabinowitz, J.D.; Thompson, C.B. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 2014 56, 205–218. https://doi.org/10.1016/j.molcel.2014.08.018
41. Ørting, B.; Grüneberg, W.J.; Sørensen, M. Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) in Bolivia. Genet. Resour. Crop Evol. 1996 43, 435–446. https://doi.org/10.1007/BF00123734
42. Chandrasekara, A. Roots and tubers as functional foods. In: Bioactive Molecules in Food, Mérippon, J.M., Ramawat, K.G. eds., Reference Series in Phytochemistry, 2018, pp 1–29. https://doi.org/10.1007/978-3-319-54528-8_37-1
43. Zanklan, A.S.; Ahouangonou, S.; Becker, H.C.; Pawelzik, E.; Grüneberg, W.J. Evaluation of the storage root-forming legume yam bean (Pachyrhizus spp.) under West African conditions. Crop. Sci. 2007 47, 1934–1946. https://doi.org/10.2135/crop-sci2006.03.0153
44. Rodriguez, J.P.; Ørting, B.; Andreasen, C.; Jacobsen, S.-E.; Sørensen, M. Ahipa (Pachyrhizus ahipa (Wedd.) Parodi): the importance of ethno-ecological knowledge on agro-biodiversity and on-farm conservation in Bolivia, 1994/96–2012. Genet Resour Crop Evol. 2017 65(2), 449–469 [https://doi.org/10.1007/s10722-017-0544-y]