A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae)

Xin Xu¹, Fengxiang Liu¹, Jian Chen¹, Hirotsugu Ono⁵, Daiqin Li¹,², Matjaž Kuntner¹,³,⁴

¹ Centre for Behavioural Ecology and Evolution (CBEE), and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
² Department of Biological Sciences, National University of Singapore, Singapore
³ Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Ljubljana, Slovenia
⁴ Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C, USA
⁵ Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki-ken, 305-0005, Japan

Corresponding author: Daiqin Li (dbslidq@nus.edu.sg); Matjaž Kuntner (kuntner@gmail.com)

Academic editor: J. Miller | Received 10 October 2014 | Accepted 14 January 2015 | Published 21 March 2015

http://zoobank.org/3F1CB199-5DC6-45B3-8B5E-65F0AFAFD728

Citation: Xu X, Liu F, Chen J, Ono H, Li D, Kuntner M (2015) A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae). ZooKeys 488: 121–151. doi: 10.3897/zookeys.488.8726

Abstract

The spider suborder Mesothelae, containing a single extant family Liphistiidae, represents a species-poor and ancient lineage. These are conspicuous spiders that primitively retain a segmented abdomen and appendage-like spinnerets. While their classification history is nearly devoid of phylogenetic hypotheses, we here revise liphistiid genus level taxonomy based on original sampling throughout their Asian range, and on the evidence from a novel molecular phylogeny. By combining morphological and natural history evidence with phylegetic relationships in the companion paper, we provide strong support for the monophyly of Liphistiidae, and the two subfamilies Liphistiinae and Heptathelinae. While the former only contains Liphistius Schiödte, 1849, a genus distributed in Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand, we recognize and diagnose seven heptatheline genera, all but three removed from the synonymy of Heptathela: i) Ganthela Xu & Kuntner, gen. n. with the type species G. yundingensis Xu, sp. n. is known from Fujian and Jiangxi, China; ii) a rediagnosed Heptathela Kishida, 1923 is confined to the Japanese islands (Kyushu and Okinawa); iii) Qiongthela Xu & Kuntner, gen. n. with the type species Q. baishensis Xu, sp. n. is distributed disjunctly in Hainan, China and Vietnam; iv) Ryuthela Haupt, 1983 is confined to the Ryukyu archipelago (Japan); v) Sinothela Haupt, 2003 inhabits Chinese areas north of Yangtze; vi) Songthela Ono, 2000 inhabits southwest China and northern Vietnam; and vii) Vinathela Ono, 2000 (Abcathela Ono, 2000, syn. n.; Nanthela Haupt, 2003, syn. n.) is known from southeast China and Vietnam.
Keywords
East Asia, Southeast Asia, biogeography, classification, trapdoor spiders, living fossils

Introduction

The only extant family within the spider suborder Mesothelae, the family Liphistiidae consists of only 88 extant species-level taxa currently grouped in three genera, and displays an interesting geographical distribution confined to Southeast and East Asia (World Spider Catalog 2015). Liphistiids are relatively large, extremely long-lived (5–18 years), ground-dwelling spiders that build trapdoor burrows used for prey capture, shelter and protection (Bristowe 1976, Coddington and Levi 1991, Haupt 2003a). Despite being large and morphologically distinct, they are rarely encountered, making it difficult to secure taxonomically meaningful samples. Their natural history also suggests that liphistiids are confined to their burrows and that the spiders rarely move around, and phylogenetic and biogeographic analyses confirm that they are dispersal-limited and highly genetically structured (Xu et al. in press).

Since their discovery (Schiödte 1849), much attention has been paid to taxonomy, and most authors (e.g. Schwendinger and Ono 2011) divide Liphistiidae into two distinct subfamilies, Liphistiinae Thorell, 1869 and Heptathelinae Kishida, 1923. Liphistiinae contains a single genus, Liphistius Schiödte, 1849 with 50 species-level taxa. Their genital morphology is quite distinct from the 38 currently known species of Heptathelinae, the latter including two currently valid genera, Heptathela Kishida, 1923 and Ryuthela Haupt, 1983 (World Spider Catalog 2015). Liphistines are also geographically separated from heptathelines, since Liphistius occurs in Southeast Asia (Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand), whereas the heptathelines Heptathela and Ryuthela are confined to East Asia (China, Japan and Vietnam), and Japanese Ryukyu Islands, respectively (World Spider Catalog 2015). Non-taxonomic studies of these spiders have focused on genital evolution (Osaki 1969, Kraus 1978, 1984, Haupt 1983, Yin et al. 1983, 1988, Yin 2001), life history (Yoshikura 1954, 1955, Haupt 1979, 1983, 1984, 1986, 1991, 2003a, Platnick and Sedgwick 1984, Schwendinger 1990), prey-capture (Haupt 1979, 1992, 2003a, Chen et al. 1981, Klingel 1967), mating behaviour (Murphy and Platnick 1981; Haupt 1977, 1979, 1983, 1984, 1992, 2003a, Haupt and Traue 1986, Schwendinger 1990), ecology (Murakami 1934, Klingel 1967, Bristowe 1976, Kikuya 1980, 1982, 1994, Schwendinger 1987, 1988, 1990, 1993, Schwendinger and Pape 2000, Haupt 2003a), zoogeography (Paik 1953, Ono 2000, Haupt 2003a, 2003b) and silk biology (Marples 1967, Haupt 1979, 1983, 1991, 1992, 2003a, Küchler 1987, Haupt and Koooor 1993, Craig 1997, 2003, Vollrath and Selden 2007, Swanson et al. 2009, Strarrett et al. 2012).

All existing classification schemes for Mesothelae and Liphistiidae were dominated by a few selected characters and opinion rather than phylogenetic analyses. Schiödte (1849) described the first species of the genus Liphistius (Liphistius desultor) and Thorell (1869) placed it in Liphistioidae (sic). Simon (1903) nominated a new genus
A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae)

Anadiasthothelaea, but the species *A. thorelli* was a synonym of *Liphistius sumatranus* Thorell, 1890 (see Bristowe 1932). Kishida (1923) erected a new genus *Heptathela* (based on *Liphistius kimurai* Kishida, 1920), and divided the family Liphistiidae into two subfamilies, Liphistiiinae (including the tribes Liphistiinae and Heptathelae) and Anadiasthothelinae (*Anadiasthothela* Simon, 1903) based on details on spinnerets. In 1939, Petrunkevitch raised *Heptathela* to the family rank (Heptathelidae) to include Japanese and Chinese species. This classification system was retained until Haupt (1983, 1990) proposed dividing the group into three genera and two families (Liphistiidae (*Liphistius*), Heptathelidae (*Heptathela* and *Ryuthela*)). Ono’s (2000) scheme treated the groups as two subfamilies: Liphistiiinae and Heptathelinae. To *Heptathela* and *Ryuthela*, Ono (2000) added three new heptatheline genera, *Abcathela*, *Songthela* and *Vinathela*, solely based on the female genital morphology. However, Haupt (2003a) continued to prefer his two-family system (Haupt 1984, 1990), rejected *Abcathela* and *Vinathela*, considered *Songthela* as a synonym of *Sinothela* Haupt, 2003, and erected *Nanthela* Haupt, 2003. In the most recent classification scheme of the family, Schwendinger and Ono (2011) rejected all but three genera: *Liphistius* (Liphistiiinae), *Heptathela* (Heptathelinae) and *Ryuthela* (Heptathelinae). However, they expressed some doubt at the validity of the genus *Heptathela*, with no fewer than 33 nominal taxa. According to these authors, *Heptathela* may need to be split again if a comprehensive revision and/or phylogeny was to suggest this.

A modern, species-level phylogeny of liphistiid spiders necessary for addressing taxonomic, evolutionary, and biogeographic questions has been long overdue. In a sister paper (Xu et al. in press), we used molecular data from our original extensive sampling to test the monophyly of the family Liphistiidae and the genera within. Based on a species-level multi-locus phylogeny reported in that paper, and on morphological and natural history diagnostic characters provided here, we revise below the higher level systematics of the family.

Materials and methods

In order to secure a comparative sample of these seemingly rare spiders, we sampled liphistiids through China, Japan and Vietnam both at type locations and in areas with suitable habitat. We collected adults and immature spiders by excavating them from their subterranean burrows, then reared juveniles to adulthood in the laboratory. Since we primarily focused on heptathelines (the liphistiids of East Asia), our sample is biased toward China, Japan, and Vietnam (Figure 1).

Specimens were studied using an Olympus SZX16 stereomicroscope, and anatomical details were examined and photographed with Leica M205C stereomicroscope and Olympus BX51 compound microscope. Genitalia were cleared in boiling KOH for a few minutes to dissolve soft tissues. Unless otherwise noted left palps were depicted. All measurements are in millimeters. Leg and palp measurements are given in the following order: total length (femur + patella + tibia + metatarsus + tarsus).
Abbreviations used are: ALE = anterior lateral eyes, AME = anterior median eyes, BK = book lung, BL = body length, CL = carapace length, Co = conductor, CT = contrategulum, CW = carapace width, D = depression, E = embolus, OL = opisthosoma length, OW = opisthosoma width, PC = paracymbium, PLE = posterior lateral eyes, PME = posterior median eyes, PP = poreplate, RC = receptacular cluster, S = spinneret, SE = sternite, ST = sternum, T = tegulum, TG = tergite, TiA = tibial apophysis.

Figure 1. Map showing the sampling localities of liphistiid spider specimens across Southeast and East Asia.
Results

In three years we accumulated 1,455 specimens (786 females, 118 males and 551 juveniles) from 145 localities in China, Japan, Laos, Malaysia and Vietnam. These vouchers, deposited at the Centre for Behavioural Ecology and Evolution (CBEE), College of Life Sciences, Hubei University, Wuhan, China, were the basis for our morphological examinations (reported here) and for molecular analyses (Xu et al. in press). Examined and illustrated specimens were labelled with unique codes (Appendix 1; see also Figure legends), which will be reused in the upcoming genus-level revisions. All designated type specimens were deposited at the National Zoological Museum of China (NZMC), Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Our trips to chosen sampling points based on the known records were highly successful, and we found heptathelines at most type localities except for Ryuthela iheyana from Ihayajima, Japan, Sinotherela sinensis (Bishop & Crosby, 1932), comb. n. from the type locality, Jinan City, Shandong Province, Sinotherela schensiensis (Schenkel, 1953), comb. n. from Tongyuan County, Shannxi Province, Songthela hunanensis (Song & Haupt, 1984), comb. n. from Qianyang County, Hunan Province, Songthela yunnanensis (Song & Haupt, 1984), comb. n. from Kunming, Yunnan Province. We did not sample Qiongthela nui (Schwendinger & Ono, 2011), comb. n. and Qiongthela australis (Ono, 2002), comb. n. from Lam Dong Province. Most of the field expeditions into previously unsampled areas in China were also successful. New liphistiid localities include Chongqing, Fujian (Putian, Quanzhou and Xiamen), Guizhou (Chishui and Yanhe), Hainan, Hebei (Yongnian), Hubei (Badong, Enshi, Jianshi, Lichuan and Yichang), Jiangxi (Ji’an), Yunan (Dali, Kunming, Mojiang and Yuanjian), and Shandong (Zhangqiu and Yiyuan) Provinces.

In a concurrent paper (Xu et al. in press), we report on phylogenetic analyses using original five-gene nucleotide data for 75 species. These results, summarized in Figure 2, form the phylogenetic basis for a revised classification of the family. The family and subfamily monophyly were well supported in all phylogenetic analyses (for details, see Xu et al. in press). The current classification of Liphistiidae, based on morphological features, treats as valid three genera (see World Spider Catalog 2015): Heptathela s.l., Liphistius and Ryuthela. Our phylogenetic results strongly support the monophyly of Liphistius and Ryuthela, but not of Heptathela s.l., and thus require substantial taxonomic emendations. Below, we classify the species currently in paraphyletic Heptathela s.l. in six genera—the monophyly of each strongly supported (for details, see Xu et al. in press)—of which two are new, describe two new species that become the type for the new genera, and propose further synonymies.
Figure 2. A simplified genus level phylogeny derived from the summary tree in the accompanying paper (Xu et al. submitted), as the basis for newly proposed classification. Images on the right depict typical generic characteristics (female habitus and trapdoor).
Taxonomy

Suborder Mesothelae Pocock, 1892

Phylogenetic definition (for details, see Xu et al. in press). In the analysis of divergence times, we treated Mesothelae as a stem group leading from the root of all spiders to the node-based clade Liphistiidae. Therefore, Mesothelae accommodates the fossil genus Palaeothele Selden, 2000, which does not share one of the synapomorphies of Liphistiidae (single row of teeth on cheliceral fang groove). Although the morphological diagnosis resembles that of Liphistiidae, Mesothelae is inclusive of Liphistiidae but the two groups are phylogenetically not identical.

Composition. Mesothelae includes the crown group Liphistiidae with extant species from East and Southeast Asia, and the fossil Palaeothele montceauensis (Selden 1996a, b) from the Upper Carboniferous of Montceau-les-Mines, France around 295 Ma.

Family Liphistiidae Thorell, 1869

Diagnosis. Unlike all other extant spiders, Liphistiidae possess tergites on all abdominal segments (Figure 3), their spinnerets are located in the middle of abdominal venter (Figure 4), and in addition to a narrow sternum they also possess another narrow ventral plate, the sternite, located adjacent to coxae IV (Figure 4).

Description. Medium to large sized ground dwelling and burrowing spiders, chelicerae with a single row of teeth, two pairs of book lungs (Figure 4), tibial spurs specialized as sense organs. Their ground burrows are closed with trapdoors, with or without additional concentric signal lines (Figure 2b, d, f, h, j, l, n, p).

Composition. Ganthela Xu & Kuntner, gen. n., Heptathela Kishida, 1923, Liphistius Schiödte, 1849, Qiongthela Xu & Kuntner, gen. n., Ryuthela Haupt, 1983, Sinothela Haupt, 2003a, Songthela Ono, 2000, and Vinathela Ono, 2000.

Distribution. China, Indonesia (Sumatra), Japan, Laos, Malaysia, Myanmar, Thailand and Vietnam.

Subfamily Liphistiinae Thorell, 1869

Diagnosis. In contrast to the members of the subfamily Heptathelinae, Liphistiinae spiders construct signal lines radiating from the burrow entrance (Figure 2b), the male palp possesses a tibial apophysis (Figures 5–7), and the female genitals have a poreplate and unpaired receptacular clusters (Figures 8–9). Platnick and Sedgwick (1984) also report the unique presence of clavate trichobothria on the tarsi and metatarsi of all legs and on the palpal tarsi.

Composition. Liphistius Schiödte, 1849.

Distribution. Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand.
Genus *Liphistius* Schiodte, 1849
Figures 5–9

Liphistius Schiodte, 1849, type species *Liphistius desultor* Schiodte, 1849, P. 621.

Anadiastothele Simon, 1903, type species by original designation *Anadiastothele thorelli* Simon, 1903 = *Liphistius sumatranus* Thorell, 1890, P. 875; first synonymised by Bristowe, 1932, P. 1022.

Diagnosis. See Liphistiinae.

Description. Total length (excluding chelicerae) = 9–37 mm (Platnick and Sedgwick 1984); male palp with retrolateral tibial apophysis bearing strong apical spines and with a spinose paracymbium; female genitalia with a poreplate and unpaired receptacular clusters.

Species composition. *Liphistius albipes* Schwendinger, 1995; *L. batuensis* Abraham, 1923; *L. bicoloripes* Ono, 1988; *L. birmanicus* Thorell, 1897; *L. bristowei* Platnick & Sedgwick, 1984; *L. castaneus* Schwendinger, 1995; *L. dangrek* Schwendinger, 1996; *L. desultor* Schiodte, 1849; *L. endau* Sedgwick & Platnick, 1987; *L. erawan* Schwendinger, 1996; *L. fuscus* Schwendinger, 1995; *L. isan* Schwendinger, 1998;
A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae)

L. jarujini Ono, 1988; L. johore Platnick & Sedgwick, 1984; L. kanthan Platnick, 1997; L. labu Schwendinger, 1998; L. langkawi Platnick & Sedgwick, 1984; L. lannaianus Schwendinger, 1990; L. laoticus Schwendinger, 2013; L. laruticus Schwendinger, 1997; L. lordeae Platnick & Sedgwick, 1984; L. malayanus Abraham, 1923; L. malayanus cameroni Haupt, 1983; L. marginatus Schwendinger, 1990; L. murphyorum Platnick & Sedgwick, 1984; L. nesioticus Schwendinger, 1996; L. niphanae Ono, 1988; L. ochraceus Ono & Schwendinger, 1990; L. onoi Schwendinger, 1996; L. ornatus Ono & Schwendinger, 1990; L. owadai Ono & Schwendinger, 1990; L. panching Platnick & Sedgwick, 1984; L. phileion Schwendinger, 1998; L. phuketensis Schwendinger, 1998; L. pusohm Schwendinger, 1996; L. rufipes Schwendinger, 1995; L. sayam Schwendinger, 1998; L. schwendingeri Ono, 1988; L. sumatranus Thorell, 1890;

Figures 5–9. Male (XUX-2013–267) and female (XUX-2013–256) genital anatomy of *Liphistius laoticus* Schwendinger, 2013. 5 palp prolateral view 6 palp ventral view 7 palp retrolateral view 8 vulva ventral view 9 vulva dorsal view. Scales 3–5: 0.5 mm, 6–7: 0.1 mm. Co = conductor, CT = contrategulum, E = embolus, PC = paracymbium, PP = poreplate, RC = receptacular cluster, T = tegulum, TiA = tibial apophysis.
L. suwat Schwendinger, 1996; L. tempurung Platnick, 1997; L. tenuis Schwendinger, 1996; L. thaleban Schwendinger, 1990; L. thaleri Schwendinger, 2009; L. tham Sedgwick & Schwendinger, 1990; L. thoranie Schwendinger, 1996; L. tioman Platnick & Sedgwick, 1984; L. trang Platnick & Sedgwick, 1984; L. yamasakii Ono, 1988; L. yangae Platnick & Sedgwick, 1984.

Distribution. Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand.

Remarks. Liphistius always possess eight spinnerets, unlike all the remaining liphistiid genera in which the number is variable (either seven or eight). Therefore, the number of spinnerets is not a criterion for discriminating genera and species (Haupt 1983).

Subfamily Heptathelinae Kishida, 1923

Diagnosis. In contrast to the members of the subfamily Liphistiinae, the representatives of Heptathelinae lack signal lines radiating from the burrow entrance (Figure 2d, f, h, j, l, n, p), the male palp lacks a tibial apophysis (Figures 10–12, 15–17, 20–22, 26–28, 31–33, 36–38, 41–43), and the female genitals have paired or unpaired receptacular clusters on the bursa copulatrix with or without stalks (Figures 13–14, 18–19, 25, 34–35, 39–40, 44–45).

Composition. Ganthela Xu & Kuntner, gen. n., Heptathela Kishida, 1923, Qiongthela Xu & Kuntner, gen. n., Ryuthela Haupt, 1983, Sinothela Haupt, 2003a, Songthela Ono, 2000, and Vinathela Ono, 2000.

Distribution. China, Japan and Vietnam.

Genus Ganthela Xu & Kuntner, gen. n.

http://zoobank.org/F70E24D5-C13B-4195-825C-A69A684AB893

Figures 10–14

Liphistius: Wang 1989, P. 30, description of *Liphistius cipingensis* (= Ganthela cipingensis).

Songthela: Ono 2000, P. 150, transferred *Liphistius cipingensis* to *Songthela cipingensis* (= *Ganthela cipingensis*).

Heptathela: Platnick 1993, P. 77, transferred *Liphistius cipingensis* to *Heptathela cipingensis* (= *Ganthela cipingensis*).

Type species. *Ganthela yundingensis* sp. n.

Etymology. The genera of heptathelines contain in their name the word ‘thela’ referring to spinnerets as the Greek word *thele* means nipple-like protuberance (Ono 2000). We continue this tradition, but name the genus to start with Gan-, which refers to Jiangxi Province.

Diagnosis. Males of *Ganthela* differs from all other Heptathelinae genera by a smooth conductor with a distal spiniform apex (Figures 10–11), a flat opening embolus and scale-like contrategulum (Figures 10–11), females can be identified by a single pair of similar receptacular clusters (Figures 13–14).
A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae)

Description. Total length (excluding chelicerae) = 8–15 mm (N = 35); male palpal conductor smooth, wide, leaf-shaped, with a spiniform apex (Figures 10–11); spinose paracymbium relative short (Figures 10, 12); embolus with a flat opening (Figures 10–11); contrategulum scale-like with a smooth margin (Figures 10–11); female genitalia with paired receptacular clusters of similar size, situated at the anterior margin of the bursa copulatrix with tubular stems (Figures 13–14).

Species composition. Ganthela cipingensis (Wang, 1989), comb. n. (7♀), male is unknown, Ganthela yundingensis Xu, sp. n. (1♂1♀), one undescribed species from Jiangxi Province, China (11♀), and four undescribed species from Fujian Province, China (1♀, 1♂11♀, 1♀, and 3♀, respectively).

Distribution. China (Fujian, Jiangxi).

Remarks. Wang (1989) placed G. cipingensis in Liphistius based on the presence of eight spinnerets. Our collections from the type locality contain specimens with seven spinnerets. The number of spinnerets thus varies intraspecifically.

Figures 10–14. Male (XUX-2013–136) and female (XUX-2013–135) genital anatomy of Ganthela yundingensis sp. n. 10 palp prolateral view 11 palp ventral view 12 palp retrolateral view 13 vulva dorsal view 14 vulva ventral view. Scales 0.5 mm. RC = receptacular cluster.
Ganthela yundingensis Xu, sp. n.
http://zoobank.org/4F54A057-613A-4E8E-ADB4-B1B0AA0BB579
Figures 10–14

Types. Male holotype (XUX-2013–136) and female paratype from Mt. Yunding, Tingxi Town, Tong’an District, Xiamen City, Fujian Province, China; 24.87°N, 118.16°E, 631 m; 8 July 2013; collected by F. Liu, X. Xu and Z. Zhang, deposited at NZMC, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Etymology. ‘Yunding’ refers to the type locality of this species, Mt. Yunding.

Diagnosis. Females can be distinguished from *G. cipingensis* and the five undescribed *Ganthela* species we are aware of by lacking genital stalks (Figures 13–14), and the males, uniquely among heptathelines, possess the contrategulum with two marginal apophyses (Figures 11–12), the prolateral one being scale-like (Figure 11).

Description. Male (holotype). Carapace and opisthosoma light brown; tergites dark brown; sternum narrow, twice as long as wide; a few long pointed hairs running over ocular mound in a longitudinal row; chelicerae robust with promargin of cheliceral groove with 10 denticles of variable size; legs with strong hairs and spines; opisthosoma with 12 tergites, the first 2–5 larger than others and the fourth largest, the first four close to each other; 7 spinnerets. Measurements: BL 9.80, CL 4.48, CW 4.03, OL 4.98, OW 3.75; ALE > PLE > PME > AME; leg I 13.60 (4.03 + 1.48 + 2.90 + 3.41 + 1.78), leg II 13.80 (3.81 + 1.70 + 2.91 + 3.48 + 1.90), leg III 16.01 (4.02 + 1.71 + 3.28 + 4.58 + 2.42), leg IV 20.60 (5.20 + 1.89 + 3.90 + 6.50 + 3.11).

Palp: Cymbium with a projection; prolateral side of paracymbium unpigmented and unsclerotised, numerous setae and spines at the tip of paracymbium (Figures 10–12). Contrategulum has two marginal apophyses, the first one scale-like with a smooth margin (Figures 10–11). Tegulum with a dentate edge (Figures 11–12). Conductor wide leaf-shaped, with spiniform apex, parallel to embolus (Figures 10–11). Embolus largely sclerotised, with a flat opening (Figures 10–11).

Female. Colouration of carapace and opisthosoma as in male; chelicerae robust with promargin of cheliceral groove with 12 strong denticles of variable size; legs with strong hairs and spines; opisthosoma with 12 tergites, as in male; 7 spinnerets. Measurements: BL 13.23, CL 5.96, CW 5.18, OL 7.28, OW 4.90; ALE > PLE > PME > AME; palp 9.64 (3.26 + 1.61 + 2.15 + 2.62), leg I 11.46 (3.33 + 2.08 + 2.17 + 2.30 + 1.58), leg II 11.82 (3.56 + 2.11 + 2.13 + 2.42 + 1.60), leg III 13.18 (3.71 + 2.20 + 2.33 + 3.02 + 1.92), leg IV 17.59 (4.03 + 2.40 + 3.30 + 5.19 + 2.67).

Female genitalia: The posterior part of the genital area rectangular (Figure 13–14), a pair of receptacular clusters close to each other, without stalks (Figures 13–14).

Genus Heptathela Kishida, 1923
Figures 15–21

Heptathela Kishida, 1923, type species *Liphistius kimurai* Kishida, 1920, P. 235.
Diagnosis. *Heptathela* males differ from all other Heptathelinae genera by a leaf-shaped conductor (Figures 18–19), a thumb-shaped embolus (Figures 15, 18) and a wide tegulum with a rugate margin (Figures 16, 18–19). *Heptathela* females can be distinguished from all other Heptathelinae genera by a single paired depression on the ventro-lateral part of genital atrium (Figure 20), and by the one pair of main receptacular cluster and secondary, lateral, irregular receptacular clusters (Figures 20–21).

Description. Total length (excluding chelicerae) = 7–17 mm (N = 229); male palp with a leaf-shaped conductor with spiniform apex or dentate edge, rugate (Figures 18–19); spinose paracymbium long, nearly the length of the cymbium (Figures 15–16); embolus thumb-shape (Figures 15, 18); tegulum wide, with a rugate margin (Figures 16, 18–19); female genitalia with a paired depression on the ventro-lateral part of the genital atrium (Figure 20); with a pair of main receptacular cluster at the anterior margin of the bursa copulatrix and separated from each other, and with secondary, lateral, irregular receptacular clusters (Figures 20–21).

Species composition. *Heptathela amamiensis* Haupt, 1983; *H. higoensis* Haupt, 1983; *H. kanenoi* Ono, 1996; *H. kikuyai* Ono, 1998; *H. kimurai* (Kishida, 1920); *H. nishikawai* Ono, 1998; *H. yaginumai* Ono, 1998; *H. yakushimaensis* Ono, 1998; *H. yanbaruensis* Haupt, 1983.

Distribution. Japan (Kyushu and Okinawa).

Genus *Qiongthela* Xu & Kuntner, gen. n.
http://zoobank.org/BA103085-F5FB-4DF1-81C7-CA5CDE26E65E
Figures 22–27

Type species. *Qiongthela baishensis* sp. n.

Etymology. The genera of heptathelines contain in their name the word ‘thela’ referring to spinnerets as the Greek word *thele* means nipple-like protuberance (Ono 2000). We continue this tradition, but name the genus to start with Qiong-, referring to Hainan Province, China.

Diagnosis. *Qiongthela* males differ from all other Heptathelinae genera by the conductor with a narrow, blade-like, slightly hooked apex (Figures 22, 25–26), and by tegulum with two apophyses (Figures 23, 25–26). *Qiongthela* females can be distinguished from all other Heptathelinae by two paired receptacular clusters located at the anterior margin of the bursa copulatrix (Figure 27).

Description. Total length (excluding chelicerae) = 13–31 mm (N = 14); male palp with a distally free conductor, narrow, blade-like with slightly hook-like apex, (Figures 22, 25–26); tegulum with two margins, spinose paracymbium (Figures 23, 25–26); female genitalia with two paired receptacular clusters, all situated at the anterior margin of the bursa copulatrix with more or less distinct tubular stems (Figure 27).

Species composition. *Q. australis* (Ono, 2002), comb. n., *Q. nui* (Schwendinger & Ono, 2011), comb. n., *Q. baishensis* sp. n. (3♂2♀), and three undescribed species (6♂8♀, 1♀ and 1♂1♀, respectively) from Hainan, China.

Distribution. Hainan (China) and Vietnam.
Figures 15–21. Male (XUX-2013–389) and female (XUX-2013–351) genital anatomy of *Heptathela higoensis* Haupt, 1983 and *Heptathela kimurai* (Kishida, 1920), respectively. 15 palp prolateral view 16 palp ventral view 17 palp retrolateral view 18 contrategulum, conductor and embolus, ventral view 19 contrategulum, conductor and embolus, retrolateral view 20 vulva ventral view 21 vulva dorsal view; Scales 0.5 mm. D = depression.

Remarks. Based on morphological descriptions, but not on phylogenetic analyses, we include two species from Vietnam in this genus, originally described as *Songthela australis* Ono, 2002 and *Heptathela nui* Schwendinger & Ono, 2011.
Qiongthela baishensis Xu, sp. n.
http://zoobank.org/5C0F3DB2-3A07-4FC6-83B5-3E286F1493F1
Figures 22–27

Types. Male holotype (XUX–2012–087, matured 10 October 2012 at CBEE, College of Life Sciences, Hubei University) and two male and two female paratypes from Nangaoling Forest Plantation, Baisha County, Hainan Province, China; 19.24°N, 109.38°E, 463 m, collected 18 July 2012 by D. Li, F. Liu and X. Xu, deposited at NZMC, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Etymology. The species epithet refers to Baisha, the species type locality.

Diagnosis. Unlike other Qiongthela species, males of Q. baishensis possess three parallel serrated distal edges of the contrategulum (Figures 25, 26), and females have two pairs of receptacular clusters, the median pair larger than the lateral one, with very short or no stalks (Figure 27).

Description. Male (holotype). Carapace and opisthosoma light brown; tergites darker; with a clear fovea; sternum narrow, nearly twice as long as wide; a few long pointed hairs running over ocular mound in a longitudinal row; chelicerae robust with promargin of cheliceral groove containing 10 denticles of variable size; legs with strong hairs and spines; opisthosoma with 12 tergites, the first 2–7 distinctly larger and the fifth largest; 7 spinnerets. Measurements: BL 16.75, CL 6.70, CW 6.65, OL 9.90, OW 7.45; ALE > PLE > PME > AME; leg I 19.76 (6.15 + 2.55 + 4.35 + 4.35 + 2.36), leg II 20.70 (5.59 + 2.67 + 4.24 + 5.45 + 2.75), leg III 21.16 (5.25 + 2.13 + 4.12 + 6.45 + 3.21), leg IV 26.03 (7.38 + 2.75 + 5.78 + 7.05 + 3.07).

Palp: Cymbium with a projection; prolateral side of paracymbium unpigmented and unsclerotised, numerous setae and spines at the tip of paracymbium (Figures 22, 24). Contrategulum with three parallel distal edges, row of denticles on inner edge running down to ventro-proximal margin of contrategulum and the outer row forming a sharp edge without denticles (Figures 22, 25–26). Tegulum with a very long, wide base, pointed, distally directed marginal apophysis with a sharp edge, and retrolaterally with a proximally directed terminal apophysis with a slightly short dentate row and continuously narrowing to a rounded, hooked apex (Figures 22–26). Conductor situated ventro-proximally on embolus, with a bent apex (Figures 22, 25–26). Embolus largely sclerotised, prolaterally with numerous longitudinal ribs (Figures 22–26).

Female (paratype). Colouration as in male; promargin of robust chelicerae with 9 strong denticles variable in size; legs and opisthosoma as in the male; 7 spinnerets. Measurements: BL 13.30–14.15, CL 4.51–6.23, CW 4.63–5.82, OL 7.20–7.45, OW 4.33–5.08; ALE > PLE > PME > AME; palp 10.25 (3.65 + 1.55 + 2.30 + 2.75), leg I 12.48 (4.25 + 1.95 + 2.53 + 2.55 + 1.20), leg II 12.15 (3.75 + 2.07 + 2.25 + 2.65 + 1.43), leg III 12.42 (3.55 + 2.12 + 2.03 + 3.07 + 1.65), leg IV 19.20 (5.45 + 2.65 + 3.45 + 5.10 + 2.55).

Female genitalia: Two pairs of receptacular clusters along the anterior margin of bursa copulatrix, the median pair larger than the lateral one, with very short or no stalks (Figure 27).
Figures 22–27. Male (XUX-2012–087) and female (XUX-2012–086) genital anatomy of Qiongthela baishensis sp. n. 22 palp prolateral view 23 palp retrolateral view 24 palp ventral view 25–26 contrategulum, conductor and embolus, distal view 27 vulva dorsal view. Scales 18–20: 1 mm, 21–23: 0.5 mm.
Genus **Ryuthela** Haupt, 1983
Figures 28–34

Ryuthela Haupt, 1983, type species *Heptathela nishihirai* Haupt, 1979, P. 286.

Diagnosis. *Ryuthela* males differ from all other Heptathelinae genera by lacking the conductor and by the contrategulum with an elongate spine (Figures 28, 30). The females differ from *Heptathela, Qiongthela, Sinothela, Songthela and Vinathela* by one paired receptacular cluster close to each other (Figures 31–32), located at the anterior margin of the bursa copulatrix, and from *Ganthela* by receptacular clusters without stems that may or may not be fused (Figures 31–34).

Description. Total length (excluding chelicerae) = 7–15 mm (N = 151); male palp with denticulate contrategulum and ventral portion with an elongate spine (Figures 28, 30); spinose paracymbium relatively short (Figures 28–30); female genitalia usually with one paired receptacular clusters, except in some specimens, notably in *R. sasakii*, where receptacular clusters are unpaired and without stalks (Figures 31–34).

Species composition. *Ryuthela iheyana* Ono, 2002; *R. ishigakiensis* Haupt, 1983; *R. nishihirai* (Haupt, 1979); *R. sasakii* Ono, 1997; *R. tanikawai* Ono, 1997.

Distribution. Ryukyu Island (Japan).

Remarks. In *Ryuthela*, female genital anatomy shows considerable intraspecific variation, therefore the structure of the male palp appears more reliable for diagnostics and identification.

Genus **Sinothela** Haupt, 2003
Figures 35–39

Sinothela Haupt, 2003a, type species *Heptathela sinensis* Bishop & Crosby, 1932; synonymized with *Songthela* by Platnick, 2011; synonymized with *Heptathela* by Schwendinger & Ono, 2011, P. 601. Herein removed from synonymy of *Heptathela*.

Diagnosis. *Sinothela* males differ from all other Heptathelinae genera by the conductor with a smooth surface, its proximal portion being fairly wide, and its distal portion with more than one apical spine (Figures 35–36), and by the contrategulum with large serrations (Figure 35). *Sinothela* females differ from all other Heptathelinae genera by two paired receptacular clusters with the median pair close to each other situated at the basal bursa copulatrix with tubular stem, lateral ones situated on dorsal side (Figure 39).

Description. Total length (excluding chelicerae) = 13–28 mm (N = 71); male palpal conductor smooth, proximally fairly wide, distally with more than one spine tip (Figures 35–36); contrategulum with a serrated edge (Figure 35); tegulum with three apophyses (Figures 35–37); spinose paracymbium relatively short (Figures 35–37);
Figures 28–34. Male (XUX-2013–228) and female (XUX-2012–302 and XUX-2012–364) genital anatomy of *Ryuthela ishigakiensis* Haupt, 1983, *Ryuthela nishihirai* (Haupt, 1979), and *Ryuthela sasakii* Ono, 1997, respectively. 28 palp prolateral view 29 palp ventral view 30 palp retrolateral view 31, 33 vulva ventral view 32, 34 vulva dorsal view. Scales 0.5 mm.
female genitalia with two paired receptacular clusters, median pair close to each other situated at the basal bursa copulatrix with tubular stem, lateral ones situated more dorsally (Figure 39).

Species composition. *Sinothela heyangensis* (Zhu & Wang, 1984), comb. n. (8♂25♀; male previously unknown), *S. luotianensis* (Yin et al., 2002), comb. n. (3♀), *S. schensiensis* (Schenkel, 1953), comb. n., *S. sinensis* (Bishop & Crosby, 1932), comb. n. (2♂9♀).

Distribution. China north of Yangzi River (Hebei, Henan, Hubei, Shandong, Shaanxi, and Shanxi).
Genus *Songthela* Ono, 2000

Songthela Ono, 2000, type species *Heptathela hangzhouensis* Chen, Zhang & Zhu, 1981; synonymized with *Sinothela* by Haupt, 2003a, P. 71; synonymized with *Heptathela* by Schwendinger & Ono, 2011, P. 601. Herein removed from synonymy of *Heptathela*.

Type species. *Heptathela hangzhouensis* Chen, Zhang & Zhu, 1981.
Diagnosis. *Songthela* males differ from all other heptatheline genera by the conductor with a smooth surface and with the proximal portion relatively narrow, the distal portion with more than one apical spine (Figures 40–41, 45–46), and by the embolus with a flat opening (Figures 40–41, 45–46). *Songthela* females differ from all other heptatheline genera by two paired receptacular clusters, all four of similar size or median ones larger than laterals, median pair with tubular stems situated at the anterior margin of bursa copulatrix, lateral ones situated more dorsally (Figures 43–44, 47).

Description. Total length (excluding chelicerae) = 8–21 mm (N = 304); male palpal conductor with one or two distal spines: the long one nearly reaching the embolus edge, the shorter one positioned at the middle part of conductor (Figures 40–41, 45–46); embolus with a wide, flat opening (Figures 40, 45–46); tegulum with serrated margin (Figures 41–42, 46); spinose paracymbium relatively short (Figures 40–41, 45); female genitalia as diagnosed (Figures 43–44, 47).

Species composition. *Songthela bristoweii* (Gertsch, 1967), comb. n. (2♂10♀), *S. ciliensis* (Yin, Tang & Xu, 2003), comb. n., *S. goulouensis* (Yin, 2001), comb. n. (8♂41♀; male previously unknown), *S. hangzhouensis* (Chen, Zhang & Zhu, 1981), comb. n. (4♂10♀), *S. jianganensis* (Chen et al., 1988), comb. n. (11♀), *S. mangshanensis* (Bao, Yin & Xu, 2003), comb. n., *S. sapana* (Ono, 2010), comb. n. (4♀), *S. shei* (Xu & Yin, 2001), comb. n. (3♀4♀; male previously unknown), *S. wosanensis* (Wang & Jiao, 1995), comb. n. (2♂7♀; male previously unknown), *S. xinningensis* (Yin et al., 2002), comb. n. (1♂23♀; male previously unknown), *S. yunnanensis* (Song & Haupt, 1984), comb. n.

Distribution. China (Chongqing, Guizhou, Hubei, Hunan, Jiangxi, Sichuan, Zhejiang, and Yunnan) and northern Vietnam.

Genus Vinathela Ono, 2000

Figures 49–55

Vinathela Ono, 2000, type species *Heptathela cucphuongensis* Ono, 1999; synonymized with *Heptathela* by Haupt, 2003a: P. 91. Herein removed from synonymy of *Heptathela*.
Abcathela Ono, 2000, type species *Heptathela abca* Ono, 1999, P. 149; placed in the synonymy of *Heptathela* by Haupt, 2003a, P. 71, 79; **syn. n.**
Nanthela Haupt, 2003a, type species *Liphistius tonkinensis* Bristowe in Bristowe and Millot 1933; placed in the synonymy of *Heptathela* by Schwendinger and Ono 2011, P. 601; **syn. n.**

Diagnosis. Males of *Vinathela* differ from all other Heptathelinae genera by a wide proximal portion of the conductor, its distal portion being bent (Figure 50), and embolus with two peaks (Figures 49–50); females of *Vinathela* can be distinguished from all other Heptathelinae by three or four receptacular clusters situated at the anterior margin of bursa copulatrix, three of the same size or median pair small and lateral pair large (Figures 52–55).
Description. Total length (excluding chelicerae) = 9–22 mm (N = 71); male palp with long conductor, proximal portion wide, distal portion bent (Figure 50); tegulum thick (Figures 50–51); spinose paracymbium short (Figures 49–51); female genitalia as diagnosed (Figures 52–55).

Species composition. *Vinathela abca* (Ono, 1999), comb. n. (1♂7♀; male previously unknown), *V. cucphuongensis* (Ono, 1999), comb. n. (2♂7♀; male previously unknown), *V. hongkong* (Song & Wu, 1997), comb. n. (3♂19♀; female previously unknown), *V. hunanensis* (Song & Haupt, 1984), comb. n., *V. tomokunii* (Ono, 1997), comb. n. (6♀), *V. tonkinensis* (Bristowe, 1933), comb. n. (1♂4♀; female previously unknown).

Distribution. China (Hong Kong, Hunan and Jiangxi) and Vietnam.
Remarks. *Vinathela* Ono, 2000 has priority over *Nanthela* Haupt, 2003a. We chose *Vinathela* Ono, 2000 over *Abcathela* Ono, 2000 (from the same publication) since the latter also contains species from northern China.
Acknowledgements

This work was partially supported by NSFC grant (31272324) and Singapore Ministry of Education (MOE) AcRF Tier 1 grant (R-154–000–591–112) to D.L. and by P1–10236 and MU-PROM/12–001 grants from the Slovenian Research Agency to M.K. We thank Peter Jäger for kindly providing information on localities in Laos, Gary Ades, Paul Crow, Yorkie Wong and Zoie Wong for assistance with permits and with fieldwork in Hong Kong, Xianjin Peng, Xiang Xu, Zhisheng Zhang, LuYu Wang, Bo Wu, Chengqiong Wu, Tingbang Yang and Zizhong Yang for assistance with fieldwork in China and Laos, Dinh Sac Pham, Chu Thi Thao, Neuyen Thi Dinh for help in Vietnam, Zoltán Korsós, Mamoru Toda and Bo Wu for kind help in the field in Japan. We thank Ingi Agnarsson and Miquel Arnedo for comments and advice. We also thank the staff of the Centre for Behavioural Ecology and Evolution (CBEE, Hubei University) and of the Behavioural Ecology and Sociobiology Lab (DBS, NUS) for all their help and support throughout this study, in particularly Zhanqi Chen, Seok Ping Goh, Xiaoguo Jiao, Hongze Li, Jie Liu, Yu Peng, Xiaoyan Wang, Chen Xu, Long Yu and Zengtao Zhang. We thank Jeremy Miller and three anonymous reviewers for their valuable feedback.

References

Abraham HC (1923) A new spider of the genus Liphistius. Journal of the Malaysian Branch of the Royal Asiatic Society 1: 13–21.

Bao YH, Yin CM, Xu X (2003) A new species of the genus Heptathela from China (Araneae, Liphistiidae). Acta Zootaxonomica Sinica 28: 459–460.

Bishop SC, Crosby CR (1932) A new species of the spider family Liphistiidae from China. Peking Natural History Bulletin 6(3): 5–7.

Bristowe WS (1933) The liphistiid spiders. With an appendix on their internal anatomy by J. Millot. Proceedings of Zoological Society of London 1932: 1015–1057.

Bristowe WS (1976) A contribution to the knowledge of liphistiid spiders. Journal of Zoology, London 178: 1–6. doi: 10.1111/j.1469-7998.1976.tb02260.x

Chen XE, Gao JC, Zhu CD, Luo ZM (1988) A new species of the genus Heptathela from China (Araneae: Heptathelidae). Sichuan Journal of Agricultural Science 1988: 78–81.

Chen ZF, Zhang ZH, Zhu CD (1981) A new species of genus Heptathela. Journal of Hangzhou University 8: 305–308.

Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22: 565–592. doi: 10.1146/annurev.es.22.110191.003025

Craig CL (1997) Evolution of arthropod silks. Annual Review of Entomology 42: 231–67. doi: 10.1146/annurev.en.42.1.231

Craig CL. (2003) Spiderwebs and Silks: Tracing Evolution from Molecules to Genes to Phenotypes. Oxford University Press, New York, USA, 256 pp.

Haupt J (1977) Preliminary report on the mating behaviour of the primitive spider Heptathela kimurai (Kishida) (Araneae, Liphistiomorphae). Zeitschrift für Naturforschung 32c: 312–314.
Haupt J (1979) Lebensweise und Sexualverhalten der mesothelen Spinne *Heptathela nishihirai* n. sp. (Araneae, Liphistiidae). Zoologischer Anzeiger 202: 348–374.

Haupt J (1983) Vergleichende Morphologie der Genitalorgane und Phylogenie der liphistiomorphen Webspinnen (Araneae: Mesothelae). I. Revision der bisher bekannten Arten. Zeitschrift Für Zoologische Systematik Und Evolutionsforschung 21: 275–293. doi: 10.1111/j.1439-0469.1983.tb00296.x

Haupt J (1984) Comportement sexuel, morphologie génitale et phylogénèse des araignées liphistiomorphes. Revue Arachnologique 5(4): 161–168.

Haupt J (1986) Postembryonal development and trichobothriotaxie in Heptathelidae: possibilities and limits of a phylogenetic analysis. Actas X Congress of International Arachnologie 1: 349–354.

Haupt J (1990) Comparative morphology and phylogeny of liphistiomorph spiders (Araneida: Mesothelae). III. Provisional diagram of relationships in Heptathelidae. In: Celerier ML, Heurtault J, Rollard C (Eds) Comptes rendus du Xlle Colloque European d’Arachnologie, Paris, 134–140.

Haupt J (1991) Lebensdauer von mesothelen Spinnen. C.R. XIII Coll. europ. Arachnol. (Neuchâtel Sept. 1991). Bulletin de la Societe Neuchateloise des Sciences Naturelles 116: 113–116.

Haupt J (1992) Biology of mesothelae spiders. 16 mm Film, 20 min. Production: Free University Berlin, ZEAM.

Haupt J (2003a) The Mesothelaea - monograph of an exceptional group of spiders (Araneae: Mesothelae) (Morphology, behaviour, ecology, taxonomy, distribution and phylogeny). Zoologica 154: 1–102.

Haupt J (2003b) Zoogeography in southern Japan as revealed by ground-living arachnids. Revue suisse de Zoologie 110: 133–139.

Kikuya N (1980) Some researches on the inhabitable environment of the Liphistiid spider *Heptathela kimiurai* Kishida in Oiea province, Kyushyu. Atypus 76: 1–43.

Kikuya N (1982) Some researches on the inhabitable environment of the Liphistiid spider *Heptathela kimiurai* Kishida in Oita prefecture (II). Heptathela 2: 1–23.

Kikuya N (1994) Resistance to inundation and its utilization by *Heptathela kimiurai* (Araneae: Liphistiidae). Acta Arachnologica 43: 193–208. doi: 10.2476/asjaa.43.193

Kishida K (1920) [no English title]. Zoological Magazine, Tokyo 32: 326.

Klingel H (1967) Beobachcungen an *Liphistius battuensis* Abr. (Araneae, Mesothelae). Zoologischer Anzeiger Supplementary 30: 246–253.

Kraus O (1978) *Liphistius* and the evolution of spider genitalia. Symposia of the Zoological Society of London 42: 235–254.
Kraus O (1984) Male spider genitalia: evolutionary changes in structure and function. Verhandlungen des naturwissenschaftlichen Vereins Hamburg 27: 373–382.
Küchler C (1987) Die Spinnorgane von *Ryuthela nishihirai* (Araneae, Mesothelae). Zoologische Beiträge 31: 33–48.
Marple BJ (1967) The spinnerets and epiandrous glands of spiders. Journal of the Linnean Society 46: 209–222.
Murakami Y (1934) Habitats of Kimuragumo. Kagoshima Koro no rin gakko hakubursu doshiho 4: 41–45.
Murphy JA, Platnick NJ (1981) On *Liphistius desultor* (Araneae, Liphistiidae). Bulletin of the American Museum of Natural History 170: 46–56.
Ono H (1988) Liphistiid spiders (Araneae, Mesothelae) of south Thailand. Bulletin of the National Museum of Nature and Science Tokyo (A) 14: 145–150.
Ono H (1996) Two new species of the families Liphistiidae and Thomisidae (Araneae) from the Ryukyu Islands, southwest Japan. Acta Arachnologica Tokyo 45: 157–162. doi: 10.2476/asjaa.45.157
Ono H (1997) New species of the genera *Ryuthela* and *Tmarus* (Araneae, Liphistiidae and Thomisidae) from the Ryukyu Islands, southwest Japan. Bulletin of the National Museum of Nature and Science Tokyo (A) 23: 149–163.
Ono H (1999) Spiders of the genus *Heptathela* (Araneae, Liphistiidae) from Vietnam, with notes on their natural history. Journal of Arachnology 27: 37–43.
Ono H (2000) Zoogeographic and taxonomic notes on spiders of the subfamily Heptathelinae (Araneae, Mesothelae, Liphistiidae). Memoirs of the National Science Museum 33: 145–151.
Ono H (2002) New and remarkable spiders of the families Liphistiidae, Argyronetidae, Pisauridae, Theridiidae and Araneidae (Arachnida) from Japan. Bulletin of the National Museum of Nature and Science Tokyo (A) 28: 51–60.
Ono H (2010) Four new spiders (Arachnida, Araneae) of the families Liphistiidae, Ctenizidae, Araneidae and Ctenidae from Vietnam. Memoirs of the National Museum of Nature and Science Tokyo 46: 1–12.
Ono H, Schwendinger PJ (1990) Liphistiid spiders (Araneae, Mesothelae) from central and eastern Thailand. Bulletin of the National Science Museum Tokyo (A) 16: 165–174.
Osaki H (1969) Electron microscope study on the spermatozoon of the liphistiid spider, *Heptathela kimurai*. Acta Arachnologica 22: 1–12. doi: 10.2476/asjaa.22.1
Paik K (1953) A study on the geographical distribution of *Heptathela kimurai* Kishida. Acta Arachnologica 13: 53–68. doi: 10.2476/asjaa.13.63
Petrunkevitch A (1939) Catalogue of American spiders. Part 1. Transactions of the Connecticut Academy of Arts and Sciences 33: 133–338.
Platnick NI (1993) Advances in spider taxonomy 1988–1991, with synonymies and transfers 1940–1980. The New York Entomological Society, New York, 846 pp.
Platnick NI, Sedgwick WC (1984) A Revision of the spider genus *Liphistius* (Araneae, Mesothelae). American Museum of Natural History 2781: 1–31.
Platnick NI, Schwendinger PJ, Steiner H (1997) Three new species of the spider genus *Liphistius* (Araneae, Mesothelae) from Malaysia. American Museum Novitates 3209: 1–13.
Pocock RI (1892) XXXVIII. - Liphistius and its bearing upon the classification of spiders. The Annals and Magazine of Natural History Series 6, 10: 306–314.
Sawaguti Y, Ozi Y (1937) On Heptathela kimurai (Kishida, 1920). Acta Arachnologica 2: 115–123. doi: 10.2476/asjaa.2.115
Schiödte JC (1849) Om en afigende sloegt af spindlernes orden. Naturhistorisk Tidsskrift 2: 617–624.
Schwendinger PJ (1987) On the male of Liphistius trang (Araneae: Mesothelae) with notes on the natural history of the species. Natural History Bulletin of the Siam Society 35: 9–25.
Schwendinger PJ (1988) Biological observations on orthognathous spiders in Northern Thailand (Araneae: Mesothelae, Mygalomorphae). 11th European Arachnology Colloquium TUB Dok., Kongr., Tagungen (Berlin) 38: 231–236.
Schwendinger PJ (1989) On the spider genus Liphistius (Araneae: Mesothelae) in Thailand and Burma. Zoologica Scripta 19: 331–351. doi: 10.1111/j.1463-6409.1990.tb00262.x
Schwendinger PJ (1993) Transpiration from orthognathous spiders of Thailand and Burma. Journal of Zoology 229: 171–175. doi: 10.1111/j.1469-7998.1993.tb02629.x
Schwendinger PJ (1995) New Liphistius species (Araneae, Mesothelae) from southern Thailand and northern Malaysia. Zoologica Scripta 24: 143–156. doi: 10.1111/j.1463-6409.1995.tb00396.x
Schwendinger PJ (1996) New Liphistius species (Araneae, Mesothelae) from western and eastern Thailand. Zoologica Scripta 25: 123–141. doi: 10.1111/j.1463-6409.1996.tb00155.x
Schwendinger PJ (1998) Five new Liphistius species (Araneae, Mesothelae) from Thailand. Zoologica Scripta 27: 17–30. doi: 10.1111/j.1463-6409.1998.tb00426.x
Schwendinger PJ (2009) Liphistius thaleri, a new mesothelid spider species from southern Thailand (Araneae, Liphistiidae). Contributions to Natural History 12: 1253–1268.
Schwendinger PJ (2013) On two Liphistius species (Araneae: Liphistiidae) from Laos. Zootaxa 3702: 51–60. doi: 10.11646/zootaxa.3702.1.2
Schwendinger PJ, Ono H (2011) On two Heptathela species from southern Vietnam, with a discussion of copulatory organs and systematics of the Liphistiidae (Araneae: Mesothelae). Revue suisse de Zoologie 118: 599–637.
Schwendinger PJ, Pape T (2000) Metopia sinensis (Diptera, Sarcophagidae) an unusual predator of Liphistius (Araneae, Mesothelae) in Northern Thailand. Journal of Arachnology 28: 351–352. doi: 10.1636/0161-8202(2000)028[0353:MSDSAU]2.0.CO;2
Sedgwick WC, Platnick NI (1987) A new species of Liphistius (Araneae, Mesothelae) from Johore, Malaysia. Malayan Nature Journal 41: 361–363.
Selden PA (1996a) Fossil mesothel spiders. Nature 379: 498–99. doi: 10.1038/379498b0
Selden PA (1996b) First fossil mesothel spider, from the Carboniferous of France. Revue suisse de Zoologie 2: 585–96.
Selden PA (2000) Palaeothele, replacement name for the fossil mesothel spider Eothele non Rowell. Bulletin of the British arachnological Society 11: 292.
Simon E (1903) Histoire naturelle des araignées. Paris 2, 669–1080.
Song DX, Haupt J (1984) Comparative morphology and phylogeny of liphistiomorph spiders (Araneae: Mesothelae) 2. Revision of new Chinese heptathelid species. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 27: 443–451.
Song DX, Wu KY (1997) On a new species of the genus *Heptathela* (Araneae: Liphistiidae) from Hong Kong, China. Chinese Journal of Zoology 32: 1–3.

Starrett J, Garb JE, Kuelbs A, Azubuike UO, Hayashi CY (2012) Early Events in the Evolution of Spider Silk Genes. PLoS ONE 7(6): e38084. doi: 10.1371/journal.pone.0038084

Swanson BO, Anderson SP, DiGiovine C, Ross RN, Dorsey JP (2009) The evolution of complex biomaterial performance: The case of spider silk. Integrative and Comparative Biology 49: 21–31. doi: 10.1093/icb/icp013

Thorell T (1869) On European spiders. Part I. Review of the European genera of spiders, preceded by some observations on zoological nomenclature. Nova Nova acta Regiae Societatis Scientiarum Upsaliensis (3) 7: 1–108.

Thorell T (1890) Studi sui ragni Malei e Papuani. IV, 1. Annali del Museo civico di storia naturale di Genova 28: 1–419.

Thorell T (1897) Viaggio di Leonardo Fea in Birmania e regioni vicine. LXXIII. Secondo saggio sui Ragni birmani. I. Parallelodontes. Tubitelariae. Annali del Museo Civico di Storia Naturale di Genova (2) 37: 161–267.

Vollrath F, Selden P (2007) The role of behavior in the evolution of spiders, silks, and webs. Annual Review of Ecology and Systematics 38: 819–846. doi: 10.1146/annurev.ecolsys.37.091305.110221

Wang JF (1989) A new species of spider of the genus *Liphistius* from south China (Araneae: Liphistiidae). Acta Zootaxonomica Sinica 14: 30–32.

Wang HZ, Jiao YC (1995) A new species of the family [sic] *Heptathela* in China. Journal of Yunan Normal University 15(1): 80–81.

Wang JF, Ye HQ (1983) A new species of the spider family Heptathelidae from China. Acta Zootaxonomica Sinica 8: 146–148.

Wen ZG, Zhu CD (1980) Four species of male spiders (Araneae) from China. Journal of Bethune Medical University 6: 39–43.

World Spider Catalog (2015) World Spider Catalog. Natural History Museum Bern. http://wsc.nmbe.ch, version 16 [accessed on 19 January 2015]

Xu X, Liu FX, Cheng R-C, Chen J, Xu X, Zhang ZS, Ono H, Pham DS, Norma-Rashid Y, Arnedo MA, Kunntner M, Li D (in press) Extant primitively segmented spiders have recently diversified from an ancient lineage. Proceedings of the Royal Society of London B.

Yin CM (2001) Preliminary study on the different types of the intraspecific variants of order Araneae. Acta Arachnologica Sinica 10: 1–7.

Yin CM, Tang G, Zhao JZ, Chen J (2002) Two new species of the genus *Heptathela* from China (Araneae: Liphistiidae). Acta Arachnologica Sinica 11: 18–21.

Yin CM, Tang G, Xu X (2003) Two new species of the genus *Heptathela* from China (Araneae: Liphistiidae). Acta Arachnologica Sinica 12: 1–5.

Yin CM, Wang JF, Hu YJ (1983) Essential types and the evolution of palpal organ of spiders. Journal of Hunan Teachers College 2: 31–46.

Yin CM, Wang JF, Yang DB, Yang ZX (1988) Studies on vulva and palpal organ of spider *Heptathela yuelushanensis* Wang and Ye, 1983. Natural Science Journal of Hunan Normal University 11: 53–59.
Yoshikura M (1954) Embryological studies on the liphistiid spider *Heptathela kimurai*. Part I. Kumamoto Journal of Science B 1: 41–48.

Yoshikura M (1955) Embryological studies on the liphistiid spider *Heptathela kimurai*. Part II. Kumamoto Journal of Science B 2: 1–86.

Zhu CD, Wang YW (1984) A new species of genus *Liphistius* (Araneae: Liphistiidae). Journal of the Bethune Medical University 10: 251–253.
Appendix I

Specimens used in this study. Asterisks mark the previously unknown males.

Species	Specimen code	Sex	Locality	Coordinates	Collectors
Ganthela yundingensis sp. n.	XUX-2013-135	male	Mt. Yunding, Tingxi Town, Tong'an District, Xiamen City, Fujian Province, China	24.87827°N; 118.16172°E	Daqin Li, Bo Wu
Heptathela higoensis Haupt, 1983	XUX-2013-389	female	Kozomo-1-chome, Higashi-ku, Kumamoto-shi, Kumamoto-ken, Japan	32.83685°N; 130.78337°E	Daiqin Li, Bo Wu
Heptathela kimurai (Kishida, 1920)	XUX-2013-351	female	Shiroyama Park, Shiroyama-cho, Kagoshima-shi, Kagoshima-ken, Japan	24.87924°N; 118.16194°E	Daiqin Li, Bo Wu
Heptathela yanbaruensis Haupt, 1983	XUX-2014-038A	female	Mt. Yunding, Tingxi Town, Tong'an District, Xiamen City, Fujian Province, China	24.87827°N; 118.16172°E	Daqin Li, Bo Wu
Liphistius laoticus Schwendinger, 2013	XUX-2013-267	male	Tad Fane Waterfall, Pakse-Paksong Road, Champasak, Laos	24.87827°N; 118.16172°E	Daiqin Li, Fengxiang Liu, Xin Xu
Qiongthela baishensis sp. n.	XUX-2012-087	female	Nangaoling Forest Plantation, Baisha County, Hainan Province, China	24.87827°N; 118.16172°E	Daiqin Li, Fengxiang Liu, Xin Xu
Ryuthela nishihirai Haupt, 1979	XUX-2012-302	female	Sheyoshi Park, Shuri, Naha, Okinawa Prefecture, Japan	24.87827°N; 118.16172°E	Daiqin Li, Fengxiang Liu, Xin Xu
Ryuthela ishigakiensis Haupt, 1983	XUX-2013-228	male	Hirakubo River, Ishigaki island, Okinawa Prefecture, Japan	24.87827°N; 118.16172°E	Daiqin Li, Fengxiang Liu, Xin Xu
Species	Specimen code	Sex	Locality	Coordinates	Collectors
--	---------------	--------	--	---------------------------	----------------------------
Ryuthela sasakii Ono, 1997	XUX-2012-364	female	Maja, Nakazato-son, Kumejima Island, Okinawa, Japan	26.35823°N; 126.80168°E	Daiqin Li, Fengxiang Liu, Xin Xu
Sinothela sinensis (Bishop & Crosby, 1932), comb. n.	XUX-2012-045	male	Shiqiao Village, Shiqiao Town Yiyuan County, Shandong Province, China	36.15213°N; 118.33400°E	Fengxiang Liu, Zeliang Liu, Xin Xu
	XUX-2012-035	female	Caqia Village, Puji Town, Zhangqiu City, Shandong province, China	36.72776°N; 117.61112°E	Fengxiang Liu, Zeliang Liu, Xin Xu
Songhela hangzhouensis (Chen, Zhang & Zhu, 1981), comb. n.	XUX-2013-175	male	Wengjia Village, Mt. Shifeng, Lingyin District, Hangzhou City, Zhejiang Province, China	30.22069°N; 120.11679°E	Daiqin Li, Fengxiang Liu, Zengtao Zhang, Xin Xu
	XUX-2013-170	female	Wengjia Village, Mt. Shifeng, Lingyin District, Hangzhou City, Zhejiang Province, China	30.22074°N; 120.11555°E	Daiqin Li, Fengxiang Liu, Zengtao Zhang, Xin Xu
Songhela goulouensis (Yin, 2001), comb. n.	XUX-2011-078*	male	Zizhu Taoist Temple, Hengshan, Hunan Province, China	27.27707°N; 112.70016°E	Fengxiang Liu, Rong Xiao, Xin Xu
	XUX-2011-043	female	Zhonglicei, Hengshan, Hangrao, Hunan Province, China	27.27074°N; 112.71507°E	Fengxiang Liu, Rong Xiao, Xin Xu
Vinathela abca (Ono, 1999), comb. n.	XUX-2013-048	female	9 KM QL 4D, Coc San, Bat Xat District, Lao Cai Province, Vietnam	22.44414°N; 103.93818°E	Daiqin Li, Fengxiang Liu, Xin Xu
	XUX-2013-049	female	9 KM QL 4D, Coc San, Bat Xat District, Lao Cai Province, Vietnam	22.44414°N; 103.93818°E	Daiqin Li, Fengxiang Liu, Xin Xu
Vinathela cucphuongensis (Ono, 1999), comb. n.	XUX-2013-007*	male	Cuc Phuong National Park, Nho Quan, Ninh Binh Province, Vietnam	20.26831°N; 105.69324°E	Daiqin Li, Fengxiang Liu, Xin Xu
	XUX-2013-006	female	Cuc Phuong National Park, Nho Quan, Ninh Binh Province, Vietnam	20.26831°N; 105.69324°E	Daiqin Li, Fengxiang Liu, Xin Xu