Agenesis of the celiac trunk: a case report and review of the literature

Authors: M. Karamanidi, D. Chrysikos, A. Samolis, V. Protogerou, N. Fourla, I. Michalis, G. Papaioannou, T. Troupis

DOI: 10.5603/FM.a2020.0093
Article type: CASE REPORTS
Submitted: 2020-06-09
Accepted: 2020-07-11
Published online: 2020-08-14

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Agenesis of the celiac trunk: a case report and review of the literature

Running head: Celiac trunk agenesis

M. Karamanidi¹, D. Chrysikos¹, A. Samolis¹, V. Protogerou¹, N. Fourla¹, I. Michalis¹, G. Papaioannou², T. Troupis¹

¹Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece

²Department of Surgery, “Thriasio” General Hospital, Athens, Greece.

Address for correspondence: Prof. T. Troupis, Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 75 Mikras Asias str., Goudi, 11527 Athens, Greece, tel: +30-210-7462388, fax: +30-210-7462398, e-mail: ttroupis@med.uoa.gr

Abstract

Vascular anatomical variations of the abdomen are very common. Awareness of these variations is of paramount importance in clinical practice mainly in achieving best results in minimal invasive or surgical vascular procedures. From surgical point of view, the preoperative knowledge of vascular anatomy and the relations to the surrounding structures and tissues aims to minimize inadvertent complications.

Agenesis of the celiac trunk is one of the rare anatomical variations of the abdominal aorta. Limited number of cases have been reported in the medical literature, most of which are based on angiographic and cadaveric studies of adult humans.

In this paper, we report a case of absence of the celiac trunk that has been detected as a incidental radiological finding in a female patient, that was admitted with abdominal pain.

Key words: celiac trunk agenesis, tripus Halleri absence, anatomical variation
INTRODUCTION

Albrecht von Haller, a Swiss anatomist and physiologist described the trifurcation of the celiac trunk in 1756, also known as tripus Halleri and it is still considered to be the normal appearance of the celiac trunk, although numerous variation patterns have been described [1].

Anatomical variations of the unpaired branches of the celiac trunk may be the result of anomalous embryogenesis of primitive ventral segmental (splanchic) arteries which supply the gut and its derivatives based on Tandler’s hypothesis in 1904 [2]. The 10th primitive root of the ventral segmental artery becomes the left gastric artery, the 11th becomes the splenic artery and the 13th becomes the common hepatic artery. In case of agenesis of the celiac trunk, the roots of the ventral segmental arteries do not regress and the longitudinal anastomoses regress completely [3-5].

The celiac trunk, also known as the celiac artery, is the first branch of the abdominal aorta arising anterioirly at the level of T12 – L1 vertebral body. It is 1.5 – 2 cm in length and trifurcates into the left gastric artery, the common hepatic artery and the splenic artery which supply the liver, the stomach, the abdominal esophagus, the spleen, the superior duodenum and the pancreas [6].

The tripus Halleri is still considered to be the normal appearance of the celiac trunk, although numerous anatomical variations have been reported such as bifurcation or incomplete celiac trunk, common origin with superior mesenteric artery, additional branches and common origin with superior or inferior mesenteric arteries.

CASE REPORT

A 69-year-old female with no prior history of abdominal surgery was presented in the Out-patient Department of Surgery of our Hospital complaining of a 10 hour abdominal pain of sudden onset. Her examination was unremarkable except for epigastric tenderness with no presentation of rebound sign. Ultrasonogram was undertaken without significant results. An abdominal computed tomography (CT), enhanced with oral and intra venous medium contrast was performed without remarkable findings. However, a complete agenesis of the celiac trunk was revealed incidentally (type V according to Morita’s classification). In this case the left gastric, the common hepatic and the splenic artery arose independently from the abdominal
aorta (Fig. 1). In 3D reconstruction we clarified that the left gastric artery arose from the anterior wall of the abdominal aorta (diameter 4 mm) while the splenic (diameter 3.5 mm) and common hepatic artery (diameter 3.3 mm) were arising lower from the abdominal aorta (Fig. 2).

Although we consider this incidental finding unrelated, the patient’s symptoms were attributed to indigestion and she was treated with Proton Pump Inhibitors. A gastroscopy was arranged on a regular basis, in order to exclude peptic ulcer disease.

DISCUSSION

Awareness of vascular anatomical variations in the abdominal cavity is important either from topographical anatomy or from a surgical perspective due to their relations with the surrounding structures.

Knowing the anatomy preoperatively assists surgeons during hepatobiliary and pancreatic surgery in order to dissect the celiac trunk branches during liver and pancreatic resections. Any vascular variation could complicate any operation due to inadvertent vascular injury. Furthermore, esophagogastric resection and total gastrectomy involve the ligation of left gastric vessels near their origin. Lymph node dissection performed due to esophageal, gastric, hepatobiliary or pancreatic cancer requires accurate knowledge of the vascular anatomy, in order to be performed meticulously avoiding any possible and preventable complications.

Transplant surgeons must be extremely cautious in order to dissect and preserve the common hepatic artery and the celiac trunk integrity when they perform liver transplantation. The risk of damaging these arteries is higher during the cold phase of dissection and if there is a case any arterial anomaly the involved vessel may have to be reconstructed before proceeding to implantation. In the case of pancreatic transplantation the gastroduodenal, the splenic and the superior mesenteric arteries are vital as they provide its blood supply [5,7].

Moreover, preoperative knowledge of celiac trunk anatomy and its possible variations is extremely important during vascular operations, performed for thoracoabdominal aneurysm repair. The two therapeutic surgical options for this disease are an open and an endovascular procedure. Both, for technically different reasons
demand preoperative topographic information of the involved vessels, to avoid intraoperative complications.

Intervational radiologists should be aware of the celiac trunk variations when performing a diagnostic or a therapeutic angiography. Pseudoaneurysms can be treated by selective embolization and possible arterial variations should always be taken into account during the procedure [7].

There are numerous classifications of the celiac trunk morphology (Lipshutz 1917, Adachi 1928, Morita 1935, Michels 1955) [8–11].

The pattern of tripus Halleri is considered to be normal and any abnormal branching is considered as an anatomical variation. Agenesis of the celiac trunk was not described in Adachi’s classification [9] though Morita in 1935 proposed five types for the celiac trunk where type I is normal celiac trunk, type II hepatogastric trunk, type III gastrosplenic trunk, type IV hepatogastric trunk and type V the absence of the celiac trunk [10]. The anatomical variation reported in our case is of the fifth type (V) in Morita’s classification and it is considered to be extremely rare (0-2.6%) [3,12–16].

Geofry Saint-Hillaire reported the first case of this rare variation in 1832 as described by Okada in 1983 [17]. Rossi and Cova in 1904 reported such a case [18] and one was reported by Picquand in 1910 according to the statements by Eaton in 1917 and Morita in 1935 [10,19]. In 1969, Itoh reported the first cadaveric case [20]. Petrella et al. in 2007 reported one case of agenesis of the celiac trunk in a study of 69 cadavers (1.12%) [21]. Yi et al. described such a case during routine gross dissection in 2008 where the celiac trunk was absent and the arteries arose independently from the abdominal aorta [13]. Yadav et al. reported a case of a female cadaver in 2014 [22] while another case of an adult male cadaver was reported by Badagabettu in 2016 [23]. Lee reported a case of a male cadaver in 2016 [24]. However since the first report of Saint-Hillaire only 31 reported cases of such variation have been demonstrated by Iacob et al. 2014 [25]. Since then 4 additional cases have been reported to the best of our knowledge [22–24,26]. The majority of these cases reported worldwide were observed during anatomical dissections in cadaveric studies, while others were detected by imaging studies. In 1965, Morettin reported a case based on arteriography prior to surgical exploration [27]. Basar et al. reported a case presented in angiography in 1995
In 2011, Matusz et al. reported a case based on multidetector-row computed tomography [5] while another case was reported by Rastogi et al. in 2016 [26].

Agenesis of the celiac trunk was observed in 0.19% of cases according to Matusz et al. based on a large series of 10,750 cases from 19 studies including anatomical dissection, surgical procedures and radiological studies [5]. The reported prevalence of the case reports noted above varies from 0.1% according to Vandamme and Bonte [3] to 2.6% according to Venieratos et al. [15] in cadaveric studies of adult humans. The latest cadaveric study by Olewnik et al. in 2017 reported a prevalence of 2.5% of agenesis of the celiac trunk [29]. In this study the left gastric artery, the common hepatic artery and the splenic artery arose directly from the abdominal aorta, as reported in accordance with our case as well.

Finally, in comparison to most of the previous reported studies, this rare anatomical variation is mainly detected in post-mortem examinations or during cadaveric anatomical dissections. In our case, the agenesis of the celiac trunk was an incidental finding with clinical significance, revealed during an abdominal CT with 3D reconstruction.

CONCLUSIONS

The knowledge of vascular anatomical variations of the celiac artery and its branching pattern is of paramount importance during various operative, diagnostic and endovascular procedures. Agenesis of the celiac trunk is a rare anatomical variation.

Preoperative awareness of celiac trunk absence is of paramount importance assisting hepatobiliary, pancreatic, upper gastrointestinal and vascular surgeons to perform meticulously a wide range of operations in the celiac trunk.

References
1. Haller A von. Icones anatomicae in quibus aliquae partes corporis humani delineatae preponuntur et arteriarum potissimum historia continetur. Gottigen Vandenhoeck. 1756.
2. Tandler J. Uber die varietaten der arteria coeliaca und derenentwickelung. Anat Hefte. 1904;25:475–500.
3. Vandamme JP, Bonte J. The branches of the celiac trunk. Acta Anat [Basel].
4. Douard R, Chevallier J-M, Delmas V, et al. Clinical interest of digestive arterial trunk anastomoses. Surg Radiol Anat. 2006;28(3):219–27. doi: 10.1007/s00276-006-0098-8

5. Matusz P, Miclaus GD, Ples H, et al. Absence of the celiac trunk: Case report using MDCT angiography. Surg Radiol Anat. 2012;34(10):959–63. doi: 10.1007/s00276-012-0989-9

6. Standring, 2008a, Gray’s Anatomy. 40th Ed. London: Churchill Livingstone Elsevier, p. 1073-1074.

7. Panagouli E, Venieratos D, Lolis E, et al. Variations in the anatomy of the celiac trunk: A systematic review and clinical implications. Ann Anat. 2013;195(6):501–11. doi: 10.1016/j.aanat.2013.06.003

8. Lipshutz B. A composite study of the coeliac axis artery. Ann Surg. 1917;65(2):159–69.

9. Adachi B. Das Arteriensystem der Japaner. I Maruzen,1928;

10. Morita M. Reports and conception of three anomalous cases in the area of the celiac and the superior mesenteric arteries. Igaku Kenkyu [Acta Med]. 1935;(9):159–72.

11. Michels NA. Blood supply and anatomy of the upper abdominal organs, with a descriptive atlas. Lippincot, Philadelphia. 1955;

12. Picquand G. Researches sur l’anatomie du trone coeliaque et de ses branches. Bibliogr Anat. 1910;19:159–201.

13. Yi S-Q, Terayama H, Naito M, et al. Absence of the celiac trunk: case report and review of the literature. Clin Anat. 2008;21(4):283-6. doi: 10.1002/ca.20627

14. Song S-Y, Chung JW, Yin YH, et al. Celiac axis and common hepatic artery variations in 5002 patients: systematic analysis with spiral CT and DSA. Radiology. 2010; 255(1):278–88. doi: 10.1148/radiol.09090389

15. Venieratos D, Panagouli E, Lolis E, et al. A morphometric study of the celiac trunk and review of the literature. Clin Anat. 2013;26(6):741–50. doi: 10.1002/ca.22136

16. Marco-Clement I, Martinez-Barco A, Ahumada N, et al. Anatomical variations of the celiac trunk: cadaveric and radiological study. Surg Radiol Anat.
Okada S, Ohta Y, Shimizu T, et al. A rare anomalous case of absence of the celiac trunk—the left gastric, the splenic and the common hepatic arteries arose from the abdominal aorta independently. Okajimas Folia Anat Jpn. 1983;60(1):65–71. doi: 10.2535/ofaj1936.60.1_65

Rossi G., Cova E. Studio morfologico delle arterie dello stomaco. Arch Ital Anat Embryol. 1904;3:485–526.

Eaton PB. The Coeliac Axis. Anat Rec. 1917;13:369–74.

Itoh S. A case of no common trunk formation in the celiac arterial system. J Jud Med Soc. 1969;77:578.

Petrella S, Rodriguez CFS, Sgrott EA, et al. Anatomy and Variations of the Celiac Trunk. Int J Morphol. 2007;25(2):249–257.

Yadav SP, Gangane SD, Borate SM. Case Report A case of absent coeliac trunk. Ind J Med Res. 2014;(4):286–8.

Badagabettu SN, Padur AA, Kumar N, et al. Absence of the celiac trunk and trifurcation of the common hepatic artery: a case report. J Vasc Bras. 2016;15(3):259–62. doi: 10.1590/1677-5449.004016

Lee JK, Kang SR, Kim J, et al. A rare variation of the incomplete coeliac trunk. Folia Morphol. 2016;75(1):122–4. doi: 10.5603/FM.a2015.0074

Iacob N, Sas I, Joseph SC, et al. Anomalous pattern of origin of the left gastric, splenic, and common hepatic arteries arising independently from the abdominal aorta. Rom J Morphol Embryol. 2014;55(4):1449–53.

Rastogi R, Meena G, Yuktika G, et al. Agenesis of Celiac Axis – A Rare Clinical Entity. J Colitis Diverticulitis. 2016;1(1):1–2.

Morettin LB, Baldwin-Price HK, Schreiber MH. Congenital absence of the celiac axis trunk. Am J Roentgenol Radium Ther Nucl Med. 1965;95(3):727–30.

Başar R, Onderoğlu S, Cumhur T, et al. Agenesis of the celiac trunk: an angiographic case. Kaibogaku Zasshi. 1995;70(2):180–2.

Olewnik Ł, Wysiadecki G, Polguj M, et al. Types of coeliac trunk branching including accessory hepatic arteries: a new point of view based on cadaveric study. Folia Morphol. 2017; 76(4): 660-667. doi: 10.5603/FM.a2017.0053
Figure 1. Abdominal Computer Tomography depicting separate origin of the left gastric, splenic artery (Arrow 1) and common hepatic artery (Arrow 2) from the abdominal aorta.

Figure 2. Abdominal Computer Tomography with 3D reconstruction depicting absence of the celiac trunk. Left gastric, diameter 4mm (Arrow 1), common hepatic diameter 3.3 mm (Arrow 2) and splenic artery, diameter 3.5 mm (Arrow 3) arising directly from the abdominal aorta.
