Influence of genetic variability at the surfactant proteins A and D in community-acquired pneumonia: a prospective, observational, genetic study

M Isabel García-Laorden1, Felipe Rodríguez de Castro2,3, Jordi Solé-Violán4, Olga Rajas5, José Blanquer6, Luis Borderías7, Javier Aspa5, M Luisa Briones8, Pedro Saavedra9, J Alberto Marcos-Ramos10, Nereida González-Quevedo1, Ithaisa Sologuren1, Estefanía Herrera-Ramos1, José M Ferrer4, Jordi Rello11, Carlos Rodríguez-Gallego1,3*

Abstract

Introduction: Genetic variability of the pulmonary surfactant proteins A and D may affect clearance of microorganisms and the extent of the inflammatory response. The genes of these collectins (SFTPA1, SFTPA2 and SFTPD) are located in a cluster at 10q21-24. The objective of this study was to evaluate the existence of linkage disequilibrium (LD) among these genes, and the association of variability at these genes with susceptibility and outcome of community-acquired pneumonia (CAP). We also studied the effect of genetic variability on SP-D serum levels.

Methods: Seven non-synonymous polymorphisms of SFTPA1, SFTPA2 and SFTPD were analyzed. For susceptibility, 682 CAP patients and 769 controls were studied in a case-control study. Severity and outcome were evaluated in a prospective study. Haplotypes were inferred and LD was characterized. SP-D serum levels were measured in healthy controls.

Results: The SFTPD a11-C allele was significantly associated with lower SP-D serum levels, in a dose-dependent manner. We observed the existence of LD among the studied genes. Haplotypes SFTPA1 6A2 (P = 0.0009, odds ration (OR) = 0.78), SFTPA2 1A0 (P = 0.002, OR = 0.79), SFTPA1-SFTPA2 6A2-1A0 (P = 0.0005, OR = 0.77), and SFTPD-SFTPA1-SFTPA2 C-6A2-1A0 (P = 0.00001, OR = 0.62) were underrepresented in patients, whereas haplotypes SFTPA2 1A10 (P = 0.00007, OR = 6.58) and SFTPA1-SFTPA2 6A3-1A (P = 0.00007, OR = 3.92) were overrepresented. Similar results were observed in CAP due to pneumococcus, though no significant differences were now observed after Bonferroni corrections. SFTPD a11-C was associated with development of MODS and ARDS.

Conclusions: Our study indicates that missense single nucleotide polymorphisms and haplotypes of SFTPA1, SFTPA2 and SFTPD are associated with susceptibility to CAP, and that several haplotypes also influence severity and outcome of CAP.

Introduction

Community-acquired pneumonia (CAP) is the most common infectious disease requiring hospitalization in developed countries. Several microorganisms may be causative agents of CAP, and Streptococcus pneumoniae is the most common cause [1]. Inherited genetic variants of components of the human immune system influence the susceptibility to and the severity of infectious diseases. In humans, primary immunodeficiencies (PID) affecting opsonization of bacteria and NF-κB-mediated activation have been shown to predispose to invasive infections by respiratory bacteria, particularly S. pneumoniae [2]. Conventional PID are mendelian disorders, but genetic variants at other genes involved in opsonophagocytosis, with a lower penetrance, may also...
influence susceptibility and severity of these infectious
diseases with a complex pattern of inheritance [3].

In the lung, under normal conditions, microorganisms
at first encounter components of the innate immune
response, particularly alveolar macrophages, dendritic
cells and the lung collectins, the surfactant protein (SP)-
A1, -A2 and -D. SP-A1, -A2 and -D belong to the col-
lectin subgroup of the C-type lectin superfamily, and
contain both collagen-like and carbohydrate-binding
recognition domains (CRDs) [4]. Upon binding to
pathogen-associated molecular patterns (PAMPs), SP-A
and SP-D enhance the opsonophagocytosis of common
respiratory pathogens by macrophages [5,6]. Mice ren-
dered SP-A or SP-D deficient exhibit increased suscept-
ability to several bacteria and viruses after intratracheal
challenge [7-9]. SP-A1, -A2 and -D also play a pivotal
role in the regulation of inflammatory responses
[4,10,11] and clearance of apoptotic cells [4,12,13]. In
mice, SP-A and SP-D have been shown to be non-
redundant in the immune defense in vivo [9].

The human SP-A locus consists of two similar genes,
SFTP A1 and SFTP A2, located on chromosome 10q21-
24, within a cluster that includes the SP-D gene
(SFTP D) [11]. The nucleotide sequences of human
SFTP A1 and SFTP A2 differ little (96.0 to 99.6%) [14].
Single nucleotide polymorphisms (SNP) at the SFTP A1
codons 19, 50, 62, 133 and 219, and at the SFTP A2
codons 9, 91, 140 and 223 have been used to define
the SP-A haplotypes, which are conventionally denoted
as 6Aa* for the SFTP A1 gene and 1Aa* for the SFTP A2
gene (see Table E1 in Additional File 1) [15]. Variabil-
ity at the SFTP D gene has been also reported. Particu-
larly, the presence of the variant amino acid (aa)-
11 (M11T) has been shown to lead to low SP-D
levels [16].

In the present study, we assessed the potential associa-
tion of missense polymorphisms of the SFTP A1,
SFTP A2 and SFTP D genes as well as the resulting hap-
lotypes, with the susceptibility to and the severity and
outcome of CAP in adults. In addition, we evaluated the
existence of linkage disequilibrium (LD) among these
genes, and the effect of genetic variability on SP-D
serum levels.

Materials and methods

Patients and controls
We studied 682 patients and 769 controls, all of them
Caucasoid Spanish adult individuals from five hospitals
in Spain. Foreigners and individuals with ancestors
other than Spanish were previously excluded in the
selection process. The diagnosis of CAP was assumed in
the presence of acute onset of signs and symptoms sug-
gesting lower respiratory tract infection and radiog-
graphic evidence of a new pulmonary infiltrate that had
no other known cause. A detailed description of the
exclusion criteria and clinical definitions are shown in
Methods in Additional File 1 [17-19]. The control group
was composed of healthy unrelated blood donors from
the same hospitals as patients.

For susceptibility, a case-control study was performed.
Severity and outcome were evaluated in a prospective
study of CAP patients. Demographic and clinical charac-
teristics of CAP patients included in the study are
shown in Table E2 in Additional File 1.

Measurement of SP-D serum levels
In order to analyze the effect of the SFTP D aa11 on SP-
D levels in our population, protein levels were measured
in serum samples from individuals in the control group
by means of a Surfactant Protein D ELISA kit (Antibo-
dyshop®, Gentofte, Denmark).

Genotyping
Four haplotypes of SP-A1 (6Aa, 6Aa2, 6Aa3 and 6Aa4) and
six of SP-A2 (1Aa, 1Aa0, 1Aa1, 1Aa2, 1Aa3 and 1Aa5) are found
frequently (>1%) in the general population [15]. On the
basis of the differences in non-synonymous SNPs (SFTP A1-aa19, -aa50, -aa219, SFTP A2-aa9, -aa91,
-aa223) the most frequent conventional haplotypes of
these genes, except 1Aa and 1Aa5, can be unambigu-
ously identified (see Table E1 in Additional File 1). However,
this method does not allow for the differentiation of
some of these haplotypes from those rare haplotypes
(frequency equal or lower than 1%) identified with the
SNPs indicated in Table E1 in Additional File 1. For
comparative purposes, in our study each haplotype was
denoted by the name of the most frequent haplotype for
a given combination of non-synonymous SNPs. Geno-
mic DNA was isolated from whole blood according to
standard phenol-chloroform procedure or with the
Magnapure DNA Isolation Kit (Roche Molecular Diag-
nostics, Pleasanton, CA, USA). Genotyping of poly-
morphisms in SFTP A1 (aa19, aa50, aa219), SFTP A2
(aa9, aa91, aa223) and SFTP D (aa11) genes was carried
out using minor modifications of previously reported
procedures [15,20]. The accuracy of genotyping was
confirmed by direct sequencing in an ABI Prism 310
(Applied Biosystems, Foster City, CA, USA) sequencer.

Haplotypes for each individual were inferred using
PHASE statistical software (version 2.1) [21]. The hap-
loftype of SFTP A1, SFTP A2 or the haplotype encompassing
SFTP A1, SFTP A2 and SFTP D was ambiguous or could not
be assigned in 12 individuals, who were excluded from
the study. The order used for the haplotypes nomenclature
is SFTP D-SFTP A1-SFTP A2. Linkage disequilibrium (LD)
was measured by means of Arlequin (version 3.11) [22]
and Haplovie [23] softwares in the control group. In
addition, pairwise LD between haplotypes of SFTP A1 and
SFTPA2 as well as with the SFTPD SNP was characterized using Arlequin 3.11. The existence of LD was considered if $D^* > 0.4$.

Informed consent was obtained from the patients or their relatives. The protocol was approved by the local ethics committee of the five hospitals. All steps were performed in complete accordance to the Helsinki declaration.

Statistical analysis

Bivariate and multivariate statistical analyses were performed using SPSS (version 15.0) (SPSS, Inc, Chicago, Ill, USA) and R package [24]. A detailed description of the statistical methods is shown in Methods in Additional File 1.

Results

Susceptibility to CAP related to SFTPA1, SFTPA2 and SFTPD gene variants

Seven non-synonymous SNPs were genotyped across the region containing the SFTPD, SFTPA1 and SFTPA2 genes (Table 1). None of the SNPs showed a significant deviation from Hardy-Weinberg equilibrium in controls. Several major alleles were overrepresented in controls compared with patients, but only SFTPA1 aa50-G, SFTPA2 aa9-A and aa91-G remained significant after Bonferroni correction for multiple comparisons. A dominant effect of SFTPA2 aa9-A, and a recessive effect of SFTPA1 aa50-G and aa219-C as well as SFTPA2 aa223-C were associated with a lower risk of CAP (see Table 1).

Table 1 Comparison of SNPs from SFTPD, SFTPA1 and SFTPA2 between patients with CAP and controls

Alleles comparison	Genotypes comparison†
Controls (N = 769)	CAP (N = 682)

SNP	Alleles	Controls	CAP	P	OR (95% CI)	P	OR (95% CI)
SFTPD aa11 rs721917	T/T	269 (35.0)	272 (39.9)	0.681	0.95 (0.73 to 1.23)		
	T/C	361 (46.9)	281 (41.2)	0.266	1.09 (0.94 to 1.27)	0.054	1.23 (1.00 to 1.53)
	C/C	139 (18.1)	129 (18.9)				
SFTPA1 aa19 rs1059047	T/T	680 (88.4)	582 (85.3)	0.056	0.75 (0.56 to 1.02)	0.081	0.76 (0.56 to 1.04)
	T/C	88 (11.4)	96 (14.1)				
	C/C	1 (0.001)	4 (0.006)				
SFTPA1 aa50 rs1136450	G/G	320 (41.6)	232 (34.0)	0.002	0.79 (0.68 to 0.92)	0.003	0.72 (0.58 to 0.90)
	G/C	330 (42.9)	319 (46.8)				
	C/C	119 (15.5)	131 (19.2)				
SFTPA1 aa219 rs4253527	C/C	620 (80.6)	508 (74.5)	0.012	0.75 (0.59 to 0.95)	0.005	0.70 (0.55 to 0.90)
	C/T	142 (18.5)	169 (24.8)				
	T/T	7 (0.9)	5 (0.7)				
SFTPA2 aa9 rs1059046	A/A	323 (42.0)	245 (35.9)	0.010	0.68 (0.51 to 0.91)		
	A/C	349 (45.4)	318 (46.6)	0.003	0.79 (0.68 to 0.92)	0.018	0.77 (0.63 to 0.96)
	C/C	97 (12.6)	119 (17.4)				
SFTPA2 aa91 rs17886395	G/G	623 (81.0)	501 (73.5)	0.110	0.58 (0.29 to 1.14)		
	G/C	133 (17.3)	158 (23.2)	0.0002	0.66 (0.52 to 0.82)	0.001	0.65 (0.51 to 0.83)
	C/C	13 (1.7)	23 (3.4)				
SFTPA2 aa223 rs1965708	C/C	503 (65.4)	419 (61.4)	0.151	0.66 (0.38 to 1.17)		
	C/A	244 (31.7)	234 (34.3)	0.071	0.85 (0.70 to 1.02)	0.117	0.84 (0.68 to 1.04)
	A/A	22 (2.9)	29 (4.3)				

*Frequency values are the number of individuals (%). SNPs: Single nucleotide polymorphisms; CAP: Community-acquired pneumonia.

†Uncorrected P-value for the bivariate comparison of alleles.

‡Uncorrected P-value for the bivariate comparison of genotypes. For the dominant allele effect, individuals homozygous for the more frequent allele or those heterozygous for both alleles were defined as 1, and individuals homozygous for the minor allele were defined as 0. For the recessive allele effect, individuals homozygous for the more frequent allele were defined as 1, with all others defined as 0.

‡P-value by Fischer exact test.
When haplotypes were inferred, seven different haplotypes were found for *SFTPA1* and eight for *SFTPA2* (see Table 2). All haplotypes except 6A5, 6A15, IA10 and IA13 had frequencies higher than 1% in our population. The most frequent haplotype for *SFTPA1* and *SFTPA2* were respectively TGC and AGC, which correspond mainly with the 6A2 and IA0 haplotypes respectively. The frequencies of both haplotypes were significantly lower in patients compared to controls (*P* = 0.0009, OR = 0.78; 95% confidence interval (CI) 0.67 to 0.91, for *SFTPA1* 6A2. *P* = 0.002, OR = 0.79; 95% CI 0.68 to 0.92, for *SFTPA2* IA0), even when Bonferroni correction was applied. Several haplotypes were overrepresented in patients compared with controls, but only IA10 (*P* = 0.00007, OR = 0.68; 95% CI 2.24 to 26.22) remained significant after Bonferroni correction. For the observed odd-ratios, the power of the tests with a significance level of 1% were 84.16%, 79.09% and 94.04% for the haplotypes 6A2, IA0 and IA10 respectively. In addition, dominant and recessive models showed a significant

Table 2 Comparison of haplotypes of *SFTPA1* and *SFTPA2* between patients with CAP and controls

Haplotype *	Controls N = 1,538	CAP N = 1,364	P^†	Haplotype effect	P^‡
				Dominant	
SFTPA1					
6A (CCC)	75 (4.9)	90 (6.6)	0.047 1.38 (0.99-1.92)	Dominant	0.058 1.37 (0.99-1.91)
6A2 (TGC)	934 (60.7)	745 (54.0)	0.0009 0.78 (0.67-0.91)	Dominant	0.172 0.83 (0.64-1.08)
6A3 (TCC)	362 (23.5)	343 (25.1)	n.s.	Dominant	0.004 1.37 (1.11-1.69)
6A4 (TCT)	128 (8.3)	141 (10.3)	0.062 1.27 (0.98-1.65)	Dominant	0.068 1.28 (0.98-1.68)
6A5 (CCT)	4 (0.3)	7 (0.5)	n.s.	Dominant	0.107 2.56 (0.78-8.34)
6A12 (TGT)	26 (1.7)	29 (2.1)	n.s.	Dominant	0.315 1.32 (0.77-2.28)
6A15 (CGC)	9 (0.6)	9 (0.7)	n.s.	Dominant	0.996 1.00 (0.39-2.61)
SFTPA2					
IA (CCC)	134 (8.7)	147 (10.8)	n.s.	Dominant	0.050 1.31 (1.00-1.71)
IA0 (AGC)	911 (59.2)	729 (53.4)	0.002 0.79 (0.68-0.92)	Dominant	0.004 0.68 (0.52-0.88)
IA1 (CGA)	219 (14.2)	222 (16.3)	n.s.	Dominant	0.544 1.14 (0.91-1.44)
IA2 (CGC)	188 (12.2)	164 (12.0)	n.s.	Dominant	0.806 0.97 (0.76-1.24)
IA3 (AGA)	61 (4.0)	46 (3.4)	n.s.	Dominant	0.557 0.89 (0.59-1.33)
IA7 (ACC)	21 (1.4)	32 (2.3)	0.049 1.74 (0.96-3.18)	Dominant	0.031 1.18 (1.05-3.36)
IA10 (CCA)	4 (0.3)	23 (1.7)	0.00007 6.58 (2.24-26.22)	Dominant	0.00006 6.68 (2.30-19.40)
IA13 (ACA)	0	1 (0.1)	n.s.	Dominant	n.a.

Frequency values are the number of chromosomes (%). CAP, Community-acquired pneumonia; n.s., non-significant; n.a., not assessable.

*Haplotypes for *SFTPA1* and *SFTPA2*, resulting from the different combinations of the three SNPs (Single nucleotide polymorphisms) studied at each gene, are denoted using the conventional nomenclature [15].

^†Uncorrected *P*-value for the bivariate comparison of haplotypes.

^‡Uncorrected *P*-value for the bivariate comparison of genotypes. For the dominant haplotype effect, individuals homozygous or heterozygous for the allele of interest were defined as 1, and individuals without the haplotype were defined as 0. For the recessive haplotype effect, individuals homozygous for the haplotype of interest were defined as 1, with all others defined as 0.

^§*P*-value by Fischer exact test.
dominant effect on CAP susceptibility for haplotypes $6A^3$, IA^0, IA^2 and IA^{10} and a recessive effect for haplotype $6A^2$ (see Table 2).

Linkage disequilibrium of SFTPA1, SFTPA2 and SFTPD genes

Pairwise LD (D') measured by means of Arlequin confirmed the existence of LD among several SNPs at SFTPA1 and SFTPA2, whereas SFTPD $aa11$ was only observed in LD with SFTPA1 $aa19$ (see Figure 1). A similar pattern of LD was observed when D' was measured by means of the Haploviev software (data not shown). SFTPA1 and SFTPA2 were previously found to be in LD [25,26]. The value of LD measured as r^2 was very low for every pair of SNPs (data not shown), and none of the studied SNPs could be used as haplotype-tagging SNP to infer the observed haplotypes.

When pairwise LD was measured among haplotypes instead among SNPs, SFTPA1 was found to be in LD with SFTPD $aa11$, but only a marginal LD was found between SFTPA2 $1A$ and SFTPD $aa11$ (see Table E3 in Additional File 1).

Susceptibility to CAP related to haplotypes encompassing SFTPA1, SFTPA2 and SFTPD

When haplotypes encompassing both SFTPA genes were studied, we observed 39 of the 64 expected haplotypes, and only 14 haplotypes had frequencies higher than 1% (data not shown). The most common SFTPA1-SFTPA2 haplotype, $6A^2-IA^0$, was underrepresented in patients ($P = 0.0005$, $OR = 0.77$; 95% CI 0.66 to 0.90), whereas $6A^{12}-IA$ was overrepresented ($P = 0.0007$, $OR = 3.92$; 95% CI 1.63 to 10.80) (see Table 3). Both differences remained significant after Bonferroni correction. For the observed odd-ratios, the powers of the tests with a significance level of 1% were 87.76% and 84.04% for the haplotypes $6A^2-IA^0$ and $6A^{12}-IA$ respectively. On the other hand, dominant and recessive logistic regression models showed a significant dominant effect on CAP susceptibility for haplotypes $6A^2-IA$ and $6A-IA^4$ and a recessive effect for haplotype $6A^{12}-IA^0$ (see Table 3). We also intended to analyze whether phased variants encompassing the three genes were involved in susceptibility to CAP. Only 68 of the 128 expected haplotypes were observed, and 16 of them had a frequency over 1%. Chromosomes containing $C-6A^{12}-IA^0$ were decreased in patients when compared with controls ($P = 0.00001$, $OR = 0.62$; 95% CI 0.50 to 0.77), a difference that remained significant after Bonferroni correction. $C-6A^{12}-IA^0$ was also significantly associated with protection against CAP in a dominant model (see Table 3).

A similar pattern of haplotype distribution was observed when individual as well as two- and three-gene based haplotypes were compared between pneumococcal CAP patients and healthy controls (see Table E4 in Additional File 1), though no significant differences were now observed after Bonferroni corrections.

Outcome and severity of CAP patients related to genetic variants at SFTPA1, SFTPA2 and SFTPD genes

When fatal outcome was analyzed, patients who died within the first 28 days showed a higher frequency of haplotypes $6A^{12}$, IA^{10} and $6A-IA$, and a lower frequency of the major SFTPA1$aa19-T$ and $aa219-C$ alleles and of haplotypes $6A^3$ and $6A^3-IA^1$ (see Table 4). Similar results were observed when 90-day mortality was analyzed (see Table 4). For the observed odd-ratios, the power of the tests with a significance level of 5% was 82.64% when the protective effect of $6A^{12}-IA^4$ on 28-day mortality was evaluated, and 81.45% and 80.79% concerning the effect of $6A^3$ and $6A^{12}-IA^4$ on 90-day mortality respectively. Kaplan-Meier analysis (Figure 2) and log-rank test (Table 4) also showed significantly different survival for the above mentioned alleles and haplotypes. Cox Regression for 28-day survival, adjusted for age, gender, hospital of origin and co-morbidities, was significant for haplotypes $6A^{12}$ and $6A-IA$, and it remained significant for haplotypes $6A^3$ and $6A-IA$ when 90-day survival analysis was performed (see Table 4). We also analyzed Cox Regression adjusted for hospital of origin, PSI and pathogen causative of the pneumonia, and we found similar results: for 28-day
survival it remained significant for haplotype 6A-1A (\(P = 0.029\), OR = 2.45; 95% CI 1.10 to 5.46), although for 6A12 haplotype it was not significant (\(P = 0.072\)); for 90-day survival it was significant for both 6A3 (\(P = 0.038\), OR = 0.52; 95% CI 0.28 to 0.96) and 6A-1A (\(P = 0.045\), OR = 2.12; 95% CI 1.02 to 4.44) haplotypes. No effect of the SFTPD aa11 SNP was observed. Due to the high number of observed haplotypes, and because of the limited sample size in the patient groups when they were stratified on the basis of severity and outcome, the haplotypes including SFTPA1, A2 and D were not studied.

The relevance of these genetic variants in the severity of CAP was also evaluated by analyzing predisposition to acute respiratory distress syndrome (ARDS) and to multi-organ dysfunction syndrome (MODS) (see Tables 5 and 6). The SFTP D aa11-C allele was significantly overrepresented in patients with MODS or ARDS. Haplotypes 6A and 6A-1A, were also associated with the development of ARDS, and SFTP A2 1A and 1A10 were associated with the development of MODS. For the observed odd-ratios, the power of the association of 1A with predisposition to MODS was 89.29%. However, the number of individuals included in the analysis of outcome was relatively small and the power of the tests with a significance level of 1% was lower than 80%. These associations remained significant in multivariate analysis adjusted for age, gender, hospital of origin and co-morbidities, as well as for hospital of origin, PSI and causative microorganism (see Tables 5 and 6). By contrast, 6A3-1A1 was associated with protection against MODS, although this difference was not significant in the multivariate analysis.

Association of genetic variants at SFTP D with serum levels of SP-D
In order to study whether variants at the pulmonary collectins were associated with differences of serum levels of SP-D, this protein was measured in serum from healthy controls with known genotypes. The SFTP D aa11-C SNP associated with lower SP-D serum levels (905.10 ± 68.38 ng/ml for T/T genotype, 711.04 ± 52.02 ng/ml for T/C, and 577.91 ± 96.14 ng/ml for C/C; ANOVA \(P = 0.017\) (see Figure 3).

Table 3 Comparison of relevant haplotypes encompassing SFTP D, SFTP A1 and SFTP A2 between CAP patients and controls

Haplotype*	Controls	CAP	OR (95% CI)	Haplotype effect	OR (95% CI)
N = 1,538	N = 1,364				
6A^2^2-1A^2^ (TGGAGC)	802 (52.1)	623 (45.7)	0.0005 0.77 (0.66-0.90)	Dominant	0.028 0.77 (0.61-0.97)
6A^2^2-1A (TCCCCC)	7 (0.5)	24 (1.8)	0.0007 3.92 (1.63-10.80)	Dominant	0.001 3.97 (1.70-9.27)
6A-1A (CCCCGA)	2 (0.1)	9 (0.7)	0.020 5.10 (1.05-48.57)	Dominant	0.020 5.13 (1.10-23.82)

N = 1,538	N = 1,364				
C-6A^2^2-1A (CTGGAGC)	261 (17.0)	153 (11.2)	0.00001 0.62 (0.50-0.77)	Dominant	0.0001 0.63 (0.49-0.80)
C-6A^2^2-1A (CTCCCG)	3 (0.2)	14 (1.0)	0.003 5.31 (1.48-28.84)	Dominant	0.003 5.35 (1.53-18.70)
C-6A^2^2-1A (CTCTGG)	15 (1.0)	31 (2.3)	0.005 2.36 (1.23-4.73)	Dominant	0.003 2.57 (1.35-4.87)
T-6A^2^2-1A (TCCCCG)	54 (3.5)	74 (5.4)	0.012 1.58 (1.09-2.30)	Dominant	0.010 1.62 (1.12-2.34)
T-6A^2^2-1A (TCTCG)	52 (3.4)	28 (2.1)	0.029 0.60 (0.36-0.97)	Dominant	0.019 0.57 (0.35-0.92)

Frequency values are the number of chromosomes (%). CAP, Community-acquired pneumonia; n.a., not assessable.

*Haplotypes for SFTP A1 and SFTP A2, resulting from the different combinations of the three SNPs studied at each gene, are denoted using the conventional nomenclature [15].

†Uncorrected \(P\)-value for the bivariate comparison of genotypes. For the dominant haplotype effect, individuals homozygous or heterozygous for the haplotype of interest were defined as 1, and individuals without the haplotype were defined as 0. For the recessive haplotype effect, individuals homozygous for the haplotype of interest were defined as 1, with all others defined as 0.

‡Uncorrected \(P\)-value for the bivariate comparison of genotypes. For the dominant haplotype effect, individuals homozygous or heterozygous for the haplotype of interest were defined as 1, and individuals without the haplotype were defined as 0. For the recessive haplotype effect, individuals homozygous for the haplotype of interest were defined as 1, with all others defined as 0.

§\(P\)-value by Fischer exact test.
This study is unique in reporting a genetic association between non-synonymous SNPs at \textit{SFTPD}, \textit{SFTPA1} and \textit{SFTPA2}, a well known haplotype encompassing these genes, with the susceptibility, severity and outcome of CAP.

The major alleles of \textit{SFTPA1} aa50-T, aa219-C as well as \textit{SFTPA2} aa9-A and aa91-G or genotypes carrying these alleles were associated with protection against CAP. The frequencies of the different SNPs and haplotypes of \textit{SFTPA1}, \textit{SFTPA2} and \textit{SFTPD} observed in our study were similar to those previously reported in European populations [25]. \textit{SFTPA1} and \textit{SFTPA2} were reported to be in strong LD [26,27], and several haplotypes of these loci tend to segregate together, being 6A2-1A0 the major haplotype [27]. A protective role against CAP was associated with 6A2, 1A0 and 6A2-1A0 in our survey but only the rare 1A10 and 6A3-1A haplotypes were significantly associated with susceptibility to CAP. Similar results were observed in susceptibility to pneumococcal CAP. Several SNPs and

Variant	28 days	90 days								
	Mortality	Survival	Mortality	Survival						
	Yes	No	OR (95% CI)	\(\chi^2\)	HR (95% CI)	Yes	No	OR (95% CI)	\(\chi^2\)	HR (95% CI)
\textit{SFTPA1} aa50-T allele	58	1202	0.024 0.45	0.021	0.071 0.52	81	1179	0.105 0.58	0.091	0.256 0.68
\textit{SFTPA1} aa219-C allele	52	1133	0.009 0.47	0.009	0.085 0.57	72	1113	0.011 0.51	0.011	0.230 0.70

Table 4 Outcome of CAP patients related to haplotypes of \textit{SFTPA1} and \textit{SFTPA2}

Frequency values are the number of chromosomes (%). Only relevant haplotypes are shown. SNPs: Single nucleotide polymorphisms; CAP: Community-acquired pneumonia.

García-Laorden et al. Critical Care 2011, 15:R57
http://ccforum.com/content/15/1/R57

Page 7 of 12

Discussion

This study is unique in reporting a genetic association between non-synonymous SNPs at \textit{SFTPD}, \textit{SFTPA1} and \textit{SFTPA2}, as well as of haplotypes encompassing these genes, with the susceptibility, severity and outcome of CAP.

The major alleles of \textit{SFTPA1} aa50-G, aa219-C as well as \textit{SFTPA2} aa9-A and aa91-G or genotypes carrying these alleles were associated with protection against CAP. The frequencies of the different SNPs and haplotypes of \textit{SFTPA1}, \textit{SFTPA2} and \textit{SFTPD} observed in our study were similar to those previously reported in European populations [25]. \textit{SFTPA1} and \textit{SFTPA2} were reported to be in strong LD [26,27], and several haplotypes of these loci tend to segregate together, being 6A2-1A0 the major haplotype [27]. A protective role against CAP was associated with 6A2, 1A0 and 6A2-1A0 in our survey but only the rare 1A10 and 6A3-1A haplotypes were significantly associated with susceptibility to CAP. Similar results were observed in susceptibility to pneumococcal CAP. Several SNPs and

Figure 2 Kaplan-Meier estimation of survival at 28 and 90 days in the 682 CAP patients. CAP, community-acquired pneumonia. Solid curves represent the haplotypes under study, being dotted curves the rest of haplotypes. The vertical dotted line is depicted at 28 days. Significance levels for each comparison are shown in Table 4.
Table 5: Predisposition to MODS related to SFTPD alleles and to SFTPD, SFTPA1 and SFTPA2 haplotypes in patients with CAP

Allele or haplotype*	MODS	No MODS	p\(^{†}\) OR (95% CI)	p\(^{‡}\) OR (95% CI)	p\(^{§}\) OR (95% CI)
SFTPD					
C	N = 178	N = 1,186	0.016 (1.47-1.06)	0.002 (1.68-2.10)	0.043 (1.46-2.10)
SFTPA1					
6A	N = 178	N = 1,186	0.465 (1.25-6.4)	-	-
SFTPA2					
1A	N = 178	N = 1,186	2.04 (1.28-3.17)	2.29 (1.45-3.62)	2.21 (1.34-3.65)
1A\(^10\)	8 (4.5)	15 (1.3)	3.67 (1.33-9.38)	2.70 (1.08-6.76)	2.98 (1.09-8.10)
SFTPA1-SFTPA2					
6A-1A	12 (6.7)	46 (3.9)	0.078 (1.79-0.85)	-	-
6A\(^4\)-1A\(^{11}\)	13 (7.3)	153 (12.9)	0.033 (0.53-0.27)	0.115 (0.62-0.34)	0.097 (0.58-0.31)

For allelic and haplotypic frequencies values are the number of chromosomes (%). Only relevant haplotypes are shown. CAP: Community Acquired Pneumonia; MODS: Multi-organ Dysfunction Syndrome.

*Haplotypes for SFTPA1 and SFTPA2, resulting from the different combinations of the three SNPs (Single nucleotide polymorphisms) studied at each gene, are denoted using the conventional nomenclature [15].

\(^{†}\)P-value for the bivariate comparison.

\(^{‡}\)P-value for multivariate analysis, including the variables age, gender, hospital of origin and co-morbidities. For those bivariate comparisons that resulted in non-significant differences, multivariate analysis were not calculated.

\(^{§}\)P-value for multivariate analysis, including the variables hospital of origin, PSI (Pneumonia Severity Index) and pathogen.

\(^{||}\)P-value by Fischer exact test.

Table 6: Predisposition to ARDS related to SFTPD alleles and to SFTPD, SFTPA1 and SFTPA2 haplotypes in patients with CAP

Allele or haplotype*	ARDS	No ARDS	p\(^{†}\) OR (95% CI)	p\(^{‡}\) OR (95% CI)	p\(^{§}\) OR (95% CI)
SFTPD					
C	N = 52	N = 1,312	0.015 (1.98-1.09)	0.032 (1.92-1.06)	0.050 (1.79-1.00)
SFTPA1					
6A	N = 52	N = 1,312	0.018\(^{6}\) (2.73)	0.004 (3.89-1.56)	0.022 (2.64-1.15)
SFTPA2					
1A	7 (13.5)	140 (10.7)	0.524 (1.30-0.49)	-	-
1A\(^10\)	1 (1.9)	22 (1.7)	0.594\(^{11}\) (1.15)	-	-
SFTPA1-SFTPA2					
6A-1A	7 (13.5)	51 (3.9)	0.005\(^{a}\) (3.85)	0.0006 (5.83)	0.012 (3.16)
6A\(^4\)-1A\(^{11}\)	5 (9.6)	161 (12.3)	0.566 (0.76)	0.566 (0.23-1.94)	-

For allelic and haplotypic frequencies values are the number of chromosomes (%). Only relevant haplotypes are shown. CAP: Community Acquired Pneumonia; ARDS: Acute Respiratory Distress Syndrome.

*Haplotypes for SFTPA1 and SFTPA2, resulting from the different combinations of the three SNPs (Single nucleotide polymorphisms) studied at each gene, are denoted using the conventional nomenclature [15].

\(^{†}\)P-value for the bivariate comparison.

\(^{‡}\)P-value for multivariate analysis, including the variables age, gender, hospital of origin and co-morbidities. For those bivariate comparisons that resulted in non-significant differences, multivariate analysis were not calculated.

\(^{§}\)P-value for multivariate analysis, including the variables hospital of origin, PSI (Pneumonia Severity Index) and pathogen.

\(^{||}\)P-value by Fischer exact test.
haplotypes were also associated with a higher severity and poor outcome; MODS, ARDS, and mortality were selected because they represent the more severe clinical phenotypes. Particularly, 1A10 and 6A-1A were overrepresented among patients who died at 28 or 90 days, and they also predisposed to MODS and ARDS respectively. Likewise, 6A was associated with ARDS, and 1A was associated with MODS. By contrast, 6A3 and 6A3-1A1 were underrepresented in patients who died. The SFTPD aa11-C allele was associated with the development of MODS and ARDS, but no significant effects on mortality were observed. In spite that the power of the test for some associations with outcome and severity were higher than 80% for the observed OR with a significance level of 5%, the number of individuals included in the analysis of outcome was relatively small. Consequently, associations with outcome should be interpreted with caution.

Only a few studies have addressed the role of the genetic variability at SFTPA1 and SFTPA2 in infectious diseases [28-31]. In bacterial infections, homozgyosity for the 1A1 haplotype was reported to be associated with meningococcal disease [30]. Noteworthy, 6A2-1A0 was protective against acute otitis media (AOM) in children [32]. Haplotypes 6A2 and 1A0 may also be involved in protection against respiratory syncytial virus (RSV) disease [29,33]. Considering the high difference in the frequencies with the corresponding alternative alleles and haplotypes, it is tempting to speculate that 6A2, 1A0 and 6A2-1A0 could have been maintained at high frequencies partly by their protective effect against respiratory infections. The 6A and 6A-1A haplotypes were found to be associated with an increased risk of wheeze and persistent cough, presumably triggered by respiratory infections or environmental contaminants, among infants at risk for asthma [27].

Regarding SP-D, the SFTPD aa11-T allele was associated with severe RSV bronchiolitis [34], whereas the SFTPD aa11-C variant was associated with tuberculosis [30].

In sharp contrast to the potentially proinflammatory effects after PAMP recognition by collectins, mice deficient in SP-A or SP-D develop enhanced inflammatory pulmonary responses [35-37]. SP-A and SP-D play a dual role in the inflammatory response. They interact with pathogens via their CRD, and are recognized by calretilcin/CD91 on phagocytes through the N-terminal collagen domain, promoting phagocytosis and proinflammatory responses [10,13]. By contrast, binding of the CRD to signal inhibitory regulatory protein α (SIRPα) on alveolar macrophages suppresses NF-κB activation and inflammation, allowing the lung to remain in a quiescent state during periods of health [10]. A similar dual effect is observed in the promotion or inhibition of apoptosis [12]. SP-A and SP-D can also inhibit inflammation by blocking, through the CRD, Toll-like receptors 2 and 4 [38,39]. In agreement with previous results [16], we have observed that the SFTPD aa11-C allele associates with significantly lower SP-D serum levels than the aa11-T allele, and this effect was dose-dependent. The aa11-C/T SNP, located in the N-terminal domain, influences oligomerization of SP-D and explains a significant part of the heritability of serum SP-D levels [16,40]. Serum from aa11-C homozygotes lack the highest molecular weight (m.w.) forms of the protein, which binds preferentially to complex microorganisms whereas the low m.w. SP-D preferentially binds LPS [16].

As a consequence of intracellular oligomerization, monomeric SP-A subunits fold into trimers, and suprameric assembly leads to high-order oligomers [41,42]. The degree of supratirmeric oligomerization is important for the host defence function [14,41,43-45]. SP-A1 and SP-A2 differ in only four amino acids (residues 66, 73, 81 and 85) located in the collagen domain [46]. In most functions examined, recombinant human (rh) SP-A2 shows higher biological activity than SP-A1 [14,41,47-50].

The significance and the nature of functional differences between variants at SP-A1 and SP-A2 are poorly understood [14,49,50]. Variants aa50 (SP-A1) and aa91 (SP-A2) are located in the collagen region. These changes may affect the oligomerization pattern and binding to receptors such as calretilcin/CD91 or the functional activity of the protein. Likewise, the variants aa219 (SP-A1) and aa223 (SP-A2) are located in the CRD, and might directly influence the binding properties to microorganisms or to surface receptors such as SIRPα or TLR4. Residue 9, and frequently residue 19, is located in the signal peptide, and it is not know whether these variants may affect the function of the protein.

Figure 3 SP-D serum levels (ng/ml) regarding to SFTPD genotypes in healthy controls. The comparison of the three groups showed a significant difference (ANOVA P = 0.017). Horizontal lines denote mean value for each genotype.
Alternatively all the missense variants could be in LD with SNPs in regulatory regions that might affect translation and RNA stability [51,52].

Native SP-A is thought to consist of hetero-oligomers of SP-A1 and SP-A2, and properties of co-expressed SP-A1/SP-A2 are between those of SP-A1 and SP-A2 [41,46]. However, the extent of oligomerization of SP-A, as well as the SP-A1/SP-A2 ratio, may be altered in various diseases and can vary among individuals [53,54]. The combination of both gene products may be important for reaching a fully native conformation [41]. In fact, it was recently shown that both SP-A1 and SP-A2 are necessary for the formation of pulmonary tubular myelin [55]. Therefore, the effect of a given haplotype may be largely influenced by haplotypes at the other gene. Our results suggest that the 6A² to 1A⁰ haplotype is protective against CAP but both 6A² and 1A⁰.

It was previously reported that the SFTPD aa11 SNP is in LD with SFTPA1 and SFTPA2 [25]. A protective effect of the 6A² to 1A⁰ haplotype was even higher when this haplotype co-segregates with the SFTPD aa11-C allele. Likewise, one haplotype containing 6A²-IA⁰ and the G allele of the SFTPD aa160 SNP could be protective against severe RSV disease [29]. Haplotypes at SFTPA1 are in LD with SFTPD aa11 in our population, but only a marginal LD between SFTPA2 and SFTPD aa11 was observed. In addition, no LD between 6A² to A⁰ and SFTPD aa11 was found in controls (D’ = 0.09) or CAP patients (D’ = 0.024) in our study. These findings suggest that the protective effect of the co-segregation of SFTPD aa11-C with 6A² to 1A⁰ on CAP susceptibility may rather reflect genetic interactions. Alternatively, the SFTPD aa11 SNP may be a marker of other SNPs in LD with SFTPA1 and SFTPA2. The gene of another collecting, the mannose-binding lectin (MBL), is located at 10q11.2-q21. We have previously observed that MBL deficiency predisposes to higher severity and poor outcome in CAP [56], and LD of the SP genes with MBL2 cannot be ruled out.

Despite modern antibiotics, CAP remains a common cause of death, and the search for new therapeutic approaches has been redirected into non-antibiotic therapies [57]. SP-A levels are reduced in several pulmonary diseases [58-60]. SP-D may also be reduced in therapies [57]. SP-A levels are reduced in several pulmonary diseases [58-60]. SP-D may also be reduced in therapies [57]. SP-A1 and SP-A2 are key components of innate immune response and the anti-inflammatory status in the lung. Genetic variability at the genes of these collectins influences susceptibility and outcome of community-acquired pneumonia. These results could be relevant for future investigations in the use of these collectins in the treatment of respiratory infectious diseases.

Key messages
- The SFTPA1 and SFTPA2 haplotypes 6A², IA⁰ and 6A² to 1A⁰, and the SFTPD-SFTPA1-SFTPA2 haplotype C-6A² to 1A⁰ are associated with a protective role against the development of Community-acquired pneumonia (CAP).
- 1A⁰ and 6A² to 1A⁰ haplotypes are associated with increased susceptibility to CAP.
- Haplotypes 6A and 6A to 1A are associated with development of ARDS, while 1A and 1A⁰ are associated with MODS in patients with CAP.
- The variant SFTPD aa11-C leads to decreased SP-D serum levels, and predisposes to development of MODS and ARDS in patients with CAP.
- Haplotypes 6A², 1A⁰ and 6A to 1A are overrepresented among patients who died at 28 or 90 days. By contrast, 6A² and 6A² to 1A⁰ are protective against 28-day and 90-day mortality.

Additional material

Additional file 1: Further description of methods, definitions and statistical analysis, and Tables E1-E4. The file contains additional information on exclusion criteria and definitions of PSI, ARDS and MODS. The statistical tests used are described. The additional file also includes four tables. Table E1 defines the resulting haplotypes from SNPs combination in SFTPA1 and SFTPA2 genes. Table E2 presents demographic and clinical characteristics of CAP patients. Table E3 shows the pairwise linkage disequilibrium measure for surfactant proteins A1, A2 and D alleles. Table E4 compares haplotypes of SFTPA1, SFTPA2 and SFTPD between patients with pneumococcal CAP and controls.

Abbreviations
- AOM: acute otitis media
- ARDS: acute respiratory distress syndrome
- CAP: community-acquired pneumonia
- CRD: carbohydrate-binding recognition domain
- LD: linkage disequilibrium
- MBL: mannose-binding lectin
- MODS: multi-organ dysfunction syndrome
- PAMP: pathogen-associated molecular pattern
- PID: primary immunodeficiency
- RSV: respiratory syncitial virus
- SIRP:
signal inhibitory regulatory protein; SNP: single nucleotide polymorphism; SP:
surfactant protein; TLR: toll-like receptor.

Acknowledgements
We are grateful to the patients and their families for their trust, as well as to
the healthy volunteers. We also thank Ignacio Martin-Loeches, Ana
Dominguez, Yania Florido and Consuelo Iavez for their invaluable help,
and P. Manguarica for his assistance with the final editing of the English
manuscript. The present study was supported by grants from ‘Fondo de
Investigaciones Sanitarias’’, Ministerio de Sanidad (FIS 02/1620, 04/1190 and
06/1031) with the funding of European Regional Development Fund-
European Social Fund (FEDER-FSE); ‘‘Sociedad Española de Neumología y
Cirugía Torácica’’ (SEPAR); RedRespira-ISIC-II-RTIC-03/11; FUNCIS, Gobierno de
Canarias (04/09); NGQ was supported by FUNCIS (INREDCAN 5/06), MIGL by
European Social Fund (FEDER-FSE; 06/1031) with the funding of European Regional Development Fund-
1. Mandell LA, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr,
Society of America/American Thoracic Society consensus guidelines on
management of community-acquired pneumonia in adults. The ACCP/SCCM Consensus
Conference Committee, American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992,
101:1644-1655.
2. Pantelidis P, Lagan AL, Davies JC, Welsh KI, du Bois RM: Differences in
protein D variation in pulmonary disease. J Immunol 2008, 178:158-167.
3. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M,
Spragg RG, Watterberg K, Deiter G: A common polymorphism in the
SP-D gene alleles. J Allergy Clin Immunol 2001, 107:5868-5873.
4. Wright JR: Immunoregulatory functions of surfactant proteins. Nat Rev
Immunol 2005, 5:58-68.
5. Geerttsma MF, Nibbering PH, Haagsman HP, Daha MR, van Furth R: Binding
of surfactant protein A to C1q receptors mediates phagocytosis of
Phystophlococcus aureus by monocytes. Am J Physiol 1994, 267:L578-L584.
6. Hacdis A: Protective role of the lung collects surfactant protein A and
surfactant protein D in airway inflammation. J Allergy Clin Immunol 2008,
122:861-879.
7. LeVine AM, Whitsett JA: Pulmonary collects and innate host defense of
the lung. Microbes Infect 2001, 3:161-166.
8. LeVine AM, Whitsett JA, Hartshorn KL, Crouch EC, Kornhagen TR: Surfactant
protein D enhances clearance of influenza A virus from the lung in vivo.
J Immunol 2001, 167:5868-5873.
9. Giannoni E, Sawa T, Allen L, Wiener-Kronish J, Hawgood S: Surfactant
proteins A and D enhance pulmonary clearance of Pseudomonas
aeruginosa. Am J Respir Cell Mol Biol 2006, 34:704-710.
10. Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelter DR, Greene KE, Henson PM: By binding SIRPα or calreticulin/CD91, lung collects act as dual function surveillance molecules to suppress or enhance
inflammation. Cell 2003, 115:13-23.
11. Sorensen GL, Husbys S, Holmrosk U: Surfactant protein A and surfactant
protein D variation in pulmonary disease. Immunobiology 2007, 212:381-416.
12. Janssen WJ, McPhillips KA, Dickinson MG, Linderman DJ, Morimoto K,
Xiao YQ, Oldham KM, Vandivier RW, Henson PM, Gardai SJ: Surfactant
proteins A and D suppress alveolar macrophage phagocytosis via
interaction with SIRPα. Am J Respir Crit Care Med 2008, 178:158-167.
13. Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Bott M,
Henson PM, Greene KE: Role of surfactant proteins A, D, and C1q in the
clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a
common receptor complex. J Immunol 2002, 169:3978-3986.
14. Wang G, Bates-Kenney SR, Tao QJ, Phillips DS, Floros J: Differences in
biochemical properties and in biological function between human SP-
A1 and SP-A2 variants, and the impact of ozone-induced oxidation.
Biochemistry 2004, 43:4227-4239.
15. DiAngelo S, Lin Z, Wang G, Phillips S, Ramet M, Luo J, Floros J: Novel,
non-radioactive, simple and multiplex PCR-rFLP methods for genotyping
human SP-A and SP-D marker alleles. Dis Markers 1999, 15:269-281.
16. Leth-Larsen R, Gared P, Jensenius H, Meschi J, Hartshorn K, Madsen J,
Sorensen G, Crouch E, Holmrosk U: A common polymorphism in the
SFTPD gene influences expression, function, and concentration of
surfactant protein D. J Immunol 2005, 174:1352-1358.
17. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Westfall LA, Singer DE,
Coley CM, Marrie TJ, Kapoor WN: A prediction rule to identify low-risk
patients with community-acquired pneumonia. N Engl J Med 1997,
336:243-250.
18. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M,
Legall JR, Morris A, Spragg R: The American-European Consensus
Conference on ARDS. Definitions, mechanisms, relevant outcomes, and
clinical trial coordination. Am J Respir Crit Care Med 1994, 149:818-824.
19. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM,
Sibbald WJ: Definitions for sepsis and organ failure and guidelines for the
use of innovative therapies in sepsis. The ACCP/SCCM Consensus
Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992,
101:1644-1655.
20. Pan telidis P, Lagan AL, Davies JC, Welsh KI, du Bois RM: A single round PCR
method for genotyping human surfactant protein (SP-A1, SP-A2 and
SP-D) gene alleles. Tissue Antigens 2003, 61:317-321.
21. PHASE statistical software. [http://www.stat.washington.edu/stephens/
phase.html].
22. Excoffier L, Laval G, Schneider S: Haploview: analysis and visualization of
haplotypes for case-control association studies. Am J Hum Genet 2005,
76:508-511.
23. Wright Jr, Alcaïs A, Abel L, Casanova JL: Human genetics of infectious diseases:
between proof of principle and paradigm. J Clin Invest 2009,
119:2506-2514.

References
1. Mandell LA, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr,
Musher DM, Niederman MS, Torres A, Whitney CG: Study of human SP-A, SP-B and SP-D loci:
human SP-A locus: allele frequencies, linkage disequilibrium and heterozygosity in different
racial and ethnic groups. BMC Genet 2003, 4:13.
2. Floros J, DiAngelo S, Kaptides M, Karinch AM, Rogan PK, Nielsen H,
Spragg RG, Warterberg K, Deiter G: Human SP-A locus: allele frequencies

García-Laorden et al. Critical Care 2011, 15:R57
http://ccforum.com/content/15/1/R57 Page 11 of 12
and linkage disequilibrium between the two surfactant protein A genes. Am J Respir Cell Mol Biol 1996, 15:489-498.

27. Pettigrew MM, Gent JF, Zhu Y, Tichie EW, Belanger KD, Holford TR, Bracket MB, Leaderer BP: Respiratory symptoms among infants at risk for asthma: association with surfactant protein A haplotypes. BMC Med Genet 2007, 8:15-27.

28. Lofgren J, Ramet M, Renko M, Marttila R, Hallman M: Association between surfactant protein A gene locus and severe respiratory syncytial virus infection in infants. J Infect Dis 2002, 185:283-289.

29. Thomas NJ, DiAngelo S, Hess JC, Fan R, Ball MW, Geskey JM, Willson DF, Floros J: Transmission of surfactant protein variants and haplotypes in children hospitalized with respiratory syncytial virus. Pediatr Res 2009, 66:70-73.

30. Floros J, Lin HM, Garcia A, Salazar MA, Guo X, DiAngelo S, Montaño M, Luo J, Pardo A, Selmán M: Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. J Infect Dis 2002, 182:1475-1478.

31. Jack DL, Cole J, Naylor SC, Borrow R, Kaczmarski EB, Klein NJ, Read RC: Genetic polymorphism of the binding domain of surfactant protein-A2 increases susceptibility to meningococcal disease. Clin Infect Dis 2006, 43:1426-1433.

32. Ramet M, Lofgren J, Alho OP, Hallman M: Surfactant protein-A gene locus association with severe respiratory syncytial virus infection. Pediatr Res 2002, 51:696-699.

33. El Saleby CM, Li R, Somes GW, Dahmer MK, Quasney MW, Delincoro JP: Surfactant protein A polymorphisms and disease severity in a respiratory syncytial virus-infected population. J Pediatr 2010, 156:609-614.

34. Lahti M, Lofgren J, Marttila R, Renko M, Klaavuniemi T, Haataja R, Ramet M, Hallman M: Surfactant protein D gene polymorphism associated with severe respiratory syncytial virus infection. Pediatr Res 2002, 51:696-699.

35. Boron P, McIntosh JC, Korfhagen TR, Whistlet A, Taylor J, Wright JR: Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo. Am J Physiol Lung Cell Mol Physiol 2000, 278:L840-L847.

36. Botas C, Poulan F, Akiyama J, Brown C, Allen L, Goerke J, Clemmts J, Carlson E, Gillespie AM, Epstein C, Hawgood S: Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci USA 1998, 95:11869-11874.

37. Hawgood S, Ochs M, Jung A, Akiyama J, Allen L, Brown C, Edmondson J, Levitt S, Carlson E, Gillespie AM, Villar A, Epstein CJ, Poulan FR: Sequential targeted deficiency of SP-A and -D leads to progressive alveolar lipoproteinosis and emphysema. Am J Physiol Lung Cell Mol Physiol 2002, 283:L1002-L1010.

38. Murakami S, Iwaki D, Matsuura H, Sano H, Takahashi H, Voeller DR, Akino T, Kuroki Y: Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem 2003, 278:28480-28487.

39. Guillot L, Bailey V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M: Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002, 168:5989-5992.

40. Särensni GL, Hjelmberg JB, Kivik KO, Fenger M, Haj A, Bendixen C, Særensni TI, Holmlovu U: Genetic and environmental influences of surfactant protein D serum levels. Am J Physiol Lung Cell Mol Physiol 2006, 290:L1001-L1010.

41. Sánchez-Barbero F, Rivas G, Steinhalber W, Casals C: Structural and functional differences among human surfactant proteins SP-A1, SP-A2 and co-expressed SP-A1/SP-A2: role of supratrimeric oligomerization. Biochem J 2007, 406:479-489.

42. Voss T, Eisterer H, Schäfer PK, Engel J: Macromolecular organization of natural and recombinant lung surfactant protein SP 28-36. Structural homology with the complement factor C1q. J Mol Biol 1988, 201:219-227.

43. Sánchez-Barbero F, Strassner J, Garcia-Cañero R, Steinhalber W, Casals C: Role of the degree of oligomerization in the structure and function of human surfactant protein A. J Biol Chem 2005, 280:7639-7647.

44. Wang G, Myers C, Mikerov A, Floros J: Effect of cysteine 85 on biochemical properties and biological function of human surfactant protein A variants. Biochemistry 2007, 46:8425-8435.

45. Yamada C, Sano H, Shimizu T, Matsuura H, Nishitani C, Himi T, Kuroki Y: Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. J Biol Chem 2006, 281:21771-21780.

46. Floros J, Hoover RR: Genetics of the hydrophobic surfactant proteins A and D. Biochim Biophys Acta 1998, 1408:312-322.

47. García-Verdugo I, Wang G, Floros J, Casals C: Structural analysis and lipid-binding properties of recombinant human surfactant protein A derived from one or both genes. Biochemistry 2002, 41:14041-14053.

48. Oberley RE, Snyder JM: Recombinant human SP-A1 and SP-A2 proteins have different carbohydrate-binding characteristics. Am J Physiol Lung Cell Mol Physiol 2003, 284:L871-L861.

49. Wang G, Phelps DS, Umstead TM, Floros J: Human SP-A protein variants derived from one or both genes stimulate TNA-alpha production in the THP-1 cell line. Am J Physiol Lung Cell Mol Physiol 2000, 278:L946-L954.

50. Mikerov AN, Wang G, Umstead TM, Zacharatos M, Thomas NJ, Phelps DS, Floros J: Surfactant protein A2 (SP-A2) variants expressed in CHO cells stimulate phagocytosis of Pseudomonas aeruginosa more than do SP-A1 variants. Infect Immun 2007, 75:1433-1442.

51. Wang G, Guo X, Floros J: Differences in the translation efficiency and mRNA stability mediated by 5’-UTR splice variants of human SP-A1 and SP-A2 genes. Am J Physiol Lung Cell Mol Physiol 2005, 289:L497-L508.

52. Wang G, Guo X, Floros J: Human SP-A 3’-UTR variants mediate differential gene expression in basal levels and in response to dexamethasone. Am J Physiol Lung Cell Mol Physiol 2003, 284:L248-L249.

53. Tagaram HR, Wang G, Umstead TM, Mikerov AN, Thomas NJ, Graff GR, Hess JC, Thammson MJ, Kavunus MS, Phelps DS, Floros J: Characterization of a human surfactant protein A1 (SP-A1) gene-specific antibody; SP-A1 content variation among individuals of varying age and pulmonary health. Am J Physiol Lung Cell Mol Physiol 2007, 292:L1052-L1063.

54. Hicking TP, Malhostra R, Sim RR: Human lung surfactant protein A exists in several different oligomeric states: oligomer size distribution varies between patient groups. Mol Med 1998, 4:246-275.

55. Wang G, Guo X, Diangelo S, Thomas NJ, Floros J: Humanized SFTPAP1 and SFTPAP2 transgenic mice reveal functional divergence of SP-A1 and SP-A2: Formation of tubular myelin in vivo requires both gene products. J Biol Chem 2010, 285:11998-12010.

56. García-Laorden MJ, Solé-Violán J, Rodríguez de Castro F, Aspa J, Briones ML, García-Saeavedra A, Rajos O, Blanquer J, Caballero-Hidalgo A, Marcos-Ramos JA, Hernandez-Juarez J, Rodriguez-Gallego C: Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol 2008, 122:561-574.

57. Rodriguez A, Lisboa T, Blot S, Martin-Loeches I, Solé-Violán J, De Mendoza D, Rello J: Community-Acquired Pneumonia Intensive Care Units (CAPUC) Study Investigators: Mortality in ICU patients with bacterial community-acquired pneumonia: when antibiotics are not enough. Intensive Care Med 2009, 35:430-438.

58. Pison U, Oberstette U, Brund M, Seeger W, Joka T, Bruch J, Schmitt-Neubert KP: Altered pulmonary surfactant in uncomplicated and septicaemia-complicated courses of acute respiratory failure. J Clin Immunol 2000, 20:19-26.

59. Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hull W, Whistlet A, Akino T, Kuroki Y, Nagae H, Hudson LD, Martin TR: Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 1999, 160:1843-1850.

60. Noah TL, Murphy PC, Alink JJ, Leigh MW, Hull WM, Stahlman MT, Whistlet J: Bronchoalveolar lavage fluid surfactant protein-A and surfactant protein-D are inversely related to inflammation in early cystic fibrosis. Am J Respir Crit Care Med 2003, 168:685-691.

61. Taut FJ, Rippin G, Schenk P, Findlay G, West J, Hafner D, Lewis J, Seeger W, Gunther A: A Search for subgroups of patients with ARDS who may benefit from surfactant replacement therapy: a pooled analysis of five studies with recombinant surfactant protein-C surfactant (Ventivicate). Chest 2008, 134:724-732.