SOJOURN RUIN OF A TWO-DIMENSIONAL FRACTIONAL BROWNIAN MOTION RISK PROCESS

GRIGORI JASNOVIDOV

Abstract: This paper derives the asymptotic behavior of

\[\mathbb{P} \left\{ \int_0^\infty \mathbb{I} \left(B_h(s) - c_1 s > q_1 u, B_h(s) - c_2 s > q_2 u \right) ds > T_u \right\}, \quad u \to \infty, \]

where \(B_h \) is a fractional Brownian motion, \(c_1, c_2, q_1, q_2 > 0, \) \(H \in (0, 1) \), \(T_u \geq 0 \) is a measurable function and \(\mathbb{I}(\cdot) \) is the indicator function.

Key Words: fractional Brownian motion; simultaneous ruin probability; two-dimensional risk processes; sojourn ruin;

AMS Classification: Primary 60G15; secondary 60G70

1. Introduction & Preliminaries

Consider the risk model defined by

\[R(t) = u + \rho t - X(t), \quad t \geq 0, \]

where \(X(t) \) is a centered Gaussian risk process with a.s. continuous sample paths, \(\rho > 0 \) is the net profit rate and \(u > 0 \) is the initial capital. This model is relevant to insurance and financial applications, see, e.g., [13]. A question of numerous investigations (see [1, 3–8, 10, 12, 14, 15, 19, 22–25]) is the study of the asymptotics of the classical ruin probability

\[\lambda(u) := \mathbb{P} \{ \exists t \geq 0 : R(t) < 0 \} \]

as \(u \to \infty \) under different levels of generality. It turns out, that only for \(X \) being a Brownian motion (later on BM) \(\lambda(u) \) can be calculated explicitly: if \(X \) is a standard BM, then \(\lambda(u) = e^{-2\rho u}, \) \(u, \rho > 0, \) see [11]. Since it seems impossible to find the exact value of \(\lambda(u) \) in other cases, the approximations of \(\lambda(u) \) as \(u \to \infty \) is dealt with. Some contributions (see, e.g., [9, 17]), extend the classical ruin problem to the so-called sojourn ruin problem, i.e., approximation of the sojourn ruin probability defined by

\[\mathbb{P} \left\{ \int_0^\infty \mathbb{I}(R(s) < 0) ds > T_u \right\}, \]

where \(T_u \geq 0 \) is a measurable function of \(u \). As in the classical case, only for \(X \) being a BM the probability above can be calculated explicitly, see [9]:

\[\mathbb{P} \left\{ \int_0^\infty \mathbb{I}(B(s) - cs > u) ds > T \right\} = \left(2(1 + c^2) \Psi(c\sqrt{T}) - \frac{c\sqrt{2T}}{\sqrt{\pi}} e^{-\frac{c^2T}{2}} \right) e^{-2cu}, \quad c > 0, \ T, u \geq 0, \]
where Ψ is the survival function of a standard Gaussian random variable, B is a standard BM and $\mathbb{I}(\cdot)$ is the indicator function. Motivated by [18] (see also [15, 16]), we study a generalization of the main problem in [18] for the sojourn ruin, i.e., we shall study the asymptotics of

$$C_{T_u}(u) := \mathbb{P}\left\{ \int_0^\infty \mathbb{I}\left(B_H(s) - c_1 s > q_1 u, B_H(s) - c_2 s > q_2 u\right)ds > T_u \right\}, \quad u \to \infty,$$

where B_H is a standard fractional Brownian motion (later on fBM), i.e., a Gaussian process with zero expectation and covariance defined by

$$\text{cov}(B_H(s), B_H(t)) = \frac{|t|^{2H} + |s|^{2H} - |t-s|^{2H}}{2}, \quad t, s \in \mathbb{R}.$$

The ruin probability above is of interest for reinsurance models, see [18] and references therein. By the self-similarity of fBM we have

$$C_{T_u}(u) = \mathbb{P}\left\{ \int_0^\infty \mathbb{I}\left(u^H B_H(s) > (c_1 s + q_1) u, u^H B_H(s) > (c_2 s + q_2) u\right)ds > T_u/u \right\} = \mathbb{P}\left\{ \int_0^\infty \mathbb{I}\left(\frac{B_H(s)}{\max(c_1 s + q_1, c_2 s + q_2)} > u^{1-H}\right)ds > T_u/u \right\}. \tag{4}$$

In order to prevent the problem of degenerating to the one-dimensional sojourn problem discussed in [9, 17] (i.e., to impose the denominator in the line above be nonlinear function) we assume that

$$c_1 > c_2, \quad q_2 > q_1. \tag{5}$$

The variance of the process two lines above can achieve its unique maxima only at one of the following points:

$$t_\ast = \frac{q_2 - q_1}{c_1 - c_2}, \quad t_1 = \frac{q_1 H}{(1-H)c_1}, \quad t_2 = \frac{q_2 H}{(1-H)c_2}. \tag{5}$$

From (4) it follows that $t_1 < t_2$; as we shall see later, the order between t_1, t_2 and t_\ast determines the asymptotics of $C_{T_u}(u)$ as $u \to \infty$. As mentioned in [5], for the approximation of the one-dimensional Parisian ruin probability we need to control the growth of T_u as $u \to \infty$. As in [5], we impose the following condition:

$$\lim_{u \to \infty} T_u u^{1/H-2} = T \in [0, \infty), \quad H \in (0, 1). \tag{6}$$

Note that T_u satisfying (6) may go to ∞ for $H > 1/2$, converges to non-negative limit for $H = 1/2$ and approaches 0 for $H < 1/2$ as $u \to \infty$. We see later on in Proposition 2.2 that the condition above is necessary and it seems very difficult to derive the exact asymptotics of $C_{T_u}(u)$ as $u \to \infty$ without it.

The rest of the paper is organized in the following way. In the next section we present the main results of the paper, in Section 3 we give all proofs, while technical calculations are deferred to the Appendix.
2. Main Results

Define for some function h and $K \geq 0$ the sojourn Piterbarg constant by

$$B^K_K = \int \mathbb{P} \left\{ \int_{\mathbb{R}} \left(\sqrt{2B(s) - |s| + h(s)} > x \right) ds > K \right\} e^x dx$$

when the integral above is finite and Berman’s constant by

$$B_{2H}(x) = \lim_{S \to \infty} \frac{1}{S} \int_{\mathbb{R}} \left\{ \int_0^S \mathbb{I}(\sqrt{2B_H(t)} - t^{2H} + z > 0) dt > x \right\} e^{-z} dz, \quad x \geq 0.$$

It is known (see, e.g., [9]) that $B_{2H}(x) \in (0, \infty)$ for all $x \geq 0$; we refer to [9] and references therein for the properties of relevant Berman’s constants. Let for $i = 1, 2$

$$D^H = \frac{c_1 t_s + q_1}{t_s^H}, \quad K_H = \frac{\sqrt{2 + \pi^2} \sqrt{\pi}}{\sqrt{H(1 - H)}}, \quad C_H^{(i)} = c_i^{1-H} H^{1-H}, \quad D_i = \frac{c_i^2 (1 - H)^2 - \frac{1}{2}}{2H^2 (1 - 2H)}.$$

Now we are ready to give the asymptotics of $C_{T_u}(u)$ as $u \to \infty$.

Theorem 2.1. Assume that (4) holds and T_u satisfies (6).

1) If $t_s \notin (t_1, t_2)$, then as $u \to \infty$

$$C_{T_u}(u) \sim \left(\frac{1}{2}\right)^{i(t_s = t_i)} \times \begin{cases}
(2(1 + c_i^2)T)\Psi(c_i\sqrt{T}) - \frac{c_i\sqrt{T}}{\sqrt{H}} e^{-\frac{c_i^2}{\sqrt{H}}} e^{-2c_i q_i u}, & H = 1/2 \\
K_H B_{2H}(TD_i)(C_H^{(i)} u^{1-H})^{\frac{1}{1-H}} \Psi(C_H^{(i)} u^{1-H}), & H \neq 1/2,
\end{cases}$$

where $i = 1$ if $t_s \leq t_1$ and $i = 2$ if $t_s \geq t_2$.

2) If $t_s \in (t_1, t_2)$ and $\lim_{u \to \infty} T_u u^{2-1/H} = 0$ for $H > 1/2$, then as $u \to \infty$

$$C_{T_u}(u) \sim \Psi(D^H u^{1-H}) \times \begin{cases}
1, & H > 1/2 \\
B^{d}_{T'}, & H = 1/2 \\
B_{2H}(D) A u^{(1-H)(1/H-2)}, & H < 1/2,
\end{cases}$$

where $B^{d}_{T'} \in (0, \infty)$,

$$T' = T \frac{(c_1 q_2 - q_1 c_2)^2}{2(c_1 - c_2)^2}, \quad d(s) = s \frac{c_1 q_2 + c_2 q_1 - 2c_2 q_2}{c_1 q_2 - q_1 c_2} \mathbb{I}(s < 0) + s \frac{2c_1 q_1 - c_1 q_2 - q_1 c_2}{c_1 q_2 - q_1 c_2} \mathbb{I}(s \geq 0)$$

and

$$A = \left(|H(c_1 t_s + q_1) - c_1 t_s|^{-1} + |H(c_2 t_s + q_2) - c_2 t_s|^{-1} \right) \frac{t_s^{H-1}}{2\pi^H}, \quad D = \frac{(c_1 t_s + q_1)^{\frac{1}{2H}}}{2\pi^{\frac{1}{2H}}}.$$

Note that if $T = 0$, then the result above reduces to Theorem 3.1 in [18]. As already mentioned in the introduction (6) is a necessary condition for the theorem above. To illustrate situation when it is not satisfied we consider a "simple" scenario with T_u being a positive constant.

Proposition 2.2. If $H < 1/2$, $T_u = T > 0$ and $t_s \in (t_1, t_2)$, then

$$C_{T_u}(u) \sim \Psi(D^H u^{1-H}) e^{-C_1 u^{2-4H} - C_2 u^{2(1-3H)}} \leq C_{T_u}(u) \leq (2 + o(1)) \Psi(D^H u^{1-H}) \Psi\left(u^{1-2H} \frac{TD^H}{2H}\right), \quad u \to \infty,$$

where $\mathbb{I}(\cdot)$ is the indicator function, $\Psi(x) = x^{1-H} e^{-x}$.
where $\mathcal{C} \in (0, 1)$ is a fixed constant that does not depend on u and

$$\alpha = \frac{T^{2H}}{2\alpha^2}, \quad C_{i, \alpha} = \frac{\alpha i}{i \bar{D}_H^2}, \quad i = 1, 2.$$

Note that the lower bound in the proposition above decays to zero exponentially faster than the upper bound as $u \to \infty$.

3. Proofs

First we give the following auxiliary results. As shown, e.g., in Lemma 2.1 in [12]

$$\ Psi(u) \leq \frac{1}{\sqrt{2\pi u}}e^{-u^2/2}, \quad u > 0. \tag{12}$$

Recall that K_H, D_1 and $C_H^{(1)}$ are defined in (7). A proof of the proposition below is given in the Appendix.

Proposition 3.1. Assume that T_u satisfies (6). Then as $u \to \infty$

$$\mathbb{P}\left\{ \int_0^\infty \mathbb{I}(B_H(t) - c_1 t > q_1 u) dt > T_u \right\} \sim \begin{cases} (2(1 + c_1^2)\Psi(c_1 \sqrt{T}) - \frac{c_1 \sqrt{T}}{\sqrt{2\pi}} e^{-c_1^2 T})e^{-2c_1 q_1 u}, & H = 1/2, \\ K_H B_2 H(T D_1)(C_H^{(1)} u^{1-H})^{-1/2} \Psi(C_H^{(1)} u^{1-H}), & H \neq 1/2. \end{cases}$$

Now we are ready to perform our proofs.

Proof of Theorem 2.1. Case (1). Assume that $t_* < t_1$. Let

$$V_i(t) = \frac{B_H(t)}{c_i t + q_i} \quad \text{and} \quad \psi_i(T_u, u) = \mathbb{P} \left\{ \int_0^\infty \mathbb{I}(B_H(t) - c_i t > q_i u) ds > T_u \right\}, \quad i = 1, 2.$$

For $0 < \varepsilon < t_1 - t_*$ by the self-similarity of fBM we have

$$\psi_1(T_u, u) \geq \mathbb{C}_T(u) \geq \mathbb{P} \left\{ \int_{t_1 - \varepsilon}^{t_1 + \varepsilon} \mathbb{I}(V_1(t) > u^{1-H}, V_2(t) > u^{1-H}) dt > T_u/u \right\} = \mathbb{P} \left\{ \int_{t_1 - \varepsilon}^{t_1 + \varepsilon} \mathbb{I}(V_1(t) > u^{1-H}) dt > T_u/u \right\}.$$

We have by Borel-TIS inequality, see [24] (details are in the Appendix)

$$\psi_1(T_u, u) \sim \mathbb{P} \left\{ \int_{t_1 - \varepsilon}^{t_1 + \varepsilon} \mathbb{I}(V_1(t) > u^{1-H}) ds > T_u/u \right\}, \quad u \to \infty \tag{13}$$

implying $\mathbb{C}_T(u) \sim \psi_1(T_u, u)$ as $u \to \infty$. The asymptotics of $\psi_1(T_u, u)$ is given in Proposition 3.1, thus the claim follows.

Assume that $t_* = t_1$. We have

$$\mathbb{P} \left\{ \int_{t_1}^\infty \mathbb{I}(V_1(s) > u^{1-H}) ds > T_u \right\} \leq \mathbb{C}_T(u)$$

$$\leq \mathbb{P} \left\{ \int_{t_1}^\infty \mathbb{I}(V_1(s) > u^{1-H}) ds > T_u \right\} + \mathbb{P} \left\{ \exists t \in [0, t_1] : V_2(t) > u^{1-H} \right\}.$$
From the proof of Theorem 3.1, case (4) in [18] it follows that the second term in the last line above is negligible comparing with the final asymptotics of \(C_T(u) \) given in (8), hence

\[
C_T(u) \sim \mathbb{P} \left\{ \int_{t_1}^{\infty} \mathbb{I}(V_1(s) > u^{1-H}) ds > T \right\}, \quad u \to \infty.
\]

Since \(t_1 \) is the unique maxima of \(\text{Var} \{V_1(t)\} \) from the proof of Theorem 2.1, case i) in [9] we have

\[
\mathbb{P} \left\{ \int_{t_1}^{\infty} \mathbb{I}(V_1(t) > u^{1-H}) dt > T_u/u \right\} \sim \frac{1}{2} \mathbb{P} \left\{ \int_{0}^{\infty} \mathbb{I}(V_1(t) > u^{1-H}) dt > T_u/u \right\} = \frac{1}{2} \mathbb{P} \left\{ \int_{0}^{\infty} \mathbb{I}(B_H(t) - c_1 t > q_1 u) dt > T_u \right\}, \quad u \to \infty.
\]

The asymptotics of the last probability above is given in Proposition 3.1 establishing the claim. Case \(t_* \geq t_2 \) follows by the same arguments.

Case (2). Assume that \(H > 1/2 \). We have by Theorem 2.1 in [16] and Theorem 3.1 in [18] with

\[
\mathcal{R}_T(u) = \mathbb{P} \left\{ \exists t \geq 0 : B_H(t) - c_1 t > q_1 u, B_H(t) - c_2 t > q_2 u \right\},
\]

\[
\mathcal{P}_T(u) = \mathbb{P} \left\{ \exists t \geq 0 : \inf_{s \in [t,t+T_u]} (B_H(s) - c_1 s) > q_1 u, \inf_{s \in [t,t+T_u]} (B_H(s) - c_2 s) > q_2 u \right\}
\]

that

\[
\Psi(D_H u^{1-H}) \sim \mathcal{P}_T(u) \leq C_T(u) \leq \mathcal{R}_T(u) \sim \Psi(D_H u^{1-H}), \quad u \to \infty,
\]

and the claim follows.

Assume that \(H = 1/2 \). First let (6) holds with \(T_u = T > 0 \). We have as \(u \to \infty \) and then \(S \to \infty \) (proof is in the Appendix)

\[
C_T(u) \sim \mathbb{P} \left\{ \int_{ut_*-S}^{ut_*+S} \mathbb{I}(B(s) - c_1 s > q_1 u, B(s) - c_2 s > q_2 u) ds > T \right\} =: \kappa_S(u).
\]

Next with \(\phi_u \) the density of \(B(ut_*) \), \(\eta = c_1 t_* + q_1 = c_2 t_* + q_2 \) and \(\eta_* = \eta/t_* - c_2 = q_2/t_* \) we have

\[
\kappa_S(u) = \int_{\mathbb{R}} \mathbb{P} \left\{ \int_{ut_*-S}^{ut_*} \mathbb{I}(B(s) - c_2 s > q_2 u) ds + \int_{ut_*}^{ut_*+S} \mathbb{I}(B(s) - c_1 s > q_1 u) ds > T \big| B(ut_*) = \eta u - x \right\} \phi_u(\eta u - x) dx
\]

\[
= \int_{\mathbb{R}} \mathbb{P} \left\{ \int_{ut_*-S}^{ut_*} \mathbb{I}(B(s) - c_2 s > q_2 u) ds \right. \\
+ \int_{ut_*}^{ut_*+S} \mathbb{I}(B(s) - B(ut_*) - c_1 (s - ut_*) - c_1 ut_* > q_1 u - \eta u + x) ds > T \big| B(ut_*) = \eta u - x \right\} \phi_u(\eta u - x) dx
\]

\[
= \int_{\mathbb{R}} \mathbb{P} \left\{ \int_{ut_*-S}^{ut_*} \mathbb{I}(B(s) - c_2 s > q_2 u) ds + \int_{0}^{S} \mathbb{I}(B_*(s) - c_1 s > x) ds > T \big| B(ut_*) = \eta u - x \right\} \phi_u(\eta u - x) dx
\]
where \(Z_u(t) \) is a Gaussian process with expectation and covariance defined below:

\[
\mathbb{E} \{ Z_u(t) \} = \frac{-x}{ut_*}, \quad \text{cov}(Z_u(s), Z_u(t)) = \frac{st - t}{ut_*}, \quad s \leq t \leq 0.
\]

Since \(Z_u(t) \) converges to BM in the sense of convergence finite-dimensional distributions for any fixed \(x \in \mathbb{R} \) as \(u \to \infty \) we have (details are in the Appendix)

\[
\int \mathbb{P} \left\{ \int_{-S}^{0} \mathbb{I} \left(Z_u(s) + \eta s > x \right) ds + \int_{0}^{S} \mathbb{I} (B_s(s) - c_1 s > x) ds > T \right\} e^{\frac{ux}{t_*}} \ dx
\]

\[
\sim \int \mathbb{P} \left\{ \int_{-S}^{0} \mathbb{I} \left(B(s) + \eta s > x \right) ds + \int_{0}^{S} \mathbb{I} (B_s(s) - c_1 s > x) ds > T \right\} e^{\frac{ux}{t_*}} \ dx
\]

\[
= K(S).
\]

Since \(\mathbb{P} \{ \exists t > 0 : B(t) - ct > x \} = e^{-2c x}, \ c, x > 0 \) (see, e.g., [11]) we have

\[
K(S) \leq \int_{0}^{\infty} \left(\mathbb{P} \{ \exists s < 0 : B(s) + \eta s > x \} + \mathbb{P} \{ \exists s \geq 0 : B_s(s) - c_1 s > x \} \right) e^{\frac{ux}{t_*}} \ dx + \int_{-\infty}^{0} e^{\frac{ux}{t_*}} \ dx
\]

\[
= \int_{0}^{\infty} \left(e^{-2c + \eta / t_*} x + e^{-2c + \eta / t_*} x \right) dx + t_*/\eta < \infty
\]

provided by \(t_* \in (t_1, t_2) \). Since \(K(S) \) is an increasing function and \(\lim_{S \to \infty} K(S) < \infty \) we have as \(S \to \infty \)

\[
K(S) \to \int \mathbb{P} \left\{ \int_{0}^{\infty} \mathbb{I} \left(B(s) - \eta s > x \right) ds + \int_{0}^{\infty} \mathbb{I} (B_s(s) - c_1 s > x) ds > T \right\} e^{\frac{ux}{t_*}} \ dx
\]

\[
= \frac{t_*}{\eta} \int \mathbb{P} \left\{ \int_{0}^{\infty} \mathbb{I} \left(B(s) - \eta t_* / \eta s > x \right) ds + \int_{0}^{\infty} \mathbb{I} (B_s(s) - c_1 t_* / \eta s > x) ds > \eta^2 T / t_*^2 \right\} e^{x} \ dx
\]

\[
= \frac{t_*}{\eta} \int \mathbb{P} \left\{ \int_{-\infty}^{\infty} \mathbb{I} \left(\sqrt{2} B(s) - |s| + d(s) > x \right) ds > \eta^2 T / 2 t_*^2 \right\} e^{x} \ dx
\]

\[
= \frac{t_*}{\eta} \mathcal{B}^{d}_{T^*} \in (0, \infty),
\]

where \(T^* \) and \(d(s) \) are defined in (10). Finally, combining (16) with the line above we have as \(u \to \infty \) and then \(S \to \infty \)

\[
\kappa_S(u) \sim \mathcal{B}^{d}_{T^*} \Psi (\mathbb{D}^{1/2}/u)
\]

and by (14) the claim follows. If (6) holds with \(T_u = 0 \), then we obtain the claim immediately by Theorem 3.1 in [18] and observation that \(\mathcal{B}^{d}_{0} \) coincides with the corresponding Piterbarg constant introduced in [18].
Now assume that (6) holds with any possible T_u. If (6) holds with $T > 0$, then for large u and any $\varepsilon > 0$ it holds, that $C_{(1+\varepsilon)T}(u) \leq C_{T_u}(u) \leq C_{(1-\varepsilon)T}(u)$ and hence

$$(1 + o(1))B^d_{T/(1+\varepsilon)}(\Omega_1) \leq C_{T_u}(u) \leq B^d_{T/(1-\varepsilon)}(\Omega_1) + o(1), \quad u \to \infty.$$

By Lemma 4.1 in [9] B^d_1 is a continuous function with respect to x and thus letting $\varepsilon \to 0$ we obtain the claim. If (6) holds with $T = 0$, then for large u and any $\varepsilon > 0$ we have

$$B^d_1(\Omega_1) \leq C_{T_u}(u) \leq B^d_0(\Omega_1)$$

and again letting $\varepsilon \to 0$ we obtain the claim by continuity of B^d_1.

Assume that $H < 1/2$. First we have with $\delta_u = u^{2H-2}\ln^2 u$ as $u \to \infty$ (proof is in Appendix)

$$C_{T_u}(u) \sim \mathbb{P}\left\{ \int_{ut_*}^{ut_*+u\delta_u} \|B_H(t) - c_2 t > q_2 u\|dt > T_u \right\} + \mathbb{P}\left\{ \int_{ut_*}^{ut_*+u\delta_u} \|B_H(t) - c_1 t > q_1 u\|dt > T_u \right\}$$

(17) $= g_1(u) + g_2(u)$.

Assume that (6) holds with $T > 0$. Using the approach from [9] we have with $\mathbb{I}_a(b) = \mathbb{I}(b > a)$, $a, b \in \mathbb{R}$

$$g_2(u) = \mathbb{P}\left\{ \frac{\delta_u T_u^{-1} u}{0} \mathbb{I}_{M(u)} \left(\frac{B_H(ut_* + tT_u)}{u(q_1 + c_1 t_*) + c_1 tT_u} M(u) \right)dt > 1 \right\}$$

$$= \mathbb{P}\left\{ \frac{\delta_u T_u^{-1} u}{0} \mathbb{I}_{M(u)} (Z_u^{(1)}(t))dt > 1 \right\}$$

$$= \mathbb{P}\left\{ \frac{\delta_u T_u^{-1} uK_1}{0} \mathbb{I}_{M(u)} (Z_u^{(1)}(tK_1^{-1}))dt > K_1 \right\}$$

$$= \mathbb{P}\left\{ \frac{\delta_u T_u^{-1} uK_1}{0} \mathbb{I}_{M(u)} (Z_u^{(2)}(t))dt > K_1 \right\},$$

where

$$K_1 = \frac{T^{1/H}}{2\pi t_*}, \quad M(u) = \inf_{t \in [t_*, \infty)} \frac{u(c_1 t + q_1)}{\text{Var}(B_H(ut))} = \mathbb{D}_H u^{1-H}.$$

For variance $\sigma^2_{Z_{u}^{(2)}(t)}$ and correlation $r_{Z_{u}^{(2)}(s, t)}$ of $Z_u^{(2)}$ for $t, s \in [0, \delta_u T_u^{-1} uK_1]$ it holds, that as $u \to \infty$

$$1 - \sigma^2_{Z_{u}^{(2)}(t)} = \frac{2^{1/2}H^{1-1/H} |q_1 H - (1 - H)c_1 t_*| u^{1-1/H}}{(q_1 + c_1 t_*)^2} + O(t^2 u^{2(1-1/H)})$$

$$1 - r_{Z_{u}^{(2)}(s, t)} = \mathbb{D}_H^{-1/2} u^{2H-2} |t - s|^{2H} + O(u^{2H-2} |t - s|^{2H} \delta_u).$$

Now we apply Theorem 2.1 in [9]. All conditions of the theorem are fulfilled with parameters

$$\omega(x) = x, \quad \overline{\omega}(x) = x, \quad \beta = 1, \quad g(u) = \frac{2^{1/2}H^{1-1/H} |q_1 H - (1 - H)c_1 t_*| u^{1-1/H}}{(q_1 + c_1 t_*)^2}$$

$$\eta_{\omega}(t) = B_H(t), \quad \sigma^2_{\overline{\omega}}(t) = t^{2H}, \quad \Delta(u) = 1, \quad \varphi = 1,$$
\[n(u) = D_H u^{1-H}, \quad a_1(u) = 0, \quad a_2(u) = \delta_u T_u^{-1} u K_1, \quad \gamma = 0, \quad x_1 = 0, \quad x_2 = \infty, \quad y_1 = 0, \quad y_2 = \infty, \quad x = K_1, \]
\[\theta(u) = u^{(1/H-2)(1-H)} H^{-1+1/H} |q_1 H - (1 - H)c_1 t_s|^{-1} t_s^{2 - \frac{1}{2m}}, \]
and thus as \(u \to \infty \)
\[g_2(u) = \mathbb{P} \left\{ \int_0^\infty \mathbb{I}(Z_u^{(2)}(t)) dt > K_1 \right\} \sim \mathcal{B}_{2H} \left(\frac{T D_H^{1/H}}{2 \pi t_s^2} u (\frac{1}{\pi^2} - 2)(1-H) \right) \frac{t_s^2 D_H^{1+1/H}}{2 \pi |q_2 H - (1 - H)c_2 t_s|} \Psi(D_H u^{1-H}). \]
Similarly we obtain
\[g_1(u) \sim \mathcal{B}_{2H} \left(\frac{T D_H^{1/H}}{2 \pi t_s^2} u (\frac{1}{\pi^2} - 2)(1-H) \right) \frac{t_s^2 D_H^{1+1/H}}{2 \pi |q_2 H - (1 - H)c_2 t_s|} \Psi(D_H u^{1-H}), \quad u \to \infty \]
and the claim follows if in (6) \(T > 0 \). Now let (6) holds with \(T = 0 \). Since \(\mathcal{P}_{T_u}(u) \leq \mathcal{C}_{T_u}(u) \leq \mathcal{R}_{T_u}(u) \) we obtain the claim by Theorem 2.1 in [16] and Theorem 3.1 in [18].

Proof of Proposition 2.2. The proof of this proposition is the same as the proof of Proposition 2.2 in [16], thus we refer to [16] for the proof.

4. Appendix

Proof of (13). To establish the claim we need to show that
\[\mathbb{P} \left\{ \int_{[0,\infty) \setminus [t_1 - \varepsilon, t_1 + \varepsilon]} \mathbb{I}(V_1(s) > u^{1-H}) \, ds > T_u/u \right\} = o(\psi_1(T_u,u)), \quad u \to \infty. \]

Applying Borell-TIS inequality (see, e.g., [24]) we have as \(u \to \infty \)
\[\mathbb{P} \left\{ \int_{[0,\infty) \setminus [t_1 - \varepsilon, t_1 + \varepsilon]} \mathbb{I}(V_1(s) > u^{1-H}) \, ds > T_u/u \right\} \leq \mathbb{P} \left\{ \exists t \in [0,\infty) \setminus [t_1 - \varepsilon, t_1 + \varepsilon] : V_1(t) > u^{1-H} \right\} \]
\[\leq e^{-\frac{(u^{1-H} - M)^2}{2m^2}}, \]
where
\[M = \mathbb{E} \left\{ \sup_{\exists t \in [0,\infty) \setminus [t_1 - \varepsilon, t_1 + \varepsilon]} V_1(t) \right\} < \infty, \quad m^2 = \max_{\exists t \in [0,\infty) \setminus [t_1 - \varepsilon, t_1 + \varepsilon]} \text{Var}(V_1(t)). \]

Since \(\text{Var}(V_1(t)) \) achieves its unique maxima at \(t_1 \) we obtain by (12) that
\[e^{-\frac{(u^{1-H} - M)^2}{2m^2}} = o(\mathbb{P} \left\{ V_1(t_1) > u^{1-H} \right\}), \quad u \to \infty \]
and the claim follows from the asymptotics of \(\psi_1(T_u,u) \) given in Proposition 3.1.

Proof of (14). To prove the claim it is enough to show that as \(u \to \infty \) and then \(S \to \infty \)
\[\mathbb{P} \left\{ \int_{[0,\infty) \setminus [ut_* - S, ut_* + S]} \mathbb{I}(B(t) - c_1 t > q_1 u, B(t) - c_2 t > q_2 u) \, dt > T \right\} = o(C_{T_u}(u)), \quad u \to \infty. \]
We have that the probability above does not exceed
\[\mathbb{P} \left\{ \exists t \in [0,\infty) \setminus [ut_* - S, ut_* + S] : B(t) - c_1 t > q_1 u, B(t) - c_2 t > q_2 u \right\}.

From the proof of Theorem 3.1 in [18], Case (3) and the final asymptotics of $C_{T_u}(u)$ given in (9) it follows that the expression above equals $o(C_{T_u}(u))$, as $u \to \infty$ and then $S \to \infty$.

\textbf{Proof of (16).} Define

$$G(u,x) = \mathbb{P}\left\{ \int_{-S}^{0} \mathbb{I}(Z_u(s) + \eta_s s > x) \, ds + \int_{0}^{S} \mathbb{I}(B_*(s) - c_1 s > x) \, ds > T \right\}.$$

First we show that

$$\int_{\mathbb{R}} G(u,x) e^{\frac{nu}{t^\tau}} \frac{x^2}{2ut^\tau} \, dx = \int_{-M}^{M} G(u,x) e^{\frac{nu}{t^\tau}} \, dx + A_{M,u},$$

where $A_{M,u} \to 0$ as $u \to \infty$ and then $M \to \infty$. We have

$$|A_{M,u}| = |\int_{\mathbb{R}} G(u,x) e^{\frac{nu}{t^\tau}} \frac{x^2}{2ut^\tau} \, dx - \int_{-M}^{M} G(u,x) e^{\frac{nu}{t^\tau}} \, dx|$$

$$\leq |\int_{-M}^{M} G(u,x) (e^{\frac{nu}{t^\tau}} \frac{x^2}{2ut^\tau} - e^{\frac{nu}{t^\tau}}) \, dx| + \int_{|x|>M} G(u,x) e^{\frac{nu}{t^\tau}} \, dx =: |I_1| + I_2.$$

Since the variance of Z_u (see (15)) converges to those of BM we have by Borell-TIS inequality for $x > 0$, large u and some $C > 0$

$$G(u,x) \leq \mathbb{P}\{ \exists t \in [-S,0] : (Z_u(t) + \eta_s t) > x \} + \mathbb{P}\{ \exists t \in [0,S] : (B_*(t) - c_1 t) > x \}$$

$$\leq \mathbb{P}\{ \exists t \in [-S,0] : (Z_u(t) - \mathbb{E}\{Z_u(t)\}) > x \} + \mathbb{P}\{ \exists t \in [0,S] : B_*(t) > x \} \leq e^{-x^2/C}.$$

Let $u > M^4$. For $x \in [-M,M]$ it holds, that $1 - e^{-\frac{x^2}{2ut^\tau}} \leq \frac{x^2}{2ut^\tau} \leq \frac{1}{M}$ and hence for $u > M^4$ by (19) we have as $M \to \infty$

$$|I_1| \leq \int_{-M}^{0} e^{\frac{nu}{t^\tau}} (1 - e^{-\frac{x^2}{2ut^\tau}}) \, dx + \int_{0}^{M} e^{-x^2/C + \frac{nu}{2ut^\tau}} (1 - e^{-\frac{x^2}{2ut^\tau}}) \, dx \leq \frac{1}{M} \left(\int_{-\infty}^{0} e^{\frac{nu}{t^\tau}} + \int_{0}^{\infty} e^{-x^2/C + \frac{nu}{t^\tau}} \right) \to 0.$$

For I_2 we have

$$I_2 \leq \int_{-\infty}^{-M} e^{\frac{nu}{t^\tau}} \, dx + \int_{M}^{\infty} e^{-x^2/C} e^{\frac{nu}{t^\tau}} \, dx \to 0, \quad M \to \infty,$$

hence (18) holds. Next we show that

$$G(u,x) \to \mathbb{P}\left\{ \int_{-S}^{0} \mathbb{I}(B(s) + \eta_s s > x) \, ds + \int_{0}^{S} \mathbb{I}(B_*(s) - c_1 s > x) \, ds > T \right\}, \quad u \to \infty$$

that is equivalent with

$$\lim_{u \to \infty} \mathbb{P}\left\{ \int_{-S}^{S} \mathbb{I}(X_u(s) > x) \, ds > T \right\} = \mathbb{P}\left\{ \int_{-S}^{S} \mathbb{I}(B(s) + k(s) > x) \, ds > T \right\},$$

where $k(s) = \mathbb{I}(s < 0)\eta_s s - \mathbb{I}(s \geq 0)c_1 s$ and

$$X_u(t) = (Z_u(t) + \eta_t t)\mathbb{I}(t < 0) + (B_*(t) - c_1 t)\mathbb{I}(t \geq 0).$$
We have for large u

\[
\mathbb{E}\{ (X_u(t) - X_u(s))^2 \} = \begin{cases}
|t - s| + |t - s|^2 & t, s \geq 0 \\
\frac{(s-t)^2}{ut^*} + |t - s| + \frac{x^2(t-s)^2}{ut^*} - \frac{2x(t-s)^2\eta_x}{ut^*} + \eta_x^2(t-s)^2 & t, s \leq 0 \\
|t - s| - \frac{x^2}{ut^*} + \frac{x^2s^2}{ut^*} - \frac{2x(s\eta_x+c1)}{ut^*} + (\eta_x s + c1)^2 & s < 0 < t
\end{cases}
\]

implying for all u large enough, some $C > 0$ and $t, s \in [-S, S + T]$ that

\[
\mathbb{E}\{ (X_u(t) - X_u(s))^2 \} \leq C|t - s|.
\]

Next, by Proposition 9.2.4 in [24] the family $X_u(t), u > 0, t \in [-S, S + T]$ is tight in $\mathcal{B}(C([-S, S + T]))$ (Borel σ-algebra in the space of the continuous functions on $[-S, S + T]$ generated by the cylindric sets).

As follows from (15), $Z_u(t)$ converges to $B(t)$ in the sense of convergence finite-dimensional distributions as $u \to \infty, t \in [-S, S + T]$. Thus, by Theorems 4 and 5 in Chapter 5 in [2] the tightness and convergence of finite-dimensional distributions imply weak convergence

\[
X_u(t) \Rightarrow B(t) + k(t) =: W(t), \quad t \in [-S, S + T].
\]

By Theorem 11 (Skorohod), Chapter 5 in [2] there exists a probability space Ω, where all random processes have the same distributions, while weak convergence becomes convergence almost sure. Thus, we assume that $X_u(t) \to W(t)$ a.s. as $u \to \infty$ as elements of $C[-S, S]$ space with the uniform metric. We prove that for all $x \in \mathbb{R}$

\[
\mathbb{P}\left\{ \lim_{u \to \infty} \int_{-S}^{S} \mathbb{I}(X_u(t) > x)dt = \int_{-S}^{S} \mathbb{I}(W(t) > x)dt \right\} = 1. \tag{20}
\]

Fix $x \in \mathbb{R}$. We shall show that as $u \to \infty$ with probability 1

\[
\mu_\Lambda\{t \in [-S, S]: X_u(\omega, t) > x > W(\omega, t)\} + \mu_\Lambda\{t \in [-S, S]: W(\omega, t) > x > X_u(\omega, t)\} \to 0, \quad \tag{21}
\]

where μ_Λ is the Lebesgue measure. Since for any fixed $\varepsilon > 0$ for large u and $t \in [-S, S]$ with probability one $|W(t) - X_u(t)| < \varepsilon$ we have that

\[
\mu_\Lambda\{t \in [-S, S]: X_u(\omega, t) > x > W(\omega, t)\} + \mu_\Lambda\{t \in [-S, S]: W(\omega, t) > x > X_u(\omega, t)\} \\
\leq \mu_\Lambda\{t \in [-S, S]: W(\omega, t) \in [-\varepsilon + x, \varepsilon + x]\}.
\]

Thus, (21) holds if

\[
\mathbb{P}\left\{ \lim_{\varepsilon \to 0} \mu_\Lambda\{t \in [-S, S]: W(t) \in [-\varepsilon + x, x + \varepsilon]\} = 0 \right\} = 1. \tag{22}
\]

Consider the subset $\Omega_* \subset \Omega$ consisting of all ω_* such that

\[
\lim_{\varepsilon \to 0} \mu_\Lambda\{t \in [-S, S]: W(\omega_*, t) \in [-\varepsilon + x, x + \varepsilon]\} > 0.
\]

Then for each ω_* there exists the set $A(\omega_*) \subset [-S, S]$ such that $\mu_\Lambda\{A(\omega_*)\} > 0$ and for $t \in A(\omega_*)$ it holds, that $W(\omega_*, t) = x$. Thus,

\[
\mathbb{P}\{\Omega_*\} = \mathbb{P}\{\mu_\Lambda\{t \in [-S, S]: W(t) = x\} > 0\}.
\]
the right side of the equation above equals 0 by Lemma 4.2 in [20]. Hence we conclude that (22) holds, consequently (21) and (20) are true. Since convergence almost sure implies convergence in distribution we have by (20) that for any fixed \(x \in \mathbb{R} \)
\[
\lim_{u \to \infty} \mathbb{P} \left\{ \int_{-S}^{S} \mathbb{I}(X_u(t) > x) dt > T \right\} = \mathbb{P} \left\{ \int_{-S}^{S} \mathbb{I}(W(t) > x) dt > T \right\}.
\]
By the dominated convergence theorem we obtain
\[
\int_{-M}^{M} G(u, x)e^{\frac{u}{T}} dx \to \int_{-M}^{M} \mathbb{P} \left\{ \int_{-S}^{S} \mathbb{I}(B(s) + \eta_s s > x) ds \right\} ds + \mathbb{I}(B(s) - c_1 s > x) ds > T \right\} e^{\frac{u}{T}} dx, \quad u \to \infty.
\]
Thus, the claim follows from the line above and (18). \(\square \)

Proof of (17). We have by the proof of Theorem 3.1 in [18], Case (3) and the final asymptotics of \(C_{T_u}(u) \) given in (9)
\[
\mathbb{P} \left\{ \int_{[0,\infty) \setminus [ut_\star - u\delta_u, ut_\star + u\delta_u]} \mathbb{I}(B_H(t) - c_1 t > q_1 u, B_H(t) - c_2 t > q_2 u) dt > T_u \right\}
\leq \mathbb{P} \{ \exists t \in [0,\infty) \setminus [ut_\star - u\delta_u, ut_\star + u\delta_u] : B_H(t) - c_1 t > q_1 u, B_H(t) - c_2 t > q_2 u \}
= o(C_{T_u}(u)), \quad u \to \infty
\]
and hence
\[
\mathbb{P} \left\{ \int_{[ut_\star - u\delta_u, ut_\star + u\delta_u]} \mathbb{I}(B_H(t) - c_1 t > q_1 u, B_H(t) - c_2 t > q_2 u) dt > T_u \right\} \sim C_{T_u}(u), \quad u \to \infty.
\]
The last probability above is equivalent with \(g_1(u) + g_2(u) \) as \(u \to \infty \), this observation follows from the application of the double-sum method, see the proofs of Theorem 3.1, Case (3) \(H < 1/2 \) in [18] and Theorem 2.1 in [9] case i). \(\square \)

Proof of Proposition 3.1. If \(H = 1/2 \), then an equality takes place, see [9], Eq. [5]. Assume from now on that \(H \neq 1/2 \). First let (6) holds with \(T > 0 \). We have for \(c > 0 \) with \(\tilde{M}(u) = u^{1-H} \frac{e^{H}}{(1-H)^{1-H}} \) (recall, \(\mathbb{I}_a(b) = \mathbb{I}(b > a) \), \(a, b \in \mathbb{R} \))
\[
h_{T_u}(u) := \mathbb{P} \left\{ \int_{0}^{\infty} \mathbb{I}(B_H(t) - ct > u) dt > T_u \right\}
= \mathbb{P} \left\{ u(u^{1-H} \frac{e^{2(1-H)^2-H}}{2\pi^{1-H} H^2}) \int_{0}^{\infty} \tilde{M}(u) \frac{B_H(tu) \tilde{M}(u)}{u(1+ct)} dt > T u^{1-H} \frac{e^{2(1-H)^2-H}}{2\pi^{1-H} H^2} \right\}.
\]
Next we apply Theorem 3.1 in [9] to calculate the asymptotics of the last probability above as \(u \to \infty \). For the parameters in the notation therein we have
\[
\alpha_0 = \alpha_\infty = H, \quad \sigma(t) = t^H, \quad \frac{\sigma(t)}{\sqrt{\sigma(t)}} = t^{\frac{1}{2}}, \quad t^* = \frac{H}{c(1-H)}, \quad A = \frac{e^H}{H^{1-H}(1-H)^{1-H}}, \quad x = T \frac{e^{2(1-H)^2-H}}{2\pi^{1-H} H^2}
\]
\[B = \frac{c^{2+H}(1-H)^{2+H}}{H^{H+1}}, \quad M(u) = u^{1-H} \frac{c^H}{(1-H)^{1-H} H^H}, \quad v(u) = u^{\frac{1}{1-H}} \frac{e^{2(1-H)^{2-\frac{1}{H}}}}{2^{\frac{1}{H}} H^2}. \]

and hence we obtain

\[h_{T_u}(u) \sim K_H B_2H(TD)(C_H u^{1-H})^{\frac{1}{H}-1} \Psi(C_H u^{1-H}), \quad u \to \infty, \tag{23} \]

where

\[C_H = \frac{c^H}{H^H (1-H)^{1-H}} \quad \text{and} \quad D = 2^{-\frac{1}{H}} c^2 H^{-2}(1-H)^{-2-1/H}. \]

Assume that (6) holds with \(T = 0 \). For \(\varepsilon > 0 \) for all large \(u \) we have \(h_{\varepsilon u^{1/H-2}}(u) \leq h_{T_u}(u) \leq h_0(u) \) and thus

\[K_H B_2(H)(\varepsilon D)(C_H u^{1-H})^{\frac{1}{H}-1} \Psi(C_H u^{1-H}) \leq h_{T_u}(u) \leq K_H B_2H(0)(C_H u^{1-H})^{\frac{1}{H}-1}. \]

Since \(B_2H(\cdot) \) is a continuous function (Lemma 4.1 in [9]) letting \(\varepsilon \to 0 \) we obtain (23) for any \(T_u \) satisfying (6). Replacing in (23) \(u \) and \(c \) by \(q_1 u \) and \(c_1 \) we obtain the claim. \(\square \)

References

[1] Bai, L. (2018). Asymptotics of Parisian ruin of Brownian motion risk model over an infinite-time horizon. *Scand. Actuar. J.*, (6):514–528.

[2] Bylinskii, A. and Shiryaev, A. (2005). *Theory of Stochastic Processes (in Russian)*.

[3] Dębicki, K. and Sikora, G. (2011). Finite time asymptotics of fluid and ruin models: multiplexed fractional Brownian motions case. *Appl. Math. (Warsaw)*, 38(1):107–116.

[4] Dębicki, K., Hashorva, E., and Ji, L. (2015). Parisian ruin of self-similar Gaussian risk processes. *J. Appl. Probab.*, 52(3):688–702.

[5] Dębicki, K., Hashorva, E., and Ji, L. (2016). Parisian ruin over a finite-time horizon. *Sci. China Math.*, 59(3):557–572.

[6] Dębicki, K., Hashorva, E., Ji, L., and Rolski, T. (2018). Extremal behaviour of hitting a cone by correlated Brownian motion with drift. *Accepted for publication in Stoch. Proc. Appl.*

[7] Dębicki, K., Hashorva, E., and Liu, P. (2017). Extremes of \(\gamma \)-reflected Gaussian process with stationary increments. *ESAIM Probab. Stat.*, 21:495–535.

[8] Dębicki, K. and Liu, P. (2016). Extremes of stationary Gaussian storage models. *Extremes*, 19(2):273–302.

[9] Dębicki, K., Liu, P., and Michna, Z. (2020). Sojourn times of Gaussian processes with trend. *J. Theoret. Probab.*, 33(4):2119–2166.

[10] Debicki, K. (1991). Asymptotics of supremum of scaled Brownian motion.

[11] Dębicki, K. and Mandjes, M. (2015). *Queues and Lévy fluctuation theory*. Springer.

[12] Dieker, A. B. (2005). Extremes of Gaussian processes over an infinite horizon. *Stochastic Process. Appl.*, 115(2):207–248.

[13] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). *Modelling extremal events*, volume 33 of *Applications of Mathematics (New York)*. Springer-Verlag, Berlin. For insurance and finance.

[14] Jasnovidov, G. (2020). Approximation of ruin probability and ruin time in discrete Brownian risk models. *Scand. Actuar. J.*, (8):718–735.
[15] Jasnovidov, G. (2021). Simultaneous ruin probability for two-dimensional fractional Brownian motion risk process over discrete grid. *in press, Lithuanian Mathematical Journal.*

[16] Jasnovidov, G. and Shemendyuk, A. (2021). Parisian ruin for insurer and reinsurer under quota-share treaty. *arXiv:2103.03213.*

[17] Ji, L. (2020). On the cumulative Parisian ruin of multi-dimensional Brownian motion risk models. *Scand. Actuar. J.*, (9):819–842.

[18] Ji, L. and Robert, S. (2018). Ruin problem of a two-dimensional fractional Brownian motion risk process. *Stoch. Models*, 34(1):73–97.

[19] Kozik, I. A. and Piterbarg, V. I. (2018). High excursions of Gaussian nonstationary processes in discrete time. *Fundam. Prikl. Mat.*, 22(2):159–169.

[20] Kriukov, N. (2020). Parisian & cumulative Parisian ruin probability for two-dimensional Brownian risk model. *arXiv:2001.09302.*

[21] Pickands, III, J. (1969). Upcrossing probabilities for stationary Gaussian processes. *Trans. Amer. Math. Soc.*, 145:51–73.

[22] Piterbarg, V., Popivoda, G., and Stamatovic, S. (2017). Extremes of Gaussian processes with a smooth random trend. *Filomat*, 31(8):2267–2279.

[23] Piterbarg, V. I. (1996). *Asymptotic methods in the theory of Gaussian processes and fields*, volume 148 of *Translations of Mathematical Monographs*. American Mathematical Society, Providence, RI.

[24] Piterbarg, V. I. (2015). *Twenty Lectures About Gaussian Processes*. Atlantic Financial Press London New York.

[25] Piterbarg, V. I. and Fatalov, V. R. (1995). The Laplace method for probability measures in Banach spaces. *Uspekhi Mat. Nauk*, 50(6(306)):57–150.

Grigori Jasnovidov, Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland

Email address: griga1995@yandex.ru