**B-meson light-cone distribution amplitude from lattice QCD**

Wei Wang¹ *, Yu-Ming Wang² †, Ji Xu¹,³ ‡, and Shuai Zhao⁴,⁵ §

¹ INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
² School of Physics, Nankai University, 300071 Tianjin, China
³ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
⁴ Physics Department, Old Dominion University, Norfolk, VA 23529, USA
⁵ Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

(Dated: August 28, 2019)

A new method for the model-independent determination of the light-cone distribution amplitude (LCDA) of the B-meson in heavy quark effective theory (HQET) is proposed by combining the large momentum effective theory (LaMET) and the lattice QCD simulation technique. We demonstrate the autonomous scale dependence of the non-local quasi-HQET operator with the aid of the auxiliary field approach, and further determine the perturbative matching coefficient entering the hard-collinear factorization formula for the B-meson quasi-distribution amplitude at the one-loop accuracy. These results will be crucial to explore the partonic structure of heavy-quark hadrons in the static limit and to improve the theory description of exclusive B-meson decay amplitudes based upon perturbative QCD factorization theorems.

**Introduction:** B-meson light-cone distribution amplitude (LCDA) in heavy-quark effective theory (HQET) serves as an indispensable ingredient for establishing QCD factorization theorems of exclusive B-meson decay amplitudes and for constructing light-cone sum rules of numerous hadronic matrix elements, whose factorization properties are not yet completely explored at leading power in the heavy-quark expansion, from the vacuum-to-B-meson correlation functions. Defined as the light-ray matrix elements of the composite HQET quark-gluon operators, they encode information of the non-perturbative strong interaction dynamics from the soft-scale fluctuation of the B-meson system and our limited knowledge of these distribution amplitudes has become the major stumbling block for precision calculations of the B-meson decay observables, which are crucial to disentangle the Standard-Model (SM) background contributions from the genuine new physics effects.

Model-independent properties of the leading-twist B-meson LCDA \( \phi^+_B(\omega, \mu) \), including its renormalization group equation (RGE) and perturbative QCD constraints at large \( \omega \), have received increasing attention in recent years. By contrast, nonperturbative determinations of \( \phi^+_B(\omega, \mu) \) have been mainly performed in the framework of the QCD sum rules (QCDSR) invoking the quark-hadron duality ansatz, where both the perturbative corrections to the leading-power contribution and the subleading-power contributions from quark-gluon condensate operators were taken into account systematically. One main drawback of constructing the phenomenological models for the B-meson distribution amplitude \( \phi_B^+(\omega, \mu) \) from the classical QCDSR method lies in the fact that the light-cone separation between the effective heavy-quark field and the light anti-quark field needs to be sufficiently small (of order \( 1 \sim 3 \text{ GeV}^{-1} \)) to guarantee the validity of the local operator-product-expansion (OPE) for the HQET correlation function under discussion. In addition, meaningful constraints on the first inverse moment \( \lambda_B^{-1}(\mu) \) can be obtained by measuring the integrated branching fractions of the radiative leptonic B-meson decays with a photon energy cut \( E_{\gamma} \geq E_{\text{cut}} \) at the Belle II experiment. Keeping in mind that the exact RGE for the inverse moment \( \lambda_B^{-1}(\mu) \) involves all the logarithmic moments \( \sigma_B^{(n)}(\mu) \) in perturbation theory, the precise shape of the B-meson distribution amplitude, in particular its small-momentum behaviour, cannot be controlled by a single non-perturbative parameter \( \lambda_B^{-1}(\mu) \) to a good approximation. It is then evident that determining the momentum dependence of the B-meson LCDA \( \phi_B^+(\omega, \mu) \) with model-independent techniques is of top priority for the precision descriptions of exclusive B-meson decays.

Performing the lattice QCD calculation of the leading-twist distribution amplitude \( \phi_B^+(\omega, \mu) \) directly is known to be complicated by the appearance of the light-cone separated quark fields defining the very HQET matrix element for a long time. A promising approach to circumvent this long-standing problem has been recently proposed under the name of the large momentum effective theory (LaMET) by X. Ji (see also for a review). The essential strategy of this novel proposal consists in the construction of a time-independent quasi-quantity which, on the one hand, can be readily computed on an Euclidean lattice and, on the other hand, approaches the original hadronic distribution amplitude...
on the light cone under Lorentz boost. In this Letter, we implement Ji’s proposal to extract the leading-twist LCDA $\phi_{B}^{T}(\omega, \mu)$ of the $B$-meson in HQET by demonstrating the multiplicative renormalization of the constructed quasi-HQET operator to all orders in perturbation theory, by determining the short-distance function appearing in the hard-collinear factorization formula of the $B$-meson quasi-distribution amplitude, and by exploring future opportunities of lattice QCD calculations.

**B-meson (quasi)-distribution amplitudes:** The leading-twist LCDA $\phi_{B}^{T}(\eta, \mu)$ in coordinate space is defined by the renormalized HQET matrix element of a light-ray soft operator [14]

$$
\langle 0 | (\bar{q}_s Y_s)(\eta \bar{n}) \not{n} \gamma_5 (Y_{s}^{\dagger} h_v)(0) | \bar{B}(v) \rangle = i \tilde{f}_B(\mu) m_B \phi_{B}^{+}(\eta, \mu),
$$

where the soft light-cone ($\bar{n}^2 = 0$) Wilson line is given by

$$
Y_s(\eta \bar{n}) = P \left\{ \exp \left[ i g_s \int_{-\infty}^{0} dx \bar{n} \cdot A_s(x \bar{n}) \right] \right\},
$$

and the static decay constant $\tilde{f}_B(\mu)$ of the $B$-meson can be expressed in terms of $f_B$ in QCD [28]. Applying the Fourier transformation for $\phi_{B}^{+}(\eta, \mu)$ leads to the momentum-space distribution function [19]

$$
\phi_{B}^{+}(\omega, \mu) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\eta e^{i \bar{n} \cdot v \eta} \phi_{B}^{+}(\eta - i \epsilon, \mu).
$$

Following the construction presented in [24], we will employ the following $B$-meson quasi-distribution amplitude (see also [29])

$$
\langle 0 | (\bar{q}_s Y_s)(\tau n_z) \not{n} \gamma_5 \not{z} \gamma_5 (Y_{s}^{\dagger} h_v)(0) | \bar{B}(v) \rangle = i \tilde{f}_B(\mu) m_B \phi_{B}^{+}(\xi, \mu),
$$

defined by the spatial correlation function of two collinear (effective)-quark fields with $n_z = (0, 0, 0, 1)$. For the sake of demonstrating QCD factorization for the quasi-distribution amplitude $\phi_{B}^{+}(\xi, \mu)$, we will make a Lorentz boosted frame of the $B$-meson with $\bar{n} \cdot v \gg n \cdot v$ and set $v_{\perp, 0} = 0$ without loss of generality. As a consequence, only the ultra-collinear gluons couple with the boosted heavy quark in the low-energy effective theory and the soft Wilson lines $Y_s(\theta u)$ will be substituted by the ultra-collinear Wilson lines $W_{n_z}(\theta u)$ in the boosted HQET (bHQET) accordingly [30].

**Multiplicative renormalization:** To facilitate the lattice QCD evaluation of the quasi-distribution amplitude $\phi_{B}^{+}(\xi, \mu)$, it is of vital importance to show that such quasi-quantity will renormalize multiplicatively to all orders in perturbation theory applying the lattice regularization scheme. For this purpose, it has proven to be most convenient employing the one-dimensional auxiliary field formalism for the contour integrals introduced in [31].

The resulting Lagrangian for the ultra-collinear gluon interactions with both the effective bottom-quark field $h_v$ and the auxiliary field $Q$ can be written as

$$
\mathcal{L} = \mathcal{L}_{\text{HQET}} + \mathcal{Q}(x) \left( i n_z \cdot D_n - \delta m \right) Q(x),
$$

where the “dynamical” mass term originates from the self-energy correction to the $Q$ field in the dimensionful cut-off scheme [32], in analogy to the scheme-dependent residual mass term in the HQET formalism [33,35], and the ultra-collinear covariant derivative

$$
D^\mu_n = \partial^\mu - i g_s T^a A^a_{\mu}(v).
$$

Alternatively, the ultraviolet (UV) linear divergences from the Wilson-line corrections in [1] can be removed by introducing the proper subtraction term defined by a simpler matrix element but with the same power divergences [36–38]. It is straightforward to rewrite the non-local operator defining the $B$-meson quasi-distribution amplitude as follows [39–40]

$$
\mathcal{O}(\tau n_z, 0) = \left[ \chi_n(\tau n_z) \not{n} \gamma_5 \gamma_5(\tau n_z) \right] \bar{Q}(0) h_v(0),
$$

at all orders in $\alpha_s$. We are therefore led to conclude the autonomous renormalization of the composite non-local operator $\mathcal{O}(\tau n_z, 0)$, namely

$$
\mathcal{O}(\tau n_z, 0) = Z^{(R)}_{\chi_Q} Z^{(R)}_{\chi_Q, 0} \mathcal{O}(\tau n_z, 0, \mu).
$$

It needs to be stressed that such multiplicative-renormalization property holds in both dimensional regularization and lattice regularization schemes due to the reparametrization invariance of the heavy quark mass [33], which can be readily understood by introducing the generalized covariant derivative

$$
\partial^\mu = i D^\mu + \delta m n^\mu.
$$

In general, the renormalized non-local quasi-operator $\mathcal{O}(\tau n_z, 0, \mu)$ for a given regularization scheme violating translation invariance (including but not limited to the lattice regularization scheme) can be expressed as [40–42]

$$
\mathcal{O}(\tau n_z, 0, \mu) = \left[ Z^{(R)}_{\chi_Q} Z^{(R)}_{\chi_Q, 0} \right]^{-1} e^{\delta m \tau} \mathcal{O}(\tau n_z, 0),
$$

with the imaginary mass $\delta m = i \Delta m$ due to the space-like gauge vector $n_z$. [33].

**Hard-collinear factorization formula:** We now proceed to determine the perturbative matching coefficient function entering the hard-collinear factorization formula for $\mathcal{O}(\tau n_z, 0)$ at $\tau \ll 1/\Lambda_{\text{QCD}}$

$$
\mathcal{O}(\tau n_z, 0) = \int d\eta \tilde{H}(\tau, \eta, n_z \cdot v, \mu) P^{(R)}(\eta \bar{n}, 0, \mu),
$$
\[ P^{(R)}(\eta \bar{n}, 0, \mu) = \left[ \left( \bar{\chi}_n W_n \right)(\eta \bar{n}) \right. \gamma_5 (W_n^\dagger h_v)(0) \right]^{(R)}, \]

at leading power in \( \Lambda_{QCD}/\tau \), which can be Fourier-transformed into the momentum-space relation

\[ \varphi^+_B(\xi, \mu) = \int_0^\infty d\omega H(\xi, \omega, n_z \cdot v, \mu) \phi^+_B(\omega, \mu) + O\left( \frac{\Lambda_{QCD}}{n_z \cdot v \xi} \right). \tag{10} \]

Applying the default power counting scheme one can readily identify that the hard correction from the 1-loop box diagram in figure 1 is power suppressed and it will therefore give rise to the vanishing contribution to the perturbative matching function \( H \). We further verify explicitly that the collinear contribution to the quasi-

\[ H(\xi, \omega, n_z \cdot v, \mu) = \delta(\xi - \omega) + \frac{\alpha_s(\mu) C_F}{4\pi} \left\{ \frac{1}{\omega - \xi} \left[ 3 - 2 \ln \left( \frac{2 \mu}{n_z \cdot v (\omega - \xi)} \right) - \frac{2 \xi}{\omega} \ln \left( \frac{\xi}{\omega - \xi} \right) \right] - 2 \xi \ln \frac{\xi}{\omega} - \ln(8 \pi) \right\} \theta(-\xi) \theta(\omega) \]

\[ \left. + \left\{ \frac{1}{\omega - \xi} \left[ 3 - 2 \left( 1 + \frac{2 \xi}{\omega} \right) \ln \left( \frac{2 \mu}{n_z \cdot v (\omega - \xi)} \right) - \frac{2 \xi}{\omega} \ln \left( \frac{\xi}{\omega - \xi} \right) \right] \right\} \theta(\omega) \theta(\xi - \omega) \right. \]

\[ + 2 \left[ \ln^2 \frac{\mu}{n_z \cdot v \xi} - 3 \ln \frac{\mu}{n_z \cdot v \xi} + f(a) \right] \delta(\xi - \omega), \tag{11} \]

where the plus distribution is defined by (with \( a > 1 \))

\[ \{ F(\xi, \omega) \}_+ = F(\xi, \omega) - \delta(\xi - \omega) \int_0^{a \xi} dt F(\xi, t), \tag{12} \]

and the subtraction-scheme dependent term

\[ f(a) = \ln \frac{a^2}{4(a - 1)^3} \ln \frac{\mu}{n_z \cdot v \xi} + \ln(a - 1) \ln \frac{8(a - 1)}{a} \]

\[ - \text{Li}_2(1 - a) + \ln a \ln \frac{a}{e} - \frac{1}{2} \ln(a - 1) \]

\[ + \ln(8 a) + \ln^2 2 + \frac{\pi^2}{8} - 3 \tag{13} \]

will compensate the same scheme dependence of the newly introduced plus distribution for the convolution of the hard function \( H \) with a smooth test function. An advantage of introducing the above-mentioned plus function is that it allows to implement both the ultraviolet and infrared subtractions for the perturbative matching procedure simultaneously. Distinguishing the ultraviolet renormalization scale \( \nu \) of the composite quasi-operator \( O^{(R)} \) from the factorization scale \( \mu \) of separating the hard and collinear strong interaction dynamics for this quantity, it is straightforward to demonstrate a complete cancellation of the \( \mu \)-dependence for the factorization formula of \( \varphi^+_B(\xi, \nu, \mu) \) at one loop, by employing the Lange-Neubert evolution equation of the \( B \)-meson distribution amplitude \( \phi^+_B(\omega, \mu) \) \( \text{[13]} \).

**Perspectives for lattice calculations:** An important step in obtaining the \( B \)-meson LCDA in bHQET based upon Ji’s approach is to perform the lattice QCD simulation for the spatial correlation \( \varphi^+_B(\xi, \mu) \) in the moving \( B \)-meson frame with \( n_z \cdot v \gg 1 \). To this end, it will be instructive to understand the characteristic features of \( \varphi^+_B(\xi, \mu) \) with distinct non-perturbative models of \( \phi^+_B(\omega, \mu) \). Taking advantage of the two phenomenological models motivated by the HQET sum rule calculation at leading order (LO) \( \text{[11]} \) and at next-to-leading order (NLO) \( \text{[19]} \)

\[ \phi^+_{B,1}(\omega, \mu = 1.5 \text{ GeV}) = \frac{\omega}{\omega_0} e^{-\omega/\omega_0}, \]

\[ \phi^+_{B,1}(\omega, \mu = 1.5 \text{ GeV}) = \left[ \frac{1}{k^2 + 1} - \frac{2(\sigma_B^{(1)})}{\pi^2} \ln k \right] \times \frac{4}{\pi \omega_0} \frac{k}{k^2 + 1}, k = \frac{\omega}{1.5 \text{ GeV}}, \tag{14} \]

the obtained QCD factorization formula \( \text{[10]} \) implies the shapes of \( \varphi^+_B(\xi, \mu) \) displayed in figure 2 at different val-
ues of $n_z \cdot v$, where the reference values of the logarithmic inverse moments $\omega_0 = 350 \text{ MeV}$ and $\sigma_{B}^{(1)} = 1.4$ are taken for the illustration purpose. It is evident that $\varphi_{B}^{\pm}(\xi, \mu)$ develops a radiative tail at large momentum $\xi$ irrespective of the functional form of $\phi_{B}^{\pm}(\omega, \mu)$ and, in contrast to the quasi-parton distribution function (PDF) [44], no peaks emerge in the momentum region $\xi \leq 0$. We also mention in passing that the predicted shapes of the leading-twist $B$-meson LCDA $\phi_{B}^{\pm}(\omega, \mu)$ at large $\omega$ from Ji’s proposal can already confront with the perturbative QCD calculations carried out in [17, 18] and it will thus provide interesting insight into the parton-hadron duality ansatz adopted in constructing perturbative QCD factorization theorems.

Implementing the lattice QCD computation of the spatial correlation $\varphi_{B}^{\pm}(\xi, \mu)$ in practice will necessitate (a) reformulation of the hard-collinear factorization theorem [10] with either the lattice regularization scheme along the lines of [45] or the regularization-invariant momentum subtraction (RI/MOM) scheme [46] as already discussed in the context of the LaMET approach [44, 47-50]; (b) improvement of various systematic uncertainties generated by the finite lattice spacing and the finite lattice box as well as by truncating the Fourier transformation from coordinate space with evaluations for a finite number of discrete $\tau$’s to momentum space. In addition, computing the yet higher-order perturbative correction to the short-distance Wilson coefficient $H$ and constructing the subleading-power factorization formula for the equal-time correlation function $\varphi_{B}^{\pm}(\xi, \mu)$ will be also in high demand for precision determinations of the small-momentum behaviours of the $B$-meson LCDA $\phi_{B}^{\pm}(\omega, \mu)$. Furthermore, determining hadronic distribution functions on the light-shell can be also achieved by constructing the spatial correlation functions of suitable local partonic currents and by establishing the desired QCD factorization formulae in coordinate space directly [51-55]. We are therefore confident that our work can be extended into different interesting directions.

**Conclusion:** To summarize, we have proposed a novel approach to determine the momentum dependence of the leading-twist $B$-meson LCDA $\phi_{B}^{\pm}(\omega, \mu)$ in bHQET without introducing any approximation or assumption for its functional form. Applying the auxiliary heavy-quark field formalism, we have demonstrated explicitly the multiplicative renormalizability of the quasi-distribution function $\varphi_{B}^{\pm}(\xi, \mu)$ at all orders in QCD. The perturbative matching function entering the hard-collinear factorization formula of the spatial correlation was further extracted with the OPE technique at $O(\alpha_s)$. The present strategy of constructing the light-cone distribution functions in effective field theories can be also applied to the various $B$-meson shape functions relevant to the QCD description of $B \to X_{d,s} \gamma$ and to the heavy-baryon distribution amplitudes appearing in the soft-collinear effective theory (SCET) computation of $\Lambda_b \to \Lambda \ell \ell$. Our results are apparently of importance for exploring the delicate flavour structure of the SM and beyond at the LHCb and Belle II experiments.

We are grateful to Vladimir Braun, Tomomi Ishikawa, Xiang-Dong Ji, Yi-Zhuang Liu, Yu-Sheng Liu, Anatoly Radyushkin and Iain Stewart for illuminating discussions, and to Vladimir Braun and Anatoly Radyushkin for valuable comments on the manuscript. W.W and J.X. are supported in part by the National Natural Science Foundation of China under Grant No. 11575110, 11735010, and 11911530088, the Natural Science Foundation of China under Grant No. 11575110, and 11911530088, the Natural Science Foundation of Shanghai under Grant No. 15DJZZ72100, and the Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education of China. Y.M.W acknowledges support from the National Youth Thousand Talents Program, the Youth Hundred Academic Leaders Program of Nankai University, the National Natural Science Foundation of China with Grant No. 11675082 and 11735010, and the Natural Science Foundation of Tianjin. The work of S.Z is supported by Jefferson Science Associates, LLC under U.S. DOE Contract #DE-AC05-06OR23177 and by U.S. DOE Grant #DE-FG02-
97ER41028. We are also thankful to the Mainz Institute for Theoretical Physics (MITP) of the DFG Cluster of Excellence PRISMA+ (Project ID 39083149) for its hospitality and support.

[1] A. G. Grozin and M. Neubert, Phys. Rev. D 55 (1997) 272 [hep-ph/9607360].
[2] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett. 83 (1999) 1914 [hep-ph/9905312].
[3] M. Beneke and T. Feldmann, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255].
[4] M. Beneke, T. Feldmann and D. Seidel, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067].
[5] S. W. Bosch and G. Buchalla, Nucl. Phys. B 621 (2002) 459 [hep-ph/0106081].
[6] T. Becher, R. J. Hill and M. Neubert, Phys. Rev. D 72 (2005) 094017 [hep-ph/0503263].
[7] A. Khodjamirian, T. Mannel and N. Offen, Phys. Rev. D 75 (2007) 054013 [hep-ph/0611193].
[8] F. De Fazio, T. Feldmann and T. Hurth, Nucl. Phys. B 733 (2006) 1; Erratum: [Nucl. Phys. B 800 (2008) 405] [hep-ph/0504088].
[9] Y. M. Wang and Y. L. Shen, Nucl. Phys. B 898 (2015) 563 [arXiv:1506.00667 [hep-ph]].
[10] Y. M. Wang, Y. B. Wei, Y. L. Shen and C. D. Lü, JHEP 1706 (2017) 062 [arXiv:1701.06810 [hep-ph]].
[11] C. D. Lü, Y. L. Shen, Y. M. Wang and Y. B. Wei, JHEP 1901 (2019) 024 [arXiv:1810.00819 [hep-ph]].
[12] J. Gao, C. D. Lü, Y. L. Shen, Y. M. Wang and Y. B. Wei, arXiv:1907.11092 [hep-ph].
[13] B. O. Lange and M. Neubert, Phys. Rev. Lett. 91 (2003) 102001 [hep-ph/0303082].
[14] G. Bell, T. Feldmann, Y. M. Wang and M. W. Y. Yip, JHEP 1311 (2013) 191 [arXiv:1308.6114 [hep-ph]].
[15] V. M. Braun and A. N. Manashov, Phys. Lett. B 731 (2014) 316 [arXiv:1402.5822 [hep-ph]].
[16] V. M. Braun, Y. Ji and A. N. Manashov, Phys. Rev. D 100 (2019) 014023 [arXiv:1905.04495 [hep-ph]].
[17] S. J. Lee and M. Neubert, Phys. Rev. D 72 (2005) 094028 [hep-ph/0509350].
[18] T. Feldmann, B. O. Lange and Y. M. Wang, Phys. Rev. D 89 (2014) 114001 [arXiv:1404.1343 [hep-ph]].
[19] V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, Phys. Rev. D 69 (2004) 034014 [hep-ph/0309330].
[20] M. Beneke and J. Rohrwild, Eur. Phys. J. C 71 (2011) 1818 [arXiv:1110.3228 [hep-ph]].
[21] Y. M. Wang, JHEP 1609 (2016) 159 [arXiv:1606.03080 [hep-ph]].
[22] Y. M. Wang and Y. L. Shen, JHEP 1805 (2018) 184 [arXiv:1803.06667 [hep-ph]].
[23] M. Beneke, V. M. Braun, Y. Ji and Y. B. Wei, JHEP 1807 (2018) 154 [arXiv:1804.04962 [hep-ph]].
[24] X. Ji, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1559 [hep-ph]].
[25] X. Ji, Sci. China Phys. Mech. Astron. 57 (2014) 1407 [arXiv:1404.6650 [hep-ph]].
[26] K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019 (2019) 3036904 [arXiv:1811.07248 [hep-lat]].
[27] Y. Zhao, Int. J. Mod. Phys. A 33 (2019) 1830033 [arXiv:1812.07192 [hep-ph]].