Ressecção pancreaticá robótica. Experiência pessoal com 105 casos

Robotic pancreatic resection. Personal experience with 105 cases

Marcel Autran Cesar Machado, TCBC-SP; Murillo M Lobo Filho; Bruno H Mattos; José Celso Ardengh; Fabio Ferrari Makdissi

RESUMO

Objetivo: a primeira ressecção pancreaticá robótica no Brasil foi realizada por nossa equipe em 2008. Desde março de 2018, uma nova política nos levou a empregar sistematicamente o robô em todas cirurgias pancreaticas minimamente invasivas. O objetivo deste artigo é revisar nossa experiência com a ressecção pancreaticá robótica. Métodos: todos os pacientes submetidos a ressecção pancreaticá robótica de 2018 a 2019 foram incluídos. Variáveis pré- e intraoperatórias como idade, sexo, indicação, tempo cirúrgico, sangramento, diagnóstico, tamanho do tumor foram analisados. Resultados: 105 pacientes foram submetidos a pancreatectomia robótica. A idade mediana dos pacientes foi de 60,5 anos. 55 pacientes eram do sexo feminino. 51 pacientes foram submetidos a pancreatectomias distais. Distal. A morbidade foi de 23,8% e ocorreu um óbito (mortalidade de 0,9%). Três pacientes (2,8%) tiveram a operação convertida para aberta. Quatro pacientes apresentaram retardo no esvaziamento gástrico e dois apresentaram sangramento. Vinte e quatro pacientes apresentaram fistula pancreaticá tratada de forma conservadora com remoção tardia do dreno pancreatic. Nenhum paciente necessitou de drenagem percutânea, reintervenção ou readmissão hospitalar. Conclusões: a plataforma robótica é útil para a reconstrução do trato alimentar após pancreatectomias ou após pancreatectomias central. Pode aumentar a preservação do baço durante pancreatectomias distais. Técnicas poupadoras de pancreatectomias, como enucleação, ressecção de processo uncinado e pancreatectomias central, devem ser usadas para evitar insuficiência exócrina e/ou endócrina. A ressecção robótica do pâncreas é segura e viável para pacientes selecionados. Deve ser realizada em centros especializados por cirurgiões com experiência em cirurgia pancreaticá aberta e minimamente invasiva.

Palavras chave: Pâncreas. Cirurgia Minimamente Invasiva. Procedimentos Cirúrgicos Robóticos. Revisão.

INTRODUÇÃO

A cirurgia minimamente invasiva tem sido cada vez mais usada nas últimas três décadas. Entretanto, as cirurgias pancreaticas minimamente invasivas se desenvolveram lentamente devido à complexidade anatomática, localização retroperitoneal do órgão e alta morbidade pós-operatória, decorrente principalmente das secreções digestivas ricas em enzimas que produz.

Nossa experiência com a ressecção pancreaticá laparoscópica começou em 2001, abordando pacientes com neoplasias benignas ou de baixo grau, e evoluiu para procedimentos mais complexos, como pancreatectomias central e pancreatectomias distais. A primeira ressecção pancreaticá robótica no Brasil foi realizada por nossa equipe em 2008. No entanto, o alto custo e a ausência de instrumentos específicos para esse procedimento complexo interromperam o uso em nosso centro por 10 anos. Desde março de 2018, com o desenvolvimento de novos instrumentos, a aquisição de uma nova plataforma robótica (Da Vinci Xi System, Intuitive Surgical, Inc., Sunnycale, CA, USA) e nova política de nosso hospital com acentuada redução de custos para o uso do sistema robótico, nos levou a empregar sistematicamente o robô em todas as cirurgias pancreaticas minimamente invasivas.

O objetivo deste artigo é revisar nossa experiência pessoal com a ressecção pancreaticá robótica a partir da implantação desta nova política.

MÉTODOS

Trata-se de análise retrospectiva de banco de dados alimentado e mantido prospectivamente. Todos os pacientes submetidos à ressecção pancreaticá robótica entre março de 2018 e dezembro de 2019 foram identificados. Os dados descritivos foram coletados. As variáveis pré-operatórias incluíram idade, sexo e indicação para cirurgia. As variáveis intraoperatórias incluíram tempo cirúrgico, sangramento, transfusão de sangue. O diagnóstico, o tamanho do tumor e a avaliação da margem cirúrgica foram obtidos a partir dos relatórios finais de patologia. Fistula pancreaticá foi avaliada e graduada de acordo com as recomendações do International Study Group on Pancreatic Fistula. O trabalho foi aprovado pelo comitê de ética sob No. 3.975.324.

1 - Hospital Nove de Julho, Serviço de Cirurgia - São Paulo - SP - Brasil
Avaliação pré-operatória

Diversas modalidades de imagem foram usadas para avaliar as lesões pancreáticas, incluindo ultrassonografia (US), tomografia computadorizada (TC), ressonância magnética (RM) e ecoendoscopia digestiva alta. O uso de informações clínicas relevantes e os principais aspectos radiológicos foram essenciais para a caracterização e diferenciação das lesões e, portanto, para o planejamento cirúrgico. A avaliação pré-operatória incluiu RM e ecoendoscopias, para a maioria dos pacientes.

Técnica cirúrgica

Posicionamento do paciente e colocação dos trocartes

O paciente é colocado em decúbito dorsal em posição de Trendelenburg reverso em 30 graus. A técnica para ressecção pancreática robótica usa 5 trocartes e a disposição geralmente é a mesma, independentemente do tipo de procedimento (Figura 1). O pneumoperitônio é criado com técnica aberta e pressão é estabelecida em 14mmHg. O cirurgião está sentado no console robótico e o cirurgião assistente fica em campo cirúrgico. O cirurgião assistente realiza retração, sucção, corte, grampeamento e troca de instrumentos robóticos. O sistema robótico é instalado via flanco esquerdo do paciente.

Pancreatoduodenectomia

A operação inicia-se com a divisão do omento ao longo da grande curvatura do estômago, para exposição da face anterior do pâncreas. Vasos gastroepiplôicos são identificados e seccionados. O cólon direito é abaixado e o duodeno é mobilizado até à exposição completa da veia cava inferior. O ligamento de Treitz é mobilizado e o jejuno é mobilizado por trás dos vasos mesentéricos. Um grampeador endoscópico com carga vascular é usado para seccionar o jejuno proximal (Signia™ Stapling System, Medtronic Inc. Minneapolis, MN, USA). O próximo passo é realizar a dissecção dos linfonodos ao longo da artéria hepática e do tronco celiaco. A artéria gastroduodenal é dissecada e reparada. Em seguida, é dividida entre clipes hem-o-lok (Teleflex Inc., Morrisville, NC, USA) após a realização do teste de pinçamento temporário. O duodeno é então seccionado com grampeador, dois centímetros abaixo do piloro e mobilizado para o flanco esquerdo para melhorar a exposição do hilo hepático. O ducto biliar comum é subsequentemente dissecado e dividido. Se houver endoprótese, essa é removida e enviada para cultura. Nos casos em que se suspeita de câncer do ducto biliar distal, é feita biópsia de congelação do ducto biliar proximal para verificar a margem cirúrgica oncológica. A linfadenectomia hilar é completada e dissecção adicional é realizada ao longo da veia porta. Uma fita cardíaca é passada ao redor do colo pancreático através do túnel portal. O pâncreas é seccionado com tesoura harmônica usando-se a lâmina ativa até à identificação do ducto pancreatico. Nos casos em que se suspeita de câncer de pâncreas, é feita biópsia por congelação da margem pancreática para verificar a margem cirúrgica negativa. A cabeça pancreática é então levantada e o processo uncinado é dissecado da veia porta e da artéria mesentérica superior. A veia mesentérica superior é cuidadosamente destacada do processo uncinado e os pequenos ramos venosos são controlados com clipes hem-o-lok ou cauterização bipolar. O processo uncinado do pâncreas é mobilizado até à artéria pancreática inferior ser identificada e dividida entre os clipes hem-o-lok.

A veia porta e a artéria mesentérica superior são completamente esqueletizadas para garantir margem posterior negativa. A pancreaticoduodenectomia é concluída (Figura 2A).
Machado
Ressecção pancreática robótica. Experiência pessoal com 105 casos

Figura 2. Ressecções pancreáticas robóticas após retirada da peça cirúrgica.
A. Visão intraoperatoria após pancreateoduodenectomia com linfadenectomia e exposição adequada da artéria mesentérica superior (SMA).
B. Visão intraoperatoria após pancreatectomia total. As setas mostram a ligadura da artéria e veia esplênica.
C. Visão geral após pancreatoduodenectomia distal com preservação dos vasos espínicos e baço.
D. Visão geral após pancreatectomia distal com esplenectomia para doença maligna. As setas mostram a ligadura da artéria e veia esplênica.

Figura 3. Anastomose pancreaticojejunal ducto-mucosa robótica.
A. Plano posterior evertido é feito incluindo o parênquima posterior pancreático e a seromuscular jejunal usando pontos separados de prolene 4-0.
B. A anastomose ducto-mucosa é realizada com sutura PDS 5-0 sem dreno tutor.
C. Vista intraoperatoria após a conclusão da anastomose ducto-mucosa.
D. Anastomose é completada com pontos separados anteriores com prolene 4-0.

Figura 4. Hepaticojejunostomia e duodenojejunostomia robótica.
A. Hepaticojejunostomia término-lateral é realizada usando sutura absorvível contínua.
B. Visão intraoperatoria após a conclusão da hepaticojejunostomia.
C. Vista intraoperatoria da duodenojejunostomia. Plano total é mostrado.
D. Visão intraoperatoria após a realização da duodenojejunostomia.

Pancreatectomia total

O próximo passo é realizar a reconstrução do trato alimentar com pancreatojejunosnomostia seguida de hepaticojejunosnomostia e duodenojejunosnomostia, respectivamente. A pancreatecojejunosnomostia é realizada pela técnica ducto-mucosa (Figura 3). Um plano posterior é feito incluindo-se parênquima posterior pancreático e a seromuscular jejunal usando-se pontos separados com prolene 4-0 (Figura 3A). Anastomose ducto-mucosa é realizada com PDS 5-0 sem dreno tutor (Figuras 3B-C). A anastomose é completada com pontos separados anteriores com prolene 4-0 (Figura 3D). Uma hepaticojejunosnomostia término-lateral é realizada usando-se sutura contínua PDS 4-0 ou 5-0, dependendo da espessura e dilatação do ducto biliar (Figuras 4A-B). Uma duodenojejunosnomostia ante-cólica é então realizada em dois planos. O plano posterior é confeccionado com sutura absorvível 3-0. O estômago e o jejuno são abertos. O plano total é feito com sutura contínua com fio absorvível 3-0 (Figura 4C). O plano anterior é realizado com pontos separados de prolene 4-0 (Figura 4D). A peça cirúrgica é colocada dentro de saco plástico e retirada pelo portal infra umbilical, após pequeno aumento da incisão. Dois drenos são então colocados perto da anastomose pancreática e biliar, respectivamente.

Semelhante à duodenopancreatectomia descrita acima. A principal diferença é que o pâncreas não é dividido e a cabeça e o processo uncinado são desconectados da artéria mesentérica superior e da veia porta usando-
se técnica de acesso posterior. Uma vez realizada essa manobra, a cabeça e o processo uncinado do pâncreas são mobilizados para a esquerda e a dissecção do pâncreas distal é realizada da mesma maneira que a pancreatectomia distal, descrita abaixo (Figura 2B). Esta operação pode ser realizada com preservação do baço ou com esplenectomia, dependendo do diagnóstico. A reconstrução do trato alimentar inclui apenas a hepatico-jejunostomia e duodenojejunostomia, como já descrito (Figura 4).

Pancreatectomia distal sem esplenectomia

A operação começa com a divisão do omento ao longo da grande curvatura do estômago, para exposição da face anterior do pâncreas. A ultrassonografia intraoperatorária é usada para localizar o tumor e garantir o melhor local para a divisão do pâncreas, permitindo margens negativas, preservando o parênquima pancreático. A artéria esplênica é dissecada ao longo da borda superior do pâncreas e reparada. Um túnel é criado posteriormente ao pâncreas, em frente à veia esplênica. O pâncreas é então circundado por fita cardíaca. O pâncreas é dividido com grampeador usando-se fita bioabsorvível de reforço da linha de grampos (Seamguard®, W. L. Gore & Associates, Inc., Newark, DE, USA). A artéria esplênica é protegida durante o disparo para evitar a secção inadvertida. O pâncreas distal é levantado e pequenos ramos da artéria e veia esplênica para o pâncreas são controlados com bisturi bipolar. Ramos maiores são controlados com clips hem-o-lok. Uma vez que o pâncreas é liberado (Figura 2C), é colocado dentro de saco plástico e retirado pelo portal infra umbilical, com aumento da incisão. Dois drenos são colocados, próximos ao coto pancreático e na área subfrênica esquerda, como relatado anteriormente⁶.

Pancreatectomia distal com esplenectomia

A operação começa com secção do omento ao longo da curvatura maior do estômago, para exposição da face anterior do pâncreas. A ultrassonografia intraoperatorária é usada para localizar o tumor e garantir o melhor local para a divisão do pâncreas, permitindo margens negativas. O próximo passo é realizar a dissecção dos linfonodos ao longo da artéria hepática e do tronco celiaco. A artéria esplênica é identificada e secionada entre clips hem-o-lok. Um túnel geralmente é criado atrás do colo do pâncreas. O pâncreas é circundado por fita cardíaca. O pâncreas é secionado com grameador usando-se reforço bioabsorvível da linha de grampos. A veia esplênica é dissecada e secionada perto da junção com a veia mesentérica superior. Geralmente, a veia esplênica pode ser ligada com segurança com clips hem-o-lok, mas quando calibrosa, deve ser secionada com grameador usando-se carga vascular. O pâncreas distal é levantado e o plano de ressecção inclui o espaço retroperitoneal. As veias gástricas curtas são divididas e o pâncreas distal é removido em bloco com o baço (Figura 2D). A peça cirúrgica é colocada dentro de saco plástico e retirada pelo portal infra umbilical, com aumento da incisão. Dois drenos são colocados, próximos ao coto pancreático e na área subfrênica esquerda, como relatado anteriormente⁶.

Pancreatectomia central com pancreatojejunostomia em Y de Roux

A operação inicia-se com a abertura da retrocavidade e exposição do pâncreas. Isso pode ser conseguido com combinação de bisturi harmônico, pinça bipolar e cautério. A ultrassonografia é realizada para localizar o tumor e definir os planos corretos para a transecção do pâncreas com margens adequadas. A borda inferior do pâncreas é cuidadosamente dissecada até que a veia mesentérica superior seja identificada. A borda superior do pâncreas é dissecada. Os linfonodos da artéria hepática são removidos para ajudar na exposição da artéria hepática. A veia porta é identificada e um túnel retropancreático é criado com dissecção romba. Uma fita cardíaca é inserida ao redor do colo do pâncreas. O pâncreas é secionado com grameador usando-se reforço bioabsorvível da linha de grampeamento. O pâncreas distal é cuidadosamente dissecado. Os pequenos ramos venosos e arteriais são divididos e a dissecção progride até que a margem distal da ressecção pancreática seja alcançada. Uma fita cardíaca é inserida ao redor do pâncreas, neste momento. A ultrassonografia é realizada novamente para certificação da margem negativa. O pâncreas é secionado com bisturi harmônico para identificação do ducto pancreático principal. A peça...
Ressecção pancreática robótica. Experiência pessoal com 105 casos

Rev Col Bras Cir 47:e20202501

Machado

Ressecção do processo uncinado do pâncreas

A operação começa com a identificação do cólon direito e do duodeno. O cólon direito é rebatido para expor o duodeno, que é então totalmente mobilizado usando-se tração para cima e secção dos ligamentos. A manobra de Kocher é realizada com cuidado e o processo uncinado do pâncreas é identificado. A borda inferior do processo uncinado é a artéria pancreatoduodenal inferior. Na margem esquerda, a borda é a veia mesentérica superior, que recebe alguns tributários venosos do processo uncinado. A margem direita é o duodeno e a arcada arterial, e superiormente, o limite é o ducto pancreatico principal. A ressecção do processo uncinado começa com a divisão de pequenos ramos arteriais da artéria pancreatoduodenal inferior, seguida pelo controle dos ramos venosos para a veia mesentérica superior. Esses pequenos vasos são controlados por pinças bipolares ou clips hem-o-lok. A disseção progride ao longo da margem direita próxima à arcada arterial do duodeno. A localização intraoperatorária do ducto pancreatico pode ser realizada por ultrassonografia intraoperatorária ou fluorescência usando-se verde de indocianina. A ressecção é realizada por combinação de tesouras harmônicas e pinças bipolares. O pâncreas é secionado cerca de 5mm abaixo da margem superior para segurança. Após a ressecção completa do processo uncinado, a hemostasia temporária é realizada com compressão. A peça cirúrgica é retirada pelo portal umbilical dentro de um saco plástico. A área cruenta do pâncreas é drenada.

RESULTADOS

No período do estudo, 105 pacientes foram submetidos à pancréatectomia robótica. A idade mediana foi de 60,5 anos (26 a 85 anos). Cinquenta e cinco pacientes eram do sexo feminino e 50 do masculino. A maioria dos pacientes foi submetida a pancreatoduodenectomias robóticas, 34 pancreatectomias distais com ou sem preservação do baço, 10 enucleações pancreáticas, 5 pancreatectomias totais com preservação do piloro. A tabela 1 tem o registro da distribuição dos pacientes de acordo com o tipo de ressecção robótica. Em todas as pancreatoduodenectomias, exceto duas, previamente submetidas a cirurgia bariátrica, foi utilizada a técnica de

cirúrgica é removida. O próximo passo é montar o Y de Roux. O jejuno é dividido com grampeador, a 30 cm do ângulo de Treitz. A alça em Y é construída com jejuno-jejunostomia látero-lateral, usando-se grampeador. A abertura é fechada com sutura em dois planos e a alça jejunal é trazida através de abertura no mesentério. A reconstrução é realizada com pancreatojejunostomia ducto-mucosa, conforme descrito anteriormente (Figura 3). A brecha mesentérica é fechada com pontos simples e a cavidade é drenada.

Enucleação

A operação inicia-se com a abertura da retrocavidade e a exposição do pâncreas. A ultrassonografia é realizada para localização do tumor e avaliação da distância deste até o ducto pancreatico principal que, se muito próximo, pode dificultar a operação (Figuras 5A-B). A enucleação é geralmente realizada com o instrumento robótico de Maryland usando-se baixa energia bipolar (Figuras 5C-D). A hemostasia é obtida com a compressão, em vez de sutura, para evitar lesões no ducto pancreatico principal. Uma vez completada, a peça cirúrgica é retirada e a área cruenta pancreatica é drenada.

Figura 5. Enucleação robótica de uma neoplasia pancreatica de baixo grau.
A. Ultrassom intraoperatorário é realizado para localizar o tumor e avaliar sua distância do ducto pancreatico principal e das estruturas vasculares adjacentes.
B. Vista intraoperatorária de um tumor neuroendocrin pancreatico passivel de enucleação.
C. Visão intraoperatorária de uma enucleação. A enucleação é geralmente realizada com baixa energia bipolar e hemostasia obtida com compressão.
D. Visão geral após enucleação robótica de um TNE pancreatico.
Machado
Ressecção pancreática robótica. Experiência pessoal com 105 casos

preservação do piloro. Três pacientes foram submetidos à ressecção laparoscópica do processo uncinado e duas pancreatectomias centrais com pancreatojejunostomostomia em Y de Roux. Em três pacientes, com tumores malignos com invasão lateral da veia porta, a ressecção parcial e a reconstrução da veia porta foram realizadas por abordagem robótica.

Tabela 1. Distribuição dos pacientes de acordo com o tipo de ressecção pancreática robótica

Tipo	n.	%
Pancreatoduodenectomia	51	48,6
PD sem esplenectomia	22	20,9
Pancreatectomia distal (PD)	12	11,4
Enucleação	10	9,5
Pancreatectomia total	5	4,8
Ressecção processo uncinado	3	2,9
Pancreatectomia central	2	1,9
Total	105	100,0

A maioria dos pacientes foi submetida à ressecção robótica do pâncreas por doença maligna. Quarenta e um pacientes (39%) foram operados por adenocarcinoma periampular, 29 por tumores neuroendócrinos, 24 por neoplasia mucinosa papilarifera intraductal (IPMN), 5 cistadenomas pancreáticos. Entre os operados por doença maligna, dois pacientes apresentaram margens microscópicas positivas (R1). A tabela 2 representa a distribuição dos pacientes de acordo com a indicação para ressecção pancreática robótica.

Tabela 2. Distribuição dos pacientes de acordo com a indicação da ressecção pancreática robótica

Patologia	n.	%
Adenocarcinoma	41	39,0
TNE	29	27,6
IPMN	24	22,9
Cistadenoma	5	4,8
Pancreatite crônica	3	2,9
Tumor de Frantz	2	1,9
Síndrome IgG4	1	0,9
Total	105	100,0

Três pacientes operados devido ao câncer de pâncreas (2,8%) foram convertidos, um por lesão involuntária da veia porta durante a criação do túnel portal e dois por dificuldades técnicas (invasão da veia porta). A primeira conversão foi preventiva e a pequena lesão da veia porta foi reparada, e o pós-operatório transcorreu sem intercorrências. Na segunda conversão, a extensa invasão da veia porta não foi vista na imagem pré-operatória e a veia porta foi reconstruída com sucesso. No entanto, o terceiro paciente, que havia recebido quimio e radioterapia neoadjuvante, a parede da veia porta era extremamente fina e aderida ao tumor. Após a conversão, a reconstrução da veia porta foi feita, mas a anastomose venosa ocluiu no pós-operatório, levando a insuficiência hepática e morte (mortalidade de 0,9%). A morbidade foi de 23,8% relacionada principalmente à fístula pancreática pós-operatória. Alguns pacientes apresentaram mais de uma complicação. Quatro pacientes apresentaram retardo no esvaziamento gástrico, resultando em maior tempo de hospitalização. Dois pacientes apresentaram sangramento da área pancreática. Um deles foi sangramento maciço que levou a transfusão de sangue e arteriografia. Esse exame foi negativo e a causa do sangramento foi posteriormente identificada como relacionada à lesão da artéria epigástrica no local do trocarte. O sangramento do outro paciente foi mínimo, e foi tratado com observação e interrupção da dieta com recuperação total. Vinte e quatro pacientes apresentaram fistula pancreática tratada de forma conservadora com remoção tardia do dreno pancreático. Nenhum paciente necessitou de drenagem percutânea, reintervenção ou readmissão hospitalar. Um paciente necessitou de reoperação tardia para pseudocisto pancreático quatro meses após a operação inicial. Esta reoperação foi realizada com sucesso por abordagem robótica.

DISCUSSÃO

A cirurgia pancreática robótica tem experimentado desenvolvimento significativo em todo o mundo nos últimos anos. A cirurgia pancreática robótica mostrou-se segura para lesões benignas e para pacientes selecionados com malignidades. A pancreatico-duodenectomia robótica está associada a menos complicações da ferida, estadias hospitalares mais curtas e menos complicações, incluindo perda sanguínea intraoperatorária mínima. Os resultados oncológicos
são semelhantes aos da cirurgia equivalente aberta. Os mesmos resultados também foram observados na pancreatectomia robótica distal com o benefício adicional de aumentar o índice de preservação do baço.

Em 2008, realizamos a primeira pancreatectomia robótica na América Latina, mas na época não encontramos nenhuma vantagem em relação à pancreatectomia laparoscópica padrão. Acreditávamos que esta técnica deveria ser reservada para operações mais complexas. No entanto, havia falta de instrumentos robóticos especializados e o custo era proibitivo para o uso disseminado em nosso país. Desde março de 2018, o estabelecimento de nova política em nosso hospital, com acentuada redução de custos para o uso do sistema robótico, nos levou a empregar sistematicamente o sistema robótico em todas as cirurgias pancreáticas minimamente invasivas. Durante esse período, 105 pacientes foram submetidos à ressecção pancreática robótica. Nossa experiência com ressecções pancreáticas minimamente invasivas começou em 2001 com pancreatectomia distal laparoscópica e, como ocorreu com outros autores, a melhoria de nossa experiência em cirurgia laparoscópica avançada nos permitiu realizar todos os tipos de operações pancreáticas robóticas desde o primeiro dia. Essa experiência anterior na ressecção pancreática aberta e laparoscópica resultou em curva de aprendizado menos acentuada do que a relatada na literatura. Como exemplo, após apenas 20 casos de panreatoduodenectomias robóticas, o tempo médio para reconstrução do trato alimentar diminuiu e se tornou estável. A maioria dos procedimentos robóticos (em cerca de metade dos pacientes), em nossa série, foram panreatoduodenectomias. Em cinco pacientes, uma pancreatectomia total foi necessária, devido a adenocarcinoma extenso em um paciente, IPMN tipo 1 em 3 e NET múltiplo em outro. As pancreatectomias distais foram realizadas em 34 pacientes. No entanto, diferente do nosso trabalho anterior sobre a experiência das pancreatectomias laparoscópicas, nosso índice de preservação do baço durante as pancreatectomias distais aumentou significativamente após a introdução da técnica robótica e, também, nossa consciência da importância da preservação esplênica. A enucleação de neoplasias benignas ou de baixo grau foi realizada em cerca de 10% dos nossos casos.

Em casos especiais, quando o tumor está no colo do pâncreas, a operação ideal é a pancreatectomia central. Considerando resultados funcionais em longo prazo, a pancreatectomia central é técnica eficaz para preservar a função pancreática. Em estudo comparativo, as incidências de insuficiência endócrina e exócrina após pancreatectomia central variaram entre 4 e 5%, respectivamente, em comparação com 38 e 15,6% nos pacientes submetidos à pancreatectomia distal alargada. A ressecção laparoscópica do colo do pâncreas ou de qualquer segmento no meio do pâncreas não é difícil. No entanto, a reconstrução do ducto pancreático principal pode ser difícil e perigosa laparoscopicamente. O uso de sistema robótico é essencial para aumentar o número dessa importante operação que preserva o parênquima pancreático. Recentemente, publicamos vídeo desse complexo procedimento para ajudar outros cirurgiões a aprender e usá-lo com mais frequência. Outra técnica importante para poupar o pâncreas é a ressecção do processo uncinado do pâncreas. É procedimento altamente anatômico e árduo, e poucos autores descreveram a ressecção minimamente invasiva do processo uncinado.

A ressecção do processo uncinado do pâncreas e pancreatectomia central com pancreatojejunostomia em Roux foi realizada em três e dois pacientes, respectivamente. A seleção de pacientes para ressecção pancreática minimamente invasiva inclui considerações de comorbidades, tamanho e localização do tumor e diagnóstico inicial. À medida que a experiência com cirurgia robótica aumentou, os critérios de seleção foram ampliados, com a inclusão de pacientes com mais comorbidades. Apesar disso, resultados perioperatorios semelhantes foram alcançados. A maioria dos pacientes foi operada devido a adenocarcinoma periampular. A contraindicação para a abordagem robótica estava relacionada à invasão da veia mesentérica superior ou porta e/ou invasão das artérias mesentérica superior ou hepática. Esses casos eram geralmente tratados com quimioterapia neoadjuvante. Nossa única morte nesta série foi em paciente com invasão da veia porta e resposta objetiva após tratamento neoadjuvante. Ele foi convertido em procedimento aberto após dificuldade técnica e a veia porta foi ressecada e reconstruída, mas uma oclusão pós-operatória levou à insuficiência hepática. Outros dois pacientes foram convertidos, mas tiveram recuperação sem intercorrências.
A pancreatoduodenectomia laparoscópica foi descrita pela primeira vez em 199419. Resultados iniciais demonstraram a segurança e a viabilidade desse procedimento20. Embora cirurgiões selecionados, incluindo os do nosso grupo21, tenham mostrado benefício para essa abordagem, a complexidade técnica combinada com a amplitude de movimento limitada e a ergonomia fraca permitida pela laparoscopia resultaram em curva de aprendizado longa e difícil que restringiu a disseminação mais ampla. Com a introdução da plataforma robótica, o interesse dessa nova técnica minimamente invasiva para pancreatoduodenectomia foi renovado. Até hoje, pelo menos dois centros publicaram séries com mais de 450 procedimentos cada22,23. Outros centros estão descrevendo rápido aumento no número de pancreatoduodenectomias robóticas realizadas, e nós também. As fístulas pancreáticas da anastomose pancreática são o fator mais comum responsável pela morbidade após pancreatoduodenectomias aberta e minimamente invasiva. No entanto, a precisão conferida pela plataforma robótica na confecção da pancreatojejunostomia reduziu a gravidade das fístulas pancreáticas pós-operatórias em nossos pacientes. Não usamos mais stents de rotina durante a anastomose ducto-mucosa e, na maioria dos casos, é possível a sutura contínua mesmo em ductos pancreáticos extremamente pequenos. Nenhum paciente, nesta série, apresentou fístula pancreática pós-operatória do tipo B ou C. Aquelas com alto teor de amilase no fluido de drenagem foram tratadas conservadoramente com a remoção do dreno entre três e quatro semanas. O retardo de esvaziamento gástrico esteve presente em quatro pacientes que demandaram maior tempo de hospitalização. Essa complicação geralmente está associada ao diabetes e à fístula pancreática. O sangramento pós-operatório é raro, mas perigoso. É necessária extrema cautela e, às vezes, a arteriografia pode ser útil para localizar o local do sangramento e tratar a fonte, geralmente a artéria gastroduodenal. Esses pacientes devem ser mantidos em jejum, uma vez que qualquer ativação pancreática pode resultar em reativação do sangramento.

CONCLUSÃO

A plataforma robótica é útil para a reconstrução do trato alimentar após pancreatoduodenectomia ou após pancreatectomia central. Pode aumentar a preservação do baço durante pancreatectomias distais. Técnicas que preservam parênquima pancreático, como enucleação, ressecção de processo uncinado e pancreatectomia central, devem ser usadas para evitar insuficiência exócrina e/ou endócrina. A ressecção robótica do pâncreas é segura e viável para pacientes selecionados. Estes procedimentos devem ser realizados em centros especializados por cirurgiões com experiência em cirurgia pancreática aberta e minimamente invasiva.

DISCLOSURES

Nenhum dos autores tem conflitos de interesse ou financeiros a declarar.

ABSTRACT

Objective: the first robotic pancreatic resection in Brazil was performed by our team in 2008. Since March 2018, a new policy prompted us to systematically employ the robot in all minimally invasive pancreatic surgery. The aim of this paper is to review our experience with robotic pancreatic resection. Methods: all patients who underwent robotic pancreatic resection from March 2018 through December 2019 were identified. Descriptive data were collected. Preoperative variables included age, sex, and indication for surgery. Intraoperative variables included operative time, bleeding, blood transfusion. Results: 105 patients underwent robotic pancreatectomy. Median age was 60.5 years old. Fifty-five patients were female. 51 patients underwent robotic pancreatectomies, 34 distal pancreatectomy. Mortality was 23.8%, mainly related to postoperative pancreatic fistula and one death occurred (mortality of 0.9%). Three patients (2.8%) were converted to open surgery. Four patients had delayed gastric emptying and two presented bleeding. Twenty-four patients had pancreatic fistula that was treated conservatively with late removal of the pancreatic drain. No patient required percutaneous drainage, reintervention or hospital readmission. Conclusions: the robotic platform is useful for the reconstruction of the alimentary tract after pancreatoduodenectomy or after central pancreatectomy. It may increase the preservation of the spleen during distal pancreatectomies. Pancreas sparing techniques, such as enucleation, resection of uncinated process and central pancreatectomy, should be used to avoid exocrine and/ or endocrine insufficiency. Robotic resection of the pancreas is safe and feasible for selected patients. It should be performed in specialized centers by surgeons with experience in both open and minimally invasive pancreatic surgery.

Keywords: Pancreas. Minimally Invasive Surgical Procedures. Robotic Surgical Procedures. Review.
REFERÊNCIAS

1. Asbun HJ, Moekotte AL, Vissers FL, Kunzler F, Cipriani F, Alseiidd A, D’Angelica MI, Balduzzi A, Bassi C, Björnsson B, Boggi U, Callery MP, Del Chiaro M, Coimbra FJ, Conrad C, Cook A, Coppola A, Dervenis C, Dokmak S, Edil BH, Edwin B, Giulianotti PC, Hansen HS, Hansen PD, van der Heijde N, van Hilst J, Hester CA, Hogg ME, Jarufe N, Jeyarajah DR, Keck T, Kim SC, Khatkov IE, Kokudo N, Kooby DA, Korrel M, de Leon FJ, Lluis N, Lof S, Machado MA, Demartines N, Martinie JB, Merchant NB, Molenaar IQ, Moravek C, Mou YP, Nakamura M, Nealon WH, Palanivelu C, Pessaux P, Pitt HA, Polanco PM, Primrose JN, Rawashdeh A, Sanford DE, Senthilnathan P, Shrikhande SV, Stauffer JA, Takaori K, Talamonti MS, Tang CN, Vollmer CM, Wakabayashi G, Walsh RM, Wang SE, Zinner MJ, Wolfgang CL, Zureikat AH, Zwart MJ, Conlon KC, Kendrick ML, Zeh HJ, Hilal MA, Besselink MG; International Study Group on Minimally Invasive Pancreas Surgery (I-MIPS). The Miami International Evidence-based Guidelines on Minimally Invasive Pancreas Resection. Ann Surg. 2020;271(1):1-14.

2. Fernández-Cruz L, Cosa R, Blanco L, Levi S, López-Boado MA, Navarro S. Curative laparoscopic resection for pancreatic neoplasms: a critical analysis from a single institution. J Gastrointest Surg. 2007;11(12):1607-21.

3. Machado MA, Surjan RC, Goldman SM, Ardengh JC, Makdissi FF. Laparoscopic pancreatic resection. From enucleation to pancreateoduodenectomy. 11-year experience. Arq Gastroenterol. 2013;50(3):214-8.

4. Machado MA, Makdissi FF, Surjan RC, Abdalla RZ. Robotic resection of intraductal neoplasms of the pancreas. J Laparoendosc Adv Surg Tech A. 2009;19(6):771-5.

5. Machado MCC, Machado MAC. Drainage after distal pancreatectomy: Still an unsolved problem. Surg Oncol. 2019;30:76-80.

6. Machado MAC, Surjan R, Basseres T, Makdissi F. Robotic resection of the uncinate process of the pancreas. J Robot Surg. 2019;13(5):699-702.

7. Peng L, Lin S, Li Y, Xiao W. Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg Endosc. 2017;31(8):3085-97.

8. Girgis MD, Zenati MS, King JC, Hamad A, Zureikat AH, Zeh HJ, et al. Oncologic outcomes after robotic pancreatic resections are not inferior to open surgery. Ann Surg. 2019 Oct 28. doi: 10.1097/SLA.0000000000003615.

9. Shi Y, Wang W, Qiu W, Zhao S, Wang J, Weng Y, Huo Z, Jin J, Wang Y, Deng X, Shen B, Peng C. Learning Curve From 450 Cases of Robot-Assisted Pancreatectoduodenectomy in a High-Volume Pancreatic Center: Optimization of Operative Procedure and a Retrospective Study. Ann Surg. 2019 Oct 22. doi: 10.1097/SLA.0000000000003664.

10. Zureikat AH, Beane JD, Zenati MS, Al Abbas AI, Boone BA, Moser AJ, et al. 500 Minimally Invasive Robotic Pancreatoduodenectomies: One Decade of Optimizing Performance. Ann Surg 2019 Dec 5. doi: 10.1097/SLA.0000000000003550.

11. Guerrini GP, Lauretta A, Belluco C, Olivieri M, Forlin M, Basso S, et al. Robotic versus laparoscopic distal pancreatectomy: an up-to-date meta-analysis. BMC Surg. 2017;17(1):105.

12. Hong S, Song KB, Madkhali AA, Hwang K, Yoo D, Lee JW, et al. Robotic versus laparoscopic distal pancreatectomy for left-sided pancreatic tumors: a single surgeon’s experience of 228 consecutive cases. Surg Endosc. 2019 Aug 28. doi: 10.1007/s00464-019-07047-8.

13. Kristinsson SY, Gridley G, Hoover RN, Check D, Landgren O. Long-term risks after splenectomy among 8,149 cancer-free American veterans: a cohort study with up to 27 years follow-up. Haematologica. 2014;99(2):392-8.

14. Crippa S, Bassi C, Warshaw AL, Falconi M, Partelli S, Thayer SP, et al. Middle pancreatectomy: indications, short- and long-term operative outcomes. Ann Surg. 2007;246(1):69-76.

15. Machado MA, Surjan RC, Epstein MG, Makdissi FF. Laparoscopic central pancreatectomy: a review of 51 cases. Surg Laparosc Endosc Percutan Tech. 2013;23(6):486-90.

16. Machado MA, Surjan RC, Makdissi FF. Robotic central pancreatectomy with pancreato-jejunal Anastomosis (with video). J Visc Surg. 2019;156(4):360-2.
17. Rotellar F, Pardo F, Benito A, Martí-Cruchaga P, Zozaya G, Cienfuegos JA. Laparoscopic resection of the uncinate process of the pancreas: the inframesocolic approach and hanging maneuver of the mesenteric root. Surg Endosc. 2011;25(10):3426-7.

18. Machado MA, Makdissi FF, Surjan RC, Machado MC. Laparoscopic resection of uncinate process of the pancreas. Surg Endosc. 2009;23(6):1391-2.

19. Gagner M, Pomp A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc. 1994;8(5):408-10.

20. Palanivelu C, Rajan PS, Rangarajan M, Vaithiswaran V, Senthilnathan P, Parthasarathi R, et al. Evolution in techniques of laparoscopic pancreaticoduodenectomy: a decade long experience from a tertiary center. J Hepatobiliary Pancreat Surg. 2009;16(6):731-40.

21. Machado MA, Surjan RC, Basseres T, Silva IB, Makdissi FF. Laparoscopic pancreatoduodenectomy in 50 consecutive patients with no mortality: a Single-Center Experience. J Laparoendosc Adv Surg Tech A. 2016;26(8):630-4.

Endereço para correspondência:
Marcel Autran Cesar Machado
E-mail: dr@drmarcel.com.br