The cohomology of lattices in $SL(2, \mathbb{C})$

Tobias Finis ∗
Mathematisches Institut
Heinrich-Heine-Universität
D-40225 Düsseldorf

Fritz Grunewald †
Mathematisches Institut
Heinrich-Heine-Universität
D-40225 Düsseldorf

Paulo Tirao ‡
Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
Ciudad Universitaria, Córdoba, Argentina

August 8, 2008

Abstract

This paper contains both theoretical results and experimental data on the behavior of the dimensions of the cohomology spaces $H^1(\Gamma, E_n)$, where Γ is a lattice in $SL(2, \mathbb{C})$ and $E_n = \text{Sym}^n \otimes \text{Sym}^n$, $n \in \mathbb{N} \cup \{0\}$, is one of the standard self-dual modules. In the case $\Gamma = SL(2, \mathcal{O})$ for the ring of integers \mathcal{O} in an imaginary quadratic number field, we make the theory of lifting explicit and obtain lower bounds linear in n. We have accumulated a large amount of experimental data in this case, as well as for some geometrically constructed and mostly non-arithmetic groups. The computations for $SL(2, \mathcal{O})$ lead us to discover two instances with non-lifted classes in the cohomology. We also derive an upper bound of size $O(n^2 / \log n)$ for any fixed lattice Γ in the general case. We discuss a number of new questions and conjectures suggested by our results and our experimental data.

2000 Mathematics Subject Classification: Primary 11F75,
Secondary 11F72, 11Y99, 32N10, 30F40

Contents

1 Introduction 2
 1.1 Theoretical results .. 5
 1.2 Experimental results and questions 9

2 The Bianchi groups 11
 2.1 The Bianchi groups and their congruence subgroups 11
 2.2 Presentations .. 12

∗e-mail: finis@math.uni-duesseldorf.de
†e-mail: fritz@math.uni-duesseldorf.de
‡e-mail: ptirao@famaf.unc.edu.ar
1 Introduction

For a semisimple Lie group G and a lattice Γ in G (i.e. a discrete subgroup of finite covolume), it is natural to consider the cohomology groups $H^*(\Gamma, E)$ of Γ with coefficients in finite-dimensional representation spaces E of G. If K is a maximal compact subgroup of G and $X = G/K$ the associated Riemannian symmetric space, these cohomology groups are canonically isomorphic to the cohomology groups of the quotient orbifold $\Gamma \backslash X$ with coefficients in the local system associated to E. By the main result of [22], at least for arithmetic Γ the cohomology of Γ can be described by automorphic forms. For the contribution of the cuspidal spectrum one has (for general Γ) a generalized Matsushima formula describing the so-called cuspidal cohomology in terms of the multiplicities of cohomological unitary representations of G in $L^2_{\text{cusp}}(\Gamma \backslash G)$, a well-known result of Borel [5] predating [22]. The closer study of the non-cuspidal part is the object of the theory of
Eisenstein cohomology initiated by G. Harder (cf. [loc. cit., [32]], and there are fairly complete results in many cases.

While there is therefore a complete correspondence between cohomology and representation theory for the cuspidal part, generalizing the classical Eichler-Shimura homomorphism for the case $G = \text{SL}(2, \mathbb{R})$ to all G, the behavior of the dimensions of the cohomology spaces is understood only under the hypothesis that G has a compact Cartan subgroup. In this case, one can compute these dimensions using Euler-Poincaré characteristics [57] and the trace formula [1]. If the highest weight of the representation E is regular, Arthur obtained in [loc. cit.] an explicit formula for the dimension of the cohomology, which in this case is accounted for by the packet of discrete series representations with the same infinitesimal character as the dual of E. In particular, the leading term in his formula is a constant multiple of the dimension of E. The question of computing the cohomology for non-regular highest weights and of separating the individual representations in the packet is connected to the problem of stabilization and to Arthur’s conjectures. In the easiest case, namely for lattices Γ in $G = \text{SL}(2, \mathbb{R})$, it is well-known that the dimension of the cohomology with coefficients in the symmetric power representations of G can be explicitly computed in terms of the basic invariants of Γ (i.e. the covolume and the orders of the elliptic elements), and in fact such a dimension formula follows without difficulties from the description of the group-theoretic structure of Γ or from the Riemann-Roch theorem (see formula (1.9) below).

The situation is different if G has no compact Cartan subgroup and there are therefore no discrete series representations. No explicit dimension formulas are known in this case. In this paper, we consider the simplest case of this type, namely lattices in the Lie group $G = \text{SL}(2, \mathbb{C})$.

Although the structure of this Lie group is very simple, the study of the cohomology of lattices in G presents a number of deep problems. The irreducible finite-dimensional representations of G are given by the tensor products

\[E_{n,m} = \text{Sym}^n \otimes \text{Sym}^m \quad (n, m \in \mathbb{Z}, n, m \geq 0). \]

Here Sym^n stands for the n-th symmetric power of the standard two-dimensional representation of G and Sym^m for its complex conjugate. For a lattice Γ in $G = \text{SL}(2, \mathbb{C})$ we consider therefore the finite-dimensional cohomology spaces

\[H^i(\Gamma, E_{n,m}). \]

The main problem studied in this paper is the behavior of the dimension of these spaces as a function of n and m for a fixed Γ. Another problem which we consider is the behavior of the dimensions when Γ ranges over the subgroups of finite index in a lattice Γ_0. Since the virtual cohomological dimension of Γ is three in the cocompact case, and two otherwise, the only dimensions with interesting cohomology are $i = 1$ and $i = 2$.

We now define the subspaces of cuspidal cohomology classes and give their description in terms of automorphic forms. As a consequence, it will turn out that we only have to consider the case $n = m$ and may in addition restrict to the first cohomology. Consider the set of all proper parabolic subgroups $P = MU$ of $\text{SL}(2, \mathbb{C})$ with the property that $\Gamma \cap U$ is a lattice in U. Here U is the unipotent radical of P and M is a Levi subgroup of P. Let \mathcal{C} be a system of representatives for the finitely many classes of such parabolics under Γ-conjugation and consider the direct sum of restriction maps

\[H^i(\Gamma, E_{n,m}) \longrightarrow U^i(\Gamma, E_{n,m}) = \bigoplus_{P \in \mathcal{C}} H^i(\Gamma \cap P, E_{n,m}). \]
The kernel of this map is called the cuspidal cohomology of Γ and denoted by

$$H^i_{\text{cusp}}(\Gamma, E_{n,m}) \subseteq H^i(\Gamma, E_{n,m}).$$

(1.3)

If Γ is cocompact, the set C is empty and we have $H^i_{\text{cusp}}(\Gamma, E_{n,m}) = H^i(\Gamma, E_{n,m})$.

We can also describe this construction geometrically. The group of orientation preserving isometries of three dimensional hyperbolic space $X = \mathbb{H}^3$ can be identified with $\text{PSL}(2, \mathbb{C}) = \text{SL}(2, \mathbb{C})/\{\pm 1\}$, and every lattice Γ of $\text{SL}(2, \mathbb{C})$ gives rise to a quotient orbifold $\Gamma \backslash X$. If this orbifold is not compact, it can be compactified by adding a boundary $\partial(\Gamma \backslash \mathbb{H}^3)$, which consists of finitely many disjoint two-dimensional tori or spheres. The inclusion

$$\Gamma \backslash \mathbb{H}^3 \hookrightarrow \widehat{\Gamma} \backslash \mathbb{H}^3 : = \Gamma \backslash \mathbb{H}^3 \cup \partial(\Gamma \backslash \mathbb{H}^3)$$

is a homotopy equivalence. The cohomology of Γ with coefficients in $E_{n,m}$ can be computed as the cohomology of a sheaf $\widehat{E}_{n,m}$ on the compactified orbifold $\widehat{\Gamma} \backslash \mathbb{H}^3$. The restriction map

$$H^i(\Gamma, E_{n,m}) \cong H^i(\widehat{\Gamma} \backslash \mathbb{H}^3, \widehat{E}_{n,m}) \to H^i(\partial(\Gamma \backslash \mathbb{H}^3), \widehat{E}_{n,m})$$

(1.4)

coincides with the restriction map (1.2) (see [30] for a more detailed account). The spaces H^1_{cusp} and H^2_{cusp} are then dual to each other under Poincaré duality (cf. [4, Chapter I, §7], [30]) and we will therefore restrict to the case $i = 1$ in the following. Furthermore, by a result of Serre [56, Th. 8], for $i = 1$ the dimension of the image of the map in (1.2) is one half of the dimension of the target space $U^1(\Gamma, E_{n,m})$. It is not difficult to calculate the latter dimension explicitly. For example, if $\Gamma \cap P \subseteq \pm U$ for all $P \in C$ and $n + m$ is even, the dimension of the image is equal to the number of cusps (the number of elements of C) by [loc. cit., Cor. 1]. For $i = 2$ one sees immediately from the long exact cohomology sequence for the pair $(\widehat{\Gamma} \backslash \mathbb{H}^3, \partial(\Gamma \backslash \mathbb{H}^3))$ that the image of (1.2) is the entire target space, except in the case $n = m = 0$, where it has codimension one. It therefore remains to study the space H^2_{cusp}.

The theorem of Borel mentioned above yields an isomorphism

$$H^1_{\text{cusp}}(\Gamma, E_{n,m}) \cong H^1(\mathfrak{g}, K; L^2_{\text{cusp}}(\Gamma \backslash G) \otimes E_{n,m}),$$

(1.5)

where the superscript ∞ denotes the subspace of smooth vectors. Since the space of cuspidal functions decomposes discretely as a representation of G, we can also write

$$H^1_{\text{cusp}}(\Gamma, E_{n,m}) \cong \bigoplus_{\pi \in \hat{G}} \text{Hom}(\pi, L^2_{\text{cusp}}(\Gamma \backslash G)) \otimes H^1(\mathfrak{g}, K; H^\infty_{\pi} \otimes E_{n,m}),$$

(1.6)

where \hat{G} denotes the unitary dual of G. From the computation of the (\mathfrak{g}, K)-cohomology of admissible irreducible representations of G [4, Chapter II], we can deduce the following vanishing theorem:

$$H^1_{\text{cusp}}(\Gamma, E_{n,m}) = \{0\}, \quad \text{for } n \neq m.$$

(1.7)

In the case $n = m$ the module

$$E_n := E_{n,n} = \text{Sym}^n \otimes \text{Sym}^n$$

(1.8)

is self-dual in the terminology of [4], and the dimension of $H^1_{\text{cusp}}(\Gamma, E_n)$ is equal to the multiplicity of the principal series representation $\pi_{2n+2,0}$ (the representation unitarily induced from the character
$z \mapsto (z/|z|)^{2n+2}$ of the maximal torus $T \simeq \mathbb{C}^\times$ in the space $L^2_{\text{cusp}}(\Gamma \backslash G)$. We will use this connection extensively in the following. We would like to stress that it does not yield an explicit dimension formula.

In the following we study the behavior of the dimension of $H^1(\Gamma, E_n)$ both theoretically and numerically. We focus primarily on the following problems.

A: How does the dimension of $H^1(\Gamma, E_n)$ behave when Γ is fixed and n grows?

B: Are there formulas for the dimension of $H^1(\Gamma, E_n)$ in terms of n at least for some groups Γ?

C: Are there lattices Γ such that $H^1_{\text{cusp}}(\Gamma, E_n) = 0$ or $H^1(\Gamma, E_n) = 0$ for all n (necessarily cocompact in the latter case)?

D: How does the dimension of $H^1(\Gamma, E_n)$ and $H^1_{\text{cusp}}(\Gamma, E_n)$ behave when n is fixed and Γ ranges over the subgroups of finite index of a fixed lattice in G?

E: How does the asymptotic behavior of $H^1(\Gamma, E_n)$ and $H^1_{\text{cusp}}(\Gamma, E_n)$ for $n \to \infty$ change when Γ ranges over the subgroups of finite index of a fixed lattice in G?

While we do not know of previous work on problems A-C and E, problem D has been studied qualitatively in the context of limit multiplicities [15, 54] and of the conjecture of Waldhausen and Thurston (cf. [17]) in three-manifold topology. The results and computations described below are of very preliminary nature, but we hope to provide at least some evidence on what might be true. In Section 1.1 below we summarize our theoretical results on upper and lower bounds for the dimension of $H^1(\Gamma, E_n)$. In Section 1.2 we shall formulate more specific questions about the behavior of these dimensions and discuss the numerical evidence accumulated in the later sections.

1.1 Theoretical results

We now describe our theoretical results. Before we proceed, let us briefly comment on the situation for Fuchsian groups, i.e. discrete subgroups Γ of $\text{SL}(2, \mathbb{R})$ of finite covolume. Let g be the genus of Γ, k the number of cusps and r_1, \ldots, r_s be the orders of the elliptic elements in the image of Γ in $\text{PSL}(2, \mathbb{R})$, considered up to conjugacy. For an integer n and a positive integer r let μ be the remainder of n after division by $2r$ and set

$$d(n, r) = \begin{cases}
1 - \frac{\mu+1}{r}, & \text{if } \mu \text{ even,} \\
1 - \frac{\mu+1}{r}, & 0 \leq \mu < r \text{ odd,} \\
2 - \frac{\mu+1}{r}, & r \leq \mu < 2r \text{ odd.}
\end{cases}$$

Then a consideration of the group-theoretical structure of Γ shows that

$$\dim H^1(\Gamma, \text{Sym}^n) = \left(2g - 2 + k + \sum_{i=1}^s \left(1 - \frac{1}{r_i}\right)(n + 1) - \sum_{i=1}^s d(n, r_i)\right)$$

for all $n > 0$, where for $-1 \in \Gamma$ one has in addition to assume n to be even (the cohomology spaces vanish for odd n in this case). So, the dimension of the cohomology is given by simple
linear functions on congruence classes. Note also that the coefficient of $n + 1$ in (1.9) is equal to
$\text{vol}(\Gamma \backslash \mathbb{H}^2)/2\pi$.

Our first theoretical result on lattices in $\text{SL}(2, \mathbb{C})$ concerns a general upper bound for the di-
mension of the cohomology. We prove

Theorem 1.1. Let $\Gamma \subseteq \text{SL}(2, \mathbb{C})$ be a discrete subgroup of finite covolume. Then

$$\dim H^1(\Gamma, E_n) = O\left(\frac{n^2}{\log n}\right)$$

as $n \to \infty$.

This result is obtained by an application of the Selberg trace formula in Section 5. Note that the module E_n has dimension $(n + 1)^2$. Since a group Γ as above is finitely presented, $\dim H^1(\Gamma, E_n) = O(n^2)$ is the trivial upper bound (cf. Lemma 3.1 below). Non-trivial lower bounds are not known for general lattices $\Gamma \subseteq \text{SL}(2, \mathbb{C})$. In fact, our examples in Sections 7.2 and 7.3 indicate that there are probably none.

Lattices in $\text{SL}(2, \mathbb{C})$ can be classified into arithmetic and non-arithmetic ones. The arithmetic lattices arise from quaternion algebras over number fields with precisely one complex place, and are intimately connected to number theory. The primary examples are the Bianchi groups $\text{SL}(2, \mathcal{O}_K)$, where \mathcal{O}_K is the ring of integers of an imaginary quadratic field K. It is well known that every non-cocompact arithmetic lattice in $\text{SL}(2, \mathbb{C})$ is commensurable to a Bianchi group. For arithmetic groups one can use Langlands functoriality (base change, automorphic induction, and the Jacquet-Langlands correspondence) to obtain lower bounds on the cohomology in certain cases (cf. [11, 47, 52]). Unfortunately, because base change is only available for solvable extensions of number fields, the results are not complete (cf. [48, Section 6]). The structure of the non-arithmetic lattices is even less well understood. The explicit examples considered in this paper are on the one side Bianchi groups for certain K of small discriminant, and on the other side certain geometrically constructed lattices and series of lattices, almost all of which are non-arithmetic.

A related (but in general not equivalent) method for obtaining lower bounds is based on studying the action of the complex conjugation automorphism c of $\text{SL}(2, \mathbb{C})$ on the cohomology, if the lattice Γ is invariant under c (as the Bianchi groups are, for example). In this case, one can use the Lefschetz fixed point formula to compute the trace of this involution acting on $H^1_{\text{cusp}}(\Gamma, E_n)$, and thereby obtain a lower bound for the dimension of this space. For the case of the Bianchi groups with trivial coefficients this approach was carried out in [45, 53]. Here the results turn out to be equivalent to the ones given by theory of base change. While this method is not restricted to arithmetic groups, on the other hand it does not cover all lower bounds obtainable by Langlands functoriality for arithmetic groups.

We work out the consequences of base change and automorphic induction (CM automorphic forms) for the cohomology of the Bianchi groups in Section 4 below. The base change construction detailed there associates to holomorphic automorphic forms for certain congruence subgroups of $\text{SL}(2, \mathbb{Z})$ elements of $H^1(\text{SL}(2, \mathcal{O}_K), E_n)$. Let us write

$$H^1_{\text{bc}}(\text{SL}(2, \mathcal{O}_K), E_n) \subseteq H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}_K), E_n)$$

for the corresponding subspace. Our main result here is a precise formula for the dimension of $H^1_{\text{bc}}(\text{SL}(2, \mathcal{O}_K), E_n)$ in terms of the prime factorization of the discriminant of K. To state it, we need to introduce functions ε_k and μ_k defined for all integers k which depend only on the residue
class of k modulo 4 and 3, respectively, and a function $\nu_{K,k}$ depending on K and at most on k modulo 2 or 3 (see Sections 4.1 and 4.3 below for the precise definitions).

Theorem 1.2. Let K be an imaginary quadratic extension of \mathbb{Q}, \mathcal{R} the set of primes ramified in K (the prime divisors of the discriminant of K), and for each $p \in \mathcal{R}$ let ν_p be the exact power of p dividing the discriminant. Then there are non-negative constants c_2, c_3 and c_4 (depending on K) such that

$$\dim H^1_{bc}(\text{SL}(2, \mathcal{O}_K), E_n) = \left(\frac{1}{24} \prod_{p \in \mathcal{R}} (p^{\nu_p} + 1) + c_2(-1)^n + 1 \right) (n + 1)$$

$$- \nu_{K,n} \frac{h_K}{2} - 2|\mathcal{R}|^{-2} + c_4 \nu_{n+2} + c_3 \mu_{n+2} + \delta_{n,0}$$

for all $n \geq 0$, where h_K is the class number of K and $\delta_{n,0}$ denotes the Kronecker delta symbol.

Note that for every K the dimension of H^1_{bc} is given by linear functions of n spread out over the congruence classes modulo 12. If one takes the precise value of c_2 given in Section 4.3 into account, one sees that the coefficient of n in these linear functions is always positive, and that therefore the dimension of $H^1_{cusp}(\text{SL}(2, \mathcal{O}_K), E_n)$ grows at least linearly with n. Also, for a fixed n the dimension grows linearly in the (absolute value of) the discriminant. This implies non-vanishing results for the cuspidal cohomology. The first results of this nature (in a much more limited situation) are in [28, 29]. Let us describe the special cases $K = \mathbb{Q}(\sqrt{d})$, $d = -2, -7, -11$, more explicitly.

Proposition 1.3. For all $n \geq 1$ we have:

$$\dim H^1_{bc}(\text{SL}(2, \mathcal{O}_{-2}), E_n) = \begin{cases}
(n - 1)/2, & \text{if } n \equiv 1 \ (2), \\
(n - 2)/4, & \text{if } n \equiv 2 \ (4), \\
(n - 4)/4, & \text{if } n \equiv 0 \ (4),
\end{cases} \quad (1.10)$$

$$\dim H^1_{bc}(\text{SL}(2, \mathcal{O}_{-7}), E_n) = \begin{cases}
(n - 3)/3, & \text{if } n \equiv 0 \ (3), \\
(n - 1)/3, & \text{if } n \equiv 1 \ (3), \\
(n - 2)/3, & \text{if } n \equiv 2 \ (3),
\end{cases} \quad (1.11)$$

$$\dim H^1_{bc}(\text{SL}(2, \mathcal{O}_{-11}), E_n) = \begin{cases}
(n - 1)/2, & \text{if } n \equiv 1 \ (2), \\
n/2, & \text{if } n \equiv 2 \ (4), \\
(n - 2)/2, & \text{if } n \equiv 0 \ (4).
\end{cases} \quad (1.12)$$

A second construction of cohomology classes is via automorphic induction from Hecke characters of quadratic extensions of K (in fact necessarily biquadratic extensions of \mathbb{Q} unramified over K). In Section 4.2 we describe the corresponding contribution H^1_{cm} to the cuspidal cohomology. In many cases, it is already contained in H^1_{bc}. The precise criterion for an additional CM contribution to the cohomology is as follows.

Proposition 1.4. Let K be an imaginary quadratic field. There is a CM contribution to a space $H^1_{cusp}(\text{SL}(2, \mathcal{O}_K), E_n)$, $n \geq 0$, which is not contained in $H^1_{bc}(\text{SL}(2, \mathcal{O}_K), E_n)$, if and only if for some real quadratic field L' such that $K L'/K$ is unramified, the narrow class number h^+_L, is strictly bigger than the corresponding number of genera $g^+_L = 2^{|\mathcal{R}(L')|-1}$, where $\mathcal{R}(L')$ denotes the set of primes ramified in L'.

7
See Section 4.2 for the smallest examples of real quadratic fields L' with this property. In any case, the additional CM contribution is always constant on residue classes modulo 12, and the total contribution from base change and automorphic induction is therefore again given by linear functions on residue classes mod 12.

The techniques of Langlands functoriality have been previously used to prove (a generalization of) the conjecture of Waldhausen and Thurston for some arithmetic groups Γ, i.e. to establish for fixed n the existence of a finite index subgroup Δ of Γ with $H^1(\Delta, E_n) \neq 0$. In fact, one can in all cases in the literature show that there exists such a Δ with $H^1(\Delta, E_n) \neq 0$ for all n. Building on the work of Labesse-Schwermer [47], Rajan considers in [52] arithmetic groups Γ associated to quaternion algebras defined over fields L such that the extension L/L^{tr}, where L^{tr} is the maximal totally real subfield of L, is solvable (but not necessarily Galois). His methods easily imply the following result on Problem E.

Proposition 1.5. Let Γ be an arithmetic subgroup of $\text{SL}(2, \mathbb{C})$ such that the field of definition L of the corresponding quaternion algebra is a solvable extension of its maximal totally real subfield L^{tr}. Then for every $c > 0$ there exists a finite index subgroup Δ of Γ such that

$$\dim H^1(\Delta, E_n) > cn$$

for all $n \geq 0$.

If base change for $\text{SL}(2)$ for arbitrary extensions of number fields was available, one could prove the corresponding result for all arithmetic lattices Γ.

We now turn to a result which gives an upper bound for special cases of problem D. We consider finite index subgroups of the Bianchi groups $\text{SL}(2, \mathcal{O}_K)$. For any non-zero ideal a of \mathcal{O}_K we have the classical congruence subgroup

$$\Gamma_0(a) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathcal{O}_K) \middle| c \in a \right\}.$$

(1.13)

The index of $\Gamma_0(a)$ in $\text{SL}(2, \mathcal{O}_K)$ is given by the multiplicative function

$$\iota(a) = N(a) \prod_{p | a} \left(1 + \frac{1}{N(p)}\right).$$

(1.14)

The following theorem gives a bound for the dimension of $H^1(\Gamma \cap \Gamma_0(a), E_n)$ for each subgroup Γ of finite index in $\text{SL}_2(\mathcal{O}_K)$, which improves the trivial bound $O(\iota(a))$ by a logarithm.

Theorem 1.6. Let Γ be a subgroup of finite index in $\text{SL}(2, \mathcal{O}_K)$, K imaginary quadratic. Then for any fixed $n \geq 0$ we have

$$\dim H^1(\Gamma \cap \Gamma_0(a), E_n) = O\left(\frac{\iota(a)}{\log N(a)}\right), \quad N(a) \to \infty.$$

(1.15)

This theorem, which again results from an application of the trace formula, should be compared to the limit multiplicity results of de George-Wallach [15], Lück and Savin [54], which imply

$$\lim_{i \to \infty} \frac{\dim H^1(\Gamma_i, E_n)}{[\Gamma : \Gamma_i]} = 0$$
for fixed \(n\) and towers of normal subgroups \(\Gamma_i\) of a fixed lattice \(\Gamma\) such that \(\bigcap_i \Gamma_i = \{1\}\).

Note also that for \(a = a_0 K\), \(a\) a positive integer, we can get by base change arguments a lower bound of the form \(Ca = CN(a)^{1/2}\). If \(a\) and its conjugate are relatively prime, there is no non-trivial lower bound known. On the other hand, it is certainly not possible to improve the trivial bound \(O(\left[\text{SL}(2, \mathcal{O}_K) : \Gamma\right])\) on the dimension of \(H^1(\Gamma, E_n)\) for finite index subgroups \(\Gamma\) of \(\text{SL}(2, \mathcal{O}_K)\) without making any assumption on \(\Gamma\). This follows easily from the fact that the Bianchi groups (and more generally all non-cocompact lattices in \(\text{SL}(2, \mathbb{C})\)) are large, i.e. contain a finite index subgroup surjecting onto a non-abelian free group. This property is in fact conjectured to be true for all lattices (cf. [48]).

1.2 Experimental results and questions

Here we formulate more specific versions of problems A-E from above. We shall also discuss the numerical results accumulated in the later sections.

Let us begin by reporting on our numerical calculations. In Section 3.1 we describe how the cohomology space \(H^1(\Gamma, E_n)\) can be effectively computed from a presentation of \(\Gamma\) together with explicit matrices for the generators. We have developed computer codes for this task. The results of the computations are documented in Sections 6 and 7. Consider first the case of Bianchi groups explained in Section 6. We consider the fields \(K = \mathbb{Q}(\sqrt{d})\) for \(d = -1, -2, -3, -5, -6, -7, -10, -11, -14, -19\). From Proposition 1.4 it follows immediately that \(H^1_{\text{CM}} \subseteq H^1_{\text{bc}}\) in all these cases. In our computations we had in all cases except two in fact \(H^1_{\text{cusp}} = H^1_{\text{bc}}\). The precise range of the computations can be found in Section 6. The two exceptions are:

Proposition 1.7. In the spaces
\[
H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}_{-7}), E_{12}),
\]
and
\[
H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}_{-11}), E_{10})
\]
the subspace of cohomology classes obtained from base change has codimension two.

In both cases there is a uniquely determined two-dimensional complement invariant under the action of the Hecke algebra. We document the eigenvalues of the first Hecke operators on these subspaces in Section 6.2 below.

These computations suggest the following question:

Question 1.8. • For a given field \(K\), is
\[
H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}_K), E_n) = H^1_{\text{bc}}(\text{SL}(2, \mathcal{O}_d), E_n) + H^1_{\text{CM}}(\text{SL}(2, \mathcal{O}_K), E_n)
\]
for all but finitely many \(n\)?

• Is \(H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}_K), E_n) = H^1_{\text{bc}}(\text{SL}(2, \mathcal{O}_K), E_n)\) for all \(n\) for some \(K\), for example \(K = \mathbb{Q}(\sqrt{d})\), \(d = -1, -2, -3, -5, -6, -10, -14, -19\)?

In Section 7 we consider some examples of (mostly) non-arithmetic lattices. All examples are compatible with an affirmative answer to the following question:

Question 1.9. For a given lattice \(\Gamma\) in \(\text{SL}(2, \mathbb{C})\), do there exist integers \(n_0 \geq 0\), \(N > 0\) depending on \(\Gamma\) such that for each \(n \geq n_0\) and \(n\) in a fixed residue class modulo \(N\) the dimension \(\dim H^1(\Gamma, E_n)\) is given by a linear function in \(n\)?
As we have seen, an affirmative answer to the first part of Question 1.8 would imply that one might take $N = 12$ for the Bianchi groups. A weaker but still unresolved question is:

Question 1.10. Do we have $\dim H^1(\Gamma, E_n) = O(n)$ as $n \to \infty$ for every lattice Γ or is it possible that these dimensions grow faster than linearly in n?

The computations in Section 7.2 and 7.3 suggest an affirmative answer to the following question:

Question 1.11. Are there lattices Γ such that $\dim H^1(\Gamma, E_n) = O(n)$ as $n \to \infty$ for every lattice Γ or is it possible that these dimensions grow faster than linearly in n?

In Section 7.2 an infinite sequence of non-arithmetic groups with one cusp is considered, which provides candidates for lattices with $H^1_{\text{cusp}}(\Gamma, E_n) = 0$ for all n. In Section 7.3 we consider a cocompact non-arithmetic lattice and its finite index subgroups of low index and obtain many candidates for lattices with $H^1(\Gamma, E_n) = 0$ for all n.

Concerning Problem D, we pose the following variant of the conjecture of Waldhausen and Thurston as a question:

Question 1.12. Given a lattice Γ and $n \geq 0$, is there a subgroup Δ of finite index in Γ such that $H^1_{\text{cusp}}(\Delta, E_n) \neq 0$? More strongly, is there a subgroup Δ such that $H^1_{\text{cusp}}(\Delta, E_n) \neq 0$ for all n?

We are able to provide an affirmative answer for all examples in Sections 7.2 and 7.3 which we computed.

We have also made extensive computations of $\dim H^1(\Gamma_0(p), \mathbb{C})$ for the standard congruence subgroups $\Gamma_0(p)$ of $\text{SL}(2, \mathcal{O}_{-1})$ associated to degree one prime ideals p of \mathcal{O}_{-1}. The results are documented in Section 6.3. The cohomology groups $H^1(\Gamma_0(p), \mathbb{C})$ are particularly interesting for number theory since their non-vanishing is conjectured to be related to the existence of certain elliptic curves (or more generally abelian varieties) defined over $K = \mathbb{Q}(i)$ (cf. [14, 25, 27]). Also, the methods of Langlands functoriality do not provide any non-trivial lower bound for the dimension, and in fact there are many examples of prime ideals p with $H^1(\Gamma_0(p), \mathbb{C}) = 0$. The analogy with distribution questions for elliptic curves (cf. [7]) suggests:

Question 1.13. Is there a constant C such that the asymptotic relation

$$\sum_{p, \mathcal{N}(p) \leq x} \dim H^1(\Gamma_0(p), \mathbb{C}) \sim C \frac{x^\frac{3}{2}}{\log x}$$

holds as x tends to infinity, where the sum is to be extended over all degree one prime ideals p of \mathcal{O}_{-1} of norm at most x?

The computational results in Section 6.3 are compatible with an affirmative answer to this question. But the range of our computations seems to be too small to allow a more detailed analysis (cf. [7]). The behavior of the dimensions $\dim H^1(\Gamma_0(p), E_n)$ seems to be quite different if $n \geq 1$ is fixed and p varies (see Section 6.3).

Finally, we pose the following question regarding Problem E:

Question 1.14. For a given lattice Γ, does there exist a subgroup Δ of finite index such that

$$\liminf_{n \to \infty} \frac{\dim H^1(\Delta, E_n)}{n} > 0$$
While the theoretical evidence summarized in Section 1.1 above suggests that this question has an affirmative answer for arithmetic lattices Γ, our computations for non-arithmetic groups are inconclusive. Namely, for the groups considered in Sections 7.2 and 7.3 we were not able to find such a finite index subgroup Δ, but to search through all subgroups of a given index very quickly becomes prohibitive.

Acknowledgements: We thank Elena Klimenko, Jürgen Klüners, Peter Sarnak, Haluk Sengun, Wilhelm Singhof, Gabor Wiese and Saeid Zhargani for conversations on the subject.

2 The Bianchi groups

This section contains some notation and preliminary material concerning the Bianchi groups, as well as the explicit finite presentations on which our computer calculations are based. The first subsection fixes notation which we will use throughout this paper. The results needed from algebraic number theory are contained in [49]. We also follow this book in our notational conventions.

2.1 The Bianchi groups and their congruence subgroups

Let d be a square-free negative integer, $K = \mathbb{Q}(\sqrt{d}) \subset \mathbb{C}$ the corresponding imaginary quadratic number field and $\mathcal{O} = \mathcal{O}_d = \mathcal{O}_K$ its ring of integers. The ring \mathcal{O}_d has a \mathbb{Z}-basis consisting of 1 and ω_d, where

$$\omega = \omega_d = \begin{cases} \sqrt{d}, & \text{if } d \not\equiv 1 \pmod{4}, \\ 1 + \sqrt{d}/2, & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

(2.1)

The discriminant of the field K is

$$D = D_d = \begin{cases} d, & \text{if } d \equiv 1 \pmod{4}, \\ 4d, & \text{if } d \equiv 2, 3 \pmod{4}. \end{cases}$$

We set $\mathcal{R} = \mathcal{R}_d$ for the set of rational primes p ramified in K. The set \mathcal{R}_d consists exactly of the prime divisors of D_d.

We also fix the following notation concerning subgroups of $\text{SL}(2, \mathbb{C})$ commensurable with the Bianchi groups $\text{SL}(2, \mathcal{O})$. Let $a \subseteq \mathcal{O}$ be a non-zero ideal. The subgroup

$$\Gamma(a) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathcal{O}) \mid a - 1, b, c, d - 1 \in a \right\} \subseteq \text{SL}(2, \mathcal{O})$$

(2.2)

is called the full congruence subgroup of level a. It clearly has finite index in $\text{SL}(2, \mathcal{O})$. A subgroup $\Gamma \subseteq \text{SL}(2, K)$ is called a congruence subgroup if $\Gamma \cap \text{SL}(2, \mathcal{O})$ has finite index in both Γ and $\text{SL}(2, \mathcal{O})$, and if Γ contains a full congruence subgroup $\Gamma(a)$ for a non-zero ideal a of \mathcal{O}.

Let $a \subset K$ now be a fractional ideal of \mathcal{O}, that is a is a non-zero finitely generated \mathcal{O}-submodule of K. We define

$$\text{SL}(2, a) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, K) \mid a, d \in \mathcal{O}, c \in a, b \in a^{-1} \right\}.$$

(2.3)
Notice that $\text{SL}(2, a)$ is a congruence subgroup of $\text{SL}(2, K)$. It is equal to the stabilizer in $\text{SL}(2, K)$ of the O-submodule $O \oplus a$ of K^2. We write $\text{PSL}(2, O)$ or $\text{PSL}(2, a)$ for the images of the corresponding subgroups of $\text{SL}(2, K)$ in $\text{PSL}(2, \mathbb{C})$.

We write \hat{A}_K for the ring of adeles of K and $\hat{A}_{K,f}$ for the ring of finite adeles. We view $\hat{A}_{K,f}$ as the subring of \hat{A}_K consisting of those elements which are 0 at the infinite place of K. The adele rings \hat{A}_K, $\hat{A}_{K,f}$ and their unit groups \hat{A}_K^\times, $\hat{A}_{K,f}^\times$ are equipped with their standard topologies (see [49]). We also consider the profinite completion of the ring O, which we denote by \hat{O}, to be embedded as a compact and open subring of $\hat{A}_{K,f}$ in the usual way.

Recall the standard description of the adelic coset space $GL(2, K) \backslash GL(2, \hat{A}_K)$ in terms of the coset spaces $\Gamma \backslash GL(2, \mathbb{C})$ for congruence subgroups Γ of $GL(2, K)$. By the strong approximation theorem, for any compact open subgroup K of $GL(2, \hat{A}_{K,f})$ the determinant map identifies the space of connected components of

$$GL(2, K) \backslash GL(2, \hat{A}_K)$$

with the finite set $\hat{A}_{K,f}^\times / K^\times \det(K)$, and for a set $S \subset GL(2, \hat{A}_{K,f})$ with the property that $\det(S)$ forms a system of representatives for $\hat{A}_{K,f}^\times / K^\times \det(K)$ we have

$$GL(2, K) \backslash GL(2, \hat{A}_K) / K = \bigcup_{s \in S} \Gamma_s \backslash GL(2, \mathbb{C}),$$

where $\Gamma_s = GL(2, K) \cap sKs^{-1}$.

To obtain the special case of the groups $\text{SL}(2, a)$, let $K_0 = GL(2, \hat{O})$ be the standard maximal compact subgroup of $GL(2, \hat{A}_{K,f})$ and for each finite index subgroup Δ of \hat{O}^\times set

$$K(\Delta) = \{ g \in K_0 \mid \det g \in \Delta \}. $$

If $\Delta \cap \hat{O}^\times = \{1\}$, the groups Γ_s in (2.5) can be identified with the groups $\text{SL}(2, a)$, where a runs over a system of representatives for the ideal classes of K and each group appears with multiplicity $[\hat{O}^\times : \Delta \hat{O}^\times]$.

Denote by $X(\Delta)$ the set of all characters of $\hat{A}_{K,f}^\times / \Delta \hat{A}_K^\times$. It has evidently cardinality $|X(\Delta)| = h_K[\hat{O}^\times : \Delta \hat{O}^\times]$, where h_K is the class number of K.

2.2 Presentations

This subsection contains explicit finite presentations for some of the Bianchi groups. We include them here, because some of them have not yet appeared in print. The presentations are taken from [21, 55, 62]. We use the standard notation for presentations of groups: $G = \langle g_1, \ldots, g_n \mid R_1, \ldots, R_l \rangle$ means that the group G is generated by g_1, \ldots, g_n and presented by the words R_1, \ldots, R_l.

The following three matrices are in the set of generators in almost all cases:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad U = U_d = \begin{pmatrix} 1 & \omega_d \\ 0 & 1 \end{pmatrix},$$

We first give the results for the cases $d = -1, -2, -3, -7, -11$, which are exactly the cases in which the ring of integers O_d is euclidean.

$$\text{PSL}(2, O_{-1}) = \left\langle A, B, U \mid B^2, (AB)^3, (BUB^{-1})^3, AUA^{-1}U^{-1}, (BU^2B^{-1})^2, (AUBA^{-1}B)^2 \right\rangle,$$
Next we consider the case \(d = -19 \). In this case \(\mathcal{O}_d \) is a non-euclidean principal ideal ring. We have

\[
\text{PSL}(2, \mathcal{O}_{-19}) = \langle A, B, U, C \mid B^2, (AB)^3, AUA^{-1}U^{-1}, (BU^{-1}B)^2 \rangle
\]

(2.12)

with the matrix

\[
C = \begin{pmatrix}
1 - \omega_{-19} & 2 \\
2 & \omega_{-19}
\end{pmatrix}.
\]

In the cases \(d = -5, -6, -10 \) the class number of \(\mathcal{O}_d \) is equal to 2. We give presentations of both \(\text{PSL}(2, \mathcal{O}_d) \) and of \(\text{PSL}(2, a) \) for a non-principal ideal \(a \).

\[
\text{PSL}(2, \mathcal{O}_{-5}) = \langle A, B, U, C, D \mid B^2, (AB)^3, AUA^{-1}U^{-1}, D^2, (BD)^2, (BUDU^{-1})^2, AC^{-1}A^{-1}BCB, AC^{-1}A^{-1}UDDU^{-1}CD \rangle
\]

(2.13)

with matrices

\[
C = \begin{pmatrix}
-4 - \omega_{-5} & -2\omega_{-5} \\
2\omega_{-5} & -4 + \omega_{-5}
\end{pmatrix}, \quad D = \begin{pmatrix}
-\omega_{-5} & 2 \\
2 & \omega_{-5}
\end{pmatrix}.
\]

\[
\text{PSL}(2, a_{-5}) = \langle A, V, C, D \mid AVA^{-1}V^{-1}, CDC^{-1}D^{-1}, (AC^{-1})^2, (DV^{-1})^3, (CD^{-1}VA^{-1})^3 \rangle
\]

(2.14)

with the ideal \(a_{-5} = \langle 2, 1 - \sqrt{5} \rangle \) of \(\mathcal{O}_{-5} \) and with the matrices

\[
V = \begin{pmatrix}
1 & 1 + \sqrt{5} \\
0 & 2
\end{pmatrix}, \quad C = \begin{pmatrix}
1 & 0 \\
2 & 1
\end{pmatrix}, \quad D = \begin{pmatrix}
1 & 0 \\
1 - \sqrt{5} & 1
\end{pmatrix}.
\]

\[
\text{PSL}(2, \mathcal{O}_{-6}) = \langle A, B, U, C, D \mid B^2, (AB)^3, AUA^{-1}U^{-1}, D^2, BCBC^{-1}, (BUDU^{-1})^3, A^{-1}CAUDU^{-1}C^{-1}D^{-1}, (BAD)^3 \rangle
\]

(2.15)

with the matrices

\[
C = \begin{pmatrix}
5 & -2\omega_{-6} \\
2\omega_{-6} & 5 - \omega_{-6}
\end{pmatrix}, \quad D = \begin{pmatrix}
-1 - \omega_{-6} & 2 - w_{-6} \\
2 & 1 + \omega_{-6}
\end{pmatrix}.
\]

\[
\text{PSL}(2, a_{-6}) = \langle A, V, C, D, E \mid E^2, (CA^{-1})^2, (DV^{-1})^3, (DE^{-1}V^{-1})^2, (CEA^{-1})^2, CDC^{-1}D^{-1}, AVA^{-1}V^{-1}, (CDEV^{-1}A^{-1})^2 \rangle
\]

(2.16)

with the ideal \(a_{-6} = \langle 2, \sqrt{6} \rangle \) of \(\mathcal{O}_{-6} \) and with the matrices

\[
V = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, \quad C = \begin{pmatrix}
1 & 0 \\
2 & 1
\end{pmatrix}, \quad D = \begin{pmatrix}
1 & 0 \\
-w & 1
\end{pmatrix}, \quad E = \begin{pmatrix}
-2 & -1 - \frac{\omega}{2} \\
2 - w & 2 - \frac{\omega}{2}
\end{pmatrix}.
\]
The ideal class group of \mathcal{O}_{-10} is cyclic of order 4. The ideal $a_{-14} = \langle 3, 1 + \sqrt{-14} \rangle$ is not a square in the ideal class group.
3 Group cohomology

In this section we report basic definitions from the cohomology of groups. Section 3.1 reports a method to compute the first cohomology group for finitely presented groups. Our basic reference here is [6].

Let \(\Gamma \) be a group and \(M \) a \(\mathbb{R} \Gamma \)-module for a commutative ring \(R \). A derivation from \(\Gamma \) to \(M \) is a map \(f : \Gamma \to M \) which satisfies

\[
 f(gh) = g \cdot f(h) + f(g)
\]

for all \(g, h \in \Gamma \). For \(m \in M \) the map

\[
 f_m : \Gamma \to M, \quad f_m(g) = g \cdot m - m,
\]

is a derivation and is called the inner derivation corresponding to \(m \). We write \(\text{Der}(\Gamma, M) \) for the space of all derivations and \(\text{IDer}(\Gamma, M) \) for its subspace consisting of inner derivations. If \(H^1(\Gamma, M) \) is the first cohomology group of \(\Gamma \) with coefficients in \(M \), we have

\[
 H^1(\Gamma, M) = \text{Der}(\Gamma, M) / \text{IDer}(\Gamma, M).
\]

Here we are interested in the case when \(\Gamma \subseteq \text{SL}(2, L) \subseteq \text{SL}(2, \mathbb{C}) \) where \(L \subseteq \mathbb{C} \) is a number field. The modules we consider are derived from the symmetric powers of the standard representation of \(\text{SL}(2, \mathbb{C}) \). So, let \(V \) be a two-dimensional \(L_1 \)-vector space with basis \(x, y \) where \(L_1 \) is a field between \(L \) and \(\mathbb{C} \) invariant under complex conjugation. Let \(n \) be a non-negative integer. The symmetric power \(\text{Sym}^n(L_1) \) has the \(L_1 \)-basis \(x^n-iy^i \), \(0 \leq i \leq n \). The action of \(g \in \text{SL}(2, L_1) \) is given by

\[
 g \cdot x^n-iy^i = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x^n-iy^i = (ax + cy)^n-i(bx + dy)^i, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
\]

The module \(\overline{\text{Sym}^n(L_1)} \) is equal to \(\text{Sym}^n(L_1) \) as an \(L_1 \)-vector space, and the action is given by replacing \(g \) in (3.4) by its complex conjugate.

We often use the following simple facts from group cohomology without further notice. First of all all the spaces \(H^1(\Gamma, \text{Sym}^n(L_1) \otimes \overline{\text{Sym}^m(L_1)}) \otimes \mathbb{C} \) and \(H^1(\Gamma, \text{Sym}^n(\mathbb{C}) \otimes \overline{\text{Sym}^m(\mathbb{C})}) \) are isomorphic for all \(n, m \geq 0 \). Secondly, if \(m+n \) is even, the action of \(\Gamma \) on \(\text{Sym}^n(L_1) \otimes \overline{\text{Sym}^m(L_1)} \) factors through an action of the image \(\tilde{\Gamma} \) of \(\Gamma \) in \(\text{PSL}(2, \mathbb{C}) \) and \(H^1(\tilde{\Gamma}, \text{Sym}^n(L_1) \otimes \overline{\text{Sym}^m(L_1)}) \) is isomorphic to \(H^1(\tilde{\Gamma}, \text{Sym}^n(L_1) \otimes \overline{\text{Sym}^n(L_1)}) \).

3.1 \(H^1(\Gamma, M) \) for finitely presented groups

Here we explain how information about \(H^1(\Gamma, M) \) can be computed from equation (3.3). We assume here that \(R \) is an euclidean ring and \(M \) is a free \(R \)-module of finite rank in which a basis has been chosen. Let \(\Gamma \) be a finitely presented group given explicitly in the form

\[
 \Gamma = \langle g_1, \ldots, g_s \mid R_1, \ldots, R_t \rangle.
\]

Here we consider the relations \(R_1, \ldots, R_t \) to be explicitly given words in the generators \(g_1, \ldots, g_s \) of \(\Gamma \) and their inverses. Assume also that the matrices for the action of \(g_1, \ldots, g_s \) on \(M \) are explicitly given. Consider now the \(R \)-linear map

\[
 \Phi : \text{Der}(\Gamma, M) \to M^s, \quad \Phi(f) = (f(g_1), \ldots, f(g_s)).
\]
The image of Φ lies in the kernel of the linear map $\Lambda : M^* \to M^t$, which is obtained by formally expanding the image of each of the relators R_1, \ldots, R_t under a derivation $f : \Gamma \to M$ in terms of the values $f(g_1), \ldots, f(g_s)$. It is easily seen that Φ maps $\text{Der}(\Gamma, M)$ isomorphically to the kernel $\text{ker}(\Lambda)$ of Λ. Since M^* is a free R-module, a basis for the free module $\text{ker}(\Lambda)$ can be computed.

Consider now the linear map $\mu : M \to \text{ker}(\Lambda)$, $\mu(m) = ((g_1 - 1)m, \ldots, (g_s - 1)m)$. The image of μ may then be described as the linear span of the images of the basis elements of M. If we express these in terms of the previously computed basis of $\text{ker}(\Lambda)$, we see that the effective version of the elementary divisor theorem can be used to compute the structure of $H^1(\Gamma, M) = \text{Der}(\Gamma, M)/\text{IDer}(\Gamma, M) = \text{ker}(\Lambda)/\text{Im}(\mu)$. (3.5)

If R is a field, the dimension of $H^1(\Gamma, M)$ can be computed by this method.

Apart from being important for the computation of cohomology spaces, (3.5) leads to the following (trivial) estimate.

Lemma 3.1. Let Γ be a group generated by s elements and M a finite dimensional $R\Gamma$-module for some field R. Then $\dim H^1(\Gamma, M) \leq s \dim M$.

A typical problem encountered in our computations is that the module M can be a vector space of big dimension (up to around 50000) over an algebraic number field, and that the direct computation of the dimension of $H^1(\Gamma, M)$ from (3.5) is not feasible. All discrete subgroups $\Gamma \subseteq \text{SL}(2, \mathbb{C})$ considered in this paper have the property that they are contained in $\text{SL}(2, R)$ for a finitely generated ring R inside an algebraic number field. Let O_Γ be a ring containing R and its complex conjugate. Suppose p is a prime and $O_\Gamma \to \mathbb{F}_p$ is a surjective ring homomorphism. Then $E_n(\mathbb{F}_p)$ inherits the structure of a Γ-module. By the usual universal coefficient theorem we have

$$\dim_{\mathbb{F}_p} H^1(\Gamma, E_n(\mathbb{F}_p)) \geq \dim_{\mathbb{C}} H^1(\Gamma, E_n).$$

A standard argument using Tchebotarev’s density theorem shows that $\dim_{\mathbb{C}} H^1(\Gamma, E_n)$ is equal to the minimum of the dimensions $\dim_{\mathbb{F}_p} H^1(\Gamma, E_n(\mathbb{F}_p))$, where p ranges over all primes with the above compatibility property. For all real numbers x we define

$$\dim_{\leq x} H^1(\Gamma, E_n) = \inf_{p \leq x} \{ \dim_{\mathbb{F}_p} H^1(\Gamma, E_n(\mathbb{F}_p)) \},$$

where p ranges over all primes with $p \leq x$ which admit a surjective ring homomorphism $O_\Gamma \to \mathbb{F}_p$. The numbers $\dim_{\leq x} H^1(\Gamma, E_n)$ are much cheaper to compute than the actual dimensions $\dim_{\mathbb{C}} H^1(\Gamma, E_n)$. Of course, in the computations below we hope to have chosen the bound x to be large enough to capture $\dim_{\mathbb{C}} H^1(\Gamma, E_n)$. Also, if a lower bound for this dimension is known beforehand, we can by this method verify that the actual dimension is equal to the bound.

3.2 Hecke operators

In this section we introduce the Hecke operators on cohomology spaces in a way suitable for explicit computations. We chose a treatment similar to [59, Section 8.5], see also [25].

If H is a subgroup of a group Γ, and M is a Γ-module, the inclusion $H \hookrightarrow \Gamma$ induces a restriction map $\text{res}^\Gamma_H : H^*(\Gamma, M) \to H^*(H, M)$. When $[\Gamma : H] < \infty$, there is also a map $\text{tr} : H^*(H, M) \to$
$H^*(\Gamma, M)$ in the opposite direction, called the transfer map (cf. [6]). The composition $\text{tr} \circ \text{res}^\Gamma_H$ is multiplication by $[\Gamma : H]$ on $H^*(\Gamma, M)$.

Let now Γ be a congruence subgroup of $\text{SL}(2, \mathcal{O})$, where \mathcal{O} is the ring of integers in an imaginary quadratic number field K, and M be one of the $GL(2, \mathbb{C})$-modules $E_{n,m}$. The groups Γ and $\delta \Gamma \delta^{-1}$ are easily seen to be commensurable for every $\delta \in GL(2, K)$. Define the Hecke operator $T_\delta : H^1(\Gamma, M) \to H^1(\Gamma, M)$ by the diagram:

$$
\begin{array}{ccc}
H^1(\Gamma, M) & \xrightarrow{T_\delta} & H^1(\Gamma, M) \\
\text{res} & & \text{tr} \\
\downarrow & & \uparrow \\
H^1(\Gamma \cap \delta \Gamma \delta^{-1}, M) & \xrightarrow{\tilde{\delta}} & H^1(\delta^{-1} \Gamma \delta \cap \Gamma, M)
\end{array}
$$

(3.7)

where $\tilde{\delta}$ is the isomorphism in cohomology induced by conjugation with δ. For a non-zero element $a \in \mathcal{O}$ we define $T_a = T_{\delta_a}$ with $\delta_a = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$.

(3.8)

The following properties of the linear maps $T_\delta : H^1(\Gamma, M) \to H^1(\Gamma, M)$, $\delta \in GL(2, K)$, are well known (cf. [59, Section 8.5], [25]):

- Each T_δ is diagonalizable.
- The characteristic polynomial of T_δ has integral coefficients and its zeroes are real numbers.
- T_δ depends only on the double coset $\Gamma \delta \Gamma$.
- If $\Gamma = \text{SL}(2, \mathcal{O})$, all operators T_δ commute with each other.

3.3 The Eichler-Shimura isomorphism

In this subsection we briefly recall the generalized Eichler-Shimura isomorphism sketched already in the introduction, which will give us the possibility of using results from the theory of automorphic forms in our study of cohomology spaces. See also [32] and [64, Théorème 3.2] for the case of congruence subgroups of $GL(2, K)$, K imaginary quadratic.

From [4, Chapter II] we know that for any integer $n \geq 0$, and any unitary representation π of $G = \text{SL}(2, \mathbb{C})$, the (g, K)-cohomology space $H^1(g, K; H^\infty_2 \otimes E_n)$ is non-trivial if and only if π is the principal series representation $\pi_{2n+2,0}$ (the representation unitarily induced from the character $z \mapsto (z/|z|)^{2n+2}$ of the maximal torus $T \simeq \mathbb{C}^\times$, cf. Section 5), and one-dimensional in this case. Therefore, we can deduce from (1.6) the more explicit isomorphism

$$\text{Hom}(\pi_{2n+2,0}, L^2_{\text{cusp}}(\Gamma \backslash \text{SL}(2, \mathbb{C}))) \simeq H^1_{\text{cusp}}(\Gamma, E_n)$$

(3.9)

for any lattice Γ of G.

For use in Section 4, we quickly rewrite this isomorphism in a form involving $GL(2, \mathbb{C})$. Define a unitary character of \mathbb{C}^\times by $\chi_{\infty}(x) = x/|x|$, and for each integer $n \geq 0$ consider the principal series representation $\rho_n^\infty = \text{PS}(\chi_{\infty}^{n+1}, \chi_{\infty}^{-n-1})$ of $GL(2, \mathbb{C})$. Let $Z_{\infty} \subset GL(2, \mathbb{C})$ be the center of $GL(2, \mathbb{C})$. Then we have an isomorphism

$$\text{Hom}(\rho_n^\infty, L^2_{\text{cusp}}(\Gamma \backslash \text{GL}(2, \mathbb{C})/Z_\infty)) \simeq H^1_{\text{cusp}}(\Gamma, E_n).$$

(3.10)
4 Base change

This section contains our results on the construction of cohomology classes for the Bianchi groups by base change from classical modular forms for congruence subgroups of \(\text{SL}(2, \mathbb{Z}) \) and automorphic induction from Hecke characters of quadratic extensions. In particular, we derive explicit dimension formulas for the corresponding subspaces of the cohomology. For this we fix an imaginary quadratic number field \(K = \mathbb{Q}((\sqrt{d})) \) and use the notation of Section 2.1.

4.1 General results on the base change construction

Here we present the consequences of the theory of base change and automorphic induction for the cohomology of the groups \(\text{SL}(2, \mathfrak{a}) \). We give a precise description of the base change process and the relevant spaces of holomorphic elliptic modular forms. The notation and concepts from the theory of automorphic forms are taken from [4]. For a quadratic extension \(L \) of \(\mathbb{Q} \) denote by \(\omega_L \) the associated quadratic character of \(\mathbb{A}^\ast / \mathbb{Q}^\ast \).

Let \(\mathcal{A}_K \) be the set of all cuspidal automorphic representations of \(\text{GL}(2, \mathbb{A}_K) \). See [50] for information on the base change map \(\pi \mapsto \pi_K \) from \(\text{GL}(2, \mathbb{A}_K) \) to \(\text{GL}(2, \mathbb{A}_K) \). We shall be interested in the following subset of \(\mathcal{A}_K \).

Definition 4.1. The set \(\mathcal{A}_K^{bc} \) of (twisted) base change representations is the set of all \(\Pi \in \mathcal{A}_K \) such that \(\Pi \simeq \pi_K \otimes \chi \) for an automorphic representation \(\pi \) of \(\text{GL}(2, \mathbb{A}_K) \) and an idele class character \(\chi \) of \(K \).

Recall from Section 3.3 the definition of the representations \(\rho_n^{\infty} \) of \(\text{GL}(2, \mathbb{C}) \). For an integer \(n \geq 0 \) and a finite index subgroup \(\Delta \) of \(\hat{\mathcal{O}}^\ast \) consider

\[
\mathcal{A}_K^1(n, \Delta) = \{ \Pi \in \mathcal{A}_{\Delta} | \Pi_{\infty} \simeq \rho_n^{\infty}, \Pi_f^{1(\Delta)} \neq 0 \}
\]

and set

\[
\mathcal{A}_K^1(n) = \bigcup_{\Delta} \mathcal{A}_K^1(n, \Delta).
\]

Furthermore, let \(\mathcal{A}_K^{1, bc}(n, \Delta) = \mathcal{A}_K^1(n, \Delta) \cap \mathcal{A}_K^{bc} \) and \(\mathcal{A}_K^{1, bc}(n) = \mathcal{A}_K^1(n) \cap \mathcal{A}_K^{bc} \). Recall that each representation in \(\mathcal{A}_K \) occurs with multiplicity one in \(L_n^2(\text{cusp}) \text{GL}(2, K) \text{GL}(2, \mathbb{A}_K) \). Furthermore, \(\Pi \in \mathcal{A}_K^1(n) \) is equivalent to the condition that \(\Pi_{\infty} \simeq \rho_n^{\infty} \) and that the local components \(\Pi_p \) at the finite places \(p \) are twists of unramified principal series representations by characters. Therefore, for \(\Pi \in \mathcal{A}_K^1(n, \Delta) \) the space \(\Pi_f^{1(\Delta)} \) is actually one-dimensional.

If we take a subgroup \(\Delta \) of \(\hat{\mathcal{O}}^\ast \) with the property \(\Delta \cap \hat{\mathcal{O}}^\ast = \{ 1 \} \), we have by (2.5) an isomorphism

\[
\bigoplus_{\Delta} \text{Hom}(\rho_n^{\infty}, L_n^2(\text{cusp}) \text{GL}(2, \mathbb{C}) / \mathbb{Z}_\infty)) \simeq \text{Hom}(\rho_n^{\infty}, L_n^2(\text{cusp}) \text{GL}(2, K) \text{GL}(2, \mathbb{A}_K) / \mathbb{Z}_\infty \mathcal{K}(\Delta)),
\]

where \(\mathfrak{a} \) ranges over a system of representatives for the ideal classes of \(K \). Combining the Eichler-Shimura isomorphism from Section 3.3 with multiplicity one and the fact that \(\dim \Pi_f^{1(\Delta)} = 1 \) for \(\Pi \in \mathcal{A}_K^1(n, \Delta) \), we obtain the relation

\[
\sum_{\mathfrak{a}} \dim H_n^1(\text{cusp}) (\text{SL}(2, \mathfrak{a}), E_n) = \frac{[\mathcal{A}_K^1(n, \Delta)]}{[\hat{\mathcal{O}}^\ast : \Delta \mathcal{O}^\ast]}.
\]
It is not difficult to obtain also a finer description distinguishing between the individual cohomology spaces \(\dim H^1_{\text{cusp}}(\text{SL}(2, \mathfrak{a}), E_n) \) for representatives \(\mathfrak{a} \) of different ideal classes. For this consider the action of the abelian group \(X(\Delta) \) on the space \(\text{Hom}(\rho_n^\infty, L^2_{\text{cusp}}(\text{GL}(2, K) \backslash \text{GL}(2, \mathbb{A}_K)/\mathbb{Z}_\infty K(\Delta))) \) given by letting \(\xi \in X(\Delta) \) (see Section 2.1) act as multiplication of functions on

\[
\text{GL}(2, K) \backslash \text{GL}(2, \mathbb{A}_K)/\mathbb{Z}_\infty K(\Delta)
\]

by \(\xi \circ \det \). Considering a basis of \(\text{Hom}(\rho_n^\infty, L^2_{\text{cusp}}(\text{GL}(2, K) \backslash \text{GL}(2, \mathbb{A}_K)/\mathbb{Z}_\infty K(\Delta))) \) consisting of normalized (cf. [64, Section 5]) eigenfunctions for the Hecke algebra of \(K(\Delta) \) (which correspond to the representations in \(\mathcal{A}_K^1(n, \Delta) \)), one sees that the action of \(X(\Delta) \) induces a permutation of this basis, and therefore the trace of the action of a non-trivial element \(\xi \in X(\Delta) \) is equal to the number of elements \(\Pi \in \mathcal{A}_K^1(n, \Delta) \) with \(\Pi \otimes \xi \simeq \Pi \). It is clear that this number can only be non-zero if \(\xi \) is quadratic, and indeed unramified quadratic, i. e. necessarily of the form \(\omega_L \circ N_K/Q \) for an imaginary quadratic field \(L \neq K \) such that \(LK/K \) is unramified (see Proposition 4.5 below). Therefore, we get

\[
\dim H^1_{\text{cusp}}(\text{SL}(2, \mathfrak{a}), E_n) = \frac{1}{|X(\Delta)|} \left(|\mathcal{A}_K^1(n, \Delta)| + \sum_{L \in \mathcal{L}(K)} \omega_L(N_K/Q(\mathfrak{a})) \left| \left\{ \Pi \in \mathcal{A}_K^1(n, \Delta) \mid \Pi \otimes \omega_L \circ N_K/Q \simeq \Pi \right\} \right| \right),
\]

where \(\mathcal{L}(K) \) denotes the set of all imaginary quadratic fields \(L \neq K \) with \(LK/K \) unramified. Furthermore, if \(A \subseteq \mathcal{A}_K^1(n, \Delta) \) is any subset invariant under twisting by characters in \(X(\Delta) \), we can consider inside the space \(L^2_{\text{cusp}}(\text{GL}_2(K) \backslash \text{GL}(2, \mathbb{A}_K)/\mathbb{Z}_\infty K(\Delta)) \) the subspace spanned by representations in \(A \) and apply the same arguments to see that it splits as a direct sum of spaces of functions supported on a single connected component. This implies that it makes sense to speak of the contribution of representations in \(A \) to each space \(H^1_{\text{cusp}}(\text{SL}(2, \mathfrak{a}), E_n) \) and that the dimension of the corresponding subspace is given by

\[
\dim H^1_{\text{cusp}, A}(\text{SL}(2, \mathfrak{a}), E_n) = \frac{1}{|X(\Delta)|} \left(|A| + \sum_{L \in \mathcal{L}(K)} \omega_L(N_K/Q(\mathfrak{a})) \left| \left\{ \Pi \in A \mid \Pi \otimes \omega_L \circ N_K/Q \simeq \Pi \right\} \right| \right). \tag{4.4}
\]

In particular, this dimension depends only on the genus of \(\mathfrak{a} \) and it assumes its maximum on the principal genus. We are especially interested in evaluating the contribution of twisted base change forms to the cohomology, i. e. in the case \(A = \mathcal{A}_K^{1, bc}(n, \Delta) \).

Definition 4.2. For the set \(A_{bc} = \mathcal{A}_K^{1, bc}(n, \Delta) \) define

\[
H^1_{bc}(\text{SL}(2, \mathfrak{a}), E_n) := H^1_{\text{cusp}, A_{bc}}(\text{SL}(2, \mathfrak{a}), E_n) \subseteq H^1_{\text{cusp}}(\text{SL}(2, \mathfrak{a}), E_n).
\]

Note that this definition makes sense, since the right-hand side is indeed independent of the subgroup \(\Delta \) with \(\Delta \cap \mathcal{O}^* = \{1\} \).

Our first goal is to describe the set \(\mathcal{A}_K^{1, bc}(n, \Delta) \) in terms of holomorphic automorphic forms for \(\text{GL}(2, \mathbb{A}_Q) \) fulfilling explicit local conditions. We also need to distinguish the automorphic
Representations of CM type. Recall that for any quadratic extension E/F of number fields there is a canonical map from Hecke characters of E to automorphic representations of $GL(2, \mathcal{A}_E)$ [37] which is called automorphic induction (notation: $AI_{E/F}$). The map is characterized by $AI_{E/F}(\theta \circ N_{E/F}) = AI_{E/F}(\theta) \otimes \chi$ for Hecke characters χ of F, and the L-function identity $L(s, AI_{E/F}(\theta)) = L(s, \theta)$.

The automorphically induced representation is cuspidal if and only if $\lambda^\tau \neq \theta$, where λ is the automorphism of E/F, and the fibers of the automorphic induction map are precisely the orbits $\{\theta, \theta^\tau\}$ of τ. There are compatible local induction maps, which we also denote by AI.

In the following, we fix once and for all for each $p \in \mathcal{R}$ a character θ_p of K^*_p with θ_p/θ_p^τ unramified quadratic.

Definition 4.3. For each $n \geq 0$ let $A^1_Q(n)$ be the set of all cuspidal automorphic representations π of $GL(2, \mathcal{A}_Q)$ such that π_∞ is the holomorphic discrete series representation of weight $n + 2$, π_p is unramified for $p \notin \mathcal{R}$, and of one of the following three types for $p \in \mathcal{R}$:

1. unramified principal series,
2. $PS(\alpha, \omega_{K,p}\beta)$ with α, β unramified characters of Q^*_p,
3. $AI_{K_p/Q_p}(\theta_p) \otimes \gamma$ with an unramified character γ of Q^*_p.

For any (necessarily imaginary) quadratic extension L of Q let $A^1_Q(n; L)$ be the subset of $A^1_Q(n)$ consisting of representations automorphically induced from L. Recall that $\pi \in A^1_Q(n; L)$ if and only if $\pi \otimes \omega_L \simeq \pi$ [46]. We will see that the set of possible extensions L is precisely $\mathcal{L}(K)$.

The basic classification statement is the following proposition. It shows that we obtain the representations in $A^{1, bc}_K(n, \Delta)$ by base change and character twists from the elliptic modular forms satisfying the local conditions of Definition 4.3. Of course, the description depends on the choice of the local characters θ_p for $p \in \mathcal{R}$.

Proposition 4.4. 1. If $\Pi \in A^{1, bc}_K(n)$, one can find $\pi \in A^1_Q(n) \setminus A^1_Q(n; K)$ such that $\Pi \simeq \pi \otimes \chi$ for some finite order idele class character χ of K.
2. If $\Delta \cap O^*_K = \{1\}$, for any $\pi \in A^1_Q(n) \setminus A^1_Q(n; K)$ there exists a finite order idele class character χ of K with $\pi_K \otimes \chi \in A^1_K(n, \Delta)$. The set of all such characters χ is a principal homogeneous space for $X(\Delta)$.

Proof. For an automorphic representation π of $GL(2, \mathcal{A}_Q)$ we have $\pi_K \in A^1_K(n)$ if and only if π is not automorphically induced from K, π_∞ is up to a character twist the holomorphic or anti-holomorphic discrete series representation of weight $n + 2$, and each π_p satisfies up to a character twist the local condition of Definition 4.3. It is not difficult to deduce from this the assertions of the Proposition.

We can also classify the CM representations of interest to us as follows.

Proposition 4.5. 1. If $A^1_Q(n; L)$ is nonempty, L is an imaginary quadratic extension of Q such that for all primes p the character $\omega_{L,p}$ is either unramified or the product of $\omega_{K,p}$ and an unramified character.
2. If for $\Pi \in A^1_K(n)$ there exists a character $\gamma \neq 1$ with $\Pi \otimes \gamma \simeq \Pi$, the character γ is necessarily of the form $\omega_{KL/K} = \omega_L \circ N_{K/Q}$ for some quadratic extension L/Q as above.
The set of all imaginary quadratic number fields different from K and satisfying the conditions of Part 1 of Proposition 4.5 is precisely the set $\mathcal{L}(K)$ of imaginary quadratic fields different from K for which LK/K is unramified. Equivalently, it is the set of all imaginary quadratic fields L for which the discriminant d_L is a proper divisor of the discriminant of K and the two factors d_L and d_K/d_L are coprime.

Consider now for each $\pi \in A_Q^1(n) \setminus A_Q^1(n; K)$ the set
\[
A_K^1(n, \Delta; \pi) := \{ \Pi = \pi_K \otimes \chi | \Pi \in A_K^1(n, \Delta) \}.
\]

Clearly, the sets $A_K^1(n, \Delta; \pi)$ form a partition of $A_K^{1,\text{bc}}(n, \Delta)$. Assuming $\Delta \cap \mathcal{O}_K^1 = \{1\}$, the set $A_K^1(n, \Delta; \pi)$ has cardinality $|X(\Delta)|$, if π is not automorphically induced from any quadratic field L, and $|X(\Delta)|/2$, otherwise. It remains to count for any $\pi \in A_Q^1(n)$ the number of π' with $A_K^1(n, \Delta; \pi') = A_K^1(n, \Delta; \pi)$. We first consider the non-CM representations.

Proposition 4.6. For $\pi \in A_Q^1(n) \setminus \bigcup_{L \in \mathcal{L}(K) \cup \{K\}} A_Q^1(n; L)$ the set
\[
\{ \pi' \in A_Q^1(n) | A_K^1(n, \Delta; \pi') = A_K^1(n, \Delta; \pi) \}
\]

consists of the twists $\pi \otimes \gamma$ for all characters γ such that γ_p is unramified for all p where π_p is unramified, and γ_p is unramified or the product of ω_{K_p} and an unramified character at the primes p where π_p is ramified. In particular, it has cardinality $2^{|R(\pi)|}$, where $R(\pi) \subseteq R$ denotes the set of all primes p where π_p is ramified.

Therefore, if we want to write the cardinality of $A_K^{1,\text{bc}}(n, \Delta)$ as a sum over all representations $\pi \in A_Q^1(n) \setminus A_Q^1(n; K)$, each non-CM representation $\pi \in A_Q^1(n) \setminus \bigcup_{L} A_Q^1(n; L)$ has to be weighted by the factor $|X(\Delta)|2^{-|R(\pi)|}$.

Example 4.7. Consider the case where a single prime p is ramified in K. In this case, the set $A_Q^1(n)$ consists of the automorphic representations associated to classical modular forms of weight $n + 2$ for $\Gamma_0(p)$, or of p-power level with $\pi_p \simeq A_1(\theta_p) \otimes \gamma_p$, γ_p unramified. The CM forms for K have to be omitted. In this case, there are no other fields L to be considered. To obtain the dimension of $H_{1, \text{clo}}^r(\mathbb{SL}_2(\mathcal{O}), E_n)$, the dimension of the corresponding spaces of modular forms has to be weighted by a factor $1/2$ except in the $SL(2, \mathbb{Z})$ case.

In the count for the representations in $A_K^{1,\text{bc}}(n, \Delta)$, the main term is therefore given by $|X(\Delta)| \sum_{\pi \in A_Q^1(n)} 2^{-|R(\pi)|}$. The contributions from CM representations have to be modified by omitting the representations automorphically induced from the field K and weighting the contribution of the representations induced from quadratic fields $L \in \mathcal{L}(K)$ by an additional factor $1/2$. The reason for this is that for these representations there are more equivalences $A_K^1(n, \Delta; \pi') = A_K^1(n, \Delta; \pi)$ than in the non-CM case.

To give some more details, we first explicate the local conditions on CM representations in $A_Q^1(n)$. Recall the definition of the local character at infinity χ_∞ in Section 3.3.

Lemma 4.8. Let $L \in \mathcal{L}(K)$ be an imaginary quadratic field. Write $\tilde{\Lambda}_L^{1,\text{bc}}(\theta_p) = \Lambda_L(\theta_p, L_p)$ with a character θ_p, L_p of L_p^\times for all $p \in R$ where p is non-split in L (note that this is possible). For an idele class character ψ of L with $\psi_\infty = \chi_\infty^{-n-1}$ and unramified at primes not above primes in R we have $\tilde{\Lambda}_L^{1,\text{bc}}(\psi) \in A_Q^1(n)$ if and only if the following local conditions are satisfied:

\[\text{...} \]
1. If \(p \in \mathcal{R} \) splits in \(L \), \(\psi_p \) is either unramified or of the form \((\alpha_p, \omega_{K,p} \beta_p) \) or \((\omega_{K,p} \alpha_p, \beta_p) \) for unramified characters \(\alpha_p \) and \(\beta_p \) of \(\mathbb{Q}_p^\times \).

2. If \(p \in \mathcal{R} \) is inert in \(L \), \(\psi_p \) is either unramified or the product of \(\theta_{p,L_p} \) or \(\theta_{p,L_p}^c \) and an unramified character.

3. If \(p \in \mathcal{R} \) ramifies in \(L \), \(\psi_p \) is either unramified or the product of \(\theta_{p,L_p} \) and an unramified character.

We can also explicate the equivalence relation \(A_{K,1}^1(n, \Delta; \pi') = A_{K,1}^1(n, \Delta; \pi) \) for these representations.

Lemma 4.9. If \(A_{K,1}^1(n, \Delta; \pi') = A_{K,1}^1(n, \Delta; \pi) \) for \(\pi, \pi' \in A_{Q,1}^1(n) \) which are automorphically induced from quadratic extensions, they are necessarily induced from the same quadratic extension \(L \). Furthermore, for \(\pi = \Lambda_{L/Q}(\psi) \) and \(\pi' = \Lambda_{L'/Q}(\psi') \) with \(\psi \) and \(\psi' \) as above, the equivalence \(A_{K,1}^1(n, \Delta; \pi') = A_{K,1}^1(n, \Delta; \pi) \) is true if and only if either \(\delta = \psi'/\psi = \gamma \circ N_{L/Q} \) for some idele class character \(\gamma \) of \(\mathbb{Q} \) or \(\delta/\delta^c = \omega_{K} \circ N_{L/Q} \).}

With these descriptions in hand, one can obtain a preliminary formula for the cardinality of \(A_{K,1}^{1,bc}(n, \Delta) \), which will in a second step be refined to a completely explicit expression. Using (4.4) we can then compute the contribution to the cohomology of each individual group \(\text{SL}(2, \mathcal{Q}) \).

To simplify the notation, we need the following definition: for an integer \(n \) and an imaginary quadratic field \(L \) define \(\nu_{L,n} \in \{0, 1\} \) as follows:

1. If \(L = \mathbb{Q}(\sqrt{-3}) \), set \(\nu_{L,n} = \begin{cases} 1, \text{ if } n \equiv 2 (3), \\ 0, \text{ otherwise.} \end{cases} \)

2. If \(L = \mathbb{Q}(i) \), set \(\nu_{L,n} = \begin{cases} 1, \text{ if } n \equiv 1 (2), \\ 0, \text{ otherwise.} \end{cases} \)

3. If \(L \) is not one of the two exceptional fields, we simply set \(\nu_{L,n} = 1 \) for all \(n \).

Proposition 4.10.

1. The cardinality of the set \(A_{K,1}^{1,bc}(n, \Delta) \) is given by

\[
\frac{|A_{K,1}^{1,bc}(n, \Delta)|}{|X(\Delta)|} = \sum_{\pi \in A_{Q,1}^1(n)} 2^{-|R(\pi)|} - \nu_{K,n} \frac{h_K}{2} - \sum_{L \in \mathcal{L}(K)} \nu_{L,n} 2^{|R|-|R_L|-2} h_L.
\]

2. For \(L \in \mathcal{L}(K) \) we have

\[
\frac{\left| \{ \Pi \in A_{K,1}^{1,bc}(n, \Delta) \mid \Pi \otimes \omega_L \circ N_{K/Q} \simeq \Pi \} \right|}{|X(\Delta)|} = \nu_{L,n} 2^{|R|-|R_L|-2} h_L.
\]

Combining this Proposition with (4.4) and the fact that \(|A_{Q,1}^1(n; K)| = \nu_{K,n} 2^{|R|-1} h_K \), we can immediately deduce:
Proposition 4.11. The dimension of the base change part of the cohomology of the group \(SL(2, \mathfrak{a}) \) is given by

\[
\dim H^1_{bc}(SL(2, \mathfrak{a}), E_n) = \sum_{\pi \in \mathcal{A}_q(n)} 2^{-|R|} - \nu_{K,n} \frac{h_K}{2} - \sum_{L \in \mathcal{L}(K), \omega_L(N(\mathfrak{a})) = -1} \nu_{L,n} 2^{2|R| - |R_L| - 1} h_L.
\]

4.2 CM classes

As a consequence we also obtain the following results on cohomology spaces associated to CM automorphic forms. We introduce the following notation.

Definition 4.12. If \(A_{CM} \subseteq \mathcal{A}_1^1 \) is the subset of all automorphic representations automorphically induced from quadratic extensions of \(K \), defines

\[
H^1_{CM}(SL(2, \mathfrak{a}), E_n) := H^1_{cusp, A_{CM}}(SL(2, \mathfrak{a}), E_n) \subseteq H^1_{cusp}(SL(2, \mathfrak{a}), E_n).
\]

Note that the corresponding space is again independent of the choice of \(\Delta \) with \(\Delta \cap \mathcal{O}^* = \{1\} \).

First consider the intersection of this space with \(H^1_{bc} \). The following proposition follows immediately from (4.4) and Proposition 4.10, Part 2:

Proposition 4.13. For \(L \in \mathcal{L}(K) \) the representations in \(\mathcal{A}_1^{bc}(n, \Delta) \) automorphically induced from \(KL \) contribute to \(H^1_{bc}(SL(2, \mathfrak{a}), E_n) \) a space of dimension

\[
\left\{
\begin{array}{ll}
\nu_{L,n} 2^{2|R| - |R_L| - 1} h_L, & \text{if } \omega_L(N(\mathfrak{a})) = 1, \\
0, & \text{otherwise}.
\end{array}
\right.
\]

We can also consider all representations in \(\mathcal{A}_1^K(n, \Delta) \) automorphically induced from a fixed quadratic extension of \(K \), necessarily of the form \(KL \) for an imaginary quadratic extension \(L \) as above. For this, let \(L' \) be the real quadratic subfield of \(KL \) and \(h^+_L \), its narrow ideal class number. The total number of such representations is then equal to

\[
\frac{|X(\Delta)|}{2} \nu_{L,n} h_L h^+_L, \quad (4.5)
\]

Consequently, we obtain:

Proposition 4.14. For \(L \in \mathcal{L}(K) \) the contribution of representations automorphically induced from \(KL \) to \(H^1_{cusp}(SL(2, \mathfrak{a}), E_n) \) has dimension

\[
\left\{
\begin{array}{ll}
\nu_{L,n} h^+_L h_L, & \text{if } \omega_L(N(\mathfrak{a})) = 1, \\
0, & \text{otherwise}.
\end{array}
\right.
\]

Note that this is precisely the contribution of twisted base change representations of the corresponding type times a factor of \(h^+_L/2^{2|R| - |R_L|-1} \), which is the number of narrow ideal classes in a narrow genus of \(L' \).

The following relation between the dimension of the cohomology spaces for \(SL(2, \mathfrak{a}) \) and \(SL(2, \mathcal{O}) \) follows immediately from (4.5) and (4.4), this time applied with \(A = \mathcal{A}_1^K(n, \Delta) \):
Proposition 4.15. For any fractional ideal \(a \) of \(K \) we have
\[
\dim H^1_{\text{cusp}}(\text{SL}(2, a), E_n) = \dim H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}), E_n) - \sum_{L \in \mathcal{L}(K), \omega_L(N(a))=-1} \nu_{L,n} h^+_L h_L.
\] (4.6)

Corollary 4.16. For \(L \in \mathcal{L}(K) \) there exist representations in \(A^1(n, \Delta) \) automorphically induced from \(KL \), which are not twisted base changes from \(\mathbb{Q} \), if and only if the narrow ideal class number \(h^+_L \) of the real quadratic subfield \(L' \) of \(KL \) is bigger than the corresponding number \(g^+_L = 2^{\mathcal{R}(L')}^{-1} \) of genera. In this case, the contribution of these representations to the dimension of \(H^1_{\text{cusp}}(\text{SL}(2, a), E_n) \) is independent of \(n \), if \(L \) is not one of the two exceptional fields \(\mathbb{Q}(\sqrt{-3}) \) and \(\mathbb{Q}(i) \) and constant on residue classes modulo 3 and 2, respectively, in the two exceptional cases.

The existence of such representations (i.e. the failure of the relation \(H^1_{\text{CM}} \subseteq H^1_{\text{bc}} \) for the field \(K \)) is equivalent to the existence of a real quadratic field \(L' \) with \(h^+_L > g^+_L = 2^{\mathcal{R}(L')}^{-1} \) and \(KL'/K \) unramified (equivalently, \(d_{L'} \) divides the discriminant \(d_K \) and \(d_{L'}/d_K \) are coprime).

In the following table we give the real quadratic fields \(L' = \mathbb{Q}(\sqrt{D}) \) with the five smallest discriminants, for which the criterion of Corollary 4.16 is satisfied.

\(D = d_{L'} \)	\(g^+ \)	\(h^+ \)
136 = 8 · 17	2	4
145 = 5 · 29	2	4
205 = 5 · 41	2	4
221 = 13 · 17	2	8
229	1	3

4.3 Dimension formulas

We now deduce from the preliminary formula of Proposition 4.11 a completely explicit dimension formula for \(H^1_{\text{bc}} \). For \(p \in \mathcal{R} \) let \(\nu_p \) be the exact power of \(p \) dividing the discriminant of \(K \). We have \(\nu_p = 1 \) for \(p \neq 2 \) and \(\nu_2 = 2 \) or 3.

For any integer \(n \) set
\[
\varepsilon_n = \begin{cases} (-1)^{n/2}/4, & \text{if } n \equiv 0 \pmod{2}, \\ 0, & \text{otherwise}, \end{cases} \quad \text{and} \quad \mu_n = \begin{cases} 0, & \text{if } n \equiv 1 \pmod{3}, \\ -\frac{1}{3}, & \text{if } n \equiv 2 \pmod{3}, \\ \frac{4}{3}, & \text{if } n \equiv 0 \pmod{3}. \end{cases}
\] (4.7)

Theorem 4.17. Let \(K = \mathbb{Q}(\sqrt{d}) \) be an imaginary quadratic number field with ring of integer \(\mathcal{O} \) and \(n \) be a non-negative integer. We have
\[
\dim H^1_{\text{bc}}(\text{SL}(2, \mathcal{O}), E_n) = \left(\frac{1}{24} \prod_{p \in \mathcal{R}} (p^{\nu_p} + 1) + c_2(-1)^{n+1} \right) (n+1)
\]
\[
- \nu_{K,n} \frac{h_K}{2} - 2^{\mathcal{R}|\mathcal{R}|^{-2}} + 4\varepsilon_n + c_3\mu_n + \delta_{n,0},
\]
where \(\delta_{n,0} \) stands for the Kronecker delta symbol. The constant \(c_2 \) is given by
\[
c_2 = \begin{cases} 2^{\mathcal{R}|\mathcal{R}|^{-4}}, & \text{if } p \equiv 1 \pmod{4} \text{ for all } p \in \mathcal{R}, p \neq 2, \\ 0, & \text{otherwise}. \end{cases}
\]
The constants c_4 and c_3 are given by

$$c_4 = \begin{cases} 2^{\lvert \mathbb{R} \rvert}, & \text{if } p \equiv 1 \text{ or } 3 \ (8) \text{ for all } p \in \mathbb{R}, \\ 2^{\lvert \mathbb{R} \rvert - 1}, & \text{if } 2 \in \mathbb{R} \text{ and } p \equiv 1 \text{ or } 3 \ (8) \text{ for all } p \in \mathbb{R}, \ p \neq 2, \\ 0, & \text{otherwise}, \end{cases}$$

and

$$c_3 = \begin{cases} 2^{\lvert \mathbb{R} \rvert - 1}, & \text{if } p^{\nu_p} \equiv 1 \ (3) \text{ for all } p \in \mathbb{R}, \\ 2^{\lvert \mathbb{R} \rvert - 2}, & \text{if } 3 \in \mathbb{R} \text{ and } p^{\nu_p} \equiv 1 \ (3) \text{ for all } p \in \mathbb{R}, \ p \neq 3, \\ 0, & \text{otherwise}. \end{cases}$$

Furthermore, for any fractional ideal \mathfrak{a} of K we have

$$\dim H^1_{bc}(\text{SL}(2, \mathfrak{a}), E_n) = \dim H^1_{bc}(\text{SL}(2, \mathcal{O}), E_n) - \sum_{L \neq K, \omega_L(N(\mathfrak{a}))=1} \nu_{L, k} 2^{\lvert \mathbb{R} \rvert - 1} h_L.$$

It is interesting to compare the resulting lower bound for the dimension of the cohomology group $H^1_{cusp}(\text{SL}_2(\mathcal{O}), \mathbb{C})$ with the lower bound obtained by Rohlfs [53]. In the work of Krämer [45] a lower bound for the dimension $H^1_{cusp}(\text{SL}_2(\mathcal{O}), \mathbb{C})$ agreeing with the bound $\dim H^1_{bc}(\text{SL}_2(\mathcal{O}), \mathbb{C})$ of the above theorem is derived by a different method.

Given Proposition 4.11, the proof of Theorem 4.17 rests on the computation of spaces of holomorphic elliptic modular forms with fixed local components. We summarize the ingredients necessary to carry out this task in the remaining part of this subsection, while omitting some elementary computations. The possible local components are given in Definition 4.3. The dimension computation is based on the following Proposition.

Proposition 4.18. Let $N \geq 1$ and $k \geq 2$ be integers and σ a representation of $G_N = \text{SL}(2, \mathbb{Z}/N\mathbb{Z})$ such that $\sigma(-I_2)$ is the scalar $(-1)^k$. Let $U_N \subseteq G_N$ be the subgroup of all upper triangular unipotent elements and S_3 and S_4 the images in G_N of elements of $\text{SL}(2, \mathbb{Z})$ of order 3 and 4, respectively. Then

$$\dim \text{Hom}_{G_N}(\sigma, S_k(\Gamma(N))) = \frac{k - 1}{12} \dim \sigma - \frac{1}{2} \dim \sigma^U_N + \varepsilon_k \text{ tr } \sigma(S_4) + \rho_k \text{ tr } \sigma(S_3) + \delta_{k, 2} \dim \sigma^{G_N}.$$

It is not difficult to prove this Proposition using the description of $\text{SL}(2, \mathbb{Z})$ as an amalgamated product of $(-S_3)$ and (S_4) and the Eichler-Shimura isomorphism. Of course, it is also a consequence of the trace formula. By taking for σ a representation induced from the Borel subgroup, one recovers the classical dimension formulas for the group $\Gamma_0(N)$ with nebentype (cf. [12]).

It remains to make explicit the representations of $\text{SL}(2, \mathbb{Z}/N\mathbb{Z})$ corresponding to the local conditions of Definition 4.3 and to compute the terms appearing in Proposition 4.18. Actually, we will consider irreducible representations σ of $\text{GL}(2, \mathbb{Z}/N\mathbb{Z})$ occurring in the automorphic representations in question with multiplicity one and use their restrictions to $\text{SL}(2, \mathbb{Z}/N\mathbb{Z})$. The representations σ can be written as tensor products of representations σ_p of $\text{GL}(2, \mathbb{Z}/p^{\nu_p}\mathbb{Z})$ for $p \in R(\pi)$. For the principal series representations of Definition 4.3 the necessary computation of dimensions and character values is standard and we refer to [12]. For the convenience of the reader we repeat the results here. The dimension of the corresponding representation σ_p is $p^{\nu_p-1}(p + 1)$. The dimension
of the space of U_N-invariants equals 2. The character values are given by

$$\text{tr} \sigma_p(S_3) = \begin{cases}
0, & \text{if } p \equiv 2 \pmod{3}, \\
1, & \text{if } p = 3, \\
2, & \text{if } p \equiv 1 \pmod{3},
\end{cases}$$

and

$$\text{tr} \sigma_p(S_4) = \begin{cases}
2(-1)^{(p-1)/4}, & \text{if } p \equiv 1 \pmod{4}, \\
0, & \text{otherwise}.
\end{cases}$$

The parity of σ_p is equal to $\omega_{K,p}(-1)$.

For the supercuspidal components we can use the constructions of [8].

Lemma 4.19. Let $p \in R$ and \mathbb{Q}_p^{2} be the unramified quadratic extension of \mathbb{Q}_p. We can write the representation $\pi_p = \text{AI}_{K_p/\mathbb{Q}_p}(\theta_p)$ as $\text{AI}_{\mathbb{Q}_p^{2}/\mathbb{Q}_p}(\theta_p')$ with a character θ_p' of \mathbb{Q}_p^{2} fulfilling $\theta_p'/(\theta_p')^r = \omega_{K,p} \circ N_{\mathbb{Q}_p^{2}/\mathbb{Q}_p}$. The minimal conductor of such a character is p^n. Assume in the following that θ_p' has this minimal conductor. Then π_p contains (with multiplicity one) a unique representation of $\text{GL}(2,\mathbb{Z}_p)$, and this representation factors through a representation σ_p of $\text{GL}(2,\mathbb{Z}/p^n\mathbb{Z})$. The dimension of σ_p is $p^{n-1}(p-1)$. If p is odd, σ_p is the cuspidal representation of $\text{GL}(2,\mathbb{F}_p)$ associated to the character of \mathbb{F}_p^{2} obtained by restricting θ_p'.

Furthermore, we have the following values for the traces at the torsion elements of $\text{SL}(2,\mathbb{Z})$:

$$\text{tr} \sigma_p(S_3) = \begin{cases}
0, & \text{if } p \equiv 1 \pmod{3}, \\
-2, & \text{if } p \equiv 2 \pmod{3}, p > 2, \text{ or } p = 2, \nu_p = 3, \\
-1, & \text{if } p = 3, \\
2, & \text{if } p = 2, \nu_p = 2,
\end{cases}$$

and

$$\text{tr} \sigma_p(S_4) = \begin{cases}
2(-1)^{(p-3)/4}, & \text{if } p \equiv 3 \pmod{4}, \\
0, & \text{otherwise}.
\end{cases}$$

The parity of σ_p is $-\omega_{K,p}(-1)$ except in the case $p = 2, \nu_p = 2$, where it is -1 while $\omega_{K,p}(-1) = -1$.

Proof. We quickly sketch the ingredients of the proof. Everything is based on the Tame Parametrization Theorem of [8, Theorem 20.2] and the explicit constructions in its proof. The case of odd p is covered by [loc. cit., 19.1]. Dimensions and character values can then be read off from the standard description of cuspidal representations over finite fields in [loc. cit., 6.4]. For $p = 2$ we need the constructions of [loc. cit., 19.3, 19.4] together with [loc. cit., 15.8] to describe the representations of $\text{GL}(2,\mathbb{Z}_2)$ and to compute the character values. The dimension statement can be found in [loc. cit., Lemma 27.6].

We can now finish the proof of Theorem 4.17. For any tensor product of local representations σ_p the dimensions and character values are obtained by multiplication. The space of U_N-invariants is non-trivial only if all local components are principal series representations. The last term in Proposition 4.18 only appears for representations of level one (i.e. for σ the trivial representation). It remains to compute for each n the sum of the contributions in Proposition 4.11 for all possible combinations of local components with total parity $(-1)^n$. This is a tedious but elementary computation which we omit here.
4.4 Bounds for the cohomology of Bianchi groups

In this subsection we use the results of Section 4.3 to give some bounds for the dimension of the cohomology spaces $H^1(\text{SL}(2, \mathcal{O}_d), E_n)$ as $|d|$ or n go to infinity. The first result is a more or less obvious consequence of Theorem 4.17.

Corollary 4.20. Let K be an imaginary quadratic number field with ring of integers \mathcal{O}_K. There is a bound $C_1 > 0$ such that

$$\dim H^1(\text{SL}(2, \mathcal{O}_K), E_n) \geq C_1 n \quad \text{(as } n \to \infty).$$

For the proof we only have to show that the coefficient of $n + 1$ in the formula of Theorem 4.17 is non-negative.

The second result we see as a complement to the following theorem which is proved in [3].

Theorem 4.21. Let G be a simple Lie group with Haar measure μ. There is a constant $C_2 > 0$ such that $d(\Gamma)$ is at most $C_2 \text{vol}(G/\Gamma)$ for every lattice Γ in G where $d(\Gamma)$ is the minimal number of generators of Γ.

To use this theorem note that

$$\text{vol}(\text{SL}(2, \mathcal{C})/\text{SL}(2, \mathcal{O}_d)) = \frac{|d|^{3/2}}{4\pi^2} \zeta_K(2)$$

where $\zeta_K(s)$ is the Dedekind zeta function of K, see [20, Section 7]. It is easy to see that $\zeta_K(2)$ is bounded between two positive real numbers for all imaginary quadratic fields K. In view of Lemma 3.1 we obtain

Corollary 4.22. Let n be a (fixed) non-negative integer. There is a constant $C_3 > 0$ such that

$$\dim H^1(\text{SL}(2, \mathcal{O}_d), E_n) \leq C_3 |d|^{3/2} \quad \text{as } |d| \to \infty.$$

Proposition 4.23. Let n be a (fixed) non-negative integer. There is a constant $C_4 > 0$ such that

$$\dim H^1(\text{SL}(2, \mathcal{O}_d), E_n) \geq C_4 |d| \quad \text{as } |d| \to \infty.$$

4.5 Base change and cocompact arithmetic groups

By the work of Labesse-Schwermer [47] and Rajan [52], it is possible to use base change and the Jacquet-Langlands correspondence to study the cohomology of the cocompact arithmetic groups Γ associated to quaternion algebras defined over fields L such that the extension L/L^{tr}, where L^{tr} is the maximal totally real subfield of L, is solvable (but not necessarily Galois). The resulting bound for $\dim H^1(\Gamma, E_n)$ is determined by the dimension of certain spaces of Hilbert modular forms of weight $(n + 2, 2, \ldots, 2)$ for L^{tr}, and will be again linear on congruence classes. We do not go into the details here. Note that, in contrast to the case of the Bianchi groups, for a particular group Γ the resulting bound will often be trivial. If we however consider the collection of all congruence subgroups, the conjecture of Waldhausen and Thurston has been verified for these groups by Rajan [52]. We can easily deduce from his arguments the following qualitative result:
Proposition 4.24. Let \(\Gamma \) be an arithmetic subgroup of \(\text{SL}(2, \mathbb{C}) \) such that the field of definition \(L \) of the corresponding quaternion algebra is a solvable extension of its maximal totally real subfield \(L^\text{tr} \). Then for every \(c > 0 \) there exists a finite index subgroup \(\Delta \) of \(\Gamma \) such that

\[
\dim H^1(\Delta, E_n) > cn
\]

for all \(n \geq 0 \).

Proof. By [47, 52], for a suitable \(\Delta \) a lower bound for the dimension of the cohomology is given by the dimension of the space of Hilbert modular newforms of weight \((n + 2, 2, \ldots, 2)\) for certain congruence subgroups of \(\text{GL}(2, L^\text{tr}) \). By adding additional local conditions, it is easily seen that it is possible to assume that the subgroups in question are torsion-free. Furthermore, their covolume can be made arbitrarily large by changing \(\Delta \). Shimizu's dimension formula [58] implies then that for any \(c > 0 \) we can find a subgroup \(\Delta \) such that the dimension of the corresponding space of Hilbert modular forms is \(\geq c(n + 1) \) for all \(n \geq 0 \).

If base change for \(\text{SL}(2) \) for arbitrary extensions of number fields was available, one could prove the corresponding result for all arithmetic lattices. This provides strong theoretical evidence for a positive answer to Question 1.14 for arithmetic lattices.

5 Upper bounds for the dimension of \(H^1 \)

In this section we derive upper bounds for the dimension of the cohomology spaces \(H^1(\Gamma, E_n) \) by using the generalized Eichler-Shimura isomorphism to transform the problem into a question on multiplicities of representations in \(L^2(\text{SL}(2, \mathbb{C})/\Gamma) \) and then using the trace formula to get information on these multiplicities. We first set up the form of the trace formula we need by specializing the work of W. Hoffmann [35, 36] to our situation. Then we consider the behavior of the dimension of \(H^1(\Gamma, E_n) \) as a function of \(n \) and its behavior for fixed \(n \) as \(\Gamma \) varies over the standard congruence subgroups \(\Gamma_0(\mathfrak{a}) \) of a Bianchi group (our result is in fact slightly more general, cf. Theorem 5.5 below).

5.1 Review of the invariant trace formula for \(\text{SL}(2, \mathbb{C}) \)

Let \(\Gamma \) be a general discrete subgroup of \(G = \text{SL}(2, \mathbb{C}) \) of finite covolume and consider the discrete part of \(L^2(G/\Gamma) \), which is a Hilbert space direct sum of irreducible unitary representations \(\pi \) of \(G \), each one occurring with a finite multiplicity \(m(\pi, \Gamma) \). The irreducible unitary representations of \(G \) most important to us are the principal series representations \(\pi_{m,\nu} \) for integers \(m \) and real parameters \(\nu \), which are obtained by unitary induction from the characters

\[
\sigma_{m,\nu}(e^{i(u+i\theta)}) = e^{i(m\theta)}
\]

of the maximal torus \(T \simeq \mathbb{C}^\times \) of \(G \). The representations \(\pi_{m,\nu} \) and \(\pi_{-m,-\nu} \) are equivalent.

We are interested in bounding the multiplicities \(m(\pi_{m,0}) \) from above. As explicated above, the dimension of \(H^1_{\text{cusp}}(\Gamma, E_n) \) is the same as the multiplicity \(m(\pi_{2n+2,0}) \).

We first recall the trace formula for \(L^2(G/\Gamma) \) in the form in which it has been explicitly worked out by Hoffmann for lattices of rank one [36]. We specialize his results to the simpler case of \(G = \text{SL}(2, \mathbb{C}) \) and the trivial Hecke operator. As a preparation, we need to recall the basic relations between orbital integrals and principal series characters and the explicit form of the Plancherel
Then $J_D f \in C_c^\infty(T)$ defined by

$$F_\Gamma^\dagger(t) = e^{2u} \int_{K\times N} f(ktnk^{-1})dkdn.$$

For $g \in G$ set

$$D_G(g) = \det (1 - \text{ad}(g)).$$

Then $|D_G(g)|^{1/2} = |t - t^{-1}|^2$ for a regular semisimple element g with eigenvalues t and t^{-1}, and $D_G(g) = 1$ otherwise. For $g \in G$ define the orbital integral

$$J_G(g, f) = |D_G(g)|^{1/2} \int_{G/G} f(xgx^{-1})dx.$$

Then $J_G(t, f) = F_\Gamma^\dagger(t)$ for all regular elements $t \in T$ [loc. cit., (11.13), (11.14)]. From this one sees immediately that $F_\Gamma^\dagger(t) = F_\Gamma^\dagger(t^{-1})$. It is also easy to see that $F_\Gamma^\dagger(\pm 1) = 8\pi J_G(\pm n_1, f)$ for $n_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. The Fourier transform of F_Γ^\dagger yields the characters of the principal series representations:

$$\Theta_{m, i\nu}(f) = \frac{1}{2\pi} \int_T F_\Gamma^\dagger(e^{u+i\theta})e^{i(u+m\theta)}du d\theta$$

and

$$F_\Gamma^\dagger(e^{u+i\theta}) = \frac{1}{2\pi} \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} \Theta_{m, i\nu}(f)e^{-i(u+m\theta)}dv.$$

The Plancherel formula for G is given by [loc. cit., Theorem 11.2] (up to a minor correction):

$$f(1) = \frac{1}{16\pi^2} \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} \Theta_{m, i\nu}(f)(m^2 + \nu^2)dv. \quad (5.1)$$

For a discrete subgroup Γ of G of finite covolume let C be the set of all cuspidal parabolic subgroups of G, i.e., of all parabolic subgroups fixing a cusp of Γ. Let $\Gamma(\ast)$ be the set of all semisimple elements of Γ which do not fix a cusp together with the elements of $\Gamma \cap \{\pm 1\}$, and on the other hand Γ_{cc} the set of semisimple elements of Γ different from ± 1 and stabilizing a cusp. For $\xi \in \Gamma_{cc}$ let $A(\xi)$ be the unique conjugate of the real torus $A \subseteq T$ in the centralizer of ξ. For the definition of the weight factor v_ξ for $\xi \in \Gamma_{cc}$ we refer to [36, p. 105]. For each $P \in C$ let $\Gamma_M(P)$ be the set of projections to a Levi component L of P of the elements of $\Gamma \cap P$. We define constants $C(P, \eta, \Gamma)$ (called $C_P(\eta_{m_1}, \chi_1)$ in [loc. cit., p. 106]) in terms of Epstein zeta functions associated to $\eta \Gamma \cap N$. Namely, $C(P, \eta, \Gamma)$ is the constant term in the Laurent expansion at $z = 1$ of the function

$$C(P, \eta, \Gamma; z) = \frac{2\text{vol}(N/\Gamma \cap N)}{|\Gamma_M(P)|} \sum_{\xi \in \eta \Gamma \cap N \setminus \Gamma \neq 1} \frac{1}{|a(\xi)|^{2z}},$$

29
where we choose $k_P \in K$ such that $k_P^{-1}P k_P$ is the standard upper triangular Borel subgroup P_0 and write

$$\xi = k_P \begin{pmatrix} 1 & u(\xi) \\ 0 & 1 \end{pmatrix} k_P^{-1}, \quad \xi \in N.$$

The absolute value of $u(\xi)$ does not depend on the choice of k_P. For $\eta = 1$ we can write $C(P,1,\Gamma) = 2\pi \kappa_M(P)/|\Gamma_M(P)|$ for the lattice $\Lambda(P) = u(\Gamma \cap N) \subset \mathbb{C}$, where κ_M denotes the constant term in the expansion of $\sum_{\lambda \in \Lambda \setminus \{0\}} |\lambda|^{-2z}$ at $z = 1$ (this notation agrees with [20, Lemma 6.5.2]). We also need distributions $I_L(\eta)$, which are Arthur's invariant modifications of weighted orbital integrals (cf. [loc. cit., Sect. 5]). Finally, let $\Phi(\sigma_{m,s})$ be the scattering matrix of Γ defined in [loc. cit., p. 122] (and denoted by $S(\chi_\Gamma, \tilde{w}, \sigma_\lambda)$ there) and $\phi = \det \Phi$ its determinant (with respect to a suitable identification of the vector spaces in question, the choice of which is unimportant). We can now quote [36, Theorem 6.4], specialized to our situation.

Theorem 5.1. For $f \in C_\infty^\infty(G)$ the trace of the corresponding convolution operator on the discrete part of $L^2(G/\Gamma)$ is given by

$$\text{tr} \pi_{\Gamma, \text{disc}}^\Gamma(f) = \sum_{\{\xi \Gamma \cap \Gamma(+)\} \subset \Gamma(\ast)} \text{vol}(G_\xi/\Gamma_\xi) |D_G(\xi)|^{-1/2} J_G(\xi, f)$$

$$+ \sum_{\{\xi \Gamma \cap \Gamma_{ce}\} \subset \Gamma(\ast)} \text{vol}(G_\xi/\Gamma_\xi A(\xi)) |D_G(\xi)|^{-1/2} J_G(\xi, f)$$

$$+ \sum_{P \in \mathcal{C}, \eta \in \Gamma_M(P) \cap \{\pm 1\}} C(P, \eta, \Gamma) J_G(\eta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, f)$$

$$+ \frac{1}{2} \sum_{P \in \mathcal{C}, \eta \in \Gamma_M(P)} |\Gamma_M(P)|^{-1} I_L(\eta, f)$$

$$+ \frac{1}{4\pi} \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} \frac{\phi^I(\sigma_{m,iv})}{\phi(\sigma_{m,iv})} \Theta_{m,iv}(f) dv$$

$$- \frac{1}{4} \text{tr} \Phi(\sigma_{0,0}) \Theta_{0,0}(f).$$

The distributions $I_L(\eta)$ can be explicitly described in terms of the character values $\Theta_{m,iv}(f)$. We need here only the limiting case $\eta = 1$. Denote by $\psi(s) = \Gamma^I(s)/\Gamma(s)$ the logarithmic derivative of the gamma function. The following Proposition follows easily from Hoffmann’s work in [35].

Proposition 5.2. For the trivial element of G the distribution $I_L(1)$ is given by

$$I_L(1, f) = \frac{1}{2\pi} \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} \Omega_L(1, \sigma_{m,iv}) \Theta_{m,iv}(f) dv + \frac{1}{2} \Theta_{0,0}(f)$$

with the function

$$\Omega_L(1, \sigma_{m,iv}) = \psi(1) - \text{Re} \psi\left(\frac{m + iv}{2}\right).$$

Note that although the function ψ has a simple pole at $s = 0$, the real part of $\psi(iv/2)$ is continuous at $\nu = 0$, and in fact $\text{Re} \psi(iv/2) = \text{Re} \psi(1 + iv/2)$.

Proof. Hoffmann considers invariant distributions I_P closely related to I_L, cf. [35, p. 58 bottom] for their precise relation. The normalization factor $r_{P_P}(\sigma_{m,iv})$ there is up to a constant.
equal to \(1/(|m| + iv)\) (cf. [44]). The distributions \(I_P(1)\) are explicitly given by [loc. cit., p. 96, Corollary]. Note that we have only two roots \(\alpha\) and \(\bar{\alpha}\) and have to insert \(\lambda(H_\alpha) = (m + iv)/2\) and \(\lambda(H_{\bar{\alpha}}) = (-m + iv)/2\) into the expression given there. Putting everything together and using the well-known relation \(\Gamma(s)\Gamma(1-s) = \pi/\sin \pi s\), one obtains the formula above.

The reader may compare the resulting explicit trace formula, which involves only the function \(F_T f\) on \(T\) and its Fourier transform, with the trace formula for \(K\)-biinvariant functions \(f\) given in [20, Theorem 6.5.1].

5.2 The dimension of \(H^1\): behavior with \(n\)

We now turn to the behavior of the multiplicities \(m(\pi_{m,0}, \Gamma)\) as \(m \to \infty\) for a fixed group \(\Gamma\). The method extends to cohomological representations of real rank one groups which are not in the discrete series. It is an adaption of the method of [16, Sect. 9] for bounding the remainder term in Weyl’s law. Our result is the following.

Theorem 5.3. For any discrete subgroup \(\Gamma \subseteq G\) of finite covolume one has

\[
m(\pi_{m,0}) = O(m^2/\log m), \quad m \to \infty.
\]

As an immediate consequence we have:

Corollary 5.4. For any discrete subgroup \(\Gamma \subseteq G\) of finite covolume one has

\[
\dim H^1(\Gamma, E_n) = O(n^2/\log n), \quad n \to \infty.
\]

Proof of the Theorem. By passing to a finite index subgroup, we can assume that \(\Gamma\) is torsion-free and \(\Gamma_M(P) = \{1\}\) for all \(P\).

Let \(m \geq 1\) and \(g_0\) be an even \(C^\infty\) function with support contained in \([-1,1]\), non-negative Fourier transform \(h_0\) and \(h_0(0) > 0\). Consider the functions

\[
g(\varepsilon u + \varepsilon \theta) = 2\varepsilon g_0(\varepsilon u) \cos m\theta
\]
on \(T\), with \(\varepsilon > 0\) being specified later. For \(f \in C^\infty_c(G)\) with \(F^T f = g\) we have

\[
\Theta_{\pm m, iv}(f) = h_0(\varepsilon^{-1}v),
\]

and \(\Theta_{n, iv}(f) = 0\) for \(|n| \neq m\). Insert \(f\) into the trace formula and note that because of our assumption on \(\Gamma\), the sum in the second line is empty while the sums in the third and fourth line involve only \(\eta = 1\). Also, the expression in the last line vanishes. Moving the integral involving the scattering matrix to the other side, we obtain an expression for

\[
2\sum_{\nu} m(\pi_{m, iv}) h_0(\varepsilon^{-1}v) - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{d\nu}{(\sigma_{m, iv})} h_0(\varepsilon^{-1}v) dv
\]

as the sum of the remaining terms on the right hand side (i.e. the sum of the first, third and fourth line). As usual, we split the sum in the first line as

\[
\text{vol}(G/\Gamma)f(1) + \sum_{\{\xi\} \subset \Gamma^*(\ast), \xi \neq 1} \text{vol}(G_\xi/\Gamma_\xi)\left|D_G(\xi)\right|^{-1/2}J_G(\xi, f).
\]
By the Plancherel formula, we can express the first term as
\[
\frac{\text{vol}(G/\Gamma)}{8\pi^2} \int_{-\infty}^{\infty} h_0(\varepsilon^{-1}\nu)(m^2 + \nu^2)d\nu = C_1\varepsilon m^2 + C_2\varepsilon^3
\]
with constants C_1 and C_2 depending only on Γ and h_0. By [16, pp. 90-91], since the absolute values of the orbital integrals $J_G(\xi,f)$ are bounded independently of m, the second term can be estimated by $C_3 e^{C_4/\varepsilon}$. The third line of the trace formula is a constant multiple of $F_T^f(1)$, and therefore $C_5\varepsilon$.

To estimate the weighted orbital integrals, we use the standard approximation \(\psi(s) = \log s + O(1) \) for \(\text{Re} s \geq \delta > 0 \) to get
\[
|\Omega_L(1,\sigma_{m,\nu})| \leq \frac{1}{2} \log(m^2 + \nu^2) + C_6 \leq \log m + \frac{\nu^2}{2m^2} + C_6.
\]
From this one obtains
\[
|I_L(1,f)| \leq (C_7 + C_8 \log m)\varepsilon + C_9 \varepsilon^3\frac{m^2}{m^2}.
\]
Taking $\varepsilon = c/\log m$ with a suitable constant c, one may conclude that with this choice the expression (5.2) is $O(m^2/\log m)$ as $m \to \infty$. Now, for each m the determinant of the scattering matrix may be written as a Hadamard product
\[
\phi(\sigma_{m,s}) = \phi(\sigma_{m,0})q_m^s \prod_{\eta \in P_m} \frac{s + \bar{\eta}}{s - \eta}
\]
with positive real constants q_m bounded from above, where the product runs over the set P_m of poles of $\phi_{m,s}$, which all have negative real part. Note that for $m \geq 1$ the Eisenstein series and the scattering determinant cannot have a pole on the real axis, since the corresponding induced representations do not have any unitarizable subquotients. Taking logarithmic derivatives, one sees that $\log q_m - \phi'(\sigma_{m,\nu})/\phi(\sigma_{m,\nu})$ is positive real for all ν. Since h_0 was assumed to be non-negative, (5.2) is therefore up to a term going to zero with m an upper bound for $m(\pi_{m,0})h_0(0)$. The Theorem follows.

We remark that for congruence subgroups of the Bianchi groups $\text{SL}(2,\mathcal{O}_K)$, K imaginary quadratic, standard estimates for the logarithmic derivatives of Hecke L-functions imply that the contribution from the continuous spectrum in (5.2) is $O(\varepsilon \log m)$ if ε goes to zero for $m \to \infty$, and that it is therefore bounded with our choice of ε.

5.3 The dimension of H^1: congruence subgroups of Bianchi groups

We now consider finite index subgroups of the Bianchi groups $\text{SL}(2,\mathcal{O}_K)$. For any non-zero ideal a of \mathcal{O}_K we have the classical congruence subgroup
\[
\Gamma_0(a) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2,\mathcal{O}_K) \right| c \in a \right\}.
\]
The index of $\Gamma_0(a)$ in $\text{SL}(2,\mathcal{O}_K)$ is given by the multiplicative function
\[
\iota(a) = N(a) \prod_{p|a} \left(1 + \frac{1}{N(p)} \right).
\]

We also need the following subgroups closely related to the principal congruence subgroups:
\[
\tilde{\Gamma}(a) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathcal{O}_K) \mid a \equiv d \mod a, \ b, c \in a \right\}.
\]

The following theorem gives a bound for the multiplicity of a representation \(\pi_{m,0}\) in \(L^2(G/\Gamma \cap \Gamma_0(a))\), \(\Gamma\) a subgroup of finite index in \(\text{SL}(2, \mathcal{O}_K)\), which improves the trivial bound \(O(\iota(a))\) by a logarithm.

Theorem 5.5. Let \(\Gamma\) be a subgroup of finite index in \(\text{SL}(2, \mathcal{O}_K)\), \(K\) imaginary quadratic. Then for any fixed \(m \geq 1\) we have
\[
m(\pi_{m,0}, \Gamma \cap \Gamma_0(a)) = O\left(\frac{\iota(a)}{\log N(a)}\right), \quad N(a) \to \infty.
\]

This theorem can be regarded as a quantitative variant of the limit multiplicity results of de George-Wallach [15], Lück and Savin [54] (which however concern towers of normal subgroups). Note also that for \(a = a\mathcal{O}_K\), \(a\) a positive integer, we can get by base change arguments a lower bound of the form \(C a = C N(a)^{1/2}\). If \(a\) and its conjugate are relatively prime, there is no non-trivial lower bound known.

Corollary 5.6. Let \(\Gamma\) be a subgroup of finite index in \(\text{SL}(2, \mathcal{O}_K)\). Then for any fixed \(n \geq 0\) we have
\[
dim H^1(\Gamma \cap \Gamma_0(a), E_n) = O\left(\frac{\iota(a)}{\log N(a)}\right), \quad N(a) \to \infty.
\]

Proof. The corresponding assertion for the cuspidal part is an immediate consequence of Theorem 5.5. To bound the dimension of the non-cuspidal part use Lemma 5.7 below.

The proof of Theorem 5.5 is again based on the trace formula. By passing to a finite index subgroup, we can assume that \(\Gamma\) is torsion-free and \(\Gamma_M(\mathcal{P}) = \{1\}\) for all \(\mathcal{P}\). Let \(\Delta \subseteq \Gamma\) be a subgroup of finite index. We may then write (cf. [13]) for every \(f \in C_c^\infty(G)\) the spectral side
\[
\text{tr } \pi_{\text{disc}}^{\text{disc}}(f) - \frac{1}{4\pi} \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} \frac{\phi'_{\Delta}(\sigma_{m,\nu})}{\phi_{\Delta}(\sigma_{m,\nu})} \Theta_{m,\nu}(f) d\nu + \frac{1}{4} \text{tr } \Phi_{\Delta}(\sigma_{0,0}) \Theta_{0,0}(f)
\]
as the sum
\[
|\Gamma : \Delta| \text{vol}(G/\Gamma) f(1) + \sum_{\{\xi\} \in \Gamma(\ast), \xi \neq 1} c_\Delta(\xi) \text{vol}(G_{\xi}/T_{\xi}) |D_G(\xi)|^{-1/2} J_G(\xi, f)
\]
\[
+ \sum_{P \in C_\Delta} C(P, 1, \Delta) J_G(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, f) + \frac{1}{2} c_\Delta |I_L(1, f)|,
\]
where we set
\[
c_\Delta(\xi) = |\{ \gamma \in \Delta \setminus \Gamma \mid \gamma \xi \gamma^{-1} \in \Delta \}|.
\]

We now need a sequence of elementary lemmas to deal with the parabolic and hyperbolic contributions. The following well-known lemma is used to bound the parabolic contribution.

Lemma 5.7. Let \(\kappa\) be the multiplicative function defined by
\[
\kappa(p^k) = \begin{cases} N(p)^{k/2} + N(p)^{k/2-1}, & k \equiv 0 (2), \\ 2N(p)^{(k-1)/2}, & k \equiv 1 (2). \end{cases}
\]
Then we have
\[|C_{Γ \cap Γ_0(ι)}| \leq κ(ι)|C_{Γ}| \leq \frac{κ(ι)}{\sqrt{N(ι)}}|C_{Γ}|, \]
and the first inequality is an equality for \(Γ = \text{SL}(2, \mathcal{O}_K) \).

To deal with the hyperbolic contribution, we need to consider first the numbers \(c_{Γ \cap Γ_0(ι)}(π) \). The following lemma follows easily from the definitions.

Lemma 5.8. Let \(ι ∈ Γ \) and \(b \) be the largest divisor of \(ι \) such that \(ι ∈ Γ(b) \). Then
\[c_{Γ \cap Γ_0(ι)}(π) \leq c(ι, b) \leq 2^{ν(ι)}N(b), \]
where \(ν(ι) \) denotes the number of prime divisors of \(ι \) and \(b \) is defined by extending
\[c(p^k, p^r) = \begin{cases} 2N(p)^r, & r < k, \\ N(p)^k + N(p)^{k-1}, & r ≥ k, \end{cases} \]
multiplicatively.

For any semisimple element \(γ \in G \) let its norm \(N(γ) \geq 1 \) be the maximum value of \(|t|^2 \) for the two eigenvalues \(t \) of \(γ \). We need to estimate the number of \(Γ \)-conjugacy classes of bounded norm which are contained in \(Γ(b) \). Such an estimate can be deduced from the following well-known lemma.

Lemma 5.9. There is a constant \(B \) depending only on \(Γ \) such that every semisimple conjugacy class \(\{γ\}_Γ \) in \(Γ \) with \(N(γ) ≤ T \) contains a representative \(γ = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) with \(|a|^2, |b|^2, |c|^2, |d|^2 ≤ BT \).

The crude estimate of the next lemma is an easy consequence. The reader may verify that a better estimate would not change the final result (apart from the constant implicit in the \(O \)).

Lemma 5.10. For every \(δ > 0 \) there is a constant \(C \) depending on \(Γ \) and \(δ \), such that for all non-zero ideals \(b \) of \(a_K \) the number of \(Γ \)-conjugacy classes in \(Γ(∗) \) with norm \(≤ T \) which are contained in the normal subgroup \(Γ \cap Γ(b) \) of \(Γ \) is bounded by \(CT^{2+δ}N(b)^{-2} \).

Proof. Apply Lemma 5.9 to see that each such conjugacy class has a representative \(γ = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) with \(|a|^2, |b|^2, |c|^2, |d|^2 ≤ BT \). Furthermore, \(bc ≠ 0 \) since the conjugacy class was assumed to lie in \(Γ(∗) \). The number of possible pairs \((b, c) \) corresponding to elements of \(Γ(b) \) is therefore bounded by \(C'T^2N(b)^{-2} \) with \(C' \) depending only on \(K \). For each such pair the number of possible entries \(a \) and \(d \) with \(ad = 1 + bc ≠ 0 \) is clearly bounded by \(O(T^δ) \) with a constant depending only on \(δ \). This proves the assertion.

Proof of Theorem 5.5. We take a test function \(f ∈ C_c^∞(G) \) depending on \(m ≥ 1 \) and \(ε \) as above. We fix \(m \) and assume at first only that \(ε \) is bounded. Then the identity contribution to the trace formula for \(Δ = Γ \cap Γ_0(ι) \) is bounded by \(C_{1ε}(ι)ε \). The lattices \(Λ(P) = u(Δ \cap N) \) appearing in the definition of \(C(P, 1, Δ) = 2πκ_Λ(P) \) are all invariant under a fixed order of the field \(K \), and belong therefore to finitely many classes up to multiplication by elements of \(K^∗ \). Using that \(κ_Λ + log |Λ| \) is invariant under such homotheties, this implies that the constants \(κ_Λ(P) \) are bounded by \(C + log N(ι) \) for a constant \(C \). By Lemma 5.7 the parabolic contribution is therefore bounded by \(C_{2ε}(ι)(log N(ι))N(ι)^{-1/2}ε \).
As for the contribution of classes in $\Gamma(\ast)$, the estimates of Lemma 5.8 and Lemma 5.10 show that it is bounded by

$$\left(2^{\nu(a)} \sum_{b \mid a} \frac{1}{N(b)}\right) C_3 e^{C_4/\varepsilon} \leq C_5 (\mu) N(a) \mu e^{C_4/\varepsilon}$$

for any $\mu > 0$. Taking $\varepsilon = c / \log N(a)$ with a suitable constant c, we see that the geometric side of the trace formula is indeed $O((\omega(a)/\log N(a))$. A positivity argument as in the proof of Theorem 5.3 yields the result.

6 Computational results for Bianchi groups

This section contains computational results on the dimensions of the cohomology groups $H^1(\Gamma, E_n)$ where $\Gamma = \mathrm{SL}(2, \mathcal{O})$ is one of the Bianchi groups of Section 2.2 and n a non-negative integer. We also consider certain congruence subgroups of $\mathrm{SL}(2, \mathcal{O}_{-1})$. The method of computation is explained in Section 3.1. Often the resulting systems of linear equations turned out to be far too big to do computations over the rational numbers. In these cases we were able to use the lower estimates of Section 4.3 to deduce the dimension of the solution space over the complex numbers from the dimension over various finite fields.

6.1 Dimensions of $H^1(\mathrm{SL}(2, \mathcal{O}), E_n)$

Let us start with a little table. In Table 1 we have listed the dimension of the cohomology spaces $H^1(\mathrm{SL}(2, \mathcal{O}_d), E_n)$ for $d = -1, -2, -3, -7, -11$ and $0 \leq n \leq 15$. To compare these values with the dimensions of the spaces of lifted forms given in Proposition 1.3 or more generally in Theorem 4.17, it is important to know the codimension of the cuspidal cohomology. Using [56, Th. 8, Cor. 1] (and the further information contained there), it can be easily checked that

$$\dim H^1(\mathrm{SL}(2, \mathcal{O}_K), E_n) - \dim H^1_{\text{cusp}}(\mathrm{SL}(2, \mathcal{O}_K), E_n) = \nu_{K,n} h_K$$

for all imaginary quadratic fields K, using the notation introduced in Section 4.1.

We see that the cuspidal cohomology consists only of lifted forms except in the two cases marked in boldface. These two cases will be analyzed more closely below. As a result of some heavy computer calculations we can report the following results.

Proposition 6.1. For $d = -1, -2, -3, -7, -11$ and r_d as given in

d	-1	-2	-3	-7	-11
r_d	104	141	116	132	153

we have

$$H^1_{\text{cusp}}(\mathrm{SL}(2, \mathcal{O}_d), E_n) = H^1_{\text{bc}}(\mathrm{SL}(2, \mathcal{O}_d), E_n)$$

in the range $0 \leq n \leq r_d$, except in the cases $d = -7$ and $n = 12$, $d = -11$ and $n = 10$, where H^1_{bc} has codimension two in H^1_{cusp}.

It remains to report the results of the computations in the non-euclidean cases. We have found the following:
Table 1: Dimensions of $H^1(\text{SL}(2,\mathcal{O}), E_n)$

n	$d = -1$	$d = -2$	$d = -3$	$d = -7$	$d = -11$
0	0	1	0	1	1
1	1	1	0	1	1
2	0	1	1	1	2
3	1	2	0	1	2
4	0	1	0	2	2
5	2	3	1	2	3
6	0	2	1	2	4
7	3	4	1	3	4
8	0	2	1	3	4
9	3	5	1	3	5
10	1	3	2	4	8
11	4	6	2	4	6
12	0	3	1	6	6
13	5	7	2	5	7
14	1	4	3	5	8
15	5	8	2	5	8

Proposition 6.2. Let Γ be one of the groups $\text{SL}(2,\mathcal{O}_d)$ with $d = -19, -5, -6, -10, -14$ or $\text{SL}(2,\mathcal{a}_{-5}), \text{SL}(2,\mathcal{a}_{-6}), \text{SL}(2,\mathcal{a}_{-10}), \text{SL}(2,\mathcal{a}_{-14})$, where the ideals \mathcal{a} are as in Section 2.2 and let the non-negative integer n be in the range $0 \leq n \leq 60$. Then $H^1_{\text{cusp}}(\Gamma, E_n) = H^1_{\text{bc}}(\Gamma, E_n)$.

6.2 Hecke operators on non-lifted cohomology classes

In this subsection we give the numerical values of some of the Hecke operators on the two spaces of non-lifted cohomology classes exhibited in Section 6.1.

6.2.1 Hecke operators on $H^1(\text{SL}(2,\mathcal{O}_{-7}), E_{12})$

We consider the prime element $\pi_{11} = 2 + \sqrt{-7}$ of \mathcal{O}_{-7}, which has degree one and norm 11. By the methods described in Section 3.2 the characteristic polynomial of the corresponding Hecke operator

$$T_{\pi_{11}} : H^1(\text{SL}(2,\mathcal{O}_{-7}), E_{12}) \rightarrow H^1(\text{SL}(2,\mathcal{O}_{-7}), E_{12})$$

can easily be computed to be

$$P_{\pi_{11}}(X) = \frac{(X - 9951764)(X^2 + 1877432X - 54779120751344)(X^3 - 2226532X^2 - 7410075237136X - 1678794474022559168)}{}.$$

We know that there is a unique two-dimensional complement of the space of base change classes in the cohomology space $H^1_{\text{cusp}}(\text{SL}(2,\mathcal{O}_{-7}), E_{12})$ invariant under the Hecke operators. Identifying the Hecke operators on lifted classes (see Section 3.2) we infer that the kernel

$$\text{NL}(-7, 12) = \text{Ker}(T^2_{\pi_{11}} + 1877432T_{\pi_{11}} - 54779120751344)$$

(6.2)
is this space of non-lifted classes. We write L_π for the restriction of the Hecke operators T_π, π a prime element of \mathcal{O}_{-7}, to the space $\text{NL}(-7, 12)$. The following properties of the linear maps L_π hold for all prime elements π of \mathcal{O}_{-7}.

P7.1 $L_{-\pi} = -L_\pi$

P7.2 $L_\pi = -L_{\pi}^{\text{adj}}$

P7.3 If $\pi = p$ is a prime of degree two, then L_π is an integer scalar denoted by λ_p.

P7.4 After a suitable choice of basis for $\text{NL}(-7, 12)$, the matrices giving the action of the Hecke operators L_π have integral entries.

P7.5 The simultaneous splitting field for the Hecke operators L_π is $\mathbb{Q}(\sqrt{-239})$.

Here A^{adj} stands for the adjoint of a linear map A. If A is given by a two-by-two matrix, we have

$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^{\text{adj}} =
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}.
$$

Property P7.2 follows by comparing the actions of the Hecke operator T_π on the two cohomology spaces

$$H^1(\text{SL}(2, \mathcal{O}_{-7}), \text{Sym}^{12} \otimes \text{Sym}^{12}), \quad H^1(\text{SL}(2, \mathcal{O}_{-7}), \text{Sym}^{12} \otimes \text{Sym}^{12}).$$

Property P7.1 is proved by computing the automorphism ε induced by a matrix $E \in \text{GL}(2, \mathcal{O}_{-7})$ of determinant -1 on $H^1(\text{PSL}(2, \mathcal{O}_{-7}), E_{12})$. This property implies that no non-zero class in $\text{NL}(-7, 12)$ is the restriction of a cohomology class in $H^1(\text{GL}(2, \mathcal{O}_{-7}), E_{12})$. The rest of the above properties is clear.

Examples of the scalars λ_p for primes of degree two are contained in Table 2. Examples of the integral matrices corresponding to the linear maps L_π for primes π of degree one are contained in Tables 3, 4 and 5.

6.2.2 Hecke operators on $H^1(\text{SL}(2, \mathcal{O}_{-11}), E_{10})$

We consider the prime element $\pi_3 = (1 + \sqrt{-11})/2$ of \mathcal{O}_{-11}, which has degree one and norm 3. By the methods described in Section 3.2 the characteristic polynomial of the corresponding Hecke operator

$$T_{\pi_3} : H^1(\text{SL}(2, \mathcal{O}_{-11}), E_{10}) \rightarrow H^1(\text{SL}(2, \mathcal{O}_{-11}), E_{10})$$

can easily be computed to be

$$P_{\pi_3}(X) = (X - 252)(X - 67)(X^2 + 700X + 40671)(X^4 + 403X^3 - 439713X^2 - 113276475X + 1097145000).$$

We know that there is a unique two-dimensional complement of the space of base change classes in the cohomology space $H^1_{\text{cusp}}(\text{SL}(2, \mathcal{O}_{-11}), E_{10})$ invariant under the Hecke operators. We infer that the kernel

$$\text{NL}(-11, 10) = \text{Ker}(T^2_{\pi_3} + 700 T_{\pi_3} + 40671)$$

is equal to this space of non-lifted classes. We write L_π for the restriction of the Hecke operator T_π, π a prime element of \mathcal{O}_{-11}, to the space $\text{NL}(-11, 10)$. The following properties of the linear maps L_π hold for all prime elements π of \mathcal{O}_{-11}.
p	λ_p
3	-1939626
5	-747491750
13	-252803502896086
17	4756247617499746
19	5094169624293878
31	-30279773153264109058
41	-948454707467278569518
47	-9168990821180522751074
59	123833654051598471764998
61	-105716258627702854298998
73	-707186203752039245531566
83	-5005894274852029376014346
89	-98093626337517862127022
97	84206314563458516168628866

Table 2: Scalars λ_p for L_p on $NL(-7, 12)$

p	π	A_π
2	ω	(0 1 14432 -50)
11	$1 + 2\omega$	(581284 60800 877465600 -2458716)
7	$-1 + 2\omega$	(44800 1792 25862144 -44800)
23	$3 + 2\omega$	(-257854600 4457728 6433930496 -480741000)

Table 3: Hecke operators L_π on $NL(-7, 12)$

p	π	A_π
29	$-1 + 4\omega$	(-114226222 627200 -9051750400 -82866222)
37	$1 + 4\omega$	(8869653750 61610496 -889162678272 11950178550)
43	$5 + 2\omega$	(42167274700 293147008 4230697619456 27509924300)
53	$3 + 4\omega$	(-229421381350 -843922944 -12179495927808 -187225234150)
67	$-1 + 6\omega$	(914163852100 -1805341824 -26054693203968 1004430943300)
71	$7 + 2\omega$	(-600257601424 -5497094400 -79334066380800 -325402881424)

Table 4: Hecke operators L_π on $NL(-7, 12)$
p & π & A_π \\
79 & $1 + 6\omega$ & $\begin{pmatrix} -775382036248 & -11236492800 \\ -16216506408960 & -213557396248 \end{pmatrix}$ \\
107 & $9 + 2\omega$ & $\begin{pmatrix} 11411442109300 & 66437695872 \\ 958828826248704 & 8089539315700 \end{pmatrix}$ \\
109 & $7 + 4\omega$ & $\begin{pmatrix} 8058528373122 & 78253401600 \\ 112935391891200 & 4145858293122 \end{pmatrix}$ \\
113 & $3 - 8\omega$ & $\begin{pmatrix} 4624127056750 & 530220834894632 \\ 609065491234816 & 2514005482350 \end{pmatrix}$ \\
127 & $5 + 6\omega$ & $\begin{pmatrix} 4687450108000 & 367392485376 \\ 530220834894632 & -13682174160800 \end{pmatrix}$ \\
137 & $1 + 8\omega$ & $\begin{pmatrix} 79180120345450 & -113527447552 \\ -1638428123070464 & 84856492723050 \end{pmatrix}$ \\
149 & $9 + 4\omega$ & $\begin{pmatrix} -71276735378522 & 56254841600 \\ 811869873971200 & -99404156178522 \end{pmatrix}$

Table 5: Hecke operators L_π on $\textbf{N}{L}(\pi,-7,12)$

P11.1 $L_{-\pi} = L_\pi$

P11.2 $L_{\bar{\pi}} = -L_{\pi}^{\text{adj}}$

P11.3 If $\pi = p$ is a prime of degree two, then L_π is an integer scalar denoted by μ_p.

P11.4 After a suitable choice of basis for $\textbf{N}{L}(\pi,-11,10)$, the matrices giving the action of the Hecke operators L_π have integral entries.

P11.5 The simultaneous splitting field for the Hecke operators L_π is $\mathbb{Q}(\sqrt{11},\sqrt{43},\sqrt{173})$.

P11.6 The space $\textbf{N}{L}(\pi,-11,10)$ is the restriction of a subspace of $H^1(\text{GL}(2,\mathcal{O}_{-11}), E_{10})$.

The case $d = -11$, $k = 10$, differs from the case $d = -7$, $k = 12$, since we have $L_{-\pi} = L_\pi$ for $d = -11$ and and $L_{-\pi} = -L_\pi$ for $d = -7$. In the case $d = -11$ this leads directly to property P11.6.

Examples of the scalars μ_p for primes of degree two are contained in Table 6. Examples of the integral matrices corresponding to the linear maps L_π for primes π of degree one are contained in Tables 7, 8, 9.

6.3 Cohomology of congruence subgroups

In this subsection we give some computational results concerning the dimensions of the cohomology groups $H^1(\Gamma, E_\pi)$ where $\Gamma \subseteq \text{SL}(2, \mathcal{O}_{-1})$ is a congruence subgroup.

6.3.1 The case of trivial coefficients

Here we consider the congruence subgroups

$$\Gamma^0(p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathcal{O}_{-1}) \left| b \in p \right. \right\}$$
p	μ_p
2	-80
7	-81885550
13	1235127129530
17	45387811032610
19	-95158947964038
29	-8701360899198758
41	-429545462511285518
43	63855982027780650
61	10654154103002912922
73	34915634850910529970
79	-688424011186184859358
83	33668143605728046010
101	15523742571431406528202

Table 6: Scalars μ_p for L_p on $\text{NL}(-11,10)$

p	π	A_π
3	ω	$\begin{pmatrix} 0 & 1 \\ -40671 & -700 \end{pmatrix}$
11	$-1 + 2\omega$	$\begin{pmatrix} -117612 & 0 \\ 0 & -117612 \end{pmatrix}$
31	$-4 + 3\omega$	$\begin{pmatrix} -124944582 & -577125 \\ 23472250875 & 279042918 \end{pmatrix}$

Table 7: Hecke operators L_π on $\text{NL}(-11,10)$

p	π	A_π
47	$-7 + 2\omega$	$\begin{pmatrix} 2959574800 & 5646848 \\ -229662955008 & -993218800 \end{pmatrix}$
53	$-5 + 4\omega$	$\begin{pmatrix} -3591316050 & -868224 \\ 35311538304 & -2983559250 \end{pmatrix}$
59	$-8 + \omega$	$\begin{pmatrix} 2044859460 & 10611525 \\ -431581333275 & -5383208040 \end{pmatrix}$
67	$-8 + 3\omega$	$\begin{pmatrix} 5506303200 & -13041567 \\ 530413571457 & 14635400100 \end{pmatrix}$
71	$-4 + 5\omega$	$\begin{pmatrix} -20524885978 & -34309625 \\ 1395406758375 & 3491851522 \end{pmatrix}$
89	$-7 + 5\omega$	$\begin{pmatrix} 19167086435 & 60342700 \\ -2454197951700 & -23072803565 \end{pmatrix}$

Table 8: Hecke operators L_π on $\text{NL}(-11,10)$
of $\text{SL}(2, \mathcal{O}_{-1})$, where \mathfrak{p} is a prime ideal of $\mathcal{O} = \mathcal{O}_{-1}$ of degree one. Note that $\Gamma^0(\mathfrak{p})$ is conjugate in $\text{SL}(2, \mathcal{O})$ to the congruence subgroup $\Gamma_0(\mathfrak{p})$ considered in Section 5.3. The norm of \mathfrak{p} is either equal to 2 or a rational prime p congruent to 1 modulo 4. The index of $\Gamma^0(\mathfrak{p})$ in $\text{SL}(2, \mathcal{O}_{-1})$ is $p + 1$. The cohomology groups $H^1(\Gamma^0(\mathfrak{p}), \mathbb{C})$ are particularly interesting for number theory since their non-vanishing is conjectured to be related to the existence of certain elliptic curves (or more generally abelian varieties) defined over $K = \mathbb{Q}(i)$ (cf. [14, 25, 27]). We shall report here on extensive computations of the dimensions of the spaces $H^1(\Gamma^0(\mathfrak{p}), \mathbb{C})$. Note that we have $H^1(\Gamma^0(\mathfrak{p}), \mathbb{C}) = H^1_{\text{cusp}}(\Gamma^0(\mathfrak{p}), \mathbb{C})$ and $H^1(\text{SL}(2, \mathcal{O}), \mathbb{C}) = 0$, and that $H^1(\Gamma^0(\mathfrak{p}), \mathbb{C})$ consists therefore entirely of new classes (cf. Section 6.3.2).

The elements A^i, $0 \leq i \leq p - 1$, and B (cf. Section 2.2) form a system of coset representatives for $\Gamma^0(\mathfrak{p})$ in $\text{SL}(2, \mathcal{O}_{-1})$. From this we obtain the following generating system for $\Gamma^0(\mathfrak{p})$:

$$A^p, \ BAB, \ BUB, \ UA^p, \ A^i BA^i, \quad 1 \leq i \leq p - 1, \ ii' \equiv 1 \text{ mod } p,$$

where $\rho^2 + 1 = 0$ in the field \mathbb{F}_p. From the presentation (2.7) we may compute a presentation of the finitely generated abelian group $\Gamma^0(\mathfrak{p})^{\text{ab}}$ and in particular the dimension of $\Gamma^0(\mathfrak{p})^{\text{ab}} \otimes \mathbb{C}$ (which is the same as the dimension of $H^1(\Gamma^0(\mathfrak{p}), \mathbb{C})$). This computation may be speeded up in the following way, i.e. the presentation of $\Gamma^0(\mathfrak{p})$ obtained from the Reidemeister-Schreier method can be simplified a lot. We shall describe a result contained in [25] which gives such a simplification.

Let R be a commutative ring and let $\mathbf{P}^1(R, p)$ be a $(p + 1)$-dimensional free R-module with basis u_x indexed by the projective line $\mathbb{P}^1(\mathbb{F}_p)$. This module has rank $p + 1$ and is a $\text{PGL}(2, \mathbb{F}_p)$-module by the natural permutation action on the basis elements. Let $\mathbf{U}(R, p)$ be the submodule of $\mathbf{P}^1(R, p)$ generated by u_0 and the elements

$$u_x + u_B x, \ u_x + u_W x, \ u_x + u_S x + u_{S^2} x, \ u_x + u_Y x + u_{Y^2} x, \quad x \in \mathbb{P}^1(\mathbb{F}_p), \quad (6.4)$$

with the matrices

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} -\rho & 1 \\ 1 & 0 \end{pmatrix}.$$
Table 10: Norms of degree one primes p in O_{-1} with $\dim \leq 500$ $H^1(\Gamma^0(p), \mathbb{C}) = 1$

p								
137	233	257	277	509	569	733	977	
1009	1013	1021	1049	1153	1277	1373	1489	
1493	1753	1997	2053	2081	2377	2441	2521	
2609	2729	2917	3109	3361	3929	4013	4177	
4289	4421	4597	4621	4721	5021	5237	5741	
5749	5801	6029	6361	6701	6781	6793	6857	
6949	7001	7069	7121	7793	7937	8297	8377	

Table 11: Norms of degree one primes p in O_{-1} with $\dim \leq 500$ $H^1(\Gamma^0(p), \mathbb{C}) = 2$

p								
433	709	757	853	953	1321	1549	1901	
1973	2657	2753	3313	3469	3529	3637	3877	
5849	5857	6689	7577	8081	9349	9629	11437	
12269	12953	13093	13477	15761	16921	17033	18757	
19237								

Define $\Phi_p: \mathbf{P}^1(R, p) \to \Gamma^0(p)^{ab} \otimes R$ by setting $\Phi_p(u_i) = A^iBA^i$ for $i \in \mathbb{F}_p$ with $i \neq 0$ and $\Phi_p(u_0) = \Phi_p(u_\infty) = 0$. The results of [25, Section 3] imply that the map Φ_p is a surjective group homomorphism with kernel equal to $U(R, p)$, if R is a field of characteristic 0.

To avoid heavy integer computations, we take $R = \mathbb{F}_q$ for various (small) primes q, compute the dimension of $\mathbf{P}^1(R, p)/U(R, p)$ and set

$$\dim_{\leq x} H^1(\Gamma^0(p), \mathbb{C}) = \inf \{ \dim_{\mathbb{F}_q} \mathbf{P}^1(\mathbb{F}_q, p)/U(\mathbb{F}_q, p) \}$$

where q ranges over all primes below x. Of course, if this number is zero then also $H^1(\Gamma^0(p), \mathbb{C}) = 0$, and if x is sufficiently large $\dim_{\leq x} H^1(\Gamma^0(p), \mathbb{C})$ will be equal to the dimension of $H^1(\Gamma^0(p), \mathbb{C})$.

In Table 10 we give the norms of the degree one primes p in O_{-1} with $N(p) \leq 20000$ and $\dim_{\leq 500} H^1(\Gamma^0(p), \mathbb{C}) = 1$. Table 11 covers the same range and gives the norms of the degree one primes p with $\dim_{\leq 500} H^1(\Gamma^0(p), \mathbb{C}) = 2$. The norms of the primes with $\dim_{\leq 500} H^1(\Gamma^0(p), \mathbb{C}) = 3$ are 941, 1777, 5113. Those with $\dim_{\leq 500} = 4$ are 8893, 17021. The values 5 and 6 are attained for 4517, 5309 respectively. There is no prime p with $N(p) \leq 20000$ and $\dim_{\leq 500} \geq 7$.

In an even more extensive search we have gone through the degree one primes p in O_{-1} with $N(p) \leq 60000$ and have computed $\dim_{\leq 500} H^1(\Gamma^0(p), \mathbb{C})$. There are altogether 3018 primes below 60000 which are congruent to 1 modulo 4. In the following table we give the number $N(r, 60000)$ of such primes with $\dim_{\leq 500} H^1(\Gamma^0(p), \mathbb{C}) = r$.

r	0	1	2	3	4	5	6	7	8	9
N(r, 60000)	2728	198	73	11	4	1	1	1	1	0

42
The value 8 is attained for the prime 58313.

Let us now define for real numbers \(x \) the function

\[
S(x) = x^\frac{1}{6} \sum_{p, \ N(p) \leq x} \dim H^1(\Gamma^0(p), \mathbb{C}) \frac{\dim H^1(\Gamma^0(p), \mathbb{C})}{|\{p \mid N(p) \leq x\}|},
\]

where the sum is extended over all degree one prime ideals of \(\mathcal{O}_{-1} \). The function \(S(x) \) can be tabulated in the range \(x \leq 60000 \) as follows:

\(x/1000 \)	6	12	18	24	30	36	42	48	54	60
\(S(x) \)	3.21	3.39	3.62	3.99	4.15	4.18	4.24	4.31	4.37	4.52

See Question 1.13 of the introduction for some comments on this table.

6.3.2 The case of non-trivial coefficients

We now report on some computational results on the cohomology spaces \(H^1(\Gamma^0(p), E_n) \) where \(p \) is a prime of \(\mathcal{O}_{-1} \) of degree one and \(n \geq 1 \).

Let \(\pi \) be a generator of \(p \) and let \(\delta_\pi \in \text{GL}(2, \overline{\mathbb{Q}}) \) be defined as in (3.8). The two injective homomorphisms

\[
\iota_1 : \Gamma^0(p) \to \text{SL}(2, \mathcal{O}_{-1}), \quad \iota_2 : \Gamma^0(p) \to \text{SL}(2, \mathcal{O}_{-1}),
\]

where \(\iota_1 \) is just the injection and \(\iota_2 \) is induced by conjugation with the element \(\delta_\pi \), give rise to an injection

\[
\iota : H^1(\text{SL}(2, \mathcal{O}_{-1}), E_n) \oplus H^1(\text{SL}(2, \mathcal{O}_{-1}), E_n) \hookrightarrow H^1(\Gamma^0(p), E_n).
\]

The image of \(\iota \) is traditionally called the space of old classes. It is invariant under the Hecke operators and has an invariant complement \(H^1_{\text{new}}(\Gamma^0(p), E_n) \). We have found:

- \(H^1_{\text{new}}(\Gamma^0(p), E_1) = 0 \) for all prime ideals \(p \) with \(N(p) \leq 1000 \) except for the case \(N(p) = 41 \), where \(H^1_{\text{new}}(\Gamma^0(p), E_1) \) has dimension 2.
- \(H^1_{\text{new}}(\Gamma^0(p), E_2) = 0 \) for all prime ideals \(p \) with \(N(p) \leq 600 \).
- \(H^1_{\text{new}}(\Gamma^0(p), E_n) = 0 \) for all prime ideals \(p \) with \(N(p) \leq 90 \) and \(3 \leq n \leq 10 \).

Table 12 contains some examples of the characteristic polynomials of the Hecke operators on \(H^1_{\text{new}}(\Gamma^0(p), E_1) \) for \(N(p) = 41 \). The Hecke operators on \(H^1_{\text{new}}(\Gamma^0(p), E_1) \) satisfy \(T_\pi = -T_{\overline{\pi}} \) for all prime elements \(\pi \) of degree one. There is no apparent connection between \(T_\pi \) and \(T_{\overline{\pi}} \). We thank Haluk Sengun for help with this computation.

7 Cohomology of non-arithmetic groups

This section contains computational results on the cohomology of various geometrically constructed and mostly non-arithmetic groups. The results are discussed in more detail in the introduction. See Section 3.1 for remarks on the method of computation and especially for the notation \(\dim_{\leq x} \) used below.
Table 12: Characteristic Polynomials of Hecke operators on $H^1_{new}(\Gamma_0(p), E_1)$

p	π	A_x	p	π	A_x
2	$1 + i$	$x^2 - x - 10$	p	$-i$	$-i$
5	$2 + i$	$(x + 4)^2$	5	$2 - i$	$x^2 + 6x - 32$
13	$3 + 2i$	$x^2 + 2x - 40$	13	$3 - 2i$	$(x + 10)^2$
17	$1 + 4i$	$x^2 - 22x + 80$	17	$1 - 4i$	$x^2 + 24x - 20$
29	$5 + 2i$	$x^2 + 48x - 80$	29	$5 - 2i$	$x^2 - 164$
37	$1 + 6i$	$x^2 + 4x - 160$	37	$1 - 6i$	$x^2 - 164$
41	$5 + 4i$	$x^2 + 48x + 412$	41	$5 - 4i$	$x^2 - 164$
61	$6 + 5i$	$x^2 - 108 + 292$	61	$6 - 5i$	$x^2 - 164$
73	$8 + 3i$	$x^2 - 106x + 2440$	73	$8 - 3i$	$x^2 - 164$

7.1 Klimenko’s examples

The discrete subgroups $\Gamma \subseteq \text{PSL}(2, \mathbb{C})$ described here arose in an important attempt to classify simultaneous conjugacy classes of pairs of matrices generating discrete subgroups of $\text{SL}(2, \mathbb{C})$ (see [38, 39, 40, 41, 42]). We follow the notation of [41, 42], see also [26].

7.1.1 Groups of finite covolume

Let $k \geq 8$ be an even integer. We set

$$ t = t_k = (\exp(\pi i/k) + \exp(-\pi i/k))^2 = \exp(2\pi i/k) + \exp(-2\pi i/k) + 2 $$

(7.1)

and define the matrices

$$ f = f_k = \begin{pmatrix} \exp(\pi i/k) & 0 \\ 0 & \exp(-\pi i/k) \end{pmatrix}, $$

(7.2)

$$ g = g_k = \begin{pmatrix} \frac{1}{2} \left(\sqrt{\frac{t-3}{4-t}} + \sqrt{\frac{3}{t-3}} \right) \\ \frac{1}{2} \left(\sqrt{\frac{t}{(t-3)(4-t)}} - \sqrt{\frac{3}{t-3}} \right) \end{pmatrix}. $$

(7.3)

Let $\text{GTet}_1[k, 3]$ be the image in $\text{PSL}(2, \mathbb{C})$ of the group generated by the matrices f and g. The following properties are known.

- $\text{GTet}_1[k, 3]$ is a discrete subgroup of $\text{PSL}(2, \mathbb{C})$ of finite covolume with one cusp ([41, 42]).
- $\text{GTet}_1[k, 3]$ is commensurable with a reflection group ([41, 42]).
- $\text{GTet}_1[k, 3]$ is non-arithmetic for all k ([26]).
- $\text{GTet}_1[k, 3] = \langle f, g \mid f^k, (g f^{k/2} z f^{k/2} g^{-1} z)^3, z^2, f z g f^{-1} g^{-1} z \rangle$, where $z = f g f g^{-1} f$ ([41]).
Using this explicit presentation, we find:

\[
\dim_{\leq 1000} H^1(\text{GTet}_1[k, 3, 3], E_n) = \begin{cases}
2(n-1)/3 + 1, & \text{if } n \equiv 1 \pmod{6}, \\
2(n-2)/3 + 2, & \text{if } n \equiv 2 \pmod{6}, \\
2(n-4)/3 + 3, & \text{if } n \equiv 4 \pmod{6}, \\
2(n-5)/3 + 4, & \text{if } n \equiv 5 \pmod{6}, \\
2(n-6)/3 + 4, & \text{if } n \equiv 6 \pmod{6},
\end{cases}
\]

(7.4)
in the range \(8 \leq k \leq 100\) and \(1 \leq n \leq 50\). Note that these groups \(\Gamma\) are invariant under the complex conjugation automorphism of \(\text{PSL}(2, \mathbb{C})\). This opens up the possibility to compute the trace of this involution on \(H^1_{\text{unip}}(\Gamma, E_n)\) and to obtain a lower bound for the dimension of this space, following the work of Rohlf and Krämer \[45, 53\] on the Bianchi groups. We hope to come back to this question in the future.

\[\textbf{7.1.2 Cocompact groups}\]

As in the case considered before, we take from \[41\] (see also \[26\]) a series of explicit pairs of matrices generating a discrete subgroup \(\Gamma \subseteq \text{PSL}(2, \mathbb{C})\). In this case the groups \(\Gamma\) act on three-dimensional hyperbolic space with a compact quotient.

Let \(k \geq 8\) be an even integer. We define \(t = t_k\) as in (7.1) and set

\[
f = f_k = \begin{pmatrix} \exp(\pi i/k) & 0 \\ 0 & \exp(-\pi i/k) \end{pmatrix},
\]

\[
g = g_k = \begin{pmatrix} \frac{1}{2} \left(\frac{2(t-2)}{t-3} + \sqrt{\frac{2(t-3)}{t-3}} \right) & \frac{1}{2} \left(\frac{2(t-2)}{t-3} - \sqrt{\frac{2(t-3)}{t-3}} \right) \\ \frac{t-3}{4-t} & \frac{t-3}{4-t} \end{pmatrix}.
\]

(7.6)

Define \(\text{GTet}_1[k, 3, 2] \subseteq \text{PSL}(2, \mathbb{C})\) to be the image in \(\text{PSL}(2, \mathbb{C})\) of the group generated by \(f\) and \(g\). The following facts are known.

- \(\text{GTet}_1[k, 3, 2]\) is a discrete and cocompact subgroup of \(\text{PSL}(2, \mathbb{C})\) (\[41, 42\]).
- \(\text{GTet}_1[k, 3, 2]\) is commensurable with a reflection group (\[41, 42\]).
- \(\text{GTet}_1[k, 3, 2]\) is non-arithmetic for all \(k \geq 14\) (\[26\]).
- \(\text{GTet}_1[k, 3, 2] = \langle f, g \mid f^{h}, (gf^{k/2}zg^{-1}z)^2, z^2, fgf^{-1}g^{-1}z \rangle\), where \(z = fgf^{-1}f\) (\[41\]).

Again these results are sufficient to compute cohomology spaces. We find

\[
\dim_{\leq 1000} H^1(\text{GTet}_1[k, 3, 2], E_n) = \begin{cases}
n/4, & \text{if } n \equiv 0 \pmod{4}, \\
(n+1)/2, & \text{if } n \equiv 1 \pmod{2}, \\
(n+2)/4, & \text{if } n \equiv 2 \pmod{4},
\end{cases}
\]

(7.7)
in the range \(14 \leq k \leq 100\) and \(1 \leq n \leq 30\). The groups \(\text{GTet}_1[8, 3, 2], \text{GTet}_1[10, 3, 2]\) and \(\text{GTet}_1[12, 3, 2]\) are arithmetic. Compared to (7.7), the dimensions of their cohomology groups show a similar but slightly more complicated behavior. In particular, the dimensions of the cohomology spaces \(H^1(\text{GTet}_1[10, 3, 2], E_n)\) are given by linear functions on the residue classes modulo 20 within the range of our computations. Again all these groups are invariant under the complex conjugation automorphism of \(\text{PSL}(2, \mathbb{C})\).
7.2 Helling’s examples

Here we report on a series of two-generator discrete subgroups of $\text{SL}(2, \mathbb{C})$ described in [33]. We shall keep the terminology of [33]. The phenomena seen here are new.

For a non-negative integer k, let T_k and U_k be the standard Tchebyshev polynomials [51]. They can be defined by the relation

$$(x + \sqrt{x^2 - 1})^k = T_k(x) + U_{k-1}(x)\sqrt{x^2 - 1},$$

for example. For a non-negative integer m we define polynomials

$$\tilde{p}_m(x) = \begin{cases} 2T_k\left(\frac{x}{2}\right), & \text{if } m = 2k, \\ U_k\left(\frac{x}{2}\right) - U_{k-1}\left(\frac{x}{2}\right), & \text{if } m = 2k + 1, \end{cases} \quad (7.8)$$

and

$$f_m(x) = \begin{cases} \tilde{p}_{m+2}(x)^2 - x^2 + 4, & \text{if } m \text{ is even}, \\ \tilde{p}_{m+2}(x)^2 - x + 2, & \text{if } m \text{ is odd}. \end{cases} \quad (7.9)$$

The following table contains the first ten polynomials $f_m(x)$.

m	$f_m(x)$
1	$x^2 - 3x + 3$
2	$x^4 - 5x^2 + 8$
3	$x^4 - 2x^3 - x^2 + x + 3$
4	$x^6 - 6x^4 + 8x^2 + 4$
5	$x^8 - 8x^6 + 20x^4 - 17x^2 + 8$
6	$x^{10} - 10x^8 + 35x^6 - 50x^4 + 24x^2 + 4$
7	$x^{10} - 2x^9 - 7x^8 + 14x^7 + 16x^6 - 32x^5 - 13x^4 + 26x^3 + 3x^2 - 7x + 3$
8	$x^{12} - 12x^{10} + 54x^8 - 112x^6 + 105x^4 - 37x^2 + 8$

Helling shows in [33] that the polynomials f_m have only non-real zeroes. For a zero z of f_m define the matrices

$$A_m = \begin{pmatrix} 0 & 1 \\ -1 & z \end{pmatrix}, \quad B_m = \begin{pmatrix} 1 & 0 \\ \tilde{p}_m(z) & 1 \end{pmatrix}, \quad C_m = \begin{pmatrix} 1 & \tilde{p}_m(z) \\ 0 & 1 \end{pmatrix}. \quad (7.10)$$

An easy computation using properties of the Tchebyshev polynomials confirms that these matrices satisfy the relations

$$A_m C_m A_m^{-1} = B_m^{-1}, \quad C_m B_m C_m^{-1} B_m^{-1} = A_m^m. \quad (7.11)$$

Define Θ_m to be the group generated by the above matrices:

$$\Theta_m = \langle A_m, B_m, C_m \rangle = \langle A_m, C_m \rangle \subseteq \text{SL}(2, \mathbb{C}). \quad (7.12)$$

Helling shows that for every $m \in \mathbb{N}$ there is a zero $z \in \mathbb{C}$ of f_m such that the matrix group Θ_m satisfies:
• Θ_m is a discrete and torsion-free subgroup of SL$(2, \mathbb{C})$.

• Θ_m has finite covolume and exactly one cusp.

• Θ_m is defined by the relations (7.11).

• The groups Θ_1, Θ_2 are arithmetic groups, but all the other Θ_m ($m \geq 3$) are non-arithmetic.

The zero z in question is specified (up to complex conjugation) by the condition

$$|z - 2| < 4 \sin^2 \frac{\pi}{2m}$$

for $m \geq 3$ odd and

$$\Re(z) > 0, \ |z^2 - 4| < 4 \sin^2 \frac{\pi}{m}$$

for $m \geq 4$ even. For $m = 1$ or 2, z may be taken to be any zero of f_m. Concerning the cohomology of the groups Θ_m, we can report the following computations:

$m = 1$:

The group Θ_1 is (up to conjugacy) the famous figure eight knot group. It is conjugate to a congruence subgroup of SL$(2, \mathbb{O}_{-3})$. For $k \leq 120$ we have

$$\dim H^1(\Theta_1, E_n) = \begin{cases}
\frac{n}{3}, & \text{if } n \equiv 0 \text{ mod } 3, \\
\frac{(n + 2)}{3}, & \text{if } n \equiv 1 \text{ mod } 3, \\
\frac{(n + 1)}{3} + 1, & \text{if } n \equiv 2 \text{ mod } 3.
\end{cases} \quad (7.13)$$

$m = 2$:

The group Θ_2 is isomorphic to the fundamental group of the lens space with fundamental group of order 2 with a knot removed. It is conjugate to a group commensurable with SL$(2, \mathbb{O}_{-7})$. For $k \leq 120$ we have

$$\dim H^1(\Theta_2, E_n) = \begin{cases}
\frac{n}{3}, & \text{if } n \equiv 0 \text{ mod } 3, \\
\frac{(n + 2)}{3}, & \text{if } n \equiv 1 \text{ mod } 3, \\
\frac{(n + 1)}{3}, & \text{if } n \equiv 2 \text{ mod } 3,
\end{cases} \quad (7.14)$$

except in the case $n = 12$, where we have

$$\dim H^1(\Theta_2, E_{12}) = 6.$$

$m \geq 3$:

Here we have

$$\dim H^1(\Theta_m, E_n) = 1 \quad (7.15)$$

for all $3 \leq m \leq 150$ and $1 \leq k \leq 30$. This means that in this range we have $H^1_{\text{cusp}}(\Theta_m, E_n) = 0$.

47
7.3 A cocompact tetrahedral group

Let $CT(26)$ be the tetrahedral hyperbolic reflection group constructed (for example) in Section 10 of [20] and let $\Gamma_{26} \subseteq PSL(2, \mathbb{C})$ be its unique subgroup of index 2. The quotient $PSL(2, \mathbb{C})/\Gamma_{26}$ is compact. The group Γ_{26} is non-arithmetic and has the presentation

$$\Gamma_{26} = \langle a, b, c \mid a^3, b^2, c^5, (ac^{-1})^2, (bc^{-1})^3, (ab)^4 \rangle.$$ \hfill (7.16)

Using the data from [20] we infer that Γ_{26} can be generated (up to conjugacy) by the matrices

$$a = \begin{pmatrix} \frac{2t^3+t^2+t+2}{5} & -\frac{1}{5} & 1-t^2-t+3 \\ \frac{-t^3+t^2-4t+2}{5} & \frac{b_2}{5} & c_2 \\ \frac{3t^3-t^2+4t-2}{5} & 0 & t \end{pmatrix}, \quad b = \begin{pmatrix} -\frac{3t^3+t^2-4t+2}{5} \\ \frac{b_2}{5} \\ \frac{3t^3-t^2+4t-2}{5} \end{pmatrix}, \quad c = \begin{pmatrix} t^{-1} & 0 \\ 0 & t \end{pmatrix},$$

where $t \in \mathbb{C}$ is a primitive 10-th root of unity and c_2 is one of the two complex roots of the polynomial

$$x^4 + \frac{-6t^3 + 6t^2 + 8}{5} x^3 + \frac{-t^3 + t^2 - 3}{5} x^2 + \frac{-4t^3 + 4t^2 + 2}{25} x + \frac{3t^3 - 3t^2 + 2}{25}.$$

The entry b_2 is determined by

$$b_2 = (-20t^3 + 20t^2 + 35)c_2^3 + (-50t^3 + 50t^2 + 80)c_2^2 + (9t^3 - 9t^2 - 17)c_2 - 4t^3 + 4t^2 + 6.$$

We have found that

$$H^1(\Gamma_{26}, E_n) = 0$$ \hfill (7.17)

for $0 \leq n \leq 90$. The group Γ_{26} has 222 conjugacy classes of subgroups of index less than or equal to 24. We have also determined the dimensions of some cohomology spaces of these subgroups. Of the 222 subgroups 191 satisfied $H^1(\Gamma, E_n) = 0$ in the range $0 \leq n \leq 10$. Thirty subgroups had $\dim_{\leq 1000} H^1(\Gamma, E_n) = 1$ in the range $0 \leq n \leq 10$. One of the 222 had $\dim_{\leq 1000} H^1(\Gamma, E_n) = 2$, again in this range.

References

[1] Arthur, J., The L^2-Lefschetz numbers of Hecke operators, Inv. math. 97 (1989), 257–290.

[2] Asai, T., On the Doi-Naganuma lifting associated with imaginary quadratic fields, Nagoya Math. J. 71 (1978), 149–167.

[3] Beliopetsky, M., Gelander, T., Lubotzky, A., Shalev, A., Counting arithmetic groups and arithmetic surfaces. To be written.

[4] Borel, A., Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 94 Princeton University Press, NJ.

[5] Borel, A., Stable real cohomology of arithmetic groups II, in: Hano, J. et al. (eds.), Manifolds and Lie groups. Progress in Mathematics, 14 Birkhäuser Verlag 1981, 22–51.

[6] Brown, K., Cohomology of groups. GTM 87, Springer Verlag, New York (1982).
[7] Brumer, A., McGuiness, O., *The behavior of the Mordell-Weil group of elliptic curves*. Bulletin of the American Mathematical Society 23 (1990), 375–382.

[8] Bushnell, C. J., Henniart, G., *The Local Langlands Conjecture for GL(2)*. Grundlehren der math. Wissenschaften 335 Springer-Verlag (2006).

[9] Calegari, F., Emerton, M., *Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms*. arXiv:0704.0662v1.

[10] Calegari, F., Mazur, B., *Nearly Ordinary Galois Deformations over Arbitrary Number Fields*. Manuscript.

[11] Clozel, L., *On the cuspidal cohomology of arithmetic subgroups of SL(2n) and the first Betti number of arithmetic 3-manifolds*. Duke Math. J. 55 (1987), no. 2, 475–486.

[12] Cohen, H., Oesterlé, J., *Dimensions des espaces de formes modulaires*. Modular Functions of One Variable VI, Lecture Notes in Math. 627 Springer-Verlag 1977, 69–78.

[13] Corwin, L., *The Plancherel Measure in Nilpotent Lie Groups as a Limit of Point Measures*. Math. Z. 155 (1977), 151–162.

[14] Cremona, J., *Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields*, Compositio Math. 51 (1984), no. 3, 275–324.

[15] de George, D. L., Wallach, N. R., *Limit formulas for multiplicities in $L^2(\Gamma\backslash G)$*. Ann. of Math. (2) 107 (1978), no. 1, 133–150.

[16] Duistermaat, J. J., Kolk, J. A. C., Varadarajan, V. S., *Spectra of Compact Locally Symmetric Manifolds of Negative Curvature*. Inv. math. 52 (1979), 27-93, erratum Inv. math. 54, (1979), 101.

[17] Dunfield, N. M., Thurston, W. P., *The virtual Haken conjecture: Experiments and examples*. Geometry & Topology 7 (2003), 399–441.

[18] Elstrodt, J., Grunewald, F., Mennicke, J., *On the group $\text{PSL}_2(\mathbb{Z}[i])$*. Number theory days, 1980 (Exeter, 1980), 255–283, London Math. Soc. Lecture Note Ser., 56 Cambridge Univ. Press, Cambridge-New York, 1982.

[19] Elstrodt, J., Grunewald, F., Mennicke, J., *PSL(2) over imaginary quadratic integers*. Arithmetic Conference (Metz, 1981), 43–60, Astérisque, 94, Soc. Math. France, Paris, 1982.

[20] Elstrodt, J., Grunewald, F., Mennicke, J., *Groups Acting on Hyperbolic Space. Harmonic analysis and number theory*. Springer Monographs in Mathematics, Springer Verlag, Berlin 1998.

[21] Flöge, D., *Zur Struktur der PSL_2 über einigen imaginär-quadratischen Zahlringen*, Math. Z. 183 (1983), 255–279.

[22] Franke, J., Schwermer, J., *A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups*, Math. Ann. 311 (1998), 765–790.
[23] Friedberg, S., *On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level*, Nagoya Math. J. 92 (1983), 1–20.

[24] Friedberg, S., *On Maass wave forms and the imaginary quadratic Doi-Naganuma lifting*, Math. Ann. 263 (1983), no. 4, 483–508.

[25] Grunewald, F., Helling, H., Mennicke, J., *SL_2 over complex quadratic fields. I*. Algebra i Logika 17 (1978), no. 5, 512–580, 622.

[26] Grunewald, F., Klinenko, E., Kopteva, N., *Kleinian groups generated by two elements: arithmeticity and cohomology computations*. In preparation.

[27] Grunewald, F., Mennicke, J., *SL_2(O) and elliptic curves*. Manuscript, Universität Bielefeld (1978).

[28] Grunewald, F., Schwermer, J., *A nonvanishing theorem for the cuspidal cohomology of SL_2 over imaginary quadratic integers*. Math. Ann. 258 (1981/82), no. 2, 183–200.

[29] Grunewald, F., Schwermer, J., *Arithmetic quotients of hyperbolic 3-space, cusp forms and link complements*. Duke Math. J. 48 (1981), no. 2, 351–358.

[30] Grunewald, F., Singhof, W., *Some further points on the cohomology of discontinuous group actions*. Manuscript Düsseldorf (2008).

[31] Haberland, K., *Perioden von Modulformen einer Variabler und Gruppencohomologie, I–III*, Math. Nachr. 112 (1983), 245–282, 283–295, 297–315.

[32] Harder, G., *Eisenstein cohomology of arithmetic groups: the case GL_2*. Inv. math. 89 (1987), 37–118.

[33] Helling, H., *The trace field of a series of hyperbolic manifolds*. Preprint 99–072, Sonderforschungsbereich 343, Universität Bielefeld.

[34] Harris, M., Soudry, D., Taylor, R., *l-adic representations associated to modular forms over imaginary quadratic fields. I: Lifting to GSp_4(ℚ)*, Invent. Math. 112 (1993), no. 2, 377–411.

[35] Hoffmann, W., *The Fourier transforms of weighted orbital integrals on semisimple groups of real rank one*. J. reine angew. Math. 489 (1997), 53–97.

[36] Hoffmann, W., *An Invariant Trace Formula for Rank One Lattices*. Math. Nachr. 207 (1999), 93–131.

[37] Jacquet, H., Langlands, R. P., *Automorphic forms on GL(2)*. Lecture Notes in Math. 114 Springer-Verlag (1970).

[38] Klinenko, E., Sakuma, M., *Two-generator discrete subgroups of Isom(H^2) containing orientation-reversing elements*. Geometriae Dedicata 72 (1998), 247–282.

[39] Klinenko, E., Kopteva, N., *Discreteness criteria for ℜP groups*. Israel J. Math. 128 (2002), 247–265.

[40] Klinenko, E., Kopteva, N., *All discrete ℜP groups whose generators have real traces*. Algebra and Computation, 15 (2005), 577–618.
[41] Kliment, E., Kopteva, N., Kleinian orbifolds uniformized by \mathbb{RP} groups with an elliptic and a hyperbolic generators. Geometry and Topology Monographs 12 (2007), 121–156.

[42] Kliment, E., Kopteva, N., Two generator Kleinian orbifolds. arxiv math:GT/0606066

[43] Knapp, A. W., Representation Theory of Semisimple Groups. Princeton University Press (1986).

[44] Knapp, A. W., Stein, E. M., Intertwining operators for semisimple groups. Ann. Math. 93 (1971), 489–578.

[45] Krämmer, N., Beiträge zur Arithmetik imaginärquadratischer Zahlkörper, Bonner mathematische Schriften, Nr. 161, 1985.

[46] Labesse, J.-P., Lang, R. P. L-indistinguishability for $\text{SL}(2)$. Can. J. Math. 31 (1979), 726–785.

[47] Labesse, J.-P., Schwermer, J., On liftings and cusp cohomology of arithmetic groups, Inv. math. 83 (1986), 383–401.

[48] Lackenby, M., Long, D. D., Reid, A., Covering Spaces of Arithmetic 3-Orbifolds, Int. Math. Res. Notices (2008), 38 pages.

[49] Lang, S., Algebraic Number Theory. Second Edition, Springer GTM 110 Springer Verlag (1994).

[50] Langlands, R. P., Base change for $\text{GL}(2)$. Annals of Math. Studies 96, Princeton University Press, 1980.

[51] Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental functions. (1953).

[52] Rajan, C. S., On the non-vanishing of the first Betti number of hyperbolic three manifolds, Math. Ann. 330 (2004), 323–329.

[53] Rohlf, J., On the cuspidal cohomology of the Bianchi modular groups. Math. Zeit. 188 (1985), 253–269.

[54] Savin, G., Limit multiplicities of cusp forms, Invent. math. 95 (1989), 149–159.

[55] Schneider, J., Diskrete Untergruppen von $\text{SL}_2(\mathbb{C})$ und ihre Operation auf dem dreidimension- alen hyperbolischen Raum. Diplomarbeit, Bonn (1985).

[56] Serre, J.-P., Le problème des groupes de congruence pour SL_2, Ann. Math. 92 (1970), 489–527.

[57] Serre, J.-P., Cohomologie des groupes discrets, in: Prospects in Mathematics. Annals of Mathematics Studies, 70, Princeton University Press 1971, 77–170.

[58] Shimizu, H., On discontinuous groups operating on the product of the upper half planes, Ann. Math. 77 (1963), 33–71.

[59] Shimura, G., Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan. Kano Memorial Lectures 11 (1), Princeton Univ. Press, Princeton NJ 1994.
[60] Shimura, G., *Arithmeticity in the theory of automorphic forms*. Mathematical Surveys and Monographs, 82. American Mathematical Society, Providence, RI, 2000.

[61] Stein, W., *The Modular Forms Database*. http://modular.fas.harvard.edu/Tables/.

[62] Swan, R., *Generators and relations for certain special linear groups*, Adv. Math. 6 (1971), 1–77.

[63] Taylor, R., *l-adic representations associated to modular forms over imaginary quadratic fields. II*, Invent. Math. 116 (1994), no. 1–3, 619–643.

[64] Urban, E., *Formes automorphes cuspidales pour GL_2 sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences*, Comp. Math. 99 (1995), 283–324.