Abstract: Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.

Keywords: magnetic hyperthermia; cancer treatment; efficiency; parameters

1. Introduction to Magnetic Hyperthermia: Concepts and Terminology

The term “hyperthermia” refers to the local, regional, or generalized increase in body temperature, and it has a solid, long-lasting history in the annals of cancer management, either alone or in combination with other therapeutic approaches.

The use of magnetic implants as thermo-seeds to generate heat when exposed to an alternating magnetic field (AMF) has been proposed as cancer treatment since the 1950s [1]. The concept of “intracellular” magnetic hyperthermia (MHT) was later introduced by Gordon et al. by using dextran-coated magnetite submicron particles, which were internalized by cancer cells in vivo, to increase the temperature of tumors submitted to a strong AMF [2]. More recently, nanotechnology has been significantly contributing to the on-going scientific progress in the field of cancer research, not only regarding treatment but also its prevention and detection [3–5]. Innovative approaches have been proposed to treat cancer, among them magnetic nanoparticle (MNP)-induced MHT, which explores the heating ability of MNPs, under the influence of an AMF, to kill cancer cells (Figure 1). Some of the expected theoretical advantages of MHT are the possibility of treating a localized area, while keeping surrounding tissues safe, the ability to treat deep-seated tumors that would otherwise be untreatable and the possibility of exploring combinatorial schemes with other therapeutic regimes for increased efficiency [6].
Tables A1 and A2 compile examples of in vitro MHT studies, using non-targeted and targeted nano-formulations, respectively, while Table A3 concerns in vivo studies. The most relevant parameters influencing the outcome of preclinical MHT studies will be addressed and discussed with the purpose of providing a source of helpful information for planning forthcoming MHT studies.

2. Main Parameters Influencing the Outcome of a Preclinical Magnetic Hyperthermia Study

The approval of nanomaterials for cancer clinical trials requires initial testing of their anti-cancer potential in vitro and in vivo in order to have an initial impression on the efficacy, tolerability, and toxicity of the MNPs and the selected AMF conditions. In general terms, an MHT experiment comprises three distinct layers: a biological component (cellular and/or animal models), a nanomaterial component (most commonly, MNPs), and an AMF component (considering the MHT equipment and the derived AMF specifications). A fourth level concerns the evaluation of the treatment outcome.

Some parameters will crucially impact the observed results, justifying the observed colossal differences in the outcome of MHT studies. Among those parameters, we highlight the cells to be tested, the MNPs’ characteristics (namely, the coating employed, the size, and initial concentration), the targeting system (if applicable), the selected animal model (if applicable), the AMF parameters, and the temperature that was reached. The evaluation of the MHT effect, i.e., which kind of test to perform, and the most appropriate time to implement it, also influence the reported outcomes. Tables A1 and A2 compile examples of in vitro MHT studies, using non-targeted and targeted nano-formulations, respectively, while Table A3 concerns in vivo studies. The most relevant parameters that may have contributed to the observed outcome are summarized and will be further examined and discussed in this review.

2.1. The Biological Component—Cells, Cell Lines, and Animal Models

2.1.1. Relevance and Thermal Susceptibility

Since MHT is often purposed for cancer treatment, it is important to test its tolerability and its efficiency to kill cancer cells that are representative of a tumor, both in vitro and in vivo. These are usually human cell lines that need to be tumorigenic to generate a tumor in an animal model. For some types of cancer, e.g., for glioblastoma, there are a number of different human cell lines that fill in this pre-requisite. However, the results of MHT studies often lead to distinct outcomes. In fact, different cells or cell lines may have diverse susceptibilities to heat, i.e., thermostolerance [7], which means that similar temperature profiles may lead to varying outcomes depending on the tested cells [8]. One major contributing factor for such differences may be the divergent induction of heat shock protein (HSP) synthesis among cell lines [9]. Some authors are actively trying to overcome this issue by blocking HSP70 to enhance MHT efficiency [10].
2.1.2. Cell Number, Configuration, and Tumor Size

Since cancer cells tend to grow fast, the initial number of cells used for the experiments will have an impact on the observed results. An increased number of cells is able to uptake a larger total amount of magnetic material and, consequently, generate more heat when subjected to AMF. This means that using different numbers of cells might result in a different concentration of magnetic materials with all the associated consequences. This further applies to an in vivo scenario, as the number of tumorigenic cells inoculated in the animal model will result in variable tumor sizes.

The configuration in which the cells are exposed to MNPs and subjected to MHT may also result in different outcomes. In fact, under similar thermal loading, adherent cells seem to be more susceptible to MHT than suspended cells [11]. While in a cell suspension, the heating effects may be mediated by heating the surrounding medium, the real-time follow-up of the treatment on adherent cells revealed the delayed-onset of cell death occurring on a cell-by-cell basis, which, therefore, supported an intracellular type of MHT.

Other conformations of cells have been used for MHT studies like cell pellets [12] and cell clusters [13]. These cell clusters helped understand the influence of the tumor size on the efficiency of MHT, concluding that a minimum tumor volume of 1 mm3 is required for cytotoxic hyperthermia [13]. This result suggests the inability of MHT to treat microscopic tumors or metastasis.

In an attempt to better emulate the complex 3D structure of a tumor in vitro, Stocke and co-workers developed a co-cultured spheroid system containing triple negative breast cancer cells, endothelial cells, and embryonic fibroblasts from murine origin [14], which recreated a secondary lung tumor of a metastatic breast malignancy. After 10 days in culture (600 μm in diameter), these 3D structures were exposed to a low or a high concentration of inhalable MNPs and to AMF for 1 h, which resulted in a dose-dependent increase in cell death. The reached temperature was not reported and the contribution of heat for the observed outcome was not excluded, but the authors suggest it to derive from mechanical deterioration. Very recently, Mamica et al. proposed a new in vitro model consisting of a tumor-on-a-chip to study the effects of MHT on treating glioblastoma (Figure 2) [15]. The tumor was mimicked by using rat glioblastoma cells in 3D configuration in a device integrating microfluidics that guarantees the delivery of nutrients to the tumor. Future developments would include the emulation of the blood vessels in this model.

![Figure 2. Schematic comparison between magnetic hyperthermia (MHT) in vivo and MHT on a tumor on-a-chip. In vivo, magnetic nanoparticles (MNPs) injected into the tumor are heated up by an alternating magnetic field (AMF). On the tumor-on-a-chip model, MNPs are injected using microfluidics into the central compartment where a 3D tumor structure was formed. The whole chip is then submitted to the AMF. Adapted with permission from Reference [15]. Copyright 2019 Instituto Israelita de Ensino e Pesquisa Albert Einstein.](image)

Ethical constraints impose a limit on the bearable tumor weight/volume for the experimental animal, but most of the in vivo MHT studies report initial tumor volumes ranging from 50 mm3 [16] to 1.4 cm3 [17] depending on the experimental animal model (Table A3).
2.1.3. Animal Models for In Vivo Studies

The animal models mostly used for MHT studies are rodents, in particular, mice (Table A3). Yet, the efficiency of MHT has also been tested in bigger animals, such as rabbits [17], which can accommodate larger tumors. In many cases, the tumors are generated from xenographs of human cell lines, which is a procedure that requires immunocompromised animals. However, mouse cells can also generate the tumors, and, in this situation, immunocompetent mice may be used to gain insights into the role of anti-tumor immunity in the MHT treatment [18,19]. In fact, there is evidence of intense immuno-stimulation, in particular CD8+ T-cells recruitment and activation, following mild MHT treatment, which may contribute to increased efficiency of the treatment [19].

2.1.4. Parallel Tests in Normal Cells

There are indications of the existence of distinct thermal susceptibility between normal and cancer cells [20,21]. However, this is only true for a certain range of temperatures and it does not exclude the occurrence of side effects mediated by nanomaterials (NMs). Therefore, it is important to test the proposed in vitro MHT strategies in normal cells to understand whether secondary effects should be expected when transitioning to in vivo studies. Only a minority of the studies mentioned in this review actually tested this (see Tables A1 and A2). Fibroblasts, either from mouse origin [22–25] or from human [26–28] origin, are commonly used for this end. For targeted MHT studies, it may be more useful to use a cell line with a lower or even negative expression of the selected target, as this allows to simultaneously prove the selectivity of the treatment [21,25]. This type of study is particularly relevant when the selected target is also widely expressed in normal cells. As an example of the relevance of taking this type of study, Liao et al. functionalized MNPs with D-Galactosamine (D-Gal) to specifically target liver cancer cells, which results in very low levels of cell viability [29]. Even though the selected target, asialoglycoprotein receptor, is known to be widely expressed in normal liver cells as well [30], the authors did not reproduce the test in normal cells and, therefore, the occurrence of cytotoxicity in normal cells cannot be ruled out.

2.2. The Nanomaterial Component

2.2.1. Size, Coating, and Chemical Composition

The size, size distribution, and shape of a particular NM have a clear impact on its magnetic properties [31]. These parameters should ideally be optimized [32] so as to exhibit the highest heating power under a selected AMF frequency [33–35], while displaying minimal toxicity if not subjected to an external magnetic field. This optimization also minimizes the need to revise extrinsic parameters, such as the NM concentration or the AMF power.

For MNPs, there is a critical size below which a superparamagnetic behavior is observed. Under an external magnetic field, the atomic magnetic moments of superparamagnetic nanoparticles align along the field direction, which achieves a high magnetic susceptibility [36]. Unlike other types of magnetic materials, once the magnetic field is removed, superparamagnetic nanoparticles behave like a non-magnetic material exhibiting no magnetic memory (i.e., no remanence), which yields stable and very useful colloidal dispersions for biomedical applications [37]. Additionally, the MNPs’ size also has clinical and in vivo significance. In fact, MNPs sized above 200 nm are rapidly taken up by the reticulo-endothelial system (RES) and accumulate in the liver and spleen while MNPs sized below 6 nm are filtered by the kidney [38]. Furthermore, there are natural differences between the neovasculature of tumors (defective and leaky) and that from normal tissues with the openings of normal vessels being generally less than 10 nm [39]. These differences pose practical implications since MNPs sized above 10 nm can extravasate and accumulate in the tumor, but not in the normal tissues. Additionally, the slow venous return and lower lymphatic clearance, which are characteristic of tumors, favor MNPs’ retention at the tumor site [40]. This extensive leakage and low clearance characteristic of many solid tumors are known as the enhanced permeability and retention (EPR) effect [39]. This seems, however,
to fail in the clinical context [41]. At a cellular level, the upper size limit consensually considered for nanoparticle uptake through endocytosis is 500 nm [38,42]. As already mentioned, nanoparticles sized above 200 nm are generally taken up by specialized cells of the RES through phagocytosis, which is a specific type of endocytosis [43].

Very distinct types of magnetic materials have been used for MHT purposes, including metal nanoparticles (e.g., Fe, Co, and Ni), metal alloy nanoparticles (e.g., FeCo, FePt, CoPt, and FePd), metal oxide nanoparticles (e.g., Fe3O4, Fe2O3, and MnO), ferrite nanoparticles (e.g., MnFe2O4, NiFe2O4, and ZnFe2O4), metal-doped iron oxide nanoparticles (e.g., Mg, Mn, and Zn doped iron oxide), and core-shell magnetic nanoparticles (e.g., Fe@Fe3O4, Co@Co2P, and CoFe2O4@MnFe2O4) [44]. Since the magnetic properties of the NMs depend on their size, shape, composition, and structure, these characteristics need to be crucially controlled during NMs synthesis [32]. As an example, magnesium-doped maghemite superparamagnetic nanoparticles with 100× higher heating power (see Section 2.3.1) than the commercial Resovist formulation allowed the induction of complete necrosis of glioblastoma cells by applying a low AMF (Hf product = 1.22 × 109 A m−1 s−1) [45]. However, using the same cellular model but applying a more extreme AMF (Hf product = 12.3 × 109 A m−1 s−1), the use of lipid-based magnetic nano-vectors resulted in lower MHT efficiency (~50% apoptotic cells 72 h after 4 cycles of MHT) [46]. Still, these nano-vectors are rather versatile tools that can be loaded with chemotherapeutic agents to improve the treatment outcome.

The Curie temperature (Tc) is an intrinsic characteristic of the magnetic NM that depends on the NM’s composition. It is described as the temperature above which the materials become paramagnetic, i.e., the magnetism is lost and the heating stops [47]. This self-regulation of the system’s temperature by manipulation of the NM’s Tc has been suggested to maintain the temperature of the system within the hyperthermal range [48] in order to decrease the risk of overheating and consequent damage of neighboring (normal) tissues.

The coating is a major contributor for NMs’ stability with significant repercussion on their magnetic properties as well as internalization ability and biocompatibility [49], which allows the application of NMs for nanomedicine purposes in general [31]. The coating materials protect the MNPs from oxidation, humidity, and acidity, and create a hydrophilic environment that prevents agglomeration, while allowing for further functionalization (Figure 3). Additionally, coating can act as a biocompatible shield for the MNPs, which may prevent their opsonization by the RES, consequently, increasing their blood circulation time [50]. Polymers, such as poly(ethylene glycol) (PEG), poly(lactic-co-glycolic acid) (PLGA), alginate, dextran, and chitosan, are examples of commonly used polymeric stabilizers. Organic non-polymeric stabilizers can also be used for this end, namely oleic acid, stearic acid, and citric acid [51]. More details on the properties of NMs for MHT can be found in recent reviews [31,34,44].

Figure 3. Simplified representation of a magnetic nanoparticle and its layers. Some of the factors affected by each magnetic nanoparticle (MNP) layer in in vitro and in vivo context are highlighted in the respective color text box.
2.2.2. Targeting

The overexpression of some surface-receptors in cancer cells compared to normal cells allows for actively targeting cancer cells with MNPs functionalized with a targeting molecule such as an antibody, a peptide sequence, or a ligand protein [52]. This is in contrast with the passive targeting achieved with the EPR effect. The active targeting may result in efficient internalization of targeted MNPs by receptor-mediated endocytosis [53], and it has been described as one of the main factors affecting the binding of MNPs to cells in vitro [54]. The protein adsorption layer (protein corona), formed by the proteins in the medium where nanoparticles interact with cells (e.g., blood proteins in vivo, serum proteins in vitro), is known to contribute to lower adhesion, and, consequently, result in lower uptake. Yet, if a targeting moiety is present on the nanoparticles, the adhesion of the nanoparticles to the cells will fully depend on the target recognition [55]. In this sense, the preferential accumulation (and potential internalization) of targeted MNPs in cancer cells provides a controlled strategy to kill cancer cells with minimal predicted effects in normal cells. Even though recent studies support the superiority of targeted versus non-targeted MHT, both in vitro and in vivo [56,57], others defend that the amount of MNPs delivered by active targeting is insufficient to generate adequate heating at the tumor site [51]. Improvements to targeted MHT efficiency can be achieved by combining it with other therapies [26,57–60]. The authors preferred to explore MHT in a mono-therapeutic context while combining targeted with non-targeted MNPs for increased efficiency [21,61]. By adjusting the amount of non-targeted nanoparticles as a magnetic boost for the targeted nanoparticles, it is possible to push up the temperature to the level necessary to induce consistent cancer cell death rates. This strategy was highly effective in vitro, without the need to resort to highly cytotoxic, non-selective, chemotherapeutic agents.

Examples of regularly targeted molecules are the folate receptor and the human epidermal growth factor receptor 2 (HER2) receptor. While the folate receptor was found to be overexpressed in a broad variety of cancers and minimally expressed in normal tissues [62], the HER2 receptor is specifically expressed in some aggressive types of breast cancer [63].

2.2.3. Concentration, Time of Incubation with the Cells, and Nanomaterial Excess Removal

The amount of NM and the time that it is incubated with cells prior to the AMF application usually positively correlate with the uptake of magnetic material, often expressed as pg Fe/cell, which, in turn, contributes to the reached temperature and consequent toxic effects. Comparatively to normal cells, cancer cells seem to display an improved ability to uptake NMs [21,64–67]. Even though this behavior cannot be generalized to other cell types rather than the studied ones, it appears as a natural mechanism favoring NMs’ accumulation in cancer cells.

It seems hard to establish the Fe loading necessary to achieve efficient MHT, but some studies tried to address this issue. A cancer cell suspension containing a concentration of 2–4 g Fe/L has been reported to generate temperatures between 40 and 45 ºC, which causes a 50% drop in cell viability, while 5 g Fe/L resulted in 65 ºC and total cell death [68]. However, using high concentration of NM for the MHT tests increases the chances of observing secondary effects, particularly in the in vivo context. A study has suggested that a minimum of 250,000 cells, each loaded with 200 pg of Fe, is required to reach 41.3 ºC [13]. Considering the final volume of 0.5 mL, this represents a concentration of 0.1 g Fe/L, which is far below the ones from the previous study. In line with this result, the authors’ work on in vitro MHT using a combination of targeted and non-targeted MNPs reported temperatures of 43 to 47 ºC and cell viability levels below 20% for cancer cells with a total iron load of 0.31 [61] and 0.65 g Fe/L [21]. When normal cells were treated under similar conditions, a total Fe loading of 0.2 g Fe/L was achieved and the temperature was kept around 41 ºC with minimal impact on cell viability [21]. The single cell iron loading for those studies may be found in Table A2. Others have reported elevated MHT efficiency using very low concentration of the luteinizing hormone—releasing hormone (LHRH)-targeted MNPs [69]. The cells containing ca. 15 pg Fe/cell were heated up to 44 ºC, which resulted in 5% cell viability. This is a low Fe content when
compared with the study by Liao et al. that reported similar viability results but with ca. 365 pg Fe/cell [29]. This discrepancy may result from distinct thermal susceptibility of the cell lines or the different number of cells used in the experiments (5× higher in Reference [69]), which results in overall increased magnetic loading of the sample. Additionally, in Liao et al., the alginate-coated MNPs were incubated only for 30 min with the cells while, in the research from Taratula et al., the poly(maleic anhydride-alt-1-octadecene)-poly(ethylenimine)-poly(ethyleneglycol)-coated MNPs were incubated with the cells for 12 h, which suggests an increased uptake capability for alginate-coated MNPs.

Many of the in vitro studies on MHT for cancer treatment do not refer to the concept of intracellular hyperthermia introduced by Gordon et al. [2], in the sense that AMF is applied right after adding the magnetic materials to the cells or without previously removing the extracellular or unbound MNPs. In those studies, the outcome, though sometimes impressive [70] and still dependent on the reached temperature and (time of) exposure to AMF, may be due to the heating of the surrounding environment and, therefore, not necessarily dependent on the direct interaction of MNPs and cells [70–75]. On the other hand, Blanco-Andujar and co-workers have recently reported magnetically-induced cell death due to intracellular heating, while excluding the heating effects of the local environment [11].

2.2.4. Administration Route

For in vivo (and clinical) MHT studies, the route of administration of the NMs, along with their coating, contributes to differential distribution and accumulation of the NMs, and a balance needs to be found between the effective tumor treatment and the appearance of side effects due to off-target accumulation in vital organs such as the liver, spleen, and lungs. Many different administration routes have been explored in in vivo MHT studies (see Table A3), but there seems to be a preference for intra-tumoral (IT) and intravenous (IV) administration.

The IT administration of MNPs seems to be generally considered a more invasive procedure than the IV counterpart and it is known to result in uneven distribution of the MNPs in the tumor, which can lead to a significant temperature difference across the tumor [76]. This can be minimized by multiple site IT injection [77] or by magnetic targeting of MNPs after IV injection, i.e., using an external magnet to concentrate the MNPs in the area of interest [76,78]. Magnetic targeting, combined with antibody targeting and the EPR effect, have been reported to allow the tumor to be specifically heated [60]. Among the advantages of IT administration of MNPs are the less complex formulation usually required and that, in general, it results more effectively than the IV route [78]. Additionally, it opens the possibility to treat tumors where MNPs do not accumulate to sufficient amounts after IV injection.

In the case of IV administration of MNPs, a general dilution effect of the blood and the tumor volume should be considered as well as the limited injection volume. Additionally, the majority of the MNPs tends to accumulate in organs such as the spleen or the liver [79], and only a small fraction of the injected material will accumulate in the tumor, which may limit MHT efficiency [80]. Xie et al. confirmed that one single IV injection dose of MNPs does not result in accumulation of enough magnetic material to produce tumor heating [81]. Therefore, six repeated IV injections were performed, which was followed by 15 AMF cycles of 30-min each. This was still not enough to produce a reassuring result. Other authors have previously reported on the challenges of effective MNPs’ delivery to the entire tumor with active targeting [53,82]. The heat efficiency of the NM plays a crucial role in this scenario, which means that elevated in vivo MHT efficiency is still possible after IV administration [83]. A major advantage of IV administration of targeted MNPs for MHT is the possibility of equally treating tumor metastasis. Furthermore, while the accumulation of MNPs in the brain is very limited [79], the IV route for the injection of MNPs for treating brain cancer is discouraged. The natural proneness of MNPs to accumulate in the liver after IV injection [82,83] makes this organ an appealing target for MHT cancer therapy. It is interesting to notice, however, that, in most of the studies, the IT administration route is the one selected by the authors [45,77,84–88].
2.3. The Alternating Magnetic Field Component

2.3.1. AMF Power

The AMF parameters to be used for the MHT treatment are usually established in advance before the first in vitro and in vivo studies. For that purpose, the heating performance of the MNPs is routinely assessed by subjecting them to different combinations of field amplitude and frequency for different periods of time [75,89]. The heating power of MNPs is commonly described by the specific absorption rate (SAR, expressed in W·g⁻¹), which is also known as a specific loss power. This is the quantification of power dissipation of magnetic NMs under a specific AMF:

\[
\text{SAR} = \frac{C \Delta T}{m_{Fe} \Delta t}
\]

(1)

where C is the specific heat capacity of the sample, \(m_{Fe}\) is the iron mass per unit volume, and \(\Delta T/\Delta t\) is the initial slope of the temperature (T) vs. time (t) curve [89]. Care must be taken, however, when comparing SAR values because they are affected by a number of parameters such as size, size distribution, chemical composition, and concentration of the NM, but also the amplitude (H) and frequency (f) of the applied AMF [90]. The product of these two variables, the \(Hf\) factor, correlates with the heating power and provides a quantitative index of the heating potential for a given AMF protocol. To avoid damaging the healthy tissues due to electromagnetic radiation (e.g., eddy currents), a threshold \(Hf\) of \(5 \times 10^9\) A·m⁻¹·s⁻¹ has been established [47,76]. Yet, this threshold is overcome in at least half of the MHT studies addressed in this paper (Table 1). Another factor to be considered is the use of different MHT setups, as the coil dimensions and the range of field amplitude and frequencies may vary, which, therefore, results in distinct SAR values [32]. Additionally, the MHT application protocol may vary between groups. Makridis et al. have addressed the impact of the AMF field conditions on MHT efficiency by testing two different NMs (Cobalt-Fe and Manganese-Fe) under two distinct MHT protocols (single pulse versus multiple pulse) to induce osteosarcoma cell death [91]. The Mn-Fe showed better MHT efficiency than the Co-Fe under the same AMF, which clearly exemplifies the impact of higher SAR values in the MHT efficiency. The heating rate and the heating location were considered the dominant factors to explain the enhanced efficiency of the multiple pulse protocol over the single pulse protocol.

Number of Studies	\(Hf > 5 \times 10^9\) A·m⁻¹·s⁻¹	\(Hf < 5 \times 10^9\) A·m⁻¹·s⁻¹	No Reported T
72	37	24	17
%	51.4%	33.3%	23.6%

NOTE: For 15.3% of the studies herein considered, it was not possible to calculate the \(Hf\) product. T—temperature.

2.3.2. Reached Temperature and Time of Exposure

The reached temperature is a crucial element to be disclosed in an MHT study due to the clear impact it may have in the observed outcome and cell death pathway. Still, nearly 30% of the studies herein addressed do not communicate such information. The temperature reached in an MHT study depends on the characteristics of the NMs and the magnetic field. In turn, the hyperthermia-derived effect will depend not only on the reached temperature but also on the type of cells and the time of exposure to heat (Figure 4) [92].
which is a major concern when using hyperthermia for cancer treatment. This is due to the fact that magnetic-field-induced heating results in a lower dissipation rate and, therefore, a faster temperature rise in tumors, compared to normal tissues [98]. At a cellular level, biophysical and metabolic differences render cancer cells more susceptible to elevated temperatures than normal cells [20]. This fact implies the existence of a temperature range for which it is possible to kill cancer cells with minimal effects in normal cells, which is a major concern when using hyperthermia for cancer treatment.

Studies have demonstrated that the time of exposure to the AMF has an influence on the cell survival rate and clonogenic activity [9,10,75]. However, time only plays a role in case a damaging temperature is reached. In fact, a 1 °C drop within the temperature range of 42.5 to 47 °C can be compensated by duplicating the time of exposure, but, for temperatures below 42.5 °C, the time of exposure needs to be extended significantly more [9].

In in vitro studies, the sample’s temperature is usually measured using an optical fiber submerged in the cell culture medium. Infrared thermal imaging cameras are also used both in vivo and in vitro [80,83,93,94], which display a color-code image that correlates with the temperature reached in a specific area. Less conventional, and still under development, techniques include, for example, the use of fluorescence anisotropy-based thermoprobes, which are bioconjugates of dyes and proteins with increased thermo-sensitivity comparatively to the individual molecules [95].

At a tissue level, a rise in temperature to around 42 °C results in an increased tumor blood supply, which may be beneficial for the simultaneous delivery of chemotherapeutic agents. This enhances their anti-tumor effect [96]. Also, increased blood flow leads to increased oxygenation, which is a factor known to enhance radio-sensitivity [97]. On the other hand, an augment in temperature to above 42 °C decreases the tumor’s blood flow, while increasing blood flow in the normal tissues, which results in a lower dissipation rate and, therefore, a faster temperature rise in tumors, compared to normal tissues [98]. At a cellular level, biophysical and metabolic differences render cancer cells more susceptible to elevated temperatures than normal cells [20]. This fact implies the existence of a temperature range for which it is possible to kill cancer cells with minimal effects in normal cells, which is a major concern when using hyperthermia for cancer treatment.

Court and co-workers found a positive correlation between cytotoxic effects, the reached temperature and the time of exposure, with 45 °C for 30 min inducing a drastic decrease in cell viability (below 10%) [10]. Under milder conditions, between 41 and 43 °C, the cytotoxic effects were intensified by combining the MHT with HSP70 inhibition, either by the HSPA6 gene knock-down, or by inhibiting HSP70 function using 2-phenylethylenesulfonamide. Slightly higher temperatures might be necessary in an in vivo scenario, as complete tumor regression mostly occurs when magnetic thermoablation is performed at temperatures higher than 45 °C [45,83,99]. This sometimes requires a higher NM dose and may result in adverse effects, such as bleeding and infection [99]. Still, some studies reaching temperatures above 50 °C did not report complete tumor regression, which may derive from the short-term exposure to such a high temperature, the bigger size of the tumor, or the different thermal susceptibility of the xenographs [17,84].

The number of MHT cycles also has an impact on the observed outcome, especially in in vivo studies (Table A3), where the number of cycles may vary from 1 to 15. The use of different cells, NM, and MHT protocols, makes it impossible to directly infer the influence of the number of cycles on the MHT efficiency. However, Zhang et al. reported that a lower number of MHT cycles resulted in apoptosis of cancer cells, and, consequently, tumor recurrence. On the other hand, a single cycle producing magnetic thermoablation led to cell necrosis and resulted in complete tumor regression [99].
This suggests that the number of MHT cycles becomes a trivial parameter in the cases where thermoablation is achieved.

2.3.3. Apoptosis or Necrosis?

The ability to produce effective cell death in conditions of mild hyperthermia (41 to 43 °C) is much lower than in thermoablation conditions (at a temperature above 45 °C). Mild hyperthermia can induce apoptosis, but the effects of heat may be reversible due to the induction of HSP expression, which will counteract the heat-induced effects (thermotolerance) [47]. In the case of thermoablation, heat-induced protein denaturation, cytoskeleton, and membrane disruption, and altered deoxyribonucleic acid (DNA) conformation (among other molecular effects) most likely induce a necrotic type of cell death [9]. Table 2 describes the main characteristics of mild hyperthermia versus thermoablation.

Table 2. Main characteristics and outcomes of mild hyperthermia and thermoablation conditions.

	Mild Hyperthermia	Thermoablation
T (°C)	41–43	>45
Tumor tissue	Increased blood supply	Decreased blood supply
	Increased oxygenation	Lower dissipation rate
Tumor cells	Protein denaturation	Protein denaturation
	ER stress response activation	Cytoskeleton rearrangement
	Inhibition of DNA repair	Membrane disruption
	APOPTOSIS	Altered DNA conformation
		NECROSIS

ER—endoplasmic reticulum, DNA—deoxyribonucleic acid, and HSP—heat shock protein.

2.4. Assessment of MHT Efficiency

2.4.1. Time-Point after MHT

The efficiency of the implemented MHT protocol can be assessed immediately or sometime after the treatment. While the first approach may provide useful information, it does not guarantee the long-term preservation of the observed results. The heat insult may cause a sudden deregulation in cellular metabolism, which can be recovered if the death stimulus is removed and the conditions are favorable [9,11,25]. Sometimes, the actual cytotoxic effect may not be correctly evaluated until hours or even days after the treatment [11,61,100]. This is particularly relevant in studies where apoptotic temperatures are reached, instead of necrotic ones, as some of the surviving cells will be able to multiply and regrow the tumor. As an example, the viability of Jurkat cells exposed to a 1 h-MHT treatment that reached ~43 °C increased when the evaluation was performed 72 h, as compared to the 24 h after-treatment [61]. On the other hand, a full kill was observed when the treatment reached ~45 °C, which prevented cell recovery and would, expectedly, avoid tumor re-growth. Therefore, even though such treatments are often considered very efficient, there is still a margin for the cancer cells to grow back the tumor when full kill is not achieved.

2.4.2. Most Commonly Used Tests

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and trypan blue exclusion are the most frequently used tests to assess cell viability in in vitro MHT studies (Tables A2 and A3). The MTT assay measures the ability of NAD(P)H-dependent oxidoreductase enzymes in viable cells to metabolize the tetrazolium compound to a purple formazan [101]. This provides information of the momentary metabolizing activity, which can be transitorily impaired following the heat insult but can recover in case the conditions become favorable [9], and particularly
if the cells exhibit a shorter doubling time [102]. Additionally, care must be taken in the use and interpretation of the MTT assay results since NMs can recognizably interfere with optical detection methods [103]. On the other hand, the trypan blue exclusion assay is based on the ability of viable cells to exclude the dye due to intact cell membranes [104]. Cells that are stained by trypan blue have, therefore, a damaged membrane, which is an irreversible type of cytotoxicity.

In case of in vivo studies, MHT efficiency is often described in terms of suppression of tumor growth or, more desirably, complete tumor elimination, by measuring the size or the weight of the remaining tumor after treatment (Table A3, Figure 5A,B). Taking advantage of the magnetic properties of MNPs, some authors use them as contrast agents, not only for diagnostic purposes but also to evaluate treatment efficiency with magnetic resonance imaging (MRI, Figure 5C) [23,56,105]. Alternatively, generating the tumor with luciferase-expressing cancer cells equally allows tracking tumor size using bioluminescence (Figure 5D) [106]. While suppressing tumor growth is an encouraging result, only complete tumor elimination can prevent tumor re-growth [19,45,83,87,89]. Therefore, in vivo MHT studies, approaching either mono-therapeutic or combinatorial schemes should aim at complete tumor elimination for more permanent results.

Figure 5. Strategies to evaluate heating effects in vivo. (A) Tumor volume in control and treated mice 30 days after treatment. (B) The tumors were excised from the animals for an easier-sized comparison. (C) Magnetic resonance imaging (MRI) also allows control of tumor size before and after treatment. Adapted with permission from Reference [23]. Copyright 2017 Elsevier. (D) Using luciferase-modified cell lines to generate the tumors, it is possible to track the bioluminescence signals and correlate them with tumor size. Adapted with permission from Reference [106]. Copyright 2018 American Chemical Society.
3. Remarks and Perspectives

The development of new magnetic NMs and the constant need to develop effective cancer therapies have considerably raised the interest of the scientific community in MHT studies during the past decade. Even though MHT has been approved by the European Medicines Agency for treating glioblastoma multiforme [97], the use of MHT to clinically treat cancer is still in its very infancy. This may be linked to the fact that different research groups used significantly different MHT protocols, which made it challenging or even impossible to draw comparisons between MHT experiments. Therefore, to help in the future implementation of MHT studies, we compiled the most relevant parameters to consider for the outcome of an MHT assay. These primarily concern the choice of (1) the biological component, (2) the NM, (3) the MHT setup and conditions, and (4) the assessment of the MHT outcome.

The susceptibility of cancer cells to heat is variable and, therefore, a certain MHT protocol may be quite effective in killing certain cells and not others [8]. Similarly, the efficiency of the procedure may differ between in vitro and in vivo settings [10]. Using cellular models that most closely resemble an in vivo scenario should be, therefore, highly supported. The thermal susceptibility of the cell line, the number of cells used in the study, and the 2D or 3D configuration of the cells are details that will impact the results.

The size, the shape, and the coating of the NM are crucial characteristics directly influencing the outcome of an MHT experiment [32,107]. In an in vivo setting, these specifications, together with the presence of a targeting moiety, also affect the NMs distribution, which provides an additional indirect contribution to the MHT outcome [31,44]. Even though NMs that self-regulate the hyperthermia temperature have been suggested as a way to minimize damaging healthy tissues, these were barely tested in vitro [48]. Therefore, more studies are necessary to support their potentiality. In general, biocompatible NMs with increased SAR values are preferred because they are more efficient heat mediators. However, the dependence of SAR on the Hf product brings about the need to control the AMF parameters to stay below the biologically-safe threshold. A fine-tuning is, therefore, necessary to balance the AMF power with the NMs concentration to obtain efficiency while avoiding undesired toxicity.

The outcome of the MHT experiment strongly depends on how and when it is evaluated [61,100]. Time is needed for some types of toxicity to manifest (e.g., apoptosis), but also to investigate whether recurrence (or tumor re-growth) will happen in standard conditions. In this sense, a standardization of the time-point at which the outcome of the MHT experiment would be checked would be an important consideration. This, alone, would immediately indicate whether a certain protocol yields more promising results than another. Importantly, most of the in vivo MHT studies focus on the effectiveness of the treatment by tracking the outcome months after MHT. However, little is mentioned about the fate of the NMs in the body, which is an issue that should be more considered in future in vivo studies.

The difficulty to find effective MHT protocols that could be applied in clinical conditions resulted in the suggestion to use MHT as an adjuvant to other therapies [10,93,94,108]. Most studies show that this results in a more efficient treatment, yet does not exclude the occurrence of side effects that usually accompany the individual therapy.

To summarize, in our opinion, the starting point for the implementation of an MHT (pre)clinical experiment should be the maximum tolerable AMF power threshold. Next, the selection of a biocompatible NM with fine-tuned characteristics, including SAR, would be essential. The protocol should aim at localized heating, using targeting antibodies or magnetic gradients that attract the NMs to a specific location, or focus the AMF in a certain area, which keeps healthy tissues unheated. The NMs developed for this end seem to be, in general, well tolerated but the dependence of the heat production on the NM concentration/payload and the AMF parameters still needs to be established and clarified. For preclinical tests, the biological component should resemble the clinical situation as much as possible. Advantage should be taken on the natural differences between normal and cancer cells, namely their thermotolerance and their magnetic loading ability. Since the future will increasingly rely
on the use of human-based, more advanced 3D in vitro models, the assessment of the MHT efficiency should be standardized as the first step to allow the comparison between the outcomes of different MHT protocols, which possibly leads to more competence in the transition from the preclinical to clinical application of MHT.

Author Contributions: V.V.-B. wrote the draft manuscript. F.C. and B.E. supervised the writing process and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by MDPI.

Acknowledgments: V.V.-B. acknowledges Fundação para a Ciência e Tecnologia (FCT, Portugal) for her PhD fellowship (Grant No. SFRH/BD/82556/2011). FC acknowledges UID/MULTI/04378/2019 support with funding from FCT/MCTES through national funds. This article received funding from the Nanotechnology Based Functional Solutions (NORTE-01-0145-FEDER-000019), supported by North Portugal Regional Operational Programme (NORTE2020) under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund (ERDF).

Conflicts of Interest: The authors declare having no conflicts of interest.
Appendix A

Table A1. Conditions used, and outcome observed, in in vitro studies using magnetic hyperthermia (MHT) alone or combined with other therapeutic regimens organized by the cell line in alphabetical order.

Cell Line	Coating	Size nm (Technique)	MNPs Initial Conc.	Inc. Time (h)	[Fe] Sample	MNPs Excess Removal	Magnetic Field	Reported Temp (°C)	% Cell Viability (h after MHT)	Method	Obs.	Ref.		
4T1 + C166 + MEF	D-mannitol	~150 (SEM)	0.1 (LD), 1 (HD)	24	NR	Yes	300	55	60	NR	Co-culture of three distinct cell types to simulate a 3D in vitro model of triple negative breast cancer lung metastasis.	[14]		
A2780cp20, HeyA8	Carboxy methyl dextran	~60 and ~200 (bimodal, DLS)	0.5 (Fe)	0	NA	No	245	24 or 36	30 or 60	41, 43 or 45	TB	Combined with HSP70 inhibition (HSPA6 siRNA or PES) potentiated MHT at 41 °C (HSPA6: 15–25% cell viability HeyA8, 25–50% A2780cp20; PES: <40% cell viability both cell lines).	[10]	
A549, MDA-MB-231	Myristic acid + pluronic F127	12 ± 3 (TEM); ~185 (DLS)	1.5 (Fe₃O₄)	0	NA	No	386	6	5, 15, 30	43–46	~60, ~30, ~10, resp. (2) LDH	TB	Similar efficiency for both cell lines; no colonies formed two weeks after MHT; MHT for cancer stem cell elimination.	[75]
BV2	PAA	36 ± 8 (TEM)	0.1	24	NA	Yes	560	23.9	30	46	TB	Comparable efficiency between MHT and water bath hyperthermia. Suggest the use of microglial cells as MNPs carriers to treat glioma with MHT.	[12]	
C6	Aminosilane	NR	10 (Fe)	0	NA	No	305	23.9	30	41–43	80 (10 min); 0 (0.5) Live/dead®	TB	Tumor-on-a-chip to mimic glioblastoma 3 cycles of MHT days 1, 2 and 3. MT on days 2, 3 and 4. Incorporation of DOX resulted in synergistic (45%, 30%, and 18% cell viability at 48, 72 and 96 h, resp.). Theranostic formulation (great MRI contrast).	[15]
CT-26	PEG	The SPIONs are ~20 (TEM)	0.1	2	NA	No	293	12.57	15	~40	90, 85, 74, (48, 72, 96), MT	TB	No normal cells control; experiments in adhe cells suggest the occurrence of cell specific events, supporting individual cell hyperthermia.	[109]
DU-145	Starch	~108 (DLS)	0.015, 0.075, 0.1, 0.15 (Fe)	16–24	5, 70, 105, 199 pg/cell, resp.	Yes	150	88	30	37–49.1	<10 for T > 43 °C (10–14 days) clonogenic survival assay	PDL as facilitator of MNPs uptake; different reached temperature according to cell pellet size and iron/cell.	[13]	
DX3	Citric acid	~17 (TEM); ~66 (DLS)	0.5	12	Susp: 210–400; Adhe: 315 pgFe₃O₄/cell	Yes	Susp: 911 or 950; Adhe: 950	Susp: 6.6, 10.5, 14.7 or 16.1; Adhe: 10.8	120	40 to 50	Susp: ~55 to ~5; Adhe: 3 (24) Annexin-V/PIs	TB	No normal cells control; experiments in adhe cells suggest the occurrence of cell specific events, supporting individual cell hyperthermia.	[11]
ESO26, OE21, NIH-3T3	NA	NA	NA	24	NR	NA	270	29.4 or 34.7	10 sec, day 1 and 2	45	CPI of ~1.3 for both cancer cell lines (12) WST-8	TB	Poly(NIPAam-C-O-HMAAm)/polyurethane coating a nitinol stent, NIH-3T3 only for biocompatibility studies; CPI drops to 0.1 when combined with 5-FU and PTX. When using DOX-MNPs = 32% cell viability.	[110]
HeLa	Phospho lipid-PEG	~14 (TEM)	0.1 (Fe)	0	NA	No	355	24	60	43–46	~55 (24) MT	TB	MHT increased intracellular ROS levels and DNA damage.	[111]
HepG2	NA	689 ± 155 (DLS)	0.2 mg	0	NA	No	750	0.8	30	43	~50 (24) WST1	TB	When PTX-loaded magnetic liposomes are used for cell viability decreases to 28%.	[112]
HT-1080	Dextran	~225 (DLS)	NR (drug conc 147 mM)	NR	NA	No	250	27.9	30	~43.5	69 (48) TB	No normal cells control; experiments in adhe cells suggest the occurrence of cell specific events, supporting individual cell hyperthermia.	[113]	
Table A1. Cont.

Cell Line	MNPs Coating	MNPs Size nm (Technique)	Inc. Time (h)	[Fe] Sample	MNPs Excess Removal	Magnetic Field F (kHz)	Reported Temp (°C)	% Cell Viability (h after MHT)	Obs. Method	Ref.
Jurkat PMAO-PEG	12, 13, 16 (TEM) – 10 (DLS)	0.6, 0.6 or 0.49, resp.	0.25	NA	No	373	14	15	-38.5, -40 and -43.5	[33]
KB Pullulan acetate	25.8 ± 0.1 (DLS)	NR	0	NA	No	100	10.4	20	45 °C = 45, 47 °C = 20 (24) MTT	[22]
KB PEG	19 ± 3 (TEM) 37 ± 11 (DLS)	1 (Fe)	24	25-170 pg/cell 1.3-5.4 g/L	Yes	110	20	60	0-75 (NR) TB	[68]
MCF-7 Triethylene glycol: triethanol amine	~44 (TEM)	0.5 (Fe)	0	NA	No	240	89	60	25 (48) MTT	[72]
MCF-7 Chitosan	~10 (TEM); 25.8 ± 6.1 (DLS)	NR	0	NA	No	267	24	120	44-45 (1) TB	[25]
MCF-7 Terephthalic acid	10 ± 2 (TEM)	1	0	NR	NR	751.5	10.9	60	0 (24) TB	[70]
MCF-7 Oleic acid + aspartic acid	11 (TEM)	1.5 or 2.5	3	NA	No	265	26.7	20	17 for the 1.5 and 23 for the 2.5 (24)% of sub-G1 cells	[114]
MCF-7 Polyamidoamine dendrimer	0.5 ± 4 (TEM); 120 (DLS)	0.5	2	120 pg/cell	No	300	12	120	36.7 (0) MTT	[28]
MCF-7, MCF-7/ADR	mPEG–PCL 100 (TEM and DLS)	0.2 (MNCs), 0.1 (MNP’s)	0	NA	No	114	115	15	10 (24) MTT	[74]
MDA-MB-231	PEG bis(amine) – 15 (TEM)	0.2	5	NA	No	500	37.4	60	43 ± 1 (NR) WST-8	[115]
MDA-MB-231	Chitosan – 18 (TEM), –90 (DLS)	1.5 (Mn and Fe)	0	NA	No	307	50 (then to 20 or 35)	30	42 or 52, resp. (24) Annexin-V/PI	[73]
MDA-MB-468, Caco-2, A2780	Carboxy methyl dextran 69 ± 4 (TEM)	3.8	0	NA	No	233	29.4	34.7	43 or 45, resp.	[8]
MIA-PaCa-2	Sodium oleate 25–40 (TEM)	5	0	NA	No	186	17	60	>90 up to 43 °C and 54 at 47 °C (0) MTT	[116]
	PLGA 1:10–204 1:120-245 (DLS)	1	NR	NA	No	0.323	90	180	1:10-25, 1:120-50 (f) TB	[24]

Optimization of MNPs size and polydispersity to enhance MNP response at a selected AMF frequency. L929 (normal) cell viability without AMF application = 90%. 2-4gFe/L to reach 40–45 °C = 50% cell viability; at 5gFe/L reached 65 °C = 0% cell viability. Nanoclusters also suitable for MRI in vivo for the un-clustered 10 nm MNPs = 46% cell viability. L929 (normal) = 93% cell viability. Highly effective MHT but without MNPs removal, so not intracellular hyperthermia. The aspartate coated MNPs exhibited enhanced interaction with cells and superior killing effects when compared to pristine MNPs. Normal HDF1 cell viability = 63.5% when treated similarly. MnFe2O4/MNC vs. Mn0.6Zn0.4Fe2O4/MNC, both with similar MHT efficiencies, in both cell lines. Use low AMF exposure times. Reported enhanced effects of bortezomib in combination with MHT (cell viability <20% in all cases). MHT on average 16% more efficient than water-based hyperthermia. The short time after MHT for assessing cytotoxicity does not allow to quantify apoptotic effects. MHT to potentiate chemotherapy with HSP90 inhibitor 17AAG. Elevated cytotoxicity L929 cells (normal).
Table A1. Cont.

Cell Line	MNPs	Magnetic Field	Reported Temp (°C)	% Cell Viability (h after MHT)	Obs.	Ref.										
SaOS-2	Citric acid	NR	1	48	0.5 g/L	Yes	765	20-24	10 (2 cycles with 48 h distance)	MFA: 45 CoFe: 41-45	Single pulse: MnFe: 70 CoFe: 70 Multiple pulse: MnFe: 35, CoFe: 70, (0) TB	MHT induced higher cytotoxicity than water bath for the same target temp.	[91]			
SH-SY5Y	PEI	NR	0.1	24	NR	Yes	570	3.98-23.9 (to control target temp)	30	37-51	10 (12) AlamarBlue	Cytotoxic effects increased with increased time-point after treatment. When combined with PDT = 0% cell viability, missing MNP concentration of reported cell viability data.	[100]			
SKOV-3	Liposomes	150 (TEM), 200 (DLS)	0.5-5 mM (Fe)	1-4	~20 pg/cell (for the 5 mM Fe)	Yes	700	24	30	NR	75 (NR) AlamarBlue	Application of a static magnetic field to limit the heating to a restricted area.	[93]			
SKOV-3	Gallol-PEG	~20 (TEM)	0.2 mM (Fe)	2	~6 pg/cell	Yes	520	20	10	38-40	75.4, 61.5 and 53.6 (24) MTT	Increased number of apoptotic cells with increasing number of MHT cycles.	[94]			
SMMC-7721	NA	17 ± 2 (TEM)	1	0	NA	No	50	34	40	42, 44 and 44.3	Multiple MHT: 44°C, single MTA: 50°C	NR (0) Annexin-V/Pi	No significant improvement was found when the nano-vectors were loaded with temozolomide.	[71]		
U87	PEG	17±17 (DLS), 153 (TEM)	0.3 (Fe)	4	NA	No	Vared to keep temp	Variable to keep temp	30							
U87	Methoxy-PEG-silane 500 Da	22.8 ± 3.3 (DLS)	0.7	NR	500 pg/cell (for 0.5 g L⁻¹)	Yes	99	12.33	25	63.5	Complete necrosis (NR) CCK-8	Resorvist as a control reached 37.5°C and induced no change in cell viability.	[95]			
U87MG	PEG	50-100 (TEM)	NR	0	NA	No	750	16	120/ day x 4 days	43	44.5 (72) Annexin-V/Pi	No significant improvement was found when the nano-vectors were loaded with temozolomide.	[46]			
U87-EGFrVIII	PEI	77 ± 11 (DLS)	0.01	5	NR	Yes	225	5	45	44.1	60 (24) MTS; 80 in spheroids	Magnetofection to facilitate MNPs uptake; if combined with let-7a microRNA = 34% cell viability (48% in spheroids).	[117]			
Table A2. Conditions used, and outcome observed, in in vitro studies using targeted MHT alone or combined with chemotherapeutic agents.

Functionalization	Cell Line	MNPs	Magnetic Field	Reported T (°C)	% Cell Viability (h after MHT)	Observation	Ref.
Anti-αγδ3	MDA-MB231	FEG	F (kHz)	NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Anti-CD90	Hu67	PEG	H (kA m⁻¹)	7.3 (0)	MTS	Thermosensitive magneto-liposomes. CD90⁺ separated from CD90⁻ by MACS and then treated with MHT. Biphasic AMP to push temp to max and then stabilize it. MHT using targeted MNPs-only cell viability = 75%. Induction of necrosis is more effective than apoptosis.	[57]
Anti-CXCR4	Jurkat	PAA	Time (min)	NR	NR	Optimization of the MHT approach to tumor cells expressing lower levels of target receptor; HK-2 (normal) cells practically undamaged. Incubation suspended cells + NP. Reported additive effects of cysplatin to 20% cell viability after 72 h.	[21]
Anti-CXCR4	LN229	PAA		16 (when 43 °C); 0 (when 45 °C) (72) PB		Use pulsed electromagnetic field. No significant differences in cell viability between targeted and non-targeted MNPs. HLF-1 (normal) cells not affected by similar treatment.	[26]
CREA A	AS49	Dextran		NR	NR	Use pulsed electromagnetic field. No significant differences in cell viability between targeted and non-targeted MNPs. HLF-1 (normal) cells not affected by similar treatment.	[26]
Dipptide (Arg-APhe)	AS49, NCI-H460, HLF-1 (normal)	NA		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Folate a	MCF-7, G1	Carboxymethyl cellulose		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Folate b	HeLa (FR +)	PEG		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Folic acid a	HeLa	Poly acrylic acid		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Folic acid b	SKOV3	PEG		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Galactose b	HepG2	Alginate		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Herceptin a	SKBR3	APTES-PEG		NR	NR	Cell viability results from targeting + DOX + MHT. Only MHT = 48%, MHT + DOX = 31%.	[56]
Functionalization	Cell Line	MNPs	Magnetic Field	Report	% Cell Viability		
------------------	-----------	------	----------------	--------	-----------------		
Herceptin	SK-BR-3	Dextran 138 ± 7.6 (DLS)	4	16.5 pg Fe₃O₄/cell	Yes	360 9.6 30 42.5 25 (24) TB	
		PLA-TPGS/TPGS-COOH 155.2 ± 0.17 (DLS)	24	NR	NR 240 42 20 or 30 NR 30 (12) MTT		
		MIAPaCa-2 PLGA 524 ± 9 (DLS)	0.1	48	NR 440 16.2 15 NR NR (0)		
		Hyaluronic acid 4T1 Polypyrrole 83.6 (DLS)	0.493 (FeO₄)	24	NR 635 30 A- 15 NR CTR = 25 MHT = 14 (12) ALDH + cells		
		Hyaluronic acid SCC7, NIH3T3 (normal) None vs. PEG 100–272 (DLS)	0.1	1	NR 368 1 10 42 ~30 (24) MTS		
		iRGD U87-EGFRvIII; MDA-MB-231 PEI + PEG 46.8 ± 2.3 (DLS)	0.02	24	NR 300 5 45 NR 40 (48) MTS		
		LHRH peptide A2780/AD PMAO + PEI + PEG ~40 (TEM) 0.015 (Fe)	12	14.9 pg/cell	Yes 393 33.5 30 44 5 (48) Calcein-AM		

Observation

Cell viability recovered after 5 days in culture. When AMF was repeated 24 h after, cell viability <10% after 5 days. If combined with doxetaxel = 10% cell viability. Gemcitabine released with MHT, AO-EB staining showed late cell apoptosis/necrosis and decreased Bcl2 and cyclin-D1 expression. When Notch inhibitor is incorporated in the formulation ALDH+ cells = 9%, mammophore cells: [CTR = 35 MHT > 17.5 MHT + Notch inhibitor = 9] ×10⁶ cells. Claim effective elimination of cancer stem cells. CD44 cell viability unchanged under similar MHT protocol. No differences in MHT outcome between PEG-coated or non-coated MNPs. Magnetofection to facilitate MNPs uptake. MHT as an enhancer of peptide therapeutics. Similar cell viability achieved with DOX loaded LHRH-MNPs combined with MHT at 40 ºC.

**Conc.—concentration. Inc.—incubation. NA—not applicable. NR—not reported. targ—targeted. non-targ—non-targeted. comb—combined. TEM—transmission electron microscopy. DLS—dynamic light scattering. MACS—magnetic-activated cell sorting. RTT—radio-immunotherapy. CSC—cancer stem cells. LHRH—luteinizing hormone–releasing hormone. APTES—3-aminopropyltriethoxy silane. PA—protein A (from *Staphylococcus aureus*). PEG—poly(ethylene glycol). PEI—poly(ethyleneimine). PMAO—poly(maleic anhydride-alt-1-octadecene). PLA-TPGS—poly(lactide)-D-a-tocopheryl poly(ethylene glycol) succinate. TPGS-COOH—carboxyl group-terminated TPGS. RIT—radio-immunotherapy. Cell viability tests—ALDH—Aldehyde dehydrogenase. MTS—3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulphophenyl)-2H-tetrazolium reduction. MTT—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction. SRB—sulforhabdine B binding. TB—trypan blue exclusion. a—Combination with other therapies. b—Mono-therapeutic context.
Table A3. In vivo studies using passive or active targeted anti-cancer MHT.

Cell Line (Number of Cells)	In Vivo Model	Initial Tumor Size	Coating	Size (nm)	MNP. Inj. Mode	MNPs MNP. Inj.	MNP. Inj. Mode	Time after Inj.	F (kHz)	H (kA m$^{-1}$)	Time (min)	Cycles	T (°C)	Outcome	Observation	Ref.
Human breast cancer MCF-7 (2 × 10^6)	BALB/c female mice	50 mm³	-	97.85 ± 0.74 (DLS)	NR	IV	0	423	10	30	5	42	Delayed tumor progression	AMF to favor tumor accumulation. Triple effect: MHT, cell-penetrating peptides to increase DOX uptake. Thermo-responsive DOX release.	[16]	
Human breast cancer MCF-7 (2 × 10^6)	BALB/c female mice	100 mm³	-	NR	NR	IV	0	423	10	30	5	42-43	Delayed tumor progression, increased tumor accumulation, augmented c-Myc silencing Incomplete tumor regression day 8, tumor regrowth day 12	AMF to favor tumor accumulation. Triple effect: MHT, cell-penetrating peptides to increase siRNA delivery, thermo-responsive siRNA-CPP release. When using GdTx-MNPs for MHT = tumor eliminated within eight days.	[123]	
Human breast cancer MDA-MB-231 (NR)	NS (nude mice)	100 mm³	PEG bis (amine)	~15 (TEM)	75 µg	IT	0	500	37.4	30	1	43	Tumor volume inhibitory rate day 28 = 85%, nearly complete tissue necrosis	Permanent magnet for magnetic delivery w/o detectable damage to surrounding tissues.	Trastuzumab-conjugated, radionabeled, DOX-loaded MNPs suitable detection by MRI or SPECT (targeted MHT + radio + chemo + imaging). WBC decreased by 23% day 28.	[60]
Human breast cancer SKBR3 (3 × 10^6)	BALB/c mice	0.2 cm³	APTES-PEG	NR	0.5 mgFe	IV	48	100	~22	15	2	NR	40% decrease relative tumor volume	If combined with DNR + 5-BrTet = 80% decrease relative tumor volume and decreased P-gp expression.	[124]	
Human chronic myeloid leukemia K562/A02 (1 × 10^6)	BALB/c mice	950 ± 150 mm³	Oleic acid + Pluronic F-127	18.4 ± 1.8 (TEM)	22 µg MCL/g body weight	IT	0	219	10.5–310	40	1	42	40% decrease relative tumor volume	hEGFR-targeted MNPs. Observed increased temperature in subsequent treatments. Higher accumulation in liver and lungs than tumor after IV injection of MNPs.	[80]	
Human epidermoid carcinoma A431 (5 × 10^6)	SCID female mice	200–400 mm³ (calc.)	PLGA-8-PEG	77.8 ± 2.1 (DLS)	400–800 µL of 4.5 g Fe₃O₄ K2Fe(CN)₆, days 1b, 17, 18, 19, and 22	IT	0	173	25	30	5	5–6 inc.	1.7 ± inc. MS	SD: Significantly slower tumor growth both w/ and w/o PTX, DD w/ PTX significantly different from w/o PTX	CTR mice sacrificed on day 12 due to tumor burden; SD sacrificed day 16, DD sacrificed day 22 (days after 1st dose); treatment considered harmless to the body.	[113]
Human fibrosarcoma HT-1080 (1 × 10^6)	Swiss female mice	8–15 mm diameter	Dextran	225 ± 45 (DLS)	SD = 1, DD = 2 (mg MNPs)	IT	0	250	27.9	30	SD = 3, DD = 5	42.5	SD: Significantly slower tumor growth both w/ and w/o PTX, DD w/ PTX significantly different from w/o PTX			
Cell Line (Number of Cells)	In Vivo Model	Initial Tumor Size	MNP Coating	Size (nm)	Initial Amount	MNP Inj. Mode	Magnetic Field	Outcome	Observation	Ref.						
----------------------------	---------------	-------------------	-------------	-----------	---------------	--------------	----------------	---------	-------------	------						
Human glioblastoma U251 (1 x 10^7)	BALB/c female mice	NR	-	NR	50 mM	SC	0	280	335.4	60	1	43.1	Tumor size reduction: Fe(Salen) + MHT = 80–90%, but not significantly different from Fe(Salen) only = 50%	[125]		
Human glioblastoma U87MG (1 x 10^7)	BALB/c nude mice	100–150 mm^3	PEG	177 ± 16.9 (DLS)	MHT: 3.5 µgFe/µL, MTA: 8.7 µgFe/µL	IT multi	0	389	19.5	25	MHT: 1, 2, or 4 MTA; MHT: 45 (43–44th cycle); MTA: 53.1	Sacrifice day 25. MTA leads to serious bleeding and infection.	[99]			
Human glioblastoma U87MG (1 x 10^7)	BALB/c nude mice	100–150 mm^3	PEG	SPIONs: 18, hydrogel: 519 ± 141 (TEM)	2.9 µgFe/µL	IT multi	0	366	13.3	60	2	43 ± 1	Significant inhibition of tumor growth especially after 2 cycles. 100% survival rate	[105]		
Human hepatocellular carcinoma Hep3B (NR)	NS (nude mice)	1000 mm^3	Methoxy-PEG-silane 500 Da	22.8 ± 3.3 (DLS)	100 µL of 1.15 g/L	IT	0	99	12.33	15	1	50.2	Complete tumor elimination 2 days after MHT (bioluminescence imaging)	Mice under observation for 1 month: no tumor re-growth, no severe side effects.	[45]	
Human hepatocellular carcinoma HepG2 (1 x 10^6)	BALB/c female mice	0.5 cm diameter	PEI	20–30 (TEM)	1 mg/cm^3 tumor	IT	0	230	NR	60	2	42–44	Combination of MHT with gene therapy targeting α-fetoprotein in hepatocarcinoma. MNP functionalized with anti-α-fetoprotein antibody.	MHT and MTA + gene therapy.	[88]	
Human hepatocellular carcinoma HepG2 (2 x 10^6)	BALB/c female nude mice	0.3–0.5 cm^3	PEI	15–20 (TEM)	5 mg of 10 g/L	IT multi	24	230	NR (30 A)	60	3	42–45	Decrease tumor mass 6 weeks after MHT = 77%, MHT + radio + gene = 94%	Combination of MHT, radio and gene therapy. No side effects on liver, kidney and no inhibition of hematopoiesis.	[77]	
Human hepatocellular carcinoma HepG2 (1 x 10^7)	BALB/c male nude mice	~0.4 cm^3	PRO	15–20 (TEM)	500 mg/mL	IT multi	24 and 48 h	110	8.8	30	2	43	MHT-only and gene therapy-only did not block tumor growth. The combination of both caused the tumor to shrink.	Sacrifice day 30 after injection; gene therapy = delivery of the TNFα gene.	[86]	
Table A3. Cont.

Cell Line (Number of Cells)	In Vivo Model	Initial Tumor Size	MNP’s	Magnetic Field	Outcome	Observation	Ref.								
Human hepatocellular carcinoma Huh7 (2 × 10⁴)	NOD/SCID mice	600 mm³	PEG	10–20 (TEM), 130 ± 4.6 (DLS)	IT	24 h	200	NR	60	3	NR	27.3 ± 9.8% complete tumor regression 70 days after injection	[87]		
Human hepatocellular carcinoma Huh7 (2 × 10⁴)	Athymic nude female mice	NR	Silica	932 µg/mL	IT	0	750-800	NR	30	1	~43	Attenuation of tumor growth compared to control, but still tumors grow from day 0	[85]		
Human hepatocellular carcinoma SMMC-7721 (1 × 10⁶)	NS (nude mouse)	~450 mm³	PLGA	NA	NR	0 (50 µL of 20% Fe)	IT	0	626	NR	~2	1	52	Tumor ablation and elimination 5 days after MHT observed in synergy with DOX release upon heating. Reduction in tumor growth rate over 1 month after MHT. Reduced tumor weight. Reduction in tumor growth (volume and weight) is enhanced by the number of MHT treatments. Combination with HSP70 silencing tumor growth is inhibited	[84]
Human ovarian cancer HeyA8 or A2780cp20 (1 × 10⁶)	Athymic nude mice	35–113 mm³	Carboxy methyl dextran	~60 and ~200 (bimodal, DLS)	IT or IP	4 h	245	23	30	3	43	No difference in tumor growth (tumor volume similar to control). MHT = 63%. MHT + 17-AAG = 68%; MHT + 17-AAG + FA = 85% tumor weight inhibition rate. 86% reduction tumor volume after 30 days. Reduced expression of Bcl-2 and cyclin-D1	[18]		
Human ovarian carcinoma OVCAR-3 (1 × 10⁶)	Balb/c nu/nu female mice	100 mm³	Carboxy dextran	77 (DLS)	SC	NA	1050	8 (10 mT)	20	4	41.5; 40.8; 39.7; 38.2, resp.	No difference in tumor growth (tumor volume similar to control). Magnetic heating effect decreased with cycles: heat-induced MSC death and clearance? SPION-labeled MSC injected simultaneously with tumor cells. Magnetic heating effect decreased with cycles: heat-induced MSC death and clearance?	[57]		
Human ovarian carcinoma SKOV3 (5 × 10⁶)	BALB/c female nude mice	NR	PEG	~130 (TEM)	IV	NR	200	NR	30	1 (or 47)	NR	MHT = 63%. MHT + 17-AAG = 68%; MHT + 17-AAG + FA = 85% tumor weight inhibition rate. No significant side effects. Inhalation led to higher tumor MNPs accumulation than other organs. Combination with HSP70 silencing tumor growth is inhibited	[126]		
Human pancreatic cancer MiaPaCa-2 (1.5 × 10⁷)	Balb/c female nude mice	NR	PEG	~130 (TEM)	IV	NR	200	NR	30	1 (or 47)	NR	MHT = 63%. MHT + 17-AAG = 68%; MHT + 17-AAG + FA = 85% tumor weight inhibition rate. No difference in tumor growth (tumor volume similar to control). Magnetic heating effect decreased with cycles: heat-induced MSC death and clearance? SPION-labeled MSC injected simultaneously with tumor cells. Magnetic heating effect decreased with cycles: heat-induced MSC death and clearance?	[18]		
Human pancreatic cancer MiaPaCa-2 (1.5 × 10⁷)	Balb/c female nude mice	NR	PEG	~130 (TEM)	IV	NR	200	NR	30	1 (or 47)	NR	MHT = 63%. MHT + 17-AAG = 68%; MHT + 17-AAG + FA = 85% tumor weight inhibition rate. No difference in tumor growth (tumor volume similar to control). Magnetic heating effect decreased with cycles: heat-induced MSC death and clearance? SPION-labeled MSC injected simultaneously with tumor cells. Magnetic heating effect decreased with cycles: heat-induced MSC death and clearance?	[18]		
Cell Line (Number of Cells)	In Vivo Model	Number of Cells	Initial Tumor Size	Coating	Size (nm)	In Vivo Model	MNP. Inj.	Magnetic Field	Outcome	Observation	Ref.				
-----------------------------	---------------	----------------	-------------------	---------	-----------	---------------	-----------	----------------	---------	-------------	------				
Mouse breast cancer 4T1	BALB/c female mice	5 × 10^6	50–80 mm³ (calc.)	PEG	54.6 (DLS)	IV	30 min	390	Fe/MNPs MNP . Inj.	Passive: 38.7–42.3, Active: 39.6–42.1	59% apoptotic cells and delayed tumor growth	[81]			
Mouse breast cancer 4T1	BALB/c nude mice	5 × 10^6	80 mm³	Polypyrrole	83.6 (DLS)	IT	0	635	30 A	Slower tumor growth, significantly lower tumor weight, decreased number of CD44 + cells: targeted-MHT = 57%, targeted-MHT + chemo = 33%	Theranostic tool: chemotherapy mediated by Notch inhibitor + targeted-MHT + dual-mode MRI and photoacoustic imaging	[59]			
Mouse breast cancer 4T1	BALB/c female mice	5 × 10^6	80 mm³ (calc.)	PEG	30–45 (TEM)	IT	60 min	480	15	Targeting of αvβ3 integrin contributes for the absence of metastasis. Enhanced MRI-T2 contrast.	[56]				
Mouse colon carcinoma CT-26	BALB/c or C57BL/6 mice	1 × 10^5	5 × 6 mm (2 tumors/mouse)	BNF-Starch	100 (TEM)	ID	0	167.5	20 or 30	1	Hyperthermia-induced immunologic response at 43°C but not at 45°C. Immunologic response was not observed for Lewis lung carcinoma tumors, even at 43°C. rectum T = 35.5–35°C	[19]			
Mouse Lewis lung cancer	C57BL6 male mice	2 × 10^6	0.8 ± 0.1 cm diameter	NR	NR	IT	24 h	150	Variable to keep temp	Improved treatment for Lewis lung cancer in mice when MHT is combined w/ regular IL-2 injections.	[64]				
Table A3. Cont.

Mouse squamous cell carcinoma SCC7 (2 × 10⁵)	NCr nude mice	Cell Line	In Vivo Model	In Vivo Model	Initial Tumor Size	Coating	Size (nm)	Initial Amount	MNP. Inj. Mode	Time after Inj.	F (kHz)	H (kA m⁻¹)	Time (min)	Cycles	Outcome	Observation	Ref.
Mouse squamous cell carcinoma SCC7 (2 × 10⁵)	NCr nude mice	~150 mm³	PEG	11.3 ± 2.3 (TEM) 23.8 ± 0.1 (DLS)	IV (tail vein)	24 h	980	38	2	1	60	Complete tumor ablation in 78–90% cases	Muscle w/ MNP s T = 42 °C; Muscle w/o MNP s T = 36 °C; Liver uptake > tumors. 16:1 MNP ration tumor to non-tumor.	[83]			
Rabbit carcinoma VX-2 (1 × 10⁵)	New Zealand white rabbits	1.4 cm³	PLGA	NR	100 µL of 30% Fe₃O₄	IT	0	626	NR (28.6 A)	3	1	72.3 ± 2.2	MHT-only = Incomplete tumor ablation, if combined w/ cisplatin release = residual tumor elimination by day 21	Larger tumor and animal model. possible to track by ultrasound or computer tomography.	[17]		

Inj.—injection. NR—not reported. NS—not specified. DD—double dose. SD—single dose. MTA—magnetic thermoablation. Inc.—increase. -Luc—Luciferase transfected. TEM—transmission electron microscopy. DLS—dynamic light scattering. MACS—magnetic-activated cell sorting. MNP s—magnetic nanoparticles. MCLs—magnetite cationic liposomes. DNR, daunorubicin. GCT—Gemcitabine. 5-BrTet—5-bromotetrandrine. LHRH—luteinizing hormone–releasing hormone. MS—mean survival. multi—multisite. APTES—3-aminopropyltriethoxy silane. PEG—poly(ethylene glycol). PEI—poly(ethylenimine). PLGA—poly(D,L-lactide-co-glycolide). PRO—protamine sulfate. Administration routes: IT—intra-tumor. IV—intravenous. IH—inhalation. ID—intradermal. SC—subcutaneous.
References

1. Gilchrist, R.K.; Medal, R.; Shorey, W.D.; Hanselman, R.C.; Parrott, J.C.; Taylor, C.B. Selective inductive heating of lymph nodes. *Ann. Surg.* 1957, 146, 596–606. [CrossRef] [PubMed]

2. Gordon, R.T.; Hines, J.R.; Gordon, D. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. *Med. Hypotheses* 1979, 5, 83–102. [CrossRef]

3. Frank, D.; Tyagi, C.; Tomar, L.; Choonara, Y.E.; Du Toit, L.C.; Kumar, P.; Penny, C.; Pillay, V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. *Int. J. Nanomed.* 2014, 9, 589–613. [CrossRef]

4. Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. *Theranostics* 2015, 5, 1249–1263. [CrossRef] [PubMed]

5. Patel, S.P.; Patel, P.B.; Parekh, B.B. Application of nanotechnology in cancers prevention, early detection and treatment. *J. Cancer Res. Ther.* 2014, 10, 479–486. [CrossRef]

6. Sohail, A.; Ahmad, Z.; Beg, O.A.; Arshad, S.; Sherin, L. A review on hyperthermia via nanoparticle-mediated therapy. *B Cancer* 2017, 104, 452–461. [CrossRef]

7. Armour, E.P.; McEachern, D.; Wang, Z.; Corry, P.M.; Martinez, A. Sensitivity of human cells to mild hyperthermia. *Cancer Res.* 1993, 53, 2740–2744.

8. Alvarez-Berrios, M.P.; Castillo, A.; Rinaldi, C.; Torres-Lugo, M. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. *Int. J. Nanomedicine* 2014, 9, 145–153. [CrossRef]

9. Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. *Crit. Rev. Oncol. Hemat.* 2002, 43, 33–56. [CrossRef]

10. Court, K.A.; Hatakeyama, H.; Wu, S.Y.; Lingegeowda, M.S.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Ju-Seog, L.; Rinaldi, C.; Juan, E.J.; Sood, A.K.; et al. HSP70 inhibition synergistically enhances the effects of magnetic fluid hyperthermia in ovarian cancer. *Mol. Cancer Ther.* 2017, 16, 966–976. [CrossRef]

11. Blanco-Andujar, C.; Ortega, D.; Southern, P.; Nesbitt, S.A.; Thanh, N.T.; Pankhurst, Q.A. Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. *Nanomedicine* 2016, *11*, 121–136. [CrossRef] [PubMed]

12. Calatayud, M.P.; Soler, E.; Torres, T.E.; Campos-Gonzalez, E.; Junquera, C.; Ibarra, M.R.; Goya, G.F. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. *Sci. Rep.* 2017, 7, 8627. [CrossRef] [PubMed]

13. Hedayati, M.; Thomas, O.; Abubaker-Sharif, B.; Zhou, H.M.; Cornejo, C.; Zhang, Y.G.; Wabler, M.; Mihalic, J.; Gruettner, C.; Westphal, F.; et al. The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: Is it possible to treat microscopic tumors? *Nanomedicine* 2013, 8, 29–41. [CrossRef]

14. Stocke, N.A.; Sethi, P.; Jyoti, A.; Chan, R.; Arnold, S.M.; Hilt, J.Z.; Upreti, M. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastatic tumor tissue analogs for triple negative breast cancer. *Biomaterials* 2017, 120, 115–125. [CrossRef] [PubMed]

15. Mamani, J.B.; Marinho, B.S.; Rego, G.N.A.; Nucci, M.P.; Alvieri, F.; Santos, R.S.D.; Ferreira, J.V.M.; Oliveira, F.A.; Gamarra, L.F. Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model. *Einstein* 2020, 18, eAO4954. [CrossRef] [PubMed]

16. Lin, W.; Xie, X.; Yang, Y.; Fu, X.; Liu, H.; Yang, Y.; Deng, J. Thermosensitive magnetic liposomes with doxorubicin cell-penetrating peptides conjugate for enhanced and targeted cancer therapy. *Drug Deliv.* 2016, 23, 3436–3443. [CrossRef]

17. Yang, Y.; Wang, F.; Zheng, K.; Deng, L.; Yang, L.; Zhang, N.; Xu, C.; Ran, H.; Wang, Z.; Wang, Z.; et al. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor. *PloS ONE* 2017, 12, e0177049. [CrossRef]

18. Kalber, T.L.; Ordidge, K.L.; Southern, P.; Loebinger, M.R.; Kyrtatos, P.G.; Pankhurst, Q.A.; Lythgoe, M.F.; Janes, S.M. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. *Int. J. Nanomed.* 2016, *11*, 1973–1983. [CrossRef]

19. Toraya-Brown, S.; Sheen, M.R.; Zhang, P.; Chen, L.; Baird, J.R.; Demidenko, E.; Turk, M.J.; Hoopes, P.J.; Conejo-Garcia, J.R.; Fiering, S. Local hyperthermia treatment of tumors induces CD8(+)* T cell-mediated resistance against distal and secondary tumors. *Nanomedicine* 2014, *10*, 1273–1285. [CrossRef]
20. Hegyi, G.; Szigeti, G.P.; Szasz, A. Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy. *Evid Based Complement. Alternat. Med.* 2013, 2013, 672873. [CrossRef]

21. Vilas-Boas, V.; Espina, B.; Kolen'ko, Y.V.; Banobre-Lopez, M.; Brito, M.; Martins, V.; Duarte, J.A.; Petrovykh, D.Y.; Freitas, P.; Carvalho, F. Effectiveness and Safety of a Nontargeted Boost for a CXCR4-Targeted Magnetic Hyperthermia Treatment of Cancer Cells. *ACS Omega* 2019, 4, 1931–1940. [CrossRef]

22. Gao, F.P.; Cai, Y.Y.; Zhou, J.; Xie, X.X.; Ouyang, W.W.; Zhang, Y.H.; Wang, X.F.; Zhang, X.D.; Wang, X.W.; Zhao, L.Y.; et al. Pullulan acetate coated magnetic nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. *Nano Res.* 2010, 3, 23–31. [CrossRef]

23. Jaidev, L.R.; Chellappan, D.R.; Bhavsar, D.V.; Ranganathan, R.; Sivanantham, B.; Subramanian, A.; Sharma, U.; Jagannathan, N.R.; Krishnan, U.M.; Sethuraman, S. Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. *Acta Biomater.* 2017, 49, 422–433. [CrossRef] [PubMed]

24. Rochani, A.K.; Balasubramanian, S.; Ravindran Girija, A.; Raveendran, S.; Borah, A.; Nagaoka, Y.; Nakajima, Y.; Maekawa, T.; Kumar, D.S. Dual mode of cancer cell destruction for pancreatic cancer therapy using Hsp90 inhibitor loaded polymeric nano magnetic formulation. *Int. J. Pharm.* 2016, 511, 648–658. [CrossRef]

25. Thorat, N.D.; Otari, S.V.; Patil, R.M.; Bohara, R.A.; Yadav, H.M.; Koli, V.B.; Chaurasia, A.K.; Ningthoujam, R.S. Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. *Dalton Trans.* 2014, 43, 17343–17351. [CrossRef] [PubMed]

26. Baskar, G.; Ravi, M.; Panda, J.J.; Khatri, A.; Dev, B.; Santoshram, S.; Sathiya, S.; Babu, C.S.; Chauhan, V.S.; Rayala, S.K.; et al. Efficacy of dipeptide-coated magnetic nanoparticles in lung cancer models under pulsed electromagnetic field. *Cancer Invest.* 2017, 35, 431–442. [CrossRef]

27. Sadhasivam, S.; Savitha, S.; Wu, C.J.; Lin, F.H.; Sobinski, L. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells. *Int. J. Pharm.* 2015, 480, 8–14. [CrossRef]

28. Salimi, M.; Sarkar, S.; Saber, R.; Delavari, H.; Alizadeh, A.M.; Mulder, H.T. Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles. *Cancer Nanotechnol.* 2018, 9, 7. [CrossRef]

29. Liao, S.H.; Liu, C.H.; Bastakoti, B.P.; Suzuki, N.; Chang, Y.; Yamauchi, Y.; Lin, F.H.; Wu, K.C. Functionalized magnetic iron oxide/alginic core-shell nanoparticles for targeting hyperthermia. *Int. J. Nanomed.* 2015, 10, 3315–3328. [CrossRef]

30. Shi, B.; Abrams, M.; Sepp-Lorenzino, L. Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. *J. Histochem. Cytochem.* 2013, 61, 901–909. [CrossRef]

31. Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.P. Magnetic nanoparticles in nanomedicine: A review of recent advances. *Nanotechnology* 2019, 30, 502003. [CrossRef] [PubMed]

32. Lanier, O.L.; Korotych, O.I.; Monsalve, A.G.; Wable, D.; Savliwala, S.; Grooms, N.W.F.; Nacea, C.; Tuitt, O.R.; Dobson, J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. *Int. J. Hyperth.* 2019, 36, 687–701. [CrossRef]

33. Khandhar, A.P.; Ferguson, R.M.; Simon, J.A.; Krishnan, K.M. Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. *J. Appl. Phys.* 2012, 111, 07B306. [CrossRef] [PubMed]

34. Barrera, G.; Allia, P.; Tiberto, P. Temperature-dependent heating efficiency of magnetic nanoparticles for applications in precision nanomedicine. *Nanoscale* 2020, 12, 6360–6377. [CrossRef]

35. Myrovali, E.; Maniotis, N.; Samaras, T.; Angelakeris, M. Spatial focusing of magnetic particle hyperthermia. *Nanoscale Adv.* 2020, 2, 408. [CrossRef]

36. Lu, A.H.; Salabas, E.L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. *Angew. Chem. Int. Ed.* 2007, 46, 1222–1244. [CrossRef]

37. Pamme, N. Magnetsism and microfluidics. *Lab Chip* 2006, 6, 24–38. [CrossRef] [PubMed]

38. Bychkova, A.V.; Sorokina, O.N.; Rosenfeld, M.A.; Kovarski, A.L. Multifunctional biocompatible coatings on magnetic nanoparticles. *Russ. Chem. Rev.* 2012, 81, 1026–1050. [CrossRef]

39. Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. *Drug Discov. Today* 2006, 11, 812–818. [CrossRef]

40. Stylianopoulos, T. EPR-effect: Utilizing size-dependent nanoparticle delivery to solid tumors. *Ther. Deliv.* 2013, 4, 421–423. [CrossRef]

41. Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? *J. Control. Release* 2016, 244, 108–121. [CrossRef] [PubMed]
42. Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. *Biochem. J.* 2004, 377, 159–169. [CrossRef] [PubMed]

43. Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. *J. Nanobiotechnology* 2013, 11, 26. [CrossRef] [PubMed]

44. Das, P.; Colombo, M.; Prosperi, D. Recent advances in magnetic fluid hyperthermia for cancer therapy. *Colloids Surf. B: Biointerfaces* 2019, 174, 42–55. [CrossRef]

45. Jang, J.T.; Lee, J.; Seon, J.; Ju, E.; Kim, M.; Kim, Y.I.; Kim, M.G.; Takemura, Y.; Arbab, A.S.; Kang, K.W.; et al. Giant magnetic heat induction of magnesium-doped gamma-Fe₂O₃ superparamagnetic nanoparticles for completely killing tumors. *Adv. Mater.* 2018, 30. [CrossRef]

46. Tapeinos, C.; Marino, A.; Battaglini, M.; Migliorin, S.; Brescia, R.; Scarpellini, A.; De Julian Fernandez, C.; Prato, M.; Drago, F.; Ciofani, G. Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. *Nanoscale* 2018, 11, 72–88. [CrossRef]

47. Hervault, A.; Thanh, N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. *Nanoscale* 2014, 6, 11553–11573. [CrossRef]

48. Hanini, A.; Lartigue, L.; Gavard, J.; Kacem, K.; Wilhelm, C.; Gazeau, F.; Chau, F.; Ammar, S. Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. *J. Magn. Magn. Mater.* 2016, 416, 315–320. [CrossRef]

49. Hedayatnasab, Z.; Abnisa, F.; Daud, W.M.A.W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. *Mater. Design* 2017, 123, 174–196. [CrossRef]

50. Osaci, M.; Cacciola, M. The influence of the magnetic nanoparticles coating from colloidal system on the magnetic relaxation time. *Beilstein Arch.* 2019. [CrossRef]

51. Salunkhe, A.B.; Khot, V.M.; Pawar, S.H. Magnetic hyperthermia with magnetic nanoparticles: A status review. *Curr. Top. Med. Chem.* 2014, 14, 572–594. [CrossRef] [PubMed]

52. Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. *Philos. Trans. A Math. Phys. Eng. Sci.* 2010, 368, 1333–1383. [CrossRef] [PubMed]

53. Pirollo, K.F.; Chang, E.H. Does a targeting ligand influence nanoparticle tumor localization or uptake? *Trends Biotechnol* 2008, 26, 552–558. [CrossRef]

54. N'Dong, C.; Tate, J.A.; Kett, W.C.; Batra, J.; Demidenko, E.; Lewis, L.D.; Hoopes, P.J.; Gerngross, T.U.; Griswold, K.E. Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo. *PloS ONE* 2015, 10, e0115636. [CrossRef] [PubMed]

55. Lesniak, A.; Salvati, A.; Santos-Martinez, M.J.; Radomski, M.W.; Dawson, K.A.; Aberg, C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. *J. Am. Chem. Soc.* 2013, 135, 1438–1444. [CrossRef] [PubMed]

56. Manigandan, A.; Handi, V.; Sundaramoorthy, N.S.; Dhandapani, R.; Radhakrishnan, J.; Sethuraman, S.; Subramanian, A. Responsive nanomicellar theranostic cages for metastatic breast cancer. *Bioconjug. Chem.* 2018, 29, 275–286. [CrossRef]

57. Wang, X.; Yang, R.; Yuan, C.; An, Y.; Tang, Q.; Chen, D. Preparation of folic acid-targeted temperature-sensitive magnetoliposomes and their antitumor effects in vitro and in vivo. *Target. Oncol.* 2018, 13, 481–494. [CrossRef]

58. Mi, Y.; Liu, X.; Zhao, J.; Ding, J.; Feng, S.S. Multimodality treatment of cancer with heceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. *Biomaterials* 2012, 33, 7519–7529. [CrossRef]

59. Tang, J.; Zhou, H.; Liu, J.; Liu, J.; Li, W.; Wang, Y.; Hu, F.; Huo, Q.; Li, J.; Liu, Y.; et al. Dual-mode imaging-guided synergistic chemo- and magnetohyperthermia therapy in a versatile nanoplatform to eliminate cancer stem cells. *ACS Appl. Mater. Interfaces* 2017, 9, 23497–23507. [CrossRef]

60. Zolata, H.; Afarideh, H.; Davani, F.A. Triple therapy of HER2+ cancer using radiolabeled multifunctional iron oxide nanoparticles and alternating magnetic field. *Cancer Biother. Radiopharm.* 2016, 31, 324–329. [CrossRef]

61. Vilas-Boas, V.; Espina, B.; Kolen’ko, Y.V.; Banobre-Lopez, M.; Duarte, J.A.; Martins, V.C.; Petrovykh, D.Y.; Freitas, P.P.; Carvalho, F.D. Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia. *Biointerphases* 2018, 13, 011005. [CrossRef] [PubMed]

62. Zwicke, G.L.; Mansoori, G.A.; Jeffery, C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. *Nano Rev.* 2012, 3. [CrossRef] [PubMed]
63. Mitri, Z.; Constantine, T.; O’Regan, R. The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemother. Res. Pract. 2012, 2012, 743193. [CrossRef] [PubMed]

64. Hu, R.; Ma, S.; Ke, X.; Jiang, H.; Wei, D.; Wang, W. Effect of interleukin-2 treatment combined with magnetic fluid hyperthermia on Lewis lung cancer-bearing mice. Biomed. Rep. 2016, 4, 59–62. [CrossRef]

65. Prijic, S.; Prosen, L.; Cemazar, M.; Scancar, J.; Romih, R.; Lavrencak, J.; Bregar, V.B.; Coer, A.; Krzan, M.; Znidarsic, A.; et al. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 2012, 33, 4379–4391. [CrossRef]

66. Rago, G.; Bauer, B.; Svedberg, F.; Gunnarsson, L.; Ericson, M.B.; Bonn, M.; Enejder, A. Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy. J. Phys. Chem. B 2011, 115, 5008–5016. [CrossRef]

67. Sims, L.B.; Curtis, L.T.; Frieboes, H.B.; Steinback-Rankins, J.M. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. J. Nanobiotechnology 2014, 12, 33. [CrossRef]

68. Guardia, P.; Di Corato, R.; Lartigue, L.; Wilhelm, C.; Espinosa, A.; Garcia-Hernandez, M.; Gazeau, F.; Manna, L.; Pellegrino, T. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 2012, 6, 3080–3091. [CrossRef]

69. Taratula, O.; Dani, R.K.; Schumann, C.; Xu, H.; Wang, A.; Song, H.; Dhagat, P.; Taratula, O. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int. J. Pharm. 2013, 458, 169–180. [CrossRef]

70. Kandasamy, G.; Sudame, A.; Bhati, P.; Chakrabarty, A.; Kale, S.N.; Maity, D. Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids. J. Colloid Interface Sci. 2018, 514, 534–543. [CrossRef]

71. Ma, M.; Zhang, Y.; Shen, X.L.; Xie, J.; Li, Y.; Gu, N. Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields. Nano Res. 2015, 8, 600–610. [CrossRef]

72. Maity, D.; Chandrasekharan, P.; Pradhan, P.; Chuang, K.H.; Xue, J.M.; Feng, S.S.; Ding, J. Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J. Mater. Chem. B 2011, 3, 14717–14724. [CrossRef]

73. Oh, Y.; Lee, N.; Kang, H.W.; Oh, J. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe₂O₄. Nanotechnology 2016, 27, 115101. [CrossRef]

74. Qu, Y.; Li, J.; Ren, J.; Leng, J.; Lin, C.; Shi, D. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(3)Zn(1-x)Fe₂O₄ nanoparticles for induced tumor cell apoptosis. ACS Appl. Mater. Inter. 2014, 6, 16867–16879. [CrossRef] [PubMed]

75. Sadhukha, T.; Niu, L.; Wiedmann, T.S.; Panyam, J. Effective elimination of cancer stem cells by magnetic hyperthermia. Mol. Pharm. 2013, 10, 1432–1441. [CrossRef] [PubMed]

76. Hergt, R.; Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [CrossRef]

77. Lin, M.; Huang, J.; Jiang, X.; Zhang, J.; Yu, H.; Ye, J.; Zhang, D. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH. Sci. Rep. 2016, 6, 33524. [CrossRef]

78. Engelmann, U.M.; Roeth, A.A.; Eberbeck, D.; Buhl, E.M.; Neumann, U.P.; Schmitz-Rode, T.; Slabu, I. Combining bulk temperature and nanoeating enables advanced magnetic fluid hyperthermia efficacy on pancreatic tumor cells. Sci. Rep. 2018, 8, 13210. [CrossRef]

79. Gaharwar, U.S.; Meena, R.; Rajamani, P. Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male wistar rats. Int. J. Nanomed. 2019, 14, 9677–9692. [CrossRef]

80. Baldi, G.; Ravagli, C.; Mazzantini, F.; Loudos, G.; Adan, J.; Masa, M.; Psimadas, D.; Fragojegozi, E.A.; Locatelli, E.; Innocenti, C.; et al. In vivo anticaner evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles. Int. J Nanomed. 2014, 9, 3037–3056. [CrossRef]

81. Xie, J.; Yan, C.; Yan, Y.; Chen, L.; Song, L.; Zang, F.; An, Y.; Teng, G.; Gu, N.; Zhang, Y. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: A comparison of passive and active targeting effects. Nanoscale 2016. [CrossRef] [PubMed]
82. Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. *Cancer Res.* 2006, 66, 6732–6740. [CrossRef] [PubMed]

83. Huang, H.S.; Hainfeld, J.F. Intravenous magnetic nanoparticle cancer hyperthermia. *Int. J. Nanomed.* 2013, 8, 2521–2532. [CrossRef]

84. Gao, W.; Zheng, Y.; Wang, R.; Chen, H.; Cai, X.; Lu, G.; Chu, L.; Xu, C.; Zhang, N.; Wang, Z.; et al. A smart, phase transitional and injectable DOX/PLGA-Fe implant for magnetic-hyperthermia-induced synergistic tumor eradication. *Acta Biomater.* 2016, 29, 298–306. [CrossRef]

85. Seidel, K.; Balakrishnan, A.; Alexiou, C.; Janko, C.; Komoll, R.M.; Wang, L.L.; Kirschning, A.; Ott, M. Synthesis of magnetic-nanoparticle/ansamitocin conjugates-inductive heating leads to decreased cell proliferation in vitro and attenuation of tumour growth in vivo. *Chemistry* 2017, 23, 12326–12337. [CrossRef]

86. Teo, P.; Wang, X.; Chen, B.; Zhang, H.; Yang, X.; Huang, Y.; Tang, J. Complex of TNF-alpha and modified Fe3O4 nanoparticles suppresses tumor growth by magnetic induction hyperthermia. *Cancer Biother. Radiopharm.* 2017, 32, 379–386. [CrossRef]

87. Yang, R.; An, L.Y.; Miao, Q.F.; Li, F.M.; Han, Y.; Wang, H.X.; Liu, D.P.; Chen, R.; Tang, S.Q. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes. *Oncotarget* 2016, 7, 35894–35916. [CrossRef]

88. Yuan, C.; An, Y.; Zhang, J.; Li, H.; Zhang, H.; Wang, L.; Zhang, D. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma. *Nanotechnology* 2014, 25, 345101. [CrossRef]

89. Hervault, A.; Dunn, A.E.; Lim, M.; Boyer, C.; Mott, D.; Maenosono, S.; Thanh, N.T. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. *Nanoscale* 2016, 8, 12152–12161. [CrossRef]

90. Soetaert, F.; Kandala, S.K.; Bakuzis, A.; Ivkov, R. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. *Sci. Rep.* 2017, 7, 6661. [CrossRef]

91. Makridis, A.; Tziomaki, M.; Topouridou, K.; Yavropoulou, M.P.; Yovos, J.G.; Kalogirou, O.; Samaras, T.; Angelakeris, M. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells. *Int. J. Hyperth.* 2016, 32, 778–785. [CrossRef] [PubMed]

92. Kumar, C.S.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. *Adv. Drug Deliv. Rev.* 2011, 63, 789–808. [CrossRef] [PubMed]

93. Di Corato, R.; Bealle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clement, O.; Silva, A.K.; Menager, C.; Wilhelm, C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photosensitive magnetic liposomes. *ACS Nano* 2015, 9, 2904–2916. [CrossRef] [PubMed]

94. Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. *ACS Nano* 2016, 10, 2436–2446. [CrossRef]

95. Thompson, S.A.; Martinez, I.A.; Haro-González, P.; Adam, A.P.; Jaque, D.; Nieder, J.B.; De la Rica, R. Plug and play anisotropy-based nanothermometers. *ACS Photonics* 2018, 5, 2676–2681. [CrossRef]

96. Wust, P.; Hildebrandt, B.; Sreenivasu, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. *Lancet Oncol.* 2002, 3, 487–497. [CrossRef]

97. Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. *J. Neurooncol.* 2011, 103, 317–324. [CrossRef]

98. Song, C.W. Effect of local hyperthermia on blood-flow and microenvironment—a review. *Cancer Res.* 1984, 44, 4721–4730.

99. Zhang, Z.Q.; Song, S.C. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. *Biomaterials* 2016, 106, 13–23. [CrossRef]

100. Sanz, B.; Calatayud, M.P.; Torres, T.E.; Fanarraga, M.L.; Ibarra, M.R.; Goya, G.F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. *Biomaterials* 2017, 114, 62–70. [CrossRef]

101. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J. Immunol. Methods* 1983, 65, 55–63. [CrossRef]
102. Vistica, D.T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. *Cancer Res.* **1991**, *51*, 2515–2520. [PubMed]

103. Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. *Arch. Toxicol.* **2012**, *86*, 1123–1136. [CrossRef] [PubMed]

104. Strober, W. Trypan blue exclusion test of cell viability. *Curr. Protoc. Immunol.* **2015**, *111*, A3B1–A3B3. [CrossRef] [PubMed]

105. Zhang, Z.Q.; Song, S.C. Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. *Biomaterials* **2017**, *132*, 16–27. [CrossRef] [PubMed]

106. Tay, Z.W.; Chandrasekharan, P.; Chiu-Lam, A.; Hensley, D.; Dhaivalikar, R.; Zhou, X.Y.; Yu, E.Y.; Goodwill, P.W.; Zheng, B.; Rinaldi, C.; et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. *ACS Nano* **2018**, *12*, 3699–3713. [CrossRef]

107. Ramachandra Kurup Sasikala, A.; Thomas, R.G.; Unnithan, A.R.; Saravanakumar, B.; Jeong, Y.Y.; Park, C.H.; Kim, C.S. Multifunctional nanocarpet for cancer theranostics: Remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. *Sci. Rep.* **2016**, *6*, 20543. [CrossRef]

108. Gupta, J.; Mohapatra, J.; Bhargava, P.; Bahadur, D. A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. *Dalton Trans.* **2016**, *45*, 2454–2461. [CrossRef]

109. Quinto, C.A.; Mohindra, P.; Tong, S.; Bao, G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. *Nanoscale* **2018**, *10*, 375101. [CrossRef] [PubMed]

110. Khandhar, A.P.; Ferguson, R.M.; Simon, J.A.; Krishnan, K.M. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. *J. Biomed. Mater. Res. A* **2012**, *100A*, 728–737. [CrossRef]

111. Gupta, J.; Mohapatra, J.; Bhargava, P.; Bahadur, D. A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. *Dalton Trans.* **2016**, *45*, 2454–2461. [CrossRef]

112. Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. *Arch. Toxicol.* **2012**, *86*, 1123–1136. [CrossRef] [PubMed]

113. Yoo, D.; Jeong, H.; Preihs, C.; Choi, J.S.; Shin, T.H.; Sessler, J.L.; Cheon, J. Double-e ect nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. *Sci. Rep.* **2018**, *8*, 14766. [CrossRef]

114. Yoo, D.; Jeong, H.; Preihs, C.; Choi, J.S.; Shin, T.H.; Sessler, J.L.; Cheon, J. Double-e ect nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. *Sci. Rep.* **2018**, *8*, 14766. [CrossRef]

115. Goodwill, P.W.; Zheng, B.; Rinaldi, C.; et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. *ACS Nano* **2018**, *12*, 3699–3713. [CrossRef]

116. Ramachandra Kurup Sasikala, A.; Thomas, R.G.; Unnithan, A.R.; Saravanakumar, B.; Jeong, Y.Y.; Park, C.H.; Kim, C.S. Multifunctional nanocarpet for cancer theranostics: Remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. *Sci. Rep.* **2016**, *6*, 20543. [CrossRef]

117. Gupta, J.; Mohapatra, J.; Bhargava, P.; Bahadur, D. A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. *Dalton Trans.* **2016**, *45*, 2454–2461. [CrossRef]

118. Ramachandra Kurup Sasikala, A.; Thomas, R.G.; Unnithan, A.R.; Saravanakumar, B.; Jeong, Y.Y.; Park, C.H.; Kim, C.S. Multifunctional nanocarpet for cancer theranostics: Remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. *Sci. Rep.* **2016**, *6*, 20543. [CrossRef]

119. Quinto, C.A.; Mohindra, P.; Tong, S.; Bao, G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. *Nanoscale* **2018**, *10*, 375101. [CrossRef] [PubMed]

120. Khandhar, A.P.; Ferguson, R.M.; Simon, J.A.; Krishnan, K.M. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. *J. Biomed. Mater. Res. A* **2012**, *100A*, 728–737. [CrossRef]
121. Thomas, R.G.; Moon, M.J.; Lee, H.; Sasikala, A.R.; Kim, C.S.; Park, I.K.; Jeong, Y.Y. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. *Carbohydr Polym.* 2015, 131, 439–446. [CrossRef] [PubMed]

122. Shah, B.P.; Pasquale, N.; De, G.; Tan, T.; Ma, J.; Lee, K.B. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. *ACS Nano* 2014, 8, 9379–9387. [CrossRef] [PubMed]

123. Yang, Y.; Xie, X.; Xu, X.; Xia, X.; Wang, H.; Li, L.; Dong, W.; Ma, P.; Yang, Y.; Liu, Y.; et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. *Colloids Surf B: Biointerfaces* 2016, 146, 607–615. [CrossRef] [PubMed]

124. Ren, Y.; Zhang, H.; Chen, B.; Cheng, J.; Cai, X.; Liu, R.; Xia, G.; Wu, W.; Wang, S.; Ding, J.; et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. *Int. J. Nanomed.* 2012, 7, 2261–2269. [CrossRef]

125. Ohtake, M.; Umemura, M.; Sato, I.; Akimoto, T.; Oda, K.; Nagasako, A.; Kim, J.H.; Fujita, T.; Yokoyama, U.; Nakayama, T.; et al. Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. *Sci. Rep.* 2017, 7, 42783. [CrossRef]

126. Sadhukha, T.; Wiedmann, T.S.; Panyam, J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. *Biomaterials* 2013, 34, 5163–5171. [CrossRef]