Supporting Information

Article title: Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self-compatible mating system

The following text, tables, figures and references are described in this document.

Supplementary Text S1: Detailed methods

Figure S1. Diagram showing partial sequence of *rbcL* gene compared between unisexual and bisexual strains of *Pleodorina starrii* (Table S5).

Figure S2. Diagram of microsatellite region within the plastid genome of *Pleodorina starrii* strain NIES-1363 (JX977846.1; Smith et al. 2013).

Figure S3. Diagrams of exon-intron structure of *PlestMID* gene and *PlestMID* cDNA of *Pleodorina starrii*.

Figure S4. Zygotes of F1 strains obtained by selfing of *Pleodorina starrii* bisexual strain P10.

Figure S5. Results of genomic PCR of *PlestMID* for unisexual male (M), unisexual female (F) and bisexual (B) strains of *Pleodorina starrii*.

Figure S6. Semi-quantitative RT-PCR of *PlestMID* in unisexual male strain (P7) and bisexual strain (P10) of *Pleodorina starrii*.

Figure S7. DAPI staining for estimating comparative genome size in *Pleodorina starrii* unisexual male strain (NIES-1363) and bisexual strain (P10).

Figure S8. Schematic drawings of possible results of intercrossings of *Pleodorina starrii* between unisexual male and two genotypes of female, on the basis of autosomal bisexual factor (BF) model (Fig. 4A).

Table S1. Strains of *Pleodorina starrii* used in the present study.

Table S2. List of Volvocales included in the phylogenetic analysis and DDBJ/EMBL-EBI/NCBI accession numbers of *rbcL* genes.
Table S3. Survival rates of F1 strains obtained by intercrossings between *Pleodorina starrii* unisexual and bisexual strains.

Table S4. Evaluation items for determining sex phenotypes of *Pleodorina starrii* strains.

Table S5. List of genome sequences determined in the present study.

Table S6. Results of intercrossings between *Pleodorina starrii* unisexual male and two F1 unisexual females showing two possible genotypes of unisexual female phenotype.

Table S7. Specific primers of *Pleodorina starrii* used in the present study.

Table S8. Conditions for PCR cycles and primers used in semi-quantitative RT-PCR analyses (Fig. S6).

Supplementary References
Supplementary Text S1: Detailed methods

Induction of sexual reproduction

About 0.25 mL of the growing cultures of *Pleodorina starrii* (Table S1) were transferred into 10 mL of new AF-6 and grown at 20°C on a 14-h light: 10-h dark schedule under cool-white fluorescent lamps at an intensity of 55-80 μmol·m⁻²·s⁻¹. After about 5 ~ 10 days, 0.25 mL of the actively growing cultures was transferred into 10 mL VTAC+soil medium (USVT medium (Nozaki et al. 2015a) excluding urea) and grown at 25°C on a 12-h light: 12-h dark schedule under cool-white fluorescent lamps at an intensity of 180-220 μmol·m⁻²·s⁻¹. After three or four days, the 10 mL culture grown in VTAC+soil medium was mixed with 20 mL of mating medium (Nozaki et al. 1989) and grown at 25°C on a 12-h light: 12-h dark schedule under cool-white fluorescent lamps at an intensity of 180-220 μmol·m⁻²·s⁻¹. Sexual colonies developed within a day (male strains), or within 2 days (female strains and bisexual strains).

Genomic PCR and sequencing

Genomic PCR was performed using KOD One PCR Master Mix (TOYOBO, Osaka, Japan) with specific-primer pairs (Table S7). PCR templates were prepared by disruption of concentrated culture grown in AF6 medium with ceramic beads by Retsch Mixer Mill MM300 (F. Kurt Retsch GmbH & Co.KG, Haan, RP, Germany). PCR cycles were 2 min at 94°C, followed by 45 cycles of 98°C, 10 sec, 50°C, 30 sec, 68°C, 30 sec (*rbcL*), 40 cycles of 98°C, 10 sec, 68°C, 1 min (plastid microsatellite region), or 35 cycles of 98°C, 10 sec, 66°C, 30 sec, 68°C, 30 sec (*PlestMID*). PCR products were sequenced directly using an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) with a BigDye Terminator Cycle Sequencing Ready Reaction Kit v. 3.1 (Applied Biosystems), as described previously (Nozaki et al. 2000).

To detect the presence of *PlestMID* gene in two bisexual strains (P10 and P85) (Fig. S3), genomic PCR of *PlestMID* was performed with KOD One PCR Master Mix
with *PlestMID* gene-specific primer pair (Nozaki et al. 2006a, PlMT_F71 and PlMT_F73, Table S7). For control, we used elongation factor 1 like gene (*EF-1 like*)-specific primer pair designed based on sequence of *EF1-like* mRNA sequence (Nozaki et al. 2006a, PlestEFL_F1 and PlestEFL_R1, Table S7). PCR cycles were 2 min at 94°C, followed by 30 cycles of 98°C, 10 sec, 60°C, 30 sec, 68°C, 30 sec (for *PlestMID* and *EF-1 like*). The amplified products were electrophoresed on 2% (w/v) agarose gels and stained with ethidium bromide. The gel images were captured using a ChemiDoc XRS system with Quantity One Software (Bio-Rad, Hercules, CA, USA).

cDNA sequencing and semi-quantitative RT-PCR

Amplification of cDNA was carried out by Superscript 3 reverse transcriptase (Invitrogen, Carlsbad, CA, USA). To determine the sequence of *PlestMID* cDNA of P7 and P10, PCR amplification was carried out at the condition (2 min at 94°C, followed by 35 cycles of 98°C, 10 sec, 66°C, 30 sec, 68°C, 30 sec) using KOD One PCR Master Mix with *PlestMID* gene specific primer pair PlMT_F1 and PlMT_R73 or PlMT_F1 and PlMT_R9 (Table S7). PCR products were sequenced directly as described above.

For examining the expression of *PlestMID* and *EF-1 like* genes, semi-quantitative RT-PCR amplification was performed using full-length cDNA constructed from various cultures with two specific primer pairs (PlMT_RT_F1 and PlMT_RT_R2 for *PlestMID*, Table S7; PlestEFL_F1 and PlestEFL_R1 for *EF-1 like*, Table S7) and KOD One PCR Master Mix as described in Table S8. The 24 amplified products were electrophoresed on 2% (w/v) agarose gels and stained with ethidium bromide. The gel images were captured using a ChemiDoc XRS system with Quantity One Software, level adjusted and gradation inverted with Adobe Photoshop CC 2019 (Adobe Systems Inc., San Jose, CA).

Phylogenetic analyses of *rbcL* genes
Sequences of the *rbcL* coding regions from 40 operational taxonomic units (OTUs) were aligned using Clustal W (Thompson et al. 1994). Maximum likelihood (ML) tree was constructed by MEGA7 (Kumar et al. 2016), based on the best-fitted model (GTR+G+I) selected by MEGA7, with initial trees constructed by BioNJ (Gascuel 1997). Maximum parsimony (MP) method using tree bisection reconnection search method by MEGA 7.0 was also used to construct trees. Bootstrap values (Felsenstein 1985) based on 1,000 replications were calculated in ML and MP analyses. In addition, Bayesian inference was carried out. Each data set for Bayesian inference was divided into three partitions: first, second, and third codon positions of the *rbcL* gene and then an evolutionary model of each partition was selected using MrModeltest 2.2 (Nylander 2004): GTR+G+I (first), JC+G+I (second), GTR+G (third) model, respectively. The partition models were unlinked in each analysis. Bayesian phylogenetic analyses were performed using MrBayes 3.2 (Ronquist et al. 2012). Convergences of Markov chain Monte Carlo iterations were evaluated based on the average standard deviation of split frequencies for every 1,000,000 generations, discarding the first 25% as burn-in, and the iterations were automatically stopped when the average standard deviations were below 0.01, indicating convergence. Consequently, 1,000,000 generations of iterations were performed for each data set.

Morphological observations

Vegetative colonies of two bisexual strains (P10 and P85) in an actively growing culture in AF-6 medium at 20°C on a 14-h light: 10-h dark schedule under cool-white fluorescent lamps at an intensity of 55-80 μmol·m⁻²·s⁻¹ were used. Light microscopy was carried out using a BX-60 microscope (Olympus, Tokyo, Japan) equipped with Nomarski optics. In order to examine the structure of individual sheaths of the P10 colonies, methylene blue staining of vegetative colonies was performed as described previously in *Pleodorina* (Nozaki et al. 1989; Nozaki et al. 2006b). About 5 μL of P10
vegetative colonies in an actively growing culture in AF-6 medium were mixed with 2-5 µL of 0.002% (w/v in distilled water) methylene blue on slides and observed by a BX-60 microscope equipped with Nomarski optics.

To observe sexual reproduction of P10 and its F1 strains obtained by selfing of P10, male and female colonies induced as described above were isolated by a micropipette from sexually induced culture. The isolated colonies were put in an angular depression or hole made in an adhesive tape (Scotch® OPP acrylic adhesive tape for box sealing tape 313, 3M Japan, Shinagawa, Tokyo, Japan) on a slide glass. Then cover slip was placed on the depression and the samples were observed by a BX-60 microscope equipped with Nomarski optics.

For 4',6-diamidino-2-phenylindole (DAPI) -staining of gamete nuclei, 5 µL sexually induced culture, 5 µL 2.0% glutaraldehyde in NS-buffer (Sando et al. 1981, 20 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 1 mM EDTA, 1 mM MgCl₂, 0.1 mM ZnCl₂, 0.1 mM CaCl₂, 0.4 mM phenylmethylsulfonylfluoride (PMSF), 7 mM 2-mercaptoethanol), and 5 µL DAPI in NS-buffer were mixed in a slide glass. Then, a cover slip was flipped on the mixed sample, and the cells were examined by a BX-60 microscope equipped with Nomarski and epifluorescence optics.

Establishment of the first filial generation (F1) strains of the *Pleodorina starrii* bisexual strain P10

Approximately 10-day-old mature hypnozygotes of P10 were transferred to a 1% agar (in distilled water) plate, and put into darkness for about one month at 20°C. After the dark treatment, the zygotes were transferred to the liquid AF-6 medium under 12-h light: 12-h dark schedule at 25°C. Zygote germination occurred and gone colonies developed after one to three days, and F1 strains were established by isolating a single gone colony into a screw-cup tube containing 10 mL AF-6 medium, and then placed under 14-h light: 10-h dark schedule at 20°C. Sex phenotypes of F1 strains are
evaluated by four items (Table S4).

DAPI-staining for estimating genome size

To estimate comparative genome size of *P. starrii* male and bisexual strains, DAPI staining was performed using somatic cells of *P. starrii* unisexual male strain (NIES-1363) and bisexual strain (P10) and *Volvox carteri* strain EVE for control (Yamamoto et al. 2017). Colonies in 10 mL AF-6 culture were centrifuged for 2000 rpm, 1 min and fixed with ethyl acetate (C$_2$H$_5$OH : CH$_3$COOH = 3:1) for 30 rpm, RT, 1 hour. After fixation, samples were centrifuged for 5,000 rpm, 5 min and supernatant was disposed before 100% EtOH was added (this control was repeated twice). Then 900 µL NS-buffer was added before 5000 rpm, 10 min centrifugation and supernatant disposal (this control was repeated twice). 1 mL NS buffer + 1 µL DAPI (100 µg/mL) staining (final concentration = 0.1 µg/mL) was added and rotated for 30 rpm, 4°C, 1 hour. DAPI-stained somatic cells of *P. starrii* unisexual male or bisexual strain were mixed with EVE control and mounted in same slide with inclusion compound (12.5 µL 1 × glycerol, 0.025 µL 100 µg/mL DAPI, 2.5 µL 10 × NS-buffer, 1.25 µL ProLong Gold (Thermo Fisher Scientific, Waltham, MA, USA) (inclusion compound : samples = 3:1). The camera was mounted on an Olympus™ BX-60 microscope with fluorescence microscopy. The image analyses were performed using Image J, measuring mean gray value of 10 nucleus (Fig. S7C) with each exposure time (0.5, 0.67, 1.0, 1.5, 2.0 and 2.5 s).
Figure S1. Diagram showing partial sequence of rbcL gene compared between unisexual and bisexual strains of Pleodorina starrii (Table S5). Numbers at the bar represent nucleotide positions of the plastid genome of P. starrii strain NIES-1363 (JX977846.1; Smith et al. 2013). Double-headed arrow indicates the region determined in the present study (2,695 base pairs; Table S5).
Figure S2. Diagram of microsatellite region within the plastid genome of *Pleodorina starrii* strain NIES-1363 (JX977846.1; Smith et al. 2013). Numbers at the bar represent nucleotide positions of the plastid genome. Note that the TA repeat is not an inverted repeat. Double-headed arrow indicates the region compared between unisexual and bisexual strains of *P. starrii* (1,108 base pairs; Table S5).
Figure S3. Diagrams of exon-intron structure of *PlestMID* gene and *PlestMID* cDNA of *Pleodorina starrii*. Based on *PlestMID* gene and *PlestMID* cDNA of *P. starrii* strain NIES-1363 (AB272616 and AB272612, respectively; Nozaki et al. 2006a). Double-headed arrows indicate the regions determined in the present study (1,680 bp of *PlestMID* and 818 bp of *PlestMID* cDNA, Table S5).
Figure S4. Zygotes of F1 strains obtained by selfing of Pleodorina starrii bisexual strain P10. (A-C) Fixed, DAPI-stained newly formed zygote with a male gamete nucleus (arrowhead) penetrating into the female gamete cytoplasm. Strain P10-F1_IV. Scale bars = 10 μm. (A) DIC image. (B) fluorescence image. (C) DIC+fluorescence image. (D-H) Matured, 10-day-old hypnozygotes. Scale bars = 50 μm. (D) Strain P10-F1_I. (E) Strain P10-F1_II. (F) Strain P10-F1_III. (G) Strain P10-F1_IV. (H) Strain P10-F1_V.
Figure S5. Results of genomic PCR of *PlestMID* for unisexual male (M), unisexual female (F) and bisexual (B) strains of *Pleodorina starrii*.
strain	P7	P10	P7	P10					
sex	unisexual male	bisexual	unisexual male	bisexual					
condition	sexually induced	uninduced							
cycles	26	28	30	26	28	30	26	28	30

Figure S6. Semi-quantitative RT-PCR of *PlestMID* in unisexual male strain (P7) and bisexual strain (P10) of *Pleodorina starrii*. The loading volume for each lane was normalized to the quantity of *EF-1* like (internal control) product.
Figure S7. DAPI staining for estimating comparative genome size in *Pleodorina starrii* unisexual male strain (NIES-1363) and bisexual strain (P10). (A), (B) Mean gray value of ten nuclei with image J at 0.5, 0.67, 1.0, 1.5, 2.0, 2.5 s exposure time. Bars show means and standard error. (A) NIES-1363 and *Volvox carteri* EVE, (B) P10 and *V. carteri* EVE. (C) DAPI stained somatic cell and gray scale image of *V. carteri* EVE and *P. starrii* P10. Arrowheads show location of nucleus. Yellow rings show the region of measurement in image J. Scale bar = 10 μm (*V. carteri* EVE), 5 μm (*P. starrii*). (D) Fluorescence of stained somatic cell nuclei in *P. starrii* unisexual male strain and bisexual strain relative to *V. carteri* EVE strain (control) at 1.5 s exposure time. Bars show means and standard error of 10 biological replicates.
Figure S8. Schematic drawings of possible results of intercrossings of *Pleodorina starrii* between unisexual male and two genotypes of female, on the basis of autosomal bisexual factor (BF) model (Fig. 4A). Gray and yellow bars represent autosome and UV sex chromosome, respectively. Blue and red regions within UV chromosomes represent male sex-determining region (*MTM*) and female sex-determining region (*MTF*), respectively. Short green region within autosome represents BF. M: unisexual male. F: unisexual female. B: bisexual. (A) Intercrossing between unisexual male and F1 unisexual female (BF-*MTF*). (B) Intercrossing between unisexual male and F1 unisexual female (BF+*MTF*).
Table S1. Strains of *Pleodorina starrii* used in the present study.

Strain designation [abbreviation]	Origin	Sex	Reference
2000-602-P15 (=NIES-1363)	Lake Sagami of Sagami River water system, Japan	Male	Nozaki et al. (2006a)
2000-602-P14 (=NIES-1362)	Lake Sagami of Sagami River water system, Japan	Female	Nozaki et al. (2006a)
2013-0614-P7 [P7] (=NIES-4480)	Water sample collected from Lake Sagami of Sagami River water system, Japan (23.0°C, pH 8.4, 35°36'43.08”N 139°11'19.5”E) in June 14th, 2013	Male*	The present study
2018-0609-2P1 [2P1] (=NIES-4481)	Water sample (22.0°C, pH 8.85) collected from Lake Sagami of Sagami River water system, Japan (35°36'36.5"N 139°11'13.2"E) in June 9th, 2018	Female*	The present study
2013-0614-P10 [P10] (=NIES-4482)	Water sample (23.0°C, pH 8.4) collected from Lake Sagami of Sagami River water system, Japan (35°36'43.08”N 139°11'19.5”E) in June 14th, 2013	Bisexual*	The present study
2007-1003-P85 [P85] (=NIES-4479)	Water sample (21.0°C, pH 7.2) collected from Lake Tsukui of Sagami River water system, Japan (35°35'19.5”N 139°16'18.6”E) in October 3rd, 2007	Bisexual*	The present study
2019-0427-F1-1 [F1-1] (=NIES4483)	F1 progeny strain of 2018-0609-2P1 × 2013-0614-P10	Female*	The present study
2019-0427-F1-2 [F1-2] (=NIES-4484)	F1 progeny strain of 2018-0609-2P1 × 2013-0614-P10	Female*	The present study

* Determined in the present study based on four items (Table S4).
Table S2. List of Volvocales included in the phylogenetic analysis and DDBJ/EMBL-EBI/NCBI accession numbers of \textit{rbcL} genes.

Species	Strain designation	Accession number	Reference
\textit{Yamagishiella unicocca}	UTEX 2428	D86823	Nozaki et al. (2014)
\textit{Yamagishiella unicocca}	UTEX 2430	D86825f	Nozaki et al. (2014)
\textit{Yamagishiella unicocca}	NIES-872	AB044168	Nozaki et al. (2014)
\textit{Platydorina caudata}	UTEX 1658	D86828	Nozaki et al. (2014)
\textit{Colemanosphaera}			
\textit{charkowiensis}	NIES-3383	AB905591	Nozaki et al. (2014)
\textit{Colemanosphaera}			
\textit{angeleri}	NIES-3382	AB905592	Nozaki et al. (2014)
\textit{Eudorina cylindrica}	UTEX 1197	D86833	Nozaki et al. (2014)
\textit{Eudorina peripheralis}	UTEX 1215	D63434	Nozaki et al. (2014)
\textit{Eudorina unicocca}	UTEX 737	D86829	Nozaki et al. (2014)
\textit{Eudorina elegans}	NIES-456	D63432	Nozaki et al. (2014)
\textit{Eudorina elegans}	UTEX 1205	D88805	Nozaki et al. (2014)
\textit{Eudorina elegans}	UTEX 1212	D88806	Nozaki et al. (2014)
\textit{Eudorina illinoensis}	NIES-460	D63433	Nozaki et al. (2014)
\textit{Pleodorina thompsonii}	UTEX 2804	AB214408	Nozaki et al. (2014)
\textit{Pleodorina starrii}	NIES-1362	AB214427	Nozaki et al. (2014)
\textit{Pleodorina starrii}	NIES-1363	JX977846	Smith et al. (2013)
\textit{Pleodorina starrii}	2007-1003-P85	MN606057	The present study
\textit{Pleodorina starrii}	2018-0609-2P1	MN606058	The present study
\textit{Pleodorina starrii}	2013-0614-P7	MN606059	The present study
\textit{Pleodorina starrii}	2013-0614-P10	MN606060	The present study
\textit{Pleodorina indica}	UTEX 1990	D86834	Nozaki et al. (2014)
\textit{Pleodorina japonica}	UTEX 2523	D63440	Nozaki et al. (2014)
\textit{Pleodorina californica}	UTEX 809	D63439	Nozaki et al. (2014)
\textit{Pleodorina sphaerica}	NIES-4066	LC215634	Nozaki et al. (2017)
\textit{Volvox gigas}	UTEX 1895	AB076084	Nozaki et al. (2014)
\textit{Volvox ovalis}	NIES-2569	AB592342	Nozaki et al. (2014)
\textit{Volvox obversus}	UTEX 1865	AB076085	Nozaki et al. (2014)
Table S2 continued.

Species	Strain designation	Accession number	Reference
Volvox africanus	NIES 3780	LC090149	Nozaki et al. (2015b)
Volvox reticuliferus	UTEX 1891	AB076101	Nozaki et al. (2002), Nozaki et al. (2015b)
Volvox reticuliferus	NIES-3782	LC090154	Nozaki et al. (2015b)
Volvox tertius	UTEX 132	AB076098	Nozaki et al. (2014)
Volvox tertius	NIES-544	AB086174	Nozaki et al. (2014)
Volvox tertius	NIES-4068	LC215631	Nozaki et al. (2017)
Volvox powersii	UTEX 1863	AB214415	Nozaki et al. (2014)
Volvox carteri f.	NIES-732	D63446	Nozaki et al. (2014)
kawasakiensis			
Volvox carteri f.	UTEX 1885	AB076099	Nozaki et al. (2014)
nagariensis			
Volvox carteri f.	UTEX 1875	AB076100	Nozaki et al. (2014)
weismannia			
Volvox aureus	NIES-541	D63445	Nozaki et al. (2014)
Volvox aureus	NIES-891	AB076096	Nozaki et al. (2014)
Volvox aureus	NIES-892	AB076086	Nozaki et al. (2014)
Volvox zeikusii	NIES-731	D63447	Nozaki et al. (2014), Nozaki et al. (2019)
Volvox dissipatrix	Marb.2RS 29	AB214420	Nozaki et al. (2014)
Volvox rousseletii	UTEX 1862	D63448	Nozaki et al. (2014)
Volvox barberi	UTEX 804	D86835	Nozaki et al. (2014)
Volvox globator	UTEX 955	D86836	Nozaki et al. (2014)
Table S3. Survival rates of F1 strains obtained by intercrossings between *Pleodorina starrii* unisexual and bisexual strains. As control, unisexual pair (unisexual male × unisexual female) was also examined.

Cross	Number of isolated F1 strains	Number of survival F1 strains	Survival rate
Male colonies (unisexual P7) × female colonies (bisexual P10)	50	38	0.76
Female colonies (unisexual 2P1) × male colonies (bisexual P10)	50	42	0.84
Male colonies (unisexual P7) × female colonies (unisexual 2P1) (control)	50	42	0.84
Table S4. Evaluation items for determining sex phenotypes of *Pleodorina starrii* strains. Presence or absence of item is shown by + or -, respectively. Checkmark represents essential evaluation item for each phenotype.

Sex phenotype	Unisexual		Bisexual
	Male	Female	
Formation of sperm packets	+ ✓	- ✓	+ ✓
Formation of hypnozygotes within a single clonal culture	- ✓	- ✓	+ ✓
PlestMID	+	- ✓	+
Formation of hypnozygotes crossed with unisexual male	-	+	+
Table S5. List of genome sequences determined in the present study.

Strain	DNA region*	Sequence length [bp]\(^a\)	Accession number
2000-602-P14 (NIES-1362)	rbcL	2,695	MN606061
	microsatellite region	1,108	MN606066
2013-0614-P7 [P7]	rbcL	2,695	MN606059
	microsatellite region	1,108	MN606064
	Ples MID	1,680	MN606069
	Ples MID (cDNA)	818	MN606070
2018-0609-2P1 [2P1]	rbcL	2,695	MN606058
	microsatellite region	1,108	MN606063
2013-0614-P10 [P10]	rbcL	2,695	MN606060
	microsatellite region	1,108	MN606065
	Ples MID	1,680	MN606067
	Ples MID (cDNA)	818	MN606071
2007-1003-P85 [P85]	rbcL	2,695	MN606057
	microsatellite region	1,108	MN606062
	Ples MID	1,680	MN606068

\(^a\)See Figs. S1-S3.
Table S6. Results of intercrossings between *Pleodorina starrii* unisexual male and two F1 unisexual females showing two possible genotypes of unisexual female phenotype. Two types of F1 unisexual female strains (F1-1 and F1-2) were obtained by intercrossing between unisexual female 2P1 and bisexual P10 strains (Fig. 4A). Expected results of three sex phenotypes of F2 strains by autosomal bisexual factor (BF) model are also shown. Chi-square tests were performed to evaluate the model.

Cross	Conditions	Sex phenotypes of F2 strains (ratio by model)	χ^2	P-value		
		Unisexual male	Unisexual female	Bisexual		
Unisexual male (P7) × F1-1 (2P1×P10) unisexual female	Observed	14	20	0	1.06	0.3
	Expected under the autosomal BF model (Fig. S8A)	17 (1/2)	17 (1/2)	0 (0)		
Unisexual male (P7) × F1-2 (2P1×P10) unisexual female	Observed	5	13	6		
	Expected under the autosomal BF model (Fig. S8B)	6 (1/4)	12 (2/4)	6 (1/4)	0.25	0.88
Table S7. Specific primers of *Pleodorina starrii* used in the present study.

Primer name	Sequence (5’ to 3’)	Forward (F) or reverse (R)	Gene/DNA region
rbcL_F1^a	ATGGTTCCACAAACAGAAAC	F	*rbcL*
rbcL_F4^a	TATTCGAAAGGGTTCAGTAAC	F	
rbcL_F7^a	GTTTCTTTTCTGTAGCTGAAGC	F	
rbcL_R2^a	GCACTAAAGCTTGGAAAC	R	
rbcL_R3^a	TTGCTCAAATGTATCAAATTG	R	
rbcL_R5^a	TTAGCTGTGAACACACCTGTGTA	R	
rbcL_R8^a	AAGATTGAACTAAAGCTGGCA	R	
rbcL_F9^b	GTGACAAACTAAACAAATATGG	F	
rbcL_R10^b	TGTGCTTTGTAATAGCTTCAG	R	
psbH-psaA_F1^d	CGTCCGAAGGGTTAGTGGCATGCAAGCAA	F	microsatellite region (between *psbH* and *psaA*)
psbH-psaA_F2^d	GCGTTGTAAGCGGCACCCCTTCGGGGGC	F	
psbH-psaA_R3^d	CGGCCGTTCCTCTTAATCCCGCTCTACGAAC	R	
psbH-psaA_R4^d	GCCGCTTACGCAGCAGAGGCCCTAAACAC	R	
PIMT_F71^c	GAACATTACAGAGGGCTATGGGAGATT	F	*PlestMID*
PIMT_R73^c	CAAGCACGCAACACCGTGTTGGG	R	
PIMT_F1^d	ACTGGCAATTCGGGCCAGGC	F	
PIMT_F13^d	CTCCATAAATAATGCTTCCGATG	F	
PIMT_F101^d	GGAACCTTGGGCTCTCCTACTACGTATTTAAA	F	
PIMT_SF1^d	TTATTGCTTGAGGCAAGTTACGA	F	
PIMT_R9^d	GCAATTAACACGCGCCTTGAACAC	R	
PIMT_R15^d	CGGCCGTTCCTGGCCTGGATGCTGCC	R	
PIMT_R104^d	AGCTGGTAGAAACTAAGGTAATCTCCTCAT	R	
PIMT_SR2^d	ACACCTGGCTTCGTTAGCTGGAAAG	R	
PlestEFL_F1^d	TGTCATTGTGCGGCTATGGTACTC	F	*EF-1 like*
PlestEFL_R1^d	CGGTCGATGATGTTGTAATGCCAC	R	

^aNozaki et al. (1995)
^bNozaki et al. (1997)
^cNozaki et al. (2006a)
^dDesigned in the present study.
Table S8. Conditions for PCR cycles and primers used in semi-quantitative RT-PCR analyses (Fig. S6).

Gene	PCR cycles	Forward (F) or reverse (R)	Primer (Table S7)
PlestMID	2 min at 94°C, followed by 26, 28, 30 cycles of 98°C, 10 sec, 66°C, 30 sec, 68°C, 30 sec.	F	PIMT_RT_F1
		R	PIMT_RT_R2
EF-1 like	2 min at 94°C, followed by 24, 26, 28 cycles of 98°C, 10 sec, 60°C, 30 sec, 68°C, 30 sec.	F	PlestEFL_F1
		R	PlestEFL_R1
Supplementary References

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Gascuel, O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution 14:685-695.

Nozaki, H., H. Kuroiwa, T. Mita, and T. Kuroiwa. 1989. Pleodorina japonica sp. nov. (Volvocales, Chlorophyta) with bacteria-like endosymbionts. Phycologia 28:252-267.

Nozaki, H., M. Itoh, R. Sano, H. Uchida, M. M. Watanabe, and T. Kuroiwa. 1995. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. Journal of Phycology 31:970-79.

Nozaki, H., M. Itoh, R. Sano, H. Uchida, M. M. Watanabe, H. Takahashi, and T. Kuroiwa. 1997. Phylogenetic analysis of Yamagishiella and Platydorina (Volvocaceae, Chlorophyta) based on rbcL gene sequences. Journal of Phycology 33:272-78.

Nozaki, H., K. Misawa, T. Kajita, M. Kato, S. Nohara, and M. M. Watanabe. 2000. Origin and evolution of the colonial Volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Molecular Phylogenetics and Evolution 17:256-268.

Nozaki, H., M. Takahara, A. Nakazawa, Y. Kita, T. Yamada, H. Takano, S. Kawano, and M. Kato. 2002. Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae). Molecular Phylogenetics and Evolution 23:326-38.

Nozaki, H., T. Mori, O. Misumi, S. Matsunaga, and T. Kuroiwa. 2006a. Males evolved from the dominant isogametic mating type. Current Biology 16:1018-1020.

Nozaki, H., F. D. Ott, and A. W. Coleman. 2006b. Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae). Journal of Phycology 42:1072-1080.

Nozaki, H., K. T. Yamada, F. Takahashi, R. Matsuzaki, and T. Nakada. 2014. New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy. BMC Evolutionary Biology 14:37.
Nozaki, H., N. Ueki, O. Misumi, K. Yamamoto, S. Yamashita, M. D. Herron, and F. Rosenzweig. 2015a. Morphology and reproduction of *Volvox capensis* (Volvocales, Chlorophyceae) from Montana, USA. Phycologia 54:316-320.

Nozaki, H., R. Matsuzaki, K. Yamamoto, M. Kawachi, and F. Takahashi. 2015b. Delineating a new heterothallic species of *Volvox* (Volvocaceae, Chlorophyceae) using new strains of “*Volvox africanus*”. PLoS ONE 10:e0142632.

Nozaki, H., W. Mahakham, S. Athibai, K. Yamamoto, M. Takusagawa, O. Misumi, M. D. Herron, F. Rosenzweig, and M. Kawachi. 2017. Rediscovery of the species of 'ancestral *Volvox*': morphology and phylogenetic position of *Pleodorina sphaerica* (Volvocales, Chlorophyceae) from Thailand. Phycologia 56:469-75.

Nozaki, H., M. Takusagawa, R. Matsuzaki, O. Misumi, W. Mahakham, and M. Kawachi. 2019. Morphology, reproduction and taxonomy of *Volvox dissipatrix* (Chlorophyceae) from Thailand, with a description of *Volvox zeikusii* sp. nov. Phycologia 58:1-8.

Nylander, J.A.A. 2004. Bayesian phylogenetics and the evolution of gall wasps. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 937 Uppsala University, Uppsala, Sweden. p. 43.

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61:539-542.

Smith, D. R., T. Hamaji, B. J. Olson, P. M. Durand, P. Ferris, R. E. Michod, J. Featherston, H. Nozaki, and P. J. Keeling. 2013. Organelle genome complexity scales positively with organism size in volvocine green algae. Molecular Biology and Evolution 30:793-97.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680.

Yamamoto, K., H. Kawai-Toyooka, T. Hamaji, Y. Tsuchikane, T. Mori, F. Takahashi, H. Sekimoto, P. J. Ferris, and H. Nozaki. 2017. Molecular evolutionary analysis of a gender-limited MID ortholog from the homothallic species *Volvox africanus* with male
and monoecious spheroids. PLoS ONE 12:e01803.