Advances in Research on the Relationship Between

Intestinal Flora and Myasthenia Gravis

Running Title: Correlation of Intestinal Flora and Myasthenia Gravis

Xingxing Wu¹, Yong Xu¹, Qin Wang¹, Yuhui Wei¹, Md Rezaul Karim¹-², Yun-Fu Wang¹-²*

¹Dept. of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.

²Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei, China.

*Correspondence to: Prof. Dr. Yun-Fu Wang, Ph.D., MD; Dept. of Neurology, Taihe Hospital,
Hubei University of Medicine, Shiyan, Hubei, China; Email: wyfymc@sina.com

ABSTRACT: Human intestinal flora refers to a large and diverse microbial population present in the digestive tract of the human body, which plays a significant role in the establishment of human immune homeostasis and the normal function of the immune system. Myasthenia Gravis is an autoimmune disease of the neuromuscular junction, mainly involved in the anti-acetylcholine receptor antibody, cellular immune dependence, and complement¹. At present, studies have found that the intestinal flora of Myasthenia Gravis is different from that of healthy people. Probiotic therapy has been shown effective in the experimental autoimmune Myasthenia Gravis animal models. This article reviews the relationship between intestinal flora and Myasthenia Gravis, to provide new ideas for further study of the pathogenesis and clinical treatment of Myasthenia Gravis.

KEYWORDS: intestinal flora; myasthenia gravis; research progress; autoimmune disease; EAMG
INTRODUCTION

Myasthenia Gravis (MG) is an autoimmune disease of the neuromuscular junction mainly mediated by anti-acetylcholine receptor (AChR) antibody, cellular immune dependence, and complement, which often manifests as morbid fatigue of part or whole-body skeletal muscle. The specific etiology and pathogenesis of this disease are still unclear, and there is no effective treatment to cure it. At present, studies have shown that the disorder of intestinal flora can cause a variety of autoimmune diseases. Many scholars have found that there are significant differences between intestinal flora and healthy people in MG patients, and probiotics have been shown effective in the treatment of experimental autoimmune myasthenia gravis (EAMG) animal models. This article reviews the relationship between intestinal flora and myasthenia gravis.

INTESTINAL FLORA OVERVIEW

Intestinal flora concept

The human intestinal flora refers to a large and diverse microbial population present in the digestive tract of the human body. It contains at least 10^{14} Bacteria in the human gastrointestinal tract, and the total weight is about 1 kilogram. The number of genomes encoding the protein is more than 100 times more human genomes. Among the approximately 200 common bacteria in the human gut, the most important genus are Bacteroides, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptidococcus, Peptidostreptococcus, and Bifidobacterium. These major intestinal bacteria are associated with type 1 diabetes, obesity, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, neuromyelitis optica spectrum disorders, chronic urticaria, Crohn's disease, multiple sclerosis, myasthenia gravis, Irritable bowel syndrome, gestational diabetes and many other human diseases, see table 1
for details. The number, composition, and state of the intestinal flora are always changing dynamically. Even in the same individual or different individuals, or individuals in the same family, the diversity of the flora is very different34. It is generally believed that the intestines of newborns are sterile, after birth, various microorganisms enter the gastrointestinal tract through the mouth, anus, and colon, and the microbiota in the newborn is relatively stable to about one year old35. As the age changes, the intestinal flora in the human body will also change. Studies have shown that with the increase of age, the beneficial function of the age-related intestinal flora decreases, and the probability of inflammation and disease in the body increases, especially for older people over the age of 90, the chances of their occurrence are greater36. Under normal circumstances, the intestinal flora and the host interact with each other to form a relatively stable dynamic balance, which plays a vital role in the digestion, absorption, metabolism, and immune regulation of the human body. When the proportion is imbalanced, displaced, and the body's immunity is low, the balance of intestinal micro-ecology is broken, which triggers immune disorders and successively causes various diseases of the body37-39.

Intestinal flora and human immunity

With the development of the Human Microbiome Project (HMP)40 people's research on the intestinal flora has been deepened, and it has been found that the intestinal flora is closely related to human health. The intestinal flora is even considered to be "another organ" of our body. The establishment and the perfection of the immune system are almost simultaneous. Our growth and development have always accompanied their interaction with our immune system. The composition and metabolites of intestinal microbes not only promote the development of the host's immune system but also regulate the body's immune system. The interaction between the intestinal flora and the immune system is two-way. The result is to maintain homeostasis; that is, the body's immune system can both immune to the
gastrointestinal symbiotic microbes and respond appropriately to protect the body from pathogens. Studies have shown that the intestinal flora has different mechanisms and uses multiple pathways to promote the differentiation and function of intestinal regulatory T cells (Tregs) and effector T cells and promote IgA conversion and IgA secretion of B cells. The segmented filamentous bacteria can promote the development of Th17 cells and play a vital role in the induction of slgA. The sphingolipid of fragile Bacillus can inhibit the proliferation of iNKT cells and contribute to the health of the colon, lactic acid in the gastrointestinal tract. The presence of Bacillus promotes barrier integrity and maintains a Th1 / Th2 / Th3 cytokine balance. These extensive studies have revealed that the intestinal flora has a broad and long-lasting effect on the development and function of innate immune cells and adaptive immune cells in the intestine. Heterologous signals derived from the flora can closely regulate the development of intestinal-associated immune tissues and activation of immune cells. It can be seen that the intestinal flora plays a significant role in the establishment of human immune homeostasis and the normal function of the immune system.

RELATIONSHIP BETWEEN INTESTINAL FLORA AND MG

Correlation between intestinal flora and MG

The cause of MG has both environmental and genetic factors and the specific factors that cause susceptibility to remain challenging to determine. It is known that changes in the intestinal flora can affect the body's various physiological functions by regulating the body's immune system. Whether the changes in the intestinal flora are related to the pathogenesis of myasthenia gravis has caused many scholars to think and pay attention. German Moris et al. used microbial phylogenetic analysis of MG patients and control stool samples through the 16S rRNA gene map, Bifidobacterium ITS region map, and qPCR to find out that the relative proportion of MG patients with Bacteroides and Bifidobacteria was low. The proportion of Bacteroides and
Desulfovibrio is increased. Dongxu Qiu et al.48 compared the fecal microbiota of MG patients with age and gender-matched healthy controls, the pedigree of intestinal microflora, the changes in short-chain fatty acids (SCFAs), and found that they were associated with healthy people.

In comparison, the intestinal microflora of the MG group changed in the relative abundance of the bacterial taxonomic group, and the bacterial richness decreased sharply, especially in the Clostridium genus. The absolute amount of the healthy control group was three times higher than that of the MG group; the content of SCFAs in the MG group was significantly lower than that in the healthy control group. In addition, they also found that intestinal flora imbalance is closely related to the level of inflammatory biomarkers in the serum of MG patients. These findings indicate that MG patients have disorders of the diversity, composition, and function of fecal microbial communities, suggesting that changes in our intestinal flora are closely related to MG production. To investigate whether disturbed gut microbiome might contribute to the onset of MG, Peng Zheng et al49 did plenty of research in mice. Germfree (GF) mice are colonized initially with MG microbiota (MMb) or healthy microbiota (HMb) and then immunized in a classic mouse model of MG. The MMb mice demonstrate substantially impaired locomotion ability compared with the HMb mice. Studies by the above scholars have shown that the diversity, composition, and function of the fecal microbial community in MG patients are abnormal, and the disorder of intestinal flora may trigger the occurrence of MG. See table 2 for relationship between intestinal flora changes and MG.

Possible mechanisms of intestinal flora and MG

The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms that are symbiotic with the host and affect human nutrition, metabolism, and
immune function. Its dysregulation may be involved in the pathogenesis of a variety of autoimmune diseases (such as multiple sclerosis, rheumatoid arthritis, etc.) \(^2, 3\). MG is an antibody-mediated T cell-dependent autoimmune disease whose pathogenesis is closely related to high levels of AChR antibodies\(^50\). Studies have shown that the production of AChR antibodies is associated with imbalances in Th1 cells, B cells, and Foxp3\(^+\) T regulatory cells (Treg) \(^51, 52\). Among them, Foxp3\(^+\)CD4\(^+\)Treg cells play a vital role in maintaining self-tolerance and immune homeostasis and preventing the development of MG. Foxp3\(^+\)CD4\(^+\)Treg cells affect the number of autoreactive T cells and inhibit self-reactive B cells producing AChR antibodies, thereby reducing the severity and progression of the disease\(^53\). In MG patients, the abnormal number and function of Foxp3\(^+\)CD4\(^+\) Treg cells have become a major focus of many studies on the pathogenesis of MG\(^54-56\). The number of Foxp3\(^+\)CD4\(^+\)Treg cells in the lamina propria of the colon was significantly higher than that of any other organ\(^57\), which was significantly affected by the composition of the intestinal flora. Studies have found that colonization of sterile mice of Clostridium difficile strains increases the number of Foxp3\(^+\)CD4\(^+\)Treg cells in the lamina propria of the colon, and a mixture of 17 Clostridium isolates isolated from healthy individuals by researchers. It can actively induce Foxp3\(^+\)CD4\(^+\)Treg cells in human colon\(^48\). Intestinal microflora can affect the number of Foxp3\(^+\)CD4\(^+\)Treg cells and the T cell receptor (TCR). The TCR on Foxp3\(^+\)CD4\(^+\)Treg cells can recognize subpopulations of commensal bacteria and induce naive CD4\(^+\)T cells to differentiate into Antigen-specific Foxp3\(^+\)CD4\(^+\)Treg cells increase the number of Foxp3\(^+\)CD4\(^+\)Treg cells\(^58, 59\). Existing studies have shown that the proportion of Bifidobacteria and Clostridium in the intestinal microflora of MG patients is significantly lower than that of healthy people\(^47, 48\). Moreover, some scholars have found that the use of bifidobacteria and lactobacilli in the treatment of experimental autoimmune myasthenia gravis (EAMG) rat model can lead to an increase in serum levels of transforming growth factor-beta (TGF\(\beta\)), and Percentage of
regulatory T cells (Treg) in peripheral blood leukocytes60. Therefore, we hypothesized that the decrease in the number of Foxp3+ CD4+ Treg cells caused by the disorder of the intestinal flora and the abnormal function might lead to the occurrence of MG or the aggravation of symptoms, and the specific mechanism remains to be further studied. (See Figure 1 and Figure 2 for details.)

Treatment of intestinal flora and MG.

It is the wish of most researchers to open up new ways to suppress immunopathological changes and block the progression of MG. Existing studies have shown that probiotics have a strain-specific beneficial effect in regulating multiple immune diseases. Chang-Suk Chae et al61 have demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress various experimental disorders in mice model. They found that oral administration of IRT5 probiotics significantly reduced the clinical symptoms of EAMG, such as weight loss, body tremors, and grip strength. Alessandra Consonni et al60 studied the clinical efficacy of two Lactobacillus and two Bifidobacterium probiotic strains in the Lewis-induced EAMG model, and the disease symptoms of EAMG were effectively alleviated. Elena Rinaldi et al62 considered that selected probiotic strains could be evaluated as adjuvant therapy in clinical trials to restore autoimmune tolerance interrupted in patients with myasthenia gravis. This series of studies suggests that probiotic therapy is expected to be a new treatment and method for the treatment of myasthenia gravis in the future.

CONCLUSION

In summary, the existing research indicates that the community diversity, composition, and function of the intestinal flora in MG patients have changed. The intestinal flora is closely related to the occurrence of MG. The decrease in the number of Foxp3+CD4+Treg cells caused
by the disorder of intestinal flora and dysfunction may lead to the occurrence of MG or the aggravation of symptoms. At present, scholars have found that probiotic therapy can effectively alleviate the symptoms of EAMG. Therefore, we can start from the gut microbiota and focus on discovering the biomarkers of MG that may be present in the gut flora, which will help to diagnose MG better and better understand the relationship between gut flora and MG. In the future, using probiotic therapy to regulate intestinal flora may also be an effective treatment for MG.

ACKNOWLEDGMENTS

Thanks to the Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China, for all the help. Special thanks to Dr. Qiang Sun MD and Dr. Jiang Yuan MD for their guidance and help.

FUNDING

Department of Natural Science Foundation of China (No. 81672138); Hubei university of medicine graduate science and technology innovation project (No. YC2019033).

References:

1. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, & Verschuuren JJGM. Myasthenia gravis. Nature Reviews Disease Primers 2019; 5: 30.

2. Hindson J. A possible link between multiple sclerosis and gut microbiota. Nature Reviews Neurology 2017; 13: 705.

3. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, Lan Z, Chen B, Li Y, Zhong H, Xie H, Jie Z, Chen W, Tang S, Xu X, Wang X, Cai X, Liu S, Xia Y, Li J, Qiao X, Al-Aama JY, Chen H, Wang
L, Wu Q, Zhang F, Zheng W, Li Y, Zhang M, Luo G, Xue W, Xiao L, Li J, Chen W, Xu X, Yin Y, Yang H, Wang J, Kristiansen K, Liu L, Li T, Huang Q, Li Y, & Wang J. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. NATURE MEDICINE 2015; 21: 895-905.

4. Sommer F & Backhed F. The gut microbiota--masters of host development and physiology. NATURE REVIEWS MICROBIOLOGY 2013; 11: 227-238.

5. Sanchez-Tapia M, Tovar AR & Torres N. Diet as Regulator of Gut Microbiota and its Role in Health and Disease. ARCHIVES OF MEDICAL RESEARCH 2019; 50: 259-268.

6. Ding T & Schloss PD. Dynamics and associations of microbial community types across the human body. NATURE 2014; 509: 357-360.

7. Structure, function and diversity of the healthy human microbiome. NATURE 2012; 486: 207-214.

8. Jain N & Walker WA. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis. Nat Rev Gastroenterol Hepatol 2015; 12: 14-25.

9. Cha H, Chang S, Chang J, Kim J, Yang J, Kim C, & Kweon M. Downregulation of Th17 Cells in the Small Intestine by Disruption of Gut Flora in the Absence of Retinoic Acid. The Journal of Immunology 2010; 184: 6799-6806.

10. O'Toole PW & Jeffery IB. Gut microbiota and aging. SCIENCE 2015; 350: 1214-1215.

11. Zhang T, Chen Y, Wang Z, Zhou Y, Zhang S, Wang P, Xie S, & Jiang B. [Changes of fecal flora and its correlation with inflammatory indicators in patients with inflammatory bowel disease]. Nan Fang Yi Ke Da Xue Xue Bao 2013; 33: 1474-1477.

12. Zhou CH, Meng YT, Xu JJ, Fang X, Zhao JL, Zhou W, Zhao J, Han JC, Zhang L, Wang KX, Hu LH, Liao Z, Zou WB, Li ZS, & Zou DW. Altered diversity and composition of gut microbiota in Chinese patients with chronic pancreatitis. PANCREATOLOGY 2019.
13. Lu T, Chen Y, Guo Y, Sun J, Shen W, Yuan M, Zhang S, He P, & Jiao X. Altered Gut Microbiota Diversity and Composition in Chronic Urticaria. DISEASE MARKERS 2019; 2019: 6417471.

14. Takahashi Y, Park J, Hosomi K, Yamada T, Kobayashi A, Yamaguchi Y, Iketani S, Kunisawa J, Mizuguchi K, Maeda N, & Ohshima T. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing. J Oral Biosci 2019; 61: 120-128.

15. Sheng Q, Du H, Cheng X, Cheng X, Tang Y, Pan L, Wang Q, & Lin J. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncology Letters 2019; 18: 4834-4844.

16. Jeffery IB, Das A, O'Herlihy E, Coughlan S, Cisek K, Moore M, Bradley F, Carty T, Pradhan M, Dwibedi C, Shanahan F, & O'Toole PW. Differences in Fecal Microbiomes and Metabolomes of People With vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. GASTROENTEROLOGY 2019.

17. Kowalska-Duplaga K, Gosiewski T, Kapusta P, Sroka-Oleksiak A, Wedrychowicz A, Pieczarkowski S, Ludwig-Slomczynska AH, Wolkow PP, & Fyderek K. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn's disease. Sci Rep 2019; 9: 18880.

18. Shi Z, Qiu Y, Wang J, Fang Y, Zhang Y, Chen H, Du Q, Zhao Z, Yan C, Yang M, & Zhou H. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: A cross sectional study. JOURNAL OF NEUROIMMUNOLOGY 2019; 339: 577126.

19. Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, Gong T, Wang F, Ling Z, & Liu J. Effect of Clostridium butyricum against Microglia-Mediated Neuroinflammation in Alzheimer's Disease via Regulating Gut Microbiota and Metabolites Butyrate. MOLECULAR NUTRITION & FOOD RESEARCH 2019: e1900636.

20. Guo Y, Zhang Y, Gerhard M, Gao JJ, Mejias-Luque R, Zhang L, Vieth M, Ma JL, Bajbouj M, Suchanek S, Liu WD, Ulm K, Quante M, Li ZX, Zhou T, Schmid R, Classen M, Li WQ, You WC, & Pan KF. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric
cancer. GUT 2019.

21. Weis S, Schwiertz A, Unger MM, Becker A, Fassbender K, Ratering S, Kohl M, Schnell S, Schafer KH, & Egert M. Effect of Parkinson's disease and related medications on the composition of the fecal bacterial microbiota. NPJ Parkinsons Dis 2019; 5: 28.

22. Su H, Kang Q, Wang H, Yin H, Duan L, Liu Y, & Fan R. Effects of glucocorticoids combined with probiotics in treating Crohn's disease on inflammatory factors and intestinal microflora. Experimental and Therapeutic Medicine 2018; 16: 2999-3003.

23. Estevinho MM, Rocha C, Correia L, Lago P, Ministro P, Portela F, Trindade E, Afonso J, Peyrin-Biroulet L, & Magro F. Features of Fecal and Colon Microbiomes Associate With Responses to Biologic Therapies for Inflammatory Bowel Diseases: a Systematic Review. Clin Gastroenterol Hepatol 2019.

24. Storm-Larsen C, Myhr KM, Farbu E, Midgard R, Nyquist K, Broch L, Berg-Hansen P, Buness A, Holm K, Ueland T, Fallang LE, Burum-Auensen E, Hov JR, & Holmoy T. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis - a pilot trial. Mult Scler J Exp Transl Clin 2019; 5: 1840658561.

25. Fernandez-Musoles R, Garcia TA & Laparra JM. Immunonutritional contribution of gut microbiota to fatty liver disease. Nutr Hosp 2019.

26. Jiang H, Li J, Zhang B, Huang R, Zhang J, Chen Z, Shang X, Li X, & Nie X. Intestinal Flora Disruption and Novel Biomarkers Associated With Nasopharyngeal Carcinoma. Frontiers in Oncology 2019; 9: 1346.

27. Pugliese G, Muscogiuri G, Barrea L, Laudisio D, Savastano S, & Colao A. Irritable bowel syndrome: a new therapeutic target when treating obesity? Hormones (Athens) 2019.

28. Jamshidi P, Hasanzadeh S, Tahvildari A, Farsi Y, Arbabi M, Mota JF, Sechi LA, & Nasiri MJ. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathogens 2019; 11: 49.
29. Chen XH, Wang A, Chu AN, Gong YH, & Yuan Y. Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues. Frontiers in Microbiology 2019; 10: 1261.

30. Leclair-Visonneau L, Neunlist M, Derkinderen P, & Lebouvier T. The gut in Parkinson’s disease: Bottom-up, top-down, or neither? Neurogastroenterol Motil 2020; 32: e13777.

31. Schepici G, Silvestro S, Bramanti P, & Mazzon E. The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. CELL TRANSPLANTATION 2019; 28: 1507-1527.

32. Esposito S, Polinori I & Rigante D. The Gut Microbiota-Host Partnership as a Potential Driver of Kawasaki Syndrome. Frontiers in Pediatrics 2019; 7: 124.

33. Ponzo V, Ferrocino I, Zarovska A, Amenta MB, Leone F, Monzeglio C, Rosato R, Pellegrini M, Gambino R, Cassader M, Ghigo E, Cocolin L, & Bo S. The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM). PLoS One 2019; 14: e226545.

34. Sirisinha S. The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol 2016; 34: 249-264.

35. Cresci GA & Bawden E. Gut Microbiome. NUTRITION IN CLINICAL PRACTICE 2015; 30: 734-746.

36. Xu C, Zhu H & Qiu P. Aging progression of human gut microbiota. BMC MICROBIOLOGY 2019; 19: 236.

37. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, & Wernegreen JJ. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 2013; 110: 3229-3236.

38. Rakoff-Nahoum S & Medzhitov R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunology 2008; 1 Suppl 1: S10-S14.

39. Makino H, Kushiro A, Ishikawa E, Muylaert D, Kubota H, Sakai T, Oishi K, Martin R, Ben AK, Oozeer R,
Knol J, & Tanaka R. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 2011; 77: 6788-6793.

40. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, & Guyer M. The NIH Human Microbiome Project. GENOME RESEARCH 2009; 19: 2317-2323.

41. Kaiko GE & Stappenbeck TS. Host – microbe interactions shaping the gastrointestinal environment. TRENDS IN IMMUNOLOGY 2014; 35: 538-548.

42. Gensollen T, Iyer SS, Kasper DL, & Blumberg RS. How colonization by microbiota in early life shapes the immune system. SCIENCE 2016; 352: 539-544.

43. Duerkop BA, Vaishnava S & Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. IMMUNITY 2009; 31: 368-376.

44. Pickard JM & Chervonsky AV. Intestinal fucose as a mediator of host-microbe symbiosis. JOURNAL OF IMMUNOLOGY 2015; 194: 5588-5593.

45. Kabat AM, Srinivasan N & Maloy KJ. Modulation of immune development and function by intestinal microbiota. TRENDS IN IMMUNOLOGY 2014; 35: 507-517.

46. Macpherson AJ, Kö ller Y & McCoy KD. The bilateral responsiveness between intestinal microbes and IgA. TRENDS IN IMMUNOLOGY 2015; 36: 460-470.

47. Moris G, Arboleya S, Mancabelli L, Milani C, Ventura M, de Los Reyes-Gavilán CG, & Gueimonde M. Fecal microbiota profile in a group of myasthenia gravis patients. Scientific Reports 2018; 8: 14384.
48. Qiu D, Xia Z, Jiao X, Deng J, Zhang L, & Li J. Altered Gut Microbiota in Myasthenia Gravis. Frontiers in Microbiology 2018; 9: 2627.

49. Zheng P, Li Y, Wu J, Zhang H, Huang Y, Tan X, Pan J, Duan J, Liang W, Yin B, Deng F, Perry SW, Wong ML, Licinio J, Wei H, Yu G, & Xie P. Perturbed Microbial Ecology in Myasthenia Gravis: Evidence from the Gut Microbiome and Fecal Metabolome. Advanced Science 2019; 6: 1901441.

50. Pestronk A, Drachman DB & Self SG. Measurement of junctional acetylcholine receptors in myasthenia gravis: Clinical correlates. MUSCLE & NERVE 1985; 8: 245-251.

51. Aricha R, Mizrachi K, Fuchs S, & Souroujon MC. Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. JOURNAL OF AUTOIMMUNITY 2011; 36: 135-141.

52. Mu L, Sun B, Kong Q, Wang J, Wang G, Zhang S, Wang D, Liu Y, Liu Y, An H, & Li H. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. IMMUNOLOGY 2009; 128: e826-e836.

53. Shin DS, Jordan A, Basu S, Thomas RM, Bandyopadhyay S, Zoeten EF, Wells AD, & Macian F. Regulatory T cells suppress CD4+ T cells through NFAT-dependent transcriptional mechanisms. EMBO REPORTS 2014; 15: 991-999.

54. Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, & Evoli A. Circulating and thymic CD4+CD25+ T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. IMMUNOLOGY 2005; 116: 134-141.

55. Masuda M, Matsumoto M, Tanaka S, Nakajima K, Yamada N, Ido N, Ohtsuka T, Nishida M, Hirano T, & Utsumi H. Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients. JOURNAL OF NEUROIMMUNOLOGY 2010; 225: 123-131.

56. Li X, Xiao B, Xi J, Lu C, & Lu J. Decrease of CD4+CD25highFoxp3+ regulatory T cells and elevation of
CD19⁺BAFF-R⁻ B cells and soluble ICAM-1 in myasthenia gravis. CLINICAL IMMUNOLOGY 2008; 126: 180-188.

57. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, & Honda K. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. SCIENCE 2011; 331: 337-341.

58. Cong Y, Feng T, Fujihashi K, Schoeb TR, & Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proceedings of the National Academy of Sciences 2009; 106: 19256-19261.

59. Kuhn KA & Stappenbeck TS. Peripheral education of the immune system by the colonic microbiota. SEMINARS IN IMMUNOLOGY 2013; 25: 364-369.

60. Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, Elli M, Mantegazza R, & Baggi F. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 2018; 9: 22269-22287.

61. Chae C, Kwon H, Hwang J, Kim J, & Im S. Prophylactic Effect of Probiotics on the Development of Experimental Autoimmune Myasthenia Gravis. PLoS One 2012; 7: e52119.

62. Rinaldi E, Consonni A, Guidesi E, Elli M, Mantegazza R, & Baggi F. Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis. Annals of the New York Academy of Sciences 2018; 1413: 49-58.
The intestinal flora of healthy people is normal, and the number of Treg cells is normal, which is sufficient to play the role of autoimmune suppression and maintain the immune balance of the body.
Disturbances of the intestinal flora lead to abnormal numbers of Treg cells, resulting in disturbances in autoimmune balance and increased autoimmune antibodies in the body, which may lead to the development of myasthenia gravis or exacerbation of symptoms.
TABLES:

Table 1: The main genus in human intestinal flora and their related diseases

Gut microbiota	Main related diseases	Reference
Bacteroides	Obesity, Type 1 diabetes, Myasthenia Gravis	27, 28, 49
Clostridium	Alzheimer's Disease, Inflammatory Bowel Diseases, Type 1 diabetes, Myasthenia Gravis	19, 23, 28, 48
Faecalibacterium	Chronic Urticaria, Crohn's disease, neuromyelitis optica spectrum disorders, Parkinson's disease, multiple sclerosis	13, 17, 18, 30, 31
Ruminococcus	Irritable bowel syndrome, Parkinson's disease, Gestational diabetes mellitus(GDM)	16, 21, 33
Peptidococcus	Inflammatory bowel disease, Crohn's disease	11, 22
Peptidostreptococcus	Oral cancer, colorectal cancer, Gastric Cancer, Kawasaki Syndrome	14, 15, 29, 32
Bifidobacterium	Chronic pancreatitis, Gastric cancer, multiple sclerosis, fatty liver, Nasopharyngeal Carcinoma, Type 1 diabetes	12, 20, 24, 25, 26, 28
Table 2: Relationship between intestinal flora changes and MG

Researchers	Gut microbiota	MG	Feature
German Moris⁴⁷	Verrucomicrobiaceae, Bifidobacteriaceae, Coriobacteriaceae, Leuconostocaceae and Flavobacteriaceae	↓	Compared to the healthy group, the gut microbiota of the MG group was changed in terms of the relative abundances of bacterial taxa, the current research results of intestinal flora are not completely consistent⁴⁷⁻⁴⁹.
Dongxu Qiu⁴⁸	Acidaminococcaceae, Desulfovibrionaceae and Pasteurellaceae	↑	
	Clostridium, Eubacterium and F. prausnitzii	↓	
	Streptococcus and Parasutterella	↑	
Peng Zheng⁴⁹	Fusobacteria, Bacteroidetes	↑	
	Actinobacteria	↓	