Nodal solutions for Logarithmic weighted N-Laplacian problem with exponential nonlinearities

Brahim Dridi a,b and Rached Jaidane c
a Umm Al-Qura University, College of first common year, Department of mathematics, P.O. Box 14035, Holly Makkah 21955, Saudi Arabia
b University of Tunis El Manar, El Manar preparatory institute for engineering studies, Department of mathematics, Tunisia.
Address e-mail: dridibr@gmail.com
c Department of Mathematics, Faculty of Science of Tunis, University of Tunis El Manar, Tunisia.
Address e-mail: rachedjaidane@gmail.com

Abstract. In this article, we study the following problem

$$-\text{div} (\omega(x) |\nabla u|^{N-2} \nabla u) = \lambda f(x,u) \quad \text{in} \quad B, \quad u = 0 \quad \text{on} \quad \partial B,$$

where B is the unit ball of \mathbb{R}^N, $N \geq 2$ and $w(x)$ a singular weight of logarithm type. The reaction source $f(x,u)$ is a radial function with respect to x and is subcritical or critical with respect to a maximal growth of exponential type. By using the constrained minimization in Nehari set coupled with the quantitative deformation lemma and degree theory, we prove the existence of nodal solutions.

Keywords: Weighted Sobolev space, N-Laplacian operator, Critical exponential growth, Nodal solutions.

2010 Mathematics Subject classification: 35J20, 49J45, 35K57, 35J60.

1 Introduction and Main results

In this paper, we consider the following elliptic problem involving logarithmic weighted N-Laplacian:

$$(P_{\lambda}) \quad \begin{cases} -\text{div} (\omega(x) |\nabla u|^{N-2} \nabla u) = \lambda f(x,u) & \text{in} \quad B \\ u = 0 & \text{on} \quad \partial B, \end{cases}$$

where $B = B(0,1)$ is the unit open ball in \mathbb{R}^N, $N > 2$, λ is a positive parameter, the weight function $\omega(x)$ is given by

$$\omega(x) = \left(\frac{1}{|x|} \right)^{\beta(N-1)} \quad \text{or} \quad \omega(x) = \left(\log \frac{e}{|x|} \right)^{\beta(N-1)} \quad \beta \in [0,1). \quad (1.1)$$

We assume that the nonlinearity $f(x,t) : \overline{B} \times \mathbb{R} \to \mathbb{R}$ is a radial in x, continuous function and behaves like $\exp\{\alpha t^{(N-1)(1-\beta)}\}$ as $t \to +\infty$, for some $\alpha > 0$ and $\beta \in [0,1)$.

Such an equation may arise in many fields of physics, such as in non-Newtonian fluids, reaction diffusion problem, turbulent flows in porous media and image treatment [1, 3, 18, 20]. Here we just give some references which are close to the problem we consider in this note.
Without the weight $w(x)$, the problem (P_λ) has been widely studied by several authors with different nonlinearities. G. M. Figueredo and F. B. M. Nunes in [13], consider the following equation

$$-\text{div}(a(|\nabla u|^p)|\nabla u|^{p-2}\nabla u) = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega,$$

(1.2)

where $\Omega \subset \mathbb{R}^N$ is bounded, $1 < p < N$, the nonlinearity $f : \mathbb{R} \to \mathbb{R}$ is a superlinear continuous function with exponential subcritical or exponential critical growth and the function a is C^1. By using the minimization argument and deformation lemma, the authors proved the existence of a least energy nodal solutions for the equation (1.2) with two nodal domains.

Recently, when $a(|\nabla u|^p) = 1$, X. Sun and Y. Song, see [19], studied the problem (1.2) in an open smooth bounded domain in the Heisenberg group $H^n = \mathbb{C}^n \times \mathbb{R}$. We also mention the work of Y. Zhang, Y Yang and S. Liang, see [24], where they established the existence of changing-sign solutions to the problem (1.2) under logarithmic and exponential nonlinearities.

Weighted N-Laplacian elliptic problems of the following type

$$\begin{cases}
-\text{div}(\omega(x)|\nabla u|^{N-2}\nabla u) = f(x, u) \quad \text{in} \quad B \\
u > 0 \quad \text{in} \quad B \\
u = 0 \quad \text{on} \quad \partial B,
\end{cases}$$

where the weight function $\omega(x)$ is given in (1.1) and the nonlinearity $f(x, t) : \overline{B} \times \mathbb{R} \to \mathbb{R}$ is positive, have been investigated in literatures (see [9, 10, 11, 23] and the references therein). We notice that, the influence of weights on limiting inequalities of Trudinger-Moser type has been studied with some detail in [5, 6, 7, 8] and as consequence the weights have an important impact in the Sobolev norm.

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and $w \in L^1(\Omega)$ be a nonnegative function, the weighted sobolev space is defined as

$$W_0^{1,N}(\Omega, w) = \text{cl}\{u \in C_0^\infty(\Omega) / \int_B |\nabla u|^N \omega(x)dx < \infty\}$$

For different proprieties and embedding results for the weighted Sobolev spaces, we can refer to [16].

Theorem 1.1 [7] Let $\beta \in [0, 1)$ and let w be given by (1.1), then

$$\int_B e^{u\gamma} \, dx < +\infty, \quad \forall \ u \in \mathbf{E}, \quad \text{if and only if} \quad \gamma \leq \gamma_{N,\beta} = \frac{N}{(N-1)(1-\beta)} = \frac{N'}{1-\beta}$$

(1.3)
and

\[
\sup_{u \in E} \int_B e^{\alpha|u|^{N,\beta}} dx < +\infty \iff \alpha \leq \alpha_{N,\beta} = N[\omega_{N-1}^{-1}(1-\beta)]^{\frac{1}{1-\beta}},
\]

(1.4)

where \(\omega_{N-1}\) is the area of the unit sphere \(S^{N-1}\) in \(\mathbb{R}^N\) and \(N'\) is the Hölder conjugate of \(N\).

Let \(\gamma := \gamma_{N,\beta} = \frac{N'}{1-\beta}\), in view of inequalities (1.5) and (1.6), we say that \(f\) has subcritical growth at \(+\infty\) if

\[
\lim_{s \to +\infty} \frac{|f(x,s)|}{e^{\alpha s^{\gamma}}} = 0, \quad \text{for all } \alpha > 0
\]

(1.5)

and \(f\) has critical growth at \(+\infty\) if there exists some \(\alpha_0 > 0\),

\[
\lim_{s \to +\infty} \frac{|f(x,s)|}{e^{\alpha s^{\gamma}}} = 0, \quad \forall \alpha > \alpha_0 \quad \text{and} \quad \lim_{s \to +\infty} \frac{|f(x,s)|}{e^{\alpha s^{\gamma}}} = +\infty, \quad \forall \alpha > \alpha_0.
\]

(1.6)

In this paper, we deal with problem \((P_\lambda)\) under subcritical and critical growth nonlinearities. Furthermore, we suppose that \(f(x,t)\) satisfies the following hypothesis:

\((V_1)\) \(f : B \times \mathbb{R} \to \mathbb{R}\) is \(C^1\) and radial in \(x\).

\((V_2)\) There exist \(\theta > N\) such that we have

\[0 < \theta F(x,t) \leq tf(x,t), \forall (x,t) \in B \times \mathbb{R} \setminus \{0\}\]

where

\[F(x,t) = \int_0^t f(x,s)ds.\]

\((V_3)\) For each \(x \in B\), \(t \mapsto \frac{f(x,t)}{|t|^{N-1}}\) is increasing for \(t \in \mathbb{R} \setminus \{0\}\).

\((V_4)\) \(\lim_{t \to 0} \frac{|f(x,t)|}{|t|^{N-1}} = 0\).

We give an example of such nonlinearity. The nonlinearity \(f(x,t) = |t|^{N-1}t + |t|^N t \exp(\alpha |t|^\gamma)\) satisfies the assumptions \((V_1), (V_2), (V_3)\) and \((V_4)\).

We will consider the following definition of solutions.

Definition 1.1 We say that a function \(u \in E\) is a weak solution of the problem \((P_\lambda)\) if

\[
\int_B |\nabla u|^{N-2}\nabla u \cdot \nabla \varphi w(x)dx = \lambda \int_B f(x,u)\varphi dx, \quad \forall \varphi \in E.
\]
Let $J_\lambda : E \to \mathbb{R}$ be the functional given by

$$J_\lambda(u) = \frac{1}{N} \int_B |\nabla u|^N w(x) dx - \lambda \int_B F(x,u) dx,$$ \hspace{1cm} (1.7)

where

$$F(x,t) = \int_0^t f(x,s) ds.$$

The energy functional J_λ is well defined and of class C^1 since there exist $a, C > 0$ positive constants and there exists $t_1 > 1$ such for that

$$|f(x,t)| \leq Ce^{a|t|}, \quad \forall |t| > t_1,$$

whenever the nonlinearity $f(x,t)$ is critical or subcritical at $+\infty$.

It is quite clear that finding non trivial weak solutions to the problem (P_λ) is equivalent to finding non-zero critical points of the functional J_λ. Moreover, we have

$$\langle J'_\lambda(u), \phi \rangle = J'_\lambda(u) \phi = \int_B \left(\omega(x)|\nabla u|^{N-2}\nabla u \nabla \phi \right) dx - \lambda \int_B f(x,u) \phi dx, \quad \phi \in E.$$

We define the Nehari set as

$$N_\lambda := \{u \in E : \langle J'_\lambda(u), u^+ \rangle = \langle J'_\lambda(u), u^- \rangle = 0, u^+ \neq 0, u^- \neq 0\},$$

where $u^+ = \max\{u(x),0\}, u^- = \min\{u(x),0\}$.

It’s easy to verify the following decomposition

$$J_\lambda(u) = J_\lambda(u^+) + J_\lambda(u^-),$$

and

$$\langle J'_\lambda(u), u^+ \rangle = \langle J'_\lambda(u), u^- \rangle \quad \text{and} \quad \langle J'_\lambda(u), u^- \rangle = \langle J'_\lambda(u), u^- \rangle$$

We also give the following definitions of the so called nodal solutions and least energy sign-changing solution of problem (P_λ).

Definition 1.2
- $v \in E$ is called nodal or sign-changing solution of problem (P_λ) if v is a solution of problem (P_λ) and $v^\pm \neq 0 \text{ a.e in } B$.
- $v \in E$ is called least energy sign-changing solution of problem (P_λ) if v is a sign-changing solution of (P_λ) and

$$J_\lambda(v) = \inf\{J_\lambda(u) : J'_\lambda(u) = 0, u^\pm \neq 0 \text{ a.e in } B\}$$

Influenced by the works cited above, we try to find a minimize of the energy functional J_λ over the following minimization problem,

$$c_\lambda = \inf_{u \in N_\lambda} J_\lambda(u)$$
Our approach is based on the Nehari manifold method, which was introduced in [15] and is by now a well-established and useful tool in finding solutions of problems with a variational structure, see [14]. To our best knowledge, there are few results for the nodal solutions to the N-weighted Laplace equation with critical exponential nonlinearity on the weighted Sobolev space E.

Now, we give our main results as follows:

Theorem 1.2 Let $f(x,t)$ be a function that has a subcritical growth at $+\infty$ (V_1), (V_2), (V_3), and (V_4) are satisfied. For $\lambda > 0$, the problem (P_λ) has a least energy nodal (sign-changing) radial solution $\nu \in N_\lambda$.

For a critical growth nonlinearity, the following result holds.

Theorem 1.3 Assume that $f(x,t)$ has a critical growth at $+\infty$ for some α_0 and (V_1), (V_2), (V_3) and (V_4) are satisfied. Then, there exists $\lambda^* > 0$ such that for $\lambda > \lambda^*$, problem (P_λ) has a least energy nodal (sign-changing) radial solution $\nu \in N_\lambda$.

This present work is organized as follows: in section 2, some preliminaries for the compactness analysis are presented. In section 3, we give some technical key lemmas. In section 4 we prove our result in the subcritical case. Section 5 is devoted for the critical case which is more difficult. We use a concentration compactness result of Lions type to prove Theorem 1.3.

Finally, we note that a constant C may change from line to another and sometimes we index the constants in order to show how they change.

2 Preliminaries for the compactness analysis

In this section, we will present a number of technical Lemmas for our future use. We begin by the radial Lemma.

Lemma 2.1 [7]Let u be a radially symmetric function in $C^1_0(B)$. Then, we have

$$|u(x)| \leq \frac{\log(|x|)}{\omega_{N-1}^\frac{1}{(1-\beta)^\frac{1}{N}}} \|u\|,$$

where ω_{N-1} is the area of the unit sphere S^{N-1} in \mathbb{R}^N.

It follows that the embedding $E \hookrightarrow L^q(B)$ is continuous for all $q \geq 1$, and that there exists a constant $C > 0$ such that $\|u\|_{N/q} \leq C\|u\|$, for all $u \in E$. Moreover, the embedding $E \hookrightarrow L^q(B)$ is compact for all $q \geq N$.

Lemma 2.2 Let $(u_k)_k$ be a sequence in E. Suppose that, $\|u_k\| = 1$, $u_k \rightharpoonup u$ weakly in E, $u_k(x) \to u(x)$ a.e. in B, $\nabla u_k(x) \rightharpoonup \nabla u(x)$ a.e. in B and $u \neq 0$. Then

$$\sup_k \int_B e^{p \alpha_{N,\beta}|u_k|^\gamma} \, dx < +\infty,$$

where $\alpha_{N,\beta} = N[\omega_{N-1}^\frac{1}{(1-\beta)}]^{1\gamma}$.

5
for all $1 < p < \mathcal{U}(u)$, where $\mathcal{U}(u)$ is given by:

$$\mathcal{U}(u) := \begin{cases}
\frac{1}{(1 - \|u\|^N)^\frac{q}{q'}} & \text{if } \|u\| < 1 \\
+\infty & \text{if } \|u\| = 1.
\end{cases}$$

Proof: For $a, b \in \mathbb{R}, q > 1$. If q' its conjugate i.e. $\frac{1}{q} + \frac{1}{q'} = 1$ we have, by young inequality, that

$$e^{a+b} \leq \frac{1}{q} e^{qa} + \frac{1}{q'} e^{q'b}.$$

Also, we have

$$(1 + a)^q \leq (1 + \varepsilon) a^q + (1 - \frac{1}{(1 + \varepsilon)^{\frac{1}{q'}}})^{1-q}, \forall a \geq 0, \forall \varepsilon > 0 \text{ and } \forall q > 1.$$

So, we get

$$|u_k|^\gamma = |u_k - u + u|^{\gamma} \leq (|u_k - u| + |u|)^{\gamma} \leq (1 + \varepsilon)|u_k - u|^{\gamma} + (1 - \frac{1}{(1 + \varepsilon)^{\frac{1}{q'}}})^{1-\gamma}|u|^{\gamma}$$

which implies that

$$\int_B e^{p'\alpha_N,\beta |u_k|^{\gamma}} dx \leq \frac{1}{q'} \int_B e^{pq'\alpha_N,\beta (1+\varepsilon)|u_k-u|^{\gamma}} dx + \frac{1}{q'} \int_B e^{pq'\alpha_N,\beta (1 - \frac{1}{(1 + \varepsilon)^{\frac{1}{q'}}})^{1-\gamma}|u|^{\gamma}} dx,$$

for any $p > 1$. Since $(1 - \frac{1}{(1 + \varepsilon)^{\frac{1}{q'}}})^{1-\gamma} \leq 1$, then

$$\frac{1}{q'} \int_B e^{pq'\alpha_N,\beta (1 - \frac{1}{(1 + \varepsilon)^{\frac{1}{q'}}})^{1-\gamma}|u|^{\gamma}} dx \leq \frac{1}{q'} \int_B e^{pq'\alpha_N,\beta |u|^{\gamma}} dx = \frac{1}{q'} \int_B e^{(pq'\alpha_N,\beta)^\gamma |u|^{\gamma}} dx.$$

From (1.5), the last integral is finite.
To complete the evidence, we have to prove that for every p such that $1 < p < \mathcal{U}(u)$,

$$\sup_k \int_B e^{pq'\alpha_N,\beta (1+\varepsilon)|u_k-u|^{\gamma}} dx < +\infty,$$

for some $\varepsilon > 0$ and $q > 1$.
In the following, we suppose that $\|u\| < 1$ and in the case of $\|u\| = 1$, the proof is similar.
When $\|u\| < 1$
and

\[p < \frac{1}{(1 - \|u\|^{N})^\gamma}, \]

there exists \(\nu > 0 \) such that

\[p(1 - \|u\|^{N})^\gamma (1 + \nu) < 1. \]

On the other hand, from the Brezis-Lieb’s lemma [4] it holds that

\[\|u_k - u\|^{N} = \|u_k\|^{N} - \|u\|^{N} + o(1) \quad \text{where } o(1) \to 0 \quad \text{as } k \to +\infty. \]

Then,

\[\|u_k - u\|^{N} = 1 - \|u\|^{N} + o(1), \]

so,

\[\lim_{k \to +\infty} \|u_k - u\|^{\gamma} = (1 - \|u\|^{N})^\gamma. \]

Therefore, for every \(\varepsilon > 0 \), there exists \(k_\varepsilon \geq 1 \) such that

\[\|u_k - u\|^{\gamma} \leq (1 + \varepsilon)(1 - \|u\|^{N})^\gamma, \quad \forall \ k \geq k_\varepsilon. \]

Then, for \(q = 1 + \varepsilon \) with \(\varepsilon = \sqrt{1 + \nu} - 1 \) and for any \(k \geq k_\varepsilon \), we have

\[pq(1 + \varepsilon)\|u_k - u\|^{\gamma} \leq 1. \]

Consequently,

\[\int_B e^{pq \alpha_{N,\beta}(1+\varepsilon)\|u_k - u\|^\gamma} \ dx \leq \int_B e^{(1+\varepsilon) pq \alpha_{N,\beta}(\frac{|u_k - u|}{\|u\|})^\gamma\|u_k - u\|^\gamma} \ dx \]

\[\leq \int_B e^{\alpha_{N,\beta}(\frac{|u_k - u|}{\|u\|})^\gamma} \ dx \]

\[\leq \sup_{\|u\| \leq 1} \int_B e^{\alpha_{N,\beta}|u|^\gamma} \ dx < +\infty. \]

Now, (2.1) follows from (1.4). This complete the proof. A second important Lemma.

Lemma 2.3 [14] Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain and \(f : \overline{\Omega} \times \mathbb{R} \) be a continuous function. Let \(\{u_n\}_n \) be a sequence in \(L^1(\Omega) \) converging to \(u \) in \(L^1(\Omega) \). Assume that \(f(x, u_n) \) and \(f(x, u) \) are also in \(L^1(\Omega) \). If

\[\int_{\Omega} |f(x, u_n) u_n| dx \leq C, \]

where \(C \) is a positive constant, then

\[f(x, u_n) \to f(x, u) \quad \text{in } L^1(\Omega). \]
3 Some technical lemmas

In the following we assume, unless otherwise stated, that the function f satisfies the conditions (V_1) to
(V_4). Let $u \in E$ with $u^+ \neq 0$ a.e. in the ball B, and we define the function $\Upsilon_u : [0, \infty) \times [0, \infty) \to \mathbb{R}$ and mapping $L_u : [0, \infty) \times [0, \infty) \to \mathbb{R}^2$ as

$$\Upsilon_u(p, q) = J_\lambda(pu^+ + qu^-),$$

and

$$L_u(p, q) = (\langle J'_\lambda(pu^+ + qu^-), pu^+ \rangle, \langle J'_\lambda(pu^+ + qu^-), qu^- \rangle)$$

Lemma 3.1 (i) For each $u \in E$ with $u^+ \neq 0$ and $u^- \neq 0$, there exists an unique couple $(p_u, q_u) \in (0, \infty) \times (0, \infty)$ such that $p_u u^+ + q_u u^- \in \mathcal{N}_\lambda$. In particular, the set \mathcal{N}_λ is nonempty.

(ii) For all $p, q \geq 0$ with $(p, q) \neq (p_u, q_u)$, we have

$$J_\lambda(pu^+ + qu^-) < J_\lambda(p_u u^+ + q_u u^-).$$

Proof. (i)

Since f is subcritical or critical, and From (V_1) and (V_4), for all $\varepsilon > 0$, there exists a positive constant $C_1 = C_1(\varepsilon)$ such that

$$f(x,t) \leq \varepsilon |t|^N + C_1 |t|^s \exp(\alpha |t|^\gamma)$$

for all $\alpha > a_0$, $s > N$. (3.3)

Now, given $u \in E$ fixed with $u^+ \neq 0$ and $u^- \neq 0$. From (3.3), for all $\varepsilon > 0$, we have

$$\langle J'_\lambda(pu^+ + qu^-), pu^+ \rangle = \langle J_\lambda(pu^+), pu^+ \rangle$$

$$= \|pu^+\|^N - \lambda \int_B f(x, pu^+) pu^+ dx$$

$$\geq \|pu^+\|^N - \lambda \int_B |pu^+|^N dx - \lambda C_1 \int_B |pu^+|^s \exp(\alpha |u^+|^\gamma) dx$$

Using the Hölder inequality, with $a, a' > 1$ such that $\frac{1}{a} + \frac{1}{a'} = 1$, and Lemma 2.1, we get

$$\langle J'_\lambda(pu^+ + qu^-), pu^+ \rangle \geq \|pu^+\|^N - \lambda \varepsilon C_2 - \lambda C_1 \left(\int_B |pu^+|^{a'} dx \right)^{\frac{1}{a'}} \left(\int_B \exp(\alpha |u^+|^\gamma) dx \right)^{\frac{1}{a'}}$$

$$\geq (1 - \varepsilon C_2 - \lambda \varepsilon C_1) \|pu^+\|^N - \lambda C_1 \left(\int_B \exp(\alpha |pu^+|\gamma) \left(\frac{|u^+|}{\|u^+\|}\right)^\gamma dx \right)^\frac{1}{a} C_5 \|pu^+\|^s$$

By (1.4), the last integral is finite provided $p > 0$ is chosen small enough such that $\alpha a \|pu^+\| \gamma \leq a_{N, \beta}$.

Then,

$$\langle J'_\lambda(pu^+ + qu^-), pu^+ \rangle \geq (1 - \varepsilon C_2 - \lambda \varepsilon C_1) \|pu^+\|^N - \lambda C_4 \|pu^+\|^s$$

(3.4)
holds. Choosing $\epsilon > 0$ such that $1 - \epsilon C_2 - \lambda \epsilon C_1 > 0$ and for small $p > 0$ and for all $q > 0$ and $s > N$, we get $\langle J'_\lambda (pu^+ + qu^-), pu^+ \rangle > 0$. In the similar way, it can be proved that $\langle J'_\lambda (pu^+ + qu^-), pu^- \rangle > 0$ for $q > 0$ small enough and all $p > 0$. Therefore, it is quite easy to state that there exists $t_1 > 0$ such that

$$\langle J'_\lambda (t_1u^+ + qu^-), t_1u^+ \rangle > 0, \quad \langle J'_\lambda (pu^+ + t_1u^-), t_1u^- \rangle > 0 \text{ for all } p, q > 0. \quad (3.5)$$

From (V_5), we can derive that there exists $C_5, C_6 > 0$ such that

$$F(x, t) \geq C_5 |t|^\theta - C_6. \quad (3.6)$$

Now, choose $p = t_2^* > t_1$ with t_2^* large enough. Then, by using (3.3), (3.6), we get

$$\langle J'_\lambda (t_2^*u^+ + qu^-), t_2^*u^+ \rangle = \langle J'_\lambda (t_2^*u^+), t_2^*u^+ \rangle \leq \|t_2^*u^+\|^N - \lambda \int_B C_5 |t_2^*u^+|^\theta \, dx + \lambda C_6 |B| \leq 0,$$

for $q \in [t_1, t_2^*]$. Also, we can choose $q = t_2^* > t_1$ with t_2^* large enough and then

$$\langle J'_\lambda (t_2^*u^+ + t_2^*u^-), t_2^*u^+ \rangle < 0 \text{ for all } p \in [t_1, t_2^*].$$

Therefore, if $t_2 > t_2^*$ is large enough, then we obtain that

$$J'_\lambda (t_2u^+ + qu^-), t_2u^+ < 0 \quad \text{and} \quad \langle J'_\lambda (pu^+ + t_2u^-), t_2u^- \rangle < 0 \text{ for all } p, q \in [t_1, t_2]. \quad (3.7)$$

Joining (3.5) and (3.7) with Miranda’s Theorem [2], there exists at least a couple of points $(p_0, q_0) \in (0, \infty) \times (0, \infty)$ such that $L_u (p_0, q_0) = (0, 0)$, i.e., $p_0u^+ + q_0u^- \in N_\lambda$.

Now we will show the uniqueness of the couple (p_0, q_0). Indeed, it is sufficient to show that if $u \in N_\lambda$ and $p_0u^+ + q_0u^- \in N_\lambda$ with $p_0 > 0$ and $q_0 > 0$, then $(p_0, q_0) = (1, 1)$. Let us assume that $u \in N_\lambda$ and $p_0u^+ + q_0u^- \in N_\lambda$. We will then get $\langle J'_\lambda (p_0u^+ + q_0u^-), p_0u^+ \rangle = 0$, $\langle J'_\lambda (p_0u^+ + q_0u^-), p_0u^- \rangle = 0$, and $\langle J'_\lambda (u, u^\pm) \rangle = 0$, that is,

$$\|p_0u^+\|^N = \lambda \int_B f(x, p_0u^+)p_0u^+ \, dx \quad (3.8)$$

$$\|b_0u^-\|^N = \lambda \int_B f(x, q_0u^-)q_0u^- \, dx \quad (3.9)$$

$$\|u^+\|^N = \lambda \int_B f(x, u^+)u^+ \, dx \quad (3.10)$$

$$\|u^-\|^N = \lambda \int_B f(x, u^-)u^- \, dx \quad (3.11)$$

Combining (3.8) and (3.10), we deduce that

$$0 = \lambda \int_B \frac{f(x, p_0u^+)}{p_0^N} \, dx - \lambda \int_B f(x, u^+) \, dx.$$
It follows from (V4) that \(t \mapsto \frac{f(x,t)}{t^{N-1}} \) is increasing for \(t > 0 \), which implies that \(p_0 = 1 \). We can also show, using (V4), (3.9) and (3.11), that \(q_0 = 1 \). This completes the proof of (i).

(ii) To prove (ii), it is sufficient to show that \((p_u, q_u)\) is the unique maximum point of \(\Upsilon_u \in [0, \infty) \times [0, \infty) \). From (3.7), (3.8) and \(\theta > N \), we have

\[
\Upsilon_u(p, q) = J_\lambda(pu^+ + qu^-) \\
= \frac{1}{N} \|pu^+ + qu^-\|^N - \lambda \int_B F(x, pu^+ + qu^-) \, dx \\
\leq \frac{p^N}{N} \|u^+\|^N + \frac{q^N}{N} \|u^-\|^N - \lambda C_5 p^\theta \int_B |u^+|^\theta \, dx - \lambda C_5 q^\theta \int_B |u^-|^\theta \, dx + \lambda C_6 |B|
\]

which implies that \(\lim_{\|p,q\| \to \infty} \Upsilon_u(p, q) = -\infty \). Hence, it suffices to see that the maximum point of \(\Upsilon_u \) cannot be realized on the boundary of \([0, \infty) \times [0, \infty) \). We argue by contradiction and assume that \((0, q)\) with \(q \geq 0 \) is a maximum point of \(\Upsilon_u \). Then from (3.5), we have

\[
p \frac{d}{dp} [J_\lambda(pu^+ + qu^-)] = \langle J_\lambda'(pu^+), pu^+ \rangle > 0,
\]

for small \(p > 0 \), which means that \(\Upsilon_u \) is increasing with respect to \(p \) if \(p > 0 \) is small enough. This gives a contradiction. We can similarly deduce that \(\Upsilon_u \) can not realize its global maximum on \((p, 0)\) with \(p \geq 0 \).

Lemma 3.2 For any \(u \in \mathbf{E} \) with \(u^+ \neq 0 \) and \(u^- \neq 0 \), such that \(\langle J_\lambda'(pu^+, pu^+) \rangle \leq 0 \), the unique maximum point \((p_u, q_u)\) of \(\Upsilon_u \) on \([0, \infty) \times [0, \infty) \) belongs to \((0, 1) \times (0, 1) \).

Proof. Here we will only prove that \(0 < p_u \leq 1 \). The proof of \(0 < q_u \leq 1 \) is similar. Since \(pu^+, qu^+ \in N_\lambda \), we have that

\[
\|pu^+\|^N = \lambda \int_B f(x, pu^+)u^+ \, dx
\]

Moreover, by \(\langle J_\lambda'(pu^+, pu^+) \rangle \leq 0 \), we have that

\[
\|u^+\|^N \leq \lambda \int_B f(x, u^+)u^+ \, dx.
\]

Combining (3.12) and (3.13), it follows that

\[
\int_B f(x, u^+)u^+ \, dx \geq \int_B \frac{f(x, pu^+)p_u u^+}{p_u} \, dx.
\]

Now, we suppose, by contradiction, that \(p_u > 1 \). By (V4), \(t \mapsto \frac{f(x,t)}{t^{N-1}} \) is increasing for \(t > 0 \), which contradicts inequality (3.14). Therefore, \(0 < p_u \leq 1 \).

Lemma 3.3 For all \(u \in N_\lambda \),

(i) **there exists** \(\kappa > 0 \) **such that**

\[
\|u^+\|, \|u^-\| \geq \kappa;
\]
(ii) \(J_\lambda(u) \geq (\frac{1}{N} - \frac{1}{\theta})\|u\|^N \)

Proof. (i) We argue by contradiction. Suppose that there exists a sequence \(\{u^+_n\} \subset N_\lambda \) such that \(u^+_n \rightarrow 0 \) in \(E \). Since \(\{u_n\} \subset N_\lambda \), then \(\langle J_\lambda'(u_n), u^+_n \rangle = 0 \). Hence, it follows from (3.3), (3.4) and the radial Lemma 2.1 that

\[
\|u^+_n\|^N = \lambda \int_B f(u^+_n)u^+_n \, dx \\
\leq \epsilon \lambda \int_B |u^+_n|^N \, dx + \lambda C_1 \int_B |u^+_n|^s \exp(\alpha |u^+_n|\gamma) \, dx \\
\leq \epsilon \lambda C_6 \|u^+_n\|^N + \lambda C_1 \int_B |u^+_n|^s \exp(\alpha |u^+_n|\gamma) \, dx
\]

Let \(a > 1 \) with \(\frac{1}{a} + \frac{1}{s} = 1 \). Since \(u^+_n \rightarrow 0 \) in \(E \), for \(n \) large enough, we get \(\|u^+_n\| \leq (\frac{\alpha N, \beta}{\alpha a})^s \). From Hölder inequality, (1.4) and again the radial Lemma 2.1, we have

\[
\int_B |u^+_n|^s \exp(\alpha |u^+_n|\gamma) \, dx \leq \left(\int_B |u^+_n|^{sa'} \, dx \right)^{\frac{1}{a'}} \left(\int_B \exp \left(\alpha a \|u^+_n\|^s \frac{|u^+_n|}{\|u^+_n\|^s} \right) \, dx \right)^{\frac{1}{a}} \\
\leq C_7 \left(\int_B |u^+_n|^{sa'} \, dx \right)^{\frac{1}{a'}} \leq C_8 \|u^+_n\|^s
\]

Combining (3.15) with the last inequality, for \(n \) large enough, we obtain

\[
\|u^+_n\|^N \leq \lambda \epsilon C_6 \|u^+_n\|^N + \lambda C_8 \|u^+_n\|^s
\]

Choose suitable \(\epsilon > 0 \) such that \(1 - \lambda \epsilon C_6 > 0 \). Since \(N < s \), then (3.16) contradicts the fact that \(u^+_n \rightarrow 0 \) in \(E \).

(ii) Given \(u \in N_\lambda \), by the definition of \(N_\lambda \) and (V3) we obtain

\[
J_\lambda(u) = J_\lambda(u) - \frac{1}{\theta} \langle J_\lambda'(u), u \rangle \\
= \frac{1}{N} \|u\|^N + \lambda \left(\int_B \frac{1}{\theta} f(x, u)u - F(x, u) \, dx \right) \\
\geq (\frac{1}{N} - \frac{1}{\theta})\|u\|^N
\]

Lemma 3.3 implies that \(J_\lambda(u) > 0 \) for all \(u \in N_\lambda \). As a consequence, \(J_\lambda \) is bounded by below in \(N_\lambda \), and therefore \(c_\lambda := \inf_{u \in N_\lambda} J_\lambda(u) \) is well-defined.

The following lemma deals with the asymptotic property of \(c_\lambda \).

Lemma 3.4 Let \(c_\lambda = \inf_{u \in N_\lambda} J_\lambda(u) \), then \(\lim_{\lambda \to \infty} c_\lambda = 0 \)
Proof. Let us fix $u \in E$ with $u^\pm = 0$. Then, by Lemma 3.1, there exists a point pair (p_λ, q_λ) such that $p_\lambda u^+ + q_\lambda u^- \in \mathcal{N}_\lambda$ for each $\lambda > 0$. Let \mathcal{T}_u be the set defined by

$$\mathcal{T}_u := \{(p_\lambda, q_\lambda) \in [0, \infty) \times [0, \infty) : L_u(p_\lambda, q_\lambda) = (0, 0), \lambda > 0\},$$

where L_u is given by (3.2).

Since $p_\lambda u^+ + q_\lambda u^- \in \mathcal{N}_\lambda$, by assumption (V_2), (3.7) and (3.8), we have

$$p_\lambda^N \|u^+\|^N + q_\lambda^N \|u^-\|^N = \lambda \int_B f(x, p_\lambda u^+ + q_\lambda u^-)(p_\lambda u^+ + q_\lambda u^-)dx$$

$$\geq \lambda \theta C_5 p_\lambda^\theta \int_B |u^+|^\theta dx + \lambda \theta C_5 q_\lambda^\theta \int_B |u^-|^\theta dx - \lambda \theta C_6 |B|.$$

Since $\theta > N$, the set \mathcal{T}_u is bounded. Therefore, if $\{\lambda_n\} \subset (0, \infty)$ satisfies $\lambda_n \to \infty$ as $n \to \infty$, then up to subsequence, there exists $\bar{p}, \bar{q} > 0$, such that $p_{\lambda_n} \to \bar{p}$ and $q_{\lambda_n} \to \bar{q}$.

We claim that $\bar{p} = \bar{q} = 0$. We proceed by contradiction and suppose that $\bar{p} > 0$ and $\bar{q} > 0$. For each $n \in \mathbb{N}$, $p_{\lambda_n} u^+ + q_{\lambda_n} u^- \in \mathcal{N}_{\lambda_n}$. So,

$$\|p_{\lambda_n} u^+ + q_{\lambda_n} u^-\|^N = \lambda_n \int_B f(p_{\lambda_n} u^+ + q_{\lambda_n} u^-)(p_{\lambda_n} u^+ + q_{\lambda_n} u^-)dx.$$

(3.17)

It should be noted that $p_{\lambda_n} u^+ \to \bar{p} u^+$ and $q_{\lambda_n} u^- \to \bar{q} u^-$ in E.

On one hand, $\lambda_n \to 0$ as $n \to \infty$ and $\{p_{\lambda_n} u^+ + q_{\lambda_n} u^-\}$ is bounded in E. On the other hand, from (3.17), we have

$$\int_B |\nabla (\bar{p} u^+ + \bar{q} u^-)|^N dx = \left(\lim_{n \to \infty} \lambda_n\right) \lim_{n \to \infty} \int_B f(p_{\lambda_n} u^+ + q_{\lambda_n} u^-)(p_{\lambda_n} u^+ + q_{\lambda_n} u^-)dx$$

which is impossible.

Thus, $\bar{p} = \bar{q} = 0$, so, $p_{\lambda_n} \to 0$ and $q_{\lambda_n} \to 0$ as $n \to \infty$. Finally, by (V_2) and (3.17), we have

$$0 \leq c_{\lambda} = \inf_{\mathcal{N}_\lambda} \mathcal{J}_\lambda(u) \leq \mathcal{J}_\lambda(p_{\lambda_n} u^+ + q_{\lambda_n} u^-) \to 0.$$

Consequently, $c_{\lambda} \to 0$ as $\lambda \to \infty$.

Lemma 3.5 If $u_0 \in \mathcal{N}_\lambda$ satisfies $\mathcal{J}_\lambda(u_0) = c_{\lambda}$, then $\mathcal{J}_\lambda'(u_0) = 0$.

Proof. We proceed by contradiction. We assume that $\mathcal{J}_\lambda'(u_0) \neq 0$. By the continuity of \mathcal{J}_λ', there exists $\iota, \delta \geq 0$ such that

$$\|\mathcal{J}_\lambda'(v)\|_E \geq \iota \text{ for all } \|v - u_0\| \leq 3\delta.$$

(3.18)

Choose $\tau \in (0, \min\{\frac{1}{4}, \frac{\delta}{4\|u_0\|}\})$. Let $D = (1 - \tau, 1 + \tau) \times (1 - \tau, 1 + \tau)$ and define $g : D \to E$, by

$$g(\rho, \vartheta) = \rho u^+ + \vartheta u^- \text{, } (\rho, \vartheta) \in D$$
By virtue of \(u_0 \in \mathcal{N}_\lambda \), \(\mathcal{J}_\lambda(u_0) = c_\lambda \) and Lemma 3.1, it is easy to see that
\[
c_\lambda := \max_{\partial D} \mathcal{J}_\lambda \circ g < c_\lambda. \tag{3.19}
\]

Let \(\epsilon := \min\{\frac{\lambda - \epsilon}{\lambda}, \frac{\epsilon}{\lambda}\} \), \(S_\tau := B(u_0, r), r \geq 0 \) and \(\mathcal{J}_\lambda^{a} := \mathcal{J}_\lambda^{-1}(]-\infty, a]) \). According to the Quantitative Deformation Lemma [[21], Lemma 2.3], there exists a deformation \(\eta \in C([0, 1] \times g(D), E) \) such that:

1. \(\eta(1, v) = v \), if \(v \not\in \mathcal{J}_\lambda^{a}([c_\lambda - 2\epsilon, c_\lambda + 2\epsilon]) \cap S_2\delta \)
2. \(\eta(1, \mathcal{J}_\lambda^{c_\lambda + \epsilon} \cap S_\delta) \subseteq \mathcal{J}_\lambda^{c_\lambda - \epsilon} \)
3. \(\mathcal{J}_\lambda(\eta(1, v)) \leq \mathcal{J}_\lambda(v) \), for all \(v \in E \).

By lemma 3.1 (ii), we have \(\mathcal{J}_\lambda(g(\rho, \theta)) \leq c_\lambda \). In addition, we have,
\[
\|g(s, t) - u_0\| = \|(\rho - 1)u_0^+ + (\vartheta - 1)u_0^-\| \leq |\rho - 1|\|u_0^+\| + |\vartheta - 1|\|u_0^-\| \leq 2\tau\|u_0\|,
\]
then \(g(\rho, \theta) \in S_\delta \) for \((\rho, \theta) \in D \). Therefore, it follows from (2) that
\[
\max_{(\rho, \theta) \in D} \mathcal{J}_\lambda(\eta(1, g(\rho, \theta))) \leq c_\lambda - \epsilon. \tag{3.20}
\]

In the following, we prove that \(\eta(1, g(D)) \cap \mathcal{N}_\lambda \) is nonempty. And in this case it contradicts (3.20) due to the definition of \(c_\lambda \). To do this, we first define
\[
\bar{g}(\rho, \theta) := \eta(1, g(\rho, \theta)),
\]
\[
\mathcal{Y}_0(\rho, \theta) = ((\mathcal{J}_\lambda^{1}(g(\rho, \theta)), u_0^+), (\mathcal{J}_\lambda^{a}(g(\rho, \theta)), u_0^-))
\]
\[
= ((\mathcal{J}_\lambda^{1}(\rho u_0^+ + \vartheta u_0^-), u_0^+), (\mathcal{J}_\lambda^{a}(\rho u_0^+ + \vartheta u_0^-), u_0^-))
\]
\[
:= (\varphi_0^{1}(\rho, \theta), \varphi_0^{2}(\rho, \theta))
\]
and
\[
\mathcal{Y}_1(\rho, \theta) := (\frac{1}{\rho}(\mathcal{J}_\lambda^{1}(\bar{g}(\rho, \theta))), (\bar{g}(\rho, \theta))^+) + \frac{1}{\vartheta}(\mathcal{J}_\lambda^{a}(\bar{g}(\rho, \theta)), (\bar{g}(\rho, \theta))^-) \).
\]
Moreover, a simple calculation, shows that
\[
\frac{\varphi_0^{1}(\rho, \theta)}{\partial \rho}\bigg|_{(1,1)} = (N - 1)\|u_0^+\|_N - \lambda \int_B f'(x, u_0^+)|u_0^+|^2 dx
\]
\[
= (N - 1)\lambda \int_B f(u_0^+)|u_0^+|^2 dx - \lambda \int_B f'(x, u_0^+) |u_0^+|^2 dx
\]
and
\[
\frac{\varphi_0^{1}(\rho, \theta)}{\partial \vartheta}\bigg|_{(1,1)} = 0.
\]
In the same manner,

\[
\frac{\varphi_2^2(\rho, \vartheta)}{\partial \rho} \bigg|_{(1,1)} = 0
\]

and

\[
\frac{\varphi_2^2(\rho, \vartheta)}{\partial \vartheta} \bigg|_{(1,1)} = (N - 1)\lambda \int_B f(x, u_0^-)u_0^- dx - \lambda \int_B f'(x, u_0^-)|u_0^-|^2 dx
\]

Let

\[
J = \begin{pmatrix}
\frac{\varphi_1^2(\rho, \vartheta)}{\partial \rho} & \frac{\varphi_0^2(\rho, \vartheta)}{\partial \vartheta} \\
\frac{\varphi_1^2(\rho, \vartheta)}{\partial \vartheta} & \frac{\varphi_0^2(\rho, \vartheta)}{\partial \rho}
\end{pmatrix}
\]

Then we have \(\det J \neq 0 \). Therefore, the point \((0, 1)\) is the unique isolated zero of the \(C^1 \) function \(\Upsilon_0 \). By using the Brouwer’s degree in \(\mathbb{R}^2 \), we deduce that \(\deg(\Upsilon_0, D, 0) = 1 \).

Now, it follows from (3.20) and (1) that \(g(\rho, \vartheta) = \overline{g}(\rho, \vartheta) \) on \(\partial D \). For the boundary dependence of Brouwer’s degree (see [12, Theorem 4.5]), there holds \(\deg(\Upsilon_1, D, 0) = \deg(\Upsilon_0, D, 0) = 1 \). Therefore, there exists some \((\overline{\rho}, \overline{\vartheta}) \in D \) such that

\[\eta(1, g(\overline{\rho}, \overline{\vartheta})) \in N_\lambda. \]

This finish the proof of the Lemma.

Lemma 3.6 If \(\upsilon \) is a least energy sign-changing solution of problem \((P_\lambda) \), then \(\upsilon \) has exactly two nodal domains

Proof. Assume by contradiction that \(\upsilon = \upsilon_1 + \upsilon_2 + \upsilon_3 \) satisfies

\(\upsilon_1 \neq 0, i = 1, 2, 3, \upsilon_1 \geq 0, \upsilon_2 \leq 0, \) a.e. in \(B \)

\(B_1 \cap B_2 = \emptyset, B_1 := \{x \in B : \upsilon_1(x) > 0\}, B_2 := \{x \in B : \upsilon_2(x) < 0\} \)

\(\upsilon_1 \bigg|_{B \setminus B_1 \cup B_2} = \upsilon_2 \bigg|_{B \setminus B_1 \cup B_2} = \upsilon_3 \bigg|_{B_1 \cup B_2} = 0, \)

and

\(\langle \mathcal{J}_\lambda'(\upsilon), \upsilon_i \rangle = 0 \) for \(i = 1, 2, 3 \), \((3.21) \)

Let \(\nu = \upsilon_1 + \upsilon_2 \) and it is easy to see that \(\nu^+ = \upsilon_1, \nu^- = \upsilon_2 \) and \(\nu^+ \neq 0 \). From Lemma (3.1), it follows that there exists a unique couple \((p_\nu, q_\nu) \in [0, \infty) \times [0, \infty) \) such that \(p_\nu \upsilon_1 + q_\nu \upsilon_2 \in N_\lambda \). So, \(\mathcal{J}_\lambda(p_\nu \upsilon_1 + q_\nu \upsilon_2) \geq c_\lambda \). Moreover, using (3.21), we obtain that \(\langle \mathcal{J}_\lambda'(\nu), \nu^\pm \rangle = 0 \). Then, by Lemma (3.2), we have \(0 < p_\nu, q_\nu \leq 1 \).
Now, combining (3.21), (V₃) and (V₄), we have that
\[0 = \frac{1}{\theta} \langle J'_\lambda(v), v_3 \rangle = \frac{1}{\theta} \langle J'_\lambda(v_3), v_3 \rangle \]
\[< J_\lambda(v_3), \]
and
\[c_\lambda \leq J_\lambda(p_\nu v_1 + q_\nu v_2) = J_\lambda(p_\nu v_1 + q_\nu v_2) - \frac{1}{\theta} \langle J'_\lambda(p_\nu v_1 + q_\nu v_2), p_\nu v_1 + q_\nu v_2 \rangle \]
\[= (\frac{1}{N} - \frac{1}{\theta}) p_\nu^N \| v_1 \|^N + (\frac{1}{N} - \frac{1}{\theta}) q_\nu^N \| v_2 \|^N \]
\[+ \lambda \int_B \left[\frac{1}{\theta} f(x, p_\nu v_1) - F(x, p_\nu v_2) \right] dx + \lambda \int_B \left[\frac{1}{\theta} f(x, q_\nu v_1) - F(x, q_\nu v_2) \right] dx \]
\[\leq J_\lambda(v_1 + v_2) - \frac{1}{\theta} \langle J'_\lambda(v_1 + v_2), v_1 + v_2 \rangle \]
\[= J_\lambda(v_1 + v_2) + \frac{1}{\theta} \langle J'_\lambda(v), v_3 \rangle \]
\[< J_\lambda(v_1 + v_2) + J_\lambda(v_3) = J_\lambda(v) = c_\lambda, \]
which is a contradiction. Therefore, \(v_3 = 0 \) and \(v \) has exactly two nodal domains.

4 The subcritical case

Lemma 4.1 If \(\{ u_n \} \subset N_{\lambda} \) is a minimizing sequence for \(c_\lambda \), then there exists some \(u \in E \) such that
\[\int_B f(u_n^\pm) u_n^\pm dx \to \int_B f(u^\pm) u^\pm dx \]
and
\[\int_B F(u_n^\pm) dx \to \int_B F(u^\pm) dx \]

Proof. we will only prove the first result. Since the second limit is a direct consequence of the first one, we omit it here.

Let sequence \(\{ u_n \} \subset N_{\lambda} \) satisfy \(\lim_{n \to \infty} J_\lambda(u_n) = c_\lambda \). It is clearly that \(\{ u_n \} \) is bounded by Lemma (3.3).
Then, up to a subsequence, there exists \(u \in E \) such that
\[
\begin{align*}
 u_n & \to u \text{ in } E, \\
 u_n & \to u \text{ in } L^t(B) \text{ for } t \in [1, \infty), \\
 u_n & \to u \text{ a.e. in } B, \\
 u_n^\pm & \to u^\pm \text{ in } E, \\
 u_n^\pm & \to u^\pm \text{ in } L^t(B) \text{ for } t \in [1, \infty), \\
 u_n^\pm & \to u^\pm \text{ a.e. in } B.
\end{align*}
\] (4.1)

Note that by (3.3), we have
\[
f(x, u_n^\pm(x))u_n^\pm(x) \leq \epsilon |u_n^\pm(x)|^N + C_2|u_n^\pm(x)|^\gamma \exp(\alpha |u_n^\pm(x)|^\gamma) := h(u_n^\pm(x)),
\] (4.3)
for all \(\alpha > \alpha_0 \) and \(q > N \). It is sufficient to prove that sequence \(\{h(u_n^\pm)\} \) is convergent in \(L^1(B) \).

Choosing \(a, a' > 1 \) with \(\frac{1}{a} + \frac{1}{a'} = 1 \), we get that
\[
|u_n^\pm|^s \to |u|^s \text{ in } L^{a'}(B)
\] (4.4)
Moreover, choosing \(\alpha > 0 \) small enough such that \(\alpha a \left(\max_n \|u_n^\pm\|^\gamma \right) \leq \alpha N, \beta \), we conclude from (1.4) that
\[
\int_B \exp \left(\alpha |u_n^\pm(x)|^\gamma \right) \, dx < \infty.
\] (4.5)

Since \(\exp (\alpha |u_n^\pm(x)|^\gamma) \, dx \to \exp (\alpha |u^\pm(x)|^\gamma) \, dx \), a.e. in \(B \). From (4.5) and [[15], Lemma 4.8, chapter 1], we obtain that
\[
\exp (\alpha |u_n^\pm|^\gamma) \, dx \to \exp (\alpha |u|^\gamma) \, dx \text{ in } L^a(B).
\] (4.6)

Hence, by (4.4), (4.6) and [[15], Lemma 4.8, chapter 1] again, we conclude that
\[
\int_B f(u_n^\pm)u_n^\pm \, dx \to \int_B f(u^\pm)u^\pm \, dx.
\]

Lemma 4.2 There exists some \(v \in \mathcal{N}_\lambda \) such that \(J_\lambda(v) = c_\lambda \).

Proof. Let \(\{v_n\} \subset \mathcal{N}_\lambda \) be a sequence such that \(\lim_{n \to \infty} J_\lambda(v_n) = c_\lambda \). It is clearly that \(\{v_n\} \) is bounded by Lemma (3.3). Then, up to a subsequence, there exists \(v \in E \) such that
\[
\begin{align*}
 v_n^\pm & \to v^\pm \text{ in } E, \\
 v_n^\pm & \to v^\pm \text{ in } L^t(B) \text{ for } t \in [1, \infty), \\
 v_n^\pm & \to v^\pm \text{ a.e. in } B.
\end{align*}
\] (4.7)

We claim that \(v^+ \neq 0 \) and \(v^- \neq 0 \). Suppose, by contradiction, \(v^+ = 0 \). From the definition of \(\mathcal{N}_\lambda \), (4.7), (4.3) and Lemma (4.1), we have that \(\lim_{n \to \infty} \|v_n^+\|^N = 0 \), which contradicts Lemma (3.3). Hence, \(v^+ \neq 0 \)
and \(v^- \neq 0 \).

From the lower semi continuity of norm and (4.7), it follows that

\[
\langle J'(\lambda)(v), v^\pm \rangle \leq \lim_{n \to \infty} \langle J'(\lambda)(v_n), v_n^\pm \rangle = 0.
\]

(4.8)

Then, Lemma (3.2) implies that there exists \((p_v, q_v) \in (0, 1] \times (0, 1]\) such that \(p_v v^+ + q_v v^- \in \mathcal{N}_\lambda \). Thus, by \((V_2)\), \(\lambda \geq 0 \) and Lemma (4.1), we get that

\[
c_\lambda \leq J_\lambda(p_v v^+ + q_v v^-) = J_\lambda(p_v v^+ + q_v v^-) - \frac{1}{\theta} \langle J'_\lambda(p_v v^+ + q_v v^-), p_v v^+ + q_v v^- \rangle \\
\leq J(v) - \frac{1}{\theta} \langle J'_\lambda(v), v \rangle \\
\leq \lim_{n \to \infty} \left[J_\lambda(v_n) - \frac{1}{\theta} \langle J'_\lambda(v_n), v_n \rangle \right] \\
= \lim_{n \to \infty} J_\lambda(v_n) = c_\lambda.
\]

(4.9)

Noticing that if \(p_v < 1 \) or \(q_v < 1 \), then the inequality (4.9) is strict. Hence, by bringing together (4.8) and (4.9), we conclude that \(p_v = q_v = 1 \) and \(v \in \mathcal{N}_\lambda \) satisfying \(J(v) = c_\lambda \).

Proof of Theorem 1.2. From Lemma 3.5, Lemma 3.6 and Lemma 4.2, we deduce that \(v \) is a least energy sign-changing solution form problem \((P_\lambda)\) with exactly tow nodal domains.

5 The critical case

Lemma 5.1 There exists \(\lambda^* > 0 \) such that if \(\lambda \geq \lambda^* \), and \(\{v_n\} \subset \mathcal{N}_\lambda \) is a minimizing sequence for \(c_\lambda \), then there exists some \(v \in \mathcal{N}_\lambda \) such that \(J_\lambda(v) = c_\lambda \).

Proof. Let \(\{v_n\} \subset \mathcal{N}_\lambda \) be a sequence such that \(\lim_{n \to \infty} J_\lambda(v_n) = c_\lambda \). We have

\[
J_\lambda(v_n) \to c_\lambda \text{ and } \langle J'_\lambda(v_n), \varphi \rangle \to 0, \forall \varphi \in \mathcal{E}
\]

that is

\[
J_\lambda(v_n) = \frac{1}{N} \|v_n\|^N - \int_B F(x, v_n)dx \to c_\lambda, \quad n \to +\infty
\]

(5.1)

and

\[
|\langle J'_\lambda(v_n), \varphi \rangle| = \left| \int_B \omega(x)|\nabla v_n|^{N-2}\nabla v_n \cdot \nabla \varphi dx - \int_B f(x, v_n)\varphi dx \right| \leq \varepsilon_n \|\varphi\|,
\]

(5.2)

for all \(\varphi \in \mathcal{E} \), where \(\varepsilon_n \to 0 \), as \(n \to +\infty \).

By lemma 3.3, \(v_n \) is bounded in \(\mathcal{E} \). Furthermore, we have from (5.2) and \((V_2)\), that

\[
0 < \int_B f(x, u_n)u_n \leq C
\]

(5.3)
and

\[0 < \int_B F(x, u_n) \leq C. \]

Since by Lemma 3.2, we have

\[f(x, u_n) \to f(x, u) \text{ in } L^1(B) \text{ as } n \to +\infty, \tag{5.4} \]

then, it follows from \((H_2)\) and the generalized Lebesgue dominated convergence Theorem that

\[F(x, u_n) \to F(x, u) \text{ in } L^1(B) \text{ as } n \to +\infty. \tag{5.5} \]

Arguing as Lemma 4.2, we have that, up to a subsequence,

\[v_n \to u \text{ in } \mathbb{E}, \]

\[v_n \to u \text{ in } L^t(B) \text{ for } t \in [1, \infty), \]

\[v_n \to u \text{ a.e. in } B, \]

\[v_n^+ \to u^+ \text{ in } \mathbb{E}, \]

\[v_n^+ \to u^+ \text{ in } L^t(B) \text{ for } t \in [1, \infty), \]

\[v_n^\pm \to u^\pm \text{ a.e. in } B. \]

for some \(u \in \mathbb{E}. \)

Noticing that, according to lemma 3.4, there exists \(\lambda^* > 0 \) such that for all \(\lambda > \lambda^* \), we get

\[c\lambda < \frac{1}{N} \left(\frac{\alpha N, \beta}{\alpha_0} \right)^{\frac{\gamma}{N}}. \]

In the sequel, the results that are valid for \(v_n \) and \(u \), are also valid for \(v_n^\pm \) and \(u^\pm \). Next, we are going to make some Claims.

Claim 1. \(\nabla v_n(x) \to \nabla v(x) \text{ a.e. in } B \text{ and } v \text{ is a solution of the problem } (P_\lambda). \)

Indeed, for any \(\xi > 0 \), let \(\mathcal{A}_\eta = \{x \in B, |v_n - v| \geq \xi\}. \) For all \(t \in \mathbb{R} \), for all positive \(c > 0 \), we have

\[ct \leq e^t + c^2. \]

It follows that for \(t = \alpha N, \beta \left(\frac{|v_n - v|}{\|v_n - v\|} \right)^\gamma, c = \frac{1}{\alpha N, \beta} \|v_n - v\|^\gamma, \) we get

\[|v_n - v|^\gamma \leq e^{\alpha N, \beta \left(\frac{|v_n - v|}{\|v_n - v\|} \right)} + \frac{1}{\alpha_{N, \beta}} \|v_n - v\|^{2\gamma} \]

\[\leq e^{\alpha N, \beta \left(\frac{|v_n - v|}{\|v_n - v\|} \right)^\gamma} + C_1(N), \]

where \(C_1(N) \) is a constant depending only on \(N \) and the upper bound of \(\|v_n\| \). So, if we denote by \(\mathcal{L}(A_\xi) \) the Lebesgue measure of the set \(A_\xi \), we obtain

\[\mathcal{L}(A_\xi) = \int_{A_\xi} e^{\alpha N, \beta \left(\frac{|v_n - v|}{\|v_n - v\|} \right)} dx \leq e^{-\xi^\gamma} \int_{A_\xi} e^{\alpha N, \beta \left(\frac{|v_n - v|}{\|v_n - v\|} \right)} + C_1(N) dx \]

\[\leq e^{-\xi^\gamma} e^{C_1(N)} \int_B \exp \left(\alpha N, \beta \left(\frac{|v_n - v|}{\|v_n - v\|} \right)^\gamma \right) dx \]

\[\leq e^{-\xi^\gamma} C_2(N) \to 0 \text{ as } \xi \to +\infty, \]

18
where $C_2(N)$ is a positive constant depending only on N and the upper bound of $\|v_n\|$. It follows that
\[
\int_{A_\xi} |\nabla v_n - \nabla v| dx \leq Ce^{-\frac{1}{2}C} \left(\int_B |\nabla v_n - \nabla v|^2 \omega(x) dx \right)^{\frac{1}{2}} \to 0 \text{ as } \xi \to +\infty. \tag{5.8}
\]

We define for $\xi > 0$, the following truncation function
\[
T_\xi(s) := \begin{cases}
s & \text{if } |s| < \xi \\
\frac{s}{|s|} & \text{if } |s| \geq \xi.
\end{cases}
\]

If we take $\varphi = T_\xi(v_n - v) \in E$, in (5.2) then with $\nabla \varphi = \chi_{A_\xi} (v_n - v)$, we obtain
\[
\left| \int_{B \setminus A_\xi} \omega(x) |\nabla v_n|^{N-2} \nabla v_n \cdot (\nabla v_n - \nabla v) dx \right| \leq \left| \int_{B \setminus A_\xi} \omega(x) |\nabla v|^{N-2} \nabla v \cdot (\nabla v_n - \nabla v) dx \right| + \int_B f(x, v_n) T_\xi(v_n - v) dx + \varepsilon_n |v_n - v| \leq \int_B f(x, v_n) T_\xi(v_n - v) dx + \varepsilon_n |v_n - v|
\]

where $\varepsilon_n \to 0$ as $n \to +\infty$.

Since $v_n \rightharpoonup v$ weakly, then $\int_B \omega(x) |\nabla v|^{N-2} \nabla v \cdot (\nabla v_n - \nabla v) \to 0$. Moreover, by (5.4) and the Lebesgue dominated convergence Theorem, we get
\[
\int_B f(x, v_n) T_\xi(v_n - v) dx \to 0 \text{ as } n \to +\infty.
\]

Using the well known inequality,
\[
\langle |x|^{N-2} x - |y|^{N-2} y, x - y \rangle \geq 2^{2-N} |x - y|^N \forall \ x, y \in \mathbb{R}^N, \ N \geq 2,
\]
\[
\langle \cdot, \cdot \rangle \text{ is the inner product in } \mathbb{R}^N,
\]
one has
\[
\int_{B \setminus A_\xi} \omega(x) |\nabla v_n - \nabla v|^{N} dx \to 0.
\]

Therefore,
\[
\int_{B \setminus A_\xi} |\nabla v_n - \nabla v| dx \leq \left(\int_{B \setminus A_\xi} \omega(x) |\nabla v_n - \nabla v|^N dx \right)^{\frac{1}{N}} \left(\mathcal{L}(B \setminus A_\xi) \right)^{\frac{1}{N}} \to 0 \text{ as } n \to +\infty. \tag{5.9}
\]

From (5.8) and (5.9), we deduce that
\[
\int_B |\nabla v_n - \nabla v| dx \to 0 \text{ as } n \to +\infty.
\]

Therefore, $\nabla v_n(x) \to \nabla u(x)$ a.e. in B. 19
On the other hand,
\[
\left| \nabla v_n \right|^{N-2} \nabla v_n \] is bounded in \((L^{\frac{N}{N-2}}(B, \omega))^N \).

Then, up to subsequence, we can assume that
\[
\nabla v_n \to \nabla \nu weakly in \ (L^{\frac{N}{N-1}}(B, \omega))^N.
\] (5.10)

Therefore, passing to the limit in (5.2) and using (5.4), (5.10), the convergence everywhere of the gradient, we obtain that \(\nu \) is a solution of problem \((P_\lambda)\). Claim 1 is proved.

Claim 2. \(\nu^+ \neq 0 \) and \(\nu^- \neq 0 \). Suppose, by contradiction, \(\nu^+ = 0 \). Therefore, \(\int_B F(x, v_n)dx \to 0 \) and consequently we get
\[
\frac{1}{N} \left\| v_n \right\|_N \to c_\lambda \left(\frac{\alpha_N \beta}{\alpha_0} \right)^{\frac{N}{N\gamma}}.
\] (5.11)

First, we claim that there exists \(q > 1 \) such that
\[
\int_B |f(x, v_n)|^q dx \leq C.
\] (5.12)

By (5.2), we have
\[
\left| \left\| v_n \right\|_N - \int_B f(x, v_n)v_n dx \right| \leq C\varepsilon_n.
\]

So
\[
\left\| v_n \right\|_N \leq C\varepsilon_n + \left(\int_B |f(x, v_n)|^q dx \right)^{\frac{1}{q'}} \left(\int_B |v_n|^{q'} dx \right)^{\frac{1}{q'}},
\]

where \(q' \) is the conjugate of \(q \). Since \((v_n)\) converge to 0 in \(L^q(B) \)
\[
\lim_{n \to +\infty} \left\| v_n \right\|_N = 0.
\]

According to Lemma 3.3, this result cannot occur. Now for the proof of the claim (5.12), since \(f \) has critical growth, for every \(\varepsilon > 0 \) and \(q > 1 \) there exists \(t_\varepsilon > 0 \) and \(C > 0 \) such that for all \(|t| \geq t_\varepsilon \), we have
\[
|f(x, t)|^q \leq Ce^{\alpha_0(\varepsilon + 1)t_\gamma}.
\]

Consequently,
\[
\int_B |f(x, v_n)|^q dx = \int_{\{v_n \leq t_\varepsilon\}} |f(x, v_n)|^q dx + \int_{\{v_n \geq t_\varepsilon\}} |f(x, v_n)|^q dx \leq \omega_{N-1} \max_{B \times [-t_\varepsilon, t_\varepsilon]} |f(x, t)|^q + C \int_B e^{\alpha_0(\varepsilon + 1)|v_n|\gamma} dx.
\]

Since \(Nc_\lambda < \left(\frac{\alpha_N \beta}{\alpha_0} \right)^{\frac{N}{N\gamma}} \), there exists \(\eta \in (0, \frac{1}{N}) \) such that \(Nc_\lambda = (1 - \eta)\left(\frac{\alpha_N \beta}{\alpha_0} \right)^{\frac{N}{N\gamma}} \). On the other hand, \(\| v_n \|_{\gamma} \to (Nc_\lambda)^{\frac{N}{N\gamma}} \), so there exists \(n_\eta > 0 \) such that for all \(n \geq n_\eta \), we get \(\| v_n \|_{\gamma} \leq (1 - \eta)\left(\frac{\alpha_N \beta}{\alpha_0} \right)^{\frac{N}{N\gamma}} \). Therefore,
\[
\alpha_0(1 + \varepsilon) \left(\frac{\| v_n \|_{\gamma} \| v_n \|}{\| v_n \|} \right) \leq (1 + \varepsilon)(1 - \eta)\alpha_N \beta.
\]

\[20\]
We choose $\varepsilon > 0$ small enough to get

$$\alpha_0(1 + \varepsilon\|v_n\|)^{\gamma} \leq \alpha_{N,\beta}.$$

So, the second integral is uniformly bounded in view of (1.4) and the claim is proved.

Since (v_n) is bounded, up to a subsequence, we can assume that $\|v_n\| \to \rho > 0$. We affirm that $J_\lambda(v) = c_\lambda$. Indeed, by (V_2) and claim 2, we have

$$J_\lambda(v) = \frac{1}{N} \int_B [f(x,v) - NF(x,v)]dx \geq 0. \quad (5.13)$$

Now, using the lower semi continuity of the norm and (5.5), we get,

$$J_\lambda(v) \leq \frac{1}{N} \liminf_{n \to \infty} \|v_n\|^N - \int_B F(x,v)dx = c_\lambda.$$

Suppose that $J_\lambda(v) < c_\lambda$.

Then

$$\|v\|^N < \rho^N. \quad (5.14)$$

In addition,

$$\frac{1}{N} \lim_{n \to +\infty} \|v_n\|^N = (c_\lambda + \int_B F(x,v)dx), \quad (5.15)$$

which means that

$$\rho^N = N\left(c_\lambda + \int_B F(x,v)dx\right).$$

Set

$$u_n = \frac{v_n}{\|v_n\|} \quad \text{and} \quad u = \frac{v}{\rho}.$$

We have $\|u_n\| = 1$, $u_n \rightharpoonup u$ in E, $u \not\equiv 0$ and $\|u\| < 1$. So, by Lemma 2.2, we get

$$\sup_n \int_B e^{\rho N,\beta |u_n| \gamma} dx < +\infty,$$

provided $1 < p < \left(1 - \|u\|^N\right)^{-\frac{\beta}{\gamma}}$.

By (5.5) and (5.15), we have the following equality

$$Nc_\lambda - N J_\lambda(v) = \rho^N - \|v\|^N.$$

From (5.13), Lemma 4.1 and the last equality, we obtain

$$\rho^N \leq Nc_\lambda + \|v\|^N < \left(\frac{\alpha_{N,\beta}}{\alpha_0}\right)^{\frac{\beta}{\gamma}} + \|v\|^N. \quad (5.16)$$
Since
\[\rho^\gamma = \left(\frac{\rho^N - \|u\|^N}{1 - \|u\|^N} \right)^{\frac{1}{N - 1}(1 - \sigma)}, \]
we deduce from (5.16) that
\[\rho^\gamma < \left(\frac{\alpha_{N,\beta}}{1 - \|u\|^N} \right)^{\frac{N}{N - 1}(1 - \sigma)}. \]

(5.17)

On one hand, we have this estimate \(\int_B |f(x, v_n)|^q dx < C \). Indeed, since \(f \) has critical growth, for every \(\varepsilon > 0 \) and \(q > 1 \) there exists \(t_\varepsilon > 0 \) and \(C > 0 \) such that for all \(|t| \geq t_\varepsilon \), we have
\[|f(x, t)|^q \leq Ce^{\alpha_0(\varepsilon + 1)t^\gamma}. \]
So,
\[\int_B |f(x, v_n)|^q dx = \int_{\{v_n\leq t_\varepsilon\}} |f(x, v_n)|^q dx + \int_{\{v_n > t_\varepsilon\}} |f(x, v_n)|^q dx \]
\[\leq \omega_{N-1} \max_{B \times [-t_\varepsilon, t_\varepsilon]} |f(x, t)|^q + C \int_B e^{\alpha_0(1+\varepsilon)\|v_n\|^\gamma} dx \]
\[\leq C\varepsilon + C \int_B e^{\alpha_0(1+\varepsilon)\|v_n\|^\gamma} \frac{1}{\|v_n\|^\gamma} dx \leq C, \]
provided \(\alpha_0(1+\varepsilon)\|v_n\|^\gamma \leq p \alpha_{N,\beta} \) and \(1 < p < \mathcal{U}(u) = (1 - \|u\|^N)^{-\frac{1}{\gamma}} \).

From (5.17), there exists \(\delta \in (0, \frac{1}{q}) \) such that \(\rho^\gamma = (1 - 2\delta) \left(\frac{\alpha_{N,\beta}}{1 - \|u\|^N} \right)^{\frac{N}{N - 1}(1 - \sigma)} \).

Since \(\lim_{n \to +\infty} \|v_n\|^\gamma = \rho^\gamma \), then, for \(n \) large enough
\[\alpha_0(1+\varepsilon)\|v_n\|^\gamma \leq (1 + \varepsilon)(1 - \delta) \alpha_{N,\beta} \left(\frac{1}{1 - \|u\|^N} \right)^{\frac{N}{N - 1}(1 - \sigma)}. \]

We choose \(\varepsilon > 0 \) small enough such that \((1+\varepsilon)(1-\delta) < 1 \) which implies that
\[\alpha_0(1+\varepsilon)\|v_n\|^\gamma < \alpha_{N,\beta} \left(\frac{1}{1 - \|u\|^N} \right)^{\frac{N}{N - 1}(1 - \sigma)}. \]

Hence, the sequence \(\langle f(x, v_n) \rangle \) is bounded in \(L^q \), \(q > 1 \).

Using the H"older inequality, we deduce that
\[\int_B f(x, v_n)(v_n - v) dx \leq \left(\int_B |f(x, v_n)|^q dx \right)^{\frac{1}{q}} \left(\int_B |v_n - v|^q' dx \right)^{\frac{1}{q'}} \]
\[\leq C \left(\int_B |v_n - v|^q' dx \right)^{\frac{1}{q'}} \to 0 \text{ as } n \to +\infty, \]
where \(\frac{1}{q} + \frac{1}{q'} = 1 \).

Since \(\langle J'_\alpha(v_n), (v_n - v) \rangle = o_n(1) \), it follows that
\[\int_B (\omega(x)|\nabla v_n|^{N-2}\nabla v_n \cdot (\nabla v_n - \nabla v) dx) \to 0. \]
On the other side,
\[\int_{B} \omega(x) |\nabla v_n|^{N-2} \nabla v_n \cdot (\nabla v_n - \nabla v) \, dx = \|v_n\|^{N} - \int_{B} \omega(x) |\nabla v_n|^{N-2} \nabla v_n \cdot \nabla v \, dx. \]

Passing to the limit in the last equality, we get
\[\rho^{N} - \|v\|^{N} = 0, \]
therefore \(\|v\|^{N} = \rho\). This is in contradiction with (5.12). Therefore, \(J_{\lambda}(v) = c_{\lambda}\). By Claim 1, \(J'_{\lambda}(v) = 0\) and by Claim 2, \(\nu \neq 0\).

Proof of Theorem 1.3. From Lemma 3.6 and Lemma 5.1, we deduce that \(\nu\) is a least energy sign-changing solution for problem \((P_{\lambda})\) with exactly two nodal domains.

Declaration of competing interest

the authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data

Data openly available in a public repository that issues data sets with DOIs. We also mention that the documentation to support this study are available from Umm Al-Qura University.

References

[1] R. Aris, *The Mathematical theory of Diffusion and reaction in permeable catalyst*, Vol. 1 - Vol. 2, Clarendon Press Oxford, 1975.

[2] C. Avramescu, *A generalization of Miranda’s theorem*, Semin. Fixed Point Theory Cluj-Napoca 3(2002)121–128.

[3] G. Astrita and G. Marrucci, *Principles of Non-Newtonian Fluid Mechanics*, McGraw-Hill New York, USA, 1974.

[4] H. Brezis, *Functional Analysis, Sobolev Spaces and Partial Differential Equations*, Springer New York (2010).

[5] M. Calanchi, *"Some weighted inequalities of Trudinger - Moser Type" in Analysis and Topology in Nonlinear Differential Equations*, Progress in Nonlinear Differential Equations and Appl., Birkhauser vol 85 (2014), 163-174.
[6] M. Calanchi and B. Ruf, *On Trudinger-Moser type inequalities with logarithmic weights*, J. Differential Equations 258 (2015), 1967-1989. Doi: https://doi.org/10.1016/j.jde.2014.11.019

[7] M. Calanchi and B. Ruf, *Trudinger-Moser type inequalities with logarithmic weights in dimension N.*, Nonlinear Analysis, Series A: Theory Methods and Applications 121 (2015), 403-411. DOI: 10.1016/j.na.2015.02.001

[8] M. Calanchi and B. Ruf, *Weighted Trudinger-Moser inequalities and Applications*, Bulletin of the South Ural State University. Ser. Mathematical Modelling, programming and Computer Software vol. 8 no. 3 (2015), 42-55. DOI: 10.14529/mmp150303

[9] M. Calanchi, B. Ruf and F. Sani, *Elliptic equations in dimension 2 with double exponential nonlinearities*, NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 3, Art. 29, 18. MR 3656913, https://doi.org/10.1007/s00030-017-0453-y.

[10] S. Deng, T. Hu and C. Tang, *N-laplacian problems with critical double exponential nonlinearities*, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41 (2021), 987-1003.

[11] S. Baraket, R. Jaidane, *Non-autonomous weighted elliptic equations with double exponential growth*, An. Şt. Univ. Ovidius Constanța, Vol. 29(3), 2021, 33-66.DOI: 10.2478/auom-2021-0033

[12] N.P. Dumitru Motreanu, Viorica Venera Motreanu, *Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems*, Springer, New York, NY, 2014.

[13] G. M. Figueredo, F.B. M. Nunes *Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method* Revista Matemática Complutense volume 32, pages1-18 (2019).

[14] D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, *Elliptic equations in \mathbb{R}^2 with nonlinearities in the critical growth range*, Calc. Var. Partial Differential Equations 3 (2) (1995), 139-153.2

[15] O. Kavian, *Introduction a` la Théorie des Points Critiques*, Springer-Verlag, Berlin, 1991.

[16] A. Kufner, *Weighted Sobolev spaces*, John Wiley and Sons Ltd, 1985. Doi: https://doi.org/10.1112/blms/18.2.220

[17] N. Lam and G. Lu, *Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in \mathbb{R}^N*, J. Funct. Anal. 262 no. 3 (2012), 1132-1165.

[18] P. Perona and J. Malik, *Scale-space and edge detection using anisotropic diffusion*, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7) 1990, 629-639. DOI: 10.1109/34.56205

[19] X. Sun, Y. Song *Nodal solutions for Q-Laplacian problem with exponential nonlinearities on the Heisenberg group*, J. Math. Anal. Appl. 509 (2022) 125968.

[20] R.E. Volker, *Nonlinear flow in porous media by finite elements*, Journal of the Hydraulics Division, Vol. 95 (6) (1969), 2093-2114.
[21] M. Willem, *Minimax Theorem*, Birkhäuser, Boston, 1996.

[22] Y. Yang, *Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space*, J. Funct. Anal. 262 no. 4 (2012), 1679-1704. Doi: https://doi.org/10.1016/j.jfa.2011.11.018

[23] C. Zhang, *Concentration-Compactness principle for Trudinger–Moser inequalities with logarithmic weights and their applications*, Nonlinear Anal. 197 (2020), 1-22.

[24] Y. Zhang, Y. Yang, S. Liang *Least energy sign-changing solution for N-Laplacian problem with logarithmic and exponential nonlinearities*, J. Math. Anal. Appl. 505 (2022) 125432