Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomal MicroRNA-18b-3p Inhibits the Occurrence of Preeclampsia by Targeting LEP

Qin Huang1, Meng Gong1, Tuantuan Tan2, Yunong Lin3, Yan Bao1 and Cuifang Fan1*

Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) expressing microRNAs have been highlighted in human diseases. However, the detailed molecular mechanism of hucMSCs-derived exosomal miR-18b-3p on preeclampsia (PE) remains further investigation. We aimed to investigate the effect of exosomes and miR-18b-3p/leptin (LEP) on occurrence of PE. The morphology of the hucMSC and hucMSC-exosomes (Exos) was identified. The exosomes were infected with different lentivirus expressing miR-18b-3p to explore the role of miR-18b-3p in PE. The PE rat model was established by intraperitoneal injection of N-nitro-l-arginine methyl ester. The expression of LEP and miR-18b-3p was tested in PE rat placenta tissues. Also, the effect of exosomes on LEP and miR-18b-3p expression was detected. The systolic blood pressure (SBP), proteinuria, inflammatory factors, the weight of fetal rat and placenta and cell apoptosis in PE rats were detected. Finally, the relationship between miR-18b-3p and LEP was verified using dual-luciferase reporter gene assay and RNA pull-down assay. Exosomes, restoring miR-18b-3p or inhibiting LEP reduced SBP and proteinuria of PE rats as well as increased the weight of fetal rat and placenta, decreased serum levels of inflammatory factors as well as suppressed apoptotic cells of PE rats, exerting a suppressive effect on PE progression. miR-18b-3p was decreased and LEP was increased in placenta tissues of PE rats. LEP was the direct target gene of miR-18b-3p. Upregulation of miR-18b-3p or treatment of the exosomes suppressed LEP expression and reduced PE occurrence, while downregulation of miR-18b-3p had contrary effects. Downregulated LEP reversed the effect of miR-18b-3p reduction on PE rats. HucMSCs-derived exosomal miR-18b-3p targets LEP to participate in the occurrence and development of PE. This study may provide a novel theoretical basis for the mechanism and investigation of PE.

Keywords: Preeclampsia, Human umbilical cord mesenchymal stem cells, Exosomes, MicroRNA-18b-3p, Leptin, Apoptosis

Introduction
Preeclampsia (PE), featured by proteinuria and hypertension [1], is a major cause of fetal and maternal mortality and morbidity in human pregnancy [2]. The etiology and pathogenesis of PE are not clear [3], which has been reported to be associated with abnormal trophoblast invasion resulting in maternal endothelial dysfunction, chronic placental malperfusion and hypertension with adverse outcomes [4]. With the exception of fetal and placental delivery, there is no specific therapy for PE [5]. Therefore, it is urgent to explore the therapeutic targets to improve the prognosis of this disease.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0.
Human umbilical cord (huc) is a suitable source of mesenchymal stem cells (MSCs) which secrete a variety of trophic factors and cytokines as well as show strong anti-inflammatory and immunomodulatory capacities [6]. A study has verified that PE accelerates neovascularization and proliferation in umbilical cord Wharton's jelly-derived MSCs [7]. A protective effect of hucMSCs exosomes (Exos) on placental morphology and angiogenesis in PE rats has also been reported [8]. Exosomes are small (50–100 nm) secretory vesicles which mediate communication between cells in the tumor microenvironment via encapsulating and transmitting carcinogenic factors to distant sites or to surrounding cells by the circulation [9]. A study has revealed the damage of vascular functions and complications induced by effective transfer of sFlt-1 and sEng into endothelial cells in patients with PE by exosomes [10]. MicroRNAs (miRNAs) are endogenous, non-coding RNAs with a length of 18–25 nucleotides, and regulate the expression of genes at the post-transcriptional level [11]. The data in a study have reported that miR-18b expression affects cell invasion, viability and migration of trophoblast cells in PE [12]. Furthermore, Wu et al. have proposed that miR-18b attenuates proliferation in human trophoblast endothelial cells induced by high-glucose, which may offer a new insight into comprehending the mechanism of diabetic retinopathy pathogenesis [13]. However, the role of hucMSC-derived exosomal miR-18b-3p in PE remains unknown. Leptin (LEP) has pleiotropic effects on cell differentiation/proliferation and immunity of physiological states and mainly emerged from adipocytes, in addition to other tissues, including placenta [14]. A study has verified that the abnormal LEP promoter methylation is involved in the PE progression [15]. Another study has suggested that placenta is a main site of LEP expression in pregnancy [16]. Nevertheless, the binding relationship between miR-18b-3p and LEP is still elusive. Therefore, we aimed to explore the role of hucMSC-derived exosomal miR-18b-3p in PE with the involvement of LEP, and we inferred that hucMSC-derived exosomal miR-18b-3p may inhibit PE progression via targeting LEP.

Materials and Methods

Ethical Approval

The study was approved by the Institutional Review Board of People’s Hospital of Wuhan University. All participants signed a document of informed consent. All animal experiments were tally with the Guide for the Care and Use of Laboratory Animal by International Committees of People's Hospital of Wuhan University.

Isolated, Culture and Identification of HucMSCs

The fetal umbilical cord delivered by healthy puerperant was collected and cut into mince and filtrated with sieve then mingled with phosphate-buffered saline (PBS) solution. The umbilical cord tissues were centrifuged at 1500 r/min for 5 min with 10 cm of centrifugal radius. The tissues were suspended with Dulbecco’s modified Eagle medium (DMEM)/F12 containing 10% fetal bovine serum (FBS) and transferred to a culture flask. The liquids were changed after 4 days and then changed once every 3 d. Cells were sub-cultured when the confluence reached about 90%. The adherent growth and morphology of hucMSCs were observed under a light microscope. The cells were stained with oil red O staining solution (Beyotime Institute of Biotechnology, Shanghai, China) to detect osteogenic differentiation of hucMSCs and dyed with alkaline phosphatase (ALP) staining solution (Beyotime) to detect adipogenic differentiation of hucMSCs. A flow cytometer (Beckman Coulter Life Sciences, Brea, CA, USA) was adopted to test CD73, CD166 (both 1: 10, BD Biosciences, Franklin Lakes, NJ, USA) and CD105 (1: 20, AbD Serotec, Oxford, UK).

Extraction and Identification of HucMSC-Exos

The well-growing hucMSCs were cultured. The supernatant was collected and centrifuged at 28,500 r/min for 1 h with 10 cm centrifuge radius. The supernatant was discarded, and the cells fixed with 2% glutaraldehyde and 1% osmic acid, dehydrated with ethanol, immersed in propylene oxide, dried for 2 h, embedded by Epon812 and sliced. The slices were stained with uranium and lead, respectively. Finally, the exosomes were observed under the electron microscope. Nanosight detector (Malvern Instruments, Malvern, UK) was utilized to detect Brownian movement imaging of exosomes nanoparticles and its size. The surface markers of hucMSC-Exos were identified by western blot assay, and the results showed that hucMSC-Exos expressed CD9, CD81 and CD63.

Lentivirus Infection Method

HucMSC was infected with lentivirus containing low expression of miR-18b-3p vector and low expression of miR-18b-3p vector negative control (NC) (Shanghai GenePharma Co, Ltd, Shanghai, China). Finally, the stably expressed hucMSC-antagomir NC and hucMSC-miR-18b-3p antagomir were obtained. Cells were cultured for 48 h, and the supernatant was collected and centrifuged with ultracentrifugation to obtain the corresponding Exos-antagomir NC and Exos-miR-18b-3p antagomir.
Experimental Animals
Wistar rats (weighing 200–250 g, aging 8 w, irrespective of gender) in a health-clean level and sexual maturity were selected (the Experimental Animal Center of Wuhan University, Wuhan, China). The rats were fed in a barrier system with a temperature of 18–28 °C, relative humidity of 40–70% and adequate diet and water.

Establishment of Rat PE Models
The rat PE model was established by intraperitoneal injection of 50 mg/kg nitric oxide synthetase inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME, Beyotime) with reference to an article [17]. The successful establishment of PE model was based on increased blood pressure with 20 mmHg and higher than 115 mmHg as well as enhanced proteinuria.

Animal Grouping
The female rat and the male rat were randomly cohabited at 1:1, and the two rats were kept in an individual special cage at 5–6 pm. the previous day. The sperm in the vaginal secretions of the female rats was observed by vaginal plug and microscope the next day. If the result was positive at the same time, the day was recorded as the 0th day of gestation. From the 13th day of gestation, rats were divided into 6 groups (10 rats in each group): normal group (the same amount of normal saline was injected intraperitoneally from day 13 to day 20 of gestation), PE group (L-NAME (50 mg/kg per day) was injected intraperitoneally from day 13 to day 20 of gestation), PE group (L-NAME [50 mg/kg per day] was injected intraperitoneally from day 13 to day 20 of gestation), and 20 μL of normal saline was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation. PE + Exos group (L-NAME (50 mg/kg per day) was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation), PE + si-LEP (L-NAME [50 mg/kg per day] was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation), PE + miR-18b-3p antagomir group (L-NAME [50 mg/kg per day] was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation), PE + miR-18b-3p agomir group (L-NAME [50 mg/kg per day] was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation), PE + si-LEP group (L-NAME [50 mg/kg per day] was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation). Rats were treated with exosomes and exosomes carrying lentivirus. The rats were assigned into 5 groups (10 rats in each group): normal group (the same amount of normal saline was injected intraperitoneally from day 13 to day 20 of gestation), PE group (L-NAME (50 mg/kg per day) was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of normal saline was injected to the placenta on day 16 to day 19 of gestation), PE + Exos-antagomir NC group (L-NAME (50 mg/kg per day) was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of Exos (80 μg exosomes were suspended in 20 μL normal saline) was injected to the placenta on day 16 to day 19 of gestation), PE + Exos-antagomir group (L-NAME (50 mg/kg per day) was injected intraperitoneally from day 13 to day 20 of gestation, and 20 μL of Exos-antagomir NC/20 μg exosomes were suspended in 20 μL normal saline) was injected to the placenta on day 16 to day 19 of gestation).

Detection of Systolic Blood Pressure (SBP) and Determination of 24-h Proteinuria
The pressure of rats was measured by rats tail-artery blood pressure measurement. The tail-cuff SBP of all pregnant rats was measured on the 10th, 13th, 16th and 19th day of gestation using the rat tail artery pressure detector (Tensys (R) Medical Inc., San Diego, CA, USA). The pressure was measured 3 times in a short time; then, the average value was taken as the blood pressure.

In the case of free diet and water, the 24-h urine of pregnant rats was collected on the 10th, 13th, 16th and 19th day of the gestation, and the protein content was detected in the nephrology department of People’s Hospital of Wuhan University.

Sample Collection
The pregnant rats were anesthetized with 3% pentobarbital sodium on the 21st day of gestation. The peripheral blood of the rats was preserved, centrifuged to take the serum and stored in the refrigerator at –20 °C for standby. Then fetal rat and placenta were taken by cesarean section, the fetal membrane and the connected umbilical cord were removed, and the umbilical cord connected to the fetal rat was cut off. The placenta and fetal rat were placed on aseptic gauze to dry blood and amniotic fluid, respectively, and then put on the analytical balance to weigh the weight. One part of placental tissues was fixed with 4% paraformaldehyde, dehydrated
controls. PCR primers were designed and compounded (Beckman). U6 and β-actin were utilized as the loading by DU-800 protein nucleic acid spectrophotometer. The concentration and purity of RNA were determined centrifuged at 4 °C, 12,000 rpm to extract the total RNA. The placenta tissues were added with 1 mL TRIzol (Invitrogen, Carlsbad, California, USA) and completely dissolved. The placenta tissues were weighed. Per 50–100 mg placenta using a fluorescence microscope (Nikon, Tokyo, Shanghai, China) was used to observe TUNEL-positive apoptosis was detected by TUNEL Kit (Nanjing Kejin Biotechnology Co., Ltd., Jiangsu, China). 4,6-Diamino-2-phenylindole (Shanghai Baitai Biotechnology Co., Ltd., Shanghai, China) was used to determine apoptotic TUNEL staining. The rest were stored at -80 °C for reverse transcription quantitative polymerase chain reaction (RT-qPCR) detection, Western blot analysis and enzyme-linked immunosorbent assay (ELISA).

ELISA
Tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 contents in serum were tested by ELISA. The concentrations of TNF-α, IL-1β and IL-6 were determined following the instructions of the kit (R&D Systems, Minneapolis, MN, USA). Optical density (OD) values (490 nm) were tested by a microplate reader (Thermo Fisher Scientific, MA, USA). The corresponding standard curve was obtained using the OD value as the abscissa and the concentration of the corresponding standard sample as the ordinate. TNF-α, IL-1β and IL-6 concentrations were calculated from the standard curve.

HE Staining
The paraffin samples of placenta tissues were cleared in xylene, dehydrated by conventional gradient alcohol, dyed with hematoxylin, differentiated by 1% hydrochloric acid alcohol and returned to blue by 1% ammonia water. Then, the tissues were counterstained with 1% eosin solution, dehydrated (75%, 90%, 95% ethanol, respectively, absolute ethyl alcohol) and cleared by xylene, dried, blocked and observed under the electron microscope.

TUNEL Staining
Paraffin-embedded sections were routinely dewaxed and dehydrated according to the instructions, and then, apoptosis was detected by TUNEL Kit (Nanjing Kejin Biotechnology Co., Ltd., Jiangsu, China). 4,6-Diamino-2-phenylindole (Shanghai Baitai Biotechnology Co., Ltd., Shanghai, China) was used to observe TUNEL-positive cells using a fluorescence microscope (Nikon, Tokyo, Japan) [18].

RT-qPCR
The placenta tissues were weighed. Per 50–100 mg placenta tissues were added with 1 mL TRizol (Invitrogen, Carlsbad, California, USA) and completely dissolved. The tissues were appended with 200 μL chloroform and centrifuged at 4 °C, 12,000 rpm to extract the total RNA. The concentration and purity of RNA were determined by DU-800 protein nucleic acid spectrophotometer (Beckman). U6 and β-actin were utilized as the loading controls. PCR primers were designed and compounded by Shanghai Sangon Biotechnology Co. Ltd. (Shanghai, China). The primer sequences are listed in Table 1. RNA was reversed to cDNA on the basis of instructions of RNA reverse transcription kit (Sangon). PCR was amplified and products were verified by agarose gel electrophoresis. The data were computed by 2−ΔΔCt method.

Western Blot Assay
The total protein of placenta tissues was extracted by radio-immunoprecipitation assay cell lysis buffer (Beyotime). HucMSC-Exo was utilized to abstract buffer, which was centrifuged at 14,000 rpm. The supernatant was preserved for testing the protein expression of exosomal marker protein (CD81, CD63 and CD9) in serum. The protein concentration was determined by bicinchoninic acid kit (Beyotime, P0010). The sample was loaded according to the quantitative results of protein, treated with 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to membrane. The membrane was blocked with 5% skimmed milk, probed with primary antibodies LEP, CD63, CD81, CD9 and β-actin (4 mL, 1:1000, Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA), re-probed with 4 mL secondary antibody goat anti-rabbit IgG/horseradish peroxidase, exposed and developed. β-Actin was utilized as internal reference. The gray value was analyzed by gel graphic analysis software Image Lab.

Dual-Luciferase Reporter Gene Assay
On-line prediction software https://cm.jefferson.edu/ was adopted to predict the target relationship between miR-18b-3p and LEP as well as the binding site of miR-18b-3p and LEP 3′untranslated region (UTR). The LEP 3′UTR promoter region sequence containing miR-18b-3p binding site was composed. The LEP 3′UTR wild-type (WT) plasmid and LEP 3′UTR mutant type (MUT) were constructed. The recombinant plasmids were named as LEP 3′UTR-WT and LEP 3′UTR-MUT, respectively. The

Table 1 Primer sequence

Gene	Sequence (5′ → 3′)
miR-18-3p	F: 5′-TAAGGGTGCATCTAGTGCAGTAG-3′ R: 5′-CCATAAGGTGCTACATGAGG-3′
U6	F: 5′-CTCGCTTCGCGACCTGAC-3′ R: 5′-AACCGCTTCGGGATTGGCT-3′
LEP	F: 5′-TGTCGCTGCTGGCAGATAT-3′ R: 5′-GGA GTCTCCGACGGTCT-3′
β-actin	F: 5′-GGG TGG ACC CCG CAT GAC CAA-3′ R: 5′-TTT GTT GTT TAC CAC GAT TCC-3′

F forward, R reverse, miR-18-3p, LEP-18-3p, LEP leptin
cultured 293T cells were co-transfected with miR-18b-3p mimic and LEP 3’UTR-WT, miR-18b-3p mimic and LEP 3’UTR-MUT, mimic NC and LEP 3’UTR-WT, mimic NC and LEP 3’UTR-MUT for 30 h. Then 293T cells were collected. Firefly and renilla luciferase activity in cells were measured by luminescence measurement in accordance with dual-luciferase reporter gene detection kit (Promega, Madison, WI, USA).

RNA Pull-Down Assay
Biotinylated RNA probes (Bio-miR-NC, Bio-miR-18b-3p and Bio-miR-18b-3p-Mut) were incubated with the lysate of 293T cells and extracted using magnetic beads conjugated with antibiotic streptomycin. The experiment was performed based on instructions of Pierce magnetic RNA pull-down kits (Pierce, IL, USA). The RNA was eluted and purified using TRizol (Pierce). The enrichment of LEP in RNA complex was quantified using RT-qPCR as previously described [19].

Statistical Analysis
All data were explicated by SPSS 21.0 software (IBM Corp. Armonk, NY, USA). The measurement data were indicated as mean ± standard deviation. The data were conducted by independent sample t test for two group comparisons, while comparisons among multiple groups were assessed by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. The criterion for statistical significance was set at p < 0.05.

Results

Morphology and Identification of the HucMSC and HucMSC-Exos
The umbilical cord tissue masses were observed under an inverted microscope. It could be seen that cells crawled out of the tissue mass on the day 3; cells showed spindle shape and threadiness as well as grew like colony at about 5 days. When cultured to passage 3, the morphology of cells was uniform long fusiform and similar to fibroblast morphology and the arrangement was regular (Fig. 1a). After 2 w of adipogenic differentiation of hucMSC, lipid droplets were formed in the cytoplasm, and the lipid droplets showed Kranz structure under the inverted microscope (Fig. 1b), suggesting that the isolated cultured hucMSC had the ability of adipogenic differentiation. After 2 w of osteogenic differentiation, a large number of brown calcium nodules could be seen under an inverted microscope (Fig. 1c), indicating that isolated cultured hucMSC had the ability of osteogenic differentiation. A flow cytometer was adopted to test the immunophenotype of cells, and the results included that cells overexpressed surface marker CD73, CD105 and CD166 of MSCs (Fig. 1d).

The morphology of hucMSC-Exos was observed by the TEM, and the results presented that the exosomes were round or oval with low central density and thick staining on both sides (Fig. 1e). Nanosight analysis was utilized to analyze the particle size of exosomes, and the results showed that the particle size was mainly distributed between 40 and 100 nm, more concentrated around 80 nm (Fig. 1f). Western blot assay revealed that all the surface markers CD81, CD63 and CD9 were expressed in hucMSC-Exos (Fig. 1g).

Restoring miR-18b-3p Alleviates Pathological Characteristics of PE Rats
The results of SBP and 24-h proteinuria presented that: there was no significant difference in SBP and 24-h proteinuria in 6 groups before administration (day 10 of gestation). SBP and 24-h proteinuria in day 19 of gestation showed a obvious difference in normal rats. In PE rats or PE rats treated with miR-NC, miR-18b-3p agonim, miR-18b-3p antagonir, miR-18b-3p antagonir + si-LEP, si-NC or si-LEP, SBP and 24-h proteinuria began to increase at day 13 of gestation. There was no distinct difference of SBP and 24-h proteinuria in day 16 and day 19 of gestation in PE rats treated with miR-18b-3p agonim and si-LEP. PE rats had increased SBP and 24-h proteinuria in day 19 of gestation; this increase was reduced by miR-18b-3p elevation but further enhanced by miR-18b-3p inhibition. LEP reduction abrogated the role of miR-18b-3p downregulation in the SBP and 24-h proteinuria on day 19 of gestation in PE rats (Fig. 2a, b).

The overexpression of inflammatory factors in serum of PE rats was detected. It was found that TNF-α, IL-1β and IL-6 contents increased in the PE rats; miR-18b-3p elevation or LEP silencing reversed the effect of miR-18b-3p inhibition on the weight of fetal rat and placenta in PE rats (Fig. 2c, d).

Overexpressed miR-18b-3p Ameliorates Histopathological Change of Placenta Tissues of PE Rats
In normal rats, the placental villus was rich in blood vessels and had a clear structure, syncytiotrophoblasts were the main trophoblasts in placental villi, and there were fewer cytotrophoblasts. In PE rats or PE rats treated with miR-NC, miR-18b-3p antagonir, si-NC or miR-18b-3p antagonir + si-LEP, the number of placental villi decreased, the structure was blurred and atrophied,
some villi were performed fibrinoid necrosis, and the number of syncytiotrophoblast nodules in placental villi increased, and most of the villi were immature. The number of trophocytes was reduced, and the pathological changes were alleviated in PE rats treated with miR-18b-3p agomir and si-LEP (Fig. 3a).

TUNEL staining suggested that a small number of apoptotic cells could be seen. PE rats had increased apoptotic cells, which were reduced by miR-18b-3p elevation and LEP silencing, and were further enhanced by miR-18b-3p inhibition; LEP silencing also reversed the effect of miR-18b-3p inhibition on the number of apoptotic cells in PE rats (Fig. 3b, c).

Taken together, rats with upregulated miR-18b-3p or inhibited LEP had a decreased degree of PE progression in histology, and silenced LEP could abolish the therapeutic effect of inhibited miR-18b-3p.
miR-18b-3p is Downregulated, While LEP is Upregulated in PE Rat Placenta Tissues, and miR-18b-3p Targets LEP

Based on the above results, LEP downregulation reversed the therapeutic effect of downregulation of miR-18b-3p on PE rats in pathology and histology; thus, we hypothesized that miR-18b-3p may be related to LEP.

Western blot assay and RT-qPCR revealed that PE rats had decreased miR-18b-3p and increased LEP expression levels; the treatment of miR-18b-3p agomir upregulated miR-18b-3p and downregulated LEP in PE rats, while the treatment of miR-18b-3p antagonir increased LEP expression; LEP silencing reversed the promotive effect of miR-18b-3p reduction on LEP expression in PE rats (Fig. 4a–c).

Western blot assay and RT-qPCR were used to explore the role of exosomes in PE rats. The results displayed that exosomes upregulated miR-18b-3p and downregulated LEP in PE rats, indicating the suppressive effect of exosomes on PE development. Moreover, exosomes conveying miR-18b-3p antagonir induced miR-18b-3p downregulation and LEP upregulation in PE rats (Fig. 4d–f).

The target relationship between miR-18b-3p and LEP was forecasted by bioinformatics online prediction software https://cm.jefferson.edu/ (Fig. 4g). Dual-luciferase reporter gene assay suggested that miR-18b-3p mimic diminished the luciferase activity of LEP 3’UTR-WT, while imposed no impacts on that of LEP 3’UTR-MUT (Fig. 4h). Furthermore, the RNA pull-down assay revealed that LEP enrichment was increased in WT-biotinylated miR-18b-3p (Fig. 4i). These findings indicated that LEP is a target gene of miR-18b-3p.

hucMSC-Exos Attenuate Pathological Characteristics of PE Rats

The results of SBP and 24 h presented that there was no significant difference in SBP and 24-h proteinuria in 5 groups before administration (day 10 of gestation). SBP
and 24-h proteinuria in day 19 of gestation showed no distinct difference from normal rats. In PE rats, SBP and 24-h proteinuria began to raise at day 13 of gestation. There was no distinct difference of SBP and 24-h proteinuria in day 16 and day 19 of gestation in PE rats treated with hucMSC-Exos and hucMSC-Exos transmitting antagomir NC. SBP and 24-h proteinuria heightened in day 19 of gestation in the PE rats, while the increase was reduced by injection of hucMSC-Exos. Inhibiting miR-18b-3p reversed the effect of hucMSC-Exos on SBP and 24-h proteinuria in day 19 of gestation in PE rats (Fig. 5a, b).

The weight of fetal rat and placenta was measured, and we found that the PE rats had decreased weight of fetal rat and placenta; miR-18b-3p downregulation abolished the role of hucMSC-Exos in the weight of fetal rat and placenta in PE rats (Fig. 5c, d).

Inflammatory factors in serum were detected using ELISA. TNF-α, IL-1β and IL-6 contents remarkably increased in PE rats. Exosomes treatment decreased TNF-α, IL-1β and IL-6 contents in serum of PE rats, which were enhanced by injection of exosomes inhibiting miR-18b-3p (Fig. 5e).

Exosomes Alleviates Pathological Change and Inhibit Apoptosis of Placenta Tissues of PE Rats

In normal rats, the placental villus was abundant in blood vessels with a clear structure, syncytiotrophoblasts were the main trophoblast in placental villi, and there were fewer cytotrophoblasts. In the PE rats and PE rats treated with hucMSC-Exos and hucMSC-Exos transmitting antagonism, SBP and 24-h proteinuria heightened in day 19 of gestation in the PE rats, while the increase was reduced by injection of hucMSC-Exos. Inhibiting miR-18b-3p reversed the effect of hucMSC-Exos on SBP and 24-h proteinuria in day 19 of gestation in PE rats (Fig. 5a, b).

The weight of fetal rat and placenta was measured, and we found that the PE rats had decreased weight of fetal rat and placenta; miR-18b-3p downregulation abolished the role of hucMSC-Exos in the weight of fetal rat and placenta in PE rats (Fig. 5c, d).

Inflammatory factors in serum were detected using ELISA. TNF-α, IL-1β and IL-6 contents remarkably increased in PE rats. Exosomes treatment decreased TNF-α, IL-1β and IL-6 contents in serum of PE rats, which were enhanced by injection of exosomes inhibiting miR-18b-3p (Fig. 5e).
TUNEL staining indicated that in normal rats, a small number of apoptotic cells could be seen. PE rats had enhanced apoptotic cells, and reduced miR-18b-3p reversed the impacts of hucMSC-Exos on the number of apoptotic cells in placenta tissues from PE rats (Fig. 6b, c).

Discussion

PE is a multisystem pregnancy disorder characterized by proteinuria and either high blood pressure or other adverse conditions and is linked to a wide range of maternal endothelial dysfunction [20]. It was reported that hucMSC-Exo improved the morphology of placental
tissue in PE rats through suppressing cell apoptosis and facilitating angiogenesis in placental tissue in a dose-dependent manner [8]. A study has reported that miR-18b expression affected cell migration, viability and invasion in PE [12]. Moreover, it was verified increased maternal LEP concentration and hypomethylation of the LEP in placenta in early onset PE [21]. The current study was designed to explore the effect of exosomes and miR-18b-3p targeted LEP on the occurrence of PE. The findings in this study revealed that hucMSC-derived exosomal miR-18b-3p inhibited PE progression by reducing LEP.

Based on our findings, miR-18b-3p reduced and LEP elevated in placenta tissues of PE rats. Similar to our study, the mRNA expression of miR-18b was markedly suppressed in PE placental tissues relative to that in normal placental tissues [12]. In addition, a study revealed that miR-18b content was dramatically reduced in malignant melanoma tissues in comparison with their matched adjacent non-tumor tissues [22]. Another study has verified that placental LEP expression was raised in preterm PE compared with controls [23]. Moreover, a study showed that LEP expression was obviously heightened in preeclamptic placentas [15]. This literature provided a theoretical basis for us to explore the abnormal expression of miR-18b-3p and LEP in PE. Moreover, it was predicted using a bioinformatic software that LEP was targeted by miR-18b-3p, and this targeting relationship was further confirmed with dual-luciferase reporter gene assay in our research. A study reported that LEP is a target for all three miRNAs (miR-1301, miR-223 and miR-224) in early-onset PE [16]. Another study has displayed that miR-18b-3p decreased miR-93 expression in osteoarthritis and rheumatoid arthritis [24]. However, the binding between miR-18b-3p and LEP in human diseases, especially in PE, remains scarcely studied, which is the novelty of this study. Furthermore, a result emerging from our study reported that exosomes increased miR-18b-3p and decreased LEP in placenta tissues of PE. It was formerly documented that the expression of miR-18b-5p was notably raised in colorectal cancer plasma exosomes [25], while the relationship between hucMSC-Exos and miR-18b-3p/LEP in PE needs further study.

Additionally, the finding from our investigation showed that restored miR-18b-3p reduced SBP and 24-h proteinuria of PE rats, increased the weight of placenta, declined TNF-α, IL-1β and IL-6 contents in serum and placenta tissues as well as suppressed cell apoptosis. These data indicated that miR-18b-3p elevation contributes to alleviating the symptoms and pathological changes in PE. It was demonstrated that stable upregulation of miR-18b produced effective tumor inhibitor activity, such as inhibiting melanoma cell viability, inducing apoptosis and reducing tumor growth in vivo [26]. Another result in our study was that hucMSC-Exos reduced SBP and 24-h proteinuria of PE rats, increased the weight of placenta, declined TNF-α, IL-1β and IL-6 contents in serum and placenta tissues as well as suppressed cell apoptosis. The findings of the current study revealed that exosomes treated PE rat models presented an increase of the number and quality of fetuses, the quality of placenta, but cell apoptosis was significantly reduced [8]. Interestingly, a previous research has demonstrated that the addition of fetal bovine exosomes declined contents of macrophage TNF-α and IL-6 [27]. A study has revealed that purified exosomes suppressed production of IL-1β in lipopolysaccharide/nigericin-stimulated macrophages [28]. Furthermore, Nong et al. have suggested that inflammatory markers, such as TNF-α and IL-6, were dramatically decreased after administration of exosomes produced through human-induced pluripotent stem cell-derived MSCs [29]. There is a article finding that the SBP was markedly elevated in the group of women who later developed PE [30, 31]. It was displayed that PE patients were positively associated with SBP and diastolic blood pressures and proteinuria [32]. Also, a recent study has provided a proof that proteinuria heightened with advancing gestation in PE women [33]. A important finding was that rats from the PE group had increased TNF-α relative to the normal pregnant group [34]. Another study has verified that serum IL-6 and IL-1β were obviously elevated in women with PE in relation to controls [35]. The above findings suggested that PE patients usually showed high SBP, proteinuria and levels of inflammatory factors. Thus, it could be inferred from our results that the hucMSC-derived exosomal miR-18b-3p had a therapeutic effect on PE.
Figure 1: Effect of PE and PE + Exos on maternal physiological parameters and placental and fetal growth in gestational days 10, 13, 16, and 19.

Systolic Blood Pressure (mmHg):
- Normal: No significant changes
- PE: Slight increase
- PE + Exos-antagomir NC: Decrease
- PE + Exos-miR-18-3p antagomir: Further decrease

Urinary Protein (mg/day):
- Normal: Baseline levels
- PE: Increase
- PE + Exos: Decrease
- PE + Exos-antagomir NC: Further decrease
- PE + Exos-miR-18-3p antagomir: Further decrease

Fetal rat weight (g):
- Normal: Baseline levels
- PE: Increase
- PE + Exos-antagomir NC: Decrease
- PE + Exos-miR-18-3p antagomir: Further decrease

Placental weight (g):
- Normal: Baseline levels
- PE: Increase
- PE + Exos-antagomir NC: Decrease
- PE + Exos-miR-18-3p antagomir: Further decrease

Content (pg/ml):
- TNF-α: Normal levels
- IL-1β: Increase in PE, decrease in PE + Exos-antagomir NC, further decrease in PE + Exos-miR-18-3p antagomir
- IL-6: Increase in PE, decrease in PE + Exos-antagomir NC, further decrease in PE + Exos-miR-18-3p antagomir

* (#) indicates statistical significance compared to respective control groups.
Conclusion
In conclusion, our study provides evidence that huM-SCs-derived exosomes upregulate miR-18b-3p, which targets LEP to suppress the contents of inflammatory factors and reduce cell apoptosis rate in placenta tissues, thereby inhibiting the occurrence of PE. Thus, exosomal miR-18b-3p may be a potential candidate for treatment of PE via targeting LEP. This research identified the role of huM-SCs-derived exosomal miR-18b-3p targeting LEP during PE development for the first time, which provided a novel insight for PE treatment. However, due to the limitation of known researches, the study needs to be monitored rigorously and reported appropriately in the future clinical trials.

Acknowledgements
We would like to acknowledge the reviewers for their helpful comments on this paper.

Authors' contributions
CF contributed to study design; QH contributed to manuscript editing; MG and TT contributed to experimental studies; YL and YB contributed to data analysis. All authors read and approved the final manuscript.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
The study was approved by the Institutional Review Board of People’s Hospital of Wuhan University. All participants signed a document of informed consent. All animal experiments were tally with the Guide for the Care and Use of Laboratory Animal by International Committees.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflicts of interest.

Author details
1 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan 430060, Hubei, China.
2 Ultrasound Imaging Department, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
3 Department of Statistics, UW-Madison, Madison 53703, USA.

Received: 3 July 2020 Accepted: 5 January 2021
Published online: 10 February 2021

References
1. Yang X, Zhang J, Ding Y (2017) Association of microRNA-155, interleukin 17A, and proteinuria in preeclampsia. Medicine (Baltimore) 96(18):e6509
2. Zhou C et al (2017) Preeclampsia downregulates microRNAs in fetal endothelial cells: roles of miR-29a/c-3p in endothelial function. J Clin Endocrinol Metab 102(9):3470–3479
3. Hu S et al (2019) MicroRNA1443p may participate in the pathogenesis of preeclampsia by targeting Cox2. Mol Med Rep 19(6):4655–4662
4. Singh K et al (2017) Up-regulation of microRNA-202-3p in first trimester placenta of pregnancies destined to develop severe preeclampsia, a pilot study. Pregnancy Hypertens 10:7–9
5. Skurnik G et al (2017) Labor therapeutics and BMI as risk factors for postpartum preeclampsia: a case-control study. Pregnancy Hypertens 10:177–181
6. Sironi F et al (2017) Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice. Stem Cell Res 25:166–178
7. Joerger-Messerli M et al (2015) Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton’s jelly-derived mesenchymal stem cells. J Matern Fetal Neonatal Med 28(4):464–469
8. Xiong ZH et al (2018) Protective effect of human umbilical cord mesenchymal stem cell exosomes on preserving the morphology and angiogenesis of placenta in rats with preeclampsia. Biomed Pharmacother 105:1240–1247
9. Hannafon BN et al (2019) Metastasis-associated protein 1 (MTA1) is transferred by exosomes and contributes to the regulation of hypoxia and estrogen signaling in breast cancer cells. Cell Commun Signal 17(1):13
10. Chang X et al (2018) Exosomes from women with preeclampsia induced vascular dysfunction by delivering sFlt (soluble Fms-like tyrosine kinase-1) and sEng (soluble endoglin) to endothelial cells. Hypertension 72(6):1381–1390
11. Tanaka H et al (2017) miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Sci 108(11):2229–2238
12. Wang S et al (2017) Expression and role of microRNA 18b and hypoxia inducible factor-1alpha in placentatic tissues of preeclampsia patients. Exp Ther Med 14(5):4554–4560
13. Wu JH et al (2016) MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 73:41–52
14. Inagaki-Ohara K (2019) Gastric leptin and tumorigenesis: beyond obesity. Int J Mol Sci 20(11):2622
15. Xiang Y et al (2013) Up-regulated expression and aberrant DNA methylation of LEP and SH3PXD2A in pre-eclampsia. PLoS ONE 8(3):e59753
16. Weedon-Fekjaer MS et al (2014) Placental miR-1301 is dysregulated in early-onset preeclampsia and inversely correlated with maternal circulating leptin. Placenta 35(9):709–717
17. Yan T et al (2014) Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclamptic rats. Placenta 35(1):23–29
18. Wu Y et al (2020) Bone marrow mesenchymal stem cell-derived exosomes alleviate hypoxia-induced injury via the manipulation of microRNA-425. Am J Biochem Biophys 697:108712
19. Li R et al (2019) A potential regulatory network among WDR86-AS1, miR-10b-3p, and LTPA is possibly involved in preeclampsia pathogenesis. Cell Signal 55:44–52
20. Dayan J et al (2014) Circulating microRNAs implicate multiple atherogenic abnormalities in the long-term cardiovascular sequelae of preeclampsia. Am J Obstet Gynecol 310(10):1093–1097
21. Song J et al (2014) Hypomethylation of the LEP gene in placenta and decreased maternal leptin concentration in early onset preeclampsia. Mol Cell Endocrinol 367(1–2):64–73
22. Chen J et al (2016) MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1alpha-mediated glycolysis. Oncol Rep 36(1):471–479
23. Szabo S et al (2015) Activation of various trophoblastic p38 and ERK1/2 signaling pathways in preterm preeclampsia and HELLP syndrome. Pathol Oncol Res 21(3):659–668
24. Yang WH et al (2014) Lutein induces osteoclast M production in osteoblasts by downregulating miR-18b through the Akt signaling pathway. Int J Mol Sci 15(9):17786–17790
25. Zhang H et al (2013) A seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene 687:246–254
26. Dar AA et al (2013) The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst 105(6):433–442
27. Beninson AC, Fleisher M (2015) Exosomes in fetal bovine serum dampen primary microglial IL-1beta response to lipopolysaccharide (LPS) challenge. Immunol Lett 163(2):187–192
28. Wang Z et al (2019) Cyclic stretch force induces periodontal ligament cells to secrete exosomes that suppress IL-1beta production through the inhibition of the NF-kappaB signaling pathway in macrophages. Front Immunol 10:1310
29. Ng K et al (2016) Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 18(12):1548–1559
30. Udenze IC et al (2017) A prospective cohort study on the clinical utility of second trimester mean arterial blood pressure in the prediction of late-onset preeclampsia among Nigerian women. Niger J Clin Pract 20(6):741–745
31. Bagci B et al (2016) Renalase gene polymorphism is associated with increased blood pressure in preeclampsia. Pregnancy Hypertens 6(2):115–120
32. Liu X et al (2014) Plasma concentrations of sAxl are associated with severe preeclampsia. Mol Cell Endocrinol 470:173–176
33. Furuta I et al (2017) Association between nephrinuria, podocyturia, and proteinuria in women with pre-eclampsia. Clin Biochem 47(3):15778–15790
34. Song J, Li Y, An R (2017) Vitamin D restores angiogenic balance and decreases tumor necrosis factor-alpha in a rat model of pre-eclampsia. J Obstet Gynaecol Res 43(1):34–41
35. Kalinderis M et al (2011) Elevated serum levels of interleukin-6, interleukin-1beta and human chorionic gonadotropin in pre-eclampsia. Am J Reprod Immunol 66(6):468–475

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.