Subsequential tightness of the maximum of two dimensional Ginzburg-Landau fields

Wei Wu\(^1\), Ofer Zeitouni\(^2\)

February 26, 2018

Abstract

We prove the subsequential tightness of centered maxima of two-dimensional Ginzburg-Landau fields with bounded elliptic contrast.

1 Introduction

Let \(V \in C^2(\mathbb{R})\) satisfy

\[
V(x) = V(-x), \\
0 < c_- \leq V''(x) \leq c_+ < \infty,
\]

where \(c_-, c_+\) are positive constants. The ratio \(\kappa = c_+ / c_-\) is called the elliptic contrast of \(V\). We assume (1) and (2) throughout this note without further mentioning it.

We treat \(V\) as a nearest neighbor potential for a two-dimensional Ginzburg-Landau gradient field. Explicitly, let \(D_N := [-N, N]^2 \cap \mathbb{Z}^2\) and let the boundary \(\partial D_N\) consist of the vertices in \(D_N\) that are connected to \(\mathbb{Z}^2 \setminus D_N\) by some edge. The Ginzburg-Landau field on \(D_N\) with zero boundary condition is a random field denoted by \(\phi^{D_N,0}\), whose distribution is given by the Gibbs measure

\[
d\mu_N = Z_N^{-1} \exp \left[- \sum_{v \in D_N} \sum_{i=1}^2 V(\nabla_i \phi(v)) \right] \prod_{v \in D_N \setminus \partial D_N} d\phi(v) \prod_{v \in \partial D_N} \delta_0(\phi(v)),
\]

where \(\nabla_i \phi(v) = \phi(v + e_i) - \phi(v), e_1 = (1,0)\) and \(e_2 = (0,1)\), and \(Z_N\) is the normalizing constant ensuring that \(\mu_N\) is a probability measure, i.e. \(\mu_N(\mathbb{R}^{D_N}) = 1\).

\(^1\)Statistics department, University of Warwick, Coventry CV4 7AL, UK. E-mail: W.Wu.9@warwick.ac.uk

\(^2\)Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel, and Courant Institute, New York University, 251 Mercer St., New York, New York 10012. E-mail: ofer.zeitouni@weizmann.ac.il. Supported in part by the ERC Advanced grant LogCorrelated-Fields.
1. We denote expectation with respect to \(\mu_N \) by \(\mathbb{E}_N \), or simply by \(\mathbb{E} \) when no confusion can occur.

Ginzburg-Landau fields with convex potential, which are natural generalizations of the standard lattice Gaussian free field corresponding to quadratic \(V \) (DGFF), have been extensively studied since the seminal works [FS97, HS94, NS97]. Of particular relevance to this paper is Miller’s coupling, described in Section 2.2 below, which shows that certain multi-scale decompositions that hold for the Gaussian case continue to hold, approximately, for the Ginzburg-Landau model.

In this paper, we study the maximum of Ginzburg-Landau fields. Given \(U \subset D_N \), let

\[
M_U := \max_{x \in U} \phi^{D_N,0}(x),
\]

and set \(M_N = M_{D_N} \). For the Gaussian case, we write \(M^G_N \) for \(M_N \). Much is known about \(M^G_N \), following a long succession of papers starting with [Bra83]. In particular, see [BDZ16] and [BL16], \(M^G_N - m^G_N \) converges in distribution to a randomly shifted Gumbel, with \(m^G_N = c_1 \log N - c_2 \log \log N \) and explicit constants \(c_1, c_2 \).

Much less is known concerning the extrema in the Ginzburg-Landau setup, even though linear statistics of such fields converge to their Gaussian counterparts [NS97]. A first step toward the study of the maximum was undertaken in [BW16], where the following law of large numbers is proved:

\[
\frac{M_{D_N}}{\log N} \to 2\sqrt{7} \text{ in } L^2, \quad \text{for some } g = g(c_+, c_-). \tag{4}
\]

In this note we prove that the fluctuations of \(M_{D_N} \) around its mean are tight, at least along some (deterministic) subsequence.

Theorem 1 There is a deterministic sequence \(\{n_k\} \) with \(n_k \to k \to \infty \infty \) such that the sequence of random variables \(\{M_{D_{n_k}} - \mathbb{E}M_{D_{n_k}}\} \) is tight.

As will be clear from the proof, the sequence \(\{n_k\} \) can be chosen with density arbitrarily close to 1. Theorem 1 is the counterpart of an analogous result for the Gaussian case proved in [BDZ11], building on a technique introduced by Dekking and Host [DH91]. The Dekking-Host technique is also instrumental in the proof of Theorem 1. However, due to the fact that the Ginzburg-Landau field does not possess good decoupling properties near the boundary, significant changes need to be made. Additional crucial ingredients in the proof are Miller’s coupling and a decomposition in differences of harmonic functions introduced in [BW16].

2 Preliminaries

2.1 The Brascamp-Lieb inequality

One can bound the variances and exponential moments with respect to the Ginzburg-Landau measure by those with respect to the Gaussian measure, us-
ing the following Brascamp-Lieb inequality. Let \(\phi \) be sampled from the Gibbs measure (3). Given \(\eta \in \mathbb{R}^{DN} \), set
\[
\langle \phi, \eta \rangle := \sum_{v \in DN} \phi_v \eta(v).
\]

Lemma 2 (Brascamp-Lieb inequalities [BL76]) Assume that \(V \in C^2(\mathbb{R}) \) satisfies \(\inf_{x \in \mathbb{R}} V''(x) \geq c_\ast > 0 \). Let \(\mathbb{E}_{GFF} \) and \(\text{Var}_{GFF} \) denote the expectation and variance with respect to the DGFF measure (that is, (3) with \(V(x) = x^2/2 \)). Then for any \(\eta \in \mathbb{R}^{DN} \),
\[
\text{Var}(\phi, \eta) \leq c_\ast^{-1} \text{Var}_{GFF}(\phi, \eta),
\]
(5)
\[
\mathbb{E}[\exp(\langle \phi, \eta \rangle - \mathbb{E}(\phi, \eta))] \leq \exp\left(\frac{1}{2}c_\ast^{-1}\text{Var}_{GFF}(\phi, \eta)\right).
\]
(6)

2.2 Approximate harmonic coupling

By their definition, the Ginzburg-Landau measures satisfy the domain Markov property: conditioned on the values on the boundary of a domain, the field inside the domain is again a gradient field with boundary condition given by the conditioned values. For the discrete GFF, there is in addition a nice orthogonal decomposition. More precisely, the conditioned field inside the domain is the discrete harmonic extension of the boundary value to the whole domain plus an independent copy of a zero boundary discrete GFF.

While this exact decomposition does not carry over to general Ginzburg-Landau measures, the next result due to Jason Miller, see [Mii11], provides an approximate version.

Theorem 3 ([Mii11]) Let \(D \subset \mathbb{Z}^2 \) be a simply connected domain of diameter \(R \), and denote \(D' = \{x \in D : \text{dist}(x, \partial D) > r\} \). Let \(\Lambda \) be such that \(f : \partial D \to \mathbb{R} \) satisfies \(\max_{x \in \partial D} |f(x)| \leq 2\Lambda |\log R|^{-\Lambda} \). Let \(\phi \) be sampled from the Ginzburg-Landau measure (3) on \(D \) with zero boundary condition, and \(\phi_f \) be sampled from Ginzburg-Landau measure on \(D \) with boundary condition \(f \). Then there exist constants \(c, \gamma, \delta' \in (0, 1) \), that only depend on \(V \), so that if \(r > cR^{1/2} \) then the following holds. There exists a coupling \((\phi, \phi_f) \), such that if \(\hat{\phi} : D' \to \mathbb{R} \) is discrete harmonic with \(\hat{\phi}|_{\partial D'} = \phi_f - \phi|_{\partial D'} \), then
\[
\mathbb{P}(\phi_f = \phi + \hat{\phi} \text{ in } D') \geq 1 - c(\Lambda) R^{-\delta'}.
\]

Here and in the sequel of the paper, for a set \(A \subset \mathbb{Z}^2 \) and a point \(x \in \mathbb{Z}^2 \), we use \(\text{dist}(x, A) \) to denote the (lattice) distance from \(x \) to \(A \).

2.3 Pointwise tail bound

We also recall the pointwise tail bound for the Ginzburg-Landau field (3), proved in [BW16].
Theorem 4 Let g be the constant as in (4). For all $u > 0$ large enough and all $v \in D_N$ we have

$$P(\phi_v \geq u) \leq \exp\left(-\frac{u^2}{2g \log \text{dist}(v, \partial D_N)} + o(u)\right).$$

(7)

This allows us to conclude that the maximum of $\phi^{D_N,0}$ does not occur within a thin layer near the boundary.

Lemma 5 Given $\delta < 1$, there exists $\delta' > 0$ such that

$$P\left(M_{A_{N,N^\delta}} > (2\sqrt{g} - \delta') \log N\right) \leq N^{\frac{-1}{2}}.$$

where

$$A_{N,N^\delta} := \{v \in D_N : \text{dist}(x, \partial D_N) < N^\delta\}.$$

Proof. Let $\Delta = \text{dist}(x, \partial D_N)$. For δ' small enough, applying Theorem 4 with $u = (2\sqrt{g} - \delta') \log N$ yields

$$P(\phi_v \geq (2\sqrt{g} - \delta') \log N) \leq \exp\left(-\frac{2 \log N^2}{\log \Delta} + \frac{2\delta' \log N^2}{\sqrt{g} \log \Delta} + o(\log N)\right) \leq N^{-2+2\delta'/\sqrt{g}+o(1)},$$

for all $v \in A_{N,N^\delta}$. Therefore a union bound yields

$$P\left(M_{A_{N,N^\delta}} \geq (2\sqrt{g} - \delta') \log N\right) \leq N^{\delta-1+2\delta'/\sqrt{g}+o(1)}.$$

It suffices to take δ' such that $2\delta'/\sqrt{g} < \frac{1-\delta}{2}$. \blacksquare

3 The recursion and proof of Theorem 1

We prove Theorem 1 by establishing a recursion for some random variable M_{Y_N}, where $Y_N \subset D_N$ is a specific subset defined below. Denote by $T_N = [-N, N] \times \{N\} \subset D_N$ the top boundary of D_N. For fixed $\varepsilon > 0$, define

$$Y_N = \{v \in D_N : \text{dist}(v, \partial D_N) \geq \varepsilon N\} \cup \{v \in D_N : \text{dist}(v, \partial D_N) = \text{dist}(v, T_N)\}.$$

For $\delta \in (0,1)$, we also define $Y_{N,\delta} \subset Y_N$ as

$$Y_{N,\delta} = \{v \in Y_N : \text{dist}(v, T_N) > N^{1-\delta}\},$$

see Figure II.

Lemma 6 For the constant $g = g(c_+, c_-)$ in (4), we have

$$\frac{M_{Y_{N,\delta}}}{\log N} \to 2\sqrt{g} \text{ in } L^2.$$

(8)
εN

\[N - \delta \]

\[2N \]

\[Y_{N,\delta} \]

Figure 1: The domain \(Y_{N,\delta} \).

Proof. Let \(D^\varepsilon_N := \{ v \in D_N : \text{dist}(v, \partial D_N) \geq \varepsilon N \} \). Since

\[
\frac{M_{D^\varepsilon_N}}{\log N} \leq \frac{M_{Y_{N,\delta}}}{\log N} \leq \frac{M_{D_N}}{\log N},
\]

the claim (8) follows from [BW16], since the upper control on \(M_{D_N}/\log N \) follows from \((4) \) while the lower control on \(M_{D^\varepsilon_N}/\log N \) follows from the display below (5.19) in [BW16].

We now switch to dyadic scales. For \(n \in \mathbb{N} \), set \(N = 2^n \) and \(m_n := M_{Y_{2^n,\delta}} \).

We set up a recursion for \(m_n \). Clearly,

\[\mathbb{E}m_{n+2} = \mathbb{E}M_{Y_{4N,\delta}} \geq \mathbb{E} \max \left\{ \max_{v \in Y_{N,\delta}^{(1)}} \phi_{v}^{D_{4N,0}}, \max_{v \in Y_{N,\delta}^{(2)}} \phi_{v}^{D_{4N,0}} \right\}, \]

where \(Y_{N,\delta}^{(i)} \) are the translations of \(Y_{N,\delta} \), defined by \(Y_{N,\delta}^{(1)} = Y_{N,\delta} + (-1.1N, 3N) \), \(Y_{N,\delta}^{(2)} = Y_{N,\delta} + (1.1N, 3N) \), see Figure 2.

The next two lemmas will allow us to control the difference between \(\phi_{D_{4N,0}} \) and \(\phi_{D_{N,0}} \) (and as a consequence, between \(m_{n+2} \) and \(m_n \)).

Lemma 7 There exist \(\delta', 1 > \delta > \gamma > 0 \), such that the following statement holds. Set \(D_{N}^{(1)} = D_{N} + (-1.1N, 3N) \), \(D_{N}^{(2)} = D_{N} + (1.1N, 3N) \). Let \(D_{N}^{\gamma, (i)} := \{ v \in D_{N} : \text{dist}(v, \partial D_{N}^{(i)}) \geq N^{\gamma} \} \). Then there exists a coupling \(\mathbb{P} \) of

\[(\phi_{D_{4N,0}}, \phi_{D_{N}^{(1),0}}, \phi_{D_{N}^{(2),0}}) \]

and an event \(\mathcal{G} \) with \(\mathbb{P}(\mathcal{G}^c) \leq N^{-\delta'} \), such that with
Figure 2: The domains \(Y_{N,\delta}^{(i)} \), with the boundary pieces \(R, Q \).

\(h_v^{(i)} \) being harmonic functions in \(D_N^{(i)} \) with boundary conditions \(\phi^{D_N,0} - \phi^{D_N,0} \), on the event \(\mathcal{G} \), we have

\[
\phi_v^{D_N,0} = \phi_v^{D_N,0} + h_v^{(i)}, \text{ for all } v \in Y_{N,\gamma}^{(i)}, \text{ for } i = 1, 2.
\]

Moreover, there is a constant \(C_0 = C_0(\delta) \), such that, for any \(1 > \delta > \gamma \),

\[
\max_{i=1,2} \max_{v \in Y_{N,\delta}^{(i)}} \text{Var}(h_v^{(i)}) \leq C_0(\delta).
\]

Lemma 8 With notation as in Lemma 7, there exists a constant \(C_1 < \infty \), such that

\[
\mathbb{E} \min_i \min_{v \in Y_{N,\delta}^{(i)}} h_v^{(i)} = -\mathbb{E} \max_i \max_{v \in Y_{N,\delta}^{(i)}} h_v^{(i)} \geq -C_1.
\]

The proof of Lemmas 7 and 8 are postponed to Section 4. In the rest of this section, we bring the proof of Theorem 1.

Proof of Theorem 1 Denote by \(m_n^* \) an independent copy of \(m_n \). We
combine Lemmas 7 and 8 to conclude

\[E_{m+n} \geq \mathbb{E} \left[1_{G_{m+n}^{(i)}} \right] \geq \mathbb{E} \max \{ m, m^* \} + 2 \mathbb{E} \min \min i_{v \in Y_{N,i}^{(i)}} h_v^{(i)} - 2 \mathbb{E} \left[1_{G^c \cdot m_n} \right]. \]

We apply (4) to conclude that

\[\mathbb{E} \left[1_{G^c \cdot m_n} \right] \leq \mathbb{P} \left(G_{m_n} \right) \leq \frac{C \log N}{N^{8/2}}, \]

Thus for all large \(n \), we can apply Lemma 8 to get

\[E_{m+n+2} \geq \mathbb{E} \max \{ m, m^* \} - 3C_1. \]

Using \(\max \{ a, b \} = \frac{1}{2} (a + b + |a - b|) \) and Jensen’s inequality, we obtain

\[E_{m+n+2} - E_m \geq \frac{1}{2} \mathbb{E} |m_n - m_n^*| - 3C_1 \geq \frac{1}{2} \mathbb{E} |m_n - \mathbb{E} m_n^*| - 3C_1. \quad (9) \]

We need the following lemma.

Lemma 9 There exists a sequence \(\{ n_k \} \) and a constant \(K < \infty \) such that

\[\mathbb{E} m_{n_k+2} \leq \mathbb{E} m_{n_k} + K. \]

Proof of Lemma 9 Let \(I_{n,K} = \{ j \in \{ n, n + 2, \ldots, 2n \} : \mathbb{E} m_{j+2} \geq \mathbb{E} m_j + K \} \). Then Lemma 8 implies that \(\mathbb{E} m_n/n \to 2 \sqrt{g} \), while (4) gives \(\mathbb{E} m_{n+2} \geq \mathbb{E} m_n - 3C_1 \). Therefore, for any fixed \(\eta > 0 \) and all large \(n \),

\[K |I_{n,K}| - 3C_1 \left(\frac{n}{2} - |I_{n,K}| \right) \leq 2 \sqrt{g} n (1 + \eta) \leq 4 \sqrt{g} n, \]

giving that for all large \(n \),

\[|I_{n,K}| \leq \frac{n - 4 \sqrt{g} + \frac{3}{K + 3C_1}}{K + 3C_1}. \]

Choosing \(K > 16 \sqrt{g} + 3C_1 \) gives that for all \(n \) large, \(|I_{n,K}| \leq n/4 \). It follows that for all large \(n \), there exists \(n' \in [n, 2n] \), such that

\[\mathbb{E} m_{n'+2} \leq \mathbb{E} m_{n'} + K. \]

This completes the proof of Lemma 9.

We continue with the proof of Theorem 1. Using the subsequence \(\{ n_k \} \) from Lemma 9 we have from (9) that

\[\mathbb{E} |m_{n_k} - \mathbb{E} m_{n_k}^*| \leq 2K + 6C_1, \]
which implies, using Jensen’s inequality, that \(\{m_{n_k} - E m^*_n\} \) is tight. This implies that the sequence of random variables

\[
\bar{M}_{D^\delta N_k} := \max \left\{ \phi^D_{N_k,0} : v \in D_{N_k}, \text{dist}(v, \partial D_{N_k}) \geq N_k^{1-\delta} \right\}
\]

is tight around its mean because \(\bar{M}_{D^\delta N_k} \) is the maximum of 4 rotated copies of \(m_{n_k} \).

Finally, combining (4) and Lemma 5 we obtain

\[
P \left(M_{D N_k} > \bar{M}_{D^\delta N_k} \right) \leq 2^{n_k(\delta - 1)/2},
\]

and

\[
E M_{D N_k} - E \bar{M}_{D^\delta N_k} \leq E M_{D N_k} \mathbb{1}\{ M_{D N_k} > \bar{M}_{D^\delta N_k} \} \leq P \left(M_{D N_k} > \bar{M}_{D^\delta N_k} \right)^{1/2} \left(E M_{D N_k}^2 \right)^{1/2} \leq 2^{n_k(\delta - 1)/2} O (\log N_k) \to 0.
\]

We conclude that the sequence \(\{M_{D N_k} - E M_{D N_k}\} \) is tight.

4 Proof of Lemma 7 and 8

Proof of Lemma 7. The existence of the harmonic decomposition is implied by the Markov property and Theorem 3 (with \(\delta', \gamma \) taken as the constants in Theorem 3). It thus suffices to obtain an upper bound for \(\text{Var} \left(h_v^{(1)} \right) \). Write \(h_v^{(i)} = \hat{h}_v^{(i)} - \tilde{h}_v^{(i)} \), where \(\hat{h}_v^{(i)} \) is the harmonic function in \(D^\gamma N,0 \) with boundary value \(\phi^D_{N,0} \), and \(\tilde{h}_v^{(i)} \) is the harmonic function in \(D^\gamma N,0 \) with boundary value \(\phi^D_{N,0} \). Without loss of generality we set \(i = 1 \). Applying the Brascamp-Lieb inequality (5) we get

\[
\text{Var} \left(h_v^{(1)} \right) \leq c^{-1} \text{Var}_{GFF} \left(h_v^{(1)} \right).
\]

The orthogonal decomposition for GFF implies

\[
\text{Var}_{GFF} \left(h_v^{(1)} \right) = \text{Var}_{GFF} \left(E_{GFF} \left[\phi^D_{N,0} | F \partial D^{\gamma (i)}_{N} \right] \right) = \text{Var}_{GFF} \left[\phi^D_{N,0} - \text{Var}_{GFF} \left[\phi^D_{N,0} \right] \right]
\]

and

\[
\text{Var}_{GFF} \left(\hat{h}_v^{(1)} \right) = \text{Var}_{GFF} \left[\phi^{D^{(i)}(1)}_{N,0} \right] - \text{Var}_{GFF} \left[\phi^{D^{(i)}(1),0}_{N,0} \right].
\]
We now estimate the last two expressions for different regions of \(v \in Y_{N,\delta}^{(1)} \). First of all, it suffices to control \(h_v^{(1)} \) for \(v \in \partial Y_{N,\delta}^{(1)} \). Let

\[
Q : = \left\{ v \in \partial Y_{N,\delta}^{(1)} : \text{dist}(v, \partial D_N) = \text{dist}(v, T) \right\}, \\
R : = \left\{ v \in \partial Y_{N,\delta}^{(1)} : \text{dist}(v, \partial D_N) = \varepsilon N \right\}.
\]

We first show that

\[
\max_{v \in R} \text{Var}_{\text{GFF}}(\hat{h}_v^{(1)}) \leq C(\varepsilon), \\
\max_{v \in Q \cup R} \text{Var}_{\text{GFF}}(\tilde{h}_v^{(1)}) \leq C_0 N^{\gamma - \delta}.
\]

Indeed, standard asymptotics for the lattice Green’s function (following e.g. from [Law96, Proposition 1.6.3]) give, for some constant \(g_0 \),

\[
\text{Var}_{\text{GFF}}[\phi_v^{D_{4N},0}] - \text{Var}_{\text{GFF}}[\phi_v^{D_N^{(1)},0}] = g_0 \left(\log \text{dist}(v, \partial D_N) - \log \text{dist}(v, \partial D_N^{(1)}) \right) + o_N(1) \\
\leq g_0 \log \frac{4N}{\varepsilon N - N^\gamma} + o_N(1) \leq C(\varepsilon),
\]

and similarly,

\[
\text{Var}_{\text{GFF}}[\phi_v^{D_N^{(1)},0}] - \text{Var}_{\text{GFF}}[\phi_v^{D_N^{(1)},0}] = g_0 \left(\log \text{dist}(v, \partial D_N^{(1)}) - \log \text{dist}(v, \partial D_N^{(1)}) \right) + O(N^{-1}) \\
\leq g_0 \log \frac{N^\delta}{N^\delta - N^\gamma} + O(N^{-1}) \leq C_0 N^{\gamma - \delta}.
\]

To conclude the proof, we also claim for \(\delta \in (\gamma, 1) \)

\[
\max_{v \in Q} \text{Var}_{\text{GFF}}(\tilde{h}_v^{(1)}) \leq C N^{\gamma - \delta}.
\]

Indeed, denote by \(T_\gamma \) the top boundary of \(D_N^{\gamma} \), we apply asymptotics for lattice Green’s function to obtain

\[
\text{Var}_{\text{GFF}}[\phi_v^{D_{4N},0}] - \text{Var}_{\text{GFF}}[\phi_v^{D_N^{(1)},0}] = g_0 \left(\log \text{dist}(v, \partial D_N) - \log \text{dist}(v, D_N^{(1)}) \right) + O(N^{-1}) \\
= g_0 \left(\log \text{dist}(v, T) - \log \text{dist}(v, T_\gamma) \right) + O(N^{-1}).
\]

Since

\[
\log \frac{\text{dist}(v, T)}{\text{dist}(v, T_\gamma)} \leq \log \frac{N^\delta}{N^\delta - N^\gamma} \leq C N^{\gamma - \delta},
\]

[9]
we obtain (11). □

Proof of Lemma 8. Recall that \(h^{(i)} = \hat{h}^{(i)} - \tilde{h}^{(i)} \). We will prove that there exist \(C_0 < \infty \) and \(\alpha > 0 \), such that for all \(C_1 > C_0 \),

\[
P \left(\max_{v \in Q} \hat{h}^{(1)} > C_1 \right) \leq e^{-\alpha C_1}, \tag{12}
\]

\[
P \left(\max_{v \in R} \hat{h}^{(1)} > C_1 \right) \leq e^{-\alpha C_1}, \tag{13}
\]

\[
P \left(\min_{v \in Q \cup R} \tilde{h}^{(1)} < -C_1 \right) \leq e^{-\alpha C_1}. \tag{14}
\]

Indeed, (12) follows from (11) and the exponential Brascamp-Lieb inequality (6):

\[
P \left(\max_{v \in Q} \hat{h}^{(1)} > C_1 \right) \leq |Q| \max_{v \in Q} P \left(\hat{h}^{(1)} > C_1 \right) \leq C_3 N \exp \left(-\frac{C_2^2}{C_2 \text{Var}_{GFF} (\hat{h}^{(1)})} \right) \leq C_3 N \exp \left(-\frac{C_2^2}{C_2 N^{d-\gamma}} \right),
\]

where \(C_2, C_3 \) are some fixed constants. The same argument using (10) gives (14).

We now prove (13) using chaining. Omitting the superscripts (1) in \(\hat{h}^{(1)} \) and \(\tilde{h}^{(1)} \), we claim that there exists \(K < \infty \), such that for \(u, v \in R \),

\[
\text{Var}_{GFF} \left[\hat{h}_u - \hat{h}_v \right] \leq K \frac{|u - v|}{\varepsilon N}. \tag{15}
\]

Applying the orthogonal decomposition of the DGFF we obtain

\[
\phi^{D_{\gamma}^{(1)},0}_u - \phi^{D_{\gamma}^{(1)},0}_v = \phi^{D_N^{(1)},0}_u - \phi^{D_N^{(1)},0}_v + \hat{h}_u - \hat{h}_v,
\]

and therefore, by the independence of \(\phi^{D_N^{(1)},0}_u - \phi^{D_N^{(1)},0}_v \) and \(\hat{h}_u - \hat{h}_v \) under the DGFF measure,

\[
\text{Var}_{GFF} \left[\hat{h}_u - \hat{h}_v \right] = \text{Var}_{GFF} \left[\phi^{D_{\gamma}^{(1)},0}_u - \phi^{D_{\gamma}^{(1)},0}_v \right] \text{Var}_{GFF} \left[\phi^{D_N^{(1)},0}_u - \phi^{D_N^{(1)},0}_v \right]. \tag{16}
\]

We now apply the representation of the lattice Green’s function, see, e.g., [Law90 Proposition 1.6.3],

\[
G_D^{D_N}(u, v) = \sum_{y \in \partial D_N} H_{\partial D_N}(u, y)a(y - v) - a(u - v),
\]
where \(H_{\partial D_N}(u, \cdot) \) is the harmonic measure of \(D_N \) seen at \(u \) and \(a \) is the potential kernel on \(\mathbb{Z}^2 \) which satisfies the asymptotics

\[
a(x) = \frac{2}{\pi} \log |x| + D_0 + O \left(|x|^{-2} \right),
\]

where \(D_0 \) is an explicit constant (see e.g. [Law96, Page 39] for a slightly weaker result which nevertheless is sufficient for our needs). Substituting into (16), we see that

\[
\text{Var}_{GFF}[\phi^{D_N,0}_{D_N} - \phi^{D_N,0}_{D_N}] - \text{Var}_{GFF}[\phi^{D_{\gamma},0}_{D_{\gamma}} - \phi^{D_{\gamma},0}_{D_{\gamma}}]
\]

\[
= G^{D_N}(u, u) + G^{D_N}(v, v) - 2G^{D_N}(u, v) - \left(G^{D_N}(u, u) + G^{D_N}(v, v) - 2G^{D_N}(u, v) \right)
\]

\[
= \sum_{z \in \partial D_N} H_{\partial D_N}(u, z) a(u - z) + \sum_{z \in \partial D_N} H_{\partial D_N}(v, z) a(v - z)
\]

\[
- 2 \sum_{z \in \partial D_N} H_{\partial D_N}(u, z) a(v - z)
\]

\[
- \sum_{z \in \partial D_N} H_{\partial D_{\gamma}}(u, z) a(u - z) - \sum_{z \in \partial D_{\gamma}} H_{\partial D_{\gamma}}(v, z) a(v - z)
\]

\[
+ 2 \sum_{z \in \partial D_{\gamma}} H_{\partial D_{\gamma}}(u, z) a(v - z)
\]

\[
= A_{D_N} - A_{D_{\gamma}}
\]

We now apply the Harnack inequality, see [Law96 Theorem 1.7.1],

\[
|H_{\partial D_N}(u, z) - H_{\partial D_N}(v, z)| \leq \frac{|u - v|}{4N}
\]

to obtain

\[
A_{D_N} = \sum_{z \in \partial D_N} H_{\partial D_N}(u, z) (a(u - z) - a(v - z))
\]

\[
+ \sum_{z \in \partial D_N} (H_{\partial D_N}(v, z) - H_{\partial D_N}(u, z)) a(v - z)
\]

\[
\leq \frac{|u - v|}{4N} \sum_{z \in \partial D_N} H_{\partial D_N}(u, z)
\]

\[
+ \sum_{z \in \partial D_N} \left(H_{\partial D_N}(v, z) - H_{\partial D_N}(u, z) \right) \left(a(v - z) - \frac{2}{\pi} \log N - D_0 \right)
\]

\[
\leq K \frac{|u - v|}{N}, \quad \text{for some } K < \infty.
\]

The same argument gives \(\left| A_{D_{\gamma}} \right| \leq K \frac{|u - v|}{\varepsilon N} \), thus (15) is proved.
Now fix a large k_0. For $k \geq k_0$ let P_k be subsets of R that plays the role of dyadic approximations: P_k contains $O\left(2^k\right)$ vertices that are equally spaced and the graph distance between adjacent points is $\varepsilon N 2^{-k}$. For $v \in R$, denote by $P_k(v)$ the k^{th} dyadic approximation of v, namely the vertex in P_k that is closest to v. Then for $v \in R$,

$$\hat{h}_v = P_{k_0}(v) + \sum_{k \geq k_0} \hat{h}_{P_{k+1}(v)} - \hat{h}_{P_k(v)}.$$

We now apply the exponential Brascamp-Lieb inequality (6), (15), and a union bound to obtain

$$\mathbb{P}\left(\max_{v \in R} \left[\hat{h}_{P_{k+1}(v)} - \hat{h}_{P_k(v)}\right] > \sqrt{K \left(\frac{3}{2}\right)^{-k}}\right) \leq C_3 2^k \exp\left(-K \left(\frac{3}{2}\right)^{-k} \cdot \frac{C_4}{2 \cdot 2^{-k}}\right)$$

$$\leq C_3 2^k \exp\left(-C_4 \left(\frac{4}{3}\right)^k \frac{K}{2}\right),$$

for some constant C_4. Since both $\sqrt{K \left(\frac{3}{2}\right)^{-k}}$ and the tail probability are summable in k, we conclude that (13) holds.

Acknowledgment O.Z. thanks Jason Miller for suggesting, years ago, that the coupling in [Mil11] could be useful in carrying out the Dekking-Host argument for the Ginzburg-Landau model. W.W. thanks the Weizmann Institute for its hospitality. This work was started while both authors were at the Courant Institute, NYU.

References

[BDZ11] E. Bolthausen, J.-D. Deuschel, and O. Zeitouni. Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field. *Electron. Commun. Probab.*, 16:114–119, 2011.

[BDZ16] M. Bramson, J. Ding, and O. Zeitouni. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. *Comm. Pure Appl. Math.*, 69(1):62–123, 2016.

[BL76] H. J. Brascamp and E. H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. *Journal of Functional Analysis*, 22(4):366–389, 1976.
[BL16] M. Biskup and O. Louidor. Extreme local extrema of two-dimensional discrete Gaussian free field. *Comm. Math. Phys.*, 345(1):271–304, 2016.

[Bra83] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. *Mem. Amer. Math. Soc.*, 44(285):iv+190, 1983.

[BW16] D. Belius and W. Wu. Maximum of the Ginzburg-Landau fields. *arXiv preprint arXiv:1610.04195*, 2016.

[DH91] F. M. Dekking and B. Host. Limit distributions for minimal displacement of branching random walks. *Probab. Theory Related Fields*, 90(3):403–426, 1991.

[FS97] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg-Landau interface model. *Communications in Mathematical Physics*, 185(1):1–36, 1997.

[HS94] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. *Journal of Statistical Physics*, 74(1-2):349–409, 1994.

[Law96] G. F. Lawler. *Intersections of random walks*. Birkhauser, 1996.

[Mil11] J. Miller. Fluctuations for the Ginzburg-Landau $\nabla \phi$ interface model on a bounded domain. *Communications in Mathematical Physics*, 308(3):591–639, 2011.

[NS97] A. Naddaf and T. Spencer. On homogenization and scaling limit of some gradient perturbations of a massless free field. *Communications in Mathematical Physics*, 183(1):55–84, 1997.