Avifauna in the Wehea-Kelay Landscape, East Kalimantan, Indonesia

To cite this article: Mukhlisi et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 743 012034

View the article online for updates and enhancements.
Avifauna in the Wehea-Kelay Landscape, East Kalimantan, Indonesia

Mukhlisi*1, M A Rifqi2, T Atmoko1, Purnomo2, A Chayatuddin2, L Yen2 and T Sayeektiningsih3

1 Research and Development Institute of Natural Resources Conservation Technology, Jl. Soekarno Hatta Km 38 Samboja, Kutai Kartanegara, Kalimantan Timur 75271, Indonesia
2 Yayasan Konservasi Alam Nusantara (YKAN) Jl. Siradj Salman No. N-01, Air Hitam, Samarinda, Kalimantan Timur, Indonesia
3 Environment and Forestry Research and Development Institute of Makassar, Jl. P. Kemerdekaan Km 16,5 Makassar, Indonesia

*Corresponding author: mukhlisi.arkan@gmail.com

Abstract. Wehea-Kelay landscape is an unprotected area, located on the eastern part of Borneo Island. It is managed by 7 unit managements, which were mostly timber companies. We compiled and collated our avifauna data with previous studies. We recorded 273 bird species belonging to 60 families during field work. 61 species were protected based on Indonesian regulations. Among of them were threatened species with small population such as Great argus Argusianus argus, Storm’s stork Ciconia stormi, and Helmeted hornbill Buceros vigil. Although Wehea-Kelay is dominated by timber concessions, the landscape can still provide habitat for many species of bird. Nevertheless, anthropogenic pressures i.e. illegal hunting have increased and become a threat for birds particularly commercially traded species such as Leafbirds Chloropsis spp, White-rumped Shama Copsychus malabaricus, Common hill myna Gracula religiosa, and also Helmeted hornbill Buceros vigil.

Keywords: Avifauna, conservation, landscape, unprotected forest

1. Introduction
Kalimantan occupies an area of around 73% of the Borneo Island, making it as one of the important habitats of bird species in the Sundaland zoogeographical region [1]. There are 669 species of resident and migrant birds in Borneo, of which 52 are endemic [2]. Kalimantan alone has 523 bird species [3]. Unfortunately, the number of birds in Kalimantan continues to decline and is threatened by extinction due to anthropogenic pressures, such as forest degradation and poaching [4]. This condition is exacerbated by the fact that most of high conservation value areas functioning as an important bird habitat are unprotected [5].

Wehea-Kelay is a tropical rainforest landscape in East Kalimantan with a total area of 532,143 ha [6]. It has high conservation values since it is a home to at least 600 individuals of critically endangered bornean orangutans [7] and other wildlife. Most of Wehea-Kelay’s areas are managed by timber companies. Furthermore, the biodiversity management efforts are carried out collaboratively through the Essential Ecosystem Area (EEA) Wehea-Kelay Forum that was legalized by the Governor.
of the East Kalimantan Province [6]. The forum plays an important role in managing units and multistakeholders for implementing the best natural resources management practices.

Bird is one of the environmental bioindicators in the Wehea-Kelay landscape. Some of sensitive bird species will respond specifically to the environmental dynamics, such as vegetation structure changes due to logging and land clearing activities, and also human activity. For example, bird species of terrestrial-insectivores and insectivore-understory tends to decrease in abundance in logged forest blocks [8,9,10,11], whereas the nectivorous and frugivorous groups increased [9]. On the other hand, Wehea-Kelay landscape-based collaborative management is expected to provide benefits from ecological aspects. Some of fragmented forests can be interconnected as habitat for the umbrella species such as hornbills and eagles. Currently, database about bird-diversity is available in every management unit [12], but has not been compiled in comprehensively. Thus, this study aims to identify and analyze bird species in the Wehea-Kelay landscape and its implications for conservation effort in unprotected area.

2. Materials and Methods

2.1 Location of the study site

This study was conducted in the Wehea-Kelay landscape, specifically on seven management units which are member of EEAWehea-Kelay Forum, including four timber companies (PT. Karya Lestari/KL, PT. Utama Damai Indah Timber/UDIT, PT. Gunung Gajah Abadi/GGA, PT. Narkata Rimba/NR, PT. Wana Bakti Persada Utama/WBPU, one oil palm plantation (PT. Nusaraya Agro Sawit/NAS), and Wehea Protection Forest (WPF). The Wehea-Kelay landscape is characterized by tropical rain forest ecosystem dominated by Dipterocarpaceae trees. The area is mostly typified by lowland forest with undulating topography. Elevation is between 33-1,700 m ASL [12].

2.2 Procedures

Point-count and transect methods were used in data collection by purposive sampling. All point counts were made along transects of 1,000 - 1,600 m in length. The distance between point counts was 200 m. We established 16-45 point counts for each study location. Birdwatching was conducted during 07:00 to 10:00 am and 03:00 - 05:30 pm (UTC +8). We spent 10-20 minutes at each point to record all bird sighted. Species identification refers to MacKinnon et al. [13] and Phillipps and Phillipps (2011) [2].

2.3 Data analysis

Field data was compiled with previous data collated by Atmoko et al. [12]. Bird data were analyzed by grouping into family, species, and conservation status. The conservation status was adjusted to national and international regulations [14,15,16]. Further statistical analysis was carried out to determine species similarities using the Jaccard Similarity Index and visualized using Non-Metric Multidimensional Scaling (NMDS) [17]. Furthermore, Kruskal-Wallis analysis undertaken to determine relative differences in species richness among study sites. All statistical analysis were carried out using the PAST. 3 [18].

3. Result

3.1 Species composition

A total of 273 species was recorded in the Wehea-Kelay landscape (Table 1). This record represented 40.81% of the total species of Borneo’s birds (Phillipps & Phillipps 2011). Specifically, the number of bird species in PT. NR, PT. KL, PT. GGA, PT. WBPU, PT. UDIT, PT. NAS, and WPF were 144, 176, 98, 176, 27, 51, 60, respectively. Muscicapidae and Cuculidae, which are commonly insectivorous birds, were dominant families (Table 1). Furthermore, 23 species of migratory birds were also found in Wehea-Kelay landscape. Visualization NMDS of Jaccard similarity coefficient indicates that the bird species in PT. NR, PT. WBPU and PT. GGA have high similarity. In addition, bird species in PT.
NAS has similarities with PT. UDIT. However, the bird species in the WPF are contrast from any study locations (Figure 1). Based on Kruskall-Wallis test showed that there were significant differences in species richness among study site ($X^2 = 170.10$, $p = 0.000$).

![Figure 1. NMDS ordination based on Jaccard similarity coefficient (Stress: 0.1301)](image)

Table 1. List of bird species in Wehea-Kelay landscape

No	Species	No	Species	No	Species
1	Gerygone sulphurea	26	Anhinga melanogaster	48	Caprimulgus indicus
2	Accipiter gularis	27	Aerodramus fuciphagus	49	Eurostopodus temmincki
3	Accipiter soloensis	28	Aerodramus maximus	50	Ciconiidae
4	Aviceda jerdoni	29	Collocalia esculetana	51	Chloropsis cochinchenensis
5	Circus melanoloucos	30	Hirundapus giganteus	52	Chloropsis cyanopogon
6	Halastur indus	31	Rhaphidura leucopygialis	53	Chloropsis sonnerati
7	Ichthyophaga humilis	32	Ardea cinerea	54	Orthotomus atragularis
8	Ichthyophaga ichthyaeus	33	Bubulcus ibis	55	Orthotomus ruficeps
9	Ictinaetus malaiensis	34	Butorides striata	56	Orthotomus sericeus
10	Nisaetus cirrhatus	35	Egretta garzetta	57	Prinia flaviventris
11	Nisaetus nanus	36	Artamus leucoryn	58	Columbidae
12	Pernis pilorhynchus	37	Artamus leucoryn	59	Chalcophris indica
13	Spilornis cheela	38	Anorrhinus galeritus	60	Ducula aenea
14	Spilornis kinabaluis	39	Anthracoceros albirostris	61	Ducula badia
15	Acrocephalus orientalis	40	Anthracoceros malayanus	62	Streptopelia chinensis
16	Aegithina tephia	41	Buceros rhinoceros	63	Treron capellei
17	Aegithina viridissima	42	Rhadotorhinus correagatus	64	Treron curvirostra
18	Actenoides concretus	43	Buceros vigil	65	Treron fulvicolli
19	Alcedo atthis	44	Rhyticerus undulatus	66	Treron olax
20	Alcedo peninsulae	45	Calyptomenidae	67	Treron vernans
					Cuculidae
					Eurystomus orientalis
No	Species	No	Species	No	Species
----	------------------------------	----	------------------------------	----	------------------------------
72	Cacomantis sepulcralis	109	Hirundo rustica	142	Cyornis umbretalis
73	Cacomantis sonneratii	110	Delichon dasypus	143	Cyornis unicolor
74	Carpococcyx radiceus	111	Hirundo tahitica	144	Musciaca grisescita
75	Centropus bengalensis		Indicatoridae	145	Enicurus leschenaulti
76	Centropus sinensis	112	Indicator archipelagicus	146	Enicurus ruficapillus
77	Chrysococcyx xanthorhynchus		Irenidae	147	Eumyias indigo
78	Surniculus lugubris	113	Irena puella	148	Eumyias thalassina
79	Clamator coromandus		Lanidae	149	Ficedula dumetoria
80	Cuculus fugax	114	Lanius tigrinus	150	Ficedula mugimaki
81	Cuculus micropterus		Leiotrichidae	151	Ficedula narcissina
82	Cuculus saturatus	115	Alcippe brunneicauda	152	Ficedula parva
83	Hierococcyx vagans	116	Garrulax palliatus	153	Ficedula zanthopygia
84	Phaenicophaeus curvirostris		Caloramphus fuliginosus	154	Musciaca daurica
85	Phaenicophaeus diardi		Psilopogon australis	155	Saxicola caprata
86	Rhinorhuta chlorophaea		Megalaimidae	156	Trichoxys pyrropygus
87	Rhopodytes sumatranus	118	Caloramphus palpebratus	157	Saxicola torquata
88	Zanclostomus javanicus	119	Psilopogon henrici	158	Aethopyga siparaja
89	Dicaeidae	120	Psilopogon mystacophanos	159	Anthreptes malacensis
90	Dicaeum chrysorrheum	121	Psilopogon chrysoptogon	160	Anthreptes rhodolemus
91	Dicaeum cruentatum	122	Psilopogon rafflesii	161	Anthreptes simplex
92	Dicaeum monticolom	123	Meropidae	162	Arachnothera affinis
93	Prionochilus maculatus	124	Nyctornis amictus	163	Arachnothera crassirostris
94	Prionochilus percussus	125	Merops viridis	164	Arachnothera flavigaster
95	Prionochilus thoracicus		Monarchidae	165	Arachnothera hypogrammica
96	Prionochilus xanthopygius	126	Hypothymis azurea	166	Arachnothera longirostra
97	Dicruridae	127	Terpsiphone paradis	167	Arachnothera robusta
98	Dicrurus aeneus		Motacildae	168	Chalcoparia singalensis
99	Dicrurus paradiseus	128	Anthus novaeseelandiae	169	Cinyris jugularis
100	Eurylaimidae	129	Motacilla cinerea	170	Leptocoma sperata
101	Corydon sumatranus		Muscicapidae	171	Coracina fimbriata
102	Eurylaimus javanicus	131	Capsychus malabaricus	172	Oriolus xanthotus
103	Eurylaimus ochromalus	132	Capsychus saularis	173	Oriolus xanthornus
104	Estrildidae	133	Cisticlidae ceylonensis	174	Passer montanus
105	Lonchura fuscans	134	Lanius excubitor	175	Kenopodia striata
106	Lonchura leucogastra	135	Lanius sinulentus	176	Malacocincla abbotti
107	Lonchura malacca	136	Lanius obscurus	177	Malacopteron ruficollis
108	Falconidae	137	Lanius rufus	178	Malacopteron albohulare
No	Species	No	Species	No	Species
-----	----------------------------------	-----	----------------------------------	-----	----------------------------------
182	Pellorneum capistratum	218	Podargidae	252	Sturnidae
183	Trichastoma bicolor	219	Batrachostomus stellatus	253	Aplonis panayensis
184	Trichastoma malaccense	219	Loriculus galgulus	254	Gracula religiosa
185	Trichastoma pyrrogenys	220	Psittinus cyanurus	255	Pityriasis gymnocephala
186	Trichastoma rostratum	221	Phalacrocorax sulcirostris	256	Hemipus hirundinaceus
210	Sasia abnormis	222	Alophoixus bres	257	Tephrodornis virgatus
188	Argusianus argus	223	Alophoixus finschii	258	Macronus ptilosus
189	Polyplectron schleiermacheri	224	Alophoixus ochraceus	259	Mixornis gularis
190	Lophura bulweri	225	Brachypodius atriceps	260	Pomatorhinus montanus
191	Lophura ignita	226	Eupitilus eutilotus	261	Stachyris erythroptera
192	Rollulus rouloa	227	Ixos malaccensis	262	Stachyris leucotis
193	Synoicus chinensis	228	Brachypodius melanoleucus	263	Stachyris maculata
194	Phylloscopus borealis	229	Pycnonotus aurigaster	264	Stachyris nigricollis
195	Phylloscopus trivirgatus	230	Pycnonotus brunneus	265	Stachyris poliocephala
196	Phylloscopus monis	231	Pycnonotus cyaniventris	266	Stachyris rufifrons
197	Blythipicus rubiginosus	232	Pycnonotus erythropthalmos	267	Harpactes diardi
198	Chrysocolaptes lucidus	233	Pycnonotus goaiyer	268	Harpactes davauceli
199	Chrysophlegma mentale	234	Pycnonotus melanicterus	269	Harpactes kasumba
200	Chrysophlegma miniacus	235	Pycnonotus plumosus	270	Harpactes oreskios
201	Dinopium rafflesii	236	Pycnonotus squamatus	271	Harpactes orrhophaeus
202	Dryocopus javensis	237	Setornis criniger	272	Vangidae
203	Meiglyptes tristis	238	Tricholettes criniger	273	Philentoma prymphoptera
204	Meiglyptes tukki	239		274	Erpornis zantholeuca
205	Hemicircus concretus	240			
206	Micropternus brachyrus	241			
207	Mulleripicus pulverulentus	242			
208	Picus chlorolophus	243			
209	Reinwardticipus validus	244			
210	Sasia abnormis	245			
211	Erythropitta granatina	246			
212	Hydrornis baudii	247			
213	Pitta moluccensis	248			
214	Pitta sordida	249			
215	Erythropitta arquata	250			
216	Platylophus galericulatus	251			
217	Batrachostomus cornutus				

Hemiprocnidae 139 Cyornis ruficauda 179 Malacopteron cinereum

Hemiprocnidae 140 Cyornis superbus 180 Malacopteron magnirostre

Hirundinidae 141 Cyornis turcosus 181 Malacopteron magnum
3.2 Feeding guild
We noticed that birds of the Wehea Kelay landscape had a broad spectrum of feeding guild (Figure 2). Insectivorous birds were the most abundant guild (53.48%; 146 species). This finding is consistent with numerous studies of tropical forest birds of Borneo [11,19]. Insectivorous birds could be classified into terrestrial (Pitta spp.), understory (some species of flycatchers), and arboreal (woodpecker) based on vegetation layer. In ecosystem, insectivorous birds have a role in controlling insect population [20]. Unfortunately, this bird is prone to declining population because of habitat changes and competition. A study conducted by Azman et al. [21] reported that there was a decrease in the population of insectivorous birds as forest quality decreases.

![Feeding guilds](image)

Figure 2. The number of bird species based on feeding-guilds

3.3 Conservation status and significant records
There were 61 species of protected birds in the Wehea-Kelay landscape based on the Indonesian government regulation [14]. In addition, there were 18 species listed by IUCN: Critically Endangered (1 species), Endangered (5 species), and Vulnerable (12 species). Furthermore, referring to the CITES, three species were listed in Appendix I, and 28 species were listed in Appendix II.

Protected and high conservation priority bird species according to Indonesian government regulation were sensitive to habitat changes. Thus, they are assigned as bioindicators. Costantini et al. [22] reported that birds with vulnerable and near threatened status were likely to have a low abundance on logged forest across Borneo island. Furthermore, some studies also pointed out several groups of birds sensitive to logging activities, which were hornbills, barbets, trogons, woodpeckers, pittas, and pheasants [9,23,24].

Helmeted Hornbill *Buceros vigil*
Critically Endangered: This bird is an umbrella species because its territory covers large area. Helmeted hornbill is also an active seed disperser. The bird is sensitive to forest degradation. Low densities of large-diameter trees and forest fragmentation significantly influence bird population [4,25]. In addition, poaching also contributes to population decline of this species in Kalimantan. The current study recorded 6 helmeted hornbills: 1 individual in PT. KL and 5 individuals in PT. GGA. Overall, the Wehea-Kelay landscape holds 8 hornbill species.
White-rumped Woodpecker *Meiglyptes tristis*

Endangered: Woodpeckers are generally able to survive on logged forest [24], but its abundance will decrease dramatically [9,24]. Ecologically, woodpeckers have a role in conserving both tropical vertebrates and invertebrates because of its ability to make a hole useful for a nesting site of another taxon [24]. In term of feeding guild, woodpeckers can be classified as bark gleaning insectivorous bird. This bird was found in logged-over forest areas of PT. NR, PT. KL, and PT. WBPU.

The Bornean Peacock-Pheasant *Polyplectron schleiermacheri*

Endangered: Small-sized peacocks are rarely found in Borneo. This species prefers primary forest, sometimes it perches on trees and walks on the ground. The bird is highly sensitive to habitat changes and human presence [26], so most of the observation was done through acoustic identification. The Bornean Peacock-Pheasant was only recorded in PT. GGA.

Bulwer's Pheasant *Lophura bulweri*

Vulnerable: Bulwer’s Pheasant is endemic to Borneo and only inhabits forest interior. The population of this species in the wild tends to decline due to habitat changes and poaching. The species was recorded in PT. NR. Furthermore, there was also identified Bornean Crested Fireback *Lophura ignita* in PT. GGA and WPF.

Blue-headed Pitta *Hydrornis baudii*

Vulnerable: Pitta is the terrestrial insectivorous bird inhabiting the primary forest interior. Excessive timber harvesting in the concession area leads to the loss of Pitta species, especially *Hydrornis baudii*. In fact, timber harvesting possibly reduces the availability of potential food sources for the bird as well as influence microclimate condition which can affect forest floor [9,10,22]. Blue-headed Pitta was found in PT. KL and WPF.

Fulvous-chested Jungle Flycatcher *Cyornis olivaceus*

Vulnerable: Flycatchers are obligate insectivorous birds (the majority of sallying insectivore). Our study identified 19 species of flycatchers in the Wehea-Kelay landscape, but it is the most vulnerable. Like *Pitta* spp., abrupt microclimate changes on logged forest will reduce food sources, diminishing its population [9,10,22]. However, in line with the process of forest succession, the population of this species is recovered. Fulvous-chested Jungle Flycatchers are recorded in the WPF.

Storm’s Stork *Ciconia stormi*

Endangered: Its population is predicted less than 200 individuals [27]. This species is sensitive to habitat changes, especially in wetlands and rivers. We recorded twice during observation: 1 individual in PT. GGA and 1 individual in PT. KL. We considered that these two concessions might be a suitable habitat for this species although the number of populations is small. Storm’s Stork has also been recorded in the Gunung Lumut Protection Forest of East Kalimantan Province [28].

4. Discussion

Wehea-Kelay landscape is one of the remaining lowland rainforests in East Kalimantan with a high number of bird species. However, the number of species in our study area is lower than the number of birds in the Kutai National Park (KNP), East Kalimantan, which are 368 species [29]. Nevertheless, management at the landscape level at Wehea-Kelay provides better habitat for bird species than concession-based partial management. Previous studies reported 188 bird species in logging concessions in Sabah, Malaysia [30] and 117 bird species in Central Kalimantan [31]. The future study might have the potential to identify other species of birds that have not yet been identified, including the presence of migrant birds.
Insectivorous bird groups corresponded to bird habitat conditions which are dominated by secondary forest, particularly in selective logging concessions. Selective logging activities are able to create open canopy which finally stimulates the growth of the insect population. Therefore, insectivorous birds are more dominant. This finding is consistent with numerous studies of tropical forest birds of Borneo \cite{11,19}. In the ecosystem, insectivorous birds have a role in controlling insect population \cite{20}. Unfortunately, this bird is prone to population decline because of habitat changes and competition. A study conducted by Azman et al. (2011) \cite{21} reported that there was a decrease in the population of insectivorous birds as forest quality decreases. On the other hand, the negative effects of selective logging on birds sensitive to habitat change will decrease gradually along with the process of forest regeneration. The timber harvesting rotation system every 25-30 years is quite powerful to create an interval of forest succession. Meanwhile, the remaining area of intact forest in production forest concessions is beneficial for recovery area that could maintain bird diversity \cite{9}.

The underlying factor of declining population of avifauna in the selective logging area is not only caused by habitat changes, but also because of illegal hunting. This is also confirmed by Collar \cite{4}. He found that hunting causes a decrease in hornbill population and diversity in comparison to timber harvesting. During the study, many signs of hunting either for trading or consumption of meat were found. Unfortunately, hunted birds are also species with protected status. Beastall et al. \cite{32} reported that the trade in casque heads from Kalimantan and Sumatra during the 2012-2014 was estimated to reach 2,170 specimens, which mostly came from hunting.

The Wehea-Kelay landscape is managed collaboratively under EEA Wehea-Kelay Forum. The forum consists of multi-stakeholders from local communities, government institutions, private companies and non-governmental organizations. This management model is one of the new breakthroughs for sustainable natural resource management emphasizing biodiversity conservation efforts outside of protected areas by implementing best management practices, where avifauna conservation is one of the important aspects on it. The Wehea-Kelay landscape can provide a good habitat as well as a suitable corridor for birds, although there are changes in land cover due to selective logging activities. In fact, Wehea-Kelay protects birds with umbrella species status, such as Helmeted Hornbills \textit{Buceros vigil} whose large home range to maintain viable minimum population \cite{2}.

One of the bird conservation efforts that should be implemented intensively in the Wehea-Kelay landscape are habitat and biodiversity protection from illegal activities, such as hunting and encroachment, through collaborative management programs among EEA Wehea-Kelay Forum members. Periodical monitoring of habitat and abundance of avifauna is needed, especially for bioindicator bird-species. To support this activity, further ecological studies like a comprehensive assessment of the benefits of bird-conservation should be conducted. In fact, information on ecology and behaviour of most important bird-species, such as Bornean peacock-pheasant \textit{Polyplectron schleiermacheri}, Bulwer's pheasant \textit{Lophura bulweri}, and \textit{Pitta} spp, found in Wehea-Kelay is limited \cite{26}.

5. Conclusion

Avifauna in Wehea-Kelay landscape has been identified as many as 273 species. The concession area of timber companies has an ecological role as bird habitat. Avifauna conservation efforts at landscape scale can provide more habitat variability. In order to protect endangered species, it is necessary to maintain forest fragments as habitat corridors.

Acknowledgements

The authors would like to thank all members of EEA Wehea-Kelay Forum.

References

[1] MacKinnon K, Hatta G, Halim H and Mangalik A 1996 \textit{The Ecology of Kalimantan}. Singapore: Periplus Edition.
[2] Phillipps Q and Phillipps K 2011 Birds of Borneo, Sabah, Sarawak, Brunei and Kalimantan. (Oxford: John Beaufoy Publishing.)

[3] Abdulhadi R, Widjaja E A, Rahayuningsih Y, Ubaidillah R, Maryanto I and Rahajoe J S 2014 Current Status of Biodiversity in Indonesia. Jakarta: LIPI Press, Ministry of Environment and Forestry, National Development Planning Board, Global Environment Facility, UNDP.

[4] Collar N J 2015 BirdingASIA 24: 12-17.

[5] Risman A, Dewantara B, Yunia C, Trisnadi D, Mulyawati, Ermayanti, Prihatna D, Carter E, Amin I, Exploitasia I, Sameddi, Arsyad I, Soedjono M, Sulthon M, Hakim N, Reza, Alfaniffany R, Indriani S L, Sheperd S, Wen W and Permatasari Y 2010 Gap Analysis of The Ecological Representation of Conservation Areas in Indonesia. Jakarta: Ministry of forestry and ministry of marine and fisheries of Republic of Indonesia.

[6] Pokja KEE Wehea-Kelay 2016 Management of Ecosystem Essential Area Orangutan Corridor in Wehea-Kelay Landscape of Kutai Timur and Berau, East Kalimantan Province. Samarinda: The Nature Conservancy.

[7] Utami-Atmoko S, Traylor-Holzer K, Rifqi MA, Siregar PG, Achmad B, Priadjati A, Husson S J, Wich S, Hadisiiwoyo P, Saputra F, Campbell-Smith G, Kuncoro P, Russon A, Voigt M, Santika T, Nowak M, Sapari I, Lees C M 2017 Orangutan Population and Habitat Viability Assessment: Final Report. Apple Valley, MN: IUCN/SSC Conservation Breeding Specialist Group.

[8] Aleixo, A. 1999 The Condor 101: 537-548

[9] Lambert FR and Collar NJ 2002 Forktail 18: 127–146.

[10] Wielstra B, Boorsma T, Pieterse S M and De Iongh H H 2011 Kukila 27: 55-62

[11] Hamer K C, Newton R J, Edwards F A, Benedick S, Bottrell S H and Edwards D P 2015 Biol. Conserv. 188: 82 - 88.

[12] Atmoko T, Rifqi M A, Mukhlisi, Muslim T, Purnomo and Ma’ruf A. 2018 Natural heritage of Wehea-Kelay. (Bogor: Forda Press).

[13] MacKinnon K, Phillips K and Balen B V 2010 Birds in Sumatera, Java, and Kalimantan. (Jakarta: Indonesian Institute of Sciences).

[14] Ministerial regulation 2018 Regulation of the minister of environment and forestry of the Republic of Indonesia Number: P.106/MenLHK/Setjen/Kum.1/12/2018 regarding protected plant and animal species. Jakarta: Ministry of Environment and Forestry.

[15] IUCN 2020 The IUCN Red List of Threatened Species. Version 2020-1. www.iucnredlist.org

[16] CITES 2017 Checklist of CITES species. Cambridge: CITES Secretariat, Geneva, Switzerland, and UNEP-WCMC.

[17] Kruskal WH Psychometrika 2: 115-129.

[18] Hammer Ø, Harper D and Ryan P 2001 Palaeontol Electron 4 (1):1-9.

[19] Pang S T, Sapian A F, Ismail K and Tuen A A 2017 Trans. Sci. Tech. 4 (4): 504 – 512.

[20] Asokan S, Ali A M S and Manikannan R 2009 J. Threat. Taxa. 1 (6): 327-330.

[21] Azman N M, Latip N S A, Sah S A M, Akil M A M M, Shafie N J and Khairuddin N L 2011 Trop. Life Sci. Res. 22 (2): 45–64.

[22] Costantini D, Edwards D P and Simons M J P 2016 Biol. Conserv. 196: 182-188

[23] Round P D and Brockelman W Y 1998 Nat. Hist. Bull. Siam Soc. 46: 171-196.

[24] Lammertink M 2004 Conserv. Biol. 18 (3): 746-757.

[25] Hadiprakarsa Y and Kinnaird M F 2015 Bird Conserv. Int. 14: 53-62.

[26] Fredriksson G and Nijman V 2004 Oryx 38 (3): 297-303.

[27] Cheyne S M, Husson SJ, Dragiewicz M, Thompson L J, Adul, Jeffers K A, Limin S H and Smith D A E 2014 J. Indones. Hist. 2 (1): 45-50.

[28] Wielstra B and Pieterse S M 2009 Kukila 14: 1-15.

[29] Wangke H 2017 ASSEHR 167: 322-331

[30] Edwards D P, Woodcock P, Edwards F A, Larsen T H, Hsu W W, Benedick S and Wilcove D 2012 Ecol. Appl. 22 (2): 561-571.
[31] Cleary D F R, Boyles T J B, Setyawati T, Anggraeni C D, Van Loon E E and Menken S B J 2007 *Ecol. Appl.* **17**: 1184-1197.

[32] Beastall C, Shepherd C R, Hadiprakarsa Y and Artyr D M 2016 *Bird Conserv. Int.* **26**: 137 –146.