Existence of zeros for operators taking their values in the dual of a Banach space

BIAGIO RICCERI

Throughout the sequel, E denotes a reflexive real Banach space and E^* its topological dual. We also assume that E is locally uniformly convex. This means that for each $x \in E$, with $\|x\| = 1$, and each $\epsilon > 0$ there exists $\delta > 0$ such that, for every $y \in E$ satisfying $\|y\| = 1$ and $\|x - y\| \geq \epsilon$, one has $\|x + y\| \leq 2(1 - \delta)$. Recall that any reflexive Banach space admits an equivalent norm with which it is locally uniformly convex ([1], p. 289). For $r > 0$, we set $B_r = \{x \in E : \|x\| \leq r\}$.

Moreover, we fix a topology τ on E, weaker than the strong topology and stronger than the weak topology, such that (E, τ) is a Hausdorff locally convex topological vector space with the property that the τ-closed convex hull of any τ-compact subset of E is still τ-compact and the relativization of τ to B_1 is metrizable by a complete metric. In practice, the most usual choice of τ is either the strong topology or the weak topology provided E is also separable.

The aim of this short paper is to establish the following result and present some of its consequences:

THEOREM 1. - Let X be a paracompact topological space and $A : X \to E^*$ a weakly continuous operator. Assume that there exist a number $r > 0$, a continuous function $\alpha : X \to \mathbb{R}$ satisfying
\[|\alpha(x)| \leq r \|A(x)\|_{E^*} \]
for all $x \in X$, a closed set $C \subset X$, and a τ-continuous function $g : C \to B_r$ satisfying
\[A(x)(g(x)) = \alpha(x) \]
for all $x \in C$, in such a way that, for every τ-continuous function $\psi : X \to B_r$ satisfying $\psi|_C = g$, there exists $x_0 \in X$ such that
\[A(x_0)(\psi(x_0)) \neq \alpha(x_0) . \]
Then, there exists $x^* \in X$ such that $A(x^*) = 0$.

For the reader’s convenience, we recall that a multifunction $F : S \to 2^V$, between topological spaces, is said to be lower semicontinuous at $s_0 \in S$ if, for every open set $\Omega \subseteq V$ meeting $F(s_0)$, there is a neighbourhood U of s_0 such that $F(s) \cap \Omega \neq \emptyset$ for all $s \in U$. F is said to be lower semicontinuous if it is so at each point of S.

The following well-known results will be our main tools.

THEOREM A ([3]). - Let X be a paracompact topological space and $F : X \to 2^{B_1}$ a τ-lower semicontinuous multifunction with nonempty τ-closed convex values.
Then, for each closed set \(C \subseteq X \) and each \(\tau \)-continuous function \(g : C \to B_1 \) satisfying \(g(x) \in F(x) \) for all \(x \in C \), there exists a \(\tau \)-continuous function \(\psi : X \to B_1 \) such that \(\psi|_C = g \) and \(\psi(x) \in F(x) \) for all \(x \in X \).

THEOREM B ([4]). Let \(X, Y \) be two topological spaces, with \(Y \) connected and locally connected, and let \(f : X \times Y \to \mathbb{R} \) be a function satisfying the following conditions:

(a) for each \(x \in X \), the function \(f(x, \cdot) \) is continuous, changes sign in \(Y \) and is identically zero in no nonempty open subset of \(Y \);

(b) the set \(\{(y, z) \in Y \times Y : \{x \in X : f(x, y) < 0 < f(x, z)\} \text{ is open in } X\} \) is dense in \(Y \times Y \).

Then, the multifunction \(x \mapsto \{y \in Y : f(x, y) = 0 \text{ and } y \text{ is not a local extremum for } f(x, \cdot)\} \) is lower semicontinuous, and its values are nonempty and closed.

Proof of Theorem 1. Arguing by contradiction, assume that \(A(x) \neq 0 \) for all \(x \in X \). For each \(x \in X \), \(y \in B_1 \), put

\[
f(x, y) = A(x)(y) - \frac{\alpha(x)}{r}
\]

and

\[
F(x) = \{z \in B_1 : f(x, z) = 0\}.
\]

Also, set

\[
X_0 = \{x \in X : |\alpha(x)| < r\|A(x)\|_{E^*}\}.
\]

Since \(A \) is weakly continuous, the function \(x \mapsto \|A(x)\|_{E^*} \), as supremum of a family of continuous functions, is lower semicontinuous. From this, it follows that the set \(X_0 \) is open. For each \(x \in X_0 \), the function \(f(x, \cdot) \) is continuous and has no local, nonabsolute, extrema, being affine. Moreover, it changes sign in \(B_1 \) since \(A(x)(B_1) = [-\|A(x)\|_{E^*}, \|A(x)\|_{E^*}] \) (recall that \(E \) is reflexive). Since \(f(\cdot, y) \) is continuous for all \(y \in B_1 \), we then realize that the restriction of \(f \) to \(X_0 \times B_1 \) satisfies the hypotheses of Theorem B, \(B_1 \) being considered with the relativization of the strong topology. Hence, the multifunction \(F|_{X_0} \) is lower semicontinuous. Consequently, since \(X_0 \) is open, the multifunction \(F \) is lower semicontinuous at each point of \(X_0 \). Now, fix \(x_0 \in X \setminus X_0 \). So, \(|\alpha(x_0)| = r\|A(x_0)\|_{E^*} \). Let \(y_0 \in F(x_0) \) and \(\epsilon > 0 \). Clearly, since \(y_0 \) is an absolute extremum of \(A(x_0) \) in \(B_1 \), one has \(\|y_0\| = 1 \). Choose \(\delta > 0 \) so that, for each \(y \in E \) satisfying \(\|y\| = 1 \) and \(\|y - y_0\| \geq \epsilon \), one has \(\|y + y_0\| \leq 2(1 - \delta) \). By semicontinuity, the function \(x \mapsto (\|A(x)\|_{E^*})^{-1} \) is bounded in some neighbourhood of \(x_0 \), and so, since the functions \(\alpha \) and \(A(\cdot)(y_0) \) are continuous, it follows that

\[
\lim_{x \to x_0} \left| \frac{A(x)(y_0) - \alpha(x)}{\|A(x)\|_{E^*}} \right| = 0.
\]

So, there is a neighbourhood \(U \) of \(x_0 \) such that

\[
\left| \frac{A(x)(y_0) - \alpha(x)}{\|A(x)\|_{E^*}} \right| < \frac{\epsilon \delta}{2}
\]

(1)
for all $x \in U$. Fix $x \in U$. Pick $z \in E$, with $\|z\| = 1$, in such a way that $|A(x)(z)| = \|A(x)\|_{E^*}$ and

$$\left(A(x)(z) - \frac{\alpha(x)}{r} \right) \left(A(x)(y_0) - \frac{\alpha(x)}{r} \right) \leq 0.$$

¿From this choice, it follows, of course, that the segment joining y_0 and z meets the hyperplane $(A(x))^{-1}\left(\frac{\alpha(x)}{r} \right)$. In other words, there is $\lambda \in [0, 1]$ such that

$$A(x)(\lambda z + (1 - \lambda)y_0) = \frac{\alpha(x)}{r}. \quad (2)$$

So, if we put $y = \lambda z + (1 - \lambda)y_0$, we have $y \in F(x)$ and

$$\|y - y_0\| = \lambda \|z - y_0\|. \quad (3)$$

We claim that $\|y - y_0\| < \epsilon$. This follows at once from (3) if $\lambda < \frac{\epsilon}{2}$. Thus, assume $\lambda \geq \frac{\epsilon}{2}$. In this case, to prove our claim, it is enough to show that

$$2(1 - \delta) < \|z + y_0\| \quad (4)$$

since (4) implies $\|z - y_0\| < \epsilon$. To this end, note that, by (2), one has

$$\frac{|A(x)(y_0) - \frac{\alpha(x)}{r}|}{\|A(x)\|_{E^*}} = \frac{\lambda |A(x)(z - y_0)|}{\|A(x)\|_{E^*}},$$

and so, from (1), it follows that

$$\frac{|A(x)(z - y_0)|}{\|A(x)\|_{E^*}} < \delta. \quad (5)$$

Suppose $A(x)(z) = \|A(x)\|_{E^*}$. Then, from (5), we get

$$1 - \delta < \frac{A(x)(y_0)}{\|A(x)\|_{E^*}}. \quad (6)$$

On the other hand, we also have

$$1 + \frac{A(x)(y_0)}{\|A(x)\|_{E^*}} = \frac{A(x)(z + y_0)}{\|A(x)\|_{E^*}} \leq \|z + y_0\|. \quad (7)$$

So, (4) follows from (6) and (7). Now, suppose $A(x)(z) = -\|A(x)\|_{E^*}$. Then, from (5), we get

$$1 - \delta < -\frac{A(x)(y_0)}{\|A(x)\|_{E^*}}. \quad (8)$$

On the other hand, we have

$$1 - \frac{A(x)(y_0)}{\|A(x)\|_{E^*}} = -\frac{A(x)(z + y_0)}{\|A(x)\|_{E^*}} \leq \|z + y_0\|. \quad (9)$$
So, in the present case, (4) is a consequence of (8) and (9). In such a manner, we have
proved that F is lower semicontinuous at x_0. Hence, it remains proved that F is lower
semicontinuous in X with respect to the strong topology, and so, \textit{a fortiori}, with respect to
τ. Since F is also with nonempty τ-closed convex values, and $\frac{\alpha}{r}$ is a τ-continuous
selection of it over the closed set C, by Theorem A, F admits a τ-continuous selection ω in X such
that $\omega|_C = \frac{\omega}{r}$. At this point, if we put $\psi = r\omega$, it follows that ψ is a τ-continuous function,
from X into B_r, such that $\psi|_C = g$ and $A(x)(\psi(x)) = \alpha(x)$ for all $x \in X$, against
the hypotheses. This concludes the proof. \hfill \triangle

We now indicate two reasonable ways of application of Theorem 1. The first one is
based on the Tychonoff fixed point theorem.

\textbf{THEOREM 2.} - Assume that E is a separable Hilbert space, with inner product $\langle \cdot, \cdot \rangle$.
Let $r > 0$ and let $A : B_r \to E$ be a continuous operator from the weak to the strong
topology. Assume that there exist a weakly continuous function $\alpha : B_r \to \mathbb{R}$ satisfying
$|\alpha(x)| \leq r\|A(x)\|_{E^*}$ for all $x \in B_r$, and a weakly continuous function $g : C \to B_r$ such
\[
\langle A(x), g(x) \rangle = \alpha(x) \quad \text{and} \quad g(x) \neq x
\]
for all $x \in C$, where
\[
C = \{ x \in B_r : \langle A(x), x \rangle = \alpha(x) \} .
\]
Then, there exists $x^* \in B_r$ such that $A(x^*) = 0$.

\textbf{PROOF.} Identifying E with E^*, we apply Theorem 1 taking $X = B_r$, with the
relativization of the weak topology of E, and taking as τ the weak topology of E. Due to
the kind of continuity we are assuming for A, the function $x \to \langle A(x), x \rangle$ turns out to be
weakly continuous (see the proof of Theorem 4), and so the set C is weakly closed. Now, let $\psi : B_r \to B_r$ be any weakly continuous function such that $\psi|_C = g$. By the Tychonoff
fixed point theorem, there is $x_0 \in B_r$ such that $\psi(x_0) = x_0$. Since g ha no fixed points in
C, it follows that $x_0 \notin C$, and so
\[
\langle A(x_0), \psi(x_0) \rangle = \langle A(x_0), x_0 \rangle \neq \alpha(x_0) .
\]
Hence, all the assumptions of Theorem 1 are satisfied, and the conclusion follows from it. \hfill \triangle

It is worth noticing the following consequence of Theorem 2.

\textbf{THEOREM 3.} - Let E and A be as in Theorem 2. Assume that for each $x \in B_r$, with
$\|A(x)\| > r$, one has
\[
\left\| A \left(\frac{rA(x)}{\|A(x)\|} \right) \right\| \leq r . \quad (10)
\]
Then, the operator A has either a zero or a fixed point.

\textbf{PROOF.} Define the function $\alpha : B_r \to \mathbb{R}$ by
\[
\alpha(x) = \begin{cases}
\|A(x)\|^2 \quad \text{if} \quad \|A(x)\| \leq r \\
\|A(x)\| \quad \text{if} \quad \|A(x)\| > r .
\end{cases}
\]
Clearly, the function α is weakly continuous and satisfies $|\alpha(x)| \leq r\|A(x)\|$ for all $x \in B_r$. Put

$$C = \{ x \in B_r : \langle A(x), x \rangle = \alpha(x) \}.$$

Note that if $x \in C$ then $\|A(x)\| \leq r$. Indeed, otherwise, we would have $\langle A(x), x \rangle = r\|A(x)\|$, and so, necessarily, $x = \frac{rA(x)}{\|A(x)\|}$, against (10). Hence, we have $\langle A(x), A(x) \rangle = \alpha(x)$ for all $x \in C$. At this point, the conclusion follows at once from Theorem 2, taking $g = A|_C$. \triangle

REMARK 1. - It would be interesting to know whether Theorem 3 can be improved assuming that A is a continuous operator with relatively compact range.

The second application of Theorem 1 is based on connectedness arguments. For other results of this type we refer to [5] (see also [2]).

THEOREM 4. - Let X be a connected paracompact topological space and $A : X \to E^*$ a weakly continuous and locally bounded operator. Assume that there exist $r > 0$, a closed set $C \subset X$, a continuous function $g : C \to B_r$, and an upper semicontinuous function $\beta : X \to \mathbb{R}$, with $|\beta(x)| \leq r\|A(x)\|_{E^*}$ for all $x \in X$, such that $g(C)$ is disconnected,

$$\beta(x) \leq A(x)(g(x))$$

for all $x \in C$ and

$$A(x)(y) < \beta(x)$$

for all $x \in X \setminus C$ and $y \in B_r \setminus g(C)$.

Then, there exists $x^* \in C$ such that $A(x^*) = 0$.

PROOF. First, note that the function $x \to A(x)(g(x))$ is continuous in C. To see this, let $x_1 \in C$ and let $\{x_\gamma\}_{\gamma \in D}$ be any net in C converging to x_1. By assumption, there are $M > 0$ and a neighbourhood U of x_1 such that $\|A(x)\|_{E^*} \leq M$ for all $x \in U$. Let $\gamma_0 \in D$ be such that $x_\gamma \in U$ for all $\gamma \geq \gamma_0$. Thus, for each $\gamma \geq \gamma_0$, one has

$$|A(x_\gamma)(g(x_\gamma)) - A(x_1)(g(x_1))| \leq M\|g(x_\gamma) - g(x_1)\| + |A(x_\gamma)(g(x_1)) - A(x_1)(g(x_1))|$$

from which, of course, it follows that $\lim_{\gamma} A(x_\gamma)(g(x_\gamma)) = A(x_1)(g(x_1))$. Next, observe that the multifunction $x \to [\beta(x), r\|A(x)\|_{E^*}]$ is lower semicontinuous and that the function $x \to A(x)(g(x))$ is a continuous selection of it in C. Hence, by Michael’s theorem, there is a continuous function $\alpha : X \to \mathbb{R}$ such that $\alpha(x) = A(x)(g(x))$ for all $x \in C$ and $\beta(x) \leq \alpha(x) \leq r\|A(x)\|_{E^*}$ for all $x \in X$. Now, let $\psi : X \to B_r$ be any continuous function such that $\psi|_C = g$. Since X is connected, $\psi(X)$ is connected too. But then, since $g(C)$ is disconnected and $g(C) \subset \psi(X)$, there exists $y_0 \in \psi(X) \setminus g(C)$. Let $x_0 \in X \setminus C$ be such that $\psi(x_0) = y_0$. So, by hypothesis, we have

$$A(x_0)(\psi(x_0)) = A(x_0)(y_0) < \beta(x_0) \leq \alpha(x_0).$$

Hence, taking as τ the strong topology of E, all the assumptions of Theorem 1 are satisfied, and the conclusion follows from it. \triangle
REMARK 2. - Observe that when X is first-countable, the local boundedness of A follows automatically from its weak continuity. This follows from the fact that, in a Banach space, any weakly convergent sequence is bounded.

It is worth noticing the corollary of Theorem 4 which comes out taking $X = B_r$, $\beta = 0$ and $g=$identity:

THEOREM 5. - Let E be a Hilbert space, with inner product $\langle \cdot, \cdot \rangle$. Let $r > 0$ and let $A : B_r \to E$ be a continuous operator from the strong to the weak topology. Assume that the set $C = \{ x \in B_r : \langle A(x), x \rangle \geq 0 \}$ is disconnected and that, for each $x, y \in B_r \setminus C$, one has $\langle A(x), y \rangle < 0$.

Then, there exists $x^* \in C$ such that $A(x^*) = 0$.

Acknowledgement. The author wishes to thank prof. J. Saint Raymond for a useful correspondence.

References

[1] R. DEVILLE, G. GODEFROY and V. ZIZLER, Smoothness and renorming in Banach spaces, Longman Scientific & Technical, 1993.

[2] A. J. B. LOPES-PINTO, On a new result on the existence of zeros due to Ricceri, J. Convex Anal., 5 (1998), 57-62.

[3] E. MICHAEL, A selection theorem, Proc. Amer. Math. Soc., 17 (1966), 1404-1406.

[4] B. RICCERI, Applications de théorèmes de semi-continuité inférieure, C. R. Acad. Sci. Paris, Série I, 295 (1982), 75-78.

[5] B. RICCERI, Existence of zeros via disconnectedness, J. Convex Anal., 2 (1995), 287-290.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania, Italy
e-mail: ricceri@dmi.unict.it