Molecular barcode and morphological analysis of *Smilax purhampuy* Ruiz, Ecuador

Pilar Soledipsa 1, Efrén Santos-Ordóñez Corresponding Author, 2, 3, Migdalia Miranda 4, Ricardo Pacheco 2, Yamilet Irene Gutiérrez Gaiten 5, Ramón Scull 5

1 Facultad de Ciencias Químicas. Ciudadela Universitaria “Salvador Allende”, Universidad de Guayaquil, Guayaquil, Ecuador
2 Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
3 Facultad de Ciencias de la Vida, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
4 Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
5 Instituto de Farmacia y Alimentos, Universidad de La Habana, Ciudad Habana, Cuba

Corresponding Author: Efrén Santos-Ordóñez
Email address: gsantos@espol.edu.ec

Smilax plants are distributed in tropical, subtropical, and temperate regions in both hemispheres of the world. They are used extensively in traditional medicines in a number of countries. However, morphological and molecular barcodes analysis, which may assist in the taxonomic identification of species, are lacking in Ecuador. In order to evaluate the micromorphological characteristics of these plants, cross sections of *Smilax purhampuy* leaves were obtained manually. The rhizome powder, which is typically used in traditional medicines, was analyzed for micromorphological characteristics. All samples were clarified with 1% sodium hypochlorite. Tissues were colored with 1% safranin in water and were fixed with glycerinated gelatin. DNA was extracted from the leaves using a modified CTAB method for molecular barcode characterization and PCR was performed using primers to amplify the different loci including the plastid genome regions *atpF-atpH* spacer, *matK* gene, *rbcL* gene, *rpoB* gene, *rpoC1* gene, *psbK-psbI* spacer, and *trnH-psbA* spacer; and the nuclear DNA sequence ITS2. A DNA sequence similarity search was performed using BLAST in the GenBank nr database and phylogenetic analysis was performed using the maximum likelihood method according to the best model identified by MEGAX using a bootstrap test with 1,000 replicates. Results showed that the micromorphological evaluation of a leaf cross section depicted a concave arrangement of the central vein, which was more pronounced in the lower section and had a slight protuberance. The micromorphological analysis of the rhizome powder allowed the visualization of a group of cells with variable sizes in the parenchyma and revealed thickened xylematic vessels associated with other elements of the vascular system. Specific amplicons were detected in DNA barcoding for all the barcodes tested except for the *trnH-psbA* spacer. BLAST analysis revealed that the
Smilax species was predominant in all the samples for each barcode; therefore, the genus *Smilax* was confirmed through DNA barcode analysis. The barcode sequences *psbK-psbl*, *atpF-atpH*, and ITS2 had a better resolution at the species level in phylogenetic analysis than the other barcodes we tested.
Molecular barcode and morphological analysis of
Smilax purhampuy Ruiz, Ecuador

Pilar Soledispa¹, Efrén Santos-Ordóñez²,³, Migdalia Miranda⁴, Ricardo Pacheco²,
Yamilet Irene Gutiérrez Gaiten⁵, Ramón Scull⁵

¹Facultad de Ciencias Químicas. Ciudadela Universitaria “Salvador Allende”, Universidad de
Guayaquil, Guayaquil, Ecuador

²Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela
Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador

³Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del
Litoral, ESPOL, Guayaquil, Ecuador

⁴Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, Escuela Superior
Politécnica del Litoral, ESPOL, Guayaquil, Ecuador

⁵Instituto de Farmacia y Alimentos, Universidad de La Habana, Ciudad Habana, Cuba

Corresponding Author:
Efrén Santos-Ordóñez
Km 30.5 vía Perimetral, Campus Gustavo Galindo, Guayaquil, 09-01-5863, Ecuador.
Email address: gsantos@espol.edu.ec

Abstract
Smilax plants are distributed in tropical, subtropical, and temperate regions in both
hemispheres of the world. They are used extensively in traditional medicines in a
number of countries. However, morphological and molecular barcodes analysis, which
may assist in the taxonomic identification of species, are lacking in Ecuador.
In order to evaluate the micromorphological characteristics of these plants, cross
sections of Smilax purhampuy leaves were obtained manually. The rhizome powder,
which is typically used in traditional medicines, was analyzed for micromorphological
characteristics. All samples were clarified with 1% sodium hypochlorite. Tissues were
colored with 1% safranin in water and were fixed with glycerinated gelatin. DNA was
extracted from the leaves using a modified CTAB method for molecular barcode
characterization and PCR was performed using primers to amplify the different loci
including the plastid genome regions atpF-
atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer,
and trnH–psbA spacer; and the nuclear DNA sequence ITS2. A DNA sequence
similarity search was performed using BLAST in the GenBank nr database and phylogenetic analysis was performed using the maximum likelihood method according to the best model identified by MEGAX using a bootstrap test with 1,000 replicates. Results showed that the micromorphological evaluation of a leaf cross section depicted a concave arrangement of the central vein, which was more pronounced in the lower section and had a slight protuberance. The micromorphological analysis of the rhizome powder allowed the visualization of a group of cells with variable sizes in the parenchyma and revealed thickened xylematic vessels associated with other elements of the vascular system. Specific amplicons were detected in DNA barcoding for all the barcodes tested except for the trnH–psbA spacer. BLAST analysis revealed that the Smilax species was predominant in all the samples for each barcode; therefore, the genus Smilax was confirmed through DNA barcode analysis. The barcode sequences psbK-psbl, atpF-atpH, and ITS2 had a better resolution at the species level in phylogenetic analysis than the other barcodes we tested.

Introduction

The genus Smilax (in the family Smilacaceae) consists of 310 species that are distributed in tropical, subtropical and temperate regions in both hemispheres of the world (Qi et al., 2013). According to Cameron et al. (2006), Smilacaceae are taxonomically confused and belong to the cosmopolitan family of Liliales. Due to morphological analysis, the division of Smilacaceae includes at least seven genera and five sections within the large genus Smilax. Plants are dioecious, vine, herbaceous, or rarely, sub-shrubs or shrubs. Leaves are simple, and alternating with petioles that have tendrils; the primary venation are acrodamous. Thicker stems are rippled while aerial stems are generally aculeate (Martins et al., 2013b). In Ecuador, the genus is not well-recorded, although approximately ten species of this genus have been reported in the country according to Gaskin (1999).

Smilax is used a variety of ways in traditional medicine. For instance, in Brazil, Smilax longifolia Rich and Smilax syphilitica Humb & Bonpl. ex Wild are used as diuretics and in the treatment of venereal diseases (Breitbach et al., 2013) and Smilax quinquenervia Vell is used as a tonic for rheumatism and as an anti-syphilitic (Andreata, 1997). In Central America, several species of Smilax are used as diuretics, and for dermatological infections, gastrointestinal disorders, rheumatism, vaginitis, contraception, menstrual regulation, anemia, snake bites, and arthritis. In Ecuador, Smilax species are used for the elimination of cholesterol and triglycerides, the treatment of arthritis, intestinal, stomach and prostate inflammations, chronic gastritis, and cysts (Ferrufino, 2004).

Several pharmacological properties have been demonstrated, including glucose-lowering (Romo-Pérez et al., 2019), anti-hyperuricemic (Huang et al., 2019), anti-inflammatory and analgesic (Khana et al., 2019), diuretic (Pérez-Ramírez et al., 2016), and antioxidant (Fonseca et al., 2017) effects. Several chemical compounds have been identified in the genus, including polysaccharides (Zhang et al., 2019), steroidal saponins (Luo et al., 2018), and flavonoids (Wang et al., 2019), among others.
Material and Methods

Study area

The climate of the study area is rainy megathermal with an average monthly temperature between 22°C and 26°C and average rainfall between 2,000 to 3,000 mm per year. The study area is a tropical humid forest.
Collection of plant material

Plant material was collected from three specimens of *S. purhampuy* Ruiz in the Francisco de Orellana Province in Ecuador (coordinates 1°10'03.7''S 76°56'30.9''W) in March and April of 2019. The samples were collected from shaded-exposed plants. Branches containing leaves, fruits, and the rhizome were transferred to the GUAY herbarium of the Faculty of Natural Sciences of the University of Guayaquil for taxonomic characterization. Samples were identified as *S. purhampuy* Ruiz (voucher number 13,117).

Plant material preparation

Leaves and rhizomes were washed with water. The leaves used in the micromorphological study were analyzed and stored at -80°C for DNA extraction. The rhizomes were dried in a Mettler Toledo stove at 40°C and then samples of the rhizomes were crushed with a manual knife mill and stored in amber glass jars for analysis.

Micromorphological analysis

Leaf samples were taken from the middle of the lamina for the evaluation of their micromorphological characteristics. The mid-rib was cut transversely according to the manual method (Miranda and Cuéllar, 2000). The maximum sample width was 1 cm including the mid-rib. Transversal cuts of fresh leaves were hydrated and clarified with 1% sodium hypochlorite. Tissues were colored with 1% safranin in water and fixed with glycerinated gelatin according to the method by Gatusso and Gatusso (1999). The powder obtained from the rhizomes was hydrated, clarified with 1% sodium hypochlorite and colored with 1% safranin in water and fixed with glycerinated gelatin (Gattuso and Gattuso, 1999; Miranda and Cuellar, 2000). We performed a histochemical reaction with Lugol reagent to detect starch in the powdered drug obtained from the rhizomes (Gattuso and Gattuso, 1999). Morphological analysis was performed using a NOVEL light microscope at 10x magnification, attached to an HDCE-50B digital camera, model 146 HDCE-50B.

DNA extraction and PCR

Leaf samples from the three *S. purhampuy* Ruiz plants (with codes CIBE-010, CIBE-011, CIBE-012) were ground with MM400 (Retsch, Haan, Germany) and liquid nitrogen and were stored at -80°C. DNA extraction was performed for each *Smilax* plant independently. A modified CTAB protocol was used for total DNA extraction according to Pacheco Coello et al. (2017). The master mix GoTaq® 2x (Cat# M7123, Promega) was used for PCR analysis according to the manufacturer's instructions using 0.5 µM for each primer according to the barcode used (Table S1) in a 50 µL PCR reaction. The conditions for the PCR were: 95°C for 3 min for initial denaturation; 35 cycles of 95°C for 30 s, 50°C/56°C/60°C (depending of the barcode, Table S1) for 60 s, 72°C for 60 s; and a final extension of 72°C for 10 min. Amplicons were detected by sampling 5 µL in agarose gel (1.5%) electrophoresis. The remaining 45 µL was purified and sequenced commercially (Macrogen, Rockville, MD, USA). At least two technical replicates were sequenced and a consensus was generated for each biological replicate.
Bioinformatic analysis

Sequences were processed using MEGAX (Stecher et al., 2020). Technical replicates were aligned with MUSCLE and a consensus sequence was generated for each barcode. Consensus sequences were analyzed by BLAST (Zhang et al., 2000) in the GenBank non-redundant nucleotide database (nr). The nr database included the accessions of the complete plastid genomes of *Smilax* spp. representing three species and also accessions containing sequences of single locus, indicating that the results were dependent on the sequence availability in the database at the time of the analysis (28th June 2020). Accessions were selected for phylogenetic analysis based on BLAST analysis. For each barcode, the accessions and samples sequences were aligned using MUSCLE and the recommended model from MEGAX was used. The aligned sequences were trimmed at the ends to allow for all sequences to maintain the same range. The maximum likelihood method was performed according to the best model found by MEGAX using bootstrap test (1,000 replicates).

Results

Morphological analysis

The micromorphological evaluation of a cross section of the leaf sample (Fig. 1A) showed a concave arrangement of the central midrib, which was more pronounced in the lower part with a slight protuberance. The mesophyll showed a well-defined adaxial and abaxial uniseriate epidermis with a fine cuticle on the lateral sides of the central vein. Below the adaxial epidermis, we observed a palisade parenchyma forming two or three continuous layers of elongated cells. The spongy parenchyma exhibited cells of variable size that bordered the abaxial epidermis. An enlargement of the central vein (Fig. 1B) showed the fundamental parenchyma, which was formed by many isometric cells. The sclerenchyma tissue was characterized by lignified thickened walled cells surrounding a well-defined vascular system (xylem and phloem) near the middle of the central vein, which harbored six vascular bundles of variable size.

Micromorphological analysis of the drug obtained from the rhizome (Fig. 2) allowed the visualization of a group of cells of the parenchyma of variable size (Fig. 2A) and revealed thickened xylematic vessels associated with other elements of the vascular system (Fig. 2B). Elongated, fusiform, and pointed structures were also visualized, which corresponded to fibers and may suggest a type of filiform sclerides (Fig. 2C). We observed xylematic thickening vessels with holes in another sample of the powder drug (Fig. 2D). Numerous starch granules of variable size were observed showing a blackish coloration with the Lugol reagent (Fig. 2E).

Molecular barcodes for *Smilax purhampuy* Ruiz plants

Specific PCR amplification was detected for all barcodes except for *tmH-psbA* (data not shown). BLAST analysis was performed for each barcode sequence (Data S1, Data S2) and the best hit for all samples for each barcode indicated the *Smilax* species (Table 1). BLAST analysis indicated the presence of *Smilax* spp. using the sequences available at the nr database, including plastid genomes and single locus sequence. The best hits in BLASTn for the different species included: *S. nipponica* for *psbK-psbI* (96.57%, 96.56%, and 93.83% of identity for the three biological replicates, respectively); *S. nipponica* and *S. china* for *rpoB* (99.73% for the three biological replicates); *S. nipponica*, *S. china*, and...
S. aspera for rpoC1 (100%); S. sieboldii f. inermis for atpF-atpH (90.66%, 90.69%, and 96.47%), S. fluminensis (99.65%, 100%), S. bona-nox (99.88%) and S. laurifolia (99.88%) for matK; S. aspera (99.82%, 99.82%) and S. laurifolia (99.82%) for rbcl; and S. excelsa (80.49%, 80.05%) for ITS2 (only two biological replicates were sequenced successfully for ITS2).

We determined the best models for phylogenetic analysis were: T92+G+I (rbcl), T92+G (matK, ITS2, psbK-psbl, atpF-atpH), T92 (rpoB), and JC (rpoC1) after alignment of the barcode sequences between the S. purhampuy from this study and different accessions including other genera. Phylogenetic analysis revealed that for psbK-psbl, the S. purhampuy sequences shared a clade (99 bootstrap) with different Smilax species, including S. china, S. nipponica, and S. glycocephylla; and with two accessions from another genus, including Hemidesmus indicus (Fig. 3). However, the S. purhampuy sequences CIBE-010 and CIBE-011 are grouped in a subclade (bootstrap 96), while S. purhampuy CIBE-012 shared a clade with both S. purhampuy (bootstrap 30). The other major clades in the phylogenetic tree corresponded to other genera. For the rpoB the phylogenetic tree revealed that the S. purhampuy samples were in a clade (98 bootstrap) with other Smilax species; while other genera including Brahea spp., Philesia magellanica, Tricyrtis macropoda, Fritillaria spp., and Lilium spp. were in other clades (Fig. S1). The S. purhampuy samples for the rpoC1 were in a clade with different species of Smilax, including S. aspera (accession number EU531650), S. nipponica (MT261170), S. china (MT261168), and S. herbacea (HQ594138, HQ594139, Fig. S1).

The atpF-atpH phylogenetic analysis revealed that several Smilax species were in the same clade. However, the S. purhampuy samples from this study are in a subclade (bootstrap 99). For the matK and rbcl barcodes, the same pattern was observed where a clade sharing different Smilax species was encountered (Fig. S1), although a subclade was formed with the two S. purhampuy samples (CIBE-010, CIBE-011) and S. fluminensis; while for the S. purhampuy CIBE-012 sample, a branch was shared with S. aspera for matK. Furthermore, in the rbcl phylogenetic tree, a subclade was formed for S. purhampuy samples CIBE-010 and CIBE-011 with other species including S. aspera, while for the S. purhampuy CIBE-012 a clade was shared with S. domingensis and S. lauriflora. The ITS2 phylogenetic tree (Fig. 4) revealed that the two S. purhampuy samples (CIBE-010 and CIBE-011) were in a different clade (bootstrap 99) apart from the other Smilax species, including S. aspera, S. stans, S. menispermoidea, S. trachypoda, S. aberrans, S. retroflexa, S. excelsa, S. lunglingensis, S. hispida, S. japonica, S. china, and S. pumila.

Discussion

Microscopic analysis

We made a detailed assessment of the herbal drugs and used microscopy to identify them based on their known histological characteristics (Shailesh et al., 2015). Micromorphological studies are essential for the quality control of plant-derived drugs, since significant details are used to correctly identify the plant and possible adulterants. The cross section of the S. purhampuy leaf indicated that the abaxial and adaxial epidermis are uniseriate, with the existence of an easily perceptible cuticle. Morphoanatomic studies performed on the leaves of various Smilax species (S.
S. brasiliensis, S. campestris, S. cisoides, S. fluminensis, S. goyazana, S. oblongifolia, and S. rufescens) revealed a non-stratified epidermis with thick cuticle (Martins et al., 2013b). These results correspond to those of previous studies and may be a distinctive anatomical characteristic of the genus.

In most plants, the leaf mesophyll harbors palisade and spongy tissue, which differ in location, cell morphology, and function. In plants with a dorsiventral mesophyll, the palisade tissue is located on the adaxial side and the spongy tissue on the abaxial side; this distribution makes a greater contribution to the photosynthesis process (Yahia et al., 2019). Studies by various researchers have shown that the mesophyll could vary from one leaf to another of the same individual or of different individuals, depending on light intensity and salt concentration (Gapińska and Glińska, 2014). In S. purhampuy a dorsiventral mesophyll was observed where the palisade parenchyma is toward the adaxial side and the spongy parenchyma was located toward the abaxial side, which supports the results of Martins and Appezzato-da-Glória (2006) for S. polyantha and Martins et al. (2013b) for S. brasiliensis, S. campestris, S. cisoides, S. goyazana, S. oblongifolia and S. rufescens. The presence of six vascular bundles of variable size at the level of the central vein of the leaf was unique and differed from other Smilax species (S. brasiliensis, S. cisoides, and S. fluminensis), which present three vascular bundles (Martins et al., 2013b).

The presence of parenchyma tissue, xylematic vessels, fibers and starch granules are reported in S. domingensis from Cuba and Guatemala (Cáceres et al., 2012; González et al., 2017), which was support by the present study. The difference lies within the morphology and arrangement of these structures. For example, thickened scalariform xilematic vessels and fibrotraqueids (fibers) were detected in S. domingensis, while thickened xilematic vessel with holes and filiform sclerides (fibers) were observed in the studied species.

Molecular barcode sequences

Genetic analysis has proven to be an important tool in the standardization of medicinal plants. The genotypic characterization of plant species is important since most plants may show considerable variation in morphology, although they belong to the same genus and species. DNA analysis is useful for the identification of cells, individuals, or species and could help distinguish genuine from adulterated drugs (Kumari et al., 2016). Different methods may be applied for genotyping in plants. Microsatellite (Martins et al., 2013a; Ru et al., 2017; Qi et al., 2017) and DNA barcodes (Cameron et al., 2006; Qi et al., 2013) have been used for genotyping Smilax species and have shown phylogenetic relationships between different Smilax species. Additionally, Sulistyaningsih et al. (2018) used the DNA barcode rbcL for phylogenetic analysis of Smilax spp. in Java, Indonesia, concluding that rbcL could be used to identify at the genus but not at species level.

The analysis of DNA barcodes could be used as a complementary analysis for the identification of plants species, especially when Smilax species show considerable phenotypic variations within populations (Cameron et al., 2006). The recommended barcodes for species identification are 2-locus rbcL and matK (CBOL Plant Working Group, 2009). Generally, the BLASTn analysis relies in the presence of those species in the GenBank for species identification; consequently, the results presented in the
BLAST analysis and in the phylogenetic trees depended on the sequences available in the nr database in the GenBank. Therefore, a complete analysis using different species of *Smilax* should be performed in the future for all the DNA barcodes tested. We analyzed the three samples taxonomically identified as *S. purhampuy* Ruiz (CIBE-010, CIBE-011, CIBE-012) which were more similar than other *Smilax* species, including *S. nipponica*, *S. glycophylla*, *S. herbacea*, *S. china*, *S. sieboldin*, *S. aspera*, *S. stans*, *S. menispermoidea*, *S. trachypoda*, *S. aberrans*, and *S. pumila*. These results were also observed in the phylogenetic trees for *psbK-psbI* spacer, *atpF-atpH* spacer, and ITS2. However, few accessions were encountered in the GenBank for the DNA barcodes *psbK-psbI* spacer and *atpF-atpH* spacer. There should be additional study of the different *Smilax* species for these barcodes, however, other DNA barcodes may accurately identify the genus level. The ITS2 revealed a low percentage of identification (80.49%) with BLASTn, suggesting that species differentiation could be detected using the ITS2. The results from other studies have indicated a better resolution for species identification using the ITS2 in medicinal plants (Techen et al., 2014; Zhang et al., 2016; Bustamante et al., 2019; Sarmiento et al., 2020).

Our results determined that the *rpoC1* sequence was not accurate at the species level, and that *matK* could not be used to discriminate between *S. purhampuy* and *S. fluminensis*. Furthermore, the *rbcL* barcode could not be used for species differentiation in the *Smilax* genus, as a low bootstrap value was observed in the different clades formed. The *psbK-psbI*, *atpF-atpH*, and ITS2 had a better resolution at the species level for *S. purhampuy*. Future research should include the sequencing of selected barcodes (*rbcL*, *matK*, *psbK-psbI* spacer, *atpF-atpH* spacer, and ITS2) for different species of the *Smilax* genus found in Ecuador with biological replicates. Further studies should establish a reliable DNA barcode analysis and test different 2-locus combinations to determine which barcode should be used for species identification in the *Smilax* genus.

Conclusions

We determined the morphological characteristics and conducted molecular barcode analysis on *S. purhampuy* Ruiz plants collected in Ecuador. The micromorphological characteristics of the leaves and rhizomes were described for the first time, which constitutes a novel contribution to the botanical characterization of the species. The taxonomic classification of *Smilax* was confirmed by the molecular barcodes used, including *psbK-psbI*, *rpoB*, *rpoC*, *atpF-atpH*, *matK*, *rbcL*, and ITS2. Furthermore, the barcodes sequences *psbK-psbI*, *atpF-atpH*, and ITS2 indicated a better resolution at the species level than the other barcodes tested in this study. These barcodes (*psbK-psbI*, *atpF-atpH*, and ITS2) could be used to identify other species in the genus *Smilax*. However, further molecular barcode analysis should be performed on *Smilax* spp. from Ecuador to determine its diversity and to complete its taxonomic classification. Furthermore, the medicinal properties of the *Smilax* plants used in this study should be studied in greater detail.

Acknowledgements
Identification of samples by the GUAY herbarium of the Faculty of Natural Sciences of the Guayaquil University is acknowledged.

References

Andreatta RHP. 1997. Revisão das espécies brasileiras do gênero Smilax Linnaeus (Smilacaceae). Pesqui Bot. 47:7-244

Basak S, Aadi Moolam R, Parida A, Mitra S, Rangan L. 2019. Evaluation of rapid molecular diagnostics for differentiating medicinal Kaempferia species from its adulterants. Plant Diversity 41(3):206–211

Bustamante K, Santos-Ordóñez E, Miranda M, Pacheco R, Gutiérrez Y, Scull R. 2019. Morphological and molecular barcode analysis of the medicinal tree Mimusops coriacea (A.DC.) Miq. collected in Ecuador. PeerJ 7:e7789

Cáceres A, Cruz SM, Martínez V, Gaitán I, Santizo A, Gattuso S, Gattuso M. 2012. Ethnobotanical, pharmacognostical, pharmacological and phytochemical studies on Smilax domingensis in Guatemala. Brazilian Journal of Pharmacognosy 22(2):239-248

Cameron KM, Fu C. 2006. A nuclear rDNA phylogeny of Smilax (Smilacaceae). Aliso 22:598–605

CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106(31):12794-12797

Costion C, Ford A, Cross H, Crayn D, Harrington M, Lowe A. 2011. Plant DNA barcodes can accurately estimate species richness in poorly known floras. PLoS One 6(11):e26841

Cheng T, Xu C, Lei L, Li C, Zhang Y, Zhou S. 2015. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16(1):138-149

Ferrufino L, Gómez J. 2004. Estudio morfológico de Smilax L. (Smilacaceae) en Costa Rica, con implicaciones sistemáticas. Lankesteriana 4(1):5-36

Fonseca JC, Barbosa MA, Silva ICA, Duarte-Almeida JM, Castro AHF, dos Santos Lima LAR. 2017. Antioxidant and allelopathic activities of Smilax brasiliensis Sprengel (Smilacaceae). South African Journal of Botany 111:336-340

Gapińska M, Glińska S. 2014. Salt-mediated changes in leaf mesophyll cells of Lycopersicon esculentum Mill. plants. Journal of Central European Agriculture 15(3):219-235

Gaskin J. 1999. Smilacaceae. In: P.M. Jørgensen & S. León-Yánez (eds.). Catalogue of the vascular plants of Ecuador. Monogr. Syst. Bot. Missouri Bot. Gard. 75

Gattuso MA, Gattuso SJ. 1999. Manual de procedimientos para el análisis de drogas en polvo. Rosario: Editorial de la Universidad Nacional de Rosario Urquiza.

González YJ, Monan M, Cuéllar A, de Armas T, Gómez E, Dopico E. 2017. Pharmacognostic and Phytochemical Studies of Smilax domingensis Willd. in Cuba. American Journal of Plant Sciences 8:1462-1470
Huang L, Deng J, Yuan C, Zhou M, Liang J, Yan B, Shu J, Liang Y, Huang H. 2019. The anti-hyperuricemic effect of four astilbin stereoisomers in *Smilax glabra* on hyperuricemic mice. *Journal of Ethnopharmacology* 238:111777

JR Global del Perú S.A.C. INKAPLUS. Ficha Técnica-Zarzaparrilla. [Online]; 2011 [cited 2019 07 08. Available from: http://www.inkaplus.com/media/web/pdf/Zarzaparrilla.pdf.

Khana AK, Singha PD, Reeseeb PB, Howdena J, Thomasa TT. 2019. Investigation of the anti-inflammatory and the analgesic effects of the extracts from *Smilax ornata* Lam. (Jamaican sarsaparilla) plant. *Journal of Ethnopharmacology* 240:111830

Kritpetcharat O, Khemtonglang N, Kritpetcharat P, Daduang J, Daduang S, Suwanrungruang K, Bletter N, Sudmoon R, Chaveerach A. 2011. Using DNA markers and barcoding to solve the common problem of identifying dried medicinal plants with the examples of Smilax and Cissus in Thailand. *Journal of Medicinal Plants Research* 5(15):3480-3487

Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution* 35:1547-1549.

Kumari R, Kotecha M. A review on the Standardization of herbal medicines. 2016. *International Journal of Pharma Sciences and Research* 7(2):97-106

Liu J, Yan H-F, Newmaster SG, Pei N, Ragupathy S, Ge X-J. 2015. The use of DNA barcoding as a tool for the conservation biogeography of subtropical forests in China. Diversity and Distributions 21(2):188-199.

Luo R, Gao XL, Shi Cha, Wei YX, Hou PY, Li HG, Wang SQ, Anderson S, Zhang YW, Wu XH. 2018. Phytochemical and chemotaxonomic study on the rhizomes of *Smilax riparia* (Liliaceae). *Biochemical Systematics and Ecology* 76:58-60

Martins AR, Bombo AB, Soares AN, Appezzato-da-Glória B. 2013b. Aerial stem and leaf morphoanatomy of some species of Smilax. *Brazilian Journal of Pharmacognosy* 23(4):576-584

Martins AR, Abreu AG, Bajay MM, Villela PM, Batista CE, Monteiro M, Alves-Pereira A, Figueira GM, Pinheiro JB, Appezzato-da-Glória B, Zucchi MI. 2013a. Development and characterization of microsatellite markers for the medicinal plant Smilax brasiliensis (Smilacaceae) and related species. Applications in Plant Science 1(6):apps.1200507

Martins AR, Appezzato-da-Glória B. 2006. Morfoanatomia dos órgãos vegetativos de *Smilax polyantha* Griseb. (Smilacaceae). *Brazilian Journal of Botany* 29:555-567

Miranda MM, Cuéllar AC. 2000. Manual de prácticas de laboratorio. Farmacognosia y productos naturales. Ciudad Habana. 25-49, 74-79

Shailesh LP, Suryawanshi AB, Gaikwad MS, Pedewad SR, Potulwar AP. 2015. Standardization of herbal drugs: An overview. *The Pharma Innovation Journal* 4(9):100-104

Pacheco Coello R, Pestana Justo J, Factos Mendoza A, Santos Ordoñez E. 2017. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food. *BMC Research Notes* 10(1):758

Pérez-Ramírez IF, Enciso-Moreno JA, Guevara-González RG, Gallegos-Corona MA, Loarca-Piña G, Reynoso-Camacho R. 2016. Modulation of renal dysfunction by *Smilax cordifolia* and *Eryngium cardinae*, and their effect. on kidney proteome in obese rats. *Journal of Functional Foods* 20:545–555
Qi Z, Cameron KM, Li P, Zhao Y, Chen S, Chen G, Fu C. 2013. Phylogenetics, character evolution, and distribution patterns of the greenbriers, Smilacaceae (Liliales), a near-cosmopolitan family of monocots. *Botanical Journal of the Linnean Society* 173:535–548

Qi ZC, Shen C, Han YW, Shen W, Yang M, Liu J, Liang ZS, Li P, Fu CX. 2017. Development of microsatellite loci in Mediterranean sarsaparilla (Smilax aspera; Smilacaceae) using transcriptome data. Applications in Plant Sciences. 5(4):apps.1700005.

Rivas MdPP, Muñoz DGL, Ruiz MAC, Fernández LFT, Muñoz FAC, Pérez NM. Global Biodiversity Information Facility (GBIF). [Online].; 2017 [cited 2019 08 05. Available from: https://www.gbif.org/species/5295631.

Romo-Pérez A, Escandón-Rivera SM, Andrade-Cetto A. 2019. Chronic hypoglycemic effect and phytochemical composition of Smilax moranensis roots. *Revista Brasileira de Farmacognosia* 29(2):246-253

Ru Y, Cheng R, Shang J, Zhao Y, Li P, Fu C. 2017. Isolation and characterization of microsatellite loci for *Smilax sieboldii* (Smilacaceae). Applications in Plant Sciences 5(3):apps.1700001.

Sarmiento-Tomalá G, Santos-Ordóñez E, Miranda-Martínez M, Pacheco-Coello R, Scull-Lizama R, Gutiérrez-Gaitén Y, Delgado-Hernández R. 2020. Short Communication: Molecular barcode and morphology analysis of Malva pseudolavatera Webb & Berthel and Malva sylvestris L from Ecuador. *Biodiversitas* 21(8):3554-3561

Sulistyaningsih LD, Abinawanto, Ardiyani M, Salamah A. 2018. Short Communication: Phylogenetic analysis and molecular identification of Canar (Smilax spp.) in Java, Indonesia Based on DNA Barcoding Analysis. Biodiversitas 19(2):364-368.

Stecher G, Tamura K, Kumar S. 2020. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. *Molecular Biology and Evolution* 37(4):1237-1239

Techen N, Parveen I, Pan Z, Khan IA. 2014. DNA barcoding of medicinal plant material for identification. *Current Opinion in Biotechnology* 25:103-110

Wang S, Fanga Y, Yud X, Guoa L, Zhanga X, Xiaa D. 2019. The flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid nephropathy rats through promoting uric acid excretion. *Biomedicine & Pharmacotherapy* 111:162–168

Zhang D, Jiang B, Duan L, Zhou N. 2016. Internal transcribed spacer (ITS), an ideal DNA barcode for species discrimination in Crawfurdia Wall. (Gentianaceae) *African Journal of Traditional, Complementary and Alternative Medicines* 13(6):101-106

Zhang Y, Pan X, Ran S. 2019. Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from *Smilax china* L. International Journal of Biological Macromolecules 139:233-243

Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. *Journal of Computational Biology* 7(1–2):203-214
Table 1 (on next page)

Blastn analysis for seven different barcodes of *Smilax purhampuy* Ruiz plants (CIBE-010, CIBE-011, CIBE-012). Results were ranked for the first three with the highest percentage of identity. Species with the best results are bold for each barcode.
Table 1. Blastn analysis for seven different barcodes of *Smilax purhampuy* Ruiz plants (CIBE-010, CIBE-011, CIBE-012). Results were ranked for the first three with the highest percentage of identity. Species with the best results are bold for each barcode.

Barcode code	Organism	Accession	% identity	Organism	Accession	% identity	Organism	Accession	% identity
psbK-psbI									
CIBE-010	*Smilax nipponica*	MT261170.1	96.57%	*Smilax china*	MT261168.1	95.91%	*Smilax glycyphylla*	MT261169.1	92.69%
CIBE-011	*Smilax nipponica*	MT261170.1	96.56%	*Smilax china*	MT261168.1	95.91%	*Smilax glycyphylla*	MT261169.1	92.67%
CIBE-012	*Smilax nipponica*	MT261170.1	93.83%	*Smilax china*	MT261168.1	93.20%	*Smilax glycyphylla*	MT261169.1	89.32%
rpoB									
CIBE-010	*Smilax nipponica*	MT261170.1	99.73%	*Smilax glycyphylla*	MT261169.1	99.73%	*Smilax china*	MT261168.1	99.47%
CIBE-011	*Smilax nipponica*	MT261170.1	99.73%	*Smilax glycyphylla*	MT261169.1	99.73%	*Smilax china*	MT261168.1	99.46%
CIBE-012	*Smilax nipponica*	MT261170.1	99.73%	*Smilax glycyphylla*	MT261169.1	99.73%	*Smilax china*	MT261168.1	99.46%
rpoC1									
CIBE-010	*Smilax nipponica*	MT261170.1	100.00%	*Smilax china*	MT261168.1	100.00%	*Smilax aspera*	EU531650.1	100.00%
CIBE-011	*Smilax nipponica*	MT261170.1	100.00%	*Smilax china*	MT261168.1	100.00%	*Smilax aspera*	EU531650.1	100.00%
CIBE-012	*Smilax nipponica*	MT261170.1	100.00%	*Smilax china*	MT261168.1	100.00%	*Smilax aspera*	EU531650.1	100.00%
atpF-atpH									
CIBE-010	*Smilax sieboldii*	JN417281.1	90.66%	*Smilax sieboldii*	JN417281.1	90.64%	*Hemidesmus indicus*	NC_047471.1	89.84%
CIBE-011	*Smilax sieboldii*	JN417281.1	90.69%	*Smilax sieboldii*	JN417281.1	90.68%	*Smilax glycyphylla*	MT261169.1	89.03%
CIBE-012	*Smilax sieboldii*	JN417281.1	96.47%	*Smilax sieboldii*	JN417281.1	96.31%	*Smilax china*	MT261168.1	94.69%
matK									
CIBE-010	*Smilax fluminensis*	JF461414.1	99.65%	*Smilax coriacea*	KJ719950.1	98.72%	*Smilax havanaensis*	KF782873.1	98.72%
CIBE-011	*Smilax fluminensis*	JF461414.1	100.00%	*Smilax coriacea*	KJ719950.1	99.05%	*Smilax havanaensis*	KF782873.1	99.05%
CIBE-012	*Smilax bona-nox*	KC511353.1	99.88%	*Smilax laurifolia*	JF461393.1	99.88%	*Smilax ligneoriparia*	KX342989.1	99.76%
rbcL									
CIBE-010	*Smilax aspera*	KX394660.1	99.82%	*Smilax aspera*	KX394659.1	99.82%	*Smilax aspera*	KM609079.1	99.82%
CIBE-011	*Smilax aspera*	KX394660.1	99.82%	*Smilax aspera*	KX394659.1	99.82%	*Smilax aspera*	KM609079.1	99.82%
CIBE-012	*Smilax laurifolia*	JF944386.1	99.82%	*Smilax china*	MT261168.1	99.45%	*Smilax gaudichaudiana*	KX394669.1	99.45%
ITS2									
CIBE-010	*Smilax excelsa*	JF461354.1	80.49%	*Smilax aspera*	KJ719926.1	80.24%	*Smilax aspera*	KJ719924.1	80.24%
CIBE-011	*Smilax excelsa*	JF461354.1	80.05%	*Smilax aspera*	KJ719926.1	79.81%	*Smilax aspera*	KJ719924.1	79.81%

Accession numbers refer to plastid complete genome
Figure 1

Microscopic characteristics of the leaf from *Smilax purhampuy* Ruiz

Transversal section of the central vein of the leaf (A, B). AbE, abaxial epidermis; AdE, adaxial epidermis; FP, fundamental parenchyma; Me, mesophyll; PP, palisade parenchyma; SP, spongy parenchyma; ST, sclerenchyma tissue; Vs, vascular system
Figure 2

Microscopic characteristics of the powder drug from *Smilax purhampuy* Ruiz rhizome

A: parenchyma cells. B: xylematic veseels and other elements of the vascular system. C: fibers (filiform sclerides). D: xylematic veseels, E: starch granules
Figure 3

Phylogenetic tree of the psbK-psbl spacer with accessions from the genus Smilax and different genera selected from the blastn results.

Three species from the genus Paris was used as outgroup. Maximum Likelihood method based on Tamura 3-parameter model. Bootstrap test with 1000 replicates was performed. The tree with the highest log likelihood (-1728.93) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Tamura 3 parameter model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.6020)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 26 nucleotide sequences. There were a total of 368 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (Kumar et al., 2018; Stecher et al., 2020). Blue arrows indicate Smilax purhampuy Ruiz from Ecuador.
Figure 4

Phylogenetic tree of the ITS2 with accessions from the genus *Smilax* and different genera selected from the blastn results.

Three species from the genus *Tulipa* was used as outgroup. Maximum Likelihood method based on Tamura 3-parameter model. The tree with the highest log likelihood (-1405.71) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Tamura 3 parameter model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+\(G\), parameter = 0.8022)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 30 nucleotide sequences. There were a total of 436 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (Kumar et al. 2018; Stecher et al., 2020). Blue arrows indicate *Smilax purhampuy* Ruiz from Ecuador.
