Genotyping for Polymorphisms in Xenobiotic Metabolism as a Predictor of Disease Susceptibility

Ann K. Daly, Suzanne Cholerton, Martin Armstrong, and Jeffrey R. Idle
Pharmacogenetics Research Unit, Department of Pharmacological Sciences, University of Newcastle upon Tyne, Medical School, Newcastle upon Tyne, England

Polymorphisms in many xenobiotic metabolizing enzymes occur leading to variation in the level of enzyme expression in vivo. Enzymes showing such polymorphisms include the cytochrome P450 enzymes CYP1A1, CYP1A2, CYP2A6, CYP2D6, and CYP2E1 and the phase two metabolism enzymes glutathione S-transferase M1 (GSTM1) and arylamine N-acetyltransferase 2 (NAT2). In the past, these polymorphisms have been studied by phenotyping using in vivo administration of probe drugs. However, the mutations which give rise to several of these polymorphisms have now been identified and genotyping assays for polymorphisms in CYP1A1, CYP2A6, CYP2D6, CYP2E1, GSTM1, and NAT2 have been developed. Specific phenotypes for several of the polymorphic enzymes have been associated with increased susceptibility to malignancy, particularly lung and bladder cancer, and Parkinson’s disease. These associations are likely to be due to altered activation or detoxification of chemicals initiating these diseases, including components of tobacco smoke and neurotoxins. The substrate specificity and tissue distribution of polymorphic enzymes implicated in disease causation discussed with particular reference to previously described disease-phenotype associations.—Environ Health Perspect Vol 102(Suppl 9):55–61 (1994)

Key words: cytochrome P450, glutathione S-transferase, N-acetyltransferase, polymorphism, cancer, Parkinson’s disease

Introduction

There is considerable variation in expression of xenobiotic-metabolizing enzymes in the general population. This variability is due, at least in part, to the presence of genetic polymorphisms where mutations in the wild-type gene result in the synthesis of enzymes with impaired activity. Individuals expressing one or more of these mutated enzymes may differ from normal individuals in their susceptibility to certain diseases where exposure to xenobiotics is a possible cause. There is now clear evidence at the metabolic level for polymorphisms in the cytochrome P450 enzymes CYP1A1, CYP1A2, CYP2A6 and CYP2D6 and in N-acetyltransferase 2 (NAT2) and glutathione S-transferase M1 (GSTM1) which carry out phase 2 conjugation reactions. In the case of CYP2D6, NAT2, and GSTM1, the genetic basis of the polymorphism is also well understood. There is also evidence at the genetic level for a polymorphism in the enzyme CYP2E1. As summarized in Table 1, simple genotyping assays have been developed for a number of these polymorphisms. Associations between specific phenotypes for certain polymorphic enzymes and susceptibility to cancer, particularly lung and bladder cancer, Parkinson’s disease, and the autoimmune disease systemic lupus erythematosus have been described. These associations may be due to differences in the ability of the various enzyme phenotypes to activate or detoxicate chemical toxins or, alternatively, to linkage disequilibrium where a particular allele coding for another gene with a direct role in determining disease susceptibility shows genetic linkage with an allelic variant of the xenobiotic-metabolizing enzyme.

This article considers associations between particular metabolic phenotypes and disease susceptibility, with particular emphasis on methods for determining phenotypes. The relevance of the enzyme polymorphism-disease associations from what is known regarding substrates and tissue-specific expression is also considered. However, it should be noted that metabolism at the site of the tumor may not be essential because many carcinogens may migrate to other tissues following metabolism in the liver (1).

CYP1A1

CYP1A1 metabolizes a range of polycyclic aromatic hydrocarbons including benzo[a]pyrene and is inducible by various aromatic hydrocarbons which act by binding to the Ah receptor, a transcriptional activator of CYP1A1. There appears to be little significant constitutive CYP1A1 expression in human liver but the enzyme is detectable in lung tissue from smokers (2). An apparent polymorphism with respect to inducibility of CYP1A1 has been detected by use of an in vitro assay of lymphocytes which can classify individuals as high or low inducers with 3-methylcholanthrene (3). In two studies, the high inducibility phenotype was found to be more common among lung cancer patients than in a group of smoking controls (3,4). However, other workers (5–7) have failed to reproduce these findings.

Association of a CYP1A1 genotype detectable by restriction fragment length polymorphism (RFLP) analysis using the enzyme MspI with increased susceptibility to lung cancer, particularly squamous cell carcinoma, among smokers has been reported for a Japanese population (8). However, no such association was detected in a similar study of a Norwegian population (9). The MspI polymorphism has recently been demonstrated to be linked to an amino acid substitution in the heme-
Table 1. Detection of polymorphisms linked to impaired xenobiotic metabolism and/or altered disease susceptibility.

Enzyme	Polymorphism or allelic variant	Assay	Reference
CYP1A1	In 3′-flanking region A to G (Val42 to Ile)	RFLP analysis with MspI	Kawajiri et al. (8)
CYP2A6	CYP2A6V(T1496 to A, G96 to A)	Allele-specific PCR	Yamano et al. (18)
CYP2D6	CYP2D6A (deletion of A_887 in exon 5)	PCR (allele specific or with HpaII digest)	Daly et al. (31); Broly et al. (32); Smith et al. (41)
CYP2D6	CYP2D6B (G1923 to A)	PCR (with BsrNI digest or allele-specific)	Daly et al. (31); Broly et al. (32); Smith et al. (41)
CYP2D6	CYP2D6D (deletion of CYP2D6)	RFLP analysis with XbaI	Daly et al. (31); Broly et al. (32); Skoda et al. (76)
CYP2E1	Polymorphism in intron 2 Several point mutations in 5′-flanking region	RFLP analysis with DraI	Uematsu (49)
GSTM1 Null allele (deletion of GSTM1)	PCR with Rsal or PstI digest	Hayashi et al. (50)	
NAT2	M1 (T_341 to C, C_481 to T, A_903 to G)	PCR (with KpnI digest or allele-specific)	Hickman and Sim (66)
M2 (C_34 to T, G_396 to A)	PCR (with TaqI digest or allele-specific)	Hickman and Sim (66)	
M3 (G_973 to A)	PCR (with BamHI digest or allele-specific)	Hickman and Sim (66)	

binding region of the enzyme (10). The base change which gives rise to this substitution can be readily detected by an allele-specific polymerase chain reaction (PCR) assay. The MspI genotype apparently associated with increased lung cancer susceptibility also appears to cosegregate with the high inducibility-phenotype for CYP1A1 (11). In view of the expression of CYP1A1 in lung tissue and the nature of its substates, further studies on the role of polymorphisms in this enzyme in relation to lung cancer susceptibility appear appropriate.

CYP1A2

CYP1A2 is known to activate arylamine procarcinogens (12). There is evidence that it activates tobacco smoke condensate to a genotoxic product (13) and, in lymphoblastoid cells stably expressing this gene, a considerably increased mutation rate and decreased cell survival compared with the wild-type has been observed on exposure to the tobacco smoke-specific nitrosamine 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (14). Although expressed constitutively in liver, CYP1A2 has not been detected in lung (15) and it is unclear whether CYP1A2 expression is a risk factor for lung cancer development. However, tobacco-derived arylamines may undergo activation by CYP1A2 in the liver and play a role in the initiation of bladder carcinogenesis (16). Using caffeine as a probe drug, a polymorphism for CYP1A2 has been detected in three separate populations. Within each of these populations caffeine metabolism in nonsmokers showed a trimodal distribution with 12 to 13% of subjects classified as slow metabolizers of caffeine (17). Among smokers considerable variability in levels of metabolism was also seen but the distinction between phenotypes was blurred, presumably due to induction of CYP1A2 (17). The genetic basis of this apparent polymorphism is not yet understood.

CYP2A6

CYP2A6 is a constitutive cytochrome P450 which is expressed in human liver at variable levels (18). This enzyme may also be expressed in other tissues, including nasal tissue (19). CYP2A6 carries out 7-hydroxylation of coumarin but also appears to activate certain procarcinogens, including hexamethylphosphoramide (19), N-nitrosodimethylamine (20), NNK (14) and aflatoxin B1 (21). Using coumarin as a probe drug, the formation of 7-hydroxy-coumarin has been investigated in a group of volunteers. Considerable variation in the percentage of drug excreted as 7-hydroxy metabolites has been observed with levels of conversion varying from 10 to 120% of the dose (22). A variant cDNA (CYP2A6v) which lacks coumarin 7-hydroxylase activity and has only three nucleotide differences compared with the wild-type CYP2A6, one of which gives rise to the amino acid substitution Leu_160 to His, has been isolated (18). DNA samples from the volunteer group previously investigated by coumarin phenotyping have been analyzed for the presence of the mutation which gives rise to the amino acid substitution using an allele-specific PCR assay (Daly AK, Vaz A, Cholerton S, and Idle JR, unpublished data). The variant allele was detected at a frequency of 0.02 and was not present in four subjects who showed recovery of coumarin metabolites of less than 40%. However, three subjects were heterozygous for the variant allele and showed recoveries of metabolites of 59.7%, 61.8% and 79.5% (mean 67%). These values were significantly different from the mean recoveries of the remaining population (90.1%, n = 104) on the basis of unpaired t-testing (p < 0.02). This suggests that the CYP2A6/CYP2A6v genotype leads to some impairment of coumarin metabolism. It is likely that other mutations in CYP2A6 associated with poor metabolism of coumarin remain undetected.

CYP2D6

CYP2D6 metabolizes a variety of drugs used therapeutically, including antiarrhythmics, antidepressants, and neuroleptics (23). There is also evidence that CYP2D6 can metabolize the neurotoxins 1,2,3,4-tetrahydroisoquinoline (TIQ) (24) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (25). Studies of lymphoblastoid cells stably transfected with CYP2D6 indicate that the tobacco-specific nitrosamine NNK is a CYP2D6 substrate (14), although in inhibition studies NNK showed little effect on metoprolol metabolism (26). CYP2D6 is expressed constitutively in human liver (27) and no inducers of this enzyme have been identified. Studies on the expression of CYP2D forms
which lung; probe CYP2D6 cDNA to hybridize to a CYP2D6 cDNA probe in both tissues (Figure 1). However, the major band approximately 8S in liver is at least 10-fold more intense than the corresponding band in lung. Two other higher molecular weight transcripts are also detected in liver but the larger and stronger of these is not detected in lung. It is not yet known whether CYP2D6 transcripts are detectable in human lung. No CYP2D6 transcripts were detected in a human lymphoblastoid cell line (Figure 1).

CYP2D6 is polymorphic and 3.2 to 11.5% of individuals in various European populations lack this enzyme activity (30). These individuals, termed poor metabolizers (PMs) have been identified in the past by administration of the drug debrisoquine, sparteine, or dextromethorphan followed by analysis of urinary metabolites. A number of inactivating mutations in CYP2D6 have now been identified and are summarized in Table 1. The CYP2D6A and CYP2D6B alleles can be detected by PCR-based assays using either restriction digests or allele-specific primers. The CYP2D6D allele represents complete deletion of the coding gene and, at present, can only be detected by RFLP analysis with the enzyme XbaI. In addition to the CYP2D6D allele which is represented by a 13-kb band on RFLP analysis with XbaI, a separate band of 11 kb, which is also associated with the PM phenotype (31) and probably represents another type of large deletion, can be detected in some individuals.

By combination of PCR and RFLP assays, 95% of European phenotypic PMs can be identified as genotypic PMs (31–33). The remaining 5% of PMs are likely to have rare mutations in one or both alleles. In a sequencing study on DNA from a subject classified phenotypically as a PM but with an apparent heterozygous genotype, we have detected a single base substitution (G206C to A) in exon 4 of CYP2D6 which results in substitution of Glu for Gly. Using allele-specific PCR, approximately 100 subjects have been screened for the presence of this mutation; but in addition to the original subject studied, the mutation has only been detected in one other individual (also a PM), giving an allele frequency of 0.01.

In the past, phenotyping studies using debrisoquine or another CYP2D6-specific probe drug have suggested associations between particular phenotypes and disease susceptibility. As discussed above, there is evidence that CYP2D6 may activate the procarcinogen NNK while detoxicating certain neurotoxins. These findings as well as increasing evidence for extrahepatic expression of CYP2D6 may account for these phenotype-disease associations. Two independent studies of lung cancer patients have demonstrated a reduced frequency of PMs and a generally increased level of metabolism of debrisoquine compared with several types of control group (34,35). Similarly, among cases of aggressive bladder cancer, a reduced frequency of the PM phenotype was observed (36). A study of Parkinson’s disease patients observed an increased frequency of PMs compared with controls (37), although some of these findings were later ascribed to interference by other drugs in the debrisoquine phenotyping procedure (38). An increased frequency of the autoimmune disease systemic lupus erythematosus among poor metabolizers has also been reported (39). With the advent of genotyping techniques, studies on disease susceptibility can be carried out with increased accuracy, since there is no possibility of interference by other drugs in the procedure and the majority of subjects can be accurately categorized as homozygous or heterozygous extensive metabolizers or PMs.

Two studies on CYP2D6 genotypes among Parkinson’s disease patients have recently emerged (40,41). In the first, CYP2D6 genotypes were analyzed for 53 Parkinson’s disease patients and 72 controls. A small but not statistically significant increase was observed in the percentage of heterozygous extensive metabolizers but when allele frequencies between the two groups were compared, the CYP2D6B allele frequency was increased from 10.4% in the control group to 21.65% among cases, representing a relative risk of 2.7 (40). These findings could be explained by linkage disequilibrium with an association between CYP2D6B and an allele from another gene with a role in determining susceptibility to this disease. In a study of a larger population (41), an increase in frequency of the PM genotype from 5.0 to 11.8% was observed with a relative risk of 2.54. There is a need for further studies of this type, particularly to investigate the possibility that it may be early-onset Parkinson’s disease in particular that is associated with the PM phenotype due to the role of CYP2D6 in the metabolism of neurotoxins.

A study on the relationship between CYP2D6 genotype and susceptibility to a number of different types of cancer has recently been reported (42). In this study, CYP2D6B allele distributions for 1635 cancer patients and an unmatched control group of 720 random volunteers were examined. No significant difference in the frequency of the CYP2D6B allele between lung cancer patients and controls was observed. Some statistically significant differences in genotype frequencies between patients and controls were obtained for other tumors, including an increase in the percentage of PMs among leukemia patients. Although interesting, this study is very preliminary and there is a need to carry out well-designed case-control studies using genotyping methods which detect a higher percentage of PMs and heterozygotes and are validated by preliminary metabolic phenotyping of the study population. Definitive answers on the role of polymorphism in CYP2D6 in determining disease susceptibility should soon be available.

CYP2E1

CYP2E1 metabolizes nitrosamines, including the procarcinogens N-nitrosodimethylamine and N-nitrosopyrrolidine (43), the tobacco smoke component 3-hydroxypyridine (44) and many common organic solvents including benzene (43). This enzyme is inducible by ethanol, and thus alcohol consumption may influence carcinogenesis involving CYP2E1. The majority of expression in humans is in liver where interindividual variability in levels of expression may
occur (45). Expression has also been detected in rat lung (46), rabbit nasal tissue and kidney (47), and human leucocyte (48).

A polymorphism in intron 2 of the human CYP2E1 gene is detectable by RFLP analysis with Dral. Genotyping analysis of a lung cancer patient group showed a significantly reduced incidence of a rare genotype among cases compared with a control group (49). Two linked polymorphisms in the 5'-flanking region of CYP2E1 affecting levels of transcription have also been identified (50). PCR assays for analysis of these polymorphisms have been described but have not yet been applied to studies on disease susceptibility.

Glutathione S-Transferase μ

Glutathione S-transferases are a multigene family of enzymes which conjugate xenobiotics with glutathione (51). In the case of the near-neutral family, a polymorphism has been detected at the human GSTI locus which codes for glutathione S-transferase (GSTMI). Three different allelic variants have been detected, with two of these, GSTMI*A and GSTMI*B, coding for enzymes of similar catalytic activity (52) whereas GSTMI 0 (the null allele) produces no catalytically active enzyme and may represent complete deletion of the coding gene (53). In most racial groups, 40 to 50% of subjects are homozygous for the null allele and lack GSTMI (54). GSTMI is expressed in a variety of human tissues including liver, leucocyte, kidney, and stomach (55). Expression has also been detected in lung but this enzyme appeared to have a faster mobility than the liver form in Western immunoblot experiments and did not appear polymorphic (56).

Substrates for GSTMI include trans-stilbene oxide and benzo[α]pyrene-4,5-oxide (51). GSTMI phenotyping can be carried out in leucocytes by assay for enzyme activity towards trans-stilbene oxide (57) or by immunoblot (58). More recently, genotyping assays have been developed using either RFLP analysis with EcoRI or BamHI (53) or PCR assays (59) where absence of GSTMI amplification indicates that the subject is homozygous for the null allele.

Phenotyping studies on lung cancer patients have indicated that lack of GSTMI activity is associated with an increased risk of lung cancer—particularly adenocarcinoma—development among smokers (57). More recently using both genotyping by RFLP analysis and phenotyping by radioimmunoassay, no significant difference in GSTMI expression was detected between a lung cancer group and a control group but a small but statistically significant increase in lack of GSTMI expression was seen among a subgroup of patients with squamous carcinoma (60). In a recent case-control study on smoking-related cancers (mainly lung cancers) using phenotyping by enzyme activity measurements, there was no overall difference in the percentage of subjects with low levels of enzyme activity (GSTMI negative) between cancer patients and controls but a small increase in the percentage of GSTMI-negative subjects was detected in a subgroup of heavy smokers with smoking-related cancers (61). At present, therefore the relationship between GSTMI expression and lung cancer susceptibility remains unclear.

** Arylamine N-Acetyltransferase 2**

Two forms of N-acetyltransferase (NAT1 and NAT2) carry out N-acetylation of arylamines and certain other reactions such as O-acetylation (62). Expression of NAT2 is polymorphic and about 50% of Caucasians lack this enzyme activity and are termed slow acetylators (63). In addition to metabolizing a group of therapeutically important drugs, NAT2 also acetylates arylamines including benzidine, 2-aminofluorene and β-naphthylamine (16). NAT has been detected in human liver (62) and colon (64). In rabbits, NAT is expressed in a variety of tissues including duodenum, lung, kidney, and bladder mucosa (63).

Slow acetylators are detectable by phenotyping with a number of probe drugs including caffeine and sulphamethazine (63). Recently, the NAT2 gene has been cloned and sequenced and a number of point mutations associated with the slow acetylator phenotype identified. Three variant alleles (Table 1) which lack NAT activity *in vitro* have been identified in several independent studies (65-68). Each variant contains one or more base substitutions with at least one of these introducing an amino acid change. The presence of the variant alleles can be readily detected by PCR assays using either digestion of product with a restriction enzyme or allele-specific methods (66,67), allowing positive identification of greater than 90% of all slow acetylators.

The association between acetylation phenotype and disease susceptibility has received considerable attention. Slow acetylators appear to be at increased risk for development of systemic lupus erythematosus if given certain NAT2 substrates therapeutically (63). In addition, susceptibility to certain types of cancer involving chemical carcinogenesis may be related to acetylator phenotype. The majority of bladder cancer is likely to be related to either occupational exposure or cigarette smoking (69). In a case-control study of occupationally induced bladder cancer, a large excess of slow acetylators was detected in the occupationally exposed group and an odds ratio of 16.7 calculated for risk of disease development in slow acetylators (70).

However, this study found no relationship between acetylator phenotype and development of smoking-related bladder cancer in the absence of confirmed occupational exposure to arylamines and subsequent independent studies have generally confirmed these findings (71-73).

Trace amounts of arylamines may be formed during normal cooking of food. Since these compounds are likely NAT substrates, the possibility that acetylator phenotype might relate to susceptibility to colon cancer was investigated (74,75). An increased frequency of the rapid acetylator phenotype was observed among a group of colorectal cancer patients. The difference in relationship between acetylator phenotype and susceptibility to bladder and colon cancer may be due to NAT primarily acting as a detoxicating enzyme in bladder while in the colon, N-oxidized arylamines may undergo activation by N- and O-acetylation reactions catalyzed by NAT (16). Although the majority of slow acetylators can now be identified by genotyping, studies on genotype-disease susceptibility relationships have not yet been reported.

Conclusion

A number of independent studies have now demonstrated the importance of polymorphisms in xenobiotic metabolism as risk factors in the development of diseases associated with chemical exposure. In parallel with these studies, a clearer understanding of the genetic basis of the polymorphisms has emerged, together with more accurate and less invasive methods for screening of populations. Many of the previous studies can now be more accurately replicated and extended and, in addition, the influence of multiple polymorphisms on disease susceptibility examined.
GENOTYPING FOR POLYMORPHISMS IN XENOBOTIC METABOLISM

REFERENCES

1. Wall K L, Gao W, Koppele JMT, Kwci Gy, Kaufman FC, Thurman RG. The liver plays a central role in the mechanism of chemical carcinogenesis due to polycyclic aromatic hydrocarbons. Carcinogenesis 12: 783–786 (1991).

2. McLemore TL, Adelberg S, Liu MC, McMahon NA, Yu SJ, Hubbard WC, Czerwinski M, Wood TG, Storeng R, Laber RA, Eggleton JC, Boyd MR, Hines RN. Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette-smoke induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. Cancer Res 82: 1333–1339 (1990).

3. Kellerman G, Shaw CR, Luyten-Kellerman M. Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. N Engl J Med 289: 934–937 (1973).

4. Kouri RE, McKinney CE, Slomiany DJ, Snodgrass DR, Wray NP, McLemore TL. Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analysed in cryopreserved lymphocytes. Cancer Res 42: 5030–5037 (1982).

5. Paigen B, Gurtoo HL, Minowada J, Vincent R, Paigen K, Parker NB, Ward E, Hayner NT. Questionable relation of aryl hydrocarbon hydroxylase to lung cancer risk. N Engl J Med 297: 346–350 (1977).

6. Ward E, Paigen B, Steenland K, Vincent R, Minowada J, Gurtoo HL, Sartori P, Havens MB. Aryl hydrocarbon hydroxylase in persons with lung or laryngeal cancer. Int J Cancer 22: 384–389 (1978).

7. Prasad R, Prasad N, Harrell JE, Thornby J, Lien JH, Hudgins PT, Tsuang J. Aryl hydrocarbon hydroxylase inducibility and lymphoblast formation in lung cancer patients. Int J Cancer 23: 316–320 (1979).

8. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 263: 131–133 (1990).

9. Tefre T, Ryberg D, Haugen A, Neberth DW, Skaug V, Brogger A, Borresen A-L. Human CYP1A1 (cytochrome P450 PI450) gene: lack of association between the MspI restriction fragment length polymorphism and the incidence of lung cancer in a Norwegian population. Pharmacogenetics 1: 20–25 (1991).

10. Hayashi S, Watanabe J, Nakachi K, Kawajiri K. Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem 110: 407–411 (1991).

11. Petersen DD, McKinney CE, Ikeya K, Smith HH, Bale AE, McBride OW, Neberth DW. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am J Hum Genet 48: 720–725 (1991).

12. Butler MA, Iwaski M, Guengerich FP, Kaldubur FF. Human cytochrome P-450PA (P-450A2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-deethylation of caffeine and N-oxidation of carcinogenic amines. Proc Natl Acad Sci USA 86: 7696–7700 (1989).

13. Shimada T, Guengerich FP. Activation of aminochrome-carbon, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine celluose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes. Cancer Res 51: 5284–5291 (1991).

14. Crepl CL, Penman BW, Gelboin HV, Gonzalez FJ. A tobacco smoke-derived nitrosamine, 4-[(methylthio)nitrosamino]-1-[(3-pyridyl)-1-butane, is activated by multiple human cytochrome P450 including the polymorphic human cytochrome P450D6. Carcinogenesis 12: 1197–1201 (1991).

15. Shimada T, Yun C-H, Hiroshi Y, Gautier J-C, Bueaux PH, Guengerich FP. Characterization of human lung microsomal cytochrome P-450A1 and its role in the oxidation of chemical carcinogens. Mol Pharmacol 41: 856–864 (1992).

16. Bock KW. Metabolic polymorphisms affecting action of toxic and mutagenic amines. Trends Pharmacol Sci 13: 223–226 (1992).

17. Butler MA, Lang NP, Young JP, Caporaso NE, Vines P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubur, FF. Determination of CYP1A2 and acetyltansferase phenotype in human populations by analysis of caffeine urinary metabolites. Pharmacogonetics 2: 116–127 (1992).

18. Yamano S, Tsutuno J, Gonzalez FJ. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry 29: 1322–1329 (1990).

19. Ding X, Coon MJ. Purification and characterization of two unique forms of cytochrome P-450 from rabbit nasal microsomes. Biochemistry 27: 8330–8337 (1988).

20. Davies RL, Crespi CL, Rudo K, Turner TR, Langenbach R. Development of a human cell line by selection and drug-metabolizing gene transfection with increased capacity to activate promutagens. Carcinogenesis 10: 885–891 (1989).

21. Yun C-H, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal P-450 2A6. Mol Pharmacol 40: 679–685 (1991).

22. Cholerton S, Idle ME, Vas A, Gonzalez FJ, Idle JR. Comparison of a novel thin-layer chromatographic-fluorescence detection method with a spectrofluorometric method for the determination of 7-hydroxycoumarin in human urine. J Chromatogr 575: 325–330 (1992).

23. Cholerton S, Daly AK, Idle JR. The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci 13: 434–439 (1992).

24. Suzuki T, Fujita S, Narimatsu S, Masubuchi Y, Tachibana M, Ohita, S. Hirobe M. Cytochrome P450 isozymes catalyzing 4-hydroxylation of parkinsonism-related compound 1,2,3,4-tetrahydroisoquinoline in rat liver microsomes. FASEB J 6: 771–776 (1992).

25. Fonne-Pfister R, Bargetti MJ, Meyer UA. MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450b1, P450db1) catalysing debrisoquine 4-hydroxylation. Biochim Biophys Res Comp 148: 1144–1150 (1987).

26. Islam SA, Wolf CR, Lennard MS, Sterngemb MJE. A three-dimensional molecular template for substances of human cytochrome P450 involved in debrisoquine 4-hydroxylation. Carcinogenesis 12: 2211–2219 (1991).

27. Gonzalez FJ, Vilbois F, Hardwick JP, McBride OW, Neberth DW, Gelboin HV, Meyer UA. Human debrisoquine 4-hydroxylase (P450ID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2: 174–179 (1988).

28. Matsuanga E, Zanger UM, Hardwick JP, Gelboin HV, Meyer UA, Gonzalez FJ. The CYP2D gene subfamily: Analysis of the molecular basis of the debrisoquine 4-hydroxylase deficiency in DA rats. Biochemistry 28: 7349–7355 (1989).

29. Tyndale RF, Sunahara R, Inaba T, Kalow W, Gonzalez FJ, Niznik HB. Neuronal cytochrome P450ID1 (debrisoquine/sparteine-type): potent inhibition of activity by (-)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 40: 63–68 (1991).

30. Alvan G, Bechtel P, Iselius L, Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and methylenoxanthin in European populations. Eur J Clin Pharmacol 39: 4-533 (1990).

31. Daly AK, Armstrong M., Monkman S, Idle ME, Idle JR. The genetic and metabolic criteria for the assignment of debrisoquine hydroxylaton (cytochrome P450ID6) phenotypes. Pharmacogenetics 1: 33–41 (1991).

32. Broly F, Gaedigk A, Heim M, Eichelbaum M, Morike K, Meyer UA. Debrisoquine/sparteine hydroxylaton genotype and phenotype: analysis of common mutations and alleles of CYP2D6 in a European population. DNA Cell Biol 10: 545–558 (1991).

33. Dahl M-L, Johanson I, Palmertz MP, Ingelman-Sundberg M, Sjoqvist F. Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylaton in a Swedish population. Clin Pharmacol Ther 51: 12–17 (1992).

Volume 102, Supplement 9, November 1994
34. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hettel MR. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 311:169–170 (1984).

35. Caporaso NE, Tucker MA, Hoover RN, Hayes RB, Pickle LW, Issag HJ, Muchik GM, Green-Gallo L, Buivy D, Asrner S, Resau JH, Trump BF, Tollerd D, Weston A, Harris CC. Lung cancer and the debrisoquine metabolic phenotype. J Natl Cancer Inst 82:1264–1272 (1990).

36. Kaisary S, Smith P, Jacqz E, McAllister CB, Wilkinson GR, Ray WA, Branch RA. Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephentoin as risk factors. Cancer Res 47:4584–4593 (1987).

37. Barbeau A, Cloutier T, Roy M, Plasse L, Paris S, Poirier J. Etcpotetics of Parkinson’s disease: 4-hydroxylation of debriso-quine. Lancet 1213–1216 (1985).

38. Poirier J, Roy M, Campanella G, Cloutier T, Paris S. Debrisoquine metabolism in Parkinsonian patients treated with antihistamine drugs. Lancet 386 (1987).

39. Baer AN, McAllister CB, Wilkinson GR, Wooley RL, Pincus T. Altered distribution of debrisoquine oxidation phenotypes in patients with systemic lupus erythematosus. Arthritis Rheum 29:843–850 (1986).

40. Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR. Mutant debrisoquine hydroxylase genes in Parkinson’s disease. Lancet 339:1017–1018 (1992).

41. Smith CA, Gough AC, Leight PN, Summers BA, Harding AE, Mantegnano-Martell DM, Sturman SG, Chapura AH, Williams AC, Spurr NK, Wolf CR. Debrisoquine hydroxylate gene polymorphism and susceptibility to Parkinson’s disease. Lancet 339:1375–1377 (1992).

42. Wolf CR, Smith CA, Gough AC, Moss JE, Vallis KA, Howard G, Carey FJ, Mills K, McNe W, Carmichael J, Spurr NK. Relationship between the debrisoquine hydroxylase polymorphism and cancer susceptibility. Carcinogenesis 13:1035–1038 (1992).

43. Koop DR. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J. 6:724–730 (1992).

44. Kim SG, Novak RF. Role of P450 3E1 in the metabolism of 3- hydroxypyridine, a constituent of tobacco smoke: redox cycling and DNA strand scission by the metabolite 2,5-dihydroxyxypyridine. Cancer Res 50:5333–5339 (1990).

45. Guengerich FP, Kim D-H, Iwasaki M. Role of human cytochrome P-450 3E1 in the oxidation of many low molecular weight cancer suscepts. Chem. Res Toxicol 4:168–179 (1991).

46. Ueno T, Gonzalez FJ. Transcriptional control of the rat hepatic P-450 2E1 gene. Mol Cell Biol 10:4497–4450 (1990).

47. Ding X, Koop DR, Crump BL, Cooj MN, Immunochemical identification of cytochrome P-450 isoform 3a (P-450alc) in rabbit nasal and kidney microsomes and evidence for differential induction by alcohol. Mol Pharmacol 30:370–378 (1988).

48. Song BY, Bieej RL, Saenger P. Cytochrome P450 3E1 is elevated in lymphocytes from poorly controlled insulin-dependent diabetics. J Clin Endocrinol Metab 71:1036–1040 (1990).

49. Uematsu F, Kikuchi H, Motomiya M, Abe T, Sagami I, Ohmachi T, Waku A, Kanamaru R, Watanabe M. Association between restriction fragment polymorphism of the human P450 3E1 gene and susceptibility to lung cancer. Jpn J Cancer Res 82:254–256 (1991).

50. Hayashi S, Watanabe J, Kawagiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450 3E1 gene. J Biochem 110:559–565 (1991).

51. Mannervik B, Danielson UH, Glutathione transferases—structure and catalytic activity. CRC Crit Rev Biochem 23:281–334 (1988).

52. Widersten M, Pearson WR, Engstrom A, Mannervik B. Heterologous expression of the allelic variant μ-class glutathione transferases μ and ψ. Biochem J 276:519–524 (1991).

53. Seidgard J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione S-transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85:7293–7297 (1988).

54. Board P, Coggan M, Johnston P, Ross V, Suzuki T, Webb G. Genetic heterogeneity of the human glutathione transferase: a complex of gene families. Pharmacol Ther 48:357–369 (1990).

55. Howie AF, Forrester LM, Glancy MJ, Schaller JJ, Powis G, Beckett GJ, Hayes JD, Wolf CR. Glutathione S-transferase and glutathione peroxidase expression in normal and tumour human tissues. Carcinogenesis 11:451–458 (1990).

56. Carmichael J, Forrester L M, Lewis AD, Hayes JD, Hayes PC, Wolf CR. Glutathione S-transferase isoenzymes and glutathione peroxidase activity in normal and tumour samples from human lung. Carcinogenesis 9:1617–1621 (1988).

57. Seidgard J, Pero RW, Miller DG, Beattie E. J. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis 7:751–753 (1986).

58. Hussey AJ, Hayes JD, Beckett GJ. The polymorphic expression of neutral glutathione S-transferase in human mononuclear leukocytes as measured by specific radioimmunoassay. Biochem Pharmacol 36:4013–4015 (1987).

59. Brockmoller J, Gross D, Kerb R, Drakoulis N, Roots I. Correlation between trans-stilbene oxide-glutathione conjugation activity and the deletion mutation in the glutathione S-transferase class μ gene detected by the polymerase chain reaction. Biochem Pharmacol 56:647–650 (1992).

60. Zheng S, Howie AF, Ketterer B, Taylor J, Hayes JD, Beckett GJ, Watergen CH, Wolf CR, Spurr NK. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12:1533–1537 (1991).

61. Heckbert SR, Weiss NS, Hornung SK, Eaton DL, Metulsky AG. Glutathione S-transferase and epoxide hydrolysis activity in human leukocytes in relation to risk of lung cancer and other smoking-related cancers. J Natl Cancer Inst 84:414–422 (1992).

62. Grant DM, Lottepeich F, Meyer UA. Evidence for two closely related isoforms of arylamine N-acetyltransferase in human liver. FEBS Lett 244:203–207 (1989).

63. Weber WW, Hein DW. N-acetyltransferase pharmacogenetics. Pharmacol Rev 37:75–89 (1985).

64. Kirtin WG, Ogolla F, Andrews AF, Trinidad A, Ferguson RJ, Yorokun T, Mpezo M, Hein D. Acetylator genotype-dependent expression of arylamine N-acetyltransferase in human colon cytosol from non-cancer and colorectal cancer patients. Cancer Res 51:549–555 (1991).

65. Deguchi T, Mashimo M, Suzuki T. Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biochem 265:12757–12760 (1990).

66. Hickman D, Sim E. N-acetyltransferase polymorphism. Comparison of phenotype and genotype in humans. Biochem Pharmacol 42:1017–1014 (1991).

67. Blum M, Demiere A, Grant DM, Heim M, Meyer UA. Molecular mechanism of slow acetylation of drugs and carcinogens in man. Proc Natl Acad Sci USA 88:5237–5241 (1991).

68. Vattis KP, Martin J, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc Natl Acad Sci USA 88:6533–6537 (1991).

69. Miller AB. The etiology of bladder cancer from the epidemiological point of view. Cancer Res 37:2939–2942.

70. Cartwright RA, Glasha RW, Rogers HJ, Ahmad RA, Barham-Hall D, Higgins E, Kahn MA. Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet 2:842–845 (1982).

71. Woodhouse KW, Adams PC, Clothier A, Mucklow JC, Rawlins, MC. N-acetyltransferase phenotype in bladder cancer. Hum Toxicol 1:443–445 (1982).

72. Ladero JM, Kwok CK, Jara C, Fernandez L, Silmi AM, Tapia D, Uson AC. Hepatic acetylator phenotype in bladder cancer patients. Ann Clin Res 17:96–105 (1985).

73. Carrara AE, Cok I, Sardas S, Gogus O, Sardas OS. N-acetyltransferase phenotype of patients with bladder cancer. Hum Toxicol 5:333–335 (1986).

74. Ilett KF, David BM, Detchon P, Castleden WM, Kwa R. Acetylation phenotype in colorectal carcinoma. Cancer Res 47:1466–1469 (1987).

75. Wohlbek JC, Hunter CF, Blass B, Kadlubal FF, Chu DZ, Lang NP. Aromatic amine acetyltransferase as a marker for colorectal
cancer: environmental and demographic associations. Int J Cancer 46:22–30 (1990).

76. Skoda RC, Gonzalez FJ, Demierre A, Meyer UA. Two mutant alleles of the human cytochrome P450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci USA 85:5240–5243 (1988).