Natural variation in an essential host gene contributes to parasitic plasmid resistance in *Saccharomyces cerevisiae*

Michelle Hays1,2, Janet M. Young2, Paula Levan2, Harmit S. Malik2,3,4

1Molecular and Cellular Biology program, University of Washington, Seattle WA, USA;
2Division of Basic Sciences & 3Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle WA, USA

Running title: Mapping *S. cerevisiae* resistance to 2-micron plasmids

4Address correspondence to: Harmit Singh Malik, 1100 Fairview Avenue N. A2-205, Seattle WA 98109; tel: (206) 667-5204; hsmalik@fhcrc.org
Abstract
Ongoing antagonistic coevolution with selfish genetic elements (SGEs) can drive the evolution of host genomes. Here, we investigated whether natural variation allows some *Saccharomyces cerevisiae* strains to suppress their endogenous SGEs, 2-micron plasmids. 2-micron plasmids are multicopy nuclear parasites that have co-evolved with budding yeasts. To quantitatively measure plasmid stability, we developed a new Single-Cell Assay for Measuring Plasmid Retention (SCAMPR) that measures copy number heterogeneity and 2-micron plasmid loss dynamics in live cells. Next, using a survey of 52 natural *S. cerevisiae* isolates, we identified three strains that lack endogenous 2-micron plasmids, and find that plasmid resistance is heritable. Focusing on one isolate (Y9 ragi strain), we determined that plasmid restriction is dominant and is a multigenic trait. Through Quantitative Trait Locus (QTL) mapping by bulk segregant analysis, we identified a high-confidence QTL for plasmid instability on Y9 chromosome V. We show that a single amino acid change in *MMS21* is associated with increased 2-micron resistance. *MMS21* encodes a SUMO E3 ligase and is an essential member of the Smc5/6 complex involved in sister chromatid cohesion, chromosome segregation, and DNA repair. Our analyses leverage standing variation in natural yeast isolates to identify a novel host determinant of plasmid stability and reveal variants in essential genes that may help hosts mitigate the fitness costs of genetic conflicts with SGEs.

Introduction

Host genomes are engaged in longstanding conflicts with myriad selfish genetic elements (SGEs, or genetic parasites)\(^1\,^2\,^3\). SGEs propagate within an organism or population at the expense of host fitness\(^1\). Many SGEs, including viruses, selfish plasmids, and other pathogens, must coopt the host’s cellular machinery for their own survival: to replicate their genomes, to transcribe and translate their proteins, and to ensure their proliferation by passage into new cells\(^1\,^3\). If a host variant arises that can suppress SGEs (host restriction), this variant will be favored by natural selection and can rise in frequency in a population. If resistance has no fitness consequences, such variants will rapidly fix within species. Even if there were fitness consequences, such variants could be maintained in quasi-equilibrium in host metapopulations\(^4\,^7\). Studies in diverse biological taxa have leveraged genetic mapping strategies to identify quantitative trait loci (QTL) for host resistance to parasites\(^8\,^11\). Host populations are more likely to
harbor variation in resistance to coevolved, rather than to recently introduced, parasites12. Thus, studying parasites in their native host context maximizes opportunities to discover host resistance mechanisms. However, it is often difficult to study natural variation in resistance, because hosts and/or parasites are often intractable in the laboratory.

Budding yeasts provide an ideal system to study host-SGE genetic conflicts, with abundant genetic tools, together with resources for comparative and population genetics. Yeast harbor a variety of SGEs including retrotransposable elements, RNA viruses and 2-micron plasmids13–18. Yet, despite its long history as a popular model eukaryote, variation in cellular immunity factors against SGEs have been largely uncharacterized in \textit{S. cerevisiae} and related species, with a few notable exceptions19–23. Here, we investigate whether some \textit{S. cerevisiae} strains harbor genetic variants that confer resistance to 2-micron plasmids.

2-micron plasmids are nuclear SGEs found in multiple, divergent budding yeast species24–27. They are best characterized in \textit{S. cerevisiae}, where they are found in high copy numbers: \textasciitilde50 per haploid and 100 per diploid cell28,29. Their prevalence in \textit{S. cerevisiae} and other budding yeast species raised the question of whether the 2-micron plasmid might be more commensal, rather than parasitic. In the mid-1980s, two seminal studies showed that \textit{S. cerevisiae} strains carrying the 2-micron plasmid (\textit{cir}+) grew 1-3\% more slowly than their \textit{cir}0 counterparts under laboratory conditions30,31. Furthermore, many mutant yeast strains, which are sick in the presence of the 2-micron plasmids, can be partially rescued when ‘cured’ of their 2-micron plasmids32,33. For example, \textit{nib1} mutants (a hypomorphic allele of \textit{ULP1}32) shows “nibbled” colonies in the presence of 2-micron plasmids due to colony sectoring from cells that stop dividing when overburdened with 2-micron, but form smooth (wild-type) colonies in the absence of 2-micron plasmids32. These and other data suggest that 2-micron plasmids impose a selective burden on yeast, both under rapid laboratory growth conditions and in times of stress. Whereas bacterial plasmids can harbor host-beneficial ‘cargo’ genes, such as antibiotic resistance genes, no such beneficial genes have ever been observed in natural 2-micron plasmids34. Indeed, there are no known conditions in which the 2-micron plasmid is beneficial to the host. While they are stable in their native species, 2-micron plasmids exhibit lower copy number and decreased stability when introduced into exogenous
backgrounds35. Taken together, these findings suggest that the 2-micron plasmid is a successful, co-evolved genetic parasite of yeasts.

\textit{S. cerevisiae} 2-micron plasmids encode just four protein-coding genes (Figure 1A). Thus, they must rely on host factors for essential functions, such as genome replication and segregation during host cell division36–39. Rep1 and Rep2 are plasmid-encoded DNA-binding proteins that bind to the 2-micron \textit{STB} locus to mediate segregation40–42. Mutations in Rep1 or Rep2 significantly impair segregation fidelity, resulting in failure to transmit plasmid to daughter cells, and subsequent loss from the host population43. If copy number drops below a certain threshold within a host cell, 2-micron plasmids activate an amplification mechanism that relies on plasmid-encoded Flp1 recombinase44,45. Flp1 creates plasmid structural rearrangement during host S phase, facilitating over-replication via rolling circle replication using host replication machinery44–48.

Previous studies have identified host factors that the plasmid requires. These are the same mechanisms by which the host could interfere with the successful propagation of 2-micron plasmids. For instance, in addition to DNA replication and origin licensing factors29, the plasmid requires host factors, including many spindle-associated proteins, to facilitate proper partitioning36–38,49,50. Post-translational SUMO-modification of plasmid-encoded proteins has been shown to have a profound effect on 2-micron stability and host fitness. For example, failure to sumoylate the Rep proteins impairs plasmid stability, whereas deficient sumoylation of Flp1 recombinase leads to recombinase overstabilization, resulting in increased plasmid copy number and extreme reduction in host cell fitness33,51,52. Indeed, mutations in SUMO E3 ligases \textit{Siz1}, \textit{Siz2}, the SUMO maturase \textit{Ulp1}, and the SUMO-targeted ubiquitin ligase \textit{Slx8} all lead to 2-micron hyper-amplification and host cell defects33,51,52. These host-plasmid interactions provide potential means for the host to curb deleterious proliferation of 2-micron plasmids. However, it is unclear whether gain-of-function alleles that restrict or eradicate 2-micron plasmids are tolerated, as there may be fitness consequences for the host functions of these factors.

Here, we investigated whether 2-micron plasmid proliferation has shaped natural variation in budding yeast populations. Until recently, the 2-micron plasmid has been
largely omitted from studies of genetic variation in yeast. Although prior work has predominantly focused on canonical A-type 2-micron plasmids (found in laboratory \textit{S. cerevisiae} strains), recent studies revealed that 2-micron plasmids are quite diverse in budding yeast populations27,53. These analyses identified C-type plasmids, extremely diverged D-type plasmids and a 2-micron plasmid introgression from the sister species \textit{S. paradoxus} into \textit{S. cerevisiae}27,53. Moreover, previously identified B- and newly described B*-type plasmids were shown to be a result of recombination between A and C types53–55. Excitingly, these studies reveal that multiple, distinct strains of \textit{S. cerevisiae} do not harbor any 2-micron plasmids. Although these studies did not test whether plasmid absence is heritable or stochastic, they nevertheless suggested that host natural variation may be a way to discover the means by which budding yeast genomes restrict 2-micron plasmids.

However, 2-micron plasmids pose unique challenges that could hinder studies of host resistance. To be successful, 2-micron plasmids must successfully replicate and have high segregation fidelity during host cell division, or risk being eliminated from the population by the fitness advantages conferred to plasmid-less daughter cells. Thus, plasmid copy number, stability, and population heterogeneity, are all important determinants of host-plasmid arms races. However, these parameters are not captured in traditional plasmid loss assays, which either measure population copy number averages, or presence versus absence.

To overcome the limitations of traditional assays, we developed a new high-throughput single-cell plasmid retention assay, SCAMPR (Single-Cell Assay for Measuring Plasmid Retention). We show that three yeast strains, which naturally lack 2-micron plasmids, also inhibit 2-micron plasmid stability upon reintroduction. Thus, resistance to 2-micron plasmids is a heritable trait. Focusing on one resistant strain, we use SCAMPR to show that resistance is a dominant, polygenic trait. We use QTL mapping by bulk segregant analysis to show that 2-micron resistance involves at least one significant locus that impairs 2-micron stability. A candidate gene approach in this locus shows that a single amino acid change in \textit{MMS21} contributes to plasmid instability. \textit{MMS21} is a highly conserved E3 SUMO ligase and an essential component of the Smc5/6 complex, which has not previously been implicated in 2-micron biology. Thus, our novel SCAMPR assay,
Results

SCAMPR: A Single-Cell Assay for Measuring Plasmid Retention

To determine if there is heritable natural variation in 2-micron plasmid stability in *S. cerevisiae* strains, we needed an assay to measure plasmid dynamics. Traditionally, plasmid loss dynamics have been measured by two types of assays. The first of these is the Minichromosome Maintenance (MCM) assay, in which strains containing plasmids with selectable markers are assessed for plasmid occupancy by comparing CFU on both selective and non-selective media over time. Due to the colony-counting nature of the assay, MCM is limited by sampling size (30 - 300 colonies per plate) and is low-throughput. Furthermore, as only a single copy of a selectable marker is required for viable cell growth, substantial variation in plasmid stability and copy number can go undetected by the MCM assay.

A second type of assay traditionally used to measure plasmid stability is to assess mean plasmid copy number across a population via either quantitative PCR (qPCR) or Southern blots, relative to genomic DNA. Compared to the MCM assay, qPCR has the advantages of being high-throughput and not requiring a selectable marker to be engineered into the plasmid of interest. However, qPCR can only measure the average copy number of a plasmid in a population. Any heterogeneity in plasmid presence or copy number would go undetected by qPCR. Even a combination of MCM and qPCR assay lacks the resolution to understand the distribution or variability of plasmid copy number within a host population.

Towards this end, we designed a high throughput assay using a reporter 2-micron plasmid that is both selectable (to ensure initial reintroduction and retention), as well as easy to screen for presence, absence, and copy number. To ensure that this plasmid closely resembles endogenous plasmids, we eschewed the use of the yEP multi-copy plasmids commonly used to express yeast ORFs, because they contain only a small portion of the 2-micron plasmid. Instead, we built a new GFP-G418^R-2-micron reporter
plasmid, which contains both a selectable marker (G418 resistance) and a screenable eGFP marker, each under a constitutive promoter58 (Figure 1A). Our analyses revealed that GFP intensity for this 2-micron reporter plasmid is roughly normally distributed across single cells (Supplementary Figure S1A) indicating that, for the majority of cells, GFP signal did not saturate due to high copy number. Other studies have also previously used GFP expression as a proxy for DNA copy number in yeast over a large dynamic range 59–62. Although the stability of this GFP-2-micron reporter plasmid was lower than the endogenous 2-micron plasmid (which we attribute to the constitutive expression of the dual markers), we nevertheless conclude that the reporter is well suited for comparative stability studies.

We used this 2-micron reporter plasmid with flow cytometry analyses to capture single-cell 2-micron plasmid copy number information (Figure 1B), which has not been possible to measure previously. By assessing single cell fluorescence, we could simultaneously infer both total plasmid loss events by measuring the proportion of GFP negative cells as well as changes in the median plasmid copy number based on GFP intensity (Figure 1C-D). Importantly, we could also assess the population distribution of GFP intensity, revealing the inherent cellular heterogeneity of plasmid loss and copy number changes. This assay is also higher-throughput than traditional methods. We refer to this assay as SCAMPR (Single-Cell Assay for Measuring Plasmid Retention).

2-micron plasmid instability in natural yeast isolates is rare and heritable

Although 2-micron plasmids are prevalent in laboratory strains of \textit{S. cerevisiae}, recent studies of natural isolates have revealed considerable heterogeneity of plasmid types, and even strains lacking 2-micron plasmids altogether27,53. We were particularly interested in plasmid-free strains as these might harbor genetic variants that actively render the plasmid unstable. To this end, we surveyed a panel of 52 natural \textit{S. cerevisiae} isolates for plasmid presence versus absence via PCR analyses (see Methods). From this panel of 52 strains, we identified three strains (representative gel in Supplementary Figure S2A) that do not contain the 2-micron plasmid: Y9 (from ragi, millet), YPS1009 (from oak exudate), and Y12 (from palm wine) (Table 1). To rule out the possibility that PCR surveys were confounded by 2-micron polymorphisms, we also tested these strains via Southern blotting (Supplementary Figure S2B), which supported
our conclusion of plasmid absence. Wild diploid strains are homothallic, and capable of mating type switching and self-diploidizing following sporulation. To create stable haploid lines for subsequent analyses, we deleted ho endonuclease in the natural isolates before sporulating to produce stable heterothallic haploid strains from each of the three plasmid-free natural yeast isolates (Table 2).

Although these three strains lack detectable 2-micron plasmids, this absence could be either the result of stochastic loss or host genetic variation that renders them poor hosts for plasmids. Stochastic loss could occur because of rare bottlenecks in wild populations or during laboratory passaging\cite{15,16}. However, such losses would not protect these strains from re-introduction of natural 2-micron plasmids via sex and subsequent propagation\cite{31}. If absence were due to stochastic loss, we would expect our reporter plasmids to be stable in these strains. Alternatively, if the absence of 2-micron plasmids reflects true host genetic variation conferring resistance, our reporter plasmid would be unstable. To distinguish between these two possibilities, we introduced the GFP-2-micron reporter plasmid into haploid cells from these three natural isolates and tested for reproducible plasmid loss using a qualitative colony sectoring assay. As a control, we examined reporter stability in the permissive lab strain BY4742 that was ‘cured’ of its endogenous 2-micron plasmid\cite{63} (see Methods). These analyses showed a clear difference in GFP sectoring (plasmid loss) between the BY4742 laboratory strain and the three natural isolates (Figure 2A).

To quantify this difference in plasmid stability between the permissive lab strain and the non-permissive natural isolates, we next measured plasmid stability of the GFP-2-micron plasmid using a MCM assay (Figure 2B)\cite{56}. Consistent with the colony sectoring assay, we determined that the reporter plasmid is significantly less stable in the naturally cir0 wild isolates than in the plasmid-permissive laboratory strain. For example, the Y9 strain maintained plasmids in only ~5% of the population on average while the BY4742 lab strain maintained plasmids in ~60% of the population. Even after normalization for phenotypic lag (see Methods), we concluded that Y9 and BY4742 strains retain plasmids at 20% versus 70% frequency, respectively. The other two wild strains showed similar plasmid loss frequencies, with the YPS1009 strain exhibiting more variability between replicates than the other two strains. Plasmid loss is therefore a heritable and highly reproducible trait among a small subset of natural yeast strains.
Dominant plasmid instability in the Y9 strain

Of the three natural isolates in which we observed 2-micron plasmid instability, the Y9 strain isolate had the least variable plasmid loss phenotype. Furthermore, in a broad analysis of yeast strains, the Y9 strain was found to be phylogenetically close to the Y12 strain, both clustering with the (clade 26) sake strains64,65. Based on this phylogenetic proximity, we hypothesized that Y9 and Y12 strains may share the same biological basis for host-encoded plasmid instability. We therefore decided to focus on further understanding the phenotypic and genetic basis of plasmid instability in the Y9 strain.

To infer possible mechanisms of plasmid instability (Figure 1), we further confirmed that the Y9 strain encodes heritable 2-micron plasmid instability using the SCAMPR assay (Figure 2C). Indeed, SCAMPR analyses showed that ‘non-permissive’ Y9 haploid cells lose the 2-micron reporter plasmid substantially more quickly than the permissive BY4742 laboratory strain. Next, we measured the change in distribution of plasmid abundance among single cells as a way to evaluate the putative mechanism of plasmid instability in Y9. For example, if the plasmid were undergoing systematic under-replication due to defects in replication, we might expect an overall and homogenous decrease in median plasmid copy number across the population. Alternatively, if the plasmid were being missegregated, we might instead see increasing population heterogeneity, with some cells inheriting no plasmid, while others maintain or even increase plasmid copy number.

Multiple replicates of SCAMPR analyses reveal that plasmid loss in Y9 haploid cells occurs primarily via abrupt, complete loss of plasmids from cells rather than a steady decrease in copy number (Supplementary Figure S1B), quantitatively mirroring what we initially observed in the colony sectoring assays (Figure 2A). We find that upon removing pressure to maintain the plasmid (no G418 selection), the proportion of cells with no GFP (no plasmid) increases significantly. However, the average GFP-intensity (and inferred plasmid copy number) of plasmid-bearing Y9 cells remains largely unchanged (Supplementary Figure S1B). This observed pattern of plasmid loss is consistent with plasmid segregation failure during host cell division, rather than a copy number
suppression mechanism or plasmid under-replication. Our findings highlight the value of single-cell based assays such as SCAMPR in deducing mechanisms of plasmid instability, particularly in the case of high copy number SGEs.

Next, we investigated whether 2-micron plasmid instability of the Y9 strain is genetically recessive or dominant. We considered two possibilities. Under the first hypothesis, plasmid loss is due to mutations within a host ‘permissivity’ factor required for 2-micron propagation, which is either missing or altered in non-permissive strains. If this were the case, we might expect plasmid instability to be either recessive or intermediate in heterozygous diploids between permissive and non-permissive strains, as the BY4742 allele would provide complementation. Alternatively, plasmid instability could be a dominant trait, i.e., heterozygous diploids between permissive and non-permissive strains would be non-permissive. This could be due to a host-encoded gain-of-function ‘restriction’ factor against 2-micron plasmids. To distinguish between these possibilities, we assessed trait dominance. First, we confirmed that the plasmid instability phenotype we observed in haploid strains persists in homozygous diploid strains. Indeed, we find an even bigger difference in plasmid instability between homozygous diploid Y9 and BY4743 strains (Figure 3A). Next, we generated a heterozygous diploid strain by crossing the GFP-2-micron containing BY4742 lab strain to the non-permissive Y9 haploid strain. We find that the heterozygous diploid rapidly loses the plasmid after G418 selection is removed (Figure 3A). We conclude that plasmid instability is either due to haploinsufficiency of a permissivity factor or due to dominance of a restriction factor.

Genetic architecture underlying plasmid instability in the Y9 strain

We wished to understand the genetic architecture underlying the Y9 strain’s plasmid instability. With this goal, we measured plasmid instability phenotypes among meiotic progeny of BY4742/ Y9 heterozygous diploids. For this experiment, we maintained diploid heterozygotes under selection to ensure the reporter 2-micron plasmids were retained during sporulation and inherited by all four tetrads spores of during meiosis. If a single genetic locus is responsible for this trait, we expect tetrads to exhibit a 2:2 segregation pattern, with half of the spores phenotypically resembling the permissive BY4742 parent and the other half resembling the non-permissive Y9 parent. Alternatively, if the trait is polygenic, the inheritance pattern would be more complex. We
examined 60 tetrads, finding that about 20% of 4-spore tetrads exhibited a roughly 2:2 segregation pattern, whereas other tetrads exhibit more complex patterns of inheritance (Supplementary Figure S3). Our results indicate that the genetic architecture for plasmid instability is neither monogenic nor extremely polygenic but is likely between these two extremes. Based on these findings, we use the Castle-Wright estimator66,67 to estimate that at a minimum, plasmid instability is encoded by 2-3 independently segregating large effect loci in the Y9 genome. In addition to these tetrads, we also analyzed multiple random spores from a larger cross. This analysis also found that most progeny exhibit intermediate plasmid stability between BY4742 and Y9 (Figure 3B-C), again suggesting that more than one locus is involved. We reasoned that this trait architecture should be amenable to QTL mapping by bulk-segregant analysis (BSA).

We performed quantitative trait loci (QTL) mapping using BSA to identify the genetic loci that give rise to the Y9 strain’s 2-micron plasmid instability phenotype68. This approach works by comparing allele frequencies between two pools of meiotic progeny (from BY4742/ Y9 heterozygotes) representing those with the highest (‘permissive’) or lowest (‘non-permissive’) plasmid stability (Figure 3C, Supplementary Figure S4). Genomic regions with the most extreme allele frequency differences between pools should contain the loci contributing to the phenotypic difference. We used SCAMPR to phenotype plasmid stability in approximately 600 progeny derived from random sporulation of a heterozygous BY4742/ Y9 diploid containing our reporter 2-micron plasmid. We then pooled and bulk-sequenced 132 ‘non-permissive’ progeny strains that represented ~20% of progeny with the lowest GFP retention (or plasmid stability) (Figure 3B). Similarly, we pooled and sequenced 126 ‘permissive’ strains that represented the ~20% of progeny with the highest GFP retention (plasmid stability).

In addition to the progeny pools, we also sequenced genomes from all plasmid-negative strains (Y9, Y12, and YPS1009), as well as a plasmid-containing strain (by PCR) that is related to Y9 and Y12 on the \textit{S. cerevisiae} phylogeny (strain UC5)64,69. We mapped reads from these strains back to the \textit{S. cerevisiae} reference genome, as well as creating de novo assemblies for each strain (see Methods). We identified fixed SNP differences between the Y9 and BY4742 strains. For each SNP, we counted reads in the progeny pools that support each parental genotype. We then used the MULTIPOOL algorithm to
generate likelihood-based ‘LOD’ (logarithm of the odds) scores to identify loci that could be linked to the plasmid stability phenotype70,71.

This QTL analysis corroborates our tetrad analysis results, showing that plasmid instability is likely a multigenic trait. We found several regions in which inheritance of the Y9 haplotype is more common in the non-permissive progeny pool than the permissive pool, consistent with parental phenotypes (Figure 4A). A few of these regions have moderate LOD scores of ~4 (Figure 4B), but most striking is a high confidence QTL with a LOD score of ~10 on chromosome V. While it is challenging to establish a concrete LOD score threshold above which loci are ‘real’, a score of ~10 is comfortably above thresholds of 3.1-6.3 established empirically in other studies72–74. This locus likely encodes the strongest genetic determinant of plasmid instability in the Y9 genome, so we focused our validation efforts on variants within this region71.

Unexpectedly, whole genome sequencing of the haploid Y9 parent revealed that the strain was disomic for chromosome XIV (Supplementary Figure S5A), with the aneuploid chromosome segregating in the Y9 x BY4742 cross. This was unanticipated because the Y9 strain diploid sporulated well and gave rise to viable progeny. The homothallic Y9 diploid was confirmed euploid for chromosome XIV by qPCR and shows a similar plasmid loss phenotype as the homozygous Y9 (created by crossing stable haploid Y9 isolates including the parent of the cross) with an additional chromosome XIV (Supplementary Figure S5B). These data demonstrate that the aneuploidy for chromosome XIV is not a large contributor to Y9 plasmid instability phenotype75. We therefore ignored the segregating disomy for chromosome XIV in our subsequent experiments.

A single variant of the essential SUMO ligase MMS21 contributes to the Y9 plasmid instability phenotype

The 90% confidence interval for the chromosome V plasmid instability QTL is ~91 kb wide and contains 54 ORFs, whereas the 50% confidence interval is 23 kb wide (16 ORFs) (Figure 4C). This region contains many differences between the Y9 and BY4742 genomes but very few structural variants (*i.e.*, large insertions, deletions, translocations). One of the rare large indels is the *URA3* gene, which is present in Y9 and absent in
BY4742. Although *URA3* gene often falls within fitness-related QTLs in BY4742 crosses, detailed follow-up studies (Supplementary Figure S6) allowed us to conclusively rule out a role for *URA3* in the plasmid instability phenotype of the Y9 strain\(^76,77\). We shifted our focus to variants in other annotated genes in this interval. We found that the Y9 genome contains four changes with very strong predicted consequences: two frameshift and two nonsense polymorphisms relative to BY4742 within the 90% confidence interval. However, all these disruptive mutations lie within dubious, low-confidence ORFs.

After excluding dubious ORFs, 44 protein-coding genes remained within the 90% confidence interval. 28 of these candidate genes contained a total of 94 missense changes between Y9 and BY4742, while the rest contain no non-synonymous differences between the parental strains for our QTL cross. We focused on 15 missense polymorphisms (in 11 genes) at which Y9 is identical to the phylogenetically close non-permissive strain, Y12, but different from the closely-related permissive strain, UC5. Our attention was drawn to *MMS21* which contains a single Thr69Ile missense change common to Y9 and Y12, and distinct from the BY4742 laboratory strain and the permissive UC5 strain. Even though *MMS21* has not previously been implicated in 2-micron biology, it encodes one of the three mitotic SUMO E3 ligases in *S. cerevisiae*\(^78\). The two other SUMO E3-ligases, encoded by *SIZ1* and *SIZ2*, have been directly implicated in SUMO-modification of the plasmid-encoded Rep and Flp1 proteins to cause instability or hyper-amplification phenotypes\(^32,52,79\). Therefore, we evaluated the consequence of Y9’s *MMS21* polymorphism on 2-micron plasmid retention.

We first tested whether Y9 *MMS21* was sufficient to confer the plasmid loss trait. We integrated the Y9 *MMS21* allele, with the flanking intergenic regions, into the *ho* locus of BY4742. These engineered BY4742 haploids thus express both the BY4742 and Y9 *MMS21* alleles. Although the addition of the Y9 *MMS21* does lower plasmid stability, this difference is not statistically significant from BY4742 haploids that only express the BY4742 allele (Figure 5A). Thus, the Y9 *MMS21* allele, by itself, does not appear to be sufficient to lower plasmid stability in the BY4742 genetic background.

We next tested whether loss of Y9 *MMS21* from heterozygous BY4742/ Y9 diploids would lead to an increase in plasmid stability. Because *MMS21* is an essential gene, we could not simultaneously delete both the Y9 and BY4742 *MMS21* alleles in
heterozygous diploids. Instead, we deleted either the Y9 or the BY4742 allele, yielding BY4742/ Y9 diploids that are hemizygous for one or the other \textit{MMS21} allele. We found that deletion of the Y9 \textit{MMS21} allele, but not the BY4742 allele, results in a reproducible and statistically significant increase in plasmid stability (Figure 5B). While our results show that the \textit{MMS21} polymorphism does not explain the entire phenotype, it clearly contributes significantly to Y9’s plasmid-instability. This finding is not unexpected given that plasmid instability appears to be a multigenic trait. The remaining trait-determining loci likely include some of the minor QTL peaks we found but could also include linked polymorphisms within this chromosome V region.

\textbf{MMS21 natural variation within \textit{S. cerevisiae} and between \textit{sensu stricto} species}

The threonine to isoleucine change found in Y9 and Y12 strains occurs at residue 69 in the Mms21 protein. The third non-permissive strain, oak YPS1009, does not share this change, suggesting that it acquired plasmid resistance through an independent evolutionary path. The T69 allele found in the BY4742 lab strain appears to be the ancestral allele, with I69 arising more recently in a subset (96) of 1011 \textit{S. cerevisiae} strains that were sequenced as part of a recent large-scale study27. This study also reported which of the 1,011 strains carry 2-micron plasmids. Upon reanalyzing these data, we find that a smaller proportion of \textit{S. cerevisiae} strains homozygous for the \textit{MMS21} derived I69 allele harbor 2-micron plasmids compared to strains homozygous for the ancestral T69 allele (Supplementary Figure 5C). In particular, the A-type 2-micron plasmids, which we have tested using SCAMPR in this study, appear to be particularly depleted in strains with the I69 allele, suggesting that this allele might specifically restrict A-type 2-micron plasmids (Supplementary Figure 5C). Despite the tantalizing nature of these observations, however, at present we cannot distinguish whether these observations are a result of a causal association or of shared evolutionary history, due to phylogenetic relatedness of the I69 allele-encoding strains.

In order to explore natural variation in \textit{MMS21} beyond \textit{S. cerevisiae}, we aligned sequences from selected \textit{S. cerevisiae} strains as well as other \textit{Saccharomyces sensu stricto} species and two outgroups (\textit{N. castelli} and \textit{N. dairenensis}) (Supplementary Figure S7). Interestingly, \textit{S. eubayanus} and \textit{S. uvarum} also seem to have independently
acquired isoleucine at position 69 but still harbor endogenous 2-micron plasmids, whereas *S. arboricola* has yet another amino acid (alanine) at this position53.

The location of the Y9/Y12 polymorphism in *MMS21* also provides important clues to its functional consequences. The T69I change occurs in the third of three alpha-helices in the Mms21 N-terminal domain, which makes contact with the Smc5/6 complex, and is essential for yeast viability80 (Supplementary Figure S8). Yeast cells deficient for *MMS21* show gross chromosomal segregation defects and die as large, multi-budded cells51. However, the C terminal zinc finger RING domain responsible for sumoylation of substrates is dispensable for Mms21’s essential function80. We therefore speculate that the non-permissive *MMS21* allele may act by directly affecting the Smc5/6 complex rather than its sumoylation function. Despite the Smc5/6 complex’s essential role in the removal of DNA-mediated linkages to prevent chromosome missegregation and aneuploidy, it has not been directly implicated in 2-micron stability. Our finding that a single polymorphism in Mms21 at its direct interaction interface with Smc5 affects 2-micron stability thus reveals a novel facet of host plasmid-control (Supplementary Figure S8).

Discussion

In this study, we leveraged natural variation to identify a natural gain-of-function variant that restricts 2-micron plasmids in *S. cerevisiae*. Our approach is complementary to the traditional biochemical and genetic approaches that have previously used loss-of-function genetic analyses to study host regulation of 2-micron plasmids. Natural variation studies can identify alleles of host genes that retain host function but still block SGEs like 2-micron plasmids, and reveal novel facets of host control, which may be otherwise challenging to discover via loss-of-function analysis.

Although 2-micron-based vectors have long been used as an important tool in yeast genetics, study of the endogenous plasmid as a natural SGE has lagged behind considerably. Our new phenotyping assay, SCAMPR, makes the 2-micron plasmid a more tractable system. SCAMPR captures single cell data that facilitate studies of population heterogeneity, allowing inferences of the mechanisms by which plasmids may be controlled by their hosts. Thus, SCAMPR has potential for expanded use, for
example, to explore meiotic plasmid transmission dynamics. SCAMPR could also be paired with host lineage tracking to assess plasmid fitness burden alongside plasmid loss dynamics in competitive fitness assays. This would be a powerful approach for understanding the relative contribution of both plasmid fitness cost and host-plasmid incompatibility across hosts. Additionally, SCAMPR could be utilized to study other questions related to high-copy number SGE dynamics where expression is well matched to copy number.

Our survey of 52 wild *S. cerevisiae* isolates identified three strains that naturally lack 2-micron plasmids. Focusing on one of these strains, Y9, we find that plasmid instability is heritable, dominant and likely the result of multiple contributing alleles. Through QTL mapping by bulk segregant analysis, we identified a significant locus on chromosome V associated with plasmid loss. We found that a single amino acid variant in Y9 *MMS21*, which encodes an essential SUMO E3 ligase in *S. cerevisiae*, contributes to plasmid instability. *MMS21* does not fully account for the plasmid loss phenotype in heterozygous BY4742/ Y9 strains. This is unsurprising based on our tetrad analysis and QTL mapping, which both suggest additional independently segregating loci affect plasmid stability. Although loss of Y9 *MMS21* from heterozygous diploids leads to a relatively modest effect on plasmid instability, it may still account for all of the QTL signal we observe in chromosome V. Alternatively, the high LOD score QTL on chromosome V may contain additional determinants of plasmid instability in close genetic linkage to *MMS21*. CRISPR-Cas9 based approaches may be useful to test a large number of genomic changes rapidly and in parallel between Y9 and BY4742 to identify other determinants of plasmid instability in this QTL and in other candidate loci.

The identification of *MMS21* led us to initially suspect this locus might represent another connection between the SUMO-ligation machinery and 2-micron plasmid stability. However, the location of the Thr69Ile missense change at the binding interface between Mms21 and Smc5 (Supplementary Figure S7) suggested an alternate mechanism that relies on the Smc5/6 complex. The Smc5/6 complex lies at the nuclear periphery, where it anchors dsDNA breaks to facilitate repair, resolves X-shaped DNA structures that arise during DNA replication and repair, and helps mediate sister chromatid cohesion. All three of these cellular processes directly impact stability of 2-micron plasmids, which also physically locate to the nuclear periphery. Interference
with Mms21, an essential component of the Smc5/6 complex, could thus directly affect both segregation of 2-micron plasmids as well as interfere with their amplification via Flp1-induced recombination intermediates. We therefore speculate that the Y9 Mms21 variant may restrict 2-micron stability through Smc5/6, rather than through sumoylation.

The Y9 variant of \textit{MMS21} could represent either a hypomorphic (impaired function) or a neomorphic (gain of function) allele. Under the first scenario, the hypomorph Y9 allele would be sufficient to perform essential host functions when 2-micron plasmid is absent, but has a severe fitness deficit in the presence of plasmid, as host functions become overburdened when hijacked by the parasite. If this were the case, we would have expected to see decreased viability in Y9 cells upon 2-micron reintroduction, or appearance of nibbled colony morphology as seen when \textit{ULP1} mutant cells also harbor high levels of 2-micron plasmids. However, we did not observe such deficits upon reintroduction of 2-micron plasmids into the Y9 (see Figure 2A for example). Moreover, plasmid-restrictive host alleles would only arise and propagate in natural populations if their fitness cost did not outweigh the modest 1-3% fitness cost imposed by the widespread 2-micron plasmids in \textit{S. cerevisiae} populations. We favor a second alternative, that the Y9 \textit{MMS21} allele may represent a gain of function (neomorphic) allele, which is still capable of fulfilling host functions, but has the added ability to impair 2-micron function. This allele might impair 2-micron’s ability to hijack the Smc5/6 complex, or could function through another novel 2-micron-targeting mechanism. The dominant plasmid instability in BY4742/ Y9 heterozygotes and lack of obvious fitness deficits in Y9 haploid cells favor the neomorphic allele model over the alternative hypomorphic model.

The 2-micron plasmids appear to have co-evolved with budding yeasts for millions of years and are prevalent in species such as \textit{S. cerevisiae}. Long-term coevolution appears to have “optimized” 2-micron plasmids as tolerable parasites: not too great of a burden on host fitness, but still high enough plasmid copy numbers to ensure stable propagation. This copy number balance is achieved through both plasmid (\textit{e.g.} Flp1 repression) and host (\textit{e.g.} sumoylation) contributions. Nevertheless, there are tantalizing hints that this truce between 2-micron plasmids and yeast may be uneasy. 2-micron plasmid stability is frequently compromised in heterospecific (other species) hosts, suggesting it is actively adapting to maintain stability within its native budding yeast
species35. Our discovery of a natural host variant of \textit{S. cerevisiae} that impairs conspecific plasmid stability also supports the hypothesis that even low fitness costs invoked by 2-micron plasmids are sufficient to elicit a host evolutionary resistance response.

Until recently, most studies of 2-micron plasmids (including this one) have focused on the A-type variant that is most commonly found in laboratory strains. However, recent sequencing studies have revealed that \textit{S. cerevisiae} strains harbor a diverse set of 2-micron plasmids27,53. This diversity of 2-micron plasmids might itself have arisen as a result of host defenses within \textit{S. cerevisiae} driving plasmid evolution. For instance, although our SCAMPRTN studies revealed the importance of the Y9 \textit{MMS21} variant against the stability of the A-type plasmid, it is possible that this variant is ineffective against the B-type variant. Thus, 2-micron plasmids might exist in a frequency-dependent regime with their budding yeast hosts; A-type plasmids might thrive in certain host genetic backgrounds whereas B-type plasmids might thrive in others. The simultaneous presence of multiple 2-micron types within species could explain the presence of standing variation in plasmid instability phenotypes in \textit{S. cerevisiae} populations, including the low observed frequency of the Y9 \textit{MMS21} allele.

Future studies can employ SCAMPRTN to study the functional consequences of the natural diversity of 2-micron plasmids in yeast. In particular, SCAMPRTN reporter plasmids from various \textit{S. cerevisiae} strains and divergent \textit{Saccharomyces} species may reveal important biological determinants behind their co-evolution and long-term success in budding yeast species. Testing the effects of \textit{MMS21} and other restrictive alleles on stability of different 2-micron plasmids (e.g. B- or C-type) might provide a means to distinguish between universal versus plasmid-type-specific restriction. With these tools, and the ever-increasing evolutionary resources in \textit{S. cerevisiae}, the 2-micron plasmid stands well-poised as a model conflict system between SGEs and host genomes.

\textbf{Methods}

\textit{Strain growth and construction}

For most experiments, yeast strains were grown in standard yeast media at 30°C unless otherwise noted86. Plasmid transformation was carried out using a high efficiency lithium
acetate method. The GFP-2-micron plasmid was created by Gibson assembly directly into otherwise plasmid-less yeast strains cir0 BY4741 (MATa haploid) and BY4742 (MATα haploid), which had been cured of their endogenous plasmids by previously published methods. To avoid disruption of the plasmid's endogenous replication and segregation machinery, a cassette containing both markers was integrated into the A-type 2-micron sequence found in the S. cerevisiae laboratory strain BY4741 at a restriction site reported to tolerate insertions of up to 3.8 kb without impacting copy number or stability. We did not use any bacterial cloning vector sequences to minimize unnecessary or destabilizing changes to the 2-micron reporter plasmid, so the reporter plasmid was directly assembled in yeast. Assembling in cir0 strain backgrounds avoided multiple plasmid genotypes within a strain background that could have led to plasmid competition or recombination.

We used the NEBuilder HiFi DNA Assembly Master Mix (product E2621) for Gibson assemblies. Yeast plasmids were recovered using Zymoresearch Zymoprep Yeast miniprep kit (D2004). The assembled plasmids were then retransformed to the same cir0 yeast backgrounds to ensure plasmid clonality. Genetic crosses were carried out on a Singer Sporeplay dissection scope, for both tetrad dissection and selection of unique zygotes for mating strains. Strain mating type was confirmed by halo formation in the presence of known mating type tester strains (see strain table). Strains used in this work are listed in Table 1.

Natural isolates were obtained as homothallic diploids (capable of mating type switching and self-diploidization). We made stable heterothallic haploid strains (no longer capable of mating type switching) by first knocking out ho endonuclease prior to sporulation (hoΔ::HphNT1). We found that the natural isolates required significantly longer homology arms for proper DNA targeting when making integrated genomic changes (e.g. gene deletions) via homologous recombination. Where BY4742 lab strains utilized ~50bp homology arms for high efficiency recombination, Y9 required ~1kb flanking homology. Even with longer homology, a substantial number of clones in any transformation did not contain the desired edit. These hurdles made editing the Y9 genome challenging.

Colony sectoring
Confirmed transformants were cultured under G418 selection, then plated to YPD medium where colonies were allowed to form without selective pressure to maintain the reporter plasmid. After 2 days growth at 30°C, colonies were imaged under white light and GFP excitation to assess qualitative plasmid loss in the different strains using a Leica M165 FC dissection scope with a GFP filter and Leica DFC7000 T camera. Colony sectoring was visually assessed. We then performed image processing using ImageJ to split channels and recolor the GFP channel.

MCM assay

MCM assays were performed as previously published. However, samples were taken at only two time points. Therefore, we reported changes in frequency of 2-micron plasmid rather than an estimated rate of loss per generation. This two-timepoint measurement also provided a more direct comparison to the SCAMPR assay. At time = 0 hours and 24 hours, cells are plated on both selective and non-selective media to determine what fraction of the population maintains the plasmid by virtue of encoding the selectable marker. Samples were plated at multiple dilutions to ensure between 30-300 CFU per plate. All strains containing the reporter plasmid were grown under G418 selection to ensure 2-micron plasmid presence prior to the start of the assay. At time = 0 hours, cultures were transferred into liquid media with shaking, but without drug selection for 24 hours. After 24 hours, cultures were diluted in PBS and plated on YPD either with or without G418 selection at multiple dilutions, targeting 30-300 CFU per plate. Plates were incubated for 2 days, then colonies were manually counted to determine what fraction of the population were G418 positive. Calculations were based on whichever dilution gave a countable (30-300 CFU) plate. Multiple replicates (at least 8) were done for each strain to measure variability in plasmid retention. A subpopulation of GFP negative, G418-negative cells can be found even under selection. This ‘phenotypic lag’ occurs because of protein persistence following DNA loss. Additionally, while cells that lose the plasmid die under selection, other plasmid-free cells are constantly generated as well. We, therefore, normalize data to account for different starting frequencies of plasmid negative cells by comparing cells grown with or without G418 selection for 24 hours (Figure 1B).
SCAMPR samples were prepared as for MCM assay. When grown in 96-well format at 30°C, cultures were shaken using a Union Scientific VibraTranslator to ensure aeration. Fluorescence was directly measured by flow cytometry at 0 and 24 hour timepoints. A BD Canto-2 cytometer was used to collect cell data. FlowJo software was used for subsequent data analysis: samples were gated for single cells, omitting doublets/multiple cell clumps and any cell debris. Single cells were gated for GFP-positive and -negative populations, using GFP negative strains and single-copy integrated GFP-positive strains as gating controls. Summary statistics (frequency of GFP-positive and -negative cells, GFP intensity) were exported from FloJo. Each strain was measured in at least triplicate per assay and means are reported here.

Statistical analyses

For SCAMPR and MCM assay results, we determined significance by non-parametric tests. In the case of comparing two strains we used two-tailed Mann-Whitney, or for comparing three or more strains, Kruskal-Wallis with Dunn’s multiple comparison test. Graphs were prepared and statistical analysis done using GraphPad Prism 7 software.

Screening for endogenous 2-micron plasmid in natural isolates of S. cerevisiae

Natural isolates (Table 1) were generously shared by Dr. Justin Fay. DNA from these strains was isolated using standard Hoffman and Winston preps, then probed by PCR and Southern blot. Two pairs of primers were designed to amplify either REP1 or FLP1 (FLP1_F: CCACAATTGTTATATTATG, FLP1_R: CTTTCACCCTCACCTTAG, REP1_F: AATGGCGAGAGACT, REP1_R: CGTGAGAATGAATTTAGTA), the two best conserved coding regions of the plasmid as previously described. Only strains that showed negative PCR results for both sets of primers were further validated by chemiluminescent Southern blot using the Thermo North2South kit (17097). Briefly, whole genome DNA was sheared, run on an agarose gel in TAE, transferred to membrane and probed with chemiluminescent probes created from digested endogenous 2-micron plasmid collected from BY4741 by Zymoresearch yeast plasmid miniprep kit (D2004).

Illumina sequencing, library preparation, and QTL mapping via bulk segregant analysis

We prepared high quality genomic DNA for sequencing using Zymoresearch Yeastar kits with per manufacturers instructions (D2002 - using chloroform method). Sequencing
libraries using the TruSeq method for genomic DNA (Illumina). Samples were multiplexed and run on an Illumina HiSeq by the Fred Hutchinson Sequencing core facility to generate 50bp paired-end sequences (SRA accession PRJNA637093). 100bp paired-end reads for the lab strain, BY4742, were downloaded from the SRA database (accession SRR1569895). Reads that failed Illumina’s ‘chastity filter’ were removed using a custom R script, and adapters and low-quality regions were trimmed using cutadapt with parameters -q 10 --minimum-length 20. Trimmed read pairs were aligned to the sacCer3 reference genome assembly using BWA-backtrack. Mean coverage in non-overlapping 20kb windows across the genome was calculated and plotted using R and Bioconductor.

For bulk segregant analysis, we first identified a conservative set of 47,173 high quality SNPs that distinguish the cross parents (Y9 and BY4742) as follows. Before SNP-calling, BWA output files were processed using Picard’s MarkDuplicates tool and indels were realigned using GATK’s RealignerTargetCreator and IndelRealigner tools. We then called SNPs using samtools mpileup (parameters --skip-indels -t DP -uBg -d 6660) and bcftools call (parameters -vmO z -o), and counted reads matching each allele using GATK’s VariantAnnotator DepthPerAlleleBySample module (with --downsampling_type NONE option). We used R and Bioconductor to further filter SNPs to obtain the final set of 47,173 SNPs, removing any that overlapped repetitive elements, SNPs with QUAL score <200, SNPs with unusual coverage in any sample, and SNPs with an apparent mix of alleles in either of the haploid parental strains. We then ran MULTIPOOL in ‘contrast’ mode on allele frequencies at each SNP in the permissive and non-permissive pools to generate LOD scores across all chromosomes.

In order to identify candidate functional polymorphisms, we took two approaches: (a) we performed more sensitive SNP-calling, including small insertions and deletions; (b) to detect larger insertion/deletion events, we generated de novo assemblies from each strain, aligned them to the reference genome assembly, and identified locations where assemblies differed. In more detail, the first approach used processed alignments (see above) as input to GATK’s HaplotypeCaller (parameters -stand_call_conf 30.0 -stand_emit_conf 10.0)92. Functional consequences of each variant were annotated using Ensembl’s Variant Effect Predictor94. For the second approach (de novo assemblies), we performed error correction on the adapter-trimmed reads using musket (parameters -k
28 536870912) and then used SOAPdenovo2 across a range of k-mer sizes and fragment sizes, choosing the combination for each sample that yielded the assembly with highest N50 length as determined using QUAST (Genbank accession numbers forthcoming)95–97. We obtained tiling path alignments of each assembly to the sacCer3 reference genome assembly using MUMMER (nucmer parameters -maxmatch -l 100 -c 500, delta-filter options -m)98. Structural variants were determined from genome alignments using Assemblytics (variant size range 1bp-100kb)99.

Structure visualization
The Cn3D viewer was used to visualize Thr69Ile on a crystal structure of MMS21 with SMC5 made available by Duan \textit{et al}80,100.

Analysis of MMS21 natural variation
To examine natural variation in MMS21 across \textit{S. cerevisiae} strains and in other fungal species, we first extracted the MMS21 (YEL019C) open reading frame from the reference assembly (sacCer3, chrV:120498-121301, -strand) and translated that sequence. We then used this MMS21 protein sequence as the query in tblastn searches against various databases101. Searching the NR database, using taxonomic restrictions as needed, yielded MMS21 sequences from \textit{S. paradoxus} (XM_033909904.1), \textit{S. eubayanus} (XM_018364578.1), \textit{S. jurei} (LT986468.1, bases 125344-126147, -strand), \textit{S. kudriavzevii} (LR215939.1, bases 100238-101041, -strand), \textit{N. castellii} (XM_003677586.1) and \textit{N. dairenensis} (XM_003671024.2). For additional orthologs, we downloaded individual genome assemblies from NCBI and performed local tblastn searches for \textit{S. arboricola} (GCA_000292725.1; MMS21 at CM001567.1:97893-98699, -strand), \textit{S. mikatae} (GCA_000166975.1; MMS21 at AABZ01000034.1:31665-32468, -strand), \textit{S. uvarum} (GCA_002242645, MMS21 at NOWY01000012.1:107550-108353, +strand). Additional \textit{S. cerevisiae} strain sequences come from our own \textit{de novo} assemblies, where we used blastn to identify \textit{MMS21}.

MMS21 genotypes in the 1,011 isolates previously sequenced27 were accessed via that publication’s supplementary data file 1011Matrix.gvcf.gz. Plasmid status was obtained from another supplementary file (Table S1) and cross-referenced with genotype in R.

Acknowledgements
We thank past and present members of the Malik, Dudley and Raghuraman/ Brewer labs for helpful discussions throughout this project. We especially thank Aimée Dudley, Mosur Raghuraman, Gavin Sherlock, Antoine Molaro, Courtney Schroeder, and Yu-Ying (Phoebe) Hsieh, for their comments on the manuscript. We are grateful to Justin Fay for the generous gift of natural yeast isolates. We appreciate all the generous assistance and advice from Flow Cytometry and Genomics shared resource facilities at the Fred Hutchinson Cancer Research Center. This work was supported by an NSF graduate research fellowship (Grant No. DGE-1256082 to M. H.), NIH/NHGRI Genome Training Grant at the University of Washington (5T32HG000035-20 to M. H.), NIH R01 grant GM074108 (to H. S. M.) and an Investigator award from HHMI (to H. S. M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Table 1. Natural *S. cerevisiae* isolates screened for the presence or absence of endogenous 2-micron plasmids.

Table 2. Engineered *S. cerevisiae* strains used in this study.

Figure Legends

Figure 1. SCAMPR, a novel method to measure 2-micron plasmid stability and dynamics. (A) Schematic of GFP-reporter 2-micron plasmid. The endogenous 2-micron encodes just four protein-coding genes. The partitioning machinery (blue) consists of the REP1 and REP2 proteins that interact with the STB locus. The amplification machinery (gray) is encoded by the RAF protein and the FLP1 recombinase that interacts with dual FRT sites. The 2-micron plasmid also encodes an autonomous origin of replication (ORI, red). The GFP-2-micron reporter plasmid described here utilizes the full 2-micron genome with an additional integrated G418-resistance and GFP expression cassette. (B) A Single Cell Assay for Measuring Plasmid Retention (SCAMPR) utilizes the dual reporter cassette to ensure retention via G418 resistance and copy number measurement via GFP expression. Cells with the reporter plasmid are kept on G418 selection and either released to media without selection or still passaged with G418 selection. Comparing the GFP intensities of the cell populations with and without G418
selection after 24 hours describes the plasmid retention dynamics and heterogeneity characteristic of the host genetic background. SCAMP can distinguish between alternate mechanisms of plasmid instability. (C) Gross segregation defects would cause a rapid increase in GFP-lacking cells but no change in the median expression of GFP-expressing cells. (D) Plasmid instability caused by under-replication or copy number suppression would not cause a precipitous decline in GFP-expressing cells as in (C) but would instead lead to a reduction in the median GFP intensity of the GFP-expressing cells.

Figure 2. Plasmid instability is a heritable trait in three natural S. cerevisiae isolates. (A) A colony sectoring assay qualitatively measures GFP-2-micron reporter plasmid loss on solid media. Whereas the majority of colonies in the BY4742 background express GFP, only a small fraction of cells in colonies from wild isolates Y9, Y12, and YPS1009 express GFP. (B) The MCM assay quantifies the frequency of 2-micron loss events in different yeast strains. Haploid cells from three wild isolates (Y9, Y12, YPS1009) have significantly lower plasmid retention than haploid cells from the laboratory BY4742 strain. *** p< 0.0001, Kruskal-Wallis test. (C) SCAMP assays confirm that a significantly smaller fraction of Y9 strain haploid cells retain the GFP-2-micron reporter plasmid after 24 hours, relative to haploid BY4742 cells. *** p< 0.0001, Kruskal-Wallis test.

Figure 3. Genetic architecture and dominance of the Y9 plasmid instability phenotype. (A) Compared to homozygous BY4742 diploids, heterozygous BY4742/ Y9 diploid cells display low plasmid retention after 24 hours according to SCAMP, similar to homozygous Y9 diploids. This suggests that the plasmid instability of Y9 cells is a dominant trait. **p<0.001, *** p< 0.0001, Kruskal-Wallis test; n.s. = not significant. (B-C) Progeny phenotype distribution (mean of 3 replicates per strain per SCAMP assay) across ~600 random spores shows that most progeny have an intermediate phenotype between the ‘non-permissive’ Y9 parent and the ‘permissive’ BY4742 parent. We use this distribution of spores to create cutoffs for the top 20% (“non-permissive”) and bottom 20% (“permissive”) genetic backgrounds for bulk sequencing and segregant analysis.

Figure 4. QTL mapping identifies a plasmid instability locus on Y9 chromosome V. (A) We plotted the mean non-reference (Y9) allele frequency of SNPs in 20kb windows
for the ‘non-permissive’ (red) and ‘permissive’ (black) pools of meiotic haploid progeny from BY4742/ Y9 heterozygous diploid parents. Associations with a plasmid instability locus would show an increased representation of Y9 haplotype in the non-permissive pool and a decreased representation of the BY4742 haplotype in the permissive pool (dotted line indicates equal representation). The increased representation of Y9 alleles on Chromosome XIV in both pools is a result of a segregating disomy in the Y9 parent that we show does not affect the plasmid instability phenotype (Supp. Fig. S5). (B) Based on the allele frequencies shown in (A), we use MULTIPOOL to calculate LOD scores for association with the plasmid instability phenotype. We observe a highly significant LOD score (~10) at a locus on chromosome V. All loci have allele frequencies skewed in the expected direction i.e., the restrictive pool is enriched for Y9 alleles. (C) MULTIPOOL 90% (54 genes) and 50% (16 genes) credible intervals for the chromosome V QTL. Among the 16 genes in the 50% credible interval is MMS21/NSE2, which encodes an essential SUMO E3-Ligase.

Figure 5. A single SNP in Y9 MMS21 contributes to the plasmid instability phenotype. (A) Introduction of the Y9 MMS21 allele into BY4742 haploid cells is not sufficient to significantly lower plasmid instability. (B) However, removal of the Y9 MMS21 allele but not the BY4742 MMS21 allele increases plasmid stability in BY4742/ Y9 heterozygous diploids, showing that the Y9 allele of MMS21 plays an important role in the Y9 plasmid instability phenotype. ** p< 0.001, Kruskal-Wallis test, n.s. = not significant. (C) Plasmid prevalence (by plasmid class) for each MMS21 T69I genotype within 1011 sequenced S. cerevisiae strains. Plasmid data and genotypes from Peter et al. Strains with the Y9 MMS21 allele (I69) have a statistically significant decrease in probability of harboring 2-micron plasmids in general, and A-type 2-micron plasmids, in particular. However, this effect can be confounded by the phylogenetic relatedness of these strains.

Supplementary Materials

Figure S1. SCAMPR analysis for permissive and non-permissive S. cerevisiae strains. (A) SCAMPR analysis in the laboratory BY4742 strain reveals that GFP intensity for the 2-micron reporter plasmid is roughly normally distributed across single cells. Upon relaxation of G418 selection, there is an increase from ~10 to 24% of cells lacking 2-
micron plasmid, although the median GFP intensity of plasmid-bearing cells remains mostly unchanged. (B) In non-permissive Y9 strains, there is an increase of plasmid-lacking cells from 48 to 83% upon relaxation of G418 selection. However, the median GFP intensity of plasmid-bearing cells remains largely unchanged. From these analyses, we conclude that plasmid instability in Y9 cells occurs via mis-segregation defects. (C) Table summarizing the plasmid-negative cell fractions in BY4742 and Y9 cells, with and without G418 selection.

Figure S2. Three natural S. cerevisiae isolates lack endogenous 2-micron plasmids. (A) Representative PCR analysis shows that most of the 52 natural isolates tested harbor endogenous 2-micron plasmids, except for three strains (one indicated). Representative gel shown for the presence of REP1 (Methods) (B) Southern blot analysis confirms the absence of endogenous 2-micron plasmids in the 3 natural isolates Y9, Y12, and YPS1009.

Figure S3. Tetrads dissected from meiosis of B4742/ Y9 heterozygous diploids reveal a range of plasmid stability phenotypes. All four spores dissected from meiotic tetrads were individually assayed by SCAMPR. While some tetrads display a 2:2 segregation pattern of plasmid instability/stability consistent with a single Mendelian locus, others suggest a more complex inheritance pattern. This pattern is consistent with at least 2-3 independently segregating loci in the Y9 genome that inhibit 2-micron plasmid stability. Values plotted are the mean of SCAMPR measurements of three replicates per progeny.

Figure S4. Schematic of QTL mapping by bulk segregant analysis. We crossed non-permissive Y9 and permissive BY4742 haploid cells to create heterozygous diploids. We expect any Y9 alleles associated with plasmid instability (yellow star) to be concentrated in pools of meiotic progeny that show plasmid instability with SCAMPR analyses. Therefore, by determining where the Y9 allele frequency is elevated in the non-permissive pool and depleted in the permissive pool, we can highlight genetic loci that are likely to significantly contribute to the plasmid instability phenotype. We use allele frequencies as input to the MULTIPOOL algorithm to calculate a LOD scores to indicate statistical likelihood of each genetic locus contributing to the plasmid instability phenotype.
Figure S5. Aneuploidy of chromosome XIV in Y9 strain. (A) Whole genome sequencing reveals ~2X coverage of chromosome XIV in the sequenced Y9 haploid strain, indicating that this parent is disomic for this chromosome. This disomy segregates among the meiotic progeny from BY4742/ Y9 heterozygous diploids. (B) Euploid and aneuploid Y9-derived diploid strains (with an extra copy of chromosome XIV) were identified by qPCR and phenotyped. We find no difference in plasmid instability phenotypes, indicating that disomy of chromosome XIV is not likely to contribute to this trait.

Figure S6. Deletion of URA3 from Y9 haploid cells does not affect their plasmid instability phenotype. Independently derived biological replicates (Rep1 through 5) of Δura3 Y9 cells are not different from wildtype Y9 in terms of their plasmid instability phenotypes. *** p< 0.0001, Kruskal-Wallis test, n.s. = not significant.

Figure S7. Sequence of MMS21 codon 69 across the Saccharomyces sensu stricto clade, as well as selected S. cerevisiae strains and two outgroup Naumovozyma species. Species cladogram was adapted from previous studies. This analysis shows that the T69 allele of MMS21 is ancestral in S. cerevisiae but is not universally conserved in closely-related species.

Figure S8. The T69I polymorphism is located at the Mms21-Smc5 binding interface. (A) The T69I polymorphism occurs in the third alpha-helix in the Mms21 N-terminal domain. The C-terminal domain of MMS21 encodes the SUMO E3-ligase associated RING domain. (B) Schematic of co-crystal structure of Mms21 with the coiled coil domain of Smc5 (PDB: 3HTK) shows that the T69 residue in the N-terminal domain is at the direct binding interface between the two proteins. (C) Schematic of Smc5/6 complex in S. cerevisiae showing the location of T69 residue is directly at the Mms21- Smc5 interaction.

References

1. Burt, A. & Trivers, R. *Genes in Conflict. Genes in Conflict* (2015). doi:10.4159/9780674029118
2. Dawkins, R. *The selfish gene. The selfish gene* (1989). doi:10.2307/2065678
3. McLaughlin, R. N. & Malik, H. S. Genetic conflicts: The usual suspects and beyond. *Journal of Experimental Biology* (2017). doi:10.1242/jeb.148148
4. Koskella, B. Resistance gained, resistance lost: An explanation for host-parasite
coexistence. *PLoS Biol.* (2018). doi:10.1371/journal.pbio.3000013

5. Meaden, S., Paszkiewicz, K. & Koskella, B. The cost of phage resistance in a plant pathogenic bacterium is context-dependent. *Evolution (N. Y.)* (2015). doi:10.1111/evo.12652

6. Kraaijeveld, A. R. & Godfrey, H. C. J. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. *Nature* (1997). doi:10.1038/38483

7. Sheldon, B. C. & Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. *Trends in Ecology and Evolution* (1996). doi:10.1016/0169-5347(96)10039-2

8. Kane, M. & Golovkina, T. V. Mapping Viral Susceptibility Loci in Mice. *Annu. Rev. Virol.* (2019). doi:10.1146/annurev-virology-092818-015544

9. Cogni, R., Cao, C., Day, J. P., Bridson, C. & Jiggins, F. M. The genetic architecture of resistance to virus infection in Drosophila. *Mol. Ecol.* (2016). doi:10.1111/mec.13769

10. Kelleher, E. S., Jaweria, J., Akoma, U., Ortega, L. & Tang, W. QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. *PLoS Biol.* (2018). doi:10.1371/journal.pbio.2006040

11. Duffy, M. A. & Sivars-Becker, L. Rapid evolution and ecological host-parasite dynamics. *Ecol. Lett.* (2007). doi:10.1111/j.1461-0248.2006.00995.x

12. Duxbury, E. M. L. *et al.* Host-pathogen coevolution increases genetic variation in susceptibility to infection. *Elife* (2019). doi:10.7554/elife.46440

13. Rowley, P. A. The frenemies within: viruses, retrotransposons and plasmids that naturally infect Saccharomyces yeasts. *Yeast* (2017). doi:10.1002/yea.3234

14. Wickner, R. B. PRIONS AND RNA VIRUSES OF SACCHAROMYCES CEREVISIAE. *Annu. Rev. Genet.* (1996). doi:10.1146/annurev.genet.30.1.109

15. Kelly, A. C., Shewmaker, F. P., Kryndushkin, D. & Wickner, R. B. Sex, prions, and plasmids in yeast. *Proc. Natl. Acad. Sci. U. S. A.* 109, E2683-90 (2012).

16. Nakayashiki, T., Kurtzman, C. P., Edskes, H. K. & Wickner, R. B. Yeast prions [URE3] and [PSI+] are diseases. *Proc. Natl. Acad. Sci. U. S. A.* 102, 10575–80 (2005).

17. Krastanova, O., Hadzhitodorov, M. & Pesheva, M. Ty elements of the yeast saccharomyces cerevisiae. *Biotechnol. Biotechnol. Equip.* (2005). doi:10.1080/13102818.2005.10817272

18. Bleykasten-Grosshans, C. & Neuvéglise, C. Transposable elements in yeasts. *Comptes Rendus - Biologies* (2011). doi:10.1016/j.crvi.2011.05.017

19. Rowley, P. A., Ho, B., Bushong, S., Johnson, A. & Sawyer, S. L. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts. *PLoS Pathog.* 12, e1005890 (2016).

20. Czaja, W., Bensasson, D., Anh, H. W., Garfinkel, D. J. & Bergman, C. M. Evolution of Ty1 copy number control in yeast by horizontal transfer of a gag gene. *bioRxiv* (2019). doi:10.1101/741611

21. Scholes, D. T., Banerjee, M., Bowen, B. & Curcio, M. J. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. *Genetics* (2001).
22. Maxwell, P. H. & Curcio, M. J. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: Implications for regulation of mammalian retroviruses. *Eukaryotic Cell* (2007). doi:10.1128/EC.00092-07

23. Rowley, P. A., Patterson, K., Sandmeyer, S. B. & Sawyer, S. L. Control of yeast retrotransposons mediated through nucleoporin evolution. *PLoS Genet.* (2018). doi:10.1371/journal.pgen.1007325

24. Blaisonneau, J., Sor, F., Cheret, G., Yarrow, D. & Fukuhara, H. A circular plasmid from the yeast Torulaspora delbrueckii. *Plasmid* 38, 202–9 (1997).

25. Utatsu, I., Sakamoto, S., Imura, T. & Toh-e, A. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level. *J. Bacteriol.* 169, 5537–45 (1987).

26. Chen, X. J., Cong, Y. S., Wesolowski-Louvel, M., Li, Y. Y. & Fukuhara, H. Characterization of a circular plasmid from the yeast Kluyveromyces waltii. *J. Gen. Microbiol.* 138, 337–345 (1992).

27. Peter, J. *et al.* Genome evolution across 1,011 Saccharomyces cerevisiae isolates. *Nature* (2018). doi:10.1038/s41586-018-0030-5

28. Veit, B. E. & Fangman, W. L. Copy number and partition of the Saccharomyces cerevisiae 2 micron plasmid controlled by transcription regulators. *Mol. Cell. Biol.* 8, 4949–57 (1988).

29. Zakian, V. A., Brewer, B. J. & Fangman, W. L. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. *Cell* 17, 923–934 (1979).

30. Mead, D. J., Gardner, D. C. & Oliver, S. G. The yeast 2 micron plasmid: strategies for the survival of a selfish DNA. *Mol. Gen. Genet.* 205, 417–21 (1986).

31. Futcher, A. B. & Cox, B. S. Maintenance of the 2 microns circle plasmid in populations of Saccharomyces cerevisiae. *J. Bacteriol.* 154, 612–22 (1983).

32. Dobson, M. J. *et al.* The 2 microm plasmid causes cell death in Saccharomyces cerevisiae with a mutation in Ulp1 protease. *Mol. Cell. Biol.* 25, 4299–310 (2005).

33. Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. *J. Cell Biol.* (2004). doi:10.1083/jcb.200405168

34. Bennett, P. M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. in *British Journal of Pharmacology* (2008). doi:10.1038/sj.bjp.0707607

35. Murray, J. A. H., Cesareni, G. & Argos, P. Unexpected divergence and molecular coevolution in yeast plasmids. *J. Mol. Biol.* 200, 601–607 (1988).

36. Rizvi, S. M. A., Prajapati, H. K. & Ghosh, S. K. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. *Current Genetics* (2018). doi:10.1007/s00294-017-0719-2

37. Prajapati, H. K., Rizvi, S. M. A., Rathore, I. & Ghosh, S. K. Microtubule-associated proteins, Bik1 and Bim1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast. *Mol. Microbiol.* (2017). doi:10.1111/mmi.13608

38. Ghosh, S. K., Hajra, S. & Jayaram, M. Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters. *Proc. Natl. Acad. Sci. U. S. A.* 104, 13034–9 (2007).

39. Sau, S. *et al.* A selfish DNA element engages a meiosis-specific motor and
telomeres for germ-line propagation. *J. Cell Biol.* **205**, 643–61 (2014).

40. Jayaram, M., Li, Y. Y. & Broach, J. R. The yeast plasmid 2mu circle encodes components required for its high copy propagation. *Cell* **34**, 95–104 (1983).

41. Velmurugan, S., Ahn, Y. T., Yang, X. M., Wu, X. L. & Jayaram, M. The 2 micrometer plasmid stability system: analyses of the interactions among plasmid- and host-encoded components. *Mol. Cell. Biol.* **18**, 7466–77 (1998).

42. Veit, B. E. & Fangman, W. L. Copy number and partition of the Saccharomyces cerevisiae 2 micron plasmid controlled by transcription regulators. *Mol. Cell. Biol.* **8**, 4949–4957 (1988).

43. Murray, A. W. & Szostak, J. W. Pedigree analysis of plasmid segregation in yeast. *Cell* **34**, 961–70 (1983).

44. Murray, J. A., Scarpa, M., Rossi, N. & Cesareni, G. Antagonistic controls regulate copy number of the yeast 2 μ plasmid. *EMBO J.* (1987). doi:10.1002/j.1460-2075.1987.tb02768.x

45. Som, T., Armstrong, K. A., Volkert, F. C. & Broach, J. R. Autoregulation of 2μ circle gene expression provides a model for maintenance of stable plasmid copy levels. *Cell* (1988). doi:10.1016/0092-8674(88)90528-4

46. Zakian, V. A., Brewer, B. J. & Fangman, W. L. Replication of Each Copy of the Yeast 2 Micron DNA Plasmid Occurs during the S Phase. *Cell* **17**, 923–934 (1979).

47. Volkert, F. C. & Broach, J. R. Site-specific recombination promotes plasmid amplification in yeast. *Cell* (1986). doi:10.1016/0092-8674(86)90879-2

48. Dobson, M. J., Yull, F. E., Molina, M., Kingsman, S. M. & Kingsman, A. J. Reconstruction of the yeast 2 μ plasmid partitioning mechanism. *Nucleic Acids Res.* (1988). doi:10.1093/nar/16.14.7103

49. Ma, C.-H. *et al.* Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus. *Nucleic Acids Res.* **41**, 2340–53 (2013).

50. Sau, S. *et al.* A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation. *J. Cell Biol.* **205**, 643–61 (2014).

51. Burgess, R. C., Rahman, S., Lisby, M., Rothstein, R. & Zhao, X. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. *Mol. Cell. Biol.* **27**, 6153–62 (2007).

52. Pinder, J. B., McQuaid, M. E. & Dobson, M. J. Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance. *PLoS One* **8**, e60384 (2013).

53. Strope, P. K. *et al.* 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae. *FEBS Yeast Res.* **15**, (2015).

54. Xiao, W., Pelcher, L. E. & Rank, G. H. Sequence diversity of yeast 2 μ plasmid gene and its co-evolution with STB and REP1. *Gene* **101**, 75–80 (1991).

55. Xiao, W., Pelcher, L. E. & Rank, G. H. Evidence forCis- andTrans-acting element coevolution of the 2-μm circle genome inSaccharomyces cerevisiae. *J. Mol. Evol.* **32**, 145–152 (1991).

56. Maine, G. T., Sinha, P. & Tye, B. K. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. *Genetics* **106**, 365–85 (1984).
57. Lee, C., Kim, J., Shin, S. G. & Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. *J. Biotechnol.* (2006). doi:10.1016/j.jbiotec.2005.11.014

58. Breslow, D. K. *et al.* A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. *Nat. Methods* (2008). doi:10.1038/nmeth.1234

59. Suzuki, Y. *et al.* The green monster process for the generation of yeast strains carrying multiple gene deletions. *J. Vis. Exp.* e4072 (2012). doi:10.3791/4072

60. Labunskyy, V. M. *et al.* The insertion Green Monster (iGM) method for expression of multiple exogenous genes in yeast. *G3 Genes, Genomes, Genet.* (2014). doi:10.1534/g3.114.010868

61. Lauer, S. *et al.* Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. *PLoS Biol.* (2018). doi:10.1371/journal.pbio.3000069

62. Zhu, J. *et al.* Single-cell based quantitative assay of chromosome transmission fidelity. *G3 Genes, Genomes, Genet.* (2015). doi:10.1534/g3.115.017913

63. Tsalik, E. L. & Gartenberg, M. R. Curing *Saccharomyces cerevisiae* of the 2 micron plasmid by targeted DNA damage. *Yeast* 14, 847–52 (1998).

64. Hyma, K. E. & Fay, J. C. Mixing of vineyard and oak-tree ecotypes of *Saccharomyces cerevisiae* in North American vineyards. *Mol. Ecol.* 22, 2917–30 (2013).

65. Liti, G. *et al.* Population genomics of domestic and wild yeasts. *Nature* 458, 337–41 (2009).

66. Lande, R. The minimum number of genes contributing to quantitative variation between and within populations. *Genetics* (1981).

67. Zeyl, C. The number of mutations selected during adaptation in a laboratory population of *Saccharomyces cerevisiae*. *Genetics* 169, 1825–31 (2005).

68. Ehrenreich, I. M. & Magwene, P. M. Genetic dissection of heritable traits in yeast using bulk segregant analysis. *Cold Spring Harb. Protoc.* (2017). doi:10.1101/pdb.prot088989

69. Cromie, G. A. *et al.* Genomic sequence diversity and population structure of *Saccharomyces cerevisiae* assessed by RAD-seq. *G3 (Bethesda).* 3, 2163–71 (2013).

70. Edwards, M. D. & Gifford, D. K. High-resolution genetic mapping with pooled sequencing. *BMC Bioinforma.* 2012 136 13, S8 (2012).

71. Lander, E. S. & Botstein, S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. *Genetics* (1989).

72. Treusch, S., Albert, F. W., Bloom, J. S., Kotenko, I. E. & Kruglyak, L. Genetic Mapping of MAPK-Mediated Complex Traits Across *S. cerevisiae*. *PLoS Genet.* (2015). doi:10.1371/journal.pgen.1004913

73. Albert, F. W., Treusch, S., Shockley, A. H., Bloom, J. S. & Kruglyak, L. Genetics of single-cell protein abundance variation in large yeast populations. *Nature* (2014). doi:10.1038/nature12904

74. Roberts, C. A., Miller, J. H. & Atkinson, P. H. The genetic architecture in *Saccharomyces cerevisiae* that contributes to variation in drug response to the antifungals benomyl and ketoconazole. *FEMS Yeast Res.* (2017). doi:10.1093/femsyr/fox027

75. Pavelka, N. *et al.* Aneuploidy confers quantitative proteome changes and...
phenotypic variation in budding yeast. doi:10.1038/nature09529

76. Wilkening, S. et al. An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae. *Genetics* (2014). doi:10.1534/genetics.113.160291

77. Romano, G. H. et al. Different sets of QTLs influence fitness variation in yeast. *Mol. Syst. Biol.* (2010). doi:10.1038/msb.2010.1

78. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. *Proc. Natl. Acad. Sci. U. S. A.* (2005). doi:10.1073/pnas.0500537102

79. Chen, X. L., Reindle, A. & Johnson, E. S. Misregulation of 2 μm Circle Copy Number in a SUMO Pathway Mutant. *Mol. Cell. Biol.* 25, 4311–4320 (2005).

80. Duan, X. et al. Structural and Functional Insights into the Roles of the Mms21 Subunit of the Smc5/6 Complex. *Mol. Cell* (2009). doi:10.1016/j.molcel.2009.06.032

81. Bermúdez-López, M. et al. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. *Nucleic Acids Res.* (2010). doi:10.1093/nar/gkq546

82. Sadhu, M. J., Bloom, J. S., Day, L. & Kruglyak, L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. *Science* 352, 1113–6 (2016).

83. Sharon, E. et al. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. *Cell* (2018). doi:10.1016/j.cell.2018.08.057

84. Ma, C. H. et al. A Flp-SUMO hybrid recombinase reveals multi-layered copy number control of a selfish DNA element through post-translational modification. *PLoS Genet.* (2019). doi:10.1371/journal.pgen.1008193

85. Velmurugan, S., Yang, X.-M., Chan, C. S.-M., Dobson, M. & Jayaram, M. Partitioning of the 2-μm Circle Plasmid of Saccharomyces cerevisiae. *J. Cell Biol.* (2000). doi:10.1083/jcb.149.3.553

86. Amberg, D. C., Burke, D. J. & Strathern, J. N. *Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, 2005 Edition*. A Cold Spring Harbor Laboratory Course Manual (2005).

87. Gibson, D. G. Enzymatic assembly of overlapping DNA fragments. in *Methods in Enzymology* (2011). doi:10.1016/B978-0-12-385120-8.00015-2

88. Ludwig, D. L. & Bruschi, C. V. The 2-μm plasmid as a nonselectable, stable, high copy number yeast vector. *Plasmid* 25, 81–95 (1991).

89. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* (2011). doi:10.14806/ej.17.1.200

90. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* (2009). doi:10.1093/bioinformatics/btp324

91. Picard, Broad Institute. Available at: http://broadinstitute.github.io/picard.

92. Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat. Genet.* (2011). doi:10.1038/ng.806

93. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* (2011). doi:10.1093/bioinformatics/btr509

94. McLaren, W. et al. The Ensembl Variant Effect Predictor. *Genome Biol.* (2016). doi:10.1186/s13059-016-0974-4
95. Liu, Y., Schröder, J. & Schmidt, B. Musket: A multistage k-mer spectrum-based error corrector for Illumina sequence data. *Bioinformatics* (2013). doi:10.1093/bioinformatics/bts690

96. Luo, R. *et al.* SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. *GigaScience* (2012). doi:10.1186/2047-217X-1-18

97. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. *Bioinformatics* (2013). doi:10.1093/bioinformatics/btt086

98. Kurtz, S. *et al.* Versatile and open software for comparing large genomes. *Genome Biol.* (2004). doi:10.1186/gb-2004-5-2-r12

99. Nattestad, M. & Schatz, M. C. Assemblytics: A web analytics tool for the detection of variants from an assembly. *Bioinformatics* (2016). doi:10.1093/bioinformatics/btw369

100. Wang, Y., Geer, L. Y., Chappey, C., Kans, J. A. & Bryant, S. H. Cn3D: Sequence and structure views for Entrez. *Trends in Biochemical Sciences* (2000). doi:10.1016/S0968-0004(00)01561-9

101. Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Research* (1997). doi:10.1093/nar/25.17.3389

102. Magwene, P. M., Willis, J. H. & Kelly, J. K. The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing. *PLoS Comput. Biol.* 7, e1002255 (2011).

103. Naseeb, S. *et al.* Whole genome sequencing, de novo assembly and phenotypic profiling for the new budding yeast species Saccharomyces jurei. *G3 Genes, Genomes, Genet.* (2018). doi:10.1534/g3.118.200476

104. Borneman, A. R. & Pretorius, I. S. Genomic insights into the Saccharomyces sensu stricto complex. *Genetics* (2014). doi:10.1534/genetics.114.173633

105. Stephan, A. K., Kliszczak, M. & Morrison, C. G. The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. *FEBS Letters* (2011). doi:10.1016/j.febslet.2011.04.067
Figure 1

A 2-micron reporter plasmid

- REP1
- REP2
- RAF1
- STB
- FRT
- ORI
- GFP
- G418

GFP-negative and GFP-positive plasmids with counts and GFP intensity graphs.

Missegregation defects (total plasmid loss)

Copy number suppression or underreplication (mean copy number decrease)
Figure 2

A) Images of haploid yeast strains BY4742, Y9, Y12, and YPS1009 showing GFP retention after 24 hours.

B) Graph showing %GFP retention after 24 hours for MCM assay.

C) Graph showing %GFP retention after 24 hours for SCAMPR.

Legend:
- BY4742
- Y9
- Y12
- YPS1009

Statistical significance marked with ***.
Figure 3
Figure 4
Figure 5

SCAMPR
% GFP retention

Haploid strains
BY4742
BY4742 + Y9
MMS21

Diploid strains
BY4742
Y9
Het
Het
Het

A
B
C

Spar
Plasmid class
none
A
B
C
D
Spar
B∗

MMS21 genotype

% strains with plasmid

n=60
n=915
n=36

T69
Het
I69

Plasmid class
09=U
38=U
915