Biological activity and genome composition of a Tunisian isolate of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV-Tun2)

Saoussen Ben Tiba1,2,3, Asma Laarif3, Jörg T. Wennmann1, Thameur Bouslama3 and Johannes A. Jehle1*

Abstract

Background: The baculovirus Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) is an entomopathogenic virus utilized as a biological control agent of the Egyptian cotton leaf worm, Spodoptera littoralis. Several studies have focused on the identification of different SpliNPV isolates from a biological and molecular point of view, but few of them conducted in-depth analyses of the genomic composition of these isolates.

Results: Identification of a novel isolate of SpliNPV, termed Tun2, which was purified from infected S. littoralis larvae from Tunisia was reported. This isolate was propagated in vivo and its median lethal concentration (LC50) was determined to be 1.5 × 10^4 occlusion bodies (OBs)/ml for third instar S. littoralis larvae at 7 days of post-infection. OB production in late fourth instar larvae was estimated to be at least 2.7 × 10^9 OBs/g larval weight. The completely sequenced genome of SpliNPV-Tun2 was 137,099 bp in length and contained 132 open reading frames (ORF). It showed a 98.2% nucleotide identity to the Egyptian isolate SpliMNPV-AN1956, with some striking differences; between both genomes, insertion and deletion mutations were noticed in 9 baculovirus core genes, and also in the highly conserved polyhedrin gene. The homologs of ORF 106 and ORF 107 of SpliNPV-AN1956 appeared to be fused to a single ORF 106 in SpliNPV-Tun2, similar to the homologous ORF 110 in SpltNPV-G2.

Conclusion: SpliNPV-Tun2 is proposed as a new variant of SpliNPV and a potential candidate for further evaluation as a biocontrol agent for S. littoralis and probably other Spodoptera species.

Keywords: Egyptian cotton leaf worm, Spodoptera littoralis, Baculoviridae, Alphabaculovirus, Bioassays, Survival time analysis, Illumina sequencing, Genome annotation, Phylogeny, Biological control

Background

The Egyptian cotton leaf worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is considered one of the major pests of cotton, tobacco, and corn in the Mediterranean Area and Asia. Larvae of S. littoralis are polyphagous, causing substantial economic losses in both greenhouse and open field crops on a broad range of ornamental, industrial, and vegetable crops (Martins et al. 2005). Due to the severe damage to various crops, controlling this pest is an important issue for integrated pest management. Up to now, S. littoralis management has mainly focused on chemical insecticides. However, numerous studies have been carried out on the possibility of biological control of the pest. Insect viruses and entomopathogenic bacteria, fungi, and nematodes have been investigated as biological control agents of S. littoralis (Hajek and Shapiro-Ilan, 2018). The Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) is a baculovirus that has been evaluated, registered, and applied for control of S. littoralis, as well as the fall armyworm, Spodoptera frugiperda, and the tobacco cutworm Spodoptera litura in Africa, America and Japan (Abdel-Khalik
et al. 2017; El-Sheikh 2015; Takatsuka et al. 2016). Baculoviruses comprise a large group of double-stranded, circular DNA viruses that infect insects from the orders Lepidoptera, Hymenoptera, and Diptera. Many of these viruses have been investigated because of their potential as biological control agents against agricultural and forest pests (Moscardi 1999). Based on phylogenetic analysis, the Baculoviridae family is separated into 4 genera: Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses, NPVs), Betabaculovirus (lepidopteran-specific granuloviruses, GVVs), Gammabaculovirus (hymenopteran-specific NPVs) and Deltabaculovirus (dipteran-specific NPVs) (Jehle et al. 2006). SpliNPV belongs to the species Spodoptera littoralis nucleopolyhedrovirus of the genus Alphabaculovirus (Harrison et al. 2018).

Different SpliNPV variants have been isolated from cotton leaf worm populations in different countries, and intra-specific variation between isolates was identified by restriction endonuclease or partial gene sequencing (Breitenbach et al. 2013; Cherry and Summers 1985; Kislev and Edelman 1982; Martins et al. 2005). So far, only the Egyptian isolate SpliMNPV-AN1956 has been fully sequenced; its genome is 137,998 bp in length, harbours 132 ORFs, and 15 homologous repeat regions (hrs), and is closely related to the nucleopolyhedrovirus G2 (SpliNPV-G2). Comparisons of the genome sequence of SpliMNPV-AN1956 and SpltNPV-G2 revealed an average of 85% amino acid identity across all genes and high collinearity of the 2 genomes, despite the lack/gain of 16 ORFs (Pang et al. 2001). It was reported that NPVs isolated from Spodoptera spp. have a rather narrow host range (Jakubowska et al. 2010). For example, the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infects only larvae of its host S. exigua (Jakubowska et al. 2010), whereas SpliNPV was shown to be infectious also to S. frugiperda, S. exigua, and S. littura (Takatsuka et al. 2016). Recently, a Tunisian isolate, named SpliMNPV-Tun, was detected in 2008 from infected cotton leaf worm caterpillars collected in Tunisian tomato greenhouses and identified as a SpliNPV variant based on the partial polyhedrin (polh) gene sequence (Laarif et al. 2011). Here, the identification of a further SpliNPV isolate, termed Tun2, which was obtained from a S. littoralis colony that was established from collected caterpillars from tomato fields in 2013 is reported. This isolate was tested for its activity towards third instar S. littoralis larvae, and its complete genome was determined to study its relationship to other SpliNPV variants.

Methods

Insects and virus detection

Larvae of S. littoralis were collected in 2013 from tomato fields (Monastir, Central-East, Tunisia) to establish a laboratory colony at the laboratory of entomology at Regional Research Centre in Horticulture and Organic Agriculture (CRRHAB). For colony maintenance, larvae were fed on a semi-artificial diet (Shorey and Gaston 1965) and kept at a temperature of 28 ± 2 °C and 60 ± 5% relative humidity (RH). Adults were kept in cylinders, and egg deposits were collected on filter papers. The filter papers were transferred to Petri dishes until larval hatching. A piece of artificial diet was added to the Petri dishes where larvae were kept until pupation. Occasionally, larvae from the rearing showed symptoms of nucleopolyhedrovirus infection indicating activation of a covert infection of the S. littoralis population. Diseased larvae were removed from the rearing and stored individually at −20 °C.

Occlusion body purification

Baculoviral occlusion bodies (OB) were purified from pooled infected cadavers according to El-Salamouny et al. (2003). Briefly, the cadavers were homogenized in sterile distilled water and the homogenate was filtered through a muslin cloth. The obtained crude OB suspension was washed twice with 0.1% sodium dodecyl sulphate (SDS) and pelleted by low centrifugation. The pellet was resuspended in 50 mM Tris/HCl (pH 8), transferred to a 2-ml Eppendorf reaction vial, and HCl (0.1 M) or Na2CO3 (0.1 M) was added to adjust its pH to 7. Then, the OB suspension was centrifuged through a sucrose gradient and resuspended in H2O. OB concentration was counted using a Neubauer Cell Counting Chamber (0.1 mm depth) and phase contrast light microscopy (Leica DMRBE, Leica, Wetzlar, Germany) (Eberle et al. 2012).

Bioassays

For testing the biological activity of SpliNPV-Tun2, per os infection experiments were conducted with third instar larvae of S. littoralis. For this, 25 larvae were fed with 1.5–2.5 g artificial diet plugs prepared with final concentrations of 105–108 OBs/ml (Shaurub et al. 2014). Untreated control groups consisted of 75 larvae. Each treatment consisted of 3 independent replicates. The mortality data were corrected with untreated control mortality using the formula of Abbott (1925). Calculation of the median lethal concentration (LC50) at 7 days post-infection (dpi) was estimated by Probit analysis using linear regression implemented in the ToxRat 3.2.1 software package (ToxRat Solutions GmbH, Germany). From the same experiment, larval mortality was determined
for each concentration at least at 5 different time points within the time range of 1–14 dpi. Statistical analysis was done with R (version 4) and RStudio (version 1.1393). Survival analysis was conducted with R packages “Survival” (version 2.38) and “Survminer” (version 0.4.3). A test of significant variance between Kaplan–Meier curves was performed by a log-rank test (level of significance, P<0.05).

OB productivity of *S. littoralis* larvae

An OB dose of 10⁴ OBs of SpliNPV-Tun2 was pipetted onto cubes of diet of 5 mm³ each and individually offered to early fourth instar larvae of *S. littoralis* (Grzywacz et al. 1998). When the doses were completely ingested within 2 days, a non-contaminated diet was added every second day until 12 dpi. Larvae were harvested at 14 dpi. Three different methods for OB purification were compared; low-speed centrifugation (LSC) (Harrison 2008), sucrose gradient ultracentrifugation (SGU) (El-Salamouny et al. 2003), and sucrose cushion centrifugation (SCC) (Wennmann and Jehle 2014). Purified OBs were counted as described above. OB counting was performed 3 times for each treatment; the obtained concentrations were multiplied with the volume (5 ml), and then normalized with the larva weight. Results were expressed as OBs/g of larval tissue and were used to compute the arithmetic mean of OB/g of each experiment. Differences in the mean number of OB/g were statistically evaluated for a significance value of P ≤ 0.05 using analysis of variance (ANOVA) and the Tukey’s Honestly Significant Difference test (Tukey-HSD) comparison of means with standard R code (R version 3.3.1 in RStudio 3.4.0).

Viral DNA extraction

Viral DNA was extracted according to Bernal et al. (2013) with some modification. Occlusion derived virions (ODVs) were released from OBs by mixing 100 µl of the OB suspension (containing about 10⁸ OBs/ml) with 100 µl Na₂CO₃ (0.5 M), 50 µl SDS (10%, w/v) in a final volume of 500 µl. After incubation at 60 °C for 10 min, the suspension was neutralized to pH 7 by adding 0.1 M HCl. Undissolved OBs and other debris were pelleted by centrifugation at 3800 g for 5 min. The supernatant containing the released ODVs was transferred to a fresh vial and treated with 25 µl Proteinase K (10 mg/ml) for 1 h at 50 °C. Viral DNA was extracted twice with Tris/HCl-saturated phenol and once with chloroform by using Phase Lock gel tubes (all purchased from, Carl Roth GmbH + Co., KG, Karlsruhe, Germany), followed by standard ethanol precipitation (Eberle et al. 2012). The DNA pellet was dissolved in 100 µl distilled H₂O.

PCR amplification and sequencing of the polyhedrin gene

The PCR amplification of the *polh* gene was chosen according to the specific primers designed by Martins et al. (2005) to amplify a complete SpliNPV *polh* gene (750 bp): 5′-ATG TAT AGT CGC TAC AGT GCC TAC-3′ (forward primer) and 5′-TTA GTA CGC GGG ACC GGT GT-3′ (reverse primer). The PCR mix comprised 34.5 µl of water, 10 µl Green buffer (Promega), 1 µl dNTPs (10 µM each), 1.5 µl Go Taq DNA polymerase (Promega), and 1 µl of each primer (10 µM). Finally, 1 µl of DNA was added to obtain a final volume of 50 µl for each reaction. PCR was initiated at 95 °C for 1 min of denaturation followed by 35 cycles at 95 °C for 30 s, 46 °C for 30 s, 72 °C for 45 s and the final extension at 72 °C for 5 min. The amplification product was visualized by 1% agarose gel electrophoresis at 90 V for 40 min in 1 × TAE buffer after staining with Midori Green DNA strain (NIPPON Genetics Europe). The PCR product was purified with DNA clean and concentrator kit (Zymo Research) according to the manufacturer’s instruction, and both strands were Sanger sequenced. The *polh* sequencing was done for different single infected larvae randomly chosen. Sequences were compiled and then aligned with the complete *polh* gene sequences available in GenBank.

Genome sequencing

Sequencing and raw data processing

About 50 ng purified DNA was subjected to commercial NexteraXT library preparation and Illumina NextSeq500 sequencing at StarSEQ GmbH company (Mainz, Germany). In total, more than 1.76 million reads of 151 nt in length were obtained. Raw reads were processed by adapter trimming and quality filtering excluding reads with an average phred quality score below 30 (Gueli Alletti et al. 2017). Quality filtered reads with a length shorter than 50 nt were excluded from the analysis for paired reads and 51 nt for unpaired reads. Paired and unpaired reads were kept after all steps of filtering and quality control.

Genome sequence assembly

The remaining set of reads was used for de novo sequence assembly as well as mapping against the whole genome sequence of SpliMNPV-AN1956 (GenBank accession number JX454574) (Breitenbach et al. 2013). CLC de novo assembly resulted in multiple contigs (>1000 bp). Contigs were mapped and fit together to a single contig comprising the whole genome. This contig was considered as a first consensus (cons1). In a second approach, all reads were mapped against the SpliMNPV-AN1956 genome using BWA-MEM. From here, a second consensus (cons2) was extracted applying a majority rule (>99%). Both consensus sequences were then aligned
to each other and checked for differences, which mainly occurred in repeated as well as homologous repeat regions (hrs). The alignment was then checked manually for ambiguities and sequence discrepancies. The correction was based on the read coverage supporting one ambiguous region per contig generated by CLC. The cutoff of the adopted corrections was coverage of 20 reads per ambiguous region. One final genome sequence of SpliNPV-Tun2 was generated based on the majority of read coverage and submitted to GenBank (Accession number MG958660).

Phylogenetic reconstruction

The 38 core genes of SpliNPV-Tun2 were translated to amino acid sequence, then aligned with core gene amino acid sequences from 88 group II NPVs, 39 group I NPVs, and from CpGV-M and SpliGV-K1 as outgroups using MUSCLE alignment tool v3.8.425 as implemented in Geneious Prime[®] v11 (Biomatters Ltd., Auckland, New Zealand) (Edgar 2004). The concatenated alignments of the amino acid sequences of the 38 baculovirus core genes (Wennmann et al. 2018) were then used to infer a phylogenetic tree using the Minimum Evolution method implemented in MEGA.7 (Kumar et al. 2016).

Comparison of the SpliNPV-Tun2 genome to other NPVs

All of the 132 SpliNPV-Tun2 ORFs were tested for sequence similarity using BlastX. A detailed comparison of the similarity with genomes of SpliNPV-AB1956 and SpliNPV-G2 was made. The genome characteristics were compared in terms of length, GC%, ORF number, presence of genes.

Results

In 2013, a laboratory colony of *S. littoralis* collected from tomato fields in Monastir (Tunisia) was established. In the reared colony, an occasional occurrence of moribund larvae with symptoms of a nucleopolyhedrosis infection was observed. The purification of viral OBs and DNA, PCR amplification using *polh* specific primers and sequence analysis (data not shown) indicated that the infective agent was a SpliNPV isolate, which was eventually termed SpliNPV-Tun2.

Virulence and OB yield of SpliNPV-Tun2

Concentration mortality bioassays with third instar larvae were performed to determine the virulence of SpliNPV-Tun2. The LC₅₀ value at 7 dpi was estimated to 1.5×10^4 OB/ml with a 95% confidence interval of $0.2 - 5.6 \times 10^4$ OB/ml ($n = 525$, slope probit line $= 0.42$, Chi² $= 8.81$). The survival rates determined at various time points after infection were inversely proportional to the applied OB concentration of 10^3–10^8 OB/ml (Fig. 1). In the uninfected control, a slight decrease in the survival probability with 84% was observed at 14 dpi [95% CI (76.1–92.7%)]. A concentration-dependent decrease in the survival probability was observed in the treatment groups starting from 4 dpi with 96.7% [95% CI (96.0–97.4%)] and reached 7.81% [95% CI (6.48–9.40%)] at 14 dpi. The median mortality was obtained between 7 dpi for applied concentrations of 10^7 and 10^8 OB/ml and 10 dpi for the lowest concentrations 10^3 and 10^6 OB/ml of SpliNPV-Tun2. To estimate the survival covariance by time and by treatment, the survival was presented by percentage and survival data were normalized with lambda $= 0.57$ (Table 1). The survival time was statistically different depending on the applied virus concentrations. By using the different concentrations of SpliNPV-Tun2 OBs, all treatments produced different survival percentages depending on the time ($F=7.78$, P value < 0.01).

![Fig. 1 Kaplan–Meier survival analysis of Spodoptera littoralis L3 larvae infected with different concentrations of SpliNPV-Tun2, ranging from 10^3 to 10^8 OB/ml. The untreated control is given as an orange line. Each line contains three independent replicates with 25 larvae each. Survival time is given in days post-infection (dpi). Dash lines represent the median survival time (ST₅₀) for high (10^7 and 10^8 OB/ml) and low OB (10^6 OB/ml or less) concentrations](image)

Source	DF	MS	F value	P value*
Time	6	28,840.5	402.41	< 0.001
Treatments	11	8333.6	116.28	< 0.001
Time x treatments	66	557.3	7.78	< 0.001
Residual SD	168	71.7		
Error	8.466			

*Two-way factorial ANOVA at $\alpha = 0.05$
OB productivity of late fourth and fifth instar larvae was quantified. The mean weight of larvae with virus infection symptoms was 1548 mg with a standard deviation (s.d.) of 82.5 mg. The OBs were harvested at 14 dpi when infected larvae were seen as highly moribund. Three different standard methods for OB purification were compared, i.e. LSC, SCC, and SGU (Wennmann and Jehle 2014). OB yield was found to be significantly different among LSC, SCC and SGU purification methods (ANOVA, $P \leq 0.05$) [$F(2,6) = 88.11, p < 0.001$]. LSC yielded 2.7×10^9 OB/g larval weight, followed by SCC 1.3×10^9 OB/g larval weight, whereas SGU yielded only 5×10^8 OB/g larval weight. (Fig. 2).

Genome sequence of SpliNPV-Tun2

A total of 1,597,175 filtered reads amounting to (90.6%) of the total raw reads were used for the analysis. From the total of the filtered reads, 1,508,620 paired reads and 88,555 unpaired reads could be mapped to the reference genome of SpliNPV-AN1956, whereas about 13,500 reads did not map to SpliNPV-AN1956 but gave BLAST hits with insect or bacterial DNA sequences. The obtained genome consensus sequence of SpliNPV-Tun2 (MG958660) was supported by an average of 720-fold sequencing depth (s.d. = 316). It had a length of 137,099 bp and a GC content of 44.7% (Table 2).

Phylogenetic reconstruction and genetic distance

A minimum evolution phylogenetic tree based on the concatenated amino acid sequences of 38 baculovirus core genes of group I and group II NPVs was inferred (Fig. 3). It corroborated the close relationship between SpliNPV-Tun2 and -AN1956. The next neighbour to both isolates was SpliNPV-G2. The SpliNPV isolates and SpliNPV-G2 are only distantly related to other Spodoptera-specific NPVs, such as SeMNPV, SpltNPV-II and Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Fig. 3). For baculovirus species demarcation, the Kimura-2-Parameter (K2P) distance of the 38 baculovirus core genes can be used as criterion, according to which, 2 isolates are considered to belong to the same species if their K2P distance is smaller < 0.021 and to different species if the K2P distance is > 0.072 (Wennmann et al. 2018). With a K2P distance of 0.001, SpliNPV-Tun2 and -AN1956 are 2 isolates belonging to the same species *Spodoptera littoralis* nucleopolyhedrovirus. In contrast, SpltNPV-G2 is distant enough (0.099 from the two viruses to constitute a separate species *Spodoptera litura* nucleopolyhedrovirus (Wennmann et al. 2018). The other known *Spodoptera*-specific NPV isolates constitute several other discrete species (Fig. 3).
ORF name	SpliNPV-Tun2	SpliNPV-AN1956	SpliNPV-Tun2 vs SpliNPV-AN1956	SpliNPV-G2	SpliNPV-Tun2 vs SpliNPV-G2							
	No	Start → end	Size (aa)	Range (%identity)	No	Start → end	Size (aa)	Range (%identity)	No	Start → end	Size (aa)	Range (%identity)
polh	1	1 → 750	249	248/249 (99%)	1	1 → 750	249	249/249 (100%)				
pp78/83	2	747 → 2,396	549	51/542 (95%)	2	747 → 2,393	548	245/345 (71%)				
pk-1	3	2,398 → 3,228	756	750/927 (99%)	3	2,392 → 3,204	760	637/750 (85%)				
hoar	4	3,590 → 5,980	519	750/927 (99%)	4	3,519 → 5,714	731	244/500 (81%)				
le-0	5	6,638 → 6,444	596	6,420/6,464 (99%)	5	6027 → 6230	67	26/35 (74%)				
dutpase	6	6,764 → 9,892	756	6,742/9,006 (93%)	7	6,447 → 8,600	717	338/443 (76%)				
(alt-repeats)	8	9,016 → 10,701	756	9,006/9,016 (100%)	9	9,774 → 10,268	74	105/131 (80%)				
odv-e18	10	10,769 → 11,104	756	10,749/11,070 (100%)	11	10,801 → 12,110	744	456/470 (96%)				
odv-ec27	11	11,113 → 12,54	519	11,097/12,518 (97%)	12	12,234 → 12,485	83	83/83 (100%)				
Act146	12	12,723 → 14,004	519	12,701/14,064 (99%)	13	12,651 → 14,368	283	277/284 (95%)				
i.e.-1	13	14,094 → 14,706	519	14,079/14,824 (99%)	14	14,300 → 13,681	93	87/93 (94%)				
odv-e56	14	17,058 → 18,167	519	17,040/18,152 (99%)	15	17,693 → 18,808	370	328/351 (93%)				
p10	15	18,182 → 18,733	519	18,167/18,718 (99%)	16	18,723 → 18,374	183	174/183 (95%)				
p74	16	18,787 → 19,101	519	18,771/19,085 (97%)	17	18,734 → 18,856	105	105/105 (100%)				
rr1	17	19,079 → 20,293	519	19,063/20,034 (97%)	18	19,734 → 20,179	657	657/657 (100%)				
(10P-I and 6 P-II-like repeats)	19	20,088 → 22,89	519	20,068/22,044 (97%)	20	21,766 → 21,879	657	657/657 (100%)				
me53	21	22,690 → 25,904	519	22,682/25,902 (99%)	22	24,586 → 25,785	399	236/412 (57%)				
lef6	23	26,082 → 26,311	519	26,117/27,290 (99%)	24	26,751 → 27,151	599	267/267 (100%)				
dbp	25	27,166 → 28,123	519	27,305/28,039 (99%)	26	27,162 → 28,055	297	271/304 (98%)				
ubiquin/gp37	28	31,283 → 32,296	519	31,476/32,489 (99%)	29	31,305 → 31,304	300	300/300 (100%)				
39kPP3	30	32,351 → 33,343	519	32,541/33,533 (99%)	32	31,336 → 32,191	351	309/337 (92%)				
lef-11	31	33,608 → 34,285	519	33,798/34,478 (99%)	34	33,075 → 33,509	144	123/144 (85%)				
A38	32	33,608 → 34,285	519	33,798/34,478 (99%)	35	33,479 → 34,141	220	194/225 (86%)				
ORF name	SpiNPV-Tun2 vs SpiNPV-AN1956	SpiNPV-Tun2 vs SpiNPV-AN1956	SpiNPV-G2	SpiNPV-Tun2 vs SpiNPV-G2								
----------	-------------------------------	-------------------------------	-----------	--------------------------								
No	Start → end	Size (aa)	Range (%)	Size (aa)	Range (%)							
p47	32 34,362 → 35,627	421	421/421 (100%)	36 34,211 → 35,479	422 371/422 (88%)							
lef-12	33 35,666 → 36,256	198	198/198 (100%)	37 35,506 → 36,111	201 168/198 (85%)							
(P-I repeat)	hr3 36,321 → 36,372	hr3 36,506 → 36,547	hr3	36,102 → 36,301								
lef-8	34 36,433 → 39,168	911	910/911 (99%)	38 36,316 → 39,072	918 830/920 (90%)							
bjd	35 39,167 → 40,078	303	303/303 (100%)	39 39,071 → 39,979	302 303/303 (100%)							
	36 40,101 → 40,671	189	189/189 (100%)	40 40,001 → 40,570	189 189/189 (100%)							
	37 40,691 → 40,891	66	55/66 (83%)	41 40,590 → 40,754	54 54/66 (82%)							
chitA	38 40,906 → 42,705	599	598/599 (99%)	42 40,767 → 42,461	564 56/563 (99%)							
(5-P-I repeats)	hr4 42,602 → 43,004	hr4 42,837 → 43,091	hr4	42,502 → 43,051								
	39 43,126 → 43,728	200	198/200 (99%)	43 43,021 → 43,635	204 130/203 (64%)							
	40 43,945 → 44,583	212	210/212 (99%)	44 43,779 → 44,405	208 167/212 (79%)							
	41 44,653 → 45,099	148	148/148 (100%)	45 44,475 → 44,888	137 123/148 (83%)							
	42 45,133 → 46,407	424	420/425 (96%)	46 44,926 → 46,194	422 241/257 (94%)							
	43 46,412 → 46,639	75	75/75 (100%)	47 46,199 → 46,426	75 71/75 (95%)							
	44 46,599 → 46,865	83	75/83 (90%)	48 46,386 → 46,640	84 71/84 (85%)							
	45 46,687 → 47,727	346	330/330 (100%)	49 46,474 → 47,532	352 306/337 (91%)							
	46 47,856 → 48,071	71	71/71 (100%)	50 47,653 → 47,868	71 57/71 (80%)							
	47 48,355 → 48,855	166	166/166 (100%)	51 48,172 → 48,693	173 154/166 (93%)							
	48 48,906 → 49,472	188	189/189 (100%)	52 48,722 → 49,246	174 104/152 (68%)							
	49 49,489 → 49,737	82	82/82 (93%)	53 49,271 → 49,519	82 57/66 (86%)							
cathepsin	50 49,784 → 50,794	336	336/336 (99%)	54 49,566 → 50,579	337 313/337 (93%)							
p49	51 50,843 → 52,183	446	446/446 (100%)	55 50,628 → 51,947	439 376/446 (84%)							
fp25k	52 52,291 → 52,884	197	197/197 (100%)	57 52,075 → 52,668	197 197/197 (100%)							
lef-9	53 53,042 → 54,538	498	498/498 (100%)	59 52,839 → 54,335	498 479/498 (96%)							
(8-P-I repeats)	hr5 54,548 → 55,204	hr5 54,677 → 55,304	hr5	54,401 → 55,642								
	54 55,105 → 55,392	95	98 76/82 (93%)	55 55,052 → 55,648	98 76/82 (93%)							
	55 55,424 → 55,732	102	102/102 (100%)	56 55,009 → 55,005	102 55,992 → 56,166							
(3-P-I and 10-P-II-like repeats)	hr6 55,715 → 56,710	hr6 56,009 → 57,005	hr6	55,992 → 56,166								
	56 56,760 → 57,793	346	342/346 (99%)	62 56,221 → 57,324	367 210/371 (57%)							
	57 57,944 → 58,948	334	334/334 (99%)	63 57,477 → 58,478	333 302/335 (90%)							
	58 59,434 → 59,030	134	134/134 (98%)	64 58,556 → 58,966	136 98/136 (72%)							
	59 59,030 → 59,434	313	313/313 (100%)	65 58,899 → 59,840	313 262/310 (85%)							
ORF name	SplNPV-Tun2	SplNPV-AN1956	SplNPV-Tun2 vs SplNPV-AN1956	SplNPV-G2	SplNPV-Tun2 vs SplNPV-G2							
----------	-------------	---------------	-----------------------------	-----------	--------------------------							
	No	Start → end	Size (aa)	No	Start → end	Size (aa)	Range (%identity)	No	Start → end	Size (aa)	Range (%identity)	
60	59,367	60,308	132	60	60,558	60,974	138/138 (100%)	66	59,800	60,198	123/135 (91%)	
61	60,25	60,558	139	61	60,979	62,028	346/349 (99%)	67	60,203	61,276	357/314 (89%)	
62	60,671	61,720	800	62	62,263	64,665	799/800 (99%)	68	61,552	63,924	790/698 (80%)	
63	62,026	64,428	1020	63	64,667	67,729	1019/1020 (99%)	69	63,926	66,994	1022/924 (90%)	
64	67,446	67,633	36	64	67,683	67,871	16/16 (100%)	70	67,509	68,651	380/309 (81%)	
hr	67,605	67,800	67	67,916	67,118	67	67,509	67,800	67	67,362	67,581	
65	67,907	69,094	380	65	68,224	69,366	380/380 (100%)	71	67,509	68,651	380/309 (81%)	
66	69,204	69,827	207	66	69,444	70,067	207/207 (100%)	72	67,272	69,353	208/160 (70%)	
67	69,899	70,282	127	67	70,139	70,522	127/127 (100%)	73	69,412	69,795	127/123 (97%)	
68	70,305	70,559	84	68	70,545	70,799	84/68 (100%)	74	69,814	70,068	84/67 (99%)	
lef-1	69	70,624	71,772	382	69	70,864	72,015	383/383 (99%)	75	71,307	71,669	120/84 (68%)
vif-1	70	71,793	72,155	120	70	72,036	72,398	120/119 (99%)	76	71,666	72,658	330/307 (98%)
gp41	71	72,152	73,132	326	71	72,395	73,375	326/311 (99%)	77	72,633	73,331	232/206 (87%)
ttk-20	72	73,107	73,820	237	72	73,350	74,063	237/236 (99%)	78	73,210	73,803	197/160 (79%)
vp90	73	74,377	76,807	856	74	74,474	77,044	856/850 (98%)	79	73,772	75,357	861/739 (86%)
(6 P-I repeats)	hr8	76,898	78,270	259	hr8	77,112	77,422					
cg30	75	77,320	78,099	259	75	77,534	78,313	259/259 (100%)	80	76,639	77,391	250/188 (73%)
vp39	76	78,128	79,036	302	76	78,342	79,250	302/302 (100%)	81	77,450	78,358	302/296 (98%)
lef-4	77	79,038	80,504	488	77	79,252	80,721	489/479 (98%)	82	78,360	79,787	475/413 (85%)
p33	78	80,535	81,302	255	78	80,751	81,518	255/253 (99%)	83	79,833	80,600	255/248 (99%)
89	79	81,301	81,831	176	79	81,517	82,050	177/174 (77%)	84	80,599	81,147	182/167 (92%)
ovd-v25	80	81,828	82,502	226	80	82,047	82,727	226/226 (100%)	85	81,144	81,827	227/215 (95%)
DNA helicase	81	82,613	86,368	1251	81	82,832	86,857	1251/1251 (100%)	86	81,918	85,625	1235/1155 (92%)
38k	82	86,337	86,852	171	82	86,556	87,071	171/171 (100%)	87	85,594	86,106	170/165 (96%)
lef-5	83	86,859	87,776	305	83	87,079	87,906	305/304 (99%)	88	86,114	87,028	304/298 (97%)
p6.9	84	87,672	88,568	298	84	87,892	88,785	297/296 (98%)	89	86,924	87,832	302/254 (83%)
p40	85	88,589	88,858	89	85	88,806	89,069	87/10 (100%)	90	87,850	88,104	84/10 (100%)
(BP-I repeats)	hr9	89,022	88,919	237	hr9	90,305	90,732					
p12	87	90,546	90,914	122	86	89,130	90,233	367/122 (100%)	92	89,657	90,022	121/97 (80%)
p45	88	90,911	92,038	375	87	90,770	91,138	374/375 (99%)	93	90,019	91,140	373/356 (95%)
ORF name	SpIPNPV-Tun2	SpIPNPV-AN1956	SpIPNPV-Tun2 vs SpIPNPV-AN1956	SpIPNPV-G2	SpIPNPV-Tun2 vs SpIPNPV-G2							
----------	--------------	----------------	--------------------------------	-----------	----------------------------							
	No	Start → end	Size (aa)	No	Start → end	Size (aa)	Range (%identity)	No	Start → end	Size (aa)	Range (%identity)	
vp80	89	92,058 → 93,992	644	88	91,135 → 92,262	375	638/648 (98%)	94	91,167 → 93,101	644	548/630 (87%)	
odv-ec43	90	93,989 → 94,156	55	89	92,282 → 94,228	648	55/55 (100%)	95	93,101 → 93,268	55	54/55 (98%)	
	91	94,182 → 95,267	361	90	94,421 → 95,506	361	361/361 (100%)	96	93,300 → 94,385	361	357/361 (99%)	
odv-e66	92	95,358 → 95,696	112	91	95,599 → 95,937	112	112/112 (100%)	97	94,466 → 94,804	112	103/112 (92%)	
p13	93	97,779 → 98,636	285	93	98,017 → 98,874	285	285/285 (100%)	98	96,785 → 97,744	289	262/289 (91%)	
(8P-repeats)												
hr10	94	98,699...99,009		95	99,224 → 99,748	174						
	96	100,205 → 101,173	322	97	101,215 → 101,913	232						
	98	101,933 → 103,342	469	99	103,357 → 103,897	177						
	100	103,972 → 104,169	65	101	104,256 → 105,551	431						
(7P-1 and 24 P-II-like repeats)												
hr11	102	105,681...107,729		104	106,726 → 107,649	518						
	106	109,998 → 111,158	387	107	111,207 → 111,408	67						
	108	111,307 → 111,702	131	109	111,704 → 112,936	410						
	109	112,992 → 113,771	259	111	113,608 → 114,033	141						
	112	114,024 → 114,739	239	113	115,35 → 118,139	929						
(7P-repeats)												
hr12	114	117,40...118,157		115	118,941 → 119,489	182						
	116	119,733 → 121,331	552	117	120,536 → 122,234	532						

Note: The table continues with similar entries for other ORFs, each with their respective information.
Table 2 (continued)

ORF name	SpliNPV-Tun2	SpliNPV-AN1956	SpliNPV-Tun2 vs SpliNPV-AN1956	SpliNPV-G2	SpliNPV-Tun2 vs SpliNPV-G2						
	No	Start → end	Size (aa)	No	Start → end	Size (aa)	Range (%identity)	No	Start → end	Size (aa)	Range (%identity)
f gf	117	121,458 → 122,189	243	117	122,363 → 123,094	243	242/243 (99%)	122	119,165 → 119,905	246	242/243 (99%)
pF1	118	122,214 ← 122,447	77	118	123,121 ← 123,354	77	77/77 (100%)	123	119,928 ← 120,161	77	77/77 (100%)
38.7 k	119	122,452 ← 124,029	525	119	123,359 ← 124,936	525	525/525 (99%)	124	120,184 ← 121,764	526	505/507 (99%)
lef-1	120	124,29 ← 125,327	345	120	125,203 ← 126,240	345	345/345 (99%)	125	125,891 ← 126,919	342	287/343 (84%)
def-1	121	125,314 ← 126,009	231	121	126,227 ← 126,922	231	231/231 (100%)	126	126,906 ← 127,601	231	214/231 (93%)
def-2	122	125,99 ← 126,37	126	122	126,903 ← 127,289	128	126/128 (98%)	127	127,582 ← 127,950	122	110/127 (87%)
calyx/pep	123	126,367 ← 126,897	176	123	127,286 ← 127,816	176	176/176 (100%)	124	127,947 ← 128,477	176	159/176 (90%)
pkip	124	126,907 ← 127,968	353	124	127,826 ← 128,887	353	353/353 (100%)	125	128,481 ← 129,515	344	155/168 (92%)
arf-1	125	128,057 ← 128,596	179	125	128,976 ← 129,515	179	179/179 (100%)	126	129,544 ← 130,161	205	157/180 (87%)
pil-2	126	129,386 ← 130,651	421	126	129,549 ← 130,277	421	238/242 (98%)	127	130,199 ← 130,936	245	215/246 (87%)
Ac23	127	130,679...131,114	(2P-I and 6P-I-like repeats)	127	130,305 ← 131,570	421	421/421 (100%)	128	130,910 ← 132,187	425	371/404 (92%)
hr14	128	131,200 ← 133,242	680	128	131,219 ← 134,155	680	670/681 (98%)	129	133,451 ← 135,499	682	608/683 (89%)
hr15	129	133,276 ← 134,004	242	129	134,189 ← 134,917	242	241/242 (99%)	130	135,545 ← 136,240	231	150/190 (79%)
hr16	130	134,109 ← 134,885	258	130	135,022 ← 135,798	258	258/258 (100%)	131	136,338 ← 137,117	259	223/259 (86%)
hr17	131	134,972 ← 135,394	90	131	135,885 ← 136,295	136	58/58 (100%)	132	136,923 ← 137,643	90	58/58 (100%)
hr18	132	135,866 ← 136,750	294	132	136,765 ← 137,649	294	294/294 (100%)	133	138,104 ← 138,952	282	138/295 (47%)

Given are the names of open reading frames (ORF), ORF number (No.), start and end position of the ORFs including direction of transcription (arrow), the translated amino acid (aa) length of the ORF, and the compared range and percent identity of the ORFs.
Main genome differences between SpliNPV-Tun2 and -AN1956

Compared to SpliNPV-AN1956, the new isolate SpliNPV-Tun2 showed insertion and deletion mutations in 62 ORFs, of which 37 ORFs are with predicted function. ORFs with significant changes caused by deletions and insertions are illustrated in (Fig. 4). These differences affect ORFs coding for predicted virus proteins related to virus structure, such as the structural protein PP78/81, the capsid-associated protein VP80 and VP1054, the OB matrix protein (Polyhedrin, POLH), the nucleotide metabolism (Ribonucleotide Reductase, RR1), proteins involved in viral DNA replication (Late Expression Factor 2 (LEF-2) and LEF-10, Protein kinase 1 (PK-1), LEF-5, and the group II Alphabaculovirus-specific HOAR and the BRO-a. Furthermore, a considerable number of amino acid changes were found but will not be further detailed here.

A notable difference is the presence of a tyrosine residue close to the N-terminus fifth amino acid position of the predicted POLH of SpliNPV-Tun2, a residue which is missing in the POLH of SpliNPV-AN1956 (Fig. 4). Another difference between the genome sequences of SpliNPV-Tun2 and -AN1956 is related to ORFs 106 and
Whereas in SpliNPV-AN1956 two ORF 106 and ORF 107 were located from genome position 110,884 < 111,843 (319 aa) and 111,873 < 112,064 (63 aa), respectively, these two ORFs were identified as one single ORF in SpliNPV-Tun2 (ORF 106, genome position 109,998 < 111,161, (387 aa)). The split of the ORF 106 homolog of SpliNPV-Tun2 into two ORFs 106 and 107 in SpliNPV-AN1956 is caused by a missing thymidine residue at genome position 110,991 of SpliNPV-AN1956, causing a frameshift and separation into two ORFs (Fig. 5). Interestingly, a similar homologous ORF 110 (genome position
the ST50 values were similar, suggesting that both isolates—Tun2 (Fig. 5).

region of ORF 107 of aa) would be homologous to the 3′ region of the adjacent ORF 108. In SpltNPV-G2, the 5′ region of ORF 111 (109,007 > 109,165, 52 aa) would be homologous to the 3′ region of ORF 107 of –Tun2 (Fig. 5).

Discussion

A new variant of SpltNPV, termed Tun2, was isolated and characterized by bioassays and genome sequencing. SpltNPV-Tun2 was found in a S. littoralis colony that was derived from larvae collected in tomato fields in Central-East Tunisia, in 2013. Another natural SpltNPV-Tun isolate was found in 2008 from tomato field in Chatt-Mariem (Sousse) (Laarif et al. 2011), suggesting that SpltNPV is present in wild populations of S. littoralis in Tunisia. Though the conditions of bioassays performed with SpltNPV-Tun2 were not fully identical to the bioassays carried out with SpltNPV-Tun, both the LC50 and the ST50 values were similar, suggesting that both isolates may not have significant biological differences.

OB productivity was quantified in the fourth instar larvae, as this instar was identified to be optimal for virus production (Grzywacz et al. 1998). Three different methods for OB purification were tested, of which the low-speed centrifugation (LSC) method (Harrison 2008) producing the highest yields of polyhedral OBs, which corresponded to an OB yield of about 4.2 × 109 OB/larvae. The superiority of LSC for polyhedral OB purification compared to sucrose gradient ultracentrifugation (SGU) and sucrose cushion centrifugation (SCC) was previously noted for isolation of Agrotis segetum nucleopolyhedrovirus by Wennmann and Jehle (2014). LSC and SCC are methods typically used for OB purification from NPVs (Harrison 2008), whereas SGU appears to counter-select for NPV polyhedra but favours purification of GV granules yielding about five times less NPV OBs than the other 2 methods (Wennmann and Jehle 2014).

Whole genome sequencing of SpltNPV-Tun2 revealed its close relationship to SpltNPV-AN1956 (Breitenbach et al. 2013), another isolate of SpltNPV from North Africa, which originated from Egypt and was first described by Abul Nasr (1956). Other isolates of SpltNPV from North Africa and the Mediterranean area were reported by Laarif et al. (2011). Only a few differences between the genome sequence of SpltNPV-Tun2 SpltNPV-AN1956 were noted: (i) the genome of SpltNPV-Tun2 is little shorter, (ii) both genomes contain the same number of ORFs and hrs and are fully collinear to each other, (iii) minor indel mutations could be identified in 34 ORFs as well as in intergenic regions, (iv) genetic changes were noticed in nine baculovirus core genes, and also in the highly conserved polh gene, and (v) the ORFs 106 and 107 of SpltNPV-AN1956 appeared to be fused to a single ORF 106 in SpltNPV-Tun2 but an additional ORF 107 was identified.

Phylogenetic analyses based on the 38 baculovirus core genes have been shown to reflect isolate and species phylogeny of baculovirus evolution and are considered as the most reliable method to infer the phylogenetic position of a given baculovirus (Wennmann et al. 2018). Our Minimum Evolution phylogenetic analysis revealed SpltNPV-AN156 and SpltNPV-G2 as closest neighbours of SpltNPV-Tun2. SpltNPV-G2 is an in vivo cloned genotype of an isolate separated from cadavers of S. littura, cotton leaf worm, in the area of Guangzhou, China (Pang et al. 2001). Breitenbach et al. (2013) found that SpltNPV-AN1956 and SpltNPV-G2 share a highly collinear genome and form a distantly related clade to other NPVs specific for Spodoptera species, such as SeMNPV, SfMNPV, and SpltNPV-II. Our phylogenetic analyses confirm that SpltNPV-Tun2, -AN1956, and SpltNPV-G2 form a clade of Spodoptera-specific NPVs which is separate from other group II alphabaculoviruses isolated from Spodoptera species, such as SeMNPV, SpltNPV-II, and SfMNPV. K2P distances of the 38 core genes clearly indicate that SpltNPV-Tun2 and -AN1956 should be considered as isolates from the same species, whereas SpltNPV-G2 belongs to a separate alphabaculovirus species, as well as all other even more distant NPVs isolated from Spodoptera sp. (Wennmann et al. 2018; Escasa et al. 2019).

Conclusions

Identification and genome sequence of the new isolate SpltNPV-Tun2 originating from Tunisia extended the present knowledge related to the genetic diversity of SpltNPV. With the detailed characterization of its genome, SpltNPV-Tun2 is proposed to be further evaluated as a biological agent for control of S. littoralis and potentially for the fall armyworm, S. frugiperda, and tobacco cutworm S. littura.

Abbreviations

aa: Amino acid; dpi: Days post-inoculation; hrs: Homologous repeat regions; OB: Occlusion body; ODV: Occlusion derived virion; ORF: Open reading frame; PCR: Polymerase chain reaction; LC50: Median lethal concentration; LSC: Low-speed centrifugation; SCC: Sucrose cushion centrifugation; SGU: Sucrose gradient ultracentrifugation; ST50: Median survival time.

Acknowledgements

Andreas Larem (JKI) is acknowledged for reviewing early versions of the manuscript.
Author contributions
SBT contributed to study conception and design, data collection, data analysis and interpretation, draft manuscript preparation, AL contributed to study conception and design, securing funding, data analysis and interpretation. JTW contributed to data analysis and interpretation, TB contributed to data analysis and interpretation, and JAJ contributed to data analysis and interpretation, manuscript conception and major contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding
The Programme d’Appui au Système de Recherche et d’Innovation, financé par l’Union Européenne (PASRI) and the Agence Nationale de Promotion de la Recherche Scientifique (ANPR) are acknowledged for supporting parts of this research.

Availability of data and materials
On request from authors.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute (JKI), Heinrichstr 243, 64287 Darmstadt, Germany.
2Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouma, Tunisia.
3Regional Research Centre On Horticulture and Organic Agriculture, University of Sousse, BO 57, 4042 Chott-Mariem, Tunisia.

Received: 21 January 2022 Accepted: 11 June 2022
Published online: 20 June 2022

References
Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267
Abdel-Khalik LE, El-Sheikh E, Ragheb D, Ashour M (2017) Efficacy and virulence of Spodoptera littoralis multiple nucleopolyhedrovirus on S.littoralis larval feeding and susceptibility. Zagazig J Agricult Res 44:261–271. https://doi.org/10.21608/zjar.2017.53955
Abul Nasr S (1956) Polyhedrosis virus disease on cotton leafworm prodenia litura F. Bull Entomol Soc Egypt 40:321–332
Bernal A, Williams T, Hernández-Suárez E, Cameron A, Caballero P, Simón O (2013) A native variant of Chrysoide s chalcites nucleopolyhedrovirus: the basis for a promising bioinsecticide for control of C. chalcites on Canary Islands’ banana crops. Biol Control 67:101–110. https://doi.org/10.1016/j.bioc.2013.08.006
Breitenbach JE, el El-Sheikh SA, Harrison RL, Rowley DL, Sparks ME, Gundersen-Rindal DE, Popham HJ (2013) Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res 171:194–208. https://doi.org/10.1016/j.virusres.2012.11.016
Cherry CL, Summers MD (1985) Genotypic variation among wild isolates of Spodoptera frugiperda (J.E. Smith) and Spodoptera exigua (Hubner): virulence biological effects and inhibition of juvenile hormone esterase. Egypt J Biol Pest Control 23(3):587–595
Escapa SR, Harrison RL, Mowery JD, Bauchan GR, Cory JS (2019) The complete genome sequence of an alphabaculovirus from Spodoptera exempta, an agricultural pest of major economic significance in Africa. PLOS ONE 14(2):e0209937. https://doi.org/10.1371/journal.pone.0175010
Grzywacz D, Jones KA, Moawad G, Cherry A (1998) The in vivo production of Spodoptera littoralis nuclear polyhedrosis virus. J Virol Meth 71:115–122. https://doi.org/10.1016/j.jvi.2005.06.012
Guelle Alietti G, Sauer A, Weihrauch B, Fritsch E, Undorf-Spahn K, Wennmann JT, Jehle JA (2017) Using next generation sequencing to identify and quantify the genetic composition of resistance-breaking commercial isolates of Cydia pomonella granulovirus. Viruses 9:250. https://doi.org/10.3390/v9090250
Hajek AE, Shapiro-Ilan DI (2018) Ecology of invertebrate diseases. Wiley, Hoboken
Harrison RL (2008) Genomic sequence analysis of the Illinois strain of the Agrotis exiguus multiple nucleopolyhedrovirus. Virus Genes 38:155–170
Harrison RL, Hernioud EA, Jehle JA, Theilmann DA, Burand JP, Becnel JJ, Krell PI, van Oers MM, Mowery JD, Bauchan GR (2018) Virus taxonomy profile: baculoviridae. J Gen Virol 99:1185–1186. https://doi.org/10.1099/jgv.0.001107
Jakubowska AK, Lynn DE, Herrero S, Vak JM, van Oers MM (2010) Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed. J Gen Virol 91:898–906. https://doi.org/10.1099/vir.0.015842-0
Jehle JA, Blissard G, Bonning W, BC, Cory JS, Hernioud EA, Roehmann GF, Theilmann DA, Thiem SM, Vak JM, (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266. https://doi.org/10.1007/s00705-006-0763-5
Kislev N, Eidelberg M (1982) DNA restriction-pattern differences from geographic isolates of Spodoptera littoralis nuclear polyhedrosis virus. Virology 119:219–222. https://doi.org/10.1016/0042-6822(82)90081-2
Kumar S, Stecher G, Koichiro T (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874
LaairF A, Salhi E, Hammouda MBH (2011) Molecular detection and biological characterization of a nucleopolyhedrovirus isolate (Tun-SlNPV) from Spodoptera littoralis in Tunisian tomato greenhouses. Annals Biolog Res 2(4):180–191
Martins T, Montiel R, Medeiros J, Oliveira L, Simoes N (2005) Occurrence and characterization of a nucleopolyhedrovirus from Spodoptera littoralis (Lepidoptera: Noctuidae) isolated in the azores. J Invertebr Pathol 89:185–192. https://doi.org/10.1016/j.jip.2005.06.012
Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289. https://doi.org/10.1146/annurev.ento.44.110197.091544
Pang Y, Yu J, Wang L, Hu X, Bao W, Li G, Chen C, Han H, Hu S, Yang H (2001) Sequence analysis of the Spodoptera litura multicipasid nucleopolyhedirus genome. Virology 287:391–404. https://doi.org/10.1006/viro.2001.0110
Shaurub ESH, Abd El-Meguid A, Abd El-Aziz NM (2014) Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combination with Spodoptera littoralis multicipasid nucleopolyhedirus (SpliMNPV) and azadirachtin. Micron 65:62–68. https://doi.org/10.1016/j.micron.2014.04.014
Shorey HH, Gaston LK (1965) Sex pheromones of noctuid moths. V. Circadian techniques in insect virology. In: Lacey LA (ed) Manual of techniques in Invertebr Pathol 46:289–295. https://doi.org/10.1016/j.bios.2012.11.016
Eberle KE, Wennmann JT, Kleespies RG, Jehle JA (2012) Chapter II- Basic techniques in insect virology. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic Press, San Diego, pp 15–74
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

El-Salamouny S, Lange M, Jutzi M, Huber J, Jehle JA (2003) Comparative study on the susceptibility of cutworms (Lepidoptera: Noctuidae) to Agrots segetum nucleopolyhedrovirus and Agrots ispinus nucleopolyhedrovirus. J Invertebr Pathol 84:75–82. https://doi.org/10.1016/j.jip.2003.08.005
El-Sheikh E (2015) Efficacy of Spodoptera littoralis nucleopolyhedrovirus on Spodoptera frugiperda (J.E. Smith) and Spodoptera exigua (Hubner): virulence biological effects and inhibition of juvenile hormone esterase. Egypt J Biol Pest Control 25(3):587–595

Ben Tiba
Wennmann JT, Jehle JA (2014) Detection and quantitation of Agrotis baculoviruses in mixed infections. J Virol Methods 197:39–46. https://doi.org/10.1016/j.jviromet.2013.11.010

Wennmann JT, Keilwagen J, Jehle JA (2018) Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J Gen Virol 99:1307–1320. https://doi.org/10.1099/jgv.0.001100

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.