New Directions for Physical Rehabilitation of Musculoskeletal Pain Conditions

Exercise-induced hypoalgesia after acute and regular exercise: experimental and clinical manifestations and possible mechanisms in individuals with and without pain
Henrik Bjarke Vaegtera,b,*, Matthew David Jonec,d

Abstract
Exercise and physical activity is recommended treatment for a wide range of chronic pain conditions. In addition to several well-documented effects on physical and mental health, 8 to 12 weeks of exercise therapy can induce clinically relevant reductions in pain. However, exercise can also induce hypoalgesia after as little as 1 session, which is commonly referred to as exercise-induced hypoalgesia (EIH). In this review, we give a brief introduction to the methodology used in the assessment of EIH in humans followed by an overview of the findings from previous experimental studies investigating the pain response after acute and regular exercise in pain-free individuals and in individuals with different chronic pain conditions. Finally, we discuss potential mechanisms underlying the change in pain after exercise in pain-free individuals and in individuals with different chronic pain conditions, and how this may have implications for clinical exercise prescription as well as for future studies on EIH.

Keywords: Exercise, Hypoalgesia, Pain sensitivity, Mechanisms

1. Introduction
Exercise is guideline recommended treatment for a range of chronic pain conditions.49 Regular exercise and physical activity in general have well-documented positive effects on a range of physical and mental health domains including cardiovascular health, stress, mood, sleep, and sexual health.146 In addition, clinically important reductions in pain are often observed after 8 to 12 weeks of exercise therapy163, however, as little as 1 session of exercise can induce hypoalgesia. This phenomenon is known as exercise-induced hypoalgesia (EIH).92,195 The first observation of EIH was published 40 years ago by Black et al.14 During the past few decades, the number of studies investigating the effect of exercise on pain has increased dramatically, likely reflecting the increasing burden of pain as well as the recognized role of exercise in the treatment of pain.

This article will begin with a brief introduction to the methodology used in the assessment of the manifestations and mechanisms of EIH in humans. The second part of the article will present an overview of the findings from previous experimental studies investigating changes in pain perception after acute and regular exercise in pain-free individuals and in individuals with different chronic pain conditions. Possible mechanisms underlying the response to exercise in pain-free individuals and in individuals with different chronic pain conditions will also be discussed. In the last part of the article, implications for exercise prescription and future EIH studies will be addressed.

1.1. Assessment of exercise-induced hypoalgesia—methodological considerations

The effect of a single bout of exercise on pain perception in humans has primarily been investigated experimentally in laboratory settings. The methods used in these investigations are diverse, incorporating different study designs and methods of pain assessment. Most often, EIH has been investigated using a within-group pre-post design, whereby participants’ pain is assessed at different exercising and nonexercising body sites before and during/after exercise.130 Controlled studies using similar methodology but different designs (eg, crossover trials and parallel trials) have also been conducted.80,162,195,204 The results...
of these studies, especially those where participants were randomized to exercise or control, or where the order of exercise and control were randomized and counterbalanced for crossover trials, give a less biased estimate of the effect of a single bout of exercise on pain.

1.1.1. Pain threshold, intensity, and tolerance

Pain has been quantified in a variety of ways in studies of EIH, with quantitative sensory testing used most often. Quantitative sensory testing describes a series of tests that measure the perceptual responses to systematically applied and quantifiable sensory stimuli (usually pressure, thermal, or electrical). These tests typically involve the assessment of a person’s pain threshold or pain tolerance which are, respectively, the minimum intensity of a stimulus that is perceived as painful and the maximum intensity to a noxious stimulus that the participant is willing to tolerate. Ratings of pain intensity and unpleasantness during exposure to various noxious stimuli might also be measured. As an example, pressure may be applied at an increasing intensity over the lower leg using an inflated cuff, with participants asked to rate the point at which this pressure becomes painful (threshold) and then endure it for as long as possible (tolerance) while rating its intensity or unpleasantness. Using this example, EIH could manifest as an increase in pain threshold, an increase in pain tolerance, and/or a reduction in ratings of pain intensity or unpleasantness. These measures are most commonly assessed in the immediate postexercise period (eg, 0–15 minutes), but some studies have measured pain 30 to 60 minutes after exercise cessation to investigate the persistence of EIH.

1.1.2. Pain modulatory mechanisms

Methods that assess an individual’s ability to modulate pain have been increasingly used in recent studies of EIH. These include temporal summation, spatial summation, conditioned pain modulation, and offset analgesia. Of these paradigms, temporal summation and conditioned pain modulation have been used most often. Temporal summation refers to an increase in pain after repetitive stimulation at the same intensity and is considered a behavioural correlate of wind-up—the frequency-dependent increase in C-fibre-evoked responses of dorsal horn neurons which, in turn, was associated with lower pain ratings to thermal stimuli. Ratings of pain intensity and unpleasantness during exposure to various noxious stimuli might also be measured. As an example, pressure may be applied at an increasing intensity over the lower leg using an inflated cuff, with participants asked to rate the point at which this pressure becomes painful (threshold) and then endure it for as long as possible (tolerance) while rating its intensity or unpleasantness. Using this example, EIH could manifest as an increase in pain threshold, an increase in pain tolerance, and/or a reduction in ratings of pain intensity or unpleasantness. These measures are most commonly assessed in the immediate postexercise period (eg, 0–15 minutes), but some studies have measured pain 30 to 60 minutes after exercise cessation to investigate the persistence of EIH.

The same is true of isometric exercise where the primary effect of exercise has consisted of cycling, running, and stepping of various durations (30 seconds–30 minutes) and intensities (low to high). The same is true of isometric exercise where upper-limb and lower-limb exercise of both short and long duration (<5 seconds—exhaustion) and varied intensity (10%–100% MVC) have been studied. Studies of dynamic resistance exercise have typically used whole-body training at moderate intensities. Interestingly, EIH is reproducible with each type of exercise, even when modest doses are used.

1.1.3. Nociceptive processing

Although not an assessment of pain per se, techniques that assess the function of the nociceptive pathways have sometimes been used to investigate EIH. These more complex methods, which include evoked potentials and neuroimaging, may provide greater insight into the mechanisms of EIH compared to more commonly used quantitative sensory tests. Evoked potentials are cortical responses recorded at the scalp using electroencephalography in response to brief and intense stimuli. Evoked potentials are described by their polarities (negative [N] and positive [P]), latencies, and amplitudes, and consist of early, late, and ultra-late components. When analysing pain-related evoked potentials, the peak-to-peak amplitude of the N2P2 is the component most related to nociception, whereby larger N2P2 amplitude is associated with more pain. There is evidence that both the sensory-discriminative and affective aspects of pain are captured by this late component of the evoked potential, and studies have shown exercise to reduce the amplitude of this component. Neuroimaging is widely used in the study of pain, but to the best of our knowledge, only 2 studies have used neuroimaging to investigate acute EIH. In one study, brain responses to noxious thermal stimuli before and after rest and exercise were measured using functional magnetic resonance imaging in women with fibromyalgia and healthy pain-free controls. The results suggested that, in the women with fibromyalgia, exercise-stimulated brain regions involved in descending pain inhibition which, in turn, was associated with lower pain ratings to thermal stimuli. In the second study, brain responses to noxious thermal stimuli before and after walking and running exercises were measured using functional magnetic resonance imaging in 20 athletes. The results suggested that running exercise reduced the pain-induced activation in the periaqueductal gray, a key area in descending pain inhibition which, in turn, was associated with lower pain unpleasantness ratings to thermal stimuli. Taken together, these results provide evidence that a single bout of exercise can modulate pain-related areas of the nervous system.

In addition to the different study designs and techniques used to quantify pain in investigations of EIH, the exercise protocols have also varied considerably. Aerobic and isometric exercise have been studied most often, whereas dynamic resistance exercise has not commonly been used. Within each mode of exercise, the prescription has varied too. For example, aerobic exercise has consisted of cycling, running, and stepping of various durations (30 seconds–30 minutes) and intensities (low to high). The same is true of isometric exercise where upper-limb and lower-limb exercise of both short and long duration (<5 seconds—exhaustion) and varied intensity (10%–100% MVC) have been studied. Studies of dynamic resistance exercise have typically used whole-body training at moderate intensities. Interestingly, EIH is reproducible with each type of exercise, even when modest doses are used.

This is described in more detail below.

2. Pain outcomes after acute and regular exercise in pain-free individuals

As illustrated in Table 1, a single session of exercise has repeatedly been observed to reduce pain sensitivity in pain-free individuals. Hypoalgesia after aerobic exercises (eg, bicycling or running), dynamic resistance exercises (eg, circuit training), and isometric exercises (eg, a wall squat) often produces an increase in pressure pain thresholds at exercising body areas of 15% to 20% compared with a quiet rest control condition. Increases in pain thresholds can also be observed at nonexercising body areas, although larger hypoalgesic responses are consistently observed in areas closer to the exercising muscles compared with nonexercising muscle areas. The observed EIH response is short-lasting, often with a duration lasting from 5 minutes after exercise to 30 minutes after exercise and may depend on the modality of the pain test stimulus.
Table 1

Summary of studies investigating acute exercise-induced hypoalgesia in pain-free individuals.

Exercise type	Exercise form	Intensity	Duration	# of participants	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author
Aerobic	Bicycling	70% HRmax	30 min	10	Chemical	Pain intensity	Thigh	—	↑ Pain intensity (hyperalgesia)	1984	Vecchiet et al. [225]
Aerobic	Bicycling	50%–70% HRmax	20 min	91	Cold	CPI	—	Hand	No hypoalgesia	1992	Padawer and Levine [143]
Aerobic	Bicycling	70%–75% VO2max	6 min	41	Cold	CPT	—	Hand	↑ CPT ↑ CPTol	2013	Pokhrel et al. [154]
Aerobic	Bicycling	VO2max test	8–12 min	25	Cold	CPI	—	Arm	↓ CPI	2018	Chretien et al. [18]
Aerobic	Bicycling	50 W	Max 8 min/step	6	Electrical	EPT	—	Tooth	↑ EPT	1984	Pertovaara et al. [149]
Aerobic	Bicycling	Increasing to 300 W	15–30 min	7	Electrical	EPT	—	Tooth	↑ EPT	1985	Kemppainen et al. [87]
Aerobic	Bicycling	HR = 150/min	20 min	11	Electrical	EPT	—	Tooth	↑ EPT	1986	Olausson et al. [140]
Aerobic	Bicycling	Increasing to 300 W	Unknown	6	Electrical	EPT	—	Tooth	↑ EPT	1986	Kemppainen et al. [88]
Aerobic	Bicycling	Increasing to 200 W	Unknown	6	Electrical	EPT	—	Tooth	↑ EPT	1990	Kemppainen et al. [88]
Aerobic	Bicycling	Increasing to 250 W	Fatigue	10	Electrical	EPT	—	Tooth	↑ EPT tooth ↑ EPT hand	1991	Droste et al. [30]
Aerobic	Bicycling	Increasing to VO2max	Unknown	17	Electrical	EPTol	—	Hand	↑ EPT ↑ EPTol	2005	Drury et al. [33]
Aerobic	Bicycling	1 KP	5 min	60	Heat	TSPh	—	Forearm	↑ HPI lower extremity (hyperalgesia of lower extremity)	2006	George et al. [50]
Aerobic	Bicycling	60 W	10 min	21	Heat	HPI	—	—	↑ HPI	2014	Ellinson et al. [26]
Aerobic	Bicycling	Increasing to 200 W	Unknown	28	Heat	HPI	—	—	↑ HPI	2019	St-Aubin et al. [175]
Aerobic	Bicycling	75% VO2max	30 min	16	Pressure	PPT	—	Hand	↑ PPT ↑ PPI	1996	Koltyn et al. [95]
Aerobic	Bicycling	75% VO2max	30 min	20	Pressure	PPT	—	Hand	No hypoalgesia	2006	Monnier-Benoit and Groslambert [128]
Aerobic	Bicycling	1. 75% VO2max 2. 50% VO2max	1. 10 min 2. 20 min	80	Pressure	PPT	Thigh	Arm Shoulder	↑ PPTs After 75% VO2max (10 and 20 min)	2014	Vaegter et al. [195]
Aerobic	Bicycling	75% VO2max	15 min	56	Pressure	PPT	Thigh	Shoulder	↑ PPTs	2015	Vaegter et al. [196]
Aerobic	Bicycling	75% VO2max	15 min	56	Pressure	PPTol	Lower leg	Arm	↑ PPTol lower leg	2015	Vaegter et al. [196]
Aerobic	Bicycling	1. 75% VO2max 2. 50% VO2max	20 min	80	Pressure	PPTol	Lower leg	Arm	No hypoalgesia	2015	Vaegter et al. [196]
Aerobic	Bicycling	1. 70% VO2max 2. 30% VO2max	30 min	10	Pressure	PPT	Thigh	Forearm	↑ PPT thigh After 70% VO2max ↑ PPT thigh and arm	2016	Micalos and Arendt-Nielsen [124]

(continued on next page)
Table 1 (continued)
Summary of studies investigating acute exercise-induced hypoalgesia in pain-free individuals.

Exercise type	Exercise form	Intensity	Duration	# of participants	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author	
Aerobic	Bicycling	Increasing to VO$_2$max	Fatigue	50	Pressure	PPT	Knee	Ankle Arm Chest Head	↓PPT chest (hyperalgesia)	2016	Kruger et al.	103
Aerobic	Bicycling	RPE = 14–15	20 min	40	Pressure	PPT	Thigh	Shin Hand	↑PPT thigh ↑PPT hand	2017	Jones et al.	81
Aerobic	Bicycling	RPE = 17	5 min	36	Pressure	PPT	Thigh	Hand	↑PPT thigh ↑PPT hand	2017	Jones et al.	79
Aerobic	Bicycling	RPE = 16	15 min	34	Pressure	PPT	Thigh	Shoulder	↑PPT thigh ↑PPT shoulder	2018	Vaegter et al.	193
Aerobic	Bicycling	1. HIIT: 90%–100% of max workload 2. MICT: 65%–75% of HR	1 min	10	3				No hypoalgesia	2018	Hakansson et al.	58
Aerobic	Bicycling	75% VO$_2$max	15 min	31	Pressure	PPT	Thigh	Back	↑PPT thigh ↑PPT back ↑PPT hand	2018	Gajjar et al.	45
Aerobic	Bicycling	75%–88% HRmax	20 min	15	Pressure	PPT EP	Thigh	Shoulder Thoracic spine Hand Esophagus	No hypoalgesia	2017	van Weerdenburg et al.	204
Aerobic	Bicycling	1. 70% HR max 2. 86% HR max	24 min	29	Pressure	PPT HPT HPI	—	Hand	↓HR after interval condition	2014	Kodesh and Weissman-Fogel	91
Aerobic	Bicycling	1. 70% HRR 2. 50%–55% HRR	20 min	27	Pressure	PPT PPI HPI TSPh	—	Forearm	↑PPT after high intensity ↓HR ↓TSPh	2014	Naugle et al.	132
Aerobic	Bicycling	Intensity = pain level 3/10	15 min	16	Pressure	PPT HPT	Thigh	Hand	↑PPT ↑HPT	2016	Black et al.	11
Aerobic	Bicycling	1. 75% VO$_2$max 2. 50% VO$_2$max	25 min	43	Pressure	PPT PPI HPI TSPh	Forearm	Forearm	↑PPTs	2016	Naugle et al.	133
Aerobic	Bicycling	60–70 W	20 min	40	Pressure	HPT TSPh	Achilles	—	No hypoalgesia	2016	Stackhouse	176
Aerobic	Bicycling	70% HRR	15 min	16	Pressure	PPT HPT HPI	Thigh	Shin Foot	↑PPT thigh ↑PPT shin ↑HPI foot	2019	Jones et al.	78
Aerobic	Bicycling	200 W	20 min	6	Reflex	NFR	Thigh	—	↑NFR	1992	Guleu et al.	56
Aerobic	Repeated back movements	Lifting 5 kg	7 min	18	Pressure	Heat Cold TSPh	Back	Hand	↑PPT back ↑PPT hand	2019	Kullat et al.	104

(continued on next page)
Exercise type	Exercise form	Intensity	Duration	# of participants	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author
Aerobic	Running	Near anaerobic threshold	30 min	27	Cold	CPT	—	Hand	↑CPT	2011	Wonders and Drury
Aerobic	Running	Self-selected	40 min	1	Pressure	PPT	—	Arm	↑PPT	1979	Black et al.
Aerobic	Running	Self-selected	1 mile	15	Pressure	PPT	—	Hand	↑PPT hand	1981	Haier et al.
Aerobic	Running	VO₂max test	Unknown	12	Pressure	PPI	—	Arm	↓PPI	2001	Oktedalen et al.
Aerobic	Running	1.75% VO₂max	10 min	12	Pressure	PPI	—	Hand	↓PPI after 30 min at 75% VO₂max	2004	Hoffman et al.
Aerobic	Running	65%–75% of HRR	7 min	12	Pressure	PPT	—	Forearm	↑PPT	2004	Drury et al.
Aerobic	Running	VO₂max test	Unknown	62	Pressure	PPI	—	Shoulder	Hand	2015	Stolzman et al.
Aerobic	Running	110% Gas exchange threshold	30 min	26	Pressure	PPT	Thigh	Forearm	↑PPT forearm	2019	Peterson et al.
Aerobic	Running	85% VO₂max	44 min	12	Pressure	Heat Cold	CPT	Hand	↓PPI	1984	Janal et al.
Aerobic	Running	85% HRmax	10 min	63	Heat Cold	HPT CPI	Hand	Forearm	↓HPT (hyperalgesia)	2001	Stemberg et al.
Aerobic	Running	75% VO₂max	30 min	14	Heat Cold	HPI CPI	—	Hand	No hypoalgesia	2005	Ruble et al.
Aerobic	Step	63% VO₂max	12 min	60	Pressure	PPI PTT	—	Hand	↑PPT	1994	Gurevich et al.
Aerobic	Step	50% of maximum number of steps in 1 minute	5 min	30	Pressure	PPI TSPp	—	Forearm	↓PPI	2019	Naas-Heir et al.
Aerobic	Walking	6.5 km/h	10 min	5	Pressure	PPT	Thigh	Shoulder	No hypoalgesia	2014	Lee
Aerobic	Walking	Fast walking	6 min	35	Pressure PPTol	Calf	Shoulder	↑PTT Calf	2019	Hvid et al.	
Anaerobic	Wingate test	"All-out"	30 seconds	50	Pressure	PPT	—	Shoulder	LPPTs (hyperalgesia)	2012	Arroyo-Morales et al.
Anaerobic	Bicycle Sprint	"All-out"	3 × 6 seconds	12	Pressure	PPT	Thigh	Lower leg	LPPTs (hyperalgesia)	2018	Klich et al.
Anaerobic	Wingate test	"All-out"	30 seconds	50	Pressure	Heat HPT PPTol TSPp TSPc	Hand	↑PTT (hyperalgesia)	2018	Samuelly-Leichtag et al.	
Dynamic resistance	Full-body circuit	Moderate	20 min	17	Pressure	PPT PPTol Shin	—	↑PTT PPTol	1996	Bartholomew et al.	
Dynamic resistance	Full-body circuit	75% 1RM	4 exercises 3 × 10 repetitions (45 min)	13	Pressure	PPT PPTol	—	Hand	↑PTT	1998	Koltyn and Arbogaat
Dynamic resistance	Full-body circuit	75% 1RM	4 exercises 3 × 10 repetitions (45 min)	21	Pressure	PPT PPTol	—	Hand	↑PTT	2009	Focht and Koltyn

(continued on next page)
Table 1 (continued)

Summary of studies investigating acute exercise-induced hypoalgesia in pain-free individuals.

Exercise type	Exercise form	Intensity	Duration	# of participants	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author
Dynamic resistance	Upper-body circuit	Unknown	10 min 40 min	5	Pressure	PPT	Shoulder	—	No hyperalgesia	2014	Lee et al.110
Dynamic resistance	Full-body circuit	60% 1RM	3 exercises 12 repetitions	24	Pressure	PPT	Hand	—	↑PPTol	2017	Baiamonte et al.4
Dynamic resistance	Kettlebell swings	8–12 kg	8 × 20 seconds	32	Pressure	PPT	Lower back	—	↑PPTs	2017	Keilman et al.84
Dynamic resistance	Full-body circuit	60% 1RM	9 exercises 12 repetitions	10	Pressure	PTT	Buttock	—	↑PTT hand	2018	McKean et al.119
Dynamic resistance	Handgrip	100% MVC	30 contractions in 1 minute	12	Pressure	PPT	Forearm	—	↑PPT	2004	Drury et al.119
Dynamic resistance	Handgrip	Medium	Maximum of 40 contractions in 1 minute	48	Heat	HPI	Hand	—	↑HPI	2008	Weissman-Fogel et al.207
Dynamic resistance	Back extensions	Bodyweight	3 × 15 repetitions	20	Heat	HPI	Foot	—	↑HPI (lower extremity)	2006	George et al.50
Dynamic resistance	Cervical flexions	Head weight	3 × 10 repetitions	30	Pressure	HPI	Foot	—	↑HPI	2011	Bishop et al.10
Eccentric	Wrist extension	30% MVC	5 × 10 repetitions	13	Pressure	PPT	Forearm	—	↑PPT	2010	Slater et al.171
Eccentric	Elbow flexion	Max	10 × 6 repetitions	10	Pressure	EPT	Arm	—	↑EPT (hyperalgesia)	2015	Lau et al.108
Eccentric	Heel-raise	Bodyweight	4 × 15 contractions	40	Pressure	Heat	HPI	—	↓HPI and ↓PPT	2016	Stackhouse et al.176
Isometric	1. Knee extension 2. Elbow flexion	1. 30% MVC 2. 60% MVC	1. 90 seconds 2. 1,180 seconds 2. 90 seconds 2. 1,180 seconds	80	Pressure	PPT	Thigh (knee extension)	Arm (elbow flexion)	↑PPTs (after low and high intensity exercises)	2014	Vaegter et al.195
Isometric	1. Knee extension 2. Elbow flexion	1. 30% MVC 2. 60% MVC	3 min	80	Pressure	PPTol	Lower leg	Arm	↑PPTol (after both elbow and knee exercises)	2015	Vaegter et al.195
Isometric	1. Knee extension 2. Elbow flexion	20% of MVC	Fatigue	64	Pressure	PPT	—	Hand	↑PPT after elbow flexion (women only)	2016	Lemley et al.113
Isometric	1. Knee extension 2. Shoulder rotation	1. 1 kg 2. 0.5 kg	Fatigue	24	Pressure	PPT	—	—	↑PPT thigh + shoulder both conditions	2003	Kosek and Lundberg151
Isometric	Back extension	—	2 min	29	Pressure	PPT	Back	Thigh	↑PPT thigh	2017	Gajsar et al.46

continued on next page
Exercise type	Exercise form	Intensity	Duration	# of participants	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author
Isometric	Elbow flexion	4. 80% MVC	4. Fatigue	40	Pressure	PPI	—	Hand	↑PPT and ↓PPI after max and after 25% MVC until fatigue	2008	Hoeger Bement et al.
Isometric	Elbow flexion	25% MVC	Fatigue	20	Pressure	PPT	PPI Hand	—	↑PPT LPI	2009	Hoeger Bement et al.
Isometric	Elbow flexion	25% MVC	Fatigue	26	Pressure	PPT	PPI Hand	—	↑PPT LPI (men only)	2014	Bement et al.
Isometric	Elbow flexion	1. Max contractions 1. 3 reps	3. 25% MVC	24	Pressure	PPT	PPI Hand	—	↑PPT LPI (women only)	2014	Lemley et al.
Isometric	Elbow flexion	25% MVC	Fatigue	39	Pressure	PPT	PPI Hand	—	↓PPI	2014	Lemley et al.
Isometric	Elbow flexion	40% MVC	3 min	26	Pressure	PPT	PPI Hand	—	↑PPT	2016	Jones et al.
Isometric	Arm abduction	1 kg	Fatigue	25	Pressure	PPT	Shoulder	Shoulder	↑PPTs	2000	Persson et al.
Isometric	Handgrip	25% MVC	2 min	134	Cold	CPT	CPI	—	↑CPT hand	2017	Foxen-Craft and Dahlquist
Isometric	Handgrip	25% MVC	3 min	34	Electrical	EPI	—	Lower leg	↓LEPI	2016	Umeda et al.
Isometric	Handgrip	1. 40% MVC	2. 25% MVC	88	Heat	TSPh	Hand	—	↓TSPh for both conditions	2013	Koltyn et al.
Isometric	Handgrip	1. Maximal 2. 40%–50% MVC	2 min	31	Pressure	PPT	PPI Hand	—	↑PPT LPI	2001	Koltyn et al.
Isometric	Handgrip	40%–50% MVC	2 min	40	Pressure	PPT	PPI Hand	Hand	↑PPT both sites LPP both sites	2007	Koltyn and Umeda
Isometric	Handgrip	33% MVC	3 min	79	Pressure	PPTol	Hand	—	↑PPTol	2009	Alghamdi and Al-Sheikh
Isometric	Handgrip	1. 25% MVC 2. 25% MVC	1. 1 minute 2. 3 min	23	Pressure	PPT	PPI Hand	—	No hypoalgesia	2009	Umeda et al.
Isometric	Handgrip	25% MVC	1. 1 minute 2. 3 min 3. 5 min	50	Pressure	PPT	PPI Hand	—	↑PPT and ↑PPI after all durations	2010	Umeda et al.
Isometric	Handgrip	50% MVC	Fatigue	50	Pressure	PPT	Forearm	Forearm	↑PPT	2017	Black et al.
Isometric	Handgrip	50% MVC	Fatigue	26	Pressure	PPT	Forearm	Thigh	↑PPT forearm ↑PPT thigh	2019	Peterson et al.
Isometric	Handgrip	25% MVC	1. 1% MVC 2. 15% MVC 3. 25% MVC	Unknown	2008	Electrical	Reflex	—	↓LEPI after 15% and 25% MVC	2008	Ring et al.
Isometric	Handgrip	25% MVC	3 min	27	Pressure	PPT	PPI Hand	TSPh Forearm	↑PPT LPI (women)	2014	Naugle et al.
Isometric	Handgrip	25% MVC	3 min	58	Pressure	PPT	PPI Hand	—	↑PPT	2014	Koltyn et al.
Isometric	Handgrip	25% MVC	3 min	43	Pressure	PPT	PPI TSPh	Forearm	↑PPT	2016	Naugle et al.
Isometric	Handgrip	25% MVC	3 min	58	Pressure	PPT	PPI TSPh	Hand	↑PPT	2017	Brellenthin et al.
Isometric	Handgrip	25% MVC	3 min	58	Pressure	PPI	Hand	—	↓PPI hand	2018	Crombie et al.
Table 1 (continued)

Exercise type	Exercise form	Intensity	Duration	# of participants	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author
Isometric	Handgrip	25% MVC	3 min	52	Pressure	Thigh	Forearm	PPT (hyperalgesia)	2018	Ohnman et al.¹³³	
Isometric	Knee extension	21% MVC	Fatigue	14	Pressure	PPT	—	Thigh	↑PPT	1995	Kosek and Ekholm⁹⁹
Isometric	Knee extension	30% MVC	Fatigue	134	Pressure	PPT	—	Shoulder	↑PPT	2017	Tour et al.¹⁵⁶
Isometric	Knee extension	0.75 kg	12 min	15	Pressure	Thigh	Thigh	Larter leg	↑PPTol	2017	van Weerenburg et al.³⁴⁴
Isometric	Knee extension	30% MVC	3 min	20	Pressure	Shin	Neck	↑PPT shrin	2018	Harris et al.⁵¹	
Isometric	Pinch grip	25% MVC	5 min	38	Heat	HPI	Hand	Hand	No hypoalgesia	2013	Paris et al.¹⁴⁴
Isometric	Pinch grip	1. 5% MVC	15 seconds	38	Heat	HPI	Hand	Hand	↑HPI with larger effects for higher intensity	2014	Misra et al.¹²⁷
Isometric	Teeth-clenching	—	Fatigue	33	Pressure	Jaw	Forearm	↑PPT jaw	2019	Laneffet et al.¹⁰⁸	
Isometric	Trunk flexion	—	Fatigue	70	Pressure	Abdomen	Naileded	↑PPT Abdomen	2019	Deering et al.²⁷	
Isometric	Wall squat	—	3 min	35	Pressure	Thigh	Shoulder	↑PPT thigh	2019	Vaeger et al.²⁰⁰	

The table is organized according to exercise type, exercise form, pain test modality, and year of publication.

CPI, cold pain intensity; CPT, cold pain threshold; CPI, electrical pain intensity; EPT, electrical pain threshold; EPTol, electrical pain tolerance; HPI, heat pain intensity; HPI with larger effects for higher intensity; HPT, heat pain threshold; HPTol, pressure pain tolerance; RM, repetition maximum; RPE, rating of perceived exertion; TSP, temporal summation of pain; TSPH, temporal summation of heat pain; TSPo, temporal summation of pressure pain; VO₂max, maximal aerobic capacity.

2.1. Exercise intensity and duration

The hypoalgesic responses seem to be similar between exercise types,¹³³,¹⁵⁶ although EIH differences have been observed,³⁵² but exercise intensity and duration quite consistently affect the EIH response. Exercise intensity affects the EIH response after aerobic exercise.¹⁰⁹,¹²⁴,¹³²,¹⁵⁶ For example, in 80 pain-free individuals, it was observed that a moderate-to-high intensity bicycling exercise produced significantly larger EIH responses at the exercising quadriceps muscle, as well as at the nonexercising biceps and trapezius muscles, compared with a low-intensity bicycling exercise.¹⁵⁶ Findings on the influence of aerobic exercise intensity are more equivocal, with one study observing a dose-response with larger effects after bicycling for 30 minutes compared with 10 minutes,⁹⁹ and one study observing no difference between bicycling for 10 minutes compared with 20 minutes.¹⁵⁶ Moreover, the fact that very short-duration aerobic exercise can elicit EIH¹²⁵,¹⁶² implies that intensity, or the combination of intensity and duration, may be more important for determining the size of EIH after aerobic exercise than either variable alone.

Exercise intensity and duration may also affect the EIH response after isometric exercises,⁶⁴,¹²⁷,¹⁵⁷ although the results are more inconsistent. In 40 individuals, pressure pain thresholds at the hand were increased and pressure pain intensity was decreased after low-intensity (25% of maximal voluntary contraction [MVC]) isometric elbow flexion until exhaustion. However, no hypoalgesia was observed when the contraction was held for only 2 minutes.⁶⁴ By contrast, hypoalgesia was found after 90 and 180 seconds isometric knee extensions and elbow flexion exercises at 30% MVC and 60%, respectively, in 80 healthy individuals; however, the hypoalgesic responses were not different in magnitude between low-intensity and high-intensity contractions nor between shorter or longer durations.¹⁶⁰ The fact that very low doses of isometric exercise (eg, three maximal contractions of 5-second duration, totaling 15 seconds of exercise) can produce EIH⁶⁴ lends further support to the lack of clear dose-response, which is further evidenced by a study of 50 individuals where elevations in pain threshold were not different between isometric handgrip exercises at 25% MVC for 1, 3, or 5 minutes.¹⁸⁹

2.2. Effects on pain modulatory mechanisms

As described, robust increases in pressure pain thresholds are observed after exercise, but exercise can also affect spinal and supraspinal mechanisms of pain. Temporal summation of pressure and heat pain was reduced after submaximal isometric exercises at 25% to 40% of MVC for 3 minutes,⁹⁴,⁹⁶,¹³¹,¹⁵⁶ and 20 minutes of aerobic exercise at 55% to 70% of heart rate reserve reduced temporal summation of heat pain¹³²; however,
temporal summation of pressure pain was not affected by 15 to 20 minutes of aerobic exercise at 50% to 75% of VO₂max. However, not all studies have shown exercise to have positive effects on pain mechanisms. For example, Alsouhibi et al. observed a decrease in the CPM response after exercise. By contrast, other studies have found exercise to have no effect on CPM or offset analgesia, suggesting that exercise can, but does not always, influence spinal and supraspinal mechanisms of pain. Exercise can also influence the ability to cope with pain. The perceived pain intensity of a supra-threshold stimulus is consistently reduced by aerobic, isometric, and dynamic resistance exercises, and acute exercise can reduce ratings of pain unpleasantness even in the absence of a change in pain intensity. In addition, low-intensity non-aerobic and isometric exercises also increase the tolerance to a painful stimulus. A 20% increase in pain tolerance was observed by Vaegter et al. after a 3-minute submaximal isometric knee extension exercise, and after a 6-minute walking exercise compared with rest in 35 pain-free individuals.

2.3. Factors influencing exercise-induced hypoalgesia

Exercise that produces acute hypoalgesia is often perceived as moderately painful with peak pain intensity ratings around 5 or 6 on a 0 to 10 numerical rating scale, and painful exercises seem to have larger hypoalgesic effects than nonpainful exercises, at least in pain-free individuals, but perhaps not in individuals with chronic pain. Treatment expectations are a well-recognized factor known to modulate treatment outcomes and the information about the effect of exercise given to individuals before exercise influences the magnitude of the EIH response. First, a randomized controlled trial by Jones et al. observed that the hypoalgesic effect after bicycling was slightly increased if positive information about EIH was given before the exercise compared to when no EIH information was given before exercise. Second, a randomized controlled trial by Vaegter et al. comparing positive vs negative pre-exercise information observed a 22% increase in pain thresholds in the positive information group, whereas the negative information group had a 4% decrease (hyperalgesia) in pain threshold at the exercising muscle (Vaegter et al., in review). Both studies observed a positive correlation between expectancies and hypoalgesia after exercise.

Despite robust hypoalgesia after exercise on a group level, the response to exercise is not identical across individuals and across days. Several studies have investigated the stability of the EIH response in pain-free individuals across different days using a number of aerobic and isometric exercise protocols. Across protocols, some individuals consistently show hypoalgesia after exercise, some individuals consistently showed hyperalgesia after exercise, and some individuals had a change in their response from hypoalgesic to hyperalgesic or vice versa between days. Interestingly, the majority of individuals showed hypoalgesia at some point.

2.4. Regular exercise and pain

The effect of regular exercise and physical activity on pain sensitivity has been investigated, albeit less than the effect of a single session of exercise. In pain-free individuals, there have been relatively few studies investigating whether those who are more physically active experience greater EIH. The results of these studies show that EIH is usually similar between inactive and active pain-free individuals irrespective of the type of exercise they regularly perform (ie, aerobic or strength training) and the methods used to assess physical activity (ie, self-report or objectively measured using accelerometry). However, Ellingson et al. observed lower pain intensity ratings and lower pain unpleasantness ratings to suprathreshold heat pain stimulations in pain-free women who were physically active as defined by the current public health recommendations compared with women who were less physically active than recommended. There is also some evidence that individuals who are more physically fit experience greater EIH.

Regarding the effect of a longer period of exercise training in pain-free individuals, Hakansson et al. observed changes in PPT in the legs after 6 weeks of moderate bicycling exercises (3 times/week) but not after high-intensity interval exercise. In addition, Jones et al. observed increases in pressure pain tolerance but not pain threshold after bicycling 30 minutes at 75% of VO₂ max 3 times/week for 6 weeks compared with a control condition. These findings suggest that regular exercise in pain-free individuals specifically influences the ability to cope with pain (ie, pain perception above the pain threshold) rather than the level at which pain is first perceived (pain threshold). Similar observations have been found in athletes compared with less active individuals. A systematic review by Tesarz et al. showed consistently higher pain tolerance across different pain modalities (ie, pressure, heat, cold, electrical, and ischemic) in athletes; however, for pain thresholds, the conclusion was less consistent.

In addition to the effect on pain tolerance, regular exercise may also affect the ability to inhibit pain as assessed by the CPM paradigm. Naugle et al. observed that pain-free individuals reporting more regular physical activity also had a larger CPM response compared with individuals reporting less regular physical activity. Although previous investigations on CPM in athletes have been equivocal because increased CPM has been observed, the potential effect of regular exercise on CPM may be a potential mechanism underlying the preventive effect of exercise on pain because better CPM capacity has been associated with a reduced risk of chronic pain. The preventive effect of regular exercise is supported by a recent systematic review with meta-analysis concluding that regular exercise performed 2 to 3 times/week reduces the risk of low back pain by 33%. This is true even in those who are at an increased risk of developing chronic pain.

3. Pain outcomes after acute and regular exercise in individuals with chronic pain

In individuals with different chronic pain conditions, the response to a single session of exercise is less consistent as hypoalgesia, reduced hypoalgesia, or even hyperalgesia (ie, increased sensitivity to pain) has been observed. As illustrated in Table 2, hypoalgesia after exercise has, eg, been observed in individuals with chronic musculoskeletal pain, patella femoral pain, knee osteoarthritis, menstrual pain, and rheumatoid arthritis. However, reduced EIH responses or even hyperalgesia after exercise has often been demonstrated in individuals with whiplash-associated disorder, fibromyalgia, painful diabetic neuropathy, chronic musculoskeletal pain, and in a delayed-onset muscular soreness pain model. Hyperalgesia after exercise is often observed in individuals with more widespread chronic pain conditions. This was first observed by in 5 individuals with fibromyalgia who showed
Exercise type	Exercise form	Intensity	Duration	# of participants	Pain condition	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author		
Aerobic	Bicycling	Increasing to 75% HRmax	Unknown	20	ME/CFS	Clinical	Pain intensity	—	—	No hypoalgesia	2017	Oosterwijck et al.141		
Aerobic	Bicycling	VO₂max test	8–12 min	25	Chronic pain	Cold	CPI	—	Arm	No hypoalgesia	2018	Chretien et al.18		
Aerobic	Bicycling	1 KPa	5 min	12	Chronic Low back pain	Heat	HPI	TSPh	—	Forearm Lower leg	↓ TSPh forearm	2009	Bialosky et al.9	
Aerobic	Bicycling	80% VO₂max	30 min	23	DOMS MODEL	Pressure	PPT	—	Arm	No hypoalgesia	2002	Darnacker et al.25		
Aerobic	Bicycling	70% VO₂max	20 min	8	Chronic low back pain	Pressure	PPI	—	Hand	↓ PPI	2005	Hoffman et al.68		
Aerobic	Bicycling	Increasing to 130 W	37 min	26	Chronic fatigue syndrome	Pressure	PPT	Lower leg	Hand Lower back	tPPTs (hyperalgesia)	2010	Meeus et al.123		
Aerobic	Bicycling	Increasing to 130 W	37 min	21	Chronic low back pain	Pressure	PPT	Lower leg	Hand Lower back	tPPTs (hyperalgesia)	2010	Meeus et al.123		
Aerobic	Bicycling	1. 75% HRmax 2. Self-paced	Unknown	22	Chronic fatigue syndrome	Pressure	PPT	Lower leg	Hand Lower back	No hypoalgesia/ some hyperalgesia	2010	Van Oosterwijck et al.202		
Aerobic	Bicycling	1. Increasing to 75% HRmax 2. Self-paced 1. Unknown 2. Individual	20	ME/CFS	Pressure	PPT	Lower leg	Hand Lower back	tPPT and PPTtol (both conditions)	↓ PPI (both conditions)	2011	Newcomb et al.136		
Aerobic	Bicycling	1. 62% HRmax 2. Self-paced	20 min	21	Fibromyalgia	Pressure	PPT	—	Hand	↑ PPT lower back (after self-paced)	↓ PPI (both conditions)	↑ PPTs (both conditions)	2012	Van Oosterwijck et al.203
Aerobic	Bicycling	Increasing to 75% HRmax	Maximum of 15 min	19	Fibromyalgia with chronic fatigue	Pressure	TSPp	—	Shoulder Hand	No hypoalgesia	2015	Meeus et al.122		
Aerobic	Bicycling	Increasing to 75% HRmax	Maximum of 15 min	16	RA	Pressure	TSPp	—	Shoulder Hand	No hypoalgesia	2015	Meeus et al.122		
Aerobic	Bicycling	75% of VO₂max	15 min	61	Chronic MSK pain	Pressure	PPT	PPTtol	Thigh	Arm Shoulder Lower leg	tPPTs	2016	Vaegter et al.197	
Aerobic	Bicycling	1. 70% HRmax 1. Continuous 20 min	15	Chronic fatigue syndrome	Pressure	PPT	Thigh	Shoulder Hand	tPPT thigh after interval	2016	Sandler et al.164			

(continued on next page)
Exercise type	Exercise form	Intensity	Duration	# of participants	Pain condition	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author
Aerobic	Bicycling	2. 75%–85% HRmax	2. Interval 5 × 4 min 15 min	14	Knee OA	Pressure	PTTol	Thigh	Arm Shoulder Lower leg	↑PPTs	2017	Vaeger et al.
		75% of VO₂max										194
Aerobic	Bicycling	75% of HRmax	30 min	21	WAD	Pressure	PPT	—	Neck Shin	No hypoalgesia	2017	Smith et al.
Aerobic	Bicycling	Increasing to 75% HRmax	Unknown	40	Knee OA	Pressure	PPT	Thigh Knee	Forearm	↑PPTs (if normal CPM) ↓PPTs (if abnormal CPM) No hyperalgesia	2017	Fingleton et al.
												118
Aerobic	Bicycling	50 W	12 min	20	Chronic fatigue syndrome	Pressure	TSPp	Thigh	Shoulder	↑PPTs (if normal CPM) ↓PPTs (if abnormal CPM) No hyperalgesia	2018	Malflief et al.
Aerobic	Bicycling	70% VO₂max	30 min	27	Gulf veterans	Pressure	Heat	PPT	HPI	Hand	↑HPI (if pain) (hyperalgesia)	2010
Aerobic	Running	Bruce test	Fatigue	10	Fibromyalgia	Heat	TSPh	—	Hands	↓PPTs (hyperalgesia)	2001	Vierck et al.
Aerobic	Running	5 km/hour	3 × 5min	5	Chronic fatigue syndrome	Pressure	PPT	—	Hands	↓PPTs (hyperalgesia)	2004	Whiteside et al.
Aerobic	Walking	Self-selected										
	Walking	4 min	20	Plantar fasciopathy	Clinical pain PPT	Pain intensity during test	Heel	—	No hypoalgesia	2018	Riel et al.	
		1. Continuous 1.3 m/second										156
Aerobic	Walking	6 min	24	Knee OA	Clinical pain	Pressure	PPT	—	Forearm	↓TSPp	2019	da Cunha Ribeiro et al.
Dynamic resistance	Leg exercises	1. 60% 1RM	2 exercises	32	Fibromyalgia	Clinical	Pain intensity	—	—	Hyperalgesia	2018	da Cunha Ribeiro et al.
Dynamic resistance	Knee extensions	1RM	6 × 10 repetitions	20	Knee OA	Clinical	Pain intensity	DOMS	Knee	—	No change in pain intensity More DOMS than controls	2013
Dynamic resistance	Knee extensions	8RM	1 exercise 3 × 8 repetitions	21	Patellar tendinopathy	Clinical pressure	Pain intensity during SLS PPT	Knee shin	Forearm	↓Pain intensity ↑PPT shin	2019	Holden et al.
Dynamic resistance	Arm-raises	Fast	6 min	24	Knee OA	Pressure	PPT	Shoulder Thigh	↑PPT shoulder	2020	Hansen et al.	
Dynamic resistance	1. Hip abductions 2. Knee extensions	Load = 12RM	3 exercises	30	PFP	Pressure	PPT PTTol TSPp	Knee Lower leg Elbow (PPT)	↑PPT (lower leg) ↑PPTol (after knee exercises)	2019	Straszek et al.	

(continued on next page)
Table 2 (continued)

Summary of studies investigating acute exercise-induced hypoalgesia in individuals with different pain conditions.

Exercise type	Exercise form	Intensity	Duration	# of participants	Pain condition	Pain test modality	Pain outcome	Local site	Remote site	Findings	Year	Author	
Dynamic resistance	Lower-body circuit	60% 1RM	3 exercises 10 repetitions	11	Knee OA	Pressure	PPT	Shoulder Knee Shin	Arm Forearm Hand	No hypoalgesia	2014	Burrows et al.17	
Dynamic resistance	Upper-body circuit	60% 1RM	3 exercises 10 repetitions	11	Knee OA	Pressure	PPT	Shoulder Arm Forearm Hand	Thigh Knee Shin	↑PPTs (across sites)	2014	Burrows et al.17	
Dynamic resistance	Back extensions	Bodyweight	3 × 15 repetitions	12	Chronic low back pain	Heat	HPI TSPb	—	Forearm Lower	Thigh Knee Shin	↓TSPb forearm	2009	Bialosky et al.9
Dynamic resistance	Repeated back movements	Lifting 5 kg	7 min	18	Chronic low back pain	Heat	Pressure Cold	PPT	Back Leg	Hand	↑TPT hand	2019	Kilanthen et al.104
Dynamic resistance	Cervical flexion	Head weight	10 × 10 seconds	13	Chronic neck pain	Clinical pain	Pressure	Pain intensity PPT	Neck Shoulder	↑Pain intensity ↑PPTs	2018	Galindez-Ibarbengoetxea et al.47	
Isometric	Elbow flexion	1. 25% MVC 2. 25% MVC 3. 100% MVC	1. 2 min 2. Fatigue 3. 3 reps	15	Fibromyalgia	Pressure	PPT	—	Hand	No hypoalgesia	2011	Hoeger Bement et al.66	
Isometric	Handgrip	25% MVC	3 min	18	Diabetic neuropathy	Heat	HPI TSPb	Hand Forearm	—	Thigh Forearm	↑PPTs (if no pain) No changes (if pain)	2014	Knauf and Koltyn90
Isometric	Handgrip	25% MVC	3 min	64	Menstrual pain	Pressure	PPT	Forearm Shin	↑PPTs	2018	Travers et al.186		
Isometric	Handgrip	30% MVC	90 seconds	12	Fibromyalgia	Pressure	PPT	Forearm Forearm	—	PPTs	2005	Staud et al.177	
Isometric	Knee extension	20%–25% MVC	Fatigue	14	Fibromyalgia	Pressure	PPT	Thigh	—	PPT (hyperalgesia)	1996	Kosek et al.100	
Isometric	Knee extension	10%–15% MVC	Fatigue	17	Fibromyalgia	Pressure	PPT	Thigh	Shoulder	↑PPT (hyperalgesia)	2007	Kadetoff and Kosek101	
Isometric	Knee extension	50% MVC	Fatigue	66	Knee OA	Pressure	PPT	Thigh	Shoulder	↑PPTs	2013	Kosek et al.102	
Isometric	Knee extension	50% MVC	Fatigue	47	Hip OA	Pressure	PPT	Thigh	Shoulder	↑PPTs	2013	Kosek et al.102	
Isometric	Knee extension	30% MVC	90 seconds	61	Chronic MSK pain	Pressure	PPT	Arm Shoulder Lower leg	↑PPTs	2016	Vaegter et al.197		
Isometric	Knee extension	30% MVC	90 seconds	14	Knee OA	Pressure	PPT	Thigh	Arm	↑PPTs (if normal CPM) ↑PPTs (if abnormal CPM)	2017	Vaegter et al.194	
Isometric	Knee extension	10% MVC	5 min	40	Knee OA	Pressure	PPT	Thigh Knee	Forearm	↑PPTs	2017	Fingleton et al.40	
Isometric	Knee extension	30% MVC	Fatigue	130	Fibromyalgia	Pressure	PPT	—	Shoulder	↑PPT	2017	Tour et al.185	
Isometric	Knee extension	30% MVC	5 min	46	RA	Pressure	PPT	Thigh	Shoulder	↑PPTs	2018	Lofgren et al.117	

(continued on next page)
a decrease in pain thresholds during and after an isometric knee extension exercise. The observation of hypoalgesia after exercise in some groups with chronic pain conditions and the observation of hyperalgesia after exercise in other groups with chronic pain may be influenced by whether the exercise is performed using a painful or nonpainful body area. Lannersten and Kosek107 observed hypoalgesia after a 5-minute submaximal (25\% of MVC) isometric exercise in individuals with shoulder myalgia when the exercise was performed by a nonpainful leg muscle but when the exercise was performed by the painful shoulder muscle, no hypoalgesic response was observed. Similarly, Burrows et al.17 observed increases in pressure pain threshold after upper-body but not lower-body resistance exercise in people with knee osteoarthritis. These findings suggest that hypoalgesia can be induced by exercising nonpainful muscles in subjects with chronic pain,101 which may have important implications for exercise prescription in the clinical setting.

3.1. Factors related to lack of exercise-induced hypoalgesia

Individuals with facilitated central pain mechanisms, which are commonly observed in several chronic musculoskeletal pain conditions,121,127 often report reduced hypoalgesia after exercise. Vaegter et al.187 observed reduced EIH after submaximal isometric exercise and after bicycling exercise in chronic pain patients with high widespread pain sensitivity compared with patients with low pain sensitivity. In addition, in high pain-sensitive patients, an increase in temporal summation of pain was observed after aerobic exercise177,197 possibly mimicking the pain flare-up after exercise reported in clinical practice by some individuals with widespread chronic pain.24 Also, Fingleton et al.106 observed reduced pressure pain thresholds (hyperalgesia) after both aerobic and isometric exercises in individuals with knee osteoarthritis who demonstrated an impaired CPM response. By contrast, pain thresholds increased in knee osteoarthritis individuals with a normal CPM response suggesting that patients with impaired CPM, which is also a common finding in individuals with chronic pain,114,121 may have less acute hypoalgesic effect from exercise.

Another possible explanation for the lack of hypoalgesia after exercise often observed in individuals with chronic pain is that the exercise dose–response relationship is different in individuals with chronic pain compared with pain-free subjects. Newcomb et al.106 observed a larger EIH response in individuals with fibromyalgia after 20 minutes of aerobic exercise at a preferred intensity (45\% of maximal heart rate) compared with a prescribed and higher-intensity aerobic exercise (60\%–75\% of maximal heart rate). Similarly, Coombes et al.20 showed that isometric exercise above but not below an individual’s pain threshold increased pain responses to exercise in people with lateral epicondylalgia. These results could indicate that lower-intensity exercise creates less input to facilitated central pain mechanisms resulting in a net balance of pain inhibition and a reduction in the pain sensitivity after exercise. This may be different for chronic exercise, however, where a small benefit of painful over nonpainful exercise has been observed, albeit for clinical pain at
baseline as opposed to experimental pain in the immediate post-exercise period.174 Other possible explanations for reduced EIH include use of opioids and negative expectations about the effect of exercise. Interactions between EIH mechanisms and the use of analgesics may affect the response to exercise. Individuals treated with opioids report less CPM,150 and reduced effects of opioids have been reported in animals after long-term exercise.174 As observed in pain-free individuals, negative expectations are associated with the hypoalgesic response after exercise. Interestingly, most patients with chronic pain referred to multidisciplinary pain treatment do not expect exercises to cause less pain; on the contrary, the majority expects more pain after exercise (Fig. 1).

3.2. Regular exercise and pain

Regular exercise is guideline-recommended treatment for a wide range of chronic pain conditions.49,146 Regular exercise is safe and generally well accepted by individuals with mild to moderate chronic pain; however, the effects on pain and pain sensitivity are somewhat conflicting, and the level of evidence for a positive effect is generally low.49 Clinically relevant reductions in pain and pain sensitivity are often observed after 8 to 12 weeks of exercise therapy in individuals with knee or hip osteoarthritis,170 but randomized controlled trials often observe smaller effects with pain reductions of less than 10 on a 100-point numerical rating scale62 or even no change in pain after exercise therapy compared with passive sham therapy.8

To the best of our knowledge, only 2 studies have investigated whether habitual physical activity levels predict pain responses to acute exercise in individuals with chronic pain. Coriolano et al.21 found that people with knee osteoarthritis who self-reported more physical activity experienced less exacerbation in pain after completing performance-based tests and a physiological test (submaximal arm ergometer test). In people with fibromyalgia, Umeda et al.187 showed that participants who were more physically active reported a smaller increase in ratings of muscle pain intensity during isometric handgrip exercise. Taken together, these results suggest that being more physically active is associated with reduced pain responses to acute exercise in individuals with chronic pain. These results are consistent with cross-sectional data showing negative associations between fitness and pain (ie, more fitness, less pain) in people with fibromyalgia177 and knee osteoarthritis (Jones et al., in review) as well as longitudinal data showing benefit of longer periods of regular exercise training on reducing pain in individuals with chronic pain.49

4. Underlying mechanisms of exercise-induced hypoalgesia in humans

There are numerous biological and cognitive factors that contribute to pain, so changes in any one or more of these by acute exercise could account for EIH. It is not clear, however, what these mechanisms are or whether the mechanisms are similar or distinct between healthy individuals and individuals with chronic pain. The contrasting magnitude of EIH between pain-free individuals and individuals with chronic pain150 suggests that the mechanisms of EIH are disrupted in individuals with chronic pain. That is, some aspect of chronic pain (eg, inflammation, sensitization, and fear of movement) interferes with the normal hypoalgesic effect of acute exercise. These potential mechanisms will be described in more detail hereafter.

4.1. Opioid and cannabinoid systems

The most commonly proposed mechanism of EIH is enhanced descending inhibition by activation of the opioid and cannabinoid systems. The contraction of skeletal muscle increases the discharge of mechanosensitive afferents (ie, A-delta and C-fibres) which, in turn, activates central descending opioid pain pathways.29,164 Exercise also increases the release of endogenous cannabinoids. These opioid and cannabinoid pathways have receptors throughout the peripheral and central nervous systems that can produce analgesia when stimulated.29,184

Human studies investigating the role of opioids and cannabinoids in EIH have yielded equivocal findings. For example, opioid antagonists such as naloxone and naltrexone have been shown to increase, decrease, or have no effect on EIH.90,31,74,94,140 Moreover, correlations between EIH and exercise-induced changes in plasma concentrations of beta-endorphins and endocannabinoids are not always observed.94,139,165 A limitation of these human investigations is that they are more constrained than rodent studies in their ability to investigate whether opioids and cannabinoids are acting through peripheral and/or central actions to influence pain after exercise; however, there is some evidence that blocking blood flow to a limb during exercise attenuates EIH in pain-free individuals, suggesting that peripheral factors are important.79

4.2. Stress-induced hypoalgesia

Exercise-induced hypoalgesia might also be a form of stress-induced analgesia, related to the release of various stress hormones during exercise. However, evidence to support this in humans is mixed. For example, EIH is related to increases in growth hormone during exercise,149 but another study found that the suppression of exercise-induced growth hormone release by cyproheptadine had no effect on EIH.96 Dexamethasone, a steroid medication, has been shown to attenuate EIH by reducing secretion of adrenocorticotropin86; however, other studies have found no effect of dexamethasone on pain in healthy individuals.209 A small pilot study of 7 healthy individuals showed that exercise-induced changes in neuropeptide Y, allopregnanolone, pregnenolone, and dehydroepiandrosterone were related to EIH.167 However, because concentrations of these substances were only measured in the plasma, it is not clear whether they were acting through peripheral or central mechanisms to influence pain. Moreover, because this was only a small pilot study, more studies are needed to confirm the findings.

4.3. Cardiovascular systems

Exercise-induced changes in the cardiovascular system have also been proposed as a mechanism of EIH. That is, elevations in blood pressure by exercise are thought to attenuate pain through baroreceptor-related mechanisms (ie, the activation of arterial baroreceptors by exercise subsequently activates pain-related brain areas involved in pain modulation). Although it is true that people with high blood pressure are less sensitive to pain (ie, hypertension-associated hypoalgesia),161 there is currently little evidence that acute changes in blood pressure by exercise are related to EIH.28,157,188,190 Moreover, acute increases in blood pressure by exercise could not account for the persistence of EIH after exercise (eg, 15 minutes after exercise cessation213 because blood pressure would have presumably returned to baseline, or indeed be lower, by this time).

4.4. Central pain modulatory systems

The influence of exercise on reducing the sensitivity of the central nervous system has also been explored as a mechanism of EIH.
These studies show that acute exercise can reduce temporal summation\(^\text{96,131,196,206}\) and increase thresholds to elicit the nociceptive withdrawal reflex,\(^\text{55}\) although there is some evidence contrary to the latter observation.\(^\text{125}\) These results imply that exercise can reduce pain through reductions in central nervous system sensitivity at spinal and supraspinal levels, but exactly where in the nociceptive pathway these changes occur is not known. Improved efficacy of descending inhibitory pathways by exercise has been studied as a mechanism of EIH as well, but there is little direct evidence to support this. For example, Alsouhibani et al.\(^\text{2}\) observed a decrease in the CPM response after exercise, Meeus et al.\(^\text{122}\) found no effect of aerobic exercise on CPM in healthy individuals,\(^\text{122}\) and Ellingson et al.\(^\text{36}\) showed that EIH was comparable for nonpainful and painful exercise, although the latter should have evoked a larger “pain inhibits pain” effect. A few studies have found small positive correlations between conditioned pain modulation and EIH\(^\text{13,112,198}\) suggesting that the 2 may share similar mechanisms; however, EIH is usually somewhat smaller in magnitude but more enduring than conditioned pain modulation so the 2 are likely distinct.\(^\text{112,195}\)

4.5. Psychological contributing factors

Changes in pain cognition might also account for some of the effect of acute exercise on pain. It has been shown that exercise can reduce ratings of pain unpleasantness in the absence of a change in ratings of pain intensity,\(^\text{80}\) suggesting that alterations in the appraisal of noxious stimuli contribute to EIH. Cognitive and psychosocial factors including pain self-efficacy, coping strategies, fear of pain, and stress are known to underlie some of the difference in pain between athletes and nonathletes,\(^\text{53,75,142}\) but their relation to EIH is less clear. For example, several studies have shown that individuals with higher levels of catastrophizing experience less EIH,\(^\text{16,131,207}\) although this is not always observed and correlations between EIH and other psychosocial factors (eg, fear of pain, pain attitudes, and anxiety) seem negligible.\(^\text{112,201}\) Therefore, the contribution of cognitive factors to EIH remains poorly understood but seems limited. More studies are needed to investigate whether these cognitive factors are related to EIH and, more importantly, whether they can be manipulated to augment it.\(^\text{81}\)

4.6. Impaired EIH: disrupted or distinct mechanisms

The mechanisms of EIH in individuals with chronic pain are equally if not more unclear. Because exercise has such varying effects on pain within and between individuals with chronic pain, it is difficult to determine whether there is a consistent mechanism that contributes to changes in pain with acute exercise. Moreover, it is not clear if the mechanisms of EIH in individuals
with chronic pain are the same as pain-free individuals and are just disrupted, or whether separate mechanisms related to the presence of chronic pain are involved as well.

The fact that EIH can occur at exercised and remote sites in individuals with chronic pain shows that EIH is not always disrupted in these individuals. However, there are also several demonstrations that exercise with a painful joint or muscle can either diminish EIH compared to when a nonpainful body part is exercised (ie, exercise of the upper limb in people with knee osteoarthritis, but pain measurement in the lower limb) or, worse, can increase pain. These results are both opposite to what is normally seen in pain-free individuals where EIH is usually greatest for the exercised body part. Therefore, the results of the above studies provide some evidence that compared to healthy individuals, the mechanisms of EIH in individuals with chronic pain are both similar and distinct. However, because the mechanisms of EIH are still poorly understood in both groups, there is little direct evidence to support this.

Regarding mechanisms of EIH that may be similar, but disrupted, in individuals with chronic pain compared to pain-free individuals, altered excitability of the central nervous system after exercise is perhaps the most obvious. In pain-free individuals, acute exercise reliably reduces temporal summation, whereas the opposite effect has been observed in individuals with chronic pain. By contrast, one of the few studies to combine acute exercise with analgesic medication showed that paracetamol and placebo had comparable effects on temporal summation and conditioned pain modulation after exercise in pain-free individuals and individuals with chronic pain. Because paracetamol is a predominantly central acting drug with less ubiquitous effects would be useful to further investigate how different substances are involved in EIH in humans and whether these differ between pain-free individuals and individuals with chronic pain.

As for mechanisms of EIH that might be distinct between pain-free individuals and individuals with chronic pain, reductions in inflammation by acute exercise are one such possibility. Inflammation plays a key role in the pathogenesis of several chronic pain states, so it is possible that reductions in inflammation by exercise may reduce pain in these individuals. However, the results of studies examining the effect of acute exercise on inflammation in individuals with chronic pain are mixed and the relation between the changes in inflammatory markers and pain has seldom been explored. Moreover, differences in the exercise-induced changes in inflammatory markers between individuals with chronic pain and pain-free individuals were only sometimes, but not always, observed. Therefore, it remains unclear to what extent EIH is related to acute changes in inflammation by exercise in individuals with chronic pain or whether this is a distinct mechanism of EIH in these populations. Another possibility is opioid-induced hyperalgesia. As already mentioned, interactions between EIH mechanisms and the use of analgesics may affect the response to exercise. Individuals treated with opioids report less CPM, and reduced effects of opioids have been reported in animals after long-term exercise. This may be explained by opioid-induced hyperalgesia which, paradoxically, leads to a reduction in central opioid receptor availability and hence less potential to modulate pain through opioidergic mechanisms (as shown in pain-free individuals).

Psychosocial and cognitive factors are heavily implicated in the development and persistence of chronic pain. These same cognitive factors influence responses to experimental noxious stimuli in pain-free individuals as well, but their relation to EIH has seldom been examined, particularly in individuals with chronic pain. Accordingly, it is still not known whether cognitive factors are directly involved in EIH, or, perhaps more importantly, whether they can be manipulated to influence pain responses to exercise. Although there is some evidence to support this in pain-free individuals, it remains to be determined whether preceding exercise with education can also influence EIH in individuals with chronic pain in whom negative expectations about pain and exercise are more prevalent and therefore likely harder to change. It may be that, because of their more entrenched negative beliefs about pain and exercise, more intensive education is required in individuals with chronic pain to produce the same effect. Some combination of pain neuroscience education and EIH education might also be required. Nonetheless, if the effect can be replicated in individuals with chronic pain, it could have important applications for exercise prescription in clinical practice.

Regarding regular exercise, despite the large number of studies that have shown exercise training to reduce pain in people with chronic pain, the mechanisms by which it does this is poorly understood. This is largely because many of the studies did not analyze which changes occurring with exercise (biological and/or psychological changes) were associated with the observed improvements in pain. Moreover, few of the studies investigated where in the nociceptive pathways (ie, peripheral, spinal, and/or supraspinal pathways) changes might be occurring due to exercise, which could account for the observed reductions in pain. As a result, the precise mechanisms of pain attenuation by exercise training are not known, but several possibilities exist that are likely common to individuals with chronic pain.

Improved structure and function of the musculoskeletal system is one such possibility. In people with knee osteoarthritis, chronic exercise can improve several musculoskeletal factors important in the development and progression of the disease including body mass, joint alignment, proprioception, cartilage structure and function, inflammation, and muscle strength. Of these possible mediators, improvements in muscle strength are the strongest contributor to the positive effect of physical exercise on improved osteoarthritis symptoms. Desensitization of the nervous system is another possibility. In humans, exercise-induced changes in biomarkers associated with nociceptive pathways have been reported (eg, inflammatory factors and neurotransmitters), but again it is not clear whether these changes reduce pain due to the peripheral or central actions of these factors. Preliminary evidence shows that exercise can normalise aberrant brain activity in people with fibromyalgia. This finding is in agreement with the results of a few cross-sectional studies showing that people with fibromyalgia who are more physically active have more typical brain responses to pain compared to less active individuals. However, not all studies have shown chronic exercise to attenuate aberrant brain responses in individuals with chronic pain, so the role of changes in brain activity as a mechanism of pain relief by regular exercise remains unclear.

Finally, exercise-induced improvements in mood could be another shared mediator of the positive effect of exercise on pain in individuals with chronic pain. The role of both general (eg, depression and anxiety) and pain-specific (eg, catastrophizing and self-efficacy) psychosocial processes in the development
and maintenance of chronic pain is clear.34 Many of these psychosocial factors are positively influenced by exercise,85,183 so it is plausible that this could result in improvements in pain either directly or indirectly through changes in both the sensory and emotional aspects of pain.

5. Implications and future perspectives

5.1. Clinical implications

Most types of exercise can reduce pain sensitivity at exercising and nonexercising muscles in pain-free individuals, with a larger hypoalgesic response at the exercising muscles. In individuals with chronic pain, the hypoalgesic response after exercise is less consistent; however, in addition to other well-documented physical and mental health benefits related to exercise, exercise can sometimes induce hypoalgesia in individuals with chronic pain. Regarding exercise prescription in clinical settings, it may be worth considering: (1) that exercising nonpainful body areas if possible as well as using low-intensity exercises such as walking may be useful as a first step, (2) that individuals’ beliefs, expectations, and exercise preference should be assessed before exercise prescription to minimize the risk of a poor outcome, and (3) that these beliefs and expectations could be modified through education or other interventions to improve pain responses to exercise in people with chronic pain. There is some evidence that combining exercise training and education has superior effects compared to exercise alone in individuals with chronic pain,15,183 but this is yet to be properly explored in the context of pain responses to a single bout of acute exercise in individuals with chronic pain.

5.2. Implications for future exercise-induced hypoalgesia studies

In addition to the above-mentioned implications, we also propose several methodological recommendations for future studies of EIH. First, studies should use a randomized controlled design (parallel or crossover), or at the very least include a control group/condition. This is because the causal effects of exercise on pain are best inferred from randomized controlled trials. As shown in Tables 1 and 2, there have been well over 150 studies of EIH in pain-free individuals and individuals with chronic pain. However, the minority of these used a randomized controlled design or a nonrandomized controlled design. Instead, EIH was often investigated using a single-arm pre-post design. A major limitation of this type of study design is that the effects of habituation to noxious stimuli, as well as statistical phenomena such as regression to the mean, are not accounted for. To truly determine whether a single bout of exercise causes a reduction in pain, randomized controlled trials are needed. Second, it is important that these randomized controlled trials use large(r) sample sizes. The majority of EIH studies are small (n ≤ 50), and it is well documented that small studies are inherently biased to find larger effects.26 Hence, most studies of EIH probably overestimate the effect of exercise on pain. Consequently, despite the enormous amount of EIH studies to date, the true effect of a single bout of exercise on pain is still unknown. Larger randomized controlled trials, of which there are currently very few, are clearly needed to determine this.

As evident in Tables 1 and 2, there is substantial heterogeneity in methodology used in EIH studies, making it difficult to synthesise the results of this vast literature. Therefore, we also recommend that future EIH studies share a somewhat common methodology so that the results between studies can be more easily compared. To this end, it may be useful for future studies to share a common method of pain assessment. Pressure pain thresholds at local and remote sites may be the most appropriate because these have been studied most often and do not require expensive equipment (although they may be more prone to experimenter bias if using handheld algometry). It would also be of benefit to include assessment of both experimental and clinical pain in individuals with chronic pain to better understand the effects of exercise on “real life” pain. Moreover, it may be useful to prescribe and report exercise using a common index so that the amount of work performed can be quantified. This would help clarify the dose–response effect of exercise on pain, a result that may have important clinical implications such as determining the minimal effective dose with respect to hypoalgesia for each mode of exercise as well as identifying volumes and/or intensities of exercise that may be more likely to exacerbate pain in individuals with chronic pain. Finally, Lee et al.109 recently outlined several issues in clinical pain research including transparency, underpowered studies, and researcher degrees of freedom. The use of preregistration and registered reports, data sharing, and greater adherence to reporting guidelines were suggested as areas for improvement and we believe that EIH studies would benefit from adopting these recommendations.

Disclosures

The authors have no conflicts of interest to declare.

Article history:
Received 6 December 2019
Received in revised form 2 March 2020
Accepted 21 April 2020
Available online 23 September 2020

References

[1] Alghamdi KS, Al-Sheikh MH. Effect of stress on pain perception in young women. Saudi Med J 2009;30:478–84.
[2] Alsouhibani A, Vaegter HB, Hoeger Bement M. Systemic exercise-induced hypoalgesia following isometric exercise reduces conditioned pain modulation. Pain Med 2019;20:180–90.
[3] Arroyo-Morales M, Rodriguez LD, Rubio-Ruíz B, Olea N. Influence of gender in the psychoneuroimmunological response to therapeutic interval exercise. Biol Res Nurs 2012;14:357–63.
[4] Baamonte BA, Kraemer RR, Chabreck CN, Reynolds ML, McCaleb KM, Shaheen GL, Hollander DB. Exercise-induced hypoalgesia: pain tolerance, preference and tolerance for exercise intensity, and physiological correlates following dynamic circuit resistance exercise. J Sports Sci 2017;35:1–7.
[5] Bartholomew JB, Lewis BP, Linder DE, Cook DB. Post-exercise analgesia: replication and extension. J Sports Sci 1996;14:329–34.
[6] Beckwée D, Vaes P, Crulled M, Swinnen E, Bautmans I. Osteoarthritis of the knee: why does exercise work? A qualitative study of the literature. Ageing Res Rev 2013;12:226–36.
[7] Bement MH, Drewel B, Hunter SK. Men report greater pain relief following sustained static contractions than women when matched for baseline pain. J Mot Behav 2014;46:107–13.
[8] Bennell KL, Egerton T, Martin J, Abbott JH, Metcalf B, McManus F, Sims K, Pua YH, Wrigley TV, Forbes A, Smith C, Harris A, Buchbinder R. Effect of physical therapy on pain and function in patients with hip osteoarthritis: a randomized clinical trial. JAMA 2014;311:1987–97.
[9] Bialosky JE, Bishop MD, Robinson ME, Zeppieri G Jr, George SZ. Spinal manipulative therapy has an immediate effect on thermal pain sensitivity in people with low back pain: a randomized controlled trial. Phys Ther 2009;89:1292–303.
[10] Bishop MD, Benencuc JM, George SZ. Immediate reduction in temporal sensory summation after thoracic spinal manipulation. Spine J 2011;11:440–6.
Black CD, Gongliar AC, Renthoe JB, Hight RE. The effects of caffeine ingestion on exercise-induced hypoalgesia: a pilot study. Physiol Behav 2016;161:1–6.

Black CD, Huber JK, Ellingdon LD, Ade CJ, Taylor EL, Griffith EM, Janzen NR, Suttefield SL. Exercise-induced hypoalgesia is not influenced by physical activity type and amount. Med Sci Sports Exerc 2019;51:979–82.

Black CD, Tynes BK, Gongliar AC, Waddei DL. Local and generalized endogenous pain modulation in healthy men: effects of exercise and exercise-induced muscle damage. Pain Med 2016;17:2422–33.

Black J, Chester GB, Starmer GA, Egger G. The painlessness of the long distance runner. Med J Aust. 1979;1:522–3.

Bodes Pardo G, Luch Gruber E, Roussel NA, Gallego Izquierdo T, Jimenez Penic V, Pecos Martin D. Pain neurophysiology education and therapeutic exercise for patients with chronic low back pain: a single-blind randomized controlled trial. Arch Phys Med Rehabil 2018;99:338–47.

Brellenthin AG, Crombie KM, Cook DB, Sehgal N, Kolty DF. Psychosocial influences on exercise-induced hypoalgesia. Pain Med 2017;18:538–50.

Burrows NJ, Booth J, Stumnieks DL, Barry BK. Acute resistance exercise and pressure pain sensitivity in knee osteoarthritis: a randomised crossover trial. Osteoarthritis Cartilage 2014;22:407–14.

Chretien R, Lavoie S, Chalaye P, de Vette E, Counil FP, Daiaire F, Lafrenaye S. Reduced endogenous pain inhibition in adolescent girls with chronic pain. Scand J Pain 2018;18:711–17.

Cook DB, Stegger AJ, Ellingdon LD. Exercise alters pain sensitivity in Gulf War Veterans with chronic musculoskeletal pain. J Pain 2010;11:764–72.

Coombes BK, Wisbush M, Heales L, Stephenson A, Vicenzino B. Isometric exercise above but not below an individual’s pain threshold influences pain perception in people with lateral epicondylitis. Clin J Pain 2016;32:1069–75.

Coriolano K, Aken A, Pukall C, Harrison M. Changes in self-reported disability after performance-based tests in obese and non-obese individuals diagnosed with osteoarthritis of the knee. Disabil Rehabil 2015;37:1152–61.

Crombie KM, Brellenthin AG, Hilliard CJ, Kolty DF. Endocannabinoid and opioid system interactions in exercise-induced hypoalgesia. Pain Med 2018;19:118–23.

Cruz-Almeida Y, Fillingim RB. Can quantitative sensory testing move us closer to mechanism-based pain management? Pain Med 2014;15:61–72.

Cunha Ribeiro RP, Franco TC, Pinto AJ, Pinto AJ, Jansen KN. Experimental study. BMC Musculoskelet Disord 2006;7:68.

Dechartres A, Trinquart L, Boutron I, Ravaud P. Influence of trial sample size on treatment effect estimates: meta-epidemiological study. BMJ 2013;346:f2304.

Deering R, Paaschlin RB, Cruz M, Hunter SK, Hoeger Bement M. Fatiguing trunk flexor exercise decreases pain sensitivity in postpartum women. Front Physiol 2019;10:315.

Devoise L, Chalaye P, Lafrenaye S, Marchand S, Dalil R. Relation between adaptation and cardiovascular response to tonic cold and heat pain adaptability to tonic pain and cardiovascular responses. Eur J Pain 2016;20:731–41.

Dietrich A, McDaniel WF. Endocannabinoids and exercise. Br J Sports Med 2002;36:538–41.

Droste C, Grosjans-MW, Schreck M, Roskam H. Experimental pain thresholds and plasma beta-endorphin levels during exercise. Med Sci Sports Exerc 1991;23:334–42.

Droste C, Meyer-Blankenburg H, Greenlee MW, Roskam H. Effect of physical exercise on pain thresholds and plasma beta-endorphins in patients with silent and symptomatic myocardial ischaemia. Eur Heart J 1988;9(suppl N):23–30.

Druy D, Stuempeff K, Shannon R, Miller J. An investigation of exercise-induced hypoalgesia after isometric and cardiovascular exercise. J Exerc Physiol 2004;7:1–5.

Druy DG, Greenwood K, Stuempeff KJ, Kolty DF. Changes in pain perception in women during and following an exhaustive incremental cycling exercise. J Sports Med Sci 2005;4:215–22.

Edwards RR, Dworkin RH, Sullivan MD, Turk DC, Wasan AD. The role of psychosocial processes in the development and maintenance of chronic pain. J Pain 2016;17(9) suppl:770–92.

Ellingdon LD, Colbert LH, Cook DB. Physical activity is related to pain sensitivity in healthy women. Med Sci Sports Exerc 2012;44:1401–6.

Ellingdon LD, Kolty DF, Kim JS, Cook DB. Does exercise induce hypoalgesia through conditioned pain modulation? Psychophysiology 2014;51:267–76.

Ellingdon LD, Shields MR, Stegger AJ, Cook DB. Physical activity, sustained sedentary behavior, and pain modulation in women with fibromyalgia. J Pain 2012;13:195–206.

Ellingdon LD, Stegger AJ, Schwabacher IJ, Kolty DF, Cook DB. Exercise strengthens central nervous system modulation of pain in fibromyalgia. Brain Sci 2016;6:8.

Fannikh S, Jayabalant PS, Gustafson JA, Klatt BA, Sowa GA, Piva SR. The influence of continuous versus interval walking exercise on knee joint loading and pain in patients with knee osteoarthritis. Gait Posture 2017;56:129–33.

Fingleton C, Smart KM, Doody CM. Exercise-induced hypoalgesia in people with knee osteoarthritis with normal and abnormal conditioned pain modulation. Clin J Pain 2017;33:395–404.

Fidlin P, Martensen S, Altawil R, Waldheim E, Lampa J, Kosek E, Fransson P. Intrinsic brain connectivity in chronic pain: a resting-state fMRI study in patients with rheumatoid arthritis. Front Hum Neurosci 2016;10:107.

Focht BC, Kolty DF. Alterations in pain perception after exercise performed in the morning and evening. J Strength Cond Res 2009;23:891–7.

Foxen-Craft E, Dahlquist LM. Brief submaximal isometric exercise improves cold pressor pain tolerance. J Behav Med 2017;40:760–71.

Fuller AK, Robinson ME. A test of exercise analgesia using signal detection theory and a within-subjects design. Percept Mot Skills 1993;76(3 pt 2):1299–310.

Gajjar H, Nahrwold K, Titec C, Hasenbring ML, Vaegter HB. Exercise does not produce hypoalgesia when performed after a painful stimulus. Scand J Pain 2018;18:311–20.

Gajjar H, Titze C, Hasenbring ML, Vaegter HB. Isometric back exercise has different effect on pressure pain thresholds in healthy men and women. Pain Med 2017;18:917–23.

Gonzalez-Ibarbengoa JR, Petkovic K, Ramirez-Velez R, Anderssen LS, Gonzalez-Izal M, Jauregi A, Izquierdo M. Immediate effects of osteopathic treatment versus therapeutic exercise on patients with chronic cervical pain. Altern Ther Health Med 2018;24:24–32.

Ge HY, Nie H, Graven-Nielsen T, Danneskiold-Samsoe B, Arendt-Nielsen L. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia. Eur J Pain 2012;16:196–203.

Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Database Syst Rev 2017;4:CD011729.

George SZ, Bishop MD, Bialosky JE, Zeppieri G Jr, Robinson ME. Immediate effects of peripheral and central nervous system sensitization: an experimental study. BMC Musculoskelet Disord 2006;7:68.

Gemeun H, Chatzhnikolau A, Malliou P, Beneka A, Jamurtas AZ, Bikos C, Tsoukas D, Theodorou A, Katrabasas I, Margonis K, Douroudos I, Giotisidou A, Fatourou IG. Oxidative stress and inflammatory responses following an acute bout of isokinetic exercise in obese women with knee osteoarthritis. Knee 2013;20:581–90.

Geva N, Defrin R. Enhanced pain modulation among triathletes: a possible explanation for their exceptional capabilities. PAIN 2013;154:2317–23.

Geva N, Pruessner J, Defrin R. Acute psychosocial stress reduces pain modulation capabilities in healthy men. PAIN 2014;155:2418–25.

Gomolka S, Vaegter HB, Nijs J, Meeus M, Gajjar H, Hasenbring ML, Titze C. Assessing endogenous pain inhibition: test-retest reliability of exercise-induced hypoalgesia in local and remote body parts after aerobic cycling. Pain Med 2019;20:2272–82.

Guie R, Blin O, Pouget J, Sarratice G. Nicocceptive threshold and physical activity. Can J Neuro Sci 1992;19:69–71.

Gurevich M, Kohn PM, Davis C. Exercise-induced analgesia and the role of reactivity in pain sensitivity. J.Sports Sci 1994;12:549–59.

Haefer PJ, Quaid K, Mils JC. Naloxone alters pain perception after jogging. Psychiatry Res 1981;5:231–2.

Hakansson S, Jones MD, Ristikov M, Marcolis L, Clark T, Ram A, Morey R, Franklin A, McCarthy C, Carl LD, Ward R, Keech. Intensity-dependent effects of aerobic training on pressure pain threshold in overweight men: a randomized trial. Eur J Pain 2018;22:1813–23.

Hansen S, Vaegter HB, Petkovic K, Titze C. Pre-treatment exercise-induced hypoalgesia is associated with change in pain in function after standardized exercise therapy in painful knee osteoarthritis. Clin J Pain 2019;35:16–24.
[60] Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 2007;27:10000–6.

[61] Harris S, Sterling M, Farrell SF, Pedler A, Smith AD. The influence of isometric exercise on endogenous pain modulation: comparing exercise-induced hypoalgesia and offset analgesia in young, active adults. Scand J Pain 2015;18:519–23.

[62] Henriksen M, Klocker L, Graven-Nielsen T, Bartholdy C, Jorgensen TS, Bandak E, Dannenkiold-Samsoe B, Christensen R, Bliddal H. Exercise therapy reduces pain sensitivity in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Care Res (Hoboken) 2014;66: 1836–43.

[63] Herrera JF, Laird JM, Lopez-Garcia JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol 2000;61:169–203.

[64] Hoeger Bement MK, DiCapo JM, Lewis A, Keller ML, Harkins AL, Hunter SK. The role of the menstrual cycle phase in pain perception before and after an isometric fatiguing contraction. Eur J Appl Physiol 2009;106:105–12.

[65] Hoeger Bement MK, Weyer A, Hartley S, Drewek B, Harkins AL, Hunter SK. Pain perception after isometric exercise in women with fibromyalgia. Arch Phys Med Rehabil 2011;92:89–95.

[66] Hoffman MD, Lee J, Zhao H, Tsodikov A. Pain perception after running in humans an experimental cross-over study. Scand J Pain 2019. doi: 10.1007/s40855-019-00377-1.

[67] Hoffmann MD, Shepanski MA, Mackenzie SP, Clifford PS. Intensity and duration threshold for aerobic exercise-induced analgesia—interval versus continuous mode. Appl Physiol Nutr Metab 2014;39:829–34.

[68] Hoffmann MD, Taylor JL, Booth J, Barry BK. Exploring the mechanisms of aerobic training increases pain pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia. Eur J Pain 2007;11:39–47.

[69] Hurley BC, Mather S, Paulding A, Dwyer E, Harkins AL. Tooth clenching until exhaustion evokes exercise-induced hypoaldgesia to repetitive back movement in people with chronic low back pain. Arch Phys Med Rehabil 2011;92:89–93.

[70] Iannetti GD, Liang M, Hu L, Valentini E, Zhang ZG, Koltyn KF, Pain perception after running: a 100-mile ultramarathon. Arch Phys Med Rehabil 2007;88:1042–8.

[71] Kamineni S, Lyng K, Graven-Nielsen T, Hensen JL, Larsen LH, Bandak E. Exercise- and stress-induced hypoalgesia and offset analgesia in the occluded limb of healthy adults. J Pain 2017;18:1409–16.

[72] Kasai J, Lukkahata N, Inouye J, Thomason D, Connelly K. Effects of exercise on select biomarkers and associated outcomes in chronic pain conditions: systematic review. Biol Res Nurs 2016;18:147–59.

[73] Kellow BM, Hanney WJ, Kolber MJ, Fabian PS, Salamah PA, Rothschild CE, Liu X. The short-term effect of kettlebell swings on lumbopelvic pressure pain thresholds: a randomized controlled trial. J Strength Cond Res 2017;31:3001–9.

[74] Kelle MS, Kelley KS, Hootman JM. Effects of exercise on depression in adults with arthritis: a systematic review with meta-analysis of randomized controlled trials. Arthritis Res Ther 2015;17:21.

[75] Kemeny P, Pertovaara A, Huppati T, Johansson G. Elevation of dental pain threshold induced in man by physical exercise is not reversed by cyproheptadine-mediated suppression of growth hormone release. Neurosci Lett 1986;70:388–92.

[76] Kemppainen P, Pertovaara A, Huppati T, Johansson G. The primary somatosensory cortex contributes to the latest part of the cortical pain response elicited by noxious somatosensory stimuli in humans. Neuroimage 2014;84:383–93.

[77] Koltyn KF, Knauf MT, Krymski I, Michalk K, Kawczyński A. Effect of short-term cold-water immersion on muscle pain sensitivity in elite track cyclists. Phys Ther Sport 2018;32:42–7.

[78] Koltyn KF, Lee HS. The effects of aerobic exercise and strengthening exercise on select biomarkers and associated outcomes in chronic pain conditions: systematic review. Biol Res Nurs 2016;18:147–59.

[79] Koltyn KF, Garvin AW, Gardner RL, Nelson TF. Perception of pain following aerobic exercise. Med Sci Sports Exerc 1996;28:1418–21.

[80] Koltyn KF, Knauf MT, Brellenthin AG, Trine MR, Stegner AJ, Tobar DA. Effect of isometric exercise on pain perception and blood pressure in men and women. Med Sci Sports Exerc 2001;33:990–9.

[81] Koltyn KF, Kosek E, Embohm J. Modulation of pressure pain thresholds during and following isometric contraction. PAIN 1995;61:481–6.

[82] Koltyn KF, Embohm J, Hansson P. Modulation of pressure pain thresholds during and following isometric contraction in patients with fibromyalgia and in healthy controls. PAIN 1996;64:415–22.

[83] Koltyn KF, Kosek E, Lundberg L. Segmental and plurisegmental modulation of pain pressure thresholds during static muscle contractions in healthy individuals. Eur J Pain 2003;7:251–8.

[84] Koeck K, Rees OM, Ageberg E, Nilsson A, Halland C. Mechanisms of exercise-induced hypoalgesia. J Pain 2014;15:394–404.

[85] Kosek E, Roos EM, Ageberg E, Nilsson A. Increased pain sensitivity in segmental and plurisegmental modulation of pain pressure thresholds: a randomized controlled trial. J Strength Cond Res 2015;29:1290–7.

[86] Kruger S, Khayat D, Hoffmeister M, Hilberg T. Pain thresholds following physical exercise in man. Brain Res 1985;360:37–45.

[87] Kruger S, Khayat D, Hoffmeister M, Hilberg T. Pain thresholds following physical exercise in man. Brain Res 1985;360:37–45.

[88] Kruger S, Khayat D, Hoffmeister M, Hilberg T. Pain thresholds following physical exercise in man. Brain Res 1985;360:37–45.

[89] Kuithan P, Heneghan NR, Rushton A, Sanderson A, Falla D. Lack of exercise-induced hypoalgesia to repetitive back movement in people with chronic low back pain. Pain Pract 2019;19:740–50.

[90] Kuppers K, Stroyn F, Nils CS, Fransson E, Hermans L, Mues M, Roussel N, Exercise- and stress-induced hypoalgesia in musicians with and without shoulder pain: a randomized controlled crossover study. Phys Physician 2016;19:59–68.

[91] Kosek E, Roos EM, Ageberg E, Nilsson A. Increased pain sensitivity in segmental and plurisegmental modulation of pain pressure thresholds: a randomized controlled trial. J Strength Cond Res 2015;29:1290–7.

[92] Lanefelt SV, Melo-Gomez M, Chizari M, Krsek M, Christidis N, Kosek E, Embreg M. Tooth clenching until exhaustion evokes exercise-induced hypoalgesia in healthy persons and in patients with temporomandibular disorders. J Oral Facial Pain Headache 2013;27:1836–43.

[93] Kruger S, Khayat D, Hoffmeister M, Hilberg T. Pain thresholds following maximal endurance exercise. J Appl Physiol 2016;116:535–40.

[94] Kuhtan P, Heneghan NR, Rushton A, Sanderson A, Falla D. Lack of exercise-induced hypoalgesia to repetitive back movement in people with chronic low back pain. Pain Pract 2019;19:740–50.

[95] Koltyn KF,航水 H, Lamb SE, Bagg MK, Toomey E, Cashin AG, Moseley GL. Reports and replicable pain research: a critical review. PAIN 2018;159:683–9.

[96] Kuhtan P, Heneghan NR, Rushton A, Sanderson A, Falla D. Lack of exercise-induced hypoalgesia to repetitive back movement in people with chronic low back pain. Pain Pract 2019;19:740–50.
Naugle KM, Naugle KE, Riley JL III. Reduced modulation of pain in older adults after isometric and aerobic exercise. J Pain 2016;17:719–28.

Naugle KM, Naugle KE, Riley JL III. Self-reported physical activity predicts pain inhibitory and facilitatory function. Med Sci Sports Exerc 2014;46:622–9.

Newcomb LW, Koltyn KW, Morgan WP, Cook DB. Influence of preferred versus prescribed exercise on pain in fibromyalgia. Med Sci Sports Exerc 2011;43:1106–13.

Nie H, Graven-Nielsen T, Arendt-Nielsen L. Spatial and temporal summation of pain evoked by mechanical pressure stimulation. Eur J Pain 2009;13:592–9.

Ohlman T, Miller L, Naugle KE, Naugle KM. Physical activity levels predict exercise-induced hypoalgesia in older adults. Med Sci Sports Exerc 2018;50:2101–9.

Oktedalen O, Solberg EE, Haugen AH, Opstad PK. The influence of physical and mental training on plasma beta-endorphin level and pain perception after intensive physical exercise. Stress Health 2001;17:121–7.

Olausson B, Eriksson E, Ehmalker L, Rydenhag B, Shyu BC, Andersson SA. Effects of naloxone on dental pain threshold following submaximal exercise and low frequency transcutaneous nerve stimulation: a comparative study in man. Acta Physiol Scand 1986;126:299–305.

Osterweck JV, Marusic U, De Wandelje I, Paul L, Meeus M, Moorkens G, Lambrecht L, Danneels L, Nijs J. The role of autonomic function in exercise-induced endogenous analgesia: a case-control study in myalgic encephalomyelitis/chronic fatigue syndrome and healthy people. Pain Physician 2017;20:E389–e399.

Ord P, Gjøisber K. Pain thresholds and tolerances of competitive rowers. Pain Physician 2017;20:E390–E391.

Padawer WJ, Levine FM. Exercise-induced analgesia: fact or artifact? Pain 1992;48:131–5.

Paris TA, Misra G, Archer DB, Coombes SA. Effects of a force production task and a working memory task on pain perception. J Pain 2013;14:1492–501.

Pazzaglia C, Testani E, Giordano R, Padula L, Valeriari M. Expectation to feel more pain disrupts the habituation of laser-pain rating and laser-evoked potential amplitudes. Neuroscience 2016;333:244–51.

Pedersen BK, Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 2015;25(suppl 3):1–72.

Persson AL, Hansson GA, Kalliomaki A, Moritz U, Sjolund BH. Pressure pain thresholds and electromyographically defined muscular fatigue induced by a muscular endurance task in normal women. Clin J Pain 2000;16:155–63.

Persson AL, Hansson GA, Kalliomaki J, Sjolund BH. Increases in local pressure pain thresholds after muscle exercise in women with chronic shoulder pain. Arch Phys Med Rehabil 2003;84:1515–22.

Pertovaara A, Huopaniemi T, Virtanen A, Johansson G. The influence of exercise on dental pain thresholds and the release of stress hormones. Physiol Behav 1984;33:923–6.

Peters ML. Emotional and cognitive influences on pain experience. Mod Trends Pharmacopsychiatry 2015;30:138–52.

Peterson JA, Schubert DJ, Campbell J, Bemben MG, Black CD. Endogenous pain inhibitory function: endurance-trained athletes vs active controls. Pain Med 2019;20:1822–30.

Pichon M, Watanabe N, Sakata M, Oda K, Toyohara J, Ishi K, Ishiwata K, Hotta H. Basal mu-opioid receptor availability in the amygdala predicts the inhibition of pain-related brain activity during heterotopic noxious counter-stimulation. Neurosci Res 2014;81:78–84.

Pires D, Cruz EB, Caeiro C. Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial. Clin Rehabil 2015;29:538–47.

Pikkarainen BR, Malik SL, Ansari AH, Paudel BH, Sinha R, Sinha M. Effect of sub-maximal exercise on cold pressor pain: a gender based study. Kathmandu Univ Med J (KUMJ) 2013;11:54–9.

Ram KC, Eisenberg E, Haddad M, Pud D. Oral opioid use alters DNIC but not cold pain perception in patients with chronic pain—new perspective of opioid-induced hyperalgesia. PAIN 2008;139:431–8.

Riel H, Vicenzino B, Jensen MB, Olesen JL, Holden S, Rathleff MS. The effect of isometric exercise on pain in individuals with plantar fasciopathy: a randomized crossover trial. Scand J Med Sci Sports 2018;28:2643–50.

Ring C, Edwards L, Kavussanu M. Effects of isometric exercise on pain are mediated by blood pressure. Biol Psychol 2008;78:123–8.
Staud R, Robinson ME, Price DD. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med 2015;49:1277–83.

Rubie SB, Hoffman MD, Shepanski MA, Valic Z, Buckwalter JB, Clifford PS. Thermal pain perception after aerobic exercise. Arch Phys Med Rehabil 2005;86:1019–23.

Runhaar J, Luijsterburg P, Dekker J, Biema-Zeinstra SM. Identifying potential working mechanisms behind the positive effects of exercise training on pain and function in osteoarthritis; a systematic review. Osteoarthritis Cartilage 2015;23:1071–82.

Sacco M, Mesci M, Regolidi G, Detrens S, Bianchi L, Bertorelli M, Pioti S, Magnano A, Spagnoli F, Giuri PG, Faccadoti E, Caiazzo A. The relationship between blood pressure and pain. J Clin Hypertens 2013;15:600–5.

Samuely-Leichtag G, Kodesh E, Meckel Y, Weissman-Fogel I. A fast track to hypoalgesia—the anaerobic exercise effect on pain sensitivity. Int J Sports Med 2018;39:473–81.

Sandal LF, Roos EM, Begesvand SJ, Thorlund JB. Pain trajectory and exercise-induced pain flares during 9 weeks of neuromuscular exercise in individuals with knee and hip pain. Osteoarthritis Cartilage 2016;24:580–92.

Sandler CX, Lloyd AR, Barry BK. Fatigue exacerbation by interval or continuous exercise in chronic fatigue syndrome. Med Sci Sports Exerc 2016;48:1875–85.

Scheff L, Jankowski J, Daamen M, Gleenberg M, Renner J, Muecket S, Schürmann B, Mushoff F, Wagner M, Schild HH, Zimmer A, Boeckler H. Ar MRI study on the acute effects of exercise on pain processing in trained athletes. PAIN 2012;152:1702–14.

Schmitt A, Wallatt D, Stanger C, Martin JA, Schliesinger-Irsch U, Boeckler H. Effects of fitness level and exercise intensity on pain and mood responses. Eur J Pain 2019;24:568–79.

Scholi-Salter E, Forman DE, Otis JD, Tun C, Altup K, Marx CE, Hauger RL, Shipherd JC, Higgins D, Tzyszka A, Rasmusson AM, Potente neurobiological benefits of exercise in chronic pain and posttraumatic stress disorder; pilot study. J Rehabil Res Dev 2016;53:95–106.

Sharma CV, Mehta V. Paracetamol: mechanisms and updates. Contin Educ Anaesth Crit Care Pain 2014;14:153–58.

Shiri R, Coggon D, Falah-Hassani K. Exercise for the prevention of low back pain: systematic review and meta-analysis of controlled trials. Am J Epidemiol 2018;187:1093–101.

Shiri R, Coggon D, Falah-Hassani K. Exercise for the prevention of low back pain: systematic review and meta-analysis of controlled trials. Am J Epidemiol 2018;187:1093–101.

Skou ST, Roos EM. Physical therapy for patients with knee and hip osteoarthritis: supervised, active treatment is current best practice. Clin Exp Rheumatol 2019;37(suppl 120):112–17.

Slater H, Theriault E, Ronningen BO, Clark R, Nosaka K. Exercise-induced mechanical hypoalgesia in musculotendinous tissues of the lateral elbow. Pediatr Exerc Sci 2010;15:66–73.

Smith A, Ritchie C, Pedler A, McCamley K, Roberts M. Exercise induced hypoalgesia is elicited by isometric, but not aerobic exercise in individuals with chronic whiplash associated disorders. Scand J Pain 2017;15:14–21.

Smith BE, Hendrick P, Smith TO, Beterman M, Moffatt F, Rathleff MS, Selfe J, Logan P. Should exercises be painful in the management of chronic musculoskeletal pain? A systematic review and meta-analysis. Br J Sports Med 2017;51:1679–87.

Smith MA, Yancey DL. Sensitivity to the effects of opioids in rats with free access to exercise wheels: mu-opioid tolerance and physical dependence. Psychopharmacology (Berl) 2003;168:426–34.

St-Aubin MO, Chalaye P, Counil FP, Lathrenay S. Beneficial effects of regular physical activity on exercise-induced analgesia in adolescent males. Pediatr Exerc Sci 2019;31:457–61.

Stackhouse SK, Taylor CM, Eckenrod BJ, Stuck E, Davy H. Effects of noxious electrical stimulation and eccentric exercise on pain sensitivity in asymptomatic individuals. PM R 2016;8:415–24.

Staud R, Robinson ME, Price DD. Isometric exercise has opposite effects on central pain mechanisms in fibromyalgia patients compared to normal controls. PAIN 2005;118:176–84.

Sternberg WF, Bokat C, Kass L, Albyoyadjan A, Gracely RH. Sex-dependent components of the analgesia produced by athletic competition. J Pain 2001;2:65–74.

Stolzman S, Danduran M, Hunter SK, Bement MH. Pain response after maximal aerobic exercise in adolescents across weight status. Med Sci Sports Exerc 2015;47:2431–40.

Straszek CL, Rieff MS, Graven-Nielsen T, Petersen KK, Roos EM, Holden S. Exercise-induced hypoalgesia in young adult females with long-standing patelofemoral pain—a randomized crossover study. Eur J Pain 2019;23:1780–9.
[204] van Weerdenburg LJ, Brock C, Drewes AM, van Goor H, de Vries M, Wilder-Smith OH. Influence of exercise on visceral pain: an explorative study in healthy volunteers. J Pain Res 2017;10:37–46.

[205] Vecchiet L, Marini I, Colozzi A, Feroldi P. Effects of aerobic exercise on muscular pain sensitivity. Clin Ther 1984;6:354–63.

[206] Vierck CJ Jr, Staud R, Price DD, Cannon RL, Mauderli AP, Martin AD. The effect of maximal exercise on temporal summation of second pain (windup) in patients with fibromyalgia syndrome. J Pain 2001;2:334–44.

[207] Weissman-Fogel I, Sprecher E, Pud D. Effects of catastrophizing on pain perception and pain modulation. Exp Brain Res 2008;186:79–85.

[208] Whiteside A, Hansen S, Chaudhuri A. Exercise lowers pain threshold in chronic fatigue syndrome. PAIN 2004;109:497–9.

[209] Wingenfeld K, Wolf S, Kunz M, Krieg JC, Lautenbacher S. No effects of hydrocortisone and dexamethasone on pain sensitivity in healthy individuals. Eur J Pain 2015;19:834–41.

[210] Wonders KY, Drury DG. Exercise intensity as a determinant of exercise induced hypoalgesia. J Exerc Physiol (Online) 2011;14:134–44.

[211] Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol 2010;23:611–15.

[212] Yarnitsky D, Arendt-Nielsen L, Bouhassira D, Edwards RR, Fillingim RB, Granot M, Hansson P, Lautenbacher S, Marchand S, Wilder-Smith O. Recommendations on terminology and practice of psychophysical DNIC testing. Eur J Pain 2010;14:339.