Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation

Jean Pouget-Abadie*
Ecole Polytechnique, France

Dzmitry Bahdanau *
Jacobs University, Germany

Bart van Merriënboer Kyunghyun Cho
Université de Montréal, Canada

Yoshua Bengio
Université de Montréal, Canada
CIFAR Senior Fellow

Abstract

The authors of (Cho et al., 2014a) have shown that the recently introduced neural network translation systems suffer from a significant drop in translation quality when translating long sentences, unlike existing phrase-based translation systems. In this paper, we propose a way to address this issue by automatically segmenting an input sentence into phrases that can be easily translated by the neural network translation model. Once each segment has been independently translated by the neural machine translation model, the translated clauses are concatenated to form a final translation. Empirical results show a significant improvement in translation quality for long sentences.

1 Introduction

Up to now, most research efforts in statistical machine translation (SMT) research have relied on the use of a phrase-based system as suggested in (Koehn et al., 2003). Recently, however, an entirely new, neural network based approach has been proposed by several research groups (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014b), showing promising results, both as a standalone system or as an additional component in the existing phrase-based system. In this neural network based approach, an encoder ‘encodes’ a variable-length input sentence into a fixed-length vector and a decoder ‘decodes’ a variable-length target sentence from the fixed-length encoded vector.

It has been observed in (Sutskever et al., 2014), (Kalchbrenner and Blunsom, 2013) and (Cho et al., 2014a) that this neural network approach works well with short sentences (e.g., \(\lesssim 20\) words), but has difficulty with long sentences (e.g., \(\gtrsim 20\) words), and particularly with sentences that are longer than those used for training. Training on long sentences is difficult because few available training corpora include sufficiently many long sentences, and because the computational overhead of each update iteration in training is linearly correlated with the length of training sentences. Additionally, by the nature of encoding a variable-length sentence into a fixed-size vector representation, the neural network may fail to encode all the important details.

In this paper, hence, we propose to translate sentences piece-wise. We segment an input sentence into a number of short clauses that can be confidently translated by the model. We show empirically that this approach improves translation quality of long sentences, compared to using a neural network to translate a whole sentence without segmentation.

2 RNN Encoder–Decoder for Translation

The RNN Encoder–Decoder (RNNenc) model is a recent implementation of the encoder–decoder approach, proposed independently in (Cho et al., 2014b) and in (Sutskever et al., 2014). It consists of two RNNs, acting respectively as encoder and decoder. Each RNN maintains a set of hidden units that makes an ‘update’ decision for each symbol in an input sequence. This decision depends on the input symbol and the previous hidden state. The RNNenc in (Cho et al., 2014b) uses a special hidden unit that adaptively forgets or remembers the previous hidden state such that the activation of a hidden unit \(h_j^{(t)}\) at time \(t\) is computed by

\[
h_j^{(t)} = z_j h_j^{(t-1)} + (1 - z_j) \tilde{h}_j^{(t)},
\]
where

\[
\tilde{h}_j^{(t)} = f \left( [Wx]_j + r_j \left[ Uh_{(t-1)} \right] \right),
\]

\[
z_j = \sigma \left( [W_x x]_j + [U_j h_{(t-1)}]_j \right),
\]

\[
r_j = \sigma \left( [W_r x]_j + [U_r h_{(t-1)}]_j \right).
\]

\(z_j\) and \(r_j\) are respectively the update and reset gates.

Additionally, the RNN in the decoder computes at each step the conditional probability of a target word:

\[
p(f_{t,j} = 1 \mid f_{t-1}, \ldots, f_t, c) = \frac{\exp(w_j h_{(t)})}{\sum_{j'=1}^J \exp(w_{j'} h_{(t)})},
\]

(1)

where \(f_{t,j}\) is the indicator variable for the \(j\)-th word in the target vocabulary at time \(t\) and only a single indicator variable is on (= 1) each time. \(c\) is the context vector, the representation of the input sentence as encoded by the encoder.

Although the model in (Cho et al., 2014b) was originally trained on phrase pairs, it is straightforward to train the same model with a bilingual, parallel corpus consisting of sentence pairs as has been done in (Sutskever et al., 2014). In the remainder of this paper, we use the RNNenc trained on English–French sentence pairs (Cho et al., 2014a).

3 Automatic Segmentation and Translation

One hypothesis explaining the difficulty encountered by the RNNenc model when translating long sentences is that a plain, fixed-length vector lacks the capacity to encode a long sentence. When encoding a long input sentence, the encoder may lose the track of all the subtleties in the sentence. Consequently, the decoder has difficult time recovering the correct translation from the encoded representation. One solution would be to build a larger model with a larger representation vector to increase the capacity of the model at the price of higher computational cost.

In this section, however, we propose to segment an input sentence such that each segmented clause can be easily translated by the RNN Encoder–Decoder. In other words, we wish to find a segmentation that maximizes the total confidence score which is a sum of the confidence scores of the phrases in the segmentation. Once the confidence score is defined, the problem of finding the best segmentation can be formulated as an integer programming problem.

Let \(e = (e_1, \ldots, e_n)\) be a source sentence composed of words \(e_k\). We denote a phrase, which is a subsequence of \(e\), with \(e_{ij} = (e_i, \ldots, e_j)\).

We use the RNN Encoder–Decoder to measure how confidently we can translate a subsequence \(e_{ij}\) by considering the log-probability \(\log p(f^k \mid e_{ij})\) of a candidate translation \(f^k\) generated by the model. In addition to the log-probability, we also use the log-probability \(\log p(e_{ij} \mid f^k)\) from a reverse RNN Encoder–Decoder (translating from a target language to source language). With these two probabilities, we define the confidence score of a phrase pair \((e_{ij}, f^k)\) as:

\[
c(e_{ij}, f^k) = \frac{\log p(f^k \mid e_{ij}) + \log q(e_{ij} \mid f^k)}{2 \log (j - i + 1)},
\]

(2)

where the denominator penalizes a short segment whose probability is known to be overestimated by an RNN (Graves, 2013).

The confidence score of a source phrase only is then defined as

\[
c_{ij} = \max_k c(e_{ij}, f^k).
\]

(3)

We use an approximate beam search to search for the candidate translations \(f^k\) of \(e_{ij}\), that maximize log-likelihood \(\log p(f^k \mid e_{ij})\) (Graves et al., 2013; Boulanger-Lewandowski et al., 2013).

Let \(x_{ij}\) be an indicator variable equal to 1 if we include a phrase \(e_{ij}\) in the segmentation, and otherwise, 0. We can rewrite the segmentation problem as the optimization of the following objective function:

\[
\max_x \sum_{i \leq j} c_{ij} x_{ij} = x \cdot c
\]

subject to

\[
\forall k, n_k = 1
\]

\[
n_k = \sum_{i,j} x_{ij} 1_{1 \leq k \leq j} \text{ is the number of source phrases chosen in the segmentation containing word } e_k.
\]

The constraint in Eq. (4) states that for each word \(e_k\) in the sentence one and only one of the source phrases contains this word, \((e_{ij})_{1 \leq k \leq j}\), is included in the segmentation. The constraint matrix is totally unimodular making this integer programming problem solvable in polynomial time.

\[
\text{max } \sum_{i \leq j} c_{ij} x_{ij} = x \cdot c \\
\text{subject to } \forall k, n_k = 1 \\
n_k = \sum_{i,j} x_{ij} 1_{1 \leq k \leq j} \\
\]
Let \( S_j^k \) be the first index of the \( k \)-th segment counting from the last phrase of the optimal segmentation of subsequence \( e_{1j} \) (\( S_j := S_j^1 \)), and \( s_j \) be the corresponding score of this segmentation (\( s_0 := 0 \)). Then, the following relations hold:

\[
\begin{align*}
    s_j &= \max_{1 \leq i \leq j} (c_{ij} + s_{i-1}), \quad \forall j \geq 1 \quad (5) \\
    S_j &= \arg \max_{1 \leq i \leq j} (c_{ij} + s_{i-1}), \quad \forall j \geq 1 \quad (6)
\end{align*}
\]

With Eq. (5) we can evaluate \( s_j \) incrementally. With the evaluated \( s_j \), we can compute \( S_j \) as well (Eq. (6)). By the definition of \( S_j^k \) we find the optimal segmentation by decomposing \( e_{1n} \) into \( e_{S_n^1}, e_{S_n^2}, \ldots, e_{S_n^{k-1}}, e_{S_n^k} \), where \( k \) is the index of the first one in the sequence \( S_n^k \). This approach described above requires quadratic time with respect to sentence length.

### 3.1 Issues and Discussion

The proposed segmentation approach does not avoid the problem of reordering clauses. Unless the source and target languages follow roughly the same order, such as in English to French translations, a simple concatenation of translated clauses will not necessarily be grammatically correct.

Despite the lack of long-distance reordering in the current approach, we find nonetheless significant gains in the translation performance of neural machine translation. A mechanism to reorder the obtained clause translations is, however, an important future research question.

Another issue at the heart of any purely neural machine translation is the limited model vocabulary size for both source and target languages. As shown in (Cho et al., 2014a), translation quality drops considerably with just a few unknown words present in the input sentence. Interestingly enough, the proposed segmentation approach appears to be more robust to the presence of unknown words (see Sec. 5). One intuition is that the segmentation leads to multiple short clauses with less unknown words, which leads to more stable translation of each clause by the neural translation model.

Finally, the proposed approach is computationally expensive as it requires scoring all the sub-phrases of an input sentence. However, the scoring process can be easily sped up by scoring phrases in parallel, since each phrase can be scored independently.

### 4 Experiment Settings

#### 4.1 Dataset

We evaluate the proposed approach on the task of English-to-French translation. We use a bilingual, parallel corpus of 348M words selected by the method of (Axelrod et al., 2011) from a combination of Europarl (61M), news commentary (5.5M), UN (421M) and two crawled corpora of 90M and 780M words respectively. The performance of our models was tested on news-test2012, news-test2013, and news-test2014. When comparing with the phrase-based SMT system Moses (Koehn et al., 2007), the first two were used as a development set for tuning Moses while news-test2014 was used as our test set.

To train the neural network models, we use only the sentence pairs in the parallel corpus, where both English and French sentences are at most 30 words long. Furthermore, we limit our vocabulary size to the 30,000 most frequent words for both English and French. All other words are considered unknown and mapped to a special token \([\text{UNK}]\).

In both neural network training and automatic segmentation, we do not incorporate any domain-specific knowledge, except when tokenizing the original text data.

#### 4.2 Models and Approaches

We compare the proposed segmentation-based translation scheme against the same neural network model translations without segmentation. The neural machine translation is done by an RNN Encoder–Decoder (RNNenc) (Cho et al., 2014b) trained to maximize the conditional probability of a French translation given an English sentence. Once the RNNenc is trained, an approximate beam-search is used to find possible translations with high likelihood.

This RNNenc is used for the proposed segmentation-based approach together with another RNNenc trained to translate from French to
English. The two RNNenc’s are used in the proposed segmentation algorithm to compute the confidence score of each phrase (See Eqs. (2)–(3)).

We also compare with the translations of a conventional phrase-based machine translation system, which we expect to be more robust when translating long sentences.

5 Results and Analysis

5.1 Validity of the Automatic Segmentation

We validate the proposed segmentation algorithm described in Sec. [3] by comparing against two baseline segmentation approaches. The first one randomly segments an input sentence such that the distribution of the lengths of random segments has its mean and variance identical to those of the segments produced by our algorithm. The second approach follows the proposed algorithm, however, using a uniform random confidence score.

| Model                        | Test set |
|------------------------------|----------|
| No segmentation              | 13.15    |
| Random segmentation          | 16.60    |
| Random confidence score      | 16.76    |
| Proposed segmentation        | 20.86    |

Table 1: BLEU score computed on news-test2014 for two control experiments. Random segmentation refers to randomly segmenting a sentence so that the mean and variance of the segment lengths corresponded to the ones our best segmentation method. Random confidence score refers to segmenting a sentence with randomly generated confidence score for each segment.

From Table 1, we can clearly see that the proposed segmentation algorithm results in significantly better performance. One interesting phenomenon is that any random segmentation was better than the direct translation without any segmentation. This indirectly agrees well with the previous finding in (Cho et al., 2014a) that the neural machine translation suffers from long sentences.

5.2 Importance of Using an Inverse Model

The proposed confidence score averages the scores of a translation model $p(f \mid e)$ and an inverse translation model $p(e \mid f)$ and penalizes for short phrases. However, it is possible to use alternate definitions of confidence score. For instance, one may use only the ‘direct’ translation model or varying penalties for phrase lengths.

In this section, we test three different confidence score:

- $p(f \mid e)$ Using a single translation model
- $p(f \mid e) + p(e \mid f)$ Using both direct and reverse translation models without the short phrase penalty
- $p(f \mid e) + p(e \mid f) \cdot \text{(p)}$ Using both direct and reverse translation models together with the short phrase penalty

The results in Table 2 clearly show the importance of using both translation and inverse translation models. Furthermore, we were able to get the best performance by incorporating the short phrase penalty (the denominator in Eq. (2)). From here on, thus, we only use the original formulation of the confidence score which uses the both models and the penalty.

5.3 Quantitative and Qualitative Analysis

As expected, translation with the proposed approach helps significantly with translating long sentences (see Fig. 1). We observe that translation performance does not drop for sentences of lengths greater than those used to train the RNNenc ($\leq 30$ words).

Similarly, in Fig. 2 we observe that translation quality of the proposed approach is more robust
Figure 1: The BLEU scores achieved by (a) the RNNenc without segmentation, (b) the RNNenc with the penalized reverse confidence score, and (c) the phrase-based translation system Moses on a newstest12-14.

Table 2: BLEU scores computed on the development and test sets. See the text for the description of each approach. Moses refers to the scores by the conventional phrase-based translation system. The top five rows consider all sentences of each data set, whilst the bottom five rows includes only sentences with no unknown words.

Table 3: BLEU scores computed on the development and test sets. See the text for the description of each approach. Moses refers to the scores by the conventional phrase-based translation system. The top five rows consider all sentences of each data set, whilst the bottom five rows includes only sentences with no unknown words.

6 Discussion and Conclusion

In this paper we propose an automatic segmentation solution to the ‘curse of sentence length’ in neural machine translation. By choosing an appropriate confidence score based on bidirectional translation models, we observed significant improvement in translation quality for long sentences.

Our investigation shows that the proposed segmentation-based translation is more robust to the presence of unknown words. However, since each segment is translated in isolation, a segmentation of an input sentence may negatively impact translation quality, especially the fluency of the translated sentence, the placement of punctuation marks and the capitalization of words.

An important research direction in the future is to investigate how to improve the quality of the translation obtained by concatenating translated segments.

Acknowledgments

The authors would like to acknowledge the support of the following agencies for research funding and computing support: NSERC, Calcul Québec, Compute Canada, the Canada Research Chairs and CIFAR.

References

[Axelrod et al.2011] Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation via pseudo in-domain data selection. In Proceedings of
Between the early 1970s, when the Boeing 747 jumbo defined modern long-haul travel, and the turn of the century, the weight of the average American 40- to 49-year-old male increased by 10 per cent, according to U.S. Health Department Data.

During his arrest Ditta picked up his wallet and tried to remove several credit cards but they were all seized and a hair sample was taken from him.

There are several beautiful flashes - the creation of images has always been one of Chouinard’s strong points - like the hair that is ruffled or the black fabric that extends the lines.

Without specifying the illness she was suffering from, the star performer of ‘Respect’ confirmed to the media on 16 October that the side effects of a treatment she was receiving were ‘difficult’ to deal with.

Table 3: Sample translations with the RNNenc model taken from the test set along with the source sentences and the reference translations.
He nevertheless praised the Government for responding to his request for urgent assistance which he first raised with the Prime Minister at the beginning of May.

Il a néanmoins félicité le gouvernement pour avoir répondu à la demande d’aide urgente qu’il a présentée au Premier ministre début mai.

Table 4: An example where an incorrect segmentation negatively impacts fluency and punctuation.

---

**Source**

He nevertheless praised the Government for responding to his request for urgent assistance which he first raised with the Prime Minister at the beginning of May.

**Segmentation**

[He nevertheless praised the Government for responding to his request for urgent assistance which he first raised ] [with the Prime Minister at the beginning of May . ]

**Reference**

Il a néanmoins félicité le gouvernement pour avoir répondu à la demande d’aide urgente qu’il a présentée au Premier ministre début mai.

**With segmentation**

Il a néanmoins félicité le Gouvernement de répondre à sa demande d’aide urgente qu’il a soulevée . avec le Premier ministre début mai.

**Without segmentation**

Il a néanmoins félicité le gouvernement de répondre à sa demande d’aide urgente qu’il a adressée au Premier Ministre début mai.

---

**References**

[Boulanger-Lewandowski et al.2013] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. 2013. Audio chord recognition with recurrent neural networks. In *ISMIR*.

[Cho et al.2014a] Kyunghyun Cho, Bart van Merriënbóer, Dzmitry Bahdanau, and Yoshua Bengio. 2014a. On the properties of neural machine translation: Encoder–Decoder approaches. In *Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation*, October.

[Cho et al.2014b] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014b. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In *Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014)*, October. to appear.

[Graves et al.2013] A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. *ICASSP*.

[Graves2013] A. Graves. 2013. Generating sequences with recurrent neural networks. *arXiv:1308.0850 [cs.NE]*, August.

[Kalchbrenner and Blunsom2013] Nal Kalchbrenner and Phil Blunsom. 2013. Two recurrent continuous translation models. In *Proceedings of the ACL Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1700–1709. Association for Computational Linguistics.

[Koehn et al.2003] Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In *Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1*, NAACL ’03, pages 48–54, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Koehn et al.2007] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Annual meeting of the association for computational linguistics (acl). Prague, Czech Republic. demonstration session.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Sequence to sequence learning with neural networks. In *Advances in Neural Information Processing Systems (NIPS 2014)*, December.