Platelet-Derived Microparticles (MPs) and Thrombin Generation Velocity in Deep Vein Thrombosis (DVT): Results of a Case–Control Study

Salvatore Santo Signorelli 1*
Gea Oliveri Conti 2
Maria Fiore 2
Federica Cangiano 2
Pietro Zuccarello 2
Agostino Gaudio 1
Margherita Ferrante 2

1 Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; 2 Department of Medical, Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy

Introduction: The role of platelets (Ps) and platelet-derived microparticles (MPs) in venous thromboembolism (VTE) is still being debated.

Methods: We measured MPs, velocity of thrombin formation (PiCT) and phospholipid generation (PLPs) in 40 patients with unprovoked deep vein thrombosis (DVT), who were compared with 40 healthy controls.

Results: MPs were higher in DVT (7.12 nM; 25th–75th percentile 5.26–9.12) than in controls (5.45 nM; 25th–75th percentile 1.67–8.96) (p = 0.19). PiCT velocity was lower in DVT (1.87 sec; 25th–75th percentile 1.75–1.93 sec) compared with controls (1.95 sec; 25th–75th percentile 1.84–2.24 sec) (p = 0.04). PLPs were higher in DVT (77.03 µg/mL; 25th–75th percentile 72.12–103.59 µg/mL) compared with controls (68.65 µg/mL; 25th–75th percentile 55.31–78.20 µg/mL) (p = 0.02).

Discussion: We hypothesize that MPs could be integrated with the lab network assay in evaluating Ps’ role as an activated procoagulative condition. We encourage research on Ps and P-derived microvesicle pathways in patients with unprovoked DVT and not only in patients with cancer-induced DVT.

Keywords: deep vein thrombosis, microparticles, platelet, extracellular vesicles, biomarkers

Plain Language Summary
The intent of the study was to draw attention to platelet-derived microparticles and thrombin generation in deep vein thrombosis because a favourable role for platelets in venous thromboembolism is still being debated. In unprovoked deep vein thrombosis, the authors found a high release of platelet-derived microparticles and raised thrombin generation. These results raise awareness of the role of platelets, platelet-derived microparticles in unprovoked deep vein thrombosis, as well as evaluating the clot-activated conditions leading to thromboembolism in the venous circulation.

Introduction
Deep vein thrombosis (DVT) is a venous thromboembolic disease 1 that occurs in patients with favourable conditions (ie, cardiac, cerebral or inflammatory diseases, recent trauma or surgical procedures, etc.). DVT frequently affects patients suffering from cancer, those prescribed anti-cancer drugs or those with central venous catheter implants. 2–5 DVT mainly occurs in individuals with genetic or acquired thrombophilia. 6 A high level of awareness has been drawn to coagulative cascade factors in DVT, whereas there is little awareness of platelets as agents which induce
clotting in DVT patients. The results of clinical trials have pointed to the efficacy of low doses of acetylsalicylic acid in reducing the risk of venous thromboembolism. However, the efficacy of platelets (Ps) antagonism in venous thromboembolism has not been clearly demonstrated, whereas its role in arterial thrombosis has been demonstrated. Interestingly, platelets are a primary source of microparticles (MPs), which are phospholipid vesicles (0.1–1.0 μm) with procoagulative activity linked to tissue factor (TF) and phospholipids (PLPs). To investigate the MPs released in the bloodstream and in thrombin generation in patients suffering from DVT of the lower limbs, we performed a case–control study focusing on platelet-derived MPs in 40 patients diagnosed with DVT.

Materials and Methods

Study Subjects (Table 1)

We enrolled forty patients (mean age 57.8 ± 7.2 years old), of which 21 were male (mean age 57.9 ± 6.9 years) and 19 were female (mean age 58.8 ± 7.3 years) affected with unprovoked DVT who had been referred to the Vascular Medicine Laboratory of the Internal Medicine Unit at the “G. Rodolico” University Hospital (Catania, Italy). The patients were matched to a similar number of individuals that attended the vascular laboratory and were not diagnosed with an illness. They were considered as controls. None of the DVT patients had suffered from recent cardiac ischemic events (myocardial infarction, cerebral stroke, bowel ischemia), chronic renal failure, active liver diseases or cancer. None of the DVT patients were smokers at the time of enrolment. Patients were informed of the research, consented to blood sampling and provided verbal consent to the research. Verbal consent was approved by the ethics committee. To diagnose DVT of the lower limbs, patients received a non-invasive ultrasound test (US) using a MyLab Twice instrument (Esaote Ind. Genova, Italy) equipped with a linear probe. The diagnosis of DVT of the lower limb was carried out non-compressing one or more deep lower limb veins by doppler probe (positive CUS test), and/or evidence of echogenic patterns in one or more deep lower limb veins. The present study was previously approved by the Ethics committee Study of the Hospital Garibaldi (Catania, Italy; resolution n.23/2016/CECT2) and was conducted in accordance with the Declaration of Helsinki.

Variables	DVT Cases (n = 40)	Controls (n = 40)	p-value
Gender			
Males	21	20	n.s.
Females	19	20	
Median Age, y (IQR)			
≤ 51.0	61.5 (44.3–72.0)	58.3 (37.0–66.1)	n.s.
>52.0	17	18	0.115
Median BMI (kg/m²) (IQR)			
Normal (< 25)	27.0 (24.3–38.3)	24.8 (22.4–28.8)	0.327
Overweight (25–29.9)	15	15	n.s
Obese (≥30)	8	8	
Anticoagulant therapy (yes/	17	17	
no)			

Table 1 Characteristics of Controls and DVT Cases

Note: Bold value indicates statistical significant.

Microparticle (MP) Detection

The blood samples were drawn quickly and early in the morning. Venous blood samples were drowned in citrate vacuum tubes and treated rapidly by centrifugation (1500 rpm for 15 minutes with an Eppendorf Centrifuge 5417 C/R) to obtain platelet-poor plasma. A second centrifugation step was carried out on plasma (13,400 rpm for 2 minutes). Platelet-free plasma samples were stored at −80 °C to ensure sufficient microparticles, which were then captured by immobilized annexin V. In brief, biotinylated annexin V (annexin VIB; Roche Diagnostics, Mannheim, Germany) was insolubilized onto streptavidin-coated 96-well microtitration plates (Roche Diagnostics, Mannheim, Germany). After washing the plates three times with TBS–Ca2+ (50 mM Tris buffer, pH 7.5 containing 120 mM NaCl, 2.7 mM KCl, and 1 mM CaCl2), 300 μL aliquots of platelet-free plasma was thawed and thrombin inhibitor, and factor Xa inhibitor (Merck, Darmstadt, Germany) were added. A 100 μL aliquot of platelet-free plasma per well was incubated for 30 min at 37 °C (duplicate wells). After four washing steps, the anionic phospholipid content was determined by a classic prothrombinase assay. The results were reported as nM phosphatidylserine equivalents (nM PS) according to Pigault et al.

Prothrombinase-Induced Clotting Time Assay (PiCT)

The immobilized MPs were incubated in a final volume of 150 μL with factor Va (250 pM), Xa (9.3 pM), prothrombin (0.7 μM) and CaCl2 (saturated solution) for 15 min at 37 °C (all reagents from Sigma Aldrich, USA). Then, 1.5 mM Chromozym TH (Roche Diagnostics, Mannheim, Germany) was added as a chromogenic substrate for thrombin, and the solution was incubated for another
4 min. The chromogenic substrate was cleaved by thrombin. The colour change was measured photometrically (405 nm) using a micro-titration plate reader (Thermo Fisher Scientific Inc, Canada) equipped with kinetic software. The colour development reaction followed a Michaelis–Menten kinetic and was stopped after 4 min by the addition of EDTA (5 mM, Sigma Aldrich, USA). Velocity was reported in seconds (sec).

Phospholipid Detection (PLPs)

Phospholipids were quantified according to a modified Stewart assay (only 100 µL of platelet-free plasma). The Stewart assay is based on the ability of phospholipids to form a complex with ammonium ferrothiocyanate. Quantities of 13.52 g of ferric chloride hexahydrate and 15.2 g of ammonium thiocyanate (both from Sigma Aldrich) were dissolved in 0.5 L Milli-Q water. The solution is stable at room temperature for several months. A PLP (Sigma Aldrich) calibration standard of 0.1 mg/mL was prepared in chloroform. A six-point calibration curve was performed using chloroform as solvent, bringing the final volume to 2 mL (0–1 mL of PhPs standard in 2 mL of chloroform). Finally, 2 mL of ferrothiocyanate solution was added to all six standards prepared in glass tubes. The tubes were vortexed for 20 seconds and then centrifuged for 5 minutes at 1000 r.p.m., the lower layer then being removed using Pasteur pipettes. Test samples were similarly prepared. The optical density of the standards and samples was read at 485 nm in a Shimadzu Recording Spectrophotometer UV-2401PC. Test-sample concentrations were found by comparing them with the standard curve.

Results

P-Derived Microparticle (MPs) Levels

The median value (interquartile 25th–75th percentile) of the MPs was 7.12 (5.26–9.12) phosphatidyl-serine equivalent (nM) in DVT patients, and in controls, it was 5.45 (1.67–8.96) phosphatidyl-serine equivalent. The difference between the medians was not significant (p = 0.19) (Figure 1).

Prothrombinase-Induced Clotting Time Assay (PiCT) Velocity

The median value (interquartile 25th–75th percentile) of the PiCT was 1.87 sec (1.75–1.93) in DVT patients and 1.95 sec (1.84–2.24) in controls (Figure 2). This difference was statistically significant (p = 0.04).

Phospholipids (PLPs)

The median value (interquartile 25th–75th percentile) of PLPs was 77.03 µg/mL (72.12–103.59) in DVT patients and 68.65 µg/mL (55.31–78.20) in controls (Figure 3). This difference was statistically significant (p = 0.02).

Discussion

Procoagulative disorders play a key role in venous thromboembolic diseases such as DVT, even when they occur as asymptomatic or poorly symptomatic. However, there is a close tie-in between DVT and pulmonary embolism, for which it is widely accepted that combined coagulative markers (ie, D-dimer) and ultrasound examination (ie, ultrasound) have improved the diagnosis of DVT. From

![Figure 1](https://www.dovepress.com/)

Figure 1 Box-plot showing the distribution of microparticle (MP) quantification by controls and DVT cases.
Figure 2 Box-plot showing the distribution of prothrombinase-induced clotting time assay (PiCT) velocity by controls and DVT cases. The asterisks are outliers, and the dots are extreme values. The numbers identify the sample to which the asterisk or dot refers.

Figure 3 Box-plot showing the distribution of phospholipid (PLP) quantification by controls and DVT cases.

The abundant evidence on the role of coagulative factors and disorders in provoking DVT, the latest anticoagulant drugs are the first line of treatment for DVT.12–15 All these drugs focus on inhibiting the activation of components in the coagulative cascade to counteract prothrombotic event drama in the venous circulation. The role of Ps as active cells in venous thromboembolism has been less contested or almost unknown, whereas the role of Ps aggregation is considered as crucial both in starting and in determining arterial thrombosis. Study results and meta-analyses have commented on the effectiveness of acetylsalicylic acid in reducing VTE recurrence.7,8 These studies compared acetylsalicylic acid favourably to dicumarolics in the secondary prevention of venous thromboembolisms including lower limb DVT. However, to date, there has not been any consensus on the efficacy of platelet antagonism in treating or reducing VTE.15 Microparticles favour clots by increasing the assembly of procoagulative factors, which gives them high procoagulant capability. It is known that the surfaces of microparticles have both clot proteins and phosphatidylserine. In turn, the presence of gamma-carboxyglutamic acid in clot proteins greatly increases the activated complex of procoagulative factors such as activated factors VIII/IX and V/X.16 Additionally, it is known that microparticles release tissue factor (TF), a transmembrane glycoprotein, and it is a potent initiator of procoagulant activity in vitro. TF increases procoagulant activity dramatically, and it has been demonstrated in different diseases showing a high frequency or risk for thromboembolic events. Platelet-derived microparticles are closely linked to activated coagulative factor complexes; therefore, these particles play a key role in thrombin generation.17,18

Our study shows that MPs plasma levels and thrombin generation increase in DVT patients compared with controls. To explain these results, it is necessary to consider the close relationship between pro-inflammatory mediators like lipopolysaccharides,19 the complementary activation of platelet-leukocyte complexes and cytokines,20 and soluble CD40 ligands on platelet stimulation.21 We know that soluble CD40 ligands induce thrombin-receptor activating peptides.22 It is accepted that platelets carry, transfer and internalize tissue factor (TF), leading to the TF-rich P-derived microparticles.22,23 MPs increase the velocity of thrombin generation and promote clot propagation following TF.24 Furthermore, MPs are also rich in anionic PLPs and are capable of supporting and stimulating coagulation. The adhering platelets degranulate and release several components, including calcium ions, which bind to phospholipids and provide a surface for various coagulation factors to assemble.25 In normal haemostasis, free-ionized calcium needs to start platelet plug formation, but it also facilitates several steps in the coagulative cascade. Calcium also mediates the binding of prothrombin complexes through terminal gamma-carboxy residues to the PLP surfaces expressed by activated platelets, as well as acting on the procoagulant MPs shed from them (this particular role of calcium ions also acts on the PLP of MPs shed from them). It is noteworthy that we decided to modify the PiCT assay methodology to reveal the possible
differences in thrombin generation and in its velocity of
generation in the two groups of samples. We want to draw
attention to the role of Ca\(^{2+}\) by using a saturated Ca\(^{2+}\)
solution for a modified prothrombinase test on blood sam-
pies from both groups. The test showed a greater velocity
of thrombin generation in DVT patients. We know that
annexin is one essential protein for activating factors
V and VII of the coagulative cascade as well as Ca\(^{2+}\)
regulation of phospholipid-binding proteins.\(^{25,26}\) Our
laboratory methodology for assaying PiCT included equal
Ca\(^{2+}\) saturation in blood samples drawn from DVT
patients and from controls. The PiCT results were in-
dependent of thrombin-mediated FV activation.

It should be noted that the activation of coagulation by
the whole prothrombinase complex containing pre-activated
factor V is between 30,000 and 300,000 times faster than
that by FXa alone and 1000 times faster than the activation
stimulated by FXa together with calcium ions and phos-
pholipids. Our modified PiCT test with saturated Ca\(^{2+}\)
solution increased prothrombin activation velocity, improved test
reproducibility and linearity and reduced result variability.
Therefore, this methodology may obtain more accessible
and reproducible results as suggested by other authors.\(^{24-27}\) The P-derived MPs add a procoagulative sur-
fase to the P-derived phospholipids by an enzymatic cata-
lytic process, actively promoting procoagulative imbalance,
thus improving thrombin generation and binding fibrinogen
and, finally, increasing Ps aggregation. It is also interesting
to note that MPs promote the release of TF, which is the
most active clotting factor in venous thrombosis. It should
also be noted that the PiCT assay is a sensitive, specific
laboratory test in measuring both the activation of throm-
bin-dependent and anti-thrombin-independent FXa
inhibition.

To discuss P and MPs in venous thromboembolism, we
would like to cite our findings on oxidative stress in DVT. We
have demonstrated that oxidative stress occurs in DVT
patients from the high plasma levels of oxidative stress
surrogate biomarkers (malondialdehyde, thiobarbituric acid-
reactivity, 4-hydroxyxynonenal assay) in DVT patients.\(^{28}\)
Note that oxidative stress is closely related to the generation
of platelet agonist agents (ie, thromboxane), which promote
platelet activation, leading to conditions that favour thombo-
sis. Malondialdehyde-lipid adducts have the ability to
activate coagulation.\(^{29}\) Among the pathophysiological roles
that both P and MPs may play in venous thrombotic diseases,
we should note that the two mentioned above are closely
linked to TF, which is crucial in promoting VTE events both
in cancer patients and in those showing no prothrombotic
conditions.\(^{3-9}\) Mixed research results were found for MPs in
patients suffering from venous thrombotic events (eg, lower
limb DVT). Chirinos et al did not find high levels of micro-
particles in acute VTE patients, and no association was found
between P microparticles and VTE.\(^{29}\) Chirinos and Thaler
found that elevated plasma levels of MPs were also asso-
ciated with TF in unprovoked DVT patients compared with
non-DVTs.\(^{29-31}\) In contrast, in patients with antiphospholipid
syndrome, P microparticles were considered key to a
pathophysiological mechanism, and these particles were
also cited as able to cause thrombotic complications in those
types of patients.\(^{32}\) Based on our results, we could conclude
that in non-cancer DVT patients there is a P-mediated pro-
coagulative condition. In DVT patients compared with con-
trols, there were higher plasma levels of P-derived
microparticles by PiCT assay and finally by increased levels
of PLPs, which agrees with Pabiniger.\(^{33}\) So, MPs cannot be
used as a single indicator in the laboratory of the possible
risk of VTE. Rather, we would like to suggest considering
a network of laboratory markers including MPs, modified
PiCT assays and PLPs to elicit the role played by Ps and to
screen for activated prothrombotic conditions favourable to
DVT. We would like to draw attention to the fact that the
enrolled patients were affected by unprovoked lower limb
DVT. None of the enrolled patients was affected by cancer.
We know that P and derived micro-vesicles are key players in
venous thromboembolism associated cancer.\(^{34-36}\) In conclu-
sion, the results of this study could increase awareness of Ps
in the pathophysiology of venous thromboembolism as well
as in DVT patients.

Our study has limitations. Firstly, the number of enrolled
patients with lower limb DVT was limited. The present paper
shows the results of an observational monocentre institu-
tional study enrolling patients affected from DVT of the lower
limbs. We are aware of the low incidence of DVT; it ranges from 20
to 24 cases young individuals to 80–84 in older adults per
10,000 per year.\(^{37}\) Based on the abovementioned epidemiolo-
gical data, it is therefore understandably difficult for a single
clinical centre to enrol a large number of cases of patients that
suffer from DVT of the lower limbs alone. Furthermore, the
present study was planned to evaluate the plasma levels of
platelet-derived microparticles in patients suffering from
unprovoked DVT of the lower limbs who did not have cancer.
Our study was planned to enrol cancer-free patients diagnosed
for DVT of lower limbs, since cancer represents both
a dramatic risk factor for venous thromboembolic events,
including DVT of the lower limbs, and also because cancer
per se seriously alters haemostatic balance. Additionally, cancer causes high release of TF, which is closely linked to elevated production of platelet-derived microparticles. Therefore, we planned a case-control study to help achieve the study objectives. The strengths of the study are that we measured MPs, PiCTs and PLPs from patients suffering from unprovoked DVT of the lower limbs but none from patients having cancer as the most favourable prothrombotic condition. In conclusion, we would like to promote more awareness of platelets and their derived microparticles as important components in venous, as well as arterial, thrombogenesis.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Disclosure
The authors declare no conflicts of interest.

References
1. Writing Group M, Mozaffarian D, Benjamin EJ, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–e360.
2. Mahajan A, Brunson A, White R, et al. The epidemiology of cancer-associated venous thromboembolism: an update. Semin Thromb Hemost. 2019;45(4):321–325. doi:10.1055/s-0039-1688494
3. Jara-Palomares L, van Es N, Praena-Fernandez JM, et al. Relationship between type of unprovoked venous thromboembolism and cancer location: an individual patient data meta-analysis. Thromb Res. 2019;176:79–84. doi:10.1016/j.thromres.2019.02.011
4. Figueroa A, Alfonso A, Lopez-Picazo J, et al. Insights into venous thromboembolism prevention in hospitalized cancer patients: lessons from a prospective study. PLoS One. 2018;13(8):e0200220. doi:10.1371/journal.pone.0200220
5. Di Nisio M, Candeloro M, Rutjes AWS, et al. Venous thromboembolism in cancer patients receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. J Thromb Haemost. 2018;16(7):1336–1346. doi:10.1111/jth.14149
6. Simioni P, Tormene D, Spiezia L, et al. Inherited thrombophilia and venous thromboembolism. Semin Thromb Hemost. 2006;32:700. doi:10.1053/j.ssemi.2006.951298
7. Campello E, Spiezia L, Radu CM, et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without thrombosis. Thromb Res. 2011;127:437. doi:10.1016/j.thromres.2011.01.002
8. Beccattini C, Agnelli G, Schenone A, et al. WARFASA Investigators. Aspirin for preventing the recurrence of venous thromboembolism. N Engl J Med. 2012;366:1959. doi:10.1056/NEJMoa114238
9. Brighton TA, Eikelboom JW, Mann K, et al. The ASPIRE investigators. Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med. 2012;367:1979–1987. doi:10.1056/NEJMoa1210384
10. Rautou P, Mackman N. Microvesicles as risk markers for venous thrombosis. Expert Rev Hematol. 2013;6(1):91–101. doi:10.1586/ehm.12.74
11. Pigault C, Folleniuswund A, Schmutz M, et al. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J Mol Biol. 1994;236:199. doi:10.1006/jmbi.1994.1129
12. Fricke A, Ullrich P, CinniFAV, et al. Levels of activated platelet-derived microvesicles in patients with soft tissue sarcoma correlate with an increased risk of venous thromboembolism. BMC Cancer. 2017;17:527. doi:10.1186/s12885-017-3515-y
13. Stewart JC. Colorimetric determination of phospholipids with ammonium ferrihydroxinate. Anal Biochem. 1980;104(10). doi:10.1016/0003-2697(80)90269-9
14. Kearon C, Akc EA, Ornelas J, et al. Antithrombotic therapy for VTE disease. Chest. 2016;149(2):315–352. doi:10.1016/j.chest.2015.11.026
15. Castellucci LA, Cameron C, Le Gal G, et al. Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: systematic review and network meta-analysis. BMJ. 2013;347:f5133. doi:10.1136/bmj.f5133
16. Morel O, Tofi F, Hugel B. Procoagulant microparticles: disrupting the vascular equation? Arterioscler Thromb Vasc Biol. 2006;26(12):2594–2604. doi:10.1161/01.ATV.0000246775.14471.26
17. Stähl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohaemorrhagic Escherichia coli-induced haemolytic uraemic syndrome. Blood. 2011;117(20):5503–5513. doi:10.1182/blood-2010-09-309161
18. Nomura S, Nakamura T, Cone J, et al. Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry. 2000;40(3):173–181. doi:10.1002/1097-0320(20000701)40:3<173::AID-CYTO1>3.0.CO;2-L
19. Prasad KS, Andre P, He M, et al. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signalling. Proc Natl Acad Sci U S A. 2003;100(21):12367–12371.
20. Tschou C, Asmis LM, Lenzlinger PM, et al. In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury. Crit Care. 2008;12(3):R80. doi:10.1186/cc6931
21. Camera M, Brambilla M, Toschi V, et al. Tissue factor expression on platelets is a dynamic event. Blood. 2010;116:5076–5077. doi:10.1182/blood-2010-09-307306
22. Escobar G, Lopez-Vileche I, Diaz-Ricart M, et al. Internalization of tissue factor by platelets. Thromb Res. 2008;122(Suppl. 1):S37–S41. doi:10.1016/j.thromres.2007.08.001
23. Lopez-Vileche I, Escobar G, Diaz-Ricart M, et al. Tissue factor-enriched vesicles are taken up by platelets and induce platelet aggregation in the presence of factor VIIa. Thromb Haemost. 2007;97(2):202–211. doi:10.1160/TH06-04-0216
24. Lim W, Le Gal G, Bates SM, et al. American Society of Haematology 2018 guidelines for management of venous thromboembolism: diagnosis of venous thromboembolism. Blood Adv. 2018;2:3236–3235.
25. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS) The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J. 2019;54(3):1901647.
26. Collaborative overview of randomized trials of antiplatelet therapy—III: reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients. Antiplatelet Trialists’ Collaboration. BMJ. 1994;308:235. doi:10.1136/bmj.308.6923.235
27. Korte W, Jovic R, Hollenstein M, et al. The uncalibrated prothrombinase-induced clotting time test. Equally convenient but more precise than the aPTT for monitoring of unfractionated heparin. *Hamostaseologie*. 2010;30:212. doi:10.1055/s-0037-1619058

28. Ferrante M, Fiore M, Oliveri Conti G, et al. Transition and heavy metals compared to oxidative parameter balance in patients with deep vein thrombosis: a case-control study. *Mol Med Rep*. 2017;15:3438. doi:10.3892/mmr.2017.6394

29. Balasubramanian K, Bevers EM, Willems GM, et al. Binding of Annexin V to membrane products of lipid peroxidation. *Biochemistry*. 2001;40:8672. doi:10.1021/bi010841y

30. Chirinos JA, Heresi GA, Velasquez H, et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. *J Am Coll Cardiol*. 2005;45:1467. doi:10.1016/j.jacc.2004.12.075

31. Thaler J, Koppensteiner R, Pabinger I, et al. Microparticle-associated tissue factor activity in patients with acute unprovoked deep vein thrombosis and during the course of one year. *Thromb Res*. 2014;134:1093. doi:10.1016/j.thromres.2014.07.041

32. Dignat GF, Camoin JL, Sabatier F, et al. Endothelial microparticles: a potential contribution to the thrombotic complications of antiphospholipid syndrome. *Thromb Haemost*. 2004;91:667.

33. Pabinger I, Thaler J, Ay C. Biomarkers for prediction of venous thromboembolism in cancer. *Blood*. 2013;122:2011. doi:10.1182/blood-2013-04-460147

34. Mege D, Aubert M, Laporte R, et al. Involvement of platelets in cancers. *Semin Thromb Hemost*. 2010;36(4):569–575. doi:10.1055/s-0030-1217576

35. Mahajan A, Wun T. Biomarkers of cancer-associated thromboembolism. *Cancer Treat Res*. 2019;179:69–85.

36. Falanga A, Schieppati F, Russo L. Pathophysiology I: Mechanisms of thrombosis in cancer patients. *Cancer Treat Res*. 2019;179:11–36.

37. Cushman M. Epidemiology and risk factors for venous thrombosis. *Semin Hematol*. 2007;44(2):62–69. doi:10.1053/j.seminhematol.2007.02.004