Data Article

Data on primary hydration characteristics of aqueous electrolytes

Jyoti Sahu, Vinay A. Juvekar*

Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

A R T I C L E I N F O

Article history:
Received 20 January 2018
Received in revised form
25 April 2018
Accepted 8 May 2018
Available online 22 May 2018

A B S T R A C T

The data presented in this article support the research article entitled "Development of a rationale for decoupling osmotic coefficient of electrolytes into electrostatic and nonelectrostatic contributions" (Sahu and Juvekar, 2018) [1]. In this article, we have presented the plots of osmotic coefficients against molality for more than hundred aqueous single electrolytes at 25 °C. The linear regions in these plots are marked to show that they are present in all these electrolytes and that these regions extend over a wide range of concentrations. Slopes of the linear regions are used to estimate the primary molar hydration volume as well as the primary hydration number of these electrolytes. These values are also listed and the method of estimation is presented with sample calculation. These data, not only reinforce the observations made in the main article but also provide useful measures for estimation of the nonelectrostatic contribution to the osmotic coefficient.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

*Corresponding author.

E-mail addresses: jsahu1986@gmail.com (J. Sahu), vaj@iitb.ac.in (V.A. Juvekar).

https://doi.org/10.1016/j.dib.2018.05.037

2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Electrochemistry.
More specific subject area	Thermodynamics of electrolytes.
Type of data	Plots and Tables
How data was acquired	From the analysis of data obtained from published literature
Data format	Analyzed
Experimental factors	Not Applicable
Experimental features	Not Applicable
Data source location	Not Applicable
Data accessibility	Data are available in this article
Related research article	J. Sahu, V.A. Juvekar, Development of a rationale for decoupling osmotic coefficient of electrolytes into electrostatic and nonelectrostatic contributions. Fluid Phase Equilibria 2018, 460: 57-68.

Value of the data

- The linear regions in the osmotic coefficient-molality plots of several aqueous solutions of single electrolytes have been marked. The existence of these linear regions provides supportive evidence to the analysis presented in the main paper [1].
- The primary molar hydration volumes and primary hydration numbers obtained in this article would be useful for estimation of nonelectrostatic contribution to the osmotic coefficient of aqueous solutions of single and mixed electrolytes using the procedure described in Ref. [1].
- These data would also allow estimation of electrostatic contribution to the osmotic coefficient of aqueous solutions of electrolytes using the procedure described in Ref. [1].

1. Data

The data are provided in two parts. Part-1 contains plots of osmotic coefficient versus molarity of solutions of single electrolytes. The linear regions are marked on the plots. Slopes of these linear regions are listed below the plots. Part-2 lists the data of the primary molar hydration volume and primary hydration numbers.

Part-1: Plots of Osmotic coefficient-molality data for single aqueous electrolytes.
 a. 1-1 electrolytes (data of osmotic coefficient from Ref. [2]).
Slopes of linear regions are written below of corresponding plots

1. (KOH = 0.138), (HNO₂ = 0.062), (HCOONa = 0.032)

2. (H₂ = 0.246), (NaBr = 0.090), (RbBr = 0.017)

3. (HCl = 0.163), (CsF = 0.085), (NaClO₄ = 0.032)

4. (LiBr = 0.222), (NaI = 0.111), (RbCI = 0.029)

5. (LiI = 0.157), (KF = 0.080), (RbCl = 0.023)

6. (KI = 0.030), (CsCl = 0.023), (CsBr = 0.019)

7. (RbF = 0.053), (KBr = 0.029), (KCN = 0.011), (LiOH = 0.021)

8. (LiNO₃ = 0.081), (NaCN = 0.077)

9. (HBr = 0.244), (NaOH = 0.140), (HF = 0.014)

10. (LiCl = 0.171), (NaCl = 0.075), (NH₄Cl = 0.018)

11. (CsOH = 0.087), (RbI = 0.019)
b. 1-2, 2-1, 2-2, 1-3, 3-1 and 2-3 electrolytes (data of osmotic coefficient from Ref. [3]).

Slopes of linear regions are written below of corresponding plots

(12) (CaBr$_2$ = 0.620), (CaCl$_2$ = 0.399), (BaCl$_2$ = 0.155)
(13) (CdSO$_4$ = 0.182), (CdBr$_2$ = 0.041), (CdCl$_2$ = 0.029)
(14) (MgCl$_2$ = 0.515), (ZnSO$_4$ = 0.274), (CdI$_2$ = 0.071)
(15) (Cu(NO$_3$)$_2$ = 0.239), (Cd(NO$_3$)$_2$ = 0.149), (CuCl$_2$ = 0.043)
(16) (Mg(ClO$_4$)$_2$ = 0.722), (NiCl$_2$ = 0.362), (Na$_2$SO$_4$ = 0.070)
(17) (Zn(NO$_3$)$_2$ = 0.288), (MgSO$_4$ = 0.195), (NiSO$_4$ = 0.199)
(18) (SrBr$_2$ = 0.365), (SrCl$_2$ = 0.323), (ZnCl$_2$ = 0.126), ((NH$_4$)$_2$SO$_4$ = 0.025)
(19) (CrCl$_3$ = 0.657), (LaCl$_3$ = 0.561)
(20) (SmCl$_3$ = 0.638), (PrCl$_3$ = 0.588)
(21) (NdCl$_3$ = 0.623), (K$_3$Fe(CN)$_6$ = 0.109)
(22) (Na$_2$CrO$_4$ = 0.175), (K$_3$PO$_4$ = 0.209)
(23) (YCl$_3$ = 0.715), (Th(NO$_3$)$_4$ = 0.375), (Al$_2$(SO$_4$)$_3$ = 0.889)
Part-2: Table of primary molar hydration volume and primary hydration number of electrolytes at 25 °C derived from the slopes of the linear regions of the plots presented in Part-1 (Table 1). The table also lists the molar volumes of bound water molecules.

Comparison between the calculated primary hydration number for electrolytes and those reported in the literature using NMR and Extended X-ray Absorption Fine Structure (EXAFS) spectrometry has been present in our main paper [1].

2. Experimental design, material and methods

Slope s of the linear region of the plot is given by

$$
s = \left(\frac{c}{m}\right)^2 \frac{v_h^2}{2M_w \nu}$$

v_h is the primary molar hydration volume of the electrolyte, M_w is the molecular mass of water, ν is the number of ions produced on dissociation of one molecule of the electrolyte, m is the molality of the electrolyte solution, c is its molarity. Variation of c/m in the linear region is small and hence the average value of c/m is used. The values of v_h at 25 °C are listed in the table of Part-2.

The primary hydration number h of an electrolyte is related to its primary hydration volume by the following relation

$$v_h = v_s + hv^b_w$$

v_s is the molar volume of the bare electrolyte and is calculated from the Pauling radii of the constituent ions using the formula $v_s = \frac{4}{3} \pi N_{av} \sum r_i^3$. Where N_{av} is Avogadro number and r_i is the Pauling radius of constituents ions. These radii are obtained from the references given in Table 2.

The molar hydrated volume of electrolyte, v_h is the summation of the molar hydrated volume of the cations, v_{h+} and the anions, v_{h-}

$$v_h = v_+ + v_{h+} + v_- + v_{h-}$$

where v_+, v_- are the number of cation and anion respectively upon dissociation of one molecule of the electrolyte.

where the molar hydrated volume of the cation, v_{h+} is given as follows

$$v_{h+} = v_+ + h_+ v^b_w$$

and molar hydrated volume of the anion, v_{h-} is given by the following expression

$$v_{h-} = v_- + h_- v^b_w$$

In Eqs. (4) and (5), h_+ and h_- are primary hydration number of cation and anion respectively.
Table 1: Primary molar hydration volume and primary hydration number of electrolytes and molar volume of bound water molecules at 25°C.

Electrolyte	Primary molar hydration volume, $v_h \times 10^5$ m³ mol⁻¹	Molar volume of bound water, $v_{wb} \times 10^5$ m³ mol⁻¹	Primary hydration number, h
NaCl	7.975	1.496	4.2
LiCl	9.851	1.613	5.1
KCl	6.593	1.480	3.0
HCl	12.307	1.677	6.2
LiBr	11.247	1.608	5.8
KF	7.315	1.561	3.9
KI	7.869	1.501	3.0
CsCl	7.382	1.490	3.1
HNO₃	9.083	1.551	4.2
NaBr	9.361	1.583	4.6
NaClO₄	7.917	1.502	3.2
RbCl	7.641	1.466	3.6
LiNO₃	8.392	1.566	3.9
NaI	10.808	1.594	4.9
NaOH	9.398	1.606	5.3
MgCl₂	14.581	1.561	7.3
CaCl₂	17.0338	1.553	8.8
BaCl₂	16.693	1.576	8.3
Mg(ClO₄)₂	23.693	1.653	10.8
Ca(ClO₄)₂	21.119	1.641	9.2
Ca(NO₃)₂	16.081	1.561	7.3
HCOONa	6.837	1.495	3.6
Li⁺	11.159	1.600	5.2
KOH	9.971	1.587	5.5
Cs⁺	8.751	1.571	4.4
CsBr	7.760	1.469	3.2
NH₄Cl	6.609	1.448	2.7
Na₂SO₄	12.559	1.521	3.9
(NH₄)₂SO₄	13.069	1.399	5.2
CaBr₂	16.014	1.629	7.4
Cd(NO₃)₂	10.125	1.571	3.5
CdBr₂	7.515	1.446	2.5
CdCl₂	6.189	1.372	2.1
Cd⁺	9.978	1.515	2.8
CdSO₄	11.901	1.456	3.8
Co(NO₃)₂	13.346	1.609	5.5
CrCl₃	15.647	1.635	6.7
MgSO₄	10.214	1.417	2.8
Cu(NO₃)₂	18.036	1.597	8.5
Cu⁺	13.342	1.569	6.5
LaCl₃	25.317	1.626	12.5
Mg(NO₃)₂	17.0168	1.625	7.7
MnSO₄	12.113	1.494	3.9
NdCl₃	25.447	1.627	12.6
NiCl₂	17.536	1.614	8.9
NiSO₄	11.637	1.461	3.7
PrCl₃	25.346	1.626	12.5
SmCl₃	25.751	1.626	12.8
SrBr₂	19.275	1.620	9.4
SrCl₂	16.852	1.614	8.3
Zn(NO₃)₂	17.719	1.613	8.2
ZnCl₂	11.826	1.573	5.5
ZnSO₄	12.822	1.497	4.4
V_{in} in Eq. (1) is the molar volume of the water in the primary hydration shell (bound water). This volume is lesser than that of bulk water due to electrostriction caused by high electric field around the ion. The electrostatic field generated by the ion is estimated at the periphery of the hydrated ion using following equation

$$E^* = \frac{q}{4\pi\epsilon}\frac{1}{r_h^3}$$ (6)

where r_h is the hydrated radius which is calculated using the formula $r_h = \left[\frac{4\pi n_0}{3}\right]^{1/3}$. ϵ_0 is the vacuum permittivity. ϵ^* is the dielectric constant of bound water and is calculated using Booth Eq. [7]

$$\epsilon^* = n^2 + \frac{\alpha n_0(n^2+2)+\mu_0 L}{E^*} \left(\frac{\beta \mu_0 (n^2+2) E^*}{kT}\right)$$ (7)

where n is the optical refractive index, N_0 the number of molecules per unit volume, μ_0 the dipole moment of the water molecule, E^* is the field strength, and T the absolute temperature. $L(x)$ is the Langevin function, and α and β are numerical factors ($\alpha = 4/3$, $\beta = 1/2$ as per Onsager model).

Solving Eqs. (6) and (7) simultaneously, we can find values of both E^* and ϵ^*. However, the second term of Eq. (7) is much smaller than n^2 and $\epsilon^* = n^2$. At 25 °C, $n^2 = 1.769$. Therefore, the value of the dielectric constant of bound water is taken as $\epsilon^* = 1.769$ for all calculations.

The pressure in the hydration shell is calculated using equation given by Desnoyers et al. [8].

$$P(GPa) = 0.137 + 7.334 \times 10^{-3}(E^*/(\text{GV m}^{-1}))+4.599 \times 10^{-3}(E^*/(\text{GV m}^{-1}))^2$$ (8)

The values of E^*, obtained from the solution of Eq. (6) are used in Eq. (8) to obtain the pressure in the hydration shell. Then the density, ρ_b of the bound water is obtained by the tables given by Grindley and Lind [9] which relates density of water to pressure. From the density, the molar volume of bound water is obtained using the equation $V_w^b = \frac{M_w}{\rho_b}$. The values of V_w^b are listed in the second column of the Table 1. These values are used in Eq. (1) to calculate the primary hydration number which are listed in the last column of the Table 1.

We have provided the equation to be used for estimation of the excess nonelectrostatic contribution to the osmotic coefficient in our main paper [1] (See Eq. (8) of the main paper)

$$q_{\text{en}}^{\text{NE}} = -\frac{1}{V_m M_w} \left[\ln(1-cv_h)+c(v_h-v_w)\right]-1$$ (9)

The nonelectrostatic contribution is given by

$$q_{\text{en}}^{\text{NE}} = q_{\text{en}}^{\text{NE}}+1 = -\frac{1}{V_m M_w} \left[\ln(1-cv_h)+c(v_h-v_w)\right]$$ (10)

Moreover, the Fig. 3 of our main paper shows the excess nonelectrostatic contribution to the osmotic coefficient for NaCl at 25 °C. It is seen that the excess nonelectrostatic contribution varies approximately linearly with the electrolyte concentration.
Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.037.

References

[1] J. Sahu, V.A. Juvekar, Development of a rationale for decoupling osmotic coefficient of electrolytes into electrostatic and nonelectrostatic contributions, Fluid Phase Equilibria 460 (2018) 57–68.
[2] W.J. Hamer, Y.C. Wu, Osmotic coefficient and mean activity coefficient of uni-univalent electrolytes in water at 25 °C, J. Phys. Chem. Ref. Data 1 (1972) 1047–1099.
[3] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.
[4] Y. Marcus, Ionic radii in aqueous solutions, J. Solut. Chem. 12 (1983) 271–275.
[5] W.L. Masterton, D. Bolocofsky, T.P. Lee, Ionic radii from scaled particle theory of the salt effect, J. Phys. Chem. 76 (1971) 2809–2815.
[6] H.K. Roobottom, H.D.B. Jenkins, J. Passmore, L. Glasser, Thermochemical radii of complex ions, J. Chem. 76 (1999) 1570–1573.
[7] F. Booth, The dielectric constant of water and the saturation effect, J. Chem. Phys. 19 (1951) 391–394.
[8] J.E. Desnoyers, R.E. Verrall, B.E. Conway, Electrostriction in aqueous solutions of electrolytes, J. Chem. Phys. 43 (1965) 243–250.
[9] T. Grindley, John E. Lind Jr., PVT properties of water and mercury, J. Chem. Phys. 54 (1971) 3983–3989.