Cover: Posterior (left) and lateral (right) views of the squid *Doryteuthis pealeii* at hatching scanned using microCT. Segmented reconstructions of brain regions correspond to a fate map generated during early embryogenesis. Depicted are the pedal (purple), buccal (cyan), palliovisceral (green) and cerebral (pink) ganglia, the optic lobes (dark blue), the retina (red) and the lens/iris (yellow). See Research article by Koenig et al. on p. 3168.

EDITORIAL

3035 Introducing cross-referee commenting in peer review

Pourquié, O. and Brown, K.

DEVELOPMENT AT A GLANCE

3037 Slit-Robo signaling

Blockus, H. and Chédotal, A.

MEETING REVIEW

3045 Metabolism meets development at Wiston House

Telemann, A. A.

REVIEWS

3050 Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination

Yu, J. S. L. and Cui, W.

3061 The roles of microRNAs and siRNAs in mammalian spermatogenesis

Hilz, S., Modzelewski, A. J., Cohen, P. E. and Grimson, A.

STEM CELLS AND REGENERATION

3074 Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex

Miller, A., Raiser, M., Kloet, S. L., Loos, R., Nishinakamura, R., Bertone, P., Vermeulen, M. and Hendrich, B.

3085 Epb41l5 competes with Delta as a substrate for Mib1 to coordinate specification and differentiation of neurons

Matsuda, M., Rand, K., Palardy, G., Shimizu, N., Ikeda, H., Dalle Nogare, D., Itoh, M. and Chitnis, A. B.

3097 A role for post-transcriptional control of endoplasmic reticulum dynamics and function in *C. elegans* germline stem cell maintenance

Maheshwari, R., Pushpa, K. and Subramaniam, K.

3109 The Ets protein Pointed prevents both premature differentiation and dedifferentiation of *Drosophila* intermediate neural progenitors

Xie, Y., Li, X., Deng, X., Hou, Y., O’Hara, K., Urso, A., Peng, Y., Chen, L. and Zhu, S.

RESEARCH ARTICLES

3119 Cyclin CYB-3 controls both S-phase and mitosis and is asymmetrically distributed in the early *C. elegans* embryo

Michael, W. M.

3128 Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in Ila/Ix muscle fibers

Huraskin, D., Eiber, N., Reichel, M., Zidek, L. M., Kravic, B., Bernkopf, D., von Maltzahn, J., Behrens, J. and Hashemolhosseini, S.

3143 SARA regulates neuronal migration during neocortical development through L1 trafficking

Mestres, I., Chuang, J.-Z., Calegari, F., Conde, C. and Sung, C.-H.

3154 Splice variants of the SWR1-type nucleosome remodeling factor Domino have distinct functions during *Drosophila melanogaster* oogenesis

Börner, K. and Becker, P. B.

3168 Eye development and photoreceptor differentiation in the cephalopod *Doryteuthis pealeii*

Koenig, K. M., Sun, P., Meyer, E. and Gross, J. M.

3182 Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border

Schille, C., Bayerlová, M., Bleckmann, A. and Schambony, A.

3195 Minibrain drives the Dacapo-dependent cell cycle exit of neurons in the *Drosophila* brain by promoting asense and prospero expression

Shaikh, M. N., Gutierrez-Aviño, F., Colonques, J., Ceron, J., Hämmerle, B. and Tejedor, F. J.

3206 The migrations of *Drosophila* muscle founders and primordial germ cells are interdependent

Stepanik, V., Dunipace, L., Bae, Y.-K., Macabenta, F., Sun, J., Trisnadi, N. and Stathopoulos, A.

TECHNIQUES AND RESOURCES

3216 Developing a *de novo* targeted knock-in method based on *in utero* electroporation into the mammalian brain

Tsunekawa, Y., Terhune, R. K., Fujita, I., Shitamukai, A., Suetsugu, T. and Matsuzaki, F.