Environmental Research Communications

Assessment of individual and mixture effects of element exposure measured in umbilical cord blood on birth weight in Bangladesh

Xin Chen1,6, Liangmin Wei1,6, Hui Huang1,2, Ruyang Zhang1, Li Su1, Mahmudur Rahman4, Md Golam Mostofa1, Quazi Qamruzaman1, Hao Yu1, Yang Zhao1,*, Yongyue Wei1,2,*, David C Christiani2,3,* and Feng Chen1,2,5

1 Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, People’s Republic of China
2 China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, People’s Republic of China
3 Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America
4 Dhaka Community Hospital Trust, Dhaka, Bangladesh
5 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People’s Republic of China
6 The authors contributed equally to the work.

* Authors to whom any correspondence should be addressed.
E-mail: yzhao@njmu.edu.cn, ywei@njmu.edu.cn and dchris@hsph.harvard.edu

Keywords: trace elements, mixture effect, birth weight, lithium, selenium

Supplementary material for this article is available online

Abstract

Low birth weight is a leading cause of childhood morbidity and mortality globally, especially in low- and middle-income countries. Individual trace element exposure during pregnancy is associated with birth weight; however, information on potential mixture effects of multiple-elements exposure on birth weight are limited. In this study, we assessed the effects of single element and element mixtures on birth weight among 745 mother-infant pairs from a prospective birth cohort established in Bangladesh from 2008 to 2011. Using inductively coupled plasma mass spectrometry, we measured 56 elements in cord blood collected at delivery. Multivariate linear regression was used to evaluate the individual effect of element exposure on birth weight. Then, we also applied regression model based on categorical variables according the interquartile range (IQR) and restricted cubic spline to explore potential non-linear associations. Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression were used to assess the mixture effects on birth weight. We found significant negative associations between exposure to lithium (Li), manganese (Mn), cobalt (Co), copper (Cu), yttrium (Y), and erbium (Er) and birth weight, while the concentration of selenium (Se) was positively associated with birth weight. Li was identified as the most important predictor of birth weight by WQS regression and cumulative exposure to element mixtures (Li, Mn, Cu, Co, Y, and Er) was associated with decreased birth weight, birth weight decreasing by 64.73 g with per each unit increment of the element risk score (ERS) based on WQS. Interestingly, the presence of Se during pregnancy may attenuate the risk of low birth weight by its main protective and antagonistic effects against toxic elements.

Abbreviations

BMI body mass index
CV coefficient of variation
FDR false discovery rate
ICP-MS inductively coupled plasma mass spectrometry
LOD limit of detection
OR odds ratio

© 2021 The Author(s). Published by IOP Publishing Ltd
\[^{7}\text{Li} \quad \text{lithium} \]
\[^{9}\text{Be} \quad \text{beryllium} \]
\[^{11}\text{B} \quad \text{boron} \]
\[^{23}\text{Na} \quad \text{sodium} \]
\[^{24}\text{Mg} \quad \text{magnesium} \]
\[^{27}\text{Al} \quad \text{aluminum} \]
\[^{39}\text{K} \quad \text{potassium} \]
\[^{44}\text{Ca} \quad \text{calcium} \]
\[^{45}\text{Sc} \quad \text{scandium} \]
\[^{47}\text{Ti} \quad \text{thallium} \]
\[^{51}\text{V} \quad \text{vanadium} \]
\[^{52}\text{Cr} \quad \text{chromium} \]
\[^{55}\text{Mn} \quad \text{manganese} \]
\[^{56}\text{Fe} \quad \text{iron} \]
\[^{59}\text{Co} \quad \text{cobalt} \]
\[^{60}\text{Ni} \quad \text{nickel} \]
\[^{63}\text{Cu} \quad \text{copper} \]
\[^{66}\text{Zn} \quad \text{zinc} \]
\[^{71}\text{Ga} \quad \text{gallium} \]
\[^{75}\text{As} \quad \text{arsenic} \]
\[^{78}\text{Se} \quad \text{selenium} \]
\[^{85}\text{Rb} \quad \text{rubidium} \]
\[^{88}\text{Sr} \quad \text{strontium} \]
\[^{89}\text{Y} \quad \text{yttrium} \]
\[^{90}\text{Zr} \quad \text{zirconium} \]
\[^{93}\text{Nb} \quad \text{niobium} \]
\[^{95}\text{Mo} \quad \text{molybdenum} \]
\[^{107}\text{Ag} \quad \text{silver} \]
\[^{111}\text{Cd} \quad \text{cadmium} \]
\[^{118}\text{Sn} \quad \text{stannum} \]
\[^{121}\text{Sb} \quad \text{antimony} \]
\[^{133}\text{Cs} \quad \text{caesium} \]
\[^{137}\text{Ba} \quad \text{barium} \]
\[^{139}\text{La} \quad \text{lanthanum} \]
\[^{140}\text{Ce} \quad \text{cerium} \]
\[^{141}\text{Pr} \quad \text{praseodymium} \]
\[^{144}\text{Nd} \quad \text{neodymium} \]
\[^{147}\text{Sm} \quad \text{samarium} \]
\[^{151}\text{Eu} \quad \text{europium} \]
\[^{157}\text{Gd} \quad \text{gadolinium} \]
\[^{159}\text{ Tb} \quad \text{terbium} \]
\[^{163}\text{Dy} \quad \text{dysprosium} \]
\[^{165}\text{Ho} \quad \text{holmium} \]
\[^{166}\text{Er} \quad \text{erbium} \]
\[^{167}\text{Tm} \quad \text{thulium} \]
\[^{172}\text{Yb} \quad \text{ytterbium} \]
\[^{175}\text{Lu} \quad \text{lutetium} \]
178Hf hafnium
181Ta tantalum
182W wolfram
202Hg hydrargyrum
205Tl thallium
208Pb lead
209Bi bismuth
232Th thorium
238U uranium
95% CI 95% confidence interval
REE rare earth elements
Bayesian kernel machine regression (BKMR)
WQS weighted quantile sum
ERS elements risk score.

Introduction

Birth weight is an important gauge of fetal health and a determinant of perinatal, neonatal, and infant mortality and morbidity [1]. Every year, an estimated 20 million (15.5%) infants are born with low birth weight (<2500 g) globally and approximately 95.6% of these births occur in low- and middle-income countries [2, 3]. Infants with low birth weight are approximately 20 times more likely to die during infancy and childhood than babies born at normal birth weight [2]. Low birth weight remains a leading public health problem, especially in developing nations.

Studies have shown that prenatal exposure to trace elements, occurring widely and naturally in environment, can disrupt fetal growth and functions of organ systems. Elements, such as lead (Pb), are toxins to the development of fetus, even if present at low concentrations [4, 5]. On the hand, some elements are essential for fetal growth, including iron (Fe), magnesium (Mg), molybdenum (Mo), selenium (Se), and zinc (Zn). And, some essential nutrient elements can attenuate the toxicity of some element exposure [6, 7]. For example, Se supplementation may decrease serum copper (Cu) levels and might provide protection against Ni toxicity in low-birth-weight, premature infants [8, 9]. However, excess or insufficient levels of these required elements may both increase the risk of low birth weight [10]. However, there is little known about the potential health effects of simultaneous exposure to various elements and element mixtures on low birth weight [11].

The transfers of exposure from mother to fetus have mainly through umbilical cord blood or red blood cells and umbilical cord blood can reflect elements exposure during the period of intrauterine life [12, 13]. Thus umbilical cord serum can be used to indicate prenatal exposure to a variety of elements, which is easily available at delivery [14]. Moreover, the concentrations of trace elements in serum do not need to be calibrated, making it easy to analyze [15]. This study was designed to identify the landscape of elements in cord serum and examine the possible effects of element exposure on birth weight based on a prospective birth cohort established in rural Bangladesh. Further, Bayesian kernel machine regression (BKMR) and weighted quantile sum regression (WQS) were used to assess the associations between element mixtures and birth weight.

Methods

Study population
We conducted a prospective cohort study to identify associations between elements exposure and birth outcomes from 2008 to 2011 at Sirajdikhan and Pahna Sadar Upazilas in Bangladesh. The following study population inclusion criteria were used: (1) an ultrasound confirming a singleton pregnancy of ≤16 weeks gestation, (2) tube well water as the primary drinking water source for at least 6 months before enrollment, and (3) prenatal care provided by Dhaka Community Hospital Trust (DCH) throughout pregnancy and birth. Cohort recruitment and enrollment processes and other study details have been described [16]. The study was described in detail to all participants, and informed consent was obtained before study enrollment. All protocols performed in studies involving human participants were reviewed and approved by the Human Research Committees at Harvard T.H. Chan School of Public Health, Nanjing Medical University, and DCH.
In all, 1,613 eligible individuals were recruited at enrollment, of which 244 (15.2%) experienced fetal loss or neonatal death, and 302 families (18.8%) were lost to follow-up because of family migration or study withdrawal. At delivery, there were 745 mother-infant pairs with umbilical cord serum samples available.

Outcome and covariates
Birth weight was measured within 120 min of delivery on a pediatric scale calibrated and rounded to the nearest 10 g before each measurement by trained healthcare workers. Gestational age was determined through ultrasonography by a licensed general practitioner using either (1) the gestational sac mean diameter if the pregnancy was between 4 and 7 weeks or (2) the crown–rump length if the pregnancy was between 7 and 16 weeks.

Demographic and anthropometric information of mothers and children were collected at less than 16 weeks gestation and birth. Other covariates in this analysis were collected at the time of enrollment using a structured questionnaire, including maternal age, body mass index (BMI), gestation and birth. Other covariates in this analysis were collected at the time of enrollment using a structured questionnaire, including maternal age, body mass index (BMI), age of marriage, maternal and spouse education level, family income level, and second-hand smoking exposure.

Materials
Umbilical cord serum samples were collected immediately at delivery. Cord serum samples from newborns were obtained through venous puncture of the umbilical cord. All samples were collected and kept at -80 °C, shipped to the Trace Metals Laboratory at the Harvard Chan School, received in perfect condition, and correctly identified.

We analyzed 56 elements in umbilical cord serum (Figure S1 (available online at stacks.iop.org/ERC/3/105001/mmedia)) using an ICAP QC inductively coupled plasma mass spectrometer (ICP-Ms) (Agilent 7700x ICP-MS, USA) at Shanghai Biotree Biotech Co., Ltd, including 9 alkali or alkaline earth metals [beryllium (Be), sodium (23Na), magnesium (24Mg), potassium (39K), calcium (40Ca), rubidium (85Rb), strontium (88Sr), caesium (133Cs), and barium (138Ba)], 10 transition metals [thallium (204Tl), vanadium (51V), chromium (52Cr), manganese (55Mn), iron (56Fe), cobalt (59Co), nickel (60Ni), copper (65Cu), zinc (65Zn), and antimony (121Sb)], 16 rare earth elements (REEs) [scandium (40Sc), yttrium (89Y), lanthanum (139La), cerium (140Ce), praseodymium (141Pr), neodymium (146Nd), samarium (147Sm), europium (151Eu), gadolinium (157Gd), terbium (159Tb), dysprosium (163Dy), holmium (165Ho), erbium (166Er), thulium (169Tm), ytterbium (172Yb), and lutetium (177Lu)], and 21 other elements [lithium (6Li), boron (11B), aluminium (27Al), gallium (69Ga), arsenic (75As), selenium (78Se), zirconium (90Zr), niobium (93Nb), molybdenum (96Mo), silver (107Ag), cadmium (111Cd), stannum (118Sn), hafnium (178Hf), tantalum (181Ta), wolfram (182W), hydroargyrum (202Hg), thallium (205Tl), lead (208Pb), bismuth (209Bi), thorium (232Th), and uranium (238U)].

For elements analyses, we followed a validated procedure for human blood with certified reference materials. Briefly, 60 μl of cord blood were diluted using 1800 μl of ammonia solution (1% of NH₄OH), and internal standards (ISTD) were added. The ISTD solution comprised Li (40 μg l⁻¹) and rhodium (Rh), indium (In), and rhenium (Re) (20 μg l⁻¹ each). A blank sample was also introduced to each of the 10 samples to ensure that there was no memory effect for any element. The limits of detection (LOD) and limits of quality (LOQ) were established as the signals that were three and ten times higher, respectively, than the signal of the average of ten consecutive blank measurements. Element concentrations below the LOD were imputed by LOD/2.

Statistical analyses
Descriptive statistics [relative standard deviation (RSD), median] of umbilical cord blood concentrations were calculated to describe the distributions of element concentrations among study participants. All concentrations of elements displayed skewed distributions (Figure S1) and thus were natural log transformed before statistical analysis.

Multivariate linear regression
Multivariate linear regression was used to evaluate the associations between individual element exposure measured in cord blood and birth weight adjusted for covariates, including maternal age, gestational age, infant sex, BMI, second-hand smoking, marriage age, education level, and family income levels, which were significantly associated with the outcome (P ≤ 0.05). To evaluate potential non-linear associations, linear models were run with each element exposure converted as a categorical variable based on interquartile range (IQR). We also explored associations between elements and birth weight stratified by population characteristics. Statistical significance was evaluated with the false discovery rate (FDR) to control for multiple comparisons, and an FDR-q ≤ 0.05 was considered statistically significant.
Bayesian kernel machine regression (BKMR)

To explore interaction effects between multiple metals on birth weight, we used Bayesian kernel machine regression (BKMR), a non-parametric Bayesian variable selection framework for conducting mixture analysis without the assumption of linearity of the associations [17]. BKMR combines Bayesian and statistical learning methods to regress an exposure–response function iteratively by a Gaussian kernel function. BKMR can identify interactions between element mixtures. Here, BKMR modeled flexible function of element concentrations while adjusting for the same covariates described above. We assessed bivariate exposure-response effects of two metals if the second metal was fixed at the 10th, 50th, or 90th quantile while the other element was at the median.

Assessment of interaction effects

We further verified the interaction effects among identified trace elements by BKMR using linear regression models with cross-product terms and assessed the significance of the coefficients using the Wald statistic. Further, categorical variables and restricted cubic spline were applied to explore metal-metal non-linearity interactions. For the categorical approach, levels of identiﬁed elements were re-categorized as ‘low’ (1st and 2nd tertiles) and ‘high’ (the 3rd tertile) [8]. For example, we analyzed effects as low Li with high Er, low Li with low Er, high Li with high Er, and high Li with low Er. Also, we added interaction effects in the restricted cubic spline model to explore the potential non-linear interaction effects between elements by setting the target elements at different quantiles [18]. And, FDR was used to evaluate statistical significance to control for multiple comparisons.

Weighted quantile sum (WQS) regression

Weighted quantile sum (WQS) regression analyses were applied to construct an element risk score (ERS) adjusting for the same covariates described above. WQS regression was developed to assess the combined and discrete effects of multiple predictors in the context of correlated high-dimensional mixtures, which estimates an index that identiﬁes the inﬂuential exposure variables with non-negligible weights and tests for associations between the exposure index and an outcome in a traditional linear framework as: \(g(\mu) = \beta_0 + \beta_1 \text{WQS} + z^T \phi. \)

Here, \(g(\mu) \) represents the model intercept while \(\beta_1 \) represents the parameter estimate for the co-exposure index, represented here as WQS; the signiﬁcance of this parameter reflects a straightforward test of associations between the co-exposure index and the outcome. The WQS index is constructed such that \(\text{WQS} = \sum_{ij} w_i q_{ij} \) where \(w_i \) indicates a vector of empirically estimated weights for each mixture component, and \(q_{ij} \) indicates the values of the mixture variables to each subject per element, which have been standardized [19].

All statistical analyses were performed using R version 3.6.0.

Results

Characteristics of the study population and trace elements

Demographic characteristics of the 745 mother-infant pairs and associations between demographic characteristics and birth weight are presented in table 1. The mean marriage age of the study population was 17.58 ± 2.29 years, with 59.46% of women married before 18 years of age. Further, 62.55% of women had a normal pre-pregnancy BMI (18.5–23.9 kg m⁻²), with a mean weight of 46.73 ± 7.74 kg and height of 151.09 ± 5.66 cm. In addition, 312 (41.88%) women were exposed to second-hand smoking, 188 (25.23%) spouses had no formal education, 245 (32.89%) had secondary education, and 320 (42.95%) received an income between 4000 and 6000 taka. Among infants, the average birth weight was 2841.05 g (standard deviation: 424.09 g; range: 800–4500 g), 376 (50.47%) were boys, 159 (21%) infants were born preterm (< 37 weeks of gestation), and 137 (18.39%) were small for gestational age.

Descriptive statistics (LOD, LOQ, RSD, and quartiles) of cord serum element concentrations are presented in table S1. Most of the samples had detectable element concentrations; only three elements exhibited concentrations higher than LOD in less than 50% of samples and were excluded from the subsequent statistical analysis [Cd (56.387% > LOD), Lu (70.47% > LOD), and Ti (69.66% > LOD)]. All the elements followed right-skewed distributions (Figure S1).

Associations between individual element and birth weight

Multivariate linear regression model for each element adjusted for common covariates identified seven elements related to birth weight (FDR-q ≤ 0.05) (figure 1(A) and table S2). The presence of Li [\(b = -33.5, 95\% \text{ CI: } (-46.26, -20.44), P = 5.21 \times 10^{-7}, \text{FDR-q} = 3.07 \times 10^{-5} \)], Mn [\(b = -38.94, 95\% \text{ CI: } (-63.24, -14.64), P = 0.002, \text{FDR-q} = 0.021 \)], Co [\(b = -49.68, 95\% \text{ CI: } (-73.01, -26.35), P = 3.37 \times 10^{-5}, \text{FDR-q} = 0.0011 \],
Table 1. Characteristics of study participants and association with birth weight (g).

Characteristics	Statistics	b (95% CI)	P-value
Baseline age (years)	22.83 ± 4.10	-0.723 (−8.163, 6.718)	0.849
Marriage age (years)	17.58 ± 2.29	22.237 (9.35, 474.7)	0.0001
<18 years	443 (59.46)	Reference	
≥18 years	302 (40.54)	69.753 (7.886, 131.62)	0.027
BMI (kg m⁻²)	20.47 ± 3.20	21.065 (11.664, 30.467)	<0.0001
<18.5	212 (28.46)	Reference	
18.5–24.9	466 (62.53)	77.196 (8.865, 145.528)	0.027
>24.9	67 (8.99)	211.647 (96.045, 327.249)	<0.0001
Weight (kg)	46.75 ± 7.74	11.597 (7.744, 15.450)	<0.0001
Height (cm)	151.09 ± 5.66	10.27 (4.933, 15.608)	<0.0001
Gestational age (weeks)	37.98 ± 2.07	92.703 (79.550, 105.856)	<0.0001
≥37 weeks	586 (78.66)	Reference	
<37 weeks	159 (21.34)	-452.054 (−518.952, −385.156)	<0.0001
Second-hand smoking	433 (58.12)	Reference	
Yes	312 (41.88)	−99.299 (−160.654, −37.945)	0.002
Education			
No formal	108 (14.50)	Reference	
Primary	245 (32.89)	176.454 (81.441, 271.466)	<0.0001
Secondary or higher	392 (52.62)	187.341 (97.946, 276.737)	<0.0001
Education Spouse			
No formal	188 (25.23)	Reference	
Primary	247 (33.15)	89.018 (9.058, 168.979)	0.029
Secondary or higher	310 (41.61)	129.655 (53.487, 206.223)	<0.0001
Income ≤4000	333 (44.70)	Reference	
4001–6000	320 (42.95)	3.836 (−60.873, 68.544)	0.908
>6000	87 (11.68)	164.524 (64.966, 264.052)	0.001
Birth length	46.43 ± 2.81	47.075 (36.744, 57.405)	<0.0001
Birth head circumference	32.65 ± 1.31	124.221 (102.763, 145.68)	<0.0001
Number of pregnancies			
0	313 (42.01)	Reference	
1	230 (30.87)	33.48 (−38.61, 105.56)	0.363
>1	202 (27.11)	−49.81 (−124.72, 25.1)	0.193
Sex			
Boy	376 (50.47)	Reference	
Girl	369 (49.53)	−86.001 (−146.638, −25.365)	0.006
Birth place			
Home	387 (51.95)	Reference	
Clinic	46 (6.17)	256.009 (130.131, 381.888)	<0.0001
Hospital	309 (41.48)	202.609 (141.032, 264.185)	<0.0001
Birth type			
Vaginal	465 (62.42)	Reference	
Cesarean	280 (37.58)	189.894 (128.474, 251.314)	<0.0001

Note: continuous variables are presented as mean ± standard deviation; categorical variables are presented as frequency and proportion [n (%)]; b (95% CI) represents the coefficient and confidence interval of the association between the variable and birth weight.

and Cu [b = −74.89, 95% CI: (−121.52, −28.27), P = 0.002, FDR-q = 0.021] in umbilical cord serum were associated with low birth weight respectively. Also, we found the concentration of Y [b = −45.57, 95% CI: (−76.52, −14.62), P = 0.004, FDR-q = 0.039] and Er [b = −41.33, 95% CI: (−69.82, −12.84), P = 0.005, FDR-q = 0.039], both REEs, were associated with decreased birth weight. Interestingly, per each unit increment of Se umbilical cord serum levels was associated with an average increase in birth weight of 161.77 g [95% CI: (83.98, 239.56), P = 5.10 × 10⁻⁵, FDR-q = 0.001]. The relationships between above elements and birth weight according to quartiles of exposure were shown in table S3. And the results of categorical analyses shown that exposure to higher concentrations of elements would have greater effects on birth weight. Significant correlations between the above identified elements are shown in figure 1 (B).

Also, the associations between these elements and birth weight stratified by population characteristics were generally consistent with our findings (Table S4). Interestingly, the negative effects of Mn and Cu seemed to be
more obvious in preterm birth. Pregnant women exposed to second hand smoking or marrying before 18 years may be affected easily by elements exposure.

Element mixture analyses

BKMR analyses were used to explore potential interactions among candidate elements, indicating potential interactive associations between Li and other elements (Mn, Co, Cu, Se, Y, and Er) (figure 2). We also further explored the protective effect of Se against toxicity of the other elements on birth weight.

Multivariate linear regression showed that there was no significant interaction on the multiplicative scales after multiple testing correction (FDR-q > 0.05) (Table S5). Metal-metal non-linearity interaction analyses showed that high Li exposure weakened the protectiveness of Se and aggravated the toxicity of other elements.
exposure on birth weight (Table S6). For example, there was a significant negative association between element exposure and birth weight only among those exposed to high levels of Er and Li compared with the other three groups. By contrast, the negative effect of element exposure on birth weight could be weakened in the population with high Se concentration compared with those with low Se concentration (Table S7).

Restricted cubic spline showed that associations between the identified elements (except Li) and birth weight differed by varying the series quantiles of Li and exposure to high Li may increase the risk of lower birth weight (figure 3). For example, Er had a strengthened negative association on birth weight according to the increased percentile of Li concentration (figure 3(F)), while the toxicity of Er on birth weight was considerably weakened with the increased percentile of Se concentration (figure 4(F)). High concentration of Se could weaken negative effects of toxicity elements exposure and similar opposite patterns of other non-linear interactions to Li between Se and the other risk elements are shown in figure 4.

Using the WQS model, the six risk elements (Li, Mn, Co, Cu, Y, and Er) were spontaneously evaluated for their joint effect. The ERS was constructed as a weighted sum of the elements using the mean weight of elements from the WQS regression attributed to the mean contributions of Li (48%), Er (21%), Co (16%), Cu (7%), Mn (7%), and Y (1%) (figure 1(C)). The ERS ranged from −3.10 to 2.21 with a mean (SD) of −0.3 (1.20). Note that the higher ERS index meant higher risk element exposure because WQS regression focuses inference in the negative direction in this study. Higher ERS values indicated more susceptibility to decreased birth weight in relation to cumulative exposure to element mixture (Li, Mn, Cu, Co, Y, and Er) is associated with more decreased birth weight. Interestingly, our results indicated that Se could attenuate and

Discussion

In this study, we described 56 elements measured in cord serum blood and assessed effects of exposure to individual element and mixtures on birth weight. Multivariate linear regression demonstrated that concentrations of Li, Mn, Co, Cu, Y, and Er in cord serum were negatively associated with birth weight and confirmed the protective effect of Se. BMKR analyses suggested potential interactions between Li and other identified elements, and WQS identified Li as the most important predictor of birth weight. ERS constructed based on the WQS illustrated that cumulative exposure to element mixture (Li, Mn, Cu, Co, Y, and Er) is associated with more decreased birth weight. Interestingly, our results indicated that Se could attenuate and
agonize the toxicity of elements on birth weight. Our findings highlight the importance of assessing the effects of single and element mixtures on birth weight.

Li has been an effective treatment for relapse prevention in bipolar spectrum disorder during pregnancy and postpartum [20]. However, Li has a narrow therapeutic range from 0.5 to 1.2 mmol l⁻¹ and higher levels may lead to toxicity [21], which has been classified as a teratogenic substance by the U.S. Food and Drug Administration [22]. What’s more, it has been reported that Li exposure would increase risks of impaired fetal size [22]. In this study, we found that Li was a key exposure inversely associated with birth weight. Previous studies have found that exposure to Li during pregnancy would increase the risk of adverse birth outcome, such as miscarriage, prematurity, fetal goiter, hypothyroidism, and low birth weight [23, 24]. Drinking water may be the main source of Li in Bangladesh, which is a common and general source and can easily cross the placenta to the fetus [25, 26].

Insufficient and excess essential element concentrations could both affect fetal growth [27–29]. Here, we found that essential nutrients such as Mn, Cu, and Co decreased birth weight, all of which are also cofactors of the major antioxidant enzymes. Mn, which is present in air, soil, and water, is vital for optimal fetal growth and development [30]. Previous studies found that the association between Mn and birth weight follows an inverse ‘U-shaped’ curve [31–33]. In this study, the concentration of Mn (median: 10.15 μg l⁻¹ (range: 5.62–789.51 μg l⁻¹)) was higher than
in other studies and well above the safe level in cord serum 5.0 μg l⁻¹ [33–35]. The negative effect of Mn on birth weight in our research indicated the overexposure in Bangladesh. Mn may affect birth weight through certain matrix metalloproteinases, markers for inflammatory and oxidative stress [36].

Cu deficiency or overexposure are both associated with adverse birth outcomes and previous study has demonstrated that Cu may be an important factor triggering the condition of low birth weight [37, 38]. Appropriate concentrations of Cu for infant development and a possible ‘safe level’ remain unknown. However, it has been reported that the average umbilical cord blood or serum Cu concentrations were between 220 and 520 μg l⁻¹ in before epidemiologic studies [37, 39, 40], which were much lower than our study results (median: 474.75 μg l⁻¹, range: 153.96–2535.80 μg l⁻¹). Studies using animal models also revealed that exposure to high Cu concentrations restrict growth retardation in rat fetuses and the fathead minnow through downregulation of genes associated with growth [41, 42]. And our study found negative effects of Cu on birth weight would increase as the concentration of Cu increased, which also demonstrated elevated exposure levels of Cu in Bangladesh.

The level of Co (median: 0.295 μg l⁻¹, range: 0.011–3.075 μg l⁻¹) found in our study population was similar to or higher than prior studies [11, 43], and we found that Co was inversely associated with birth weight in Bangladesh. Co can accumulate in the body, and long-term exposure, even at a low level, can give rise to adverse health effects in various organs and tissues [44]. In developing countries, Co is present in processing plants, the hard-element industry, and the diamond polishing and ceramic industries, which are widely distributed [45].

Figure 4. Toxic effect of elements on birth weight as modified by Se. The restricted cubic spline for the relationships between identified elements and birth weight in different quantiles of loge Se level [2.28 μg l⁻¹ (10%), 2.55 μg l⁻¹ (30%), 2.76 μg l⁻¹ (50%), 2.91 μg l⁻¹ (70%), 3.19 μg l⁻¹ (90%)]. Lines represent coefficients based on restricted cubic splines for the log-transformed levels of elements in the linear model. Adjustment factors included gestational maternal age, gestational age, sex, BMI, second-hand smoking, marriage age, education level, and income level.
Though Mn, Cu, and Co are all essential for human health, our results indicated the presence of excessive levels in Bangladesh that may warrant concern.

Both Y and Er are REEs are emerging contaminants, spreading in the environment widely due to industrialization [46]. REEs can easily cross the placental barrier, thereby affecting fetal growth and development [47]. However, there is little research on this type of pollutant and the potential toxic effects of REE exposure on birth outcome [48]. Our results provide a reference for future research and suggest that more attention should be focused on investigating the toxicity of REEs.

Se, the only essential trace element found to protect against low birth weight, plays an important role in immunocompetence and can protect against oxidative damage [49]. Prior studies demonstrated that Se counters the toxic effects of some elements on birth weight, which was further validated in this study [8, 50]. However, the current study detected a concentration of Se (median) of 15.77 μg l⁻¹ (range: 5.62–47.49 μg l⁻¹), which was much lower than that reported in other studies [51, 52]. For example, a birth cohort study in Japan reported the concentration of Se (median) 191.4 μg l⁻¹ (range: 73.9–376.2 μg l⁻¹) in cord blood [53]. This finding warranted consideration, as supplementation of Se for pregnant women in Bangladesh may help to decrease the risk of low birth weight.

Few studies have reported associations between prenatal exposure to metal mixtures and birth weight [54]. In this study, we analyzed the effect of combined element exposure on birth weight and provided evidence that Li is likely a key exposure during pregnancy that contributes to decreased birth weight. Further, BKMR analyses suggested an interaction between Li and the other identified elements; exposure to high levels of Li strengthened toxicity or weakened the protective effect of the other elements on birth weight.

In summary, the present study has the main strengths as follows. First, this study was based on a prospective birth cohort study, which is helpful for exploring causality. Second, we specifically examined the status of 56 elements exposure in cord blood and the associations of individual element with birth weight, identifying seven important elements to the development of fetus. Third, BKMR and WQS analyses were used to explore the effects of elements mixture exposure on birth weight.

Also, there are several limitations in our study. While cord blood is appropriate for the detection of many of the metals analyzed here, the exposure measurements in cord blood may not have captured the most relevant time period of exposure or usual levels of exposure and some metals detection tends to be lower in cord blood [55], which may have contributed to a greater prevalence of non-detects for some of the metals (e.g.: Cd, Lu and Tl). And there may be measurement errors when anthropometric measurements and the measure of elements exposure in cord blood were performed at birth. Also, we cannot rule out the likelihood of contamination in the process of collecting and transport though we have followed a series of standard procedure. It may lead to non-differential exposure misclassification due to the potential measurement errors and contamination. In addition, there are differences in samples and exposure measurements and variation in population characteristics between our study and other studies. Our findings can be a reference about elements exposure during pregnancy, but it must be careful when generalizing these findings to other population. What’s more, there still remains largely unknown about the mechanisms of action underlying the effects of element exposure on birth weight, which needs more investigation. Finally, it is necessary to determine whether an exposure threshold exists especially for those essential trace elements based on more inquiries.

Conclusions

In conclusion, we characterized 56 trace element exposure levels in cord serum samples from 745 mother-infant pairs in Bangladesh. Our study demonstrates that exposure to Li, Mn, Co, Cu, Se, Y, and Er are individually associated with birth weight and suggests Li may be a key element that is associated with decreased birth weight. Additionally, we found toxic effects of cumulative exposure to element mixtures (Li, Mn, Cu, Co, Y, and Er) on birth weight. On the other hand, our results suggest that Se supplementation may attenuate the risk of low birth weight by its main protective and antagonistic effects against the toxicity of elements.

Acknowledgments

Z Y, Y W and F C conceptualized the study; X C, L W, and H H designed the study, analyzed the data and wrote the manuscript; R Z, L S, M R, M G M, Q Q, H Y, Y Z, Y W, F C, and D C C collected the samples, processed the samples for analysis, and performed metal level evaluation; R Z, M G M., H Y, and M R contributed to the discussion and revision of the manuscript. All authors approved the final version of the manuscript.
Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The study was described in detail to all participants, and informed consent was obtained before study enrollment. All protocols performed in studies involving human participants were reviewed and approved by the Human Research Committees at Harvard T.H. Chan School of Public Health, Nanjing Medical University, and DCH.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the State’s Key Project of Research and Development Program (2016YFE020490 to F C), the US National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health (NIH) (R01ES015533 to D C C), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The sponsors had no role in the design of the study, collection and analysis of data, or preparation of the manuscript.

ORCID iDs

Yang Zhao @ https://orcid.org/0000-0003-1393-7567

References

[1] Doherty T and Kinney M 2019 Low birthweight: will new estimates accelerate progress? The Lancet Global Health 7 e809–10
[2] UNICEF:2008 The State of the World’s Children 2009: Maternal and Newborn Health
[3] Organisation 2014 WH: world health assembly WHA global nutrition targets 2025 Low birth weight policy brief. (Geneva: World Health Organisation)
[4] Ian A T, Azam M, Siddiqui K, Ali A, Choi I and Haq Q M 2015 Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants Int. J. Mol. Sci. 16 29592–630
[5] Ysart G, Miller P, Crews H, Robb P, Baxter M, De L’Argy C, Lofthouse S, Sargent C and Harrison N 1999 Dietary exposure estimates of 30 elements from the UK total diet study Food Addit. Contam. 16 391–403
[6] Hong Y C et al 2014 Postnatal growth following prenatal lead exposure and calcium intake PEDIATRICS 134 1151–9
[7] Gulson B, Mizon K, Korsch M and Taylor A 2016 Revisiting mobilisation of skeletal lead during pregnancy based on monthly sampling and cord/maternal blood lead relationships confirm placental transfer of lead Arch. Toxicol. 90 805–16
[8] Ou Y, Bloom M S, Nie Z, Han F, Mai J, Chen J, Lin S, Liu X and Zhuang J 2017 Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects Environ. Int. 106 127–34
[9] Sun X, Jiang Y, Xia W, Jin S, Liu W, Lin X, Liu H, Chen X, Peng Y, Li H et al 2018 Association between prenatal nickel exposure and preterm low birth weight: possible effect of selenium Environ. Sci. Pollut. Res. Int. 25 25888–95
[10] Eum J H, Cheong H K, Ha E H, Ha M, Kim Y, Hong Y C, Park H and Chang N 2014 Maternal Blood manganese level and birth weight: a MOCEH birth cohort study Environmental Health: A Global Access Science Source 13 31
[11] Zheng C, Zhong H, Guo Z, Wu Z, Zhang H, Wang C, Zhou Y and Zuo Z 2014 Levels of heavy metals and trace elements in umbilical cord blood and the risk of adverse pregnancy outcomes: a population-based study Biol. Trace Elem. Res. 160 437–44
[12] Cabrera-Rodriguez R, Lazardo O P, González-Antuña A, Boada I D, Almeida-González M, Camacho M, Zamondo M, Acosta-Dacial A C, Rial-Berriel C and Henríquez-Hernández I A 2018 Occurrence of 44 elements in human cord blood and their association with growth indicators in newborns Environ. Int. 116 43–51
[13] Sakamoto M, Yasutake A, Domingo J L, Chan H M and Murata K 2013 Relationships between trace element concentrations in chorionic tissue of placenta and umbilical cord tissue: potential use as indicators for prenatal exposure Environ. Int. 60 106–11
[14] Al-Saleh I, Shinwari N, Mashhour A and Rabah A 2014 Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population Int. J. Hyg. Environ. Health 217 205–18
[15] Liang C M et al 2019 Trace element profiles in pregnant women’s sera and umbilical cord sera and influencing factors: repeated measurements Chemosphere 218 869–78
[16] Kile M L, Rodrigues E G, Mazumdar M, Dobson C B, Diao N, Golam M, Quamruzzaman Q, Rahman M and Christiani D C 2014 A prospective cohort study of the association between drinking water arsenic exposure and self-reported maternal health symptoms during pregnancy in Bangladesh Environ Health 13 29–29
[17] Bobb J F, Valeri L, Claus Henn B, Christiansi D C, Wright R O, Mazumdar M, Godleski J J and Coull B A 2015 Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures Biostatistics 16 493–508
[18] Wei Y Y et al 2021 Antagonistic effect of early stage zinc on arsenic toxicity induced preterm birth during pregnancy: evidence from a rural Bangladesh birth cohort Chinese Medical Journal 134 619–21
[19] Gennings C, Curtin P, Bello G, Wright R, Arora M, Austin C and Lagged W Q S 2020 Regression for mixtures with many components Environ. Res. 186 105929
[20] Diav-Citrin O, Shechtman S, Tahoyer E, Finkel-Pekarsky V, Arnon J, Kennedy D, Ebarera A, Einaron A and Ornoy A 2014 Pregnancy outcome following in utero exposure to lithium: a prospective, comparative, observational study American Journal of Psychiatry 171 785–94
[21] Druck R, Elderer M A, Khattab H A, Pymey F and Land L A 2014 Lithium: a review of pharmacology, clinical uses, and toxicity Eur. J. Pharmacol. 740 464–75
[22] Harari E, Langeén M, Casimiro E, Bottai M, Palm B, Nordqvist H and Vahter M 2015 Environmental exposure to lithium during pregnancy and fetal size: a longitudinal study in the argentinian andes Environ. Int. 77 48–54
[23] Oyebode F, Rastogi A, Berrisford G and Coccia F 2012 Psychotropics in pregnancy: safety and other considerations Pharmacol. Ther. 135 71–7
[24] Diav-Citrin O, Shechtman S, Tahoyer E, Finkel-Pekarsky V, Arnon J, Kennedy D E A and Einaron A 2014 AO: pregnancy outcome following in utero exposure to lithium: a prospective, comparative, observational study Am J Psychiatry 171 10
[25] Blüm V, Regier M D, Hlavin G, Rockett I, H, König F, Vyssoki B, Bichor D and Kapusta D 2013 Lithium in the public water supply and suicide mortality in Texas J. Psychiatric Res. 47 407–11
[26] Harari E, Ronco AM, Conchiga G, Llanois M, Grandrê M, Castro F, Palm B, Nerrnbell B and Vahter M 2012 Early-life exposure to lithium and boron from drinking water Reproductive Toxicology 34 552–60
[27] Li Z et al 2019 Association between maternal and umbilical cord serum cobalt concentration during pregnancy and the risk of preterm birth: The Ma’anshan birth cohort (MABC) study Chemosphere 218 487–92
[28] Bhattacharya P T, Misra S R and Hussain M 2016 Nutritional aspects of essential trace elements in oral health and disease: an extensive review Scientifica (Cairo) 2016 546573
[29] Mistry H D and Williams P J 2011 The importance of antioxidant micronutrients in pregnancy Oxid Med Cell Longev 2011 817479
[30] EPA-822-R-04-003-201-2014 U.S. Environmental Protection Agency Office of Water (4304T), H.A.E.C.D.W., DC 20460, Drinking Water Health Advisory for Manganese
[31] Xia W et al 2016 Maternal urinary manganese and risk of low birth weight: a case-control study BMC Public Health 16 142
[32] Eum J-H, Cheong H-K, Ha E-H, Ha M, Kim Y, Hong Y-C, Park H and Chang N 2014 Maternal blood manganese levels and birth weight: a MOCEH birth cohort study Environ Health 13 31–31
[33] Chen L, Ding G, Gao Y, Wang P, Shi R, Huang H and Tian Y 2014 Manganese concentrations in maternal-infant blood and birth weight Environmental Science and Pollution Research 21 6170–5
[34] Xu X, Chen L, Wang C, Yang X, Gao Y and Tian Y 2016 The role of cord blood DBNF in infant cognitive impairment induced by low-level prenatal manganese exposure: LW birth cohort, China Chemosphere 166 466–511
[35] Xu X-D, Zhang J, Yan C-H and Shen X 2014 Prenatal exposure to manganese at environment relevant level and neonatal neurobehavioral development Environ. Res. 133 232–28
[36] Molina R M, Bhatanaruide S, Kim J, Thompson K, Wessling-Resnick M, Malter T J and Brain J D 2011 Ingestion of Mn and Pb by rats during and after pregnancy alters iron metabolism and behavior in offspring Neurotoxicology 32 413–22
[37] Li Z et al 2018 Umbilical serum copper status and neonatal birth outcomes: a prospective cohort study Biol. Trace Elem. Res. 183 200–8
[38] Bertuzides L, García-Vicent C, López J, Torró M I and Lurbe E 2015 Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight J Transl Med 13 291–291
[39] Wells E M, Jarrett J M, Lin Y H, Caldwell K L, Bibbins J R, Apelberg B J, Herbstman J, Halden R U, Wittler R F and Goldman L R 2011 Body burdens of mercury, lead, selenium and copper among Baltimore newborns Environ. Res. 111 411–7
[40] Jones E A, Wright J M, Rice G, Buckley B T, Magussomb M S, Barr D B and Williams B L 2010 Metal exposures in an inner-city neonatal population Environ. Int. 36 649–54
[41] Hall G A and Howell J M 1969 The effect of copper deficiency on reproduction in the female rat Br. J. Nutr. 23 41–5
[42] Lewis S S and Keller S J 2009 Identification of copper-responsive genes in an early life stage of the fathead minnow pimephales promelas Ecotoxicology 18 281–92
[43] Silver M K, Arain A L, Shao J, Chen M, Xia Y, Looff B and Meeker J D 2018 Distribution and predictors of 20 toxic and essential metals in the umbilical cord blood of Chinese newborns Chemosphere 210 1167–75
[44] Simonsen L O, Harbak H and Bennekou P 2012 Cobalt metabolism and toxicology—a brief update Sci. Total Environ. 432 210–5
[45] Christensen J M 1995 Human exposure to toxic metals: factors influencing interpretation of biomonitoring results Sci. Total Environ. 166 89–135
[46] MacMillan G A, Chetelat I, Heath J P, Mickpeeg R and Amyot M 2017 Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environmental science Processes & impacts 19 1336–45
[47] Wei J, Wang C, Yin S, Pi X, Jin L, Li Z, Liu J, Wang L, Yin C and Ren A 2020 Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal tube necrosis Environ. Int. 137 105542
[48] Gonenzi W, Mangori L, Danha C, Chaukura N, Dunjana N and Sanganyado E 2018 Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants Sci. Total Environ. 636 299–313
[49] Darlow B A and Austin N C 2003 Selenium supplementation to prevent short-term morbidity in preterm neonates Cochrane Database Syst Rev 4 CD003512
[50] Sun X et al 2018 Association between prenatal nickel exposure and preterm low birth weight: possible effect of selenium on neurodevelopmental outcomes Environ. Science and Pollution Research 25 25888–95
[51] Ode A, Ryllander L, Gustafsson P, Lundh T, Källen K, Olofsson P, Ivarsson S A and Rignell-Hydbom A 2015 Manganese and selenium concentrations in umbilical cord serum and attention deficit hyperactivity disorder in childhood Environ. Res. 137 373–81
[52] Bocca B, Ruggeri F, Pizzio A, Rovira J, Calamandrei G, Martínez M, Domingo J L, Alimon A and Schuhmacher M 2019 Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy: Part A. concentrations in maternal blood, urine and cord blood Environ. Res. 177 108599
[53] Iwai-Shimada M, Kameo S, Nakai K, Yaginuma-Sakurai K, Tatsuta N, Kurokawa N, Nakayama S F and Satoh H 2019 Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the tohoku study of child development in Japan Environmental Health and Preventive Medicine 24 35
[54] Lee S, Hong Y C, Park H, Kim Y, Ha M and Ha E 2020 Combined effects of multiple prenatal exposure to pollutants on birth weight: the mothers and children’s environmental health (MOCEH) study Environ. Res. 181 108832
[55] Hu X et al 2015 Distributions of heavy metals in maternal and cord blood and the association with infant birth weight in China Reprod Med 60 51–9