ARTICLE TITLE: Frailty and Cancer: Implications for Oncology Surgery, Medical Oncology, and Radiation Oncology

CONTINUING MEDICAL EDUCATION ACCREDITATION AND DESIGNATION STATEMENT:
Blackwell Futura Media Services is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education (CME) for physicians.
Blackwell Futura Media Services designates this enduring material for a maximum of 1.5 AMA PRA Category 1 Credit™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

CONTINUING NURSING EDUCATION ACCREDITATION AND DESIGNATION STATEMENT:
The American Cancer Society (ACS) is accredited as a provider of continuing nursing education (CNE) by the American Nurses Credentialing Center’s Commission on Accreditation.
Accredited status does not imply endorsement by the ACS or the American Nurses Credentialing Center of any commercial products displayed or discussed in conjunction with an educational activity. The ACS gratefully acknowledges the sponsorship provided by Wiley for hosting these CNE activities.

EDUCATIONAL OBJECTIVES:
After reading the article “Frailty and Cancer: Implications for Oncology Surgery, Medical Oncology, and Radiation Oncology,” the learner should be able to:
1. Describe the associations of frailty with adverse clinical outcomes among patients being treated for cancer.
2. Review strategies for assessing frailty in an oncology setting.
3. Discuss implications of frailty in planning surgical, medical, and radiation anticancer therapies.

ACTIVITY DISCLOSURES:
No commercial support has been accepted related to the development or publication of this activity.

ACS CONTINUING PROFESSIONAL EDUCATION COMMITTEE DISCLOSURES:
Editor: Ted Gansler, MD, MBA, MPH, has no financial relationships or interests to disclose.
Lead Nurse Planner: Cathy Meade, PhD, RN, FAAN, has no financial relationships or interests to disclose.

NURSING ADVISORY BOARD DISCLOSURES:
Maureen Berg, RN, has no financial relationships or interests to disclose.
Susan Jackson, RN, MPH, has no financial relationships or interests to disclose.
Barbara Lesser, BSN, MSN, has no financial relationships or interests to disclose.

AUTHOR DISCLOSURES:
Cecilia G. Ethun, MD, Mehmet Bilen, MD, Ashesh B. Jani, MD, MD, MSEE, Shishir K. Maithel, MD, FACS, Kenneth Ogan, MD, FACS, and Viraj A. Master, MD, PhD, FACS, have no financial relationships or interests to disclose.
The peer reviewers disclose no conflicts of interest. Identities of the reviewers are not disclosed in line with the standard accepted practices of medical journal peer review.

SCORING:
A score of 70% or better is needed to pass a quiz containing 10 questions (7 correct answers), or 80% or better for 5 questions (4 correct answers).

CME INSTRUCTIONS ON RECEIVING CME CREDIT:
This activity is intended for physicians. For information concerning the applicability and acceptance of CME credit for this activity, please consult your professional licensing board.
This activity is designed to be completed within 1.5 hours; physicians should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity during the valid credit period, which is up to 2 years from the time of initial publication.

CNE INSTRUCTIONS ON RECEIVING CNE CREDIT:
This activity is intended for nurses. For information concerning the applicability and acceptance of CNE credit for this activity, please consult your professional licensing board.
This activity is designed to be completed within 1.5 hours; nurses should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity during the valid credit period, which is up to 2 years from the time of initial publication.

FOLLOW THESE STEPS TO EARN CREDIT:
• Log on to acsjournals.com/ce.
• Read the target audience, educational objectives, and activity disclosures.
• Read the activity contents in print or online format.
• Reflect on the activity contents.
• Access the examination, and choose the best answer to each question.
• Complete the required evaluation component of the activity.
• Claim your certificate.

This activity will be available for CME/CNE credit for 1 year following its launch date. At that time, it will be reviewed and potentially updated and extended for an additional 12 months.
All CME/CNE quizzes are offered online FREE OF CHARGE. Please log in at acsjournals.com/ce. New users can register for a FREE account. Registration will allow you to track your past and ongoing activities. After successfully completing each quiz, you may instantly print a certificate, and your online record of completed courses will be updated automatically.
Frailty and Cancer: Implications for Oncology Surgery, Medical Oncology, and Radiation Oncology

Cecilia G. Ethun, MD, MS; Mehmet A. Bilen, MD; Ashesh B. Jani, MD, MSEE; Shishir K. Maithel, MD, FACS; Kenneth Ogan, MD, FACS; Viraj A. Master, MD, PhD, FACS

Abstract: The concept of frailty has become increasingly recognized as one of the most important issues in health care and health outcomes and is of particular importance in patients with cancer who are receiving treatment with surgery, chemotherapy, and radiotherapy. Because both cancer itself, as well as the therapies offered, can be significant additional stressors that challenge a patient’s physiologic reserve, the incidence of frailty in older patients with cancer is especially high—it is estimated that over one-half of older patients with cancer have frailty or prefrailty. Defining frailty can be challenging, however. Put simply, frailty is a state of extreme vulnerability to stressors that leads to adverse health outcomes. In reality, frailty is a complex, multidimensional, and cyclical state of diminished physiologic reserve that results in decreased resiliency and adaptive capacity and increased vulnerability to stressors. In addition, over 70 different measures of frailty have been proposed. Still, it has been demonstrated that frail patients are at increased risk of postoperative complications, chemotherapy intolerance, disease progression, and death. Although international standardization of frailty cutoff points is needed, continued efforts by oncology physicians and surgeons to identify frailty and promote multidisciplinary decision making will help to develop more individualized management strategies and optimize care for patients with cancer. CA Cancer J Clin 2017;67:362–377. © 2017 American Cancer Society.

Keywords: complications, Comprehensive Geriatric Assessment, Frailty Index, phenotypic frailty, survival

Practical Implications for Continuing Education

> The concept of frailty has become increasingly recognized as one of the most important issues in health care and health outcomes and is of particular importance in patients with cancer who are undergoing surgery, chemotherapy, and radiotherapy. However, defining frailty can be challenging.

> Frailty is a complex, multidimensional, and cyclical state of diminished physiologic reserve that results in decreased resiliency and adaptive capacity and increased vulnerability to stressors.

> It has been demonstrated that frail patients are at increased risk of postoperative complications, chemotherapy intolerance, disease progression, and death. Although international standardization of frailty cutoff points is needed, continued efforts by oncology physicians and surgeons to identify frailty and promote multidisciplinary decision making will help to develop more individualized management strategies and optimize care for patients with cancer.

Introduction

Over the last few decades, the concept of frailty has become increasingly recognized as one of the most important issues in health care and health outcomes. Approximately 10% to 20% of patients ages 65 years and older present with frailty, and that incidence doubles in those ages 85 years and older.1,2 As the population continues to age, the burden of frailty is anticipated to become even greater.
Frailty is of particular importance in cancer. The elderly make up a significant proportion of patients diagnosed with cancer and account for approximately 80% of cancer deaths each year. Given that both cancer itself as well as the therapies offered can be significant additional stressors that challenge a patient’s physiologic reserve, the incidence of frailty in older patients with cancer is especially high. Indeed, over one-half of older patients with cancer have frailty or prefrailty, and these patients are at increased risk of postoperative complications, chemotherapy intolerance, disease progression, and death (Table 1).

This article will elaborate on the concept of frailty with a focus on cancer and will examine the important and dynamic role frailty plays in the management and outcomes of patients with cancer in the context of 3 primary treatment modalities: surgery, chemotherapy, and radiation.

Defining Frailty

Several definitions of frailty have been proposed, and although no single operational definition can satisfy all, a clear conceptual framework for frailty has been established. Put simply, frailty is a state of extreme vulnerability to stressors that leads to adverse health outcomes (Table 1). In reality, however, frailty is a complex, multidimensional, and cyclical state of diminished physiologic reserve that results in decreased resiliency and adaptive capacity and increased vulnerability to stressors (Fig. 1). It is a condition marked by a decline in multiple physiologic systems, often in an age-related fashion (although not exclusively) and has been described as both a predisability state as well as coexisting with, although decidedly distinct from, disability and chronic disease (Fig. 2). Frailty has also been associated with the concept of health deficits, which, when accumulated over time, heighten an individual’s vulnerability to adverse health outcomes.

The term “prefrailty” is sometimes used to describe patients who may be at risk for frailty. Although no exact definition exists, these patients typically have some components of a frailty measure but not enough to meet the defined frailty cutoff. Similar to frailty, although prefrailty is often thought of as an age-related condition, it is critical to recognize that it also can exist in young patients.

Measuring Frailty

Current recommendations state that all patients older than 70 years and those with significant weight loss (>5%) because of chronic illness should be screened for frailty. Which frailty

TABLE 1. Adverse Health Outcomes Associated With Frailty

General risks	
Falls	
Disability	
Comorbid conditions	
Cognitive decline	
Hospitalization	
Functional dependence	
Institutionalization	
Health care-associated complications	
Social withdrawal	
Death	

Cancer-specific risks	
Chemotherapy intolerance	
Treatment-associated complications	
Disease recurrence/progression	

FIGURE 1. A Model for Defining Frailty. Fit patients have robust adaptive capacity and resiliency to stressors, which leads to more favorable outcomes. Prefrail patients have weakened adaptive capacity and resiliency to stressors, and frail patients have poor adaptive capacity and resiliency to stressors. Prefrail and frail patients are at greater risk of poor outcomes following surgery, chemotherapy, and radiotherapy. Figure adapted from: Robinson TN, Walston JD, Brummel NE, et al. Frailty for surgeons: review of a National Institute on Aging conference on frailty for specialists. J Am Coll Surg. 2015;221:1083-1092.
measure is optimal for screening and assessment, however, is not clear. Over 70 different tools exist to measure frailty, few of which have been validated, and they range from a single item being measured to more than 90 items. They also vary in their intended purpose, with some frailty measures being designed as screening tools to risk-stratify patients, and others as more formal frailty assessments with the intention to guide treatment strategy and modify outcomes. In addition, it can be challenging to distinguish between certain frailty measures, which tend to have a broader and more multidimensional scope, and other, more focused risk-assessment tools, such as comorbidity indices, because they can have several overlapping features. A brief overview of several of the most commonly used frailty assessment tools are listed below.

Individual Assessment Tools

Using a single-item assessment tool is a quick and easy way to quantify a patient’s level of frailty. The most commonly used single-item tools that have been shown to be reliably predictive of frailty and other specific outcomes are gait speed (the measured time it takes for the patient to walk a 5-meter distance), a Timed Up-and-Go score (the measured time it takes for the patient to rise from a chair, walk 10 feet, turn around, and return to being seated), and sarcopenia (muscle wasting based on morphometric measurements, including lean muscle area, volume, and density). Although these single-item measurements make up some of the components of other, more robust assessment tools and can be attractive to use in a busy and time-constrained environment, they can also lack sensitivity and specificity and, when in isolation, should be used with caution.

The FRAIL Scale

Developed by the Geriatric Advisory Panel of the International Academy of Nutrition and Aging, the FRAIL scale is a validated screening tool consisting of 5 straightforward questions (Table 2). Because it can be self-administered and does not require a face-to-face examination, this tool can be an efficient and cost-effective way to screen large groups of patients for frailty. However, the FRAIL scale is used most frequently in a primary care or community settings, and it has not been studied extensively as a screening tool in patients with cancer.

The Vulnerability Elders Survey-13

The Vulnerability Elders Survey-13 (VES-13) is a self-administered survey that consists of 13 items: 1 item for age and 12 that assess health, functional capacity, and physical performance (Table 3). The VES-13 is a practical screening tool that has been reported as a reliable marker of frailty in patients with cancer, although it may be inaccurate because of patient overestimation of their own competencies.

Phenotypic Frailty

Phenotypic frailty is one of the most widely used frailty measurement tools in oncology and has been recognized as one of the optimal strategies for assessing elderly patients preoperatively by the American College of Surgeons (ACS) and the American Geriatric Society. Phenotypic frailty, also known as physical frailty, is based on the idea that frailty is a result of age-related biological changes across multiple domains, such as nutrition and energy metabolism. When these changes manifest as clinical signs and symptoms, such as weight loss and decreased energy level, they result in the development of a frail phenotype, which can be
concretely measured.10,16 Phenotypic frailty focuses on 5 criteria—size (weight), strength, energy, speed, and activity—and requires a combination of questionnaires and in-office assessments (Table 4).6,10,11,16,21,22,45,46

The Frailty Index and the Modified Frailty Index

The Frailty Index was developed from the Canadian Health and Aging Study and is based on a cumulative deficit model.47 This model proposes that the accumulation of medical, social, and functional deficits over a person’s lifetime leads to a non-specific, age-associated vulnerability, or frailty (Fig. 3).13,18,19

The original proposed Frailty Index includes 70 items, which range from vague to very specific signs, symptoms, diseases, and disabilities. The number of deficits present (i.e., health problems or abnormal characteristics) are added, then divided by the total number assessed to obtain a frailty score.47 Although many of the included items can be found in patient charts, several require more cumbersome and labor-intensive assessments, which makes the Frailty Index less attractive in routine clinical practice. More recently, Obeid et al proposed a modified Frailty Index (mFI), which maps the 70 variables from the original Frailty Index to 11 preexisting variables from the National Surgical Quality Improvement Program (NSQIP) database, and has since been endorsed by the ACS (Table 5).29,48

The Comprehensive Geriatric Assessment

One of the most extensively studied and used tools in oncology, the Comprehensive Geriatric Assessment (CGA), is a multidimensional and multidisciplinary assessment process to identify and manage elderly patients.49,50 By using principles similar to those used in the cumulative deficit model, the CGA focuses on several domains of a patient’s medical, psychosocial, and functional capabilities and, when used as a screening tool (based on the number of abnormal domains), can be a reliable measure of frailty in patients with cancer.42 According to the International Society of Geriatric Oncology guidelines, the domains of a CGA should include functional status, comorbidity, cognition, mental health status, nutrition, social status and support, fatigue, polypharmacy, and geriatric syndromes.50 However, with 64 instruments of measurement, each of which contain anywhere from a single item to over 2 dozen items, administering a full CGA can takes hours to complete and is often impractical. Furthermore, which and how many tools are most appropriate to adequately measure these domains is unclear, and the cutoffs imposed to define frailty vary greatly from study to study.5

Because of these challenges, some have advocated for a 2-step approach, using simpler frailty measures as screening tools to identify those patients who might benefit from a full CGA.51 Others have modified the CGA to address these issues. For example, the Cancer-Specific Geriatric

TABLE 3. Vulnerable Elders Survey-13
CATEGORY
Age, y
<75
75-84
≥85
Self-rated health
Good, very good, or excellent
Fair or poor
Physical disability
1) Stooping, crouching, or kneeling
2) Lifting or carrying objects as heavy as 10 lbs
3) Reaching or extending arms above shoulder level
4) Writing or handling and grasping small objects
5) Walking one-quarter of a mi
6) Doing heavy housework
No. of items done with difficulty:
0 items
1 item
≥2 items
Functional disability
1) Shopping for personal items
2) Managing money
3) Walking across the room
4) Doing light housework
5) Bathing or showering
No. of items requiring assistance because of health/physical condition
0 items
≥1 items

*Scoring: ≥ 3 points indicates frail.

TABLE 4. Phenotypic Frailtya
SHRINKING (weight loss)
WEAKNESS
EXHAUSTION
SLOW GAIT SPEED
LOW ACTIVITY

a Scoring and cutoff points vary, based on the study: 0-1 indicates robust; 1-3, prefrail; 1 to ≥ 4, frail (see Kristjansson 2010,6 Makary 2010,10 Tan 2012,11 Fried 2004,14 Bylow 2011,13 Courtney-Brooks 2012,22 Li 2016,45 and Degesys 2011,46
Assessment (CSGA) is a brief and more focused tool that combines both self-administered and in-office assisted assessments.\(^52\) It includes 6 of the 9 domains from the full CGA, and the tools to measure those domains were specifically chosen for their reliability, validity, brevity, and prognostic ability in patients with cancer (Table 6).\(^34,53-60\)

Although it has been shown to be independently predictive of treatment-related toxicities, how the CSGA relates to frailty and other cancer-specific outcomes is currently unknown.\(^61\)

Frailty Measures Beyond Age

Although frailty is typically associated with advanced age, it is important to understand that younger patients outside the geriatric population can have frailty as well. This is particularly true for patients with cancer, in whom the disease itself, and not necessarily age, may be responsible for the most significant or the only declines in physiologic reserve. This underscores the importance of assessing the extrinsic factors, such as the social context in which a patient lives, that contribute to frailty.

Social vulnerability is a measure of a patient’s social status and has been both associated with frailty and identified as an independent predictor of mortality.\(^62-64\) The Social Vulnerability Index was constructed based on a compilation of social-related factors from the Frailty Index and the National Population Health Survey and includes 5 domains: communication, living situation, social support, social engagement and leisure, empowerment and life control, and socioeconomic status.\(^62\) Although social vulnerability has been studied most in elderly patients, its applicability to patients with

TABLE 5. Modified Frailty Index\(^a\)

Nonindependent functional status	Nonindependent functional status
History of diabetes mellitus	History of diabetes mellitus
History of either chronic obstructive pulmonary disease or pneumonia	History of either chronic obstructive pulmonary disease or pneumonia
History of congestive heart failure	History of congestive heart failure
History of myocardial infarction	History of myocardial infarction
History of percutaneous coronary intervention, cardiac surgery, or angina	History of percutaneous coronary intervention, cardiac surgery, or angina
Hypertension requiring the use of medications	Hypertension requiring the use of medications
Peripheral vascular disease or rest pain	Peripheral vascular disease or rest pain
Impaired sensorium	Impaired sensorium
Transient ischemic attack or cerebrovascular accident without residual deficit	Transient ischemic attack or cerebrovascular accident without residual deficit
Cerebrovascular accident with deficit	Cerebrovascular accident with deficit

\(^{a}\)Modified Frailty Index indicates \((\text{total number of variables present})/(\text{total number of variables assessed})\). Proposed cutoff score: \(>0.36\) indicates frail.
cancer is age-independent. Thus, social status should be taken into consideration when evaluating any patient with malignancy. In addition, consultation with a social worker and access to a financial expert to discuss cost and coverage options for cancer treatment is strongly encouraged.

Frailty and Oncology Surgery

Surgery is an essential component of multimodality therapy, and often the only curative option, for many solid tumors. The decision regarding a patient’s “fitness” for surgery, however, has traditionally been based on fairly subjective and overly simplistic measures, which can be limited in their ability to predict postoperative morbidity and mortality. The heterogeneity of patients with cancer, as well as the multisystem and multidimensional effects of both malignancy and surgery, underscore the importance of incorporating more comprehensive preoperative assessments into oncology surgery.

Because it moves beyond age or any single organ-system, it has been demonstrated that frailty is a stronger predictor of postoperative outcomes compared with several previous surgical risk-assessment tools, and it is increasingly recognized as a valuable measure in nononcologic surgical patients. For example, the mFI has been validated in several studies as a reliable measure of postoperative complications, discharge destination, and mortality in vascular, orthopedic, gynecologic, thoracic, and general surgeries. Similarly, it has been demonstrated that phenotypic frailty is predictive of postoperative outcomes in patients presenting for elective surgery, including major abdominal and transplantation surgeries. In a study by Revenig et al, frailty was even predictive of postoperative complications among patients undergoing minimally invasive abdominal surgery.

Although less well studied, there is a growing body of literature investigating the value of frailty specifically in oncologic surgery (Table 7).

Frailty and Survival

Frailty has been associated with worse long-term and short-term survival in patients undergoing surgery for a wide variety of malignancies. In a study of 176 patients undergoing colectomy for colorectal cancer, Kristjansson et al reported that frailty was associated with worse overall survival (OS), using both phenotypic frailty (hazard ratio [HR], 2.67; 95% confidence interval [95% CI], 1.11-6.83 [P = .029]) and CGA-based frailty measures (HR, 3.39; 95% CI, 1.82-6.29 [P < .001]). By using a CSGA-based frailty tool, Clough-Gorr et al observed worse 5-year and 10-year OS and disease-specific survival in patients undergoing resection for breast cancer. Lu et al used a frailty measure based on preoperative laboratory values (albumin < 3.4 g/dL, hematocrit < 35%, and creatinine > 2 mg/dL) and similarly observed worse OS (HR, 1.613; 95% CI, 1.027-2.512 [P = .038]), and recurrence-free survival (HR, 1.606; 95% CI, 1.027-2.512 [P = .038]).

Table 6. Cancer-Specific Geriatric Assessment

ASSESSMENT	INSTRUMENT	REFERENCE
Functional Status	Activities of Daily Living (from MOS Physical Health Scale)	Stewart 1992
	Instrumental Activities of Daily Living (from OARS questionnaire)	Fillenbaum & Smyer 1981
	Karnofsky physician-rated performance rating scale	Yates 1980
	Karnofsky self-reported performance rating scale	Loprinzi 1994
	Timed Up-and-Go	Podsadlo & Richardson 1991
No. of falls in last 6 mo		
Comorbidity	Physical Health Section (from OARS questionnaire)	Fillenbaum & Smyer 1981
Cognition	Blessed Orientation-Memory-Concentration test	Kawas 1995
Mental health	Hospital Anxiety and Depression Scale	Zigmund & Snaith 1983
Social functioning	MOS Social Activity Limitations Measure	Stewart 1992
Social support	MOS Social Support Survey (Emotional/Information and Tangible)	Stewart 1992
	Seeman and Berkman Social Ties	Seeman 1993
Nutrition	Body mass index	
	Percentage unintentional weight loss in the last 6 mo	White 2012
	Loss of muscle mass and/or body fat	White 2012

Abbreviations: MOS, Medical Outcomes Study; OARS, Older American Resources and Services.
1.532; 95% CI, 1.030-2.252 \([P = .035]\) in frail patients undergoing resection for gastric cancer, even when taking into account other adverse clinicopathologic factors.\(^\text{12}\) Several studies have demonstrated worse long-term survival in frail patients undergoing resection or transplantation for hepatocellular carcinoma using sarcopenia alone as a measure of frailty.\(^\text{88-91}\) In patients undergoing resection for gastrointestinal malignancies, Buettner et al found the strongest association between frailty and 1-year mortality when sarcopenia was combined with age, preoperative hemoglobin, and Eastern Cooperative Oncology Group (ECOG) score.\(^\text{30}\)

By using the NSQIP mFI, frail patients demonstrated higher 30-day mortality rates compared with nonfrail patients.
undergoing surgery for pancreas (6.3% vs 2.7%; \(P < .001 \)), head and neck (11.9% vs 0.2%; \(P < .001 \)), and bladder cancers (3.5% vs 1.8%; \(P = .01 \)).\(^\text{83,86,87}\) Expanding the mFI to include 15 variables, Lascano et al observed that, in patients undergoing resection for urologic malignancies, there was a 2 to 6 times increased risk of death within 30 days for every 0.05 increase in calculated mFI compared with nonfrail patients (mFI < 0.05). Those authors also reported that combining their expanded mFI with American Society of Anesthesiologists (ASA) class yielded the highest sensitivity and specificity for mortality (C-statistic, 0.71) compared with either measure alone (C-statistic, 0.66 and 0.67, respectively).\(^\text{84}\)

Frailty and Postoperative Complications

Although it has been demonstrated using certain measures, the overall association between frailty and postoperative complications in patients with cancer is unclear. Although both are associated with worse survival, Kristjansson et al found that only CGA-based frailty was associated with higher rates of any complication (\(P = .001 \)) and major complications (Clavien-Dindo grade \(\geq II \); \(P = .002 \)) after surgery for colorectal cancer, whereas phenotypic frailty is not associated with either (\(P = .18 \) and \(P = .23 \), respectively).\(^\text{6,24,92}\) Conversely, in their study of 83 patients undergoing resection for colorectal cancer, Tan et al reported that phenotypic frailty, in fact, was associated with major complications (Clavien-Dindo grade \(\geq II \); odds ratio [OR], 4.083; 95% CI, 1.433–11.638 [\(P = .006 \)]).\(^\text{11}\) In patients who were undergoing resection for gastric cancer, Lu et al observed that frail patients were at significantly higher risk of systemic complications (OR, 6.063; 95% CI, 1.758–20.911 [\(P = .004 \)]) but of not local, surgery-specific complications (OR, 1.650; 95% CI, 0.649–4.196 [\(P = .293 \)]).\(^\text{12}\) In a study by Abt et al of 1193 major head and neck cancer surgeries from the NSQIP database, although the mFI was not associated with composite “morbidity” (any complication, unplanned reoperation, and unplanned readmission), it was associated with major complications (Clavien-Dindo grade IV; OR, 1.65; 95% CI, 1.15–2.37 [\(P = .007 \)]).\(^\text{85}\) Lascano et al similarly reported that patients undergoing surgery for urologic malignancies with high frailty (mFI > 0.20) had a significantly increased risk of major complications (Clavien-Dindo grade IV) compared with nonfrail patients (OR, 3.70; 95% CI, 2.87–7.79 [\(P < .0005 \)]). Frailty has also been associated with higher rates of complications in esophageal, pancreas, and gynecologic cancers, as well as in patients undergoing liver resection for primary liver tumors and colorectal liver metastases.\(^\text{23,31,87,93–96}\)

Frailty and Other Postoperative Outcomes

Very few studies have assessed the utility of frailty in patients with cancer as a predictor of postoperative outcomes beyond mortality and specific in-hospital complications, and those that did have reported mixed results. By using a simplified CGA-type measure of frailty, Robinson et al found that frailty was associated with increased hospital cost ($76,363 vs 27,731; \(P < .001 \)), more frequent nonhome discharge (59% vs 0%; \(P < .001 \)), and higher rates of 30-day readmission (32% vs 4%; \(P = .044 \)) after surgery for colorectal cancer.\(^\text{83}\) However, a study by Courtney-Brooks et al of 37 patients undergoing resection for gynecologic cancers demonstrated no significant association between frailty based on a phenotypic model and either nonhome discharge (0% vs 0%; \(P = .25 \)) or 30-day hospital readmission (17% vs 5%; \(P = .35 \)).\(^\text{22}\) Although there was no association between VES-13 frailty and any of the outcomes, Dale et al reported that, in patients undergoing pancreaticoduodenectomy, self-reported exhaustion, which is a component of phenotypic frailty, was associated with increased surgical intensive care admission (OR, 4.30; \(P = .01 \)) and longer hospital length of stay (\(\beta = 0.27 \); \(P = .02 \)), whereas the Short Physical Performance Battery test, which is a component of CGA-based frailty, was associated with increased nonhome discharge (OR, 1.49; \(P = .04 \)). In that study, only age, but none of the frailty measures, was associated with 30-day readmissions.\(^\text{97}\)

In a study by Abt et al of patients undergoing major surgeries for head and neck cancer, there was no association between the mFI and unplanned readmissions (OR, 1.15; 95% CI, 0.52–2.55).\(^\text{85}\)

Using Frailty to Change Surgical Practice

Beyond a preoperative risk-assessment tool, frailty can be used potentially to improve and change practice in surgery. In recent study, Hall et al assessed 9153 patients who underwent surgery and participated in a preoperative Frailty Screening Initiative (FSI). On the basis of that initiative, if patients were identified as frail, then clinicians from surgery, anesthesia, critical care, and palliative care were notified; and perioperative plans were modified based on team input, if indicated. The authors reported reductions in 30-day, 6-month, and 1-year mortality after FSI implementation, which were particularly pronounced in frail patients (30-day mortality, 3.8% vs 12.2%; 6-month mortality, 7.7% vs 23.9%; 1-year mortality, 11.7% vs 34.5% [all \(P < .001 \)]). Although no specific intervention was identified, nor causality assigned, that study emphasizes the potential efficacy of system-wide initiatives aimed at improving surgical outcomes in frail patients.\(^\text{98}\)

Prehabilitation

Using frailty to guide prehabilitation interventions, such as exercise and nutrition, before an operation may improve a frail patient’s physiologic reserve and outcomes after surgery. For example, it has been demonstrated that enrolling patients in preoperative physical therapy programs improves...
pulmonary complications and shortens hospital lengths of stay after elective cardiac surgery. Prehabilitation studies in patients undergoing surgery for malignancy, however, have been less promising. Although measurable improvements have been documented in certain physiologic variables with prehabilitation programs, including improved functional capacity and cardiopulmonary fitness, no studies have demonstrated decreased postoperative complications in patients undergoing surgery for malignancy.

Anesthesia considerations

Because the ability of frail patients to tolerate psychoactive medications is often impaired, the goals of anesthesia for frail patients should be to minimize sedation and optimize regional and nonnarcotic anesthetics. In a randomized controlled trial by Watkins et al, application of ice packs to abdominal wounds after major abdominal surgery, including for malignant indications, was associated with improved postoperative pain and decreased narcotics use. It has been demonstrated in several other studies that regional anesthetics reduce postoperative delirium and are recommended by the American Geriatrics Society whenever possible. Thus, knowledge of a patient’s frailty status can help guide the choice of anesthetic and pain-control regimen used by anesthesiologists in the perioperative period. This point further underscores the importance of multidisciplinary communication that involves the entire management team when caring for frail patients.

Palliative care

Although it has long been associated with hospice and the care of terminal patients with cancer, over the last 2 decades, there has been increased recognition among the surgical community of the benefits of palliative care for surgical patients. It has been demonstrated that palliative care improves the quality of life for patients and their caregivers, particularly if sought out early in the disease process. In 2005, the ACS released a statement acknowledging the critical role that palliative care plays in the management of a broad range of surgical patients, not just those at the end of life. Thus, frailty assessments may help identify patients who would benefit most from early palliative care involvement, particularly for patients with cancer who are undergoing surgery.

In a study by Ernst et al examining the effects of the preoperative FSI mentioned above, the authors reported that, after initiation of the program, there was an increase in the rate of palliative care consultations (56 per year vs 32 per year) as well as an increase in the proportion of consultations that were requested by surgeons (56.7% vs 24.4%; P < .05) and occurred before surgery (52% vs 26.3%; P < .05). These findings coincided with an observed significant decrease in 30-day (21.3% vs 31.9%), 6-month (44% vs 70.6%), and 1-year mortality (66% vs 78.8%; all P < .05) among patients who were referred for palliative care, although no direct causal relationship was demonstrated. It is important to note that the authors also reported an increase in the proportion of patients who did not undergo surgery after implementation of the FSI (19.3% vs 5.6%; P < .05), suggesting that frailty screening may have prevented unnecessary operations in patients who might not have benefitted from surgery, may have been too high-risk, or perhaps did not really want surgery at all. However, further studies to identify direct relationships between frailty screening, palliative care, and outcomes in surgical patients with cancer are needed.

The Future of Frailty in Oncology Surgery

In 2012, the ACS, along with the American Geriatrics Society, published guidelines recommending that frailty be assessed and documented preoperatively in all patients. Still, surgeons have a long way to go. In a prospective study by Revenig et al comparing patients’ self-assessments of frailty, the authors found that, although surgeons’ assessments were more strongly correlated with objective frailty measures compared with assessments by patients, surgeons tended to rely too heavily on a patient’s chronologic age rather than objective measures of physiologic reserve.

More recently, the International Society of Geriatric Oncology conducted an international survey of oncology surgeons from the United States and Europe and found that, although age was not perceived as a direct prohibiting factor for surgery, screening for frailty was limited. Although 90% of respondents routinely used some sort of preoperative tool to assess surgical fitness (most commonly, ASA classification, performance status, and nutritional status), only 48% considered frailty screening a mandatory practice, and less than one-quarter used formal frailty measures to assess patients, such as the VES-13, the Frailty Index, and the CGA. Furthermore, only 19% of surgeons collaborated with geriatricians greater than 50% of the time to manage their oncogeriatric patients, whereas 36% never did.

Moving forward, continued efforts by oncology surgeons to recognize frailty as an important concept, incorporate screening measures as part of routine practice, and engage in multidisciplinary initiatives are required to help ensure that optimal management strategies and outcomes of patients with cancer undergoing surgery are achieved.

Frailty and Chemotherapy

Chemotherapy is widely used in the treatment of many cancers, particularly hematologic malignancies, and is commonly used as an adjunct to surgery and radiation in solid tumors. In addition to treatment with curative intent,
Chemotherapy is used in the treatment of metastatic disease with the goal to slow disease progression and extend survival. ECOG performance status (ECOG-PS) is commonly used for the clinical assessment of a patient's ability to tolerate treatment; however, ECOG-PS is an assessment of daily living activities and does not consider age, comorbidities, or other aspects of frailty. Because the main sources of stress in these patients are the cancer itself and the agents used to treat the cancer, including chemotherapy, it is important to continually evolve care in patients with cancer, particularly in older populations. It is in this context that an assessment of frailty can inform the choice and dosage of chemotherapy, particularly for older patients who are underrepresented in standard clinical trials and typically have worse outcomes than younger patients. To date, several studies from different parts of the world (the United States, Europe, Asia), in different care settings (inpatient or outpatient), and across many tumor types have recognized the role of frailty assessment for patient selection and “risk-stratification” for chemotherapy. Many of the previous studies reported the prevalence of frailty among patients with cancer, and few of those included outcome data. However, the most important limitations in the existing literature regarding chemotherapy and fragility are the retrospective nature of these studies, small sample size, and lack of power to determine clinically relevant changes. Table 8 summarizes the characteristics of some of the important frailty studies that have reported outcome data other than surgery.

Frailty and Chemotherapy Tolerance

Frailty as well as certain components of frailty assessment have been associated in several studies with a higher risk of chemotherapy-related toxicities and poor treatment tolerance. Hurria et al reported the results of a large prospective study from the Cancer and Aging Research Group that included 500 patients from 7 different institutions in the United States. The authors reported a significant association between grade 3, 4, and 5 toxicity and geriatric assessment variables. Another prospective study (Chemotherapy Risk Assessment Scale for High-Age Patients [CRASH]) similarly demonstrated that the CRASH score distinguished several risk levels of severe toxicity. Both of those studies included multiple different tumor types. In a study of elderly patients with metastatic breast cancer, Hamaker et al reported an association of frailty with both toxicity and survival. The study enrolled 78 patients with median age of 76 years, and frailty was defined as a CGA score ≥ 1. Grade 3 and 4 chemotherapy-related toxicity was experienced by 19% of patients without geriatric conditions versus 56% of patients who had 2 geriatric conditions and 80% of those who had 3 or more geriatric conditions (P = .002). Clough-Gorr et al evaluated geriatric assessment domains in relation to self-reported treatment tolerance and all-cause mortality in older survivors of breast cancer and found that some of the geriatric assessment domains were associated with poor treatment tolerance and mortality. Falandry et al investigated the impact of geriatric risk factors in a homogeneous group of patients with metastatic breast cancer who received treatment with pegylated liposomal doxorubicin and found that geriatric covariates were associated with severe hematological toxicities. Aparicio et al reported the association of geriatric factors and outcomes in patients with metastatic colorectal cancer who were about to start first-line chemotherapy. The authors concluded that geriatric factors, such as Mini-Mental Status Examination scores and Instrumental Activities of Daily Living, are predictive of severe toxicity or unexpected hospitalization. In a small study of 112 newly diagnosed patients with cancer who were older than 65 years, the authors used 7 frailty markers and 4 functional status measures and found that the majority of the study population had one or more frailty marker(s), yet only low grip strength predicted toxicity. Shin et al evaluated the association between chemotherapy-related toxicity and CGA in 64 elderly Korean patients with cancer. Significant declines were seen after chemotherapy in ECOG-PS, activities of daily living, Instrumental Activities of Daily Living, Mini-Mental Status Examination scores, and short-form Geriatric Depression Scale assessments. Baseline ECOG-PS was an independent predictive factor of significant toxicity, and a miniminutritional assessment was marginally associated with significant toxicity in univariate analysis. Biesma et al reported a phase 3 study in 181 chemotherapy-naive patients with advanced non-small cell lung cancer. In that study, pretreatment CGA and minigeriatric assessments during and after treatment were collected, and the CGA items were only related to neuropsychiatric toxicity. However, the authors performed further principal component analysis and found that CGA and QoL items measured one underlying dimension, which was highly prognostic.

Using Frailty to Guide Cancer Treatment

Current treatment planning in cancer care is based on physician discretion and clinical judgment. According to the existing literature, frailty and prefrailty are very common in patients with cancer, and those patients are at risk for treatment-related mortality and morbidity. Thus, routine assessment of older patients with cancer may help clinicians for both patient and treatment selection. The Elderly Selection on Geriatric Index Assessment (ESOGLA) is a landmark study published recently using the CGA to guide therapy decisions for elderly patients with advanced non-small cell lung cancer. This was a prospective, open-label, randomized trial in patients ages 70 years or older who were
Table 8. Summary of Studies Examining the Association of Frailty With Chemotherapy-Related Outcomes

STUDY	CANCER TYPE	NO. OF PATIENTS	FRAILTY TOOL	OUTCOME DATA	SUMMARY OF RESULTS
Clough-Gorr 2010⁸	Breast	660	CGA	Treatment tolerance and all-cause mortality	GA domains were independently associated with poor treatment tolerance (clinical, psychosocial) and predicted mortality (sociodemographic, clinical, functional status, psychosocial), independent of age and stage of disease
Hurria 2011¹¹⁴	Multiple	500	CGA	Chemotherapy-related toxicity	GA variables were associated with grade 3-5 toxicity
Caillot 2011¹¹⁵	Multiple	375	CGA	Cancer treatment outcome	Functional status assessed by ADL score and malnutrition were independently associated with changes in cancer treatment
Puts 2011¹¹⁶	Multiple solid tumors	112	CIFA frailty markers/functional status	Treatment toxicity and 6-mo mortality	Toxicity predicted by low grip strength, but none of the functional measures
Biesma 2011¹¹⁷	Lung	181	CGA	QOL	ECOG performance status and ADL disability, but none of the CIFA frailty markers, predicted time to death
Clough-Gorr 2012⁷	Breast	660	C-SGA	All-cause and breast-cancer-specific mortality	Lower survival among patients with C-SGA ≥ 3 and decreased survival as the number of deficits increased
Shin 2012¹¹⁸	Multiple	64	CGA	Chemotherapy-related outcome	Baseline ECOG PS was an independent predictive factor of significant chemotherapy-related toxicity
Extermann 2012¹¹⁹	Multiple	518	CGA/CRASH score	Chemotherapy-related toxicity	GA variables comprising the CRASH score were associated with hematologic and nonhematologic toxicities
Aparicio 2013¹²⁰	Colon	123	CGA	Chemotherapy-related outcome	GA factors were predictive for:
					o Grade 3-4 toxicity: MMSE ≤ 27/30, and impaired IADL
					o Dose-intensity reduction: alkaline phosphates > 2 × ULN
					o Unexpected hospitalization: MMSE ≤ 27/30 and GDS ≤ 2
Falandyr 2013¹²¹	Breast	60	CGA	Chemotherapy-related outcome	Age ≥ 80 y and living in residential homes were associated with nonhematologic toxicities
					Age, deficiency in IADL, cardiac dysfunction, and living in residential homes were associated with decreased PFS
					Living in residential homes was associated with decreased OS
Hamaker 2014¹²²	Breast	78	CGA	Chemotherapy-related toxicity	Grade 3-4 chemotherapy-related toxicity observed in 19% of patients without deficits, 56% of those with 2 deficits, and 80% of those with ≥ 3 deficits
Sastre 2015¹²³	Colorectal	33	CGA	Chemotherapy-related outcomes	No deaths or grade 4-5 adverse events were related to panitumumab in frail patients
Correr 2016¹²⁴	Lung	494	CGA	Treatment failure, OS, PFS, toxicity	No association between CGA arm and TFFS or OS
Meresse 2017¹²⁵	Breast	223	Age	Chemotherapy-related toxicity	Fewer treatment failures and toxicities observed in CGA arm
					Patients ages 75-80 y received chemotherapy treatment less often than younger patients
					No differences in toxicity

Abbreviations: ADL, activities of daily living; CGA, Comprehensive Geriatric Assessment; CIFA, Canadian Institute on Frailty and Aging; CRASH, Chemotherapy Risk Assessment for High-Age Patients; C-SGA, Cancer-Specific Geriatric Assessment; ECOG, Eastern Cooperative Oncology Group; GA, geriatric assessment; GDS, Geriatric Depression Scale; IADL, independent activities of daily living; MMSE, Mini-Mental Status Examination; OS, overall survival; PFS, progression-free survival; QOL, quality of life; TFFS, treatment failure-free survival; ULN, upper limit of normal.
randomly assigned to the CGA to assess fitness versus “standard care” (PS and age). In the CGA arm, “fit” patients received carboplatin-based doublet, vulnerable patients received docetaxel, and frail patients received supportive care. In the standard care arm, carboplatin was given to patients ages 75 years and younger who had a PS ≤1, and docetaxel was given to patients ages 75 years and older who had a PS ≥2. Although there was no statistical difference in OS or treatment failure-free survival between the CGA and standard care groups, patients in the CGA group experienced less toxicity (all grades) and had less treatment failure because of toxicity. Despite the lack of difference in OS, the ESOGIA study indicates that the CGA (as a frailty assessment) is useful in increasing access to chemotherapy for “fit” patients and is not associated with increased toxicity during treatment.124

Sastre et al reported the results of a prospective clinical trial of first-line, single-agent panitumumab in frail elderly patients (ages ≥70 years, intermediate-risk or high-risk according to the Kohne prognostic classification, and frailty and/or ineligibility for chemotherapy) with metastatic colorectal cancer. Those authors reported a median progression-free survival of 4.3 months and a median OS of 7.1 months. There were no deaths or grade 4 or 5 adverse events related to panitumumab, leading the authors to suggest that single-agent panitumumab may be a therapeutic option for high-risk, frail elderly patients who are not considered candidates for chemotherapy.123

For multiple myeloma, a specific CGA has been developed by the International Myeloma Working Group to categorize a patient’s level of fitness as fit, intermediate, or frail.126 There are recommended treatment regimens for each group (particularly dosing and schedule). For fit patients, first-line treatments are recommended (bone marrow transplantation, if eligible, or lenalidomide). For patients of intermediate fitness, decreased doses of first-line agents are recommended. For frail patients, steroids for supportive/palliative care are recommended. The aim of these recommendations is to minimize treatment interruption because of toxicities. However, to date, no study has shown an increase in OS or progression-free survival after treatment stratification according to frailty level, and further investigation is required to establish international standardization of cutoff points for frailty and optimal geriatric parameters to guide clinical practice.126

Frailty and Radiotherapy

As with surgery and chemotherapy, there is an increasing clinical need to use frailty to guide patients’ treatment decisions and to understand the outcomes of patients who receive radiotherapy. Many times patients, and potentially physicians, may have a bias that radiotherapy may be quite acceptable for frail patients. Nonetheless, this important point has remained understudied. Although it has been found that frailty generally influences decision making in a few select disease sites in which radiotherapy is administered (eg, radical radiotherapy vs surgery for early-stage lung cancer and active surveillance vs treatment in prostate cancer), the literature in the link between frailty and radiotherapy decision making is underdeveloped.127,128 Some progress has been made, however, in analyzing frailty and radiotherapy outcomes. In a recent effort evaluating several factors that influence radiotherapy completion and toxicity, Spyropoulou et al found that age was not a predictor of radiation-induced toxicity, which has motivated others to consider the role of frailty in predicting radiotherapy toxicity.129 One recent report by Keenan et al used the Edmonton Frail Scale, which was identified as predictive of all-cause mortality in general medical patients, to determine correlations with radiotherapy side effects across all disease sites.130-132 An analysis of 63 recruited patients revealed that 29% had grade 3 or higher toxicity, but no statistical correlation was observed between the Edmonton Frail Scale score and toxicity.130 Clearly, efforts to examine the role of frailty in the setting of radiotherapy are very preliminary, and much additional research is needed to determine the role that frailty should play in radiotherapy treatment decisions and the impact of frailty on radiotherapy cancer control and toxicity outcomes.

Conclusions

Frailty is emerging as one of the most important determinants of health and health outcomes. Despite the wide, and often overwhelming, variety of frailty measures, the concept of frailty is increasingly being recognized specifically in patients with cancer and has been identified as a predictor of postoperative complications, chemotherapy intolerance, disease progression, and death. Still, further research, specifically in the context of clinical trials, is needed to develop a standardized definition of and cutoff points for frailty and, critically, to better understand the value of frailty to patient care. Continued efforts by oncology physicians and surgeons to identify frailty, incorporate frailty concepts into training curricula, and promote multidisciplinary decision making will help to develop more individualized management strategies and optimize care for patients with cancer.
References

1. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc. 2012;60:1487-1492.

2. Song X, Minniti S, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc. 2010;58:681-687.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7-30.

4. Mohile SG, Xian Y, Dale W, et al. Association of a cancer diagnosis with vulnerability and frailty in older Medicare beneficiaries. J Nutr Cancer Inst. 2009;101:1206-1215.

5. Handforth C, Clegg A, Young C, et al. The prevalence and outcomes of frailty in older cancer patients: a systematic review. Ann Oncol. 2015;26:1091-1101.

6. Kristjansson SR, Nesbakken A, Jordhoy O. Cancer-specific geriatric assessment domains are associated with poor tolerance of treatment adverse effects and predict mortality associated with poor tolerance of treatment adverse effects and predict mortality. J Geriatr Oncol. 2012;60:1690-1615.

7. Clough-Gorr KM, Thwin SS, Stuck AE. Prevalence and outcomes of frailty in older surgical cancer patients: a deficit accumulation index and the Braden scale. J Am Geriatr Soc. 2012;60:1609-1615.

8. Bylow K, Hemmerich J, Mohile SG, Stadler WM, Sajid S, Dale W. Obese frailty, physical performance deficits, and falls in older men with biochemical recurrence of prostate cancer on androgen deprivation therapy: a case-control study. Urology. 2011;77:934-940.

9. Courtney-Brooks M, Tellawi AR, Scalici J, et al. Frailty: an outcome predictor for elderly gynecologic oncology patients. Gynecol Oncol. 2012;126:20-24.

10. Kristjansson SR, Ronning B, Hurria A, et al. A comparison of two pre-operative frailty measures in older surgical cancer patients. J Geriatr Oncol. 2012;3:1-7.

11. Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14:392-397.

12. Abellan van Kan G, Rolland YM, Morley JE, Vellas B. Frailty: toward a clinical definition. J Am Med Dir Assoc. 2008;9:71-72.

13. Huisman MG, van Leeuwen BL, Ugolini G, et al. “Timed Up & Go”: a screening tool for predicting 30-day morbidity in oncogeriatric surgical patients. A multicenter cohort study [serial online]. PLoS One. 2014;9:e86065.

14. Radhakrishnan S, Sirohi B, Vaidyanathan V, et al. A prototype method for predicting functional disability screen for older persons. J Gerontol A Biol Sci Med Sci. 2015;70:265-275.

15. Criquet AG, Attema J, van der Velden J, et al. Frailty and its impact on clinical outcomes following pancreatic adenocarcinoma resection: a pilot study. J Gastrointest Surg. 2012;16:1478-1486.

16. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146-M156.

17. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, vulnerability, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59:255-263.

18. Tran-Luu LL, Zhong C, Davey Smith G, et al. Frailty indicators: a Delphi method based consensus statement. J Gerontol A Biol Sci Med Sci. 2015;70:265-275.

19. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146-M156.

20. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, vulnerability, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59:255-263.

21. Bylow K, Hemmerich J, Mohile SG, Stadler WM, Sajid S, Dale W. Obese frailty, physical performance deficits, and falls in older men with biochemical recurrence of prostate cancer on androgen deprivation therapy: a case-control study. Urology. 2011;77:934-940.

22. Courtney-Brooks M, Tellawi AR, Scalici J, et al. Frailty: an outcome predictor for elderly gynecologic oncology patients. Gynecol Oncol. 2012;126:20-24.

23. Kristjansson SR, Ronning B, Hurria A, et al. A comparison of two pre-operative frailty measures in older surgical cancer patients. J Geriatr Oncol. 2012;3:1-7.

24. Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14:392-397.

25. Abellan van Kan G, Rolland YM, Morley JE, Vellas B. Frailty: toward a clinical definition. J Am Med Dir Assoc. 2008;9:71-72.

26. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J Nutr Health Aging. 2012;16:501-608.

27. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146-M156.

28. Van Wijngaarden A, Klungel OH, et al. Exploring predictors of frailty: a Delphi method based consensus statement. J Gerontol A Biol Sci Med Sci. 2015;70:265-275.

29. Criquet AG, Attema J, van der Velden J, et al. Frailty and its impact on clinical outcomes following pancreatic adenocarcinoma resection: a pilot study. J Gastrointest Surg. 2012;16:1478-1486.

30. Huisman MG, van Leeuwen BL, Ugolini G, et al. “Timed Up & Go”: a screening tool for predicting 30-day morbidity in oncogeriatric surgical patients. A multicenter cohort study [serial online]. PLoS One. 2014;9:e86065.

31. Mohile SG, Bylow K, Dale W, et al. A pilot study of the Vulnerable Elders Survey-13 compared with the Comprehensive Geriatric Assessment for identifying surgical candidates in older patients with prostate cancer who receive androgen ablation. Cancer. 2007;109:802-810.

32. Bignazzi L, Aapro M, Balducci L, Crivellari D, Minisini A, Piccatt M. Adjutant therapy in elderly patients with breast cancer. Clin Breast Cancer. 2004;5:188-195; discussion 196-187.

33. Kellen E, Bulens P, Decks L, et al. Identifying an accurate pre-screening tool in geriatric oncology. Crit Rev Oncol Hematol. 2010;75:243-248.

34. Revenig LM, Canter DJ, Henderson MA, et al. Preoperative quantification of perceptions of surgical frailty. J Surg Res. 2015;193:583-589.

35. Chow WB, Rosenthal RA, Merkow RP, et al. Optimal preoperative assessment of the geriatric surgical patient: a best practices guideline from the American College of Surgeons National Surgical Quality Improvement Program and the American Geriatrics Society. J Am Coll Surg. 2012;215:453-466.

36. Lj JL, Henderson MA, Revenig LM, et al. Frailty and one-year mortality in major intra-abdominal operations. J Surg Res. 2016;203:507-512.e501.

37. Degeye N, Klein C, Binner M, Browner I, Shapiro G. Fitness screening in older...
cancer patients. J Am Geriatr Soc. 2011;59: S141-S141.

47. Rockwood K, Song X, Macknight C, et al. A global clinical measure of fitness and frailty in elderly people. Can Med Assoc J. 2005;173:489-495.

48. Obeid NM, Azouh O, Reddy S, et al. Predictors of critical care-related complications in octogenary patients using the National Surgical Quality Improvement Program: exploring frailty and aggressive laparoscopic approaches. J Trauma Acute Care Surg. 2012;72:876-883.

49. Rubenstein LZ, Stuck AE, Siu AL, Wieland D. Impacts of geriatric evaluation and management programs on defined outcomes: overview of the evidence. J Am Geriatr Soc. 1991;39(9 pt 2):88-165; discussion 175-185.

50. Wildiers H, Heeren P, Puts M, et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J Clin Oncol. 2014;32:2595-2603.

51. Hamaker ME, Jonker JM, de Booth SE, Vos AG, Smorenburg CH, van Munster BC. Frailty screening methods for predicting outcome of a comprehensive geriatric assessment in elderly patients with cancer: a systematic review. Lancet Oncol. 2012;13:e437-e444.

52. Hurria A, Gupta S, Zauderer M, et al. Implementing a geriatric assessment in cooperative group clinical cancer trials: CALGB 360401. J Clin Oncol. 2011;29:1290-1296.

53. Stewart AL, Kamberg CJ. Physical function questionnaire. Disabilities in older people. 1987;126:714-723.

54. Tomaka J, Thompson S, Palacios R. The relation of social isolation, loneliness, and social support to disease outcomes among the elderly. J Aging Health. 2006;18:359-384.

55. Eagle KA, Berger PB, Calkins H, et al. ACC/AHA guideline update for perioperative cardiovascular evaluation for noncardiac surgery-executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1996 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). Circulation. 2002;105:1257-1267.

56. Davenport DL, Bowe EA, Henderson WG, Khuri SF, Mentzer RM Jr. National Surgical Quality Improvement Program (NSQIP) risk factors can be used to validate American Society of Anesthesiologists' Physical Status Classification (ASA PS) levels. Ann Surg. 2006;243:636-641; discussion 641-644.

57. Saklad M. Grading of patients for surgical interventions. Anesthesiology. 1941;2:281-284.

58. Oken MM, Creech R, Torrance D, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:469-655.

59. Ramesh HS, Jain S, Audisio RA. Implications of aging in surgical oncology. Cancer J. 2005;11:488-494.

60. Revenig LM, Caner DJ, Master VA, et al. A prospective study examining the association between preoperative frailty and postoperative complications in patients undergoing minimally invasive surgery. J Endourol. 2014;28:476-480.

61. Robinson TN, Wu DS, Siegmann GV, Moss M. Frailty predicts hospital and six-month healthcare cost following colorectal surgery in older adults. Am J Surg. 2011;202:511-514.

62. Adams P, Ghanem T, Stachler R, Hall F, Velanovich V, Rubinfeld I. Frailty as a predictor of morbidity and mortality in inpatient head and neck surgery. JAMA Otolaryngol Head Neck Surg. 2013;139:783-789.

63. Casciano D, Pak JS, Kates M, et al. Validation of a frailty index to predict perioperative adverse outcomes in adult candidates for lung transplantation. Ann Surg. 2016;202:416-426.e12.

64. Abt NB, Richmond JD, Koch WM, Eisen DW, Agrawal N. Assessment of the predictive value of the modified Frailty Index for Clavien-Dindo grade IV critical care complications in major head and neck cancer operations. JAMA Otolaryngol Head Neck Surg. 2016;142:658-664.

65. Chappidi MR, Kates M, Patel HD, et al. Frailty as a marker of adverse outcomes in patients with bladder cancer undergoing radical cystectomy. Urol Oncol. 2016;34(5):256.e251-256.e255.

66. Mogal H, Vermilion SA, Dodson R, et al. Modified Frailty Index predicts morbidity and mortality after pancreaticoduodenectomy. Ann Surg Oncol. 2017;24:1714-1722.

67. Harimoto N, Shirabe K, Yamashita YI, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013;100:1523-1530.
103. Dunn GP. Surgery and palliative medicine: new horizons. J Palliat Med. 1998;1:215-219.

104. Dunn GP. Surgical palliative care: recent trends and developments. Anesthesiol Clin. 2012;30:13-28.

105. Task Force on Surgical Palliative Care; Committee on Ethics. Statement of principles of palliative care. Bull Am Coll Surg. 2005;90:34-35.

106. Ernst KF, Hall DE, Schmid KK, et al. Surgical palliative care consultations over time in relationship to system frailty screening. JAMA Surg. 2014;149:1121-1126.

107. Chignone F, van Leeuwen BL, Montroni I, et al. The assessment and management of older cancer patients: an SIOG surgical task force survey on surgeons’ attitudes. Eur J Surg Oncol. 2014;37:102-117.

108. Kantarjian HM, Wolff RA. The MD Anderson Manual of Oncology. 3rd ed. New York, NY: McGraw-Hill; 2016.

109. Kalinichenko VV, Zhou Y, Shin B, et al. Wild-type levels of the mouse forkhead box II gene are essential for lung repair. Am J Physiol. 2002;282:L1253-L1265.

110. Shenoy P, Harugeri A. Elderly patients’ participation in clinical research: a systematic review. J Natl Cancer Inst. 2010;102(1):S105-S112.

111. Herrera AP, Snipes SA, King DW, Torres T, Allburger SM. Use of geriatric assessment for older adults in the oncology setting: a systematic review. J Natl Cancer Inst. 2012;104:1133-1163.

112. Hurria A, Towaga K, Mohile SG, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29:3457-3465.

113. Caillet P, Canou-Perotine F, Vouriot J, et al. Comprehensive geriatric assessment in the decisionmaking process in elderly patients with cancer: ELCAPA study. J Clin Oncol. 2011;29:3636-3642.

114. Puts MT, Monette J, Girre V, Springall AJ, Allburger SM. Use of geriatric assessment for older adults in the oncology setting: a systematic review. J Natl Cancer Inst. 2012;104:1133-1163.

115. Hurria A, Towaga K, Mohile SG, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29:3457-3465.

116. Caillet P, Canou-Perotine F, Vouriot J, et al. Comprehensive geriatric assessment in the decisionmaking process in elderly patients with cancer: ELCAPA study. J Clin Oncol. 2011;29:3636-3642.

117. Shin SY, Lee JO, Kim YJ, et al. Toxicities and functional consequences of systemic chemotherapy in elderly Korean patients with cancer: a prospective cohort study using Comprehensive Geriatric Assessment. J Geriatr Oncol. 2012;3:359-367.

118. Extermann M, Boulanger V, Reich RR, et al. Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer. 2012;118:3377-3386.

119. Aparicio T, Jouve JL, Teillet L, et al. Geriatric factors predict chemotherapy feasibility: ancillary results of FFCD 2001-02 phase III study in first-line chemotherapy for metastatic colorectal cancer in elderly patients. J Clin Oncol. 2013;31:1464-1470.

120. Falandry C, Brain E, Bonnefoy M, et al. Impact of geriatric risk factors on pegylated liposomal doxorubicin tolerance and efficacy in elderly metastatic breast cancer patients: final results of the DOCMES multicentre GINECO trial. Eur J Cancer. 2013;49:2806-2814.

121. Hamaker ME, Seynaeve C, Wymenga AN, et al. Baseline comprehensive geriatric assessment is associated with toxicity and survival in elderly metastatic breast cancer patients receiving single-agent chemotherapy: results from the OMEGA study of the Dutch Breast Cancer Trialists’ Group. Breast. 2014;23:81-87.

122. Sastre J, Massuti B, Pulido G, et al. First-line single-agent panitumumab in frail elderly patients with wild-type KRAS metastatic colorectal cancer and poor prognostic factors: a phase II study of the Spanish Cooperative Group for the Treatment of Digestive Tumours. Eur J Cancer. 2015;51:1371-1380.

123. Corre R, Grellier L, Le Caer H, et al. Use of a comprehensive geriatric assessment for the management of elderly patients with advanced non-small-cell lung cancer: the phase III randomized ESOGIA-GPCG-ECGP 08-02 study. J Clin Oncol. 2016;34:1476-1483.

124. Meresse B, Bouthnik AD, Bendiane MK, et al. Chemotherapy in older women with breast cancer: is age still a predictor for under treatment? Breast J. 2017;23:256-266.

125. Willan J, Eyre TA, Sharpley F, Watson C, King AJ, Ramasamy K. Multiple myeloma in the very elderly patient: challenges and solutions. Clin Interv Aging. 2016;11:423-435.

126. Rowell NW, Williams CJ. Radical radiotherapy for stage I/II non-small cell lung cancer in patients not sufficiently fit for or declining surgery (medically inoperable) [serial online]. Cochrane Database Syst Rev. 2001:2;CD002935.

127. Falcè C, Morello E, Droz JP. Treatment of prostate cancer in unfit senior adult patients. Cancer Treat Rev. 2009;35:522-527.

128. Spyropoulou D, Pallis AG, Leotsinidis M, Spyropoulou D, Pallis AG, Leotsinidis M, Karavassili A, et al. Leotsinidis M, Karavassili A, et al. Onco-palliative care: evidence and practice. J Geriatr Oncol. 2014;5:20-25.

129. Keenan LG, O’Brien M, Ryan T, Dunne M, Keenan LG, O’Brien M, Ryan T, Dunne M, Majumdar SR, Tsuyuki RT, Majumdar SR, Tsuyuki RT, et al. Use of geriatric assessment for higher risk patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. J Clin Oncol. 2010;28:1537-1551.