Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices

Longguang Liao & Zexian Cao

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Two-dimensional lattices provide the arena for many physics problems of essential importance, a scale symmetry, which rarely exists as noticed by Galileo, in such lattices can help reveal the underlying physics. Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e., the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with aid of the function $y = \arcsin(\sin(2\pi x n))$, where the parameter x is either the platinum number $\mu = 2 - \sqrt{3}$ or the silver number $\lambda = \sqrt{2} - 1$, which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions and scale factors for the symmetric scaling transformation are determined. The revealed scale symmetry may have a bearing on various physical problems modeled on 2D lattices, and the function adopted here can be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to initiate the search of directional scaling symmetry in more complicated geometries.
Directional scaling symmetry in equilateral triangular lattice. The plot of the function \(y = \sin nx \), where the argument \(n \) is non-negative integer (the discussion below is also valid for negative integer, but it is not of concern here), is essentially different from that for \(y = \sin x \), where \(x \) is real. This fact has been noticed and extensively studied by Strang\(^{14,15} \) and Richert\(^{16} \). In studying the 1D incommensurate integer (the discussion below is also valid for negative integer, but it is not of concern here), the graph seems to display locally 12-fold rotational symmetry (in a not very strict sense), see Fig. 2b. In the boundary regions defined by \(y = \pm 1 \), the graph seems folding together, reminding us of Escher’s paintings based on the concept of Poincaré disc. In the central region, however, the graph seems to display locally 12-fold rotational symmetry. This is quite reasonable since \(\mu = 2 - \sqrt{3} \) is the platinum number which is related to the dodecagonal quasiperiodic structure\(^{14,15} \), reveals an interesting picture as illustrated in Fig. 2a. In the boundary regions defined by \(y = \pm 1 \), the graph seems folding together, reminding us of Escher’s paintings based on the concept of Poincaré disc. In the central region, however, the graph seems to display locally 12-fold rotational symmetry (in a not very strict sense), see Fig. 2b.

Interestingly, the plot of the function \(y = \arcsin(2\pi \mu n) \) in Fig. 2b can be taken as a Moiré pattern\(^ {7,18} \), i.e., as superposition of two identical simpler lattices (see Fig. S1). In fact, the function \(y = \arcsin(2\pi \mu n) \) itself can be divided into two branches

\[
\arcsin(2\pi \mu n) = \begin{cases}
2\pi(n\mu - m), & (m - 1/4) \leq n\mu \leq (m + 1/4); \\
-2\pi(n\mu - m - 1/2), & (m + 1/4) < n\mu \leq (m + 3/4),
\end{cases}
\]

where both \(m, n \) are non-negative integer, and if \(n\mu \in [n\mu] \in [0, 3/4], m = [n\mu]; \) if \(n\mu \in [n\mu] \in [-1/4, 0], \) then \(m = [n\mu] + 1. \) Here \([x]\) denotes the truncation of the positive real number \(x. \) In the following the first branch in eq.(1) is referred to as the ascending branch, as points generated by this branch fall on the ascending part of the graph for \(y = \arcsin(x) \) (see Fig. S2), and the second branch is accordingly referred to as the descending branch. The plot of only the ascending branch results in Fig. 3a (for comparison of the two branches, see Fig. S1). From Fig. 3a we can readily find that the plot of the ascending branch constitutes an oblique 2D lattice. So does the plot of the descending branch. In fact, with a proper ratio of the longitudinal scale to the transverse scale the unit triangle in Fig. 3a can be made to have roughly three equal sides, thus the lattice is approximately an equilateral triangular lattice (to be further discussed below).

If we compress Fig. 3a along the horizontal axis in a continuous way, the approximate equilateral triangle lattice will at first be distorted, and then, when the scale factor comes to a proper value \((-7 - 4\sqrt{3})\), the shape of the lattice will again recover, as illustrated in Fig. 3b. This scenario can be repeated infinitely. More importantly, after each contraction, the unit triangle in the lattice can be brought closer to a rigorously equilateral triangle, in the sense that the side lengths suffer from a less relative deviation. And it can be proven that in the extreme case when the ratio of longitudinal scale to transverse scale approaches vanishingly small, the unit triangle turns into a rigorously equilateral triangle (see detailed proof in supplementary information). Notice that the transformation changes the neighborhood relation that, for instance, in Fig. 3a the two unit triangles anchored to the point \(n = 0 \) are \(\Delta0-15-56 \) and \(\Delta0-11-15 \), whereas after the transformation, the two unit triangles anchored to the point \(n = 0 \) are \(\Delta0-15-56 \) and \(\Delta0-41-56 \) (Fig. 3b).

Thus this manipulation leads us to the discovery that there exists directional scaling symmetry for the equilateral triangular lattice, which is a scaling transformation, setting the drag point on an arbitrary lattice point, along the direction at \(15^\circ \) with respect to the side of the unit triangle, and the scale factor is \(7 - 4\sqrt{3} \). The ratio of side lengths involved in this transformation is \(2 - \sqrt{3} \). Such a scaling transformation can be performed repeatedly. This directional scaling symmetry for equilateral triangular lattice specified above can be easily checked (see detailed proof in supplementary information).

By the way, the equilateral triangular lattice is the superposition of a honeycomb lattice and a \(\sqrt{3} \) times larger equilateral triangular lattice. Taking the lattice in Fig. 3a as an equilateral triangular lattice, the index in the plot helps to specify the points to be removed so as to obtain a honeycomb lattice from the parent triangular lattice (The rules of doing this are clarified in the supplementary information). Obviously, the honeycomb lattice also has directional scaling symmetry, and the scale factor and the ratio of side lengths for hexagons before and after the transformation are \(7 - 4\sqrt{3} \) and \(2 - \sqrt{3} \), respectively. The drag point is set on the center of an arbitrary unit hexagon, and the direction is at \(15^\circ \) with respect to the side of the hexagon. More interestingly, when a honeycomb lattice is obtained after scaling along that particular direction, the center of the unit hexagon remains the center of the unit hexagon in the resulting lattice. The honeycomb lattice and the equilateral triangular lattice share the same directional scaling symmetry may arise from the fact that honeycomb lattice is dual (reciprocal) to the equilateral triangular lattice.

Directional scaling symmetry in square lattice. With the silver number \(\lambda = \sqrt{2} - 1 \), which is related to the octagonal quasiperiodic structure\(^ {19-21} \), we obtain an interesting plot of the function \(y = \sin(2\pi \lambda n) \) (Fig. 4a) in analog to Fig. 2a. Going one step further, we draw the plot of the function \(y = \arcsin(\sin(2\pi \lambda n)) \), which is globally isometric, and displays locally 8-fold rotational symmetry (in a not very strict sense), see Fig. 4b.

Again, the plot in Fig. 4b can be taken as a Moiré pattern formed by the superposition of two identical simpler lattices (see Fig. S3). Accordingly, the function \(y = \arcsin(\sin(2\pi \lambda n)) \) can be separated into two branches.

Figure 1 | A trivial example of directional scaling symmetry for equilateral triangular lattice, which is achieved along any side of a unit triangle with a scale factor \(p = 3 \). (a) The original lattice; (b) the transformation result of (a) along the connection line between points 0 and 3.
arcsin(sin(2πμn)~2π(nλ−m), (m−1/4)≤nλ≤(m+1/4); (2)

Where m, n are non-negative integers, and if nλ=⌈nλ⌉∈[0, 3/4], then m=⌈nλ⌉; if nλ=⌈nλ⌉−1∈[−1/4, 0], then m=⌈nλ⌉+1. As above, the first branch is referred to as the ascending branch of the function, and the second branch is referred as the descending branch. Thus the plot of y = arcsin(sin(2πμn)) can be taken as the Moiré

Figure 2 | Plots of the sinusoidal function y = sin(2πμn) (a) and the arcsine function y = arcsin(sin(2πμn)) (b), where μ = 2 − √3, and the argument n is non-negative integer.

Figure 3 | (a) Plot of the ascending branch of the function y = arcsin(sin(2πμn)), where μ = 2 − √3, and n is non-negative integer; (b) The result of scaling along the horizontal axis with a scale factor of ~7 − 4√3. Points are indexed with the corresponding argument n.
pattern formed by the overlapping plots for its ascending branch and descending branch (Fig. S3).

The ascending branch of the function $y = \arcsin(\sin(2\pi n))$ is plotted in Fig. 5a (For comparison of the two branches, see Fig. S3). One can easily check that the points in Fig. 5a form a square lattice, in an approximate sense, when a proper ratio of longitudinal scale to transverse scale is chosen (see detailed proof in supplementary information).

If Fig. 5a is compressed along the horizontal axis, the shape of the approximate square unit will at first be distorted, then, when the scale factor comes to a value $\lambda = \frac{\sqrt{2} - 1}{2}$, the shape of the lattice will be recovered, as illustrated in Fig. 5b. This operation can be performed repeatedly. After each contraction, the approximate unit square gets closer to a rigorous square (see detailed proof in supplementary information). It can be proven that the approximate unit square turns into a rigorous square when the ratio of longitudinal scale to transverse scale becomes vanishing small (see detailed proof in supplementary information). Notice that the neighborhood relation of points in the lattice has been changed by contraction. For example, the unit square, anchored to the original point 0, is $[0-5-12-17]$ in Fig. 5a, but after the contraction it is the square $[0-12-29-41]$, see Fig. 5b. Moreover, the unit square is also rotated by 45° by the transformation.

Thus by using the arcsine functions $y = \arcsin(\sin(2\pi \lambda x))$, where the parameter λ is either the platinum number $\mu = 2 - \sqrt{3}$ or the silver number $\lambda = \frac{\sqrt{2} - 1}{2}$, we found and proved the existence of directional scaling symmetry for the equilateral triangular lattice (thus also the honeycomb lattice), and the square lattice. With the drag center set on a lattice point, in the case of equilateral triangular lattice, the direction of scaling symmetry is at 15° with regard to the side of the unit triangle, and the scale factor is $7 - 4\sqrt{3}$, while in the case of square lattice, the direction of scaling symmetry is at 22.5° with regard to the side of the unit square triangle, and the scale factor is $3 - 2\sqrt{2}$. In both cases the directional scaling transformation can be performed repeatedly.

Discussion

With the existence proof of directional scaling symmetry for the square lattice and equilateral triangular lattice, an immediate question will be raised: Are there more possibilities of scaling symmetry for these high-symmetry 2D lattices? Also it reminds us of the possible existence of directional scaling symmetry for 3D cubic and rhombic lattices. To both questions we will bet on a positive answer.

The method of proof involves applying trigonometric functions with the silver ratio and the platinum ratio in argument, and approaching a property of the rigorously symmetrical lattices from approximate ones, is new and inspiring. To the least, such a function can be used to generate quasiperiodic lattices with enumerable lattice points, which is very helpful for the calculation of the diffraction pattern and energy bands for quasicrystals. It is of particular importance when the enumeration of the eigenfunctions for the

![Figure 4](https://www.nature.com/scientificreports) Plots of the sinusoidal function $y = \sin(2\pi \lambda n)$ (a) and the arcsine function $y = \arcsin(\sin(2\pi \lambda n))$ (b), where $\lambda = \sqrt{2} - 1$, and the argument n is non-negative integer.
5. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range golden ratio for the discussion of quantum critical phenomenon. Remarkably, the scaling symmetry of a lattice will be incorporated into the Hamiltonian operator is of concern as in the study of topological insulator, and the current work may help the search of topological insulators in quasicrystals.

With the current work we want to call attention to the directional scaling symmetry for the equilateral triangular lattice and square lattice, and the related silver ratio and platinum ratio, which are expected to have some impact on the various physics problems, particularly in statistical physics, condensed matter physics, quantum field theory, etc., modeled on high-symmetry 2D lattices. The scaling symmetry of a lattice will be incorporated into the Hamiltonian for a quantum model defined on it, which in turn will determine the feature of ground energy degeneracy—a pivotal concept for the discussion of quantum critical phenomenon. Remarkably, the golden ratio $\phi = (\sqrt{5} + 1)/2$, the peer of the silver ratio and the platinum ratio here concerned, has been found lying beneath many fundamental physical problems, and usually in unexpected places. For instance, the lowest two masses of the bound states, m_1 and m_2, in the 1D Ising model realized in CoNb$_2$O$_6$ crystal, have the ratio $m_1/m_2 = \phi$, as predicted by E8 Lie group20. The critical fugacity for the hard-hexagon model is found to be $z_c = \varphi^{21}$, while the maximum of Hardy’s probability, a quantity referring to the Hardy’s test of Bell’s inequality, for quantum system of arbitrary finite dimension is $p_{\text{Hardy}} = 1/\varphi^{22}$. Such observations have not yet been well understood. It is anticipated by analogy that the silver ratio and the platinum ratio may also be found relevant in the physical problems defined on such lattices, e.g., J_1-J_2 XY model, triangular Ising antiferromagnet, etc. As in the case of the golden ratio, the discovery may demand years of meticulous research, and will be made only in a serendipitous fashion.

Figure 5 | (a) Plot of the ascending branch of the function $y = \arcsin\left(\sin\left(2\pi n/\varphi\right)\right)$, where $\varphi = \sqrt{5} - 1$, and n is non-negative integer. (b) The result of scaling along the horizontal axis with scale factor $3 - 2\sqrt{2}$. Points are indexed with the corresponding argument n.

1. Aubry, S. & Andre, G. Analyticity breaking and Anderson localization in incommensurate lattices. AnIIPs 3, 133–164 (1980).
2. Soukoulis, C. M. & Economou, E. N. Localization in One-Dimensional Lattices in the Presence of Incommensurate Potentials. Phys. Rev. Lett. 48, 1043–1046 (1982).
3. Zhou, P. Q., Fu, X. J., Lu, C. H., Guo, Z. Z. & Liu, Y. Y. Localization in one-dimensional Soukoulis-Economou model with incommensurate potentials. Z. Phys. B Con. Mat. 100, 321–326 (1996).
4. Chaikin, P. M. & Lubensky, T. C. Principles of condensed matter physics. [77–85] (Cambridge University Press, Cambridge, 2010).
5. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and No translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).
6. Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).
7. Liao, L. G., Fu, X. J. & Hou, Z. L. Configurations and Self-similar Transformation of Octagonal Quasilattice. Chin. Phys. Lett. 25, 4336–4338 (2008).
8. Liao, L. G., Zhang, W. B., Yu, T. X. & Cao, Z. X. A Single Cluster Covering for Dodecagonal Quasiperiodic Ship Tiling. Chin. Phys. Lett. 30, 026102 (2013).

Acknowledgments
This work was financially supported by the Innovation Program of the Chinese Academy of Sciences, by the National Natural Science Foundation of China Grant nos.11290161, 51172272 and 10904165, and by the National Basic Research Program of China grant no. 2012CB933002.

Author contributions
L.L. and Z.C. initiated the project. L.L. completed the proof, and Z.C. compiled the manuscript. All authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/