Neutrophil Microvesicles from Healthy Control and Rheumatoid Arthritis Patients Prevent the Inflammatory Activation of Macrophages

Hefin I. Rhys a, Francesco Dell’Accio a,b, Costantino Pitzalis a,b, Adrian Moore b,c, Lucy V. Norling a,b,⁎, Mauro Perretti a,b,⁎

a The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
b Centre for inflammation and therapeutic innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
c UCB Pharma, Bath Road, Slough, United Kingdom

ARTICLE INFO
Article history:
Received 11 December 2017
Received in revised form 24 January 2018
Accepted 1 February 2018
Available online 7 February 2018

Keywords:
Neutrophils
Macrophages
Vesicles
Rheumatoid arthritis

ABSTRACT
Microvesicles (MVs) are emerging as a novel means to enact cell-to-cell communication in inflammation. Here, we aimed to ascertain the ability of neutrophil-derived MVs to modulate target cell behaviour, the focus being the macrophage.

MVs were generated in response to tumour necrosis factor-α, from healthy control neutrophils or those from rheumatoid arthritis patients. MVs were used to stimulate human monocyte-derived macrophages to counteract classical activation of the macrophages, and promote the release of transforming growth factor-β, respectively. Classically-activated macrophages exposed to neutrophil MVs no longer activated fibroblast-like synoviocytes in subsequent co-culture settings. Finally, intra-articular administration of neutrophil MVs from rheumatoid arthritis patients in arthritic mice affected the phenotype of joint macrophages.

Altogether these data, with the identification of specific MV determinants, open new opportunities to modulate on-going inflammation in the synovia — mainly by affecting macrophage polarization and potentially also fibroblast-like synoviocytes — through the delivery of autologous or heterologous MVs produced from neutrophils.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Released directly from the plasma membrane of virtually all cells in response to calcium signalling, microvesicles (MV; also termed micro-particles or more generically extracellular vesicles) are right-side out, double membrane-enclosed structures with a 100–1000 nm diameter. The varied composition of MV, which contain lipids, proteins and nucleic acids, and downstream efficacy depend upon their cellular source and activation stimulus (Van der Pol et al., 2012). Present in a variety of biological fluids, MVs can impart both homeostatic and pathophysiological functions on local and distant tissues.

Despite their propensity to drive acute inflammation, neutrophils are one of few populations of cells whose MVs are known to promote phenotype and respond to a wide spectrum of stimuli. In response to the Th1 cytokine interferon gamma (IFN-γ) and toll-like receptor ligands such as lipopolysaccharide (LPS), macrophages upregulate expression of major histocompatibility complex type II (MHCIi), the co-stimulatory molecule CD86 and interleukin (IL)-12 and IL-1β (Bosedaguspta and Pieters, 2014; Biswas and Mantovani, 2010). In RA, these pro-inflammatory macrophages drive disease progression and cartilage erosion by i) recruiting other immune cells (Misharin et al., 2014; Vogelpoel et al., 2014), ii) promoting fibroblast-like synoviocyte (FLS) activation (Wilkinson et al., 1993), and iii) undergoing osteoclastogenesis (Fujikawa et al., 1996). At the polar end of the macrophage phenotype spectrum, macrophages stimulated with Th2 cytokines such as IL-4, express scavenger receptors like CD206 and the anti-inflammatory cytokines IL-10 and transforming growth factor-β (TGF-β) (Gordon, 2003). These pro-resolution/wound healing macrophages reduce leukocyte recruitment and Schifferli, 2004). Of these, macrophages are central to the recovery of homeostasis after an inflammatory insult, and controlling their phenotype is desirable in chronic inflammatory diseases, including rheumatoid arthritis (RA). Macrophages are remarkably plastic in their ability to change phenotype and respond to a wide spectrum of stimuli. In response to the Th1 cytokine interferon gamma (IFN-γ) and toll-like receptor ligands such as lipopolysaccharide (LPS), macrophages upregulate expression of major histocompatibility complex type II (MHCIi), the co-stimulatory molecule CD86 and interleukin (IL)-12 and IL-1β (Bosedaguspta and Pieters, 2014; Biswas and Mantovani, 2010). In RA, these pro-inflammatory macrophages drive disease progression and cartilage erosion by i) recruiting other immune cells (Misharin et al., 2014; Vogelpoel et al., 2014), ii) promoting fibroblast-like synoviocyte (FLS) activation (Wilkinson et al., 1993), and iii) undergoing osteoclastogenesis (Fujikawa et al., 1996). At the polar end of the macrophage phenotype spectrum, macrophages stimulated with Th2 cytokines such as IL-4, express scavenger receptors like CD206 and the anti-inflammatory cytokines IL-10 and transforming growth factor-β (TGF-β) (Gordon, 2003). These pro-resolution/wound healing macrophages reduce leukocyte recruitment
2.3. Generation of Monocyte-Derived Macrophages

Further use. After 15 min, the leukocyte-rich fraction was layered over a medium of 6% w/v dextran (high molecular weight, 31392-250G, Sigma-Aldrich, Poole, UK, in PBS) onto each 10 mL blood sample. Whole blood was centrifuged at 130 × g for 20 min and plasma was separated from cells and contaminating platelets, followed by a second centrifugation at 13,000 × g for 2 min to remove residual contaminants (e.g., apoptotic bodies). MVs were enriched from exosomes by centrifugation at 20,000 × g for 4 h. Exosomes were pelleted by centrifuging the supernatant at 100,000 × g for 1 h. For both fractions, the supernatant was removed and the pellets were re-suspended in sterile PBS.

2.4. Stimulation of Macrophages

Monocyte-derived macrophages were stimulated for 24 h at 37 °C with 10 ng/mL LPS (E.Coli 0111:B4, L2630, Sigma-Aldrich) and 20 ng/mL IFN-γ (300-02, PeproTech) or 50 ng/mL IL-4 (200-04, PeproTech). In some cases, specific inhibitors and blockers were used including 10 nM UNC-569 (445835-10MG, Millipore, Billerica, USA), 10 μg/mL anti-annexinA1 (clone 1B; produced in house) or 10 μg/mL isotype control (14-4714-85, Bioscience, San Diego, USA). Neutrophil MVs were also added at the indicated concentrations. Supernatants were collected for Cytometric Bead Array for IL-12p70, IL-1β, IL-10 and TGF-β (558264, BD Biosciences, San Jose, USA) following manufacturer’s instructions. Cells were detached, blocked in 160 μg/mL human IgG (G4386, Sigma-Aldrich) at 4 °C for 15 min, and labelled with 1.25 μg/mL anti-HLA-DR, DQ, DP, FITC, 1 μg/mL anti-CD86-PE, and 4 μg/mL anti-CD206 antibodies at 4 °C for 30 min. Cells were acquired on a LSRFortessa cytometer.

2.5. Generation and Isolation of Neutrophil MVs

Neutrophils (2 × 10^7 cell/mL) were stimulated with 50 ng/mL TNF-α (T0157-10UG, Sigma-Aldrich) for 20 min at 37 °C before placing on ice. Cell suspensions were centrifuged at 4,400 × g for 15 min to pellet cells and contaminating platelets, followed by a second centrifugation at 13,000 × g at 4 °C for 2 min to remove residual contaminants (e.g., apoptotic bodies). MVs were enriched from exosomes by centrifuging at 20,000 × g for 4 h. Exosomes were pelleted by centrifuging the supernatant at 100,000 × g for 1 h. For both fractions, the supernatant was removed and the pellets were re-suspended in sterile PBS.

2.6. Nanoparticle Tracking Analysis (NTA)

MVs were prepared and counted using fluorescence triggering on an ImageStream® MKII imaging cytometer as described previously (Headland et al., 2014). Briefly, vesicles were labelled with 50 μM boron-dipyromethene (BODIPY) texas red or BODIPY maleimide fluorescent dye (D-6116 & B10250 respectively, Life Technologies, Carlsbad, USA) as appropriate, and were acquired on their own or after labelling with either 2 μg/mL anti-CD14-PE/Cy7 (400125, Biolegend San Diego, USA), 2 μg/mL anti-CD66b-FITC (400107, Biolegend), 10 μg/mL anti-annexinA1 or 10 μg/mL anti-mouse IgG-BV241 (405317, Biolegend) (each antibody incubation performed at 4 °C for 30 min) with annexin A5 (anxA5) following manufacturer’s instructions (S1-46121E, BD Biosciences). Annexin A5 positive events were gated using a sample of vesicles and annexin A5 in Ca^2+ -free buffer; all protein antigen-positive events were gated using fluorescence minus one (FMO) controls.

2.7. ImageStream® Analysis of Vesicles

MVs were analysed and counted using fluorescence triggering on an ImageStream® MKII imaging cytometer as described previously (Headland et al., 2014). Briefly, vesicles were labelled with 50 μM boron-dipyromethene (BODIPY) texas red or BODIPY maleimide fluorescent dye (D-6116 & B10250 respectively, Life Technologies, Carlsbad, USA) as appropriate, and were acquired on their own or after labelling with either 2 μg/mL anti-CD14-PE/Cy7 (400125, Biolegend San Diego, USA), 2 μg/mL anti-CD66b-FITC (400107, Biolegend), 10 μg/mL anti-annexinA1 or 10 μg/mL anti-mouse IgG-BV241 (405317, Biolegend) (each antibody incubation performed at 4 °C for 30 min) with annexin A5 (anxA5) following manufacturer’s instructions (S1-46121E, BD Biosciences). Annexin A5 positive events were gated using a sample of vesicles and annexin A5 in Ca^2+ -free buffer; all protein antigen-positive events were gated using fluorescence minus one (FMO) controls.

2.8. MV Uptake

MVs were labelled with 5 μM CFSE before pelleting and re-suspending in PBS. In three different experiments, microvesicles (5 × 10^6) were incubated for 15 min at room temperature with either 50 μg/mL annexin A5 (or vehicle) or 10 μg/mL anti-annexinA1 (clone 1B) antibody (or isotype-matched control), or macrophages were incubated for 15 min at 37 °C with 10 nM UNC-569 or vehicle, prior to cultures in 6-
well suspension wells and incubated at 37 °C for 5–90 min. Then, macrophages were detached and acquired on an ImageStream® MKII.

2.9. Macrophage-FLS Co-Cultures

Monocyte-derived macrophages were obtained as above on 6-well 3 μm pore Transwell™ inserts (353,081, Scientific Laboratory Supplies, Nottingham, UK). Following 24 h treatment as indicated, Transwell™ were washed twice with PBS and placed into a 6-well plate containing glass coverslips with confluent FLS (408RAK-05a, Cell Applications Inc., San Diego, USA), such that the Transwell™ membrane was in contact with both fibroblasts and macrophages. After 24 h at 37 °C, 1 × Golgi block (4980–03, ebioscience) was added to the culture medium for the last 6 h of culture. Fibroblasts were labelled with 0.5 μg/mL anti-VCAM-1-BV711 (744,312, BD Biosciences) and 1 μg/mL anti-CD55-APC (311311, Biologend) antibodies at 4 °C for 30 min, fixed and permeabilised with an Intracellular Fixation & Permeabilization kit (88-8824-00, ebioscience), and labelled at 4 °C for an additional 30 min with 1 μg/mL anti-TNF-α-BV605 (502935, Biologend), 1 μg/mL anti-IL-6-BV421 (563,279, BD Biosciences) and 1 μg/mL anti-MCP-1-PE (505903, Biologend) antibodies. Cells were acquired on an LSRFortessa cytometer. In some cases, FLS, fixed, permeabilised and labelled as above, were analysed for immunofluorescence microscopy; intracellular staining was performed with either 10 μg/mL anti-MCP-1 (MA5-17040A), 15 μg/mL anti-TNF-α (MA5-23720) or 5 μg/mL anti-IL-6 (MA1-22531) antibodies. Secondary labelling was performed with anti-mouse IgG-AF488 (F-11021) and anti-rat IgG-AF488 (A-21208) as appropriate. Primary and secondary cell antibodies for immunofluorescence were purchased from ThermoFisher, Waltham, USA.

2.10. K/BxN Serum Induced Arthritis

All animal experiments were approved and performed under the guidelines of the Ethical Committee for the Use of Animals, Barts and The London School of Medicine and in accordance with the UK Home Office regulations (Guidance on the Operation of Animals, Scientific Procedures Act, 1986). K/BxN arthritis was induced by injecting 8-week-old male C57BL/6 mice (Charles River, UK) intraperitoneally with 100 μg IL-1β (408RAK-05a) and 1 μg goat anti-mouse IgG (Jackson Immunoresearch, West Grove, USA) intraperitoneally with 100 μg IL-1β (408RAK-05a) and 1 μg goat anti-mouse IgG (Jackson Immunoresearch, West Grove, USA). The animals were then injected intraperitoneally with 1 mg zymosan (Z4250-1G, Sigma-Aldrich). Additional treatments, including 200 μg of a specific agonist WRW4 (2262, Tocris, Bristol, UK) were injected intraperitoneally 48 h later. After a further 24 h, mice were sacrificed and the peritoneal cavity lavaged with ice-cold PBS + 2 mM EDTA. Supernatants were processed for a TGF-β mouse ELISA kit (EMTGFB1, ThermoFisher).

2.12. Statistical Analysis

All statistical analyses and graphing were performed in R 3.4.1 or IDEAS 6.2 for ImageStream plots. Individual biological replicates are shown for all data with bars at means; summary statistics quoted in text are mean ± standard deviation. Analyses used are indicated in each figure legend. Linear discriminant analysis (LDA) used scaled and centered variables as predictors.

3. Results

3.1. Generation and Characterization of Neutrophil MVs

NTA analysis demonstrated that MVs ranged between 70 nm and 400 nm in diameter, with median diameters of 123 ± 12 nm as assessed with 5 preparations (Fig. 1A and B). Vesicles in the 100,000 x g fraction and those remaining in the supernatant had median diameters of 88 ± 18 nm and 79 ± 9 nm, respectively. MV preparations labelled with BODIPY form a population of uniformly circular events that separate from noise and can be gated to exclude non-singlet events and debris (Fig. 1C) by ImageStream. Neutrophils from 4 donors stimulated with TNF-α produced 7.9 ± 1.6 x 107 vesicles/mL, compared with 2.2 ± 0.5 x 107 quantified in unstimulated cells (Fig. 1D). ImageStream analysis of 4 distinct preparations showed that 16% ± 7% of TNF-α-stimulated MVs expressed phosphatidylserine (i.e. stained with annexA5); 20% ± 6% were annexA5 positive; 90% ± 4% were stained for CD68 while 0.12% ± 0.04% were CD14 positive (representative histograms in Fig. 1E), confirming, in essence, the lack of contaminating monocyte MVs.

3.2. Neutrophil MVs Impact on Macrophage Polarization

Addition of increasing concentrations of neutrophil MVs to macrophages during LPS and IFN-γ-stimulation led to a concentration-dependent decrease in HLA-DR/DP/DQ and CD86 expression, returning levels to those of unstimulated cells at 3 x 107 MV/mL (Fig. 2A). A concentration-dependent increase in CD206 expression was also observed. While the MVs prevented classical activation of macrophages, they showed no effect on IL-4-mediated alternative activation (Supplementary Fig. S1). To confirm that these actions were attributable to MVs and not exosomes, sequential centrifugations of supernatants at 20,000 x g and then 100,000 x g yielded enriched preparations of MVs and exosomes, respectively. Macrophages undergoing classical activation were concomitantly treated with the MV-enriched pellet, exosome-enriched pellet, or vesicle-depleted remaining supernatant. While treatment of macrophages with 20,000 x g pellet restricted upregulation of HLA-DR/DP/DQ and CD86 expression during classical activation, and increased CD206 expression, treatment with either the vesicle-free supernatant or the exosome fraction was inactive (Fig. 2B).

3.3. Identification of Specific MV Determinants

To establish the potential functional involvement of phosphatidylserine, an “eat me” signal which promotes alternative activation of macrophages (Scott et al., 2001), exposed on the MVs, assays of classical activation of the macrophages were repeated in the presence or absence of annexA5, which binds to and buffers phosphatidylserine’s actions (Fig. 3). While MVs attenuated LPS plus IFN-γ-induced expression of HLA DR/DP/DQ, CD86 (Fig. 3A), IL-12p70, IL-1β and IL-10 (Fig. 3B), and increased CD206 expression (Fig. 3A), these effects were significantly lost in MVs treated with annexA5. Soluble annexA5 was inactive on its own (Fig. 3A,B). The only mediator modulated by MV alone was TGF-β (Fig. 3B), whose production was insensitive to annexA5 addition.

2.11. Zymosan-Induced Peritonitis

Twelve-week old male C57BL/6 mice (Charles River, UK) were injected intraperitoneally with 1 mg zymosan (24250-1G, Sigma-Aldrich). Additional treatments, including 200 μg of the antagonist WRW4 (2262, Tocris, Bristol, UK) were injected intraperitoneally 48 h later. After a further 24 h, mice were sacrificed and the peritoneal cavity
The phagocytosis of apoptotic moieties by macrophages is mediated in large part by the receptor-tyrosine kinase MerTK, which is a member of the tyro-3/Axl/MerTK family of receptors (Zizzo et al., 2012; Scott et al., 2001). To test if MerTK was involved in phosphatidylserine-mediated effects, macrophages were classically activated in the presence of MVs or vehicle, with or without 10 nM UNC-569 (a selective small molecule inhibitor of MerTK autophosphorylation) in a 2 × 2 factorial design (Fig. 4A,B). Protection against classical upregulation of HLA-DR/DP/DQ, CD86 and IL-10 by neutrophil MVs was lost in cells treated with UNC-569, as was the upregulation of CD206 (Fig. 4A). There was a similar, though not significant, loss of protection against classical upregulation of IL-12p70 and IL-1β with UNC-569. Conversely, TGF-β secretion was independent of UNC-569 treatment (Fig. 4B).

As we identified MV annexin A1 as one of the determinants for the induction of TGF-β secretion from chondrocytes (Headland et al., 2015), macrophages were treated with MVs or vehicle, in the presence of anti-annexin A1 neutralizing antibody: quantification of TGF-β concentration in the supernatants showed marked TGF-β release above control in all MV-treated samples in presence of isotype control, but not in samples where endogenous annexin A1 was neutralised (Fig. 4C).

To assess whether the functional engagement of phosphatidylserine or annexin A1-mediated could be indirect, hence secondary to impacting on the uptake of MV by macrophage, CFSE-labelled MV were stained with annexin A5 or anti-annexin A1 antibody and added to macrophages, in some cases the latter being treated with UNC-569. Fig. 4D shows that while blocking the interaction between phosphatidylserine and MerTK (with annexin A5 or UNC-569 respectively) significantly reduces vesicle uptake by macrophages, blockade of annexin A1 did not produce any alteration. Representative images of vesicle-laden macrophages are also shown (Fig. 4D).

To confirm that annexin A1-mediated induction of TGF-β was an extracellular event, likely dependent on activation of the formyl-peptide

Fig. 1. Characterization of TNF-α-induced neutrophil MV preparations. A, B) Nanosight tracking analyses (NTA) of neutrophils MVs. A: two representative density plots of MV, exosome, and supernatant after pelleting exosomes at 100,000 × g diameters shown with cumulative density lines overlaid. Bar plots reports the median diameter of each preparations from 5 biological replicates (mean ± standard deviation). B: representative image of particle light scatter from a sample as analysed by NTA. C–E) ImageStream analyses of neutrophil MVs. C: MVs were labelled with BODIPY Texas red and acquired on an ImageStream. Gating strategy shown for gating singlet MV along with representative images of singlet and swarm vesicle events. D: Production of MVs from human neutrophils (2 × 10⁷) stimulated with 50 ng/mL TNF-α or vehicle, for 20 min at 37 °C. MVs were quantified by ImageStream. Lines connect samples from the same donor; black circles and ranges indicate mean ± standard deviation. Analysed with Wilcoxon signed rank test. E: Staining of TNF-α-induced neutrophil MVs to quantify expression of phosphatidylserine (PtdSer), annexin A1 (AnxA1), CD66b and CD14. Gating controls for CD66b and CD14 were fluorescence minus one, for AnxA1 a secondary antibody only control, and for PtdSer annexin A5 in the absence of Ca²⁺. Histograms representative of three different preparations of MVs.
receptor type 2, mice undergoing zymosan-induced peritonitis were injected intraperitoneally with 2×10^7 neutrophil MVs (pooled from 6 donors) with or without the selective FPR2 antagonist WRW4. Fig. 4E shows that there was a significant interaction between vesicle and WRW4 treatments ($p = 0.041$), where injection of MVs alone increased peritoneal TGF-β_1 1.9 fold over vehicle alone ($p = 0.002$), but not in the presence of WRW4 ($p = 0.266$; compared with WRW4 alone).

3.4. Neutrophil MVs Impact on Macrophage Downstream Functions

Next, we queried if macrophages exposed to neutrophil MVs could interact differently with other cells, the choice being primary FLS in view of their contiguous presence in the RA synovia. FLS co-cultured with classically-activated macrophages increased their expression of TNF-α, IL-6, MCP-1, CD55 and VCAM-1, compared to those co-cultured with naïve macrophages (Fig. 5). However, macrophages treated with MVs during their activation with LPS plus IFN-γ did not induce upregulation of these antigens in the adjacent FLS.

FLS co-cultured with classically-activated macrophages expressed higher levels of all antigens measured, compared to those co-cultured with naïve macrophages, and FLS co-cultured with alternatively activated macrophages expressed higher levels of MCP-1 (Fig. 5B). These increases in expression were lost in FLS co-cultured with macrophages stimulated in the presence of MV. Modulation of FLS cytokines through macrophages ‘instructed’ by neutrophil MVs was also visualised by immunofluorescence: Fig. 5C presents characteristic images for FLS immune-reactivity of IL-6, TNF-α and MCP-1 following incubation with activated macrophages that had been exposed to vehicle or neutrophil MVs.

3.5. The Effect of RA Neutrophil MVs on Macrophage Polarization

To test whether MVs generated from RA neutrophils displayed similar efficacy to those from healthy controls, RA patient monocyte-derived macrophages were classically activated in the presence of 3×10^6 MV/mL from either healthy control or RA neutrophils, or vehicle alone (Fig. 6). MVs from healthy controls and RA patients shared similar effects across all antigens quantified (Fig. 6A). LDA showed that macrophages treated with either MV preparation separated from vehicle-treated macrophages by all antigens, most strongly HLA-DR/DP/DQ, CD86 and TGF-β_1, along the first discriminant factor (which accounted for 88.2% of the variability between groups; Fig. 6B and factor loadings). Macrophages treated with the two MV populations displayed similar expression profiles, separating along the second discriminant factor (which accounted for 11.8% of the variability between groups) by IL-12p70, IL-10, and TGF-β_1. IL-12p70 and IL-10 were more highly expressed in macrophages treated with RA MVs, whereas TGF-β_1 (the antigen which varied the greatest between them) was more highly expressed by macrophages treated with healthy control MVs (Fig. 6B). MV$_{ran}$ generated from RA patient neutrophils could also out-compete the pro-inflammatory effects of total MV from RA patient synovial fluid (Supplementary Figs. S2 and S3).
3.6. The Effect of Neutrophil MVs in Arthritic Mice

To test whether neutrophil MVs could modulate macrophage phenotype in vivo, the K/BxN model of arthritis was used. Mice were randomized to receive intra-articular injection of 3×10^6 MV (from healthy controls or RA neutrophils) in one ankle, and vehicle in the other. After a further 24 h, cells were immune-phenotyped by flow cytometry. Macrophages isolated from ankles which received MVs expressed lower MHCII and CD86, and higher CD206 compared to their contralateral controls. Intriguingly, these differences were more pronounced with MVTNF generated from RA patient neutrophils, with joint macrophages from treated ankles exhibiting significantly lower MHCII and higher CD206 expression (Fig. 6C & D). These data supported results from a zymosan-induced peritonitis model of acute inflammation, where neutrophil MV reduced macrophage activation and increased TGF-β (Supplementary Figs. S4 and S5).

4. Discussion

In the burgeoning world of vesicle biology, neutrophil MVs are functionally different from other MVs as they are endowed with anti-inflammatory and pro-resolving properties. Original work of Gasser and Shifferli showed how neutrophil MVs could impact on naïve macrophages through release of TGF-β without affecting release of pro-inflammatory cytokines; however, in the presence of macrophage activators, these MVs reduced IL-8 release (Gasser and Shifferli,
In our experimental settings, we confirmed and extended these observations, noting how neutrophil MVs were selective in their ability to modulate LPS + IFN-γ-induced polarization, with little effect on the M2 polarization obtained with IL-4. This is in agreement with the current literature and, we propose, might be considered in the broader pro-resolving properties of neutrophils in the context of inflammation resolution (Jones et al., 2016). Not only vesicles, but also neutrophil-derived apoptotic bodies can promote important pro-resolving properties by modifying the behaviour of surrounding cells of which the macrophage is a canonical target: macrophage efferocytosis of apoptotic neutrophils decreases expression of IL-1 and IL-6 while increasing expression of IL-10 and TGF-β (Dalli and Serhan, 2012).

A common mediator in these settings seems to be release of TGF-β. Of interest, we have recently reported the central role that this growth factor plays in the chondroprotective properties of neutrophil MVs, an effect reliant on vesicle-exposed anxA1 (Headland et al., 2016). Not only vesicles, but also neutrophil-derived apoptotic bodies can promote important pro-resolving properties by modifying the behaviour of surrounding cells of which the macrophage is a canonical target: macrophage efferocytosis of apoptotic neutrophils decreases expression of IL-1 and IL-6 while increasing expression of IL-10 and TGF-β (Dalli and Serhan, 2012).

A common mediator in these settings seems to be release of TGF-β. Of interest, we have recently reported the central role that this growth factor plays in the chondroprotective properties of neutrophil MVs, an effect reliant on vesicle-exposed anxA1 (Headland et al., 2016). AnxA1 also positively regulates TGF-β signalling in breast cancer cells (de Graauw et al., 2010). Modulation of TGF-β release by neutrophil MVs was observed even in non-polarised macrophages and could also be significantly augmented when cells were activated with LPS + IFN-γ. These data indicate at least a partial role for anxA1 present on the MVs as an effector for this response of the macrophage. AnxA1 did not mediate the uptake of MVs by macrophages, yet there was a genuine engagement of its receptor, formyl-peptide receptor type 2, as was indicated from the experiments conducted in the presence of its antagonist WRW4. It is intriguing how only a proportion of MVs expressed anxA1 on their surface, however we have also demonstrated presence of this mediator within the vesicles (Dalli et al., 2008). We could also consider how this response may be related to a general shift in macrophage phenotype towards an alternatively-activated phenotype which produces TGF-β, in line with that observed following application of IL-10 or glucocorticoids (Murray et al., 2014).

At variance from TGF-β and the anxA1/FPR2 axis, most of the markers of macrophage polarization were reliant on MV expression of phosphatidylserine, since blocking this acidic phospholipid with anxA5 prevented modulation of HLA-DR, DP & DQ and CD86 on classically-activated macrophages. We could substantiate these findings by establishing an important role for one of the phosphatidylserine receptors, the Mer tyrosine kinase or MerTK, as defined through the use of a specific inhibitor of its auto-phosphorylation and, hence, receptor...
activation. MerTK is the best characterised member of the tyro-3/Axl/MerTK family of receptors, especially in regards to macrophage function: MerTK activation in macrophages induces PI3 kinase-mediated phagocytosis and STAT1-mediated suppression of inflammatory cytokine signalling (Hall et al., 2003; Rothlin et al., 2007).

Taking these reported findings discussed above and the observations herein together, we would suggest that phosphatidylserine is both important for tethering, uptake, and signalling, but that other components are also at work. For example, the reduction in IL-10 production despite phosphatidylserine strongly inducing its secretion, is interesting. Moreover, while phosphatidylserine is important for internalisation, other components of the vesicles may be exerting control over phenotype, such as miRNA species.

In our experimental conditions, neutrophil MVs alone did not affect macrophage phenotype, suggesting that they inhibit classical activation rather than imparting alternative activation. A partial exception occurred in the presence of LPS and IFN-γ where the MV actually increased CD206 expression (an effect seen in neither treatment alone).

An equally important technical observation was made when MV samples were compared with exosome-enriched fractions: the data indicate that regulation of classical macrophage activation imparted by the MV preparations was attributable to the MV-enriched fraction. Equally, neutrophil-derived supernatants depleted of all microstructures were inactive. Therefore, MV uptake and specific MV effectors, including annexin A1, are required to modulate macrophage polarization in our in vitro settings.

During RA, FLS participate in disease progression (Bottini and Firestein, 2012) by releasing cytokines and growth factors like MCP-1 (Kumkumian et al., 1989), VEGF (Palmer et al., 2008), IL-6 (Guerne et al., 1989) and GM-CSF (Parsonage et al., 2008), supporting leucocyte recruitment, delaying neutrophil apoptosis and propagating pannus hyperplasia. As the synovial lining is comprised of both fibroblasts and macrophages, it was important to explore whether neutrophil-derived MVs could impact on the macrophage-FLS crosstalk. We observed that classically-activated macrophages were instructed by the MVs to avoid maximal activation of the adjacent FLS, likely an effect downstream of the reduction of classical activation in the first place. Nevertheless, the data are suggestive of a potential novel mechanism operative in the RA synovia, where neutrophil MV-induced regulation of macrophages may have functional consequences within the inflamed microenvironment, all signalling towards an anti-inflammatory outcome.

It was important to ascertain if RA neutrophils could produce MVs able to provoke anti-inflammatory effects. Indeed, this was the case, and a combination of in vitro and in vivo analyses demonstrated a substantial overlap of actions between MVs prepared from neutrophils...
harvested from healthy control or RA patients. The importance of this finding lies in the potential of developing innovative therapeutic approaches based on the autologous generation of MVs from patient cells. In line with the potential therapeutic exploitation of neutrophil MVs, we deemed it important to determine if modulation of macrophage phenotype could be attained during ongoing experimental arthritis. Following injection of the vesicles into the synovial space in the ankles of arthritic mice we could quantify an effective switch of specific macrophage markers. These effects were more prominent with neutrophil MV derived from RA patients than those generated from healthy controls, for reasons we are yet to decipher. Nevertheless, these effects on macrophage phenotype confirm the data observed in vitro. Future in vivo experiments would help define the therapeutic impact of these vesicles during on-going arthritis.

In conclusion, this new study together with current literature that includes our own work with chondrocytes and cartilage (Headland et al., 2015), presents new mechanistic evidence underpinning the anti-inflammatory and anti-arthritic properties of neutrophil MVs, summarised graphically in Fig. 7. Herein, we shed light on some of the mechanisms responsible for the effects of the MV, identifying important determinant roles for phosphatidylserine and anxA1. In our view, these data support further development of neutrophil vesicles as a ‘polypharma’ therapeutic approach for joint disease.

Conflicts of Interest

The authors report no competing interests.

Funding

BBSRC (studentship BB/K011782/1), MRC (project MR/P026362/1), Wellcome Trust (programme 086867/Z/08/Z) and Arthritis Research UK (Career Development Fellowship 19909 to LVN).
Appendix A. Supplementary Data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ebiom.2018.02.003.

References

Bellac, C.L., Dufour, A., Kringinger, M.J., Louchanta, A., Starr, A.E., Auf dem Keller, U., et al., 2014. Macrophage matrix Metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Rep. 9, 618–622.

Biwaa, S.K., Mantovani, A., 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896.

Bosedaugspur, S., Pieters, J., 2014. Inflammatory stimuli reprogram macrophage phagocytosis to macrophagicosis for the rapid elimination of pathogens. Eur. S. PLoS Pathog. 10, e1003879.

Bottini, N., Firestein, G.S., 2012. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33.

Dalli, J., Serhan, C.N., 2012. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120, e60–72.

Dalli, J., Norling, L.V., Renshaw, D., Cooper, D., Leung, K.Y., Perretti, M., 2008. Annexin I mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112, 2512–2519.

de Graauw, M., van Miltenburg, M.H., Schmidt, M.K., Pont, C., Lalai, R., Kartopawiro, J., et al., 2010. Annexin A1 regulates TGF-β1-beta signaling and promotes metastases formation of basal-like breast cancer cells. Proc Natl Acad Sci USA 107, 6340–6345.

Dean, R.A., Cox, J.H., Bellac, C.L., Doucet, A., Starr, A.E., Overall, C.M., 2008. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2. –7, –8, and –13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112, 3455–3464.

Eken, C., Gasser, O., Zehauerserr, G., Oehrli, I., Hess, C., Schifferli, J.A., 2008. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J. Immunol. 180, 817–824.

Eken, C., Sadallah, S., Martin P.J., Torese, S., Schifferli, J.A., 2013. Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology 218, 382–392.

Fujikawa, Y., Sabokbar, A., Neal, S., Athanasou, N.A., 1996. Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann. Rheum. Dis. 55, 816–822.

Gasser, O., Schifferli, J.A., 2004. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104 (8), 2543.

Gordon, S., 2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35.

Guerne, P.A., Zuraw, B.L., Vaughan, J.H., Carson, D.A., Lotz, M., 1989. Synovium as a source of interleukin 6 in vivo. Contribution to local and systemic manifestations of arthritis. J. Clin. Invest. 83, 585–592.

Hall, M.O., Agnew, B.J., Abrams, T.A., Burgess, B.L., 2003. The phagocytosis of OS is mediated by the PI3-kinase linked tyrosine kinase receptor, Mer, and is stimulated by GAGS. Adv. Exp. Med. Biol. 533, 311–336.

Harel-Aadar, T., Ben, Mordechai T., Ansalam, Y., Feinberg, M.S., Leor, J., Cohen, S., 2011. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. PLoS. Nall. Acad. Sci. U. S. A. 108, 1827–1832.

Headland, S.E., Jones, H.R., D’Sa, A.S.V., Perretti, M., Norling, L.V., 2014. Cutting-edge analysis of extracellular microparticles using ImageStreamX imaging flow cytometry. Sci. Rep. 4.

Headland, S.E., Jones, H.R., Norling, L.V., Kim, A., Souza, P.R., Corsiero, F., et al., 2015. Neutrophil-derived microparticles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl. Med. 7, 315ra190.

Huguet, M.-L.N., Fadok, V.A., Henson, P.M., 2002. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50.

Jones, H.R., Robbins, C.T., Perretti, M., Rossi, A.G., 2016. The role of neutrophils in inflammation resolution. Semin. Immunol. 28, 137–145.

Kunikumian, G.K., Lafiatty, R., Remmers, E.F., Case, J.P., Kim, S.J., Wilder, R.L., 1989. Platelet-derived growth factor and II-1 interactions in rheumatoid arthritis. Regulation of synovioctye proliferation, prostaglandin production, and collagenase transcription. J. Immunol. 143, 833–837.

Ma, Y., Pope, R.M., 2005. The role of macrophages in rheumatoid arthritis. Curr. Pharm. Des. 11, 569–580.

Martinez, F.O., Gordon, S., 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6.

McCauley, L.K., Dalli, J., Koh, A.J., Chang, N., Serhan, C.N., 2014. Cutting edge: parathyroid hormone facilitates macrophage effecytosis in bone marrow via proresolving mediators resolvin D1 and resolvin D2. J. Immunol. 193, 26–29.

Micharin, A.V., Cuda, C.M., Saber, R., Turner, J.D., Gierut, A.R., Haines, G.K., et al., 2014. Non-classical Ly6C+monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604.

Murray, P.J., Allen, J.E., Biwaa, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., et al., 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20.

Palmer, C.D., Mutch, B.E., Page, T.H., Horwood, N.J., Foxwell, B.M., 2008. Bmx regulates LPS-induced IL-6 and VEGF production via mRNA stability in rheumatoid synovial fibroblasts. Biochem. Biophys. Res. Commun. 370, 599–602.

Parsonage, G., Filer, A., Bik, M., Hardie, D., Lax, S., Howlett, K., et al., 2008. Prolonged, granuloctye-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblact activation by IL-17 and TNalpha. Arth Res Ther 10, 647.

Patel, H., Komerper, A., Sampayo, A.L.F., D’Aquisto, F., Seed, M.P., Girol, A.P., et al., 2012. The impact of endothogenous Annexin A1 on glucocorticoid control of inflammatory arthritis. Ann. Rheum. Dis. 71, 1872–1880.

Perretti, M., Cooper, D., Dalli, J., Norling, L.V., 2017. Immune resolution mechanisms in inflammatory arthritis. Nat. Rev. Rheumatol. 13, 87–99.

Rigamonti, E., Zordan, P., Sciorati, C., Rovere-Querini, P., Brunelli, S., 2014. Macrophage plasticity in skeletal muscle repair. Biomed. Res. Int. 2014, 560256.

Rothlin, C.V., Ghosh, I., Suniga, E.I., Oldstone, M.B.A., Lemke, G., Radziejewski, C., et al., 2007. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136.

Scott, R.S., McAlison, E.J., Pop, S.M., Reap, E.A., Caricchio, R., Cohen, P.L., et al., 2001. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211.

van der, Pol E., Böing, A.N., Harrison, P., Sturk, A., Nieuwland, R., 2012. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705.

Vogelpoel, L.T.C., Hansen, I.S., Rispens, T., Muller, F.J.M., van, Capel T.M.M., Turina, M.C., et al., 2014. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat. Commun. 5, 3444.

Williamson, I.S., Edwards, J.C., Potson, R.N., Haskard, D.O., 1993. Expression of vascular cell adhesion molecule-1 in normal and inflamed synovium. Lab. Invest. 68, 82–88.

Zizzo, G., Hilliard, B.A., Monestier, M., Cohen, P.L., 2012. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol. 180, 3508–3520.