Which East Asian herbal medicines can decrease viral infections?

Kenny Kuchta · Silke Cameron · Minwon Lee · Shao-Qing Cai · Yukihiro Shoyama

Received: 16 April 2020 / Accepted: 17 April 2021 / Published online: 27 August 2021 © The Author(s) 2021

Abstract Whilst Western research for the COVID-19 crisis focuses on vaccination, in East Asia traditional herbal prescriptions are studied for SARS-CoV2 therapy. In Japan, Maoto (Ephedrae herba 4 g, Armeniacae semen 4 g, Cinnamomi cortex 3 g, and Glycyrrhizae radix 2 g, JPXVII) is used based on clinical evidence for its effect on early phase influenza (also caused by RNA viruses) comparable to that of oseltamivir. The Health Ministry of Thailand has approved Andrographis paniculata (Jap. Senshinren) extracts for treatment of COVID-19. Its combination (4 g) with Maoto, Maoto-ka-senshinren, seems most promising for the treatment of viral pandemics. In China, the official guideline for COVID-19 treatment contains TCM medications with antiviral, as well as immunmodulatory and anti-inflammatory effects such as: Qing-Fei-Pai-Du-Tang (Jap. Seihai-haidokuto) contains 21 drugs; Shufeng Jiedu Jiaonang (Bupleuri radix 8 g, Forsythiae fructus 8 g, Glycyrrhizae radix 4 g, Isatidis radix 8 g, Patriniae herba 8 g, Phragmitis rhizoma 6 g, Polygoni cuspidati rhizoma 10 g, Verbenae herba 8 g); Fufang Yuxingcao Heiji (Forsythiae fructus 0.6 g, Houttuyniae herba 6 g, Isatidis radix 1.5 g, Lonicerae flos 0.6 g, Scutellariae radix 1.5 g) first gained prominence during the 2002 SARS epidemic. With no Western medicine available, the following overview discusses efficacy and mechanisms in view of viral entry and replication of different East Asian herbal remedies for COVID-19 treatment.

Keywords COVID-19 · Influenza virus · Andrographis paniculata · Kampo · Maoto

Introduction Anti-viral activity has been reported from numerous medicinal plant extracts and preparations. For
example, Mousa (2017) reviewed the anti-influenza activity of several medicinal plants such as *Glycyrrhiza uralensis*, *Panax ginseng*, *Camellia sinensis*, or *Diospyros kaki*. In our own research work, we were able to demonstrate that the pharmaceutical oleoresin Labdanum of *Cistus creticus* exerts pronounced in vitro anti-dengue virus activity (Kuchta et al. 2019).

The most probable targets of anti-viral natural products are those related to the replication cycle of viruses, which depends on several steps: Their recognition of the host cell, formation of the endosome, release of virus RNA within the cytoplasm, RNA replication and translation. The new endosome can then release the virus by exocytosis. All these steps can be targeted by entry-inhibitors, fusion inhibitors, RNA polymerase inhibitors, protease-and release inhibitors.

The commonly used Oseltamivir is a neuraminidase inhibitor, i.e. a competitive inhibitor of the viral neuraminidase enzyme. Inhibition of the enzyme prevents cleaving of the virus from the host cell, and thus prevents the spreading of the virus. However, several resistance mechanisms are known. Current studies suggest that it is not effective in the treatment of the new COVID-19 pandemic. However, East Asian herbal medicines have shown anti-viral activity in the past and in the current reports on corona viruses.

For the current overview, Kampo prescriptions commonly recommended in Japan were assessed together with related herbal medications from China, Korea, and Thailand.

Although the past year has seen a flood of papers on Chinese medicines for the treatment of COVID-19, most of the prescriptions discussed therein are either new, previously untested drug combinations and / or hardly available internationally. Thus a selection was done for such prescriptions that are either commonly available on international markets or already established in the practice of Eastern Medicine in Europe. Especially established prescriptions—and simple variations thereof—that can easily be formulated as Single Prescriptions for individual patients from decoction pieces by doctors in the West were included.

Anti-viral activity of *Andrographis paniculata*

Andrographis paniculata (Burm.f.) Nees (Fig. 1) is native to tropical Southeast Asia and traditionally used in Indian Ayurvedic medicine, traditional Thai medicine and traditional Indonesian Jamu medicine (Herrmann 1996) against diarrhea, bacterial dysentery and as a bitter tonic for numerous diseases. Especially in Jamu, *A. paniculata* is also well documented as a traditional treatment for malaria (Herrmann 1996).

In Thai Traditional Medicine, *A. paniculata* (Th. ฟ้าทะลายโจร / Fha talai jone) is one of the most commonly used herbal drugs (Inta et al. 2013) and often administered as a decoction or pill for the prevention of all health problems. It is also used for the treatment of numerous ailments such as fever, cough, sore throat, aphous ulcer, wounds, abscesses, rashes, and as a carminative, for gastritis, pain, diabetes, hypertension, jaundice, and for detoxification (Inta et al. 2013).

Later, this medicinal plant was adopted into Traditional Chinese Medicine (TCM) as an antipyretic and against bronchitis, colitis, cystitis and similar inflammatory diseases (Wagner et al. 2011). Most recently, its introduction into the Chinese pharmacopoeia has resulted in its insertion into the newest edition of the European Pharmacopoeia (PhEur 9) and, due to current efforts to integrate more herbal drugs of East Asian Medicine, into the European regulatory framework.

The efficacy and safety of *A. paniculata* containing preparations for prophylaxis and symptomatic treatment of respiratory infections such as the common cold, bronchitis, sinusitis pharyngotonsillitis, urinary tract infections, and acute diarrhea has been supported by clinical studies, as laid out in a recent HMPC Assessment report (EMA/HMPC/320433/2012). Numerous, in the context of COVID-19 especially relevant studies in patients with viral lounge infections were performed in Scandinavia, South America, and India (Hancke et al. 1995; Caceres et al. 1997, 1999; Melchior et al. 1996; Saxena et al. 2010). A meta-analysis of 33 randomized controlled trials showed that *A. paniculata* extracts relieve inflammatory symptoms and shortens the duration of cough, sore throat, and disease duration in comparison with standard care (Hu et al. 2017). Saxena et al. (2010) carried out a randomized
double blind placebo controlled clinical evaluation of A. paniculata extract in patients with uncomplicated upper respiratory tract infection regarding cough, fever, sputum, nasal mucus, headache, fatigue and sleep disorders resulting in 53% of improvement compared with placebo. When 158 common cold patients took 1.2 g of dried extract of A. paniculata for 5 days, symptoms like sleep disorder, nasal juice and sore throat improved. Akbar (2011) examined A. paniculata for the prevention and treatment of the common cold. 158 adult patients suffering from common cold used a standardized A. paniculata dry extract for 5 days, resulting in a significant decrease of tiredness, sleeplessness, sore throat and nasal secretion.

Ding et al. (2017) demonstrated that treatment of C57BL/6 mice infected with the mouse-adapted H1N1 strain PR8A/PR/8/34 with andrographolide [10 mg/kg], with or without influenza virus entry inhibitor CL-385319 [10 mg/kg] improved body weight, lung function and reduced inflammation. The combination group had the highest survival rate but andrographolide treatment alone improved the survival rate as well as virus loads and inflammatory cytokine expression (Ding et al. 2017). Numerous natural products have been isolated from A. paniculata several of which—such as diverse lactones, flavonoids, diterpenes, and especially andrographolides (Fig. 1)—are regarded as contributors to its documented activity against influenza viruses.

All the above indicates that A. paniculata can be used for the prevention and treatment of the common cold and even influenza virus infection. It remains to be shown if A. paniculata is also effective in SARS-COVID-19 infection. However, similar strategies such as protease inhibition and cell modulation of cell surface receptors preventing viral entry have been shown in other viral infections including HIV. Furthermore, A. paniculata is well known for its anti-malaria activity (Herrmann 1996). Its activity is quite similar to that of chloroquine—a synthetic anti-malaria compound derivative of the alkaloid quinine that has been proposed for co-medication with A. paniculata in this indication (Hafid et al. 2015)—and is currently investigated for the treatment of COVID-19 infection.

Based on these findings and its established status in Thai Traditional Medicine, the Health Ministry Thailand has approved the use of the extract to treat early stages of Covid-19 as a pilot program (The Straits Times. DEC 30, 2020).

As far as the specific mechanism of action of A. paniculata against viral infections is concerned, it has been experimentally demonstrated that the andrographolide 14-deoxy-11,12-dehydroandrographolide (DAP) (Fig. 1), a major component of the raw drug with a minimum content of 0.8% of the sum of andrographolide and DAP in the dried drug material according to Ph.Eur., exerts potent anti-influenza A virus activity against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), A/PR/8/34 (H1N1), A/NanChang/08/2010 (H1N1) and A/HuNan/01/2014 (H3N2) in vitro on A549 and MDCK cells and inhibits the replication of the H5N1 influenza virus by preventing the export of the viral ribonucleoprotein complexes from the nucleus (Cai et al. 2015).

For H5N1, DAP exhibited a CC50 (cytotoxic concentration required to reduce cell viability by 50% for uninfected cells determined by CCK-8 assay) and an IC50 (inhibition concentration to reduce the cytopathic effect (CPE) by 50% caused by A/chicken/Hubei/327/2004 (H5N1) in the same order of magnitude as the positive control Ribavirin (Cai et al. 2015).

Andrographolide itself was also shown to contribute to the overall anti-viral activity of A. paniculata extracts. In the case of the enterovirus D68 (EV-D68), that has emerged as a significant respiratory pathogen in recent years, it could be demonstrated in an in vitro virus model on human rhabdomyosarcoma RD cells (ATCC, CCL-136) that andrographolide prevents its replication by inhibiting the acidification of virus-containing endocytic vesicles, resulting in a dramatic inhibition of EV-D68 RNA replication (EC50=3.45 mM). In comparison, its median cytotoxic, lethal concentration was much higher at 75 mM (Wang et al. 2018).

A. paniculata in general and andrographolide in particular have also proven effective against the dengue virus (Paemanee et al. 2019). Here, the human HepG2 liver cell (ATCC Cat No. HB-8065) were infected with DENV 2 and subsequently incubated with andrographolide (50, 100, and 200 μM). A proteomic based approach demonstrated an important role for Glucose regulated protein 78 (GRP78) and the unfolded protein response (UPR) mechanism in mediating the anti-dengue virus activity of andrographolide, which might, in part, explain
the broad antiviral activity of andrographolide (Pae-
manee et al. 2019).

In this context, yet another andrographolide, 3,19-
isopropylideneandrographolide (IPAD) was shown to
be effective against Herpes Simplex Virus. IPAD
(22.50 µM) completely suppressed ICP8 transcription
and translation as well as DNA replication and HSV
gD protein (Envelope glycoprotein D of the Human
herpesvirus 1 (strain 17) (HHV-1) (Human herpes
simplex virus 1)) expression in the tested virus strains
in a Vero host cell model (Kongyingyoes et al. 2016).
This envelope glycoprotein binds to the potential host
cell entry receptors like TNFRSF14/HVEM, and
NECTIN1 and may trigger fusion with host mem-
brane by recruiting the fusion machinery.

A comparison of human patient data with those
from a rat model showed that the pharmacokinetics of
andrographolides are similar in both species. They
are rapidly and almost completely absorbed (T1/2abs
of about 25 min) into the blood (bioavailability=91%, F=0.91) after oral administration at a therapeu-
tic dose (20 mg/kg). Andrographolide binds to
blood proteins and is distributed in blood and tissues
within 1–2 h. The elimination half-time is in the
range of 2–7 h (Panossian et al. 2000). A tissue
distribution study revealed the highest concentration
in kidney, followed by the liver, spleen, and brain,
whereas an almost identical concentration was
observed in heart and lungs (Bera et al. 2014).

It is however important to note that bioactivity of
andrographolides is not limited to the anti-viral effect
itself but also affects therapeutically relevant side
effects of the infection. E.g. andrographolide was
shown to inhibit Influenza A virus induced inflam-
mation in a murine model through NF-
kB and JAK-
STAT signaling pathway (Ding et al. 2017).

In this context, it is important to note that A.
paniculata has also been discussed as an Adaptogen
(Panossian et al. 2021)—a category of natural
compounds or herbal extracts that increase adapt-
ability, resilience, and survival of organisms; they
increase “the state of nonspecific resistance” of
organisms to harmful factors, including bacterial
and viral pathogens (Lazarev et al. 1959). In
Ayurveda, the plants with traditionally use as adap-
togens are referred to as Rasayana and are used as
rejuvenating and for improving the overall health of
anyone undergoing this treatment. It is therefore not
surprising that A. paniculata is regarded as one of the
most important rasayana drugs (Thakur et al.
2014, 2015; Raina et al. 2013). In this context, the
chemopreventive effects of A. paniculata extracts and
Andrographolide were previously demonstrated
(Sheeja and Kuttan 2006; Singh et al. 2009).

Anti-viral activity of Kampo prescriptions such
as Maoto

In Japan several Kampo prescriptions like Maoto,
Kakkonto (Kurokawa et al. 1996; Okabayashi et al.
2014), Shahakusan (Hokari et al. 2012), Shoseiryuto
(Nagai and Yamada 1994, 1998; Nagai et al. 1996;
Yamada and Nagai 1998), Daiokanzoto (Watanabe
2018) and Hochuekkito (Dan et al. 2018) (Table 1)
have been investigated for their effect against
influenza virus infection.

All the above are traditionally prepared as decoctions (i.e. hot water extracts) according to the legal
requirements of the current Japanese Pharmacopoeia
(JPXVII, p. 22): Heat one-day dose of crude drugs
with 400–600 ml of water until loss of about half the
amount of added water spending more than 30 min,
and filter through a cloth while warm.

Among all examined Kampo prescriptions, the
most detailed information was available for Maoto
(Ephedrae herba 4 g, Armeniacae semen 4 g, Cin-
namomi cortex 3 g, and Glycyrrhizae radix 2 g). This
prescription will therefore form the basis for the
further discussion in the following paragraphs. Maoto
(麻黄湯) was published already during the second
century AD in the Shanghan Lun (傷寒論, Jap.
Shoukanron)—one of the foundational texts of
Ancient Chinese Medicine—under the Chinese name
Ma-Huang-Tang, under which it is still used in TCM
today. In Korean medicine, which developed from
Ancient Chinese Medicine as a third sister system to
TCM and Kampo, the identical prescription is
referred to as Mahwang-tang (마황탕). Maoto is
commonly applied for febrile diseases with symp-
toms like high fever and cough. Kampo prescriptions
like Maoto that contain Ephedrae herba (Ephedra
sinica Stapf) (Fig. 2) are also referred to as Mao-zai
(麻黄劑).

Recently, Kampo clinical trials for influenza virus
infection have been reported in Japan. E.g. Nagai
et al. (2014) found that orally administered Maoto
(0.9 and 1.6 g/kg/day) had significant anti-pyretic
activity in influenza virus infected A/J mice after upper respiratory tract infection with the influenza virus A/PR/8/34. Administration of Maoto (0.8 and 1.3 g/kg/day) further significantly decreased the virus titers in both nasal and bronchoalveolar lavage fluids 52 h after infection and increased the anti-influenza virus antibodies IgM, IgA and IgG1 resulting in the binding of the virus (Nagai et al. 2014).

Masui et al. (2017) set up the culturing assay system for A549 cells which were infected with influenza virus A (PR8) in order to determine the virus titers in the culture supernatant, intracellular viral proteins and viral RNA. When the infected cells were treated with 400 µg/ml of a commercial Maoto, the extract significantly reduced the virus titer as well as the production of viral surface proteins such as M2 and neuraminidase (NP), thus preventing viral entry (Masui et al. 2017).

Maoto can also inhibit the uncoating of influenza virus. Furthermore, the inhibition of endosomal acidification by Maoto may prevent the release of the influenza virus through the inhibition of V-ATPase into the cytoplasm (Masui et al. 2017). Maoto is therefore the most favorable Kampo medicine for influenza virus and influenza illness.

Nabeshima et al. (2012) investigated Maoto [2.5 g TID of commercial granules dissolved in warm water for 5 days] for the treatment of seasonal influenza in a randomized clinical trial. 28 influenza patients within 48 h of fever onset were randomly assigned to Maoto (n=10), Oseltamivir [75 mg BID for 5 days] (n=8), or Zanamivir [20 mg BID for 5 days] (n=10) and data collected for their total symptom score from self-reported symptom cards and the duration of fever (>37.5 °C). No significant between-group differences were found for total symptom score among three groups without severe adverse effects. Nabeshima et al. (2012) thus demonstrated that Maoto affects the early phase of influenza virus infection, with an anti-influenza activity comparable to that of oseltamivir.

Table 1 Anti-viral Kampo prescriptions including their one-day dose of crude drugs for decoction according to JPh

Maoto	Kakkonto	Shahakusan	Shoseiryuto	Daiokanzoto	Hochuekkito
麻黄湯	葛根湯	鴨白散	小青龍湯	大黃甘草湯	薯中央氣湯
Armeniacae semen 4 g	Glycyrrhizae radix 3 g	Arabis radix 4 g	Asiasari radix 3 g	Ophiopogonis radix 4 g	
Cinnamomi cortex 3 g					
Ephedrae herba 4 g	Ephedrae herba 4 g	Ephedrae herba 4 g	Ephedrae herba 3 g	Citri reticulatae pericarpium 2 g	
Glycyrrhizae radix 2 g					
Jujubae fructus 4 g	Jujubae fructus 4 g	Jujubae fructus 4 g	Jujubae fructus 2 g	Jujubae fructus 2 g	
Lycii radix 4 g					
Paeoniae radix 3 g					
Pinelliae rhizoma 6 g					
Schisandrae fructus 3 g					
Rhei rhizoma 4 g					
Zingiberis rhizoma 1 g	Zingiberis rhizoma 3 g	Zingiberis rhizoma 3 g	Zingiberis rhizoma 1 g	Zingiberis rhizoma 1 g	
As mentioned above, Maoto consists of the four individual raw drugs: Ephedrae herba 4 g (Fig. 2), Armeniacae semen 4 g (Fig. 3), Cinnamomi cortex 3 g (Fig. 4), and Glycyrrhizae radix 2 g (Fig. 5). When comparing the composition of this prescription with the other Kampo prescriptions with proven antiviral effects listed in the above table, three individual raw drugs seem most characteristic for this anti-viral indication, namely Ephedrae herba, Cinnamomi cortex, Glycyrrhizae radix.

Although ephedrine alkaloids in Ephedra spp. (Fig. 2) are sometimes regarded as the most important component in Maoto, when ephedrine was removed from Ephedra extract, typical side effect like excitement, sleep disorder, palpitations and gastrointestinal disorders could be eliminated in a mouse model (Takemoto et al. 2018). Nevertheless, the same Ephedrine alkaloids-free Ephedra extract (EFE) reduced formalin-induced pain in a dose-dependent manner in male ICR mice that were orally administered 350 mg/kg EFE, or 700 mg/kg Ephedra Herb extract for 3 days (Hyuga et al. 2016). EFE showed anti-influenza virus activity inhibiting the infection of MDCK cells incubated for 72 h in a twofold serial dilution of 10 μM oseltamivir, 50 μg/ml EFE, or 50 μg/ml Ephedra Herb extract with influenza virus A/WSN/33(H1N1) in a concentration-dependent manner (Hyuga et al. 2016). The authors therefore propose an active fraction of the condensed tannin mixture having molecular weight of 45,000 as an alternative active principle of Ephedra extract (Takemoto et al. 2018). These findings are especially interesting with regards to the Central Asian species Ephedra przewalskii Stapf—also used in the same traditional indications by the natives of both the Western Chinese region of Xinjiang and the Gobi desert in (Inner-) Mongolia—that has been experimentally demonstrated not to contain any significant amounts of ephedrine (Long et al. 2005).

Nevertheless, a study (Wei et al. 2019) aiming to screen antiviral components of the common Ephedrae herba drug confirmed the activity of L-methylephedrin (LMEP), l-ephedrine (LEP) and d-pseudo-ephedrine (DPEP) in MDCK cells infected by mouse-adapted influenza virus A/PR8/34 (H1N1). After 24 h treatment, the virus load in the LMEP 31.25 μg/ml, LEP 15.63 μg/ml and DPEP 15.63 μg/ml groups was significantly lower than that in oseltamivir positive control. In a male ICR mouse model, the mice were treated by gavage with oseltamivir (22 mg/kg), LEP or DPEP (40, 20, 10 mg/kg) solubilized in physiological saline for 7 days, resulting in a significant inhibition of mRNA expression levels of the TLR3, TLR4 and TLR7 signaling pathways and further down-regulated TNF-α levels and up-regulated IFN-β levels (Wei et al. 2019). These Ephedra alkaloids therefore exert an antiviral effect in vitro which may be closely related to the inhibition of viral replication and the modulation of inflammatory response by adjusting the host’s TLRs and RIG-1 (Retinoic acid Inducible Gene I)—an intracellular receptor of the innate immune system—pathways. Further, a vital fluorescence microscopic study (Mantani et al. 1999) showed that the extract of Ephedrae herba (100–400 μg/ml) inhibited the acidification of endosomes and lysosomes in Madin-Darby canine kidney cells in a concentration-dependent manner, inhibiting the growth of influenza A/PR/8/34 (H1N1) (PR8) virus. Conversely, virus growth resumed concomitantly with the reappearance of acidified ELS after removal of the extract. The fact that its inhibitory effect was completely or partially reversed by FeCl₃, a tannin-reactive agent, indicates that tannins form an active fraction of the extract.

Morimoto et al. (1986) reported that Cinnamon bark contains the procyanidin heptamer cinnamtannin A3 that may contribute to the anti-influenza activity of Maoto. For example, Zhuang et al. (2009) found that the butanol fraction (Fr.2) of Cinnamomi Cortex extract (CC) showed the highest activities of both CC and Fr.2 on wild-type severe acute respiratory syndrome coronavirus (wtSARS-CoV) when the viruses were treated by the extracts before challenging with IC50 values of 43.1 ± 2.8 and 7.8 ± 0.3 μg/ml and SI values of 8.4 and 23.1, respectively. Zhuang et al. (2009) were furthermore able to demonstrate that this extract could interfere with the clathrin-dependent endocytosis pathway using transferrin receptor (TfR) on Jurkat cells as an indicator.

Finally, in the case of Glycyrrhizae radix, the triterpene Glycyrrhizin (or glycyrrhizic acid or glycyrrhizinic acid) (GA) (Fig. 5) has been identified as
the principal bioactive ingredient with regards to its anti-viral, anti-inflammatory and hepatoprotective effects. Its anti-viral effects are manifold and have filled an entire review article already (Sun et al. 2019). For example, Hsieh C et al. (2012) were able to demonstrate that GA inhibits PI3K/AKT signaling pathway regulated viral entry, via its neuraminidase inhibiting activity. Utsonomiya et al. (1997) investigated the anti-influenza effect of GA in influenza virus A2 (H2N2) infected BALB/c mice. The results demonstrated that GA may protect mice exposed to a lethal amount of influenza virus by the stimulation of INF-γ production by T cells. The test compound, which consisted of one molecule of GA and two molecules of glucuronic acid was administered intraperitoneally (10 mg per kg of body weight) 1 day before infection and 1 and 4 days post-infection. All of the mice survived over the 21-day experimental period (Utsonomiya et al. 1997). In an in vitro herpes simplex virus-1 (HSV-1) infection model, (Lee et al. 2017) demonstrated that guercetin, a major component of Glycyrrhiza uralensis,
significantly lowered HSV infectivity in Raw 264.7 cells, resulting in a dramatic decrease in plaque formation in Vero cells when they were incubated with infected cell lysates treated with quercetin. The same concentrations of quercetin further inhibited the expressions of HSV proteins (gD, ICP0) and genes (ICP0, UL13, UL52). Interestingly, quercetin in all tested concentrations specifically suppressed the expression of TLR-3, and this led to the inhibition of inflammatory transcriptional factors (NF-κB and IRF3) (Lee et al. 2017). Moreover, glycyrrhizin in Glycyrrhizae radix is also reported to have anti-influenza activity, as this drug selectively suppressed viral protein synthesis (IC50=0.27 mg/ml) in human influenza virus strain A/Udorn/72 (H3N2) on MDCK (+) host cells (Nomura et al. 2019).

Therefore, the anti-influenza activity of Maoto might be accelerated by the addition of the other component herbs besides Ephedrae herba, e.g. Cinnamomi cortex or Glycyrrhizae radix.

With the single exception of Armeniacae semen all the above raw drugs have entered the most recent
The combination of Maoto and Andrographitis herba is referred to as Ma-Huang-Tang-Jia-Chuan-Xin-Lian in Chinese and in Korean as Mahwang-tang-ga-cheonsimryeon (마황탕가천심련), respectively.

Another very interesting Kampo prescription is Kakkonto (葛根湯), which is listed with the official indication influenza virus. This prescription is relatively similar to Maoto, consisting of the raw drugs Puerariae radix, Ephedrae herba, Paeoniae radix, Jujubae fructus, Cinnamomi cortex, Glycyrrhizae radix, and Zingiberis rhizoma (Table 1). Especially Paeoniae radix contains gallotannin (Nishizawa et al. 1984) and may therefore be another very promising candidate for the treatment of the early corona virus (COVID-19) infection. This should be especially true for its combination with Andrographitis herba (Table 3).

In Chinese, this prescription is referred to as Ge-Gen-Tang-Jia-Chuan-Xin-Lian and in Korean as Galgeun-tang-ga-cheonsimryeon (갈근탕가천심련), respectively.

In the Kampo theory, viral infections as well as infections with bacteria and parasites are all subsumed under the concept external noxae (Jap. Gaija/外邪), the traditional indication of both Kakkonto and Maoto. Kakkonto is rather used in cases with
sweating and fever, whilst Maoto is used in patients with dry fever and cough. Thus, Kakkonto should also be suitable for the treatment of COVID-19, especially in earlier stage as the combination of fever (ca. 37 °C or higher) and pain fits its traditional indication.

To prevent the development of symptoms, Hochuekkito (Table 1) can be used. For prevention of pneumonia, Saikatsugekito (柴解肌湯) has been proposed, which can be combined with Kakkonto or Shosaikoto (小柴胡湯), and Yakamato (射干麻黄湯). Goreisan (五苓散) was included in Seihaihaidokuto (清肺排毒湯) because the COVID-19 infection was shown to cause a burst in cytokine production, leading to swellings, inflammation, and diarrhea. Besides prescriptions that directly counteract the symptoms of the COVID-19 infections, Bofutsushosan (防風通聖散) was also included in order to counteract feelings of fullness of the belly and flatulence that typically accompany therapy with high doses of Ephedrae herba. The Chinese National Administration of Traditional Chinese Medicine reports that until the first week of February 2020, 214 COVID-19 patients in the provinces of Shanxi, Hebei, Heilongjiang and Shaanxi were treated with the combination prescription with overall effective rate ≥90%. In a majority of patients (≥60%) symptoms were markedly improved and in many other the illness was at least stabilized (Zhao et al. 2020). In a subsequent study, 701 COVID-19 patients received the same treatment, with 130 patients (18.5%) completely cured, disappearance of the characteristic symptoms of COVID-19 such as fever and cough in further 51 patients (7.27%), improvement of said symptoms in 268 patients (38.2%), and stabilization of the state of disease in 212 patients (30.2%), respectively (Anonymous 2020b).

Although most experience with Seihaihaidokuto (清肺排毒湯) currently stems directly from Wuhan, successful treatments with very similar combinations such as the parallel administration of Kakkonto (葛根湯), Shoseiryuto (小青竜湯), Goreisan (五苓散), Bofutsushosan (防風通聖散) have been reported from Japan. (Composition of minor mentioned prescriptions: Appendix 1).

In China—in addition to the abovementioned long established prescriptions—some newer TCM

Table 2	麻黄湯加穿心莲 (Maoto-ka-senshinren)
Andrographis herba	4 g
Armeniaceae semen	4 g
Cinnamomi cortex	3 g
Ephedrae herba	4 g
Glycyrrhizae radix	2 g

Table 3	葛根湯加穿心莲 (Kakkonto-ka-senshinren)
Andrographis herba	4 g
Cinnamomi cortex	3 g
Ephedrae herba	4 g
Glycyrhizae radix	2 g
Jujubae fructus	3 g
Paeonae radix	8 g
Puerariae radix	1 g
Zingiberis rhizoma	1 g
formulations have been used for COVID-19 therapy, many of which were developed during the 2002 Severe acute respiratory syndrome (SARS) epidemic (Liu et al. 2012). Of these innovative prescriptions, Shufeng Jiedu Jiaonang (疏风解毒胶囊) — Sofugedokukono (疏風解毒膠囊) in Japanese— has proven especially effective and has also entered the Chinese national treatment guidelines for COVID-19. In preclinical studies immunomodulatory and anti-inflammatory effects have been shown against severe acute respiratory syndrom SARS-CoV2-caused pneumonia (Tao et al. 2020). Clinical studies are on their way (Xia et al. 2020; Chen et al. 2021) (Table 5).

Another TCM prescription that first gained prominence during the 2002 SARS epidemic (Liu et al. 2012) for which clinical data are well established (Zheng et al. 2017) and which has been registered and used successfully for the treatment of COVID-19 in China is Fufang Yuxingcao Heiji (複方腥腥草合剤), whose activity against influenza viruses has also been demonstrated in vitro (Zu et al. 2010) (Table 6).

Further clinical examinations of this preparation for COVID-19 therapy are currently ongoing.

Conclusion

Maoto has the ability to act at all 3 steps important for viral proliferation: It has been shown to enhance the production of antibodies such as IgG, IgM and IgA against influenza virus (Nagai et al. 2014). Maoto further reduces the virus titer (of H1N1 in A549 cells) as well as the production of viral surface proteins such as M2 and neuraminidase (NP) hence preventing viral entry and release (Masui et al. 2017).

In classical Kampo theory, viral infections as well as infections with bacteria and parasites are all subsumed under the concept external noxae. Maoto-ka-senshinren, i.e. Maoto complemented by Andrographitis herba—a drug with significant anti-viral activity in its own right—can be recommended for the treatment of those infectious diseases that are characterized by fever.

A development of resistance against Maoto-ka-senshinren is not to be expected, as several thousand individual phytochemical constituents are contained in the full extract mixture the continuous application of which should make it almost impossible for the virus to adapt. Furthermore, as stated above, the Maoto prescription has been in continuous and safe use since the second century AD with no known cases of resistance development.

Table 4 清肺排毒湯 (Seihaihaidokuto)

Ingredient	Quantity
Agastachis herba	9 g
Alismatis rhizoma	9 g
Armeniacae semen	9 g
Asiasari radix	6 g
Asteris radix et rhizoma	9 g
Atractylodis macrocephalae rhizoma	9 g
Aurantii fructus immaturus	6 g
Belamcandae rhizoma	9 g
Bupleuri radix	16 g
Cinnamomi ramulus	9 g
Citri reticulatae pericarpium	6 g
Dioscoreae rhizoma	12 g
Ephedrae herba	9 g
Farfarae flos	9 g
Glycyrrhizae radix	6 g
Gypsum fibrosum	20 g
Pinelliae rhizoma	9 g
Polyopori sclerotium	9 g
Poriae sclerotium	15 g
Scutellariae radix	6 g
Zingiberis rhizoma	9 g

Table 5 疏風解毒胶囊 (Shufeng Jiedu Jiaonang)

Ingredient	Quantity
Bupleuri radix	8 g
Forsythiae fructus	8 g
Glycyrrhizae radix	4 g
Isatidis radix	8 g
Patriniae herba	8 g
Phragmitis rhizoma	6 g
Polygoni cuspidi rhizoma	10 g
Verbenae herba	8 g

Table 6 复方腥腥草合剤 (Fufang Yuxingcao Heiji)

Ingredient	Quantity
Forsythiae fructus	0.6 g
Houttuyniae herba	6 g
Isatidis radix	1.5 g
Lonicerae flos	0.6 g
Scutellariae radix	1.5 g
Therefore, we strongly suggest that the combination might be used for influenza viruses and tested for the new corona virus, SARS-COV2 that is currently spreading throughout the world.

Acknowledgements Dr. med. Heidrun Reißenweber-Hewel, Gräfelfing, Germany; Prof. Dr. Kenji Watanabe, Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan; and Hans Rausch, Neu-Ulm, Germany are kindly acknowledged for their very helpful comments in preparing the manuscript. The work in Göttingen is supported by the “Förderkreis der Forschungsstelle für Fernöstliche Medizin.

Funding Open Access funding enabled and organized by Projekt DEAL. The work in Göttingen is supported by the “Förderkreis der Forschungsstelle für Fernöstliche Medizin.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix 1

See Table 7.

Table 7 Minor prescriptions

Major Prescription	Bupleuri radix	Cinnamomi cortex	Ephedrae herba	Glycyrrhizae radix	Gypsum fibrosum	Paeoniae radix	Pinelliae rhizome	Puerariae radix	Scutellariae radix	Zingiberis rhizome
Saikatsugekito (柴葛解肌湯)	Bupleuri radix	4 g	2 g	2.5 g	1 g	6 g	2 g	3 g	8 g	2 g
Shosaikoto-ka-kiyko-sekko (小柴胡湯加桔梗石膏)	Bupleuri radix	6 g	2 g	2 g	10 g	2 g	5 g	3 g	3 g	4 g
Seihaito (清肺湯)	Angelicae sinensis radix	3 g	2 g	3 g	2 g	2 g	2 g	2 g	2 g	2 g
Table 7 continued										
-------------------------------	---									
Citri reticulatae pericarpium	2 g									
Fritillariae thunbergii bulbus	2 g									
Gardeniae fructus	2 g									
Glycyrrhizae radix	1 g									
Jujubae fructus	2 g									
Mori radicis cortex	2 g									
Ophiopogonis radix	3 g									
Platycodonis radix	2 g									
Poriae sclerotium	3 g									
Schisandrae fructus	1 g									
Scutellariae radix	2 g									
Zingiberis rhizoma	1 g									
Chikujo-tanto (竹茹溫膽湯)										
Aurantii fructus immaturus	2 g									
Bambusae caulis in taenias	3 g									
Bupleuri radix	3 g									
Citri reticulatae pericarpium	2 g									
Coptidis rhizoma	1 g									
Cypri rhizoma	2 g									
Ginseng radix	1 g									
Glycyrrhizae radix	1 g									
Ophiopogonis radix	3 g									
Pinelliae rhizoma	5 g									
Platycodi radix	2 g									
Poriae sclerotium	3 g									
Zingiberis rhizoma	1 g									
Makyokansekiito (麻杏甘石湯)										
Armeniaceae semen	9 g									
Ephedrae herba	9 g									
Glycyrrhizae radix	6 g									
Gypsum fibrosum	18 g									
Goreisan (五苓散)										
Alismatis rhizoma	6 g									
Atractylodis macrocephalae rhizoma	4 g									
Cinnamomi cortex	3 g									
Polypori sclerotium	4 g									
Poriae sclerotium	4 g									
Makyosekiito (麻杏石甘湯)										
Armeniaceae semen	9 g									
Ephedrae herba	9 g									
Glycyrrhizae radix	6 g									
Gypsum fibrosum	18 g									
Shosaiko (小柴胡湯)										
Bupleuri radix	6 g									
Ginseng radix	2 g									
Glycyrrhizae radix	2 g									
Jujubae fructus	2 g									
Pinelliae rhizoma	5 g									
Scutellariae radix	3 g									
Table 7 continued

Herb	Quantity
Zingiberis rhizoma	4 g
Yakanmaoto (射干麻黄湯)	
Asiasari radix	3 g
Asteris radix et rhizoma	6 g
Belamcandae rhizoma	9 g
Ephedrae herba	9 g
Farfarae flos	6 g
Jujubae fructus	3 fruits
Pinelliae rhizoma	9 g
Schisandreae fructus	3 g
Zingiberis rhizoma	9 g
Bofutsushosan (防風通聖散)	
Angelicae sinensis radix	2 g
Atractylodis macrocephalae rhizoma	3 g
Cnidii rhizoma	2 g
Ephedrae herba	2 g
Forsythiae fructus	2 g
Gardeniae fructus	2 g
Glycyrrhizae radix	2 g
Gypsum fibrosum	3 g
Menthae haplocalycis herba	2 g
Natrii sulfus	2 g
Paeoniae radix	2 g
Platycodi radix	2 g
Rhei rhizoma	2 g
Saposnikoviae radix	2 g
Schizonepetae herba	2 g
Scutellariae radix	2 g
Talcum crystallinum	5 g
Zingiberis rhizoma	2 g

Appendix 2

See Table 8.
Table 8 Taxonomy of East Asian herbal drugs

Drug	Kanji	Accepted name
Agastachis herba	霍香	Agastache rugosa (Fisch. & C.A.Mey.) Kuntze
Alismatis rhizoma	澤瀉	Alisma plantago-aquatica subsp. orientale (Sam.) Sam
Andrographis herba	穿心蓮	Andrographis paniculata (Burm.f.) Nees
Angelicae sinensis radix	留於	Angelica sinensis (Oliv.) Diels
Armeniaceae semen	杏仁	Prunus armeniaca L.
Asiasari radix	細辛	Asarum sieboldii Miq
Asparagus radix	天門冬	Asparagus cochinchinensis (Lour.) Merr
Asteris radix et rhizoma	紫菀	As PARA TURALIS L.f
Astragali radix	黄芪	Astragalus mongholicus Bunge
Atractylodes macrocephalae rhizoma	白朮	Atractyloides macrocephala Koidz
Aurantii fructus immaturus	枸杞	Citrus × aurantium L.
Bambusae caulis in taenias	竹茹	Bambusa beechevana Munro
Belamcandae rhizoma	射干	Iris domestica (L.) Goldblatt & Mabb
Bupleuri radix	柴胡	Bupleurum falcatum L. (used in Japan & Korea)
Cimicifugae rhizoma	升麻	Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch
Cinnamomi cortex	桂皮	Cinnamomum cassia (L.) J.Presl
Cinnamomus ramulus	桂枝	Cinnamomum cassia (L.) J.Presl
Citri reticulatae pericarpium	陳皮	Citrus × aurantium L.
Cnidii rhizoma	川芎	Ligusticum officinale (Makino) Kitag
Coptidis rhizoma	黄連	Coptis chinensis Franch
Cyperi rhizoma	香附	Cypereus rotundus L.
Dioscoreae rhizoma	山藥	Dioscorea japonica Thunb
Ephedrae herba	麻黃	Ephedra sinica Stapf
Farfarae flos	款冬	Tussilago farfara L.
Forsythiae fructus	連翹	Forsythia suspensa (Thunb.) Vahl
Fritillariae thunbergii bulbus	浙貝母	Fritillaria thunbergii Miq
Gardeniae fructus	槐子	Gardenia jasminoides J.Ellis
Ginseng radix	人参	Panax ginseng C.A.Mey
Glycyrrhizae radix	甘草	Glycyrrhiza uralensis Fisch. ex DC
Houttuyniae herba	十藥	Houttuynia cordata Thunb
Isatisid radix	藝草	Isatis indigotica Fort
Jujubae fructus	大棗	Ziziphus jujuba Mill
Lonicerae flos	金銀花	Lonicera japonica Thunb
Lycii radicis cortex	地骨皮	Lycium chinense Mill
Menthae haplocalycis herba	薄荷	Mentha canadensis L.
Mori radicis cortex	桑白皮	Morus alba L.
Ophiopogonis radix	黢冬	Ophiopogon japonicus (Thunb.) Ker Gawl
Paeoniae radix	芍薔	Paeonia lactiflora Pall
Patriniae herba	葉蘚	Patrinia scabiosifolia Fischer ex Treviranus
Phragmites rhizoma	蘆根	Phragmites communis Trin
Pinelliae rhizoma	半夏	Pinellia ternata (Thunb.) Makino
Platycodonis radix	杵椏	Platycodon grandiflorus (Jacq.) A.DC
Polygoni cuspidati rhizoma	虎杖根	Polygonum cuspidatum Sieb.et Zucc
Polyopori sclerotium	豬苓	Polyoporus umbellatus (Pers.) Fries
Table 8 continued

Drug	Kanji	Accepted name
Poriae sclerotium	伏苓	*Poria cocos* (Schw.) Wolf
Puerariae radix	葛根	*Pueraria montana var. lobata* (Willd.) Maesen & S.M. Almeida ex Sanjappa & Predeep
Rhei rhizoma	大黄	*Rheum palatnum* L.
Saposhnikoviae radix	防風	*Saposhnikovia divaricata* (Turcz. ex Ledeb.) Schischk
Schisandrae fructus	五味子	*Schisandra chinensis* (Turcz.) Baill
Schizonepetae herba	荊芥	*Nepeta tenuifolia* Benth
Scutellariae radix	黄芩	*Scutellaria baicalensis* Georgi
Verbenae herba	馬鞭草	*Verbena officinalis* L.
Zingiberis rhizoma	生姜	*Zingiber officinale* Roscoe

References

Akbar S (2011) *Andrographis paniculata*: a review of pharmacological activities and clinical effects. Altern Med Rev 16:66–77

Anonymous (2012) EMA/HMPC/320433/2012. Assessment report on *Andrographis paniculata* Nees, folium. Based on Article 10a of Directive 2001/83/EC as amended (well-established use). Based on Article 16d (1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use). Final. 27 August 2014. 2012;27:1472–1478

Anonymous (2020a) National Health Commission of the People’s Republic of China: Guideline on diagnosis and treatment of COVID-19 (Trial 6th edn). http://www.nhc.gov.cn/xcs/zhengcwj/202002/8334a8326dd94d32f351d7da8aefc2.shtml. Accessed 20 Apr 2020 (in Chinese)

Anonymous (2020b) National Health Commission of the People’s Republic of China. Transcript of press conference in 17 Feb 2020

Bera R, Ahmed SM, Sarkar L, Sen T, Karmakar S (2014) Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method. Pharm Biol 52:321–329

Caceres DD, Hancke JL, Burgos RA, Wikman G (1997) Prevention of common colds with *Andrographis paniculata* dried extract: a pilot double blind trial. Phytotherapy 4:101–104

Caceres DD, Hancke JL, Burgos RA, Sandberg F, Wikman G (1999) Use of visual analogue scale measurement (VAS) to assess the effectiveness of standardized *Andrographis paniculata* extract SHA-10 in reducing the symptoms of common cold: a randomized double blind placebo study. Phytotherapy 6:217–223

Cai W et al (2015) 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes. Antivir Res 118:82–92

Chen J, Lin S, Niu C, Xiao Q (2021) Clinical evaluation of Shufeng Jiedu Capsules combined with umifenovir (Arbidol) in the treatment of common-type COVID-19: a retrospective study. Expert Rev Respir Med 15(2):257–265

Dan K et al (2018) Mechanism of action of the anti-influenza virus active Kampo (Traditional Japanese Herbal) Medicine, Hochuekkito. Pharmacology 101:148–155

Ding Y et al (2017) Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect 19:605–615

Hafid AF et al (2015) The combination therapy model of *Andrographis paniculata* extract and chloroquine on *Plasmodium berghei* infected mice. Asian J Pharm Clin Res 8:205–208

Hancke J, Burgos R, Caceres D, Wikman G (1995) A double-blind study with a new mono-drug Kan Jang: decrease of symptoms and improvement in the recovery from common colds. Phytother Res 9:559–562

Herrmann B (1996) Bilaterale Projektstudie über traditionelle Indonesische Arzneipflanzen: Ethnomedizinische Bestandsaufnahme auf Flores - phytochemisch-analytische und pharmakologische Untersuchungen an *Andrographis paniculata* Nees und vier weiteren Arzneidrogen. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Fachbereich Biochemie, Pharmazie und Lebensmittelchemie der Johann Wolfgang Goethe Universität in Frankfurt am Main, unter Betreuung von Prof. Dr. HW Rauwald.

Hokari R et al (2012) In vivo anti-influenza virus activity of Japanese herbal (kampo) medicine, shahakusan, and its possible mode of action. Evid Based Complement Altern Med 2012:1–5

Hsieh C et al (2012) Mechanism by which ma-xing-shi-gan-tang inhibits the entry of influenza virus. J Ethnopharmacol 143:57–67

Hu XY, Wu RH, Logue M et al (2017) *Andrographis paniculata* (Chuán Xin Lián) for symptomatic relief of acute respiratory tract infections in adults and children: a systematic review and meta-analysis. PLoS ONE 12(e0181780):407–411
Hyuga S, Hyuga M, Oshima N et al (2016) Ephedrine alkaloids-free Ephedra Herb extract: a safer alternative to ephedra with comparable analgesic, anticancer, and anti-influenza activities. J Nat Med 70(3):571–583

Inta A, Trisonthi P, Trisonthi C (2013) Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. J Ethnopharmacol 149(1):344–351

Kongyingyoes B et al (2016) 3,19-isopropylideneandrographolide suppresses early gene expression of drug-resistant and wild type herpes simplex viruses. Antivir Res 132:281–286

Kuchta K et al (2019) The old pharmaceutical oleoresin labdanum of Cistus creticus L. exerts pronounced in vitro anti-dengue virus activity. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2019.112316

Kurokawa M et al (1996) Kakkon-to suppressed interleukin-1α production responsive to interferon and alleviated influenza infection in mice. J Trad Med 13:201–209

Lazarev NV, Liublina EI, Rozin MA (1959) States of non-specific increased resistance. Patologicheskaia fiziologii i eksperimental’naia terapiia 3:16–21

Lee S et al (2017) The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res 40:623–630

Liu X, Zhang M, He L, Li Y (2012) Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst Rev 10(10):CD004882

Long C et al (2005) Survey on resources of Ephedra plants in Xinjiang. Biol Pharm Bull 28:285–288

Mantani N et al (1999) Inhibitory effect of Ephedrae herba, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells. Antivir Res 44:193–200

Masui S et al (2017) Maoto, a Traditional Japanese Herbal Medicine, inhibits uncoating of influenza virus. Evid Based Complement Altern Med 1062065

Melchior J, Palm S, Wikman G (1996) Controlled clinical study of standardized Andrographis paniculata extract in common cold—a pilot trial. Phytomedicine 34:315–318

Morimoto S et al (1986) Tannins and related compounds. Yakugaku Zasshi 104:1244–1250

Nagai T et al (2019) Alleviative effects of a Kampo (Japanese Herbal) Medicine Maoto (Ma-Huang-Tang) on the early phase of influenza virus infection and its possible mode of action. Evid Based Complement Altern Med 187036

Nagai T et al (2014) Alleviative effects of a Kampo (Japanese Herbal) Medicine Maoto (Ma-Huang-Tang) on the early phase of influenza virus infection and its possible mode of action. Evid Based Complement Altern Med 187036

Nishizawa M et al (1984) Quantitative determination of galactotamin in Paeoniae Radix. Yakugaku Zasshi 104:1244–1250

Nomura T et al (2019) Effects of traditional kampo drugs and their constituent crude drugs on influenza virus replication in vitro: suppression of viral protein synthesis by glycyrrhizae radix. Evid Based Complement Altern Med 3230906

Okabayashi S et al (2014) Non-superiority of Kakkonto, a Japanese herbal medicine, to a representative multiple cold medicine with respect to anti-aggravation effects on the common cold: a randomized controlled trial. Int Med 53:949–956

Paemanee A et al (2019) A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed Pharmacother 109:322–332

Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Panossian A, Hovhannisyan A, Mamikonyan G et al (2000) Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine 7:351–364

Panossian AG, Effert H, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo DA, Wagner H (2021) Evolution of the adaptogenic concept from traditional use to medical systems: pharmacology of stress- and aging-related diseases. Med Res Rev 41:630–703

Raina AP, Gupta V, Sivaraj N, Dutta M (2013) Andrographis paniculata (Burm. f.) Wall.Ex Nees (kalmegh), a traditional hepatoprotective drug from India. Genet Resour Crop Evol 60:1181–1189

Saxena RC et al (2010) A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold) in patients with uncomplicated upper respiratory tract infection. Phytomedicine 7:178–185

Sheeja K, Kuttan G (2006) Ameliorating effects of Andrographis paniculata extract against cyclophosphamide-induced toxicity in mice. Asian Pac J Cancer Prev 7:609–614

Singh P, Srivastava MM, Khemani LD (2009) Renoprotective effects of Andrographis paniculata (Burm. f.) Nees in rats. Ups J Med Sci 114:136–139

Sun ZG et al (2019) Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 19:826–832

Takemoto H et al (2018) Ephedrine alkaloids-free ephedra herb extract, EFE, has no adverse effects such as excitation, insomnia, and arrhythmias. Biol Pharm Bull 41:247–253

Tao Z, Zhang L, Friedemann T, Yang G, Li J, Wen Y, Wang J, Shen A (2020) Systematic analyses on the potential immune and anti-inflammatory mechanisms of Shufeng Jiedu Capsule against Severe Acute Respiratory...
Syndrome Coronavirus 2 (SARS-CoV-2)-caused pneumonia. J Funct Foods 75:104243

Thakur AK, Soni UK, Rai G, Chatterjee SS, Kumar V (2014) Protective effects of *Andrographis paniculata* extract and pure andrographolide against chronic stress-triggered pathologies in rats. Cell Mol Neurobiol 34:1111–1121

Thakur AK, Chatterjee SS, Kumar V (2015) Adaptogenic potential of andrographolide: an active principle of the king of bitters (*Andrographis paniculata*). J Tradit Complement Med 5:42–50

The Straits Times. DEC 30 (2020) https://www.straitstimes.com/asia/se-asia/thailand-clears-use-of-herbal-medicine-for-covid-19-treatment

Utsonomiya T et al (1997) Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother 41:551–556

Wagner H, Bauer R, Melchart D, Xiao PG, Staudinger A (2011) Herba andrographis chuanxinlian. In: Wagner H, Bauer R, Melchart D, Xiao PG, Staudinger A (eds) Chromatographic fingerprint analysis of herbal medicines. Springer, Vienna, pp 273–280. https://doi.org/10.1007/978-3-7091-0763-8_25

Wang D et al (2018) Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front Microbiol 9:2407. https://doi.org/10.3389/fmicb.2018.02407

Watanabe K (2018) Drug-repositioning approach for the discovery of anti-influenza virus activity of Japanese Herbal (Kampo) medicines in vitro: potent high activity of Daio-Kanzo-To. Evid Based Complement Altern Med 6058181

Wei W et al (2019) Screening of antiviral components of Ma Huang Tang and Investigation on the Ephedra alkaloids efficacy on influenza virus type A. Front Pharmacol 10:961. https://doi.org/10.3389/fphar.2019.00961

Xia L, Shi Y, Su J, Friedemann T, Tao Z, Lu Y, Ling Y, Lv Y, Zhao R, Geng Z, Cui X, Lu H, Schröder S (2020) Shufeng Jiedu, a promising herbal therapy for moderate COVID-19: Antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study. Phytomedicine. https://doi.org/10.1016/j.phymed.2020.153390

Yamada H, Nagai T (1998) In vivo antinfluenza virus activity of Kampo medicine Sho-seiryu-to through mucosal immune system. Methods Find Exp Clin Pharmacol 20:185–192

Zhao J et al (2020) Investigating the mechanism of Qing-Fei-Pai-Du-Tang for the treatment of Novel Coronavirus Pneumonia by network pharmacology. Chin Herb Med 2020:1–7

Zheng M, Tian L, Huang HL, Wang FZ, Fu Y, Sun AM, Qian HS, Ma AX (2017) Cost-effectiveness analysis of traditional Chinese medicine for the treatment of upper respiratory tract infections: Xuyingcao Qinlan mixture versus LanQin oral liquid—a prospective study. Eur J Integr Med 9:97–102

Zhuang M et al (2009) Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antivir Res 82:73–81

Zu M, Zhou D, Gao L, Liu AL, Du GH (2010) Evaluation of Chinese traditional patent medicines against influenza virus in vitro. Yao Xue Xue Bao 45(3):408–412

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.