RESEARCH LETTER

Synthesis of bis(indolyl)methanes under catalyst-free and solvent-free conditions

Kashinath L. Dhumaskar and Santosh G. Tilve*

Department of Chemistry, Goa University, Taleigao Plateau, Goa, 403 206, India

(Received 1 June 2011; final version received 5 October 2011)

Condensation of indole with aromatic aldehydes has been carried out without using any catalyst and solvent to give bis(indolyl)methanes.

Keywords: bis(indolyl)methanes; solventless; catalyst free; grinding; multicomponent reaction

Introduction

The focus of green chemistry lies on reducing environmental pollution by designing benign reaction processes, avoiding waste generation, and saving energy by reducing number of chemical steps. Multicomponent reactions (1–3) and domino reactions (4–15) are the fascinating offshoots of the search for reducing chemical steps. Solventless or when solvent is a must, water as a preferred medium and use of catalyst or catalyst-free reaction conditions are some of the solutions to avoid waste. Bis(indolyl)methanes (BIMs) have been attractive targets to develop green methodologies because of their wide range of biological, industrial, and synthetic applications (16). (See Supporting information in 16).

The reaction of indole with aldehydes or ketones produces azafulven, which then undergo further addition with another indole molecule to give BIM and water (Scheme 1). Both protic and Lewis acids are known to promote this reaction. However, many Lewis acids are prone to undergo change in the presence of nitrogen containing reactants and this necessitates the use of excess and sometimes stoichiometric amount of Lewis acid catalyst. The various strategies adopted for the synthesis of BIMs and tris(indolyl)methanes (TIMs) have recently been comprehensively reviewed (16). There is continuing interest for the development of a new, practical, economical, and environmental friendly protocol for the synthesis of BIMs. Recent catalysts used for this propose are FeCl₃.6H₂O (17), CuBr (18), CeCl₃.7H₂O (19), silica-bonded S-sulfonic acid (20), N,N,N',N'-tetrabromobenzene-1,3-disulfonamide (TBBDA) and poly(N-bromobenzene-1,3-disulfonamide) (PBBS) (21), cellulose sulfuric acid (22) and ionic liquid 3-methyl-1-sulfonic acid imidazolium chloride (23), polystyrene-supported aluminum chloride (PS–AlCl₃) (24), heteropoly acids (25,26), etc.

A perfectly matching green chemistry protocol would be to carry out the synthesis successfully without the use of any catalyst and solvent. To our knowledge, there are no such reports for the synthesis of BIMs. The only report of catalyst free formation of BIMs is in glycerol (27) at 90 °C. We disclose herein our findings of solventless and catalyst free synthesis of BIMs.

Results and discussion

The propensity with which indole undergoes electrophilic substitution made us to envisage that, for many of the BIMs reported particularly with aryl aldehydes having electron withdrawing groups, there may not be any need of assistance from promoters like protic acids or catalyst. To check this hypothesis, in the first experiment, we mixed o-chlorobenzaldehyde and indole (1:2 mole ratio) and kept at ambient temperature for 45 min Thin Layer Chromatography (TLC). In another experiment a mixture of o-chlorobenzaldehyde and indole (1:2 mole ratio) was ground using mortar and pestle (Method 2)(mechanochemical synthesis)(28,29).

The reaction was found to complete within 15 min TLC, in shorter time than that in the above mixing experiment. Similar procedure was followed for other aryl aldehydes. Aryl aldehyde with an electron donating group at meta position (Entry f) also underwent reaction. Heterocyclic aldehydes (Entry g, h) also reacted successfully. Expectedly, anisaldehyde with electron donating group at para position and

*Corresponding author. Email: stilve@unigoa.ac.in

ISSN 1751-8253 print/ISSN 1751-7192 online
© 2012 Kashinath L. Dhumaskar and Santosh G. Tilve
http://dx.doi.org/10.1080/17518253.2011.637967
http://www.tandfonline.com
heptaldehyde failed to react completely. Ketones did not react at all, while 2-methylindole reacted rapidly to give corresponding BIMs (Entry i–p). Even anisaldehyde which failed to give significant product with parent indole gave corresponding BIM product with 2-methylindole (Entry p). To check whether the byproduct water (Scheme 1) was promoting the reaction, deliberately 2–4 drops of water were added to the mixture. However, no enhancement was observed in the rate of reaction, product formation or yield. Another possibility of catalysis by the trace amount of carboxylic acid formed by aerial oxidation of aryl aldehydes cannot be ruled out.

Experimental

Method 1

Aryl aldehyde (1 equiv.) and indole (2 equiv.) were mixed thoroughly in a test tube and kept at ambient temperature in a test tube for a certain period as stipulated in Table 1. The crude product obtained was recrystallized with chloroform-ethyl acetate mixture.

Method 2

Aryl aldehyde (1 equiv.) and indole (2 equiv.) were mixed and ground using mortar and pestle. For

Entry	\(R^1\)	R	Product	Method 1	Method 2		
			Reaction time	Yields\(^a\) (%)	Reaction time	Yields\(^a\) (%)	
A	4-NO\(_2\)C\(6\)H\(_4\)	H	3a	6 days	58	8 h	60
B	2-NO\(_2\)C\(6\)H\(_4\)	H	3b	18 h	61	6 h	61
C	4-ClC\(_6\)H\(_4\)	H	3c	5 days	92	23 h	95
D	2-ClC\(_6\)H\(_4\)	H	3d	45 min	96	16 min	96
E	C\(_6\)H\(_6\)	H	3e	48 h	61	2 h	86
F	3-MeOOC\(_6\)H\(_4\)	H	3f	5 days	57	13 h	86
G	2-furyl	H	3g	24 h	62	90 min	87
H	2-pyridyl	H	3h	13 h	59	10 h	94
I	4-NO\(_2\)C\(_6\)H\(_4\)	Me	3i	7 h	51	105 min	60
J	4-ClC\(_6\)H\(_4\)	Me	3j	3 h	77	100 min	97
K	2-ClC\(_6\)H\(_4\)	Me	3k	3 min	97	2 min	98
L	C\(_6\)H\(_6\)	Me	3l	3 days	69	7 min	90
M	3-MeOOC\(_6\)H\(_4\)	Me	3m	3 days	63	2 h	87
N	2-furyl	Me	3n	10 min	77	5 min	85
O	4-MeOOC\(_6\)H\(_4\)	Me	3o	5 days	53	2 days	83
P	2-pyridyl	Me	3p	7 h	63	15 min	96

\(^a\)Yield of isolated product.
compounds having reaction time of more than 15 min, the initial grinding was done for 15 min and the reaction mixture was kept at ambient temperature. The mixture was ground periodically for a short time after every 30 min till the reaction completed as stipulated in Table 1. The crude product obtained was recrystallized with chloroform-ethyl acetate mixture.

Conclusion

In conclusion, we have accomplished a green protocol for solvent free and catalyst free synthesis of BIMs from indole/2-methylinodole and aryl aldehydes.

Acknowledgements

The authors thank DST, New Delhi for financial assistance. One of us (KLD) thanks CSIR, New Delhi for award of JRF.

References

(1) Toure, B.B.; Hall, D.G. Chem. Rev. 2009, 109, 4439–4486.
(2) Sapi, J.; Laronze, J.Y. ARKIVOC 2004, (vii), 208–222.
(3) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Weinheim: Wiley-VCH, 2005.
(4) Tietze, L.F. Chem. Rev. 1996, 96, 115–136.
(5) Posner, G.H. Chem. Rev. 1986, 86, 831–844.
(6) Jasperse, C.P.; Curran, D.P.; Fevig, T.L. Chem. Rev. 1991, 91, 1237–1286.
(7) Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Angew. Chem. Int. Ed. 2006, 45, 7134–7186.
(8) Kirsch, S.F. Synthesis 2008, 20, 3183–3204.
(9) Tietze, L.F.; Beifuss, U. Angew. Chem. Int. Ed. 1993, 32, 131–163.
(10) Tietze, L.F.; Lieb, M.E. Curr. Opin. Chem. Biol. 1998, 2, 363–371.
(11) Tietze, L.F.; Modi, A. Med. Res. Rev. 2000, 20, 304–322.
(12) Tietze, L.F.; Brasche, G.; Gericke, G. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
(13) Parsons, P.J.; Penkett, C.S.; Shell, A.J. Chem. Rev. 1996, 96, 195–206.
(14) Ho, T.L. Tandem Reactions in Organic Synthesis; Wiley Interscience: New York, 1997.
(15) Taylor, R.J.K.; Reid, M.; Foot, J.; Raw, S.A. Acc. Chem. Res. 2005, 38, 851–869.
(16) Shiri, M.; Zolf-gol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250–2293.
(17) Thirupathi, P.; Kim, S.S. J. Org. Chem. 2010, 75 (15), 5240–5249.
(18) Yang, J.; Wang, Z.; Pan, F.; Li, Y.; Bao, W. Org. Biomol. Chem. 2010, 8 (13), 2975–2978.
(19) Das, B.; Kumar, R.A.; Aruna, D.; Kashanna, J. Indian J. Heterocycl. Chem. 2010, 19 (3), 295–296.
(20) Niknam, K.; Saberi, D.; Baghernejad, M. Phosphorus, Sulfur, and Silicon. 2010, 185 (4), 875–882.
(21) Ghorbani-Vaghei, R.; Malaeekehpour, S.M. Org. Prep. Proced. Int. 2010, 42 (2), 175–182.
(22) Alinezhad, H.; Haghighi, A.H.; Salehian, F. Chin. Chem. Lett. 2010, 21 (2), 183–186.
(23) Zolf-gol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A. Org. Prep. Proced. Int. 2010, 42 (1), 95–102.
(24) Tamami, B.; Shirazi, A.N.; Borujeni, K.P. J. Serb. Chem. Soc. 2010, 75 (4), 423–431.
(25) Li, J.-T.; Zhang, X.-H.; Song, Y.-L. Int. J. ChemTech. Res. 2010, 2 (1), 341–345.
(26) Heravi, M.M.; Sadjadi, S. J. Iran. Chem. Soc. 2009, 6 (1), 1–54.
(27) He, F.; Li, P.; Gu, Y.; Li, G. Green Chem. 2009, 11, 1767–1773.
(28) Lyakhov, N.Z.; Grigorieva, T.F.; Barinova, A.P.; Vorsina, I.A. Russ. Chem. Rev. 2010, 79, 189–203.
(29) Dushkin, A.V. Chem. Sust. Dev. 2004, 12, 251–273.
General methods. Commercial reagents were used without further purification. 1H NMR (300 and 400 MHz) and 13C NMR (300 and 400 MHz) were recorded using CDCl$_3$ and DMSO-d$_6$ as solvent and TMS as an internal standard. IR spectra's were recorded in KBr. Melting points are uncorrected.

General procedure; Method-1: Indole (1) (2 mmol)/2-methyl indole (2) (2 mmol), aryl aldehydes (1a-1p) (1 mmol) were mixed thoroughly in a test tube and kept at ambient temperature. The reaction was monitored using TLC. The crude product was recrystallised using chloroform and ethyla acetate mixture.

Method-2: Indole (1) (2 mmol)/2-methyl indole (2) (2 mmol), aryl aldehydes (1a-1p) (1 mmol) was ground using mortar and pestle. The reaction was monitored by TLC. For compounds requiring more than 15 min, the grinding was done intermittently after every 30 min. The crude product was then recrystallised using chloroform and EtOAc.

Complete Characterization of all the Compounds.

4a

Yield 60% (0.221 g); yellow solid; mp 219-220 °C; IR (KBr) 3456, 3387, 1506, 642 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d$_6$) δ 6.02 (s, 1H, Ar-CH), 10.91 (br, s, 2H, NH), 7.05 (s, 2H), 6.894 (m, 4H), 7.37 (d, 2H), 7.61 (d, 2H), 7.29 (d, 2H), 8.14 (d, 2H); 13C NMR (400 MHz, DMSO-d$_6$) δ 40.037, 112.064, 117.166, 118.900, 119.389, 121.575, 123.881, 124.340, 126.856, 129.927, 137.086, 146.256, 153.612.

4b

Yield 61% (0.223 g); yellow solid; mp 188-190 °C; IR (KBr) 3456, 3423, 3053, 1616, 1550, 1508, 1338 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d$_6$) δ 6.88 (s, 1H, Ar-CH), 10.91 (br, s, 2H, NH), 5.88 (s, 2H), 7.85 (d, 2H), 7.06 (t, 2H), 7.72 (t, 2H), 7.988 (d, 2H), 7.52-7.46 (m, 4H); 13C NMR (400 MHz, DMSO-d$_6$) δ 63.631, 111.489, 117.165, 118.607, 119.119, 121.154, 123.314, 123.748, 125.790, 127.913, 128.439, 132.712, 136.373, 139.326, 148.060.
Yield 95% (0.338 g); colorless solid; mp 76-77 °C; IR (KBr) 3412, 3055, 1616, 1591, 808 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.92 (s, 1H, Ar-CH), 7.958 (br, s, 2H, NH), 7.27 (m, 8H), 7.06 (d, 2H), 7.62 (d, 2H); ¹³C NMR (300 MHz, CDCl₃) δ 39.62, 111.12, 119.18, 119.36, 119.81, 122.08, 123.58, 126.88, 128.36, 130.07, 131.79, 136.68, 142.55.

Yield 96% (0.342 g); colorless solid; mp 185-186 °C; IR (KBr) 3421, 3053, 1550, 596 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.374 (s, 1H, Ar-CH), 7.90 (br, s, 2H, NH), 6.64 (s, 2H), 7.23 (m, 8H), 7.37 (d, 2H), 7.26 (d, 1H), 7.44 (m, 2H), 7.46 (d, 1H); ¹³C NMR (300 MHz, CDCl₃) δ 36.63, 111.06, 118.35, 119.31, 119.84, 122.02, 123.77, 126.63, 126.99, 127.50, 129.48, 130.32, 133.96, 136.70, 141.31.

Yield 86% (0.277 g); colorless solid; mp 75-77 °C; IR (KBr) 3412, 3026, 1616, 1598, 850 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.91 (s, 1H, Ar-CH), 7.891 (br, s, 2H, NH), 6.67 (s, 2H), 7.30 (m, 6H), 7.38 (d, 2H), 7.03 (t, 2H), 7.21 (m, 3H); ¹³C NMR (300 MHz, CDCl₃) δ 40.20, 11.10, 119.23, 119.63, 119.93, 121.92, 123.66, 126.16, 127.09, 128.25, 128.75, 136.68, 144.07.

Yield 86% (0.302 g); colorless solid; mp 180 °C; IR (KBr) 3404, 3363, 1608, 1587, 453 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.88 (s, 1H, Ar-CH), 7.91 (br, s, 2H, NH),
6.7 (s, 2H), 7.05 (m, 8H), 7.35 (s, 1H), 7.44 (t, 1H), 7.24 (m, 2H), 3.75 (s, 3H); 13C NMR (300 MHz, CDCl$_3$) δ 40.21, 110.97, 111.24, 114.73, 119.20, 119.54, 119.88, 121.28, 121.89, 123.54, 127.07, 129.08, 136.66, 145.72, 159.55.

Yield 86 % (0.267 g); colorless solid; mp 101-114 °C; IR (KBr) 3441, 3406, 3107, 1544, 466.77 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 5.90 (s, 1H, Ar-CH), 7.97 (br, s, 2H, NH), 6.32 (s, 2H), 7.165 (m, 11H); 13C NMR (300 MHz, CDCl$_3$) δ 34.10, 106.63, 110.19, 111.19, 117.07, 119.34, 119.66, 121.94, 123.12, 126.76, 136.51, 141.23, 157.12.

Yield 94 % (0.304 g); white solid; mp 207-208 °C; IR (KBr) 3446, 3138, 1587, 426 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$ + DMSO-d$_6$) δ 6.08 (s, 1H, Ar-CH), 8.00 (br, s, 2H, NH), 6.82 (s, 2H), 7.360 (m, 6H), 7.02 (t, 2H), 7.06 (t, 1H), 7.18 (m, 3H); 13C NMR (Not clear, need to be re-recorded).

Yield 60 % (0.236 g); yellow solid; mp 239-240 °C; IR (KBr) 3396, 3049, 1593, 1517, 314 cm$^{-1}$; 1H NMR (300 MHz, DMSO-d$_6$) δ 6.07 (s, 1H, Ar-CH), 10.86 (br, s, 2H, NH), 2.10 (s, 6H), 7.24 (d, 2H), 6.91 (t, 2H), 6.70 (t, 2H), 6.80 (t, 2H), 7.42 (d, 2H), 8.154 (d, 2H); 13C NMR (300 MHz, DMSO-d$_6$) δ 12.37, 39.97, 110.95, 11.28, 118.64, 120.20, 123.68, 128.33, 130.26, 133.01, 135.57, 146.14, 153.34.
Yield 97% (0.371 g); white solid; mp 232-234 °C; IR (KBr) 3379, 3061, 1600, 1552, 433 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 5.91 (s, 1H, Ar-CH), 10.75 (br, s, 2H, NH), 2.01 (s, 6H), 7.21 (d, 2H), 6.88 (t, 2H), 6.686 (t, 2H), 6.807 (d, 2H), 7.17 (d, 2H), 7.29 (d, 2H); ¹³C NMR (400 MHz, DMSO-d₆) δ 111.857, 39.500, 110.338, 111.592, 117.975, 118.311, 119.556, 127.813, 128.021, 130.164, 130.437, 132.152, 135.042 143.340.

Yield 98% (0.375 g); colorless solid; mp 218-222 °C; IR (KBr) 3385, 3057, 1618, 501 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 6.07 (s, 1H, Ar-CH), 10.77 (br, s, 2H, NH), 7.423 (m, 12H); ¹³C NMR (300 MHz, DMSO-d₆) δ 12.12, 37.28, 110.866, 110.971, 118.278, 118.568, 120.085, 128.357, 128.77, 129.747, 131.218, 132.667, 135.453, 142.07.

Yield 89% (0.0311 g); colorless solid; mp 246-247 °C; IR (KBr) 3396, 3051, 1425, 497 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 5.94 (s, 1H, Ar-CH), 10.74 (br, s, 2H, NH), 2.08 (s, 6H), 7.235 (d, 2H), 6.89 (t, 2H), 6.68 (t, 2H), 6.82 (d, 2H), 7.24-7.22 (m, 5H); ¹³C NMR (300 MHz, DMSO-d₆) δ 12.36, 39.09, 110.748, 112.642, 118.354, 118.934, 119.958, 126.191, 128.739, 129.155, 129.707, 132.497, 135.525, 144.72.
Yield 87 % (0.331 g); colorless solid; mp 235-236 °C; IR (KBr) 3383, 3099, 1595, 1487, 1242 cm⁻¹;¹H NMR (400 MHz, DMSO-d₆) δ 5.87 (s, 1H, Ar-CH), 10.70 (br, s, 2H, NH), 2.06 (s, 6H), 7.20 (d, 2H), 6.87 (t, 2H), 6.67 (t, 2H), 6.83 (d, 2H), 6.735 (s, 1H), 6.77 (d, 1H), 7.16 (t, 1H), 6.79 (d, 1H), 3.61 (s, 3H);¹³C NMR (400 MHz, DMSO-d₆) δ 11.851, 39.710, 54.775, 110.238, 112.065, 114.985, 117.856, 118.794, 119.463, 119.788, 121.215, 128.215, 128.800, 131.965, 134.996, 145.895, 159.061.

Yield 85 % (0.290 g); colorless solid; mp 208-212 °C; IR (KBr) 3398, 3051, 1618, 1460, 499 cm⁻¹;¹H NMR (400 MHz, DMSO-d₆) δ 5.81 (s, 1H, Ar-CH), 10.72 (br, s, 2H, NH), 2.13 (s, 6H), 7.20 (d, 2H), 6.36 (t, 1H), 7.57 (d, 1H);¹³C NMR (400 MHz, DMSO-d₆) δ 11.495, 32.589, 106.819, 110.254, 110.316, 110.704, 118.004, 118.060, 119.568, 127.754, 131.749, 134.912, 141.184, 157.018.

Yield 83 % (0.323 g); colorless solid; mp 195-196 °C; IR (KBr) 3394, 3047, 1604, 1508, 1236, 493 cm⁻¹;¹H NMR (300 MHz, DMSO-d₆) δ 5.89 (s, 1H, Ar-CH), 10.71 (br, s, 2H, NH), 2.08 (s, 6H), 7.10 (d, 2H), 6.84-6.81 (m, 4H), 6.88 (d, 2H), 7.23 (d, 2H), 6.704 (d, 2H), 3.38 (s, 3H);¹³C NMR (300 MHz, DMSO-d₆) δ 12.36, 38.25, 55.37, 110.72, 112.99, 113.72, 118.33, 118.97, 119.92, 128.74, 130.01, 132.35, 135.52, 136.58, 157.78.
1H NMR spectra of compound 4a
13C NMR spectra of compound 4a
1H NMR spectra of compound 4b
13C NMR spectra of compound 4b
1H NMR spectra of compound 4C
1C NMR spectra of compound 4C
1H NMR spectra of compound 4d
13C NMR spectra of compound 4d
1H NMR spectra of compound 4e
13C NMR spectra of compound 4e
\(^1\text{H NMR spectra of compound 4f}\)
13C NMR spectra of compound 4f
13C NMR spectra of compound 4g
1H NMR spectra of compound 4h
13C NMR spectra of compound 4h
1H NMR spectra of compound 4i
13C NMR spectra of compound 41
1H NMR spectra of compound 4j
13C NMR spectra of compound 4j
13C NMR spectra of compound 4j
1C NMR spectra of compound 4k
1H NMR spectra of compound 41
13C NMR spectra of compound 4I
1H NMR spectra of compound 4m
13C NMR spectra of compound 4m
1H NMR spectra of compound 4n
\(^{13}\)C NMR spectra of compound 4n
1H NMR spectra of compound 4o
^{13}C NMR spectra of compound 40
\(^{13}\text{C} \text{NMR spectra of compound 4p}\)
HRMS of 4n
LC-MS of 4f
User Chromatograms

![Chromatogram Image]

Integration Peak List

Peak	Start	End	Height	Area	Area %	
1	0.18	0.28	0.53	217.56	16970.87	70.31
2	2.12	2.39	2.47	2779.34	71662.24	29.69

Fragmentor Voltage 390 **Collision Energy** 0 **Ionization Mode** ESI

User Spectra

![Spectrum Image]

Integration Peak List

Peak	Start	End	Height	Area	Area %
1	2.34	2.79	2.54	148849	100

Fragmentor Voltage 390 **Collision Energy** 0 **Ionization Mode** ESI

LC-MS of 4j
User Chromatograms

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	0.17	0.25	0.33	2661.12	16023.899	71.94
2	1.08	1.14	1.21	97.3	303.661	1.36
3	2.17	2.23	2.31	1941.81	5947.055	26.7

Fragmentor Voltage: 100
Collision Energy: 0
Ionization Mode: ESI

LC-MS of 4m

*116
*0.24
*0.65
400 K.L. Dhunaskar and S.G. Tilve

--- End Of Report ---

LC-MS of 40
Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	0.15	0.25	0.43	331582	1874696	100

User Spectra

Fragmentation Voltage: 100
Collision Energy: 0
Ionization Mode: ESI

ESI Scan 1 (1.42-1.49 min, 8 scans) Frag=100.0V GJP-RP-1399-10-C.d

Counts (%): 221.1

Counts (%): 352.2

ESI Scan 2 (0.20-0.32 min, 13 scans) Frag=100.0V GJP-RP-1399-10-C.d

Counts (%): 111.0

Counts (%): 195.0

--- End Of Report ---

LC-MS of 4p