The Role of Medical and Health Archives in Scientific Research from a Scientometrics Perspective

Seyedeh Sara Moosavi 1, Razieh Farshid 2, Somayeh Jafari Baghi Abadi 2*,

1. Department of Information Science, Faculty of Management, University of Tehran, Tehran, Iran
2. Department of Information Science, Faculty of Psychology and Educational Sciences, Kharazmi University, Tehran, Iran

10.30699/ijmm.15.5.508

ABSTRACT

Background and Aim: This study aimed to investigate the role and application of medical and health archives in scientific research based on research topics indexed in WOS.

Materials and Methods: This study was a descriptive study with a scientometrics approach and the method of co-word analysis and hierarchical clustering and Strategic graph. The research population was scientific products on medical and health archives. Data analysis was performed by HistCite, Bibexcel, UCINET, Excel and SPSS software.

Results: In the last three decades, 323 related studies were retrieved. The research dissemination has been increasing with an average annual growth rate of 34.87%. The United States and Univ Pittsburgh were ranked first in terms of publishing and citation rates. Iran ranks 14th with 7 researches. The field of GENERAL INTERNAL MEDICINE has had the largest share of 41 research among 88 participating research areas. The mortality keyword has the most frequency. Co-word clustering in medical archival research led to the formation of 7 clusters. Findings from the calculation of the density and centrality scores showed that “Cluster 3: smart Medicine” has the highest centrality and “Cluster 6: Open Data” has the highest density score.

Conclusion: Medical archives play an important role in discovering the causes of mortality and subsequently reducing mortality, preventing diseases and their risks and prevalence, improving diagnoses, treatments, and ultimately improving the health system.

Keywords: Medical (Health) Archive, co-word, Cluster Analysis, Strategic graph, Hierarchical Clustering, Scientometrics

Use your device to scan and read the article online

Introduction

Archives, dating back to the calligraphy creation, have undergone many changes over time in terms of concept, importance, types, and application between different languages and culture (1). So that in the twelfth century the archives found a new concept, and became repositories where valuable documents are kept for future use (2). In other words, archives, which created and expanded as a result of organizations, or individual activities, are systematic collections of non-current records and documents that have been received or organized in conjunction with the organization, entity or individual activities, and are kept because of their permanent value (3, 4). The archive's mission is to collect, protect and organize all kinds of records with scientific methods and to provide effective services to different users based on legal rules and regulations (5).

Meanwhile, throughout history, there have been different types of archives from different aspect; it is sometimes used as a "Medical filing" to effectively
save a variety of medical records. Medical archives often cover various issues and materials, including data, information, documents, and health care, research, and education (6). Also, health records and documents and one form of medical archives, as an important legal document for the exercise of human rights has played an important role in history and is the basis for fulfilling individual rights, both in social and legal interactions and enforce privacy laws and determine the health status of people in the community (7). On the other hand, the importance of medical records to provide health services and to conduct much related research is undeniable; undoubtedly medical professionals need information and records about the previous diagnosis, therapies, prescriptions, and drugs to keep track of the treatments and their results. In other words, researchers believe that contemporary digital health records contain a large amount of data such as patient records, physician notes, and copy in text format and its contents can lead to improved healthcare quality, fewer medical errors, and cost reduction.

However, dysfunctional management of records, information and medical records that are the most important patients health database, exposes the health system to a multitude of incomplete or missing files. This causes a disturbance in the process of retrieving documents and the result is the lack of proper healthcare services in the health system or occurrence of medical errors that will undoubtedly have irreversible consequences. Also in the information technology epoch, medical archives and records are considered the most important, richest and truest source of medical and health information. Because it is based on the medical science facts and with scientific optimization of medical records according to national and international rules and standards and employing scientific methods of storage, protection and maintenance and accurate health information restoration, a great change in the health information system in educational and research affairs occurs (8).

Unfortunately, dispite the importance of records and the necessity of creating a medical archive, not enough attention has been paid to this field from various perspectives, so that effective and efficient systems for storing, organizing and indexing, retrieval, and tracking of records are not available; It is clear that this mismanagement leads to many disorders and problems in the health system and especially for the patients. Maturity, dynamic, and intellectualism of various scientific disciplines can be measured according to their research activities. The manifestation of these activities may be in different ways, which vary according to the area or field of science and its necessities. Scientometrics draws a knowledge map through processing, extraction, and sorting of information and it allows analysis, routing, and display of knowledge; In addition, this field moves to ease access to information, reveal knowledge structures and assist knowledge seekers to achieve successful outcomes (9).

One of the most widely used methods for drawing and analyzing the structure of knowledge in different domains is the co-occurrence of words or in other words, the relationship between the words used in different parts of documents; this method, introduced in the 1980s, is based on the assumption that using key vocabulary in the title, abstract, keywords and text of academic productions indicate the proximity of concepts to each other through which structure, concepts, and elements of a scientific field are determined. In this analysis, indicators are used for the co-occurrence of two items - such as the proximity and similarity index, which is used to measure the relationship between items.

Based on these indicators, in this approach, we draw the domains and scientific fields (10), identify hidden and prominent patterns, determine the internal and external relations of concepts (11), detection of emerging events, determination of hierarchical relationships of concepts in the ontology of scientific domains and fields of specialized knowledge, clustering the concepts of scientific fields, and science and knowledge policy-making (12). The main feature of the co-word analysis is to visualize the logical structure of a particular field by drawing a concept map.

On the other hand, in information retrieval, we must classify the retrieved documents based on a subject similarity that is referred to as evidence clustering. To do so, each document can be compared with other documents in pairs, and the number of common subjects can be obtained. This is determining the number of subjects that have occurred in both evidences compared to common (13). Clustering tries split the data into clusters that maximize the similarity between data within each cluster and minimize the similarity between data within different clusters (14). Cluster analysis seeks to organize a set of data into a series of clusters so that the data in each cluster have the highest degree of similarity and the data belonging to different clusters have the maximum degree of dissimilarity. Some nodes in the graph tend to be in a cluster. In other words, the number of links connected between neighbors of a node is called the total number of possible links is called the impact of clustering effect. As a result, after clustering, an expert must interpret the clusters created, and in some cases, it is necessary to remove some of the parameters that are considered in clustering but are irrelevant or not
very important, and clustering should be done from the beginning (15).

Thus, co-word analysis as one of the common methods in studies of science gauging revealed thematic clusters under a field of research, considers its conceptual and semantic relationships and outlines the intellectual structure of knowledge in the field under study to provide valuable assistance for interested researchers. Accordingly, due to the instability of medical archives in the health system and the necessity of establishing medical archives, and the importance of their protection and maintenance, the present study intends to evaluate the role of these archives in related research regarding the use of medical archives in promotion of the health system. In the following, we review some researches in the field of medicine which have been performed using approaches such as scientometrics and co-occurrence of words.

In 2017, Vaziri studied the status of systematic review articles in the field of medical sciences in Iran from 1970 to 2016 on the Web of Science website based on scientometric indicators. The results showed that the world review articles have grown more compared with other scientific products and researchers from the United States, the United Kingdom and Canada have contributed more than 60% in the production of review articles and Iranian researchers produced only one percent of the review articles in this field (16).

In 2018, Baji et al. mapped the intellectual structure of health literacy based on lexical analysis on the Web of Science database from 1993 to 2017. The results showed that the clustering coefficient (7.01) and network density (0.58) were high in this field. Also, the intellectual structure of this area consists of eight thematic clusters. The areas of health care, psychiatry and psychology, public health, social sciences, communications, health services, and health education have the highest centrality across the network. The results of this study showed that the mental structure of health literacy is a continuous structure with proper communication between concepts and its constituent subjects which represents the main essence and consistency of this area, and as a branch of medical science, it has managed to establish coherent and consistent relationships with the fields of social and human sciences (17).

In another article in medical and laboratory equipment fields, Emami, Riahinia, and Soheili (2018) also analyzed the co-occurrence words of patents in the field of medical and laboratory equipment from 1984 to 2014 at the US Patent and Trademark Office database. Findings showed that in terms of frequency, the keywords "menstrual fluid" and in terms of co-occurrence, the two keywords "menstrual fluid - magnetic resonance imaging equipment" had the highest frequency. Hierarchical clustering by the "Ward" method led to the formation of eight clusters of general equipment, rehabilitation equipment, dental equipment, medical equipment, emergency equipment, laboratory equipment, diagnostic equipment and medical supplies. The results indicate that co-word maps have shown changes and stability in concepts and terms this scientific field (18).

In research conducted in 2019, Saheb examined the structure of scientific networks in the field of health information using a data-mining method and bibliometric research method. In this area, 30115 articles from the science database belonging to 1974 to 2018 were reviewed. This study showed that the three main issues were the use of computer science in health care, the impact of health information on patient safety and the quality of health care, and decision support systems. Also, since 2016, health information has entered a new era to provide predictive, preventive, personal and participatory health systems. The study revealed that future research fields may examine generated health data, deep learning algorithms, tutorial tools and decision support systems on the Internet (19).

In 2020, Barrera-Cruz et al. In their bibliometric research reviewed the Medical Archives journal from 1970 on the WOS database. Over the years, a total of 4334 scientific papers have been published, averaging 87 papers per year, of which 78% are research papers, 7% review papers, 9% conference papers, 3% letter to the editor, 1% editorial and 2% Other categories (notes, error, short review). A total of 50,645 citations were received in half a century. The scientific focus of the journal has evolved with chronic epidemiological changes in morbid disease, transmission of parasitic infectious diseases such as embases and its complications to chronic institutions, respectively. In the last five years, half of the published articles are cancer, cardiovascular, neurological and renal diseases, diabetes and obesity (20). In a 2020 study, Hu et al. provided a broad overview of data mining methods in medicine through illustration and bibliography by analyzing authors, journals, institutions, and countries while providing a reference for researchers. In this study, a knowledge map was drawn by Citespace and VOSviewer information illustration software based on theoretical literature retrieved from WOS from 2011 to 2019. Based on the results, the annual number of published and cited articles has gradually increased over the past decades, indicating a growing interest in medical information data mining research in response to the need to discover medical knowledge, assist physicians, improve health General and patient support (21).

In 2021, Chintalapudi et al. conducted a study entitled "Text Mining and Emotional Analysis of
Sailors’ Medical Documents” to a better perception of seafarer’s medical problems. More than 3,000 sailors were studied in the study between 2018 and 2020, and three-year records of patients were extracted to understand patients’ perspectives and experiences through text mining and emotional analysis and text mining methods were used to analyze medical records and to examine common injuries that occurred on the deck of a ship (22).

The literature review indicates that the use of scientometrics approach and co-occurrence of words in medical fields including the fields on medical archive is common and has numerous achievements, but so far, no independent research has been done on the use of co-occurrence of words in research on medical archives. Thus, the present study aims to investigate the role and use of medical and health archives in scientific research based on research topics indexed in web of science to answer the following questions:

1. What is the status of research on medical archives in terms of the production process, research medium, language, countries, participating institutions and researchers, participating and citing research areas, keywords and journals?

2. What is the hierarchical clustering of research topics on medical archives based on co-occurrence analysis?

3. What is the status of clusters derived from co-occurrence analysis in terms of maturity and development in the strategic chart in the field of medical archives?

Materials and Methods

The present study is a descriptive study that was done with a scientometric approach and using the method of synonym analysis and hierarchical clustering technique and strategic diagram. The statistical population of this study consists of all published researches on the medical archive. To retrieve the relevant records, different combinations and names of medical archives were identified with the help of a thesaurus and identified and retrieved using Boolean operators and truncation and phrase search in the form of the following search strategy:

\[(TS=\text{medic}^* \text{ archiv}^*) \lor (TS=\text{health}^* \text{ archiv}^*) \lor (TS=\text{archiv}^* \text{ medic}^*) \lor (TS=\text{archiv}^* \text{ health}^*) \lor (TS=\text{archiv}^* \text{ of medic}^*) \lor (TS=\text{archiv}^* \text{ of health}^*)\]

It should be noted that by creating a thesaurus in Excel, the keywords were controlled, edited and standardized, and similar, identical, analogous keywords and plural and singular forms of integration and non-specialized keywords were removed. Hierarchical clustering is usually used to perform homologous lexical analysis. Hierarchical clustering can identify clusters related to each keyword and show the relationship between them. For this reason, hierarchical clustering was performed using SPSS software. In the hierarchical clustering method, like a tree, each smaller branch is part of a larger branch, and finally, all of them are connected hierarchically to the trunk of that tree. The result of the hierarchical clustering that can be seen in Figure 1 may be considered as follows that objects in the form of a tree diagram are recursively grouped into smaller and smaller clusters, which is the so-called dendrogram. In this diagram, the horizontal axis represents the data points and the vertical axis represents the similarity between the data points.

![Figure 1. Calculating the ability of biofilm formation compared to the control](image)
diagram, the less the mouth depth of the two objects is, the intensity of the similarity can be easily understood (13). The other advantage of the hierarchical clustering method is that the number of clusters must not be determined in advance. Whereas in other methods, the number of clusters must be known in advance. But the decision to fragmentize the extent and the number of clusters is controversial. In the hierarchical method, clusters are created in two main ways: the density approach and the splitting approach. In the density approach, each object or data is considered to be a cluster, and gradually these smaller clusters are merged so that all objects are in a cluster. Sometimes this does not happen until this stage and only until it reaches the desired number of clusters. Clustering with this approach is possible in several ways, one of which is the ward method and where the average distance of objects in a cluster is first calculated and then, like the Variance calculation method, the difference between the distance of each object and that mean is measured. In other words, the ward method is based on the sum of squares of each data from one cluster with the mean vector of that cluster. This concept can be represented as the following formula:

\[
ESS = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2
\]

In the above formula, the ESS is equal to the error sum squares. \(x_i\) represents an object and \(n\) equal to the number of objects in a cluster. Thus, ESS is obtained from the squared difference of the mean distances from the sum squares of the distance values, and the lower the value, the greater the similarity between the two objects. In summary, the following steps should be made based on the ward method:

1. Each object is considered a cluster.
2. For all possible pairs of clusters, select the two clusters that have less ESS.
3. Combine the two selected clusters.
4. Steps 2 and 3 are repeated until all objects are in a cluster, or the number of clusters has not reached the desired number (23).

To implement and conclude the co-occurrence analysis of words, first requirements including the co-occurrence matrix must be prepared, and then the co-occurrence matrix must be converted into a correlation matrix. To prepare the matrix, keywords with a frequency of 2 were selected and finally, a 98 by 98 square matrix was formed. The diagonal cells of matrices were considered zero, and then the ordinary matrices were converted into a correlation matrix. Finally, the clustering of concepts is plotted on the SPSS statistical software (version 26).

In the next stage a strategic graph of thematic clusters was drawn; to draw the strategic chart, after the formation of discrete matrices for each cluster obtained through the hierarchical graph, the centrality and density of the clusters were achieved using the UCINET software and then strategic chart was drawn. The strategic diagram is the description of internal relationships and correlations between different thematic clusters. In this diagram, the horizontal axis is often used to provide centrality (the degree of correlation of clusters) and from the vertical axis to provide density (the internal communication level of each cluster). Melcer et al. (25) introduce the strategic diagram as an attempt to better illustrate and demonstrate the maturity and coherence of thematic clusters in a research area. The strategic diagram is divided into four sections, each of which forms a quarter of the diagram. The clusters in the first quarter are cohesive and central to the area under study. These major clusters focus on a large portion of the network. The clusters in the second quarter are still cohesive but decentralized, each representing smaller specialized sections of the area under study. In the third quarter, clusters fall; Clusters of this quarter are emerging or declining parts of the network; finally, the fourth quarter contains clusters that are not yet mature but can become the major components (25).

Results

By using the desired search strategy in Web of Science, it was found that 323 related studies were indexed in this database by 1334 researchers from 88 research areas between 1990 and 2021 years. Figure 2 shows the trend of publishing these studies by year.
The uptrend in Figure 2 shows the reception of medical archives. Also, the year 2019 with 32 types of researches (10%) and 1992 and 1993 years with 1 research (0.3%) have the highest and lowest number of researches among different years, respectively. Also, the Annual Average Growth Rate of these studies was 34.87% and the range of the annual growth rate of scientific productions published in this field has fluctuated between -66.66% (minimum) to 700% (maximum) from the beginning until now; on the other hand, these studies have been published in a variety of languages; however, the predominant language of science production in this field is English, which covers 88.9% of research. After the English language, the most important languages are French (2.8%) and Spanish (2.2%). Also, data analysis showed that the highest publication format was for journals (articles, reviews, editorials, and early access) with 91.9% of the research has been published in other formats (conferences, biography, news, book critique, etc.). The following is the information about other different characteristics of the top five rankings of researches in this field in Table 1. On average, each related study received 14.91 citations. Also, the h-index of researches in this field in WOS is 36.

Figure 2. The trend of publishing studies on medical archives by year

Country	First place (number, percent)	Second place (number, percent)	Third place (number, percent)	Fourth place (number, percent)	Fifth place (number, percent)
United States	90 (9.27)	England (34, 5.10)	Italy (23, 1.7)	Germany (22, 8.6)	Canada and China (19, 5.9)
Nakajima T, Ota H, Uehara T	4 (1.6)	Abella A, Hunter I, Iwaya M, Machado J, Pendleton C, Quinones-Hinojosa A	(3, 0.9)		
Saul M	3 (0.9)	Bedduh S, Bruns FJ, Seddon P, Zeidel ML	(2, 0.6)	Dougherty AL, Dye JL, Galanneau MR, Holbrook TL, Quinn K	(1, 0.3)
Univ Pittsburgh	17 (5.3)	Univ Calif San Diego (5, 1.5)	Johns Hopkins Univ, Shinshu Univ, Univ Padua (4, 1.2)	Hong Kong Polytech Univ, Imperial Coll London, Naval Hlth Res Ctr, Univ Minho, Univ Montreal, Univ Ottawa, Univ Tehran Med Sci, Vanderbilt Univ (3, 0.9)	

Table 1. Characteristics of research on medical archives
According to Table 1, Nakajima T, Ota H, Uehara T have the most scientific productions and Saul M has the most citations in researches this field. Univ Pittsburgh also ranks first in terms of scientific production and receiving citations. Also, the area of GENERAL INTERNAL MEDICINE with 41 studies among the 88 participating research areas, has had the largest contribution in the production of researches in this field. Iran ranks 14th among the participating countries with the production and publication of 7 studies.

Using SPSS software and calling co-occurrence matrices in this software, hierarchical clustering was performed by the Ward method and a dendrogram diagram (hierarchical clustering) of the topics was plotted. The hierarchical clustering of researches on medical archives is shown in Figure 5. For greater clarity, the cluster images are divided into sections. It is necessary to explain that first in the hierarchical diagram, each subject is considered as a branch. The most similar elements are then categorized, and these primary categories form small clusters. Eventually, when the similarities diminish, smaller clusters combine to form larger clusters. Of course, in several clusters, some keywords are not semantically related to the content of the cluster. There is usually a probability of occurrence of this issue in co-word analysis because these unrelated keywords are low-frequency keywords that have little effect on the outcome of the cluster compared to the main keywords of the cluster. In this diagram, the height of each cluster indicates where the two clusters are combined; also, the red vertical lines are the index line of interpretation, which is drawn with the opinion of a subject expert (26).
As can be seen in Figure 3, the keywords of the examined studies have formed seven clusters, which the mentioned clusters are examined below.

Cluster 1: Disease information. The results of the co-word analysis showed that cluster 1 was the smallest cluster formed and the three keywords "History, Pott disease and Walter Dandy" were involved in the formation of the first cluster.

Cluster 2: medical imaging. Keywords of this cluster such as "congenital heart disease, Magnetic Resonance Imaging, Multidetector computed tomography and Ultrasonography" show that this cluster can be called medical imaging.

Cluster 3: smart medicine. According to the identification, studying, and review of 68 topics in cluster 3 such as "Ambient Intelligence, Deep Learning, Multi-Agent Systems, ontology, Organizational innovation, etc.", which is also the largest cluster, choosing the smart medical name seems appropriate.

Cluster 4: cancer (oncology and biopsy). The topics of this cluster, which consists of 4 keywords, including "Colon adenocarcinoma, Leucine-rich repeat-containing G-protein-coupled receptor 5, RNA in situ hybridization, and Tumor budding, which generally form a cluster called cancer.

Cluster 5: Pharmacology. This cluster has four keywords "drug metabolism, Parkinson’s disease, patient and population health", and based on the keywords, the fifth cluster can be called pharmacology.

Cluster 6: Open data. The existence of keywords such as "Open government, Open government data, Policy, and Records management" caused the sixth cluster should be called "open data".

Cluster 7: types of medical archives. The study of cluster seven indicates that the presence of keywords such as "hospital information systems, medical image and Patient Record" caused this cluster to be named as types of medical archives.
After forming a matrix for each cluster and calling it in UCINET software, the score of centrality and density of clusters was determined and a Strategic graph was drawn using these scores (27). Scores related to cluster density and centrality are shown in Table 2. It should be noted that the origin of the diagram was set at 14 and 1.27, respectively, according to the mean centrality and density of clusters.

Table 2. Density and centrality of clusters obtained from the co-word analysis

Cluster number	Cluster title	Density	Centrality
1	Cluster 1: Disease Information	1.333	4
2	Cluster 2: Medical Imaging	1.1	11
3	Cluster 3: Intelligent Medicine	1.015	68
4	Cluster 4: Cancer (oncology and biopsy)	1.333	4
5	Cluster 5: Pharmacology	1.333	4
6	Cluster 6: Open data	1.5	3
7	Cluster 7: Types of medical archives	1.333	4

Cluster 3 "smart medicine" with a value of 68 has the highest centrality and cluster 6 "open data" with a value of 1.5 has the highest density. This means that cluster 3, which contains the most repetitive keywords, is the most central in terms of influence, relevance to other topics, as well as linking among other keywords. In the strategic graph, the horizontal axis indicates the centrality (the degree of correlation of the clusters) and the vertical axis indicates the density (the degree of internal communication power of each cluster).

Due to the thematic diversity in this field and the drawn strategic graph (Figure 4), clusters are present in the second, third, and fourth areas. As the strategic graph shows clusters one, four, five, six and seven are located in the second area. The clusters located in this area are not axially but are developed, although they are at a lower level than the clusters in the first area of the graph. Cluster two, which is located in the third area, is in the lowest rank compared to other clusters in terms of importance and impact in the research area. In other words, the clusters of the third area are emerging or declining because of their centrality and low density, they are marginal topics and have attracted little attention. The third cluster is located in the fourth area of the strategic graph; the clusters in the fourth area are axial but have not yet developed; in other words, this cluster has not yet matured.
Discussion

In the last three decades, 323 related studies by 1334 authors affiliated with 548 scientific institutions from 53 countries were retrieved through the WOS database; With 7 related types of research, Iran is the fourteenth among 53 countries participating in research in this field. These studies have also been published in various formats; the highest publication format was for journals (articles, reviews, editorials, and early access) with 91%. However, 9% of the studies are published in other formats (conferences, biographies, news, book reviews, etc.). Data analysis also showed that the predominant language in 88.9 of the studies in this field is English. After English, the most important languages are French (2.8%) and Spanish (2.2%). The United States and Univ Pittsburgh are ranked first in terms of publishing and citation rates. Nakajima T, Ota H, Uehara T has the most scientific production and Saol M have the most citations in researches this field. Among the 115 participating research areas, the areas of GENERAL INTERNAL MEDICINE and HEALTH CARE SCIENCES SERVICES had the largest contribution in the researches. On the other hand, the research areas of GENERAL INTERNAL MEDICINE and UROLOGY NEPHROLOGY have the largest contribution among citing researches. The journal MEDICAL HISTORY has published the most researches on medical archives. EUROPEAN COMMISSION has been the leading research funding sponsor in researches this field. In total, the average annual growth rate of the publication of these studies is 34.87%, which indicates a continuous growth situation. The results of this part of the present study are in line with the findings of Hu et al.

Among the topics extracted from researches, the keywords mortality, diagnosis, and survival have gained the most frequency. It seems that information about the number of deaths and causes and factors related to them is one of the most pieces of information needed to diagnose the health status of society and deal with risk factors (28). In other words, examining the common causes of death in a community, in a time and a specific group and comparing it with other communities, periods and groups are one of the important measures that can reduce the risks to planning to improve Health and ultimately help increase the survival of humanity (29). Undoubtedly, by identifying the causes of death on the one hand and by planning and performing the right interventions in life, eating habits, controlling risk factors, etc., on the other hand, we can hope that with proper planning in the future in all dimensions will be prevented the occurrence of many Premature deaths. Also, the diagnosis of medical problems and the reduction of medical errors, which is an important element in the health system and covers various dimensions, including medical imaging, have been among the important topics in researches on medical archives. Undoubtedly, medical archives with a variety of medical data, information, documents, and records will play an important role in the exchange of medical signs and information, which in turn play an important role in the diagnosis process.

Co word clustering in researches medical archives led to the formation of 7 clusters. Among the seven identified clusters, disease information clusters, cancer (oncology and biopsy), pharmacology, open data, and types of medical archives are not central but developed clusters. Medical imaging clusters, on the other hand, are emerging or declining clusters; In other words, the topics of this cluster are marginal and have attracted little attention. At present, the field of medical images and their processing covers a wide range of applications, from the diagnosis of ocular diabetes based on retinal images to the segmentation of MRI images to diagnose human brain tumors (30). The smart medicine cluster is a central but has not yet been developed; in other words, this cluster has not yet matured.

A review of the findings and results of the present study show that the use of medical archives plays an important role in preventing deaths, improving diagnoses and treatments, and ultimately improving the status of all health actors. The use of archives in various processes related to some diseases, including cancer, has also received more attention. The use of archives to record information and history of diseases, as well as drugs, the doses used and the consequences of their use, etc. are other uses of archives in the field of medicine. Addressing the rules and regulations on access to various archives, including medical information and data in the form of open access movement in different governments, has been another topic of researches medical archives.

In terms of the top countries in the production and dissemination of research, the results of the present study are in line with the findings of Vaziri (16). Also, the findings of this study are in line with the findings of Sahib (19) in terms of emerging topics, especially in the smart medicine cluster, which includes topics such as deep learning. In terms of published research format, the findings of this study agree with the research of Barrera-Cruz et al. (20). In terms of results, the results of this study conform to the results of the research of Chintalapudi et al. by effective use of medical information and records to diagnose problems and ultimately solve them. The findings of the present study in terms of superior research areas are somewhat in line with the findings of Baji et al.
Conclusion

The analysis of researches on medical archives leads to a better understanding of currents, discourses and increases the quantity and quality of researches aimed at improving the health system. In other words, the main achievement of co-word analysis of researches medical archives by revealing developed topics and identifying thematic gaps in identifying the role and application of medical archives on the one hand and understanding the current situation, improving educational and research policies, management and implementation, and even a balance in the topics of published researches, on the other hand, is useful and therefore will pave the context for the emergence of new research trends. However, in the co-word analysis of words, there are some limitations that, if not taken into account, will make the analysis difficult. For example, the quality of selected keywords is one of the most important steps in the co-word analysis. In the quality of words in the field, the place of its extraction in the document, neglecting the linguistic issues of words, word composition, a semantic relationship of words and the effect of indexing is important and not paying attention to any of these cases will cause poor quality of words analysis. Also, the application of this method in fields that are not prone in terms of words, and concepts is one of the main problems with this analysis, which the lack of attention to which contradicts the conclusion of the research (12). According to the results of the present study, medical archives play an important role in discovering the causes of mortality and subsequently reducing mortality, preventing diseases and their prevalence, improving diagnoses, treatments and ultimately improving the health system. In the present study, "Cluster 3: Smart Medicine" is one of the central but immature clusters. However, the topics of "Cluster 2: Medical Imaging" are emerging topics in the field of medical archives. It is suggested that the results of this study be presented to the relevant organizations and associations.

Funding

This article is an independent study that was conducted without organizational financial support.

Conflict of Interest

The authors declared no conflict of interest.

References

1. Moradi N, Tehranipour V. Audio visual archiving. Tehran: Librarian; 2013.
2. Fadai Gh. Introduction to recognizing archival documents. Tehran: Samat; 2008
3. Archives, Objectives, Duties and Organizations. Tehran: National Archives of Iran; 1990.
4. Ghaffari L. Descriptive metadata elements in retrieving movies on national archives websites. [Tehran]. Faculty of Education and Psychology, Al-Zahra University; 2018.126p.
5. Asnafi A, Ghazizadeh H, Akhavan Behbahani SH. Assessing the Integrity of Coding Operation of Audiovisual Resources in the Archives of the Islamic Republic of Iran Broadcasting Organization. Document Treasure Quarterly, 2020; 30 (3): 104-128.
6. Spadoni C. Medical archives: an annotated bibliography. Archivaria 28 (1989); 74-119.
7. Marinč M. The importance of health records. Health 7.05. 2015: 617. [DOI:10.4236/health.2015.75023]
8. Zarei J, Sakipour S, Hamzeh Levi F, Azizi A A. Using the electronic archive of medical records in comparison with the traditional archive in the medical records department of the hospital. The Second International Conference on Electronic Administrative System of Tehran, 2009
9. Noroozi Chakli A. The role and place of scientometric studies in development. Journal of Information Processing and Management .2012: 27 (3): 723-736.
10. Law J, Bauin S, Courtial J, Whittaker J. Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics. 1988 Sep 26; 14(3-4):251-64. [DOI:10.1007/BF02020078]
11. Osare F, Ahmadi H, Heydari Gh, Hosseini Beheshti, M. Drawing and analyzing the conceptual network of knowledge structure in the field of scientometrics in Iran. Journal of Library and Information Science. 2017: 9 (3), 1-20
12. Ahmadi H, Osare F. An overview of the functions of lexical analysis. National Studies of Library and Information Organization. 2017: 28 (1): 125-145
13. Soheili F, Tavakolizadeh Ravari M, Hazery A; Dost Hosseini N 2017. Drawing a scientific map. Tehran: Payame Noor University
14. Haj Ahmadi, A. Fundamentals of Clustering, Faculty of Computer Engineering and Information Technology, Amirkabir University. 2006.

15. Mokhtari Shamsi M. Study of the evolution of the thematic map in the field of "etiology of colon cancer" Content analysis of Medline documents. Master Thesis, Yazd University, Faculty of Social Sciences, Department of Information Science and Knowledge. 2015

16. Vaziri I, Faizabadi M. Scientific study of Iranian medical review articles. Journal of Scientometrics, 2017: 3 (6), 83-96

17. Baji F, Azadeh F, Parsai Mohammadi P, Parmah Sh. Drawing the intellectual structure of health literacy based on colloquial analysis on the Science website from 1993 to 2017. Health information management. 2018: 15 (3), 139-145

18. Emami M, Riahinia N, Soheili F. Mapping the Scientific Structure of Medical and Laboratory Equipment Patents in USPTO database between 1984 and 2014. payavard. 2019; 12 (6) :419-432

19. Saheb, T, Saheb M. Analyzing and visualizing knowledge structures of health informatics from 1974 to 2018: a bibliometric and social network analysis. Healthcare informatics research 25.2 (2019): 61. [DOI:10.4258/hir.2019.25.2.61] [PMID] [PMCID]

20. Barrera-Cruz, C, Natxieli Alexandra Fuentes-Morales, and Ana Carolina Sepulveda-Vildósola. "50 years of Archives of Medical Research. A Bibliometric Analysis." (2020): 1-7 [DOI:10.1016/j.arcmed.2020.01.011] [PMID]

21. Hu Y, Yu Z, Cheng X, Luo Y, Wen C. A bibliometric analysis and visualization of medical data mining research. Medicine 2020; 99:22 (e20338). [DOI:10.1097/MD.00000000000020338] [PMID] [PMCID]

22. Chintalapudi N, Battineni G, Canio M, Sagaro GG, Amenta F. Text mining with sentiment analysis on seafarers' medical documents.

International Journal of Information Management Data Insights,2021;1(1). [DOI:10.1016/j.ijimedi.2020.100005]

23. Soheili F, Khasseh A A, Koranian P. Mapping Intellectual Structure of Knowledge and Information Science in Iran based on Co-word Analysis. 2019; 34 (4) :1905-1938.

24. Wu, K.; Xi, Y.; Liao, x. Analysis on current research of supernetwork through knowledge mapping method. Knowledge science, engineering and management: 6th international conference, ksem, 2013; 538-549. [DOI:10.1007/978-3-642-39787-5_45]

25. Melcer, E., Nguyen, T. H.D., Chen, Z., Canossa, A., El-Nasr, M.S., & Isbister, K. Games research today: Analyzing the academic landscape 2000-2014. In Proceedings of the 10th International Conference on the Foundations of Digital Games, 2016; At Pacific Grove, CA, USA

26. Sohaili F, Shaban A, Khase A. Intellectual Structure of Knowledge in Information Behavior: A Co-Word Analysis. Human Information Interaction. 2016; 2 (4)

27. Danesh F, Nemat Allahi Z. Clustering the concepts and emerging events of knowledge organization. Library and information. 2021 [cited 2021May21]; 23 (2): 53-85.

28. Abadi, A., Mohammad K., Aslami, F., Alavi Majd, H., Behnampour, N. Estimation of crude death rate with application of capture - recapture methods. Payesh. 2009; 8 (1) :11-16

29. Kazemi T, Sharifzadeh Gh R. The causes of death in Birjand University of Medical Sciences (2003). Scientific Journal of Birjand University of Medical Sciences. 2004; 10 (2): 9-15.

30. Karsaz, A., Mohammadian Roshan, S. Medical image processing using deep convolutional neural networks, Electrical Asre Magazine. 2019; 5(11): 23-28. magiran.com/p1992566
نقش آرشیوهای پزشکی و سلامت در پژوهش‌های علمی از منظر علمسنجی

سیده سارا موسوی، راضیه فرشید، سهیج جعفری باغ‌آبادی

1. گروه علم اطلاعات و دانش شناسی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران
2. گروه علم اطلاعات و دانش شناسی، دانشکده علوم تربیتی، دانشگاه خوارزمی، تهران، ایران

چکیده

زمینه و اهداف: هدف پژوهش حاضر واکاوی نقش و کاربرد آرشیوهای پزشکی و سلامت در پژوهش‌های علمی بر اساس موضوعات پژوهشی ایرانی در دو ساله ۱۳۰۰/۱۳۰۱ در بنیادهای تحقیقاتی و آزمایشگاهی را مطالعه کرد.

مواد و روش‌ها: زمینه آزمایشی از نوع توصیفی-یافشکنی علمی-پژوهشی و روش تحلیل هیپورگرافی و فن خوشه‌بندی سلسله.HistCite

مقدمه

آرشیوهای پزشکی از منظر علمسنجی

مقدمه

آرشیوهای که ظهور آنها به زمان پیدایش خط بریم گردید، در طی زمان دستخوش تحول بسیار از نظر فهم‌های علمی، انواع و کاربردی در بین زبان‌ها و فرهنگ‌های مختلف شده‌اند (۱). گونه‌های که در قرن دوازدهم آرشیوهای مفهوم تازه‌ای پیدا کردن و به مخاطبین تبیین شده که استادی ارزش‌شناسی در آنها به هدف حفظ این استاد برای آینده نگهداری می‌شود (۲). به عبارتی آرشیوهای که در نتیجه فعالیت‌ها کار و آزمایش‌ها افراد ایجاد می‌شوند و توسط مصارف علمی، پژوهش‌های علمی، مطالعات، و تحقیقات علمی، تغییرات و تکمیلی از آنها به عنوان قیمت‌های واقعی و وسیله‌های علمی و تحقیقاتی تبدیل در مورد رقابت‌های علمی بادی، اطمینان، و توسعه استفاده می‌شود (۳). گروه‌های مختلف از نظر ساختاری دارای نقش و کاربردی‌های مختلفی هستند که با هدف عملکرد و فعالیت‌های آنها در صنعت علمی بوده‌اند (۴). آرشیوهای پزشکی به منزله یک محصول شناسی علمی و استاندارد جهانی، یک نقش پرهزینه در تحقیقات علمی و تکمیل علمی دارند و نقش پژوهش‌های علمی را در سازمان‌های علمی در این زمینه دارای اهمیت و نقش خاصی است (۵).

مراجع

1. محمدی، م. (۱۳۸۸). آرشیوهای پزشکی و نوای آینده. مرکز نگهداری آرشیوهای پزشکی و سلامت، تهران.
2. محمدی، م. (۱۳۹۰). آرشیوهای پزشکی و نوای آینده. مرکز نگهداری آرشیوهای پزشکی و سلامت، تهران.
3. محمدی، م. (۱۳۸۸). آرشیوهای پزشکی و نوای آینده. مرکز نگهداری آرشیوهای پزشکی و سلامت، تهران.
4. محمدی، م. (۱۳۹۰). آرشیوهای پزشکی و نوای آینده. مرکز نگهداری آرشیوهای پزشکی و سلامت، تهران.
5. محمدی، م. (۱۳۸۸). آرشیوهای پزشکی و نوای آینده. مرکز نگهداری آرشیوهای پزشکی و سلامت، تهران.
اتهاک خدمات بهداشت و درمان و انجام سایر از پزشک‌های مرتبط غیرقابل انکار است. اگر چا باز گذشته مفتاح‌های بیولوژیکی به اطلاعات و داده‌های درون‌شیرین و خارجی‌شیرین درمانی، نسخه‌ها و افراد نیاز دارند از نظر درمانی‌های انجام شده و نتایج آنها مطلع شوند. به دلیل نگه‌داری با استانداردسازی مایه‌های متوقف، حذف و بی‌رویی مفاهیم، بهبود واژگان کلیدی و افزایش مقدمات ارائه‌های مثبت در روند درمانی، طراحی مدل‌های داده‌های بازار و بررسی‌های درون‌شیرین شورای بهداشت و درمان از زبان ایرانی مواجه به ارتباط ماهیت‌های واقعی و تنظیم این سیستم‌ها و نظام‌های بهداشت و درمانی، گزارش داده‌هایی در زمینه‌های مختلف حوزه‌های تحقیقات محیط‌شناسی و همگامی درž ارائه شده‌است. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کند. این نیاز را می‌توان با توجه به علل‌الزامی و درمانی، سایر و همگام با پزشک‌های متخصص و مشهور در فعالیت‌ها مطالعه می‌کن
به حضور در یک خوشه را دارند. با امکان‌پذیری نسبت تعداد پیوندهای مجزا، با نظر به عدد کل پیوندهای ممکن را ضریب نام‌گذاری می‌گذارند. در نتیجه پی از انجام خوشه‌بندی، یک فرد خبره‌ای خود را انجام شده را تفسیر کند و در مورد سایر آرایه‌های که در خوشه‌بندی در نظر گرفته شده‌اند، توجه بی‌برنگی هستند با اهمیت چندانی ندارند، هفته‌ها و صندوق خوشه‌بندی از اول

سیده سارا موسوی و همکاران | نقش آریشوهای پزشکی و سلامت در پژوهش‌های علمی...

عوسم، علوم اجتماعی، ارتباطات، خدمات بهداشتی و آموزش بهداشت، ا salida، میزان تحریک یا در کل شیکایت این حوزه به وسیله اختصاص داد. نتایج حاصل از این پژوهش نشان داد که رضایت در کفیری حوزه سواد سلامت در آزمون پژوهش‌های پزشکی و سلامت در پژوهش‌های علمی، جهت حضور در آزمونهای پزشکی و پزشکی و اخلاق‌پذیری در پژوهش‌های علمی، جهت حضور در آزمونهای پزشکی و

در همان سال در مقاله‌ای دیگر از حوزه تجربیات پزشکی و آزمایشگاهی Emami و همکاران از این آماره در تحقیقات خوده‌ای 1946 تا 2014 میلادی در پایگاه ادارات نهاد اختراق و علوم تجربی آمریکا را مورد تحلیل قرار دادند. یافته‌های پژوهش نشان داد که این از نظر فراوانی کلیوکلارا "Seguea دالیک" از نظر ویژگی‌های دو کلیوم منابع تحقیر تصرف حاکمیت و اخلاقی مورد نظر را در حوزه دو کلیوم منابع تحقیر تصرف حاکمیت و اخلاقی مورد نظر را در حوزه

در پژوهشی صاحب در سال 2019 به بررسی ساختار شکوه‌های علمی در حوزه اطلاعات بهداشتی با استفاده از روش داده‌گذاری و روش تحقیق و کانسپتیون تهدید نشان داد. در این حوزه پژوهش‌های پزشکی، تجزیه‌بندی، تجزیه‌بندی دندانپزشکی، تجزیه‌بندی پزشکی، تجزیه‌بندی درمانی، تجزیه‌بندی آزمایشگاهی تجزیه‌بندی تشخیص و لازم مصرفی پزشکی شد. نتایج حاکمیت از آن است که نشانه‌های علمی و پژوهش‌های علمی در آمریکا و انگلستان مبتنی بر این مقاله در سال‌های 1993 تا 2014 و کتاب‌های تدریسی و تحقیقاتی است. در کتاب‌های تدریسی و تحقیقاتی است. در کتاب‌های تدریسی و تحقیقاتی است.

در پژوهشی صاحب در سال 2019 به بررسی ساختار شکوه‌های علمی در حوزه اطلاعات بهداشتی با استفاده از روش داده‌گذاری و روش تحقیق و کانسپتیون تهدید نشان داد. در این حوزه پژوهش‌های پزشکی، تجزیه‌بندی، تجزیه‌بندی دندانپزشکی، تجزیه‌بندی پزشکی، تجزیه‌بندی درمانی، تجزیه‌بندی آزمایشگاهی تجزیه‌بندی تشخیص و لازم مصرفی پزشکی شد. نتایج حاکمیت از آن است که نشانه‌های علمی و پژوهش‌های علمی در آمریکا و انگلستان مبتنی بر این مقاله در سال‌های 1993 تا 2014 و کتاب‌های تدریسی و تحقیقاتی است. در کتاب‌های تدریسی و تحقیقاتی است. در کتاب‌های تدریسی و تحقیقاتی است.
داستان، اما ناکامی پژوهش مستقلی در خصوص استفاده از فن هیرکیدای واکنش در پژوهش‌های مرتبط با آرشیو پزشکی آزمایش نشده است. پژوهش تأکید در راستای هدف خود و تعیین واقعی و کاربرد آزمایش‌های پزشکی و سلامت در پژوهش‌های علمی بر اساس موضوعات پژوهش‌های نامیا شده در واب آمیزه‌ای ساینس به سوالات زیر با پاسخ‌های داده‌شده:

1. وضعیت پژوهش مرتب به ارسال پژوهشی از نظر روند توییدات و محمل ژوهر، زنان، کشورها و پژوهشگران مشارکت‌کننده، حوزه‌های ژوهری مشارکت کننده و استاند هندسه، کلیه‌های زیست‌شناسی و مراجع چگونه است؟

2. خوشه‌نی در سلسه‌های موضوعی ژوهری مرتبط با آرشیو پزشکی بر اساس تحلیل هیرکیدای چگونه است؟

3. وضعیت پژوهشی حامل در تحلیل هیرکیدایی از نظر میزان بلوف و تهدید در نمودار راهبردی در حوزه آرشیو پزشکی در چه فوقینی قرار دارد؟

مواد و روش‌ها
پژوهش حاضر از نوع توصیفی است که با ویژه‌کردن علمی و استفاده از روش تحلیل هیرکیدایی و فن خوشه‌نی سلسه‌هایی و نمودار راهبردی انجام شده است. جامع اماری ژوهری حاضر و تأمین پژوهش‌ها منشئ شده مرتبط با آرشیو پژوهشی تکمیل می‌شود. بعنوان نمودار ارزیابی راهبردی مرتب، با کمک اصل‌الاحکام، ترکب‌ساز و اساس معنی آرشیو پزشکی و truncation و Boolean operators و سنسوری و با استفاده از ژستجوی عبارتی در قابل راهبرد ژستجوی زیر، شناسایی و پذیرایی شد.

Excel
لزن به ذکر است از طریق ساخت اصطلاح‌شکن در اقدام به کنتور، ویرایش و یکدست‌سازی کلید‌واژه‌ها گردید و کلید‌واژه‌های شناسایی، کلید‌واژه‌های جمع و مفرد ادامه و کلید‌واژه‌های غیرتخمیصی حذف گردیدن.

به‌عنوان نمودار انجام تحلیل هیرکیدایی معمولی از خوشه‌نی سلسه‌هایی استفاده می‌شود. خوشه‌نی سلسه‌های این استفاده موردی است.
نتیجه خوش‌بندی به روش سلسله مراتبی که نمونه‌اند آن در شکل ۱ قابل مشاهده است. را می‌توان به بهنی شکل در نظر گرفت که اشیاء به شکل یک نمودار درختی بصورت بازگشتی در خوش‌بندی

dendrogram

و کوچکتر قرار می‌گیرند که اطلاعاً به عنوان می‌گویند. در این نمودار مونه‌ای افقی نشان‌دهنده نقاط داده و محور عمومی نمایان کننده شیب‌های بین نقاط داده است.

قاب‌بندی را دار که خوش‌بندی مربوط به یک از گروه‌های یک مشخص نماید و روابط بین آنها را تنش دهد. به همین دلیل، با استفاده از نرم‌افزار اس. پی. اس. خوش‌بندی سلسله‌مراتبی انجام شد. در روش خوش‌بندی سلسله مراتبی، منند بک درخت، هر شاخه کوچک‌تر یکی از یک شاخه بزرگ‌تر است و نهایتاً، همه این‌ها به سلسله سلسله مراتبی به آن ذرت وصل می‌شوند.

![Dendrogram](image)

شکل ۱. نمونه‌ای از نمودار خوش‌بندی سلسله‌مراتبی

در آن ابتدا میانگین فاصله اشیای یک خوش محاسبه شود و سپس همانند روش محاسبه واریانس، تفاصل فاصله هر شی یا آن میانگین سنجیده می‌شود. به عبارتی، روش واریانس می‌تواند ردیابی تفاصل فاصله هر داده از یک خوش هر برد میانگین آن خوشه استوار است. این مفهوم را می‌توان به فرمول زیر نمایش داد:

\[
ESS = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2
\]

در فرمول بالا، ESS برای با مربع خطای استاندارد نشان‌گر یک شی و n برای با تعداد اشیاء xi است. Sum Squares در یک خوشی است. با تغییر میانگین فاصله از میانگین مجموع مقادیر فاصله‌هاست و هرقدر که این مقدار کمتر باشد، شیب‌های بین دو شیء بین‌شیب است. به طور خلاصه، بر اساس روش واریانس میزان دسته‌بندی باشد.

1. در شیء بهعنوان یک خوش در نظر گرفته شود.

مزیت روش خوش‌بندی سلسله مراتبی این است که از طریق آن می‌توان رابطه سلسله مراتبی بین اشیاء را کشف کرد و همچنین راحت‌تر می‌توان میزان شیب‌های بین اشیاء را به‌صورت تصویری دید. به عبارتی، در یک نمودار درختی، هرچه عمق دهانه دو شیء کمتر باشد، برایشی می‌توانند شیب‌های آن دو را در کردن ۱۳. (۱۳).

مزیت دیگر روش به‌صورت بسته‌بندی این است که از قبل تابید تعداد خوش‌ها را تعیین کرد، درحالی که در روش‌های دیگر، با از قبل یک‌بند که تعداد خوش‌ها چه اندام به‌پایش اما به‌صورت می‌تواند تعداد خوش‌ها نیا می‌دانن و مرحله‌ای صورت گیرد، بحث‌ناپذیر است. در روش سلسله‌مراتبی این باجاد خوش‌ها به دو صورت اصلی صورت می‌گیرد: رویکرد تراکمی و رویکرد تفضیلی. در رویکرد تراکمی، ابتدا هر شی یا داده یک خوش محصول می‌شود و نتیجه این خوش‌های را رزگیری به‌هم ادغام می‌شوند تا اینکه همه اشیا در یک خوش‌های قرار بگیرند. گاهی این کار با اینکه مرحله صورت نمی‌گیرد و تنها اداهی یا پایه که به تعداد خوش‌های مردی برسد، خوش‌بندی با یا رویکرد به‌جای می‌کند که چند حالات ممکن است که یکی از این حالات را می‌توان درست کردن.
جهت اجرای گردند و به تنهی رسانند تحلیل هیپرخدای وازگان با استناد ملزومات از جمله ماتریس هیپرخدای تهیه شود و سیس ماتریس هم رخدادی به ماتریس همبستگی تبدیل شود. برای تهیه ماتریس سیلیبیژه‌های دارای فراوانی انتخاب گردید و در نتیجه ماتریس مربوطی ۹۸ درصد تکیه‌گر و سیس این ماتریس‌ها معمولی به ماتریس همبستگی تبدیل شده، نهایتاً خوش‌مانند مفاهم بر اساس نرم‌افزار آماری SPSS SPSS Inc., Chicago, Ill., USA) در مرحله بعد نمودار راهبردی خوش‌مانند موضوعی رسم شد; برای رسم نمودار راهبردی، پس از تکیه‌گر ماتریس‌ها جزئی کلیدی‌های هرکدام از خوش‌مانند برای نظارت و چالش‌های خوش‌مانند با استفاده از نرم‌افزار UCINET نمودار راهبردی رسم گردید. نمودار کلیدی‌های توصیف ارتباط درونی و همبستگی بین خوش‌مانند موضوعی متفاوت است. در این نمودار اغلب از محور افقی جهت ارائه مرکزیت (میانه همبستگی خوش‌مانند) و از محور عمودی جهت به اراز تمام جفت خوش‌مانند ممکن، آن دو خوش‌مانند انتخاب شوند که ESS کمتر دارند.

۲. دو خوش‌مانند که انتخاب شدهاند با هم ترکیب شوند.

۳. تا زمانی که همه اشیاء در یک خوش‌مانند قرار نگرفته‌اند، با تعداد خوش‌مانند به تعداد مورد نظر نسبت است، مرحله ۲۳ تکرار می‌شوند (۲۳).

جهت اجرای گردند و به تنهی رسانند تحلیل هیپرخدای وازگان با استناد ملزومات از جمله جهت خوش‌مانند ممکن، آن دو خوش‌مانند انتخاب شوند که ESS کمتر دارند.

۲. دو خوش‌مانند که انتخاب شدهاند با هم ترکیب شوند.

۳. تا زمانی که همه اشیاء در یک خوش‌مانند قرار نگرفته‌اند، با تعداد خوش‌مانند به تعداد مورد نظر نسبت است، مرحله ۲۳ تکرار می‌شوند (۲۳).

به واسطه راهبرد جستجوی مورد نظر در وعده‌ای مشخص شد تعداد ۲۳۴ مدرک مرتب طی سال‌های ۱۹۹۰ تا ۲۰۲۱ میلادی و تعداد ۲۳۴ پژوهشگر از ۸۸ پژوهشگر در این پایگاه نمایه شدند. شکل ۲ روند انتشار این پژوهش‌ها را به تفکیک سال نشان می‌دهد.
محصول انتشار مربوط به مجلات (مقالات، نقد و بررسی، سخن‌رانی، و مقالات زودآمد) به میزان 91% بوده است. از سوی دیگر، 9% پژوهش‌ها در دسته سایر موارد (همانیکاری، زندگی‌نامه، اخبار، نقده، پژوهش و ...) ثبت شده‌اند. در ادامه اطلاعات مربوط به سایر ویژگی‌های مختلف پنج رتبه پژوهش‌ها این جدول 1 امده است. بهطور متوسط هر مرتبه 66/66 درصد درصد مشترکه های ارائه شده در زبان‌های مختلف و نیز 36/88 درصد H-index در زبان انگلیسی ارائه شده. همچنین، در این بخش ترین

جدول 1: مشخصات پژوهش‌های مربوط به آرشیو پزشکی

جایگاه چهارم (تعداد) درصد	جایگاه سوم (تعداد، درصد)	جایگاه دوم (تعداد، درصد)	جایگاه گناهی (تعداد، درصد)	جایگاه نخست (تعداد، درصد)
کل و این (9%, 19، 4، 5)	انگلیسی (6/19، 7/19، 0، 0)	ایالات متحده (6/7، 7/19، 0، 0)	عربی (6، 6، 6، 6)	کشور
عربی (6/6، 6/6، 6/6، 6/6)	انگلیسی (6/6، 6/6، 6/6، 6/6)	ایالات متحده (6/6، 6/6، 6/6، 6/6)	عربی (6، 6، 6، 6)	ناکایاما T، Ota H، Uehara T
Abuela A، Hunter I، Iwaya M، Machado J، Pendleton C، Quinones-Hinojosa A	Beddhu S، Bruns FJ، Seddon P، Zeidel ML	Saul M		
(6/6، 6/6، 6/6، 6/6)	(6/6، 6/6، 6/6، 6/6)	(6، 6، 6، 6)		

درصد 1: مشخصات پژوهش‌های مربوط به آرشیو پزشکی

المؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
MEDICAL RESEARCH COUNCIL UK MRC، NIH NATIONAL CANCER INSTITUTE NCI، UK RESEARCH INNOVATION UKRI	NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA NSFC	WELLCOME TRUST
(6/38، 2/6)	(42/4، 3/5)	(8/3، 1/1)

المؤسسه (تعداد)	المؤسسه (تعداد)	المؤسسه (تعداد)
NATIONAL INSTITUTES OF HEALTH NIH USA، UNITED STATES DEPARTMENT OF HEALTH HUMAN SERVICES	EUROPEAN COMMISSION	CHINESE MEDICAL JOURNAL، EPIDEMIOLOGIA & PREVENZIONE
(1/3، 1/3)	(2، 2، 2)	(1/3، 1/3)

المؤسسه (تعداد)	المؤسسه (تعداد)	المؤسسه (تعداد)
NORTHWESTERN UNIVERSITY	UNIVERSITY OF MINNESOTA	UNIVERSITY OF IOWA
(6/7، 7/19، 0، 0)	(6/7، 7/19، 0، 0)	(6/7، 7/19، 0، 0)

المؤسسه (تعداد)	المؤسسه (تعداد)	المؤسسه (تعداد)
UNIVERSITY OF MICHIGAN	UNIVERSITY OF PENNSYLVANIA	UNIVERSITY OF KANSAS
(6/7، 7/19， 0، 0)	(6/7， 7/19، 0، 0)	(6/7، 7/19， 0، 0)

المؤسسه (تعداد)	المؤسسه (تعداد)	المؤسسه (تعداد)
UNIVERSITY OF KANSAS	UNIVERSITY OF IOWA	UNIVERSITY OF OKLAHOMA
(6/7، 7/19، 0، 0)	(6/7， 7/19، 0، 0)	(6/7، 7/19， 0، 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
EPI SOAR Consulting	Naval Hlth Res Ctr	Natl Inst Health Services
(6/7، 7/19، 0، 0)	(6/7، 7/19， 0، 0)	(6/7، 7/19، 0، 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
Inst Clin Evaluat Sci	EPI SOAR Consulting	Naval Hlth Res Ctr
(6/7， 7/19، 0، 0)	(6/7، 7/19، 0，0)	(6/7، 7/19، 0، 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
MEDICAL RESEARCH COUNCIL UK MRC، NIH NATIONAL CANCER INSTITUTE NCI， UK RESEARCH INNOVATION UKRI	NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA NSFC	WELLCOME TRUST
(6/38، 2/6)	(42/4، 3/5)	(8/3، 1/1)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
NATIONAL INSTITUTES OF HEALTH NIH USA， UNITED STATES DEPARTMENT OF HEALTH HUMAN SERVICES	EUROPEAN COMMISSION	CHINESE MEDICAL JOURNAL، EPIDEMIOLOGIA & PREVENZIONE
(1/3، 1/3)	(2، 2، 2)	(1/3، 1/3)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
NORTHWESTERN UNIVERSITY	UNIVERSITY OF MINNESOTA	UNIVERSITY OF IOWA
(6/7، 7/19، 0，0)	(6/7， 7/19، 0، 0)	(6/7، 7/19، 0، 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
UNIVERSITY OF KANSAS	UNIVERSITY OF IOWA	UNIVERSITY OF OKLAHOMA
(6/7، 7/19، 0، 0)	(6/7، 7/19، 0，0)	(6/7， 7/19， 0، 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
UNIVERSITY OF KANSAS	UNIVERSITY OF IOWA	UNIVERSITY OF OKLAHOMA
(6/7， 7/19، 0، 0)	(6/7， 7/19، 0，0)	(6/7， 7/19， 0， 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
EPI SOAR Consulting	Naval Hlth Res Ctr	Natl Inst Health Services
(6/7， 7/19، 0،0)	(6/7， 7/19， 0，0)	(6/7， 7/19， 0， 0)

مؤسسه (تعداد)	مؤسسه (تعداد)	مؤسسه (تعداد)
Inst Clin Evaluat Sci	EPI SOAR Consulting	Naval Hlth Res Ctr
(6/7، 7/19، 0，0)	(6/7， 7/19， 0，0)	(6/7， 7/19， 0， 0)
شدا. لازم به توضیح است در نمودار سلسله‌رای نخست‌رده مورد بررسی یک شاخه در نظر گرفته می‌شود.

جایگاه نخست (تعداد)	جایگاه دوم (تعداد)	جایگاه سوم (تعداد)	جایگاه چهارم (تعداد)	جایگاه پنجم (تعداد)
NEUROSCIENCES	461,896	HEALTH CARE SCIENCE	412,769	GENERAL INTERNAL
NEUROLOGY	448,842	SERVICES	288,642	MEDICINE
COMPUTER SCIENCE	377,692	UROLOGY	388,028	NEPHROLOGY
ENVIRONMENTAL	279,095	NEUROSCIENCES	323,929	NEUROLOGY
OCCUPATIONAL HEALTH	268,750	PSYCHIATRY	270,922	111,652
HEALTH SERVICES	256,927	GENERAL INTERNAL	265,769	MEDICINE

پژوهش‌های مرتبه بین‌جایی با این جوزه به خود اختصاص داده‌اند. همچنین استادان در نظر می‌رود این تولید علم و دریافت استادان در این حوزه دارای جایگاه اول است. همچنین جوزه حوزه دارای جایگاه اول است. همچنین جوزه این جوزه دارای جایگاه اول است. همچنین جوزه و اندازهٔ ۷ پژوهش رتبه ۱۲ از این جوزه کرد است. در نهایت وقتهای کودکان، بیشترین سهمی در تولید پژوهش‌های این جوزه داشته است. کشور ایران در میان کشورهای مشترک‌کننده با تولید و اندازهٔ ۷ پژوهش رتبه ۱۲ از این جوزه کرد است.

بر اساس جدول ۱، بیشترین تولیدات علمی و پژوهش‌های مرتبه با این جوزه به خود اختصاص داده‌اند. همچنین عناصری که بیشترین شباهت را دارند، دسته‌بندی شده و این دسته‌ها اولیه خوشه‌های کوچک را تشکیل می‌دهند. در نهایت وقتی شاهد کاهش می‌یابد، خوشه‌های کوچکتر ترکیب‌شده و تشکیل خوشه برگردد می‌دهند. این ترتیب را به‌طور از‌خون‌ها کلید‌واژه‌های قرار دارند که از انتخاب معنی‌اند ارتباط زیادی با محتوای خوشه ندارند. احتیاط وقوع این موضوع در تحلیل‌های هیپوژنگی معنی‌دار و وجود دارد زیرا این کلید‌واژه‌های انتخاب‌کننده کلید‌واژه‌های هستند که دارای قرارگیری پایین‌تر و نسبت به کلید‌واژه‌های اصلی خوشه‌ها، چندان تأثیری در نتیجه کار ندارند. در این نمودار ارتفاع بر از خوشه‌ها بیانگر آن است که در خوشه مردان حادثه در جه نقطه‌ها با یکدیگر ترکیب انجام دساند. همچنین خطوط خوشه‌های مربوط به کاهش و رشد در شاخص تفسیر است که با نظر متخصص موضوعی ترجمه می‌گردد (۲۶).}

Uehara T, Ota H, Nakajima T بر اساس جدول ۱، بیشترین تولیدات علمی و پژوهش‌های مرتبه با این جوزه به خود اختصاص داده‌اند. همچنین عناصری که بیشترین شباهت را دارند، دسته‌بندی شده و این دسته‌ها اولیه خوشه‌های کوچک را تشکیل می‌دهند. در نهایت وقتی شاهد کاهش می‌یابد، خوشه‌های کوچکتر ترکیب‌شده و تشکیل خوشه برگردد می‌دهند. این ترتیب را به‌طور از‌خون‌ها کلید‌واژه‌های قرار دارند که از انتخاب معنی‌اند ارتباط زیادی با محتوای خوشه ندارند. احتیاط وقوع این موضوع در تحلیل‌های هیپوژنگی معنی‌دار و وجود دارد زیرا این کلید‌واژه‌های انتخاب‌کننده کلید‌واژه‌های هستند که دارای قرارگیری پایین‌تر و نسبت به کلید‌واژه‌های اصلی خوشه‌ها، چندان تأثیری در نتیجه کار ندارند. در این نمودار ارتفاع بر از خوشه‌ها بیانگر آن است که در خوشه مردان حادثه در جه نقطه‌ها با یکدیگر ترکیب انجام دساند. همچنین خطوط خوشه‌های مربوط به کاهش و رشد در شاخص تفسیر است که با نظر متخصص موضوعی ترجمه می‌گردد (۲۶).
خوش‌های اول: اطلاعات بیماری-

خوش‌های دوم: تصویربرداری پزشکی-

خوش‌های سوم: پزشکی

بحث اصلی بر اساس داده‌های پیش‌بینی و بر اساس مدل‌های وارد لینکی:

Dendrogram using Ward Linkage:

Rescale Distance Cluster Combine
شکل ۳۴: خورشندی سلسه مراتب پژوهش‌های مرتبط با آرشیو پزشکی

همان‌طور که در شکل ۳ مشاهده می‌شود کلیدوژوه‌های پژوهش‌های مورد بررسی هفته خوشش تشکیل داده‌اند که در ادامه خوشش‌های مذکور بررسی می‌شوند.

خورشند اول: اطلاعات بیماری‌ها. نتایج مربوط به تحلیل هم وارکنی نشان داد که خوشش ۱ کلیه‌برگ‌های خوشش تشکیل شده در Walter Dandy و Pott disease.History بوته و سه کلیدوژوه شکل گیری خوشش نخست نشست داشته‌اند.

خورشند دوم: تصویربرداری پزشکی. کلیدوژوه‌های این مطلب توانسته بازخوانی کلیدوژوه‌های مربوط به خودش‌ها را از نشان می‌دهد. می‌توان این خوشش را Ultrasonography و تصویربرداری پزشکی نامگذاری نمود.

خورشند سوم: پزشکی هوشمند. با توجه به شناسایی Ambient مطالعه، و بررسی ۶۸ موضوع موجود در خوشش ۳ تفسیر Multi Agent Systems,Deep learning,Intelligence و... که بزرگ‌ترین خوشش نیز به حساب می‌آید انتخاب نام پزشکی هوشمند مناسب به نظر می‌رسد.

خورشند چهارم: سرطان (نمرورشناسی و نمونه‌برداری). موضوعات این خوشش که از ۴ کلیدوژوه تشکیل شده است شامل Leucine-rich repeat-containing G-Protein-coupled receptor ۵ RNA in situ hybridization Tumor budding.
گروه و نمودار راهبردی با استفاده از این نمرات تفسیر گردید (27). نمرات مربوط به تراکم و مرکزیت خوشه در جدول 2 نمایش داده می‌شود. لازم به ذکر است که مبدأ نمودار با توجه به میانگین مرکزیت و تراکم خوشه‌ها به ترتیب بر روی 1/4 و 1/2 تهیه گردید. تهیه مدار این سطح از این زیستی برای فرآیند اردون اشیای داخلی مثل خوشه در محیط آزمایشگاه و محیط آزمایشگاه در برابر آزمایشگاه بهینه و منظور دست یافتن به استانداردها و دستورالعمل‌های قابل قبول در همین راستا صورت می‌گیرد. این اطلاعات همچنین در جهت محیطات از سلامت فرآیندهای آزمایشگاهی به واسطه کنترل انتشار انواع آزمایشگاهی بیشتر از همیت تمایل انجام آن نیست. بنابراین باید برآموز و انجام کنترل آزمایشگاهی زیستی برای محافظت در برابر عفونت‌های آزمایشگاهی و کنترل انتشار آزمایشگاهی، در آزمایشگاه‌ها که از پارامتر و خطرات استفاده می‌شود، از آن‌ها است. بدیهی است تعیین نوع آزمایشگاه از نظر سطح این زیستی می‌تواند در توجه به آزمایشگاه‌های طراح آزمایشگاه‌های نزدیک گردید.

جدول 2): تراکم و مرکزیت خوشه‌های حاصل از تحلیل هیپوزاغی

مرکزیت	تراکم	عنوان خوشه	شماره خوشه
4	1332	خوشه 1: اطلاعات بیماری‌ها	1
11	1/1	خوشه 2: توصیه‌برداری پزشکی	2
68	0/15	خوشه 3: بررسی‌ها	3
4	1/1	خوشه 4: سرطان	4
5	1333	خوشه 5: فارمکولوژی	5
3	1/15	خوشه 6: داده‌های بار	6
5	1/15	خوشه 7: انتخاب پزشکی	7

ارتباط با سایر موضوعات و همچنین پیوندی که بین سایر کلیدوژوه‌ها داراست. در نمودار راهبردی محور افقی نشان داده مراکز میزان همبستگی خوشه‌ها و محور عمودی نشان داده مراکز (میزان توان ارتباط درونی خوشه) است.

خوشه سوم خوشه پزشکی هوشمند با مقدار 68 بیشترین مرکزیت و خوشه ششم خوشه داده بار مقیاس 1/5 بالاترین تراکم را دارا هستند. این بدان معناست که خوشه سوم که حاوی برترکارترین کلیدوژوه‌های بیشترین مرکزیت را دارد از نظر نفوذ،
شکل 4. نمودار راهبردی حوزه آرشه پزشکی

با توجه به نوع موضوعی در این حوزه، نمودار راهبردی ترسیم شده (شکل 4)، خوشه‌ها در سه منطقه دوم، سوم و چهارم حضور دارند. همان‌طور که نمودار راهبردی نشان می‌دهد، خوشه‌های یک، چهار، پنج، شش و هفت در ناحیه دوم قرار گرفته‌اند. لازم به توضیح است خوشه‌های یک در این ناحیه قرار دارند خوشه‌های محرور نبوده اما توصیه پایه‌ای هستند هرچند در مرتبت پایین تری نسبت به خوشه‌های ناحیه اول نمودار قرار دارند. خوشه دو که در ناحیه سوم قرار گرفته از لحاظ اهمیت و تأثیر در حوزه مورد پژوهش، در پایین‌ترین مرتبه نسبت به خوشه‌های دیگر قرار دارد. به بینای دیگر خوشه‌های ناحیه سوم نوظهور و با قابلیت بالا بوده چرا که به دلیل داشتن مرکزیت و تراکم پایین، از موضوعات خاصی‌های بوده و توجه انگیزی را به خود جلب گردیده. خوشه سوم در ناحیه چهارم نمودار راهبردی گرفته‌است که خوشه‌هایی که در ناحیه چهارم قرار می‌گیرند خوشه‌های محرور بوده‌اند اما هنوز توصیه نیافته‌اند. عبارت در دیگر این خوشه هنوز به برگ ترسیده است.

بحث

در سه دهه اخیر تعداد ۳۲۳ پژوهش مرتبی از ۱۳۲۴ نویسنده‌ی ایرانی ۵۴۸ نویسنده‌ی عالمی از ۲۳ کشور بر اساس وابستگی بازیگر شد و کشور ایران با ۷ پژوهش مرتبی چهارم و WOS چهاردهم را در میان ۳۲ کشور شماره‌کننده در پژوهش‌های این حوزه دارد. همچنین خوشه‌های محصل منشتر شده‌اند. پژوهش‌های محصل منشتر و با توجه به نوع موضوعی در این حوزه، نمودار راهبردی ترسیم شده (شکل 4)، خوشه‌ها در سه منطقه دوم، سوم و چهارم حضور دارند. همان‌طور که نمودار راهبردی نشان می‌دهد، خوشه‌های یک، چهار، پنج، شش و هفت در ناحیه دوم قرار گرفته‌اند. لازم به توضیح است خوشه‌های یک در این ناحیه قرار دارند خوشه‌های محرور نبوده اما توصیه پایه‌ای هستند هرچند در مرتبت پایین‌تری نسبت به خوشه‌های ناحیه اول نمودار قرار دارند. خوشه دو که در ناحیه سوم قرار گرفته از لحاظ اهمیت و تأثیر در حوزه مورد پژوهش، در پایین‌ترین مرتبه نسبت به خوشه‌های دیگر قرار دارد. به بینای دیگر خوشه‌های ناحیه سوم نوظهور و با قابلیت بالا بوده‌اند چرا که به دلیل داشتن مرکزیت و تراکم پایین، از موضوعات خاصی‌های بوده و توجه انگیزی را به خود جلب گردیده. خوشه سوم در ناحیه چهارم نمودار راهبردی گرفته‌است که خوشه‌هایی که در ناحیه چهارم قرار می‌گیرند خوشه‌های محرور بوده‌اند اما هنوز توصیه نیافته‌اند. عبارت در دیگر این خوشه هنوز به برگ ترسیده است.
آرشیوها در فرایندهای مختلف مربوط به برخی از پزشکان از جمله سرطان مورد نظر بیشتر قرار گرفته است. این فراخوان آرشیوها به منظور ثبت اطلاعات و تاریخچه پزشکان، همچنین داروهای استفاده شده و پیامدهای این مورد است. این فراخوان به مدت گذشته در جراحات وضعیت سلامت جامعه و مقابله با عوامل مخاطره شمار می‌شود (28). در این مقاله، تعداد سالهای مختلف، از دیگر کاربردهای آرشیوها در مورد این موضوعات پرداخته شده و در موارد مختلف، به منظور اطلاعات و داده‌های آشکارسازی موضوعات توسعت یافته و شناسایی شکافه‌ها و محاله‌ها و مقایسه آن با بایر جامعه، سایر دوره‌ها و گروه‌ها از اقدامات مهم است که می‌تواند ضمن کاهش خطرات بیماری‌های افتراقی سالمند و ناهنجاری‌های خاص بریزد کمک کند (29). به‌دست شکل هرکدام در نظر سطحی و انتخاب پژوهش‌های نوشنده است. این پژوهش‌ها در طول تجربه و برنامه‌ریزی در زمینه تحقیقات و تجویزات در زمینه پزشکی، به بهبود سلامت و سلامت‌جزییاتی جامعه می‌پردازند. در این المپیکهای پزشکی، از سوی دیگر، به نوعی می‌تواند به برتری در این زمینه کمک کند.

نتایج گیری

در میان موضوعات استخراج شده از پژوهش‌ها، کلیدواژه‌های Survival و Diagnosis و mortality را کسب کرده است. بر عهده‌های این موضوعات مربوط به پژوهش‌ها مورد توجه قرار گرفته است. این مقاله به منظور ثبت اطلاعات مربوط به تعداد موارد فوت، علی و عوامل مربوط به آنها، از پایگاه‌های اطلاعات مورد بررسی، پژوهش‌ها و مقابله با عوامل مخاطره شمار می‌شود. در این مقاله، تعداد سالهای مختلف، از دیگر کاربردهای آرشیوها در مورد این موضوعات پرداخته شده و در موارد مختلف، به منظور اطلاعات و داده‌های آشکارسازی موضوعات توسعت یافته و شناسایی شکافه‌ها و محاله‌ها و مقایسه آن با بایر جامعه، سایر دوره‌ها و گروه‌ها از اقدامات مهم است که می‌تواند ضمن کاهش خطرات بیماری‌های افتراقی ساند و ناهنجاری‌های خاص بریزد کمک کند (29).

در میان موضوعات استخراج شده از پژوهش‌ها، کلیدواژه‌های Survival و Diagnosis و mortality را کسب کرده است. بر عهده‌های این موضوعات مربوط به پژوهش‌ها مورد توجه قرار گرفته است. این مقاله به منظور ثبت اطلاعات مربوط به تعداد موارد فوت، علی و عوامل مربوط به آنها، از پایگاه‌های اطلاعات مورد بررسی، پژوهش‌ها و مقابله با عوامل مخاطره شمار می‌شود. در این مقاله، تعداد سالهای مختلف، از دیگر کاربردهای آرشیوها در مورد این موضوعات پرداخته شده و در موارد مختلف، به منظور اطلاعات و داده‌های آشکارسازی موضوعات توسعت یافته و شناسایی شکافه‌ها و محاله‌ها و مقایسه آن با بایر جامعه، سایر دوره‌ها و گروه‌ها از اقدامات مهم است که می‌تواند ضمن کاهش خطرات بیماری‌های افتراقی ساند و ناهنجاری‌های خاص بریزد کمک کند (29).
و از گان، ترکیب واژگان، ارتباط منعیات واژگان و تأثیر نمایه‌سازی اهمیت دارد و عدم توجه به هر یک از این موارد باعث عدم کیفیت واژگان مورد تحلیل خواهد شد. همچنین به کارگیری این روش در حوزه‌هایی که از لحاظ واژگان و مفاهیم مستعد نیستند، از جمله مشکلاتی اساسی در این تحلیل است که عدم توجه به آن نتیجه‌گیری‌های پژوهش را دچار تناقض می‌کند (12). بر اساس نتایج پژوهش حاضر، آرشیوهای پزشکی نقص مهمی در کشف علل مرگ و میر و به دنبال آن کاهش مرگ و میر، پیشگیری از بیماری‌ها و شیوع آنها، بهبود تشخیص‌ها، درمانها و نهایتاً ارتقای وضعیت نظام سلامت و بهداشت دارد. در پژوهش حاضر «خوشه ۲: پزشکی هوشمند» از خوشه‌های محوری اما نابالغ است. این در حالی است که موضوعات «خوشه ۲: تصویربرداری پزشکی» از موضوعات نوآوران در حوزه آریاشو پزشکی است. بیشتر می‌شود نتایج پژوهش حاضر به سازمان‌ها و انجمن‌های مربوطه ارائه شود.

سپاسگزاری

بدرین وسیله نویسندگان، از جناب اقای جامع غلامی، که در مرحله نام‌گذاری و تحلیل خوشه‌ها با پدیده‌ای نکات ارزشمند، راهنمای و راهگشای پژوهشگران در مطالعه حاضر بوده‌اند کمال تشکر و قدردانی را دارند.

تظاهر در منافع

نویسنده‌گان هنگام تعارض در منافع را گزارش نکرده‌اند.

منابع مالی

این مقاله پژوهش مستقل است که به‌دست حمایت مالی سازمانی انجام گرفته است.