Immunocytochemical Demonstration of Tissue-type Plasminogen Activator in Endocrine Cells of the Rat Pituitary Gland

PETER KRISTENSEN,** LARS S. NIELSEN,** JAN GRØNDAHL-HANSEN,** PETER B. ANDRESEN,* LARS-INGE LARSSON,* and KELD DANØ**

*Finsen Laboratory, Finsen Institute; **Laboratory of Tumor Biology; and *Unit of Histochemistry, Institute of Pathology, University of Copenhagen, DK-2100 Copenhagen, Denmark

ABSTRACT We immunocytochemically stained rat pituitary glands using antibodies against plasminogen activators of the tissue type (t-PA) and the urokinase type (u-PA). A large population of endocrine cells in the anterior lobe of the gland displayed intense cytoplasmic immunoreactivity with anti-t-PA. In some areas of the intermediate lobe we found weak staining, and we observed weakly staining granular structures in the posterior lobe. Controls included absorption of the antibodies with highly purified t-PA. In addition, SDS PAGE followed by immunoblotting of pituitary gland extracts revealed only one band with an electrophoretic mobility similar to that of t-PA when stained with anti-t-PA IgG. No u-PA immunoreactivity was detected in the rat pituitary gland. Sequential staining experiments using antibodies against growth hormone and t-PA demonstrated that the t-PA-immunoreactive cells constitute a large subpopulation of the growth hormone–containing cells. These findings represent the first direct evidence for the presence of t-PA in cell types other than endothelial cells in the intact normal organism. In this article we discuss the implications of the results for a possible role of t-PA in the posttranslational processing of prohormones.

Plasminogen activators are serine proteases, able to convert the proenzyme plasminogen into the active protease plasmin. It is well documented that there are at least two types of mammalian plasminogen activators. The two types that can be distinguished by differences in molecular weight (Mr) and immunological reactivity (for reviews see references 1–4) are products of different genes (5–8). Both the urokinase-type plasminogen activator (u-PA), Mr ~ 50,000, and the tissue-type plasminogen activator (t-PA), Mr ~ 70,000, are secreted from cells in culture as partly or completely inactive proenzymes (9–12), and it is generally believed that they exert their biological functions by activation of extracellular plasminogen.

Production and release of plasminogen activators have been implicated in thrombolysis (for reviews see references 2 and 3) and a variety of biological processes involving tissue degradation (for reviews see references 4 and 13), for example the postlactational involution of the mammary gland (14), ovulation (15), implantation of the fertilized ovum (16, 17), inflammation (18), and cancer (4, 13, 19–21). A role of plasminogen activators in the processing of prohormones has also been proposed (22–24). u-PA seems to be the type of plasminogen activator involved in tissue degradation (for review see reference 4), whereas t-PA until now has been linked primarily with thrombolysis (3).

Recent immunocytochemical studies have shown that u-PA immunoreactivity is widely distributed in the normal mouse. Most notably, u-PA was found in widely disseminated connective tissue cells with a fibroblast-like morphology that occurred in high numbers in the lamina propria of the gastrointestinal tract and to a lesser extent in a number of other organs. u-PA immunoreactivity was also found in the epithelial cells of the proximal and distal kidney tubules and the ductus deferens, pulmonary pneumocytes, decidual cells of the placenta, and epithelial cells of involuting mammary glands, whereas no immunoreactivity was found in endothelial cells (25). Strong u-PA immunoreactivity has also been
demonstrated in invasively growing areas of the murine Lewis lung carcinoma (21).

T-PA immunoreactivity has been demonstrated in endothelial cells of veins and other blood vessels of several human tissues (26), but no systematic immunocytochemical studies on the occurrence of t-PA in the intact organism have been reported. We now report that t-PA immunoreactivity is present in endocrine cells of intact rat pituitary glands and that these cells constitute a large subpopulation of the cells that contain growth hormone immunoreactivity.

MATERIALS AND METHODS

Materials: We obtained the following materials from the indicated sources: protein-A Sepharose and cyanogen bromide-activated Sepharose (Pharmacia Fine Chemicals, Uppsala, Sweden); swine IgG anti-rabbit immunoglobulins (Dakopatts, Copenhagen); peroxidase-coated protein A (Amersham International, Amersham, U.K.); o-phenylene-diamine and Tween 20 (Merck A.G. Darmstadt); 3-aminio-9-ethyl-carbazole (Sigma Chemical Co., St. Louis, MO); Immunoplate 1 (NUNC, Roskilde, Denmark); bovine serum albumin (BSA; Behring, Warburg, Federal Republic of Germany); and Millipore nitrocellulose sheets GSWP 00010 (Millipore, Bedford, MA). All other materials were those described previously (9, 10, 12, 21–31) or of the best commercially available grade.

Animals: Male (unless otherwise stated) Wistar rats, 300–350 g, were anesthetized with diethyl ether and fixed by intracardiac perfusion with ~60 ml cold (4°C) 0.01 M sodium phosphate buffer, pH 7.4, with 0.14 M NaCl (PBS) (6) followed by ~60 ml cold (4°C) 1% (wt/vol) p-formaldehyde solution in 10 mM sodium phosphate buffer, pH 7.4. Alternatively, tissue was removed from diethyl ether-anesthetized animals without any preceding perfusion and immediately frozen in isopentane on dry ice. Tissue used for zymographic or immunoblotting analysis was removed from animals perfused with ~60 ml of PBS after diethyl ether anesthesia.

Tissue Treatment: For immunocytochemistry, pituitary glands were dissected from animals perfused with paraformaldehyde and postfixed for 14–16 h at 4°C, then rinsed for 4–6 h in 0.1 M sodium phosphate buffer, pH 7.4, containing 20% (wt/vol) sucrose. Pituitary glands were then frozen in melting isopentane and homogenized with 75 mM potassium acetate buffer, pH 5.0, 10 μl/mg wet weight. The extracts were centrifuged (16,000 × g) at 4°C for 10 min and the supernatants were stored frozen (~20°C) until analysis.

Enzyme-linked immunosorbent Assay: Immunoplates were coated overnight at 4°C with 2 μg/ml of antigen or BSA in 0.1 M Na2CO3, pH 9.8, 100 μl/well. The plates were washed and the remaining protein-binding sites were blocked by incubation with 200 μl 0.1% (wt/vol) bovine serum albumin in TBS for 30 min, briefly rinsed in TBS-Triton, and incubated with different concentrations of antibodies. We found optimal staining with concentrations of 4–10 μg/ml when an 18 h incubation at 4°C was used followed by a 1 h re-equilibration at room temperature. The site of the antibody-antigen reaction was demonstrated by sequential incubation with swine IgG-anti-rabbit immunoglobulin (diluted 1:30), horseradish peroxidase-coated protein A (diluted 1:200), and rabbit peroxidase-antiperoxidase complexes (diluted 1:70), each for 30 min at room temperature, with intense washing with TBS-Triton between each incubation period. All antibody dilutions were performed with TBS containing 0.25% BSA. Peroxidase activity was visualized with diaminobenzidine-H2O2 (29) and sections were lightly counterstained with haematoxylin.

Controls were as recommended by Sternberger (33) and included (a) omission of first or second layer of antibodies or omission of peroxidase–coupled protein A and peroxidase–antiperoxidase complexes, (b) substitution of primary antibodies by preimmune IgG from the same rabbit, and (c) absorption of the antibodies with the corresponding antigen. Absorption of t-PA and u-PA was performed by passing the IgG preparations twice through Sepharose columns (1 ml) coupled with highly purified preparations of human t-PA (see reference 10) and mouse u-PA (see reference 27). As a control, aliquots of the respective IgG preparations were passed twice through similar columns coupled with the same amount of BSA. All columns were equilibrated with TBS and developed by gravity. Enzyme-linked immunosorbent analysis with human u-PA as antigen demonstrated that the concentration of t-PA–absorbed anti-t-PA needed to obtain identical absorbance readings was ~3,000-fold higher than that needed of nonabsorbed anti-t-PA IgG.

For the sequential staining experiments, cryostat sections were initially stained for t-PA as described above, except that the peroxidase activity was demonstrated with 3-aminio-9-ethylcarbazole (29). After photography the peroxidase reaction product was eluted with ethanol, and antibodies bound to the sections were removed by oxidation as described (30, 34). Thereafter incubation of each section with swine IgG anti-rabbit immunoglobulin and rabbit peroxidase–antiperoxidase complexes was followed by development with 3-aminio-9-ethylcarbazole to ensure the efficiency of the antibody elution. Sections completely negative after this development were then processed for staining with rabbit anti-human growth hormone or rabbit anti-human ACTH, diluted 1:100/1:250 using a 30-minute incubation at room temperature. This was followed by incubation with swine IgG anti-rabbit immunoglobulin, and rabbit peroxidase–antiperoxidase complexes and the sections were developed with diaminobenzidine-H2O2 as described above.

Electrophoresis and immunoblotting: SDS PAGE and electrophoretic transfer of the proteins to nitrocellulose paper were performed as described (25). The nitrocellulose paper was air dried and stained in 1% (wt/vol) paraformaldehyde in 10 mM sodium phosphate buffer, pH 7.4, 0.05% Tween 20 at 4°C. Immunocytochemical staining of the nitrocellulose replicas was performed in endocrine cells of intact rat pituitary glands and that these cells constitute a large subpopulation of the cells that contain growth hormone immunoreactivity.
RESULTS

Immunocytochemical Findings

Immunocytochemical staining of rat pituitary glands with anti-t-PA revealed immunoreactivity in a number of endocrine cells in the anterior lobe of the rat pituitary gland (Fig. 1). Some of the cells were intensively stained, and others stained more weakly. Some endocrine cells of the anterior lobe contained no detectable immunoreactive material. The t-PA-immunoreactive material was located solely in the cytoplasm of the cells, often with a distinct granular appearance (Fig. 2). In some areas of the pars intermedia of rat pituitary gland we found a weak staining (result not shown), and in other areas we observed no immunoreactivity (Fig. 1). The posterior lobe contained many small areas, with apparently granular weak immunoreactivity (Fig. 1). To evaluate the possibility that the histological location of t-PA was somewhat altered during the perfusion fixation, rat pituitary glands were excised and frozen in isopentane on dry ice. Sections were thawed in 1% (wt/vol) paraformaldehyde in 10 mM sodium
phosphate, pH 7.4, and stained immunocytochemically. The cellular localization of the immunoreactivity was similar to that found with perfused tissue, although the staining intensity was lower and the tissue morphology much less satisfactory (results not shown). No staining was found when the primary antibody was replaced either by preimmune IgG, TBS-BSA, or anti-t-PA previously absorbed with highly purified t-PA. No endogeneous peroxidase was observed in the perfusion-fixed pituitaries.

Experiments with sequential staining of the same sections for t-PA followed by staining for growth hormone demonstrated that the t-PA-immunoreactive cells also contained growth hormone immunoreactivity (Fig. 3). However, some cells that contained growth hormone immunoreactivity were negative when stained for t-PA (Fig. 3). Apparently, all t-PA-staining cells also contained growth hormone.

When the staining pattern for t-PA and ACTH was compared using the sequential staining method, we observed no correlation (results not shown).

Staining with anti-u-PA did not lead to detection of immunoreactivity in any part of the rat pituitary gland (results not shown).

Zymographic and Immunoblotting Analysis

Zymographic analysis of extracts of rat pituitary glands showed the presence of only one plasminogen activator with an apparent Mr of ~67,000 (Fig. 4). We previously reported that the high molecular weight form of u-PA from rat urine under identical conditions migrates with an Mr of ~48,000. No plasminogen activator with this electrophoretic mobility was detected in the rat pituitary gland extracts (Fig. 4). The plasminogen activator of Mr ~67,000 was removed from the extracts by passage through a Sepharose-column coupled with anti-human t-PA IgG (Fig. 4). Furthermore, analysis of the same pituitary gland extracts with SDS PAGE followed by immunoblotting with the use of anti-human t-PA showed one stainable band, with an Mr ~ 67,000, similar to that of human t-PA (Fig. 5).

DISCUSSION

The findings that (a) the apparent Mr of the plasminogen activator of rat pituitary gland extracts was similar to that previously reported for human t-PA (~67,000, reference 31), (b) it binds to anti-human t-PA IgG, and (c) a protein band with a similar electrophoretic mobility is stained with anti-human t-PA IgG in immunoblotting indicate that this plasminogen activator is t-PA and that the anti-human t-PA IgG cross-reacts with rat t-PA. The latter conclusion is further supported by the fact that staining of other rat tissues with anti-human t-PA showed immunoreactivity in endothelial cells of veins and other blood vessels (results not shown) in a manner comparable to that reported for human tissues with the same antibodies (26).

Staining and absorption controls clearly demonstrated that
FIGURE 3 Sequential staining for t-PA (left) and growth hormone (right). After staining for t-PA the reaction product and antibodies were eluted and the section was stained for growth hormone (see Materials and Methods). Note that all the t-PA-containing cells contain growth hormone (straight arrows) but that a few apparently t-PA-negative cells contain growth hormone immunoreactivity (curved arrow).

FIGURE 4 Zymographic analysis of extracts of rat pituitary glands. Pituitary glands of six rats were extracted and 25 µl of the extract was applied to each of two Sepharose columns coupled with either 2 mg anti-t-PA IgG (lane a) or 2 mg preimmune IgG (lane b) and equilibrated with TBS. The columns were developed with TBS and the run-through and wash fractions (2.4 ml) were collected, dialyzed against 0.1% (wt/vol) SDS, and freeze-dried. The precipitate was dissolved in sample buffer without SDS and subjected to SDS PAGE followed by zymography for plasminogen activators for 4 h at 37°C. A zymogram of the original pituitary extract was identical to that shown in lane b. No lysis was seen when plasminogen was omitted from the agarose gel (results not shown). The localization of marker proteins stained by Coomassie Blue are indicated.

The staining of the pituitary gland with anti-t-PA was due to immunological binding of the purified IgG preparation to tissue components. The results of the absorption experiments with the highly pure t-PA (detection limit for contaminating proteins was ~5% as evaluated by SDS PAGE followed by Coomassie Blue staining), obtained by affinity chromatography with a monoclonal antibody, make it unlikely that the staining is due to contaminating antibodies. Furthermore, the finding that the immunoblotting analysis of the pituitary gland extracts revealed that only one band was stained with anti-t-PA, and the fact that this band had an electrophoretic mobility similar to that of human t-PA, makes it unlikely that the staining or part of the staining is due to cross-reaction of the anti-t-PA IgG with molecules different from rat t-PA. We thus find it very likely that the staining demonstrated in this study was due to the presence of authentic t-PA. These findings represent the first direct evidence for the presence of t-PA in (and probably production by) cell types other than endothelial cells (26, 36) in the intact normal organism and therefore point to t-PA's having functions other than participating in thrombolysis (see below and reference 4 for a further discussion).

Our sequential staining experiments showed that the cells containing t-PA immunoreactivity also contained growth hormone immunoreactivity and that the t-PA–containing cells constitute a large subpopulation of the somatotrophs. After elution of the t-PA staining, each section was stained again with swine anti-rabbit immunoglobulin and rabbit peroxidase-antiperoxidase complexes, and only sections completely devoid of reaction were stained for the second antigen. Furthermore, the finding that some t-PA-negative cells display growth hormone immunoreactivity, the finding of a more intensive staining with anti-human growth hormone antiserum, and the lack of correspondence when anti-ACTH antiserum was employed all make it improbable that the antibody elution was insufficient.

The lack of detectable u-PA immunoreactivity was not due to a lack of cross-reaction of the anti–mouse u-PA IgG with rat u-PA, because such a cross-reaction has been demonstrated (28). It is, however, possible that the anti–mouse u-PA IgG could not stain rat u-PA under the conditions used, and we therefore stained rat kidney with the anti–u-PA IgG. These experiments revealed a distribution of u-PA immunoreactivity in epithelial cells of proximal and distal kidney tubules (results not shown) similar to that previously reported in mouse kidney (25), indicating that these antibodies can stain rat u-PA. The lack of detectable u-PA immunoreactivity in the rat pituitary gland agrees with similar results previously reported for the mouse pituitary gland (25).

The presence of plasminogen activators of nondetermined type in endocrine tissue was first noted in extracts of human
The localization of marker proteins stained by Amido black (21) are through Sepharose columns coupled with BSA (lanes a) or purified 4) was applied to each of three lanes (?a-/c). Purified human t-PA tracts of rat pituitary glands. 25/zl of the extract (see legend to Fig. pituitary, thyroid, and adrenal glands (37). By overlaying of tissue sections with a fibrin layer containing plasminogen, the secretion of insulin (23).

It was recently reported that rat pituitary gland cells in culture secreted both u-PA and t-PA, and it was demonstrated that the total plasminogen activator activity in the cell cultures could be modulated by a number of substances known to modulate the secretion of insulin (23).

At present the only known natural substrate for t-PA is plasminogen, which is converted to plasmin by a cleavage of an arginine-valine bond (43). T-PA could be involved in the processing of prohormones either by a direct catalytic activity on the respective prohormones or by activation of plasminogen to plasmin, in which turn could catalyze the processing. Alternative possibilities are that t-PA or plasmin could participate in prohormone conversion by activation of processing enzymes present in a proenzyme form. To evaluate these possibilities further studies are needed of the localization of t-PA on the electron microscopic level and of the possible presence of plasminogen in the t-PA immunoreactive cells.

We acknowledge the excellent technical assistance of Kirsten Lund Jakobsen, Vivi Kielberg, Jette Mandelbaum, Anita Kiemer, and John Post, and the kind gift of antisera from the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases.

Received for publication 10 September 1984, and in revised form 3 April 1985.

REFERENCES

1. Christman, J. K., S. C. Silverstein, and G. Acs. 1977. Plasminogen activators. In Prostates in Mammalian Cells and Tissues. A. J. Barrer, editor. Elsevier/North Holland Biomedical Press, Amsterdam. 92-149.

2. Astrup, T. 1978. Fibrinolysis—An overview. In Progress in Chemical Fibrinolysis and Thrombolysis. Vol. 2, J. F. Davidson, R. M. Rowan, M. M. Samama, and P. C. Desnoyers, editors. Raven Press, New York. 1-57.

3. Colen, D. 1980. On the regulation and control of fibrinolysis. Thromb Haemostasis. 43:77-89.

4. Dansa, K., P. A. Andersen, J. Grendahl-Hansen, P. Kristensen, L. S. Nielsen, and L. Skriner, 1985. Plasminogen activators, tissue degeneration and cancer. Adv. Cancer Res. In press.

5. Steffens, G. J., W. A. Ganzler, F. Orntig, E. Frankus, and L. Flohe. 1982. The complete amino acid sequence of low molecular mass urease from human urine. Hoppe-Seyler's Z. Physiol. Chem. 363:1043-1058.

6. Edlund, T., T. Ny, M. Rahv, L.-O. Hedén, G. Palm, E. Holmgren, and S. Josephson. 1983. Isolation of cDNA sequences coding for a part of human tissue plasminogen activator. Proc. Natl. Acad. Sci. USA. 80:349-352.

7. Personio, D., W. E. Holmes, W. J. Kohr, R. H. Harkins, G. A. Vehar, C. A. Ward, W. F. Bennett, E. Velvert, P. H. Seeberg, H. L. Heynerer, D. W. Goodell, and D. Colen. 1983. Cloning and expression of human tissue type plasminogen activator cDNA in E. coli. Nature (Lond.). 363:214-221.

8. Ny, T., F. Elgh, and B. Lund. 1984. The structure of the human tissue-type plasminogen
activator gene. Correlation of intron and exon structures to functional and structural domains. Proc. Natl. Acad. Sci. USA. 81:5355-5359.

9. Skriver, L. S. Nielsen, R. Stephens, and K. Dane. 1982. Plasminogen activator as an active protease from murine cells transformed by sarcoma virus. Eur. J. Biochem. 124:409-414.

10. Nielsen, L. S., and E. Reich. 1983. Purification of a proenzyme from plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry. 21:6410-6415.

11. Wun, T.-C., L. Ossowski, and E. Reich. 1982. A proenzyme form of human urokinase. J. Biol. Chem. 257:7626-7628.

12. Andreassen, P. A., and E. L. Wilson. 1978. Localization of plasminogen activator in Lewis lung carcinoma. J. Cell Biol. 79:108-112.

13. Reich, E. 1978. Activation of plasminogen: a general mechanism for producing localized extracellular proteolysis. In Molecular Basis of Biological Degradative Processes. R. D. Berlin, H. Herrmaan, I. H. Lepow, and J. M. Tanzer, editors. Academic Press, Inc., New York. 155-169.

14. Ossowski, L., D. Biegel, and E. Reich. 1979. Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell. 16:929-940.

15. Beers, W. H. 1975. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell. 6:379-386.

16. Strickland, S., E. Reich, and M. I. Sherman. 1976. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell. 9:231-240.

17. Strickland, S., and V. Madavi. 1978. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 15:393-404.

18. Vassalli, J. D., J. Hamilton, and E. Reich. 1976. Macrophage plasminogen activator: modulation of enzyme production by anti-inflammatory steroids, mitotic inhibitors and cyclic nucleotides. Cell. 20:7-21.

19. Unkeless, J. C., A. Tobia, L. Ossowski, J. P. Quigley, D. B. Ritkin, and E. Reich. 1973. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumors. J. Exp. Med. 137:83-111.

20. Ossowski, L., and E. Reich. 1983. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell. 35:411-419.

21. Skriver, L. S., K. Dane, L. S. Nielsen, P. B. Andresen, P. Kristensen, and K. Dane. 1984. Immunocytochemical localization of urokinase-type plasminogen activator in the hypothalamus and the amygdala of the mouse. J. Histochem. Cytochem. 26:322-324.

22. Dowdle, E. B., C. Rabianwitz, and E. L. Wilson. 1978. Localization of plasminogen activator in the hypothalamus and the amygdala of the mouse. South Aft. J. Sci. 74:390-391.

23. Virji, M. A. G., J.-D. Vassalli, R. D. Etensen, and E. Reich. 1980. Plasminogen activator of islets of Langherans: modulation by glucose and correlation with insulin production. Proc. Natl. Acad. Sci. USA. 77:875-879.

24. Granelli-Piperno, A., and E. Reich. 1983. Plasminogen activators of the pituitary gland: enzyme characterization and hormonal modulation. J. Cell Biol. 97:1029-1037.

25. Larsson, L.-I., L. Skriver, L. S. Nielsen, J. Grundahl-Hansen, P. Kristensen, and K. Dane. 1984. Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. J. Cell Biol. 98:894-903.

26. Kristensen, P., L.-I. Larsson, L. S. Nielsen, J. Grundahl-Hansen, P. A. Andresen, and K. Dane. 1984. Human endothelial cells contain one type of plasminogen activator. FEBS (Fed. Eur. Biochem. Soc.) Lett. 168:33-37.

27. Danay, K., V. Muller, L. Ossowski, and L. S. Nielsen. 1980. Purification and characterization of a plasminogen activator from mouse cells transformed by an oncogenic virus. Biochem. Biophys. Acta. 631:542-555.

28. Danay, K., L. S. Nielsen, V. Muller, and M. Englund. 1980. Inhibition of a plasminogen activator from oncogenic virus-transformed mouse cells by rabbit antibodies against the enzyme. Biochem. Biophys. Acta. 630:146-151.