Journal Portfolio Analysis for Countries, Cities, and Organizations: Maps and Comparisons?

Loet Leydesdorff, Gaston Heimeriks, Daniele Rotolo
SPRU Working Paper Series (ISSN 2057-6668)

The SPRU Working Paper Series aims to accelerate the public availability of the research undertaken by SPRU-associated people of all categories, and exceptionally, other research that is of considerable interest within SPRU. It presents research results that in whole or part are suitable for submission to a refereed journal, to a sponsor, to a major conference or to the editor of a book. Our intention is to provide access to early copies of SPRU research.

Editors
Tommaso Ciarli
Daniele Rotolo

Associate Editors
Florian Kern
Paul Nightingale,
Ben Martin,
&
Ohid Yaqub
Matias Ramirez
Joe Tidd &
Carlos Sato
Maria Savona &
Mariana Mazzucato
Andrew Stirling
Caitriona McLeish

Area
Energy
Science, & Technology Policy
Development
Technology Innovation
Management
Economics of Technological Change
Transitions
Civil military interface

Contact
T.Ciarli@sussex.ac.uk
D.Rotolo@sussex.ac.uk
F.Kern@sussex.ac.uk
P.Nightingale@sussex.ac.uk
B.Martin@sussex.ac.uk
O.Yaqub@sussex.ac.uk
Matias.Ramirez@sussex.ac.uk
J.Tidd@sussex.ac.uk
C.E.Y.Sato@sussex.ac.uk
M.Savona@sussex.ac.uk
M.Mazzucato@sussex.ac.uk
A.C.Stirling@sussex.ac.uk
C.A.McLeish@sussex.ac.uk

Disclaimer
The works available here are the responsibility of the individual author(s) and do not necessarily represent the views of other SPRU researchers. As matters of policy and practice, SPRU does not endorse individual research contributions.

Guidelines for authors
Papers shall be submitted in pdf or Word format. They should contain a title, an abstract, and keywords. Papers should be submitted to one of the Editors, who will process them and send them to the appropriate Associate Editor. Two members of SPRU will be asked to provide a short written review within three weeks. The revised versions of the paper, together with a reply to the reviewers, should be sent to the Associate Editor, who will propose to the Editors its publication on the series. When submitting the authors should indicate if the paper has already undergone peer-reviewing, in which case the Associate Editors may decide to skip internal review process.

Websites
SWPS: www.sussex.ac.uk/spru/research/swps
IDEAS: ideas.repec.org/s/sru/ssewps.html
Research Gate: www.researchgate.net/journal/2057-6668_SPRU_Working_Paper_Series
Journal Portfolio Analysis for Countries, Cities, and Organizations: Maps and Comparisons?

Loet Leydesdorff, Gaston Heimeriks, and Daniele Rotolo

1 Amsterdam School of Communication Research (ASCoR), University of Amsterdam, Amsterdam, The Netherlands
2 Department of Innovation Studies, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
3 SPRU — Science Policy Research Unit, University of Sussex, Brighton, United Kingdom

Brief communication — Version: March 19, 2015
Accepted for publication in the
Journal of the Association for Information Science and Technology

Abstract

Using Web-of-Science data, portfolio analysis in terms of journal coverage can be projected on a base map for units of analysis such as countries, cities, universities, and firms. The units of analysis under study can be compared statistically across the 10,000+ journals. The interdisciplinarity of the portfolios is measured using Rao-Stirling diversity or the \(D^3 \) measure proposed by Zhang et al. (2015). At the country level we find regional differentiation (e.g., Latin-American or Asian countries), but also a major divide between advanced and less-developed countries. Israel and Israeli cities outperform other nations and cities in terms of diversity. Universities appear to be specifically related to firms when a number of these units are exploratively compared. The instrument is relatively simple and straightforward, and one can generalize the application to any document set retrieved from the Web-of-Science (WoS). Further instruction is provided online at http://www.leydesdorff.net/portfolio.

Keywords: map; journal; portfolio; firm; university; city; country.

*Corresponding author: loet@leydesdorff.net
†gheimeriks@gmail.com
‡d.rotolo@sussex.ac.uk
1 Introduction

Like other forms of portfolio management (for a recent literature review, see Rafols et al., 2010; Wallace and Rafols, 2015; Zhang et al., 2011), portfolio analysis in terms of journals may provide insights into the specialization of countries, cities, or knowledge-producing organizations such as universities and firms. Analytically, the matrix of journals versus countries has been basic to evaluative bibliometrics (Narin, 1976; Small and Garfield, 1985). In this brief communication, we introduce a generalized instrument to generate such a matrix for the purpose of mapping and analyzing portfolios using tools available online at the Web-of-Science (WoS) and http://www.leydesdorff.net/portfolio.

The base map onto which the portfolios can be overlaid was provided by Leydesdorff et al. (2013). Portfolios can be disaggregated at the city-level, the level of organizations, or — more generally — any document set retrieved from WoS. In addition to the visuals (using VOSviewer; van Eck and Waltman, 2010), the data can be analyzed statistically using the matrix generated in each analysis in formats compatible to SPSS and Pajek/UCINET. Analytically, this further extension enables the user to compare among units (e.g., firms), whereas the visual maps provide an overview of the results.

2 Methods and materials

First, the user is invited to identify a document set by using the "Advanced Search" interface of WoS. The identified documents can be examined online using the analytical interface of WoS, namely "Analyze Results". In order to map these documents across journals, in this interface, the user chooses to rank the output in terms of "source titles", then ticks "all data rows", and saves the file "analyze.txt". This file contains the list of journal names where the identified documents were published and the numbers of documents for each journal name.

On February 12, 2015, for example, we searched for all documents involving at least one organization based in the Netherlands and published in the year 2013. The following search string was used in the advanced interface of WOS: "cu=Netherlands and py=2013". This recalled 49,000 documents listed in 4,632 of the 10,542 source titles/journal names in the Science Citation Index and Social Science Citation Index of WoS. We use 2013-data throughout this study because, at the date of this research, the indexing of documents published in the year 2014 was not yet complete.
The file *analyze.txt* should be renamed. In this case, we renamed the file "nl.txt". The routine *portfolio.exe* prompts the user for this file name and then generates a file "nl.vos" that can be opened directly in VOSviewer. Figure 1 depicts the map generated from the *nl.txt* file. Figure 1 shows that the Netherlands has considerable coverage in most journals contained on this map. However, a cluster of journals without coloring at the bottom of the map can be identified as journals interfacing psychology and psycho-analysis. The interactive map (in VOSViewer) enables the user to explore the associated journal names in considerable detail.

![Figure 1: Journal Portfolio Map for the Netherlands in 2013](source)

Source: Authors’ elaboration, Web-of-Science data.

The routine *portfolio.exe* also generates the Rao-Stirling diversity value (Rao, 1982; Stirling, 2007) and the modification of this measure (D^3) recently proposed by Zhang et al. (2015). These measures are reported in the file "rao.dbf". Diversity can be considered as a measure of the interdisciplinarity of the portfolios under study (Rafols and Meyer, 2010; Stirling, 2007).

The vector containing the information of the number of documents for each of the 10,000+

1 The coloring of the map is based on the community-finding algorithm in VOSviewer (Leydesdorff et al., 2013; Waltman et al., 2010).
journals is saved as an additional column in the file "matrix.dbf". This file enables the user to compare vectors for different units of analysis (e.g., in terms of their cosine-normalized similarities). After finishing the analysis for a set of units to be compared, one can run mtrx2cos.exe that generates the files "cosine.net" and "coocc.dat" in the Pajek and UCINET formats, respectively, for the purpose of network visualization and analysis. (After deleting the files "matrix.dbf" and "rao.dbf", these files are regenerated from scratch for a new round of analyses.)

Rao-Stirling diversity is defined as follows (Rao, 1982; Stirling, 2007):

\[
\Delta = \sum_{ij} p_i p_j d_{ij}
\]

(1)

where \(d_{ij}\) is a disparity measure between two classes \(i\) and \(j\) — the categories are in this case journals — and \(p_i\) is the proportion of elements assigned to each class \(i\). As the disparity measure, we use the distances on the map (Leydesdorff et al., 2013). The coordinates for each journal on the map are provided in a companion file "citing.dbf" that can also be obtained from the website.

Zhang et al. (2015) argues that \(2D^S\) provides a true diversity measure that outperforms Rao-Stirling diversity (\(\Delta\)) because \(2D^S = 2.0\) is twice as diverse as \(2D^S = 1.0\). These authors formulate:

\[
2D^S = 1/(1 - \Delta)
\]

(2)

where \(\Delta\) is the Rao-Stirling diversity (Eq. 1). This improved measure varies from 1 to \(\infty\) when \(\Delta\) varies from 0 to 1. The transformation is monotonic and the value of \(2D^S\) follows directly from that of the Rao-Stirling diversity using Eq. 2. Both measures are provided for each case in the file "rao.dbf". Note that these are diversity measures of each portfolio in terms of the journal composition.

2 Each vector is stored in the matrix as a variable with the original file name as a label, in this case "NL". For this reason, the name of the original file (i.e. nl.txt) name should not contain more than ten characters.

3 Computation of \((1 - \text{cosine})\) values between each two journal points can become too intensive for interactive usage.
3 Results

3.1 Portfolio analysis at the country-level

To perform the portfolio analysis at the country-level, we considered the list of 34 OECD member states plus the seven affiliated member economies (i.e., Argentina, China, Romania, Russia, Singapore, South Africa, and Taiwan), and the two other BRICS countries (i.e., Brazil and India). This sample of 43 nations covers 1,753,243 documents, that is 89.4% of the total of 1,963,753 documents indexed in WoS for the publication year 2013, as of the date of the download (21 January 2015).

Figure 2: Journal Portfolio Map for the South Africa in 2013 (this map can be web-started here).
Source: Authors’ elaboration, Web-of-Science data.

Figure 2 shows the portfolio for South Africa, analogous to Figure 1 for the Netherlands. Maps for the other nations included can be web-started using their respective two-character

4 Because this is whole-number counting, the number of records with addresses in these countries aggregates to 2,226,237. Internationally co-authored publications are counted with full counts at the address level.
abbreviations instead of "sa" in the string provided in the legend of Figure 2. South Africa, for example, has a relatively weak portfolio in computer sciences and statistics (at the right side of the figure). For most OECD countries, however, the coverage is almost complete (as in the case of the Netherlands).

3.2 Comparing portfolios among nations

After cosine-normalization of the vectors using mtrx2cos.exe, Figure 3 shows a clear divide between the more advanced nations in the world of scientific publishing (red) versus the other nations, including the Mediterranean and Latin-American ones (green). The clustering and coloring is performed by using VOSViewer, but the results are consistent with those found using other community-finding algorithms (e.g. Blondel et al., 2008).

Using factor analysis in SPSS (v.21) with the countries as variables, a five-factor solution (Varimax rotated) sorts the Eastern European countries including Russia to a second group, the Asian countries into a third, the Latin American ones into a fourth, and Greece and Turkey into a fifth group. South Africa is classified with the Latin American countries, but with interfactorial complexity to the first factor that represents the advanced nations. (Similarly, Argentine, China, Taiwan, and Singapore exhibit a second loading on this first factor.)

This can also be made visible using the affiliations matrix of co-occurrences. Figure 4 shows a first divide between the Anglo-Saxon/Scandinavian world with some other nations versus the remainder of the continental EU. The latter, including Canada, is now the strongest group because of transnational within-EU collaborations. Belgium, Switzerland, and Canada show separate profiles — as expected because of their bi- and multi-lingual cultures. Israel is also a separate group for reasons that we shall discuss further below.

In summary, these 43 nations can be subdivided into regionally relevant categories such as the Asian nations, depending on the number of components distinguished. In addition to the regional divisions, there is a major divide between advanced and less-advanced nations. The profiles of Japan, China, Singapore, and Taiwan, for example, are classified in the first category; but Korea and India are not. These results provide us with some confidence that the instrument can also be used for units of analysis other than nations, such as cities and organizations, and can provide interesting insights.

5 This country code table of the ISO (International Organization for Standardization) is available at http://www.worldatlas.com/aatlas/ctycodes.htm and http://patft.uspto.gov/netahtml/PTO/help/helpctry.htm.
3.3 Portfolio analysis at the city-level

Cities can be expected to entertain different portfolios both in terms of their sizes and given the differences among national cultures. Metropolitan cities with multiple universities, for example, will have portfolios different from small towns with a technical university. There are many cities in the world, and many different rankings, such as for “global cities,” “innovative cities,” etc., are available both in the literature and online (e.g. Matthiessen et al., 2010; Van Noorden, 2010).

Given the explorative nature of this research, we selected four cities in each of five different countries about which we have some common knowledge so that we might conjecture to have sufficient variety in different dimensions. The five countries under study are: China, France, Israel, the Netherlands, and the USA. The cities are listed in Table 1. We applied again the portfolio.exe routine to sets of documents associated with each of these cities.

Figure 5 shows first that the Israeli cities and universities are grouped separately. The
Chinese group is joined by the Dutch city of Wageningen. Wageningen is a small town housing an agricultural university. The other two groups are mixtures of European and American cities. The division, in our opinion, distinguishes cities with city-universities from smaller cities with specific capacities. When the vectors are cosine-normalized, the Israeli cities are part of the latter (green-colored) group, and Toulouse and Eindhoven are drawn into the (red-colored) group of city-universities.

One should note that the level of precision obtained from searching with the city names is not controlled using WoS. WoS uses the address information provided by the authors in the bylines. Many cities are administratively underbounded (e.g., Amsterdam, Rotterdam) and may have universities in suburbs, whereas other cities are overbounded (e.g., Paris). In the USA, Core Based Statistical Areas (CBSA) are defined by the US Office of Management and Budget (OMB). A CBSA is a group of adjacent areas that are socioeconomically close to an urban center. However, series of attempts at constructing a European counterpart to the metropolitan region

Figure 4: Publication patterns compared among 43 nations; based on the affiliations matrix classified and mapped using VOSviewer (this map can be web-started here).

Source: Authors’ elaboration, Web-of-Science data.
Table 1: Twenty cities in five countries.

Country	Cities
China	Beijing, Shanghai, Nanjing, Dalian
France	Paris, Marseille, Grenoble, Toulouse
Israel	Jerusalem, Tel Aviv, Haifa, Beer Sheva
Netherlands	Amsterdam, Rotterdam, Eindhoven, Wageningen
USA	Boston, Atlanta, Berkeley, Boulder

Source: Authors’ elaboration.

classification of the US are still short of results, which could be used for the purpose of comparing the scientific base of large cities (Grossetti et al., 2013, 2014).

Figure 5: Publication patterns compared among 20 cities; based on the affiliations matrix classified and mapped using VOSviewer (this map can be web-started here).

Source: Authors’ elaboration, Web-of-Science data.

3.4 Portfolio analysis at the organization-level: universities and industries

The choice of organizations is even more difficult to justify than the choice of cities. For the sake of comparability, we performed the analysis on a sample of organizations used in previous studies (Leydesdorff et al., 2013; Rafols et al., 2010) and added to this sample the following...
Table 2: Ten organizations mapped and compared.

Universities	Industries (Rafols et al., 2010)	Industries added
University of Amsterdam	Pfizer	Google Inc.
Georgia Inst. of Technology	Nestl SA	Samsung
London School of Economics	Unilever	Philips
	Shell	

Source: Authors’ elaboration.

companies: Google, Samsung, and Philips. The list of organizations is reported in Table 3.

Publications of organizations can be retrieved at WoS using an index of consolidated names. Using, for example, "OG=(Georgia Institute of Technology)", 3,504 records were retrieved with publication year 2013. Extension with "Georgia Tech" provided another 19 records. Whereas these names are reasonably reliable in the case of universities, one is advised to use the common company names in the case of enterprises. The consolidated name "Royal Dutch Shell," for example, did not provide any retrieval for 2013, but 179 publications could be found using "Shell" as the search term (including such names as "Shell Canada Ltd.").

Figure 6 shows the cosine-normalized comparison between these organizations. Without normalization Philips and Shell are distinguished as two separate groups at approximately the same positions on the map. This latter map (not shown here) can be web-started at [here](#).

Like factor analysis, cosine normalization enables the grouping into sets with communalities in the variance. In the case of portfolio analysis, however, one may wish to use co-occurrence matrices in order to observe the variance unique to the cases under study.

4 Diversity

Among the countries, Israel is indicated as the one with the greatest diversity in its portfolio in 2013; among the 20 cities the most diverse are Haifa, Beer Sheva, and Tel Aviv. From an evolutionary perspective, a diverse knowledge base can be expected to provide more opportunities for further knowledge development and related diversification (Heimeriks and Boschma, 2013).

Note that the University of Amsterdam is less diverse as an organization than Eindhoven as a city (in terms of journal portfolios). Of the 2,554 publications with Eindhoven as a city address, only 1,653 are consolidated in the database as from the "Eindhoven University of Technology". Other publications with an Eindhoven address are from medical research centers, hospitals, and startup companies. Note that one is allowed to make comparisons across units of analysis at
different scales using $2D^3$ for the measurement of interdisciplinarity. One can also compare units of analysis at different scales (e.g., a country and its universities).

5 Conclusion

In the vein of previous research efforts on portfolio mapping and analysis (e.g. Rafols et al., 2010; Zhang et al., 2011), we focused on portfolios in terms of the 10,000+ journals included in the Journal Citation Reports of WoS. The portfolios can be overlaid on the base map for these journals, but also — and perhaps more interestingly — they can be compared and analyzed statistically in terms of the differences among them. Using the matrix of 43 (leading) countries
versus journals, we found a remarkably strong divide between advanced and less-developed nations. However, a more finely-grained analysis showed regional differences. Among both nations and cities, Israel scored highest on diversity in the portfolios. The differences among portfolios of universities when compared with relevant industries were significant.

At the methodological level, we noted that instruments that serve the grouping (such as cosine-normalization and factor analysis) can be counter-productive when one aims at visualizing the variation that is unique to each case. We also noted that the consolidated names in the database were not reliable in the case of using company names. The instrument, however, can be used with any document set retrieved from WoS, for example, for analyzing and comparing individual authors or document sets retrieved on the basis of informed search strings.

Acknowledgements

We are grateful to Thomson Reuters for JCR data. Daniele Rotolo acknowledges the support of the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) (award PIOF-GA-2012-331107 - "NET-GENESIS: Network Micro-Dynamics in Emerging Technologies").

References

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008.

Grossetti, M., Eckert, D., Gingras, Y., Jégou, L., Larivière, V., and Milard, B. (2013). Cities and the geographical deconcentration of scientific activity: A multilevel analysis of publications (19872007). Urban Studies.

Grossetti, M., Maisonobe, M., Jégou, L., and Eckert, D. (2014). Networks of scientific cooperation between cities: do national and regional contexts matter? In 2nd Geography of Innovation Conference, Utrecht.

Heimeriks, G. and Boschma, R. (2013). The path- and place-dependent nature of scientific knowledge production in biotech 19862008. Journal of Economic Geography.

Leydesdorff, L., Rafols, I., and Chaomei, C. (2013). Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations. Journal American Society for Information Science and Technology, 64(12):2573–2586.

Matthiessen, C. W., Schwarz, A. W., and Find, S. (2010). World Cities of Scientific Knowledge: Systems, Networks and Potential Dynamics. An Analysis Based on Bibliometric Indicators. Urban Studies, 47(9):1879–1897.
Narin, F. (1976). *Evaluative Bibliometrics: The Use of Publication and Citation Analysis in the Evaluation of Scientific Activity*. National Science Foundation, Washington, DC.

Rafols, I. and Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. *Scientometrics*, 82(2):263–287.

Rafols, I., Porter, A. L., and Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. *Journal of the American Society for Information Science and Technology*, 61(9):1871–1887.

Rao, C. (1982). Diversity and dissimilarity coefficients: A unified approach. *Theoretical Population Biology*, 21(1):24–43.

Small, H. and Garfield, E. (1985). The geography of science: disciplinary and national mappings. *Journal of Information Science*, 11(4):147–159.

Stirling, A. (2007). A General framework for analysing diversity in science, technology and society. *Journal of The Royal Society Interface*, 4(15):707–719.

van Eck, N. J. and Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics*, 84(2):523–538.

Van Noorden, R. (2010). Cities: Building the best cities for science. *Nature*, 467(7318):906–8.

Wallace, M. L. and Rafols, I. (2015). Research Portfolios in Science Policy: Moving from Financial Returns to Societal Benefits. *Minerva*, in press.

Waltman, L., van Eck, N. J., and Noyons, E. C. (2010). A unified approach to mapping and clustering of bibliometric networks. *Journal of Informetrics*, 4(4):629–635.

Zhang, L., Rousseau, R., and Glänzel, W. (2011). Document-type country profiles. *Journal of the American Society for Information Science and Technology*, 62(7):1403–1411.

Zhang, L., Rousseau, R., and Glänzel, W. (2015). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. *Journal of the Association for Information Science and Technology*, in press.
Recent papers in the SPRU Working Paper Series:

SWPS 2015-02. Paula Kivimaa, Florian Kern. January 2015. Creative Destruction or Mere Niche Creation? Innovation Policy Mixes for Sustainability Transitions.

SWPS 2015-03. Aldo Geuna, Rodrigo Kataishi, Manuel Toselli, Eduardo Guzmán, Cornelia Lawson, Ana Fernandez-Zubieta, Beatriz Barros. February 2015. SiSOB Data Extraction and Codification: A Tool to Analyse Scientific Careers.

SWPS 2015-04. André Lorentz, Tommaso Ciarli, Maria Savona, Marco Valente. February 2015. The Effect of Demand-Driven Structural Transformations on Growth and Technological Change.

SWPS 2015-05. Fabiana Moreno, Alex Coad. February 2015. High-Growth Firms: Stylized Facts and Conflicting Results.

SWPS 2015-06. Daniel Rotolo, Diana Hicks, Ben Martin. February 2015. What is an Emerging Technology?

SWPS 2015-07. Friedemann Polzin, Paschen von Flotow, Colin Nolden. March 2015. Exploring the Role of Servitization to Overcome Barriers for Innovative Energy Efficiency Technologies – The Case of Public LED Street Lighting in German Municipalities.

SWPS 2015-08. Lee Stapleton, Steve Sorrell, Tim Schwanen. March 2015. Estimating Direct Rebound Effects for Personal Automotive Travel in Great Britain.

SWPS 2015-09. Cornelia Lawson, Aldo Geuna, Ana Fernández-Zubieta, Rodrigo Kataishi, Manuel Toselli. March 2015. International Careers of Researchers in Biomedical Sciences: A Comparison of the US and the UK.

SWPS 2015-10. Matthew L. Wallace, Ismael Rafols. March 2015. Research Portfolios in Science Policy: Moving From Financial Returns to Societal Benefits.

Suggested citation:
Loet Leydesdorff, Gaston Heimeriks, Daniele Rotolo (2015). Journal Portfolio Analysis for Countries, Cities, and Organizations: Maps and Comparisons?. SPRU Working Paper Series (SWPS), 2015-11: 1-13. ISSN 2057-6668. Available at www.sussex.ac.uk/spru/swps2015-11

SPRU – Science Policy Research Unit
University of Sussex
Falmer, Brighton, BN1 9SL, United Kingdom
www.sussex.ac.uk/spru
Twitter: @SPRU
SWPS: www.sussex.ac.uk/spru/research/swps