3′-UTR-dependent deadenylation by the yeast poly(A) nuclease

Joanna E. Lowell,1 David Z. Rudner,2 and Alan B. Sachs1,3

1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 USA; 2Division of Biochemistry and Molecular Biology, University of California at Berkeley, Berkeley, California 94720 USA

Poly(A) tail removal is the first step in the degradation pathway for some mRNAs. The purified poly(A)-binding protein (PAB)-dependent poly(A) nuclease (PAN) from yeast removes mRNA poly(A) tails in vitro by a process similar to that observed in vivo. The exonucleolytic PAN degrades poly(A) and RNA bound by PAB, and can be activated by spermidine to degrade poly(A) in the absence of PAB. The shortening of the poly(A) tail down to 10–25 nucleotides and the terminal deadenylation of this short adenine tract are kinetically distinct reactions. Poly(A) shortening rates are stimulated by the yeast a-mating factor (MFA2) RNA 3′ UTR sequence, and this occurs by switching PAN from a distributive to a more processive enzyme. Terminal deadenylation rates are also stimulated to different extents by various RNAs. Inversion of the MFA2 3′ UTR sequence completely inhibits the terminal deadenylation reaction owing to the presence of an inhibitory element 70 nucleotides from the poly(A) tail. Other sequence elements inserted at a similar distance from the poly(A) tail also interfere with the reaction. These data suggest that the two phases of poly(A) degradation can be regulated by mRNA sequences, and they provide a mechanistic description of how this regulation could occur in vivo.

[Key Words: Ribonuclease; mRNA degradation; poly(A) tails; RNA-binding proteins]

Received June 16, 1992; revised version accepted August 3, 1992.

The degradation of mRNA in eukaryotic cells is a regulated process. Different mRNAs have different decay rates, and these rates are determined by sequence elements within the mRNA. For instance, the stability of transferrin mRNA is regulated by a 3′-sequence element that responds to the availability of iron to the cell (Klausner and Harford 1989). Similarly, the instability of tubulin mRNA in some species results from the appearance of a specific amino-terminal peptide during translation (Gay et al. 1989). More generally, the instability of some mRNAs can result from the presence of sequences within the open reading frame (ORF), the presence of nonsense mutations, or the presence of destabilizing sequences in untranslated regions (for review, see Peltz et al. 1991).

Each of these sequence elements could stimulate different degradation pathways. Some may initiate degradation by an endonucleolytic cleavage within the body of the mRNA (Stoeckle and Hanafusa 1989, Brown and Harland 1990; Stoeckle 1992). Others may initiate degradation by activating 5′ → 3′ or 3′ → 5′ exonucleases. The degradation pathway of a group of RNAs containing a destabilizing AU-rich sequence element (ARE) (Shaw and Kamen 1986) within their 3′-untranslated regions (3′ UTRs) is the most well characterized. This element induces degradation by stimulating poly(A) tail removal (e.g., see Wilson and Treisman 1988; Shyu et al. 1991). Following this, the element may stimulate a second, coupled reaction that could either be an endonucleolytic or exonucleolytic cleavage.

The observation that the decay of an mRNA is initiated by the stimulated removal of its poly(A) tail raised the possibility that the enzyme responsible for this deadenylation step is identical to the enzyme required for the slow poly(A) tail shortening seen on all mRNAs, the poly(A) nuclease (PAN) (Sachs and Deardorff 1992). In yeast, PAN requires the poly(A)-binding protein (PAB) for activity (Sachs and Davis 1989). PAN has been purified from yeast extracts deficient in PAB based on this requirement, and the essential gene encoding it has been cloned. Conditional mutations in PAN lead to both alterations in poly(A) tail lengths and an arrest of translation initiation, suggesting that these two reactions are coupled (Sachs and Deardorff 1992).

Using purified PAN, we have investigated the mechanism of poly(A) tail removal in vitro and the effects of different yeast mRNA 3′ sequences on this mechanism. PAN normally shortens mRNA poly(A) tails by a distributive mechanism, but sequence elements within the 3′ UTR of the yeast MFA2 RNA stimulate this shortening process by increasing the processivity of the enzyme. PAN removes the adenines from a short poly(A) tail in a kinetically distinct reaction called terminal deadenylation.
tion. This reaction is also differentially inhibited by sequences within the 3' ends of different mRNA. These data suggest that the enzyme responsible for slow poly(A) tail shortening can be stimulated by mRNA to rapidly remove the tail. They also suggest that the stimulation of deadenylation on specific mRNAs in vivo results from a mechanism of activation similar to that observed in vitro.

Results

Characterization of PAN

The mechanism of poly(A) tail degradation by PAN was investigated in detail using PAN purified from yeast (Sachs and Deardorff 1992). As reported previously, PAN will not digest poly(A) tails in the absence of PAB (Fig. 1A). The presence of PAB in the reaction leads to the appearance of poly(A) tail shortening activity. PAN is unable to digest the final 20 adenines of the tail on the RNA shown in Figure 1, suggesting that complete deadenylation by PAN requires more than a poly(A) tail preceded by a short (25 nucleotide) tract of RNA.

To analyze the mechanism of poly(A) removal, the products of reactions containing various dilutions of PAN incubated with identical poly(A) concentrations were examined (Fig. 1B). The appearance of all intermediate sizes of products suggests that PAN is a distributive ribonuclease. This is in contrast to the predicted findings for a highly processive enzyme, which would exhibit a PAN concentration-independent rate of terminal product formation.

PAN releases trichloroacetic acid (TCA)-soluble nucleotides as a reaction product (Sachs and Deardorff 1992). To examine the structure of the product, aliquots of a PAN–poly(A) digestion reaction were separated by thin-layer chromatography (data not shown). Only single mononucleotides were detected in this experiment, and the migration of this product was identical to 5'-AMP. Both 3'-AMP, as well as 3'5'-cAMP, 2'3'-cAMP, and 2'-AMP migrated more quickly than 5'-AMP under these solvent conditions. Less pure preparations of PAN were also unable to degrade poly(A) tails containing a terminal phosphate group (data not shown). From these data, we conclude that PAN is a distributive exonuclease that requires a free 3'-hydroxyl group and releases 5'-AMP as a product.

The TCA release assay was used to optimize the reaction conditions for PAN activity. PAN has an absolute requirement for Mg2+ and exhibits a broad pH dependence between 7.0 and 8.5 (data not shown). PAN also shows a broad temperature dependence, with optimum temperature between 30°C and 37°C (data not shown), and is completely inactivated after preincubation at 55°C for 10 min. The ionic strength dependence of PAN was quite dramatic, with near complete inactivation of the enzyme at ionic strengths >50 mM (Fig. 1C). At much higher ionic strengths (>300 mM) or in the presence of 10

![Figure 1](image-url)
mm MgCl₂ at low ionic strength, a weak PAB-independent nucleolytic activity could be detected in the PAN preparations [data not shown]. This effect is presumably analogous to the effects of spermidine, described below.

The poly[A] substrates used in the previous experiments contained 6/7 nonadenine residues at their 3’ end [pAS200], and these were still substrates for PAN. This suggested that PAN could have a nonspecific nucleolytic activity that was directed to any 3’ end bearing a PAB molecule. To investigate this further, poly[A] tails with an additional 27 or 154 nucleotides of random RNA at their 3’ ends were incubated with PAN and PAB, and the products of the reaction were analyzed by either a TCA release assay or by gel electrophoresis. Consistent with the TCA data [not shown], poly[A] tails with either 7- or 32-nucleotide 3’ extensions were removed efficiently by the enzyme, whereas poly[A] tails containing a 162-nucleotide extension were not metabolized (Fig. 2A).

To examine the nucleotide specificity of the enzyme in more detail, several other RNA substrates were investigated. Most mRNAs examined (see below) could not be digested past their poly[A] tails, yet an RNA substrate whose 3’ end was AU-rich over a region of 25 nucleotides, and which was shown to contain a PAB-binding site by nitrocellulose filter binding [Sachs et al. 1987; data not shown], provided an adequate substrate for the PAB-dependent reaction [Fig. 2B]. The accumulation of distinct intermediate-sized fragments during the digestion probably reflects some nucleotide preference for the enzyme, with pausing occurring at nucleotides that are not removed efficiently.

These data lead to the conclusions that PAN will degrade 3’ ends bound by PAB and that PAN is not absolutely specific for adenine. Short extensions of RNA 3’ to a poly[A] tract may present an efficient substrate for PAN owing to the binding of PAB, and this binding could be induced by a slight cooperativity in the binding properties of PAB [Sachs et al. 1987]. Extensions well beyond the end of the poly[A] tract, as well as the 3’ ends of most other RNAs tested, will not be degraded because they do not provide an adequate PAB-binding site. One prediction from these data is that the 3’ UTRs of some mRNAs could be degraded by PAN after their deadenylation if they provide a functional PAB-binding site.

PAB-independent PAN activity was detected under two different conditions. First, an mRNA substrate bearing an (A)₂₅ tail [pAS364] could be slowly deadenylated in the absence of PAB [Fig. 3A]. This activity was present in PAN preparations derived from yeast extracts missing or containing PAB, indicating that the activity was not the result of a slight contamination by endogenous PAB. The PAB-independent decay pattern revealed all intermediate lengths of RNA, and TCA-soluble nucleotides were released during the reaction [data not shown]. This suggests that the terminal deadenylation reaction is also occurring through an exonucleolytic mechanism. PAN was also able to degrade an (A)₂₅ tail attached to the inverted MFA₂ 3’ UTR in the absence of PAB [see below], indicating that the inhibitory properties of this RNA on terminal deadenylation requires a ribonucle-
were not substrates for the spermidine-stimulated reaction [data not shown]. These data indicate that spermidine can only activate poly[A] tail degradation and that PAN requires PAB for the degradation of all other substrates. Together with the PAB-independent terminal deadenylation activity, these data also show that PAN is the nuclease in the reaction mixture and not an activator of a latent nucleolytic activity in PAB.

PAN shortening activity is regulated by 3' UTR sequences

The possibility that yeast PAN could be activated by 3' UTR sequences was investigated by examining the poly[A] shortening rates on a series of synthetic 3' polyadenylated RNA fragments from the yeast genes MFA2 [pAS263], RP29 [pAS342], ACT1 [pAS340], CYH2 [pAS341], and HIS3 [pAS343]. These RNAs were chosen because their in vivo stabilities reflect the range found for most yeast mRNAs [Herrick et al. 1990]. Compared with the other RNAs tested, the yeast MFA2 RNA clearly stimulated its poly[A] tail shortening rate (Fig. 4). The mechanism of shortening also seemed to be different. First, terminally deadenylated reaction products were detectable before all of the precursor had been utilized. Second, the deadenylation intermediates had a broad size distribution. In contrast, the other RNAs went through a slow poly[A] tail shortening reaction, with a narrower size range of intermediates and no product appearance before all of the usable precursor had been utilized. Increasing the concentration of actin RNA fourfold did not affect this pattern, suggesting that the observed differences in shortening rates result from differences between the RNAs and not the specific reaction conditions chosen [data not shown]. Taken together, these data indicate that the MFA2 RNA stimulates poly[A] tail shortening by switching PAN from a distributive to a more processive enzyme. An analysis of the extent of MFA2 and ACT1 3' UTR deadenylation as a function of PAN concentration, similar to the experiment shown in Figure 1B, supports this conclusion [data not shown]. The sequence elements within the MFA2 3' UTR that are responsible for this change in processivity are currently being identified.

PAN terminal deadenylation activity is regulated by 3' UTR sequences

A kinetic distinction between the shortening of poly[A] tails down to a length of 10–25 nucleotides and the terminal deadenylation of the tail was observed on several different substrates. A clear example of the differences between the two reactions is shown in Figure 5. For this RNA [pAS321], the shortening of its poly[A] tail is almost complete by 20 min, whereas its terminal deadenylation to a poly[A]− form occurs slowly over the next 160 min. The temporal separation of the two reactions, together with the ability of the enzyme to slowly remove terminal adenines in the absence of PAB [see above], suggests that terminal deadenylation is mechanistically dis-
distinct from poly[A] shortening. Interestingly, the substrate for the terminal deadenylation reaction is equal to the size of one PAB-binding site (Sachs et al. 1987), suggesting that dissociation from this last site could be a rate-limiting step in the reaction.

Terminal deadenylation of RNA 3' fragments from different RNAs by PAN also occurred at different rates (Fig. 4). While the MFA2 RNA rapidly appeared in the terminally deadenylated form, HIS3 and CYH2 RNAs exhibited an accumulation of RNA containing ~25 adenine residues, which was subsequently slowly removed. ACT1 RNA slowly lost the final adenines from its poly[A] tail, but a clear reaction intermediate containing 25 residues was not identifiable.

Instead of decreasing the rate of the terminal deadenylation reaction, inversion of the MFA2 3' UTR [pAS264] inhibited it completely (Fig. 6A, B). The migration of a poly[A]^- form of this RNA was identical to that of poly[A]^- MFA2 RNA, indicating that the decreased mobility of the terminal reaction product in these experiments is the result of the presence of residual adenines and not an aberrant migration of the RNA on polyacrylamide gels. We note that the inverted MFA2 RNA may be shortened more quickly than the MFA2 RNA, and future work will attempt to address this observation more thoroughly. In contrast to the MFA2 RNA data, inversion of either the ACT1 or HIS3 3' fragments did not affect the deadenylation rate.

Figure 4. Poly[A] tail shortening rates are influenced by mRNA sequences. 32P-Labeled RNA containing the MFA2 3' UTR [pAS263] (A) or the final 165 nucleotides of the RP29 [pAS342] (B), HIS3 [pAS343] (C), ACT1 [pAS340] (D), or CYH2 [pAS341] (E) transcripts attached to an [A]166 tail were incubated in a standard PAN digestion reaction with 0.5 μl of PAN for the indicated times. Poly[A]^- RNA was prepared by incubation of the substrate with 2.5 μl of PAN for 180 min. RNA was resolved by polyacrylamide gel electrophoresis and visualized by autoradiography.

Figure 5. Terminal deadenylation is kinetically distinct from poly[A] tail shortening. 32P-Polyadenylated RNA [pAS321] was incubated in the standard PAN digestion reaction for the indicated times. Products were visualized by autoradiography following gel electrophoresis.
not inhibit the terminal deadenylation reaction [data not shown]. Together with the above data, this suggested that 3' UTR sequences were capable of regulating both the shortening and the terminal deadenylation reaction.

To define more precisely the location of the putative inhibitory element on the inverted MFA2 RNA, a limited linker scanning substitution analysis was performed (Fig. 6B). Although the replacement of 12 nucleotides 56 nucleotides from the poly(A) tail [pAS366] did not relieve the inhibitory effect, the replacement of 12 nucleotides 68 nucleotides from the tail did [pAS367]. These data confirm the hypothesis that inversion of the MFA2 3' UTR introduces an inhibitory element and does not remove a specific activation element, and they indicate that a similar region in other 3' UTRs could contain regulatory sequences for the deadenylation reaction. The size of the inhibitory element and whether it is affecting the terminal deadenylation reaction through alterations in RNA structure are unknown at this time.

The basic sequence requirements for terminal deadenylation of the MFA2 RNA were determined by a 5'-end deletion analysis. This experiment indicated that 3' UTR fragments shorter than 90 nucleotides [pAS315] could not be terminally deadenylated (Fig. 7). The addition of 25 nucleotides to this short fragment resulted in its complete deadenylation [pAS316]. This region is referred to as ARE3 owing to its overall high content of adenine and uridine nucleotides. Interestingly, the distance between the poly(A) tail and the ARE3 element [60 nucleotides] is similar to the distance between the poly(A) tail and the inhibitory element on the inverted MFA2 RNA [68 nucleotides].

To examine whether other sequences in this region could regulate the terminal deadenylation reaction, the ARE3 region was substituted with other regions of the MFA2 3' UTR and with synthetic sequences. Substitution of the ARE3 with the first of two AU-rich elements [ARE1] found at the 5' end of the MFA2 3' UTR [pAS345] also allowed terminal deadenylation (Fig. 7). Substitution of the second AU-rich elements [ARE2] [pAS344] partially inhibited the reaction. Replacing each of the uridines with cytosines in the ARE2 [pAS346] also partially inhibited the reaction. Similar results were obtained when the entire ARE3 region was replaced with 15 cytosines [pAS363]. In contrast, replacing ARE3 with 15 adenines [pAS361] allowed the completion of the terminal deadenylation reaction.

In summary, these data indicate that an RNA molecule must be >90 nucleotides in length to be deadenylated, regions within the 3' UTR can inhibit PAN activity, and one location for an inhibitory element is between 55 and 80 nucleotides from the poly(A) tail. The complexity of the results makes it difficult to define at the nucleotide level what allows or disallows terminal deadenylation. Future work examining the affects of these mutations on the rates instead of the extent of terminal deadenylation may help in defining the sequence requirements for the reaction more completely.

Discussion

Purified PAN from yeast exhibits two changes in its deadenylation properties that depend on the 3' UTR sequence. These are the change from a slow, distributive poly(A) shortening enzyme to a rapid, processive one and a change in the ability to terminally deadenylate a residual poly(A) tail. Each of these changes relies on the presence of a ribonucleoprotein substrate, suggesting that regulation could be occurring through ribonucleoprotein recognition and not just RNA sequence recognition. PAN represents the first RNase known to require a ribonucleoprotein for activity. The ribonucleoprotein is probably required for at least two different reasons. First, PAB could protect the phosphate backbone of poly(A), thereby providing a proper substrate for the enzyme. This property is inferred from the ability of spermidine to replace PAB for poly(A) degradation [Fig. 3B]. The protection by PAB presumably occurs through lysine or arginine residues. The sequence of the carboxyl terminus of PAB is not conserved between organisms, whereas the sequences of its RNA-binding domains are (for review, see Burd et al. 1991). If the function of the carboxy-terminal domain is conserved, it is probably through the presence of a small number of key residues. The working hypothesis is that the carboxy-terminal domain of PAB is responsible for providing the positively charged residues necessary for phosphate backbone protection. Preliminary data examining the nonstimulatory effects of
Figure 7. Terminal deadenylation is sensitive to internal RNA sequences. Diagram of synthetic polyadenylated RNA constructs that were subject to the standard PAN digestion reaction for up to 180 min and visualized by autoradiography following gel electrophoresis. The residual length of the poly(A) tail [nucleotides remaining] was calculated by subtracting the calculated length of the deadenylated form of the RNA from the measured length of the reaction product. The plasmids encoding the RNAs (pAS) are listed. [ARE] AU-rich element, [U/C] U → C substituted ARE2.

carboxy-terminal truncations of PAB [Sachs et al. 1987] on PAN activity in vivo and in vitro support this view. PAB also seems to be required to target PAN to the correct substrate because the presence of a PAB-binding site appears to be sufficient to allow degradation of RNA by PAN [Fig. 2]. The absence of a PAB requirement for poly(A) in the presence of spermidine and the inability of spermidine to activate the degradation of RNA other than poly(A) are consistent with the model that the affinity of PAN for the RNA may be modulated by PAB. For instance, PAN could degrade poly(A) coated with spermidine because its intrinsic affinity for poly(A) is sufficient to allow its degradation in the absence of PAB. This predicts that at high enough concentrations, PAN should be able to degrade all mRNA in the presence of spermidine because binding to the mRNA should be saturated at these concentrations. A specific region of PAB probably interacts with PAN to increase its time spent bound to the mRNA, and we assume that this interacting region is present within a highly conserved region of PAB.

The potential ability of PAB to modulate the affinity of PAN for the RNA molecule may help in understanding the ability of the 3' UTR of MFA2 to stimulate the shortening reaction. The switch in the mechanism of poly(A) shortening from distributive to processive is consistent with the model that PAN contains a higher affinity for this RNA than for poly(A) or the other RNAs examined. This increase in affinity would result in PAN degrading the same 3' end as a result of it being bound to the same RNA, thereby giving the appearance of an increase in the processivity of the enzyme. The increase in the affinity of PAN for the RNA could be mediated by PAB binding to 3' UTR sequences, thereby offering a distal site of interaction for PAN that would keep it localized on the same mRNA molecule. Alternatively, these 3' UTR sequence elements may contain a high affinity binding site for PAN, which would also result in a decrease in its dissociation rate. Future work on identifying the sites on the mRNA that stimulate the shortening, and an evaluation of their interactions with PAN or PAB, will help to distinguish between these possibilities. The regulation of the terminal deadenylation reaction by inhibitory sequences at least 55 nucleotides away from the poly(A) tail in vitro clearly shows the potential for the regulation of this reaction in vivo. The terminal deadenylation reaction appears to be distinct from the shortening reaction by the criteria that it is kinetically separable and that it can occur slowly in the absence of PAB. Because PAB movement from the residual oligo(A) tail may be a prerequisite for the reaction to proceed, internal sequence elements that either stimulate or inhibit this movement could control this phase of deadenylation. The presence of PAB-binding sites within the mRNA would allow this movement because PAB can readily hop between binding sites without having to dissociate from the RNA molecule [Sachs et al. 1987; Bernstein and Ross 1989]. The minimum length of 90 nucleo-
otides of RNA needed to see the terminal deadenylation reaction in vitro may reflect a constraint on the distance between two PAB-binding sites to allow hopping, and the effects of sequences between 55 and 80 molecules on the rates and extents of the reaction may reflect the relative affinity of PAB for this second binding site. Whether these putative binding sites would also control the rate of the shortening reaction remains to be explored.

The similarities of the deadenylation reaction observed in vitro for PAN with that seen in vivo for the group of highly unstable mRNAs containing an AU-rich destabilizing sequence element in their 3′ UTR are striking. First, the observation that ARE stimulates the shortening of the poly[A] tail on these mRNAs to rates that far exceed those found in other cellular mRNAs [Shyu et al. 1991] is analogous to what is observed for the MFA2 RNA shortening with PAN in vitro. Second, the appearance of semistable oligoadenylated intermediates on mRNAs containing partially mutated AREs [Shyu et al. 1991], as well as the apparent stability of many oligoadenylated RNAs that have undergone the poly[A]-shortening process [for review, see Sachs 1990], is analogous to the appearance of the precursors of the terminal deadenylation reaction performed by PAN in vitro.

A recent detailed characterization of the MFA2 degradative pathway in vivo shows that deadenylation of this mRNA is rate limiting for its degradation, the deadenylation occurs in two distinct steps, and specific sequence elements in the 3′ UTR of the mRNA are responsible for these effects [Muhlrad and Parker, this issue]. On the basis of our data and these results, we conclude that the MFA2 3′ UTR contains sequence elements that are analogous to the AREs of higher cells and that the target of these elements is the PAN-dependent poly[A] nuclease. Future work examining the effects of PAB1 and PAB2 mutations on MFA2 RNA stability in vivo will help to confirm this.

If AREs on unstable mRNAs act by enhancing PAN activity, then the function of the specific mRNA-binding proteins bound to them [Bohjanen et al. 1991; Brewer 1991; Gillis and Malter 1991; Vakalopoulou et al. 1991; You 1992] can be limited to several possibilities. If these elements are PAB recognition sites, then these proteins can either be functionally substituting for PAN or inhibiting the access of PAB to these sites. If these elements are PAN-binding sites, then the proteins are either necessary cofactors for PAN binding, serving a function that PAB cannot provide, or they are inhibiting PAN binding. Discerning whether these AU-rich binding proteins are actually inhibitors or activators of the mRNA degradation process, as well as understanding the role of PAB and PAN in recognizing these elements, will help to clarify these issues. It is important to note that the PAN fractions utilized in these assays do contain other polypeptides [Sachs and Deardorff 1992]; therefore, the nonnucleolytic attributes assigned to PAN in this discussion could actually result from the activity of other factors within this fraction.

The two phases of deadenylation observed in this report are reminiscent of the two phases of polyadenylation that occur in the nucleus [Sheets and Wickens 1989]. For polyadenylation, the slow addition of the first 10 adenine residues is a kinetically distinct reaction from the subsequent rapid polymerization of the remainder of tail. The transition between these two steps requires the binding of a nuclear PAB, and it is the presence of this protein that ultimately stimulates the poly[A] polymerase to elongate the tail [Wahle 1991]. For deadenylation, the transition between the two phases could require the movement of PAB from the oligo(A) tail, thereby leading to the kinetically distinct terminal deadenylation step. It is interesting that the enzymes involved in polyadenylation and deadenylation have such a strict requirement for PABs. This suggests that there may be other similarities between the mechanisms of regulating polyadenylation and deadenylation within the cell. A recent report identifying a single 3′ UTR element that can regulate both deadenylation and polyadenylation in the mouse oocyte [Huarte et al. 1992] is consistent with this proposal.

The reconstitution of the poly[A] shortening reaction in the absence of translation suggests that some phases of mRNA degradation may be translation independent. The recent identification of the involvement of PAN in translation [Sachs and Deardorff 1992], together with the availability of yeast strains that are deficient in PAN shortening activity but still viable [Sachs and Davis 1989], argues that poly[A] shortening in vivo may be tightly coupled to translation but is not required for it. The localization of PAN to the ribosome, mRNA, or the cytosol may help in elucidating the relationship between the translational requirement of PAN and poly[A] tail shortening. Future work will aim at unraveling the links between translation and mRNA degradation by using both a biochemical and genetic approach to evaluate the unique role of PAN in both of these reactions.

Materials and methods

Proteins

PAN fractions from the poly[U]-Sepharose column [Sachs and Deardorff 1992] and recombinant PAB [Sachs et al. 1987] were used in all experiments described. PAN extracts were derived from yeast strains containing a deletion of YAS1008 or strains containing PAB1 and a galactose-inducible PAB1 gene [YAS1064]. The standard PAN reaction mix was prepared by mixing PAN [1–6 μl] at 4°C in 10 μl of 50 mM K acetate, 10 mM HEPES [pH 7.5], 1 mM MgCl2 [0.5× buffer A] with 1,000–10,000 cpm of RNA and 2 μg of yeast tRNA (Sigma) with or without 200 ng of PAB in 10 μl of 0.5× buffer A, diluting to 200 μl final with 5 mM HEPES [pH 7.5] and 2 mM MgCl2 [LS buffer] at room temperature, and incubation at 30°C. Reactions were monitored by the TCA release assay by adding 200 μl of 20% TCA at the indicated time, precipitation at 4°C for 10 min, and microcentrifugation for 10 min. Two hundred microliters of the supernatant containing the soluble radiounucleotide was added to 200 μl of unbuffered IM Tris base and 4 ml of Aquasol [New England Nuclear] and subject to scintillation counting. Ionic strengths in the reaction mixture were increased by the addition of 3 mM K acetate. RNA samples were prepared for electrophoresis by the
addition of 50 μl of 3 M NaCl, 100 mM EDTA, 200 mM Tris (pH 8.0), 50 μl of 10% SDS and H2O to the reaction mixture to a final volume of 500 μl, extraction with one volume of phenol-chloroform-isooamyl alcohol (25:24:1), precipitation with ethanol, and resuspension in 7 M urea, 10 mM Tris at pH 8.0 containing bromophenol blue and xylene cyanol (0.05%). Following electrophoresis on 9% acrylamide/7 M urea/0.5 x TBE sequencing gels (Sambrook et al. 1989) run in 1 x TBE, RNA was visualized by directly exposing the gel to autoradiographic film under an intensifying screen at -70°C. Size standards wereMspI-digested pBR322 (New England Biolabs) DNA fragments end-labeled with [32P]dCTP (New England Nuclear) and the Klenow fragment of Escherichia coli DNA polymerase.

For examination of the rates of poly(A) tail shortening on different mRNAs (Fig. 4), approximately one-tenth of the PAN used in the other experiments was used per point, and all final RNA concentrations were made equal. For PAB-independent activation, spermidine and poly(A) were first mixed at room temperature in 70 μl of LS buffer, LS buffer (at room temperature) was added to 180 μl, and PAN in 20 μl of LS was added last to initiate the reaction, which was then incubated at 30°C. The ability of PAN to use all of the input RNA changes between RNA preparations, and this probably reflects the variation in the method of RNA purification from the polyacrylamide gels.

Nucleic acids

The 5' and 3' ends of the MFA2 RNA were mapped by reverse transcription and S1 nuclease protection respectively (Sambrook et al. 1989) using RNA prepared from YAS306 [a ade2 his3 ura3 leu2 trp1] [Sachs and Davis 1989], the reverse transcription primer OAS1, or the S1 protection probe derived from 3'-end labeling of BamHI-linearized pSM29 [Michaelis and Herskowitz 1988] with [32P]dCTP (New England Nuclear) and T4 DNA polymerase (Sambrook et al. 1989). The cDNA corresponding to the mapped RNA ends was amplified from the pSM29 genomic clone by polymerase chain reaction (PCR) using oligonucleotides OAS6 and OAS7 [Table 1] and Taq DNA polymerase (Cetus) under conditions suggested by the manufacturer to yield the following DNA fragment (the ORF is underlined; the cDNA sequence includes the EcoRI site at the ends):

```
| Oligonucleotide (OAS) | Sequence |
|----------------------|----------|
| 1 GGCTTGTTGGAAGCAGTTGGT |
| 2 TAATAGCAGCTCACTATA |
| 4 TACCCTATAGTACACATA |
| 6 CCCGGGAATTCCAGCGACTTGATCATCGTTTCTTCAAC |
| 7 CCGGAGATAATCATCTCCCGATAAAATCGTAAAGTGA |
| 8 CCGGAAATCTCCTTTCAT(GT)TTATTACGTGGTCTGGCACAAACTATATG(T)TGTA |
| 9 GACTAGTCCATATTCCCTCATTAGC |
| 10 GACTAGTTTCCATATTCCCTCCAG |
| 11 GACTAGTCTTTGCTATACTTTTCTATA |
| 12 GACTAGTTTTCATATCTTATTACATA |
| 13 GACTAGTCTTTTTCTCATTATA |
| 14 GACTAGTCTTTTTTCTCATTATA |
| 15 GACTAGTCTTTTTCTCATTATA |
| 16 GACTAGTCTTTTTCTCATTATA |
| 17 GACTAGTCTTTTTCTCATTATA |
| 18 GACTAGTCTTTTTCTCATTATA |
| 19 GACTAGTCTTTTTCTCATTATA |
| 20 GACTAGTCTTTTTCTCATTATA |
| 21 GACTAGTCTTTTTCTCATTATA |
| 22 GACTAGTCTTTTTCTCATTATA |
| 23 GACTAGTCTTTTTCTCATTATA |
| 24 GACTAGTCTTTTTCTCATTATA |
```

This amplified fragment was digested with EcoRI and ligated into the EcoRI site of pAS200 to yield pAS225.

PCR amplification of most of the 3' UTR with oligonucleotides OAS7 and OAS78 from pAS225 with Taq DNA polymerase (Cetus) under the manufacturer’s recommended conditions yielded the DNA insert in pAS263. Table 2 lists the other constructions derived from this parent plasmid.

Plasmid clones containing the terminal 165 nucleotides of the ACT1 (pAS340), CYH2 (pAS341), RP29 (pAS342), or HIS3 Axton et al. 1989) using RNA prepared from YAS306 [a ade2 his3 ura3 leu2 trp1] [Sachs and Davis 1989], the reverse transcription primer OAS1, or the S1 protection probe derived from 3'-end labeling of BamHI-linearized pSM29 [Michaelis and Herskowitz 1988] with [32P]dCTP (New England Nuclear) and T4 DNA polymerase (Sambrook et al. 1989). The cDNA corresponding to the mapped RNA ends was amplified from the pSM29 genomic clone by polymerase chain reaction (PCR) using oligonucleotides OAS6 and OAS7 (Table 1) and Taq DNA polymerase (Cetus) under conditions suggested by the manufacturer to yield the following DNA fragment (the ORF is underlined; the cDNA sequence includes the EcoRI site at the ends):
Table 2. MFA2-derived plasmids and RNA transcripts
pAS200 (125)
Poly(A)$_{100}$ transcript. (A)$_{100}$ inserted at SmaI site of pSp65 [Varnum and Wormington 1990]
pAS263 (167)
MFA2 3' UTR EcoRI linker and inserted at EcoRI site of pAS200. PCR product of OAS7 and OAS78 with pSM29
(gggaatacacggaatctgagagctcccccA$_{100}$)
pAS264 (167)
Inverted form of pAS263 insert
(gggaatacacggaatctcAATGAAAAAAATCTTTTTAAAGTGATAACTAACAATACATATGTATAAAAGATATGAAA
AAGTATGGAAGGTTGAGCTAATGAGAGAATTGGAATTTTAGTTTGCCAGCACAACGTATAAAATGAAA
GGGaatctgagagctcccccA$_{100}$)
pAS366 (167)
pAS264 with linker substitution at -56 to -67 from poly(A) tail (OAS81, OAS85)
(gggaatacacggaatctcCATGAAAAAAATCTTTTTAAAGTGATAACTAACAATACATATGTATAAAAGATATGAAA
AAGTATGGAAGGTTGAGCTAATGAGAGAATTGGAATTTTAGTTTGCCAGCACAACGTATAAAATGAAA
GGGaatctgagagctcccccA$_{100}$)
pAS367 (167)
pAS264 with linker substitution at -68 to -79 from poly(A) tail (OAS82, OAS86)
(gggaatacacggaatctcCATGAAAAAAATCTTTTTAAAGTGATAACTAACAATACATATGTATAAAAGATATGAAA
AAGTATGGAAGGTTGAGCTAATGAGAGAATTGGAATTTTAGTTTGCCAGCACAACGTATAAAATGAAA
GGGaatctgagagctcccccA$_{100}$)
pAS321 (127)
MFA2 3' UTR fragment to -71
(gggaatacacggaatctccTCTTTTCATACATTTTACATTTTATACATGTATT
TGTATTATACATATGAGATTTTTTCATGgaatctgagagctcccA$_{100}$)
NdeI
pAS316 (115)
MFA2 3' UTR ARE3 at 5' end
(gggaatacacggaatctcgacctgccccccggatctagTTTTTTACATACATATGAGATTTTTTCATGgaatctgagagctcccA$_{100}$)
NdeI
pAS345 (111)
MFA2 3' UTR ARE1 at 5' end
(gggaatacacggaatctccgctgccccccggatctagTTTTTTACATATGAGATTTTTTCATGgaatctgagagctcccA$_{100}$)
NdeI
pAS344 (115)
MFA2 3' UTR ARE2 at 5' end
(gggaatacacggaatctccgctgccccccggatccAAACTAAAGTATTGgtaccactagTATG-NdeI--->)
pAS346 (111)
MFA2 3' UTR ARE2 at 5' end
(gggaatacacggaatctccgctgccccccggatcAAACTAAAGTATTGgtaccactagTATG-NdeI--->)
pAS363 (112)
MFA2 3' UTR C15 at 5' end
(gggaatacacggaatctccgctgccccccggatccAAACTAAAGTATTGgtaccactagTATG-NdeI--->)
pAS361 (112)
MFA2 3' UTR A15 at 5' end
(gggaatacacggaatctccgctgccccccggatccAAACTAAAGTATTGgtaccactagTATG-NdeI--->)
pAS315 [90]
MFA2 3' UTR to -41
(gggaatacacggaatctccgctgccccccggatccTATG-NdeI--->)

Plasmid numbers are listed [pAS]; RNA transcript lengths are in parenthesis. Distances from the poly[A] tail are shown (−N), oligonucleotides used in the construction are indicated (OAS), and the entire RNA transcript sequence is listed [uppercase letters indicate MFA2-derived sequences, A$_{100}$ marks the site of the poly[A] tail; NdeI indicates that sequences past this region are identical to those in pAS263 after the NdeI site].
[pAS343] RNA transcripts were prepared by PCR amplification of genomic DNA clones of these genes with oligonucleotides OAS13/114, OAS115/116, OAS117/118, and OAS119/120, respectively, using Taq DNA polymerase (Cetus) and the conditions suggested by the manufacturer. Amplified DNA fragments were digested with EcoRI and cloned into EcoRI-digested pAS200. RNA was prepared from XbaI-linearized template as described below.

SP6 RNA polymerase transcription reactions (Yissraeli and Melton 1989) were performed in 24 µl with BsmIIH, XbaI [pAS316, pAS321, pAS340–344], or PstI [pAS364]-linearized template [4 µg] using either [α-32P]ATP or [α-32P]UTP [New England Nuclear] (60 µCi per reaction) with 0.1 mM of the unlabeled nucleotide, 0.05 mM GTP, 0.5 mM each of the other two nucleotides, 0.5 mM of the cap analog diguanosine triphosphate [Pharmacia], 12 units of RNA polymerase, and 24 units of RNasin [Promega]. Following electrophoresis of the reaction mixture on 7% urea–polyacrylamide gels and visualization by autoradiography, RNA was isolated by crushing the gel slice in 0.5 M of TE buffer [10 mM Tris (pH 7.5), 0.1 mM EDTA] with 20 µg of yeast tRNA [Sigma], elution overnight at 37°C, and precipitation of the RNA in the eluate made 0.3 M NaCl with 2.5 volumes of ethanol (Sambrook et al. 1989). RNA was resuspended and resuppressed and, finally, resuspended in water and stored at −20°C.

Synthetic 32P-labeled poly(A) prepared from a T7 RNA polymerase reaction was as described in Milligan and Uhlenbeck (1989) in 100 µl using oligonucleotides OAS2 and OAS4, 250 units of T7 RNA polymerase, 24 units of RNasin [Fisher], and the nucleotide mixture described above without the cap analog and with 0.5 mM GTP. Following purification by gel electrophoresis, the major products were excised and purified by the procedures described above.

For thin-layer chromatographic analysis of the PAN reaction products, 2 µl of a standard PAN digestion reaction with 32P-labeled poly(A) [pAS200] was spotted onto cellulose F plates (EM Science), dried, and chromatographed in isobutyric acid/NH4OH/H2O (57.7 : 38 : 38.5) solvent (Filipowicz et al. 1985). The radioactive material was visualized by autoradiography. The positions of the unlabeled 3′ and 5′ AMP nucleotides were determined by UV shadowing.

DNA cloning methods were as described in (Sambrook et al. 1989), and all plasmid constructions were sequenced (Sanger et al. 1977) to confirm their structure.

Acknowledgments

We thank Roy Parker for sharing unpublished data and for many discussions, and Steve Buratowski, Alan Frankel, Alan Jacobson, Terry Orr-Weaver and Marv Wickens for many insightful comments. This work was supported by grant R29 GM43164 to A.B.S. from the National Institutes of Health and in part by a grant from the Lucille P. Markey Charitable Trust and a grant from the W.M. Keck Foundation to the Whitehead Institute Fellows program.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Bernstein, P. and J. Ross. 1989. Poly[A], poly[A] binding protein, and the regulation of mRNA stability. Trends Biochem. Sci. 14: 375–377.

Bohjanen, P.R., B. Petryniak, C.H. June, C.B. Thompson, and T. Lindsten. 1991. An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3′ untranslated region of lymphokine mRNA. Mol. Cell. Biol. 11: 3288–3295.

Brewer, G. 1991. An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11: 2460–2466.

Brown, B.D. and R.M. Harland. 1990. Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus oocytes. Genes & Dev. 4: 1925–1935.

Burd, C.G., E.L. Matunis, and G. Dreyfuss. 1991. The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities. Mol. Cell. Biol. 11: 3419–3424.

Filipowicz, W., K. Strugala, M. Konarska, and A.J. Shatkin. 1985. Cyclization of RNA 3′-terminal phosphate by cyclase from Hela cells proceeds via formation of [N3pp5′A]A activated intermediate. Proc. Natl. Acad. Sci. 82: 1316–1320.

Gay, D.A., S.S. Sisodia, and D.W. Cleveland. 1989. Autoregulatory control of β-tubulin mRNA stability is linked to translational elongation. Proc. Natl. Acad. Sci. 86: 5763–5767.

Gillis, P. and J.S. Malter. 1991. The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs. J. Biol. Chem. 266: 3172–3177.

Herrick, D., R. Parker, and A. Jacobson. 1990. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 2269–2284.

Huarte, J., A. Stutz, M.L. O’Connell, P. Gubler, D. Belin, A.L. Darrow, S. Strickland, and J.D. Vassalli. 1992. Transient translational silencing by reversible mRNA deadenylation. Cell 69: 1021–1030.

Klausner, R.D. and J.B. Harford. 1989. cis-trans models for post-transcriptional gene regulation. Science 246: 870–872.

Michaelis, S. and I. Herskowitz. 1988. The A-factor pheromone of Saccharomyces cerevisiae is essential for mating. Mol. Cell. Biol. 8: 1309–1318.

Milligan, J.F. and O.C. Uhlenbeck. 1989. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180: 51–62.

Pelz, S.W., G. Brewer, P. Bernstein, P.A. Hart, and J. Ross. 1991. Regulation of mRNA turnover in eucaryotic cells. Crit. Rev. Eucaryotic Gene Expression 1: 99–126.

Sachs, A.B. 1990. The role of poly(A) in the translation and stability of mRNA. Curr. Opin. Cell Biol. 2: 1092–1098.

Sachs, A.B. and R.W. Davis. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58: 857–867.

Sachs, A.B. and J.A. Dearthoff. 1992. Translation initiation requires the PAB-dependent poly(A) ribonucleate in yeast. Cell 70: 961–973.

Sachs, A.B., R.W. Davis, and R.D. Kornberg. 1987. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol. Cell. Biol. 7: 3268–3276.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sanger, F., S. Nicklen, and A.R. Coulsen. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463–5467.

Shaw, G. and R. Kamen. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667.

Sheets, M.D. and M. Wickens. 1989. Two phases in the addition
of a poly(A) tail. *Genes & Dev.* 3: 1401–1412.

Shyu, A.B., J.G. Belasco, and M.E. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. *Genes & Dev.* 5: 221–231.

Stoeckle, M. 1992. Removal of a 3' non-coding sequence is an initial step in the degradation of gro α mRNA and is regulated by interleukin-1. *Nucleic Acids Res.* 20: 1123–1127.

Stoeckle, M.Y. and H. Hanafusa. 1989. Processing of 9E3 mRNA and regulation of its stability in normal and Rous sarcoma virus transformed cells. *Mol. Cell. Biol.* 9: 4738–4745.

Vakalopoulou, E., J. Schaack, and T. Shenk. 1991. A 32-kilodalton protein binds to AU-rich domains in the 3' untranslated regions of rapidly degraded mRNAs. *Mol. Cell. Biol.* 11: 3555–3564.

Varnum, S.M. and W.M. Wormington. 1990. Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: A default mechanism for translational control. *Genes & Dev.* 4: 2278–2286.

Wahle, E. 1991. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. *Cell* 66: 759–768.

Wilson, T. and R. Treisman. 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. *Nature* 336: 396–399.

Yisraeli, J.K. and D.A. Melton. 1989. Synthesis of long, capped transcripts in vitro by SP6 and T7. *Methods Enzymol.* 180: 42–50.

You, Y., C.Y. Chen, and A.B. Shyu. 1992. U-rich binding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 3' untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation. *Mol. Cell. Biol.* 12: 2931–2940.
3'-UTR-dependent deadenylation by the yeast poly(A) nuclease.

J E Lowell, D Z Rudner and A B Sachs

Genes Dev. 1992, 6:
Access the most recent version at doi:10.1101/gad.6.11.2088