Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence [version 1; peer review: 2 approved]

Antonella Conte¹,², Giovanni Defazio³, Marcello Mascia³, Daniele Belvisi², Patrizia Pantano¹,², Alfredo Berardelli ¹,²

¹Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy
²IRCCS Neuromed, Pozzilli (IS), Italy
³Department of Basic Medical Sciences, Neuroscience and Sense Organs, "Aldo Moro", University of Bari, Bari, Italy

Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.

Keywords
dystonia, neurophysiology, neuroimaging, magnetic resonance; pathophysiology
Introduction

Dystonia is a disorder characterized by excessive and sustained muscle contractions that cause abnormal postures and involuntary movements that can be twisting, repetitive, or tremulous. It is often initiated or worsened by voluntary action and is associated with an overflow of muscle activity.\(^1\)

Idiopathic adult-onset dystonia, the most common form of dystonia, has variable clinical expression, though it often has a focal onset such as blepharospasm (BSP), oromandibular dystonia, cervical dystonia (CD), laryngeal dystonia, or arm dystonia.\(^1,3\) In adulthood, the lower limb has rarely been observed as a site of dystonia.\(^2\)

The demographic and clinical characteristics of adult-onset focal dystonias are now well established. Dystonias in the cranio-cervical area are more common in women, whereas occupational limb cramps are more common in men. Adult-onset dystonia has a limited tendency to spread to adjacent body regions,\(^3\) which likely depends on the site and age of dystonia onset and on genetic factors.\(^4\) Focal dystonias may be associated with rest/postural tremor in the head or upper limbs.\(^5\)

In addition to motor signs, patients with adult-onset dystonia may also have a spectrum of nonmotor symptoms, including psychiatric manifestations (namely depression, anxiety, and obsessive compulsive traits)\(^6\), mild disturbances in executive functions,\(^7\) and sensory symptoms.\(^8\) In patients with BSP, sensory symptoms may include a burning, gritty sensation in the eye, dry eye, and photophobia, which may develop months or years before BSP onset. In patients with CD, dystonic movements are often associated with neck pain that contributes significantly to patient disability and a low quality of life. The overall burden of nonmotor symptoms may vary in different patients with focal dystonia.\(^9\) All types of focal dystonia can be specifically relieved by sensory tricks, which are self-acquired maneuvers that transiently improve focal dystonia in a consistent proportion of patients.\(^10\)

In an early paper, Marsden et al.\(^11\) suggested that the basal ganglia play an important pathophysiological role in adult-onset focal dystonia. Indeed, early lesion studies showed that structural lesions in the basal ganglia determine dystonia (and not only focal forms) in contralateral body parts.\(^12\) Since basal ganglia determine motor command in goal-directed motor learning (i.e. facilitate the desired motor output and concomitantly inhibit unnecessary motor output), basal ganglia dysfunction may conceivably determine abnormal motor command. Moreover, it was also observed that oscillatory activity of the globus pallidus internus (GPI) at a frequency of <12 Hz contributes to dystonic motor symptoms\(^13\) and that deep brain stimulation (DBS) of the GPI improved dystonia.\(^14\)

Earlier neurophysiological studies demonstrated reduced inhibition at the level of the primary motor cortex, brainstem, and spinal cord,\(^15\) abnormal plasticity mechanisms in the cortical motor areas, and abnormal sensory integration.\(^16\) Likewise, magnetic resonance imaging (MRI) studies showed gray matter volume differences in several cortical/subcortical regions in patients with different focal dystonias. However, owing to the wide array of connections between the basal ganglia and several brain areas, these changes were generally interpreted as consequences of a primary basal ganglia dysfunction.

The assertion that focal dystonia is exclusively the result of basal ganglia dysfunction has recently been challenged by the remarkable clinical heterogeneity of the motor and nonmotor manifestations characterizing the different forms of adult-onset focal dystonias, as well as by lesion studies demonstrating that secondary focal dystonia is related to structural lesions in various sites in the nervous system, such as the basal ganglia, thalamus, and cerebellum.\(^17\) It has therefore been proposed that dystonia may not be due to a lesion or an abnormal function of only one structure, namely the basal ganglia, but rather may be due to dysfunctional mechanisms in other brain areas, either concomitantly with or secondary to altered basal ganglia influence, that contribute to the pathophysiology of the condition. This may be particularly true for CD. Animal models of reversible dystonia induced by means of muscimol inactivation have suggested a dysfunction of a circuit including mesencephalic reticular formation neurons, cerebellum, tectum, and the basal ganglia, known to play a fundamental role in control of eye, head, and coordinated eye and head movements.\(^18\) The dysfunction, however, may not be primary in these regions but rather reflect an abnormal activity originating in other structures providing feedback to the network such as the cerebellum. In this view of thought, the role of the cerebellum in the pathophysiology of focal dystonias has attracted great interest in the last decade.\(^19\)

In this paper, we provide a comprehensive overview of the new findings from recent neurophysiological and neuroimaging investigations regarding the pathophysiology of adult-onset dystonia and highlight the remaining knowledge gaps in the understanding of this condition.

Recent evidence from neurophysiological investigations

In recent years, neurophysiological investigations have largely focused on the pathophysiological mechanisms linking the hypothesized basal ganglia dysfunction to the activity of distant sites and the mechanisms underlying sensory abnormalities in focal dystonias, specifically altered temporal discrimination of sensory stimuli and pain (Table 1).

Using scalp EEG recordings in dystonia patients implanted with DBS electrodes in the GPI and subthalamic nucleus, Miciocinovic et al.\(^20\) demonstrated that chronic DBS reduces exaggerated alpha oscillations and alpha band interhemispheric coherence in the motor cortex, thus confirming that clinical improvement with GPI-DBS reflects DBS-induced direct suppression of abnormal oscillatory activity in the motor cortex.\(^21\)

Sedov et al.\(^22\) recently recorded single unit neural responses and local field potentials from the GPI in CD patients undergoing DBS surgery. Firing rate and discharge pattern of the GPI
Table 1. Recent neurophysiological abnormalities in focal dystonias.

Neural structure	Function	Patients	Main findings
Cerebellum	Eye blink classical conditioning	CD with and without tremor	Altered only in patients with tremor
	Feedforward adaptation	CD with and without tremor	Altered only in patients with tremor
Sensory system	Somatosensory temporal discrimination	CD	Increased values correlate with high-frequency oscillations and paired somatosensory evoked potentials inhibition
	Quantitative sensory testing	CD, upper limb dystonia,	Reduced cold and hot detection threshold
		generalized dystonia	
	Laser evoked potentials	CD, BSP	Normal N2/P2 amplitude
	Conditioned pain modulation protocol	CD, BSP	Reduced conditioned pain modulation response as compared to patients with BSP and healthy subjects

BSP, blepharospasm; CD, cervical dystonia

were asymmetric in patients with torticollis. Neuronal asymmetry correlated with the degree of involuntary head turning. Sedov et al. concluded that asymmetric pallidal activity results in asymmetric feedback to the mesencephalic neural integrator causing dysfunction in the network integrating eye and head coordinated movement\(^59,60\).

Studies using animal models of dystonia, however, also showed that cerebellar output alters basal ganglia activity and determines dystonic postures\(^41-52\). The observation that mutations in \(THAP1\) and \(KMT2B\) genes, highly expressed in the cerebellum, can induce generalized dystonia further supports the cerebellum’s role in the pathophysiology of dystonia\(^43,63\). In humans, cerebellar involvement in dystonia pathophysiology has recently been tested using eye blink classic conditioning (EBCC) and motor learning paradigms involving adaptation mechanisms. EBCC consists of a Pavlovian learning protocol integrated at the level of Purkinje cells and deep cerebellar nuclei. Some authors have shown that EBCC is impaired in patients with idiopathic focal hand dystonia and CD\(^46\). Conversely, adaptation learning, which tests the predictive ability to adjust motor execution after a perturbation, has been found to be normal in patients with CD\(^67,68\). The contrasting findings obtained by these two neurophysiological tests tentatively exclude a global cerebellar dysfunction in dystonic patients. Since patients with dystonia, specifically those with CD, often have concomitant tremor, some authors have investigated whether the presence of tremor may be the clinical feature reflecting cerebellar involvement. Hence, in studying CD patients with and without tremor, Antelmi et al.\(^59\) observed that patients with dystonic tremor showed a decreased number of conditioned responses in the EBCC paradigm as compared to healthy controls and dystonic patients without tremor. Similarly, when investigating anticipatory movement control during a bimanual task, Avanzino et al.\(^38\) found that adaptation of anticipatory adjustment was altered in patients with CD and tremor but not in CD patients without tremor and healthy subjects. These observations therefore suggest that cerebellar dysfunction more likely determines tremor than dystonia. Nonetheless, since most neurophysiological investigations testing the cerebellar hypothesis were conducted in patients with CD, further investigations should also assess whether this conclusion also applies to other types of focal dystonia.

Earlier studies tested the sensory system in dystonic patients by assessing somatosensory-evoked potentials (SEPs), electrical potentials generated in sensory pathways at peripheral, spinal, subcortical, and cortical levels of the nervous system\(^60\). In healthy subjects, the SEP amplitude obtained by stimulating a single nerve due to inhibitory mechanisms\(^51-60\). In dystonic patients with upper limb involvement, some authors have reported impaired suppression of SEPs at the spinal, brainstem, and cortical levels after mixed stimulation of the median and ulnar nerves\(^61,62\), thus implying reduced inhibition at multiple levels of the sensory system. Supporting this hypothesis, several studies on patients with various forms of focal dystonia have reported increased temporal discrimination thresholds (STDTs), the interval needed to discriminate two consecutively applied stimuli\(^56,58,69\). Recently, Antelmi et al.\(^70\) recorded the high-frequency potential oscillations (HFOs) related to SEPs in order to understand the mechanisms responsible for altered STDT in dystonia and found that patients with CD had a reduced area of the early component of HFOs and reduced paired SEP inhibition that correlated with increased STDT values. Since HFOs are generated by the activity of a population of 3b cortical inhibitory interneurons that receive thalamo-cortical inputs\(^71\), the authors concluded that impaired temporal discrimination in dystonia arises from defective inhibitory mechanisms in the primary somatosensory cortex.

As regards pain, there is some evidence from quantitative sensory testing that the thermal detection threshold and pain
sensitivity are abnormal in patients with dystonia72,73. Though an earlier investigation74 showed, and a recent study confirmed85, that nociceptive pathways are normal, as tested by laser-evoked potentials in patients with CD, Tinazzi \textit{et al.}75 recently investigated whether pain arises from dysfunction of regulatory pathways of nociceptive neurotransmission. To this aim, the authors applied a protocol, termed the conditioned pain modulation protocol, to test descending inhibitory control on nociceptive neurotransmission. This protocol consists of delivering a painful conditioning stimulus alongside another experimentally induced painful test stimulus. The ratio of the laser evoked N2/P2 potential amplitude during the application of the heterotopic noxious conditioning stimulation, as compared to baseline, reflects the physiological reduction of the perceived conditioned stimulus. The authors found that patients with CD have a reduced conditioned pain modulation response as compared to patients with BSP and healthy subjects and concluded that the endogenous inhibitory pain system is primarily defective in CD. Although this abnormality was present regardless of the presence of pain in these patients, it is likely that this alteration makes patients with CD more susceptible to developing pain. In addition, the evidence that this response is normal in patients with BSP implies that the two types of focal dystonia may differ in their pathophysiological mechanisms73.

Recent evidence from neuroimaging techniques

The introduction of functional neuroimaging investigations has allowed investigators to view changes in the functional activity of various brain areas in dystonia (Table 2). Changes in the blood oxygen level-dependent (BOLD) signal, measured while patients perform a task (task-based fMRI) or during resting conditions (resting state fMRI), allow the functional activity and connectivity of different brain areas to be evaluated6–76. Motor tasks such as hand movements, writing, playing instruments, and blinking are the most common tasks that have been used in dystonia. Sensory and motor task-related fMRI studies first showed an abnormal activation of the primary sensory and motor cortices, secondary motor cortex, basal ganglia, and the cerebellum that were consistent across different dystonia phenotypes77–83. Changes were detected while patients with dystonia performed tasks with and without dystonia induced by the movement itself and also when the tasks involved clinically unaffected body regions84,85. Altered sensory processing and abnormal somatotopic sensory organization in the basal ganglia and sensory cortex were also found, most consistently in the hand area of the primary somatosensory cortex80–82. Dysfunction was also detected during motor preparation and motor imagery83.

In the last three years, task-related fMRI studies have aimed to test the involvement of the cerebellum in focal dystonia and to identify functional correlates of altered sensory processing. In patients with CD, isometric head rotation in the direction of dystonic head rotation was associated with an increased activation of the ipsilateral anterior cerebellum, whereas isometric head rotation in the opposite direction was associated with

MRI technique	Function/analysis	Patients	Main findings
Task-related fMRI	Head rotation	CD	Increased activation of the ipsilateral anterior cerebellum and sensorimotor cortex depending on the direction of head rotation
Hand force task	CD	Increased activity of the cerebellum and decreased functional activity of the somatosensory cortex	
Visuospatial task	CD	Reduced activation of the cerebellum associated with a reduced connectivity of the cerebellum with basal ganglia and the motor cortex, and a reduced activation of temporal, premotor, and parietal associative areas	
Transient finger pressure	WC	Decreased activation of the sensorimotor network	
Visual looming stimuli	CD	Reduced superior collicular activation	
Resting state fMRI	Independent component analysis	BSP	Abnormalities in sensory–motor network, frontoparietal network, salience network, default-mode network
Intraregional brain activities and interregional functional connectivities	BSP	Abnormalities in both intraregional and interregional functional connectivities, abnormal functional connectivity between the right caudate and left striatum and right supplementary motor area	
Graph theoretical analysis	BSP, CD, WC, LD	Large-scale alteration of network architecture	
Diffusion tensor MRI	FA, MD	Structural alterations distinguish between focal dystonia phenotypes	

BSP, blepharospasm; CD, cervical dystonia; FA, fractional anisotropy; fMRI, functional magnetic resonance imaging; LD, laryngeal dystonia; MD, mean diffusivity; WC, writer’s cramp.
increased sensorimotor cortex activity19. In another study in CD patients performing a hand force task, symptom severity was associated with increased activity of the cerebellum and decreased functional activity of the somatosensory cortex19. Using a visuospatial task, Filip et al.39 found a reduced activation of the cerebellum associated with a reduced connectivity of the cerebellum with basal ganglia and the motor cortex, and a reduced activation of temporal, premotor, and parietal associative areas.

As regards sensory processing, temporal discrimination deficits corresponded to disrupted superior collicular activity during looming stimuli in patients with CD42. In writer’s cramp, the sensory processing of stimulation sequences (transient finger pressure) before the execution of a motor task revealed widespread decreased activation of the sensorimotor network, suggesting defective sensory processing during motor planning in these patients42.

In conclusion, recent evidence with fMRI has shown that the cerebellum is involved in altered connectivity and has identified functional correlates of altered sensory processing. However, since dystonic symptoms often worsen or are triggered by motor task execution, a relevant issue with task-related fMRI findings is that they are unable to determine whether functional abnormalities are causes or consequences of dystonic motor disturbances. Similarly, the cerebellar involvement in the abnormal connectivity can be either primary or compensatory. Studies in unaffected carriers of dystonia-related mutations and unaffected relatives of dystonic patients may help clarify this important issue.

Using resting-state fMRI with independent component analysis (ICA)94–99 in patients with BSP, Huang et al.100 observed alterations in multiple neural networks including the sensory–motor network (decreased connectivity involving the bilateral primary sensorimotor cortex, supplementary motor area, right premotor cortex, bilateral precuneus, and left superior parietal cortex), the right frontoparietal network (decreased connections in the middle frontal gyrus, dorsal lateral prefrontal cortex, and inferior frontal gyrus), and the salience network (increased connectivity in the left superior frontal gyrus and middle frontal gyrus). Abnormalities in regions of the default mode network and sensory integration network have been reported in patients with BSP104. Further confirmation of an abnormal functional connectivity between the right caudate and left striatum and right supplementary motor area correlating with BSP severity comes from the study by Ni et al.102.

In embouchure dystonia, changes in resting state connectivity were found in sensorimotor and auditory areas and in the cerebellum112. Abnormalities in both intraregional brain activities and interregional functional connectivity were also described in patients with CD112. Functional changes extensively involved both cortical and subcortical structures, and common alterations of the two measures were identified bilaterally in the postcentral gyrus as well as in the basal ganglia and thalamus. Overall, the above-cited findings with resting-state MRI have shown that in patients with focal dystonias altered connectivity in various brain networks is present independently from the execution of specific sensorimotor tasks, related or not to dystonia. Using both graph theoretical analysis94,105–108 and ICA, Battistella et al.109 compared patients with task-specific (eight spasmodic dysphonia and seven writer’s cramp patients) and non-task-specific dystonia (nine CD and nine BSP patients) and found that every patient exhibited unusually expanded or minimized neural communities. In addition, patients with task-specific dystonia had substantial connectivity alterations in the primary sensorimotor and inferior cortices and abnormally formed hubs in the insula and superior temporal cortex, as compared to patients without task-specific dystonia109. Results from graph theory analysis, therefore, suggest a large-scale alteration of network architecture in focal dystonia, with distinguishing features between task-specific and non-task-specific dystonia.

Earlier diffusion tensor imaging (DTI)94,109–112 studies showed microstructural alterations in the fiber tracts connecting the brainstem nuclei, basal ganglia, thalamus, cerebellum, motor cortex, and sensory cortex, and in the white matter (WM) of limbic, occipital, and prefrontal cortices in different forms of focal dystonia94,113,114. In recent years, Berman et al.115 used DTI in patients with BSP and CD to show that there are focal alterations in various brain structures that are specific to the two forms of focal dystonia (i.e. GPi, subthalamic, and red nuclei in BSP versus the caudate nucleus and cerebellum in CD). Consistent with the hypothesis that specific focal alterations may distinguish between focal dystonia phenotypes, Bianchi et al.116 observed that spasmodic dysphonia phenotypes may be distinguished on the basis of focal structural abnormalities in the areas of motor control of speech production and auditory–motor integration, whereas spasmodic dysphonia genotypes were associated with structural changes in higher-order extra-Sylvian regions and their connecting pathways. Similarly, differences in structural integrity have been reported by Kirke et al.117 in patients with spasmodic dysphonia, both with and without tremor. Compared to patients with spasmodic dysphonia without tremor, patients with spasmodic dysphonia and tremor exhibited a greater extent of WM changes in the right posterior limb of the internal capsule at the junction of the corticospinal/corticopontine tracts and superior thalamic radiation118.

Finally, Corp et al.37 used an MRI technique termed “lesion network mapping” from connectome data of a large cohort of healthy subjects to test whether lesions causing CD belong to a common brain network. However, the authors found that patients with CD had heterogeneous lesion sites (basal ganglia, brainstem, and cerebellum) that all belonged to a single functionally connected brain network.

Conclusion

For a long time, the pathophysiology of adult-onset focal dystonia has been thought to involve, uniquely, a basal ganglia disturbance. However, accumulating evidence in recent years now points to the anatomical and functional involvement of several brain regions. Recent findings have demonstrated an
The dystonias: a heterogeneous collection. J Neurol Neurosurg Psychiatry.

The neurophysiological reports of impaired sensory and motor inhibition at multiple levels of the central nervous system (contributing to altered tactile temporal discrimination as well as to motor manifestations) may well reflect not only a direct basal ganglia disturbance but also disturbances in the activity of basal ganglia-thalamo-cortical and cerebellum-thalamo-cortical projections. Pain in CD patients, likely due to impaired descending regulatory mechanisms of nociceptive transmission, implies an additional dysfunctional network in this form of focal dystonia. In summary, recent neurophysiological and neuroimaging studies demonstrate that focal dystonias involve disordered communication among several brain networks, in which basal ganglia and, possibly, the cerebellum act as entraining structures. Although different forms of focal dystonia all share alterations in neural structures belonging to the basal ganglia-thalamo-sensorimotor cortical network, specific clinical dystonic features may also emerge because of characteristic neural signatures in specific networks.

Finally, increased attention is now directed towards the remarkable clinical heterogeneity of motor manifestations and the variable occurrence of sensory, psychiatric, and executive function disturbances. The heterogeneous clinical features together with the neurophysiological and neuroimaging advances support the trend towards “splitting” focal dystonias, insofar as, taken to the extreme, each focal dystonia is unique to each patient.

Abbreviations
BSP, blepharospasm; CD, cervical dystonia; DBS, deep brain stimulation; DTI, diffusion tensor imaging; EBCC, eye blink classic conditioning; GPI, globus pallidus internus; HFOs, high-frequency potential oscillations; ICA, independent component analysis; MRI, magnetic resonance imaging; SEPs, somatosensory-evoked potentials; STDT, increased temporal discrimination threshold; WM, white matter.

Acknowledgements
We thank Dr. Melissa Kerr from the Department of Human Neuroscience, Sapienza, University of Rome, for language editing.

References

1. Albanese A, Bhatia K, Bressman SB, et al.: Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013; 28(7): 863–73. PubMed Abstract | Publisher Full Text | Free Full Text

2. Jinnah HA, Berardelli A, Comella C, et al.: The focal dystonias: current views and challenges for future research. Mov Disord. 2013; 28(7): 926–43. PubMed Abstract | Publisher Full Text | Free Full Text

3. Defazio G, Berardelli A, Halliet M: Do primary adult-onset focal dystonias share aetiologic factors? Brain. 2007; 130(Pt 5): 1183–93. PubMed Abstract | Publisher Full Text

4. Halliet M, Evinger C, Jankovic J, et al.: Update on blepharospasm: report from the BEBRF International Workshop. Neurology. 2008; 71(16): 1275–82. PubMed Abstract | Publisher Full Text | Free Full Text

5. Defazio G, Jankovic J, Gel JL, et al.: Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinet Mov (N Y). 2013; 3: pii: tre-03-193-4374-2. PubMed Abstract | Publisher Full Text | Free Full Text

6. Martino D, Maccarone A, Abruzzese G, et al.: Lower limb involvement in adult-onset primary dystonia: frequency and clinical features. Eur J Neurol. 2010; 17(2): 242–6. PubMed Abstract | Publisher Full Text

7. Abruzzese G, Berardelli A, Girlanda P, et al.: Long-term assessment of the risk of spread in primary late-onset focal dystonia. J Neurol Neurosurg Psychiatry. 2008; 79(4): 392–6. PubMed Abstract | Publisher Full Text

8. Defazio G, Matim M, Peckham EL, et al.: The TOR1A polymorphism rs1182 and the risk of spread in primary blepharospasm. Mov Disord. 2009; 24(4): 613–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

9. Defazio G, Conte A, Gigante AF, et al.: Is tremor in dystonia a phenotypic feature of dystonia? Neurology. 2019; 94(10): 1053–9. PubMed Abstract | Publisher Full Text

10. Gigante AF, Berardelli A, Defazio G: Rest tremor in idiopathic adult-onset dystonia. Eur J Neurol. 2016; 23(5): 935–9. PubMed Abstract | Publisher Full Text

11. Fabbri G, Berardelli I, Moretti G, et al.: Psychiatric disorders in adult-onset focal dystonia: a case-control study. Mov Disord. 2010; 25(4): 459–65. PubMed Abstract | Publisher Full Text | Free Full Text

12. Romano R, Bertolino A, Gigante A, et al.: Impaired cognitive functions in adult-onset primary cranial cervical dystonia. Parkinsonism Relat Disord. 2014; 20(2): 162–5. PubMed Abstract | Publisher Full Text

13. Conte A, Defazio G, Halliet M, et al.: The role of sensory information in the pathophysiology of focal dystonias. Nat Rev Neurol. 2019; 15(4): 224–33. PubMed Abstract | Publisher Full Text

14. Ferrazzano G, Conte A, Gigante A, et al.: Disease progression in blepharospasm: a 5-year longitudinal study. Eur J Neurol. 2019; 26(2): 269–73. PubMed Abstract | Publisher Full Text

15. Halliet M: The dystonias: a heterogeneous collection. Eur J Neurol. 2015; 22(5): 741–2. PubMed Abstract | Publisher Full Text

16. Dagostino S, Ercoli Y, Gigante AF, et al.: Sensory trick in upper limb dystonia. Parkinsonism Relat Disord. 2019; 63: 221–2. PubMed Abstract | Publisher Full Text

17. Marsden CD, Obeso JA, Zarranz JJ, et al.: The anatomical basis of symptomatic hemidystonia. Brain. 1985; 108(Pt 2): 463–83. PubMed Abstract | Publisher Full Text

18. Pettigrew LC, Jankovic J: Hemidystonia: a report of 22 patients and a review of the literature. J Neurol Neurosurg Psychiatry. 1985; 48(7): 650–7. PubMed Abstract | Publisher Full Text | Free Full Text

19. LeDoux MS, Brady KA: Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003; 18(1): 60–9. PubMed Abstract | Publisher Full Text

20. Neychev VK, Gross RE, Lehéry S, et al.: The functional neuroanatomy of dystonia. Neurobiol Dis. 2011; 42(2): 185–201. PubMed Abstract | Publisher Full Text | Free Full Text

21. Silberstein P, Kühn AA, Kupisch A, et al.: Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;
et al.

Basic concepts of MR imaging,

Ni MF, Huang XF, Miao YW,

Digit-specific aberrations in the primary motor cortex during individual digit movement in focal hand dystonia vs. healthy.

Resting-state fMRI: a review of methods and clinical applications.

Doucet G, Naveau M, Petit L, et al.: Functional magnetic resonance imaging study of head movements in cervical dystonia. Front Neurol. 2016; 7: 201.

Filip P, Gallea C, Lehérigy S, et al.: Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017; 32(5): 757–68.

PubMed Abstract | Publisher Full Text | Free Full Text

F1000 Recommendation

Mc Govern EM, Killian O, Narasimham S, et al.: Anatomical and functional magnetic resonance imaging of the brain in primary focal dystonia--a review. Neuroradiol J. 2011; 259(3): 101–19.

PubMed Abstract | Publisher Full Text | Free Full Text

Zoons E, Booij J, Nederveen AJ, et al.: Structural, functional and molecular imaging of the brain in primary focal dystonia--a review. Neuroimage. 2011; 56(3): 1011–20.

PubMed Abstract | Publisher Full Text

Peller M, Zeuner KE, Munchau A, et al.: Loss of sensory function in patients with idiopathic hand dystonia.

Mov Disord. 2012; 27(11): 1432–9.

PubMed Abstract | Publisher Full Text

Kimberley TJ, Pickett KA: Differential activation in the primary motor cortex during individual digit movement in focal hand dystonia vs. healthy. Restor Neurol Neurosci. 2012; 30(3): 247–54.

PubMed Abstract | Publisher Full Text

Moore RD, Gallea C, Horovitz SG, et al.: Individuated finger control in focal hand dystonia: an fMRI study. Neuroimage. 2012; 51(4): 829–31.

PubMed Abstract | Publisher Full Text | Free Full Text

Gallea C, Horovitz SG, Najee-Uliah M, et al.: Impairment of a parieto-premotor network specialized for handwriting in writer's cramp. Hum Brain Mapp. 2016; 37(3): 4963–78.

PubMed Abstract | Publisher Full Text | Free Full Text

Zeuner KE, Knutzen A, Granot O, et al.: Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

Neuropsychologia. 2015; 70: 63–70.

PubMed Abstract | Publisher Full Text | Free Full Text

Jankowski J, Paas S, Scheel L, et al.: Abnormal movement preparation in task-specific focal hand dystonia.

PLoS One. 2013; 8(10): e78234.

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

F1000 Recommendation

Lee MH, Smyser CD, Shimony JS: Resting-state fMRI: a review of methods and clinical applications.

JAMA Neurol. 2013; 70(10): 1866–72.

PubMed Abstract | Publisher Full Text | Free Full Text

Moussa MN, Steen MR, Laurenti PJ, et al.: Consistency of network modules in resting-state fMRI connectome data.

PLoS One. 2012; 7(8): e44428.

PubMed Abstract | Publisher Full Text | Free Full Text

De Luca M, Beckmann CF, De Stefano N, et al.: fMRI resting state networks define distinct modes of long-distance interactions in the human brain.

Neuroimage. 2006; 29(4): 1359–67.

PubMed Abstract | Publisher Full Text | Free Full Text

Dussel G, Navone M, Petit L, et al.: Brain activity at rest: a multiscale hierarchical functional organization.

Neurophysiol. 2011; 108(6): 2753–63.

PubMed Abstract | Publisher Full Text | Free Full Text

Battistella G, Termasasap R, Ramdani RA, et al.: Isolated Focal Dystonia as a Disorder of Large-Scale Functional Networks.

Cereb Cortex. 2017; 27(2):
110. Mori S, Zhang J: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006; 51(5): 527–39. PubMed Abstract | Publisher Full Text

111. Beaulieu C, Allen PS: Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994; 31(4): 394–400. PubMed Abstract | Publisher Full Text

112. Alexander AL, Lee JE, Lazar M, et al.: Diffusion tensor imaging of the brain. Neurotherapeutics. 2007; 4(3): 316–29. PubMed Abstract | Publisher Full Text | Free Full Text

113. Colosimo C, Pantano P, Calistri V, et al.: Diffusion tensor imaging in primary cervical dystonia. J Neurol Neurosurg Psychiatry. 2005; 76(11): 1591–3. PubMed Abstract | Publisher Full Text | Free Full Text

114. Fabbrini G, Pantano P, Totaro P, et al.: Diffusion tensor imaging in patients with primary cervical dystonia and in patients with blepharospasm. Eur J Neurol. 2008; 15(2): 185–9. PubMed Abstract | Publisher Full Text

115. Berman BD, Horce JM, Shelton E, et al.: Isolated focal dystonia phenotypes are associated with distinct patterns of altered microstructure. Neuroimage Clin. 2018; 19: 805–12. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

116. Bianchi S, Battistella G, Huddleston H, et al.: Phenotype- and genotype-specific structural alterations in spasmodic dysphonia. Mov Disord. 2017; 32(4): 560–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

117. Kirke DN, Battistella G, Kumar V, et al.: Neural correlates of dystonic tremor: a multimodal study of voice tremor in spasmodic dysphonia. Brain Imaging Behav. 2017; 11(1): 166–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1 Martin Bareš
 1 Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Brno, Czech Republic
 2 Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA

Pavel Filip
Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Brno, Czech Republic

Competing Interests: No competing interests were disclosed.

2 Aasef G Shaikh
 1 Department of Neurology, Case Western University School of Medicine, Cleveland, OH, USA
 2 Neurological Institute, University Hospitals, Cleveland, OH, USA

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com