DISCUSSION

Dans ce travail, nous montrons que l’oncoprotéine Tax du virus HTLV-1 est modifiée par acétylation, ubiquitination et sumoylation lorsqu’elle est exprimée dans différentes lignées cellulaires parmi lesquelles les lymphocytes T, hôtes naturels du virus, ainsi que les lymphocytes T transformés par HTLV-1. L’ubiquitination et la sumoylation s’effectuent sur les lysines chevauchantes K7 et K8 en position 280 et 284 et l’ubiquitination peut en outre s’effectuer sur une ou plusieurs des lysines K4, K5 et/ou K6 tandis que l’acétylation implique la lysine K10 en position 346. Ces modifications s’ajoutent à la phosphorylation des sérines en position 300 et/ou 301 préalablement identifiée et forment avec elle une suite hiérarchisée de modifications qui sont reprises schématiquement dans la figure 1. La phosphorylation, l’ubiquitination et la sumoylation agissent de manière concertée pour permettre l’activation de l’expression des gènes par la voie NF-κB tandis que l’acétylation permet de résoudre le blocage en mitose induit par les formes non acétylées de Tax et cet effet participe vraisemblablement à la multiplication incontrôlée des cellules exprimant la protéine Tax.

La phosphorylation, l’ubiquitination et la sumoylation jouent un rôle critique dans la localisation intracellulaire de Tax. La phosphorylation contrôle la migration de Tax vers le noyau tandis que l’ubiquitination et la sumoylation déterminent sa rétention respectivement dans le cytoplasme ou dans le noyau. Dans le cytoplasme, la phosphorylation contrôle d’une part l’ubiquitination de Tax, l’activation des kinases IKK et la translocation consécutive de la sous-unité RelA du facteur NF-κB vers le noyau et, d’autre part la migration de Tax vers le noyau. Le transport de RelA suite à l’activation des kinases IKK se ferait conjointement au transport de Tax dans le noyau. Au cours de sa migration à travers les pores nucléaires, Tax serait sumoylé et cette modification permet la formation de corps nucléaires à Tax et le recrutement dans ces corps d’un ensemble de facteurs de transcription et d’épissage permettant l’activation de l’expression des gènes par Tax. Donc, l’induction de la translocation de RelA dans le noyau par les formes ubiquitinées de Tax n’est pas un événement suffisant pour permettre l’activation de l’expression des gènes par la voie NF-κB. Il faut en outre que Tax soit sumoylé pour permettre la formation des corps nucléaires, le recrutement d’un ensemble de facteurs de transcription dans ces structures et l’activation de l’expression des gènes par Tax. Enfin, la sumoylation de Tax et la formation consécutive de corps nucléaires contenant l’acétyltransférase p300 contrôlent l’acétylation de Tax dans le
noyau. En absence d’acétylation, Tax induit un blocage du cycle cellulaire au cours des dernières étapes de la mitose. L’acétylation permettrait de résoudre ce blocage.

Figure 1 : Les fonctions de Tax sont contrôlées par une suite hiérarchisée de modifications post-traductionnelles. Modèle représentant la localisation intracellulaire et les fonctions des différentes formes modifiées de la protéine Tax.

1) La phosphorylation de Tax est un prérequis pour son ubiquitination

Le fait que le mutant F2 non-phosphorylé n’est pas ubiquitiné alors que le mutant F9, présentant des résidus acide aspartique à la place des sérines impliquées dans la phosphorylation, est ubiquitiné comme la protéine Tax sauvage nous a mené à la conclusion que la phosphorylation de Tax était un prérequis à son ubiquitination. Comme c’est le cas pour l’inhibiteur IkBα dont l’ubiquitination est également contrôlée par sa phosphorylation, les sérines phosphorylées de Tax pourraient être un motif de reconnaissance pour une des multiples ubiquitine E3 ligases. Les ubiquitine E3 ligases TRAF2, 5 et 6, ainsi que de l’enzyme E2 de conjugaison Ubc13, sont des candidats potentiels effecteurs de l’ubiquitination de Tax puisque leur surexpression stimule l’ubiquitination de Tax\(^\text{96,125}\). Ces complexes E2/E3 induisent la polyubiquitination avec branchements en K63 sur divers substrats parmi lesquels la sous-unité régulatrice des complexes IKK, IKKy. Notons cependant que des mutants dominants négatifs des enzymes TRAF 2 et TRAF 6 n’inhibent pas l’expression des gènes par la voie NF-\(\kappa\)B induite par Tax\(^\text{24}\). Il sera donc important de
déterminer quel complexe de ligation est impliqué dans l’ubiquitination de Tax et si son interaction avec Tax nécessite la phosphorylation de Tax.

2) L’ubiquitination de Tax est nécessaire pour la translocation de RelA dans le noyau et pour l’activation de la voie NF-κB

Nos résultats montrent que l’ubiquitination de Tax est nécessaire pour activer les complexes IKK conduisant à la translocation de la sous-unité RelA dans le noyau. Dans cette fonction, l’ubiquitination de Tax pourrait jouer un rôle soit dans le recrutement et l’assemblage des complexes IKK, soit dans l’activation de ces complexes. Un schéma reprenant ces deux hypothèses est présenté dans la figure 2. Nos résultats ainsi que différents articles récents favorisent la deuxième hypothèse. Premièrement, l’expression du mutant non-ubiquitiné K4-8R, comme celle de la protéine Tax sauvage, induit la relocalisation des sous-unités IKKγ, IKKβ et IKKα dans des structures cytoplasmiques ou elles colocalisent avec Tax, suggérant que l’ubiquitination de Tax n’était pas nécessaire pour l’assemblage des complexes IKK mais interviendrait plutôt dans l’activation de ces complexes. Deuxièmement, des expériences de co-immunoprécipitation in vitro ont mis en évidence que les protéines Tax et IKKγ exprimées en bactéries, et donc non modifiées, interagissent avec Tax de l’expression des gènes par la voie NF-κB. Troisièmement, l’ubiquitination branchée K63 de IKKγ n’est pas nécessaire pour l’activation par Tax de l’expression des gènes par la voie NF-κB. Enfin, il faut noter que le domaine de liaison à l’ubiquitine de IKKγ n’est pas nécessaire pour l’activation par Tax de l’expression des gènes par la voie NF-κB de même que la kinase RIP-1.

L’ensemble de ces observations sont donc en faveur d’un rôle direct de l’ubiquitination de Tax dans l’activation du complexe IKK plutôt qu’un rôle dans l’interaction entre Tax et IKKγ. Notons que dans ce modèle, l’ubiquitination de Tax se substituerait au rôle de l’ubiquitination branchée en K63 de IKKγ. A ce sujet, il est intéressant de noter que l’ubiquitination de Tax ne conduit pas à sa dégradation massive suggérant que la polyubiquitination de Tax est principalement constituée de branchements sur la lysine K63,
impliqués dans l’activation des kinases IKK. En fait, différents travaux récents montrent que la polyubiquitination de Tax s’effectue principalement par branchements sur la lysine 63 de l’ubiquitine52,96.

De nombreuses questions subsistent quant au rôle exact de l’ubiquitination de Tax dans l’activation du complexe IKK. Permet-elle de recruter d’autres kinases que TAK-1 et si oui, lesquelles? Comment Tax induit-elle l’ubiquitination de IKKγ et de IKKβ et quelle est l’importance de ces modifications dans cette activation? De plus, il sera important d’analyser si les modifications de Tax ont un rôle pour empêcher la terminaison de la réponse NF-κB permettant l’activation constitutive de cette voie dans les cellules transformées par HTLV-1.

3) La phosphorylation de Tax est nécessaire pour sa translocation dans le noyau

Tax présente un signal de localisation nucléaire (NLS) permettant son interaction avec p62, une protéine associée aux pores nucléaires et un signal d’export nucléaire (NES). Le mutant K4-8R qui est phosphorylé mais n’est ni ubiquitiné, ni sumoylé est distribué de manière diffuse dans le cytoplasme et dans le noyau. Donc, la puissance des deux signaux NLS et NES est équivalente lorsqu’on l’analyse en l’absence des signaux de rétention.
cytoplasmique (ubiquitination) et nucléaire (sumoylation). La distribution cytoplasmique exclusive du mutant F2 suggère donc soit que la phosphorylation sur les sérines 300/301 est nécessaire à la fonction du NLS, soit que l’absence de phosphorylation favorise le NES ou les deux simultanément. La phosphorylation de Tax joue donc un rôle critique dans son trafic intracellulaire. Il sera intéressant de déterminer si les mutants du NLS sont encore phosphorylés et si la phosphorylation de Tax est requise pour son interaction avec p62.

Nos résultats indiquent que les formes sumoylées et acétylées de Tax sont des formes essentiellement nucléaires. D’autre part, la sumoylation se fait conjointement à l’import nucléaire des protéines par des complexes enzymatiques de sumoylation situés au niveau des pores nucléaires et l’enzyme d’acétylation de Tax, l’acétyltransférase p300, est détectée principalement dans le noyau. Le fait que le mutant non phosphorylé F2 ne soit ni sumoylé ni acétylé supporte l’idée que ce mutant n’est pas transporté à travers les pores nucléaires et ne séjourne pas dans le noyau. De plus, le mutant F9 de substitution des phosphosérines par des acides aspartiques, récupère la capacité d’être sumoylé et acétylé et est détecté dans le noyau. Ces observations supportent l’idée que la phosphorylation de Tax est requise, en plus de son signal NLS, pour son transport dans le noyau. Il faut cependant remarquer que le mutant « constitutivement phosphorylé » F9 présente un taux de sumoylation relativement bas par rapport à la protéine Tax sauvage alors qu’il récupère 100% d’acétylation. Cette observation suggère que la sumoylation de Tax nécessite non seulement sa phosphorylation pour permettre son transport à travers les pores nucléaires mais aussi sa déphosphorylation au cours du passage dans le noyau, opération qui ne peut pas être effectuée sur le mutant F9 à cause de la présence des acides aspartiques.

Il sera aussi important de déterminer quelle(s) kinase(s) phosphoryle(nt) Tax et quel domaine de Tax interagit avec ces kinases. Tax est capable d’activer de nombreuses kinases cellulaires (Cot, MEKK, TAK-1, …) mais jusqu’à présent, aucune d’entre-elles n’a été directement impliquée dans la phosphorylation de Tax. De nombreux mutants de Tax parmi lesquels les mutants M148 et M47, présentent un taux de phosphorylation réduit malgré des résidus sérines 300/301 intacts. Ces mutants pourraient présenter une altération dans leur conformation ou dans le site d’interaction avec la kinase. Le mutant M47, malgré un taux de phosphorylation réduit d’un facteur deux par rapport à la protéine Tax sauvage, est ubiquitiné, sumoylé et acétylé comme la protéine Tax sauvage. Ce résultat suggère qu’il existe un seuil critique permettant à la phosphorylation d’être efficace. La perte d’interaction du mutant M148 avec p300 et la réduction de son taux d’acétylation et de sumoylation pourraient
s’expliquer par le taux de phosphorylation de 14% de ce mutant ne permettant pas son transport efficace dans le noyau.

4) La protéine Tax et la sous-unité RelA sont-ils co-transportés dans le noyau ?

Il est intéressant de noter que la fusion de l’ubiquitine au mutant non-phosphorylé et non-ubiquitiné F2 ne permet pas la translocation de RelA dans le noyau contrairement à la fusion de l’ubiquitine au mutant phosphorylé mais non-ubiquitiné K4-8R. Ce résultat suggère que la phosphorylation de Tax ne contrôle pas seulement son ubiquitination mais aussi qu’elle participe en plus directement soit à l’activation des kinases IKK, soit au passage de RelA dans le noyau. Nous favorisons l’hypothèse que Tax sert de transporteur lors de la translocation de RelA dans le noyau puisque cette hypothèse est en accord avec l’observation que l’expression de Tax lève la nécessité de l’importine α/β et d’énergie pour assurer la translocation de RelA vers le noyau.\(^{108}\)

5) La sumoylation est nécessaire pour la formation des corps nucléaires et les activités transcriptionnelles de Tax

Le mutant ubiquitiné mais non-sumoylé R4-6K induit la translocation de RelA mais est incapable d’activer l’expression des gènes par la voie NF-κB et la fusion de SUMO à l’extrémité carboxy-terminale de ce mutant restaure partiellement cette activité transcriptionnelle. Ces observations indiquent clairement que les événements cytoplasmiques contrôlés par les formes ubiquitinées de Tax conduisant à la translocation de RelA dans le noyau sont critiques pour l’activation de l’expression des gènes par la voie NF-κB. Cependant, ces événements ne sont pas suffisants. L’activation de l’expression des gènes par Tax requiert en outre un ensemble d’événements nucléaires contrôlés par les formes sumoylées de Tax.

Nos travaux indiquent que la sumoylation de Tax est requise pour permettre la formation de corps nucléaires où Tax colocalise avec des composants des complexes de transcription y compris RelA et p300 ainsi que des composants des complexes d’épissage. Le défaut de sumoylation de Tax détermine la perte de la formation des corps nucléaires et l’incapacité de Tax d’activer l’expression des gènes par la voie NF-κB. Le rôle de la
sumoylation dans la formation de corps nucléaires a initialement été mis en évidence lors de l’assemblage des corps à PML (promyelocytic leukemia) par la protéine PML sumoylée. Depuis, cet exemple a été étendu à de nombreuses protéines sumoylées parmi lesquelles le facteur de transcription NFAT. Comme Tax, le facteur NFAT est modifié par sumoylation sur deux lysines distinctes et cette modification contrôle sa rétention nucléaire et son activité transcriptionnelle. Le recrutement de facteurs tel que DAXX dans les corps à PML requiert non seulement la sumoylation de PML mais aussi la présence d’un motif d’interaction avec SUMO (SIM : SUMO interacting motif). Il serait intéressant de déterminer si Tax présente également un domaine d’interaction avec SUMO permettant le recrutement de facteurs sumoylés dans les corps à Tax.

La sumoylation de Tax permet donc de recruter des co-facteurs nécessaires à l’activation de la transcription. Ces corps à Tax partagent plusieurs caractéristiques avec les domaines de transcription (transcription factories). Premièrement, ces corps incluent des facteurs de transcription et des composants de la machinerie de transcription. Deuxièmement, ces structures contiennent des ARN nouvellement synthétisés et les complexes d’épissage impliqués dans la maturation de ces transcrits. Troisièmement, ces structures ne contiennent pas d’ADN mais leur surface est en contact avec la chromatine décondensée contenant les gènes cibles à transcrire. Ces similitudes et l’observation que les corps nucléaires sont nécessaires aux activités transcriptionnelles de Tax, renforce l’idée que la sumoylation de Tax est nécessaire pour induire une transcription efficace des gènes cibles.

6) Tax est acétylée par p300 dans le noyau et cette modification est favorisée par la sumoylation.

La protéine Tax est acétylée sur la lysine carboxy-terminale K10 par l’acétyltransférase p300. Il est intéressant de remarquer que malgré que Tax soit capable d’interagir avec les deux coactivateurs transcriptionnels homologues CBP et p300, son acétylation est spécifiquement induite par la surexpression de p300. Une telle spécificité a été mise en évidence pour divers substrats tels que Smad7 et le facteur de transcription p73 qui sont spécifiquement acétylés par p300. Cette spécificité pourrait être accentuée par le fait que les activités acétyltransférases de CBP et de p300 sont activées de manière différentielle par phosphorylation par des kinases spécifiques. Ainsi, CBP, mais pas p300, est phosphorylé par
la kinase IKKα, ce qui augmente son affinité pour le complexe p50/RelA au détriment de p53.

La formation de complexes Tax/p300 requiert la présence de Tax dans le noyau et donc sa phosphorylation. Cependant, le fait que le mutant K4-8R forme des complexes avec p300 comme la protéine Tax sauvage mais n’est que peu acétylé indique que la formation des complexes avec p300 n’est pas suffisante pour permettre l’acétylation de Tax. Nos observations indiquent que l’acétylation de Tax est stimulée par sa sumoylation et la formation des corps nucléaires contenant p300. Il est donc possible que les corps nucléaires à Tax contiennent un facteur stimulant l’activité acétyltransférase de p300. Ces facteurs pourraient être les kinases Akt et HIPK2 impliquées dans la phosphorylation de p300 et dans la stimulation consécutive de son activité acétyltransférase1,40. Or, la protéine Tax est capable d’activer la voie PI3K/Akt69 et des résultats préliminaires du laboratoire indiquent que la kinase HIPK2 est présente dans les corps à Tax. Il sera donc intéressant à l’avenir de déterminer les rôles éventuels de ces kinases dans l’acétylation de Tax par p300. Le cas de la protéine AML-1 illustre un tel mécanisme (Figure 3). L’interaction de AML-1 avec p300 et HIPK2 détermine la phosphorylation d’AML-1 par HIPK2 suivie de la phosphorylation de p300 par HIPK2. La phosphorylation de p300 par HIPK2 stimule son activité acétyltransférase et conduit à l’acétylation d’AML-11.

Figure 3 : Mécanisme conduisant à l’acétylation d’AML par p300. La protéine AML interagit avec la kinase HIPK2 et l’acétyltransférase p300. La phosphorylation de AML par HIPK2 permet ensuite la phosphorylation activatrice de p300 par HIPK2, conduisant à l’acétylation d’AML.
7) L’acétylation résout le blocage induit lors de la mitose par les formes non acétylées de Tax

L’expression de la protéine Tax induit la formation de cellules géantes multi-nucléées et cet effet est drastiquement réduit lors de la co-expression de l’acétyltransférase p300. De plus, le pourcentage de cellules multi-nucléées est plus élevé lorsque le mutant non acétylé K10R est exprimé à la place de la protéine Tax sauvage. Ces résultats suggèrent fortement que l’acétylation de Tax permet de résoudre le blocage de la progression ou de l’accomplissement de la mitose. Ces expériences ont été effectuées avec un clone moléculaire complet du virus HTLV-1, et donc en présence de toutes les protéines régulatrices du virus. Les différences observées sont significatives puisque les protéines Tax sauvage ou mutée K10R sont exprimées en quantités équivalentes par les deux provirus et que les provirus ACH sauvage ou muté K10R produisent des quantités équivalentes de virus.

L’apparition de cellules multi-nucléées lors de l’expression de Tax a été attribuée à sa capacité d’induire l’activation prématurée du complexe APC/C et la dégradation de la cycline B1. Cette possibilité est attractive car un travail montre que p300 interagit avec les sous-unités régulatrices Cdc20 et Cdh1 de ce complexe, ainsi qu’avec les sous-unités structurelles APC5 et APC7. Le rôle exact de cette association n’est pas encore clairement élucidé mais la répression de l’expression de p300 ne change pas le taux d’ubiquitination de la cycline B1 induite par le complexe APC/C. D’autre part, l’association de p300 avec APC/C semble induire l’autoacétylation de p300. Cette modification stimule l’activité acétyltransférase de p300106,109. La protéine Tax interagit également avec les sous-unités Cdc20 et Cdh1 du complexe APC/C56. Il sera donc intéressant de déterminer si l’acétylation de Tax module son interaction avec les sous-unités régulatrices du complexe APC/C ainsi que l’activation de ce dernier dans des lymphocytes T, hôtes du virus HTLV-1.

L’extrémité carboxy-terminale de Tax a été impliquée dans sa capacité à former des micro-noyaux et d’inhiber l’hématopoïèse dans des lymphocytes précurseurs CD341. Ces effets ont été attribués au domaine PBM350ETEV353 de Tax. Nous montrons dans ce travail que le domaine carboxy-terminal de Tax comporte la lysine cible de l’acétylation en plus du domaine PBM. Les effets attribués au domaine PBM pourraient donc être en fait la conséquence de l’acétylation de Tax. Il est important de noter que le mutant non acétylé K10R est capable d’interagir avec la protéine à domaine PDZ, DLG, comme la protéine Tax sauvage. En outre, la fusion de 6-histidines à l’extrémité carboxy-terminale de Tax empêche
son interaction avec la protéine DLG mais n'empêche pas son acétylation. Ces résultats indiquent que l’acétylation de Tax et sa capacité d’interagir avec des protéines à domaines PDZ sont deux fonctions indépendantes. Il faudra dès lors déterminer si la formation de micro-noyaux et l’inhibition de l’hématopoïèse par Tax sont les conséquences de l’acétylation de Tax ou de son interaction avec les protéines à domaine PDZ.

8) L’acétylation de Tax est requise pour l’activation de l’expression des gènes par la voie NF-κB

Lors de l’étude du rôle de l’acétylation de Tax, nous avons observé que le mutant K10R était capable d’activer l’expression des gènes par la voie ATF/CREB comme la protéine Tax sauvage mais présentait une diminution d’un facteur deux dans sa capacité d’activer l’expression des gènes par la voie NF-κB. Le mutant K10R est ubiquitiné et sumoylé comme la protéine Tax sauvage et est capable de recruter la sous-unité RelA et le co-activateur p300 dans les corps nucléaires comme la protéine Tax sauvage. Ce résultat indique que l’acétylation de Tax, en plus de son ubiquitination et de sa sumoylation, est requise pour l’activation de l’expression des gènes par la voie NF-κB à partir d’un promoteur intégré dans la chromatine des cellules. Des études complémentaires devront être entreprises afin de déterminer le rôle exact de l’acétylation de Tax dans cette activation.

Notre travail indique que Tax est une protéine hautement modifiée et que les modifications post-traductionnelles ont un rôle critique dans son pouvoir transformant. Ces modifications pourraient donc être des cibles thérapeutiques potentielles pour le traitement de la leucémie à cellules T de l’adulte induite par ce virus.
1. Aikawa Y., Nguyen L.A., Isono K., Takakura N., Tagata Y., Schmitz M.L., Koseki H., and Kitabayashi I. (2006) Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. *EMBO J.* 25, 3955-3965.

2. Alefantis T., Barmak K., Harhaj E.W., Grant C., and Wigdahl B. (2003) Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax. *J. Biol. Chem.* 278, 21814-21822.

3. Ardley H.C. and Robinson P.A. (2005) E3 ubiquitin ligases. *Essays Biochem.* 41, 15-30.

4. Ariumi Y., Kaida A., Lin J.Y., Hirota M., Masui O., Yamaoka S., Taya Y., and Shimotohno K. (2000) HTLV-1 tax oncoprotein represses the p53-mediated transcriptional function through coactivator CBP sequestration. *Oncogene* 19, 1491-1499.

5. Baeg G.H., Matsumine A., Kuroda T., Bhattacharjee R.N., Miyashiro I., Toyoshima K., and Akiyama T. (1995) The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. *EMBO J.* 14, 5618-5625.

6. Basbous J., Bazarbachi A., Granier C., Devaux C., and Mesnard J.M. (2003) The central region of human T-cell leukemia virus type 1 Tax protein contains distinct domains involved in subunit dimerization. *J. Virol.* 77, 13028-13035.

7. Baydoun H., Duc-Dodon M., Lebrun S., Gazzolo L., and Bex F. (2007) Regulation of the human T-cell leukemia virus gene expression depends on the localization of regulatory proteins Tax, Rex and p30II in specific nuclear subdomains. *Gene* 386, 191-201.

8. Bex F. and Gaynor R.B. (1998) Regulation of gene expression by HTLV-I Tax protein. *Methods* 16, 83-94.

9. Bex F., McDowall A., Burny A., and Gaynor R. (1997) The human T-cell leukemia virus type 1 transactivator protein Tax colocalizes in unique nuclear structures with NF-kappaB proteins. *J. Virol.* 71, 3484-3497.

10. Bex F., Murphy K., Wattiez R., Burny A., and Gaynor R.B. (1999) Phosphorylation of the human T-cell leukemia virus type 1 transactivator tax on adjacent serine residues is critical for tax activation. *J. Virol.* 73, 738-745.

11. Bex F., Yin M.J., Burny A., and Gaynor R.B. (1998) Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300. *Mol. Cell Biol.* 18, 2392-2405.

12. Calattini S., Chevalier S.A., Duprez R., Bassot S., Froment A., Mahieux R., and Gessain A. (2005) Discovery of a new human T-cell lymphotropic virus (HTLV-3) in Central Africa. *Retrovirology* 2, 30.
13. Carter R.S., Pennington K.N., Ungurait B.J., Arrate P., and Ballard D.W. (2003) Signal-induced ubiquitination of I kappaB Kinase-beta. *J. Biol. Chem.* 278, 48903-48906.

14. Chiari E., Lamsoul I., Lodewick J., Chopin C., Bex F., and Pique C. (2004) Stable ubiquitination of human T-cell leukemia virus type 1 tax is required for proteasome binding. *J. Virol.* 78, 11823-11832.

15. Chu Z.L., Shin Y.A., Yang J.M., DiDonato J.A., and Ballard D.W. (1999) IKKgamma mediates the interaction of cellular IkappaB kinases with the tax transforming protein of human T cell leukemia virus type 1. *J. Biol. Chem.* 274, 15297-15300.

16. Coskun A.K. and Sutton R.E. (2005) Expression of glucose transporter 1 confers susceptibility to human T-cell leukemia virus envelope-mediated fusion. *J. Virol.* 79, 4150-4158.

17. Cullen B.R. (2002) Using retroviruses to study the nuclear export of mRNA. *Results Probl. Cell Differ.* 35, 151-168.

18. Derse D., Crise B., Li Y., Princler G., Lum N., Stewart C., McGrath C.F., Hughes S.H., Munroe D.J., and Wu X. (2007) Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. *J. Virol.* 81, 6731-6741.

19. Ding W., Albrecht B., Luo R., Zhang W., Stanley J.R., Newbound G.C., and Lairmore M.D. (2001) Endoplasmic reticulum and cis-Golgi localization of human T-lymphotropic virus type 1 p12(I): association with calreticulin and calnexin. *J. Virol.* 75, 7672-7682.

20. Faro-Trindade I. and Cook P.R. (2006) Transcription factories: structures conserved during differentiation and evolution. *Biochem. Soc. Trans.* 34, 1133-1137.

21. Gardiol D., Galizzi S., and Banks L. (2002) Mutational analysis of the discs large tumour suppressor identifies domains responsible for human papillomavirus type 18 E6-mediated degradation. *J. Gen. Virol.* 83, 283-289.

22. Gatza M.L. and Marriott S.J. (2006) Genotoxic stress and cellular stress alter the subcellular distribution of human T-cell leukemia virus type 1 tax through a CRM1-dependent mechanism. *J. Virol.* 80, 6657-6668.

23. Geiger T.R., Sharma N., Kim Y.M., and Nyborg J.K. (2008) The human T-cell leukemia virus type 1 tax protein confers CBP/p300 recruitment and transcriptional activation properties to phosphorylated CREB. *Mol. Cell Biol.* 28, 1383-1392.

24. Geleziunas R., Ferrell S., Lin X., Mu Y., Cunningham E.T., Jr., Grant M., Connelly M.A., Hambor J.E., Marcu K.B., and Greene W.C. (1998) Human T-cell leukemia virus type 1 Tax induction of NF-kappaB involves activation of the I kappaB kinase alpha (IKKalpha) and IKKbeta cellular kinases. *Mol. Cell Biol* 18, 5157-5165.

25. Georges S.A., Kraus W.L., Luger K., Nyborg J.K., and Laybourn P.J. (2002) p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function. *Mol. Cell Biol.* 22, 127-137.
26. Ghosh S. and Karin M. (2002) Missing pieces in the NF-kappaB puzzle. *Cell* 109 Suppl, S81-S96.

27. Girdwood D., Bumpass D., Vaughan O.A., Thain A., Anderson L.A., Snowden A.W., Garcia-Wilson E., Perkins N.D., and Hay R.T. (2003) P300 transcriptional repression is mediated by SUMO modification. *Mol. Cell* 11, 1043-1054.

28. Gohda J., Irisawa M., Tanaka Y., Sato S., Ohtani K., Fujisawa J., and Inoue J. (2007) HTLV-I Tax-induced NFkappaB activation is independent of Lys-63-linked-type polyubiquitination. *Biochem. Biophys. Res. Commun.* 357, 225-230.

29. Grassmann R., Dengler C., Muller-Fleckenstein I., Fleckenstein B., McGuire K., Dokhelar M.C., Sodroski J.G., and Haseltine W.A. (1989) Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. *Proc. Natl. Acad. Sci. U. S. A* 86, 3351-3355.

30. Grossman W.J., Kimata J.T., Wong F.H., Zutter M., Ley T.J., and Ratner L. (1995) Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. *Proc. Natl. Acad. Sci. U. S A* 92, 1057-1061.

31. Gupta S.K., Guo X., Durkin S.S., Fryrear K.F., Ward M.D., and Semmes O.J. (2007) Human T-cell leukemia virus type 1 Tax oncoprotein prevents DNA damage-induced chromatin egress of hyperphosphorylated Chk2. *J. Biol. Chem.* 282, 29431-29440.

32. Haglund K. and Dikic I. (2005) Ubiquitylation and cell signaling. *EMBO J.* 24, 3353-3359.

33. Haller K., Wu Y., Derow E., Schmitt I., Jeang K.T., and Grassmann R. (2002) Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. *Mol. Cell Biol.* 22, 3327-3338.

34. Hanstein B., Eckner R., DiRenzo J., Halachmi S., Liu H., Searcy B., Kurokawa R., and Brown M. (1996) p300 is a component of an estrogen receptor coactivator complex. *Proc. Natl. Acad. Sci. U. S. A* 93, 11540-11545.

35. Haoudi A., Daniels R.C., Wong E., Kupfer G., and Semmes O.J. (2003) Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response. *Journal of Biological Chemistry* 278, 37736-37744.

36. Harrod R., Tang Y., Nicot C., Lu H.S., Vassilev A., Nakatani Y., and Giam C.Z. (1998) An exposed KID-like domain in human T-cell lymphotropic virus type 1 Tax is responsible for the recruitment of coactivators CBP/p300. *Molecular and Cellular Biology* 18, 5052-5061.

37. Heger P., Rosorius O., Koch C., Casari G., Grassmann R., and Hauber J. (1998) Multimer formation is not essential for nuclear export of human T-cell leukemia virus type 1 Rex trans-activator protein. *J. Virol.* 72, 8659-8668.

38. Heun P. (2007) SUMOOrganization of the nucleus. *Curr. Opin. Cell Biol.* 19, 350-355.
39. Hietakangas V., Ahlskog J.K., Jakobsson A.M., Hellesuo M., Sahilberg N.M., Holmberg C.I., Mikhailov A., Palvimo J.J., Pirkkala L., and Sistonen L. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. *Mol. Cell Biol* 23, 2953-2968.

40. Huang W.C. and Chen C.C. (2005) Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. *Mol. Cell Biol.* 25, 6592-6602.

41. Huang W.C., Ju T.K., Hung M.C., and Chen C.C. (2007) Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. *Mol. Cell* 26, 75-87.

42. Ishidate T., Matsumine A., Toyoshima K., and Akiyama T. (2000) The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. *Oncogene* 19, 365-372.

43. Jeang K.T., Giam C.Z., Majone F., and Aboud M. (2004) Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. *J. Biol. Chem.* 279, 31991-31994.

44. Jeong S.J., Pise-Masison C.A., Radonovich M.F., Park H.U., and Brady J.N. (2005) A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity. *J. Biol. Chem.* 280, 10326-10332.

45. Jiang H., Lu H., Schiltz R.L., Pise-Masison C.A., Ogryzko V.V., Nakatani Y., and Brady J.N. (1999) PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner. *Mol. Cell Biol* 19, 8136-8145.

46. Jin D.Y., Giordano V., Kibler K.V., Nakano H., and Jeang K.T. (1999) Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma. *J. Biol. Chem.* 274, 17402-17405.

47. Jin D.Y. and Jeang K.T. (1997) HTLV-I Tax self-association in optimal trans-activation function. *Nucleic Acids Res.* 25, 379-387.

48. Jin D.Y., Teramoto H., Giam C.Z., Chun R.F., Gutkind J.S., and Jeang K.T. (1997) A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor alpha. *J. Biol. Chem.* 272, 25816-25823.

49. Kalkhoven E. (2004) CBP and p300: HATs for different occasions. *Biochem. Pharmacol.* 68, 1145-1155.

50. Kasai T., Iwanaga Y., Iha H., and Jeang K.T. (2002) Prevalent loss of mitotic spindle checkpoint in adult T-cell leukemia confers resistance to microtubule inhibitors. *J. Biol. Chem.* 277, 5187-5193.

51. Kehn K., Fuente C.L., Strouss K., Berro R., Jiang H., Brady J., Mahieux R., Pumfery A., Bottazzi M.E., and Kashanchi F. (2005) The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation. *Oncogene* 24, 525-540.
52. Kfoury Y., Nasr R., Favre-Bonvin A., El Sabban M., Renault N., Giron M.L.,
Setterblad N., Hajj H.E., Chiari E., Mikati A.G., Hermine O., Saib A., de The H.,
Pique C., and Bazarbachi A. (2008) Ubiquitylated Tax targets and binds the IKK
signalosome at the centrosome. *Oncogene* 27, 1665-1676.

53. Kibler K.V. and Jeang K.T. (2001) CREB/ATF-dependent repression of cyclin a by
human T-cell leukemia virus type 1 Tax protein. *J. Virol.* 75, 2161-2173.

54. Kimata J.T., Wong F.H., Wang J.J., and Ratner L. (1994) Construction and
characterization of infectious human T-cell leukemia virus type 1 molecular clones.
Virology 204, 656-664.

55. Kuballa P., Matentzoglu K., and Scheffner M. (2007) The role of the ubiquitin ligase
E6-AP in human papillomavirus E6-mediated degradation of PDZ domain-containing
proteins. *J. Biol. Chem.* 282, 65-71.

56. Kuo Y.L. and Giam C.Z. (2006) Activation of the anaphase promoting complex by
HTLV-1 tax leads to senescence. *EMBO J.* 25, 1741-1752.

57. Kwok R.P., Laurance M.E., Lundblad J.R., Goldman P.S., Shih H., Connor L.M.,
Marriott S.J., and Goodman R.H. (1996) Control of cAMP-regulated enhancers by the
viral transactivator Tax through CREB and the co-activator CBP. *Nature* 380, 642-
646.

58. Kwok R.P., Lundblad J.R., Chrivia J.C., Richards J.P., Bachinger H.P., Brennan R.G.,
Roberts S.G., Green M.R., and Goodman R.H. (1994) Nuclear protein CBP is a
coactivator for the transcription factor CREB. *Nature* 370, 223-226.

59. Lamsoul I., Lodewick J., Lebrun S., Brasseur R., Burny A., Gaynor R.B., and Bex F.
(2005) Exclusive ubiquitination and sumoylation on overlapping lysine residues
mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein.
Mol. Cell Biol. 25, 10391-10406.

60. Lee S.S., Weiss R.S., and Javier R.T. (1997) Binding of human virus oncoproteins to
hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor
protein. *Proc. Natl. Acad. Sci. U. S. A* 94, 6670-6675.

61. Lemasson I., Polakowski N.J., Laybourn P.J., and Nyborg J.K. (2002) Transcription
factor binding and histone modifications on the integrated proviral promoter in human
T-cell leukemia virus-I-infected T-cells. *J. Biol. Chem.* 277, 49459-49465.

62. Lemasson I., Polakowski N.J., Laybourn P.J., and Nyborg J.K. (2006) Tax-dependent
displacement of nucleosomes during transcriptional activation of human T-cell
leukemia virus type 1. *J. Biol. Chem.* 281, 13075-13082.

63. Lenzmeier B.A., Giebler H.A., and Nyborg J.K. (1998) Human T-cell leukemia virus
type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to
the viral promoter. *Mol. Cell Biol* 18, 721-731.

64. Li J., Peet G.W., Balzarano D., Li X., Massa P., Barton R.W., and Marcu K.B. (2001)
Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature
B cell transition. *J. Biol Chem.* 276, 18579-18590.
65. Liang M.H., Geisbert T., Yao Y., Hinrichs S.H., and Giam C.Z. (2002) Human T-lymphotropic virus type 1 oncoprotein tax promotes S-phase entry but blocks mitosis. *J. Virol* 76, 4022-4033.

66. Lin D.Y., Huang Y.S., Jeng J.C., Kuo H.Y., Chang C.C., Chao T.T., Ho C.C., Chen Y.C., Lin T.P., Fang H.I., Hung C.C., Suen C.S., Hwang M.J., Chang K.S., Maul G.G., and Shih H.M. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. *Mol. Cell* 24, 341-354.

67. Liu B., Hong S., Tang Z., Yu H., and Giam C.Z. (2005) HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. *Proc. Natl. Acad. Sci. U. S. A* 102, 63-68.

68. Liu B., Liang M.H., Kuo Y.L., Liao W., Boros I., Kleinberger T., Blancato J., and Giam C.Z. (2003) Human T-lymphotropic virus type 1 oncoprotein tax promotes unscheduled degradation of Pds1p/securin and Clb2p/cyclin B1 and causes chromosomal instability. *Mol. Cell Biol.* 23, 5269-5281.

69. Liu Y., Wang Y., Yamakuchi M., Masuda S., Tokioka T., Yamaoka S., Maruyama I., and Kitajima I. (2001) Phosphoinositide-3 kinase-PKB/Akt pathway activation is involved in fibroblast Rat-1 transformation by human T-cell leukemia virus type I tax. *Oncogene* 20, 2514-2526.

70. Lu H., Pise-Masison C.A., Linton R., Park H.U., Schiltz R.L., Sartorelli V., and Brady J.N. (2004) Tax relieves transcriptional repression by promoting histone deacetylase 1 release from the human T-cell leukemia virus type 1 long terminal repeat. *J. Virol.* 78, 6735-6743.

71. Majone F., Luisetto R., Zamboni D., Iwanaga Y., and Jeang K.T. (2005) Ku protein as a potential human T-cell leukemia virus type 1 (HTLV-1) Tax target in clastogenic chromosomal instability of mammalian cells. *Retrovirology.* 2, 45.

72. Marenduzzo D., Faro-Trindade I., and Cook P.R. (2007) What are the molecular ties that maintain genomic loops? *Trends Genet.* 23, 126-133.

73. Marriott S.J. and Semmes O.J. (2005) Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. *Oncogene* 24, 5986-5995.

74. Meekings K.N., Leipzig J., Bushman F.D., Taylor G.P., and Bangham C.R. (2008) HTLV-1 integration into transcriptionally active genomic regions is associated with proviral expression and with HAM/TSP. *PLoS. Pathog.* 4, e1000027.

75. Meijer L. Le cycle cellulaire et sa régulation. oncologie 5, 311-326. 2003.

Ref Type: Magazine Article

76. Mesnard J.M., Barbeau B., and Devaux C. (2006) HBZ, a new important player in the mystery of adult T-cell leukemia. *Blood* 108, 3979-3982.

77. Mukhopadhyay D. and Riezman H. (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. *Science* 315, 201-205.
78. Nasr R., Chiari E., El Sabban M., Mahieux R., Kfoury Y., Abdulhay M., Yazbeck V., Hermine O., de The H., Pique C., and Bazarbachi A. (2006) Tax ubiquitylation and sumoylation control critical cytoplasmic and nuclear steps of NF-kappa B activation. *Blood* 107, 4021-4029.

79. Nerenberg M., Hinrichs S.H., Reynolds R.K., Khoury G., and Jay G. (1987) The tat gene of human T-lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice. *Science* 237, 1324-1329.

80. Neuveut C., Low K.G., Maldarelli F., Schmitt I., Majone F., Grassmann R., and Jeang K.T. (1998) Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. *Mol. Cell Biol.* 18, 3620-3632.

81. Nicot C., Dundr M., Johnson J.M., Fullen J.R., Alonzo N., Fukumoto R., Princler G.L., Derse D., Misteli T., and Franchini G. (2004) HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. *Nat. Med.* 10, 197-201.

82. Okada M. and Jeang K.T. (2002) Differential requirements for activation of integrated and transiently transfected human T-cell leukemia virus type 1 long terminal repeat. *J. Virol.* 76, 12564-12573.

83. Pajak B., De Smedt T., Moulin V., De Trez C., Maldonado-Lopez R., Vansanten G., Briend E., Urbain J., Leo O., and Moser M. (2000) Immunohistowax processing, a new fixation and embedding method for light microscopy, which preserves antigen immunoreactivity and morphological structures: visualisation of dendritic cells in peripheral organs. *J. Clin. Pathol.* 53, 518-524.

84. Perkins N.D. (2006) Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. *Oncogene* 25, 6717-6730.

85. Pickart C.M. and Fushman D. (2004) Polyubiquitin chains: polymeric protein signals. *Curr. Opin. Chem. Biol.* 8, 610-616.

86. Pozzati R., Vogel J., and Jay G. (1990) The human T-lymphotropic virus type I tax gene can cooperate with the ras oncogene to induce neoplastic transformation of cells. *Mol. Cell Biol* 10, 413-417.

87. Pumfery A., de La F.C., and Kashanchi F. (2006) HTLV-1 Tax: centrosome amplification and cancer. *Retrovirology.* 3, 50.

88. Robek M.D. and Ratner L. (1999) Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. *J. Virol.* 73, 4856-4865.

89. Rodriguez M.S., Thompson J., Hay R.T., and Dargemont C. (1999) Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation. *J. Biol Chem.* 274, 9108-9115.

90. Rougge R., Desbois C., Bantignies F., and Jalainot P. (1996) Effects on NF-kappa B1/p105 processing of the interaction between the HTLV-1 transactivator Tax and the proteasome. *Nature* 381, 328-331.
91. Rousset R., Fabre S., Desbois C., Bantignies F., and Jalinot P. (1998) The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. *Oncogene* 16, 643-654.

92. Satou Y., Yasunaga J., Yoshida M., and Matsuoka M. (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. *Proc. Natl. Acad. Sci. U. S. A* 103, 720-725.

93. Scoggin K.E., Ulloa A., and Nyborg J.K. (2001) The oncoprotein Tax binds the SRC-1-interacting domain of CBP/p300 to mediate transcriptional activation. *Mol. Cell Biol.* 21, 5520-5530.

94. Semmes O.J., Majone F., Cantermir C., Turchetto L., Hjelle B., and Jeang K.T. (1996) HTLV-I and HTLV-II Tax: differences in induction of micronuclei in cells and transcriptional activation of viral LTRs. *Virology* 217, 373-379.

95. Shembade N., Harhaj N.S., Parvatiyar K., Copeland N.G., Jenkins N.A., Matesic L.E., and Harhaj E.W. (2008) The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. *Nat. Immunol.* 9, 254-262.

96. Shembade N., Harhaj N.S., Yamamoto M., Akira S., and Harhaj E.W. (2007) The human T-cell leukemia virus type 1 Tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-kappaB activation. *J. Virol.* 81, 13735-13742.

97. Sibon D., Gabet A.S., Zandecki M., Pinatel C., Thete J., Delfau-Larue M.H., Rabaaoui S., Gessain A., Jacobson S., Mortreux F., and Wattel E. (2006) HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. *J. Clin. Invest.* 116, 974-983.

98. Sun S.C. and Ballard D.W. (1999) Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. *Oncogene* 18, 6948-6958.

99. Suzuki T., Kitao S., Matsushima H., and Yoshida M. (1996) HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. *EMBO J.* 15, 1607-1614.

100. Suzuki T., Narita T., Uchida-Toita M., and Yoshida M. (1999) Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. *Virology* 259, 384-391.

101. Suzuki T., Ohsugi Y., Uchida-Toita M., Akiyama T., and Yoshida M. (1999) Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein, hDLG, and perturbs its function in cell growth control. *Oncogene* 18, 5967-5972.

102. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., and Arai N. (1988) SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. *Mol. Cell Biol.* 8, 466-472.
103. Takenouchi N., Jones K.S., Lisinski I., Fugo K., Yao K., Cushman S.W., Ruscetti F.W., and Jacobson S. (2007) GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1. *J. Virol.* 81, 1506-1510.

104. Terui Y., Saad N., Jia S., McKeon F., and Yuan J. (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. *J. Biol. Chem.* 279, 28257-28265.

105. Terzic J., Marinovic-Terzic I., Ikeda F., and Dikic I. (2007) Ubiquitin signals in the NF-kappaB pathway. *Biochem. Soc. Trans.* 35, 942-945.

106. Thompson P.R., Wang D., Wang L., Fulco M., Pediconi N., Zhang D., An W., Ge Q., Roeder R.G., Wong J., Levero M., Sartorelli V., Cotter R.J., and Cole P.A. (2004) Regulation of the p300 HAT domain via a novel activation loop. *Nat. Struct. Mol. Biol.* 11, 308-315.

107. Tripp A., Banerjee P., Sieburg M., Planelles V., Li F., and Feuer G. (2005) Induction of cell cycle arrest by human T-cell lymphotropic virus type 1 Tax in hematopoietic progenitor (CD34+) cells: modulation of p21cip1/waf1 and p27kip1 expression. *J. Virol.* 79, 14069-14078.

108. Tsuji T., Sheehy N., Gautier V.W., Hayakawa H., Sawa H., and Hall W.W. (2007) The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent. *J. Biol. Chem.* 282, 13875-13883.

109. Turnell A.S., Stewart G.S., Grand R.J., Rookes S.M., Martin A., Yamano H., Elledge S.J., and Gallimore P.H. (2005) The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. *Nature* 438, 690-695.

110. Wilson V.G. and Rangasamy D. (2001) Intracellular targeting of proteins by sumoylation. *Exp. Cell Res.* 271, 57-65.

111. Wu C. and Ghosh S. (1999) beta-TrCP mediates the signal-induced ubiquitination of IkappaBbeta. *J. Biol. Chem.* 274, 29591-29594.

112. Wu K., Bottazzi M.E., de La F.C., Deng L., Gitlin S.D., Maddukuri A., Dadgar S., Li H., Vertes A., Pumfery A., and Kashanchi F. (2004) Protein profile of tax-associated complexes. *J. Biol. Chem.* 279, 495-508.

113. Wu X. and Sun S.C. (2007) Retroviral oncoprotein Tax deregulates NF-kappaB by activating Tak1 and mediating the physical association of Tak1-IKK. *EMBO Rep.* 8, 510-515.

114. Xiao G., Harhaj E.W., and Sun S.C. (2000) Domain-specific interaction with the I kappa B kinase (IKK)regulatory subunit IKK gamma is an essential step in tax-mediated activation of IKK. *J. Biol. Chem.* 275, 34060-34067.

115. Xie L., Yamamoto B., Haoudi A., Semmes O.J., and Green P.L. (2006) PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. *Blood* 107, 1980-1988.
116. Yamaguchi Y., Kurokawa M., Imai Y., Izutsu K., Asai T., Ichikawa M., Yamamoto G., Niita E., Yamagata T., Sasaki K., Mitani K., Ogawa S., Chiba S., and Hirai H. (2004) AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. *J. Biol. Chem.* 279, 15630-15638.

117. Yamamoto Y. and Gaynor R.B. (2004) IkappaB kinases: key regulators of the NF-kappaB pathway. *Trends Biochem. Sci.* 29, 72-79.

118. Yamaoka S., Inoue H., Sakurai M., Sugiyama T., Hazama M., Yamada T., and Hatanaka M. (1996) Constitutive activation of NF-kappa B is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. *EMBO J.* 15, 873-887.

119. Yang S.H., Jaffray E., Hay R.T., and Sharrocks A.D. (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. *Mol. Cell* 12, 63-74.

120. Yang X.J. (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. *Nucleic Acids Res.* 32, 959-976.

121. Yang X.J. (2005) Multisite protein modification and intramolecular signaling. *Oncogene* 24, 1653-1662.

122. Yang X.J., Ogyrzkov V.V., Nishikawa J., Howard B.H., and Nakatani Y. (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. *Nature* 382, 319-324.

123. Yao J. and Wigdahl B. (2000) Human T cell lymphotrophic virus type I genomic expression and impact on intracellular signaling pathways during neurodegenerative disease and leukemia. *Front Biosci.* 5, D138-D168.

124. Younis I. and Green P.L. (2005) The human T-cell leukemia virus Rex protein. *Front Biosci.* 10, 431-445.

125. Yu Q., Minoda Y., Yoshida R., Yoshida H., Iha H., Kobayashi T., Yoshimura A., and Takaesu G. (2008) HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein. *Biochem. Biophys. Res. Commun.* 365, 189-194.

126. Zhao J. (2007) Sumoylation regulates diverse biological processes. *Cell Mol. Life Sci.* 64, 3017-3033.

127. Zhong S., Muller S., Ronchetti S., Freemont P.S., Dejean A., and Pandolfi P.P. (2000) Role of SUMO-1-modified PML in nuclear body formation. *Blood* 95, 2748-2752.

128. Zhong S., Salomoni P., and Pandolfi P.P. (2000) The transcriptional role of PML and the nuclear body. *Nat. Cell Biol* 2, E85-E90.
ANNEXES

Matériel et méthodes.

1) Plasmides

- pSG5M-Tax est un vecteur d’expression contenant l’ADN complémentaire du gène Tax du virus HTLV-1 sous le contrôle transcriptionnel du promoteur SV40. Les mutants de substitution de lysine en arginine ont été construits dans ce vecteur suivi d’une séquence codant pour l’épitope 6 histidines (Tax-6his). Les fusions de l’ubiquitine ou de SUMO-1 ont été obtenues par amplification PCR (Polymérase Chain Reaction) des séquences codant pour l’ubiquitine ou SUMO-1 et sous-clonées en phase entre la séquence de Tax et l’épitope 6 histidines. Dans ces constructions, le motif diglycine impliqué dans la réaction de conjugaison à l’extrémité carboxy-terminale de l’ubiquitine ou de SUMO-1 a été remplacé par des résidus glycine-alanine durant l’amplification par PCR dans le but d’empêcher la conjugaison des fusions à d’autres substrats.

- pcDNA-HA-Ub et pcDNA-HA-SUMO-1 sont les vecteurs d’expression contenant l’ADN complémentaire du gène de l’ubiquitine ou de SUMO-1, fusionné du côté N-terminal à l’épitope hémagglutinine du virus influenza (HA-Ub et HA-SUMO-1) (donné par Ronald Hay).

- pLTR-HTLV-Luc et pLTR-HIV-Luc contiennent le gène rapporteur de la luciférase sous le contrôle d’un promoteur constitué de la séquence LTR du virus HTLV ou du virus HIV. Ces vecteurs ont été construits en clonant le fragment KpnI-HindIII contenant le promoteur HIV et le fragment Sma-I-KpnI contenant le promoteur HTLV en amont du gène de la luciférase dans le vecteur pGL2 (Promega).

- Les vecteurs d’expression de CBP³⁸, p300-HA³⁴ et Flag-P/CAT¹²² ont été décrits précédemment.

- Les vecteurs d’expression des N-p300-Flag (aa 1-595) et N-CBP-Flag (aa 1-616) ont été construits par amplification PCR et clonage du fragment amplifié dans le vecteur pJFE14¹⁰².

- Le vecteur d’expression de DLG-HA a été fourni par L. Banks²¹.
-le vecteur d’expression ACH sauvage a été donné par L. Ratner. Le mutant K10R a été construit en remplaçant le fragment unique SacI-Sma-I qui contient l’extrémité 3’ du gène tax dans le provirus ACH sauvage, déleté du fragment KpnI, par le fragment SacI-Sma-I amplifié par PCR contenant la mutation K10R. Le fragment unique NsiI-EcoRI de cette construction a ensuite été introduit dans l’ACH sauvage entier. La séquence a été vérifiée par séquençage.

2) Conditions de culture cellulaire

Les cellules sont maintenues suivant les méthodes classiques de culture cellulaire à 37°C dans une atmosphère humide contenant 5 % de CO₂.

La lignée de cellules 293T est une lignée permanente de cellules primaires embryonnaires de rein humain transformées par l’adénovirus de type 5 et exprimant l’antigène T du virus SV40. La lignée de cellules HeLa est une lignée issue d’un carcinome du col de l’utérus. Les cellules CHOK-1, qui contiennent une construction HTLV-1-LTR-Luc intégrée dans la chromatine et les cellules HeLa 57A, qui contiennent une construction NF-κB-Luc intégré (3Enhancer-κB-conA-Luc) ont été fournies par J. Nyborg et R. Hay respectivement. Ces lignées sont maintenues en culture dans du milieu DMEM (Dulbecco’s Modified Eagle’s Medium, Invitrogen) supplémenté de 10 % de FBS (Fœtal Bovine Serum, Invitrogen), 2mM de glutamine-L (Invitrogen), 10 U/ml de pénicilline/streptomycine (Invitrogen) et 1 mM de sodium pyruvate (Invitrogen) et sont sélectionnées avec 5µM de G418.

La lignée CEM est une lignée de cellules lymphoblastoïde T provenant d’un patient atteint d’une leucémie lymphoblastique aiguë. La lignée Jurkat est une lignée de lymphocytes T issus d’un patient atteint d’une leucémie aiguë à lymphocytes T. La lignée Hut-102 est une lignée de patient infecté par le virus HTLV-1. La lignée C8166 est une lignée de lymphocytes T transformés in vitro par HTLV-1. Ces lignées lymphocytaires sont mises en culture dans le milieu RPMI 1640 Medium avec GlutaMAX-I (Invitrogen) additionné de 10 % de FBS.
3) **Transfections transitoires**

Les cellules 293T ou HeLa sont ensemencées à raison de 5×10^4 cellules par puits de plaques 12 puits, 10^5 cellules par puits de plaques 6 puits et 10^6 cellules par boîte de pétri. Le lendemain, les cellules sont transfectées par la méthode au FuGENE 6 (Roche). 24 ou 36 heures après la transfection, les cellules sont recueillies et utilisées pour le dosage de l’activité luciférase ou pour l’analyse des protéines exprimées par immunofluorescence ou par Ni-NTA pull down. Pour chaque série de transfection, une quantité équivalente d’ADN à transfecter est utilisée.

Les lymphocytes Jurkat et CEM (2. 10^7 cellules) ont été transfectés par électroporation avec l’électroporateur Gene Pulser (Bio Rad Laboratories).

4) **Dosage luciférase**

Les cellules 293T et HeLa (1,25 10^5 cellules) sont transfectées dans des plaques de 12 puits avec 100 ng du vecteur phRG-TK (Promega) codant pour la Renilla luciférase et qui est utilisé comme contrôle interne, avec 500 ng du promoteur utilisé et avec les différents vecteurs d’expression. La quantité totale d’ADN est égalisée par ajout de vecteur vide dans le mélange de transfection. Les cellules sont lysées dans 100 µl de tampon de lyse (Promega) et les lysats sont soumis au test luciférase entre 24h et 48h après la transfection avec le luminomètre TD-20/20 (turner Designs) en utilisant le système d’essai rapporteur luciférase double (Promega). Les résultats représentent la moyenne et l’écart-type d’au moins trois expériences indépendantes.

5) **Ni-NTA pull down**

Les cellules 293T, Jurkat et CEM sont lysées 30 et 48 h, respectivement, après transfection dans des conditions réductrices et hautement dénaturantes avec le Tampon A (6 M guanidinium-HCl, 0,1 M Na$_2$HPO$_4$/NaH$_2$PO$_4$, 0,01 M Tris-Cl, pH 8,5 mM imidazole, 10 mM β-mercaptoethanol). Les protéines récupérées sont incubées avec la résine Ni$^{2+}$ nitritotriacetic acid (NTA) pendant 3 heures à 4°C. La résine est ensuite lavée avec le tampon A, B (8 M urée, 0,1 M Na$_2$HPO$_4$/NaH$_2$PO$_4$, 0,01 M Tris-Cl, pH 8, 10 mM imidazole, 10 mM β-mercaptoethanol) et C (8 M urée, 0,1 M Na$_2$HPO$_4$/NaH$_2$PO$_4$, 0,01 M Tris-Cl, pH 6,3, 10
mM imidazole, 10 mM \(\beta \)-mercaptoéthanol), et les protéines fixées sont éluées avec le tampon D (300 mM imidazole, 0,15 M Tris-Cl, pH 6,7, 30% glycérol, 0,72 M \(\beta \)-mercaptoethanol, 5% sodium dodecyl sulfate). Toutes les solutions contiennent les inhibiteurs suivants : 50mM NaF, 20 mM \(\beta \)-glycérophosphate, 1mM orthovanadate, 50 mM N-ethylmaleimide ainsi qu’un cocktail d’inhibiteur de protéase (Roche) et de la Trichostatin A (TSA) à 0,5 µM dans les tests d’acétylation. Pour détecter les formes modifiées endogènes de Tax dans les lymphocytes T infectés par HTLV-1, les cellules sont lysées pendant 20 min dans le Tampon A. Le lysat est précipité pendant 10 min sur glace dans 20% d’acide trichloroacétique. Le précipitât est lavé 3 fois à l’acétone, séché et dissout dans un tampon phosphate (PBS).

6) Western Blot

Les protéines récupérées sont ensuite séparées par électrophorèse en gel SDS-polyacrylamide 4-12 % ou Tris-acétate 3-8% (Invitrogen) et transférées sur une membrane de nitrocellulose (Hybond ECL, Amersham Pharmacia Biotech) par transfert vertical semi-sec. Le transfert des protéines est vérifié par coloration au rouge ponceau. Après saturation dans une solution TBS contenant 4 % de lait en poudre contenant 0,1 % Tween 20, les membranes sont incubées avec un anticorps primaire dilué dans la solution TBS avec 2 % de lait en poudre et 0,1 % de Tween 20 durant 2 heures ou toute la nuit à 4°C. Les membranes sont ensuite lavées 3 fois pendant 10 minutes dans du TBS 0,1 % Tween 20 puis incubées avec l’anticorps secondaires Goat-anti-Mouse (BioRad) ou Goat-anti-Mouse (BioRad). La détection est effectuée avec le kit ECL advance Western blotting (Amersham). La détection et la quantification des signaux chemiluminescents ont été effectuées avec le Chemi-Smart 5000 et le programme Bio-1D (Vilber Lourmat, France)

7) Fractionnement cellulaire

Les cellules 293T transfectées sont lavées dans le Tampon I (20mM Tampon HEPES pH7,9, 2mM MgCl\(_2\), 1mM dithiothreitol) contenant des inhibiteurs comme décrits dans la technique de Ni-NTA pull down et sont lysées sur glace pendant 10 min dans le même tampon contenant 0,2% NP-40. Les échantillons sont centrifugés pour collecter la fraction cytoplasmique. Le processus est répété une deuxième fois pour compléter l’extraction des composants cytoplasmique de la fraction nucléaire. Le culot final contenant la fraction
nucléaire est lysé dans le Tampon II (Tampon I supplémenté avec 420mM KCl, 25% glycérol et 1mM EDTA) sur glace pendant 20 min et centrifugé pendant 10min pour collecter la fraction nucléaire. Finalement, chaque fraction cytoplasmique et nucléaire est soumise à un Ni-NTA pull down comme décrit ci-dessus en ajoutant du Tampon A et de la résine Ni²⁺-NTA.

8) **Immunocytochimie et microscopie confocale**

Les cellules sont mises en culture sur des lamelles et transfectées avec 1µg de vecteur d’expression pendant 24h à 48h. Les cellules sont ensuite fixées avec l’Immunohistofix (A Phase Inc., Belgique)⁸³, qui est un fixateur et un stabilisateur des structures cellulaires, pendant 10 min à température ambiante suivi d’une incubation pendant 6 min à -20°C dans une solution 100% méthanol. Les cellules sont ensuite lavées 3 fois avec du PBS et bloquées avec du PBS contenant 0,5% de gélatine (Bio-Rad) et 0,25% de BSA (Gibco) et incubées avec les anticorps primaires dilués dans la solution de blocage. Les préparations sont lavées avec du PBS contenant 0,2% de gélatine et incubées avec les anticorps secondaires : goat anti-mouse immunoglobuline G (IgG) conjugué à l’Alexa Fluor 488, goat anti-rabbit IgG conjugué à l’Alexa Fluor 546 (Molecular Probes), goat anti-mouse IgG2a conjugué à la fluorescéine isothiocyanate ou goat anti-mouse IgG1 couplé à la biotine (Southern Biotechnology Associates) pour les marquages des immunofluorescences doubles et triples. Les échantillons sont lavés et quand l’anticorps goat anti-mouse IgG1 a été utilisé comme anticorps secondaire, les cellules sont incubées pendant 20 min avec la streptavidine conjuguée à Cy5 (Jackson ImmunoResearch). Les contrôles pour tester la cross-réactivité des anticorps secondaires démontrent la bonne spécificité des agents fluorescents. Les lamelles sont montées dans du milieu contenant du DABCO (ICN Biomedicals) et analysées avec un microscope laser confocal (LSM 510, Zeiss) en utilisant l’objectif 63X et comme source de longueur d’onde 488, 543 et 633 nm.

9) **Co-immunoprécipitation in vivo**

Les cellules 293T sont co-transfectées avec les vecteurs d’expression de la protéine Tax sauvage ou mutée et un plasmide exprimant HA-p300 (ou HA-DLG). 24 heures après la transfection, les cellules sont lavées dans 1 ml de PBS froid contenant 1 mM PMSF, 50 mM
NaF, 20 mM β-glycérophosphate et sont ensuite lysées pendant 20 minutes sur glace dans le tampon de lyse (25 mM Tris-HCL pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 1 mM PMSF, 50 mM NaF, 20 mM β-glycérophosphate). Les extraits cellulaires sont alors immunoprécipités avec un anticorps monoclonal de souris anti-Tax avec de la résine sépharose Gamma-Bind Plus (Amersham biosciences). La résine est alors lavée 4 fois dans le tampon de lyse et les protéines sont éluées dans le bleu de charge SDS-PAGE. Les protéines immunoprécipitées, ainsi que les extraits totaux prélevés avant l’immunoprécipitation, sont analysés par électrophorèse et Western blot comme décrit plus haut. Pour l’immunoprécipitation des protéasomes, les cellules 293 T transfectées avec le vecteur d’expression de la protéine Tax sauvage ont été lysées et ces lysats ont été immunoprécipités avec l’anticorps MCP21 (qui reconnaît la sous-unité αHC3 du protéasome 20S humain).

10) Dosage de la protéine p19 par ELISA

Les cellules HeLa sont transfectées avec l’ACH sauvage ou muté K10R. Les surnageants de culture ont été prélevés à différents temps et analysés par un kit commercial ELISA (RetroTek) pour la présence de la protéine de matrice p19 selon le protocole fourni.

11) Incorporation in vivo de P³²

Les cellules 293T sont transfectées avec les vecteurs d’expression de la protéine Tax sauvage ou mutée pendant 24 heures. Les cellules sont lavées deux fois avec du PBS et incubées pendant 30 minutes dans un milieu minimum sans méthionine et cystéine ou sans phosphate. Ce milieu est alors remplacé par le même milieu contenant soit 100 µCi de [³⁵S] méthionine et [³⁵S] cystéine (ICN) ou 0.5 mCi de [³²P] orthophosphate (ICN). Le marquage est effectué pendant une heure à 37°C. Les cellules sont alors lavées deux fois avec du PBS et lysées dans du tampon RIPA (Tris-HCl 50 mM pH 8.0, NaCl 150 mM, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS). Les protéines Tax sont immunoprécipitées avec un anticorps monoclonal de souris anti-Tax et analysées par électrophorèse sur gel SDS 10% et autoradiographie.
12) Inhibition du protéasome

24 heures après la transfection, les cellules 293T ont été mises en présence de 10 μM de MG132 pendant 5 heures et de 1 μM de lactacystine pendant 20 heures. Les cellules ont alors directement été lysées dans le bleu de charge SDS-PAGE et analysées par électrophorèse et Western Blot.

13) Anticorps

La protéine Tax est révélée soit avec un anticorps monoclonal de l’hybridome 168-A51 (AIDS research and Reagent Program, National Institute of Health) ou un sérum polyclonal obtenu par l’immunisation de lapins avec une fusion purifiée de Tax avec la protéine liant le maltose(MBP), produite en bactéries.

Epitope	Isotype	Firme
Lysines acétylées	IgG1 / souris	Cell signaling
P300	IgG1 / souris	Upstate
CBP	Lapin	Santa Cruz
hnRNPA1	Chèvre	Santa Cruz
IKKβ	Chèvre	Santa Cruz
HA	Lapin	Santa Cruz
Flag	IgG1 ou lapin	Sigma
RelA	Lapin	Santa Cruz
Sous unité αHC3	IgG1/souris	ECACC
Sous-unité β4		Tebu
Publications: