Discovery and Identification of *Meloidogyne* Species Using COI DNA Barcoding

Thomas Powers*, Timothy Harris, Rebecca Higgins, Peter Mullin, and Kirsten Powers

Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722.

*E-mail: tpowers1@unl.edu.

This paper was edited by Zafar Ahmad Handoo.

Received for publication March 2, 2018.

The term DNA-barcoding has multiple definitions. The earliest mention of barcoding in nematology was in 1998 by Dr Mark Blaxter, then of Edinburgh University, referring to the “(d)development of a molecular barcode system for soil nematode identification” in the first volume of the Natural Environment Research Council Soil Biodiversity Newsletter (http://soilbio.nerc.ac.uk/newsletters.htm). The barcode he was referring to was the 18S nuclear (small subunit) ribosomal gene. Other gene regions proposed for DNA-barcoding soon followed, creating a broader definition that generally applied to the use of DNA sequences for species identification (Floyd et al., 2002; Blaxter, 2004; Powers, 2004). In 2003 a widely cited paper by Hebert et al. (2003) proposed a standardization of the barcode definition linked to the amplification of a 658 bp gene region within the cytochrome oxidase subunit 1 mitochondrial gene. The goal of this conceptual paper was the development of a global bioidentification system for animals. Considerable controversy immediately followed this publication with criticism ranging from theoretical concerns about the use of a single gene, the ability of an organelle gene to track species boundaries, and barcoding’s impact on the process of taxonomic investigation (DeSalle et al., 2005; Will et al., 2005). Practical concerns were expressed about lack of amplification with some groups, the designation of types, taxonomic resolution, and economic cost at the expense of traditional taxonomic approaches (Meyer and Paulay, 2005; Rubinoff et al., 2006; McFadden et al., 2011). Now, 15 years later, DNA-barcoding has become a component within the broader scope of integrated taxonomy and a routine tool for identification (Hodgetts et al., 2016;
Janssen et al., 2016). As a diagnostic and discovery enterprise, DNA barcoding has generated thousands of publications, features biennial international conferences, has a dedicated database – BOLD, the Barcode of Life Database – and has multiple administrative structures such as the International Barcode of Life (IBOLD) and its affiliates (www.boldsystems.org/index.php/default).

Nematology was slow to adopt this formalized version of barcoding, perhaps due to poor amplification with the original “Folmer” primer sets (Folmer et al., 1994). Now multiple primer sets for amplification of nematode cytochrome oxidase c subunit 1 (COI) are available (Derycke et al., 2005, 2010; Prosser et al., 2013; Kiewnick et al., 2014; Powers et al., 2014; Janssen et al., 2016). These primer sets typically have limited taxonomic scope with amplifications specific for genera or in some cases extending across families and superfamilies (Powers et al., 2014). The objective of this study is to present a primer set used for the amplification of 721 to 724 bp of COI sequence from Meloidogyne. A maximum likelihood (ML) tree is provided to illustrate the ability of this gene region to discriminate among many described Meloidogyne species. The primers also function as a means to amplify DNA from juvenile stages in community analyses, possibly leading to new species discoveries. Contributions to a COI reference library should aid future taxonomic and ecological research in the genus.

Materials and methods

Nematode collection

Most of the specimens DNA barcoded in this study were either specimens submitted to the UNL Nematology Diagnostics Clinic, specimens contributed by colleagues, or specimens collected during grant funded surveys (NSF projects DEB-1145440; USDA Multistate Project W3186).

Primer sequences

The primer set for amplification of the COI gene region were:

- COI-F5-Mel – 5′-TGATTGATTAGGTTCTGGAAC-TKSWTGAC-3′
- COI-R9-Mel – 5′-CATAATGAAAATGGGCAACAA-CATAATAAGTATC-3′

After removal of the primer sequences, amplification products from the Meloidogyne specimens were either 721 or 724 bp. GenBank sequences used in this study generally were 100 to 300 nucleotides shorter than sequences generated with the new primer set.

Amplification conditions

Nematodes amplified at the UNL Nematology Laboratory were individually smashed in 18 ul of sterile H2O with a transparent microfuge micropipette tip on a coverslip and added to a 0.5 ml microfuge tube. Nematode lysate was either amplified immediately or stored at −20°C. Amplification conditions were as follows: denaturation at 94°C for 5 min, followed by 45 cycles of denaturation at 94°C for 30 sec, annealing at 48.0°C for 30 sec, and extension at 72°C for 90 sec with a 0.5° per second ramp rate to 72°C. A final extension was performed at 72°C for 5 min as described by Powers et al. (2014) and Olson et al. (2017). Polymerase chain reaction (PCR) products were separated and visualized on 1% agarose using 0.5XTBE and stained with ethidium bromide. PCR products of sufficiently high quality were cleaned and sent for sequencing of both strands by University of California–Davis DNA sequencing facility.

Data storage

Nucleotide sequences have been submitted to GenBank (accession numbers MH128384–MH128585) and the Barcode of Life Database (BOLD).

Phylogenetic analysis

Phylogenetic trees were constructed under ML and Neighbor Joining (NJ) criteria in MEGA version 6. Sequences were edited using CodonCode Aligner version 7.1 (www.codoncode.com/) and aligned using Muscle within MEGA version 6 (Tamura et al., 2013). Gap opening penalty was set at −400 with a gap extension penalty of −200. The General Time Reversible Model with Gamma distributed rates (GTR+G) was determined to be the best substitution model by Bayesian Information Criterion using the Best Fit Substitution Model tool in MEGA 6.0. ML trees used a use all sites option for gaps and 200 bootstrap replications to assess clade support.

Results

Figure 1 displays a ML tree of 322 Meloidogyne sequences including 117 sequences from GenBank and 205 sequences from the University of Nebraska–Lincoln Nematology Laboratory. ML partitions these sequences into 19 groups with bootstrap support values from 93 to 100 (Tables 1, 2, Fig. 1).
Figure 1: Maximum likelihood tree of 322 Meloidogyne COI sequences created in MEGA 6.06 using GTR+G substitution model, with 200 bootstraps and a gap treatment of use all sites. Support values that designate clades and haplotype groups are circled. Clades that correspond to named and unnamed species or haplotype groups are numbered. Clades that include specimens with a single amino acid deletion are denoted by (Δ 721 bp). Group 1 has been reduced to a box of species names. Sequences within Group 1 are presented in Table 2. A list of GenBank accession numbers for specimens included in Group 1 are found in supplementary Table 1.
Table 1. COI sequence collection data for groups 2 to 19.

NID	Group	Species	Locality	Host/habitat	GenBank accession #
P203060	3	*Meloidogyne enterolobii*	Florida	Ornamentals-Nursery	MH128522
P179069	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128519
P179070	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128520
P196090	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128521
P210013	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128523
P210014	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128524
P210071	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128526
P210057	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128527
P210058	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128528
P210072	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128529
P210065	3	*M. enterolobii*	Florida	Ornamentals-Nursery	MH128530
N4314	4	*Meloidogyne sp.*	Lance Rosier Unit, BITH*B	Loblolly pine	MH128531
N4321	4	*Meloidogyne sp.*	Lance Rosier Unit, BITH*B	Loblolly pine	MH128532
N4379	5	*Meloidogyne sp.*	Cove Mtn. Trail, GRSM*B	Chestnut	MH128537
N4388	5	*Meloidogyne sp.*	Cove Mtn. Trail, GRSM*B	Chestnut	MH128538
N2110	5	*Meloidogyne sp.*	GWMP*B	Fort Marcy earthworks	MH128533
N3952	5	*Meloidogyne sp.*	Turkey Creek, BITH*B	Baygall community	MH128534
N4285	5	*Meloidogyne sp.*	Canyonlands South, BITH*B	Magnolia	MH128535
N4291	5	*Meloidogyne sp.*	Canyonlands South, BITH*B	Magnolia	MH128536
P214008	6	*Meloidogyne partityla*	Dona Ana County, New Mexico	Pecan	MH128540
P214010	6	*M. partityla*	Dona Ana County, New Mexico	Pecan	MH128542
P214009	6	*M. partityla*	Dona Ana County, New Mexico	Pecan	MH128541
N2338	6	*M. partityla*	Neches Bottoms Unit, BITH*B	Sandbar	MH128539
P121054	7	*Meloidogyne hapla*	Gasconade County, Missouri	Peony	MH128568
P200031	7	*M. hapla*	Cass County, Nebraska Nursery	MH128577	
N163	7	*M. hapla*	Nebraska	Wheat	MH128543
P200018	7	*M. hapla*	Daggett County, Utah Grass pasture	MH128575	
P200019	7	*M. hapla*	Daggett County, Utah Grass pasture	MH128576	
P178064	7	*M. hapla*	Oregon	Potato	MH128570
P200032	7	*M. hapla*	Colfax County, Nebraska Nursery	MH128578	
Code	Count	Taxon	Location	Host	Accession
-------	-------	------------	---------------------------------	---------	------------
N1376	7	*M. hapla*	Fremont County, Wyoming	Red bean	MH128558
N1377	7	*M. hapla*	Fremont County, Wyoming	Red bean	MH128559
P179068	7	*M. hapla*	New York	GH	MH128572
P178063	7	*M. hapla*	Oregon	Potato	MH128569
P222083	7	*M. hapla*	Portales, New Mexico	GH culture	MH128579
P222084	7	*M. hapla*	Portales, New Mexico	GH culture	MH128580
N1448	7	*M. hapla*	GWMPc	Waterfowl sanctuary	MH128560
N857	7	*M. hapla*	Goshen County, Wyoming	Potato	MH128554
N859	7	*M. hapla*	Goshen County, Wyoming	Potato	MH128555
N860	7	*M. hapla*	Goshen County, Wyoming	Potato	MH128556
N861	7	*M. hapla*	Goshen County, Wyoming	Potato	MH128557
P200001	7	*M. hapla*	Hot Springs County, Wyoming	Alfalfa	MH128573
P200002	7	*M. hapla*	Hot Springs County, Wyoming	Alfalfa	MH128574
N4124	7	*M. hapla*	Wyoming	–	MH128561
N318	7	*M. hapla*	Idaho	Potato	MH128544
N497	7	*M. hapla*	California	–	MH128551
N489	7	*M. hapla*	California	–	MH128550
N498	7	*M. hapla*	California	–	MH128552
P179054	7	*M. hapla*	Rhode Island	GH culture	MH128571
N320	7	*M. hapla*	Idaho	Potato	MH128545
N358	7	*M. hapla*	Idaho	Potato	MH128546
N359	7	*M. hapla*	Idaho	Potato	MH128547
N421	7	*M. hapla*	Carbon County, Montana	Alfalfa	MH128548
N422	7	*M. hapla*	Carbon County, Montana	Alfalfa	MH128549
N856	7	*M. hapla*	Goshen County, Wyoming	Potato	MH128553
N7097	7	*M. hapla*	Nebraska	Alfalfa	MH128562
N7098	7	*M. hapla*	Nebraska	Alfalfa	MH128563
N7100	7	*M. hapla*	Nebraska	Alfalfa	MH128565
N7099	7	*M. hapla*	Nebraska	Alfalfa	MH128564
N8595	7	*M. hapla*	Chalti, Nepal	Pine forest	MH128566
N8612	7	*M. hapla*	Chalti, Nepal	Pine forest	MH128567
N4222	9	Meloidogyne sp.	Canyonlands South, BITHa	Beech	MH128581
N4229	9	Meloidogyne sp.	Canyonlands South, BITHa	Beech	MH128582
No.	Species	Location	Host	GenBank Accession	
-----	------------------	---------------------------------	-------------	------------------	
N8431	Meloidogyne sp.	Canyonlands South, BITH®	Beech	MH128584	
N8433	Meloidogyne sp.	Canyonlands South, BITH®	Beech	MH128585	
N8283	Meloidogyne sp.	Mt. St. Hilaire, Quebec, Canada	Hardwood forest	MH128583	
N4431	Meloidogyne sp.	Cove Mtn. Trail, GRSM®	Chestnut	MH128463	
N4496	Meloidogyne sp.	Cove Mtn. Trail, GRSM®	Chestnut	MH128464	
N4497	Meloidogyne sp.	Cove Mtn. Trail, GRSM®	Chestnut	MH128465	
N8084	Meloidogyne sp.	Purchase Knob, GRSM®	Chestnut	MH128468	
N8121	Meloidogyne sp.	Cataloochee, GRSM®	Oak	MH128470	
N8058	Meloidogyne sp.	Cataloochee, GRSM®	Chestnut	MH128467	
N8012	Meloidogyne sp.	Cataloochee, GRSM®	Chestnut	MH128466	
N8111	Meloidogyne sp.	Cataloochee, GRSM®	Oak	MH128469	
N1479	Meloidogyne sp.	Roy E. Larsen, Sandylands, BITH®	Baygall community	MH128471	
N3969	Meloidogyne sp.	Turkey Creek, BITH®	Baygall community	MH128472	
P129052	Meloidogyne oryzae	Costa Rica	Rice	MH128473	
P129054	M. oryzae	Costa Rica	Rice	MH128474	
P169011	Meloidogyne graminicola	Florida	Purple nutsedge	MH128475	
N214	Meloidogyne exigua	Nicaragua	Coffee	MH128477	
N215	M. exigua	Nicaragua	Coffee	MH128478	
N213	M. exigua	Nicaragua	Coffee	MH128476	
P199069	Meloidogyne naasi	Sanpete County, Utah	Grass	MH128480	
P199071	M. naasi	Sanpete County, Utah	Grass	MH128481	
P199072	M. naasi	Sanpete County, Utah	Grass	MH128482	
N326	M. naasi	Idaho	Potato	MH128479	
P192084	Meloidogyne fallax	Scotland	Genomic DNA	MH128507	
P119032	Meloidogyne chitwoodi	New Mexico	Culture	MH128488	
P115026	M. chitwoodi	Fort Garland, Colorado	Soil sample	MH128487	
P122010	M. chitwoodi	Colorado	Soil sample	MH128489	
P122047	M. chitwoodi	Colorado	Soil sample	MH128490	
P124056	M. chitwoodi	Commercial	Potato	MH128491	
P124057	M. chitwoodi	Commercial	Potato	MH128492	
P124059	M. chitwoodi	Commercial	Potato	MH128493	
N7145	M. chitwoodi	Elko County, Nevada	Potato	MH128483	
N7147	M. chitwoodi	Elko County, Nevada	Potato	MH128484	
N7148	M. chitwoodi	Elko County, Nevada	Potato	MH128485	
N7149	M. chitwoodi	Elko County, Nevada	Potato	MH128486	
P173100	M. chitwoodi	Commercial	Potato	MH128494	
P174001	M. chitwoodi	Commercial	Potato	MH128495	
P175068	M. chitwoodi	Idaho	Potato	MH128496	
P175069	M. chitwoodi	Idaho	Potato	MH128497	
P175070	M. chitwoodi	Idaho	Potato	MH128498	
Three unique GenBank sequences represent *Meloidogyne haplanaria* Eisenback et al., 2004, *Meloidogyne duytsi* Karssen et al., 1998, and *Meloidogyne artiellia* Franklin, 1961 as distinct from other sequences in the dataset, but without additional supporting sequences.

Groups 1 to 3 form a clade characterized by the loss of a single amino acid (3 bp) resulting in a 721 bp sequenced region. This shared deletion unites *M. haplanaria*, and *M. enterolobii* Yang & Eisenback, 1983 with the so-called “major” tropical apomictic species of *Meloidogyne* (Elling, 2013). Included in this group are sequences representing *M. arenaria* (Neal, 1889) Chitwood, 1949, *M. incognita* (Kofoid & White, 1919) Chitwood, 1949, *M. javanica* (Treub, 1885) Chitwood, 1949, as well as *M. hispanica* Hirschmann, 1986, *M. floridensis* Handoo et al., 2004, *M. konaensis* Eisenback, Bernard & Schnitt, 1995, *M. luci* Carneiro et al., 2014, and *M. inornata* Lordello, 1956 (Table 2). The same amino acid deletion is also found in unnamed group 12. Within group 1, the COI sequences are nearly identical with a few notable exceptions. Four substitutions are shared by three specimens identified as *M. konaensis*, including GenBank accession KU372176, identified as *Meloidogyne* sp. 2 TJ-2016 T316 on *Beta vulgaris* from Spain in Janssen et al. (2016). Two substitutions are shared by specimens identified as *M. incognita grahami*, originally described as *M. grahami* Golden & Slana, 1978, and considered distinct from *M. incognita* based on reproduction on NC-95 tobacco, a cultivar with resistance to *M. incognita*, plus a greater juvenile length and a distinctive perineal pattern (Golden and Slana, 1978).

Outside of clades 1–3 there are 11 other described species represented by a minimum of a single COI sequence. *Meloidogyne hapla* Chitwood, 1949 is represented by specimens from 10 U.S. states and two specimens from Nepal. There are multiple haplotypes within *M. hapla* and possibly some population substructure within the species. Group 17 identified as *M. chitwoodi* Golden, O’Bannon, Santo & Finley, 1980 and *M. fallax* Karssen, 1996 is virtually homogeneous except for a 5-bp difference between the two species. Within group 6, identified as *M. partityla* Kleynhans, 1986, one specimen collected from Big Thicket

Table 2

Accession	Species	State	Type	COI Sequence
P175071	*M. chitwoodi*	Idaho	Potato	MH128499
P177092	*M. chitwoodi*	Texas	Potato	MH128500
P177094	*M. chitwoodi*	Texas	Potato	MH128501
P177098	*M. chitwoodi*	Texas	Potato	MH128502
P192011	*M. chitwoodi*	Commercial	Potato	MH128504
P192012	*M. chitwoodi*	Commercial	Potato	MH128505
P192013	*M. chitwoodi*	Commercial	Potato	MH128506
P211088	*M. chitwoodi*	Oregon	Potato	MH128508
P211089	*M. chitwoodi*	Oregon	Potato	MH128509
P212013	*M. chitwoodi*	California	Potato	MH128510
P212014	*M. chitwoodi*	California	Potato	MH128511
P212015	*M. chitwoodi*	California	Potato	MH128512
P212016	*M. chitwoodi*	California	Potato	MH128513
P213039	*M. chitwoodi*	Washington	Potato	MH128514
P213040	*M. chitwoodi*	Washington	Potato	MH128515
P221087	*M. chitwoodi*	New Mexico	Potato	MH128518
P215032	*M. chitwoodi*	Washington	Potato	MH128517
P178028	*M. chitwoodi*	Commercial	Potato	MH128503
P215031	*M. chitwoodi*	Commercial	Potato	MH128516

BITH=Big Thicket National Preserve, Texas.

GRSM=Great Smoky Mountains National Park, Tennessee and North Carolina.

GWMP=George Washington Memorial Parkway, Virginia.
Discovery and Identification of Meloidogyne Species Using COI DNA Barcoding

Table 2. COI sequences included in group 1.

NID	Species	Locality	Host/Habitat	GenBank accession #
N137	*M. konaensis*	Hawaii	Pineapples	MH128384
N138	*M. konaensis*	Hawaii	Pineapples	MH128385
N7067	Meloidogyne sp.	Charleston, Missouri	Soybean	MH128414
N7066	Meloidogyne sp.	Charleston, Missouri	Soybean	MH128413
N7065	Meloidogyne sp.	Charleston, Missouri	Soybean	MH128412
N5777	Meloidogyne sp.	Nebraska	Conservatory	MH128410
N5775	Meloidogyne sp.	Nebraska	Conservatory	MH128409
N5771	Meloidogyne sp.	Nebraska	*Phoenix dactylifera*	MH128408
N3836	Meloidogyne sp.	Nebraska	Banana	MH128407
N2668	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128406
N2667	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128405
N2666	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128404
N2665	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128403
N2664	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128402
N2663	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128401
N2662	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128400
N2661	Meloidogyne sp.	Sonora, Mexico	Grapevine	MH128399
N2659	Meloidogyne sp.	Florida	Peanuts	MH128397
N7068	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128415
N7069	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128416
N7070	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128417
N7072	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128418
N7073	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128419
N7075	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128420
N8309	Meloidogyne sp.	Clarkton, Missouri	Soybean	MH128421
P118094	Meloidogyne incognita	Missouri	Potato	MH128424
P120058	M. incognita	Arizona	Culture	MH128425
P120059	M. incognita	Arizona	Culture	MH128426
P121032	M. incognita	Mississippi	Potato	MH128427
P121058	M. incognita	Gasconade County, Missouri	Daylily	MH128428
P121060	M. incognita	Moniteau County, Missouri	Daylily	MH128429
P156046	Meloidogyne floridensis	Florida	GH culture	MH128430
P156048	M. floridensis	Florida	GH culture	MH128431
P158036	Meloidogyne arenaria	Alachua County, Florida	–	MH128432
P158037	M. arenaria	Alachua County, Florida	–	MH128433
P160024	Meloidogyne sp.	Alachua County, Florida	–	MH128434
P160025	Meloidogyne sp.	Alachua County, Florida	–	MH128435
P160075	M. arenaria	Alachua County, Florida	–	MH128437
Accession	Species	Location	Collection	Accession Number
------------	--------------------------	---------------------	---------------------	------------------
P167014	*Meloidogyne javanica*	–	–	MH128438
P167019	*M. arenaria*	–	–	MH128439
P167020	*M. arenaria*	–	–	MH128440
P167021	*M. arenaria*	–	–	MH128441
P176014	*Meloidogyne sp.*	Missouri	Culture	MH128443
P178075	*M. arenaria*	Texas	Potato	MH128444
P195088	*M. javanica*	–	–	MH128445
P195089	*M. javanica*	–	–	MH128446
P196023	*M. javanica*	–	–	MH128447
P196024	*M. javanica*	–	–	MH128448
P196025	*M. javanica*	–	–	MH128449
P202009	*Meloidogyne sp.*	Israel	Culture	MH128450
P229051	*Meloidogyne sp.*	Florida	Culture	MH128451
P229053	*Meloidogyne sp.*	Florida	Culture	MH128452
P229056	*Meloidogyne sp.*	Florida	Culture	MH128453
P233011	*Meloidogyne sp.*	–	Coffee	MH128457
P233014	*Meloidogyne sp.*	–	Coffee	MH128458
P234004	*Meloidogyne sp.*	Morocco	–	MH128459
P234005	*Meloidogyne sp.*	Morocco	–	MH128460
P234006	*Meloidogyne sp.*	Morocco	–	MH128461
P234007	*Meloidogyne sp.*	Morocco	–	MH128462
P73085	*Meloidogyne incognita*	Bonita, Arizona	Pinto beans	MH129422
P73088	*M. incognita*	Bonita, Arizona	Pinto beans	MH128423
N5796	*Meloidogyne sp.*	Ash Meadows NWR, Nevada	–	MH128411
P230069	*Meloidogyne incognita grahami*	West Virginia	Culture	MH128454
P230095	*M. incognita grahami*	West Virginia	Culture	MH128456
P230070	*M. incognita grahami*	West Virginia	Culture	MH128455
N2660	*Meloidogyne sp.*	Florida	Peanut	MH128398
P167027	*M. arenaria*	–	–	MH128442
N329	*Meloidogyne sp.*	North Dakota	Potato	MH128386
N330	*Meloidogyne sp.*	North Dakota	Potato	MH128387
N331	*Meloidogyne sp.*	North Dakota	Potato	MH128388
N332	*Meloidogyne sp.*	North Dakota	Potato	MH128389
N333	*Meloidogyne sp.*	North Dakota	Potato	MH128390
N334	*Meloidogyne sp.*	North Dakota	Potato	MH128391
N335	*Meloidogyne sp.*	North Dakota	Potato	MH128392
N336	*Meloidogyne sp.*	North Dakota	Potato	MH128393
N337	*Meloidogyne sp.*	North Dakota	Potato	MH128394
N348	*Meloidogyne sp.*	North Dakota	Potato	MH128395
N351	*Meloidogyne sp.*	North Dakota	Potato	MH128396
P160071	*M. arenaria*	Alachua, Florida	Culture	MH128436
National Preserve, Texas comes from a native lowland plant community, compared with other specimens from New Mexico collected from commercial pecan (Carya illinoinensis (Wangenh.) K. Koch) production.

There are seven groups labeled as unnamed, all with sequence derived from J2 stage specimens except for N4431 and N4496 which were males collected from native chestnut (Castanea dentata (Marshall) Borkh.) in Great Smoky Mountains National Park (GRSM), North Carolina. All specimens in the unnamed groups 4, 5, 9 to 13 were isolated from soil samples within Gulf Coast or Eastern North American forests. Groups 9 and 12 were associated with American beech, (Fagus grandifolia Ehrh.) and chestnut or oak, respectively. Measurements of the unidentified juveniles are presented in Table 3, and Fig. 2 illustrates juveniles from three of the unnamed groups.

Table 3. Measurements of j2 Meloidogyne specimens from unnamed COI haplotype groups and reference species.

Haplotype group/ species	N	Length	Tail length	Stylet length	a	b	c
Unnamed 4	2	441 (430–452)	42	17	24.3 (22.7–25.9)	3.8 (3.7–3.9)	10.5 (10.3–10.8)
Unnamed 5	5	431 (406–460)	47 (40–53)	14 (13–15)	25.4 (914.4–30.8)	3.9 (3.0–4.8)	9.3 (8.0–10.1)
Unnamed 9	5	393 (380–405)	40 (38–44)	15 (15–16)	26.0 (25.5–26.7)	4.0 (3.3–4.4)	9.7 (9.2–10.1)
Unnamed 11 (Singleton A)	1	384	42	15	27.5	3.5	9.1
Unnamed 12	5	353 (339–379)	41 (38–43)	15 (14–15)	22.7	3.5	8.6 (8.0–8.9)
Unnamed 13	2	490 (439–541)	59 (57–62)	14	30.7 (30.4–31)	3.9	8.2 (7.7–8.6)
Meloidogyne ovalis	10	370 (350–430)	–	–	22 (21–24)	–	8 (8–9)
Meloidogyne pini	30	434 (376–493)	44 (37–53)	12.8 (11.4–14.1)	25.7 (21.8–29.1)	–	9.8 (7.5–11.8)
Meloidogyne camelliae	70	501 (443–576)	47 (40–56)	11.6 (11.2–12)	26 (21–30)	3.1	10.7 (9.5–12)
Meloidogyne querciana	70	467 (411–541)	46 (39–52)	11.1 (10.2–11.6)	30 (23–39)	2.6	10 (7–13)
Meloidogyne megatyla	23	416 (392–457)	39.7	14.6 (13.8–16.6)	26 (22–29)	7.1	10.5 (6.7–7.8)

Discussion

The COI gene region used as a diagnostic marker in this study appears to discriminate many of the described species of Meloidogyne. It does not separate the apomictic “major species” and their close relatives, except possibly M. konaensis and M. incognita grahami. Other mitochondrial genes such as NAD 5 may help resolve some of those species boundaries (Janssen et al., 2016). Aside from an inability to discriminate among the tropical clade 1 species, there are advantages to using COI as a DNA barcode. As a protein coding gene, nucleotide alignment is easier compared with non-protein coding genes. Taxonomic resolution is at the population and species level, although for many genera, mutational saturation, lineage extinctions, or inadequate sampling may obscure deeper relationships that aid in the recognition of species groupings. Nonetheless,
COI barcodes in combination with an adequately curated sequence database, provide a powerful tool for identification and discovery. The limitation of DNA barcoding without a corresponding database is illustrated by the unnamed groups in the Meloidogyne dataset. For example, there was an expectation that focal samples from soil around individual chestnut and oak trees in GRSM might yield Meloidogyne querciana Golden, 1979 which was described from northern red oak (Quercus rubra L.) and chestnut hosts within the same ecoregion. Indeed Meloidogyne specimens were found in these samples, however, the barcode data demonstrate that multiple COI lineages were associated with chestnut and oaks in the park. Similarly, unnamed lineages were also discovered associated with American beech and baygall plant communities in Big Thicket National Preserve, Texas (www.nps.gov/bith/plant-communities.htm). These results indicate that considerable Meloidogyne diversity exists in the primary and secondary forests of eastern and southern United States. Characterization of this diversity by COI barcoding allows us to rule out described species with representation in the COI database, yet neither COI barcode nor morphometrics of juvenile specimens permits unequivocal assignment of a species name to these specimens. For these unknown specimens a more complete taxonomic analysis that includes obtaining adult stages will be required before a barcode sequence can be linked to a formal Latin binomial.
Acknowledgments

Thanks to the sponsors of nematode surveys, Department of Interior-National Park Service, Discover Life in America, NSF project DEB-1145440, Nebraska Department of Agriculture, Thicket of Diversity, USDA Multistate Project 3186, and University of Nebraska-Lincoln Agricultural Research Division IC-282. Most of all we thank the numerous collaborators and colleagues who have contributed nematode specimens for identification.

References

Blaxter, M.L. 2004. The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 669–79, doi: 10.1098/rstb.2003.1447.

Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J., Vinckx, M., and Moens, T. 2005. Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series 300: 91–103, doi: 10.3354/meps300091.

Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., and Moens, T. 2010. Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLOS ONE 5(10): pp. e13716, doi: 10.1371/journal.pone.0013716.

DeSalle, R., Egan, M.G., and Siddall, M. 2005. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B 360: 1905–16.

Eisenback, J.D., Bernard, E.C., and Schmitt, D.P. 1994. Description of the Kona coffee root-knot nematode, Meloidogyne konaensis n.sp. Journal of Nematology 26(4): pp. 363–74.

Elling, A.A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103: 1092–102, doi: 10.1094/PHYTO-01-13-0019-RVW. PMID:23777404.

Floyd, R., Abebe, E., Papert, A., and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology 11: 839–50, doi: 10.1046/j.1365-294X.2002.01485.x.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–9.

Hebert, P.D., Ratnasingham, S., and de Waard, J.R. 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B: Biological Sciences 270(Suppl 1): S96–S99, doi: 10.1098/rspb.2003.0025.

Hodgetts, J., Ostojà-Starzewski, J.C., Prior, T., Lawson, R., Hall, J., and Boonham, N. 2016. DNA barcoding for biosecurity: Case studies from the UK plant protection program. Genome 59: 1033–48, doi: dx.doi.org/10.1139/gen-2016-0010.

Janssen, T., Karssen, G., Verhaeven, M., Coyne, D., and Bert, W. 2016. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Scientific Reports 6: 22591, http://doi.org/10.1038/srep22591.

Kiewnick, S., Holterman, M., van den Elsen, S., van Megen, H., Frey, J.E., and Helder, J. 2014. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology 140: 97–110, http://dx.doi.org/10.1007/s10658-014-0446-1.

McFadden, C.S., Benayahu, Y., Pante, E., Thoma, J.N., Nevarez, P.A., and France, S.C. 2011. Limitations of mitochondrial gene barcoding in Octocorallia. Molecular Ecology Resources 11: 19–31, doi: 10.1111/j.1755-0998.2010.02875.x.

Meyer, C.P., and Paulay, G. 2005. DNA barcoding: Error rates based on comprehensive sampling. PLOS Biology 3: 2229–37.

Olson, M., Harris, T., Higgins, R., Mullin, P., Powers, K., Olson, S., and Powers, T.O. 2017. Species delimitation and description of Mesocriconema nebraskense n. sp. (Nematoda: Criconematidae), a morphologically cryptic, parthenogenetic species from North American grasslands. Journal of Nematology 49(1): 42–68.

Powers, T.O. 2004. Nematode molecular diagnostics: From bands to barcodes. Annual Review of Phytopathology 42: 367–83.

Powers, T.O., Bernard, E.C., Harris, T., Higgins, R., Olson, M., Lodema, M., Mullin, P., Sutton, L., and Powers, K.S. 2014. COI haplotype groups in Mesocriconema (Nematoda: Criconematidae) and their morphospecies associations. Zootaxa 3827(2): 101–46, http://dx.doi.org/10.11646/zootaxa.3827.2.1.
Prosser, S., Velarde-Aguilar, M.G., León-Régagnon, V., and Hebert, P.D. 2013. Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. *Molecular Ecology Resources* 13(6): 1108–15 DOI:10.1111/1755-0998.12.

Rubinoff, D., Cameron, S., and Will, K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for ‘barcoding’ identification. *Journal of Heredity* 97: 581–94.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution* 30: 2725–9.

Will, K.W., Mishler, B.D., and Wheeler, Q.D. 2005. The perils of DNA barcoding and the need for integrative taxonomy. *Systematic Biology* 54: 844–51.
Supplementary Table S1

Supplementary Table S1. Accession numbers of specimens from Group 1 acquired from GenBank.

GenBank accession #	Species
KU372169.1	*M. javanica*
KU372170.1	*M. javanica*
KU372171.1	*M. luci*
KU372174.1	*Meloidogyne sp.*
KU372168.1	*M. inornata*
KU372175.1	*Meloidogyne sp.*
KU372164.1	*M. incognita*
KU372163.1	*M. incognita*
KU517167.1	*M. incognita*
KU360143.1	*M. arenaria*
JX683704.1	*M. arenaria*
KU360144.1	*M. javanica*
JX683696.1	*M. incognita*
JX683698.1	*M. incognita*
JX683699.1	*M. incognita*
JX683700.1	*M. incognita*
JX683706.1	*M. javanica*
JX683701.1	*M. arenaria*
JX683702.1	*M. arenaria*
JX683703.1	*M. arenaria*
JX683705.1	*M. arenaria*
JX683707.1	*M. javanica*
JX683708.1	*M. javanica*
JX683709.1	*M. javanica*
JX683711.1	*M. javanica*
JX683710.1	*M. javanica*
JX683712.1	*Meloidogyne hispanica*
JX683713.1	*M. hispanica*
KM887153.1	*M. arenaria*
KM887152.1	*M. incognita*
KM887155.1	*M. arenaria*
KM887154.1	*M. incognita*
JX683697.1	*M. incognita*
KM887156.1	*M. javanica*
KU517172.1	*M. javanica*
KU517176.1	*M. arenaria*
KU372160.1	*M. arenaria*
KU372166.1	*M. incognita*
KU372167.1	*Meloidogyne inornata*
KU372159.1	*M. arenaria*
KU372165.1	*M. incognita*
KU372158.1	*M. arenaria*
NC_026556.1	*Meloidogyne javanica*
NC_026554.1	*M. arenaria*
KP202352.1	*M. javanica*
KP202350.1	*M. arenaria*
NC_024097.1	*M. incognita*
KJ476151.1	*M. incognita*
KU372158.1	*M. arenaria*
KU372165.1	*M. incognita*
KU372167.1	*Meloidogyne inornata*
KU372159.1	*M. arenaria*
KU372166.1	*M. incognita*