Structural Insight into the Rotational Switching Mechanism of the Bacterial Flagellar Motor

Tohru Minamino¹,², Katsumi Imada¹,³, Miki Kinoshita¹, Shuichi Nakamura¹, Yusuke V. Morimoto¹, Keiichi Namba¹*

¹ Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan, ² PRESTO, JST, Saitama, Japan, ³ Department of Macromolecular Science, Osaka University, Osaka, Japan

Abstract

The bacterial flagellar motor can rotate either clockwise (CW) or counterclockwise (CCW). Three flagellar proteins, FliG, FliM, and FliN, are required for rapid switching between the CW and CCW directions. Switching is achieved by a conformational change in FliG induced by the binding of a chemotaxis signaling protein, phospho-CheY, to FliM and FliN. FliG consists of three domains, FliGM, FliGM, and FliGC, and forms a ring on the cytoplasmic face of the MS ring of the flagellar basal body. Crystal structures have been reported for the FliGMC domains of Thermotoga maritima, which consist of the FliGM and FliGC domains and a helix E that connects these two domains, and full-length FliG of Aquifex aeolicus. However, the basis for the switching mechanism is based only on previously obtained genetic data and is hence rather indirect. We characterized a CW-biased mutant (fliGΔPAA) of Salmonella enterica by direct observation of rotation of a single motor at high temporal and spatial resolution. We also determined the crystal structure of the FliGMC domains of an equivalent deletion mutant variant of T. maritima (fliGΔPVEV). The FliGΔPAA motor produced torque at wild-type levels under a wide range of external load conditions. The wild-type motors rotated exclusively in the CCW direction under our experimental conditions, whereas the mutant motors rotated only in the CW direction. This result suggests that wild-type FliG is more stable in the CCW state than in the CW state, whereas FliGΔPAA is more stable in the CW state than in the CCW state. The structure of the TM-FliGMC(ΔPEV) revealed that extremely CW-biased rotation was caused by a conformational change in helix E. Although the arrangement of FliGC relative to FliGM in a single molecule was different among the three crystals, a conserved FliGM-FliGC unit was observed in all three of them. We suggest that the conserved FliGM-FliGC unit is the basic functional element in the rotor ring and that the PAA deletion induces a conformational change in a hinge-loop between FliGM and helix E to achieve the CW state of the FliG ring. We also propose a novel model for the arrangement of FliG subunits within the motor. The model is in agreement with the previous mutational and cross-linking experiments and explains the cooperative switching mechanism of the flagellar motor.

Introduction

Bacteria such as Escherichia coli and Salmonella enterica swim by rotating multiple flagella, which arise randomly over the cell surface. Each flagellum is a huge protein complex made up of about 30 different proteins and can be divided into three distinct parts: the basal body, the hook, and the filament. The basal body is embedded in the cell envelope and acts as a reversible motor powered by a proton motive force across the cytoplasmic membrane. The hook and the filament extend outwards in the cell exterior. The filament is a helical propeller that propels the cell body. The hook connects the basal body with the filament and functions as a universal joint to transmit torque produced by the motor to the filament. The flagellar motor can exist in either a counterclockwise (CCW) or clockwise (CW) rotational state. CW rotation causes the cell to swim smoothly in what is termed a tumble. Whereas brief CW rotation of one or more flagella causes a tumble. The direction of motor rotation is controlled by environmental signals that are processed by a sensory signal transduction pathway to generate chemotaxis behavior [1–3].

Five flagellar proteins, MotA, MotB, FliG, FliM, and FliN, are involved in torque generation. Two integral membrane proteins, MotA and MotB, form the stator, which converts an inwardly directed flux of H⁺ ions through a proton-conducting channel into the mechanical work required for motor rotation. The FliG, FliM, and FliN proteins form the C ring on the cytoplasmic side of the MS ring, which is assembled from 26 subunits of a single protein, FliF, and this complex acts as the rotor of the flagellar motor [1–3]. An electrostatic interaction between the cytoplasmic loop of MotA and FliG is thought to be involved in torque generation [4,5] and in stator assembly around the rotor [6]. The protonation-deprotonation cycle of a highly conserved aspartic
Author Summary

The bacterial flagellum is a rotating organelle that governs cell motility. At the base of each flagellum is a motor powered by the electrochemical potential difference of specific ions across the cytoplasmic membrane. In response to environmental stimuli, rotation of the motor switches between counterclockwise and clockwise, with a corresponding effect on the swimming direction of the cell. Switching is triggered by the binding of the signaling protein phospho-CheY to FliM and FlIN, and achieved by conformational changes in the rotor protein FliG. The actual switching mechanism, however, remains unclear. In this study, we characterized a fliG mutant of Salmonella that shows an extreme clockwise-biased rotation, and determined the structure of a fragment of FliG (FliGMC) of the equivalent mutant variant of Thermotoga maritima. FliGMC is composed of two domains and covers the regions essential for torque generation and FliM binding. We showed that the mutant structure has a conformational change in the helix connecting the two domains, leading to a domain orientation distinct from that of the wild-type FliG. On the basis of this structure, we propose a new model for the arrangement of FliG subunits in the rotor that is consistent with the previous mutational studies and explains how cooperative switching occurs in the motor.

Results

Characterization of S. enterica fliG(ΔPAA) Mutant

The motors of the βfliG(ΔPAA) mutant rotated only CW (Figure S1A), whereas wild-type motors rotated exclusively CCW under our experimental conditions. The motors of the deletion mutant produced normal torque under a wide range of external-load conditions, indicating that the deletion does not affect the torque generation step (Figure S1B). Introduction of a cheA-Δ deletion, which causes wild-type motors to spin exclusively CCW [30], into the βfliG(ΔPAA) mutant did not change the CW-biased behavior. These results are in good agreement with a previous report [29]. Switching between the CW and CCW states is highly cooperative [31–34]. The switching mechanism can be explained by a conformational spread model, in which a switching event is mediated by conformational changes in a ring of subunits that spread from subunit to subunit via nearest-neighbor interactions [34,35]. Therefore we investigated rotation of a single motor composed of wild-type and mutant FliG subunits at different ratios. FliG(ΔPAA) inhibited expansion of wild-type colonies in semi-solid agar (Figure 1A), even when its expression level was ca. 5-fold lower than the level of wild-type FliG expressed from the chromosome (Figure 1B). Bead assays revealed that the decrease in colony expansion results from an increase in both switching frequency and prolonged pausing (Figure 1C). In addition, a low level expression of FliG(ΔPAA) partially increased the colony expansion of the ΔcheA-Δ mutant, presumably because switching now occurred (Figure 1D, upper and middle panels). These results suggest that even a small fraction of FliG(ΔPAA) in a motor can affect the CW-CCW switching.

The CW-CCW transition, which is very fast in wild-type motors, became significantly longer in mixed motors (Figure 1), suggesting that, as proposed previously [24], the motor can exist in multiple states. A much higher expression of FliG(ΔPAA) completely inhibited wild-type motility (Figure 1D) and did not increase the colony size of the ΔcheA-Δ mutant in semi-solid agar plates because of the extreme CW-biased rotation of its flagella (Figure 1C and D, lower panel), in agreement with data showing...
that a higher expression level of wild-type FliG is required for complementation of the \(\text{fliG}^{\Delta \text{PAA}} \) mutant (Figure S2). Therefore, we conclude that wild-type FliG is more stable in the CCW state than in the CW state, whereas FliG\(^{\Delta \text{PAA}} \) is more stable in the CW state than in the CCW state.

Limited Proteolysis of FliG and FliG\(^{\Delta \text{PAA}} \)

To identify structural differences between the CW and CCW states of FliG, we carried out limited trypsin proteolysis of the wild-type and mutant FliG proteins and analyzed the products by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and N-terminal amino-acid sequencing (Figure 2). Both the wild-type and mutant FliG proteins were cleaved between helix E and FliGC, producing the T1 and T2a fragments. This indicates that there is a flexible region between them. The T1 fragment derived from FliG\(^{\Delta \text{PAA}} \) was less stable than the T1 fragment from wild-type FliG, suggesting that the deletion causes a conformational change in FliG\(^{\Delta \text{PAA}} \) and helix E. In contrast, the T2a fragment was more stable in FliG\(^{\Delta \text{PAA}} \) than in the wild-type. The T2a fragment derived from the wild-type FliG protein was detected by MALDI-TOF but not on SDS-PAGE gels, indicating that the wild-type T2a fragment is rapidly converted into the T2 fragment. These results suggest that the deletion also influences the conformation in the region between helix E and FliGC.

Structural Comparison of Tm-FliGMC and Tm-FliGMC\(^{\Delta \text{PEV}} \)

We tried crystallizing both wild-type FliG and FliG\(^{\Delta \text{PAA}} \) from *S. enterica* but did not succeed in obtaining crystals. It has been

Figure 1. Dominant-negative effect of FliG\(^{\Delta \text{PAA}} \) on motility of wild-type cells. (A) Motility of SJW1103 cells (wild-type) transformed with pET19b (indicated as Low-V), pTrc99A (indicated as High-V), pGMK4000 (pET19b/His-FliG\(^{\Delta \text{PAA}} \), indicated as Low-FliG\(^{\Delta \text{PAA}} \)), and pGMK4500 (pTrc99A/His-FliG\(^{\Delta \text{PAA}} \), indicated as High-FliG\(^{\Delta \text{PAA}} \)) in semi-solid agar plates. (B) Expression levels of FliG and His-FliG\(^{\Delta \text{PAA}} \). Immunoblotting, using polyclonal anti-FliG antibody, of whole cell proteins. Lane 1, MKM1/pET19b (indicated as \(\text{fliG}^{\text{V}} \)); lane 2, SJW1103/pET19b (indicated as WT/V); lane 3, SJW1103/pGMK4000 (indicated as WT/Low-His-FliG\(^{\Delta \text{PAA}} \)). Arrows indicate positions of FliG and His-FliG\(^{\Delta \text{PAA}} \). (C) Measurement of CCW and CW rotation of the flagellar motor by bead assays. We used SJW46 (\(\text{fliF}^{\Delta \text{204–292}} \)) as a host because it produces flagellar motors with the sticky flagellar filaments, which are easily labeled with polystyrene beads. CCW, counterclockwise rotation; CW, clockwise rotation. Upper panel: SJW46 carrying pET19b. Middle panel: SJW46 carrying pGMK4000. Bottom panel: SJW46 carrying pGMK4500. (D) Effect of FliG\(^{\Delta \text{PAA}} \) on motility of a \(\Delta \text{cheA-Z} \) mutant. Upper panel: Motility of SJW3076 (\(\Delta \text{cheA-Z} \)) transformed with pET19b, pGMK3000 (pET19b/His-FliG), or pGMK4000 in semi-solid agar. Middle panel: measurement of CCW and CW rotation of the flagellar motor of MM3076iC/pGMK4000. Bottom panel: measurement of CCW and CW rotation of the flagellar motor of MM3076iC/pGMK4500.

Figure 2. Conformation of FliG in solution. (A) Protease sensitivity of His-FliG (left panel) and His-FliG\(^{\Delta \text{PAA}} \) (right panel). Arrowheads indicate intact molecule and proteolytic products on SDS-PAGE gels with labels corresponding to those in the diagram shown in (B). (B) Proteolytic fragments identified by MALDI-TOF mass spectroscopy and N-terminal amino acid sequencing.

doi:10.1371/journal.pbio.1000616.g001

doi:10.1371/journal.pbio.1000616.g002
reported that the crystal structure of a fragment (residues 104–335) of *T. martima* FliG (Tm-FliGMC) consists of FliGM, FliGC, and helix E connecting the two domains ([22]; PDB ID, 1lkv). FliGC can be further divided into two sub-domains (FliG\(_{CN}\) and FliG\(_{CC}\)). Therefore, we introduced the deletion (ΔPEV), equivalent to ΔPAA, into Tm-FliGMC (Tm-FliGMC(ΔPEV)) and determined its structure at 2.3 Å resolution by X-ray crystallography (Figure 3).

FliGM, FliG\(_{CN}\), and FliG\(_{CC}\) are composed of five (n, A–D), three (F–H), and six (I–N) helices, respectively (Figure 3). Since the residues between G186 and V195 are invisible in the crystal, there are two possible ways to connect FliG\(_{M}\) with FliG\(_{CN}\): one is to connect FliG\(_{M}\) with its adjacent FliG\(_{CN}\) (G186 to V195 in Figure 3A upper panel and Figure S3A), and the other is with a distant FliG\(_{CN}\) (G186 to V195’ in Figure 3A upper panel and Figure S3A). The Cα distance between G186 and V195, and G186 and V195’ is 16.9 Å and 27.9 Å, respectively. Therefore, to connect with the distant FliG\(_{CN}\), the invisible chain would have a fully extended conformation. We thus conclude that the connection with the adjacent FliG\(_{CN}\) is more plausible.

Compared with the structure of wild-type Tm-FliGMC, FliG(ΔPEV) showed a significant conformational change in the hinge between helix E and FliG\(_{M}\), leading to a very different

Figure 3. Comparison of the structures of Tm-FliGMC(ΔPEV), Tm-FliGMC, and Aa-FliG. Cα ribbon representation of (A) Tm-FliGMC(ΔPEV), (B) Tm-FliGMC (PDB code 1lkv), and (C) Aa-FliG (PDB code 3hjl), color coded from purple to red going from the N- to the C-terminus. The FliGM-FliGC unit with helix E is surrounded by broken line in the upper panels. The white and black arrowheads in the upper panels represent view directions of the middle and the lower panels, respectively. (A, upper panel) Two possible connections between the M-domain and the C-domain (FliG\(_{CN}\) and FliG\(_{CC}\)) in the Tm-FliGMC(ΔPEV) crystal are shown. Because the residues between G186 and V195 are invisible in the density map, G186 can be to either V195 or V195’. The two possible C-domains are indicated by vivid and dull colors. (B, C, upper panel) The orientation of the Tm-FliGMC and Aa-FliG molecule is adjusted to that of Tm-FliGMC(ΔPEV) by the M-domain (colored cyan). FliG\(_{CN}\) and FliG\(_{CC}\) of an adjacent molecule related by crystallographic symmetry are shown by dull yellow and dull pink, respectively. The middle panels show comparison of the FliG\(_{M}\)-FliG\(_{C}\) unit structures. All the elements of secondary structure are labeled in alphabetical order from the N- to the C-terminus, except for “n,” which is not found in the Tm-FliGMC structure. The lower panels are viewed from the right of the middle panels.

doi:10.1371/journal.pbio.1000616.g003
orientation of helix E relative to FliGM (Figure 3A and B, and Figure 4A and C). As a result, some of the residues in FliGM are exposed to solvent in the Tm-FliGM(APEV) structure. This result is in good agreement with the data obtained by limited proteolysis (Figure 2). Thus, the conformational difference in the FliG helix E hinge between the wild-type and mutant structures may represent the conformational switch between the CW and CCW states of the motor.

The C-terminal half of helix E is disordered and protrudes into the solvent channel in the Tm-FliGM(APEV) crystal (Figure S3A). In contrast, helix E in the wild-type crystal is stabilized by forming an anti-parallel four-helix bundle structure with the E helices of three adjacent subunits related by crystallographic symmetry (Figure S3B) [22]. Therefore, the orientation of FliG relative to FliGM is different between the wild-type and the deletion variants (Figure 3A and B upper panel). Because the disordered region of helix E is far from the PEV deletion, we conclude that helix E has a highly flexible nature, which may be responsible for the switching mechanism, as suggested before [23, 24].

Tm-FliGM(APEV) also showed a conformational difference in the H-I loop, resulting in a rigid body movement of FliGCC relative to FliGCN (Figure 3A and B middle and lower panels, and Figure 4A). This movement is consistent with the limited proteolysis data because, in the Tm-FliGM(APEV) structure, FliGCN almost covers D199, which is the residue corresponding to R198 in S. enterica FliG. It is, however, unclear how the deletion affects the conformation of the H–I loop, because neither direct contact between FliGCC and helix E nor significant structural difference in FliGCN is observed.

Comparison of the Structure of Tm-FliGMC(APEV) with A. aeolicus FliG

The crystal structure of full-length A. aeolicus FliG (Aa-FliG) showed that the conformation of helix E and the orientation of FliGCN relative to FliGCC are quite distinct from those of wild-type Tm-FliGMC: [28]. We compared the Aa-FliG structure with the Tm-FliGMC(APEV) structure and found that the conformation of helix E and the relative conformation of FliGCC to FliGCM are also different in those two structures (Figure 3A and C, and Figure 4B and C). The conformational differences are greater than those between Tm- FliGMC and Tm-FliGMC(APEV). The conformation of helix E in Aa-FliG seems to be stabilized by interactions of helix E with FliGM and helix n in the crystal (Figure S3C). As mentioned earlier, the conformation of helix E and the orientation of FliGCC to FliGCM are also different between the wild-type and mutant Tm-FliGMC structures. Therefore, these conformational differences among the three structures strongly suggest that both helix E and the linker connecting FliGCC to FliGCM are highly flexible.

Interaction between FliGM and FliGCN

The interaction between FliGM and FliGCN, which share the armadillo repeat motif [36] that is often responsible for protein-protein interaction, is very tight in the Tm-FliGMC(APEV) crystal, in agreement with a previous report [28]. FliGM and FliGCN can be identified as a single domain, although it is unclear whether the two domains belong to the same molecule or not because the residues between Gly-186 and Val-195 are invisible in the crystal (Figures 3A and S3A). The interaction surface between FliGM and FliGCN is formed by the C-terminal portion of β2, αC, and αD of FliGM, and αF, βG, and the N-terminal portion of αH of FliGCN, respectively (Figure 5A and B). The interface is highly hydrophobic. Ala-143, Ala-144, Leu-147, Leu-156, Leu-159, Ile-162, and Ala163 of FliGM, and Ile-204, Met-205, Leu-208, Leu-220, Leu-227, and Ile-231 of FliGCN are mainly involved in the tight domain interaction. Leu-159 is located at the center of the hydrophobic interface (Figure 5C). Around the hydrophobic core, hydrophilic interactions between Arg-167 and Gln-230, and Gln-153 and Thr-212, also contribute to the domain interaction (Figure 5C). These interactions are also conserved in the wild-type Tm-FliGMC and Aa-FliG crystals, in which FliGM interacts with FliGCN of an adjacent molecule related by crystallographic symmetry (Figures S3 and S3B). The FliGAPFliGCN unit in the wild-type Tm-FliGMC structure can be superimposed onto that in Tm-FliGMC(APEV) with root mean square deviation of 0.46 Å for corresponding Cz atoms (Figure 4A and C), and that in Aa-FliG with 0.79 Å (Figure 4B and C). These observations support the idea that the FliGAPFliGCN unit is a functionally relevant structure [28]. This is in good agreement with the previous mutational study showing that most of the known point mutations that affect FliM-binding [37] are located either on the bottom surface of the FliGAPFliGCN unit or on the interaction surface between FliGM and FliGCN (Figure 6A and C).

Discussion

The default direction of the wild-type flagellar motor of Salmonella enterica is CCW, and the binding of CheY-P to FliM and FlhN increases the probability of CW rotation. CheY-P binding induces conformational changes in FlhM and FlhN that are presumably transmitted to FliG, which directly interacts with MotA to produce torque [1, 2]. Mutations located in and around helix E FliG, which connects the FliGM and FliGCN domains, generate a diversity of phenotype, including motors that are strongly CW biased, infrequent switchers, rapid switchers, and transiently or permanently paused, suggesting that helix E is directly involved in the switching of the flagellar motor [24]. However, it remains unclear how helix E affects the switch.

To investigate the switching mechanism, we characterized an extreme CW-biased S. enterica mutant in which an in-frame deletion of three residues, Pro-169, Ala-170, and Ala-171, in FliG caused an extreme CW-biased rotation even in the absence of CheY. Motors containing the FliG(APAA) protein showed normal torque generation under a wide range of external-load conditions (Figure 1 and Figure 1S). Thus, the conformational change in FliG induced by APAA is presumably similar to one induced by CheY-P binding to FlhM and FlhN. Limited proteolysis revealed that APAA induces conformational changes in the hinge between FliGM and helix E (Figure 2). This result is in agreement with the crystal structure of Tm-FliGMC(APEV), which shows that the orientation of helix E relative to FliGM has changed significantly compared to wild-type FliG (Figure 3).

FliG forms a ring on the cytoplasmic face of the MS ring [17, 18]. In vivo disulfide cross-linking experiments using Cys-substituted FliG proteins have suggested that helix A is close to the D–E loop of the adjacent FliG molecule in the FliG ring [21]. Both a conserved EHPQR motif in FliGM and a conserved surface-exposed hydrophobic patch of FliGCN are important for the interactions with FlhM [21]. Because the conserved charged residues on helix M in FliGCC are responsible for its interaction with MotA [4, 5, 25], which is embedded in the cytoplasmic membrane, helix M must lie on top of FliGCN [21, 29]. Considering those facts in light of the crystal structure of Tm-FliGMC(APEV) described here, we propose a new model for the arrangement of FliG subunits in the motor (Figures 6 and 7).

In the proposed model, the conserved charged residues on helix M are located on the top of the FliGAPFliGCN unit and the EHPQR
Figure 4. Structural comparison of the FliG_M-FliG_C unit. (A) Comparison of Tm-FliG_M_{MC}(ΔPEV) and wild-type Tm-FliG_M_{MC} (PDB code 1lkv). A FliG_M-FliG_C unit of wild-type Tm-FliG_M_{MC}, which is composed of FliG_M of one subunit and FliG_C of the neighboring subunit related by 2-fold crystallographic symmetry, is superimposed onto Tm-FliG_M_{MC}(ΔPEV) using Ca atoms of V117-L165 and G196-F236 for least-square fitting. FliG_M with helix E and FliG_C of Tm-FliG_M_{MC}(ΔPEV) are colored cyan and blue, respectively. FliG_M with helix E and FliG_C of wild-type Tm-FliG_M_{MC} are yellow and orange, respectively. (B) Comparison of Tm-FliG_M_{MC}(ΔPEV) with Aa-FliG (PDB code 3hjl). A FliG_M-FliG_C unit of Aa-FliG, which is composed of FliG_M of one molecule and FliG_C of the neighboring molecule related by 2-fold crystallographic symmetry, is superimposed onto Tm-FliG_M_{MC}(ΔPEV) using Ca atoms of the same region used in (A). Tm-FliG_M_{MC}(ΔPEV) is shown in the same color as in (A), and FliG_M and FliG_C of Aa-FliG_M_{MC} are shown in green and red, respectively. (C) Comparison of the orientation of helix E. The FliG_M-FliG_C units of wild-type Tm-FliG_M_{MC} and wild-type Aa-FliG_M_{MC} are superimposed on Tm-FliG_M_{MC}(ΔPEV). The models are shown in the same colors used in (A) and (B).

doi:10.1371/journal.pbio.1000616.g004
motif is present at the bottom of the unit (Figure 6B and C). The conserved hydrophobic patch, and most of the point mutation sites involved in the interaction with FliM, is localized at the bottom of the FliG MFliGCN units around the EHPQR motif or on the interface between the FliGM and FliGCN. The D–E loop and helix E interact with the FliG M domain in the neighboring subunit, in agreement with data of in vivo cross-linking experiments, which show that residues 117 and 120 (118 and 121 in *T. maritima*) on helix A of one subunit lie close to residues 166 and 170 (167 and 171 in *T. maritima*) on the D–E loop of the neighboring subunit [21]. In fact, these residues are very close to each other in our model in positions in which disulfide-cross-linking should occur. Moreover, the position of Cys residues that do not participate in disulfide cross-linking are far from each other in the model (Figure 6D).

Our model can also explain the results of mutational studies of CW and CCW-biased *fliG* mutants [37,38]. The mutation sites are widely distributed from helix A to the H–I loop. Most of them are localized in three regions in our model (Figure 6A and B). In the first region, the CCW-biased mutations, which are located on helix A, affect residues close to residues targeted by CW-biased mutations, which are on a segment between helix D and E of the adjacent subunit (Figure 6A and B, 1). Because these residues are distributed on the interaction surface between the neighboring subunits, they presumably affect cooperative changes in subunit conformation. A second cluster of residues targeted by CW-biased mutations is located on the C-terminal half of helix B and the E–F loop (Figure 6A and B, 2). These mutations may change the orientation of the E–F loop and probably alter the orientation of helix E, resulting in unusual switching behavior. The third cluster of residues affected by mutations causing a CW switching bias is located near the loop between helices H and I (Figure 6A and B, 3). This region determines the relative orientation of FliGCC to the FliGM-FliGCN unit, and therefore the mutations may change the orientation of FliGCC to cause anomalous switching behavior.

Helix E is directly involved in the switching mechanism, but how does the structure of helix E affect the orientation of the FliG MFliGCN unit? Since the D–E loop and helix E interact with

Figure 5. Domain interface between FliG_M and FliG_{CN}. The two domains are colored cyan and magenta, respectively. (A) Structure of Tm-FliG_MΔPEV. The secondary structure elements are labeled as in Figure 3. (B) Structure of Tm-FliG_MΔPEV viewed from the direction of arrow in (A). (C) Stereo view of the domain interface between FliG_M and FliG_{CN}. The boxed area in (B) is shown. Side chains of the residues contributing strongly to the interaction are shown in a ball-and-stick representation, with carbon, nitrogen, and oxygen atoms indicated by yellow, blue, and red balls, respectively. Bonds are shown with colors of the domains to which they belong.

doi:10.1371/journal.pbio.1000616.g005
FliG in the neighboring subunit, we propose that a hinge motion of helix E may directly change the orientation of the neighboring FliM domain (Figure 7A). This mechanism could explain the cooperative switching of the motor. The conformational changes of FliM induced by association or dissociation of CheY-P may trigger conformational changes in the FliGM-FliGC unit that it contacts, leading to a large change in the interaction between FliG CC and MotA. The conformational change in one unit is probably accompanied by a conformational change in the loop between FliGM and helix E. This change could influence the orientation of the neighboring subunit through the interaction between helix E and FliGM of the neighbor, thereby propagating the conformational change to the neighboring subunit (Figure 7A).

If helix E actually contacts the more-distant FliGCN in the crystal structure, an alternative interaction could be responsible for the cooperative switching (Figure 7B). However, the same general mechanism involving changes in the conformation of helix E would still be responsible for the cooperative switching.

Recently, Lee et al. have proposed a model for FliG arrangement and switching based on the structural differences in Aa-FliG and Tm-FliG MC [28]. In the crystal structure of Aa-FliG, the hydrophobic patch in FliGM is covered by the N-terminal hydrophobic residues of helix E (closed conformation), Figure 6. A plausible model for arrangement of FliG subunits in the rotor. (A) A primary sequence alignment of FliGMC from T. maritima (TmFliG), Salmonella Typhimurium (StFliG), and Escherichia coli (EcFliG). The regions involved in the structure models of Tm-FliG MC and Tm-FliGMC (APEV) are shown in black bars above and below the Tm-FliG sequence, respectively. The α-helical regions are indicated by thick bars labeled with the same codes used in Figure 3. The region of the three-amino-acid deletion is shown by the magenta bar. The charged residues essential for the motor function are highlighted in cyan. The EHPQR motif is highlighted in green, and the other residues thought to be related to FliM-binding are shaded highlighted in yellow [21,37]. In vivo cross-linking experiments using various Cys-substitution mutants of FliG have shown that residues indicated by blue arrows are located near the residues indicated by red ones. The Cys-substitution sites that did not show any cross-linked products are indicated by green arrows [22]. Blue and red boxes indicate point mutations that bias the motor rotation to CCW and CW, respectively [38]. The residues within magenta boxes can give rise to CCW or CW-biased mutants, depending on the substitutions. The numbers under the boxes represent the number of the cluster to which the indicated residues belong. (B–D) Mapping of various mutation sites identified in previous studies on the model of Tm-FliGMC (APEV). A stereo pair of the Tm-FliGMC (APEV) subunits, color coded from blue to red going from the N- to the C-terminus, is shown in each panel. (B–C) Stereo diagram of the subunit arrangement model. (B) The charged residues essential for motor function are shown in stick representation colored in cyan. Residues at which substitutions affect the direction of motor rotation are indicated by balls: blue, CCW motor bias; red, CW motor bias; magenta, CCW or CW motor bias, depending on the substitution. The clusters of residues targeted by mutations are surrounded by ellipsoids and labeled (1, 2, and 3). (C) Residues involved in FliM binding are indicated by balls: yellow, residues at which substitutions decrease FliM binding; green, the EHPQR motif. (D) Residues substituted with Cys for in vivo cross-linking experiments are shown by balls. Residues indicated in blue cross-linked to residues in red. Residues that produced no cross-linking products are colored in green. doi:10.1371/journal.pbio.1000616.g006
Figure 7. Possible models for cooperative switching. (A) The most plausible model. Two adjacent FliG molecules are colored yellow and green. The conformational change of the hinge between FliGM and helix E not only changes the orientation within its own subunit but also influences the orientation of the neighboring subunit through the interaction between helix E and FliGM of the neighbor. (B) Another possible model. Helix E in one subunit is linked to FliGCN in the adjacent subunit. Therefore, a single functional unit consists of FliGM and helix E of one molecule and FliGCN and FliGCC of the other molecule. Three adjacent FliG molecules are colored yellow, green, and cyan. FliGM of the cyan molecule, and FliGCN and FliGCC of the yellow molecule are not shown. (C) The cooperative switching model proposed by Lee et al. Three FliG molecules are colored by yellow, green, and cyan. The FliGM-FliGC units are surrounded by broken lines. The closed conformation (left panel, helix E interacts with FliGCN) changes to the open conformation (right panel, helix E dissociates from FliGCN), inducing the rotation of the FliGM-FliGC unit and additional rotation of FliGCN. The box in the FliGM indicates helix A. The open circles represent the sites linked to the D–E loop (colored red) by in vivo disulfide cross-linking. (D) Possible orientation of the FliGM-FliGC unit in the rotor. The hydrophilic surface and the hydrophobic core layers of the cytoplasmic membrane are shown in orange and yellow, respectively.

doi:10.1371/journal.pbio.1000616.g007
and FliG CC of the adjacent subunit. However, helix A of one subunit and the D–E loop of the adjacent subunit are always at a considerable distance in both the CW and CCW states. Hence, their model cannot explain the in vivo disulfide cross-linking experiments (Figure 7C) [21]. Since our new model can explain the cross-linking data, it appears to be more plausible than the model proposed by Lee et al. [29]. Although our model is consistent with most of the previous experimental data, it still contains ambiguity. The available density map of the basal body obtained by electron cryomicroscopy is not high enough to allow fitting of the atomic model. Thus, a higher-resolution rotor-ring structure will be required to build a more precise model to explain the molecular mechanism of directional switching.

Materials and Methods

Bacterial Strains, Plasmids, and Media

S. enterica strains and plasmids used in this study are listed in Table 1. L-broth, soft agar plates, and motility media were prepared as described [39,40]. Ampicillin was added to a final concentration of 100 μg/ml.

Motility Assay

Fresh colonies were inoculated on soft tryptone agar plates and incubated at 30°C.

Bead Assay for Motor Rotation

Bead assays were carried out using polystyrene beads with diameters of 0.8, 1.0, and 1.5 mm (Invitrogen), as described before [8]. Torque calculation was carried out as described [8].

Preparation of Whole Cell Proteins and Immunoblotting

 Cultures of *S. enterica* cells grown at 30°C were centrifuged to obtain cell pellets. The cell pellets were resuspended in SDS-loading buffer, normalized in cell density to give a constant amount of cells. Immunoblotting with polyclonal anti-FliG antibody was carried out as described [41].

Purification of His-FliG and His-FliG(ΔPAA) and Limited Proteolysis

His-FliG and His-FliG(ΔPAA) were purified by Ni-NTA affinity chromatography as described before [39]. His-FliG and its mutant variant (0.5 mg/ml) were incubated with trypsin (Roche Diagnostics) at a protein to protease ratio of 300:1 (w/w) in 50 mM K2HPO4-NaH2PO4 pH 7.4 at room temperature. Aliquots were collected at 0, 5, 15, 30, 60, 90, and 120 min and trichloroacetic acid was added to a final concentration of 10%. Molecular mass of proteolytic cleavage products was analyzed by a mass spectrometer (Voyager DE/PRO, Applied Biosystems) as described [42]. N-terminal amino acid sequence was done as described before [42].

Purification, Crystallization, Data Collection, and Structure Determination of Tm-FliGMC(ΔPEV)

Tm-FliGMC(ΔPEV) was purified as described previously [23]. Crystals of Tm-FliGMC(ΔPEV) were grown at 4°C using the hanging-drop vapor-diffusion method by mixing 1 μl of protein solution with 1 μl of reservoir solution containing 0.1 M sodium phosphate-citrate buffer pH 4.2–4.4, 36%–50% PEG200, and 200 mM NaCl. Initially, we tried to solve the structure by the molecular replacement method using Tm-FliGMC structure (PDB ID: 1lkv) as a search model. However, no significant solution was obtained, even though individual domains were used as search models. Therefore, we prepared heavy-atom derivative crystals and determined the structure using the anomalous diffraction data from the derivatives.

Derivative crystals were prepared by soaking in a reservoir solution containing K2OsCl6 at 50% (v/v) saturation for one day. Crystals of Tm-FliGMC(ΔPEV) and its Os derivatives were soaked in a solution containing 90% (v/v) of the reservoir solution and 10% (v/v) 2-Methyl-2,4-pentanediol for a few seconds, then immediately transferred into liquid nitrogen for freezing. All the X-ray diffraction data were collected at 100 K under nitrogen gas.

Table 1. Strains and plasmids used in this study.

Strains and Plasmids	Relevant Characteristics	Source or Reference
Salmonella		
SJW1103	Wild type for motility and chemotaxis	[48]
SJW46	fliC(A204–292)	[49]
SJW2811	fliG(ΔPAA)	[10]
SJW3076	Δ(cheA–cheZ)	[30]
MKM1	ΔfliG	[19]
MM3076IC	Δ(cheA–cheZ), fliC(A204–292)	[50]
MMG1001	ΔfliG fliC(A204–292)	This study
MMG1001	ΔfliG fliC(A204–292)	This study
Plasmids		
pET19b	Expression vector	Novagen
pTrc99A	Expression vector	Pharmacia
pGKM3000	pET19b/His-FliG	[19]
pGKM4000	pET19b/His-FliG(ΔPAA)	This study
pGKM3500	pTrc99A/His-FliG	This study
pGKM4500	pTrc99A/His-FliG(ΔPAA)	This study
pGKM5000	pET22b/Tm-FliG(ΔPEV)	This study

DOI:10.1371/journal.pbio.1000616.t001
flow at the synchrotron beamline BL41XU of SPring-8 (Harima, Japan), with the approval of the Japan Synchrotron Radiation Research Institute [JASRI] (Proposal No. 2007B2049). The data were processed with MOSFLM [43] and scaled with SCALA [44]. Phase calculation was performed with SOLVE [45] using the anomalous diffraction data from Os-derivative crystals. The best electron-density map was obtained from MAD phases followed by density modification with DM [44]. The model was constructed with Coot [46] and was refined against the native crystal data to 2.3 Å using the program CNS [47]. About 5% of the data were excluded from the data for the R-free calculation. During the refinement process, iterative manual modifications were performed using “omit map.” Data collection and refinement statistics are summarized in Tables S1 and S2, respectively.

Supporting Information
Figure S1 Effects of the in-frame deletion of residues PAA of S. enterica FliG on the direction of flagellar motor rotation and torque generation. (A) Measurement of CCW and CW rotation of the flagellar motor. Rotation individual flagellar motors of SJW46 transformed with pGMK3000 (pET19b/His-FliG, indicated as WT) or pGMK3000 (pET19b/His-FliG(PAA)), indicated as FliG(PAA)) (right) were carried out by tracking the position of 1.0 μm bead attached to the sticky flagellar filament. Measurements were made at ca. 23°C. CCW, counterclockwise rotation; CW, clockwise rotation. (B) Measurements of the rotational speeds of single flagellar motors labeled with 0.8 μm (right), 1.0 μm (left), and 1.5 μm (middle) beads. Found at: doi:10.1371/journal.pbio.1000616.s001 (0.06 MB TIF)

Table S1 Data collection statistics. Found at: doi:10.1371/journal.pbio.1000616.s004 (0.04 MB PDF)

Table S2 Refinement statistics. Found at: doi:10.1371/journal.pbio.1000616.s005 (0.03 MB PDF)

Acknowledgments
We thank M. Kihara for her kind gift of pGMK3000 and pGMK4000, cloning Tim-FliG/M(FliG) into a pET19b vector, critical reading of the manuscript, and helpful comments. N. Shimizu, M. Kawamoto, and K. Hasegawa at SPring-8 provided technical help with the use of beam lines. This research was supported in part by the National Science Foundation through TeraGrid resources provided by the National Center for supercomputing Applications; we would like to specifically thank Susan John for assistance with the allocation and technical help. These experiments were originally designed by M. Kihara and the late R. M. Macnab, who passed away suddenly on September 7, 2003. This manuscript is duly dedicated to both M. Kihara and the late R. M. Macnab.

Author Contributions
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: TM KI. Performed the experiments: TM KI MK SN YVM. Analyzed the data: TM KI SN YVM. Contributed reagents/materials/analysis tools: TM KI. Wrote the paper: TM KI KN.
10. Suzuki H, Yonekura K, Namba K (2004) Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol 337: 105–113.

11. Kihara M, Miller GU, Macnab RM (2000) Deposition analysis of the flagellar switch protein FliG of Salmonella. J Bacteriol 182: 3022–3029.

12. Brown PN, Terrazas M, Paul K, Blair DF (2007) Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. J Bacteriol 189: 305–312.

13. Lawder RJ, Dayvesteyn MD, Blair DF (2005) FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. J Bacteriol 187: 5640–5647.

14. Brown PN, Hill CP, Blair DF (2002) Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 21: 3225–3234.

15. Gara ZG, Biran R, Wohlschlegel JA, Manson MD (1996) Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor. J Mol Biol 258: 270–283.

16. Van Way SM, Millas SG, Lee AH, Manson MD (2006) Rusty, jammed, and extreme clockwise switch bias mutation in the troque ring of the flagellar motor and the molecular basis for rotational switching of the bacterial flagellar motor. Proc Natl Acad Sci U S A 103: 17616–17620.

17. Lloyd SA, Whithby FG, Blair DF, Hill CP (1999) Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400: 472–475.

18. Nakamura S, Kami-ike N, Yokota JP, Minamino T, Namba K (2010) Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor. Proc Natl Acad Sci U S A 107: 17616–17620.

19. Yuan J, Fahner KA, Turner L, Berg HC (2010) Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor. Proc Natl Acad Sci U S A 107: 12846–12849.

20. Lee KL, Ginsburg MA, Crowe C, Donohoe M, Stock D (2010) Structure of the troque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466: 996–1000.

21. Togashi F, Yamaguchi S, Aizawa SI, Macnab RM (1997) An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motF. J Bacteriol 179: 2994–3003.

22. Magariyama Y, Yamaguchi S, Aizawa S-I (1990) Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium. J Bacteriol 172: 4359–4369.

23. Schaefer BE, Fahner KA, Turner L, Berg HC (1998) Control of direction of flagellar rotation in bacterial chemotaxis. Proc Natl Acad Sci U S A 95: 201–206.

24. Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287: 1652–1655.

25. Bern A, Eisenbach M (2001) Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J Mol Biol 312: 699–709.

26. Nakamura S, Kami-ike N, Yokota JP, Kudo S, Minamino T, Namba K (2009) Evidence of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor. J Mol Biol 386: 332–338.

27. Bai F, Branch RW, Nicolau DV, Jr., Pilizota T, Steel BC, Maini PK, Berry RM (2010) Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327: 685–689.

28. Duke TA, Le Novère N, Bray D (2001) Conformational spread in a ring of proteins: a stochastic approach to allosterity. J Mol Biol 308: 341–353.

29. Huber AH, Nelson JW, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90: 871–882.

30. Marykvas DL, Berg HC (1999) A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli. J Bacteriol 178: 1289–1294.

31. Scharf BE, Fahrner KA, Turner L, Berg HC (1998) Control of direction of flagellar motor. J Mol Biol 308: 472–475.

32. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

33. Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55: 849–861.

34. Leslie AGW (1992) CCP4+ESF-EACMB: Newelet Protein Crystallography 26: 27–33.

35. Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763.

36. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

37. Brumberg AT, Adams PD, Clore GM, DeLano WL, Gross P, et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905–921.

38. Yamaguchi S, Fujita H, Taira T, Kusukake K, Homma M, Iino T (1994) Genetic analysis of three additional fla genes in Salmonella typhimurium. J Gen Microbiol 130: 255–265.

39. Yoshida K, Aizawa S-I, Yanaguchi S (1995) Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. J Bacteriol 177: 1090–1093.

40. Nakamura S, Kami-ike N, Yokota JP, Kudo S, Minamino T, Namba K (2009) Effect of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor. J Mol Biol 386: 332–338.