SIMULATION OF COMPACT POLARIZERS FOR SATELLITE TELECOMMUNICATION SYSTEMS WITH THE ACCOUNT OF THICKNESS OF IRISSES

Background. One of the main problems in modern satellite telecommunication systems is to increase the volume of information transmission with simultaneous preservation of its quality. Key element of such systems is antenna systems with polarization processing, which is carried out using polarizers. Therefore, development of new polarizers and simple techniques for their analysis and optimization are important problems. The most simple, effective, technological and actual for analysis are polarizers based on waveguides with irises.

Objective. The purpose of the paper is to create a mathematical model of the polarizer based on a square waveguide with irises, which allows analyzing the influence of polarizer’s design parameters on its electromagnetic characteristics.

Methods. A mathematical model of the waveguide polarizer with irises is created by decomposition technique using transfer and scattering wave matrices. To take into account the irises’ thickness their equivalent T- and Π-shaped circuits were used.

Results. We have developed mathematical model of the waveguide polarizer with irises, which takes into account their thickness and is based on the complete scattering wave matrix of the waveguide polarizer. The matrix has been obtained using the microwave circuit theory. The main characteristics of the waveguide polarizer were defined using matrix elements. The optimization of characteristics of a polarizer was carried out in the operating Ku-band 10.7–12.8 GHz.

Conclusions. Suggested mathematical model of a waveguide polarizer with irises provides the account of heights of irises, distances between them and their thickness. The results obtained show that this model is simpler and faster for the calculation of electromagnetic characteristics compared to finite elements method, which is often used for analysis of microwave devices for various applications.

Keywords: polarizer; waveguide with irises; transfer matrix; scattering matrix; differential phase shift; voltage standing wave ratio; axial ratio; crosspolar discrimination.

Introduction

Nowadays there is a rapid development of satellite telecommunication systems and the expansion of modern branches of science and technology that actively apply them. Often such systems require an increase of the volumes of information they are able to process and transmit. A key element of most modern satellite telecommunications systems are antenna systems with processing of signal polarization. Such systems use electromagnetic waves with orthogonal circular or linear polarizations. They improve information characteristics of telecommunication systems and increase the level of the received signal under adverse conditions of wave propagation. Polarization–spatial separation of channels provides the necessary characteristics of telecommunication systems. Application of the advantages of antennas with orthogonal polarizations in satellite telecommunication systems allows increasing their efficiency and information capacity [1].

Polarization processing units and devices for separation of signals with orthogonal polarizations are main elements of antenna systems with orthogonal polarizations. Such devices are used to solve problems of theory of detection and recognition of objects and investigate many phenomena of nature [2]. Such problems include prediction of the intensity of rainfalls, measuring the parameters of ice and snow cover, estimation of the parameters of icebergs, assessing the conditions of crops cultivation and many others.

The main types of signal polarization processing devices are based on structures with posts [3–5], ridged structures [6] and structures with irises [7, 8]. Ridged structures and structures with irises are used to create broadband devices for microwave engineering systems. The analysis of such structures is carried out using various analytical methods. Such methods include mode matching technique [9], transverse field-matching technique [10–12], magnetic field integral equation technique [13], and integral equations technique [14, 15], in which it is possible to take into account the singularity fields on the edges, which excludes the relativity of convergence of series in the transverse field matching.
technique [16]. The structures of this type are also analyzed using the wave matrix method [17–20].

All listed above methods have one major drawback, which is the difficulty of calculating the complete structure of electromagnetic fields. Therefore, there is a need to focus on simpler methods based on matrix techniques of microwave circuit analysis. They use scattering and transmission wave matrices. Various microwave filters [21–24] and phase shifters [25–28] are often analyzed using such methods. They take into account the interaction of higher order modes without the application of a numerical optimization process using specialized computer programs.

A large number of scientific articles [29–41], which consider polarizers, contain only the results of computer simulation, the process of which requires a large amount of time. Therefore, there is a need to create a new mathematical method for the analysis of waveguide polarizers based on reactive elements.

Polarizers based on square waveguides with irises provide the best characteristics in wide and ultrawide operating frequency bands. Therefore, such a polarizer design was chosen to develop a mathematical model in our research.

Therefore, it is important to develop a new method for analyzing the characteristics of waveguide polarizers with irises. The new method makes it possible to take into account the thickness of the irises of a polarizer. Developed technique allows to determine all electromagnetic characteristics of the polarizer and does not require much time to perform calculations.

Problem statement

The purpose of the presented article is to improve the electromagnetic characteristics of a square waveguide polarizer with irises by optimizing its design for the operating frequency band. The problem is solved by creating an appropriate mathematical model of the waveguide iris polarizer using wave matrix techniques.

Mathematical model of a waveguide polarizer with irises

To create a mathematical model we consider a simple design of a polarizer based on a square waveguide with two irises. It is presented in Fig. 1. The transverse dimensions of the square waveguide of the polarizer are $a \times a$. The design contains two identical irises with equal heights h, thickness w and distance between them l. We used a square waveguide because it provides better performance in a wide operating frequency band than a circular waveguide.

![Fig. 1. Internal structure of a square waveguide polarizer with two irises](image)

Using the theory of microwave circuits [34], we present a waveguide polarizer with irises in a general equivalent scheme (Fig. 2).

![Fig. 2. Equivalent circuit of a waveguide with two reactive elements](image)

Let us divide the equivalent circuit into two-port circuits in the form of 1 section of a regular transmission line and 2 two-port circuits in the form of connected in parallel reactive elements. Each two-port circuit is described by the wave transfer matrix as follows:

$$
[T_1] = [T_3] = \begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix}, \quad [T_2] = \begin{bmatrix}
e^{j\theta} & 0 \\
0 & e^{-j\theta}
\end{bmatrix},
$$

where θ is the electric length of the equivalent regular transmission line.

The electric length of a regular transmission line is determined by the formula

$$
\theta = \frac{2\pi l}{\lambda_g},
$$

where λ_g is wavelength in the waveguide.

The wavelength in the waveguide is determined by a known formula [34]:

\[\lambda_g = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_c}\right)^2}}, \]

where \(\lambda_0 \) is wavelength in free space; \(\lambda_c \) is cut-off wavelength in a square waveguide.

The wavelength in free space is determined by the formula

\[\lambda_0 = \frac{c}{f}, \]

where \(c \) is speed of light.

The cut-off wavelength in a square waveguide is determined by the formula

\[\lambda_c = 2a. \]

As a result, the total wave transfer matrix of the polarizer is determined by the expression

\[
\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} \\
T_{21} & T_{22} & T_{23} & T_{24} \\
T_{31} & T_{32} & T_{33} & T_{34} \\
T_{41} & T_{42} & T_{43} & T_{44}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
\lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}.
\]

Let us express the elements of the general scattering matrix through the elements of the transmission matrix:

\[
\begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix} = \frac{1}{|T|} \begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix},
\]

where \(|T| \) is determinant of the wave matrix of transmission.

From the scattering matrix we determine its elements through the \(T \)-matrix

\[
S_{11} = \frac{T_{11}}{T_{11}} = \frac{T_{11} T_{21} e^{j\theta_0} + T_{12} T_{22} e^{-j\theta_0}}{T_{11}^2 e^{j\theta_0} + T_{12} T_{22} e^{-j\theta_0}}; \\
S_{21} = \frac{1}{T_{11}} = \frac{1}{T_{11}^2 e^{j\theta_0} + T_{12} T_{22} e^{-j\theta_0}}.
\]

For the main wave of horizontal polarization, a simplified equivalent of the polarizer circuit contains inductors that are turned on in parallel (Fig. 3, \(a \)). For the main wave of vertical polarization of the equivalent circuit contains capacitors that are turned on in parallel (Fig. 3, \(b \)).

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{fig3}
\caption{Equivalent circuit of a waveguide with two reactive elements}
\end{figure}

To take into account the thickness of the diaphragms, we use more complicated \(T \) - and \(\Pi \) - shaped equivalent circuits for each capacitive (Fig. 4, \(a \)) and inductive irises (Fig. 4, \(b \)).

For an inductive iris, the reactive resistances of an equivalent circuit (Fig. 4, \(a \)) are determined by the expressions [42]:

\[
X_a = \frac{2a}{\lambda_g} \left(\frac{\pi D_1}{a} \right)^2; \\
X_b = \frac{a}{8\lambda_g} \left(\frac{\pi D_2}{a} \right)^4.
\]

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{fig4}
\caption{Equivalent circuit for inductive and capacitive irises}
\end{figure}
where

\[D_1 = \frac{2h}{\sqrt{2}} \left[1 + \frac{w}{\pi \cdot 2h} \ln \left(\frac{4\pi \cdot 2h}{e \cdot w} \right) \right]; \]

\[D_2 = \frac{4}{3\pi} w \cdot (2h)^2 \left(\frac{\pi \cdot D_2}{a} \right)^4; \]

where \(a \) is the size of the large wall of the waveguide; \(w \) is iris thickness; \(h \) is iris height.

To calculate the parameters of the wave matrix transmission of such a scheme using formulas

\[T_{11} = \frac{Z_1(Z_1 + 1) + (Z_1 + 1)(Z_1 + Z_2 + 1)}{2Z_2}; \]

\[T_{12} = \frac{(1 - Z_1)(Z_1 + 1)(Z_1 + Z_2 + 1) - Z_2(Z_1 + 1)}{2Z_2}; \]

\[T_{21} = \frac{Z_2(Z_1 - 1) + (Z_1 + 1)(Z_1 + Z_3 - 1)}{2Z_2}; \]

\[T_{22} = \frac{1 + T_{11}T_{21}}{T_{11}}. \]

Thus, elements of the general scattering matrix of our mathematical model were formed. Through these elements we determine the main electromagnetic characteristics of a waveguide polarizer with irises.

The differential phase shift at the output of the polarizer is determined by the expression

\[\Delta \phi = \phi_L - \phi_C = \arg(S_{21\Sigma_L}) - \arg(S_{21\Sigma_C}); \]

where \(S_{21\Sigma_L} \) and \(S_{21\Sigma_C} \) are elements of the general scattering matrix in the case of inductive and capacitive irises.

VSWR is calculated by the following formula

\[\text{VSWR} = \frac{1 + S_{11}}{1 - S_{11}}. \]

The axial ratio can be determined by the following expression [43] in dB as follows using logarithmic scale

\[r = 10 \lg \left(\frac{1 - S_{21\Sigma_L} + S_{21\Sigma_C}}{1 + S_{21\Sigma_L} + S_{21\Sigma_C}} \right); \]

where \(A = |S_{21\Sigma_L}|, B = |S_{21\Sigma_C}|. \)

XPD is calculated by the following formula in dB:

\[\text{XPD} = 20 \lg \left(\frac{10^{0.05r} + 1}{10^{0.05r} - 1} \right). \]

Analysis of the developed mathematical model

Let us consider the results of the calculation of the mathematical model of the waveguide polarizer in the Ku-band 10.7–12.8 GHz.

To ensure the required differential phase shift we have changed the height of the irises \(h \). And to achieve a given matching we have adjusted the distance between the irises. This was performed for the optimal thickness of the irises. In the operating frequency band the optimal matching has been achieved with a small deviation of the differential phase shift from 90°.
Figs. 5–8 show the main electromagnetic characteristics of the polarizer. From Fig. 5 we see that the maximum deviation of the differential phase shift from 90° is 7°.

From Fig. 5 we see that the maximum value of the axial ratio is 1.5 dB, and the crosspolar discrimination is greater than 21.5 dB.

Thus, the proposed mathematical model in the Ku-band 10.7–12.8 GHz for a polarizer based on a square waveguide with 2 irises provides the following characteristics: VSWR for horizontal and vertical polarization is less than 2.15, differential phase shift is within 90° ± 7.0°, axial ratio is less than 1.5 dB, crosspolar discrimination is higher than 21.5 dB.

Analysis of optimization results

The developed mathematical model of a waveguide polarizer does not take into account some higher order modes. This can result in inaccuracies of calculation of the differential phase shift and polarization characteristics. Consequently, numerical techniques are applied for more accurate estimation of the polarizer’s characteristics. Further optimization and modeling of a polarizer based on a square waveguide with two irises were performed by the finite integration technique in the operating Ku-band 10.7–12.8 GHz.

Fig. 9 shows the dependence of the differential phase shift on the frequency. From the figure we see that the maximum deviation of the differential phase shift from 90° is 4.2° at 11.6 GHz.
Fig. 10 shows the frequency dependence of VSWR for both polarizations. From the figure we see that the maximum value of VSWR for both polarizations is 3.26 at 12.8 GHz.

Fig. 10. VSWR frequency dependence for horizontal and vertical polarization: ── – horizontal polarization; ----- – vertical polarization

Figs. 11 and 12 present dependences of the axial ratio and XPD on the frequency. From the figures we see that the maximum value of the axial ratio is 1.43 dB, and the crosspolar discrimination is higher than 21.7 dB.

Fig. 11. Dependence of the axial ratio on frequency

Fig. 12. Dependence of XPD on frequency

Therefore, within the operating frequency range 10.7–12.8 GHz the optimized polarizer based on the square waveguide with 2 irises provides the following characteristics: VSWR for horizontal and vertical polarization is less than 3.26, differential phase shift is within $90^\circ \pm 4.2^\circ$, axial ratio is less than 1.43 dB, crosspolar discrimination is higher than 21.7 dB.

The optimized parameters of the waveguide polarizer with two irises in the Ku-band 10.7–12.8 GHz are summarized in Table 1.

Table 1. Sizes of the optimized waveguide polarizer with irises for the Ku-band for the analytical method and the finite integration technique

Size name	Analytical method	Finite integration technique
1 Size of the walls of a square waveguide	a = 21.96 mm	a = 21.96 mm
2 Iris height	h = 2.42 mm	h = 3.57 mm
3 Distance between the irises	L = 8.2 mm	L = 4.34 mm
4 Thickness of all irises	w = 2.0 mm	w = 2.96 mm

Table 2. Optimized characteristics of the analytical method and the finite integration technique for a waveguide polarizer with irises for the Ku-band

Characteristic	Analytical method	Finite integration technique
1 Differential phase shift	$90^\circ \pm 7.0^\circ$	$90^\circ \pm 4.2^\circ$
2 VSWR	2.15	3.26
3 Axial ratio	1.46 dB	1.43 dB
4 XPD	21.5 dB	21.7 dB
Optimized by the created mathematical model structure of the polarizer has improved matching characteristics due to a slight increase in the deviation of the differential phase shift from the required 90°.

Conclusions

In this article we have developed a mathematical model of the polarizer based on a square waveguide with two irises. The mathematical model takes into account the influence of design parameters on the electromagnetic characteristics of the polarizer. It allows achieving better matching performance in the operating frequency band by changing the inner sizes of the irises. The novelty of the created model is its account of the influence of the iris thickness on the main characteristics of a waveguide polarizer. Developed mathematical model can be widely applied to create new waveguide polarizers and other devices based on different numbers of irises with different heights.

The proposed mathematical model of the polarizer allows determining the general wave scattering matrix. The main electromagnetic characteristics were determined using the elements of this matrix. Compared with the finite integration technique, the created mathematical model provides an opportunity to quickly analyze and optimize the electromagnetic characteristics by changing the inner sizes of the device. This approach makes it possible to achieve better matching characteristics simultaneously with an acceptable differential phase shift.

In further research it is advisable to focus on the development of more accurate mathematical model that will take into account more irises in the polarizer design and more higher order modes.

References

[1] D.M. Pozar, *Microwave Engineering*, 4th ed. Hoboken, New Jersey: John Wiley & Sons, 2012, 732 p.
[2] S.S. Gao et al., *Circularly Polarized Antennas*. Chichester: John Wiley & Sons, 2014, 322p.
[3] K. Sellal et al., “A new substrate integrated waveguide phase shifter,” in *European Microwave Conf.*, Manchester, UK, 2006, pp. 72–75. doi: 10.1109/EUMC.2006.281184
[4] L.P. Mospan et al., “Spectral properties of a rectangular wave guiding unit involving a pair of rectangular posts of equal heights,” *Telecommun. Radio Eng.*, vol. 73, no. 1, pp. 1–17, 2014. doi: 10.1615/TelecomRadEng.v73.i1.10
[5] L.P. Mospan et al., “Rectangular waveguide section with a pair of antipodal posts: Spectral characteristics,” in *2015 Int. Conf. Antenna Theory Techniques (ICATT)*, Kyiv, Ukraine, 2015. doi: 10.1109/ICATT.2015.7136867
[6] J.D. Bull et al., “Asymmetrically strained ridge waveguide for passive polarization conversion,” *IEEE Photonics Technol. Lett.*, vol. 20, no. 24, pp. 2186–2188, 2008. doi: 10.1109/LPT.2008.2007221
[7] S.I. Piltyay et al., “New tunable iris-post square waveguide polarizers for satellite information systems,” in *IEEE 2nd Int. Conf. Advanced Trends Information Theory*, Kyiv, Ukraine, 2020, pp. 342–348. doi: 10.1109/ATTIT50783.2020.9349357
[8] S.I. Piltyay et al., “Compact Ku-band iris polarizers for satellite telecommunication systems,” *Telecommun. Radio Eng.*, vol. 79, no. 19, pp. 1673–1690, 2020. doi: 10.1615/TelecomRadEng.v79.i19.10
[9] G.V. Eleftheriades et al., “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” *IEEE Trans. Microw. Theory Tech.*, vol. 42, no. 10, pp. 1896–1903, 1994. doi: 10.1109/22.320771
[10] S.Y. Yu and J. Bornemann, “Classical eigenvalue mode-spectrum analysis of multiple-ridged rectangular and circular waveguides for the design of narrowband waveguide components,” *Int. J. Numer. Model.: Electron. Netw., Device. Field.*, vol. 22, no. 6, pp. 395–410, 2009. doi: 10.1002/JNM.716
[11] S.I. Piltyay and F.F. Dubrovka, “Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory,” *RADAP*, vol. 54, pp. 13–23, 2013.
[12] S.I. Piltyay, “Enhanced C-band coaxial orthomode transducer”, *RADAP*, vol. 57, pp. 35–42, 2014.
[13] W. Sun and C.A. Balanis, “MFIE analysis and design of ridged waveguides,” *IEEE Trans. Microw. Theory Tech.*, vol. 41, no. 11, pp. 1965–1971, 1993. doi: 10.1109/22.273423
[14] A.E. Serebryannikov et al., “Fast coupled-integral-equations-based analysis of azimuthally corrugated cavities,” *IEEE Microw. Wireless Compon. Lett.*, vol. 14, no. 5, pp. 240–242, 2004. doi: 10.1109/LMWC.2004.827833
[15] S.I. Piltyay, “Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides,” in *2012 Int. Conf. on Mathematical Methods in Electromagnetic Theory*, Kharkiv, Ukraine, 2012, pp. 492–495. doi: 10.1109/MMET.2012.6331195
[16] S. Amari et al., “Application of a coupled-integral-equations technique to ridged waveguides,” *IEEE Trans. Microw. Theory Tech.*, vol. 44, no. 12, pp. 2256–2264, 1996. doi: 10.1109/22.556454
A.V. Bulashenko and S.I. Piltyay, “Equivalent microwave circuit technique for waveguide iris polarizers development,” *RADAP*, vol. 83, pp. 17–28, 2020.

A.V. Bulashenko, S. I. Piltyay, and I. Agnihotri, “Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers,” in *Proc. IEEE 2nd Int. Conf. Advanced Trends Information Theory*, Kyiv, Ukraine, 2020, pp. 330–336.

D. Yu. Kulik et al., “Compact-size polarization rotators on the basis of irises with rectangular slots,” *Telecommun. Radio Eng.*, vol. 75, no. 1, pp. 1–9, 2016. doi: 10.1615/TelecomRadEng.v75.i1.10

Y.-P. Lyu et al., “Proposal and synthesis design of differential phase shifters with filtering function,” *IEEE Trans. Microw. Theory Tech.*, vol. 65, no. 8, pp. 2906–2917, 2017. doi: 10.1109/TMTT.2017.2673819

A.A. Kirilenko et al., “Design and optimization of broadband ridged coaxial waveguide polarizers,” in *Int. Kharkov Symp. Physics Engineering Microwaves Millimeter Submillimeter Waves (MSMW)*, Kharkiv, Ukraine, pp. 445–447, 2013. doi: 10.1109/MSMW.2013.6622082

Yu. Tikhov, “Comparison of two kinds of Ka-band circular polarisers for use in a gyro-travelling wave amplifier,” *IET Microw. Antenn. Propag.*, vol. 10, no. 2, pp. 147–151, 2016. doi: 10.1049/IET-MAP.2015.0292

F.F. Dubrovka and S.I. Piltyay, “A novel wideband coaxial polarizer”, in *2013 IX Int. Conf. Antenna Theory Techniques (ICATT)*, Kyiv, Ukraine, pp. 473–474, 2013. doi: 10.1109/ICATT.2013.6650816

A.W. Pollak and M.E. Jones, “A compact quad-ridge orthogonal mode transducer with wide operational bandwidth,” *IEEE Antennas Wireless Propag. Lett.*, vol. 17, no. 3, pp. 422–425, 2018. doi: 10.1109/LAWP.2018.2793465

A.V. Bulashenko et al., “Optimization of a polarizer based on a square waveguide with irises,” *Science-Based Technol.*, vol. 47, no. 3, pp. 287–297, 2020. doi: 10.18372/2310-5461.47.14878

I. Agnihotri and S.K. Sharma, “Design of a compact 3-D metal printed Ka-band waveguide polarizer,” *IEEE Antennas Wireless Propag. Lett.*, vol. 18, pp. 2726–2730, 2019. doi: 10.1109/74.2950312

G. Mishra et al., “A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for SWS-band CubeSat applications,” *IEEE Trans. Antennas Propag.*, vol. 67, no. 3, pp. 1904–1909, 2019. doi: 10.1109/TAP.2018.2886704

S.I. Piltyay et al., “Compact polarizers for satellite information systems,” *IEEE Int. Conf. Problems Infocommunications*, Science Technology (PIC & T), Kharkiv, Ukraine, 2020, pp. 317–322.

S.I. Piltyay et al., “Waveguide iris polarizers for Ku-band satellite antenna feeds,” *J. Nano- Electron. Phys.*, vol. 12, no. 5, pp. 05024–1, 2020. doi: 10.21272/jnep.12(5).05024

A.A. Kirilenko et al., “A tunable compact polarizer in a circular waveguide”, *IEEE Trans. Microw. Theory Tech.*, vol. 67, no. 2, pp. 592–596, 2019. doi: 10.1109/TMTT.2018.2881089

B. Deutschmann and A.F. Jacob, “Broadband septum polarizer with triangular common port,” *IEEE Trans. Microw. Theory Tech.*, vol. 68, no. 2, pp. 693–700, 2020. doi: 10.1109/TMTT.2019.2951138

F.F. Dubrovka et al., “Circularly polarised X-band H11- and H21-modes antenna feed for monopulse autotracking ground station: Invited paper,” in *2020 IEEE Ukrainian Microwave Week (UkrMW)*, Kharkiv, Ukraine, pp. 196–202, 2020. doi: 10.1109/UkrMW49653.2020.9252600

R.E. Collin, *Foundations for microwave engineering*, 2nd ed. New Jersey: John Wiley & Sons 2001, 945p.

N. Marcuvitz, *Waveguide handbook*, 2nd ed. London: Peter Peregrinus, 1986, 448 p. doi: 10.1049/PBEW021E

T.A. Milligan, *Modern Antenna Design*, 2nd ed. New Jersey: John Wiley & Sons, 2005, 632 p.
МОДЕЛЮВАННЯ КОМПАКТНИХ ПОЛЯРИЗАТОРІВ ДЛЯ СУПУТНИКОВИХ ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМ ІЗ УРАХУВАННЯМ ТОВЩІНИ ДІАФРАГМ

Проблематика. Одним із основних завдань у сучасних супутниковых телекомунікаційних системах є збільшення обсягів передачі інформації з одночасним збереженням її якості. Ключовим елементом таких систем є антенні системи із поляризаційними обробленнями, які здійснюють поляризатори. Тож важливим завданням є розробка нових поляризаторів і простих методів їх аналізу та оптимізації. Найбільш простими, ефективними, технологічними та актуальними для аналізу є поляризатори на основі хвилеводів із діафрагмами.

Мета дослідження. Метою роботи є створення математичної моделі поляризатора на основі квадратного хвилеводу з діафрагмами, яка дає можливість аналізувати вплив параметрів конструкції поляризатора на його електромагнітні характеристики.

Методика реалізації. Математична модель хвилевідного поляризатора з діафрагмами створюється методом декомпозиції із використанням хвильових матриць передачі та розсіювання. Для врахування товщини діафрагм використано їх еквівалентні Т- і П-подібні схеми.

Результати дослідження. Розроблено математичну модель хвилевідного поляризатора з діафрагмами, яка враховує їх товщину і ґрунтується на загальній хвильовій матриці розсіювання хвилевідного поляризатора. Ця матриця була отримана на основі теорії мікрохвилових кіл. Через елементи матриці були визначені основні характеристики хвилевідного поляризатора. Проведено оптимізацію характеристик поляризатора для роботи в Ku-діапазоні частот 10,7–12,8 ГГц.

Висновки. Запропонована математична модель хвилевідного поляризатора з діафрагмами забезпечує врахування висот діафрагм, відстаней між ними та їх товщини. Отримані результати показують, що ця модель є простішою та швидкою для розрахунку електромагнітних характеристик, порівняючи з методом скінчених елементів, який часто використовують для аналізу мікрохвилових пристроїв різного призначення.

Ключові слова: поляризатор; хвилевод із діафрагмами; матриця передачі; матриця розсіювання; диференційний фазовий зсув; коефіцієнт стійкої хвилі за напругою; коефіцієнт еліптичності; кроссполяризаційна розв'язка.