Reply to comments on:
Retropupillary iris-claw intraocular lens implantation in aphakic patients

Dear Editor,
We thank Mansoori T[1] for the interest and comments on our article “Retropupillary iris-claw intraocular lens implantation in aphakic patients.”[2] We agree with the opinion that Goldmann applanation tonometry would have been the ideal method of measuring intraocular pressure. Central corneal thickness was measured using non-contact tonometry, and FREEDOM iris-claw intraocular lens (ICIOL) was implanted in all cases. We apologize to the readers for not mentioning these details.

Analysis of ICIOL combined with penetrating keratoplasty as a separate sub-group would have been better though the sample size was small. The endothelial cell count measurement is essential, but we were restricted to a centre where we did not have access to specular microscopy. None of the eyes had preoperative cystoid macular edema (CME). As we had explained in our study, the release of inflammatory mediators after surgical manipulation could have been the reason for the development of CME postoperatively in one eye.

[1] Mansoori T, Agraharam SG, Sannapuni S, Balakrishna N, et al. The posterior iris claw lens outcome study: 6 month follow up. Indian J Ophthalmol 2016;64:878-8.
[2] Sumitha CV, Pai V, Thulasidas M. Retropupillary iris-claw intraocular lens implantation in aphakic patients. Indian J Ophthalmol 2020;68:597-602.
The 13-year-old study participant in our study had undergone ICIOL implantation for postsurgical aphakia, and the parent consent was obtained. We apologize for not mentioning the parent consent statement.

As we had mentioned in our study, all our patients completed the 3 months follow-up without any fail. They did not miss any of the scheduled follow-up visits. We did not consider peripheral iridotomy (PI) as mandatory in our study. In the study by Jare et al., the ICIOL used was a biconvex design, and a PI is a must in those cases for avoiding pupillary block. However, we had used a convex-concave ICIOL with a vaulted design, and there is evidence that a pupillary block cannot happen with a convex-concave vaulted design. In our study, we did not observe any pupillary block complications. We appreciate the remarks put forward by Mansoori T.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Sumitha C V, Vijay Pai, Mithun Thulasidas
Department of Ophthalmology, K.S Hegde Charitable Hospital, Deralakatte, Mangalore, Karnataka, Fellow, Centre for Sight Eye Institute, Dwarka, New Delhi, India

Correspondence to: Dr. Sumitha C V, Department of Ophthalmology, K.S. Hegde Charitable Hospital, Deralakatte, Mangalore - 575 018, Karnataka, India. E-mail: sumithacv@gmail.com

References
1. Mansoori T. Comments on: Retropupillary iris-claw intraocular lens implantation in aphakic patients. Indian J Ophthalmol 2021;69:175.
2. Sumitha CV, Pai V, Thulasidas M. Retropupillary iris-claw intraocular lens implantation in aphakic patients. Indian J Ophthalmol 2020;68:597-602.
3. Jare NM, Kesari AG, Gadkari SS, Deshpande MD. The posterior iris-claw lens outcome study: 6 month follow-up. Indian J Ophthalmol 2016;64:878-83.
4. Brandner M, Thaler-Saliba S, Plainer S, Vidic B, El-Shabrawi Y, Arjomand N. Retropupillary Fixation of iris-claw intraocular lens for aphakic eyes in children. PLoS One 2015;10:e0126614.
5. Gonnermann J, Torun N, Klammann MK, Maier AK, von Sonneleithner C, Rieck PW, et al. Posterior iris-claw aphakic intraocular lens implantation in children. Am J Ophthalmol 2013;156:382-6.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.