On the Stochastic Limit of Quantum Field Theory

L. Accardi, J. Gough and Y. G. Lu

Abstract

The weak coupling limit for a quantum system, with discrete energy spectrum, coupled to a bose reservoir with the most general linear interaction is considered: under this limit we have a quantum noise processes substituting for the field. We obtain a limiting evolution unitary on the system and noise space which, when reduced to the system’s degrees of freedom, provide the master and Langevin equations that are postulated on heuristic grounds by physicists. In addition we give a concrete application of our results by deriving the evolution of an atomic system interacting with the electromagnetic field without recourse to either rotating wave or dipole approximations.

1 QUANTUM THEORY OF DAMPING

Irreversible quantum evolutions now play a fundamental role in many areas of physics especially quantum optics. A large body of physical literature has been built up around the problem of describing in a stochastic model the effect of a source of quantum noise on a given quantum mechanical system, emphasising the quantum stochastic properties of the source of the quantum noise. However, quite generally, the classical approach to the stochasticity which is taken ignores the essential quantum nature of the problem. In this paper we wish to develop the weak coupling approach \cite{1} to quantum damping. In a sense the noise fields used to model physical sources are still quantum in nature, as will be explained later, and because they are arrive at from a well defined physical scaling limit do not require us to put in the desired features of the noise by hand.

The derivations of the quantum master equations and quantum Langevin equations for open quantum systems which are present in the current physics literature are well motivated from the physical point of view, cf. \cite{2}, however mathematically imprecise. The heuristic procedure to render the reservoir, to which the system is coupled, into a source of quantum noise via some markovian approximation is generally ill-defined and reliant on second order perturbation theory.

On the other hand, the weak coupling limit for an open quantum system gives a device for obtaining irreversible evolutions. Mathematically rigorous derivations of the Langevin and master equations along these lines have been given for certain specific models by Pulé \cite{3} and Davies \cite{4}. Other attempts have been made to approximate a quantum reservoir by fitting Quantum Brownian Motions (QBMs), cf. \cite{5, 6, 7}.

In a long series of papers \cite{1, 8, 9, 10, 11}, Accardi, Frigerio and Lu have developed their approach whereby a quantum reservoir can be reduced to a quantum stochastic noise source via a weak coupling limit procedure. The theory is mathematically rigorous while at the same time applicable to the wide range of phenomena considered by physicists and gives a precise description of the reservoir as a quantum noise source. The main mathematical device for establishing convergence of the reservoir fields is a quantum central limit theorem; that is a central limit theorem for non-commuting observables: the theory of non-commutative probability, or Quantum Probability as it is more correctly known, affords the necessary mathematical framework to interpret the limit process. Indeed the Fock space descriptions of a bose reservoir and a quantum stochastic processes are so similar in nature, it is not surprising, with hindsight, that the former may be reduced to the latter following some limiting procedure.

Our objective in this paper is to review the results of the programme of Accardi, Frigerio and Lu so far and to extend their theory so as to deal with the most general interaction between a system and a noise source encountered in physical theories. This we do and show that the energy shifts, linewidths, master equations and Langevin equations, arising for the system as a result of its coupling to the noise field, concur with those obtain by earlier researchers \cite{2}. However we have, in addition, also a quantum stochastic description of the reservoir noise fields themselves. As a concrete application of our theory we consider the particular case where a quantum electrodynamical field acts as reservoir, however we stress that this is only one of the many applications of our theory.
We shall discuss only minimal coupling interactions, that is interactions linear in the creation/annihilation operators for the reservoir. In a later paper we discuss how to treat the situations where the interaction is of polynomial type.

1.1 Open Quantum Systems

We consider a system (S) coupled to a reservoir (R). The system (S) is to be a quantum mechanical: its state space shall be a separable Hilbert space \mathcal{H}_S. The reservoir, on the other hand, is comprised of one or indeed several quantum fields, and so has infinitely many degrees of freedom. We shall consider a bosonic reservoir; the state space for (R) is the bosonic Fock space \mathcal{H}_R over a separable Hilbert space \mathcal{H}_R^1; in standard notation we write $\mathcal{H}_R = \Gamma_B(\mathcal{H}_R^1)$. \mathcal{H}_R^1 is again to be a separable Hilbert space and may quite generally describe not only one but several individual species of particle in the reservoir. For instance, consider several species of particle P_1, P_2, P_3, \ldots in the reservoir and suppose that $\mathcal{H}_R^1 = \otimes_j \mathcal{H}_{P_j}^1$, where $\mathcal{H}_{P_j}^1$ is the state space for particle type P_j, then

$$\mathcal{H}_R = \Gamma_B(\mathcal{H}_R^1) = \Gamma_B(\otimes_j \mathcal{H}_{P_j}^1) = \otimes_j \Gamma_B(\mathcal{H}_{P_j}^1).$$

The space \mathcal{H}_R^1 is referred to as the (combined) one particle state space for the reservoir. The overall state space for the combined system and reservoir is $\mathcal{H}_S \otimes \mathcal{H}_R$. The vacuum vector of the reservoir space will be denoted throughout as Ψ_R.

In the following we consider only bosonic species in the reservoir, however it is also possible to work with fermions [9]. The dynamics of the combined system and reservoir is governed by the formal Hamiltonian $H^{(\lambda)}$ which we may write as

$$H^{(\lambda)} = H^{(0)} + \lambda H_I;$$

that is, as the sum of a free Hamiltonian $H^{(0)}$ and an interaction H_I, with λ a real coupling parameter. $H^{(0)}$ is to be expressible as

$$H^{(0)} = H_S \otimes 1_R + 1_S \otimes H_R,$$

where H_S and H_R are self-adjoint operators on the spaces \mathcal{H}_S and \mathcal{H}_R respectively. For each λ, we consider the unitary operator $V^{(\lambda)}_t$ on $\mathcal{H}_S \otimes \mathcal{H}_R$ defined by

$$V^{(\lambda)}_t = \exp \left(\frac{\lambda}{i\hbar} H^{(\lambda)} \right).$$

This gives the time evolution under $H^{(\lambda)}$. A standard device in perturbation theory is to transform to the interaction picture; this involves introducing the operator

$$U^{(\lambda)}_t = V^{(0)}_t V^{(\lambda)}_t.$$

$U^{(\lambda)}_t$ is a unitary operator on $\mathcal{H}_S \otimes \mathcal{H}_R$ called the wave operator at time t. We note that $\{U^{(\lambda)}_t : t \in \mathbb{R}\}$ is a left $v^{(0)}_t$-cocycle, that is it satisfies the relation

$$U^{(\lambda)}_{t+s} = v^{(0)}_t (U^{(\lambda)}_s) U^{(\lambda)}_t.$$

We define the time-evolutes for $X \in \mathcal{B}(\mathcal{H}_S) \otimes \mathcal{B}(\mathcal{H}_R)$ as

$$v^{(\lambda)}_t(X) = V^{(\lambda)}_t \dagger XV^{(\lambda)}_t,$$

$$u^{(\lambda)}_t(X) = U^{(\lambda)}_t \dagger XV^{(\lambda)}_t.$$

The Schrödinger equation for the time evolutions are

$$\frac{\partial}{\partial t} V^{(\lambda)}_t = \frac{1}{i\hbar} H^{(\lambda)} V^{(\lambda)}_t$$

and

$$\frac{\partial}{\partial t} U^{(\lambda)}_t = \frac{\lambda}{i\hbar} v^{(0)}_t (H_I) U^{(\lambda)}_t.$$

With these we deduce the associated Heisenberg equations

$$\frac{\partial}{\partial t} v^{(\lambda)}_t(X) = \frac{1}{i\hbar} [v^{(\lambda)}_t(X), v^{(\lambda)}_t(H^{(\lambda)})] = \frac{1}{i\hbar} v^{(\lambda)}_t([X, H^{(\lambda)}])$$

and

$$\frac{\partial}{\partial t} u^{(\lambda)}_t(X) = \frac{\lambda}{i\hbar} u^{(\lambda)}_t([X, v^{(0)}_t(H_I)]) = \frac{\lambda}{i\hbar} u^{(\lambda)}_t([X, v^{(0)}_t(H_I)]).$$
From (8) we obtain the integral equation
\[U_t^{(\lambda)} = 1 + \frac{\lambda}{i\hbar} \int_0^t ds \, v_s^{(0)}(H_I) U_s^{(\lambda)}, \] (10)
and consequently the iterated Born series
\[U_t^{(\lambda)} = 1 + \sum_{n=1}^{\infty} \frac{\lambda^n}{i^n \hbar^n} \int_0^t dt_1 \cdots \int_0^{t_n} dt_n \, v_{t_n}^{(0)}(H_I) \cdots v_{t_1}^{(0)}(H_I). \] (11)
This may be resummed as
\[U_t^{(\lambda)} = T \exp \left(\frac{\lambda}{i\hbar} \int_0^t ds \, v_s^{(0)}(H_I) \right). \] (12)
where \(T \) denotes time ordering.
Before we continue, we must say more about how to interpret the formal sum of \(H^{(0)} \) and \(H_t \). Firstly we assume that \(H^{(0)} \) and \(H_t \) are self-adjoint operators on \(\mathcal{H}_S \otimes \mathcal{H}_R \). We shall assume that, for sufficiently small \(\lambda \) and bounded \(t \), the iterated series (11) is uniformly convergent and is bounded on \(\mathcal{H}_S \otimes \mathcal{E}(\mathcal{H}_R^1) \), the algebraic tensor product of \(\mathcal{H}_S \) and the set of exponential vectors. From the cocycle relation (1.1.6) we have that if we define the unitary operator \(V_t^{(\lambda)} \) by
\[V_t^{(\lambda)} = V_{t}^{(0)} U_t^{(\lambda)} \] (13)
then \(\{ V_t^{(\lambda)} : t \in \mathbb{R} \} \) gives a strongly continuous unitary group whose generator \(\frac{1}{i\hbar} H^{(\lambda)} \) is formally given as \(H^{(\lambda)} = H^{(0)} + \lambda H_t \). The time evolution in the Heisenberg picture is then given by
\[v_t^{(\lambda)}(X) = u_t^{(\lambda)}(v_t^{(0)}(X)). \] (14)

1.2 The Free Evolution

For \(\mathcal{H}_R^1 = L^2(\mathbb{R}^3) \) (momentum space), we have creation/ annihilation operators \(a^\dagger(k) \) satisfying
\[[a(k), a(k')^\dagger] = \delta(k - k'), [a(k)^\dagger, a(l)^\dagger] = 0, [a(k), a(k')] = 0. \] (15)
The creation/annihilation fields on \(\mathcal{H}_R \) are defined, for \(g \in \mathcal{H}_R^1 \), by
\[A^\dagger(g) = \int d^3k \, g(k) a^\dagger(k), \quad A(g) = \int d^3k \, \overline{g}(k) a(k). \] (16)
From (16) we obtain the canonical commutation relations (CCR):
\[[A(h), A^\dagger(f)] = \langle h, f \rangle, \quad [A(h), A(f)] = 0. \] We take \(H_R \) to be the second quantization of an operator \(H_R^1 \) on \(\mathcal{H}_R^1 \) given by
\[(H_R^1 f)(k) = \hbar \omega(k) f(k). \] (17)
\(H_R \) may then be expressed as
\[H_R = \int dk \, \hbar \omega(k) a^\dagger(k) a(k). \] (18)
Note that \(v_t^{(0)}(1_s \otimes A^\dagger(g)) = 1_s \otimes A^\dagger(S_t g) \); where we have introduced the unitary operator \(S_t \) on \(\mathcal{H}_R^1 \) given by
\[S_t = \exp \left(-\frac{t}{i\hbar} H_R^1 \right); \] (19)
that is \((S_t f)(k) = e^{i\omega(k)t} f(k) \).
1.3 The standard approach to the quantum Langevin equation

Consider an interaction of the type

$$H_I = i\hbar\{D \otimes A^\dagger(g) - D^\dagger \otimes A(g)\},$$

where $D \in \mathcal{B}(\mathcal{H}_S)$ has a harmonic free-evolution; that is $\frac{1}{i\hbar}[D, H_S] = -i\omega D$. Then we have

$$u^{(0)}_t(H_I) = i\hbar\{D \otimes A^\dagger(S^\omega_t g) - D^\dagger \otimes A(S^\omega_t g)\},$$

where

$$S^\omega_t = e^{-i\omega t} S_t,$$

that is, \((S^\omega_t f)(k) = e^{i(\omega |k| - \omega)t} f(k)\). Now write $X_t = u^{(\lambda)}_t (X \otimes 1_R)$, for $X \in \mathcal{B}(\mathcal{H}_S)$, then from (9) we have

$$\frac{\partial X_t}{\partial t} = \lambda\{A^\dagger_t(S^\omega_t g)[X, D]_t - [X, D^\dagger_t]_t A_t(S^\omega_t g)\},$$

where $A^\dagger_t(f) = u^{(\lambda)}_t(1_S \otimes A^\dagger(f))$.

Now one can show that $A_t(f) = \lambda\int_0^\infty ds D_s(f, S^\omega_s g) + 1_S \otimes A(f)$, so substituting back into (23) gives

$$\frac{\partial X_t}{\partial t} = \lambda^2 \int_0^\infty \{D_s \phi^\omega(s - t)[X, D]_t - [X, D^\dagger]_t \phi^\omega(t - s) D_s\} + \lambda\{\xi^\omega_t[X, D]_t - [X, D^\dagger]_t \xi^\omega_t\},$$

where $\phi^\omega(t) = \langle g, S^\omega_t g \rangle = \int d^3k |g(k)|^2 e^{-i(\omega|k| - \omega)t}$ and $\xi^\omega(t) = 1_S \otimes A(S^\omega_t g)$. In standard terminology $\phi(t)$ is called the memory function and ξ^ω the fluctuating quantum force [2,17] or input field [18], albeit in the interaction picture. One notes that, in the vacuum state, ξ^ω_t is gaussian distributed and all first and second moments vanish except the two-point function

$$\langle \Psi_R, \xi^\omega_t \xi^\omega_s \Psi_R \rangle = \langle S^\omega_t g, S^\omega_s g \rangle = \phi^\omega(t - s).$$

(25)

The standard approach taken at this juncture is to introduce the so-called first Markov approximation. Here, for example, one takes $\mathcal{H}^1_R = L^2(\mathbb{R})$, $g = \sqrt{\frac{\kappa}{2\pi}}$ (constant) and $\omega(k) = k$. Then

$$\phi^\omega(t) = \int_{-\infty}^\infty dk \frac{\kappa}{2\pi} e^{i(k+\omega)t} = \kappa e^{i\omega t} \delta(t).$$

(26)

There are, however, several important objections to be made to this approach. Firstly any physical details specific to the reservoir must be put in by hand. Secondy, the spectrum of H^1_R is here unbounded below, this is necessary to produce the delta function correlation of white noise. From a physical point of view this is unacceptable as H^1_R must be bounded below for stability. Finally, the fact that the frequency spectrum $\omega(k) = k$ is unbounded below precludes any possibility of dropping the rotating wave approximation.

1.4 The Weak Coupling Limit

We now describe the ideas behind the weak coupling limit in the simplest situation where we have taken a dipole and rotating wave approximation. We define the following reservoir operator

$$B_t^{(\omega, \lambda)}(g) = A(\lambda \int_0^t dt_1 S^\omega_{t_1} g) = \lambda \int_M \mu(dk) \int_0^t dt_1 e^{-it(\omega(k) - \omega)} \tilde{f}(k) a(k).$$

(27)

Calculating the two-point vacuum expectations gives

$$\langle \Psi_R(0), B^{(\omega, \lambda)}(g) B^{(\omega, \lambda)\dagger}(f) \Psi_R(0) \rangle = \lambda^2 \int_0^t dt_1 \int s_1 \langle S^\omega_{t_1} g, S^\omega_{s_1} f \rangle$$

$$\equiv \int_0^{\lambda^2 t} du \int_{u/\lambda^2 - s}^{u/\lambda^2} d\tau \langle S^\omega_{t_1} g, f \rangle,$$

(28)

where we have substituted $u = \lambda^2 t_1$ and $\tau = t_1 - s_1$.
In order to obtain a non-trivial two-point function in the limit $\lambda \to 0$ we must rescale time as
\[
t \mapsto t/\lambda^2, \tag{29}
\]
this is known as the van Hove or weak coupling limit in physics. One finds
\[
\lim_{\lambda \to 0} \langle \Psi_R, B_{t/\lambda^2}^{(\omega,\lambda)}(g) B_{s/\lambda^2}^{(\omega,\lambda)}(f) \Psi_R \rangle = \min(t,s) \int_{-\infty}^{\infty} d\tau \langle S_{\omega}^{\tau} g, f \rangle. \tag{30}
\]
Physically the limit $\lambda \to 0$ with $t \to t/\lambda^2$ allows us to consider progressively weaker interactions which are allowed to run over increasingly larger periods of time and so we obtain the long term cumulative effect of the interaction on the system. Now the creation and annihilation operators are gaussian in the vacuum state and, as a result, so too are the operators $B_{t/\lambda^2}^{(\omega,\lambda)}$. Furthermore the limiting two-point function (29) is suggestive of the correlation function of a Brownian motion. However, an interpretation of the above in terms of classical Brownian motion is erroneous as it ignores the essentially quantum probabilistic nature of these processes.

1.5 The Interaction

For technical reasons we work with a system Hamiltonian H_S which has discrete spectrum. H_I^1 is taken to be bounded below as required from physics. The type of interaction H_I which we wish to study is of the form
\[
H_I = i\hbar \sum_{\omega \in F} \sum_{j=1}^{N(\omega)} \{ D_j^\omega \otimes A^\dagger(g_{j \omega}) - D_{j^\dagger}^{\omega\dagger} \otimes A(g_{j \omega}) \}, \tag{31}
\]
where F is a discrete subset of \mathbb{R}. For each $\omega \in F$, we take $D_j^\omega \in \mathcal{B}(\mathcal{H}_S)$ to have harmonic free evolution with frequency ω:
\[
\frac{1}{i\hbar} [D_j^\omega, H_S] = -i\omega D_j^\omega, j = 1, ..., N(\omega). \tag{32}
\]
Thus the superscript ω labels harmonic frequency and $j = 1, ..., N(\omega)$ the degeneracy of that frequency. An interaction similar to (30) has been treated in [10], however there the test functions $g_{j \omega}^\tau$ were taken to be equal for each value of ω. Our reasons for studying (30) above are because it allows us to treat the most general interactions encountered in physics. Typically in quantum field theory one considers an interaction of the type
\[
H_I = i\hbar \int d^3k \{ \theta(k) \otimes a^\dagger(k) - \theta^\dagger(k) \otimes a(k) \}, \tag{33}
\]
where $\{\theta(k) : k \in \mathbb{R}^3\}$ is a family of operators on \mathcal{H}_S. The operators $\theta(k)$ are called the response terms: they contain local information about the interaction. In the dipole approximation of quantum field theory one makes the replacement
\[
\theta(k) \mapsto \theta^{\text{dipole}}(k) = g(k)\theta(0), \tag{34}
\]
where $g(k)$ is some suitable test function. The physical argument is, cf. [2], that the response does not vary appreciably for values of the wavelength of the reservoir particles which are large relative to the physical dimensions of the system, though this can hardly be true for large momenta. As a result one obtains the approximate Hamiltonian
\[
H_I \mapsto H_I^{\text{dipole}} = i\hbar \{ \theta(0) \otimes A^\dagger(g) - \theta^\dagger(0) \otimes A(g) \}. \tag{35}
\]
A further approximation often made by physicists is to replace $\theta(0)$ by an operator D having a harmonic free-evolution with some frequency $\omega \in \mathbb{R}$. This approximation is just the rotating wave approximation. In order to avoid these approximations we argue as follows: Let B be a complete basis of eigenstates of H_S, then
\[
H_I = \sum_{\phi,\phi' \in B} \langle \phi | H_I | \phi' \rangle | \phi \rangle \langle \phi', \tag{36}
\]
but however we may write
\[
\langle \phi | H_I | \phi' \rangle = i\hbar \int dk \{ \langle \phi | \theta(k) | \phi' \rangle a^\dagger(k) - \langle \phi | \theta^\dagger(k) | \phi' \rangle a(k) \}.
\]
\[H_t = i\hbar \sum_{\phi, \phi' \in B} \{ T_{\phi\phi'} \otimes A^\dagger(\phi\phi') - T_{\phi\phi'}^\dagger \otimes A(\phi\phi') \}, \]

where we have introduced the transition operators \(T_{\phi\phi'} = |\phi\rangle\langle\phi'| \).

We note that the transition operators \(T_{\phi\phi'} \) are harmonic under the free evolution, in fact we have

\[\frac{1}{i\hbar} [T_{\phi\phi'}, H_S] = -i\omega_{\phi\phi'} T_{\phi\phi'}, \]

where

\[\omega_{\phi\phi'} = \frac{E_{\phi'} - E_{\phi}}{\hbar}. \]

So \(F = \{ \omega_{\phi\phi'} : \phi, \phi' \in B \} \) is now the set of Bohr frequencies.

The expression (38) is now equivalent to the interaction (30) which we propose to study. Here we need only relabel the \(T_{\phi\phi'} \) as \(D_j^\omega \) where \(\omega = \omega_{\phi\phi'} \) and the \(j \) again labels degeneracy. The functions \(g_{\phi\phi'} \) are relabeled accordingly.

2 THE QUANTUM STOCHASTIC LIMIT

2.1 Quantum Brownian Motions

In this section we first of all discuss the concept of quantum brownian motion. As this is not yet widely known amongst physicists we give an exposition below:

Definition. A quantum brownian motion (QBM) is a triple \((H, \Phi, (B_t)_t)\), where \(H \) is a separable Hilbert space, \(\Phi \in H \) with \(\| \Phi \| = 1 \), \((B_t)_t \) is a family of operators on \(H \) such that

(i) \(q_t = \text{Re} B_t \) and \(p_t = \text{Im} B_t \) are classical brownian motions for the state \(\Phi \).

(ii) \(|p_s, q_t| = \frac{\kappa}{2t} \min(s, t) \), where \(\kappa \in \mathbb{R} \).

The basic example is the following: Let \(\mathcal{H}_C = \Gamma_B (L^2(\mathbb{R})) \) and \(\Phi_C \) be the vacuum state. Then define \(B_t \) to be

\[B_t = A_C(\chi_{[0,t]}) \]

where \(A_C \) is the annihilation operator on \(\mathcal{H}_C \). From the (CCR) we have

\[[B_t, B_s^\dagger] = \langle \chi_{[0,t]}, \chi_{[0,s]} \rangle = \min(t, s); \quad [B_t, B_s] = 0 \]

\[= [B^\dagger_t, B^\dagger_s]. \]

So setting \(q_t = \frac{1}{2}(B_t + B_t^\dagger) \) and \(p_t = \frac{1}{2i}(B_t - B_t^\dagger) \) we have from the (CCR) that \([p_t, q_s] = -[q_t, p_s] \) and

\[[p_t, q_s] = \frac{1}{2i} \min(t, s). \]

Now if we set

\[dB_t = B_{t+dt} - B_t = A_C(\chi_{[t, t+dt]}), \]

we have that

\[\langle \Phi_C, dB_t^2 \Phi_C \rangle = 0; \quad \langle \Phi_C, (dB_t^\dagger)^2 \Phi_C \rangle = 0; \quad \langle \Phi_C, dB_t dB_t^\dagger \Phi_C \rangle = 0; \]

\[\langle \Phi_C, dB_t dB_t^\dagger \Phi_C \rangle = dt. \]

Now \(dB_t \) and \(dB_t^\dagger \) are gaussian in the vacuum state, because the creation and annihilation fields are, therefore so too are \(dq_t \) and \(dp_t \). Furthermore,

\[\langle \Phi_C, (dq_t)^2 \Phi_C \rangle = \frac{1}{2} \langle \Phi_C, (dB_t + dB_t^\dagger)^2 \Phi_C \rangle = \frac{1}{4} dt \]
and similarly $\langle \Phi_C, (dp_t^2) \Phi_C \rangle = \frac{1}{4}dt$. Finally noting that at unequal times s and t

$$\langle \Phi_C, dq_t dq_s \Phi_C \rangle = 0 = \langle \Phi_C, dp_t dp_s \Phi_C \rangle,$$

whenever $t + ds \leq s + ds$ or $s + ds \leq t + dt$, we conclude that $(q_t)_t$ and $(p_t)_t$ are each separate Brownian motions for expectations taken in the state Φ_C. So $\{\mathcal{H}_C, \Phi_C, (B_t)_{t} \}$ is a QBM. We can introduce formal creation and annihilation densities $b^\dagger(t)$ satisfying

$$[b(t), b(s)] = 0 = [b^\dagger(t), b^\dagger(s)]; [b(t), b^\dagger(s)] = \delta(t - s),$$

such that

$$A_C(g) = \int ds g(s) b(s); A_C^\dagger(g) = \int ds g(s) b^\dagger(s);$$

from this we see

$$B^1_t = \int_0^t ds b^\dagger(s).$$

We may write $b^\dagger_t = \frac{dB_t}{dt}$ and consider these densities as “quantum white noises”.

More generally let K be a separable Hilbert space and let $L^2(\mathbb{R}, K)$ denote the set of square-integrable K-valued functions over \mathbb{R}. Now $h \in L^2(\mathbb{R}, K)$ is a function $h(t) \in K$ with $\int_\mathbb{R} dt \|h(t)\|^2_K \langle 1 \rangle$. The inner product on $L^2(\mathbb{R}, K)$ is given by

$$\langle h, h' \rangle = \int_\mathbb{R} \langle h(t), h'(t) \rangle dt.$$

If $\{e_n\}_n$ is a complete orthonormal basis for K then we can write $h(t) = \sum_n h_n(t)e_n$, where $h_n(t) = \langle e_n, h(t) \rangle_K$; this gives a natural isomorphism

$$L^2(\mathbb{R}, K) \cong K \otimes L^2(\mathbb{R}).$$

Now take $\mathcal{H}_K = \Gamma_B(L^2(\mathbb{R}, K))$ and let Φ_K denote vacuum vector of \mathcal{H}_K, then a QBM is given by $\{\mathcal{H}_K, \Phi_K, (B_t(g))_{t}\}$, for non-zero $g \in K$, where

$$B_t(g) = A_K(g \otimes \chi_{[0,t]})$$

where A_K is the annihilation operator on \mathcal{H}_K. The commutation relations are

$$[B_t(g), B^\dagger_s(f)] = \langle g \otimes \chi_{[0,t]}, f \otimes \chi_{[0,s]} \rangle = \langle g, f \rangle_K \min(t, s),$$

with remaining commutators vanishing. So $\{\mathcal{H}_K = \Gamma_B(L^2(\mathbb{R}, K)), \Phi_K, (B_t(g))_{t}\}$ is a QBM. Taking $K = \mathbb{C}$ and $|g|^2 = \kappa$ leads back to the original example.

However, there is a more general possibility than that above; Let $Q \geq 1_K$ and set

$$C = Q \otimes 1_{L^2(\mathbb{R})}.$$

Then let φ_C be the state on the Weyl algebra $W(\mathcal{H}_K)$ with covariance C. We can construct $\{G_B(\mathcal{H}_K, C), \pi^C_{\mathcal{H}_K}, \Phi^C_{\mathcal{H}_K}\}$ the GNS triple over $\{W(\mathcal{H}_K), C\}$ and on it define the operator

$$B_Q(g, t) = \pi^C_{\mathcal{H}_K} B_t(g).$$

Then $\{G_B(\mathcal{H}_K, C), \Phi^C_{\mathcal{H}_K}, (B_Q(g, t))_{t}\}$ is a QBM referred to as quantum Brownian motion over $L^2(\mathbb{R}, K)$ with covariance C, or more loosely with covariance Q. We have that

$$\langle \Phi^C_{\mathcal{H}_K}, B_Q(g, t) B^\dagger_Q(f, s) \Phi^C_{\mathcal{H}_K} \rangle = \varphi_C(B_t(g)B^\dagger_s(f)) = \min(t, s)\langle g, \frac{Q + 1}{2} f \rangle_K,$$

and similarly

$$\langle \Phi^C_{\mathcal{H}_K}, B^\dagger_Q(f, s) B_Q(g, t) \Phi^C_{\mathcal{H}_K} \rangle = \min(t, s)\langle g, \frac{Q - 1}{2} f \rangle_K.$$
2.2 Quantum Stochastic Calculus

As is well known, a stochastic calculus can be built up around classical brownian motion and that the resulting theory has widespread applications to studying noisy systems in physics and engineering. It is also possible to build up a quantum stochastic calculus based on the QBMs we have just considered. This was originally done by Hudson and Parthasarathy [13, 14]. The basic integrators are dt and, depending on the context, dB_Q^t or $dB_Q^t(g)$ or $dB_Q^t(t,g)$. In the simplest case, for instance, we have, for a partition $-\infty = t_1 < t_2 < \ldots < t_n < t_{n+1} = \infty$,

$$L^2(\mathbb{R}) = \bigoplus_{m=1}^n L^2([t_m, t_{m+1}])$$

and consequently

$$\Gamma_B(L^2(\mathbb{R})) = \bigotimes_{m=1}^n \Gamma_B(L^2([t_m, t_{m+1}])). \quad (60)$$

This gives the required time filtration in the quantum situation. We say that a family of operators $(X_t)_t$ on $\Gamma_B((L^2(\mathbb{R})))$ is adapted if, for all t,

$$X_t \equiv \hat{X}_t \otimes 1 \quad (61)$$

on $\Gamma_B(L^2((-\infty, t)) \otimes \Gamma_B(L^2([t, \infty))))$. The quantum Ito table reads as

$$dB_Q(g,t) dB_Q^t(f,t) = \langle g, Q + \frac{1}{2} \rangle_f K dt,$$

$$dB_Q^t(f,t) dB_Q(g,t) = \langle g, Q - \frac{1}{2} \rangle_f K dt,$$

$$(dt)^2, dt dB_Q^t(g,t), (dB_Q^t(g,t))^2 = 0, \quad (62)$$

Let $(X_t)_t$ be an adapted process and of the form

$$X_t = \int_0^t (x_s ds + x_s^+ dB_Q^t(g,s) + x_s^- dB_Q(g,s)) \quad (63)$$

and $(Y_t)_t$ a similar process, then we have the quantum Ito formula

$$d(X_t, Y_t) \equiv dX_t, Y_t + X_t, dY_t + dX_t, dY_t \quad (64)$$

with

$$dX_t = x_t dt + x_t^+ dB_Q^t(g,t) + x_t^- dB_Q(g,t). \quad (65)$$

2.3 The Weak Coupling Limit of Quantum Field Theory

The results of Accardi, Frigerio and Lu concerning the weak coupling limit for an interaction (31) which has undergone both a dipole and rotating wave approximation can be summarised as follows;

Recall that

$$\lim_{\lambda \to 0} \langle \Psi_R, B^{(\omega, \lambda)}_{i, \lambda^2}(g) B^{(\omega, \lambda)^\dagger}_{s, \lambda^2}(f) \Psi_R \rangle = \min(t, s) \int_{-\infty}^\infty d\tau \langle S^\omega_{\tau} g, f \rangle;$$

now define a sesquilinear form $(.,.)^\omega$ on \mathcal{H}_R^1 the one particle reservoir space by

$$(g|f)^\omega = \int_{-\infty}^\infty d\tau \langle S^\omega_{\tau} g, f \rangle. \quad (66)$$

We consider the space of suitable test-functions $T^\omega \subset \mathcal{H}_R^1$, determined by the condition

$$\int_{-\infty}^\infty dt \langle g, S^\omega_{\tau} f \rangle \langle \infty, \rangle \quad (67)$$

whenever $f, g \in T^\omega$. Note that technically T^ω does not depend on ω however we keep it in as a label. Then we construct K^ω the completion of T^ω with respect to $(.,.)^\omega$. That is K^ω is the completion of T^ω factored out by its $(.,.)^\omega$-norm null space. K^ω is a separable Hilbert space with inner product $(.,.)^\omega$.
Theorem 1. In the limit $\lambda \to 0$ the stochastic process on the reservoir space

$$\{ H_R, \Psi_R, (B_{t/\lambda^2}^{(\omega, \lambda)}(f))_t \},$$

for $f \in K^\omega$, converges weakly in the sense of matrix elements to QBM on $L^2(R, K^\omega)$. We denote this QBM by $\{ H^\omega = \Gamma_B(L^2(R, K^\omega)), \Phi^\omega = \Phi_K, (B_{\omega}^{(f)}(t))_t \}$. In the next theorem we show that $U_{t/\lambda^2}^{(\lambda)}$ converges to a stochastic process U_t on $H_S \otimes H^\omega$ in a sense to be made explicit now.

Theorem 2. Let $f(j), h(j) \in K^\omega, T(j), S(j) \in 0$, for $j = 1, \ldots, n$; $j' = 1, \ldots, m$ and let $\phi, \phi' \in H_S$ then the limit as $\lambda \to 0$ of the matrix element

$$\langle \phi \otimes B_{T(1)/\lambda^2}(f^{(1)}) \ldots B_{T(n)/\lambda^2}(f^{(n)}) \rangle \Psi_R | U_{t/\lambda^2}^{(\lambda)} \phi' \otimes B_{S(1)/\lambda^2}(h^{(1)}) \ldots B_{S(m)/\lambda^2}(h^{(m)}) \rangle \Psi_R$$

exists and equals

$$\langle \phi \otimes B_{T(1)}^{(\omega, \lambda)}(f^{(1)}) \ldots B_{T(n)}^{(\omega, \lambda)}(f^{(n)}) \rangle \Phi^\omega | U_t \phi' \otimes B_{S(1)}^{(\omega, \lambda)}(h^{(1)}) \ldots B_{S(m)}^{(\omega, \lambda)}(h^{(m)}) \rangle \Phi^\omega,$$

where U_t is a process on $H_S \otimes H^\omega$ which is the solution to the quantum stochastic differential equation

$$dU_t = \{ D \otimes dB_t^{(\omega)}(g) - D^\dagger \otimes dB_t^{(\omega)}(g) - (g|g)\omega - D^\dagger D \otimes dt \} U_t,$$

with

$$(g|f)\omega = \int_0^\infty dt \langle g, S_t f \rangle.$$

Note that $d(U_t U_t^\dagger) \equiv 0 \equiv d(U_t^\dagger U_t)$ by the quantum Ito formula and the Ito table. So U_t is unitary on $H_S \otimes H^\omega$, however it describes an irreversible evolution when restricted to H_S. The unitarity condition corresponds to a fluctuation-dissipation law.

Theorem 3 Let $X \in B(H_S)$, then in the notation of theorem 2 the limit

$$\langle \phi \otimes B_{T(1)/\lambda^2}(f^{(1)}) \ldots B_{T(n)/\lambda^2}(f^{(n)}) \rangle \Psi_R | U_{t/\lambda^2}^{(\lambda)} (X \otimes 1_R) U_{t/\lambda^2}^{(\lambda)} \phi' \otimes B_{S(1)/\lambda^2}(h^{(1)}) \ldots B_{S(m)/\lambda^2}(h^{(m)}) \rangle \Psi_R$$

exists and equals

$$\langle \phi \otimes B_{T(1)}^{(\omega, \lambda)}(f^{(1)}) \ldots B_{T(n)}^{(\omega, \lambda)}(f^{(n)}) \rangle \Phi^\omega | U_t (X \otimes 1_R) U_t \phi' \otimes B_{S(1)}^{(\omega, \lambda)}(h^{(1)}) \ldots B_{S(m)}^{(\omega, \lambda)}(h^{(m)}) \rangle \Phi^\omega.$$

Note that in these theorems we encounter vectors of the type $B_{T/\lambda^2}^{(\omega, \lambda)}(f)\Psi_R$ which are exponential vectors with test functions $\lambda \int_0^{T/\lambda^2} dt S_t f$: they are called collective coherent vectors in the terminology of Accardi and Lu and they are designed to extract the long time cumulative behaviour of the reservoir fields.

2.4 Non-Zero Temperature Reservoir

Next, for the non-vacuum case, we consider a density matrix ρ_Q on H_R which is invariant under the free evolution and gaussian with covariance $Q \geq 1_{H_R}$. That is

$$\text{Tr}\{ \rho_Q W(g) \} = e^{-\frac{1}{2}(g, Qg)}, \forall g \in H_R.$$

The invariance condition is equivalent to

$$[S_t, Q] = 0, \text{ on Dom}(Q).$$

In particular, the choice of a heat bath at inverse temperature β and fugacity z is given by

$$Q = \frac{1 + ze^{-\beta H_R^*}}{1 - ze^{-\beta H_R^*}},$$

that is

$$(Qf)(k) = \coth \frac{\beta}{2}(\hbar \omega(k) - \mu) f(k),$$
where $\mu = \frac{1}{\beta} \ln z$ is the chemical potential.

Now
\[
\lim_{\lambda \to 0} \text{Tr} \{ \rho_Q B_{(\omega,\lambda)}^{(\omega,\lambda)}(g) B_{(\omega,\lambda)}^{(\omega,\lambda)}(f) \} = \min(t, s) \int_{-\infty}^{\infty} d\tau \text{Tr} \{ \rho_Q A(S_\tau^g A(f) \}
\]
\[
= \min(t, s) \int_{-\infty}^{\infty} d\tau \langle S_\tau^g, \left(\frac{Q + 1}{2}\right) f \rangle,
\]
and similarly
\[
\lim_{\lambda \to 0} \text{Tr} \{ \rho_Q B_{(\omega,\lambda)}^{(\omega,\lambda)}(f) B_{(\omega,\lambda)}^{(\omega,\lambda)}(g) \} = \min(t, s) \int_{-\infty}^{\infty} d\tau \langle S_\tau^g, \left(\frac{Q - 1}{2}\right) f \rangle.
\]

Let T_ω^Q be the subset of $\text{Dom}(Q)$ such that
\[
\int_{-\infty}^{\infty} |\langle f, S_\tau^v h \rangle| dt < \infty \text{ and } \int_{-\infty}^{\infty} |\langle f, S_\tau^v Q h \rangle| dt < \infty,
\]
whenever $f, h \in T_\omega^Q$. Let K_ω^Q be the Hilbert space completion of T_ω^Q with respect to the sesquilinear form $\langle ., . \rangle_{\omega}^Q$ given by
\[
\langle f|h \rangle_{\omega}^Q = \int_{-\infty}^{\infty} \langle f, Q S_\tau^v h \rangle dt.
\]

Note that in most cases T_{ω}^Q is dense in H_ω^Q and that K_{ω}^Q is a Hilbert space equipped with inner product $\langle ., . \rangle_{\omega}^Q$.

Theorem 1a: The process $\{B_{(\omega,\lambda)}(f)\}_t$ in the mixed state ρ_Q converges weakly in the sense of matrices elements to QBM over $L^2(R, K_\omega^Q)$ with covariance Q. This is denoted as $H_\omega^Q = G_B((L^2(R, K_\omega^Q), Q \otimes 1), \Phi_{\omega}^Q, (B_{(\omega,\lambda)}(f), t)_1)$.

Theorem 2a: For $\phi, \phi' \in H_S, f^{(j)}, h^{(j')} \in K_\omega^Q$ and $T^{(j)}, S^{(j')}, 0, for j = 1, \ldots; j' = 1, \ldots, m$, the limit as $\lambda \to 0$ of
\[
\text{Tr} \{ |\phi'\rangle \langle \phi| \otimes B_{(\omega,\lambda)}^{(\omega,\lambda)}(h^{(m)}) \ldots B_{(\omega,\lambda)}^{(\omega,\lambda)}(h^{(1)}) \rho_Q B_{(\omega,\lambda)}^{(\omega,\lambda)}(f^{(1)}) \ldots B_{(\omega,\lambda)}^{(\omega,\lambda)}(f^{(n)}) U_{(\omega,\lambda)}^t \}
\]
exists and equals
\[
\langle \phi \otimes B_{Q}^{(\omega)}(f^{(1)}), T^{(1)} \rangle \ldots B_{Q}^{(\omega)}(f^{(n)}) U_{t} \Phi_{\omega}^Q | \phi' \otimes B_{Q}^{(\omega)}(h^{(1)}), S^{(1)} \rangle \ldots B_{Q}^{(\omega)}(h^{(m)}), S^{(m)} \rangle \Phi_{\omega}^Q
\]
where U_t is a unitary operator on $H_S \otimes G_B((L^2(R, K_\omega^Q), Q \otimes 1), C)$, with $C = Q \otimes 1$, satisfying the QSDE
\[
dU_t = \{ D \otimes dB_{Q}^{(\omega)}(g, t) - D^\dagger \otimes dB_{Q}^{(\omega)}(g, t) - (g|g\rangle_{Q}^\omega D^\dagger \otimes dt - (g|g\rangle_{Q}^\omega DD^\dagger \otimes dt \} U_t,
\]
where
\[
(g|f\rangle_{Q}^\omega = \int_{-\infty}^{\infty} d\tau (g, S_\tau^Q \frac{Q \pm 1}{2}) f)\]

Theorem 3a: For $X \in B(H_S)$, then in the notation of theorem 2
\[
\lim_{\lambda \to 0} \text{Tr} \{ |\phi'\rangle \langle \phi| \otimes B_{(\omega,\lambda)}^{(\omega,\lambda)}(h^{(m)}) \ldots B_{(\omega,\lambda)}^{(\omega,\lambda)}(h^{(1)}) \rho_Q B_{(\omega,\lambda)}^{(\omega,\lambda)}(f^{(1)}) \ldots B_{(\omega,\lambda)}^{(\omega,\lambda)}(f^{(n)}) U_{(\omega,\lambda)}^t (X \otimes 1) \}
\]
exists and equals
\[
\langle \phi \otimes B_{Q}^{(\omega)}(f^{(1)}), T^{(1)} \rangle \ldots B_{Q}^{(\omega)}(f^{(n)}) \Phi_{\omega}^Q |U_{t}^t (X \otimes 1) U_{t}| \phi' \otimes B_{Q}^{(\omega)}(h^{(1)}), S^{(1)} \rangle \ldots B_{Q}^{(\omega)}(h^{(m)}), S^{(m)} \rangle \Phi_{\omega}^Q.
\]
2.5 The Quantum Stochastic Limit for the Full Interaction

Now suppose that the interaction is of the form (31). The problem of dropping the rotating wave approximation was first tackled by Accardi and Lu in [10] for an interaction similar to (31) except that all the test functions were taken to be the same. The result is that for each Bohr frequency \(\omega \) we obtain a separate independent QBM.

First of all note that \(\Gamma_B(\bigoplus_{\omega \in F} L^2(\mathbb{R}, K_\omega^2)) = \bigotimes_{\omega \in F} \Gamma_B L^2(\mathbb{R}, K_\omega^2) \) then consider the Weyl algebra \(W(\bigoplus_{\omega \in F} L^2(\mathbb{R}, K_\omega^2)) \), with quasi-free state \(\phi_C \) with covariance \(\tilde{C} = \bigotimes_{\omega \in F} C \), where \(C = Q \otimes 1 \) on \(K_\omega^2 \otimes L^2(\mathbb{R}) \). The GNS triple over \(\{ W(\bigoplus_{\omega \in F} L^2(\mathbb{R}, K_\omega^2)), \phi_C \} \) is \(\{ \mathcal{H}^F_Q, \pi_Q^F, \Phi_Q^F \} \). Now observe that

\[
\mathcal{H}^F_Q = \bigotimes_{\omega \in F} \mathcal{H}^\omega_Q, \quad \pi_Q^F = \bigotimes_{\omega \in F} \pi^\omega_Q, \quad \Phi_Q^F = \bigotimes_{\omega \in F} \Phi^\omega_Q.
\]

For each \(f \in K_\omega^2 \) we have

\[
B^\omega_Q(f, t) = \pi^\omega_Q A^\omega_Q(f \otimes \chi_{[0,t]}),
\]

where \(A^\omega_Q \) is annihilation operator on \(L^2(\mathbb{R}, K_\omega^2) \), so for \(t_\omega, f_\omega \in K_\omega^2 \), for each \(\omega \in F \), we have

\[
B^\omega_Q(f_\omega, t_\omega) = \bigotimes_{\omega \in F} B^\omega_Q(f_\omega, t_\omega).
\]

Theorem 1b: For each \(\omega \in F \) and \(f \in K_\omega^2 \) the limit \(\lambda \to 0 \), \(B^{(\omega,\lambda)}_{t/\lambda^2}(f) \) taken in the state \(\rho_Q^\lambda \) converges in the sense of matrix elements to QBM over \(L^2(\mathbb{R}, K_\omega^2) \) with covariance \(Q \) and each of these limiting processes are independent for different values of \(\omega \).

Theorem 2b: Let \(f^{(j)}_\omega, h^{(j)}_\omega \in K_\omega^2 \bigotimes_{\omega \in F} \mathcal{F}^{(j)}_\omega \) for each \(\omega \in F \) and \(j = 1, \ldots, n_\omega \); \(j' = 1, \ldots, m_\omega \); and \(t \geq 0 \); \(\phi, \phi' \) belong to \(H_S \) then the limit as \(\lambda \to 0 \) of the matrix element

\[
\text{Tr}[\phi'' \otimes \bigotimes_{\omega \in F} B^{(\omega,\lambda)}_{S^{(1)}_\omega \bigotimes_{\omega \in F} \mathcal{F}^{(1)}_\omega} (h^{(1)}_\omega) \bigotimes_{\omega \in F} \mathcal{F}^{(1)}_\omega] U^{(1)}_t (f^{(1)}_\omega),
\]

exists and equals

\[
\langle \phi'' | \bigotimes_{\omega \in F} B^{(\omega,\lambda)}_{Q} (f^{(1)}_\omega, T^{(1)}_\omega) \bigotimes_{\omega \in F} \mathcal{F}^{(1)}_\omega] U^{(1)}_t | \phi' \rangle,
\]

where \(U_t \) is unitary on \(H_S \otimes \mathcal{H}^F_Q \) and satisfies quantum stochastic differential equation

\[
dU_t = \sum_{\omega \in F} \bigg\{ \sum_{j=1}^{N(\omega)} \left[D^\omega_j \otimes dB^\omega_{j,t}(g^\omega_j,t) - D^\omega_j \otimes dB^\omega_{j,t}(g^\omega_j,t) \right] \\
- \sum_{\omega \in F, j,k=1}^{N(\omega)} D^\omega_j D^\omega_k (g^\omega_j | g^\omega_k)_{Q+} \, dt - \sum_{\omega \in F, j,k=1}^{N(\omega)} D^\omega_j D^\omega_k (g^\omega_j | g^\omega_k)_{Q-} \, dt \bigg\} U_t,
\]

with \(U_0 = 1 \). The coefficients are given by

\[
(f|h)_{Q+} = \int_{-\infty}^{0} dt \langle f, g^\omega_t (Q + \frac{1}{2}) h \rangle,
\]

for \(f, h \in K_\omega \). The Itô table is given by

\[
dB^{(\omega,\lambda)}_{Q} (f, t) dB^{(\omega,\lambda)}_{Q+} (g, t) = \delta_{\omega,\omega'} f(g)_{Q+} dt \\
dB^{(\omega,\lambda)}_{Q} (g, t) dB^{(\omega,\lambda)}_{Q-} (f, t) = \delta_{\omega,\omega'} f(g)_{Q-} dt.
\]

The coefficients in (2.5.8) are

\[
(f|h)_{Q+} = \int_{-\infty}^{0} dt \langle f, g^\omega_t (Q + \frac{1}{2}) h \rangle = \langle f, g^\omega_t (Q + \frac{1}{2}) h \rangle.
\]
\[
(f | g)_\omega^- = \int_\infty^\infty dt (f, S_\omega^t \frac{Q-1}{2} g) = (g | f)_\omega^- + (f | g)_\omega^- .
\] (97)

The proof of theorem 2a is as follows: first of all we know that for different \(\omega \) we can always consider independent Q-quantum Brownian motions. This is done in [10]. The next step is to consider the degeneracy of the quantum stochastic differential equation of theorem. In this case we must, therefore, generalize the results of [8,10] accordingly. This is done in appendices B and C.

Theorem 3a. In the notations of theorem 2a, for any \(X \in B(H_S) \), the limit as \(\lambda \to 0 \)
\[
\text{Tr} \{ | \phi \rangle \langle \phi | \otimes \left(\bigotimes_{\omega \in F} B_{S^{(1)}(\omega)}(h^{(1)}_\omega) \ldots B_{S^{(m)}(\omega)}(h^{(m)}_\omega) \right) \} \rho_1 \left(\bigotimes_{\omega \in F} B_{T^{(1)}(\omega)}(f^{(1)}_\omega) \ldots B_{T^{(n)}(\omega)}(f^{(n)}_\omega) \right) u_{1/\lambda}^\omega (X \otimes 1) \}
\] (98)
exists and equals
\[
(\phi \otimes \left(\bigotimes_{\omega \in F} B_{Q}(f^{(1)}_\omega, T^{(1)}_\omega) \ldots B_{Q}(f^{(n)}_\omega, T^{(n)}_\omega) \right) | \Phi_1^\omega \rangle \langle \Phi_1^\omega | U_t (X \otimes 1) U_t (\phi \otimes \left(\bigotimes_{\omega \in F} B_{Q}(h^{(1)}_\omega, S^{(1)}_\omega) \ldots B_{Q}(h^{(m)}_\omega, S^{(m)}_\omega) \right) | \Phi_1^\omega \rangle ,
\] (99)
where \(U_t \) is the solution to the quantum stochastic differential equation of theorem.

2.6 The Langevin and Master Equations

In each of the cases the right hand side of the expression for \(dU_t \) contains a term of the form \(-Y \otimes dtU_t\). For instance, we have
\[
Y = \sum_{\omega \in F} \sum_{j,k=1}^{N(\omega)} \{ D_{j}^{\omega \dagger} D_k^{\omega} (g_j^{\omega \dagger} | g_k^{\omega} \rangle \langle g_k^{\omega} | g_j^{\omega} \rangle + D_{j}^{\omega \dagger} D_k^{\omega} (g_k^{\omega \dagger} | g_j^{\omega} \rangle \langle g_j^{\omega} | g_k^{\omega} \rangle \rangle ,
\] (100)
The Langevin equation then reads as follows
\[
d[U_t^\omega (X \otimes 1) U_t] &= [dU_t^\omega] (X \otimes 1) U_t + U_t^\omega (X \otimes 1) dU_t + [dU_t] (X \otimes 1) dU_t \\
&= U_t^\omega [L_0 (X) \otimes dt + \sum_{\omega \in F} \sum_{j,k=1}^{N(\omega)} L_{j-}^{\omega} (X) \otimes d\omega (g_j^{\omega}, t) \\
&\quad + \sum_{\omega \in F} \sum_{j,k=1}^{N(\omega)} L_{j+}^{\omega} (X) \otimes d\omega (g_j^{\omega}, t)] U_t ,
\] (101)
where
\[
L_0 (X) = -XY - Y^\dagger X + \Theta (X),
\] (102)
with
\[
\Theta (X) = \sum_{\omega \in F} \sum_{j,k=1}^{N(\omega)} \{ D_{j}^{\omega \dagger} X D_k^{\omega} (g_j^{\omega \dagger} | g_k^{\omega} \rangle \langle g_k^{\omega} | g_j^{\omega} \rangle + D_{j}^{\omega \dagger} X D_k^{\omega} (g_k^{\omega \dagger} | g_j^{\omega} \rangle \langle g_j^{\omega} | g_k^{\omega} \rangle \rangle ,
\] (103)
and
\[
L_{j+}^{\omega} (X) = X D_j^{\omega} - D_j^{\omega \dagger} X, L_{j-}^{\omega} (X) = D_j^{\omega \dagger} X - X D_j^{\omega \dagger} .
\] (104)

Note that unitarity follows from
\[
L_0 (1_S) = -(Y + Y^\dagger) + \Theta (1_S) = 0; L_{j \pm}^{\omega} (1_S) = 0.
\] (105)
It is instructive to set \(Y = \frac{1}{2} \Gamma + \frac{i}{\hbar} H' \) where both \(\Gamma \) and \(H' \) are self-adjoint; we then have that
\[
L_0 (X) = -\frac{1}{2} (X \Gamma + \Gamma X) + \Theta (X) + \frac{1}{i\hbar} [X, H'] .
\] (106)
The unitarity condition is then $2\text{Re } Y = \Gamma = \Theta(1_S)$; this is the fluctuation-dissipation relation. The presence of the imaginary term H'_S does not affect the unitarity. For ρ_S a density matrix on \mathcal{H}_S we define the expectation $\langle \cdot \rangle_t$ by

$$\langle X \rangle_t = \text{Tr}\{\rho_S \otimes |\Phi_Q^F\rangle\langle \Phi_Q^F| U_t^\dagger (X \otimes 1) U_t\} = \text{Tr}\{s_t X\},$$

where s_t denotes the effective density matrix on (S) and the second trace is a partial trace over the system space (the trace over the reservoir space assumed to be taken already). Now

$$\frac{d}{dt} \langle X \rangle_t = \text{Tr}\{\rho_S \otimes |\Phi_Q^F\rangle\langle \Phi_Q^F| \frac{d}{dt} U_t^\dagger (X \otimes 1) U_t\},$$

so in terms of the effective density matrix s_t

$$\frac{d}{dt} \text{Tr}\{s_t X\} = \text{Tr}\{s_t L_0(X)\} = \text{Tr}\{L_0^*(s_t) X\},$$

where L_0^* denotes the adjoint operation to L_0 on the dual of $\mathcal{B}(\mathcal{H}_S)$. This gives the master equation

$$\frac{d s_t}{dt} = L_0^*(s_t) = - \sum_{\omega \in F \ j, k = 1}^{N(\omega)} \{ [D^\omega_k D^\omega_j s_t - D^\omega_j s_t D^\omega_k] (g_j^* g_k) Q_- + [D^\omega_j D^\omega_k s_t - D^\omega_k s_t D^\omega_j] (g_j^* g_k) Q_+ \}
- \{ [D^\omega_j s_t D^\omega_k - s_t D^\omega_k D^\omega_j] (g_j g_k^*) Q_- - [D^\omega_k s_t D^\omega_j - s_t D^\omega_j D^\omega_k] (g_j g_k^*) Q_+ \}.$$

From the relation (31) we see that $[Y, H_S] = 0$. If we define the effective evolution operator by

$$V_t = (e^{\frac{i}{\hbar} H_S t} \otimes 1) U_t$$

which satisfies the quantum stochastic differential equation

$$dV_t \equiv \left(\frac{1}{i\hbar} H_S e^{\frac{i}{\hbar} H_S t} dt \right) U_t + (e^{\frac{i}{\hbar} H_S t} \otimes 1) dU_t.$$

Explicitly this gives

$$dV_t \equiv (e^{\frac{i}{\hbar} H_S t} \otimes 1) \{ \sum_{\phi, \phi' \in B}^{(\omega, \omega') = (\omega)} \{ T_{\phi' \phi} \otimes dB_Q^\dagger (g_{\phi' \phi}, t) - T_{\phi' \phi}^\dagger \otimes dB_Q (g_{\phi' \phi}, t) \} \} - \{ Y + \frac{i}{\hbar} H_S \} dt \} U_t 1$$

$$= \left[\sum_{\omega \in F} \sum_{\phi, \phi' \in B}^{(\omega, \omega') = (\omega)} \{ T_{\phi' \phi} \otimes dB_Q^\dagger (g_{\phi' \phi}, t) e^{i\omega t} - T_{\phi' \phi}^\dagger \otimes dB_Q (g_{\phi' \phi}, t) e^{-i\omega t} \} \right] \{ \frac{1}{2} \Gamma + \frac{i}{\hbar} (H_S + H'_S) \} dt \} V_t.$$

We see that H'_S is a physical addition to the system Hamiltonian due to the presence of the quantum field. This is precisely the Lamb shift. Since Y commutes with H_S it is enough to compute its expectations for eigenstates $\phi \in B$:

$$\langle \phi, Y \phi \rangle = \sum_{\omega \in F} \sum_{j, k = 1}^{N(\omega)} \{ \langle \phi, D^\omega_j D^\omega_k \phi \rangle (g_j^* g_k) Q_- + \langle \phi, D^\omega_k D^\omega_j \phi \rangle (g_j g_k^*) Q_+ \}.$$

This is however equivalent to the (complex) shift one calculates using second order perturbation theory. For example, taking the zero temperature for simplicity, one calculates in second order shift $[19]$

$$Y^{(2)}_\phi = \frac{1}{i\hbar} \langle \phi \otimes \Psi_R, H_I(1/H^{(0)} - E_\phi - i0^+) H_I \phi \otimes \Psi_R \rangle$$

$$= \sum_{\omega, \omega' \in F} \sum_{j} \sum_{j'} \int_{-\infty}^{0} d\tau \langle \phi \otimes \Psi_R, D^\omega_j \otimes A(g_{j'}^\omega) e^{i(H^{(0)} - E_{\phi}) \tau/\hbar} D^\omega_j^\dagger \otimes A^\dagger(g_{j'}^\omega) \phi \otimes \Psi_R \rangle.$$

Here we have used the well known identity

$$\int_{-\infty}^{0} dt \ e^{i\omega t} = \frac{1}{i(x - i0^+)} = \pi \delta(x) - i\psi(\frac{1}{x}); \ (x \in \mathbb{R}),$$
where ϕ means that we take the principal part of the integral. Now $D_j^\omega \phi$ is an eigenstate of H_S with eigenvalue $E_\phi - \hbar \omega$, so the summation need only be considered over $\omega = \omega'$ in (2.6:17) above. Therefore we have

$$Y^{(2)}_\phi = \sum_{\omega \in F} \sum_{j,k} \int_{-\infty}^0 d\tau \langle \phi \otimes \Psi_R, D_j^{\omega \dagger} \otimes A(g_j^\omega) e^{i(H_R - \hbar \omega)\tau / \hbar} D_k^\omega \otimes A^\dagger(g_k^\omega) \phi \otimes \Psi_R \rangle$$

$$= \sum_{\omega \in F} \sum_{j,k} \langle \phi, D_j^{\omega \dagger} D_k^\omega \phi \rangle \int_{-\infty}^0 d\tau \langle \Psi_R, A(g_j^\omega) A^\dagger(S_j^\omega g_k^\omega) \Psi_R \rangle.$$ (117)

Hence $Y^{(2)}_\phi = \langle \phi, Y \phi \rangle$. The real and imaginary parts of Y are therefore the linewidth and energy shift as would normally be calculated using second order perturbation theory, this is true in the non-vacuum cases also.

2.7 Transition Probabilities

Let $P_t(\psi|\phi)$ denote the probability that the system will be measured in state ψ at time t if it initially was in state ϕ, then

$$p_t(\psi|\phi) = \langle \phi \otimes \Phi_Q^F, U_t^\dagger (|\psi| \otimes 1) U_t \phi \otimes \Phi_Q^F \rangle,$$ (118)

from theorem 3.3a or 3b we have

$$\frac{d}{dt} p_t(\psi|\phi) = \langle \phi \otimes \Phi_Q^F, U_t^\dagger L_0 (|\phi\rangle \otimes 1 U_t \phi \otimes \Phi_Q^F \rangle.$$ (119)

Therefore, setting $t = 0$,

$$\frac{d}{dt} p_t(\psi|\phi)|_{t=0} = \langle \phi, L_0 (|\psi\rangle \otimes 1) \phi \rangle.$$ (120)

If $\psi = \phi$ we obtain the relation

$$\frac{d}{dt} p_t(\phi|\phi)|_{t=0} = -\langle \phi, \Gamma \phi \rangle,$$ (121)

while if $\langle \phi, \psi \rangle = 0$ then (112) gives

$$\frac{d}{dt} p_t(\psi|\phi)|_{t=0} = \langle \phi, \Theta (|\psi\rangle \otimes 1) \phi \rangle,$$ (122)

$$= \sum_{\omega \in F} \sum_{j,k=1}^{N(\omega)} \{ \langle \phi, D_j^{\omega \dagger} \psi \rangle \langle \psi, D_k^\omega \phi \rangle (g_j^\omega g_k^\omega)_{Q+} + \langle \phi, D_k^\omega \psi \rangle \langle \psi, D_j^{\omega \dagger} \phi \rangle (g_j^\omega g_k^\omega)_{Q-} \}.$$ (123)

Using the relation $\int_{-\infty}^\infty dt e^{i\omega t} = 2\pi \delta(\omega)$ we can rewrite this as

$$\frac{d}{dt} p_t(\psi|\phi)|_{t=0} = 2\pi \sum_{\omega \in F} \sum_{j,k=1}^{N(\omega)} \int dk g_j^\omega(k) g_k^\omega(k) \delta(\omega(k) - \omega)$$

$$\langle \phi, D_j^{\omega \dagger} \psi \rangle \langle \psi, D_k^\omega \phi \rangle \left(\frac{g(k) + 1}{2} + \langle \phi, D_k^\omega \psi \rangle \langle \psi, D_j^{\omega \dagger} \phi \rangle \frac{g(k) - 1}{2} \right),$$ (124)

where $q(k)$ is the spectral function associated with Q, cf (125). This is our formulation of the Fermi golden rule for transitions of the systems state and it corresponds to the usual expressions, cf formulae (1.21.27a,b) of [2].

3 THE WEAK COUPLING LIMIT IN QED.

As an illustration of our theory we consider the case of quantum electrodynamics. We stress however that the theory encompasses a wide range of physical phenomena. For instance exciton models in solid state physics such as phonon models or the Fröhlich [15,16] polaron model will differ from the following treatment in only minor technical details. The electromagnetic field acts as reservoir for our system (S) which we take to consist of a single electron. The electromagnetic field can be derived from the potential \mathbf{A} given by

$$\mathbf{A}(r) = \sum_{\sigma=1,2} \int \frac{d^3 k}{(2\pi)^{3/2}} \sqrt{\frac{\hbar}{2\epsilon_\sigma e |k|}} \left\{ a_{\sigma}^*(k) e^{-i k r} + a_{\sigma}(k) e^{i k r} \right\} \epsilon^\sigma(k).$$ (125)
Here we consider two transverse polarizations ($\sigma = 1,2$) for each mode k. In our notation $\{e^k(\hat{k}), e^{\ast}(\hat{k}), \hat{k} = |k|^{-1}k\}$ form a right-handed triad for each k. This ensures that we are working with the radiation gauge $\nabla \cdot A = 0$. The operators $a_\sigma^\dagger(k)$ on the reservoir state space \mathcal{H}_R satisfy Bose commutation relations
\[
[a_\sigma(k), a_{\sigma'}^\dagger(k')] = \delta_{\sigma\sigma'}\delta(k-k').
\]

The total Hamiltonian for the system and reservoir is
\[
H = \frac{1}{2m}|p - eA|^2 + \Phi(r) + H_R
= HS + H_I + H_I',
\]
where the unperturbed system Hamiltonian (with potential $\Phi(r)$) is
\[
H_S = \frac{1}{2m}|p|^2 + \Phi(r);
\]
\[
H_R = \sum_{\sigma=1,2} \int d^3k \; \hbar c|k| \, a_\sigma^\dagger(k) a_\sigma(k),
\]
\[
H_I = -\frac{e}{m} \sum_{\sigma=1,2} \int d^3k \, \{ a_\sigma^\dagger(k) e^{-ik \cdot r} + a_\sigma(k) e^{ik \cdot r} \} \, G^\sigma(k) \cdot p,
\]
with
\[
G^\sigma(\hat{k}) = \frac{1}{(2\pi)^{3/2}} \sqrt{\frac{\hbar}{2\epsilon c|k|}} \, e^\sigma(\hat{k});
\]
and
\[
H' = \frac{e^2}{2m}|A|^2.
\]

If we rescale the electronic charge as $e \leftrightarrow \lambda e$ we find that
\[
H \rightarrow HS + H_R + \lambda H_I + \lambda^2 H'_{II}.
\]

In the subsequent analysis we shall drop the term $\lambda^2 H'_{II}$ and consider only
\[
H^{(\lambda)} = HS + H_R + \lambda H_I.
\]

It has been established rigorously that this does not effect the final result in the weak coupling limit. Now the interaction H_I given by (120) has response terms described by the vectors $\theta^\sigma_j(k) = \frac{ie}{\hbar m} e^{-ik \cdot r} G^\sigma_j(\hat{k}) \cdot p$. We assume, as usual, that the unperturbed system Hamiltonian H_S has a complete orthonormal set of eigenstates B. In the case of the Hydrogen atom, this means that we consider only the bound states and ignore the effect of the ionized states. In general, \mathcal{H}_S can be decomposed into complementary subspaces generated by the discrete, the absolutely continuous and the singular parts of the spectrum of H_S. It is enough to prepare the system in the discrete spectrum subspace to apply our results. It is the standard approach in atomic physics to study only the behaviour of bound states anyway, so we are justified in this restriction.

We introduce the test-functions
\[
g^\sigma_{\phi\phi'}(k) = \frac{ie}{\hbar m} (\phi|e^{-ik \cdot r} p|\phi'). G^\sigma(\hat{k}).
\]

The interaction H_I can be expressed as
\[
H_I = \sum_{\phi,\phi' \in B} \sum_{\sigma=1,2} \int d^3k \, \{ a_\sigma_\phi^\dagger(k) g^\sigma_{\phi\phi'}(k) - a_\sigma(k) \overline{g^\sigma_{\phi\phi'}(k)} \} \otimes T_{\phi\phi'}
= \sum_{\phi,\phi' \in B} \sum_{\sigma=1,2} \int d^3k \, \{ T_{\phi\phi'} \otimes a_\sigma_\phi^\dagger(k) g^\sigma_{\phi\phi'}(k) - T_{\phi'\phi} \otimes a_\sigma(k) \overline{g^\sigma_{\phi\phi'}(k)} \}
= \sum_{\phi,\phi' \in B} \{ T_{\phi\phi'} \otimes A^\dagger(g_{\phi\phi'}) - T_{\phi'\phi} \otimes A(g_{\phi\phi'}) \},
\]
where $g_{\phi\phi'} = g_{\phi\phi'}^1 \oplus g_{\phi\phi'}^2 \in L^2(R^3) \oplus L^2(R^3) = \mathcal{H}_R$ and A^\dagger are the creation/annihilation operators on $\Gamma_B(\mathcal{H}_R^1) = \otimes \Gamma_B(L^2(R))$:

$$A^\dagger(f^1 \oplus f^2) = \sum_{\sigma = 1, 2} \int d^3 k f^\sigma(k) a^\dagger_\sigma(k),$$

$$A(f^1 \oplus f^2) = \sum_{\sigma = 1, 2} \int d^3 k f^\sigma(k) a_\sigma(k).$$

(133)

Our choice of \mathcal{H}_R^1 above for one particle of the reservoir space is quite natural; namely it consists of wave-functions in the momentum representation with two transverse polarizations. The state of the reservoir is in our case determined by the covariance operator Q which we shall now specify as that of a thermal field at inverse temperature $\beta|0$, that is

$$Q : \mathcal{H}_R^1 \mapsto \mathcal{H}_R^1 : h_1 \oplus h_2 \mapsto \tilde{h}_1 \oplus \tilde{h}_2$$

with $\tilde{h}_\sigma(k) = q(c|k|)h_\sigma(k)$,

(134)

where $q(\omega) = \coth\frac{\beta \hbar \omega}{2}$. With $\omega_{\phi\phi'} = (E_{\phi'} - E_\phi)/\hbar \in F$, we define

$$S_t^{\omega_{\phi\phi'}} : \mathcal{H}_R^1 \mapsto \mathcal{H}_R^1 : h_1 \oplus h_2 \mapsto \tilde{h}_1 \oplus \tilde{h}_2$$

with

$$\tilde{h}_\sigma(k) = e^{it(c|k| - \omega_{\phi\phi'})} h_\sigma(k).$$

(135)

In this setup we have allowed for the most general coupling, that is where all the fundamental frequencies $F = \{\omega_{\phi\phi'} : \phi, \phi' \in B\}$ are to be considered. This set is always degenerate in general; however it is important to consider two classes of degeneracy arising. The first is the secular class; these are the situations in which degeneracies always arise regardless of the spectrum $\{E_\phi : \phi \in B\}$ of H_S; they are the pairs (ϕ, ϕ') and (ψ, ψ') which have $\omega_{\phi\phi'} = \omega_{\psi\psi'}$ due to one of the following reasons

1. $\phi = \phi' = \psi = \psi'$,
2. $\phi = \phi', \psi = \psi' ; (\phi \neq \psi)$,
3. $\phi = \psi, \phi' = \psi' ; (\phi \neq \phi')$.

(136)

Any solution to the equation $\omega_{\phi\phi'} = \omega_{\psi\psi'}$, or equivalently $E_\phi - E_{\phi'} = E_\psi - E_{\psi'}$, not of the secular type shall be called an extraneous solution. The extraneous solutions are of course dependent on the spectrum of H_S. It is standard procedure in the physical literature to assume that such possibilities do not arise however this is a requirement on H_S which cannot be made in many important examples. For a particle in a rectangular box, apart from the natural degeneracies arising if the ratios of the sides are rational, we also have to consider the fact that the contribution to the energy for the mode of vibration n_i along the i^{th}-axis is proportional to n_i^2, this means solving the Diophantine equations for the harmonics

$$n_i^2 - m_i^2 = n_i'^2 - m_i'^2.$$

For the Hydrogen atom we have, apart from the spherical harmonical degeneracies, to consider the integer solutions to the Diophantine equations

$$\frac{1}{n^2} - \frac{1}{m^2} = \frac{1}{n'^2} - \frac{1}{m'^2}$$

for the principal atomic numbers. After simple manipulations this leads to the study of the intersection of the algebraic projective curve in \mathbb{R}^1:

$$x_1^2 x_2^2 x_3^2 - x_2^2 x_3^2 x_4^2 - x_1^2 x_2^2 x_4^2 + x_1^2 x_2^2 x_3^2 = 0$$

with the lattice of positive integers. In the weak coupling limit we obtain the quantum stochastic differential equation

$$dU_t = \left(\sum_{\omega \in F} \sum_{\phi, \phi' \in B} \{T_{\phi\phi'} \otimes dB_Q^\omega(g_{\phi\phi'}, t) + T_{\phi\phi'}^\dagger \otimes dB_Q^\omega(g_{\phi\phi'}, t)\} + Y dt\right) U_t$$

where

$$Y = \sum_{\omega \in F} \sum_{\phi, \phi', \psi, \psi' \in B} \left[T_{\phi\phi'}^\dagger T_{\psi\psi'}(g_{\phi\phi'}|g_{\psi\psi'})_{Q+}^{\omega} + T_{\phi\phi'} T_{\psi\psi'}^\dagger(g_{\phi\phi'}|g_{\psi\psi'})_{Q-}^{\omega}\right].$$

(137)
with $U_0 = 1$. However using the fact that $T_{\phi'\phi'}^1 T_{\psi'\psi'} = \langle \phi, \psi \rangle T_{\phi'\phi'}$ etc., we may write Y as

$$Y = \sum_{\omega \in \mathcal{F}} \sum_{\phi, \psi \in \mathcal{B}} \{(g_{\phi'\phi}|g_{\phi'\phi})_{Q_+}^{-\omega} + (g_{\phi'\phi}|g_{\phi'\phi'})_{Q_-}^{\omega} \} T_{\phi\psi}. \tag{138}$$

In the summation we consider only ϕ and ψ for which there exists a ϕ' so that $\omega_{\phi\psi} = \omega_{\phi'\psi'}$, however this is equivalent to demanding that $\omega_{\phi\psi} = 0$ as we always have the identity $\omega_{\phi\psi} = \omega_{\phi'\psi'} - \omega_{\phi\psi'}$. Therefore Y is a linear combination of terms $T_{\phi\psi}$ with $\omega_{\phi\psi} = 0$ and this, in particular, implies that Y commutes with H_S. It is natural in light of this to write Y as

$$Y = \sum_{\phi, \psi \in \mathcal{B}} y_{\phi\psi} T_{\phi\psi} = \sum_{\phi, \psi \in \mathcal{B}} y_{\phi\psi} T_{\phi\psi}; \tag{139}$$

where

$$y_{\phi\psi} = \sum_{\phi' \in \mathcal{B}} \{(g_{\phi'\phi}|g_{\phi'\phi})_{Q_+}^{\omega_{\phi'\phi}} + (g_{\phi'\phi}|g_{\phi'\phi'})_{Q_-}^{\omega_{\phi'\phi'}} \}. \tag{140}$$

Now the master equation associated with this problem is from (105)

$$\frac{ds_t}{dt} = L_0^*(s_t) = -(Y s_t + s_t Y^*) + \sum_{\omega \in \mathcal{F}} \sum_{\phi, \psi, \phi', \psi' \in \mathcal{B}} [T_{\phi\psi}^1 s_t T_{\psi'\phi'}(g_{\phi'\phi} | g_{\psi'\psi})_{Q_+}^{\omega} + T_{\phi\phi'}^1 s_t T_{\psi'\psi'}(g_{\phi'\phi} | g_{\psi'\psi'})_{Q_-}^{\omega}]. \tag{141}$$

In order to find the general expression for H_S^r, we see that

$$y_{\phi\psi} = \sum_{\phi' \in \mathcal{B}} \int_{-\infty}^{0} d\tau \left\{ (g_{\phi'\phi}, S_{\tau}^{\omega_{\phi'\phi}} Q + \frac{1}{2} g_{\phi'\phi}) + (g_{\phi'\phi}, S_{\tau}^{\omega_{\phi'\phi}} Q - \frac{1}{2} g_{\phi'\phi}) \right\} e^{i\omega_{\phi'\phi} \tau}.$$

But using $g_{\phi'\phi}^* (k) = g_{\phi'\phi}^* (-k)$ we have

$$y_{\phi\psi} = \sum_{\phi' \in \mathcal{B}} \int_{-\infty}^{0} d\tau \sum_{\sigma = 1, 2} \int d^3k g_{\phi'\phi}^* (k) g_{\phi'\phi} (k) e^{-i \omega_{\phi'\phi} \tau} \left\{ e^{-i \frac{\omega_{\phi'\phi}}{2}} \left(\frac{g(c) g(k) + 1}{2} + \frac{e^{i \omega_{\phi'\phi} \tau} g(c) g(k) - 1}{2} \right) \right\} e^{i \omega_{\phi'\phi} \tau}.$$

We remark that the effect of the response term is as follows; from the commutation relations of r and p we have that

$$e^{-ikr} e^{iH_S t} e^{ikr} = e^{-ikr} e^{it |p|^2 / 2m + V(r)} e^{ikr} = e^{i \frac{|p|^2}{2m} + V(r)} e^{ikr}, \tag{143}$$

that is H_S is replaced by $H_S + \frac{\hbar k p}{m} + \frac{\hbar^2 |k|^2}{2m}$. Now the k dependence in the above expression prevents us from using the well-known isotropic identity

$$\sum_{\sigma = 1, 2} \int |k| |k| = \frac{1}{8\pi \sqrt{2 \epsilon_0 \omega \sigma}} \frac{\hbar}{3 \delta_{j,j'}}. \tag{144}$$
to calculate $y_{\phi\psi}$ as in the dipole approximation. Note that the Lamb shift and the damping coefficients are affected by inclusion of the response terms.

The complex shift $Y_{\phi\psi} = \frac{1}{2} \Gamma_{\phi} + i \frac{\hbar}{4} E'_{\phi}$, giving the linewidth Γ_{ϕ} and energy shift E'_{ϕ} for a state $\phi \in B$ can then be written as

$$Y_{\phi\psi} = \frac{e^2}{2i\hbar m^2} \sum_{s=1,2} \int d^3k \sum_{j,k} \left(\langle \phi|p_j|c_s\rangle \frac{q(c_s|k|) + 1}{D^+(k) - i0^+} + \frac{q(c_s|k|) - 1}{D^-(k) - i0^+} |p_j\rangle|\phi \rangle G_{j}^+(k)G_{j}^-(k), \right)$$

(145)

where the denominators in the above expression are

$$D^\pm(k) = H_S + \frac{\hbar k p}{m} + \frac{\hbar^2|k|^2}{2m} \pm \hbar c|k| - E_{\phi}. \tag{146}$$

This expression has been derived in [20] for the zero temperature case; see however [21].

APPENDIX. A: The Traditional Derivation of the Master Equation.

For the sake of comparison we give the standard arguments used in the derivation of the master equation. This section follows closely the development of Louisell [2]. The interaction is taken to be of the form

$$H_I = \sum_j D_j \otimes F_j,$$

where D_j and F_j act nontrivially on the system and reservoir spaces respectively. We assume that D_j evolves harmonically in time under the free evolution with frequency ω_j. We assume that at time t the system and reservoir are uncoupled, that is the density operator $\rho(t)$ at time zero factors as

$$\rho(0) = \rho^{(S)}_0 \otimes \rho^{(R)}.$$

No subscript is required for $\rho^{(R)}$ as we assume that it is invariant under the free-evolution (in particular this is true for the choice of a thermal state $\rho^{(R)} = e^{-\beta(H^*_N - n)}/\text{Tr} e^{-\beta(H^*_N - n)}$). We define the reduced system state at time t in the interaction dynamics to be the density operator

$$s_t = \text{Tr}_{HR}[U^*_t(\rho_0^{(S)} \otimes \rho^{(R)}_0)U_t^{(S)}].$$

The iterated series expansion of s_t, truncated to second order, is;

$$s_t = s_0 + \frac{1}{i\hbar} \int_0^t dt_1 \text{Tr}_{HR}[v^{(0)}(H_s, s_0 \otimes \rho^{(R)})] + \frac{1}{(i\hbar)^2} \int_0^t dt_1 \int_0^{t_1} dt_2 \text{Tr}_{HR}[v^{(0)}(H_s), [v^{(0)}_t(H_s), s_0 \otimes \rho^{(R)}]],$$

where we have set $\lambda = 1$. Substituting in for the potential H_I we find

$$s_t = s_0 + \sum_j \int_0^t dt_1 \langle v^{(0)}(F_j) \rangle_R e^{-i\omega_j t_1} [D_j, s_0]$$

$$+ \sum_{j,k} \int_0^t dt_1 \int_0^{t_1} dt_2 e^{-i(\omega_j t_1 + \omega_k t_2)} \{ [D_j D_k s_0 - D_k s_0 D_j] v^{(0)}(F_j) v^{(0)}(F_k) \} R - [D_j s_0 D_k - s_0 D_k D_j] [v^{(0)}_t(F_k) v^{(0)}(F_j) R],$$

where $\langle . \rangle_R = \text{Tr}_{HR}[\rho^{(R)}]$. Due to the invariance of the reservoir fields under the free evolution we have that

$$\langle v^{(0)}(F_j) \rangle_R = \langle F_j \rangle_R;$$

$$\langle v^{(0)}_t(F_j) v^{(0)}_s(F_k) \rangle_R = \langle v^{(0)}_t (F_j) F_k \rangle_R.$$

Therefore, if we let $\tau = t_1 - t_2, y = t_2$ then we obtain

$$s_t = s_0 + \sum_j \langle F_j \rangle_R [D_j, s_0] \int_0^t e^{-i\omega_j y} dy$$

$$+ \sum_{j,k} \int_0^t dy e^{-i(\omega_j + \omega_k) y} \int_0^t d\tau e^{-i\omega_j \tau} \{ [D_j D_k s_0 - D_k s_0 D_j] [v^{(0)}_t(F_j) F_k] R - [D_j s_0 D_k - s_0 D_k D_j] [F_k v^{(0)}(F_j)] R \}. $$
The approximation procedure is based on the following four steps; *step I*. One postulates that the contributions coming from the sum of all terms higher that second order in the iterated series are negligible. *step II*. One postulates a finite autocorrelation time τ_c such that

$$
(v^{(0)}(F_j)F_k)_R = 0 = (F_jv^{(0)}(F_k))_R,
$$

whenever $|\tau| > \tau_c$. Thus for $t > \tau_c$ one may replace the upper limit of the τ-integral by $+\infty$. This gives

$$
s_t = s_0 + \sum_j \langle F_j \rangle_R [D_j, s_0] I^t(\omega_j)
$$

where

$$
\begin{align*}
 w^+_{j,k} &= \int_0^\infty e^{-i\omega_j \tau} \langle v^{(0)}(F_j)F_k \rangle_R d\tau \\
 w^-_{k,j} &= \int_0^\infty e^{-i\omega_j \tau} \langle F_kv^{(0)}(F_j) \rangle_R d\tau
\end{align*}
$$

and

$$
I^t(\omega) = \int_0^t e^{-i\omega y} dy.
$$

Step III. For t large with respect to τ_c one makes the replacement

$$
I^t(\omega) \rightarrow t\delta(\omega).
$$

Step IV. One postulates that the formulas deduced under the previous assumptions when t is large with respect to τ_c hold also in the limit $t \rightarrow 0$; this gives

$$
\frac{ds}{dt}|_{t=0} = \lim_{t \rightarrow 0} \frac{s_t - s_0}{t} = \sum_j [D_j, s_0] \langle F_j \rangle_R + \sum_{j,k} \{[D_jD_k s_0 - D_k s_0 D_j] w^+_{j,k} - [D_j s_0 D_k - s_0 D_k D_j] w^-_{k,j}\}.
$$

The assumptions leading to this equation have a decidedly ad hoc nature, especially those introduced in steps III and IV. The replacement for I^t, put in by hand, in step III is precisely what is needed to allow the limit to be taken easily. It is instructive to calculate explicitly the master equation in a particular case. We consider as reservoir a free Bose gas at inverse temperature β and fugacity $z = e^{\beta\mu}$. This can be described by the quasi-free state φ_Q, on $L^2(\mathbb{R}^n)$ for example, characterized by

$$
\langle A^\dagger(f)A(g) \rangle_R = \varphi_Q(A^\dagger(f)A(g)) = \langle f, \frac{Q}{2} - g \rangle,
$$

where

$$
Q = \frac{1 + ze^{-\beta H_R}}{1 - ze^{-\beta H_R}} = \coth \frac{\beta}{2}(H_R - \mu).
$$

We may take H_R to be for instance $-\Delta$.

We may write the interaction H_I of (31) in the form we are considering with the notations

$$
H_I = i\hbar \sum_j \{D_j \otimes A^\dagger(g_j) - h.c.\} \equiv i\hbar \sum_{(j,\alpha)} D_{(j,\alpha)} \otimes F_{(j,\alpha)},
$$

where we have a summation also over an index $\alpha \in \{0,1\}$ with the notations

$$
D_{(j,0)} = D_j, \quad D_{(j,1)} = -D_j^\dagger; \quad F_{(j,0)} = A^\dagger(g_j), \quad F_{(j,1)} = A(g_j);
$$

and consequently

$$
\omega_{(j,0)} = -\omega_j; \quad \omega_{(j,1)} = -\omega_j.
$$
We then have

\[w^+_{(j_0),(k_1)} = \int_0^\infty dt \, e^{-iw_j^\tau} \langle v^{(0)}_\tau (A(x_j^g)) A(g_k) \rangle_R = \int_0^\infty d\tau \, \varphi_Q(A^4(S_{\tau_j}^g x_j^g) A(g_k)) \]

\[= \int_0^\infty d\tau \, (S_{\tau_j}^g x_j^g, \frac{Q-1}{2} g_k) = (g_j | g_k)^{Q_j^-}. \]

Similarly, using the CCR, we find

\[w^-_{(j_1),(k_0)} = \int_0^\infty dt \, e^{iw_j^\tau} \langle v^{(0)}_\tau (A(x_j^g)) A^4(g_k) \rangle_R = (g_j | g_k)^{Q_j^+}, \]

\[w^-_{(k_0),(j_1)} = (g_j | g_k)^{Q_j^-}, \]

\[w^-_{(j_1),(k_0)} = (g_j | g_k)^{Q_j^+}, \]

while \(w^-_{(j_\epsilon),(j' \epsilon')} = 0 \) if \(\epsilon = \epsilon' \) as we have \(\langle A(f)A(g) \rangle_R = 0 = \langle A^4(f)A^4(g) \rangle_R \). We note that \(\langle F_{(j,\alpha)} \rangle_R = 0 \) in all cases.

The master equation then reads

\[
\frac{ds}{dt}|_0 = \sum_{j,k,\alpha,\alpha'} \{ [D_j^{(\alpha)} D_k^{(\alpha')}, s_0 - D_k^{(\alpha')}, s_0 D_j^{(\alpha)}] w^+_{(j\alpha),(k\alpha')} \}
- \sum_{j,k} \{ [D_j D_k^\dagger s_0 - D_k D_j^\dagger s_0 D_j + D_k s_0 D_j^\dagger w^+_{(j_0),(k_1)} + D_j D_j^\dagger s_0 D_k - D_k D_j D_j^\dagger] w^+_{(j_1),(k_0)} \}
- \sum_{j,k} \{ [D_j D_k^\dagger s_0 - D_k D_j^\dagger s_0 D_j + D_k s_0 D_j^\dagger] w^-_{(k_0),(j_1)} - [D_j D_k^\dagger s_0 - D_k D_j D_j^\dagger] w^-_{(j_1),(k_0)} \},
\]

or writing in our notations (and employing the relabeling in terms of the frequency degeneracies as in (31))

\[
\frac{ds}{dt}|_0 = \sum_{\omega \in F} \sum_{j,k=1}^N \{ [D_j^{(\omega)} D_k^{(\omega)} s_0 - D_k^{(\omega)} s_0 D_j^{(\omega)}] (g_j | g_k)^{Q_j^-} \}
+ [D_j^{(\omega)} D_k^\dagger s_0 - D_k^{(\omega)} s_0 D_j^\dagger] (g_j | g_k)^{Q_j^+}
- [D_j^{(\omega)} D_k^{(\omega)} D_j^\dagger s_0 - D_k^{(\omega)} s_0 D_j D_j^\dagger] (g_j | g_k)^{Q_j^-} - [D_j^{(\omega)} D_k^{(\omega)} D_j^\dagger s_0 - D_k^{(\omega)} s_0 D_j D_j^\dagger] (g_j | g_k)^{Q_j^+}. \]

But this is exactly \(\frac{ds}{dt}|_0 = L^*_0(s_0) \), where \(L^*_0 \) is given as before.

APPENDIX B: The Convergence of the Collective Processes to the Noise Processes

The mathematical theory behind the weak coupling limit developed in [1] and subsequent papers is the following. We estimate the behaviour as \(\lambda \to 0 \) to matrix elements of \(U_{t/\lambda^2} \), with respect to collective coherent vectors, that is vectors of the form \(B_{t/\lambda^2}^{(\omega)}(f^{(1)}) ... B_{t/\lambda^2}^{(\omega)}(f^{(n)}) \Psi_R \). This involves substituting \(v_j(H_1) \) into the series expansion for \(U_{t/\lambda^2}^{(\omega)} \) and examining each of the terms arising. The deep analysis of [1] shows that each term upon normal ordering leads to two classes of terms: relevant ones (type I) and negligible ones (type II). The type I terms are exactly those put into normal order by commuting time consecutive pairs of reservoir variables, the type II terms account for all others. Following this resummation it is shown that the type II terms give vanishing contribution in the limit \(\lambda \to 0 \) while the explicit limit for the type I terms is calculated; uniform convergence is established, the main technical device used here is one of various generalizations of the Pulé inequality [3].

The independence of the noise processes for different frequencies follows from the next two lemmas.

Lemma 1: for each \(\omega \in F \) let \(f_\omega, f'_\omega \in K_\omega \) and \(S_\omega, T_\omega, S'_\omega, T'_\omega \in R \) then

\[
\lim_{\lambda \to 0} \left(\lambda \int_{S_\omega/\lambda^2}^{T_\omega/\lambda^2} S_\omega^\dagger f_\omega du, \lambda \int_{S'_\omega/\lambda^2}^{T'_\omega/\lambda^2} S'_\omega^\dagger f'_\omega dv \right)
= \sum_{\omega \in F} \langle \chi[S_\omega,T_\omega] \chi[S'_\omega,T'_\omega] \rangle_{L^2(\mathbb{R})}(f_\omega | f'_\omega) \omega
= (\oplus_{\omega \in F} \chi[S_\omega,T_\omega] \otimes f_\omega) (\oplus_{\omega \in F} \chi[S'_\omega,T'_\omega] \otimes f'_\omega). \]
Proof. the left hand side of (B.1) can be written as a sum over $\omega,\omega' \in F$ of terms

$$\lim_{\lambda \to 0} \int_{S_{\omega}}^{T_{\omega}} du \int_{(S_{\omega},T_{\omega})/\lambda^2} du' (f_{\omega}, S_{\omega}^w f'_{\omega}) e^{i(\omega-\omega')u/\lambda^2};$$

by the Riemann-Lesbegue Lemma the terms $\omega \neq \omega'$ vanish while the $\omega = \omega'$ terms converge by inspection to

$$\langle \chi|S_{\omega},T_{\omega} \rangle \chi|S_{\omega},T_{\omega} \rangle L^2(\mathbb{R}) (f_{\omega} | f'_{\omega}).$$

Lemma 2: for $n \in N$ let $f^{(k)}_{\omega} \in K_{\omega}, x^{(k)}_{\omega} \in R, S^{(k)}_\omega(T^{(k)}_{\omega}),$ for $1 \leq k \leq n$ and each $\omega \in F,$ then

$$\lim_{\lambda \to 0} \langle \Phi Q, B^{(\omega)} | \sum_{\omega \in F} x^{(1)}_{\omega} \int_{S_{\omega}}^{T_{\omega}} S^{\omega} f^{(1)}_{\omega} (du) \rangle \langle \Phi Q, B^{(\omega)} | \sum_{\omega \in F} x^{(n)}_{\omega} \int_{S_{\omega}}^{T_{\omega}} S^{\omega} f^{(n)}_{\omega} (du) \rangle$$

exists uniformly for the x's and $[S,T]$'s in a bounded set of R and is equal to

$$\langle \Phi Q, W(\oplus_{\omega \in F} (x^{(1)}_{\omega} \chi|S_{\omega},T_{\omega}) \otimes f^{(1)}_{\omega})) \ldots W(\oplus_{\omega \in F} (x^{(n)}_{\omega} \chi|S_{\omega},T_{\omega}) \otimes f^{(n)}_{\omega})) | \Phi Q \rangle.$$

For a proof see [10].

APPENDIX C: The Quantum Stochastic Differential Equation for U_t.

For convenience we shall consider only one coupling frequency ω so that

$$H_t \equiv i\hbar \sum_j (D_j \otimes A_j^\dagger (g_j))$$

and we have dropped the superscript ω from the operators. Also we shall consider only the Fock (vacuum) case $Q = 1$.

We define $G_\lambda(t)$ by

$$\langle \psi, G_\lambda(t) \rangle = \text{Tr}[\phi \langle \psi | \otimes B^{(\omega)}_{T/\lambda^2} (f') | \Psi R \rangle \langle \Psi R | B^{(\omega)}_{T/\lambda^2} (f) U^{(\lambda)}_{t/\lambda^2}],$$

where $\psi, \phi \in H_\lambda$ and the second inner product is meant on $H_\lambda \otimes \Gamma_B(L^2(\mathbb{R}, K_\omega))$: we know that the limit $\lambda \to 0 \langle \psi, G_\lambda(t) \rangle$ exists and equals

$$\langle \psi \otimes B^{(\omega)}_{T/\lambda^2} (f, T) | \Phi Q \rangle U_{t/\lambda^2} \phi \otimes B^{(\omega)}_{T/\lambda^2} (f', T') | \Phi Q \rangle.$$
Now
\[\Gamma_\lambda = \sum_j \frac{1}{\lambda} \int_0^{T/\lambda^2} \langle S_\lambda^\omega f, S_\lambda^\omega g_j \rangle du \langle D_j^\lambda \psi, G_\lambda(t) \rangle \]
\[= \sum_j \frac{1}{\lambda} \int_0^{(T-t)/\lambda^2} \langle S_\lambda^\omega f, g_j \rangle dv \langle D_j^\lambda \psi, G_\lambda(t) \rangle \]
where we made the substitution \(u - t/\lambda^2 = v \). We see that for bounded \(D \) this converges as \(\lambda \to 0 \) a.e. to
\[\sum_j \chi_{[S,T]}(f|g_j) \omega \langle D_j^\lambda \psi, G_\lambda(t) \rangle. \]

Next of all the term \(\Xi_\lambda \) must be reordered as follows
\[\Xi_\lambda = -\frac{1}{\lambda} \sum_j \text{Tr} \{ |\phi \rangle \langle \psi | \otimes B_{T/\lambda^2}^{(\omega,\lambda)}(f') |\Psi_R \rangle \langle \Psi_R | B_{T/\lambda^2}^{(\omega,\lambda)}(f) (D_j^\lambda \otimes 1)U_{t/\lambda}^{(\lambda)} (1 \otimes A(S_\lambda^\omega)) \} \]
\[-\frac{1}{\lambda} \sum_j \text{Tr} \{ |\phi \rangle \langle \psi | \otimes B_{T/\lambda^2}^{(\omega,\lambda)}(f') |\Psi_R \rangle \langle \Psi_R | B_{T/\lambda^2}^{(\omega,\lambda)}(f) (D_j^\lambda \otimes 1) [(1 \otimes A(S_\lambda^\omega)), U_{t/\lambda}^{(\lambda)}] \} \]
\[= \Xi_\lambda^a + \Xi_\lambda^b. \]

In a fashion similar to the calculation of \(\Gamma_\lambda \), one easily arrives at
\[\lim_{\lambda \to 0} \Xi_\lambda^a = -\sum_j \chi_{[0,T]}(g_j) f' \omega \langle D_j^\lambda \psi, G_\lambda(t) \rangle, \text{a.e.} \]

To evaluate the limit of \(\Xi_\lambda^b \) we note that
\[[(1 \otimes A(S_t^{\omega,\lambda^2}g_j)), U_{t/\lambda^2}^{(\lambda)}] = \sum_{n=1}^\infty (\frac{\lambda}{2\hbar})^n \int_0^{t/\lambda^2} dt_1 \int_0^{t_2} dt_2 ... \int_0^{t_{n-1}} dt_n [(1 \otimes A(S_t^{\omega,\lambda^2}g_j)), H_1(t_1)...H_f(t_n)] \]
\[= \sum_{n=1}^\infty (\frac{\lambda}{2\hbar})^n \int_0^{t/\lambda^2} dt_1 \int_0^{t_2} dt_2 ... \int_0^{t_{n-1}} dt_n [(1 \otimes A(S_t^{\omega,\lambda^2}g_j)), H_1(t_1)]H_2(t_2)...H_f(t_n) \]
\[+ H_1(t_1)[(1 \otimes A(S_t^{\omega,\lambda^2}g_j)), H_2(t_2)...H_f(t_n)]. \]

It can be shown that in the limit \(\lambda \to 0 \) only the commutator involving \(H_1(t_1) \) contributes. Hence
\[\lim_{\lambda \to 0} \Xi_\lambda^b = \lim_{\lambda \to 0} -\sum_{n=1}^\infty (\frac{\lambda}{2\hbar})^n \int_0^{t/\lambda^2} dt_1 \int_0^{t_2} dt_2 ... \int_0^{t_{n-1}} dt_n \sum_{j,k} \langle S_t^{\omega,\lambda^2}g_j, S_t^{\omega,\lambda^2}g_k \rangle \text{Tr} \{ |\phi \rangle \langle \psi | \otimes B_{T/\lambda^2}^{(\omega,\lambda)}(f') |\Psi_R \rangle \langle \Psi_R | B_{T/\lambda^2}^{(\omega,\lambda)}(f) D_k^\lambda H_1(t_2)...H_f(t_n) \}, \]
but this is the same as
\[-\lim_{\lambda \to 0} \frac{1}{\lambda^2} \sum_{j,k} \int_0^t ds \langle S_t^{\omega,\lambda^2}g_j, S_t^{\omega,\lambda^2}g_k \rangle D_k^\lambda D_j^\lambda \psi, G_\lambda(t) \rangle = -\sum_{j,k} (g_j|g_k) \omega - \langle \psi, D_j^\lambda D_k G(t) \rangle, \]
where we have used a technical lemma (6.3) of [1].

We now have
\[\langle \psi, G(t) \rangle \]
\[= \lim_{\lambda \to 0} \langle \psi, G_\lambda(t) \rangle = \langle \psi, G(0) \rangle + \lim_{\lambda \to 0} \int_0^t (\Gamma_\lambda(s) + \Xi_\lambda(s)) ds \]
\[= \langle \psi, G(0) \rangle + \int_0^t ds \{ \sum_j \chi_{[S,T]}(s)f|g_j) \omega \langle D_j^\lambda \psi, G(s) \rangle \]
\[- \sum_j \chi_{[S,T]}(s)g_j f\omega \langle \psi, D_j G(s) \rangle - \sum_{j,k} (g_j|g_k) \omega - \langle \psi, D_j^\lambda D_k G(s) \rangle \}. \]
Here we have written \((g | f)_{Q_+}^\omega \) for \((g | f)_{Q+}^\omega \) when \(Q = 1\).
The quantum stochastic differential equation corresponding to this integral equation is
\[
dU_t = \left\{ \sum_j (D_j \otimes dB_Q^\omega (g_j, t) - D_j^\dagger \otimes dB_Q^\omega (g_j, t)) - \sum_{j,k} (\langle g_j | g_k \rangle \omega - D_j^\dagger D_k) dt \right\} U_t.
\]
The generalization to \(Q > 1\) and several coupling frequencies \(\omega\) is now obvious.

References

[1] Accardi, L., Frigerio, A. and Lu, Y.G.: The weak coupling limit as a quantum functional central limit. Comm. Math. Phys. 131, 537-570 (1990).
[2] Louisell, W.: Quantum statistical properties of radiation. John Wiley and Sons (1973).
[3] Pulé, J.V.: The Bloch equations. Comm. Math. Phys. 38, 241-256 (1974).
[4] Davies, E.B.: Markovian master equation. Comm. Math. Phys. 39, 91-110 (1974).
[5] Haken, H.: Laser Theory. Springer (1984).
[6] Lax, M.: Phys. Rev. 145, 111-129 (1965).
[7] von Waldenfels, W.: Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. SLNM 1055 (ed Accardi, Frigerio, Gorini).
[8] Accardi, L., Frigerio, A. and Lu, Y.G.: The weak coupling limit (II): The Langevin equation and finite temperature case. Preprint Volterra Centro No.13 (1989).
[9] Accardi, L., Frigerio, A. and Lu, Y.G.: The weak coupling limit for Fermions. Preprint Volterra Centro No.12 (1989).
[10] Accardi, L., Frigerio, A. and Lu, Y.G.: The weak coupling limit without rotating wave approximation. Preprint Volterra Centro No.23 (1990).
[11] Accardi, L., Frigerio, A. and Lu, Y.G.: Unified Approach to the Quantum Master and Langevin Equations. Preprint Volterra Centro No.69 (1991).
[12] Accardi, L. and Lu, Y.G.: On the weak coupling limit for quantum electrodynamics. Prob. Meth. in Math. Phys. (ed F. Guerra, M.I. Loffredo, C. Marchro) World Scientific (1992) pgs 16-22.
[13] Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Comm. Math. Phys. 131, 537-570 (1990).
[14] Parthasarathy, K.R.: An introduction to Quantum Statistical Calculus. Monographs in Mathematics. Birkhauser (1992).
[15] Kittel, G.: Quantum theory of solids, John Wiley and Sons (1963).
[16] N.N. Bogolubov and N.N. Bogolubov Jr.: Some applications of the Polaron Theory. World Scientific Lecture Notes in Mathematics, vol 4 (1992).
[17] Sewell, G.L.: Quantum Theory of Collective Phenomena, Monographs on the physics and chemistry of materials, Oxford Science Publications (1986).
[18] Collett, M.J., Gardiner, C.W.: Phys. Rev. A 1386 (1984).
[19] Messiah, A.: Quantum Mechanics. Vol II, North Holland Publishing Company (1961).
[20] Au, C-K. and Feinberg, G.: Phys. Rev. A 9, 1974 (1974) and 12, 1772 (1975).
[21] Ford, G.W. von Waldenfels, W.: Radiative Energy Shifts for a Nonrelativistic Atom.