Extensive Air Showers with Unusual Spatial and Temporal Structure

Rashid Beisembaev¹, Dmitriy Beznosko²,⋆, Kanat Baigarin³, Ayan Batyrkhanov³, Elena Beisembaeva¹, Oleg Dalkarov¹, Alexander Iakovlev², Vladimir Ryabov¹, Turlan Sadykov⁴, Sergei Shaulov¹, Marina Vildanova¹, Tileubek Uakhitov³, and Valeriy Zhukov¹

¹P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
²Bard Early College New Orleans, New Orleans, USA
³Nazarbayev University, Astana, KZ
⁴LLP “Institute of Physics and Technology”, Almaty, Kazakhstan

Abstract.
The Extensive Air Shower (EAS) data collected by the Horizon-10T detector system has numerous events exhibiting the unusual spatial and temporal structure. These are events typically with two to four pulses of tens of ns wide that are present at distances above 300 m from the EAS axis, with these pulses being delayed by hundreds of ns. Each of such pulse groups were registered simultaneously by several detectors separated by up to a km from each other. The detectors brief overview and the analysis of simulated EAS by the CORSIKA software package are given in this article. The analysis indicates that such events with unusual structure cannot be formed by showers with EM and hadronic components only. This indicates a possibility for a new process observation beyond the standard model description in the energy range above ~10¹⁸ eV.

1 Introduction

The Horizon-10T (H10T) [1] is an upgrade from the previous Horizon-T (HT) [2] detector system that was constructed at the Tien Shan High-altitude Science Station (TSHSS). The station is part of the P. N. Lebedev Physical Institute of the Russian Academy of Sciences and is located at a height of ~3340 m above sea level near the city of Almaty, Kazakhstan. H10T is designed to study both the spatial and temporal distribution of the charged particles within the EAS with a time resolution of a few ns. It consists of ten charged particle detection points separated by distances up to 1.3 km. The aerial view of the detector system is shown in Figure 1.

2 H10T Detectors

The H10T detector system consists of: plastic scintillator detectors [3] with Hamamatsu [4] R7723 or H6527 PMT, and glass detectors with R7723 PMT.

All Scintillator Detectors (SD) use polystyrene-based square-shaped cast scintillator with 1 m² area and 5 cm thickness. The SDs in detection points 1 - 8 use R7723 PMT assembly as photo-detector, and the far points 9 and 10 use H6527 that have higher gain and photosensitive area to compensate for signal loss in cables. The cable calibration [1, 5] shows how the signal changes with cable length. Detection points 1, 4, 5, 6 and 7 also have glass-based detectors (GD) together with the SD. Each GD uses 50 cm x 50 cm x 3 cm optical glass that is painted white using TiO₂ and has a R7723 PMT assembly.

Each detector is calibrated for minimum ionizing particles signal using the background cosmic ray flux. The details of calibration can be found in [6].

3 Data Acquisition System and Trigger Logic

The H10T DAQ system consists of 3 CAEN [7] DT5730 analog to digital converter (ADC) units and custom control software.

One of the ADCs is designated as a main board and is used to form a hardware master trigger using double...
coincidence from detection points 5 and 6 (or 4 and 7). Then the trigger is fed to all ADCs. The same pulse is used for the synchronization that is recorded by the 8th channel of each ADC.

Offline triggers are applied to data before analysis. Minimally we require at least 4 detection points to have a signal at the level above 7 widths of the noise floor. Resultant rate of EAS registration intensity rate is \( \sim 45 \) events/day at the H10T detector system.

4 Standard EAS Event Definition

The choice is made to accept as a Standard Event (SE) [8] the showers as generated by the EAS simulation package CORSIKA [9]. The produced simulated events can be used as a reference and they also allow to assess various EAS properties. For illustration, Figure 2 shows the arrival time vs. distance from the axis of EAS disk at the observation level. Times are selected at 50% of the particles passing through a simulated detector. Figure 3 displays the width of the EAS disk in ns, defined as the time between the 10% and 90% of particles at a detector. The figures have been fitted with quadratic and linear functions respectively.

The arrival time is used to obtain the direction of the primary for each EAS. But one can use the pulse width information in addition to the particle density distribution for the event reconstruction. This requires the detector time resolution \(<10\) ns for the width information to be used in the reconstruction. Figure 4 shows an event from data which corresponds to the definition of an SE and can be analyzed using pulse width information in addition to particle density and arrival time. Amplitudes of all pulses are normalized to the maximal one.
between the 10% and 90% of particles at a detector. The plays the width of the EAS disk in ns, defined as the time particles passing through a simulated detector. Figure 3 dis-
observation level. Times are selected at 50% of the par-
rival time vs. distance from the axis of EAS disk at the
EAS properties. For illustration, Figure 2 shows the ar-
used as a reference and they also allow to assess various
CORSIKA [9]. The produced simulated events can be
the showers as generated by the EAS simulation package
The choice is made to accept as a Standard Event (SE) [8]

4 Standard EAS Event Definition

Resultant rate of EAS registration intensity rate is
a signal at the level above 7 widths of the noise floor.
Minimally we require at least 4 detection points to have
channel of each ADC.

Figure 2. Arrival times at different distances from EAS axis at
the observation level.

Figure 3. EAS disk width at di-
ferent distances from EAS axis at
the observation level.

Figure 7. Unusual event from HT data.

5 Unusual Event Definition

The event shown in parts in Figures 5, 6 and 7 was de-
tected on Jan. 26 2016 at 3:51 UTC and is fully shown
and described in [8]. The axis of this event was between
detection points 2 and 5, closer to 2. You can see how the
separation between pulses increases with distance from the
axis. We will use this example to define a class of Unusual
Events (UE) as events that have multiple peaks (or modes)
in several detectors. The main property of such events is
that the time between peaks varies with the distance from
the EAS axis.

The distance of detection points 1, 7, 6, 4, 3 and 8
from the event axis grows in the order listed, and the time
between modes increases following the same trend. This
appears to be the property of all UEs detected.

6 Constructing UE from Simulated SE

Two possibilities of the UE formation from two standard
EAS have been considered: firstly the EAS disk being de-
layed with respect to another as in Figure 8, and secondly
the EAS disks arriving to the observation level simultane-
ously with their cores separated by some distance as shown
in Figure 9.

To emulate how the possible pulses from each combi-
nation will look like, the simulated EAS disk from a
$10^{17}$ eV vertical proton is used. A simulated detector of
1 square meter area is placed at different distances from
the EAS axis. Resulting histograms of particle numbers
passing through the detector in time are produced.

First, we look at one EAS being delayed 100ns behind
the first one. If the detector is placed 30 m from the com-
mon axis of these disks, the histogram of particle number
in time is shown in Figure 10. Two clearly separated peaks
are observed with high particle density as expected from
the general disk shape and density distribution in it.

Figure 11 and Figure 12 show the particles distribu-
tion at 170 m and 290 m from the axis respectfully. We
can see that the peaks are actually getting closer to each
other at 170 m and the only reason separation is clearer
at 290 m is due to the low particle density. Also peaks of
higher widths are produced at larger distances. Thus, the
observed UE can not be reproduced by two or more EAS
disks delayed from each other.

Next we position two EAS disks side-by-side without
any time delay between the parent particles. Figure 13
shows the particle time distribution in the detector placed
30 m from the axis of one EAS and 50 m from the axis
of the other with the total separation between the axes being
80 m. Then Figure 14 shows the particle time distribution
in the detector placed 30 m from the axis of one EAS
and 110 m from the axis of the other with the total separation
between the axes being 140 m. As we can see, the con-
tribution from the second EAS is much lower then from first
one due to the fast drop in particle density with distance
Figure 12. Two EAS disks with 100ns delay, detector is 290 m from axis.

Figure 13. Two EAS disks side-by-side. Detector is 30 m from axis of one disk and 50 m from axis of another.

Figure 14. Two EAS disks side-by-side. Detector is 30 m from axis of one disk and 110 m from axis of another.

from the axis, so only a single widened pulse is detected. Thus this can not be how UEs are formed.

7 Conclusion

The Horizon-10T detector system is specifically designed for extended measurements for unusual events first reported by the Horizon-T detector. H10T is located at an altitude of about 3340 meters above sea level centered at geographical coordinates of 43°02′49″ N and 76°56′43″ E. It has ten charged particle detection points, separated by hundreds of meters. Each point has scintillator detectors, some are also equipped with glass ones. Detectors are read out by Hamamatsu PMTs. A full waveform is digitized every 2 ns for a total of 5110 points.

Simulated EAS disks were used in an attempt to reproduce UE with a combination of SE. Two simple options - one disk delayed along the same axis, or two disks co-moving at some separation between their axes - do not give the same signal in a simulated detector as the unusual event data from H10T. The data analysis continues and more physics runs are planned. Far detectors (from center point 1) upgrade to larger areas is planned.

Acknowledgments

This work was funded in part by MES RK state-targeted program BR95236464.

References

[1] D Beznosko et al., arXiv:1803.08309 (2018)
[2] R U Beisembau et al., arXiv:1605.05179 (2016)
[3] Dmitriy Beznosko et al., EPJ Web of Conferences 145, 19016 (2017)
[4] Hamamatsu Photonics, 314-5 Shimokanzo, Toyooka-village, Iwatagun, Shizuoka-ken, 438-0193 Japan http://www.hamamatsu.com
[5] T Beremkulov et al., arXiv:1608.04312, (2016)
[6] Dmitriy Beznosko et al., EPJ Web of Conferences 145, 11004, (2017)
[7] CAEN S.p.A. Via della Vetraia, 11, 55049 Viareggio Lucca, Italy http://www.caen.it
[8] Dmitriy Beznosko et al., EPJ Web of Conferences 145, 14001 (2017)
[9] D. Heck et al., Forschungszentrum Karlsruhe Report FZKA 6019 (1998)