Immunostick Test for Detecting ζ-Globin Chains and Screening of the Southeast Asian α-Thalassemia 1 Deletion

Supansa Pata1†, Matawee Pongpaiboon2†, Witida Laopajon1,2, Thongperm Munkongdee3, Kittiphong Paiboonsukwong3, Sakorn Pornpresert4, Suthat Fucharoen3 and Watchara Kasinrerk1,2*

Abstract

Background: Couples who carry α-thalassemia-1 deletion are at 25% risk of having a fetus with hemoglobin Bart’s hydrops fetalis. Southeast Asian deletion (−-(SEA)) is the most common type of α-thalassemia 1 among Southeast Asian populations. Thus, identification of the (−-(SEA)) α-thalassemia 1 carrier is necessary for controlling severe α-thalassemia in Southeast Asian countries.

Results: Using our generated anti ζ-globin chain monoclonal antibodies (mAbs) clones PL2 and PL3, a simple immunostick test for detecting ζ-globin chain presence in whole blood lysates was developed. The procedure of the developed immunostick test was as follows. The immunostick paddles were coated with 50 μg/mL of mAb PL2 as capture mAb, or other control antibodies. The coated immunostick was dipped into cocktail containing tested hemolysate at dilution of 1:500, 0.25 μg/mL biotin-labeled mAb PL3 and horseradish peroxidase-conjugated streptavidin at dilution of 1:1000. The immunostick was then dipped in precipitating substrate and the presence of ζ-globin chain in the tested sample was observed by the naked eye. Upon validation of the developed immunostick test with various types of thalassemia and normal subjects, 100% sensitivity and 82% specificity for detection of the (−-(SEA)) α-thalassemia-1 carriers were achieved. The mAb pre-coated immunostick can be stored at room temperature for at least 20 weeks.

Conclusion: In this study, a novel simple immunostick test for the screening of (−-(SEA)) α-thalassemia 1 carriers was presented. The developed immunostick test, within a single test, contains both positive and negative internal procedural controls.

Keywords: Immunostick test, ζ-Globin chain, (−-(SEA)) α-thalassemia 1, Thalassemia screening test

Introduction

Hemoglobin (Hb) Bart’s hydrops fetalis is the most severe type of thalassemia, in which the fetus suffers from severe anemia, hypoxia and mortality in utero. α-thalassemia 1 is a thalassemia caused by deletion of two α-globin genes in cis. Married couples who carry the α-thalassemia 1 trait have a 25% risk of Hb Bart’s hydrops fetalis in each pregnancy as per the absence of α-globin gene [1–3]. With improper care, mothers carrying a hydropic fetus can develop severe preeclampsia, placental abruption and antepartum hemorrhage [4, 5]. In Southeast Asian populations, within the α-thalassemia 1 trait, the Southeast Asian (SEA) type deletion, named SEA type α-thalassemia 1, is the most common genotype [6–10]. To prevent homozygous α-thalassemia 1 (Hb Bart’s hydrops fetalis) in these populations, determination (−-(SEA)) α-thalassemia-1 trait and counseling are, therefore, necessary.

Currently, several screening tests for diagnosis of α-thalassemia 1 are available. Complete blood count, red blood cell indices and osmotic fragility test are the simple
tests commonly used; however, sensitivity and specificity are low [11]. Genotyping using polymerase chain reaction (PCR) is the standard technique to detect α-thalassemia 1 carriers with high sensitivity [11, 12]. However, complicated procedures, time consumption and the requirement for a well-equipped laboratory and expert staff make the genotyping methods unaffordable, especially in resource-limited countries. In (−−(SEA)) α-thalassemia-1 trait, ζ-globin chains have been reported to be present in red blood cells [13–16]. Consequently, immunoassays have been developed for the detection of ζ-globin chains in blood samples and applied for screening of (−−(SEA)) α-thalassemia-1 carriers [13, 14, 16–20]. Previously, we have developed the modified ELISA for the detection of ζ-globin chains using our generated monoclonal antibodies (mAbs) against ζ-globin chains, named mAb PL2 and mAb PL3 [19]. However, the developed ELISA was not appropriate for routine screening of thalassemia.

In this study, we further established a simple immunostick test for ζ-globin chain detection. The developed immunostick test could be used for screening (−−(SEA)) α-thalassemia-1 carriers with a very high sensitivity. This method is simple, easily performed and the results could be determined by the naked eye. This test is therefore suitable for screening in mass population as well as individual testing, especially in remote areas.

Results

Immunostick Test for Detection of ζ-Globin Chain in Blood Sample

Immunostick test is a solid phase immunoassay. In this study, double antibody sandwich immunostick assay was developed for the detection of ζ-globin chains in blood samples. As we have previously generated two anti ζ-globin chain mAbs [19], the mAbs were incorporated in the immunostick test. An immunostick contains four paddles with high protein binding properties. We, therefore, designed the immunostick test as shown in Fig. 1. Within each immunostick test (4 paddles), test, positive control, uncoated negative control and isotype-matched mAb control were included and simultaneously verified in the same sample (Fig. 1a). For determining the presence of ζ-globin chains in samples, the spotted colors on each stick paddle were observed with the naked eye and graded according to the color intensity (no color (N): no reactivity; Light blue (LB): weakly positive reactivity; dark blue (DB): strongly positive reactivity) (Fig. 1b).

Determination of the Optimal Concentration of Capture mAb on the Immunostick Test

In our immunostick test, anti ζ-globin chain mAb clone PL-2 was used as the capture mAb (Fig. 1a). The optimal concentration of capture mAb PL2 was then determined by block titration. As shown in Table 1, 50 and 100 μg/mL of mAb PL2 coated paddles showed strongly positive reactivity (dark blue dot) with hemolysate containing ζ-globin chains whereas weakly positive reactivity (light blue dot) was observed on paddle coated with 20 μg/mL of mAb PL2. With normal subject hemolysate, 100 μg/mL of mAb PL2 coated paddle, however, showed false positive reactivity (light blue dot), while paddle coated with 20 and 50 μg/mL of mAb PL2 showed negative reactivity. From these results, 50 μg/mL of mAb PL2 was selected as the optimal concentration for using as capture mAb PL2 on the stick.

Determination of Optimal Dilution of Hemolysate for Use in Immunostick Test

In our experiments, we found that if undiluted hemolysate was used, high assay background was occurred with the developed immunostick test. Therefore, an optimal dilution of hemolysate used needed to be determined. As shown in Table 2, within 10 non-SEA type α-thalassemia 1 hemolysates, while some hemolysates (samples N1, N3, N4, N5, N7, N9) at 1:250 dilution showed false positive, all tested hemolysate at dilutions of 1:500, 1:1000 and 1:2000 was negative with the test and negative control paddles. The positive control paddles were always positive. Hemolysate at dilution of 1:500 was, therefore, selected as the optimal dilution for use in immunostick test.

Development of Simple immunostick test

In order to shorten the processing step and incubation time, a simple immunostick test was further developed. The principle of the test was shown in Fig. 2. The processing steps were shortened by dipping the pre-coated immunostick into the cocktail solution containing tested hemolysate, detecting mAb (biotinylated mAb PL3) and HRP-conjugated streptavidin. After incubation, the stick was then dipped into precipitating TMB substrate. The blue color spots appearing on the stick paddles were observed with the naked eye.

Previously, we demonstrated that the SEA type α-thalassemia 1 hemolysate contained ζ-globin chain ranges between 6.43 and 915.36 μg/mL [19]. Thus, the estimated maximum concentration of ζ-globin chain in hemolysate at dilution of 1:500 should be 1.8 μg/mL. To avoid postponement phenomenon, we therefore tested 9 mixture types of cocktail solution which contained biotinylated detecting mAb PL3 of 0.125, 0.25 and 0.5 μg/mL and HRP-conjugated streptavidin at 1:500, 1:1000 and 1:2000 for detecting 5 μg/mL of ζ-globin chains.

As shown in Table 3, hemolysate containing 5 μg/mL ζ-globin chains showed positive reactivity (dark blue dot) on the test paddles in all tested conditions. When using the cocktail solution containing streptavidin-HRP at dilution of 1:500, however, hemolysate containing ζ-globin
chain not only showed a strong positive on the test paddles but also showed some background (light blue dot) on isotype-matched mAb control paddles. Furthermore, with normal hemolysate (no ζ-globin chain), the background was also observed on test paddles and isotype-matched control paddles. These results indicated that streptavidin-HRP at dilution of 1:500 was not appropriate for the immunostick test.

When using cocktail solution containing streptavidin-HRP at dilution of 1:1000, the background on isotype-matched control mAb paddles was observed only under the condition of using mAb PL3 0.5 μg/mL. Meanwhile,

Table 1 Titration of the concentration of captured anti ζ-globin chain mAb clone PL2

Hemolysates	PL2 mAb (μg/mL)	Isotype matched mAb (μg/mL)	
Hb Bart’s hydrops fetalis (containing 5 μg/mL of ζ-globin)	20	50	100
Normal	N	N	N
LB*	DB*	DB	N*

* Light blue: Weakly positive reactivity
* Dark blue: Strongly positive reactivity
* No color: Negative reactivity
Table 2: Determination of optimal dilution of hemolysates

Sample number	Hemolysates of non-SEA type α-thalassemia 1											
	Dilution 1:250	Dilution 1:500	Dilution 1:1000									
	Test paddle	Internal control paddles	Test paddle	Internal control paddles	Test paddle	Internal control paddles						
	Positive control	Negative control	Isotype matched control	Uncoat control	Positive control	Negative control	Isotype matched control	Uncoat control				
N1	LB\(^a\)	DB\(^b\)	LB	N\(^c\)	N	DB	N	N	N	DB	N	N
N2	N	DB	N	N	N	DB	N	N	N	DB	N	N
N3	LB	DB	LB	N	N	DB	N	N	N	DB	N	N
N4	LB	DB	LB	N	N	DB	N	N	N	DB	N	N
N5	LB	DB	LB	N	N	DB	N	N	N	DB	N	N
N6	N	DB	N	N	N	DB	N	N	N	DB	N	N
N7	LB	DB	N	N	N	DB	N	N	N	DB	N	N
N8	N	DB	N	N	N	DB	N	N	N	DB	N	N
N9	LB	DB	LB	N	N	DB	N	N	N	DB	N	N
N10	N	DB	N	N	N	DB	N	N	N	DB	N	N

\(^a\)Light blue: Weakly positive reactivity
\(^b\)Dark blue: Strong positive reactivity
\(^c\)No color: Negative reactivity
hemolysate containing ζ-globin chain showed positive reactivity on the test paddle with no background on isotype-matched mAb control paddles under the condition of using 0.125 and 0.25 μg/mL of mAb PL3.

In the cocktail solution containing HRP labelled streptavidin at dilution of 1:2000, hemolysate containing ζ-globin chain showed positive reactivity on the test paddles with no background on isotype-matched mAb control paddles. The apparent blue color dot of the test paddle was, however, weak (light blue dot).

As per the obtained results, we selected 0.25 μg/mL of biotinylated PL3 and HRP-conjugated streptavidin at dilution of 1:1000 as optimal conditions for the cocktail solution.

Taken together, the optimal condition for a simple immunostick test was using of 50 μg/mL capture mAb PL2 for pre-coated immunostick. For the cocktail solution, 0.25 μg/mL of detecting biotinylated mAb PL3 mixed with HRP-conjugated streptavidin at dilution of 1:1000 in detecting ζ-globin chain of 1:500 tested hemolysate was the optimal condition.

The immunostick test was then validated with hemolysates containing various concentrations of ζ-globin chain. As shown in Fig. 3, the intensity of the blue color spots appearing on the stick paddles were positively correlated with the concentration of ζ-globin chain in the sample. The detection limit of the immunostick test was 0.1 μg/mL.

Validation of the developed simple immunostick test for screening of SEA type deletion α-thalassemia 1 carriers
To evaluate the developed simple immunostick test, 53 SEA type α-thalassemia 1 samples and 95 non-SEA type α-thalassemia 1 samples were tested. The results were summarized in Table 4. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the immunostick test for SEA type α-thalassemia 1 detection were 100, 82, 76 and 100%, respectively.

Stability of the Pre-Coated Immunostick Test
We further prepared the pre-coated immunosticks by coating 50 μg/mL of mAb PL2, 0.5 μg/mL of goat anti-mouse IgG antibody and 50 μg/mL of mouse IgG1 mAb on stick paddles. Then, the sticks were covered with 10% glucose and dried. The pre-coated immunosticks were stored at room temperature for 20 weeks. The stability of the pre-coated immunosticks was tested with hemolysate containing 0, 0.25 and 0.5 μg/mL ζ-globin chains. It was found that pre-coated immunosticks remained stable for at least 20 weeks (Table 5).

Discussion
Diagnosis of α-thalassemia 1 carriers is an important step for the prevention of Hb Bart’s hydrops fetalis, which is the most severe thalassemia disease. Several methods, including ζ-globin chain detection, have been developed for α-thalassemia-1 screening [13, 14, 16–20]. Previously, using our generated anti-ζ-globin chain mAbs, an ELISA for detecting ζ-globin chain had been developed [19]. The ELISA in microplate platform, however, has several drawbacks, including time consumption, complicated procedures, the requirement of sophisticated laboratory instrumentation with well-trained technicians and unsuitability for conducting individual tests [13, 14, 16–21]. In this study, we modified our ELISA to an immunostick test platform. Based on the use of stick-type solid support and precipitated chromogenic substrate, the result can be evaluated by the naked eye.

As we have two mAbs specifically react to ζ-globin chains without cross-reactivity with other globin chains.
Table 3: Determination of the appropriate cocktail solution containing hemolysates and biotin-PL3 and HRP-streptavidin

Cocktail mixtures	Hb Bart's hydrops fetalis hemolysates (containing 5 μg/mL of ζ-globin)	Normal hemolysates dilution 1:500							
	Test paddle	Internal control paddles	Test paddle	Internal control paddles	Test paddle	Internal control paddles			
PL3-biotin (μg/mL)	Streptavidin-HRP (dilution)	Positive control	Negative control	Isotype matched control	Uncoat control	Positive control	Negative control	Isotype matched control	Uncoat control
0.125	1:500	DB^a	DB	LB^a	N^c	LB	DB	LB	N^c
0.250	DB	DB	DB	LB	N	LB	DB	LB	N
0.500	DB	DB	DB	LB	N	LB	DB	LB	N
0.125	1:1000	DB	DB	N	N	N	DB	N	N
0.250	DB	DB	DB	N	N	N	DB	N	N
0.500	DB	DB	DB	LB	N	LB	DB	LB	N
0.125	1:2000	LB	DB	N	N	N	DB	N	N
0.250	LB	DB	DB	N	N	N	DB	N	N
0.500	LB	DB	DB	N	N	N	DB	N	N

^aLight blue: Weakly positive reactivity
^bDark blue: Strongly positive reactivity
^cNo color: Negative reactivity
Table 4 Validation of developed immunostick test for screening of α-thalassemia 1 SEA type deletion carriers

Immunosick test for ζ-globin chain	PCR analysis for SEA-thalassemia 1	Total
Positive	Positive	53
	Negative	17
	Total	70
Negative	Positive	0
	Negative	78
	Total	78
	Total	148

Sensitivity (53/73) × 100 = 76%
Specificity (78/78) × 100 = 100%
Positive predictive value (53/70) × 100 = 76%
Negative predictive value (78/78) × 100 = 100%

The components in the samples may contribute to assay background [22–24]. It is necessary to determine the optimal dilution of the sample used. In this study, we found that hemolysate at dilution of 1:500 was the appropriate dilution for the developed immunostick test. Lesser dilutions exhibited assay background, which contributed to unreliability of result.

Generally, sandwich type immunoassay requires a complicated procedure and long time to run the assay (approximately 4 h). In order to reduce the assay procedure steps, we developed a simple immunostick test which combines the steps of ζ-globin chain capturing and detecting together. For this purpose, to avoid the high dose hook effect or postzone phenomenon, the titration of the appropriate concentration of biotinylated mAb PL3 (detecting mAb) and HRP-conjugated streptavidin for detection of ζ-globin chain in hemolysate (at dilution of 1:500) is obligatory [23]. Upon optimization, the simple immunostick test was successfully developed. The developed simple immunostick was proven to provide reliable results that could be obtained within 90 min.

The sensitivity and specificity of the developed immunostick test were determined in comparison to the gold standard PCR method. The developed immunostick test showed very good sensitivity (100%) and specificity (82%). Furthermore, the immunostick test has 100% NPV. By using the immunostick test for screening SEA type α-thalassemia 1, the negative results could exclude (−(SEA)) α-thalassemia-1 trait. The PPV of immunostick was 76%, which was higher than the conventional screening protocol using mean corpuscular volume with cut-off 80 fl (approximately 40%) [25, 26]. Obviously, in usage for screening SEA type α-thalassemia 1, the developed immunostick test would significantly reduce cost and workload from DNA analysis to confirm screening results. As the pre-coated immunosticks were stable at room temperature for at least 20 weeks, commercialization of the assay is conceivable in the future.
Table 5 Stability of pre-coated immunostick test

Time of storage	Normal hemolysates dilution 1500	Hb Bart's hydrops fetalis hemolysates containing 0.25 μg/mL ζ-globin	Hb Bart's hydrops fetalis hemolysates containing 0.5 μg/mL ζ-globin		
Test paddle	Internal control paddles	Test paddle	Internal control paddles	Test paddle	Internal control paddles
Positive control	Negative control	Test paddle	Internal control paddles	Test paddle	Internal control paddles
Isotype matched control	Uncoat control	Isotype matched control	Uncoat control	Isotype matched control	Uncoat control
Day 1	N^a	N	N	N	N
Week 1	N	DB^b	N	N	DB
Week 5	N	DB	N	N	DB
Week 10	N	DB	N	N	DB
Week 15	N	DB	N	N	DB
Week 20	N	DB	N	N	DB

^aLight blue: Weakly positive reactivity
^bDark blue: Strongly positive reactivity
^cNo color: Negative reactivity
immunostick test, approximately 20% of these subjects showed positive reactivity. These results are similar to those obtained previously by using other immunoassay methods [17, 18]. The cause of this positivity, however, is still unknown. The cross-reactivity of anti-ζ-globin chain mAbs used with other globin chains have been assumed [18].

Currently, the ELISA test for detecting ζ-globin chain is commercially available. The price of the ELISA test is, however, very expensive which is around US$ 700–1000 per 96-microwell plate. This price is even higher when purchase from other countries than in USA. We then compared the cost of our established immunostick test and ELISA. The immunostick test is much less expensive. The approximate cost per test by ELISA and immunostick test are US$ 10 and 2, respectively.

In conclusion, we present here the development of a novel ζ-globin chain detection method: immunostick test. The developed method was a simple and reliable screening test to identify SEA type deletion α-thalassemia-1. By this technique, no sophisticated equipment is required and the result can be evaluated by the naked eye. The developed method, therefore, is valuable for screening α-thalassemia-1 in Southeast Asian countries where molecular testing is limited.

Materials and Methods

Antibodies
Mouse anti-ζ globin chain mAb clones PL2 (IgG1 isotype) and PL3 (IgG1) [19], mouse anti-Ag85B mAb clone AM85B-8B (IgG1, [27]) were generated in our laboratory. Goat anti-mouse immunoglobulins antibody was obtained from Jackson ImmunoResearch (West Grove, PA, USA). EZ-Link™ Sulfo-NHS-LC-Biotin was purchased from Pierce (Rockford, IL, USA). Horseradish peroxidase (HRP) and 3, 3′, 5, 5′-tetramethylbenzidine (TMB) substrate was purchased from Invitrogen (Camarillo, CA, USA). Precipitating TMB substrate was obtained from KPL (Gaithersburg, MD, USA). Nunc™ Immuno Stick was purchased from Thermo Fisher Scientific (MA, USA).

Blood Samples
Ethical approval of this study was obtained from the Ethics Committee, Faculty of Associated Medical Sciences, Chiang Mai University (AMSEC-60EX-022).

The EDTA-anticoagulated blood specimens were submitted to Thalassemia Laboratory, the Associated Medical Sciences Clinical Service Center, Faculty of Associated Medical Sciences, Chiang Mai University and Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, for hemoglobinopathy and thalassemia diagnosis. All samples were tested for α-thalassemia 1 SEA type deletions using real-time PCR and high-resolution melting analysis.

For determination of the concentration of ζ-globin chain in Hb Bart’s hydrops fetalis hemolysate, the concentration of total hemoglobin was measured by cyanmethemoglobinometry. Whole molecules of hemoglobin tetramer were separated by Acid-Urea-Triton X-100 polyacrylamide gel electrophoresis. Afterward, the globin chains were stained with Coomassie brilliant blue. Densitometry using an ImageScanner III (GE Healthcare) and the Image QuantT computer program were performed to determine the concentration of ζ-globin chain in hemolysate.

Optimization of Capture mAb for Immunostick Test
Firstly, the anti-ζ globin chain mAb clone PL3 were biotinylated using EZ-Link™ Sulfo-NHS-LC-Biotin according to manufacturer instructions. Five μL of various concentrations of mAb PL2 or isotype-matched control mAb was dotted on each paddle of immunostick and incubated at 4°C overnight. Sticks were washed with 0.05% Tween-PBS and blocked with 2% skimmed milk in PBS at 37°C for 1 h. After washing, the sticks were dipped into hemolysate of Hb Bart's hydrops fetalis containing 5 μg/mL of ζ-globin chain or normal subject. After incubation for 1 h at 37°C, sticks were washed by dipping into 0.05% tween 20 in PBS (0.05% Tween-PBS) and briefly agitating for 5 s. Subsequently, sticks were dipped into 10 μg/mL of biotinylated mAb PL3. After washing, the antigen-antibody complex was monitored by immersing into HRP-labeled streptavidin at dilution of 1:5000. Sticks were washed and dipped into precipitating TMB substrate for 15 min. Blue color spot on the sticks, representing positive reaction, was observed.

Determination of Optimal Dilution of Hemolysate
The 50 µg/mL of mAb PL2, 0.5 µg/mL of goat antimouse immunoglobulins antibody or 50 µg/mL isotype-matched control mAb were applied in a 5 μL dot on each paddle of immunostick and incubated at 4°C overnight. Sticks were washed with 0.05% Tween-PBS and blocked with 2% skimmed milk in PBS at 37°C for 1 h. After washing, the sticks were dipped into various dilutions of hemolysate of non-SEA type α-thalassemia 1. After incubation for 1 h at 37°C, sticks were washed and dipped into 10 μg/mL of biotinylated mAb PL3. After washing, the antigen-antibody complex was monitored by immersing into HRP-conjugated streptavidin at dilution of 1:5000. Sticks were washed and dipped into precipitating TMB substrate for 15 min. Blue color spot on the sticks, representing positive reaction, was observed.
Establishment of Simple Immunostick Test for Detection of ζ-Globin Chain

Each immunostick paddle was coated or uncoated with various mAbs as mentioned above and incubated at 4°C overnight. Then, the coated immunosticks were blocked with 2% skimmed milk in PBS at 37°C for 1 h. Immunosticks were dipped in the cocktail solution composed of ζ-globin chain containing hemolysate or normal hemolysate at dilution of 1:500, various concentrations of biotinylated mAb PL3 and HRP-conjugated streptavidin for 1 h at 37°C. The immunosticks were washed by dipping in 0.05% tween 20 in PBS (0.05% Tween-PBS) and briefly agitating for 5 s. Subsequently, sticks were dipped into precipitating TMB substrate for 15 min. Blue color spot on the sticks, representing positive reaction, was observed.

Validation of Immunostick Test for Screening of SEA Type Deletion α-thalassemia 1 Carriers

The developed immunosticks were tested with 148 blood samples, including 95 non-α-thalassemia 1 SEA type deletion and 53 α-thalassemia 1 SEA type deletion. In comparison to the standard method, the sensitivity, specificity, PPV and NPV were determined.

Stability of the Pre-Coated Immunostick Test

Each immunostick paddle was coated or uncoated with various mAbs as mentioned above and incubated at 4°C overnight. Then, the coated immunosticks were blocked with 2% skimmed milk in PBS and incubated at 37°C for 1 h. For long-term storage, pre-coated immunosticks were dipped into 10% glucose in PBS for 5 s. Subsequently, pre-coated immunosticks were dried and stored at room temperature for 20 weeks. The stored immunostick tests were tested for their stability on day 1, then weeks 1, 5, 10, 15 and 20 using hemolysate of SEA type α-thalassemia 1 and non-SEA type α-thalassemia 1.

Abbreviations

ELISA: Enzyme-linked immunosorbent assay; HRP: Horseradish peroxidase; Ig: Immunoglobulin; mAb: monoclonal antibodies; PCR: Polymerase chain reaction; SEA type α-thalassemia 1: Southeast Asian type deletion α-thalassemia 1

Acknowledgments

We acknowledge Mr. Anton Bassel, a native English speaker, for language improvement of our manuscript.

Authors’ Contributions

SP, MP, WL, WK performed the experiments, analysis and interpretation of data. SPo, TM, KP and SF provided the samples. SP and WK were involved in the conception and experimental designs, interpretation of results and advisements. MP and SP drafted the manuscript. SP and WK finalized the manuscript. All the authors have read and approved the final manuscript.

Funding

This work was supported by the TRF and the Thailand Office of Higher Education Commission (Grant numbers MRG6080269 to SP and Grant numbers MRG6180253 to WL), the TRF Senior Research Scholar (Grant number RTA5980007 to WK) and TRF Distinguished Research Professor Grant (Grant Number DPG6080003 to SF). This work was partially supported by Chiang Mai University (Chiang Mai Center of Excellence Project) and the Innovation Hubs of Thailand 4.0 project (in collaboration of Chiang Mai University and Mahidol University).

Availability of Data and Materials

The datasets measured and analyzed during the study are available from the corresponding authors upon reasonable request.

Ethics Approval

The approval of the Ethical Committee of the Faculty of Associated Medical Sciences, Chiang Mai University (AMSEC-60EX-022) was obtained.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interest.

Author details

1Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. 2Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. 3Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 73170, Thailand. 4Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.

Received: 22 April 2019 Accepted: 19 June 2019
Published online: 01 August 2019

References

1. Galanello R, Cao A. Gene test review. Alpha-thalassemia. Genet Med. 2011;13(2):83–8.
2. Leung WC, et al. Alpha-thalassemiaemia. Semin Fetal Neonatal Med. 2008;13(4):215–22.
3. Chui DH. Alpha-thalassaemia and population health in Southeast Asia. Ann Hum Biol. 2005;32(2):123–30.
4. Chui DH. Alpha-thalassemia: Hb H disease and Hb Barts hydrops fetalis. Ann N Y Acad Sci. 2005;1054:25–32.
5. Liao C, et al. Prenatal control of Hb Bart’s hydrops fetalis: a two-year experience at a mainland Chinese hospital. J Matern Fetal Neonatal Med. 2015;28(4):413–5.
6. Cao A, Kan YW. The prevention of thalassemia. Cold Spring Harb Perspect Med. 2013;2(1):1–15.
7. Cohen AR, et al. Thalassaemia. Hematology Am Soc Hematol Educ Program. 2004;2004(1):14–34.
8. Harteveld CL, Higgs DR. Alpha-thalassemia. Orphanet J Rare Dis. 2010;5:13–33.
9. Higgs DR, Engel JD, Stamatoyanopoulos G. Thalassaemia. Lancet. 2012;379(9813):373–83.
10. Keren DF, et al. Comparison of Sebia Capillaries capillary electrophoresis with the primus high-pressure liquid chromatography in the evaluation of hemoglobinopathies. Am J Clin Pathol. 2008;130(5):824–31.
11. Tangvanitsitichai, S. Thalassemia Syndrome. In: Ikehara, K, editor. Advances in the Study of Genetic Disorders. Croatia: InTech; 2011. p. 101–148.
12. Chong SS, et al. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia. Blood. 2000;95(1):360–2.
13. Ausavanurunrung R, et al. Detection of zeta-globin chains in the cord blood by ELISA (enzyme-linked immunosorbent assay): rapid screening for alpha-thalassemia 1 (Southeast Asian type). Am J Hematol. 1998;57(4):285–9.
14. Lafferty JD, et al. A multicenter trial of the effectiveness of zeta-globin enzyme-linked immunosorbent assay and hemoglobin H inclusion body screening for the detection of alpha-thalassemia trait. Am J Clin Pathol. 2008;129(2):309–15.
15. Luo HY, et al. A novel monoclonal antibody based diagnostic test for alpha-thalassemia-1 carriers due to the (−SEA/1) deletion. Blood. 1988;72(5):1589–94.
16. Tang W, et al. Human embryonic zeta-globin chain expression in deletional alpha-thalassemias. Blood. 1992;80(2):517–22.
17. Tang L, et al. Development and validation of a zeta-globin-specific ELISA for carrier screening of the (−SEA) alpha thalassaemia deletion. J Clin Pathol. 2009;62(2):147–51.
18. Jomoui W, et al. Screening of (−SEA) alpha-thalassaemia using an immunochromatographic strip assay for the zeta-globin chain in a population with a high prevalence and heterogeneity of haemoglobinopathies. J Clin Pathol. 2017;70(1):63–8.
19. Pata S, et al. A simple and highly sensitive ELISA for screening of the alpha-thalassaemia-1 southeast Asian-type deletion. J Immunoenzymochem. 2014;53(2):194–206.
20. Wen L, et al. Development of a fluorescence immunochromatographic assay for the detection of zeta globin in the blood of (−SEA) alpha-thalassaemia carriers. Blood Cells Mol Dis. 2012;49(3–4):128–32.
21. Khummuang S, et al. Production of monoclonal antibodies against human trefoil factor 3 and development of a modified-Sandwich ELISA for detection of trefoil factor 3 homodimer in saliva. Biol Proced Online. 2017;19:14.
22. Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004;25(2):105–20.
23. Sturgeon CM, Viljoen A. Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem. 2011;48(Pt 5):318–32.
24. Schwickart M, et al. Interference in immunoassays to support therapeutic antibody development in preclinical and clinical studies. Bioanalysis. 2014;6(14):1939–51.
25. Sirichotiyakul S, et al. Sensitivity and specificity of mean corpuscular volume testing for screening for alpha-thalassemia-1 and beta-thalassemia traits. J Obstet Gynaecol Res. 2005;31(3):198–201.
26. Sirichotiyakul S, et al. A comparison of the accuracy of the corpuscular fragility and mean corpuscular volume tests for the alpha-thalassemia-1 and beta-thalassemia traits. Int J Gynaecol Obstet. 2009;107(1):26–9.
27. Phunpae P, et al. Rapid diagnosis of tuberculosis by identification of antigen 85 in mycobacterial culture system. Diagn Microbiol Infect Dis. 2014;78(3):242–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.