Phytoestrogens (PhE) are plant-derived substances with structural similarity to estradiol, although their hormonal activity is much weaker than that of natural and synthetic estrogens. The most extensively studied PhE are isoflavones that are abundant in soybeans [1–3]. Soy protein is used in the food industry; it is added to meat and other products, sometimes without corresponding information on labels [4].

The consumption of PhE and soy foods is associated with health benefits; however, their impact on the reproductive and endocrine system may be underestimated.

Many studies reporting benefits from the intake of soy originate from Eastern Asia [3, 5–7]. The quality of studies is uneven; the evidence is regarded to be weak [2, 8–11]. It can be reasonably assumed that some Asian populations are genetically adapted to soy. On the contrary to East Asian studies, epidemiological research from the West does not generally report a decrease in cardiovascular risks after PhE treatment [2].

One epidemiological study suggested that the dietary intake of PhE contributes to a decreased frequency of postmenopausal cardiovascular and thromboembolic events [12]. In the same review, it was acknowledged that trials on PhE had been limited in many respects including the number of participants, clinical endpoints studied, and lack of long-term follow-up [12]. PhE were reported to be significantly more effective than placebo in reducing the frequency and severity of hot flashes [7]. However, several reviews concluded that the efficiency of PhE compared to placebo remains unproven [13–17].

Improvements of subjective symptoms must be caused by the placebo effect, at least in part. The evidence from observational studies and randomized trials generally lacked [8, 9]. According to several reviews, there are no reliable arguments in favor of PhE efficiency against menopausal symptoms, and current evidence does not support their use [13–15, 18]. The effectiveness of PhE against vasomotor symptoms failed the test of randomized clinical trials being similar to that of placebo [15, 19].

According to the Cochrane review, there is no conclusive evidence that PhE can reduce the frequency or severity of hot flashes and night sweats in peri- and postmenopausal women, while many of the trials were small, of short duration and questionable quality. Moreover, the publication bias with a preference of papers reporting positive results is a well-known phenomenon [20]. In sum, a definite conclusion on possible health effects of PhE could not be made so far [2].
The analysis of earlier findings from enrichment of the diet with soy protein has failed to confirm beneficial cardiovascular effects by way of lipid reduction, vasodilatation or lipoprotein oxidation [21]. In particular, there is little evidence in favor of the prevention of menopausal osteoporosis [2, 22–25]. Admittedly, the matter is controversial while positive effects of PhE have been reported [26, 27]. For example, the following statement appears questionable: “Comparative assessment showed no significant differences between the effectiveness of hormone therapy and the PhE used in the study, in terms of effects on bone mineral density and bone resorption” [27] because the hormonal activity of PhE must be much lower than that of estradiol and norethisterone acetate used in this study [27].

According to the European Food Safety Authority, existing evidence does not suffice to establish a relationship between the maintenance of bone mineral density and consumption of soy isoflavones [2]. The use of PhE is not advocated also because of conflicting data about safety [28]. There have been reports on adverse effects and interactions with other medications [29]. Moreover, soy is one of the most allergenic foods, so that some people must avoid it [2, 30]. The majority of high-quality studies demonstrated no clear benefit and some potential for harm; therefore, further research is deemed necessary to formulate recommendations. The conventional menopausal hormone therapy remains the only treatment that is consistently more effective than placebo in controlled trials [31].

The rationale for the use of PhE in the menopause is hardly comprehensible. Biological effects of estrogens are mediated by receptors. It remains unclear, why accidental plant-derived analogs should be used instead of natural or synthetic hormones. Some PhE preparations contain a mixture of ingredients of unknown origin that may have unpredictable effects depending on their composition and a patient’s condition; such drugs are difficult to dose [32]. The notion that PhE are a natural and safe alternative to estrogens [15] is unfounded: these substances are in fact less natural for humans than endogenous hormones. Moreover, the use of soy as animal fodder can result in the accumulation of PhE and their active metabolites such as equol in meats and other animal products. Equol has a relatively high estrogenic potential, it is produced by intestinal bacteria in farm animals and fowl [33, 34].

Adverse effects associated with the intake of soy have been reviewed [1, 35–37]. Derangements of the reproductive health and feminizing effects in men are regarded to be rare and mild [35] but may be statistically detectable in large populations. It was reported on dysmenorrhea, slight changes in gender roles in girls and gynecomastia in a man [33]. The results and conclusions of these experiments have not only in female but also in male animals [47, 48]. Moreover, some PhE, e.g. genistein, exerted androgenic effects [49], which is not surprising because PhE are botanicals with accidental similarity to human hormones, so that their effects are a priori unpredictable.

It was suggested that PhE are hormone receptor modulators thus being different from estrogens [50]. It is questionable, however, whether such modulation, also called endocrine disruption [1, 51], is favorable for all soy consumers, especially at a young age. The perinatal period, infancy, childhood and puberty are critical periods when the maturing endocrine and reproductive systems are especially sensitive [51]. As soy consumption is increasing worldwide, more consideration of its endocrine-disrupting properties is needed. As mentioned above, a cross-reactivity of PhE with various drugs is possible [1, 2, 28, 35, 36]. Parents should be aware of potential estrogenic effects if they feed their infants with soy-containing baby food [1]. Finally, soy-based emulsions are known as causative factors of cholestasis associated with the pediatric parenteral nutrition [52].

Furthermore, a contradiction can be observed in the literature: it was stipulated that “...findings from a recently published metaanalysis and subsequently published studies show that neither isoflavone supplements nor isoflavone-rich soy affect total or free testosterone levels. Similarly, there is essentially no evidence from the nine identified clinical studies that isoflavone exposure affects circulating estrogen levels in men” [53]. In a case report on gynecomastia associated with soy consumption it was mentioned: “After he discontinued drinking soy milk... his estradiol concentration slowly returned to normal” [39]. Statements of this kind are potentially confusing because PhE, being estrogen analogs, exert hormonal effects on their own, without a direct impact on concentrations of endogenous hormones.

This article was not intended to be a review on PhE: there have been several reviews that are cited here. The main purpose was to convey the following ideas. Firstly, PhE are used for compensation of estrogen deficiency in menopause; however, their hormonal activity does not prevent from the use of soy in infant formulas and other foodstuffs. The feminizing effect of soy products may be subtle, detectable only statistically in large populations. This matter should be further clarified by unbiased research. Secondly, there is a tendency of placebo marketing in the guise of evidence-based medications. The published criticism is sometimes disregarded. For example, a supposed anti-atherogenic activity of certain PhE was corroborated by experiments with cell cultures. The ability of serum to induce accumulation of cholesterol in cultured cells was interpreted as an indicator of, for example, atherogenicity [54, 55].

The results and conclusions of these experiments have been questioned; however, the publication series has been continued without references to comments [56, 57]. PhE were sometimes promoted by means of misquoting [56]. For example, in the original: “These compounds seem to be cancer protective... With regard to prostate and colon cancer...
the epidemiological data related to phytoestrogens are still very limited” [58] and in another cited source: “Evidence is beginning to accrue that they may begin to offer protection against a wide range of human conditions, including breast, bowel, prostate and other cancers” [59]. In the article with references to the above publications it is written (from Russian): “It has been proven that isoflavones can prevent breast, prostate and colon cancer” [60]. The statement: “Consumption of soy products... has been associated with reduction of malignancies” [61] was given with a reference to a publication of soy products. “It has been proven that isoflavones can prevent breast, bowel, prostate and other cancers” [59]. In the article with references to the above publications it is written (from Russian): “It has been proven that isoflavones can prevent breast, prostate and colon cancer” [60]. The statement: “Consumption of soy products... has been associated with reduction of malignancies” [61] was given with a reference to a publication of soy products. ...warrants further research” [62]. In another publication: “Especially the potential health effects of dietary phytoestrogens” [62] was written without references that PhE, for instance, have anti-neoplastic, antimicrobial and anti-inflammatory properties [63]. Scientifically questionable methods and theories are sometimes used for promotion of drugs, dietary supplements and treatment methods [64–66]. As a result, substances with unproven effects are sometimes prescribed to patients.

Conflicts of interests. The author declares the absence of any conflicts of interests and his own financial interest that might be construed to influence the results or interpretation of the manuscript.

References

1. Paraisal HB. Endocrine disruption by dietary phystero-
goens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc. 2017;76(2):130–144. doi:10.1017/S0029665116000677.
2. Rietjens IMCM, Louisje, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017;174(11):1263–1280. doi:10.1111/bjp.13622.
3. Desmawati D, Sialastri D. Phytoestrogens and Their Health Ef-
fect. Open Access Med J Med Sci. 2019;7(3):495–499. doi:10.3889/00oajms.2019.044.
4. Kozlova Ol, Zorin SN, Mazo VK. Method of quantitative con-
tent soya protein determination in cooked meats using indirect im-
une-enzyme analysis. Vopr Pitan. 2011;80(2):66–70. (in Russian).
5. Messina M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients. 2016;8(12):754. Published 2016 Nov 24. doi:10.3390/nu8120754.
6. Sekikawa A, Itaha M, Lopez O, et al. Effect of S-equol and Soy Iso-
flavones on Heart and Brain. Curr Cardiol Rev. 2019;15(2):114–135. doi:10.2174/1573403915666181205104717.
7. Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. Extracted or synthesized soybean isoflavones reduce menopause hot flash frequency and severity: systematic review and meta-analysis of randomized controlled trials. Menopause. 2012;19(7):776–790. doi:10.1097/gme.0b013e3182410519.
8. Baber R. Phytoestrogens and post reproductive health. Maturi-
tas. 2010;66(4):344–349. doi:10.1016/j.maturitas.2010.03.023.
9. Gold EB, Leung K, Crawford SL, Huang MH, Waetjen LE, Greendale GA. Phytoestrogen and fiber intakes in relation to inci-
dent vasomotor symptoms: results from the Study of Women’s Health Across the Nation. Menopause. 2013;20(3):305–314. doi:10.1097/GME.0b013e318272d3f43.
10. Franco OH, Choludhury R, Troop J, et al. Use of Plant-
Based Therapies and Menopausal Symptoms: A Systematic Review and Meta-analysis. JAMA. 2016;315(23):2554–2563. doi:10.1001/
jama.2016.8012.
11. Messina M, Messina V. The role of soy in vegetarian diets. Nutrients. 2010;2(8):855–888. doi:10.3390/nu2080855.
12. Gencel VB, Benjamin MM, Bahou SN, Khalil RA. Vascular ef-
fects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev Med Chem. 2012;12(2):149–174. doi:10.2174/138955712798995020.
13. Lethaby AE, Brown J, Marjoribanks J, Kronenberg F, Roberts H, Eden J. Phytoestrogens for vasomotor menopausal symptoms. Co-
chrane Database Syst Rev. 2007;(4):CD001395. Published 2007 Oct 17. doi:10.1002/14651858.CD001395.pub3.
14. Krebs EE, Ensrud KE, MacDonald R, Wilt TJ. Phytoes-
trigens for treatment of menopausal symptoms: a systematic re-
view. Obstet Gynecol. 2004;104(4):824–836. doi:10.1097/01.ogc.0000140688.71638.d3.
15. Al-Azzawi F, Wubah M. Effectiveness of phytoestrogens in climacteric medicine. Ann N Y Acad Sci. 2010;1205:262–267. doi:10.1111/j.1749-6632.2010.05678.x.
16. Eden JA. Phytoestrogens for menopausal symptoms: a review. Maturitas. 2012;72(2):157–159. doi:10.1016/j.maturi-
tas.2012.03.006.
17. Guidozi F, Alperstein A, Bagrate JS, et al. South African Menopause Society revised consensus position statement on menop-
ausal hormone therapy. 2014. S Afr Med J. 2014;104(8):537–543. Published 2014 Jun 19. doi:10.7196/samj.8423.
18. Cheema D, Coomarasamy A, El-Toukhy T. Non-hormonal therapy of post-menopausal vasomotor symptoms: a structured evidence-based review. Arch Gynecol Obstet. 2007;276(5):463–469. doi:10.1007/s00404-007-0390-9.
19. Villaseca P. Non-estrogen conventional and phytochemical treatments for vasomotor symptoms: what needs to be known for prac-
tice. Climacteric. 2012;15(2):115–124. doi:10.3109/13697173.2011.6 24214.
20. Roberts H, Lethaby A. Phytoestrogens for menopausal vasomotor symptoms: a Cochrane review summary. Maturitas. 2014;78(2):79–81. doi:10.1016/j.maturitas.2014.04.004.
21. Sirtori CR, Arnoldo A, Johnson SK. Phytoestrogens: endofatale? Ann Med. 2005;37(6):423–438. doi:10.1080/0785395050044586.
22. Davis SR. Phytoestrogen therapy for menopausal symptoms? BMJ. 2001;323(7309):334–355. doi:10.1136/bmj.323.7309.334.
23. Coxam V. Phyto-estrogens and bone health. Proc Nutr Soc. 2008;67(2):184–195. doi:10.1017/S0029665108007027.
24. Ye CF, Pan TM, Zhou H. Regulation of vitamin D receptor and Genistein on bone metabolism in mouse osteoblasts and the mo-
lecular mechanism of osteoporosis. J Biol Regul Homeost Agents. 2018;32(3):497–505.
25. Lagari VS, Levis S. Phytoestrogens in the prevention of postmenopausal bone loss. J Clin Densitom. 2013;16(4):445–449. doi:10.1016/j.jocd.2013.08.011.
26. Arcoraci V, Attetioniano M, Squadrito F, et al. Antiestrogenic Activity of Genistein Aglycone in Postmenopausal Women. Evidence from a Post-Hoc Analysis of a Multicenter Randomized Controlled Trial. Nutrients. 2017;9(2):179. Published 2017 Feb 22. doi:10.3390/
nutrients9020179.
27. Tit DM, Bungau S, Iovan C, et al. Effects of the Hormone Re-
placement Therapy and of Soy Isoflavones on Bone Resorption in Post-
menopausal Women. J Clin Med. 2018;7(10):297. doi:10.3390/jcm7100297.
28. This P, de Cremoux P, Leclercq G, Jacquot Y. A critical view of the effects of phytoestrogens on hot flashes and breast cancer risk. Maturi-
tas. 2011;70(3):222–226. doi:10.1016/j.maturitas.2011.07.001.
29. Haimov-Kochman R, Breszinski A, Hochner-Celniker D. Herbal remedies for menopausal symptoms: are we cautious enough? Eur J Contracept Reprod Health Care. 2008;13(2):133–137. doi:10.1080/13622780801920131.
30. Wilson S, Blaschke K, de Mejia E. Allergenic proteins in soybean: processing and reduction of P34 allergenicity. Nutr Rev. 2005;63(2):47–58. doi:10.1111/j.1753-4887.2005.tb00121.x.
Резюме. Фитоэстрогены (ФЭ) содержатся в сое и некоторых других растениях; по молекулярной структуре они сходны с эстрогенами. ФЭ используются для заместительной терапии в период менопаузы. Однако в ряде недавних обзоров был сделан вывод об отсутствии убедительных доказательств эффективности ФЭ в отношении симптомов климакса и менопаузы по сравнению с плацебо. Соя используется как ингредиент многих пищевых продуктов, детского питания и кормов для животных. ФЭ и их гормонально-активные метаболиты (эвол) могут сохраняться в мясных продуктах. Соевый белок используется в пищевой промышленности. Нарушения функции репродуктивной системы человека под действием ФЭ включают нечастые и слабовыраженные. Описаны единичные случаи феминизации, а также изменения гендерного поведения у детей при обильном потреблении сои. У животных богатые ФЭ корма вызывают нарушения фертильности, полового развития и поведения. ФЭ называют модуляторами или дизрапторами эндокринной системы. Однако нет оснований предполагать, что модуляция полезна для всех потребителей соевых продуктов. Феминизирующие эффекты могут быть незаметными, проявляясь статистически в больших популяциях.

Ключевые слова: фитоэстрогены; соя; менопауза; репродуктивная система