A Mechanistic Study for Aziridination of Nitroalkenes Mediated by N-Chlorosuccinimide

Kento Iwai¹,², Khimiya Wada¹, Feiyue Hao¹,³, Haruyasu Asahara¹,²,⁴*, and Nagatoshi Nishiwaki¹,²*

¹ School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, JAPAN
² Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, JAPAN
³ School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang 318000, CHINA
⁴ Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, JAPAN

Abstract: Direct aziridination of a nitrostyrene is achieved upon treatment with an alkylamine and N-chlorosuccinimide. The reaction is initiated by the Michael addition of amine to nitroalkene. Subsequent N-chlorination and nucleophilic substitution at the nitrogen atom afford 1-alkyl-2-nitroaziridine diastereoselectively. This reaction mechanism was clarified by NMR studies.

Key words: nitroaziridine, nitroalkene, chloramine, intramolecular nucleophilic substitution

1 Introduction

Aziridines are an important class of aza heterocycles¹–². Owing to the inherent ring strain and high electrophilicity, they undergo the ring-opening with various nucleophiles to afford various nitrogen-containing compounds such as amino acids, amino sugars, and alkaloids³–⁵. In contrast to epoxides, aziridines can be readily metalated and can react with electrophiles⁶, producing a broad range of functional derivatives that can serve as versatile building blocks in organic synthesis¹,²,⁷–¹². Indeed, a large number of functionalized aziridines have been transformed into useful compounds such as an HIV protease inhibitor¹³, communesin¹⁴, ceramide¹⁵, and oseltamivir¹⁶ via rearrangement, cycloaddition, and ring-expansion reactions⁷–¹². Among the functional groups, the nitro group is highly attractive in synthetic chemistry because of its strong electron-withdrawing ability and diverse reactivity¹⁷,¹⁸. Hence, the direct aziridination of nitroalkene will allow the rapid construction of a library of nitroaziridines that will be useful for identifying new biologically active compounds.

In our previous work, we demonstrated a direct aziridination of 3-nitro-2-quinolone 1 (Scheme 1a)¹⁹ and a nitrostyrene 3 (Scheme 1b)²⁰ which are mediated by N-chlorosuccinimide (NCS). Although several direct aziridination methods of a nitroalkene were reported²¹, the N-substituent is limited to an aromatic group or an electron-withdrawing group. Thus, N-alkyl nitroaziridines are synthesized via β-bromination of β-nitrostyrene²²,²³. It is noteworthy that N-alkylated nitroaziridine is directly synthesized by this method.

Initially, we considered that aziridine 4 was formed by conjugate addition of an amine 2 to a nitrostyrene 3, chlorination by NCS, and intramolecular nucleophilic substitution of the intermediately formed aminochlorinated product 6. However, depending on the reaction conditions (solvent and base), cleavage of the carbon–carbon bond occurs, giving a significant amount of imine 5. As reported by Mpourmpakis and Lykakis²⁴, protic solvent, methanol, promoted the retro-aza-Henry reaction to form imine 5.

*Correspondence to: Nagatoshi Nishiwaki, School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, JAPAN
E-mail: nishiwaki.nagatoshi@kochi-tech.ac.jp
Accepted March 5, 2022 (received for review December 3, 2021)
Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jjocs

Scheme 1 NCS-mediated aziridination of nitroalkenes.
predominantly, and aprotic polar solvents such as THF, acetonitrile, and dichloromethane were found to be suitable for this aziridination. Furthermore, using bulky bases such as DBU and tert-ButOK accelerated formation of imine 5 while Cs₂CO₃ increased the yield of 4a (R = Pr) up to 85%. On the other hand, the role of NCS in the reaction mechanism of Scheme 1 has not been fully understood. Therefore, in this paper, we discussed the reaction mode of the aziridination with focusing on the role of NCS.

2 Experimental

2.1 General

The melting points were determined on SRS-Optimelt Automated Melting Point System and were uncorrected. All the reagents and solvents were commercially available and used as received. The ¹H NMR spectra were measured on a Bruker Ascend-400 and JEOL JMN-ECZ40085 at 400 MHz with tetramethylsilane as an internal standard. The ¹³C NMR spectra were measured on a Bruker Ascend-400 and JEOL JMN-ECZ40085 at 100 MHz, and assignments of ¹³C NMR spectra were performed by DEPT experiments. To a solution of nitrostyrene and propylamine, while Cs₂CO₃ increased the yield of 8b could not be separated.

2.3 Chlorination of octylamine 2b

N-chloro-N-octylamine (8b): To a solution of octylamine (2b) (129 mg, 1 mmol) in THF (4 mL), NCS (133 mg, 1 mmol) was added, and the resultant mixture was stirred at room temperature for 0.5 h. Hexane (10 mL) was added, and precipitates were filtered off. The filtrate was concentrated to afford a mixture of chloramine 8b and dichlorinated product (85/15) as a colorless oil, in which 78% of 8b was contained. Despite various attempts, these products could not be separated. The ¹H NMR (400 MHz, CDCl₃) δ 8.96 (t, J = 6.8 Hz, 3H), 1.17–1.37 (m, 10H), 1.58 (t, J = 7.2 Hz, 2H), 3.05 (t, J = 6.8 Hz, 2H), 3.95–4.70 (br s, 1H), ¹³C NMR (100 MHz, CDCl₃) δ 14.2 (CH₃), 22.7 (CH₂), 26.7 (CH₃), 28.7 (CH₃), 29.3 (CH₉), 29.5 (CH₉), 31.9 (CH₂), 57.1 (CH₃); IR (KBr/cm⁻¹) 3400–3100 (br), 2955, 2926, 2855; HRMS (ESI/TOF) calcd. for C₃₉H₃₅ClN [(M + H)⁺]: 572.2520, found: 572.2520.
Aziridination of Nitroalkenes Caused by N-Chlorosuccinimide

N-Chloramines have been used in organic syntheses as N1 units possessing both nucleophilicity and electrophilicity. This helps them to bind to polar functional groups such as C=O and C=N, thus facilitating the construction of di-aziridine\(^\text{28-30}\) and oxaziridine\(^\text{31}\) frameworks, respectively. For addition to a C=C bond, anionic forms of N-chloramine that are stabilized by electron-withdrawing groups such as carbonyl\(^\text{22}\) and sulfonyl\(^\text{32-33}\) are often used. On the other hand, except for some examples of intramolecular addition\(^\text{36-37}\), the addition of N-alkylated chloramine to a C=C bond has not been reported in the literature. This prompted us to study the reaction of 3 with nitrostyrene 3.

N-Chloro (propyl) amine 8a\(^\text{25}\) derived from propylamine 2a cannot be isolated because of its low boiling point; accordingly, octylamine 2b was employed as the substrate. After stirring a solution of 2b and NCS in THF at room temperature for 0.5 h, hexane was added to it, and succinimide precipitate formed was filtered. The filtrate contained chloro (octyl) amine 8b (78% yield) and N,N-dichlorinated amine 9b (14% yield) at a ratio of 85:15 (Scheme 2a). After the solution was allowed to stand at room temperature for 2.5 h, the oily mixture solidified, and the ratio changed to 76:24. This indicated that chloro (octyl) amine 8b underwent gradual disproportionation at room temperature. When the mixture containing 8b was allowed to react with nitrostyrene 3 in the presence of Cs\(_2\)CO\(_3\), aziridine 4b was obtained in only 5% yield. This indicated that 8b was not an actual active species for aziridination. Instead, Michael adducts 7b and 10b, derived from 3 and 8b, respectively, were mainly produced, suggesting that chloramine 10b was the precursor for the formation of aziridine.

3 Results and Discussion

The role of NCS in this reaction was studied by \(^1\)H NMR spectroscopy using CDCl\(_3\) as the solvent. When NCS was added to a solution of nitrostyrene 3, no change in signals for either compound was observed; thus, the possibility of activation of 3 by NCS was quite less. On the other hand, a noticeable change in the signals was observed when propylamine 2a (Fig. 1b) was added to a solution of NCS (Fig. 1a)—signals corresponding to 2a were shifted to the lower field, and a new singlet signal appeared at higher field, in addition to the signal of NCS (Fig. 1c). This indicated the \textit{in situ} formation of N-chloramine 8a and succinimide\(^\text{25-27}\). Indeed, comparison of the NMR data with those in the literature\(^\text{27}\) indicated the formation of N-chloramine.

![Fig. 1](image-url)

\(^1\)H NMR spectra of NCS (a), and propylamine 2a (b), and N-chloramine 8a generated by mixing NCS and 2a in CDCl\(_3\) solution (*signals from N, N-dichloropropylamine*).

J. Oleo Sci. 71, (6) 897-903 (2022)
To confirm our hypothesis, the reaction was monitored by \(^1 \)H NMR spectroscopy. When propylamine \(\text{2a} \) was added to a solution of nitrostyrene \(\text{3} \) in CDCl\(_3\), signals corresponding to olefinic protons disappeared, and signals from three protons appeared at a higher field, indicating the efficient formation of Michael adduct \(\text{7a} \) (Scheme 2b). The signals from \(\text{7a} \) shifted to the lower field upon the addition of NCS, indicating the formation of chloro(propyl)amine \(\text{10a} \) via N-chlorination (Fig. 2a). During the reaction, the signals from nitrostyrene \(\text{3} \) increased, presumably because of the increased leaving ability of propylamine as a result of N-chlorination. Using 3.0 equiv. of propylamine \(\text{2a} \) and 2.0 equiv. of NCS in THF effectively afforded \(\text{7a} \) and \(\text{10a} \) in 95% (from \(\text{3} \)) and 73% (from \(\text{7a} \)) yields, respectively. Compound \(\text{10a} \) was obtained in 72% yield from \(\text{3} \) via a one pot reaction (Scheme 3a). Compound \(\text{10a} \) was converted to aziridine \(\text{4a} \) in 62% yield upon treatment with Cs\(_2\)CO\(_3\) (Scheme 3b).

In contrast, using \(N \)-bromo- and \(N \)-iodosuccinimides (NBS and NIS) instead of NCS did not furnish aziridine \(\text{4a} \). To study the differences in the reactivities, the above-mentioned NMR experiments were conducted using NBS. When NBS was added to a solution of propylamine \(\text{2a} \) in CDCl\(_3\), the signals corresponding to \(\text{2a} \) were shifted to the lower field in the \(^1 \)H NMR spectrum, confirming the formation of \(N \)-bromamine. However, when NBS was added to a solution of Michael adduct \(\text{7a} \) in CDCl\(_3\), quantitative formation of \(N \)-propylimine \(\text{5a} \) was observed instead of \(N \)-bromination, confirming that aziridination did not occur under these conditions.

\(\text{cis} \)-Nitrostyrene \(\text{3} \) was subjected to this reaction under the same conditions. The reactivity was similar to that of \(\text{trans} \) isomer \(\text{3} \), and \(\text{trans} \)-aziridine \(\text{4a} \) was formed, indicating that this reaction proceeded in a stepwise manner via a common intermediate (Schemes 4a and 4b).
Aziridination of Nitroalkenes Caused by N-Chlorosuccinimide

A plausible reaction mechanism is shown in Scheme 5. This reaction is initiated by the Michael addition of amine 2a to the double bond of 3 to furnish 7a. Subsequent N-chlorination of 7a by NCS affords chloramine 10a (path a). However, competitive C–C bond cleavage also occurs at this stage, furnishing imine 5a (path b). Deprotonation of 10a by a base generates nitronate ion 11a, thereby eliminating the steric hindrance from the adjacent aryl group. Intramolecular substitution of nitronate ion 11a on the nitrogen atom afforded aziridine 4a (path c). Elimination of chloramine 8a from 11a regenerates nitrostyrene 3 (path d).

Since bulkier base or NBS cannot approach 7a, N-halo- genation does not occur. In this case, competitive C–C bond cleavage occurs predominantly to give imine 5a (Scheme 5, path b). Another possibility is the α-bromination of the nitro group, which facilitates the elimination of bromo(nitro)methane, to give 5a.
4 Conclusion

A mechanistic study for diastereoselective aziridination of nitrostyrene 3 was performed. Amine 2 undergoes Michael addition to nitrostyrene 3. The amino group of the produced adduct 7 is chlorinated by NCS to afford 10, and trans-substituted aziridine 4 is formed by intramolecular nucleophilic substitution at the nitrogen atom by nitrate. The insights obtained here will be useful for researchers treating heterocyclic compounds, amines and halogenated compounds.

Conflicts of Interest

The authors declare that they have no competing interests.

Supporting Information (J-STAGE DATA)

This material is available free of charge via the internet (J-STAGE DATA) at doi: 10.57342/data.jos.19752910

References

1) Degennaro, L.; Trincher, P.; Luisi, R. Recent advances in the stereoselective synthesis of aziridines. Chem. Rev. 114, 7881-7929 (2014). doi: 10.1021/cr400553c
2) Sweeney, J.B. Aziridines: epoxides' ugly cousins? Chem. Soc. Rev. 31, 247-258 (2002). doi: 10.1039/B006015L
3) Müller, P.; Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem. Rev. 103, 2905-2920 (2003). doi: 10.1021/cr20043t
4) Osborn, H.M.; Sweeney, J. The asymmetric synthesis of aziridines. Tetrahedron: Asymmetry 8, 1693-1715 (1997). doi: 10.1016/S0957-4166(97)00177-8
5) Tanner, D. Chiral aziridines—their synthesis and use in stereoselective transformations. Angew. Chem., Int. Ed. Engl. 33, 589-619 (1994). doi: 10.1002/anie.199405991
6) Satoh, T. Oxiranyl anions and aziridinyl anions. Chem. Rev. 96, 3303-3326 (1996). doi: 10.1021/cr950081v
7) Stanković, S.; D’hooghe, M.; Catak, S.; Eum, H.; Warquier, M.; Speybroeck, V.V.; Kimpe, N.D.; Ha, H.J. Regioselectivity in the ring opening of non-activated aziridines. Chem. Soc. Rev. 41, 643-665 (2012). doi: 10.1039/C1CS15140A
8) Ceglie, M.C.; Musio, B.; Affontunato, F.; Moliterni, A.; Altmare, A. et al. Solvent- and temperature-dependent functionalisation of enantioenriched aziridines. Chem. Eur. J. 17, 286-296 (2011). doi: 10.1002/chem.201002172
9) Singh, G.S.; D’hooghe, M.; Kimpe, N.D. Synthesis and reactivity of C-heteroatom-substituted aziridines. Chem. Rev. 107, 2080-2135 (2007). doi: 10.1021/cr0680033
10) Padwa, A.; Murphee, S.S. Epoxides and aziridines - a mini review. Arkivoc iii, 6-33 (2006). doi: 10.3998/ark.5550190.0007.302
11) Coldham, I.; Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev. 105, 2765-2810 (2005). doi: 10.1021/cr040004c
12) Hu, X.E. Nucleophilic ring opening of aziridines. Tetrahedron 60, 2701-2743 (2004). doi: 10.1016/j.tet.2004.01.042
13) Kim, B.M.; Bae, S.J.; So, S.M.; Yoo, H.T.; Chang, S.K. et al. Synthesis of a chiral aziridine derivative as a versatile intermediate for HIV protease inhibitors. Org. Lett. 3, 2349-2351 (2001). doi: 10.1021/ol0101617s
14) Crawley, S.L.; Funk, R.L. Generation of aza-ortho-xylylenes via ring opening of 2-(2-acylamínophenyl) aziridines: Application in the construction of the communesin ring system. Org. Lett. 8, 3995-3998 (2006). doi: 10.1021/ol061461d
15) Liew, S.K.; Kaldas, S.J.; Yudin, A.K. A linchpin synthesis of 6-hydroxyceramides from aziridine aldehydes. Org. Lett. 18, 6268-6271 (2016). doi: 10.1021/acs.orlett.6b03067
16) Fukuda, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. De novo synthesis of tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN₃. J. Am. Chem. Soc. 128, 6312-6313 (2006). doi: 10.1021/ja061696k
17) Ballini, R.; Gabrielli, S.; Palmieri, A.; Petrini, M. Nitroalkanes as key compounds for the synthesis of aminoo derivatives. Curr. Org. Chem. 15, 1482-1506 (2011). doi: 10.2174/138920311795378137
18) Ballini, R.; Barboni, L.; Fiorini, D.; Palmieri, A.; Petrini, M. Nitrocompounds as useful reagents for the synthesis of dicarbonyl derivatives. Arkivoc 2006 (6), 127-152 (2006). doi: 10.3998/ark.5550190.0007.612
19) Hao, F.; Asahara, H.; Nishiwaki, N. Direct amino-halogenation and aziridination of the 2-quinolone framework by sequential treatment of 3-nitro-2-quinolone with amine and N-halosuccinimide. Tetrahedron 73, 1255-1264 (2017). doi: 10.1016/j.tet.2017.01.028
20) Hao, F.; Asahara, H.; Nishiwaki, N. Direct aziridination of nitroalkenes affording N-alkyl-C-nitroaziridines and the subsequent Lewis acid mediated isomerization to β-nitroenamines. Org. Lett. 19, 5442-5445 (2017). doi: 10.1021/acs.lett.7b02724
21) Hao, F.; Nishiwaki, N. Chemistry of nitroaziridines. Heterocycles 99, 54-72 (2019). doi: 10.3987/REV-18-SR(F)2
22) Tronchet, J.M.J.; Pallie, K.D.; Rey, F.B. Some novel
types of nitrosugars. J. Carbohydr. Chem. 4, 29–52 (1985). doi: 10.1080/07328308508062947
23) Edaser, J.P.; Cromwell, N.H. The synthesis of 1-cyclohexyl-2-phenyl-3-nitroziridine and the stereochemistry of cyclization. J. Heterocycl. Chem. 16, 831 (1979). doi: 10.1002/jhet.5570160449
24) Kallitsakis, M.G.; Tancini, P.D.; Dixit, M.; Mpourmpakis, G.; Lykakis, I.N. Mechanistic studies on the Michael addition of amines and hydrazines to nitrostyrenes: nitroalkane elimination via a retro-aza-Henry-type process. J. Org. Chem. 83, 1176–1184 (2018). doi: 10.1021/acs.joc.7b02637
25) Victoria, G.G.; Reddy, S.R. Recent advances in the synthesis of organic chloramines and their insights into health care. New J. Chem. 45, 8386–8408 (2021). doi: 10.1039/D1NJ01086G
26) Govaerts, S.; Angelini, L.; Hampton, C.; Malet-Sanz, L.; Ruffoni, A.; Leonori, D. Photoinduced olefin diamination with alkyamines. Angew. Chem. Int. Ed. 59, 15021–15028 (2020). doi: 10.1002/anie.202005652
27) Guillemin, J.C.; Denis, J.M. Vacuum gas/solid N-chlorination: preparative scale synthesis of volatile N-chloramines. Synthesis 1985, 1131–1133 (1985). doi: 10.1055/s-1985-31450
28) Kuiznetsov, V.V.; Kachala, V.V.; Makhova, N.N. Synthesis of hybrid structures comprising diaziridine and cyclopropane rings in one molecule. Mendeleev Commun. 28, 497–500 (2018). doi: 10.1016/j.mencom.2018.09.015
29) Koptelov, Y.B.; Saik, S.P.; Molchanov, A.P. Thermal opening of the diaziridine fragment in 1-methyl-and 1,3,3-trimethyl-1,3,4,8b-tetrahydro-[1,2]diazirino[3,1-a]isoquinolines in the presence of n-arylmaleimides. Chem. Heterocycl. Compd. 44, 860–867 (2008). doi: 10.1007/s10593-008-0122-5
30) Shevtsov, A.V.; Kuiznetsov, V.V.; Molotov, S.I.; Lyssenko, K.A.; Makhova, N.N. Synthesis of 4-aryl-1,2,4-triazolidin-3-ones via ring extension in reactions of 1,2-di-and 1,2,3,3-tetraalkyldiaziridines with aryl isocyanates. Russ. Chem. Bull. 55, 554–558 (2006). doi: 10.1007/s11172-006-0291-2
31) Schnitz, E.; Ohme, R.; Murawski, D. Oxaziridine, II Herstellung von Oxaziridinen durch Aminierung von Carbonylverbindungen. Chem. Ber. 98, 2516–2524 (1965). doi: 10.1002/chem.19650980813
32) Minakata, S.; Murakami, Y.; Tsuruoka, R.; Kitakata, S.; Komatsu, M. Catalytic aziridination of electron-deficient olefins with an N-chloro-N-sodio carbamate and application of this novel method to asymmetric synthesis. Chem. Commun. 44, 6363-6365 (2008). doi: 10.1039/B812978A
33) Liu, Y.; Luo, W.; Wang, Z.; Zhao, Y.; Zhao, J. et al. Visible-light photoredox-catalyzed formal-[5 + 1] cycloaddition of N-tosyl vinylaziridines with difluoroalkyl halides. Org. Lett. 22, 9658–9664 (2020). doi: 10.1021/acs.orglett.0c03718
34) Vetica, F.; Bailey, S.J.; Kumar, M.; Mahajan, S.; von Essen, C. et al. Palladium-catalyzed [3 + 2] cycloaddition of vinylaziridine and indane-1,3-diones: diastereo- and enantioselective access to spiro-pyrrolidines. Synthesis 52, 2038–2044 (2020). doi: 10.1055/s-0040-1707472
35) Steinman, T.J.; Liu, J.; Mengiste, A.; Doyle, A.G. Synthesis of β-phenethylamines via Ni/photoredox cross-electrophile coupling of aliphatic aziridines and aryl iodides. J. Am. Chem. Soc. 142, 7598–7605 (2020). doi: 10.1021/jacs.0c01724 (2020).
36) Durrant, M.L.; Malpass, J.R.; Walker, M.P. Intramolecular π-participation in displacement of a nucleofuge from nitrogen. J. Chem. Soc., Chem. Commun. 21, 687–689 (1985). doi: 10.1039/C39850000687
37) Guillemin, J.C. Denis, J.M. Vacuum dynamic gas phase/ solid-phase reactions: N-chlorination of primary amines and α-elimination of the resulting chloramines; synthesis of reactive (E)- and (Z)-aldiminines. Angew. Chem. Int. Ed. Engl. 21, 1515–1524 (1982). doi: 10.1002/anie.198215150
38) Augustin, M.V.; Alexakis, A. Influence of the double-bond geometry of the Michael acceptor on copper-catalyzed asymmetric conjugate addition. Eur. J. Org. Chem. 2007, 5852–5860 (2007). doi: 10.1002/ejoc. 200700424

CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International). This license allows users to share and adapt an article, even commercially, as long as appropriate credit is given and the distribution of derivative works is under the same license as the original. That is, this license lets others copy, distribute, modify and reproduce the Article, provided the original source and Authors are credited under the same license as the original.