Title
Lymphotoxin detected in the blister fluid of bullous pemphigoid patients

Permalink
https://escholarship.org/uc/item/1nk797qf

Journal
Journal of Clinical Immunology, 4(1)

ISSN
0271-9142

Authors
Jeffes, Edward WB
Yamamoto, Robert S
Ahmed, A Razzaque et al.

Publication Date
1984

DOI
10.1007/bf00915284

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Lymphotoxin Detected in the Blister Fluid of Bullous Pemphigoid Patients

EDWARD W. B. JEFFES,1,2 ROBERT S. YAMAMOTO,1 A. RAZZAQUE AHMED,1 and GALE A. GRANGER1

Accepted: June 16, 1983

The role of lymphocytes in the pathogenesis of bullous pemphigoid was examined by assaying the blister fluid obtained from bullous pemphigoid patients for the presence of the lymphokine, lymphotoxin. Blister fluids from six bullous pemphigoid patients were assayed on L-929 target cells for the presence of cytolytic molecules in the standard lymphotoxin assay. Three of six blister fluids obtained from bullous pemphigoid patients and one linear IgA bullous dermatosis patient contained significant levels of cytolytic activity. Control blister fluids from suction blisters, herpes, pemphigus, and toxic epidermal necrolysis patients did not contain cytolytic activity. Serum from five bullous pemphigoid patients also had no cytolytic activity. Neutralization studies using rabbit anti-α-lymphotoxin demonstrated that 54 to 88% of the cytolytic activity found in bullous pemphigoid blister fluid was due to α-lymphotoxin. These results indicate that lymphotoxin is locally released in the skin of bullous pemphigoid lesions and is detectable in blister fluids.

KEY WORDS: Bullous pemphigoid; blisters; lymphocytes; lymphotoxin.

INTRODUCTION

The events initiating and regulating the disease processes causing bullous pemphigoid (BP) are not well understood. Although IgG and complement are found in BP lesions, they alone do not explain the pathogenesis of this disease (1, 2). Morphological studies of the bullous lesions seen late in the disease suggest a role for granulocytes and mononuclear cells (3). In vitro studies support this hypothesis (4). Similarly, morphological studies of the early erythematosus papules seen in BP demonstrate that the lymphocyte is the earliest infiltrating cell (5), suggesting that these cells play role in pathogenesis of BP.

In this study, we describe a cytolytic activity antigenically similar to or identical to the lymphokine, lymphotoxin (LT), in the blister fluid from BP patients. We propose that local activation of lymphocytes and the release of lymphotoxines may play an important regulatory role in the pathogenesis of BP.

MATERIALS AND METHODS

Sera and Blister Fluids

Sera and blister fluid (BF) were obtained from patients admitted to the UCLA Medical Center with newly formed blisters. The diagnosis of BP was made by clinical presentations and confirmed by immunofluorescence (IF) examination of perilesional skin which demonstrated deposition of C3, or IgG and C3, in the basement membrane zone (BMZ).

Control blister fluid was obtained from two patients with pemphigus vulgaris (PV), one with toxic epidermal necrolysis (TEN), and one with herpes zoster. Suction blister fluid obtained from three healthy volunteers was generously donated by Dr. A. I. Oikarinen.

Sera and BF were tested for anti-BMZ antibodies of the IgG class by standard IF techniques using monkey esophagus as the substrate.
Lymphotoxin (LT) Assay and Anti-LT Antisera

The LT assay has been described in detail previously (6). Briefly, monolayers of an LT-sensitive murine L-929 fibroblast were established in glass culture tubes at a density of 100,000 cells/ml in RPMI-1640 medium containing 0.5 μg/ml mitomycin C during a 24-hr preincubation at 37°C. The material to be assayed for LT activity was added to these tubes and incubated 24 hr at 37°C. The number of viable adherent target cells was measured by trypsinizing the cells off the glass test tubes and using a Model F Coulter counter to count them.

A standard LT-containing supernatant (SAL) was prepared by using PHA-activated human lymphocytes as described previously (7) and was run as a positive control in all LT assays. Antibody neutralization tests were performed in the LT assay by adding antiserum [anti-α-LT or anti-whole supernatant (anti-WS)] at the same time the LT-containing sample was added to the target cells. Preparation and characterization of the anti-LT serum have been described in detail (7). Anti-α-LT antiserum can neutralize α-LT. The anti-WS serum was prepared with unfractionated LT-containing supernatants obtained from PHA-activated human lymphocytes and can neutralize α-, β-, and γ-LT activity. Percentage neutralization of LT activity was calculated by the following formula:

\[
\text{percentage neutralization} = \left(1 - \frac{c - (s + Ab)}{c - s}\right) \times 100,
\]

where \(c\) represents the cell number in the untreated control, \(s\) represents the cell number in the tube containing material being assayed for LT activity, and \(s + Ab\) represents the cell number obtained when an LT-containing sample and antiserum to LT are mixed and then assayed.

RESULTS

Blister Fluid from BP Patients and One Linear IgA Bullous Dermatosis Patient Contains Cytolytic Activity When Assayed on L-929 Target Cells

Blister fluid from six BP patients and one linear IgA bullous dermatosis patient were assayed on L-929 in the standard lymphotoxin assay system as described in Materials and Methods. As shown in Table 1, three of six BP patients and the one linear IgA bullous dermatosis patient contained significant cytolytic activity. Control blister fluid from suction blisters raised in three volunteers, two pemphigus vulgaris patients, one toxic epidermal necrolysis patient, and one herpes zoster patient did not contain cytolytic activity. All but one BP blister fluid collected in 1982 contained significant cytolytic activity. No correlations between the IF titer of serum or blister fluid and the presence of cytolytic activity in the blister fluid was noted.

Several possibilities may explain why previously collected and stored BP blister fluids did not contain cytolytic activity: (1) the blister fluid from large bullae may dilute the low levels of activity so that the assay is no longer sensitive enough to detect the cytotoxic activity. (2) The activity of the disease process may influence the amount of cytotoxic activity detected in the blister fluid. (3) The cyto-

Patient	Diagnosis	IF titer	Date collected	Cytolytic activity
DD	BP	BMZ 1280	BMZ 2560	7/82 (+)
TH	BP	BMZ 10	(-)	1/82 (+)
LW	BP	BMZ 640	BMZ 160	12/82 (+)
FP	Linear	BMZ 512	8/78	(-)
BV	BP	ANA 320	ANA 160	4/80 (-)
LS	BP	BMZ 640	BMZ 2048	8/79 (-)
CW	BP	BMZ 1280	BMZ 512	8/78 (-)
TO	Suction	NT	NT	6/82 (-)
KO	Suction	NT	NT	6/82 (-)
SA	Suction	NT	NT	6/82 (-)
KS	PV	NT	(-)	6/82 (-)
RG	PV	ICS 160	ICS 16	10/78 (-)
MD	TEN	(-)	(-)	3/82 (-)
FP	Herpes	NT	11/82 (-)	

*BP—bullous pemphigoid; linear IgA BD—linear IgA bullous dermatosis; TEN—toxic epidermal necrolysis; Herpes—herpes zoster; SAL—supernatant from activated lymphocytes.

\(^*\)NT—not tested; BMZ—basement membrane zone antibody titer; ICS—intercellular substance antibody titer; ANA—antinuclear antibody titer. (-) indicates no membrane fluorescence observed; IF titer expressed as reciprocal of highest dilution of serum giving positive staining.

\(^\dagger\)LT assay done with 0.1–0.2 ml of blister fluid as described in Materials and Methods. (+) represents significant cytolytic activity on L-929 target cells. A control supernatant from activated lymphocytes (SAL) containing 200 units LT activity/ml was employed as the positive control.
Table II. Neutralization of Cytolytic Activity in Blister Fluid with Anti-α-LT Antisera

Patient	Diagnosis	Blister fluid dilution	Anti-α-LT	Anti-WS	Control sera	Cell number ± SD	Percentage neutralization
Expt 1						25,844 ± 431	*
FP	Herpes	1:5	—	—	—	28,173 ± 131	0
FP	Herpes	1:5	0.05	—	—	25,261 ± 2703	0
TH	BP	1:5	—	—	—	16,938 ± 183	77
TH	BP	1:5	0.05	—	—	23,796 ± 491	77
DD	BP	1:5	—	—	—	12,945 ± 532	0
DD	BP	1:5	0.05	—	—	20,005 ± 867	54
—	SAL	1:200	—	—	—	6,680 ± 418	0
Expt 2						17,944 ± 425	*
DD	BP	1:7	—	—	—	15,225 ± 884	0
DD	BP	1:7	0.05	—	—	17,231 ± 388	74
DD	BP	1:7	—	0.05	—	15,501 ± 11	11
Expt 3						15,788 ± 310	*
DD	BP	1:10	—	—	—	12,173 ± 955	0
DD	BP	1:10	0.05	—	—	15,388 ± 176	88
DD	BP	1:10	—	0.05	R	15,783 ± 98	100
DD	BP	1:10	—	—	0.05 G	12,039 ± 1266	0
DD	BP	1:10	—	—	0.05 G	11,337 ± 133	0

αBP—bullous pemphigoid; SAL—supernatant from activated lymphocytes; Herpes—herpes zoster.

Antisera specificity described in Materials and Methods, amount of antisera given as ml/1 ml culture. Control sera are normal rabbit serum—R and normal goat serum—G.

LT assay and calculation of percentage neutralization described in Materials and Methods. * indicates the control which represents 100% neutralization.

Neutralization of Cytolytic Activity in Bullous Pemphigoid Blister Fluid with Antilymphotoxin Antisera

The bullous pemphigoid blister fluid contains immunoglobulins, complement, and other materials which could be cytotoxic. The data in Table II show that 50–88% of the cytolytic activity can be neutralized with anti-α-LT. Eleven to 100% of the activity was neutralized with anti-WS serum. These neutralization studies prove that the cytolytic activity found in these blister fluids shares antigenic determinants in common with LT and represents α-LT. Preliminary heat neutralization studies show that the cytotoxic activity found in patient DD’s blister fluid is stable to heating 56°C × 45 min, again consistent with the hypothesis that the cytotoxic material represents primarily α-LT.

Serum from Bullous Pemphigoid Patients Assayed for Cytotoxic Activity

The sera of five bullous pemphigoid patients were assayed at a 1:2–1:5 dilution for the presence of cytolytic activity on L-929 targets cells. No cytotoxic activity was detected in the sera of BP patients with active disease even when assayed within 4–72 hr of collection. This demonstrated that the cytotoxic activity in the blister fluid of BP patients represents the products of a local process and is not due to the complement and immunoglobulins present in the blister fluid.

DISCUSSION

This study demonstrates a cytolytic lymphotoxin-like activity in the blister fluid from patients with bullous pemphigoid (BP) which is not present in the serum from patients with BP. The cytolytic activity is detected on L-929 target cells and is neutralized.
by monospecific antisera to α-LT (6, 7). This implies that LT or LT-like molecules are present in the cytoltyic blister fluid. Since LT is produced only by activated lymphocytes (8–10), activated lymphocytes may play an important role in the pathogenesis of BP. We suggest that the erythematous and indurated plaques that typically precede the bullae in BP patients represent the early local activation of lymphocytes in much the same way that activated lymphocytes generate a positive delayed-type hypersensitivity skin test reaction. The locally activated lymphocytes probably release LT and other lymphokines into the skin which diffuse into the blister fluid where it is measured.

Blister fluid from BP patients has been shown to contain several different bioactive molecules. Baba et al. (11) described an eosinophilic chemotactic activity in blister fluid from BP patients. The major portion of this activity was less than 1000 MW and had physical properties of the eosinophilic chemotactic factor of anaphylaxis (ECF-A). Blister fluid from BP patients has been shown to contain an eosinophilic-stimulating material similar or identical to colony-stimulating factor (CSF) (14) and a chemotactrant activity for lymphocytes (5).

The LT activity reported in this study represents a new class of molecules, the lymphokines, found in blister fluid of BP patients. The LT activity is mediated by a group of proteins with molecular weights of 25,000, 45,000, 80,000, and 150,000 and a complex >200,000. Some of these molecules are stable (e.g., α-LT) while others are unstable in serum (e.g., β- and γ-LT (13). Only lymphocytes have been shown to synthesize LT, and both T and B lymphocytes can synthesize LT molecules.

A current pathogenic model used to describe the phenomenon observed in BP patients proposes that IgG binds to the BMZ and fixes complement. Next, lymphocyte and granulocyte chemotactic factors are generated. Complement components or mast cells (5) appear to be involved at this stage. The recruited granulocytes bind to the BMZ, degranulate, and release proteases which digest the BMZ and form bullae (4).

Although this model explains much of the observed experimental data, it does not explain why passively transfused BP antibody does not cause disease (1) and why the serum titers of BP IgG do not correlate with disease activity (2). Anhalt et al. (15) have had limited success in passively transferring BP with IgG obtained from BP patients. They demonstrated that anti-BMZ IgG from BP patients injected into rabbit corneas caused inflammatory infiltrates and subepithelial blister formation. When the same BP IgG was injected into rabbit skin, no inflammatory lesions were produced. Thus, the anti-BMZ IgG found in BP patients is probably pathogenic under the correct conditions in vivo.

Although anti-BMZ IgG and complement are probably involved, a third component, not IgG or component, is found in blister fluid which is required to cause dermal epidermal separation (DES) (12). The material required from DES could theoretically be an enzyme derived from PMNs or eosinophils, a cytotoxic molecule derived from lymphocytes or a yet undescribed molecule. Naito et al. (12) reported that blister fluid from two BP patients caused DES both in human skin cultured in vitro and in guinea pig skin in vivo. Sera from BP patients containing anti-BMZ IgG were not effective in producing DES. This blister fluid activity required for DES in vitro does not appear to be a serine proteinase, carboxyl proteinase, or metaloprotease; however, DES is inhibited by 10 mg/ml of α-2-macroglobulin. The blister fluid activity detected in vitro is neutralized by heating and by antisera to human complement components. This suggests either that the material is unstable, and has antigenic determinants similar to complement, or that it requires complement and possibly IgG to cause DES. The relationship of the cytolytic material found in blister fluid and the material found in blister fluid required for DES is unknown. Further studies are in progress to examine the molecular characteristics of the cytolytic activity found in the blister fluid of BP patients and determine if unstable LT molecules are present in these blister fluids.

ACKNOWLEDGMENTS

This work was supported by the Kroc Foundation, by Grant USPHS 5S07RR05534 from the U.S. Public Health Service, and in part by a grant from the Dermatologic Research Foundation of California, Inc.

REFERENCES

1. Sams WM Jr, Gleich GJ: Failure to transfer bullous pemphigoid with serum from patients. Proc Soc Exp Biol Med 136:1027–1031, 1971
2. Sams WM Jr, Jordan RD: Correlation of pemphigoid and pemphigus antibody titers with disease activity. Br J Dermatol 84,7–13, 1971
3. Dubertret L, Bertaux B, Fosse M, Touraine R: Cellular events leading to blister formation in bullous pemphigoid. Br J Dermatol 104:615-624, 1980

4. Gammon WR, Lewis DM, Carlo JR, Sams WM, Wheeler CE: Pemphigoid antibody mediated attachment of peripheral blood leukocytes of the dermal-epidermal junction of human skin. J Invest Dermatol 75:334-339, 1980

5. Center DM, Austen KA, Wintraub BU: Identification of chemoattractant activity for lymphocytes in bullous pemphigoid bullous fluid. Transact Assoc Am Phys 76:242-252, 1978

6. Spofford B, Daynes RA, Granger GA: Cell mediated immunity In vitro: A highly sensitive assay for human lymphotoxin. J Immunol 112:2111-2116, 1974

7. Yamamoto RS, Hiserodt JC, Lewis JE, Carmack CE, Granger GA: The human LT system. II. Immunological relationships of LT molecules released by mitogen activated human lymphocytes in vitro. Cell Immunol 38:403-416, 1978

8. Fair DS, Jeffes EWB III, Granger GA: Release of LT molecules with restricted physical heterogeneity by a continuous human lymphoid cell line in vitro. Immunochemistry 16:186-190, 1979

9. Harris PC, Yamamoto RS, Crane J, Granger GA: The human LT serum X. The initial form released by T-enriched lymphocytes is 150,000 M.W., associated with small mono-lytic components, and can dissociate into smaller alpha, beta and gamma M.W. classes. J Immunol 126:2165-2170, 1981

10. Granger GA, Shimizu I, Harris L, Anderson J, Horn P: Detection of lymphotoxins in vitro I specific identification of short-lived activity in the plasma of various human patients employing rabbit anti-human LT sera in vitro. Clin Immunol Immunopathol 10:104-115, 1978

11. Baba T, Sonozak H, Seki K, Uchiyama M, Ikesawa Y, Torisu M: An eosinophil chemotactic factor present in blister fluids of bullous pemphigoid patients. J Immunol 116:112-116, 1976

12. Naito K, Morioka S, Ogawa H: The pathogenic mechanisms of blister formation in bullous pemphigoid. J Invest Dermatol 79:303-306, 1982

13. Granger GA, Yamamoto RS, Fair DS, Hiserodt JC: The human LT system. I. Physical-chemical heterogeneity of LT molecules released by mitogen activated human lymphocytes in vitro. Cell Immunol 138:388-402, 1978

14. Colley DG: Eosinophils and immune mechanisms: I. Eosinophil Stimulation Promoter (ESP): A lymphokine induced by specific antigen or phytohemagglutinin. J Immunol 110:1419-1423, 1973

15. Anhalt GJ, Bahn CF, Labib RS, Voorhees JJ, Sugar A, Diza LA: Pathogenic effects of bullous pemphigoid autoantibodies on rabbit corneal epithelium. J Clin Invest 68:1097-1101, 1981