dsRNA-seq Reveals Novel RNA Virus and Virus-Like Putative Complete Genome Sequences from Hymeniacidon sp. Sponge

SYUN-ICHI URAYAMA1,2,3*, YOSHIHIRO TAKAKI1, DAISUKE HAGIWARA1,2,3, and TAKURO NUNOURA1

1Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan; 2Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan; 3Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan. *Corresponding author. E-mail: urayama.shunichi.gn@u.tsukuba.ac.jp; Tel: +81–29–853–6636; Fax: +81–29–853–4605.

The marine sponge is a primordial multicellular animal that belongs to the phylum Porifera. Sponges are recognized as hosts of diverse symbiotic lives (Taylor et al., 2007), including bacteria, archaea, fungi, protists, and viruses (Webster and Thomas, 2016), and the relationships between the host sponge and symbionts vary from mutualism to parasitism (Webster and Taylor, 2012; Thomas et al., 2016). To understand the ecosystems associated with sponges, sponges have been described as “holobionts,” which are defined as assemblages of multiple species that form ecological units (Webster and Taylor, 2012). Sponge-bacteria/archaea interactions have been extensively examined (Schmitt et al., 2012; Thomas et al., 2016; Pita et al., 2018); however, the impact of viruses on sponge holobionts remains unclear. Among the limited number of virus studies on sponge holobionts, the presence of diverse virus-like particles in sponge cells and symbiont compartments has been reported (Vacelet and Gallissian, 1978; Pascelli et al., 2018). Furthermore, metagenomic analyses suggested the dominance of bacteriophage lineages in DNA viromes associated with reef sponge holobionts (Butina et al., 2015; Laffy et al., 2016; Laffy et al., 2018). To the best of our knowledge, one metatranscriptome study on a sponge holobiont characterized the presence of the partial genome sequences of RNA viruses related to the families Narnaviridae, Dicistroviridae, Partitiviridae, Picobirmaviridae, Picornaviridae, Tombusviridae, Nodaviridae, and Hepeviridae as well as unclassified viruses (Waldron, et al. [2018] Metagenomic sequencing suggests arthropod antiviral RNA interference is highly derived, and identifies novel viral small RNAs in a mollusc and a brown alga. bioRxiv doi: https://doi.org/10.1101/166488).

To access RNA viromes, conventional total RNA-seq (single-stranded RNA [ssRNA]-seq) is the most commonly used method to detect RNA viral sequences in diverse environments and organisms, such as oceanic waters (Steward et al., 2013; Culley et al., 2014), lake waters (Djikeng et al., 2009), seafloor sediments (Engelhardt et al., 2015), invertebrates (Shi et al., 2016), and vertebrates (Shi et al., 2018). In the latter two studies, deep RNA sequencing was performed on total RNAs from invertebrates and vertebrates and thousands of RNA viruses that appeared to infect them were identified (Shi et al., 2016; 2018). However, this method does not have the capacity to obtain complete genome sequences from RNA viruses because of the principle of cDNA synthesis. The rapid amplification of the cDNA end (RACE) or alternative methods have been conducted to obtain complete RNA viral genomes/segments, including terminal sequences, (Roossinck et al., 2010; Shi et al., 2016). In contrast, double-stranded RNA (dsRNA) sequencing has the advantage of the superior enrichment of RNA viral genomes over the conventional RNA sequencing method (Roossinck et al., 2010). Long cellular dsRNA consists of dsRNA virus genomes and replicative intermediates of ssRNA viruses (Morris and Dodds, 1979). Fragmented and primer-ligated dsRNA sequencing (FLDS), a method to obtain the full-length sequence of dsRNA including terminal sequences, was recently developed (Koyama et al., 2016; Urayama et al., 2016; 2018b; Fukasawa et al., 2019; Higashiura et al., 2019). The feature of this method is to retrieve the sequences from terminal regions that are needed to reconstruct segmented RNA virus genomes based on the

Key words: RNA virus, metagenome, dsRNA, sponge

Received October 17, 2019—Accepted January 17, 2020—Published online February 28, 2020
conserved sequences of terminal regions in each genome segment (Urayama et al., 2018a). In the present study, we applied the FLDS method in combination with ssRNA-seq to reveal sponge RNA viromes.

Materials and Methods

Sample collection

Sponges on tidal rocks in Tokyo Bay (35.3405°N, 139.6396°E) were sampled in April 2014 and 2015. After washing with distilled water, samples were stored at -80°C until further analyses.

Extraction and purification of dsRNA and ssRNA

Sponge samples were disrupted in liquid nitrogen in a mortar. Total nucleic acids were manually extracted from approximately 1 g of sponge powder. dsRNA was purified using a combination of the cellulose column method (Urayama et al., 2015) and an enzymatic treatment, as described previously (Urayama et al., 2018a). Some of the powder was processed to obtain total RNA using the TRIzol Plus RNA Purification Kit (Invitrogen) according to the manufacturer's protocol. Total RNA was treated with DNase I (Invitrogen) and further purified using the RNA Clean and Concentrator-5 Kit (Zymo Research).

dsRNA sequencing library construction

Nuclease-treated dsRNA was fragmented by ultrasonication at 4°C in Snap-Cap microTUBE (Covaris) using Covaris S220 (settings: run time 35 s, peak power 140.0 W, duty factor 2.0%, and 200 cycles burst \(^{-1}\)) (Covaris) (Urayama et al., 2018a). After the purification of fragmented dsRNAs using the Zymoclean Gel RNA Recovery Kit (Zymo Research), double-stranded cDNA was synthesized from 2 μg of total RNA using random primers (9-mers). The resultant cDNA was fragmented by ultrasound at 4°C and cDNA was synthesized using the SMARTer RACE 5′/3′ Kit (Takara Bio) with an oligonucleotide primer that had a complementary sequence to the adapter sequence. After amplification, cDNA was quantified using the Qubit dsDNA HS Kit (Thermo Fisher Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies).

ssRNA sequencing library construction

Double-stranded cDNA was synthesized from 2 μg of total RNA with the Prime Script Double Strand cDNA Synthesis Kit (Takara Bio) using random primers (9-mers). The resultant cDNA was quantified using the Qubit dsDNA HS Kit (Thermo Fisher Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies).

Illumina sequencing

Double-stranded cDNAs were fragmented using Covaris S220 (settings: run time 55 s, peak power 175.0 W, duty factor 5.0%, and 200 cycles burst \(^{-1}\)) and fragmented cDNAs were used as templates for KAPA Hyper Prep Kit Illumina platforms (Kapa Biosystems). The resultant Illumina libraries were evaluated using the Illumina MiSeq platform (Illumina) according to the manufacturer's protocol (600-cycle kit to perform 300-bp paired-end sequencing).

Data processing

Raw sequencing reads for dsRNA-seq were processed as described previously (Urayama et al., 2018a). rrNA reads in dsRNA-seq libraries were identified by SortMeRNA (Kopylova et al., 2012) and excluded from further virome analyses. In RNA virome analyses, reads were subjected to de novo assembly using CLC Genomics Workbench ver. 11.0 (CLC Bio) with the following parameters: a minimum contig length of 500, word value and bubble size set to auto, and assemblies that were manually examined and extended using the Tableview (Milne et al., 2010). Using the mapping tool, each contig was screened under the following conditions: at least 3× average coverage and 500 bp in length. If >10 reads defined the same terminal position of a certain contig, the position was recognized as a terminal end. Contigs for which both ends were identified as termini were defined as potential genome segments. RNA viral genes in potential genome segments and contigs were identified based on sequence similarities to known RNA viral proteins in the NCBI non-redundant (nr) database using BLASTX (Camacho et al., 2009) with an e-value≤1×10^{-5}. Sequences that matched a known RNA-dependent RNA polymerase (RdRp) gene by BLASTX with an e-value≤1×10^{-5} were collected from RNA virus contigs and segments. The presence of the RdRp domain (PF00680, PF00978, and PF02123) was confirmed using PfamScan (Chojnacki et al., 2017) with an e-value≤1×10^{-5} when a sequence had significant similarity (e-value≤1×10^{-5}) to an RNA viral polyprotein or hypothetical protein. Nucleotide sequences encoding the RdRp gene were clustered at 90% identity using VSEARCH (Rognes et al., 2016). The centroid sequence of each cluster was defined as a representative sequence. We also identified the signature amino acid residues conserved in the RdRp domain (Venkataraman et al., 2018) in the ORFs of potential genome segments that had no ORF with significant similarities (e-value≤1×10^{-5}) to sequences in the nr database. Quality-based variant detection was performed using CLC Genomics Workbench ver. 11.0 (CLC Bio).

Raw sequencing reads from ssRNA-seq were processed as described previously (Urayama et al., 2016). Small subunit (SSU) rRNA sequences were reconstructed from ssRNA-seq reads with EMIRGE (Miller et al., 2011).

Phylogenetic analyses

The deduced amino acid sequences of the putative RdRp genes obtained in the present study and their relatives in the NCBI nr database were aligned using MUSCLE (Edgar, 2004) in MEGA5 (Tamura et al., 2011). To exclude ambiguous positions, the alignment was trimmed by trimAI (option: -gt 1) (Capella-Gutiérrez et al., 2009). Phylogenetic analyses were conducted using RAxML (Stamatakis, 2014). Bootstrap tests were conducted with 1,000 samplings. The model of amino acid substitution for each phylogeny was selected by Aminosan (Tanabe, 2011), as judged by Akaike's information criterion (Sugiura, 1978), i.e., rtREV+F+G for Reoviridae, LG+F for Reoviridae, LG+F+G for Picornaviridae, and rREV+F+G for Dicistroviridae. TreeGraph2 (Stöver and Müller, 2010) and FigTree (Rambaut, 2014) were used to illustrate the resulting phylogenies.

Accession numbers

The sequences obtained in the present study are available in the GenBank database repository (accession nos. DDBJ: BKZT01000001–BKZT01000434, BKZU01000001–BKZU01000431, and LC504241–LC504250) and Short Read Archive database (accession nos. DDBJ: DRA008491).

Results

Overview of NGS reads

We obtained 1.8–4.1 M high-quality reads in four RNA-seq libraries (Fig. S1). Regarding dsRNA-seq libraries, reads associated with RNA viruses (see below) and the remaining rrNA reads occupied approximately 20 and 30% of dsRNA reads, respectively. The ratio of rrNA reads in dsRNA-seq libraries varied among the samples reported previously (Urayama et al., 2016; 2018a; 2018b; Decker et al., 2019). Some rrNAs potentially contaminated the dsRNA fraction due to their secondary structures. Thus, the relative amount of dsRNA to rrNA in samples may have affected the rrNA read ratio in dsRNA sequencing. Furthermore, the
formation of dsRNAs of sense/antisense transcripts from overlapping regions may influence the results of dsRNA sequencing (Decker et al., 2019). In ssRNA-seq libraries, RNA viruses and rRNA reads occupied approximately 0.5 and 80% of ssRNA reads, respectively.

Diversity of cellular rRNA in sponges

To identify potentially active biomes in sponges obtained in 2014 and 2015, SSU rRNA sequences were reconstructed from total ssRNA-seq reads, and compositions were estimated based on mapped read numbers on SSU rRNA sequences (Miller et al., 2011). Hymeniacidon sp. SSU rRNA reads occupied >90% of all SSU rRNA reads in total ssRNA libraries from sponges obtained in both 2014 and 2015 (Fig. 1A). The next abundant eukaryotic SSU rRNA sequence was identified as Mytilus edulis (0.8%) mussel, and the abundance of other eukaryotic SSU rRNA sequences was lower than 0.2% of all SSU rRNA reads. No archaean or bacterial SSU rRNA sequence was found from reads that dominated >2% of all SSU rRNA reads.

Fig. 1. Summary of dsRNA-seq and ssRNA-seq analyses. (A) Relative abundance of sequence reads mapped on SSU rRNA sequences constructed by EMIRGE. Numbers indicate OTU. (B, C) The average coverage (left axis) and relative abundance (right axis) of RdRp-encoding RNA viral genome segments (Table S1) estimated by the mapping of dsRNA-seq and ssRNA-seq data, respectively, from sponge samples collected in 2014 (B) and 2015 (C). Open bars indicate reads mapped on segments encoding CDS with no significant similarity (e-value≤1×10⁻⁵) to known viral genes. Items on the horizontal axis represent the IDs of RdRp-encoding full-length sequences (Table S1) or virus names.
Sponge-associated non-retro RNA virome

The FLDS analysis (dsRNA-seq) succeeded in enriching viral reads and revealed RNA viromes associated with sponges collected in 2014 and 2015, while RNA virus reads were rare in the ssRNA-seq analysis, except for reads related to *Dicistroviridae* in 2015 samples (Table S1). We obtained 253 and 233 sequences encoding RdRp genes from the 2014 and 2015 samples, respectively (Table S1). These sequences included viral sequences related to 9 dsRNA virus families and 3 positive-sense ssRNA virus families based on a RdRp sequence similarity analysis, while 11 and 33 families were previously established in dsRNA and positive-sense ssRNA viruses, respectively (King et al., 2012). We also found 78 sequences encoding RdRp genes belonging to unclassified RNA viral lineages based on the taxonomic lineage of BLASTX top hit sequences (Table S1), and 7.7% of RdRp reads in dsRNA libraries were mapped to these segments and contigs. Viral sequences related to families recognized as animal viruses, such as *Birnaviridae* and *Dicistroviridae*, were also identified from sponge RNA viromes. After the clustering of RdRp domain sequences, 167 representative sequences (>1.5 kb, <90% identity) were identified and defined as operational taxonomic units (OTUs). Based on the taxonomic lineage of BLASTX top hit sequences, the richness of OTUs was analyzed and many viral OTUs were suggested to be closely related with (or belonging to) *Totiviridae*, *Reoviridae*, and *Partitiviridae* (Fig. 2). The majority of OTUs in unclassified groups showed low amino acid sequence identity to the best hit sequence (Fig. S2). All of the top hit sequences in “unclassified RNA viruses” were RdRp identified from *Bryopsis cinicola* (Chlorophyta) (Koga et al., 2003). In “unclassified dsRNA viruses” and “unclassified viruses”, several OTUs showed close sequence similarities to RdRp sequences identified from the Diatom colony (Urayama et al., 2016). Dominance in the coverage of these dsRNA viruses was also confirmed based on the read abundance in dsRNA libraries (Table S1).

Major putative complete genomes

We obtained 118 and 180 full-length potential viral genome segments from 2014 and 2015 samples, respectively. Among RdRp-encoding potential viral genome segments (Fig. 1B and C), we focused on the five dominant viral genome segments that represented high average coverage (>1,000×) in each dsRNA-seq library. The five segments occupied more than 50% of the total average coverage of RdRp-encoding segments and contigs (253 and 233 OTU in 2014 and 2015, respectively). Following the identification of major RdRp sequences in dsRNA-seq libraries, we reconstructed RNA genome sets based on the similarity of terminal sequences among segments (Fig. 3 and S3). These five genome sets were considered to be “putative complete” because they had very high coverage (>1,000×), and, thus, there was a low chance of missing other fragments of their genomes. Reconstructed viral genomes were also supported by the following parameters, in addition to the similarity of terminal sequences. The difference in GC% among sequences within a group sharing similar terminal sequences was <5%. Each ORF did not show amino acid sequence similarity (>50% similarity) to any ORFs encoded by other potential genome segments in a single group. We named these RNA viral genomes harboring ORFs that presented significant similarity (e-value≤1×10⁻⁹) with known viral sequences after the names of the most closely related virus family (Table S2 and see below); Sponge-associated dicistro-like RNA virus (SrRV, accession no. BKZU01000024), Sponge-associated partiti-like RNA virus (SpaRV, accession no. BKZT01000015), Sponge-associated reo-like RNA virus (SrRV, accession no. BKZT01000005), Sponge-associated picobirna-like RNA virus (SpiRV, accession no. BKZT01000016), and Sponge-associated RNA virus (SRV, accession no. LC504241–50).

No ORF of SRV showed significant similarity (e-value≤1×10⁻⁵) with sequences in the nr database. However, an ORF of SRV RNA2 showed insignificant similarity (e-value=0.01) to the RT_like super family (cl02808) in the CDD search. Thus, we manually identified the signature amino acid residues conserved in the RdRp domain (Venkataraman et al., 2018) including the “GDD” sequence in the ORF (Fig. S4). Accordingly, we concluded that the genome segment set corresponded to RNA viral genomes that belonged to a previously unknown viral family.

To estimate the potential host of these RNA viruses identified in the dsRNA-seq analysis, we evaluated the abundance of these viral sequences in ssRNA-seq according to the previously proposed definition that viral reads sharing
Group 1: Sponge-associated dicistrovirus-like RNA virus (SdRV)

RNA helicase | RNA dep RNAP
1.47e-29 | 1.12e-87

Group 2: Sponge-associated partitivirus-like RNA virus (SpaRV)

RNA1 | RT_like super family 8.80e-20
RNA2

Group 3: Sponge-associated reovirus-like RNA virus (SrRV)

RNA1 | Orbi_VP1 super family 1.10e-57
RNA2
RNA3 | Orbi_VP4 super family 3.30e-16
RNA4
RNA5
RNA6
RNA7
RNA8

Group 4: Sponge-associated picobirnavirus-like RNA virus (SpiRV)

RNA1
RNA2 | RT_like super family 7.43e-15
RNA3

Group 5: Sponge-associated RNA virus (SRV)

RNA1
RNA2 | RT_like super family 0.01
RNA3
RNA4
RNA5
RNA6
RNA7
RNA8
RNA9
RNA10 | 1,000 nt

Fig. 3. Organization of reconstructed RNA viral or virus-like genomes. Values indicate the e-value with the viral top hit domain by a CD search.

>0.1% in non-rRNA reads in conventional RNA sequencing may be infected with the sampled organism (Shi et al., 2016). Among the five major viral genomes, SdRV showed the highest read abundance, accounting for 2.7% of non-ribosomal reads in the ssRNA-seq library (Fig. 1C). The full-length sequence of SpaRV was obtained in 2014 and 2015 samples and only one base substitution was observed between sequences obtained from the two samplings. The read abundance in non-ribosomal reads was approximately 0.0025% in both ssRNA-seq libraries. SRV was also detected in 2014 and 2015 samples and occupied more than 0.008% in both ssRNA-seq libraries. Between the 2014 and 2015 SRV genomes, there were only 54 positions of a single-nucleotide variant and 90% (49/54) of them were identified as transitions. Therefore, SpaRV and SRV appeared to have infected the same or closely related organisms (host) within sponges obtained in both 2014 and 2015. In contrast, in both sponges, eukaryotes other than Hymeniacidon sponge did not dominate more than 0.0025% of the SSU rRNA composition, with the exception of M. edulis in 2015 samples, which shared 0.8% of SSU rRNA reads. Thus, we concluded that Hymeniacidon sp. appeared to be a host of SdRV, SpaRV, and SRV. The read abundances of SpiRV and SrRV putative genomes were one to two orders of magnitude smaller than that of SdRV in ssRNA-seq data, and were only detected from either of the samples. Therefore, we were unable to define their host based on this definition. It is important to note that dsRNA viruses (SpaRV, SpiRV, and SrRV) showed lower read abundance than the ssRNA virus (SdRV) in ssRNA-seq data.

SdRV

Among reconstructed viral genomes, only SdRV presented significant similarity with the subject sequence Caledonia beadlet anemone dicistro-like virus 2 isolate I38 (accession no. MF189973, publication status: unpublished) (e-value=0.0, 71% identity) in the BLASTN analysis; its potential host Caledonia belongs to the phylum Cnidaria, not Porifera. The SdRV genome consists of one segment with two ORFs. The BLASTP search also revealed that the most similar sequence to SdRV RdRp was putative ORF1 of Caledonia beadlet anemone dicistro-like virus 2 isolate I38 (accession no. ASM93984) (e-value=0.0, 74% identity). A phylogenetic analysis of the RdRp sequence indicated that SdRV belonged to the positive-stranded ssRNA virus family Dicistroviridae (Fig. 4). The arrangement of ORFs on the SdRV genome was similar to those on known viruses in Dicistroviridae (Fig. S5). These results suggest that SdRV is a new ssRNA virus that belongs to Dicistroviridae.

SpaRV

In the BLASTP analysis for RdRp in the SpaRV genome, the most similar sequence in the nr database was Hubei partiti-like virus 53 (related to viruses in Partitiviridae) (e-value=3×10^{-43}, 32% identity) found in the ssRNA-seq of invertebrates (Shi et al., 2016). The genome of SpaRV consists of two segments with one ORF each and the genome structure is conserved in known partitiviruses. Although the RdRp sequence showed significant similarity (e-value≤1×10^{-5}) with sequences in Partitiviridae, SpaRV was not classified into the established genus of Partitiviridae by the phylogenetic analysis (Fig. 5) (Nibert et al., 2014). Therefore, SpaRV represents a novel genus in the family Partitiviridae. Viruses in Partitiviridae have been isolated from culturable organisms, such as plants, fungi, and protozoa (Nibert et al., 2014). In addition, their relatives have been detected in both vertebrates and invertebrates in transcriptomic analyses (Liu et al., 2012; Shi et al., 2016); however, no partitivirus has been isolated from animals (Nibert et al., 2014).

SrRV, SpiRV, and SRV

The sequence that was the most similar to RdRp in SrRV in the BLASTP analysis was Chuzan virus (genus Orbivirus) (e-value=2×10^{-14}, 25% identity); however, a phylogenetic analysis of RdRp for Reoviridae revealed that SrRV was not positioned into the genus Orbivirus (Fig. 6). In addition, in the BLASTX analysis, an ORF of segment 3 showed significant similarity with VP3 (Orbivirus VP4 core protein) of Wad Medani virus (genus Orbivirus) (e-value=2×10^{-14}, 25% identity), while other segments showed
no significant similarity (e-value ≤ 1 × 10^{-5}) with known viral sequences.

The most significantly similar sequence in the BLASTP analysis for RdRp in SpiRV was Hubei picorna-like virus 2. A phylogenetic analysis of RdRp suggested that SpiRV belongs to an undefined and tentatively named α clade of picornavirus-like viruses derived from marine microorganisms, diatoms, and invertebrates (Urayama et al., 2018a) (Fig. 7). In Picobirnaviridae, one sequence that originates from a sponge named Barns Ness breadcrumb sponge picorna-like virus 1 (accession no. MF190026.1) was found in the nr database, but belongs to the β clade.

SRV was composed of 10 RNA segments with 35,412 nt that showed no significant similarity (e-value ≤ 1 × 10^{-5}) with sequences in the nr database in BLASTN and BLASTX analyses. The RdRp sequence was too distant from all known RdRp sequences to identify its phylogenetic position. However, as discussed above, the genome structure of SRV resembled that of Reoviridae and the ratio of SRV reads in non-rRNA ssRNA-seq was similar to those of dsRNA viruses (Fig. 1B and C). When considering the maximum segment number of known ssRNA viruses (viruses in Orthomyxoviridae have ~8 segments), SRV may be a reo-like novel dsRNA virus. To the best of our knowledge, the genome size of SRV is the largest among known RNA viruses.

Other viral segments and contigs

Although we focused on numerically abundant viruses with putative complete genome sequences in the dsRNA-seq libraries, there was a RdRp-encoding contig with similar average coverage (1,839×) to these five genomes. The contig (ID: Sponge_RNAV429) was identified in 2014 samples, and showed significant similarity (e-value = 4 × 10^{-14}, 24% identity) to known, but unclassified RdRp identified from the chloroplasts of *C. rayama* (et al., 2018a).

In the present study, 788 partial viral genome sequences were identified (Table S1). To clarify the phylogenetic distribution of these viruses, maximum likelihood trees for each established RNA virus family were calculated based on 1,000 RAxML calculations. The best-fitting amino acid substitution model was [rtREV+F+G].
Fig. 5. Maximum likelihood tree of aligned RdRp amino acid sequences from SpaRV and representative members of families Picobirnaviridae and Partitiviridae using 302 residues. Numbers indicate bootstrap values (%) based on 1,000 RAxML calculations. The best-fitting amino acid substitution model was [nREV+F+G]. Colors indicate the classification of the host organism.

Discussion

Recent RNA virome analyses suggest the extent of gene module shuffling among diverse viral genomes (Dolja and Koonin, 2017). Thus, high-quality information on RNA viral genomes is essential for understanding the diversity and evolution of RNA viruses. However, the conventional metagenomic ssRNA-seq approach has a limitation in retrieving entire genomic structures because of the absence of the terminal sequences of each genome segment (Ozsolak and Milos, 2011). Most contigs encoding viral genes, except for RdRp genes, must be overlooked, except when the genome sequence presents significant similarity to previously reported viral genomes. For example, among the five possible RNA viral genomes from the two sponges examined in the present study, it was not possible to identify >50% of segments as RNA viral genome segments based on
Fig. 6. Maximum likelihood tree of aligned RdRp amino acid sequences from SrRV and representative members of the family Reoviridae using 409 residues. Numbers indicate bootstrap values (%) based on 1,000 RAxML calculations. The best-fitting amino acid substitution model was [LG +F]. Gray circles represent established genera. Black dots and green color represent OTUs derived from Urayama et al. (2018a) and Shi et al. (2016), respectively.

a sequence similarity analysis when the terminal sequence information of RNA viral segments obtained by FLDS was absent.

In FLDS analyses, we were unable to identify the polyA tail of SdRV; however, most viruses in the order Picornavirales, including the family Dicistroviridae, are known to harbor a polyA tail on their genomes (King et al., 2012). This difference may be explained by the methodological bias of the FLDS method that targets cellular dsRNA, a replicative intermediate of ssRNA viruses (York and Fodor, 2013). A previous study reported that RNA viral genome sequences related to viruses in Hypoviridae (order: unas-
signed) with polyA tails were retrieved by FLDS (Urayama et al., 2018a). The variance of the 3′ terminal modification with a polyA tail among ssRNA viral genomes retrieved by FLDS implies variations in replication processes among ssRNA viruses.

In the present study, we assessed sponge RNA viromes using dsRNA- and ssRNA-seq and identified 167 RdRp genes, which represent RNA viral OTUs. The present results revealed that RNA viruses in sponge holobionts are highly diverse, similar to DNA viruses and prokaryotic populations (Taylor et al., 2004; Laffy et al., 2018). The present study suggests the importance of RNA viruses for the homeostasis and evolution of sponge holobiont systems, while RNA viromes have been overlooked in holobiont systems. A high-quality list of sponge-associated RNA viruses will be a fundamental knowledge base for understanding the activity and ecological distribution of (sponge-associated) RNA viruses.

Acknowledgements

This research was supported in part by Grants-in-Aid for Scientific Research (Nos. 26892031 and 18H05368) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Grants-in-Aid for Scientific Research on Innovative Areas from MEXT of Japan (Nos. 16H06429, 16K21723, and 16H06437).
References

Butina, T., Potapov, S., Belykh, O., and Belikov, S.I. (2015) Genetic diversity of cyanophages of the Myoviridae family as a constituent of the associated community of the Baikal sponge Lubomirskaibaicalensis. Genetika (Moscow) 51: 384–394.

Camastrand, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: 421.

Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.

Choynacki, S., Cowley, A., Lee, J., Fox, A., and Lopez, R. (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45: W550–W553.

Culley, A.I., Mueller, J.A., Belemaid, M., Wood-Charlson, E.M., Poisson, G., and Steward, G.F. (2014) The characterization of RNA viruses in tropical seawater using targeted PCR and metagenomics. mBio 5: e01210–01214.

Decker, C.J., Steiner, H.R., Hoon-Hanks, L.L., Morrison, J.H., Haist, K.C., Stabell, A.C., et al. (2019) dsRNA-Seq: Identification of viral infection by purification and sequencing dsRNA. Viruses 11: pii: E943.

Dijkeng, A., Kuzmickas, R., Anderson, N.G., and Spiro, D.J. (2009) Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One 4: e7264.

Dokchitser, V. and Koohn, E.V. (2017) Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 244: 36–52.

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

Engelhardt, T., Orsi, W.D., and Jorgensen, B.B. (2015) Viral activities and life cycles in deep subseafloor sediments. Environ Microbiol Rep 7: 868–873.

Fukasawa, F., Hirai, M., Takaki, Y., Shimane, Y., Thomas, C.E., Urayama, S., et al. (2019) A new polyhelicivirus identified in Colobopsis shoki. Arch Virol doi: 10.1007/s00705-019-04510-8.

Higashiu, T., Kato, Y., Urayama, Y., Hayashi, O., Aihara, M., Fukuhara, T., et al. (2019) Magnanopore oryzae chrysosporin I strain D confers growth inhibition to the host fungus and exhibits multiformal viral structural proteins. Virology 535: 241–254.

King, A.M.Q., Adams, M.J., Carstens, E.B., and Lefkowitz, E.J. (2012) Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier.

Koga, R., Horiiuchi, H., and Fukuhara, T. (2003) Double-stranded RNA replicons associated with chloroplasts of a green alga, Bryopsis cirinola. Plant Mol Biol 51: 991–999.

Kopylova, E., Noé, L., and Touzet, H. (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28: 3211–3217.

Koyama, S., Sakai, C., Thomas, C.E., Nunoura, T., and Urayama, S. (2016) A new member of the family Totiviridae associated with arboreal ants (Camponotus nipponicus). Arch Virol 161: 2043–2045.

Laffy, P.W., Wood-Charlson, E.M., Turaev, D., Weynberg, K.D., Botté, E.S., van Opperpen, M.J., et al. (2016) Holovir: A workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front Microbiol 7: 822.

Laffy, P.W., Wood-Charlson, E.M., Turaev, D., Jutz, S., Pascelli, C., Botté, E.S., et al. (2018) Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol 20: 2125–2141.

Liu, H., Fu, Y., Xie, J., Cheng, J., Ghabrial, S.A., Li, G., et al. (2012) Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS One 7: e42147.

Miller, G.S., Baker, B.J., Thomas, B.C., Singer, S.W., and Banfield, J.F. (2011) EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12: R44.

Milne, I., Bayer, M., Cardle, L., Shaw, P., Stephen, G., Wright, F., and Marshall, D. (2010) Tablet—next generation sequence assembly visualisation. Bioinformatics 26: 401–404.

Morris, T.J. and Dodds, J.A. (1979) Isolation and analysis of double-stranded ma from virus-infected plant and fungal tissue. Phytopathology 69: 854–858.

Nibert, M.L., Ghabrial, S.A., Maiss, E., Lesker, T., Vainio, E.J., Jiang, D., and Suzuki, N. (2014) Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188: 128–141.

Oszolak, F., and Milos, P.M. (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: 87–98.

Pascelli, C., Laffy, P.W., Kupresanin, M., Ravasi, T., and Webster, N.S. (2018) Morphological characterization of virus-like particles in coral reef sponges. PeerJ 6: e5625.

Pita, L., Rix, L., Slaby, B.M., Franke, A., and Hentschel, U. (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6: 46.

Rambaut, A. (2014) FigTree 1.4.2 software. Institute of Evolutionary Biology, Univ. Edinburgh. URL http://tree.bio.ed.ac.uk/software/figtree/.

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.

Roosendaal, M.J., Saha, P., Wiley, G.B., Quan, J., White, J.D., Lai, H., et al. (2010) Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol Ecol 19 Suppl 1: 81–88.

Schmitt, S., Tsai, P., Bell, J., Fromont, J., Ilan, M., Lindquist, N., et al. (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6: 564–576.

Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Shi, M., et al. (2016) Reedefining the invertebrate RNA virosphere. Nature 540: 539–543.

Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., et al. (2018) The evolutionary history of vertebrate RNA viruses. Nature 556: 197–202.

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

Steward, G.F., Culley, A.I., Mueller, J.A., Wood-Charlson, E.M., Belcamid, M., and Poisson, G. (2013) Are we missing half of the viruses in the ocean? ISME J 7: 672–679.

Stöver, B.C., and Müller, K.F. (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11: 7.

Sugiyura, N. (1978) Further analyses of the data by akaike’s information criterion and the finite corrections: Further analyses of the data by akaike’s. Commun Stat Theory Methods 7: 13–26.

Tanabe, A.S. (2011) Kakusan4 and Aminosan: two programs for nucleic acid composition and structure using tandem column chromatography. Mol Ecol Resour 11: 914–921.

Taylor, M.W., Scupec, P.J., Dahlhoff, I., Kjelleberg, S., and Steinberg, P.D. (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6: 121–130.

Taylor, M.W., Radax, R., Steger, D., and Wagner, M. (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbial Mol Biol Rev 71: 295–347.

Thomas, T., Motininho-Silva, D., Lurgi, M., Björk, J.R., Easson, C., Astudillo-García, C., et al. (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7: 11870.

Urayama, S., Yoshida-Takahshima, Y., Yoshida, M., Tomaru, Y., Moriyama, H., Takai, K., and Nunoura, T. (2015) A new Fractionation and recovery method of viral genomes based on nucleic acid composition and structure using tandem column chromatography. Microbes Environ 30: 199–203.

Urayama, S., Takai, K., and Nunoura, T. (2016) FLDS: A comprehensive dsRNA sequencing method for intracellular RNA virus surveillance. Microbes Environ 31: 33–40.

Urayama, S., Takai, Y., Nishi, S., Yoshida-Takahshima, Y., Deguchi, S., Takai, K., and Nunoura, T. (2018a) Unveiling the RNA virosphere associated with marine microorganisms. Mol Ecol Resour 18: 1444–1455.
Urayama, S., Takaki, Y., Nunoura, T., and Miyamoto, N. (2018b) Complete genome sequence of a novel RNA virus identified from a deep-sea animal, osedax japonicus. *Microbes Environ* **33**: 446–449.

Vacelet, J., and Gallissian, M.-F. (1978) Virus-like particles in cells of the sponge *Verongia cavernicola* (Demospongiae, Dictyoceratida) and accompanying tissues changes. *J Invertebr Pathol* **31**: 246–254.

Venkataraman, S., Prasad, B., and Selvarajan, R. (2018) RNA dependent RNA polymerases: Insights from structure, function and evolution. *Viruses* **10**.

Waldron, F.M., Stone, G.N., and Obbard, D.J. (2018) Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. *PLoS Genet* **14**: e1007533.

Webster, N.S., and Taylor, M.W. (2012) Marine sponges and their microbial symbionts: love and other relationships. *Environ Microbiol* **14**: 335–346.

Webster, N.S., and Thomas, T. (2016) The sponge hologenome. *mBio* **7**: e00135-00116.

York, A., and Fodor, E. (2013) Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell. *RNA Biol* **10**: 1274–1282.