A $\Theta(\log n)$-approximation for the Set Cover Problem with Set Ownership

Mira Gonen1 and Yuval Shavitt2

School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69778, Israel.

Abstract

In highly distributed Internet measurement systems distributed agents periodically measure the Internet using a tool called traceroute, which discovers a path in the network graph. Each agent performs many traceroute measurements to a set of destinations in the network, and thus reveals a portion of the Internet graph as it is seen from the agent locations. In every period we need to check whether previously discovered edges still exist in this period, a process termed validation. To this end we maintain a database of all the different measurements performed by each agent. Our aim is to be able to validate the existence of all previously discovered edges in the minimum possible time.

In this work we formulate the validation problem as a generalization of the well know set cover problem. We reduce the set cover problem to the validation problem, thus proving that the validation problem is NP-hard. We present a $O(\log n)$-approximation algorithm to the validation problem, where n is the number of edges that need to be validated. We also show that unless $P = NP$ the approximation ratio of the validation problem is $\Omega(\log n)$.

Key words: Internet, measurement systems, traceroute

1 Introduction

Our problem arises in the context of highly distributed Internet measurement systems [7,8]. In this type of systems, distributed agents periodically measure the Internet using a tool

1 gonenmir@post.tau.ac.il.
2 shavitt@eng.tau.ac.il.
called traceroute, which discovers a path in the network graph. Each agent performs many traceroute measurements to a set of destinations in the network, and thus reveals a portion of the Internet graph as it is seen from the agent locations. While some edges can be seen from many measurement locations, others can be seen only from a handful of locations [7,8,1], which is the major reason for distributing this process. We create a periodic map by unifying the measurements made by all the agents over this period.

There are many possible heuristics to direct agents to destinations in order to find as many graph edges as possible. However, one thing we have to do in every period is to check whether previously discovered edges still exist in this period, a process termed validation. To this end we maintain a database of all the different measurements performed by each agent. Our aim is to be able to validate the existence of all previously discovered edges in the minimum possible time.

A solution to the validation problem is to model each traceroute measurement as a set of edges, and then look for the smallest group of traceroute measurements (the sets) that covers the known graph, e.g., using a set cover logarithmic approximation algorithms [4]. However, this solution may end up finding many groups which are measured by one agent while leaving other agents with little or no measurements to perform. Since all agents measure at roughly the same rate, the termination time of the validation task is determined by the time it will take the agent with the largest number of measurements to complete its task. Thus, our aim is not to minimize the number of measurements that cover the graph, but to minimize the maximal number of measurement which is assigned to the agent with the most measurements. Therefore reducing the validation problem to the set cover problem will not necessarily give us the best solution, so we describe the validation problem as a generalization of the set cover problem.

Our Results. We define a new generalization of the set cover problem that is equivalent to the validation problem, and give an $O(\log n)$-approximation algorithm, where n is the number of edges in the validation problem, and show that our approximation ratio is tight, namely that our generalization of set cover cannot be approximated in polynomial time to within a factor of $o(\log n)$.

Organization: In Section 2 we give notations and a formal definition of the problem. In Section 3 we present an $O(\log n)$-approximation algorithm for the generalized set cover problem, and prove that this ratio cannot be asymptotically improved.

3 The path can be expressed at various levels of abstraction. The most common level in use is the autonomous system (AS) level, where each node in the graph (and thus in the path) represent an AS (or a network) in the Internet.

4 The list is kept at the abstraction level we are interested in, e.g., at the AS level.
2 Preliminaries

For an algorithm A, denote the objective value of a solution it delivers on an input I by $A(I)$. An optimal solution is denoted by opt, and the optimal objective value is denoted by opt as well. The (absolute) approximation ratio of A is defined as the infimum ρ such that for any input I, $A(I) \leq \rho \cdot \text{opt}(I)$.

Given a universe $U = \{u_1, \ldots, u_n\}$ and a family of its subsets, $\mathcal{S} = \{S_1, \ldots, S_k\} \subseteq P(U)$, $\bigcup_{S_j \in \mathcal{S}} S_j = U$, set cover is the problem of finding a minimal sub-family $\bar{\mathcal{S}}$ of \mathcal{S} that covers the whole universe, $\bigcup_{S_j \in \bar{\mathcal{S}}} S_j = U$. Set cover is a classic \mathcal{NP}-hard combinatorial optimization problem, and it is known that it can be approximated to within $\ln n - \ln \ln n + \Theta(1)$ [9,5,10]. By [6,2] it follows that unless $P = \mathcal{NP}$, there exists a constant $0 < c < 1$ so that set cover cannot be efficiently approximated to within any number smaller than $c \log n$. Feige [3] has shown hardness of approximating set cover in $(1 - o(1)) \ln n$.

We formalize the validation problem discussed in the introduction in the following manner: every edge in a traceroute is an element in a universe U. Each traceroute is modeled as a set of elements in U - its edges. Each agent is modeled as a family of sets, indicating the list of traceroutes it can perform. Moreover, each agent has a weight, indicating the number of traceroutes it can perform at a time period. Thus we get the following problem:

Problem 2.1 Validation Set Cover - VSC

Given a universe U of n elements, a collection of subsets of U, $\mathcal{S} = \{S_1, \ldots, S_k\}$, a partition of \mathcal{S} $\pi = \{A_1, \ldots, A_m\}$ where $A_i \subseteq \mathcal{S}$, and a weight function $\omega : \pi \rightarrow \mathbb{N}$, find a subcollection $\bar{\mathcal{S}}$ of \mathcal{S} that covers all elements of U such that $\max_{1 \leq i \leq m} \left[\frac{|\bigcup_{S_j \in \bar{\mathcal{S}}} S_j|}{\omega(A_i)} \right]$ is minimum.

Note: the Validation Set Cover problem is indeed a generalization of the set cover problem – if $m = 1$ then the Validation Set Cover problem is exactly the set cover problem. Thus the Validation Set Cover problem is also \mathcal{NP}-hard.

3 An $O(\log n)$-Approximation Algorithm

In this section we give an approximation algorithm for the VSC problem with an approximation ratio of $O(\log n)$. We then show that this is the best ratio possible by showing a lower bound of $\Omega(\log n)$ on the approximation ratio.

The greedy strategy applies naturally to the VSC problem: iteratively for each $1 \leq i \leq m$ pick $\omega(A_i)$ sets in A_i that cover the maximum number of elements in U that are still uncovered. The algorithm stops when all the elements in U are covered, and outputs the number of steps preformed.

Algorithm 1 Greedy VSC algorithm

1. $\ell \leftarrow 0$
2. $C \leftarrow \emptyset$
3. while $C \neq U$

3
(a) \(\ell \leftarrow \ell + 1 \)
(b) for \(1 \leq i \leq m \)
 (i) repeat \(\omega(A_i) \) times
 (A) find a set \(S_j \) such that \(S_j \in A_i \) and \(S_j \cap (U \setminus C) \) is maximum.
 (B) pick \(S_j \)
 (C) \(C \leftarrow C \cup S_j \)

(4) output \(\ell \)

Theorem 1. Algorithm 1 gives an approximation ratio of \(O(\log n) \).

We next prove Theorem 1. We first define the \(\ell \)-residual VSC problem. The input to this problem is the input to the VSC problems after \(\ell \) steps of the algorithm, with the same objective function:

- Let \(n_\ell \) be the number of elements in \(U \) that remain after \(\ell \) steps of the algorithm. For \(\ell = 0 \) \(n_\ell = n \).
- let \(C_\ell \) be the set of elements in \(U \) that are covered until step \(\ell \),
- for all \(1 \leq j \leq k = |S| \)
 - let \(S_\ell^j = S_j \setminus C_\ell \),
 - for all \(1 \leq i \leq m \) let \(A_\ell^i = A_i \setminus \{ S_j \in A_i \mid S_j \) has been picked until step \(\ell \} \),
 - let \(S^\ell = \{ S_\ell^j \mid S_\ell^j \neq \phi \} \).
- for all \(1 \leq i \leq m \) let \(\omega(A_\ell^i) = \omega(A_i) \).
- let \(\text{OPT}_\ell \) be the optimal solution of the residual input after \(\ell \) steps.\(^5\)

Then \(\text{OPT}_\ell = \min_{S^\ell} \max_{1 \leq i \leq m} \left[\frac{|A_\ell^i \cap S^\ell|}{\omega(A_\ell^i)} \right] \) where \(S^\ell \) is a subcollection of \(S^\ell \) that covers all elements of \(U \setminus C_\ell \).

Thus we get the following claim:

Claim 3.1 At step \(\ell \geq 1 \) of Algorithm 1 at least \(\frac{n_{\ell-1}}{\text{OPT}_{\ell-1}} \) elements in \(U \) are covered.

Proof: The main observation is that any optimal algorithm covers all the elements in \(\text{OPT} \) stages. Obviously, there exists a stage in which at least \(n/\text{OPT} \) elements are covered. Since the order of the stages does not change \(\text{OPT} \), assume w.l.o.g that at stage 1 any optimal algorithm covers at least \(n/\text{OPT} \) elements. Thus, if \(\ell = 1 \) then, since Algorithm 1 picks a set that covers the maximum number of elements, it holds that at least \(\frac{n}{\text{OPT}} = \frac{n_{\ell-1}}{\text{OPT}_{\ell-1}} \) elements are covered at step \(\ell \). If \(\ell > 1 \) then an optimal algorithm covers all the \(n_{\ell-1} \) remaining elements of \(U \setminus C_{\ell-1} \) in \(\text{OPT}_{\ell-1} \) steps. Since Algorithm 1 picks a set that covers the maximum number of remaining elements, it holds that at least \(\frac{n_{\ell-1}}{\text{OPT}_{\ell-1}} \) elements are covered at step \(\ell \). \(\Box \)

Using the above claim and the observation that for all \(\ell \) \(\text{OPT}_\ell \leq \text{OPT} \), we get the following lemma.

Lemma 3.2 \(n_\ell \leq n \left(1 - \frac{1}{\text{OPT}} \right)^{\ell-1} \)

\(^5\) Recall that \(\text{OPT} \) is the optimal solution
Proof: By induction on ℓ:

\[n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right) \]

\[n_2 \leq n_1 - \frac{n_1}{\text{OPT}_1} = n_1(1 - \frac{1}{\text{OPT}_1}) \leq n_1(1 - \frac{1}{\text{OPT}}) \leq n(1 - \frac{1}{\text{OPT}})^2 \]

Assume that for all $i < \ell$ it holds that $n_i \leq n \left(1 - \frac{1}{\text{OPT}}\right)^i$. Then

\[n_\ell \leq n_{\ell-1} - \frac{n_{\ell-1}}{\text{OPT}_{\ell-1}} \leq n \left(1 - \frac{1}{\text{OPT}}\right)^{\ell-1} - \frac{n_{\ell-1}}{\text{OPT}_{\ell-1}} \leq n \left(1 - \frac{1}{\text{OPT}}\right)^{\ell-1} \frac{\text{OPT}_{\ell-1}}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)^\ell \]

(1)

Proof of Theorem 1. In the worst case the algorithm stops after $\ell + 1$ steps for the minimal ℓ such that $n_\ell \leq 1$. Since by the above lemma $n_\ell \leq n \left(1 - \frac{1}{\text{OPT}}\right)^\ell$, for that ℓ with $n \left(1 - \frac{1}{\text{OPT}}\right)^\ell \leq 1$ it holds that $n_\ell \leq 1$.

\[n \left(1 - \frac{1}{\text{OPT}}\right)^\ell \leq 1 \iff \left(1 - \frac{1}{\text{OPT}}\right)^\ell \leq \frac{1}{n} \]

\[\iff \ell \leq \frac{\log(1/n)}{\log \left(1 - \frac{1}{\text{OPT}}\right)} = \frac{\log n}{\log \left(\frac{\text{OPT}}{\text{OPT} - 1}\right)} \]

\[\iff \ell \leq \frac{\log n}{\log \left(1 + \frac{1}{\text{OPT} - 1}\right)}. \quad (2) \]

We now prove that $\frac{\log n}{\log \left(1 + \frac{1}{\text{OPT} - 1}\right)} \leq \log n \cdot \text{OPT}$. It holds that

\[\frac{\log n}{\log \left(1 + \frac{1}{\text{OPT} - 1}\right)} \leq \log n \cdot \text{OPT} \iff 1 + \frac{1}{\text{OPT} - 1} \geq e^{1/\text{OPT}}. \]

According to the Taylor series we have that

\[f(x) = \sum_{i=0}^{n} f^{(i)}(0) \frac{x^i}{i!} + R_n(x), \]

where

\[R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}, \]
for some $0 \leq c \leq x$. For $f(x) = e^x$ we get that
\[
e^x = \sum_{i=0}^{n} \frac{x^i}{i!} + e^c \frac{x^{n+1}}{(n+1)!},\]
for some $0 \leq c \leq x$. For $f(x) = e^x$ we get that
\[
e^{1/\text{OPT}} = 1 + \frac{1}{\text{OPT}} + \frac{1}{2 \text{OPT}^2} + \frac{e^c}{6 \text{OPT}^3},\]
for some $0 \leq c \leq 1/\text{OPT}$. Now,
\[
1 + \frac{1}{\text{OPT} - 1} \geq 1 + \frac{1}{\text{OPT}} + \frac{1}{2 \text{OPT}^2} + \frac{e^c}{6 \text{OPT}^3} \\
\implies \frac{1}{\text{OPT} - 1} - \frac{1}{\text{OPT}} \geq \frac{1}{2 \text{OPT}^2} + \frac{e^c}{6 \text{OPT}^3} \\
\implies \frac{1}{(\text{OPT} - 1)\text{OPT}} \geq \frac{1}{2 \text{OPT}^2} + \frac{e^c}{6 \text{OPT}^3} \\
\implies \frac{1}{\text{OPT} - 1} \geq \frac{1}{2 \text{OPT}} + \frac{e^c}{6 \text{OPT}^3} \\
\implies 6 \text{OPT}^2 \geq (\text{OPT} - 1)(3 \text{OPT} + e^c). \tag{3}
\]
The last inequality is valid since $e^c < 3$ (as $c \leq 1/\text{OPT}$). Thus $1 + \frac{1}{\text{OPT} - 1} \geq e^{1/\text{OPT}}$, so $\frac{\log n}{\log \left(1 + \frac{1}{\text{OPT} - 1}\right)} \leq \log n \cdot \text{OPT}$. Therefore the number of steps used by Algorithm 1 is at most $1 + \log n \cdot \text{OPT}$, and the theorem follows. \qed

By [6,2] it follows that unless $\mathcal{P} = \mathcal{NP}$ the approximation ratio of the set cover problem is $\Omega(\log n)$. Since for $m = 1$ and for $1 \leq i \leq m$ $\omega(A_i) = 1$ the VSC problem is exactly the set cover problem, we get that unless $\mathcal{P} = \mathcal{NP}$ the approximation ratio of the VSC problem is $\Omega(\log n)$.

References

[1] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On the bias of traceroute sampling or, power-law degree distributions in regular graphs. In Proc. 37th Symposium on the Theory of Computing (STOC), pages 694 – 703, Baltimore, MD, USA, May 2005.

[2] Noga Alon, Dana Moshkovitz, and Muli Safra. Algorithmic construction of sets for k-restrictions. In ACM Transactions on Algorithms (TALG), pages 153 – 177, 2006.

[3] Uriel Feige. A threshold of $\ln n$ for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.
[4] D. S. Johnson. Approximation algorithms for combinatorial problems. *J. Comput. System Sci.*, 9:256–278, 1974.

[5] Lovász. On the ratio of optimal integral and fractional covers. *SIAM J. on Discrete Mathematics*, 13:383–390, 1975.

[6] R. Raz and S. Safra. A sub-constant error-probability PCP characterization of NP. In *Proc. 29th Symposium on the Theory of Computing (STOC)*, pages 475 – 484, 1997.

[7] Yuval Shavitt and Eran Shir. DIMES: Let the internet measure itself. *ACM SIGCOMM Computer Communication Review*, 35:71–74, October 2005.

[8] Yuval Shavitt and Eran Shir. DIMES: Let the internet measure itself. In Michael H.W. Weber, editor, *Distributed & Grid Computing - Science Made Transparent for Everyone. Principles, Applications and Supporting Communities*. Tectum Verlag, 2008.

[9] P. Slavik. Improved approximations of packing and covering problems. In *Proc. 27th Symposium on the Theory of Computing (STOC)*, pages 268 – 276, Baltimore, MD, USA, May 1995.

[10] A. Srinivasan. Improved approximations guarantees for packing and covering integer programs. *SIAM Journal on Computing*, 29(2):648–670, 1999.