COMPLEX MANIFOLDS OF SOBOLEV MAPPINGS AND A HARTOGS-TYPE THEOREM IN LOOP SPACES

M. ANAKKAR

Abstract. We recall the complex structure on the generalised loop spaces \(W^k,2(S, X) \), where \(S \) is a compact real manifold with boundary and \(X \) is a complex manifold, and prove a Hartogs-type extension theorem for holomorphic maps from certain domains in generalized loop spaces.

Contents

Introduction 1
1. Sobolev maps between smooth manifolds 2
2. Complex structure on the space of Sobolev maps 9
3. A Hartogs-type theorem 10
References 13

Introduction

All manifolds in this paper are supposed to be Hausdorff and second countable. In the first section we recall the notion of the Sobolev class \(W^{k,2}(\Omega) \) for a domain \(\Omega \subset \mathbb{R}^n \) as well as its basic properties. We explain that a composition of a smooth map with a map of class \(W^{k,2} \) is still in the class \(W^{k,2} \). Namely we prove the following theorem which goes back to [M].

Theorem 1. Let \(k > \frac{n}{2} \), then for every \(u \in W^{k,2}_{loc}(\Omega, \mathbb{R}^m) \) and every \(f \in C^k(\mathbb{R}^m) \) the function \(f \circ u \) is in \(W^{k,2}_{loc}(\Omega) \).

This permits us to define correctly the space of Sobolev maps \(W^{k,2}(S, X) \) between real manifolds \(S \) and \(X \) and provide the natural structure of a Hilbert manifold on this space.

In the second section following Lempert [L] we discuss the complex Hilbert structure of the Sobolev manifold \(W^{k,2}(S, X) \), where \(X \) is now a complex manifold. \(S \) everywhere is a compact real manifold with boundary.

For positive integers \(q \geq 1, n \geq 1 \) and real \(r \in]0,1[\) the \(q \)-concave Hartogs figure in \(\mathbb{C}^{q+n} \) is defined as

\[
H^q_n(r) := (\Delta^q \times \Delta^n(r)) \cup (A^q_{1-r,1} \times \Delta^n) .
\]

where \(A^q_{1-r,1} = \Delta^q \setminus \Delta^q_{1-r} \). Here \(\Delta^q \) stands for the polydisk in \(\mathbb{C}^q \) centered at zero of radius \(r \). The envelope of holomorphy of \(H^q_n(r) \) is \(\Delta^{q+n} \). We say that a complex manifold \(X \) is \(q \)-Hartogs if every holomorphic mapping \(f : H^q_n(r) \to X \) extends to a holomorphic mapping \(\tilde{f} : \Delta^{q+1} \to X \). If the same holds for a complex Hilbert manifold \(\mathcal{X} \) we say that \(\mathcal{X} \) is \(q \)-Hilbert-Hartogs. We proved in [A-Z] that if \(\mathcal{X} \) is \(q \)-Hilbert-Hartogs then every holomorphic mapping \(f : H^q_n(r) \to \mathcal{X} \) extends to a holomorphic mapping \(\tilde{f} : \Delta^{q+n} \to \mathcal{X} \). For finite dimensional \(X \) this was proved in [I]. In the last section of this paper we prove the following Hartogs-type extension theorem.

Theorem 2. Let \(\mathcal{X} \) be a \(q \)-Hilbert-Hartogs manifold. Then every holomorphic map \(F : W^{k,2}(S, H^q_n(r)) \to \mathcal{X} \) extends to a holomorphic map \(\tilde{F} : W^{k,2}(S, \Delta^q \times \Delta^n) \to \mathcal{X} \).

Date: March 29, 2022.
Key words and phrases. Hilbert-Hartogs manifold, analytic continuation, Sobolev spaces.

mohammed.anakkar@univ-lille.fr.

1
This statement gives us an example of pairs of open sets $U \subseteq \hat{U}$ in a complex Hilbert manifold such that holomorphic mappings with values in q-Hilbert-Hartogs manifolds extend from U to \hat{U}. It shows that $\mathcal{U} := W^{k,2}(S, \Delta^q \times \Delta^n)$ is, in some sense, the "envelope of holomorphy" of $\mathcal{U} := W^{k,2}(S, H^n_q(r))$. For compact S without boundary this theorem was proved in [A-I].

1. **Sobolev maps between smooth manifolds**

Our goal in this section is to define the space of Sobolev $W^{k,2}$-maps from a manifold S to a manifold X and explain that this space possesses a natural topology. Let $\Omega \subset \mathbb{R}^n$ be a domain.

Definition 1.1. The Sobolev class $W^{k,2}(\Omega)$ is defined as follows.

$$W^{k,2}(\Omega) := \{ u \in L^2(\Omega) \mid \forall \alpha \in \mathbb{N}^n, \ |\alpha| \leq k, \ D^\alpha u \in L^2(\Omega) \},$$

where $L^2(\Omega)$ is the Hilbert space of equivalence classes of real valued square integrable functions with respect to the Lebesgue measure in \mathbb{R}^n.

The space $W^{k,2}(\Omega)$ endowed with the scalar product

$$< u, v >_{W^{k,2}(\Omega)} = \sum_{|\alpha| \leq k} < D^\alpha u, D^\alpha v >_{L^2(\Omega)}$$

is a Hilbert space. Recall that the Fourier transform of a function from the Schwarz space $u \in \mathcal{S}(\mathbb{R}^n)$ is defined as

$$\hat{u}(\xi) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} u(x)e^{-ix\xi}d\mu(x),$$

where μ is the Lebesgue measure in \mathbb{R}^n. By the density of $\mathcal{S}(\mathbb{R}^n)$ in $L^2(\mathbb{R}^n)$ and using the Placherel identity we can extend the Fourier transform to the isometry of $L^2(\mathbb{R}^n)$ onto itself, i.e. for $f \in L^2(\mathbb{R}^n)$ one has that $||f||_{L^2(\mathbb{R}^n)} = ||\hat{f}||_{L^2(\mathbb{R}^n)}$. One can give the characterisation of Sobolev maps by the Fourier transform.

$$u \in W^{k,2}(\mathbb{R}^n) \iff \forall \alpha \in \mathbb{N}^n, |\alpha| \leq k, \ D^\alpha u \in L^2(\mathbb{R}^n)$$

$$\iff \forall \alpha \in \mathbb{N}^n, |\alpha| \leq k, \ \xi^\alpha \hat{u} \in L^2(\mathbb{R}^n)$$

$$\iff (1 + |\xi|^2)^\frac{k}{2} \hat{u} \in L^2(\mathbb{R}^n)$$

Moreover the corresponding norms are equivalent. More precisely we have the following.

Proposition 1.1. For $u \in W^{k,2}(\mathbb{R}^n)$ we have the inequalities:

i) $||u||_{W^{k,2}(\mathbb{R}^n)} \leq ||(1 + |\xi|^2)^\frac{k}{2} \hat{u}||_{L^2(\mathbb{R}^n)}$;

ii) there exists $a \in \mathbb{R}^+$ wich depends on k and n only such that

$$(2) \quad ||(1 + |\xi|^2)^\frac{k}{2} \hat{u}||_{L^2(\mathbb{R}^n)} \leq a ||u||_{W^{k,2}(\mathbb{R}^n)}.$$

Proof. First we compute the following:

$$||u||_{W^{k,2}}^2 = \sum_{|\alpha| \leq k} ||D^\alpha u||_{L^2}^2 = \sum_{|\alpha| \leq k} ||\hat{D^\alpha u}||_{L^2}^2 = \sum_{|\alpha| \leq k} ||\xi^{\alpha_1} \ldots \xi^{\alpha_n} \hat{u}||_{L^2}^2$$

$$= \sum_{|\alpha| \leq k} \int_{\mathbb{R}^n} \xi^{2\alpha_1} \ldots \xi^{2\alpha_n} |\hat{u}(\xi)|^2 d\xi = \int_{\mathbb{R}^n} \sum_{|\alpha| \leq k} \xi^{2\alpha} |\hat{u}(\xi)|^2 d\xi.$$

So we can establish the following equality

$$||u||_{W^{k,2}} = \sqrt{\int_{\mathbb{R}^n} \sum_{|\alpha| \leq k} \xi^{2\alpha} |\hat{u}(\xi)|^2 d\xi}.$$
For (i) we have $(1 + \xi^2)^k = (1 + \xi_1^2 + \ldots + \xi_n^2)^k = \sum_{|\alpha| \leq k} a_\alpha \xi^{2\alpha} \geq \sum_{|\alpha| \leq k} \xi^{2\alpha}$ since $a_\alpha \geq 1.$ And therefore

$$\|u\|_{W^{k,2}} = \left(\int_{\mathbb{R}^n} \sum_{|\alpha| \leq k} \xi^{2\alpha} |\hat{u}(\xi)|^2 d\xi \right)^{1/2} \leq \left(\int_{\mathbb{R}^n} \sum_{|\alpha| \leq k} (1 + |\xi|^2)^k |\hat{u}(\xi)|^2 d\xi \right)^{1/2} \leq \left(\int_{\mathbb{R}^n} \sum_{|\alpha| \leq k} 2^{2\alpha} |\hat{u}(\xi)|^2 d\xi \right)^{1/2} \leq a \|u\|_{W^{k,2}}.$$

As for $(ii),$ since $(1 + |\xi|^2)^k = \sum_{|\alpha| \leq k} a_\alpha \xi^{2\alpha} \leq a^2 \sum_{|\alpha| \leq k} \xi^{2\alpha}$ with $a = \max_{|\alpha| \leq k} \sqrt{a_\alpha},$ we obtain

$$\left\| (1 + |\cdot|^2)^{\frac{k}{2}} \hat{u} \right\|_{L^2} = \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^k |\hat{u}(\xi)|^2 d\xi \right)^{1/2} \leq a \left(\int_{\mathbb{R}^n} \sum_{|\alpha| \leq k} \xi^{2\alpha} |\hat{u}(\xi)|^2 d\xi \right)^{1/2} \leq a \|u\|_{W^{k,2}}.$$

Proposition is proved. \(\square\)

Denote by $W^{k,2}_{\text{loc}}(\Omega)$ the space of distributions $u \in \mathcal{D}'(\Omega)$ which are locally in $W^{k,2},$ i.e. for every relatively compact $D \Subset \Omega$ the restriction $u|_D \in W^{k,2}(D).$ It is clear that for $u \in W^{k,2}_{\text{loc}}(\Omega)$ and a mapping $f : B \to \Omega$ from a domain $B \subset \mathbb{R}^m$ to Ω of class C^k the composition $u \circ f \in W^{k,2}_{\text{loc}}(B).$

Recall the Sobolev imbedding theorem: if $f \in W^{k,2}(\Omega)$ and $k > \frac{n}{2} + m,$ then there exists an m-times continuously differentiable function on Ω that is equal to f almost everywhere. Therefore the condition $k > \frac{n}{2}$ will be always assumed along this text in order to insure that all $u \in W^{k,2}$ are at least continuous.

Theorem 1.1. Let $k > \frac{n}{2},$ then for every $u \in W^{k,2}_{\text{loc}}(\Omega)$ and $f \in C^k(\mathbb{R})$ the function $f \circ u$ is in $W^{k,2}_{\text{loc}}(\Omega).$

Proof. The proof will be achieved in three steps.

Step 1: We shall state it in the form of a lemma.

Lemma 1.1. For $\xi, \eta \in \mathbb{R}^n$ and $t \geq 0$ we have the following inequality:

$$(3) \quad (1 + |\xi|^2)^t \leq 4^t ((1 + |\xi - \eta|^2)^t + (1 + |\eta|^2)^t).$$

Proof. Since $|\xi - \eta + \eta|^2 \leq \left(|\xi - \eta| + |\eta| \right)^2 \leq 2 \left(|\xi - \eta|^2 + |\eta|^2 \right)$

$$(1 + |\xi|^2)^t = (1 + |\xi - \eta + \eta|^2)^t \leq (1 + 2|\xi - \eta|^2 + 2|\eta|^2)^t \leq (4 + 2|\xi - \eta|^2 + 2|\eta|^2)^t \leq 2^t (1 + |\xi - \eta|^2 + 1 + |\eta|^2)^t \leq 2^t (\max(1 + |\xi - \eta|^2, 1 + |\eta|^2))^t \leq 4^t (\max(1 + |\xi - \eta|^2, 1 + |\eta|^2))^t \leq 4^t (\max(1 + |\xi - \eta|^2, 1 + |\eta|^2))^t + 4^t (\min(1 + |\xi - \eta|^2, 1 + |\eta|^2))^t = 4^t (1 + |\xi - \eta|^2)^t + 4^t (1 + |\eta|^2)^t.$$

Lemma is proved. \(\square\)

Step 2: Let us state it again as a lemma.

Lemma 1.2. If $k > n/2$ then the product of two Sobolev maps $u, v \in W^{k,2}(\mathbb{R}^n)$ is in $W^{k,2}(\mathbb{R}^n)$ with the estimate

$$\|uv\|_{W^{k,2}(\mathbb{R}^n)} \leq C \|u\|_{W^{k,2}(\mathbb{R}^n)} \|v\|_{W^{k,2}(\mathbb{R}^n)}.$$
Proof. Since \(\hat{uv} = \hat{u} \ast \hat{v} \) we have
\[
\|uv\|_{L^{k,2}} \leq \left\| \hat{uv}(1 + |\cdot|^2)^{\frac{k}{2}} \right\|_{L^2} = \sqrt{\int_{\mathbb{R}^n} |(\hat{u} \ast \hat{v})(\xi)|^2(1 + |\xi|^2) \, d\xi} = \\
= \sqrt{\int_{\xi \in \mathbb{R}^n} \left(\int_{\eta \in \mathbb{R}^n} \hat{u}(\xi - \eta) \hat{v}(\eta) (1 + |\eta|^2)^{\frac{k}{2}} \, d\eta \right)^2 \, d\xi} \leq \\
\leq \left\| \int_{\xi \in \mathbb{R}^n} \left(\int_{\eta \in \mathbb{R}^n} |\hat{u}(\xi - \eta) \hat{v}(\eta)| (1 + |\eta|^2)^{\frac{k}{2}} \, d\eta \right)^2 \, d\xi + \left\| \int_{\xi \in \mathbb{R}^n} 4^k |\hat{u}(\xi - \eta) \hat{v}(\eta)| (1 + |\eta|^2)^{\frac{k}{2}} \, d\eta \right\|_{L^2} \right. \\
\leq \left. \|u\|_{L^p} \|v\|_{L^q} \right\|_{L^p} \leq \int_X \|F(x,y)\|_{L^p} \, dx.
\]

Therefore by Minkowski integral inequality \([4]\) we obtain
\[
\|uv\|_{L^{k,2}} \leq \\
\leq 4^k \left\| \int_{\eta \in \mathbb{R}^n} |\hat{u}(\xi - \eta) \hat{v}(\eta)| (1 + |\eta|^2)^{\frac{k}{2}} \, d\eta \right\|_{L^2} + 4^k \left\| \int_{s \in \mathbb{R}^n} |\hat{u}(s) \hat{v}(\xi - s)| (1 + |s|^2)^{\frac{k}{2}} \, ds \right\|_{L^2} \\
\leq 4^k \left\| \int_{\eta \in \mathbb{R}^n} |\hat{u}(\xi - \eta) \hat{v}(\eta)| (1 + |\eta|^2)^{\frac{k}{2}} \, d\eta \right\|_{L^2} + 4^k \left\| \int_{s \in \mathbb{R}^n} |\hat{u}(s) \hat{v}(\xi - s)| (1 + |s|^2)^{\frac{k}{2}} \, ds \right\|_{L^2} \\
\leq 4^k \left\| \hat{v}(\eta)| \hat{u}(\xi - \eta) \hat{v}(\eta)| (1 + |\eta|^2)^{\frac{k}{2}} \, d\eta \right\|_{L^2} + 4^k \left\| \hat{v}(\eta)| \hat{u}(s) \hat{v}(\xi - s)| (1 + |s|^2)^{\frac{k}{2}} \, ds \right\|_{L^2} \\
\leq 4^k \left\| \hat{v}(\eta)| a \right\|_{W^{k,2}} d\eta + 4^k \left\| \hat{v}(\eta)| a \right\|_{W^{k,2}} ds.
\]
In the first integral we transform as follows.

\[4^k \int_{\eta \in \mathbb{R}^n} |\hat{\nu}(\eta)| |a| \|u\|_{W^{k,2}} d\eta \leq 4^k a \|u\|_{W^{k,2}} \int_{\eta \in \mathbb{R}^n} |\hat{\nu}(\eta)| (1 + |\eta|^2)^{\frac{k}{2}} (1 + |\eta|^2)^{-\frac{k}{2}} d\eta \leq 4^k a^2 \|u\|_{W^{k,2}} \|v\|_{W^{k,2}} \left\| (1 + |\xi|^2)^{-\frac{k}{2}} \right\|_{L^2}. \]

We make the same with the second integral and obtain

\[\|uv\|_{W^{k,2}} \leq 4^k a^2 \|u\|_{W^{k,2}} \|v\|_{W^{k,2}} \left\| (1 + |\xi|^2)^{-\frac{k}{2}} \right\|_{L^2} + 4^k a^2 \|u\|_{W^{k,2}} \|v\|_{W^{k,2}} \left\| (1 + |\xi|^2)^{-\frac{k}{2}} \right\|_{L^2} \]

\[\leq \left(2^{2k+1} a^2 \left\| (1 + |\xi|^2)^{-\frac{k}{2}} \right\|_{L^2} \right) \|u\|_{W^{k,2}} \|v\|_{W^{k,2}}. \]

Lemma is proved. \[\square\]

This step implies that the product of two \(W^{k,2}_{\text{loc}}(\Omega) \) maps are still in \(W^{k,2}_{\text{loc}}(\Omega) \) and consequently this implies that for any polynomial \(P \) and for any \(u \in W^{k,2}_{\text{loc}}(\Omega) \) the function \(P(u) \in W^{k,2}_{\text{loc}}(\Omega) \).

Step 3 : For \(I \) a closed interval one defines the norm on the space \(C^k(I) \) by

\[\|f\|_{C^k(I)} = \sum_{j=0}^{k} \sup_{x \in I} |f^{(j)}(x)|. \]

Remark that:

- The norm \(\|f\|_{C^0(I)} = \sup_{x \in I} |f(x)| \) correspond to the usual sup-norm.
- The space \(C^k(I) \) endowed with the norm \(\| \cdot \|_{C^k(I)} \) is a Banach space.

Recall the approximation theorem of Weierstrass:

Let \(f \in C^0(I) \). Then for every \(\epsilon > 0 \), there exists a polynomial \(P \) such that for all \(x \in [a, b] \), we have \(|f(x) - P(x)| < \epsilon \), i.e. \(\|f - P\|_{C^0(I)} < \epsilon \).

From that statement, one can deduce an approximation with respect to the norm \(C^k \):

Proposition 1.2. Any function \(f : I \to \mathbb{R} \) of class \(C^k \) defined on a closed interval \(I \) can be uniformly approximated by polynomials with respect to the norm \(C^k \), i.e.

\[\forall \epsilon > 0, \ \exists P \in \mathbb{R}[X], \text{ such that } \|f - P\|_{C^k(I)} < \epsilon. \]

Proof. Let \(I = [a, b] \) with \(a, b \in \mathbb{R} \). Since \(f \) is \(C^k \), use the approximation theorem on \(f^{(k)} \). It exists \(P_k \in \mathbb{R}[X] \) such that \(\|P_k - f^{(k)}\|_{C^0(I)} < \epsilon \). Then we define

\[\forall l \in [1, k], \ P_{k-l}(x) = \int_a^x P_{k-l+1}(t) dt + f^{(k-l)}(a). \]

We can prove by induction on \(l \) that

\[\forall l \in [0, k], \forall x \in [a, b], \ |P_{k-l}(x) - f^{(k-l)}(x)| \leq \epsilon \frac{(x-a)^l}{l!}. \]

Indeed for \(l = 0 \) the assertion \((7) \) is true and we suppose that \((7) \) is true for \(l - 1 \). Then we can write the following.

\[|P_{k-l}(x) - f^{(k-l)}(x)| = \left| \int_a^x P_{k-l+1}(t) dt + f^{(k-l)}(a) - f^{(k-l)}(x) \right| = \]

\[= \left| \int_a^x \left(P_{k-l+1}(t) - f^{(k-l+1)}(t) \right) dt \right| \leq \int_a^x \left| P_{k-l+1}(t) - f^{(k-l+1)}(t) \right| dt \]

\[\leq \int_a^x \epsilon \frac{(t-a)^{l-1}}{(l-1)!} dt \leq \epsilon \frac{(x-a)^l}{l!}. \]
For all \(l \in [0, k] \), we obtain that \(\| P_0^{k-l} - f^{(k-l)} \|_{C^0(I)} \leq \epsilon \frac{(b-a)^l}{l!} \) and then \(\| P_0 - f \|_{C^k(I)} \leq \epsilon \sum_{l=0}^{k} \frac{(b-a)^l}{l!} \).

Proposition is proved. \(\square \)

Now we can finish the proof of the theorem. Fix a relatively compact subdomain \(D \Subset \Omega \). Since \(u \) is continuous there exists a closed interval \(I \supset u(D) \). Let \((P_s)_{s \in \mathbb{N}} \) be a sequence of polynomials that converges to \(f \) in \(C^k(I) \). Then \((P_s)_{s \in \mathbb{N}} \) is a Cauchy sequence: for every \(\epsilon > 0 \) there exists \(N \in \mathbb{N} \) such that for any \(l, s > N \) we have \(\| P_l - P_s \|_{C^k(I)} < \epsilon \). By Step 2 for any \(s \in \mathbb{N} \) the function \(P_s(u) \) is in \(W^{l,2}(D) \). Let us prove that \((P_s(u))_{s \in \mathbb{N}} \) is a Cauchy sequence in the Hilbert space \(W^{k,2}(D) \). Note \(P_{sl} = P_s - P_l \).

For \(\alpha \) with \(|\alpha| \leq k \) and any polynomial \(P \) we have

\[
D^\alpha P(u) = \sum_{r=1}^{s} \left(\sum_{\alpha_1 + \ldots + \alpha_r = \alpha \atop \alpha_1, \ldots, \alpha_r \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_r} u \right) P^{(r)}(u). \tag{11}
\]

For \(P(X) = X^p \) relation (11) becomes

\[
\sum_{\alpha_1 + \ldots + \alpha_p = \alpha \atop \alpha_1, \ldots, \alpha_p \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_p} u = \frac{1}{p!} \left(D^\alpha (u^p) - \sum_{r=1}^{p-1} \left(\sum_{\alpha_1 + \ldots + \alpha_r = \alpha \atop \alpha_1, \ldots, \alpha_r \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_r} u \right) \frac{p!}{(p-r)!} u^{p-r} \right).
\]

Let us prove by induction on \(p \leq |\alpha| \) that

\[
\sum_{\alpha_1 + \ldots + \alpha_p = \alpha \atop \alpha_1, \ldots, \alpha_p \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_p} u \in L^2(D).
\]

For \(p = 1 \) it is true because \(\frac{\partial |\alpha|}{\partial x_j} u \in L^2(D) \) for every \(j = 1, \ldots, n \) since \(u \in W^{k,2}(D) \). Let suppose that is true for all \(s \leq p - 1 \). Then for \(p \leq |\alpha| \) using the previous expression we obtain

\[
\left\| \sum_{\alpha_1 + \ldots + \alpha_p = \alpha \atop \alpha_1, \ldots, \alpha_p \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_p} u \right\|_{L^2} \leq \frac{1}{p!} \left\| D^\alpha (u^p) \right\|_{L^2} + \sum_{r=1}^{p-1} \left\| \sum_{\alpha_1 + \ldots + \alpha_r = \alpha \atop \alpha_1, \ldots, \alpha_r \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_r} u \right\|_{L^2}.
\]

By Lemma 1.2 the map \(u^p \in W^{k,2}(D) \), therefore \(D^\alpha (u^p) \in L^2(D) \) for \(|\alpha| \leq k \). For the second term since \(u \) is continuous we have that \(u \) is bounded on \(D \) by \(M \). Then

\[
\left\| \sum_{\alpha_1 + \ldots + \alpha_r = \alpha \atop \alpha_1, \ldots, \alpha_r \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_r} u \right\|_{L^2} \leq \frac{M^{p-r}}{(p-r)!} \left\| \sum_{\alpha_1 + \ldots + \alpha_r = \alpha \atop \alpha_1, \ldots, \alpha_r \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_r} u \right\|_{L^2},
\]

and by induction hypothesis

\[
\left\| \sum_{\alpha_1 + \ldots + \alpha_r = \alpha \atop \alpha_1, \ldots, \alpha_r \neq \emptyset} D^{\alpha_1} u \cdots D^{\alpha_r} u \right\|_{L^2} < \infty.
\]
We obtain from (11) that
\[\|P_s(u) - P_\alpha(u)\|_{W^{k,2}}^2 = \|P_s(u)\|_{W^{k,2}}^2 = \sum_{|\alpha| \leq k} \|D^\alpha P_s(u)\|_{L^2}^2 \leq \]
\[\sum_{|\alpha| \leq k} \sum_{r=1}^{|\alpha|} \left(\sum_{a_1 + \cdots + a_r = \alpha} D^{a_1} u \cdots D^{a_r} u \right)^2 \|P_s(u)^r\|_{L^2}^2 \]
\[\leq \sum_{|\alpha| \leq k} \sum_{r=1}^{|\alpha|} \left(\sum_{a_1 + \cdots + a_r = \alpha} D^{a_1} u \cdots D^{a_r} u \right)^2 \|P_s(u)^r\|_{L^2}^2 \]

Then we can conclude that \((P_s(u))_{s \in \mathbb{N}}\) is a Cauchy sequence on the Hilbert space \(W^{k,2}(D)\). Therefore the sequence converge to \(f(u) \in W^{k,2}(D)\). Theorem is proved. \(\square\)

Definition 1.2. Let \(\Omega \subset \mathbb{R}^n\) be a domain. The Sobolev space \(W^{k,2}(\Omega, \mathbb{R}^m)\) is defined as
\[W^{k,2}(\Omega, \mathbb{R}^m) = \{ u \in L^2(\Omega, \mathbb{R}^m) \mid \forall \alpha \in \mathbb{N}^n, |\alpha| \leq k, D^\alpha u \in L^2(\Omega, \mathbb{R}^m) \}. \]

As in the one dimensional case one can prove an analogous of the Theorem 1.1. Namely

Theorem 1.2. Let \(k > \frac{n}{2},\) then for every \(u \in W^{k,2}_{\text{loc}}(\Omega, \mathbb{R}^m)\) and \(f \in C^k(\mathbb{R}^m)\) the function \(f \circ u\) is in \(W^{k,2}_{\text{loc}}(\Omega)\).

Proof. The idea of the proof follows the one dimensional case. Fix a relatively compact subdomain \(D \Subset \Omega\).

For any polynomial \(P(T_1, \ldots, T_n)\) and \(|\alpha| \leq k\) one has
\[D^\alpha(P(u)) = \sum_{r=1}^{|\alpha|} \sum_{a_1 + \cdots + a_r = \alpha} (d^r P)_{a_1, \ldots, a_r} D^{a_1} u \cdots D^{a_r} u \]
\[= \sum_{r=1}^{|\alpha|} \sum_{a_1 + \cdots + a_r = \alpha} \left(\sum_{i_1, \ldots, i_r = 1}^m \frac{\partial^r P}{\partial t_{i_1} \cdots \partial t_{i_r}}(u) D^{a_1} u_{i_1} \cdots D^{a_r} u_{i_r} \right) \]
\[= \sum_{r=1}^{|\alpha|} \sum_{i_1, \ldots, i_r = 1}^m \frac{\partial^r P}{\partial t_{i_1} \cdots \partial t_{i_r}}(u) \left(\sum_{a_1 + \cdots + a_r = \alpha} D^{a_1} u_{i_1} \cdots D^{a_r} u_{i_r} \right) \]

Fix \(\alpha \in \mathbb{N}^n\) with \(|\alpha| \leq k\). We prove by induction on \(p\) with \(1 \leq p \leq |\alpha|\) that
\[\forall I = (j_1, \ldots, j_p) \in [1, m]^p, \sum_{a_1 + \cdots + a_p = \alpha} D^{a_1} u_{j_1} \cdots D^{a_p} u_{j_p} \in L^2(D). \]

For \(p = 1\) the property is true because \(D^\alpha u_j \in L^2(D)\) for \(j = 1, \ldots, m\) since \(D^\alpha u \in L^2(D, \mathbb{R}^m)\). Let suppose that is true for all \(s \leq p - 1\). For \(p \leq |\alpha|\) one can define for every \(J = (j_1, \ldots, j_p) \in [1, m]^p \beta = e_{j_1} + \cdots + e_{j_p}\) with \((e_j)_{i=1, \ldots, m}\) the standard basis in \(\mathbb{R}^m\). Then consider \(P(T) = T^\beta = T_{i_1}^{\beta_1} \cdots T_{i_m}^{\beta_m}\) in relation (11)
\[D^\alpha(u^\beta) = \sum_{r=1}^{|\alpha|} \sum_{i_1, \ldots, i_r = 1}^m \frac{\partial^r P}{\partial t_{i_1} \cdots \partial t_{i_r}}(u) \left(\sum_{a_1 + \cdots + a_r = \alpha} D^{a_1} u_{i_1} \cdots D^{a_r} u_{i_r} \right) \]
\[= \sum_{r=1}^p \sum_{i_1, \ldots, i_r = 1}^m \frac{\partial^r T^\beta}{\partial t_{i_1} \cdots \partial t_{i_r}}(u) \left(\sum_{a_1 + \cdots + a_r = \alpha} D^{a_1} u_{i_1} \cdots D^{a_r} u_{i_r} \right). \]
Note that \(\frac{\partial^p T^\beta}{\partial t_{i_1} \cdots \partial t_{i_p}} = \beta ! \) and the number of indices \(J \) such that \(\beta = e_{j_1} + \cdots + e_{j_p} \) is equal again to \(\beta ! \). The other term are equal to zero. Then we obtain

\[
(\beta!)^2 \sum_{\substack{\alpha_1 + \cdots + \alpha_p = \alpha \\
\alpha_1, \ldots, \alpha_p \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_p} u_{i_p} = \\
= D^\alpha(u^\beta) - \sum_{r=1}^{m-1} \sum_{i_1, \ldots, i_r = 1}^m \frac{\partial^r T^\beta}{\partial t_{i_1} \cdots \partial t_{i_r}}(u) \left(\sum_{\substack{\alpha_1 + \cdots + \alpha_r = \alpha \\
\alpha_1, \ldots, \alpha_r \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_r} u_{i_r} \right),
\]

where \(\beta! = \beta_1! \cdots \beta_m! \).

The term \(D^\alpha(u^\beta) = D^\alpha(u^\beta_1 \cdots u^\beta_m) \) is in \(L^2(D) \) since \(u_1, \ldots, u_m \) are in \(W^{k,2}(D) \) and Lemma 1.2. For the other term one can remark first that \(\frac{\partial^r X^\beta}{\partial x_{i_1} \cdots \partial x_{i_r}}(u) \) is a polynomial evaluate on \(u \) and since \(u \) is bounded on \(D \) this polynomial is bounded by \(M \in \mathbb{R} \). Therefore for every \((i_1, \ldots, i_r) \in [1, m]^r \) one has

\[
\left\| \frac{\partial^r X^\beta}{\partial x_{i_1} \cdots \partial x_{i_r}}(u) \left(\sum_{\substack{\alpha_1 + \cdots + \alpha_r = \alpha \\
\alpha_1, \ldots, \alpha_r \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_r} u_{i_r} \right) \right\|_{L^2(D)} \leq M \left\| \sum_{\substack{\alpha_1 + \cdots + \alpha_r = \alpha \\
\alpha_1, \ldots, \alpha_r \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_r} u_{i_r} \right\|_{L^2(D)}
\]

and by induction hypothesis this is in \(L^2(D) \). Then for every \(|\alpha| \leq k \)

\[
\forall p \leq |\alpha|, \forall I = (j_1, \ldots, j_p) \in [1, m]^p, \sum_{\substack{\alpha_1 + \cdots + \alpha_p = \alpha \\
\alpha_1, \ldots, \alpha_p \neq 0}} D^{\alpha_1} u_{j_1} \cdots D^{\alpha_p} u_{j_p} \in L^2(D).
\]

Now, since \(u \) is continuous there exists a compact set \(K \supset u(D) \). Let \((P_s)_{s \in \mathbb{N}} \) be a sequence of polynomials that converges to \(f \) in \(C^k(K) \). Then \((P_s)_{s \in \mathbb{N}} \) is a Cauchy sequence : for every \(\epsilon > 0 \) there exists \(N \in \mathbb{N} \) such that for any \(l, s > N \) we have \(\|P_l - P_s\|_{C^k(K)} < \epsilon \). By Lemma 1.2 for any \(s \in \mathbb{N} \) the function \(P_s(u) \) is in \(W^{k,2}(D) \). Let us prove that \((P_s(u))_{s \in \mathbb{N}} \) is a Cauchy sequence in the Hilbert space \(W^{k,2}(D) \). Note \(P_d = P_s - P_l \).

\[
(15) \|D^\alpha(P_d(u))\|_{L^2(D)}^2 \leq \sum_{r=1}^{m-1} \sum_{i_1, \ldots, i_r = 1}^m \left\| \frac{\partial^r P_d}{\partial t_{i_1} \cdots \partial t_{i_r}}(u) \right\|_{L^2(D)}^2 \sum_{\substack{\alpha_1 + \cdots + \alpha_r = \alpha \\
\alpha_1, \ldots, \alpha_r \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_r} u_{i_r} \right\|_{L^2(D)}^2
\]

\[
\leq \sum_{r=1}^{m-1} \sum_{i_1, \ldots, i_r = 1}^m \epsilon^2 \left\| \sum_{\substack{\alpha_1 + \cdots + \alpha_r = \alpha \\
\alpha_1, \ldots, \alpha_r \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_r} u_{i_r} \right\|_{L^2(D)}^2
\]

\[
(17) \leq \epsilon^2 \sum_{r=1}^{m-1} \sum_{i_1, \ldots, i_r = 1}^m \left\| \sum_{\substack{\alpha_1 + \cdots + \alpha_r = \alpha \\
\alpha_1, \ldots, \alpha_r \neq 0}} D^{\alpha_1} u_{i_1} \cdots D^{\alpha_r} u_{i_r} \right\|_{L^2(D)}^2
\]

Therefore \((P_s(u))_s \) is a Cauchy sequence in the Hilbert space \(W^{k,2}(D) \) so the sequence converge to \(f(u) \in W^{k,2}(D) \). Theorem is proved.

From that one can define Sobolev spaces of maps between manifolds.

Definition 1.3. Let \(S \) and \(X \) be real manifolds of class \(C^k \). A map \(u : S \to X \) is said to be in \(W^{k,2}(S,X) \) if for every \(s \in S \), every coordinate chart \((V, \psi)\) which contains \(s \) and every coordinate chart \((U, \phi)\) which contains \(u(s) \) one has that \(\phi \circ u \circ \psi^{-1} \in W^{k,2} \).
Theorem 1.2 insures that this definition is correct. The space of $W^{k,2}$-maps from S to X we denote as $W^{k,2}(S, X)$. Notice that $W^{k,2}(S, X)$ inherits the natural topology from $W^{k,2}_{loc}$. We shall call this topology the Sobolev topology.

2. COMPLEX STRUCTURE ON THE SPACE OF SOBOLEV MAPS

From now on let S be a compact connected n-dimensional real manifold with boundary. Let X be a finite dimensional complex manifold. Our goal in this section is to equip the Sobolev space $W^{k,2}(S, X)$ with a natural structure of a complex Hilbert manifold.

For a set $U \subset S \times X$ and $s \in S$ we write

$$U^s := \{ x \in X \mid (s, x) \in U \} \quad \text{and} \quad \epsilon^s : U^s \to U \quad x \mapsto (s, x).$$

Lemma 2.1. Given $g \in W^{k,2}(S, X)$ with $k > \frac{n}{2}$, there exists a $W^{k,2}$-diffeomorphism G between a neighborhood $U \subset S \times X$ of the graph $\{(s, g(s)) \mid s \in S\}$ of g and a neighborhood of the zero section in g^*TX such that

i) $\{G(s, g(s)) \mid s \in S\}$ is the zero section of g^*TX;

ii) $G^* = G \circ \epsilon^s$ maps U^s biholomorphically on a neighborhood of $0 \in T_{g(s)}X$;

iii) $dG^s_{g(s)}$ is the identity map.

Proof. i) We recall the argument from [L] pointing out the smoothness of G. Let (Ω_j, ϕ_j) be an atlas of the complex manifold X. Then the sets $S_j = g^{-1}(\Omega_j) \subset S$ form an open covering of S. Consider $U_j \subset S_j \times \Omega_j$ a neighborhood of the graph of $g|_{S_j}$. We can construct locally the diffeomorphism G_j by

$$G_j : U_j \to g^*TX \quad (s, x) \mapsto \left(s, (d\phi_j^{-1})_{g(s)}(\phi_j(x) - \phi_j(g(s))) \right).$$

Notice that G_j is of class $W^{k,2}$ because such is g. It remains to glue all the G_j. Take $\{\eta_j\}$ a C^k-partition of unity subordinated to the covering $\{S_j\}$ and define $G(s, x) = \sum_j \eta_j(s)G_j(s, x)$. Choose then the restriction of G to a suitable $U \subset \bigcup_j U_j$. Remark that $G(s, g(s)) = (s, 0)$.

ii) We have that $G_j^* = G_j \circ \epsilon^s(x) = (d\phi_j^{-1})_{g(s)}(\phi_j(x) - \phi_j(g(s)))$. The map $G_j^* : U_j^s \to g^*TX$ is holomorphic for every $s \in S_j$ since $x \mapsto (d\phi_j^{-1})_{g(s)}(\phi_j(x) - \phi_j(g(s)))$ is holomorphic. Here $U_j^s = \{ x \in X \mid (s, x) \in U_j \}$. Holomorphicity of $G_j^* = \sum_j \eta_j(s)G_j^*(s)$ follows.

iii) We compute the differential of G^* and obtain

$$dG^s_{g(s)} = (d\phi_j^{-1})_{g(s)}(d\phi_j)_{g(s)} = \text{Id} \quad \square$$

For $g \in W^{k,2}(S, X)$ choose U_g and G as in the previous lemma. Those $h \in W^{k,2}(S, X)$ whose graph $\Gamma_h := \{(s, h(s)) \mid s \in S\}$ is contained in U_g form a neighborhood $U_g \subset W^{k,2}(S, X)$ of g:

$$U_g = \{ h \in W^{k,2}(S, X) \mid \Gamma_h \subset U_g \}.$$

For $h \in U_g$ define the section $\psi_g(h) = G(\cdot, h(\cdot)) \in W^{k,2}(S, g^*TX)$. Thus ψ_g is a homeomorphism between U_g and an open neighborhood of zero section in $W^{k,2}(S, g^*TX)$. We can define the chart (U_g, ψ_g) where local coordinates are in a complex Hilbert space $W^{k,2}(S, g^*TX)$. Now we need to verify that transition maps are holomorphic.

Let $h \in W^{k,2}(S, X)$ be such that $\Gamma_h \subset U_g \cap U_{g'}$, i.e. $h \in U_g \cap U_{g'}$. For $s \in S$ we have

$$\psi_{g'}(h)(s) = (\psi_{g'} \circ \psi_{g}^{-1})(\psi_{g}(h)(s)) = \left[G' \circ G_s^{-1} \right](\psi_{g}(h)(s)) = \left[G'(s, \cdot) \circ G(s, \cdot)^{-1} \right](\psi_{g}(h)(s)).$$

Due to item iii) of the Lemma just proved we have that $G' \circ G_s^{-1}$ is a biholomorphism between an appropriate open subsets of $T_{g(s)}X$ and $T_{g'(s)}X$. Therefore the value $\psi_{g'}(h)(s)$ depends holomorphically on $\psi_{g}(h)(s)$.

In more details we have a $W^{k,2}$-regular maps $P = G' \circ G^{-1}$ between open sets $V \subset g^*TX$ and $V' \subset g'^*TX$ such that for every $s \in S \ P(s, v)$ holomorphically depends on $v \in V \cap T_{g(s)}X$.
where $P(s,v) = (s,P^s(v))$. Let V be the open set of sections of g^*TX which are contained in V. The same for V'. We obtain a mapping $\mathcal{P} : V \rightarrow V'$ defined as $\mathcal{P}(h)(s) = P(s,P^h(s))$, where h is a $W^{k,2}$-section of g^*TX contained in V. Then \mathcal{P} is holomorphic. This easily follows from Gâteaux differentiability and continuity of \mathcal{P}. Thus $W^{k,2}(S, X)$ has the structure of a complex Hilbert manifold.

Lemma 2.2. Let D and X be finite dimensional complex manifolds and let S be an n-dimensional compact real manifold with boundary. A mapping $F : D \times S \rightarrow X$ represents a holomorphic map $F_* : D \rightarrow W^{k,2}(S, X)$ if and only if the following holds:

i) for every $s \in S$ the map $F(\cdot, s) : D \rightarrow X$ is holomorphic;

ii) for every $z \in D$ one has $F(z, \cdot) \in W^{k,2}(S, X)$ and the correspondence $D \ni z \mapsto F(z, \cdot) \in W^{k,2}(S, X)$ is continuous with respect to the Sobolev topology on $W^{k,2}(S, X)$ and the standard topology on D.

Proof. \Rightarrow Given $F_* : D \rightarrow W^{k,2}(S, X)$ we construct $F : D \times S \rightarrow X$ as follows. For $s \in S$ and $z \in D$ we define $F(z, s) = F_*(z)(s)$. By the assumption about F_* for any $z \in D$ the map $F(z, \cdot)$ is in $W^{k,2}(S, X)$ and the map $z \mapsto F(z, \cdot) = F_*(z)$ is continuous (in fact it is holomorphic). To prove the holomorphicity of $F(z, s)$ for a fixed take any $s \in S$ in a neighborhood of some z_0 take any chart (U, ψ_g) which contains the graph of $F_*(z_0)$. We have $\psi_g(F(z, s))(s) = G(s, F_*(z)(s)) = G(s, F(z, s))$ for z close to z_0 by definition of ψ_g. This is holomorphic by the definition of the complex structure of $W^{k,2}(S, X)$. Therefore $F : D \times S \rightarrow X$ is holomorphic in z.

Conversely given $F : D \times S \rightarrow X$ satisfying i) and ii) we can construct F_* as follows. For $z \in D$ we define $F_*(z) = F(z, \cdot)$. Mapping F_* is well defined since $F(z, \cdot) \in W^{k,2}(S, X)$ and is continuous by ii). For the holomorphicity again we take a chart (U, ψ_g) and we consider the map $\psi_g \circ F_*$ defined for $z \in D$ by $\psi_g \circ F_*(z) = G(\cdot, F(z, \cdot)(\cdot))$. By i) for every $s \in S$ the map $s \mapsto G(s, F(z, s)(s))$ is holomorphic by composition of holomorphic maps $F(\cdot, s)$ and G^*. Then $\psi_g \circ F_*$ is holomorphic. \square

Remark. If X is a smooth real manifold one can repeat the same construction to ensure that $W^{k,2}(S, X)$ has a structure of a smooth Hilbert manifold. In fact the holomorphy of item ii) in lemma 2.1 should be replaced by smoothness since coordinate charts ψ_g are smooth.

3. A Hartogs-type theorem

In [1] it was proved the following result.

Theorem 3.1. If a complex manifold X is q-Hartogs then for any (p, n) with $p \geq q, n \geq 1$ the map $f : H^p_\omega(r) \rightarrow X$ extends holomorphically to Δ^{q+n}.

For Hilbert \mathcal{X} it was proved in [A-Z]. The proof of this result for Hilbert \mathcal{X} lies on the following two statements proved in [A-Z], and we shall need them here too. Recall first the definition of a 1-complete neighborhood.

Definition 3.1. A 1-complete neighborhood of a compact $\mathcal{K} \subset \mathcal{X}$ is an open set $U \supset \mathcal{K}$ such that

i) U is contained in a finite union of open coordinate balls centered at points of \mathcal{K}, i.e.

$$U \subset \bigcup_{\alpha = 1}^n B_\alpha$$

where $B_\alpha = \phi_\alpha^{-1}(B^\infty)$ and $\phi_\alpha^{-1}(0) = k_\alpha \in \mathcal{K}$.

ii) U possesses a strictly plurisubharmonic exhaustion function $\psi : U \rightarrow [0, t_0)$, i.e.

- for every $t < t_0$ one has that $\psi^{-1}([0, t)) \subset U$.

Here by a strictly plurisubharmonic function we mean the following.

Definition 3.2. Let U be an open subset of \mathcal{X}. A function $f \in \mathcal{C}^2(U, \mathbb{R})$ is said to be strictly plurisubharmonic on U if the Levi form $\mathcal{L}_{f,a}$ is positive definite for every $a \in U$, i.e.

$$\mathcal{L}_{f,a}(v) > 0 \text{ for each } a \in U \text{ and } v \in T_a \mathcal{X} \setminus \{0\}.$$
In [A-Z] we give a strongest definition of a strictly plurisubharmonic function, see definition 2.1 there. In fact we states that the Levi form satisfies
\[L_{f,a}(v) \geq c(a)||v||^2 \quad \text{for each} \quad a \in U \quad \text{and} \quad v \in T_a \mathcal{X}\backslash \{0\}, \]
with \(c \) a positive function in \(\mathcal{C}^0(U, \mathbb{R}) \). These definition are not equivalent as it shows the counter-example given by Lempert:
Take for example the function \(f \) defined by \(f(z) = \sum_{j=1}^{\infty} \frac{|z_j|^2}{j} \) for \(z \in \mathbb{C}^2 \). The Levi form on a point \(a \in \mathbb{C}^2 \) is
\[\forall v \in \mathbb{C}^2, \quad L_{f,a}(v) = \sum_{j=1}^{\infty} \frac{1}{j} |v_j|^2, \]
and this cannot be bound from below by \(c(\|v\|^2) \). Nevertheless plurisubharmonic functions we need in this paper satisfies this strongest definition.

Theorem 3.2. Let \(\phi : \bar{D} \to \mathcal{X} \) be an imbedded analytic \(q \)-disk in a complex Hilbert manifold \(\mathcal{X} \). Then \(\phi(\bar{D}) \) has a fundamental system of \(1 \)-complete neighborhoods.

Here an analytic \(q \)-disk in a complex Hilbert manifold \(\mathcal{X} \) is a holomorphic imbedding \(\phi \) of a neighborhood of a closure of a relatively compact strongly pseudoconvex domain \(D \subset \mathbb{C}^q \) into \(\mathcal{X} \). We shall also need the following lemma from [A-Z], see Lemma 3.1 there.

Lemma 3.1. Let \(\phi_n : \bar{D} \to \mathcal{X} \) be a sequence of analytic \(q \)-disks in a complex Hilbert manifold \(\mathcal{X} \) and let \(\Phi_n \) be their graphs. Suppose that there exists an analytic disk \(\phi_0 : \bar{D} \to \mathcal{X} \) with the graph \(\Phi_0 \) such that for any neighborhood \(\mathcal{V} \supset \Phi_0 \) one has \(\Phi_n \subset \mathcal{V} \) for \(n \gg 1 \). Then \(\phi_n \) converges uniformly on \(\bar{D} \to \phi_0 \).

Now we return to the proof of the theorem 2 from the introduction.

Theorem 3.3. Let \(\mathcal{X} \) be a \(q \)-Hilbert-Hartogs manifold. Then every holomorphic map \(F : W^{k,2}(S, H_q^n(r)) \to \mathcal{X} \) extends to a holomorphic map \(\tilde{F} : W^{k,2}(S, \Delta^g \times \Delta^n) \to \mathcal{X} \).

Proof. The proof will be achieved in a number of steps. First we shall construct some “natural extension” of \(F \). After that we shall prove that the extension is continuous and finally that it is holomorphic.

Step 1. Natural extension. Let \(f = (f^q, f^n) : S \to \Delta^g \times \Delta^n \) be an element of \(W^{k,2}(S, \Delta^g \times \Delta^n) \). Here \(f^q \) and \(f^n \) are components of \(f \). We want to extend \(F \) to \(f \). This will be done along an appropriate analytic disc which passes through \(f \). Consider the mapping \(\phi_f : \Delta^q \times S \to \Delta^g \times \Delta^n \) defined as

\[\phi_f : (z, s) \to \left(h_{f^q(s)}(z), f^n(s) \right). \]

Here \(h_a \) is the following automorphism of \(\Delta^q \) interchanging \(a = (a_1, ..., a_q) \) and 0:

\[h_a(z) = \left(\frac{a_1 - z_1}{1 - a_1 z_1}, ..., \frac{a_q - z_q}{1 - a_q z_q} \right). \]

Notice that due to the compactness of \(f^q(S) \subset \Delta^g \) automorphisms \(h_{f^q(s)} \) are defined for \(z \) in a fixed (independent on \(s \)) neighborhood of \(\Delta^g \), and therefore such is \(\phi_f \). Denote by \(\phi_{f^q} : \Delta^q \to W^{k,2}(S, \Delta^{q+n}) \) the analytic \(q \)-disk in \(W^{k,2}(S, \Delta^g \times \Delta^n) \) represented by \(\phi_f \), i.e \(\phi_{f^q}(z) \in W^{k,2}(S, \Delta^{q+n}) \) acts as follows

\[\phi_{f^q}(z) : s \to \left(\frac{f^q(s) - z_1}{1 - f^q(s) z_1}, ..., \frac{f^q(s) - z_q}{1 - f^q(s) z_q}, f^n(s) \right). \]

Here \(f^q(s) = (f^q_1(s), ..., f^q_q(s)) \) is the \(q \)-component of \(f \). Denote by \(\Phi_f = \phi_{f^q}(\Delta^q) \) the image of \(\phi_{f^q} \). As in lemma 3.1 we mark here and everywhere with * analytic disks \(D \to W^{k,2}(S, \mathcal{X}) \) represented by maps \(D \times S \to \mathcal{X} \) and by capital letters we mark the images of these discs. Our \(\phi_f \) possesses the following properties:

i) \(\phi_{f^q}(0) = f \), i.e. is our loop \(f \).
ii) For \(z \in \partial \Delta^q \) one has that \(\phi_{f_\ast}(z)(S) \subset A^q_{r-1} \times \Delta^n \), therefore
\[
\partial \Phi_f := \phi_{f_\ast}(\partial \Delta^q) \subset W^{k,2}(S, H^n_q(r)) .
\]
Indeed, for \(z \) close to \(\partial \Delta^q \) some \(z_j \) is close to \(\partial \Delta \) and then the \(j \)-component of \(h_{f_\ast}(z) \) also is close to \(\partial \Delta \) for all \(s \in S \) as required.

Remark that due to the second item above our map \(F \) is defined and holomorphic near the boundary of the analytic \(q \)-disc \(\Phi_f \). In order to assign to \(f \) some “natural” value \(\tilde{F}(f) \), which we shall call a “natural extension” of \(F \), we shall extend \(F \) holomorphically to the \(q \)-disc \(\Phi_f \ni f \).

Consider the analytic \((q + 1)\)-disk \(\psi_* \) in \(W^{k,2}(S, \Delta^q \times \Delta^n) \) represented by
\[
(20) \quad \psi_\ast(z, s) := h_{f_\ast}(z, t f^n(s)) , \quad z \in \Delta^q , \quad |t| \leq 1 + \delta , \quad s \in S
\]
for an appropriate \(\delta > 0 \) small enough. Here we use the compactness of \(f^n(S) \). Remark that
\begin{itemize}
 \item[iii)] \(\psi^0(\cdot, \cdot) \) takes its values in \(\Delta^q \times \{0\} \subset H^n_q(r) \) and therefore for \(|t| \) small \(\psi^t(\cdot, \cdot) \) takes its values in \(H^n_q(r) \) by continuity.
 \item[iv)] \(\psi^t = \tilde{\phi}_f \).
 \item[v)] For all \(t \in \Delta_{1+\delta}^q \) one has that \(\partial \Psi^t = \Psi^t_\ast(\partial \Delta^q) \subset W^{k,2}(S, H^n_q(r)) \) by the second item as before.
\end{itemize}

Here \(\Psi \) and \(\Psi^t \) stand for the images of \(\psi_* \) and \(\psi^t_* \) respectively, i.e. for every \(t \) we see \(\Psi^t_\ast \) as an analytic \(q \)-disk, while \(\Psi_* \) as an analytic \((q + 1)\)-disk. Therefore for \(\delta > 0 \) small enough the Hartogs figure
\[
(21) \quad H^n_q(\delta) := \{ (z, t) : ||z|| < 1 + \delta , |t| < \delta \text{ or } 1 - \delta < ||z|| < 1 + \delta , |t| < 1 + \delta \}
\]
is mapped by \(\psi_* \) to \(W^{k,2}(S, H^n_q(r)) \) and consequently the composition \(F \circ \psi_* : H^n_q(\delta) \to \mathcal{X} \) is well defined and holomorphic. Due to the assumed \(q \)-Hartogsness of \(\mathcal{X} \) this composition \(F \circ \psi_* \) holomorphically extends to the associated polydisc \(\Delta_{1+\delta}^q \). In particular it extends to \(\Delta^q \times \{1\} \), i.e. \(F \) holomorphically extends onto the \(q \)-disc \(\Phi_f \ni f \).

(22) Denote by \(\tilde{F} \) the extension \(F \circ \psi_* \) of \(F \) and set \(\tilde{F}(f) := (F \circ \psi_*)(0, 1) \).

Remark that \(\tilde{F} \) is indeed an extension of \(F \), i.e. that \(\tilde{F}(f) = F(f) \) for \(f \in W^{k,2}(S, H^n_q(r)) \) because \(\tilde{F} \) is a holomorphic extension of \(F \) from \(\Psi \cap W^{k,2}(S, H^n_q(r)) \). We call \(\tilde{F} \) the “natural extension” of \(F \).

Step 2. The natural extension is continuous. Let \(f' \in W^{k,2}(S, \Delta^q \times \Delta^n) \) be close to \(f \). Construct \(q \)-disc \(\tilde{\phi}_{f'_*} \) and \((q + 1)\)-disc \(\psi'_* \) for \(f' \) as we did for \(f \). Denote by \(\Gamma_\Psi \) and \(\Gamma_{\Psi'} \) the graphs of \(F \circ \psi_* \) and \(F \circ \psi'_* \) in \(\Delta_{1+\delta}^q \times \mathcal{X} \) correspondingly. Due to Lemma 3.1 all we need to prove is that \(\Gamma_{\Psi'} \) enters to a given neighborhood of \(\Gamma_\Psi \) provided \(f' \) is sufficiently close to \(f \). Due to Theorem 3.2 one can choose a \(1 \)-complete neighborhood \(\mathcal{V} \) of \(\Gamma_\Psi \). Moreover, for an appropriate \(\delta > 0 \) the graph \(\Gamma_{\Psi'} \) over the Hartogs figure \(H^n_q(\delta) \) as in (21) enters to the neighborhood \(\mathcal{V} \) of the graph \(\Gamma_\Psi \) because \(\psi' \) is close to \(\psi \) and takes it values in \(W^{k,2}(S, H^n_q(r)) \) when restricted to \(H^n_q(\delta) \). A priori there is no reason that all the graph enters in \(\mathcal{V} \). But the maximum principle applied to the plurisubharmonic exhausting function of \(\mathcal{V} \) all the graph \(\Gamma_{\Psi'} \) enters in the neighborhood \(\mathcal{V} \).

The lemma 3.1 permits us to obtain the continuity of the map and the step is proved.

Step 3. Holomorphicity. All what is left to prove is that our natural extension \(\tilde{F} \) is Gâteaux holomorphic. Fix \(f \in W^{k,2}(S, \Delta^q \times \Delta^n) \), \(g \in W^{k,2}(S, C^{q+n}) \) and consider the complex affine line \(L := \{ f + \lambda g : \lambda \in \mathbb{C} \} \subset W^{k,2}(S, C^{q+n}) \). We need to prove that \(\tilde{F}|_L \) is holomorphic in a neighborhood of zero. Fix an \(\epsilon > 0 \) sufficiently small and consider an analytic \((q + 2)\)-disc \(\theta_* : \Delta^q \times \Delta^2 \to W^{k,2}(S, C^{q+n}) \) represented by the mapping:
\[
(23) \quad \theta : (z, \lambda, \mu, s) \to \left(\frac{f^q_1(s) + \lambda g^q_1(s) - z_1}{1 - (f^q_1(s) + \mu g^q_1(s))z_1} , \ldots , \frac{f^q_n(s) + \lambda g^q_n(s) - z_q}{1 - (f^q_n(s) + \mu g^q_n(s))z_q} , f^n(s) + \lambda g^n(s) \right) .
\]
Denote by $\Theta = \text{Im}\theta$, its image. Notice that for $\varepsilon > 0$ small enough the q-component of \text{(23)} defines for every fixed $|\lambda|,|\mu| \leq \varepsilon$ and $s \in S$ a holomorphic imbedding of $\overline{\Delta}^q$ to a neighborhood of $\overline{\Delta}^q$ which is uniformly close to the automorphism

$$z \rightarrow \left(\frac{f_1^q(s) - z_1}{1 - f_1^q(s)z_1}, \ldots, \frac{f_q^q(s) - z_q}{1 - f_q^q(s)z_q} \right)$$

of Δ^q. Therefore for every $|\lambda|,|\mu| \leq \varepsilon$ the disk θ_s has values in $W^{k,2}(S, \Delta^q_{1+r} \times \Delta^n)$ and the arguments of Step 1 can be repeated to $\theta(\cdot, \lambda, \mu, \cdot)$ on the place of ϕ_f.

Consider an analytic $(q + 3)$-disk ψ_s in $W^{k,2}(S, C^{q+n})$ represented by \text{(24)}

$$\psi^i(z, \lambda, \mu, s) := \psi(z, \lambda, \mu, t, s) := \left(\theta^q(z, \lambda, \mu, s), t^m(z, \lambda, \mu, s) \right), \quad z \in \overline{\Delta}^q, \quad |t| \leq 1 + \delta, \quad s \in S$$

for an appropriate $\delta > 0$ small enough. Here θ^q and θ^m are components of $\theta = (\theta^q, \theta^m)$. Remark that

- ψ^0 takes its values in $\Delta^q \times \{0\} \subset H^n_q(r)$ and therefore for $|t|$ small ψ^t takes its values in $H^n_q(r)$ by continuity.
- $\psi^1 = \theta$.
- For all $t \in \overline{\Delta}^q_{1+\delta}$ one has that $\partial \Psi^t \subset W^{k,2}(S, H^n_q(r))$.

This gives a holomorphic extension of $F \circ \theta_s$ from $\partial \Delta^q \times \Delta^2$ to $\overline{\Delta}^q \times \Delta^2$. We denote this extension as \tilde{F}. Notice now the following properties of θ and F:

1) $\theta(\cdot, \lambda, \cdot, \cdot) = \phi_{f + \lambda g}(\cdot, \cdot)$;
2) $\theta(0, \lambda, \mu, \cdot) = f(\cdot) + \lambda g(\cdot)$, in particular, this doesn’t depend on μ.

Properties iv) and v) imply that

$$\tilde{F}(f + \lambda g) = \left(\text{extF}_{|\theta_{f,\lambda g}} \right) |z=0 = \left(\text{extF}_{|\theta(\cdot, \lambda, \cdot, \cdot)} \right) |z=0 = \left(\text{extF}_{|\theta(\cdot, \lambda, \mu, \cdot)} \right) |\mu=0, z=0 =$$

$$= \tilde{F} |\mu=0, z=0 = \tilde{F}(0, \lambda, 0).$$

Here by $\text{extF}_{|\theta_{f,\lambda g}}$ we denote the extension of F along the q-disc $\phi_{f + \lambda g}$ (and then taking the value of this extension at $z = 0$). This was the definition of the natural extension. Therefore the first equality is justified. As for second it is justified by (i) . The third equality follows from (i) since at $z = 0$ nothing depends on μ and $\mu = \lambda$ can be replaced by $\mu = 0$. But this is the extension \tilde{F} evaluated at $z = 0, \lambda, \mu = 0$ and the latter holomorphically depends on λ. Therefore such is the left hand side $\tilde{F}(f + \lambda g)$. The holomorphicity of \tilde{F} is proved.

Remark. The theorem just proved was stated in [A-I], see Theorem 3.1 there, for the case of compact S without boundary. The step 1 of the proof was presented there as well. As for step 2 and 3 the details were missing. □

References

[A-Z] Anakkar M., Zagorodnyuk A.: On Hilbert-Hartogs manifolds. Complex Variables and Elliptic Equations, doi:10.1080/17476933.2019.1687458 (2019).

[A-I] Anakkar M., Ivashkovich S.: Loop Spaces as Hilbert-Hartogs Manifolds. Arxiv der Mathematik, doi:10.1007/s00013-020-01485-w (2020).

[I] Ivashkovich S.: An example concerning extension and separate analyticity properties of meromorphic mappings. Amer. J. Math. 121, 97-130 (1999).

[L] Lempert L.: Holomorphic functions on (generalized) loop spaces. Math. Proc. R. Ir. Acad. 104A, no: 1, 35-46 (2004).

[M] Moser J.: A rapidly convergent iteration method and non-linear differential equations Annali della Scuola Normale Superiore di Pisa - Classe di Scienze , Ser. 3, 20(3):499-535,(1966)

[S] Stein Elias M.: Singular Integrals and Differentiability Properties of Functions (PMS-30) Princeton University Press (1970)