Local lattice potentials and steady-state vacancies in ionic crystals

Eugene V. Kholopov

Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

Basing on peculiarities of local potentials, the two principal trends in vacancy formation are revealed. The proximity to the threshold of local ionic stability due to a giant potential contribution of electronic delocalization accounts for thermal anion vacancies typical of intrinsic semiconductors of AB type. On the other hand, the tendency towards equalizing the potential field results in a high concentration of structural cation vacancies observed in Ni$_3$Sb and relative compounds.

PACS numbers: 61.50.Lt, 61.72.Ji

Bulk electrostatic potential field plays a fundamental role in crystals [1], for it specifies both the electronegativity [2, 3, 4] and charge transfer [5, 6, 7] and eventually contributes to the cohesive energy there [8, 9]. Described by lattice series [10, 11, 12], bulk potentials can nevertheless be defined as unique quantities subjected to invariant periodic boundary conditions [13, 14]. The particular event of point charge lattices is of special interest [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] be
tioned in the present paper we discuss in detail that the effect of a crystal composed of j ionic species per unit cell, with basis vectors \mathbf{b}_j and with total charges q_j described by charge distributions $\rho_j(\mathbf{r})$ spherically symmetric for simplicity. According to [13, 14, 24], the bulk electrostatic potential $U_b(\mathbf{r})$ at a point \mathbf{r} can be written as follows:

$$U_b(\mathbf{r}) = U_{Cd}(\mathbf{r}) + \Phi_{top},$$

where

$$U_{Cd}(\mathbf{r}) = \sum_i^{\prime} \sum_j \int_{V_j} \rho_j(\mathbf{r}') \, d\mathbf{r}'$$

and

$$\Phi_{top} = \frac{2\pi}{3\nu} \sum_j \int_{V_j} |\mathbf{r} + \mathbf{b}_j|^2 \rho_j(\mathbf{r}) \, d\mathbf{r}.$$

the sum over i runs over the Bravais lattice specified by \mathbf{R}_i, the prime on the summation sign implies missing the singularities of the summand, V_j is the volume of integration appropriate to $\rho_j(\mathbf{r})$, ν is the volume of the unit cell. It is important that the absolute convergence of interest can always be achieved for (2) by introducing fictitious point charges, which in turn can be included into the set over j [13, 14]. Note that if the distributions $\rho_j(\mathbf{r})$ are non-overlapping, then (3) describes the potential in the point-charge lattice, but (3) can be represented as

$$\Phi_{top}^{\text{top}} = \frac{2\pi}{3\nu} \sum_j \int_{V_j} |\mathbf{r}|^2 \rho_j(\mathbf{r}) \, d\mathbf{r},$$

where the first term on the right-hand side of (4) modifies the result of (3) so as to retrieve the potential symmetry in a point-charge lattice, but $\Phi_{top}^{\text{deloc}}$ determines the potential contribution of electronic delocalization in ions, providing that this potential shift is intrinsically negative and additive with respect to all ions in question [15, 16].

Based on (4), the bulk Coulomb energy takes the form

$$\mathcal{E} = \frac{1}{2} \sum_j q_j U_j^{\text{eff}},$$

where the contribution of fictitious charges mentioned above vanishes by definition, so that j runs over all the actual ions in the unit cell [13, 24],

$$U_j^{\text{eff}} = \frac{1}{q_j} \int_{V_j} \rho_j(\mathbf{r}) U_0(\mathbf{r} + \mathbf{b}_j) \, d\mathbf{r}.$$
the admissible negative value of Φ_{deloc} appears to be restricted for every actual ionic structure and the lattice instability should be expected otherwise.

Note that Φ_{deloc} does not change relative values on the bulk potential map, but describes the binding energies relative to free ions, with including their own stability [48, 49, 50]. Therefore, it can be essential in the problem of steady-state vacancies forming at high temperatures. To estimate this effect, let a vacancy be generated by the simple exclusion of an ion from its regular position without any relaxation of the surroundings [34]. The total concentration of vacancies is assumed to be small enough, so that their influence on the bulk potential map, but describes the binding energies relative to free ions, with including their own stability [48, 49, 50]. Therefore, it can be essential in the problem of steady-state vacancies forming at high temperatures. To estimate this value in terms of structural ionic parameters, we adopt the lattice spacing in semiconductors such as GaAs. To evaluate this particular event, we adopt the lattice spacing $a = 0.56537$ nm [51] and $\kappa = 3e$, where e is the charge of proton. On utilizing the potential values for the ZnS structure from [52], the expected magnitude of $n_- \approx 10^{-3}$ at $T \approx 1000$ K [41] appears if we invoke $\Phi_{\text{deloc}} = -3.757\kappa/a$.

To estimate this value in terms of structural ionic parameters, we may assume that there is a close-packed sphalerite structure composed of spherical ions of radii R_{Ga} and R_{As}, but their core regions [24, 25] of radii R_{Ga} and R_{As}, charged uniformly [10, 24, 25]. The thin solid line in Fig. 1 exhibits the case of $R_{\text{Ga}}/R_{\text{As}} = r_{\text{Ga}}/r_{\text{As}}$.

FIG. 2: Gaussian charge distribution $\rho(r) = \exp(-r^2)$ (solid curve) and an equivalent uniform distribution (the hatched area) restricted by $r = r_{\text{ion}}$, whereas the vertical heavy line corresponds to the crystal radius $R_{\text{ion}} = r_{\text{ion}}/0.7$.

![Diagram](image-url)
TABLE I: Local point-charge-lattice potentials, in units of κ/a, describing Ni$_3$Sb within the D0$_3$ structure and the corresponding B1 potentials. Sb$^{3-}$ ions are on β sites in the traditional nomenclature [61], but Ni$^+$ ions occupy α and γ sites specified in units of a in the parentheses.

Structure	$U_0^\alpha (0,0,0)$	$U_0^\beta (\frac{1}{4} \frac{1}{4} \frac{1}{4})$	$U_0^\gamma (\frac{1}{4} \frac{1}{2} \frac{1}{4})$
D0$_3$ (BiF$_3$)	11.06098140	-4.07072302	-2.91953536
B1 (NaCl)	3.49512919	0	-3.49512919

...and ions in terms of Gaussian orbitals [41, 42] we have

$$Z_{ion} = \pi^{3/2}, \quad \Phi_{top}^{deloc} = \frac{\pi^{5/2}}{v},$$

(14)

The foregoing ionic parameters specified by [41] and [44] and imposed on this charge distribution in Fig. 3 for comparison are in favor of the above assessment.

Note that here we discuss the tendency towards arising vacancies in a perfect system, but not their final states [39, 40, 41]. Both the classical problem [43, 44, 45] of the n-type conductivity in ZnO and that of vacancies in nitrides [43, 44, 45] can be comprehended in the same fashion. The trends in complex defects associated with anion vacancies [39, 44, 45] are clarified as well.

Owing to (8), the above mechanism enforces the stability of cation states and so prevents from cation vacancies observed in a large concentration [13, 34], where the lattice parameter $a \approx 0.59$ nm [37] and the charge κ on the Ni$^+$ ion are used as basic units. So, the α states of Ni$^+$ ions are formally much more stable than the γ ones. Notwithstanding, we must propose that the tendency towards the equalization of the potentials operating on structurally nonequivalent Ni$^+$ ions, as shown in Fig. 3. It is surprising that the potential degeneracy obtained here takes place just at the chemical composition which is the most prominent in experiments [37].

It is evident that apart from a large number of vacant states, equal potentials on α and γ sites are capable of promoting the extraordinary high Ni diffusivity [64]. Basing on this potential equality, the existence of such a state may presumably be associated with the creation of metallic bonds in the Ni subsystem that is much more effective if all three interpenetrating fcc sublattices composed of Ni$^+$ ions contribute evenly to their formation. A large number of metallic bonds can in turn depress the effect of local vacancies on the conduction electrons.

As anticipated, the same trend is inherent in metallic alloys of relative structure [37, 44, 45]. The fact that the Coulomb contribution is to be less pronounced there may be regarded as one more evidence in favor of the potential equalization discussed.

It is worth noting that the present consideration of the effect of relative potentials is nonetheless based on absolute values of local potentials in point-charge lattices [13, 44, 45], so that their combination in form [43] is informative. On the other hand, keeping in mind that the value of $U_{0\beta}(\text{D}0_3)$ is, in absolute units, close to $U_{0\alpha}^\beta$, but the number of cations is larger, the effect of Φ_{top}^{deloc} defined like [43] violates relation (6) for anion states and so renders the stoichiometric Ni$_3$Sb compound unstable, in agreement with experiments [37]. Dynamical effects associated with Ni diffusivity and contributing to Φ_{top}^{deloc} so as to restore (6) at finite c will be discussed elsewhere.

I am grateful to Professor V. L. Ginzburg, Professor E. G. Maksimov and Professor V. G. Vaks for their en-

FIG. 3: Local point-charge-lattice potentials U_0^α (line α) and U_0^γ (line γ) measured in units of κ/a versus the deviation c from the total occupation of α sites. The degenerate case pointed out by the dotted vertical line at $c = 0.248$ corresponds to the Ni$_{71.3}$Sb$_{28.5}$ composition.
[68] L. Mañosa, J. Zarestky, M. Bullock, and C. Stassis, Phys. Rev. B 59, 9239 (1999).