Exercise adherence-related perceptual responses to low-load blood flow restriction resistance exercise in young adults: A pilot study

Tadashi Suga1,2 | Kento Dora1 | Ernest Mok1 | Takeshi Sugimoto1
Keigo Tomoo1 | Shingo Takada3 | Takeshi Hashimoto1 | Tadao Isaka1

1Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
2Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
3Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Hokkaido, Japan

Correspondence
Tadashi Suga, Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
Email: t-suga@fc.ritsumei.ac.jp

Funding information
Center of Innovation Program from Japan Science and Technology Agency, Grant/Award Number: JPMJCE1301 and JPMJCE1306

Abstract
Resistance exercise (RE) with blood flow restriction (BFR) is recognized as a beneficial strategy in increasing skeletal muscle mass and strength. However, the effects of BFR on changes in perceptual parameters, particularly those related to exercise adherence, induced by RE are not completely understood. In this study, we examined the exercise adherence-related perceptual responses to low-load BFR-RE. Sixteen young males performed both BFR and non-BFR (NBFR) sessions in a crossover design. The bilateral knee extensor low-load RE was performed with a standard BFR-RE protocol, consisting of four sets (total 75 repetitions), using 20% of one-repetition maximum. BFR-RE was performed with 200 mmHg pressure cuffs placed around the proximal region of the thighs. NBFR-RE was performed without pressure cuffs. The ratings of perceived exertion and leg discomfort measured using the Borg's Scales were higher for BFR-RE session than for NBFR-RE session (both \(p < 0.001 \) for interaction effect). The Feeling Scale-measured affect and Task Motivation Scale-measured task motivation were lower for BFR-RE session than for NBFR-RE session (both \(p < 0.05 \) for interaction effect); by contrast, the Numerical Rating Scale-measured perceived pain was higher for BFR-RE session than for NBFR-RE session (\(p < 0.001 \) for interaction effect). The Physical Activity Enjoyment Scale-measured enjoyment immediately after RE was lower with BFR than with NBFR (\(p < 0.001 \)). These findings suggest that BFR exacerbates the exercise adherence-related perceptual responses to low-load RE in young males. Therefore, further studies are needed to develop effective strategies that minimize the BFR-RE-induced negative effects on perceptual responses.

KEYWORDS
affect, enjoyment, perceived exertion, task motivation
1 | INTRODUCTION

Skeletal muscle weakness, presenting as decreased muscle mass and strength, is a prominent factor that indicates poor prognosis in older individuals and patients with chronic diseases (Ruiz et al., 2008). Long-term intervention of resistance exercise (RE) results in numerous health improvements, including increased skeletal muscle mass and strength (American College of Sports Medicine, 2009; Williams et al., 2007). Generally, many guidelines have recommended the use of high-loads for effective RE to certainly increase muscle mass and strength in healthy individuals (e.g., American College of Sports Medicine, 2009; Williams et al., 2007). However, the high-load RE imposes considerable physical stresses in some individuals, especially older individuals and patients with chronic diseases, because of declining health of the cardiovascular and musculoskeletal systems (Williams et al., 2007). Furthermore, the high-load RE also causes elevations in perceptual responses, including increased perceived exertion response and decreased affective response (Cavarretta et al., 2018), which can be considered barriers to exercise adherence (Trost et al., 2002). Therefore, novel RE method(s) with decreased exercise load and lowered perceptual responses that can provide training adaptations similar to those of high-load RE would be useful in improving exercise adherence in various populations.

RE with blood flow restriction (BFR) is a unique method that uses low-load (Patterson et al., 2019; Scott et al., 2015). The BFR-RE results in muscle hypertrophy and strength gain more than non-BFR (NBFR)-RE in various populations (Lixandrão et al., 2018), including older individuals and patients with chronic diseases (Centner et al., 2019; Hughes et al., 2017). Moreover, muscle hypertrophy and strength gain induced by low-load BFR-RE is comparable to those induced by high-load NBFR-RE (Centner et al., 2019; Lixandrão et al., 2018). Furthermore, low-load BFR-RE can be performed more frequently than high-load RE owing to lower muscle damage following RE (Dos Santos et al., 2020; Takarada et al., 2000); thus, BFR-RE-induced muscle adaptation can be obtained early within a short-term (e.g., 2 weeks) because of increased training frequency throughout this period (Abe et al., 2005). Therefore, low-load BFR-RE is now recognized as a beneficial strategy to replace high-load RE.

Despite many benefits of BFR-RE, it exacerbates perceptual responses during the exercise (e.g., Bell et al., 2018; Loenneke, Kim, et al., 2015; Suga et al., 2009). Previous studies have reported that increases in perceived exertion (RPE) and leg discomfort, during low-load RE were greater with BFR than with NBFR (Bell et al., 2018; Suga et al., 2009). Furthermore, these perceived exertion responses during low-load BFR-RE were similar to or higher than those during high-load RE (Bell et al., 2018; Loenneke, Kim, et al., 2015). Additionally, Silva et al. (2018) reported that mood states decreased after BFR-RE, while they did not observe this after NBFR-RE. These previous findings suggest that BFR may result in negative effects on perceptual responses to low-load RE, which may contribute to decreasing exercise adherence (Cavarretta et al., 2018). However, limited perceptual parameters were measured in previous studies that examined the effect of BFR on perceptual responses to low-load RE (Bell et al., 2018; Loenneke, Kim, et al., 2015; Silva et al., 2018; Suga et al., 2009). To the best of our knowledge, no study has examined the effects of BFR-RE on major perceptual parameters related to exercise adherence (e.g., affect, task motivation, and enjoyment). In clinical settings, such information would be useful in creating effective protocols that would improve exercise adherence in various populations, especially older individuals and patients with chronic diseases.

Generally, changes in perceptual parameters induced by traditional exercise (i.e., exercise with NBFR) are dependent on changes in physiological parameters, including cardiovascular (e.g., heart rate (HR) and blood pressure), metabolic (e.g., blood lactate level), and neuromuscular (e.g., electromyographic (EMG) activity) parameters (Hampson et al., 2001). However, when the perceptual responses are greater in BFR-RE than in NBFR-RE, it is unclear whether these responses would be related to physiological responses.

Additionally, although the perceptual responses to BFR-RE are likely to be affected by the differences in body and lower limb sizes among subjects (Loenneke, Allen, et al., 2015; Loenneke, Kim, et al., 2015), it is poorly understood. In clinical settings, such information would also be useful in creating effective BFR-RE protocols along with improving exercise adherence in various populations.

To clarify these practical questions, in this pilot study with young males, we first compared the responses in perceptual parameters, including exercise adherence-related parameters, between low-load knee extensor BFR- and NBFR-REs. Second, we examined the relationship between perceptual and physiological responses to BFR- and NBFR-REs. Third, we examined the relationships of physical characteristics, body composition, and anthropometrical parameters of the thigh with perceptual responses to BFR-RE.

2 | METHODS

2.1 | Participants

To determine the sample size required for this study, we used the effect sizes (0.27–0.60) on two previous studies (Decker & Ekkekakis, 2017; Rose & Parfitt, 2007) that examined the changes in perceptual parameters (i.e., RPE
and affect) induced by exercise, with a 2 (condition) × > 6 (time) two-way repeated-measures analysis of variance (ANOVA). The α- and β-levels were set at 0.05 and 0.2 (80% power), respectively. The required minimum number of subjects was 6–16.

Sixteen young males (age: 20.9 ± 0.4 years, body height: 172.4 ± 1.2 cm, body mass: 61.2 ± 1.5 kg, body mass index: 20.6 ± 0.5 kg/m²) participated in this study; therefore, the number of subjects recruited in this study was sufficient for ensuring statistical power and sensitivity. The fasting blood glucose levels, and resting systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the subjects were 95.5 ± 1.6 mg/dl, 112.1 ± 2.1 mmHg, 71.5 ± 1.2 mmHg, respectively, which were calculated as the mean values for each parameter obtained on experimental days 1 and 2. All the subjects were students studying sports and health sciences. The subjects had received the lecture(s) to practicing the measurements of one-repetition maximum (1-RM) and perceptual responses (e.g., RPE) during exercise, which were performed in this study. The subjects did not undergo any specific habitual physical training within the previous 3 years. However, many of them had participated in sports activity and/or exercise training for 2–3 h per week through the physical education lecture(s). Exclusion criteria for this study were as follows: (1) Athletes and trained individuals who engaged in specific sports and/or exercise training, because these candidates may exhibit different physiological responses induced by BFR-RE compared to untrained individuals (Takada et al., 2012); (2) subjects who had a history of common orthopedic injuries and surgery of the tissues around the knee joints (e.g., including muscle, tendon, cartilage, and ligaments); (3) subjects with any known cardiovascular, pulmonary, and neurological disorders; (4) subjects who had symptoms of obesity (i.e., body mass index of ≥25.0 kg/m²), diabetes (i.e., fasting blood glucose of ≥126 mg/dl), and hypertension (i.e., SBP/DBP of ≥140/90 mmHg), which were based on the Japanese guidelines (Araki et al., 2020; Umemura et al., 2019). All participants were informed of the experimental procedures and potential risks and provided written consent to participate in this study. This study was approved by the Ethics Committee of Ritsumeikan University and conducted according to the Declaration of Helsinki.

2.2 | Experimental design

Experimental procedures of this study are presented in Figure 1. This study used a crossover design, whereby all subjects completed the two experimental RE sessions with BFR and NBFR, with a randomized and counterbalanced order. Each subject made a total of three visits to the laboratory over approximately 2 weeks. The two experimental sessions (i.e., second and third visits) were performed at approximately the same time (±1 h) in the morning, separated by a 1-week period.

On the first visit, the subjects received detailed explanations on the experimental protocols and perceptual parameters. Thereafter, the subject’s physical characteristics, body composition, anthropometrical parameters of the thigh, and 1-RM of the bilateral knee extension were measured. After these measurements were completed, to minimize an excessive response to BFR, the subjects were familiarized with the BFR maneuver at sitting resting position using the familiarization method (see section Experimental conditions). Additionally, the subjects were instructed to avoid strenuous physical activity for 24 h before each of the two experiment days. The subjects were also instructed to abstain from food, caffeine, and alcohol for 12 h before each experiment day.

On the day of the experiments (i.e., second and third visits), the subjects performed either with low-load BFR- or NBFR-RE session on the leg extension machine (Life Fitness). Before the experiment on each day, the subjects again received detailed explanations on the perceptual parameters. Perceptual parameters (i.e., RPE, leg discomfort, affect, task motivation, and perceived pain) were measured throughout experimental session (i.e., before RE, during RE, and 30 min after RE). Cardiovascular (i.e., HR, SBP, DBP) and blood metabolite (i.e., blood lactate and glucose) parameters and mood states were measured before and immediately after RE, and 30 min after RE. Electromyographic (EMG) activities of the quadriceps femoris muscles were measured during every set of RE session. Enjoyment was measured immediately after RE.

2.3 | Experimental conditions

The low-load bilateral knee extensor RE was performed with a standard BFR-RE protocol that involves 75 repetitions across four sets, consisting of 30 repetitions in the first set and 15 repetitions in each subsequent set, using a 20% of 1-RM (Patterson et al., 2019; Scott et al., 2015). Rest interval lengths between sets were set at 30 s (Patterson et al., 2019; Scott et al., 2015). In the BFR-RE, 8 cm wide tourniquet cuffs were wrapped around the proximal region of the thighs. The BFR pressure for BFR-RE was set at 200 mmHg, as in previous studies (Fry et al., 2010; Fujita et al., 2007; Guntermann et al., 2012; Suga et al., 2009). To familiarize the subject with the BFR maneuver, the occlusion pressure was initially inflated at 100 mmHg for 30 s and then released for 10 s in sitting position on leg extension machine. Following the first BFR familiarization, the
BFR pressure was gradually increased by 25 mmHg with 30-s holding and 10-s releasing. This BFR familiarization process was repeated until a final occlusion pressure at 200 mmHg was reached. Immediately before the BFR-RE, the BFR was performed with the final occlusion pressure (i.e., 200 mmHg) and remained until the completion of exercise protocol. In the NBFR-RE, the subjects performed a sitting rest with a same time (i.e., about 4–5 min) of the
BFR familiarization on leg extension machine. After the sitting rest, the subjects performed same exercise protocol as the BFR-RE, without the application of pressure cuffs.

2.4 | 1-RM

On the familiarization visit, subject’s 1-RM was obtained by a successful concentric contraction of the bilateral knee extension to calculate the exercise load for low-load RE, as previously described (e.g., Suga et al., 2009; Takada et al., 2012; Tsukamoto et al., 2017). The 1-RM trial was designed using increments of 10 kg until 60%–80% of the perceived maximum is achieved. Then, the load was gradually increased by 1–5 kg weights until lift fail, in which the subject was not able to maintain proper form or to completely lift the weight. The last acceptable lift with the highest possible load was defined as 1-RM. The mean 1-RM of the bilateral knee extension in all subjects was 118 ± 4 kg. The mean load of 20% 1-RM for both BFR- and NBFR-REs in all subjects was 24 ± 1 kg.

2.5 | Cardiovascular parameters

HR was measured continuously via telemetry (RS400; Polar Electro Japan). SBP and DBP were measured using a mercury manometer (FC-110ST; Focal). Mean arterial pressure (MAP) was calculated as [(SBP – DBP)/3 + DBP].

2.6 | Blood metabolites

Fingertip blood samples were collected to determine blood metabolite responses. Blood lactate and glucose levels were measured using lactate (Lactate Pro 2; Arkray) and glucose (Glutest Neo α; Sanwa Kagaku Kenkyusho) analyzers, respectively.

2.7 | Quadriceps femoris EMG activity

The detailed method for measuring EMG activity of the quadriceps femoris has previously described (Tsukamoto et al., 2017). Peak EMGs of the rectus femoris, vastus lateralis, and vastus medialis muscles in the right leg during RE were calculated from the last five repetitions of all four sets. The peak EMG values in the five repetitions of each set for the three quadriceps femoris muscles were averaged and the mean EMG values were normalized to the EMG value measured during the knee extension maximal voluntary contraction.

2.8 | RPE and leg discomfort

RPE was measured using the Borg’s 15-point Scale, which ranging from 6 (no exertion) to 20 (maximal exertion) (Borg, 1982). Rating of leg discomfort was measured using the Borg’s Category-Ratio 10-point Scale (CR-10), which ranges from 0 (nothing at all) to 10 (very, very strong) (Borg, 1982).

2.9 | Affect

Affect was measured using the Feeling Scale (FS) (Hardy & Rejeski, 1989). The FS was an 11-point bipolar scale, which ranges from −5 (very bad) to 5 (very good) with further descriptions at −3 (bad), −1 (fairly bad), 0 (neutral), 1 (fairly good), and 3 (good).

2.10 | Task motivation

Task motivation was measured using the Task Motivation Scale (TMS) (Hutchinson et al., 2011). The TMS was an 11-point scale, which ranges from 0 (nothing) to 10 (extremely strong) with further descriptions at 2 (weak), 5 (moderate), and 8 (strong).

2.11 | Perceived pain

Perceived pain was measured using the Numerical Rating Scale (NRS) (Downie et al., 1978). The NRS was an 11-point scale with descriptions at 0 (no pain at all), 5 (moderate pain), and 10 (worst pain imaginable).

2.12 | Mood

Mood states were measured using a short version of the Profile of Mood States (POMS) (Shacham, 1983). This version was consisted of 35 questions and can be evaluated at six mood profiles: anger-hostility, confusion-bewilderment, depression-dejection, fatigue-inertia, tension-anxiety, and vigor-activity. Total mood disturbance (TMD) score was calculated based on methodology of the previous study (Shacham, 1983).

2.13 | Enjoyment

Enjoyment was measured using the Physical Activity Enjoyment Scale (PACES) (Kendzierski & DeCarlo, 1991). The PACES was consisted of 18 questions, which is a total of 7 positive and 11 negative questions, with a 7-point scale. The total score was used for analyses.
2.14 | **Physical characteristics, body composition, and anthropometrical parameters**

Body height was measured using a stadiometer under barefoot condition. Body mass and whole-body skeletal muscle and fat masses were measured using a bioelectrical impedance analysis with multiple impedance frequencies (InBody 720; Biospace) in barefoot condition and wearing only underwear, as in our previous study (Tottori et al., 2018). All anthropometrical parameters of the thigh were measured from the right leg. The thigh length was measured using a tape measure and defined as the distance between the lateral condyle of the femur and the greater trochanter. The thigh circumference was measured using a tape measure at 50% of the thigh length. The anterior and posterior muscle and subcutaneous fat thicknesses of the thigh were measured using a B-mode US apparatus (SSD-3500SV; Aloka) with a 7.5 MHz liner probe at a same location to the thigh circumference measurement (i.e., 50% of the thigh length).

2.15 | **Statistical analysis**

All data were expressed as mean ± standard error of the mean. Changes in some perceptual parameters (i.e., RPE, leg discomfort, affect, task motivation, and perceived pain) throughout experimental session between BFR and NBFR conditions were analyzed using a 2 × 6 two-way ANOVA. Changes in cardiovascular (i.e., HR and MAP) and blood metabolite parameters (i.e., blood glucose and lactate levels), and mood states throughout the two experimental sessions were analyzed using a 2 × 3 two-way ANOVA. For all the ANOVAs, if the sphericity assumption was not met, Greenhouse–Geisser corrections were used. Specific differences were identified with a Bonferroni post-hoc test or a paired t-test. Comparisons of the mean values of the three quadriceps EMG activities during RE session between the two conditions were performed using a paired t-test. Similar statistical analysis was used to compare enjoyment immediately after RE session between conditions. Partial eta squared (η_p^2) was calculated as the effect size to determine the magnitude of main effects of condition and time and interaction effect. Cohen’s d was calculated as the effect size to determine the magnitude of difference in measured parameters between conditions (Cohen, 1992). Relationships between perceptual and physiological response to BFR- and NBFR-REs were evaluated using a Pearson’s product moment correlation coefficient. Similar statistical analyses were used to determine the relationships of physiological characteristics, body composition, and anthropometric parameters of the thigh with perpetual responses to BFR-RE. The statistical significance level was defined at $p < 0.05$. All statistical analyses were conducted using IBM SPSS software (Ver. 19.0, IBM Corp).

3 | **RESULTS**

3.1 | **Cardiovascular, blood metabolite, and quadriceps femoris EMG activity responses**

Cardiovascular, blood metabolite, and quadriceps femoris EMG activity responses during BFR- and NBFR-RE sessions are presented in Figure 2. Analyses of HR and MAP revealed significant main effects for condition and time and significant interaction effects ($all p < 0.01, \eta_p^2 = 0.34–0.92$). HR increased immediately after both BFR- and NBFR-REs compared with that before REs ($both p < 0.001, d = 3.85$ and 4.73, respectively). MAP increased immediately after BFR-RE but not NBFR-RE compared with that before RE ($p = 0.001, d = 3.45$). HR and MAP immediately after RE was higher with BFR than with NBFR ($both p \leq 0.001, d = 1.26$ and 3.05, respectively).

Blood lactate analysis revealed significant main effects for condition and time and a significant interaction effect ($all p < 0.001, \eta_p^2 = 0.70–0.91$). Blood lactate increased immediately after both BFR- and NBFR-RE compared that before REs ($both p < 0.001, d = 3.71$ and 2.90, respectively). The increased blood lactate remained significant the 30-min post-exercise recovery period for BFR-RE but not NBFR-RE compared with that before RE ($p < 0.001, d = 1.68$). The blood lactate immediately after and 30 min after RE were higher with BFR than with NBFR ($both p < 0.001, d = 1.91$ and 1.27, respectively). Blood glucose analysis revealed a significant interaction effect ($p = 0.001, \eta_p^2 = 0.38$). The blood glucose decreased immediately after NBFR-RE compared with that before RE ($p = 0.010, d = 0.82$). The blood glucose immediately after RE was higher with BFR than with NBFR ($p = 0.010, d = 0.92$).

Peak EMGs of the vastus lateralis and vastus medialis during RE were higher with BFR than with NBFR ($both p < 0.05, d = 1.05$ and 0.65, respectively).

3.2 | **RPE and leg discomfort responses**

Changes in RPE and leg discomfort throughout BFR- and NBFR-RE sessions are shown in Figure 3. Analyses of RPE and leg discomfort revealed significant main effects for condition and time and significant interaction effects ($all p < 0.001, \eta_p^2 = 0.53–0.98$). RPE and leg discomfort increased during both BFR- and NBFR-REs compared with those before REs ($all p < 0.001, d = 3.25–10.84$). The increased leg discomfort remained significant at the
30-min post-exercise recovery period for BFR-RE but not NBFR-RE compared with that before RE ($p = 0.001$, $d = 2.06$). The RPE and leg discomfort from the first to last sets during RE were higher with BFR than with NBFR (all $p < 0.05$, $d = 1.33–3.04$). Such a significant difference between conditions was remained for leg discomfort at the 30-min post-exercise recovery period ($p < 0.001$, $d = 1.41$).

3.3 | Affect, task motivation, and perceived pain responses

Changes in perceptual psychological parameters throughout BFR- and NBFR-REs sessions are presented in Figure 4. Analysis of affect, task motivation, and perceived pain revealed significant main effects for condition and time
and significant interaction effects (all $p < 0.05, \eta_p^2 = 0.17–0.85$). Affect decreased at the third and last sets during BFR-RE but not during NBFR-RE compared with that before RE (both $p < 0.05$, $d = 1.23$ and 1.57, respectively). The affect at the second and last sets during RE were higher with BFR than with NBFR (all $p = 0.05$, $d = 0.55$ and 0.83, respectively). Task motivation decreased during both BFR- and NBFR-REs compared with that before REs (all $p < 0.05$, $d = 1.36–1.90$). The decreased task motivation was remained significant at 30 min after both BFR- and NBFR-REs compared with that before REs (both $p < 0.05$, $d = 1.17$ and 0.62, respectively). Task motivation from the first to last sets during RE were higher with BFR than with NBFR (all $p < 0.001$, $d = 1.36–1.90$).

3.4 Mood responses

Changes in total mood disturbance and mood states throughout BFR and NBFR resistance exercise sessions are shown in Table 1. Total mood disturbance revealed main effect for time ($p = 0.009$, $\eta_p^2 = 0.27$). The total mood disturbance decreased 30 min after BFR-RE compared with that immediately after RE ($p = 0.048$, $d = 0.29$). Among six mood states, confusion-bewildenment analysis revealed a significant main effect for time ($p = 0.014$, $\eta_p^2 = 0.25$). The confusion-bewildenment decreased 30 min after BFR-RE compared with that before RE ($p = 0.011$, $d = 0.29$). Tension-anxiety analysis revealed a significant main effect for time ($p = 0.027$, $\eta_p^2 = 0.22$). The tension-anxiety decreased 30 min after NBFR-RE compared with that before RE ($p = 0.024$, $d = 0.25$). Fatigue-inertia analysis revealed a significant main effect for condition and time (both $p < 0.05$, $\eta_p^2 = 0.32$ and 0.48, respectively). The fatigue-inertia increased immediately after both BFR- and NBFR-REs compared with that before REs (both $p < 0.005$, $d = 1.13$ and 0.63, respectively). The fatigue-inertia decreased 30 min after both BFR- and NBFR-REs compared with that immediately after REs (both $p = 0.05$, $d = 1.06$ and 0.55, respectively). The fatigue-inertia immediately after RE was higher with BFR than with NBFR ($p = 0.008$, $d = 0.66$).

3.5 Enjoyment response

Comparison of enjoyment immediately after BFR- and NBFR-REs is presented in Figure 5. Enjoyment immediately after RE was lower with BFR than with NBFR ($p < 0.001$, $d = 0.74$).

3.6 Relationships of cardiovascular, blood metabolite, and quadriceps femoris EMG activity responses with perceptual responses to BFR- and NBFR-REs

Correlation coefficients of cardiovascular, blood metabolite, and quadriceps femoris EMG activity responses with perceptual responses to BFR- and NBFR-REs are summarized in Table 2. RPE response (i.e., ΔRPE), which evaluated as the difference between pre and post (i.e., at 5 set during each exercise) values, was correlated with HR, MAP, blood lactate and glucose responses, and vastus lateralis and rectus femoris EMG activities ($r = 0.351–0.706$, all $p < 0.05$). Leg discomfort response (i.e., ΔCR-10) was correlated with HR, MAP, blood lactate and glucose responses, and vastus lateralis and vastus medialis EMG activities ($r = 0.400–0.738$, all $p < 0.05$). Affect response
3.7 | Relationships of physical characteristics, body composition, and anthropometrical parameters of the thigh with perceptual responses to BFR-RE

Correlation coefficients of physical characteristics, body composition, and anthropometrical parameters of the thigh with perceptual responses to BFR-RE are summarized in Table 3. Mean values of physical characteristics in the subjects were 172.4 ± 1.2 cm for body height, 61.2 ± 1.5 cm for body mass, and 20.6 ± 0.5 (range 17.2-24.9) kg/m² for body mass index. Mean values of body composition were 13.9 ± 0.8 (range 8.6-18.7) % for body fat percentage, 40.7 ± 1.1 (range 163.2 to 193.1) cm for thigh length, 50 ± 13.0 kg for whole-body fat mass, and 86 ± 0.7 (range 43.3-57.1) kg for whole-body skeletal muscle mass. Mean values of anthropometrical parameters of the thigh in the subjects were 40.0 ± 0.4 (range 38.0-43.0) cm for thigh length.

TABLE 3	Changes in total mood disturbance and profile of mood states throughout resistance exercise (RE) sessions with blood flow restriction (BFR) and non-BFR (NBFR)								
BFR-RE	**Post 0**	**Post 30**	**NBFR-RE**	**Post 0**	**Post 30**				
Total mood disturbance	4.4 ± 3.2	9.8 ± 3.3	3.8 ± 2.9^b	4.2 ± 2.8	5.3 ± 3.2	2.8 ± 2.9	0.174	0.009	0.134
Anger-hostility	1.6 ± 0.6	1.8 ± 0.9	1.0 ± 0.4	1.3 ± 0.4	1.1 ± 0.4	0.8 ± 0.4	0.383	0.171	0.352
Confusion-bewilderment	4.1 ± 1.0	3.9 ± 0.9	3.0 ± 0.9^a	3.9 ± 0.9	3.9 ± 1.1	3.1 ± 0.9	0.927	0.014	0.783
Depression-dejection	1.3 ± 0.4	1.5 ± 0.4	1.2 ± 0.4	2.0 ± 0.6	1.4 ± 0.4	1.2 ± 0.4	0.444	0.167	0.115
Fatigue-inertia	3.9 ± 0.9	7.6 ± 0.8^a	4.7 ± 0.6	3.4 ± 0.7	5.4 ± 0.9^a	3.7 ± 0.7	0.019	0.001	0.140
Tension-anxiety	3.9 ± 0.8	4.1 ± 0.9	3.3 ± 0.9	4.3 ± 0.9	3.6 ± 1.0	3.4 ± 0.9^a	1.000	0.027	0.136
Vigor-activity	10.4 ± 1.1	9.2 ± 1.4	9.4 ± 1.1	10.7 ± 0.9	10.2 ± 1.1	9.5 ± 0.9	0.393	0.101	0.546

Note: Values are presented as mean ± standard error of the mean. Bold p values indicate significant main effects of condition and time.

^ap < 0.05 versus before RE (i.e., Pre).
^bp < 0.05 versus immediately after RE (i.e., Post 0).
TABLE 2 Correlation coefficients of cardiovascular, blood metabolite, quadriceps femoris muscle activity responses with perceptual responses to BFR and NBFR-REs

	ΔRPE	ΔCR−10	ΔFS	ΔNRS	ΔTMS	ΔTMD	PACES
ΔHR	0.575 (p = 0.001)	0.551 (p = 0.001)	−0.459 (p = 0.008)	0.528 (p = 0.002)	−0.608 (p < 0.001)	0.124 (p = 0.500)	−0.144 (p = 0.430)
ΔMAP	0.706 (p < 0.001)	0.738 (p < 0.001)	−0.523 (p = 0.002)	0.602 (p < 0.001)	−0.689 (p < 0.001)	0.278 (p = 0.124)	−0.359 (p = 0.043)
ΔBlood lactate	0.667 (p < 0.001)	0.637 (p < 0.001)	−0.397 (p = 0.024)	0.604 (p < 0.001)	−0.616 (p < 0.001)	0.174 (p = 0.341)	−0.116 (p = 0.526)
ΔBlood glucose	0.598 (p < 0.001)	0.460 (p = 0.008)	−0.361 (p = 0.042)	0.476 (p = 0.006)	−0.395 (p = 0.025)	0.091 (p = 0.621)	−0.238 (p = 0.189)
Vastus lateralis iEMG	0.534 (p = 0.002)	0.571 (p = 0.001)	−0.094 (p = 0.609)	0.529 (p = 0.002)	−0.424 (p = 0.015)	0.206 (p = 0.259)	−0.034 (p = 0.855)
Vastus medialis iEMG	0.301 (p = 0.094)	0.400 (p = 0.023)	−0.058 (p = 0.751)	0.248 (p = 0.171)	−0.390 (p = 0.027)	0.160 (p = 0.383)	−0.139 (p = 0.447)
Rectus femoris iEMG	0.351 (p = 0.049)	0.230 (p = 0.206)	−0.200 (p = 0.273)	0.264 (p = 0.144)	−0.161 (p = 0.380)	0.482 (p = 0.005)	−0.162 (p = 0.376)

Note: n = 32 (16 × 2 conditions). Responses of perceptual and physiological parameters were defined as the differences (i.e., Δ) between pre and post (at 5 set during exercise) values during BFR- and NBFR-RE sessions. Bold values indicate significant correlations (p < 0.05) between physiological and perceptual responses to BFR- and NBFR-REs.

Abbreviations: CR-10, Borg’s Category-Ratio 10-point Scale (measuring leg discomfort); FS, Feeling Scale (measuring affect); iEMG, integrated electromyography; NRS, Numerical Rating Scale (measuring perceived pain); PACES, Physical Activity Enjoyment Scale (measuring enjoyment); RPE, Borg’s rating of perceived exertion; TMD, Profile of Mood States-measured total mood disturbance; TMS, Task Motivation Scale (measuring task motivation).

TABLE 3 Correlation coefficients of physical characteristics, body composition, and anthropometric parameters of the thigh with perceptual responses to BFR-RE

	ΔRPE	ΔCR−10	ΔFS	ΔNRS	ΔTMS	ΔTMD	PACES
Body height	0.168 (p = 0.534)	0.258 (p = 0.335)	0.022 (p = 0.935)	−0.437 (p = 0.091)	−0.168 (p = 0.533)	−0.321 (p = 0.225)	−0.305 (p = 0.251)
Body mass	−0.282 (p = 0.291)	−0.081 (p = 0.765)	0.448 (p = 0.082)	0.218 (p = 0.417)	0.545 (p = 0.029)	−0.375 (p = 0.152)	0.257 (p = 0.337)
Body fat percentage	−0.366 (p = 0.164)	−0.212 (p = 0.430)	0.437 (p = 0.090)	0.437 (p = 0.090)	0.626 (p = 0.009)	−0.205 (p = 0.446)	0.434 (p = 0.093)
Whole body SKM	−0.127 (p = 0.640)	−0.049 (p = 0.856)	0.111 (p = 0.682)	0.204 (p = 0.449)	0.523 (p = 0.038)	−0.138 (p = 0.611)	0.283 (p = 0.287)
Whole body FM	−0.194 (p = 0.471)	−0.058 (p = 0.832)	0.258 (p = 0.335)	0.238 (p = 0.374)	0.603 (p = 0.013)	−0.219 (p = 0.416)	0.323 (p = 0.222)
Thigh length	0.185 (p = 0.493)	0.285 (p = 0.284)	0.181 (p = 0.502)	0.561 (p = 0.024)	−0.058 (p = 0.830)	−0.387 (p = 0.139)	−0.162 (p = 0.548)
Thigh circumference	0.517 (p = 0.040)	−0.304 (p = 0.252)	0.427 (p = 0.099)	0.331 (p = 0.211)	0.635 (p = 0.008)	−0.204 (p = 0.447)	0.338 (p = 0.201)
Anterior thigh MT	−0.316 (p = 0.233)	−0.231 (p = 0.389)	0.186 (p = 0.491)	0.094 (p = 0.730)	0.428 (p = 0.098)	−0.249 (p = 0.352)	0.227 (p = 0.399)
Posterior thigh MT	−0.298 (p = 0.263)	−0.211 (p = 0.432)	0.250 (p = 0.351)	0.385 (p = 0.141)	0.559 (p = 0.024)	−0.245 (p = 0.361)	0.469 (p = 0.067)
Anterior thigh SFT	−0.238 (p = 0.375)	−0.072 (p = 0.792)	−0.076 (p = 0.780)	0.159 (p = 0.557)	0.602 (p = 0.014)	−0.228 (p = 0.395)	0.088 (p = 0.747)
Posterior thigh SFT	0.019 (p = 0.946)	0.075 (p = 0.783)	0.043 (p = 0.874)	0.104 (p = 0.701)	0.275 (p = 0.303)	−0.232 (p = 0.386)	0.221 (p = 0.410)

Note: n = 16. Bold values indicate significant correlations (p = 0.05) of physical characteristics, body composition, and anthropometric parameters of the thigh with perceptual responses to BFR-RE.

Abbreviations: FM, fat mass; MT, muscle thickness; SFT, subcutaneous fat thickness; SKM, skeletal muscle mass.
49.9 ± 0.8 (range, 45.4–55.3) cm for thigh circumference, 52.1 ± 1.6 (range, 38.4–62.3) mm for anterior thigh muscle thickness, 62.3 ± 1.2 (range, 52.8–70.9) mm for posterior thigh muscle thickness, 4.0 ± 0.5 (range, 1.2–6.9) mm for anterior thigh subcutaneous fat thickness, and 5.1 ± 0.6 (range, 1.9–10.5) mm for posterior thigh subcutaneous fat thickness.

RPE response was correlated with the thigh circumference \((r = -0.517, p = 0.040) \). Perceived pain response was correlated with the thigh length \((r = -0.561, p = 0.024) \). Task motivation response was correlated with the body mass, body mass index, body fat percentage, whole-body fat mass, thigh circumference, posterior thigh muscle thickness, and anterior thigh subcutaneous fat thickness \((r = 0.523–0.635, all \ p < 0.05) \).

4 | DISCUSSION

We and others have previously reported that increases in RPE and leg discomfort assessed using the Borg’s 15-point and CR-10 Scales during low-load RE were greater with BFR than with NBFR (Bell et al., 2018; Suga et al., 2009). In the present study, we also determined greater RPE and leg discomfort responses during BFR-RE than those during NBFR-RE; thus, the present findings corroborate the results of previous studies (Bell et al., 2018; Suga et al., 2009). Additionally, Silva et al. (2019) reported that leg discomfort at 30 min after low-intensity aerobic exercise (i.e., slow running or fast walking) was higher for BFR than for NBFR; however, to the best of our knowledge, no study has examined the prolonged effect of the increases in RPE and leg discomfort induced by low-load BFR-RE. In the present study, we determined that leg discomfort, but not RPE, was higher 30 min after BFR-RE than that before RE, whereas no such effect was observed 30 min after NBFR-RE; further, the leg discomfort at 30 min after RE was higher for BFR than for NBFR. Therefore, this present finding suggests that BFR-induced negative response for leg discomfort may persist for at least 30 min during the post-exercise recovery period.

Cavarretta et al. (2018) reported that the FS-measured affect is increased by traditional low- and moderate-intensity RE protocols. In contrast, Portugal et al. (2015) reported that although affect did not change during RE protocols with low- (40% 1-RM) or moderate- (60% 1-RM) load, it decreased during a high-load (80% 1-RM) RE protocol. Elsangedy et al. (2018) also reported that RE-induced decrease in affect was parallel to an increase from low to high exercise loads. Therefore, affective response to RE appears to be dependent on exercise loads, particularly in a range of moderate to high loads. However, no study has examined the effect of BFR on affective responses during RE. In the present study, affect decreased during BFR-RE but not NBFR-RE compared with that before RE, and this change was greater during BFR-RE than during NBFR-RE. This present finding suggests that, despite a use of low-load, BFR may result in negative effect on affective responses to low-load RE.

When aerobic exercise was performed, Brown et al. (2016) reported no change in the TMS-measured task motivation during high-intensity interval exercise. In contrast, Stork et al. (2015) reported that task motivation decreased during sprint interval exercise. Thus, vigorous aerobic exercise may result in a decrease in task motivation. On the other hand, no study has examined the effect of RE on task motivation. In the present study, although task motivation decreased during both BFR- and NBFR-REs compared with that before each RE, this change was greater during BFR-RE than during NBFR-RE. This present finding suggests that, similar to affect, task motivation during low-load RE may result in a more negative response with BFR than with NBFR.

Prior to this study, the effect of BFR-RE on the NRS-measured perceived pain was unknown. In the present study, although perceived pain increased during both BFR- and NBFR-REs compared with that before each RE, this change was greater during BFR-RE than during NBFR-RE. Sharma et al. (2014) reported that despite being at rest, BFR increased perceived pain, potentially due to mechanical pain related to the imposed BFR pressure. The potential relationships may exist between an increase in pain and excessive other perceptual responses (Bennell et al., 2014); therefore, the BFR-induced increase in perceived pain may be the basis for the negative responses of other measured perceptual parameters during low-load RE.

The POMS-measured mood states, including TMD, is negatively changed by RE in a dose-dependent manner (Chan et al., 2019). Furthermore, Silva et al. (2018) reported that TMD measured using the Brunel Mood Scale showed a negative response immediately after BFR-RE compared with that before exercise; however, they did not compare the changes in TMD between BFR- and NBFR-REs. Another study by Silva et al. (2019) also reported that the Brunel Mood Scale-measured TMD immediately after low-intensity aerobic exercise was negatively changed by imposing BFR but not NBFR compared with that before exercise; further, the level of negative response induced by the low-intensity aerobic exercise with BFR was similar to that induced by high-intensity aerobic exercise. In the present study, the POMS-measured TMD was not significantly changed by both BFR- and NBFR-REs. Nevertheless, the TMD showed a significant difference between immediately after and 30 min after BFR-RE but not NBFR-RE. Additionally, although fatigue-inertia increased
immediately after both BFR- and NBFR-REs compared with that before each RE, this response was higher immedi-
ately after BFR-RE than immediately after NBFR-RE. This present finding suggests that BFR-RE may slightly re-
sult in negative mood states more than NBFR-RE.

Enjoyment can be considered an important perceptual
parameter related to exercise adherence (Decker &
Ekkekakis, 2017; Kendzierski & DeCarlo, 1991; Trost et al.,
2002). Nevertheless, only few studies have examined the
effect of RE on the PACES-measured enjoyment (Greene
& Petruzzello, 2015; Richardson et al., 2018). Greene and
Petruzzello (2015) reported that enjoyment immediately
after RE was lower with a high load (100% of 10-RM)
than with a moderate load (70% of 10-RM). In contrast,
Richardson et al. (2018) reported that enjoyment was sim-
ilar between low- and high-load REs when the work vol-
ume was matched. In the present study, despite the use of
a same work volume, enjoyment was lower immediately
after BFR-RE than immediately after NBFR-RE. This pre-
sent finding suggests that BFR-RE may have a large
barrier to exercise adherence of some individuals owing
to the RE-induced negative response of enjoyment, as well
as other measured perceptual parameters.

Changes in perceptual parameters induced by RE can be
associated with physiological responses, such as card-
viovascular, metabolic, and neuromuscular responses
(Hampson et al., 2001). In the present study, cardiovascular
(i.e., HR and MAP), blood metabolite (i.e., blood lactate
and glucose), and neuromuscular (i.e., quadriceps femoris
EMGs) responses during RE were higher with BFR than
with NBFR. Furthermore these physiological responses
were correlated with perceptual responses to BFR-
and NBFR-REs. Additionally, we have previously reported that
changes in intramuscular metabolites (e.g., creatine phos-
phate depletion, increased inorganic phosphate, and de-
creased intracellular pH) during RE was greater with BFR
than with NBFR, and that these intramuscular metabolic
responses were concordant with an increase in leg discom-
fort (Suga et al., 2009). The increases in the peripheral and
systemic physiological responses induced by BFR-RE may
enhance central sensitization (Craig, 2002), potentially by
activating the central neural system, including the sympa-
thetic nervous system (Spranger et al., 2015). In the pres-
ent study, blood glucose level immediately after RE was
higher with BFR than with NBFR, which can be partially
explained by the BFR-induced sympathetic nervous sys-
tem activation, because of the close relationship bet-
ween blood glucose response and sympathetic nervous system
activation during exercise (Nonogaki, 2000). Therefore,
the BFR-induced negative responses on perceptual pa-
rameters to low-load RE may be at least partially due to
greater physiological responses during BFR-RE than
during NBFR-RE.

In this study, we observed that physical characteristics
(i.e., body mass and body mass index), body composition
(i.e., body fat percentage and whole-body fat mass), and
anthropometrical parameters of the thigh (i.e., length,
circumference, posterior muscle thickness, and anterior
subcutaneous fat thicknesses) were correlated with some
responses of measured perceptual parameters to BFR-RE.
Based on these correlations, it could be surmised that sub-
jects with smaller body and lower limb sizes may induce
greater negative effects of perceptual responses during
BFR-RE than those with larger body and lower limb sizes.
Therefore, in the clinical settings, physical characteristics,
body composition, and anthropometrical parameters of
the thigh may help predict the negative effects of BFR on
perceptual responses to low-load RE.

A major limitation of this study is that, although re-
cent guidelines recommend the use of the relative BFR
pressure for performing BFR-RE based on the subject's
arterial occlusion pressure (Patterson et al., 2019; Scott et al.,
2015), we employed an absolute BFR pressure of
200 mmHg for performing BFR-RE uniformly among all
subjects; thus, the BFR-RE in this study may have been
performed with relatively different BFR pressures among
the subjects. The within-subject difference in the relative
BFR pressures for performing BFR-RE affects the degree
of the exercise-induced perceptual responses (Bell et al.,
2018). Hence, the use of an absolute BFR pressure em-
ployed in the present study might lead to an inconsistent
evaluation of the perceptual responses to BFR-RE among
the subjects. Furthermore, this might affect the correla-
tions between physiological and perceptual responses
to BFR- and NBFR-REs and the correlations of physical
characteristics, body composition, and anthropometrical
parameters of the thigh with perceptual responses to
BFR-RE. To clarify the findings of the present study, using
the relative BFR pressure based on the subject's arterial
occlusion pressure, further studies are needed to reexam-
ine the effects of BFR on perceptual responses to low-load
RE.

Another limitation of this study is that we recruited
only young males; therefore, it is unclear whether the
present findings can be generalized to other popula-
tions. In particular, athletes and trained individuals
may exhibit different BFR-RE-induced physiological
responses compared to untrained individuals (Takada
et al., 2012). Furthermore, applications of BFR exer-
cises, including RE, to increase skeletal muscle mass and
strength may be more useful in older individuals and
patients with chronic diseases than in young individu-
als; this is because the BFR-RE is being recognized as a
beneficial strategy in these populations (Centner et al.,
2019; Hughes et al., 2017), including older patients with
congestive heart failure (Groennebaek et al., 2019). To
extend the findings of this pilot study involving young males, further studies are needed to examine the effects of BFR on perceptual responses to low-load RE in various populations and identify an effective strategy that minimize the low-load BFR-RE-induced negative effects on perceptual response, while also taking into consideration the uniqueness of each population.

In a practical application from the findings of this study, the correlations of physical characteristics, body composition, and anthropometrical parameters of the thigh with perceptual responses to BFR-RE may help estimate the relative BFR pressure that equalizes the differences in perceptual responses to BFR exercise among the subjects. It is recommended that the relative BFR pressure is estimated based on the subject’s arterial occlusion pressure (Patterson et al., 2019; Scott et al., 2015). Nevertheless, the measurement of the arterial occlusion pressure is generally done for using the Doppler ultrasound. Although many research institutes have ultrasonographic devise, in routine clinical setting, few facilities have this devise. In contrast, simple measurements, such as physical characteristics (i.e., body mass and body mass index) and thigh circumference, could be measured at such facilities. Loenneke, Kim, et al. (2015) used the relative BFR pressure based on the subject’s thigh circumference for performing low-load knee extensor BFR-RE, which is because of the correlation between the limb circumference and arterial occlusion pressure (Loenneke, Allen, et al., 2015). Therefore, physical characteristics, body composition, and anthropometrical parameters of the thigh, particularly the thigh circumference, may be useful parameters to apply the optimal BFR pressure for performing BFR exercise in the clinical settings, which can be used as surrogates for measuring the arterial occlusion pressure.

5 | CONCLUSION

This study demonstrated that perceptual responses, including those related to exercise adherence, to low-load knee extensor RE were greater with BFR than with NBFR. The present findings suggest that BFR may have negative effects on perceptual responses to the low-load RE, which can be considered barriers to exercise adherence for some individuals. To further popularize the BFR-RE in the clinical settings, there is needed to develop effective strategies that minimize the BFR-induced negative effects on perceptual response.

ACKNOWLEDGMENTS

We are grateful to all participants who gave of their time and effort to participate in this study. This study was supported in part by Center of Innovation Program from Japan Science and Technology Agency (#JPMJCE1306 to TadaS and TI; #JPMJCE1301 to ST).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

TadaS conceived and designed the experiment; TadaS, KD, EM, TakeS, and KT performed the experiments; TadaS and KD analyzed the data; TadaS, KD, EM, TakeS, KT, ST, TH, and TI interpreted the results of the experiments; TadaS and KD wrote the manuscript; TadaS, TS, TH, and TI edited and revised the manuscript. All authors have read and approved the manuscript.

ORCID

Tadashi Suga https://orcid.org/0000-0002-0313-9660
Shingo Takada https://orcid.org/0000-0002-7781-9482

REFERENCES

Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., Kearsn, C. F., Inoue, K., Koizumi, K., & Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. *International Journal of KAATSU Training Research, 1*(1), 6–12. https://doi.org/10.3806/ijktr.1.6

American College of Sports Medicine. (2009). *American College of Sports Medicine position stand. Progression models in resistance training for healthy adults.* *Medicine and Science in Sports and Exercise, 41*(3), 687–708. https://doi.org/10.1249/MSS.0b013e3181915670.

Araki, E., Goto, A., Kondo, T., Noda, M., Noto, H., Origasa, H., Osawa, H., Taguchi, A., Tanizawa, Y., Tobe, K., & Yoshioka, N. (2020). Japanese clinical practice guideline for diabetes 2019. *Journal of Diabetes Investigation, 11*(4), 1020–1076. https://doi.org/10.1111/jdi.13306

Bell, Z. W., Buckner, S. L., Jessee, M. B., Mouser, J. G., Mattocks, K. T., Dankel, S. J., Abe, T., & Loenneke, J. P. (2018). Moderately heavy exercise produces lower cardiovascular, RPE, and discomfort compared to lower load exercise with and without blood flow restriction. *European Journal of Applied Physiology, 118*(7), 1473–1480. https://doi.org/10.1007/s00421-018-3877-0

Bennell, K. L., Dobson, F., & Hinman, R. S. (2014). Exercise in osteoarthritis: Moving from prescription to adherence. *Best Practice & Research. Clinical Rheumatology, 28*(1), 93–117. https://doi.org/10.1016/j.berh.2014.01.009

Borg, G. A. (1982). Psychophysical bases of perceived exertion. *Medicine and Science in Sports and Exercise, 14*(5), 377–381. https://doi.org/10.1249/00005768-19820500-00012

Brown, D. M., Teseo, A. J., & Bray, S. R. (2016). Effects of autonomous motivational priming on motivation and affective responses towards high-intensity interval training. *Journal of Sports Sciences, 34*(16), 1491–1499. https://doi.org/10.1080/02641414.2015.1119301

Cavarretta, D. J., Hall, E. E., & Bixby, W. R. (2018). The acute effects of resistance exercise on affect, anxiety, and mood—Practical implications for designing resistance training programs.
International Review of Sport and Exercise Psychology, 12(1), 295–324. https://doi.org/10.1080/1750984X.2018.1474941

Centner, C., Wiegel, P., Gollhofer, A., & König, D. (2019). Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: A systematic review and meta-analysis. Sports Medicine, 49(1), 95–108. https://doi.org/10.1007/s40279-018-0994-1

Chan, J. S. Y., Liu, G., Liang, D., Deng, K., Wu, J., & Yan, J. H. (2019). Therapeutic benefits of physical activity for mood: A systematic review on the effects of exercise Intensity, duration, and modality. The Journal of Psychology, 153(1), 102–125. https://doi.org/10.1080/00223980.2018.1470487

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155

Craig, A. D. (2002). How do you feel? Interception: The sense of the physiological condition of the body. Nature Reviews. Neuroscience, 3(8), 655–666. https://doi.org/10.1038/nnrn894

Decker, E. S., & Ekkekakis, P. (2017). More efficient, perhaps, but at what price? Pleasure and enjoyment responses to high-intensity interval exercise in low-active women with obesity. Psychology of Sport and Exercise, 28, 1–10. https://doi.org/10.1016/j.psychsport.2016.09.005

Dos Santos, L., Andreatta, M. V., Curty, V. M., Marcarini, W. D., Ferreira, L. G., & Barauna, V. G. (2020). Effects of blood flow restriction on leukocyte profile and muscle damage. Frontiers in Physiology, 11, 572040. https://doi.org/10.3389/fphys.2020.572040

Downie, W. W., Leatham, P. A., Rhind, V. M., Wright, V., Branco, J. A., & Anderson, J. A. (1978). Studies with pain rating scales. Annals of the Rheumatic Diseases, 37(4), 378–381. https://doi.org/10.1136/ard.37.4.378

Elsangedy, H. M., Machado, D. G. D. S., Krinski, K., Duarte do nascimento, P. H., De amorim oliveira, G. T., Santos, T. M., Hargreaves, E. A., & Parfitt, G. (2018). Let the pleasure guide your resistance training intensity. Medicine and Science in Sports and Exercise, 50(7), 1472–1479. https://doi.org/10.1249/MSS.0000000000001573

Fry, C. S., Glynn, E. L., Drummond, M. J., Timmerman, K. L., Fujita, S., Abe, T., Dhanani, S., Volpi, E., & Rasmussen, B. B. (2010). Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. Journal of Applied Physiology, 108(5), 1199–1209. https://doi.org/10.1152/japplphysiol.01266.2009

Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., Volpi, E., & Rasmussen, B. B. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology, 103(3), 903–910. https://doi.org/10.1152/japplphysiol.01915.2007

Greene, D. R., & Petruzzello, S. J. (2015). More isn’t necessarily better: Examining the intensity–affect–enjoyment relationship in the context of resistance exercise. Sport, Exercise, and Performance Psychology, 4(2), 75. https://doi.org/10.1037/esp0000030

Groennebaek, T., Stieljacks, P., Nielsen, R., Pryds, K., Jespersen, N. R., Wang, J., Carlens, C. R., Schmidt, M. R., de Paoli, F. V., Miller, B. F., Vissing, K., & Butker, H. E. (2019). Effect of blood flow restricted resistance exercise and remote ischemic conditioning on functional capacity and myocellular adaptations in patients with heart failure. Circulation: Heart Failure, 12(12), e006427. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006427

Gundermann, D. M., Fry, C. S., Dickinson, J. M., Walker, D. K., Timmerman, K. L., Drummond, M. J., Volpi, E., & Rasmussen, B. B. (2012). Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. Journal of Applied Physiology, 112(9), 1520–1528. https://doi.org/10.1152/japplphysiol.01267.2011

Hampton, D. B., Gibson, A. S., Lambert, M. I., & Noakes, T. D. (2001). The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Medicine, 31(13), 935–952. https://doi.org/10.2165/00007256-200131130-00004

Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels: The measurement of affect during exercise. Journal of Sport and Exercise Psychology, 11(3), 304–317. https://doi.org/10.1123/jsep.11.3.304

Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical muscular-skeletal rehabilitation: A systematic review and meta-analysis. British Journal of Sports Medicine, 51(13), 1003–1011. https://doi.org/10.1136/bjsports-2016-097071

Hutchinson, J. C., Sherman, T., Davis, L., Cawthon, D., Reeder, N. B., & Tenenbaum, G. (2011). The influence of asynchronous motivational music on a supramaximal exercise bout. International Journal of Sport Psychology, 42(2), 135–148.

Kendzierski, D., & DeCarlo, K. J. (1991). Physical activity enjoyment scale: Two validation studies. Journal of Sport & Exercise Psychology, 13(1), 50–64. https://doi.org/10.1123/jsep.13.1.50

Lixandró, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: A systematic review and meta-analysis. Sports Medicine, 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y

Loenneke, J. P., Allen, K. M., Mouser, J. G., Thiebaud, R. S., Kim, D., Abe, T., & Bemben, M. G. (2015). Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. European Journal of Applied Physiology, 115(2), 397–405. https://doi.org/10.1007/s00421-014-3030-7

Loenneke, J. P., Kim, D., Fahn, C. A., Thiebaud, R. S., Abe, T., Larson, R. D., Bemben, D. A., & Bemben, M. G. (2015). The effects of resistance exercise with and without different degrees of blood-flow restriction on perceptual responses. Journal of Sports Sciences, 33(14), 1472–1479. https://doi.org/10.1080/02641919.2014.992036

Nonogaki, K. (2000). New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia, 43(5), 533–549. https://doi.org/10.1007/s001250051341

Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., Abe, T., Nielsen, J. L., Libardi, C. A., Laurentino, G., Neto, G. R., Brandner, C., Martín-Hernandez, J., & Loenneke, J. (2019). Blood flow restriction exercise: Considerations of methodology, application, and safety. Frontiers in Physiology, 10, 533. https://doi.org/10.3389/fphys.2019.00533

Portugal, E. M., Lattari, E., Santos, T. M., & Deslandes, A. C. (2015). Affective responses to prescribed and self-selected strength training intensities. Perceptual and Motor Skills, 121(2), 465–481. https://doi.org/10.2466/29.PMS.121c17x3

Richardson, D. L., Duncan, M. J., Jimenez, A., Jones, V. M., Juris, P. M., & Clarke, N. D. (2018). The perceptual responses to...
high-velocity, low-load and low-velocity, high-load resistance exercise in older adults. Journal of Sport Sciences, 36(14), 1594–1601. https://doi.org/10.1080/02640414.2017.1405710

Rose, E. A., & Parfitt, G. (2007). A quantitative analysis and qualitative explanation of the individual differences in affective responses to prescribed and self-selected exercise intensities. Journal of Sport & Exercise Psychology, 29(3), 281–309. https://doi.org/10.1123/jsep.29.3.281

Ruiz, J. R., Sui, X., Lobelo, F., Morrow, J. R. Jr, Jackson, A. W., Sjöström, M., & Blair, S. N. (2008). Association between muscular strength and mortality in men: Prospective cohort study. BMJ, 337(7661), a439. https://doi.org/10.1136/bmj.a439

Scott, B. R., Loenneke, J. P., Slattery, K. M., & Descombe, B. J. (2015). Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Medicine, 45(3), 313–325. https://doi.org/10.1007/s40279-014-0288-1

Shacham, S. (1983). A shortened version of the Profile of Mood States. Journal of Personality Assessment, 47(3), 305–306. https://doi.org/10.1207/s15327755japa4703_14

Sharma, V., Cunniffe, B., Verma, A. P., Cardinale, M., & Yellon, D. (2014). Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: A randomized controlled, crossover human study. Physiological Reports, 2(11), e12200. https://doi.org/10.14814/phy2.12200

Silva, J., Aniceto, R. R., Oliota-Ribeiro, L. S., Neto, G. R., Leandro, L. S., & Cirilo-Sousa, M. S. (2018). Mood effects of blood flow restriction exercise among basketball players. Perceptual and Motor Skills, 125(4), 788–801. https://doi.org/10.1037/0031512518776847

Silva, J., Silva, K. F., Domingos-Gomes, J. R., Batista, G. R., da Silva Freitas, E. D., Torres, V., & do Socorro Cirilo-Sousa, M. (2019). Aerobic exercise with blood flow restriction affects mood state in a similar fashion to high intensity interval exercise. Physiology & Behavior, 211, 112677. https://doi.org/10.1016/j.physbeh.2019.112677

Spranger, M. D., Krishnan, A. C., Levy, P. D., O’Leary, D. S., & Smith, S. A. (2015). Blood flow restriction training and the exercise pressor reflex: A call for concern. American Journal of Physiology. Heart and Circulatory Physiology, 309(9), H1440–H1452. https://doi.org/10.1152/ajpheart.00208.2015

Stork, M. J., Kwan, M. Y., Gibala, M. J., & Martin Ginis, K. A. (2015). Music enhances performance and perceived enjoyment of sprint interval exercise. Medicine and Science in Sports and Exercise, 47(5), 1052–1060. https://doi.org/10.1249/MSS.000000000000494

Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiiuchi, M., Takada, S., Takahashi, T., Omokawa, M., Kinugawa, S., & Tsutsui, H. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. Journal of Applied Physiology, 106(4), 1119–1124. https://doi.org/10.1152/japplphysiol.90368.2008

Takada, S., Okita, K., Suga, T., Omokawa, M., Morita, N., Horiiuchi, M., Kadoguchi, T., Takahashi, M., Hirabayashi, K., Yokota, T., Kinugawa, S., & Tsutsui, H. (2012). Blood flow restriction exercise in sprinters and endurance runners. Medicine and Science in Sports and Exercise, 44(3), 413–419. https://doi.org/10.1249/MSS.0b013e31822f39b3

Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology, 88(1), 61–65. https://doi.org/10.1152/jappl.2000.88.1.61

Tottori, N., Suga, T., Miyake, Y., Tsuchikane, R., Otsuka, M., Nagano, A., Fujita, S., & Isaka, T. (2018). Hip flexor and knee extensor muscleularity are associated with sprint performance in sprint-trained preadolescent boys. Pediatric Exercise Science, 30(1), 115–123. https://doi.org/10.1123/pes.2016-0226

Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults’ participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34(12), 1996–2001. https://doi.org/10.1097/00005768-200212000-00020

Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T., Hashimoto, T., & Isaka, T. (2017). An acute bout of localized resistance exercise can rapidly improve inhibitory control. PLoS One, 12(9), e0184075. https://doi.org/10.1371/journal.pone.0184075

Umemura, S., Arima, H., Arima, S., Asayama, K., Dohi, Y., Hirooka, Y., Horio, T., Hoshide, S., Ikeda, S., Ishimitsu, T., Ito, M., Ito, S., Iwashima, Y., Kai, H., Kamide, K., Kanno, Y., Kashihara, N., Kawano, Y., Kikuchi, T., ... Hirawa, N. (2019). The Japanese society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertension Research, 42(9), 1235–1481. https://doi.org/10.1038/s41440-019-0284-9

Williams, M. A., Haskell, W. L., Ades, P. A., Amsterdam, E. A., Bittner, V., Franklin, B. A., Gulanick, M., Laing, S. T., Stewart, K. J., Council, A. H. A., & on Clinical Cardiology, & American Heart Association Council on Nutrition, Physical Activity, and Metabolism. (2007). Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation, 116(5), 572–584. https://doi.org/10.1161/CIRCULATIONAHA.107.185214

How to cite this article: Suga, T., Dora, K., Mok, E., Sugimoto, T., Tomoo, K., Takada, S., Hashimoto, T., & Isaka, T. (2021). Exercise adherence-related perceptual responses to low-load blood flow restriction resistance exercise in young adults: A pilot study. Physiological Reports, 9, e15122. https://doi.org/10.14814/phy2.15122