Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202103402

Room Temperature Phosphorescent (RTP) Thermoplastic Elastomers with Dual and Variable RTP Emission, Photo-patternning Memory Effect, and Dynamic Deformation RTP Response

Yuefa Zhang,[†] Qikun Sun,[†] Lingtaï Yue, Yaguang Wang, Shuaiwei Cui, Haichang Zhang, Shanfeng Xue,* Wenjun Yang*
Supporting Information

Room Temperature Phosphorescent (RTP) Thermoplastic Elastomers with Dual and Variable RTP Emission, Photo-patterning Memory Effect, and Dynamic Deformation RTP Response

Yuefa Zhang,[†] Qikun Sun,[†] Lingtai Yue, Yaguang Wang, Shuaiwei Cui, Haichang Zhang, Shanfeng Xue,* Wenjun Yang*

Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, P. R. China.
E-mail: ywjph2004@qust.edu.cn, sfxue@qust.edu.cn.
Materials

Styrene–isoprene–styrene block copolymer (SIS 1125, 300 mPa·s for 25% toluene solution at 25 °C, the molecular weight is 80,000-300,000) was obtained from Yueyang Baling Huaxing Petrochemical Co., Ltd., 4-Fluorobenzonitrile and 9H-carbazole were obtained from Energy Chemical Co., Ltd.

General method

1H and 13C NMR spectra was recorded on a Bruker AC500 spectrometer at 500 MHz and 125 MHz, respectively, using deuterated chloroform or deuterated dimethyl sulfoxide as the solvent and tetramethylsilane (TMS) as the internal standard. High performance liquid chromatography (HPLC) was performed on an Essentia LC-16. The running rate was 1 mL/min. X-ray diffraction (XRD) measurements were determined on a D-MAX 2500(18KW). Differential scanning calorimetry (DSC) curves were determined on a Netzsch DSC (204F1) instrument at a heating rate of 10 °C /min. Photo-fluorescence and phosphorescence emission spectra were recorded on Hitachi F-4600 spectrophotometers. Fluorescence and phosphorescence decay curves were recorded by a Hamamatsu compact fluorescence lifetime spectrometer (FLS-1000). The lifetimes (τ) of the luminescence were obtained by fitting the decay curve with a multi-exponential decay function of

$$ R(t) = \sum B_i e^{-\frac{t}{\tau_i}} $$ \hspace{1cm} \text{(S1)}

where B_i and τ_i represent the amplitudes and lifetimes of the individual components for multi-exponential decay profiles, respectively.

The digital photographs were captured by the FDR-AX700 4K HDR digital cameras (SONY, Japan). Photoluminescence spectra and photographs at room temperature were performed on a QE Pro spectrometer with a CCD array (Ocean Optics) as a power detector.
The Gaussian 09 program was utilized to perform the TD-DFT calculations. The ground state (S_0) geometry was obtained from the single crystal structure and no further geometry optimization was conducted in order to maintain the specific molecular configuration and corresponding intermolecular locations. The exciton energies of the n-th singlet (S_n) and n-th triplet states (T_n) were obtained on the corresponding ground state structure using TD-B3LYP/6-31G*. The Kohn–Sham frontier orbital analysis and spin density distributions were obtained in order to elucidate the mechanisms of possible singlet–triplet intersystem crossings (ISC). The possible S_1 to T_n ISC channels are believed to share part of the same transition orbital compositions, and the energy levels of possible T_n are considered to lie within the range of $E_{S1} \pm 0.3$ eV. Especially, the major ISC channels are mainly determined based on two elements. First, the ratio of the same transition configuration in S_1 and T_n should be large in all the transition orbital compositions. Secondly, the energy gap between S_1 and the specific T_n state should be small.

Synthesis and Characterization

The synthetic route of laboratory-self-synthesized carbazole (LCZ).

![Scheme S1. Synthetic route of LCZ.](image)

9H-carbazole (LCZ). In a 100 mL two-necked flask 2-Aminobiphenyl (2.50 g, 14.77 mmol), [Cp*IrCl]$_2$ (0.25 g, 0.31 mmol), Cu(OAc)$_2$ (0.54 g, 2.97 mmol), and PivOH (3.05 g, 29.86 mmol) in NMP (50 mL) was stirred under air at 120 °C for 3 h. After cooling, the reaction mixture was extracted with ethyl acetate, the combined organic layer dried with anhydrous MgSO$_4$, filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using petroleum ether/dichloromethane (5:1, v/v), yielding a white solid (1.31 g, Yield 53 %). 1H NMR (500 MHz, DMSO-d_6) δ 11.27 (s, 1H), 8.13 (d, J
The synthetic route of 4-(9H-carbazol-9-yl)benzonitrile (PCN/L-PCN).

Scheme S2. Synthetic route of PCN.

4-(9H-carbazol-9-yl)benzonitrile (PCN/L-PCN). In a 100 mL bottom, 9H-carbazole (CCZ/LCZ, 3.00 g, 17.94 mmol) and K₂CO₃ (8.22 g, 26.91 mmol) in DMSO (30 ml) was stirred at room temperature for 1 h. 4-Fluorobenzonitrile (2.61 g, 21.55 mmol) was added in the mixture and stirred at 150 °C for 12 h. The reaction mixture was poured into a large amount of ice water and stirred for additional 1 h. After the reaction mixture was extracted with ethyl acetate, the combined organic layer dried with anhydrous MgSO₄, filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to give the compound as a white solid (4.09 g, Yield 85%).

PCN: ¹H NMR (500 MHz, Chloroform-d): δ 8.14 (d, J = 7.7 Hz, 2H), 7.92–7.86 (m, 2H), 7.75–7.70 (m, 2H), 7.49–7.38 (m, 4H), 7.33 (ddd, J = 8.0, 6.2, 1.9 Hz, 2H). ¹³C NMR (125MHz, Chloroform-d): δ 142.05, 139.87, 133.89, 127.08, 126.35, 123.98, 120.97, 120.55, 118.33, 110.45, 109.49.

L-PCN: ¹H NMR (500 MHz, Chloroform-d): δ 8.14 (d, J = 7.8 Hz, 2H), 7.94 – 7.88 (m, 2H), 7.78 – 7.71 (m, 2H), 7.48 – 7.41 (m, 4H), 7.34 (ddd, J = 8.0, 6.3, 1.8 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-d): δ 142.08, 139.92, 133.93, 127.11, 126.39, 121.02, 120.60, 118.38, 110.50, 109.54.
Preparation of TPEx (x represents the doping mass (g) of PCN in 100 g of SIS). SIS and PCN were stirred and dissolved in chloroform at room temperature. The resulting solution was evaporated and the formed film was dried in oven at 60 °C. Then, the films were thermoplasticized on an open two-roll mill at 120 °C for 2–3 min. Finally, the thermoplasticized film was molded into 1 mm thick sample.
Supplementary Figures and Tables

Figure S1. a) PL Photographs of PCN crystal taken before and after removing 365 nm UV light irradiation. b) The RTP decay curve and fitted lifetimes of photo-activated PCN crystal monitored at 546 nm and excited at 365 nm.

Figure S2. The prompt PL and afterglow photographs of solution-processed films of PCN and SIS in chloroform after photo-activation for 10 s.
Figure S3. The delayed RTP spectra and the corresponding CIE 1931 chromaticity coordinates of photo-activated TPEx after 365 nm light excitation. A clear boundary at ca. 525 nm is observed, and the emissions before and after 525 nm are from mono-molecules and micro-crystals of PCN in SIS matrix, respectively.

Figure S4. Differential scanning calorimetric (DSC) and X-ray diffraction (XRD) curves of TPEx (x=0, 5.0, 7.0).
Figure S5. Possible ISC channels of PCN for a) a single molecule and b) three adjacent molecules.
Figure S6. (a) The prompt spectra of LCZ and CCZ crystals with 340 nm excitation under common ambient conditions. (b) The delay spectra of LCZ and CCZ crystals with 360 nm excitation under common ambient conditions. RTP afterglow photographs of LCZ (c) HPLC spectra of CCZ and LCZ monitored at the onset absorption of 346 nm with 50/50 acetonitrile (ACN)-water ratio (v/v). (d) HPLC spectra of different carbazole source monitored at the onset absorption of 346 nm with 50/50 acetonitrile (ACN)-water ratio (v/v) as the eluent reported by Liu et al. By comparing, the content of 1H-benzo[f]indole in the CCZ we used is about 0.2%.
Figure S7. The PL photographs of L-PCN crystal before and after removing excitation light in the dark.

Figure S8. The PL photographs of PCN crystal and the prompt and delayed PL spectra of the pure PCN crystal be treated under 160 °C as the films.
Figure S9. The RTP efficiencies of photo-activated TPEx measured at room temperature under 360 nm excitation.

Figure S10. The PL photographs of TPE3.5 from direct solid thermoplasticized.

Figure S11. The polarizing microscope photographs of TPEx(x=0, 2.0, 7.0).

Table S1. The singlet and triplet excited state transition configurations of the PCN from single crystal revealed by TD-DFT calculations. The matched excited states that contain the same orbital transition components of S₁ and |S₁ - Tₙ | < 0.3 eV were highlighted in red.
n	Energy	Orbitals	Transition

S_n	S_1	Energy (eV)	HOMO \rightarrow LUMO	Energy (eV)
T_1	3.7236 eV	HOMO \rightarrow LUMO	0.688	
		HOMO-4 \rightarrow LUMO+2	0.028	
		HOMO-3 \rightarrow LUMO	0.220	
		HOMO \rightarrow LUMO	0.679	
T_2	3.8057 eV	HOMO-5 \rightarrow LUMO+5	0.037	
		HOMO-2 \rightarrow LUMO+1	0.029	
		HOMO-1 \rightarrow LUMO+1	0.669	
		HOMO \rightarrow LUMO+1	0.113	
		HOMO \rightarrow LUMO+3	0.069	
T_3	3.8935 eV	HOMO-3 \rightarrow LUMO+1	0.020	
		HOMO-2 \rightarrow LUMO+3	0.034	
		HOMO-2 \rightarrow LUMO+5	0.028	
		HOMO-1 \rightarrow LUMO+1	0.103	
		HOMO \rightarrow LUMO+1	0.767	
T_4	4.4656 eV	HOMO-2 \rightarrow LUMO+1	0.144	
		HOMO-2 \rightarrow LUMO+4	0.052	
		HOMO-1 \rightarrow LUMO+1	0.148	
		HOMO \rightarrow LUMO+2	0.035	
		HOMO \rightarrow LUMO+3	0.545	
T_5	4.5946 eV	HOMO-3 \rightarrow LUMO+2	0.188	
		HOMO \rightarrow LUMO+2	0.688	
		HOMO \rightarrow LUMO+3	0.026	
		HOMO-5 \rightarrow LUMO	0.021	
		HOMO-4 \rightarrow LUMO+2	0.157	
		HOMO-3 \rightarrow LUMO	0.280	
		HOMO-2 \rightarrow LUMO+3	0.089	
		HOMO-1 \rightarrow LUMO+5	0.020	
		HOMO \rightarrow LUMO	0.107	
T_6	4.6337 eV	HOMO-5 \rightarrow LUMO+3	0.032	
		HOMO-2 \rightarrow LUMO+1	0.117	
		HOMO-1 \rightarrow LUMO	0.583	
		HOMO-1 \rightarrow LUMO+3	0.030	
		HOMO-1 \rightarrow LUMO+4	0.136	
		HOMO \rightarrow LUMO+5	0.049	
T_7	4.9002 eV	HOMO-5 \rightarrow LUMO+1	0.034	
		HOMO-4 \rightarrow LUMO	0.059	
		HOMO-4 \rightarrow LUMO+2	0.490	
		HOMO-2 \rightarrow LUMO+3	0.071	
		HOMO-1 \rightarrow LUMO+5	0.038	
		HOMO \rightarrow LUMO	0.048	
T_8	4.9616 eV	HOMO-5 \rightarrow LUMO+4	0.174	
		HOMO-5 \rightarrow LUMO+1	0.154	
		HOMO-5 \rightarrow LUMO+4	0.022	
		HOMO-1 \rightarrow LUMO+3	0.690	
		HOMO-1 \rightarrow LUMO+5	0.044	
T_9	4.9784 eV	HOMO-4 \rightarrow LUMO+2	0.059	
		HOMO \rightarrow LUMO+2	0.030	
		HOMO-4 \rightarrow LUMO+4	0.055	
		HOMO-3 \rightarrow LUMO	0.068	
		HOMO-2 \rightarrow LUMO+1	0.296	
		HOMO-2 \rightarrow LUMO+4	0.031	
		HOMO-1 \rightarrow LUMO	0.157	
		HOMO \rightarrow LUMO	0.022	
		HOMO \rightarrow LUMO+3	0.103	
		HOMO \rightarrow LUMO+5	0.166	
T_{10}	5.0988 eV	HOMO-6 \rightarrow LUMO	0.028	
T_{11}	5.2176 eV	HOMO-7 \rightarrow LUMO	0.036	
T_{12}	5.2712 eV	HOMO-8 \rightarrow LUMO	0.041	
T	E (eV)	Transition	Energy (eV)	
---	---	---	---	
T_{13}	5.4865	HOMO-5 -> LUMO+1	0.052	
		HOMO-4 -> LUMO+2	0.145	
		HOMO-3 -> LUMO	0.245	
		HOMO-2 -> LUMO+1	0.068	
		HOMO-2 -> LUMO+3	0.021	
		HOMO-1 -> LUMO	0.056	
		HOMO-1 -> LUMO+3	0.055	
		HOMO-1 -> LUMO+5	0.075	
		HOMO -> LUMO	0.068	
		HOMO -> LUMO+3	0.025	
		HOMO -> LUMO+4	0.031	
		HOMO -> LUMO+5	0.032	
	5.8832	HOMO-5 -> LUMO	0.026	
		HOMO-5 -> LUMO+1	0.172	
		HOMO-3 -> LUMO	0.026	
		HOMO-2 -> LUMO+3	0.060	
		HOMO-1 -> LUMO+3	0.102	
		HOMO-1 -> LUMO+5	0.255	
		HOMO -> LUMO+4	0.220	
		HOMO -> LUMO+2	0.015	
T_{14}	5.9458	HOMO-5 -> LUMO+2	0.024	
		HOMO-3 -> LUMO+2	0.516	
		HOMO-1 -> LUMO+2	0.195	
		HOMO-1 -> LUMO+4	0.035	
		HOMO -> LUMO+2	0.125	
	5.9863	HOMO-5 -> LUMO+3	0.096	
		HOMO-2 -> LUMO	0.096	
		HOMO-1 -> LUMO	0.103	
		HOMO-1 -> LUMO+2	0.069	
		HOMO-1 -> LUMO+4	0.539	
		HOMO-2 -> LUMO	0.665	
	6.3132	HOMO-2 -> LUMO+1	0.031	
		HOMO-2 -> LUMO+4	0.032	
		HOMO-1 -> LUMO	0.029	
		HOMO-1 -> LUMO+4	0.077	
		HOMO -> LUMO+3	0.110	
	6.4275	HOMO-10 -> LUMO	0.225	
		HOMO-9 -> LUMO	0.027	
		HOMO-8 -> LUMO+6	0.030	
		HOMO-7 -> LUMO+6	0.130	
		HOMO-6 -> LUMO	0.101	
		HOMO-3 -> LUMO	0.035	
		HOMO-3 -> LUMO+4	0.024	
		HOMO-3 -> LUMO+7	0.096	
		HOMO-2 -> LUMO+3	0.036	
		HOMO -> LUMO+4	0.056	
	6.5266	HOMO-10 -> LUMO	0.226	
		HOMO-3 -> LUMO+1	0.026	
		HOMO-2 -> LUMO	0.065	
		HOMO-2 -> LUMO+1	0.164	
		HOMO-2 -> LUMO+4	0.022	
		HOMO -> LUMO+3	0.032	
		HOMO -> LUMO+5	0.526	
	6.5742	HOMO-10 -> LUMO	0.023	
		HOMO-6 -> LUMO+1	0.040	
		HOMO-3 -> LUMO+1	0.129	
		HOMO-2 -> LUMO+1	0.023	
		HOMO-2 -> LUMO+3	0.250	
\(T_{21} \)	6.6095 eV	HOMO-2 \to\text{LUMO}+5	0.020	
-----------	-----------	----------------------	--------	
		HOMO-1 \to\text{LUMO}+5	0.096	
		HOMO \to\text{LUMO}+1	0.037	
		HOMO \to\text{LUMO}+4	0.140	
		HOMO \to\text{LUMO}+5	0.044	
	HOMO-10 \to\text{LUMO}+6	0.023		
	HOMO-8 \to\text{LUMO}	0.119		
	HOMO-7 \to\text{LUMO}	0.545		
	HOMO-7 \to\text{LUMO}+4	0.024		
	HOMO-7 \to\text{LUMO}+7	0.080		
	HOMO-6 \to\text{LUMO}	0.025		
	HOMO-3 \to\text{LUMO}+6	0.053		
\(T_{22} \)	6.7366 eV	HOMO-6 \to\text{LUMO}+1	0.048	
		HOMO-6 \to\text{LUMO}+4	0.038	
		HOMO-5 \to\text{LUMO}	0.034	
		HOMO-5 \to\text{LUMO}+1	0.027	
		HOMO-3 \to\text{LUMO}+1	0.243	
		HOMO-3 \to\text{LUMO}+4	0.026	
		HOMO-2 \to\text{LUMO}+3	0.179	
		HOMO-2 \to\text{LUMO}+5	0.104	
		HOMO-1 \to\text{LUMO}+5	0.110	
		HOMO \to\text{LUMO}+4	0.065	
	HOMO-10 \to\text{LUMO}+6	0.023		
\(T_{23} \)	7.0531 eV	HOMO-3 \to\text{LUMO}+6	0.085	
		HOMO-2 \to\text{LUMO}+2	0.720	
		HOMO \to\text{LUMO}+6	0.046	
\(T_{24} \)	7.0601 eV	HOMO-10 \to\text{LUMO}+6	0.079	
		HOMO-7 \to\text{LUMO}	0.071	
		HOMO-6 \to\text{LUMO}+6	0.054	
		HOMO-5 \to\text{LUMO}+6	0.025	
		HOMO-3 \to\text{LUMO}+6	0.300	
		HOMO-2 \to\text{LUMO}+2	0.209	
		HOMO \to\text{LUMO}+6	0.163	
\(T_{25} \)	7.1580 eV	HOMO-5 \to\text{LUMO}	0.594	
		HOMO-5 \to\text{LUMO}+1	0.088	
		HOMO-3 \to\text{LUMO}	0.033	
		HOMO-2 \to\text{LUMO}+3	0.031	
		HOMO-1 \to\text{LUMO}+3	0.023	
		HOMO-1 \to\text{LUMO}+5	0.023	
		HOMO-6 \to\text{LUMO}+3	0.044	
		HOMO-5 \to\text{LUMO}+3	0.095	
		HOMO-3 \to\text{LUMO}+3	0.158	
		HOMO-2 \to\text{LUMO}	0.077	
		HOMO-2 \to\text{LUMO}+1	0.032	
		HOMO-2 \to\text{LUMO}+4	0.330	
		HOMO-1 \to\text{LUMO}+4	0.022	
		HOMO \to\text{LUMO}+3	0.040	
		HOMO \to\text{LUMO}+5	0.068	

Table S2. The singlet and triplet excited state transition configurations of the PCN from single crystal revealed by TD-DFT calculations. The matched excited states that contain the same orbital transition components of \(S_1 \) and \(|S_1 - T_n| < 0.3 \) eV were highlighted in red\(^2\).
T_n	S_i	E (eV)	ΔE (eV)
S_1	3.6573	HOMO \rightarrow LUMO+1	0.990
T_1	3.1875	HOMO-13 \rightarrow LUMO+7	0.021
		HOMO-10 \rightarrow LUMO+1	0.112
		HOMO-1 \rightarrow LUMO+1	0.788
T_2	3.2256	HOMO-15 \rightarrow LUMO+4	0.025
		HOMO-11 \rightarrow LUMO	0.138
		HOMO-2 \rightarrow LUMO	0.761
T_3	3.2404	HOMO-12 \rightarrow LUMO+8	0.040
		HOMO-9 \rightarrow LUMO+2	0.123
		HOMO \rightarrow LUMO+2	0.721
		HOMO \rightarrow LUMO+5	0.036
T_4	3.3204	HOMO-14 \rightarrow LUMO+16	0.026
		HOMO-7 \rightarrow LUMO+6	0.027
		HOMO-7 \rightarrow LUMO+13	0.022
		HOMO-4 \rightarrow LUMO+4	0.274
		HOMO-4 \rightarrow LUMO+6	0.377
		HOMO-4 \rightarrow LUMO+7	0.023
T_5	3.3239	HOMO-1 \rightarrow LUMO+10	0.111
T_6	3.3249	HOMO-17 \rightarrow LUMO+15	0.031
		HOMO-8 \rightarrow LUMO+3	0.048
		HOMO-8 \rightarrow LUMO+12	0.025
		HOMO-5 \rightarrow LUMO+3	0.661
		HOMO-2 \rightarrow LUMO+3	0.038
T_7	3.4314	HOMO-2 \rightarrow LUMO+9	0.119
		HOMO-6 \rightarrow LUMO+5	0.044
		HOMO-6 \rightarrow LUMO+14	0.020
T_8	3.4742	HOMO-17 \rightarrow LUMO+15	0.031
		HOMO-3 \rightarrow LUMO+5	0.043
T_9	3.4952	HOMO-6 \rightarrow LUMO+11	0.030
		HOMO-3 \rightarrow LUMO+5	0.039
		HOMO \rightarrow LUMO+1	0.031
		HOMO \rightarrow LUMO+2	0.030
		HOMO \rightarrow LUMO+5	0.723
		HOMO \rightarrow LUMO+7	0.060
T_{10}	3.6638	HOMO-6 \rightarrow LUMO+9	0.033
		HOMO-8 \rightarrow LUMO+3	0.033
		HOMO-2 \rightarrow LUMO+3	0.843
T_{11}	3.7330	HOMO-7 \rightarrow LUMO+10	0.033
		HOMO-1 \rightarrow LUMO+4	0.365
		HOMO-1 \rightarrow LUMO+6	0.465
		HOMO-1 \rightarrow LUMO+7	0.023
T_{12}	3.8293	HOMO \rightarrow LUMO+1	0.943
		HOMO \rightarrow LUMO+5	0.040
T_{13}	3.9764	HOMO-10 \rightarrow LUMO+7	0.025
T	Energy (eV)	HOMO - LUMO transitions	
----	-------------	-------------------------	
T14	3.9796	HOMO-4 -> LUMO+1	0.148
		HOMO-1 -> LUMO+2	0.030
		HOMO-1 -> LUMO+5	0.103
		HOMO-1 -> LUMO+7	0.583
		HOMO-10 -> LUMO+1	0.030
		HOMO-4 -> LUMO+1	0.664
		HOMO-1 -> LUMO+5	0.026
		HOMO-1 -> LUMO+7	0.149
T15	4.0090	HOMO-11 -> LUMO	0.021
		HOMO-11 -> LUMO+4	0.028
		HOMO-2 -> LUMO+4	0.588
		HOMO-2 -> LUMO+6	0.236
T16	4.0322	HOMO-16 -> LUMO+7	0.020
		HOMO-13 -> LUMO+7	0.077
		HOMO-10 -> LUMO+1	0.223
		HOMO-4 -> LUMO+1	0.064
		HOMO-3 -> LUMO+1	0.273
		HOMO-3 -> LUMO+2	0.031
		HOMO-1 -> LUMO+1	0.067
		HOMO-1 -> LUMO+13	0.022
		HOMO -> LUMO+8	0.030
		HOMO -> LUMO+11	0.027
T17	4.0401	HOMO-13 -> LUMO+7	0.046
		HOMO-10 -> LUMO+1	0.138
		HOMO-4 -> LUMO+1	0.026
		HOMO-3 -> LUMO+1	0.259
		HOMO-3 -> LUMO+2	0.044
		HOMO-3 -> LUMO+5	0.034
		HOMO-1 -> LUMO+1	0.043
		HOMO -> LUMO+8	0.177
		HOMO -> LUMO+11	0.070
T18	4.0451	HOMO-15 -> LUMO+4	0.095
		HOMO-15 -> LUMO+6	0.052
		HOMO-11 -> LUMO	0.294
		HOMO-5 -> LUMO	0.219
		HOMO-2 -> LUMO	0.108
		HOMO-2 -> LUMO+4	0.047
		HOMO-2 -> LUMO+12	0.043
T19	4.0527	HOMO-12 -> LUMO+8	0.061
		HOMO-9 -> LUMO+2	0.124
		HOMO-9 -> LUMO+8	0.035
		HOMO-3 -> LUMO+1	0.123
		HOMO-3 -> LUMO+2	0.055
		HOMO -> LUMO+2	0.054
		HOMO -> LUMO+8	0.431
T20	4.0658	HOMO-12 -> LUMO+8	0.146
		HOMO-9 -> LUMO+2	0.225
		HOMO-6 -> LUMO+11	0.020

18
T₂₁	4.0738 eV	HOMO-3 → LUMO+1	0.141
T₂₁	4.0738 eV	HOMO → LUMO+2	0.095
T₂₁	4.0738 eV	HOMO → LUMO+8	0.200
T₂₁	4.0738 eV	HOMO → LUMO+14	0.037
T₂₂	4.0998 eV	HOMO-15 → LUMO+4	0.031
T₂₂	4.0998 eV	HOMO-11 → LUMO	0.089
T₂₂	4.0998 eV	HOMO-5 → LUMO	0.504
T₂₂	4.0998 eV	HOMO-5 → LUMO+3	0.060
T₂₂	4.0998 eV	HOMO-4 → LUMO	0.158
T₂₂	4.0998 eV	HOMO-2 → LUMO	0.024
T₂₂	4.0998 eV	HOMO-2 → LUMO+9	0.040
T₂₃	4.1142 eV	HOMO-6 → LUMO+5	0.035
T₂₃	4.1142 eV	HOMO-3 → LUMO+1	0.180
T₂₃	4.1142 eV	HOMO-3 → LUMO+2	0.161
T₂₃	4.1142 eV	HOMO-3 → LUMO+5	0.171
T₂₃	4.1142 eV	HOMO → LUMO+8	0.063
T₂₃	4.1142 eV	HOMO → LUMO+11	0.268
T₂₄	4.1199 eV	HOMO-2 → LUMO+1	0.979
T₂₅	4.1429 eV	HOMO-8 → LUMO+3	0.108
T₂₅	4.1429 eV	HOMO-8 → LUMO+12	0.026
T₂₅	4.1429 eV	HOMO-5 → LUMO	0.108
T₂₅	4.1429 eV	HOMO-5 → LUMO+3	0.137
T₂₅	4.1429 eV	HOMO-2 → LUMO+9	0.450
T₂₅	4.1429 eV	HOMO-1 → LUMO+3	0.033
T₂₅	4.1429 eV	HOMO-1 → LUMO+10	0.027
T₂₆	4.1439 eV	HOMO-7 → LUMO+4	0.034
T₂₆	4.1439 eV	HOMO-7 → LUMO+6	0.047
T₂₆	4.1439 eV	HOMO-7 → LUMO+13	0.021
T₂₆	4.1439 eV	HOMO-4 → LUMO+4	0.064
T₂₆	4.1439 eV	HOMO-4 → LUMO+6	0.071
T₂₆	4.1439 eV	HOMO-3 → LUMO+2	0.054
T₂₆	4.1439 eV	HOMO-2 → LUMO+9	0.034
T₂₆	4.1439 eV	HOMO-1 → LUMO+2	0.068
T₂₆	4.1439 eV	HOMO-1 → LUMO+3	0.045
T₂₆	4.1439 eV	HOMO-1 → LUMO+9	0.026
T₂₆	4.1439 eV	HOMO-1 → LUMO+10	0.368
Figure S8. 1H and 13C NMR spectrum of LCZ in DMSO-d_6.
Figure S9. 1H and 13C NMR spectrum of PCN in CDCl$_3$.
Figure S10. 1H and 13C NMR spectrum of L-PCN in CDCl$_3$.

References

[1] C. J. Chen, Z. G. Chi, K. C. Chong, A. S. Batsanov, Z. Yang, Z. Mao, Z. Y. Yang, B, Liu, Nat. Mater. 2021, 20, 175.

[2] Y. Wang, Z. Zhang, L. Liu, S. Yuan, J. Ma, D. Liu, S. Xue, Q. Sun, W. Yang, J. Mater. Chem. C. 2019, 7, 9671.