PQS-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in *Pseudomonas aeruginosa*

Adam C. Cooke\(^{a,b,c,\dagger}\), Catalina Florez\(^{a,b,f,\dagger}\), Elise B. Dunshee\(^{a,b,g}\), Avery D. Lieber\(^{a,c}\), Michelle L. Terry\(^{a,c}\), Caitlin J. Light\(^{a,b,c,d}\), Jeffrey W. Schertzer\(^{a,b,#}\)

\(^a\) Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
\(^b\) Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA.
\(^c\) First-year Research Immersion Program, Binghamton University, Binghamton, NY, USA.
\(^d\) Summer Research Immersion Program, Binghamton University, Binghamton, NY, USA.
\(^e\) Present address: Division of Integrated Sciences, Wilson College, Chambersburg, PA, USA.
\(^f\) Present address: Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY, USA.
\(^g\) Present address: Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.

Running Head: PQS-induced OMVs modulate biofilm dispersion

Word Count: 250 words in the abstract; 4742 words in the text

Address correspondence to Jeffrey W. Schertzer, jschertz@binghamton.edu

\(\dagger\) These authors contributed equally to this work. Author order was determined alphabetically.
Abstract

Bacterial biofilms are major contributors to chronic infections in humans. Because they are recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. Identifying factors involved in biofilm development can help uncover novel targets and guide the development of anti-biofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, and hospital acquired infections, and is also associated with aggressive biofilm formation in the lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been associated with cell-to-cell communication, virulence factor delivery, and the transfer of antibiotic resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, little is known about their biogenesis and function in biofilms. Our group has shown that the Pseudomonas Quinolone Signal (PQS) induces OMV formation in P. aeruginosa, and in other species, through a biophysical mechanism that is also active in biofilms. Here, we demonstrate that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, PQS and OMV synthesis are significantly elevated during dispersion, compared to attachment and maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in their ability to disperse, but this phenotype could be rescued by genetic complementation or exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled degradation of biofilm matrix components.

Importance
Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant biofilm infections from protected sessile communities into released populations that are orders-of-magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit increased acute virulence and dissemination phenotypes. A thorough understanding of the dispersion process is therefore critical before this promising strategy can be effectively employed.

PQS has been implicated in early biofilm development, but we hypothesized that its function as an OMV inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs are differentially produced during *Pseudomonas aeruginosa* biofilm development and that effective biofilm dispersion is dependent on production of PQS-induced OMVs, which likely act as delivery vehicles for matrix degrading enzymes. These findings lay the groundwork for understanding the roles of OMVs in biofilm development and suggest a model to explain the controlled matrix degradation that accompanies biofilm dispersion in many species.

Introduction

It has long been appreciated that biofilms contribute to a majority of bacterial infections (1–4). Biofilm cells differ from planktonic cells in phenotype (5), gene expression (6), and protein production (7–10). These differences provide biofilm cells enhanced tolerance to antibiotics and host defenses (11–14). *Pseudomonas aeruginosa* is a clinically relevant and highly studied model organism for biofilm development. Surface-attached *P. aeruginosa* biofilms develop in a stepwise fashion where bacteria first reversibly and then irreversibly attach to a surface (7). The maturation phase is marked by the emergence of three-dimensional microcolonies during maturation I and the formation of mushroom-like clusters during maturation II (7). In response to external or endogenous cues, the final phase is initiated when bacterial cells erupt from the biofilm and
During dispersion, motile bacteria degrade the extracellular polymeric matrix that encases them, colonize new surfaces, and recommence the biofilm life cycle (7, 15). Identification of the factors that regulate biofilm development is essential for the creation of novel therapeutics against these recalcitrant bacterial communities.

Quorum signaling is known to regulate *P. aeruginosa* biofilm formation (7, 16). Specifically, the Las system controls the progression from reversible to irreversible attachment (16), and the Rhl system controls the transition from irreversible attachment to maturation (7). The Pseudomonas Quinolone Signal (PQS) has also been proposed to regulate biofilm development (17, 18). Production of PQS is initiated by the Las system through direct activation of the genes encoding the PQS regulator, PqsR (18, 19), and the biosynthetic FAD-dependent monooxygenase, PqsH (20, 21). PQS controls the production of many virulence factors (17), including elastase, pyocyanin (22), and iron chelators (23–25). It has been reported that PQS biosynthetic mutants are deficient in the formation of mushroom-shaped microcolonies, which are characteristic of mature biofilms (26, 27). Several hypotheses aim to connect the contributions of PQS in biofilm development to its functionality as a cell-to-cell communication signal. Rampioni and coworkers (28) suggested that PQS controls biofilm development via PqsE-dependent signaling, activating the Rhl system and its downstream effectors. It has also been shown that extracellular DNA (eDNA) contributes to biofilm maturation and that PQS-induced prophage activation results in DNA release into the biofilm (26). The buildup of HQNO, which is controlled by PQS signaling, likewise results in autolysis, eDNA release, and increased biofilm biomass (29). We were interested in exploring whether other well-documented functions of PQS may also play a role during the various stages of biofilm development.
In addition to its role as a signaling molecule, PQS is also known to modulate production of outer membrane vesicles (OMVs) (30–34). OMVs are spherical structures derived from the outer membrane of Gram-negative bacteria that range from 50-300 nm in diameter (35–38). These nanostructures form a dedicated transport system that helps deliver cell-to-cell communication signals (30, 39, 40), nucleic acids (41, 42), proteases (43, 44), antibiotic degrading enzymes (45, 46), lytic enzymes (47–49), iron chelators (23–25), and antibiotic resistance genes (50). In conjunction with their function as transport machinery, OMVs have also been associated with biofilm development in *Helicobacter pylori* (51), *Vibrio cholerae* (52), and *Pseudomonas putida* (53). Little is known about the roles that OMVs play in *P. aeruginosa* biofilms. However, it has been reported that OMVs are commonly found within biofilms produced by this organism (44, 54) and that their production is controlled by PQS (55).

PQS induces OMV production through a biophysical mechanism that is driven by favorable interactions with lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) (32, 56). These interactions promote asymmetric expansion of the outer membrane, which induces membrane curvature and ultimately leads to the production of OMVs (33). The importance of PQS in OMV production is evident from many experiments involving deletions in early biosynthetic genes (e.g. *pqsA*, coding for the anthræloyl-CoA ligase responsible for the first step in alkyl-quinolone biosynthesis (57–59)), late biosynthetic genes (e.g. *pqsH*, coding for the flavin-dependent monooxygenase responsible for the final step in PQS biosynthesis (20, 21, 60, 61)), and the PQS receptor (*pqsR*) (19, 62). Deletion of any of these genes results in drastic reductions or outright abrogation of OMV biogenesis in planktonic cultures. Our recent work demonstrated that loss of PQS production also compromised OMV production in *P. aeruginosa* biofilms (55).

Importantly, use of these well-characterized mutants (in addition to others such as *pqsE*) can help
detangle the biophysical roles of PQS from its role as a signaling molecule, as well as clarify contributions directly related to PQS from those of other related alkyl-quinolones.

While several studies have implicated PQS in the development of *P. aeruginosa* biofilms, it is not known if PQS is involved all stages of biofilm formation. Additionally, it remains unclear if PQS affects biofilm development due to its role in quinolone signaling, virulence factor production, OMV biogenesis, or any combination of these. The current study presents a comprehensive investigation aimed at elucidating the role of PQS-induced OMV production during the five stages of biofilm development in *P. aeruginosa*. Here, we report that PQS and OMVs are maximally produced during biofilm dispersion. We further demonstrate that PQS biosynthetic and receptor mutants are deficient in dispersion compared to the wild type. The identified dispersion deficiency was rescued with exogenous PQS, supporting the notion that PQS and PQS-induced OMVs are major contributing factors to *P. aeruginosa* biofilm dispersion. We also demonstrate that purified OMVs possess protease, lipase, and nuclease activities. These results indicate that OMVs may contribute to biofilm dispersion by trafficking enzymes capable of breaking down major EPS components. Through this work, we shed light on a novel role of outer membrane vesicles: the enhancement of biofilm dispersion.

Results

PQS production is elevated during dispersion

Although OMVs are ubiquitous in *P. aeruginosa* biofilms (44, 55), their roles and importance in the development of a biofilm remain to be elucidated. PQS is known to promote OMV biogenesis through a biophysical mechanism (30–33), and its synthesis and export are strong indicators of OMV production potential in *P. aeruginosa* (34). The production of PQS is tightly regulated by
quorum signaling systems (17, 21, 62, 63), and environmental conditions, such as oxygen availability (61). Due to the heterogeneous nature of biofilm development (64, 65), we hypothesized that PQS-induced OMV production would vary during biofilm progression as nutrient and substrate availability change. Using a continuous flow model, we set out to quantify total PQS production during each stage of biofilm development. Growth stages were determined via microscopic imaging of flow cells using parameters determined by Sauer and coworkers (7).

In our system, reversible attachment, irreversible attachment, maturation I, and maturation II were established to occur at 8 h, 24 h, day 3, and day 5, respectively. Dispersion was induced on day five through exogenous addition of the native dispersion cue cis-2-decenoic acid (cis-DA) Although a P. aeruginosa biofilm will naturally produce cis-DA and disperse (66), we administered this molecule exogenously in order to synchronize the dispersion event (66, 67). With this study, we found that the highest level of PQS per cell was produced during dispersion (Fig. 1). Concentrations of PQS were normalized to total CFUs and were measured to be $2.7 \times 10^{-4} \pm 7.2 \times 10^{-5}$, $5.5 \times 10^{-5} \pm 2 \times 10^{-4}$, $3.8 \times 10^{-4} \pm 1.7 \times 10^{-4}$, $3.0 \times 10^{-4} \pm 1.5 \times 10^{-4}$ and $3.0 \times 10^{-3} \pm 4.7 \times 10^{-4}$ µM per billion CFUs at reversible attachment, irreversible attachment, maturation I, maturation II, and dispersion, respectively (Fig. 1). Statistically significant differences were identified between reversible attachment and dispersion, irreversible attachment and dispersion, maturation I and dispersion, and maturation II and dispersion (one-way ANOVA, Tukey’s post hoc-test, $p = 0.00020, 0.0015, 0.00080, 0.00020$, respectively). In short, a significant increase in PQS was observed in dispersion compared to all other biofilm stages.

OMV production varies during biofilm development

Following quantification of PQS, OMVs were isolated from the five different biofilm stages and quantified using two independent techniques: OMV protein quantification and nanoparticle
tracking analysis (NTA). Modified Lowry assays showed that the highest protein levels were detected in OMV preparations harvested during reversible attachment, irreversible attachment, and dispersion (Fig. 2A). Protein concentrations in OMV pellets were normalized per billion CFUs. The measured values were 94 ± 44, 105 ± 8.5, 11 ± 3.2, 6.5 ± 3.4, and 55 ± 17 µg / billion CFUs during reversible attachment, irreversible attachment, maturation I, maturation II, and dispersion, respectively (Fig. 2A). Statistically significant differences were observed between reversible attachment and maturation I, reversible attachment and maturation II, irreversible attachment and maturation I, irreversible attachment and maturation II, irreversible attachment and dispersion, maturation I and dispersion, and maturation II and dispersion (One-way ANOVA, Tukey’s post hoc-test, \(p = <0.00010, <0.00010, <0.00010, <0.00010, 0.049, 0.025, 0.036, \) respectively).

Quantification via nanoparticle tracking analysis demonstrated that OMV production per cell remained low until the dispersion stage. The particles measured during reversible attachment, irreversible attachment, maturation I, maturation II, and dispersion were 0.44 ± 0.24, 0.69 ± 0.23, 0.74 ± 0.28, 0.32 ± 0.28, and 2.1 ± 0.37 particles / CFU, respectively (Fig. 2B). Statistically significant differences were identified between reversible attachment and dispersion, irreversible attachment and dispersion, maturation I and dispersion, and maturation II and dispersion (One-way ANOVA, Tukey’s post hoc-test, \(p = <0.00010, <0.00010, 0.00010, <0.00010, \) respectively).

Both quantification techniques showed significantly larger numbers of OMVs present during the dispersion stage compared to the maturation stages. The high level of OMV production during dispersion paralleled enhanced PQS synthesis during this stage. Interestingly, an increase in OMV production during attachment was observed via protein quantification but not through NTA.

PQS mutants are not deficient in reversible or irreversible attachment
To determine if PQS and/or PQS-controlled phenotypes are involved in the initial stages of *P. aeruginosa* biofilm development, we assessed reversible and irreversible attachment abilities of wild type PA14, ΔpqsA, ΔpqsH, ΔpqsE, and ΔpqsR. Crystal violet attachment assays (see methods) were performed at 2 h, 8 h, and 24 h, the former two time points were representative of reversible attachment and the latter was representative of irreversible attachment (7). We found that ΔpqsA was not deficient in attachment after 2 or 8 h (Fig. 3A) (Student’s two-tailed t-test, *p* = 0.41 and 0.91, respectively) suggesting that quinolones are not involved in reversible attachment. Interestingly, we found that ΔpqsA displayed increased attachment after 24 hours (Fig. 3A) (Student’s two-tailed t-test, *p* = 0.014). These results indicate that under normal conditions, synthesis of at least one quinolone molecule results in reduced irreversible attachment. Next, we wanted to determine if the observed phenotypes were specifically due to the lack of PQS and PQS-mediated functions. Because ΔpqsA is unable to make over 55 different quinolones, we quantified attachment of ΔpqsH, which is deficient in synthesis of PQS only (20, 61). We observed no difference in attachment after 2 h or 24 h (Fig. 3B) (One-way ANOVA, *p* = 0.73 and 0.48, respectively). Next, we assessed attachment ability of ΔpqsE and ΔpqsR, which are unable to induce Rhl-dependent virulence factors (68, 69) and respond to PQS (19), respectively. Reversible (Fig. 3B) and irreversible (Fig. 3C) attachment were unaffected in both mutants (One-way ANOVA, *p* = 0.73 and 0.48, respectively). These results indicate that PQS and PQS-mediated phenotypes do not contribute to the attachment of *P. aeruginosa* to an abiotic surface.

ΔpqsA displays diminished biofilm dispersion

Our initial analysis of PQS and OMV production during biofilm development identified that both PQS and OMVs are highly produced during dispersion. To determine if PQS-mediated functions are involved in this stage of development, we quantified dispersion in semi-batch biofilms grown...
in 24-well plates. On days 4, 5, 6 and 7 after inoculation, microcolonies were observed using light microscopy, and the fraction of microcolonies that had formed central voids, a phenotypic hallmark of the dispersion process in *P. aeruginosa* (7, 9, 67), was determined for PA14 wild type biofilms and for PA14 Δ*pqsA* biofilms. On day 4, little to no dispersion occurred in either strain (Fig. 4A) (Student’s two tailed *t*-test, *p* = 0.87). On days 5, 6 and 7, however, we noted significant differences in microcolony dispersion between the wild type and Δ*pqsA* biofilms (Student’s two-tailed *t*-test, *p* = 0.019, 0.0018, 0.0018, respectively) (Fig. 4A). For subsequent analyses, biofilms were grown until day 6 and analyzed for dispersion. Expression of *pqsA in trans* was able to restore the diminished dispersion phenotype to wild type levels (One-way ANOVA, Tukey’s *post-hoc* test, *p* = 0.63) (Fig. 4B-E).

P. aeruginosa dispersion is dependent on PQS biosynthesis, but not PqsE

The *pqsA* mutant is deficient in the production of over 55 quinolone molecules (20). For this reason, we were not yet able to conclude whether the inhibition of dispersion was due to a lack of PQS, or a lack of one of the other quinolone molecules. To address this ambiguity, we investigated native dispersion in a *pqsH* mutant. Our results showed that Δ*pqsH* was deficient in dispersion compared to wild type (Fig. 5A). The percentage of microcolonies containing voids in wild type biofilms was 74.68 ± 6.15%, compared to 11.91 ± 3.08% in Δ*pqsH*, suggesting that PQS is specifically responsible for this phenotype (One-way ANOVA, Dunnett’s *post-hoc* test, *p* = 0.0003) (Fig. 5A). However, as PQS is independently involved in both signaling (17) and OMV formation (30, 33, 34), it is unknown whether one or both of these processes are responsible for native levels of dispersion. We also investigated dispersion of a *pqsE* mutant, which produces wild type levels of PQS (21) and OMVs (data not shown), but is deficient in the production of many quorum sensing dependent virulence factors (20). We found that the percentage of microcolonies
containing voids in biofilms formed by ΔpqsE was 68.69 ± 6.10%, indicating that it disperses at wild type levels (One-way ANOVA, Dunnett’s post-hoc test, \(p = 0.86 \)) (Fig. 5A). This suggests that a non-signaling-dependent function of the PQS system, such as OMV production, is likely responsible for the diminished dispersion phenotype in the ΔpqsA and ΔpqsH mutants. We also investigated dispersion in the pqsR mutant, which displays reduced production of both PQS and OMVs (21, 30). The percentage of microcolonies containing voids in biofilms formed by ΔpqsR was 37.48 ± 18.97% and significantly lower than wild type (One-way ANOVA, Dunnett’s post-hoc test, \(p = 0.0065 \)) (Fig. 5A). The reduced dispersion phenotype of the ΔpqsH and the ΔpqsR mutants was restored to wild type levels through genetic complementation (Fig. 5B). The percentages of microcolonies containing voids in biofilms formed by PA14 / pJN105, ΔpqsH / pJN105-ΔpqsH, and ΔpqsR / pJN105-ΔpqsR strains were 73.24 ± 12.35%, 85.20 ± 4.92%, and 81.80 ± 9.92%, respectively (Fig. 5B). These data suggest that PQS-induced OMV production plays a significant role in \(P. \ aeruginosa \) biofilm dispersion.

Exogenous PQS restores dispersion in the ΔpqsR mutant

To confirm whether PQS modulates dispersion through an OMV-dependent mechanism, exogenous PQS was administered to a ΔpqsR biofilm and dispersion efficiency was quantified. PQS-induced OMV production has been shown to be driven by a biophysical mechanism that is not signaling dependent (31–33). The exogenous addition of PQS to a ΔpqsR biofilm restored dispersion to wild type levels (One-way ANOVA, Tukey’s post-hoc test, \(p = 0.72 \)) (Fig. 6). Microcolony void formation increased from 60.65 ± 3.12% to 77.09 ± 6.94% (One-way ANOVA, Tukey’s post-hoc test, \(p = 0.024 \)) (Fig. 6). This indicates that PQS modulates dispersion using an OMV-dependent mechanism that is separate from the PQS signaling network.

OMVs contain enzymes capable of degrading the biofilm matrix
Together, our results indicate that PQS-induced OMVs contribute to the dispersion of *P. aeruginosa* biofilms; however, the exact role the vesicles play during this developmental stage is unknown. Various studies have demonstrated that degradation of extracellular polymeric substances (EPS) of the biofilm matrix, such as polysaccharides, proteins, glycolipids, and eDNA, is a requirement for dispersion (reviewed in (15)). Degradative enzyme activity towards these matrix components has been shown to induce dispersion in both Gram-positive and Gram-negative organisms (15, 70–76) Previous OMV proteomic analyses have identified several proteins packaged within vesicles that were predicted to have degradative activity (77, 78). Therefore, we hypothesized that OMVs may contribute to dispersion through EPS degradation. To test this hypothesis, we assessed whether purified *P. aeruginosa* OMVs were capable of degrading skim milk, tributyrin, and DNA to assess protease, lipase, and DNase activity, respectively. In order to acquire sufficient material for these analyses, planktonic OMVs were used. Addition of OMVs to skim milk agar resulted in the formation of a 119.8 ± 36.1 mm3 zone of clearing, while the addition of vehicle control (MV buffer only) to skim milk agar resulted in the formation of a 0.1 ± 8.6 mm3 zone of clearing (Student’s two-tailed *t*-test, *p* = 0.0007) (Fig. 7A). This suggests that OMVs contain enzymes that have protease activity. The addition of OMVs to tributyrin agar resulted in the formation of a 211.1 ± 24.1 mm3 zone of clearing versus the vehicle control that produced a 25.9 ± 11.2 mm3 zone of clearing (Student’s two-tailed *t*-test, *p* < 0.0001) (Fig. 7B). This suggests that OMVs also contain enzymes that have lipase activity. Finally, the addition of OMVs and vehicle control to DNase agar resulted in the formation of 182.1 ±85.5 mm3 and 21.3 ±16.3 mm3 zones of clearing, respectively (Student’s two-tailed *t*-test, *p* = 0.010) (Fig. 7C). This indicates that OMVs carry enzymes with DNase activity. Overall, these data support the idea that OMVs
contribute to biofilm dispersion by packaging and delivering enzymes with EPS degrading abilities.

Discussion

Biofilms have become a major health and economic concern due to their prevalence and recalcitrance. *P. aeruginosa* is a leading cause of nosocomial infections (79), as well as increased morbidity and mortality in cystic fibrosis patients (80). Virulence and pathogenesis in this organism are largely regulated by quorum sensing signals (81). PQS is one such signal that controls the production of virulence factors (17) but is also known to induce production of OMVs (30, 33, 61). OMVs represent a dedicated trafficking system that delivers virulence factors (47, 82), while also carrying cargo able to degrade antibiotics (45), lyse neighboring bacteria (30, 47, 55), and enable cell-to-cell communication (30). Several groups have demonstrated that OMV production is prevalent in biofilms (44, 54, 55). However, the biogenesis and function of OMVs during biofilm development remains poorly understood, as most of what is known about OMVs comes from studies of planktonic bacteria. The present study set out to elucidate the role of PQS-induced OMV production in *P. aeruginosa* during the five distinct stages of biofilm development.

PQS is an excellent predictor of OMV production (30, 34) and studies have consistently shown that a block in PQS synthesis (whether genetic or environmental) results in dramatically reduced OMV formation (30, 55, 61). Although extracellular vesicles have been observed in the absence of PQS (54, 55), their origins and composition are uncertain, and they are frequently mixed-composition vesicles resulting from cellular disintegration. For this reason, we were surprised to measure high levels of OMVs during reversible and irreversible attachment using protein-based quantification, despite low PQS concentrations (Fig. 1 and Fig. 2). High levels of OMV production
During these initial stages measured by Lowry assay were not corroborated by nanoparticle tracking analysis, suggesting that the protein detected in these OMV preparations was not representative of OMV concentration but likely the result of non-OMV-related protein components. As a result, we predicted that PQS and OMVs were not significant effectors of reversible and irreversible attachment. This notion was supported by our crystal violet attachment assays, which demonstrated that ΔpqsA, ΔpqsH, ΔpqsR, and ΔpqsE mutants had wild type levels of reversible attachment (Fig. 3). It is notable, however, that several studies have identified an increase in biofilm formation when OMV production is stimulated (22, 51, 83, 84). Kang et al. (23) described that pqsA, but not pqsH or pqsE, was required for early biofilm attachment under static conditions. Others have reported that PQS, and possibly OMVs, were more important in later maturation stages (26, 27, 85). In contrast, Ionescu et. al. showed in Xylella fastidiosa that OMV production inhibited bacterial attachment to plant surfaces, increased bacterial motility, and enhanced plant mortality (86). In the face of these conflicting reports, it is interesting that we found the pqsA mutant had increased irreversible attachment versus wild type at 24 hours (Fig. 3A).

During early biofilm development attachment is required. Therefore, it might be beneficial for P. aeruginosa to reduce PQS production at this time to avoid potential interference of PQS-induced OMVs with cell attachment. Regardless, it is evident that the role of OMVs in early-stage biofilm development remains unclear and will require further studies to elucidate.

During maturation I and II, we saw that both PQS and OMV production were relatively low (Fig. 1 and Fig. 2). Allesen-Holm et al. described PQS’ role in the development of three-dimensional microcolony architecture (26). They proposed that PQS induced prophage-mediated cell lysis, resulting in eDNA release and increased biofilm formation (26). A separate study by Tettman et al. showed that enzymatic degradation of PQS resulted in increased iron availability and enhanced...
biofilm formation for early and mature biofilms (87). The latter report aligns with our observations and offers an explanation as to why cells might reduce PQS production during biofilm maturation. It is important to note that although PQS production was reduced during maturation in our study, it was not eliminated. The same was true for OMV production. It is likely that baseline levels of PQS are important for PQS-mediated cell lysis and eDNA release while reduced numbers of OMVs may carry out structural or transportation roles. At this developmental stage, elevated levels of PQS and PQS-induced OMVs could even have negative effects on biofilm development, as OMVs have been predicted to contain degradative enzymes (77, 78), which could break down major components of the EPS.

While our results suggest that PQS and OMVs may play only minor (or undetermined) roles during attachment and maturation, they highlight a major increase in production of both factors upon the initiation of biofilm dispersion (Fig. 1 and Fig. 2). This observation led us to speculate that PQS and PQS-induced OMVs are important for proper dispersion of P. aeruginosa biofilms. To test this hypothesis, we analyzed microcolony dispersion frequencies for four mutants: ΔpqsA, ΔpqsH, ΔpqsR, and ΔpqsE. Biosynthetic (pqsA, pqsH) and receptor (pqsR) mutants dispersed at much lower frequencies than wild type (Fig. 4 and Fig. 5). Because the ΔpqsA and ΔpqsH mutants were similarly impaired in dispersion, we can conclude that PQS, specifically, is required (i.e. not any of the other alkyl-quinolones lost in the ΔpqsA mutant). Rescue of the ΔpqsR phenotype by exogenous PQS demonstrated that the physical presence of PQS was required, rather than signaling through its receptor (Fig. 6). The importance of a non-signaling function of PQS is further supported by the fact that the pqsE mutant showed no deficiency in dispersion, confirming that signaling downstream of PqsR is also not involved in this phenotype (Fig. 5). Together, these results demonstrate that PQS modulates P. aeruginosa dispersion in a signaling-independent manner.
manner. Our final experiments led us to propose that PQS-induced OMVs, which are formed through a signaling-independent biophysical mechanism (30, 33), promote dispersion by carrying EPS degrading enzymes.

EPS degradation is a fundamental requirement for dispersion (15). Enzymes with matrix degradative activity have been described to induce dispersion in mature biofilms in several organisms (15, 71–76, 88). The effectiveness of DNaseI at dispersing biofilms has even led to its adoption as a treatment for biofilm infections in the lungs of cystic fibrosis patients (89). Previous studies have shown that *P. aeruginosa* OMVs have autolysin (47, 48), and protease (44, 90) activity, and that these OMVs can associate with and lyse bacterial sacculi (47). These findings support the proposition that OMVs carry degradative enzymes. Here, we report that purified OMVs possess protease, lipase, and DNase activity (Fig. 7). A recent study by Esoda and Kuehn also found that OMVs traffic the *P. aeruginosa* peptidase, PaAP, and can deliver the peptidase to 1-hour old *P. aeruginosa* and *K. pneumoniae* biofilms grown on A549 tissue culture cells, resulting in decreased biofilm biomass (91). Others have provided evidence that proteases are required for dispersion in *S. aureus* biofilms (71) and *P. putida* biofilms (73). In *P. aeruginosa*, eDNA degradation has been shown to result in biofilm disaggregation (26, 92) and recent work by Cherny and Sauer showed that eDNA degradation is required for dispersion of *P. aeruginosa* (72). In *P. acnes*, secreted lipases have also been demonstrated to enhance the dispersion response (93). Delivery of these degradative enzymes using OMVs may increase the enzymes’ efficacy, facilitate specific targeting to sites of degradation, and reduce potential deactivation of the enzymes while in transit. Bomberger *et al.* demonstrated that the CFTR inhibitory factor (Cif) produced by *P. aeruginosa* was orders-of-magnitude more potent when delivered within OMVs (82). We therefore
propose that PQS-induced OMVs enhance biofilm dispersion by delivering and potentially
enhancing the activity of enzymes required for EPS degradation.

Previous studies have identified the importance of PQS in biofilm formation (26, 27) and
demonstrated the presence of OMVs within biofilms (44). However, a comprehensive study that
analyzed the effect of these two factors at each stage in biofilm development had not been
conducted prior to this work. Here, we report that PQS and OMVs are not produced consistently
during biofilm development; specifically, we identified low (or variable) concentrations of PQS
and OMVs during attachment and maturation stages but high concentrations during dispersion.
Additionally, we showed that attachment is likely not affected by the absence of PQS and PQS-
mediated factors, whereas the absence of PQS significantly reduces dispersion of *P. aeruginosa*
biofilms. Finally, we demonstrated that OMVs have the capability to breakdown extracellular
DNA, lipids, and proteins – all major components of the biofilm EPS matrix. With this work we
identified PQS and PQS-induced OMVs as novel regulators of biofilm dispersion. Because
dispersed cells are significantly more susceptible to antimicrobials (94–96), it has been considered
that dispersion agents in combination with antimicrobials could provide a potent antibiofilm
therapy. Therefore, PQS and PQS-induced OMVs may provide novel avenues to create better
treatment strategies against recalcitrant biofilm infections.

Materials and Methods

Strains, growth conditions, and media

All experiments were carried out using *P. aeruginosa* strains described in Table 1. The Δ*pqsE* and
Δ*pqsR* clean-deletion mutant strains were constructed using the pEX18gm suicide vector (97), and
pqsE and *pqsR* were overexpressed in their respective mutant backgrounds using the pJN105
vector (98). Primer sequences used for construction of the vectors can be found in Table S1.

Biofilm tube reactors were inoculated as described below. Planktonic cultures were inoculated to an OD$_{600}$ of 0.01 and grown at 37 °C with shaking at 250 rpm. Planktonic cultures were grown in Lysogeny Broth (LB) or brain heart infusion medium (BHI). Planktonic cultures of strains carrying the pJN105 vector were grown in the presence of gentamicin (50 µg/mL), while biofilm cultures of the same strains were not.

Biofilm growth

Biofilms were grown in both continuous and semi-batch culture systems. For continuous culture, biofilms were grown in size 14 Masterflex silicone tubing (Cole Parmer) as previously described (7, 99). Cultures were inoculated under static conditions and allowed to attach for 1 h prior to initiation of flow. Biofilms were grown at 22°C in 5% LB medium under a constant flow rate of 0.18 mL/min until desired stage of biofilm growth; 8 h for reversible attachment, 24 h for irreversible attachment, 3 days for maturation I, 5 days for maturation II (as determined previously (7) and in this study by microscopic flow cell images). To validate developmental stages, biofilms were grown under identical conditions in BioSurface Technologies flow cells and visualized by brightfield microscopy. Biofilms were harvested from continuous culture systems using the rolling pin method (7). Mature biofilms were collected into sterile saline (1mL / line). For stage 5, biofilm dispersion, 5% LB with or without the native dispersion induction molecule cis-2-decenoic acid (310 nM) was administered to five-day old biofilms. Biofilms were incubated with either treated or untreated medium under static flow for 1 hour (66, 67). Following induction, dispersed cells in the bulk liquid were collected under native flow, leaving attached biofilm cells behind in the tubing. To quantify if a dispersion event occurred, OD$_{600}$ measurements were taken of the collected bulk liquid from the treated sample and compared to the untreated sample.
Semi-batch biofilms for dispersion analyses were cultured in 24-well plates as previously described (67) with minor modifications. Briefly, wells were inoculated with 500 µL of culture adjusted to an OD$_{600}$ of 0.01 in 20% LB. Plates were incubated at 37°C with shaking at 250 rpm at a 30° angle for 24 h. Media was then replaced with 250 µL of 20% LB medium and returned to the incubator under the same conditions. Media changes were repeated every 12 h for up to 7 days. For chemical complementation experiments, strains were inoculated and grown as described above for the first 4 days. From 4 days post inoculation to 6 days post inoculation, media was changed with 20% LB containing 40 µM PQS or 20% LB containing and equivalent amount of the carrier solution (methanol) every 12 hours.

PQS extraction and quantification

PQS was extracted from biofilms harvested at each stage of development. Biofilms were homogenized to reduce aggregation and PQS was extracted using 1:1 acidified ethyl acetate as previously described (34, 55, 61, 100). The organic phase was separated and dried under nitrogen. Samples were resuspended in optima grade methanol and spotted onto straight-phase phosphate-impregnated TLC plates that had been activated at 100°C for 1 h. PQS was visualized by intrinsic fluorescence after excitation under long-wave UV light. Digital images were captured and analyzed using a BioRad ChemiDoc XRS system and Image Lab densitometry software. PQS concentration values were normalized to total CFUs.

OMV isolation and quantification

OMVs were isolated from harvested biofilms as previously described (55). Biofilms were homogenized to reduce aggregation and preparations were centrifuged at 16,000xg for 10 min at 4°C to remove cells. The supernatant was then passed through a 0.45 µm polyethersulfone filter to remove any remaining cells. OMVs were pelleted and purified from the supernatant using a
Thermo Scientific S50-A rotor (50,000 rpm for 1.5 h) and resuspended in 500 µL of sterile MV buffer (50 mM Tris, 5 mM NaCl, 1 mM MgSO4, pH 7.4) (34, 55).

OMVs were then quantified by both modified Lowry protein assay (Thermo) (101) and nanoparticle tracking analysis (NTA) (34, 55, 102). The modified Lowry assay was performed following manufacturer's instructions. Purified vesicles were diluted to obtain 20-100 particles per frame and analyzed using a NanoSight NS3000 system (camera level 12 and gain of 1) and corresponding software (NTA 3.1). Total protein and OMV particle values were normalized to total CFUs in the original sample.

Crystal violet attachment assays

To assess attachment, 96-well plates were inoculated with 200 µL of culture in LB at an OD$_{600}$ of 0.01. The plates were then incubated at 37°C shaking at 250 rpm for 2, 8, or 24 h. Biomass was quantified by crystal violet (CV) staining. Supernatant was removed from wells and replaced by 200 µL DI water. 50 µL of 0.1% CV in DI water was then added to each well, and plates were incubated for 15 minutes at 37°C with shaking at 250 rpm. Following staining, wells were washed 4 times with DI water to remove any unattached cells and unbound CV. Plates were then blotted vigorously onto paper towel and allowed to dry. Once dry, 200 µL of 95% ethanol was added to each well and the plate was incubated for 10 minutes at 37°C with shaking at 250 rpm to solubilize the CV. The absorbance of each well was then read at 570 nm.

Assessment of dispersion phenotype in 24-well microtiter plates

Biofilms were grown as described above for up to 7 days, and native dispersion was assessed as previously described (9, 67). Briefly, biofilm microcolonies were observed by transmitted light using an Olympus BX60 microscope and a 20 × UPlanF Olympus objective. Images were captured using a ProgRes CF camera (Jenoptik, Jena, Thuringia, Germany) and processed with ProgRes
CapturePro 2.7.7 software. Dispersion efficiency was quantified by determining the percentage of microcolonies that had developed an interior void. For each biological replicate, biofilms were grown in 2 to 4 wells of a 24-well plate, and all microcolonies that had formed in these biofilms were analyzed for dispersion. The total number of microcolonies analyzed for each strain and condition are presented in Supplemental table 2.

Analysis of degradative enzyme presence in OMVs

In order to acquire enough material for enzymatic analysis, OMVs were harvested from planktonic cultures as described above. OMV preparations were quantified using NTA and diluted to 2×10^{11} particles/mL in MV buffer. 180 μL of OMVs were then added to wells punched in agar using a method described previously (93). Agar plates impregnated with protein, lipid or DNA were prepared, and wells were punched within the agar using the wide end of a 1000 μL pipette tip. Each 100 mm diameter petri dish used contained 25 mL of an agar solution. For proteomic analysis, milk agar plates were prepared (2.5 g/L skim milk (BD) and 15 g/L agar (BD)). For these plates, skim milk and agar were autoclaved separately, cooled to 50°C, and then mixed together prior to pouring plates. For lipase analysis, 50% tributyrin agar was used (11.5 g/L Tributyrin HiVeg Agar Base (HiMedia), 5 mL/L Tributyrin (TCI), 7.5 g/L agar (BD)). Specifically, the agar was boiled in water, tributyrin was added, and the mixture was homogenized in a blender for approximately 20 seconds to ensure effective dispersal of the hydrophobic tributyrin throughout the medium. Once autoclaved, this agar was stirred while cooling to approximately 60°C, and the plates were then poured. For DNase analysis, DNase plates were prepared (21 g/L Difco™ DNase test agar with methyl green (BD), 7.5 g/L agar (BD)). After addition of OMVs into the punched wells, plates were sealed with parafilm and incubated at 37°C for 24 h prior to measuring the diameter of the zone of clearing.
Statistical Analysis

Statistical analyses were performed as described in figure legends and carried out in GraphPad Prism 8.

Acknowledgements

We thank former First-year and Summer Research Immersion Program students, Maria Carlucci, Ana Conceicao, Wilmer Estevez, Channelle Farquharson, Avery Hoda, Crystal Huang, Nadia Mirza, Laura Oliveira, Sonny Pohar, Sarah Pokrzywa, Kayla Principe, Michael Toledano, Antonio Torlentino, Kyra Yanusas, and former Schertzer Lab students Alexis Gursky, Nicole Radova and Nikki Naim for their contributions to this project. We also thank David Davies and Amanda Zdimal for their assistance with the degradative enzyme assays.

This work was supported in part by grants from the NIH (1R21AI121848 and 1R15GM135862 to J.W.S.), the Research Foundation of SUNY (to J.W.S), to Binghamton University from the Howard Hughes Medical Institute (HHMI) through the Precollege and Undergraduate Science Education Program, and from the New York State Regional Economic Development Council for the First-year and Summer Research Immersion Programs. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

1. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 284:1318–1322.

2. Potera C. 1999. Forging a link between biofilms and disease. Science 283:1837–1839.
3. Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen PØ, Nielsen AK, Parsek M, Wozniak D, Molin S, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T. 2011. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm. PLoS One 6:e27943.

4. Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AEL, Irie Y, Jensen P, Diggle SP, Allen RJ, Gordon V, Bjarnsholt T. 2016. Role of multicellular aggregates in biofilm formation. MBio 7.

5. Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Genet 56:187–209.

6. Sauer K. 2003. The genomics and proteomics of biofilm formation. Genome Biol 4:219.

7. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–54.

8. Southey-Pillig CJ, Davies DG, Sauer K. 2005. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187:8114–8126.

9. Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, Davis S, Sauer K. 2019. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep 9:3763.

10. Park AJ, Murphy K, Surette MD, Bandoro C, Krieger JR, Taylor P, Khursigara CM. 2015. Tracking the dynamic relationship between cellular systems and extracellular subproteomes in Pseudomonas aeruginosa biofilms. J Proteome Res 14:4524–4537.

11. Hoyle BD, Costerton JW. 1991. Bacterial resistance to antibiotics: The role of biofilms. Prog Drug Res 37:91–105.
12. Mah TF, O’Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–9.

13. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. 2002. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256.

14. Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138.

15. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. 2012. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50.

16. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298.

17. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–34.

18. McKnight SL, Iglewski BH, Pesci EC. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708.

19. Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay M-H, Milot S, Tampakaki AP, Stachel SE, Rahme LG. 2006. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699.

20. Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role
for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344.

21. Gallagher LA, Mcknight SL, Kuznetsova MS, Pesci EC, Manoil C. 2002. Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480.

22. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P. 2003. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43.

23. Kang D, Turner KE, Kirienko N V. 2018. PqsA promotes pyoverdine production via biofilm formation. Pathogens 7:3390.

24. Bredenbruch F, Geffers R, Nimtz M, Buer J, Häussler S. 2006. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329.

25. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96.

26. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128.

27. Yang L, Nilsson M, Gjermansen M, Givskov M, Tolker-Nielsen T. 2009. Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm
573 formation. Mol Microbiol 74:1380–1392.
574 28. Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S,
575 Cámara M, Williams P. 2010. Transcriptomic analysis reveals a global alkyl-quinolone-
576 independent regulatory role for PqsE in facilitating the environmental adaptation of
577 Pseudomonas aeruginosa to plant and animal hosts. Env Microbiol 12:1659–1673.
578 29. Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, Wilbur DJ, Hreha
579 TN, Barquera B, Rahme LG. 2016. Auto Poisoning of the Respiratory Chain by a
580 Quorum-Sensing-Regulated Molecule Favors Biofilm Formation and Antibiotic
581 Tolerance. Curr Biol 26:195–206.
582 30. Mashburn LM, Whiteley M. 2005. Membrane vesicles traffic signals and facilitate group
583 activities in a prokaryote. Nature 437:422–425.
584 31. Mashburn-Warren L, Howe J, Brandenburg K, Whiteley M. 2009. Structural requirements
585 of the Pseudomonas quinolone signal for membrane vesicle stimulation. J Bacteriol
586 191:3411–3414.
587 32. Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg
588 K, Whiteley M. 2008. Interaction of quorum signals with outer membrane lipids: insights
589 into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502.
590 33. Schertzer JW, Whiteley M. 2012. A bilayer-couple model of bacterial outer membrane
591 vesicle biogenesis. MBio 3:e00297-11.
592 34. Florez C, Raab JE, Cooke AC, Schertzer JW. 2017. Membrane distribution of the
593 Pseudomonas quinolone signal modulates outer membrane vesicle production in
594 Pseudomonas aeruginosa. MBio 8:e01034-17.
595 35. Kadurugamuwa JL, Beveridge TJ. 1999. Membrane vesicles derived from Pseudomonas
aeruginosa and *Shigella flexneri* can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145:2051–2060.

36. Vella BD, Schertzer JW. 2015. Understanding and exploiting bacterial outer membrane vesicles, p. 217–250. *In J. Ramos, J. Goldberg, AF (ed.), Pseudomonas VII; New Aspects of Pseudomonas Biology.*

37. Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184.

38. Beveridge TJ. 1999. Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. *J Bacteriol* 181:4725–4733.

39. Brameyer S, Plener L, Müller A, Klingl A, Wanner G, Jung K. 2018. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between *Vibrio harveyi* cells. *J Bacteriol* 200:e00740-17.

40. Feitosa-Junior OR, Stefanello E, Zaini PA, Nascimento R, Pierry PM, Dandekar AM, Lindow SE, Da Silva AM. 2019. Proteomic and metabolomic analyses of *xylella fastidiosa* OMV-enriched fractions reveal association with virulence factors and signaling molecules of the DSF family. Phytopathology 109:1344–1353.

41. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, Demers EG, Dolben EL, Hammond JH, Hogan DA, Stanton BA. 2016. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles. *PLoS Pathog* 12:e1005672.

42. Choi J-W, Kim S-C, Hong S-H, Lee H-J. 2017. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens. *J Dent Res* 96:458–466.

43. Bauman SJ, Kuehn MJ. 2006. Purification of outer membrane vesicles from *Pseudomonas*
aeruginosa and their activation of an IL-8 response. Microbes Infect 8:2400–2408.

44. Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–57.

45. Ciofu O, Beveridge TJ, Walther-rasmussen J. 2000. Chromosomal B-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13.

46. Schaar V, Nordström T, Mörgelin M, Riesbeck K. 2011. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 55:3845–53.

47. Kadurugamuwa JL, Beveridge TJ. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774.

48. Li Z, Clarke a J, Beveridge TJ. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483.

49. Li Z, Clarke a J, Beveridge TJ. 1996. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178:2479–2488.

50. Rumbo C, Fernández-Moreira E, Merino M, Poza M, Mendez JA, Soares NC, Mosquera A, Chaves F, Bou G. 2011. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 55:3084–90.

51. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya
52. Altindis E, Fu Y, Mekalanos JJ. 2014. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc Natl Acad Sci U S A 15:e1548–e1556.
53. Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ. 2012. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Env Microbiol 78:6217–6224.
54. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, Omasits U, Ito S, Yap X, Monahan LG, Cavaliere R, Ahrens CH, Charles IG, Nomura N, Eberl L, Whitchurch CB. 2016. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 7:11220.
55. Cooke AC, Nello A V, Ernst RK, Schertzer JW. 2019. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One 14:e0212275.
56. Li A, Schertzer JW, Yong X. 2019. Characteristic conformations of Pseudomonas quinolone signal onteracting with bacterial outer membrane. Biophys J 116:20a.
57. Calfee MW, Coleman JP, Pesci EC. 2001. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98:11633–11637.
58. Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme LG. 2005. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and
quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014.

59. Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey C a, Pesci EC. 2008. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255.

60. Bredenbruch F, Nimtz M, Wray V, Morr M, Mu R. 2005. Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 187:3630–3635.

61. Schertzer JW, Brown SA, Whiteley M. 2010. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 77:1527–15238.

62. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC. 2005. Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380.

63. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. 2001. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613–14618.

64. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS. 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:1354–1360.

65. Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP. 2019. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in
Pseudomonas aeruginosa biofilms. Nat Commun 10:762.

66. Davies DG, Marques CNH. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–403.

67. Amari DT, Marques CNH, Davies DG. 2013. The putative enoyl-coenzyme a hydratase DspI is required for production of the pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J Bacteriol 195:4600–4610.

68. Farrow JM, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC. 2008. PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051.

69. Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, Visca P, Leoni L, Cámara M, Williams P. 2016. Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa. PLoS Pathog 12:e1006029.

70. Baker AE, Diepold A, Kuchma SL, Scott JE, Ha DG, Orazi G, Armitage JP, O’Toole GA. 2016. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. J Bacteriol 198:1837–1846.

71. Boles BR, Horswill AR. 2008. agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052.

72. Cherny KE, Sauer K. 2019. Pseudomonas aeruginosa requires the DNA-specific endonuclease EndA to degrade eDNA to disperse from the biofilm. J Bacteriol 18:e00059-19.

73. Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T. 2010. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and
molecular mechanisms. Mol Microbiol 75:815–826.

74. Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BHA. 2009. Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75:6022–6025.

75. Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, Passos da Silva D, Silver H, Lacdao I, Raju D, Parsek MR, Wozniak DJ, Lynne Howell P. 2019. Treatment with the pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity. Antimicrob Agents Chemother 63:e00234-19.

76. Yu S, Su T, Wu H, Liu S, Wang D, Zhao T, Jin Z, Du W, Zhu MJ, Chua SL, Yang L, Zhu D, Gu L, Ma LZ. 2015. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 25:1352–1367.

77. Choi D-S, Kim D-K, Choi SJ, Lee J, Choi J-P, Rho S, Park S-H, Kim Y-K, Hwang D, Gho YS. 2011. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11:3424–3429.

78. Couto N, Schooling SR, Dutcher JR, Barber J. 2015. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms. J Proteome Res 14:4207–4222.

79. Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560.

80. Lyczak JB, Cannon CL, Pier GB. 2002. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222.

81. Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:1–25.
82. Bomberger JM, Maceachran DP, Coutermash B a, Ye S, O’Toole G a, Stanton B a. 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382.

83. Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MGJ, Nietzsche S, Wick LY, Heipieper HJ. 2012. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93:837–845.

84. Sabra W, Lunsdorf H, Zeng A-P. 2003. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795.

85. Müsken M, Di Fiore S, Dötsch A, Fischer R, Häussler S. 2010. Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 156:431–441.

86. Ionescu M, Zaini PA, Baccari C, Tran S, Da Silva AM, Lindow SE. 2014. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proc Natl Acad Sci U S A 111:e3910–e3918.

87. Tettmann B, Niewerth C, Kirschhöfer F, Neidig A, Dötsch A, Brenner-Weiss G, Fetzner S, Overhage J. 2016. Enzyme-mediated quenching of the Pseudomonas Quinolone Signal (PQS) promotes biofilm formation of pseudomonas aeruginosa by increasing iron availability. Front Microbiol 7:1978.

88. Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, Jennings LK, Tam J, Melnyk RA, Parsek MR, Sheppard DC, Wozniak DJ, Howell PL. 2016. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 2:e1501632.
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755.

Kadurugamuwa JL, Beveridge TJ. 1995. Virulence factors are released from *Pseudomonas aeruginosa* in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008.

Esoda CN, Kuehn MJ. 2019. *Pseudomonas aeruginosa* Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity. MBio 10:02548–19.

Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487.

Lanter BB, Davies DG. 2015. Propionibacterium acnes recovered from atherosclerotic human carotid arteries undergoes biofilm dispersion and releases lipolytic and proteolytic enzymes in response to norepinephrine challenge In vitro. Infect Immun 83:3960–3971.

Römling U, Balsalobre C. 2012. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561.

Stewart PS. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113.

Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122.

Hoang TT, Karkhoff-Schweizer RR, Kutchma a J, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants.
98. Newman JR, Fuqua C. 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203.

99. Marques CNH, Davies DG, Sauer K. 2015. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid. Pharmaceuticals (Basel) 8:816–35.

100. Palmer GC, Schertzer JW, Mashburn-warren L, Whiteley M. 2011. Quantifying Pseudomonas aeruginosa quinolones and examining their interactions with lipids. Methods Mol Biol 692:207–217.

101. Markwell MAK, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210.

102. Horspool AM, Schertzer JW. 2018. Reciprocal cross-species induction of outer membrane vesicle biogenesis via secreted factors. Sci Rep 8:9873.

103. Grant SGN, Jessee J, Bloom FR, Hanahan D. 1990. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649.

104. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838.

105. Wessel AK, Liew J, Kwon T, Marcotte EM, Whiteley M. 2013. Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation. J Bacteriol 195:213–219.
Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652.

Tables

Table 1. Bacterial strains and plasmids used in this study.

Strain or Plasmid	Description	Source or Reference
E. coli		
DH5α	F− Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK−, mK+) phoA supE44 λ− thi-1 gyrA96 relA1	(103)
P. aeruginosa		
PA14	Wild type *P. aeruginosa* strain	(104)
ΔpqsA	*pqsA* clean deletion in PA14 background	Kind gift of Marvin Whiteley
ΔpqsH	*pqsH* clean deletion in PA14 background	(105)
ΔpqsE	*pqsE* clean deletion in PA14 background	This study
Δ\(pq\)s\(R\)	\(pq\)s\(R\) clean deletion in PA14 background	This study
---	---	---

Plasmids

pEX18gm	Gm\(^R\); suicide plasmid for gene replacement in *P. aeruginosa*	(97)
pEX18gm-\(pq\)s\(E\)	Gm\(^R\); pEX18gm-derived vector for clean-deletion of \(pq\)s\(E\)	This study
pEX18gm-\(pq\)s\(R\)	Gm\(^R\); pEX18gm-derived vector for clean-deletion of \(pq\)s\(R\)	This study
pJN105	Gm\(^R\); *araC*-\(pBAD\) expression vector	(98)
pJN105-\(pq\)s\(A\)	Gm\(^R\); pJN105-derived \(pq\)s\(A\) overexpression vector	(55)
pJN105-\(pq\)s\(H\)	Gm\(^R\); pJN105-derived \(pq\)s\(H\) overexpression vector	This study
pJN105-\(pq\)s\(R\)	Gm\(^R\); pJN105-derived \(pq\)s\(R\) overexpression vector	This study
pCR 2.1	Amp\(^R\); Kan\(^R\); TA-cloning vector	Invitrogen
pRK2013	Km\(^R\); Helper plasmid used for triparental mating	(106)
Figure 1. PQS production is elevated during dispersion. PQS was extracted from biofilm tube reactors grown to each of the five stages of development. Measured PQS production was normalized to µMol per billion CFUs. Error bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was assessed by one-way ANOVA followed by Tukey’s post-hoc test. Letters above the bars represent significance. Differences between bars that do not share a letter are statistically significant (p < 0.05).

Figure 2. OMV production varies across biofilm developmental stages. OMVs were harvested from each stage of biofilm development and quantified using two different methods. (A) Purified OMVs were quantified by the modified Lowry assay and normalized to µg protein per billion CFUs. (B) Purified OMVs were also quantified using nanoparticle tracking and normalized to CFU. Error bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was assessed by one-way ANOVA followed by Tukey’s post-hoc test. Letters above the bars represent significance. Differences between bars that do not share a letter are statistically significant (p < 0.05).

Figure 3. PQS mutants are not deficient in reversible or irreversible attachment. Cultures were grown in 96-well plates, planktonic cells were removed, and attached biomass was quantified using crystal violet staining. (A) PA14 and ΔpqsA were grown for 2, 8, and 24 h. (B and C) PA14, ΔpqsH, ΔpqsE, and ΔpqsR were grown for 2 h (B) and 24 h (C). Error bars represent the standard deviation calculated from a minimum of three biological replicates. Statistical significance was determined using Student's two-tailed t-tests for figure 3A and one-way ANOVA for figures 3B and 3C. *, p < 0.05.

Figure 4. P. aeruginosa dispersion is dependent on quinolone biosynthesis. Biofilms were grown in semi-batch cultures in 24-well plates, and the fraction of microcolonies that had dispersed
was determined. (A) PA14 wild type and \textit{pqsA} mutant biofilms were assessed for dispersion after 4, 5, 6, and 7 days of growth. (B) Dispersion of the \textit{pqsA} mutant overexpressing the \textit{pqsA} gene was assessed after 6 days of growth and compared to the wild type and \textit{pqsA} mutant. (C-E) Representative images show microcolonies in PA14 wild type (C), PA14 Δ\textit{pqsA} (D), and PA14 Δ\textit{pqsA}/pJN105-\textit{pqsA} (E) biofilms after 6 days of growth. Error bars represent the standard deviation calculated from at least three biological replicates. Scale bars are 100 μm. Statistical significance was determined using Student’s two-tailed \textit{t}-test for figure 4A and one-way ANOVA followed by Tukey’s \textit{post-hoc} test for figure 4B. n.s., \(p > 0.5 \); *, \(p < 0.05 \); **, \(p < 0.01 \).

Figure 5. Production of PQS specifically restores native biofilm dispersion. Biofilms were grown in semi-batch cultures in 24-well plates for 6 days. (A) The fraction of microcolonies dispersed was found for PA14 wild type biofilms as well as Δ\textit{pqsH}, Δ\textit{pqsE}, and Δ\textit{pqsR} biofilms. (B) Overexpression of the missing genes in the mutant backgrounds restored the dispersion phenotype that was diminished in Δ\textit{pqsH} and Δ\textit{pqsR} biofilms. Bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was analyzed by one-way ANOVA followed by Dunnett’s \textit{post-hoc} test. **, \(p < 0.01 \); ***, \(p < 0.001 \).

Figure 6. Exogenous PQS rescues Δ\textit{pqsR} dispersion defect. PA14 wild type and Δ\textit{pqsR} biofilms were grown in semi-batch cultures in 24-well plates for 4 days. For the following 2 days, the medium was exchanged every 12 hours with fresh medium containing 40 μM PQS (+ PQS), or an equivalent amount of methanol (+ MeOH, vehicle control). Dispersion efficiency was then quantified for the strains under each condition. Error bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was analyzed by ANOVA followed by Tukey’s \textit{post-hoc} test. n.s., \(p > 0.5 \); *, \(p < 0.05 \).
Figure 7. Purified OMVs display EPS-degrading activities. OMVs were harvested, washed with, and resuspended in MV buffer, and added to wells punched into different types of agar. (A) Skim milk agar was used to assess protease activity. (B) Tributyrin agar was used to assess lipase activity. (C) DNase agar to assess DNase activity. Error bars represent the standard deviation calculated from three biological replicates. Significance was assessed using Student's two-tailed t-tests. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.
Figure 1. PQS production is elevated during dispersion. PQS was extracted from biofilm tube reactors grown to each of the five stages of development. Measured PQS production was normalized to μMol per billion CFUs. Error bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was assessed by one-way ANOVA followed by Tukey’s *post-hoc* test. Letters above the bars represent significance. Differences between bars that do not share a letter are statistically significant (*p* < 0.05).
Figure 2. OMV production varies across biofilm developmental stages. OMVs were harvested from each stage of biofilm development and quantified using two different methods. (A) Purified OMVs were quantified by the modified Lowry assay and normalized to µg protein per billion CFUs. (B) Purified OMVs were also quantified using nanoparticle tracking and normalized to CFU. Error bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was assessed by one-way ANOVA followed by Tukey’s post-hoc test. Letters above the bars represent significance. Differences between bars that do not share a letter are statistically significant ($p < 0.05$).
Figure 3. PQS mutants are not deficient in reversible or irreversible attachment. Cultures were grown in 96-well plates, planktonic cells were removed, and attached biomass was quantified using crystal violet staining. (A) PA14 and Δ*pqsA* were grown for 2, 8, and 24 h. (B and C) PA14, Δ*pqsH*, Δ*pqsE*, and Δ*pqsR* were grown for 2 h (B) and 24 h (C). Error bars represent the standard deviation calculated from a minimum of three biological replicates. Statistical significance was determined using Student's two-tailed *t*-tests for figure 3A and one-way ANOVA for figures 3B and 3C. *, *p* < 0.05.
Figure 4. P. aeruginosa dispersion is dependent on quinolone biosynthesis. Biofilms were grown in semi-batch cultures in 24-well plates, and the fraction of microcolonies that had dispersed was determined. (A) PA14 wild type and pqsA mutant biofilms were assessed for dispersion after 4, 5, 6, and 7 days of growth. (B) Dispersion of the pqsA mutant overexpressing the pqsA gene was assessed after 6 days of growth and compared to the wild type and pqsA mutant. (C-E) Representative images show microcolonies in PA14 wild type (C), PA14 ΔpqsA (D), and PA14 ΔpqsA/pJN105-pqsA (E) biofilms after 6 days of growth. Error bars represent the standard deviation calculated from at least three biological replicates. Scale bars are 100 μm. Statistical significance was determined using Student’s two-tailed t-test for figure 4A and one-way ANOVA followed by Tukey’s post-hoc test for figure 4B. n.s., p > 0.5; *, p < 0.05; **, p < 0.01.
Figure 5. Production of PQS specifically restores native biofilm dispersion. Biofilms were grown in semi-batch cultures in 24-well plates for 6 days. (A) The fraction of microcolonies dispersed was found for PA14 wild type biofilms as well as \(\Delta pqsH \), \(\Delta pqsE \), and \(\Delta pqsR \) biofilms. (B) Overexpression of the missing genes in the mutant backgrounds restored the dispersion phenotype that was diminished in \(\Delta pqsH \) and \(\Delta pqsR \) biofilms. Bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was analyzed by one-way ANOVA followed by Dunnett’s post-hoc test. **, \(p < 0.01 \); ***, \(p < 0.001 \).
Figure 6. Exogenous PQS rescues ΔpqsR dispersion defect. PA14 wild type and ΔpqsR biofilms were grown in semi-batch cultures in 24-well plates for 4 days. For the following 2 days, the medium was exchanged every 12 hours with fresh medium containing 40 μM PQS (+ PQS), or an equivalent amount of methanol (+ MeOH, vehicle control). Dispersion efficiency was then quantified for the strains under each condition. Error bars represent the standard deviation calculated from at least three biological replicates. Statistical significance was analyzed by ANOVA followed by Tukey’s post-hoc test. n.s., $p > 0.5$; *, $p < 0.05$.
Figure 7. Purified OMVs display EPS-degrading activities. OMVs were harvested, washed with, and resuspended in MV buffer, and added to wells punched into different types of agar. (A) Skim milk agar was used to assess protease activity. (B) Tributyrin agar was used to assess lipase activity. (C) DNase agar to assess DNase activity. Error bars represent the standard deviation calculated from three biological replicates. Significance was assessed using Student's two-tailed t-tests. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.