Anti-cyclic citrullinated peptide antibody titer predicts time to rheumatoid arthritis onset in patients with undifferentiated arthritis: results from a 2-year prospective study

Nicola Bizzaro1*, Elena Bartoloni2†, Gabriella Morozzi3, Stefania Manganelli3, Valeria Riccieri4, Paola Sabatini5, Matteo Filippini6, Marilina Tampoia7, Antonella Afeltra8, Giandomenico Sebastiani9, Claudia Alpini10, Vittorio Bini11, Onelia Bistoni2, Alessia Alunno2 and Roberto Gerli2, for the Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA Group)

Abstract

Introduction: The diagnostic, predictive and prognostic role of anti-cyclic citrullinated peptide (CCP) antibodies in rheumatoid arthritis (RA) patients is widely accepted. Moreover, detection of these antibodies in subjects presenting with undifferentiated arthritis (UA) is associated with a significant risk to develop the disease. On the other hand, clinical and prognostic significance of evaluating anti-CCP levels in subjects with inflammatory arthritis at disease onset has not been fully clarified. The goal of this prospective study is to analyze the value and prognostic significance of anti-CCP titer quantification in UA subjects.

Methods: Serial anti-CCP assays were measured in 192 consecutive patients presenting with UA lasting less than 12 weeks. Clinical and serological data and arthritis outcome were evaluated every 6 months until two years of follow-up.

Results: Anti-CCP positivity, at both low and high titer, and arthritis of hand joints significantly predicted RA at two years, risk increasing in subjects with high anti-CCP titers at baseline. Moreover, time to RA diagnosis was shorter in patients with high anti-CCP2 titers at enrollment with respect to those with low antibody concentration.

Conclusions: Presence of anti-CCP antibodies, at both low and high concentration, is significantly associated with RA development in subjects with recent onset UA. However, time interval from the onset of the first symptoms to the fulfilment of the classification criteria appears to be directly related to the initial anti-CCP level.
therapy in UA patients with circulating anti-CCP delays

study showed that early introduction of methotrexate
comparison to other markers [14]. Interestingly, a recent
possess very high predictive and prognostic accuracy in
anti-CCP positivity at baseline has been demonstrated to
progression to RA in these subjects. Among these, serum
markers have been employed to estimate the likelihood of
or over-treatment, clinical, serologic and instrumental
mize the risk of diagnostic pitfalls and subsequent under-
after 1 year and in 40% after 3 years [13]. In order to mini-
progression to RA in an earlier phase, included detection of ACPA as a
key item for diagnosing the disease [12].

Finally, anti-CCP antibodies may have an important role
in the diagnostic algorithm of subjects presenting with
undifferentiated arthritis (UA). Indeed, UA accounts for
30% to 50% of patients presenting to the rheumatologist
and has a variable natural course. In particular, progres-
ion to RA has been reported in only one-third of patients
after 1 year and in 40% after 3 years [13]. In order to mini-
imize the risk of diagnostic pitfalls and subsequent under-
or over-treatment, clinical, serologic and instrumental
markers have been employed to estimate the likelihood of
progression to RA in these subjects. Among these, serum
anti-CCP positivity at baseline has been demonstrated to possess very high predictive and prognostic accuracy in comparison to other markers [14]. Interestingly, a recent study showed that early introduction of methotrexate therapy in UA patients with circulating anti-CCP delays evolution to RA, and prevents joint damage [15].

Although some questions remain unanswered regarding the significance of anti-CCP detection in patients with UA, quantification of anti-CCP serum level is now considered a key investigational issue and the important role played by antibody level on disease outcome has been underlined by the different scores attributed to antibody serum levels in the new classification criteria for RA [12]. Indeed, in early RA lasting less than 1 year, it has been demonstrated that anti-CCP positivity at any time is associated with higher risk of radiographic damage at baseline [16]. Interestingly, increase in antibody titer during the first 3 years of follow up was shown to significantly correlate with radiographic progression after 5 years [16]. However, in a similar patient population, anti-CCP serum levels did not seem to correlate with disease activity and severity, thereby suggesting that anti-CCP-positive patients with early RA have higher disease activity and severity independent of antibody titer [17].

On the other hand, studies analyzing the value and prognostic significance of anti-CCP titer quantification in UA patients at disease onset are very few, and results quite contradictory, mainly because of different study design and population enrollment criteria. In UA patients with evidence of circulating anti-CCP at disease onset, it has been demonstrated that antibody status appears to remain substantially stable during a disease course of up to 5 years of follow up, with a rate of seroconversion ranging from 1% to 9% [18-21]. Thus, the utility of anti-CCP retesting during the disease course in patients presenting with inflammatory arthritis is actually questionable and not recommended. On the other hand, the clinical value of anti-CCP levels at disease onset and influence of titer changes over time on disease outcome have not been fully clarified.

Therefore, the aim of this multicenter prospective study was to analyze the value and prognostic significance of anti-CCP titer quantification and monitoring in a cohort of patients presenting with UA.

Material and methods

Study subjects

Consecutive patients with UA were recruited at nine rheumatology units belonging to the Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA group), an Italian association of hospital and university experts in the field of autoimmune rheumatic diseases. The cohort included patients aged more than 18 years presenting with either mono-, oligo- or polyarticular arthritis lasting less than 12 weeks, and not meeting the 1987 American College of Rheumatology (ACR) classification criteria for RA, nor fulfilling any of the existing classification criteria for other inflammatory rheumatic disease. Evidence of radiographic joint damage or rheumatoid nodules represented exclusion criteria. Only non-steroidal anti-inflammatory drugs (NSAIDs) or Cox-2 selective inhibitors (Coxibs) and/or low-dose of corticosteroids (CS) (prednisone < 15 mg a day or equivalent) were allowed in the period from symptom onset to the time of enrollment. Patient recruitment began in March 2007 and was stopped in May 2009 after the inclusion of 206 patients. Subjects were assessed by a trained rheumatologist at baseline and every 6 months thereafter. Follow-up was continued until the last enrolled patient completed two years of follow-up. Demographic data were assessed at baseline and clinical and serological data were recorded at each visit. Diagnosis of RA or of any other rheumatic or non-rheumatic disorder was performed by the referring rheumatologists.

Each enrolled patient gave written consent prior to being included in the study. Patient identity was not disclosed and the data were anonymously used in accordance with the latest version of the Helsinki Declaration of
human research ethics. Collection of patient samples was carried out according to the University-Hospital of Udine Ethic Committee regulations.

Methods
Serum samples were collected at baseline and every 6 months. Overall, therefore, four serum samples were obtained from each patient. ACPAs were measured by the routine commercial method used in each participating center, according to manufacturer’s instructions. They were determined by CCP2-based assays, manufactured by Phadia (Uppsala, Sweden) (three centers), Axis- Shield (Dundee, UK) (three centers), Eurodiagnostica (Nijmegen, The Netherlands) (two centers) and Inova (San Diego, CA, USA) (one center). To harmonize and compare results obtained by the different assays, anti-CCP2 levels were expressed as a ratio, dividing the observed absolute antibody amount by the cutoff value of each commercial kit. Serum levels less than, or more than three times the cutoff were considered low and high, respectively.

IgM RF, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were locally determined by each participating center. Since the nine centers employed different analytical methods with different cutoffs, RF, ESR and CRP values were also converted to ratios, as described for anti-CCP2 values.

Statistical analysis
Student’s t-test and the Mann–Whitney test were used to compare normally and non-normally distributed continuous variables respectively (deviation from the Gaussian distribution were checked using the Shapiro-Wilk test). The chi squared (X^2) test with Yate’s continuity correction was used to analyze categorical variables. To estimate the survival function from the time of arthritis onset to the time of RA diagnosis, the Kaplan-Meier method was used. The risk of developing RA according to CRP, RF, anti-CCP2, and arthritis of the hand joints, was estimated by the Cox proportional hazard model, first adding one variable at time (un-adjusted hazard ratio, HR), and then all variables together (adjusted HR).

Biochemical variables were evaluated as categorical variables and divided into three levels as suggested by the ACR/European League Against Rheumatism (EULAR) criteria. Two-tailed P-values lower than 0.05 were considered statistically significant. Calculations were performed with Stata 8.2 software (Stata Corporation, College Station, Texas, USA).

Results
Among the 206 enrolled patients, 192 (93.2%) completed the study and 14 were lost during follow up, mainly because they moved to another location. Table 1 shows the baseline characteristics of the patient cohort. It includes 147 women and 45 men with a mean age of 52 ± SD, 16 years. Most patients had polyarthritis (60.9%) and only 9.4% of them presented with monoarthritis at onset. In about two-thirds of the cases, joint synovitis was localized at the hands.

A consistent number of patients ($n = 79$, 41.4%) were positive for RF (mean ratio: 3.8 ± SD 8.2) and/or anti-CCP2 ($n = 80$, 41.7%; mean ratio 7.8 ± SD 17) at baseline. Among the RF-positive subjects, 67.1% displayed high RF titers, while in the group of anti-CCP2-positive subjects, an even higher percentage (83.8%) displayed high anti-CCP2 levels in the serum. Many patients (45.8%) were out of therapy, 66 patients (34.4%) were taking NSAIDs or Coxibs, while a small number of subjects were taking CS in combination with, or without NSAIDs/Coxibs.

As depicted in Table 2, 72/192 (37.5%) patients had progressed to RA at 2 years from recruitment: 26 at 6 months, 20 at 12 months and 26 at 24 months. Among those who did not develop RA, a rheumatic disease other than RA (largely psoriatic arthritis and undifferentiated connective tissue disease) was diagnosed in 30 patients (15.6%). In addition, arthritis was transitory and eventually remitted in 32 patients (16.7%), while no definite diagnosis was made at 24 months in 58 of them (30.2%) and a diagnosis of UA was thus maintained.

Table 3 shows the baseline characteristics of the patient cohort who developed RA at the end of the study, compared to the patients who did not. Age, gender and number of involved joints at presentation did not help in distinguishing patients developing RA during follow up, while hand articular involvement was more frequent at baseline in subjects developing RA. Moreover, higher initial levels of CRP but not of ESR, were associated with a higher possibility of developing RA. In addition, the majority of patients with a diagnosis of RA at the end of the study were RF-positive and had much higher titers of RF at presentation than patients who did not develop the disease. However, the percentage of patients with either low or high RF titer at symptom onset in RA and non-RA patients was similar.

Among subjects who developed RA, the majority had anti-CCP2 at presentation (73.6%), while only 22.5% of non-RA patients displayed these antibodies ($P < 0.0001$). Interestingly, although the anti-CCP2 mean ratio at baseline in the RA cohort was up to 3.5-fold higher than that observed in the non-RA group ($P < 0.0001$), the percentage of patients with either low or high anti-CCP2 titers at enrollment did not differ in the RA and non-RA groups. Furthermore, the presence at recruitment of a single positivity for RF, without evidence for
anti-CCP2, was not able to discriminate between subjects who would or would not develop RA, while the percentage of anti-CCP2-positive patients was higher in the RA cohort independent of the evidence of RF-positivity. It is of note that the percentage of anti-CCP2-positive patients and anti-CCP2 titers remained substantially stable during follow up (data not shown).

Finally, the initial treatment with NSAIDs/Coxibs and/or CS did not appear to influence the subsequent development of arthritis (data not shown).

On univariate regression analysis, inflammatory involvement of the hand joints, high CRP levels, and RF and anti-CCP2 at both low and high titers were predictive of RA development (Table 4). However, on multivariate analysis adjusted for the covariates CRP, RF, anti-CCP2 and arthritis of the hand joints, only arthritis of the hand joints and anti-CCP2, at both low and high titers predicted RA, with a risk of 3.2 for low, and 4.3 for high anti-CCP2 titers at baseline.

As shown in Figure 1, time from presentation to diagnosis of RA was related to anti-CCP2 levels at baseline, since this period was shorter in patients having high anti-CCP2 titers at enrollment with respect to those displaying basal low anti-CCP2 levels. However, the RA-free survival curve in the two groups overlapped at the end of 2-year follow up.

Table 1 Baseline demographic, clinical and serological characteristics of the 192 patients with undifferentiated arthritis

Characteristics	Baseline values	Percent patients
Age, years, mean ± SD	52 ± 16	na
Female, n	147	76.6
Monoarthritis, n	18	9.4
Oligoarthritis, n	57	29.7
Polyarthritis, n	117	60.9
Arthritis of hand joints, n	126	65.6
CRP		
Positive, n	98	51.0
Ratio, median (IR)	1.1 (0.6-4.1)	na
ESR		
Increased, n	103	53.6
Ratio, median (IR)	22.5 (14-40)	na
Rheumatoid factor		
Positive	79	(41.4)
Ratio, median (IR)	0.7 (0.5-3.9)	na
Low titer on total positive	26	(32.9)
High titer on total positive	53	(67.1)
ACPA		
Positive, n	80	(41.7)
Ratio, median (IR)	0.5 (0.3-7.8)	na
Low levels on total positive, n	13	(16.2)
High levels on total positive, n	67	(83.8)
Baseline therapy		
None, n	88	(45.8)
NSAIDs/Coxibs, n	66	(34.4)
Corticosteroids, n	10	(5.2)

EBV, Epstein-Barr virus.

Table 2 Diagnosis at the end of follow up (2 years)

Diagnosis	Number of patients (%)
Rheumatoid arthritis	72 (37)
Undifferentiated arthritis	58 (30)
Remission	32 (17)
Psoriatic arthritis	11 (6)
Undifferentiated connective tissue disease	8 (4)
Fibromyalgia	4 (2)
Spondiloarthritis	2 (1)
Viral arthritis (EBV)	1 (0.5)
Systemic lupus erythematosus	1 (0.5)
Osteoarthritis	1 (0.5)
Sarcoidiosis	1 (0.5)
Primary Sjögren’s syndrome	1 (0.5)
Total	192 (100)
During the study period, patients were treated with anti-inflammatory drugs, or disease modifying anti-rheumatic drugs (DMARDs), but there was no relationship between the change in anti-CCP2 levels and the therapy introduced (data not shown). Moreover, no significant relationship was detected between anti-CCP2 titer and the other parameters, in particular ESR and CRP (data not shown).

Discussion

In recent years, the generation of serological tests for accurate ACPA detection lead to an impressive improvement in the diagnosis of inflammatory articular disorders. In particular, anti-CCP2 assays are helpful in various clinical settings, such as early diagnosis of RA, diagnosing RF-negative RA and differentiating other RF-positive arthritis, such as hepatitis C virus-related joint involvement [1,22]. Moreover, in subjects presenting with UA, evidence of anti-CCP2 positivity at baseline appears to have relevant diagnostic, predictive and prognostic value [16,23-25]. On the other hand, major uncertainty remains about the clinical and prognostic significance of anti-CCP2 titer in UA subjects, in particular in subjects presenting with borderline antibody values. These doubts are further strengthened by the observation that many non-RA sera with low ACPA levels bind equally to citrullinated and non-citrullinated peptides and that low ACPA levels may not discriminate between true and false positive results [26]. Thus, specificity of low-positive samples remains a diagnostic issue.

In the present prospective study recruiting subjects with recent onset UA, 37% of them developed RA at 2 years, while 30% maintained persistent UA. The available data in the literature show that the percentage of UA subjects developing RA or persistent arthritis is highly variable, ranging from 7% to 72%. The wide range of RA diagnoses may be related to different lengths of follow up, which in particular, was shorter in many studies with respect to that of our investigation [27-30]. Indeed, it is conceivable that some UA patients may experience progression to RA after more than 1 year of follow up. In addition, the design of some studies also did not rule out baseline recruitment of subjects fulfilling the ACR 1987 RA classification criteria. The introduction of DMARDs in this group of patients at enrollment may hamper the interpretation and comparison of the data [21,29,31]. Finally, the pattern of inflammatory joint involvement, and most importantly,
the duration of joint symptoms at inclusion ranging from more than four weeks to less than 3 years, produced quite variable differences in results between different studies. In this setting, the very short duration of UA, the exclusion of patients with definite arthritis and the inclusion of all patterns of arthritis, which characterize the enrolled population, may represent a potential strength of this study.

The analysis of clinical and serological characteristics of our UA patients at presentation showed that those developing RA at 2 years more frequently had inflammatory involvement in the hand and higher CRP, RF and anti-CCP2 titers in comparison to non-RA subjects. Although the same items predicted RA on univariate analysis, only patients with hand arthritis and anti-CPP2

Variable	HR (95% CI)	P	HR (95% CI)	P
CRP				
Negative	1		1	
Low +	0.720 (0.362, 1.434)	0.350	0.875 (0.423, 1.811)	0.719
High+	1.737 (1.049, 2.877)	0.032	1.827 (0.950, 3.514)	0.071
RF				
Negative	1		1	
Low+	2.020 (1.001, 4.073)	0.050	0.791 (0.248, 2.522)	0.692
High+	3.097 (1.867, 5.137)	< 0.001	0.729 (0.219, 2.431)	0.607
ACPA				
Negative	1		1	
Low+	3.360 (1.412, 7.998)	0.006	3.187 (1.257, 8.077)	0.015
High+	4.613 (2.698, 7.887)	< 0.001	4.324 (2.023, 9.245)	< 0.001
Hand joints arthritis	1.871 (1.083, 3.232)	0.025	2.140 (1.128, 4.059)	0.020

CRP, C-reactive protein; RF, rheumatoid factor; ACPA, anti-citrullinated peptide antibodies.

Figure 1 Time to reach rheumatoid arthritis (RA) diagnosis according to anti-cyclic citrullinated peptide 2 (CCP2) levels in 192 patients with undifferentiated arthritis. Data were analyzed by Kaplan-Meier analysis and the log-rank test.
positivity presented a significantly increased risk of developing RA on multivariate analysis.

The percentage of anti-CCP2-positive UA patients included in the present study was within the range of anti-CCP2 positivity described in UA cohorts in other studies (14% to 59%). In this setting, it is of note that the proportion of anti-CCP2-positive patients at baseline was higher in subjects with RA diagnosis with respect to non-RA subjects, independent of RF positivity, while the percentage of patients with single positivity for RF (anti-CCP2-negative) was similar in the RA and non-RA groups. Moreover, CRP and ESR levels do not appear to have an effect on risk of progression to RA. Taken together, these observations confirm the key prognostic role of anti-CCP2 for RA diagnosis, rather than RF and inflammatory parameters.

In agreement with previous studies [21,32], we did not observe any effect of age and gender on anti-CCP2 levels in the different patient groups. On the other hand, the genetic background may exert a relevant adjunctive role in the risk of disease development. Interestingly in fact, anti-CCP2-positive UA patients who will develop RA display reactivity against a significant larger number of citrullinated epitopes, namely vimentin, fibronectin and α-enolase, with respect to anti-CCP2-positive patients not evolving toward RA at one year of follow up, thus postulating a very distinct immunological reaction profile at disease onset [33].

Recent prospective studies showed that higher baseline anti-CCP titer is significantly correlated to increased likelihood of persistent arthritis or RA development in cohorts of subjects presenting with UA [21,27,29,30] (Table 5). Moreover, the likelihood of persistent arthritis increased with increasing ACPA levels, with a 14-fold risk depicted in subjects with anti-CCP > 250 U/ml [29]. Few of these studies, however, performed a serial analysis of anti-CCP2 titer during follow up, as was performed in our population [21,31]. In the present cohort, the percentage of patients with low or high anti-CCP2 titer was not different in the RA and non-RA groups after 2 years of observation. This reflects the substantial stability of anti-CCP2 levels over time, as has also been demonstrated in other studies [18,19,21].

One of the most interesting findings of the present study, however, is the demonstration that progression to RA in UA patients is more rapid in those with higher anti-CCP2 levels. To our knowledge, this is the first demonstration that high anti-CCP2 levels at baseline correlate with shorter time to RA diagnosis in subjects with recent onset UA. This conclusion appears to be supported by the data of a differently designed study in a cohort of healthy women, showing that detection of high anti-CCP2 levels in samples stored at baseline was strongly associated with the time to RA diagnosis, higher values being predictive of shorter time to disease onset [34].

Anti-CCP concentration does not appear to correlate with clinical disease outcomes or radiographic progression, in particular in studies analyzing serial antibody measurements over time. Neither low nor moderate to high anti-CCP titer, or relative change in antibody levels, correlated with higher risk of radiographic damage, or

Table 5: Studies evaluating the significance of anti-CCP titer in patients with undifferentiated arthritis (UA)

Author [ref]	Patients, n	UA	UA duration	FU	Anti-CCP	CCP+ baseline	UA outcome	Anti-CCP titer significance
Kudo-Tanaka [27]	146	≥ 2 Sj	≤ 2 yr	1 yr	≥ 5 U/ml no serial assay	17%	12% RA 37% non-RA 41% UA	164 ± 136 RA vs 55 ± 72 non-RA/UA P = 0.017
Guzian [18]	253 (83% RA baseline)	≥ 3 Sj	≤ 1 yr	30 mo.	≥ 20 U/ml serial assay (0.30 mo.)	38%	17% RA	
Ursum [31]	545	≥ 2 Sj	≤ 3 yr	2 yr	≥ 5 U/ml serial assay (0.1 yr)	56%	63% RA baseline or at 1 yr	
Emad [28]	69	≥ 1 Sj	≤ 1 yr	1 yr	≥ 2.9 U/ml no serial assay	59%	26% RA 6% PsA 41% UA 26% remission	
Bos [30]	147	arthralgia	12 (7-36) mo. median	28 (19-39) mo. median	≥ 5 U/ml no serial assay	34%	7% RA 13% ≥ 45% 80% no-arthritis	
Mjaavatten [29]	376 (19% RA baseline)	≥ 1 Sj	≤ 16 wk	1 yr	≥ 25 U/ml no serial assay	16%	46% persistent 54% self-limiting	
Burr [21]	640 (49% RA baseline)	≥ 2 Sj	≥ 4 wk	5 yr	≥ 5 U/ml serial assay (0.3 yr)	30%	72% RA 28% non-RA	
Present study	192	≥ 1 Sj	≤ 12 wk	2 yr	serial assay (6.1218.24 mo.)	42%	37% RA 30% UA 17% self-limiting 16% non-RA RD	

RA, rheumatoid arthritis; FU, follow up; Sj, swollen joint; CCP, cyclic citrullinated peptide; Tj, tender joint; DAS28, disease activity score; HAQ, health assessment questionnaire; PsA, psoriatic arthritis; RD, rheumatic disease; SHS, Sharp Heijde Score; ESR, erythrocyte sedimentation rate; HR, hazard ratio; OR, odds ratio.
with outcome measures of disease activity and severity [18,31]. However, in a recent prospective study with a follow up of 5 years, anti-CCP concentration more than four times the upper normal limit was associated with a ten-fold increased risk of erosive disease [21]. The longer follow up characterizing this study may explain these conflicting data.

Conclusions
The results of the present study further support the value of testing anti-CCP antibodies in subjects presenting with UA. In particular, they confirmed that recent onset UA patients displaying anti-CCP antibodies have a significantly increased risk of developing RA rather than non-RA inflammatory/autoimmune diseases at 2 years. This is confirmed not only in patients with high, but also those with low antibody titer. However, initial anti-CCP levels appear to be of great importance in predicting the interval time to disease onset, since a delay in RA diagnosis could occur in subjects with low antibody levels at symptom onset. This suggests the need of closer follow up of these UA patients. Further studies, however, are needed to evaluate the influence of a peculiar genetic background on antibody level and to explore therapeutic interventions that can be directed toward specific patient subgroups considered to have the highest risks.

Abbreviations
ACPA: anti-citrullinated peptide antibodies; ACR: American College of Rheumatology; CCP2: cyclic citrullinated peptide 2; Coxib: Cox-2 selective inhibitors; CRP: C-reactive protein; CS: corticosteroids; DMARD: disease modifying anti-rheumatic drugs; ESR: erythrocyte sedimentation rate; EULAR: European League Against Rheumatism; FIRMA: Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni; HLA: human leukocyte antigen; HR: hazard ratio; NSAIDs: non-steroidal anti-inflammatory drugs; RA: rheumatoid arthritis; RF: rheumatoid factor; SE: shared epitope; UA: undifferentiated arthritis.

Authors’ contributions
NB conceived the study, designed the study, contributed to data collection and revised the manuscript. EB and RG designed the study, drafted and revised the manuscript. All authors have read and approved the final manuscript for publication.

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratorio di Patologia Clinica, Azienda Ospedaliera Universitaria, Policlinico di Bari, 70124 Bari, Italy. 2Laboratorio di Patologia Clinica, Azienda Ospedaliera Universitaria Policlinico San Camillo - Forlanini, 00151 Roma, Italy. 3I.O.C. di Medicina Clinica e Reumatologia, Università Campus Bio-Medico, 00128 Roma, Italy. 4I.O.C. di Reumatologia, Azienda Ospedaliera San Camillo - Forlanini, 00151 Roma, Italy. 5U.O.C. Analisi Chimico Cliniche, Fondazione IRCCS Policlinico S.Matteo, 27100 Pavia, Italy. 6Divisione di Reumatologia Spedali Civili di Brescia, 25125 Brescia, Italy. 7Laboratorio di Patologia Clinica, Azienda Ospedaliera Universitaria Policlinico di Bari, 70124 Bari, Italy. 8Divisione di Reumatologia, Spedali Civili, 84014 Nocera Inferiore, Italy. 9Dipartimento di Medicina Interna, Università di Perugia, 06122 Perugia, Italy. 10S.C. Analisi Chimico Cliniche, Fondazione IRCCS Policlinico S.Matteo, 27100 Pavia, Italy. 11Dipartimento di Medicina Interna, Università di Perugia, 06122 Perugia, Italy.

Received: 15 October 2012 Revised: 13 December 2012 Accepted: 2 January 2013 Published: 22 January 2013

References
1. Van Venrooj W, van Beers J, Prujin G: Anti-CCP antibodies: the past, the present and the future. Nat Rev Rheumatol 2011, 7:391-398.
2. Nishimura K, Sugiyama D, Kagota Y, Tsuji G, Nakazawa T, Kawano S, Saigo K, Morinobu A, Koshiha M, Kunzt KM, Kamae I, Kumagai S: Meta-analysis: Diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med 2007, 147:797-808.
3. Bizzaro N, Tonutti E, Toccoli R, Villalta D: Analytical and diagnostic characteristics of 11 2nd- and 3rd-generation immunoenzymatic methods for the detection of antibodies to citrullinated proteins. Clin Chem 2007, 53:1527-1533.
4. van der Helm-van Mil AH, Verpoort KN, Breedveld FC, Huizinga TW, Tees RE, de Vries RR: The HLA-DRB1 shared epitope alleles are primarily a risk factor for the cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006, 54:1117-1121.
5. Bartoloni E, Alunno A, Bistoni O, Bizzaro N, Migliorini P, Morazzoli G, Doria A, Meoheu A, Lotzrniker M, Allegri F, Rocci E, Alpini C, Gabellini A, Tampoa M, Gerli R: on behalf of the Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA) investigators: Diagnostic value of anti-mutated citrullinated vimentin in comparison to anti-cyclic citrullinated peptide and anti-viral citrullinated peptide 2 antibodies in rheumatoid arthritis: An Italian multicentric study and review of the literature. Arthritis Res 2012, 14:1195-820.
6. Taylor P, Gartemann J, Hsieh C, Creedon J: A systematic review of serum biomarkers anti-cyclic citrullinated peptide and rheumatoid factors tests for rheumatoid arthritis. Arthritis care Sci 2011, 2011:810338.
7. Buhm Y, Morrison W, Naseh H, Bunn D, Silman A, Symons D, Barton A: The performance of anti-cyclic citrullinated peptide antibodies in predicting the severity of radiologic damage in inflammatory polyarthritis. Results and revised the manuscript. All authors have read and approved the final manuscript for publication.

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratorio di Patologia Clinica, Ospedale San Antonio, 33028 Tolmezzo, Italy. 2Struttura di Reumatologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, 06122 Perugia, Italy. 3Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, 53100 Siena, Italy. 4Istituto di Medicina Interna e Specialità Mediche, Università Sapienza di Roma, 00185 Roma, Italy. 5I.O.C. di Patologia Clinica, D.E.A. II Umberto I, 84014 Nocera Inferiore, Italy. 6Divisione di Reumatologia, Spedali
13. van Gaalen F, Linn-Rasker S, van Vennooij W, de Jong BA, Breedekiel FC, Verweij CJL, Toes RE, Huizinga TW. Autoantibodies to cyclic citrullinated peptide predict progression to rheumatoid arthritis in patients with undifferentiated arthritis. Arthritis Rheum 2004; 50:709-713.

14. Van der Linden M, van der Woude D, Ioan-Facsinay A, Levaart EW, Stoeken-Rijssbergen G, Huizinga TW, Toes RE, van der Helm-van Mil AH. Value of anti-modified citrullinated vimentin and third-generation anti-cyclic citrullinated peptide compared with second generation anti-cyclic citrullinated peptide and rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid arthritis. Arthritis Rheum 2009; 60:2223-2241.

15. van Dongen H, Van Aken J, Lard L, Visser K, Rondond HK, Hulsman HM, Speyer I, Westedt ML, Peeters AJ, Allaart CF, Toes RE, Breedekiel FC, Huizinga TW. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2011; 56:1424-1432.

16. Meyer O, Nicaise-Roland P, dos Santos M, Labante C, Doulagos M, Goupille P, Cantagrel A, Sibilia J, Combe B. Serial determination of cyclic citrullinated peptide antibodies predicted five-year radiological outcomes in a prospective cohort of patients with early rheumatoid arthritis. Arthritis Res Ther 2006, 8(4R).

17. Papadopoulou N, Tsoukiss G, Pavlou-Tziounta A, Giannakoulis A, Galanopoulos V. Does the presence of anti-CCP autoantibodies and titers serum levels influence the severity and activity in rheumatoid arthritis patients? Clin Rheumatol Immunol 2008, 34:11-15.

18. Guizan MC, Carrier N, Cossette P, de Brum-Fernandes AJ, Liang P, Ménard HA, Boire G. Outcomes in recent-onset inflammatory polyarthritis differ according to initial titers, persistence over time and specificity of the autoantibodies. Arthritis Care Res 2010, 62:1624-1632.

19. Mjaavatten MD, van der Heijde D, Uhling T, Haugen AJ, Nygaard H, Bjarnbøe O, Kven TK. Should anti-citrullinated protein antibody and rheumatoid factor status be reassessed during the first year of follow-up in recent-onset arthritis? A longitudinal study. J Rheumatol 2011, 38:2356-2361.

20. Barra L, Pope J, Bessette L, Haroue B, Bykerk V. Lack of seroconversion of rheumatoid factor and anti-cyclic citrullinated peptide in patients with early inflammatory arthritis: a systematic literature review. Rheumatology 2011, 50:311-316.

21. Burr M, Viatte S, Bukuari M, Plant D, Symmons DP, Thomson W, Barton A. Long-term stability of anti-cyclic citrullinated peptide antibody status in patients with early inflammatory polyarthritis. Arthritis Res Ther 2012, 14:R109.

22. Palmazi C, Buskila D, D’Ange lo S, D’Amico E, Orlaveri B. Autoantibodies in patients with chronic hepatitis C virus infection: pitfalls for the diagnosis of rheumatic diseases. Autonmun Rev 2012, 11:659-663.

23. Machold KP, Stamm TA, Neil VP, Pflugbur S, Aretaha D, Steinge G, Uffmann M, Smolen JS. Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology 2007, 46:342-349.

24. Janssen LW, van Schaardenburg D, van di-B, van der Stad RJ, de Konin MH, Dijkmans BA. The predictive value of anti-cyclic citrullinated peptide antibodies in early arthritis. J Rheumatol 2003, 30:1691-1699.

25. Kroon EJ, de Jong BA, van Does MA, Swinkels H, van den Hoogen FH, van’t Hof M, van de Putte LB, van Rijswijk MH, van Vennooij WL, van Riel PL. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 1999, 43:1831-1835.

26. Kakuianu M, Sobel ES, Nairn S, Li Y, Akaogi J, Yamazaki Y, Segal MS, Hahn PC, Chien B, Reeves WH, Satoh M. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/en erosive arthritis. J Rheumatol 2009, 43:2682-2690.

27. Kudo-Tanaka F, Ohshima S, Ishii M, Mima T, Matsushita M, Azuma N, Harada Y, Katake Y, Ikue H, Umeshita-Sasa M, Miyake S, Kashi Y. Autoantibodies to cyclic citrullinated peptide 2 (CCP2) are superior to other potential diagnostic biomarkers for predicting rheumatoid arthritis in early undifferentiated arthritis. Clin Rheumatol 2007, 26:1627-1633.

28. Erdal M, Shekata M, Ragab Y, Saud A, Hamza H, Abou-zeid MA. Prevalence and predictive value of anti-cyclic citrullinated protein antibodies for future development of rheumatoid arthritis in early undifferentiated arthritis. Mod Rheumatol 2010, 20:358-365.

29. Mjaavatten MD, van der Heijde D, Uhling T, Haugen AJ, Nygaard H, Sidenvall G, Heltgevist K, Kven TK. The likelihood of persistent arthritis increases with the level of anti-citrullinated peptide antibody and immunoglobulin M rheumatoid factor: a longitudinal study of 376 patients with very early undifferentiated arthritis. Arthritis Res Ther 2010, 12R76.

30. Bos WH, Wolbink GJ, Boers M, Tijhuis GJ, de Vries N, van der Horst-Bruinsma IE, Tak PP, de vand Rij, van der Laken CJ, Dijkmans BA, van Schaardenburg D. Arttis development in arthritis patias is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann Rheum Dis 2010, 69:490-494.

31. van Rijswijk MH, van Dillen N, Dijkmans BAC, van Schaardenburg D. Levels of anti-citrullinated protein antibodies and IgM rheumatoid factor are not associated with outcome in early arthritis patients: a cohort study. Arthritis Res Ther 2010, 12:R88.

32. Bos WH, van Rijswijk MH, van Dillen N, Bartels GM, Wolbink GJ, Numohamed MT, van der Horst-Bruinsma IE, van de Rij, Erusius JB, Tak PP, Dijkmans BA, van Schaaradenburg D. The role of the shared epitope in arthralgia with anticyclic citrullinated peptide antibodies (anti-CCP) and its effect on anti-CCP levels. Ann Rheum Dis 2008, 67:1347-1350.

33. van der Woude D, Rantapää-Dahlqvist S, Ioan-Facsinay A, Onnekink C, Schwarte CM, Verpoort KN, Drijfhout JW, Huizinga TW, Toes RE, Pruijn GJ. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 2010, 69:1554-1561.

34. Chidwik LB, Randell LA, Costenbader KH, Schur PH, Kasan EW. Comparison of threshold cutoffs and continuous measures of anti-cyclic citrullinated peptide antibodies in predicting future rheumatoid arthritis. J Rheumatol 2009, 36:706-711.