Morphological analysis and photosynthetic performance of improved papaya genotypes

Alena Torres Netto¹, Eliemar Campostrini¹, Letícia C. Azevedo², Marcelo A. de Souza³, José C. Ramalho⁴ and Manuela M. Chaves⁵

¹ Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) / Centro de Ciências e Tecnologias Agropecuárias / Setor de Fisiologia Vegetal, Av Alberto Lamengo, 2000, CEP: 28013620, Campos – Rio de Janeiro – Brazil, fax (55 22) 27397191 and tel: (55 22) 27397105, alena@uenf.br.
² Universidade Federal de Viçosa / Fisiologia Vegetal.
³ IDAF – Espírito Santo
⁴ Centro de Ecologia, Bioquímica e Biotecnologia Vegetal, Instituto de Investigação Científica Tropical, Quinta do Marquês, 2784-505 Oeiras, Portugal.
⁵ Instituto de Tecnologia Química e Biológica (ITQB), Oeiras e Universidade Técnica de Lisboa (UTL) - Instituto Superior de Agronomia (ISA) / Tapada da Ajuda / 1300 Lisboa, Portugal.

Received: 19 June 2009; Accepted: 21 October 2009.

ABSTRACT

Brazil is the largest world producer of papaya and the third largest exporter despite of only 1.5 to 2.0% of its production is exported. Such an underexplored exportation potential highlight the necessity for physiological studies on new cultivars and hybrids to verify their agronomic and commercial viability. Two Brazilian states, Bahia and Espirito Santo, are responsible for 80% of national production. Papaya can also be an agricultural alternative to north / northeast of Rio de Janeiro, because the region is close to consumer centers and have similar environmental conditions of the most productive regions. Nevertheless, it is worth to develop cultivars that can express the highest yield potential in this region. The aim of this work was to characterize physiologically two hybrids developed for the north/northeast of Rio de Janeiro (UENF/Caliman 01 and JS12) in comparison with three top commercial genotypes (Golden, Sunrise Solo 7212 and Tainung) of Carica papaya L.. The cv. Golden presented the lowest shoot and root growth, the lowest height, shrunk diameter, specific leaf weight, less efficiency in electrons transport per sample area and show the lowest ability to synthesized total chlorophylls in comparison with the others genotypes. At noon, this genotype showed higher stomatal conductance, related to the leaf-air vapor pressure deficit, which lead to higher transpiration rate and intrinsic water use efficiency. No differences were detected in the photosynthetic rates among the five genotypes suggesting that the UENF's hybrids are endowed with similar photosynthetic capacity and morphological characteristics to the top commercial genotypes. The relevance of this characterization to drive future successful genetic improvement programs will be discussed.

Key words: Carica papaya L., fluorescence, gas exchange, genotypes, growth analyses

INTRODUCTION

The carbon assimilates necessary for yield productions are ultimately produced via photosynthesis. Thus, any factor that substantially alters the net rate of photosynthesis (A) has a potential impact on growth (Pettigrew, 2004). Total biomass accumulation is a function of the rate of biomass production (associated with leaf area production, leaf area retention and net photosynthetic rate) and growth duration (Peng et al., 1991).

The variability of genotype productivity can be associated with the morphological characteristics of the plant (architecture),
Environmental limitations often avoid genotypes from attaining their yield potential (Chaves et al., 2003). For example, a decrease in the photosynthetic rate during the afternoon, as compared to the morning values within the same light intensity. Several factors might contribute to this response, working alone or in tandem, the high temperature (Perry et al., 1983), a stomatal closure due to a rise of the vapor pressure deficit (VPD) (Pettigrew et al., 1990) or the existence of a feedback inhibition due to increased sugar levels in the leaves (Peet and Kramer, 1980). The genotypes that keep their photosynthesis in this period can produce more assimilates for plant growth and development. Therefore it is necessary to identify the genetic components that contribute for such limitation of the photosynthetic rates.

In cassava, significant differences in stomatal sensitivity to humidity were observed among cultivars (El-Sharkawy 2004). Furthermore, total biomass and storage root yield were larger in high humidity environments and these characteristics were positively correlated with leaf photosynthetic rates (Cock et al. 1985, El-Sharkawy et al. 1986). These findings illustrate that stomatal sensitivity to changes in air humidity is translated into crop canopy, and hence to productivity, and have important practical implications for cassava breeding for different ecosystems and edapho-climatic zones (El-Sharkawy 2006).

In Brazil, the Darcy Ribeiro State University of North Fluminense is involved in a wide program for genetic breeding of papaya (Carica papaya L.), aiming at the development of improved genotypes for the national and international market. However, little information is available about the interaction of environmental factors (climate and soil) and physiological processes (namely, photosynthesis) of these new genotypes (Marler et al., 1994). Such knowledge can decisively contribute to an efficient agricultural zoning, to build up correct management strategies aiming of higher productivity and to genetic breeding programs for papaya (Schaffer and Andersen, 1994, Reis et al, 2006, Singels et al., 2005, Campostrini and Glenn, 2007). In order to support genetic breeding programs of papaya, this work studied some photosynthetic and biometric components in five papaya genotypes (Carica papaya L.).

MATERIAL AND METHODS

Plant material and growth conditions: Plants of five Carica papaya L. genotypes (Sunrise Solo 72/12, Formosa, Golden, Tainung and hybrid UENF-Caliman) were grown in...
white pots with 6 L filled with soil: sand: manure (1:2:1). The experiment was done from September to December of 2003, in a greenhouse with ca. 30% of the natural photosynthetic photon flux density (PPFD), in the Darcy Ribeiro State University of North Fluminense, in Campos dos Goytacazes, Brazil (41°15' O, 21°27' S).

During the experiment relative humidity and temperature were measured by a thermohigrometer (Spectrum Technologies, USA), and PPFD by a Quantum Data Logger (Spectrum Technologies, USA). All sensors were coupled to a data collector and the information was taken every hour (Figure 1).

Figure 1. Photosynthetic photon flux density (PPFD), relative humidity, temperature and air vapor pressure deficit (VPD) from the growing location of the 5 genotypes of Carica papaya L.

Measurements: Fifteen days after germination the biometric measurements started and were carried out weekly, including the length of central vein (LCV) and plant height (H), measured with a ruler, the stem diameter (D), using a caliper (Eletronic Digital Caliper) and the leaf number (NF). Leaf area per plant (LA, m²) was obtained at the end of the experiment (92 days after seedling -DAS), using a LI-3100 area meter (LI-COR, Lincoln, NE, USA), the specific leaf weight (SLW, g m⁻²) was determined in each genotype at the same date by the rate of leaf disc dry weight and leaf disc area ratio (10 discs/genotype). Each disc had 10 cm² and was sampled from the 4th or 5th leaf from the apex.

To determine the shoot and root dry weight (SDW and RDW, respectively) at the end of the experiment (92 DAS), the plant organs (leaves, stem and roots) were oven-dried at 80°C for 48 h. Using the dry weight values several parameters
were estimated: shoot: root ratio (SDW/RDW, g g⁻¹), leaf weight ratio (LWR, g leaf dry weight g⁻¹ total plant dry weight), stem weight ratio (SWR, g stem dry weight g⁻¹ total plant dry weight) and leaf area ratio (LAR, m² leaf area g⁻¹ total plant dry weight) (Cruz et al., 2004).

Net photosynthetic rates (A) and stomatal conductance (gs), as well as the leaf-to-air vapor pressure deficit (VPDleaf-air) were measured between 35 - 49 days after seedling (DAS), at 800 and at 1200 h, in the 4ᵗʰ or the 5ᵗʰ leaf from the apex, using a portable photosynthesis system model, LI-6200 (LI-COR). The daily carbon gain (Adaily) was estimated by interposing the area below the daily net photosynthesis curve obtained by the measurements along the day (800, 1200, 1400 and 1600 h).

The chlorophyll content was estimated using the portable chlorophyll meter (PCM) (SPAD-502, Minolta, Japan) in the same leaves.

The intrinsic water use efficiency (IWUE, µmol CO₂ / mmol H₂O) was determined at the end of the experiment, by dividing the net photosynthetic rate (A) by the stomatal conductance (gs).

The chlorophyll fluorescence parameters were determined concomitantly to the gas exchange measurements, using a non-modulated fluorimeter PEA (Plant Efficiency Analyzer- Hansatech Ltda., King’s Lynn, UK). The leaves were pre-darkened for 30 min so that all reaction centers were “open” (all primary acceptors oxidized) and heat dissipation was minimal. After dark adaptation the chlorophyll fluorescence variables F₀ (initial fluorescence), Fₘ (maximum fluorescence) and Fₐ/Fₘ (maximum quantum yield) were determined. According to Strasser and Strasser (1995), using the PEA fluorimeter, it is possible to obtain five fluorescence levels [F₁(t=50µs), F₂(t=100µs), F₃(t=300µs), F₄(t=2ms), F₅(t=30ms)]. From those fluorescence data the JIP-test was performed using the Biolyser program (Strasser, R.J. - University of Geneva, Laboratory of Bioenergetics, Switzerland) to obtain some information about the behavior (structure, conformation and activity) of the photosynthetic apparatus. The calculated parameters were: ABS/CS₀ (the total number of photons absorbed by the antenna molecules of active and inactive PS II reaction centers over the sample cross-section), ET₀/CS₀ (electron transport in a PS II cross-section), RC/CS₀ (concentration of active reaction centres), TR₀/CS₀ (the maximal excitation trapping rate that will lead to QA reduction measured over a cross-section of active and inactive RCs), TR/ABS (Fₐ/Fₘ ratio, the probability that an absorbed photon will be trapped by the PS II RC with the resultant reduction of Qₐ) e DI₀/RC (the ratio of the total dissipation of untrapped excitation energy from all RCs with respect to the number of active RCs) (Force et al., 2003).

Statistical analysis: For the biometric measurements, A, gs, VPD, IWUE, Adaily and chlorophyll contents a six casual block design with 3 replicates were used. For the chlorophyll fluorescence was used a five casual block design with nine replicates. For SLA, dry weight and their ratios the design was casualized with 8 replicated. The results were submitted to an ANOVA, followed by the Tukey’s test for mean comparison, at 5% of probability using the SAEG system.

RESULTS

Sharp increase in the length of central vein (LCV) was observed in all studied genotypes between 42 and 56 DAS (Figure 2). After that differences in LCV became significant, with the Tainung genotype showing higher values than Hybrid, Solo 7212 and Golden.

![Figure 2. Length of central vein (LCV) increase of leaves from the 5 genotypes of Carica papaya L in function of time. Each symbol represents the average of 18 replicates. Averages with the same letter did not show statistic differences (Tukey 5%). The arrow shows the days when gas exchange measurements were carried out.](image-url)
DAS (24th October) until the end of the experiment and Tainung was the highest. The other genotypes presented intermediate values for LCV, H and D, with non-significant differences among them or with Golden and Tainung during the studied period. During the experiment the genotypes did not differ significantly in the number of leaves per plant, except on the last date (6 December), when Golden presented a higher value when compared to Solo 7212 (Figure 4).

Figure 3. Height (H) and shrunk diameter (D) increase of leaves from Carica papaya L. plants in function of time. Each symbol represents the average of 18 replicates. Averages with the same letter did not show statistic differences (Tukey 5%). The arrow shows the interval days when gas exchange measurements were carried out.

Figure 4. Leaf number increase in function of time (LN) of the 5 genotypes of Carica papaya L. Each symbol represents the average of 18 replicates. Averages with the same letter did not show statistic differences. The arrows show the dates when gas exchange measurements were carried out.

Golden is a mutant of Solo genotype, known by its yellowish-green leaves, as reflected by the lowest values obtained with the portable chlorophyll device (SPAD-502) when compared to the other genotypes (Fig. 5). Based in previous work (Torres Netto et al., 2002, Castro, 2005), that obtained a positive correlation between PCM values and the total chlorophyll content, Golden presents the lowest amount of total chlorophyll. Furthermore, from 64 DAS onwards Golden is the only genotype that showed a decrease in the PCM values. During the experiment the other four genotypes did not present significant differences among them.

Figure 5. Measurements of the Portable Chlorophyll Meter (PCM) in leaves of the 5 genotypes of Carica papaya L. Each symbol represents the average of 18 replicates. Averages with the same letter did not show statistic differences. The arrows show the dates when gas exchange measurements were carried out.
The thickness of the leaves was evaluated by the specific leaf weight (SLW, dry weight per leaf area), had a variation between 30.5 g m⁻², observed in Golden and 37 g m⁻² presented in Solo 7212 genotype (Figure 6). At the end of the experiment, the total leaf area per plant (LA) of each genotype did not show significant differences among the genotypes (Figure 7).

In what concerns biomass accumulation, Golden showed the lowest values for shoot (SDW) and root dry weight (RDW), and the higher shoot/root ratio (SDW/RDW) (Figure 8), reflecting a proportional lower investment in root biomass.

The leaf area ratio (LAR) is a morphological characteristic that represents the leaf area which is available to the photosynthetic process (Cruz et al., 2004), while the leaf weight ratio (LWR) characterize the plant capacity to mobilize the produced assimilates to form new assimilator organs (leaves). The Golden genotype showed the highest LAR and LWR values (probably related to the higher LN showed at the end of the experiment (Figure 4), while Tainung presented the lowest values for these parameters (Figure 8). Golden also showed the lowest stem weight ratio (SWR).

Concerning the leaf gas exchange data, the genotypes showed a higher photosynthetic rate (A) at 800 h than in afternoon (1200 h), except in Golden (Figure 9) that presented a similar value in both determinations. However, all genotypes showed a higher gs value at this time of the day (800 h), comparing to that measured at noon.

Figure 6. Specific leaf weight (SLW) of the 5 genotypes of *Carica papaya* L. Each column represents the average of 8 replicates. Averages with the same letter did show statistical differences.

Figure 7. Leaf area per plant (LA) values of the 5 genotypes of *Carica papaya* L. Each symbol represents the average of 8 replicates. Averages with the same letter did not show statistic differences.
Figure 8. Shoot dry weight (SDW), Root dry weight (RDW), Leaf area ratio (LAR), Leaf weight ratio (LWR), Stem weight ratio (SWR) and Shoot / root dry weight ratio (SDW/RDW) of the 5 genotypes of Carica papaya L. with 92 days after seedling (DAS). Each column represents the average of 8 replicates. Averages with the same letter did not show statistical differences.
The A values did not statistically differ among the genotypes at 800 h or at 1200 h. Significant differences were observed in \(g_s \) at 800 h, with Solo 7212 presenting the lowest value (0.200 mol m\(^{-2}\) s\(^{-1}\)) and Golden the highest (0.350 mol m\(^{-2}\) s\(^{-1}\)). At midday, Golden showed the highest \(g_s \) value (0.24 mol m\(^{-2}\) s\(^{-1}\)), representing between 65% (JS12) and 190% (Solo 7212) more than what was observed in the other genotypes. This fact showed a higher sensitivity of these genotypes to the air dryness, as accessed by the rise in the leaf-to-air vapor pressure deficit (VPD\text{leaf-air}) at noon (Fig. 10).

Figure 9. Photosynthetic rate (A) and stomatal conductance (\(g_s \)) in the leaves of the 5 genotypes of *Carica papaya* L. Each column represents the average of 18 replicates. Averages with the same letter did not show statistic differences.

Figure 10. Leaf-to-air vapor pressure difference (VPD\text{leaf-air}) and photosynthetic photon flux density (PPFD) in the growing site of the 5 genotypes of *Carica papaya* L.. Each column represents the average of 18 replicates. Averages with the same letter did show statistic differences.
In both times of the day, Golden displayed the lowest intrinsic water use efficiency (IWUE) values (Fig. 11), reflecting its higher gs values, once the statistical differences for the A values are not significant (Fig. 9).

The daily carbon gain (A_{daily}) reached maximal values in Golden and Tainung (Fig. 12). In the Golden genotype this can be explained by the highest A values in the hottest time of the day (1200 h). The Tainung genotype presented the higher A rate at 1000 h, that contribute for the highest carbon gain values comparing with the JS12 genotypes (data not shown). This characteristic can be interesting to be used in papaya improvement programs.

The total number of photons absorbed by the antenna molecules of active and inactive PS II RCs over the sample cross-section (ABS/CS$_0$) did not show significant differences among the studied genotypes for each time of the day (Fig. 13A). So despite the lower total chlorophyll content in Golden (Fig. 5), the PPFD absorption per cross section in those samples was not affected. The high value of ABS/CS$_0$ at midday reflects the higher values of PPFD (Fig. 10). The same pattern occurred in DI$_0$/RC, the ratio of the total dissipation of untrapped excitation energy from all RCs with respect to the number of active RCs (Force et al., 2003) (Fig. 13B). The high energy dissipation in Golden at midday could be responsible by the lower use of energy to electrons transport (ET$_0$/CS$_0$) and a lower QA reduction (TR$_0$/CS$_0$) (Fig. 13C, F), but allowing the highest A value at noon (Fig. 9).

The probability that an absorbed photon will be trapped by the PS II RC with the resultant reduction of QA (TR/ABS, the same as F$_{v}/F_{m}$) shows that instead of the Golden genotype present the lowest values to this parameter, comparing among the genotypes, this parameters was keep above 0,75. At 800 h Golden showed the highest concentration of active reaction centres (RC/CS$_0$) (Fig. 13D), while, at midday this parameter did not show significant differences among genotypes.

![Figure 11](image1.png)
Figure 11. Intrinsic water use efficiency (IWUE) for the 5 genotypes of *Carica papaya* L. Each column represents the average of 18 replicates. Averages with the same letter did not show statistic differences.

![Figure 12](image2.png)
Figure 12. Daily carbon gain (A_{daily}) for the 5 genotypes of *Carica papaya* L. Each column represents the average of 18 replicates. Averages with the same letter did not show statistic differences.
Figure 13. Chlorophyll fluorescence data: A) ABS/CS₀, B) D₁/RC, C) ET/CS₀, D) RC/CS₀, E) TR/ABS and F) TR/CS₀ ratios for the 5 genotypes of *Carica papaya* L. Each column represents the average of 18 replicates. Averages with the same letter did not show statistic differences, in each time.
DISCUSSION

Analysis of the canopy structure and photosynthetic performance under environmental limiting conditions are essential to evaluate plant-environment interactions, acclimation ability and the impact on crop productive capacity (Magalhães, 1979, Villar et al., 2005). Biometric studies along the plant life cycle can be a helpful tool to evaluate the genotype productive capacity. The lower performance of the Golden in growth analysis (Fig. 2 to 5) help to explain why this genotype had lower productivity (data not shown) as compared to the other genotypes but clearly other physiological traits should contribute to this problem. SLW represents leaf thickness and gives an estimative of the proportion between the assimilatory surface and the veins that sustain those leaf tissues (Evans, 1972, Cruz et al., 2004). Plants with a higher SLW are usually greener (Barnes et al., 1969) because they have more cell layers and chloroplasts/chlorophyll, what could represent a higher photosynthetic potential. Golden leaves are thinner (Fig. 6), what agrees with its lowest PCM values (Fig. 5), but the A (Fig. 10) and A_{max} (Fig. 12) were among the higher values observed for the studied genotypes. SLW have been correlated with the photosynthetic rate (Pearce et al., 1969), growth relative rate (Poorter and Van der Werf, 1998), production (Pearce et al., 1969, and leaf structure (Cambridge and Lambers, 1998). It fact, in our study because the lower SLW values of the Golden genotype could be related to the lower values in growth parameters and chlorophyll content, as well as with the lower productivity (data not shown), but not with the net photosynthetic rates.

The lower PCM values in Golden after 63 DAS (Fig. 5) could point out for lower leaf longevity, and an earlier senescence process (Thomas and Howarth, 2000) as compared to the other genotypes that continuously increased chlorophyll content up to the end of the experiment. Such earlier senescence process could also be related to the lower productivity of this genotype.

The Golden yellowish-green leaves color could have contributed to raise the leaf reflectance (Bauerle et al., 2004). Furthermore g_s were maintained at higher values even by the middle of the day (Fig. 10). Stomata have the role to control the leaf temperature (Larcher, 2000) and transpiration may reduce the difference among leaf and air temperature up to 8°C (Wilkinson, 2004). Consequently, the leaf temperature of genotype did not increase so much (data not shown), what might have contributed to a lower VPD_{leaf-air} value (Fig. 10) and higher A rates in this genotype at midday. In fact, in other papaya plants high VPD_{leaf-air} causes g_s decreases and, consequently, in A (El-Sharkawy et al., 1986, Reis et al, 2006, Campostrini and Glenn, 2007).

Midday depression of the photosynthesis is a common occurrence in many plants, such as grapevines (Correia et al., 1995), lupine (Correia and Pereira, 1994), corn (Tardieu et al., 1992) and sunflower (Tardieu et al., 1996). Such g_s decrease due to high VPD_{leaf-air} would help to postpone cell drought stress, imposed by environment conditions (Maroco et al., 1997, Franks and Farquhar, 1999), but by reducing CO_2 internal partial pressure (pC_i) would limit CO_2 access to Rubisco carboxylation sites (Maroco et al., 1997). On the other hand, well watered plants without g_s midday depression could maintain photosynthetic rates, configuring a potential production advantage. Such lower stomatal sensitivity to VPD could result from on a higher leaf hydraulic conductance (Schulze, 1994), compensating the higher water losses and preventing transient drought stress.

Those differences among genotypes related to stomatal responses to VPD_{leaf-air} can be useful to agriculture management and genetic improvement programs for the species. Taken together these data with the yellow-green color trait of Golden leaves and the maintenance of A rates can be used to genetic improvement programs directed to produce genotypes with lower leaf temperatures and high g_s and A rates in the hottest time from the day. A similar strategy proved to be of great importance for improvement programs of cotton and wheat (Lu et al., 1994).

The control of stomatal closure, together with A, determines the water use efficiency (WUE) (Nobel, 1991), that is, the balance between the carbon assimilated and water consumed. An efficient stomatal control is an important adaptation trait, allowing the plants to keep the water potential under water deficits, even the temporary ones (Chaves, 1991, Schaffer and Andersen, 1994). For Golden, the high A values observed at 1200 and the high g_s values led to this genotype consuming more water per assimilated CO_2 unit a lower IWUE (Fig. 11), while in the other genotypes no differences were found. Lower IWUE as a result of high values of g_s was found by Franks and Farquhar (1999) and Larcher (2000) in herbaceous plants too.

Braz. J. Plant Physiol., 21(3): 209-222, 2009
Despite the high g_s at midday, responsible by the high daily carbon gain (Fig. 12), the Golden genotype is not the most productive among the top commercial genotypes in number and weight of fruits (Caliman Agrícola SA Company, personal communication). In fact, the final productivity of plants is a complex process and according to Nelson (1988), the absence of a positive correlation among the photosynthetic rate and productivity could explained by other factors like number/size and duration of leaves, as well as the partitioning of photoassimilates among the source and sink organs.

Chlorophyll a fluorescence is emitted by the photosystem (PS) II and by the light harvest complex of PSII (LHCII). So, changes in its emission patterns suggest the existence of impairments in the photosynthetic process (Strasser et al., 2000). The kinetic quantitative analysis of chlorophyll a fluorescence was proposed by Strasser and Strasser (1995), based on the biomembranes theory for energy flux. This energy flux integrates processes occurring in the antenna pigments based on the biomembranes theory for energy flux. This energy was proposed by Strasser and Strasser (1995), simplifying the fluxes energy theory, used to give an idea of a vitality of the plant material analyzed (Strasser et al., 2000). This analysis was called JIP-Test and can be used to obtain information about each step of energy flux through PS II at the reaction center level (RC) (ABS/RC, TR/RC, ET/RC and DI/RC), as well as the level of energy at PS II by cross-section (CS) (ABS/CS, TR/CS, ET/CS and DI/CS). The parameters are inter-related by probabilities that define excitation trapping (TR/ABS) and electron transport (ET/RC) (Force et al., 2003). In this way, the JIP-Test is used to give an idea of a vitality of the plant material analyzed, simplifying the fluxes energy theory, but still considering the antenna complex structure (pigment arrangement, excitation migration and connectivity) (Force et al., 2003).

Based on the JIP-Test the Golden genotype showed that, following the low values of chlorophyll (Fig. 5) and SLW (Fig. 6), the PSII efficiency was significantly affected, but maintained its efficiency higher than 0.75, as given by TR/ABS (Fig. 13E). According to Bolhár-Nordenkampf et al. (1989), the F_{v}/F_{m} values between 0.75 and 0.85, means that each hundred photons arrive in PSII, 75 to 85 are use to reduce Q_a, leading to a high PSII efficiency. This would have contributed to the similar (or higher, at 1200) photosynthetic rates observed in Golden when compared to the other genotypes. The other fluorescence parameters confirm this results, showing that Golden maintains most of the parameters concerning the electron transport ratio to reduce Q_a (ABS/CS, RC/CS, TR/CS, DI/CS) and present higher dissipation of excess energy (DI/RC), specially at midday.

Golden had the lowest SDW and RDW values, but the higher SDW/RDW (Fig.8), reflecting a higher investment in shoot biomass, specially in leaves (confirmed by the higher values of LAR, LWR and a lower SWR). This might compensate for the lower SLW and PCM values to keep the photosynthetic rate even at higher values (at noon) than the other genotypes. In fact, it was the only genotype that present no midday A depression (higher g_s at this time). Such higher g_s values would have contributed to a better control of leaf temperature, thus helping to maintain of A. However that led to a lower IWUE. This property is of up most importance once high temperature and high light are common in the mains areas of papaya production in Brazil. Therefore, further papaya improvement programs should be planed to incorporate some qualitative traits from Golden in conjunction with the yield performance of the most productive genotypes.

REFERENCES

Anilkumar TV, Salimath PM, Parameshwarappa R, Chetti MB, Patil SS, Alagawadi AR, Patil SJ (1993). Genetic diversity on the basis of photosynthetic and yield related traits in chickpea (Cicer arietinum L.). Indian J. of genetic S: 279-286.

Barnes DK, Pearce RB, Carlson GE, Hart RH, Hanson CH (1969) Specific leaf weight differences in alfalfa associated with variety and plant age. Crop Science 9: 421-423.

Bauerle WL, Weston DJ, Bowderna JD, Dudley JB and Toler JE (2004) Leaf absorbance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scienta Horticulure 101: 169–178.

Bolhár-Nordenkampf HR, Long SP, Baker NR, Óquist G, Schreibeurs U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology 3: 497-514.

Cambridge ML, Lamberts H (1998) Specific leaf area and functional leaf anatomy in Western Australian seagrasses. In: Inherent Variation in Plant Growth, Physiological Mechanisms and Ecological Consequences. H. Lamberts, H. Poorter & M.M.I. Van Vuuren (eds), pp. 88-99, Backhuys Publishers, Leiden, The Netherlands.

Campostrini E, Glenn DM (2007) Ecophysiology of papaya: a review. Braz. J. Plant Physiol. 19(4): 413-424.

Castro FA. (2005) Relações do valor do medidor portátil de clorofila (SPAD-502) com o processo fotossintético e com o teor de nitrogênio orgânico em genótipos de Carica papaya L. Campos – RJ, Universidade Estadual do Norte Fluminense. Thesis.

Chaves M (1991) Effects of water deficits on carbon assimilation. J of Exp Bot 42 (234): 1-16.
Chaves MM, Maroco J, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Func. plant Biol 30: 239-264.

Cock JT, Porto MCM, El-Sharkawy MA (1985) Water use efficiency of cassava. III. Influence of air humidity and water stress on gas exchange of field grown cassava. Crop Sci 25: 295–272, 1985.

Correia MJ, Pereira JS, Chaves MM, Rodrigues ML, Pacheco CA (1995) ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants. Plant Cell and Environment 18, 511–21.

Correia MJ, Pereira JS (1994) Abscisic acid in apoplastic sap can account for the restriction in leaf conductance of white lupins during moderate soil drying and after rewatering. Plant and Cell Environment 17: 845-852.

Cruz JL, Coelho EF, Pelacani CR, Coelho filho MA, Dias AT, Santos MT (2004) Crescimento e partição de matéria seca e de carbono no mamoeiro em resposta à nutrição nitrogenada. Bragantia 63(3):351-361.

Dornhoff GM, Shibles RM (1970) Varietal differences in net photosynthesis of soybean during and after rewatering. Plant and Cell Environment 17: 845-852.

El-Sharkawy MA (2004) Cassava biology and physiology. Plant Molecular Biol 56: 481–501, 2004.

El-Sharkawy MA (2006) International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 44 (4): 481-512.

El-Sharkawy MA, Cock MJH, Hernandez ADP (1986) Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynthesis research 7: 137-149.

Evans GC (1972). The quantitative analysis of Plant Growth. Oxford: Blackwell Scientific publications.

Force L, Critchley C, Van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynthesis Research 78: 17–33.

Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating in C 3 plants. Plant Cell and Environment 22: 1337-1349.

Evans GC (1972). The quantitative analysis of Plant Growth. Oxford: Blackwell Scientific publications.

Larcher W (2000) Ecofisiologia Vegetal. Ed. RiMa Artes e Textos.

Larcher W (2000) Ecophysiology. Oxford: Blackwell Scientific publications.
Thomas H, Howard C (2000) Five ways to stay green. Journal of experimental botany 51: 329-337.

Torres Netto A, Campostrini E, Oliveira JG, et al (2002) Portable chlorophyll meter for the quantification of photosynthetic pigments nitrogen and the possible use for assessment of the photochemical process in Carica papaya. Brazilian Journal of Plant Physiology 14(3): 203-210.

Villar R, Maranon T, Quero JL, Panadero P, Arenas F, Lambers H (2005) Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. Plant and Soil 272: 11–27.

Watanabe N, Kobayashi S, Furuta Y (1997) Effect of genome and ploidy on photosynthesis of wheat. Euphytica 73: 191-198.

Wiebold WJ, Shibbles R, Green DE (1981) Selection of apparent photosynthesis and related leaf traits in early generations of soybeans. Crop Science 21: 969-973.

Wilkinson S (2004) Water use efficiency and chemical signaling. In: Water use efficiency in plant biology. Bacon M.A. Blackwell Publishing Ltda.

Zelitch I (1982) The close relationship between net photosynthesis and crop yield. BioScience 32: 796-802.