Vascular plants on inselberg landscapes in Espírito Santo state: bases for the creation of a protected area in southeastern Brazil

João Mário Comper Covre¹, Dayvid Rodrigues Couto², Henrique Machado Dias³ and João Paulo Fernandes Zorzanelli⁴

¹Programa de Pós-Graduação em Ciências Florestais, Universidade Federal do Espírito Santo, Jerônimo Monteiro, Espírito Santo, Brazil. ²Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil. ³Departamento de Ciências Florestais e da Madeira, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Av. Governador Lindenberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil. ⁴Instituto Nacional da Mata Atlântica, Santa Teresa, Espírito Santo, Brazil.

ABSTRACT. Inselbergs are granitic or gneissic rocky outcrops prevalent in the landscape of southeastern Brazil. These ecosystems represent islands of isolated habitats that harbor a peculiar flora with high richness and endemism. The present study lists the species of vascular plants occurring in the Pedra da Andorinha Complex, located in the municipality of Jerônimo Monteiro/Cachoeiro de Itapemirim, southern Espírito Santo state, aiming to generate subsidies for the creation of a protected area. The survey was performed between July 2017 and October 2018, resulting in a record of 121 species, 96 genera, and 40 families. Bromeliaceae (17), Orchidaceae (12) and Fabaceae (10) were the richest families. The phytophytogeomorphology of exposed rock vegetation comprises a greater number of species (79 species) compared to the woody ripicolous communities (42). Eighteen of the collected species are threatened by extinction; a new species was discovered; and five were described based on materials previously collected in the studied location — Alcantarea patriae, Anthurium martinelli, Coleocephalocereus uebelmanniorum, Stigmatodon attenuoides and Pitcairnia azouryi, the first four being endemic to the region. We also found Tabebuia reticulata, a rare species among Brazilian flora. Our results highlight the biological importance of the Pedra das Andorinhas Complex and reinforce the need to create a protected area to preserve biodiversity and the regional natural heritage.

Keywords: Atlantic rainforest; conservation; rocky outcrops; taxonomy; vegetation island.

Introduction

In Atlantic Forest of southeastern Brazil occurs a special class of residual landforms, composed predominantly by plutonic (granite) and metamorphic (gneiss) rocks, that are ecologically known as inselbergs (from German, insel = island, berg = mountain). They can occur isolated or in groups, separated by a few or many kilometers, forming inselberg landscapes (Hmeljevski, Nazarenro, Bueno, Reis, & Forzza, 2017). These ecosystems differ greatly from the surrounding matrix, having unique edaphic-climatic characteristics that select for a specialized vegetation with high endemicity (see Safford & Martinelli, 2000; Porembski & Barthlott, 2000; Porembski, 2007; de Paula, Forzza, Neri, Bueno, & Porembski, 2016). However, inselberg flora is frequently overlooked in favor of other ecosystems of the Atlantic domain.

Southeastern Brazil is one of three important regions recognized globally as hotspots of plant diversity in inselberg ecosystems, alongside Madagascar and southwestern Australia (Porembski, 2007). In this context, it is worth mentioning that the inselbergs located in southern Espírito Santo, recognized for their significant biological importance, are a priority for floristic studies and ought to be prioritized for the creation of protected areas (Martinelli, 2007; Couto, Dias, Pereira, Fraga, & Pezzopane, 2016a; Couto, Francisco, Manhães, Machado, & Pereira, 2017; Kessous, Couto, Uribbe, & Costa, 2018).

Although inselbergs are not suitable for agriculture, and therefore escape its impacts, the mining industry poses the greatest threat to the flora of these environments worldwide (Porembski et al., 2016). Espírito Santo has a highly developed ornamental rock mining industry— one of the state’s main economic activities— and is among the world’s leaders in mineral exploration (Sardou Filho, Matos, Mendes, & Iza, 2013).
hand, mining is threatening the endemic and endangered flora of the region’s inselbergs. For any proposal of conservation, sustainable use, management, and restoration of inselberg ecosystems, knowledge of their biota is essential. Thus, there is an urgent need for studies on the biodiversity of these unique environments.

This study aimed to inventory the species of vascular plants that grow on the inselbergs of the Pedra das Andorinhas Complex. We aimed to contribute to the knowledge of inselberg flora in southeastern Brazil, and document the occurrence of endemic and endangered species, to support the creation of a protected area in the locality.

Material and methods

Study site

The present study took place on private land (center point: 20° 47’ 24’’ S and 41° 23’ 19.6’’ W) between the municipalities of Cachoeiro de Itapemirim and Jerônimo Monteiro, southern state Espírito Santo, Brazil, in a region denominated by the Pedra das Andorinhas Complex (PAC) (Figure 1 and 2). Covering an area of approximately 360 ha, the study site features large rocky outcrops with patches of Submontane Seasonal Semideciduous Forest (Instituto Brasileiro de Geografia e Estatística [IBGE], 2012) at the base and summit, forming inselberg landscapes.

The PAC ranges from 150 to 500 m in elevation. It is surrounded by agricultural activities (cattle ranching and coffee, eucalyptus and orange plantations), mineral extraction and forest fragments. The climate has been classified as CwA, with dry winters and rainy summers, a mean annual temperature of about 24°C, and a mean annual rainfall of 1,450 mm (Couto et al., 2016b).

![Figure 1. Location of the study area Pedra das Andorinhas Complex, an inselberg landscape located in Jerônimo Monteiro and Cachoeiro de Itapemirim, Espírito Santo State, southeastern Brazil. 1 = Pedra das Andorinhas, 2 = Parada Cristal and 3 = Pedra Três Irmãs.](image)

Acta Scientiarum. Biological Sciences, v. 43, e54760, 2021
According to reports from local residents, the PAC has a history of bushfires (between 15 and 20 years ago) and some mineral exploration. The rocky complex consists of several inselbergs, which are generally difficult to access (Figure 2). In this study, we investigated three rock outcrops, one between Cachoeiro de Itapemirim/ Jerônimo Monteiro, known as Pedra das Andorinhas (1) (20° 46′ 19″ S; 41° 21′ 12″ W), and two others in Jerônimo Monteiro: Parada Cristal (2) (20° 47′ 39″ S; 41° 22′ 20″ W), Pedra Três Irmãs (3) (20° 46′ 19″ S; 41° 21′ 12″ W).

Data collection

Floristic surveys of the rock outcrops in the PAC were conducted during monthly field expeditions between July 2017 and October 2018. Sampling was restricted to inselberg vegetation, which is characterized by rupicolous species that inhabit the rocky surfaces.

Fertile specimens were collected randomly, using the walk-over survey method (Filgueiras, Brochado, Nogueira, & Guala, 1994), and processed according to Mori, Berkov, Gracie, and Hecklau (2011). We accomplished taxonomic identification by consulting specialized taxonomic literature (e.g., regional and local flora monographs), images of exsiccate available in virtual herbaria Jabot (jabot.jbrj.gov.br/) and Reflora (reflora.jbrj.gov.br/reflora/herbarioVirtual/), and experts on each taxon, to whom we sent exsiccate. The
circumscription adopted for angiosperm families are in accordance with APG IV (The Angiosperm Phylogeny Group, 2016). For monilophytes and lycophytes, we followed PPG I (Pteridophyte Phylogeny Group [PPG], 2016). Accepted names, synonymy, and authors were confirmed by reference to Flora do Brasil 2020 (http://floradobrasil.jbrj.gov.br/), Missouri Botanical Garden (http://tropicos.org) and International Plant Names Index (IPNI, 2020). Additional specimens collected at other times were identified through consultation of the database of Brazilian flora.

In general, the rocky outcrops of the PAC can be organized into two main phytophysiognomies: (i) vegetation on exposed rock and (ii) woody rupicolous communities. All species were organized according to their occupation within these two rocky phytophysiognomies.

Vegetation on the exposed rock is groups of plants growing directly on and bounded by the rocky surfaces, with no or very shallow soil (epilithic or saxicolous plants respectively) (Conceição, Pirani, & Meirelles, 2007). This phytophysiognomy is composed mainly of monocot mats (Bromeliaceae and Velloziaceae mainly) and epilithic vegetation, covering large expanses of the rock outcrops. The woody rupicolous communities are composed predominantly by shrubs and small trees less than 10 m high, growing in poorly developed soil (up to 20 cm deep) in large depressions and fissures on the slopes of the inselbergs. Woody species typical of the matrix, such as epiphytes, vines, and herbs, can also occur (Couto et al., 2017).

Species were classified according to vegetative habit as trees, shrubs, subshrubs, climbing plants and herbaceous, following Couto et al. (2017). The endangered species were cited according to the official list of Centro Nacional de Conservação da Flora (cnclfora.jbrj.gov.br), Red List of Espirito Santo state (Fraga, Peixoto, & Leite, 2019) and IUCN Red List (https://www.iucnredlist.org/).

Collections of botanical material were carried out for all species recorded in the study and voucher specimens were deposited in the CAP herbarium (acronym according to Thiers – continuously updated), of the Universidade Federal do Espirito Santo, in Jerônimo Monteiro, state Espirito Santo.

Results and discussion

A total of 121 species, belonging to 96 genera and 40 families, were recorded for the PAC (see supplementary material). Eudicotyledons represented the most diverse evolutionary lineage (65 spp., 54% of the total), with 25 families (62.5%), followed by Monocotyledons with 45 spp. (37%) and 10 families (25%), Monilophytes (8 spp., 6.6%) with 3 families (7.5%), Lycophytes (2 spp., 1.6%) with 1 family (2.5%), and Magnoliids (1 spp., 0.8%) with 1 family (2.5%).

The richest families in the PAC were Bromeliaceae (17 spp.), Orchidaceae (12), Fabaceae (10), Asteraceae and Euphorbiaceae (6 spp. each), Cactaceae and Pteridaceae (5 spp. each), Gesneriaceae and Myrtaceae (4 spp. each), Solanaceae and Commelinaceae (3 spp. Each) (Figure 3). These families accounted for 75 species (i.e. 62% of the total) (Table S1).

The genera represented by the most species were Tillandsia (Bromeliaceae), with five species, Pitcairnia (Bromeliaceae) and Sinningia (Gesneriaceae), both with four species each. Selaginella (Selaginellaceae), Doryopteris (Pteridaceae), Cyrtopodium (Orchidaceae), Eugenia (Myrtaceae), Centrosena, Macroptilium (Fabaceae), Cyperus (Cyperaceae), Alcantarea (Bromeliaceae), Anthurium (Araceae), Anemia (Anemiacae), Ipomoea (Convolvulaceae), Dioscorea (Dioscoreaceae), Vellozia (Velloziaceae) and Solanum (Solanaceae) were represented by two species each (Figure 4).

A new species of Araceae (Anthurium genus) recorded during fieldwork (voucher: J. M. C. Covre 93), is in description phase. On the other hand, Alcantarea pattriae Versieux & Wand (Versieux & Wanderley, 2007), Anthurium martelli Nadder & Theófilo (Coelho & Valadares, 2019), Coleocephalocereus uebelmanniorum (Braun & Esteves) Braun, Esteves & Hofacker, Pitcairnia azouryi Martinelli & Forzza (Martinelli & Forzza, 2006), and Stigmatodon attenuatoides (Couto, Manhães & Costa, 2020) were described from collections obtained in the PAC. Of these species, Alcantarea pattriae, Anthurium martelli, Coleocephalocereus uebelmanniorum and Stigmatodon attenuatoides are endemic to the inselbergs of Jerônimo Monteiro and Cachoeiro de Itapemirim.

As for the distribution of species according to vegetative habit (supplementary material), herbaceous species were predominant, with 72 species (60%), followed by climbing plants with 15 species (12%), shrubs with 14 species (12%), trees with 13 species (11%) and subshrubs with 6 species (5%). The occurrence of species according to phytophysiognomy showed a higher prevalence of species in exposed rocky vegetation than in woody rupicolous communities, with 79 species (65.29%) and 42 species (34.71%), respectively. In total, 18 species (15%) are included on official endangered species lists (Table 1).
Table 1. Endangered species collected on the Inselbergs of the Pedra das Andorinhas Complex, Jerônimo Monteiro/Cachoeiro de Itapemirim, ES, Brazil. Species categorized according to different national and international databases. Categories: VU = vulnerable; EN = endangered; CR = critically endangered.

Family	Species	ES Brazil	IUCN
Anemiaceae	Anemia retroflexa Brade	VU	
Amaryllidaceae	Hippeastrum striatum (Lam.) Moore	VU	EN
Asteraceae	Wunderlichia azulensis Maguire & Barroso	VU	EN
Bromeliaceae	Alcantarea patriae Versieux & Wand.	VU	
Bromeliaceae	Encholirium horridum L. B. Sm.	VU	
Bromeliaceae	Neoregelia diversifolia Pereira	VU	
Bromeliaceae	Pitcairnia azouryi Martinelli & Forzza	EN	
Bromeliaceae	Pitcairnia decida L. B. Sm.	EN	
Bromeliaceae	Vriesea saltensis Leuje & Kollmann	EN	
Cactaceae	Coleocephalocereus uebelmanniourum (Braun & Esteves)	Braun, Esteves & Hofacker	EN
Gesneriaceae	Sinningia bragae Chautems, Peixoto & Rossini	EN	
Gesneriaceae	Sinningia speciosa (Lodd.) Hiern	VU	
Malpighiaceae	Stigmaphyllon vitifolium A. Juss.	CR	CR
Moraceae	Ficus cyclyphylla (Miq.) Miq.	VU	VU
Orchidaceae	Cattleya cernua (Lindl.) van den Berg	VU	
Orchidaceae	Cyrtopodium gigas (Vell.) Hoehne	EN	
Pteridaceae	Cheilanthes geraniifolia (Weath.) Tryon & Tryon	VU	
Pteridaceae	Doryopteris redivia Fée	VU	
The flora of the Pedra da Andorinha Complex is characterized by genera typical of the inselbergs of southeastern Brazil, such as *Alcantarea*, *Colecephalocereus*, *Encholirium*, *Selaginella* and *Vellozia* (Porembski, Martinelli, Ohlemüller, & Barthlott, 1998; Meirelles, Pivello, & Joly, 1999; Couto et al., 2017; de Paula, Mota, Viana, & Stehmann, 2017), and includes endemic and endangered species. The survey results corroborate previous studies that recognize the southeastern region of Brazil as one of the global centers of richness and endemism among inselberg plants, a distinction shared by Madagascar and eastern Australia (Porembski, 2007).

The survey results differ from some other studies conducted previously in various regions of Brazil (Table 2). In general, the number of species was higher, especially in comparison to inselbergs in the Caatinga Domain, but it was lower compared to inselbergs of the Atlantic Forest, with rare exceptions. These variations can be explained, according to Porembski (2007), by the clear pattern of distinction between different geographic regions, in which environmental filtering differentially shapes inselberg species composition and structure (Yates et al., 2019).

When compared to other inselbergs researched in Espírito Santo, the species richness recorded for the PAC was inferior (Table 2). Compared to montane inselbergs, such as Alto Misterioso (Esgario, Fontana, & Silva, 2009) in the state’s midwestern region, and Pedra dos Pontões (Couto et al., 2017) in its south, the differences in climate (temperature and precipitation) and altitudinal gradient may be the main causes of this distinction.

The PAC is a submontane inselberg under the influence of the surrounding Submontane Seasonal Semideciduous Forest and its dry climate. Alto Misterioso and Pedra dos Pontões are situated between a seasonal and humid (ombrophilous) physiognomy and patches of cloud forest (Esgario et al., 2009; Couto et al., 2017).

Table 2. Studies conducted on inselberg vegetation in Brazil, showing the phytogeographic domain (sensu Flora Brasil 2020), family, and genera richness. Organized by the areas of greatest species richness (Rich.).

References	Location (state)	Domain	Elevation	Rich.	Fam.	Gen.
Pena et al., 2017	Pedra do Elefante (ES)	Atlantic Forest	50 to 500 m	302	74	219
Couto et al., 2017	Brejo de Agrestina (PE)	Caatinga	620 to 740 m	211	69	168
Gomes & Alves, 2010	Alto Misterioso (ES)	Atlantic Forest	850 to 1145 m	170	44	109
Esgario et al., 2009	Brejo do Trêvo and Lajedo do Uruçu (PE)	Atlantic Forest	307 m/451 m	142	51	116
Gomes & Sobral-Leite, 2013	Pedra da Andorinha Complex (ES)	Caatinga	-	127	53	101
Portugal et al., 2008	Espereança (PB)	Atlantic Forest	150 to 500 m	121	46	107
This study	Morro do Carioca (PB)	Caatinga	250 to 376 m	120	50	101
Lopes-Silva et al., 2017	Monólitos Quixadã (CE)	Caatinga	-	107	45	81
Lucena, Lucena, Sousa, Silva, & Souza, 2017	Espinho Branco (PB)	Caatinga	250 to 415 m	101	45	84
Tölke et al., 2011	Inselberg Puxinã (PB)	Caatinga	-	97	53	69
de Paula et al., 2017	Mucuri (MG)	Atlantic Forest	306 to 676 m	89	37	73

However, the distinction in species richness was most notable concerning submontane inselbergs of Pedra do Elefante in northern Espírito Santo (Pena & Alves-Araújo, 2017). Although the Pedra do Elefante complex covers a large area (2,562.31 ha), its higher species richness compared to the PAC seems to be due only to the greater collection effort in that locality. Historically, it was subject to mineral extraction, but it is now a Protected Area (Conservation Unit – Law 9985/00 SNUC).

Among the richest families found in the PAC, six (Fabaceae, Orchidaceae, Asteraceae, Bromeliaceae, Myrtaceae, and Euphorbiaceae) were also among the richest families in the Atlantic Forest (The Brazil Flora Group [BFG], 2015) and are well represented in inselberg vegetation in Brazil (e.g. França, Melo, & Santos, 1997; Esgario et al., 2009; Couto et al., 2017; Pena & Alves-Araújo, 2017). Fabaceae, for example, has a species richness in the PAC similar to that found on inselbergs in the Caatinga Domain (Araújo, Oliveira, & Lima-Verde, 2008; Tölke, Silva, Pereira, & Melo, 2011; Paulino, Silveira, & Gomes, 2018). This finding contradicts the results of other floristic surveys conducted in Espírito Santo, in which the most-represented families were Orchidaceae, Bromeliaceae, Asteraceae, Melastomataceae, Cyperaceae, Poaceae, Polypodiaceae, Cactaceae and Araceae (Esgario et al., 2009; Couto et al., 2017). Porto, Almeida, Pessoa, Trovão, and Felix (2008) explained this high number of Fabaceae species in Caatinga as evidence of greater variation in its species’ survival strategies in xeric environments. Porembski and Barthlott (2000), in studies conducted in African inselbergs, also showed this family’s ability to adapt effectively to rocky environments.
Of the 96 genera recorded in the present study, 66% were represented by a single species. This finding contradicts results found in floristic surveys conducted on the African continent, where 48% of the collected species belonged to genera represented by a single species (e.g. Porembski & Brown, 1995; for Costa do Marfim). We found a total of 40 families, 16 of which were represented by a single species. This large number has also been observed in other floristic surveys of rocky outcrops in Espírito Santo (Esgario et al., 2009; Couto et al., 2017; Pena & Alves-Araújo, 2017) and is characteristic of high diversity sites (Ratter, Bridgewater, & Ribeiro, 2003). Families such as Bromeliaceae and Orchidaceae were more relevant in terms of species richness among the rock outcrops studied here, possibly due to adaptive strategies that contribute to their survival in these environments, such as the presence of systems that accumulate water, specialized trichomes, thick and crass leaves and the presence of bulbs or pseudobulbs (Porembski, Seine, & Barthlott, 1997; Benzing & Bennett, 2000; Menini Neto, Forzza, & van den Berg, 2013).

Many of the plant species specific to inselberg ecosystems are known as ‘resurrection plants’ because of their desiccation tolerance, a common survival strategy in these environments. In the present study, this survival mechanism was observed in the Velloziaceae (Vellozia candida and Vellozia variegata) family and the monilophytes and lycophytes genera Anemia, Cheilanthes, Doryopteris, and Selaginella. All of these genera have been described as desiccation tolerant in previous studies (Porembski & Barthlott, 2000; Porembski, 2007). Species identified as *Encholirium horridum* (Bromeliaceae), *Coleocephalocereus uselmanniorum* (Cactaceae) and *Cyrtopodium glutiniferum* (Orchidaceae) possessed adaptive mechanisms such as stems that store water or an underground caudex (Porembski, 2007).

Typical genera of Bromeliaceae, such as Alcantarea, Enchlorium, Pitcairnia, Stigmatodon, and Tillandsia, were found on rocky outcrops. These genera have been found in high abundance in Brazil’s inselberg landscapes (de Paula et al., 2016; Couto et al., 2017). We also recorded *Coleocephalocereus* (Cactaceae), *Simningia* (Gesneriaceae) and *Vellozia* (Velloziaceae), which, despite comprising only a few species, are equally important genera typical of South American inselbergs (Porembski, 2007).

In this study, we observed the woody rupicolous species - *Ceiba erianthos* (Malvaceae), *Eugenia punicifolia* (Myrtaceae), *Pseudobombax* aff. *petropolitanum* (Malvaceae), *Tabebuia reticulata* (Bignoniaceae) and *Wunderlichia azulensis* (Asteraceae) - hosted 12 species of vascular epiphytes, mainly Bromeliaceae (*Tillandsia gardneri, T. loliacea, T. recurvata, T. stricta* and *T. usneoides*), and Orchidaceae (*Brassavola tuberculata, Cattleya cernua* and *Laelia gloriosa*). Of the phorophytes mentioned, *Pseudobombax* aff. *petropolitanum* is recognized as an important facilitator tree in inselberg vegetation of Espírito Santo (Couto et al., 2016a; Francisco, Couto, Evans, Garbin, & Ruiz-Miranda, 2018). Owing to its architecture and size, including the large roots exposed on the rock surface, this phorophyte hosts an impressive diversity of vascular epiphytes, particularly on montane inselbergs (Couto et al., 2016a; Couto et al., 2019). Although these woody rupicolous communities are an important component of inselberg vegetation, they are scarcely studied (Couto et al., 2017; Francisco et al., 2018). More research ought to be focused on these communities, as they are an essential component in restoration strategies for globally threatened inselberg ecosystems (Porembski et al., 2016).

Conservation of Pedra das Andorinhas complex

PAC has a high diversity of known species, some of which are endemic to the complex itself and nearby outcrops. Some of those species have been described only recently, using botanical materials from the site. Collection efforts are fundamental to filling research gaps and expanding the floristic and phytogeographic knowledge of the rocky outcrops in the Atlantic Forest in the state of Espírito Santo. Also, conservation policies are essential for protecting this unique vegetation, including many endangered species, some of which are rare (e.g. *Tabebuia reticulata*; see Lohmann & Silva-Castro, 2009) or restricted to rock outcrops (e.g. *Pitcairnia decidua, Pitcairnia azoury*, *Coleocephalocereus uselmanniorum, Encholirium horridum*). These species are recognized worldwide as prevalence indicators for the creation of protected areas (Brooks et al., 2006).

Because the PAC is an outcrop of granite origin and close to one of Brazil’s most important ornamental stone beneficiation industries (Xavier, Azevedo, Alexandre, Monteiro, & Pedroti, 2019), the locale is extremely vulnerable to speculative mining. Despite the importance of the mining sector for the Espírito Santo economy, mining activity is the biggest threat to inselberg vegetation, not only in Brazil but also around the world (Porembski et al., 2016). Historically, inselberg vegetation has been neglected by environmental agencies during the environmental licensing of mining activities, causing irreparable damage to these
important ecosystems of the Atlantic Forest (Couto et al., 2019). Now, the populations of many inselberg plant species (e.g. *Pitcairnia azouryi*) are under serious threat of extinction (Manhães, Couto, Miranda, & Carrijo, 2016). For these reasons, we call the attention of public authorities to the importance of inselberg vegetation.

Furthermore, the PAC is surrounded by an anthropized matrix, where exotic grasses, mainly Panicoideae genera (e.g. *Panicum* and *Urochloa*) (observed), grow extensively and are used widely for cattle grazing. The existence of these grasses, their persistence, and high abundance in seed banks (Correia & Martins, 2015) is worrying. Wherever they manage to colonize natural areas, these grasses impair the development and establishment of native monocotyledons on rocky outcrops due to their hardiness in competition for resources. Another aggravation associated with colonization by grass species is the deposition of combustible material, which leaves the PAC high susceptible to fire. Inselberg fires modify community structure and composition and lead to the loss of endemic species, resulting in homogenization of the flora of these important refuges (Hunter, 2017).

Occurrence and distribution data on invasive alien species are essential for developing appropriate control measures and management strategies for natural areas protected under Brazilian law 9985/00. Much of the work on protected areas neglect this information despite invasive species being a major cause of global biodiversity loss (Haddad et al., 2015). Therefore, to guide conservation policy makers, we have incorporated the occurrence of exotic species with invasive potential into our plant list.

Finally, a few characteristics and particularities of the existing flora in the PAC justify and support the creation of a Protected Area that would preserve a significant portion of the flora in the South Espirito Santo region, mainly the inselberg vegetation.

Conclusion

This study provides important knowledge about the flora of the Pedra da Andorinha Complex and justifies the need to create a Conservation Unit in the locality, defining it as a priority for conservation due to the recorded wealth, the number of endangered, endemic species and new species that are being described for this location.

It is worth mentioning that the carrying out of more regional inventories is highly recommended to improve the quality of knowledge and, consequently, the efforts to conserve the vegetation of these singular areas and the Atlantic Forest.

Acknowledgements

We are grateful to the owners who authorized us to study their private properties, and to the Municipality of Jerônimo Monteiro and the Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper) for their support. The second author thanks the Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), for granting a postdoctoral Scholarship (PROPPG 04/2019). Thanks to Universidade Federal do Espírito Santo (UFES), Herbarium CAP and Nupemase for the logistic support. We emphasize that this work was carried out with the support of the Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (Capes) - Financing Code 001. To Megan F. King for the English revision. Finally, we want to thank the two anonymous reviewer and the editor Dr. Ricardo Massato Takemoto for their comment and advise that greatly improved the article.

References

Araújo, F. S., Oliveira, R. F., & Lima-Verde, L. W. (2008). Composição, espectro biológico e síndromes de dispersão da vegetação de um inselbergue no domínio da caatinga, Ceará. *Rodriguésia, 59*(4), 659-671. doi: 10.1590/2175-7860200859403

Benzing, D. H., & Bennett, B. (2000). *Bromeliaceae: profile of an adaptive radiation*. Cambridge University Press.

Brooks, T. M., Mittermeier, R. A., Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Rodrigues, A. S. L. (2006). Global biodiversity conservation priorities. *Science, 313*(5785), 58-61. doi: 10.1126/science.1127609

Coelho, M. A. N., & Valadares, R. T. (2019). Three new species of *Anthurium* (Araceae) from the Atlantic Forest of Rio de Janeiro, Minas Gerais, and Espirito Santo, Brazil. *Novon, 27*, 22-32. doi: 10.3417/2019267

Conceição, A. A., Pirani, J. R., & Meirelles, S. T. (2007). Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of ‘Chapada Diamantina’, Northeast Brazil. *Revista Brasileira de Botânica, 30*(4), 641-656. doi: 10.1590/S0100-84042007000400009
Vascular plants on inselberg landscapes

Correia, G. G. S., & Martins, S. V. (2015). Banco de sementes do solo de floresta restaurada, Reserva Natural Vale, ES. *Floresta e Ambiente*, 22(1), 79-87. doi: 10.1590/2179-8087.096714

Couto, D. R., Dias, H. M., Pereira, M. C. A., Fraga, C. N., & Pezzopane, J. E. M. (2016a). Vascular epiphytes on *Pseudobombax* (Malvaceae) in rocky outcrops (inselbergs) in Brazilian Atlantic Rainforest: basis for conservation of a threatened ecosystem. *Rodriguésia*, 67(3), 583-601. doi: 10.1590/2175-7860201667304

Couto, D. R., Fontana, A. P., Kollmann, L. J. C., Manhães, V. C., Francisco, T. M., & Cunha, G. M. (2016b). Vascular epiphytes in seasonal semideciduous forest in the State of Espírito Santo and the similarity with other seasonal forests in Eastern Brazil. *Acta Scientiarum. Biological Sciences*, 38(2), 169-177. doi: 10.4025/actascibiolsci.v38i2.31320

Couto, D. R., Francisco, T. M., Garbin, M. L., Dias, H. M., Pereira, M. C. A., Menini Neto, L., & Pezzopane, J. E. M. (2019). Surface roots as a new ecological zone for occurrence of vascular epiphytes: a case study on *Pseudobombax* trees on inselbergs. *Plant Ecology*, 220(11), 1071-1084. doi: 10.1007/s11258-019-00976-5

Couto, D. R., Francisco, T. M., Manhães, V. C., Machado, H. D., & Pereira, M. C. A. (2017). Floristic composition of a Neotropical inselberg from Espírito Santo state, Brazil: an important area for conservation. *Check List*, 13(1), 2045. doi: 10.15560/13.1.2045

Couto, D. R., Fontana, A. P., Rocha Neto, A. C., Gomes, J. M. L., Calazans, L. S. B., Silva, H. L., ... Fraga, C. N. (2019). Angiospermas monocotiledóneas ameaçadas de extinção no estado do Espírito Santo. In C. N. Fraga, M. H. Formigoni, & F. G. Chaves (Orgs.), *Fauna e flora ameaçadas de extinção no estado do Espírito Santo* (p. 164-191). Santa Teresa, ES: Instituto Nacional da Mata Atlântica.

Couto, D. R., Manhães, V. C., & Costa, A. F. (2020). *Stigmatodon attenuatoides* (Tillandsioideae, Bromeliaceae): a new mat-forming species on inselbergs in southeastern Brazil. *Phytotaxa*, 468(1), 143-149. doi: 10.11646/phytotaxa.468.1.11

Esgario, C. P., Fontana, A. P., & Silva, A. G. (2009). A flora vascular sobre rocha no Alto Mistério, uma área prioritária para a conservação da Mata Atlântica no Espírito Santo, Sudeste do Brasil. *Natureza Online*, 7(2), 80-91.

Filgueiras, T. S., Brochado, A. L., Nogueira, P. E., & Guala, G. F. (1994). Caminhamento - um método expedito para levantamentos florísticos qualitativos. *Cadernos de Geociências*, 12, 59-43.

Fraga, C. N., Peixoto, A. L., & Leite, Y. L. R. (2019). Lista da fauna e flora ameaçadas de extinção no estado do Espírito Santo. In C. N. Fraga, M. H. Formigoni, & F. G. Chaves (Orgs.), *Fauna e flora ameaçadas de extinção no estado do Espírito Santo* (p. 342-419). Santa Teresa, ES: Instituto Nacional da Mata Atlântica.

França, F., Melo, E., & Santos, C. C. (1997). Flora de inselbergs da região de Milagres, Bahia, Brasil: I. Caracterização da vegetação e lista de espécies de dois inselbergs. *Sitientibus*, 17, 165-184.

Francisco, T. M., Couto, D. R., Evans, D. M., Garbin, M. L., & Ruiz-Miranda, C. R. (2018). Structure and robustness of an epiphyte–phorophyte commensalistic network in a neotropical inselberg. *Austral Ecology*, 43(8), 905-914. doi: 10.1111/aec.12640

Gomes, P., & Alves, M. (2010). Floristic diversity of two crystalline rocky outcrops in the Brazilian northeast semi-arid region. *Revista Brasileira de Botânica*, 33(4), 661-676.

Gomes, P., & Sobral-Leite, M. (2013). Crystalline rock outcrops in the Atlantic Forest of northeastern Brazil: vascular flora, biological spectrum, and invasive species. *Brazilian Journal of Botany*, 36(2), 111-123. doi: 10.1007/s40415-013-0020-7

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. *Science Advances*, 1(2), e1500052. doi: 10.1126/sciadv.1500052

Hmeljevski, K. V., Nazarenco, A. G., Bueno, M. L., Reis, M. S., & Forzza, R. C. (2017). Do plant populations on distinct inselbergs talk to each other? A case study of genetic connectivity of a bromeliad species in an Ocbil landscape. *Ecology and Evolution*, 7(13), 4704-4716. doi: 10.1002/ece3.3038

Hunter, J. T. (2017). The effects of fire and manual biomass removal on the vegetation of granite inselbergs. *Fire Ecology*, 13(1), 127-137. doi: 10.4996/fireecology.1301127

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2012). *Manual técnico da vegetação brasileira* (2a. ed.). Rio de Janeiro, RJ: IBGE.

International Plant Names Index [IPNI]. (2020). International Plant Names Index. Retrieved from http://www.ipni.org
Vascular plants on inselberg landscapes

Porto, P. A. F., Almeida, A., Pessoa, W. J., Trovão, D., & Felix, L. P. (2008). Composição florística de um inselbergue no agreste paraibano, município de Esperança, Nordeste do Brasil. Revista Caatinga, 21(2), 214-222.

Pteridophyte Phylogeny Group [PPG]. (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54(6), 563-603. doi: 10.1111/jse.12229

Ratter, J. A., Bridgewater, S., & Ribeiro, J. F. (2003). Analysis of the floristic composition of the brazilian cerrado vegetation III: Comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60(1), 57-109. doi: 10.1017/S0960428603000064

Safford, H. D., & Martinelli, G. (2000). Southeast Brazil. In S. Porembski & W. Barthlott (Eds.), Inselbergs: Biotic diversity of isolated rock outcrops in tropical and temperate regions (p. 339–389). Berlin, DE: Springer-Verlag Berlin Heidelberg.

Sardou Filho, R., Matos, G. M. M., Mendes, V. A., & Iza, E. R. H. F. (2013). Atlas de rochas ornamentais do estado do Espírito Santo. Brasília, DF: CPRM.

The Angiosperm Phylogeny Group. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1-20. doi: 10.1111/boj.12385

The Brazil Flora Group [BFG]. (2015). Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia, 66(4), 1085-1113. doi: 10.1590/2175-7860201566411

Tölke, E., Silva, J. B., Pereira, A. R. L., & Melo, J. I. M. (2011). Flora vascular de um inselbegue no estado da Paraíba, Nordeste do Brasil. Biotemas, 24(4), 59-48. doi: 10.5007/2175-7925.2011v24n4p59

Versieux, L. M., & Wanderley, M. G. L. (2007). A new species of Alcantarea (E. Morren ex Mez) Harms, Bromeliaceae. Hoehnea, 34(3), 409-413. doi: 10.1590/S2236-89062007000300009

Xavier, G. C., Azevedo, A. R. G., Alexandre, J., Monteiro, S. N., & Pedroti, L. G. (2019). Determination of useful life of red ceramic parts incorporated with ornamental stone waste. Journal of Materials in Civil Engineering, 31(2), 04018381. doi: 10.1061/(ASCE)MT.19435553.0002590

Yates, C. J., Robinson, T., Wardell-Johnson, G. W., Keppel, G., Hopper, S. D., Schut, A. G. T., & Byrne, M. (2019). High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecology and Evolution, 9(13), 7660-7675. doi: 10.1002/ece3.5518
SUPPLEMENTARY MATERIAL

Table S1. List of vascular plants from Pedra da Andorinha Complex, Espírito Santo State, Brazil. Life form: Climb. = climbing; Herb = herbaceous; Subsh = subshrubs. PHYTO = Phytophysiognomy: VER = vegetation on exposed rock; WRC = woody rupicolous communities.

Evolutionary Lineages (species number)	Family/Species	Life form	PHYTO	Vouchers (Herbaria)
Lycophytes (2)	SELAGINELLACEAE (2)	Herb	X	J.M.C. Covre 90; D.R. Couto 5670, 3998 (CAP)
1 family	Selaginella convoluta (Arn.) Spring	Herb	X	J.M.C. Covre 89; D.R. Couto 5668, 3669 (CAP)
	Selaginella sellowii Hieron.	Herb	X	J.M.C. Covre 89; D.R. Couto 3670, 3998 (CAP)
Monilophytes (8)	ANEMIACEAE (2)	Herb	X	D.R. Couto 4005 (CAP)
3 families	Anemia retroflexa Brade	Herb	X	J.M.C. Covre 120 (CAP)
	Anemia tomentosa (Sav.) Sw.	Herb	X	J.M.C. Covre 161 (CAP); D.R. Couto 3996 (CAP)
	Polypodiaceae (1)	Herb	X	J.M.C. Covre 106; D.R. Couto 3679, 3680 (CAP)
	Pteridaceae (5)	Herb	X	J.M.C. Covre 90; D.R. Couto 3998 (CAP)
	Adiantum sp.	Herb	X	J.M.C. Covre 199 (CAP); D.R. Couto 3986 (CAP)
	Cheilanthes geraniifolia (Weath.) R.M.Tryon & A.F.Tryon	Herb	X	J.M.C. Covre 199 (CAP); D.R. Couto 3986 (CAP)
	Doryopteris collina (Raddi) J.Sm.	Herb	X	D.R. Couto 3670, 3669 (CAP)
	Doryopteris rediviva Fée	Herb	X	J.M.C. Covre 86 (CAP)
	Hemionitis tomentosa (Lam.) Raddi	Herb	X	J.M.C. Covre 106; D.R. Couto 3679, 3680 (CAP)
Magnoliids (1)	PIPERACEAE (1)	Herb	X	J.M.C. Covre 75 (CAP); D.R. Couto 3664, 3665 (CAP)
1 family	Peperomia cf. spiritus-sancti E.F. Guim. & Carv.-Silva	Herb	X	J.M.C. Covre 165 (CAP)
Monocots (45)	AMARYLLIDACEAE (1)	Herb	X	J.M.C. Covre 157 (CAP); G. Martinelli 15977 (RB)
10 families	Hippeastrum stratum (Lam.) Moore	Herb	X	J.M.C. Covre 157 (CAP); G. Martinelli 15977 (RB)
	Anthurium martineili Nadruz & Theófilo	Herb	X	J.M.C. Covre 95 (CAP)
	Philodendron edmundoi G.M.Barroso	Herb	X	Observed
	Bromeliaceae (17)	Herb	X	J.M.C. Covre 119 (CAP)
	Aechmea saxicola L.B.Sm.	Herb	X	J.M.C. Covre 119 (CAP)
	Alcantarea extensa (L.B.Sm.) J.R.Grant	Herb	X	Observed
	Alcantarea patriae Versieux & Wand.	Herb	X	J.M.C. Covre 215 (CAP); Versieux 565 (SP, RB)
	Billbergia tridifolia (Nees & Mart.) Lindl.	Herb	X	D.R. Couto 2347 (R)
	Encholirium horridum L.B.Sm.	Herb	X	Observed
	Neoregelia diversifolia E. Pereira	Herb	X	G. Martinelli 15751 (RB)
	Pitcairnia azouryi Martinelli & Forzza	Herb	X	J.M.C. Covre 173 (CAP); G. Martinelli 15977 (RB); V.C. Manhães 287 (VIES); D.R. Couto 4011 (CAP)
	Pitcairnia decidua L.B.Sm.	Herb	X	J.M.C. Covre 50 (CAP); D.R. Couto 2345 (R)
	Pitcairnia flavmea Lindl.	Herb	X	J.M.C. Covre 122 (CAP); V.C. Manhães 259 (VIES); D.R. Couto 2346 (R)
	Pitcairnia flavmea var. macropoda L.B.Sm. & Reitz	Herb	X	J.M.C. Covre 119 (CAP)
	Tillandsia gardneri Lindl.	Herb	X	J.M.C. Covre 189; D.R. Couto 3990, 3994, 4011 (CAP)
	Tillandsia loliacea Mart. ex Schult. & Schult.f.	Herb	X	J.M.C. Covre 5 (CAP); D.R. Couto 2343 (R); D.R. Couto 2155 (VIES); D.R. Couto 3989 (CAP); D.R. Couto 3989 (VIES)
	Tillandsia recurvata (L.) L.	Herb	X	D.R. Couto 4006 (CAP); D.R. Couto 2355 (R)
	Tillandsia stricta Sol.	Herb	X	D.R. Couto 2344 (R)
	Tillandsia usneoides (L.) L.	Herb	X	D.R. Couto 2344 (R)
	Stigmatodon attenuatoides D.R. Couto, Manhães & A.F. Costa	Herb	X	D.R. Couto 2350 (R); D.R. Couto 3971 (CAP)
	Vriesea saltensis Leme & L. Kollmann	Herb	X	J.M.C. Covre 105 (CAP); D.R. Couto 5504 (R)
	Anellemma brasiliense C.B.Clarke	Herb	X	J.M.C. Covre 207 (CAP)
	Dichorisandra procera Mart. ex Schult. & Schult.f.	Herb	X	J.M.C. Covre 53 (CAP)
	Gibasis geniculata (Jacq.) Rohweder	Herb	X	J.M.C. Covre 160 (CAP)

Acta Scientiarum. Biological Sciences, v. 43, e54760, 2021
Evolutionary Lineages (species number)	Family/ Species	Life form	PHYTO VE WR R	Vouchers (Herbaria)		
Vascular plants on inselberg landscapes	Costus spiralis (Jacq.) Roscoe	Herb	X	J.M.C. Covre 15 (CAP)		
CYPERACEAE (4)	Cyperus coriolius Boeckeler	Herb	X	D.R. Couto 4005 (CAP)		
	Cyperus sp.	Herb	X	J.M.C. Covre 4 (CAP)		
	Scleria sp.	Herb	X	J.M.C. Covre 45 (CAP)		
	Trilepis lhotzkiana Nees ex Arn.	Herb	X	J.M.C. Covre 214 (CAP)		
MARANTACEAE (1)	Maranta divaricata Roscoe	Herb	X	J.M.C. Covre 72 (CAP)		
	ORCHIDACEAE (12)					
	Pabstilia sp.	Herb	X	J.M.C. Covre 82; D.R. Couto 3657 (CAP)		
	Cyperus coriifolius Boeckeler	Herb	X	J.M.C. Covre 184 (CAP)		
	Scleria sp.	Herb	X	D.R. Couto 3658 (CAP)		
	Trilepis lhotzkiana Nees ex Arn.	Herb	X	J.M.C. Covre 174 (CAP)		
	Maranta divaricata Roscoe	Herb	X	H.M. Dias 528 (CAP)		
	Eulophiopsis tuberculata Hook.	Herb	X	J.M.C. Covre 12; D.R. Couto 3993 (CAP)		
	Laelia gloriosa (Rchb.f.) L.O.Williams	Herb	X	J.M.C. Covre 1 (CAP)		
	Prescottia plantaginifolia Lindl. ex Hook.	Herb	X	D.R.Couto 3656, 3661 (CAP)		
	Trichocentrum pumilum (Lindl.) M.W.Chase & N.H.Williams	Herb	X	J.M.C. Covre 1 (CAP)		
	TALINACEAE (1)	Talinum paniculatum (Jacq.) Gaertn.	Herb	X	J.M.C. Covre 66 (CAP)	
	VELLOZIACEAE (2)	Vellozia candida Mart.	Herb	X	J.M.C. Covre 44 (CAP)	
	Vellozia variegata Goethart & Henrard	Herb	X	H.M. Dias 529 (VIES)		
	Eudicots (65)					
	APOCYNACEAE (2)	Aspidosperma gomezianum A. DC.	Tree	X	J.M.C. Covre 188 (CAP)	
		Mandevilla sp.	Subsh	X	J.M.C. Covre 187 (CAP)	
	ASTERACEAE (6)	Baccharis serrulata (Lam.) Pers.	Subsh	X	D.R. Couto 3991 (CAP)	
		Bidens sp.	Herb	X	J.M.C. Covre 225 (CAP)	
	CYRTOPODIUM gigas (Vell.) Hoehne	Herb	X	J.M.C. Covre 12; D.R. Couto 3995 (CAP)		
	Euphorbia fasciculata Willd.	Herb	X	J.M.C. Covre 158; D.R. Couto 3992 (CAP)		
		Laelia gloriosa (Rchb.f.) L.O.Williams	Herb	X	J.M.C. Covre 1 (CAP)	
		Prescottia plantaginifolia Lindl. ex Hook.	Herb	X	J.M.C. Covre 107; D.R. Couto 2361 (CAP)	
		Speculina grobyi (Batem. ex Lindl.) F.Barros	Herb	X	D.R.Couto 3656, 3661 (CAP)	
		Trichocentrum pumilum (Lindl.) M.W.Chase & N.H.Williams	Herb	X	D.R.Couto 3656, 3661 (CAP)	
	BIGNONIACEAE (2)	Anemopaegma setilobum A.H.Gentry	Climb.	X	J.M.C. Covre 41 (CAP)	
		Tabebuia reticulata A.H.Gentry	Tree	X	J.M.C. Covre 162 (CAP)	
	CALOPHYLLACEAE (1)	Kielmeyera membranacea Casar.	Subsh	X	J.M.C. Covre 162 (CAP)	
	BORAGINACEAE (1)	Tournefortia bicolor Mill.	Climb.	X	J.M.C. Covre 197 (CAP)	
	CONVOLVULACEAE (5)	Brasiliopuntia setalibum A.H.Gentry	Shrub	X	J.M.C. Covre 16 (CAP)	
		Coleus fernambucensis Lem.	Shrub	X	J.M.C. Covre 28 (CAP); D.R. Couto 1730 (VIES)	
		Ceropegia sp.	Shrub	X	J.M.C. Covre 28 (CAP); D.R. Couto 1730 (VIES)	
		Ipomoea quamoclit L.	Climb.	X	J.M.C. Covre 2 (CAP); D.R. Couto 1729 (VIES)	
		Ipomoea sp.	Climb.	X	J.M.C. Covre 6 (CAP)	
		Rhynchospermum acutum (Mill.)	Herb	X	J.M.C. Covre 51 (CAP)	
		Cleome spinulosa K.Schum.	Climb.	X	J.M.C. Covre 50 (CAP)	
		ERYTHROXYLACEAE (1)	Erythroxylum sp.	Tree	X	J.M.C. Covre 112 (CAP)
		Dipsocoreae glandulosa (Griseb.) Kunth.	Tree	X	J.M.C. Covre 209 (CAP)	
		Dipsocoreae subhastata Vell.	Tree	X	J.M.C. Covre 222 (CAP)	
Evolutionary Lineages (species number)	Family/Species	Life form	Phyto Vouchers (Herbaria)			
---------------------------------------	----------------	-----------	--------------------------			
Acalypha amblyodonta (Müll.Arg.) Müll.Arg.	Shrub	X	J.M.C. Covre 100 (CAP)			
Aстраea gracilis (Müll.Arg.) O.L.M. Silva & Cordeiro	Herb	X	J.M.C. Covre 211 (CAP)			
Cnidoscolus oligandrus (Müll.Arg.) Paxon	Tree	X	J.M.C. Covre 176 (CAP)			
Euphorbia comosa Vell.	Herb	X	J.M.C. Covre 232 (CAP)			
Manihot sp.	Shrub	X	J.M.C. Covre 205 (CAP)			
Romanoa tamnoides (A.Juss.) Radcl.-Sm.	Climb.	X	J.M.C. Covre 115 (CAP)			
FABACEAE (10)						
Albizia polypephala (Benth.) Killip ex Record	Tree	X	J.M.C.Covre 253 (CAP)			
Aeschynomene sp.	Herb	X	J.M.C. Covre 181 (CAP)			
Calliandra sp. Benthi.	Tree	X	J.M.C. Covre 254 (CAP)			
Camptosema isopetalum (Lam.) Taub.	Climb.	X	J.M.C. Covre 64 (CAP)			
Centrosema sp.	Subsh	X	J.M.C. Covre 218 (CAP)			
Centrosema arenarium Benth.	Subsh	X	J.M.C. Covre 164 (CAP)			
Machaerium sp.	Climb.	X	J.M.C. Covre 158 (CAP)			
Macroptilium atropurpureum (Sessé & Moc. ex DC.) Urb.	Climb.	X	J.M.C. Covre 143 (CAP)			
Macroptilium erythroloma (Mart. ex Benth.) Urb.	Climb.	X	J.M.C. Covre 229 (CAP)			
Sigmoidotropis speciosa (Kunth) A. Delgado	Climb.	X	J.M.C. Covre 99 (CAP)			
GESNERIACEAE (4)						
Sinningia bragae Chautems,M. Peixoto & Rossini	Herb	X	J.M.C. Covre 171 (CAP)			
Sinningia brasiliensis (Regel & Schmidt) Wiehler & Chautems	Herb	X	J.M.C. Covre 191 (CAP)			
Sinningia speciosa (Lodd.) Hiern	Herb	X	J.M.C. Covre 216 (CAP)			
Sinningia sp.	Herb	X	J.M.C. Covre 88 (CAP)			
LOASACEAE (1)						
Aosa parviflora (Schrad. ex DC.) Weigend	Herb	X	J.M.C. Covre 65 (CAP)			
MALPIGHIACEAE (1)						
Stigmaphyllon vitifolium A.Juss.	Herb	X	J.M.C. Covre 210 (CAP)			
MALVACEAE (2)						
Ceiba erianthos (Cav.) K.Schum.	Tree	X	Observed			
Pseudobombax aff petropolitanum A.Robyns	Tree	X	J.M.C. Covre 141; D.R. Couto 2562, 4000 (CAP)			
MELASTOMATACEAE (1)						
Pleroma heteroramalum D. Don (D.Don)	Shrub	X	J.M.C. Covre 98 (CAP)			
MORACEAE (1)						
Ficus cyclophylla (Miq.) Miq.	Tree	X	J.M.C. Covre 198 (CAP)			
MYRTACEAE (4)						
Eugenia punicifolia (Kunth) DC.	Shrub	X	J.M.C. Covre 43 (CAP)			
Eugenia sp.	Shrub	X	J.M.C. Covre 55 (CAP)			
Myrciaria floribunda (H.West ex Willd.) O.Berg	Shrub	X	J.M.C. Covre 183 (CAP)			
Veg. 1	Shrub	X	J.M.C. Covre 144 (CAP)			
RUTACEAE (2)						
Enshebeckia sp.	Tree	X	J.M.C. Covre 48 (CAP)			
Physalis peruviana L.	Shrub	X	J.M.C. Covre 129 (CAP)			
Solanum americanum Mill.	Herb	X	J.M.C. Covre 110 (CAP)			
URTICACEAE (2)						
Laportea aestuans (L.) Chew	Herb	X	J.M.C. Covre 92 (CAP)			
Uerea baccifera (L.) Gaudich. ex Wedd.	Shrub	X	J.M.C. Covre 54 (CAP)			
VERBENACEAE (2)						
Lantana camara L.	Shrub	X	J.M.C. Covre 154 (CAP)			
Lippia origanoides Kunth	Subsh	X	J.M.C. Covre 46 (CAP)			
VITACEAE (1)						
Cassia erosa Rich.	Climb.	X	J.M.C. Covre 233 (CAP)			
VOCHYSIACEAE (1)	Shrub	X	J.M.C. Covre 148 (CAP)			