Phytochemical Screening, Antibacterial, Antifungal, Antiviral, Cytotoxic, and Anti-Quorum-Sensing Properties of *Teucrium polium* L. Aerial Parts Methanolic Extract

Mousa Alreshidi 1, **Emira Noumi** 1,2, **Lamjed Bouslama** 3, **Ozgur Ceylan** 4, **Vajid N. Veettil** 1, **Mohd Adnan** 1, **Corina Danciu** 5, **Salem Elkahoui** 1,3, **Riadh Badraoui** 1,6,7, **Khalid A. Al-Motair** 8, **Mitesh Patel** 9, **Vincenzo De Feo** 10, and **Mejdi Snoussi** 1,11,*

1 Department of Biology, University of Hail, College of Science, P.O. Box 2440, Ha’il 2440, Saudi Arabia; mo.alreshidi@uoh.edu.sa (M.A.); eb.noumi@uoh.edu.sa (E.N.); n.vajid@uoh.edu.sa (V.N.V.);
mo.adnan@uoh.edu.sa (M.A.); s.elkahoui@uoch.edu.sa (S.E.); ri.badraoui@uoh.edu.sa (R.B.)

2 Laboratory of Bioresources: Integrative Biology and Recovery, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia

3 Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia; lamjed.bouslama@gmail.com

4 Ula Ali Kocman Vocational School, Mugla SitkiKocman University, Mugla 48147, Turkey; ozgceylan@hotmail.com

5 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, Timisoara 300041, Romania; corina.danciu@unifr.roc

6 Section of Histology—Cytoleology, Medicine College of Tunis, Tunis El Manar University, Road Djebel Lakhdhar, La Raba-Tunis 1007, Tunisia

7 Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, Sfax University, Sfax 3029, Tunisia

8 Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; mbkhm65@gmail.com

9 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; patelmeet15@gmail.com

10 Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy; defeo@unisa.it

11 Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia

*Correspondence: m.snoussi@uoh.edu.sa; Tel.: +966-530-463-706

Received: 22 September 2020; Accepted: 19 October 2020; Published: 23 October 2020

Abstract: The chemical profile of *Teucrium polium* L. (*T. polium*) methanolic extract was tested using liquid chromatography coupled with high resolution mass spectrometry (HR-LCMS). Disc diffusion and microdilution assays were used for the antimicrobial activities. Coxsackievirus B-3 (CVB3) and Herpes simplex virus type 2 (HSV-2) were used for the antiviral activities. *Chromobacterium violaceum* (ATCC 12472 and CV026) and *Pseudomonas aeruginosa* PAO1 were used as starter strains for the anti-quorum sensing tests. Isoprenoids are the main class of compounds identified, and 13R-hydroxy-9E,11Z-octadecadienoic acid, valtratum, rhoifolin, sericetin diacetate, and dihydrosamidin were the dominant phytoconstituents. The highest mean diameter of growth inhibition zone was recorded for *Acinetobacter baumannii* (19.33 ± 1.15 mm). The minimal inhibitory concentrations were ranging from 6.25 to 25 mg/mL for bacterial strains, and from 6.25 to 25 mg/mL for *Candida* species. The 50% cytotoxic concentration on VERO (African Green Monkey Kidney) cell lines was estimated at 209 µg/mL. No antiviral activity was recorded. Additionally, *T. polium* extract was able to inhibit *P. aeruginosa* PAO1 motility in a concentration-dependent manner. However, the tested extract was able to inhibit 23.66% of the swarming and 35.25% of swimming capacities of
PAO1 at 100 µg/mL. These results highlighted the role of germander as a potent antimicrobial agent that can interfere with the virulence factors controlled by the quorum-sensing systems.

Keywords: *Teucrium polium* L.; aerial parts; bioactive compounds; HR-LCMS; biological activities

1. Introduction

Aromatic and medicinal plants’ history is associated with the evolution of civilizations and occupies a crucial place in medicine, cosmetology, and culinary preparations in China, India, the Middle East, Egypt, Saudi Arabia, and Greece [1–6]. For thousands of years, humanity has used various plants found in its environment, to treat and cure all kinds of diseases [7–10]. Secondary metabolites still remain the object of much in vivo research as well as in vitro, including phenolic compounds, saponosides, alkaloids, and volatile oils [11,12].

Nowadays, infectious diseases are a major cause of human troubles around the world. As a result, control of microorganisms, especially multidrug-resistant pathogens, is increasingly important for the development of effective treatment against infectious diseases [13–16]. New approaches have been proposed to fight microbial resistance, such as nanotechnology [17], to use natural products due to their healing potential. This idea dates back to ancient times and has been taken up and developed in recent years, especially against multi-drug resistant human pathogenic microorganisms [18–21]. As a result, plants—especially aromatic/medicinal ones—appear to be a potential source of antimicrobial agents due to their richness in alkaloids, anthraquinones, saponins, terpenoids, tannins, and polyphenols [22,23].

In Saudi Arabian folk medicine, germander (*T. polium*) is known under the vernacular name of “Jaada” used by Bedouins as a febrifuge and vermifuge to fight stomach and intestinal troubles. The plant is also used in cold and fever [24–26]. In the Mediterranean basin, many scientific reports highlighted the medicinal benefits of germander [27–30]. Few studies have focused on the chemical oil of *T. polium* in Middle East [26,31]. Most of the research on *T. polium* tends towards the uses of the plant and plant-based extract as antimicrobial compounds. This plant species is considered as an important herb in folk medicine prescriptions. Since many years, this plant has been recommended as a medication for its anti-diabetic, anti-inflammatory, anti-spasmodic, and antioxidant effects [32–34].

Different techniques were used to identify the bioactive compounds in *T. polium* aerial parts extracts, using different solvents (water, methanol, 65.5% methanol–water, dichloromethane/methanol, acetone, ethanol 70%, and ethanol 95%) from different regions around the world [35–44]. A literature review of the phytochemical compounds isolated from *T. polium* aerial parts showed the identification of more than 130 molecules dominated by terpenoids (60%) [45]. The main identified compounds from *T. polium* roots, aerial parts, and inflorescence are apigenin, luteolin, rutin, cirsiliol, cirsimaritin, salvigenin, and eupatorin [45].

Five flavonoids were widely isolated from different *Teucrium* species from European countries, namely: cirsiliol, cirsimaritin, cirsinoleol, salvigenin, and 5-hydroxy-6,7,3′,4′-tetramethoxyllavone [44]. Four new sesquiterpenes were identified in dichloromethane/methanol extract from *T. polium*, namely 4β,5α-epoxy-7αH-germacr-10(14)-en-6β-ol-1-one, 4β,5α-epoxy-7αH-germacr-10(14)-en-1β-hydroperoxy,6β-ol, 4β,5β-epoxy-7αH-germacr-10(14)-en,1β-hydroperoxy,6β-ol, and 4α,5β-epoxy-7αH-germacr-10(14)-e [39].

For this purpose, the main objectives of the present investigation were to assess for the first time the phytochemical profile of *T. polium* methanolic extract from the Hail region (Saudi Arabia) using HR-LCMS. The antimicrobial activities of germander extract against a wide range and types of clinical bacterial and fungal isolates were also tested. The antiviral activity was tested for the first time against CVB3 and HSV-2. Inhibition of the production of some virulence factors in *C. violaceum* and *P. aeruginosa* PAO1 reporter strains were also investigated for the first time in the present work.
2. Results

2.1. Phytochemical Composition

Our results showed the identification of 29 molecules in *T. polium* methanolic extract using the HR-LCMS technique. The complete list of the identified compounds together with their respective chemical class are listed in Table 1.

N°	RT	Identified Compound Name	Chemical Class	Chemical Formula
1	0.945	10-Hydroxyloganin	Isoprenoid	C_{17}H_{28}O_{11}
2	1.046	13R-hydroxy-9E,11Z octadecadienoic acid	Octadecanoid	C_{19}H_{32}O_{3}
3	1.062	Bis (2-hydroxypropyl) amine	Amino alcohol	C_{8}H_{13}NO_{2}
4	1.447	9-amino-nonanoic acid	Amino fatty acid	C_{9}H_{19}NO_{2}
5	3.807	10-Amino-decanoic acid	Amino fatty acid	C_{10}H_{21}NO_{2}
6	4.739	7-Epiloganin tetraacetate	Isoprenoid	C_{25}H_{34}O_{14}
7	5.342	3R-hydroxy-9E,11Z-octadecadienoic acid, b-D-Glucopyranoside uronic acid, 6-(3-oxobutyl)-2-naphthalenyl acid	Organic acid, Phenol	C_{20}H_{32}O_{8}
8	5.948	Cepharanthine	Alkaloid	C_{27}H_{36}N_{2}O_{6}
9	5.96	Troserutin	Flavonoid	C_{22}H_{34}O_{4}
10	6.319	Deoxylloganin tetraacetate	Isoprenoid	C_{25}H_{34}O_{14}
11	6.329	CMP-N-acyleuramimic acid	Amino sugar	C_{20}H_{32}O_{9}
12	6.376	Rhoifolin	Flavonoid	C_{25}H_{34}O_{13}
13	7.838	Sericetin diacetate	Flavonoid	C_{20}H_{32}N_{2}O_{16}P
14	8.198	Harpin-8 (9)-Ene	Limonoid	C_{27}H_{34}O_{7}
15	8.848	Selinidin	Coumarin derivative	C_{19}H_{20}O_{5}
16	9.1	Harpagoside	Iridoid glycoside	C_{21}H_{34}O_{11}
17	9.126	8-Epiiridodial glucoside tetraacetate	Isoprenoid	C_{24}H_{34}O_{11}
18	9.262	Larixol Acetate	Bicyclic labdane diterpenes	C_{22}H_{36}O_{3}
19	9.525	Valtratum	Terpene	C_{22}H_{36}O_{4}
20	9.807	Triptonide	Diterpene triepoxide	C_{20}H_{22}O_{6}
21	10.036	Koparin 2`-Methyl Ether	Isoflavonoid	C_{17}H_{24}O_{6}
22	10.779	Dihydroiosamin	Coumarins	C_{22}H_{28}O_{4}
23	11.022	10S,11R-Epoxy-punaglandin 4	Eicosanoid	C_{25}H_{32}C_{10}O_{3}
24	11.279	16alpha,17beta-Estradiol 3-(beta-D-glucuronide)	Steroidal glycosides	C_{24}H_{32}O_{9}
25	11.28	16-Hydroxy-4-carboxyretinoic Acid	Isoprenoid	C_{20}H_{24}O_{5}
26	12.149	Isotectorigenin, 7- Methyl ether	Isoflavonoid	C_{18}H_{16}O_{8}
27	13.274	3-hydroxy-3`-4`- Dimethoxyflavone	Flavonoid	C_{17}H_{14}O_{5}
28	18.427	Khayanthone	Limonoid	C_{32}H_{42}O_{9}
29	20.37	1-dodecanoyl-sn-glycerol	Glycerolipid	C_{41}H_{72}N_{2}O_{3}

In fat, *T. polium* methanolic extract was dominated by terpenes and their derivatives, fatty acids and their derivatives, polyphenols, flavonoids and derivatives, coumarins, amino acid derivatives, and alkaloids. The tested extract was dominated by 3R-hydroxy-9E,11Z-octadecadienoic acid, rhoifolin, sericetin diacetate, dihydroiosamin, and cepharanthine. The chromatograms (Figure 1) showed respectively major peaks indicating the presence of various phytochemical constituents. Data related to MS spectra, MS/MS spectrum peak list, chemical formula, and m/z values are listed in the supplementary file (Supplementary Material S1).
Figure 1. Main identified phytocompounds in *T. polium* methanolic extract using the HR-LCMS technique. (A): +ve Chromatogram—(1). 13R-hydroxy-9E,11Z-octadecadienoic acid, (2). Rhoifolin, (3). Sericetin diacetate, (4). Selinidin, (5). Harpagoside, (6). Valtratum, (7). Triptonide, (8). Koparin 2′-Methyl Ether, (9). Dihydrosamidin, (10). 10S,11R-Epoxy-punaglandin, (11). $4,16\alpha,17\beta$-Estril 3-(beta-D-glucuronide), (12). Khayanthone. (B): -ve Chromatogram—(1). 10-Hydroxyloganin, (2). 7-Epiloganin tetraacetate, (3). Cepharanthine, (4). Deoxyloganin tetraacetate, (5). Carapin-8 (9)-Ene, (6). 1-dodecanoyl-sn-glycerol.

The chemical structure of the identified 29 compounds are listed in Figure 2.
Figure 2. Chemical structure of the 29 compounds identified in *T. polium* methanolic extract by HR-LCMS. The names of compounds (1–29) are listed in Table 1.
2.2. Cytotoxicity Assay

Results showed that at the 50% cytotoxic concentration (CC50), defined as the concentration of the extract reduced by 50%, the VERO cell viability was estimated at 209 µg/mL (Figure 3).

![Cytotoxicity evaluation of T. polium methanolic extract against VERO cell lines using the MTT colorimetric method. Cell culture without extracts was used as negative control. The data represent the percentage of cell viability in comparison with the cell control, and the bars denote standard deviation (SD).](image)

2.3. Antimicrobial Activities

Table 2 illustrated the results of antibacterial activities of T. polium aerial parts methanolic extract against nine Gram-negative and three Gram-positive bacteria using disc diffusion assay. The results revealed that the methanolic extract exhibited a wide antibacterial spectrum, against tested bacteria with the inhibition zone diameter fluctuant from 6 to 20 mm. Our results showed various degrees of the inhibition. In fact, very high antibacterial activity was recorded against the clinical isolates A. baumannii (strain 146) and S. pyogenes. A high activity level was recorded against P. aeruginosa ATCC 27853, P. mirabilis ATCC 29245, P. aeruginosa (environmental strain, pf8), and E. cloacae (clinical strain, 115). Moderate activity was obtained against E. coli ATCC 35218, K. pneumoniae ATCC 27736, S. aureus MDR (clinical strain, 136), and S. paucimobilis (clinical strain, 144). Low activity was recorded against P. mirabilis (environmental strain, 3), and S. sciuri (environmental strain). The results of the minimal bactericidal concentration/minimum inhibitory concentration (MBC/MIC) ratios interpreted using the scheme of antimicrobial substances showed that T. polium aerial parts methanolic extract acts like a bacteriostatic agent for all tested bacteria except against E. cloacae, against which it is bactericidal.

The methanolic extract of T. polium showed varied antifungal activity (Table 3). Our results indicate that the extract exhibited a moderate inhibitory effect against unicellular yeast (C. albicans, ATCC 10231, C. vaginals, and C. neoformans ATCC 14116) and low activity against filamentous fungi (A. fumigatus ATCC 204305 and A. niger). By comparing the results obtained in the presence of Amphotericin B, we observe that only for C. vaginals (clinical strain, 136) the diameter of inhibition zone is higher than the used control. Based on the minimum fungicidal concentration (MFC)/MIC ratio, antifungal compounds present in our extract acts as fungicidal agents against the tested fungi.
2.4. Antiviral Activities

Results showed that the tested *T. polium* methanolic extract was not active against the two viruses used: CVB3 and HSV-2.

2.5. Anti-Quorum-Sensing Activities

The anti-quorum-sensing activities were tested using two starter strains (*C. violaceum* wild and mutant strains) and *P. aeruginosa* PAO1. The results showed that *T. polium* methanolic extract has no effect on the violacein production in the microtiter plate assay using the mutant strain *C. violaceum* CV026 at 5 mg/mL (Figure 4A). Additionally, no inhibition of the violacein pigmentation produced by the wild type, *C. violaceum* ATCC 12472, on Luria–Bertani Petri dishes of agar was observed (Figure 4B).
Table 4 shows the effect of different concentration of *T. polium* methanolic extract on two virulence properties controlled by the quorum-sensing system in *P. aeruginosa* species: swarming and swimming features.

Sample	Swarming Inhibition (%)	Swimming Inhibition (%)				
	100	75	50	100	75	50
T. polium methanolic extract	23.66 ± 0.5	12.95 ± 1.5	-	35.25 ± 2.5	-	-

Concentration is expressed as µg/mL; (-): No activity; %: Percentage.

Results demonstrated that this plant extract was able to inhibit the swarming and swimming activities in a concentration-dependent manner. The highest inhibition was recorded at 100 µg/mL with a percentage of motility inhibition about (35.25 ± 2.5%) for swimming activity, and (23.66 ± 0.5%) for swarming activity.

3. Discussion

The yield of extraction using pure methanol as solvent was about 9.437 ± 0.114%. Similar results were obtained using the same solvent and the aerial parts of felty germander—the yield of extraction was 8.24% [46]. Previous studies reported different yields of extraction using organic solvents with different polarities, and different *T. polium* organs [47–50]. In fact, using ethanol (50%) and the *T. polium* aerial parts, the yield of extraction was 12.5% [48]. The yields of extraction from aqueous and ethanol extracts of *T. polium* L. subsp. *gabesianum* (L.H.) aerial parts were 9% and 7%, respectively [50].

Additionally, Alzeer et al. [49] used various solvents, and the yields of extraction were estimated at 17% (90% ethanol), 20% (80% methanol), 7.4% (acetone), 23% acetic acid, 25% (apple vinegar), 9% (grape vinegar), and 53% (coconut water). Using boiling water (1:10, w/v) and ethanol 96% (1:8, w/v) to
elute bioactive compounds from *T. polium* aerial parts, the yields of extraction were 16.3% and 14.7%, respectively [48].

Nematollahi-Mahani et al. [51] studied the toxicity of *T. polium* 96%-ethanolic extract on different known malignant cell lines like A549 (human lung adenocarcinoma), BT20 (human breast ductal carcinoma), MCF-7 (human breast adenocarcinoma), and PC12 (mouse pheochromocytoma). The results reported showed that IC50 values were 90 µg/mL (A549), 106 µg/mL (BT20), 140 µg/mL (MCF-7) and 120 µg/mL (PC12). The cytotoxic properties of *T. polium* aerial parts can be attributed the presence in the organic species of some diterpenoids and their acyl derivatives (teucvin and teucvidin), flavonoids (cirsiliol, cirsimaritin, cirsideolin, salvigenin, and 5-hydroxy-6,7,3',4'-tetramethoxytlavone), saponin poliusaposide [52], and selenium [53–55].

In a systematic review, Harborne et al. [44] reported the distribution of free flavone aglycones and flavonoid glycosides from 42 European taxa of the genus *Teucrium* (75% ethanol extract from aerial parts). These authors reported the identification of 5,7-Dihydroxytkvones, 6-hydroxyBavones, 6-methoxytlavoncs, flavonols, 8-hydroxytlavones, cirsideolin, cirsimaritin, cirsiliol, 5-hydroxy-6,7,3',4'-tetramethoxytlavone, salvigenin, luteolin, apigenin, diosmetin, hydroxyluteolin, cirsimaritin, quercetin, isorhamnetin, hypolaetin, isoscutellarin, vicenin-2, 5,7-Dihydroxytlavone glycosides, 6-hydroxytlavone glycosides, 1-hydroxytlavone glycoside, 6-methoxytlavone glycosides, flavonol glycoside, apigenin-7-glucoside, apigenin-7-glucoside, luteolin-7-glucoside, luteolin-7-rutinoside, luteolin-7-glucoside, luteolin-7-rutinoside, luteolin-7-sambubioside, diosmetin-7-rutinoside, 6-OH-luteolin-7-glucoside, 6-OH-luteolin-7-rhamnoside, isoscutellarin-7-alsosylglucoside, hypolaetin-7-alsosylglucoside, cirsimaritin 4'-glucoside, quercetin 3-glucoside, quercetin 3-rutinoside, isorhamnetin 3-glucoside, and isorhamnetin 3-rutinoside.

Table 5 summarizes some important bioactive molecules isolated from the *Teucrium* species, mainly *T. polium*, using various identification techniques and different extraction procedures [35–44].

In the present work, we reported the identification of a new undescribed compounds in *T. polium* aerial parts methanolic extract using the HR-LCMS technique: 13R-hydroxy-9E,11Z-octadecadienoic acid, rhoifolin, sericetin diacetate, selinidin, harpagoside, valtratum, triptonide, koparin 2'-methyl ether, dihydrosaminid, 10S,11R-epoxy-punaglandin, 4, 16alpha, 17beta-Estriol 3-(beta-D-glucuronide), khayanthone, 10-hydroxyloganin, 7-epiloganin tetraacetate, cepharenthine, deoxyloganin tetraacetate, carapin-8 (9)-Ene, and 1-dodecanoyl-sn-glycerol.

In previous work, Pacifico et al. [42] reported the identification of poliusides, apigenin, luteolin, montanin D, montanin E, teubutilin A, teuchamecin C, teulamifin B, teupolin VI, teupolin VII, teupolin VIII, teupolin IX, teupolin X, teupolin XI, and teupolin XII from *T. polium* methanolic extract from Italy. Using the same solvent, De Marino et al. [40] identified poliuside B, poliuside, teucardosid, 8-O-acetylharpagid, luteolin7-O-rutinoside, luteolin 7-O-neohesperidoside, luteolin 7-O-glucosidc, luteolin 4'-O-glucoside, teulamifin, and teusalvin C as main bioactive compounds from *T. polium* aerial parts from Italy. Meanwhile, Sharififar et al. [43] identified 3',6 dimethoxy apigenin, rutin, apigenin, and 4',7 dimethoxy apigenin as the main bioactive molecules in *T. polium* methanolic extract from Iran.

Previous reports have underlined that methanolic extract from *T. polium* showed biological activity against Gram-negative and Gram-positive bacteria [56]. Mainly the antibacterial activity was exhibited against Gram-negative bacteria. The antibacterial activity of aerial parts’ methanolic extract of *T. polium* is directly linked to their phytoconstituents and contingent by the activity of their chemical compounds and their proportion in the extract. Many studies evaluated the antibacterial activity of the essential oil of *T. polium* [29,50]. The essential oils, aqueous, and ethanol extracts of *T. polium* exhibited high antibacterial activity, against both Gram-negative and positive bacteria and antifungal properties [50]. Recently, El Atki et al. [31] examined the antibacterial activities of the essential oils of two Moroccan *T. polium* L. subspecies. Moreover, Ghojavand et al. [57], synthesized green nanoparticles from the stem and flower of *T. polium* and investigated their antifungal activity. In fact, previous studies demonstrated that methanolic extract exhibited high antibacterial activity [58–61]. Comparing the efficacy of our extract to ampicillin, we found that it is more highly active than a commonly used antibiotic against *A. baumannii*, *E. cloacae*, *P. aeruginosa*, *P. mirabilis* ATCC 29245, and *P. aeruginosa*
leaves methanol extract [68].

The result indicated that the plant extract showed greater potential for antibacterial than antifungal activity. Moreover, it was 12.5 mg/mL for the rest of the tested strains. The result of the MBC/MIC ratio interpreted using the scheme of antimicrobial substances shows that T. polium aerial parts methanolic extract acts like a bacteriostatic agent for all tested bacteria, except against E. cloacae where it acts as a bactericidal agent. This result was in agreement with other studies which demonstrated that methanolic extract inhibits bacterial growth and does not kill them [60,72].

Several solvents have been used to extract and evaluate the antibacterial activity of the aerial part of T. polium. Indeed, organic (ethanol, methanol, acetone, ethyl acetate, and chloroform) or aqueous [64,67,73] extracts were used to investigate the antibacterial activity of T. polium. The result indicated that the organic extract showed greater activity than the aqueous extract, which defends our choice in the use of methanol for the extraction of active compounds. Other study shows that ethanol extract of T. polium exhibited antibacterial activities against several bacteria among them are antibiotic resistant strains [74]. It was also demonstrated that T. polium had antifungal activity against fungal species (C. albicans and A. niger). Furthermore, the results of Kremer et al. [75] investigating especially T. arduini L. (Lamiaceae), showed that the plant had the antimicrobial properties against S. aureus, C. albicans, and various other microorganisms.

Similarly, Taheri et al. [76] studied the effect of extracts from A. sieberi, which showed antifungal activity against C. albicans, and prevented its growth. The results support the findings of our work. Indeed, the plant extract stopped the growth of C. albicans. Additionally, Gholampour-Azizi et al. [77], studied the in vitro antifungal activity of Cucumis melo and he demonstrated that it exhibited specific antifungal activity against C. albicans. Likewise, it has been demonstrated that aqueous and ethanolic extracts from T. polium showed an antifungal effect against C. albicans [78]. Furthermore, another study demonstrated that the aqueous extract of T. polium (2.5, 10, and 20 g/L) slows down the growth of Saccharomyces cerevisiae and Yarrowia lipolytica. In a recent study, Akbarzdeh et al. [79] studied the sensitivity of Candida strains against a T. polium smoke product. The authors demonstrated that all the...
standard clinical samples of Candida were sensitive. On the other hand, the result of the study of the antimicrobial activity of acetone and chloroform extracts from T. polium against four fungal species and eleven bacteria showed that the antibacterial effect is more significant than the antifungal activity, which is in concordance with our results [67,73].

Additionally, previous results using aqueous and ethanolic extracts from T. polium aerial parts have shown moderate anti-rinderpest virus [80]. In 2014, Ansari and co-workers [81] reported that T. polium was a rich source of rosmarinic acid (1.8%, w/w), weak cytotoxic activity (maximum non-toxic concentration = 1000 µg/mL), and anti-Herpes Simplex Virus-1 (HSV-1)—affected by the exposure time and the concentration of the extract used. In fact, after one hour of cell infection, 93.1% of HSV-1 were inhibited by 50 µg/mL of plant extract. This percentage of inhibition reached 100% after one hour of exposure to 100 and 250 µg/mL of felty germander extract [81]. This activity was correlated to the high concentration of rosmarinic acid, a phenolic compound known to possess antiviral activity [82].

Many plant extracts and essential oils have been reported to possess high anti-quorum-sensing potential and play an important role in attenuating the secretions of many virulence factors in P. aeruginosa PAO1 and C. violaceum reporter strains [83–87]. According to the literature review, only one study has reported the effect of T. polium alcohol extract against the production of the purple pigment by C. violaceum ATCC 12472, a phenomenon controlled by the quorum-sensing system. Results obtained reported that the tested extract had not showed a clearly visible white halo in the violacein bioassay [88]. It has been demonstrated that a 95% ethanolic extract of T. polium leaves was able to reduce the biofilm formed by P. aeruginosa strain on a polystyrene 96-well plate at 25 ppm [89]. More recently, a crude extract from air-dried aerial parts of felty germander from Egypt was able to decrease the biofilm formation by S. aureus strains at low concentration [90].

Overall, the biological properties of germander outlined in this study could certainly be the result of the phytochemical compounds present in the methanolic extract tested. In fact, several bioactive compounds have been reported in the organic extracts of the tested plant species [91]. Previous reports showed that T. polium possessed potential therapeutic properties in some health problems including toxicity and cytogenic diseases [92]. In this study, further efficient activities could be outlined particularly the ability to treat bacterial infectious diseases and to inhibit cell-to-cell communication (quorum sensing).
Table 5. Literature review of the main identified bioactive compounds in the *Teucrium* species and the solvent used.

Teucrium Species/Origin	Solvent Used	Main Identified Compounds	References
T. polium L. Serbia	Methanol	Phenolic acids (10^{-4} µg/mL extract µg/mL extract): gallic acid (8.1 ± 0.2), vanillic acid (2.1 ± 0.3), caffeic acid (1.7 ± 0.2), chlorogenic acid (90.00 ± 0.2), and p-coumaric acid (30.0 ± 0.6). Flavonoids (10^{-4} µg/mL extract µg/mL extract): catechin (235.0 ± 0.5), rutin (77.0 ± 0.1), myricetin (55.0 ± 0.1), luteolin (22.0 ± 0.6), quercetin (24.0 ± 0.4), and apigenin (157.0 ± 0.3).	[35]
T. polium L. Greece	Methanol/Water 62.5%	Phenolic compounds (mg/100g dry sample): tyrosol (0.42 ± 0.01), caffeic acid (0.65 ± 0.01), ferulic acid (0.95 ± 0.02), and luteolin (0.48 ± 0.01)	[36]
T. polium L. Egypt	Dichloromethane-methanol (1:1; v/v)	o-Hydroxybenzoic acid, hydroxytyrosol, p-Hydroxybenzoic acid, vanillic acid, gentisic acid, ferulic acid, caffeic acid, 3-Nitro-pthalic acid, and quercetin.	[37]
T. polium L. Italy	Methanol	Poliumoside B, poliumoside, teucardosid, 8-O-acetylharpagid, luteolin7-O-rutinoside, luteolin7-O-neohesperidoside, luteolin 4\'-O-glucoside, teulamifin, and teusalvin C.	[38]
T. polium L. R. Macedonia	Methanol	Poliumoside, apigenin, luteolin, montanin D, montanin E, teubutilin A, teuchamecrin C, teulamifin B, teupolin VI, teupolin VII, teupolin VIII, teupolin IX, teupolin X, teupolin XI, and teupolin XII.	[40]
T. polium L. Iran	Methanol	Rutin, apigenin, (3’, 6 dimethoxy apigenin, and 4’7 dimethoxy apigenin.	[41]
T. polium L. Europe	Ethanol 70%	Rutin, apigenin, apigenin-4, 7-dimethylether, crinamartins, crinsilol, luteolin, 6-hydroxyluteolin, luteolin-7-O-glucoside, salvigenin, apigenin 7-glucoside, eupatrin, apigenin-5 glycolylglucoside, 3’,6- dimethoxy apigenin, 4’7 dimethoxy apigenin, and salvigenin.	[44]
T. polium L. Egypt	Dichloromethane-methanol (1:1; v/v)	Sesquiterpenes: 4β,5α- epoxy-7αH-germac-10(14)-en-6β-ol-1-one, 4β,5α- epoxy-7αH-germac-10(14)-en-6β-ol, 4β,5β- epoxy-7αH-germac-10(14)-en-6β-ol, 4α,5β- epoxy-7αH-germac-10(14)-en-6β-ol, 10α,1β,4β,5α- epoxy-7αH-germac-6-ol, teucadiol, 4β,6β-di-hydroxy-1α,5β-guai-9-ene, oplepanone, oxyphyllenol A, eudesm-3-ene-1,6-diol, rel1b,3a,6b-trihydroxyeudesm-4-ene, arteuncultone. Flavonoids: 7,40-O-dimethylectutarin-5(3,6-dihydroxy-7,40-dimethoxyflavone) and salvigenin. Glycosides: teucardoside and poliumoside.	[49]
T. polium L. Saudi Arabia	Methanol	Laxtolo acetate, cepharanthine, Bis (2-hydroxypropyl) amine, 9-amino-nanooic acid, 10-amino-dreonic acid, CMP-N-acetylmuramic acid, selenidin, dihydrodiosaminid, triptosine, 105,11R-Epoxy-punaglandin 4, rhoifolin, 3-hydroxy-3’,4’-dimethoxyflavone, sericetin diacetate, troxerutin, 1-dodecanoyl-sn-glycerol, harpagoside, kopyarin 2’-methyle ether, isotecotergonin, 7’-methyle ether, 10-hydroxyloganin, 7’-epiloganin tetraacetate, deoxyloganin tetraacetate, 6’-epiiridodial glucoside tetraacetate, 6-hydroxy-4-carboxyretinoic acid, carapin-8 (9)’-ene, khayanthone, 13R-hydroxy-9E,11Z octadecadienoic acid, b-D-glucopyranoside 4-uronic acid, 6-(3-oxobutyl)-2-naphthalenyl, 16alpha,17beta-Estril 3-(b-D-glucuronide), and valtratum.	This Study
4. Materials and Methods

4.1. Plant Material Sampling and Extract Preparation

The plant material was collected in October 2019 from a nursery belonging to the Ministry of Agriculture, Hail, Saudi Arabia. A voucher specimen (AN01) was deposited at the herbarium in the Department of Biology, College of Science, University of Hail, Kingdom of Saudi Arabia. The fresh aerial flowering parts were dried at room temperature for seven to ten days. For the bioactive compound’s extraction, 4 g of the plant powder material were macerated in 40 mL absolute methanol (ratio: 1:10, w/v). Methanolic extracts were pooled, filtered, and the solvent was removed at 60 °C in the incubator chamber. The yield of extraction was about 9.437 ± 0.114%.

4.2. Identification of Bioactive Molecules by Liquid Chromatography Coupled with High Resolution Mass Spectrometry

The HR-LCMS analysis of *T. polium* was analyzed by using a UHPLC-PDA-Detector Mass spectrometer (HR-LCMS 1290 Infinity UHPLC System, 1260 Infinity Nano HPLC with Chipcube, 6550 iFunnel QTOFs), Agilent Technologies, USA. For chromatographic separation, an Agilent 1200 Series HPLC system (Agilent Technologies, Santa Clara, CA, USA) was used, equipped with a binary gradient solvent pump, HiP Sampler, column oven, and MS Q-TOF with Dual AJS ES Ion Source. Samples were separated on an SB-C18 column (2.1 × 50 mm, 1.8-particle size; Agilent Technologies, Santa Clara, CA, USA), maintained at 25 °C. The solvents used were: water containing 0.1% HCOOH, and acetonitrile containing 10% water and 0.1% HCOOH. The following gradient elution program at a flow rate of 0.3 mL min⁻¹ was applied. MS detection was performed in an MS Q-TOF Mass spectrometer (Agilent Technologies). Compounds were identified via their mass spectra and their unique mass fragmentation patterns. Compound Discoverer 2.1, ChemSpider, and PubChem were used as the main tools for the identification of the phytochemical constituents [93].

4.3. Evaluation of the Cytotoxicity

The cytotoxicity of the *T. polium* extract was evaluated on VERO (African green monkey kidney) cell lines using the MTT colorimetric method. A decreasing concentration of the extract (from 3333 µg/mL to 1 µg/mL) diluted in MEM supplemented with 2%-FBS was applied on VERO cells in a 96-well plate. Cell controls were incubated under the same conditions without extracts. After 72 h of incubation at 37 °C, the extract dilutions were substituted with the MTT solution (5 mg/mL) and incubated for 2 h at 37 °C and then dissolved by the dimethyl sulfoxide (DMSO). The plate was read on an ELISA reader at a 570 nm wavelength to measure the optical density. The 50% cytotoxic concentration (CC₅₀) was determined by regression analysis in comparison with a negative control [83].

4.4. Antimicrobial Activities

4.4.1. Selected Microorganisms

The obtained methanolic extract was tested against a wide range of selected clinical/environmental microorganisms: *Escherichia coli* ATCC 35218, *Pseudomonas aeruginosa* ATCC 27853, *Proteus mirabilis* ATCC 29245, *Klebsiella pneumoniae* ATCC 27736, *Proteus mirabilis*, *Staphylococcus sciuri*, *Streptococcus pyogenes*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* MDR, *Enterobacter cloacae*, *Sphingomonas paucimobilis*, and *Acinetobacter baumannii*. Four yeast strains including *Candida albicans* ATCC 10231, *Cryptococcus neoformans* ATCC 14116, *Candida vagimalis*, and *Candida albicans* and two fungal strains; *Aspergillus fumigatus* ATCC 204305, and *Aspergillus niger* were used.

4.4.2. Antibacterial and Antifungal Activity Using Disc Diffusion Assay

The disc diffusion assay was performed on Mueller–Hinton agar plates for all bacteria, Sabouraud chloramphenicol agar for yeasts, and potato dextrose agar for *Aspergillus* strains as previously described.
by Snoussi et al. [94]. 10 µL of methanolic extract mother solution (300 mg/mL) was used to impregnate 6 mm sterile discs. The experiment was done in triplicate. All Petri dishes were incubated overnight at 37 °C and the diameter of the growth inhibition zone was recorded using a 1 cm flat ruler. The mean diameter was recorded and expressed as (GIZ mm ± SD). Results obtained are interpreted using the scheme proposed by Parveen et al. [95]. No activity (GIZ 0), low activity (GIZ: 1–6 mm), moderate activity (GIZ: 7–10 mm), high activity (GIZ: 11–15 mm), and very high activity (GIZ: 16–20 mm). Ampicillin and Amphotericin B were used as control.

4.4.3. MICs and MBCs/MFCs Determination Using the Microdilution Assay

MICs and MBCs/MFCs values were determined by a microtiter broth dilution method as previously described by Snoussi et al. [96]. The test medium was Mueller–Hinton Broth (MHB) for bacterial strains, and Sabouraud dextrose broth for fungal isolates. Bacterial/fungal suspensions (100 µL) were inoculated into the wells of 96-well microtiter plates in the presence of samples with different final concentrations (ranging from 0.039 mg/mL to 100 mg/mL). The inoculated microplates were incubated at 37 °C for 24 h. The lowest concentration of T. polium methanolic extract, which did not show any visual growth of tested organisms, was recorded as the MIC value (expressed in mg/mL). The MBCs/MFCs values are determined by streaking all wells after the MICs values on the correspondent agar media of the tested microorganisms. MBC/MIC ratio and MFC/MIC ratio were used to interpret the activity of the essential oil as described by Gatsing et al. [97].

4.4.4. Antiviral Activities

The antiviral activity of T. polium methanolic extract was evaluated on Coxsackievirus B-3 (CVB3) and HSV-2. The viruses were propagated on permissive VERO cells in MEM medium supplemented with 2% FBS at 37°C under humidified 5% CO2 atmosphere. The infectious titer of the stock solution was 2×10^7 TCID50/mL (50% tissue culture infectious doses/mL) for CVB-3 and 8×10^5 PFU/mL (plaque formation units/mL, PFU) for HSV-2. A multiplicity of infection about 0.01 for CVB-3 and 0.1 for HSV-2 was seeded into cells monolayers cultivated in 96-well culture plates (2 \times 10⁴ cells/wells), with different concentrations of the extract starting from the CC₅₀ value. Plates without virus or extract were used as negative and positive controls, respectively. After 48 h incubation, the inhibition of the cytopathic effect (CPE) for CVB-3 and the plaque virus for HSV-2 was observed in an inverted microscope [94].

4.5. Anti-Quorum Sensing Activity

4.5.1. Bioassay for Quorum-Sensing Inhibitory (QSI) Activity Using Chromobacterium Violaceum CV026

The ability of the tested extract to inhibit the production of violacein by C. violaceum strains (ATCC 14272 and CV026) was assayed by using the methods described by Noumi et al. [86]. Serial dilutions of the sample (MIC, MIC/2, MIC/4, MIC/8, and using LB broth as the diluent) were tested against C. violaceum CV 026 and the assay plates were incubated at 30 °C for 3 days. Each sample was tested in triplicate. Inhibition of quorum sensing was calculated using the protocol described by Zaki et al. [98] and activity is interpreted using the following scheme: a quorum sensing inhibition zone < 10 mm was considered moderate activity and when the QSI zone > 10 mm it was designated a potent effect.

4.5.2. Violacein Inhibition Assays Using Chromobacterium Violaceum CV12472

Violacein inhibition was also tested on C. violaceum ATCC 12472 as previously described by Noumi et al. [86]. Overnight culture (10 µL) of the starter strain adjusted to 0.4 OD at 600 nm was used to inoculate sterile microtiter plates containing 200 µL of Luria–Bertani broth and incubated in the presence and absence of various concentrations of tested germander extract (MIC-MIC/16). All 96-well
plates were incubated at 30 °C for 24 h and observed for the reduction in violacein pigment production. Each experiment was performed in triplicate. The absorbance was read at 585 nm. The percentage of violacein inhibition was calculated by following formula (Equation (1)):

\[
\text{Violacein inhibition (\%)} = \left(1 - \frac{\text{OD}_{\text{sample}}}{\text{OD}_{\text{control}}}\right) \times 100
\]

(1)

4.5.3. Swarming and Swimming Motility Assays Using Pseudomonas Aeruginosa PA01

The effects of increasing concentrations of the methanolic germander extract (50, 75, and 100 µg/mL) were tested against the swarming/swimming motility of P. aeruginosa PA01 strain was tested as previously reported by Noumi et al. [85]. For the swimming activity, the optical density of an overnight culture of PA01 strain was adjusted at 0.4 OD at 600 nm and point inoculated at the center of 0.3% agar medium. For swarming assays, 5 µL of the same PA01-adjusted culture were inoculated at the center of the 0.5% agar medium. Then, the inoculated Petri dishes were incubated at 30 °C in upright position for 16 h. The reduction in swimming and swarming migration was recorded by measuring the swim and swarm zones of the bacterial cells after 16 h. Each sample was tested in triplicate and the mean zone of inhibition was recorded.

4.6. Statistical Analysis

All measurements were carried out in triplicate and the results were presented as mean values ± SD (standard deviations). ANOVA and Duncan tests were performed using SPSS 16.0. The means of the test values were also evaluated with the Least Significant Differences test at the 0.05 significance level.

5. Conclusions

Taken together, the obtained results showed that T. polium methanolic extract is a rich source of undescribed bioactive molecules in the Teucrium genus obtained using the HR-LCMS. Our findings highlighted the antimicrobial activities of T. polium methanolic extract from the Hail region, Saudi Arabia, against a large collection of clinically/environmentally important pathogens. T. polium extract was able to inhibit the motility of P. aeruginosa PA01, reducing its virulence. These findings support the use of this plant in folk medicine as a source of bioactive molecules acting on several human disorders. Further analyses are needed to correlate between the obtained results with the phytochemical composition of organic extract from germander aerial organs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1418/s1.

Author Contributions: Conceptualization, M.S., M.A. (Mousa Alreshidi) and V.D.F.; methodology, O.C., E.N., L.B., V.N.V. and S.E.; software, M.P., M.A. (Mohd Adnan) and M.S.; validation, all authors; formal analysis, all authors; investigation, M.P., E.N., V.N.V., K.A.A.-M. and L.B.; writing—original draft preparation, R.B., V.N.V., E.N., C.D. and S.K.; writing—review and editing, all authors; visualization, M.S. and V.D.F.; supervision, M.A. (Mousa Alreshidi), M.S.; project administration, M.A. (Mousa Alreshidi), M.S. and V.D.F.; funding acquisition, M.A. (Mousa Alreshidi). All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Ha’il-Saudi Arabia through project number RG-191311.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem. 2005, 77, 7–24. [CrossRef]
2. Yun, B.W.; Yan, Z.; Amir, R.; Hong, S.; Jin, Y.W. Plant natural products: History, limitations and the potential of cambial meristematic cells. Biotechnol. Genet. Eng. 2012, 28, 47–60. [CrossRef]
3. Anand, U.; Jacobo Herrera, N.; Altemimi, A.; Lakshssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [CrossRef] [PubMed]
4. Al-Essa, M.A.; Al-Mehaidib, A.; Al-Gain, S. Parental awareness of the liver disease among children in Saudi Arabia. *Ann. Saudi Med.* 1998, *8*, 79–81. [CrossRef] [PubMed]

5. Alfarhan, A.A.H. Phytogeographical analysis of the floristic elements in Saudi Arabia. *Pak. J. Biol. Sci.* 1999, *2*, 702–711.

6. Aati, H.; El-Gamal, A.; Shaheen, H.; Kayser, O. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia. *J. Ethnobiol. Ethnomedicine* 2019, *15*, 1–9. [CrossRef] [PubMed]

7. Borchardt, J.K. The beginnings of drug therapy: Ancient mesopotamian medicine. *Drug News Perspect.* 2002, *15*, 187–192. [CrossRef] [PubMed]

8. Sneader, W. *Drug Discovery: A History*; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005.

9. Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. *Biochim. Biophys. Acta* 2013, *1830*, 3670–3695. [CrossRef] [PubMed]

10. Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. *Nat. Prod. Res.* 2018, *32*, 1926–1950. [CrossRef]

11. Kinghorn, A.D.; Pan, L.; Fletcher, J.N.; Chai, H. The relevance of higher plants in lead compound discovery programs. *J. Nat. Prod.* 2011, *74*, 1539–1555. [CrossRef]

12. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. *J. Nat. Prod.* 2012, *75*, 311–335. [CrossRef] [PubMed]

13. Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. *Interdiscip. Perspect. Infect. Dis.* 2014, *2014*, 514300. [CrossRef] [PubMed]

14. Frieri, M.; Kumarb, K.; Boutinc, A. Antibiotic resistance. *J. Infect. Public Health* 2017, *10*, 369–378. [CrossRef]

15. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Monnet, D.L.; Pulcini, C.; Kluytmans, J.; Carmeli, Y.; et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect. Dis.* 2018, *18*, 318–327. [CrossRef]

16. Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the Era of antimicrobial resistance: A Review. *Front. Microbiol.* 2019, *10*, 539. [CrossRef] [PubMed]

17. Pelgrifta, R.Y.; Friedmanbc, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. *Adv. Drug Deliv. Rev.* 2013, *65*, 1803–1815. [CrossRef] [PubMed]

18. Savoia, D. Plant-derived antimicrobial compounds alternatives to antibiotics. *Future Microbiol.* 2012, *7*, 979–990. [CrossRef] [PubMed]

19. Srivastava, J.; Chandra, H.; Nautiliya, A.R.; Karla, S.J.S. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. *3 Biotech.* 2014, *4*, 451–460. [CrossRef] [PubMed]

20. Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. *Biomed. Res. Int.* 2014, *2014*, 761741. [CrossRef]

21. Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. *J. Ayurveda Integr. Med.* 2017, *8*, 266–275. [CrossRef]

22. Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. *3 Biotech.* 2017, *7*, 172–186. [CrossRef] [PubMed]

23. Khamehbo, B.; Janshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. *Antimicrob. Resist. Infect. Control.* 2019, *8*, 118–145. [CrossRef] [PubMed]

24. Mossa, J.S.; Al-Yahya, M.A.; Al-Meshal, I.A. Medicinal Plants of Saudi Arabia; King Fahad National Library Publication Riyadh: Riyadh, Saudi Arabia, 2000; p. 001-355.

25. Rahman, M.A.; Mossa, J.S.; Al-Said, M.S.; Al-Yahya, M.A. Medicinal plant diversity in the flora of Saudi Arabia 1: A report on seven plant families. *Fitoterapia* 2004, *75*, 149–161. [CrossRef]

26. Bukhari, N.A.; Al-Otaibi, R.A.; Ibrahim, M.M. Biodiversity characteristics of *Teucrium polium* species in Saudi Arabia. *Saudi J. Biol. Sci.* 2015, *22*, 181–185. [CrossRef] [PubMed]

27. Boulila, A.; Bejaoui, A.; Messaoud, C.; Boussaid, M. Variation of volatiles in Tunisian populations of *Teucrium polium* L. (Lamiaceae). *Chem. Biodivers.* 2008, *5*, 1389–1400. [CrossRef] [PubMed]

28. Menichini, F.; Conforti, F.; Rigano, D.; Formisano, C.; Piozz, L. Phytochemical composition, anti-inflammatory and antitumour activities of four *Teucrium* essential oils from Greece. *Food Chem.* 2009, *115*, 679–686. [CrossRef]
29. Djabou, N.; Lorenzi, V.; Guinoiseau, E.; Andreani, S.; Giuliani, M.C. Phytochemical composition of Corsican *Teucrium* essential oils and antibacterial activity against foodborne or toxo-infectious pathogens. *Food Control.* 2013, 30, 354–363. [CrossRef]

30. Belmekki, N.; Bendimerad, N.; Bekhechi, C.; Fernandez, X. Chemical analysis and antimicrobial activity of *Teucrium polium* L. essential oil from Western Algeria. *J. Med. Plant. Res.* 2013, 7, 897–902.

31. El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B. Phytochemistry, antioxidant and antibacterial activities of two Moroccan *Teucrium polium* L. subspecies: Preventive approach against nosocomial infections. *Arab. J. Chem.* 2020, 13, 886–874. [CrossRef]

32. Ulubelen, A.; Topu, G.; Sönmez, U. Chemical and biological evaluation of genus *Teucrium*. *Phytother. Res.* 2012, 26, 591–600. [CrossRef]

33. Shahraki, M.R.; Arab, M.R.; Mirimokaddam, E.; Palan, M.J. The effect of *Teucrium polium* (Calpoureh) on Liver function, Serum Lipids and Glucose in Diabetic Male Rats. *Iran. Biomed. J.* 2007, 11, 65–68. [PubMed]

34. Khazaei, M.; Nematollahi-Mahani, S.N.; Mokhtari, T.; Sheikhbahaei, F. Review on *Teucrium polium* biological activities and medical characteristics against different pathologic situations. *J. Contemp. Med. Sci.* 2018, 4, 1–6.

35. Milošević-Djordjević, O.; Jakovljević, M.R.; Marković, M.; Ćirić, A.; Marinković, D.; Grujić, D. Polyphenolic contents of *Teucrium polium* L. and *Teucrium scordium* L. associated with their protective effects against MMC-induced chromosomal damage in cultured human peripheral blood lymphocytes. *Turk. J. Biol.* 2018, 42, 152–162. [PubMed]

36. Proestos, C.; Sereli, D.; Komaitis, M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. *Food Chem.* 2006, 95, 44–52. [CrossRef]

37. Mitreski, I.; Petreska Stanoeva, J.; Stefova, M.; Stefkov, G.; Kulevanova, S. Polyphenols in representative *Teucrium* species in the Flora of R. Macedonia: LC/DAD/ESI-MS profile and content. *Nat. Prod. Commun.* 2014, 9, 175–180. [CrossRef]

38. Shah, S.M.M.; Shah, S.M.H. Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of *Teucrium stocksi* L. bioss. *BMC Complement. Altern. Med.* 2015, 15, 351. [CrossRef] [PubMed]

39. Elmasri, W.A.; Hegazy, M.-E.F.; Mechref, Y.; Paré, P.W. Structure-antioxidant and anti-tumor activity of *Teucrium polium* phytochemicals. *Phytochem. Lett.* 2016, 15, 81–87. [CrossRef]

40. De Marino, S.; Festa, C.; Zollo, F.; Incollingo, F.; Raimo, G.; Evangelista, G.; Iorizzi, M. Antioxidant activity of phenolic and phenylethanoid glycosides from *Teucrium polium* L. Food Chem. 2012, 133, 21–28. [CrossRef]

41. Bianco, A.; Ramunno, A.; Serrilli, A.M.; Lo Castro, M.; Ballero, M.; Serafini, M. Phytochemical characters of *Teucrium marum* from Sardinia: An endemic plant. *Nat. Prod. Res.* 2004, 18, 557–564. [CrossRef]

42. Pacifico, S.; D’Abrosca, B.; Scognamiglio, M.; D’Angelo, G.; Gallicchio, M.; Galasso, S.; Monaco, P.; Fiorentino, A. NMR-based metabolic profiling and in vitro antioxidant and hepatotoxic assessment of partially purified fractions from Golden germander (*Teucrium polium* L.) methanolic extract. *Food Chem.* 2012, 135, 1957–1967. [CrossRef]

43. Sharififar, F.; Dehgdn-Nudeh, G.; Mirtajaldini, M. Major flavonoids with antioxidant activity from *Teucrium polium* L. Food Chem. 2009, 112, 885–888. [CrossRef]

44. Harborne, J.B.; Tomlin, A.J.; Bax, N.; Williams, C.A.; Gil, M.I. A chemotaxonomic study of flavonoids from *Teucrium polium* L. *Phytochemistry* 1986, 25, 2811–2816. [CrossRef]

45. Proestos, C.; Sereli, D.; Komaitis, M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. *Food Chem.* 2006, 95, 44–52. [CrossRef]

46. Krache, I.; Boussoualim, N.; Ouhida, S.; Amraoui, N.; Baghiani, A.; Arrar, L. Acute and chronic effects of methanolic extract of *Teucrium polium* on blood parameters and histopathology of liver and kidney in female rats. *Asian J. Res. Med. Pharm. Sci.* 2017, 2, 1–11. [CrossRef]

47. Khoshnood-Mansoorkhani, M.J.; Moein, M.R.; Oveisi, N. Anticonvulsant activity of *Teucrium polium* L. extract in mice. *Iran. J. Pharm. Res.* 2010, 9, 395–401. [PubMed]

48. Niazmand, S.; Esparham, M.; Hassannia, T.; Derakhshan, M. Cardiovascular effects of *Teucrium polium* L. extract in rabbit. *Pharm. Mag.* 2011, 7, 260–264. [CrossRef] [PubMed]

49. Alzeer, J.; Vummidi, B.R.; Arafeh, R.; Rimawi, W.; Saleem, H.; Luedtke, N.W. The influence of extraction solvents on the anticancer activities of Palestinian medicinal plants. *J. Med. Plants Res.* 2014, 8, 408–415.
50. Ben Othman, M.; Bel Hadj Salah-Fatnassi, K.; Neibi, S.; Elaïssi, A.; Zourgui, L. Antimicrobial activity of essential oil and aqueous and ethanol extracts of *Teucrium polium* L. subsp. gabesianum (L.H.) from Tunisia. *Physiol. Mol. Biol. Plants* 2017, 23, 723–729. [CrossRef]

51. Nematollahi-Mahani, S.N.; Rezaazadeh-Kermani, M.; Mehrabani, M.; Nakhaee, N. Cytotoxic Effects of *Teucrium polium* on Some Established Cell Lines. *Pharm. Biol.* 2007, 45, 295–298. [CrossRef]

52. Elmasri, W.A.; Hegazy, M.E.F.; Mechrefa, Y.; Parê, W.P. Cytotoxic saponin poliusaposide from *Teucrium polium*. *R.S.C.* 2015, 5, 27126–27133. [CrossRef]

53. Nagao, Y.; Ito, N.; Kohno, T.; Kuroda, H.; Fujita, E. Antitumor activity of *Rabdosia* and *Teucrium* diterpenoids against P388 lymphocytic leukemia in mice. *Chem. Pharm. Bull. (Tokyo)* 1982, 30, 727–729. [CrossRef] [PubMed]

54. Mseddi, K.; Alimi, F.; Noumi, N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; Patel, P.; et al. *Thymus musiliis* Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In Vitro and in silico analysis. *Arab. J. Chem.* 2020, 13, 6782–6801. [CrossRef]

55. Jurisic, R.V.K.S.; Kalodera, Z.; Grgic, J. Determination of selenium in *Teucrium* generation atomic absorption spectrometry. *Z. Nat.* 2003, 58, 143–145.

56. Autore, G.; Capasso, F.; De Fusco, R.; Fasulo, M.P.; Lembo, M. Antipyretic and antibacterial actions of *Teucrium polium* (L.). *Pharm. Res. Commun.* 1984, 16, 21.

57. Chojavand, S.; Madani, M.; Karimi, J. Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of Felty Germander. *J. Inorg. Organomet. Polym. Mater.* 2020. [CrossRef]

58. Rabe, T.; Staden, J.V. Antibacterial activity of South African plants used for medicinal purposes. *J. Ethnopharmacol.* 1997, 56, 81–87. [CrossRef]

59. Kuete, V.; Ngemeving, J.R.; Beng, V.P.; Azebaze, A.G.B.; Etoa, F.X. Antimicrobial activity of the methanolic extract on infectious microorganisms. *J. Ethnopharmacol.* 2003, 81, 85–90. [CrossRef]

60. Darabpour, E.; Motamed, H.; Nejad, S.M.S. Antimicrobial properties of *Teucrium polium* against some clinical pathogens. *Asian Pac. J. Trop. Med.* 2010, 3, 124–127. [CrossRef]

61. Khaled-Khodja, N.; Boulekbache-Makhlouf, L.; Madani, K. Phytochemical screening of antioxidant and antibacterial activities of methanolic extracts of some Lamiaceae. *Ind. Crop. Prod.* 2014, 61, 41–48. [CrossRef]

62. Mosadegh, M.; Sharifabadi, D.A.; Nasiri, P.; Esmaeili, S.; Naghibi, F. The study of phytochemical, antifungal and antibacterial effects of *Teucrium polium* and *Cichorium intybus* (Guttiferae). *J. Ethnopharmacol.* 2007, 109, 372–379. [CrossRef]

63. Tabatabaei, Y.F.; Alizadeh, B.B.; Heidari, S.M.; Mortazavi, S. The in vitro study of antimicrobial effect of *Teucrium polium* extract on infectious microorganisms. *Sci. J. Hamadan Univ. Med. Sci.* 2002, 7, 1–6.

64. Stanković, M.S.; Stefanović, O.; Čomić, L.; Topuzović, M.; Radojević, I. Antimicrobial activity, total phenolic content and flavonoid concentrations of *Teucrium polium* subsp. gabesianum (L.H.) from Tunisia. *Iranian J. Pharm. Ther.* 2005, 4, 32–35.

65. Nikaido, H. Outer membrane. In *Escherichia coli and Salmonella: Cellular and Molecular Biology*; Neidhardt, F.C., Ed.; ASM Press: Washington, DC, USA, 1996; pp. 29–47.

66. Rajeshwar, Y.; Gupta, M.; Mazumder, U.K. In vitro lipid peroxidation and antimicrobial activity of Mucuna pruriens seeds. *Iranian J. Pharm. Ther.* 2005, 4, 32–35.

67. Baily and Scott’s *Diagnostic Microbiology*, 10th ed.; Mobsy Inc.: London, UK, 1998.

68. Gibbons, S. Anti-staphylococcal plant natural products. *Nat. Prod. Rep.* 2004, 21, 263–277. [CrossRef]

69. Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. *J. Ethnopharmacol.* 2005, 100, 80–84. [CrossRef]

70. Forbes, B.A.; Suhm, D.F.; Wissfeld, A.S. *Baily and Scott’s Diagnostic Microbiology*, 10th ed.; Mobsy Inc.: London, UK, 1998.

71. Ilhami, G.; Metin, U.; Munir, O.; Suktru, B.; Irfan, K. Antioxidant and antimicrobial activities of *Teucrium polium* L. *J. Food Technol.* 2003, 1, 9–16.
Plants 2020, 9, 1418

74. Sarac, N.; Ugur, A. Antimicrobial activities and usage in folkloric medicine of some Lamiaceae species growing in Mugla, Turkey. Eur. Asian. J. Biosci. 2007, 4, 28–37. [CrossRef] [PubMed]

75. Kremer, D.; Kosir, I.J.; Kosalec, I.; Koncic, M.Z.; Potocnik, T. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L. (lamiaceae). Curr. Drug Targets. 2013, 14, 1006–1014. [CrossRef] [PubMed]

76. Taheri, A.A.; Gholampour azizi, I.; Hashemi Karouei, M.; Farhadi, L.; Servatyari, K. Inhibitory effect of aquatic and alcoholic extracts of Artemisia sieberi on growth of Candida albicans: An in vitro study. Qom. Univ. Med. Sci. J. 2018, 12, 39–47. [CrossRef]

77. Cholampour-Azizi, I.; Rouhi, S.; Yahyayi, F. In vitro antifungal activity of Cucumis melo on Candida albicans. Zahedan J. Res. Med. Sci. 2015, 17, 35–39. [CrossRef]

78. Nadimi, M.; Zia, M.; Madani, M. The effect of aqueous and ethanolic extracts of Teucrium polium on Candida albicans and two species of Malassezia. Zahedan J. Res. Med. Sci. 2013, 15, 34–38.

79. Akbarzadeh, M.; Bonyadpouir, B.; Pakshir, K.; Mohagheghzadeh, A.A. Comparative investigation of the sensitivity of Candida fungi isolated from vulvovaginal candidiasis to nystatin and Teucrium polium smoke product. Int. J. Women’s Health Reprod. Sci. 2019, 7, 508–514. [CrossRef]

80. Alwan, A.H.; Abdul-Latif, M.; Jawad, A.; Albana, S.; Ali, K.F. Antiviral activity of some Iraqi indigenous plants. Pharm. Biol. 1988, 26, 107–111. [CrossRef]

81. Ansari, M.; Sharififar, F.; Arabzadeh, A.M.; Mehni, F.; Mirtadzadini, M. In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae. Anc. Sci. Life 2014, 4, 33–38. [CrossRef] [PubMed]

82. Swarup, V.; Ghosh, J.; Ghosh, S.; Saxena, A.; Basu, A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 2007, 51, 3367–3370. [CrossRef]

83. Nazzaro, F.; Fratianni, F.; Coppola, R. Quorum Sensing and Phytochemicals. Molecules 2018, 23, 2672. [CrossRef] [PubMed]

84. Nazzaro, F.; Fratianni, F.; Coppola, R. Quorum Sensing and Phytochemicals. Int. J. Mol. Sci. 2013, 14, 12607–12619. [CrossRef]

85. Al-Ramahi, R.A.; Shaaban, M.I.; Ibrahim, S.R.M.; Mohamed, G.A. Anti-quorum sensing activity of some Lamiaceae species growing in Mugla, Turkey. Eur. Asian. J. Biosci. 2007, 4, 28–37. [CrossRef] [PubMed]

86. Noumi, E.; Snoussi, M.; Merghni, A.; Nazzaro, F.; Quindos, G. Antiquorum sensing and anti-quorum sensing potential of fruit, stem and leaves of Chamaecytisus pilosus. J. Phytochem. 2014, 103, 107–113. [CrossRef] [PubMed]

87. Sarkar, K.; Das, R.K. A review on quorum sensing inhibitors. Int. J. Pharm. Sci. 2019, 10, 5224–5233.

88. Al-Haidari, R.A.; Shaaban, M.I.; Ibrahim, S.R.M.; Mohamed, G.A. Anti-quorum sensing activity of some medicinal plants. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 63–71. [PubMed]

89. Mashhady, M.A.; Akhthoo, J.; Jahan, S.; Abyar, S.; Khosravani, F. Inhibitory Effects of Plant extracts on Pseudomonas aeruginosa biofilm formation. Int. J. Infect. 2016, 3, e38199. [CrossRef]

90. Elmasri, W.A.; Hegazy, M.E.-F.; Aziz, M.; Koskal, E.; Amor, W. Biofilm blocking sesquiterpenes from Teucrium polium. J. Phytochem. 2014, 103, 107–113. [CrossRef] [PubMed]

91. Lu, A.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crop. Prod. 2016, 79, 274–282. [CrossRef]

92. El-Feky, A.; Dodez, I.; El-Feky, A. Hepatotoxicity and nephrotoxicity in rats induced by carbon tetrachloride and the protective effects of Teucrium polium and vitamin C. Toxicol. Mech. Methods 2019. [CrossRef]

93. Adnan, M.; Patel, M.; Deshpande, S.; Alreshidi, M.; Siddiqui, A.J.; Reddy, M.N.; Noumi, E.; De Feo, V. Effect of Adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: An in vitro-in silico approach. Front. Microbiol. 2020. [CrossRef]
94. Snoussi, M.; Trabelsi, N.; Dehmeni, A.; Benzekri, R.; Bouslama, L. Phytochemical analysis, antimicrobial and antioxidant activities of *Allium roseum* var. *odoratissimum* (Desf.) Coss extracts. *Ind. Crop. Prod.* **2016**, *89*, 533–542. [CrossRef]

95. Parveen, M.; Ghalib, R.M.; Khanam, Z.; Mehdi, S.H.; Ali, M. A Novel antimicrobial agent from the leaves of *Peltophorum vogelianum* (Benth.). *Nat. Prod. Res.* **2010**, *24*, 1268–1273. [CrossRef] [PubMed]

96. Snoussi, M.; Dehmani, A.; Noumi, E.; Flamini, G.; Papetti, A. Chemical composition and antibiofilm activity of *Petroselinum crispum* and *Ocimum basilicum* essential oils against *Vibrio* spp. strains. *Microb. Pathog.* **2016**, *90*, 13–21. [CrossRef] [PubMed]

97. Gatsing, D.; Tchakoute, V.; Ngamga, D.; Kuiate, J.R.; Tamokou, J.D.D.; Nji-Nkah, B.F.; Tchouanguep, F.M.; Fodouop, S.P.C. *In vitro* antibacterial activity of *Crinum purpurascens* Herb. leaf extract against the *Salmonella* species causing typhoid fever and its toxicological evaluation. *Iran. J. Med. Sci.* **2009**, *34*, 126–136.

98. Zaki, A.A.; Shaaban, M.I.; Hashish, N.E.; Amer, M.A.; Lahloub, M.F. Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. *Sci. Pharm.* **2013**, *81*, 251–258. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).