Tyrosol as a Neuroprotector: Strong Effects of a “Weak” Antioxidant

Mark B. Plotnikov1,* and Tatiana M. Plotnikova2

1Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk 634028, Russia; 2Siberian State Medical University, Tomsk, Russia

Abstract: The use of neuroprotective agents for stroke is pathogenetically justified, but the translation of the results of preclinical studies of neuroprotectors into clinical practice has been a noticeable failure. One of the leading reasons for these failures is the one-target mechanism of their activity. p-Tyrosol (Tyr), a biophenol, is present in a variety of natural sources, mainly in foods, such as olive oil and wine. Tyr has a wide spectrum of biological activity: antioxidant, stress-protective, anti-inflammatory, anticancer, cardioprotective, neuroprotective and many others. This review analyzes data on the neuroprotective, antioxidant, anti-inflammatory, anti-apoptotic and other kinds of Tyr activity as well as data on the pharmacokinetics of the substance. The data presented in the review substantiate the acceptability of tyr as the basis for the development of a new neuroprotective drug with multitarget activity for the treatment of ischemic stroke. Tyr is a promising molecule for the development of an effective neuroprotective agent for use in ischemic stroke.

Keywords: Ischemic stroke, p-tyrosol, neuroprotective activity, antioxidant activity, anti-inflammatory activity, anti-apoptotic activity, pharmacokinetics.

1. INTRODUCTION

Acute ischemic stroke is a leading contributor to morbidity and mortality worldwide. Consequently, developing more effective approaches for stroke prevention and therapy is a key objective in medical research [1]. Two main therapeutic strategies are used in the acute phase of stroke: recanalization of the occluded vessel and reperfusion of the microcirculation (thrombolytic therapy/thromboextraction) and blockade of biochemical (metabolic) changes involved in the ischemic cascade (neuroprotection) [2, 3].

Many clinical and preclinical studies of neuroprotection in stroke have been completed; however, few studies have shown clinical benefit [3, 4]. Nevertheless, neuroprotection in stroke remains promising, with many avenues to increase the effectiveness of ischemic stroke therapy [5]. One of the leading reasons that many neuroprotectors have failed is the one-target mechanism of their activity (antioxidant and/or free radical scavenger, Ca2+ channel blocker, N-methyl-d-aspartate (NMDA) receptor antagonist) [5, 6]. Successful future stroke therapy should focus on several pathophysiological mechanisms, including reduction of tissue-type plasminogen activator-related side effects, prevention of cell death, stimulation of neuroregeneration, and plasticity [6, 7]. There is an opinion that this multitarget approach can be achieved with a single neuroprotective drug [6, 8].

A candidate for the role of such a multitarget drug is p-tyrosol (Tyr), which has a wide spectrum of pharmacological activities: stress-protective [9, 10], anti-depressant [9, 10], antioxidant [see below], anti-inflammatory [see below], anticancer [11], geroprotective [12] cardioprotective [13-15], anti-atherogenic [16, 17], antigenotoxic [18], anti-platelet and hemorheological [19, 20], neuroprotective [see below] and other types of activities.

The purpose of this review is to analyze the scientific research on Tyr related to the properties of this compound that are significant when choosing this substance as the basis for the development of a new neuroprotective agent with multitarget activity.

2. SOURCES OF TYR

Tyr (2-(4-hydroxyphenyl)ethanol) is present in a variety of natural sources [21-25]. The principal sources of Tyr are olive oil and wine [26, 27]. Methods have been developed for the synthesis of Tyr with a high yield of product of high-purity (> 99%) [28], which makes it possible to develop a dosage form of Tyr for injection.

3. NEUROPROTECTIVE ACTIVITY OF TYR

The neuroprotective properties of Tyr have been studied in vitro on cell lines and brain sections and in vivo in rat cerebral ischemic models (Table 1). Pre-incubation with Tyr protected the human astrocytoma U373 MG cell line against oxidative stress following Fenton reaction and increased the catalase (CAT) and glutathione peroxidase (GP) activity in the cells [29]. Tyr protected mouse cortical neuron cultures...
Table 1. Neuroprotective effects of Tyr and its glycoside salidroside*.

| Cell Culture/animal | Model | Concentration/dosage | Effect/Result | Refs. |
|---------------------|-------|----------------------|--------------|-------|
|                     | Tyrosol |                        |              |       |
| Human astrocytoma U373 MG cell line | Fenton reaction | 0.1 and 0.25 mM | ↓ Oxidative stress ♦ CAT and GP activity | [29] |
| Mouse cortical neurons | 5-S-cysteinyl-dopamine | 0.1–1 μM | ↓ Percentage of neuronal injury | [30] |
| Mouse cortical neurons | ONOO· | 0.1–10 μM | ↓ Cytotoxicity | [31] |
| Neonatal cerebral cortex cell culture | Glutamate | 0.1–10 μM | ↓ Neurotoxic effect | [33] |
| Rats | Focal cerebral ischemia/reperfusion | 3, 10 and 30 mg/kg intraperitoneally | ↓ Infarct volume ♦ Neurological deficit | [35] |
| Rats | Global cerebral ischemia/reperfusion | 5, 10, and 20 mg/kg daily for 5 days intravenously | ↑ Survival of rats | [36] |
| Rats | Global cerebral ischemia/reperfusion | 20 mg/kg daily for 10 days intraperitoneally | ↑ Production of new neurons in the hippocampal CA1 field | [45] |
| Salidroside | | | | |
| Rats | Focal cerebral ischemia/reperfusion | 24 mg/kg daily for 7 days before ischemia ♦ oral | ↓ Ischemic cerebral cortex tissue edema and TNFa | [39] |
| Rat | Focal cerebral ischemia/reperfusion | 12 mg/kg daily for 7 days before ischemia ♦ oral | ↓ Neurological deficit | [40] |
| Rat | Global cerebral ischemia/reperfusion | 12 mg/kg daily for 7 days before ischemia ♦ oral | ↓ Brain edema and MDA in the hippocampus ♦ Cognitive function and activity of SOD | [41] |
| Rat | Focal cerebral ischemia/reperfusion | 15 and 30 mg/kg before ischemia + after reperfusion ♦ intraperitoneally | ↓ Infarct size ♦ Neurological function, activity of SOD and glutathione-S-transferase | [42] |

*Neuroprotective effects of Tyr and its glycoside salidroside in models of neurodegenerative diseases are not shown. †Neuroprotective effects of salidroside are shown only in vivo.

against injury induced by 5-S-cysteinyl-dopamine, which induces caspase-3-driven neuronal apoptosis [30]. Tyr decreased the cytotoxicity of peroxynitrite (ONOO·) on primary cultures of mouse cortical neuronal cells [31]. The Tyr-mediated protection was equal to that observed for the flavonoids caffeic acid and p-coumaric acid. However, Tyr was significantly inferior to hydroxyTyr as an inhibitor of α-synuclein protein aggregation and fibril destabilization in PC12 cell cultures [32]. In experiments with neonatal cerebral cortex cell cultures containing both neuronal and glial cells from SD rats, Tyr demonstrated powerful cytoprotective action against the neurotoxic effects of glutamate, comparable with the effects of NMDA receptor antagonists [33]. In a model of brain slice hypoxia-reoxygenation, Tyr ethyl ether administration demonstrated a neuroprotective effect that correlated with inhibition of nitrosative stress and prostaglandin E2 production [34].

The neuroprotective properties of Tyr have been proven in in vivo experiments on models of focal cerebral ischemia and global cerebral ischemia, followed by recirculation. Tyr showed a dose-dependent neuroprotective effect in a rat model of transient middle cerebral artery occlusion (2 h of occlusion, 22 h of reperfusion), represented as a reduction of the infarct volume. The Tyr-treated groups showed significant improvement in post-ischemic sensory–motor dysfunction in the rotarod, foot fault, and beam balance tests when compared with the control group [35]. The authors advanced a hypothesis that the ameliorating effects of Tyr against sensory-motor dysfunction might have been due to reduced damage to the cortex and caudoputamen, which is related to synaptic transmission. Neuroprotective effects of Tyr were investigated in a global cerebral ischemia/reperfusion model [36]. The study of Tyr effects on the survival and neurological impairments of rats in this model confirmed the dose-dependency of its neuroprotective action. Administration of intravenous Tyr increased survival, reduced neurological deficits, attenuated neuronal damage in the hippocampus, and attenuated lipid peroxidation in brain tissues of rats after global cerebral ischemia.

Salidroside is a Tyr glycoside. After intravenous injection, salidroside is extensively metabolized into Tyr [37, 38]. Moreover, after intravenous injection, only trace amounts of salidroside are found in the brain tissue, while Tyr, as a deglycosylated metabolite of salidroside, is present in significa-
cant concentrations [38]. That is why salidroside may be considered a prodrug whose neuroprotective action may be due to the effects of Tyr. Based on this, to complete the description of the neuroprotective properties of Tyr, Table 1 provides data on the neuroprotective effects of salidroside in vivo.

In a rat model of focal ischemia/reperfusion, pretreatment of salidroside decreased the level of tumor necrosis factor (TNF)-α and edema in the ischemic cerebral cortex tissue [39]. Salidroside and Tyr galactoside significantly prevented cerebral ischemic injury induced by a 2 h middle cerebral artery occlusion and a 24 h reperfusion in rats in vivo. Furthermore, the oxidative stress (H2O2) in cultured rat cortical neurons was markedly attenuated by treatments with Tyr galactoside [40]. Pretreatment with salidroside to rats reduced the degree of cerebral edema, decreased free radical metabolism and improved cognitive function after global cerebral ischemia/reperfusion [41]. In a model of focal cerebral ischemia, salidroside reduced the infarct size, improved neurological function and histological changes, increased the activity of superoxide dismutase (SOD) and glutathione-S-transferase, and reduced malondialdehyde (MDA) levels after cerebral ischemia/reperfusion [42].

The brain can generate new neurons [43]; thus, neurogenesis may be a new therapeutic strategy to improve neurological function in a brain-damaged by stroke [44]. Tyr has a positive effect on neurogenesis. The regenerative effect of Tyr was studied in a model of global cerebral ischemia, followed by recirculation [45]. Tyr administered intraperitoneally at a dose of 20 mg/kg for 10 days after ischemia/recirculation stimulated the production and development of new neurons in the normally nonproliferative CA1 region in the hippocampus and induced a neuroprotective effect on mature neurons.

Tyr exerts neuroprotective properties in models of neurodegenerative diseases (Parkinson’s disease and Alzheimer’s disease) [32, 46-51]. An analysis of publications describing the neuroprotective activity of Tyr in these diseases is beyond the scope of this work.

4. PROPERTIES OF TYR CONTRIBUTING TO ITS NEUROPROTECTIVE ACTIVITY

4.1. Pharmacokinetics of Tyr

Many publications have described the pharmacokinetics of Tyr when taking olive oil, wine, and other foods and nutraceuticals in animals and humans [52-54]. However, within the framework of this review, data on the pharmacokinetics of Tyr per se are of interest, since it is known that the concomitant presence of these plant sources of Tyr can have a modifying effect on its pharmacokinetic parameters [55, 56].

Tyr pharmacokinetics parameters were studied in rats after intravenous and oral administration. According to data by Chernysheva et al. [57], T1/2 was 1.29 ± 0.06 h after intravenous administration of Tyr to rats at a dose of 200 mg/kg. The maximum concentration of Tyr was detected 1 min after intravenous administration. Under similar conditions, with an intravenous administration of Tyr in a dose of 50 mg/kg, the T1/2 value was 1.64 ± 0.30 h [58].

When administered intragastrically, Tyr is rapidly absorbed and enters the bloodstream (Tmax = 10 min) [59]. Tyr bioavailability after intragastric administration was 32% due to pronounced presystemic elimination [60]. Using the human intestinal cell line Caco2, clone TC7, a mechanism of passive diffusion was detected for Tyr, and it was shown that Tyr has the highest bioaccessibility (100%) [61].

In fact, neuroprotective agents must penetrate the blood-brain barrier to attain an effective therapeutic concentration within the cerebral tissue. To recognize Tyr as a promising neuroprotector, its ability to penetrate the blood-brain barrier is very important, since the low neuroprotective activity of previously studied highly active antioxidants, NXY-059 and tirilazad, was associated with weak penetration through the blood-brain barrier [62, 63]. When administered intravenously, Tyr quickly penetrates tissues of different organs, and the tissue bioavailability coefficient for brain tissue was 0.87, exceeding that of other organs [60]. Quantification of Tyr by GC-MS demonstrated the presence of the compound in rat cerebrospinal fluid after oral administration [64].

Excretion of radiolabeled Tyr was investigated following oral and intravenous administration in rats [65]. It was shown that, with intravenous administration of radiolabeled Tyr, its radiolabeled metabolites are excreted in the urine (45.7 ± 9.3% and 73.9 ± 2.5%, respectively, 1 h and 2 h after administration). With the intragastric administration of an aqueous solution, the rate of Tyr excretion was significantly lower (57.7 ± 3.6% after 4 h). The Tyr molecule is involved in stages I and II of biotransformation in the body. An important feature of stage I of Tyr biotransformation was discovered, namely, its hydroxylation and conversion to hydroxyTyr. This phenomenon has been described in experiments on rats [66] and in clinical trials [67]. Tyr biotransformation into hydroxyTyr occurs in liver microsomes due to the activity of cytochromes CYP2A6 and CYP2D6. HydroxyTyr is a related compound found together with Tyr in natural products (olive oil and wine) [26, 27]. HydroxyTyr has high antioxidative activity [68] and exhibits pronounced neuroprotective properties [34, 68]. The main metabolites in stage II of Tyr biotransformation are glucuronides and sulphates [69-71]. Atzeri et al. [69] assumed that Tyr can exert its biological effects not only directly, but also via its metabolites.

4.2. Antioxidant Activity of Tyr

Numerous experimental and clinical studies have proven the contribution of oxidative and nitrosative stress to the pathophysiology of acute ischemic stroke [72-74]. The neutralization of oxidative and nitrosative stresses is a potential therapeutic strategy because the ischemic brain is highly susceptible to oxidative damage owing to its high consumption of oxygen, its rich content of iron and unsaturated lipids, and its relatively low endogenous antioxidant capacity [75]. A therapeutic approach based on the use of neuroprotectors with antioxidative properties is well-founded, complying with the concepts of the pathogenesis of acute cerebrovascular disorders. Consistent with this idea, many leading laboratories have confirmed the neuroprotective effects of antioxidative agents in cerebral ischemia [76, 77].
The antioxidant properties of Tyr have been studied in vitro in cell-free system (Table 2A), on cell lines, on brain sections and in vivo in rat cerebral ischemic models (Table 2B). Tyr has been shown to be inferior to other simple phenols and polyphenols in antiradical/antioxidant activity when different noncellular systems have been used to evaluate this activity [17, 68, 78-81]. For example, when evaluating the binding of radicals 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH), Tyr had the lowest antiradical activity in comparison with polyphenols (catechin, epicatechin, quercetin, procyanidins) and the reference compound vitamin E [29, 80]. Tyr showed weak or intermediate antiradical activity compared to all other compounds (ferulic acid, quercetin, curcumin, berberine and catechin) as peroxyl, hydroxyl radicals scavenger [82]. In contrast, in other studies with NO generated in vitro, Tyr was not active as a scavenger of reactive nitrogen species [83-86]. An exception is a study in which, using the DPPH' scavenging assay, it was shown that Tyr is superior in antiradical activity to water-soluble phenylpropanoid compounds (salidroside, icariside D2 and others) [87].

The low antiradical/antioxidant activity of Tyr compared with the closely related hydroxyTyr compound is due to the following circumstances: the presence of 1 hydroxy radical phenol ring did not allow efficient scavenging of radicals; effective Tyr concentrations are in the range of μM concentrations and significantly exceed the effective concentration of hydroxyTyr; Tyr accumulates intracellularly more slowly and probably reaches effective concentrations that have protective effects later [34, 48, 88, 89].

Nevertheless, Tyr exerts more distinct protective effects against oxidative injury in cell models and models of oxidative stress in vivo. Lee et al. [90] demonstrated the protective effects of Tyr against H2O2-induced oxidative damage in L6 muscle cells. In these conditions, Tyr effectively increased the production of ATP and HO-1 (a transcription factor in the nucleus that plays a role in antioxidation). In Caco-2 cell cultures, Tyr exhibited strong antioxidant activities that protect intestinal cells from oxidative stress (action of lipid extract from low-density lipoproteins undergoing oxidative modification) and prevented morphological and functional alterations: membrane damage, modifications of the cytoskeleton network, microtubular disorganization, loss of cell-cell and cell-substrate contacts, cell detachment and cell death [91, 92]. Using Caco-2 cell cultures, Deiana et al. [93] demonstrated that Tyr also exerts a protective effect against fatty acid degradation.

Tyr decreased the phorbol ester-induced production of superoxide anions, hydrogen peroxide, and nitric oxide by

Table 2A. Antioxidant effects of Tyr in the cell-free system.

| Model                          | Concentration/dosage | Effect/Result          | Refs. |
|--------------------------------|----------------------|------------------------|-------|
| Ferric reducing ability of plasma | 1–16 μM              | No effect              | [17]  |
| ABTS• scavenging                | 1–16 μM              | Low effect             | [17]  |
| DPPH• scavenging                | 1–16 μM              | No effect              | [17]  |
| DPPH• scavenging                | 0.05–0.125 mg/mL     | Low effect             | [29]  |
| ABTS• scavenging                | 500 μM               | Low effect             | [68]  |
| DPPH• scavenging                | LD50 = 86 ± 0.02 μg/mL | Low effect            | [78]  |
| Lipid matrix                    | 0.1–1.0 mM/kg        | No effect              | [79]  |
| DPPH• scavenging                | 0.01–5/10 μM         | No / Low effect       | [80]  |
| Oxidation of methyl linoleate    | 1 · 10−⁴ M           | No effect              | [81]  |
| HO2•, OH• and ONOO•-generation  | 1 μM                 | No effect (HO2•, OH• ONOO•-scavenging) | [82]  |
| NO scavenging                   | 5–75 mM              | No effect              | [83]  |
| ABTS•, C11-BODIPYx[65,99] and cis-PnA radicals | 1 mM | No effect or low effect | [84]  |
| Serum oxidation                 | 0.2–0.8 mM           | † Lag time of oxidation | [85]  |
| DPPH• and ABTS• scavenging      | 10 μg/mL             | Low effect             | [86]  |
| DPPH• scavenging                | IC₅₀ = 8.10 ± 0.98 μM | Moderate effect        | [87]  |
| ABTS• scavenging                | 1.22 ± 0.03 TEAC     | Moderate effect        |       |
| Hypoxanthine/xanthine oxidase   | 100 μM 250 μM        | † O₂•⁻ Inactive as H₂O₂ scavenger | [111] |
| Cooper(II)-ascorbate mediated oxidation in an aqueous and a lipid system | 100 mg/L | Inactive in an aqueous system Active in a lipid system | [137] |

TEAC, trolox equivalent antioxidant capacity; MPP+1, methyl-4-phenylpyridinium; ABTS•, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid).
RAW 264.7 macrophages [94]. Tyr reduced MDA production in iron-loaded rat hepatocyte cultures; the antioxidant effect of Tyr was similar to the effects of caffeic acid, oleuropein and hydroxyTyr [95]. However, Tyr failed to decrease the MDA production by red blood cells after oxidative stress, which was induced by Fe^{2+} solution [96].

An important property of Tyr, which can be observed at the level of cellular models, is the ability to weaken the manifestations of oxidative stress and also preserve and/or stimulate antioxidant cell defense system enzymes. In human astrocytoma, U373 MG cells treated with a Fenton reaction, Tyr decreased reactive oxygen species generation and increased the activity and protein expression of the antioxidant enzymes CAT, SOD, glutathione reductase (GR) and GP [29]. Tyr reduced reactive oxygen species, promoted the expression of specific chaperones and antioxidant enzymes, and delayed α-synuclein-dependent degeneration of dopaminergic neurons [50]. Defects in glutathione metabolism might cause oxidative stress, which has been implicated in several neurologic and neurodegenerative diseases [97]. Tyr preserved the cellular activities of antioxidant enzymes, such as GP and GR that were reduced in J774 A.1 cells incubated with low-density lipoproteins in spite of its weak antioxidative effects [89]. Tyr protected CATH.a cells likely via activation of the PI3K/Akt pathway and upregulation of SOD [48].

In vivo, the antioxidant properties of Tyr have been studied in rats using a model of acute global cerebral ischemia/reperfusion. On day 5, after ischemia/reperfusion, the levels of conjugated dienes (CD) and fluorescent products were significantly lower (by 37% and 45%, respectively) in animals treated with Tyr compared with controls [36].

These data allow us to conclude that Tyr has low or moderate antiradical/antioxidant activity; despite this, Tyr exerts a powerful protective effect against oxidative injury in cell systems and can improve intracellular antioxidant defenses.
Ibuprofen, and Naproxen and a COX possess a satisfactory binding affinity compared to Aspirin, by reactive oxygen species formation and activated nuclear factor. In these cells, Tyr decreased iNOS and COX or cyclooxygenase (COX) stimulated peripheral

κ kinase complex [107]. Tyr is anaphylaxis model, Tyr dose effect of Tyr on these cytokines is of particular interest. In an experimental and clinical levels [106]. Therefore, the studied anti-inflammation. The anti-

activity of Tyr

Tyrosol as a Neuroprotector

mediators from the ischemic endothelium and brain parenchyma, has the potential to increase tissue injury [99]. Cer-

Brazil ischemia induces inflammatory reactions, such as

chyma, has the potential to increase tissue injury [99]. Cer-

mediators from the ischemic endothelium and brain pare-

intravascular leukocytes, and release of proinflammatory

tic strategy in this disease [75, 103].

4.3. Anti-inflammatory Activity of Tyr

The immune response to acute cerebral ischemia is a ma-

or inducing inflammatory activity in models of vas-

cular cell permeability, histopathological changes and pul-

lar immune responses are contradictory. Turner et al. [17] revealed that Tyr induced a signif-

icant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in human umbilical vein endothelial cells measured 24 h after activation with TNF-α. However, followed by co-incubation with bacterial LPS with human umbilical vein endothelial cells, Tyr did not show an effect on the expression of vascular cell adhesion molecule-1 [115]. Tyr reduced homocysteine-

induced monocyte adhesion as well as cell surface expres-

sion of intercellular adhesion molecule-1 in EA.hy.926 cells but was ineffective in reducing the expression of these mole-

ules induced by TNF-α [116].

Tyr has demonstrated anti-inflammatory activity in in vivo models of various diseases. In acute lung injury Tyr inhibited lung vascular permeability, histopathological changes and pulmonary vascular cell infiltration. Pro-

Inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, were reduced by Tyr in bronchoalveolar lavage fluid and lung tissue. The activation of inflammatory molecules, including iNOS, COX-2, and phosphorylated nuclear factor κB α (IκBα), was suppressed by Tyr [117]. In this model, Tyr markedly inhibited NF-κB and activator protein-1 activation both in vivo and in vitro. Tyr significantly improved the expression of HO-1 (a transcription factor in the nucleus that plays an antioxidant role) and the activation of Nrf2 (an inducible transcription factor that activates a battery of genes encoding antioxidant proteins) [118]. In the rat model of uveitis, Tyr decreased inflammatory cell number, protein concentration, TNF-α, prostaglandin E2 and NO levels in ocular tissue 24 hr after LPS injection [119].

In the absence of studies of the anti-inflammatory effects of Tyr in in vivo models of cerebral ischemia, research performed on astrocyte cultures in a model of oxygen-glucose deprivation is of particular value [105]. In this condition, Tyr could effectively reverse the loss of cells in culture. Pre-

treatment of Tyr could decrease the increased TNF-α and IL-6 levels in medium with astrocytes. The reduction of astro-

cyte cytokine production might be due to its inhibition of astrocyte activation and regulation of signal transducer and activator of transcription 3 (STAT3) (an acute-phase response factor) since Tyr attenuated the expression of the glial fibrillary acidic protein (GFAP) and the phosphorylation of STAT3. The authors demonstrated that Tyr prevented the degradation of IκBα and the increase of IκBα phosphory-

coxib [112]. Experimental evidence for Tyr inhibition of COX-2 production and activity was also obtained [94, 109].

Activation of adenocarcinoma Caco-2 cells with LPS leads to stimulation of iNOS with the involvement of NF-κB activation through the inhibitory subunit IκBα phosphorylation and subsequent degradation induced by Akt or mitogen-activated protein kinase (MAPK) [113]. In these experiments, Tyr, its glucuronide and sulfate metabolites acted as inhibitors of iNOS expression and IκBα degradation and as a modulator of MAPK: p38 and extracellular signal-regulated kinase (ERK) 1/2 [113]. In another study [114], Tyr induced lower LPS–macrophage binding and decreased membrane-bound cell surface pattern recognition receptor cluster of differentiation 14 (CD14) expression.

Data on the effect of Tyr on adhesion molecules are con-

tradicry. The immune response to acute cerebral ischemia is a major factor in stroke pathobiology and outcomes [99]. Inflammation, initiated by stagnant blood flow, activation of intravascular leukocytes, and release of proinflammatory mediators from the ischemic endothelium and brain parenchyma, has the potential to increase tissue injury [99]. Cere-

bral ischemia induces inflammatory reactions, such as neu-

trophil infiltration [100], upregulation of cytokines [101], and microglial activation [102]. A growing number of pre-

clinical and clinical studies are providing evidence that im-

mune modulation in patients with acute ischemic stroke may be a new therapeutic strategy in this disease [75, 103-105].

Many studies have shown that Tyr can modulate inflam-

mation. The anti-inflammatory properties of Tyr have been studied in vitro on cell lines and in vivo in models of in-

flammation (Table 3). Cytokines, such as TNF-α, interleukin (IL)-1 and IL-6, can modulate the brain insult of a stroke at the experimental and clinical levels [106]. Therefore, the effect of Tyr on these cytokines is of particular interest. In an anaphylaxis model, Tyr dose-dependently decreased mast cell degranulation and the expression of inflammatory cyto-

kines (TNF-α, IL-1β, and IL-4) and blocked calcium influx and phosphorylation of the κB kinase complex [107]. Tyr is able to inhibit TNF-α release by lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells isolated from healthy volunteers [108]. Tyr reduced nitrite (NO stable me-

tabolites) and prostaglandin E2 production by activated macrophages (RAW 264.7) in a concentration-dependent manner; these inhibitory effects were strictly correlated with a reduction in either inducible nitric oxide synthase (iNOS) or cyclooxygenase (COX)-2 protein as well as mRNA [109]. In these cells, Tyr decreased iNOS and COX-2 gene expres-

sion and activated nuclear factor-κB (NF-κB) and signal transducer and activator of transcription (STAT)1-6 induced by reactive oxygen species [110]. In rat peritoneal leukocytes stimulated with a calcium ionophore, Tyr exerted selective inhibitory activity against the leukotriene pathway of arachi-

donate metabolism without affecting the COX pathway [111]. In molecular docking with COX-2, Tyr was found to possess a satisfactory binding affinity compared to Aspirin, Ibuprofen, and Naproxen and a COX-2 selective drug Cele-
Table 3. Anti-inflammatory effects of Tyr.

| Cell culture/animal                  | Model                               | Concentration/dosage | Effect/Result                                                                 | Refs. |
|--------------------------------------|-------------------------------------|----------------------|------------------------------------------------------------------------------|-------|
| Human umbilical vein endothelial cells (HUVECs) | TNF-α-stimulation (40 ng/mL)        | 2–20 μM             | ↓ Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1     | [17]  |
| Murine macrophages RAW 264.7         | Phorbol 12-myristate 13-acetate (1 μM) | 100–250 μM          | ↓ PGE2, LTB4, and COX-2 expression                                          | [94]  |
| Culture of astrocytes                | Oxygen-glucose deprivation          | 1.6 mM              | ↓ TNF-α and IL-6, ↓ GFAP, STAT3, and STAT3-P, ↑ IkBa and IkBα-P             | [105] |
| Mast cells                           | Anaphylaxis model                   | 1–1000 nM           | ↓ Degranulation of cells, ↓ TNF-α, IL-1β, and IL-4 expression, Calcium influx, phosphorylation of the xB kinase complex | [107] |
| Human peripheral blood mononuclear cells | LPS-stimulation                   | 100 nM              | ↓ TNF-α release                                                              | [108] |
| Mouse monocyte/macrophage cell line RAW 264.7 | Interferon-γ (25 U/ml) + gliadin (800 μg/ml) stimulation | 1–4 mM              | ↓ NO stable metabolites, PGE2 production, ↓ NF-κB, STAT-1α, IRF-1 activation, iNOS, and COX-2 expression | [109, 110] |
| Rat peritoneal leukocytes            | Calcium ionophore A23187 (1 mM)     | 100–200 μM          | ↓ Leukotriene B4, No effect on TXB2                                          | [111] |
| Human colon adenocarcinoma cells (Caco-2) | LPS-stimulation                  | 1 μM                | ↓ iNOS expression, NO overproduction, and IkBa degradation                   | [113] |
| RAW264.7 cells                      | LPS-stimulation (1 μg/mL)           | 0.3, 0.6, 1.2 mM    | ↓ NF-κB, mCD14 expression, and p-1-κB                                        | [114] |
| Human umbilical vein endothelial cells | LPS-stimulation (1 μg/mL)         | 1–75 μM             | No effect on the expression of vascular cell adhesion molecule-1              | [115] |
| EA.hy.926 cells                     | Homocysteine (100 μM) TNF-α-stimulation (10 ng/mL) | 2.5–7.5 μM       | ↓ Monocyte adhesion, expression of intercellular adhesion molecule-1, No effect on the expression of intercellular adhesion molecule-1 | [116] |
| RAW 264.7 mouse macrophages          | LPS-stimulation (100 ng/mL)        | 1 nM–10 μM          | ↓ NO, nuclear translocation of NF-κB                                         | [117] |
| Mice BULB/c                         | Acute lung injury (intratracheal injection of LPS, 25 μg/50 μL) | 0.1, 1, and 10 mg/kg intrastracally | ↓ Myeloperoxidase, ↓ TNF-α, IL-1β, and IL-6, ↓ iNOS, COX-2, and phosphorylated-IkBα | [117] |
| Rats                                | Uveitis (LPS 1 mg/kg intravenously) | 100 mg/kg iv        | ↓ TNF-α, PGE2, and NO                                                        | [119] |
| Diluted human blood (1:5)            | LPS-stimulation (50 g/mL)          | 0.1–10 mM           | No effect on IL-1β, IL-6, PGE2 and TNF-α                                     | [120] |
| Human THP-1 monocyctic leukemia cells | TNF-α-stimulation (10 ng/mL)      | 50 μM               | No effect on matrix metalloproteinase-9 secretion                           | [121] |

lation in astrocytes in this model, which led to the suppression of NF-κB function during ischemia. Taken together, these data show that Tyr may be a promising anti-inflammatory compound for the treatment of brain ischemia. Bu et al. [35] believe that the antioxidative and anti-inflammatory effects of Tyr are considered to be the main mechanisms leading to the neuroprotective effect.

Metabolites of Tyr may also be involved in its anti-inflammatory effects. In vitro, Tyr sulphate and Tyr glucuronide prevented the phosphorylation of NF-κB signaling proteins, the over-expression of adhesion molecules at gene, protein, and secretory levels, and the adhesion of human monocytes to TNF-α-treated human endothelial cells [70]. In vivo, Tyr, and, most notably, Tyr sulphate dose-dependently ameliorate plantar and ear edemas in mice models of acute and chronic inflammation [70].

However, few studies have indicated the absence of anti-inflammatory properties of Tyr. There was no effect of Tyr on the concentrations of IL-1β, IL-6, prostaglandin E2, or TNF-α in diluted human blood (1:5) after stimulation with...
LPS [120]. Tyr was not active on matrix metalloproteinase-9 secretion from human THP-1 monocytic leukemia cells at concentrations as high as 50 µM [121]. At last, Tyr (60-240 µM) increased the intracellular concentration of Ca	extsuperscript{2+} in human lymphomonocytes through mobilization of calcium from intracellular stores [122].

### 4.4. Anti-apoptotic Activity of Tyr

Cerebral ischemic injury produces two forms of cell death: necrosis and apoptosis [2]. Apoptosis is the consequence of a genetically regulated program that allows cells to die with minimal inflammation or release of genetic material [90]. Caspase-mediated apoptosis is initiated by the release of cytochrome C from mitochondria through activation of the apoptosome complex, which in turn activates caspase-3 [123]. The MAPK signaling pathway plays an important role in many biological responses, including apoptosis [124]. 5-S-Cysteinyldopamine has been shown to be neurotoxic through its ability to induce caspase-3-driven neuronal apoptosis [125].

The anti-apoptotic activity of Tyr has been studied in *vitro* on cell lines (Table 4). A protective role of Tyr on mouse cortical neuron cultures induced by 5-S-cysteinyldopamine was evaluated by Vauzour et al. [30] as a manifestation of the anti-apoptotic activity of Tyr. There are data on the anti-apoptotic activity of Tyr obtained on other cellular objects. Tyr mitigated ischemia/reperfusion-induced apoptosis in H9c2 cells via inhibition of the c-Jun N-terminal kinase (JNK) pathway, protecting the mitochondria from disruption, preventing the release of cytochrome C and decreasing caspase-3 activation [126]. According to the authors, the antioxidant capacity of Tyr may also play a role in the inhibition of JNK activation. An important role of Tyr in preventing apoptotic cell death induced by ultraviolet B radiation was revealed on HaCaT cells [98]. Tyr decreased phosphorylation (activation) of MAPK (ERK, p38, and JNK) in a dose-dependent manner after H	extsubscript{2}O	extsubscript{2}-induced oxidative damage in L6 muscle cells [90]. Tyr inhibited LPS-mediated binding of macrophage (RAW 264.7 cells) and decreased phosphorylation of ERK, JNK, and p38 [114]. Tyr dose-dependently protected CATH.a cells from 1-methyl-4-phenylpyridinium-induced cell death this was manifested in the regulation of the gene expression of proapoptotic and anti-apoptotic proteins. Under the influence of Tyr, a decrease in Bax, caspase-3 and -9, the cytosolic fraction of cytochrome C, and an increase in Bcl-2 and Bcl-xl were observed [48]. Tyr treatment increased Akt phosphorylation. It is well-known fact that Akt signalling inhibits apoptosis through up-regulation of anti-apoptotic Bcl-2 family proteins. Further, several studies have suggested that Akt signalling actively participates in the up-regulation of anti-oxidative gene expressions [127].

### 4.5. Other Pleiotropic Effects of Tyr Contributing to its Neuroprotective Activity

Ischemic stroke is characterized by a violation of both the rheological properties of blood and the indicators of cellular and plasma hemostasis. An increase in blood viscosity has been identified in the acute phase of ischemic stroke [128, 129]. Platelets are activated in the acute phase of ischemic stroke, releasing neurotoxic and thrombogenic agents [130]. *Ex vivo* experiments on rats showed that Tyr (intragastrically 100 mg/kg daily 5 days) inhibited ADP-induced platelet aggregation and limited the increase in blood viscosity at a shear rate of 5–300 sec⁻¹ during thermal exposure of blood

### Table 4. Anti-apoptotic effects of Tyr.

| Cell Culture/animal | Model | Concentration/dosage | Effect/Result | Refs. |
|---------------------|-------|----------------------|---------------|-------|
| Primary cultures of mouse cortical neurons | CysDA (100 µM, 24 h) | 0.1–1 µM | ↑ Cortical neuron viability | [30] |
| CATH.a neuron cell | MPP⁺-induced cytotoxicity (100 µM – 2 mM) | 100, 200 µM | ↓ Bax, caspase-3 and -9, cytochrome C in cytosol | ↑ Bcl-2, Bcl-xl, and Akt-P | [48] |
| L6 muscle cells | H	extsubscript{2}O	extsubscript{2}-induced oxidative damage | 30–100 µM | ↓ Caspase-3 level | ↓ ERK1/2, JNK and p38 phosphorylation | ↑ ATP, HO-1 | [90] |
| Caco-2 cells | Oxidized LDL (0.2 g/L) treatment | 0.25–1 mM | ↓ Pro-apoptotic processes: membrane damage, modifications of cytoskeleton network, microtubular disorganization, loss of cell-cell and cell-substrate contacts, cell detachment, and cell death | ↓ Overproduction and activation of p66Shc | [91, 92] |
| HaCaT cells | UVB (250 mJ/cm², 10 min) | 5 mM | ↓ Caspase-3, -8, -9 activity | ↓ Quantity of apoptotic and necrotic cells | [98] |
| RAW264.7 cells | LPS-stimulation (100 ng/mL) | 1.2 mM | ↓ Phosphorylation of ERK, JNK, and p38 | | [114] |
| H9c2 cells | Hypoxia (95% nitrogen and 5% CO	extsubscript{2}, 1 h) / reoxygenation | 250 µM | ↓ Cytochrome C, caspase-3 activity, and JNK activation | | [126] |

MPP⁺, 1-methyl-4-phenylpyridinium; CysDA, 5-S-cysteinyldopamine.
CONCLUSION

This review summarizes the scientific literature on the neuroprotective properties of Tyr and its possible mechanisms of action in order to assess the acceptability of Tyr as the basis for the development of a new neuroprotective drug for the treatment of ischemic stroke. In previously published reviews, the neuroprotective properties of Tyr as a corrector for cognitive impairment in neurodegenerative pathology (Parkinson's disease and Alzheimer's disease) is summarized [132-135].

For the treatment of the acute phase of stroke, it requires the use of agents with a wide range of pharmacological actions that can prevent multiple neurochemical cascades involved in ischemic damage [72]. There are at least four fundamental mechanisms underlying cell death during ischemic brain injury: oxidative/nitrosative stress, excitotoxicity and ionic imbalance, local inflammation, and apoptotic-like cell death [2, 72, 136].

The therapeutic approach based on the use of neuroprotectors with antioxidant properties is justified by the well-studied role of free radical processes in the pathogenesis of acute ischemic stroke. Tyr refers to bisphenols, the antioxidant effect of which is due to their “direct” and “indirect” effects [82]. According to the authors, “direct” effects have

Fig. (1). Scheme of Tyr action mechanisms based on literature collected for this review. Despite a sufficient number of publications on the study of the antioxidant, anti-inflammatory, anti-apoptotic effects of Tyr, the studies performed on brain cells are sporadic and limited to studies conducted on cultures of neuronal cells [30, 48] and astrocytes [29, 105]. Therefore, the scheme reflecting the mechanisms of action of Tyr contains significant gaps that can be filled with the results of further studies. In neurons under conditions of oxidative stress, the action of Tyr is realized through up-regulation of anti-apoptotic proteins (Bcl-2 and Bcl-xL) and inhibition of apoptotic protein Bax translocation into mitochondria, which limits the release of cytochrome c and subsequent activation of the chain of caspase reactions, including a program of cell apoptosis. The downward trend in nNOS expression is manifested in a regular decrease in NO. Tyr significantly increases the expression of cytosolic SOD-1 and mitochondrial SOD-2, which reduces the severity of oxidative stress, and in an in vivo experiment on a global ischemia model can help reduce the content of lipid peroxidation products (conjugated dienes) in the brain tissue. In astrocytes under hypoxia/reoxygenation (as models of ischemia / recirculation) Tyr protects cultured astrocytes reduces ROS overproduction by increasing the activity of antioxidant enzymes (GR, GP, CAT), attenuates the released TNF-α and IL-6 from astrocyte via regulating of JNK. The reduction of cytokines from astrocyte might be due to its inhibition of astrocyte activation and regulation of the STAT3 signaling pathway since Tyr attenuates the expression level of GFAP and the phosphorylation of STAT3. At last, Tyr prevents the degradation of IκBα, which leads to the suppression of NF-κB function. + or - in the hexagon indicate the direction of Tyr action (activation or inhibition, respectively). (A higher resolution / colour version of this figure is available in the electronic copy of the article).
Tyrosol as a Neuroprotector

Tyrosol has been proven in vitro and are associated with the metal chelation, scavenging of reactive oxygen and nitrogen species, reduction of hydroperoxide formation and quenching of electronically excited compounds; “indirect” are mainly related to the modulation of cell signalling pathways and gene expression, to the regulation of defence enzymes and changes in nuclear histone acetylation. “Indirect” effects of biophenols are mainly associated with the modulation of cellular signaling pathways and the activation of antioxidant enzymes.

Tyr as an antioxidant, has a weak effect, or it is even completely absent in cell-free systems. There is a study the results of which explain one of the reasons for the unequal antioxidant activity of Tyr under different conditions. MacDonald et al. [137] found that Tyr is effective as an antioxidant in a lipid system, but has very low activity in an aqueous system. Since Tyr is an amphiphilic compound [10], it can be assumed that Tyr is able to exhibit antioxidant activity when distributed in the lipid membranes of cells, preventing the chain reaction of lipid peroxidation. Another significant reason for the differences in antioxidant effects of Tyr in a cell system versus in a cell-free system is its “indirect” effects: increase of antioxidant enzyme expression.

The presence of antioxidant activity is necessary, but insufficient for a molecule to be considered a neuroprotector. Clinical trials of individual drugs with free radical scavenger activity failed [6]. Authors, who analyzed clinical trial failures of antioxidants with expected neuroprotective properties, believe that the compounds of this class are promising only in case when the antioxidant exerts multi-target neuroprotective activity and easily crosses the blood-brain barrier [8]. In this review, the evidence is given of the presence in Tyr of a combination of properties, the manifestation of which provides the neuroprotective activity. Tyr has anti-inflammatory properties, which is demonstrated on a variety of objects in vitro and in vivo, and in particular, on the culture of astrocytes. Tyr blocks the neurotoxic effects of glutamate and comparable in efficacy with NMDA receptor antagonists. Finally, Tyr showed a distinct anti-apoptotic activity on neuronal cells. Tyr induces the up-regulation of anti-apoptotic proteins and inhibits expression of proapoptotic proteins and activity of MAPKs.

Thus, an analysis of the presented scientific literature suggests that Tyr is capable of acting on all the main mechanisms of nerve cell damage during ischemia/reperfusion, as well as additionally exhibiting neuroregenerative properties. Moreover, Tyr has acceptable pharmacokinetic properties, in particular, penetrates well through the BBB.

The main mechanisms of Tyr action described for neurons and astrocytes are presented in Fig. 1.

Tyr has low acute toxicity: the LD50 was 2700 and 1700 mg/kg after intragastric and intraperitoneal injections in mice, respectively; the LD50 was 7079 mg/kg after intragastric administration in rats. No toxicity was observed after 3 months of chronic intragastric administration of Tyr at doses of 200 mg/kg in male rats and 10 mg/kg in dogs [10]. Tyr cytotoxic levels are very low [138]. Tyr did not manifest genotoxic effects [139]. Finally, Absorption, Distribution, Metabolism, Excretion and Toxicity prediction, and bioactivity scores altogether confirm the drug-like potential of Tyr [113].

Therefore, Tyr has a multtarget activity and is a promising compound for the development of an effective neuroprotective agent for use in ischemic stroke.

LIST OF ABBREVIATIONS

| Abbreviation | Description |
|--------------|-------------|
| CAT          | Catalase    |
| CD           | Conjugated dienes |
| CD14         | Cell surface pattern recognition receptor |
| COX          | Cyclooxygenase |
| DPPH         | 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl |
| ERK          | Extracellular signal-regulated kinase |
| GFAP         | Gial fibrillary acidic protein |
| GP           | Glutathione peroxidase |
| GR           | Glutathione reductase |
| HO-1         | Transcription factor |
| IL           | Interleukin |
| IκBα         | Nuclear factor kBα |
| JNK          | c-Jun N-terminal kinase |
| LPS          | Lipopolysaccharide |
| LT           | Leukotriene |
| MAPK         | Mitogen-activated protein kinase |
| MDA          | Malondialdehyde |
| NF-κB        | Nuclear factor-κB |
| NMDA         | N-methyl-d-aspartate |
| NOS          | Nitric oxide synthase |
| Nrfl2        | Inducible transcription factor |
| ONOO⁻        | Peroxynitrite |
| ROS          | Reactive oxygen species |
| SOD          | Superoxide dismutase |
| STAT         | Signal transducer and activator of transcription |
| TNF-α        | Tumor necrosis factor α |
| Tyr          | p-Tyrosol |

AUTHORS’ CONTRIBUTIONS

Conceptualization, Search and Analyze of Literature: P.M.B., P.T.M.; Writing: P.M.B., P.T.M.; Tables: P.T.M; Design of Figure: P.M.B.; Final Editing: P.M.B.

CONSENT FOR PUBLICATION

Not applicable.
None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The authors thank Anton Osipenko for technical help.

REFERENCES

[1] Hachinski, V.; Donnan, G.A.; Gorelick, P.B.; Hacke, W.; Cramer, S.C.; Kaste, M.; Fisher, M.; Brainin, M.; Buchan, A.M.; Lo, E.H.; Skolnick, B.E.; Furie, K.L.; Hankey, G.J.; Kivipelto, M.; Morris, J.; Rothwell, P.M.; Sacco, R.L.; Smith, S.C.; Jr; Wang, Y.; Breyer, A.; Ford, G.A.; Iadecola, C.; Martins, S.C.; Saver, J.; Skvortsova, V.; Bayley, M.; Bednar, M.M.; Duncan, P.; Enney, L.; Finkelstein, S.; Jones, T.A.; Kalra, L.; Klein, J.; Nitkin, R.; Teasell, R.; Weißler, C.; Desai, B.; Goldberg, M.P.; Heiss, W.D.; Saarelma, O.; Schwamm, L.H.; Shinoohara, Y.; Trivedi, B.; Wahlgren, N.; Wong, L.K.; Hakim, A.; Norrving, B.; Prudhomme, S.; Ringelstein, E.B.; Schäbitz, W.R.; Davis, S.M.; Goldstein, L.B.; Leys, D.; Tuomilehto, T.; Weiller, T.G. Effect of n-3 fatty acids on stroke: the importance of collaboration and reproducibility. Brain, 2011, 134(4), 1079-2092.

[2] Brouns, R.; De Deyn, P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009, 111(5), 483-495.

[3] Neuhaus, A.A.; Couch, Y.; Hadley, G.; Buchan, A.M. Neuroprotection in stroke: the importance of reproduceability and reproducibility. Brain, 2017, 140(4), 2079-2090.

[4] Sarwal, A.; Hussain, M.S.; Shaibia, A.; Neuhaus, A.A. Neuroprotection in stroke. Translational Stroke Research, Springer Series in Translational Stroke Research; Laplach, P.; Zhang, J., Eds.; Springer: New York, 2012, pp. 79-90.

[5] Rajah, G.B.; Ding, Y. Experimental neuroprotection in ischemic stroke: a concise review. Neurosci. Focus, 2017, 42(4), E2.

[6] Rogałewski, A.; Schneider, A.; Ringelstein, E.B.; Schibitz, W.R. Toward a multimodal neuroprotective treatment of stroke. Stroke, 2006, 37(4), 1129-1136.

[7] Laplach, P.A.; Araujo, D.M. Advances in ischemic stroke treatment: neuroprotective and combination therapies. Expert Opin. Emerg. Drugs, 2007, 12(1), 97-112.

[8] Fisher, M. New approaches to neuroprotective drug development. Stroke, 2011, 42(1 Suppl), S24-S27.

[9] Panossian, A.; Nikryan, N.; Ohanyan, N.; Hovhannisyan, A.; Abrahanyan, H.; Gabrielyan, E.; Wikman, G. Comparative study of rhodiola preparations on behavioral despair of rats. Phytomedicine, 2008, 15(1-2), 84-91.

[10] Saratikov, A.S.; Krasnov, E.A. Rhodolia Rosea (Golden Root): A Valuable Medicinal PlantTmsk University Press: Tomsk: Russian, 2004.

[11] Tóth, J.; Marković, A.K.; Brala, C.J.; Barbarić, M. Anticaner effects of olive oil polyphenols and their combinations with anticancer drugs. Acta Pharm., 2019, 69(4), 461-482.

[12] Moskalëv, A.; Chernyshova, G.A.; Lifshits, T.; Tsvetkov, V.; Fedinetsv, A.; Shaposhnikov, M.; Kutr'ko, V.; Zhavoronkov, A.; Kennedy, B.K. Developing criteria for evaluation of genoprotectors as a key stage toward transition to the clinic. Aging Cell, 2016, 15(3), 407-415.

[13] Davis, S.M.; Goldstein, L.B.; Leys, D.; Tuomilehto, J. Stroke: a possible role of antioxidants. Lancet, 2002, 359(9314), 1052-1058.

[14] Serrano, A.; Alonso, M.G.; de Pascual-Torré, S.; Miñihane, A.M.; Weinberg, P.D.; Rimbach, G. Antioxidant and anti-atherogenic activities of acetylated phenolic compounds. J. Agric. Food Chem., 2007, 55(1), 80-89.

[15] Pliakis, E.; Samiotaki, M.; Panayotou, G.; Antonopoulou, S. Biological activity of acetylated phenolic compounds. J. Agric. Food Chem., 2007, 55(1), 80-89.

[16] Oxford, R.W.; Giacona, A.; Hull, W.E.; Haubner, R.; Württele, G.; Störgelrhalde, B.; Bartsch, H. Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol., 2000, 1(7), 107-112.

[17] Plotnikov, M.B.; Chernyshova, G.A.; Smol'yakova, V.I.; Plotnikov, T.M.; Sysyolutina, S.V.; Kryukov, Y.A. Anti-ischemic activity of p-tyrosol under conditions of repeated transient myocardial ischemia in rats. Bull. Exp. Biol. Med., 2018, 163(5), 625-628.

[18] Spiegelhalder, B.; Bartsch, H. Olive oil consumption and health: working toward a prioritized world agenda. Food Chem., 2019, 2863(02)00229, 691.

[19] Minihane, A.M.; Weinberg, P.D.; Rimbach, G. Antioxidant and anti-atherogenic activities of olive oil phenolics. Food Chem., 2019, 2863(02)00229, 691.

[20] Plotnikov, M.B.; Chernyshova, G.A.; Smol'yakova, V.I.; Plotnikov, T.M.; Sysyolutina, S.V.; Kryukov, Y.A. Anti-ischemic activity of p-tyrosol under conditions of repeated transient myocardial ischemia in rats. Bull. Exp. Biol. Med., 2018, 163(5), 625-628.

[21] Anter, J.; Tasset, I.; Demyda-Peyrás, S.; Ranchal, I.; Moreno-Millán, M.; Romero-Jimenez, M.; Muntane, J.; Luque de Castro, M.D.; Muñoz-Serrano, A.; Alonso-Moraga, A. Evaluation of potential antigenotoxic, cytotoxic and proapoptotic effects of the olive oil product “alpeurino”, hydroxytyrosol, tyrosol and verbascoside. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2014, 722, 25-33.

[22] Plotnikov, M.B.; Chernyshova, G.A. Olive oil consumption and health: working toward a prioritized world agenda. Food Chem., 2007, 103(1-2), 636-644.

[23] Minihane, A.M.; Weinberg, P.D.; Rimbach, G. Antioxidant and anti-atherogenic activities of olive oil phenolics. J. Agric. Food Chem., 2007, 55(1), 80-89.
Tyrosol as a Neuroprotector

Current Neuropharmacology. 2021. Vol. 19. No. 4

Iomoto et al. Electrochemical detection and a focused-cored column. Food Chem. 2013, 138(2-3), 1663-1669. http://dx.doi.org/10.1016/j.foodchem.2012.11.122 PMID: 23411296

Bevilacqua, L.; Buiaire, F.; Coaccioli, F.; Jasoniokas, R. Identification of compounds in wine by HPLC-tandem mass spectrometry. Ann. Chim. 2004, 90(4-5), 679-699. http://dx.doi.org/10.2174/0003388049049000

Sosyalin, S.V.; Kryukov, Yu.A.; Malykhin, V.V.; Muradov, K.K.; Chernysheva, G.A.; Aliev, O.I.; Smol’yakova, V.I.; Anishchenko, A.M.; Sidekhnemova, A.V.; Shanamaean, A.Y.; Potu, M.B. p-Tyrosol: a new synthetic method and new types of pharmacological activity. Russ. Chem. Bull. 2015, 64, 2210-2214. http://dx.doi.org/10.1007/s11172-015-1140-y

Martin, S.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes. Food Chem. 2011, 123(1), 40-48. http://dx.doi.org/10.1016/j.foodchem.2010.11.074 PMID: 25214327

Vauzour, D.; Corona, G.; Spencer, J.P. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurodegeneration. Arch. Biochem. Biophys. 2010, 501(1), 106-111. http://dx.doi.org/10.1016/j.abb.2010.03.016 PMID: 20361927

Vauzour, D.; Vafiadou, K.; Corona, G.; Pollard, S.E.; Tzounis, X.; Spencer, J.P. Champagne wine polyphenols protect primary cortical neurons against peroxynitrite-induced injury. J. Agric. Food Chem. 2007, 55(8), 2854-2860. http://dx.doi.org/10.1021/jf063304z PMID: 17381112

Hornedo-Ortega, R.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Corrigendum to “Protective effects of hydroxytyrosol against α-synuclein toxicity on PC12 cells and fibril formation” Food Chem. Toxicol. 2018, 141-49. Food Chem. Toxicol., 2018, 121, 719. http://dx.doi.org/10.1016/j.fct.2018.09.037 PMID: 30253891

Ma, C.J.; Kim, Y.C.; Sung, S.H. Compounds with neuroprotective activity from the medicinal plant Machilus thunbergii. J. Enzyme Inhib. Med. Chem. 2009, 24(5), 1117-1211. http://dx.doi.org/10.1007/s12098-007-9075-2 PMID: 17803694

De La Cruz, J.P.; Ruiz-Moreno, M.I.; Guerrer, A.; Reyes, J.J.; Benitez-Guerrero, A.; Esperar, J.L.; González-Correra, J.A. Differences in the neuroprotective effect of orally administered virgin olive oil (Olea europaea) polyphenols tyrosol and hydroxytyrosol in rats. J. Agric. Food Chem. 2015, 63(25), 5957-5963. http://dx.doi.org/10.1021/acs.jafc.5b00627 PMID: 26066316

Bu, Y.; Rho, S.; Kim, J.; Kim, M.Y.; Lee, D.H.; Kim, S.Y.; Choi, H.; Kim, H. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci. Lett. 2007, 447(3), 218-221. http://dx.doi.org/10.1016/j.neulet.2007.09.080 PMID: 17822671

Atöchin, D.N.; Chernysheva, G.A.; Smol’yakova, V.I.; Osipenko, A.N.; Logvinov, S.V.; Zhankhina, A.A.; Sosyalin, S.V.; Kryukov, Y.A.; Anfinogenova, Y.; Plotnikova, T.M.; Plotnikov, M.B. Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats. Phytomedicine. 2016, 23(7), 784-792. http://dx.doi.org/10.1016/j.phymed.2016.03.015 PMID: 27180226

Panossian, A.; Hovhannisyan, A.; Abrahamyan, H.; Gabrielyan, E.; Wikman, G. Pharmacokinetics of active constituents of Rhodiola rosea SHR-5 extract Comprehensive Bioactive Natural Products. Efficacy, Safety and Clinical Evaluation; Gupta, V.K., Ed.; I. Stadion Press: LLC; Texas, USA, 2010, 2 pp. 307-329.

Guo, N.; Zhu, M.; Han, X.; Sui, D.; Wang, Y.; Yang, Q. The metabolism of salidroside to its aglycone p-tyrosol in rats following the administration of salidroside. PLoS One. 2014, 9(8), e103648. http://dx.doi.org/10.1371/journal.pone.0103648 PMID: 25101641

Han, T. Effects of salidroside pretreatment on expression of tumor necrosis factor-alpha and permeability of blood brain barrier in rat model of focal cerebral ischemia-reperfusion injury. Asian Pac. J. Trop. Med. 2013, 6(2), 156-158. http://dx.doi.org/10.1016/S1995-7645(13)60014-0 PMID: 23339921

Shi, T.Y.; Feng, S.F.; Xing, J.H.; Wu, Y.M.; Li, X.Q.; Zhang, N.; Tian, Z.; Liu, S.B.; Zhao, M.G. Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotox. Res., 2012, 21(4), 356-367.
Tyrosol as a Neuroprotector

J. Pharmacol.

http://dx.doi.org/10.1016/j.procbio.2012.09.013 PMID: 15164761

Synthesized tyrosyl hydroxyphenylacetate, a novel antioxidant, reduced stress and arachidonic acid mobilization and metabolism by macrophages: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY(581/591) in a biological setting. *Biochim. Biophys. Acta.* 2004, 1636(2–3), 136-150.

http://dx.doi.org/10.1016/j.bibap.2003.10.013 PMID: 15164761

Pérez-Bonilla, M.; Salido, S.; van Beek, T.A.; Linares-Palomino, P.J.; Altarejos, J.; Nogueras, M.; Sánchez, A. Isolation and identification of radical scavengers in olive tree (*Olea europaea*) wood. *J. Chromatogr. A.* 2006, 1117(1-2), 311-318.

http://dx.doi.org/10.1016/j.chroma.2005.12.055 PMID: 16426626

Chen, D.; Fan, J.; Wang, P.; Zhu, L.; Jin, Y.; Peng, Y.; Du, S. Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from *Rhodiola crenulata*. *Food Chem.* 2012, 134(4), 2126-2133.

http://dx.doi.org/10.1016/j.foodchem.2012.04.011 PMID: 23442665

Dávalos, J.Z.; Valderama-Negrón, A.C.; Barrios, J.R.; Freitas, V.L.S.; Bibeiro da Silva, M.D.M.C. Energetic and structural properties of two phenolic antioxidants: tyrosol and hydroxytyrosol. *J. Phys. Chem. A.* 2018, 122(16), 4130-4137.

http://dx.doi.org/10.1021/acs.jpca.8b00457 PMID: 29616550

De Stefano, D.; Maiuri, M.C.; Carnuccio, R. Effects of Tyrosol on experimental and human stroke. *J. Cereb. Blood Flow Metab.* 2010, 30(11), 2333-2344.

http://dx.doi.org/10.1038/njcbfm.1992.36 PMID: 1548298

Lee, K.M.; Hur, J.; Lee, Y.; Yoon, B.-R.; Choi, S.Y. Protective effects of tyrosol against oxidative damage in L6 muscle cells. *Food Sci. Technol. Res.* 2018, 24, 943-947.

http://dx.doi.org/10.1007/s10699-018-0316-9

Giovannini, C.; Straface, E.; Modesti, D.; Coni, E.; Canta, D.; De Stefano, D.; Maiuri, M.C.; Carnuccio, R. Lycopene, quercetin and tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-kB activation in *in vitro* oxygen glucose deprivation. *Neurochem. Int.* 2018, 121, 140-145.

http://dx.doi.org/10.1016/j.neuint.2018.10.006 PMID: 30291953

Lambertsen, K.L.; Biber, K.; Finsen, B. Inflammatory cytokines in experimental and human stroke. *J. Cereb. Blood Flow Metab.* 2012, 32(9), 1677-1698.

http://dx.doi.org/10.1038/jcbfm.2012.88 PMID: 22739623

Je, I.G.; Kim, D.S.; Kim, S.W.; Lee, S.; Lee, H.S.; Park, E.K.; Khang, D.; Kim, S.H. Tyrosol suppresses allergic inflammation by inhibiting the activation of phosphoinositide 3-kinase in mast cells. *PLOS One.* 2015, 10(6), e0129629.

http://dx.doi.org/10.1371/journal.pone.0129829 PMID: 26068872

Giovannini, L.; Migliori, M.; Filippi, C.; Origlia, N.; Panichi, V.; Falchi, M.; Bertelli, A.A.; Bertelli, A. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells. *J. Int. J. React.* 2002, 24(2), 53-56. PMID: 12182333

De Stefano, D.; Maiuri, M.C.; Cunaccio, R. Effects of Tyrosol on RAW 264.7 Macrophages activated by interferon-γ and gliadin oligosaccharides and olive oil in Health and Disease Prevention; Preedy, V.; Watson, R.; Cunaccio, R., Eds.; Academic Press: Amsterdam, 2007, pp. 123-137.

http://dx.doi.org/10.1016/j.jfunc.2006.12.0469 PMID: 17497920

de la Puerta, R.; Ruiz Gutiérrez, V.; Houit, J.R.S. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. *Biochem. Pharmacol.* 1999, 57(4), 445-449.

http://dx.doi.org/10.1016/S0006-2952(98)00320-7 PMID: 9933033

Yadav, T.C.; Kumar, N.; Raj, U.; Geol, N.; Vardawaj, P.K.; Prasad, R.; Pruthi, V. Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent. *J. Biomol. Struct. Dyn.* 2020, 38(3), 382-397.
No of phenolic compounds from extra virgin olive oil: a brief review of the literature. S. Palmerini, C.A.; Carlini, E.; Saccardi, C.; Servili, M.; Montedoro, S.; Angeloni, C.; Malaguti, M.; Barbalace, M.C.; Hristov, M.; Jakobovits, A.; Tori, J.; Barbieri, M.; Jakobovits, B. C. Tori, J.; Barbieri, M.; Jakobovits B. C. Hydroxytyrosol, tyrosol and derivatives: anti-inflammatory effects of tyrosol. J. Vet. Med. Sci., 2017, 79, No. 4.

Wang, W.C.; Xia, Y.M.; Yang, B.; Su, X.N.; Chen, J.K.; Li, W.; Jiang, T. Protective effects of tyrosol against LPS-induced acute lung injury via inhibiting NF-κB and AP-1 activation and activating the HO-1/Nrf2 pathways. Biol. Pharm. Bull., 2017, 40(5), 583-593. http://dx.doi.org/10.1248/bpb16-00756 PMID: 28190857

Sato, K.; Mihara, Y.; Kanai, K.; Yamashita, Y.; Kimura, Y.; Itoh, N. Relative potency of tyrosol in the treatment of endotoxin-induced uveitis in rats. J. Vet. Med. Sci., 2016, 78(10), 1631-1634. http://dx.doi.org/10.1292/jvms.16-0254 PMID: 27350009

Miles, E.A.; Zouboulis, P.; Calder, P.C. Differential anti-inflamatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition, 2005, 21(3), 389-394. http://dx.doi.org/10.1016/j.nutr.2004.06.031 PMID: 15797683

Dell’Aghi, M.; Fagnani, R.; Galli, G.V.; Maschi, O.; Giliardi, F.; Bellosta, S.; Crestani, M.; Bosio, E.; De Fabiani, E.; Caruso, D. Olive oil phenols modulate the expression of metalloproteinase 9 in THP-1 cells by acting on nuclear factor-kappaB signaling. J. Agric. Food Chem., 2010, 58(4), 2246-2252. http://dx.doi.org/10.1021/jf902503c PMID: 20102205

Palmerini, C.A.; Carlini, E.; Saccardi, C.; Servili, M.; Montedoro, G.; Arienti, G. Activity of olive oil phenols on lymphomonocyte cytosolic calcium. J. Nutr. Biochem., 2005, 16(2), 109-113. http://dx.doi.org/10.1016/j.jnutbio.2004.10.006 PMID: 15681170

Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science, 1998, 281(5381), 1399-1312. http://dx.doi.org/10.1126/science.281.5381.1399 PMID: 9721092

Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604. http://dx.doi.org/10.3109/10709989.2015.1030412 PMID: 26096166

Mosca, L.; Lendaro, E.; d’Erme, M.; Marcellini, S.; Moretti, S.; Roselli, M.A. 5-S-Cysteinyl-dopamine effect on the human dopaminergic neuroblastoma cell line SH-SY5Y. Neurochem. Int., 2006, 49(3), 262-269.

http://dx.doi.org/10.1016/j.neuint.2010.01.023 PMID: 16549224

Sun, L.; Isaak, C.K.; Zhou, Y.; Petkau, J.C.; O., K.; Liu, Y.; Siow, Y.L. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci., 2012, 91(5-6), 151-158. http://dx.doi.org/10.1016/j.lfs.2012.06.026 PMID: 22771701

Chen, H.H.; Chen, Y.T.; Huang, Y.W.; Tsai, H.J.; Kuo, C.C. 4-Ketopinonesol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of P63/NAK signaling. Free Radic. Biol. Med., 2012, 52(6), 1054-1066. http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.012 PMID: 22245092

Ott, E.O.; Lechner, H.; Aranibar, A. High blood viscosity syndrom in cerebral infarction. Stroke, 1974, 5(3), 330-333. http://dx.doi.org/10.1161/01.STR.5.3.330 PMID: 4836535

Fisher, M.; Meiselman, H.J. Hemorheological factors in cerebral ischemia. Stroke, 1991, 22(9), 1164-1169. http://dx.doi.org/10.1161/01.STR.22.9.1164 PMID: 1833861

van Kooten, F.; Ciabattoni, G.; Patrano, C.; Dippel, D.W.; Koudstaal, P.J. Platelet activation and lipid peroxidation in patients with acute ischemic stroke. Stroke, 1997, 28(8), 1557-1563. http://dx.doi.org/10.1161/01.STR.28.15.57 PMID: 9259748

McCarty, M.F.; O’Keefe, J.H.; DiNicantonio, J.J. Pentoxifylline for vascular health: a brief review of the literature. Open Heart, 2016, 3(1), e000365. http://dx.doi.org/10.1136/openhrt-2015-000365 PMID: 26870389

Karković, M. A.; Torić, J.; Barbič, M.; Jakobušić, B. C. Torić, J.; Barbič, M.; Jakobušić B. C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 2019, 24(10), E2001. http://dx.doi.org/10.3390/molecules24102001 PMID: 31137753

Vauzour, D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev., 2012, 2012, 914273. http://dx.doi.org/10.1155/2012/914273 PMID: 22701758

Obied, H.K.; Prenzler, P.D.; Omar, S.H.; Ismael, R.; Servili, M.; Esposto, S.; Taticchi, A.; Selvaggiini, R.; Urbani, S. Pharmacology of olive biophenols. Advances in Molecular Toxicology; Fishbein, J.C., Ed.; Elsevier Science B. V.: Oxford, UK, 2012, Vol. 6, pp. 195-242. http://dx.doi.org/10.1016/B978-0-444-59389-4.00006-9

Angeloni, C.; Malaguti, M.; Barbalace, M.C.; Hrelia, S. Bioactivity of Olive Oil Phenols in Neuroprotection. J. Int. Mol. Sci., 2017, 18(11), E2230. http://dx.doi.org/10.3390/ijms18112230 PMID: 29068387

Khoshnam, S.E.; Winlow, W.; Farzaneh, M.; Farbood, Y.; Moghaddam, H.F. Pathogenic mechanisms following ischemic stroke. Neuro. Sci., 2017, 38(7), 1167-1186. http://dx.doi.org/10.1007/s10072-017-2938-1 PMID: 28417216

McDonald, S.; Prenzler, P.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem., 2001, 73, 73-84. http://dx.doi.org/10.1016/S0308-8146(00)00288-0

Anter, J.; Campos-Sánchez, J.; Hamss, R.E.; Rouja-Molina, M.; Muñoz-Serrano, A.; Analla, M.; Alonzo-Moraga, A. Modulation of genotoxicity by extra-virgin olive oil and some of its distinctive components assessed by use of the Drosophila wing-spot test. Mutat. Res., 2010, 703(2), 137-142. http://dx.doi.org/10.1016/j.mrgentox.2010.08.012 PMID: 20732449

Nouis, L.; Douillas, P.T.; Aliqiannis, N.; Bazios, D.; Agalias, A.; Galaris, D.; Mitakou, S. DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide. Free Radic. Res., 2005, 39(7), 787-795. http://dx.doi.org/10.1080/10715760500045806 PMID: 16036359