ERGODIC BEHAVIORS OF COMPOSITION OPERATORS ACTING ON SPACE OF BOUNDED HOLOMORPHIC FUNCTIONS

HAMZEH KESHAVARZI, KARIM HEDAYATIAN

Abstract. We completely characterize the mean ergodic composition operators on $H^\infty(\mathbb{B}_n)$. In particular, we show that a composition operator acting on this space is mean ergodic if and only if it is uniformly mean ergodic.

MSC (2010): primary: 47B33, secondary: 32Axx; 47A35.

Keywords: composition operators, mean ergodic operators, space of bounded holomorphic functions.

1. Introduction and main results

The purpose of this paper is to prove the following theorem:

Theorem 1.1. Let φ be a holomorphic self-map of \mathbb{B}_n. Then, the following statements are equivalent.

(i) C_φ is mean ergodic on $H^\infty(\mathbb{B}_n)$.
(ii) C_φ is uniformly mean ergodic on $H^\infty(\mathbb{B}_n)$.
(iii) φ has a fixed point in \mathbb{B}_n and there is a $k \in \mathbb{N}$ such that $\|\varphi_k - \rho_\varphi\|_\infty \to 0$ as $j \to \infty$.

Where ρ_φ is the holomorphic retraction associated with φ and is defined below. We prove this theorem in two parts: Theorems 1.3 and 1.4. Moreover, Theorem 1.2 plays a key role in our method. However, we believe that Theorem 1.2 has an independent interest.

Throughout the paper, n is a fixed positive integer. Here is some notations:

- \mathbb{C}: the complex plane.
- $\mathbb{B}_n = \{ z \in \mathbb{C}^n : |z| < 1 \}$: the unit ball of \mathbb{C}^n.
- $D = \mathbb{B}_1$: the unit disk in \mathbb{C}.
- $H(\mathbb{B}_n)$: the space of all holomorphic functions from \mathbb{B}_n into \mathbb{C}
- $H^\infty(\mathbb{B}_n)$: the subspace of all bounded functions in $H(\mathbb{B}_n)$.
- $\text{Hol}(\mathbb{B}_n, \mathbb{B}_n)$: the set of all holomorphic self-maps of \mathbb{B}_n

Consider $\varphi \in \text{Hol}(\mathbb{B}_n, \mathbb{B}_n)$. The iterates of φ are the functions $\varphi_k := \varphi \circ (k) \circ \varphi$. We denote by φ^i, $1 \leq i \leq n$ the components of φ, that is, $\varphi = (\varphi^1, ..., \varphi^n)$ where $\varphi^i : \mathbb{B}_n \to \mathbb{C}$ are holomorphic functions. Moreover, the composition operator C_φ on $H(\mathbb{B}_n)$ is defined as $C_\varphi f = f \circ \varphi$.

When we say that $\rho \in \text{Hol}(\mathbb{B}_n, \mathbb{B}_n)$ is holomorphic retraction, it means that it is an idempotent, that is, $\rho_2 = \rho$. Clearly, if $\varphi : \mathbb{B}_n \to \mathbb{B}_n$ be holomorphic such that the sequence of its iterates converges to a holomorphic function $h : \mathbb{B}_n \to \mathbb{B}_n$. Then, $h_2 = h$, that is, h is a holomorphic retraction of \mathbb{B}_n. For more details about the holomorphic self-maps of the unit ball and their iterates see [1, Chapter 2].
Let \(\varphi : \mathbb{B}_n \to \mathbb{B}_n \) be holomorphic and have an interior fixed point. Then, from [1, Theorem 2.1.29 and Proposition 2.2.30], there exist a unique submanifold \(M_\varphi \) of \(\mathbb{B}_n \) and a unique holomorphic retraction \(\rho_\varphi : \mathbb{B}_n \to M_\varphi \) such that every limit point \(h \in Hol(\mathbb{B}_n, \mathbb{B}_n) \) of \(\{ \varphi_j \} \) is of the form \(h = \gamma \circ \rho_\varphi \), where \(\gamma \) is an automorphism of \(M_\varphi \). Moreover, even \(\rho_\varphi \) is a limit point of the sequence \(\{ \varphi_j \} \). This implies that \(\rho_\varphi \circ \varphi = \varphi \circ \rho_\varphi \).

Let \(\{ e_1, \ldots, e_n \} \) be the standard basis of \(\mathbb{C}^n \).

Theorem 1.2. Let \(\varphi \) be a holomorphic self-map of the unit ball with converging iterates and \(\varphi(0) = 0 \). Then, there is an invertible matrix \(V \) so that:

\[
V^{-1}\varphi_j V = \left((V^{-1}\varphi_j V)^1, \ldots, (V^{-1}\varphi_j V)^s \right) \oplus P_{n-s},
\]

where \(\dim M_\varphi = n - s \), the functions \((V^{-1}\varphi_j V)^1, \ldots, (V^{-1}\varphi_j V)^s \) are the components of \(V^{-1}\varphi_j V \), and \(P_{n-s} \) is the orthogonal projection from \(\mathbb{C}^n \) onto \(U = e_{s+1} \oplus \ldots \oplus e_n \). Moreover, \(V^{-1}\varphi_j V \) converges to \(P_{n-s} \) uniformly on the compact subsets of \(V^{-1}\mathbb{B}_n \).

Let \(X \) be a Banach space and \(T : X \to X \) be an operator. Then, We say that \(T \) is mean ergodic if

\[
M_j(T) = \frac{1}{j} \sum_{i=1}^{j} T^i.
\]

converges to a bounded operator defined on \(X \) for the strong operator topology. Uniformly mean ergodicity will define in a same way with convergence in the operator norm.

Lotz [13] proved that: If \(X \) is a Grothendieck Banach space with Dunford-Pettis property (GDP space), and \(T \in L(X) \) satisfies \(\|T^n/n\| \to 0 \), then \(T \) is mean ergodic if and only if it is uniformly mean ergodic. For the definition of GDP spaces see [13, Pages 208-209].

For some work on the mean ergodicity of composition operators see [2, 3, 4, 6, 10, 11, 12]. The (uniformly) mean ergodicity of composition operators on \(H^\infty(\mathbb{D}) \) have been characterized in [4]. It is well-known that \(H^\infty(\mathbb{D}) \) is a GDP space. Thus, a composition operator, acting on \(H^\infty(\mathbb{D}) \), is mean ergodic if and only if it is uniformly mean ergodic. However, we do not know whether \(H^\infty(\mathbb{B}_n) \) is a GDP space or not. In [12], the first author has proved that if \(\varphi \) is a holomorphic self-map of the unit ball with converging iterates and an interior fixed point, then the mean ergodicity and the uniformly mean ergodicity of \(C_\varphi \) are equivalent. In the following theorem, we give this equivalence for all \(\varphi \in Hol(\mathbb{B}_n, \mathbb{B}_n) \) with an interior fixed point.

Theorem 1.3. Let \(\varphi \) be a holomorphic self-map of the unit ball with a fixed point in \(\mathbb{B}_n \). Then, the following statements are equivalent.

(i) \(C_\varphi \) is mean ergodic on \(H^\infty(\mathbb{B}_n) \).
(ii) \(C_\varphi \) is uniformly mean ergodic on \(H^\infty(\mathbb{B}_n) \).
(iii) There is a \(k \in \mathbb{N} \) such that \(\|\varphi_{kj} - \rho_\varphi\|_\infty \to 0 \), as \(j \to \infty \).

As the final result, we prove that every holomorphic self-map of \(\mathbb{B}_n \) which has no interior fixed point induces a composition that is not mean ergodic on \(H^\infty(\mathbb{B}_n) \). This theorem gives the answer to [12, Question 3.16].

Theorem 1.4. Let the holomorphic function \(\varphi : \mathbb{B}_n \to \mathbb{B}_n \) has no interior fixed point. Then, \(C_\varphi \) is not mean ergodic on \(H^\infty(\mathbb{B}_n) \).
2. Basic results

Every automorphism \(\varphi \) of \(\mathbb{B}_n \) is of the form \(\varphi = U \varphi_a = \varphi_b V \), where \(U \) and \(V \) are unitary matrices of \(\mathbb{C}^n \) and

\[
\varphi_a(z) = \frac{a - P_a(z) - s_a Q_a(z)}{1 - \langle z, a \rangle}, \quad z \in \mathbb{B}_n,
\]

where \(a \neq 0 \), \(s_a = \sqrt{1 - |a|^2} \), \(P_a \) is the projection from \(\mathbb{C}^n \) onto the subspace \(\langle a \rangle \) spanned by \(a \), and \(Q_a \) is the projection from \(\mathbb{C}^n \) onto \(\mathbb{C}^n \ominus \langle a \rangle \). Clearly, \(\varphi_a(0) = a \), \(\varphi_a(a) = 0 \), and \(\varphi_a \circ \varphi_a(z) = z \). It is well-known that an automorphism \(\varphi \) of \(\mathbb{B}_n \) is a unitary matrix of \(\mathbb{C}^n \) if and only if \(\varphi(0) = 0 \).

Let \(\Omega \) be a strongly pseudoconvex bounded domain. The infinitesimal Kobayashi metric \(F_K : \Omega \times \mathbb{C}^n \to [0, \infty) \) is defined as:

\[
F_K(z, w) = \inf \left\{ C > 0 : \exists f \in H(\mathbb{D}, \Omega) \text{ with } f(0) = z, \ f'(0) = \frac{w}{C} \right\},
\]

where \(H(\mathbb{D}, \Omega) \) is the space of analytic functions from \(\mathbb{D} \) to \(\Omega \). Let \(\gamma : [0, 1] \to \Omega \) be a \(C^1 \)-curve. The Kobayashi length of \(\gamma \) is defined as:

\[
L_K(\gamma) = \int_0^1 F_K(\gamma(t), \gamma'(t)) dt.
\]

For \(z, w \in \Omega \), the Kobayashi metric function is defined as:

\[
k_\Omega(z, w) = \inf \left\{ L_K(\gamma) : \gamma \text{ is } C^1 \text{- curve with } \gamma(0) = z \text{ and } \gamma(1) = w \right\}.
\]

If \(\Omega \) and \(\Lambda \) are two strongly pseudoconvex bounded domains and \(\varphi : \Omega \to \Lambda \) is a holomorphic function, then from [1, Proposition 2.3.1], we have:

\[
k_\Lambda(\varphi(z), \varphi(w)) \leq k_\Omega(z, w), \quad \forall z, w \in \Omega.
\]

Thus, \(k_\Omega \) is invariant under automorphisms, that is,

\[
k_\Omega(\varphi(z), \varphi(w)) = k_\Omega(z, w),
\]

for all \(z, w \in \mathbb{B}_n \) and \(\varphi : \Omega \to \Omega \) is an automorphism.

Let \(\beta \) from \(\mathbb{B}_n \times \mathbb{B}_n \) to \([0, \infty)\) be the Bergman metric. From [1, Corollary 2.3.6], the Kobayashi metric and the Bergman metric coincide on \(\mathbb{B}_n \). We have:

\[
\beta(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbb{B}_n.
\]

We shall denote by \(B(a, r) \) the Bergman ball centered at \(a \in \mathbb{B}_n \) with radius \(r > 0 \), that is,

\[
B(a, r) = \{ z \in \mathbb{B}_n : \beta(a, z) < r \}.
\]

It is well-known (see [1, page 134]) that \(B(a, r) \) is the ellipsoid

\[
\frac{|P_\alpha(\zeta) - a_r|^2}{R^2 s^2} + \frac{|Q_\alpha(\zeta)|^2}{R^2 s} < 1,
\]

where \(R = \tanh r, a_r = \frac{1 - R^2}{1 - |a|^2} a \) and \(s = \frac{1}{1 - |a|^2} \).

Let \(P_k \) be the space homogeneous polynomial \(P : \mathbb{B}_n \to \mathbb{C} \) of degree \(k \). The Taylor series expansions of functions in \(H^\infty(\mathbb{B}_n) \) yield a direct sum decomposition of

\[
H^\infty(\mathbb{B}_n) = P_0 \oplus P_1 \oplus \ldots \oplus P_m \oplus R_m;
\]
where the remaining space R_m consists of the functions $h \in H^\infty(\mathbb{B}_n)$ such that $|h(z)|/\|z\|^m$ is bounded for z near 0. Similarly, $f : \mathbb{B}_n \to \mathbb{C}^n$ admits a homogeneous expansion:

$$f(z) = \sum_{k=0}^{\infty} F_k(z) = f(0) + f'(0)z + \ldots,$$

where all n component functions of each F_k are homogeneous polynomial of degree k.

It should be noted that $d_z \varphi = \varphi'(z)$. Note that $d_z \varphi$ is a matrix:

$$d_z \varphi := \begin{bmatrix} \frac{\partial \varphi^1}{\partial z_1} & \ldots & \frac{\partial \varphi^1}{\partial z_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi^n}{\partial z_1} & \ldots & \frac{\partial \varphi^n}{\partial z_n} \end{bmatrix} (z).$$

3. Proof of Theorem 1.2

Let $n - s$ be the dimension of M_φ.

If $s = 0$, then from [1, Proposition 2.2.14] and [12, Proposition 3.8], φ is a unitary matrix. Since the iterates of φ are convergent, φ is the identity matrix. If $s = n$, then from [1, Theorem 2.2.32], $M_\varphi = \{0\}$ and $\rho_\varphi \equiv 0$. Therefore, for $s = 0$ or n, the result is obtained by considering V as the identity matrix.

Thus, let $1 \leq s \leq n - 1$. We give the proof in three steps:

Step 1. There is an invertible matrix V so that $V^{-1}d_0 \rho V = P_{n-s}$.

Proof. Recall that P_{n-s} is the orthogonal projection from \mathbb{C}^n onto $e_{s+1} \oplus \ldots \oplus e_n$.

Let V be an invertible matrix so that $V^{-1}d_0 \rho V$ be the Jordan canonical form of $d_0 \rho$. Since, $\rho^2 = \rho$ and $\rho(0) = 0$, the matrix $d_0 \rho$ is also an idempotent. Thus, the eigenvalues of $V^{-1}d_0 \rho V$ are in $\{0, 1\}$. Note that since $\rho(\mathbb{B}_n) = M$ and ρ is identity on M, it is easy to show that 0 and 1 will be repeated s and $n - s$ times as the eigenvalues of $d_0 \rho$, respectively.

We have

$$V^{-1}d_0 \rho V = J_1(0) \oplus \ldots \oplus J_k(0) \oplus I_1(1) \oplus \ldots \oplus I_1(1),$$

where $J_1(0)$ and $I_1(1)$ are the blocks associated with the eigenvalues 0 and 1, respectively. Now since $d_0 \rho$ is an idempotent, the blocks $J_1(0)$ and $I_1(1)$ must be 1×1. That is,

$$V^{-1}d_0 \rho V = \begin{bmatrix} 0 & 0 \\ 0 & I_{n-s} \end{bmatrix},$$

where I_{n-s} is the $(n - s) \times (n - s)$ identity matrix. Hence, $V^{-1}d_0 \rho V = P_{n-s}$. □

From [1, Theorem 2.1.21], we know that if $f : \mathbb{B}_n \to \mathbb{B}_n$ is holomorphic, $f(0) = 0$ and $d_0 f$ is identity, then so is f. In the next step, we want to show that if $d_0 f = 0_s \oplus I_{n-s}$, then $f = 0_s \oplus I_{n-s}$.

Step 2. For the matrix V, obtained in step 1, we have $V^{-1}\rho V = P_{n-s}$.

Proof. Let $V^{-1}\rho V \neq P_{n-s}$. Consider the function $\psi = V^{-1}\rho V - P_{n-s} : \mathbb{B}_n \to \mathbb{C}^n$. Since $d_0 \psi = V^{-1}d_0 \rho V - d_0 P_{n-s} = 0$, $\psi(0) = 0$, but $\psi \neq 0$, we can write:

$$V^{-1}\rho V(z) = P_{n-s}(z) + F_k(z) + \sum_{j=k+1}^{\infty} F_j(z),$$
where \(F_k \) is a homogeneous polynomial of degree \(k \geq 2 \). In summation, \(F_j \) is zero or a homogeneous polynomial of degree \(j \).

Note that every component of a homogeneous polynomial of degree \(j \) is a summation of polynomials

\[
z^m = z_1^{m_1} \cdots z_n^{m_n},
\]

where \(z = (z_1, \ldots, z_n) \), \(m = (m_1, \ldots, m_n) \in \mathbb{N}^n \), and \(m_1 + \ldots + m_n = j \). Thus, for \(j \geq k \) if \(F_j = (F_j^1, \ldots, F_j^n) \) is non-zero, then each component of \(F_j(V^{-1} \rho V(z)) \) is a summation of polynomials

\[
\left(P_{n-s}(z) + F_k(z) + \sum_{j=k+1}^{\infty} F_j(z)\right)^m
= \left(F_k^1(z) + \sum_{j=k+1}^{\infty} F_j^1(z)\right)^{m_1} \cdots \left(F_k^n(z) + \sum_{j=k+1}^{\infty} F_j^n(z)\right)^{m_n}
\times \left(z_{s+1} + F_k^{s+1}(z) + \sum_{j=k+1}^{\infty} F_j^{s+1}(z)\right)^{m_{s+1}} \cdots \left(z_n + F_k^n(z) + \sum_{j=k+1}^{\infty} F_j^n(z)\right)^{m_n}
\]

Thus, from the above statement and the assumption \(1 \leq s \leq n - 1 \), if \(F_j \) is non-zero for \(j \geq k \), then each component of \(F_j(V^{-1} \rho V(z)) \) is a polynomial with a degree greater than or equal to:

\[km_1 + \ldots + km_s + m_{s+1} + \ldots + m_n. \]

On the other hand, since \(k \geq 2 \), we have

\[km_1 + \ldots + km_s + m_{s+1} + \ldots + m_n > \sum_{i=1}^{n} m_i = j. \]

Thus,

\[V^{-1} \rho^2 V(z) = P_{n-s}(z) + P_{n-s}F_k(z) + \sum_{j=k+1}^{\infty} G_j(z), \]

where each \(G_j \) is zero or a homogeneous polynomial of degree \(j \). Since \(\rho^2 = \rho \), we must have \(F_k = P_{n-s}F_k \) which contradicts the assumption that \(s \neq 0, n \).

Indeed, we proved the following result in steps 1 and 2 as well as the paragraph before them:

Corollary 3.1. Every holomorphic retraction \(\rho \) on \(\mathbb{B}_n \) which fixes the origin is a matrix.

Step 3. \((V^{-1} \varphi_j V)^i(z^1, \ldots, z^n) = z^i, \) for \(i = s + 1, \ldots, n \) and \(j \in \mathbb{N} \).

Proof. From step 2,

\[(3.1) \quad V^{-1}(\rho \circ \varphi)V = V^{-1} \circ \rho \circ V(V^{-1} \circ \varphi \circ V) = 0_s \oplus \begin{bmatrix} (V^{-1} \varphi V)^{s+1}(z) \\ \vdots \\ (V^{-1} \varphi V)^n(z) \end{bmatrix}. \]

Moreover, since \(\rho \) and \(\varphi \circ \rho \) are the limit points of the convergent sequence \(\{\varphi_j\} \), we have:

\[(3.2) \quad V^{-1} \rho \circ \varphi V = V^{-1} \varphi \circ \rho V = V^{-1} \rho V. \]
Thus, 3.1, 3.2, and step 2 imply that
\[
\begin{bmatrix}
(V^{-1}\varphi V)^{s+1}(z) \\
\vdots \\
(V^{-1}\varphi V)^n(z)
\end{bmatrix} = \begin{bmatrix}
z^{s+1} \\
\vdots \\
z^n
\end{bmatrix}.
\]
Again, by a similar argument, we can see that \(\rho \circ \varphi_j = \varphi_j \circ \rho = \rho\). Thus,
\[
\begin{bmatrix}
(V^{-1}\varphi_j V)^{s+1}(z) \\
\vdots \\
(V^{-1}\varphi_j V)^n(z)
\end{bmatrix} = \begin{bmatrix}
z^{s+1} \\
\vdots \\
z^n
\end{bmatrix}.
\]
The proof is complete. \(\square\)

4. PROOF OF THEOREM 1.3

If \(\varphi\) has an interior fixed point \(a \in \mathbb{B}\), then \(\psi := \varphi_a \circ \varphi \circ \varphi_a\) is a holomorphic self-map of \(\mathbb{B}_n\) that \(\psi(0) = 0\). Hence, without loss of generality, we assume that \(\varphi(0) = 0\). (ii) \(\Rightarrow\) (i) is obvious.

4.1. (iii) \(\Rightarrow\) (ii). Since \(\varphi_{kj} \to \rho\), from Theorem (1.2), there is an invertible matrix \(V\) so that

\[
V^{-1}\varphi_{kj} V = \left((V^{-1}\varphi_{kj} V)^1,\ldots,(V^{-1}\varphi_{kj} V)^s\right) \oplus P_{n-s},
\]
and

\[
V^{-1}\rho V = \begin{bmatrix} 0 & 0 \\ 0 & I_{n-s} \end{bmatrix} = P_{n-s}.
\]

From the continuity of \(V^{-1}\) and (iii), there is a \(C > 0\) so that

\[
\lim_{j \to \infty} \sup_{z \in V^{-1}\mathbb{B}_n} \left|\left((V^{-1}\varphi_{kj} V)^1,\ldots,(V^{-1}\varphi_{kj} V)^s\right)(z)\right| = \lim_{j \to \infty} \|V^{-1}(\varphi_{kj} - \rho)\|_{\infty}
\]

\[
\leq C \lim_{j \to \infty} \|\varphi_{kj} - \rho\|_{\infty} = 0.
\]

(4.1)

It is easy to see that \(V^{-1}\mathbb{B}_n\) is a taut manifold. Thus, from 2.2 we have:

\[
\sup_{z \in \mathbb{B}_n} \beta(\varphi_{kj}(z), \rho(z)) \leq \sup_{z \in \mathbb{B}_n} k_{V^{-1}\mathbb{B}_n}(V^{-1}\varphi_{kj}(z), V^{-1}\rho(z))
\]

\[
= \sup_{z \in \mathbb{B}_n} k_{V^{-1}\mathbb{B}_n}(V^{-1}\varphi_{kj} V(z), V^{-1}\rho V(z)).
\]

Hence, from [12, Lemma 4.1] and Equation 4.1, we obtain:

\[
\sup_{z \in \mathbb{B}_n} \beta(\varphi_{kj}(z), \rho(z)) \leq \sup_{z \in V^{-1}\mathbb{B}_n} \omega\left(\left|\left((V^{-1}\varphi_{kj} V)^1,\ldots,(V^{-1}\varphi_{kj} V)^s\right)\right|, 0\right)
\]

\[
= \frac{1}{2} \sup_{z \in V^{-1}\mathbb{B}_n} \tanh^{-1}\left(\left|\left((V^{-1}\varphi_{kj} V)^1,\ldots,(V^{-1}\varphi_{kj} V)^s\right)\right|\right) \to 0,
\]
as \(j \to \infty\). Therefore, (ii) follows from [12, Theorem 3.6].
4.2. (i)⇒ (iii). Before presenting the proof, we state some auxiliary results.

For $k > 0$ and $\zeta \in \partial \mathbb{B}_n$, we define the ellipsoid

$$E(k, \zeta) = \{ z \in \mathbb{B}_n : |1 - \langle z, \zeta \rangle|^2 \leq k(1 - |z|^2) \}.$$

Let ρ be a holomorphic self-map of the unit ball and $\eta > 0$. Set

$$L(\rho, \eta) = \{ z \in \mathbb{B}_n, \beta(z, \rho(z)) \geq \eta \}.$$

The following lemma is an extension of [12, Lemma 3.9]. Since the proof is the same, we omit it.

Lemma 4.1. Let φ be a holomorphic self-map of the unit ball, $\varphi(0) = 0$, and ρ be the holomorphic retraction associated with φ. If $\eta > 0$ be such that $L(\rho, \eta) \neq \emptyset$, then there is some $A > 1$ such that

$$\frac{1 - |\varphi(z)|}{1 - |z|} > A, \quad \forall z \in L(\rho, \eta).$$

Proposition 4.2. $\beta(z, w) \geq \frac{1}{2}|z - w|$, for all $z, w \in \mathbb{B}_n$.

Proof. The case $z = w$ is clear. Let $z \neq w$. Then $\beta(z, w) = r > 0$. Note from (2.4) that $B(w, r)$ is the ellipsoid

$$\frac{|P_w(z) - w_R|^2}{R^2 s^2} + \frac{|Q_w(z)|^2}{R^2 s} < 1,$$

where

$$R = \tanh r = \frac{e^r - e^{-r}}{e^r + e^{-r}} < 1,$$

$$w_R = \frac{1 - R^2}{1 - R^2 |w|^2} R w$$

and $s = \frac{1 - |w|^2}{1 - R^2 |w|^2} < 1$. Thus,

$$\frac{|P_w(z) - w_R|^2}{R^2 s^2} + \frac{|Q_w(z)|^2}{R^2 s} = 1,$$

Since $s < 1$ and $Q_w(z)$ is orthogonal to $P_w(z)$ and $P_w(z) - w_R$, we obtain

$$|z - w_R|^2 = |P_w(z) - w_R|^2 + |Q_w(z)|^2$$

$$= R^2 s \left(\frac{|P_w(z) - w_R|^2}{R^2 s} + \frac{|Q_w(z)|^2}{R^2 s} \right)$$

$$< R^2 s \left(\frac{|P_w(z) - w_R|^2}{R^2 s^2} + \frac{|Q_w(z)|^2}{R^2 s} \right) = R^2 s.$$

From the mean value theorem, there is a $0 \leq t \leq r$ so that:

$$R = \tanh r = r \text{sech}^2 t \leq r.$$

Note that the last inequality comes from $\text{sech} t = \frac{2}{e^{2r} + e^{-2r}} \leq 1$.

Combining the above estimates, we deduce that:

$$|z - w| \leq |z - w_R| + |w_R - w|$$

$$< R \sqrt{s} + R^2 \left(\frac{1 - |w|^2}{1 - R^2 |w|^2} \right)$$

$$< 2R \leq 2r = 2\beta(z, w).$$

The proof is complete. \qed
Now we proceed to the proof of (i)⇒(iii). From [12, Lemma 3.3], there is a positive integer \(k \) so that \(\varphi_{kj} \rightarrow \rho \) uniformly on the compact subsets of \(\mathbb{B}_n \) and

\[
(4.2) \quad \lim_{j \to \infty} M_j(C_\varphi) = \frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \circ \varphi_i},
\]

for the strong operator topology. Let (iii) not hold.

Claim 4.3. There is an \(\varepsilon > 0 \) so that \(\|\varphi_{kj} - \rho\|_\infty \geq \varepsilon \) for all \(j \).

Proof. Since (iii) does not hold, there is a sequence \(m_j \in \mathbb{N} \) such that \(\|\varphi_{km_j} - \rho\|_\infty \geq \varepsilon \) for all \(j \). Consider an arbitrary positive integer \(j \). Then, there is a \(j_0 \) so that \(m_{j_0} \geq j \). Thus, from the fact that \(\rho \circ \varphi_{kj} = \rho \) for all \(l \in \mathbb{N} \), we have:

\[
\varepsilon \leq \|\varphi_{km_{j_0}} - \rho\|_\infty = \|\varphi_{kj} \circ \varphi_{k(m_{j_0} - j)} - \rho \circ \varphi_{k(m_{j_0} - j)}\|_\infty = \sup_{z \in \mathbb{B}_n} |(\varphi_{kj} - \rho)(\varphi_{k(m_{j_0} - j)}(z))| \leq \|\varphi_{kj} - \rho\|_\infty.
\]

The proof is complete. \(\square \)

Claim 4.4. For every \(0 < r < 1 \), we can find \(a \in \mathbb{B}_n \) and \(m \in \mathbb{N} \) such that:

\[
|\varphi_{2km}(a) - \rho(a)| \geq \varepsilon, \quad \text{and} \quad |\varphi_{km}(a)| > r.
\]

Proof. If the claim do not hold, then there is an \(0 < r < 1 \) so that

\[
(4.3) \quad \sup\{|\varphi_{2kj}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| > r\} \leq \varepsilon.
\]

for all \(j \in \mathbb{N} \). On the other hand, there is a \(j_0 \) so that

\[
(4.4) \quad \sup\{|\varphi_{kj_0}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |z| \leq r\} \leq \varepsilon.
\]

We have:

\[
\|\varphi_{2kj_0} - \rho\|_\infty = \max\left\{ \sup\{|\varphi_{2kj}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| > r\}, \sup\{|\varphi_{2kj}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| \leq r\} \right\}.
\]

From (4.3), the first supremum is less than or equal to \(\varepsilon \). For the second one, from the fact \(\rho = \rho \circ \varphi_{kj_0} \) and (4.4), we have

\[
\sup\{|\varphi_{2kj_0}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj_0}(z)| \leq r\}
\]

\[
= \sup\{|\varphi_{kj_0} \circ \varphi_{kj_0}(z) - \rho \circ \varphi_{kj_0}(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| \leq r\}
\]

\[
\leq \sup\{|\varphi_{kj_0}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |z| \leq r\} \leq \varepsilon
\]

Therefore, \(\|\varphi_{2kj_0} - \rho\|_\infty \leq \varepsilon \), which contradicts Claim (4.3). \(\square \)

Claim 4.5. There are two sequences \(\{m_j\} \subseteq \mathbb{N} \) and \(\{a_j\} \subseteq \mathbb{B}_n \) and some \(f \) in \(H^\infty(\mathbb{B}_n) \) such that \(|\varphi_{2km_j}(a_j) - \rho(a_j)| \geq \varepsilon \) for all \(j \), and

\[
f \circ \rho \equiv 0, \quad f(\varphi_{l}(a_j)) = |\varphi_{2km_j}(a_j) - \rho(a_j)|^2, \quad 1 \leq l \leq km_j, \ \forall j \in \mathbb{N}.
\]
Proof. From Lemma 4.1, there is a constant $0 < a < 1$ such that if $\beta(z, \rho(z)) \geq \varepsilon/2$, then
\begin{equation}
\frac{1 - |z|}{1 - |\varphi(z)|} < a.
\end{equation}

Let a_1 in \mathbb{B}_n be such that $|\varphi_{2k}(a_1) - \rho(a_1)| \geq \varepsilon$. Then, from Proposition (4.2), the fact that $\rho \circ \varphi_{kl} = \rho = \varphi_{l} \circ \rho$ for all $l \in \mathbb{N}$, and inequality (2.2), we obtain:
\[\frac{\varepsilon}{2} \leq \beta(\varphi_{2k}(a_1), \rho(a_1)) = \beta(\varphi_{2k}(a_1), \rho \circ \varphi_{2k}(a_1)) \leq \beta(\varphi_{i}(a_1), \rho \circ \varphi_{i}(a_1)). \]
for all $1 \leq i \leq 2k$. Thus, from (4.5), we have
\[\frac{1 - |\varphi_{i}(a_1)|}{1 - |\varphi_{i+1}(a_1)|} < a, \quad 1 \leq i \leq k - 1. \]

Put $m_1 = 1$. Using Claim 4.4, we can find $a_2 \in \mathbb{B}_n$ and $m_2 \in \mathbb{N}$ such that $|\varphi_{km_2}(a_2)|$ is large enough so that
\[|\varphi_{2km_2}(a_2) - \rho(a_2)| \geq \varepsilon, \]
and
\[\frac{1 - |\varphi_{km_2}(a_2)|}{1 - |\varphi_{i}(a_2)|} < a. \]

Again,
\[\frac{\varepsilon}{2} \leq \beta(\varphi_{2km_2}(a_2), \rho(a_2)) \leq \beta(\varphi_{i}(a_2), \rho \circ \varphi_{i}(a_2)) \]
for all $0 \leq i \leq 2km_2$. Thus, from (4.5), we obtain:
\[\frac{1 - |\varphi_{i}(a_2)|}{1 - |\varphi_{i+1}(a_2)|} < a, \quad 1 \leq i \leq km_2 - 1. \]

By repeating this process we will construct the sequence
\[
\begin{align*}
x_1 &= \varphi_k(a_1), & x_2 &= \varphi_{k-1}(a_1), & \ldots, & x_{km_1} &= \varphi(a_1) \\
x_{km_1+1} &= \varphi_{km_2}(a_2), & x_{km_1+2} &= \varphi_{km_2-1}(a_2), & \ldots, & x_{km_1+m_1} &= \varphi(a_2) \\
x_{km_1+m_1+1} &= \varphi_{km_3}(a_3), & x_{km_2+m_1+2} &= \varphi_{km_3-1}(a_3), & \ldots, & x_{km_3+m_2+m_1} &= \varphi(a_3) \\
\vdots & & \vdots & & \vdots & \ddots
\end{align*}
\]
which satisfies condition (i) of [12, Lemma 3.11]. Thus, there are some $M > 0$ and a sequence $\{f_{i,j}\}_{j,l=1}^{k,m} \subset H^\infty(\mathbb{B}_n)$ such that

(a) $f_{i,j}(\varphi_l(a_j)) = 1$, and $f_{i,j}(\varphi_r(a_s)) = 0$ whenever $l \neq r$ or $j \neq s$.

(b) $\sum_{j=1}^{\infty} \sum_{l=1}^{km_l} |f_{i,j}(z)| \leq M$, for all $z \in \mathbb{B}_n$.

Define
\[f(z) = \sum_{j=1}^{\infty} \sum_{l=1}^{km_l} \langle \varphi_{2km_l-l}(z) - \rho \circ \varphi_{2km_l-l}(z), \varphi_{2km_l}(a_j) - \rho(a_j) \rangle f_{i,j}(z). \]

Hence, from the Lebesgue dominated convergence theorem, (a), (b), and the fact that $\rho \circ \varphi = \varphi \circ \rho$, we deduce that $f \in H^\infty(\mathbb{B}_n)$, $f(\rho) = 0$, and
\[f(\varphi_l(a_j)) = |\varphi_{2km_l}(a_j) - \rho(a_j)|^2, \quad 1 \leq j < \infty, \quad 1 \leq l \leq km_j. \]

The proof is complete. \qed
Using Claim 4.5, we have:

\[
\left\| \frac{1}{m_j} \sum_{l=1}^{m_j} C_{\varphi_l} - \frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \varphi_i} \right\| \geq \frac{1}{\|f\|_{\infty}} \left\| \frac{1}{m_j} \sum_{l=1}^{m_j} C_{\varphi_l} f - \frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \varphi_i} f \right\|_{\infty} \geq \frac{1}{\|f\|_{\infty}} \frac{1}{m_j} \sum_{l=1}^{m_j} \left| f(\varphi_l(a_j)) - \frac{1}{k} \sum_{i=0}^{k-1} f(\rho \varphi_i(a_j)) \right| = \frac{1}{\|f\|_{\infty}} \frac{1}{m_j} \sum_{l=1}^{m_j} \left| \varphi_{2km_j}(a_j) - \rho(a_j) \right|^2 \geq \frac{\varepsilon^2}{\|f\|_{\infty}}.
\]

From the above estimate, we deduce that \(\{ M_j(C_\varphi) \}_{j=1}^\infty \) does not converge to \(\frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \varphi_i} \) for the strong operator topology, which contradicts 4.2. Thus, (iii) holds.

5. Proof of Theorem 1.4

First, we define the sequence of operators \(T_j : H^\infty(\mathbb{D}) \to H^\infty(\mathbb{D}) \) as follows

\[
T_j f(z) := f \circ \varphi_j^1(z, 0, ..., 0),
\]

where \(\varphi_j^1 \) is the first component of \(\varphi_j \). Note that if we consider \(f \in H^\infty(\mathbb{D}) \) as a function in \(H^\infty(\mathbb{B}_n) \), then \(T_j f = C_{\varphi_j} f \). Thus, if \(C_{\varphi} \) is mean ergodic on \(H^\infty(\mathbb{B}_n) \), then

\[
N_j(\varphi) := \frac{1}{j} \sum_{i=1}^{j} T_i : H^\infty(\mathbb{D}) \to H^\infty(\mathbb{D}),
\]

converges for the strong operator topology.

We give the proof in two steps. In the first step, we show that if \(N_j(\varphi) \) is SOT-convergent, then it must converge in the norm operator. Then, in the second step, we prove that \(N_j(\varphi) \) does not converge in the norm operator. Therefore, the proof will be complete.

Step 1. From the ergodic theorem, \(M_j(\varphi) \) converges to a projection \(P \) so that \(PC_{\varphi} = C_{\varphi} P = P \). Since \(N_j(\varphi) \) converges for the strong operator topology to \(P \mid_{H^\infty(\mathbb{D})} \) and \(H^\infty(\mathbb{D}) \) is a GDP space, from [13, Theorem 2] the spectral radius of \(N_j(\varphi) - P \) converges to 0 as \(j \to \infty \). That is, \(I - N_j(\varphi) + P \) is invertible for a large enough \(j \).

Now, we show that \(I - T_1 + P \) is bounded below. If not, then there is a sequence of unit vectors \(\{ f_l \} \) in \(H^\infty(\mathbb{B}_n) \) so that:

\[
\|(I - T_1 + P) f_l\|_{\infty} \to 0 \quad \text{as} \quad j \to \infty.
\]

Since \(P = PT_1 = P^2 \), we obtain

\[
\|P f_l\|_{\infty} = \|P(I - T_1 + P) f_l\|_{\infty} \to 0 \quad \text{as} \quad j \to \infty.
\]

Thus,

\[
\|(I - T_1) f_l\|_{\infty} \to 0 \quad \text{as} \quad j \to \infty.
\]
Therefore,
\[
(I - N_j(\varphi) + P)f_l = (I - M_j(\varphi) + P)f_l
\]
\[
= \frac{1}{n} \sum_{i=1}^{j} (I - C\varphi_i)f_l + Pf_l
\]
\[
= \frac{1}{n} \sum_{i=1}^{j} (I + C\varphi + \ldots + C\varphi_{i-1})(I - C\varphi)f_l + Pf_l
\]
\[
= \frac{1}{n} \sum_{i=1}^{j} (I + T_1 + \ldots + T_{i-1})(I - T_1)f_l + Pf_l \to 0,
\]
as \(l \to \infty\). This contradicts the invertibility of \(I - N_j(\varphi) + P\).

Now, since \(I - T_1 + P\) is bounded below, there is a bounded operator \(S\) on \(H^\infty(\mathbb{D})\) so that \(S(I - T_1 + P) = I\). Therefore,
\[
(N_j(\varphi) - P) = S(I - T_1 + P)(N_j(\varphi) - P)
\]
\[
= S(I - C\varphi + P)(M_j(\varphi) - P)
\]
\[
= \frac{1}{j} S(C\varphi - C\varphi_{j+1}) \to 0,
\]
as \(j \to \infty\).

Step 2. The proof of this step is similar to that of [4, Theorem 3.6] and also [12, Theorem 3.14].

From [1, Theorem 2.2.31], there is a \(z_0 \in \partial \mathbb{B}_n\) such that \(\varphi_j \to z_0\) uniformly on the compact subsets of \(\mathbb{B}_n\). By a unitary equivalent, we can let \(z_0 = e_1\). Thus, if \(\varphi_j = (\varphi_{1j}, \ldots, \varphi_{nj})\), then \(\varphi_{1j} \to 1\) and \(\varphi_{ij} \to 0\) for \(2 \leq i \leq n\) uniformly on the compact subsets of \(\mathbb{B}_n\) as \(j \to \infty\).

Thus, if \(N_j(\varphi)\) converges in operator norm, then \(N_j(\varphi) \to K_1\) on \(A(\mathbb{D}) = H(\mathbb{D}) \cap \{f : \overline{\mathbb{D}} \to \mathbb{C}, \text{continuous}\}\), where \(K_1(f) = f(1)\) on \(A(\mathbb{D})\). The remaining of the proof is similar to that of [4, Theorem 3.6], by considering \(g(z) = \frac{1+\overline{z}}{2} \in A(\mathbb{B}_n)\).

Acknowledgments. This paper was supported by the Iran National Science Foundation: INSF [project number 4000186].

References

[1] M. Abate, Iteration theory of holomorphic maps on taut manifolds (Mediterranean Press, Cosenza, 1989) http://www.dm.unipi.it/abate/libri/libriric/libriric.html.

[2] W. Arendt, I. Chalendar, M. Kumar and S. Srivastava, Asymptotic behaviour of the powers of composition operators on Banach spaces of holomorphic functions, Indiana Math. J. 64(4) (2015), 1571–1595.

[3] W. Arendt, I. Chalendar, M. Kumar and S. Srivastava, Powers of composition operators: asymptotic behaviour on Bergman, Dirichlet and Bloch spaces, J. Aust. Math. Soc. 108 (2020), 289–320.
M. J. Beltrán-Meneua, M. C. Gómez-Collado, E. Jordá, D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, Journal of Functional Analysis 270 (2016) 4369–4385.

Bo Berndtsson, Interpolating sequences for H^∞ in the ball, Indagationes Mathematicae (Proceedings) Volume 88, Issue 1, 25 March 1985, Pages 1-10.

J. Bonet and P. Domanski, A note on mean ergodic composition operators on spaces of holomorphic functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105, no. 2 (2011), 389–396.

C. Cowen and B. MacCluer, Spectra of some composition operators, J. Funct. Anal. 125 (1994), 223–251.

C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.

K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962.

E. Jordá, A. Rodríguez-Arenas, Ergodic properties of composition operators on Banach spaces of analytic functions, Journal of Mathematical Analysis and Applications, Volume 486, Issue 1, 1 June 2020, 123891.

D. Jornet, D. Santacreu, P. Sevilla-Peris, Mean ergodic composition operators on spaces of holomorphic functions on a Banach space, Journal of Mathematical Analysis and Applications Volume 500, Issue 2, 15 August 2021, 125139.

H. Keshavarzi, Mean ergodic composition operators on $H^\infty(B_n)$, Positivity (2022) 26:30.

H. P. Lotz, Uniform convergence of operators on L^∞ and similar spaces, Math. Z. 190 (1985), 207–220.

J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, Berlin, 1993.

K. Zhu, Spaces of holomorphic functions in the unit ball (Springer-verlag, New York, 2005).

Hamzeh Keshavarzi
E-mail: Hamzehkeshavarzi67@gmail.com
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran.

Karim Hedayatian
E-mail: hedayati@shirazu.ac.ir
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran.