LOCAL REGULARITY OF THE GREEN OPERATOR IN A CR MANIFOLD OF GENERAL "TYPE"

LUCA BARACCO, TRAN VU KHANH, STEFANO PINTON AND GIUSEPPE ZAMPIERI

Abstract. It is here proved that if a pseudoconvex CR manifold M of hypersurface type has a certain “type”, that we quantify by a vanishing rate F at a submanifold of CR dimension 0, then \Box_b “gains f^2 derivatives” where f is defined by inversion of F. Next a general tangential estimate, “twisted” by a pseudodifferential operator Ψ is established. The combination of the two yields a general “f-estimate” twisted by Ψ, that is, (1.4) below. We apply the twisted estimate for Ψ which is the composition of a cut-off η with a differentiation of order s such as R_s of Section 3. Under the assumption that $[\partial_b, \eta]$ and $[\partial_b, [\partial_b, \eta]]$ are superlogarithmic multipliers in a sense inspired to Kohn, we get the local regularity of the Green operator $G = \Box_b^{-1}$. In particular, if M has “infraexponential type” along $S \setminus \Gamma$ where S is a manifold of CR dimension 0 and Γ a curve transversal to T^CM, then we have local regularity of G. This gives an immediate proof of [1] in tangential version and of [14]. The conclusion extends to “block decomposed” domains for whose blocks the above hypotheses hold separately.

MSC: 32F10, 32F20, 32N15, 32T25

Contents

1. Introduction 1
2. Estimate of the f-norm by the Levi form 5
3. The tangential Hörmander-Kohn-Morrey formula twisted by a pseudodifferential operator 8
4. A criterion of hypoellipticity of the Kohn Laplacian 14
References 17

1. Introduction

It has been proved in [9] that if the boundary of a pseudoconvex domain of \mathbb{C}^n has geometric “type F”, then there is an “f-estimate” for the $\bar{\partial}$-Neumann problem for $f = F^*(t^{-1})^{-1}$ where F^* is the inverse function to F. The converse is also true (cf. [10]), apart from a loss of accuracy in the estimate which is in most cases negligible. The successful approach in establishing the equivalence between the F-type and the f-estimate consists in triangulating through a potential theoretical condition, namely, the “f-property”, that is, the existence of a bounded weight whose Levi-form grows with the rate of f^2 at the
boundary. This generalizes former work by Kohn [12], Catlin [3], [6], McNeal [17] et alii. What we prove here is that the \(F \) type implies the \(f \)-estimate for the tangential system \(\partial_b \); this is a generalization of Kohn [15]. In greater detail, let \(M \subset \mathbb{C}^n \) be a pseudoconvex manifold of hypersurface type and \(v \) or \(u \) a form in \(M \) of a certain degree \(h \). We use the microlocal decomposition into wavelets \(\mu = \sum_{k=1}^{\infty} \Gamma_k u \) (cf. [15] proof of Theorem 6.1).

We consider a submanifold \(S \subset M \) of CR dimension \(0 \), and a real function \(F \) satisfying \(\frac{\partial}{\partial s} \rightarrow 0 \) as the distance \(d_S \) to \(S \) decreases to \(0 \). We also use the notation \(Id \) for the identity of the complex tangent bundle \(T^cM = TM \cap TM \). We assume that \(M \) has type \(F \) along \(S \) in a neighborhood \(U \) of point \(z_0 \in S \) in the sense that the Levi form \((c_{ij}) \) of \(M \) satisfies \((c_{ij}) \geq \frac{F(d_S)}{d_S} Id \). Then, there is a bounded family of weights \(\{ \phi_k \} \) by the aid of which we get the estimate of the \(f \)-norm by the Levi form \((c_{ij}) \) of \(M \) and \((\phi_k) \) of the \(\phi_k \)’s.

Theorem 1.1. Let \(M \) have type \(F \) along \(S \); then

\[
\|f(\Lambda)v\| \lesssim \int_M (c_{ij})(\Lambda^2 v, \Lambda^2 v) \, dV + \sum_{k=1}^{\infty} \int_M (\phi_k)(\Gamma_k v, \Gamma_k v) \, dV
\]

\[
+ \|v\|_0^2, \quad \text{for any } v \text{ of degree } h \in [1, \dim_{CR}(M)],
\]

\[
\|f(\Lambda)v\| \lesssim \int_M \left(\text{Trace}(c_{ij})Id - (c_{ij}) \right)(\Lambda^2 v, \Lambda^2 v) \, dV + \sum_{k=1}^{\infty} \int_M \left(\text{Trace}(\phi_k)(\Gamma_k v, \Gamma_k v) \right) \times
\]

\[
\times (\Gamma_k v, \Gamma_k v) \, dV + \|v\|_0^2, \quad \text{for any } v \text{ of degree } h \in [0, \dim_{CR}(M) - 1].
\]

(1.1)

The proof is the content of Section 2 below. We denote by \(u = u^+ + u^- + u^0 \) the microlocal decomposition of \(u \) (cf. [15] Section 2) and also use the notation \(Q^h \) for the energy \(Q^h = \|\overline{\partial}_b v\|^2 + \|\overline{\partial}_b^* v\|^2 \), and \(\mathcal{H} \) for the space of harmonic forms \(\mathcal{H} = \ker \overline{\partial}_b \cap \ker \overline{\partial}_b^* \). We apply the first of (1.1) for \(v = u^+ \), resp. the second for \(v = u^- \), and plug into a basic estimate. We also use the elliptic estimate for \(u^0 \) and conclude

Theorem 1.2. We have

\[
\|f(\Lambda)u\|^2 \leq Q^h(\Lambda, \overline{\partial}_b^*) + \|u\|^2_0, \quad \text{for any } u \text{ of degree } h \in [0, \dim_{CR}(M)].
\]

(1.2)

As it has been already said, (1.2) follows from (1.1) for the common range of degrees \(h \in [1, \dim_{CR}(M) - 1] \). As for the critical top and bottom degrees, we get the estimate for \(u \in \mathcal{H}^\perp \) from the estimate in nearby degree from closed range of \(\overline{\partial}_b \) and \(\overline{\partial}_b^* \) (cf. [15] proof of Theorem 7.3 p. 237).

Next, we prove a general basic weighted estimate twisted by a pseudodifferential operator \(\Psi \), that is, (3.2) and (3.3) of Theorem 3.1 below. We have to mention that our formula is classical (cf. McNeal [18], [19]) when \(\Psi \) is a function. A recent application, in which \(\Psi \) is a family of cut-off, has been given in [2] in the problem of the local regularity of the Green operator \(G = \Box_b^{-1} \). We choose a smooth orthonormal basis of \((1,0) \) forms
\(\omega_1, \ldots, \omega_{n-1}\), supplement by a purely imaginary form \(\gamma\) and denote the dual basis of vector fields by \(\partial_{\omega_1}, \ldots, \partial_{\omega_{n-1}}, T\). We define various constants \(c_{ij}^{b}\)'s as the coefficients of the commutator \([\partial_{\omega_i}, \partial_{\omega_j}] = c_{ij}^{b} T + \sum_{j=1}^{n-1} c_{ij}^{b} \partial_{\omega_h} - \sum_{j=1}^{n-1} c_{ji}^{b} \partial_{\omega_h};\) sometimes, we also write \(c_{ij}\) instead of \(c_{ij}^{b}\). We use the notation \(\text{Op}^{\text{ord}(\Psi)-\frac{1}{2}}\) for an operator of order smaller than \(\Psi\) whose support is contained in a conical neighborhood of that of \(\Psi\). Combination of the estimate with the basic twisted estimate yields

\[
\|f(\Lambda)\Psi v\|_2^2 \leq \int (c_{ij})(\Psi T^\frac{1}{2} v, \Psi T^\frac{1}{2} v) dV + \sum_k \int (\phi^k)(\Gamma_k \Psi v, \Gamma_k \Psi v) dV + t\|\Psi v\|_0^2 \leq Q^b_{\Psi}(v, \bar{v}) + \|[\partial_b, \Psi] \perp v\|_0^2 + \sum_h \int (c_{ij}^h)([\partial_{\omega_h}, \Psi](v), \bar{\Psi} v) dV \\
+ \left| \int [\partial_b, [\bar{\partial}_b, \Psi^2]](v, \bar{v}) dV \right| + \text{Op}^{\text{ord}(\Psi)-\frac{1}{2}}(v, \bar{v}) + \|\text{Op}^{\text{ord}(\Psi)-\frac{1}{2}} v\|_0^2 + \|\Psi v\|_0^2.
\]

(1.3)

Here \(Q^b_{\Psi} = \|\Psi \bar{\partial}_b v\|_2^2 + \|\Psi \partial_b v\|_2^2\).

(ii) The similar equation holds for \(u^-\) in degree \([0, \dim_{CR}(M) - 1]\) if we replace \((c_{ij}), (\phi^k)\) and \([\partial_b, [\bar{\partial}_b, \Psi^2]]\) by \(-(c_{ij}), -(\phi^k)\) and \(-[\partial_b, [\bar{\partial}_b, \Psi^2]] + \text{Trace}([\partial_b, [\bar{\partial}_b, \Psi^2]])\) \(\text{Id}\) respectively.

(iii) Taking summation of the estimate for \(v = u^+, v = u^-\) together with the elliptic estimate for \(v = u^0\), and using the closed range of \(\bar{\partial}_b\) and \(\partial_b\) for the critical degrees we get for the full \(u \in \mathcal{H}^+\) in degree \(h \in [0, \dim_{CR}(M)]\)

\[
\|f(\Lambda)\Psi u\|_0^2 \lesssim Q^b_{\Psi}(u, \bar{u}) + \|[\partial_b, \Psi] \perp u\|_0^2 + \left| \int_M [\partial_b, [\bar{\partial}_b, \Psi^2]](u^+, \bar{u}^-) dV \right| \\
+ \sum_h \int (c_{ij}^h)([\partial_{\omega_h}, \Psi](u), \bar{\Psi} u) dV + \left| \int_M (\partial_b, [\bar{\partial}_b, \Psi^2])(u^-, \bar{u}^+) dV \right| + \text{Trace}([\partial_b, [\bar{\partial}_b, \Psi^2]]) \text{Id}(u^-, \bar{u}^+) dV + Q^b_{\text{Op}^{\text{ord}(\Psi)-\frac{1}{2}}}(u, \bar{u}) + \|\text{Op}^{\text{ord}(\Psi)-\frac{1}{2}} u\|_0^2 + \|\Psi u\|_0^2.
\]

(1.4)

The proof is just the superposition of the items (i) and (ii) of Theorem 3.1 below. We have indeed, in Theorem 3.1 (i) and (ii) a more general, weighted version of this estimate. We give an application of the general twisted estimate in which \(\Psi\) includes a cut-off \(\eta\) and a differentiation of arbitrarily high order \(s\) (such as \(R^s\) of Section 4 below). To introduce it, we need the notion of superlogarithmic multipliers which are an obvious variant of the subelliptic multipliers (cf. [15] Definition 8.1). The crucial point in our discussion is
that we consider vector multipliers \(g = (g_j) \) and also require a more intense property in which energy is replaced by Levi form, that is, for any \(\epsilon \), suitable \(c_\epsilon \), and for an uniformly bounded family of weights \(\{ \phi^k \} \)

\[
|| \log(\Lambda) g \| _2^2 \leq \epsilon \left(\int_M (c_{ij}(\Lambda^j v, \Lambda^j v) dV + \sum_{k=1}^{+\infty} \int_M (\phi^k_{ij}(\Gamma_k v, \Gamma_k v) dV) \right) + c_\epsilon \| v \|_0. \tag{1.5}
\]

We also require that the same estimate holds for \((c_{ij}) \) and \((\phi^k_{ij}) \) replaced by \(-(c_{ij}) + \text{Trace}(c_{ij}) \text{Id} \) and \(-(\phi^k_{ij}) + \text{Trace}(\phi^k_{ij}) \text{Id} \) respectively. With this preliminary we have

Theorem 1.4. Assume that there is a system of cut-off \(\{ \eta \} \) at \(z_0 \) such that \([\partial \nu, \eta] \) and \([\partial_b, [\partial_b, \eta]] \) are vector and matrix superlogarithmic multipliers respectively, and \((c^k_{ij}) \) are subelliptic multipliers. Then \(G \) is regular at \(z_0 \).

The proof is found in Section 4. We combine Theorem 1.4 with 1.1. This gives back the conclusion of [1] (in a tangential version) which was in turn a generalization of [14]. It also provides a larger class of hypersurfaces for which \(G \) is regular. Let \(M \) be the “block decomposed” hypersurface of \(\mathbb{C}^n \) defined by \(x_n = \sum_{j=1}^{m} h^j_I(z_I, y_n) \) where \(z = (z_1, \ldots, z_m, z_n) \) is a decomposition of coordinates.

Theorem 1.5. Assume that

\[
\begin{align*}
(a) \ h^j_I \text{ has infraexponential type along a totally real } S^j_I \setminus \Gamma^j_I \text{ where } S^j_I \text{ is totally real in } \mathbb{C}^j \times \mathbb{C}_{z_n} \\
(b) \ h^j_{z_j} \text{ are superlogarithmic multipliers,} \\
(c) \ c^k_{ij} \text{ are subelliptic multipliers.}
\end{align*}
\]

Then, we have local regularity of \(G \) at \(z_0 = 0 \).

In case of a single block \(x_n = h^I_i \) we regain [2] and [14]. The proof is found in Section 4 below.

Example Let

\[
(i) \quad x_n = \sum_{j=1}^{n} e^{-\frac{1}{|x_j|^p}} e^{-\frac{1}{|x_j|^q}} \quad \text{for any } a \geq 0 \text{ and for } b < 1.
\]

Then, (1.6) (a) is obtained starting from \(h^j_{z_j, z_j} \geq e^{-\frac{1}{|x_j|^p}} \), that is, the condition of type \(F_j := e^{-\frac{1}{|x_j|^p}} \) along \(S_j = \mathbb{R}_{y_j} \times \{0\} \). This yields the estimate of the \(f \) norm for \(f(t) = \log^\frac{1}{2}(t); \) since \(\frac{1}{p} > 1 \), this is superlogarithmic. (1.6) (b) follows from \(|h^j_{z_j}|^2 \leq h^j_{z_j, z_j} \) which says that the \(h^j_{z_j} \)’s are not only superlogarithmic, but indeed \(\frac{1}{2} \)-subelliptic, multipliers.
Finally, (c) follows from $c^h_{jj} \sim c_{jj}$ (a consequence of the “rigidity” of M) which shows that these constant are $\frac{1}{2}$ subelliptic multipliers.

(1.6) is the ultimate step of a long sequence of criteria of regularity of G, not reducible in one another, described by the hypersurface models below, in which $a > 0$ and $0 < b < 1$,

(ii) $x_n = \sum_{j=1}^{n-1} e^{-\frac{|x_j|}{2}}$ Kohn [15],

(iii) $x_n = e^{-\sum_{j=1}^{n-1} \frac{|x_j|}{2}}$ Kohn [14],

(iv) $x_n = e^{-\sum_{j=1}^{n-1} \frac{|x_j|}{2}} \left(\sum_{j=1}^{n-1} e^{-|x_j|^a} \right)$ Baracco-Khanh-Zampieri [1],

(v) $x_n = \sum_{j=1}^{n-1} e^{-\frac{|x_j|}{2}}$ Baracco-Pinton-Zampieri [3],

(vi) $x_n = \sum_{j=1}^{n-1} e^{-\frac{|x_j|}{2}} x_j^a$ Baracco-Pinton-Zampieri [2].

Thus, the degeneracy in our model (i) comes as the combination of those of (ii) with (v) (or (vi)).

2. Estimate of the f-norm by the Levi form

Let M be a C^∞ CR-manifold of \mathbb{C}^n of hypersurface-type, z_o a point of M, U an open neighborhood of z_o. Our setting being local, we can find a local CR-diffeomorphism which reduces M to a hypersurface of $TM + iTM$; therefore, it is not restrictive to assume that M is a hypersurface of \mathbb{C}^n from the beginning. We choose a smooth orthonormal basis of $(1, 0)$ forms $\omega_1, ..., \omega_{n-1}$, supplement by a purely imaginary form γ and denote the dual basis of vector fields by $\partial_{\omega_1}, ..., \partial_{\omega_{n-1}}, T$. We also use the notation ∂_b for the tangential CR-system. For a smooth real function ϕ, we denote by (ϕ_{ij}) the matrix of the Levi form $\partial_b \partial_b \phi$. Note that ϕ_{ij} differs from $\partial_{\omega_i} \partial_{\omega_j} (\phi)$ because of the presence of the derivatives of the coefficients of the forms ∂_{ω_j}. Let $(c_{ij})_{i,j=1,...,n-1}$ be the Levi-form $d\gamma|_{T^cM}$ where $T^cM = TM \cap iTM$.

Let $S \subset M$ be a submanifold of CR-dimension 0, d_S the Euclidean distance to S, and $f : \mathbb{R}^+ \to \mathbb{R}^+$ a smooth monotonic increasing function such that $f < t^\frac{1}{2}$. We use the notation a_k for the constant $a_k := f^{-1}(2^k)$ and S_{a_k} for the strip $S_{a_k} := \{ z \in M : d_S(z) \leq a_k \}$.

Lemma 2.1. There is an uniformly bounded family of smooth weights $\{ \phi^k \}$ with supp $\phi^k \subset S_{2a_k}$ whose Levi-form satisfies

$$
\partial_b \partial_b \phi^k \sim \begin{cases}
 f^2(2^k) & \text{on } S_{a_k} \\
 -f^2(2^k) & \text{on } S_{2a_k} \setminus S_{a_k}, \\
 0 & \text{on } M \setminus S_{2a_k}.
\end{cases}
$$

(2.1)
This also readily implies the same inequalities as (2.1) with \(\partial_b \bar{\partial}_b \phi^k\) replaced by \(\text{Trace}(\partial_b \bar{\partial}_b \phi^k) \text{Id} – \partial_b \bar{\partial}_b \phi^k\).

Note that there is no assumption about the behavior of \(M\) at \(S\) in this Lemma.

Proof. Set
\[
\phi^k = c \chi \left(\frac{d_{S}(z)}{a_k} \right) \log \left(\frac{d_{S}^2(z)}{a_k^2} + 1 \right),
\]
(2.2)
where \(c\) is a constant that will be specified later and \(\chi \in C^\infty(0, 2)\) is a decreasing cut-off function which satisfies
\[
\begin{cases}
\chi \equiv 1 \quad &\text{on } [0, 1], \\
0 \leq \chi \leq 1 \quad &\text{on } [1, \frac{3}{2}], \\
\chi \equiv 0 \quad &\text{on } [\frac{3}{2}, 2].
\end{cases}
\]

Remark that
\[
\partial_b \bar{\partial}_b d_{S}^2 = 2 \partial_b d_{S} \otimes \bar{\partial}_b d_{S} + 2 d_{S} \partial_b \bar{\partial}_b d_{S} \\
\geq 2 \partial_b d_{S} \otimes \bar{\partial}_b d_{S} \\
\sim \text{Id},
\]
where the last inequality follows from \(\dim_{CR}(M) = 0\) (with the agreement that \(\text{Id}\) denotes the identity of \(T^{\mathbb{C}}M\)).

Now, when \(\partial_b \bar{\partial}_b\) hits log, we have
\[
\partial_b \bar{\partial}_b \log \left(\frac{d_{S}^2(z)}{a_k^2} + 1 \right) \sim \frac{\partial_b d_{S} \otimes \bar{\partial}_b d_{S} + d_{S} \partial_b \bar{\partial}_b d_{S}}{a_k^2} \\
\geq \frac{\text{Id}}{a_k^2} = f^2(2^k) \text{Id}.
\]
(2.3)

On the other hand, on \(S_{a_k}\), the function \(\chi\) is constant and therefore \(\partial_b \bar{\partial}_b \phi^k = \partial_b \bar{\partial}_b \log\). Thus (2.3) yields the first of (2.1). When, instead, \(\partial_b \bar{\partial}_b\) hits \(\chi\), we have
\[
\left| \partial_b \bar{\partial}_b \chi \left(\frac{d_{S}(z)}{a_k} \right) \right| \leq |\chi| \frac{\partial_b d_{S} \otimes \bar{\partial}_b d_{S}}{a_k^2} + |\chi| \frac{\partial_b \bar{\partial}_b d_{S}}{a_k} \\
\sim \frac{\text{Id}}{a_k^2},
\]
(2.4)
since \(\dim_{CR}(S) = 0\).
On the other hand, log stays bounded on S_{2a_k} and therefore $\partial_b \bar{\partial}_b (\chi) \log \gtrsim -a_k^{-2} = -f^2(2^k)$. Finally, when ∂_b and $\bar{\partial}_b$ hit χ and log separately, we get

$$
|2\Re \partial_b \chi \left(\frac{d_S}{a_k} \right) \bar{\partial}_b \log \left(\frac{d_S^2}{a_k^2} + 1 \right)| \lesssim |2\Re \chi \partial_b d_S \left(\frac{a_k^2 \partial_b \bar{\partial}_b d_S}{2d_S^2 a_k^2} \right)|
\lesssim \frac{\partial_b d_S \otimes \bar{\partial}_b d_S}{a_k^2} = f^2(2^k) \Id.
$$

(2.5)

Thus, again, $2\Re \partial_b \chi \bar{\partial}_b \log \gtrsim -f^2(2^k) \Id$.

As we have seen in the proof of Lemma 2.1, when χ and $\bar{\chi} \neq 0$, the Levi form of ϕ^k can get negative. However, this annoyance can be well behaved by the aid of the Levi coordinates x. Let F be a smooth real function such that $F(d) \downarrow 0$ as $d \downarrow 0$, denote by F^* the inverse to F and define $f(t) := (F^*(\delta))^{-1}$, for $\delta = t^{-1}$. Let $f(\Lambda)$ be the tangential pseudodifferential operator with symbol f. This is defined by introducing a local straightening $M \simeq \mathbb{R}^{n-1} \times \{0\}$ for a defining function $r = 0$ of M, taking local coordinates $x \in M$, dual coordinates ξ of x and setting

$$
f(\Lambda)(u) = \int \left(e^{i\xi} f(\sqrt{1 + \xi^2}) \int e^{-i\eta \eta} u(y) d\eta \right) d\xi.
$$

In particular Λ is the standard elliptic pseudodifferential operator with symbol $\sqrt{1 + \xi^2}$.

Definition 2.2. We say that M has type F along S in a neighborhood U of z_0, if

$$
(c_{ij}) \gtrsim \frac{F(d_S)}{d_S^2} \Id \text{ on } U.
$$

(2.6)

Note that (2.6) implies

$$
\left(\text{Trace}(c_{ij}) \Id - (c_{ij}) \right) \gtrsim \frac{F(d_S)}{d_S^2} \Id \text{ on } U.
$$

(2.7)

Proposition 2.3. Let M have type F along S of CR dimension 0. Then

$$
\begin{aligned}
\|f(\Lambda) \Gamma_k v\|_0^2 &\lesssim \int_M (c_{ij})(\Gamma_k \Lambda^\perp v, \Gamma_k \Lambda^\perp v) dV + \int_M (\phi_{ij}^k)(\Gamma_k v, \Gamma_k v) dV + \|\Gamma_k v\|_0^2, \ h \in [1, n - 1], \\
\|f(\Lambda) \Gamma_k v\|_0^2 &\lesssim \int_M \left(\text{Trace}(c_{ij}) \Id - (c_{ij}) \right)(\Gamma_k \Lambda^\perp v, \Gamma_k \Lambda^\perp v) dV \\
&\quad + \int_M \left(\text{Trace}(\phi_{ij}^k) \Id - (\phi_{ij}^k) \right)(\Gamma_k v, \Gamma_k v) dV + \|\Gamma_k v\|_0^2, \ h \in [0, n - 2].
\end{aligned}
$$

(2.8)

Proof. We set $a_k = f^{-1}(2^k) = F^*(2^{-k})$, $S_{a_k} = \{z : d_S(z) < a_k\}$ and denote by $\lambda(z)$ the minimum of the $n - 1$ eigenvalues of (c_{ij}) at z. We start from the first of (2.8). We...
We also use the notation \bar{M} is in fact a hypersurface. For a neighborhood U of a point $z_0 \in M$, we identify $U \cap M$ to \mathbb{R}^{2n-1} with coordinates x and dual coordinates ξ, and consider a pseudodifferential operator Ψ with symbol $\mathcal{S}(\Psi)(x, \xi)$. For notational convenience we assume that the symbol is real. We also use the notation L^2_ϕ for the L^2 space weighted by $e^{-\phi}$, $Q^b = \|\bar{\partial}_b u\|_2 +$
∥v∥² for the energy, and \(Q^b_{\phi} = \|\Psi \bar{\partial}_b v\|_{\phi}^2 + \|\Psi \bar{\partial}_b v\|_{\phi}^2 \) for the energy weighted by \(\phi \) and twisted by \(\Psi \). We consider the pseudodifferential decomposition of the identity by Kohn \(\text{Id} = \Phi^\dagger + \Phi - \Phi^0 \) modulo \(\text{Op}^{-\infty} \). We consider a basis of \((1,0)\) forms \(\omega_1, \ldots, \omega_{n-1} \) the conjugate basis \(\bar{\omega}_1, \ldots, \bar{\omega}_{n-1} \) and complete by a purely imaginary form \(\gamma \). We denote by \(\partial_{\omega_1}, \ldots, \partial_{\omega_{n-1}}, \bar{\partial}_{\omega_1}, \ldots, \bar{\partial}_{\omega_{n-1}}, T \) the dual basis of vector fields. \(M \) being a hypersurface defined, say, by \(r = 0 \), we can supplement the \(\omega_j \)'s to a full basis of \((1,0)\) forms in \(\mathbb{C}^n \) by adding \(\omega_n = \partial r \). Then \(\gamma = \omega_n - \bar{\omega}_n \) and \(T = \partial_{\omega_n} - \bar{\partial}_{\omega_n} \). We describe the commutators by

\[
[\partial_{\omega_i}, \partial_{\omega_j}] = \sum_{j=1}^{n} c_{ij}^h \partial_{\omega_h} - \sum_{j=1}^{n} \bar{c}_{ij}^h \bar{\partial}_{\omega_h} = c_{ij}^h T + \sum_{j=1}^{n-1} c_{ij}^h \partial_{\omega_h} - \sum_{j=1}^{n-1} \bar{c}_{ij}^h \bar{\partial}_{\omega_h};
\]

We also write \(c_{ij} \) instead of \(c_{ij}^h \).

For a cut-off \(\eta \in C_c^\infty(U \cap M) \) we write \(u^+ := \eta \Phi^+ u \), \(u^- := \eta \Phi^- u \), \(u^0 = \eta \Phi^0 u \), \(T^\dagger = \eta T \Phi^\dagger \). We note that \(S(T) > 0 \) on \(\text{supp} S(\Phi^+) \) (resp. \(S(T^-) > 0 \) on \(\text{supp} S(\Phi^-) \)) and therefore \(T^\dagger \) (resp. \((T^-)^\dagger \)) makes sense when acting on \(u^+ \) (resp. \(u^- \)). We make the relevant remark that

\[
\begin{align*}
&\{S(T) \sim \Lambda \text{ on } \text{supp } S(\Phi^+), \quad S(T^-) \sim \Lambda \text{ on } \text{supp } S(\Phi^-), \quad \{S(\partial_{\omega_j})_{j=1,\ldots,n-1} \sim \Lambda \text{ and } S(\bar{\partial}_{\omega_j})_{j=1,\ldots,n-1} \sim \Lambda \text{ on } \text{supp } S(\Phi^0). \n\end{align*}
\]

We denote by \(\text{Op}^{\text{ord}(\Psi) - \frac{1}{2}} \), resp. \(\text{Op}^0 \), an operator of order \(2\text{ord}(\Psi) - \frac{1}{2} \), resp. 0, whose support is contained in \(\text{supp } \Psi \); we also assume that \(\text{Op}^0 \) only depends on the \(C^2 \)-norm of \(M \) and, in particular, is independent of \(\phi \) and \(\Psi \).

Theorem 3.1. (i) We have for every smooth form \(v = u^+ \) of degree \(h \in [1, n-1] \)

\[
\int_M e^{-\phi} (c_{ij})(T^\dagger \Psi v, \overline{T^\dagger \Psi v})dV + \int_M e^{-\phi} ((\phi_{ij}) - \frac{1}{2}(c_{ij})T(\phi))(\Psi v, \overline{\Psi v})dV + ||\Psi \nabla v||_{\phi}^2
\]

\[
\leq Q^b_{\psi}(v, \overline{v}) + ||[\partial_{\bar{b}}, \Psi] L v||_{\phi}^2 + ||\partial_{\bar{b}}, \phi \nabla v||_{\phi}^2 + \sum_{h=1}^{n-1} \int (c_{ij}^h)([\partial_{\omega_h}, \Psi](v, \overline{\Psi v}))dV
\]

\[
+ \int_M e^{-\phi} ([\partial_{\bar{b}}, \phi]^2)(v, \overline{v})dV + Q^{b_{\phi}}_{\text{Op}^{\text{ord}(\Psi) - \frac{1}{2}}(v, \overline{v}) + ||\text{Op}^{\text{ord}(\Psi) - \frac{1}{2}}(v, \overline{v})||_{\phi}^2 + ||\Psi v||_{\phi}^2.
\]

Here we are using the notation \(Q^b_{\psi} = ||\Psi \bar{\partial}_b v||_{\phi}^2 + ||\Psi \bar{\partial}_b v||_{\phi}^2. \)
(ii) We also have, for $v = u^-$ smooth of degree $h \in [0, n - 2]$

$$\int_M e^{-\phi} \left(- (c_{ij} + \sum_j c_{jj} Id) ((T^-)^2 \Psi v, (T^-)^2 \Psi v) + ||\Psi \nabla v||^2_\phi \right)$$

$$+ \int_M e^{-\phi} \left(\left(- (\phi_{ij} + \sum_j \phi_{jj} Id) + \frac{1}{2} \left((c_{ij}) T(\phi) - (\sum_j c_{jj}) T(\phi) \right) \right) (\Psi v, \overline{\Psi v}) dV$$

$$\leq Q^b_\Psi(v, \overline{\Psi v}) + ||[\partial_b, \Psi] \Psi v||^2_\phi + ||[\partial_b, \phi] \Psi v||^2_\phi + \sum_{h=1}^{n-1} \int \left(- (c_{ij} + \sum_j c_{jj} Id) ([\partial_{\omega_h}, \Psi] v, x \right. \times \left. \overline{\Psi v}) dV \right) + \left| \int_M e^{-\phi} \left(- [\partial_{\omega_i}, \Psi v], \Psi v + Trace([\partial_{\omega_i}, [\partial_{\omega_j}, \Psi^2]]) Id \right) (v, \overline{\Psi v}) dV \right|$$

$$+ Q_{Op^{ord(\Psi)}}^{b, \overline{b}}(v, \overline{v}) + ||Op^{ord(\Psi)}^{b, \overline{b}} v||^2_\phi + ||\Psi v||^2_\phi.$$ (3.3)

Clearly u^0 is subject to elliptic estimates. These, combined with (3.2), (3.3) yield an estimate for the full u in degrees $[1, n - 2]$ and then also for $u \in H^+$ in degree $k \in [0, n - 1]$ by closed range.

Remark 3.2. The formula also holds for Ψ complex: in this case one replaces Ψ^2 by $|\Psi|^2$ and add the additional error term $[\partial_b, \Psi] \Psi$ to the already existing $[\partial_b, \Psi] \Psi$.

Proof. We start from

$$\partial_{\overline{\partial}} \partial_{\partial} \phi = \partial_b \left(\sum_j \bar{\partial}_{\omega_j}(\phi) \bar{\omega}_j \right)$$

$$+ \sum_{i,j} \left(\partial_{\omega_i} \bar{\partial}_{\omega_j}(\phi) + \sum_h c_{ij}^h \bar{\partial}_{\omega_h}(\phi) \right) \omega_i \wedge \bar{\omega}_j.$$ (3.4)

Similarly,

$$\bar{\partial}_{\bar{\partial}} \partial_{\partial} \phi = \bar{\partial}_b \left(\sum_j \partial_{\omega_j}(\phi) \omega_i \right)$$

$$= \sum_{i,j} \left(- \bar{\partial}_{\omega_i} \partial_{\omega_j}(\phi) - \sum_h c_{ij}^h \bar{\partial}_{\omega_h}(\phi) \right) \omega_i \wedge \bar{\omega}_j.$$ (3.5)
Differently from the ambient $\bar{\partial}$-system on \mathbb{C}^n, we do not have $\bar{\partial}_b \bar{\partial}_b = \bar{\partial}_b \partial_b$ and in fact, combining (3.4) with (3.5), we can describe (ϕ^b_{ij}), the matrix of $\frac{1}{2}(\bar{\partial}_b \partial_b - \bar{\partial}_b \partial_b)(\phi)$, by

$$
\phi^b_{ij} = \frac{1}{2} (\bar{\partial}_b \partial_b - \bar{\partial}_b \partial_b)(\phi), \partial_{\omega_i} \wedge \bar{\partial}_{\omega_j}
$$

by (3.4), (3.5)

$$
= \bar{\partial}_{\omega_i} \partial_{\omega_i}(\phi) + \frac{1}{2} \left(\left[\partial_{\omega_i}, \bar{\partial}_{\omega_j} \right](\phi) + \sum_h c^h_{ij} \partial_{\omega_h}(\phi) + \sum_h c^h_{ji} \bar{\partial}_{\omega_h}(\phi) \right)
$$

(3.6)

We consider now

$$
e^{\phi} \Psi^{-2}[\bar{\partial}_{\omega_i}, e^{-\phi} \Psi^2] = -\phi_{\omega_i} + 2 \left[\partial_{\omega_i}, \Psi \right] \Psi + \frac{\text{Op}^{2\text{ord}(\Psi)-1}}{\Psi^2},
$$

(3.7)

whose sense is fully clear when both sides are multiplied by Ψ^2. In other terms, we have

$$
\bar{\partial}^*_{e^{-\phi} \Psi^2} = \bar{\partial}^* + \partial \Phi - 2 \left[\partial, \Psi \right] \Psi - \frac{\text{Op}^{2\text{ord}(\Psi)-1}}{\Psi^2} + \text{Op}^0.
$$

(3.8)

This leads us to define the transposed operator δ_{ω_i} to $\bar{\partial}_{\omega_i}$ by

$$
\delta_{\omega_i} := \bar{\partial}_{\omega_i} - \phi_{\omega_i} + 2 \left[\partial_{\omega_i}, \Psi \right] \Psi + \frac{\text{Op}^{2\text{ord}(\Psi)-1}}{\Psi^2} + \text{Op}^0.
$$

(3.9)

With these preliminaries we have

$$
\left[\delta_{\omega_i}, \bar{\partial}_{\omega_j} \right] = c_{ij} T + \sum_{h=1}^{n-1} c^h_{ij} \partial_{\omega_h} - \sum_{h=1}^{n-1} c^h_{ji} \bar{\partial}_{\omega_h} + \left(\phi^b_{ij} - \frac{1}{2} c^b_{ij} T(\phi) \right)
$$

$$
- 2 \sum_h c^h_{ij} \left[\partial_{\omega_h}, \Psi \right] \Psi + \left[\partial_{\omega_i}, [\bar{\partial}_{\omega_j}, \Psi] \right] \Psi + \left[\partial_{\omega_i}, \Psi \right] \left[\bar{\partial}_{\omega_j}, \Psi \right] \Psi^2 + \frac{\text{Op}^{2\text{ord}(\Psi)-1}}{\Psi^2} + \text{Op}^0.
$$

(3.10)

We remember now that there are two equally reasonable definition of the pseudodifferential action

$$
\Psi(w) = \begin{cases}
(i) & \int e^{i\xi \cdot x} S(\Psi)(x, \xi) \tilde{w}(\xi) d\xi \\
(ii) & \int e^{i\xi \cdot x} (S(\Psi)(\cdot, \xi) \ast \tilde{w}) d\xi,
\end{cases}
$$

(3.11)
where \(\tilde{w} \) denotes the Fourier transform. Up to error terms of type \(\text{Op}^{\omega(\Psi)-\frac{1}{2}} \), we have

\[
||\Psi(w)||^2 \sim (\Psi w, \Psi w)
\]

Plancherel and \(\text{(3.11) (ii)} \)

\[
\sim \int \widehat{\Psi}(w)(\xi) \overline{\mathcal{S}(\Psi)(\xi, \eta)} \tilde{w}(\eta) d\eta d\xi
\]

\[
= \int \left(\int \widehat{\Psi}(w)(\xi) \overline{\mathcal{S}(\Psi)(\eta, \xi)} d\xi \right) \tilde{w}(\eta) d\eta
\]

\[
\sim \int (3.11) (i) \int \widehat{\Psi}(w)(\eta) \tilde{w}(\eta) d\eta
\]

Plancherel \((|\Psi|^2 w, w) \).

For the same reason \((\Psi^2 w, w) \sim \int |\Psi|^2 |w|^2 dV \) and therefore

\[
||\Psi(w)||^2 \sim \int |\Psi|^2 |w|^2 dV.
\]

Adding the weight \(\phi \) and recalling that in our discussion \(\Psi \) is real,

\[
||\Psi \partial^* \partial_{b}\rangle v||^2_{\phi} = \int e^{-\phi} \Psi^2 |\partial^* \partial_{b}\rangle v|^2 dV + ||\text{Op}^{\omega(\Psi)-\frac{1}{2}} (\partial^* \partial_{b} v)||^2_{\phi}, \tag{3.12}
\]

where \(\partial^* \partial_{b} \) denotes either \(\partial_b \) or \(\partial_b^* \). We are ready for the proof of (3.2); we prove it only for \(v = u^+ \), the proof of (3.3) for \(v = u^- \) being similar. We have

\[
\int \Omega e^{-\phi} (c_{ij})(T v, \overline{v}) + \int [\partial_b, [\partial_b, e^{-\phi} \Psi^2]](v, \overline{v}) dV
\]

\[
- ||[\partial_b, \phi] \rangle v||^2_{\phi} - ||[\partial_b, \Psi] \rangle v||^2_{\phi} + ||\Psi \nabla v||^2_{\phi}
\]

\[
< ||\Psi \partial_b v||^2_{\phi} + ||\Psi (\overline{\partial_b})^* e^{-\phi} \Psi^2 v||^2_{\phi} + sc||\Psi \nabla v||^2_{\phi} + \sum_{h} \int e^{-\phi} (c_{ij}^h)([\partial_{\omega_h}, \Psi] v, \overline{\Psi v}) dV
\]

\[
+ Q^h_{\text{Op}^{\omega(\Psi)-\frac{1}{2}}(v, v)} + ||\text{Op}^{\omega(\Psi)-\frac{1}{2}} v||^2_{\phi} + ||\Psi v||^2_{\phi}, \tag{3.13}
\]
or, according to (3.10) and after absorbing the term which comes with s,
\[
\int_M e^{-\phi}c_{ij}(T\psi v, \psi v) dV + \int_M e^{-\phi}\phi_{ij}(\psi v, \psi v) dV - ||[\partial_b, \phi] \psi v||^2_\phi + \int_M e^{-\phi}[(\partial_i, [\bar{\partial}_j, \psi]) v, \psi] dV - ||[\partial_b, \psi] \psi v||^2_\phi + ||\psi \bar{\psi} v||^2_\phi \\
\leq ||\psi \bar{\partial}_v||^2_\phi + ||\psi (\bar{\partial}_b^* \psi v)||^2_\phi + \sum_h \int_M e^{-\phi}(c_{ij}^h)((\partial_{\psi^h}, \psi) v, \psi v) dV \\
+ Q_{Op^{ord(\psi)}-\frac{1}{2}}(v, v) + ||Op^{ord(\psi)}-\frac{1}{2} v||^2_\phi + ||\psi v||^2_\phi.
\]
(3.14)

To carry out our proof we need to replace $(\bar{\partial}_b^*)e^{-\psi_{\phi 2} v}$ by $\bar{\partial}_b^*$. We have from (3.10)
\[
||\psi (\bar{\partial}_b^*)e^{-\psi_{\phi 2} v}||^2_\phi \leq ||\psi \bar{\partial}_v||^2_\phi + ||\psi \partial_\phi \psi^2 v||^2_\phi + ||[\partial_b, \psi] \psi v||^2_\phi + ||Op^{ord(\psi)}-\frac{1}{2} v||^2_\phi \\
+ 2|Re(\psi \bar{\partial}_b^*, \psi \bar{\partial}_b \psi v)\partial_\phi| + 2|Re(\psi \bar{\partial}_b^*, \psi \bar{\partial}_b \psi v)\partial_\psi| + 2|Re(\psi \bar{\partial}_b^*, \psi \bar{\partial}_b \psi v)\partial_\psi|.
\]
(3.15)

We next estimate by Cauchy-Schwarz inequality
\[
\# \leq ||\psi \bar{\partial}_v||^2_\phi + ||\psi \partial_\phi \psi v||^2_\phi + ||[\partial_b, \psi] \psi v||^2_\phi.
\]
We move the third, forth and fifth terms from the left to the right of (3.14), and get (3.2) with $(T\psi v, \psi v)$ instead of $(T^{\frac{1}{2}}\psi v, T^{\frac{1}{2}}\psi v)$. But they only differ for
\[
|\int_M e^{-\phi } \left((c_{ij}, T^{\frac{1}{2}}(T^{\frac{1}{2}}\psi v, \psi v) \right) dV | \leq ||\psi v||^2_0,
\]
which is negligible.

We go back to the family of weights of Theorem 1.1 and Proposition 2.3. We apply (3.2) (resp. (3.3)) for $\phi = \phi^k + t|z'|^2$ (resp. $\phi = \phi^k - t|z'|^2$). First, we note that they are absolutely uniformly bounded with respect to k; they can be made bounded in t by taking $U = \{ z : |z'| < \frac{1}{k} \}$. (In particular, by boundedness, they can be removed from the norms.) Possibly by raising to exponential, boundedness implies “selfboundedness of the gradient” when ϕ is plurisubharmonic. In our case, in which to be positive is not (ϕ^k_{ij}) itself but $2^k(c_{ij}) + (\phi^k_{ij})$, we have, for $|z'|$ small
\[
|\partial_b \phi|^2 = |\partial_b (\phi^k + t|z'|^2)|^2 \\
\leq |\partial_b \phi^k|^2 + t^2 |z|^2 \\
\leq 2^k(c_{ij}) + (\phi^k_{ij}) + t.
\]
(3.16)
So \(\| \partial_b \phi \| \Psi u^\pm \|^2 \) can be removed from the right side of both (3.2) and (3.3). Also, the term \(-\frac{1}{2}(c_{ij})T(\phi)(v, \bar{v}) \) is controlled by \((c_{ij})(T^\frac{1}{2}v, T^\frac{1}{2}v)\) by Sobolev interpolation. We then combine Proposition \(2.3 \) with Theorem \(3.1 \) formula (3.2) for the weight \(\phi \) to \(\| \| \| v \| \|_\phi \) (resp. formula (3.10) for the weight \(\phi^k + t|z'|^2 \) (resp. formula (3.10) for the weight \(\phi^k - t|z'|^2 \)) and notice that \(T^\frac{1}{2} \sim \Lambda^\frac{1}{2} \) on \text{supp} \(\Psi^+ \) (resp. \((T^-)^\frac{1}{2} \sim \Lambda^\frac{1}{2} \) on \text{supp} \(\Psi^- \)). Also, on the right of (3.2) and (3.3), one reduces \(\| \text{Op}^\text{ord}(\Psi)^{-\frac{1}{2}}v\|_\phi^2 \) to \(\| v \|_\phi^2 \) by induction and estimates all terms \(Q^{\phi}_{\text{Op}^\text{ord}(\Psi)^{-\frac{1}{2}}} \) and \(Q^{\phi}_{\text{Op}^\text{ord}(\Psi)^{-j}} j \geq 1 \) by a common \(Q^{\phi}_{\Psi} \).

\textbf{Proof of Theorem 1.3.} We have to use (3.2) with the above choice of the weight \(\phi \) and take summation over \(k \); this yields (1.3) for \(v = u^+ \). The twin estimate for \(v = u^- \) follows from (3.3) by similar procedure. Finally, (1.4) comes as the combination of (1.3) for \(v = u^+ \), the twins for \(v = u^- \) and the elliptic estimate for \(v = u^0 \).

\(\Box \)

4. A CRITERION OF HYPOELLIPTICITY OF THE KOHN LAPLACIAN

Let \(M \) be a pseudoconvex, hypersurface type manifold of \(\mathbb{C}^n \), \(\square_b = \partial_b \partial_b^* + \partial_b^* \partial_b \) the Kohn Laplacian of \(M \), and \(G := \square_b^{-1} \) the Green operator.

\textbf{Proof of Theorem 1.4} Our program is to prove that for any cut-off \(\eta_o \in C^\infty_c(U) \) with \(\eta_o \equiv 1 \) in a neighborhood of \(z_o \), for suitable \(\eta \prec \eta_o \), that is \(\eta|_{\text{supp} \eta_o} \equiv 1 \), for any \(s \) and suitable \(U \), we have

\[
\| \eta_o u \|_s \prec \| \eta \partial_b u \|_s + \| \eta \partial_b^* u \|_s + \| u \|_0 \quad \text{for any } u \in \mathcal{H}^s \cap C^\infty(M \cap U)
\]

\text{in any degree } k \in [0, n - 1]. \quad (4.1)

If we are able to prove (4.1), we have immediately the exact local \(H^s \)-regularity of \(\partial_b^*G \) and \(\partial G \) over \(\ker \partial \) and \(\ker \partial^* \) respectively. From this, we get the (non-exact) regularity of the Szegö \(S = \text{Id} - \partial_b^*G \partial_b \) and anti-Szegö \(S^* = \text{Id} - \partial_bG \partial_b^* \) projection respectively. (At this stage we need to apply the method of the elliptic regularization to pass from \(C^\infty \)- to \(H^s \)-forms.) From this the (non-exact) regularity of \(G \) itself follows (cf. e.g. the proof of Theorem 2.1 of [1]). Along with \(\eta_o \prec \eta \), we consider an additional cut-off \(\sigma \) with \(\eta_o \prec \sigma \prec \eta \) and denote by \(R^s \) the pseudodifferential operator with symbol \((1 + |\xi|^2)^{-\sigma(a)} \). According to Proposition 2.1 of [1], there is no restriction on the degree of \(u \); thus \(u \) can be either a form or a function. By Section 3 above, we can prove (4.1) separately on each term of the microlocal decomposition of \(u = u^+ + u^- + u^0 \); since \(u^0 \) has elliptic estimate and \(u^- \) can be reduced to \(u^+ \) by star-Hodge correspondence, we prove the result only for...
\[v = u^+. \] We start from

\[
\| \Lambda^s \eta_0 v \| \lesssim \| R^s \eta_0 v \| + \| v \|
\]

\[
= \| R^s \eta_0 \eta^2 v \| + \| v \|
\]

\[
\leq \| R^s \eta^2 v \| + \| [R^s, \eta] \eta^2 v \| + \| v \|
\]

\[
\lesssim \| R^s \eta^2 v \| + \| v \|
\]

\[
\lesssim \| \eta R^s v \| + \| [R^s, \eta] v \| + \| v \|
\]

\[
\lesssim \| \eta R^s v \| + \| v \|, \tag{4.2}
\]

(cf. [15] Section 7). Next, we apply Theorem 3.1 for \(\Psi = \eta R^s \eta \). What we have to describe are the error terms in the right of (3.2), (3.3), that is, \([\partial_b, \eta R^s \eta]\) and \([\partial_b, [\bar{\partial}_b, \eta R^s \eta]]\). Since the argument is similar for the two, we only treat the first. We have by Jacobi identity

\[
[\partial_b, \eta R^s \eta] = [\partial_b, \eta] R^s \eta + \eta [\partial_b, R^s] \eta + \eta R^s [\partial_b, \eta]
\]

\[
= [\partial_b, R^s] + \text{Op}^{-\infty}. \tag{4.3}
\]

In fact, since \(\text{supp} \partial_b \eta \cap \text{supp} \sigma = \emptyset \), then the first and last terms in the right of the first line of (4.3) are operators of order \(-\infty\) and can therefore be disregarded. As for the central term, we have

\[
[\partial_b, R^s] = \partial_b(\sigma) \log(\Lambda) R^s. \tag{4.4}
\]

Now, our hypothesis is that

\[
\| \log(\Lambda) \partial_b \sigma \eta R^s \eta v \|^2 \leq \epsilon \left(\int_M (c_{ij})(\Lambda^\frac{1}{2} R^s \eta_0 v, \Lambda^\frac{1}{2} R^s \eta_0 v) dV \right.
\]

\[
+ \sum_{k=1}^{+\infty} \int_M \left((\phi_{ij})^k(\eta R^s \eta \Gamma_k v, \eta R^s \eta \Gamma_k v) \right) dV \bigg) + c_\epsilon \| \eta R^s \eta v \|^2. \tag{4.5}
\]
Altogether, we get

\[t||\Lambda^s \eta v||_0^2 < t||\eta R^s \eta v||_0^2 + ||v||_0^2 \]

by the second of (4.3)

\[\sim \quad Q^b_{\eta R^s \eta}(v, \bar{v}) + ||[\partial_b, \eta R^s \eta] \chi v||_0^2 + Q^b_{\operatorname{Op}^{\operatorname{ord}(\Psi)} - \frac{1}{2}}(v, \bar{v}) + ||\eta' v||_{s-\epsilon}^2 \]

absorption in the second line

\[\sim \quad Q^b_{\eta R^s \eta}(v, \bar{v}) + Q^b_{\operatorname{Op}^{\operatorname{ord}(\Psi)} - \frac{1}{2}}(v, \bar{v}) + ||\eta R^s \eta v||_0^2 + ||\eta' v||_{s-\epsilon}^2 \]

absorption by means of \(t \)

(4.6)

Now, the \(s - \epsilon \) norm is reduced to 0 norm by induction over \(j \) with \(j \epsilon > s \), and \(Q_{\eta R^s \eta} \) and the various \(Q_{\operatorname{Op}^{\operatorname{ord}(\Psi)} - \frac{1}{2}} \) are estimated by a common \(Q_{\eta' \Lambda^s} \). In conclusion, we have got (1.1) with the notational difference of \(\eta' \) instead of \(\eta \).

\[\square \]

Proof of Theorem 1.5. We choose our cut-off starting from a cut-off \(\chi \) in one real variable and setting \(\eta = \Pi_j \chi(||z_j||)\chi(||y_n||) \). We have

(a) \(\operatorname{supp} \partial z_j \chi(||z_j||) \) is contained in \(z_j \neq 0 \) in particular, outside the “critical” curve \(\Gamma \) where superlogarithmic estimates hold by Theorem 1.1 and Theorem 1.2 thus \(\partial_b(\Pi_j \chi(||z_j||)) \) are superlogarithmic multipliers.

(b) \(\partial_b \chi(||y_n||) \sim (h_j^{||y||})_j \) and hence it is by hypothesis a superlogarithmic multiplier.

Altogether, \(\partial_b \eta \chi \) are superlogarithmic multipliers. Remember that we are assuming that (\(c_{ij} \)) are subelliptic multipliers. Finally, \(\operatorname{supp} [\partial_b, [\partial_b, \chi(z_j)]] \) is contained in \(z_j \neq 0 \) and
\[
[\partial_b, [\bar{\partial}_b, \chi(y_n)]] \sim h^{P}_{-P, -P}
\]
are subelliptic multipliers; in conclusion, \([\partial_b, [\bar{\partial}_b, \eta]]\) are super-logarithmic multipliers. We can then apply Theorem 1.4 and this completes the proof of Theorem 1.5.

\[\square\]

REFERENCES

[1] L. Baracco, T.V. Khanh and G. Zampieri—Hypoellipticity of the \(\bar{\partial}\)-Neumann problem at a point of infinite type, Asian J. Math. (2014)

[2] L. Baracco, S. Pinton and G. Zampieri—Hypoellipticity of the \(\bar{\partial}\)-Neumann problem by means of subelliptic multipliers (2014)

[3] L. Baracco, S. Pinton and G. Zampieri—Hypoellipticity of the \(\bar{\partial}\)-Neumann problem at a set of infinite type with positive CR dimension, (2013) Preprint

[4] H. P. Boas and E. J. Straube—Sobolev estimates for the \(\bar{\partial}\)-Neumann operator on domains in \(\mathbb{C}^n\) admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1) (1991) 81–88

[5] D. Catlin—Necessary conditions for the subellipticity of the \(\bar{\partial}\)-Neumann problem, Ann. of Math. 117 (1983), 147–171

[6] D. Catlin—Subelliptic estimates for the \(\bar{\partial}\)-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987), 131-191

[7] M. Fassina and S. Pinton—The Kohn-Hörmander-Morrey formula twisted by a pseudo-differential operator.

[8] G.B. Folland and J.J. Kohn—The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Studies, Princeton Univ. Press, Princeton N.J. 75 (1972)

[9] T.V. Khanh and G. Zampieri—Regularity of the \(\bar{\partial}\)-Neumann problem at a flat point, J. Funct. Anal. 259 no. 11 (2010), 2760-2775

[10] T.V. Khanh and G. Zampieri—Necessary geometric and analytic conditions for a general estimate in the \(\bar{\partial}\)-Neumann problem, Invent. Math. 188 (2012), 729–750.

[11] J. J. Kohn—Global regularity for \(\bar{\partial}\) on weakly pseudo-convex manifolds, Trans. of the A.M.S. 181 (1973), 273–292

[12] J.J. Kohn—Subellipticity of the \(\bar{\partial}\)-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math. 142 (1979), 79–122

[13] J. J. Kohn—The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), 525–545

[14] J.J. Kohn—Hypoellipticity at points of infinite type, Contemporary Math. 251 (2000), 393–398

[15] J.J. Kohn—Superlogarithmic estimates on pseudoconvex domains and CR manifolds, Annals of Math. 156 (2002), 213–248

[16] J.J. Kohn and L. Nirenberg—Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492

[17] J. D. McNeal—Lower bounds on the Bergman metric near a point of finite type. Ann. of Math. 136 (1992), 2, 339–360

[18] J.D. Mcneal—\(L^2\) estimates on twisted Cauchy-Riemann complexes, Contemp. Math. 395 (2006), 83103 32W05 (32-02)

[19] E. Straube—Lectures on the \(L^2\)-Sobolev theory of the \(\bar{\partial}\)-Neumann problem, ESI Lect. in Math. and Physics (2010)
