Flavored non-minimal left–right symmetric model fermion masses and mixings

E. A. Garcés¹,a, Juan Carlos Gómez-Izquierdo¹,²,⁴, F. Gonzalez-Canales⁴,⁵,c

¹ Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 Mexico City, Mexico
² Centro de Estudios Científicos y Tecnológicos No 16, Instituto Politécnico Nacional, Pachuca: Ciudad del Conocimiento y la Cultura, Carretera Pachuca Actopan km 1+500, San Agustín Tlaxiaca, Hidalgo, Mexico
³ Departamento de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. Postal 14-740, 07000 Mexico City, Mexico
⁴ Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, 72000 Puebla, PUE, Mexico
⁵ Centro Internacional de Física Fundamental (CIFFU), Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, 72000 Puebla, PUE, Mexico

Received: 31 July 2018 / Accepted: 22 September 2018 / Published online: 8 October 2018
© The Author(s) 2018

Abstract A complete study on the fermion masses and flavor mixing is presented in a non-minimal left–right symmetric model (NMLRMS) where the $S_3 \otimes Z_2 \otimes Z'_2$ flavor symmetry drives the Yukawa couplings. In the quark sector, the mass matrices possess a kind of generalized Fritzsch textures that allow us to fit the CKM mixing matrix in good agreement to the latest experimental data. In the lepton sector, on the other hand, a soft breaking of the $\mu \leftrightarrow \tau$ symmetry provides nonzero and nonmaximal reactor and atmospheric angles, respectively. The inverted and degenerate hierarchies are favored in the model where a set of free parameters is found to be consistent with the current neutrino data.

1 Introduction

In particle physics, flavor symmetries [1–4] have played an important role in the understanding of the quark and lepton flavor mixings through the CKM [5,6] and PMNS [7–9] mixing matrices, respectively. According to the experimental data, the values for the magnitudes of all CKM entries obtained from a global fit are [10]

$$V_{\text{CKM}} = \begin{bmatrix}
0.9743 & 0.0101 & 0.2252 & 0.0000 & 0.0000 & 0.0000 \\
0.2249 & 0.0050 & 0.9735 & 0.0001 & 0.0001 & 0.0001 \\
0.0087 & 0.0032 & 0.0033 & 0.0403 & 0.0013 & 0.0991 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000
\end{bmatrix}.$$ (1)

The Jarlskog invariant is $J = \left(3.04^{+0.21}_{-0.20}\right) \times 10^{-5}$. In the lepton sector, on the other hand, we know that active neutrinos have a small, but not negligible mass, which can be understood by the type I see-saw mechanism [11–16]. The mixings turn out to be non-trivial, so in the theoretical framework of three active neutrinos, the numerical values for the squared neutrino masses and flavor mixing angles obtained from a global fit to the current experimental data on neutrino oscillations [17–19], at Best-Fit Point (BFP) $\pm 1\sigma$ and 3σ ranges, are [17,20]

$$\Delta m_{21}^2 \left(10^{-5} \text{eV}^2\right) = 7.60^{+0.19}_{-0.18}, \quad 7.11 - 8.18,$$

$$|\Delta m_{31}^2| \left(10^{-3} \text{eV}^2\right) = \begin{bmatrix}
2.48^{+0.05}_{-0.07} & 2.30 & 2.65 \\
2.38^{+0.06}_{-0.06} & 2.20 & 2.54 \\
\end{bmatrix},$$

$$\sin^2 \theta_{12}/10^{-1} = 3.23 \pm 0.16, \quad 2.78 - 3.75,$$

$$\sin^2 \theta_{23}/10^{-1} = \begin{bmatrix}
5.67^{+0.32}_{-1.24} & 3.93 & 6.43 \\
5.73^{+0.25}_{-0.39} & 4.03 & 6.40 \\
\end{bmatrix},$$

$$\sin^2 \theta_{13}/10^{-2} = \begin{bmatrix}
2.26 \pm 0.12 & 1.90 & 2.62 \\
2.29 \pm 0.12 & 1.93 & 2.65 \\
\end{bmatrix}.$$ (2)

The upper and lower rows are for a normal and inverted hierarchy of the neutrino mass spectrum, respectively. At the same time, there is not yet solid evidence on the Dirac CP-violating phase. So, from these data it is found (for inverted ordering) that the magnitude of the leptonic mixing matrix elements have the following values at 3σ [18]:

$$\begin{bmatrix}
0.799 - 0.844 & 0.516 - 0.582 & 0.141 - 0.156 \\
0.242 - 0.494 & 0.467 - 0.678 & 0.639 - 0.774 \\
0.284 - 0.521 & 0.490 - 0.695 & 0.615 - 0.754
\end{bmatrix}.$$ (3)

a e-mail: egarcas@fis.cinvestav.mx
b e-mail: jegizquierdo1979@gmail.com
c e-mail: felixfcoglz@gmail.com
Understanding the contrasted values between the CKM and PMNS mixing matrices is still a challenge in particle physics. In this line of thought, many flavor models such as S_3 [21–64], A_4 [65–94], S_4 [95–106], D_4 [107–114], Q_6 [115–125], T_7 [126–134], T_{13} [135–138], T' [139–144], $\Delta(27)$ [145–162], and A_5 [163–173] have been proposed to face this open question.

From a phenomenological point of view, the CKM mixing matrix may be accommodated by the Fritzsch [174–176] and the Nearest Neighbor Interaction textures (NNI) [177–180], however, only the latter can fit with good accuracy the CKM matrix. On the other hand, as can be seen from the PMNS values, the lepton sector seems to obey approximately the $\mu \leftrightarrow \tau$ symmetry [108,181–184] since $|V_{\mu i}| \approx |V_{\tau i}|$ ($i = 1, 2, 3$). At present, the long-baseline experiment NOvA has disfavored the $\mu \leftrightarrow \tau$ symmetry; some work has explored the breaking and other ideas on this appealing symmetry [123,185–204].

Along with this, $\mu \leftrightarrow \tau$ reflection symmetry has gained relevance since it predicts the CP-violating Dirac phase ($\delta_{CP} = -90^\circ$), the atmospheric and the reactor angles are 45° and nonzero, respectively [205–212].

Even though the quark and lepton sectors seem to obey different physics, we proposed a framework [58] to simultaneously accommodate both sectors under the $S_3 \otimes Z_2 \otimes Z_2^c$ discrete symmetry within the left–right theory. Thus, we will recover the fermion mass matrices that were obtained previously [58], to make a complete study on fermion masses and mixings. In the present work, the quark sector will be studied in detail since this was only mentioned in [58]. As we will see, the up and down mass matrices possess the generalized Fritzsch textures [213] (which are not hierarchical [214]), so that the CKM mixing matrix is parametrized by the quark masses and some free parameters that will be tuned by a χ^2 analysis in order to fit the mixings. In the lepton sector, on the other hand, the mixing angles can be understood by a soft breaking of the $\mu \leftrightarrow \tau$ symmetry in the effective neutrino mass matrix that comes from the type I see-saw mechanism. In the current analysis, we found a set of free parameters that fit the PMNS mixing matrix for the inverted and degenerate hierarchy.

The paper is organized as follows: the fermion mass matrices will be introduced in Sect. 2. The CKM and PMNS mixing matrices will be obtained in Sects. 3 and 4, respectively, besides of a χ^2 analysis is presented to fit the free parameters in the relevant mixing matrices for the quark and lepton sectors separately. Finally, in Sect. 5, we present our conclusions.

3 Quark sector

In this model, the quark mass matrices can be rotated to a basis in which these mass matrices acquire a form with some texture zeros. Also, in the PLRT and MLRT framework the quark mass matrices can be expressed in the following polar form:

$$M_{q,j} = U_{q,j}^T \mathbb{Q}_{q,j} \left(\mu_{q,j} \mathbb{I}_{3 \times 3} + M_{q,j} \right) P_{q,j} U_{q,j}/4,$$

(6)
where
\[
U_{\pi/4} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}
\] and
\[
\mathcal{M}_{qj} = \begin{pmatrix} D_{qj} & B_{qj} & 0 \\ B_{qj} & A_{qj} & C_{qj} \\ 0 & C_{qj} & 0 \end{pmatrix}.
\] (7)

The \(P_{qj}\) and \(Q_{qj}\) are diagonal matrices, whose explicit form depends on the theoretical framework in which we are working. In the above expressions, the \(j\) subscript denote the PLRT and MLRT frameworks. Concretely, \(j = 1\) refers to the PLRT framework, where we have \(\mu_{q1} = |g_q|\),
\[
Q_{q1} = P_{q1}^T, \quad \text{and} \quad P_{q1} = \text{diag} \left(e^{i\alpha_{q1}}, e^{i\beta_{q1}}, e^{i\gamma_{q1}} \right).
\] (8)

The phase factors in the \(P_{q1}\) matrix must satisfy the relations
\[
2\alpha_{q1} = \text{arg} (a_q + b_q), \quad 2\beta_{q1} = \text{arg} (a_q - b_q), \quad 2\gamma_{q1} = \text{arg} (g_q), \quad \alpha_{q1} + \beta_{q1} = \text{arg} (b_q), \quad \beta_{q1} + \gamma_{q1} = \text{arg} (c_q).
\] (9)

The entries of the \(M_{q1}\) matrix have the form \(A_{q1} = |a_q + b_q| - |g_q|, \quad B_{q1} = |b_q|, \quad C_{1q} = \sqrt{2} |c_q|, \) and \(D_{q1} = |a_q - b_q| - |g_q|\).

On the other hand, \(j = 2\) refers to the MLRT framework in which \(\mu_{q2} = g_q\),
\[
Q_{q2} = P_{q2}^T, \quad \text{and} \quad P_{q2} = \text{diag} \left(1, 1, e^{i\gamma_{q2}} \right).
\] (10)

where \(\gamma_{q2} = \text{arg} (c_q)\). The entries of the \(M_{q2}\) matrix have the form \(A_{q2} = a_q + b_q - g_q, \quad B_{q2} = b_q, \quad C_{2q} = \sqrt{2} |c_q|, \) and \(D_{q2} = |a_q - b_q| - |g_q|\).

The real symmetric matrix \(\mathcal{M}_{qj}\) in Eq. (7), with \(j = 1, 2\), can be brought to diagonal shape by means of the following orthogonal transformation:
\[
\mathcal{M}_{qj} = O_{qj} \Delta_{qj} O_{qj}^T,
\] (11)

where \(O_{qj}\) is a real orthogonal matrix, while
\[
\Delta_{qj} = \text{diag} \left(\sigma_{qj}^{(1)}, \sigma_{qj}^{(2)} , \sigma_{qj}^{(3)} \right).
\] (12)

In the last matrix the \(\sigma_{qj}^{(i)}\), with \(i = 1, 2, 3\), are the shifted quark masses [42]. Now, it is easy to conclude that the quark mass matrices in both frameworks can be brought to diagonal shape by means of the following transformations:
\[
\mathcal{U}_{q1} \mathcal{M}_{q1} \mathcal{U}_{q1}^T = \text{diag} \left(m_{q1}, m_{q2}, m_{q3} \right), \quad \text{for PLRT,}
\]
\[
\mathcal{U}_{q2} \mathcal{M}_{q2} \mathcal{U}_{q2}^T = \text{diag} \left(m_{q1}, m_{q2}, m_{q3} \right), \quad \text{for MLRT.}
\] (13)

In the above expressions the \(m_{qi}\) are the physical quark masses, while
\[
\mathcal{U}_{q1} \equiv O_{q1}^T P_{q1} U_{\pi/4} \quad \text{and} \quad \mathcal{U}_{q2} \equiv O_{q2}^T P_{q2} U_{\pi/4}.
\] (14)

The relation between the physical quark masses and the shifted masses is [39,42]
\[
\sigma_{qj}^{(i)} = m_{qi} - \mu_{qj}.
\] (15)

From the invariants of the real symmetric matrix \(\mathcal{M}_{qj}\),
\(\text{tr} \{ \mathcal{M}_{qj} \}, \text{tr} \{ \mathcal{M}_{qj}^2 \} \) and \(\text{det} \{ \mathcal{M}_{qj} \} \), the parameters \(A_{qj}, B_{qj}, C_{qj}\) and \(D_{qj}\) can be written in terms of the quark masses and two parameters. In this way, we see that the entries of the \(M_{qj}\) matrix take the form
\[
\tilde{A}_{qj} = \frac{A_{qj}}{\sigma_{qj}} = \tilde{\sigma}_{qj}^{(1)} - \delta_q, \quad \tilde{B}_{qj} = \frac{B_{qj}}{\sigma_{qj}} = \sqrt{\frac{a_q + b_q - \mu_{qj}}{\sigma_{qj}}}, \quad \tilde{C}_{qj} = \frac{C_{qj}}{\sigma_{qj}} = \sqrt{\frac{a_q + b_q - \mu_{qj}}{\sigma_{qj}}},
\] (16)

where
\[
\tilde{\sigma}_{qj}^{(1)} = 1 - \tilde{\sigma}_{qj}^{(2)} - \delta_q, \quad \tilde{\sigma}_{qj}^{(2)} = 1 + \tilde{\sigma}_{qj}^{(3)} - \delta_q,
\]

\[
\tilde{\sigma}_{qj}^{(3)} = \frac{|\sigma_{qj}^{(3)}|}{|\sigma_{qj}^{(3)}|}, \quad \tilde{m}_{q1} = \frac{m_{q1}}{m_{q3}}, \quad \tilde{m}_{q2} = \frac{m_{q2}}{m_{q3}}.
\] (17)

In order to obtain the above parametrization we considered \(\sigma_{qj}^{(i)} = -|\sigma_{qj}^{(i)}|\). With the aid of the expressions in Eqs. (16) and (17), we find that the parameters \(\delta_q\) and \(\tilde{\mu}_{qj}\) must satisfy the following relations:
\[
\tilde{\sigma}_{qj}^{(1)} > \tilde{\mu}_{qj} \geq 0 \quad \text{and} \quad \frac{1 - \tilde{m}_{q1}}{1 - \tilde{\mu}_{qj}} > \delta_q > 0.
\] (18)

From the conditions above, we conclude that the parameter \(\tilde{\mu}_{qj}\) must be positive and smaller than one. As \(m_{q3} > 0\) and \(\tilde{\mu}_{qj} \leq 0\) we have \(|g_q| = g_q\), which implies that \(\tilde{\mu}_{q1} = \mu_{q2}\).

Therefore, in this parameterization the difference between the quark flavor mixing matrix obtained in the PLRT framework and that obtained in the MLRT framework lies in the \(P_{qj}\) matrix, which is a diagonal matrix of phase factors.

From now on we will suppress the \(j\) index in the expressions of Eqs. (16) and (17), whereby \(\sigma_{qj}^{(i)} \equiv \sigma_{qi}, \tilde{\sigma}_{q1,2}^{(i)} \equiv \tilde{\sigma}_{q1,2}, \) and \(\mu_{q1} = \tilde{\mu}_{q2} \equiv \mu_{q2}\), thus \(\tilde{\sigma}_{q1,2}^{(i)} \equiv \tilde{\sigma}_{q1,2}\). The real
orthogonal matrix $O_{q,j} \equiv O_q$ in terms of the physical quark mass ratios has the form

$$O_{q,j} = \begin{pmatrix}
\sqrt{\sigma_1\sqrt{\delta_{q1}}} & \sqrt{\sigma_2\sqrt{\delta_{q2}}} & \sqrt{\delta_{q1}\delta_{q2}} \\
-\sqrt{\sigma_1\sqrt{1-\delta_{q1}}} & \sqrt{\sigma_2\sqrt{1-\delta_{q2}}} & \sqrt{\delta_{1-\delta_{q1}}\delta_{1-\delta_{q2}}} \\
-\sqrt{\sigma_1\delta_{q1}} & -\sqrt{\sigma_2\delta_{q2}} & \sqrt{\sigma_1\sigma_2\delta_{q1}\delta_{q2}}
\end{pmatrix},$$

(19)

where

$$D_{q1} = (1 - \bar{\sigma}_{q1}) (\bar{\sigma}_{q1} + \bar{\sigma}_{q2}) (1 - \delta_{q}),$$

$$D_{q2} = (1 + \bar{\sigma}_{q2}) (\bar{\sigma}_{q1} + \bar{\sigma}_{q2}) (1 - \delta_{q}),$$

$$D_{q3} = (1 - \bar{\sigma}_{q1}) (1 + \bar{\sigma}_{q2}) (1 - \delta_{q}).$$

Quark flavor mixing matrix

The quark flavor mixing matrix CKM emerges from the mismatch between the diagonalization of u- and d-type quark mass matrices. Therefore, this mixing matrix is defined as $V_{CKM} = U_u U_d^\dagger$, where U_u and U_d are the unitary matrices that diagonalize to the u- and d-type quark mass matrices, respectively.

From Eqs. (19) and (22) the explicit form of CKM mixing matrix in both frameworks has the form

$$V_{\text{CKM}} = O_{u1}^T P_{u1}^* U_{\pi/4} \left(O_{d1}^T P_{d1}^* U_{\pi/4}\right)^\dagger$$

where

$$P_{j}^{(u-d)} = \text{diag} \left(1, e^{i\Theta_j}, e^{i\Gamma_j}\right), \quad j = 1, 2,$$

(22)

with

$$\Theta_1 = -(\beta_{u1} - \beta_{d1} + \alpha_{d1} - \alpha_{u1}), \quad \Gamma_1 = -(\gamma_{u1} - \gamma_{d1} + \alpha_{d1} - \alpha_{u1})$$

$$\Theta_2 = 0, \quad \Gamma_2 = \gamma_{u2} - \gamma_{d2}, \quad \xi_1 = -(\alpha_{u1} - \alpha_{d1}).$$

(23)
MLRT is a particular case of the matrix obtained in PLRT, since we only need make zero the Θ_3 phase factor in Eq. (25).

Likelihood test χ^2

In order to verify the viability of the model for describing the phenomenology associated with quarks. The first issue that we need check is that experimental values for the masses and flavor mixing in the quark sector are correctly reproduced by the model. To carry out the above, we perform a likelihood test χ^2, in which we consider the values of the quark masses reported in Ref. [10] and using the RunDec program [219], we obtain the following values for the quark mass ratios at the top quark mass scale:

\[
\begin{align*}
\tilde{m}_u &= (1.33 \pm 0.73) \times 10^{-5}, \quad \tilde{m}_c = (3.91 \pm 0.42) \times 10^{-3}, \\
\tilde{m}_d &= (1.49 \pm 0.39) \times 10^{-3}, \quad \tilde{m}_s = (2.19 \pm 0.53) \times 10^{-2}, \\
\end{align*}
\]

(26)

For performing the likelihood test we define the χ^2 function as

\[
\chi^2 = \sum_{i=d,s,b} \frac{\left(|V_{ui}^{th}| - |V_{ui}^{ex}| \right)^2}{\sigma_{V_{ui}}^2} + \frac{\left(|V_{cb}^{th}| - |V_{cb}^{ex}| \right)^2}{\sigma_{V_{cb}}^2}.
\]

(27)

In this expression the terms with superscript “ex” are the experimental data with uncertainty $\sigma_{V_{ui}}$, whose values are [10]

\[
\begin{align*}
|V_{us}^{ex}| &= 0.97417 \pm 0.00021, & |V_{us}^{ex}| &= 0.2248 \pm 0.0006, \\
|V_{ub}^{ex}| &= (4.09 \pm 0.39) \times 10^{-3}, & |V_{cb}^{ex}| &= (40.5 \pm 1.5) \times 10^{-3}, \\
\end{align*}
\]

(28)

The terms with superscript “th” in the same expression correspond to the theoretical expressions for the magnitude of the entries of the quark mixing matrix CKM. From Eqs. (15), (24) and (25) we see that the number of free parameters in χ^2 function is six and five for the PLRT and MLRT, respectively. However, the χ^2 function depends only on four experimental data values, which correspond to the magnitude of the entries of the quark mixing matrix. In this numerical analysis, we consider the quark mixing matrix in the lower row of Eq. (21) as a particular case of the mixing matrix in the upper row of the same equation. So, in the PLRT context, when we simultaneously consider to \tilde{m}_d, \tilde{m}_u, Θ_1, Γ_1, δ_d, and δ_u as free parameters in the likelihood test, we would only be able to determine the values of these parameters at the best-fit point (BFP). Here, we perform a scan of the parameter space where we sought the BFP through the minimizing the χ^2 function. In Table 1 we show the numerical values for the six free parameters obtained at the BFP. All these results were obtained considering the values in Eq. (26) for the quark mass ratios. The values in the first row of Table 1 are valid for the MLRT and PLRT frameworks, since $\Theta_1 = \Theta_2 = 0$.

Now, the Θ_2, \tilde{m}_u, and \tilde{m}_d parameters are fixed to the values given in the first row of Table 1, thus the χ^2 function has one degree of freedom. In Fig. 1, we show the allowed regions in the parameter space at 70% CL and 95% CL, as well as the BFP, which is denoted by a black asterisk. The resulting values for the free parameters Γ_1, δ_d and δ_u, at 70% (95%) CL, are

\[
\begin{align*}
\Gamma_1 (^0) &= 71^{+38}_{-71} (\pm 43), \\
\delta_u (10^{-1}) &= 1.210^{+2.146}_{-0.966} (\pm 2.270), \\
\delta_d (10^{-1}) &= 1.514^{+2.303}_{-1.126} (\pm 2.446).
\end{align*}
\]

(29)

In the BFP we find that $\chi^2_{\text{min}} = 8.102 \times 10^{-1}$. From the likelihood test χ^2 we find that the magnitudes of all quark mixing matrix elements, at 95% CL, are

Θ_1	Γ_1	\tilde{m}_d	\tilde{m}_u	δ_d	δ_u	χ^2_{min}
0°	4.47°	4.978 \times 10^{-9}	8.791 \times 10^{-9}	6.025 \times 10^{-2}	4.163 \times 10^{-2}	8.227 \times 10^{-1}
3°	0.06°	5.797 \times 10^{-8}	1.725 \times 10^{-8}	1.179 \times 10^{-1}	9.320 \times 10^{-2}	8.429 \times 10^{-1}
6°	2.17°	2.583 \times 10^{-9}	8.838 \times 10^{-9}	8.262 \times 10^{-2}	6.574 \times 10^{-2}	8.219 \times 10^{-1}
9°	57.56°	1.009 \times 10^{-7}	5.279 \times 10^{-8}	7.348 \times 10^{-2}	7.317 \times 10^{-2}	8.271 \times 10^{-1}
12°	40.61°	7.174 \times 10^{-8}	1.056 \times 10^{-8}	3.665 \times 10^{-2}	3.064 \times 10^{-2}	9.846 \times 10^{-1}
Fig. 1 Allowed regions in the parameter space at 70% CL (blue line) and 95% CL (red dashed line). Here, the black asterisk corresponds to the BFP, while the θ, μ_ν, and $\bar{\mu}_\nu$ parameters are fixed to the values given in the first row of Table 1.

\[
\begin{pmatrix}
0.97433 \pm 0.00018 & 0.22508 \pm 0.00080 \\
0.22481 \pm 0.00076 & 0.97356 \pm 0.00021 \\
1.1942 \pm 0.1914 & 3.8942 \pm 0.2176
\end{pmatrix}
\times 10^{-2}
\begin{pmatrix}
4.09 \pm 0.60 & 4.053 \pm 0.230 \\
-0.0078 & -0.00020 \\
-0.00083 & -0.00210
\end{pmatrix}
\times 10^{-3}
\begin{pmatrix}
0.999170 \pm 0.000094 \\
0.999997 \pm 0.000096
\end{pmatrix}
\]

The Jarlskog invariant is

\[J_{CP} = \text{Im} \left(V_{ud} V_{cd} V_{ud}^* V_{cd}^* \right) = \left(2.92^{+0.38}_{-0.29} \right) \times 10^{-5} \quad (31)\]

All these values are in good agreement with the experimental data. Also, the results of the above likelihood test can be considered as predictions of the PLRT and MLRT theoretical frameworks. This is so because when $\Theta_1 = \Theta_2 = 0$ the two schemes are equivalent.

4 Lepton sector

As can be verified straightforwardly, the \mathbf{M}_e charged lepton mass matrix is diagonalized by $\mathbf{U}_{eL} = \mathbf{S}_{23} \mathbf{P}_e$ and $\mathbf{U}_{eR} = \mathbf{S}_{23} \mathbf{P}_e^*$ in the case of PLRT and $\mathbf{U}_{eL} = \mathbf{S}_{23}$ and $\mathbf{U}_{eR} = \mathbf{S}_{23}$ in the MLRT.

\[
\mathbf{S}_{23} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}, \quad \mathbf{P}_e = \text{diag}(e^{i\eta_e/2}, e^{i\eta_\mu/2}, e^{i\eta_\tau/2}) \quad (32)
\]

with $|m_\nu| = |a_e|$, $|m_\mu| = |b_e - c_e|$ and $|m_\tau| = |b_e + c_e|$ for the former framework and $m_e = a_e$, $m_\mu = b_e - c_e$ and $m_\tau = b_e + c_e$ in the second one.

The \mathbf{M}_ν neutrino mass matrix, which comes from the type I see-saw mechanism, is parametrized as

\[
\mathcal{M}_\nu \approx \begin{pmatrix}
A_\nu & -B_\nu(1 - \epsilon) & -B_\nu(1 + \epsilon) \\
-A_\nu(1 - \epsilon) & C_\nu(1 - 2\epsilon) & D_\nu \\
-A_\nu(1 + \epsilon) & D_\nu & C_\nu(1 + 2\epsilon)
\end{pmatrix} \quad (33)
\]

where A_ν, B_ν, C_ν and D_ν are complex parameters; ϵ is a complex and real free parameter in the PLRT and MLRT frameworks, respectively. Along with this, the ϵ parameter was considered as a perturbation to the effective mass matrix such that $|\epsilon| \leq 0.3$ in order to break softly the $\mu \leftrightarrow \tau$ symmetry, thus the $|\epsilon|^2$ quadratic terms were neglected in the above matrix. Let us remark that the above neutrino mass matrix has already been rotated by the S_{23} orthogonal matrix. As shown in [58], the \mathbf{M}_ν effective neutrino mass matrix is diagonalized by $\mathbf{U}_\nu \approx S_{23} \mathbf{U}_\nu$ such that $\mathbf{M}_\nu = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}) \approx \mathbf{U}_\nu^\dagger \mathbf{M}_\nu \mathbf{U}_\nu^\dagger = \mathbf{U}_\nu^\dagger \mathbf{M}_\nu \mathbf{U}_\nu$ where $\mathbf{U}_\nu \approx \mathbf{U}_\nu^\theta \mathbf{U}_\nu$. Here, \mathbf{U}_ν^θ diagonalizes the \mathbf{M}_ν neutrino mass matrix with exact $\mu \leftrightarrow \tau$ symmetry ($|\epsilon| = 0$); this means that $\mathbf{U}_\nu^\theta \mathbf{M}_\nu \mathbf{U}_\nu^\theta = \mathbf{M}_\nu^\theta = \text{diag}(m_0^\nu, m_0^\nu, m_0^\nu)$. Along with this, the ϵ parameter breaks the $\mu \leftrightarrow \tau$ symmetry so that its contribution to the mixing matrix is contained in \mathbf{U}_ν^ϵ. We have

\[
\mathbf{U}_\nu^\epsilon = \begin{pmatrix}
\cos \theta_{1\nu} & e^{i(\eta_\nu + \pi)} & \sin \theta_{1\nu} e^{i(\eta_\nu + \pi)} \\
-\sin \theta_{1\nu} & \cos \theta_{1\nu} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\]

\[
\mathbf{U}_\nu^\epsilon \approx \begin{pmatrix}
N_1 & 0 & -N_3 \sin \theta_1 \epsilon \\
0 & N_2 & N_3 \cos \theta_1 \epsilon r_2 \\
N_1 \sin \theta_1 \epsilon & -N_2 \cos \theta_1 \epsilon r_2 & N_3
\end{pmatrix} \quad (34)
\]
where \(r_{1,2} \equiv (m_{\nu_3}^0 + m_{\nu_{1,2}}^0)/(m_{\nu_3}^0 - m_{\nu_{1,2}}^0) \) and the \(N_i \), the normalization factors, are given by

\[
N_1 = \left(1 + \sin^2 \theta_{\nu} |r_1| \epsilon^2 \right)^{-1/2}, \\
N_2 = \left(1 + \cos^2 \theta_{\nu} |r_2| \epsilon^2 \right)^{-1/2}, \\
N_3 = \left(1 + \sin^2 \theta_{\nu} |r_1| \epsilon^2 + \cos^2 \theta_{\nu} |r_2| \epsilon^2 \right)^{-1/2}.
\]

Let us emphasize that two relative Majorana phases will be considered along this work in which the neutrino mass is kept positive. Explicitly, we have \(M^0_\nu = \text{diag}(m_{\nu_1}^0, m_{\nu_2}^0, m_{\nu_3}^0) = \text{diag}(|m_{\nu_1}^0| e^{i \alpha}, |m_{\nu_2}^0| e^{i \beta}, |m_{\nu_3}^0|) \) where the associate Majorana phase of \(m_{\nu_3}^0 \) has been absorbed in the neutrino field.

Lepton flavor mixing matrix

In the PLRT (MLRT) case, we found that \(V_{PMNS} \approx \mathcal{P}_{\nu}^T U_{\nu}^{PM} U_{\nu}^c \) (\(\approx \mathcal{U}_{\nu}^{PM} U_{\nu}^c \)). Explicitly,

\[
V_{PMNS} \approx \mathcal{P}_{\nu}^T \times \left(\frac{\cos \theta_{\nu} N_1}{\sqrt{2}} \sin \theta_{\nu} N_2 \sin 2 \theta_{\nu} N_2 - \frac{N_2}{\sqrt{2}} |1 - \epsilon r_3| \right) \times \left(\frac{\cos \theta_{\nu} N_1}{\sqrt{2}} \sin \theta_{\nu} N_2 \sin 2 \theta_{\nu} N_2 + \frac{N_2}{\sqrt{2}} |1 + \epsilon r_3| \right)
\]

with \(r_3 \equiv r_2 \cos^2 \theta_{\nu} + r_1 \sin^2 \theta_{\nu} \), and \(\mathcal{P}_{\nu} = \text{diag}(e^{i \eta_{1,2}/2}, e^{i \eta_3/2}) \). On the other hand, comparing the magnitude of entries \(V_{PMNS} \) with the mixing matrix in the standard parametrization of the PMNS, we obtain the following expressions for the lepton mixing angles:

\[
\sin^2 \theta_{13} = |V_{13}|^2 = \frac{\sin^2 2 \theta_{\nu} N_3^2 |\epsilon|^2 |r_2 - r_1|^2}{4}, \\
\sin^2 \theta_{23} = \frac{|V_{23}|^2}{1 - |V_{13}|^2} = \frac{N_3^2 |1 - \epsilon r_3|^2}{2 (1 - \sin^2 \theta_{13})}, \\
\sin^2 \theta_{12} = \frac{|V_{12}|^2}{1 - |V_{13}|^2} = \frac{N_3^2 \sin^2 \theta_{\nu} |1 - \sin^2 \theta_{13}|}{1 - \sin^2 \theta_{13}}.
\]

In these mixing angles there are four free parameters namely, the absolute neutrino masses, two relative Majorana phase, the \(\epsilon \) parameter and the \(\theta_{\nu} \) angle. Some parameters could be reduced under certain considerations as follows: the \(\theta_{\nu} \) parameter, in good approximation, coincides with the solar angle \(\theta_{12} \) since we are in the limit of a soft breaking \(\mu \leftrightarrow \tau \) symmetry so the normalization factors, \(N_i \), are expected to be of the order 1, then \(\theta_{12} = \theta_\nu \). Along with this, the mixing angles may be written in terms of one relative Majorana phase and to do so we just have to observe that the reactor angle is nonnegligible when \(|r_2 - r_1|^2 \) is large. We have

\[
|r_2 - r_1|^2 = \frac{4 |m_{\nu_3}^0|^2 |m_{\nu_2}^0 - m_{\nu_1}^0|^2}{|m_{\nu_3}^0 - m_{\nu_1}^0|^2 |m_{\nu_3}^0 - m_{\nu_2}^0|^2}.
\]

This happens if \(\beta - \alpha = \pi \); then we have

\[
|m_{\nu_2}^0 - m_{\nu_3}^0|^2 = \left[|m_{\nu_2}^0| + |m_{\nu_3}^0|\right]^2, \\
|m_{\nu_3}^0 - m_{\nu_1}^0|^2 = |m_{\nu_3}^0|^2 + |m_{\nu_1}^0|^2 - 2 |m_{\nu_1}^0| |m_{\nu_3}^0| \cos \alpha, \\
|m_{\nu_3}^0 - m_{\nu_2}^0|^2 = |m_{\nu_3}^0|^2 + |m_{\nu_2}^0|^2 + 2 |m_{\nu_2}^0| |m_{\nu_3}^0| \cos \alpha,
\]

where the last two factors enhance the former one in order to get allowed values for the reactor angle. In addition, the factors \(r_2 \) and \(r_1 \) can be written in terms of the only relative Majorana phase, \(\alpha \). Then

\[
r_1 = \frac{|m_{\nu_3}^0| + |m_{\nu_1}^0| e^{i \alpha}}{|m_{\nu_3}^0| - |m_{\nu_1}^0| e^{i \alpha}}, \\
r_2 = \frac{|m_{\nu_3}^0| - |m_{\nu_2}^0| e^{i \alpha}}{|m_{\nu_3}^0| + |m_{\nu_2}^0| e^{i \alpha}}.
\]

Likelihood test \(\chi^2 \)

Once we fix the \(\theta_{\nu} \) parameter to the solar neutrino mixing angle \(\theta_{12} \), the \(\chi^2 \) analysis can be carried out to find the allowed values of the three remaining free parameters \(\epsilon \), the Majorana phase \(\alpha \) and the mass of the lightest (common) neutrino \(m_{\nu_3}^0 \). Two of the absolute neutrino masses can be written as a function of the lightest mass and \(\Delta m_{ij}^2 \) as follows:

\[
|m_{\nu_2}^0| = \sqrt{\Delta m_{13}^2 + \Delta m_{21}^2 + |m_{\nu_3}^0|^2}, \\
|m_{\nu_1}^0| = \sqrt{\Delta m_{13}^2 + |m_{\nu_3}^0|^2} \quad \text{Inverted Hierarchy} \\
|m_{\nu_3}^0| = \sqrt{\Delta m_{31}^2 + m_0^2}, \\
|m_{\nu_1}^0| = \sqrt{\Delta m_{21}^2 + m_0^2} \quad \text{Degenerate Hierarchy},
\]

where \(|m_{\nu_3}^0| \) and \(m_0 \geq 0.1 \ eV \) are the lightest and common neutrino masses for the inverted and degenerate ordering, respectively.

In this analysis, the normal hierarchy will be left out since this was discarded in the previous analytical study [58]. The inverted and the degenerate hierarchies will be discussed next.
Fig. 2 Allowed regions in the $\sin(\alpha)-\epsilon$ plane, at 90% CL (blue) and 95% CL (red) for degenerate (left) and inverted (right) hierarchy. In this case the θ_ν parameter is fixed to the solar angle, and $m_{0,3}$ is marginalized.

Fig. 3 Allowed regions in the $\sin(\alpha)-\epsilon$ plane, at 90% CL (blue) and 95% CL (red) for degenerate (left) and inverted (right) hierarchy. The θ_ν parameter is fixed to the solar angle and ϵ is marginalized.

The χ^2 function is built as

$$
\chi^2(\epsilon, \alpha, m_0(|m_{\nu 3}|)) = \left(\frac{\sin^2 \theta_{13}^{ih} - \sin^2 \theta_{13}^{es}}{\sigma_{13}^2} \right)^2 + \left(\frac{\sin^2 \theta_{23}^{ih} - \sin^2 \theta_{23}^{es}}{\sigma_{23}^2} \right)^2,
$$

where the experimental data and theoretical expressions for the mixing angles are given in Eqs. (2) and (37), respectively. We use the absolute neutrino masses in Eq. (41) as a function of $m_0(|m_{\nu 3}|)$, fixing Δm_{ij}^2 to the central values of the global fit [17] and letting $m_0(|m_{\nu 3}|)$ as a free parameter. For σ_{13} and σ_{23} we take the one sigma upper and lower uncertainties using summation in quadrature.

The results of the minimization of the χ^2 function are shown in Figs. 2, 3 and 4; we show the allowed regions at 90% and 95% CL in the plane of pairs of the three parameters marginalizing the χ^2 function for the parameter not shown. In the left (right) panel is shown the case of a degenerate (inverted) hierarchy for each figure. We notice that the α parameter is more constrained in the case of an inverted hierarchy than in the degenerate hierarchy case, and that the fit prefers smaller values of the ϵ parameter in the case of an inverted hierarchy. For illustration purposes only we show the BFP in each case as a black dot.

From comparison of our χ^2 analysis with the qualitative analysis in [58] we find that a wide region of the parameter space is still statistically compatible with the experimental data.
Allowed regions in the $m_0 - \epsilon$ plane, at 90% CL (blue) and 95% CL (red) for degenerate (left) and inverted (right) hierarchy. Again, the θ_ν parameter is fixed to the solar angle and the α Majorana phase is marginalized.

Effective mass $|m_{ee}|$ as a function of the common mass m_0 in the case of degenerate hierarchy or of the lightest neutrino mass $|m_{\nu^3}|$ for inverted hierarchy. The horizontal regions defined by the blue dotted and purple dashed lines correspond to the limits by GERDA phase II [223] and KamLAND-Zen [224], respectively.

5 Conclusions

We performed a complete study on the fermion masses and flavor mixing in the non-minimal left–right symmetric model where the scalar sector was extended by three Higgs bidoublets, three right-handed (left-handed) triplets. The lepton sector has been previously studied in [58], where the Majorana phases were considered as CP parities (0 or π). In the present analysis we obtained precise formulas for the mixing angles with arbitrary Majorana phases, and a chi squared statistical analysis was performed in order to fix the relevant free parameters using the updated neutrino oscillation data. Our results are in good agreement with [58], when fixed Majorana phases are considered.

On the other hand, we do this analysis for the first time in the quark sector where the quark mass matrices come out being symmetric and hermitian in the PLRT and MLRT frameworks, respectively. In the hadronic sector of the PLRT (MLRT) framework, we write the quarks flavor mixing matrix, CKM, in terms of quark mass ratios, two shifted mass parameters $\tilde{\mu}_d$ and $\tilde{\mu}_u$, two parameters δ_d and δ_u, two (one) phase factors. So, the difference between the CKM matrices.
obtained in the PLRT and MLRT framework lies in the number of phase factors; namely, in PLRT we have two phase factors, Γ_1 and Θ_1, while in MLRT we have only one, Θ_2. Therefore, the quark flavor mixing matrix in MLRT is a particular case of the CKM matrix obtained in PLRT, since we only need take $\Theta_2 = 0$. We performed a likelihood test χ^2, in which the Θ_2, $\tilde{\mu}_u$, and $\tilde{\mu}_d$ parameters are fixed to the values given in the first row of the Table I. Thus the χ^2 function has one degree of freedom. All values obtained in this χ^2 analysis are in good agreement with the experimental data. Also, these values can be considered as predictions of the PLRT and MLRT theoretical frameworks, because when $\Theta_1 = \Theta_2 = 0$ the two schemes are equivalent. The rich phenomenology of the model provides a region of the parameter space that is statistically compatible with the experimental data.

Acknowledgements This work was partially supported by the Mexican Grants 237004, PAPIIT IN111518, and Conacyt-32059. JCGI thanks the Department of Theoretical Physics at IUAPF for warm hospitality. Also, JCGI would like to especially mention Gabriela Nabor, Marisol, Cecilia, and Elizabeth Gómez for financial and moral support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3.

References

1. H. Ishimori, Non-abelian discrete symmetries in particle physics. Prog. Theor. Phys. Suppl. 183, 1–163 (2010). arXiv:1003.3552 [hep-th]
2. W. Grimus, P.O. Ludl, Finite flavour groups of fermions. J. Phys. A 45, 233001 (2012). arXiv:1110.6376 [hep-ph]
3. H. Ishimori et al., An introduction to non-Abelian discrete symmetries for particle physicists. Lect. Notes Phys. 858, 1–227 (2012)
4. S.F. King, C. Luhn, Neutrino mass and mixing with discrete symmetry. Rep. Prog. Phys. 76, 056201 (2013). arXiv:1301.1340 [hep-ph]
5. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)
6. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)
7. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)
8. B. Pontecorvo, Neutrino experiments and the problem of conservation of lepton charge. Sov. Phys. JETP 26, 984–988 (1968)
9. B. Pontecorvo, Neutrino experiments and the problem of conservation of lepton charge. Zh. Eksp. Teor. Fiz. 53, 1717 (1967)
10. C. Patrignani et al., (Particle Data Group), Review of particle physics. Chin. Phys. C 40(10), 100001 (2016)
11. P. Minkowski, $\mu \rightarrow e\gamma$ at a rate of one out of 1-billion muon decays? Phys. Lett. B 67, 421 (1977)
12. M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979). arXiv:1306.4669 [hep-th]
13. R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980)
14. J. Schechter, J.W.F. Valle, Neutrino masses in SU(2) \times U(1) theories. Phys. Rev. D 22, 2227 (1980)
15. R.N. Mohapatra, G. Senjanovic, Neutrino masses and mixings in gauge models with spontaneous parity violation. Phys. Rev. D 23, 165 (1981)
16. J. Schechter, J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number. Phys. Rev. D 25, 774 (1982)
17. P.F. de Salas et al., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782 (2018), 633–640 (2018). arXiv:1708.01186 [hep-ph]
18. I. Esteban et al., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. JHEP 01, 087 (2017). arXiv:1611.01514 [hep-ph]
19. F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Current unknowns in the three neutrino framework (2018), arXiv:1804.09678 [hep-ph]
20. Valencia-Globafit (2018), http://globafit.astroparticles.es/
21. S. Pakvasa, H. Sugawara, Discrete symmetry and Cabibbo angle. Phys. Lett. B 73, 61–64 (1978)
22. J. Kubo, A. Mondragon, M. Mondragon, E. Rodriguez-Jauregui, The flavor symmetry. Prog. Theor. Phys. 109, 795–807 (2003). arXiv:hep-ph/0302196 [hep-ph] (Erratum: Prog. Theor. Phys.114,287(2005))
23. J. Kubo, Majorana phase in minimal S(3) invariant extension of the standard model. Phys. Lett. B 578, 156–164, (2004). arXiv:hep-ph/0309167 [hep-ph] (Erratum: Phys. Lett. B619,387(2005))
24. T. Kobayashi, J. Kubo, H. Terao, Exact S(3) symmetry solving the supersymmetric flavor problem. Phys. Lett. B 568, 83–91 (2003). arXiv:hep-ph/0303084 [hep-ph]
25. S.-L. Chen, M. Frigerio, E. Ma, Large neutrino mixing and normal mass hierarchy: a discrete understanding. Phys. Rev. D 70, 073008 (2004). arXiv:hep-ph/0404084 [hep-ph] (Erratum: Phys. Rev. D70,079905(2004))
26. J. Kubo et al., A minimal S(3)-invariant extension of the standard model. J. Phys. Conf. Ser. 18, 380–384 (2005)
27. A. Mondragon, Models of flavour with discrete symmetries. AIP Conf. Proc. 857(2), 266 (2006). arXiv:hep-ph/0609243 [hep-ph]
28. O. Felix, A. Mondragon, M. Mondragon, E. Peinado, Neutrino masses and mixings in a minimal S(3)-invariant extension of the standard model. AIP Conf. Proc. 917, 383–389 (2007). arXiv:hep-ph/0610061
29. A. Mondragon, M. Mondragon, E. Peinado, Lepton masses, mixings and FCNC in a minimal S_3-invariant extension of the Standard Model. Phys. Rev. D 76, 076003 (2007). arXiv:0706.0354 [hep-ph]
30. A. Mondragon, M. Mondragon, E. Peinado, S(3)-flavour symmetry as realized in lepton flavour violating processes. J. Phys. A 41, 304035 (2008). arXiv:0712.1799 [hep-ph]
31. A. Mondragon, M. Mondragon, E. Peinado, Nearly tri-maximal mixing in the S(3) flavour symmetry. AIP Conf. Proc. 2008, 164–169 (1026). arXiv:0712.2488 [hep-ph]
32. D. Meloni, S. Morisi, E. Peinado, Fritzsch neutrino mass matrix from S_3 symmetry. J. Phys. G 38, 015003 (2011). arXiv:1005.3482 [hep-ph]
33. D.A. Dicus, S.-F. Ge, W.W. Repko, Neutrino mixing with broken S_3 symmetry. Phys. Rev. D 82, 033005 (2010). arXiv:1104.3266 [hep-ph]
34. G. Bhattacharyya, P. Leser, H. Pas, Exotic Higgs boson decay modes as a harbinger of S_3 flavour symmetry. Phys. Rev. D 83, 011701 (2011). arXiv:1006.5597 [hep-ph]

© Springer
35. F.G. Canales, A. Mondragon, The \(S_3 \) symmetry: flavour and texture zeroes. J. Phys. Conf. Ser. 287, 012015 (2011). arXiv:1101.3807 [hep-ph]

36. P.V. Dong, H.N. Long, C.H. Nam, V.V. Vien, The \(S_3 \) flavor symmetry in 3-3-1 models. Phys. Rev. D 85, 035001 (2012). arXiv:1111.6360 [hep-ph]

37. A.G. Dias, A.C.B. Machado, C.C. Nishi, An \(S_3 \) model for lepton mass matrices with nearly minimal texture. Phys. Rev. D 86, 093005 (2012). arXiv:1206.6362 [hep-ph]

38. F.G. Canales, A. Mondragon, U.S. Salazar, L. Velasco-Sevilla, \(S_3 \) as a unified family theory for quarks and leptons (2012), arXiv:1210.0288 [hep-ph]

39. F.G. Canales, A. Mondragon, The flavour symmetry \(S_3 \) and the neutrino mass matrix with two texture zeroes. J. Phys. Conf. Ser. 378, 012014 (2012)

40. F.G. Canales et al., Fermion mixing in an \(S_3 \) model with three Higgs doublets. J. Phys. Conf. Ser. 447, 012053 (2013)

41. F.G. Canales et al., Quark sector of \(S_3 \) models: classification and comparison with experimental data. Phys. Rev. D 88, 096004 (2013). arXiv:1304.6644 [hep-ph]

42. E. Ma, B. Melic, Updated \(S_3 \) model of quarks. Phys. Lett. B 725, 402–406 (2013). arXiv:1303.6928 [hep-ph]

43. Y. Kajiyama, H. Okada, K. Yagyu, Electron/nuon specific two Higgs doublet model. Nucl. Phys. B 887, 358–370 (2014). arXiv:1309.6234 [hep-ph]

44. A.E.C. Hernández, R. Martinez, F. Ochoa, Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the \(S_3 \) flavor symmetry. Eur. Phys. J. C 76(11), 634 (2016). arXiv:1309.6567 [hep-ph]

45. D. Das, U.K. Dey, Analysis of an extended scalar sector with \(S_3 \) symmetry. Phys. Rev. D 89(9), 095025 (2014). arXiv:1404.2491 [hep-ph] (Erratum: Phys. Rev.D91,no.3,039905(2015))

46. E. Ma, R. Srivastava, Dirac or inverse seesaw neutrino mass matrix with \(B-L \), gauge symmetry and \(S_3 \) flavor symmetry. Phys. Lett. B 741, 217–222 (2015). arXiv:1411.5042 [hep-ph]

47. A.E.C. Hernández, R. Martinez, J. Nisperuza, \(S_3 \) discrete group as a source of the quark mass and mixing pattern in 333 models. Eur. Phys. J. C 75(2), 72 (2015). arXiv:1401.0937 [hep-ph]

48. A.E.C. Hernández, E.C. Mur, R. Martinez, Lepton masses and mixings in the 3-3-1 model with right-handed neutrinos based on the \(S_3 \) flavor symmetry. Eur. Phys. J. C 76(11), 634 (2016). arXiv:1309.6567 [hep-ph]

49. S. Gupta, C.S. Kim, P. Sharma, Radiative and seesaw threshold corrections to the \(S_3 \) symmetric neutrino mass matrix. Phys. Lett. B 740, 353–358 (2015). arXiv:1408.0172 [hep-ph]

50. D. Das, U.K. Dey, B.P. Pal, \(S_3 \) symmetry and the quark mixing matrix. Phys. Lett. B 753, 315–318 (2016). arXiv:1507.06509 [hep-ph]

51. A.E.C. Hernández, I. de Medeiros Varzielas, E. Schumacher, Fermion and scalar phenomenology of a two-Higgs-doublet model with \(S_3 \) flavor symmetry. Phys. Rev. D 93(1), 016003 (2016). arXiv:1509.02083 [hep-ph]

52. A.E.C. Hernández, I. de Medeiros Varzielas, N.A. Neill, Novel Randall–Sundrum model with \(S_3 \) flavor symmetry. Phys. Rev. D 94(3), 033011 (2016). arXiv:1511.07420 [hep-ph]

53. C. Arbeláez, A.E.C. Hernández, S. Kovalenko, I. Schmidt, Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing. Eur. Phys. J. C 77(6), 422 (2017). arXiv:1602.03607 [hep-ph]

54. A.E.C. Hernández, A novel and economical explanation for SM fermion masses and mixings. Eur. Phys. J. C 76(9), 503 (2016). arXiv:1512.09092 [hep-ph]

55. A.E.C. Hernández, A novel and economical explanation for SM fermion masses and mixings. Eur. Phys. J. C 76(9), 503 (2016). arXiv:1512.09092 [hep-ph]
210. Z.-C. Liu, C.-X. Yue, Z.-H. Zhao, Neutrino $\mu - \tau$ reflection symmetry and its breaking in the minimal seesaw. JHEP 10, 102 (2017). arXiv:1707.05535 [hep-ph]

211. Z.-h. Zhao, Modifications to the neutrino mixing given by the mu-tau reflection symmetry (2018). arXiv:1803.04603 [hep-ph]

212. N. Nath, Z.-Z. Xing, J. Zhang, $\mu - \tau$ reflection symmetry embedded in minimal seesaw. Eur. Phys. J. C 78(4), 289 (2018). arXiv:1801.09931 [hep-ph]

213. H. Fritzsch, Z.-Z. Xing, Mass and flavor mixing schemes of quarks and leptons. Prog. Part. Nucl. Phys. 45, 1–81 (2000). arXiv:hep-ph/9912358

214. R. Verma, S. Zhou, Quark flavor mixings from hierarchical mass matrices. Eur. Phys. J. C 76(5), 272 (2016). arXiv:1512.06638 [hep-ph]

215. J.C. Pati, A. Salam, Lepton number as the fourth color. Phys. Rev. D 10, 275–289 (1974) (Erratum: Phys. Rev.D11,703(1975))

216. R.N. Mohapatra, J.C. Pati, A natural left-right symmetry. Phys. Rev. D 11, 2558 (1975)

217. G. Senjanovic, R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D 12, 1502 (1975)

218. G. Senjanovic, Spontaneous breakdown of parity in a class of gauge theories. Nucl. Phys. B 153, 334–364 (1979)

219. K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 133, 43–65 (2000). arXiv:hep-ph/0004189 [hep-ph]

220. J. Lesgourgues, S. Pastor, Massive neutrinos and cosmology. Phys. Rep. 429(6), 307–379 (2006). ISSN 0370-1573

221. E.W. Otten, C. Weinheimer, Neutrino mass limit from tritium β decay. Rep. Prog. Phys. 71(8), 086201 (2008)

222. F.T. Avignone, S.R. Elliott, J. Engel, Double beta decay, majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008)

223. M. Agostini, (GERDA), Improved limit on neutrinoless double-β Decay of 76Ge from GERDA phase II. Phys. Rev. Lett. 120(13), 132503 (2018). arXiv:1803.11100 [nucl-ex]

224. A. Gando et al. (KamLAND-Zen), Search for majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117(8), 082503 (2016). arXiv:1605.02889 [hep-ex] (Addendum: Phys. Rev. Lett.117,no.10,109903(2016))

225. M. Agostini, (GERDA), Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment. Phys. Rev. Lett. 111(12), 122503 (2013). arXiv:1307.4720 [nucl-ex]

226. M. Agostini, Background free search for neutrinoless double beta decay with GERDA phase II. Nature 544, 47 (2017). arXiv:1703.00570 [nucl-ex]