Research Article

Exploring the Flora of South Sulawesi, Forest Vegetation, and Karst Areas as Bundle Dyeing on Silk Fabrics

Sitti Nuraeni, 1 Nasri Nasri, 2 Andi Siady Hamzah, 2 and Wahyudi Wahyudi 3

1 Laboratory of Forest Protection and Insects, Faculty of Forestry, Hasanuddin University, Makassar 90245, Indonesia
2 Laboratory of Forest Conservation and Ecotourism, Faculty of Forestry, Hasanuddin University, Makassar 90245, Indonesia
3 Forestry Program, Faculty of Agriculture and Forestry, University of Sulawesi Barat, Majene, Indonesia

Correspondence should be addressed to Sitti Nuraeni; sitti.nuren@unhas.ac.id

Received 31 December 2021; Revised 15 May 2022; Accepted 2 June 2022; Published 31 August 2022

Academic Editor: Ahmad A. Omar

Copyright © 2022 Sitti Nuraeni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The development of dyeing from natural substances for silk fabrics has been rapidly growing in recent years. This study aimed to explore the plant species producing unique dyes and patterns on silk fabrics. The flowers and leaves of some plant species found at the research sites were assayed for their color and shape expression on the fabrics. The dyeing technique applied was the bundle dyeing or ecoprinting technique on the fabric’s surface with mordant alum and myrobalan. We obtained 297 plants consisting of 95 families and 181 genera. The plant species producing colors were trees (48.4%), shrubs (30.5%), and herbs, vines, ferns, and lycops (21.1%). The plant species samples obtained were 213 (71.7%) producing color and 84 (28.3%) species not expressing color. The leaves and flowers producing colors and patterns on the fabrics suitable for bundle dyeing were 126 species and 19 species, respectively. The leaves produce colors without shape patterns; thus, they have potential roles as dyes for the dipping technique.

1. Introduction

Natural dyes for fabrics are dyeing substances extracted from natural resources, such as plants, animals, and minerals. Most natural dyes are vegetable dyes from plants’ parts, that is, roots, rinds, seeds, bark, flowers, and wood, as well as other organic resources, such as fungi, lichens [1], and Serratia marcescens SB08 bacterium [2]. Even with organic waste, living organisms, and by-products from food, beverage, wood, agricultural, and other industries can be utilized as natural dyes [3]. These natural dyes then go through several processes, namely, boiling, burning, bruising, pounding, or being directly used.

The communities in developed countries and their textile industries have widely acknowledged the utilization of natural dyes for fabrics. Examples of plants for natural dyes are Indigofera or Isatis tinctoria in North Europe and England. Red colors on the textile are from madder (Rubia tinctorum), Manjistha or Indian madder (Rubia cordifolia), Brazilwood (Caesalpinia echinata), Sappan wood (Caesalpinia sappan), and Indian mulberry (Morinda citrifolia) [4]. Natural dyes can be easily obtained locally from several plant parts, such as leaves, bark, wood, or roots, so the cost is very cheap with several advantages [5]. Likewise, Indonesian tribes have been using natural materials for years as yarn dyes for woven fabrics. The Iban Dayak tribe in Kapuas Hulu Regency, Kalimantan, uses plants as natural dyes: M. citrifolia L., Pandanus amaryllifolius, Curcuma domestica, Morinda tinctoria, and Psychotria sp. [6]. In Sintang and Sambas Regencies, West Kalimantan, the traditional cloth weavers generate natural dyes from 36 plant species [7]. Additionally, some tribes in Indonesia have used these substances for dyeing the weave and batik fabrics that they become local wisdom. However, they have only applied dipping techniques for yarn and finished fabrics.

Fabric dyeing using natural dyes has undergone some developments, including direct contact dyeing techniques, better known as bundle dyeing or contact dyeing or ecoprint techniques. It is a simple technique by applying the plant part directly to the pretreated fabric. Contact dyeing is a...
creative method widely exerted by graphic art designers, textile designers, and artists [3]. This technique can be performed on fabrics; natural fibers: cotton, canvas, linen, and silk [3, 8], and synthetic fibers: viscose, tencel, and polyester [3]. It also can be combined with the batik dyeing technique using plant leaves [9]. The silk dyeing raises the exclusive value of the artwork, and eventually, the purchase price will be very high. The prices of plain silk fabric range from IDR 60,000.00 to 115,000,000.00 (the equivalent of 4.24–8.13 USD in 2019) per meter, depending on the silk fibers. Nevertheless, after dyeing and patterning the bundle dyeing technique, the price will reach IDR 1,500,000.00 for 2.5 meters per piece of silk fabric [10]. Thus, it might be a profitable business opportunity.

Natural dyeing with bundle dyeing has become very popular because of its unique aesthetic value and limited product. The plant species are still limited to those that can express colors well. The most commonly used plant species in the eco-print technique are ginkgo leaves, eucalyptus, willow, teak, and so on. The finding will inform new dyes of bundle dyeing or eco-print for the practitioners.

2. Materials and Methods

2.1. Flora Sampling. The samples were collected from leaves and flowers from all plant species found at the research sites. The collection locations were Hasanuddin University area, Makassar (site I); the educational forest of Hasanuddin University area, Maros (site II); the nursery of the Second Region of Forest Seed/Seedling Office, South Sulawesi, Gowa (site III); Special Purpose Forest Area, Tabo-Tabo Forestry Education and Training, Pangkep (site IV); Rammang-Rammang Tourism Karst, Maros (site V); Leang Kado Karst, Maros (site VI); and Kahu Village Forest, Bontocani, Bone (site VII; Figure 1).

Samples were collected using the exploration method: exploring the entire forests and karst areas and selecting representative plant species. The samples were trees, shrubs, bushes, vines, ferns, and herbs that had grown and/or were saplings. The selected leaves are shoots and mature leaves but before turning yellow. Flower samples were found according to flowering time. The collected plants were recorded with their scientific names, and the identification was performed for unknown species. The selected parts of the plant were from the shoot up to the 7th–10th leaves and flowers (if available). All plant parts were taken if it is the herb, sapling, or bush. The samples were immediately assayed before they were wilt. Samples assayed at the previous site were not reassayed at the following site but were recorded.

2.2. Preparation of Silk Fabric and Mordanting. The silk fabric used was 150 × 200 cm. The fabric was soaked for 30 minutes in a 14 g/l TRO (Turkish Red Oil) solution. The fabric was rubbed, rinsed, and then squeezed. The fabric was drained until the water was no longer dripping, and then it was ready to be mordanted. The mordant solution consisted of 17 g/l alum (KAl(SO4)2·12H2O), 7 g/l myrobalan tannins, and 3 ml/l vinegar. The silk fabric was soaked in the mordant solution for 30 minutes. After that, the fabric was wrung out and drained until there was no more dripping solution.

2.3. Sample Arrangement on Silk Fabric. The approach method used is to directly print the patterns using the shapes of plants on fabrics [11]. A damp fabric that has been mordant spread out on a flat surface. Samples of leaves/flowers were arranged on the fabric and sorted according to the code. Each sample species was tested for mature shoots and leaves. The position of the leaf stomata was placed facing the fabric and vice versa. Samples that have been arranged were covered with plastic and then rolled and tied. Samples were steamed for two hours.

2.4. Data Collection. Each plant sample was observed to express the color of the leaves or flowers on the fabric. The resulting colors were grouped without distinguishing the strength of the color. The leaf/flower motif depicted was described as “formed” or “uniformed” on the silk fabric. Leaf samples consist of shoots and mature leaves but are not yet yellowed. The leaf sample is placed on fabric with the stomata facing down and vice versa. The leaf sample is placed on fabric with the stomata facing down and vice versa.

3. Results and Discussion

3.1. Plant Species That Produce Color. Samples collected from the educational forest of Hasanuddin University (site II) had more plants (97 plants) than other sites. This site has an area of 1,300 ha comprising natural forest with original vegetation. Kara and Lhotka [12] stated that unmanaged forests or natural forests possess higher biodiversity levels than managed forests, such as planted forests. As many as 53 species were found at site I in Hasanuddin University and its surroundings. At site III, the samples found were 92 species. Site IV–VI are karst areas with vegetation of no more than 60 species at each site. Most of the species at site VII were already found at the other sites.

The samples obtained were 297 species consisting of 213 (71.7%) producing color and 84 (28.3%) species not expressing color. There are 95 families, 181 genera, 213 species of colored leaves, and 29 species of 16 families of colored flowers (Table 1). Exploration by Prigioniero et al. [13] in Southern Italy, Mediterranean Basin, identified 64.31% of plant species producing colors that were 25.2% of leaves and 18.5% of flowers. The expressed colors were divided into groups based on the percentage producing yellow, green, brown, orange, grey, red, black, faded blue, and pink (Figure 2(a)), and the life-forms were trees, bushes, herbs, vines, ferns, and lycopods that produce colors from their leaves (Figure 2(b)). The leaves and flowers that produced colors and patterns on the fabrics were 126 (59, 15%) species and 19 species, respectively. Eighty-four species that do not produce color in leaves and flowers are the families Poaceae, Arecaceae, Pinaceae, and Arecaceae.

The families with leaves that expressed the greenest color and formed patterns were Euphorbiaceae, Fabaceae, and Malvaceae. The other seven families only had one species
whose leaves produced green color. Genus of Malvaceae expressed green only in its shoots (genus *Senna*). The leaves of families Fabaceae, Myrtaceae, Lamiaceae, Bignoniaceae, Vitaceae, Asteraceae, and Meliaceae produced yellow color and patterns. The Dayak Randu tribe in Melawi, West Kalimantan, utilizes *Mucuna* sp. (family Fabaceae) for producing yellow dye and *Daemonorops* (family Araceae) for red dye for yarns or fabrics [14]. The Dayak Bidayuh tribe, Sanggau, West Kalimantan, uses *Aglaia odorata* Lour (Meliaceae) leaves to produce purple dye [15]. The yellows for dyeing are common and abundant in natural dyes, particularly from Fabaceae and Euphorbiaceae [16]. Prigioniero et al. [13] stated that in addition to leaves, other parts of the plants also produce yellow colors, such as roots, fruit peduncles, and flowers (54%). Some species that also produce yellow color on fabrics are *Garcinia dulcis* (Roxb.) [17], *Cinnamomum camphora* [18], and *Manilkara zapota* (Sapotaceae) [19].

Three species from the families Fabaceae, Euphorbiaceae, and Lamiaceae expressed brown rust color. *Syzygium guajava, Canarium decumanum*, *Aganosma marginata*, *Amorphophallus paconifolius*, *Spigelia, anthelminia*, and *Orozylum indicum* were the species from different families that produced orange color and patterns on the fabric of their leaves. Two species from the family Rubiaceae, *Coffea* spp., and *Nauclea orientalis* were also generated orange color, but the motif uniformed on the fabric. Thus, those species are potential as dipping dyes. Family Rubiaceae generates reddish to dark orange dyes in the dipping technique [16]. Moreover, the flowers generally used in dyeing are *Cosmos* sp. for orange dye [20] and *Tagetes erecta* for light brown [21].

3.2. The Color Expression on the Fabric

The printed samples formed the leaf shapes and even showed clear leaf veinsations were *Wrightia arborea, Gossypium arboreum, Acalypha wilkesiana, Polygonum barbatum, O. indicum, Antigonon leptopus*, and *Tecnona grandis* (Figures 3(a)–3(g)). The well-printed samples but unformed leaves or flowers according to the sample, such as the flowers of *Hibiscus rosa sinensis* L. and leaves of *N. orientalis* L. (Figures 3(h) and 3(i)). Bundle dyeing is a natural technique that transfers colors and shapes to produce patterns from natural substances, such as leaves or flowers, to the fabric. Transferring colors and shapes to the fabric works well if it can display the original color and texture of the natural substance’s surface in detail. The natural substances used must have sensitive pigments that can be expressed with the help of specific triggers. The trigger in the fabric dyeing is called the mordant. Özen et al. [22] explained that the mordants that can be applied are potassium aluminum sulfate (alum), iron (II) sulfate, copper (II) sulfate, and tin chloride. In this research, we utilized alum and added myrobalan tannin to strengthen the color expression of the tested samples. Myrobalan is a plant species containing high tannin content, so it is used as a natural mordant [5]. Myrobalan will increase the affinity
Table 1: List of flora, shoot (s), mature of the leaf (m), the color from the lower surface of the leaf to the fabric (↑), the color from the lower and upper surface of the fabric (↑↓), Hasanuddin University area, Makassar (I), the educational forest of Hasanuddin University area, Maros (II), the nursery of the Second Region of Forest Seed/Seedling Office, South Sulawesi, Gowa (III), Special Purpose Forest Area, Tabo-Tabo Forestry Education and Training, Pangkep (IV), Rammang-Rammang Tourism Karst, Maros (V), Leang Kado Karst, Maros (VI), and Kahu village forest, Bontocani, Bone (VII).

Species	Plant families	Life form	Sample & position	Colors group	motif of samples	Site
Antigonon leptopus Hook. & Arn	Polygonaceae	vine	s, m ↑	yellow	formed	V, VII
Polygonum barbatum	Polygonaceae	herb	s, m ↑↓		formed	VI
Anacardium occidentale L.	Anacardiaceae	tree			unformed	I, II, III
Lannea grandis (Dennst.) Engl	Anacardiaceae	tree	s, m ↑↓		formed	I, V
Mangifera caesia Jack.	Anacardiaceae	tree			unformed	II
Muntingia calabura L.	Muntingiaceae	tree	s, m ↑↓		formed	I
Tricalysia minahassae Comb	Rubiaceae	tree			unformed	III
Mussaenda erythropylla Schum. & Thom.	Rubiaceae	shrub	s, m ↑↓		formed	I
Cananga odorata (L.) Hook.f. & Breckon	Annonaceae	tree	s, m ↑↓		formed	II
R.M.K. Saunders	Annonaceae	tree			unformed	III
Naboa longifolia (Som.) B. Xue &	Annonaceae	tree			unformed	III
Standl.	Bignoniaceae	tree	s ↑↓		formed	III
Sporadendron campylura P. Beauv	Bignoniaceae	tree	s ↑↓		formed	I
Podreaea ricasoliana T.	Bignoniaceae	shrub	s, m ↑↓		formed	VI
Messa ferrea L.	Calophyllaceae	tree	s, m ↑↓		formed	III
Colophyllum calophyllum L.	Calophyllaceae	tree	s, m ↑↓		formed	III
Casuarina equisiliolit A.	Casuarinaceae	tree	s, m ↑↓		formed	III
Garcinia celebica (Burms.) L.	Clusiaceae	tree	s ↑↓		formed	II, IV
Vatica flavovirens K.L.	Dipterocarpaceae	tree	unformed		IV	
Lycocepodium clavatum L.	Lycopodiaceae	lycopod	s, m ↑↓		formed	IV
Aleurites moluccana L.	Euphorbiaceae	tree			unformed	II, III
Euphorbia pulcherrima Willd. ex Klotzsch	Euphorbiaceae	shrub	s ↑↓		formed	I
Hura crepitans L.	Euphorbiaceae	tree			unformed	I, III
Macaranga tanarius L. (Müll.Arg.	Euphorbiaceae	shrub	s ↑↓		formed	I
Diopterys macrophylla Blume	Ebenaceae	tree			unformed	III
Mimosa pudica L.	Fabaceae	shrub			unformed	I-VII
Callistemon callosusus L.	Fabaceae	tree	s, m ↑↓		formed	V
Samantha saman (Jacq.) Merr.	Fabaceae	tree	s, m ↑↓		formed	I
Delonix regia (Bojer ex Hook.) Raf.	Fabaceae	tree	s, m ↑↓		formed	I, III
Parkia speciosa Hassk.	Fabaceae	tree	s, m ↑↓		formed	III
Schizolobium amazonicum Huber ex Duke	Fabaceae	tree	s, m ↑↓		formed	III
Intisia bijuga (Cleve.) Kunth.	Fabaceae	tree	s, m ↑↓		formed	III
Pericopsis mononiana (Thwaites) T.	Fabaceae	tree			unformed	III
Gymnema caulis L.	Fabaceae	tree	s, m ↑↓		formed	III
Cajanus cajan (L.) Millsp.	Fabaceae	tree	s, m ↑↓		formed	II
Anadenospermum pavonina L.	Fabaceae	tree	s, m ↑↓		formed	I
Leucaena leucocephala L.	Fabaceae	tree			unformed	I, IV
Vitex cognasch Reinv. ex Blume	Lamiaceae	tree			unformed	I-VII
Pogostemon cablin Benthi	Lamiaceae	shrub	s, m ↑↓		formed	VI
Clerodendrum chinense (Osbeck) Mabb	Lamiaceae	shrub	s, m ↑↓		formed	I, V
Clerodendrum thomsonianum Balf.f.	Lamiaceae	shrub	s, m ↑↓		formed	V
Cryptocarya massaia (Okon.) Kosterm.	Lauraceae	tree			unformed	I, II, VII
Cinnamomum burmannii (Nees & T. Nees) Blume	Lauraceae	tree	s, m ↑↓		formed	III
Swietenia macrophylla King	Meliaceae	tree	s ↑↓		formed	II, III
Sandericum koetjape (Burm.f.) Merr.	Meliaceae	tree	s ↑↓		formed	I, III
Toona sureni (Blume) Merr.	Meliaceae	tree	s ↑↓		formed	I, III
Myristica fatua Houtt.	Myristicaceae	tree	s ↑↓		formed	III
Tristani um neriifolia (Sim.) R. Br.	Myrtaceae	tree	s, m ↑↓		formed	III
Xanthostemon pubescens (Brong. & Gris)	Myrtaceae	shrub	s, m ↑↓		formed	VII
Syzygium smithii (Poir.) Nied.	Myrtaceae	tree	s ↑↓		formed	I, V
Syzygium polyanthum (Wight) Walp.	Myrtaceae	tree			unformed	II, III, IV
Eucalyptus alba Reinv. ex Blume	Myrtaceae	shrub	s, m ↑↓		formed	III
Eucalyptus deglupta Blume	Myrtaceae	tree	s ↑↓		formed	I, III
Species	Plant families	Life form	Sample & position	Colors group	motif of samples	Site
---	----------------	-----------	-------------------	--------------	------------------	------
Olea europaea L.	Oleaceae	shrub	s ††	formed	III	
Zeuxis mauritiana Lam.	Rhamnaceae	tree				
Macropis emissi Engl.	Rhamnaceae	tree	s, m ††	formed	III, IV	
Melicope fistulosa (DC.) T.G. Hartley & B. C. Stone	Rutaceae	shrub			unformed	III
Citrus maximia (Burm.) Merr.	Rutaceae	tree		unformed	I-VII	
Zanthoxylum ricketts (Roxb.) DC.	Rutaceae	tree	s, m ††	formed	III	
Flacourtia ricket Zoll. & Moritz.	Salicaceae	tree	s, m ††	formed	III	
Santalum album L.	Santalaceae	tree	s, m ††	formed	III	
Euphorianthus venaeczus (Miq.) Leenh.	Sapindaceae	tree		unformed	I-VII	
Dimocarpus longan Loui.	Sapindaceae	tree	s, m ††	formed	II, III, IV	
Palagumum oblongifolium Burck.	Sapotaceae	tree	s ††	formed	III	
Manilkara kanwa (L.) Dubard	Sapotaceae	tree		unformed	III	
Manilkara kunanensisii H.J. Lam & B.	Sapotaceae	tree	s ††	formed	III	
Moeceae	Sapotaceae	tree		unformed	VI	
Mimusops elengi L.	Sapotaceae	tree		unformed	VI	
Passiflora edulis	Passifloraceae	vine	s, m ††	formed	III	
Leea aculeata Blume ex Spreng.	Vitaceae	shrub	s, m ††	formed	II	
Leea guineensis G. Don	Vitaceae	shrub	s, m ††	formed	VI	
Cynus verticillata L.	Vitaceae	vine	s, m ††	formed	IV	
Cosmus caudatus Kunth	Asteraceae	shrub	s, m ††	formed	I, IV	
Tagetes erecta L.	Asteraceae	shrub	s, m ††	formed	I	
Melampodium divericatum (Rich.) DC.	Asteraceae	shrub	s, m ††	formed	III	
Panicus granatum L.	Lythraceae	shrub	s, m ††	formed	III	
Daeace Carota L.	Apiaceae	herb		formed	III	
Impatiens pullerianna Hook.f.	Balsaminaceae	herb	s, m ††	formed	VII	
Averrhoa bilimbi L.	Oxalidaceae	tree	s, m ††	formed	I	
Piperomia Felliida L.	Piperaceae	herb		unformed	VI	
Piperum umbilatum L.	Piperaceae	vine	s, m ††	formed	V	
Datura metel L.	Solanaceae	shrub		unformed	VII	
Ipomea batatas (L.) Lam.	Convolvulaceae	vine	s ††	formed	II, IV	
Gossypium arboreum L.	Malvaceae	shrub	s, m ††	formed	VII	
Chrysanthemum pulchella (Copper Leaf)	Geraniaceae	herb	s, m ††	formed	I	
Scirpanthus sylvatica (Korth) Baiil	Geraniaceae	herb		unformed	IV, VII	
Aquilaria malaccensis Okon	Thymelaeaceae	tree	s ††	formed	I	
Polystylosia opposita (Wallich) Alston	Celastraceae	shrub		formed	II, IV	
Bruguiera gymnoorhiza (L.)	Rhizophoraceae	shrub		unformed	V, VI	
Lygodium microphyllum	Schizaceae	fern		unformed	V, VI	
Acerostichum anurnum L.	Pteridaceae	fern		formed	IV, V	
Epilobium montanum L.	Onagraceae	herb	s, m ††	formed	V, VI	
Ficus auriculata Loor.	Moraceae	tree	s, m ††	formed	VI	
Paripartia officinalis L.	Urticaeae	shrub	s, m ††	formed	VI	
Torenia fournieri L.	Linderniaceae	shrub		unformed	I, II, VII	
Annona muricata L.	Annonaceae	tree	s, m ††	green	formed	I
Annona squamosa L.	Annonaceae	tree	s, m ††	unformed	I, II, VII	
Mangifera indica L.	Anacardaceae	tree		unformed	I, II, VII	
Aristolochia scholaris (L.) R. Br	Acanthaceae	tree		formed	I, II, VII	
Hygropha auriculata (K. Schum.)	Acanthaceae	herb		unformed	V-VI	
Arterbophyllum diversifolium Blume	Araliaceae	tree	s, m ††	formed	II	
Tabea pala L.	Bignoniaceae	shrub	s, m ††	formed	I, III	
Diospyros celebica Bak.	Ebenaceae	tree		unformed	1-III	
Senna siamee (Lam.) H.S. Irwin & Barnchey	Fabaceae	tree	s, m ††	formed	I	
Senna alata (L.) Roxb.	Fabaceae	shrub	s, m ††	formed	II	
Senna occidentalia L.	Fabaceae	shrub	s, m ††	formed	VII	
Bauhinia purpurea L.	Fabaceae	tree		unformed	I-VII	
Casalpinia pulcherrima (L.) Sw.	Fabaceae	shrub		unformed	I, II, VII	
Gmelina arborea Roxb.	Lamiaceae	tree	s, m ††	formed	I, II	
Vitex trifolia L.	Lamiaceae	shrub	s, m ††	formed	II	
Persoon americana Mill.	Lauraceae	tree		unformed	II, VII	
Laggerstroemia speciosa (L.) Pers.	Lythraceae	tree		unformed	I-III	
Species	Plant families	Life form	Sample & position	Colors group	motif of samples	Site
--------------------------	----------------	-----------	-------------------	--------------	------------------	------
Pisonia grandis R.B.	Nyctaginaceae	tree	s, m ↑↓	formed	III	
Durio zibethinus Merr.	Malvaceae	tree	s ↑↓	formed	I	
Kleinovia hospita L.	Malvaceae	tree	s ↑↓	formed	I	
Hibiscus rosa-sinensis L.	Malvaceae	shrub	s ↑↓	formed	I	
Urena lobata L.	Malvaceae	shrub	s ↑↓	formed	VI	
Broussonetia papyrifera (L.)	Moraceae	shrub	s, m ↑↓	formed	IV	
Morus cathayana Hems.	Moraceae	shrub	s, m ↑↓	formed	I	
Rosa hipida L.	Rosaceae	shrub	s, m ↑↓	formed	I	
Prunus avium L.	Rosaceae	shrub	s, m ↑↓	formed	VI	
Syzygium cumini (L.) Skeels	Myrtaceae	tree	s	unformed	II, IV	
Psidium guajava L.	Myrtaceae	shrub	s, m ↑↓	formed	I, II	
Piper baccatum Blume	Piperaceae	vine	s	unformed	IV, VI	
Piper betle L.	Piperaceae	vine	s	unformed	IV, VI	
Piper capellibracteum C,DC	Piperaceae	vine	s	unformed	II, IV	
Anthocephalus chinensis (Lam.) Rich. ex Waip.	Rubiaceae	tree	s	unformed	I, III, V	
Morinda citrifolia L.	Rubiaceae	shrub	s	unformed	I, VII	
Gardenia jamassicensis J. Ellis	Rubiaceae	shrub	s ↑↓	formed	II, IV	
Lantana camara L.	Verbenaceae	shrub	s, m ↑↓	formed	II	
Stackebrandia jamaicensis (L.) Vahl	Verbenaceae	herb	s, m ↑↓	formed	II	
Terminalia catappa L.	Combretaceae	tree	s, m ↑↓	formed	I	
Cayratia trifolia L.	Vitaceae	shrub	s, m ↑↓	formed	I	
Leea indica (Burm.f.) Merr.	Vitaceae	shrub	s	unformed	IV, VI	
Ricinus communis L.	Euphorbiaceae	shrub	s, m ↑↓	formed	III	
Jatropha curcas L.	Euphorbiaceae	shrub	s, m ↑↓	formed	II	
Jatropha gossypifola L.	Euphorbiaceae	shrub	s, m ↑↓	formed	I	
Jatropha multifida L.	Euphorbiaceae	shrub	s, m ↑↓	formed	II	
Acalypha indica L.	Euphorbiaceae	shrub	s, m ↑↓	formed	I	
Acalypha hispida L.	Euphorbiaceae	shrub	s, m ↑↓	formed	I	
Euphorbia hirta L.	Euphorbiaceae	herb	s, m ↑↓	formed	I, II	
Chromolaena odorata (L.) R.M. King & I. Rob.	Asteraceae	shrub	s	unformed	I, VII	
Diplazium aberrans Maxon & C. V. Morton	Athyridaceae	fern	s	formed	IV, V	
Phyllanthus acidus (L.) Skews	Phyllanthaceae	tree	s, m ↑↓	formed	III	
Adiantum raddianum C. Presl	Pteridaceae	fern	s, m ↑↓	formed	III	
Aristolochia aureum L.	Pteridaceae	fern	s	formed	III	
Betula pubescens L.	Betulaceae	tree	s	unformed	IV	
Amaranthus retroflexus L.	Amaranthaceae	bush	s, m ↑↓	formed	III	
Celosia argentea L.	Amaranthaceae	bush	s, m ↑↓	formed	III	
Passiflora foetida L.	Passifloraceae	vine	s, m ↑↓	formed	II	
Salix caprea L.	Salicaceae	bush	s	unformed	IV	
Sicyos angulatus L.	Cucurbitaceae	vine	s	formed	VI	
Sphenoclea zeylanica Gaertn	Sphenocoleaceae	herb	s	formed	V	
Aspidistra indica A. Juss.	Meliaceae	tree	s, m ↑↓	formed	I	
Ipomea sp	Convolvulaceae	vine	s, m ↑↓	formed	II, VI	
Scirpus atropurpureus (Blume) Danser	Loranthaceae	vine	s	formed	IV	
Pangium edule Reinw. ex Blume	Araliaceae	tree	s ↑↓	formed	III	
Monstera delicosa Liebm.	Araceae	vine	s	unformed	II, IV, VII	
Agathis alba (Lamb.) Rich. & A. Rich.	Araucariaceae	tree	s, m ↑↓	formed	III	
Terminalia mantaly H. Perrier	Combretaceae	tree	s, m ↑↓	formed	III	
Theobroma cacao L.	Malvaceae	shrub	s, m ↑↓	formed	I	
Tilia platyphyllos Scop.	Malvaceae	shrub	s ↑↓	formed	V	
Cinnamomum sp	Lauraceae	tree	s, m ↑↓	formed	II, III	
Syzygium aromaticum (L.) Merr. & L.M. Perry	Myrtaceae	tree	s, m ↑↓	formed	II	
Callictenon citrinus (Curti.) Skews	Myrtaceae	tree	s, m ↑↓	formed	VI	
Neea malaccika cadamba (Rehb.) Bosser	Rubiaceae	tree	s, m ↑↓	formed	III	
Ficus carica L.	Moraceae	shrub	s, m ↑↓	formed	III	
Pometia pinnata J. R. Forst. & G. Forst.	Sapindaceae	tree	s, m ↑↓	formed	III, III	
Sapindus saponaria L.	Sapindaceae	tree	s, m ↑↓	formed	VI	
Selaginella tamariscina (P. Beauv.) Spring	Selaginellaceae	fern	s	formed	II, IV	
Schima wallichii (DC.) Korth.	Theaceae	tree	s	unformed	III	
Table 1: Continued.

Species	Plant families	Life form	Sample & position	Colors group	motif of samples	Site
Plectranthus scutellarisoides L.	Lamiaceae	herb	s, m ‡	formed	I	
Volkommenia inermis L.	Lamiaceae	vine	s, m ‡	formed	VI	
Ocimum citriodorum L.	Lamiaceae	shrub		uniformed	II, IV	
Prenanthes volubilis L.	Lamiaceae	shrub		uniformed	II, IV	
Melastoma malabathricum L.	Melastomataceae	shrub	s, m ‡	formed	II	
Garcinia mangostana L.	Clusiaceae	tree		uniformed	II, IV	
Ficus benjamina L.	Moraceae	tree		uniformed	V, VI	
Solanum hirtum Vahl.	Solanaceae	tree		uniformed	VII	
Eclipta prostrata L.	Asteraceae	herb	s, m ‡	formed	I, V	
Fagus grandifolia Ehrh	Fagaceae	tree		uniformed	VI	
Inga senarissa D.	Fabaceae	shrub	s, m ‡	formed	II, III	
Pococannhe parviflora B.	Fabaceae	shrub	s, m ‡	formed	VI	
Barleria cristata L.	Acanthaceae	shrub		uniformed	V, VI	
Achyranthes aspera L.	Amaranthaceae	shrub		uniformed	II, IV	
Borbermia cylindrica L.	Urticaceae	tree		uniformed	IV	
Angelica sylvestris L.	Apiaceae	shrub		uniformed	IV, VI	
Rauwolfia caffra S.	Apocynaceae	tree	s, m ‡	formed	VI	
Muchenbeckia complexa A.C.	Polygonaceae	vine		uniformed	IV, VII	
Rhizophora mucronata Lamk	Rhizophoraceae	tree		uniformed	VI	
Tectona grandis L.F.	Lamiaceae	shrub	s, m ‡	red	formed	I, II, III
Indigofera tinctoria L.	Fabaceae	shrub		uniformed	V, VI	
Begonia spp	Begoniaceae	herb		uniformed	V, VI	
Hemitropis alternata (Burn.f.) T.	Acanthaceae	herb		pink	uniformed	V, VI
Anderson	Acanthaceae	herb				
Eryngium foetidum L.	Acanthaceae	herb				
Cleopatra manghaes L.	Acanthaceae	herb				V, VI
Symplocos ophiophora C.B. Clarke	Symplocaceae	shrub	s, m ‡	grey	uniformed	V, VI
Syringia guayava L.	Myrtaceae	tree	s, m ‡	formed	VI	
Inga alba (Sw.) W.	Fabaceae	tree	s, m ‡	formed	VI	
Monstera Borsigiana L.	Araceae	vine	s, m ‡	formed	I	
Wringia arbores (Dentist.) Mabb	Apocynaceae	tree	s, m ‡	formed	I	
Acalypha wilkesii Mull. Arg.	Euphorbiaceae	shrub	s, m ‡	black	formed	I
Epiploca cupreata Hamst	Gesneriaceae	herb				
Codiaeum variegatum (L.) A. Juss	Euphorbiaceae	shrub	s, m ‡	blue	uniformed	VII
Coffee sp	Rubiaceae	shrub		orange	uniformed	VI-VII
Nuellea orientalis L.	Rubiaceae	tree		orange	uniformed	VI-VII
Symlocos opruniflorus DC.	Symplocaceae	shrub		blue	uniformed	II-VI
Syringia guayava L.	Myrtaceae	tree				
Canarium decumatum Gaert (Burs.)	Burseraceae	tree	s, m ‡		formed	I
Aganosma marginata (Roxb.) G. Don	Apocynaceae	vine	s, m ‡		formed	II
Amorpha phylla (Dentist.) Mabb	Apocynaceae	tree	s, m ‡		formed	I
Nicotiana	Araceae	herb	s, m ‡	black	uniformed	
Spigenia angustifolia L.	Loganiaceae	shrub	s, m ‡	blue	uniformed	VI-VI
Cassia clementiana (L.) Vent.	Cassia clementiana (L.) Vent.	shrub	s, m ‡	blue	uniformed	V, VI
Part used: Flowers						
Seemannia sylvatica (Kunth) Balli	Gesneriaceae	herb				
Chrysophyllum pachypodum (Copper Leaf)	Gesneriaceae	herb				
Tagetes erecta L.	Asteraceae	shrub				
Spathodea campanulata P. Bearv	Bignoniaceae	tree				
Rosa hirsuta L.	Rosaceae	shrub				
Punica granatum L.	Lythraceae	shrub				
Musaenda erythrophylla Schum. & Thom	Rubiaceae	shrub				
Melastoma malabathricum L.	Melastomataceae	shrub	s, m ‡	formed	II	
Plumeria rubra L.	Apocynaceae	shrub				
Stachytarpheta jamaicensis (L.) Vahl	Verbenaceae	herb				
Hibiscus sabdariffa L.	Malvaceae	shrub				
Hibiscus rosa-sinensis L.	Malvaceae	shrub				
Barleria cristata L.	Acanthaceae	shrub				
Torenia fournieri L.	Linderniaceae	shrub				
Cosmos caudatus Kunth	Asteraceae	shrub				
Melampodium divaricatum (Rich.) DC.	Asteraceae	herb				
Impatiens balsamina	Balsaminaceae	herb				
Senna alata (L.) Rob.	Fabaceae	shrub				
Caesalpinia pulcherrima (L.) Sw.	Fabaceae	shrub				
Senna siamea (Lam.) H.S. Irwin & Barneby	Fabaceae	tree				
Rauvolfia serpentina L.	Rubiaceae	shrub				
Hibiscus tiliaceus L.	Malvaceae	tree				
Gossypium arboreum	Malvaceae	shrub				
Crossandra infundibuliformis L.	Cacuminaceae	tree				
Tabebuia chrysotricha (Matt. ex DC.)	Bignoniaceae	tree				I-VII
Sterculia	Bignoniaceae	tree				
Lea guineensis G.Don	Vitaceae	shrub		grey	uniformed	V
Eclipta prostrata L.	Asteraceae	shrub				V
Macaranga tanarius (L.) Müll.Arg.	Euphorbiaceae	shrub		green	formed	II
Figure 2: Percentage of colors group expression of leaf samples (a) and vegetation life forms of colored leaves (b).

Figure 3: Continued.
The application of alum mordant and natural myrobalan mordant is still relatively safe or nontoxic [24]. The color of each plant on the fabric may differ from the original color due to the used mordant types. The option of using alum as the mordant produces a color that is stronger and closer to the color without the mordant, as in *G. dulcis* produces a beige shade if without mordant and becomes a yellow shade using alum [17]. The iron (II) sulfate as mordant generates the natural color becoming darker (dark brown, grey, or even black) [17, 25–27]. It is the main reason for alum mordant and tannin application as preliminary research on natural substance dyeing.

There is no visual indication of plant species that can be used as a fabric dye base. Morphologically, there are no definite indications that the leaves can be used as fabric dyes. Leaf shape, rough or smooth leaf surface, many or few trichomes, and producing a sharp odor are not good indicators of color production. No characteristic of the life-form groups (trees, shrubs, vines, or herbs) can be used as
dyes. Likewise, under the position of the leaves on the surface of the fabric, two species of upper surface leaves produce color (A. leptopus and G. arboreum), and twenty-four species produce color in shoots. The printed color variations are highly dependent on the color pigments contained in the dyes used. The phytochemicals responsible for the dyeing are from the flavonoid group [20, 28, 29]. Organic dyes are divided into chemical classes: anthraquione, to none, indigoid, naphthoquinone, carotenoids, flavones, dihydropryrans, anthocyanidin, and flavonol [16]. The colors produced by teaks’ (Tectona grandis) leaves are orange, red, bloody red, and dark brown with very strong and bright venation due to β-carotene pigment, phlophyn, pelargonidin 3-glucoside, pelargonidin 3,7-diglucoside, and anthocyanin [30]. At the same time, the green color is expressed from leaves rich in chlorophyll and other colors from indigotin [13].

The strength of the sample colors on the fabrics also depends on the presence of hydroxyl or carbonyl groups in the structure of the color pigment, which can be bound by the positively charged metal complex of the mordant. The dyes’ metal anions and cations have a strong affinity for positively charged amino groups on the negatively charged carboxyl groups of silk fiber. Thus, ionic bonds are formed between the dye with the mordant and fiber, between metal and fiber, and eventually between the dye and metal ions. A dye molecule can only form a fabric fiber bond, while a mordant molecules bond with two or more plant color pigment molecules [25]. In addition to the pigment bonding to the mordant, the mordants’ type and concentration also determine the color strength [31] and are not determined by the temperature at the time of dying [32].

The natural dyeing of the fabric depends on not only the mordant used but also the dyeing technique [33]. The highly vivid, sharp, and impressive visual effects are produced using a minimum amount of mordant plants for optimal application to obtain unique and non-repeatable results [22]. The contact dyeing technique tends to produce random patterns or high concentrations of color in particular areas. These unique colors and/or patterns cannot be duplicated, resulting in highly creative products. Preparation of substances is from various plants for dyes and patterns. The dyes’ substances and textile types produce a variation in color strength in the contact dying technique [34]. Plant parts expressing strong color and providing detailed visualization of leaf venation are the best material for the bundle dyeing technique. The genus Leea, G. arboreum, A. leptopus, and O. indicum produce strong colors from yellow to orange groups. Young teak (T. grandis) leaves have the most robust red color and clear venation in the red group.

The dye leaves with a clear venation pattern can also be used as dyes for the dipping technique. Natural dyeing with the dipping technique can be implemented as a basic dye on fabrics as a combination before bundle dyeing. Fresh or dried coffee leaves can be a suitable fabric dye by extracting dyeing solution [35]. Eighty-seven species that produced colors but were unformed can produce color by dipping technique, for example, H. rosa sinensis’ flowers and N. orientalis’ leaves. As the Bidayuh Dayak Tribe, Sanggau, West Kalimantan, uses the ground flower of H. rosa sinensis (Malvaceae) and produces green color with the addition of calex [15]. Meanwhile, H. sabdariffa contains anthocyanin pigment, an important dye-producing plant [36]. Anthocyanins give red, purple, and blue colors produced by flowers or fruits [37].

4. Conclusion

This study expects to find alternative dyes for silk fabrics to meet the consumer demand for environmentally friendly products increasing lately. Exploration of the color-producing plant species that are found around us has not been revealed yet. Several species of plants can be an alternative to dye silk cloth, especially the leaves. There are 126 species of plants that can be used as dyes using the bundle dyeing technique and 87 species that produce colors without patterns formed but have the potential as dyes for yarn or fabric. The colors investigated in this study can still be described differently by trying other types of mordant.

Data Availability

The vegetation-enumerated data used to support the findings of this study are included within the article.

Disclosure

The funding agency did not influence the design of the study; the collection, analyses, or interpretation of data; and the writing of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

Research grant funds received from the Directorate of Research and Community Service Director General of Higher Education (DRPM, Dirjen Dikti) are acknowledged by the authors.

References

[1] S. Brahma, M. R. Islam, S. S. Shimo, and R. B. Dina, “Influence of natural and artificial mordants on the dyeing performance of cotton knit fabric with natural dyes,” IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE), vol. 6, no. 1, pp. 01–06, 2019.
[2] C. K. Venil, L. Dufossé, P. Velmurugan, M. Malathi, and P. Lakshmanaperumalsamy, “Extraction and application of pigment from Serratia marcescens SB08, an insect enteric gut bacterium, for textile dyeing,” Textiles, vol. 1, no. 1, pp. 21–36, 2021.
[3] O. E. Ismal, “Patterns from nature: contact printing,” Journal of the Textile Association, vol. 77, no. 2, pp. 81–91, 2016.
[4] H. Krížová, “Natural dyes: their past, present, future and sustainability,” in *Recent Developments in Fibrous Material Science*, D. Křemenáková, J. Militky, and R. Mishra, Eds., KANINA, Mahendragarh, India, 2015.

[5] A. N. Banerjee, P. Pandit, and S. R. Maulik, “Eco-friendly approaches to rejuvenate the Khadi Udyoq in Assam,” *Indian Journal of Traditional Knowledge*, vol. 18, no. 2, pp. 346–350, 2019.

[6] E. Santa, Mukarлина, and Rizalinda, “Kajian etnobotani tumbuhan yang digunakan sebagai pewarna alami oleh Suku Dayak Iban di Desa Mensiaub Kabupaten Kapuas Hulu,” *Journal Protobiont*, vol. 4, no. 1, pp. 58–61, 2015.

[7] W. Mufihati, S. M. Wahdina, S. M. Kartikawati, and R. S. Wulandari, “Natural dye plants for traditional weaving in Sintang and Sambas Regencies, West Kalimantan,” *Media Konservasi*, vol. 24, no. 3, pp. 225–236, 2019.

[8] B. Salsabila and M. S. Ramadhan, “Eksplorasi teknik eco print dengan menggunakan kain linen untuk produk fashion,” *eProceeding of Art & Design*, vol. 5, no. 3, pp. 2277–2292, 2018.

[9] K. N. Arifah, A. Febriyanto, C. R. Cendana, D. M. C. Imani, M. A. Nurfitria, and A. Pustikaningsih, “Eco-fash (eco culture fashion) inovasi kain tenun kombinasi batik eco print sebagai upaya melestarikan cerita rakyat Indonesia,” *Journal Inihal Penalaran dan Penelitian Mahasiswa*, vol. 3, no. 2, pp. 62–73, 2019.

[10] I. S. Jeong and K. Y. Kang, “A study on scarf design using eco printing-focused on the researcher’s works,” *The Journal of the Korea Contents Association*, vol. 17, no. 11, pp. 221–228, 2017.

[11] F. Kara and J. M. Lhotka, “Comparison of unmanaged and managed trojan fir-scots pine forests for structural complexity,” *Turkish Journal of Agriculture and Forestry*, vol. 44, no. 1, pp. 62–70, 2020.

[12] M. D. Teh, *Advances in the Dyeing and Printing of Silk*, Woodhead Publishing, Sawston, UK, 2015.

[13] A. Prigioniero, A. Geraci, R. Schicchi et al., “Ethnobotany of dye plants in Southern Italy, mediterranean basin: floristic catalog and two centuries of analysis of traditional botanical knowledge heritage,” *Journal of Ethnobiology and Ethnomedicine*, vol. 16, no. 1, pp. 31–11, 2020.

[14] D. R. Rusja, E. Rusmiyanto, and R. Linda, “Pemanfaatan tumbuhan sebagai pewarna alami oleh Suku Dayak Randu di Desa Suka Damai Kabupaten Melawi,” *Protobiont*, vol. 7, no. 1, pp. 13–19, 2018.

[15] S. W. Berlin, R. Linda, and Mukarlina, “Pemanfaatan tumbuhan sebagai bahan pewarna alami oleh suku Dayak Bidayuh di Desa Kenaman Kecamatan Sekayam Kabupaten Sanggau,” *Protobiont*, vol. 6, no. 3, pp. 303–309, 2017.

[16] R. Mansour, “Natural dyes and pigments: extraction and applications,” in *Handbook of Renewable Materials for Coloration and Finishing*, M. Yusuf, Ed., John Wiley & Sons, Hoboken, NJ, USA, 2018.

[17] R. Mongkholtrattanasin, C. Saiwan, N. Runguangikitkrai et al., “Eco-dyeing of silk fabric with *Garcinia dulcis* (roxb.) Kurz bark as a source of natural dye by using the padding technique,” *Journal of Natural Fibers*, vol. 13, no. 1, pp. 65–76, 2016.

[18] A. Khan, M. T. Husain, and H. Jiang, “Dyeing of silk fabric with natural dye from camphor (Cinnamonum camphora) plant leaf extract,” *Coloration Technology*, vol. 134, no. 4, pp. 266–270, 2018.

[19] F. Fatihaturahmi and S. Z. Novrita, “Pengaruh perbedaan mordan tawas dan kapur sirih terhadap hasil pencilupan ekstrak daun sawo menggunakan bahan suter,” *Gorga: Journal Seni Rupa*, vol. 8, no. 1, pp. 237–242, 2019.

[20] M. Mukherjee and S. Kanakarajan, “Extraction, optimisation and dyeing of silk yarn using natural dye from *Cosmos sp.*, *International Journal of Development Research*, vol. 7, no. 7, pp. 13865–13871, 2017.

[21] K. R. Divya, K. Vasantha, and Manonmani, “Utilization of flower dyes on silk and cotton using mordant combinations,” *International Journal of Advanced Life Sciences (IJALS)*, vol. 6, no. 4, pp. 390–393, 2013.

[22] O. ¨Ozen and ¨O. E.˙Is¸mal, “Tekstil tasarımına ekolojik bir yaklaşımlı: iyoncelik üzerine doğal boyama ve eko baskı (an ecological approach to textile design: natural dyeing and eco printin on iyocell),” *Yedi: Sanat, Tasarım ve Bilim Dergisi*, vol. 26, pp. 109–130, 2021.

[23] M. M. Indi, P. D. Patil, and T. Juijare, “Padding technique for natural dyeing,” *Indian Journal of Fibre & Textile Research*, vol. 44, pp. 118–121, 2019.

[24] K. Anjali, Y. Rajni, and G. Hemali, “An eco friendly approach for batik on silk using natural dyes and development of a color palette for a product line,” *International Journal of Textile and Fashion Technology*, vol. 7, no. 5, pp. 17–26, 2017.

[25] B. U. Banna, R. Mia, K. S. Tanni et al., “Effectiveness of dyeing with dye extracted from mango leaves on different fabrics by using various mordants,” *North American Academic Research*, vol. 2, no. 10, pp. 123–143, 2019.

[26] Y. M. Indi, P. D. Patil, and T. Juijare, “Padding technique for natural dyeing,” *Indian Journal of Fibre & Textile Research*, vol. 14, no. 15, pp. 1–18, 2021.

[27] F. F. Yanti, N. R. Andevita, and I. Puspasari, “Effect of chi-tosan pre-treatment on color fastness of cotton fabric with natural dyes from mango leaves extract,” *Teknoi*, vol. 27, no. 1, pp. 9–16, 2021.

[28] Z. Kováˇceviˇc, A. Sutloviˇc, A. Matin, and S. Bischof, “Natural dyeing of cellulose and protein fibers with the flower extract of *Spartium junceum* L. plant,” *Materials*, vol. 14, no. 15, pp. 1–18, 2021.

[29] O. Canavar and M. D. Rausher, “Differences of flavonoid structural genes preferentially expressed in brown and green natural colored cotton,” *Turkish Journal of Agriculture and Forestry*, vol. 45, no. 3, pp. 266–272, 2021.

[30] N. H. Ati, P. Rahayub, S. Notososodarmo, and Limantara, “The composition and the content of pigments from some dyeing plant for ikat weaving in Timorrese Regency, East Nusa Tenggara,” *Indonesian Journal of Chemistry*, vol. 6, no. 3, pp. 325–331, 2006.

[31] M. A. El-Apasery, M. Abdelhaleem, A. H. M. Hussein, M. Saleh, N. El-Din, and A. Eladasy, “Microwave-assisted dyeing method with cranberries,” *Egyptian Journal of Chemistry*, vol. 7, no. 7, pp. 1386–1393, 2017.

[32] K. Kannathasan and P. Kokila, “Dyeing of cotton fabric by *Caesalpinia sappan* aqueous extract at different temperatures and mordants,” *Current Botany*, vol. 12, pp. 188–191, 2021.

[33] J. Arora, P. Agarwal, and G. Gupta, “Rainbow of natural dyes from mango leaves extract: part II, the effect of using different mordants,” *Green and Sustainable Chemistry*, vol. 7, no. 1, pp. 35–47, 2017.

[34] L. Barber, U. Yu, and P. Wietocha, “Examination of colorfastness to laundering of naturally dyed fabrics using contact dyeing method with cranberries,” *Journal of Textile Science & Fashion Technology*, vol. 2, no. 5, pp. 1–5, 2019.
[35] S. Susyanti, O. Amelia, M. H. Nur, and P. G. W. Wijaya, “Warna alami dari ekstrak tanaman kopi robusta,” Corak, vol. 9, no. 1, pp. 69–74, 2020.

[36] F. S. Ghaheh, M. K. Moghaddam, and M. Tehrani, “Comparison of the effect of metal mordants and bio-mordants on the colorimetric and antibacterial properties of natural dyes on cotton fabric,” Coloration Technology, vol. 136, no. 6, pp. 1–10, 2021.

[37] H. E. Khoo, A. Azlan, S. T. Tang, and S. M. Lim, “Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits,” Food & Nutrition Research, vol. 6, pp. 1–21, 2017.