Interleukin 28B genetic polymorphism and hepatitis B virus infection

Toru Takahashi

Takahashi T. Interleukin 28B genetic polymorphism and hepatitis B virus infection. World J Gastroenterol 2014; 20(34): 12026-12030 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i34/12026.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i34.12026

INTRODUCTION

Recent advances in molecular biology have enabled us to discover not only various factors regarding pathogens, but also regarding hosts which may influence the fate, character, mode of onset and natural or therapeutic outcome of various disorders. One such example is a genome-wide analysis of sequence. Such progress is also obvious in the research field of gastroenterology and hepatology. For example, the discovery of an association between single nucleotide polymorphism (SNP) at or near the interleukin 28B (IL28B) gene and the sustained virological response (SVR) rate with pegylated interferon-α (PEG-IFN) plus ribavirin (RBV) treatment for chronic hepatitis C (CH-C) [1-3]. Subsequent studies confirmed an association between IL28B and spontaneous hepatitis C virus clearance [4,5]. The IL28B genetic polymorphism also accounts for the racial difference in the SVR rate with PEG-IFN/RBV treatment for CH-C [1].

Recently, a possible association between IL28B genetic polymorphism and hepatitis B virus (HBV) infection has become a target of interest. It is known that 240 million
individuals are chronically infected with HBV worldwide[9], with the majority in the Asia-Pacific region[7]. An association between IL28B genetic polymorphism and the rate of hepatitis B e antigen (HBeAg) seroconversion and/or hepatitis B surface antigen (HBsAg) seroconversion with PEG-IFN treatment has been intensively discussed recently.

Here we summarize and discuss the possible association between IL28B genetic polymorphism and the favorable outcome of chronic HBV infection defined by HBeAg seroconversion and/or HBsAg seroclearance in patients with chronic hepatitis B (CH-B) treated by PEG-IFN with or without nucleoside analogues.

FACTS ON IL28B

IL28B is a class 1 cytokine receptor ligand related to type I interferons. These ligands play a critical role in response to microbial challenge and activate the JAK/STAT signaling system and show anti-viral activity by inducing interferon-stimulated genes (ISG)[8]. IL28B is located on the long arm of chromosome 19 and spans about 1.5 kilo base pairs. It encodes interferon lambda 3 (IFN λ3), one of the type III IFNs, while IL29 and IL28A encode other type III IFNs, namely IFN λ1 and λ2.

It is unknown why IL28B (namely IFN λ3) genetic polymorphism influences the SVR in PEG-IFN/RBV therapy for CH-C as described above. Gene expression studies using peripheral blood mononuclear cells revealed that IL28B gene expression was lower in individuals carrying minor alleles[21,22]. In contrast, there is no difference in hepatic IL28B gene expression according to haplotypes, although pretreatment intrahepatic ISG expressions are higher in individuals carrying minor alleles[23,24]. These results may support the previously reported findings that already elevated ISG gene expression before treatment was significantly related to poor viral eradication rate since externally administered PEG-IFN did not fully stimulate ISG[11,13].

Type III IFN is a major component of the innate immune system of liver cells. HCV infection studies in primary human fetal liver cell cultures[18] revealed that cell culture-induced HCV evoked expression of type III (λ) IFNs and of ISGs, while low expression of type I IFNs (IFN α and β) was observed. Higher levels of viral replication were associated with greater induction of ISGs and IFNλ. It was shown in 2005 that IFNλ inhibited HBV replication in a differentiated murine hepatocyte cell line as well as replication of a subgenomic and a full-length genomic HCV replicon in Huh7 cells[14]. IFN-α and IFNλ3 in combination showed synergistic anti-HCV activity in the HCV 1b and 2a replicon systems[15]. The humanized livers of chimeric mice exhibited increased expression at the mRNA and protein level of human IFNλs, following treatment with a hepatotropic cationic lisosome and a synthetic double-stranded RNA analog[16] resulting in a strong antiviral effect on HBV and HCV. With regard to the possibility of IFNλ as a therapeutic agent for CH-C, a phase 1b trial revealed that weekly PEG-IFN-λ with or without daily RBV for 4 wk was associated with clear antiviral activity across a broad range of doses in patients with CH-C[17].

As another source of IFN-λ in human, type 2 myeloid dendritic cells, or human blood dendritic cell antigen 3-positive cells instead of hepatocytes were recently reported to be a potent producer of IFN-λ, in response to HCV[18,19].

POSSIBLE ASSOCIATION BETWEEN IL28B GENETIC POLYMORPHISM AND SPONTANEOUS HBV RECOVERY OR OUTCOME OF PEG-IFN TREATMENT FOR CH-B

The first study concerning IL28B and HBV infection was reported in 2010, the following year it was discovered that this genetic polymorphism was strongly associated with the SVR rate in patients with CH-C treated with PEG/RBV. In this report, C-C genotype of rs12979860 was not associated with HBV recovery (OR = 0.99)[20]. Two subsequent reports in 2011[21,22] also failed to show the possible association, although one revealed an association between genotype, allele and haplotype frequencies of IL28B and both aminotransferase levels and HBV DNA[21]. In 2012, the first report that determined a positive association between IL28B genetic polymorphism and chronic HBV infection was published[23]. IL28B genotype was significantly associated with HBeAg seroconversion at the end of PEG-IFN treatment (P < 0.01), the adjusted odds ratio for seroconversion was 3.16 (P = 0.013) for AA vs AG/GG at rs12980275 after adjustment for HBV genotype, age, levels of HBV DNA and alanine aminotransferase, and PEG-IFN and a nucleoside analogue-lamivudine combination therapy. IL28B genotype was independently associated with an increased probability of HBeAg seroconversion during long-term follow-up (adjusted HR = 2.14, P = 0.018 by Cox regression analysis). Similar results were obtained for rs12979860. IL28B genotype was also associated with HBsAg clearance (HR = 3.47, P = 0.042). Thus, the authors concluded that polymorphisms near IL28B were independently associated with serologic response to PEG-IFN in patients with HBsAg-positive chronic hepatitis B.

Another report published in 2012[24] also demonstrated a possible association between IL28B and HBeAg-positive CH-B in a Chinese Han population, while another 3 reports published in the same year[25-27] concluded that IL28B was not significantly related to the outcome of patients with CH-B who were treated with PEG-IFN. Three SNPs in the IL28B gene (rs12979860C/T, rs8099917G/T and rs12980275G/A) were examined in 330 subjects [including 154 HBV-related hepatocellular carcinoma (HCC) patients, 86 non-HCC patients with CH-B, 43 HBV self-limited infections and 47 healthy controls[28]. In conclusion, the IL28B rs12979860C/T polymorphism might affect susceptibility to chronic HBV infection and progression of HCC. In another report, the
Table 1 Possible association between interleukin 28B genetic polymorphism and the effect of interferon-α and/or pegylated interferon-α, or spontaneous hepatitis B e antigen and/or hepatitis B surface antigen clearance in hepatitis B virus infection

No.	Year	Ref.	Targeted SNPs	Subject settings	HBe	Result	Comments
1	2010	Martin et al[21]	rs12979860	226 HBV persistence, 384 HBV recovery	ND	Negative	C/C genotype of rs12979860 was not associated with HBV recovery (OR = 0.99)
2	2011	Li et al[22]	rs12979860, rs12980275, rs8099917	203 chronic HBV infection, 203 self-limited HBV infection, 203 individuals negative for all HBV seromarkers (Chinese Han population)	ND	Negative	
3	2011	Tseng et al[23]	IL28B regions	115 HBeAg-positive chronic hepatitis B patients	Positive	Negative	IL28B genotype was significantly associated with HBeAg seroconversion at the end of treatment (P < 0.001, OR = 3.16), during long-term follow up (HR = 2.14), or with HBsAg seroclearance (HR = 3.47)
4	2012	Sonneveld et al[24]	rs12980275, rs12979860	205 HBeAg-positive patients who were treated with PEG-IFN (Europeans and Asians)	Positive	Positive	The frequency of G allele of rs8099917 was significantly higher in the response group than in the non-response group (8.5% vs 3.9%, P = 0.003, OR = 0.44, 95%CI: 0.25-0.79). The genotype distributions of this SNP also differed significantly between the two groups (P = 0.003)
5	2012	Wu et al[25]	rs8099917	512 HBeAg-positive chronic hepatitis B patients (Han Chinese) were treated with pegylated interferon a-2a + nucleoside analogues	Positive	Positive	
6	2012	de Niet et al[26]	rs12979860	95 chronic hepatitis B patients who were treated with PEG-IFN and adefovir for 1 yr and who had 15% HBsAg loss (overall)	Positive and negative	Negative	No association with clearance of HBsAg, HBcAg, HBV DNA level, apparent hepatitis onset and liver cirrhosis (P > 0.05)
7	2012	Peng et al[27]	rs12979860	651 HBV persistent infection (387 with liver cirrhosis, 264 without cirrhosis), 226 healthy individuals who recovered from HBV infection	ND	Negative	The rate of serum HBsAg clearance was 29% in CC (major homo) compared to 13% in non-CC (hetero or minor homo) genotype carriers (P = 0.039)
8	2013	Lampertico et al[28]	rs12979860	101 HBeAg-negative patients (92% genotype D) with compensated chronic hepatitis B (84% males, 42% with cirrhosis)	Negative	Positive	IL28B haplotype block CG was associated with HBsAg seroclearance (OR = 10.5, P = 0.026)
9	2013	Seto et al[29]	IL28B (rs12979860, rs8099917)	203 chronic hepatitis B patients achieving spontaneous HBsAg seroclearance with 203 age- and sex-matched chronic hepatitis B patients without HBsAg seroclearance (control)	Negative	Positive	
10	2013	Holmes et al[30]	rs12979860	96 patients (88% were Asian, 62% were HBeAg positive and 13% were METAVIR stage F3-F4). The majority (84%) of patients carried the CC IL28B genotype (major homo)	Positive and negative	Negative	
11	2013	Lee et al[31]	rs8099917, rs12979860, rs12980275	404 spontaneously recovered patients, 313 chronic hepatitis B patients, 305 liver cirrhosis patients and 417 hepatocellular carcinoma patients	ND	Negative	

Studies are chronologically numbered. HBV: Hepatitis B virus; ND: Not determined or not described; IL: Interleukin; HBeAg: Hepatitis B e antigen; HBsAg: Hepatitis B surface antigen; PEG-IFN: Pegylated interferon-α.

The effect of rs8099917 in *IL-28B* gene as well as rs187238 and rs1946518 in *IL-18* gene on HBV recurrence in liver transplant patients was investigated in a Chinese Han population[21]. In 140 HBV-related liver transplant recipients, the genotype of *IL-28B* gene rs8099917 was associated with aminotransferase levels. The recipients with allele G (GG + GT) had higher aminotransferase levels (P < 0.05). No association was found between *IL-18* gene and *IL-28B* gene polymorphisms with HBV recurrence in the liver transplant recipients or the donors. The authors concluded that allele G of rs8099917 was associated with hepatitis B-related hepatocyte injury. Association analysis between SNPs in *IL-28B* gene and the progress of HBV infection in Han Chinese revealed[30] that *IL-28B* rs12979860 C/T polymorphism T allele appeared to be more prevalent in patients with HCC than in those with liver cirrhosis.

In 2013, a positive association between *IL-28B* genetic polymorphism and the outcome of CH-B[31] was reported. A hundred and one HBeAg-negative patients (92% genotype D) with compensated CH-B were followed for a median of 11 (1-17) years after a median of...
and ribavirin treatment. *Nat Genet* 2009; 41: 1100-1104 [PMID: 19749758 DOI: 10.1038/ng.447]

3. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsukura S, Sakamoto N, Nakagawa M, Kooerna G, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawski Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizookami M. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. *Nat Genet* 2009; 41: 1105-1109 [PMID: 19749757 DOI: 10.1038/ng.449]

4. Thomas DL, Thi CL, Martin MP, Qi Y, Ge D, O’Huigin C, Kild J, Kild K, Khakoo SI, Alexander G, Goedert JJ, Kirk GD, Don FM, Rosen HR, Tobler LB, Busch MP, Micchson JC, Goldstein DB, Carrington M. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. *Nature* 2009; 461: 798-801 [PMID: 19759533 DOI: 10.1038/nature08463]

5. Rauch A, Kutalik Z, Descomb P, Cai T, Di Julio J, Mueller T, Bochel M, Battegay M, Bernasoni E, Borovicja J, Colombo C, Cerny N, Dubour JF, Furrer H, Gunthard HF, Heim M, Hirsch B, Martinetti R, Moradpour D, Mullhaupt B, Witte A, Beckmann JS, Berg T, Bergmann S, Negro F, Toleste A, Bochud PY. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. *Gastroenterology* 2010; 138: 1338-1445, 1345.e1-7 [PMID: 20608352 DOI: 10.1053/j.gastro.2009.12.056]

6. World Health Organization. Hepatitis B fact Sheet no. 204. Cited 12 April 2012. Available from: URL: http://www.who.int/mediacentre/factsheets/fs204/en/index.html

7. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. *J Viral Hepat* 2004; 11: 97-107 [PMID: 14996343]

8. Shepperd P, Kinds vogel W, Xu W, Henderson M, Schlutowski B, Whitmore TE, Kuester R, Garrigues U, Brcs K, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett J, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Kiefer KM. IL28B and the outcome of IFN therapy for chronic hepatitis C. *Nature* 2009; 461: 399-401 [PMID: 19684573 DOI: 10.1038/na.2009.138]

9. Honda M, Sakai A, Yamashita T, Nakamoto Y, Mizokoshi E, Sakai Y, Yamashita T, Nakamura M, Shirasaki T, Horimoto K, Tanaka Y, Tokunaga K, Mizookami M, Kaneko S. Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. *Hepatology* 2010; 51: 1437-1444 [PMID: 15887125]

10. Chen L, Borozan I, Feld J, Sun J, Tann LS, Colteucu C, Heathcote J, Edwards AM, McGilvray ID. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. *Gastroenterology* 2005; 128: 1437-1444 [PMID: 15887125]

11. Sarasin-Filipowicz M, Oakeley EJ, Duong FH, Christen V, Terracciano L, Filipowicz W, Heim MH. Interferon signaling and treatment outcome in chronic hepatitis C. *Proc Natl Acad Sci USA* 2008; 105: 7054-7059 [PMID: 18467494 DOI: 10.1073/pnas.0707882105]

12. Marukian S, Andrus L, Sheahan TP, Jones CT, Charles ED, Ploss A, Rice CM, Dustin LB. Hepatitis C virus induces interferon-λ and interferon-stimulated genes in primary liver cultures. *Hepatology* 2011; 54: 1913-1923 [PMID: 21800339 DOI: 10.1002/hep.24580]

13. Robek MD, Boyd BS, Chisari FV. Lambda interferon inhibits hepatitis B and C virus replication. *J Virol* 2005; 79: 3851-3854
Takahashi T. IL28B and HBV

[PMID: 15731279]

15 Shindo H, Maekawa S, Komase K, Miura M, Kadokura M, Sueki R, Komatsu N, Shindo K, Amemiya F, Nakayama Y, Inoue T, Sakamoto M, Yamashita A, Morishii K, Enomoto N. IL-28B (IFN-λ3) and IFN-α synergistically inhibit HCV replication. J Viral Hepat 2013; 20: 281-289 [PMID: 23490373 DOI: 10.1111/j.1365-2892.2012.01649.x]

16 Nakagawa S, Hirata Y, Kameyama T, Tokunaga Y, Nishito Y, Hirabayashi K, Yano O, Ochiya T, Tateno C, Tanaka Y, Mizokami M, Tsukiyama-Kohara K, Inoue K, Yoshida M, Takaoka A, Kohara M. Targeted induction of interferon-α in humanized chimeric mouse liver allografts hepatotropic virus infection. PLoS One 2013; 8: e59611 [PMID: 23555725 DOI: 10.1371/journal.pone.0059611]

17 Muir AJ, Shiffman ML, Zaman A, Yoffe B, de la Torre A, Flammarion S, Gordon SC, Marotta P, Vierling JM, Lopez-Talavera JC, Byrnes-Blake K, Fontana D, Freeman J, Gray T, Hausman Martin MP, Qi Y, Goedert JJ, Hussain SK, Kirk GD, Hoots WK, Buchbinder S, Carrington M, Thio CL. IL28B polymorphism does not determine outcomes of hepatitis B virus or HIV infection. J Infect Dis 2010; 202: 1749-1753 [PMID: 20977343 DOI: 10.1086/657146]

18 Li W, Jiang Y, Jin Q, Shi X, Jin J, Gao Y, Pan Y, Zhang H, Jiang J, Niu J. Expression and gene polymorphisms of interleukin 28B and hepatitis B virus infection in a Chinese Han population. Liver Int 2011; 31: 1118-1126 [PMID: 21475278 DOI: 10.1111/j.1478-3231.2011.02057.x]

19 Tseng TC, Yu ML, Liu CJ, Lin CL, Huang YW, Hsu CS, Liu CH, Kuo SF, Pan CJ, Yang SS, Su CW, Chen PJ, Chen DS, Kao JH. Effect of host and viral factors on hepatitis B e antigen-positive chronic hepatitis B patients receiving pegylated interferon-α2a therapy. Antivir Ther 2011; 16: 629-637 [PMID: 21817814 DOI: 10.3851/IMP1841]

20 Sonneveld MJ, Wong VW, Woltman AM, Wong GL, Cakalolu Y, Zeuzem S, Buster EH, Uitterlinden AG, Hansen BE, Chan HL, Janssen HL. Polymorphisms near IL28B and serologic response to peginterferon in HBsAg-positive patients with chronic hepatitis B. Gastroenterology 2012; 142: 513-520.e1 [PMID: 22108195 DOI: 10.1053/j.gastro.2011.11.025]

21 Wu X, Xin Z, Zha X, Pan L, Li Z, Li H, Liu Y. Evaluation of susceptibility locus for response to interferon-α-based therapy in chronic hepatitis B patients in Chinese. Antiviral Res 2012; 93: 297-300 [PMID: 22209781 DOI: 10.1016/j.antiviral.2011.12.009]

22 de Niet A, Takkenberg RB, Benayed R, Riley-Gilliss W, Beegink CJ, Zaaier HL, Koot M, Janssen PL, Beld MG, Lopatino U, Roessink HW. Genetic variation in IL28B and treatment outcome in HBeAg-positive and -negative chronic hepatitis B patients treated with Peg interferon alfa-2a and adefoxir. Scand J Gastroenterol 2012; 47: 475-481 [PMID: 22263608 DOI: 10.3109/030054882.2013.648959]

23 Peng LJ, Guo JZ, Zhang Z, Shi H, Wang J, Wang JY. IL28B rs12979860 polymorphism does not influence outcomes of hepatitis B virus infection. Tissue Antigens 2012; 79: 302-305 [PMID: 22291915 DOI: 10.1111/j.1399-0039.2011.01835.x]

24 Martin-Carbonero L, Rallón NI, Benito M, Poveda E, González-Lahoz J, Soriano V. Short communication: Does interleukin-28B single nucleotide polymorphisms influence the natural history of hepatitis B? AIDS Res Hum Retroviruses 2012; 28: 1262-1264 [PMID: 22324878]

25 Ren S, Lu J, Du X, Huang Y, Ma L, Hoo H, Chen X, Wei L. Genetic variation in IL28B is associated with the development of hepatitis B-related hepatocellular carcinoma. Cancer Immunol Immunother 2012; 61: 1433-1439 [PMID: 22310928 DOI: 10.1007/s00262-012-1203-y]

26 Li Y, Shi Y, Chen J, Cai B, Ying B, Wang L. Association of polymorphisms in interleukin-18 and interleukin-28B with hepatitis B recurrence after liver transplantation in Chinese Han population. Int J Immuunogenet 2012; 39: 346-352 [PMID: 22325058 DOI: 10.1111/j.1744-313X.2012.01097.x]

27 Chen J, Li W, Li Y, Cai B, Fu Y, Liao Y, Zhang J. Association analysis between SNPs in IL28B gene and the progression of hepatitis B infection in Han Chinese. PLoS One 2012; 7: e50787 [PMID: 22327209 DOI: 10.1371/journal.pone.0050787]

28 Lampertico P, Viganò M, Cheroni C, Facchetti F, Invernizzi F, Valveri V, Sofredi N, Abrignani S, De Francesco R, Colombombo M. IL28B polymorphisms predict interferon-related hepatitis B surface antigen seroclearance in genotype D hepatitis B e antigen-negative patients with chronic hepatitis B. Hepatology 2013; 57: 890-896 [PMID: 22738582 DOI: 10.1002/hep.25749]

29 Seto WK, Wong DK, Kopansizen M, Proitsi P, Sham PC, Hung IF, Fung J, Lai CL, Yuen MF. HLA-DP and IL28B polymorphisms in HIV infection. J Hepatol 2013; 58: 1695-1703 [PMID: 23494266 DOI: 10.1016/j.jhep.2013.06.034]

30 Holmes JA, Nguyen T, Ratnam D, Heersasing NM, Tehan JV, Bonanzinga S, Dev A, Bell S, Pianko S, Chen R, Visvanathan K, Hammond R, Iser D, Rusli F, Sievert W, Desmond PV, Bowden DS, Thompson AJ. IL28B genotype is not useful for predicting treatment outcome in Asian chronic hepatitis B patients treated with pegylated interferon-α. J Gastroenterol Hepatol 2013; 28: 861-866 [PMID: 23301835 DOI: 10.1111/j.1440-1640.2012.06330.x]

31 Lee DH, Cho Y, Seo JY, Kwon JH, Cho EJ, Jang ES, Kwak MS, Cheong JY, Cho SW, Lee JH, Yu SJ, Yoon JH, Lee HS, Kim CY, Shin HD, Kim YJ. Polymorphisms near interleukin 28B gene are not associated with hepatitis B virus clearance, hepatitis B e antigen clearance and hepatocellular carcinoma occurrence. Interntiology 2013; 56: 84-90 [PMID: 23345781 DOI: 10.1119/00345256]

32 Kim SU, Song KJ, Chang HY, Shin EC, Park YJ, Kim do Y, Han KH, Chan CY, Ahn SH. Association between IL28B polymorphisms and spontaneous clearance of hepatitis B virus infection. PLoS One 2013; 8: e69166 [PMID: 23874902 DOI: 10.1371/journal.pone.0069166]

33 Lee IC, Lin CH, Huang YH, Hsu TI, Su CW, Hou MC, Huang HC, Lee KC, Chan CC, Lin MW, Lin HC, Lee SD. IL28B polymorphism correlates with active hepatitis in patients with HBeAg-negative chronic hepatitis B. PLoS One 2013; 8: e58071 [PMID: 23469142 DOI: 10.1371/journal.pone.0058071]

34 Jilg N, Chung RT. One more piece in the interleukin 28B gene puzzle? The case of hepatitis B. Hepatology 2013; 57: 870-872 [PMID: 22911469 DOI: 10.1002/hep.26026]
