Mixed Virtual Volume Methods for Elliptic Problems

Gwanghyun Jo* and Do Y. Kwak†

Abstract. We develop a class of mixed virtual volume methods for elliptic problems on polygonal/polyhedral grids. Unlike the mixed virtual element methods introduced in [19, 11], our methods are reduced to symmetric, positive definite problems for the primary variable without using Lagrangian multipliers. We start from the usual way of changing the given equation into a mixed system using the Darcy’s law, $u = -K \nabla p$. By integrating the system of equations with some judiciously chosen test spaces on each element, we define new mixed virtual volume methods of all orders. We show that these new schemes are equivalent to the nonconforming virtual element methods for the primal variable p.

Once the primary variable is computed solving the symmetric, positive definite system, all the degrees of freedom for the Darcy velocity are locally computed. Also, the L^2-projection onto the polynomial space is easy to compute. Hence our work opens an easy way to compute Darcy velocity on the polygonal/polyhedral grids. For the lowest order case, we give a formula to compute a Raviart-Thomas space like representation which satisfies the conservation law.

An optimal error analysis is carried out and numerical results are presented which support the theory.

Key words. mixed virtual element methods, mixed virtual volume methods, nonconforming virtual element methods, polygonal/polyhedral meshes, local velocity recovery, computable L^2-projection.

AMS(MOS) subject classifications. 65N15, 65N30.

1. Introduction. The virtual element method (VEM), introduced by Beirão da Veiga, et al. [6], is a generalization of the conventional finite element method to general polygonal (or polyhedral) meshes, where thorough error analysis and numerical tests for more general cases for elliptic problems were developed in [6, 17, 8, 26, 22]. VEM is similar to the mimetic finite difference method (MFD) [17, 14, 18, 20, 12] in the sense of flexibility of mesh handling and using degrees of freedom only to construct the bilinear form. However, MFD does not use basis functions while VEM assumes basis functions as solutions of local partial differential equations. The word virtual comes from the fact that no explicit knowledge of the shape function is necessary. By designing suitable elliptic projection operators on the local approximation space, VEM can be implemented using only the degrees of freedom and the polynomial part of the approximation space, while the integration of source-term multiplied by virtual element test function on the right hand sides is carefully handled using certain L^2-projection (see [1]).

The detailed guidelines for the implementation of VEM for elliptic problems including the construction of the projection operators can be found in [7, 31]. Also, nonconforming versions of VEM were studied in [26, 22]. The developments and theories of VEM for elasticity problems and Stokes problems can be found in [9, 27, 13, 4, 5, 32] and [3, 21], respectively.

On the other hand, the idea of VEM was extended to the $H(\text{div})$-conforming space on general polygons/polyhedral, called the mixed virtual element method (MVE) in [19, 10, 11], where the approximation spaces for the vector variables have

*Department of Mathematics, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do, Republic of Korea 54150. This author is supported by National Research Foundation of Korea(NRF) grant, contract No. 2020R1C1C1A01005396. email: gwanghyun@kunsan.ac.kr

†Department of mathematical Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, Republic of Korea 34141. This author is supported by NRF grant, contract No. 2021R1A2C1003340. email: kdy@kaist.ac.kr
degrees of freedom similar to those of BDM \cite{16} or Raviart-Thomas (RT) space \cite{30}.

The inner product term in the MVEM is defined through an L^2-projection, thus
the computations of the local integral is possible from the knowledge of degrees of
freedom of elements, plus a stabilizing term which makes it compatible with ordinary
inner product. The MVEM leads to a saddle point problem similar to that of the
mixed finite element methods, which is a disadvantage of the mixed FEM. Thus, it is
necessary to devise a fast solution method for the algebraic equations arising from the
mixed formulation of VEM. For example, an Uzawa type of solver may be used, or a
hybridization technique as in \cite{2,16,24} can be employed. Still, the resulting system
involving the Lagrange multipliers are nontrivial to solve; one has to invert the local
matrix to find the Schur complement.

In this paper, we develop new mixed VEM formulations for two and three dimen-
sional problems along the line of mixed finite volume method (MFVM) introduced
in \cite{25,28}, where for the momentum equation, the gradient of test functions of a
nonconforming space and some subspace of polynomials are applied on each element,
while the mass equation is tested by a space of polynomials. One of the advantages
of the MFVM proposed in \cite{25,28} is that the formulation can be converted to the
nonconforming finite element method for the primary variable with modified forcing
term. Once the primary variable is obtained from solving the symmetric positive
definite system, the velocity variable can be recovered locally. Another advantage of
this scheme is that the conservation of the momentum as well as the mass hold.

We develop a similar mixed volume formulation using virtual elements on general
polygonal/polyhedral meshes, by modifying the weak formulation introduced in \cite{28}.
The $H(\text{div})$-conforming VEM space in \cite{10} or \cite{11} is used for the vector variable, and
the nonconforming VEM (NCVEM) space developed in \cite{26} is used for the primary
variable.

Our method is more naturally related to the NCVEM than MFEM is to noncon-
forming FEM, in the sense that the treatment of the forcing term is exactly the same
as NCVEM (i.e., one uses the L^2 projection on the right hand side.)

As is usual in VEMs, the variation form involves elliptic projection operators and
stability terms for the primary variables, see \cite{4.5,4.2}. By eliminating the velocity
field from the first equation, we obtain an equation for the NCVEM in the primary
variable. Once the primary variable is obtained by solving the (SPD) NCVEM sys-
tem, all the moments of the velocity variable can recovered locally. Also, one can
compute the L^2-projection of velocity variable easily. Thus, the whole process can be
implemented efficiently, avoiding the saddle point problems. We name our method a
mixed virtual volume method (MVVM).

The proposed method is the first success in MVEM to compute the $H(\text{div})$ - con-
forming velocity variables by solving SPD problems in the primary variable. Optimal
error estimates for the proposed schemes are provided and numerical results support-
ing our analysis are presented. One may raise questions regarding the relationship of
the proposed scheme with the reconstruction of velocity variable as in \cite{29}. Actually,
the possibility is discussed in Section 4.2. In the lowest order case, we propose a one
way to reconstruct an approximate velocity element of Raviart - Thomas type similar
to \cite{29} in general polygonal/polyhedral mesh.

The rest of our paper is organized as follows. The governing equation and brief
review of MVEM are given in Section 2. In Section 3, we review the nonconforming
virtual element methods for the variable coefficient. In Section 4, we introduce an
MVVM and show that it is equivalent to the NCVEM. The error analysis is given in
Section 5. The numerical tests supporting our analysis are given in Section 6. The conclusion follows in Section 7.

2. Preliminaries. Let Ω be a bounded polygonal/polyhedral domain in \mathbb{R}^d, $d = 2, 3$ with the boundary $\partial\Omega$. We consider the second-order elliptic boundary value problem

$$
\begin{aligned}
-\text{div } K \nabla p &= f \quad \text{in } \Omega, \\
p &= 0 \quad \text{on } \partial\Omega,
\end{aligned}
$$

(2.1)

where K is a smooth, bounded, symmetric and uniformly positive definite tensor.

We introduce some notations here: For any domain D, let $H^k(D)$ (or $H^k_0(D)$) be the scalar and vector Sobolev spaces of order $k \geq 0$. We use the standard notations $| \cdot |_{k,D}$, $\| \cdot \|_{k,D}$ and $\| \cdot \|_{\partial D}$ for the (semi)-norms on $H^k(D)$ and $L^2(\partial D)$, $(\cdot, \cdot)_D$ for the L^2 inner product. When $D = \Omega$, we drop the subscript Ω and write $| \cdot |_k$, $\| \cdot \|_k$ instead.

In two dimensions, we let $\text{rot } v = (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y})$ and $\text{rot } q = (\frac{\partial q}{\partial y}, -\frac{\partial q}{\partial x})$, for smooth enough vector and scalar functions v and q. Let

$$
\begin{aligned}
\mathbf{H}(\text{div}; D) &= \{ u \in (L^2(D))^d, (d = 2, 3) \text{ with } \text{div } u \in L^2(D) \}, \\
\mathbf{H}(\text{rot}; D) &= \{ u \in (L^2(D))^2, \text{ with } \text{rot } u \in L^2(D) \}, \\
\mathbf{H}(\text{curl}; D) &= \{ u \in (L^2(D))^3, \text{ with } \text{curl } u \in (L^2(D))^3 \}.
\end{aligned}
$$

The constants C, C_* and C^* will be independent of mesh size h, not necessarily the same for each occurrence.

Let us introduce the vector variable $u = -K \nabla p$ and rewrite problem (2.1) in the mixed form

$$
\begin{aligned}
\text{find } u \in \mathbf{H}(\text{div}; \Omega) \text{ and } p \in L^2(\Omega) \text{ such that } \\
(K^{-1}u, v) - (p, \text{div } v) &= 0, \\
(\text{div } u, q) &= (f, q),
\end{aligned}
$$

(2.4)

(2.5)

2.1. Mixed virtual element methods. We briefly review the mixed virtual element methods (MVEM) introduced in [19], [10], [11]. Let T_h be a decomposition of Ω into regular polygons/polyhedra, and let E_h^0 be the set of all interior edges(faces), E_h^∂ be the set of boundary edges(faces), and $E_h = E_h^0 \cup E_h^\partial$. Following [11], [20], we mean by ”regular” that, there exists some $\rho > 0$ such that

- $h_f \geq \rho h_P$ holds for every element $P \in T_h$ and for every edge(face) $f \subset \partial P$,
• every element P is star-shaped with respect to all points of a sphere of radius $\geq \rho h_P$,
• when $d = 3$, every face $f \in \mathcal{E}_h$ is star-shaped with respect to all points of a sphere of radius $\geq \rho h_f$,
where h_f (resp. h_P) is the diameter of edge (face) f (resp. P). We denote the maximum diameter of elements $P \in T_h$ by h.

For any integer $k \geq 0$, we denote by $P_k(D)$ the set of all polynomials of total degree less than or equal to k, and set $P_{-1}(D) = \{0\}$. Also, we let the scaled polynomials:

$$M_k(D) = \left\{ \left(\frac{x-x_D}{h_D} \right)^\alpha, |\alpha| \leq k \right\}, \quad (2.6)$$

where $\alpha = (\alpha_1, \cdots, \alpha_d)$ ($d = 2, 3$) is the multi-index and x_D is the center of mass.

Let

$$\mathcal{G}_k(P) := \nabla P_{k+1}(P),$$
$$\mathcal{G}_k(P)^\perp := \text{orthogonal complement of } \mathcal{G}_k(P) \text{ in } (P_k(P))^d,$$
$$\mathcal{R}_k(P) := \text{curl } (P_{k+1}(P))^3 \text{ if } d = 3 \text{ and rot } (P_{k+1}(P))^2 \text{ if } d = 2.$$

If we let $\pi_{k,d}$ be the dimension of $P_k(\mathbb{R}^d)$, then we see

$$\dim \mathcal{G}_k(P) = \pi_{k+1,d} - 1, \quad \dim \mathcal{G}_k(P)^\perp = d\pi_{k,d} - \pi_{k+1,d} + 1. \quad (2.7)$$

Given $P \in T_h$, the local $\mathbf{H}(\text{div})$-conforming virtual element space is defined as follows:

$$\mathbf{V}_h^k(P) := \{ v \in \mathbf{H}(\text{div}; P) \cap \mathbf{H}(\text{curl}; P) : v \cdot n|_f \in P_k(f), \forall \text{edges (faces)} f \subset \partial P, \text{div } v \in P_k(P), \text{curl } v \in \mathcal{R}_{k-1}(P) \}, \quad (2.8)$$

where in two dimensional case, the ‘curl’ operator is replaced by the ‘rot’ operator and the space $\mathcal{R}_{k-1}(P)$ is replaced by $P_{k-1}(P)$.

The global space of order k is the space \mathbf{V}_h^k defined as

$$\mathbf{V}_h^k = \{ v \in \mathbf{H}(\text{div}; \Omega) : v|_P \in \mathbf{V}_h^k(P), \forall P \in T_h \}. \quad (2.9)$$

The degrees of freedom for \mathbf{V}_h^k are

$$\frac{1}{|f|} \int_f v \cdot n g_k \, ds, \forall g_k \in M_k(f), \forall f \in \mathcal{E}_h, \quad (2.10)$$
$$\frac{1}{|P|} \int_P v \cdot g_{k-1} \, dx, \forall g_{k-1} \in \mathcal{G}_{k-1}(P), \forall P \in T_h, \quad (2.11)$$
$$\frac{1}{|P|} \int_P v \cdot g_k^\perp \, dx, \forall g_k^\perp \in \mathcal{G}_k(P)^\perp, \forall P \in T_h. \quad (2.12)$$

Here, $|\cdot|$ for any geometrical object means its Lebesgue measure and g_k, g_{k-1}, g_k^\perp are taken from the scaled monomials. Let $\Psi_h(P) = \mathcal{G}_{k-1}(P) \oplus \mathcal{G}_k^\perp(P)$. The conditions $(2.11), (2.12)$ can be replaced by a single condition

$$\frac{1}{|P|} \int_P v \cdot g \, dx, \forall g \in \Psi_h(P), \forall P \in T_h.$$
The pressure space is
\[W_h^k := \{ q \in L^2(\Omega), \; q_{|\mathcal{P}} \in P_k(\mathcal{P}) \}. \]

Remark 2.1. Let \(k \geq 1 \). Replacing the condition \(\text{div} \; \mathbf{v} \in P_k(\mathcal{P}) \) by \(\text{div} \; \mathbf{v} \in P_{k-1}(\mathcal{P}) \) in (2.5) and replacing \(k - 1 \) by \(k - 2 \) in (2.11), we obtain a BDM like virtual element space defined in [10]. However, we get \(\mathcal{O}(h^k) \) instead of \(\mathcal{O}(h^{k+1}) \) in \(H(\text{div}) \)-norm. See Remark 4.1 in Section 4.

2.2. Interpolations and \(L^2 \)-projections. The \(L^2 \)-projection operators \(\Pi^0_k : L^2(\mathcal{P}) \to P_k(\mathcal{P}) \) and \(\Pi^0_k : (L^2(\mathcal{P}))^d \to (P_k(\mathcal{P}))^d \) are defined as follows: On each \(\mathcal{P} \), we define
\[
\begin{align*}
\int_{\mathcal{P}} (q - \Pi^0_k q) q_k \, dx &= 0, \quad \forall q_k \in P_k(\mathcal{P}), \\
\int_{\mathcal{P}} (v - \Pi^0_k v) q_k \, dx &= 0, \quad \forall q_k \in (P_k(\mathcal{P}))^d.
\end{align*}
\]

When no confusion arises, we use the same notations \(\Pi^0_k \) and \(\Pi^0_k \) to denote the \(L^2 \)-projections from some virtual element spaces of \(L^2(\Omega) \) or \((L^2(\Omega))^d \), although the computations are sometimes nontrivial (see the definition of nonconforming virtual spaces in the next section).

As is shown in [10], we can compute the \(L^2 \)-projection \(\Pi^0_k \mathbf{v} \) for \(\mathbf{v} \in V_h^k \) from the degrees of freedom of \(\mathbf{v} \) and the following properties hold:
\[\| q - \Pi^0_k q \|_0 \leq C h^{k+1} \| q \|_{k+1}, \quad \| v - \Pi^0_k v \|_0 \leq C h^{k+1} \| v \|_{k+1}. \]

The local interpolation operator \(\Pi^k_F : (H^1(\mathcal{P}))^d \to V_h^k(\mathcal{P}) \) is defined by
\[
\begin{align*}
\int_{\mathcal{F}} (v - \Pi^k_F v) \cdot n g_k \, d\sigma &= 0, \quad \forall g_k \in M_k(f), \\
\int_{\mathcal{P}} (v - \Pi^k_F v) \cdot g \, dx &= 0, \quad \forall g \in \Psi_k(\mathcal{P}).
\end{align*}
\]

Define bilinear forms (for vector variables)
\[a^p_h(\mathbf{u}, \mathbf{v}) := (\mathcal{K} \Pi^0_k \mathbf{u}, \Pi^0_k \mathbf{v})_{\mathcal{P}} + S^p(\mathbf{u} - \Pi^0_k \mathbf{u}, \mathbf{v} - \Pi^0_k \mathbf{v}) \]
and
\[a_h(\mathbf{u}, \mathbf{v}) = \sum_{\mathcal{P}} a^p_h(\mathbf{u}, \mathbf{v}), \]
where \(S^p(\mathbf{u}, \mathbf{v}) \) is any bilinear form that scales with the inner product \((\mathcal{K}, \cdot)_{\mathcal{P}} \).

For \(k \geq 0 \), the MVEM is: Find \((\tilde{\mathbf{u}}_h, \tilde{p}_h) \in V_h^k \times W_h^k \) such that
\[
\begin{align*}
a_h(\tilde{\mathbf{u}}_h, \mathbf{v}_h) - (\tilde{p}_h, \text{div} \; \mathbf{v}_h) &= 0, \quad \forall \mathbf{v}_h \in V_h^k, \\
(\text{div} \; \tilde{\mathbf{u}}_h, q_h) &= (f, q_h), \quad \forall q_h \in W_h^k.
\end{align*}
\]

The following error estimates are given in [11].

Theorem 2.1. Under the assumptions above, the problem (2.18) has a unique solution \((\tilde{\mathbf{u}}_h, \tilde{p}_h) \) and the following error estimates hold.
\[
\begin{align*}
\| p - \tilde{p}_h \|_0 &\leq C h^{k+1} (\| \mathbf{u} \|_{k+1} + \| p \|_{k+1}), \\
\| \mathbf{u} - \tilde{\mathbf{u}}_h \|_0 &\leq C h^{k+1} \| \mathbf{u} \|_{k+1}, \\
\| \mathbf{u} - \Pi^k_F \mathbf{u} \|_0 &\leq C h^{k+1} \| \mathbf{u} \|_{k+1}, \\
\| \text{div} \; (\mathbf{u} - \tilde{\mathbf{u}}_h) \|_0 &\leq C h^{k+1} |f|_{k+1}.
\end{align*}
\]
3. Nonconforming virtual element methods. We briefly describe the NCVEM introduced in [26], [22].

We need a broken Sobolev space

\[H^1(T_h) = \{ q \in L^2(\Omega) : q|_{\mathcal{P}} \in H^1(\mathcal{P}), \quad \forall \mathcal{P} \in T_h \}, \]

with a broken norm

\[\| q \|_{1, h}^2 = \sum_{\mathcal{P} \in T_h} \| q \|^2_{1, \mathcal{P}}. \]

For positive integers \(r = k + 1, (k \geq 0) \), we let

\[H^{1, nc}(T_h; r) = \left\{ q \in H^1(T_h) : \int_{\Omega} |q|m d\sigma = 0, m \in P_{r-1}(f), \forall f \in \mathcal{E}_h^0 \right\}. \tag{3.1} \]

In order to utilize the nonconforming virtual element space in the next section, we need to use an extended version of VEM as in [22]. The reason is to compute \(L^2 \)-projection onto the space \(P_r \).

The local space for NCVEM on each \(\mathcal{P} \in T_h \) is defined as

\[N_h^r(\mathcal{P}) = \left\{ q \in W_h^r(\mathcal{P}) : (q - \Pi^*_r q, m)_{\mathcal{P}} = 0, \forall m \in P_{r-1}(\mathcal{P}) \cup P_r(\mathcal{P}) \right\}, \tag{3.2} \]

where \(W_h^r(\mathcal{P}) \) is an auxiliary space defined by

\[W_h^r(\mathcal{P}) = \left\{ q \in H^1(\mathcal{P}) : \frac{\partial q}{\partial n} \in P_{r-1}(f), \forall f \subset \partial \mathcal{P}, \Delta q \in P_r(\mathcal{P}) \right\}, \]

and \(\Pi^*_r \) is a certain projection onto \(P_r \) that can be computed from the degrees of freedom. For example, one can use the elliptic projection \(\Pi^*_r \) [6, 22].

The global nonconforming virtual element space \(N_h^r \) is defined as

\[N_h^r = \left\{ q \in H^{1, nc}(T_h; r) : q|_{\mathcal{P}} \in N_h^r(\mathcal{P}), \forall \mathcal{P}, \int_{\Omega} q m d\sigma = 0, \forall m \in P_{r-1}(f), \forall f \subset \mathcal{E}_h^0 \right\}. \tag{3.3} \]

The global d.o.f.s are given by the followings:

\[\mu_{f, \alpha}(q) = \frac{1}{\| f \|_1} \int_{\Omega} q m^\alpha d\sigma, \forall m^\alpha \in M_{r-1}(f), f \in \mathcal{E}_h^0, \]

\[\mu_{\mathcal{P}, \alpha}(q) = \frac{1}{\| \mathcal{P} \|} \int_{\mathcal{P}} q m^\alpha d\mathcal{P}, \forall m^\alpha \in M_{r-2}(\mathcal{P}), \mathcal{P} \in T_h. \tag{3.4} \]

We define the usual elliptic bilinear forms (for scalar variables) \(a^\mathcal{P} : H^1(\mathcal{P}) \times H^1(\mathcal{P}) \to \mathbb{R} \) and \(a : H^1(\Omega) \times H^1(\Omega) \to \mathbb{R} \) as:

\[a^\mathcal{P}(p, q) = \int_{\mathcal{P}} \nabla p \cdot \nabla q d\mathcal{P}, \quad \forall p, q \in H^1(\mathcal{P}), \]

\[a(p, q) = \sum_{\mathcal{P} \in T_h} a^\mathcal{P}(p, q), \quad \forall p, q \in H^1(\Omega). \]

Now we define a discrete bilinear form \(a_h^\mathcal{P}(\cdot, \cdot) : N_h^r \times N_h^r \to \mathbb{R} \):

\[a_h^\mathcal{P}(p_h, q_h) = (\mathcal{K}\Pi^0_{r-1} \nabla p_h, \Pi^0_{r-1} \nabla q_h)_{\mathcal{P}} + S^\mathcal{P}((I - \Pi^0_r)p_h, (I - \Pi^0_r)q_h), \tag{3.5} \]
Mixed Virtual Volume Methods for Elliptic Problems

where \(S^P \) is any stabilizing term satisfying
\[
C^* a^P_h(q_h, q_h) \leq S^P(q_h, q_h) \leq C^* a^P_h(q_h, q_h), \forall q_h \in \ker(\Pi^0_0).
\]

We let
\[
a_h(p_h, q_h) = \sum_P a^P_h(p_h, q_h), \forall p_h, q_h \in N^r_h.
\]

Now the NCVEM of order \(r \geq 1 \) is defined as in \([22]\): Find \(p_h \in N^r_h \) such that
\[
a_h(p_h, q_h) = (\Pi^0_{r-1} f, q_h), \quad (3.6)
\]

The following optimal error estimate for (3.6) is given in Theorems 6.2 and 6.3 \([22]\).

Theorem 3.1. Let \(p \) and \(p_h \) be the solutions of (2.1) and (3.6). Assume \(p \in H^{r+1}(\Omega) \), \(f \in H^{r-1}(\Omega) \). Then, there exists a constant \(C > 0 \) independent of \(h \) such that
\[
\| p - p_h \|_0 + h| p - p_h|_1 \leq C h^{r+1} \| p \|_{r+1}.
\]

Remark 3.1.
1. If we use \(\Pi^0_{\max(r-2,0)} f \) on the right hand side of (3.6), we can still get \(H^1 \) error estimate like
\[
| p - p_h|_1 \leq C h^r (\| p \|_{r+1} + \| f \|_{r-1}),
\]
 but we do not get optimal \(L^2 \)-error estimate.
2. As is well known in VEM community, there are two choices of bilinear forms. We used the more general form (3.5) which works for variable coefficient. For constant coefficient \(\mathcal{K} \), the form using elliptic projection
\[
\mathcal{K} \nabla \Pi^0 \nabla p_h, \nabla \Pi^0 q_h) + S^P((I - \Pi^0)p_h), (I - \Pi^0)q_h)
\]
defined in \([6, 26]\) can be used.

4. **Mixed Virtual Volume Methods.** Let \(k \geq 0 \). Assume that we have some \(H(\text{div}) \) virtual element space \(V^k_h \) and NCVEM space \(N^{k+1}_h \) (to be associated with \(V^k_h \)).

We assume, for the sake of simplicity, that all the elements \(\mathcal{P} \) have \(n \) edges(faces), but our argument works when each element has different number of edges(faces). We note the following type of Euler’s formula:

\[
n \# \mathcal{T}_h = \sum_{\mathcal{P} \in \mathcal{T}_h} \sum_{f \subset \partial \mathcal{P}} 1 = 2 \sum_{f \in \mathcal{E}^0_h} 1 + \sum_{f \in \mathcal{E}^1_h} 1 = 2 \# \mathcal{E}^0_h + \# \mathcal{E}^1_h. \quad (4.1)
\]

Now we introduce our mixed virtual volume method (MVVM) for all order \(k \geq 0 \): Find \((u_h, p_h) \in V^k_h \times N^{k+1}_h \) which satisfies on every element \(\mathcal{P} \in \mathcal{T}_h \),

\[
\int_{\mathcal{P}} u_h \cdot \nabla \chi + a^P_h(p_h, \chi) = 0, \forall \chi \in N^{k+1}_h(\mathcal{P}), \quad (4.2a)
\]

\[
\int_{\mathcal{P}} (u_h + k \Pi^0_h \nabla p_h) \cdot v \, dx = 0, \forall v \in G_k(\mathcal{P})^1, \quad (k \geq 1) \quad (4.2b)
\]

\[
\int_{\mathcal{P}} \text{div} u_h \phi \, dx = \int_{\mathcal{P}} \Pi^0_h f \phi \, dx, \forall \phi \in P_k(\mathcal{P}). \quad (4.2c)
\]
From (4.2c) we have
\[
\text{div } \mathbf{u}_h = \Pi^0_k f. \tag{4.3}
\]
We see from (2.10), (2.11), (2.12) (using (2.7)), that the dimension of \(V_h^k \times N_h^{k+1}\) is
\[
\pi_{k,d} \# \mathcal{E}_h + (\pi_{k,d} - 1 + d\pi_{k,d} - \pi_{k+1,d} + 1)\# \mathcal{T}_h + \pi_{k,d-1} \# \mathcal{E}_h^0 + \pi_{k-1,d} \# \mathcal{T}_h \tag{4.4}
\]
while the number of equations in (4.2) is
\[
(n \# \mathcal{T}_h - 1 + \dim G^+_k(P) + \dim P_k(P)) \cdot \# \mathcal{T}_h \tag{4.5}
\]
Using Euler’ formula (4.1), we see
\[
\# \mathcal{E}_h + \# \mathcal{E}_h^0 = n \# \mathcal{T}_h.
\]
Hence we see (4.4) and (4.5) are equal, and hence (4.2) is a square system. Integration by parts gives
\[
-\int_P \mathbf{u}_h \cdot \nabla \chi \, dx = -\int_{\partial P} \mathbf{u}_h \cdot \mathbf{n} \chi \, ds + \int_P \text{div } \mathbf{u}_h \chi \, dx. \tag{4.6}
\]
Summing over all \(P\), we have, by (4.2a) and (4.3)
\[
a_h(p_h, \chi) = -\sum_P \int_P \mathbf{u}_h \cdot \nabla \chi \, dx \tag{4.7}
\]
Now assume \(\chi \in N_h^{k+1}\). Since \(\chi\) has continuous moments up to degree \(k\) across internal edges(faces) and has vanishing moments on \(\partial \Omega\), we obtain
\[
a_h(p_h, \chi) = (\Pi^0_k f, \chi), \quad \chi \in N_h^{k+1}. \tag{4.8}
\]
This is exactly NCVEM of order \(k + 1\). Thus we have shown that our mixed virtual volume scheme is equivalent to the NCVEM.

Remark 4.1.
1. For \(k \geq 1\), we can replace the test space in (4.2c) by \(P_{k-1}(P)\) to obtain a scheme that corresponds to BDM like MVEM\[10\], for which we lose one order in \(H(\text{div})\)-norm.
2. We can allow each polygon to have different number of edges (faces). Similarly, the first term of the right hand side of (4.3) has to be changed exactly the same way. Thus the system is still a square system.

4.1. Recovery of \(u_h\) and \(L^2\)-projection. We see from (4.6), (4.3) and (4.2a) that for any \(\chi \in N_h^{k+1}(P)\)
\[
\int_{\partial P} \mathbf{u}_h \cdot \mathbf{n} \chi \, ds = (\Pi^0_k f, \chi)_P - a_h^P(p_h, \chi). \tag{4.9}
\]
Hence the moments of \(\mathbf{u}_h \cdot \mathbf{n} \in P_k(f)\) can be obtained by choosing the basis functions \(\chi \in N_h^{k+1}\) corresponding to the degrees of freedom.
The interior moments can be obtained similarly. Indeed, for \(v \in \mathcal{G}_{k-1}(\mathcal{P}) = \nabla P_k(\mathcal{P}) \), we have \(v = \nabla q \), for some \(q \in P_k(\mathcal{P}) \). Hence from (4.2b), we have
\[
\int_\mathcal{P} u_h \cdot \nabla q \, dx = \int_{\partial \mathcal{P}} u_h \cdot n q \, d\sigma - \int_\mathcal{P} \Pi_0^k f q \, dx,
\]
which is computable from the moments of \(u_h \cdot n \). Meanwhile for \(v \in \mathcal{G}_k(\mathcal{P})^\perp \), we see from (4.2c), that \(\text{div} (v) \) is piecewise constant, then
\[
\int_\mathcal{P} u_h \cdot v \, dx = -\int_\mathcal{P} \kappa \Pi_k^0 \nabla p_h \cdot v \, dx
= -\int_\mathcal{P} \nabla p_h \cdot \Pi_k^0 (K v) \, dx
= -\int_{\partial \mathcal{P}} p_h \Pi_k^0 (K v) \cdot n \, d\sigma + \int_\mathcal{P} p_h \text{div} (\Pi_k^0 (K v)) \, dx
\]
which is computable from the d.o.f.s of \(p_h \). Hence all the degrees of freedom of \(u_h \) can be computed.

Furthermore, we can find the \(L^2 \)-projection of \(u_h \), at the same time. Since
\[
(P_k(\mathcal{P}))^d = \mathcal{G}_k(\mathcal{P}) \oplus \mathcal{G}_k(\mathcal{P})^\perp,
\]
and \(\mathcal{G}_k = \nabla P_{k+1}(\mathcal{P}) \subset \nabla N_{k+1}^2(\mathcal{P}) \), the same integration by parts as (4.10), (4.11) give enough information to compute the projection of \(u_h \) onto \((P_k(\mathcal{P}))^d \).

4.2. Construction of Raviart - Thomas type approximation for \(k = 0 \). It is clear that when \(k = 0 \), MVVM and MFEM are equivalent on triangular/tetrahedral grids. In the case of MFEM, it is known [29] that, if \(K \) is piecewise constant, then
\[
u_h = -K \nabla p_h + \frac{f}{d}(x - x_P), \quad d = 2, 3,
\]
where \(f \) is the average of \(f \) on each element \(\mathcal{P} \). The same formula holds for MVVM.

On general grids, we have a similar representation (even when \(K \) is nonconstant). We see from (4.2a), that \(\text{div} (u_h - \frac{f}{d}(x - x_P)) = 0 \), \(d = 2, 3 \). Hence
\[
\nu_h = \frac{f}{d}(x - x_P) + \text{curl} \, \xi (\text{rot} \, \xi \text{ if } d = 2), \text{ for some } \xi \in H^1(\mathcal{P}).
\]
Substituting this into (4.2a), and letting \(\chi = x, y, z \), we have
\[
\Pi_0^0 (\text{curl} \, \xi) = -\Pi_0^0 (K \Pi_0^0 (\nabla p_h)) = -\kappa \Pi_0^0 (\nabla p_h).
\]
Hence
\[
u_h = \frac{f}{d}(x - x_P) - \kappa \Pi_0^0 (\nabla p_h) + \text{curl} \, \xi - \Pi_0^0 (\text{curl} \, \xi).
\]
The projection \(\Pi_0^0 (\nabla p_h) \) can be computed by letting \(\chi = x \) (or \(\chi = y, z \)) as follows:
\[
\int_\mathcal{P} \Pi_0^0 (\nabla p_h) \cdot \nabla \chi \, dx = \int_\mathcal{P} \nabla p_h \cdot (1, 0, 0)^T \, dx = \int_{\partial \mathcal{P}} p_h n_x \, d\sigma
= \sum_{f \subset \partial \mathcal{P}} n_f^i |f| \frac{1}{|f|} \int_f p_h \, d\sigma = \sum_{f \subset \partial \mathcal{P}} n_f^i |f| \mu_{f,0}(p_h),
\]
where $\mu_{f,0}(p_h)$ is the degree of freedom of p_h on f, $n = (n_x, n_y, n_z)$ is the unit outer normal to ∂P, and $n^f = (n^f_x, n^f_y, n^f_z)$ is its restriction to each f. Hence

$$
\Pi^0_0(\nabla p_h) = \frac{1}{|P|} \left(\sum_f n^f_x |f| \mu_{f,0}(p_h), \sum_f n^f_y |f| \mu_{f,0}(p_h), \sum_f n^f_z |f| \mu_{f,0}(p_h) \right)^T.
$$

We can write (4.13) in the form (when u_h is smooth)

$$
u_h = \tilde{u}_h + \text{curl } \xi - \Pi^0_0(\text{curl } \xi) = \tilde{u}_h + O(h),
$$

where

$$\tilde{u}_h = -\bar{K} \Pi^0_0(\nabla p_h) + \bar{f} d(x - x_P) \in V_h. \tag{4.14}$$

Thus we have obtained a lowest order Raviart - Thomas approximation to u_h on polygonal/polyhedral grids. We believe it is a better approximation than the L^2-projection $\bar{K} \Pi^0_0(u_h)$, because it satisfies $\text{div } \tilde{u}_h = \bar{f}$, while $\text{div } (\bar{K} \Pi^0_0(u_h)) = 0$. Indeed, the numerical tests support this assertion (see Table 6.2).

5. Error estimates. We need some lemmas which can be found in the literature.

Lemma 5.1. *(Inverse inequality for VEM [15, 23]*) There exists a constant $C > 0$ such that

$$
\|\nabla q\|_0 \leq Ch^{-1} \|q\|_0, \forall q \in N_{k+1}^h.
$$

Lemma 5.2. *(Norm equivalence for VEM [15, 22, 23]*) For any $q \in N_{k+1}^h$, there exists a constant $C > 0$ such that

$$
\frac{1}{C h^{d/2}} \|\Xi(q)\|_2 \leq \|q\|_{0,P} \leq C h^{d/2} \|\Xi(q)\|_2,
$$

where $\Xi(q)$ is the vector representing the degrees of freedom of q.

We need the following lemma which are standard for FEM [2], but not for VEM since there is no reference element.

Lemma 5.3. Let $\phi \in L^2(P)$, $\phi \in (L^2(P))^d$ and $\mu \in L^2(\partial P)$. Then the function $\chi \in N_{k+1}^h(P)$ determined by

$$
\int_f \chi q \, d\sigma = \int_f \mu q \, d\sigma, \forall q \in M_k(f), \text{ for all } f \subset \partial P \tag{5.3a}
$$

$$
\int_P \chi m \, dx = \int_P \mu m \, dx, \forall m \in M_{k-1}(P) \tag{5.3b}
$$

satisfies

$$
\|\chi\|_{0,P} \leq C(\|\phi\|_{0,P} + h^{1/2} \|\mu\|_{\partial P}). \tag{5.4}
$$

Similarly, the function $v \in V_{k}^h(P)$ determined by the degrees of freedom

$$
\int_f v \cdot n q \, ds = \int_f \mu g \, ds, \forall g \in M_k(f), \text{ for all edges(faces) of } P, \tag{5.5a}
$$

$$
\int_P v \cdot g \, dx = \int_P \phi \cdot g \, dx, \forall g \in \Psi_h(P) \tag{5.5b}
$$
satisfies
\[\|v\|_{0,P} \leq C(\|\phi\|_{0,P} + h^{1/2}\|\mu\|_{\partial P}). \] (5.6)

Proof. We only prove (5.6), since the proof of (5.4) is similar. It is well known that the square of \(L^2\)-norm of a function \(v \in V^k_h(P)\) scales like
\[|P| \sum_{i=1}^{n_k} |\Xi_i(v)|^2, \]
where \(\Xi_i(v)\) is the \(i\)-th d.o.f of \(v\) and \(n_k\) is the dim \(V^k_h(P)\). In other words, if \(\{\phi_j\}_{j=1}^{n_k}\) is the canonical basis functions such that \(\Xi_i(\phi_j) = \delta_{ij}\), then
\[v = \sum_{i=1}^{n_k} \Xi_i(v)\phi_j. \]
It can be easily verified that the scaled monomials \(g \in M^k(f)\) and \(g \in (M^k(P))^d\) satisfy
\[\|g\|_f^2 = O(|f|), \quad \|g\|_{0,P}^2 = O(|P|). \] (5.7)
Hence for any \(v \in V^k_h\), we have
\[
\|v\|_{0,P}^2 \leq C|P| \sum_{i=1}^{n_k} |\Xi_i(v)|^2 \\
= C|P| \left[\sum_{f \subset \partial P,g} (\text{edge(face) d.o.f.s})^2 + \sum_{\text{interior d.o.f.s}} \left(\int_f v \cdot n g \, d\sigma \right)^2 + \sum_{\text{interior d.o.f.s}} \left(\int_P v \cdot g \, dx \right)^2 \right] \\
\leq C|P| \left[\sum_{f \subset \partial P,g} \|\mu\|_{0,P}^2 \|g\|_f^2 + C|P|^{-1} \sum_g \|\phi\|_{0,P}^2 \|g\|_0^2, \text{ by (5.5)} \right] \\
\leq C|P| \left[\sum_{f \subset \partial P,g} \|\mu\|_{0,P}^2 + C \sum_g \|\phi\|_{0,P}^2, \text{ by (5.9)} \right] \\
\leq C(h\|\mu\|_{0,P}^2 + \|\phi\|_{0,P}^2). \]

Theorem 5.4. Let \((u_h, p_h)\) be the solution of the system (4.2). Then there exists a constant \(C\) independent of \(h\) such that
\[
\|u - u_h\|_0 \leq C h^{k+1}(\|u\|_{k+1} + \|f\|_k), \tag{5.8a}
\|
\text{div}(u - u_h)\|_0 \leq C h^{k+1}|f|_{k+1}, \tag{5.8b}
\]
provided that \(u \in H^{k+1}(\Omega)\) and \(f \in H^{k+1}(\Omega)\).

Proof. We shall prove (5.8b) first. We see from (4.3) that
\[
\|\text{div}(u - u_h)\|_0 \leq \|f - \Pi^0_h f\|_0 \leq C h^{k+1}|f|_{k+1}. \]
Hence

Now by the approximation property of p_n, we have

and the approximation property of Π_k^F (Theorem 2.1), it suffices to estimate

For the sake of simplicity we assume $K = 1$. (Similar estimate holds as long as K is sufficiently smooth.) Let p_π be an arbitrary function in $P_{k+1}(\mathcal{P})$. Then, clearly we have $a_k^P(p_\pi, \chi) = a^P(p_\pi, \chi)$ for all $\chi \in N_h^{k+1}(\mathcal{P})$. From (4.2), we see

Let $\chi \in H^1(\mathcal{P})$ be the solution of

Since χ is completely determined by the moments $\int f \chi q_k d\sigma = \int f (\Pi_k^F u - u_h) \cdot n q_k d\sigma$, $\forall q_k \in P_h(f)$, $\forall f \subset \partial \mathcal{P}$, we see $\chi \in N_h^{k+1}(\mathcal{P})$. Hence by (5.4) we have

Now by the definition of Π_k^F, (5.9), and (4.2)

Now by the approximation property of p_π and p_h, the inverse inequality, and (5.10),

Hence

\[
\|(\Pi_k^F u - u_h) \cdot n\|_{\partial \mathcal{P}} \leq C h^{k+1/2} \|f\|_{k,\mathcal{P}}.
\]
On the other hand, from equations (2.2), (4.2a,b) we see
\[
\int_P (u + K \nabla p) \cdot v \, dx = 0, \forall v \in (L^2(P))^d,
\]
\[
\int_P (u_h + K \Pi_k \nabla p_h) \cdot v \, dx = 0, \forall v \in \Psi_h(P).
\]
Subtracting, we have (since \(K \) is constant)
\[
\int_P (u - u_h) \cdot v \, dx = - \int_P (K \nabla p - K \Pi_k \nabla p_h) \cdot v \, dx, \forall v \in \Psi_h(P).
\]
Let \(\mu = (\Pi_k u - u_h) \cdot n \) and \(\phi = K \nabla p - K \nabla p_h \). Then \(\sigma = \Pi_k u - u_h \in V_k(P) \) is the solution of
\[
\int_f \sigma \cdot nq \, ds = \int_f \mu q \, ds, \forall q \in M_k(f), \text{ for all edges(faces) of } P,
\]
\[
\int_P \sigma \cdot g \, dx = \int_P \phi(P) \cdot g \, dx, \forall g \in \Psi_h.
\]
Then by \(\text{(5.6)}, \text{ (5.11)}, \text{ and the approximation property of } p_h \), we have
\[
\| \Pi_k^F u - u_h \|_{0,P} \leq \| K \|_{\infty} \| \nabla p - \nabla p_h \|_{0,P} + C h^{1/2} \| (\Pi_k^F u - u_h) \cdot n \|_{\partial P}
\]
\[
\leq C h^{k+1} (\| f \|_{k+2,P} + \| f \|_{k,P}).
\]
By the triangle inequality and approximation property of \(\Pi_k^F u \), the proof is complete.

6. Numerical experiments. In this section, we present some numerical results in two dimensional case. The exact solutions on \(\Omega = [0,1]^2 \) are chose as
\[
p(x, y) = x(1 - x)y(1 - y),
\]
\[
u(x, y) = -K(1 - 2x)y(1 - y), x(1 - x)(1 - 2y)).
\]

Example 6.1 (Numerical results of MVVM).

We report the error between the exact solution and the \(L^2 \)-projection of \(u_h \) with \(K = 1 + 0.5 \sin(x) \), for \(k = 0, 1, 2, 3 \) in Table 6.1. We observe that the results are optimal for all cases.

Example 6.2 (Comparison between \(L^2 \)-projection and Raviart-Thomas type reconstruction). In the lowest order case, we compare the errors of \(L^2 \)-projection of \(u_h \) and Raviart-Thomas type reconstruction \((4.14) \). Here, we set \(K = 1 \). The result is reported in Table 6.2. We observe that the Raviart-Thomas type is more accurate.

7. Conclusion. In this work, we develop mixed virtual volume methods (MVVM) of all orders on polygonal/polyhedral meshes. For the primary variable we use the nonconforming virtual element space, and for the velocity variable we use the \(H(\text{div}) \) conforming virtual element space. The proposed method is the first success to compute \(H(\text{div}) \)-conforming velocity variables through the NCVEM. We show that the MVVM is equivalent to the NCVEM for all orders. Once the primary variable is obtained from solving the (SPD) system arising from NCVEM, the velocity variable can be computed locally. Thus, the whole procedure can be implemented efficiently, avoiding a saddle point problem. The optimal error estimates are given and numerical results supporting our analysis are presented.
Fig. 5.1. Polygonal mesh T_h with number of elements 16 (left, top), 64 (right, top), 256 (left, bottom) and 1024 (right, bottom).

Table 6.1
L^2-errors between exact solution and the L^2-projection of u_h for orders $k = 0, 1, 2, 3$. Table at left top, right top, left bottom and right bottom correspond to the case $k = 0$, $k = 1$, $k = 2$ and $k = 3$ respectively.

| N of Elt. | $||u - \Pi_0^0 u_h||_0$ | order | N of Elt. | $||u - \Pi_0^1 u_h||_0$ | order |
|------------|------------------------|-------|------------|------------------------|-------|
| $2^2 \times 2^2$ | 6.494E-02 | $2^2 \times 2^2$ | 2.964E-02 |
| $2^3 \times 2^3$ | 3.250E-02 0.998 | $2^3 \times 2^3$ | 6.261E-03 1.981 |
| $2^4 \times 2^4$ | 1.578E-02 1.042 | $2^4 \times 2^4$ | 1.162E-03 2.041 |
| $2^5 \times 2^5$ | 7.853E-03 1.007 | $2^5 \times 2^5$ | 2.304E-04 2.001 |
| $2^6 \times 2^6$ | 3.895E-03 1.012 | $2^6 \times 2^6$ | 5.040E-05 2.014 |

| N of Elt. | $||u - \Pi_0^2 u_h||_0$ | order | N of Elt. | $||u - \Pi_0^3 u_h||_0$ | order |
|------------|------------------------|-------|------------|------------------------|-------|
| $2^2 \times 2^2$ | 4.158E-03 | $2^2 \times 2^2$ | 7.678E-05 |
| $2^3 \times 2^3$ | 6.260E-04 2.732 | $2^3 \times 2^3$ | 8.684E-06 3.144 |
| $2^4 \times 2^4$ | 6.369E-05 3.297 | $2^4 \times 2^4$ | 5.552E-07 3.967 |
| $2^5 \times 2^5$ | 5.719E-06 3.477 | $2^5 \times 2^5$ | 3.368E-08 4.043 |
| $2^6 \times 2^6$ | 6.326E-07 3.176 | $2^6 \times 2^6$ | 2.109E-09 3.997 |

REFERENCES

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo, Equivalent projectors for
Table 6.2
L^2-errors of $\Pi^0_0 u_h$ (left) and Raviart-Thomas type reconstruction \tilde{u}_h (right)

N of Elt.	$\|u - \Pi^0_0 u_h\|_{L^2(\Omega)}$	order	$\|u - \tilde{u}_h\|_{L^2(\Omega)}$	order
$2^2 \times 2^2$	4.303E-02		3.171E-02	
$2^3 \times 2^3$	2.241E-02 0.941		1.628E-02 0.962	
$2^4 \times 2^4$	1.111E-02 1.012		7.930E-03 1.037	
$2^5 \times 2^5$	5.575E-03 0.995		4.011E-03 0.983	
$2^6 \times 2^6$	2.784E-03 1.002		1.988E-03 1.013	

virtual element methods, Computers & Mathematics with Applications, 66 (2013), pp. 376–391.

[2] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates, RAIRO Mathematical Modeling and Numerical Analysis, 19 (1985), pp. 7–32.

[3] P. F. Antonietti, L. B. Da Veiga, D. Mora, and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM Journal on Numerical Analysis, 52 (2014), pp. 386–404.

[4] E. Artioli, S. De Miranda, C. Lovadina, and L. Patruno, A stress/displacement virtual element method for plane elasticity problems, Computer Methods in Applied Mechanics and Engineering, 325 (2017), pp. 155–174.

[5] E. Artioli, S. De Miranda, C. Lovadina, and L. Patruno, A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle, Computer Methods in Applied Mechanics and Engineering, 340 (2018), pp. 978–999.

[6] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of virtual element methods, Mathematical Models and Methods in Applied Sciences, 23 (2013), pp. 199–214.

[7] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to the virtual element method, Mathematical models and methods in applied sciences, 24 (2014), pp. 1541–1573.

[8] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes, Mathematical Models and Methods in Applied Sciences, 26 (2016), pp. 729–750.

[9] L. Beirão da Veiga, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity problems, SIAM Journal on Numerical Analysis, 51 (2013), pp. 794–812.

[10] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, $H(\text{div})$ and $H(\text{curl})$-conforming virtual element methods, Numerische Mathematik, 133 (2016), pp. 303–332.

[11] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), pp. 727–747.

[12] L. Beirão da Veiga, K. Lipnikov, and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM Journal on Numerical Analysis, 49 (2011), pp. 1737–1760.

[13] L. Beirão da Veiga, C. Lovadina, and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes, Computer Methods in Applied Mechanics and Engineering, 295 (2015), pp. 327–346.

[14] P. B. Bochev and J. M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible spatial discretizations, Springer, 2006, pp. 89–119.

[15] S. C. Brenner, Q. Guan, and L.-Y. Sung, Some estimates for virtual element methods, Computational Methods in Applied Mathematics, 17 (2017), pp. 553–574.

[16] F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numerische Mathematik, 47 (1985), pp. 217–235.

[17] F. Brezzi, K. Lipnikov, and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Mathematical Models and Methods in Applied Sciences, 15 (2005), pp. 1533–1551.

[18] F. Brezzi, A. Buffa, and K. Lipnikov, Mimetic finite differences for elliptic problems,
[19] F. Brezzi, R. S. Falk, and L. D. Marini, Basic principles of mixed virtual element methods, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), pp. 1227–1240.

[20] A. Cangiani, G. Manzini, and A. Russo, Convergence analysis of the mimetic finite difference method for elliptic problems, SIAM Journal on Numerical Analysis, 47 (2009), pp. 2612–2637.

[21] A. Cangiani, V. Gyrya, and G. Manzini, The nonconforming virtual element method for the Stokes equations, SIAM Journal on Numerical Analysis, 54 (2016), pp. 3411–3435.

[22] A. Cangiani, G. Manzini, and O. J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems, IMA Journal of Numerical Analysis, 37 (2017), pp. 1317–1354.

[23] L. Chen and J. Huang, Some error analysis on virtual element methods, Calcolo, 55 (2018), Article number:5.

[24] F. Dassi, Lovadina, C and M. Visinoni, Hybridization of the Virtual Element Method for linear elasticity problems, arXiv preprint arXiv:2103.01164 (2021).

[25] S. H. Chou, D. Y. Kwak, and K. Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Mathematics of computation, 72 (2003), pp. 525–539.

[26] B. A. de Dios, K. Lipnikov, and G. Manzini, The nonconforming virtual element method, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), pp. 879–904.

[27] A. L. Gain, C. Talischi, and G. H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Computer Methods in Applied Mechanics and Engineering, 282 (2014), pp. 132–160.

[28] D. Y. Kwak, A new class of higher order mixed finite volume methods for elliptic problems, SIAM Journal on Numerical Analysis, 50 (2012), pp. 1941–1958.

[29] L. D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM journal on numerical analysis, 22 (1985), pp. 493–496.

[30] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, In Mathematical aspects of finite element methods, Springer, Berlin, Heidelberg, (1977), pp. 292–315.

[31] O. J. Sutton, The virtual element method in 50 lines of Matlab, Numerical Algorithms, 75 (2017), pp. 1141–1159.

[32] B. Zhang, J. Zhao, Y. Yang, and S. Chen, The nonconforming virtual element method for elasticity problems, Journal of Computational Physics, 378 (2019), pp. 394–410.