Genetic variations for post emergence herbicide tolerance in field pea (Pisum sativum)

A K PARIHAR1*, N KUMAR2, C P NATH3, A K SINGH4, S K CHATURVEDI5, G P DIXIT6 and N P SINGH7

ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024, India

Received: 06 March 2018; Accepted: 31 October 2018

ABSTRACT

Weeds are highly competitive to the crops for nutrient and water from soil, sunlight, space and also harbour many insect-pest and diseases, consequently lead to drastic yield reduction. Pisum sativum is sensitive to the most of the potential post emergence herbicides and thus, effective weed management is a difficult assignment particularly the later flush of weed emergence. The identification of herbicide resistant genotypes is the potential way to develop herbicide tolerant varieties as well as to control weeds and minimise yield losses. So far no report is available for herbicide tolerant genotypes in field pea. Therefore, an attempt has been made to identify the genotypes as a source of resistance to the post-emergence herbicide metribuzin. Total 822 genotypes were examined for their sensitivity under preliminary screening against metribuzin at 0.5 kg ai/ha during the winter season of 2015-16. Of the tested genotypes, a set of 85 promising genotypes were re-evaluated with same dose during the winter season of 2016-17 with visual phyto-toxicity score. The results of experiment revealed that there was a huge amount of genetic variation for tolerance against metribuzin in field pea. The frequency distribution grouped the genotypes as tolerant (1), moderately tolerant (5), susceptible (18), and highly susceptible (61) categories. None of the genotypes showed highly tolerant reaction. Notably, accession P-637 witnessed tolerance and other five accessions, viz. P-729, P-647, P-1075, P-2016, and P-1448-2 registered moderately tolerance reaction against metribuzin. Hence, aforesaid promising genotypes may be utilized as donor to speed up breeding for development of herbicide tolerant varieties in field pea and in other genetical studies too.

Key words: Herbicide tolerance, Metribuzin, Phyto-toxicity, Pisum sativum, Post–emergence herbicide

Dry pea or field pea (Pisum sativum L.) is an important cool season legume crop of the world and is a rich source of protein (21.1-32.9%), carbohydrate, minerals and vitamins which are good for human and livestock consumption and health (Parihar et al. 2016). The productivity of this crop is affected by several biotic and abiotic factors. Among these factors, weeds can cause > 75% reduction in crop yield (Tripathi et al. 2001, Singh et al. 2016). Weeds have competition to the crops for nutrient, water, sunlight, space and also harbour many insect-pest and diseases (Gaur et al. 2013), subsequently, the performance of crop in term of the yield is drastically reduced. Presently, pre-emergence herbicide (pendimethalin) and manual weeding at 30-35 days after sowing is recommended in pea. However, manual weeding is proving difficult because of labour scarcity at critical time of weeding and increasing cost (Chaturvedi et al. 2014). Therefore, to control the later flush of weeds, use of post-emergence herbicides becomes important. But, no post-emergence herbicide is available for controlling broad-leaved weeds like Medicago denticulala, Vicia sativa, Convolvulus arvensis, Chenopodium album, Phalaris minor and others. Therefore, an effective and efficient weed management is essential to achieve potential yield (Nath et al. 2017). Pea is a poor competitor to weeds owing to its slow initial growth and wider plant spacing that provide congenial environment for weeds to grow. Besides, its succulent plant type also do not allow second manual weeding as it can cause damage to the crop. Therefore, herbicide tolerance cultivars may offer larger elasticity for use of post-emergence herbicides and are immediately required by the P. sativum growing farmers. Quizalofop-p-ethyl, clodinafop-propargyl, imazethapyr, and imazethapyr + imazamox (ready-mix) are post-emergence herbicides.
used in many rainy season legume crops. Metribuzin (4-Amino-6-tert-butyl-3-methylsufanyl-1, 2, 4-triazin-5-one) is a potential broad-spectrum herbicide used in soybean and wheat crops. It inhibits the photosystem-II pathway, which demonstrates adverse effect on the fully developed leaves and subsequently on plant growth. So far no report is available on herbicide tolerance in P. sativum. Also, till date no systematic study was conducted to see the efficacy of this post-emergence herbicide in fieldpea. It is well established that genotypes/cultivars resistance to herbicide is the most potential way to minimize losses due to weeds. Thus, the present investigation was attempted to identify the sources of resistance to the post-emergence herbicide metribuzin in P. sativum.

MATERIALS AND METHODS

Preliminary screening

Total 822 peas genotypes including germplasm accessions (indigenous and exotic collections) and released cultivars/advanced breeding lines were used for preliminary screening during winter season of the 2015-16 against post-emergence herbicide metribuzin at 0.5 kg ai/ha in an Augmented Design at Research Institute, Kanpur, Uttar Pradesh, India (Fig 1). The plants were grown on 1-m long rows with 0.3 m spacing between rows and 0.1 m between plants. Metribuzin at 0.5 kg ai/ha was applied 25 days after sowing through manually operated knapsack sprayer fitted with flat fan nozzle (pressure: 200 kPa) using 400 litre of water/ha during cool hours of the day when there was little or no wind for uniform spray and absorption. The plants were scored for herbicide tolerance at 15 days after herbicide application (DAHA) on a 1–5 scale (Gaur et al. 2013). No weeding was done prior to or post herbicidal application. The visual observations were recorded for toxicity and its effect on upper parts of plant i.e. leaves and stem for every individual genotype.

Second year screening

A set of diverse 85 promising genotypes selected on the basis of first year of screening were evaluated along with control (same set of genotypes without spray) to validate the herbicide (metribuzin 0.5 kg ai/ha) tolerance reaction observed in the preliminary experiment. The crop geometry, package and practices, herbicide dose, herbicide application and scoring methods were adopted similar to the preliminary screening. Additionally, another set of same genotypes was also raised as control i.e. without herbicide application, to observe the difference within genotype after spray and without spray (Fig 1). The plants were scored for herbicide toxicity on three different stages, i.e.15 days after herbicide application (DAHA) spray (DAHA), 30 DAHA and 60 DAHA.

The analysis of variance was performed using SAS 9.2 software (SAS Institute). The original data were rescaled by multiplying with 1000 before analysis to get...
Table 1  Toxicity scores against post emergence herbicide (metribuzin 0.5 kg ai/ha) in fieldpea during winter season of 2016-17

| Genotype     | 15 DAHA | 30 DAHA | 60 DAHA | Genotype     | 15 DAHA | 30 DAHA | 60 DAHA |
|--------------|---------|---------|---------|--------------|---------|---------|---------|
| P-729        | 3.0     | 2.0     | 3.0     | P-1358       | 4.0     | 5.0     | 5.0     |
| P-647        | 2.0     | 3.0     | 3.0     | P-781        | 4.0     | 4.0     | 5.0     |
| P-1075       | 3.0     | 2.0     | 3.0     | P-1807       | 5.0     | 5.0     | 5.0     |
| P-1573       | 4.0     | 4.0     | 5.0     | P-1034       | 3.0     | 3.0     | 5.0     |
| HUDP-15      | 4.0     | 5.0     | 5.0     | P-1443-1     | 3.0     | 4.0     | 5.0     |
| P-637        | 2.0     | 2.0     | 2.0     | P-471        | 3.0     | 4.0     | 5.0     |
| P-1297-35-1  | 3.0     | 3.0     | 4.0     | P-639        | 5.0     | 5.0     | 5.0     |
| P-2016       | 3.0     | 2.0     | 3.0     | P-1375       | 4.0     | 5.0     | 5.0     |
| P-706        | 4.0     | 4.0     | 4.0     | P-1448-2     | 2.0     | 3.0     | 3.0     |
| P-700        | 4.0     | 4.0     | 4.0     | P-1001       | 5.0     | 5.0     | 5.0     |
| P-705        | 4.0     | 4.0     | 4.0     | P-6586       | 5.0     | 5.0     | 5.0     |
| P-999        | 4.0     | 4.0     | 4.0     | P-1297-6-1   | 3.0     | 3.0     | 4.0     |
| P-1042       | 4.0     | 3.0     | 4.0     | P-1297       | 5.0     | 5.0     | 5.0     |
| P-1046       | 4.0     | 4.0     | 4.0     | P-3          | 4.0     | 4.0     | 4.0     |
| P-1070       | 4.0     | 4.0     | 4.0     | P-1430-2     | 4.0     | 4.0     | 5.0     |
| P-1176-1     | 5.0     | 5.0     | 5.0     | P-600        | 4.0     | 4.0     | 4.0     |
| P-1301       | 3.0     | 2.0     | 4.0     | P-1295       | 4.0     | 4.0     | 5.0     |
| P-1384-1     | 5.0     | 5.0     | 5.0     | P-1          | 5.0     | 5.0     | 5.0     |
| P-1805       | 4.0     | 4.0     | 5.0     | P-782        | 4.0     | 5.0     | 5.0     |
| IV-D-99-9    | 4.0     | 4.0     | 4.0     | P-744        | 4.0     | 4.0     | 5.0     |
| EC-382476    | 4.0     | 4.0     | 5.0     | P-1808       | 5.0     | 5.0     | 5.0     |
| ET-5117      | 2.0     | 3.0     | 4.0     | P-841        | 5.0     | 5.0     | 5.0     |
| ET-5122      | 4.0     | 4.0     | 5.0     | P-3          | 4.0     | 4.0     | 4.0     |
| P-1545-1     | 4.0     | 4.0     | 5.0     | P-1297-22    | 4.0     | 4.0     | 4.0     |
| P-201        | 4.0     | 4.0     | 5.0     | P-815        | 4.0     | 5.0     | 4.0     |
| P-1297-27-1  | 5.0     | 5.0     | 5.0     | P-705        | 4.0     | 5.0     | 5.0     |
| P-1436-5     | 5.0     | 5.0     | 5.0     | IP2K 76      | 3.0     | 4.0     | 5.0     |
| IPFD 99-13   | 4.0     | 4.0     | 5.0     | IP2K107      | 3.0     | 3.0     | 5.0     |
| P-1541-33    | 5.0     | 5.0     | 5.0     | IP2K79       | 4.0     | 5.0     | 5.0     |
| P-1544-4     | 4.0     | 4.0     | 5.0     | IP2K 77      | 4.0     | 5.0     | 5.0     |
| P-1545-2     | 5.0     | 5.0     | 5.0     | IP2K 119     | 3.0     | 4.0     | 5.0     |
| P-1456-A-3   | 5.0     | 5.0     | 5.0     | IVD 99-6     | 5.0     | 5.0     | 5.0     |
| P-1457-1     | 5.0     | 5.0     | 5.0     | IVD-99-11    | 4.0     | 5.0     | 5.0     |
| P-1547-2     | 4.0     | 4.0     | 5.0     | KSP-9        | 4.0     | 4.0     | 5.0     |
| P-1601       | 5.0     | 5.0     | 5.0     | EC 329577    | 5.0     | 5.0     | 5.0     |
| P-1604       | 5.0     | 5.0     | 5.0     | EC 389377    | 4.0     | 4.0     | 5.0     |
| P-1622       | 5.0     | 5.0     | 5.0     | EC 329568    | 4.0     | 4.0     | 4.0     |
| P-1621       | 5.0     | 5.0     | 5.0     | EC 329576    | 5.0     | 5.0     | 5.0     |
| P-91-3       | 5.0     | 5.0     | 5.0     | ET 5106      | 4.0     | 5.0     | 5.0     |
| P-107        | 4.0     | 4.0     | 5.0     | ET 45190     | 4.0     | 4.0     | 5.0     |
| P-107-12     | 4.0     | 4.0     | 5.0     | P-867        | 5.0     | 5.0     | 5.0     |
| P-122-11     | 5.0     | 5.0     | 5.0     | IPFD 1-10    | 4.0     | 4.0     | 4.0     |
| P-122-12     | 4.0     | 4.0     | 5.0     |              |         |         |         |
better presentation of source variance. In addition, other graphical representations were made using Microsoft Excel worksheet 2007.

RESULTS AND DISCUSSION

Total 822 field pea genotypes were screened against post-emergence herbicide metribuzin for post emergence herbicide tolerance. The analysis of variance revealed that ample amount of genetic variation exists for tolerance against metribuzin at 0.5 kg ai/ha. During the preliminary screening (2015-16), large amount of variability was observed on the basis of visual observations and toxicity (Fig 1 and 2) and promising genotypes were extracted for further confirmation. Similarly, in the 2nd year (2016-17) of screening, 85 promising genotypes also witnessed huge variability for tolerance against metribuzin (Fig 3 & Table 1). These findings are in accordance with earlier reports on chickpea and peas (Gaur et al. 2013, Chaturvedi et al. 2014, Hanson and Thill 2001, Nath et al. 2017). Because of photosystem-II inhibition, metribuzin exhibited adverse effect on the fully developed leaves. In term of phyto-toxicity symptoms, metribuzin caused complete burning/death of the plants in highly susceptible genotypes with 100% mortality (phyto-toxicity score 5). Further, tolerant lines had healthy plant appearance with no leaf burning/chlorosis (Fig 1). After application of herbicide, few genotypes recovered with secondary growth at 30-35 days after herbicide application leading to flowering and pod set. This could be due the phenological plasticity of the pea genotypes. The susceptible and highly susceptible lines exhibited higher magnitude of leaf burning (phyto-toxicity score >3) within 7 days of herbicide application (Ramakrishan et al. 1992, Gaur et al. 2013).

The response of individual genotypes for post-emergence metribuzin application varied during the scoring period. The frequency distribution (Fig. 4) clearly witnessed the periodical changes in the performance of genotypes for metribuzin tolerance. At the initial stage (i.e. 15 days after herbicide application) 4, 12, 42, and 27 genotypes were scored as tolerant, moderately tolerant, susceptible and highly susceptible categories, respectively. After 30 DAHA, only 5, 8, 36 and 36 genotypes harboured in tolerant, moderately tolerant, susceptible and highly susceptible group, respectively. Similarly, at 60 DAHA, 1, 5, 18, and 61 genotypes were grouped as tolerant, moderately tolerant, susceptible and highly susceptible, respectively. The periodical variations in the genotypes were due to the residual activity of metribuzin.
at 0.5 kg ai/ha. For instance, the highly susceptible genotypes showed the phytotoxicity immediately after application of herbicides. While at later stages, metribuzin caused higher phytotoxicity to some genotypes, whereas, few genotypes recovered over time. None of the genotypes reacted as highly tolerant at any stage of scoring in the crop. The behaviour of some genotypes fluctuated for metribuzin toxicity over the scoring period. At 30 DAHA, the reactions of genotypes shifted from tolerance to moderately tolerance category, moderately tolerance into susceptible category and susceptible to highly susceptible category. The shift in performance may be due to the moisture scarcity in soil which resulted to the reduced efficacy of post-emergence herbicide and subsequently, change in the genotype performance was noticed. The efficacy of post-emergence herbicide reduced under water or other stresses as plants had smaller leaves, thicker cuticles and more deposited wax layer under soil moisture stress as compared to plants grown under sufficient moisture availability. In addition, plants gradually closed their stomata due to water stress, leading to a decline in the photosynthesis and other biosynthetic process (Hull 1970, Turner and Begg 1981, Kudsk and Kristensen 1992) resulting into reduced translocation efficiency. Such changes in internal and external structure of leaves might influence the herbicide metabolism (Bouchard et al. 1982, Runyan et al. 1982). However, visible change was observed in terms of genotypic response to herbicide toxicity after irrigation. Genotypes ET 5117 and P-1448-2 which expressed tolerance to metribuzin reverted to susceptible or moderately group after irrigation. Earlier studies also reported that killing of weeds or plants is easier with post-emergence herbicides when they are in good and healthy conditions. Therefore, many biosynthetic processes might have initiated in the plant after irrigation and translocated the herbicide to the point of action which increased or decimated the herbicide toxicity in the plants. It was observed that the appearance of genotypes before irrigation was pretty good and they were trying to recover as their growth was either checked or it might develop toxicity symptoms. In other words, the metribuzin which persisted in soil for prolonged period, got activated after irrigation and caused toxicity. Therefore, the herbicide cannot be metabolized to other parts of plant where it may be develop toxicity symptoms. In other words, the metribuzin which persisted in soil for prolonged period, got activated after irrigation and caused toxicity. Therefore, the herbicide got metabolized to other parts of plant where it might develop toxicity symptoms. The genotypes having higher inherent tolerance showed lower phytotoxicity in pea and vice-versa. These finding are corroborating to the earlier results (Conn and Cameron 1988, Shaw 1985, Sager 1977, Anonymous 2007, Datta et al. 2009). Importantly, genotype P-647 (phyto-toxicity score 2) has consistently demonstrated tolerance for herbicide toxicity during the scoring period (stress and unstressed condition). The consistent tolerance expressed by aforementioned genotype indicates that this may have the ability of quick conversation of toxic effect of metribuzin into non-toxic metabolites. These finding are in accordance to earlier reports (Gillespie et al. 2011, Anonymous 2007).

Based on the overall scoring, accession P-637 witnessed tolerance (phyto-toxicity score 1) and other five accessions, viz. P-729, P-647, P-1075, P-2016 and P-1448-2 registered moderately tolerance reaction (phyto-toxicity score 3) against metribuzin. Similar information of metribuzin tolerance has also been reported in lupin and chickpea (Si et al. 2006, 2010, Gaur et al. 2013). In legume crops, several herbicides including metribuzin have been recommended for weed management in Australia, Turkey, Canada (Datta et al. 2009). Presently, metribuzin is not recommended anywhere for Pisum sativum owing to its sensitivity to this herbicide. Therefore, herbicide tolerant cultivars of Pisum sativum are urgently needed to provide a better option for weed control over hand weeding and for broad-spectrum control of weeds through post-emergence herbicides including metribuzin. In addition, management of weeds through the herbicides is very much needed in the developing countries like India for reducing the cost of cultivation and to make Pisum sativum cultivation more remunerative.

Finally, the herbicide tolerant and moderately tolerant genotypes identified in present study would be useful in the development of herbicide tolerant cultivars. Furthermore, it would also be useful in generating basic information on inheritance, mapping and tagging of genes for herbicide (metribuzin) tolerance in Pisum sativum.

REFERENCES
Anonymous. 2007. Weed Science Society of America. 2007. Herbicide handbook, 9th Edition (Ed). Lawrence KS.
Bouchard D C, Lavy T L and Marx D B. 1982. Fate of metribuzin, metolachlor, and fluometuron in soil. Weed Science 30: 629–32.
Conn J S and Cameron J S. 1988. Persistence and carry-oyer of metribuzin and triallate in subarctic soils. Canadian Journal of Soil Science 68: 827–30
Datta A, Sindel B M, Kristiansen P, Jessop R S and Felton W L. 2009. The effects of temperature and soil moisture on chickpea (Cicer arietinum L.) genotype sensitivity to Isoxaflutole. Journal of Agronomy and Crop Science 195: 178–85.
Gaur P M, Jukanti A K, Samineni S, Chaturvedi S K, Singh S, Tripathi S, Singh I, Singh G, Das T K, Aski M, Mishra N, Nadarajn N and Gowda C L L. 2013. Large genetic variability in Chickpea for tolerance to herbicides Imazethapyr and Metribuzin. Agronomy 3: 524–36
Gillespie W E, Czapar G F and Hager A G. 2011. Pesticide Fate in the Environment: A Guide for Field Inspectors. Contract Report 2011-07. Illinois State Water Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, Champaign, Illinois.
Kudsk P and Kristensen J L. 1992. Effect of environmental factors on herbicide performance. Proceedings of the First International Weed Control Congress, Melbourne.
Hanson B D and Thill D C. 2001. Effects of imazethapyr and pendimethalin on lentil (Lens culinaris), pea (Pisum sativum) and a subsequent winter wheat (Triticum aestivum) crop. Weed Technology 15: 190–4.
Hull H H. 1970. Leaf structure as related to absorption of pesticides and other compounds. Residue Review 31: 1–150.
Parihar A K, Bohra A and Dixit G P. 2016. Nutritional Benefits of Winter Pulses with Special Emphasis on Peas and Rajma. In:
Biofortifications of Food Crops. Springer Publication, pp 61–71.
Ramakrishna A, Rupela O P, Reddy S L N and Sivaramakrishna C. 1992. Promising herbicides for weed control in chickpea. Tropical Pest Management 38: 398–9.
Savage K E. 1977. Metribuzin persistence in soil. Weed Science 25: 55–9.
Shaw D R, Peepere T F and Noñiger D L. 1985. Persistence of phytotoxicity of metribuzin and its ethylthio analog. Weed Science 34: 409–12.
Si P, Sweetingham M W, Buirchell B J, Bowran D G and Piper T. 2006. Genotypic variation in metribuzin tolerance in narrow-leaved lupin (Lupinus angustifolius L.). Australian Journal of Experimental Agriculture 46: 85–91.
Nath C P, Dubey R P, Sharma A R, Hazra K K, Kumar N and Singh S S. 2017. Evaluation of new generation post-emergence herbicides in chickpea (Cicer arietinum L.). National Academy Science Letters, DOI 10.1007/s40009-017-0604-z.
Si P, Chen Y and Weerakoon S. 2010. Chickpea (Cicer arietinum L.) Breeding lines tolerant to metribuzin applied post-emergence. Book of Abstracts, Proceedings of the 5th International Food Legumes Research Conference (IFLRC-V) and the 7th European Conference on Grain Legumes (AEP VII), Antalya, Turkey, April 2010; pp 26–30.
Singh M, Rakesh K, Kumar S and Kumar V. 2016. Critical period for weed control in field pea. Legume Research 39: 86–9.
Tripathi S S, Singh R, Singh S and Singh R K. 2001. Study on crop-weed competition in tendril pea (Pisum sativum L.) under Tarai of Uttarakhand. Indian Journal of Weed Science 33: 46-8.
Turner N C and Begg J C. 1981. Plant water relations and adaption to stress. Plant and Soil 58: 97–131.