Non-Differentiable Exact Solutions for the Nonlinear ODEs Defined on Fractal Sets
Xiao-Jun Yang, Feng Gao, and H. M. Srivastava
July 2017

© 2017 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0

This article was originally published at:
http://dx.doi.org/10.1142/S0218348X17400023

Citation for this paper:
Yang, X.; Gao, F.; & Srivastava, H.M. (2017). Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets. Fractals, 25(4), 174002.
http://dx.doi.org/10.1142/S0218348X17400023
NON-DIFFERENTIABLE EXACT SOLUTIONS FOR THE NONLINEAR ODES DEFINED ON FRACTAL SETS

XIAO-JUN YANG,* FENG GAO*§ and H. M. SRIVASTAVA†‡

*State Key Laboratory for Geo-Mechanics and Deep Underground Engineering
School of Mechanics and Civil Engineering
China University of Mining and Technology
Xuzhou 221116, P. R. China

†Department of Mathematics and Statistics
University of Victoria, Victoria, British Columbia V8W 3R4, Canada

‡Department of Medical Research
China Medical University Hospital
China Medical University, Taichung 40402, Taiwan, Republic of China

§jsppw@sohu.com

Received February 23, 2017
Revised April 5, 2017
Accepted April 10, 2017
Published July 6, 2017

Abstract

In the present paper, a family of the special functions via the celebrated Mittag-Leffler function defined on the Cantor sets is investigated. The nonlinear local fractional ODEs (NLFODEs) are presented by following the rules of local fractional derivative (LFD). The exact solutions for these problems are also discussed with the aid of the non-differentiable charts on Cantor sets. The obtained results are important for describing the characteristics of the fractal special functions.

Keywords: Nonlinear ODEs; Local Fractional Derivative; Mittag-Leffler Function; Cantor Sets.

*Corresponding author.

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.
1. INTRODUCTION

Fractional ordinary differential equations (FODEs)1–3 have been successfully used to model the complexity in mathematics, physics and societies, such as the fractional evolution,4 control,5 circuits,6–8 relaxation9–14 and population dynamics.15 Finding the solutions for these mentioned models, many technologies were proposed in Ref. 16. For example, the Adomian decomposition technology (ADT)17 and its extended version18 were proposed to solve the approximate solutions for the FODEs. The spectral element method (SEM)19 and the finite difference method (FDM)20 and the linear multiple step method (LMSM)21 were discussed to handle the numerical solutions for the FODEs. The fractal partial differential equations (FPDEs) in mathematical physics were also discussed in Refs. 44–48. The structure solutions for the FODEs. The technologies involving the differential transform (DT)22 and the fractional operational calculus (FOC)23 technologies were reported recently to solve a class of the fractal problems in cantor sets are introduced. In Sec. 3, we represent the structure the NLFODEs by means of a family of the special functions defined on fractal sets in order to find the analytical and exact solutions for FODEs, respectively.

Recently, fractional calculus (FC) was considered to solve a class of the fractal problems in mathematical physics,24,29–31 mechanics,25 heat,26 biology33 and others.34–37 There is an alternative operator (called local FC) to model the local FODEs in fractal electric circuits,38 free damped vibrations,39 shallow water surfaces40 and populations.41–43 The fractal partial differential equations (FPDEs) in mathematical physics were also discussed in Refs. 44–48. The structure solutions for the nonlinear local fractional ordinary differential equations (NLFODEs) have not been sufficiently investigated. Motivated especially by the above idea, our aim in the present article is to find the solutions for these mentioned models, many technologies were proposed in Ref. 16.

2. PRELIMINARIES, DEFINITIONS AND FRACTAL SPECIAL FUNCTIONS

Definition 1. The LFD of $\Pi_r(\mu)$ of fractal order $\tau(0 < \tau < 1)$ at the point $\mu = \mu_0$ is defined

$$D^\tau_1 \Pi_\mu(\mu_0) = \frac{d}{d\mu}(\Pi_\mu(\mu) - \Pi_\mu(\mu_0)), \quad \mu > \mu_0,$$

where

$$\Delta^\tau(\Pi_\mu(\mu) - \Pi_\mu(\mu_0)) = \Gamma(1 + \tau) \Delta^\tau(\Pi_\mu(\mu) - \Pi_\mu(\mu_0)).$$

Definition 2. The LFD of $\Pi_\mu(\mu)$ of fractal order $\kappa \tau(0 < \tau < 1, \kappa \in \mathbb{N})$ at the point $\mu = \mu_0$ is given as follows (see Refs. 24 and 43):

$$D^{(\kappa \tau)} \Pi_\mu(\mu_0) = \frac{d^\kappa}{d\mu^\kappa} \Pi_\mu(\mu_0).$$

If j^τ is a fractal imaginary unit and $\kappa \in \mathbb{N}$, then the fractal special functions defined on fractal sets44–41,44–48 are listed in Table 1, \mathbb{N} being (as usual) the set of nonnegative integers.

3. NONLINEAR LOCAL FRACTIONAL ODES

In this section, we apply the results of the LFDs of the special functions defined on Cantor sets in order to structure the NLFODEs.

Defining the following special functions on Cantor sets:

$$\Phi_1(\mu) = \varphi_1 \sin_1(\varphi_2 \mu^\tau)$$

and

$$\Phi_2(\mu) = \varphi_1 \cos_1(\varphi_2 \mu^\tau),$$

where φ_1 and φ_2 are two parameters, we find from Table 2 that

$$D^{(\tau)} \varphi_1 \sin_1(\varphi_2 \mu^\tau) = \varphi_1 \varphi_2 \cos_1(\varphi_2 \mu^\tau)$$

and

$$D^{(\tau)} \varphi_1 \cos_1(\varphi_2 \mu^\tau) = -\varphi_1 \varphi_2 \sin_1(\varphi_2 \mu^\tau),$$

so that we get the following NLFODE:

$$[D^{(\tau)} \Phi_1(\mu)]^2 = \varphi_1^2 (\varphi_2^2 - \Phi_1^2(\mu)).$$

When $\varphi_1 = 1$ and $\varphi_2 = 1$, from Eq. (8), we get the NLFODE as follows:

$$[D^{(\tau)} \Phi_1(\mu)]^2 = 1 - \Phi_1^2(\mu).$$
Fractal Special Functions & Expressions

Fractal Special Functions	Expressions
\(T_\nu(\mu') \)	\(T_\nu(\mu') = \sum_{\nu=0}^{\infty} \frac{\mu'^{2\nu}}{\nu!} \)
\(\sin_\nu(\mu') \)	\(\sin_\nu(\mu') = \frac{1}{2} \left(T_\nu(\mu') - T_{-\nu}(\mu') \right) \)
\(\cos_\nu(\mu') \)	\(\cos_\nu(\mu') = \frac{1}{2} \left(T_\nu(\mu') + T_{-\nu}(\mu') \right) \)
\(\tan_\nu(\mu') \)	\(\tan_\nu(\mu') = \frac{T_{2\nu}(\mu')}{T_\nu(\mu') + T_{-\nu}(\mu')} \)
\(\cot_\nu(\mu') \)	\(\cot_\nu(\mu') = \frac{T_{2\nu}(\mu')}{T_\nu(\mu') - T_{-\nu}(\mu')} \)
\(\sec_\nu(\mu') \)	\(\sec_\nu(\mu') = \frac{1}{\cos_\nu(\mu') - \tan_\nu(\mu') \cot_\nu(\mu')} \)
\(\csc_\nu(\mu') \)	\(\csc_\nu(\mu') = \frac{1}{\sin_\nu(\mu') - \tan_\nu(\mu') \cot_\nu(\mu')} \)
\(\sinh_\nu(\mu') \)	\(\sinh_\nu(\mu') = \frac{T_\nu(\mu') + T_{-\nu}(\mu')}{2} \)
\(\cosh_\nu(\mu') \)	\(\cosh_\nu(\mu') = \frac{T_\nu(\mu') - T_{-\nu}(\mu')}{2} \)
\(\tanh_\nu(\mu') \)	\(\tanh_\nu(\mu') = \frac{\sinh_\nu(\mu')}{\cosh_\nu(\mu')} \)
\(\coth_\nu(\mu') \)	\(\coth_\nu(\mu') = \frac{\cosh_\nu(\mu')}{\sinh_\nu(\mu')} \)
\(\sech_\nu(\mu') \)	\(\sech_\nu(\mu') = \frac{1}{\cosh_\nu(\mu')} - 1 \)
\(\csch_\nu(\mu') \)	\(\csch_\nu(\mu') = \frac{1}{\sinh_\nu(\mu')} - 1 \)

where the non-differentiable solution has the form

\[\Phi_{\nu}(\mu) = \varphi_1 \cosh_{\nu}(\varphi_2 \mu), \] (12)

and we have

\[D^{(r)} \varphi_1 \sinh_{\nu}(\varphi_2 \mu) = \varphi_1 \varphi_2 \cosh_{\nu}(\varphi_2 \mu) \] (13)

Similarly, by taking the following special functions defined on Cantor sets:

\[\Phi_{\nu}(\mu) = \varphi_1 \sinh_{\nu}(\varphi_2 \mu) \] (11) \[D^{(r)} \varphi_1 \cosh_{\nu}(\varphi_2 \mu) = \varphi_1 \varphi_2 \sinh_{\nu}(\varphi_2 \mu) \] (14)
so that we present the form of the NLFODE as follows:
\[\left[D^{(\nu)}\Phi_{\nu}(\mu) \right]^2 = \nu^2 \Phi_{\nu}^2(\mu) - \nu_1^2 \].

Thus, we easily structure from Eqs. (8) and (15), the following NLFODE:
\[\left[D^{(\nu)}\Phi_{\nu}(\mu) \right]^2 = \nu^2 \Phi_{\nu}^2(\mu) - \nu_1^2 \],

where the non-differentiable solutions can be written as follows:
\[\Phi_{\nu}(\mu) = \begin{cases} \nu_1 \sin_{\nu}(\nu_2 \mu^\nu), & (\nu = -1), \\ \nu_1 \cos_{\nu}(\nu_2 \mu^\nu), & (\nu = 1), \\ \nu_1 \sinh_{\nu}(\nu_2 \mu^\nu), & (\nu = 1), \\ \nu_1 \cosh_{\nu}(\nu_2 \mu^\nu), & (\nu = 1). \end{cases} \]

In a similar manner, we consider the following special functions defined on Cantor sets:
\[\Phi_{\nu}(\mu) = \nu_1 \tan_{\nu}(\nu_2 \mu^\nu) \]
and
\[\Phi_{\nu}(\mu) = \nu_1 \cot_{\nu}(\nu_2 \mu^\nu). \]

In view of Eqs. (18) and (19), we have
\[D^{(\nu)}\nu_1 \sin_{\nu}(\nu_2 \mu^\nu) = \nu_1 \nu_2 (1 + \tau^2_{\nu}(\nu_2 \mu^\nu)) \]
and
\[D^{(\nu)}\nu_1 \cos_{\nu}(\nu_2 \mu^\nu) = \nu_1 \nu_2 (1 + \tau^2_{\nu}(\nu_2 \mu^\nu)) \]
so that
\[D^{(\nu)}\Phi_{\nu}(\mu) = \nu_2 \left(\nu_1 + \frac{1}{\nu_1} \Phi_{\nu}^2(\mu) \right). \]

Thus, we directly obtain the following NLFODE:
\[D^{(\nu)}\Phi_{\nu}(\mu) = \nu^2 \left(\nu_1 + \frac{1}{\nu_1} \Phi_{\nu}^2(\mu) \right), \]
and
\[\Phi_\nu(\mu) = \phi_1 \csc h_\nu (\phi_2 \mu') . \] (32)

From Eqs. (29)–(32), we can establish the following formulas:
\[D^{(\nu)} \phi_1 \sec_\nu (\phi_2 \mu') = \phi_1 \phi_2 \sec_\nu (\phi_2 \mu') \tan_\nu (\phi_2 \mu'), \] (33)
\[D^{(\nu)} \phi_1 \csc_\nu (\phi_2 \mu') = \phi_1 \phi_2 \csc_\nu (\phi_2 \mu') \cot_\nu (\phi_2 \mu'), \] (34)
\[D^{(\nu)} \phi_1 \sec h_\nu (\phi_2 \mu') = -\phi_1 \phi_2 \sec h_\nu (\phi_2 \mu') \tanh_\nu (\phi_2 \mu'). \] (35)

and
\[D^{(\nu)} \phi_1 \csc h_\nu (\phi_2 \mu') = -\phi_1 \phi_2 \csc h_\nu (\phi_2 \mu') \coth_\nu (\phi_2 \mu'). \] (36)

From Eqs. (33)–(36), we have
\[[D^{(\nu)} \phi_1 \sec_\nu (\phi_2 \mu')]^2 = \phi_1^2 \sec^2 h_\nu (\phi_2 \mu') = \phi_1^2 \sec^2 (\phi_2 \mu') - \varphi_1^2 , \] (37)
\[[D^{(\nu)} \phi_1 \csc_\nu (\phi_2 \mu')]^2 = \phi_1^2 \csc^2 h_\nu (\phi_2 \mu') = \phi_1^2 \csc^2 (\phi_2 \mu') - \varphi_1^2 , \] (38)
\[[D^{(\nu)} \phi_1 \sec h_\nu (\phi_2 \mu')]^2 = \phi_1^2 \sec^2 h_\nu (\phi_2 \mu') = \phi_1^2 \sec^2 (\phi_2 \mu') - \varphi_1^2 , \] (39)
\[[D^{(\nu)} \phi_1 \csc h_\nu (\phi_2 \mu')]^2 = \phi_1^2 \csc^2 h_\nu (\phi_2 \mu') = \phi_1^2 \csc^2 (\phi_2 \mu') - \varphi_1^2 . \] (40)

so that
\[[D^{(\nu)} \Phi_\nu(\mu)]^2 = \frac{\tau_1 \varphi_2^2}{\varphi_1^2} \Phi_\nu^2(\mu) + \nu_2 \varphi_2^2 , \] (41)

where the non-differentiable solutions are given as follows:
\[\Phi_\nu(\mu) = \begin{cases} \phi_1 \sec_\nu (\phi_2 \mu'), & (\nu_1 = 1; \nu_2 = -1), \\ \phi_1 \csc_\nu (\phi_2 \mu'), & (\nu_1 = 1; \nu_2 = 0), \\ \phi_1 \sec h_\nu (\phi_2 \mu'), & (\nu_1 = -1; \nu_2 = 1), \\ \phi_1 \csc h_\nu (\phi_2 \mu'), & (\nu_1 = 1; \nu_2 = 1), \end{cases} \] (42)

From Table 1, we set up the following special function defined on Cantor sets:
\[\Phi_\nu(\mu) = \frac{\varphi_3}{|\varphi_1 - \varphi_2 T_\nu(-\mu \nu)^2|^2} , \] (43)
where \(\nu, \varphi_1, \varphi_2 \) and \(\varphi_3 \) are parameters.

From Eq. (43), we easily have
\[T_\nu(-\mu \nu)^2 = \frac{\varphi_1 - \sqrt{\varphi_1 \varphi_2}}{\varphi_2} \] (44)

and
\[\sqrt{\frac{\Phi_\nu(\mu)}{\varphi_1}} = \frac{1}{\varphi_1 - \varphi_2 T_\nu(-\mu \nu)^2} . \] (45)

For finding the LFD of Eq. (43), we present
\[D^{(\nu)} \Phi_\nu(\mu) = \frac{2\varphi_2 \varphi_3 \mu T_\nu(-\mu \nu)^2}{(\varphi_1 - \varphi_2 T_\nu(-\mu \nu)^2)^{2+1}} . \] (46)

Upon substituting Eqs. (44) and (45) into Eq. (46), we have
\[D^{(\nu)} \Phi_\nu(\mu) = \frac{2\mu \Phi_\nu(\mu)}{\kappa} \left(\frac{\Phi_\nu(\mu)}{\varphi_3} \right)^{2+1} \] (47)

When \(\kappa = 1 \), we find from Eq. (47) that
\[D^{(\nu)} \Phi_\nu(\mu) = \frac{2\varphi_1 \varphi_2 \varphi_3 \Phi_\nu(\mu)}{\kappa} \] (48)

together with the non-differentiable solution given by
\[\Phi_\nu(\mu) = \frac{\varphi_3}{|\varphi_1 - \varphi_2 T_\nu(-\mu \nu)|^2} \] (49)

Similarly, we propose the following special function defined on Cantor sets:
\[\Phi_\nu(\mu) = \frac{\varphi_3}{|\varphi_1 - \varphi_2 T_\nu(-\mu \nu)^2|^2} \] (50)

which leads to
\[T_\nu(-\mu \nu)^2 = \frac{\varphi_1 - \sqrt{\varphi_1 \varphi_2}}{\varphi_2} \] (51)

and
\[\sqrt{\frac{\Phi_\nu(\mu)}{\varphi_1}} = \frac{1}{\varphi_1 - \varphi_2 T_\nu(-\mu \nu)^2} \] (52)

In order to find the LFD of Eq. (49), we have
\[D^{(\nu)} \Phi_\nu(\mu) = \frac{-2\varphi_2 \varphi_3 \mu T_\nu(-\mu \nu)^2}{(\varphi_1 - \varphi_2 T_\nu(-\mu \nu)^2)^{2+1}} \] (53)
which leads to
\[
D^{(\tau)} \Phi_\tau(\mu) = \frac{2\rho \Phi_\tau(\mu)}{\kappa} \left(1 - \varphi_1 \left(\frac{\Phi_\tau(\mu)}{\varphi_1} \right)^2 \right),
\]
(54)
where \(\rho, \varphi_1, \varphi_2 \) and \(\varphi_3 \) are parameters.

When \(\kappa = \varphi_1 = 1 \) and \(\varphi_3 = 1 \), we find from Eq. (54) that (see Ref. 41)
\[
D^{(\tau)} \Phi_\tau(\mu) = 2\rho \Phi_\tau(\mu)(1 - \Phi_\tau(\mu)),
\]
(55)
where the non-differentiable solution becomes (see Ref. 41)
\[
\Phi_\tau(\mu) = \frac{1}{1 - \frac{\rho}{2} (1 - \rho \mu^2)},
\]
(56)
with the parameters \(\rho \) and \(\varphi_2 \).

Let us now consider the following special functions defined on Cantor sets:
\[
\Phi_\tau(\mu) = \varphi_1 \sin^2(\varphi_2 \mu^\tau),
\]
(57)
and
\[
\Phi_\tau(\mu) = \varphi_1 \cos^2(\varphi_2 \mu^\tau).
\]
(58)
By finding the LFDs of Eqs. (57) and (58), we have
\[
D^{(\tau)} \varphi_1 \sin^2(\varphi_2 \mu^\tau) = 2\varphi_1 \varphi_2 \cos(\varphi_2 \mu^\tau) \sin(\varphi_2 \mu^\tau),
\]
(59)
and
\[
D^{(\tau)} \varphi_1 \cos^2(\varphi_2 \mu^\tau) = -2\varphi_1 \varphi_2 \cos(\varphi_2 \mu^\tau) \sin(\varphi_2 \mu^\tau),
\]
(60)
which yield
\[
[D^{(\tau)} \varphi_1 \sin^2(\varphi_2 \mu^\tau)]^2 = (2\varphi_1 \varphi_2)^2 \sin^2(\varphi_2 \mu^\tau) \cos^2(\varphi_2 \mu^\tau),
\]
(61)
and
\[
[D^{(\tau)} \varphi_1 \cos^2(\varphi_2 \mu^\tau)]^2 = (2\varphi_1 \varphi_2)^2 \cos^2(\varphi_2 \mu^\tau) \sin^2(\varphi_2 \mu^\tau),
\]
(62)
From Eqs. (61) and (62), we get
\[
[D^{(\tau)} \varphi_1 \sin^2(\varphi_2 \mu^\tau)]^2 = (2\varphi_1 \varphi_2)^2 \sin^2(\varphi_2 \mu^\tau)(1 - \sin^2(\varphi_2 \mu^\tau)),
\]
(63)
and
\[
[D^{(\tau)} \varphi_1 \cos^2(\varphi_2 \mu^\tau)]^2 = (2\varphi_1 \varphi_2)^2 \cos^2(\varphi_2 \mu^\tau)(1 - \cos^2(\varphi_2 \mu^\tau)),
\]
(64)
which lead us to the following NLFODE:
\[
[D^{(\tau)} \Phi_\tau(\mu)]^2 = (2\varphi_1 \varphi_2)^2 \Phi_\tau(\mu) \left(1 - \frac{\Phi_\tau(\mu)}{\varphi_1} \right),
\]
(65)
Thus, from Eq. (65), we easily obtain the following NLFODE:
\[
[D^{(\tau)} \Phi_\tau(\mu)]^2 = 4\varphi_1^2 (\varphi_2 \Phi_\tau(\mu) - \Phi_\tau^2(\mu)),
\]
(66)
where the non-differentiable solutions are presented as follows:
\[
\Phi_\tau(\mu) = \frac{\varphi_1 \sin^2(\varphi_2 \mu^\tau)}{\varphi_1 \cos^2(\varphi_2 \mu^\tau)},
\]
(67)
By a similar process, we present the special functions defined on Cantor sets as follows:
\[
\Phi_\tau(\mu) = \varphi_3 \sin^2(\varphi_3 \mu^\tau),
\]
(68)
and
\[
\Phi_\tau(\mu) = \varphi_3 \cos^2(\varphi_3 \mu^\tau),
\]
(69)
which lead us to the following formulas:
\[
D^{(\tau)} \varphi_1 \sin^2(\varphi_3 \mu^\tau) = 2\varphi_1 \varphi_2 \sin(\varphi_3 \mu^\tau) \cos(\varphi_3 \mu^\tau),
\]
(70)
and
\[
D^{(\tau)} \varphi_1 \cos^2(\varphi_3 \mu^\tau) = -2\varphi_1 \varphi_2 \cos(\varphi_3 \mu^\tau) \sin(\varphi_3 \mu^\tau),
\]
(71)
respectively. Therefore, we find from Eqs. (70) and (71) that
\[
[D^{(\tau)} \varphi_1 \sin^2(\varphi_3 \mu^\tau)]^2 = (2\varphi_1 \varphi_2)^2 \sin^2(\varphi_3 \mu^\tau)(1 + \sin^2(\varphi_3 \mu^\tau)),
\]
(72)
and
\[
[D^{(\tau)} \varphi_1 \cos^2(\varphi_3 \mu^\tau)]^2 = (2\varphi_1 \varphi_2)^2 \cos^2(\varphi_3 \mu^\tau)(\cos^2(\varphi_3 \mu^\tau) - 1),
\]
(73)
which deduce to
\[
[D^{(\tau)} \Phi_\tau(\mu)]^2 = (2\varphi_1 \varphi_2) \Phi_\tau(\mu) \left(1 + \frac{\Phi_\tau(\mu)}{\varphi_1} \right),
\]
(74)
and
\[
[D^{(\tau)} \Phi_\tau(\mu)]^2 = (2\varphi_1 \varphi_2) \Phi_\tau(\mu) \left(\frac{\Phi_\tau(\mu)}{\varphi_1} - 1 \right),
\]
(75)
respectively.
Next, from Eqs. (74) and (75), there exists the following NLFODE:

\[[D^{(r)}] \Phi_1(\mu)]^2 = 4\Phi_1^2(\mu)\Phi_1(\mu) + \nu^2 \phi^2, \]

where the non-differentiable solutions are given by

\[\Phi_1(\mu) = \begin{cases} \phi_1 \sinh^2(\phi_2 \mu), & (\nu = 1), \\ \phi_1 \cosh^2(\phi_2 \mu), & (\nu = -1). \end{cases} \]

If the special functions defined on Cantor sets are given as follows:

\[\Phi_1(\mu) = \phi_1 \tan^2(\phi_2 \mu), \]

and

\[\Phi_2(\mu) = \phi_1 \cot^2(\phi_2 \mu), \]

then we have

\[D^{(r)} \phi_1 \tan^2(\phi_2 \mu) = 2\phi_1 \phi_2 \tan(\phi_2 \mu)(1 + \tan^2(\phi_2 \mu)) \]

and

\[D^{(r)} \phi_1 \cot^2(\phi_2 \mu) = -2\phi_1 \phi_2 \cot(\phi_2 \mu)(1 + \cot^2(\phi_2 \mu)), \]

so that

\[D^{(r)} \phi_1 \tan^2(\phi_2 \mu)^2 = (2\phi_1 \phi_2)^2 \tan^2(\phi_2 \mu)(1 + \tan^2(\phi_2 \mu))^2 \]

and

\[D^{(r)} \phi_1 \cot^2(\phi_2 \mu)^2 = (2\phi_1 \phi_2)^2 \cot^2(\phi_2 \mu)(1 + \cot^2(\phi_2 \mu))^2, \]

which lead us to the following NLFODE:

\[[D^{(r)}] \Phi_1(\mu)]^2 = 4\phi_1^2 \phi_2^2 \Phi_1(\mu) \left(1 + \frac{1}{\phi_1} \Phi_1(\mu)\right)^2. \]

In case the special functions defined on Cantor sets can be written as follows:

\[\Phi_1(\mu) = \phi_1 \sec^2(\phi_2 \mu), \]

and

\[\Phi_2(\mu) = \phi_1 \csc^2(\phi_2 \mu), \]

then we have

\[D^{(r)} \phi_1 \sec^2(\phi_2 \mu) = 2\phi_1 \phi_2 \sec^2(\phi_2 \mu) \tan(\phi_2 \mu) \]

and

\[D^{(r)} \phi_1 \csc^2(\phi_2 \mu) = 2\phi_1 \phi_2 \csc^2(\phi_2 \mu) \cot(\phi_2 \mu). \]

Following Eqs. (96) and (97), we obtain

\[[D^{(r)}] \phi_1 \sec^2(\phi_2 \mu)]^2 = (2\phi_1 \phi_2)^2 \sec^2(\phi_2 \mu)(\sec^2(\phi_2 \mu) - 1) \]

and

\[[D^{(r)}] \phi_1 \csc^2(\phi_2 \mu)]^2 = (2\phi_1 \phi_2)^2 \csc^2(\phi_2 \mu)(\cot^2(\phi_2 \mu) - 1), \]

respectively.
In view of Eq. (103), we have the following solution for the fractal Korteweg–de Vries equation

\[
(D^{\tau})^{(\mu)} \phi_{\tau}(\mu) = 4\phi_{\tau}^{2}(\mu) \left(\frac{\Phi_{\tau}(\mu)}{\varphi_{\tau}} - 1 \right),
\]

where the non-differentiable solution is determined by

\[
\Phi_{\tau}(\mu) = \left\{ \begin{array}{ll}
\varphi_{1} \sec^{2}(\varphi_{2} \mu^{\tau}), \\
\varphi_{1} \csc^{2}(\varphi_{2} \mu^{\tau}),
\end{array} \right.
\]

\[
\Phi_{\tau}(\mu) = 1 - \frac{\Phi_{\tau}(\mu)}{\varphi_{1}},
\]

(101)

(102)

which leads to

\[
D^{(\tau)} \varphi_{1} \sec^{2}(\varphi_{2} \mu^{\tau}) = -2\varphi_{1} \varphi_{2} \sec^{2}(\varphi_{2} \mu^{\tau}) \tan h_{1}(\varphi_{2} \mu^{\tau}).
\]

\[
(D^{(\tau)} \varphi_{1})^{2} = 4\phi_{\tau}^{2}(\mu) \left(1 - \frac{\Phi_{\tau}(\mu)}{\varphi_{1}} \right). \tag{104}
\]

In the same manner, we establish the following special function defined on Cantor sets (see Ref. 40):

\[
\Phi_{1}(\mu) = \left\{ \begin{array}{ll}
\varphi_{1} \sec^{2}(\varphi_{2} \mu^{\tau}), \\
\varphi_{1} \csc^{2}(\varphi_{2} \mu^{\tau}),
\end{array} \right.
\]

4. CONCLUSION

In our present work, the fractal special functions defined on Cantor sets were structured for the first time. With the use of the LFDs of the given fractal special functions, we proposed the NLFODEs and their exact solutions of non-differentiable type. The results are applicable for designing the exact traveling-wave solutions for the nonlinear FPDEs in mathematical physics (see Ref. 40).

ACKNOWLEDGMENTS

This work is supported by the State Key Research Development Program of the People’s Republic of China (Grant No. 2016YFC0606705), the Natural Science Foundation of China (Grant No. 51323004), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014).

REFERENCES

1. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science Publishers, UK, 2006).

2. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific Publishing Company, Singapore, 2010).

3. J. A. T. Machado, F. Mainardi and V. Kiryakova, Fractional calculus: Quid vadimus? (Where are we going?), Fract. Calc. Appl. Anal. 18 (2015) 495–526.

4. F. Mainardi and R. Gorenflo, On Mittag–Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math. 118 (2000) 283–299.

5. Y. Li, Y. Chen and I. Podlubny, Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica 45 (2009) 1965–1969.

6. M. D. Ortigueira, An introduction to the fractional continuous-time linear systems: The 21st century systems, IEEE Circuits Syst. Mag. 8(3) (2008) 19–26.

7. A. G. Radwan, A. S. Elwakil and A. M. Soliman, Fractional-order sinusoidal oscillators: Design procedure and practical examples, IEEE Trans. Circuits. Syst. 55 (2008) 2051–2063.

8. A. S. Elwakil, Fractional-order circuits and systems: An emerging interdisciplinary research area, IEEE Circuits Syst. Mag. 10(4) (2010) 40–50.

9. I. Petras, Fractional-order memristor-based Chua’s circuit, IEEE Trans. Circuits Syst. 57(12) (2010) 975–979.

10. H. M. Srivastava, Some families of Mittag–Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math. 7 (2016), 123–145.

11. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals 7 (1996) 1461–1477.

12. R. Gorenflo, F. Mainardi and H. M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, in Proceedings of the Eighth International Colloquium on Differential Equations, D. Bainov (Ed.) (Plovdiv, Bulgaria, 18–23 August 1997) (VSP Publishers, Utrecht and Tokyo, 1998), pp. 195–202.

13. H. Schüssel and A. Blumen, Hierarchical analogues to fractional relaxation equations, J. Phys. A, Math. Gen. 26(19) (1993) 5057.

14. R. Metzler and T. F. Nonnenmacher, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, Int. J. Plasticity 19 (2003) 941–959.

15. Y. Ding and H. Ye, A fractional-order differential equation model of HIV infection of CD4+ T-cells, Math. Comput. Model. 50 (2009) 386–392.

16. R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. 72 (2010) 2859–2862.
17. V. Daftardar-Gejji and H. Jafari, Adomian decomposition: A tool for solving a system of fractional differential equations, *J. Math. Anal. Appl.* **301** (2005) 506–518.

18. J. S. Duan, T. Chaol and R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, *Appl. Math. Comput.* **218** (2012) 8370–8392.

19. M. Zayernouri and G. E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, *J. Comput. Phys.* **257** (2014) 460–480.

20. C. Li and Z. Feng, The finite difference methods for fractional ordinary differential equations, *Numer. Funct. Anal. Optim.* **34**(2) (2013) 149–170.

21. R. Linn and F. Liu, Fractional high order methods for the nonlinear fractional ordinary differential equation, *Nonlinear Anal.* **66** (2007) 856–869.

22. V. S. Erzurk and S. Monani, Solving systems of fractional differential equations using differential transform method, *J. Comput. Appl. Math.* **215** (2008) 142–151.

23. Y. P. Luchko and H. M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus, *Comput. Math. Appl.* **29(8)** (1995) 73–85.

24. C. Cattani, H. M. Srivastava and X.-J. Yang, *Fractional Dynamics* (De Gruyter, Warsaw, Poland, 2015).

25. B. West, M. Bologna and P. Grigolini, *Physics of Fractal Operators* (Springer, Berlin, 2012).

26. C. Cattani and A. Ciancio, On the fractal distribution of primes and prime-indexed primes by the binary image analysis, *Physica. A* **466** (2016) 222–229.

27. V. E. Tarasov, Electromagnetic waves in non-integer dimensional spaces and fractals, *Chaos Solitons Fractals* **81** (2015) 38–42.

28. V. E. Tarasov, Fractal electrodynamics via non-integer dimensional space approach, *Phys. Lett. A* **379** (2015) 2055–2061.

29. A. Carpinteri, P. Cornetti and A. Sapor, Static-kinematic fractional operators for fractal and non-local solids, *ZAMM J. Appl. Math. Mech.* **89** (2009) 207–217.

30. A. Carpinteri, B. Chiaia and P. Cornetti, A fractal theory for the mechanics of elastic materials, *Mater. Sci. Eng. A* **365** (1) (2004) 235–240.

31. M. Ostoja-Starzewski, Towards thermoelasticity of fractal media, *J. Therm. Stresses* **30** (2007) 889–896.

32. A. M. Lopes, J. A. T. Machado, Modeling vegetable fractals by means of fractional-order equations, *J. Vib. Control* **22** (2016) 2100–2108.