Gene expression patterns in brachiopod larvae refute the “brachiopod-fold” hypothesis

Altenburger, Andreas; Martinez, Pedro; Budd, Graham E.; Holmer, Lars E.

Published in:
Frontiers in Cell and Developmental Biology

DOI:
10.3389/fcell.2017.00074

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Altenburger, A., Martinez, P., Budd, G. E., & Holmer, L. E. (2017). Gene expression patterns in brachiopod larvae refute the “brachiopod-fold” hypothesis. Frontiers in Cell and Developmental Biology, 5, [74]. https://doi.org/10.3389/fcell.2017.00074
Gene Expression Patterns in Brachiopod Larvae Refute the “Brachiopod-Fold” Hypothesis

Andreas Altenburger1, Pedro Martinez2,3, Graham E. Budd4 and Lars E. Holmer4

Brachiopods represent an animal phylum of benthic marine organisms that originated in the Cambrian. About 400 recent species are known from today’s oceans (Emig et al., 2013). Around 5,000 fossil genera have been described, as brachiopods were dominant in the benthic marine environment during the Palaeozoic (Logan, 2007). Brachiopods have a biphasic life cycle with a planktonic larva and sessile adults (Figure 1A). The phylum is divided into three clades namely Rhyonchonelliforma and Craniiforma, which have short-lived lecithotrophic larvae and Linguliforma, which have long lived planktotrophic larva (Williams et al., 1996; Carlson, 2016). Although various candidate stem-group brachiopods are known (Holmer et al., 2002, 2008, 2011; Balthasar, 2004; Skovsted et al., 2009a,b), no single hypothesis of early brachiopod body plan evolution yet commands a consensus, despite the potential of the Cambrian fossil record for reconstructing early body plan evolution in this, or any other, animal phylum (Budd and Jensen, 2000; Budd and Jackson, 2016). Thus, the early evolution of brachiopods is still a matter of debate and has led to the proposal of various scenarios with varying degrees of support.

One such scenario is the hypothesis of a “brachiopod fold,” which argues that brachiopods are transversely folded across the ontogenetic anterior-posterior axis (Figure 1B) (Cohen et al., 2003; Bitner and Cohen, 2013). According to this hypothesis, both valves are considered dorsal and in order to make useful comparisons with other animal phyla along the major body axis, brachiopods should be conceptually unfolded (Cohen et al., 2003). Since its original formulation, the brachiopod-fold hypothesis has gained support by some researchers in the brachiopod community with the suggestion that brachiopods arose by the folding of a Halkieria-like organism containing two protective shells at either end of the body (Benten and Harper, 2009). According to the brachiopod fold hypothesis, a folding process occurs during larval metamorphosis, as a rapid muscle mediated process that moves the posterior and anterior region of the larvae close together (Cohen et al., 2003). In this context, one hint about whether or not both valves can be considered dorsal would come from the analysis of gene expression patterns of developmental genes that are highly conserved among phyla. Such genes are ancient and can be traced to the last common ancestor of bilaterian animals (Schwaiger et al., 2014). If brachiopods evolved from a Halkieria-like organism by folding, one would expect the expression of genes that control the anterior and posterior domains in close proximity and opposed to each other.

Several studies have investigated the expression patterns of developmental genes in lecithotrophic brachiopod larvae (Altenburger et al., 2011; Santagata et al., 2012; Passamaneck et al., 2015; Martín-Durán et al., 2016; Vellutini and Hejnol, 2016). In these analyses it has been shown that during development the genes six3/6, NK2.1, gsc and otx are expressed in the anterior domain, which becomes the apical lobe in the rhyonchonelliform Terebratalia transversa larva, and also in the anterior domain of the craniiform Novocrania anomala larva (Martín-Durán et al., 2016). Conversely, the genes evx and cdx (“posterior genes”) are expressed in the area that becomes the pedicle lobe and the posterior domain of the mantle lobe in T. transversa, and also in
the posterior domain of the posterior lobe in *N. anomala* (Figure 1C) (Altenburger et al., 2011; Martin-Durán et al., 2016). Hox genes are not expressed collinearly in these brachiopod larvae (Schiemann et al., 2017). Analysis of the Hox cluster in *T. transversa* showed a split into three subclusters similar to that observed in other spiralian, such as in the annelid *Capitella teleta* and the limpet mollusc *Lottia gigantea* (Schiemann et al., 2017). Gene expression data for individuals during metamorphosis and for juveniles are still missing. Expression of *Scr* and *Antp* in the shell-forming epithelia of *N. anomala* and *T. transversa* larva suggests a role of these genes during juvenile shell formation (Schiemann et al., 2017).

The expression patterns of “anterior” and “posterior” genes in lecithotrophic brachiopod larvae are in an anterior-posterior sequence similar to the expression domains as detected in, for example, annelids and sea urchin embryos (Wei et al., 2012; Martin-Durán et al., 2016). As the morphogenetic events occurring during metamorphosis are known for *T. transversa* and *N. anomala*, it is possible to trace the body axes to the post-metamorphic body plan, and there are no signs of a folding event. Cohen et al. (2003) based the brachiopod fold hypothesis on observations during metamorphosis of *N. anomala* (Nielsen, 1991). However, a re-evaluation of metamorphosis in *N. anomala* showed that larva settle with the posterior-most tip of the posterior larval lobe and that ventral and dorsal valves are not secreted from the same tissues (Altenburger et al., 2013).

Since there is no folding event during metamorphosis in craniiform or rhynchonelliform brachiopods (Altenburger and Wanninger, 2009; Altenburger et al., 2013), we can clearly state that there is no evidence in brachiopod ontogeny that supports the brachiopod fold hypothesis. Moreover, the only known exceptionally preserved lower Cambrian rhynchonelliform brachiopod *Kutorgina chengjiangensis* clearly has a straight gut (Zhang et al., 2007), indicating that the body axis orientation of brachiopods has been retained since the Cambrian.

CONCLUSION

Even though the data currently available do not allow for a conclusive hypothesis on the evolution of the brachiopod body plan, it is clear from the newly available gene expression data that the brachiopod fold hypothesis should be discarded and an alternative hypothesis for the evolution of brachiopod body plan is needed. One alternative scenario would involve a stem-group brachiopod with a tubular sclerite arrangement (Skovsted et al., 2009c; Murdock et al., 2014). A major argument for the brachiopod fold hypothesis was the presence of a U-shaped gut in some brachiopods (Cohen et al., 2003). The main group of living brachiopods which have a U-shaped gut are the Linguliformea (Kaesler, 1997; see also Carlson, 2016 for an updated phylogenetic discussion). Unfortunately, the expression patterns of “anterior” and “posterior” genes are not known for this group. This lack of data constitutes a major obstacle in trying to understand the body plan evolution within the Brachiopoda and other lophophorates. However, a U-shaped gut is already clearly present in early Cambrian stem lophophorates and brachiopods (Zhang et al., 2013, 2014), and even more recent findings (Moysiuk et al., 2017) have supported the suggestion that a tubular mode of life may be plesiomorphic within at least the lophotrochozoans (Budd and Jackson, 2016).
AUTHOR CONTRIBUTIONS

AA designed the paper. AA, PM, GB, and LH wrote the paper.

REFERENCES

Altenburger et al. “Brachiopod-Fold” Hypothesis Refuted

Cohen, B. L., Holmer, L. E., and Lüter, C. (2003). The brachiopod fold: a neglected fossil record of the bilaterian phyla. Sci. U.S.A. 30, 425–430. doi: 10.1073/pnas.0216781100

Budd, G. E., and Jackson, I. S. C. (2016). Ecological innovations in the Cambrian and the origins of the crown group phyla. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150287. doi: 10.1098/rstb.2015.0287

Budd, G. E., and Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295. doi: 10.1111/j.1469-185X.1999.tb00046.x

Carlson, S. J. (2016). The evolution of Brachiopoda. Annu. Rev. Earth Planet. Sci. 44, 409–438. doi: 10.1146/annurev-earth-060115-012348

Cohen, B. L., Holmer, L. E., and Lüter, C. (2003). The brachiopod fold: a neglected body plan hypothesis. Palaeontology 46, 59–65. doi: 10.1111/j.1475-4983.2002.00287

Emig, C. C., Bitzer, M. A., and Álvarez, F. (2013). Phylum brachiopoda. Zootaxa 3703:75. doi: 10.11646/zootaxa.3703.1.15

Holmer, L. E., Skovsted, C. B., Brock, G. A., Valentine, J. L., and Paterson, J. R. (2008). The Early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod. Biol. Lett. 4, 724–728. doi: 10.1098/rsbl.2008.0277

Holmer, L. E., Skovsted, C. B., Larsson, C., Brock, G. A., and Zhang, Z. (2011). First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance. Palaeontology 54, 235–239. doi: 10.1111/j.1475–4983.2010.01030.x

Holmer, L. E., Skovsted, C. B., and Williams, A. (2002). A stem group brachiopod from the lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology 45, 875–882. doi: 10.1111/j.1475–4983.2002.00265

Kaesler, R. (1997). Treatise on Invertebrate Palaeontology, Part H. Brachiopedia Revised I. Boulder, CO: Lawrence, KS: The Geological Society of America; University of Kansas Press.

Logan, A. (2007). “Geographic distribution of extant articulated brachiopods,” in Treatise on Invertebrate Palaeontology, Part H, Brachiopedia, ed P. A. Selden (Boulder, CO; Lawrence, KS: KS: The Geological Society of America, Inc.; The University of Kansas), 3082–3115.

Martin-Durán, J. M., Passamaneck, Y. J., Martindale, M. Q., and Hejnol, A. (2016). The developmental basis for the recurrent evolution of deuterostomy and protostomy. Nat. Ecol. Evol. 1:9005. doi: 10.1038/nature15595-016-0005

Moysiuk, J., Smith, M. R., and Caron, J.-B. (2017). Hyloliths are Palaeeozoic lophophorates. Nature 541, 394–397. doi: 10.1038/nature20804

Murdoch, D. J. E., Bengtson, S., Marone, F., Greenwood, J. M., and Donoghue, P. C. J. (2014). Evaluating scenarios for the evolutionary assembly of the brachiopod body plan. Evol. Dev. 16, 13–24. doi: 10.1111/ede.12059

Nielsen, C. (1991). The development of the brachiopod Crania (Neoconia) anomal (O. F. Müller) and its phylogenetic significance. Acta Zool. Stockh. 72, 7–28. doi: 10.1111/j.1463-6395.1991.tb00312.x

ACKNOWLEDGMENTS

We acknowledge the editor and the reviewers for providing helpful comments.

Passamaneck, Y. J., Hejnol, A., and Martindale, M. Q. (2015). Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratulina transversa. EvoDevo 6:10. doi: 10.1186/1327-0135-0004-8

Santagata, S. (2015). “Brachiopoda,” in Evolutionary Developmental Biology of Invertebrates 2: Lophophorozoa (Spiralia), ed A. Wanninger (Vienna: Springer Vienna), 263–277.

Santagata, S., Resh, C., Hejnol, A., Martindale, M. Q., and Passamaneck, Y. J. (2012). Development of the larval anterior neurogenic domains of Terebratulina transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. EvoDevo 3:5. doi: 10.1186/2041-9139-3-5

Schramm, S. M., Martin-Durán, J. M., Berve, A., Vellutini, B. C., Passamaneck, Y. J., and Hejnol, A. (2017). Clustered brachiopod box genes are not expressed collinearly and are associated with lophophorozoon novelites. Proc. Natl. Acad. Sci. U.S.A. 114, E1913–E1922. doi: 10.1073/pnas.1614501114

Schweitzer, M., Schonauer, A., Rendeiro, A. F., Pribitser, C., Schauer, A., Gilles, A. F., et al. (2014). Evolutionary conservation of the eumetazoon gene regulatory landscape. Genome Res. 24, 639–650. doi: 10.1101/gr.162529.113

Skovsted, C. B., Holmer, L. E., Larsson, C. M., Högström, A. E., Brock, G. A., Topper, T. P., et al. (2009c). The sclerite of Paterinita: an Early Cambrian stem group brachiopod from South Australia. Proc. Biol. Sci. B. 276, 1651–1656. doi: 10.1098/rspb.2008.1635

Vellutini, B. C., and Hejnol, A. (2016). Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians. Sci. Rep. 6:32387. doi: 10.1038/srep32387

Wei, Z., Range, R., Angerer, R., and Angerer, L. (2012). Axial patterning showing delayed development of the larval spiralian nervous system. Proc. Biol. Sci. 279, 325–329. doi: 10.1098/rspb.2011.1653

Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L. (1996). A supra-ordinal classification of the Brachiopoda. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1171–1193. doi: 10.1098/rstb.1996.0101

Zhang, Z. F., Shu, D. G., Emig, C., Zhang, X. L., Han, J., Liu, J. N., et al. (2007). A tetrapod-like body plan. Nature 451, 394–397. doi: 10.1038/nature20804

Zhang, Z. F., Li, G. X., Holmer, L. E., Brock, G. A., Balthasar, U., and Paterson, J. R. (2009a). The tommotiid Camenella reticulosa from the early Cambrian of South Australia: Morphology, sclerite reconstruction, and phylogeny. Acta Palaeontol. Pol. 54, 525–540. doi: 10.4202/app.2008.0082

Zhang, Z. F., Skovsted, C. B., Holmer, L. E., Brock, G. A., and Paterson, J. R. (2009b). First report of the early Cambrian stem group brachiopod Micwitzia from East Gondwana. Gondwana Res. 16, 145–150. doi: 10.1016/j.gr.2009.02.002

Zhang, C., Holmer, L. E., Larsson, C. M., Högström, A. E., Brock, G. A., Topper, T. P., et al. (2009c). The sclerite of Paterinita: an Early Cambrian stem group brachiopod from South Australia. Proc. Biol. Sci. B. 276, 1651–1656. doi: 10.1098/rspb.2008.1635