Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). II. Effects of DEPs on T-cell-mediated immune responses in rats.

Xue-Jun Yin
West Virginia University

Rosana Schafer
West Virginia University

Jane Y C Ma
West Virginia University

James M. Antonini
West Virginia University

Jenny R. Roberts
West Virginia University

See next page for additional authors

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Digital Commons Citation

Yin, Xue-Jun; Schafer, Rosana; Ma, Jane Y C; Antonini, James M.; Roberts, Jenny R.; Weissman, David N.; Siegel, Paul D.; and Ma, Joseph K H, "Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). II. Effects of DEPs on T-cell-mediated immune responses in rats." (2003). *Faculty & Staff Scholarship*. 2882.
https://researchrepository.wvu.edu/faculty_publications/2882

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty & Staff Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
Authors
Xue-Jun Yin, Rosana Schafer, Jane Y C Ma, James M. Antonini, Jenny R. Roberts, David N. Weissman, Paul D. Siegel, and Joseph K H Ma

This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/2882
Alteration of Pulmonary Immunity to *Listeria monocytogenes* by Diesel Exhaust Particles (DEPs). II. Effects of DEPs on T-Cell–Mediated Immune Responses in Rats

Xue-Jun Yin,1 Rosana Schafer,2 Jane Y.C. Ma,3 James M. Antonini,3 Jenny R. Roberts,3 David N. Weissman,3 Paul D. Siegel,3 and Joseph K.H. Ma1

1School of Pharmacy, 2School of Medicine, West Virginia University, Morgantown, West Virginia, USA; 3Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA

Previously, we showed that diesel exhaust particles (DEPs) suppressed pulmonary clearance of *Listeria monocytogenes* (*Listeria*) and inhibited the phagocytosis of alveolar macrophages and their response to *Listeria* in the secretion of interleukin (IL)-1β, tumor necrosis factor α, and IL-12. In this report we examined the effects of DEPs and/or *Listeria* on T-cell development and secretion of IL-2, IL-6, and interferon (IFN)-γ. We exposed Brown Norway rats to clean air or DEPs at 50 or 100 mg/m³ for 4 hr by nose-only inhalation and inoculated with 100,000 *Listeria*. Lymphocytes in the lung-draining lymph nodes were isolated at 3 and 7 days postexposure, analyzed for CD4+ and CD8+ cells, and measured for cytokine production in response to concanavalin A or heat-killed *L. monocytogenes*. *Listeria* infection induced lymphocyte production of IL-6. At 7 days postinfection, lymphocytes from *Listeria*-infected rats showed significant increases in CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased production of IFN-γ and IL-2 receptor expression compared with the noninfected control. These results suggest an immune response that involves the action of IL-6 on T-cell activation, yielding *Listeria*-specific CD8+ cells. DEP exposure alone enhanced lymphocyte production of both IL-2 and IL-6 but inhibited lymphocyte secretion of IFN-γ. In rats exposed to 100 mg/m³ DEPs and *Listeria*, a 10-fold increase occurred in pulmonary bacterial count at 3 days postinfection when compared with the *Listeria*-only exposure group. The isolated lymphocytes showed a significant increase in the CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased IL-2 responsiveness and increased capacity in the secretion of IL-2, IL-6, and IFN-γ. This T-cell immune response was sufficient to allow the Brown Norway rats to clear the bacteria at 7 days postinfection and overcome the down-regulation of the innate immunity by the acute DEP exposure. Key words: diesel exhaust particles, IL-2 receptor, interferon-γ, interleukin-6, interleukin-2, *Listeria monocytogenes*, T-cell responses. *Environ Health Perspect* 111:524–530 (2003). doi:10.1289/ehp.5709 available via http://dx.doi.org [Online 17 January 2003]
alveolar region as well as in the lung-draining lymph nodes (LDLNs) through particle translocation in the local lymphoid system (Chan et al. 1981; Yu and Yoon 1991), the potential effect of DEPs on T-cell–mediated immune responses has not been fully characterized. Lymphocytes are intimately involved in defense against bacterial, fungal, viral, and toxic assaults. Ample evidence suggests that macrophage-derived cytokines such as IL-1, TNF-α, and IL-12 are T-cell activators (Akira et al. 1990; Hsieh et al. 1993). As the production of these cytokines by AMs in response to Listeria (or HKLM) stimulation is inhibited by the DEP exposure, it is likely that DEPs may also alter lymphocyte-mediated host defense mechanism. For this reason, we have studied the effects of acute DEP exposure on T-cell–mediated immune responses in the lungs of Listeria-infected rats. This article describes the responses of the Brown Norway rats to DEPs and Listeria exposures in the development of CD4⁺ and CD8⁺ cells and the ability of these lymphocytes to secrete IL-2, IL-6, and IFN-γ.

Materials and Methods

Materials. A standardized DEP sample (standard reference material 1650a), representative of heavy-duty engine emissions, was obtained from the National Institute of Standards and Technology (Gaithersburg, MD). This sample had a mass median aerodynamic diameter of approximately 0.5 µm. Listeria was of strain 10403s and serotype 1. Male Brown Norway rats (200–250 g) were purchased from Harlan Laboratories (Indianapolis, IN). They were housed in a clean-air and viral-free room with restricted access, given a conventional laboratory diet and tap water ad libitum, and allowed to acclimate in an Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC)-approved animal facility for 1 week before use.

DEP inhalation and intratracheal bacterial inoculation. Groups of rats were exposed to either purified air or DEP-containing air (50 and 100 mg/m³) for 4 hr using a nose-only inhalation system that consisted of a TSI model 3076 constant output atomizer (TSI, Inc., St. Paul, MN), a diffusion dryer, and an inhalation exposure system (CH Technologies, Inc., Westwood, NJ) with 12 ports for animal-holding tubes. Prior to the inhalation experiments, the animals were placed in the holding tube 4 hr per day for 5 days to allow the animals to adapt to the inhalation conditions. DEP suspensions in water were sonicated for 10 min, aerosolized using the TSI nebulizer, and carried by generated air (carrier air) through the diffusion dryer. The carrier air was mixed with clean humidified air (dilution air) from a different air source before entering the inhalation chamber. Effluent from the inhalation chamber was passed through a HEPA filter to remove particles. DEP concentrations in chamber were monitored by gravimetric sampling of dust collected on a polycarbonate membrane filter (37 mm, 0.45 mm; Poretics Corp., Livermore, CA) at a sampling rate of 1 L/min. The estimated lung deposits of DEPs for the 4-hr inhalation exposure, according to the method of Leong et al. (1998), were 192 and 384 µg/rat for 50 and 100 mg/m³ dose groups, respectively.

Listeria was cultured overnight in brain heart infusion broth (Difco Laboratories, Detroit, MI) at 37°C in a shaking incubator. Diluted solution of the Listeria culture was further cultured for 3 hr to achieve log growth. After incubation, the bacteria concentration was determined spectrophotometrically at 600 nm and diluted with sterile saline to the desired concentrations. Two hours after DEP exposure, rats were lightly anesthetized with methohexital sodium (35 mg/kg body weight, intraperitoneal injection; Eli Lilly Co., Indianapolis, IN) and inoculated intratracheally with 500 µL sterile saline or 500 µL saline containing approximately 100,000 Listeria, according to the method of Antonini et al. (2000).

After Listeria inoculation, the animals were returned to the AAALAC-approved animal facility and housed in a separate room completely isolated from noninfected animals. They received normal care until the time for subsequent experiments. The effect of DEP exposure on AM-mediated responses to Listeria infection based on the above exposure experiments has been reported (Yin et al. 2002). This study characterizes T-lymphocyte–mediated immune responses to Listeria and DEP exposures using data obtained from the same experiments.

Cell isolation and differential counts of T-cell subsets. At 3 and 7 days after Listeria instillation, the rats were deeply anesthetized with an overdose of sodium pentobarbital (50 mg/kg intraperitoneal injection; Butler, Columbus, OH) and exsanguinated by severing the abdominal aorta. The LDLNs from each rat were excised and teased apart with forceps, and single-cell suspensions were obtained by expressing the cells into RPMI 1640 medium (Gibco BRL, Gaithersburg, MD) through a nylon mesh bag (Tetko, Inc., Biarcliff Manor, NY). Resuspended cells were washed 3 times with 10–5 M 2-mercaptoethanol, 5 × 10⁻⁵ M 2-mercaptoethanol, 5 mM HEPES, and 10% heat-inactivated FBS (Hyclone, Logan, UT). Aliquots of 1 mL cell suspensions, adjusted to 4 × 10⁶ lymphocytes, were added to each well of 24-well tissue culture plates (Costar, Cambridge, MA) and incubated in a humidified incubator (37°C and 5% CO₂) for 24 or 48 hr with or without either concanavalin A (ConA) 2 µg/mL (Sigma Chemical Co., St. Louis, MO) or HKLM (10⁻⁵–10⁻⁴ M). The lymphocyte-conditioned media were collected and centrifuged (1,200 × g for 4 min), and aliquots of the supernatants were stored at –70°C until assayed. To ensure that the number of cells was the same in various culture samples, studies were carried out to determine the cellular protein levels after incubation. The cells were treated with 0.5% Triton X100 at 37°C for 30 min, and the media were collected and centrifuged. The protein contents in supernatants were determined using Sigma Diagnostic reagents and procedures (Sigma Chemical Co.) on a Cobas Fara II analyzer (Roche Diagnostic System, Montclair, NJ). The results did not show a significant difference in protein content among the samples from various treatment groups. The levels of IFN-γ, IL-2, and IL-6 in the culture supernatants were determined using the commercially developed enzyme-linked immunosorbent assay (ELISA) kit (Amersham, Arlington Heights, IL).

To enumerate CD4⁺ and CD8⁺ T-cell subsets in lymphocytes recovered from rats at 7 days after bacteria inoculation, each of the respective cell types was stained with the addition of an appropriate monoclonal antibody conjugated with a fluorescent probe for visualization (BD Pharmingen, San Diego, CA). After a 30-min incubation on ice in the dark, cells were washed twice with phosphate-buffered saline (PBS, pH 7.4) containing 2% fetal bovine serum (FBS) and 0.02% NaN₃ and fixed by suspending the cells in 0.4% parafomaldehyde in PBS. Flow cytometric analysis was performed the following day. The flow cytometric data were collected with a Becton-Dickinson FACScan using FACScan Research Software (version B; Becton–Dickinson Immunocytometry System, San Jose, CA) and analyzed using the PC-LYSYS version 1.0 software (Becton-Dickinson). Live lymphocytes were analyzed based on forward versus 90° scatter set to exclude dead cells and contaminating red blood cells, which are smaller than live lymphocytes. The absolute numbers of cells in each lymphocyte subpopulation were calculated by multiplying the total number of viable cells by the percentage of the total within each phenotype, determined by flow cytometry.

Determination of cytokines. Lymphocytes recovered from rats at 3 and 7 days postinfection were suspended in the RPMI-1640 medium (Gibco BRL) containing 2 mM glutamine, 100 µg/mL streptomycin, 100 U/mL penicillin, 5 × 10⁻⁵ M 2-mercaptoethanol, 5 mM HEPES, and 10% heat-inactivated FBS (Hyclone, Logan, UT). Aliquots of 1 mL cell suspensions, adjusted to 4 × 10⁶ lymphocytes, were added to each well of 24-well tissue culture plates (Costar, Cambridge, MA) and incubated in a humidified incubator (37°C and 5% CO₂) for 24 or 48 hr with or without either concanavalin A (ConA) 2 µg/mL (Sigma Chemical Co., St. Louis, MO) or HKLM (10⁻⁵–10⁻⁴ M). The lymphocyte-conditioned media were collected and centrifuged (1,200 × g for 4 min), and aliquots of the supernatants were stored at –70°C until assayed. To ensure that the number of cells was the same in various culture samples, studies were carried out to determine the cellular protein levels after incubation. The cells were treated with 0.5% Triton X100 at 37°C for 30 min, and the media were collected and centrifuged. The protein contents in supernatants were determined using Sigma Diagnostic reagents and procedures (Sigma Chemical Co.) on a Cobas Fara II analyzer (Roche Diagnostic System, Montclair, NJ). The results did not show a significant difference in protein content among the samples from various treatment groups. The levels of IFN-γ, IL-2, and IL-6 in the culture supernatants were determined using the commercially developed enzyme-linked immunosorbent assay (ELISA) kit (Amersham, Arlington Heights, IL).
immunosorbent assays (ELISA) (BioSource International, Inc., Camarillo, CA) and a spectrophotometric microplate reader (SpectraMax 250; Molecular Devices Co., Sunnyvale, CA). The concentration range for accurate determination of each cytokine using the ELISA kit was 21.8–1,400 pg/mL for IFN-γ, 23.4–1,500 pg/mL for IL-2, and 31.2–2,000 pg/mL for IL-6.

The direct effect of DEPs on lymphocyte secretion of IFN-γ through particle–cell interactions was determined. Lymphocytes in all LDLNs were isolated from rats treated with 100,000 *Listeria* or saline at 7 days postinfection. Cells (4 × 10⁶) were treated with varying concentrations of DEPs (0–50 µg/mL) in a humidified incubator (37°C and 5% CO₂) and incubated with HKLM (10⁷/mL) for 48 hr. After treatment, the lymphocyte-conditioned media were collected, centrifuged, and stored at −70°C until assayed. The levels of IFN-γ in the culture supernatants were quantified by ELISA.

Determination of IL-2 receptor α on lymphocytes. Animals were lightly anesthetized by intraperitoneal inoculation of methohexital sodium (35 mg/kg body weight; Eli Lilly Co.) and intratracheally instilled with 300 µL sterile saline or 384 µg/rat DEPs suspended in 300 µL saline by sonication for 2 min. This intratracheal DEP dose was selected because the estimated lung deposit in rats exposed to 100 mg/m³ DEPs for 4 hr by nose-only inhalation was 384 µg (Yin et al. 2002). Two hours after DEP exposure, rats were inoculated intratracheally with either saline or approximately 100,000 *Listeria* according to the method previously described. At 7 days postinfection, rats were sacrificed, and the lymph node cells were harvested and counted as previously described. The isolated lymphocytes, adjusted to 4 × 10⁶ cells/mL/well, were incubated in a humidified incubator for 0–72 hr with ConA (2 µg/mL). The lymphocyte-conditioned media were collected and measured for IL-2 production by ELISA. The ConA-stimulated lymphocytes were stained with appropriate antibody for the CD4+ and CD8+ T-cell subsets and with R-phycocerythrin–conjugated monoclonal mouse antirat IL-2 receptor α (IL-2Rα) antibody (BD Pharmingen), and analyzed using a Becton-Dickinson FACSscan, according the method described in the previous section.

Statistical analysis. Results are expressed as mean ± SE of multiple measurements. Statistical analyses were carried out with the JMP IN statistical program (SAS, Inc., Cary, NC). The significance of the interaction among the different treatment groups for the different parameters at each time point was assessed using an analysis of variance (ANOVA). The significance of difference between individual groups was analyzed using the Tukey-Kramer’s honestly significant difference (HSD) test and chi-square test. For all analyses, the criterion of significance was set at *p* < 0.05.

Results

Effects of DEPs and listeria exposures on lymphocyte population in LDLNs. The numbers of total lymphocytes and the CD4+ and CD8+ T-cell subsets recovered from LDLNs for each exposure group at 7 days post-*Listeria* infection are given in Table 1. Rats treated with *Listeria* (1 × 10⁶ bacteria/rat on day 0) showed increased counts in total lymphocytes, T cells, and the CD4+ and CD8+ T-cell subsets in LDLNs at day 7, as well as a slight increase in the CD8+/CD4+ ratio compared with that of the noninfected control. Exposure to DEPs alone also resulted in increased total lymphocytes, T cells, and T-cell subsets. In the combined exposure, elevation of cell counts appeared to be DEP dose-dependent. At 50 mg/m³, the number of total lymphocytes or CD4+ cells recovered from LDLNs corresponded to the added total of the DEP–exposure alone and *Listeria*-treated alone. There was, however, a significant increase in the CD8+ subset. At the higher DEP dose (100 mg/m³), a significant increase occurred in both the cell number and the CD8+/CD4+ ratio by the combined DEP and *Listeria* exposures, indicating that this acute, high-dose DEP exposure augments the effects of *Listeria* on promoting T-lymphocyte development. At 3 days postinfection, neither DEP exposure nor *Listeria* infection resulted in significant changes in T lymphocytes when compared with the air-exposed, noninfected control (data not shown).

Figure 1. Effect of *Listeria* infection on the production of IL-2 by lymphocytes: (A) Comparison of IL-2 production by lymphocytes from *Listeria*-infected rats (gray bar) and noninfected controls in 24-hr culture with ConA (2 µg/mL); (B) Comparison of IL-2 production by lymphocytes from *Listeria*-infected rats in 24-hr and 48-hr cultures with ConA (2 µg/mL) stimulation. Rats were exposed to clean air for 4 hr. *Listeria* was given 2 hr postexposure. Lymphocytes were obtained from rats at 3 and 7 days postexposure. Values are expressed as mean ± SE (*n* = 5–8).

Table 1. Effects of DEP exposure and/or *Listeria* infection on lymphocyte differentiation in LDLNs of Brown Norway rats.*

DEP dose (mg/m³)	Lymphocytes (×10⁶)	T cells (×10⁶)	CD4+ T cells (×10⁶)	CD8+ T cells (×10⁶)	CD8+/CD4+ ratio
Without Listeria					
Air	19.25 ± 3.06	10.55 ± 1.60	9.67 ± 1.47	0.87 ± 0.13	0.09 ± 0.01
50	32.88 ± 10.69*	18.96 ± 6.43*	17.33 ± 5.84*	1.65 ± 0.59*	0.10 ± 0.02
100	48.66 ± 8.08*	26.11 ± 5.30*	25.74 ± 4.92*	2.37 ± 0.39*	0.09 ± 0.01
With Listeria					
Air	73.16 ± 9.30*	37.75 ± 4.84*	33.38 ± 4.57*	4.37 ± 0.41*	0.13 ± 0.02
50	108.44 ± 17.53**	58.31 ± 10.71***	50.48 ± 9.67****	7.91 ± 1.04*****	0.16 ± 0.02**
100	143.72 ± 18.47***	80.99 ± 9.30***	66.85 ± 7.75***	14.15 ± 2.20******	0.22 ± 0.03***

*See "Materials and Methods" for details. Values are expressed as mean ± SE (*n* = 5). Data were analyzed by one-way ANOVA followed by Tukey-Kramer’s HSD test for multiple mean comparisons for each treatment group at the same dose and exposure time. The viability of all cell preparations was above 98%. *Significantly different from the noninfected air controls, *p* < 0.05. **Significantly different from the *Listeria*-only group, *p* < 0.05. ***Significantly different from the DEP-only groups, *p* < 0.05. *Significantly different from the sum of DEP-only and *Listeria*-only groups, *p* < 0.05.
the 24- and 48-hr cultures secreted by lymphocytes isolated from air-exposed, Listeria-infected rats. For cells obtained at 3 days postinfection, the IL-2 level in the 48-hr culture was greater than that of the 24-hr culture. However, lymphocytes isolated at 7 days postinfection produced significantly diminished levels of IL-2 in the 48-hr culture compared with the IL-2 levels in the 24-hr culture.

Figure 2A, B shows the effects of DEP exposure on lymphocyte production of IL-2 in noninfected and Listeria-infected rats, respectively. In noninfected rats, DEP exposure enhanced the production of IL-2 in the 24-hr culture by lymphocytes obtained at both 3 and 7 days postexposure, and there was a marked decrease in IL-2 levels in the 48-hr cultures. In Listeria-infected rats, the DEP exposure at 100 mg/m³ enhanced the production of IL-2 in the 24-hr culture by lymphocytes obtained at 7 days postinfection compared with the air-exposed control. In the 48-hr culture, however, the IL-2 levels produced by the same cells were sharply diminished. In comparison, lymphocytes obtained from rats exposed to DEPs and Listeria at 3 days postinfection did not show a significant increase in IL-2 production in the 24-hr culture compared with that of the air control. The DEP exposure had only a moderate effect on lowering IL-2 levels in the 48-hr culture. The isolated lymphocytes from various exposure groups did not respond to stimulation by HKLM in IL-2 secretion (data not shown).

IL-2 promotes T-cell proliferation during the immune response. The diminished levels of IL-2 in the 48-hr culture compared with levels of the 24-hr culture suggest that the secreted IL-2 may be reutilized by the lymphocytes for cell proliferation. This would require the lymphocytes to exhibit increased expression of the inducible IL-2Rα. To ascertain that the IL-2 levels measured in cell cultures signal concurrent events of IL-2 secretion and utilization by lymphocytes, we conducted separate experiments to characterize the expression of inducible IL-2Rα on lymphocytes isolated from DEP- and Listeria-exposed rats and their time-dependent secretion of IL-2. Figure 3 shows the flow cytometric analysis of the percent of IL-2Rα + cells in lymphocytes isolated from various exposure groups at 7 days postinfection. Lymphocytes from saline- or DEP-treated rats (384 µg/rat, intratracheally instilled) showed a moderate but time-dependent increase in IL-2Rα in response to ConA stimulation. In comparison, both Listeria and the combined DEP and Listeria exposures produced lymphocytes that showed increased expression of ConA-inducible CD4+/IL-2Rα and CD8+/IL-2Rα cells. This increase in IL-2Rα became significant when cells were incubated with ConA for 24 hr or longer. Figure 4 shows the corresponding IL-2 levels measured in the cell culture media. The combined DEP and Listeria exposure and Listeria infection alone resulted in lymphocytes that secreted the highest levels of IL-2 in cell cultures incubated for up to 24 hr. At longer incubation times, when these cells exhibited increased expression of IL-2Rα (Figure 3), the IL-2 levels in the incubation media sharply declined (Figure 4).

The above results show that lymphocytes obtained at 7 days postinfection from rats exposed to Listeria or to Listeria and DEPs exhibit increased IL-2Rα and ability to reutilize the secreted IL-2. In comparison, cells obtained at 3 days postinfection did not show a significant decrease in IL-2 level in the 48-hr culture. This is consistent with the fact that the total number of CD4+ and CD8+ cells and the CD8+/CD4+ ratio in Listeria-infected animals, especially under DEP exposure, were significantly increased at 7 days postinfection but not at 3 days postinfection.
Interleukin-6. Figure 5 shows the secretion of IL-6 by lymphocytes isolated from various exposure groups in response to HKLM stimulation. DEP exposure showed a moderate but dose-dependent enhancement of the production of IL-6 by lymphocytes at 3 days postexposure. In comparison, lymphocytes from Listeria-treated rats at 3 days postinfection were easily inducible by HKLM to secrete IL-6. Lymphocytes obtained from rats exposed to both DEPs and Listeria showed a significant increase in their ability to produce IL-6 compared with cells from DEP- or Listeria-exposed rats. The combined DEP and Listeria effect on IL-6 production was DEP dose-dependent. These results show that DEP exposure augments Listeria-induced lymphocyte production of IL-6.

Interferon-γ. The secretion of IFN-γ by lymphocytes from various exposure groups in response to ex vivo ConA stimulation is shown in Figure 6. Lymphocytes from all exposure groups responded to the nonspecific stimulation by ConA. At 3 days postexposure, both Listeria infection and DEP exposure appeared to decrease the production of IFN-γ by lymphocytes in response to ConA stimulation, when compared with cells from the air-exposed, noninfected groups. DEP exposure at 100 mg/m³ also resulted in a decrease in IFN-γ production by cells from the Listeria-infected groups. At 7 days postexposure, however, Listeria-infected cells showed a significant increase in IFN-γ production compared with cells from the corresponding noninfected group. There was also an increase in IFN-γ production by cells from DEP-exposed and Listeria-infected rats. This increase was associated with an increase in DEP exposure dose. Figure 7 shows that the secretion of IFN-γ by lymphocytes from Listeria-infected rats was also inducible by HKLM in a dose-dependent relationship. In comparison, cells from air- or DEP-exposed rats without Listeria infection did not show substantial response to HKLM. Figure 7 also shows that DEP exposure attenuated the HKLM-induced secretion of IFN-γ by lymphocytes obtained at 3 days postinfection but not the secretion of IFN-γ by lymphocytes obtained at 7 days postinfection. In fact, the secretion of IFN-γ by lymphocytes from DEP- and Listeria-exposed rats at 7 days postinfection increased with increasing DEP dose and was significantly higher than the added secretion by cells from DEP-exposed and Listeria-exposed rats. These results show that at 7 days postinfection, T lymphocytes were developed specifically in response to Listeria infection. The DEP exposure augmented the T-cell immune responses.

To ascertain whether DEPs have a direct effect on lymphocyte secretion of IFN-γ, cells from rats treated with saline or 100,000 Listeria for 7 days were isolated and ex vivo challenged with DEPs (0–50 µg/mL). Figure 8 shows that lymphocytes from noninfected rats are not stimulated by HKLM in IFN-γ production, with or without DEPs. In contrast, lymphocytes from Listeria-infected rats secrete a significantly elevated level of IFN-γ in response to HKLM, but this secretion is strongly inhibited by DEPs at all dose levels tested.

Discussion

The effect of acute DEP exposure (50 or 100 mg/m³, 4 hr) on lung clearance of Listeria under the current experimental conditions has been reported in a previous article (Yin et al. 2002). Rats exposed to clean air followed by inoculation of 1 × 10⁵ Listeria on day 0 showed an increased bacterial count in the lungs (4.3 × 10⁵) on day 3 but a substantially declined bacteria count (0.2 × 10⁵) at day 7. Rats exposed to 50 and 100 mg/m³ DEPs for 4 hr followed by inoculation of Listeria exhibited bacteria counts of 9.5 × 10⁵ and 42.2 × 10⁵, respectively, at day 3 and a decline of bacteria count to nearly the level of the air-exposed control at day 7. The current study shows a strong correlation between the bacterial counts mentioned above and the lymphocyte differentials measured at 7 days postexposure. At 100 mg/m³, DEP exposure resulted in a marked increase in total lymphocytes in Listeria-infected lungs (Table 1). The combined effects of Listeria and DEP exposure were characterized by an increase in CD4⁺ and CD8⁺ cell counts and, in particular, a clear elevation of the CD8⁺ subset population, as indicated by the significant increase in the CD8⁺/CD4⁺ ratio. This change in lymphocyte population was not observed on day 3, suggesting that DEPs, through their initial
The pattern of lymphocyte secretion of IL-2, IL-6, and IFN-γ offers a plausible mechanism for the effect of DEPs on the development of T-cell–mediated immune responses in Listeria-infected rats. Listeria infection elicits the development of lymphocytes that exhibit increased IL-2 responsiveness. This is indicated by the fact that lymphocytes obtained at 7 days postinfection are more inducible in the expression of IL-2Rα than cells from noninfected rats. They are also capable of diminishing the secreted IL-2 level at the time when elevated IL-2Rα expression is produced, suggesting that these lymphocytes can indeed utilize the secreted IL-2 through their inducible IL-2Rα for cell proliferation. During the immune response, the ability of lymphocytes to respond to IL-2 is completely dependent upon the induced expression of the high-affinity IL-2R on the cell surface (Kämpfer 1994). One of the inducers for IL-2 responsiveness is IL-6, a multifunctional cytokine originally discovered as a growth factor stimulating, among other cell types, B-cell differentiation (Akira et al. 1990). Studies have shown that IL-6 also regulates acute-phase responses to injury (Hirano et al. 1990) and the activation of T cells (Lotz et al. 1988). The latter function has been described to involve a synergistic interaction between IL-1 and IL-6 on the induction of cytolytic T-lymphocyte responses (Akira et al. 1990; Ford et al. 1991; Renauld et al. 1989).

The secretion of IFN-γ by lymphocytes from Listeria-infected rats responded to stimulation by both ConA and HKLM. At 3 days postexposure, DEPs had a moderate but significant inhibitory effect on lymphocyte production of IFN-γ. At 7 days postexposure, however, cells from rats exposed to DEPs and Listeria showed elevated production of IFN-γ in response to stimulation by HKLM or ConA. This is despite the fact that DEPs, through direct contact with the cells, inhibit lymphocyte production of IFN-γ. One explanation of the strong development of Listeria-specific, IFN-γ-secreting T cells by rats exposed to DEPs and Listeria is that DEP exposure strongly inhibited the AM-orchestrated immune responses, resulting in a large increase in pulmonary bacterial count at 3 days postinfection. The Brown Norway rats were able to respond to the aggravated infection with a T-cell immune response that involves CD8+ cells.

In summary, this study shows that Listeria elicited a T-cell–mediated immune response characterized by an increase in CD8+ cells in the Brown Norway rats. The mechanism involves an elevated lymphocyte production of IL-6, which acts in concert with IL-1 to induce the IL-2 secretion and responsiveness by lymphocytes for rapid clonal expansion of the effector T-cell population. DEPs exhibited multiple effects on the T-cell–mediated immune responses. Exposure of rats to DEPs increased lymphocyte differentials in LDLNs

![Figure 8. Effect of ex vivo DEP exposure on the secretion of IFN-γ by lymphocytes. Rats were inoculated intratracheally with approximately 100,000 Listeria or sterile saline (control). Lymphocytes were isolated from rats at 7 days postinfection and measured for INF-γ production in response to HKLM (10 µM, 48 hr) stimulation, in the presence and absence of varying concentrations of DEPs (0–50 µg/mL). Values are expressed as mean ± SE (n = 3–5). *Significantly different from the noninfected control, p < 0.05. **Significantly different from the Listeria-infected group, p < 0.05.](image-url)
and their production of IL-2 and IL-6 but inhibited the secretion of IFN-γ by lymphocytes. The acute DEP exposure, which aggravates Listeria infection by down regulating the innate immunity, augments lymphocyte production of IL-2 and IL-6 by Listeria, resulting in increased development of CD8+ cells capable of secreting IL-2 and IFN-γ. This mechanism allowed the Brown Norway rats to efficiently clear the bacteria at 7 days post-DEP exposure, even though the bacteria infection was severely worsened by DEPs at 3 days post-exposure. It is not clear, however, whether DEPs inhibit the development of T-cell responses under chronic or subchronic inhalation exposure. DEPs, when incubated with lymphocytes from Listeria-infected rats, inhibit the cellular production of IFN-γ. The fact that DEPs may also attenuate CD4+ Th1 responses through inhibition of macrophage production of IL-12 suggests that both the CD4+ Th1 and CD8+ immune responses to Listeria may be impaired by long-term DEP exposure.

References

Akira S, Hirano T, Taga T, Kishimoto T. 1999. Biology of multi-functional cytokines: IL-6 related molecules (IL1 and TNF). FASEB J 13:2860–2867.

Antonini JM, Yang HM, Ma JYC, Roberts JR, Barger MW, Butterworth L, et al. 2000. Subchronic silica exposure enhances respiratory defense mechanisms and the pulmonary clearance of Listeria monocytogenes in rats. Inhal Toxicol 12:1017–1036.

Chan TL, Lee FS, Hering WE. 1981. Deposition and clearance of inhaled diesel exhaust particles in the respiratory tract of Fischer rats. J Appl Toxicol 1:77–92.

Dery RE, Bissonnette EY. 1999. IFN-gamma potentiates the release of TNF-alpha and MIP-1alpha by alveolar macrophages during allergic reactions. Am J Respir Cell Mol Biol 20:407–412.

Díaz-Sanchez D, Dotson AR, Takenaka H, Saxon A. 1994. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest 94:1417–1425.

Ford HR, Hoffman RA, Wang S, Simmons RL. 1991. Induction of cytotoxic T lymphocyte development from murine thymocytes by IL-1 and IL-6. J Pediatr Surg 26:397–400.

Fujimaki H, Sanyeshi K, Shirashi F, Imai T, Endo T. 1997. Inhalation of diesel exhaust enhances antigen-specific IgE antibody production in mice. Toxicology 116:227–233.

Goossens PL, Montixi C, Sarson AF, Rodriguez M, Zavala F, Milan G. 1995. Listeria monocytogenes: a live vector able to deliver heterologous protein within the cytosol and to drive a CD8 dependent T cell response. Biologicals 23:135–143.

Hirano T, Akira S, Taga T, Kishimoto T. 1990. Biological and clinical aspects of interleukin 6. Immunol Today 11:443–449.

Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. 1993. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549.

Kempfert R. 1994. Regulation of the human interleukin-2/interleukin-2 receptor system: a role for immunosuppression. Proc Soc Exp Biol Med 206:176–180.

Kaufmann SH. 1993. Immunity to intracellular bacteria. Annu Rev Immunol 11:129–163.

Kaufmann SH, Fleisch EK. 1990. Cytokines in antibacterial resistance: possible applications for immunomodulation. Lung 168(suppl):1025–1032.

Leong BKJ, Coombs JR, Sabaits CP, Rop DA, Aaron CS. 1998. Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. J Appl Toxicol 18:149–160.

Lotz M, Jirik F, Kabouridis P, Tsoukas C, Hirano T, Kishimoto T, et al. 1988. B cell stimulating factor 2/interleukin 6 is a cos-stimulant for human thymocytes and T lymphocytes. J Exp Med 167:1253–1258.

McCormack JM, Moore SC, Gatewood JW, Walker WS. 1992. Mouse splenic macrophage cell lines with different antigen-presenting activities for CD4+ helper T cell subsets and allogeneic CD8+ T cells. Cell Immunol 145:359–371.

Mietzke ME, Peters C, Hahn H. 1997. Cytokines in the induction and expression of T cell-mediated granuloma formation and protection in the murine model of listeriosis. Immunol Rev 158:79–93.

North RJ, Dunn PL, Conlan JW. 1997. Murine listeriosis as a model of antimicrobial defense. Immunol Rev 158:27–36.

Park AV, Scott P. 2001. IL-12: keeping cell-mediated immunity alive. Scand J Immunol 53:529–532.

Reasor MJ, Mcclaud CM, DiMatteo M, Schaefer R, Ima A, Lemaire I. 1996. Effects of amidarone-induced phospholipidosis on pulmonary host defense functions in rats. Proc Soc Exp Biol Med 211:346–352.

Renaud JC, Vink A, Van Snick J. 1989. Accessory signals in murine cytotoxic T cell responses: dual requirement for IL-1 and IL-6. J Immunol 143:1894–1898.

Smith KA. 1992. Interleukin-2. Curr Opin Immunol 4:271–276.

Soussi N, Milan G, Celli RH, Mougeau E, Glueckhause N, Goossens PL. 2000. Listeria monocytogenes as a short-lived delivery system for the induction of type 1 cell-mediated immunity against the p36/LACK antigen of Leishmania major. Infect Immun 68:1488–1506.

Trinchieri G. 1995. Interleukin 12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:261–276.

Twigg HL. 1996. Pulmonary host defenses. J Thorac Imaging 13:221–233.

Weiskirch LM, Paterson Y. 1997. Listeria monocytogenes: a potent vaccine vector for neoplastic and infectious disease. Immunol Rev 158:159–169.

Yang HM, Antonini JM, Barger MW, Butterworth L, Roberts JR, Ma JKH, et al. 2001. Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ Health Perspect 109:515–521.

Yang HM, Barger MW, Castranova V, Ma JKH, Yang JJ, Ma JYC. 1999. Effects of diesel exhaust particles (DEP), carbon black, and silica on macrophage responses to lipopoly-saccharide: evidence of DEP suppression of macrophage activity. J Toxicol Environmental Health 58:261–278.

Yang HM, Ma JYC, Castranova V, Ma JKH. 1997. Effects of diesel exhaust particles on the secretion of interleukin-1 and tumor necrosis factor-alpha from rat alveolar macrophages. Exp Lung Res 23:269–284.

Yin XJ, Schafer R, Ma JYC, Antonini JM, Weissman DN, Siegel PD, et al. 2002. Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEP). I. Effects of DEP on early pulmonary responses. Environ Health Perspect 110:1105–1111.

Yoshino S, Sagai M. 1999. Enhancement of collagen-induced arthritis in mice by diesel exhaust particles. J Pharmacol Exp Ther 290:524–529.

Yu CP, Youn KJ. 1991. Retention modeling of diesel exhaust particulates in rats and humans. Resp Rep Health Eff Inst 40:1–24.