In this work, we report the facile, inexpensive, solution-phase growth of cm-scale single crystals (SCs) of variable composition from the desired three-dimensional cubic perovskite phase to a non-perovskite one-dimensional hexagonal lattice.

Formamidinium (FA)-based hybrid lead halide perovskites (FAPbX₃, X = I or Br/I) have recently led to significant improvements in the performance of perovskite photovoltaics. The remaining major pitfall is the instability of α-FAPbI₃, causing the phase transition from the desired three-dimensional cubic perovskite phase to a non-perovskite one-dimensional hexagonal lattice. In this work, we report the facile, inexpensive, solution-phase growth of cm-scale single crystals (SCs) of variable composition CsFA₁₋ₓPbI₃₋ₓBrₓ (x = 0–0.1, y = 0–0.6) which exhibit improved phase stability compared to the parent α-FAPbI₃ compound. These SCs possess outstanding electronic quality, manifested by a high-carrier mobility–lifetime product of up to 1.2×10^{-1} cm² V⁻¹ s⁻¹ and a low dark carrier density that, combined with the high absorptivity of high-energy photons by Pb and I, allows the sensitive detection of gamma radiation. With stable operation up to 30 V, these novel SCs have been used in a prototype of a gamma-counting dosimeter.

NPG Asia Materials (2017) 9, e373; doi:10.1038/am.2017.45; published online 14 April 2017

INTRODUCTION

Lead halide semiconductors with the perovskite crystal structure, having the overall composition of APbX_3 (A = Cs⁺, CH₃NH₃⁺ (methylammonium or MA) or CH₃(NH₂)₂⁺ (formamidinium or FA⁺); X = Cl⁻, Br⁻, I⁻ or mixture thereof), comprise an emerging class of optoelectronic materials for applications spanning inexpensive solar cells, broadband and narrowband photodetectors operating in the ultraviolet–visible–near infrared regions, soft X-ray detectors or even gamma detectors. Such a plethora of applications is enabled, on the one hand, by the material’s unique defect-tolerant photophysics, that is, the existence of a low density of carriers (10^{9}–10^{11} cm⁻³), low densities of traps (10^{9}–10^{10} cm⁻³), high-carrier mobilities (25–100 cm² V⁻¹ s⁻¹), and high-exciton diffusion lengths, all despite a significant degree of structural imperfection on an atomistic scale (vacancies) and at the microscale (grain boundaries, polycrystallinity and so on). On the other hand, lead halide perovskites can also be conveniently deposited from their solutions in the form of large single crystals (SCs), thin-films or various nanostructured forms. Of these forms, our focus herein is on SCs for two distinctly different reasons. First, perovskite SCs are naturally the most structurally perfect samples for fundamental studies of their intrinsic electronic and optical properties. Thus far, solution-grown SCs of MAPbX₃, FAPbX₃ and CsPbX₃ have been reported and their photophysical properties were characterized. The second, rather practical motivation lies in the unique applicability of perovskite SCs as inexpensive, solid-state semiconductor detectors of high-energy photons (X-rays and gamma-rays). Because most gamma radiation originates from the decay of radioactive nuclei, low-cost, sensitive and room-temperature operational radiation detectors are clearly needed for a variety of applications related to the monitoring or neutralization of major threats from the operation of nuclear reactors, terrorism or limited nuclear war, or simply for occupational safety in working with radioactive isotopes. Perovskite hold great promise as hard radiation detectors due to the compelling combination of the aforementioned electronic characteristics, foremost of which is a high mobility–lifetime product ($\mu\tau$), and the high absorptivity of hard radiation by the high atomic number (Z) lead and iodine atoms. Such high-Z semiconductors are rarely available in single-crystalline form, explaining why CdTe and CdZnTe (CZT), grown using the complex and expensive Czochralski method, remain essentially the only materials used in commercial solid-state gamma-detectors.

Our previous investigations of perovskite SCs for gamma photon detection focused on MAPbI₃, MAPb(Br/I)₃ and FAPbI₃. The lattermost material, among all of those tested, was characterized by the highest $\mu\tau$ product and lowest noise level and dark current, leading to the highest gamma-counting rate. This is consistent with other reports on FAPbI₃ SCs, presenting a low trap density ($n_{t} = 1.13 \times 10^{10} \text{cm}^{-3}$), high-carrier mobility ($\mu = 35–40 \text{cm}^{2} \text{V}^{-1} \text{s}^{-1}$), carrier diffusion length of 6.6 μm and, importantly, low dark carrier density of $3.9 \times 10^{9} \text{cm}^{-3}$ (obtained by the space-charge-limited current technique).

FAPbI_3 is broadly regarded as a more chemically and thermally stable material, among all of those tested, was characterized by the highest $\mu\tau$ product and lowest noise level and dark current, leading to the highest gamma-counting rate. This is consistent with other reports on FAPbI₃ SCs, presenting a low trap density ($n_{t} = 1.13 \times 10^{10} \text{cm}^{-3}$), high-carrier mobility ($\mu = 35–40 \text{cm}^{2} \text{V}^{-1} \text{s}^{-1}$), carrier diffusion length of 6.6 μm and, importantly, low dark carrier density of $3.9 \times 10^{9} \text{cm}^{-3}$ (obtained by the space-charge-limited current technique).
robust compound34,35,41,42 than MAPbI$_3$, which decomposes to gaseous methylamine and hydrogen iodide. These beneficial attributes, along with a narrower bandgap energy, have been recognized by the photovoltaic community, leading to a gradual shift of research focus from MAPbX$_3$ thin-film absorption layers to FA-based counterparts.$^{42-44}$ However, all devices employing pure α-FAPbI$_3$ (Figure 1a) eventually suffer from its thermodynamic instability towards conversion into a wide-bandgap hexagonal (6) phase (Figure 1b). In SCs, this cubic-to-hexagonal transformation occurs very fast, typically within 24 h after the growth of the SC.21,33 In thin-films, this phase transformation requires from several hours to several weeks, being faster under humid atmosphere storage.55,46 This instability has recently been fully resolved for thin-films via the formation of mixed-ionic compositions with Cs and MA, such as in Cs$_{0.17}$FA$_{0.83}$Br$_3$ (x = 0–1) or (FAPbI)$_3$$_{1-x}$(MAPbBr)$_3$x (x = 0–0.3).$^{47-50}$ Such compositional tuning can stabilize the cubic structure via adjustment of the so-called Goldschmidt tolerance factor,51 determined by the radii of the constituting ions, and via the entropy of mixing.49

In this study, we sought to obtain and characterize FA-based perovskite SCs and study their photophysical properties. Taking lessons from the photovoltaic research discussed above,$^{47-50}$ we targeted quaternary Cs$_x$FA$_{1-x}$PbI$_3$ and quinary Cs$_x$FA$_{1-x}$PbI$_{1-y}$Br$_y$ compositions (x = 0–0.1, y = 0–0.6). After growing cm-scale SCs (Figure 1c), and examining their structure (Figure 1d) and thermal stability (Figure 1e), we explored their gamma-counting capabilities. All of the obtained SCs were crystallized in the cubic perovskite lattice; they were found to be phase pure and possess composition-dependent bandgap energies and luminescence maxima in the range of 755–832 nm, blue-shifted compared to FAPbI$_3$ (840 nm). These compositions were also found to exhibit significantly improved phase stability, with shelf lives (the time before hexagonal phase impurities could be detected) of up to 20 days for quaternary Cs$_x$FA$_{1-x}$PbI$_3$ SCs and of >4 months for quinary Cs$_x$FA$_{1-x}$PbI$_{1-y}$Br$_y$ SCs. These SCs possess outstanding electronic quality, manifested by an unusually high-carrier mobility x lifetime product (μτ) of up to 10^{-1} cm2 V$^{-1}$ s$^{-1}$, electronic stability under an applied bias of up to 30 V and sensitive gamma detection. Using SCs of Cs$_x$FA$_{1-x}$PbI$_{1-y}$Br$_y$, we also present an inexpensive prototype of a gamma-counting dosimeter.

METHODS

Chemicals and reagents

Lead (II) iodide (PbI$_2$, 99%), formamidinate acetate (FA(OAc), 99%) and γ-butyrolactone (GBL, ≥ 99%) were purchased from Sigma-Aldrich (Steinheim, Germany). Lead (II) bromide (PbBr$_2$, 98+%) was purchased from Acros (Geel, Belgium). Cesium iodide (CsI, 99.9%) and hydrogen iodide (57% with 15% polytetrafluoroethylene syringe filter. To grow Cs$_x$FA$_{1-x}$PbI$_{1-y}$Br$_y$ SCs, the concentration was lowered to 0.8 M and solution was not filtered. Typically, 4 ml of the precursor solution were filtered through a 0.2 µm polytetrafluoroethylene syringe filter. To grow Cs$_x$FA$_{1-x}$PbI$_{1-y}$Br$_y$ SCs, the concentration was lowered to 0.8 M and solution was not filtered. Typically, 4 ml of the precursor solution were filtered through a 0.2 µm polytetrafluoroethylene syringe filter. To grow Cs$_x$FA$_{1-x}$PbI$_{1-y}$Br$_y$ SCs, the concentration was lowered to 0.8 M and solution was not filtered. Typically, 4 ml of the precursor solution were filtered through a 0.2 µm polytetrafluoroethylene syringe filter.
125–130 °C, and maintained at this point for 1 h. SCs nucleated and grew during this heating ramp. To avoid overheated areas on the bottom of the vial (to obtain fewer seeds), the vial was lifted off the bottom of the bath (fixed in a clamp) and the glycerol level was adjusted to be a few mm lower than the level of the crystallization solution. The temperature was monitored using a thermometer or thermocouple connected to the hotplate.

X-ray diffraction

Powder X-ray diffraction patterns were collected from grinded crystals in transmission geometry (Debye-Scherrer geometry) with a STADI P diffractometer (STOE & Cie GmbH, Darmstadt, Germany), equipped with a silicon strip MYTHEN 1K Detector (Fa. DECTRIS) with a curved Ge (111)-Monochromator (CuKα, λ = 1.54056 Å). Single-crystal X-ray diffractions measurements were conducted on Bruker Smart Platform diffractometer equipped with a Apex I CCD detector and molybdenum (MoKα, λ = 0.71073 Å) sealed tube as an X-Ray source. Crystals were tip—mounted on a micromount with paraffin oil. Data was processed and refined with APEX2 (Bruker software) and Olex2 software (Durham University).

Thermal analysis

DSC and TG analyses were performed using a Netzsch Simultaneous Thermal Analyzer (STA 449 F5 Jupiter, Selb, Germany). A powdered sample (10 mg) was placed in an alumina crucible under Ar/N₂ gas atmosphere and heated to 850 °C (at 10 °C min⁻¹). Single-crystal X-ray diffractions measurements were conducted on Bruker Smart Platform diffractometer equipped with a Apex I CCD detector and molybdenum (MoKα, λ = 0.71073 Å) sealed tube as an X-Ray source. Crystals were tip—mounted on a micromount with paraffin oil. Data was processed and refined with APEX2 (Bruker software) and Olex2 software (Durham University).

Results—solution growth, structure and thermal analysis of CsₓFA₁₋ₓPbI₃₋ₙBrₓ (x = 0–0.1, y = 0–0.6)

The SCs were grown at 95–130 °C in γ-butyroloactone (GBL), using a modified inverse temperature crystallization (ITC) method (see details in the Experimental Section) (Figure 1), similarly to the original ITC method reported for FAPbI₃ and FAPbBr₃ by Bakr et al.35 In this method, the nucleation and fast growth of crystals occur upon heating, as opposed to commonly used cooling-induced supersaturation techniques. In ITC, the rare occurrence of a decrease in solubility upon heating (retrograde solubility) is exploited to induce crystallization.25 For FAPbI₃ in GBL, such unusual solubility behavior was suggested to be caused by the dissociation of solvent-precursor complexes at elevated temperatures, causing oversaturation.31,33 Recent success in thinness- and shape-controlled growth of MAPbX₃ SCs for inch-sized photoelectronic devices on the inch-scale speaks volumes for the versatility of an ITC method.53,54 The modification of an ITC method, used for growth of FAPbX₃, implemented in this work, lies in the use of cesium iodide as the Cs-source and lead bromide as the Br-source. The overall concentration of A-type cations (FA+Cs), Pb cations and halide anions (Br+I) was maintained at 0.9, 0.9 and 2.7 M, respectively. Experimentally, a notable challenge was to prevent the formation of a yellow, non-perovskite CsPbI₃ phase, often occurring for x ≥ 0.1. Neat GBL remained the best solvent, following trials using dimethylsulfoxide or dimethylformamide as additives or concentrated hydroiodic acid as a solvent. Chemical compositions were estimated by standard CHN combustion analysis for the organic part and by the Schöniger method for Br and I (by titrimetric analysis, Supplementary Table 5). The resulting compositions of SCs are proportional to the mixing ratios in the mother solution. Thermal analysis of CsₓFA₁₋ₓPbI₃₋ₙBrₓ indicates satisfactory stability upon heating in inert atmosphere (Figure 1e). For instance, decomposition does not occur until above 300 °C, a similar case to pure FAPbI₃.34,41 Two steps of mass loss were observed. A total gravimetric loss of 20% occurs between 316–370 °C, corresponding to the removal of FA-halide (for example, conversion into CsₓPbX₂₃₋ₓ). Lead halides then evaporate above 500 °C, leaving CsX residue. In comparison, the removal of the organic part from the methylammonium counterpart, CHₓNₓH₃PbI₃₋ₓBrₓ, already occurs at 150–200 °C.55–57 The powder X-ray diffraction (XRD) pattern of the parent FAPbI₃ SC (Supplementary Figure 3) indicates phase-pure α-FAPbI₃ with cubic symmetry, consistent with previously reported crystallographic data.21,58 All compositions of CsₓFA₁₋ₓPbI₃₋ₙBrₓ (x = 0–0.1, y = 0–0.6) exhibited the same general XRD pattern, without any detectable crystalline impurities (Supplementary Figure 4a). The formation of solid solutions is clearly visible by the shifts of the XRD reflections, as exemplified in Figure 1d for the (100) reflection. With the simultaneous replacement of FA and I ions with smaller Cs and Br ions, an expected systematic shift to higher angles without any apparent broadening was observed, confirming the decrease in the lattice constant. To within the instrumental resolution of our powder X-ray diffractometer, ground perovskite SCs, obtained in this work, exhibit same degree of crystallinity as highly crystalline Si (Supplementary Figures 4b and c). Such a shift is also detectable, although to a lesser extent, with the exchange of FA by Cs only (that is,
without alteration of the halide composition, Supplementary Figure 5). Powder XRD was then also used to monitor the phase stability of the SCs grown in this work. In these experiments, all samples were handled under ambient conditions, but stored in a desiccator over calcium chloride to ensure standardized humidity conditions during storage. SCs of \(\alpha\)-FAPbI\(_3\) transformed into a yellowish hexagonal phase within 24 h, in agreement with earlier reports.\(^{21,41}\) The replacement of 10\% of the FA ions by Cs led to much higher stability, with the first signs of degradation (minor XRD peaks corresponding to hexagonal FAPbI\(_3\)) seen only after 20 days of storage. When also Br ions are added, that is, to form quinary compositions, the stability could be further improved to at least 2 months of storage (for example, at \(y=0.2\)-0.4, Supplementary Figure 6).

Optical properties

The facile synthesis of solid solutions of \(C_xF_{1-x}\)PbI\(_{3-y}\)Br\(_y\) (\(x=0-0.1, y=0-0.6\)) lends itself to measurements of their optical properties, wherein the continuous compositional variation manifests in the continuous evolution of optical absorption and photoluminescence spectra (varying \(y\) shown in Figures 2a–c, and varying \(x\) in Supplementary Figure 7). A bandgap of 1.43 eV (the narrowest measured herein) and a photoluminescence maximum at 840 nm is found for the reference sample of \(\alpha\)-FAPbI\(_3\) (Figures 2a and b), in agreement with the literature.\(^{34,42,44}\) The incorporation of either Cs, Br or both increases the bandgap energy (Figure 2b). In general, the bandgap of the three-dimensional APbX\(_3\)-perovskites scales either with the nature of the halide ion (the electronegativity effect) or with geometric factors (for example, the tilting angle between PbX\(_6\) octahedra, compressive/tensile strain and so on).\(^{59}\) The effect of substitutional Cs-doping (Figure 2c, Supplementary Figure 7) in FAPbI\(_3\) can be ascribed to fine geometric effects. The replacement of FA with Cs may also influence the spin-orbit effects in this lattice.\(^{60}\) The dependence of bandgap on composition reported in this work is also consistent with numerous recent thin-film studies in photovoltaic research.\(^{47,49-51}\) It should be emphasized that the convenient tuning of the absorption onset to shorter wavelengths of 700–750 nm is potentially highly advantageous for the construction of tandem solar cells.\(^{51-64}\)

Absorption and detection of gamma photons in hybrid perovskite SCs

Upon the substitutional doping of FAPbI\(_3\) SCs by Cs and Br, not only does the crystalline phase stability increase and the optical absorption shift to lower wavelength, but also the electronic parameters such as dark current and shot noise are affected. In particular, the higher the bandgap is, the greater are the dark currents (see specific resistivity of SCs of various compositions in Supplementary Figure 8) and noise levels in the studied systems (not generally expected).

Taking into account this trade-off between the doping level and the corresponding electronic characteristics, we have focused on SCs with a composition of \(x=0.1\) and \(y=0.2\) (that is, 10% of Cs and 10% of PbBr\(_2\)) in subsequent gamma-detection studies.

The absorption of X-rays and gamma radiation in high-Z semiconductor materials can be described by several processes: photoionization, Compton scattering and electron-positron pair creation.\(^{40}\) We performed a calculation of the absorption (\(\alpha\)) of high-energy photons by SCs with the composition \(C_{x0.1}F_{0.9}Pb_{1.8}Br_{0.2}\) in the photon energy range of 20–1000 keV (Figure 3a). The resulting absorptivity spectrum contains two resonant absorption peaks due to transitions involving the core electron levels of constituting atoms, so-called K\(\alpha\) lines, a long, monotonically decreasing photocative tail and a component responsible for electron-positron pair creation at higher energies (>1 MeV). We then verified the accuracy of these calculations by measurements of the absorption of gamma radiation from two sources (\(^{241}\)Am and \(^{137}\)Cs) by several 0.2–15 mm thick SCs, and the penetration are presented as two points in Figure 3a. From the penetration depth (calculated as the inverse of absorption), it is apparent that emission from the \(^{241}\)Am source (\(E_\gamma=59.6\) keV) at rather low gamma photon energies can be absorbed by a 1 mm sized SC. Comparatively, a 10 times larger (1 cm) SC absorbed only ~30% of the intensity of gamma radiation from a \(^{137}\)Cs source (\(E_\gamma=662\) keV). With such large SCs, the efficiency of carrier separation and collection becomes a major concern. It was recently shown that a drift length in the mm range can be accomplished in MAPbBr\(_3\) SCs.\(^{12}\) Charge collection efficiency can be evaluated from the dependence of the photocurrent on bias (Figure 3b), with the aid of the Hecht model.\(^{56,56}\) This directly yields a figure-of-merit known as the carrier mobility-lifetime product (\(\mu\tau\)).\(^{40}\) This parameter increases drastically for SCs\(^{15}\) as compared to polycrystalline perovskites.\(^{11}\) In this study, a median value of \(\mu\tau=0.04\ \text{cm}^2\ \text{V}^{-1}\text{s}^{-1}\) was found for SCs of \(C_{0.1}F_{0.9}Pb_{1.8}Br_{0.2}\), whereas the champion SC showed a value of \(\mu\tau=0.12\ \text{cm}^2\ \text{V}^{-1}\text{s}^{-1}\). These values correspond well to the best reported \(\mu\tau\) values for CdTe-based SCs.

In this work and in a previous study,\(^{14}\) we find that with lead halide perovskites the charge collection efficiency is primarily limited by the bias-stability of the SCs. Due to ionic migration in perovskites, also known to cause hysteresis and other instabilities in photovoltaic solar cells,\(^{67}\) the highest bias at which the dark current and noise are not significantly affected is in the range of 5–30 V, being highest for FA-based SCs and lowest for MAPbI\(_3\) SCs. Based on these values, we have estimated a drift length (Figure 3b), also known as a schubweg,\(^{40}\) calculated as \(\mu\tau E\), where \(E\) is the applied electric field. For optimal charge collection, the penetration depth of a gamma photon of a certain energy must not exceed the drift length; that is, \(\mu\tau E\geq 1\). This assumes that the electric field (that is, the trajectories of the collected carriers) is parallel to the gamma flux. At the higher allowed biases in FA perovskites, the calculated drift length reaches 1.7 cm, meaning that at photon energies lower than 400 keV the penetration depth will not exceed the drift length. The condition of \(\mu\tau E\geq 1\) for drift lengths of 1.7 cm is graphically represented as a shaded green area in Figure 3a. Only within this area should a given SC be able to efficiently collect the charge carrier. Efficient charge carrier collection is also a precondition for obtaining energy-resolved spectra, based on pulse-height analysis. The latter aspect can be illustrated by performing a pulse-height analysis of the signals from two gamma sources: \(^{241}\)Am (Figure 3c) and \(^{137}\)Cs (Figure 3d). Clearly, the better energy-resolving capability of perovskite SCs is obtained at lower energies, that is, within the range of efficient charge collection.

DISCUSSION

ABX\(_3\) perovskites are composed of BX\(_6\) octahedra, connected by corner-sharing in three dimensions. One such compound, \(\alpha\)-FAPbI\(_3\) exhibits a highly symmetric cubic \(Pm-3n\) lattice with a unit cell parameter of \(a=6.3620(8)\ \text{Å}\) (Figure 1a).\(^{21,58}\) However, at room temperature this lattice undergoes a phase transformation into a hexagonal \(P6_3mc\) crystal structure, consisting of single one-dimensional chains of face-sharing Pb\(_6\) octahedra and FA cations situated in between the chains (Figure 1b).\(^{41}\) The three-dimensional electronic delocalization is therefore broken, deteriorating its semiconductive properties and drastically increasing the bandgap. Sometimes this phase is simply referred to as a ‘yellow phase’ due to its color. Only at elevated temperatures of 185 °C does the hexagonal FAPbI\(_3\) transform into the black \(\alpha\)-FAPbI\(_3\).\(^{34}\) This black phase is
obtained as a SC upon synthesis from a hot solution at 130 °C, but then quickly undergoes a phase transition to the yellow phase at room temperature.[21,23,24] The primary goal of this work was to prevent this phase transition through compositional variations within the FAPbI\textsubscript{3} lattice: by replacing FA cations with up to 10% of Cs, and I anions with up to 30% of Br. The compositionally dependent stability of perovskites can be semi-quantitatively rationalized using the Goldsmith tolerance factor (GTF) concept, initially proposed for metal-oxide perovskites[68] and recently extended to metal halides.[51,69,71] The GTF of a three-dimensional perovskite with ABX\textsubscript{3} composition and idealized cubic lattice can be calculated as:

\[
\text{GTF} = \frac{r_A + r_X}{\sqrt{2(r_B + r_X)}}
\]

where \(r_A\), \(r_B\) and \(r_X\) represent the ionic radii of each lattice site constituent (in this case, \(r_{FA} = 253\) pm, \(r_{Pb} = 119\) pm and \(r_{I} = 220\) pm). Stable cubic perovskites of formula ABX\textsubscript{3} are expected to exhibit a GTF between 0.8 and 1,[51,69,72] which explains the instability of α-FAPbI\textsubscript{3} at room temperature (GTF=1). It should be noted that the non-spherical geometry of the FA cation complicates the analysis.[73] Clearly, the GTF can be decreased by replacing FA cations by smaller Cs ions and/or by replacing I anions with smaller Br ions, likely leading to higher stabilities. These possibilities have been successfully tested in this work, leading to greatly increased phase stabilities of the perovskite SCs, as evidenced by an extended shelf-life of up to at least several months without any detectable traces of other crystalline phases (Supplementary Figure 6). The most preferred scenario in the context of gamma-sensing is FA-to-Cs exchange, as it has minimal effect on the bandgap energy and incorporates a heavy atom, which is highly desirable for the absorption of gamma photons. In addition, up to 30% of the I sites could be simultaneously substituted with Br ions. Both cationic and anionic exchange manifested themselves as changes in the bandgap energy. Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3} exhibits a 0.05 eV higher bandgap than α-FAPbI\textsubscript{3}, whereas a further increase by 0.2 eV can be seen upon the incorporation of 30% Br, that is, for Cs\textsubscript{0.1}FA\textsubscript{0.9}Pb\textsubscript{1.1}Br\textsubscript{0.9}. Besides Cs- and concomitant Cs/Br substitutional doping, doping of the halide site only, for example, in the formation of FAPbI\textsubscript{3−y}Br\textsubscript{y}, has been successful as well and will be reported elsewhere. We note a good proportionality between the I:Br and Cs:FA ratios in the mother solution and in the resulting SCs (Supplementary Table 5), with the general trend being that bromide contents are higher in the SCs.

With thermodynamically stable and large Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3−y}Br\textsubscript{y} SCs at our disposal, we then tested their gamma-photon-sensing properties and compared them to our earlier work on MAPbI\textsubscript{3}.[14] Besides the thermodynamic phase stability and chemical stability that both determine the shelf-life of the SCs, the operational stability due to the effects of polarization and ionic motion[74,75] also becomes an important issue for practical gamma detection. Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3−y}Br\textsubscript{y} SCs exhibit a much higher operational stability than MAPbI\textsubscript{3}, as can be seen from the continuous gamma-counting measurement under applied voltage bias (Figure 4a). The counting rates of all three compositions compared in Figure 4 fall within the same order of magnitude, with Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3−y}Br\textsubscript{y} SCs exhibiting systematically 2–3 times higher values. The subtle decrease in sensitivity can be quickly recovered by applying a bias of opposite sign, suggesting that ionic migration is the major cause for the sensitivity decrease. Such improvements inspired us to design a simple and low-cost prototype of a gamma dosimeter, comprising the advantages of solution-grown SCs and the swiftly developing field of open-source microprocessor controllers. We applied open-source ‘do-it-yourself’ project (https://sites.google.com/site/diygeigercounter/) that uses standard Geiger gas tube as detector and Arduino microprocessor platform for digital counting board. We replaced the Geiger counter with perovskite SC solid-state gamma detector (Figure 4b) and a commercial charge-sensitive preamplifier (Figure 4c). The resulting assembly exhibits a strong response to a \(\!^{137}\text{Cs}\) gamma radiation source of rather low activity (2.2 MBq), as illustrated by Figures 4c and d and by Supplementary Video 1. These devices were assembled and handled under ambient conditions. The long-term operation of such dosimeters is directly determined by the chemical integrity of the perovskite SCs, ranging from, at best, several days for FAPbI\textsubscript{3} to several months for Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3−y}Br\textsubscript{y} SCs.

In conclusion, we have presented a simple solution-growth method to synthesize quaternary Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3} and quinuclidine Cs\textsubscript{0.1}FA\textsubscript{0.9}PbI\textsubscript{3−y}Br\textsubscript{y} (x ≤ 0.1, y ≤ 0.6) SCs with excellent long-term thermodynamic stability. Such materials present an attractive alternative to MAPbX\textsubscript{3} compounds, which are prone to decomposition into PbX\textsubscript{2} and MAX.[76] With very high mobility–lifetime products of...
Figure 3 Response of Ca$_{0.1}$FA$_{0.9}$Pb$_{0.28}$Br$_{0.2}$ SC to gamma-rays. (a) Absorption and penetration depth as a function of photon energy, showing the calculated spectrum (green line) and measured values (red and blue symbols). The shaded green area indicates the effective range of charge collection, within which the penetration depth corresponds to the charge collection distance at the maximum applied bias of 25 V. (b) Evaluation of μt from the dependence of photocurrent on bias, and the corresponding effective distance of charge collection. (c and d) Energy-resolved spectra of gamma detection from a 241Am and a 137Cs source, respectively. SC, single crystal.

Figure 4 Prototype of a gamma dosimeter based on Ca$_{0.1}$FA$_{0.9}$Pb$_{0.28}$Br$_{0.2}$ SC. (a) Operational stability (crosses) and storage stability (circles) of Ca$_{0.1}$FA$_{0.9}$Pb$_{0.28}$Br$_{0.2}$ SCs compared to MAPbI$_3$ and FAPbI$_3$ SCs. (b) Detail photograph of the detector fixture with an installed FAPbI$_3$ or Ca$_{0.1}$FA$_{0.9}$Pb$_{0.28}$Br$_{0.2}$ SC. Photographs of the complete device during measurement (c) in the absence of a gamma radiation source and (d) in the presence of a 137Cs source (activity = 2.2 MBq). The labels correspond to: 1—detector crystal fixture, 2—charge-sensitive preamplifier (from eV products), 3—amplifier, 4—digital counting board using an Arduino microprocessor set, based on an open-source project (https://sites.google.com/site/diygeigercounter/) and 5—137Cs source. SC, single crystal.
up to $1.2 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1}$, such high-Z semiconductor SCs exhibit a high sensitivity to gamma photons, allowing single-photon counting and insensitive dosimetry. Besides hard radiation detection as presented herein, we expect that owing to their compositionally tunable bandgap energies, these SCs will attract further research activities toward investigating their applications in photodetectors operating in the visible and infrared regions, as well as in fundamental studies of the charge transport and photophysics of these novel semiconductors.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
MVK acknowledges financial support from the European Union through the FP7 (ERC Starting Grant NANOSOLID, GA No. 306733). Elemental analysis was performed at the Laboratory of Microelemental Analysis of ETH Zurich. We thank Michael Wörle for assistance with crystal structure refinement and Nicholas P Stadie for reading the manuscript. We also thank Prof. Mark Weller for providing the cif file of the FAPbI$_3$ cubic phase.

Author contributions: MVK conceived and supervised the work. ON, VM performed thermal analysis and single-crystal and IC prepared the samples and performed XRD and optical spectroscopy studies of the charge transport and photophysics of these novel activities toward investigating their applications in photodetectors. Presently, we expect that owing to their compositionally tunable bandgap energies, these SCs will attract further research activities toward investigating their applications in photodetectors. Presently, we expect that owing to their compositionally tunable bandgap energies, these SCs will attract further research activities toward investigating their applications in photodetectors. Presently, we expect that owing to their compositionally tunable bandgap energies, these SCs will attract further research activities toward investigating their applications in photodetectors.
 Supplementary Information accompanies the paper on the NPG Asia Materials website (http://www.nature.com/am)