Convergence and non-negativity preserving of the solution of balanced method for the delay CIR model with jump

A.S. Fatemion Aghda *, Seyed Mohammad Hosseini †, Mahdieh Tahmasebi, ‡

Department of Applied Mathematics, Tarbiat Modares University,
P.O. Box 14115-175, Tehran, IRAN.

Abstract

In this work, we propose the balanced implicit method (BIM) to approximate the solution of the delay Cox-Ingersoll-Ross (CIR) model with jump which often gives rise to model an asset price and stochastic volatility dependent on past data. We show that this method preserves non-negativity property of the solution of this model with appropriate control functions. We prove the strong convergence and investigate the pth moment boundedness of the solution of BIM. Finally, we illustrate those results in the last section.

Subject classification: 60H10, 60H35, 65C30.

Keywords: stochastic delay differential equation (SDDE) with jump, the delay CIR model with jump, balanced method, convergence, non-negativity, moment boundedness.

1 Introduction

Consider (Ω, \mathcal{F}, P) as a complete probability space with right continuous filtration $\{\mathcal{F}_t\}_{t \geq 0}$ while \mathcal{F}_0 contains all P-null sets. We consider the delay CIR model with jump introduced by Jiang, Shen and Wu [1]

\[
\begin{aligned}
\begin{cases}
 dS(t) = \lambda(\mu - S(t))dt + \sigma S(t - \tau)^\gamma \sqrt{S(t)}dW(t) + \delta S(t)d\tilde{N}(t), & t \geq 0, \\
 S(t) = \xi(t), & t \in [-\tau, 0],
\end{cases}
\end{aligned}
\]

(1)

*as.fatemion@modares.ac.ir
†hosseimin@modares.ac.ir
‡tahmasebi@modares.ac.ir
where γ, λ, μ and σ are positive constants, $W(t)$ is a standard Brownian motion and $\tilde{N}(t) = N(t) - \beta t$ is a compensated Poisson process, in which $N(t)$ is a Poisson process with intensity β. The positive initial value ξ is an \mathcal{F}_0-measurable $C([-\tau, 0]; \mathbb{R}^+)$-valued random variable satisfying

$$E\left[\sup_{-\tau \leq t \leq 0} |\xi(t)|^p \right] < +\infty,$$

for any $p > 0$. In particular, the CIR model (1) without jump and delay, $\tau = 0$, $\delta = 0$, was introduced by Cox, Ingersoll and Ross [2], as a model for stochastic volatility, interest rate and other financial quantities. Also, the CIR model (1) without jump, $\delta = 0$, was introduced by Wu, et al. [3] with regard to the fact that stock prices depend on past behaviors. (See also [4, 5]). Unfortunately, SDDEs with jumps have no explicit solution. Thus, constructing an appropriate numerical method to approximate and study the properties of the true solutions of these models are essential. Furthermore, in recent years, researchers are interested in numerical methods satisfying the same properties of the solutions such as positivity.

Strong convergence for stochastic differential equations (SDEs) with jumps is studied in some literatures [6, 7, 8, 9, 10, 11] and strong convergence for the mean-reverting square root process with jump is discussed in [12]. There are also some works concerned with positivity of numerical methods of SDEs; for example, see [13, 14, 15, 16, 17, 18].

For the CIR model (1), with $\tau = 0$, $\delta = 0$, Dereich et al. [19] investigated the drift non-negativity preserving of implicit Euler method and in 2013, Higham et al. [20] introduced a new implicit Milstein scheme which preserves non-negativity of solution. Recently, Yang and Wang [21] showed that the backward Euler scheme preserves positivity for the CIR model with jump.

In this manuscript, we are interested to balanced implicit scheme as a numerical method in order to obtain the positivity of our approximation process. Non-negativity preserving of BIM for SDEs without jumps is well studied (see; e.g. [22, 23]), and of SDEs with jumps is discussed in [24, 21], under an appropriate choice of control functions. Also, Tan et al. [25] showed that the BIM preserves positivity for the stochastic age-dependent population equation.

Strong convergence for SDDEs with jumps is studied in some literatures [26, 27, 28, 29, 30, 31] and in [32] for SDDEs without jumps. Wu et al. [3], showed the existence of non-negative solution of the delay CIR model without jump and Jiang, et al. [1] proved it for the delay mean-reverting square root process with jump (1). Also, they showed the Euler Maruyama method converges strongly to the solution and proved the boundedness of the pth moments of the solution to the model and the method. Fatemioon et al. [33] investigated strong convergence of BIM for the CIR model and showed that the scheme preserves positivity.

To the best of our knowledge, there is no positivity preserving result of numerical method for SDDEs with jumps. The aim of this paper is to preserve positivity of BIM for SDDEs (the delay
CIR models) with jumps (1). To do this, we can not examine traditional control functions used in BIM for SDEs to reach the positivity of BIM for these SDDEs, for instance, see [13, 24]. We define a new appropriate control function and prove that the non-negative solution of the BIM converges to the solution of the model (1) in the strong sense. Also, we show the boundedness of p-moments of the method for any $p > 0$.

The paper is organized as follows. In Section 2, we propose the BIM for the SDDE with jump (1) and choose the especial control functions that the method preserves non-negativity of the solution of the model. Also, we introduce the continuous case of the method to prove convergence in next section. In Section 3, we prove the convergence of the BIM applying to the model (1). Some numerical experiments in last section illustrate the obtained theoretical results of this paper.

2 Introduction of BIM and its properties

In this section, we describe the balanced method to approximate the solution of the delay CIR model with jump (1). Then, we state the non-negativity preserving concept of solution of numerical methods for this model, based on definitions in [23]. Also, we investigate the properties of p-moments for the balanced method in continuous time, which we need in the next section.

2.1 BIM and non-negativity preserving of method in discrete case

Set a uniform mesh on $[0, T]$, $t_n = nh$, $n = 0, ..., N$, $N \in \mathbb{N}$ for a step size $h \in (0, 1)$ as $h = \frac{\tau}{m}$, for a positive integer m. We introduce the BIM for SDDE with jump (1) by $s_{n+1} = s_n + \lambda(\mu - s_n)h + \sigma s_{n-m}^\gamma \sqrt{s_n} \Delta W_n + \delta s_n \Delta \tilde{N}_n + C_n(s_n - s_{n+1})$, (3)

where $C_n = C_0(s_n, s_{n-m})h + C_1(s_n, s_{n-m})|\Delta W_n| + C_2(s_n, s_{n-m})|\Delta \tilde{N}_n|$, such that for control functions $C_0(s_n, s_{n-m}), C_1(s_n, s_{n-m})$ and $C_2(s_n, s_{n-m})$, the expression $(1+C_0(s_n, s_{n-m})h+C_1(s_n, s_{n-m})|\Delta W_n| + C_2(s_n, s_{n-m})|\Delta \tilde{N}_n|)^{-1}$ always exists and is uniformly bounded.

The control functions for the BIM (3) that ensure preserving non-negativity of the solution of delay CIR model with jump (1) are

$$C_0(s_n, s_{n-m}) = C_0 \geq \lambda,$$

$$C_1(s_n, s_{n-m}) = \begin{cases} \sigma s_{n-m}^\gamma \epsilon^\frac{-1}{2}, & s_n < \epsilon, \\ \sigma s_{n-m}^\frac{\gamma}{\sqrt{s_n}}, & s_n \geq \epsilon, \end{cases}$$

$$C_2(s_n, s_{n-m}) = C_2 \geq \delta,$$

where C_0, C_2 are positive constants.
Definition 2.1. Let s_n be a numerical solution which is computed by a numerical method for solving SDDE with jump (1). The numerical solution s_n is said to be eternal life time if

$$P(s_n \geq 0|\xi_n \geq 0) = 1, \text{ for all } n \geq -m. \quad (7)$$

If (7) does not hold, then the numerical solution is said to be finite life time.

Definition 2.2. Let s_n be a numerical solution which is computed by a numerical method for solving SDDE with jump (1). The numerical solution s_n is said to be ϵ-life time if

$$P(s_{n+1} \geq 0|s_n \geq \epsilon, s_{n-m} \geq 0) = 1, \text{ for some } \epsilon > 0. \quad (8)$$

Theorem 2.3. The solution of the BIM (3) with control functions (4), (5) and (6) is ϵ-life time.

Proof. Assume that $s_n \geq \epsilon, s_{n-m} \geq 0$. According to the BIM (3) with control functions (1), (5) and (6), we have

$$s_{n+1} = s_n + \frac{\lambda (\mu - s_n)h + \sigma s_n^\gamma \sqrt{s_n} \Delta W_n + \delta s_n \Delta \tilde{N}_n}{1 + C_0 h + \sigma s_n^\gamma \sqrt{s_n} \|\Delta W_n\| + C_2 \|\Delta \tilde{N}_n\|} = s_n \left(\frac{(1 + C_0 h - \lambda h) \sqrt{s_n} + \sigma s_n^\gamma (\Delta W_n + |\Delta W_n|) + (C_2 \|\Delta \tilde{N}_n\| + \delta \Delta \tilde{N}_n) \sqrt{s_n}}{(1 + C_0 h) \sqrt{s_n} + \sigma s_n^\gamma \|\Delta W_n\| + C_2 \|\Delta \tilde{N}_n\|}\right) + \frac{\lambda \mu h}{1 + C_0 h + \sigma s_n^\gamma \sqrt{s_n} \|\Delta W_n\| + C_2 \|\Delta \tilde{N}_n\|}. \quad (9)$$

So, it is clear that $s_{n+1} \geq 0$. \qed

2.2 BIM and boundedness of the p-moments in continuous case

It is more convenient to use the time-continuous approximation of the BIM (3) as

$$s(t) = \begin{cases} \xi(t), & -\tau \leq t \leq 0, \\ \xi(0) + \lambda \int_0^t \frac{(\mu - \hat{s}(\tau))}{1 + C_r(\hat{s}(\tau), \hat{s}(\tau - \tau))} d\tau + \sigma \int_0^t \frac{\hat{s}(\tau - \tau) \sqrt{\hat{s}(\tau)}}{1 + C_r(\hat{s}(\tau), \hat{s}(\tau - \tau))} dW(\tau) + \delta \int_0^t \frac{\hat{s}(\tau)}{1 + C_r(\hat{s}(\tau), \hat{s}(\tau - \tau))} d\tilde{N}(\tau), & t \geq 0, \end{cases} \quad (10)$$

where

$$\hat{s}(t) = \begin{cases} \xi(t), & -\tau \leq t \leq 0, \\ \sum_{n=0}^k s_n 1^n[(\tau_n+1)](t) & t \geq 0, \end{cases}$$

with $[\frac{\tau}{h}]$ as the integer part of $\frac{\tau}{h}$, $C_r(\hat{s}(\tau), \hat{s}(\tau - \tau)) = C_0(\hat{s}(\tau), \hat{s}(\tau - \tau)) + C_1(\hat{s}(\tau), \hat{s}(\tau - \tau)) |\Delta W(\tau)| + C_2(\hat{s}(\tau), \hat{s}(\tau - \tau)) |\Delta \tilde{N}(\tau)|$, in which C_0, C_1, C_2 defined in (1), (5) and (6) and $\Delta W(\tau) = W(t_{k+1}) - W(t_k)$ and $\Delta \tilde{N}(\tau) = \tilde{N}(t_{k+1}) - \tilde{N}(t_k)$ for $r \in [t_k, t_{k+1})$. For simplicity of notation, we set $C_r :-
\[C_r(\hat{s}(r), \hat{s}(r - \tau)) \].

It is easy to observe that \(s(nh) = s_n \), so an error bound for \(s(t) \) will automatically imply an error bound for \(s_n \). Also, it is easy to obtain the following natural relationship

\[
\sup_{0 \leq t \leq T} |\hat{s}(t)| \leq \sup_{0 \leq t \leq T} |s(t)|. \tag{11}
\]

Now, we study the \(p \)th moment properties of the balanced method.

Theorem 2.4. There exists a constant \(K_1 \), which is independent of \(h \), such that

\[
E\left(\sup_{-\tau \leq t \leq T} |s(t)|^p \right) \leq K_1, \tag{12}
\]

holds for \(p > 2 \), and

\[
E|s(t)|^p \leq E[|s(t)|^\beta]^\frac{p}{\beta} \leq K_1^\frac{p}{\beta}, \tag{13}
\]

holds for \(0 < p \leq 2 \).

Proof. Define the stopping time, for any \(k > 0 \),

\[
\tau_k = T \land \inf \{ t \geq 0, |s(t)| > k \},
\]

We set \(\inf \emptyset = \infty \), where \(\emptyset \) denotes the empty set. For any \(t_1 \in [0, T] \), from the Hölder inequality and the Burkholder-Davis-Gundy inequality \[34\] and applying the fact \(\frac{1}{1+C_r} \leq 1 \) and the relation \[31\], we result that there exist positive constants \(C_p \) and \(C_{p,\beta} \) such that

\[
E\left(\sup_{0 \leq t \leq t_1} |s(t \land \tau_k)|^p \right) \leq 4^{p-1} \left[E|\xi(0)|^p + \lambda^p T^{p-1} E \int_0^{t_1 \land \tau_k} \left(\frac{(\mu - \hat{s}(r))^p}{1 + C_r} \right) dr \right.
\]

\[
+ \sigma^p E \left[\sup_{0 \leq t \leq t_1} \int_0^{t \land \tau_k} \frac{\hat{s}(r - \tau)^\gamma \sqrt{\hat{s}(r)}}{1 + C_r} dW(r) \right]^p
\]

\[
+ \delta^p E \left[\sup_{0 \leq t \leq t_1} \int_0^{t \land \tau_k} \frac{\hat{s}(r)}{1 + C_r} d\bar{N}(r) \right]^p
\]

\[
\leq 4^{p-1} \left[E|\xi(0)|^p + \lambda^p T^{p-1} E \int_0^{t_1 \land \tau_k} \left(\frac{(\mu - \hat{s}(r))^p}{1 + C_r} \right) dr \right.
\]

\[
+ \sigma^p C_p E \left[\int_0^{t_1 \land \tau_k} \frac{\hat{s}(r - \tau)^{2\gamma} \hat{s}(r)}{(1 + C_r)^2} dr \right]^p
\]

\[
+ \delta^p C_{p,\beta} E \left[\int_0^{t_1 \land \tau_k} \frac{\hat{s}(r)^p}{(1 + C_r)^p} dr \right]^p
\]

\[
\leq 4^{p-1} \left[E|\xi(0)|^p + \lambda^p T^{p-1} E \int_0^{t_1 \land \tau_k} |\mu - \hat{s}(r)|^p dr \right.
\]

\[
+ \sigma^p C_p E \left[\int_0^{t_1 \land \tau_k} \hat{s}(r - \tau)^{2\gamma} |\hat{s}(r)| dr \right]^p
\]

\[
+ \delta^p C_{p,\beta} E \left[\int_0^{t_1 \land \tau_k} |\hat{s}(r)|^p dr \right]. \tag{14}
\]
Then, following the proof of Lemma 3.1 in [1], the proof of the stated result for \(p > 2 \) is completed. For the case \(0 < p \leq 2 \), the stated result follows directly from the Hölder inequality.

So, Theorem 2.4 showed that the \(p \)th moment of the numerical solution of the balanced method (3), is bounded for any \(p > 0 \).

Jiang et. al. [1], showed that Equation (1) is mean reversion as \(t \to \infty \). Also, they proved that the Euler- Maruyama method keeps this property. In the following theorem we show that \(\mu \) is also an upper bound for the mean of solution of the BIM (3), with step size \(h < \frac{2}{\lambda} \), when \(n \to \infty \).

Theorem 2.5. For the BIM (3) with control functions (4), (5) and (6), we have

\[
E(s_{n+1}) \leq (1 - \lambda h)^n (E(\xi(0)) - \mu)) + \mu + o(h^{\frac{1}{2}}),
\]

and hence for \(h < \frac{2}{\lambda} \), we have \(E(s_n) \leq \mu \) as \(n \to \infty \).

Proof. Taking expectation from both sides of the BIM (3), and using \(\frac{1}{1+C_n} \leq 1 \), one can derive that

\[
E(s_{n+1}) = E(s_n) + E\left(\frac{\lambda \mu h}{1+C_n} - E\left(\frac{\lambda s_n h}{1+C_n}\right) + \sigma E\left(\frac{s_{n-m} \sqrt{s_n} \Delta W_n}{1+C_n}\right) + \delta E\left(\frac{s_n \Delta \tilde{N}_n}{1+C_n}\right)\right)
\]

\[
\leq E(s_n) + \lambda \mu h - \lambda h E\left(\frac{s_n}{1+C_n}\right) + \sigma E\left(\frac{s_{n-m} \sqrt{s_n} \Delta W_n}{1+C_n}\right) + \delta E\left(\frac{s_n \Delta \tilde{N}_n}{1+C_n}\right).
\]

We then have

\[
-E\left(\frac{s_n}{1+C_n}\right) = -E(s_n) + E\left(\frac{s_n C_n}{1+C_n}\right) \leq -E(s_n) + E(s_n C_n)
\]

\[
= -E(s_n) + C_0 h E(s_n) + E(\sigma E(\sqrt{s_n} s_{n-m} \Delta W_n | 1_{s_n > \epsilon})
\]

\[
+ \sigma \epsilon^{-\frac{3}{2}} E(s_n s_{n-m} | \Delta W_n | 1_{s_n < \epsilon}) + C_2 E(s_n | \Delta \tilde{N}_n)).
\]

For every \(\gamma > 0 \), from Theorem 2.4 and the Hölder inequality, there exists a constant \(U_1 > 0 \) such that

\[
E(\sqrt{s_n} s_{n-m}^\gamma) \leq E(s_n^{\frac{3}{2}}) E(s_{n-m}^{\frac{2}{2}}) \leq U_1,
\]

\[
E(s_n s_{n-m}^\gamma) \leq E(s_n^{\frac{5}{2}}) E(s_{n-m}^{\frac{5}{2}}) \leq U_1,
\]

\[
E(s_n \Delta \tilde{N}_n) \leq E(s_n^{\frac{1}{2}}) E(\Delta \tilde{N}_n) \leq U_1 \sqrt{\beta h}.
\]
We know that $E(|\Delta W_n|) = \sqrt{\frac{2h}{\pi}}$, also s_n and s_{n-m} are \mathcal{F}_t measurable, so with substituting inequalities (18), (19) and (20) in (17), we obtain

$$-E\left(\frac{s_n}{1+C_n}\right) \leq -E(s_n) + C_0 h E(s_n) + \sigma \sqrt{\frac{2h}{\pi}} E(\sqrt{s_n s_{n-m}} 1_{s_n > \epsilon})$$

$$+ \sigma \sqrt{\frac{2h}{\pi}} \epsilon^{-\frac{1}{2}} E(s_n s_{n-m} 1_{s_n < \epsilon}) + C_2 U_1 \sqrt{\beta h}$$

$$\leq -E(s_n) + C_0 h E(s_n) + U_1 \sigma \sqrt{\frac{2h}{\pi}} (1 + \epsilon^{-\frac{1}{2}}) + C_2 U_1 \sqrt{\beta h}. \quad (21)$$

From the Hölder inequality and $(\frac{1}{1+C_n})^2 \leq 1$ and similar to the inequality (18), there exists a constant U_2 such that

$$E(s_{n-m}\Delta W_n) \leq E(s_{n-m}^2 s_n) \frac{1}{2} E(\Delta W_n) \frac{1}{2} \leq E(s_{n-m}^2) \frac{1}{2} E(\Delta W_n^2) \frac{1}{2} \leq U_2 h^{\frac{1}{2}}, \quad (22)$$

$$E(s_n \Delta \tilde{N}_n) \leq E(s_n^2) \frac{1}{2} E((\Delta \tilde{N}_n)^2) \frac{1}{2} \leq E(s_n^2) \frac{1}{2} E(\Delta \tilde{N}_n^2) \frac{1}{2} \leq U_2 \sqrt{\beta h}. \quad (23)$$

Now, inequalities (16), (21), (22) and (23) result

$$E(s_{n+1}) \leq E(s_n) (1 - \lambda h) + \lambda \mu h + o(h^{\frac{1}{2}}). \quad (24)$$

This establishes the inequality (15). \qed

3 Convergence analysis

In this section, we prove the convergence of the BIM by using suitable stopping times and uniformly boundedness of the moments of $S(t)$ and $s(t)$.

For any integer j, define the stopping times

$$u_j := \inf\{t \geq 0 : |S(t)| \geq j \text{ or } S(t) < \frac{1}{j}\}, \quad v_j := \inf\{t \geq 0 : |s(t)| \geq j \text{ or } s(t) < \frac{1}{j}\}, \quad \rho_j := u_j \land v_j,$$

and $\nu := t \land \rho_j$, for every $0 \leq t \leq T$.

Lemma 3.1. For $h \in (0,1)$, there exist positive constants M_1 and M_2 such that

$$E\left(\int_0^\nu \frac{C_r}{1+C_r} dr\right) \leq M_1 h^\frac{1}{2}, \quad (25)$$

$$E\left(\int_0^\nu \left(\frac{C_r}{1+C_r}\right)^2 dr\right) \leq M_2 h. \quad (26)$$

Proof. We need the following version of (2), i.e., there exists a positive constant \(C_1 \), such that
\[E(\xi(r \wedge \rho_j - \tau)^{2\gamma}) \leq C_1, \text{ for } 0 \leq r \wedge \rho_j < \tau. \]
According to the defined control functions in (4), (5) and (6), for \(h \in (0, 1) \), and \(\frac{1}{1+C_r} \leq 1 \), we have
\[
E \left(\int_0^\nu \frac{C_r}{1+C_r} dr \right) \leq E \int_0^\nu C_r dr \leq \int_0^T E(C_{r \wedge \rho_j}) dr \leq \int_0^T E(C_{r \wedge \rho_j}) dr
\]
\[
= \int_0^T E \left(C_0 h + \sigma \frac{\tilde{s}(r \wedge \rho_j - \tau)^\gamma}{\sqrt{\tilde{s}(r \wedge \rho_j)}} |\Delta W(r \wedge \rho_j)| 1_{\tilde{s}(r \wedge \rho_j) \geq \epsilon} \right.
+ \sigma \frac{\tilde{s}(r \wedge \rho_j - \tau)^\gamma}{\sqrt{\epsilon}} |\Delta W(r \wedge \rho_j)| 1_{\tilde{s}(r \wedge \rho_j) < \epsilon} + C_2 \left| \tilde{N}(r \wedge \rho_j) \right| dr
\]
\[
\leq \int_0^T E \left(C_0 h + \sigma j^{\gamma + \frac{1}{2}} |\Delta W(r \wedge \rho_j)| 1_{\tilde{s}(r \wedge \rho_j) \geq \epsilon \wedge (r \wedge \rho_j) \geq \tau} \right.
+ \sigma j^{\gamma} \epsilon^{-\frac{1}{2}} |\Delta W(r \wedge \rho_j)| 1_{\tilde{s}(r \wedge \rho_j) < \epsilon \wedge (r \wedge \rho_j) \geq \tau} \right.
+ \sigma \epsilon^{-\frac{1}{2}} \xi(r \wedge \rho_j - \tau)^\gamma |\Delta W(r \wedge \rho_j)| 1_{\tilde{s}(r \wedge \rho_j) < \epsilon \wedge (0 \leq r \wedge \rho_j < \tau)}
+ C_2 \left| \tilde{N}(r \wedge \rho_j) \right| \bigg). \quad (27)
\]
The Cauchy Schwarz inequality implies
\[
E(\xi(r \wedge \rho_j - \tau)^{\gamma} |\Delta W(r \wedge \rho_j)|) \leq E(\xi(r \wedge \rho_j - \tau)^{2\gamma})^{\frac{1}{2}} E(|\Delta W(r \wedge \rho_j)|)^{\frac{3}{2}} \leq C_1^{\frac{1}{2}} h^{\frac{5}{2}}. \quad (28)
\]
Then, using (28) in (27), we obtain
\[
E \int_0^\nu \frac{C_r}{1+C_r} dr \leq T(C_0 h + \sigma(j^{\gamma + \frac{1}{2}} + C_1^{\frac{1}{2}} j^{\frac{\gamma}{2}}) h^{\frac{5}{2}} + \sigma(C_1^{\frac{1}{2}} + j^{\gamma}) \epsilon^{-\frac{1}{2}} h^{\frac{5}{2}} + C_2 \beta h^{\frac{5}{2}}) =: M_1 h^{\frac{5}{2}}.
\]
Moreover, similarly, there exists a constant \(M_2 \), such that
\[
E \int_0^\nu \left(\frac{C_r}{1+C_r} \right)^2 dr \leq M_2 h.
\]
\[
\square
\]
Lemma 3.2. Let \(S(t) \) be the solution of equation (7). Then
\[
\lim_{h \to 0} \left(\sup_{0 \leq t \leq T} E |S(t \wedge \rho_j) - s(t \wedge \rho_j)| \right) = 0. \quad (29)
\]
Proof. Let \(a_0 = 1 \) and \(a_n = \text{exp}\left(-\frac{n(n+1)}{2}\right) \) for \(n \geq 1 \), so that \(\int_{a_n}^{a_{n-1}} \frac{du}{u} = n \). For each \(n \geq 1 \), there exists a continuous function \(\psi_n(u) \) with support in \((a_n, a_{n-1})\), such that
\[
0 \leq \psi_n(u) \leq \frac{2}{nu} \quad \text{for } a_n < u < a_{n-1}
\]
and \(\int_{a_n}^{a_n-1} \psi_n(u) = 1 \). Define
\[
\phi_n(x) = \int_0^{|x|} dy \int_0^y \psi_n(u) du.
\]
Then \(\phi_n \in C^2(\mathbb{R}, \mathbb{R}) \), \(\phi_n(0) = 0 \), and for all \(x \in \mathbb{R} \), \(|\phi_n'(x)| \leq 1 \), also for every \(a_n < |x| < a_{n-1} \), \(|\phi_n''(x)| \leq \frac{2}{n|x|} \) and otherwise \(|\phi_n''(x)| = 0 \). One can easily observe that
\[
|x| - a_{n-1} \leq \phi_n(x) \leq |x|.
\]
Let \(e(\nu) := S(\nu) - s(\nu) \). From (31), we have
\[
E(|e(\nu)|) \leq a_{n-1} + E(\phi_n(e(\nu))).
\]
Applying the Itô’s formula, using $\frac{1}{1+C_r} \leq 1$ and definition of ϕ_n, we derive

\[
E(\phi_n(e(\nu))) = \lambda \mu \mathbb{E} \int_0^\nu \phi'_n(e(r)) \left(\frac{C_r}{1 + C_r} \right) dr - (\lambda + \delta \beta) \mathbb{E} \int_0^\nu \phi'_n(e(r)) (S(r) - \frac{\hat{s}(r)}{1 + C_r}) dr \\
+ \frac{\sigma^2}{2} \mathbb{E} \int_0^\nu \phi''_n(e(r)) \left[S^\gamma(r) \sqrt{S(r)} - \frac{\hat{s}^\gamma(r) \sqrt{\hat{s}(r)}}{1 + C_r} \right]^2 dr \\
+ \beta \mathbb{E} \int_0^\nu [\phi_n((1 + \delta)e(r)) - \phi_n(e(r))] dr \\
\leq \lambda \mu \mathbb{E} \int_0^\nu \frac{C_r}{1 + C_r} dr + (\lambda + \delta \beta) \mathbb{E} \int_0^\nu \left(\left| S(r) - \frac{S(r)}{1 + C_r} \right| + \left| \frac{S(r)}{1 + C_r} - \frac{\hat{s}(r)}{1 + C_r} \right| \right) dr \\
+ \frac{\sigma^2}{2} \mathbb{E} \int_0^\nu \phi''_n(e(r)) \left[S^\gamma(r) \sqrt{S(r)} - \frac{\hat{s}^\gamma(r) \sqrt{\hat{s}(r)}}{1 + C_r} \right]^2 dr \\
+ \sigma^2 \mathbb{E} \int_0^\nu \phi''_n(e(r)) \left[\frac{S^\gamma(r) \sqrt{S(r)}}{1 + C_r} - \frac{\hat{s}^\gamma(r) \sqrt{\hat{s}(r)}}{1 + C_r} \right]^2 dr \\
+ \delta \beta \mathbb{E} \int_0^\nu |e(r)| dr \\
\leq (\lambda \mu + \lambda j + \delta \beta j) E \int_0^\nu \frac{C_r}{1 + C_r} dr \\
+ (\lambda + 2\delta \beta) \mathbb{E} \int_0^\nu |e(r)| + (\lambda + \delta \beta) \mathbb{E} \int_0^\nu |s(r) - \hat{s}(r)| dr \\
+ \sigma^2 \int_0^\nu \left| \phi''_n(e(r)) \right| \sqrt{S(r)} - \sqrt{\hat{s}(r)} \right|^2 dr \\
+ \sigma^2 \int_0^\nu \left| \phi''_n(e(r)) \right| \left| S^\gamma(r) - \hat{s}^\gamma(r) \right|^2 dr.
\]

(33)

Now, in order to bound the right-hand side of (33), for simplicity, we assign each term to J_1, J_2, J_3, J_4, J_5, respectively.
To bound the term \(J_3 \), by definition (31), for \(r \in [0, \nu] \), we have

\[
s(r) - \tilde{s}(r) = \frac{\lambda(\mu - s(\frac{r}{h})) - \frac{r}{h} + \sigma s(\frac{r}{h}) - \frac{r}{h} + \delta s(\frac{r}{h}) - \frac{r}{h}}{1 + C_{\frac{r}{h}}} + \frac{\sigma s(\frac{r}{h}) - \frac{r}{h} + \delta s(\frac{r}{h}) - \frac{r}{h}}{1 + C_{\frac{r}{h}}}.
\]

So, for every \(h \in (0, 1) \),

\[
E \int_0^\nu |s(r) - \tilde{s}(r)| dr \leq \lambda(\mu + j) h T + \sigma \gamma^{\frac{1}{2}} E \int_0^\nu |W(r) - W([\frac{r}{h}]h)| dr
\]

\[
+ \delta j E \int_0^\nu |\tilde{N}(r) - \tilde{N}([\frac{r}{h}]h)| dr
\]

\[
\leq \lambda(\mu + j) h T + \sigma \gamma^{\frac{1}{2}} \int_0^T E \left| W(r \wedge \rho_j) - W([\frac{r \wedge \rho_j}{h}]h) \right| dr
\]

\[
+ \delta j E \int_0^T |\tilde{N}(r \wedge \rho_j) - \tilde{N}([\frac{r \wedge \rho_j}{h}]h)| dr
\]

\[
\leq \lambda(\mu + j) h T + \sigma \gamma^{\frac{1}{2}} h^\frac{1}{2} \frac{2}{\sqrt{2}} \frac{\beta h^\frac{1}{2}}{h} =: Dh^\frac{1}{2}.
\]

To bound \(J_4 \), from definition of \(\phi_n \) and using Lemma 3.1 and inequality (35), we obtain

\[
E \int_0^\nu \phi_n''(e(r)) \left[\sqrt{S(r)} - \frac{\sqrt{s(r)}}{1 + C_r} \right]^2 dr = E \int_0^\nu \phi_n''(e(r)) \left[\sqrt{S(r)} - \sqrt{s(r)} + \sqrt{s(r)} - \frac{\sqrt{s(r)}}{1 + C_r} \right]^2 dr
\]

\[
\leq 2E \int_0^\nu \phi_n''(e(r)) \left[\sqrt{S(r)} - \sqrt{s(r)} \right]^2 dr + 2E \int_0^\nu \phi_n''(e(r)) \left[\sqrt{s(r)} - \frac{\sqrt{s(r)}}{1 + C_r} \right]^2 dr
\]

\[
\leq 2E \int_0^\nu \phi_n''(e(r)) \left| S(r) - \tilde{s}(r) \right| dr + 2jE \int_0^\nu \phi_n''(e(r)) \left(\frac{C_r}{1 + C_r} \right)^2 dr
\]

\[
\leq 2E \int_0^\nu \phi_n''(e(r)) \left| S(r) - \tilde{s}(r) \right| dr + \frac{4j}{n a_n} E \int_0^\nu \left(\frac{C_r}{1 + C_r} \right)^2 dr
\]

\[
\leq 2E \int_0^\nu \frac{2}{n} \frac{dr}{n} + \frac{4}{n a_n} E \int_0^\nu |s(r) - \tilde{s}(r)| dr + \frac{4j}{n a_n} M_2 h
\]

\[
\leq \frac{4T}{n} + \frac{4j}{n a_n} M_2 h + \frac{4}{n a_n} D h^\frac{1}{2}.
\]

Now considering \(J_5 \) and definition of \(\phi_n \),

\[
E \int_0^\nu \phi_n''(e(r)) \left| S'(r - \tau) - \tilde{s}(r - \tau) \right|^2 dr
\]

\[
\leq C_j E \int_0^\nu \phi_n''(e(r)) \left| S(r - \tau) - \tilde{s}(r - \tau) \right|^{2\gamma} dr
\]

\[
\leq \frac{2C_j \tilde{C}}{n a_n} E \int_0^\nu |s(r - \tau) - \tilde{s}(r - \tau)|^{2\gamma} dr + \frac{2C_j \tilde{C}}{n a_n} E \int_0^\nu |e(r - \tau)|^{2\gamma} dr,
\]
where

\[\bar{C} = \begin{cases} 1, & 0 < \gamma \leq \frac{1}{2}, \\ 2^{2\gamma - 1}, & \gamma > \frac{1}{2}, \end{cases} \]

and

\[C_j = \begin{cases} \bar{C}_j^2, & \gamma > 1, \\ 1, & \text{otherwise}, \end{cases} \]

The last inequality is true due to the following fact. For \(x, y > 0 \) and \(\theta \in (0, 1] \),

\[|x^\theta - y^\theta| \leq |x - y|^\theta, \]

and for \(|x| \leq j, |y| < j \) and \(\theta > 1 \),

\[|x^\theta - y^\theta| \leq \bar{C}_j |x - y|^\theta, \]

Here \(\bar{C}_j \) is a constant depending on \(j \). Substituting (25), (35), (36) and (37) in (33), we derive

\[
E(\phi_n(e(\nu))) \leq \sigma^2 j \left(\frac{2C_j \bar{C} \nu}{n a_n} E \int_0^\nu [s(r - \tau) - \hat{s}(r - \tau)]^{2\gamma} dr + \frac{2C_j \bar{C} \nu}{n a_n} E \int_0^\nu |e(r - \tau)|^{2\gamma} dr \right) \\
+ \sigma^2 j^{2\gamma} \left(\frac{4T}{n} + \frac{4j}{n a_n} M_2 h \right) + (\lambda + 2\delta\beta) E \int_0^\nu |e(r)| dr \\
+ (\lambda\mu + \lambda j + \delta\beta j) M_1 h^{\frac{1}{2}} + (\lambda + \delta\beta) D h^{\frac{1}{2}} + D\sigma^2 j^{2\gamma} \frac{4}{n a_n} h^{\frac{1}{2}}.
\]

From (32), we then obtain

\[E |e(\nu)| \leq a_{n-1} + \sigma^2 j^{2\gamma} \left(\frac{4T}{n} + \frac{4j}{n a_n} M_2 h \right) + (\lambda\mu + \lambda j + \delta\beta j) M_1 h^{\frac{1}{2}} \\
+ (\lambda + \delta\beta) D h^{\frac{1}{2}} + D\sigma^2 j^{2\gamma} \frac{4}{n a_n} h^{\frac{1}{2}} + (\lambda + 2\delta\beta) E \int_0^\nu |e(r)| dr \\
+ \sigma^2 j \left(\frac{2C_j \bar{C} \nu}{n a_n} E \int_0^\nu [s(r - \tau) - \hat{s}(r - \tau)]^{2\gamma} dr + \frac{2C_j \bar{C} \nu}{n a_n} E \int_0^\nu |e(r - \tau)|^{2\gamma} dr \right) \\
=: a_{n-1} + \frac{\alpha_1}{n} + \alpha_2 h^{\frac{1}{2}} + \alpha_3 E \int_0^\nu [s(r - \tau) - \hat{s}(r - \tau)]^{2\gamma} dr \\
+ \frac{\alpha_4}{n a_n} E \int_0^\nu |e(r - \tau)|^{2\gamma} dr + (\lambda + 2\delta\beta) E \int_0^\nu |e(r)| dr, \tag{38} \]

where \(\alpha_1 \) and \(\alpha_4 \) are independent of \(n \), and \(\alpha_2, \alpha_3 \) depend on \(n \). Then, following the proof of Lemma 4.2 in [1] (right after Equation (22)), this lemma is proved.

Lemma 3.3. For the stopping times \(u_j, \nu_j \) and \(\rho_j \), we have

\[
\lim_{h \to 0} E \left(\sup_{0 \leq t \leq T} |S(t \wedge \rho_j) - s(t \wedge \rho_j)|^2 \right) = 0. \tag{39}
\]
Proof. From (41) and the Hölder inequality, we get

\[
(S(\nu) - s(\nu))^2 \leq 4T\lambda^2 \mu^2 \int_0^\nu \left(1 - \frac{1}{1 + C_r} \right)^2 dr + 4T\lambda^2 \int_0^\nu \left(S(r) - \frac{\hat{s}(r)}{1 + C_r} \right)^2 dr \\
+ 4\sigma^2 \left[\int_0^\nu \left(S(r - \tau)^\gamma \sqrt{S(r)} - \frac{\hat{s}(r - \tau)\sqrt{S(r)}}{1 + C_r} \right) dW(r) \right]^2 \\
+ 4\delta^2 \left[\int_0^\nu \left(S(r) - \frac{\hat{s}(r)}{1 + C_r} \right) d\hat{N}(r) \right]^2. \tag{40}
\]

Let \(\nu_1 = t_1 \wedge \rho_j \). By the Doob martingale inequality (34), for every \(t_1 \in [0, T] \), we have

\[
E \left(\sup_{0 \leq t \leq t_1} |S(t \wedge \rho_j) - s(t \wedge \rho_j)|^2 \right) \\
\leq 4T\lambda^2 \mu^2 E \int_0^{\nu_1} \left(1 - \frac{1}{1 + C_r} \right)^2 dr + (4T\lambda^2 + 16\beta^2)E \int_0^{\nu_1} \left(S(r) - \frac{\hat{s}(r)}{1 + C_r} \right)^2 dr \\
+ 16\sigma^2 E \int_0^{\nu_1} \left[S(r - \tau)^\gamma \sqrt{S(r)} - \frac{\hat{s}(r - \tau)\sqrt{S(r)}}{1 + C_r} \right]^2 dr. \tag{41}
\]

On the other hand, from (26), \(\frac{1}{1 + C_r} \leq 1 \) and (35), we have

\[
E \int_0^{\nu_1} \left(S(r) - \frac{\hat{s}(r)}{1 + C_r} \right)^2 dr \leq 2E \int_0^{\nu_1} \left(S(r) - \frac{S(r)}{1 + C_r} \right)^2 dr + 2E \int_0^{\nu_1} \left(S(r) - \frac{\hat{s}(r)}{1 + C_r} \right)^2 dr \\
\leq 2j^2 E \int_0^{\nu_1} \left(\frac{C_r}{1 + C_r} \right)^2 dr + 4E \int_0^{\nu_1} (S(r) - s(r))^2 dr + 4E \int_0^{\nu_1} (s(r) - \hat{s}(r))^2 dr \\
\leq 2j^2 M_2 h + 8jE \int_0^{\nu_1} |s(r) - \hat{s}(r)| dr + 4E \int_0^{\nu_1} (S(r) - s(r))^2 dr \\
\leq 2j^2 M_2 h + 8j D h^{\frac{1}{2}} + 4E \int_0^{\nu_1} (S(r) - s(r))^2 dr. \tag{42}
\]

Similarly, from (35) and the inequality \(\frac{1}{1 + C_r} \leq 1 \), we also get

\[
E \int_0^{\nu_1} \left[S(r - \tau)^\gamma \sqrt{S(r)} - \frac{\hat{s}(r - \tau)\sqrt{S(r)}}{1 + C_r} \right]^2 dr \\
= E \int_0^{\nu_1} \left[S^\gamma(r - \tau) \sqrt{S(r)} - \frac{S^\gamma(r - \tau)\sqrt{S(r)}}{1 + C_r} + \frac{S^\gamma(r - \tau)\sqrt{S(r)}}{1 + C_r} - \frac{\hat{s}(r - \tau)\sqrt{S(r)}}{1 + C_r} \right]^2 dr \\
\leq 2E \int_0^{\nu_1} \left[S^\gamma(r - \tau) \sqrt{S(r)} - \frac{S^\gamma(r - \tau)\sqrt{S(r)}}{1 + C_r} \right]^2 dr \\
+ 2E \int_0^{\nu_1} \left[\frac{S^\gamma(r - \tau)\sqrt{S(r)}}{1 + C_r} - \frac{\hat{s}(r - \tau)\sqrt{S(r)}}{1 + C_r} \right]^2 dr \\
\leq 2j^{2\gamma} E \int_0^{\nu_1} \left[\sqrt{S(r)} - \frac{\sqrt{S(r)}}{1 + C_r} \right]^2 dr + 2j E \int_0^{\nu_1} (S^\gamma(r - \tau) - \hat{s}(r - \tau)^\gamma)^2 dr
\]
≤ 2j^{2γ} E \int_0^{ν_1} \left[\sqrt{S(r)} - \sqrt{\hat{s}(r)} + \sqrt{\hat{s}(r)} - \frac{\sqrt{S(r)}}{1 + C_r} \right]^2 dr \\
+ 2jC_j E \int_0^{ν_1} |S(r - τ) - \hat{s}(r - τ)|^{2γ} dr \\
≤ 4j^{2γ} E \int_0^{ν_1} |S(r) - \hat{s}(r)| dr + 4j^{2γ+1} M_2 h + 2jC_j E \int_0^{ν_1} |S(r) - \hat{s}(r)|^{2γ} dr \\
≤ 4j^{2γ} E \int_0^{ν_1} |S(r) - s(r)| dr + 4D j^{2γ} h^{\frac{1}{2}} + 4j^{2γ+1} M_2 h + 2jC_j E \int_0^{ν_1} |S(r) - \hat{s}(r)|^{2γ} dr. \quad (43)

Then, applying (41), (42), (43) and following the proof of Lemma 4.3 in [1] (right after Equation (40)), the proof is completed.

\[\lim_{h \to 0} E \left(\sup_{0 \leq t \leq T} |S(t) - s(t)|^2 \right) = 0. \quad (44) \]

Proof. By Theorem 2.4 and Lemma 3.3 and in the same way as Theorem 4.1 in [1] the conclusion follows.

4 Numerical examples

In this section, we illustrate some numerical examples that confirm the results in the previous sections. Also, by the convergence theory in Section 4, we show that the BIM can be used to compute some financial quantities.

Consider the delay CIR model with jump

\[\begin{align*}
 dS(t) &= \lambda(\mu - S(t))dt + \sigma S(t - 1) \sqrt{S(t)} dW(t) + \delta S(t) d\tilde{N}(t), \quad t \geq 0, \\
 S(t) &= 1, \quad t \in [-1, 0].
\end{align*} \quad (45) \]

We consider the two following examples.

Example 1. \(\lambda = 5, \mu = 0.5, \sigma = 1.5, \gamma = 0.5, \delta = 1, \beta = 2. \)

Example 2. \(\lambda = 100, \mu = 5, \sigma = 2, \gamma = 1, \delta = 2, \beta = 4. \)

Figs. 1-4 show the values \(S(t) \) vs. \(t \) for Examples 1 and 2 by the balanced and Euler methods, with ten solution paths. From these figures it can be observed that the balanced method preserves non-negativity of the solution of these Examples even for the large step size \(h = 0.5 \), while the Euler method does not preserve this property for these Examples even for the small step size \(h = 0.01. \)

In Figs. 5, 6 we apply the BIM to Examples 1 and 2. We estimates the rate of convergence by drawing the strong error at the endpoint \(T = 1, \ e^\text{strong}_h := E |S(T) - s(T)|^2. \) We plot \(e^\text{strong}_h \) against
On a log-log scale. Since we do not have an explicit solution of Examples 1 and 2, we take the BIM with step size $h = 2^{-11}$ as a reference solution. For showing the convergence, we compare the reference solution with the BIM evaluated with $2^{2i-1} h$, $i = 1, 2, 3, 4, 5$. We compute 500 different solution paths. Also, we apply the Euler method for Examples 1 and 2, for comparison purpose. From these figures it can be seen that, the rate of convergence of the balanced method is better than the Euler method for both of Examples. Figs. 7 and 10 show the values of $E(S(t))$ and $E(S(t)^2)$ vs. t for the Examples 1 and 2, by the BIM with step size $h = 0.1$ and with 1000 solution paths. Figs. 7 and 9 show $\lim_{n \to \infty} E(s_n) \leq \mu$; similarly, Figs. 8 and 10 show $E(S(t)^2)$ is bounded, confirming the results of Theorems 2.4, 2.5.

Example 3. (Bonds): In the case where the SDDE with jump (11) describes short-term interest rate dynamics, the price of a bond at the end of period is given by

$$B(T) := E\left[\exp\left(-\int_0^T S(t) dt\right)\right].$$

By the step process $\hat{s}(t)$ in (10), a natural approximation to compute $B(T)$ is

$$\hat{B}_h(T) := E\left[\exp\left(-\int_0^T \hat{s}(t) dt\right)\right].$$

We have

$$\lim_{h \to 0} |B(T) - \hat{B}_h(T)| = 0.$$The proof is the similar to that of Theorem 4.1 in [35].

Example 4. (A path dependent option): Let $S(t)$ be the solution of the equation (11) and $\hat{s}(t)$ be the BIM process defined by (10). We consider an up-and-out call option with the expiry time T, the exercise price K and the fixed barrier B. Payoff of this option at expiry time T is $(S(T) - K)^+$, if $S(t)$ never decreases below the fixed barrier B and is zero otherwise. We suppose that the expected payoff is computed from (10). Define

$$V := E[(S(T) - K)^+ 1_{0 \leq S(t) \leq B, 0 \leq t \leq T}];$$

and

$$\hat{V}_h := E[(\hat{s}(T) - K)^+ 1_{0 \leq \hat{s}(t) \leq B, 0 \leq t \leq T}];$$

where K and B are constants. We have

$$\lim_{h \to 0} |V - \hat{V}_h| = 0.$$The proof is the same to that of Theorem 5.1 in [35].
Fig. 1: Ten solution paths of Example 1, approximated by BIM with $C_0 = 10$, $C_2 = 1$ and $C_1 = \frac{\sigma}{\sqrt{n_m}}$.

Fig. 2: Ten solution paths of Example 1, approximated by Euler method.
Fig. 3: Ten solution paths of Example 2, approximated by BIM with $C_0 = 200$, $C_2 = 5$ and $C_1 = \sigma \frac{\gamma}{\sqrt{\sigma}}$.

Fig. 4: Ten solution paths of Example 2, approximated by Euler method.
5 Conclusions

In this work, we have demonstrated convergence and non-negativity properties of the numerical solution obtained by the BIM for delay CIR model with jump. First, we have chosen control functions of the BIM such that this method can preserve non-negativity of solution of the model. Then, we have studied the moments boundedness and convergence of the solution of BIM by the determined control functions. Some numerical experiments have been included which illustrate the theoretical results obtained in this paper.
Fig. 7: $E(S(t))$ vs. t of the BIM with $C_0 = 10$, $C_2 = 1$ and $C_1 = \sigma \frac{\gamma_m}{\sqrt{s_n}}$ and with step size $h = 0.1$, for the Example 1.

Fig. 8: $E(S(t)^2)$ vs. t of the BIM with $C_0 = 10$, $C_2 = 1$ and $C_1 = \sigma \frac{\gamma_m}{\sqrt{s_n}}$ and with step size $h = 0.1$, for the Example 1.

Fig. 9: $E(S(t))$ vs. t of the BIM with $C_0 = 200$, $C_2 = 5$ and $C_1 = \sigma \frac{\gamma_m}{\sqrt{s_n}}$ and with step size $h = 0.1$, for the Example 2.

Fig. 10: $E(S(t)^2)$ vs. t of the BIM with $C_0 = 200$, $C_2 = 5$ and $C_1 = \sigma \frac{\gamma_m}{\sqrt{s_n}}$ and with step size $h = 0.1$, for the Example 2.
References

[1] F. Jiang, Y. Shen, F. Wu, Convergence of numerical approximation for jump models involving delay and mean-reverting square root process, Stochastic Analysis and Applications, 29 (2011) 216-236.

[2] J.C. Cox, J.E. Ingersoll, S.A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985) 354-407.

[3] F. Wu, X. Mao, K. Chen, The Cox-Ingersoll-Ross model with delay and strong convergence of its Euler-Maruyama approximate solutions, Appl. Numer. Math. 59 (2009) 2611-2658.

[4] J. Sheinkman, B. Lebaron, Nonlinear dynamics and stock returns, Journal of Business 62 (1989) 311-337.

[5] V. Akgiray, Conditional heteroscedasticity in time series of stock returns: evidence and forecast, Journal of Business 62 (1989) 55-80.

[6] D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math. 101 (2005) 101-119.

[7] D.J. Higham, P.E. Kloeden, Convergence and stability of implicit methods for jump-diffusion systems, Int. J. Numer. Anal. Model. 3 (2006) 125-140.

[8] G.D. Chalmers, D.J. Higham, Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes, Discrete Contin. Dyn. Syst. Ser. B 9 (2008) 47-64.

[9] L. Hu, S. Gan, Convergence and stability of the balanced methods for stochastic differential equations with jumps, Int. J. Comput. Math. 88 (10) (2011) 2089-2108.

[10] E. Buckwar, M. Riedler, Runge-Kutta methods for jumpdiffusion differential equations, Comput. Appl. Math. 236 (6) (2011) 1155-1182.

[11] L. Hu, S. Gan, Numerical analysis of the balanced implicit methods for stochastic pantograph equations with jumps, Appl. Math. Comput. 223 (2013) 281-297.

[12] F. Wu, X. Mao, K. Chen, Strong convergence of Monte Carlo simulations of the mean-reverting square root process with jump, Appl. Math. Comput. 206 (2008) 494-505.

[13] L. Hu, S. Gan, X. Wang, Asymptotic stability of balanced methods for stochastic jump-diffusion differential equations, J. Comput. Appl. Math. 238 (2013) 126-143.
[14] C. Kahl, H. Schurz, Balanced Milstein methods for ordinary SDEs, Monte Carlo Methods and Applications, 12 (2006) 143-170.

[15] E. Moro, H. Schurz, Boundary preserving semianalytic numerical algorithms for stochastic differential equations. SIAM J. Sci. Comput. 29 (2007) 1525-1549.

[16] C. Kahl, M. Günther, T. Rosberg, Structure preserving stochastic integration schemes in interest rate derivative modeling, Appl. Num. Math. 58 (2008) 284-295.

[17] A. Rodkina, H. Schurz, On positivity and boundedness of solutions of nonlinear stochastic differential equations, Discrete and Continuous Dynamical Systems, (2009) 640-649.

[18] C.E. Dangerfield, D. Kay, S. MacNamara, K. Burrage, A boundary preserving algorithm for the Wright-Fisher model with mutation, BIT. Numer. Math. 52 (2012) 283-304.

[19] S. Dereich, A. Neuenkirch, L. Szpruch, An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. A. The Royal Society, 468 (2011) 1105-1115.

[20] D.J. Higham, X. Mao, L. Szpruch, Convergence, non-negativity and stability of a new Milstein scheme with applications to finance, Discrete and Continuous Dynamical Systems- Series B 18 (2013) 2083-2100.

[21] X. Yang, X. Wang, A transformed jump-adapted backward Euler method for jump-extended CIR and CEV models, Numer. Algor. 74 (2017) 39-57.

[22] G.N. Milstein, E. Platen, H. Schurz, Balanced implicit methods for stiff stochastic systems, SIAM J. Numer. Anal. 35 (1998) 1010-1019.

[23] H. Schurz, Numerical regularization for SDEs: Construction of nonnegative solutions, Dyn. Syst. Appl. 5 (1996) 323-352.

[24] J. Tana, H. Yangb, W. Menc, and Y. Guo, Construction of positivity preserving numerical method for jumpdiffusion option pricing models, J. Comput. Appl. Math. 320 (2017) 96-100.

[25] J. Tan, W. Men, Y. Pei, Y. Guo, Construction of positivity preserving numerical method for stochastic age-dependent population equations, Applied Mathematics and Computation 293 (2017) 57-64.

[26] R.H. Li, H. B. Meng, Y. H. Dai, Convergence of numerical solutions to stochastic delay differential equations with jumps, Appl. Math. Comput. 172 (2006) 584-602.
[27] L. Wang, C. Mei, H. Xue, The semi-implicit Euler method for stochastic differential delay equation with jumps, Appl. Math. Comput. 192 (2007) 567-578.

[28] N. Jacob, Y. Wang, C. Yuan, Numerical solutions of stochastic differential delay equations with jumps, Stochastic Analysis and Applications 27 (4) (2009) 825-853.

[29] N. Jacob, Y. Wang, C. Yuan, Stochastic differential delay equations with jumps, under nonlinear growth condition, Stochastics: An International Journal of Probability and Stochastics Processes, 81 (6) (2009) 571-588.

[30] F. Jiang, Y. Shen, L. Liu, Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump, Commun Nonlinear Sci Numer Simulat. 16 (2011) 798-804.

[31] Q. Li, S. Gan, X. Wang, Compensated stochastic theta methods for stochastic differential delay equations with jumps, International Journal of Computer Mathematics 90 (5) (2013) 1057-1071.

[32] Y.X. Tan, S.Q. Gan, X.J. Wang, Mean-square convergence and stability of the balanced method for stochastic delay differential equations, Math. Numer. Sin. 33 (2011) 25-36 (in Chinese).

[33] A.S.Fatemion Aghda, S. M. Hosseini, M. Tahmasebi, Analysis of non-negativity and convergence of solution of the balanced implicit method for the delay Cox-Ingersoll-Ross model, Appl. Num. Math. 118 (2017) 249-265.

[34] X. Mao, Stochastic Differential Equations and Applications, Horwood Publications, Chichester, 1997.

[35] D.J. Higham, X. Mao, Convergence of Monte Carlo simulations involving the mean-reverting square root process, Comput. Finance. 8 (2005) 35-61.