Conformal Windows of SU(N) Gauge Theories

Higher Dimensional Representations

and

The Size of The Unparticle World

Thomas A. Rytton and Francesco Sannino

CERN Theory Division, CH-1211 Geneva 23, Switzerland and
University of Southern Denmark, Campusvej 55, DK-5230 Odense M
Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Abstract

We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vector-like matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50% of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25%. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70% of the asymptotically free space is filled by the conformal region.

According to our theoretical landscape survey the unparticle physics world occupies a sizable amount of the particle world, at least in theory space, and before mixing it (at the operator level) with the nonconformal one.

*Electronic address: ryttov@nbi.dk
†Electronic address: sannino@fysik.sdu.dk
I. INTRODUCTION

Recently we have completed the analysis of the phase diagram of asymptotically free non-supersymmetric gauge theories with two Dirac fermions in a single arbitrary representation of the gauge group as function of the number of flavors and colors [1, 2]. The phase diagram is sketched in Figure 2 with the exceptions of a few isolated higher dimensional representations below nine colors [2]. The analysis exhausts the phase diagram for gauge theories with Dirac fermions in a single generic representation and is based on the ladder approximation presented in [3, 4]. Further studies of the nonsupersymmetric conformal window and its properties can be found in [5, 6, 7, 8, 9, 10]. The adjoint and the two index-symmetric representations need only a very low number of flavors, almost independent of the number of colors, to be near an infrared fixed point. This fact has led to the construction of the minimal walking technicolor theories [1, 2, 11]. The walking dynamics was first introduced in [12, 13, 14, 15, 16, 17, 18]. By walking one refers to the fact that the underlying coupling constant decreases much more slowly with the reference scale than in the case of QCD-like theories. The theoretical estimates for the nonsupersymmetric conformal window need to be tested further. The very low number of flavors needed to reach the conformal window, for certain representations, makes the minimal walking theories amenable to lattice investigations. Recent lattice results [19] show that the theory with two Dirac fermions in the adjoint representation of the $SU(2)$ gauge group possesses dynamics which is different from the one with fermions in the fundamental representation.

Here, we study the conformal window of $SU(N)$ supersymmetric gauge theories with vector-like matter transforming according to a single but generic irreducible representation of the gauge group. The results are subsequently confronted with the nonsupersymmetric ones. We compute the fraction, for each representation, of asymptotically free theories in the flavor-color space which can develop an infrared fixed point. We find this fraction to be 1/2 and at the same time to be a universal number independent of the specific representation. Intrigued by this result we compute it in the nonsupersymmetric case as well. Here we find the value 0.25. Although there is some dependence on the representation the differences among the various representations are still small.

Another interesting application of our work is as a study of the theoretical landscape underlying the unparticle physics world proposed by Georgi [21, 22]. With emphasis on the
phenomenological applications, studies of the unparticle physics have recently received much attention \[23\]. An interesting theoretical and phenomenological study of the CP and CPT properties of unparticle physics has been performed in \[24\].

The theories presented here, belonging to the various conformal regions, are natural candidates for a particle theory description of the unparticle world following \[24, 25, 26, 27\].

Our analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared fixed point. As already reported above, with only one type of representation, in the supersymmetric case, we find that 50\% of the theories can develop an infrared fixed point while for the nonsupersymmetric theories this conformal area is about 25\% of that of all total asymptotically free ones.

We expect this fraction to increase when considering multiple representations simultaneously present. In this case the conformal regions will quickly dominate over the non conformal ones. In order to estimate this amount we considered the case of multiple representations for the nonsupersymmetric case. Here we find that with four different simultaneously present representations, in the nonsupersymmetric case, about 70\% of the space is filled by theories which can develop a fixed point. We have investigated gauge theories but it would be interesting to also study quantum gravity theories where the role of the infrared fixed point is replaced by the possible existence of a non trivial ultraviolet fixed point (asymptotic safety) \[28, 29, 30, 31, 32\].

According to our theoretical landscape survey the unparticle world, before coupling it to the Standard Model, is at least as common as the particle one.

II. CONFORMAL WINDOW FOR SUPERSYMMETRIC GAUGE THEORIES WITH MATTER IN HIGHER DIMENSIONAL REPRESENTATIONS

The gauge sector of a supersymmetric $SU(N)$ gauge theory consists of a supersymmetric field strength belonging to the adjoint representation of the gauge group. The supersymmetric field strength describes the gluon and the gluino. The matter sector is taken to be vectorial and to consist of N_f chiral superfields Φ in the representation r of the gauge group and N_f chiral superfields $\tilde{\Phi}$ in the conjugate representation \tilde{r} of the gauge group. The chiral superfield Φ (or $\tilde{\Phi}$) contains a Weyl fermion and a complex scalar boson.

The generators T^a_r, $a = 1 \ldots N^2 - 1$ of the gauge group in the representation r are
TABLE I: Summary of the local and global symmetries and charge assignments of the generic $\mathcal{N}=1$ gauge theory with matter in a given representation r of the gauge group.

$[SU(N)]$	$SU(N_f)$	$SU(N_f)$	$U(1)_B$	$U(1)_R$	
Φ	r	N_f	1	1	$\frac{2T(r)N_f-C_2(G)}{2T(r)N_f}$
$\tilde{\Phi}$	\bar{r}	\bar{N}_f	-1		$\frac{2T(r)N_f-C_2(G)}{2T(r)N_f}$

normalized according to $\text{Tr} [T^a_r T^b_r] = T(r) \delta^{ab}$ while the quadratic Casimir $C_2(r)$ is given by $T_r T^a_r = C_2(r) I$. The trace normalization factor $T(r)$ and the quadratic Casimir are connected via $C_2(r) d(r) = T(r) d(G)$ where $d(r)$ is the dimension of the representation r. The adjoint representation is denoted by G. With this notation we summarize the symmetries of the theory in Table I. The first $SU(N)$ is the gauge group. The two abelian symmetries are anomaly free with the first one being the baryon number and the second one an R-symmetry. Note that the global symmetry is enhanced from $SU(N_f) \times SU(N_f) \times U(1)_B$ to $SU(2N_f)$ when the representation for the matter field is (pseudo)real.

The exact beta function of supersymmetric QCD was first found in [33, 34] and further investigated in [35, 36]. For a given representation it takes the form

$$\beta(g) = -\frac{g^3}{16\pi^2} \frac{\beta_0 + 2T(r)N_f \gamma(g^2)}{1 - \frac{g^2}{8\pi^2} C_2(G)} ,$$ \hspace{1cm} (1)

$$\gamma(g^2) = -\frac{g^2}{4\pi^2} C_2(r) + O(g^4) ,$$ \hspace{1cm} (2)

where g is the gauge coupling, $\gamma(g^2) = -d \ln Z(\mu)/d \ln \mu$ is the anomalous dimension of the matter superfield and $\beta_0 = 3C_2(G) - 2T(r)N_f$ is the first beta function coefficient.

For a given representation the loss of asymptotic freedom manifest itself as a change of sign in the first coefficient of the beta function. The number of flavors N_f^I for which this occurs is

$$N_f^I = \frac{3C_2(G)}{2T(r)} .$$ \hspace{1cm} (3)

Note that compared to the non-supersymmetric case this value is lowered due to the additional screening of the scalars and the gluinos. In fact the coefficient $\frac{3}{2}$ should be replaced by $\frac{11}{4}$ in the nonsupersymmetric case [2].
It might be possible that an infrared fixed point exists since for a certain number of flavors and colors the one-loop coefficient of the beta function is negative while the two-loop coefficient is positive \[37\]. This situation appears as soon as the two loop coefficient changes sign. For a given representation this occurs when

\[N^\text{III}_f = \frac{C_2(G)}{T(r)} \frac{3C_2(G)}{2C_2(G) + 4C_2(r)}.\]

\[\text{(4)}\]

Note that \(N^\text{III}_f\) does not coincide, in general, with the true critical value of flavors above which a nonperturbative infrared fixed point is generated. The latter will be determined below and will be referred to as \(N^\text{II}_f\).

To show the existence of a non-trivial infrared fixed point we will consider the large \(N\) limit holding \(N_f/N_f = 1 - \epsilon, \epsilon \ll 1\) and \(Ng^2\) fixed. In case of the fundamental representation it is also important to take the large \(N_f\) limit in order to have \(N_f/N_f\) fixed because the trace normalization is a constant. This is in contrast to the two-indexed representations for which the trace normalization factors grow as \(N\). The fixed point is now given by \(C_2(r)g^2_r = -4\pi^2\epsilon + O(\epsilon^2)\) with \(C_2(r)\) growing as \(N\) both for the fundamental and two-indexed representations. The argument above cannot be applied to the case of matter in representations with more than two indices since all these theories are not asymptotically free at large number of colors. In the following we will only consider either the fundamental or the two-indexed representations.

Since a fixed point exists, at least at large \(N\), we follow Seiberg \[38\] and derive some exact results about the theory. The strategy is to first obtain an exact expression for the dimension \(D\) of some spinless operator in terms of the number of colors and flavors. We will then use a property of conformal field theory stating that spinless operators (except for the identity) have \(D \geq 1\) in order not to have negative norm states in the theory \[39, 40, 41\]. When this bound is saturated it gives us a relation between the number of colors and flavors at which our conformal description breaks down.

There are two ways to obtain the dimension of chiral operators in the theory. First we note that the superconformal algebra includes an \(R\)-symmetry and find the following relation between the corresponding \(R\)-charge and dimension \(D\) of the operators \(D \geq |R|\). The bound is saturated for chiral operators \(D = \frac{3}{2}R\) and for antichiral operators \(D = -\frac{3}{2}R\). Since this \(R\)-symmetry must be anomaly free and commute with the flavor symmetries it must be the one assigned in Table \[I\]. For the spinless chiral operator \(\Phi \bar{\Phi}\) we therefore arrive at

\[D(\Phi \bar{\Phi}) = \frac{3}{2}R(\Phi \bar{\Phi}) = \frac{3}{2}T(\bar{r})N_f - C_2(G)/2T(r)N_f.\]

\[\text{(5)}\]
Perhaps an easier way to obtain $D(\Phi \tilde{\Phi})$ is to note that at the zero of the beta function we have $\gamma = \frac{2T(r)N_f - 3C_2(G)}{2T(r)N_f}$. Hence from $D(\Phi \tilde{\Phi}) = \gamma + 2$ we end up with Eq. (5).

As discussed above our conformal description of the theory requires $D(\Phi \tilde{\Phi}) \geq 1$ with the bound being saturated by free fields. Hence the critical number of flavors above which the theory exists in a conformal phase is therefore

$$N_f^{II} = \frac{3C_2(G)}{4T(r)}.$$ \hspace{1cm} (6)

In Figure 1 we plot the phase diagram for the supersymmetric gauge theories with matter in one of the three two indexed representations - adjoint, two index symmetric and two index antisymmetric - as well as the fundamental representation. These are the representations remaining asymptotically free for any number of colors for a sufficiently low number of flavors.

FIG. 1: Phase diagram for supersymmetric theories with fermions in the: i) fundamental representation (blue), ii) two-index antisymmetric representation (purple), iii) two-index symmetric representation (red), iv) adjoint representation (green) as a function of the number of flavors and the number of colors. The shaded areas depict the corresponding conformal windows. Above the upper solid curve the theories are no longer asymptotically free. In between the upper and the lower solid curves the theories develop an infrared fixed point. The dashed curve represents the change of sign in the second coefficient of the beta function.

In Table II for the reader’s convenience, we list the explicit group factors for the representations used here. A complete list of all of the group factors for any representation and
TABLE II: Relevant group factors for the representations used throughout this paper. However, a complete list of all the group factors for any representation and the way to compute them is available in Table II and the appendix of [2].

The supersymmetric conformal window displays many qualitative features in common with the nonsupersymmetric one which is shown in Figure 2. Note how consistently the various representations merge into each other when, for a specific value of \(N \), they are actually the same representation.

The nonsupersymmetric window is only an estimate which makes use of the ladder approximation. We observe that in the case of the fundamental representation the supersymmetric conformal window extends below the curve defined as where the two loop beta function coefficient changes sign. This does not happen for the adjoint and two index symmetric and antisymmetric representation for any \(N \) larger than four. In the nonsupersymmetric case the curve \(N_{f}^{II} \) stays well above \(N_{f}^{III} \) for any \(N \) and any representation in the ladder approximation.

III. SIZING THE UNPARTICLE WORLD

Georgi has recently proposed to couple a conformal sector to the Standard Model [21]. We find it interesting to provide a measure of how large, in theory space, the fraction of the unparticle world is. We assume, following Georgi, the unparticle sector to be described, at the underlying level, by asymptotically free gauge theories developing an infrared fixed point. A reasonable measure is then, for a given representation, the ratio of the conformal
FIG. 2: Phase diagram for nonsupersymmetric theories with fermions in the: i) fundamental representation (blue), ii) two-index antisymmetric representation (purple), iii) two-index symmetric representation (red), iv) adjoint representation (green) as a function of the number of flavors and the number of colors. The shaded areas depict the corresponding conformal windows. Above the upper solid curve the theories are no longer asymptotically free. In between the upper and the lower solid curves the theories are expected to develop an infrared fixed point. The dashed curve represents the change of sign in the second coefficient of the beta function. Diagram appeared first in [2].

Window to the total window of asymptotically free gauge theories

\[R_{FP} = \frac{\int_{N_{min}}^{\infty} N_f^I \, dN - \int_{N_{min}}^{\infty} N_f^{II} \, dN}{\int_{N_{min}}^{\infty} N_f^I \, dN} , \]

(7)

where \(N_{min} \) is the lowest value of number of colors permitted in the given representation for which the above ratio is computed. Similarly we define for the nonconformal region, but still asymptotically free, the following area ratio

\[R_{NFP} = \frac{\int_{N_{min}}^{\infty} N_f^{II} \, dN}{\int_{N_{min}}^{\infty} N_f^I \, dN} . \]

(8)

We now estimate the above fractions within the \(\mathcal{N} = 1 \) phase diagram as well as for the nonsupersymmetric one. Note that we have already taken the upper limit of integration to be infinity, which effectively reduces the set of representations we are going to consider to those with at most two indices.
A. The Supersymmetric Case

A straightforward evaluation for the supersymmetric case yields

\[R_{FP} = \frac{\int_{N_{\min}}^{\infty} \frac{3}{2} \frac{C_2(G)}{T(r)} \, dN - \int_{N_{\min}}^{\infty} \frac{3}{4} \frac{C_2(G)}{T(r)} \, dN}{\int_{N_{\min}}^{\infty} \frac{3}{2} \frac{C_2(G)}{T(r)} \, dN} = \frac{1}{2} \, . \]

(9)

Surprisingly the result is independent on the chosen representation and, of course, \(R_{NFP} = 1 - 1/2 = 1/2 \). The universality of this ratio is impressive.

B. The Nonsupersymmetric Case

We now determine \(R_{FP} \) in the case of nonsupersymmetric gauge theories with only fermionic matter. This task requires the knowledge of \(N_f^I \) and \(N_f^I \) for the nonsupersymmetric theories studied in [2] which we report here

\[N_f^I = \frac{11}{4} \frac{C_2(G)}{T(r)} \, , \quad N_f^I = \frac{17C_2(G) + 66C_2(r)C_2(G)}{10C_2(G) + 30C_2(r)T(r)} \, . \]

(10)

We now list the ratios for the fundamental (F) and the two-index representations, i.e. Adj (G), two-index symmetric (S) and two-index antisymmetric (A)

\[R_{FP}[F] = \frac{3}{11} \simeq 0.27 \, , \quad R_{FP}[G] = R_{FP}[A] = R_{FP}[S] = \frac{27}{110} \simeq 0.24 \, . \]

(11)

Remarkably in the nonsupersymmetric case as well the fraction of the conformal window for the representations which are asymptotically free for any number of colors is very close to each other. Circa 25\% of the nonsupersymmetric asymptotically free gauge theories with fermions in a given representation is expected to develop an infrared fixed point. This can be compared with the exact 50\% in case of \(\mathcal{N} = 1 \) supersymmetric vector-like theories. We note that in the nonsupersymmetric case, except for the adjoint representation, the values of the ratios are determined by the large N part of the integration.

IV. MULTIPLE REPRESENTATIONS, CONFORMAL REGION AND SIZE OF THE UNPARTICLE WORLD

A generic gauge theory will, in general, have matter transforming according to distinct representations of the gauge group. Hence we now begin our analysis of the conformal region
for a generic $SU(N)$ gauge theory with $N_f(r_i)$ vector-like matter fields transforming according to the representation r_i with $i = 1, \ldots, k$. We shall consider the nonsupersymmetric case here.

The generalization to k different representations for the expression determining the region in flavor space above which asymptotic freedom is lost is simply

$$\sum_{i=1}^{k} \frac{4}{11} T(r_i) N_f(r_i) = C_2(G) .$$

(12)

We suggest as an estimate of the region above which the theories develop an infrared fixed point the following expression

$$\sum_{i=1}^{k} d(r_i) T(r_i) N_f(r_i) = C_2(G) , \quad \text{with} \quad d(r_i) = \frac{10C_2(G) + 30C_2(r_i)}{17C_2(G) + 66C_2(r_i)} ,$$

(13)

which, of course, reproduces the ladder approximation results when reducing to a single representation. Here the coefficients $d(r_i)$ depend on the representation as well as the number of colors.

Due to the expressions above the volume, in flavor and color space, occupied by a generic $SU(N)$ gauge theory can be defined as:

$$V[N_{\text{min}}, N_{\text{max}}] = \int_{N_{\text{min}}}^{N_{\text{max}}} dN \prod_{i=1}^{k} \int_{0}^{\frac{C_2(G) - \sum_{j=2}^{i} \eta(r_j) T(r_j) N_f(r_j)}{\eta(r_{i+1}) T(r_{i+1})}} \eta(r_i + 1) T(r_i) N_f(r_i + 1) ,$$

(14)

with the function $\eta(r_i)$ reducing to the number $4/11$ when the region to be evaluated is associated to the asymptotically free one and to $d(r_i)$ when the region is the one below which one does not expect the occurrence of an infrared fixed point. The notation is such that $T(r_{k+1}) \equiv T(r_1)$, $N_f(r_{k+1}) \equiv N_f(r_1)$ and the sum $\sum_{j=2}^{i} \eta(r_j) T(r_j) N_f(r_j)$ in the upper limit of the flavor integration vanishes for $i = 1$. We have defined the volume within a fixed range of number of colors N_{min} and N_{max}.

The volume occupied by the asymptotically free theories is:

$$V_{AF}[N_{\text{min}}, N_{\text{max}}] = \left(\frac{11}{4}\right)^k \int_{N_{\text{min}}}^{N_{\text{max}}} \frac{C_2^k(G)}{k! \prod_{i=1}^{k} T(r_i)} dN ,$$

(15)

while the volume associated to the fraction of asymptotically free theories not developing a fixed point is

$$V_{NFP}[N_{\text{min}}, N_{\text{max}}] = \int_{N_{\text{min}}}^{N_{\text{max}}} dN \prod_{i=1}^{k} \int_{0}^{\frac{C_2(G) - \sum_{j=2}^{i} d(r_j) T(r_j) N_f(r_j)}{d(r_{i+1}) T(r_{i+1})}} \eta(r_{i+1}) T(r_{i+1}) N_f(r_{i+1}) .$$

(16)
Upon integration in flavor space this reads

$$V_{NFP}[N_{\min}, N_{\max}] = \int_{N_{\min}}^{N_{\max}} \frac{C_k^2(G)}{k! \prod_{i=1}^{k} d(r_i) T(r_i)} dN.$$ (17)

Hence the fraction of the conformal region to the region occupied by the asymptotically free theories is, for a given number of representations k:

$$R_{FP} = \frac{V_{AF}[N_{\min}, N_{\max}] - V_{NFP}[N_{\min}, N_{\max}]}{V_{AF}[N_{\min}, N_{\max}]}.$$ (18)

We now proceed and evaluate R_{FP} in order to size the nonsupersymmetric unparticle world associated to these theories. The results are summarized in Table [II]. We consider characteristic examples for the representations. For $k = 1$ we use the fundamental F and the adjoint G representation. For $k = 2$ we present the case featuring F and G as well as the one featuring G and the symmetric representation S. For $k = 3$ we present F-G-S and G-A-S, where A is the two-index antisymmetric representation. Finally for $k = 4$ the four representations involved are F, G, S and A. We observe the near universality of the ratios found for each k. We have explicitly checked that substituting any two-index representations with each other does not change the result. To be specific, there is a small difference whenever confronting the above ratio, for a given k, when a two index representation is substituted with the fundamental one. It is, however, interesting that in the ladder approximation one observes an approximately universal behavior for R_{FP}. We have only listed the results for all of the representations which can remain asymptotically free for large N. These are the fundamental and the two-indexed representations. In this case one can take N_{\max} to infinity.

The analysis of the phase diagram presented here with mixed representations is of immediate use for various phenomenological studies. It allows, for example, the study and construction of explicit split technicolor theories introduced in [20]. These are walking technicolor theories having matter in different representations of the gauge group. Hence we further enlarge the parameter space of theories (see [2]) which can be used to break the electroweak theory dynamically.

We expect similar results in the case of supersymmetric theories. In the susy case, however, in evaluating the conformal regions one has to pay special attention to the fact that when multiple representations are present the R-anomaly free charge for the different chiral multiplets is no longer uniquely determined via the single anomaly-free condition but one has to resort to extra conditions. One can use, for example, the recently important fact
TABLE III: The size of the nonsupersymmetric unparticle world (i.e. the fraction of the conformal region to the asymptotically free region) when matter is in \(k\) distinct representations of the gauge group. We have chosen some characteristic examples for the representations. For \(k = 1\) we have considered the fundamental \(F\) and the adjoint \(G\) representation. For \(k = 2\) we present the case featuring \(F\) and \(G\) as well as the one featuring \(G\) and the symmetric representation \(S\). For \(k = 3\) we present the \(F-G-S\) case and the \(G-A-S\) case where \(A\) is the two-index antisymmetric representation. Finally for \(k = 4\) the four representations used are \(F, G, S\) and \(A\). We observe the near universality of the ratios found for each \(k\). We have explicitly checked that if we use any other two-index representation in the table above the results remain unchanged.

discovered by Intriligator and Wecht [42] that the exact superconformal R-symmetry maximizes the central charge \(a\) of the 4d SCFT [43, 44, 45] which has already led to interesting applications [46, 47, 48, 49, 50, 51].

V. CONCLUSIONS

We have constructed the conformal window for arbitrary representations of the gauge group for \(\mathcal{N} = 1\) supersymmetric gauge theories and compared it with the one for nonsupersymmetric theories.

We have then defined a measure in theory space allowing us to size the fraction of asymptotically free gauge theories developing an infrared fixed point. We have discovered that this fraction depends uniquely on the representation contributing to the dynamics but not on the specific choice. This is an exact result in supersymmetric theories while it is an approximate one in the nonsupersymmetric case.

According to our findings the four-dimensional unparticle world occupies a sizable amount of the particle world, at least in theory space, and before mixing it (at the operator level) with the nonconformal one. Our results can also be used to further enlarge the number of walking theories which can be used to break the electroweak theory.
Acknowledgments

We gladly thank S. Catterall, J.M. Cline, M. Della Morte, P. de Forcrand, R. Foadi, M.T. Frandsen, C. Kouvaris, D. Litim, J. Schechter, K. Tuominen and G. Veneziano for discussions. D.D. Dietrich and R. Zwicky are thanked for suggestions and careful reading of the manuscript. The work of F.S. is supported by the Marie Curie Excellence Grant under contract MEXT-CT-2004-013510.

[1] F. Sannino and K. Tuominen, ‘Orientifold theory dynamics and symmetry breaking,” Phys. Rev. D 71 (2005) 051901 [arXiv:hep-ph/0405209].

[2] D. D. Dietrich and F. Sannino, ‘Conformal window of SU(N) gauge theories with fermions in higher dimensional representations;” Phys. Rev. D 75, 085018 (2007) [arXiv:hep-ph/0611341].

[3] T. Appelquist, K. D. Lane and U. Mahanta, ‘On The Ladder Approximation For Spontaneous Chiral Symmetry Breaking,” Phys. Rev. Lett. 61 (1988) 1553.

[4] A. G. Cohen and H. Georgi, ‘Walking Beyond The Rainbow,” Nucl. Phys. B 314 (1989) 7.

[5] T. Appelquist, J. Terning and L. C. R. Wijewardhana, “The Zero Temperature Chiral Phase Transition in SU(N) Gauge Theories,” Phys. Rev. Lett. 77, 1214 (1996) [arXiv:hep-ph/9602385].

[6] V. A. Miransky and K. Yamawaki, “Conformal phase transition in gauge theories,” Phys. Rev. D 55, 5051 (1997) [Erratum-ibid. D 56, 3768 (1997)] [arXiv:hep-th/9611142].

[7] F. Sannino and J. Schechter, “Chiral phase transition for SU(N) gauge theories via an effective Lagrangian approach,” Phys. Rev. D 60, 056004 (1999) [arXiv:hep-ph/9903359].

[8] M. Harada, M. Kurachi and K. Yamawaki, “Meson masses in large N(f) QCD from Bethe-Salpeter equation,” Phys. Rev. D 68, 076001 (2003) [arXiv:hep-ph/0305018].

[9] H. Gies and J. Jaeckel, “Chiral phase structure of QCD with many flavors,” Eur. Phys. J. C 46, 433 (2006) [arXiv:hep-ph/0507171].

[10] F. N. Ndili, “Phase transition critical flavor number of QCD,” [arXiv:hep-ph/0508111]

[11] R. Foadi, M. T. Frandsen, T. A. Ryttov and F. Sannino, “Minimal Walking Technicolor: Set Up for Collider Physics,” [arXiv:0706.1696 [hep-ph]].

[12] B. Holdom, “Techniodor,” Phys. Lett. B 150, 301 (1985).
[13] B. Holdom, “Flavor Changing Suppression In Technicolor,” Phys. Lett. B 143, 227 (1984).
[14] E. Eichten and K. D. Lane, “Dynamical Breaking Of Weak Interaction Symmetries”, Phys. Lett. B 90, 125 (1980).
[15] B. Holdom, “Raising The Sideways Scale”, Phys. Rev. D 24, 1441 (1981).
[16] K. Yamawaki, M. Bando and K. i. Matumoto, “Scale Invariant Technicolor Model And A Technidilaton”, Phys. Rev. Lett. 56, 1335 (1986).
[17] T. W. Appelquist, D. Karabali and L. C. R. Wijewardhana, “Chiral Hierarchies And The Flavor Changing Neutral Current Problem In Technicolor”, Phys. Rev. Lett. 57, 957 (1986).
[18] K. D. Lane and E. Eichten, “Two Scale Technicolor”, Phys. Lett. B 222, 274 (1989).
[19] S. Catterall and F. Sannino, “Minimal walking on the lattice,” arXiv:0705.1664 [hep-lat]. To Appear in Phys. Rev. D.
[20] D. D. Dietrich, F. Sannino and K. Tuominen, ‘Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for LHC,” Phys. Rev. D 72 (2005) 055001 arXiv:hep-ph/0505059; ibid Phys. Rev. D 73 (2006) 037701. arXiv:hep-ph/0510217.
[21] H. Georgi, “Unparticle physics,” arXiv:hep-ph/0703260.
[22] H. Georgi, “Another Odd Thing About Unparticle Physics,” arXiv:0704.2457 [hep-ph].
[23] K. Cheung, W. Y. Keung and T. C. Yuan, “Novel signals in unparticle physics,” arXiv:0704.2588 [hep-ph].
K. Cheung, W. Y. Keung and T. C. Yuan, “Collider Phenomenology of Unparticle Physics,” arXiv:0706.3155 [hep-ph].
M. Luo and G. Zhu, “Some Phenomenologies of Unparticle Physics,” arXiv:0704.3532 [hep-ph].
M. A. Stephanov, “Deconstruction of Unparticles,” arXiv:0705.3049 [hep-ph].
X. Q. Li, Y. Liu and Z. T. Wei, “Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario,” arXiv:0707.2285 [hep-ph].
D. Choudhury and D. K. Ghosh, “Top off the unparticle,” arXiv:0707.2074 [hep-ph].
A. Lenz, “Unparticle physics effects in B_s mixing,” arXiv:0707.1535 [hep-ph].
T. Kikuchi and N. Okada, “Unparticle physics and Higgs phenomenology,” arXiv:0707.0893 [hep-ph].
S. L. Chen, X. G. He and H. C. Tsai, “Constraints on Unparticle Interactions from Invisible
Decays of Z, Quarkonia and Neutrinos,” arXiv:0707.0187 [hep-ph].

H. Goldberg and P. Nath, “Ungravity and Its Possible Test,” arXiv:0706.3898 [hep-ph].

T. G. Rizzo, “Contact Interactions and Resonance-Like Physics at Present and Future Colliders from Unparticles,” arXiv:0706.3025 [hep-ph].

Y. Liao and J. Y. Liu, “Long-ranged spin-spin interaction of electron from unparticle exchange,” arXiv:0706.1284 [hep-ph].

C. H. Chen and C. Q. Geng, “Unparticle phase effects,” arXiv:0706.0850 [hep-ph].

G. J. Ding and M. L. Yan, “Unparticle Versus NuTeV Anomaly,” arXiv:0706.0325 [hep-ph].

P. Mathews and V. Ravindran, “Unparticle physics at hadron collider via dilepton production,” arXiv:0705.4599 [hep-ph].

T. M. Aliev, A. S. Cornell and N. Gaur, “B to K(K*) missing energy in Unparticle physics,” arXiv:0705.4542 [hep-ph].

S. L. Chen and X. G. He, “Interactions of Unparticles with Standard Model Particles,” arXiv:0705.3946 [hep-ph].

D. Choudhury, D. K. Ghosh and Mamta, “Unparticles and Muon Decay,” arXiv:0705.3637 [hep-ph].

H. Davoudiasl, “Constraining Unparticle Physics with Cosmology and Astrophysics,” arXiv:0705.3636 [hep-ph].

[24] R. Zwicky, “Unparticles at heavy flavour scales: CP violating phenomena,” arXiv:0707.0677 [hep-ph].

[25] P. J. Fox, A. Rajaraman and Y. Shirman, “Bounds on Unparticles from the Higgs Sector,” arXiv:0705.3092 [hep-ph].

[26] M. Bander, J. L. Feng, A. Rajaraman and Y. Shirman, “Unparticles: Scales and High Energy Probes,” arXiv:0706.2677 [hep-ph].

[27] Y. Nakayama, “SUSY Unparticle and Conformal Sequestring,” arXiv:0707.2451 [hep-ph].

H. Zhang, C. S. Li and Z. Li, “Unparticle Physics and Supersymmetry Phenomenology,” arXiv:0707.2132 [hep-ph].

N.G. Deshpande, Xiao-Gang He, Jing Jiang, “Supersymmetric Unparticle Effects on Higgs Boson Mass and Dark Matter,” arXiv:0707.2959 [hep-ph].

[28] R. Percacci and D. Perini, “Constraints on matter from asymptotic safety,” Phys. Rev. D 67, 081503 (2003) arXiv:hep-th/0207033.
[29] M. Reuter, “Nonperturbative Evolution Equation for Quantum Gravity,” Phys. Rev. D 57, 971 (1998) [arXiv:hep-th/9605030].

[30] O. Lauscher and M. Reuter, “Ultraviolet fixed point and generalized flow equation of quantum gravity,” Phys. Rev. D 65, 025013 (2002) [arXiv:hep-th/0108040].

[31] D. F. Litim, “Fixed points of quantum gravity,” Phys. Rev. Lett. 92, 201301 (2004) [arXiv:hep-th/0312111].

[32] P. Fischer and D. F. Litim, “Fixed points of quantum gravity in extra dimensions,” Phys. Lett. B 638, 497 (2006) [arXiv:hep-th/0602203].

[33] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, “Exact Gell-Mann-Low Function Of Supersymmetric Yang-Mills Theories From Instanton Calculus,” Nucl. Phys. B 229 (1983) 381.

[34] M. A. Shifman and A. I. Vainshtein, “Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion,” Nucl. Phys. B 277 (1986) 456 [Sov. Phys. JETP 64 (1986 ZETF A,91,723-744.1986) 428].

[35] N. Arkani-Hamed and H. Murayama, “Holomorphy, rescaling anomalies and exact beta functions in supersymmetric gauge theories,” JHEP 0006 (2000) 030 [arXiv:hep-th/9707133].

[36] N. Arkani-Hamed and H. Murayama, “Renormalization group invariance of exact results in supersymmetric gauge theories,” Phys. Rev. D 57 (1998) 6638 [arXiv:hep-th/9705189].

[37] T. Banks and A. Zaks, ‘On The Phase Structure Of Vector - Like Gauge Theories With Massless Fermions,” Nucl. Phys. B 196 (1982) 189.

[38] N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,” Nucl. Phys. B 435 (1995) 129 [arXiv:hep-th/9411149].

[39] G. Mack, “All Unitary Ray Representations Of The Conformal Group SU(2,2) With Positive Energy,” Commun. Math. Phys. 55 (1977) 1.

[40] M. Flato and C. Fronsdal, “Representations Of Conformal Supersymmetry,” Lett. Math. Phys. 8, 159 (1984).

[41] V. K. Dobrev and V. B. Petkova, “All Positive Energy Unitary Irreducible Representations Of Extended Conformal Supersymmetry,” Phys. Lett. B 162 (1985) 127.

[42] K. Intriligator and B. Wecht, “The exact superconformal R-symmetry maximizes a,” Nucl. Phys. B 667, 183 (2003) [arXiv:hep-th/0304128].

[43] D. Anselmi, J. Erlich, D. Z. Freedman and A. A. Johansen, “Positivity constraints on anoma-
lies in supersymmetric gauge theories,” Phys. Rev. D 57, 7570 (1998) [arXiv:hep-th/9711035].

[44] D. Anselmi, D. Z. Freedman, M. T. Grisaru and A. A. Johansen, “Nonperturbative formulas for central functions of supersymmetric gauge theories,” Nucl. Phys. B 526, 543 (1998) [arXiv:hep-th/9708042].

[45] D. Anselmi, “Inequalities for trace anomalies, length of the RG flow, distance between the fixed points and irreversibility,” Class. Quant. Grav. 21, 29 (2004) [arXiv:hep-th/0210124].

[46] K. Intriligator and B. Wecht, “RG fixed points and flows in SQCD with adjoints,” Nucl. Phys. B 677, 223 (2004) [arXiv:hep-th/0309201].

[47] E. Barnes, K. Intriligator, B. Wecht and J. Wright, “N = 1 RG flows, product groups, and a-maximization,” Nucl. Phys. B 716, 33 (2005) [arXiv:hep-th/0502049].

[48] E. Barnes, K. Intriligator, B. Wecht and J. Wright, “Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows,” Nucl. Phys. B 702, 131 (2004) [arXiv:hep-th/0408156].

[49] D. Kutasov, “New results on the 'a-theorem' in four dimensional supersymmetric field theory,” arXiv:hep-th/0312098.

[50] D. Kutasov, A. Parnachev and D. A. Sahakyan, “Central charges and U(1)R symmetries in N = 1 super Yang-Mills,” JHEP 0311, 013 (2003) [arXiv:hep-th/0308071].

[51] M. Bertolini, F. Bigazzi and A. L. Cotrone, “New checks and subtleties for AdS/CFT and a-maximization,” JHEP 0412, 024 (2004) [arXiv:hep-th/0411249].

[52] The normalization for the generators here is different than the one adopted in [2].