Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection

Jafaruddin, Sapto W. Indratno, Nuning Nuraini, Asep K. Supriatna, and Edy Soewono

1Departemen Matematika, FMIPA, Institut Teknologi Bandung, Bandung, Indonesia
2Jurusan Matematika, FST, Universitas Nusa Cendana, Kupang, Indonesia
3Jurusan Matematika, FMIPA, Universitas Padjadjaran, Bandung, Indonesia

Correspondence should be addressed to Jafaruddin; jafaruddin.hamid@yahoo.com

Received 22 December 2014; Revised 6 July 2015; Accepted 7 July 2015

Academic Editor: Chung-Min Liao

Copyright © 2015 Jafaruddin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Estimating the basic reproductive ratio R_0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate R_0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008–Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of R_0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of R_0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the R_0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work.

1. Introduction

Dengue is a mosquito-borne viral disease found in more than 100 countries around the world which are mostly located in tropical and subtropical countries. This disease is transmitted through the bites of female Aedes aegypti. In recent years, dengue transmission has increased predominantly in urban and semiurban areas and has become a major international public health concern. Controlling of dengue fever has been conducted continuously, but the spread of dengue virus is still increasing in many countries. Many efforts have been conducted to control the spread of the virus, for instance, a reduction in the population of Aedes aegypti in the field [1]. Fumigation methods have been used to reduce mosquitoes, and the use of temephos has been utilized to reduce the larvae. Until recently, there was no vaccine against any of the four virus serotypes (DEN-1, DEN-2, DEN-3, and DEN-4). To cure patients, treatment in hospitals is usually given in the form of supportive care, which includes bed rest, antipyretics, and analgesics [2]. Mathematical models have proved to be useful tools in the understanding of dengue transmission [3–5]. So far the dynamics of the dengue transmission are still an interesting issue in epidemiological modeling.

The first model of dengue transmission and the stability analysis of equilibrium points are shown in [6] in which the basic reproductive ratio R_0 is constructed from the stability condition of the disease-free equilibrium. The general concept of R_0 can be seen in [7, 8] which was adapted to various infectious disease models [9, 10]. The difficulty in using R_0 for measuring the level of dengue endemicity in the field is that R_0 often depends on several parameters (biological, environmental, transmission, etc), which are difficult to be
obtained from the field. With limited information about mosquitoes such as the mosquito population size the estimate of R_0 can not be computed from the dynamical model only. With daily human incidence being the only available data, it is natural to ask how to extract relevant parameters from the data to fit in the model. A simple approach has been achieved by assuming that both a human and mosquito undergo linear growth at the early stage of infection. As shown in [11–14] the estimation does not distinguish between the growth rate of an infected human and the growth rate of infected mosquitoes and does not yet consider how the interaction between infected mosquitoes and infected humans influences the early growth of a dengue epidemic. There are other problems that are treated in a recent paper [15] which examines two models vector-borne infections, namely, dengue transmission. In this paper, we construct R_0 estimation by taking into account the difference between the growth rate of an infected human and infected mosquito and the effect of the interaction between them and the characteristics of dengue incidence data.

The existing data do not specify the infection status (age of infection) of each patient. Hence we assume that people who come to the hospital should be identified as dengue patient at the end of incubation period (approximately at the 7th day after contact with infected mosquito). Also, we assume that there are no available alternative hosts as blood sources and there are no death and recovery in the early days of dengue infection. The main purpose of this paper is to construct R_0 estimation of the real conditions in the field, in which only the daily incidence data are available. Based on the dengue transmission model in [6], we build two different constructions for R_0 estimation and used them for estimating the value of R_0 for dengue incidence data between the dates Nov. 25, 2008, and 2012 from SB Hospital, Indonesia.

The organization of the paper is given as follows. In Section 2 a dynamical system of a host-vector transmission model is introduced. Based on this dynamical system we derive the basic reproductive ratio of the model. The constructions of the proposed R_0 estimation are presented in Section 3. Formulations of the take-off rate of dengue infection are presented in Section 4. We apply the formula to the real data of dengue incidence from SB Hospital, Bandung, Indonesia. All the numerical results are given in Section 5 along with the insights and interpretation from the numerical results. We provide conclusions in Section 6.

2. Basic Reproductive Ratio of the Dengue Transmission Model

Generally, for a vector-borne disease, R_0 was understood as the number of persons who would be infected from a single person initially infected by a mosquito [3, 16]. In the host-vector system, the basic reproductive ratio R_0 is defined as the expected number of secondary infections resulting directly from a single infected individual, in a virgin population, during the infection period [7]. The general host-vector dengue transmission model was conducted in [6]. Here, we assume that there are no alternative hosts available, as blood sources $m = 0$ for system in [6]. Modification of the dengue transmission model in [6], is schematically represented by the diagram in Figure 1, where

- A_h: recruitment rate of host population;
- N_h: number of host populations;
- S_h: susceptible host population size;
- I_h: infected host population size;
- R_h: recovered/immune host population size;
- p_h: successful transmission probability within host population;
- μ_h: birth/death rate of host population;
- γ_h: recovery rate of host population;
- A_v: recruitment rate of vector population;
- N_v: number of vector populations;
- S_v: susceptible vector population size;
- I_v: infected vector population size;
- p_v: transmission probability within the vector population;
- μ_v: death rate of vector population;
- b: biting rate of vector population.

The corresponding model of dengue transmission in the short period dengue infection is given in [17] as follows:

$$\begin{align*}
\frac{dS_h}{dt} &= A_h - \frac{bp_h S_h I_v}{N_h} - \mu_h S_h,
\frac{dI_h}{dt} &= \frac{bp_h S_h I_v}{N_h} - \gamma I_h - \mu_h I_h,
\frac{dR_h}{dt} &= \gamma I_h - \mu_h R_h, \\
\frac{dS_v}{dt} &= A_v - \frac{bp_v S_v I_h}{N_h} - \mu_v S_v, \\
\frac{dI_v}{dt} &= \frac{bp_v S_v I_h}{N_h} - \mu_v I_v.
\end{align*}$$

(1)

Here, we give a short explanation for system (1) as follows. The effective contact rate to human bp_h is the average number
of contacts per day that would result in infection, if the vector is infectious. Furthermore, the effective contact rate b_{pi} defines the average number of contacts per day that effectively transmit the infection to vectors.

First of all, we determine equilibrium points for the system (1). Because N_h and N_v are assumed to be constant then from system (1) ones obtain $S_h + I_h + R_h = N_h = A_h/\mu_h$ and $S_v + I_v = N_v = A_v/\mu_v$. Consequently, we obtain a disease-free equilibrium point of system (1), which is given by

$$E_0 = \left(S_{h0}, I_{h0}, 0, R_{h0}, S_{v0}, I_{v0} \right),$$

(2)

and the endemic equilibrium point in the form of

$$E_1 = \left(S_h^*, I_h^*, R_h^*, S_v^*, I_v^* \right),$$

(3)

where

$$S_h^* = \frac{\mu_v(y + \mu_h)N_v^2 + \mu_vN_hN_v^2}{p_v\mu_hN_h + b_{pi}N_v},$$

$$I_h^* = \frac{\mu_v\mu_hN_h \left(b^2 p_v p_i/\mu_v(y + \mu_h) \right) (N_v/N_h - 1)}{b_{pi}(\mu_h + b_{pi}p)},$$

$$R_h^* = \frac{\mu_vN_vy \left(b^2 p_v p_i/\mu_v(y + \mu_h) \right) (N_v/N_h - 1)}{b_{pi}(\mu_h + b_{pi}p)},$$

$$S_v^* = \frac{p_v\mu_hN_h + b_{pi}p_vN_v}{b_p(1 + b_{pi}p)},$$

$$I_v^* = \frac{\mu_v\mu_hN_h \left(b^2 p_v p_i/\mu_v(y + \mu_h) \right) (N_v/N_h - 1)}{b_{pi}(\mu_h + y + \mu_h)}.$$

Next, we derive the basic reproductive ratio R_0. R_0 is often conveniently found using a next generation method [7, 8, 18, 19]. We obtain the next generation matrix of system (1), at E_0, as follows

$$NGM = \begin{bmatrix}
0 & b_{pi}h \\
\frac{b_{pi}v}{\mu_v} & N_v \\
\frac{b_{pi}v}{\mu_v} & N_h \\
(y + \mu_h) & 0
\end{bmatrix}.$$

(5)

Based on the definition in [20], NGM represents that the number of b_{pi}/μ_h is the generation factor of dengue transmission, from mosquito to human. It means that one mosquito infects $b_{pi}h$ humans per unit of time during its infection period $1/\mu_h$, and the number of $(b_{pi}v/(y + \mu_h))(N_v/N_h)$ is the generation factor of dengue transmission, from human to mosquito. This represents that one human infects $b_{pi}(N_v/N_h)$ mosquitoes during one’s infection period $1/(\mu_v + y)$. NGM in (5) have two eigen values, that are

$\pm \sqrt{(b^2 p_v p_i/\mu_v(y + \mu_h))(N_v/N_h)}$. Therefore the basic reproductive ratio of system (1) is the largest eigen value of NGM, that is

$$R_0 = \sqrt{\frac{b^2 p_v p_i}{\mu_v(y + \mu_h)}N_v/N_h}.$$

(6)

It is clear that the endemic equilibrium E_1 in (3) exists if $R_0 > 1$. In the next section we propose two constructions of an R_0 estimation, at the initial growth of dengue infection, based on incidence data.

3. Construction for R_0 Estimation

Predicting a basic reproductive ratio is not easily done in the field. In the real-life situation, information about the number of mosquitoes, precisely the ratio between mosquito and human population, is limited. Based on the incidence data, we will estimate some related parameters, for the construction of the basic reproductive ratio R_0 from dengue incidence data.

This construction is motivated by previous work in [12], which assumes that the infective growth rate is linear at the early state of infection. The exponential growth of the infective compartment, at the early state of infection, is commonly found in the estimation of the basic reproductive ratio. All estimation of R_0, in previous works [11, 12, 14, 21, 22], have been conducted based on the assumption that $K(t) \propto e^{\lambda t}$ varies, where $K(t)$ is the cumulative number of dengue cases, and λ is called the force of infection [12, 14]. Chowell et al. [11] called λ the initial growth rate of dengue epidemic. Here, we will call λ the take-off rate of dengue infection. In the following section, we build two constructions to estimate R_0 in (6), which is derived from a dynamical system of the host-vector dengue transmission model in system (1).

First of all we assume the construction of R_0 estimation from equation (3) in [12]. The construction of R_0 estimation at E_0 is based on the assumptions that the numbers of infected human population I_h and infected mosquito population I_v grow exponentially at the same rate at the short time period relative to each other:

$$I_h(t) \approx I_{h0}e^{\lambda t},$$

$$I_v(t) \approx I_{v0}e^{\lambda t},$$

(7)

where I_{h0} and I_{v0} are constant and λ is the take-off rate of the initial growth dengue epidemic. Moreover, the number of non-susceptible hosts and vectors can be assumed to be negligible and by assuming (7) is “like solution” of linearized system (1) for $R_0 > 1$. These assumptions are also used in [11, 14] for calculating the force of infection from the spatial data of a dengue epidemic. Next, by substituting (7) with (1), and assuming that $S_h \sim N_h$ and $V_v \sim N_v$, at the early state of an epidemic, we get

$$I_h = \frac{b_{pi}h}{\mu_h + y}I_{h0},$$

(8)

$$I_v = \frac{b_{pi}v}{\mu_v}N_vI_{v0}.$$

(9)

Multiplying (8) and (9), and using (6), one gets the construction of the R_0 estimation as follows:

$$R_{0F}^2 = \left(\frac{\lambda}{\mu_h + y} + 1 \right) \left(\frac{\lambda}{\mu_v} + 1 \right) \frac{b^2 p_v p_i}{\mu_v(\mu_h + y)}N_v/N_h,$$

$$= R_0^2.$$

(10)
which is equivalent to

\[R(TM) = \sqrt{\frac{\lambda^2}{\mu_v (\mu_h + \gamma)} + \frac{(\mu_v + \mu_h + \gamma) \lambda}{\mu_v (\mu_h + \gamma)} + 1}. \] (11)

The value of \(R(TM) \) in (11) is used to estimate \(R_0 \) in (6), where \(\lambda \) is estimated from the dengue incidence data. Note that since \(\lambda > 0 \), then \(R(TM) > 1 \). Note also that a small increase of the value \(\lambda \) in the interval \(0 < \lambda < 1 \) causes a significant increase of the value \(R(TM) \).

Next we introduce our construction of \(R_0 \) estimation. The first construction is derived under the assumption that, at the beginning of dengue infection, the take-off rate of the host and vector varies differently; that is, if \(k = 1 \) then \(R(TM) = R(TM)_0 \). In reality \(R(TM) \) is more realistic than \(R(TM)_0 \). From (11) and (14) we obtain

\[\frac{R(TM)_0^2}{R(TM)_0^2} = 1 + \frac{(k-1) \lambda}{\lambda + \mu_v}. \] (15)

The comparison between \(R(TM)_0 \) and \(R(TM) \) is shown as the level set of (15) in Figure 2.

Figure 2 shows that the variation in take-off rates might significantly change the values of \(R(TM)_0 \) and \(R(TM)_0 \). Both estimations are derived under the assumption that the pure exponential growth phase, of an epidemic, increases or has a fluctuating increase. Accordingly the estimates of \(R_0 \), obtained from \(R(TM)_0 \) and \(R(TM)_0 \), are affected by biasness; that is, the derivations of \(R(TM)_0 \) and \(R(TM)_0 \) use the extreme assumption in the early dengue epidemic that the dynamics of an infected human are not yet intervened by the presence of an infected mosquito’s influence, and vice versa.

The second construction of \(R_0 \) estimation is done in order to revise the first construction. We assume that the exponential growth of the infective host, at the early state of infection, is slightly affected by the growth of the infective vector, and vice versa. The main problem here is to find the best fit interval (here we use the terminology take-off period) where exponential growth occurs. Statistically, this situation can be related to the linear phase fit in a short time period.

Figure 2: Level set for \(\frac{R(TM)_0^2}{R(TM)_0^2} \) in (15) for data set \(\{\mu_v = 1/30, \lambda \in [0,0.20], k \in [0,20]\} \).

We define the initial growth in a period of time as the initial value problem; that is,

\[I_h(t) = I_{h0} e^{\lambda t}, \] (12a)
\[I_v(t) = I_{v0} e^{k \lambda t}, \] (12b)

where \(k > 0 \) is the rate of infected mosquitoes per human index. Using the same process as in the derivation of \(R(TM)_0 \), one obtains

\[\frac{R(TM)_0^2}{R(TM)_0^2} = \left(\frac{\lambda}{\mu_v (\mu_h + \gamma)} + 1 \right) \left(k \frac{\lambda}{\mu_v + 1} \right) = \frac{R(TM)_0^2}{R(TM)_0^2} = R(TM)_0^2 \] (13)

or, equivalently,

\[\frac{R(TM)_0^2}{R(TM)_0^2} = \sqrt{\frac{k \lambda^2}{\mu_v (\mu_h + \gamma)} + \frac{(\mu_v + k (\mu_h + \gamma)) \lambda}{\mu_v (\mu_h + \gamma)} + 1}. \] (14)

Note that \(R(TM)_0 \) is a special case from \(R(TM)_0 \); that is, if \(k = 1 \) then \(R(TM)_0 = R(TM)_0 \). In reality \(R(TM)_0 \) is more realistic than \(R(TM)_0 \). From (11) and (14) we obtain

\[\frac{R(TM)_0^2}{R(TM)_0^2} = 1 + \frac{(k-1) \lambda}{\lambda + \mu_v}. \] (15)

We obtain

\[\begin{cases} a = 1, b = 1, c = 1, \frac{1}{2}, d = 1, \frac{1}{2}, p = 1, \frac{1}{2}, q = 1, \frac{1}{2}, r = \frac{1}{2}, s = 1, \frac{1}{2} \end{cases} \] (17)

such that the solution of (16) is obtained; namely,

\[I_h(t) = I_{h0} e^{\mu_v t} + I_{h0} \left(c e^{\mu_v t} + d e^{-\mu_v t} \right), \] (16a)
\[I_v(t) = I_{v0} e^{\mu_v t} + I_{v0} \left(p e^{\mu_v t} + q e^{-\mu_v t} \right). \] (16b)

The main idea from (18) is to extract the relevant parameter(s) during the early state of infection, in which linear growth rate of infection is assumed to take place. Next we substitute (18) with the expression for the derivative of \(I_h \) and \(I_v \) in (1) by simple algebraic manipulation; we then obtain
a homogeneous system of equations in \(\cosh(\eta t) \) and \(\sinh(\eta t) \), namely,

\[
A \begin{bmatrix} \cosh (\eta t) \\ \sinh (\eta t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]

where coefficient matrix is

\[
A = \begin{bmatrix} I_{0}\eta - b_{p}I_{0} + (\gamma + \mu_{h})I_{0} & I_{0}\eta - b_{p}I_{0} + (\gamma + \mu_{h})I_{0} \\ I_{0}\eta - b_{p}I_{0} + \mu_{r}I_{0} & I_{0}\eta - b_{p}I_{0} + \mu_{r}I_{0} \end{bmatrix},
\]

A nontrivial solution from (19) exists if \(|A| = 0 \), which gives

\[
\eta^{2}N_{h} - (b_{p}N_{r} + N_{r}b_{p})\eta + \mu_{r}N_{r} \eta_{r} + b^{2}p_{r}p_{r}N_{r}
\]

as the coefficient of \(I_{0}\eta \) and \(I_{0}\eta^{2} \) must be equal to zero. Equivalently, from (21), we obtain

\[
\mathcal{R}_{0A}^{2} = \frac{-\eta^{2}}{\mu_{r} (\gamma + \mu_{h})} + \frac{b (p_{h} + p_{r} (N_{r} / N_{h}))}{\mu_{r} (\gamma + \mu_{h})} \eta + 1
\]

\[
= \frac{b^{2}p_{r}p_{r}N_{r}}{\mu_{r} (\mu_{r} + \gamma)} = \mathcal{R}_{0}^{2}.
\]

Therefore we have

\[
\mathcal{R}_{0A} = \sqrt{-\frac{\eta^{2}}{\mu_{r} (\gamma + \mu_{h})} + \frac{b (p_{h} + p_{r} (N_{r} / N_{h}))}{\mu_{r} (\gamma + \mu_{h})} \eta + 1},
\]

where \(\rho = N_{h} / N_{h} \) is the known mosquitoes per person index. We obtain (23), as a new construction for estimation \(\mathcal{R}_{0A} \), as a function of \(\eta \). The construction of \(\mathcal{R}_{0} \) in (23) is related to a short time interval where linear growth may still take place. Here, we will estimate the value of \(\eta \) during the early state of infection, in which a linear growth of infection is assumed to take place.

Note that \(\mathcal{R}_{0A} \) increases with respect to \(\eta \), \(0 \leq \eta \leq b(p_{h} + p_{r}) / 2 \). Based on the definition that \(\eta \) is probability, per unit of time, a susceptible becomes infected at the beginning of a dengue epidemic (see [7]), with assumption that \(b(p_{h} + p_{r}) / 2 < 1 \). This assumption means that the maximum take-off rate of dengue virus infection is defending on the index mosquito per human. This condition implies

\[
\frac{2\eta - b_{p}h}{b_{p}r} \leq \rho \leq \frac{2 - b_{p}h}{b_{p}r}.
\]

\(\mathcal{R}_{0A} / \mathcal{R}_{0} \) ratio in the early phase of dengue epidemics could be significantly larger or smaller than one depending on the value of \(\rho \), in (24), and the value of \(\lambda \). In Section 4, we determine \(\eta \) as a function of \(\lambda \) at the beginning of a dengue epidemic. We will further analyze the level set of the ratio \(\mathcal{R}_{0A} / \mathcal{R}_{0} \). Considering that the value of \(\mathcal{R}_{0} \) estimation depends on the value of take-off rate \(\lambda \), we discuss a method to formulate the take-off rate in the following section.

4. Formulation of the Take-Off Rate

Here we derive two scenarios for the derivation of the take-off rate (t.o.r) at the beginning of every take-off period (t.o.p) of dengue infection. Both scenarios are based on the same assumptions, but with a slightly different implementation for real-life dengue epidemics. Therefore, the main problem here is to find the best fit interval (here we use the terminology "take-off period") where exponential growth occurs.

The first scenario is done under the assumption that, during early infection, recovery and natural death do not yet occur. Note that the original data taken from the hospital is in the form of daily new cases. Let \(I(t) \) be the number of new cases of infection; we then have \(I(t) = dI_{h}/dt \) (see in [14]). Therefore, from (7), it is

\[
I(t) = \lambda I_{0}e^{\lambda t}, \quad \text{with} \quad I_{0} = I(0) = \lambda I_{0} \tag{25}
\]

and, from (12), it is

\[
I(t) = \eta(I_{0} \cosh(\eta t) + I_{0}\eta \sinh(\eta t)), \quad \text{with} \quad I_{0} = I(0) = \eta I_{0}. \tag{26}
\]

By using the Taylor expansion around \(\lambda = 0 \) for (25) and around \(\eta = 0 \) for (26), we obtain

\[
I(t) = \lambda I_{0}t + I_{0}, \tag{27}
\]

\[
I(t) = \frac{\eta}{\lambda}I_{0}t + I_{0}, \tag{28}
\]

respectively. Consequently, we have a relation that \(\lambda = \eta \). Thus \(\eta \) at \(\mathcal{R}_{0A} \) in (23) can be replaced by \(\lambda \). By comparing (11) and (23), we have

\[
\frac{\mathcal{R}_{0A}^{2}}{\mathcal{R}_{0F}^{2}} = 1 + \frac{\lambda}{\lambda + \mu_{r}} \left(\frac{b(p_{h} + p_{r} \rho) - \lambda}{\lambda + \mu_{h} + \gamma} - 1 \right). \tag{29}
\]

Also \(\eta \) in (24) can be replaced by \(\lambda \) such that we obtain

\[
\frac{2\lambda - b_{p}h}{b_{p}r} \leq \rho \leq \frac{2 - b_{p}h}{b_{p}r}. \tag{30}
\]

The ratio \(\mathcal{R}_{0A}^{2} / \mathcal{R}_{0F}^{2} \geq 1 \), if and only if \(\rho \geq (2\lambda + \mu_{h} + \gamma - b_{p}h)/b_{p}r \), and \(\mathcal{R}_{0A}^{2} / \mathcal{R}_{0F}^{2} < 1 \), if and only if \(\rho < (2\lambda + \mu_{h} + \gamma - b_{p}h)/b_{p}r \). Because of \((2\lambda - b_{p}h)/b_{p}r < (2\lambda + \mu_{h} + \gamma - b_{p}h)/b_{p}r \), we have \((2\lambda + \mu_{h} + \gamma - b_{p}h)/b_{p}r \), which belongs to the range of \(\rho \) for small \(\lambda \).

The second scenario is conducted under the same assumption as the first scenario. But, here, we regress between the number of new cases in a day \(I(t) = dI_{h}/dt \) and cumulative number of new cases \(K(t) \), where we have the initial value \(K(0) = K_{0} = I_{0} = I(0) = \lambda I_{0} \) from (7) and \(K(0) = K_{0} = I(0) = \eta I_{0} \) from (18). Therefore, by using integral equation

\[
K(t) - K(0) = \int_{0}^{t} I(\tau)d\tau \quad \text{with} \quad I(\tau) \quad \text{from the first equation in (7) and} \quad I(\tau) \quad \text{from the first equation in (18), we obtain}
\]

\[
I(t) = \lambda K(t) + (1 - \lambda) K_{0}, \tag{30}
\]

\[
I(t) = \eta^{2}K(t) + (1 - \eta^{2}) K_{0}, \tag{30}
\]
Figure 3: Level set $R_0^2/A^2/0F$ in (28) for data set $b = 1, p_h = 0.01, p_v = 0.25, y = 1/8, \mu_v = 1/(3 \times 70), \mu_v = 1/30, \lambda \in [0,0.20], \rho \in [0,10]$. respectively. It is clear that $\eta^2 = \lambda$ so that η in R_0A at (23) can be replaced by $\sqrt{\lambda}$. If (23) is divided by (11), we obtain
\[
\frac{R_0^2}{R_0^2/0F} = 1 + \frac{\sqrt{\lambda}}{\lambda + \mu_v} \left(\frac{b(\rho + p_v \rho)}{\lambda + \mu_v + y} - \frac{\sqrt{\lambda}}{\lambda + \mu_v} \right).
\] (31)

Also η in (24) can be replaced by $\sqrt{\lambda}$ such that we obtain
\[
\frac{2\sqrt{\lambda} - bp_h}{bp_v} \leq \rho \leq \frac{2 - \sqrt{\lambda}}{bp_v}.
\] (32)

We note that the ratio $R_0^2/A^2/0F \geq 1$ if and only if $\rho \geq (\lambda^{1/2} + \lambda^{1/2}(\mu_v + \mu_h + y + 1) - bp_h)/bp_v = \rho_0$ and $R_0^2/A^2/0F < 1$ if and only if $\rho < \rho_0$. Note also that $\rho_0 < (2 - bp_h)/bp_v$ for small λ.

Figures 3 and 4 show the level sets for some values of the ratio $R_0^2/A^2/0F$, for both scenarios of construction of λ. It shows that for small λ, $R_0^2/A^2/0F$ increases faster, with respect to ρ, in the second scenario (Figure 4) than in the first scenario (Figure 3). Summary of the construction of R_0 estimation for the first and the second scenario of λ is given in Table 1.

The magnitude of R_0A in Figure 5 indicates that the second scenario is rising faster than R_0A of the first scenario at the beginning of the growing epidemic of dengue fever, although the rate of infection is very small. This means that the presence of mosquitoes in early dengue infection directly affects the human dengue infection. Furthermore, Figure 5 shows that the second scenario of construction of R_0, which is summarized in Table 1, is increasing faster than the first scenario. Therefore, we obtain that the second scenario is a more realistic construction of R_0 than the first one at the beginning of the short period of dengue virus infection.

In the next section, we apply least square method to determine estimation of λ, I_0, and K_0 from dengue incidence data based on (27) and (30). We calculated λ, I_0, and K_0 by using least square method which differs from the estimation that has been conducted in [14]. They assume that the number of cases of dengue at $t = 0$ is equal to one, but, here, we estimate from the dengue incidence data. In the next section, we examine the dependence of the basic reproductive ratio on the take-off rate, at the beginning of the take-off period of dengue infection, for daily cases of dengue from SB Hospital in Bandung Indonesia.
5. Application of R_0 Estimation to the Real-Life Dengue Epidemic

This section presents the application of the method to the data of dengue incidence from SB hospital, the estimation value of the t.o.r. λ, the value basic reproductive ratio, and their implication. Calculation of λ is based on the assumption that at the beginning of the infection natural death and recovery have not yet occurred. This assumption can be taken before the eighth day of incidence. Data is divided into five take-off periods (t.o.p.) of infections, which is represented inside the solid box in Figure 6. Each t.o.p. contains an initial take-off period (t.o.p.) of dengue infection. Here, we define the i.t.o.p. as being within the range of the fourth and the seventh day of the dengue incidence. The correspondents of the bioepidemiological parameter from human and mosquito are given in Table 2.

Figure 6 shows the five possibilities for the t.o.p. The t.o.p. is defined by the minimum to maximum values of r-square (r^2). The number of days for every i.t.o.p. of incidence data depends on the value of r^2 criteria (approximately at the 4–7th day after contact with the infected mosquito). Meanwhile, the i.t.o.p. is defined by the minimum to maximum values of r^2 before the eighth day. Next we determine the rate of the i.t.o.p. of dengue infection (t.o.r) λ for every t.o.p. The value of λ is calculated at intervals of four to seven days for the dengue of dengue infection by using two different scenarios in respect to the incidence data and the value of parameter in Table 2.

In the first scenario we calculate the values of λ and I_0 by using least square method for (27), and, in the second scenario, we calculate the values of λ and K_0 by using least square method for (30), for every i.t.o.p. Those values of λ, I_0, and K_0 are summarized in Table 3.

Using take-off rate values of infection λ in Table 3, we calculate the value of ρ, R_{0F}, R_{0MF}, and R_{0A}, which are given in Tables 4–7 as well as the intervals of $\tilde{\rho}$, \tilde{R}_{0MF}, \tilde{R}_0, \tilde{R}_{0A}, \tilde{R}_{0F}, \tilde{R}_{0MF}, and \tilde{R}_{0A}.

Table 1: Summary of the construction of R_0 and λ estimation for the first scenario.

Scenario	R_0 Estimation
Based on [12] assumption	$R_{0F} = \frac{\lambda^2}{\mu_v (\mu_b + \gamma) + 1}$
The first construction	$R_{0MF} = \frac{\lambda^2}{\mu_v (\mu_b + \gamma) + 1}$
The second construction	$R_{0A} = \frac{\lambda^2}{\mu_v (\mu_b + \gamma) + 1}$
The t.o.r. λ equation	$I(t) = \lambda I_0 + \frac{1}{\mu_v (\mu_b + \gamma) + 1}$

Table 2: Bioepidemiological data of human and mosquito.

Symbol	Definition	Value
b	Biting rate (day$^{-1}$)	1
p_h	Effective contact rate to human	0.01
p_s	Effective contact rate to mosquito	0.25
μ_h	Human mortality rate (day$^{-1}$)	$\frac{1}{365 \times 70}$
μ_v	Mosquito mortality rate (day$^{-1}$)	$\frac{1}{30}$
γ	Recovering rate of human (day$^{-1}$)	$\frac{1}{8}$
ρ	Mosquito per human index	0–7.96
k	Proportion of mosquito per human index	0–2

![Figure 6: A time series of the number of daily new cases of dengue infection in the SB Hospital is from Nov. 05, 2008, to Dec. 2012. The cut off period of new cases of dengue is inside the solid box. Every t.o.p. contains i.t.o.p. of dengue infection.](image-url)
Table 3: The value of λ and I_0 from the first scenario and the value of λ and K_0 for the second scenario, respectively.

Take-off period	Initial take-off period	The values of λ and I_0 for the first scenario	The values of λ and K_0 for the second scenario
I: 103 days	I: 5 days	$\lambda = 0.093, I_0 = 5.4$	$\lambda = 0.091, K_0 = 5.22$
II: 187 days	II: 6 days	$\lambda = 0.009, I_0 = 11.53$	$\lambda = 0.019, K_0 = 11.17$
III: 13 days	III: 6 days	$\lambda = 0.190, I_0 = 3.62$	$\lambda = 0.121, K_0 = 3.78$
IV: 17 days	IV: 5 days	$\lambda = 0.038, I_0 = 16$	$\lambda = 0.048, K_0 = 15.54$
V: 85 days	V: 7 days	$\lambda = 0.171, I_0 = 2.93$	$\lambda = 0.105, K_0 = 3.1$

Table 4: The values of R_{0F} for a given value of λ at the i.t.o.p. and the corresponding values of R_{0MF} for different values of k for the first scenario.

The n days at the i.t.o.p.	λ	R_{0F}	R_{0MF} $k = 0$	R_{0MF} $k = 0.75$	R_{0MF} $k = 1$	R_{0MF} $k = 1.25$	R_{0MF} $k = 2$
II: 7 days	0.009	[1.17]	1.04	1.14	[1.17]	1.20	1.29
IV: 5 days	0.038	[1.66]	1.14	1.55	[1.66]	1.77	2.06
I: 5 days	0.093	[2.56]	1.32	2.32	[2.56]	2.79	3.38
V: 7 days	0.171	[3.80]	1.54	3.38	[3.80]	4.18	5.16
III: 6 days	0.190	[3.89]	1.59	3.64	[3.89]	4.52	5.58

Table 5: The values of R_{0F} for a given value of λ at the i.t.o.p. and the corresponding values of R_{0MF} for different values of k for the second scenario.

The n days at the i.t.o.p.	λ	R_{0F}	R_{0MF} $k = 0$	R_{0MF} $k = 0.75$	R_{0MF} $k = 1$	R_{0MF} $k = 1.25$	R_{0MF} $k = 2$
II: 7 days	0.019	[1.35]	1.07	1.29	[1.35]	1.41	1.58
IV: 5 days	0.048	[1.83]	1.17	1.69	[1.83]	1.96	2.30
I: 5 days	0.091	[2.54]	1.32	2.30	[2.54]	2.77	3.35
V: 7 days	0.105	[2.76]	1.36	2.49	[2.76]	3.01	3.66
III: 6 days	0.121	[3.02]	1.40	2.71	[3.02]	3.30	4.03

Table 6: The values of R_{0F} for every value of λ at each initial t.o.p. and the values of R_{0A} for every change in the value of λ and ρ for the first scenario for calculation of λ.

The n days at the i.t.o.p.	λ	R_{0F}	R_{0A} $\rho = 0.67$	R_{0A} $\rho = 0.89$	R_{0A} $\rho = 1.33$	R_{0A} $\rho = 1.96$	R_{0A} $\rho = 2.11$
II: 7 days	0.009	[1.17]	1.17	1.22	1.32	1.45	1.48
IV: 5 days	0.038	[1.66]	1.50	[1.66]	1.94	2.27	2.34
I: 5 days	0.093	[2.56]	1.70	2.03	[2.56]	3.17	3.30
V: 7 days	0.171	[3.80]	1.12	1.89	2.84	[3.80]	4.00
III: 6 days	0.190	[4.10]	0.67	1.73	2.83	3.89	[4.10]

Table 7: The values of R_{0F} for every value of λ at each initial t.o.p. and the values of R_{0A} for every change in the value of λ and ρ for the second scenario for calculating of λ.

The n days at the i.t.o.p.	λ	R_{0F}	R_{0A} $\rho = 0.61$	R_{0A} $\rho = 1.01$	R_{0A} $\rho = 1.47$	R_{0A} $\rho = 1.60$	R_{0A} $\rho = 1.74$
II: 7 days	0.019	[1.35]	1.35	2.27	2.99	3.16	3.34
IV: 5 days	0.048	[1.83]	—	[1.83]	3.06	3.32	3.59
I: 5 days	0.091	[2.54]	—	—	[2.54]	2.96	3.37
V: 7 days	0.105	[2.76]	—	—	2.27	[2.76]	3.23
III: 6 days	0.121	[3.02]	—	—	1.87	2.48	[3.02]
and \widehat{R}_{0A} and their important notes, which are given in Tables 8–13.

The interpretation of the result in Tables 9–13, for instance, on R_{0F} at t.o.p. III, is that each infective person infected 3.89 other persons via the mosquito vector at the start of the epidemic when the population was susceptible. It is similar meaning for other constructions of R_0 estimation. The maximum basic reproductive ratio, R_{0F} found was 4.10, R_{OMF} found was 5.58, and R_{0A} found was 9.13, which should be compared with the maximum value which was obtained 103 in [12]. Furthermore, R_{0F} is a special case for both R_{OMF} and R_{0A}, in terms of magnitude. Furthermore, R_{OMF} magnitude is a special case of R_{0A} magnitude. R_{0A} magnitude therefore generalized both R_{OF} and R_{OMF} magnitudes. Table 4 shows that the value of R_{OF} increases with an increasing λ. Also, R_{OMF} increases with increasing λ and k. The special cases are $R_{OF} = R_{OMF}$ for $k = 1$, $R_{OMF} < R_{OF}$ for $k < 1$, and $R_{OF} < R_{OMF}$ for $k > 1$. Thus, if we have the value of k from the real-life situation, then the value of R_{OMF} is more realistic for estimating R_0 rather than R_{OF}.

From Tables 4 and 5, with respect to R_{OF}, we obtain that the average secondary case of dengue infection is at most
Moreover, the value of R_0 depends on the value of k. We show that for $k = 1$, then $R_{0F} = R_{0MF}$ (values in bracket). The increases in the value of λ and k cause an increase in the value of R_{0MF}. While the value in the square brackets in Tables 5 and 7 shows the relationship between the value of λ and ρ, so that $R_{0F} = R_{0A}$. We also found that an increase in the value of λ, for a particular value of ρ, does not always cause an increase in the value of R_{0A}. Particular information for the four t.o.p. in Tables 6 and 7 shows that, to obtain the four secondary infection from one primary infection, the number of mosquitoes should be at least twice as large as the human population, whereas in Tables 4 and 5 we do not obtain information about the ratio of the number of mosquitoes and humans. Therefore, R_{0A} provides more complete information than R_{0F} and R_{0MF}.

Next, from Tables 6 and 7, there is the value of ρ such that $R_{0F} = R_{0A}$ for every dengue infection i.t.o.p. (see the value in brackets of Tables 6 and 7). For $k = 1$, there is a certain pair of ρ and λ for every i.t.o.p., such that $R_{0A} = R_{0MF} = R_{0F}$ (Table 4). For the first scenario, if ρ is relatively small then the value of R_{0A} is inversely proportional to the value of λ. For instance, if $\rho = 0.67$ (see t.o.p. II, Table 6) then R_{0A} increases or decreases with an increasing λ. The magnitude relation between λ and R_{0F} is not the case in other values of ρ. Also, we obtained that R_{0F} is a special case of R_{0A} for a certain pair of ρ and λ. Thus, if we have the value of ρ from the real-life situation then the value of R_{0A} is more realistic than R_{0F} when estimating R_{0A} from the real-life dengue epidemic.

Next, in the first scenario, the value of R_{0F} is not only contained in R_{0MF} and R_{0A} but also contained within R_0. Also, the value of R_{0F} belongs to the intersection of R_{0MF} and R_{0A}. This is also the case in the first scenario, where R_{0F} have good precision but not as good a predictor when compared with R_{0MF} and R_{0A}. Whilst R_{0MF} and R_{0A} are good predictors, they do not have a good precision (see Tables 7–13). In the second scenario, the value of R_{0F} is contained within the range of R_{0MF} and R_0 values but not contained in R_{0A} range. Furthermore, the value of R_{0F} is lower than range’s lower end of values of R_{0A} (see Tables 10–13). Meanwhile, it is not enough just to pay attention to R_0 value of the model in (1). Therefore, from the aspect of the efficiency and effectiveness of dengue control, the government should pay attention to the basic reproductive ratio estimation of R_{0A} that is reported here, in order to improve the quality control of the spread of dengue fever.

The important notes in Tables 10–13 show that R_{0F} value (see Table 4 or Tables 5–7) is included in the intervals R_{0MF}, R_{0A}, and R_0 for the first scenario. It means that the value of R_{0F} can still be used as a standard for the control of dengue virus infection. However, to obtain the maximum value of $R_{0A} = 2 - 12$, then the number of mosquitoes would be 2–8 times greater than the number of people, with the takeoff rate of 0.121; see Table 11. Therefore, the use of value of ρ, λ, and R_{0A} as a standard value for the control of a dengue endemicity is more realistic than the others.

From Figures 7–14, not only do we obtain the value of the basic reproductive ratio estimation of R_{0A} which is greater than one but also we do obtain the value which is less than one; for instance, from the first scenario at $\lambda = 0.190$ and $\rho = 0.67$ we have $R_{0A} = 0.67 < 1$ (see Table 7). Also, we can determine the intersection range of a basic reproductive ratio from a different construction of value of λ. Both proposed constructions of R_{0F} are the same when using assumption in [12] for these particular cases. But increasing the number of secondary cases for every t.o.p. will depend on k for the first construction and depend on ρ for the second construction. These results indicate that

Table 12: The value of R_{0F} is related to R_{0MF}, R_{0}, and R_{0A} for the first scenario.

The n days at the i.t.o.p.	λ	R_{0F}	R_{0MF} for $k \epsilon (0, 2]$	Important notes
II: 7 days	0.009	1.17	(1.04, 1.29]	$R_{0F} \in R_{0MF} \cap R_0 \cap R_{0A}$
IV: 5 days	0.038	1.66	(1.14, 2.06]	$R_{0F} \in R_{0MF} \cap R_0 \cap R_{0A}$
I: 5 days	0.093	2.56	(1.32, 3.38]	$R_{0F} \in R_{0MF} \cap R_0 \cap R_{0A}$
V: 7 days	0.171	3.80	(1.54, 5.16]	$R_{0F} \in R_{0MF} \cap R_0 \cap R_{0A}$
III: 6 days	0.190	3.89	(1.59, 5.58]	$R_{0F} \in R_{0MF} \cap R_0 \cap R_{0A}$

Note: R_{0A} and R_0 are from Table 10.

Table 13: The value of R_{0F} is related to R_{0MF}, R_{0}, and R_{0A} for the second scenario.

The n days at the i.t.o.p.	λ	R_{0F}	R_{0MF} for $k \epsilon (0, 2]$	Important notes
II: 7 days	0.019	1.35	(1.07, 1.58]	$R_{0F} \in (R_{0MF} \cap R_0) \cap R_{0A}$
IV: 5 days	0.048	1.83	(1.17, 2.30]	$R_{0F} \in (R_{0MF} \cap R_0) \cap R_{0A}$
I: 5 days	0.091	2.54	(1.32, 3.35]	$R_{0F} \in (R_{0MF} \cap R_0) \cap R_{0A}$
V: 7 days	0.105	2.76	(1.36, 3.66]	$R_{0F} \in (R_{0MF} \cap R_0) \cap R_{0A}$
III: 6 days	0.121	3.02	(1.40, 4.03]	$R_{0F} \in (R_{0MF} \cap R_0) \cap R_{0A}$

R_{0A} and R_0 are from Table 11.
the greater the number of mosquitoes means the higher the number of new cases of dengue and the shorter the period of the i.t.o.p. of dengue infection. Furthermore, R_{0F} estimates of R_{0} are too low when compared to R_{0A}. This is very dangerous in application, since the intervention to control dengue that results from R_{0F} estimation will not be able to stop the disease once it exists. Therefore, prevention of dengue incidences is more appropriate if it is done early, and exactly how early is dependent on R_{0A} estimation.

We used real dengue epidemic data from a dengue epidemic, between the dates Nov. 25, 2008, and 2012 from SB Hospital. This includes the estimation of the basic reproductive ratio at the beginning of t.o.p. of dengue infection by using R_{0F}, R_{0MF}, and R_{0A} for R_{0} estimation. R_{0} magnitude estimation under the same assumption was conducted in [12], resulting in R_{0F}. We propose R_{0MF} and R_{0A} for comparing with R_{0F} for R_{0} estimation from dengue incidence data from SB Hospital. As a results, we get $R_{0MF} > 1.59$ from the first scenario.
scenario (Table 4, Figures 7 and 9) and \mathcal{R}_{0MF} > 1.40 from the second scenario, respectively (Table 6, Figures 7 and 9). From the first scenario, we obtained the basic reproductive ratio was lowest in the t.o.p. II [1.01,2.33] and largest in the t.o.p. III [3.10,9.13] (Table 10, Figures 8 and 10). Furthermore, from the second scenario, the basic reproductive ratio was lowest in the t.o.p. II [2.37,7.93] and largest in the t.o.p. III [5.48,11.78] (Table 11, Figures 8 and 10). We believe that \mathcal{R}_{0MF} and \mathcal{R}_{0A} are a good \mathcal{R}_0 estimation at the beginning of the take-off period of infection. Thus, our results can be considered in the control of a dengue fever epidemic, in the dengue endemic regions of Bandung, Indonesia. But the effects of dengue incidence data were obtained from SB Hospital, Bandung, to the value of \mathcal{R}_0 estimation, and describe the transmission of dengue fever, because only the dengue incidence data of the same serotype were considered.

Some of the results of the basic reproductive ratio estimation for dengue fever in compartmental model were reported in several publications. Favier et al. in [12] estimated a basic reproductive ratio, which ranged widely from 2.0 to 103 for dengue epidemics occurring during the years 1996 to 2003 in 9 Brazilian regions. The upper bound of their range, in estimating the basic reproductive ratio, is significantly higher than the upper bound estimate reported here. The lower bound of their range estimate, of basic reproductive
ratio, is relatively smaller than the lower bound estimate reported here for some take-off period but the others are relatively higher than the lower bound estimate reported here (Tables 4 and 6). Chowell et al. in [11] estimated the basic reproductive ratio, by using the relationship between the basic reproductive ratio and the growth rate in the early phase of dengue fever transmission in Tocuman, Mexico. Their mean estimate of the basic reproductive ratio is 4.22, which is significantly higher than the mean estimate reported here for every take-off period which is obtained by \(R_{0F} \). The weekly number of dengue cases in Peru for the period 1994–2006 was analyzed in [21] which obtained that the basic reproductive ratio had a median 1.76 (0.83–4.46), where these values inside the value of \(R_0 \) are reported here; see Table 7. During the 2000 epidemic, occurring in 12 cities of the state of Sao Paulo, Brazil, [4] estimated that the basic reproductive ratio was in the range [3.6, 12.9]. More recently [14] estimated the reproductive ratio by using the relationship between the basic reproductive ratio and the force of infection of dengue fever transmission in Salvador from periods 1996 to 1997, and 2002. They obtained an estimation of \(R_0 = 2.85(2.77, 3.70) \) in the periods 1996 to 1997, and \(R_0 = 2.65(2.50, 3.30) \) for 2002. The newest report of \(R_0 \) estimation is in [22] for dengue epidemics in 2002 dengue outbreak in Easter Island, Chile. Their mean of the basic reproductive ratio \(R_0 \) at 27.2 is significantly higher than every value of \(R_0 \) estimation reported here for five initial take-off periods of dengue infection from two scenarios for estimating of \(\lambda \). Our estimation results, for the basic reproductive ratio by using \(R_{0F} \), range widely, are from 1.17 to 3.89 for the first scenario and from 1.35 to 3.02 for the second scenario which belongs to the range of the first scenario. Our \(R_{0MF} \) estimation accommodates for the difference of the take-off ratio \(\lambda \) between mosquito and human. If there are no differences in the take-off rate then [12] estimates are exactly the same as ours. Otherwise \(R_{0F} \) could overestimate or underestimate depending on the value of \(k \). Tables 4 and 6 show that \(R_{0A} \) accommodates differences in \(\rho \). \(R_{0F} \) is exactly the same as our second estimates for a certain pair of \(\rho \) and \(\lambda \). Otherwise \(R_{0G} \) could overestimate or underestimate depending on the value of \(\rho \), and so forth. Therefore, our \(R_{0MF} \) and \(R_{0A} \) constructions are more realistic for estimating the value of the basic reproductive ratio, than the \(R_{0F} \).

In the first scenario, the control of dengue fever, which is based on the standard value \(R_{0F} \), is still realistic. Furthermore, better control of dengue fever, when based on the maximum value of \(R_{0MF} \) or maximum value of \(R_{0A} \), is shown in Table 6 and Figures 7–10. While for the second scenario, which is shown by Table 6 and Figures 11–14, it is better to choose one value from the interval as a standard value used to control dengue fever. Therefore, the second construction is better choice, for dengue control strategies in Bandung, Indonesia. Nevertheless, the estimation of \(R_0 \), has limitations, because it is only done from the fourth day until the seventh day, so the effect of the increase in the incidence of dengue \(R_0 \) is no longer considered. Furthermore, the dengue incidence data used, from SB Hospital, do not distinguish between the latent population and the dengue infected human population, so the estimate of \(R_0 \) is limited by the data characteristics. In reality, nobody can distinguish between the latent population and the dengue infected population. Furthermore the latent population has a short incubation time period.

6. Conclusion

We have conducted two different constructions of basic reproductive ratio estimations based on incidence data. These constructions modify \(R_{0F} \) model by allowing the take-off rates of human and mosquito to vary. In the first construction, we assumed that the take-off rate of an infected mosquito is proportional to the take-off rate of a human. This construction leads to a new form of modified basic reproductive ratio estimation for \(R_{0MF} \) was a function of the take-off rate of a human \((\lambda) \) and the take-off rate of a mosquito \((k\lambda) \). A sensitivity analysis indicated that a small variation of a mosquito take-off rate could affect significant change in the basic reproductive ratio. In the second construction we assumed that, during the take-off period, the initial growth of infected humans is slightly affected by the growth of infected mosquitoes, and vice versa. This construction leads to a one-parameter coupling of the initial growth of infected human and mosquitoes. The modified basic reproductive ratio estimation for \(R_{0A} \) resulted from this construction, and it depends on the mosquitoes per person index \(\rho \). This ratio increases for small take-off rate and decreases for larger take-off rate. A numerical analysis of \(R_{0MF}/R_{0F} \) and \(R_{0A}/R_{0F} \) ratios shows variation in a relatively large range of values for \(R_{0F} \), in respect to \((\lambda, k) \) and \((\lambda, \rho) \) for the first and second scenario for determined \(\lambda \).

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the Hibah Stretegis Nasional, under the DIKTI Indonesia scheme. The authors would like to thank to anonymous reviewers for their very helpful suggestions and comments that helped to improve the paper.

References

[1] M. N. Burattini, M. Chen, A. Chow et al., "Modelling the control strategies against dengue in Singapore," Epidemiology and Infection, vol. 136, no. 3, pp. 309–319, 2008.

[2] WHO, "Dengue guidelines for diagnosis, treatment, prevention and control 2012," New Edition Sheet, World Health Organization, Geneva, Switzerland, 2012, http://www.who.int/dengue-control/resources/en/.

[3] C. A. Marques, O. P. Forattini, and E. Massad, "The basic reproduction number for dengue fever," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 10, no. 8, p. 5859, 1994.

[4] E. Massad, F. A. B. Coutinho, M. N. Burattini, and L. F. Lopez, "The risk of yellow fever in a dengue-infested area," Transactions
of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 4, pp. 370–374, 2001.

[5] E.-E. Ooi, K.-T. Goh, and D. J. Gubler, “Dengue prevention and 35 years of vector control in Singapore,” Emerging Infectious Diseases, vol. 12, no. 6, pp. 887–893, 2006.

[6] L. Esteva and C. Vargas, “Analysis of a dengue disease transmission model,” Mathematical Biosciences, vol. 150, no. 2, pp. 131–151, 1998.

[7] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology, Editor in chief Simon Levin, Princeton University, Princeton, NJ, USA, 2000.

[8] P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002.

[9] J. M. Haffernan, R. J. Smith, and L. M. Wahl, “Perspectives on the reproductive ratio,” Journal of The Royal Society Interface, vol. 2, pp. 281–293, 2005.

[10] C. C. Chaves, Z. Feng, and W. Huang, “On computation of R_0 and its role on global stability,” 2009, https://ecommons.cornell.edu/bitstream/1813/32146/1/BU-1553-M.pdf.

[11] G. Chowell, P. D. Dueñas, J. C. Miller et al., “Estimation of the reproduction number of dengue fever from spatial epidemic data,” Mathematical Biosciences, vol. 208, no. 2, pp. 571–589, 2007.

[12] C. Favier, N. Degallier, M. G. Rosa-Freitas et al., “Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil,” Tropical Medicine and International Health, vol. 11, no. 3, pp. 332–340, 2006.

[13] A. K. Supriatna, “Estimating the basic reproduction number of dengue transmission during 2002–2007 outbreaks in Bandung, Indonesia,” Dengue Bulletin, vol. 33, no. 1, pp. 21–32, 2009.

[14] S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. C. M. e Silva, and M. G. L. Teixeira, “Modelling the dynamics of dengue real epidemics,” Philosophical Transactions of the Royal Society B: Mathematical, Physical and Engineering Sciences, vol. 368, no. 1933, pp. 5679–5693, 2010.

[15] M. Amaku, F. Azevedo, M. N. Burattini, F. A. B. Coutinho, L. F. Lopez, and E. Massad, “Interpretations and pitfalls in modelling vector-transmitted infections,” Epidemiology and Infection, vol. 9, pp. 1803–1815, 2014.

[16] G. Macdonald, “The analysis of equilibrium in malaria,” Tropical Diseases Bulletin, vol. 49, no. 9, pp. 813–829, 1952.

[17] L. Esteva and C. Vargas, “A model for dengue disease with variable human population,” Journal of Mathematical Biology, vol. 38, no. 3, pp. 220–240, 1999.

[18] N. Nuraini, E. Soewono, and K. A. Sidarta, “Mathematical model of dengue disease transmission with severe DHF compartment,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 30, no. 2, pp. 143–157, 2007.

[19] P. Pongsumpun and I. M. Tang, “A realistic age structured transmission model for dengue hemorrhagic fever in Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 32, no. 2, pp. 336–340, 2001.

[20] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, pp. 365–382, 1990.

[21] G. Chowell, C. A. Torre, C. Munayco-Escate et al., “Spatial and temporal dynamics of dengue fever in Peru: 1994–2006,” Epidemiology and Infection, vol. 136, no. 12, pp. 1667–1677, 2008.

[22] G. Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, and J. M. Hyman, “The basic reproduction number R_0 and effectiveness of reactive interventions during dengue epidemics: the 2002 dengue outbreak in Easter Island, Chile,” Mathematical Biosciences and Engineering, vol. 10, no. 5-6, pp. 1155–1174, 2013.