Abstract. Let \(p \) be an odd prime number. We study the problem of determining the module structure over the mod \(p \) Steenrod algebra \(A(p) \) of the Dickson algebra \(D_n \) consisting of all modular invariants of general linear group \(GL(n, \mathbb{F}_p) \). Here \(\mathbb{F}_p \) denotes the prime field of \(p \) elements. In this paper, we give an explicit answer for \(n = 2 \). More precisely, we explicitly compute the action of the Steenrod-Milnor operations \(St_{S,R} \) on the generators of \(D_n \) for \(n = 2 \) and for either \(S = \emptyset, R = (i) \) or \(S = (s), R = (i) \) with \(s, i \) arbitrary nonnegative integers.

1. Introduction

Let \(p \) be an odd prime number and let \(GL_n = GL(n, \mathbb{F}_p) \) be the general linear group over the prime field \(\mathbb{F}_p \) of \(p \) elements. This group acts naturally on the algebra \(P_n := E(x_1, x_2, \ldots, x_n) \otimes P(y_1, y_2, \ldots, y_n) \). Here and in what follows, \(E(\ldots, \ldots) \) and \(P(\ldots, \ldots) \) are the exterior and polynomial algebras over \(\mathbb{F}_p \) generated by the indicated variables. We grade \(P_n \) by assigning \(\deg x_i = 1 \) and \(\deg y_i = 2 \).

Dickson showed in \cite{1} that the invariant algebra \(P(y_1, y_2, \ldots, y_n)^{GL_n} \) is a polynomial algebra over \(\mathbb{F}_p \) generated by the Dickson invariants \(Q_{n,s}, 0 \leq s < n \). In \cite{6}, Huynh Mui proved that the Dickson algebra \(D_n = P_n^{GL_n} \) of invariants is generated by the Dickson invariants \(Q_{n,s}, 0 \leq s < n \), and Mui invariants \(R_{n,s_1, \ldots, s_k}, 0 \leq s_1 < \ldots < s_k < n \).

It is well known that \(P_n \) is a module over the Steenrod algebra \(A(p) \). The action of \(A(p) \) on \(P_n \) is determined by the formulas

\[
\beta x_j = y_j, \quad \beta y_j = 0,
\]

\[
P^i(x_j) = \begin{cases} x_j, & i = 0, \\ 0, & i > 0, \end{cases} \quad P^i(y_j) = \begin{cases} y_j, & i = 0, \\ y^p_j, & i = 1, \\ 0, & i > 1, \end{cases}
\]

and subject to the Cartan formulas

\[
\beta(xy) = \beta(x)y + (-1)^{\deg x}\beta(y),
\]

\[
P^r(xy) = \sum_{i=0}^{r} P^i(x)P^{r-i}(y),
\]

for \(x, y \in P_n \) and \(\beta \) is the Bockstein homomorphism (see Steenrod \cite{9}).
Since this action commutes with the one of GL_n, it induces an action of $A(p)$ on Dickson algebra D_n. So D_n is a submodule of P_n. Note that the polynomial algebra $P(y_1, y_2, \ldots, y_n)$ is a submodule of P_n and $P(y_1, y_2, \ldots, y_n)^{GL_n}$ is a submodule of the algebra D_n.

Let τ_s, ξ_i be the Milnor elements of degrees $2p^s - 1$, $2p^t - 2$ respectively in the dual algebra $A(p)^*$ of $A(p)$. In [3], Milnor showed that as an algebra,

$$A(p)^* = E(\tau_0, \tau_1, \ldots) \otimes P(\xi_1, \xi_2, \ldots).$$

Then $A(p)^*$ has a basis consisting of all monomials

$$\tau_{\Sigma S} = \tau_{s_1} \cdots \tau_{s_k} \xi_1^{r_1} \cdots \xi_m^{r_m},$$

with $S = (s_1, \ldots, s_k)$, $0 \leq s_1 < \ldots < s_k$, $R = (r_1, \ldots, r_m)$, $r_i \geq 0$. Let $St^{S,R} \in A(p)$ denote the dual of $\tau_{S} \xi_{R}$ with respect to that basis. Then $A(p)$ has a basis consisting of all operations $St^{S,R}$. For $S = \emptyset$, $R = (r)$, $St^{\emptyset,(r)}$ is nothing but the Steenrod operation P^r. So, we call $St^{S,R}$ the Steenrod-Milnor operation of type (S, R).

The operations $St^{S,R}$ have the following fundamental properties:
- $St^{\emptyset,(0)} = 1$, $St^{(0),0} = \beta$.
- $St^{S,R}(z) = 0$ if $z \in P_n$ and $\deg z < k + 2(r_1 + r_2 + \ldots + r_m)$.
- The Cartan formula

$$St^{S,R}(zt) = \sum_{S_1 \cup S_2 = S \atop R_1 + R_2 = R} (-1)^{\deg z + \ell(S_1) + \ell(S_2)} (S : S_1, S_2) St^{S_1,R_1}(z) St^{S_2,R_2}(t),$$

where $R_1 = (r_1), R_2 = (r_2), R_1 + R_2 = (r_1 + r_2), S_1 \cap S_2 = \emptyset, z, t \in P_n, \ell(S_j)$ means the length of S_j, and

$$(S : S_1, S_2) = \text{sign} \left(\begin{array}{cccc} s_1 & \ldots & s_h & \ldots & s_k \\ s_{1,1} & \ldots & s_{h,1} & \ldots & s_{k,1} \\ \vdots & \ldots & \vdots & \ldots & \vdots \\ s_{1,h} & \ldots & s_{h,h} & \ldots & s_{k,h} \\ s_{1,k} & \ldots & s_{h,k} & \ldots & s_{k,k} \end{array} \right),$$

with $S_1 = (s_{1,1}, \ldots, s_{1,h}), s_{1,1} < \ldots < s_{1,h}$, $S_2 = (s_{2,1}, \ldots, s_{2,k-h}), s_{2,1} < \ldots < s_{2,k-h}$ (see Mui [7]).

The action of $St^{S,R}$ on Dickson invariants $Q_{n,s}$ has partially been studied by many authors. This action for $S = \emptyset, R = (i)$ was explicitly determined by Madsen-Milgram [4], Smith-Switzer [9], Hung-Minh [2], Kechagias [3], Sum [12], Wilkerson [14]. This action for either $S = (s), R = (0)$ or $S = \emptyset, R = (0, \ldots, 0, 1)$ with 1 at the i-th place, was studied by Wilkerson [14], Neusel [8], Sum [13].

In this paper, we explicitly determine the action of the Steenrod-Milnor operations $St^{S,R}$ on Dickson invariants $Q_{2,0}, Q_{2,1}$ and Mui invariants $R_{2,0}, R_{2,1}, R_{2,0,1}$ for either $S = \emptyset, R = (i)$ or $S = (s), R = (i)$.

In Section 2 we recall some results on the modular invariants of the general linear group GL_2 and the action of the Steenrod-Milnor operations on the generators of P_2. In Section 3, we compute the action of the Steenrod operations on Dickson-Mui invariants. Finally, in Section 4, we explicitly determine the action of the Steenrod-Milnor operations $St^{(s),(i)}$ on $Q_{2,0}, Q_{2,1}, R_{2,0}, R_{2,1}$ and $R_{2,0,1}$.
2. Preliminaries

Definition 2.1. Let \(u, v \) be nonnegative integers. Following Dickson \[1\], Mui \[6\], we define

\[
[u; v] = \begin{vmatrix} y_1^p & y_2^p \\ y_1 & y_2 \end{vmatrix}, \quad [1; u] = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}.
\]

In particular, we set

\[
L_2 = [0, 1], \quad L_{2, 0} = [1, 2], \quad L_{2, 1} = [0, 2], \quad M_{2, 0} = [1, 1], \quad M_{2, 1} = [1, 0], \quad M_{2, 0, 1} = x_1 x_2.
\]

The polynomial \([u, v]\) is divisible by \(L_2 \). Then, Dickson invariants \(Q_{2, 0}, Q_{2, 1} \) and Mui invariants \(R_{2, 0}, R_{2, 1}, R_{2, 0, 1} \) are defined by

\[
Q_{2, 0} = L_{2, 0}/L_2, \quad Q_{2, 1} = L_{2, 1}/L_2, \quad R_{2, 0} = M_{2, 0} L_2^{-2}, \quad R_{2, 1} = M_{2, 1} L_2^{p-2}, \quad R_{2, 0, 1} = M_{2, 0, 1} L_2^{p-2}.
\]

Now we prepare some data in order to prove our main results. First, we recall the following which will be needed in the next sections.

Let \(\alpha_i(a) \) denote the \(i \)-th coefficient in \(p \)-adic expansion of a non-negative integer \(a \). That means

\[
a = \alpha_0(a)p^0 + \alpha_1(a)p^1 + \alpha_2(a)p^2 + \ldots,
\]

for \(0 \leq \alpha_i(a) < p, i \geq 0 \).

Denote by \(I(u, v) \) the set of all integers \(a \) satisfying

\[
\alpha_i(a) + \alpha_{i+1}(a) \leq 1, \quad \text{for any } i,
\]

\[
\alpha_i(a) = 0, \quad \text{for either } i < u \text{ or } i \geq v - 2.
\]

Proposition 2.2 (Sum \[13\]). Under the above notations, we have

\[
[u, v] = \sum_{a \in I(u, v)} (-1)^a L_2^{u+p(p-1)a} Q_{2, 1}^{p^{v-1}-a-(p+1)a}.
\]

Lemma 2.3 (Sum \[12\]). Let \(b \) be a nonnegative integer and \(\varepsilon = 0, 1 \). We have

\[
\text{St}^S, R(x_k^\varepsilon y_k^b) = \begin{cases} \binom{b}{R} x_k^\varepsilon y_k^{b+|R|}, & S = \emptyset, \\ \varepsilon \binom{b}{R} x_k^\varepsilon y_k^{p b+|R|}, & S = (s), \quad s \geq 0, \\ 0, & \text{otherwise.} \end{cases}
\]

Here \(\binom{b}{R} = \frac{b!}{(b-r_1-r_2-\ldots-r_m)!r_1!\ldots r_m!} \) for \(r_1 + r_2 + \ldots + r_m \leq b \) and \(\binom{b}{R} = 0 \) for \(r_1 + r_2 + \ldots + r_m > b \) and \(|R| = (p-1)r_1 + (p^2-1)r_2 + \ldots + (p^m-1)r_m \).

Note that for \(R = (i) \), \(\binom{b}{R} = \binom{b}{i} \) is the binomial coefficient. By convention, we set \(\binom{0}{i} = 0 \) for \(i < 0 \).

Applying Lemma 2.3 to \(P^i = \text{St}^{0, (i)} \), we get

Corollary 2.4 (Steenrod \[10\]). Let \(b, i \) be nonnegative integers. Then we have

\[
P^i y_k^b = \binom{n}{i} y_k^{b+(p-1)i}.
\]
Since \((p^r_i) = 0\) in \(F_p\) for \(1 < i < p^e\), we get

Corollary 2.5. For any nonnegative integers \(e, i,\)

\[P^i y^e = \begin{cases} y^e, & i = 0, \\ y^{e+1}, & i = p^e, \\ 0, & \text{otherwise}. \end{cases} \]

Applying Corollary 2.5 and the Cartan formula to \([u, v] = y^1 y^1 y^2 - y^2 y^1 y^2\), we obtain

Lemma 2.6 (Mui [6]). Let \(u, v, i\) be nonnegative integers. Then we have

\[P^i [u, v] = \begin{cases} [u, v], & i = 0, \\ [u + 1, v], & i = p^u, \\ [u, v + 1], & i = p^v, \\ [u + 1, v + 1], & i = p^u + p^v, \\ 0, & \text{otherwise}. \end{cases} \]

Since \(L_2 = [0, 1], L_{2,0} = [1, 2], L_{2,1} = [0, 2]\), from Lemma 2.6 we get

Corollary 2.7. For any nonnegative integers \(i,\)

\[P^i L_2 = \begin{cases} L_2, & i = 0, \\ L_2 Q_{2,1}, & i = p, \\ L_2 Q_{2,0}, & i = p + 1, \\ 0, & \text{otherwise}, \end{cases} \]

\[P^i L_{2,0} = \begin{cases} [0, 1] = L_2 Q_{2,0}, & i = 0, \\ [1, 3] = L_2 Q_{2,0} Q_{2,1}, & i = p^2, \\ [2, 3] = L_2 Q_{2,0}^{p+1}, & i = p^2 + p, \\ 0, & \text{otherwise}, \end{cases} \]

\[P^i L_{2,1} = \begin{cases} [0, 2] = L_2 Q_{2,1}, & i = 0, \\ [1, 2] = L_2 Q_{2,0}, & i = 1, \\ [0, 3] = L_2 (Q_{2,1}^{p+1} - Q_{2,0}^p), & i = p^2, \\ [1, 3] = L_2 Q_{2,0} Q_{2,1}, & i = p^2 + 1, \\ 0, & \text{otherwise}. \end{cases} \]

Combining Lemma 2.3, Corollary 2.5 and the Cartan formula gives

Lemma 2.8. Let \(s, i\) be nonnegative integers. Then we have

\[S^{(s)(i)}[1; u] = \begin{cases} [s, u], & i = 0, \\ [s, u + 1], & i = p^u, \\ 0, & \text{otherwise}. \end{cases} \]

Applying Lemma 2.3 and Corollary 2.5 to \(M_{2,0} = [1; 1], M_{2,1} = [1; 0]\), we obtain
Corollary 2.9. For any nonnegative integer i,

$$P^i(M_{2,0}) = \begin{cases} [1; 1] = M_{2,0}, & i = 0, \\ [1; 2] = M_{2,0}Q_{2,1} - M_{2;1}Q_{2,0}, & i = p, \\ 0, & \text{otherwise}, \end{cases}$$

$$P^i(M_{2;1}) = \begin{cases} [1; 0] = M_{2;1}, & i = 0, \\ [1; 1] = M_{2;0}, & i = 1, \\ 0, & \text{otherwise}. \end{cases}$$

3. The action of the Steenrod operations on Dickson-Mui invariants

First of all, we prove the following which was proved in Hung-Minh [2], by another method.

Theorem 3.1 (Hung-Minh [2]). For any nonnegative integer i and $s = 0, 1$, we have

$$P^iQ_{2,s} = \begin{cases} (-1)^{k+i}Q_{2,0}^{r+1-s}Q_{2,1}^{k+s-r}, & i = kp + r, 0 \leq r - s \leq k < p, \\ 0, & \text{otherwise}. \end{cases}$$

Proof. Recall that $\deg Q_{2,s} = 2(p^2 - p^s) < 2p^2$. Hence, $P^iQ_{2,s} = 0$ for $i \geq p^2$. Suppose that $i < p^2$. Then, using the p-adic expansion of i, we have

$$i = kp + r \text{ for } 0 \leq k, r < p.$$

We prove the theorem by induction on k. We have $P^0Q_{2,s} = Q_{2,s}$. According to Corollary 2.7

$$0 = P^1L_{2,0} = P^1(L_2Q_{2,0}) = L_2P^1Q_{2,0},$$

$$L_2Q_{2,0} = P^1L_{2,1} = P^1(L_2Q_{2,1}) = L_2P^1Q_{2,1}.$$ These equalities imply $P^1Q_{2,0} = 0, P^1Q_{2,1} = Q_{2,0}$. For $1 < r < p$, $P^rL_{2,s} = 0$ and $P^rL_2 = 0$. Using the Cartan formula and Corollary 2.7, we have

$$0 = P^rL_{2,s} = P^r(L_2Q_{2,s}) = L_2P^rQ_{2,s}.$$ This implies $P^rQ_{2,s} = 0$. So the theorem holds for $k = 0$ and any $0 \leq r < p$. Suppose $0 < k < p$ and the theorem is true for $k - 1$ and any $0 \leq r < p$. Using the Cartan formula, Corollary 2.7 and the inductive hypothesis, we get

$$0 = P^iL_{2,s} = P^i(L_2Q_{2,s})$$

$$= L_2P^iQ_{2,s} + L_2Q_{2,1}P^{i-p}Q_{2,s} + L_2Q_{2,0}P^{i-p-1}Q_{2,0}$$

$$= L_2P^iQ_{2,s} + L_2Q_{2,1}(-1)^{k-1}\binom{k - 1 + s}{r}Q_{2,0}^{r+1-s}Q_{2,1}^{k+s-r-1}$$

$$+ L_2Q_{2,0}(-1)^{k-1}\binom{k - 1 + s}{r - 1}Q_{2,0}^{r-s}Q_{2,1}^{k+s-r}$$

$$= L_2P^iQ_{2,s} + (-1)^{k-1}\left(\binom{k - 1 + s}{r} + \binom{k - 1 + s}{r - 1}\right)L_2Q_{2,0}^{r+1-s}Q_{2,1}^{k+s-r}.$$
Lemma 3.2. Let i be a nonnegative integer. Then we have

$$P^i L_2^{p-2} = \begin{cases} (-1)^k(k+1)(k)L_2^{p-2}Q_{2,0}^{k-r}Q_{2,1}^{r-1}, & i = kp + r, 0 \leq r < p, \\ 0, & \text{otherwise}. \end{cases}$$

Proof. Note that $\deg L_2^{p-2} = 2(p-2)(p+1) < 2p^2$. So $P^i L_2^{p-2} = 0$ for $i \geq p^2$. Hence, it suffices to prove the theorem for $i = kp + r$ with $0 \leq k, r < p$.

Since $P^0 = 1$, we have $P^0 L_2^{p-2} = L_2^{p-2}$. If $0 < r < p$ then from Theorem 3.1 the Cartan formula and the relation $Q_{2,0}^p = L_2^{p-1} = L_2 L_2^{p-2}$, we get

$$0 = \delta^r Q_{2,0} = L_2 \delta^r L_2^{p-2}.$$

This implies $\delta^r L_2^{p-2} = 0$. The lemma is true for $k = 0$ and $0 \leq r < p$.

Suppose that $0 < k < p$ and the lemma holds for $k - 1$ and any $0 \leq r < p$. Using the Cartan formula, Theorem 3.1 Corollary 2.9 and the inductive hypothesis, we have

$$(-1)^k \binom{k}{r} Q_{2,0}^{r+1} Q_{2,1}^{k-r} = P^i Q_{2,0} = P^i(L_2 L_2^{p-2}) = L_2 P^i L_2^{p-2} + L_2 Q_{2,1} P^{i-p} L_2^{p-2} + L_2 Q_{2,0} P^{i-p-1} L_2^{p-2} = L_2 P^i L_2^{p-2} + L_2 Q_{2,1} (-1)^{k-1} k \binom{k-1}{r} L_2^{p-2} Q_{2,0}^{k-r} + L_2 Q_{2,0} (-1)^{k-1} k \binom{k-1}{r} L_2^{p-2} Q_{2,0}^{k-r} = L_2 P^i L_2^{p-2} + (-1)^{k-1} k \binom{k-1}{r} + \binom{k-1}{r-1} Q_{2,0}^{r+1} Q_{2,1}^{k-r}.$$

This equality and the relation $\binom{k-1}{r} + \binom{k-1}{r-1} = \binom{k}{r}$ imply the lemma for k and any $0 \leq r < p$.

Theorem 3.3. Let i be a nonnegative integer. We have

$$P^i R_{2,0} = \begin{cases} (-1)^k((r+1) \binom{k}{r} R_{2,0} Q_{2,0}^{r} Q_{2,1}^{k-r} + k \binom{k-1}{r} R_{2,1} Q_{2,0}^{r+1} Q_{2,1}^{k-r-1}), & i = kp + r, 0 \leq r \leq k < p, \\ 0, & \text{otherwise}. \end{cases}$$

Proof. Note that $\deg R_{2,0} = 2p^2 - 3 < 2p^2$. So $P^i R_{2,0} = 0$ for $i \geq p^2$. We prove the theorem for $i = kp + r$ with $0 \leq k, r < p$.

For $k = r = 0$, $P^0 R_{2,0} = R_{2,0}$. For $k = 0, 0 < r < p$, applying the Cartan formula and Corollary 2.9 we get

$$P^r R_{2,0} = P^r (M_{2,0} L_2^{p-2}) = M_{2,0} P^r L_2^{p-2} = 0.$$

The theorem holds for $k = 0$ and $0 \leq r < p$.

Suppose that $0 < k < p$. Using the Cartan formula, Corollary 2.9 and Lemma 2.2, we obtain

$$P^i R_{2,0} = P^i (M_{2,0} L_2^{p-2}) = P^0 M_{2,0} P^i L_2^{p-2} + P^p M_{2,0} P^{i-p} L_2^{p-2}$$

$$= M_{2,0} P^i L_2^{p-2} + (M_{2,0} Q_{2,1} - M_{2,1} Q_{2,0}) P^{i-p} L_2^{p-2}$$

$$= M_{2,0} (-1)^k (k+1) \binom{k}{r} L_2^{p-2} Q_{2,0} Q_{2,1}^{k-r}$$

$$+ (M_{2,0} Q_{2,1} - M_{2,1} Q_{2,0})(-1)^{k-1} \binom{k-1}{r} L_2^{p-2} Q_{2,0} Q_{2,1}^{k-r-1}$$

$$= (-1)^k ((k+1) \binom{k}{r} - k (\binom{k-1}{r})) R_{2,0} Q_{2,0} Q_{2,1}^{k-r}$$

$$+ k (\binom{k-1}{r}) R_{2,1} Q_{2,0}^{r+1} Q_{2,1}^{k-r-1}.$$

This equality and the relation $(k+1) \binom{k}{r} - k \binom{k-1}{r}$ imply the theorem for k and $0 \leq r < p$. \qed

By an analogous argument as given in the proof of Theorem 3.3, we can easily obtain the following

Theorem 3.4. For any nonnegative integer i, we have

$$P^i R_{2,1} = \begin{cases} (-1)^k (k+1) \binom{k}{r} R_{2,1} Q_{2,0}^{k-r} + (\binom{k-1}{r}) R_{2,0} Q_{2,0}^{r+1} Q_{2,1}^{k-r+1}, & i = kp + r, 0 \leq r \leq k < p, \\ 0, & \text{otherwise,} \end{cases}$$

$$P^i R_{2,0,1} = \begin{cases} (-1)^k (k+1) \binom{k}{r} R_{2,0,1} Q_{2,0}^{k-r}, & i = kp + r, 0 \leq r \leq k < p, \\ 0, & \text{otherwise.} \end{cases}$$

4. **On the action of the Steenrod-Milnor operations on Dickson-Mui invariants**

In this section, we compute the action of $S^t(s, i)$ on Dickson-Mui invariants. It is easy to see that $S^t(s, i) Q_{2,0} = 0$. So we need only to compute the action of $S^t(s, i)$ on $R_{2,0}, R_{2,1}$ and $R_{2,0,1}$.

First, we recall the following

Lemma 4.1 (Sum [11]). For any nonnegative integers s, i,

$$S^t(s, i) (M_{2,0}) = \begin{cases} [s, 1], & i = 0, \\ [s, 2], & i = p, \\ 0, & \text{otherwise.} \end{cases}$$

$$S^t(s, i) (M_{2,1}) = \begin{cases} [s, 0], & i = 0, \\ [s, 1], & i = 1, \\ 0, & \text{otherwise.} \end{cases}$$

This lemma can easily be proved by using the Cartan formula and Lemma 2.3.
Theorem 4.2. Let s, i be nonnegative integers. Then we have

$$St^{(s),(i)}R_{2;0} = \begin{cases}
(-k)^{(r+1)} \binom{k}{r+1} Q_{2,0}^{k+1} Q_{2,1}^{k-r+1}, & s = 0, i = kp + r, 0 \leq r \leq k < p, \\
(-1)^{k+1}(-1)^{r+1} \binom{k}{r} Q_{2,0}^{k+1} Q_{2,1}^{k-r}, & s = 1, i = kp + r, 0 \leq r \leq k < p, \\
(-1)^{k+1}(-1)^{r+1} \binom{k}{r} Q_{2,0}^{k+1} Q_{2,1}^{k-r}, & s = 2, i = kp + r, 0 \leq r \leq k < p, \\
- (k - r) \sum_{a \in I(2,s)} (-1)^a Q_{2,0}^{p(a+1)+r+2} Q_{2,1}^{(p+1)a+k-r}, & s > 2, i = kp + r, 0 \leq r \leq k < p, \\
0, & \text{otherwise.}
\end{cases}$$

Proof. Since $\deg R_{2;0} = 2p^2 - 3$, $St^{(s),(i)}R_{2;0} = 0$ for $i \geq p^2$. Suppose $i < p^2$, then using the p-adic expansion of i, we have $i = kp + r$ for $0 \leq r < p$.

We have $St^{(s),(0)}R_{2;0} = St^{(s),(0)}(M_{2;0} L_{2;2}^{p-2}) = St^{(s),(0)} M_{2;0} P^0 L_{2;2}^{p-2} = [s, 1] L_{2;2}^{p-2}$.

For $0 < r < p$, using the Cartan formula, Lemma 3.2 and Lemma 4.1, we get

$$St^{(s),(r)}R_{2;0} = St^{(s),(r)}(M_{2;0} L_{2;2}^{p-2}) = St^{(s),(0)}(M_{2;0}) P^r L_{2;2}^{p-2} = 0.$$

The above equalities and Proposition 2.2 imply the theorem for $k = 0$.

For $0 < k < p$, using the Cartan formula, Lemma 3.2 and Lemma 4.1, we obtain

$$St^{(s),(i)}R_{2;0} = St^{(s),(i)}(M_{2;0} L_{2;2}^{p-2})$$

$$= St^{(s),(0)} M_{2;0} P^i L_{2;2}^{p-2} + St^{(s),(p)} M_{2;0} P^{i-p} L_{2;2}^{p-2}$$

$$= [s, 1] (-k)^{k+1} \binom{k}{r+1} Q_{2,0}^{k+1} Q_{2,1}^{k-r}$$

$$+ [s, 2] (-1)^{k+1} \binom{k}{r} Q_{2,0}^{k+1} Q_{2,1}^{k-r+1}.$$

Combining this equality and Proposition 2.2, we obtain the theorem. \square

Theorem 4.3. For any nonnegative integers $s, i,$

$$St^{(s),(i)}R_{2;1} = \begin{cases}
(-1)^k(-1)^{r+1} \binom{k}{r} Q_{2,0}^{k+1} Q_{2,1}^{k-r+1}, & s = 0, i = kp + r, 0 \leq r \leq k < p, \\
(-1)^{k+1}(-1)^{r+1} \binom{k}{r} Q_{2,0}^{k+1} Q_{2,1}^{k-r}, & s = 1, i = kp + r, 0 \leq r \leq k < p, \\
(-1)^{k+1}(-1)^{r+1} \binom{k}{r} \sum_{a \in I(0, s)} (-1)^a Q_{2,0}^{p(a+1)+r+1} Q_{2,1}^{(p+1)a+k-r}$$

$$+ \binom{k}{r+1} \sum_{a \in I(1, s)} (-1)^a Q_{2,0}^{p(a+1)+r+1} Q_{2,1}^{(p+1)a+k-r+1}, & s > 1, i = kp + r, 0 \leq r \leq k < p, \\
0, & \text{otherwise.}
\end{cases}$$

Proof. Since $\deg R_{2;1} = 2(p^2 - p) - 1$, $St^{(s),(i)}R_{2;1} = 0$ for $i \geq p^2$. Suppose $i < p^2$ and $i = kp + r$ with $0 \leq r < p$. Using the Cartan formula and Lemma 4.1, we have

$$St^{(s),(0)}R_{2;1} = St^{(s),(0)}(M_{2;1}) L_{2;2}^{p-2} = [s, 0] L_{2;2}^{p-2}.$$
From this and Proposition 2.2 we see that the theorem is true for $i = 0$.

For $i > 0$, using the Cartan formula, Lemma 3.1 and Lemma 3.2 we obtain

$$St^{(s),(i)}_{2:1} R_{2:1} = St^{(s),(0)}_{2:1} M_{2:1}^{i} L_{2}^{p-2} + St^{(s),(1)}_{2:1} M_{2:1}^{i-1} L_{2}^{p-2}$$

$$= [s, 0](-1)^{k}(k + 1) \binom{k}{r} L_{2}^{p-2} Q_{2,0}^{k-r}$$

$$+ [s, 1](-1)^{k}(k + 1) \binom{k}{r-1} L_{2}^{p-2} Q_{2,0}^{r-1} Q_{2,1}^{k-r+1}$$

$$= (-1)^{k}(k + 1) \binom{k}{r} [s, 0] L_{2}^{p-2} Q_{2,0}^{k-r}$$

$$+ \binom{k}{r-1} [s, 1] L_{2}^{p-2} Q_{2,0}^{r-1} Q_{2,1}^{k-r+1}.$$

Now the theorem follows from this equality and Proposition 2.2

Theorem 4.4. Suppose s, i are nonnegative integers. We have

$$St^{(s),(i)}_{2:0,1} = \begin{cases} (-1)^{k+1}(k+1) \binom{k}{r} R_{2:1} Q_{2,0}^{k-r}, & s = 0, i = kp + r, 0 \leq r \leq k < p, \\ (-1)^{k+1}(k+1) \binom{k}{r} R_{2:0} Q_{2,0}^{k-r}, & s = 1, i = kp + r, 0 \leq r \leq k < p, \\ (-1)^{k}(k+1) \binom{k}{r} \left(R_{2:1} \sum_{a \in I(1,s)} (-1)^{a} Q_{2,0}^{p^{a+1}+r} Q_{2,1}^{p^{a+1}-(p+1)a+k-r} - R_{2:0} \sum_{a \in I(0,s)} (-1)^{a} Q_{2,0}^{p^{a+r}} Q_{2,1}^{p^{a+r}-(p+1)a+k-r} \right), & s > 1, i = kp + r, 0 \leq r \leq k < p, \\ 0, & \text{otherwise}. \end{cases}$$

Proof. Since $\deg R_{2:0,1} = (p - 2)(p + 1) + 2$, $St^{(s),(i)}_{2:0,1} = 0$ for $i \geq p^2$. Suppose $i < p^2$ and $i = kp + r$ with $0 \leq k, r < p$. Using the Cartan formula and Lemma 3.2 we have

$$St^{(s),(0)}_{1} (x_1 x_2) = y_1^{p^r} x_2 - x_1 y_2^{p^r} = -[1; s] = (M_{2:1}[1, s] - M_{2:0}[0, s]) / L_2.$$

Since $R_{2:0,1} = x_1 x_2 L_{2}^{p-2}$, using the Cartan formula, the above equality and Lemma 3.2 we get

$$St^{(s),(i)}_{2:0,1} = St^{(s),(0)}_{1} (x_1 x_2) L_{2}^{p-2}$$

$$= (M_{2:1}[1, s] - M_{2:0}[0, s]) (-1)^{k}(k + 1) \binom{k}{r} L_{2}^{p-3} Q_{2,0}^{k-r}. $$

Combining this equality and Proposition 2.2 we get the theorem.

References

[1] L. E. Dickson, *A fundamental system of invariants of the general modular linear group with a solution of the form problem*, Trans. Amer. Math. Soc. 12 (1911), 75-98.

[2] N. H. V. Hung and P. A. Minh, *The action of the mod p Steenrod operations on the modular invariants of linear groups*, Vietnam J. Math. 23 (1995), 39-56.
[3] N. E. Kechagias, The Steenrod algebra action on generators of rings of invariants of subgroups of $GL_n(\mathbb{Z}/p\mathbb{Z})$, Proc. Amer. Math. Soc. 118 (1993), 943-952.

[4] I. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies No. 92, Princeton University Press, Princeton N.J (1979).

[5] J. Milnor, Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.

[6] H. Mui, Modular invariant theory and the cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sec. IA Math. 22 (1975), 319-369.

[7] H. Mui, Cohomology operations derived from modular invariants, Math. Z. 193 (1986), 151-163.

[8] M. D. Neusel, Inverse invariant theory and Steenrod operations, Mem. Amer. Math. Soc. 146 (2000), x+158.

[9] L. Smith and R. Switzer, Realizability and non-realizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), 303-313.

[10] N. E. Stenrod, Cohomology operations, Lectures by N. E. Steenrod written and revised by D. B. A. Epstein, Annals of Mathematics No. 50, Princeton University Press, Princeton N.J (1962).

[11] N. Sum, On the action of the Steenrod algebra on the modular invariants of special linear group, Acta Math. Vietnam. 18 (1993), 203-213.

[12] N. Sum, Steenrod operations on the modular invariants, Kodai Math. J. 17 (1994), 585-595.

[13] N. Sum, The action of the primitive Steenrod-Milnor operations on the modular invariants, Geometry and Topology Monographs, 11 (2007), 349-367.

[14] C. Wilkerson, A primer on the Dickson invariants, Contemporary Mathematics, Amer. Math. Soc. 19 (1983), 421-434.

Department of Mathematics, University of Quynhon
170 An Duong Vuong, Quynhon, Vietnam
E-mail address: nguyensum@qnu.edu.vn