THE NUMBER OF EQUATIONS NEEDED TO DEFINE AN ALGEBRAIC SET

GENNADY LYUBEZNIK

Let \(B \) be a commutative Noetherian ring, \(X = \text{Spec} \, B \) the associated affine scheme, \(I \subset B \) an ideal and \(V = V(I) \subset X \) the closed subset defined by \(I \).

Definition. Elements \(f_1, \ldots, f_s \in I \) define \(V \) set-theoretically (equivalently, \(V \) is defined set-theoretically by \(s \) equations \(f_1 = 0, f_2 = 0, \ldots, f_s = 0 \)) if \(\sqrt{(f_1, \ldots, f_s)} = \sqrt{I} \).

Hilbert's Nullstellensatz implies that in the case when \(B \) is a finitely generated algebra over an algebraically closed field \(k \), this definition agrees with the usual one, i.e., all \(f_1, \ldots, f_s \) vanish at a \(k \)-rational point if and only if it belongs to \(V \). In the sequel "defined" always means "defined set-theoretically".

The question we are dealing with here concerns the minimum number of equations needed to define a given \(V \subset X \). A classical result that goes back to L. Kronecker [Kr] says that if \(B \) is \(n \)-dimensional, then \(n+1 \) equations would suffice for every \(V \subset X \). Our first theorem describes those \(V \subset X \) which can be defined by \(n \) equations.

Theorem A. Let \(k \) be an algebraically closed field, \(X \) a smooth affine \(n \)-dimensional variety over \(k \) with coordinate ring \(B \), and \(V = V' \cup P_1 \cup P_2 \cup \cdots \cup P_r \) an algebraic subset of \(X = \text{Spec} \, B \), where \(V' \) is the union of irreducible components of positive dimensions and \(P_1, P_2, \ldots, P_r \) some isolated closed points (which do not belong to \(V' \)). Then \(V \) can be defined by \(n \) equations if and only if one of the following conditions holds.

(i) \(r = 0 \), i.e., \(V \) consists only of irreducible components of positive dimension.

(ii) \(V' \) is empty, i.e., \(V \) consists only of closed points and there exist positive integers \(n_1, n_2, \ldots, n_r \) such that \(n_1 P_1 + n_2 P_2 + \cdots + n_r P_r = 0 \) in \(A_0(X) \).

(iii) \(V' \) is nonempty, \(r \geq 1 \) and there exist positive integers \(n_1, n_2, \ldots, n_r \) such that \(n_1 P_1 + n_2 P_2 + \cdots + n_r P_r \) belongs to the image of the natural map \(A_0(V') \to A_0(X) \) induced by the inclusion \(V' \to X \).

Here \(A_0(\cdot) \) stands for the group of zero-cycles modulo rational equivalence [Fu].

Sketch of Proof. Our proof consists of three steps. In Step 1 we construct an ideal \(I \subset B \) such that \(\sqrt{I} \) is the defining ideal of \(V \), and in addition \(I \) has some other special properties. In Step 2 we, in a special way, pick some ideals \(Q_1, \ldots, Q_n \) such that \(\sqrt{Q_i} \) is a maximal ideal containing \(I \) for each \(i \) and \(J/J^2 \) is \(n \)-generated, where \(J = I \cap Q_1 \cap \cdots \cap Q_n \). In Step 3 we...
prove that the 0-dimensional Segre class of J equals 0, so by [Mu2, Theorem 2] and the Suslin cancellation theorem [Su], J is n-generated.

If B is not assumed to be regular, the result of Theorem A need not hold. In fact, for every $n \geq 0$, we have constructed an example of a finitely generated n-dimensional algebra B over a suitable algebraically closed field, such that its singular locus consists of just one closed point and for every d between 1 and $n - 1$ it contains a d-dimensional subvariety which cannot be defined by n equations.

Storch [St] and Eisenbud-Evans [EE] proved that every algebraic set in \mathbb{A}_k^n can be defined by n equations, while Cowsik-Nori [CN] proved that every curve in \mathbb{A}_k^n, where $\text{char} k = p > 0$, can be defined by $n - 1$ equations. Our next theorem sharpens these results.

Theorem B. If $\text{char} k = p > 0$, then every algebraic set $V \subset \mathbb{A}_k^n$ consisting only of irreducible components of positive dimensions can be defined by $n - 1$ equations.

Sketch of Proof. The main idea of the proof is contained in the following lemma.

Lemma. Let $f_1, \ldots, f_r, g_1, \ldots, g_r \in I$ and $a \in B$ such that
(i) f_1, \ldots, f_r generates I_a up to radical.
(ii) g_1, \ldots, g_r generate $(I + (a))/(a) \subset B/(a)$ up to radical. Then there exist $r + 1$ elements h_1, \ldots, h_{r+1} which generate I up to radical.

Now assume all irreducible components of V have dimension $d \geq 1$ and use induction on d, the case $d = 1$ being settled by [CN]. Let $I = I(V) \subset B = k[x_1, \ldots, x_n]$ be the defining ideal of V. By a change of variables we can assume that $k[x_n]$ has zero intersection with every minimal prime overideal of I. By induction the extension of I in $k(x_n)[x_1, \ldots, x_{n-1}]$ can be generated up to radical by $n - 2$ elements. Thus there exists a square-free polynomial $a(x_n)$ such that $I_a(x_n)$ can be generated up to radical by $n - 2$ elements. Since $k[x_n]/a(x_n)$ is a product of fields, by induction $(I + (a))/(a) \subset (k[x_n]/a(x_n))[x_1, \ldots, x_{n-1}]$ also can be generated up to radical by $n - 2$ elements. Now by the lemma, I can be generated up to radical by $n - 1$ elements.

If V is not equidimensional, the proof is considerably harder, but the main idea remains the same.

The rest of this paper is devoted to a question of M. P. Murthy [Mu1], who asked whether every locally complete intersection (l.c.i.) subscheme $V \subset \mathbb{A}_k^n$ is a set-theoretic complete intersection. The answer is known to be positive if $\dim V = 1$ [Fe, Sz, Bo, MK].

We generalize this result as follows:

Theorem C. Every l.c.i. subscheme $V \subset \mathbb{A}_k^n$ of constant positive dimension can be defined by $n - 1$ equations.

A proof of this theorem is similar to that of the equidimensional case of Theorem B. □
Moreover, we have obtained the following:

Proposition. Let k be an algebraically closed field of characteristic $p > 0$, I a l.c.i. of equidimension d in $B = k[x_1, \ldots, x_n]$ and $n \geq 3d$. Set $A = B/\sqrt{I}$. Then there exists a l.c.i. $J \subset I$ such that $\sqrt{J} = \sqrt{I}$ and $J/J \cdot \sqrt{I}$, the reduced conormal module of J, is isomorphic to $P \oplus A^{n-2d+1}$, where P is a projective A-module of rank $d - 1$ with trivial determinant.

Sketch of Proof. By the Ferrand construction [Fe, p. 24; Va, p. 89] we are reduced to the case when the determinant of the conormal module of I is trivial. Let $c_d \in F^d(Spec \ A)$ be the top Chern class of the reduced conormal module of I, where $F^d(Spec \ A)$ is the dth component of the Grothendieck γ-filtration [FL, p. 48]. Since $F^d(Spec \ A)$ is divisible, we can write $c_d = (1-p^d)c$. Let Q be a projective A-module of rank d such that $Q - A^d \in F^d(Spec \ A)$ and the top Chern class of Q equals c. Set $I/I \cdot \sqrt{I} \approx M \oplus Q$, where M is projective of rank $n - 2d \geq d$. We show that there exists a l.c.i. $J_1 \subset I$ such that $\sqrt{J_1} = \sqrt{I}$ and the reduced conormal module of J_1 is $M \oplus F(Q)$, where $F(Q)$ is the Frobenius of Q. It is straightforward to compute that the top Chern class of $M \oplus F(Q)$ is zero. Taking the iterated Frobenius of J_1, if necessary, we obtain, by [Mu2, Theorem 5] an l.c.i. J with required properties. □

Theorem D. Let k be any algebraically closed field of characteristic $p > 0$ and $V \subset A^n_k$ a locally complete intersection subscheme of constant dimension d, such that $2 \leq d \leq n - 4$. Then V can be defined by $n - 2$ equations. In particular, every locally complete intersection surface in A^n_k, where $n \geq 6$, is a set-theoretic complete intersection.

Proof. By induction, using the lemma we reduce to the case $d = \dim V = 2$. By the proposition there exists l.c.i. $J \subset I$ such that $\sqrt{J} = \sqrt{I}$ and the reduced conormal module of J is free. Now by [MK, Theorem 5] J is $(n-2)$-generated. □

Theorem E. Let k be any algebraically closed field of characteristic 2 and $V \subset A^n_k$ a locally complete intersection subscheme of constant dimension d, such that $3 \leq d \leq n - 6$. Then V can be defined by $n - 3$ equations. In particular, every locally complete intersection threefold in A^n_k, where $n \geq 9$, is a set-theoretic complete intersection.

Sketch of Proof. By an inductive argument with the help of the lemma we are reduced to the case $d = 3$. By the proposition, we get $J \subset I$ such that $\sqrt{J} = \sqrt{I}$ and the reduced conormal module of J is $P \oplus A^{n-5}$, where P is projective of rank 2 with trivial determinant. By a special argument in characteristic 2, we then obtain a new l.c.i. ideal $J_1 \subset J$ such that $\sqrt{J_1} = \sqrt{I}$ and the reduced conormal module of J_1 is free. Now we are done by [MK, Theorem 5]. □

Complete proofs will appear elsewhere.
REFERENCES

[Bo] M. Boratynski, A note on set-theoretic complete intersection ideals, J. Algebra 54 (1978), 1–5.
[CN] R. C. Cowsik and M. V. Nori, Affine curves in characteristic p are set-theoretic complete intersections, Invent. Math. 45 (1978), 111–114.
[EE] D. Eisenbud and E. G. Evans, Every algebraic set in n-space is the intersection of n hypersurfaces, Invent. Math. 19 (1973), 107–112.
[Fe] D. Ferrand, Courbes gauches et fibres de rang 2, C. R. Acad. Sci. Paris 281 (1975), 345–347.
[Fu] W. Fulton, Intersection theory, Springer-Verlag, 1984.
[FL] W. Fulton and S. Lang, Riemann-Roch algebra, Springer-Verlag, 1985.
[Kr] L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grossen, J. Reine Angew. Math. 92 (1882), 1–23.
[MK] N. Mohan Kumar, On two conjectures about polynomial rings, Invent. Math. 46 (1978), 225–236.
[Mu1] P. Murthy, Complete intersections, Conference on Commutative Algebra, Queen’s Papers Pure Appl. Math. 42 (1975), 196–211.
[Mu2] , Zero-cycles, splitting of projective modules and number of generators of a module, Bull. Amer. Math. Soc. 19 (1988), 315–317.
[St] U. Storch, Bemerkung zu einem Satz von M. Kneser, Arch. Math. 23 (1972), 403–404.
[Su] A. Suslin, A cancellation theorem for projective modules over algebras, Soviet Math. Dokl. 18, no. 5 (1977), 1281–1284.
[Sz] L. Szpiro, Lectures on equations defining space curves, Tata Inst. Fund. Research, Bombay; Springer-Verlag, 1979.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637