The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma
McHugh, Angela; Fernandes, Kenneth; Chinner, Nerime; Ibrahim, Adel F. M.; Garg, Amit K.; Boag, Garry

Published in:
Journal of Investigative Dermatology

DOI:
10.1016/j.jid.2019.09.024

Publication date:
2019

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
McHugh, A., Fernandes, K., Chinner, N., Ibrahim, A. F. M., Garg, A. K., Boag, G., Hepburn, L. A., Proby, C. M., Leigh, I. M., & Saville, M. K. (2019). The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology. https://doi.org/10.1016/j.jid.2019.09.024

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma

Angela McHugh, Kenneth Fernandes, Nerime Chinner, Adel F.M. Ibrahim, Amit K. Garg, Garry Boag, Lydia A. Hepburn, Charlotte M. Proby, Irene M. Leigh, Mark K. Saville

PII: S0022-202X(19)33384-6
DOI: https://doi.org/10.1016/j.jid.2019.09.024
Reference: JID 2192

To appear in: The Journal of Investigative Dermatology

Received Date: 5 October 2018
Revised Date: 27 August 2019
Accepted Date: 23 September 2019

Please cite this article as: McHugh A, Fernandes K, Chinner N, Ibrahim AFM, Garg AK, Boag G, Hepburn LA, Proby CM, Leigh IM, Saville MK, The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma, The Journal of Investigative Dermatology (2019), doi: https://doi.org/10.1016/j.jid.2019.09.024.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma.

Angela McHugh*¹, Kenneth Fernandes*¹, Nerime Chinner¹, Adel F.M. Ibrahim², Amit K. Garg², Garry Boag¹, Lydia A. Hepburn¹, Charlotte M. Proby¹,³, Irene M. Leigh¹,⁴, and Mark K. Saville¹

* These authors made equal contributions

¹Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK. ²MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. ³Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK. ⁴Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.

Correspondence to: Mark K. Saville, email: m.k.saville@dundee.ac.uk

Running title: Targeting the ubiquitin system in cSCC

Abbreviations: anaphase promoting complex/cyclosome (APC/C), cullin-RING ligase (CRL), cutaneous squamous cell carcinoma (cSCC), endosomal sorting complex required for transport (ESCRT), recessive dystrophic epidermolysis bullosa (RDEB), spindle assembly checkpoint (SAC), ubiquitin-like (UBL).
ABSTRACT

We carried out an siRNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like (UBL) system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL and components of the anaphase promoting complex/cyclosome (APC/C). Specifically attenuating CRL4^{CDT2} by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells.
INTRODUCTION

There is need for improved treatment for cSCC in high-risk recessive dystrophic epidermolysis bullosa (RDEB) and immunocompromised patients, including transplant recipients and in the general population (Harwood et al., 2016, Mellerio et al., 2016). This includes better systemically and locally-delivered therapy. The cumulative risk of death from cSCC in RDEB patients is 80% by the age of 55 and overall cSCC causes 25% of skin cancer-related deaths. cSCC, including multiple primary tumours in high-risk individuals, also results in considerable morbidity.

The ubiquitin/UBL system plays a widespread role in regulating cellular pathways and processes. It contains multiple classes of proteins including: E1 activating enzymes, E2 conjugating enzymes, E3 ligases, ubiquitin/UBL-binding proteins, ATPases and proteases. Considerable work has been carried out to target this system for cancer therapy and there are a growing number of small-molecule modulators.

We have shown that proteasome and ubiquitin E1 inhibitors have therapeutic potential for cSCC (McHugh et al., 2018). In this study we screened using an siRNA library complementary to over 1000 genes to identify additional components of the ubiquitin/UBL system that could be targeted for cSCC therapy. We assessed the cSCC selectivity compared to normal skin cells of knockdown and small-molecule inhibition of targets identified in the screen. We also initiated studies to investigate mechanisms of anti-cSCC activity.
RESULTS AND DISCUSSION

siRNA Screening for Potential Therapeutic Targets

A cell line derived from a primary RDEB cSCC (SCCRDEB4) was transfected with pools of 4 siRNA targeting 1,186 ubiquitin/UBL pathway-linked genes (MacKay et al., 2014). Cell viability was reduced by >65% by siRNA pools targeting 66 genes (Supplementary Figure S1). Of these 6 encoded for ubiquitin system-related components of the spliceosome which we have investigated in detail (Hepburn et al., 2018). To identify genuine targets we determined the effects on viability/death in SCCRDEB4 cells of 4 individual siRNAs. Variations in the responses to siRNAs could arise from differences in their effectiveness in knocking down the target and its splice variants as well as false negative or false positive off-target effects. At least 2 siRNAs reduced cell viability (live cell number) by >60% for 34 genes and increased cell death to >30% for 22 genes (Figure 1). Some of these genes encoded for proteins that are subunits of the same complexes others for proteins that participate in the same cellular processes. For the majority of the remaining targets only a single siRNA had a robust effect on cell viability/death (Supplementary Figure S2).

Additional Target Validation

To further investigate the therapeutic potential of suppression of genes for which multiple individual siRNAs had a phenotype we determined the effects of the siRNAs on viability/death in normal skin cells (NHF and NHK) and cell lines derived from metastasis in an RDEB (SCCRDEBMet) and a transplant patient (SCCTMet). A cytotoxic siRNA was used in each experiment as a control for transfection efficiency. In addition, we determined the extent of target protein knockdown in normal and cSCC cells. The effects of small-
molecule inhibitors on viability/death in normal skin cells and cSCC cell lines were also evaluated.

MARCH4

MARCH4 is a little-studied transmembrane E3 ubiquitin ligase that is localised to the Golgi apparatus (Bartee et al., 2004, Bauer et al., 2017, Samji et al., 2014). Ectopically expressed MARCH4 increases lysosomal degradation of several proteins that promote immune responses and its knockdown increases cell surface levels of the scaffolding protein tetraspanin CD81 (Bartee et al., 2010). However, there are likely to be additional MARCH4 substrates (Nathan and Lehner, 2009).

MARCH4 siRNAs had little effect on death in normal skin cells while 2 MARCH4 siRNAs caused a reduction in viability and increased death in cSCC cell lines (Figure 2a). We were unable to detect MARCH4 protein with available antibodies (data not shown). However, we confirmed that MARCH4 mRNA levels were reduced in NHK by MARCH4 siRNAs and that in SCCRDEB4 cells the siRNAs most potent in killing cSCC cells caused the largest reduction in MARCH4 mRNA levels (Figure 2b).

p97/VCP

p97 is an ATPase which unfolds ubiquitinated proteins and extracts them from membranes, cellular structures and complexes (van den Boom and Meyer, 2018, Ye et al., 2017). Through this p97 can facilitate substrate degradation by the proteasome and it can also regulate substrate activity, complex assembly and membrane fusion. p97 participates in a wide range of cellular processes. It maintains protein homeostasis (proteostasis) by promoting the proteasomal degradation of misfolded proteins associated with the endoplasmic reticulum, ribosomes and mitochondria. It also regulates lysosomes and autophagosome maturation.
Other roles of p97 include the control of key proteins involved in signal transduction, DNA replication and DNA repair. Distinct p97 complexes are involved in particular cellular processes: p97 associates with numerous adaptors and cofactors which recruit substrates and participate in substrate processing (Stach and Freemont, 2017, Ye et al., 2017).

p97 siRNAs killed cSCC lines but not normal skin cells while p97 was depleted in both NHK and SCCRDEB4 cells (Figure 2c and d). We investigated whether p97 knockdown-induced death was dependent on pathways that sense defects in proteostasis. Death due to depletion of p97 was attenuated by suppression of proteins involved in responses to the accumulation of unfolded proteins in the endoplasmic reticulum (ATF6, IRE1α/JNK, PKR/eIF2α) and to amino acid depletion (GCN2/eIF2α) (Figure 2e) (McConkey, 2017, Parzych et al., 2015). cSCCs have frequent gene copy number changes and UV-induced cSCCs in particular have extremely high gene mutation rates (Cho et al., 2018, Inman et al., 2018, South et al., 2014). These alterations can confer greater dependency on mechanisms of proteostasis by causing imbalanced protein production which can generate free components of complexes that cannot fold appropriately and through the generation of proteins that are misfolded due to mutations (Deshaies, 2014, Vekaria et al., 2016). Consistent with greater basal proteotoxic stress there is an increase in the expression of proteasome subunits and Ser51 phosphorylated eIF2α in cSCC cell lines compared to normal skin cells (McHugh et al., 2018).

Numerous small-molecule p97 inhibitors have been developed (Chapman et al., 2015, Vekaria et al., 2016, Ye et al., 2017). The well characterised p97 inhibitors DBeQ and NMS-873 were at best modestly selective for effects on viability/death in cSCC lines compared to normal skin cells and the sensitivity of the most responsive cSCC lines was around average for tumour-derived cells (Supplementary Figure S3) (Magnaghi et al., 2013, Parzych et al., 2015). It is possible that the differences in the cSCC selectivity of these inhibitors and p97
knockdown are due to divergent effects on the spectrum of p97-regulated pathways. For example, the effects of p97 knockdown could be influenced by competition of binding partners for residual p97. The potency of p97 inhibitors can be differentially affected by p97-interacting proteins potentially resulting in preferential effects of inhibitors on particular complexes (Gui et al., 2016). It would be of interest to compare additional p97 inhibitors to determine if greater cSCC selectivity can be achieved.

USP8

Sorting of endocytosed activated cell surface receptors for lysosomal degradation or recycling to the plasma membrane is mediated by endosomal sorting complexes required for transport (ESCRT). Ubiquitination of receptors promotes ESCRT-mediated lysosomal trafficking. USP8/UBPY-mediated deubiquitination of some ESCRT-associated receptors can facilitate their recycling and USP8 also regulates endocytic sorting by stabilising ESCRT-0 proteins HGS, STAM and STAM2 (D'Arcy et al., 2015, Niendorf et al., 2007, Wright et al., 2011).

USP8 siRNAs reduced viability and increased death in cSCC lines but had little effect in normal skin cells (Figure 3a). The anti-cSCC potency of these siRNAs reflected their ability to reduce USP8 protein levels (Figure 3b). siRNA USP8(A) depleted USP8 to the greatest extent and this was associated with reduced expression of growth factor receptors MET, EGFR and ERBB2 along with HGS and STAM2. siRNAs USP8(B) and (C) reduced expression of MET and STAM2. This is consistent with a role of USP8 in protecting these proteins from degradation.

Small-molecule USP8 inhibitors have been identified including DUBs-IN-3/compound 22c (Colombo et al., 2010, D'Arcy et al., 2015). DUBs-IN-3 killed cSCC lines at lower concentrations than normal skin cells (Figure 3e). Reduced MET, EGFR and STAM2 expression was consistent with attenuation of USP8 at DUBs-IN-3 concentrations.
that selectively increased death in cSCC cells (Figure 3d). We observed that directly targeting MET, EGFR or ERBB2 was sufficient to impact on cSCC cell viability (Figure 3c). MET and EGFR/ERBB2 signalling pathways can contribute to driving cSCC development and a subset of cSCCs respond to EGFR inhibitors (Cataisson et al., 2016, Harwood et al., 2016, Mellerio et al., 2016). Suppression of USP8 could provide a means to simultaneously interfere with multiple therapeutically relevant receptors which could overcome resistance due to receptor redundancy or cross-talk.

APC/C

The APC/C is a multisubunit E3 ligase that coordinates transitions through the cell cycle by targeting key proteins for proteasomal degradation (Alfieri et al., 2017, Zhou et al., 2016). CDC20 and CDH1/FZR1 are coactivators that associate with the core APC/C complex at different stages of the cell cycle and recruit overlapping but distinct sets of substrates for ubiquitination. APC/C\(^{CDC20}\) drives progression through mitosis (Kapanidou et al., 2017). APC/C\(^{CDC20}\) is inhibited by the spindle assembly checkpoint (SAC) until chromosomes are properly attached to spindle microtubules. Following transition through the SAC APC/C\(^{CDC20}\) promotes the degradation of securin and cyclin B allowing chromatid segregation and mitotic exit. In late mitosis and G1 APC/C\(^{CDH1}\) participates in promoting licensing of DNA for replication by allowing the recruitment of the pre-replicative complex to replication origins (Hernandez-Carralero et al., 2018, Moreno and Gambus, 2015). This involves APC/C\(^{CDH1}\)-mediated degradation of geminin which is an inhibitor of the key replication licensing factor CDT1 and suppression of cyclin A and B CDK complexes which inhibit replication licensing. The attenuation of cyclin/CDKs also contributes to APC/C\(^{CDH1}\)-mediated blockade of cell cycle progression. In late G1, S and G2 phase cells APC/C\(^{CDH1}\) activity is inhibited in part by E2F-dependent induction of the APC/C-binding protein EMI1. This prevents further rounds
of DNA replication licensing and permits entry into S phase (Abbas and Dutta, 2017, Cappell et al., 2016, Reimann et al., 2001). APC/C^{CDH1} thus participates in allowing licensing to occur only before the onset of DNA replication which contributes to ensuring that the genome is just duplicated once per cell cycle.

siRNA pools targeting 10 of the 14 core subunits of the APC/C substantially reduced viability in our primary screen and multiple individual APC/C core subunit siRNAs killed SCCRDEB4 cells (Supplementary Figure S1 and Figure 4a). There was little effect on viability/death of targeting core APC/C subunits in normal skin cells but effects on SCCRDEBMet and SCCTMet cells were also generally modest (Figure 4a). Interfering with coactivators CDC20 and CDH1 provides a means to specifically suppress different APC/C functions. Two of the CDC20 siRNAs selectively killed cSCC cell lines while they robustly reduced CDC20 protein expression in both normal skin cells and SCCRDEB4 cells (Figure 4b). siRNA CDC20(D) was the least effective in depleting CDC20 and had no effect on viability/death. Three CDH1 siRNAs depleted CDH1 without causing a high level of death in cSCC cells (Figure 4a and c). These data suggest that CDC20 rather than CDH1 has potential as a therapeutic target for cSCC.

CDC20 is essential for mitosis but a high level of suppression is required to block cell cycle progression in normal cells and in many tumour cells (Baumgarten et al., 2009, Crawford et al., 2016, Jin et al., 2010, Kidokoro et al., 2008, Li et al., 2014, Li et al., 2007, Taniguchi et al., 2008, Wirth et al., 2004, Zhang et al., 2014). The robust effects of targeting APC/C core subunits and CDC20 in SCCRDEB4 cells likely reflects sensitivity to partial suppression of APC/C. A need to maintain elevated levels of CDC20 for survival may contribute to cell death induced by CDC20 depletion in SCCRDEB4 and SCCRDEBMet cells (Supplementary Figure S5). Small-molecule antagonists of CDC20/CDH1 (TAME) and CDC20 (apcin) are at an early stage of development (Kapanidou et al., 2017, Sackton et
al., 2014, Wang et al., 2015, Zeng et al., 2010). Anti-mitotic agents including compounds that interfere with microtubule dynamics and Aurora A and PLK-1 inhibitors act in part by attenuating APC/C to by activating the SAC (Olziersky and Labidi-Galy, 2017). Previous studies indicate PLK-1 is a potential target for cSCC therapy (Watt et al., 2011). Direct APC/C suppression may be a better therapeutic approach than SAC activation because directly targeting APC/C attenuates premature exit from mitosis (Huang et al., 2009).

We also observed that siRNAs targeting the APC/C repressor EMI1 killed cSCC lines with no effect on death in normal skin cells (Figure 4a). This included SCCRDEBMet and SCCTMet cells which were relatively resistant to suppression of APC/C. The anti-cSCC potency of the siRNAs was consistent with the extent of EMI1 knockdown (Figure 4d). We investigated the role of DNA-re-replication in EMI1 knockdown-dependent death. EMI1 depletion caused a greater increase in DNA re-replication (greater than G2/M DNA content) in cSCC cells than in NHF along with a tumour cell-selective increase in the DNA damage marker γH2AX (Figure 4d and e and Supplementary Figure S4a). Furthermore, death induced by EMI1 depletion was dependent on the DNA replication licensing factor CDT1 (Figure 4f). This is in line with previous studies in other cell types showing that reduced viability following EMI1 suppression can be caused by APC/C-independent DNA re-replication leading to DNA damage (Machida and Dutta, 2007, Neelsen et al., 2013, Shimizu et al., 2013, Verschuren et al., 2007).

High expression of replication licensing factors increases susceptibility to re-replication (Benamar et al., 2016, Munoz et al., 2017, Vaziri et al., 2003). Elevated expression of replicating licensing proteins including CDT1 compared to normal skin cells consequently provides a mechanism that could contribute to increased re-replication in cSCC cells on targeting components of the protective machinery including EMI1 (Supplementary Figure S5). This is supported by the observation that depletion of CDT1 diminished EMI1
knockdown-induced death (Figure 4f). EMI1 increases expression of the CDT1 repressor geminin by attenuating APC/C-CDH1-mediated geminin degradation. In normal cells geminin accumulates inactive CDT1 in preparation for the next round of replication licensing (Ballabeni et al., 2004, Ballabeni et al., 2013). EMI1 protein expression was strongly upregulated in cSCC cell lines which could prime cSCC cells for re-replication by contributing to the accumulation of CDT1 (Supplementary Figure S5). Consistent with this we observed that EMI1 and CDT1 protein expression was frequently co-upregulated in cSCC cell lines and EMI1 knockdown reduced both geminin and CDT1 protein levels (Supplementary Figure S5 and Figure 4d).

CRL4CDT2

CRLs are a very large family of multisubunit E3 ubiquitin ligases containing 1 of 8 cullin scaffolds (Bulatov and Ciulli, 2015, Jang et al., 2018). CRL4s are composed of: cullin4(A/B), DDB1 adaptor, RBX1 E2-binding RING finger and one of many substrate-recruiting receptors (Hannah and Zhou, 2015). RBX1 is a component of multiple CRLs, cullin4 and DDB1 are present in all CRL4s and the receptors determine substrate specificity and consequently the cellular roles of CRL4 complexes. siRNAs targeting DDB1, RBX1 and the CRL4 substrate receptors DCAF1/VPRBP and CDT2/DTL reduced viability in cSCC cell lines but had only a modest effect in normal skin cells (Figure 5a). This indicates targeting CRL4s in particular CRL4DCAF1 or CRL4CDT2 can have selective anti-cSCC activity. In support of this, suppression of CRL4s protects against UV-induced skin cancer in mice (Hannah and Zhou, 2013). CDT2 knockdown could cause more death in cSCC cells than targeting RBX1 or DDB1 (Figure 5a and b). RBX1/DDB1 depletion may elicit pro-survival responses through attenuation of CRLs in addition to CRL4CDT2. Like EMI1, CRL4CDT2 is involved in protecting against DNA re-replication (Abbas and Dutta, 2011, 2017, Moreno and
Gambus, 2015). During S-phase and DNA repair CRL4CDT2 promotes the DNA replication-coupled proteasomal degradation of PCNA-bound proteins involved in promoting replication licensing including: CDT1, SET8 and p21 (Havens and Walter, 2011, Hernandez-Carralero et al., 2018, Scrima et al., 2011). CDT2 was efficiently knocked down in both NHF and cSCC cells (Figure 5c). This resulted in the accumulation of the CRL4CDT2 substrates SET8 and p21 but not CDT1. Failure to accumulate CDT1 is consistent with previous observations in other cell types and can result from context-dependent CDT1 regulatory mechanisms (Benamar et al., 2016). We observed that CDT2 depletion caused cSCC-selective DNA re-replication and DNA damage and that CDT2 knockdown-induced death in cSCC cells was SET8-dependent (Figure 5c, d and e and Supplementary Figure S4a). This is consistent with a key role of re-replication in the anti-tumour activity of CDT2 suppression (Benamar et al., 2016, Olivero et al., 2014).

There are no direct small-molecule inhibitors of CD T2. However, MLN4924/pevonedistat an inhibitor of the NEDD8-activating enzyme attenuates CRLs by blocking their NEDDylation (Abidi and Xirodimas, 2015). DNA re-replication due at least in part to CRL4CDT2 suppression can make a substantial contribution to the anti-tumour activity of this inhibitor although interference with other pathways is also involved (Abbas and Dutta, 2017, Benamar et al., 2016, Zhou et al., 2018). In cSCC cells MLN4924 caused DNA re-replication and altered expression of proteins involved in promoting replication licensing although the pattern of changes was different from that caused by CDT2 knockdown (Figures 6a and 5c and Supplementary Figure S4b). It also increased γH2AX, indicative of DNA damage. Viability was reduced at low MLN4924 concentrations in SCCRDEB4, SCCRDEBMet, SCCT and SCCTMet cells treated continuously for 72 hours (Figure 6b). Comparison with the GDSC Database (Release 8.0) indicates these cSCC lines are in the very highly MLN4924/pevonedistat-sensitive subset of cancer-derived cells (Yang et al., 2013).
Death in SCCIC1, SCCT, SCCTMet and SCCT8 cells was more sensitive than in normal skin cells to continuous MLN4924 treatment. In addition, SCCRDEB4, SCCT and SCCTMet cells were selectively killed by an 8 hour pulse of MLN4924 which mimics systemically-delivered inhibitor pharmacokinetics (Swords et al., 2015). Clonogenic assays confirmed these differences in sensitivity to a pulse of MLN4924 (Figure 6c). At low concentrations MLN4924 promoted growth in SCCRDEB2 and SCCIC1 cells. Enhanced cell growth has been observed previously but is unusual and requires additional investigation (McMillin et al., 2012). p21 expression was high in 3 of the cSCC lines most insensitive to a pulse of MLN4924 (SCCIC1, SCCRDEB2 and SCCRDEB3) and p21 knockdown enhanced MLN4924-induced cell death in SCCRDEB2 cells (Supplementary figures S5 and S6). This is consistent with previous reports that p21 can be protective against MLN4924 (Blank et al., 2013, Lin et al., 2010). Elevated basal p21 may consequently be a marker for resistance of cSCC cells to MLN4924. Wild-type p53 can protect against MLN4924 in part through p21 induction, however p53 is mutated in all cSCC lines (Lin et al., 2010, Malhab et al., 2016). Given the particular efficacy of CDT2 knockdown in killing cSCC cells, the differences in modulation of CRL4^{CDT2} substrates observed with CDT2 depletion and MLN4924 and the effects of MLN4924 on multiple pathways it would be of interest to develop CDT2-specific inhibitors.

MATERIALS AND METHODS

Cell culture

Cells were maintained and plated as previously (McHugh et al., 2018). SCCRDEBMet (SCCRDEB70) and RDEBK cells were provided by Dr Andrew P. South (Thomas Jefferson University), Jemima E. Mellerio (King’s College London) and Julio C. Salas-Alanís (DEBRA
Mexico). SCCT (previously published as MET1) and SCCTMet (previously published as MET4) and SCCIC1 and SCCIC1Met cell lines are derived from paired primary tumours and metastases (Hassan et al., 2019, Proby et al., 2000, Watt et al., 2011).

siRNA transfection

Dharmacon ON-TARGETplus modified siRNAs (Thermo Fisher Scientific, Waltham, MA, USA) were used in this study to minimise off-target effects. Reverse transfection with synthetic siRNA duplexes (10 nM) was performed using Invitrogen Lipofectamine RNAiMAX (Thermo Fisher Scientific). The library used for the primary screen containing pools of 4 siRNA per gene was detailed previously (MacKay et al., 2014). Additional siRNAs are listed in Supplementary Figure S7a.

Inhibitor treatment

Inhibitors used in this work were DBeQ and NMS-873 (Selleckchem, Houston, TX, USA), DUBs-IN-3/compound 22c (Medchemexpress, South Brunswick Township, NJ, USA) and MLN4924 (Boston Biochem, Cambridge, MA, USA).

Cell viability assays

For the primary screen viability was measured by ATPase assay 96 hours after siRNA transfection (MacKay et al., 2014). Where indicated, live cell number and cell death were analysed 96 hours after siRNA transfection or 72 hours after the initiation of inhibitor treatment using an Incucyte ZOOM real-time imager (Essen BioScience Ltd, Welwyn Garden City, UK) and the CellTox Green Cytotoxicity Assay (Promega, Southampton, UK). For clonogenic assays MLN4924 was added for 8 hours and cells were maintained in drug-free
medium for up to 2 weeks. Colonies were fixed in 10% methanol, 10% acetic acid and stained with crystal violet.

DNA re-replication
To assess re-replication (>G2/M DNA content) fixed DAPI stained samples were analysed for DNA content using a NucleoCounter NC-3000 cell counter (ChemoMetec, Allerod, Denmark) according to the manufacturer’s instructions.

Western blotting
Primary antibodies are listed in Supplementary Figure S7b. Cell extracts were made by lysis into SDS electrophoresis sample buffer. Western blotting was carried out as previously (Dayal et al., 2009).

Real-Time PCR
RNA was extracted using RNeasy columns and real-time PCR were performed as previously (Dayal et al., 2009) using MARCH4 probe/primer set Hs00863129_m1 (Thermo Fisher Scientific). TBP was used for normalisation.

Data availability statement
The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Materials.

ORCIDs
Angela McHugh: https://orcid.org/0000-0003-3020-4701
Kenneth Fernandes: https://orcid.org/0000-0002-9406-267X
CONFLICTS OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
This study was supported by DEBRA International and funded by DEBRA Austria (Saville-Proby 1). I.M.L/M.K.S were supported by an ERC Advanced Investigator Award (250170). C.M.P./I.M.L. were supported by a Cancer Research-UK Programme Grant (A13044).

AUTHOR CONTRIBUTIONS
Conceptualisation: CMP, IML, MKS. Formal Analysis: AKG. Funding Acquisition: CMP, IML, MKS. Investigation: AM, KF, NC, AFMI, GB, LAH, MKS. Supervision: AM, KF, LAH, MKS. Visualisation: NC, MKS. Writing-Original Draft Preparation: MKS. Writing-Review and Editing: CMP, IML, MKS.
REFERENCES

Abbas T, Dutta A. CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle 2011;10(2):241-9.

Abbas T, Dutta A. Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. Adv Exp Med Biol 2017;1042:421-54.

Abidi N, Xirodimas DP. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer 2015;22(1):T55-70.

Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017;7(11).

Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J 2004;23(15):3122-32.

Ballabeni A, Zamponi R, Moore JK, Helin K, Kirschner MW. Geminin deploys multiple mechanisms to regulate Cdt1 before cell division thus ensuring the proper execution of DNA replication. Proc Natl Acad Sci U S A 2013;110(30):E2848-53.

Bartee E, Eyster CA, Viswanathan K, Mansouri M, Donaldson JG, Fruh K. Membrane-Associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes. PLoS One 2010;5(12):e15132.

Bartee E, Mansouri M, Hovey Nerenberg BT, Gouveia K, Fruh K. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol 2004;78(3):1109-20.

Bauer J, Bakke O, Morth JP. Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. N Biotechnol 2017;38(Pt A):7-15.

Baumgarten AJ, Felthaus J, Wasch R. Strong inducible knockdown of APC/CCdc20 does not cause mitotic arrest in human somatic cells. Cell Cycle 2009;8(4):643-6.

Benamar M, Guessous F, Du K, Corbett P, Obeid J, Gioeli D, et al. Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma. EBioMedicine 2016;10:85-100.

Blank JL, Liu XJ, Cosmopoulos K, Bouck DC, Garcia K, Bernard H, et al. Novel DNA damage checkpoints mediating cell death induced by the NEDD8-activating enzyme inhibitor MLN4924. Cancer Res 2013;73(1):225-34.

Bulatov E, Ciulli A. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015;467(3):365-86.

Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T. Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry. Cell 2016;166(1):167-80.

Cataisson C, Michalowski AM, Shibuya K, Ryscavage A, Klosterman M, Wright L, et al. MET signaling in keratinocytes activates EGFR and initiates squamous carcinogenesis. Sci Signal 2016;9(433):ra62.

Chapman E, Maksim N, de la Cruz F, La Clair JJ. Inhibitors of the AAA+ chaperone p97. Molecules 2015;20(2):3027-49.

Cho RJ, Alexandrov LB, den Breems NY, Atanasaov VS, Farshchian M, Purdom E, et al. APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Sci Transl Med 2018;10(455).
Colombo M, Vallese S, Peretto I, Jacq X, Rain JC, Colland F, et al. Synthesis and biological evaluation of 9-oxo-9H-inden[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes. ChemMedChem 2010;5(4):552-8.
Crawford LJ, Anderson G, Johnston CK, Irvine AE. Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma. Oncotarget 2016;7(43):70481-93.
D'Arcy P, Wang X, Linder S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 2015;147:32-54.
Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 2009;284(8):5030-41.
Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 2014;12:94.
Gui L, Zhang X, Li K, Frankowski KJ, Li S, Wong DE, et al. Evaluating p97 Inhibitor Analogues for Potency against p97-p37 and p97-Npl4-Ufd1 Complexes. ChemMedChem 2016;11(9):953-7.
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015;573(1):33-45.
Hannah J, Zhou PB. The CUL4A ubiquitin ligase is a potential therapeutic target in skin cancer and other malignancies. Chin J Cancer 2013;32(9):478-82.
Harwood CA, Proby CM, Inman GJ, Leigh IM. The Promise of Genomics and the Development of Targeted Therapies for Cutaneous Squamous Cell Carcinoma. Acta Derm Venereol 2016;96(1):3-16.
Hassan S, Purdie KJ, Wang J, Harwood CA, Proby CM, Pourreyron C, et al. A Unique Panel of Patient-Derived Cutaneous Squamous Cell Carcinoma Cell Lines Provides a Preclinical Pathway for Therapeutic Testing. Int J Mol Sci 2019;20(14).
Havens CG, Walter JC. Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Genes Dev 2011;25(15):1568-82.
Hepburn LA, McHugh A, Fernandes K, Boag G, Proby CM, Leigh IM, et al. Targeting the spliceosome for cutaneous squamous cell carcinoma therapy: a role for c-MYC and wild-type p53 in determining the degree of tumour selectivity. Oncotarget 2018;9(33):23029-46.
Hernandez-Carralero E, Cabrera E, Alonso-de Vega I, Hernandez-Perez S, Smits VAJ, Freire R. Control of DNA Replication Initiation by Ubiquitin. Cells 2018;7(10).
Huang HC, Shi J, Orth JD, Mitchison TJ. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 2009;16(4):347-58.
Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ, Taylor RG, et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat Commun 2018;9(1):3667.
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018;5:19.
Jin F, Hamada M, Malureanu L, Jeganathan KB, Zhou W, Morbeck DE, et al. Cdc20 is critical for meiosis I and fertility of female mice. PLoS Genet 2010;6(9):e1001147.
Kapanidou M, Curtis NL, Bolanos-Garcia VM. Cdc20: At the Crossroads between Chromosome Segregation and Mitotic Exit. Trends Biochem Sci 2017;42(3):193-205.
Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene 2008;27(11):1562-71.
Li J, Gao JZ, Du JL, Huang ZX, Wei LX. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol 2014;45(4):1547-55.

Li M, York JP, Zhang P. Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol Cell Biol 2007;27(9):3481-8.

Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 2010;70(24):10310-20.

Machida YJ, Dutta A. The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev 2007;21(2):184-94.

MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT, et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res 2014;74(8):2246-57.

Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, Asa D, et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol 2013;9(9):548-56.

Malhab LJ, Descamps S, Delaval B, Xiromidas DP. The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity. Sci Rep 2016;6:37775.

McCronkey DJ. The integrated stress response and proteotoxicity in cancer therapy. Biochem Biophys Res Commun 2017;482(3):450-3.

McHugh A, Fernandes K, South AP, Mellerio JE, Salas-Alanis JC, Proby CM, et al. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity. Oncotarget 2018;9(29):20265-81.

McMillin DW, Jacobs HM, Delmore JE, Buon L, Hunter ZR, Monrose V, et al. Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma. Mol Cancer Ther 2012;11(4):942-51.

Mellerio JE, Robertson SJ, Bernardis C, Diem A, Fine JD, George R, et al. Management of cutaneous squamous cell carcinoma in patients with epidermolysis bullosa: best clinical practice guidelines. Br J Dermatol 2016;174(1):56-67.

Moreno SP, Gambus A. Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes (Basel) 2015;6(3):451-68.

Munoz S, Bua S, Rodriguez-Acebes S, Megias D, Ortega S, de Martino A, et al. In Vivo DNA Re-replication Elicits Lethal Tissue Dysplasias. Cell Rep 2017;19(5):928-38.

Nathan JA, Lehner PJ. The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. Exp Cell Res 2009;315(9):1593-600.

Neelsen KJ, Zanini IM, Mijic S, Herrador R, Zellweger R, Ray Chaudhuri A, et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev 2013;27(23):2537-42.

Niendorf S, Oksche A, Kissar A, Kohler J, Prinz M, Schorle H, et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 2007;27(13):5029-39.

Olivo M, Dettori D, Arena S, Zecchin D, Lantelme E, Di Renzo MF. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget 2014;5(15):5992-6002.

Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. Adv Exp Med Biol 2017;1002:125-52.
Parzych K, Chinn TM, Chen Z, Loaiza S, Porsch F, Valbuena GN, et al. Inadequate fine-tuning of protein synthesis and failure of amino acid homeostasis following inhibition of the ATPase VCP/p97. Cell Death Dis 2015;6:e2031.

Proby CM, Purdie KJ, Sexton CJ, Purkis P, Navsaria HA, Stables JN, et al. Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp Dermatol 2000;9(2):104-17.

Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 2001;105(5):645-55.

Sackton KL, Dimova N, Zeng X, Tian W, Zhang M, Sackton TB, et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature 2014;514(7524):646-9.

Samji T, Hong S, Means RE. The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell. Int Sch Res Notices 2014;2014:637295.

Scrima A, Fischer ES, Lingaraju GM, Bohm K, Cavadini S, Thoma NH. Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett 2011;585(18):2818-25.

Shimizu N, Nakajima NI, Tsunematsu T, Ogawa I, Kawai H, Hirayama R, et al. Selective enhancing effect of early mitotic inhibitor 1 (Emi1) depletion on the sensitivity of doxorubicin or X-ray treatment in human cancer cells. J Biol Chem 2013;288(24):17238-52.

South AP, Purdie KJ, Watt SA, Haldenby S, den Breems N, Dimon M, et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol 2014;134(10):2630-8.

Stach L, Freemont PS. The AAA+ ATPase p97, a cellular multitool. Biochem J 2017;474(17):2953-76.

Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, et al. Pevonedistat (MLN4924), a First-in-Class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 2015;169(4):534-43.

Taniuchi K, Momiyama N, Ueda M, Matsuyama R, Mori R, Fujii Y, et al. Targeting of CDC20 via small interfering RNA causes enhancement of the cytotoxicity of chemoradiation. Anticancer Res 2008;28(3A):1559-63.

van den Boom J, Meyer H. VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol Cell 2018;69(2):182-94.

Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 2003;11(4):997-1008.

Vekaria PH, Home T, Weir S, Schoenen FJ, Rao R. Targeting p97 to Disrupt Protein Homeostasis in Cancer. Front Oncol 2016;6:181.

Verschuren EW, Ban KH, Masek MA, Lehman NL, Jackson PK. Loss of Emi1-dependent anaphase-promoting complex/cyclosome inhibition deregulates E2F target expression and elicits DNA damage-induced senescence. Mol Cell Biol 2007;27(22):7955-65.

Wang L, Zhang J, Wang L, Zhou X, Wang Z, Wei W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther 2015;151:141-51.

Watt SA, Pourreyron C, Purdie K, Hogan C, Cole CL, Foster N, et al. Integrative mRNA profiling comparing cultured primary cells with clinical samples reveals PLK1 and C20orf20 as therapeutic targets in cutaneous squamous cell carcinoma. Oncogene 2011;30(46):4666-77.
Wirth KG, Ricci R, Gimenez-Abian JF, Taghybeeglu S, Kudo NR, Jochum W, et al. Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation. Genes Dev 2004;18(1):88-98.

Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J, et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell 2008;30(3):290-302.

Wright MH, Berlin I, Nash PD. Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination. Cell Biochem Biophys 2011;60(1-2):39-46.

Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013;41(Database issue):D955-61.

Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017;4:39.

Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh DC, et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 2010;18(4):382-95.

Zhang J, Wan L, Dai X, Sun Y, Wei W. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta 2014;1845(2):277-93.

Zhou L, Zhang W, Sun Y, Jia L. Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 2018;44:92-102.

Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016;11:9.
FIGURE LEGENDS

Figure 1. Targets in the ubiquitin/UBL system for which at least 2 siRNAs substantially reduced viability. SCCRDEB4 cells were mock transfected (-) or transfected with non-targeting siRNA (Control), cytotoxic siRNA (Tox) or 4 individual siRNAs for each target. Cell viability (percentage of control live cell number) and the percentage of dead cells were determined by real-time imaging 96 hours after transfection. Values are the mean +/- range of 2 experiments or +/- the SD of at least 3 experiments. The cellular roles of targets are indicated.

Figure 2. MARCH4 and p97 knockdown selectively kills cSCC cells. Normal skin cells (NHF, NHK) and cSCC lines (SCCRDEB4, SCCRDEBMet and SCCTMet) were mock transfected (-) or transfected with siRNAs as indicated. Cell viability and the percentage of dead cells were determined by real-time imaging following transfection with 4 siRNAs targeting (a) MARCH4 or (c) p97: mean +/- SD of at least 3 experiments (NHK, NHF and SCCRDEB4 cells) or +/- the range of 2 experiments (SCCRDEBMet and SCCTMet cells). (b) MARCH4 mRNA knockdown: mean +/- range of 2 experiments. (d) p97 protein knockdown. (e) Co-transfection of control or p97(D) siRNAs with siRNAs targeting genes involved in responding to defects in proteostasis (2 siRNAs per target): mean percentage of cell death in p97(D) and control siRNA transfected cells +/- SD of 4 experiments.

Figure 3. Suppression of USP8 has selective anti-cSCC activity. (a) Cell viability and the percentage of dead cells were determined by real-time imaging 96 hours after transfection with USP8 siRNAs: mean +/- SD of at least 3 experiments (NHK, NHF and SCCRDEB4 cells) or +/- the range of 2 experiments (SCCRDEBMet and SCCTMet cells). (b) Protein expression was analysed by western blotting 48 hours after transfection with USP8 siRNAs.
(c) Cell viability and the percentage of dead cells 96 hours after transfection with 2 siRNAs targeting growth factor receptors: mean -/+ SD of 4 experiments (d) Western blot analysis of SCCRDEB4 cells treated with the USP8 inhibitor DUBs-IN-3 for 24 hours. (e) Cell viability and the percentage of dead cells 72 hours after initiation of DUBs-IN-3 treatment: mean -/+ range of 2 experiments.

Figure 4. APC/C suppression and derepression have potential for cSCC therapy. (a) Cells were transfected with 4 siRNAs per target. Cell viability and the percentage of dead cells were assessed 96 hours after transfection by real-time imaging: mean -/+ SD of at least 3 experiments (CDC20, CDH1, and EMI1 in NHK, NHF and SCCRDEB4 cells) or -/+ range of 2 experiments. Protein expression analysed 48 hours after transfection with siRNAs targeting: (b) CDC20, (c) CDH1 and (d) EMI1. Geminin (upper band *) and CDT1 expression was reduced by EMI1 knockdown. (e) The percentage of cells in which DNA was re-replicated 72 hours after siRNA transfection: mean -/+ range of 2 experiments. (f) Cell death 72 hours after siRNA co-transfection: mean percentage of that in EMI1(C) and control siRNA transfected cells: mean -/+ SD of 3 experiments.

Figure 5. CRL4CDT2 is a potential therapeutic target for cSCC. (a) Cells were transfected with 4 siRNAs targeting the CRL4 adaptor DDB1 and substrate receptors DCAF1 and CDT2 and the CRL/CRL4 RING finger protein RBX1. Viability and the percentage of dead cells were assessed by real-time imaging after 96 hours: mean -/+ range of 2 experiments. Protein expression was analysed after 48 hours with 4 siRNAs targeting: (b) DDB1, RBX1, DCAF1 and CDT2 in SCCRDEB4 cells and (c) CDT2 in NHF and SCCRDEB4 cells. (d) The percentage of cells in which DNA was re-replicated 72 hours after siRNA transfection: mean -/+ range of 2 experiments. (e) Viability/death were assessed by real-time imaging 96 hours
after siRNA co-transfection: mean percentage of cell death in CDT2(B) and control siRNA transfected cells: mean -/+ SD of 3 experiments.

Figure 6. A subset of cSCC lines are more sensitive than normal skin cells to death induced by MLN4924. (a) SCCRDEB4 cells were incubated with the NEDD8 E1 activating enzyme/CRL inhibitor MLN4924 for 8 and 24 hours. Protein expression was analysed by western blotting. (b) Normal skin cells (NHF, NHK, RDEBK) or cSCC lines were continuously incubated with MLN4924 for 72 hours (Continuous) or treated with MLN4924 for 8 hours and then maintained in drug-free medium for a further 64 hours (Pulse). Cell viability and death were assessed by real-time imaging: mean -/+ SD of 3 experiments. (c) Cells were incubated with the indicted concentration of MLN4924 (µM) for 8 hours (comparable to the pulse) and then maintained in drug-free medium to allow colony formation.
Figure 6

a) SCCRDEB4

8 Hours

24 Hours

CDT2

CDT1

SET8

p21

γH2AX

H2AX

actin

[MLN4924] (μM)

0.01 0.1 0.3 1 10

0.01 0.1 0.3 1 10

b) Continuous

Continuous

Continuous

Continuous

Continuous

Pulse

Pulse

Pulse

Pulse

% Live Cell Number

% Cell Death

C

NHF

SCCRDEB2

SCCRDEB3

SCCRDEB4

SCCIC1

SCCIC1Met

SCCT

SCCTMet

MLN4924 (μM)

0.01 0.1 0.3 1 10
Supplementary Figure S1. Sixty-six siRNA pools in the ubiquitin/UBL library reduced viability by more than 65%. SCCRDEB4 cells were transfected with a pool of 4 non-targeting siRNAs (Control) or pools of 4 siRNAs complementary to 1,186 ubiquitin/UBL system-related genes. Cell viability was determined 96 hours after transfection by ATPase assay. The average Z-prime for the screen was 0.82. Values are the mean percentage of control +/- SD of 3 determinations. The effects of 4 individual siRNAs are indicated (Pool deconvolution).

Supplementary Figure S2. Targets from the primary screen for which multiple siRNAs did not cause a substantial reduction in viability. SCCRDEB4 cells were transfected with 4 individual siRNAs per target gene and cell viability (percentage of control live cell number) and the percentage of dead cells were assayed by real-time imaging. Values are the mean +/- range of 2 determinations. For many of these targets one siRNA had a substantial effect on viability. While it remains possible this is due to greater efficacy of target knockdown by the siRNA with the strongest phenotype it could also result from off-target effects.
Supplementary Figure S3. The p97 inhibitors DBeQ and NMS-873 do not display a high level of selectivity for cSCC cells. Normal skin cells (NHF and NHK) and cSCC cell lines derived from RDEB (SCCRDEB), immunocompetent (SCCIC) and immunocompromised transplant (SCCT) patients were treated for 72 hours with p97 inhibitors. Cell viability (percentage of control live cell number) and the percentage of dead cells were assayed by real-time imaging.
Supplementary Figure S4a. EMI1 and CDT2 knockdown cause DNA re-replication in cSCC cells. The DNA content of NHF and SCCRDEB4 cells was analysed 72 hours after transfection with the indicated siRNA. The percentage of cells that underwent re-replication (>G2/M DNA content) is shown.

Supplementary Figure S4b. MLN4924 promotes DNA re-replication in cSCC cells. The DNA content of NHF and SCCRDEB4 cells was analysed 48 hours after treatment with carrier (0) or 1μM MLN4924. The percentage of cells with >G2/M DNA content is indicated.
Supplementary Figure S5. The APC/C coactivators CDH1 and CDC20, the APC/C repressor EMI1 and proteins that promote DNA replication licensing are frequently upregulated in cSCC lines. Protein expression was analysed by western blotting in normal skin cells (NHF, NHK, RDEB) and a panel of lines derived from primary and metastatic cSCCs in RDEB (SCCRDEB), immunocompetent (SCCIC) and transplant patients (SCCT). NHF1 and 2 and NHK1 and 2 were from different donors.

Supplementary Figure S6. p21 knockdown partially overcomes resistance to MLN4924. SCCRDEB2 cells that are relatively insensitive to MLN4924 were transfected with p21 siRNAs. (a) p21 protein knockdown assessed by western blotting 48 hours after transfection. (b) 48 hours after transfection SCCRDEB2 cells were exposed to an 8 hour pulse of MLN4924. Cell death was determined by real-time imaging 72 hours after initiating treatment with the inhibitor. p21 knockdown increased the level of cell death caused by an 8 hour pulse of MLN4924.
Supplementary Figure S1. Sixty-six siRNA pools in the ubiquitin/UBL library reduced viability by more than 65%. SCCRDEB4 cells were transfected with a pool of 4 non-targeting siRNAs (Control) or pools of 4 siRNAs complementary to 1,186 ubiquitin/UBL system-related genes. Cell viability was determined 96 hours after transfection by ATPase assay. The average Z-prime for the screen was 0.82. Values are the mean percentage of control +/- SD of 3 determinations. The effects of 4 individual siRNAs are indicated (Pool deconvolution).

Supplementary Figure S2. Targets from the primary screen for which multiple siRNAs did not cause a substantial reduction in viability. SCCRDEB4 cells were transfected with 4 individual siRNAs per target gene and cell viability (percentage of control live cell number) and the percentage of dead cells were assayed by real-time imaging. Values are the mean +/- range of 2 determinations. For many of these targets one siRNA had a substantial effect on viability. While it remains possible this is due to greater efficacy of target knockdown by the siRNA with the strongest phenotype it could also result from off-target effects.

Supplementary Figure S3. The p97 inhibitors DBeQ and NMS-873 do not display a high level of selectivity for cSCC cells. Normal skin cells (NHF and NHK) and cSCC cell lines derived from RDEB (SCCRDEB), immunocompetent (SCCIC) and immunocompromised transplant (SCCT) patients were treated for 72 hours with p97 inhibitors. Cell viability (percentage of control live cell number) and the percentage of dead cells were assayed by real-time imaging.

Supplementary Figure S4a. EMI1 and CDT2 knockdown cause DNA re-replication in cSCC cells. The DNA content of NHF and SCCRDEB4 cells was analysed 72 hours after transfection with the indicated siRNA. The percentage of cells that underwent re-replication (>G2/M DNA content) is shown.

Supplementary Figure S4b. MLN4924 promotes DNA re-replication in cSCC cells. The DNA content of NHF and SCCRDEB4 cells was analysed 48 hours after treatment with carrier (0) or 1µM MLN4924. The percentage of cells with >G2/M DNA content is indicated.

Supplementary Figure S5. The APC/C coactivators CDH1 and CDC20, the APC/C repressor EMI1 and proteins that promote DNA replication licensing are frequently upregulated in cSCC lines. Protein expression was analysed by western blotting in normal skin cells (NHF, NHK, RDEBK) and a panel of lines derived from primary and metastatic cSCCs in RDEB (SCCRDEB), immunocompetent (SCCIC) and transplant patients (SCCT). NHF1 and 2 and NHK1 and 2 were from different donors.

Supplementary Figure S6. p21 knockdown partially overcomes resistance to MLN4924. SCCRDEB2 cells that are relatively insensitive to MLN4924 were transfected with p21 siRNAs. (a) p21 protein knockdown assessed by western blotting 48 hours after transfection. (b) 48 hours after transfection SCCRDEB2 cells were exposed to an 8 hour pulse of MLN4924. Cell death was determined by real-time imaging 72 hours after initiating treatment with the inhibitor. p21 knockdown increased the level of cell death caused by an 8 hour pulse of MLN4924.
Supplementary Figure S7. Materials used in this study. (a) siRNAs. (b) Primary antibodies.