Abstract. The preliminary results of π^\pm, K^\pm, p and \bar{p} spectra are reported from Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV. Particle identification is from the Time Projection Chamber and Time-of-Flight system at STAR. The nuclear modification factor R_{CP} for mesons (π^\pm, K^\pm) and baryons (p, \bar{p}) will also be discussed.

1. Analysis methods and results

At STAR, charged particles can be identified up to $p_T \sim 1.1$ GeV/c by measuring their ionization energy loss (dE/dx) in the Time Projection Chamber (TPC) [10]. The dE/dx resolution was calibrated to be better than 8% in 62.4 GeV Au+Au collisions for tracks with 70 cm in length inside the TPC. At momentum $p > 3$ GeV/c, the dE/dx of π^\pm has a $\sim 2\sigma$ separation from those of K^\pm and $p(\bar{p})$ due to the relativistic rise of pion dE/dx. Thus charged pions can be identified at 3 < p_T < 10 GeV/c [9]. The dE/dx measurement in Fig. 1 (left) uses a normalized dE/dx: $n\sigma_X = \ln((dE/dx)^Y/I_{0X})/\sigma_X$, where X, Y can be e^\pm, π^\pm, K^\pm or $p(\bar{p})$, $(dE/dx)^Y$ is the measured dE/dx of particle Y, I_{0X}
\[\pi, K, p \text{ and } \bar{p} \text{ production from Au+Au collisions at } \sqrt{s_{NN}} = 62.4 \text{ GeV}\]

is the expected \(dE/dx\) of particle \(X\), and \(\sigma_X\) is the \(dE/dx\) resolution of particle \(X\). With a perfect calibration, the \(n\sigma_X\) distribution should be a normal Gaussian while \(n\sigma_p\) and \(n\sigma_{\bar{p}}\) should be a Gaussian peaked at negative value. The method was introduced in [9]. A prototype multi-gap resistive plate chamber time-of-flight system (TOFr) [10] has been installed since 2003 with the coverage \(-1 < \eta < 0\) in pseudorapidity. With intrinsic timing resolution 85 ps [11], it extends particle identification up to \(p_T \sim 3\) GeV/c for \(p\) and \(\bar{p}\) and 1.6 GeV/c for \(\pi^\pm\) and \(K^\pm\). By the combination of \(m^2 = p^2(1/\beta^2 - 1)\) from TOFr and \(n\sigma_{\pi}, n\sigma_p\) information from TPC, \(\pi^\pm, p\) and \(\bar{p}\) can be identified up to \(p_T \sim 5\) GeV/c and \(K^\pm\) can be identified to at least 3 GeV/c, where \(\beta\) is the velocity. This method has been introduced in [12]. Fig. 1 (right) shows \(m^2\) versus \(n\sigma_{\pi}\).

A total of 6.8 million events after vertex cut \(|Vz| < 30\) cm were used for the analysis, where \(Vz\) is the \(z\) position of the vertex. Centrality tagging of Au+Au collisions was based on the charged particle multiplicity in \(-0.5 < \eta < 0.5\), measured by the TPC. The minimum-bias (0-80%) events were divided into four centralities: most central 10%, 20%, 20% and 40-80% of the hadronic cross section.

From TOFr, the raw yields of \(\pi^\pm, K^\pm, p\) and \(\bar{p}\) are obtained from Gaussian fits to the distributions in \(m^2 = p^2(1/\beta^2 - 1)\) each \(p_T\) bin w/o \(n\sigma\) cut. Acceptance and efficiency were studied by Monte Carlo simulations and by matching TPC track and TOFr hits in real data. From TPC, the raw yields of \(\pi^\pm\) were extracted from \(dE/dx\) distribution. The efficiency due to the additional \(n\sigma\) cut was also taken into account. Weak-decay feeddown (e.g. \(K_s^0 \to \pi^+\pi^-\)) to pions was not corrected for, which was estimated to contribute \(\sim 12\%\) at \(p_T < 1\) GeV/c and \(\sim 5\%\) at higher \(p_T\) to pion yields [11]. Inclusive \(p\) and \(\bar{p}\) production is presented without hyperon feeddown correction either. \(p\) and \(\bar{p}\) from hyperon decays have the same detection efficiency as primary \(p\) and \(\bar{p}\) [13-14] and the contributions to the inclusive \(p\) and \(\bar{p}\) yield range from \(\sim 20\%\) to \(\sim 40\%\) from \(p+p, d+Au\) to \(Au+Au\) collisions [11-13-14].

The invariant yields \(d^2N/2\pi p_T dp_T dy\) of \(\pi^-, K^-,\) and \(\bar{p}\) at mid-rapidity, after the efficiency correction, are shown as symbols in Fig. 2 (left) for 62.4 GeV minimum bias \(Au+Au\) collisions. In the overlapping \(p_T\) region, the results from TOFr and from TPC are consistent. Fig. 2 (middle) shows the anti-particle to particle ratios versus \(p_T\).
Within the errors, π^-/π^+, K^-/K^+ and \bar{p}/p are flat with p_T. The average anti-particle to particle ratios were obtained with a fit of constant value: $\pi^-/\pi^+ = 1.02 \pm 0.01$, $K^-/K^+ = 0.84 \pm 0.01$ and $\bar{p}/p = 0.46 \pm 0.01$. The errors are statistical. The systematical errors are similar to those presented at [11,13]. At 200 GeV, $\bar{p}/p = 0.77 \pm 0.05$. The decrease of \bar{p}/p ratio at 62 GeV indicates the increase of the baryon chemical potential. The mid-rapidity yield dN/dy of π^- was extracted with a Bose-Einstein fit [13]. Fig. 2 (right) shows the dN/dy of π^- versus N_{part} in Au+Au collisions at 62 and 200 GeV [13]. The dN/dy at 62 GeV is a factor of ~1.5 smaller than that at 200 GeV [13].

Nuclear effects on hadron production in Au+Au collisions were measured through comparison to the p+p spectrum scaled by the number of underlying nucleon-nucleon inelastic collisions (N_{bin}). Fig. 3 (left) shows the R_{AA} versus p_T from our measurement in most central 0-10% Au+Au collisions at 62.4 GeV. Also shown in this plot is the R_{AA} in most central 0-10% Au+Au collisions at 200 GeV from PHENIX measurement [2]. It’s evident that the suppression exists at 62.4 GeV and that the magnitude of suppression is smaller than that at 200 GeV. Fig. 3 (middle) shows R_{CP} of charged hadron (h) and π^\pm from 62.4 GeV Au+Au collisions. R_{CP} of h [15] is larger than that of π^\pm at $2 < p_T < 5$ GeV/c and approaches that of π^\pm at $5 < p_T < 7$ GeV/c. This may indicate the disappearance of particle-species dependence of nuclear modification factor at high p_T. Fig. 3 (right) shows R_{CP} of π^\pm, K^\pm and $p + \bar{p}$ from 62.4 GeV Au+Au collisions. R_{CP} of protons seems to follow N_{bin} scaling at intermediate p_T and be larger than those of pions. The statistic for kaons is too poor to address physics issues.

Fig. 4 shows the ratios of p/π^+ and \bar{p}/π^- as a function of p_T in Au+Au collision at
π, K, p and ¯p production from Au+Au collisions at √s_{NN} = 62.4 GeV

62.4 GeV. The p/π⁺ and ¯p/π⁻ ratios are observed to be a factor of 2 ~ 3 higher than those in p+p collisions at similar energy at 2 < p_T < 4 GeV/c. p/π⁺ and ¯p/π⁻ ratios reach maximum at around 2 GeV/c and seem to decrease with increasing p_T at higher p_T. This is consistent with the trends of R_{CP} of h and π. At p_T ~ 5 GeV/c, p/π⁺ and ¯p/π⁻ ratios in 62 GeV Au+Au collisions are close to those in p+p collisions [16]. This may indicate that fragmentation mechanism dominates above this p_T region.

2. Summary

We report the STAR preliminary results of π±, K±, p and ¯p spectra from 62.4 GeV Au+Au collisions. π± and p(¯p) were identified up to p_T ~ 7 GeV/c and 5 GeV/c, respectively. At this beam energy, ¯p/p = 0.46±0.01. A significant suppression for pions is observed for the most central collisions, but the effect is weaker than that observed in 200 GeV central Au+Au collisions [2] at p_T < 7 GeV/c. At intermediate p_T, the nuclear modification factor R_{CP} of h is 20% higher than that of π, R_{CP} of p + ¯p is larger than that of π, and the ratios of p/π⁺ and ¯p/π⁻ are a factor of 2-3 higher than those in p+p collisions at similar energies [16].

References

[1] STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 91, 172302 (2003).
[2] PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003); PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 241803 (2003).
[3] M. Gyulassy et al., nucl-th/0302077.
[4] STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 052302 (2004).
[5] PHENIX Collaboration, K. Adcox et al., Phys. Lett. B 561, 82 (2003); PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 172301 (2003).
[6] R.C. Hwa et al., Phys. Rev. C 67, 034902 (2003); R.J. Fries et al., Phys. Rev. C 68, 044902 (2003); V. Greco et al., Phys. Rev. Lett. 90, 202302 (2003).
[7] I. Vitev, nucl-th/0404052, curve shown is calculation with dN_g/dy=650; X.N. Wang, Phys. Rev. C 70, 031901 (2004).
[8] PHENIX Collaboration, D. d’Enterria et al., The Proceedings in Hot Quarks 2004.
[9] STAR Collaboration, Z. Xu et al., The Proceedings in DPF 2004, nucl-ex/0411001.
[10] M. Anderson et al., Nucl. Instr. Meth. A 499, 659 (2003); B. Bonner et al., Nucl. Instr. Meth. A 508, 181 (2003); M. Shao et al., Nucl. Instr. Meth. A 492, 344 (2002).
[11] STAR Collaboration, J. Adams et al., nucl-ex/0309012.
[12] STAR Collaboration, M. Shao et al., The Proceedings in Hot Quarks 2004, nucl-ex/0411035.
[13] STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004).
[14] STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 87, 262302 (2001).
[15] STAR Collaboration, J. Dunlop et al., RHIC & AGS Annual Users Meeting, May 10-14, 2004.
π, K, p and \(\bar{p} \) production from \(Au+Au \) collisions at \(\sqrt{s_{NN}} = 62.4 \) GeV

[16] B. Alper et al., Nucl. Phys. B 100, 237 (1975).