Retinal Vessel Segmentation Using A New Topological Method

Martin.Brooks@varilets.org

Abstract
A novel topological segmentation of retinal images represents blood vessels as connected regions in the continuous image plane, having shape-related analytic and geometric properties. This paper presents topological segmentation results from the DRIVE retinal image database [SAN'04].

1. Introduction
Retinal image analysis aids disease detection and diagnosis [AGS10, BNS'16, JdMO'12, SG15a], with segmentation of retinal vessels as an important subproblem: Medical image segmentation is an active research area (e.g. survey articles [ZA16, Ghn16, ZX13]) having specialized techniques for retinal vessel segmentation, including mathematical transforms [SB12, JJRJH06, WJLT13, FS13, CN10, SBA'10], signal processing and statistics [FNVV98, NRun, OTR'16, SVB16, GB16, RV15], level sets [ZWWS14, GLL'15, DACKC'14, LJB08], fractal characteristics [SS06, PCCH10, PCCH15], deep neural networks [FSX'15, MPL15, MSMS16], as well as region, contour and many other methods described in survey articles (e.g. [FRH'12, GA16]).

This paper introduces a novel topological image segmentation technique†. Unique features include:

(1) Transformation from raster graphics to scalable vector graphics (SVG) [Eis02, EHG'10, MF05] in the continuous image plane.
(2) Representation of each image segment as a connected vector graphics shape, having boundary comprised of one or more simple closed curves, each represented as a circular sequence of hyperbolic or linear segments.

Vector graphics in real coordinates (#1) means that image segmentations can be closely inspected by enlargement. Analytic representation (#2) allows for quantitative analysis and pattern recognition among the segments in order to recognize and measure vessels.

We demonstrate that large vessels, i.e. relative to image resolution, are mostly comprised of image segments having identifiable visual and analytic characteristics. Often, an individual segment corresponds to a large connected portion of vessel branching structure.

We use the topological segmentation method of varilet image analysis [Bro16]. Roughly, varilets may be thought of as a topological analogue to wavelets. Retinal vessel segmentation is well suited to varilet analysis.

We have used the DRIVE training set to determine all varilet analysis parameters; we then used these parameters for segmentation of the DRIVE test set.

Varilet image segmentation is hierarchical; each segment is recursively segmented until the finest level of detail is reached. For retinal vessel segmentation we use only the two coarsest levels of the hierarchy.

Application of varilet segmentation was fully automatic and unsupervised, with the green channel of a DRIVE jpeg image‡ as input to Common Lisp code that generates SVG images.

The SVG images provide subjective evidence that topological image segmentation may be a useful preprocessing step for retinal vessel segmentation. The text of figures 3 & 4 suggests how preprocessing by topological segmentation may be followed by pattern recognition. Section 6 suggests how pixel-based methods, e.g. incorporating knowledge of the retina, may be integrated with topological segmentation.

2. Example
The images in this section are jpeg renderings of scalable vector graphics, and can be viewed only with moderate magnification. For access to high-resolution jpeg and SVG images, see http://varilets.org.

The SVG images were enhanced by a 3D effect and black segment boundaries, to emphasize the individual segments.

† The retinal vessel literature typically uses “topology” in reference to vessel branching structure, however in this paper it refers to the analytic topology [Why42] of an image’s continuous interpolation.

‡ Varilet analysis is contrast-independent. The only preprocessing [SMHA15] was to ensure that all pixels of the black background are truly black.
Figure 1: DRIVE file 16_test.

Figure 2: Level 1 of the segmentation hierarchy. Each segment is a connected open set in image plane, with simple closed curves as boundary components. Each boundary component is a level set of the bilinear interpolation of the image green channel. These 1,515 segments are pairwise disjoint. Most of the segments are too small to see without magnification. The largest vessels are represented by a single or only a few segments.

Figure 3: Magnification of figure 2 showing single large vessel segment in context, as well as segment holes that also indicate vessel edges. Analytic and geometric analysis may identify vessel edges by their straight, narrow, parallel characteristics.

Figure 4: Segmentation layer 2 nested within segments of layer 1 (figure 2). The additional 3,445 segments include new vessel segments lying within individual layer 1 segments, as also provide supporting evidence for layer 1 vessel edges when the layers have coincident long, straight, parallel boundaries.
3. Topological Retinal Vessel Segmentation Method

The segmentations of the previous section were generated by computations of varilet image analysis [Bro16], as follows:

The green channel of the original image is bilinearly interpolated to a continuous function; from this function we compute the Reeb graph [BEM'08], which in this context has no loops and is also known as the contour tree [CSA00]. The Reeb graph represents the nesting of level sets of the interpolated image, with one node for each critical point. The example’s Reeb graph has 59,729 nodes.

Working with the nodes and arcs of the Reeb graph as a topological space in its own right (a graph continuum), we compute a persistence lens – a hierarchy of closed connected sets (of the graph), having properties related to the pairing of critical points that characterizes topological persistence [EH10]. The persistence lens is not a unique object; it depends on the parameters that were chosen by analysis of the DRIVE training images.

Then, from each closed set S of the persistence lens we extract the connected components of S’s interior. We get the image segments by pulling back each component from the Reeb graph to the image plane. The boundary of each segment comprises one of more simple closed curves; the circular sequence of points generating the component’s SVG shape is calculated from a table created during the initial Reeb graph computation. These shapes are filled by the SVG even-odd fill rule, thus generating the segmented images.

4. Results

The segmentation parameters that resulted from experience with the DRIVE training data were intentionally kept as simple as possible because of the small sample size (20 each, train & test).

The segmentation parameters constitute a discrete set of technical alternatives, together with a scale space selection of one or more SVG segmentation images. The training experience resulted in a technical parameter set, denoted P, and delivery of two images: the segmentation hierarchies of depths one and two.†

Please note that all evaluations are subjective, indicating the potential for further automation that would be objectively evaluated.

Methodically running the DRIVE test data through the segmentation engine, parameter set P and two-level scale space selection led to subjectively satisfactory results on 12 out of 20 test images, with partially satisfactory results on 3 of 201, and no results for 5 of 20 due to unrecoverable software errors$^\parallel$. These images are available at http://varilets.org.

5. Comparison with Selected Retinal Vessel Segmentation Methods

Use of computational topology is new for retinal vessel segmentation, but related techniques have been used with brain images [PBP'12, FaFB07, YRA12, CHY'15], cephalometry [MK14], liver CT scans [ARC14], endoscopy images [DEL'14] and vascular networks [BMM'16, CCG06]. Vessel branching topology has been used for retinal image classification [ZVB'16].

Varilet image analysis is based in part on level sets, also used by other segmentation methods [ZWWS14, GLL'16], as have image simplifications [SG15b] and multiscale analysis [CC06, WJLT13, WBW07].

Many of the referenced methods recognize vessels by their parallel edges. Similarly, for segments generated by the present method, portions of segment boundaries may be assigned probabilities of being a vessel edge. Analytic methods iterating through chained segments may probabilistically identify linear and parallel boundary portions. In figures 2 & 3 we see that such boundary portions may belong to a segment representing the vessel itself, or may belong to a segment that surrounds a vessel.

\dagger Additionally, each image was topologically filtered by removing all lens regions having area less that ten square pixels.

1 Images 07_test, 11_test and 13_test provide little information at segmentation depth one.

\parallel Open source libraries used by the author threw errors related to image file handling; the errors are not related to varilet image processing.
6. Integration with Pixel-Based Vessel Segmentation Methods

Many of the referenced methods use probabilities to measure the likelihood that each image pixel is part of a vessel; we now describe how these methods might be used in combination with the present method. Suppose we have assigned a probability that a segment edge is a vessel edge; we may then combine that probability with the probabilities of the pixels underlying the segment. Refer to text of figures 3 & 4, and see figure 6.

Figure 6: Vessel segment in registration with image pixels.

7. Conclusion

We have applied varilet image analysis to retinal images from the DRIVE database, demonstrating a high degree of vessel capture by a two-level hierarchical topological segmentation represented as scalable vector graphics.

We hope this short paper will interest researchers in application of topological segmentation within imaging and diagnostic tools.

References

[AGS10] ABRAMOFF M. D., GARVIN M. K., SONKA M.: Retinal imaging and image analysis. IEEE transactions on medical imaging 3 (2010).

[ARC14] ADCOCK A., RUBIN D., CARLSSON G.: Classification of hepatic lesions using the matching metric. Computer Vision and Image Understanding 121 (2014), 36–42.

[BEM*08] BUSÉ L., ELKADI M., MOURRAIN B., BIASOTTI S., GIORGI D., SPAGNUOLO M., FALCIDIENO B.: Computational algebraic geometry and applications reeb graphs for shape analysis and applications. Theoretical Computer Science 392, 1 (2008), 5 – 22.

[BMM*16] BENDICH P., MARRON J. S., MILLER E., PIELOCH A., SKWERER S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10, 1 (03 2016), 198–218.

[BNS*16] BHADURI B., NOLAN R. M., SHELTON R. L., PILUTTI L. A., MOTL R. W., MOSS H. E., PULA J. H., BOPPART S. A.: Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography. Biomed. Opt. Express 7, 6 (Jun 2016), 2321–2330.

[Bro16] BROOKS M.: Persistence lenses: Segmentation, simplification, vectorization, scale space and fractal analysis of images, 2016. arXiv:1604.07361.

[CC06] CAI W., CHUNG A. C. S.: Multi-resolution Vessel Segmentation Using Normalized Cuts in Retinal Images. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 928–936.

[CCG06] CHIA S.-H., CHANG S., GANGAULI M. L.: On the assumption of cubic graphs of vascular networks. In Medical Imaging 2006: Physiology, Function, and Structure from Medical Images (2006), Manduca A., Amini A. A. (Eds.), vol. 6143, pp. 812–821.

[CHY*15] CHUNG M. K., HANSON J. L., YE J., DAVIDSON R. J., POLLAK S. D.: Persistent homology in sparse regression and its application to brain morphometry. IEEE Transactions on Medical Imaging 34, 9 (Sept 2015), 1928–1939.

[CN10] CUMMINGS A. H., NIXON M. S.: Retinal Vessel Extraction with the Image Ray Transform. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 332–341.

[CSA00] CARR H., SNOEYINK J., AXEN U.: Computing contour trees in all dimensions. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA, 2000), SODA ’00, Society for Industrial and Applied Mathematics, pp. 918–926.

[DACKC*14] DIZDAROĞLU B., ATAER-CANSIZOGLO E., KALPATHY-CRAMER J., KECK K., CHANG M. F., ERDOGUS D.: Structure-based level set method for automatic retinal vasculature segmentation. EURASIP Journal on Image and Video Processing 2014, 1 (2014), 1–26.

[DEL*14] DUNAEVA O., EDBELSBRUNNER H., LUKYANOV A., MANCHIN M., MALKHOVA D.: The classification of endoscopy images with persistent homology. In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 16th International Symposium on (Sept 2014), pp. 565–570.

[EH10] EDBELSBRUNNER H., HARER J.: Computational Topology - an Introduction. American Mathematical Society, 2010.

[EHG*10] E K., HUANG G T., LR L., S A.: A hierarchical svg image abstraction layer for medical imaging. In Medical Imaging 2010: Advanced PACS-based Imaging Informatics and Therapeutic Applications (March 2010).

[Eis02] EISENBERG J. D.: SVG Essentials, 1 ed. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[FaFB07] F. S., . AND FISCHL B. P. J.: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26, 4 (2007), 518–529.

[FNVV98] FRANGI A. F., NIESSEN W. J., VINCKEN K. L., VIERGEVER M. A.: Multiscale vessel enhancement filtering. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 130–137.

[FRH*12] FRAZ M., REMAGNINO P., HOPPE A., UYYANONVARA B., RUDNICKA A., OWEN C., BARMAN S.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Methods Prog. Biomed. 108, 1 (Oct 2012), 407–433.

[FS13] FAZLI S., SAMADI S.: A novel retinal vessel segmentation based on histogram transformation using 2-d morlet wavelet and supervised classification. arXiv preprint arXiv:1312.7557 (2013).

[FSX*15] FANG T., SU R., XIE L., GU Q., LI Q., LIANG P., WANG T.: Retinal vessel landmark detection using deep learning and hessian matrix. In 2015 8th International Congress on Image and Signal Processing (CISP) (Oct 2015), pp. 387–392.

[GA16] GUPTA N., AARTI E.: A review on segmentation techniques for extracting blood vessels from retina images. Intl. J. Emerging Research in Management & Technology 5, 3 (2016).

[GB16] GEETHARAMANI R., BALASUBRAMANIAN L.: Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybernetics and Biomedical Engineering 36, 1 (2016), 102 – 118.

[GHn16] GHONMIEY S.: Medical image segmentation techniques: An overview. Intl. J. Informatics and Medical Data Processing 1, 1 (2016).
A level set method for retina image vessel segmentation based on the local cluster value via bias correction. In 2015 5th International Congress on Image and Signal Processing (CISP) (Oct 2015), pp. 413–417.

Jelinek H., de Mendonça M., Orófice F., García C., Nogueira R., Soares J., Junior R.: Fractal analysis of the normal human retinal vasculature. The Internet Journal of Ophthalmology and Visual Science 8, 2 (2012).

JVB S., JIG L., RM C. J., Jelinek HF C. M.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging 25, 9 (2006), 1214D1222.

Latham G., Jonasson J., Borga M.: Phase based level set segmentation of blood vessels. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on (Dec 2008), pp. 1–4.

Mohammed S. M. A., Fiaidhi J. A. W.: Developing secure transcoding intermediary for svg medical images within peer-to-peer-to-peer ubiquitous environment. In 3rd Annual Communication Networks and Services Research Conference (CNSR’05) (May 2005), pp. 151–156.

Makram M., Kamel H.: Reeb graph for automatic 3d cephalometry. Int J. Image Processing 8, 2 (2014), 17–29.

Martinez-Perez M. E., Hughes A. D., Stanton A. V., Thom S. A., Bharath A. A., Parker K. H.: Retinal Blood Vessel Segmentation by Means of Scale-Space Analysis and Region Growing. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 90–97.

Melinscak M., Prentasc P., Lonicaric S.: Retinal vessel segmentation using deep neural networks. In Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISIGRAPP 2015) (2015), pp. 577–582.

Maj D., Santara A., Mitra P., Sheet D.: Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv preprint arXiv:1603.04833 (2016).

NP S., R S.: Retinal blood vessels segmentation by using gumbel probability distribution function based matched filter. Comput Methods Programs Biomed 129 (2013 Jun), 40–50.

Oliveira W. S., Teixeira J. V., Ren T. I., Cavalcanti G. D. C., Sijbers J.: Unsupervised retinal vessel segmentation using combined filters. PLoS ONE 11, 2 (02 2016), 1–21.

Pepe A., Brandolini L., Piastra M., Kokkalainen J., Hietala J., Tohka J.: Simplified Reeb Graph as Effective Shape Descriptor for the Striation. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 134–146.

Paripuran S., Chiracharit W., Chamnongthai K., Higuchi K.: Retinal blood vessel segmentation based on fractal dimension in spatial-frequency domain. In Communications and Information Technologies (ISCIT), 2010 International Symposium on (Oct 2010), pp. 1185–1190.

Paripuran S., Chiracharit W., Chamnongthai K., Higuchi K.: Stability analysis of fractal dimension in retinal vasculature. In Proceedings of the Ophthalmic Medical Image Analysis Second International Workshop (2015), pp. 1–8.

Raja D. S. S., Vasuki S.: Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis. Computational and Mathematical Methods in Medicine (2015).

Staal J., Abramoff M., Niemeijer M., Viergever M., van Ginneken B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23, 4 (2004), 501–509.

Selvathi D., Balagopal N.: Detection of retinal blood vessels using curvelet transform. In Devices, Circuits and Systems (ICDCS), 2012 International Conference on (March 2012), pp. 325–329.

Sadeghzadeh R., Berks M., Astley S., Taylor C., A H Bhalaria N.: Detection of Retinal Blood Vessels Using Complex Wavelet Transforms and Random Forest Classification. BMVA Press, 2010, pp. 127–132.

SS K., Govindan V. K.: A review of computer aided detection of anatomical structures and lesions of dr from color retina images. Int. J. Image, Graphics and Signal Processing 11 (2015), 55–69.

Sreejini K., Govindan V.: Improved multiscale matched filter for retina vessel segmentation using [PSO] algorithm. Egyptian Informatics Journal 16, 3 (2015), 253 – 262.

SMH A., S. H. R., M. E. P., H. S. A. J.: A comparative study on preprocessing techniques in diabetestinopathy with retinal images. Illumination correction and contrast enhancement. Journal of Medical Signals and Sensors 5, 1 (2015), 40–48.

SSO T., Stostic B. D.: Multifractal analysis of human retinal vessels. IEEE Transactions on Medical Imaging 25, 8 (Aug 2006), 1101–1107.

SVB16 Sumathi T., Vivekanandan D. P., Balaji D. R.: Retinal vessel segmentation using non-subsampled directional filter bank and hessian multiscale filter enhancement. Int J Advanced Engineering Technology 7, 7 (Apr-Jun 2016), 856–862.

WBW07 Wang L., Bhalaria A., Wilson R.: Analysis of retinal vasculature using a multiresolution hermite model. IEEE Transactions on Medical Imaging 26, 2 (Feb 2007), 137–152.

Why42 Whyburn G. T.: Analytic Topology. American Mathematical Society Colloquium Publications, v. 28. American Mathematical Society, New York, 1942.

WLTL13 Wang Y., Ji G., Lin P., Trucco E.: Retinal vessel segmentation using multiscale kernels and multiscale hierarchical decomposition. Pattern Recognition 46, 8 (2013), 2117 – 2133.

YRA12 Y. S., R. L., A. W. T.: Unified geometry and topology correction for cortical surface reconstruction with intrinsic reeb analysis. In Medical Image Computing and Computer-Assisted Intervention (2012), pp. 601–608.

ZAN16 Zanaty E. A., Abdelhafiz W. M.: A performance study of classical techniques for medical image segmentation. Intl. J. Informatics and Medical Data Processing 1, 2 (2016).

ZVB16 Zhu X., Vartanian A., Bansal M., Nguyen D., Brandl L.: Stochastic Multiresolution Persistent Homology Kernel. In International Joint Conference on Artificial Intelligence (2016).

ZWS14 Zhao Y. Q., Wang X. H., Wang X. F., Shih F. Y.: Retinal vessels segmentation based on level set and region growing. Pattern Recognition 47, 7 (2014), 2437 – 2446.

ZX13 Zhao F., Xie X.: An overview of interactive medical image segmentation. Ann. BMVA 2013, 7 (2013), 1–22.