Survey of ethnobotanical cocktails commonly used in the treatment of malaria in southwestern Nigeria

Rachel Omagha 1*, Emmanuel Taiwo Idowu 1, Chibuisi Gideon Alimba 1, Adetoro Olubunmi Otubanjo 1 and Adeniyi Kazeem Adeneye 2

Abstract

Background: Combination of different antimalarials has become the popular method of care for malaria morbidity in conventional and traditional treatment approaches due to the need to increase the efficacy and reduce the selection of drug resistance. A worrisome concern is the critical gaps with regards to the information available on antimalarial herbal cocktails. This study presents cocktail herbal remedies in ethnomedicinal approaches to malaria treatment in Oyo and Ogun states, South West Nigeria. Ethnobotanical information on indigenous antimalarials used in combination remedies was collected from herbal practitioners using a semi-structured questionnaire.

Results: Findings showed majority of respondents treat malaria with combination herbal remedies. They sighted their beliefs and customs, the efficacy, affordability and availability of these herbs as reasons for their adoption of herbal medicines as their preferred mode of treating malaria. Enquiry revealed 26 sets of cocktail antimalarials from a variety of plant species. The plants and ingredients are extracted and used as decoction, infusion or steam baths. Oral route was the most popular mode of administration. Respondents reported they drink one to two medium-sized cups of the recipe on an average of two times daily within a duration of about 10 days.

Conclusions: Herbal antimalarial remedies continue to be the popular treatments option in our localities. This study provides knowledge of the diverse ways respondents combine medicinal herbs and other local ingredients for malaria treatment. Pharmacological screening is urgently needed to validate their safety and efficacy in order to protect the health of our locals heavily relying on them to combat high burdens of malaria.

Keywords: Ethnomedicine, Indigenous antimalarials, Herbal cocktails

Background

The use of plant materials in the management of illnesses has steadily increased with about 80% of the world population dependent on the use of herbal medicine in the management of various diseases [1–3]. Malaria is a life-threatening, vector-borne parasitic disease with about 3.2 billion people globally at risk. An estimated 229 million cases of malaria occurred worldwide in 2019, with 94% of the cases occurring in African countries [4]. Nigeria suffers the world’s largest malaria burden with an estimated value of 45% prevalence in 2015 among children under 5 years of age [5]. Four species of the protozoan Plasmodium parasite cause malaria in humans. They are Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae, and these four species have been well reported in Nigeria [6, 7]. However, P. falciparum is responsible for the majority of severe malaria and malaria-associated deaths worldwide, particularly in sub-Saharan Africa [8]. Malaria can be acute, fulminant or chronic. The most frequent clinical manifestation of malaria infection is fever with other symptoms such as headache, nausea,
vomiting or diarrhea which appear within 7–14 days fol-
lowing the bite of an infected female Anopheles mos-
quito [9]. When this happens in Nigeria, most people
know that it is time to treat malaria either through self-
medication or by visiting medical personnel for treat-
ment [10]. The greatest impact of the disease is on the
poor people mostly located in the rural settings with in-
creased poor nutritional status and poor access to good
health facilities [11].

The use of malaria preventive measures, such as the
long acting insecticide-treated bed nets or insecticide-
treated bed nets and indoor residual spraying, have re-
duced malaria burden and child mortality in Nigeria and
other parts of Africa [12, 13]. However, in relative terms,
malaria burden has not significantly changed in many
highly endemic African countries including Nigeria de-
spite increased coverage of insecticide-treated nets (ITN)
[12, 14–17]. Studies in Nigeria showed that though the
knowledge of malaria and its preventive measures espe-
cially through environment sanitation was high, adher-
ence to use of ITN, indoor insecticide spray and other
preventive measures was still below expected targets [15,
18–20]. Effective control has relied upon the success of
the antimalarial quinine and artemisinin, both from
plant sources [21]. However, there are evidence mount-
ing to suggest that many Plasmodium strains have de-
veloped resistance to antimalarial therapies including
artemisinin and its derivatives [22]. With this looming
threat of artemisinin resistance coupled with limited
availability and affordability of pharmaceutical antima-
larials especially in poor countries with malaria endem-
icity, availability of monotherapy agents and lack of
adequate information on appropriate use of effective
antimalarial drugs [23] continues to create the need to
develop new treatments that are better suited to effect-
ively treat malaria. The various providers of health ser-
vices in Nigeria can broadly be classified into two
groups: government-owned health centers and those
owned by private organizations and individuals. Addi-
tional forms of health providers are the private hospitals
that are owned by qualified medical practitioners, li-
censed pharmacists, the unqualified and unlicensed
chemist shop owners, the ubiquitous drug peddlers,
traditional drug hawkers and other forms of health pro-
viders [24]. The greater number of malaria treatment
services are provided through the private retail sector in
Nigeria [25, 26]. The increased demand for private
health provision which predominantly caters for the
middle-class cadre is due to high cost of accessing gov-
ernment specialist hospitals and the bureaucratic struc-
ture of general hospitals.

In many developing countries, one-fifth of patients use
indigenous herbal remedies to treat malaria [27]. Ac-
cording to the World Health Organization (WHO),
herbal medicines are the first line of treatment for 60%
of children with high fever due to malaria in Nigeria,
Ghana, Mali and Zambia [28]. Many caregivers resort to
the use of various herbal medicines in the management
of malaria. A wide variety of plants belonging to several
families have been identified through ethnobotanical and
ethnopharmacological studies as antimalarial medicinal
plants [29] and are in use by majority of the infected
populations in malaria endemic countries [30]. In recent
time, several of these plants and/or their components
are prepared and administered as monotherapy or a
mixture of plant formulations by the locals [31–37].
Concoction of two or more plant species has been re-
ported as a common method of herbal remedy prepara-
tion in Africa [32, 34, 35]. In Nigeria where the rural
dwellers depend more on herbs and other forms of trad-
tional medicines for malaria management, this method
of combining two or more plant species that work in
synergy [38] is believed to increase the efficacy of herbal
remedies and delay the development of malaria parasite
resistance [39]. These simple medicinal preparations
often mediate beneficial responses due to a variety of
their active chemical constituents [40, 41], which are re-
sponsible for their medicinal properties [42].

According to UNESCO [43], the usefulness of these
medicinal plants may hold the key to another new and
effective antimalarial drug in the future. Medicinal plants
used in combination as antimalarial remedies are yet to
be extensively documented and scientifically reported,
despite their increasing popularity as local treatment op-
tions. In Nigeria, majority of documented antimalarial
plants research has been carried out in the southwest
where a lot of the people take advantage of the huge bio-
diversity of medicinal plants to treat and manage various
ailments including the high rate of malaria incidence in
the region [31, 44]. This explorative ethnobotanical sur-
vey was therefore undertaken in the southwestern re-
gions of Nigeria to identify plants and ingredients
traditionally used in some of the numerous antimalarial
cocktail treatments and investigate how they are used.

Methods

Sampling sites description

A total population of 200 herbal practitioners were
interviewed in different communities of two local gov-
ernment areas (LGAs) each in Ogun and Oyo states,
South West Nigeria. Ogun state is located in the rainfor-
est zone of southwestern Nigeria where malaria is
holoendemic year round. The LGAs Ijebu North and
Yewa North are two of twenty LGAs in Ogun state and
are located 140 km northeast and 170 km north of Lagos
in the rainforest zone of southwestern Nigeria. The in-
habitants of the two LGAs are predominantly farmers
and traders [45]. Oyo state with about 4.5 million people
predominantly occupied by the Yoruba tribe covers approximately an area of 28,454 km². The state consists of 33 local government areas including Ibadan South East and Ibarapa Central. The climate is equatorial, notably with dry and wet seasons with relatively high humidity. Agriculture is the main occupation of the people of Oyo state. The state is holoendemic for malaria, which is the commonest reason for hospital outpatient attendance [46].

Sample size determination
Sample size was determined according to Lemeshow et al.’s [47] table for a minimum sample size using the formula: \(n = Z^2P(1-P)/d^2 \), where \(n \) = the sample size, \(Z = 1.96 \) at 95% confidence interval; \(P = \) assumed prevalence of malaria in the states (25%), and \(d = 6\% \) level of significance.

Sampling technique
A multi-stage sampling technique was adopted in selecting the 200 herbal practitioners that were interviewed. The first step was to randomly select two (Ogun and Oyo) of the six states in southwestern Nigeria using simple random technique. The second step was to select two local government areas from each of the selected states (Ogun [Ijebu North and Yewa North]; Oyo [Ibadan South East and Ibarapa Central]) using simple random technique through balloting. The list of all LGAs in each of the selected states was compiled and placed in two separate boxes. Two LGAs were then randomly picked from each box without replacement. The number of herbal practitioners interviewed is proportional to the population of each LGA. Purposive sampling method was adopted at the third stage of sample selection. Here, communities identified to have high preponderance of herbal practitioners in each of the selected LGAs were purposively selected for the study. Information were collected from males and females age 18 years and above involved in herbal practice and use via face-to-face interviews and aided by trained research assistants. The survey was carried out between October and December 2017 and lasted for five weeks.

Questionnaire design and method of administration
A semi-structured questionnaire for the survey was prepared with questions bothering on types and parts of plants often used for malaria in combination therapies, methods for preparation and administration. Questions pertaining to socio-demographic characteristics and preferred mode of malaria treatment were multiple choice, while questions about their reasons for herbal use preference, their commonly used plants and ingredients for cocktail antimalarial remedies were open-ended. A pre-test of the questionnaire was first carried out in October 2016 under the same conditions expected in the actual fieldwork at Mushin LGA of Lagos state.

Statistical analysis
The returned questionnaires were cleaned to ensure completeness and thereafter coded using a coding guide. The coded data was subsequently entered into the computer and analyzed using Statistical package for the Social Sciences (SPSS) software version 23.0. In both descriptive and inferential statistics, percentage and frequency were used to analyze data on reported medicinal plant cocktails and associated indigenous knowledge. Data was summarized using tables and charts.

Ethical considerations
The [Nigerian Institute of Medical Research] reviewed and granted approval (assigned number IRB/17/036) for this study. Each respondent had an informed consent document to read and sign before participating, and their participation was voluntary. Their identities and responses were strictly kept confidential.

Results
A total number of 111 respondents comprising 67 in Ijebu North and 44 in Yewa North responded to questionnaires in Ogun state. The 89 respondents from Oyo state comprised 64 from Ibadan South East and 25 from Ibarapa Central.

Socio-demographic characteristics of respondents
The survey showed the proportion of male respondents to be 22.5%, compared to the higher response at 77.5% observed among the female respondents. Respondents between the ages of 31 and 60 were the highest in this study at 53%. The proportion of respondents with no education was at 20.5%, while respondents with primary education were 24.0%. Respondents with secondary education were the highest in this study at 30.5%, while those with post-secondary education were at 24.0%. Statistical test showed that there is significant difference in the respondents’ level of education (\(p = 0.013 \)). Among the population of respondents, herbal practitioners with \(\geq 30 \) years of practice were at 46.5% while those with 20–29 years practicing experience were 21%. Table 1 shows the socio-demographic characteristics of respondents.

Ways respondents diagnosed malaria
Results presented in Fig. 1 shows that respondents are aware of the malaria symptoms and identified some of those they base their diagnosis on. The more popular ways they mentioned include headache (Ogun 63.96% versus Oyo 64.0%), fever (Ogun 96.4% versus Oyo 82.0%), nausea/vomiting (Ogun 73.9% versus Oyo 68.5%)
and body pains (Ogun 96.4% versus Oyo 82.0%). Respondents did not diagnose malaria by laboratory techniques.

Mode of treatment of malaria among respondents

Figure 2 shows that most (58%) of respondents (Ogun 47.3% versus Oyo 53%) mentioned using herbal remedies for malaria treatment. This is in contrast to 13.5% (Ogun 12.4% versus Oyo 10.8%) who adopt orthodox medicines for malaria treatments. Statistical test shows that there is no significant difference in the respondents’ mode of treatment of malaria and their LGA of residence.

Reasons for herbal use preference among respondents

Some of the compelling reasons for respondents’ preference for herbal use for malaria treatment presented in Table 2 include the following: strong belief in traditional medicine (46%), belief that herbal medicines are better absorbed, assimilated and excreted by the body (22.5%), availability around home surroundings (20.0%) and sheer belief that herbal medicines are better than orthodox medicine (16.5%). Affordability was also popularly reported as a reason their preferred choice of herbal treatment even though some respondents claimed the cost of preparing these medicines traditionally ranged between 400 and 3000 naira depending on the ingredients required.

Table 1 Socio-demographic characteristics of respondents from survey areas

Socio-demographic characteristics	Ogun state (number = 111)	Oyo state (number = 89)	Total (number = 200)	Chi-square (χ^2)	P value
Sex					
Male	26	19	45	3.45	0.735
Female	85	70	155		
Age					
18–30	23	28	51	3.34	0.188
31–60	61	45	106		
61–90	27	16	43		
Religion					
Christianity	31	32	63	2.01	0.374
Islam	37	30	67		
Traditional	43	27	70		
Marital status					
Single	19	21	40	2.53	0.631
Married	59	46	105		
Separated	15	13	28		
Divorced	7	3	10		
Widowed	11	6	17		
Level of education				14.71	0.013*
No education	29	12	41		
Primary	30	18	48		
Secondary	27	34	61		
Post-Secondary	23	25	48		
Others	2	0	2		
Duration of herbal practice (in years)				2.86	0.963
0–9	20	16	36		
10–19	17	12	29		
20–29	22	20	42		
30 +	52	41	93		
Received herbal training				2.67	0.566
Yes	57	46	103		
No	44	31	75		
Plants commonly combined for antimalarial cocktail remedies

Enquiries into traditional folklore revealed 26 sets of cocktail antimalarials from a variety of plant species. Tables 3 and 4 show some of the different antimalarial cocktail preparations from medicinal plants as reported by respondents in areas surveyed. The tables detailed the plants and ingredients combined for each treatment and was compiled according to their generic names, family names, common names, local names, parts of each plant.
plants used, frequency each combination was mentioned, methods of preparing each cocktail treatment and mode of administering these preparations in patients. The cocktail medicines are prepared as water extracts in the form of decoction, infusion or as steam baths. Oral administration through drinking was the only mode of administration of the herbal medicine mentioned by virtually all of the respondents. Respondents reported they take a range of one to two medium-sized cups of the herbal preparation on an average of two times daily within a duration of about 10 days. A few of them however mentioned bathing with or inhaling vapour from the herbal preparation as their mode of administering the antimalarial remedies.

Discussions
The increasing level of dependence on locally prepared antimalarial therapies makes detailed investigation of them imperative for public safety. Enquiries into traditional folklore antimalarials in Oyo and Ogun states of southwestern Nigeria revealed that a variety of plants, some of which have been scientifically reported to possess antiplasmodial properties, are popularly combined in poly herbal remedies for malaria treatment [31]. A larger number of respondents were observed in the age group 31–60 years which constitutes the most popular working population in Nigeria. The role of exposure and knowledge cannot be over emphasized as it played an influencing factor in the sampled population.

Table 2 Reasons for herbal use preference among respondents

Reasons for herbal use preference	Ogun state (number = 111)	Oyo state (number = 89)	Total (number = 200)			
	Number	%	Number	%	Number	%
Affordability	21	18.92	18	20.22	39	39.14
Effectiveness/efficacy	18	16.22	16	17.98	34	34.2
Faster recovery	9	8.11	5	5.62	14	13.73
Natural gift from God, better living	7	6.31	3	3.37	10	9.68
Orthodox medicines are harmful	19	17.12	14	15.73	33	32.85
Herbal treatments are more reliable than orthodox medicines which are usually fake	5	4.50	22	24.72	27	29.22
Herbal remedies are excreted via urine immediately, while orthodox medicines are stored in the body	25	22.52	20	22.47	45	44.99
Herbal mixtures cleanse the body system	20	18.02	12	13.48	32	31.50
Availability	29	26.13	31	34.83	60	60.96
Stressful waiting in hospital queues	1	0.90	0	0.00	1	0.90
Strong belief in traditional medicine	53	47.75	39	43.82	92	91.57

The World Health Organization (WHO) advocates parasitological confirmation with Rapid Diagnostic Tests (RDTs) or microscopy prior to treatment of malaria in all patients [48]. However, respondents in this study did not diagnose malaria by laboratory tests. Rather, they take treatment initiatives based on their recognition of symptoms and signs including fever, headache, nausea, body pains and loss of appetite. Ajibade and Alao [49] previously reported that early signs of fever that prompted mothers to take treatment initiatives were high body temperature and vomiting. The poor malaria diagnostic practice demonstrated through clinical manifestations in this study, and on which treatment is usually based, highlights the need to intensify public health education on the importance of parasitological diagnosis for appropriate case detection, improved patient care and prevention of unnecessary use of herbal remedies.

It is important to emphasize the need for increased public health education on the dangers of self-medication given that most of the respondents in this study use herbal medicines for malaria treatment, and a few others reported that they treat malaria at home. Respondents had strong belief in the use of herbal medicines and they alluded to their traditions and customs as the driver of their consumption of herbal medicines. Efficacy, availability and the fear of ‘fake’ orthodox medicines are some other popular reasons reported for their preferred choice of herbal antimalarial treatment. This concern among respondents in the study demonstrate the need for regulatory agencies for herbal medicines to intensify efforts to curb the sale and availability of fake pharmaceutical products particularly herbal antimalariais in the market as a way of increasing the confidence of people in the quality of recommended antimalarial medicines. Another very compelling reason for respondents’ preference for herbal use for malaria treatment is cost. Respondents claimed the cost of preparing these medicines traditionally ranged between 400 and 3000 naira depending on the ingredients required. It has been noted
Scientific names of the plants (as combined)	Family	Common names	Local names	Parts used	Frequency mentioned	Source for plant	Method of preparation	Mode of administration/ duration of use
Nauclea latifolia	Rubiaceae	African peach	Egbesi	Roots	3	Herb vendors	Boiled	Drink for 5 days
Carica papaya	Caricaceae	Pawpaw	Ibepe	Leaves				
Lawsonia inermis	Lythraceae	Henna plant	Laali	Leaves	3	Forest/bush, herb vendors	Boiled in sweet water	Drink for 1 week
Cajanus cajan	Fabaceae	Pigeon pea	Olii	Leaves				
Cajanus cajan	Fabaceae	African peach	Egbesi	Root	2	Herbal homes, herb vendors	Boiled with omidun	Drink for 1 week
Nauclea latifolia	Rubiaceae	Lime	Ovan weve	Leaves, fruits				
Citrus aurantiifolia	Rutaceae	Citrus						
Alstonia boone	Apocynaceae	Stool wood	Ahun	Stem bark	2	Home environment, Forest/bush, Herb vendors	Soaked with water, 7 up, palm wine or omidun	Drink 1–2 schnapps cups 3 times daily for 3–4 days
Mangifera indica	Anacardiaceae	Mango	Mangoro	Stem bark				
Taraxacum officinale	Asteraceae	Dandelion greens	Kooko-oba	Stem bark	6	Herb vendors	Boil with water	Drink 3–4 cups daily till well
Sorghum bicolor	Poaceae	Guinea corn	Yaro	Stem bark				
Eranta chlorantha	Annonaceae	Lettuce leaves	Awopa	Stem bark	1	Forest/bush	Boiled together	Drink 3 times daily for 3 days
Cymbopogon citratus	Poaceae	Lemon grass	Ata Ille pupa	Root				
Curcuma longa	Poaceae	Turmeric	Ata Ile pupa					
Nauclea latifolia	Rubiaceae	African peach	Egbesi	Root	1	Forest/bush	Boiled together	Drink 3 times daily for 3 days
Citrus aurantiifolia	Rutaceae	Lime	Ovan weve					
Securinega virosa	Euphorbiaceae	Bush weed	Iranje					
Citrus limon	Rutaceae	Lemon	Ite					
Celastrus indicus	Celastraceae	Bittersweet roots	Ponju-owii	Root	1	Herb vendors	Boiled with omidun	Drink 3 times daily for 2 days
Citrullus colocynthis	Cucurbitaceae	Wild gourd	Bara					
Enantia chlorantha	Annonaceae	Lettuce leaves	Awopa					
Ananos comosus	Bromeliaceae	Pineapple	Ope oyinbo					
Zingiber officinalis	Zingiberaceae	Ginger	Atale funun					
Carica papaya	Caricaceae	Pawpaw	Ibepe	Leaves	6	Home environment	Squeezed with water	Drink for 10 days
Vernonia amygdalina	Asteraceae	Bitter leaf	Esuwo	Fresh leaves				
Enantia chlorantha	Annonaceae	Lettuce leaves	Awopa	Stem bark	1	Herb vendors	Boiled with omidun	Drink 1 cup 3 times for 1 day, repeat at intervals
Curcuma longa	Poaceae	Tumeric	Ata Ille pupa					
Capsicum frutescens	Solanaceae	Chilli pepper	Ata Ijosi					
Carica papaya	Caricaceae	Pawpaw	Ibepe	Unripe fruit	2	Home environment, herb vendors	Soaked with water or omidun	Drink 1 cup 3 times a day at regular intervals
Enantia chlorantha	Annonaceae	Lettuce leaves	Awopa					
Alstonia boone	Apocynaceae	Stool wood	Epo ahun	Stem bark	2			
Mangifera indica	Anacardiaceae	Mango	Mangoro	Stem bark				
Acacia auriculiformis	Fabaceae	Earleaf acacia	Kasia	Leaves, bark	1	Home environment, herb vendors	Boiled together	Drink often
Azadirachta indica	Meliaceae	Neem	Dogonyaro					
Lawsonia inermis	Lythraceae	Henna plant	Laali					
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba					
Ananos comosus	Bromeliaceae	Pineapple	Ope oyinbo					
Kyllia africana	Bignoniaceae	Sausage tree	Pandoro					
Ananos comosus	Bromeliaceae	Mango						
Citrus aurantiifolia	Rutaceae	Earleaf acacia	Kasia	Leaves, bark	1	Home environment, herb vendors	Boiled together	Drink often
Zingiber officinalis	Zingiberaceae	Chilli pepper	Ata Ijosi					
Carica papaya	Caricaceae	Pawpaw	Ibepe	Leaves	6	Home environment	Squeezed with water	Drink for 10 days
Enantia chlorantha	Annonaceae	Lettuce leaves	Awopa	Stem bark	1	Herb vendors	Boiled with omidun	Drink 1 cup 3 times for 1 day, repeat at intervals
Capsicum frutescens	Solanaceae	Chilli pepper	Ata Ijosi					
Carica papaya	Caricaceae	Pawpaw	Ibepe	Unripe fruit	2	Home environment, herb vendors	Soaked with water or omidun	Drink 1 cup 3 times a day at regular intervals
Enantia chlorantha	Annonaceae	Lettuce leaves	Awopa					
Alstonia boone	Apocynaceae	Mango	Epo ahun					
Mangifera indica	Anacardiaceae	Mango	Mangoro					
Acacia auriculiformis	Fabaceae	Earleaf acacia	Kasia	Leaves, bark	1	Home environment, herb vendors	Boiled together	Drink often
Azadirachta indica	Meliaceae	Neem	Dogonyaro					
Lawsonia inermis	Lythraceae	Henna plant	Laali					
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba					
Ananos comosus	Bromeliaceae	Pineapple	Ope oyinbo					
Kyllia africana	Bignoniaceae	Sausage tree	Pandoro					
Ananos comosus	Bromeliaceae	Mango						
Citrus aurantiifolia	Rutaceae	Lemon grass	Kooko-oba					
Cymbopogon citratus	Poaceae	Chilli pepper	Ata Ijosi					
Nauclea latifolia	Rubiaceae	African peach	Egbesi		7	Forest/bush	Parboiled with Adults only. Drink	
Scientific names of the plants (as combined)	Family	Common names	Local names	Parts used	Frequency mentioned	Source for plant	Method of preparation	Mode of administration/duration of use
---	--------------	-------------------------	-------------	------------	---------------------	------------------	----------------------	---------------------------------------
Morinda lucida	Rubiaceae	Brimstone tree	Oruwo	Leaves	2	Herb vendors	Boiled with Lipton tea bags in omidun	Drink twice daily for 2 days
Azadirachta indica	Meliaceae	Neem	Dogonyaro	Leaves, bark	3		Drink once daily	
Enantia chlorantha	Annonaceae	Lettuce leaves	Awopa	Stem bark	2	Herb vendors	Boiled with Lipton tea bags in omidun	Drink twice daily for 2 days
Citrus aurantium	Rutaceae	Bitter orange	Osan jaganyin	Fruit	2	Herb vendors	Boiled with Lipton tea bags in omidun	Drink twice daily for 2 days
Citrus aurantiifolia	Rutaceae	Lime	Osan weve	Leaves	1	Herb vendors	Boiled in calabash	Drink 1 cup daily for 7 days
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba	Leaves	3	Herb vendors	Parboiled with water	Drink 1 small cup, 2 times daily for 3–4 days
Diospyros manibuttensis	Ebenaceae	Yoruba ebony	Egun eja	Fresh leaves	2	Herb vendors	Boiled in calabash	Drink 1 cup daily for 7 days
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba	Leaves	3	Herb vendors	Parboiled with water	Drink 1 small cup, 2 times daily for 3–4 days
Mangifera indica	Anacardiaceae	Mango	Yarin	Bark	2	Herb vendors	Boiled in calabash	Drink once daily for 3 days
Nauclea latifolia	Rubiaceae	African peach	Egbesi	Bark, leaves	2	Herb vendors	Boiled in calabash	Drink once daily for 3 days
Mangifera indica	Anacardiaceae	Mango	Mangoro	Leaves	3	Herb vendors	Parboiled with water	Drink 1 small cup, 2 times daily for 3–4 days

Table 3 Plants and ingredients commonly used in cocktail antimalarial remedies in Ogun state (Continued)
Scientific names of the plants (as combined)	Family	Common names	Local names	Parts used	Frequency mentioned	Source for plant	Method of preparation	Mode of administration/ duration of use
Azadirachta indica	Meliaceae	Neem	Dogonyaro	Fresh leaves	2	Forest/bush, home environment	Boiled with omidun	Drink for 7 days
Mangifera indica	Anacardiaceae	Mango	Ewulo	Fresh leaves	1	Herb vendors	Boiled	Drink for 2–3 days
Veronica amygdalina	Asteraceae	Bitter leaf	Guoba	Fresh leaves				
Azadirachta indica	Meliaceae	Neem	Dogonyaro	Fresh leaves	1	Herb vendors	Boiled	Drink for 2–3 days
Veronica amygdalina	Asteraceae	Bitter leaf	Ewulo	Fresh leaves				
Psidium guajava	Myrtaceae	Mango	Dogonyaro	Fresh leaves				
Ananas comosus	Bromeliaceae	Pineapple	Ope oyiibo	Unripe fruit	2	Home environment	Soaked with omidun	Drink for 3–5 days
Citrus limon	Rutaceae	Lemon	Oso goin in	Unripe fruit				
Carica papaya	Caricaceae	Pawpaw	Ilepe	Unripe fruit	5	Herb vendors, home environment	Soaked with water or omidun	Drink 2–4 cups at regular intervals of 1 week
Enantia chlorantha	Anonaceae	Lettuce leaves	Ewulo	Leaves, stem bark				
Alstonia boonei	Apocynaceae	Mango	Mango	Stem bark	3	Herb vendors, home environment	Boiled	Drink for 3–7 days
Mangifera indica	Anacardiaceae	Mango	Mango	Stem bark	2	Herb vendors	Boiled	Drink, bath with, for over 1 week
Ocimum basilicum	Lamiaceae	Henna plant	Laali	Fresh leaves	2	Herb vendors	Boiled	Drink for 7 days
Azadirachta indica	Lythraceae	Sweet basil	Effinrin osho	Fresh leaves				
Carica papaya	Caricaceae	Pawpaw	Ilepe	Fresh leaves				
Mangifera indica	Anacardiaceae	Mango	Mango	Fresh leaves				
Nauclea latifolia	Rubiaceae	African peach	Egbesi	Leaves, stem bark				
Taraxacum officinale	Asteraceae	Dandelion greens	Eso yarin	Leaves, fruits	4	Home environment, herb vendors	Boiled	Drink for 3–7 days
Alstonia boonei	Apocynaceae	Stem wood	Epo ahun	Stem bark	3	Herb vendors, home environment	Extracted with water	Drink for 2 week
Mangifera indica	Anacardiaceae	Mango	Mango	Stem bark	3	Herb vendors, home environment	Extracted with water	Drink for 2 week
Nauclea latifolia	Rubiaceae	African peach	Egbesi	Stem bark	3	Herb vendors, home environment	Extracted with water	Drink for 2 week
Byrsocarpus coccineus	Connaraceae	?	Amujie weve	Stem bark, root	5	Forest/bush	Extracted with hot water	Drink 2 weeks
Alstonia boonei	Apocynaceae	Stool wood	Epo ahun	Stem bark				
Mangifera indica	Anacardiaceae	Mango	Mango	Stem bark				
Taraxacum officinale	Asteraceae	Dandelion greens	Eso yarin	Stem bark, root	1	Herb vendors	Extracted with hot water	Drink 2–3 weeks
Alstonia boonei	Apocynaceae	Stool wood	Epo ahun	Stem bark				
Nauclea latifolia	Rubiaceae	African peach	Egbesi	Stem bark				
Mangifera indica	Anacardiaceae	Mango	Mango	Stem bark				
Olax subscorpioidea	Olaeaceae	Olax	Ilan	Dried bark	3	Herb vendors	Boiled with omidun	Drink for 7 days
Gymnopogon citratus	Poaceae	Lemon grass	Kooko-oba	Fresh leaves	5	Herb vendors	Extracted with hot water or omidun	Drink for 5 days
Diospyros monbeutensis	Ebenaceae	Yoruba ebony	Eegun eja	Fresh leaves	5	Herb vendors	Extracted with hot water or omidun	Drink for 5 days
Lawsonia inermis	Lythraceae	Henna plant	Laali	Fresh leaves	5	Herb vendors	Extracted with hot water or omidun	Drink for 5 days
Enantia chlorantha	Anonaceae	Lettuce leaves	Awoya	Stem bark	3	Forest/bush, herbal vendors	Boiled with water	Drink 2 cups daily for 1–2 weeks
Gymnopogon citratus	Poaceae	Lemon grass	Kooko-oba	Fresh leaves	5	Herb vendors	Extracted with hot water or omidun	Drink for 5 days

Table 4: Plants and ingredients commonly used in cocktail antimalarial remedies in Oyo state.
Scientific names of the plants (as combined)	Family	Common names	Local names	Parts used	Frequency mentioned	Source for plant	Method of preparation	Mode of administration/duration of use
Curcuma longa	Fabaceae	Tumeric	Ata ile pupa	Root	2	Home environment, herb vendors	Soaked with water	Drink 1 small cup 3 times daily for 3–7 days
Citrus aurantiifolia	Rutaceae	Lime	Osan weve	Leaves	2	Home environment, herb vendors	Soaked with water	Drink 1 small cup 3 times daily for 3–7 days
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba Oruwo	Leaves	2	Home environment, herb vendors	Boiled	Drink 1 small cup 3 times daily for 3–7 days
Moringa lucida	Rubiaceae	Brimstone tree	Epo ahun	Leaves	2	Home environment, herb vendors	Boiled	Drink 1 small cup 3 times daily for 3–7 days
Alstonia boonii	Apocynaceae	Stool wood	Mango	Bark	2	Home environment, herb vendors	Boiled	Drink 1 small cup 3 times daily for 3–7 days
Mangifera indica	Anacardiaceae	Mango	Yarin	Stem bark	2	Home environment, herb vendors	Boiled	Drink 1 small cup 3 times daily for 3–7 days
Taraxacum officinale	Asteraceae	Dandelion greens	Efo yarin	Bark	2	Home environment, herb vendors	Boiled	Drink 1 small cup 3 times daily for 3–7 days
Lawsonia inermis	Lythraceae	Henna plant	Laali	Fresh leaves	4	Home environment, herb vendors	Boiled	Drink 1–3 cups daily when feverish
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba	Leaves	4	Home environment, herb vendors	Boiled	Drink 1–3 cups daily when feverish
Azadirachta indica	Meliaceae	Neem	Dogonyaro	Leaves, stem	4	Home environment, herb vendors	Boiled	Drink 1–3 cups daily when feverish
Carica papaya	Caricaceae	Pawpaw	Ibepe	Unripe fruits	2	Home environment	Parboiled with water	Drink for 7 days
Cymbopogon citratus	Poaceae	Lemon grass	Kooko-oba	Fresh leaves	2	Home environment	Parboiled with water	Drink for 7 days
Ananas comosus	Bromeliaceae	Pineapple	Ope oyinbo	Unripe fruit	2	Home environment	Parboiled with water	Drink for 7 days
Nauclea latifolia	Asteraceae	African peach	Egbo egbesi	Stem bark	1	Herb vendors	Boiled	Drink 2 cups daily for 2 weeks
Taraxacum officinale	Asteraceae	Dandelion greens	Efo yarin	Stem bark	1	Herb vendors	Boiled	Drink 2 cups daily for 2 weeks
Mangifera indica	Anacardiaceae	Mango	Mango	Stem bark	3	Home environment, herb vendors	Extracted with hot water	Drink 1 cup 3–4 times daily for 2 weeks
Citrus aurantiifolia	Rutaceae	Lime	Osan weve	Stem bark	3	Home environment, herb vendors	Extracted with hot water	Drink 1 cup 3–4 times daily for 2 weeks
Nauclea latifolia	Rubiaceae	African peach	Egbo egbesi	Stem bark	3	Home environment, herb vendors	Extracted with hot water	Drink 1 cup 3–4 times daily for 2 weeks
that the availability of genuine conventional antimalarial drugs and the services rendered by private practitioners make the costs generally high and are thus not easily accessible to the poor masses [24]. Since introduction, ACT remains the most expensive antimalarial agent compared to commonly used monotherapy, with a median cost of between 1825 (5 US dollars) and 4015 (11 US dollars) naira per adult dose [50]. Studies on how much Nigerians pay for the less-effective medicines that are widely available and considerably cheaper in private-for-profit outlets where patients frequently seek malaria treatment [51] need to be explored and compared to the cost of antimalarial treatments with phytotherapies. This will help to identify potential avenues for effective intervention.

Different parts of medicinal plants are now commonly used in combination phytotherapies against malaria [31]. In the present study, a variety of plant parts, mainly fresh leaves are selected and combined in carefully chosen proportions before they are prepared together. These medicines are administered in variable doses and mostly taken at regular intervals over time. Majority of the remedies were administered by oral route, though there were a few mentions of bathing with them or inhaling vapour from them immediately after boiling. Though water is the most popularly mentioned solvent used for the preparations, omidun, a readily available sweet water from fermented corn, alcohol including local gin and palm wine are also used to extract these herbs locally. Notably, respondents failed to indicate how the dosage in the quantity of the herbal remedy was determined. More so, the quantity of the preparation administered and the duration of treatment varied from respondent to respondent. No side effects to these herbal medicines or efforts to standardize their preparation and usage were mentioned or reported. This represents the major drawback of traditional medicine [52].

This treatment strategy employing a variety of herbal preparations is majorly limited by the unavailability of required data on safety and efficacy [53]. A noteworthy observation was that though respondents use these remedies until their recovery, they still continued to administer the herbal remedies at regular intervals. This suggests that most of these remedies as locally used do not provide and maintain the ideal bioavailable level of curative effects, which does not require repeated intermittent administration of treatments. Based on respondents’ claims of efficacy and the absence of side effects, the feasibility of discovering new potent antimalarials from these plant formulations vastly used in Nigeria is very promising. To protect the increasing population of people depending on these locally prepared polyherbal antimalarials, actual behaviours of these plant cocktails including their mode of action, potential adverse reactions, contraindications and interactions with existing orthodox pharmaceuticals need to be established by scientific investigation, and findings well communicated to the end users to guide proper and safe use of these remedies. Regulatory and monitoring agencies should ensure effective steps are put in place to protect the health of consumers. Research needs for the development of these phytotherapies that have the potential to treat malaria as effective, safe and readily available antimalarial drugs include precision and standardization of methods of preparation, determining correct dosage and duration of treatments, and critical scientific research to validate efficacy and safety claims.

Conclusion

Medicinal plant cocktails contribute significantly to current malaria treatment in Nigeria due to its continuous demand to combat malaria. There is no doubt that research on traditional plants will possibly contribute to the discovery of new antimalarial drugs. From these starting points, new treatments can be developed that are better suited to effectively treat malaria. In the meantime, to protect public health, an urgent need remains to understand the divergent preparations and use patterns of antimalarial herbal remedies; to scientifically identify the safest, most effective therapies; to provide countermeasures to associated toxicity risks; and to determine their recommended doses in line with World Health Organization Guidelines and to create awareness for the best options.

Limitations of the study

Many of respondents were reluctant to part with the information sought. Some of the respondents were willing to exchange information at prices ranging between 20,000 (54.79 US dollars) and 40,000 (109.59 US dollars) naira; some others were adamant for fear of possibly going out of business if they reveal secrets of their trade and deliberately provided limited information on the methods used to prepare the remedies to make it difficult to replicate them. Yet some others insisted they would only reveal such information to their apprentices during training, or to people coming to them through their organization.

Abbreviations

WHO: World Health Organization; UNESCO: United Nations Educational, Scientific and Cultural Organization; LGAs: Local Government Areas; SPSS: Statistical Package for the Social Sciences; IRB: Institutional Review Board; p: Probability; RDTs: Rapid Diagnostic Tests

Acknowledgements

The authors are grateful to the herbal medicine practitioners, especially the herb vendors and community members of Ijebu North and Yewa North Local government areas of Ogun state and Ibadan South East and Ibarapa Central local government areas of Oyo state for consenting to participate in
this study. Our appreciation also goes to the local guards in the communities studied.

Authors’ contributions
IET conceptualized the idea for this study. OR wrote the research proposal. IET, ACG and OAO reviewed the research proposal. OR and AAK conducted the ethnobotanical survey and analyzed the data. OR drafted the manuscript. All the authors participated in reviewing and approving the manuscript for publication. The authors have read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The authors have provided data generated and analyzed in the manuscript.

Declarations

Ethics approval and consent to participate
The Nigerian Institute of Medical Research Institutional Review Board (NIMR IRB) reviewed and granted approval (assigned number IRB/17/036) for this study. Each respondent had an Informed Consent Document to read and sign before participating, and their participation was voluntary.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1 Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria. 2 Department of Public Health and Epidemiology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria.

Received: 31 March 2021 Accepted: 5 July 2021
Published online: 28 July 2021

References
1. Evans, M. (1994). A guide to herbal remedies. Orient Paperbacks.
2. World Health Organisation (2003). Traditional medicine factsheet.
3. World Health Organisation (2020) World Malaria Report. 2020. World Health Organization, Geneva. https://doi.org/10.3877/60123dd4-en
4. Beavogui AH, Delamou A, Camara BS, Camara D, Kourouma K, Camara R, Djimde A (2020) Prevalence of malaria and factors associated with infection in children aged 6 months to 9 years in Guinea: results from a national cross-sectional study. Parasite Epidemiol Control 11:e00162. https://doi.org/10.1016/j.pareriup.2020.e00162
5. Olobo MA, Badiane AS, Ntadorn G, Ndiaye YD, Dione K, Ndiaye D (2018) Molecular identification of Plasmodium species responsible for malaria reveals Plasmodium vivax isolates in Duffy negative individuals from southwestern Nigeria. Malar J 17(1):1–12
6. Daneshvar C, Davis TM, Cox-Singh J, Rafa’ee MZ, Zakaria SK, Divis PC, Singh B (2009) Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 49(6):852–860. https://doi.org/10.1086/605439
7. World Health Organisation (2020) World malaria report. Switzerland, Geneva.
8. Howick VM, Russell AJ, Andrews T, Heaton H, Reid AJ, Natarajan K, Al-Toma M, Hanney M, May P, Wallis C, Asorey A, Orosi A, Mihaljevich DE, Haynes JS, (2013) The global burden of malaria. Science 343(6167):1551–1555. https://doi.org/10.1126/science.1249051
9. World Health Organisation (2003) The Africa Malaria Report 2003. WHO/ CDS/MAL/2003. 1093. World Health Organization/UNICEF, Geneva.
10. Karunamoorthi K, Sabesan S, Jegajeevanram K, Vijayalakshmi J (2013) Role of antimalarial plants in the battle against the global malaria burden. Vector-Borne Zoonotic Dis 13(8):521–534. https://doi.org/10.1089/vbz.2011.0946
11. Zirhi GN, Mambu L, Guédé-Guina F, Bodo B, Grellet P (2005) In vitro antimalarial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol 98(3):281–282. https://doi.org/10.1016/j.eurjph.2005.01.004
12. Awal OS, Adekanmi OA, Adedeji AO, Odeku OA, Ijagwe TX, Olajumọ K, Olowo-Oyebanji O, Ogbeide A (2011) Antiplasmodial effect of the extracts and formulated capsules of Phyllanthus amarus on Plasmodium yoelii infection in mice. Asian Pac J Trop Med 4(4):283–287. https://doi.org/10.1016/j.apjtm.2011.06.007
13. Michael GC, Aluyu I, Grema BA (2017) Knowledge of malaria and adherence to its preventive measures among adults attending out-patient clinics of a Nigerian tertiary hospital: has anything changed? Afr J Med Health Sci 16(1): 43. https://doi.org/10.4103/ajmhsajmhs.81_16
14. Mukanovia WA, Chanda E, Haque U, Kamulilo M, Mushinga G, Chileshe J, Moss WI (2014) High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar J 13(1): 1–6.
15. Efunshile M, Amoo AOJ, Akintunde GB, Ojelekan OD, König W, König B (2011) Use and effects of malaria control measures in pregnancy in Lagos, Nigeria. Korean J Parasitol 49(4):365–371. https://doi.org/10.3347/kjp.2011.49.4.365
16. Mutha OA, Saladeen GA, Jimoh RO (2009) Awareness and use of insecticide treated nets among women attending ante-natal clinic in a northern state of Nigeria. Marketing 59(354)
17. Roca-Feltrer A, Kwizombe CJ, Sanjaquin MA, Sesay SS, Faragher B, Harrison J, Heydeman RS (2012) Lack of decline in childhood malaria, Malawi, 2001–2010. Emerg Infect Dis 18(2):272–278. https://doi.org/10.3203/ed1018.111
18. Singh R, Musa J, Singh S, Ebeve UR, Okeke IR, (2014) Knowledge, attitude and practices on malaria among the rural communities in Aliero, Northern Nigeria. J Fam Med Prim Care 3(1):39–44. https://doi.org/10.4103/2249-4863.130271
19. Elfhurst M, Amoo AO, Akintunde GB, Ojelekan OD, König W, König B (2011) Use and effects of malaria control measures in pregnancy in Lagos, Nigeria. Parasite Epidemiol Control 11:e00162. https://doi.org/10.1016/j.pareriup.2020.e00162
33. Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol 133(2):289–302. https://doi.org/10.1016/j.jep.2010.11.024

34. Musa MS, Abdelrasool FE, Esheikh EA, Ahmed LA, Mahmoud ALE, Yagi SM (2011) Ethnobotanical study of medicinal plants in the Blue Nile State, South-eastern Sudan. J Med Plants Res 5(17):4287–4297

35. Maroyi A (2013) Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. J Ethnobiol Ethnomed 9(1):31. https://doi.org/10.1186/1746-4269-9-31

36. Conrad OA, Uche AI (2013) Assessment of In vivo antioxidant properties of Dacryodes edulis and Ficus exasperata as anti-malaria plants. Asian Pac J Trop Dis 3(4):294–300. https://doi.org/10.1016/S2222-1808(13)60072-9

37. Ajayi EO, Adeleke MA, Adeyemi AA (2017) Antiplasmodial activities of ethanol extracts of Euphorbia hirta whole plant and Vernonia amygdalina leaves in Plasmodium berghei-infected mice. J Taibah Univ Sci 11(6):831–835. https://doi.org/10.1016/j.jtusci.2017.01.008

38. Adjanohoun JE, Aboubakar N, Dramane K et al (1996) Contribution to ethnomedical and floristic studies in Cameroon. Scientific, Technical and Research Commission, Organization of African Unity, Addis Ababa

39. Sendagire H, Kaddumukasa M, Ndagire D, Aguttu C, Nassejje M, Pettersson M, Kironde F (2005) Rapid increase in resistance of Plasmodium falciparum to chloroquine-Fansidar in Uganda and the potential of amodiaquine-Fansidar as a better alternative. Acta Tropica 95(3):172–182. https://doi.org/10.1016/j.actatropica.2005.06.003

40. Omagha R, Idowu ET, Alimba CG, Otubanjo AO, Aigbaje EO, Ajaegbu HCN (2020) Physicochemical and phytochemical screening of six plants commonly used in the treatment of malaria in Nigeria. J Phytomed Ther 19(2):520–538

41. Park EJ, Pezzuto JM (2002) Botanicals in cancer chemoprevention. Cancer Metastasis Rev 21(3-4):231–255. https://doi.org/10.1023/A:1021254725842

42. Nkunya HMH (1996) Unusual metabolites from Tanzanian Annonaceous plants: the genus Uvari. Int Organ Chem Sci Dev 41. University of Zimbabwe Publications, Harare

43. UNESCO (1998) Promotion of ethno botany and the sustainable use of plant resources in Africa. Terminal Report. UNESCO, Paris, p 60

44. Otorunnisola OS, Adetutu A, Balogun EA, Afolayan AJ (2013) Ethnobotanical survey of medicinal plants used in the treatment of malarial in Ogbomoso, Southwest Nigeria. J Ethnopharmacol 150(1):71–78. https://doi.org/10.1016/j.jep.2013.07.038

45. Adeneye AK, Jegede AS, Nwokocha EE, Mafe MA (2014) Perception and affordability of long-lasting insecticide-treated nets among pregnant women and mothers of children under five years in Ogun State, Nigeria. J Infect Public Health 7(6):522–533. https://doi.org/10.1016/j.jiph.2014.07.008

46. Infec Pert 2014:572–589. https://doi.org/10.1016/j.impact.2014.07.008

47. Lemeshow S, Hosmer DW, Klar J, Lwanga SK, World Health Organization (1990) Adequacy of sample size in health studies. Wiley, Chichester

48. World Health Organization (2010) Guidelines for the treatment of malaria —2nd edition. World Health Organization/UNICEF, Geneva

49. Afolayan AJ, Osamor JN, Synnott LG, Asemota AO, Afolayan AJ, Ambrose MA (2013) A survey of anti-malarial plants used in the treatment of malarial in Osun State. J Ethnopharmacol 148(1):71–78. https://doi.org/10.1016/j.jep.2013.07.038

50. Rao VB, Schellenberg D, Ghani AC (2013) Overcoming health systems barriers to successful malaria treatment. Trends Parasitol 29(4):164–180. https://doi.org/10.1016/j.pt.2013.01.005

51. Asase A, Oteng-Yeboah AA, Odamten GT, Simmonds MS (2005) Ethnobotanical study of some Ghanaian anti-malarial plants. J Ethnopharmacol 99(2):273–279. https://doi.org/10.1016/j.jep.2005.02.020

52. Rasanalvo P, Wright CW, Wilcox ML, Gilbert B (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 10(1):1–12

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.