CAPTURA COLETIVA DE PRESAS E INTERAÇÕES AGONÍSTICAS DURANTE O FORRAGEAMENTO EM *PARAWIXIA BISTRIATA* (ARANEAE: ARANEIDAE)

ADILSON QUERO JUNIOR

UBERLÂNDIA

2018
CAPTURA COLETIVA DE PRESAS E INTERAÇÕES AGONÍSTICAS
DURANTE O FORRAGEAMENTO EM *PARAWIXIA BISTRIATA* (ARANEA: ARANEAIDAE)

Dissertação apresentada à Universidade Federal de Uberlândia, como parte das exigências para obtenção do título de Mestre em Ecologia e Conservação de Recursos Naturais.

Orientador
Prof. Dr. Marcelo de Oliveira Gonzaga

UBERLÂNDIA
Agosto - 2018
Captura coletiva de presas e interações agonísticas durante o forrageamento em Parawixia bistriata (Araneae: Araneidae) [recurso eletrônico] / Adilson Quero Junior. - 2018.

Orientador: Marcelo de Oliveira Gonzaga.
Dissertação (mestrado) - Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais.

Modo de acesso: Internet.
Disponível em: http://dx.doi.org/10.14393/ufu.di.2018.806
Inclui bibliografia.
Inclui ilustrações.

1. Ecologia. 2. Aranhas - Comportamento. 3. Aranhas - Pesos e medidas.I. Gonzaga, Marcelo de Oliveira, (Orient.) II. Universidade Federal de Uberlândia. Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais. III. Título.

Angela Aparecida Vicentini Tzi Tziboy – CRB-6/947
ADILSON QUERO JUNIOR

CAPTURA COLETIVA DE PRESAS E INTERAÇÕES AGONÍSTICAS DURANTE O FORRAGEAMENTO EM PARAWIXIA BISTRIATA (ARANEAE: ARANEIDAE)

Dissertação apresentada à Universidade Federal de Uberlândia, como parte das exigências para obtenção do título de Mestre em Ecologia e Conservação de Recursos Naturais.

APROVADO em 26 de fevereiro de 2018

Prof. Dr. Adalberto José dos Santos UFMG

Prof. Dra. Vanessa Stefani Sul-Moreira UFU

Prof. Dr. Marcelo de Oliveira Gonzaga UFU
(Orientador)

UBERLÂNDIA
Agosto - 2018
AGRADECIMENTOS

Ao professor Marcelo de Oliveira Gonzaga pela orientação e suporte constante durante o desenvolvimento desse projeto.

Aos membros da banca examinadora, pelo tempo investido com a revisão do trabalho, pela prontidão e atenção.

Ao companheiro de campo e apartamento Lino Abdelnour Zuanon, pela amizade e ajuda durante o nosso mestrado.

Aos membros do Laboratório de Aracnologia (LARA) por terem me recebido muito bem e pela constante troca de ideias e ajuda durante o mestrado.

Aos amigos e professores do Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, pelas conversas, ensinamentos e trocas de experiências.

À minha família, principalmente minha mãe e irmã pelo suporte e respeito constante durante a minha formação.

À minha namorada, pela constante presença no meu dia a dia, me ajudando de todas as formas possíveis.

À empresa Duratex S.A. por possibilitar a coleta de dados na área da Fazenda Nova Monte Carmelo.

À CAPES e ao CNPq pelas bolsas de estudo, as quais possibilitam que vários alunos como eu sigam os seus interesses científicos.
ÍNDICE

RESUMO .. 5
ABSTRACT .. 6
INTRODUÇÃO ... 7
MATERIAL E MÉTODOS ... 12
RESULTADOS .. 17
DISCUSSÃO .. 20
REFERÊNCIAS BIBLIOGRÁFICAS .. 28
FIGURAS ... 34
RESUMO

Quero Junior, Adilson. 2018. Captura coletiva de presas e interações agonísticas durante o forrageamento em *Parawixia bistriata* (Araneae: Araneidae). Dissertação de Mestrado em Ecologia e Conservação de Recursos Naturais. Universidade Federal de Uberlândia. Uberlândia-MG. 43 p.

Espécies de aranhas construtoras de teias orbiculares que formam agregações podem obter diversos benefícios em relação a espécies solitárias. O principal benefício nesse caso está relacionado ao sucesso de forrageio, já que indivíduos agregados conseguem capturar presas maiores por meio do efeito ricochete e da cooperação na captura, fenômeno que ocorre somente em algumas espécies. No entanto, durante a captura de presas conflitos podem ocorrer, ainda que menos comuns que interações agonísticas durante a construção ou reparo das teias. Nesse contexto, o presente estudo analisou o comportamento de captura de presas em *Parawixia bistriata*, uma aranha colonial da família Araneidae, presente no Cerrado brasileiro. Observações de presas interceptadas naturalmente por essa espécie foram realizadas para descrever as diferentes ordens de insetos interceptados e a frequência da cooperação e da ocorrência de conflitos durante a captura. Um experimento de oferta de presas foi realizado para analisar o efeito do tipo de inseto interceptado (Lepidoptera ou Orthoptera) e de seu peso sobre o comportamento de captura coletiva das aranhas e sobre a ocorrência de conflitos. Além disso, a variação de peso intracolonial durante o desenvolvimento das aranhas foi obtida para duas gerações, sendo comparadas entre os meses e de acordo com o tamanho das colônias. As observações de presas interceptadas demonstraram variação na quantidade e tamanho das presas de acordo com a ordem de inseto. Comportamentos cooperativos foram mais comuns em aranhas jovens e são substituídos por um aumento na frequência de conflitos conforme as aranhas vão atingindo a fase adulta. Tanto a tendência à cooperação quanto a ocorrência de conflitos durante a captura de presas se mostraram dependentes da ordem e do peso dos insetos capturados. Mariposas são capturadas de forma cooperativa mais frequentemente e levam a uma menor ocorrência de conflitos do que gafanhotos. Os conflitos foram ganhos geralmente por indivíduos mais pesados, e indivíduos que receberam as presas em suas teias só ganharam as brigas quando eram maiores que seus competidores. Ao longo do estudo, 21 colônias foram coletadas, totalizando 3876 indivíduos (19-600 por colônia). A variação interindividual de peso em cada colônia não aumenta ao longo do desenvolvimento, e não depende do número de indivíduos nas colônias. O presente estudo conseguiu demonstrar como a dinâmica social dessa espécie de aranha territorial pode ser dependente do estágio de desenvolvimento das aranhas e da percepção das presas interceptadas, tanto em relação ao seu tamanho quanto ao seu comportamento nas teias. A diferença de peso entre os indivíduos nas colônias não parece ser influenciada pelo estágio de desenvolvimento das aranhas ou o tamanho das colônias, mas essa variação é importante a nível dos indivíduos, já que as aranhas brigam pelo monopólio de presas, principalmente quando próximas da dispersão, e os maiores tendem a ganhar os conflitos por presas.

Palavras-chave: Socialidade, Aranhas coloniais, Cooperação, Conflitos, Variação de peso.
ABSTRACT

Quero Junior, Adilson. 2018. Colective prey capture and agonistic interactions during foraging in *Parawixia bistriata* (Araneae: Araneidae). Masters Degree Dissertation in Ecology and Natural Resources Conservation. Universidade Federal de Uberlândia. Uberlândia-MG. 43p.

Orb-weavers colonial spiders that form aggregations can get many benefits compared to solitary species. The main benefit of aggregations is foraging success, as aggregated individuals are able to capture larger prey with the ricochet effect and cooperative capture, a phenomenon that occurs in only a few species. However, conflicts can occur during prey capture, even though they are less common than agonistic interactions during web construction or repair. In this context, our study investigated prey capture behavior in *Parawixia bistriata* (Araneidae), a colonial spider that occurs in the Brazilian Cerrado. We did field natural observations of *P. bistriata* foraging behavior and identified the main groups of intercepted prey. Additionally, we estimated the frequency of cooperative capture and the occurrence probability of conflicts during capture. We also conducted a field experiment of prey offer to investigate the effect of different vibrations in the web of different orders of insects captured (i.e., Lepidoptera or Orthoptera) and the effect of prey weight in the spider capture behavior and in the occurrence of conflicts. Moreover, intra-colonial weight variation during the development of the spiders was obtained for two generations, being compared between the months and the size of the colonies. The observations of intercepted prey showed variation in the amount and size of prey according to insect order. Cooperative behaviors were more common in small spiders and are replaced by an increase in the occurrence of conflicts as they grow. Both the tendency to cooperation and the occurrence of conflicts during prey capture were dependent on insect order and weight of prey captured. Moths are captured cooperatively more frequently than grasshoppers, and the contrary is observed for conflict interactions. Heavier individuals usually won the conflicts, and individuals that received the prey on their webs only won the conflicts when they were heavier than their competitors were. During the study, 21 colonies were sampled, represented by 3876 individuals (19-600 per colony). The inter-individual weight variation in each colony does not increase throughout their development, and is not dependent on the number of spiders in the colony. This study demonstrates how the social dynamic of this territorial spider species relies on the stage of development of the spiders and the perception of the prey intercepted, both the relationship with its size and behavior on the webs. The weight difference between the individuals on the colonies does not seem to be influenced by the stage of development of the spiders or the size of the colonies, but it is important at the individual level, as they fight for the monopoly of prey, especially when they are close to dispersion, and the bigger tend to win these conflicts over prey.

Keywords: Sociality, Colonial Spiders, Cooperation, Conflicts, Weight variation.
INTRODUÇÃO

A formação de agregações e estruturas sociais mais complexas pode ser encontrada em espécies animais de diversos grupos taxonômicos, como insetos (e.g. Lockwood & Story 1986), aracnídeos (e.g. Rayor & Taylor 2006), peixes (e.g. Sandin & Pacala 2005), aves (e.g. Carrascal et al. 1990) e mamíferos (e.g. Kappeler & van Schaik 2002). Isso possivelmente ocorre devido ao desenvolvimento de comportamentos cooperativos que asseguram a redução no risco de predação individual (Hamilton 1971), aumentam a capacidade de defender recursos (e.g. Cords 2007), aumentam a eficiência de forrageamento (e.g. Rypstra 1990) e possibilitam a existência de cuidado parental cooperativo entre membros do grupo (Hatchwell 2009). No entanto, a permanência em grupo também pode apresentar custos para os indivíduos, como a maior transmissão de parasitas (e.g. Godfrey et al. 2009) e a ocorrência de interações agressivas durante o forrageamento, geralmente mais intensas quando os indivíduos apresentam tamanhos corporais semelhantes e quando a disponibilidade de recursos no ambiente é pequena ou restrita a manchas (Schmitz & Baldassarre 1992, Jakob 1994, Brunkow & Collins 1998, Pruetz & Isbell 2000).

Em aranhas, o comportamento social pode ocorrer de diversas formas. Algumas espécies mantêm agregações por um tempo limitado, apenas sob condições favoráveis de disponibilidade de alimento (Rypstra 1989, 1990). Outras chegam a formar colônias estáveis por várias gerações (Lubin & Bilde 2007). Apesar disso, a maioria das espécies não tolera a proximidade de co-específicos, com exceção nos primeiros instars de desenvolvimento, quando os imaturos geralmente são tolerantes à presença da mãe e de seus irmãos (Yip & Rayor 2014) e durante o acasalamento dos adultos.

As estruturas sociais em aranhas podem ser classificadas de acordo com a duração, permanente ou temporária, e a presença ou ausência de territorialidade entre os indivíduos (D’Andrea 1987). Nas famílias Theridiidae e Eresidae, por exemplo, as teias irregulares não
permitem a manutenção de territórios. Essa característica possivelmente constituiu um elemento facilitador ao estabelecimento de interações mais complexas entre os indivíduos nas teias coletivas, como a captura cooperativa de presas com tamanho corporal muito superior ao tamanho máximo que um indivíduo consegue imobilizar e o cuidado parental cooperativo (veja Avilés 1997). Em aranhas construtoras de teias orbiculares (e.g. Araneidae, Uloboridae), no entanto, cada indivíduo continua sempre mantendo seu território, embora interações com vizinhos que tenham teias conectadas possam ser frequentes (Whitehouse & Lubin 2005). Os benefícios da formação dos agregados nessas espécies territoriais geralmente estão relacionados principalmente ao forrageio (e.g. Lubin 1974, Uetz 1989) e à proteção (Uetz et al. 2002).

Em espécies coloniais de aranhas construtoras de teias orbiculares, um dos principais benefícios ligados ao aumento da eficiência de forrageio deriva do efeito ricochete. Nesse caso, as presas têm sua energia cinética amortecida após se chocarem com as teias do agregado que ficam em posições periféricas e acabam sendo interceptadas por teias adjacentes. Isso acontece principalmente com presas médias e grandes, que dificilmente ficam retidas na primeira teia com que se chocam (Uetz 1989). A formação de colônias também possibilita a exploração de habitats que não estão disponíveis para indivíduos solitários (Lubin 1974). Além disso, os indivíduos podem utilizar fios de suporte produzidos por outras aranhas do grupo, economizando energia com a produção de seda (Lloyd & Elgar 1997). Outro benefício potencial é a redução do risco de predação, como foi descrito em Metepeira incrassata (Araneidae), onde os indivíduos agregados são capazes de perceber a presença de um possível predador de forma mais eficiente. A partir dos movimentos evasivos de outros indivíduos do grupo, sinais vibracionais são transmitidos, permitindo uma reação mais rápida contra uma possível ameaça (Uetz et al. 2002).

Além do incremento na interceptação de presas devido ao efeito ricochete, a
interconexão de teias orbiculares pode propiciar a cooperação e aumento da eficiência no processo de captura de presas grandes (Fowler & Gobbi 1988a, Masumoto 1998, Campón 2007), assim como ocorre em colônias de espécies não territoriais (Souza et al. 2007, Guevara et al. 2011). O tipo de presa interceptada, além de seu tamanho, pode também afetar o comportamento das aranhas. Por exemplo, alguns insetos, como himenópteros, são muito ágeis e podem escapar das teias de algumas espécies com maior frequência (Ceballos et al. 2005). Outros, como ortópteros, movimentam-se relativamente pouco e, embora possam representar risco de injúria durante o processo de imobilização, ficam retidos por mais tempo após a interceptação (Pasquet & Krafft 1992). Os diferentes padrões vibratórios causados por esses insetos quando interceptados nas teias também são capazes de afetar o número de aranhas atraiadas para a captura e alimentação coletiva. Mariposas, com frequente vibração de asas após a interceptação, podem atrair um número maior de aranhas em comparação a gafanhotos ou grilos, que tendem a mover suas pernas com força, mas em baixa frequência (Souza et al. 2007). Assim, a propagação da vibração resultante da movimentação de diferentes tipos (e tamanhos) de presas deve ser distinta, fazendo com que o número de aranhas que percebem a interceptação do inseto seja diferente e que essas aranhas possam perceber características da presa antes da aproximação.

Indivíduos vivendo em grupo podem também entrar em conflitos, principalmente em casos de espécies territoriais. As disputas, nesse caso, podem ocorrer pela falta de espaço para a construção das teias, motivando interações agressivas entre as aranhas (Wenseleers et al. 2013), ou durante a renovação e reparação de teias, como ocorre em Cyrtophora moluccensis (Araneidae), quando indivíduos podem mover-se e passar por teias de aranhas vizinhas enquanto estão examinando e reparando as extremidades de suas teias (Lubin 1974). As interações agonísticas podem ocorrer por vibrações nas teias, para sinalizar os limites dos territórios das aranhas ou, em caso de invasão da teia, podem ocorrer perseguições ou brigas,
com contato físico (Buskirk 1975). O resultado dos conflitos pode ser afetado tanto pela diferença de tamanho entre os indivíduos envolvidos quanto pela diferença entre ser o proprietário da teia ou o invasor (Hodge & Uetz 1995). Outra forma de disputa territorial entre indivíduos agregados, menos explorada na literatura, é a ocorrência de conflitos durante a captura de presas. Esses conflitos podem possibilitar que aranhas invasoras, de maior tamanho, rouben presas diretamente de teias adjacentes, ganhando disputas com as residentes vizinhas (Lubin 1974).

Interações agonísticas após a captura de uma presa também podem ocorrer mesmo em espécies não territoriais quando, por exemplo, os indivíduos envolvidos tentam puxar os insetos, ou partes deles, para seus refúgios ou quando intrusos que não participaram da captura tentam se alimentar de presas capturadas por outras aranhas (Ward & Enders 1985). Em Anelosimus eximius (Theridiidae), por exemplo, fêmeas de maior peso podem expulsar aranhas menores de presas grandes capturadas cooperativamente, o que pode afetar a distribuição de recursos e variação intracolonial no tamanho corporal dos indivíduos (Vollrath & Rodhe-Arndt 1983). Presas de grande porte (em relação ao tamanho das aranhas) podem representar uma porção significativa da biomassa interceptada pelas teias de espécies sociais em regiões tropicais (Yip et al. 2008) e, assim, interações cooperativas e agonísticas entre os indivíduos podem ser de grande relevância para determinar a distribuição de alimento entre os membros dos grupos (e.g. Gonzaga & Vasconcellos-Neto 2002).

Um outro fator que pode ser importante para a divisão de alimento e estabilidade em sociedades de aranhas é o número de indivíduos no grupo. Em Stegodyphus mimosarum (Eresidae), por exemplo, grupos pequenos apresentam maior variação interindividual de tamanho corporal, ainda que nesses grupos haja mais cooperação do que em grupos maiores (Ward 1986). Já na espécie colonial Metepeira spinipes (Araneidae), que pode viver em agregações ou de forma solitária, quanto maior o tamanho do grupo, menor a variação de peso
entre os indivíduos (Uetz 1988). Yip et al. (2008) mostraram que, em colônias de *A. eximius*, os maiores valores de biomassa adquirida por hora, por indivíduo, são obtidos em colônias de tamanho intermediário. De acordo com os autores esses resultados podem ser importantes para explicar porque aranhas sociais não ocorrem em altas latitudes (onde haveria maior abundância de presas pequenas – veja Powers & Avilés (2007) e Guevara & Avilés (2007)) e porque começa a haver dispersão em colônias muito grandes.

A grande variação na organização social de aranhas pode ter diferentes implicações para as frequências de cooperação e conflito. Espécies sociais não territoriais são as que mais cooperam entre si, enquanto agregações de aranhas territoriais apresentam cooperação bastante limitada, principalmente durante a captura de presas. A própria arquitetura das teias individuais nas espécies territoriais pode representar um obstáculo para a captura coletiva de presas (Krafft & Cookson 2012). Nesses casos, cada indivíduo caça em sua própria teia e as vibrações das presas interceptadas geralmente não são transferidas de forma eficiente entre as teias do agregado (Whitehouse & Lubin 2005). No entanto, a aranha colonial *Parawixia bistriata* (Araneidae) é uma exceção. Apesar de construírem teias orbiculares individuais nas agregações, os indivíduos exibem comportamentos cooperativos durante a captura de presas quando as mesmas são de grande porte (Campón 2007). Isso pode ocorrer devido à formação de “redes de captura” compostas por várias teias individuais conectadas entre si e sustentadas por fios de suporte construídos pelo grupo de aranhas (Sandoval 1987). Entretanto, isso também pode aumentar a possibilidade da ocorrência de conflitos por presas entre os indivíduos dentro da colônia, possibilitando que o roubo de presas aconteça de maneira mais frequente.

As colônias de *P. bistriata* são normalmente compostas por indivíduos aparentados, advindos da mesma ooteca (Sandoval 1987), e que apresentam sincronia de mudas durante seu desenvolvimento (Fowler & Gobbi 1988b). As teias dessa espécie são tecidas geralmente ao anoitecer e consumidas ao amanhecer. Essa construção diária das teias pode mudar a posição
e o tamanho das teias dos indivíduos dentro da agregação (o que pode ter influência nas interações entre eles). Essas condições tornam *P. bistriata* um modelo experimental ideal para avaliar a cooperação e competição durante a captura de presas, de acordo com o tamanho e padrão vibracional dos insetos, e as possíveis implicações de comportamentos cooperativos e interações agonísticas na variabilidade de tamanhos dos indivíduos dentro das colônias. Em vista disso, foram determinados os seguintes objetivos para esse estudo: (1) Determinar os tipos e tamanhos de presas capturadas por *P. bistriata*; (2) estimar as frequências de cooperação e conflitos durante a captura de presas em dois diferentes estágios de desenvolvimento da espécie; (3) testar experimentalmente o efeito de dois diferentes grupos de presas, Lepidoptera e Orthoptera, sob o comportamento de captura das aranhas; (4) investigar a variação de massa corporal dos indivíduos de acordo com seu crescimento e tamanho da colônia. Dessa forma, estabelecemos as seguintes hipóteses: 1) As diferentes ordens de insetos capturadas por *P. bistriata* apresentam tamanhos distintos entre si; 2) As frequências de cooperação e conflito dependem do mês (estágio de desenvolvimento); 3) O tipo de presa sendo capturada, além do seu peso, afeta I) a probabilidade de captura coletiva, II) o número de aranhas atraídas para a captura e alimentação, e III) a probabilidade da ocorrência de conflitos; 4) Durante os conflitos individuais, I) o peso das aranhas determina o resultado dos conflitos, e II) a diferença de peso entre os indivíduos afeta a probabilidade de vitória, independente da aranha ser a residente da teia ou não; e 5) A variação intracolonial de peso, dada pelo coeficiente de variação das colônias, depende do I) estágio de desenvolvimento das aranhas e II) do número de indivíduos nas colônias.

MATERIAIS E MÉTODOS

Área de Estudo

Foram selecionadas áreas de Cerrado da região Sudeste e Centro-Oeste do Brasil nos
estados de Minas Gerais e Goiás para a realização do estudo. As primeiras duas áreas utilizadas são próximas, localizadas em torno de 40 quilômetros do município de Uberlândia (MG): 1) a Estação Ecológica do Panga (19°11’40”S 48°19’06”W), uma área remanescente de Cerrado, propriedade da Universidade Federal de Uberlândia, e (2) a Fazenda Nova Monte Carmelo (18°45’11”S 47°51’28”W), uma área de produção de Eucalipto com fragmentos remanescentes de Cerrado, de propriedade da empresa Duratex S.A., localizada no município de Estrela do Sul, MG. Já a terceira área de estudo foi o Parque Estadual da Serra de Caldas Novas, localizado entre as cidades de Caldas Novas e Rio Quente (GO), aproximadamente 200 quilômetros de distância de Uberlândia (MG).

Espécie estudada

Parawixia bistriata (Rengger, 1836) é uma aranha construtora de teias orbiculares, da família Araneidae, que pode ser encontrada em áreas abertas de Cerrado no Brasil (Levi 1992). Essa espécie apresenta um ciclo de vida anual, com o desenvolvimento dos indivíduos de setembro a março, e um estilo de vida gregário desde a eclosão dos filhotes até a maturação das aranhas, quando os indivíduos dispersam de suas colônias para se reproduzir (Sandoval 1987). Os imaturos constroem teias orbiculares individuais, geralmente após o pôr do sol, a partir de fios de suporte construídos e mantidos por vários indivíduos da colônia (Sandoval 1987). As teias individuais são defendidas como um território próprio por cada aranha, o que leva à ocorrência de interações agonísticas quando ocorre a falta de espaço para a construção das teias de alguns indivíduos (Wenseleers *et al.* 2013). No entanto, como as teias individuais estão interconectadas e sinais vibratórios de presas interceptadas propagam-se entre teias, a estrutura coletiva permite a ocorrência de capturas cooperativas e imobilização de presas de grande porte (Fowler & Gobbi 1988a; Campón 2007).
Observações de presas interceptadas e capturadas

Nos anos de 2016 e 2017 foram realizadas 20 horas de observações diretas das presas interceptadas e capturadas, no período das 19:00 até as 00:00 horas, por diversas colônias de *P. bistriata*. Consideramos as presas interceptadas aquelas que se chocaram com as teias e ficaram detidas por alguns instantes podendo ser capturadas, ignoradas ou removidas pelas aranhas, além de poderem escapar das teias. No total 40 amostragens de 30 minutos cada foram realizadas, e para cada amostragem as observações foram feitas com foco em um subgrupo de aranhas, com o maior número possível de indivíduos próximos entre si. Nessas regiões de cada colônia observada todas as presas interceptadas foram contabilizadas, sendo registrado o comprimento (em mm), a ordem de inseto e se a presa em potencial foi consumida ou ignorada. Para reduzir o efeito de atração de insetos foi utilizado papel celofane vermelho sobre as lanternas durante as observações.

As 10 primeiras horas de observação foram realizadas nos meses de novembro, dezembro e janeiro da geração 2016-2017 para a descrição da dieta e tamanho das presas. Um teste Kruskal-Wallis (e teste de Dunn *a posteriori*) foi realizado para testar a diferença de tamanho das presas de acordo com a ordem de inseto, excluindo as ordens que só apresentaram 1 evento de interceptação. Já na segunda geração de 2017-2018, 5 horas de observação foram realizadas em novembro e mais 5 horas em dezembro para se descrever a frequência de captura em grupo e da ocorrência de conflitos nesses dois meses. Todas as análises foram realizadas no programa R, versão 3.3.3 (R Core Team 20017).

Experimento de oferta de presas: cooperação e conflitos

Após a observação das presas naturalmente capturadas pelas aranhas no período de novembro, dezembro e janeiro de 2016-2017, foi realizado um experimento de oferta de presas para se analisar a frequência de cooperação e dos conflitos entre indivíduos. Durante o mês de
Janeiro e fevereiro de 2017 indivíduos sub-adultos de *P. bistriata* foram utilizados para o experimento. Duas ordens de insetos diferentes foram selecionadas, Lepidoptera e Orthoptera, por serem presas capturadas por essa espécie, ocorrerem em diversos tamanhos e pela facilidade de coleta no campo. Além disso, essas duas ordens promovem padrões vibracionais distintos quando interceptadas (veja Souza *et al.* 2007). As presas foram coletadas no campo por busca ativa, durante o dia todo no caso dos gafanhotos e somente durante a noite para as mariposas, e com o uso de armadilha luminosa de noite principalmente para a captura de mariposas. Todos os insetos foram oferecidos até no máximo dois dias após terem sido coletados, e os mesmos foram pesados antes de serem utilizados.

Para a oferta de cada presa, uma área da colônia contendo ao menos 3 indivíduos com teias próximas e conectadas era selecionada, sendo marcado o abdome do indivíduo central e dos dois vizinhos mais próximas com esmalte de cores distintas. Os insetos foram jogados na área intermediária de uma teia central a partir de seus potes individuais ou ocasionalmente manipulados com o uso de pinças pelas asas (principalmente os Lepidoptera de grande tamanho). Ao contato com a teia, foi registrado o número de aranhas atraídas tanto para a captura, a qual termina quando a presa para de se mover, quanto para a alimentação. Nos casos onde se desenvolveu conflito pela monopolização da presa, os indivíduos envolvidos foram coletados após o desfecho final do conflito para serem pesados e posteriormente devolvidos à colônia.

A ocorrência de cooperação e conflitos na captura de presas foi analisada por meio de regressões logísticas utilizando o peso das presas e a ordem dos insetos, quando possível, como fatores independentes. Nos casos onde ocorreu cooperação na captura de presas, o número de aranhas atraídas tanto para a captura quanto para a alimentação foi analisado de acordo com o peso das presas por meio de uma regressão linear. Já quando conflitos se desenvolveram sob uma presa em particular, o peso dos dois ou mais indivíduos envolvidos foi relacionado com o
desfecho, vitória ou derrota, através de um modelo misto considerando o número do conflito como variável aleatória, buscando responder se os indivíduos com maior peso tendem a ganhar os conflitos com maior frequência. Além disso, uma última análise de regressão logística relacionou o desfecho dos conflitos com a assimetria de peso entre o indivíduo central da teia e o vizinho invasor.

Variação de peso intra-colonial de acordo com o estágio de desenvolvimento e o número de aranhas nas colônias

Para a obtenção do peso dos indivíduos dentro de cada colônia, as aranhas foram encontradas no campo durante a noite, quando as mesmas estão ativas caçando, e coletadas de dia, quando elas estão juntas em seu refúgio. Esse procedimento foi realizado durante os meses de outubro a janeiro, quando as aranhas estão vivendo de forma comunal, sendo amostradas duas gerações anuais no período de 2016-2017 e 2017-2018. Todos os indivíduos de cada colônia coletada foram pesados com uma balança de precisão (Shimadzu, Modelo AU, precisão de 0.00001g) e posteriormente devolvidos ao campo. A partir do peso das aranhas foi obtido o coeficiente de variação de cada colônia, o qual é uma medida de variação relativa à média e ao desvio padrão dentro de cada colônia. A média do coeficiente de variação entre as colônias de um mesmo mês foi utilizada para a comparação da variação de peso entre os estágios de desenvolvimento de *P. bistriata*.

Para analisar a variação de peso dentro de cada colônia nos meses de outubro a janeiro foi utilizado um teste de igualdade do coeficiente de variação (Feltz & Miller 1996) no programa livre R, versão 3.3.3 (R Core Team 2017). Para isso, os coeficientes de variação médios para cada mês, de outubro a janeiro, nas duas gerações foram obtidos para a comparação entre os meses, buscando responder se a variação de peso intra-colonial muda durante o desenvolvimento dos indivíduos a partir do coeficiente de variação. A variação de peso dentro
de cada colônia também foi analisada de acordo com o número de indivíduos na colônia através de uma correlação simples.

RESULTADOS

Observação de presas interceptadas

Durante a geração de 2016-2017, nos meses de novembro, dezembro e janeiro, 10 horas de observação foram realizadas registrando a interceptação de 163 presas por Parawixia bistriata (Fig. 1A), representando 8 ordens de insetos distintas: Diptera, Coleoptera, Hemiptera, Lepidoptera, Blattodea, Hymenoptera, Mantodea e Orhoptera. O tamanho das presas interceptadas variou de acordo com a ordem de inseto, sendo que os Diptera interceptados foram menores que os demais (Fig. 1B; H=54,604; gl=6, p=<0,001, teste Kruskal-Wallis).

Na geração de 2017-2018 foram registradas 189 presas interceptadas, sendo 118 (62,4%) dessas efetivamente capturadas pelas aranhas. A eficiência de captura foi similar entre os meses (61,2% em novembro e 63,7% em dezembro). Das 71 presas interceptadas, mas não capturadas, a maior parte não foi percebida pelas aranhas por serem pequenas e cairem na periferia das teias, mas diversos insetos conseguiram escapar antes de serem capturados, e outros foram ignorados ou removidos das teias pelas próprias aranhas, principalmente da ordem Coleoptera (Fig. 2). Considerando as presas capturadas, os meses de novembro e dezembro apresentaram diferenças na frequência de captura em grupo e na ocorrência de conflitos (Tabela 1), sendo mais comum a cooperação na captura de presas quando as aranhas são menores e o oposto para a ocorrência de conflitos (Fig. 3).
Tabela 1. Número total de presas capturadas durante os meses de novembro e dezembro.

Meses amostrados em 2017	Presas capturadas	Capturas coletivas (%)	Ocorrência de conflitos (%)
Novembro	60	12 (20)	3 (5)
Dezembro	58	1 (1,7)	5 (8,6)
TOTAL	118	13 (11)	8 (6,7)

Experimento de oferta de presas: cooperação e conflito

As presas utilizadas no experimento apresentaram padrões claramente distintos de comportamento quando introduzidas nas teias. Mariposas tendem a bater as asas até serem capturadas e as aranhas vizinhas parecem perceber com mais facilidade a interceptação desse tipo de presa por outros indivíduos da colônia do que gafanhotos, os quais geralmente se movimentam pouco. Presas de baixo peso ocasionalmente já eram paralisadas pelas próprias teias, enquanto presas de médio e grande peso só cessavam os movimentos após a ação de uma ou mais aranhas.

Foram oferecidas, no total, 78 presas, sendo 39 mariposas e 39 gafanhotos, de vários pesos distintos (0,0087g – 1,5561g). Desses 78 eventos de captura, somente 12 ocorreram em grupo (15%) e a probabilidade da cooperação na captura foi afetada pelo peso e pela ordem dos insetos (Tabela 2, Fig. 4A). Para mariposas existiu uma relação entre o peso do inseto e probabilidade de captura coletiva pelas aranhas (Fig. 4B). No entanto para gafanhotos essa relação não foi observada, ocorrendo somente um evento de captura e alimentação cooperativa com esse grupo (Fig. 4C).

Tabela 2. Resultados da regressão logística (Anova) sobre os efeitos do peso e ordem das presas na ocorrência de cooperação durante a captura de presas.

Fonte de variação	gl	χ²	p
Cooperação			
Peso	1	20,1311	<0,05
Ordem	1	14,1687	<0,05
Peso*Ordem	1	2,1698	0,1407
Considerando o número de aranhas atraídas durante os eventos de captura de mariposas em grupo (gafanhotos foram excluídos porque apenas um evento cooperativo foi observado), o peso da presa não se mostrou relacionado ao número de indivíduos capturando ($R^2=0,202$, $F_{1,9}=2,278$, $p=0,1655$; Fig. 5A). Já no caso da alimentação coletiva o peso da presa influenciou o número de aranhas atraídas ($R^2=0,6095$, $F_{1,9}=14,05$, $p<0,01$; Fig. 5B).

Das 78 presas oferecidas, 27 (34%) geraram conflitos, sendo 18 gafanhotos e 9 mariposas. A relação entre a probabilidade da ocorrência de conflitos e o peso das presas dependeu da ordem de inseto (Tabela 3, Figura 6A). Nesse caso, para as mariposas a probabilidade da ocorrência de conflitos não esteve relacionada ao peso da presa (Fig. 6B), mas para gafanhotos a probabilidade da ocorrência de conflitos aumentou de acordo com o tamanho da presa (Fig. 6C).

Tabela 3. Resultados da regressão logística (Anova) sobre os efeitos do peso e ordem das presas na ocorrência de conflitos durante a captura de presas.

Fonte de variação	gl	χ^2	p
Conflitos			
Peso	1	5,3460	<0,05
Ordem	1	5,4834	<0,05
Peso*Ordem	1	4,2740	<0,05

As 27 presas que geraram conflitos produziram 33 conflitos individuais, já que em 6 casos ocorreram 2 conflitos sob uma mesma presa. Desses 33 conflitos individuais, 30 (90%) foram vencidos por aranhas com peso maior do que suas competidoras, e, portanto, no geral o peso das vencedoras foi maior do que o das perdedoras ($F_{1,32}=35,392$; $p<0,001$). Além disso, as aranhas que receberam as presas em suas próprias teias não apresentaram vantagem na probabilidade de vitória dos conflitos devido a isso, já que a assimetria de peso entre indivíduos foi o que definiu o resultado dos conflitos ($F_{1}=37,114$; $p<0,001$). Nesse contexto, aranhas centrais somente ganharam os conflitos quando as mesmas apresentavam um peso significativamente maior do que as invasoras (Fig. 7).
Variação de peso intra-colonial de acordo com o estágio de desenvolvimento e o número de aranhas nas colônias.

No total 21 colônias foram coletadas durante os meses de outubro a janeiro em duas gerações distintas (2016-2017 9 colônias, 2017-2018 12 colônias). Essas colônias foram representadas por 3876 indivíduos (19 a 600 por colônia), sendo 184 aranhas por colônia em média. O peso das aranhas aumentou gradativamente com o passar dos meses (Figs 8A, 9), principalmente após novembro, quando ocorre uma maior precipitação no Cerrado (Fig. 8B). Já o coeficiente de variação médio não foi diferente entre os meses (p = 0,969; Fig. 10A) e não foi relacionado ao número de aranhas nas colônias (r=0.024, gl=19, p=0.917; Fig. 10B).

DISCUSSÃO

Aranhas construtoras de teias orbiculares capturam uma ampla diversidade de presas (e.g. Murakami 1983, Wise & Barata 1983, Ibarra-Nuñez 2001, Ceballos et al. 2005), embora hábitos estenofágicos tenham surgido repetidas vezes no grupo (principalmente direcionados à captura de Diptera e Lepidoptera) (Pekár et al. 2011). Em nossas amostragens, Parawixia bistriata capturou oito ordens de insetos, com uma grande variação de tamanhos corporais. Essa amplitude de dieta é um reflexo da estratégia de forrageamento utilizada pela espécie, que constrói teias orbiculares interconectadas a várias outras teias de coespecíficos, normalmente no período crepuscular e noturno, em alturas que variam desde posições próximas ao solo a vários metros. A interconexão de fios de várias teias permite, como observamos, a ocorrência de eventos de captura cooperativa. A ação conjunta de várias aranhas possibilita a exploração de uma amplitude maior de tamanhos de presas e, consequentemente, também de maior variedade de tipos de presas (veja Rypstra 1990). Além disso, P. bistriata é capaz de modular características de suas teias (como a distância entre espiras) para capturar cupins, presas
abundantes durante o início da estação chuvosa (Sandoval 1994). A variação das alturas em que as teias são construídas também pode fazer com que presas distintas sejam capturadas por indivíduos localizados em diferentes posições no agrupamento, aumentando o espectro de presas registrado para a população (veja McReynolds & Polis 1987, McReynolds 2000). Finalmente, a composição da dieta de *P. bistriata* deve ser influenciada pelo período (do crepúsculo ao amanhecer) de exposição das teias. Outras espécies noturnas da família Araneidae que já tiveram sua dieta investigada podem apresentar adaptações para captura preferencial de presas como mariposas (*e.g.* Eberhard 1975, Zschokke *et al.* 2006) e, nesses casos, este tipo de inseto realmente representa a maioria dos itens capturados (*e.g.* Meraz *et al.* 2011). Embora mariposas também tenham representado um item relativamente comum na dieta de *P. bistriata*, dipteros ecoleópteros de pequeno porte foram muito mais frequentemente interceptados, indicando que essa espécie apresenta uma dieta mais abrangente, com exceção das adaptações comportamentais para a captura de cupins durante eventos de revoada (Sandoval 1994).

Quando comparadas a espécies de aranhas caçadoras ativas, as espécies construtoras de teias orbiculares podem apresentar menor amplitude de presas capturadas, por dependerem mais de alguns grupos de insetos passíveis de interceptação pelas teias (Nyffeler 1999). Como já demonstrado para algumas orbitelas eurífagas, a porcentagem de presas retidas, capturadas e consumidas pode depender do tipo de presa, devido a alguns fatores como os mecanismos de defesas dos insetos interceptados (Henaut *et al.* 2001). No caso de *P. bistriata*, observamos que alguns besouros, provavelmente pelo espesso exoesqueleto, e vespas (que podem representar riscos de injúria durante a captura), eram ignorados após a detecção. Além disso, essa espécie também pareceu não perceber, ou ignorar, presas de pequeno tamanho que foram interceptadas nas periferias de suas teias ou aquelas que cessavam seus movimentos quando em contato com as teias, principalmente moscas e mosquitos, as quais dessa forma tiveram mais tempo para
tentar escapar das teias.

A probabilidade de escapar das teias também deve ser muito influenciada pelo comportamento dos insetos interceptados. Em Diptera e Hymenoptera, por exemplo, a alta frequência de batimento de asas pode ocasionar uma maior probabilidade de ruptura da teia ou deslocamento durante as tentativas de imobilização, podendo resultar em fuga. Souza et al. (2007), no entanto, mostraram que esses movimentos propagam vibrações que atraem mais indivíduos para o local de captura em colônias de *Anelosimus eximius* e a presença de várias aranhas no entorno da presa interceptada poderia reduzir as suas chances de escape. Nessa espécie de aranha social, a velocidade na qual as aranhas são atraídas para a captura também pode depender dos movimentos dos insetos. Mariposas, por exemplo, atraem mais aranhas em um menor intervalo de tempo do que quando comparadas a gafanhotos, o que pode ser importante já que esses insetos conseguem escapar mais rápido do que os gafanhotos (Pasquet & Krafft 1992).

Em *P. bistriata*, a cooperação na captura de presas também mostrou depender do comportamento dos insetos interceptados nas teias. A probabilidade da captura coletiva e o número de aranhas atraídas durante a captura e alimentação coletivas, foram influenciados pelo tipo de presa. Mesmo com a conectividade entre as teias de *P. bistriata*, é provável que a manutenção de estruturas orbiculares individuais restrinja a propagação de vibrações por longas distâncias. Assim, apenas determinados padrões (ou intensidade) de vibração atrairiam outros indivíduos localizados em territórios adjacentes. Esse pode ser o motivo pelo qual foi observada menor frequência de cooperação em eventos de captura de Orthoptera. Embora esses insetos produzam vibrações fortes com movimentos bruscos das pernas posteriores, esses movimentos apresentam baixa frequência em comparação com os batimentos de asas de Diptera e Lepidoptera (Souza et al. 2007). Durante os eventos de captura coletiva com as mariposas, observamos que o número de aranhas atraídas para a captura não pareceu depender
do peso da presa, ainda que o número de aranhas se alimentando ao fim tenha sido relacionado com o peso do inseto. Isso deve estar relacionado com o fato de que, primeiramente, o número de aranhas atraídas poder aumentar de forma mais acentuada em relação ao peso da presa para a alimentação do que para a captura (Rypstra & Tirey 1991) e o tamanho das aranhas durante o experimento de oferta de presas, por serem sub-adultas, o que possibilita que mesmo presas de médio e grande porte sejam capturadas por somente um indivíduo.

As observações das presas interceptadas por *P. bistriata* demonstraram uma maior frequência de captura em grupo quando as aranhas estão menores. Três fatores devem influenciar essa característica: i) o estágio de maturação das aranhas, ii) seu tamanho, e iii) a ocorrência de revoadas de cupins e de outros insetos alados. Primeiramente, há uma tendência a maior tolerância entre indivíduos jovens, ainda nos primeiros instares (e.g. Trabalon et al. 1996). Já foi observado que, em algumas espécies, alterações lipídicas na composição da cutícula ocorrem durante o desenvolvimento e, paralelamente, ocorre o aumento da frequência de interações agonísticas entre membros do grupo (Trabalon 2013). É possível que isso ocorra também em *P. bistriata* e que, inclusive, essa característica seja importante para determinar a dispersão dos adultos. Em relação ao tamanho das aranhas, nos primeiros estágios os indivíduos podem adquirir maior benefício participando de eventos coletivos de captura, aumentando significativamente o espectro de presas disponíveis devido à cooperação, a qual é mais frequente quanto maior o tamanho da presa em relação as aranhas (Campón 2007). Conforme crescem, cada indivíduo já pode realizar capturas individuais de forma mais eficiente, inclusive de presas de tamanho corporal superior ao seu próprio. Finalmente, revoadas de cupins ocorrem em um momento específico do desenvolvimento das aranhas, quando estão ainda bem jovens. Logo no início das chuvas (veja Prestes 2012), geralmente no mês de novembro, esses insetos representam um grande aporte de nutrientes para as colônias e capturas coletivas podem favorecer as capturas. Além disso, como é um período de grande abundância de presas,
comportamentos agonísticos tenderiam a ser menos frequentes e os indivíduos seriam mais tolerantes (veja Mestre & Lubin 2011). Nesse período, os imaturos de *P. bistriata* chegam a tecer teias durante o dia, o que não ocorre em outros períodos do ano, além de modificar a arquitetura de suas teias para capturar essas presas em particular (Sandoval 1994).

Na maior parte das aranhas coloniais territoriais, os indivíduos capturam suas presas de forma solitária, e assim, a ocorrência de conflitos durante a captura de presas parece ser rara, podendo acontecer principalmente com presas grandes e com vibrações frequentes (*e.g.* Lubin 1974). No entanto, a possibilidade de transitar entre teias em grupos de *P. bistriata* parece favorecer a ocorrência de conflitos para monopolizar presas. O fato da ocorrência de mais conflitos com Orthoptera do que Lepidoptera indica que quanto menos indivíduos atraídos, maior a chance da ocorrência de conflitos. Nesses casos haveria a possibilidade de monopólio da presa através de um confronto direto. Já quando uma mariposa atraia diversas aranhas vizinhas, dificilmente um indivíduo conseguiria impedir o acesso de todos os outros.

Nos conflitos durante a captura de presas, indivíduos maiores de *P. bistriata* ganharam as brigas na maior parte das ocasiões, independente da presa ter sido interceptada em sua teia ou em uma teia vizinha. Dessa forma, indivíduos podem roubar as presas de outras aranhas, podendo levá-las de volta para a sua teia individual ou até mesmo ocupar a teia invadida. Em espécies sociais não territoriais, conflitos durante ou após a captura de uma presa também podem ocorrer. Nesse caso as interações agonísticas ocorrem quando indivíduos tentam levar as presas ou partes delas para seus refúgios (*e.g.* Ward & Enders 1985). Ainda que conflitos não sejam muito comuns em espécies territoriais solitárias (Wise 1983), interações agonísticas podem ocorrer quando a interceptação de presas por uma determinada teia é muito frequente (Gan et al. 2015). Já no caso das espécies agregadas e coloniais, quando os indivíduos estão construindo suas teias ou defendendo as mesmas da aproximação de outras aranhas, interações agressivas também podem acontecer. O nível de agressividade, nesses casos, varia de acordo
com a distância e o tamanho da aranha invasora (Buskirk 1975). Esse tipo de interação também é observado em *P. bistriata*, principalmente quando ocorre a falta de espaço para algumas aranhas construírem suas teias (Wenseleers 2013 et al.). Durante a defesa dos territórios em aranhas, geralmente os indivíduos de maior tamanho ou os residentes (quando os adversários apresentam tamanho semelhante) conseguem ganhar os confrontos (Hodge & Uetz 1995). No entanto, a residência não pareceu ter efeito sobre os conflitos durante a captura de presas em *P. bistriata*, já que mesmo quando os competidores tinham tamanhos muito similares, o residente frequentemente perdeu a presa.

O peso médio das aranhas teve um incremento significativo entre cada mês amostrado, especialmente a partir do início da estação chuvosa, em novembro. A variação de peso intra-colonial, no entanto, se mostrou independente do estágio de desenvolvimento dos indivíduos e do número de aranhas nas colônias. Era esperado que o coeficiente de variação aumentasse com o desenvolvimento das aranhas, em resposta a uma progressiva diminuição da frequência de interações cooperativas. Essa diminuição poderia implicar em uma distribuição menos equitativa dos recursos obtidos pela colônia. A ausência do padrão esperado pode ter ocorrido por dois motivos: i) é possível que a maior parte da biomassa adquirida pelos indivíduos, desde os primeiros instares, seja oriunda de capturas individuais e, ii) aparentemente não existe uma limitação importante de alimento. A frequência de alimentação durante o período chuvoso parece ser alta (principalmente durante o período de revoadas de cupins) e é possível que cada indivíduo cresça de acordo com seu máximo potencial de desenvolvimento. A baixa variação interindividual também pode ser influenciada pelos intervalos sem caça durante as mudas (obs. pessoal). Assim, aranhas que atingem o tamanho corporal máximo para o instar em que se encontram passam por um período de ecdise em que cessam a alimentação e, no qual outras aranhas ainda estão crescendo. Uma possível explicação para as colônias que apresentaram valores de coeficiente de variação muito altos pode ser a possibilidade de fusão de colônias em
P. bistriata (Sandoval 1987), fenômeno que poderia afetar a variação de peso intra-colonial se as duas ou mais colônias envolvidas estivessem em estágios diferentes de desenvolvimento.

Em aranhas sociais como *Anelosimus eximius*, os conflitos durante a captura de presas podem afetar a variação de peso entre indivíduos de forma cumulativa, já que as aranhas não estão separadas em territórios individuais, e por isso, indivíduos de maior porte podem constantemente expulsar aranhas menores de presas capturadas (Rypstra 1993). No entanto, em *P. bistriata*, e em outras espécies territoriais, o fato de conflitos serem relativamente raros deve limitar a capacidade de alguns indivíduos roubarem presas constantemente, e, portanto, os mesmos não devem ter um efeito a longo prazo na variação de peso dentro das colônias. Já em *Metepeira spinipes*, uma espécie de aranha ocasionalmente colonial, grupos experimentais com poucos indivíduos apresentam maior variação de peso do que grupos maiores, provavelmente devido ao aumento no número de presas capturadas por cada aranha quanto maior o tamanho do grupo (Uetz 1988). Esse padrão não foi encontrado para *P. bistriata*, e isso talvez possa ser parcialmente explicado pelo fato de que os grupos criados para o experimento em *M. spinipes* variavam de 1 a 20 indivíduos, o que difere bastante do número de indivíduos geralmente encontrados nas colônias de *P. bistriata*, os quais chegam a 600 aranhas, e talvez o incremento médio de presas capturadas por aranha de acordo com o tamanho dos grupos seja diferente entre as espécies ou estabilize a partir de um certo número de indivíduos.

Por fim, alguns fatores não analisados no presente estudo podem ser importantes intermediadores dos processos aqui descritos. Por exemplo, a distância entre as aranhas e a distribuição espacial das teias orbiculares nos fios de sustentação (número de teias adjacentes interconectadas) pode ser um fator muito importante para determinar a frequência de interações cooperativas e agonísticas. Quanto mais teias próximas entre si, mais eficiente seria a propagação de sinais vibracionais e, consequentemente, a atração de indivíduos para locais onde presas foram interceptadas. Esse também pode ser um dos motivos que explicam a maior
freqüência de cooperação na captura quando os indivíduos são menores, já que estes também constroem teias relativamente pequenas e próximas.

Nesse trabalho conseguimos descrever alguns aspectos da estrutura e dinâmica social de *P. bistriata*, a importância dos tipos e tamanhos de presas sobre comportamentos cooperativos e agonísticos e a variação de massa encontrada nas colônias ao longo do desenvolvimento dos indivíduos e em colônias de diferentes tamanhos. Essa espécie de aranha possibilita explorar questões únicas sobre estruturas sociais em aranhas, principalmente porque ela apresenta características comportamentais de espécies solitárias e sociais, e porque seu comportamento pode alterar-se ao longo da ontogenia.
REFERÊNCIAS BIBLIOGRÁFICAS

Avilés, L. 1997. Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe, J. & Crespi, B. (eds.). The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge;https://doi.org/10.1017/CBO9780511721953.024

Brunkow, P.E. & Collins, J.P. 1998. Group size structure affects patterns of aggression in larval salamanders. Behavioral Ecology 9:508-514; https://doi.org/10.1093/beheco/9.5.508

Buskirk, R.E. 1975. Aggressive display and orb defence in a colonial spider, Metabus gravidus. Animal Behaviour 23:560-567; https://doi.org/10.1016/0003-3472(75)90133-5

Campón, F.F. 2007. Group foraging in the colonial spider Parawixia bistriata (Araneidae): effect of resource levels and prey size. Animal behaviour 74:1551-1562; https://doi.org/10.1016/j.anbehav.2007.02.030

Carrascal, L.M., Alonso, J.C. & Alonso, J.A. 1990. Aggregation size and foraging behaviour of white storks Ciconia ciconia during the breeding season. Ardea 78:399-404.

Ceballos, L., Hénault, Y., Legal, L. 2005. Foraging strategies of Eriophora edax (Araneae, Araneidae): a nocturnal orb-weaving spider. Journal of Arachnology 33:509-515; https://doi.org/10.1636/04-74.1

Cords, M. 2007. Variable participation in the defense of communal feeding territories by blue monkeys in the kakamega forest, Kenya. Behaviour 144:1537-1550; https://doi.org/10.1163/156853907782512100

D'Andrea, M. 1987. Social behaviour in spiders (Arachnida, Araneae). Monitore Zoologico Italiano, n.s. 3:1–156.

Eberhard, W.G. 1975. The "inverted ladder" orb web of Scoloderus sp. and the intermediate orb of Eustala sp. Araneae: Araneidae. Journal of Natural History 9: 93–106; https://doi.org/10.1080/00222937500770071

Feltz, C.J. & Miller, G.E. 1996. An asymptotic test for the equality of coefficients of variation from k populations. Statistics in Medicine 15:647-658; https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<647::AID-SIM184>3.0.CO;2-P

Fowler H.G. & Gobbi N. 1988a. Cooperative prey capture by an orb-web spider. Naturwissenschaften 75:208-209; https://doi.org/10.1007/BF00735585

Fowler H.G. & Gobbi N. 1988b. Communication and synchronized molting in a colonial araneid spider, Eriophora bistriata. Experientia 44:720-722; https://doi.org/10.1007/BF01941043

Gan, W., Liu, S., Yang, X., Li, D. & Lei, C. 2015. Prey interception drives web invasion and
spider size determines successful web takeover in nocturnal orb-web spiders. Biology Open 4: 326–1329; https://doi.org/10.1242/bio.012799

Godfrey, S.S., Bull, C.M, James, R. & Murray, K. 2009. Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behavioral Ecology and Sociobiology 63:1045-1056; https://doi.org/10.1007/s00265-009-0730-9

Gonzaga, M.O. & Vasconcellos-Neto, J. 2002. Influence of collective feeding on weight gain and size variability of Anelosimus jabaquara Levi 1956 (Araneae: Theridiidae). Behaviour 139:1431-1442; https://doi.org/10.1163/15685390260514708

Guevara, J., Avilés L. 2007. Multiple sampling techniques confirm differences in insect size between low and high elevations that may influence levels of spider sociality. Ecology 88:2015–2033; https://doi.org/10.1890/06-0995.1

Guevara, J., Gonzaga, M.O., Vasconcellos-Neto, J. & Avilés, L. 2011. Sociality and resource use: insights from a community of social spiders in Brazil. Behavioral Ecology 22:630-638; https://doi.org/10.1093/beheco/arr022

Hamilton, W.D. 1971. Geometry for the selfish herd. Journal of Theoretical Biology 31:295-311; https://doi.org/10.1016/0022-5193(71)90189-5

Hatchwell, B.J. 2009. The evolution of cooperative breeding in birds: Kinship, dispersal and life history. Philosophical Transactions of The Royal Society B Biological Sciences 364:3217-3227; https://doi.org/10.1098/rstb.2009.0109

Henaut, Y, Pablo, J., Ibarra-Nu-ez, G. & Williams, T. 2001. Retention, capture and consumption of experimental prey by orb-web weaving spiders in coffe plantations of Southern Mexico. Entomologia Experimentalis et Applicata 98:1-8; https://doi.org/10.1046/j.1570-7458.2001.00750.x

Hodge, M.A. & Uetz, G.W. 1995. A comparison of agonistic behaviour of colonial web-building spiders from desert and tropical habitats. Animal Behaviour 50:963-972; https://doi.org/10.1016/0003-3472(95)80097-2

Ibarra-Nu-ez, G., J.A. García; J.A. López & J.P. Lachaud. 2001. Prey analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology 37: 723–756.

Jakob, E.M. 1994. Contests over prey by group-living pholcids (Holocnemus pluchei). The Journal of arachnology 22:39-45.

Kappeler, P. & van Schaik, C.P. 2002. Evolution of primate social systems. International Journal of Primatology 23:707-740; https://doi.org/10.1023/A:1015520830318

Krafft, B. & Cookson, L.J. 2012. The role of silk in the behaviour and sociality of spiders.
Levi, H.W. 1992. Spiders of the orb-weaver genus Parawixia in America (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoologia 153:1-46.

Lloyd N.J. & Elgar M. 1997. Costs and benefits of facultative aggregating behaviour in the orb-spinning spider Gasteracantha minax Thorell (Araneae: Araneidae). Austral Ecology 22:2569-261; https://doi.org/10.1111/j.1442-9993.1997.tb00670.x

Lockwood, J.A. & Story, R.N. 1986. Adaptive functions of nymphal aggregation in the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Environmental Entomology 15:739-749; https://doi.org/10.1093/ee/15.3.739

Lubin Y.D. 1974. Adaptive advantages and the evolution of colony formation in Cyrtophora (Araneae: Araneidae). Zoological Journal of the Linnean Society 54:321-339; https://doi.org/10.1111/j.1096-3642.1974.tb00806.x

Lubin, Y.D. & Bilde, T. 2007. The evolution of sociality in spiders. Advances in the Study of Behavior 37:83-145; https://doi.org/10.1016/S0065-3454(07)37003-4

Masumoto T. 1998. Cooperative prey capture in the communal web spider, Philoponella raffrayi (Araneae, Uloboridae). Journal of Arachnology 26:392-396.

McReynolds, C.N. & G.A. Polis. 1987. Ecomorphological factors influencing prey use by two sympatric species of orb-web spiders, Argiope aurantia and Argiope trifasciata (Araneidae). Journal of Arachnology 15:371–383.

McReynolds, C.N. 2000. The impact of habitat features on web features and prey capture of Argiope aurantia (Araneae, Araneidae). Journal of Arachnology 28:169-179; https://doi.org/10.1636/0161-8202(2000)028[0169:TIOHFO]2.0.CO;2

Meraz, L.C. Hénault Y. & Legal, L. 2011. Prey selection in a nocturnal web-building spider, Eriophora edax (Araneae, Araneidae). Ethology Ecology & Evolution 24:1-13; https://doi.org/10.1080/03949370.2011.582887

Mestre, L. & Lubin, Y. 2011. Settling where the food is: prey abundance promotes colony formation and increases group size in a web-building spider. Animal Behaviour 81:741-748; https://doi.org/10.1016/j.anbehav.2011.01.002

Murakami, Y. 1983. Factors determining the prey size of the orb-web spider, Argiope amoena (L. Koch) (Argiopidae). Oecologia 57:72-77; https://doi.org/10.1007/BF00379564

Nyffeler, M. 1999. Prey selection of spiders in the field. Journal of Arachnology 27:317-324.

Pasquet, A. & Krafft, B. 1992. Cooperation and prey capture efficiency in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90:121-133; https://doi.org/10.1111/j.1439-0310.1992.tb00826.x
Pekár, S., Coddington, J.A. & Blackledge, T.A. 2011. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution 66:776-806; https://doi.org/10.1111/j.1558-5646.2011.01471.x

Powers, K.S., Avilés, L. 2007. The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology 76:995–1003; https://doi.org/10.1111/j.1365-2656.2007.01267.x

Prestes, A.C. 2012. Padrão de revoadas de cupins (Isoptera) em duas áreas de cerrado no Brasil Central. Dissertação (Mestrado) – Instituto de Ciências Biológicas, Unb, Brasilia. 38p.

Pruetz, J.D. & Isbell, L.A. 2000. Correlations of food distribution and patch size with agonistic interactions in female vervets (Chlorocebus aethiops) and patas monkeys (Erythrocebus patas) living in simple habitats. Behavioral Ecology and Sociobiology 49:38-47; https://doi.org/10.1007/s002650000272

Rayor, L.S. & Taylor, L.A. 2006. Social behavior in amblypygids, and a reassessment of arachnid social patterns. The Journal of Arachnology 34:399-421; https://doi.org/10.1636/S04-23.1

Rypstra, A.L. 1989. Foraging success of solitary and aggregated spiders: insights into flock formation. Animal Behaviour 37: 274-281; https://doi.org/10.1016/0003-3472(89)90116-4

Rypstra A.L. 1990. Prey capture and feeding efficiency of social and solitary spiders: a comparison. Acta Zoologica Fennica 190:339-349.

Rypstra, A. L. & Tirey, R. S. 1991. Prey size, prey perishability and group foraging in a social spider. Oecologia 86:25-30; https://doi.org/10.1007/BF00317384

Rypstra, A.L. 1993. Prey size, social competition, and the development of reproductive division of labor in social spider groups. The American Naturalist 142:868-880; https://doi.org/10.1086/285577

Sandin, S.A. & Pacala, S.W. 2005. Fish aggregation results in inversely density-dependent predation on continuous coral reefs. Ecology 86:1520-1530; https://doi.org/10.1890/03-0654

Sandoval, C.P. 1987. Aspectos da ecologia e socialidade de uma aranha colônia, Eriophora bistriata (Rengger, 1936) (Araneidae). Dissertação (Mestrado) – Instituto de Biologia, Unicamp, Campinas. 160p.

Sandoval, C.P. 1994. Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Functional Ecology 8:701-707; https://doi.org/10.2307/2390229

Schmitz, R.A. & Baldassarre, G.A. 1992. Contest asymmetry and multiple bird conflicts during foraging among nonbreeding American flamingos in Yucatan, Mexico. The Condor
Souza A.L.T., Gonzaga M.O. & Vasconcellos-Neto J. 2007. Prey capture behaviour in the social spider Anelosimus eximius (Araneae: Theridiidae): Responses to prey size and type. Ethology 113:856-861; https://doi.org/10.1111/j.1439-0310.2007.01384.x

Trabalon, M., Bagnères, A.G., Hartmann, N. & Vallet, A.M. 1996. Change in cuticular compounds composition during the gregarious period and after dispersal of the young in Tegenaria atrica (Araneae, Agelenidae). Insect Biochemistry and Molecular Biology 26:77–84 https://doi.org/10.1016/0965-1748(95)00065-8

Trabalon M. 2013. Chemical communication and contact cuticular compounds in spiders. In: Spider Ecophysiology (ed. W. Nentwig). Springer, Berlin; https://doi.org/10.1007/978-3-642-33989-9_10

Uetz, G.W. 1988. Group foraging in colonial-web building spiders: Evidence for risk-sensitivity. Behavioral Ecology and Sociobiology 22:265-270; https://doi.org/10.1007/BF00299841

Uetz G.W. 1989. The ricochet effect and prey capture in colonial spiders. Oecologia 81: 154-159; https://doi.org/10.1007/BF00379799

Uetz G.W., Boyle J., Hieber C.S. & Wilcox R.S. 2002. Anti-predator benefits of group living in colonial web-building spiders the "Early Warning" effect. Animal Behaviour 63:445-452; https://doi.org/10.1006/anbe.2001.1918

Vollrath, F. & Rohde-Arndt, D. 1983. Prey capture and feeding in the social spider Anelosimus eximius. Zeitschrift für Tierpsychologie 61:334-340; https://doi.org/10.1111/j.1439-0310.1983.tb01348.x

Ward, P.I. & Enders, M.M. 1985. Conflict and cooperation in the group feeding of the social spider Stegodyphus mimosarum. Behaviour 94:167-182; https://doi.org/10.1163/156853985X00325

Ward, P.I. 1986. Prey availability increases less quickly than nest size in the social spider Stegodyphus mimosarum. Behaviour 97:213-225; https://doi.org/10.1163/156853986X00603

Wenseleers, T., Bacon, J.P., Alves, D.A., Couvillon, M.J., Kärcher, M., Nascimento, F.S., Nogueira-Neto, P., Ribeiro, M., Robinson, E.J.H., Tofts, A. & Ratnieks, F.L.W. 2013. Bourgeois behavior and freeloding in the colonial orb web spider Parawixia bistriata (Araneae, Araneidae). The American Naturalist 182:120-129; https://doi.org/10.1086/670525

Whitehouse, M.E.A. & Lubin, Y. 2005. The functions of societies and the evolution of group
living: spider societies as a test case. Biological Reviews 80:347-361; https://doi.org/10.1017/S1464793104006694

Wise D.H. 1983. Competitive mechanisms in a food-limited species: relative importance of interference and exploitative interactions among labyrinth spiders (Araneae: Araneidae). Oecologia 58:1-9; https://doi.org/10.1007/BF00384535

Wise, D.H. & Barata, J.L. 1983. Prey of two syntopic spiders with different web structures. Journal of Arachnology 11:271-281.

Yip, E.C., Powers, K.S. & Avilés, L. 2008. Cooperative capture of large prey solves scaling challenge faced by spider societies. Proceedings of the National Academy of Science 105:11818-11822; https://doi.org/10.1073/pnas.0710603105

Yip, E.C., & Rayor, L.S. 2014. Maternal care and subsocial behavior in spiders. Biological Reviews 89:427-449; https://doi.org/10.1111/brv.12060

Zschokke, S., Hénault, Y., Benjamin, S.P. & García-Ballinas, J.A. 2006. Prey-capture strategies in sympatric web-building spiders. Canadian Journal of Zoology 84: 964–973; https://doi.org/10.1139/z06-074
Fig. 1. Insetos interceptados por *P. bistriata* (Di = Diptera; Co = Coleoptera; He = Hemiptera; Le = Lepidoptera; Bl = Blatodea; BLc = Blatodea cupins; Hy = Hymenoptera; Ma = Mantodea e Or = Orthoptera).
A. Número de presas interceptadas; B. Tamanho corporal das presas.
Fig. 2. Insetos interceptados pelas teias, mas desprezados pelas aranhas. A. Vespa; B. Besouro.
Fig. 3. Eventos de captura. A. indivíduos jovens (em outubro) capturando presa cooperativamente; B. captura cooperativa realizada por indivíduos mais velhos (em janeiro); C. Confronto e disputa por presa; D. indivíduo subadulto monopolizando presa com tamanho corporal superior ao seu próprio.
Fig. 4. A. Regressão logística relacionando a probabilidade de captura coletiva com a massa das presas (todas as presas oferecidas); B. Apenas Lepidoptera; e C. Apenas Orthoptera.
Fig. 5. Correlação entre A. Número de aranhas capturando e B. Número de aranhas consumindo por massa da presa (g).
Fig. 6. Regressão logística relacionando a probabilidade da ocorrência de conflitos com a massa das presas. A. Todas as presas; B. Apenas Lepidoptera; e C. Apenas Orthoptera.
Fig. 7. Assimetria de peso e resultado dos conflitos (1 = vitória, 0 = derrota)
Fig. 8. A. Variação de massa individual média das colônias nos meses amostrados (Média±dp).
B. Dados de pluviosidade nos períodos amostrados, demonstrando o pico de chuvas no mês de novembro (obtidos de uma estação meteorológica 84 km a sudeste da Estação Ecológica do Panga). Revoadas de cupins são comuns no início do período chuvoso.
Fig. 9. Tamanho dos indivíduos **A.** no início de seu desenvolvimento (outubro); **B.** já próximo de completarem a maturidade (janeiro). Escalas: 1 cm.
Fig. 10. **A.** Variação do coeficiente de variação de acordo com o mês (Média±dp; médias: 0.25668 em outubro; 0.29065 em novembro; 0.22805 em dezembro e 0.28009 em janeiro). **B.** Variação do coeficiente de variação de acordo com o tamanho das colônias.