Systematic strain-induced bandgap tuning in binary III–V semiconductors from density functional theory

Badal Mondal and Ralf Tonner-Zech
1 Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany
2 Fachbereich Physik, Philippus-Universität Marburg, 35032 Marburg, Germany
E-mail: ralf.tonner@uni-leipzig.de

Keywords: III-V semiconductors, direct-indirect transition, density functional theory, optical properties, bandgap engineering, strain engineering

Abstract
The modification of the nature and size of bandgaps for III-V semiconductors is of strong interest for optoelectronic applications. Strain can be used to systematically tune the bandgap over a wide range of values and induce indirect-to-direct transition (IDT), direct-to-indirect transition (DIT), and other changes in bandgap nature. Here, we establish a predictive first-principles approach, based on density functional theory, to analyze the effect of uniaxial, biaxial, and isotropic strain on the bandgap. We show that systematic variation is possible. For GaAs, DITs are observed at 1.56% isotropic compressive strain and 3.52% biaxial tensile strain, while for GaP an IDT is found at 2.63% isotropic tensile strain. We additionally propose a strategy for the realization of direct-to-indirect transition by combining biaxial strain with uniaxial strain. Further transition points are identified for strained GaSb, InP, InAs, and InSb and compared to the elemental semiconductor silicon. Our analyses thus provide a systematic and predictive approach to strain-induced bandgap tuning in binary III–V semiconductors.

1. Introduction
Semiconductor compounds attract a great amount of attention, both in science and technology, due to their immense application range in areas such as optoelectronics and integrated circuits [1, 2]. One of the major goals in basic and applied research is to tailor the optical properties of semiconductor materials to a target application. The most important fundamental property determining these properties is the material’s bandgap. For example, materials for optical telecommunication applications require direct bandgaps in the range of 0.80–0.95 eV [3–5], while a range of 0.5–2.0 eV is necessary for materials used in efficient solar cells [6–9]. One material class that is especially versatile in this respect are compound semiconductors, specifically the III-V semiconductors composed of elements from group 13 and 15 of the periodic table of elements [2, 5, 10–22]. In the last decades, the optical properties of this material class have been intensively investigated [2, 10–14, 22–36] and several strategies have emerged to fine-tune the bandgap. Changing the nature of the chemical elements and their relative composition is a powerful approach to vary the gap over a wide range of energies [37–44]. However, changing the chemical composition is not always possible. One reason for this lies in the constraints in the growth characteristics of precursor molecules for the chemical vapor deposition techniques often used to grow these materials. Another reason is the thermodynamic instabilities of some elemental compositions [3, 14, 37, 44–48].

An alternative and sometimes also complementary approach to vary the bandgap is strain engineering. This can be achieved through external effects such as: applying pressure on the system [23, 24, 27–36], altering the temperature of the system, or changing the substrate in epitaxial growth processes [13, 16, 19, 37–42, 45, 46, 49–62]. All of these approaches result in structural strain in the system because of the deviation of one or several lattice parameters of the material from their equilibrium values. The effects on the electronic structure from
investigation of strain effects has recently found renewed interest in the applied parameters are kept wide range of applications semiconductors: GaAs and GaP. These materials are not only interesting for basic research but also support a Furthermore, no systematic theoretical study is yet available that predicts optical properties of strained materials. This approach can also successfully be used for predicting properties when applying a wide range of strains to the lattice parameter of an empirical methods such as the local/nonlocal empirical pseudopotential method [63–71], the semi-empirical tight-binding method [72–84], the k·p method [85–90]; or by (b) first-principles methods [91–98] such as density functional theory (DFT) [91, 99–104]. Although empirical and semi-empirical methods are computationally efficient and often easy to apply, they rely on many empirical fitting parameters. This strongly lowers their ability to predict properties for new materials, which is a core goal in computational materials design [105]. In contrast, first-principles methods allow the calculation of the electronic structure without the need for empirical fitting parameters.

One of the most widely used first-principles approaches in material science is DFT. The crucial ingredient here is the density functional. Functionals following the generalized gradient approximation (GGA) often lead to an excellent agreement of computed lattice parameters with experimental data. However, they are known to show very large errors for bandgaps [105–109]. Hybrid functionals such as HSE06 [110] and GW-based methods [95–98] can solve this issue but are computationally expensive. Previously, we and others successfully used the exchange-correlation functional, developed by Tran and Blaha, to predict the electronic properties of unstrained III–V compound semiconductors without empirical adjustments or application of scissor operators [105, 111–117]. Although this functional contains one global system-dependent parameter, this parameter is derived from the density and two fitted parameters only without adjustment to experimental values. Here, we will show that this approach can also successfully be used for predicting properties when applying a wide range of strains to these materials.

Although strain engineering is an established field for III–V semiconductors [2, 45, 87, 118, 119], the investigation of strain effects has recently found renewed interest in the field of nanowires [120–128]. Furthermore, no systematic theoretical study is yet available that predicts optical properties of strained materials of this kind without empirical adjustments. We now set out to reliably predict the optical properties of strained materials over a wide range of strains. This will ultimately enable computational materials design approaches in strain engineering of established and upcoming materials.

This work will establish the methodology and highlight the challenges of predictive modelling. Thus, we focus our analysis of strain effects on the electronic structure of the most widely investigated binary III–V semiconductors: GaAs and GaP. These materials are not only interesting for basic research but also support a wide range of applications (either as binary materials or as a host material for multinary compounds) in microelectronics, solar cells, laser technology, and LEDs [2–9, 14–21]. To show the general applicability of our approach, selected data on the materials Si, GaSb, InP, InAs, and InSb are included.

In this work, we present and validate a computational approach predicting the size and nature of the bandgap of III–V semiconductor materials over a wide range of strain values. The ultimate goal is to provide guidelines for future experimental work on strained materials.

2. Model

In this study we model uniaxial, biaxial, and isotropic strain. Figure 1 schematically shows which lattice parameters are kept fixed and which are relaxed in the modelling of these three types of strain. The materials investigated are all feature zincblende structures. The growth direction in the ‘theoretical epitaxy’ approach applied (see below) is taken to be [001] in this study and is defined as the z-direction in our modelling approach. We limit our analysis of uniaxial strain to the application of strain along the growth direction only. This uniaxial (compressive) strain is experimentally realized most often by applying pressure. Here, we model this by varying the lattice parameter in the z-direction while relaxing the in-plane lattice parameters (figure 1(a)). In the spirit of a systematic study, we also study uniaxial tensile strain over the same range of values. However, the experimental realization of expanding lattice parameters is typically limited to small strain values (e.g. by increasing the temperature or applying shear stress). The major approach to produce biaxially strained materials is epitaxial growth on a substrate with a different lattice parameter \((a_s)\). We thus fix the in-plane lattice parameters \((a_x, a_y)\) to the lattice parameter of an (imaginary) substrate \((a_s)\) while varying the parameter in the growth direction (figure 1(b)). In this case, we consider the structural strain imposed by a substrate but neglect the electronic influence for the modelling (theoretical epitaxy) [45, 119]. Isotropic strain is then consequently modelled by not constraining any lattice parameter and increasing (decreasing) all lattice parameters by the same amount (figure 1(c)).
3. Computational details

Computations were carried out with DFT-based approaches as implemented in the Vienna Ab initio Simulation Package (VASP 5.4.4) [101, 130–133], using plane-wave basis sets in conjunction with the projector augmented wave (PAW) method [134, 135]. The primitive zincblende cell was used throughout. The basis set energy cutoff of 450 eV, the electronic energy convergence criteria of 10^{-6} eV, and the force convergence of 10^{-2} eV/Å were used. Reciprocal space was sampled with a $10 \times 10 \times 10$ Γ-centered Monkhorst-Pack k-point mesh [136]. We used these settings for all the solids studied in this work. The convergence test for k-mesh and plane wave cutoff are presented in figure S1. Optimizations of the primitive cells were performed using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional [106] with the semi-empirical dispersion correction scheme DFT-D3 with a Becke-Johnson type damping function [137, 138]. We also tested other approaches to describe dispersion interactions (table S1, figure S2). The best agreement between the optimized and experimental lattice parameters were found using PBE-D3(BJ) approach. Other methods to treat dispersion interaction delivered less good agreement. The geometry optimizations were carried out by the consecutive volume and position optimization until convergence was reached. For every set of lattice parameter values investigated, all atomic positions were optimized.

For the bandgap and band structure calculations, the TB09 functional was used [111] including spin–orbit coupling. This had previously been used to give an excellent agreement with the experimental bandgaps for this compound class [105, 111–116]. The band energies for all the different configurations were re-normalized to the respective VBM. We limited our calculations to a range of ±10% strain by applying constrained optimizations as outlined in the previous section. This is in the order of magnitude of pressures (10 to several 100 GPa) achievable in modern experiments [33, 139–150]. We indicate tensile strain with a '+' sign to emphasize the positive strain value and to make it easier for the reader to distinguish it from compressive strain values, which are denoted with a '-' sign.

The contribution of the atomic orbitals at the different k-points on the bands was calculated by projecting the plane waves on the minimal basis set using LOBSTER [151, 152].

4. Results

4.1. Unstrained structures

Before we discuss the influence of strain, the unstrained materials investigated here shall briefly be presented. Regarding the sign convention, we define positive strain to correspond to expansion (tensile strain) and negative strain as compression (compressive strain). The strain values were calculated according to equation (1).

\[
\text{strain(\%)} = \frac{a_f - a_{\text{eqm}}}{a_{\text{eqm}}} \times 100
\]

Here, a_f is the lattice parameter in the strained structure while a_{eqm} is the equilibrium lattice parameter. The equilibrium lattice parameters for all materials investigated were computed with the PBE-D3(BJ) approach and are given in table 1. The good agreement with the experimental lattice parameters (maximum deviation of 0.09 Å or 1.3%) lends confidence to the accuracy of the theoretical approach.
4.2. Gallium arsenide

4.2.1. Isotropic strain

First, we present the bandgap variation of GaAs under the application of isotropic strain in a range of ±10% around the unstrained lattice parameter. Figure 2 shows the variation of the energy difference between the conduction band \((\text{CB}) \) and the valence band \((\text{VB}) \) at the \(\Gamma \) point \((\Delta E_\Gamma) \), as well as the bandgap \((E_g) \), as a function of strain. Here, and throughout the manuscript, we distinguish between these two energy differences. For a direct bandgap material, both values are the same. If \(E_g \) is smaller than \(\Delta E_\Gamma \) this indicates an indirect bandgap. A strain value where the two curves start deviating thus indicates a direct-to-indirect (DIT) bandgap transition point.

Under tensile strain, \(E_g \) decreases until, at \(+6.78\%\) strain, the bandgap vanishes, corresponding to a semiconductor-to-metal transition (SMT). In this case, the \(E_g \) curve coincides with the \(\Delta E_\Gamma \) curve throughout, indicating a direct bandgap. Under compressive strain, however, the \(E_g \) curve initially follows the \(\Delta E_\Gamma \) curve until \(-1.56\% \) strain, where the \(E_g \) curve then separates from the \(\Delta E_\Gamma \) curve. Although \(\Delta E_\Gamma \) still increases under further strain, the bandgap starts to decrease. Thus, we have a DIT point here.

To understand the origin of this deviation, we look at the band structures computed at each strain value. The band structures can be found in the supporting information (figures S3 (a), (b)). We find that the VBM remains at the \(\Gamma \) point not only here but for all materials and strain regimes investigated. Only the CBM changes its position in k-space when strain is applied. Thus, the change in CBM under compressive strain determines the change in the nature of bandgap. Figure 3 shows the change in CB energies for strained GaAs relative to their values for the unstrained structure at four high-symmetry points in reciprocal space: \(\Gamma \), \(L \), \(\Delta_m \), and \(X \) points.

This shows that the CB energies at the \(\Gamma \) and \(L \) points decrease under tensile strain with a slight increase for \(\Delta_m \) and \(X \) points. The largest change is found at the \(\Gamma \) point, followed by \(L \), \(\Delta_m \), and \(X \). As unstrained GaAs is a direct bandgap semiconductor, this signifies that the bandgap remains direct under tensile strain, to begin with. Subsequently, at \(+6.78\%\) strain, the CBM and VBM become degenerate, which results in the SMT.

For compressive strain, however, the CB energies at the \(\Gamma \) and \(L \) point increase while a slight decrease is found at the \(\Delta_m \) and \(X \) points (figure 3). This results in an increase in the direct bandgap for small strain values. Since CB at the \(\Gamma \) point changes the most with strain, beyond \(-1.56\%\) strain it supersedes the energy at the \(L \) point. This results in the CBM shifting from the \(\Gamma \) to the \(L \) point and a DIT. CB energy at the \(\Gamma \) point increases

Table 1. Computed (PBE-D3(BJ)) optimized unstrained lattice parameters (Å) for the materials investigated in comparison to experimental reference values at 0 K.

System	Si	GaP	GaAs	GaSb	InP	InAs	InSb
Calculation	5.421	5.474	5.689	6.134	5.939	6.138	6.556
Experiment \([38, 129]\)	5.430	5.442	5.642	6.082	5.861	6.050	6.469

4.2. Gallium arsenide

4.2.1. Isotropic strain

First, we present the bandgap variation of GaAs under the application of isotropic strain in a range of ±10% around the unstrained lattice parameter. Figure 2 shows the variation of the energy difference between the conduction band (CB) and the valence band (VB) at the \(\Gamma \) point \((\Delta E_\Gamma) \), as well as the bandgap \((E_g) \), as a function of strain. Here, and throughout the manuscript, we distinguish between these two energy differences. For a direct bandgap material, both values are the same. If \(E_g \) is smaller than \(\Delta E_\Gamma \) this indicates an indirect bandgap. A strain value where the two curves start deviating thus indicates a direct-to-indirect (DIT) bandgap transition point.

Under tensile strain, \(E_g \) decreases until, at \(+6.78\%\) strain, the bandgap vanishes, corresponding to a semiconductor-to-metal transition (SMT). In this case, the \(E_g \) curve coincides with the \(\Delta E_\Gamma \) curve throughout, indicating a direct bandgap. Under compressive strain, however, the \(E_g \) curve initially follows the \(\Delta E_\Gamma \) curve until \(-1.56\%\) strain, where the \(E_g \) curve then separates from the \(\Delta E_\Gamma \) curve. Although \(\Delta E_\Gamma \) still increases under further strain, the bandgap starts to decrease. Thus, we have a DIT point here.

To understand the origin of this deviation, we look at the band structures computed at each strain value. The band structures can be found in the supporting information (figures S3(a), (b)). We find that the VBM remains at the \(\Gamma \) point not only here but for all materials and strain regimes investigated. Only the CBM changes its position in k-space when strain is applied. Thus, the change in CBM under compressive strain determines the change in the nature of bandgap. Figure 3 shows the change in CB energies for strained GaAs relative to their values for the unstrained structure at four high-symmetry points in reciprocal space: \(\Gamma \), \(L \), \(\Delta_m \), and \(X \) points.

This shows that the CB energies at the \(\Gamma \) and \(L \) points decrease under tensile strain with a slight increase for \(\Delta_m \) and \(X \) points. The largest change is found at the \(\Gamma \) point, followed by \(L \), \(\Delta_m \), and \(X \). As unstrained GaAs is a direct bandgap semiconductor, this signifies that the bandgap remains direct under tensile strain, to begin with. Subsequently, at \(+6.78\%\) strain, the CBM and VBM become degenerate, which results in the SMT.

For compressive strain, however, the CB energies at the \(\Gamma \) and \(L \) point increase while a slight decrease is found at the \(\Delta_m \) and \(X \) points (figure 3). This results in an increase in the direct bandgap for small strain values. Since CB at the \(\Gamma \) point changes the most with strain, beyond \(-1.56\%\) strain it supersedes the energy at the \(L \) point. This results in the CBM shifting from the \(\Gamma \) to the \(L \) point and a DIT. CB energy at the \(\Gamma \) point increases
further resulting in a steep increase of ΔE_{Γ} for high strain values (figure 2). CB at the L point increases much slower in energy, flattening the E_g curve and even producing bandgap decrease at high compressive strain (figure 2).

Further, by comparing the difference in CB energies at the Γ point and other k-points $P (\Delta E_{CB} = E_{CB,P} - E_{CB,\Gamma};$ with $P = \Gamma, L, \Delta_m,$ and X) for isotropically strained GaAs. Colored areas indicate at which k-point we find the CBM for the given value of compressive strain. The color scheme: Γ (red), L (blue), Δ_m (purple), and X (olive).

4.2.2. Biaxial strain

The effect of the biaxial strain on the bandgap is shown in figure 5 (band structures are shown in figures S3(d), (e)). The bandgap decreases under both compressive and tensile strain. During compression, the E_g curve coincides with ΔE_{Γ} throughout. The CBM always remains at the Γ point, and hence, the bandgap remains direct. Only for very high compressive strain values (beyond $\sim 7.86\%$), the CBM and VBM become degenerate,
leading to an SMT. For tensile strain, a DIT is found at $+3.52\%$ strain, exemplified by the E_{g} curve splitting from ΔE_{Γ} in figure 5.

Under further tensile strain, the bandgap continues to decrease until GaAs become a semimetal at $+8.00\%$ strain. Thus, we observe a semiconductor to semimetal transition (SsMT). By comparing the difference in CB energies at the Γ, L, Δ_m, and X points (figure S4) we find the DIT to correspond to a Γ to Δ_m transition. No further transition points are found here.

4.2.3. Uniaxial strain
The uniaxial strain model in our case is equivalent to the biaxial strain model. This is true because we consider the [001] crystal orientation in the zincblende crystal grown on the [001] surface of another zincblende substrate, and the uniaxial strain is then applied in the $\langle 100 \rangle$ direction (figure 1(a)). In this configuration, relaxing the lattice parameter in the z-direction at fixed in-plane (x and y) lattice parameters (a) is equivalent to fixing it in the z-direction at the value a, and relaxing the in-plane parameters. For the uniaxial strain in other crystal orientations or directions, this equivalence is not true, because of finite off-diagonal stress tensor elements [118, 153, 154].

Therefore, we use the data from the previous subsection and now present them as a function of the out-of-plane lattice parameter (figure 6). This is essentially a mirrored version of figure 5 with a changed scaling of the x-axis. Now, we find the DIT at -7.30% strain, the SsMT at -15.43% strain, and the SMT at $+17.73\%$ strain, respectively.

4.2.4. Combining biaxial and uniaxial strain
Uniaxial and biaxial strain are shown in the previous sections to be useful strategies to tune the magnitude of the bandgap. However, one major goal in tuning the electronic structure is changing the nature of the bandgap. As shown in the previous subsection, this however, can not be achieved via biaxial compressive strain, which is one of the most common experimental realizations of strain via epitaxial growth. We will now show that in a new strategy by combining this biaxial compressive strain with uniaxial strain changes in the nature of the bandgap can in fact be achieved.

In a thought experiment (figures 7, S5), the desired material (GaAs) is first ‘grown’ epitaxially on a substrate with a smaller lattice constant (e.g., GaP), resulting in compressive biaxial strain (here: -3.78%). Such epitaxial growth would lead to expansion of the z-lattice parameter. Subsequently, uniaxial compressive strain (e.g., pressure) could be applied along the z-direction to compress the z-lattice parameter. We assume that the in-plane lattice parameters would not relax upon compression of the z-lattice parameter. We thus model a case here where strain is accumulated inside the epitaxial layer without creating defects. In this case, we find a DIT point at -3.2% uniaxial strain (figure 8).

Next, we further generalize this strategy. Figure 9 shows the required uniaxial compressive strain for the DIT in biaxial compressively strained GaAs. No transition can be achieved for biaxial compressive strain below 1.56%, as both the biaxial and isotropic strain would have the same direct nature of the bandgap (figures 7, S6).
A similar strategy can be applied for the indirect to direct transition (IDT) in biaxial tensile strained GaAs (figure S6). In this case, one would need to expand the \(z \)-lattice parameter for the transition. Experimentally, this can be achieved e.g., by thermal expansion. As shown in figure S7, this however, is only reasonable for biaxial strain smaller than 4.5%. For higher biaxial strain the large required amount of uniaxial tensile strain can not be achieved by thermal expansion only.

4.3. Gallium phosphide

Gallium phosphide is an indirect bandgap semiconductor. Next, we demonstrate the application of strain on the bandgap engineering. Figure 10 shows the variation in CB energy for GaP under isotropic strain at the \(\Gamma \), \(L \), \(\Delta_m \) and \(X \) points relative to their unstrained values (band structures are shown in figures S3(f), (g)).

For compressive strain, the CB at \(\Gamma \) and \(L \) point increases in energy, while it decreases at the \(\Delta_m \) and \(X \) points. As GaP is an indirect bandgap semiconductor at equilibrium, the nature of the bandgap thus does not change. For tensile strain, the CB energy at the \(\Gamma \) and \(L \) points decreases strongly while we find a small increase at the \(\Delta_m \) and \(X \) points. This lead to a shift of the indirect bandgap from \(\Delta_m \) to \(L \) at +1.43% tensile strain (figure 11).
the slope for the energy at the Γ point is largest (figure 10), we find an indirect to direct transition (IDT) at $+2.63\%$ strain (figures 11, S8).

The result for biaxial strain is shown in figure 12 (band structures are shown in figures S3(h), (i)). Here, we find no change in the nature of the bandgap throughout the entire range of compressive and tensile strain. The bandgap remains indirect throughout. For very high strain values, we find SsMTs at $+8.45\%$ and -9.83% strain.

The uniaxial conversion of the data in figure 12, as is explained for GaAs case, would not have any further special interest (figure S9). Similar to GaAs, by combining biaxial and uniaxial strain in GaP one can in principle achieve IDT. However, this would require large uniaxial tensile strain ($>8\%$), which can not be realized by thermal expansion (figure S10).

4.4. Silicon, GaSb, InP, InAs, and InSb

We also applied the approach outlined in detail for GaAs and GaP to other interesting semiconductor materials. Tables 2 and 3 summarizes the main results for Si, GaSb, InP, InAs, and InSb. In all cases, the VBM stays at the Γ point throughout the strain regimes applied. Thus, the position of the CBM in reciprocal space determines the nature of the bandgap.
Si and GaP are indirect bandgap semiconductors in their equilibrium structure while the other materials discussed show direct bandgaps. Accordingly, Si and GaP show IDTs while the other materials show DITs. The strain values where these transitions are found, for isotropic and biaxial strain, are shown in columns 3 and 4 of table 2. For the isotropic strain case, the IDTs are found for tensile strain as already discussed for GaP in the previous section. The value for Si is so high (+10.31%) that it will certainly be out of range for any experiment.

The DITs are found for isotropic compressive strain throughout, with strain values ranging from −1.00% (GaSb) to −7.41% (InAs).

For biaxial strain, DITs are found only for GaAs, GaSb, and InP. In all cases, a significant tensile strain would be necessary. For many materials, transitions are found to other k-points in reciprocal space where the nature of the bandgap stays indirect. This is shown in the right-hand part of the table. [more details are shown in figures S11, S12, and S13.]

Notably, In-based compound semiconductors show the DIT points at much higher strain values compared to Ga-based materials. Figure 13 shows the contribution of the atomic orbitals to the CB for unstrained GaAs and InAs. At the decisive points in k-space (Γ, L, and X points) the group III elements show the major orbital contributions to CB. Furthermore, while the s-orbital contributions (Ga(4s), In(5s)) dominate at the Γ point, the L point and the X point show high p-orbital contributions (Ga(4p), In(5p)). Since the energy gap between 5s and 5p orbitals is significant...
5p orbital in In is much higher than 4s and 4p in Ga, changing group III from Ga to In increases the energy difference between \(\Gamma \) and \(\Delta \) and \(L \), respectively (see figure 14). Under strain, the decrease of these energy differences ultimately results in the shift of CBM from the \(\Gamma \) to the \(L \) and/or \(X \) point (figures S3, S14). Therefore, the higher this relative energy difference, the higher the requirement of the amount of strain needed to reach the

Table 2. Change in the nature of bandgap for different III-V semiconductor materials for isotropic and biaxial strain.

System	Transition Path	Isotropic (%)	Biaxial (%)
Si	IDT +10.31\(^{b} \)	\(\times \)	\(\times \)
GaP	IDT +2.63	\(\times \)	\(\times \)
GaAs	DIT -1.56	+3.52	\(\Gamma \rightarrow \Delta \rightarrow X \)
GaSb	DIT -1.00	+3.71	\(\Gamma \rightarrow \Delta \rightarrow \Delta \)
InP	DIT -4.40	+7.66	\(\Gamma \rightarrow \Delta \rightarrow \Delta \)
InAs	DIT -7.41	\(\times \)	\(\Gamma \rightarrow \Delta \rightarrow \Delta \)
InSb	DIT -5.18	\(\times \)	\(\Gamma \rightarrow \Delta \rightarrow \Delta \)

\(^{a}\) Direct to indirect transition (DIT) and indirect to direct transition (IDT).

\(^{b}\) Estimated using linear extrapolation.

\(\times \) No transitions within \(\pm 10\% \) strain.

Table 3. Semiconductor to metal transition (SMT) and semiconductor to semimetal transition (SsMT) points for different III-V semiconductor materials under isotropic and biaxial strain. \(\Delta E_{\Gamma} \) corresponds to the energy difference between CB and VB at the \(\Gamma \) point.

System	\(\Delta E_{\Gamma} \) (eV)	Isotropic (%)	Biaxial (%)	Isotropic (%)	Biaxial (%)
Si	3.14	+15.00\(^{a}\)	\(\times \)	\(\times \)	+3.70, -6.50
GaP	2.99	+13.00\(^{a}\)	\(\times \)	\(\times \)	+8.45, -9.83
GaAs	1.81	+6.67	-7.86	\(\times \)	+8.00
GaSb	0.64	+2.85	-5.00	\(\times \)	+5.07
InP	1.43	+8.20	-9.90	\(\times \)	+10.38
InAs	0.36	+2.10	+4.74, -4.36	\(\times \)	\(\times \)
InSb	0.03	+0.34	+0.34, -0.34	\(\times \)	\(\times \)

\(^{a}\) Estimated using linear extrapolation.

\(\times \) No transitions within \(\pm 10\% \) strain.

Figure 12. Biaxial strain effects on the bandgap of GaP. The energy difference between CB and VB at the \(\Gamma \) point (\(\Delta E_{\Gamma} \), blue), the bandgap (\(E_{g} \), magenta), and the semiconductor to semimetal (SsMT) transitions are shown. The solid orange line indicates \(E_{g} \) for the unstrained structure (2.36 eV).
This results in DIT points at larger strain values for In-based compounds in comparison to the Ga-based compounds. Note that, as the above reasoning is qualitative, for simplicity, we do not consider the Δ_m point here.

Table 3 summarizes the SMTs and SsMTs for the compound semiconductors investigated. These transitions depend on the closing of the CBM and VBM gaps. As the VBM always remains at the Γ point, these transition points therefore depend on ΔE_{Γ}. Figure 15 shows the SMTs under isotropic strain for different systems in relation to their corresponding ΔE_{Γ}. As the ΔE_{Γ} increases, so does the S(s)MT values.

In table 4, we compare our calculated results with the available experimental findings. The results match quite well. In experiments, the DIT points were measured in terms of applied hydrostatic pressure. Using the third-order Birch-Murnaghan equation [155] we converted the measurement in terms of strains. We used reference [156, 157] for the bulk modulus and and its first derivative data for the conversion. For GaAs, the strain region when CBM is visible at the L point is very small (only 0.72% strain window), figure 4. Therefore, we conclude that in the experiment this region was most likely missed (table 4, 3rd row last column). For InSb a deviation of 0.21 eV was found for the equilibrium bandgap. This, in turn, would result in the overestimation of the DIT point in our calculation (table 4, 7th row last column).

Figure 13. Atom resolved orbital contributions for unstrained GaAs and InAs CB. Solid sky blue: Ga(4s), dotted sky blue: In(5s), solid orange: Ga(4p), dotted orange: In(5p), solid green: As(4s) in GaAs, dotted green: As(4s) in InAs, solid red: As(4p) in GaAs, dotted red: As(4p) in InAs.

Figure 14. The relative energy differences between $\Gamma \& X$ (olive) and $\Gamma \& L$ (blue) at the CB for unstrained Ga and In series binaries (figure S15).
5. Conclusions

We calculated the strain-induced bandgap variation for various III-V binary compounds focusing on GaAs and GaP for a detailed analysis. We investigated compressive and tensile strain in the range of ±10% around the unstrained structure, which enabled the tuning of the bandgap over a wide range. Furthermore, we showed the presence of direct-to-indirect and indirect-to-direct transitions in the nature of bandgap of these materials based on the analyses of differences between valence and conduction band energies at the Γ-point (ΔE_{Γ}) and the bandgap (E_g). Only 4 special k-points were found to be responsible for the direct-indirect transitions: Γ, L, Δm, and X. The valence band maximum stayed at the Γ point throughout the strain regimes applied. Thus, the position of the conduction band minimum alone in reciprocal space determined the nature of the band gap. By combining the biaxial and uniaxial strain, we proposed a strategy for the realization of direct-indirect transitions in the regions where otherwise no transition could be achieved by single type of strain. With this work, we laid the foundation for further efforts with multinary compound semiconductors under strain.

Acknowledgments

We thank the German Research Foundation (DFG) for funding via the Research Training Group ‘Functionalization of Semiconductors’ (GRK 1782). We acknowledge computational resources provided by HRZ Marburg, GOETHE-CSC Frankfurt, ZIH Dresden & HLR Stuttgart. We thank Prof. Dr. Kerstin Volz from Philipps-Universität Marburg for discussions and continued support.

Table 4. The calculated equilibrium (unstrained) bandgaps, DIT points, and the DIT transitions compared with the experiments.

System	Equilibrium bandgap (eV)	Isotropic strain DIT (%)	Transitions	
	Calculated	Experiment	Calculated	Experiment
Si	1.19	1.17	—	—
GaP	2.36	2.34	—	—
GaAs	1.47	1.52	-1.56	-2.75^b
			$\Gamma \rightarrow L$	$\Gamma \rightarrow X$
GaSb	0.64	0.81	-1.00	-1.54^c
			$\Gamma \rightarrow L$	$\Gamma \rightarrow L^c$
InP	1.43	1.42	-4.40	-5.16
			$\Gamma \rightarrow X$	$\Gamma \rightarrow X$
InAs	0.36	0.41	-7.41	-8.17
			$\Gamma \rightarrow X$	$\Gamma \rightarrow X$
InSb	0.03	0.24	-5.18	-4.23
			$\Gamma \rightarrow L$	$\Gamma \rightarrow X$

a Experimental bandgaps are at 0 K [38, 129].

b Reference [28].

c Reference [28, 157, 158].

— For Si and GaP IDTs are in the tensile strain region.

No experimental data are available.

Figure 15. Correlation between SMT (isotropic strain) and the energy difference between CB and VB at the Γ-point (ΔE_{Γ}) for Ga and In series binaries.
References

[1] Soref R A 1993 Silicon-based optoelectronics Proc. IEEE 81 1687–706
[2] Yu P Y and Cardona M 2010 Fundamentals of Semiconductors (Berlin, Heidelberg: Springer Berlin Heidelberg)
[3] Hepp T, Lehr J, Günkel R, Maifmeyer O, Glowatzki J, Ruiz Perez A, Reinhard S, Stolz W and Volz K 2022 Room-temperature laser operation of a (GaIn)As/(GaAs)Bi/(GaIn)As W-type laser diode Electron. Lett. 58 70–2
[4] Fuchs C et al 2018 High-temperature operation of electrical injection type-II (GaIn)As/(GaAs)Bi/[(GaIn)As] W-type quantum well lasers emitting at 1.3 μm Sci. Rep. 8 1422
[5] Mokkapati S and Jagadish C 2009 III–V compound SC for optoelectronic devices Mater. Today 12 22–32
[6] Dimroth F et al 2016 Four-Junction Wafer–Bonded Concentrator solar cells IEEE J. Photovoltaics 6 343–9
[7] Létéy G and Bett A 2001 EtalOpt—a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells Proc. of the 17th European Photovoltaic Solar Energy Conf. (2001) 178–81
[8] Mitchell B, Peharz G, Sieder G, Peters M, Gandy T, Goldschmidt J C, Benick J, Glunz S W, Bett A W and Dimroth F 2011 Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency Prog. Photovoltaics Res. Appl. 19 61–72
[9] Philips S P, Dimroth F and Bett A W 2018 High-Efficiency III–V multijunction solar cells McEvoy’s Handbook of Photovoltaics ed A Kalogirou (Amsterdam: Elsevier) 439–72
[10] Kneissl M, Seong T-Y, Han J and Amano H 2019 The emergence and prospects of deep-ultraviolet light-emitting diode technologies Nat. Photonics 13 233–44
[11] Asif Khan M, Bhattacharai A, Kuznia J N and Olson D T 1993 High electron mobility transistor based on a GaN-AlGaN heterojunction Appl. Phys. Lett. 63 1214–5
[12] Wu J, Chen S, Seeds A and Liu H 2015 Quantum dot optoelectronic devices: lasers, photodetectors and solar cells J. Phys. D: Appl. Phys. 48 363001
[13] Nakamura S, Mukai T and Senoh M 1991 High-power GaN P-N junction blue-light-emitting diodes Jpn. J. Appl. Phys. 30 L11998–2001
[14] Park J-S, Tang M, Chen S and Liu H 2020 Heteroepitaxial growth of III–V semiconductor on silicon Crystals 10 1163
[15] Bett A W, Dimroth F, Stollwerck G and Sulima O V 1999 III–V compounds for solar cell applications Appl. Phys. A Mater. Sci. Process. 69 119–29
[16] Zimmermann H 2000 III–V semiconductor materials on silicon Integrated Silicon Optoelectronics (Berlin, Heidelberg: Springer Berlin Heidelberg) 167–85
[17] Stillman G E, Robbins V M and Tabatabaei N 1984 III–V compound semiconductor devices: optical detectors IEEE Trans. Electron Devices 31 1641–55
[18] Shah N J and Pesi S 1989 III–V device technologies for electronic applications AT&T Tech. J. 68 19–28
[19] Kuech T F 2016 III-V compound semiconductors: growth and structures Prog. Cryst. Growth Charact. Mater. 62 352–70
[20] Yu E T and Manasreh M O 2002 III–V Nitride Semiconductors: Applications and Devices (Boca Raton London New York: CRC Press, Taylor & Francis group) 978–1560329749
[21] Cheng K Y 2020 III–V Compound Semiconductors and Devices (Cham: Springer International Publishing)
[22] Kosten E D, Atwater J H, Parsons J, Polman A and Atwater H A 2013 Highly efficient GaAs solar cells by limiting light emission angle Light. Sci. Appl. 2 e45–45
[23] Gomi A R, Strössner K, Sjäsen K and Cardona M 1987 Pressure dependence of direct and indirect optical absorption in GaAs Phys. Rev. B 36 1581
[24] Tsai Y-F and Bendow B 1976 Pressure dependence of the direct energy gap of GaAs Phys. Rev. B 14 2681–2
[25] Jayaraman A, Kosicki B B and Irvin J C 1968 Δ1 Conduction-Band minimum of Ge from high-pressure studies on p–n junctions Phys. Rev. 171 836
[26] Müller H, Trommer R, Cardona M and Vogl P 1980 Pressure dependence of the direct absorption edge of InP Phys. Rev. B 21 4879
[27] Welber B, Kim C K, Cardona M and Rodriguez S 1975 Dependence of the indirect energy gap of silicon on hydrostatic pressure Solid State Commun. 17 1021
[28] Edwards A J and Drickamer H G 1961 Effect of pressure on the absorption edges of some III–V, II–VI, and I–VII compounds Phys. Rev. 122 1149–57
[29] Strössner K, Vesz S, Kim C K and Cardona M 1987 Pressure dependence of the lowest direct absorption edge of ZnTe Solid State Commun. 61 275
[30] Zallen R and Paul W 1964 Band structure of gallium phosphide from optical experiments at high pressure Phys. Rev. 134 A1628–41
[31] Grivickas P, McCluskey M D and Gupta Y M 2007 Indirect band-gap transitions in GaP shocked along the [100], [110], and [111] axes Phys. Rev. B 75 235207
[32] Grivickas P, McCluskey M D and Gupta Y M 2008 Band-gap luminescence of GaP: S shock compressed to 5GPa Appl. Phys. Lett. 92 142104
[33] Paul W 1998 High Pressure in Semiconductor Physics Semiconductors and Semimetals ed T Suiki and W Paul (Amsterdam: Elsevier) 54, 1–48
[34] Yu P Y and Welber B 1978 High pressure photoluminescence and resonant Raman study of GaAs Solid State Commun. 25 209–11
[35] Olego D, Cardona M and Müller H 1980 Photoluminescence in heavily doped GaAs. II. Hydrostatic pressure dependence Phys. Rev. B 22 894–903
[36] Welber B, Cardona M, Kim C K and Rodriguez S 1975 Dependence of the direct energy gap of GaAs on hydrostatic pressure Phys. Rev. B 12 5729–38
[37] Beyer A, Stolz W, Volz K, Wegele T, Beyer A, Ludewig P and Rosenow P 2015 Metastable cubic zinc-blende III/V semiconductors: Growth and structural characteristics Prog. Cryst. Growth Charact. Mater. 61 46–62

[38] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 Band parameters for III–V compound semiconductors and their alloys J. Appl. Phys. 89 5815

[39] Stringfellow G B 2019 Fundamental Aspects of MOVPE Metalorganic Vapor Phase Epitaxy (MOVPE) (New York: Wiley) 19–69

[40] Volz K, Koch J, Holshof F, Kunert B and Stolz W 2009 MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors J. Cryst. Growth 311 2418–26

[41] Feidel M et al 2017 MOVPE grown gallium phosphide–silicon heterojunction solar cells IEEE J. Photovoltaics 7 502–7

[42] Kunert B, Koch J, Torunski T, Volz K and Stolz W 2004 MOVPE growth experiments of the novel (GaIn)(NP)/GaP material system J. Cryst. Growth 272 753–9

[43] Volz K, Torunski T, Kunert B, Rubel O, Nau S, Reinhard S and Stolz W 2004 Specific structural and compositional properties of (Gan)(NAs) and their influence on optoelectronic device performance J. Cryst. Growth 272 739–47

[44] Veletas J, Hepp T, Volz K and Chatterjee S 2019 Bismuth surface segregation and disorder analysis of quaternary (Ga,In)(As,Bi)/InP alloys J. Appl. Phys. 126 135705

[45] Wegele T, Beyer A, Ludewig P, Rosenow P, Duscheck L, Jandieri K, Tonner R, Stolz W and Volz K 2016 Interface morphology and composition of Ga(NAsP) quantum well structures for monolithically integrated LASERs on silicon substrates J. Phys. D: Appl. Phys. 49 075308

[46] Hepp T, Nattmanner L and Volz K 2019 MOVPE growth and device applications of ternary and quaternary dilute bismide alloys on GaAs substrates Bismuth-Containing Alloys and Nanostructures ed S Wang and P Lu (Singapore: Springer) 37–58

[47] Beyer A, Knab N, Rosenow P, Jandieri K, Ludewig P, Bannow L, Koch SW, Tonner R and Volz K 2017 Local Bi ordering in MOVPE grown Ga(As,Bi) investigated by high resolution scanning transmission electron microscopy Appl. Mater. Today 6 22–8

[48] Kükbelan P, Firoozabadi S, Beyer A, Duschek L, Fuchs C, Oelerich J O, Stolz W and Volz K 2019 Segregation at interfaces in AlGa(In)AsP:GaP quantum well heterostructures studied by atomic resolution STEM J. Cryst. Growth 524 125180

[49] Volz K, Beyer A, Wite W, Ohlmann J, Németh I, Kunert B and Stolz W 2011 GaP nucleation on exact Si(001) substrates for III/V device integration J. Cryst. Growth 315 37–47

[50] Cho A Y 1983 Growth of III–V semiconductors by molecular beam epitaxy and their properties Thin Solid Films 100 291–317

[51] Dupuis RD 1997 Epitaxial growth of III–V nitride semiconductors by metalorganic chemical vapor deposition J. Cryst. Growth 178 56–73

[52] Dupuis RD 1984 Metalorganic vapor chemical deposition of III–V semiconductors Science 226 623–9

[53] Stringfellow G B 1978 VPE growth of III/V semiconductors Annu. Rev. Mater. Sci. 8 73–98

[54] Dupuis RD 2000 III–V semiconductor heterojunction devices grown by metalorganic chemical vapor deposition IEEE J. Sel. Top. Quantum Electron. 6 1040–50

[55] Stringfellow G B 2017 Thermodynamic considerations for epitaxial growth of III/V alloys J. Cryst. Growth 468 11–6

[56] Behet M, Hövel R, Kohl A, Küsters AM, Opitz B and Heime K 1996 MOVPE growth of III–V compounds for optoelectronic and electronic applications Microelectronics J. 27 297–334

[57] Volz K, Stolz W, Dagdar A and Krost A 2015 Growth of III/Vs on silicon Handbook of Crystal Growth (Amsterdam: Elsevier) 1249–300

[58] Ludewig P, Reinhard S, Jandieri K, Wegele T, Beyer A, Tapfer L, Volz K and Stolz W 2016 MOVPE growth studies of Ga(NAsP)/(BiGa) (AsP) multi quantum well heterostructures (MQWH) for the monolithic integration of laser structures on (001) Si-substrates J. Cryst. Growth 438 63–9

[59] Németh I, Kunert B, Stolz W and Volz K 2008 Heteroepitaxy of GaP on silicon: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions J. Cryst. Growth 310 1595–601

[60] Liebich S et al 2011 Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate Appl. Phys. Lett. 99 071109

[61] Volz K and Stolz W 2017 Determination of refractive index and direct bandgap of lattice matched BiGaP and (BiGa)AsP materials on exact oriented silicon J. Appl. Phys. 122 235702

[62] Supplie O et al 2018 Metalorganic vapor phase epitaxy of III–V–on–silicon: experiment and theory Prog. Cryst. Growth Charact. Mater. 64 103–32

[63] Chelikowsky J R and Cohen M L 1976 Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors Phys. Rev. B 14 536–82

[64] Xiao Z, Goldman N and Dhar N K 2015 Simulation of Indirect–Direct transformation phenomenon of germanium under uniaxial and biaxial strain along arbitrary orientations 2015 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE) 397–400

[65] Fischetti M V and Laux S E 1996 Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and Si/Ge alloys J. Appl. Phys. 80 2234–52

[66] Cohen M L and Bergstresser T K 1966 Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures Phys. Rev. T 141 789–96

[67] Gonzalez S, Vasilescu D and Demkov A A 2002 Empirical pseudopotential method for the band structure calculation of strained-silicon germanium materials J. Electron. Comput. 1 179–83

[68] Kim J and Fischetti M V 2010 Electronic band structure calculations for biaxially strained Si, Ge, and III–V semiconductors J. Appl. Phys. 108 013710

[69] Tsay Y F, Gong B, Mitra S S and Vetelino J F 1972 Temperature dependence of energy gaps of some III–V semiconductors Phys. Rev. B 6 2330–6

[70] Bechiri A, Benmakhlouf F and Bouarrissa N 2003 Band structure of III–V ternary semiconductor alloys beyond the VCA Mater. Chem. Phys. 77 507–10

[71] Cohen M L and Chelikowsky J R 1988 Electronic Structure and Optical Properties of Semiconductors (Berlin, Heidelberg: Springer Berlin Heidelberg) 75

[72] Boykin T B, Klimeck G, Bowen R C and Lake R 1997 Effective-mass reproducibility of the nearest-neighbor models: Analytic results Phys. Rev. B 56 4102–7

[73] Anderson N G and Jones S D 1991 Optimized tight-binding valence bands and heterojunction offsets in strained III–V semiconductors J. Appl. Phys. 70 4342–56

[74] Boykin T B, Klimeck G and Oyafuso F 2004 Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parameterization Phys. Rev. B 69 115201

[75] Tan Y, Povolotskij M, Kubis T, Boykin T B and Klimeck G 2016 Transferable tight-binding model for strained IV–V materials and heterostructures Phys. Rev. B 94 045311
Adler P, Schwarz U, Syassen K, Rozenberg G K, Machavariani G Y, Milner A P, Pasternak M P and Han Dubrovinsky L, Dubrovinskaia N, Prakapenka V B and Abakumov A M 2012 Implementation of micro-ball nanodiamond anvils for
Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 LOBSTER: a tool to extract chemical bonding from plane-wave
Nelson R, Ertural C, George J, Deringer V L, Hautier G and Dronskowski R 2020 LOBSTER: local orbital projections, atomic charges,
Birch F 1947 Finite elastic strain of cubic crystals
Misra G, Tripathi P and Goyal S C 2007 Bulk modulus of semiconductors and its pressure derivatives
Blöchl P E 1994 Projector augmented-wave method
Kresse G and Furthmüller J 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 6 15–50
Kresse G and Furthmüller J 1996 Iterative efficient schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953–79
Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1785–75
Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations Phys. Rev. B 13 5188–92
Grimme S, Ehrlich S and Goerigk L 2011 Effect of the damping function in dispersion corrected density functional theory J. Comput. Chem. 32 1456–65
Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pa J. Chem. Phys. 132 154104
Prins A, Adams A and Sweeney S 2012 Pressure studies Semiconductor Research: Experimental Techniques ed A Patane and N Balkan (Berlin, Heidelberg: Springer Berlin Heidelberg) 171–95
Fratanduono D E et al 2021 Establishing gold and platinum standards to 1 terapascal using shockless compression Science 372 1063–8
Dubrovinsky L, Dubrovinskaia N, Prakapenka V B and Abakumov A M 2012 Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar Nat. Commun. 3 1163
Dubrovinsky L et al 2015 The most incompressible metal osmium at static pressures above 750 gigapascals Nature 525 226–9
Katiyar A K, Thai K Y, Yun W S, Lee J Y and Ahn J 2020 Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering Sci. Adv. 6 eaba0576
Yu P Y 2011 High pressure semiconductor physics: looking toward the future on the shoulder of the past Phys. Status Solidi 248 1077–82
Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Room-temperature superconductivity in a carbonaceous sulfur hydride Nature 586 373–7
Dang C et al 2021 Achieving large uniform tensile elasticity in microfabricated diamond Science 371 76–8
Shi Z, Diao M, Tsyymbalov E, Shapeev A, Li J and Suresh S 2020 Metallization of diamond Proc. Natl Acad. Sci. 117 24634
Cardona M 2007 12th international conference on high pressure semiconductor physics (HPSP-12): concluding remarks Phys. Status Solidi 244 481–6
Almonacid G et al 2016 Structural metastability and quantum confinement in Zn1−xCoxO nanoparticles Nano Lett. 16 5204–12
Adler P, Schwarz U, Syassen K, Rozenberg G K, Machavariani G Y, Milner A P, Pasternak M P and Hanfland M 1999 Collapse of the charge disproportionation and covalency-driven insulator-metal transition in Sr2FeO4 under pressure Phys. Rev. B 60 4699–17
Nelson R, Ertural C, George J, Deringer V L, Hauter G and Dronskowski R 2020 LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory J. Comput. Chem. 41 1931
Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 LOBSTER: a tool to extract chemical bonding from plane-wave based DFT J. Comput. Chem. 37 1030–5
Grivickas P, McCluskey M D and Gupta Y M 2009 Transformation of GaAs into an indirect L-band-gap semiconductor under uniaxial strain Phys. Rev. B 80 073201
Yan Q, Rinke P, Schefller M and de Walle C G 2009 Strain effects in group-III nitrides: deformation potentials for AlN, GaN, and InN Appl. Phys. Lett. 95 121111
Birch F 1947 Finite elastic strain of cubic crystals Phys. Rev. 71 809–24
Misra G, Tripathi P and Goyal S C 2007 Bulk modulus of semiconductors and its pressure derivatives Philos. Mag. Lett. 87 393–401
Van Camp P E, Van Doren V E and Devreese J T 1990 Pressure dependence of the electronic properties of cubic III-V In compounds Phys. Rev. 41 1598–602
Potter R F 1956 Indirect transitions in indium antimonide Phys. Rev. 103 861–2

[121] Alekseev P A, Sharov V A, Borodin B R, Dunaevskiy M S, Reznik R R and Gritsenko G E 2020 Effect of the uniaxial compression on the GaAs nanowire solar cell Micros. 11 581
[122] Lim B, Cui X Y and Ringer S P 2021 Strain-mediated bandgap engineering of straight and bent semiconductor nanowires Phys. Chem. Chem. Phys. 23 5407–14
[123] Signorello G, Karg S, Björk M T, Gotsmann B and Riel H 2013 Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain Nano Lett. 13 917
[124] Grönqvist J, Sonderegger N, Boxberg F, Guhr T, Åberg S and Xu H Q 2009 Strain in semiconductor core–shell nanowires J. Appl. Phys. 106 053508
[125] Signorello G, Lörtscher E, Khomyakov P A, Karg S, Dheeraj D L, Gotsmann B, Weman H and Riel H 2014 Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress Nat. Commun. 5 3655
[126] Copple A, Ralston N and Peng X 2012 Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain Appl. Phys. Lett. 100 193108
[127] Assali S et al 2013 Direct band gap wurtzite gallium phosphide Nano Lett. 13 1559–63
[128] Peng X and Copple A 2013 Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: a first principles study Phys. Rev. B 87 115308
[129] New Semiconductor Materials Biolog. Systems. Characteristics and Properties, www.matprop.ru, last accessed 22.08.2022
[130] Kresse G and Hafner J 1993 Projector augmented wave method Phys. Rev. B 49 558–70
[131] Kresse G and Furthmüller J 1994 Projector augmented-wave method Phys. Rev. B 54 11169–86
[132] Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953–79
[133] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1785–75
[134] Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations Phys. Rev. B 13 5188–92
[135] Grimme S, Ehrlich S and Goerigk L 2011 Effect of the damping function in dispersion corrected density functional theory J. Comput. Chem. 32 1456–65
[136] Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pa J. Chem. Phys. 132 154104