A SPECIAL POINT PROBLEM OF ANDRÉ-PINK-ZANNIER IN THE
UNIVERSAL FAMILY OF ABELIAN VARIETIES

ZIYANG GAO

Abstract. The André-Pink-Zannier conjecture concerns the intersection of subvarieties and
the generalized Hecke orbit of a given point in mixed Shimura varieties. It is part of the Zilber-
Pink conjecture. In this paper we focus on the universal family of principally polarized abelian
varieties. We explain the moduli interpretation of the conjecture in this case and prove several
different cases for this conjecture, including its overlap with the André-Oort conjecture.

CONTENTS

1. Introduction 1
2. Universal family of abelian varieties 5
3. Weakly special subvarieties of \(\mathcal{A}_g \) 6
4. Generalized Hecke orbit 10
5. Diophantine estimate for the torsion case 13
6. End of the proof for the torsion case 16
7. Proof of the non-torsion case 20
8. Variants of the main conjecture 27

1. Introduction

Consider \(\pi : \mathcal{A}_g(N) \to \mathcal{A}_g(N) \), the universal family of principally polarized abelian varieties
of dimension \(g \) with level-\(N \)-structure over a fine moduli space. For simplicity we drop the “\((N)\)”
in the notation. The variety \(\mathcal{A}_g \) is an example of mixed Shimura variety which is not pure. For
general theory of mixed Shimura varieties, we refer to [22]. An interesting Diophantine problem
for mixed Shimura varieties is the Zilber-Pink conjecture, which concerns unlikely intersections
in mixed Shimura varieties. In order to study this conjecture, Pink defined in [23, Definition 4.1]
weakly special subvarieties of mixed Shimura varieties. In §3, we shall discuss weakly special
subvarieties of \(\mathcal{A}_g \). In particular we dispose of the following geometric description for weakly
special subvarieties of \(\mathcal{A}_g \): let \(Y \) be any irreducible subvariety of \(\mathcal{A}_g \), it is then a subvariety of
\([\pi]^{-1}(\pi Y) \) with the latter being an abelian scheme over \([\pi]Y \), whose isotrivial part we denote
by \(C \). Then we have

Proposition 1.1. An irreducible subvariety \(Y \) of \(\mathcal{A}_g \) is weakly special iff the followings hold:

(1) \([\pi]Y \) is a totally geodesic subvariety of \(\mathcal{A}_g \);

2000 Mathematics Subject Classification. 11G18, 14G35.
(2) Y is the translate of an abelian subscheme of $[\pi]^{-1}([\pi]Y)$ (over $[\pi]Y$) by a torsion section and then by a section of $\mathcal{C} \to [\pi]Y$.

Moreover, this holds for any connected Shimura variety of Kuga type S (i.e. mixed Shimura varieties with trivial weight -2 part), in which case the “A_g” in (1) should be replaced by the pure part of S.

A very important case of the Zilber-Pink conjecture is the André-Oort conjecture, which for A_g is equivalent to the following statement: if a subvariety Y of A_g contains a Zariski dense subset of special points (i.e. points of A_g corresponding to torsion points of CM abelian varieties), then Y is a weakly special subvariety of A_g. By previous work of Gao [6], the only obstacle to prove the André-Oort conjecture for A_g (or more generally, for any mixed Shimura variety of abelian type) is the lower bound for the Galois-orbits of special points.

The goal of this article is to study another important case of the Zilber-Pink conjecture, which we call the André-Pink-Zannier conjecture:

Conjecture 1.2. Let Y be a subvariety of A_g. Let $s \in A_g$ and Σ be the generalized Hecke orbit of s. If $Y \cap \Sigma^{\text{bar}} = Y$, then Y is weakly special.

Several cases of this conjecture had been studied by André before its final form was made by Pink [23, Conjecture 1.6]. It is also closely related to a problem (Conjecture 1.4) proposed by Zannier. Conjecture 1.2 for A_g, the pure part of A_g, has been intensively studied by Orr [17, 16], generalizing the previous work of Habegger-Pila [9, Theorem 3] in the Pila-Zannier method.

The set Σ has good moduli interpretation: by Corollary 4.5,

$$\Sigma = \text{division points of the polarized isogeny orbit of } s$$

$$= \{ t \in A_g | \exists n \in \mathbb{N} \text{ and a polarized isogeny } f: (A_g,[\pi]s,\lambda[\pi]s) \to (A_g,[\pi]t,\lambda[\pi]t) \text{ s.t. } nt = f(s) \}.$$

There are authors who consider merely isogenies instead of polarized isogenies. However this does not essentially improve the result because of the following result of Orr [16, Proposition 4.4]: for any isogeny $f: A \to A'$ between polarized abelian varieties, there exists $u \in \text{End}(A^4)$ s.t. $f^4 \circ u: A \to A'$ is a polarized isogeny. See §8 for more details.

Although Conjecture 1.2 and the André-Oort conjecture do not imply each other, they do have some overlap. The overlap of these two conjectures is the same statement of Conjecture 1.2 with Σ replaced by the set of points of A_g corresponding to torsion points of CM abelian varieties admitting a polarized isogeny to a given principally polarized CM abelian variety. A main result of this paper is to prove this overlap, partially generalizing existing result of Edixhoven-Yafaev for pure Shimura varieties [27, 5] (see Theorem 1.5.(2)).

We shall divide Conjecture 1.2 into two cases: when s is a torsion point of $A_g,[\pi]s$ and when s is not a torsion point of $A_g,[\pi]s$. The diophantine estimates for both cases are not quite the same.

1.1. **The torsion case.** When s is a torsion point of $A_g,[\pi]s$, this conjecture is related to a special-point problem proposed by Zannier. We define the following “special topology” proposed by Zannier:

Definition 1.3. Fix a point $a \in A_g$. Then a corresponds to a principally polarized abelian variety (A_a,λ_a) of dimension g.

(1) We say that a point \(t \in A_g \) is \(A_g \)-special (or \(a \)-special) if there exists an isogeny \(A_g \to A_g, [\pi]t \) and that \(t \) is a torsion point on the abelian variety \(A_g, [\pi]t \). We shall denote by \(\Sigma' \) (or \(\Sigma' \) when there is no confusion) the set of \(a \)-special points.

(2) We say that a point \(t \in A_g \) is \((A_g, \lambda_0) \)-special (or \(a \)-strongly special) if there exists a polarized isogeny \((A_g, \lambda_0) \to (A_g, [\pi]t, \lambda_1[\pi]t) \) and that \(t \) is a torsion point on the abelian variety \(A_g, [\pi]t \). We shall denote by \(\Sigma_a \) (or \(\Sigma \) when there is no confusion) the set of \(a \)-strongly special points.

(3) We say that a subvariety \(Z \) of \(A_g \) is \(a \)-special (resp. \(a \)-strongly special) if \(Z \) contains an \(a \)-special point (resp. \(a \)-strongly special point), \([\pi]Z \) is a totally geodesic subvariety of \(A_g \) and \(Z \) is an irreducible component of a subgroup of \([\pi]^{-1}(\pi)|Z| \).

In view of Proposition 1.1, every \(a \)-(strongly) special subvariety is weakly special. The following conjecture is proposed by Zannier.

Conjecture 1.4. Let \(Y \) be a subvariety of \(A_g \) and let \(a \in A_g \). If \(Y \cap \Sigma_a^{Zar} = Y \), then \(Y \) is \(a \)-special.

By (1.1), Conjecture 1.2 when \(s \) is a torsion point of \(A_g, [\pi]s \) is equivalently to a weaker version of Conjecture 1.4, i.e. replace \(\Sigma' \) by \(\Sigma_a \) in Conjecture 1.4. However by [16, Proposition 4.4], Conjecture 1.2 for \(A_g \) also implies Conjecture 1.4 for \(A_g \). Our first main result is:

Theorem 1.5. Conjecture 1.4 holds if one of the following conditions holds:

1. either \(\dim([\pi](Y)) \leq 1 \);
2. or the point \(a \) is a special point of \(A_g \) (which is the overlap of Conjecture 1.2 and the André-Oort conjecture for \(A_g \)).

The proof of this theorem will be presented in §5 and §6. Remark that by Corollary 4.6, the case where \(\dim([\pi]Y) = 0 \) (i.e. \([\pi](Y) \) is a point) is nothing but the Manin-Mumford conjecture, which is proved by many people (the first proof was given by Raynaud). On the other hand, with a similar proof, Theorem 1.5.(2) holds for more general cases (more details will be given in the forthcoming dissertation [7]). In this paper we only present the proof for the case \(A_g \).

1.2. The non-torsion case. The situation becomes more complicated when \(s \) is not a torsion point of \(A_g, [\pi]s \). In this case we prove:

Theorem 1.6. Conjecture 1.2 holds if \(s \in A_g(\overline{\mathbb{Q}}) \) and \(Y \) is a curve.

As we shall see in §2, \(A_g \) is defined over \(\overline{\mathbb{Q}} \). Hence it is reasonable to talk about its \(\overline{\mathbb{Q}} \)-points. Moreover, if \(s \in A_g(\overline{\mathbb{Q}}) \), then its generalized Hecke orbit \(\Sigma \) is also contained in \(A_g(\overline{\mathbb{Q}}) \) by Corollary 4.6. Hence if \(Y \cap \Sigma^{Zar} = Y \), then \(Y \) itself is defined over \(\overline{\mathbb{Q}} \). The proof of this theorem will be presented in §7.

Finally let us compare the result of this paper and the recent preprint of Lin-Wang [11]. For the non-isotrivial family of abelian varieties \(A \to S \) considered by Lin-Wang, assume that \(A \to S \) is principally polarized. Then there exists, up to taking finite covers of \(A \to S \), a
where i and i_S are finite. Let us point out that by the main result of [17], $i_S(S)$ is totally geodesic in \mathcal{A}_g under the assumption of Lin-Wang. We list the main differences of [11] and our paper (remember that we have Proposition 1.1, the geometric interpretation of weakly special subvarieties of \mathcal{A}_g):

- Lin-Wang consider merely the isogeny orbit instead of all its division points. This makes their proof much simpler (the main part of their proof is §7.3 here). In particular, their proof does not make use of the o-minimal theory and, since they only work with curves in simple abelian scheme, does not require any background knowledge about weakly special subvarieties of \mathcal{A}_g.
- Lin-Wang consider only curves (we denote by Y) over $\overline{\mathbb{Q}}$ in \mathcal{A}_g in their paper. We prove more cases when the point s is a torsion point of $\mathcal{A}_g, [\pi]s$.
- The set Σ considered by Lin-Wang is slightly larger than the one in Conjecture 1.2: instead of polarized isogenies, Lin-Wang consider arbitrary isogenies between abelian varieties (This is why they are restricted to the case where $[\pi]^{-1}([\pi]Y) \to [\pi]Y$ is a simple abelian scheme); also Lin-Wang consider a finitely generated subgroup Λ of a fiber of $[\pi]$ (which is an abelian variety) instead of merely one point. Hence their main result is not completely covered by our paper. However by the discussion in §8, if we can prove Conjecture 1.2 for all g, then the same conclusion follows automatically for this larger Σ. Therefore we would still like to focus on Conjecture 1.2 itself.
- As a by-product, Lin-Wang presented in [11, Section 3] a new proof for a result of Bertrand [2] for the simple abelian variety case using polyhedral reduction theory. This is not discussed in our paper since the height inequality [11, Lemma 3.1] is replaced by a simple height equality for polarized isogenies (Lemma 7.4).

Structure of the paper. In §2 we define the universal family of abelian varieties in the language of mixed Shimura varieties of Pink [22]. In §3 we discuss about weakly special subvarieties of \mathcal{A}_g. In particular we prove Proposition 1.1 and recall the Ax-Lindemann theorem in this section. Then we shall lay the base of the study for Conjecture 1.2 in §4, where matrix expressions of polarized isogenies are given and generalized Hecke orbits are computed. After all these preparation, we will start proving Theorem 1.5 and Theorem 1.6. The proof of Theorem 1.5 will be executed in §5 and §6, with the former section devoted to the Diophantine estimate and the latter section devoted to the rest of the proof. In §7 the proof for Theorem 1.6 will be presented. In the last section §8, we discuss the following situation: replace the subset Σ (which is (1.1)) in Conjecture 1.2 by the isogeny orbit of a finitely generated subgroup of one fiber. We will prove that although this change a priori seems to generalize Conjecture 1.2, it can in fact be implied by Conjecture 1.2. For more details see Corollary 8.2.

Achnowledgements. I am grateful to my supervisor Emmanuel Ullmo for regular discussions during the preparation of this paper. I would like to thank Martin Orr a lot for answering me questions related to his previous work [16, 17]. I would like to thank Nicolas Ratazzi for pointing
out the paper of David [4] to me. I would also like to thank Daniel Bertrand and Marc Hindry for relevant discussion.

2. Universal Family of Abelian Varieties

Let $\mathcal{S} := \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{m, \mathbb{C}}$. Let $g \in \mathbb{N}_{>0}$. Let V_{2g} be a \mathbb{Q}-vector space of dimension $2g$ and let

$$
\Psi : V_{2g} \times V_{2g} \to U_{2g} := \mathbb{G}_{a, \mathbb{Q}}
$$

be a non-degenerate alternating form. Define

$$
\text{GSp}_{2g} := \{ g \in \text{GL}(V_{2g}) | \Psi(\nu g, \nu g') = \nu(g) \Psi(v, v') \text{ for some } \nu(g) \in \mathbb{G}_{m} \},
$$

and \mathbb{H}^+_g the set of all homomorphisms

$$
\mathcal{S} \to \text{GSp}_{2g, \mathbb{R}}
$$

which induce a pure Hodge structure of type $\{(-1, 0), (0, -1)\}$ on V_{2g} and for which Ψ defines a polarization. The action of $\text{GSp}_{2g}(\mathbb{R})^+$ on \mathbb{H}^+_g is given by the conjugation, i.e. for any $h \in \text{GSp}_{2g}(\mathbb{R})^+$ and any $x \in \mathbb{H}^+_g$, $h \cdot x$ is the morphism

$$
h \cdot x : \mathcal{S} \to \text{GSp}_{2g, \mathbb{R}}
y \mapsto hx(y)h^{-1}.
$$

It is well known that \mathbb{H}^+_g can be identified with the Siegel upper half space (of genus g)

$$
\{ Z = X + \sqrt{-1}Y \in M_{g \times g}(\mathbb{C}) | Z = Z^t, Y > 0 \}
$$

and the action of $\text{GSp}_{2g}(\mathbb{R})^+$ on \mathbb{H}^+_g is given by

$$
\left(\begin{array}{ccc} A & B \\ C & D \end{array} \right) := (AZ + B)(CZ + D)^{-1}.
$$

The action of GSp_{2g} on V_{2g} induces a Hodge structure of type $\{(-1, 0), (0, -1)\}$ on V_{2g}. Let

$$
\mathcal{X}_{2g.a}^+ := V_{2g}(\mathbb{R}) \times \mathbb{H}^+_g \subset \text{Hom}(\mathcal{S}, V_{2g, \mathbb{R}} \rtimes \text{GSp}_{2g, \mathbb{R}})
$$

denote the conjugacy class under $(V_{2g} \rtimes \text{GSp}_{2g})(\mathbb{R})^+$ generated by \mathbb{H}^+_g. The notion $V_{2g}(\mathbb{R}) \times \mathbb{H}^+_g$ is justified by the natural bijection

$$
V_{2g}(\mathbb{R}) \times \mathbb{H}^+_g \sim \to V_{2g}(\mathbb{R}) \times \mathbb{H}^+_g, \quad (v', x) \mapsto \text{int}(v') \circ x.
$$

Under this bijection the action of $(v, h) \in (V_{2g} \rtimes \text{GSp}_{2g})(\mathbb{R})^+$ is given by $(v, h) \cdot (v', x) := (v + hv', hx)$.

Denote by $(P_{2g.a}, \mathcal{X}_{2g.a}^+)$:= $(V_{2g} \rtimes \text{GSp}_{2g}, V_{2g}(\mathbb{R}) \times \mathbb{H}^+_g)$. This is a connected mixed Shimura datum ([22, 2.25]). There is a natural morphism

$$
\pi : (P_{2g.a}, \mathcal{X}_{2g,a}^+) \to (\text{GSp}_{2g}, \mathbb{H}^+_g)
$$

induced by $P_{2g.a} = V_{2g} \rtimes \text{GSp}_{2g} \to \text{GSp}_{2g}$.

Let $\Gamma_V(N) := NV(\mathbb{Z})$ and $\Gamma_G(N) := \{ h \in \text{GSp}_{2g}(\mathbb{Z}) | h \equiv 1 \pmod{N} \}$ for any integer $N \geq 3$. Define $\Gamma(N) := \Gamma_V(N) \rtimes \Gamma_G(N)$, then it is a neat subgroup of $P_{2g}(\mathbb{Q})^+$. Define

$$
\mathfrak{A}_g(N) := \Gamma(N) \backslash \mathcal{X}_{2g,a}^+
$$

and

$$
\mathcal{A}_g(N) := \Gamma_G(N) \backslash \mathbb{H}_g^+.
$$
Then $\mathfrak{A}_g(N)$ is a connected mixed Shimura variety and $\mathcal{A}_g(N)$ is a connected pure Shimura variety. The morphism π induces a Shimura morphism
\begin{equation}
(2.3) \quad [\pi]: \mathfrak{A}_g(N) \to \mathcal{A}_g(N).
\end{equation}

Theorem 2.1.

(1) The morphism (2.3) is the universal family of principally polarized abelian varieties of dimension g over the fine moduli space $\mathcal{A}_g(N)$.

(2) Both $\mathfrak{A}_g(N)$ and $\mathcal{A}_g(N)$ are both defined over $\overline{\mathbb{Q}}$.

(3) Let $\mathcal{F} := \{0, N\}^{2g} \times F_G \subset V_{2g}(\mathbb{R}) \times \mathbb{H}_g^+ \simeq X_{2g,a}^+$, where F_G is a fundamental Siegel set for the action of $\Gamma_G(N)$ on \mathbb{H}_g^+. Then \mathcal{F} is a fundamental set for the action of $\Gamma(N)$ on $X_{2g,a}^+$ s.t. $\text{univ}|_{\mathcal{F}}$ is definable in the o-minimal theory $\mathbb{R}_{\text{an},\exp}$.

Proof. See [22, 10.5, 10.9, 10.10, 11.16] for (1) and (2). (3) is the main result of [19] (see [6, Remark 4.4]). □

Let $N \geq 3$ be even. Pink has also constructed an ample \mathbb{G}_m-torsor over $\mathfrak{A}_g(N)$ in terms of mixed Shimura varieties in [22]. In our purpose we only need:

Theorem 2.2. There exists a \mathbb{G}_m-torsor $\mathcal{L}_g(N) \to \mathfrak{A}_g(N)$, which is totally symmetric and relatively ample w.r.t. $\mathfrak{A}_g(N) \to \mathcal{A}_g(N)$. Furthermore, any point $a \in \mathcal{A}_g(N)$ corresponds to the principally polarized abelian variety $(\mathfrak{A}_g(N)_a, \mathcal{L}_g(N)_a)$ with some level-N-structure.

Proof. See [22, 2.25, 3.21, 10.5, 10.10]. □

Notation 2.3. In the rest of the paper, we shall always take N to be even and larger than 3. Furthermore we denote by \mathfrak{A}_g, \mathfrak{A}_g and \mathcal{L}_g for $\mathfrak{A}_g(N)$, $\mathcal{A}_g(N)$ and $\mathcal{L}_g(N)$ for simplicity.

3. **Weakly special subvarieties of \mathfrak{A}_g**

In this section, we discuss about weakly special subvarieties of \mathfrak{A}_g (or more generally, of mixed Shimura varieties of Kuga type).

3.1. The following definition is not exactly the original one given by Pink [23, Definition 4.1(b)], but it is not hard to verify their equivalence (see [23, Proposition 4.4(a)] and [6, Proposition 5.7]):

Definition 3.1. A subvariety Y of \mathfrak{A}_g is called **weakly special** if there exist a connected mixed Shimura subdatum (Q, \mathcal{Y}^+) of $(P_{2g,a}, \mathcal{X}_{2g,a}^+)$, a connected normal subgroup N of Q possessing no non-trivial torus quotient and a point $\tilde{y} \in \mathcal{Y}^+$ s.t. $Y = \text{univ}(N(\mathbb{R})^+\tilde{y})$.

Remark 3.2.

(1) Weakly special subvarieties of \mathfrak{A}_g defined as above are automatically irreducible ([6, Remark 5.3]).

(2) For an arbitrary connected mixed Shimura variety S of Kuga type, its weakly special subvarieties are defined in the same way with $(P_{2g,a}, \mathcal{X}_{2g,a}^+)$ replaced by the connected mixed Shimura datum associated with S. For more general connected mixed Shimura varieties, the “$N(\mathbb{R})^+$” in the definition should be replaced by “$N(\mathbb{R})^+U_N(\mathbb{C})$” where U_N is the so-called weight -2 part of N. We shall not go into details for this.
3.2. The goal of this subsection is to prove Proposition 1.1. Recall that $P_{2g,a}$ is defined to be $V_{2g} \times \text{GSp}_{2g}$ with the natural representation of GSp_{2g} on V_{2g}. Therefore this induces the zero-section $\varepsilon: (\text{GSp}_{2g}, \mathbb{H}_g^+g) \hookrightarrow (P_{2g,a}, X_{2g,a}^+)$ of π. Remark that ε corresponds to the zero-section of $[\pi]: \mathbb{A}_g \to \mathbb{A}_g$.

The following proposition is not hard to prove using Levi decomposition [24, Theorem 2.3]. Another (partial) proof can be found in [12, Section 5.1].

Proposition 3.3. To give a Shimura subdatum (Q, \mathcal{Y}^+) of $(P_{2g,a}, X_{2g,a}^+)$ is equivalent to give:

- a pure Shimura subdatum $(G_Q, \mathcal{Y}^+_{G_Q})$ of $(\text{GSp}_{2g}, \mathbb{H}_g^+)$;
- a G_Q-submodule V_Q of V_{2g} (V_{2g} is a GSp_{2g}-module, and therefore a G_Q-module);
- an element $\overline{\tau}_0 \in (V_{2g}/V_Q)(Q)$.

Proof. We only give the constructions here.

1. Given $(Q, \mathcal{Y}^+) \subset (P_{2g,a}, X_{2g,a}^+)$, we have $V_Q := \mathcal{R}_u(Q) \subset \mathcal{R}_u(P_{2g,a}) = V_{2g}$. Therefore the inclusion $(Q, \mathcal{Y}^+) \subset (P_{2g,a}, X_{2g,a}^+)$ induces

$$(G_Q, \mathcal{Y}^+_{G_Q}) := (Q, \mathcal{Y}^+)/V_Q \subset (\text{GSp}_{2g}, \mathbb{H}_g^+g) = (P_{2g,a}, X_{2g,a}^+)/V_{2g}.$$ The fact that V_Q is a G_Q-submodule of V_{2g} is clear. Now it suffices to find $\overline{\tau}_0 \in (V_{2g}/V_Q)(Q)$.

Consider the group $Q^i := (V_{2g}/V_Q) \rtimes G_Q$, where the action is induced by the natural one of G_Q on V_{2g}. By definition, $Q^i = \pi^{-1}(G_Q)/V_Q$. Now the inclusion $(Q, \mathcal{Y}^+) \subset (P_{2g,a}, X_{2g,a}^+)$ also induces an inclusion (which we call i^i)

$$(G_Q = Q/V_Q \subset \pi^{-1}(G_Q)/V_Q = Q^i).$$ We have the following diagram, whose solid arrows commute:

$$\begin{array}{cccc}
1 & \longrightarrow & 1 & \longrightarrow \\
\downarrow & \uparrow & \downarrow & \uparrow \\
1 & \longrightarrow & V_{2g}/V_Q & \longrightarrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & \longrightarrow & Q^i & \longrightarrow \\
\downarrow & \uparrow & \downarrow & \uparrow \\
1 & \longrightarrow & G_Q & \longrightarrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & \longrightarrow & G_Q & \longrightarrow 1
\end{array}$$

where s_Q is the homomorphism $G_Q = \{0\} \times G_Q < (V_{2g}/V_Q) \rtimes G_Q = Q^i$. Now i^i and s_Q are two Levi-decompositions for Q^i. By [24, Theorem 2.3], s_Q equals the conjugation of i^i by an element $\overline{\tau}_0 \in (V_{2g}/V_Q)(Q)$. Moreover, the choice of $\overline{\tau}_0$ is unique.

2. Conversely, given the three data as in the Proposition, the underlying group Q is the conjugate of $V_Q \rtimes G_Q < V_{2g} \rtimes \text{GSp}_{2g}$ (compatible Levi-decompositions) by $(v_0, 1)$ in $P_{2g,a}$. The space

$$(\mathcal{Y}^+ = (v_0 + V_Q(\mathbb{R})) \times \mathcal{Y}^+_{G_Q} \subset V_{2g}(\mathbb{R}) \times \mathbb{H}_g^+ \cong X_{2g,a}^+)$$

where v_0 is any lift of $\overline{\tau}_0$ to $V_{2g}(Q)$.

\hfill \square

Proposition 3.4. A subvariety Y of \mathbb{A}_g is weakly special iff there exist

- a pure Shimura subdatum $(G_Q, \mathcal{Y}^+_{G_Q})$ of $(\text{GSp}_{2g}, \mathbb{H}_g^+)$;
- a point $v_0 \in V_{2g}(Q)$;
• a normal semi-simple connected subgroup G_N of G_Q and a point $\bar{y}_G \in Y_{GQ}^+$;
• a G_Q-submodule V_N of V_{2g};
• a G_Q-submodule V_N^\perp of V_{2g} on which G_N acts trivially, and a point $v \in V_N^\perp(\mathbb{R})$

s.t.

$Y = \text{univ}\left((v_0 + v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+\bar{y}_G\right)$.

Here $(v_0 + v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+\bar{y}_G \subset V_{2g}(\mathbb{R}) \times H_y^+ \simeq \mathcal{X}_{2g,a}^+$.

Proof.
(1) Given a weakly special subvariety Y of \mathfrak{A}_g, let (Q, \mathcal{Y}^+), N and \bar{y} be as in Definition 3.1. By Proposition 3.3, (Q, \mathcal{Y}^+) corresponds to a Shimura subdatum $(G_Q, \mathcal{Y}^+_{G_Q})$ of $(\text{GSp}_{2g}, \mathbb{H}_y^+)$, a G_Q-submodule V_Q of V_{2g} and a point $\bar{y}_0 \in (V_{2g}/V_Q)(\mathbb{Q})$. Let v_0 be any lift of \bar{y}_0 to $V_{2g}(\mathbb{Q})$. Let $G_N := N/(V_Q \cap N)$, then G_N is a connected normal subgroup of G_Q, and hence is reductive. Since N possesses no non-trivial torus quotient, G_N is semi-simple. Let $\tilde{\bar{y}} := \pi(\bar{y})$.

Let $V_N := V_Q \cap N$, then V_N is a G_Q-submodule of V_Q since N is normal in Q. By [6, Corollary 2.14], there exists a G_Q-submodule V_N^\perp of V_Q s.t. $V_Q = V_N \oplus V_N^\perp$ and G_N acts trivially on V_N^\perp. Write $\bar{y} = (\bar{y}_V, \bar{y}_G) \in (v_0 + V_Q(\mathbb{R})) \times \mathcal{Y}^+_{G_Q} = \mathcal{Y}^+ \subset \mathcal{X}_{2g,a}^+$ (here we use the second part of the proof of Proposition 3.3).

To simplify the computation below, we introduce a new Shimura subdatum (Q', \mathcal{Y}') of $(P_{2g,a}, \mathcal{X}_{2g,a}^+)$: (Q', \mathcal{Y}') is defined to be the conjugate of (Q, \mathcal{Y}^+) by $(-v_0, 1)$. By the second part of the proof of Proposition 3.3, $(Q', \mathcal{Y}') = (V_Q \rtimes G_Q, V_Q(\mathbb{R}) \times \mathcal{Y}^+_{G_Q}) \subset (V_{2g} \rtimes \text{GSp}_{2g}, \mathcal{X}_{2g,a}^+)$. Let $N' := V_N \rtimes G_N < V_{2g} \rtimes \text{GSp}_{2g}$, then N' is the conjugate of N by $(-v_0, 1)$. Let $\tilde{\bar{y}}' := (\tilde{\bar{y}}_V - v_0, \bar{y}_G) \in \mathcal{Y}'^+$.

Let v be the $V_N^\perp(\mathbb{R})$-factor of $\tilde{\bar{y}}'$. Then since G_N acts trivially on V_N^\perp, we have

$N'(\mathbb{R})^+\tilde{\bar{y}}' = (v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+\bar{y}_G \subset \mathcal{Y}'^+$.

Hence $N(\mathbb{R})^+\tilde{\bar{y}} = (v_0 + v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+\bar{y}_G$. Now the conclusion follows.

(2) Conversely given all these data, let the Shimura subdatum (Q, \mathcal{Y}^+) be the one obtained from $(G_Q, \mathcal{Y}^+_{G_Q}), V_N \oplus V_N^\perp$ and v_0 by Proposition 3.3. Let N be the subgroup of Q which is defined to be $V_N \rtimes G_N$ conjugated by $(v_0, 1)$ in $P_{2g,a}$. Then since G_N acts trivially on V_N^\perp, $N < Q$. Let $y := (v_0 + v, \bar{y}_G)$. Now we have

$(v_0 + v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+\bar{y}_G = N(\mathbb{R})^+\tilde{\bar{y}}$.

The group N is by definition connected and possessing no non-trivial torus quotient since G_N is semi-simple. Hence Y is weakly special by definition.

Now we can prove Proposition 1.1:

Proof of Proposition 1.1.
(1) Let Y be a weakly special subvariety of \mathfrak{A}_g. Then associated to Y there are data as in Proposition 3.4 and

$Y = \text{univ}\left((v_0 + v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+\bar{y}_G\right)$.

Let $B := [\pi]Y$ and $X := [\pi]^{-1}(B)$. Then $B = \text{univ}(G_N(\mathbb{R})^+\bar{y}_G)$ is by definition a weakly special subvariety of \mathfrak{A}_g, and hence is a totally geodesic subvariety of \mathfrak{A}_g by [15, 4.3].
Now $X \to B$ is an abelian scheme. Since V_N is a G_Q-submodule of V_{2g}, $\univ(V_N(\mathbb{R}) \times G_N(\mathbb{R})^+ \bar{y}_G)$ is an abelian subscheme of X over B. Therefore,

$$\univ\left((v_0 + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+ \bar{y}_G\right)$$

is the translate of B by a torsion section of $X \to B$. But $v \in V_N^+(\mathbb{R})$ and G_N acts trivially on V_N^+, so $\univ(V_N^+(\mathbb{R}) \times G_N(\mathbb{R})^+ \bar{y}_G)$ is an isotrivial abelian scheme over B. Therefore Y satisfies the two properties of Proposition 1.1.

(2) Conversely let Y be a subvariety of \mathfrak{A}_g satisfying the two properties of Proposition 1.1, let us find the data in Proposition 3.4.

Since $B := [\pi]Y$ is totally geodesic, it is a weakly special subvariety of \mathfrak{A}_g by [15, 4.3]. Hence by definition there exist a Shimura subdatum (G_Q, \mathcal{Y}^+_G), a connected semi-simple normal subgroup G_N of G_Q and a point $\bar{y}_G \in \mathcal{Y}^+_G$ s.t. $B = \univ_G(G_N(\mathbb{R})^+ \bar{y}_G)$.

Let $X := [\pi]^{-1}(B)$. Then the isotrivial part \mathcal{C} of $X \to B$ is

$$\univ(V'(\mathbb{R}) \times G_N(\mathbb{R})^+ \bar{y}_G),$$

where V' is the largest G_Q-submodule of V_{2g} on which G_N acts trivially. This V' is the V_N^+ we want in Proposition 3.4.

Now since Y is the translate of an abelian subscheme by a torsion section and then by a section of $\mathcal{C} \to B$, there exists a G_Q-submodule V_N of V_{2g} s.t.

$$Y = \univ\left((v_0 + v + V_N(\mathbb{R})) \times G_N(\mathbb{R})^+ \bar{y}_G\right)$$

where $v_0 \in V_{2g}(\mathbb{Q})$ corresponds to the torsion section and $v \in V'(\mathbb{R})$ corresponds to the section of $\mathcal{C} \to B$.

\[\square \]

3.3. **Ax-Lindemann.** In this subsection, we summarize some results regarding the mixed Ax-Lindemann theorem. All the results stated in this subsection holds for arbitrary connected mixed Shimura varieties, and in particular for \mathfrak{A}_g.

In this subsection, let S be a connected mixed Shimura variety associated with (P, \mathcal{X}^+) and let $\univ : \mathcal{X}^+ \to S$ be the uniformization. An example for this is \mathfrak{A}_g and $(P_{2g,a}, \mathcal{X}_{2g,a}^+)$. As is explained in [6, Proposition 4.1], there exists a complex algebraic variety \mathcal{X}^\vee s.t. $\mathcal{X}^+ \hookrightarrow \mathcal{X}^\vee$ makes \mathcal{X}^+ a semi-algebraic and open (w.r.t. the usual topology) subset of \mathcal{X}^\vee.

Definition 3.5. Let \bar{Y} be an analytic subvariety of \mathcal{X}^+, then

1. \bar{Y} is called an irreducible algebraic subset of \mathcal{X}^+ if it is an analytically irreducible component of the intersection of its Zariski closure in \mathcal{X}^\vee and \mathcal{X}^+;
2. \bar{Y} is called algebraic if it is a finite union of irreducible algebraic subsets of \mathcal{X}^+.

Then we have the following criterion for weak specialness ([6, Corollary 8.3]):

Theorem 3.6. Let Y be a subvariety of S and let \bar{Y} be an analytically irreducible component of $\univ^{-1}(Y)$. Then Y is weakly special iff \bar{Y} is algebraic in the sense of Definition 3.5.

The following Ax-Lindemann theorem is due to Gao [6]:
Theorem 3.7. Let \(\widetilde{Z} \) be a connected semi-algebraic subset of \(\mathcal{X}^+ \) which is analytically irreducible (as a subset of \(\mathcal{X}^\text{univ} \)). Then \(\text{univ}(\widetilde{Z})^\text{Zar} \) is a weakly special subvariety of \(S \).

Proof. Let \(Y := \text{univ}(\widetilde{Z})^\text{Zar} \). Let \(\widetilde{W} \) be the maximal connected analytically irreducible semi-algebraic subset of \(\text{univ}^{-1}(Y) \) which contains \(\widetilde{Z} \). Then \(\widetilde{W} \) is a maximal connected semi-algebraic subset of \(\mathcal{X}^+ \) contained in \(\text{univ}^{-1}(Y) \). By [21, Lemma 4.1], \(\widetilde{W} \) is algebraic. Hence by the Ax-Lindemann theorem of the form [6, Theorem 1.2], \(\text{univ}(\widetilde{W}) \) is a weakly special subvariety of \(S \). In particular, \(\text{univ}(\widetilde{W}) \) is Zariski closed. So \(\text{univ}(\widetilde{Z}) \subset \text{univ}(\widetilde{W}) \subset Y \). This implies \(Y = \text{univ}(\widetilde{W}) \) is weakly special. \(\square \)

4. Generalized Hecke orbit

In this section, we discuss the matrix expression of a polarized isogeny and then compute the generalized Hecke orbit of a point of \(\mathfrak{A}_g \).

4.1. Polarized isogenies and their matrix expressions. Let \(b \in \mathcal{A}_g \). Denote by \(A_b = \mathfrak{A}_{g,b} \) and denote by \(\lambda_b : A_b \xrightarrow{\sim} A_b^\vee \) the principal polarization induced by \(\mathfrak{L}_{g,b} \). Then the point \(b \) corresponds to the polarized abelian variety \((A_b, \lambda_b) \). Let \(B \) be a symplectic basis of \(H_1(A_b, \mathbb{Z}) \) w.r.t. the polarization \(\lambda_b \). Let \(\tilde{b} \in \mathbb{H}_g^+ \) be the period matrix of \(A_b \) w.r.t. the basis \(B \). In this subsection, we fix \(B \) to be the \(\mathbb{Q} \)-basis of \(V_{2g} \).

Consider all points \(b' \in \mathcal{A}_g \) s.t. there exists a polarized isogeny
\[
f : (A_b, \lambda_b) \rightarrow (A_{b'}, \lambda_{b'})
\]
where \((A_{b'}, \lambda_{b'}) = (\mathfrak{A}_{g,b'}, A_{b'} \xrightarrow{\sim} A_{b'}^\vee \text{induced by } \mathfrak{L}_{g,b'}) \). Let \(B' \) be a symplectic basis of \(H_1(A_{b'}, \mathbb{Z}) \) w.r.t. the polarization \(\lambda_{b'} \) and let \(\tilde{b}' \in \mathbb{H}_g^+ \) be the period matrix of \(A_{b'} \) w.r.t. the basis \(B' \).

Definition 4.1. With notation as above. The matrix \(\alpha \in \text{GSp}_{2g}(\mathbb{Q})^+ \cap M_{2g \times 2g}(\mathbb{Z}) \) associated to
\[
f_\ast : H_1(A_b, \mathbb{Z}) \rightarrow H_1(A_{b'}, \mathbb{Z})
\]
in terms of \(B \) and \(B' \) is called the rational representation of \(f \) w.r.t. \(B \) and \(B' \).

The periods \(\tilde{b} \) and \(\tilde{b}' \) are related by \(\alpha \) in the following way:
\[
\tilde{b} = \alpha^t \cdot \tilde{b}' = (A\tilde{b}' + B)(C\tilde{b}' + D)^{-1}, \quad \text{where } \alpha^t = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \text{ and } \tilde{b}, \tilde{b}' \in \mathbb{H}_g^+ \subset M_{g \times g}(\mathbb{C}).
\]

Under the \(\mathbb{Q} \)-basis \(B \) of \(V_{2g} \), the matrix \(\alpha^t \) corresponds to the dual isogeny of \(f \), i.e. the following diagram commutes:

\[
\begin{array}{ccc}
\left(\mathcal{X}_{2g,a}^+ \right)_{b'} & \xrightarrow{\alpha^t} & \left(\mathcal{X}_{2g,a}^+ \right)_{b} \\
\text{univ} \downarrow & & \downarrow \text{univ} \\
A_{b'} & \rightarrow & A_b \\
\lambda_b \downarrow \alpha^t & & \lambda_{b'} \downarrow \alpha^t \\
A_{b'}^\vee & \xrightarrow{f^\vee} & A_b^\vee
\end{array}
\]

(4.1)
However, since \(f \) is a polarized isogeny, \(f^* \Omega_{g,b} = \Omega_{g,b}^{\otimes (\deg f)^{1/g}} \). So the following diagram commutes:

\[
\begin{array}{ccc}
A_b & \xrightarrow{f} & A_{b'} \\
| & \downarrow{(\deg f)^{1/g} \circ \lambda_b} & | \\
A_{b'} & \xleftarrow{f^*} & A_b
\end{array}
\]

(4.2)

Therefore by (4.1) and (4.2), we get the following commutative diagram:

\[
\begin{array}{ccc}
(X_{2g,a}^+)_{\bar{b}} & \xrightarrow{(\deg f)^{1/g}(\alpha^t)^{-1}} & (X_{2g,a}^+)_{\bar{b}'} \\
| & \downarrow{\text{univ}} & | \\
A_b & \xrightarrow{f} & A_{b'}
\end{array}
\]

(4.3)

Definition 4.2. With notation as above. The matrix \((\deg f)^{1/g}(\alpha^t)^{-1}\) is called the matrix expression of \(f \) in coordinates \(B \) w.r.t. \(B' \).

Remark 4.3. (1) The two bases \(B \) and \(B' \) play different roles for the matrix expression of \(f \): the matrix expression of \(f \) depends on both bases because it depends on the period matrices determined by both bases, but its dependence on \(B \) is more important because we fix \(B \) to be the \(\mathbb{Q} \)-basis for \(V_{2g} \) when writing the matrix expression.

(2) It is good to give the matrix \((\deg f)^{1/g}(\alpha^t)^{-1}\) a name because we will use it several times in the proof of Theorem 1.6. The name “matrix expression” is given by the author. Remark that this definition only works for polarized isogenies because (4.2) fails for general non-polarized isogenies.

4.2. Generalized Hecke orbit.

Lemma 4.4. Let \(\varphi \in \text{Aut} \left((P_{2g,a}, X_{2g,a}^+) \right) \). Then there exist \(g' \in \text{GSp}_{2g}(\mathbb{Q})^+ \) and \(v_0 \in V_{2g}(\mathbb{Q}) \) s.t. the action of \(\varphi \) on \(X_{2g,a}^+ \) is given by

\[
\varphi((v,x)) = (g'v + v_0, g'x).
\]

Proof. Then \(\varphi(V_{2g}) = \varphi(\mathcal{R}_u(P_{2g,a})) \subset \mathcal{R}_u(P_{2g,a}) = V_{2g} \). Since every two Levi decompositions of \(P_{2g,a} \) differs by the conjugation of an element \(v_0 \in V_{2g}(\mathbb{Q}) \), there exists a \(v_0 \in V_{2g}(\mathbb{Q}) \) s.t. \(\psi := \text{int}(v_0)^{-1} \circ \varphi \) maps \((\text{GSp}_{2g}, \mathbb{H}_g^+) \) to itself. Now we \(\psi \) maps \(V_{2g} \) and \((\text{GSp}_{2g}, \mathbb{H}_g^+) \) to themselves. So \(\psi \) can be written as \((A, B) \), where \(A \in \text{GL}_{2g}(\mathbb{Q}) \) and \(B \in \text{Aut} \left((\text{GSp}_{2g}, \mathbb{H}_g^+) \right) \). \(\text{GSp}_{2g}(\mathbb{Q})^+ \).

Remark that \(\psi \in \text{Aut}(P_{2g,a}) \), so we can do the following computation:

For any \(v \in V_{2g}(\mathbb{Q}) \) and \(h \in \text{GSp}_{2g}(\mathbb{Q})^+ \),

\[
(Ah_v, BhB^{-1}) = \psi((hv, h)) = \psi((0, h)(v, 1)) = \psi(0, h)\psi(v, 1) = (0, BhB^{-1})(Av, 1) = (BhB^{-1}Av, BhB^{-1}).
\]

Because \(v \) is an arbitrary element of \(V_{2g}(\mathbb{Q}) \), this implies that \(Ah = BhB^{-1}A \) for any \(h \in \text{GSp}_{2g}(\mathbb{Q})^+ \). But this tells us that \(A^{-1}B \) commutes with any element of \(\text{GSp}_{2g}(\mathbb{Q})^+ \), and hence \(A^{-1}B \in \mathbb{G}_m(\mathbb{Q}) \). So \(\psi \) acts on the group \(P_{2g,a} \) as \(\psi((v, h)) = (cBv, BhB^{-1}) \) where \(c \in \mathbb{Q}^* \) and
$B \in \text{GSp}_{2g}(\mathbb{Q})^+$. Therefore ψ acts on $X_{2g,a}^+$ as $\psi((v,x)) = (cBv,Bx) = (cBv,cBx)$. Denote by $g' := cB \in \text{GSp}_{2g}(\mathbb{Q})^+$, then the action of φ on $X_{2g,a}^+$ is given by

$$\varphi((v,x)) = (g'v + v_0, g'x).$$

Let $s \in \mathfrak{A}_g$, then $[\pi]s \in A_g$ corresponds to a polarized abelian variety $(\mathfrak{A}_{g,[\pi]s}, \lambda_s)$.

Corollary 4.5. Let $s \in \mathfrak{A}_g$. Then a point t is in the generalized Hecke orbit of s iff there exist a polarized isogeny $f : (\mathfrak{A}_{g,[\pi]s}, \lambda_s) \to (\mathfrak{A}_{g,[\pi]t}, \lambda_t)$ and $n' \in \mathbb{N}$ s.t. $f(s) = n't$.

Proof. Let $(v, x) \in X_{2g,a}^+$ (resp. $(v_t, x_t) \in X_{2g,a}^+$) be s.t. $s = \text{univ}((v, x))$ (resp. $t = \text{univ}((v_t, x_t))$). Then by Lemma 4.4, t is in the generalized Hecke orbit of s iff

$$\quad (v_t, x_t) = (g'v + v_0, g'x)$$

for some $g' \in \text{GSp}_{2g}(\mathbb{Q})^+$ and $v_0 \in V_{2g}(\mathbb{Q})$.

If (4.4) is satisfied, then there exists $c \in \mathbb{G}_m(\mathbb{Q}) = \mathbb{Q}^*$ s.t $h := c^{-1}g' \in \text{GSp}_{2g}(\mathbb{Q})^+$ is a \mathbb{Z}-coefficient matrix. Hence h corresponds to a polarized isogeny $f : (\mathfrak{A}_{g,[\pi]s}, \lambda_s) \to (\mathfrak{A}_{g,[\pi]t}, \lambda_t)$. By (4.4), we have $t = \text{univ}((chv + v_0, x_1))$, and therefore

$$n't = m'f(s) + \text{univ}((v_0, x_1))$$

where $c = m'/n'$. But $\text{univ}((v_0, x_t))$ is a torsion point of $\mathfrak{A}_{g,[\pi]t}$ since $v_0 \in V_{2g}(\mathbb{Q})$, and therefore can be removed by replacing m' and n' by sufficient large multiples. On the other hand $m'f$ is still a polarized isogeny, and hence replacing f by $m'f$, we may assume $m' = 1$. Finally we may assume $n' \in \mathbb{N}$ by possibly replacing f by $-f$.

On the other hand, suppose there exist a polarized isogeny $f : (\mathfrak{A}_{g,[\pi]s}, \lambda_s) \to (\mathfrak{A}_{g,[\pi]t}, \lambda_t)$ and $n' \in \mathbb{N}$ s.t. $f(s) = n't$. Let B_s (resp. B_t) be a symplectic basis of $H_1(\mathfrak{A}_{g,[\pi]s}, \mathbb{Z})$ (resp. $H_1(\mathfrak{A}_{g,[\pi]t}, \mathbb{Z})$) and let h be the matrix expression of f in coordiante B_s w.r.t. B_t. Then $h \in \text{GSp}_{2g}(\mathbb{Q})^+$ and there exists $(\gamma_V, \gamma_G) \in \Gamma$ s.t.

$$(n'v_t, x_t) = (\gamma_V, \gamma_G)(hv, hx) = (\gamma_V + \gamma_Ghv, \gamma_Ghx).$$

Now $g' := \gamma_Gh/n' \in \text{GSp}_{2g}(\mathbb{Q})^+$ and $v_0 := \gamma_V/n' \in V_{2g}(\mathbb{Q})$ satisfy (4.4). □

Corollary 4.6. Let $s \in \mathfrak{A}_g$ and t be a point in the generalized Hecke orbit of s. Let $f_t : (\mathfrak{A}_{g,[\pi]t}, \lambda_t) \to (\mathfrak{A}_{g,[\pi]t}, \lambda_t)$ be a polarized isogeny of minimal degree. Then there exist \bullet a point $s_0 \in \mathfrak{A}_{g,[\pi]s}$;

\bullet $\varphi \in \text{End}((\mathfrak{A}_{g,[\pi]s}, \lambda_{[\pi]s}))$;

\bullet $n_0 \in \mathbb{N}$

s.t. $s = n_0s_0$ and

$$f_t(\varphi(s_0) + \text{torsion}) = t.$$

Proof. By Corollary 4.5, there exist a polarized isogeny $f : (\mathfrak{A}_{g,[\pi]s}, \lambda_s) \to (\mathfrak{A}_{g,[\pi]t}, \lambda_t)$ and $n', n' \in \mathbb{N}$ s.t. $m'f(s) = n't + \text{torsion}$. Now $f_t^{-1} \circ f \in \text{End}((\mathfrak{A}_{g,[\pi]s}, \lambda_{[\pi]s}) \otimes \mathbb{Q}$, i.e. there exist $\varphi' \in \text{End}((\mathfrak{A}_{g,[\pi]s}, \lambda_{[\pi]s}))$ and $n_0' \in \mathbb{N}$ s.t. $f_t^{-1} \circ f = \varphi' \otimes (1/n_0)$. So $n_0' \circ f = f_t \circ \varphi'$ and hence

$$m'f_t(\varphi'(s)) = m'n_0'f(s) = n_0'(n't + \text{torsion}) = n_0'n't + \text{torsion}. $$

Let $\varphi := m' \circ \varphi' \in \text{End} \left((\mathbb{A}_g, \lambda) \right)$ and $n_0 := n'_0 n' \in \mathbb{N}$, then

$$f_t(\varphi) = n_0 t + \text{torsion}.$$

Hence the conclusion follows. \qed

5. Diophantine estimate for the torsion case

5.1. Preliminary. In this subsection, we fix some definitions and notation for the proof of Theorem 1.5.

Let $a \in \mathcal{A}_g$. We use Σ instead of Σ_a to denote the set of all a-strongly special points of \mathbb{A}_g. Let $\text{univ}: \mathcal{X}_{2g,a}^+ \to \mathbb{A}_g$ be the uniformization map and let \mathcal{F} be the fundamental set in $\mathcal{X}_{2g,a}^+$ defined as in Theorem 2.1.(3). Let

$$\bar{Y} := \text{univ}^{-1}(Y) \cap \mathcal{F} \text{ and } \bar{\Sigma} := \text{univ}^{-1}(\Sigma) \cap \mathcal{F}.$$

The point $a \in \mathcal{A}_g$ corresponds to the polarized abelian variety $(A_a, \lambda_a) := (\mathbb{A}_g, \lambda_a)$. Let \mathcal{B} be a symplectic basis for $H_1(A_a, \mathbb{Z})$ w.r.t. the polarization λ_a. Let \bar{a} be the period matrix of A_a w.r.t. the chosen basis \mathcal{B}. In the rest of the paper, we shall sometimes identify $\bar{a} \in \mathbb{H}_g^+$ and $(0, \bar{a}) \in \{0\} \times \mathbb{H}_g^+ \subset V_{2g}(\mathbb{R}) \times \mathbb{H}_g^+ \simeq \mathcal{X}_{2g,a}^+$.

For any $t \in \Sigma$, there exists by definition of Σ_a a polarized isogeny $(A_a, \lambda_a) \to (\mathbb{A}_g, [z]_t, \lambda_{[z]_t})$. Besides, t is a torsion point of $A_{[z]_t} := \mathbb{A}_{g,[z]_t}$, whose order we denote by $N(t)$.

Definition 5.1. For any $t \in \Sigma$, define its complexity to be

$$\max \left(\text{minimum degree of polarized isogenies} (A_a, \lambda_a) \to (A_{[z]_t}, \lambda_{[z]_t}), N(t) \right).$$

Besides, define the complexity of any point of $\bar{\Sigma}$ to be the complexity of its image in Σ.

5.2. Application of Pila-Wilkie. The goal of this subsection is to prove the following proposition:

Proposition 5.2. Let Y, \bar{a} be as in the last subsection. Let $\varepsilon > 0$. There exists a constant $c = c(Y, \bar{a}, \varepsilon) > 0$ with the following property:

For every $n \geq 1$, there exist at most cn^c definable blocks $B_i \subset \bar{Y} \wedge B_i$ contains all points of complexity at most n in $\bar{Y} \cap \bar{\Sigma}$.

Lemma 5.3. There exist constants c', κ depending only on g and \bar{a} s.t.

For any $\bar{t} \in \bar{Y} \cap \bar{\Sigma}$ of complexity n, there exists a $(v, h) \in P_{2g}(\mathbb{Q})^+$ s.t. $(v, h)\bar{a} = \bar{t}$ and $H((v, h)) \leq c'n^\kappa$.

Proof. Let $t = \text{univ}(\bar{t})$. By [17, Proposition 4.1], there exist

- a polarized isogeny $f: \mathbb{A}_{g, [z]_t} \to A_a$;
- a symplectic basis \mathcal{B}' for $H_1(\mathbb{A}_g, [z]_t, \mathbb{Z})$ w.r.t. the polarization $\lambda_{[z]_t}$

s.t. the rational representation h_1 of f w.r.t. the chosen bases satisfies that $H(h_1)$ is polynomially bounded by $\text{deg}(f)$.

But $\text{univ}_G(h'_1 \bar{a}) = [\pi]t$ by (4.3). Hence there exists a $h_2 \in \Gamma_G$ s.t. $h_2h'_1 \bar{a} = \pi(\bar{t}) \in \mathcal{F}_G$. By [21, Lemma 3.2], $H(h_2)$ is polynomially bounded by the norm of $h'_1 \cdot \bar{a}$.

Now define $h := h_2h'_1$. We have then $h\bar{a} = \pi(\bar{t})$ and

$$H(h) \leq c_0 \text{deg}(f)^\kappa.$$
where \(c_0 > 0 \) and \(\kappa_0 > 0 \) depend only on \(g \) and \(\tilde{a} \).

Next write \(\bar{t} = (\bar{t}_y, \pi(\bar{t})) \in \bar{F} \). Let \(v := \bar{t}_y \), then \(v \in V_{2g}(\mathbb{Q}) \) since \(t \) is a torsion point of \(\mathfrak{A}_{g,\lceil \pi \rceil t} \). Besides, the denominator of \(v \) is precisely the order of the torsion point \(t \). But by choice,
\[
\bar{F} \simeq [0, N]^2 \times F_G \subset V_{2g}(\mathbb{R}) \times \mathbb{H}_g^+ \simeq X_{2g,a}^+(\mathbb{Q})
\]
(see Theorem 2.1.(3)). Therefore up to a constant depending on nothing, \(H(v) \) is bounded by its denominator, i.e. the order of the torsion point \(t \) of \(\mathfrak{A}_{g,\lceil \pi \rceil t} \).

To sum it up, \((v, h)\) is the element of \(P_{2g}(\mathbb{Q})^+ \) which we desire. \(\square \)

Now we can prove Proposition 5.2 with the help of Lemma 5.3.

Proof of Proposition 5.2. Let
\[
\sigma : P_{2g}(\mathbb{R})^+ \to X_{2g,a}^+
\]
\[
(v, h) \mapsto (v, h)\tilde{a}
\]

The set \(R := \sigma^{-1}(\overline{Y}) = \sigma^{-1}(\text{univ}^{-1}(Y) \cap \bar{F}) \) is definable because \(\sigma \) is semi-algebraic and \(\text{univ} |_{\bar{F}} \) is definable. Hence we can apply the family version of the Pila-Wilkie theorem ([20, 3.6]) to the definable set \(R \): for every \(\varepsilon > 0 \), there are only finitely many definable block families \(B(\varepsilon) \subset R \times \mathbb{R}^m \) and a constant \(C_1(R, \varepsilon) \) s.t. for every \(T \geq 1 \), the rational points of \(R \) of height at most \(T \) are contained in the union of at most \(C_1 T^\varepsilon \) definable blocks \(B_i(T, \varepsilon) \), taken (as fibers) from the families \(B(\varepsilon) \). Since \(\sigma \) is semi-algebraic, the image under \(\sigma \) of a definable block in \(R \) is a finite union of definable blocks in \(\overline{Y} \). Furthermore the number of blocks in the image is uniformly bounded in each definable block family \(B(\varepsilon) \). Hence \(\sigma(B_i(T, \varepsilon)) \) is the union of at most \(C_2 T^\varepsilon \) blocks in \(\overline{Y} \), for some new constant \(C_2(Y, \tilde{a}, \varepsilon) > 0 \).

By Lemma 5.3, for any point \(\bar{t} \in \overline{Y} \cap \overline{\Sigma} \) of complexity \(n \), there exists a rational element \(\gamma \in R \) s.t. \(\sigma(\gamma) = \bar{t} \) and \(H(\gamma) \leq c'n^\varepsilon \). By the discussion in the last paragraph, all such \(\gamma \)'s are contained in the union of at most \(C_1 c'n^\varepsilon \) definable blocks. Therefore all points of \(\overline{Y} \cap \overline{\Sigma} \) of complexity \(n \) are contained in the union of at most \(C_1 C_2 c'n^\varepsilon \) blocks in \(\overline{Y} \). \(\square \)

5.3. Galois orbit. In this section we shall deal with the Galois orbit. We handle the case of \(\mathfrak{A}_g \)-points at first and then use the standard specialization argument to prove the result for general points of \(\Sigma \cap Y \).

Proposition 5.4. Suppose \(a \in A_g(\mathbb{Q}) \). For every \(\varepsilon > 0 \), there exist positive constants \(c_1' = c_1'(g, \varepsilon) \), \(c_2' = c_2'(g, A_a, k(a)) \) and \(c_3' = c_3'(g) \) satisfying the following property:

For any point \(t \in \Sigma \cap Y \cap \mathfrak{A}_g(\mathbb{Q}) \) of complexity \(n \),
\[
[k(t) : \mathbb{Q}] \geq c_1' \frac{n^{c_2'-\varepsilon}}{h_F(A_a)^{c_3'}}
\]

where \(k(t) \) is the definition field of \(t \).

Proof. Define (as Gaudron-Rémond [8])
\[
\kappa(\mathfrak{A}_{g,\lceil \pi \rceil t}) := ((14g)^{64g^2} k([\pi] t) : \mathbb{Q}) \max(h_F(\mathfrak{A}_{g,\lceil \pi \rceil t}), \log(k([\pi] t) : \mathbb{Q}), 1)^2)^{1024g^3}.
\]

Take a point \(t \in \Sigma \cap Y \cap \mathfrak{A}_{g,\lceil \pi \rceil t} \) of complexity \(n \). Denote by \(k([\pi] t) \) the definition field of \([\pi] t \). Denote by \(N(t) \) the order of \(t \) as a torsion point of \(A_{[\pi] t} := \mathfrak{A}_{g,\lceil \pi \rceil t} \). There are two cases.
Case i: n = minimum degree of polarized isogenies \((A_\varphi, \lambda_\varphi) \to (A_{[\pi]t}, \lambda_{[\pi]t})\). Then by [8, Théorème 1.4] and [16, Theorem 5.6],

\[n \leq \kappa(\mathfrak{A}_{g,[\pi]t}). \]

On the other hand, by a result of Faltings [3, Chapter II, §4, Lemma 5],

\[h_F(\mathfrak{A}_{g,[\pi]t}) \leq h_F(A_\varphi) + (1/2) \log n. \]

Now the conclusion for this case follows from the two inequalities above and the easy fact \([k(t) : \mathbb{Q}] \geq [k([\pi]t) : \mathbb{Q}]\).

Case ii: \(n = N(t)\). By [8, Théorème 1.2], there exist positive natural numbers \(l, \) simple abelian varieties \(A_1, \ldots, A_l\) over a finite extension \(k'\) of \(k([\pi]t)\) \((A_i \text{ and } A_j \text{ can be isogenous to each other over } \mathbb{Q}\) for \(i \neq j)\) and an isogeny

\[\varphi : \mathfrak{A}_{g,[\pi]t} \to \prod_{i=1}^{l} A_i \]

s.t. \(\varphi\) is defined over \(k'\), \(\deg \varphi \leq \kappa(\mathfrak{A}_{g,[\pi]t})\) and \([k' : k([\pi]t)] \leq \kappa(\mathfrak{A}_{g,[\pi]t})^g\). Call \(p_i : A \to A_i\) the composite of \(\varphi\) and the \(i\)-th projection \(\prod_{i=1}^{l} A_i \to A_i\) \((\forall i = 1, \ldots, l)\).

Now \(t \in A\) is a torsion point of order \(\mathfrak{A}_{g,[\pi]t}\). Without any loss of generality we may assume

\[N(p_1(t)) \geq N(p_i(t)) \]

where \(N(p_i(t))\) is the order of \(p_i(t)\) as a torsion point of \(A_i\).

Lemma 5.5.

\[N(t) \leq \kappa(\mathfrak{A}_{g,[\pi]t}) N(p_1(t))^g \text{ and } [k(t) : \mathbb{Q}] \geq [k(p_1(t)) : \mathbb{Q}]/\kappa(\mathfrak{A}_{g,[\pi]t})^{2g}. \]

where \(k(p_1(t))\) is the definition field of \(p_1(t)\).

Proof. Denote by \(N(\varphi(t))\) the order of \(\varphi(t)\) as a torsion point of \(\prod_{i=1}^{l} A_i\). It is clear that

\[N(\varphi(t)) \geq N(t)/\deg \varphi \geq N(t)/\kappa(\mathfrak{A}_{g,[\pi]t}). \]

On the other hand, \(N(\varphi(t)) = \text{lcd}(N(p_1(t)), \ldots, N(p_l(t))) \leq N(p_1(t))^g\). Now the first inequality follows.

For the second inequality, first of all since \(\varphi\) and \(\prod_{i=1}^{l} A_i\) are both defined over \(k'\), we have

\[[k(\varphi(t)) : \mathbb{Q}] \leq [k(t)k' : \mathbb{Q}] = [k(t) : \mathbb{Q}][k(t)' : k(t)] \leq [k(t) : \mathbb{Q}][k' : k] \leq [k(t) : \mathbb{Q}]\kappa(\mathfrak{A}_{g,[\pi]t})^g. \]

Next since all abelian varieties \(A_1, \ldots, A_l\) are defined over \(k'\), we have then

\[[k(\varphi(t))k' : \mathbb{Q}] \geq [k(p_1(t)) : \mathbb{Q}]. \]

But

\[[k(\varphi(t))k' : \mathbb{Q}] = [k(\varphi(t))k' : k'][k' : k][k : \mathbb{Q}] \leq [k(\varphi(t)) : k][k' : k][k : \mathbb{Q}] = [k(\varphi(t)) : \mathbb{Q}][k' : k] \leq [k(\varphi(t)) : \mathbb{Q}]\kappa(\mathfrak{A}_{g,[\pi]t})^g. \]

Now the second inequality follows from the three inequalities above. \(\square\)
By [4, Corollaire 1.5],
\begin{equation}
(k(p_1(t)) : \mathbb{Q}) \geq c_0(g) \frac{N(p_1(t))^{1/(2g)}}{\log N(p_1(t))(h_F(A_1) + \log N(p_1(t)))}.
\end{equation}

By the comment below [8, Corollaire 1.5], we may assume
\begin{equation}
h_F(A_1) \leq h_F(\mathfrak{A}_{g,[\pi],t}) + \frac{1}{2} \log \kappa(\mathfrak{A}_{g,[\pi],t}).
\end{equation}

By assumption of this case, there exists an isogeny $A_a \to \mathfrak{A}_{g,[\pi],t}$ of degree $\leq n$. So by Faltings [3, Chapter II, §4, Lemma 5],
\begin{equation}
h_F(\mathfrak{A}_{g,[\pi],t}) \leq h_F(A_a) + (1/2) \log n.
\end{equation}

Now because $[k(t) : \mathbb{Q}] \geq [k([\pi]: \mathbb{Q}]$, the conclusion of Case ii now follows from Lemma 5.5, (5.2), (5.3) and (5.4). \qed

Corollary 5.6. Suppose a is defined over a finitely generated field k. For any $\varepsilon > 0$, there exist positive constants $c_1 = c_1(g, A_a, k, \varepsilon)$ and $c_2 = c_2(g, A_a, k)$ satisfying the following property:

For any point $t \in \Sigma \cap Y$ of complexity n defined over a finitely extension $k(t)$ of k,
\begin{equation}
[k(t) : k] \geq c_1 n^{c_2 - \varepsilon}.
\end{equation}

Proof. This follows from Proposition 5.4 and a specialization argument. The case where $n = \min$ degree of polarized isogenies $(A_a, \lambda_a) \to (A_{[\pi],t}, \lambda_{[\pi],t})$ is proved by Orr [17, Theorem 5.1] (possibly combined with [16, Theorem 5.6]). The case where $n = N(t)$, the order of t as a torsion point of $\mathfrak{A}_{g,[\pi],t}$, follows from the standard specialization argument introduced by Raynaud (see [17, Section 5] and [25, Section 7]). \qed

6. END OF THE PROOF FOR THE TORSION CASE

In this section, Y is always an irreducible subvariety of \mathfrak{A}_g, $a \in A_g$ and Σ is the set of all a-strongly special points of \mathfrak{A}_g.

Theorem 6.1. If $\overline{Y \cap \Sigma^{\text{Zar}}} = Y$, then the union of all positive-dimensional weakly special sub-varieties contained in Y is Zariski dense in \overline{Y}.

Proof. Let Σ_1 be the set of points $t \in Y \cap \Sigma$ s.t. there is a positive-dimensional block $B \subset \overline{Y}$ with $t \in \text{univ}(B)$. Let Y_1 be the Zariski closure of Σ_1. Let k be the finitely generated field $k(a)$. Enlarge k if necessary s.t. both Y and Y_1 are defined over k.

Let t be a point in $Y \cap \Sigma$ of complexity n. By Corollary 5.6, there exist positive constants c_1 and c_2 depending only on g, A_a and k s.t.
\begin{equation}
[k(t) : k] \geq c_1 n^{c_2/2}.
\end{equation}

But all $\text{Gal}(\overline{k}/k)$-conjugates of t are contained in $Y \cap \Sigma$ and have complexity n. By Proposition 5.2, the preimages in \mathcal{F} of these points are contained in the union of $c(Y, a, c_2/4)n^{c_2/4}$ definable blocks, each of these blocks being contained in \overline{Y}.

For n large enough, $c_1 n^{c_2/2} > cn^{c_2/4}$. Hence for $n \gg 0$, there exists a definable block $B \subset \overline{Y}$ s.t. $\text{univ}(B)$ contains at least two Galois conjugates of t, and therefore $\dim B > 0$ since blocks are connected. So being in $\text{univ}(B)$, those conjugates of t are in Σ_1. But Y_1 is defined over k, so $t \in Y_1$. \qed
In summary, all points of $Y \cap \Sigma$ of large enough complexity are in Σ_1. This excludes only finitely many points of $Y \cap \Sigma$. So $Y_1 = Y$.

Let Σ_2 be the set of points $t \in Y \cap \Sigma$ s.t. there is a positive-dimensional semi-algebraic set $B' \subset \tilde{Y}$ with $t \in \text{univ}(B')$. Let Y_2 be the Zariski closure of Σ_2. By definition of blocks, $\Sigma_2 = \Sigma_1$, and hence $Y_2 = Y_1 = Y$.

But for any semi-algebraic set $B' \subset \tilde{Y}$, the Ax-Lindemann theorem (in the form of Theorem 3.7) implies that

$$\text{univ}(B')^{\text{Zar}}$$

is weakly special. Now the conclusion follows. □

Proof of Theorem 1.5. Let S be the smallest connected mixed Shimura subvariety containing Y. Assume S is associated with the connected mixed Shimura datum (P, X^+). Let $(G, X^+_G) := (P, X^+)/R_u(P)$. By Theorem 6.1 and [6, Theorem 12.2], such a non-trivial group N exists: N is the maximal normal subgroup of P s.t. the followings hold:

- there exists a diagram of Shimura morphisms

$$
\begin{array}{cccc}
(P, X^+) & \xrightarrow{\rho} & (P', X'^{+}) & := (P, X^+/N) \\
\text{univ} & \downarrow & \text{univ}' & \downarrow \\
S & \xrightarrow{[\rho]} & S' & \xrightarrow{[\pi']} \text{univ}'(G') \\
\end{array}
$$

(then S' is by definition a connected Shimura variety of Kuga type)

- the union of positive-dimensional weakly special subvarieties which are contained in $Y' := [\rho](Y)$ is not Zariski dense in Y';

- $Y = [\rho]^{-1}(Y')$.

(1) We prove the theorem by induction on g. When $g = 1$, the only non-trivial case is when Y is a curve. But then Y must be weakly special by Theorem 6.1 (Or more simply, one can use Theorem 3.6 to avoiding using the Ax-Lindemann theorem). Remark that this case has also been proved by André [1, Lecture 4] when he proposed the mixed André-Oort conjecture.

When $\dim([\pi](Y)) = 0$, this is the Manin-Mumford conjecture by Corollary 4.6. Hence we only have to deal with the case $\dim([\pi](Y)) = 1$. Remark that in this case $[\pi](Y)$ is weakly special by the main result of [17], and hence equals $\text{univ}_G(G''(\mathbb{R}) + \widetilde{y})$ for some $G'' < \text{GSp}_{2g}$ of positive dimension and $\widetilde{y} \in \mathbb{H}^+_g$. Now there are two cases:

If $\dim([\pi'](Y')) = 0$, then $[\pi'](Y')$ is a point. In this case Y' is a subvariety of an abelian variety. The hypothesis $Y \cap \Sigma = Y$ implies that Y' contains a Zariski dense subset of torsion points. Therefore by the result of the Manin-Mumford conjecture, Y' is a special subvariety, i.e. the translate of an abelian subvariety by a torsion point.

But the union of positive-dimensional weakly special subvarieties which are contained in $Y' := [\rho](Y)$ is not Zariski dense, so Y' is a point. Therefore Y is weakly special by definition.
If \(\dim([\pi](Y')) = 1 \), then \(N/R_u(N) \) is trivial because the dimension of \([\pi](Y) = univ_G(G'(\mathbb{R})^+\tilde{y})) \) is 1. Therefore \(V_N := R_u(N) < V_{2g} \) is non-trivial since \(N \) is non-trivial.

Denote for simplicity by \(B := [\pi](Y') = univ_G(G''(\mathbb{R})^+\rho(\tilde{y})) \) and \(X := [\pi]'^{-1}(B) \). Then \(X \to B \) is a family of abelian varieties of dimension \(g' \). We have \(g' < g \) since \(V_N \) is non-trivial. Besides, \(X \to B \) is non-isotrivial because otherwise \(G'' \) acts trivially on \(V_{2g}/V_N \), and therefore \(G'' \subset P' \). This contradicts the maximality of \(N \). Hence there exists, up to taking finite covers of \(X \to B \), a cartesian diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i} & \mathfrak{A}_{g'} \\
\downarrow & & \downarrow \\
B & \xrightarrow{i_B} & \mathfrak{A}_{g}
\end{array}
\]

s.t. both \(i \) and \(i_B \) are finite. Apply induction hypothesis to \(i(Y') \subset \mathfrak{A}_{g'} \), we get that \(i(Y') \) is weakly special. By the geometric interpretation of weakly special subvarieties (Proposition 1.1), \(i^{-1}(i(Y')) \) is irreducible. Therefore \(Y' = i^{-1}(i(Y')) \) since they are of the same dimension. So \(Y' \) is a weakly special subvariety of \(S' \) (again by Proposition 1.1). But then \(Y' \) must be a point by definition of \(Y' \). Hence \(Y \) is weakly special by definition.

(2) This part of the theorem is the intersection of the André-Oort conjecture and Conjecture 1.2. The proof, which requires more background knowledge about mixed Shimura varieties, is similar to [6, Theorem 13.6], except that the lower bound used in that article is replaced by a result similar to (but weaken than) Corollary 5.6. More explicitly:

Since \(a \in \mathfrak{A}_g \) is a special point, every \(a \)-strongly special point is a special point of \(\mathfrak{A}_g \). Therefore \(Y' \) contains a Zariski dense subset of special points. Besides, \(Y \) is \(a \)-special iff \(Y \) is a special subvariety of \(\mathfrak{A}_g \) by Proposition 1.1.

Suppose that \(Y \) is not \(a \)-special. Then \(Y' \) is not a special subvariety of \(S' \). On the other hand, \(Y' \) is defined over a number field since every point in \(\Sigma'_a \) is.

Define \(V_N := R_u(N) < V_{2g} \) and \(G_N := N/V_N \triangleleft G < GSp_{2g} \). The reductive group \(G \) decomposes as an almost direct product \(Z(G)H_1...H_r \) with all \(H_i \)'s simple. Without any loss of generality, we may assume that \(H_1,...,H_t \) are the simple factors of \(G \) which appear in the decomposition of \(G_N \). Define \(G_N^t := H_{t+1}...H_r \). Define \(T := MT(a) \), then \(T \) is a torus since \(a \) is a special point of \(\mathfrak{A}_g \).

Let \(G_1 := G_N^t \). This is a subgroup of \(G \) (and therefore a subgroup of \(GSp_{2g} \)). Moreover, it defines a connected Shimura subdatum \((G_1,X_{G_1}^+)\) of \((GSp_{2g},\mathbb{H}^+)\) and hence its associated connected Shimura subvariety \(S_{G_1} \) of \(\mathfrak{A}_g \) s.t. \(a \in S_{G_1} \). Recall that \((P',X^{t+}) = (P,X^+)/N \) and \((G',X_{G'}^{t+}) = (G,X_{G}^{t+})/G_N \). Therefore the natural Shimura morphisms

\[
(G_1,X_{G_1}^+) \hookrightarrow (G,X_{G}^+) \twoheadrightarrow (G',X_{G'}^{t+})
\]

identify \(X_{G_1}^+ \) and \(X_{G'}^{t+} \).

Recall that \(P = V \times G \) gives rises to a connected mixed Shimura datum \((P,X^+)\). So \(V := R_u(P) \) is a \(G_1 \)-module s.t. the action of \(G_1 \) on \(V \) induces a Hodge-structure of type \{\((-1,0),(0,-1)\}\) on \(V \). Therefore by [22, 2.17], there exists a connected mixed Shimura datum \((P_1,X_1^+)\) s.t. \(P_1 = V \times G_1 \) and \((G_1,X_{G_1}) = (P_1,X_1^+)/V \). \((P_1,X_1^+)\) is a connected mixed Shimura subdatum of \((P,X^+)\). Since \(N \subset P \), we have \(V_N \subset P_1 \). Now
we have the following diagram of Shimura morphisms:

\[
\begin{array}{cccc}
(P_2, \mathcal{X}_2^+) & := & (P_1, \mathcal{X}_1^+)/V_N & \xrightarrow{\rho'} (P_1, \mathcal{X}_1^+) \\
& & \xrightarrow{j} (P, \mathcal{X}^+) & \xrightarrow{\rho} (P', \mathcal{X}^{t+}) \\
S_2 & \xleftarrow{\text{univ}_2} & S_1 & \xrightarrow{[\rho]} [S] & \xrightarrow{[\rho]} S & \xrightarrow{\text{univ}'} S'.
\end{array}
\]

Then the morphism \(\rho \circ j \circ \rho'^{-1}: \mathcal{X}_1^+ \to \mathcal{X}^{t+} \) is by definition well-defined. Moreover by the discussion of the last paragraph, \(\mathcal{X}_1^+ \) and \(\mathcal{X}^{t+} \) are identified under \(\rho \circ j \circ \rho'^{-1} \). Hence \(Y' \) is a special subvariety of \(S' \) iff \(Y_2 := ([\rho] \circ [j] \circ [\rho']^{-1})(Y') \) is a special subvariety of \(S_2 \). The union of positive-dimensional weakly special subvarieties of \(S \) is polynomially bounded from above by the minimum degree of the isogenies \(\rho \circ j \circ \rho'^{-1} \).

For any torsion point \(t \) over \(a' \) s.t. \(A_{a'} \) is isogenous to \(A_a \), take a representative \(\tilde{t} \in \text{univ}_2^{-1}(t) \) in the fundamental set \(\mathcal{F} \) as in \([6, \text{Section } 10.1]\) (this fundamental set is similar to the one defined in Theorem 2.1.(3)). Denote by \(V_2 := \mathcal{R}_u(P_2) \), which is a \(\mathbb{Q} \)-vector group. Then \(\tilde{t} = (\tilde{K}_V, \tilde{K}_G) \in V_2(\mathbb{Q}) \times (\mathbb{H}_g^+ \cap M_{2g}(\mathbb{Q})) \) and hence we can define its height. By choice of \(\mathcal{F} \), \(H(\tilde{K}_V) \) is bounded by \(N(t) \), the order of \(t \) as a torsion point of \(A_{a'} \). But up to constants depending only on \(a \) (or more explicitly, only on \(H(\tilde{a}) \)), \(H(\tilde{K}_G) \) is polynomially bounded from above by the minimum degree of the isogenies \(A_{a'} \to A_a \). This follows from \([17, \text{Proposition } 4.1, \text{Section } 4.2]\). But the minimum degree of the isogenies \(A_{a'} \to A_a \) is polynomially bounded from above by the Galois orbit of \(a' \). This follows from \([17, \text{Theorem } 5.1]\). Hence by \([6, \text{Proposition } 13.3]\),

\[
|\text{Gal}(\overline{\mathbb{Q}}/k)t| \geq_{g, \tilde{a}} H(\tilde{t})^\mu(g, \tilde{a})
\]

for some \(\mu(g, \tilde{a}) > 0 \). Hence for \(H(\tilde{t}) \gg 0 \), Pila-Wilkie \([20, 3.2]\) implies that \(\exists \sigma \in \text{Gal}(\overline{\mathbb{Q}}/k) \) s.t. \(\sigma(t) \) is contained in a semi-algebraic subset of \(\text{univ}_2^{-1}(Y_2) \cap \mathcal{F} \) of positive dimension. Now the Ax-Lindemann theorem (Theorem 3.7) implies that \(\sigma(t) \) is then contained in some weakly special subvariety \(Z \) of \(S_2 \) s.t. \(\dim Z > 0 \). Hence \(\sigma^{-1}(Z) \) is weakly special containing a special point \(t \), and therefore \(\sigma^{-1}(Z) \) is special of positive
dimension. To sum it up, the heights of the elements of
\[\{ \tilde{t} \in \text{univ}_2^{-1}(Y_2) \cap \mathcal{F} \text{ special and } \text{univ}_2(\tilde{t}) \text{ is not contained in} \] a positive-dimensional special subvariety of \(S_2 \}\]
is uniformly bounded from above. Therefore this set is finite by Northcott’s theorem.

\[\square \]

7. Proof of the non-torsion case

We prove Theorem 1.6 in this section. Let \(Y \) be a curve over \(\overline{\mathbb{Q}} \) in \(\mathfrak{A}_g \), let \(s \in \mathfrak{A}_g(\overline{\mathbb{Q}}) \) and let \(\Sigma \) be the generalized Hecke orbit of \(s \). Then \(\Sigma \subset \mathfrak{A}_g(\overline{\mathbb{Q}}) \). For simplicity, we will denote by \((A, \lambda) := (\mathfrak{A}_{g,[\pi]s}, \lambda_{[\pi]s})\) the polarized abelian variety attached to \([\pi](s)\) in this section. Assume that \(s \) is not a torsion point of \(A \). Through all this section, we assume that \(Y \) is not contained in a fiber of \([\pi] : \mathfrak{A}_g \to \mathfrak{A}_g \) (otherwise this is a special case of the Mordell-Lang conjecture, which is proved by a series of work of Vojta, Faltings and Hindry).

We fix some notation here. Let \(\mathcal{B} \) be a symplectic basis of \(H_1(A, \mathbb{Z}) \) w.r.t. the polarization \(\lambda \). Let \(\tilde{s}_G \in H_g^+ \) be the period matrix of \((A, \lambda)\) w.r.t. the basis \(\mathcal{B} \), then \(\text{univ}_G(\tilde{s}_G) = [\pi]s \). Now let \(\tilde{s} = (\tilde{s}_V, \tilde{s}_G) \in V_{2g}(\mathbb{R}) \times H_g^+ \cong \mathcal{X}_{2g,a}^{+} \) be a point in \(\pi^{-1}(\tilde{s}_G) \cap \text{univ}^{-1}(s) \). In the whole section, we will fix \(\mathcal{B} \) to be the \(\mathbb{Q} \)-basis of \(V_{2g} \) as in §4.1.

Denote by \(k \) the definition field of \(s \). Then \(A \) is defined over the number field \(k \).

7.1. Complexity of points in a generalized Hecke orbit. Let \(\text{univ} : \mathcal{X}_{2g,a}^{+} \to \mathfrak{A}_g \) be the uniformization map and let \(\mathcal{F} \) be the fundamental set in \(\mathcal{X}_{2g,a}^{+} \) defined in Theorem 2.1.(3). Let\[\tilde{Y} := \text{univ}^{-1}(Y) \cap \mathcal{F} \quad \text{and} \quad \tilde{\Sigma} := \text{univ}^{-1}(\Sigma) \cap \mathcal{F} \]

Let \(t \in \Sigma \). Let \(f_t \) be as in Corollary 4.6 (i.e. a polarized isogeny \((A, \lambda) \to (\mathfrak{A}_{g,[\pi]t}, \lambda_{[\pi]t})\) of minimum degree). Define\[n_t := \min \{ n \in \mathbb{N} | \exists \varphi \in \text{End}(A, \lambda) \text{ s.t. } nt \in f_t(\varphi(s) + A(\mathbb{Q}_{\text{tor}})) \} .\]
The existence of such an \(n_t \) is guaranteed by Corollary 4.6. Furthermore, let \(s_t := \text{univ}((\tilde{s}_V/n_t, \tilde{s}_G)) \in \mathfrak{A}_{g,[\pi]t} = A \). Then there exist by definition of \(n_t \)
\begin{itemize}
 \item \(\varphi_t \in \text{End}(A, \lambda) \);
 \item \(\delta_t \) a torsion point of \(A \)
\end{itemize}
s.t.
\begin{equation}
(7.1) \quad f_t(\varphi_t(s_t) + \delta_t) = t.
\end{equation}
The notation \(n_t, f_t, \varphi_t, s_t \) and \(\delta_t \) will be used through all this section.

Definition 7.1. Define the **complexity** of \(t \in \Sigma \) to be\[\max(n_t, N(\delta_t)) \]
where \(N(\delta_t) \) is the order of \(\delta_t \). Besides, define the complexity of any point of \(\tilde{\Sigma} \) to be the complexity of its image in \(\Sigma \).

The fact that this complexity is a “good enough” parameter will be proved in §7.3.
7.2. Galois orbit. In contrast to the torsion case, we deal with the Galois orbit at first for the non-torsion case. Keep the notation of the beginning of this section and §7.1.

Proposition 7.2. Let \(t \in \Sigma \) be of complexity \(n \), then

\[
[k(t) : \mathbb{Q}] \geq c_3 n^{c_4}
\]

where \(c_3 = c_3(A, \lambda, s) \) and \(c_4 = c_4(A, \lambda, s) \) are two positive constants.

Proof. By [8, Théorème 1.2] and [16, Theorem 5.6], there exist positive constants \(c_5 = c_5(A, \lambda) \) and \(c_6 = c_6(A, \lambda) \) s.t.

\[
(7.2) \quad \text{deg}(f_t) \leq c_5 [k(t) : \mathbb{Q}]^{c_6}
\]

The abelian variety \(A \) is defined over \(k \). By the main result of [13], there exist two positive constants \(c_9 \) and \(c_{10} \) depending only on \(A \) and \(k \) s.t. for any torsion point \(q \in A \) of order \(N(q) \), we have

\[
(7.3) \quad [k(q) : \mathbb{Q}] \geq c_9 N(q)^{c_{10}}.
\]

Case i. \(N(\delta_t)^{c_{10}/2} \geq n_t^{2g^2+4g+1} \). By [10, Proposition 1] or [14, Theorem 2.1.2], there exists a positive constant \(c_{11} = c_{11}(A, s, k) \) s.t.

\[
\text{Gal}(k(\varphi_t(s), A[n_t]) / k(A[n_t])) \leq c_{11} n_t^{2g}.
\]

Hence

\[
(7.4) \quad [k(\varphi_t(s)) : \mathbb{Q}] \leq c_{11}' n_t^{2g^2+4g+1}
\]

for another positive constant \(c_{11}' \) depending only on \(A, s \) and \(k \). Now by (7.4), (7.3) and the assumption for this case,

\[
(7.5) \quad [k(\varphi_t(s), \delta_t) : k(\varphi_t(s))] \geq c_{12} \frac{N(\delta_t)^{c_{10}}}{n_t^{2g^2+4g+1}} \geq c_{12} N(\delta_t)^{c_{10}/2}
\]

for a positive constant \(c_{12} = c_{12}(A, s, k) \).

Since \(A \) is defined over the number field \(k \), every element of \(\text{Gal}(\overline{\mathbb{Q}}/k) \) induces a homomorphism \(A(\overline{\mathbb{Q}}) \to A(\overline{\mathbb{Q}}) \), and hence a homomorphism \(A \to A \). It is not hard to prove the following claim:

Claim. For any \(\sigma_1, \sigma_2 \in \text{Gal}(\overline{\mathbb{Q}}/k(\varphi_t(s))), \sigma_1(\varphi_t(s) + \delta_t) = \sigma_2(\varphi_t(s) + \delta_t) \) iff \(\sigma_2^{-1} \sigma_1 \in \text{Gal}(\overline{\mathbb{Q}}/k(\varphi_t(s), \delta_t)) \).

This claim implies \([k(\varphi_t(s) + \delta_t) : \mathbb{Q}] \geq [k(\varphi_t(s), \delta_t) : k(\varphi_t(s))]. \) Hence by (7.5),

\[
[k(\varphi_t(s), \delta_t) : \mathbb{Q}] \geq c_{12} N(\delta_t)^{c_{10}/2}.
\]

Since \(t = f_t(\varphi_t(s) + \delta_t) \), we have therefore

\[
(7.6) \quad [k(t) : \mathbb{Q}] \geq c_{12} \frac{N(\delta_t)^{c_{10}/2}}{\text{deg}(f_t)}.
\]

Now the conclusion for this case follows from (7.2), (7.6) and the definition of complexity (recall that \(k \) is the definition field of \(s \), and therefore depends only on \(s \)).

Case ii. \(N(\delta_t)^{c_{10}/2} \leq n_t^{2g^2+4g+1} \). Roughly speaking, this case follows from the Kummer theory [10, Appendix 2]. Here are the details of the proof:
Let $\Delta := \text{End}((A, \lambda))s$ and let $\overline{\Delta} := \text{End}(A)s \subset A$. Then $\overline{\Delta}$ is a finitely generated subgroup of A. Let k' be the smallest number field over which all points of $\overline{\Delta}$ are defined, then k' depends only on A and s. Then by the Mordell-Weil theorem, $A(k')$ is a finitely generated subgroup of A. By definition of k', $\overline{\Delta} \subset A(k')$. Let $\Delta' := \mathbb{Q}\Delta \cap A(k')$ and let $\overline{\Delta'} := \mathbb{Q}\overline{\Delta} \cap A(k')$. Then $\overline{\Delta'}$ is again a finitely generated subgroup of A which contains $\overline{\Delta}$ and $\overline{\Delta} \cap \Delta' = \Delta$. Moreover $\text{rank } \overline{\Delta'} = \text{rank } \overline{\Delta}$. Therefore $[\overline{\Delta'} : \overline{\Delta}]$ is finite. Denote by $c_{13} := [\overline{\Delta'} : \overline{\Delta}]$. Then c_{13} depends only on A and s and $[\Delta' : \Delta] \leq c_{13}$.

For each $t \in \Sigma$, define another number $n_t := \min\{n \in \mathbb{N} \mid nt \in f_t(A(k') + A(\overline{\mathbb{Q}})_{\text{tor}})\}$. Let $s' \in A(k')$ be s.t. $n_t s' = f_t(s' + A(\overline{\mathbb{Q}})_{\text{tor}})$. Then because $t = f_t(\varphi_t(s_t) + \delta_t)$, we have

$$s^\dagger := s' - n_t \varphi_t(s_t) \in A(\overline{\mathbb{Q}})_{\text{tor}}.$$

But $n_t \varphi_t(s_t) + s^\dagger \in \Delta'$, so

$$n_t = \min\{n \in \mathbb{N} \mid nt \in f_t(\Delta' + A(\overline{\mathbb{Q}})_{\text{tor}})\}. \quad (7.7)$$

However by definition,

$$n_t = \min\{n \in \mathbb{N} \mid nt \in f_t(\Delta + A(\overline{\mathbb{Q}})_{\text{tor}})\}. \quad (7.8)$$

Compare (7.7) and (7.8), we get

$$n_t/n_t' \leq [\Delta' : \Delta] \leq c_{13}. \quad (7.9)$$

By [10, Lemma 14] or [14, Corollary 2.1.5], there exists a positive constant $c_{14} = c_{14}(A, k')$ s.t.

$$\text{Gal} \left(k'(\varphi_t(s_t), A[n_t N(\delta_t)]) / k'(A[n_t N(\delta_t)]) \right) \geq c_{14} n_t'. \quad (7.10)$$

Hence

$$[k(t) : \mathbb{Q}] \geq \frac{[k'(\varphi_t(s_t) + \delta_t) : \mathbb{Q}]}{(\text{deg}(f_t)[k' : k])} \geq \frac{c_{14} n_t'}{(\text{deg}(f_t)[k' : k])}. \quad (7.11)$$

Now the conclusion follows from (7.2), (7.9) and (7.10) (remark that $[k' : k]$ is a constant depending only on A and s).

7.3. Néron-Tate height in family. Next we prove that the complexity defined in Definition 7.1 is a good parameter. More explicitly we dispose of the following proposition:

Proposition 7.3. Let Y be as in the beginning of this section. Let $t \in Y(\overline{\mathbb{Q}}) \cap \Sigma$. Let f_t, n_t, s_t, φ_t and δ_t be as in §7.1. Then

$$\text{deg}(\varphi_t) \leq c_7 n_t^{c_8} \quad \text{and} \quad \text{deg}(f_t) \leq c'_7 n_t^{c'_8}$$

for some positive constants $c_7 = c_7(g, Y, s)$, $c'_7 = c'_7(g, Y, s)$ and $c_8 = c_8(g, Y, s)$, $c'_8 = c'_8(g, Y, s)$.

We shall prove this proposition with help of a well-chosen family of Néron-Tate heights, i.e. the one related to the \mathbb{G}_m-torsor \mathcal{L}_g defined in Theorem 2.2. Then we shall use a theorem of Silverman-Tate [26, Theorem A].

By Theorem 2.2, $\mathcal{L}_g \to \mathbb{A}_g$ is a symmetric and relatively ample \mathbb{G}_m-torsor w.r.t. $\mathbb{A}_g \to \mathbb{A}_g$. Now consider the Néron-Tate height $\widehat{h}_{\mathcal{L}_g, b}$ on A_b for each $b \in \mathbb{A}_g(\overline{\mathbb{Q}})$. For any $s \in \mathbb{A}_g(\overline{\mathbb{Q}})$, we shall denote by

$$\widehat{h}_{\mathcal{L}_g}(s) := \widehat{h}_{\mathcal{L}_g, b}(s).$$
Lemma 7.4. Let s_1 and s_2 be two points of $\mathfrak{A}_g(\overline{\mathbb{Q}})$. Assume that there exists a polarized isogeny $f : (\mathfrak{A}_g, \pi, \mathfrak{L}_g) \to (\mathfrak{A}_g, \pi, \mathfrak{L}_g)$ s.t. $s_1 = f(s_2)$. Then $\hat{h}_{\mathfrak{L}_g}(s_2) = (\deg f)^{1/g} \hat{h}_{\mathfrak{L}_g}(s_1)$.

Proof. By the moduli interpretation of \mathfrak{L}_g (Theorem 2.2), $f^* \mathfrak{L}_g = \mathfrak{L}_g^{(\deg f)^{1/g}}$. So we have

\[
\hat{h}_{\mathfrak{L}_g}(s_2) = \hat{h}_{\mathfrak{L}_g}(f(s_1)) = (\deg f)^{1/g} \hat{h}_{\mathfrak{L}_g}(s_1) = (\deg f)^{1/g} \hat{h}_{\mathfrak{L}_g}(s_1).
\]

\[\blacksquare\]

Now we begin the proof of Proposition 7.3.

Proof of Proposition 7.3. Denote by $\varepsilon : \mathfrak{A}_g \to \mathfrak{A}_g$ the zero section.

Pink explained in [22, Chapter 8 and 9] that \mathfrak{L}_g extends to an ample \mathbb{G}_m-torsor $\hat{\mathfrak{L}}_g \to \overline{\mathfrak{A}_g}$ over $\overline{\mathfrak{A}_g} \to \mathfrak{A}_g$, where $\overline{\mathfrak{A}_g}$ (resp. $\hat{\mathfrak{A}_g}$) is a compactification of \mathfrak{A}_g (resp. \mathfrak{A}_g).\footnote{For experts of mixed Shimura varieties, we are in the situation of [22, 9.2] since we are considering (following Pink’s notation) $(P_{2g}, \mathcal{X}_g^+) \to (P_{2g,a}, \mathcal{X}_{2g,a}^+)$, so this follows from [22, 8.6, 9.13, 9.16].} So we can apply [26, Theorem A]: there exist constants $c_{15} = c_{15}(g) > 0$ and $c_{16} = c_{16}(g)$ s.t.

\[
|h_{\mathfrak{L}_g}(t) - h_{\mathfrak{A}_g, \varepsilon \mathfrak{L}_g}([\pi] t)| < c_{15} h_{\mathfrak{A}_g, \varepsilon \mathfrak{L}_g}([\pi] t) + c_{16}
\]

for any $t \in \mathfrak{A}_g(\overline{\mathbb{Q}})$.

We need the following lemma, which uses the fact that Y is a curve in an essential way:

Lemma 7.5. There exist two constants $c_{17} > 0$ and c_{18} depending only on Y s.t.

\[
h_{\mathfrak{A}_g, \varepsilon \mathfrak{L}_g}([\pi] t) \leq c_{17} h_{\mathfrak{A}_g, \varepsilon \mathfrak{L}_g}([\pi] t) + c_{18}
\]

Proof. The idea is due to Lin-Wang [11, Proof of Proposition 2.1]. The following notation will be used only in this proof: denote by $B = \pi$ and $X = [\pi]^{-1}(B)$. By abuse of notation, we will not distinguish $[\pi]$ and $[\pi]_X$. Remark that $X \to B$ is a non-isotrivial family of abelian varieties.

Let Y' be a smooth resolution of $Y \subset \mathfrak{A}_g$, then $X \times_B Y' \to Y'$ is also a non-isotrivial family of abelian varieties of dimension g and we write $\varepsilon_{Y'} : Y' \to X \times_B Y'$ to be the zero-section. Let $f : Y' \to \mathfrak{A}_g$ be the natural morphism. Consider the following commutative diagram

\[
\begin{array}{ccc}
X \times_B Y' & \xrightarrow{\varepsilon_{Y'}} & Y' \\
\downarrow p_2 & & \downarrow \\
X & \xrightarrow{[\pi] \circ f} & B
\end{array}
\]
Now let \(t' \in Y'_{\overline{\mathbb{Q}}} \) be s.t. \(f(t') = t \). Then up to bounded functions,
\[
\begin{align*}
 h_{g, \varepsilon}^{\pi} (t) &= h_{X, \varepsilon}^{\pi} (f(t')) \\
 &= h_{Y', f^* \varepsilon}^{\pi} (f(t')) \\
 &= h_{Y', f^* \varepsilon}^{\pi} |_{X} (t').
\end{align*}
\]

Since \(Y \) is a curve, the morphism \(\pi \circ f : Y' \to B \) is finite. Therefore \(p^* \varepsilon \varepsilon |_{X} \) is ample. Hence there exist two constants \(c_{17} > 0 \) and \(c_{18} \) depending only on \(Y' \) (and hence only on \(Y \)) s.t.
\[
 (7.12) \quad h_{Y', f^* \varepsilon}^{\pi} |_{X} (t') \leq c_{17} h_{Y', \varepsilon}^{\pi} p^* \varepsilon |_{X} (t') + c_{18}
\]
for any \(t' \in Y'_{\overline{\mathbb{Q}}} \). Now the conclusion follows. \(\square \)

Now for any \(t \in Y \cap \Sigma \cap A_{g} (\overline{\mathbb{Q}}) \), by (7.1) and Lemma 7.4,
\[
 (7.13) \quad \widehat{h}_{g}^{\pi} (t) = \frac{\deg (f_{t})^{1/g} \deg (\varphi_{t})^{1/g} \widehat{h}_{g} (s)}{n_{t}^{2}}.
\]

But for any \(t \in \Sigma \cap A_{g} (\overline{\mathbb{Q}}) \), we have the following result of Faltings [3, Chapter II, §4, Lemma 5]
\[
 (7.14) \quad |h_{F} (A_{[\overline{\mathbb{Q}}]}) - h_{F} (A)| \leq \frac{1}{2} \log \deg (f_{t}).
\]

Besides by [18, Corollary 1.3], there exists a positive constant \(c_{19} = c_{19}(g) \) s.t.
\[
 (7.15) \quad \left| \frac{1}{2} h_{F} (A_{[\overline{\mathbb{Q}}]}) - h_{A_{g}, \varepsilon}^{\pi} (\pi |_{t}) \right| \leq c_{19} \log \left(\max \left(1, h_{F} (A_{[\overline{\mathbb{Q}}]}) + 2 \right) \right)
\]
for any \(t \in A_{g} (\overline{\mathbb{Q}}) \).

Now (7.11), Lemma 7.5, (7.13), (7.14) and (7.15) together imply
\[
 \frac{\deg (\varphi_{t})^{1/g}}{n_{t}^{2}} \deg (f_{t})^{1/g} \widehat{h}_{g} (s) \leq (c_{15} + c_{17}) c_{19} \log \left(\max \left(1, h_{F} (A) + \frac{1}{2} \log \deg (f_{t}) \right) + 2 \right) + c_{15} + c_{17} \log \deg (f_{t}) + \frac{c_{15} + c_{17}}{2} h_{F} (A) + c_{16} + c_{18}.
\]

Since \(\deg (\varphi_{t}) \geq 1 \), we get that \(\deg (f_{t}) \) is polynomially bounded by \(n_{t} \).

On the other hand, letting \(\deg (f_{t}) \to \infty \), we can see that there exist two positive constants \(M_{0} \) and \(c_{20} \) depending on nothing s.t. \(\deg (\varphi_{t})^{1/g} \leq c_{20} n_{t}^{2} \) for any \(t \in Y (\overline{\mathbb{Q}}) \cap \Sigma \) with \(\deg (f_{t}) > M_{0} \). But for any \(M > 0 \), there are only finitely many \(t \in Y (\overline{\mathbb{Q}}) \cap \Sigma \) s.t. \(\deg (f_{t}) \leq M \). Hence \(\deg (\varphi_{t}) \) is polynomially bounded by \(n_{t} \). \(\square \)

7.4. **Application of Pila-Wilkie.** Keep the notation of the beginning of this section and \(\S 7.1 \).

Proposition 7.6. Let \(Y \) and \(\tilde{Y} \) be as in the beginning of this section. Let \(\varepsilon > 0 \). There exists a constant \(C = C (Y, s, \varepsilon) > 0 \) with the following property:

For every \(n \geq 1 \), there exist at most \(C n^{\varepsilon} \) definable blocks \(B_{i} \subset \tilde{Y} \) s.t. \(\cup B_{i} \) contains all point of complexity \(n \) of \(\tilde{Y} \cap \Sigma \).

Proof. The proof starts with the following lemma:
Lemma 7.7. There exist constants C' and κ' depending only on g and \overline{s} s.t.

For any $\tilde{t} \in \overline{\Sigma}$ of complexity n, there exists a $(v, h) \in P_{2g}(\mathbb{Q})^+$ s.t. $(v, h) \cdot \overline{s} = \tilde{t}$ and $H ((v, h)) \leq C' n^{\kappa'}$.

Proof. Let $t := \text{univ}(\tilde{t})$. Then $t \in \Sigma$ and therefore we dispose of a relation as (7.1). Let $f'_t := f_t \circ \varphi_t$, then $f'_t : (A, \lambda) \rightarrow (\mathfrak{A}_g, |v| \gamma, \lambda |v| \gamma)$ is a polarized isogeny. Moreover, there exists a $\delta'_t \in A(\mathbb{Q})_{\text{tor}}$ s.t. $N(\delta'_t) \leq N(\delta_t) \deg(\varphi_t)$ and

(7.16) $t = f'_t(s_t + \delta'_t)$.

Claim. There exists a symplectic basis \mathcal{B}' for $H_1(\mathfrak{A}_g, \mathbb{Z})$ w.r.t. the polarization $\lambda_{|v| \gamma}$ s.t. the height of $\gamma_{f'} \in \text{GSp}_{2g}(\mathbb{Q})^+$ (the matrix expression of f'_t in coordinate \mathcal{B} w.r.t. \mathcal{B}') is polynomially bounded by $\deg(f'_t) = \deg(\varphi_t) \deg(f_t)$ from above (see the beginning of this section for \mathcal{B}).

This claim follows from [17, Proposition 4.1]: remark that f'_t is a polarized isogeny instead of an arbitrary isogeny, hence the endomorphism $q \in \text{End}(A)$ in [17, 4.3] equals $[\deg \varphi_t]_g/\gamma$, and therefore the $u \in (\text{End } A)^\gamma$ in [17, 4.6] can be taken to be 1_A.

Then $\text{univ}_G(\gamma_{f'} \cdot \overline{s}_G) = [\pi]s$. Besides let $\overline{\delta}'_t = (\overline{\delta}'_t, \overline{s}_G) \in \mathcal{F}$ be s.t. $\text{univ}(\overline{\delta}'_t) = \delta'_t$. Then $\overline{\delta}'_t \in V_{2g}(\mathbb{Q})$ and, by (7.16) and (4.3),

$$\text{univ} \left(\gamma_{f'} \left(\frac{\overline{s}_V}{n_t} + \overline{\delta}'_t, \overline{s}_G \right) \right) = t.$$

So there exists an element $\gamma = (\gamma_V, \gamma_G) \in \Gamma$ s.t.

$$\gamma \gamma_{f'} \left(\frac{\overline{s}_V}{n_t} + \overline{\delta}'_t, \gamma_G \overline{s}_G \right) = \tilde{t},$$

i.e.

$$\tilde{t} = \left(\gamma_V + \gamma \gamma_{f'} \left(\frac{\overline{s}_V}{n_t} + \overline{\delta}'_t, \gamma_G \overline{s}_G \right) \right) = (\gamma_V + \gamma \gamma_{f'} \overline{\delta}'_t, \gamma_G \gamma_{f'} \frac{\overline{s}_G}{n_t}) \cdot \overline{s}.$$

Denote by

$$(v, h) := \left(\gamma_V + \gamma \gamma_{f'} \overline{\delta}'_t, \frac{\gamma_G \gamma_{f'} \overline{s}_G}{n_t} \right),$$

then (v, h) is an element of $P_{2g}(\mathbb{Q})^+$ s.t. $(v, h) \overline{s} = \tilde{t}$. Now we prove that $H ((v, h))$ is polynomially bounded by the complexity n of \tilde{t}. To prove this, it suffices to prove that $n_t, H(\overline{\delta}'_t), H(\gamma_{f'})$, $H(\gamma_G)$ and $H(\gamma_V)$ are all polynomially bounded by n.

The fact that n_t is bounded by n follows directly from the definition of complexity.

For $H(\overline{\delta}'_t)$: because $\overline{\delta}'_t \in \mathcal{F} \simeq [0, N]^{2g} \times \mathcal{F}_G$ (where N is the level structure, and hence depend on nothing), we have $\overline{\delta}'_t \in [0, N]^{2g}$. Therefore $H(\overline{\delta}'_t)$ is bounded up to a constant by the denominator of $\overline{\delta}'_t$, which equals $N(\delta'_t)$. But $N(\delta'_t) \leq \deg(\varphi_t) N(\delta_t)$, hence it suffices to bound both $\deg(\varphi_t)$ and $N(\delta_t)$ by n. Now $\deg(\varphi_t)$ is polynomially bounded by n_t, and hence by n, by Proposition 7.3. By definition of complexity, $N(\delta_t) \leq n$.

For $H(\gamma_{f'})$: by choice, $H(\gamma_{f'})$ is polynomially bounded by $\deg(f_t) \deg(\varphi_t)$, which is polynomially bounded by n_t by Proposition 7.3. Hence $H(\gamma_{f'})$ is polynomially bounded by n by definition of complexity.
For $H(\gamma_G)$: remark $\gamma_G \gamma_f \tilde{s}_G = \pi(\tilde{t}) \in \mathcal{F}_G$. By [21, Lemma 3.2], $H(\gamma_G)$ is polynomially bounded by $||\gamma_f \tilde{s}_G||$. Therefore $H(\gamma_G)$ is polynomially bounded, with constants depending on $||\tilde{s}_G||$, by n.

For $H(\gamma_V)$: remark $\gamma_V + \gamma_G \gamma_f \tilde{t}_V + \gamma_G \gamma_f \tilde{s}_V/n_t = \tilde{t}_V \in [0, N)^{2g}$ (where N is the level structure, and hence depend on nothing). Therefore $H(\gamma_V)$ is polynomially bounded by $||\gamma_G \gamma_f \tilde{t}_V + \gamma_G \gamma_f \tilde{s}_V/n_t||$. Therefore $H(\gamma_V)$ is polynomially bounded, with constants depending on $||\tilde{s}_V||$, by n. \hfill \Box

Let $\sigma: P_{2g}(\mathbb{R})^+ \rightarrow \mathcal{X}_{g,a}^+$ be the map $(v, h) \mapsto (v, h) \cdot \tilde{s}$.

The set $R = \sigma^{-1}(\tilde{Y}) = \sigma^{-1}(\text{univ}^{-1}(Y) \cap \mathcal{F})$ is definable because σ is semi-algebraic and $\text{univ}|_{\mathcal{F}}$ is definable. Hence we can apply the family version of the Pila-Wilkie theorem ([20, 3.6]) to the definable set R: for every $\varepsilon > 0$, there are only finitely many definable block families $B^{(j)}(\varepsilon) \subset R \times \mathbb{R}^m$ and a constant $C'_1(R, \varepsilon)$ s.t. for every $T \geq 1$, the rational points of R of height at most T are contained in the union of at most $C'_1(T, \varepsilon)$ definable blocks $B_t(T, \varepsilon)$, taken (as fibers) from the families $B^{(j)}(\varepsilon)$. Since σ is semi-algebraic, the image under σ of a definable block in R is a finite union of definable blocks in \tilde{Y}. Furthermore the number of blocks in the image is uniformly bounded in each definable block family $B^{(j)}(\varepsilon)$. Hence $\sigma(B_t(T, \varepsilon))$ is the union of at most C'_2T^{ε} blocks in \tilde{Y}, for some new constant $C'_2(Y, \tilde{a}, \varepsilon) > 0$.

By Lemma 7.7, for any point $\tilde{t} \in \tilde{Y} \cap \tilde{\Sigma}$ of complexity n, there exists a rational element $\gamma \in R$ s.t. $\sigma(\gamma) = \tilde{t}$ and $H(\gamma) \leq C' n^{\varepsilon}$. By the discussion in the last paragraph, all such γ's are contained in the union of at most $C'_1(C' n^{\varepsilon})^\varepsilon$ definable blocks. Therefore all points of $\tilde{Y} \cap \tilde{\Sigma}$ of complexity n are contained in the union of at most $C'_2 C'_1^\varepsilon n^{C'_1 C'_2 \varepsilon}$ blocks in \tilde{Y}. \hfill \Box

7.5. End of proof of Theorem 1.6. Now we are ready to finish the proof of Theorem 1.6.

Let Σ_1 be the set of points $t \in Y \cap \Sigma$ s.t. there is a positive-dimensional block $B \subset \tilde{Y}$ with $t \in \text{univ}(B)$. Let Y_1 be the Zariski closure of Σ_1. Let k be a number field s.t. both Y and Y_1 are defined over k.

Let t be a point in $Y \cap \Sigma$ of complexity n. By Proposition 7.2, there exist positive constants c_5 and c_6 depending only on (A, λ) and s s.t.

$$[k(t) : k] \geq \frac{c_5}{|k : \mathbb{Q}|} n^{c_6}. $$

But all $\text{Gal}(\bar{k}/k)$-conjugates of t are contained in $Y \cap \Sigma$ and have complexity n. By Proposition 7.6, the preimages in \mathcal{F} of these points are contained in the union of $C(Y, s, c_6/2) n^{c_6/2}$ definable blocks, each of these blocks being contained in \tilde{Y}.

For n large enough, $(c_5/|k : \mathbb{Q}|) n^{c_6} > C n^{c_6/2}$. Hence for $n \gg 0$, there exists a definable block $B \subset \tilde{Y}$ s.t. $\text{univ}(B)$ contains at least two Galois conjugates of t, and therefore $\dim B > 0$ since blocks are connected. So being in $\text{univ}(B)$, those conjugates of t are in Σ_1. But Y_1 is defined over k, so $t \in Y_1$.

In summary, all points of $Y \cap \Sigma$ of large enough complexity are in Σ_1. This excludes only finitely many points of $Y \cap \Sigma$. So $Y_1 = Y$.

Let Σ_2 be the set of points $t \in Y \cap \Sigma$ s.t. there is a connected positive-dimensional semi-algebraic set $B' \subset \tilde{Y}$ with $t \in \text{univ}(B')$. Let Y_2 be the Zariski closure of Σ_2. By definition of blocks, $\Sigma_2 = \Sigma_1$, and hence $Y_2 = Y_1 = Y$.

Let \(\tilde{Y}' \) be an analytically irreducible component of \(\text{univ}^{-1}(Y) \) and let \(\tilde{Z} \) be a maximal connected positive-dimensional semi-algebraic subset of \(\tilde{Y}' \). Such a \(\tilde{Z} \) exists since \(Y = Y_2 \). By [21, Lemma 4.1], \(\tilde{Z} \) is algebraic in the sense of Definition 3.5. But \(\dim \tilde{Y}' = \dim \tilde{Z} = 1 \), therefore \(\tilde{Y}' = \tilde{Z} \) is algebraic in the sense of Definition 3.5. In other words, \(Y \) is algebraic and an analytically irreducible component of \(\text{univ}^{-1}(Y) \) is also algebraic. Hence by Theorem 3.6, \(Y \) is weakly special.

8. Variants of the main conjecture

In the previous sections we have discussed the intersection of a subvariety of \(\mathfrak{A}_g \) with the set of division points of the polarized isogeny orbit of a given point (1.1). The goal of this section is twofold: one is to replace the given point by a finitely generated subgroup of one fiber of \(\mathfrak{A}_g \rightarrow \mathfrak{A}_g \) (remark that the fiber is an abelian variety), the other is to replace the polarized isogeny orbit by the isogeny orbit. In particular we will prove that although these changes to Conjecture 1.2 a priori seem to generalize the conjecture, both can actually be implied by Conjecture 1.2 itself.

In the rest of the section, fix a point \(b \in \mathfrak{A}_g \), which corresponds to a polarized abelian variety \((A, \lambda) := (\mathfrak{A}_{g,b}, \lambda_b) \). Let \(\Lambda \) be any finitely generated subgroup of \(A \).

Theorem 8.1. Let \(Y \) be an irreducible subvariety of \(\mathfrak{A}_g \). Let \(\Sigma_0 \) be the set of division points of the polarized isogeny orbit of \(\Lambda \), i.e.

\[
\Sigma_0 = \{ t \in \mathfrak{A}_g \mid \exists n \in \mathbb{N} \text{ and a polarized isogeny } f : (A, \lambda) \rightarrow (\mathfrak{A}_{g,[t]}, \lambda_{[t]}) \text{ s.t. } nt \in f(\Lambda) \}.
\]

Assume that Conjecture 1.2 holds for all \(g \). If \(Y \cap \Sigma_0^{\text{Zar}} = Y \), then \(Y \) is weakly special.

Proof. The proof is basically the same as Pink [23, Theorem 5.4] (how Conjecture 1.2 implies the Mordell-Lang conjecture).

Suppose \(\text{rank} \Lambda = r - 1 \). Let \(V_{2g}^r \) be the direct sum of \(r \) copies of \(V_{2g} \) as a representation of \(\text{GSp}_{2g} \). Then the connected mixed Shimura variety associated with \(V_{2g}^r \times \text{GSp}_{2g} \) is the \(r \)-fold fiber product of \(\mathfrak{A}_g \) over \(A_g \), and so its fiber over \(b \) is \(A^r \). Denote by

\[
\sigma : \mathfrak{A}_g \times \mathfrak{A}_g \times \cdots \times \mathfrak{A}_g \, \mathfrak{A}_g \rightarrow \mathfrak{A}_g
\]

the summation map (remark that both varieties are abelian schemes over \(A_g \)).

Now the homomorphisms

\[
P_{2g,a} = V_{2g} \rtimes \text{GSp}_{2g} \hookrightarrow V_{2g}^r \rtimes \text{GSp}_{2g} \hookrightarrow V_{2g} \rtimes \text{GSp}_{2g} \quad ((v, h)) \mapsto ((v, \ldots, v), (h, \ldots, h))
\]

induce Shimura immersions

\[
\mathfrak{A}_g \xrightarrow{[x]} \mathfrak{A}_g \times \mathfrak{A}_g \times \cdots \times \mathfrak{A}_g \xrightarrow{\sigma} \mathfrak{A}_{gr}
\]

For simplicity we shall not distinguish a point in \(\mathfrak{A}_g \) (resp. \(A_g \)) and its image in \(\mathfrak{A}_{gr} \) (resp. \(A_{gr} \)). Then \(\mathfrak{A}_{gr,b} = A^r \).
Fix generators a_1, \ldots, a_{r-1} of Λ and set $a_r := -a_1 - \ldots - a_{r-1}$. Let Λ' be the division group of Λ, i.e. $\Lambda' = \{s \in \mathbb{N} \text{ s.t. } ns \in \Lambda\} \subset A$. Then [23, Lemma 5.3] asserts that
\begin{equation}
\Lambda' = \Lambda^*_{a_1} + \ldots + \Lambda^*_{a_r} = \sigma(\Lambda^*_{a_1} \times \ldots \times \Lambda^*_{a_r})
\end{equation}
where (as Pink defined) $\Lambda^*_{a_i} := \{s \in A \mid \exists m, n \in \mathbb{Z} \setminus \{0\} \text{ s.t. } ns = ma_i\}$.

Now consider
$$\Lambda^+ := \sigma^{-1}(Y) \cap \{f^*(\Lambda^*_{a_1} \times \ldots \times \Lambda^*_{a_r}) \mid f: (A, \lambda) \to (\mathbb{A}_{g,b'}, \lambda_{b'}) \text{ a polarized isogeny}\}.$$
We have
\begin{align*}
\sigma(\Lambda^+) & = Y \cap \{f^*(\Lambda^*_{a_1} \times \ldots \times \Lambda^*_{a_r}) \mid f: (A, \lambda) \to (\mathbb{A}_{g,b'}, \lambda_{b'}) \text{ a polarized isogeny}\} \\
& = Y \cap \{f^*(\sigma(\Lambda^*_{a_1} \times \ldots \times \Lambda^*_{a_r})) \mid f: (A, \lambda) \to (\mathbb{A}_{g,b'}, \lambda_{b'}) \text{ a polarized isogeny}\} \\
& = Y \cap \{f^*(\Lambda'^+) \mid f: (A, \lambda) \to (\mathbb{A}_{g,b'}, \lambda_{b'}) \text{ a polarized isogeny}\} \tag{8.1}
\end{align*}

Because $Y \cap \Sigma_0^{\text{Zar}} = Y$, $Y \cap \{f(\Lambda') \mid f: (A, \lambda) \to (\mathbb{A}_{g,b'}, \lambda_{b'}) \text{ a polarized isogeny}\}$ is Zariski dense in Y (as subsets of \mathbb{A}_g). Therefore $\sigma(\Lambda^+)$ is Zariski dense in Y (as subsets of $\mathbb{A}_g \times \mathbb{A}_g \ldots \times \mathbb{A}_g$). Let Y' be the Zariski closure of Λ^+ in $\mathbb{A}_g \times \mathbb{A}_g \ldots \times \mathbb{A}_g$. Then Y' is also a subvariety of \mathbb{A}_g. Since taking Zariski closures commutes with taking images under proper morphisms, we deduce that $\sigma(Y') = Y$. So there exists an irreducible component Y'' of Y' s.t. $\sigma(Y'') = Y$.

For any polarized isogeny $f: (A, \lambda) \to (\mathbb{A}_{g,b'}, \lambda_{b'})$, the generalized Hecke orbit of $(a_1, \ldots, a_r) \in A'$ as a point on \mathbb{A}_{gr} contains $f^*(\Lambda^*_{a_1} \times \ldots \times \Lambda^*_{a_r})$ by Corollary 4.5. Therefore the intersection of Y'' with generalized Hecke orbit of (a_1, \ldots, a_r) in \mathbb{A}_{gr} is Zariski dense in Y''. Hence Conjecture 1.2 for \mathbb{A}_{gr} implies that Y' is weakly special. Therefore $Y' = \sigma(Y')$ is also weakly special by the geometric interpretation of weakly special subvarieties of \mathbb{A}_g and of \mathbb{A}_{gr} (Proposition 1.1). \hfill \Box

Corollary 8.2. Let Y be an irreducible subvariety of \mathbb{A}_g. Let Σ_0' be the set of division points of the isogeny orbit of Λ, i.e.
$$\Sigma_0' = \{t \in \mathbb{A}_g \mid \exists n \in \mathbb{N} \text{ and an isogeny } f: A \to \mathbb{A}_{g,\mathbb{Z}[t]} \text{ s.t. } nt \in f(\Lambda)\}.$$
Assume that Conjecture 1.2 holds for all g. If $Y \cap \Sigma_0^{\text{Zar}} = Y$, then Y is weakly special.

Proof. Recall the following result of Orr [16, Proposition 4.4]: for any isogeny $f: A \to A'$ between polarized abelian varieties, there exists $u \in \text{End}(A^4)$ s.t. $f^4 \circ u: A \to A'$ is a polarized isogeny. Now let $i: \mathbb{A}_g \hookrightarrow \mathbb{A}_{4g}$ be the natural embedding. Then $\Lambda_4 := \text{End}(A^4)i(\Lambda)$ is a finitely generated subgroup of $A^4 = \mathbb{A}_{4g,i(b)}$ and hence
$$\Sigma_0' \subset \{t \in \mathbb{A}_{4g} \mid \exists n \in \mathbb{N} \text{ and a polarized isogeny } f: (A^4, \lambda_{\mathbb{Z}[t]}) \to (\mathbb{A}_{4g,\mathbb{Z}[t]}, \lambda_{\mathbb{Z}[t]}) \text{ s.t. } nt \in f(\Lambda_4)\}.$$
Now the conclusion follows from Theorem 8.1. \hfill \Box

References

[1] Y. André. Shimura varieties, subvarieties, and CM points. Six lectures at the University of Hsinchu, August-September 2001.

[2] D. Bertrand. Minimal heights and polarizations on group varieties. Duke Journal of Mathematics, 80:223–250, 1995.

[3] G. Cornell and J. Silverman. Arithmetic Geometry. Springer, 1986.

[4] S. David. Minorations de hauteurs sur les variétés abéliennes. Bull. de la SMF, 121(4):509–522, 1993.
[5] B. Edixhoven and A. Yafaev. Subvarieties of Shimura varieties. *Annals Math.*, 157:621–645, 2003.
[6] Z. Gao. Towards the André-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann theorem and lower bounds for Galois orbits of special points. *Preprint, available on the author’s page.*
[7] Z. Gao. *Le théorème d’Ax-Lindemann et ses applications à la conjecture de Zilber-Pink (The mixed Ax-Lindemann theorem and its applications to the Zilber-Pink conjecture).* PhD thesis, Leiden University and Université Paris-Sud, 2014.
[8] E. Gaudron and G. Rémond. Polarisations et isogénies. *Duke Journal of Mathematics*, 2014.
[9] P. Habegger and J. Pila. Some unlikely intersections beyond André-Oort. *Compositio Mathematica*, 148:1–27, January 2012.
[10] M. Hindry. Autour d’une conjecture de Serge Lang. *Inv. Math.*, 94:575–603, 1988.
[11] Q. Lin and M.-X. Wang. Isogeny orbits in a family of abelian varieties. *Preprint, available on arXiv.*
[12] M. Lopuhaä. Pink’s conjecture on semiabelian varieties. Master Thesis, 2014.
[13] D. Masser. Small values of the quadratic part of the Néron-Tate height on an abelian variety. *Compositio Mathematica*, 53:153–170, 1984.
[14] M. McQuillan. Division points on semi-abelian varieties. *Inv. Math.*, 120(143-160), 1995.
[15] B. Moonen. Linearity properties of Shimura varieties, I. *Journal of Algebraic Geometry*, 7(3):539–467, 1988.
[16] M. Orr. *La conjecture d'André-Pink: Orbites de Hecke et sous-variétés faiblement spéciales.* PhD thesis, Université Paris-Sud, 2013.
[17] M. Orr. Families of abelian varieties with many isogenous fibres. *J.Reine Angew. Math (Crelle)*, to appear.
[18] F. Pazuki. Theta height and Faltings height. *Bull. de la SMF*, 140:19–49, 2012.
[19] Y. Peterzil and S. Starchenko. Definability of restricted theta functions and families of abelian varieties. *Duke Journal of Mathematics*, 162(4):731–765, 2013.
[20] J. Pila. O-minimality and the André-Oort conjecture for \mathbb{C}^n. *Annals Math.*, 173:1779–1840, 2011.
[21] J. Pila and J. Tsimerman. The André-Oort conjecture for the moduli space of Abelian surfaces. *Compositio Mathematica*, 149:204–216, February 2013.
[22] R. Pink. *Arithmetical compactification of mixed Shimura varieties.* PhD thesis, Bonner Mathematische Schriften, 1989.
[23] R. Pink. A combination of the conjectures of Mordell-Lang and André-Oort. In *Geometric Methods in Algebra and Number Theory*, volume 253 of *Progress in Mathematics*, pages 251–282. Birkhäuser, 2005.
[24] V. Platonov and A. Rapinchuk. *Algebraic Groups and Number Theory.* Academic Press, INC., 1994.
[25] M. Raynaud. Courbes sur une variété abélienne et points de torsion. *Inv. Math.*, 71(1):207–233, 1983.
[26] J. Silverman. Heights and the specialization map for families of abelian varieties. *J.Reine Angew. Math (Crelle)*, 342:197–211, 1983.
[27] A. Yafaev. *Sous-variétés des variétés de Shimura.* PhD thesis, Université de Rennes, 2000.

Institut des Hautes Études Scientifiques, Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France

E-mail address: ziyang.gao@math.u-psud.fr