Area Quantization in Quasi-Extreme Black Holes

E. Abdalla*{(1)}, K. H. C. Castello-Branco*{(2)} and A. Lima-Santos†{(3)}

*Universidade de São Paulo, Instituto de Física
Caixa Postal 66318, 05315-970, São Paulo-SP, Brazil;
†Universidade Federal de São Carlos, Departamento de Física
Caixa Postal 676, 13569-905, São Carlos-SP, Brazil

Abstract

We consider quasi-extreme Kerr and quasi-extreme Schwarzschild-de Sitter black holes. From the known analytical expressions obtained for their quasi-normal modes frequencies, we suggest an area quantization prescription for those objects.

(1)eabdalla@fma.if.usp.br
(2)karlucio@fma.if.usp.br
(3)dals@df.ufscar.br
The question of the quantization of the black hole horizon area is well posed and has been considered long ago by Bekenstein [1], being a major issue since then [2], [3], [4], [5], [6], [7], [8], [9]. The microscopic origin of the black hole entropy [10], [11] is also an unanswered question. There are attempts to partially understand these questions using string theory [12], [13] as well as the canonical approach of quantum gravity [14], [15], [16], [17]. Recently, the quantization of the black hole area has been considered [5], [6] as a result of the absorption of a quasi-normal mode excitation. Bekenstein’s idea for quantizing a black hole is based on the fact that its horizon area, in the nonextreme case, behaves as a classical adiabatic invariant [1], [4]. It is worthwhile studying how quasi-extreme holes would be quantized. It is specially interesting to investigate this case since we analytically know the quasi-normal mode spectrum of some black holes of that kind, namely the quasi-extreme Kerr [18] and quasi-extreme Schwarzschild-de Sitter (i.e., near-Nariai) [19] solutions. The quasi-normal modes of black holes are the characteristic, ringing frequencies which result from their perturbations [20] and provide a unique signature of these objects [21], possible to be observed in gravitational waves. Besides, quasi-normal modes have been used to obtain further information of the space-time structure, as for example in [22], [23], [24], [25], and [26].

Furthermore, gravity in such extreme configurations are an excellent laboratory for the understanding of quantum gravity, and information about the quantum structure of space-time can be derived in such contexts by means of general setups [27].

The first case of interest to us where the black hole quasi-normal mode spectrum is analytically known is the quasi-extreme Kerr black hole. In this case, the specific angular momentum of the hole, \(a\), is very nearly its mass \(M\) (\(a \approx M\)). Detweiler [28] was able to show that in such a case there is an infinity of quasi-normal modes given by [18]

\[
\omega_n M \approx \frac{m}{2} - \frac{1}{4m} \exp\left[\frac{\xi - 2n\pi}{2\delta} + i\eta\right],
\]

where \(n = 0, 1, \ldots\) labels the solution, \(m\) is an integer labeling the axial mode of the perturbation, while \(\xi, \delta, \) and \(\eta\) are constants. We note that (1) is valid for \(\ell = m\), where \(\ell\) is the multipole index of the perturbation. For details we refer the reader to [18].
In Boyer-Lindquist coordinates the Kerr solution reads

$$ds^2 = -(1 - \frac{2Mr}{\Sigma})dt^2 - \frac{4Mar\sin^2\theta}{\Sigma}dtd\phi + \frac{\Delta}{\Sigma}dr^2 + \Sigma d\theta^2 + \left(r^2 + a^2 + 2Ma^2r\sin^2\theta \right)\sin^2\theta d\phi^2,$$

where

$$\Delta = r^2 - 2Mr + a^2,$$

$$\Sigma = r^2 + a^2\cos^2\theta.$$

M and $0 \leq a \leq M$ are the black hole mass and specific angular momentum ($a = J/M$), respectively. The horizons are at $r_\pm = M \pm \sqrt{M^2 - a^2}$.

In units $G = c = 1$, the black hole horizon area and its surface gravity (temperature) are given, respectively, by

$$A = 4\pi (r_+^2 + a^2).$$

$$\kappa = \frac{1}{4A} (r_+ - r_-).$$

Based on Bohr’s correspondence principle (“for large quantum numbers, transition frequencies should equal classical frequencies”), Hod [5] has considered the asymptotic limit $n \to \infty$ for the quasi-normal mode frequencies ω_n of a Schwarzschild black hole in order to determine the spacing of its equally spaced quantum area spectrum. That asymptotic quasi-normal mode spectrum was obtained numerically by Nollert [29]. Recently, Motl [8] has computed analytically $\Re(\omega_n)$ as $n \to \infty$, finding agreement with the numerical value of Nollert. In this large n limit, Hod [5] then assumed that a Schwarzschild black hole mass should increase by $\delta M = \hbar \Re(\omega_n)$ when it absorbs a quantum of energy $\hbar \Re(\omega_n)$.

As in Ref. [5], we expect that the real part of the quasi-normal mode frequency for large n corresponds to an addition of energy equal to $\hbar \Re(\omega_n)$ to the quasi-extreme Kerr black hole mass as it falls into its event horizon. Then, taking the limit $n \to \infty$ for ω_n in (1) we simply have

$$\omega_n \approx \frac{m}{2M}, \quad n \to \infty.$$

Contrary to the Schwarzschild case, where the limit $n \to \infty$ gives highly damped modes, for the present case, it gives virtually undamped modes with frequencies close to the upper limit of the superradiance interval [30], $0 < \omega < \infty$.

3
\(m \Omega\), where \(\Omega = 4 \pi a/A\) is angular velocity of the horizon. The quasi-normal mode spectrum [1] of near-extreme Kerr black holes leads to interesting consequences, as recently analysed by Glampedakis and Anderson [18].

Furthermore, here the angular momentum \(\bar{h} m\) adds to the angular momentum \(J = M a\) associated with the Kerr solution. We then have a pair of variations for black hole parameters given by

\[
\delta M = \frac{\bar{h} m}{2 M} ; \quad \delta J = \bar{h} m \quad \Rightarrow \quad \delta a = \bar{h} m \left(\frac{1}{M} - \frac{a}{2 M^2}\right).
\]

In what follows we will consider \(\bar{h} = 1\) and for the sake of brevity \(m = 1\).

The variation of the horizon area is related to the first law of black hole thermodynamics,

\[
\delta M = \kappa \delta A + \Omega \delta J.
\]

Making use of relations (8), we can obtain from (5) that, for a near-extreme hole \((a \approx M)\), the area variation is given by

\[
\delta A = 8 \pi \left(1 + \sqrt{\frac{M - a}{2 M}}\right),
\]

up to first order in \((M - a)^{1/2}\).

Therefore, for strictly extreme holes, we simply have \(\delta A = 8 \pi\).

For \(a \approx M\), we can express \(\kappa\) and \(\Omega\), respectively, as

\[
\kappa \approx \frac{1}{16 \pi} \frac{\sqrt{M^2 - a^2}}{M^2} \left[1 - \frac{\sqrt{M^2 - a^2}}{M}\right]\]

and

\[
\Omega \approx \frac{a}{2 M^2} \left(1 - \frac{\sqrt{M^2 - a^2}}{M} + \frac{M^2 - a^2}{M^2}\right).
\]

Finally, from (8), (10), (11), and (12), to order \((M - a)^{3/2}\), we obtain

\[
\kappa \delta A + \Omega \delta J \approx \frac{1}{2 M},
\]

in agreement with the first law of black hole thermodynamics [2]. Thus we can prescribe the quantization of a quasi-extreme Kerr black hole area as

\[
A_n = n \delta A \ell_p^2 \simeq 8 \pi \ell_p^2 n.
\]
where \(n = 1, 2, ... \) and \(\ell_P \) is the Planck length.

A second case where we can obtain information about the black hole parameters involved in its quantization is the near-extreme Schwarzschild-de Sitter (S-dS) black hole. This is the case when the mass of the black hole is increased as to arrive near the limit \(M_N = R/3\sqrt{3} \), where the constant \(R \) is related to the cosmological constant \(\Lambda \) by \(R^2 = 3/\Lambda \). This is the Nariai limit \[31\], for which the black hole and cosmological horizons coincide. The S-dS metric is \[32\]

\[
ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2),
\]

where

\[
f(r) = 1 - \frac{2M}{r} - \frac{r^2}{R^2},
\]

and \(0 \leq M \leq M_N \) is the black hole mass. The roots of \(f(r) \) are \(r_b, r_c \) and \(r_0 = -(r_b + r_c) \), where \(r_b \) and \(r_c \) are the black hole and cosmological horizon radii, respectively. To each horizon there is a surface gravity, given by \(\kappa_{b,c} = \frac{1}{2} \frac{df}{dr} |_{r=r_{b,c}} \). For \(\kappa_b \) we have the expression

\[
\kappa_b = \frac{(r_c - r_b)(r_b - r_0)}{2R^2r_b}.
\]

As in the Kerr case, we will perform the variation of \(M \). It is useful to write \(M \) and \(R \) in terms of \(r_b \) and \(r_c \) as

\[
2MR^2 = r_br_c(r_b + r_c),
\]

\[
R^2 = r_b^2 + r_br_c + r_c^2.
\]

The analytical quasi-normal mode spectrum for the quasi-extreme S-dS black hole has been recently derived by Cardoso and Lemos \[19\] and reads

\[
\omega_n = \kappa_b \left[\sqrt{\frac{V_0}{\kappa_b^2} - \frac{1}{4} - i(n + \frac{1}{2})} \right],
\]

where \(n = 0, 1, ... \), and \(V_0 = \kappa_b^2 \ell (\ell + 1) \), for scalar and electromagnetic perturbations, and \(V_0 = \kappa_b^2 (\ell + 2)(\ell - 1) \) for gravitational perturbations.

Since we are considering the near extreme limit of the S-dS solution, for which \((r_c - r_b)/r_b << 1 \), it is suitable for our purposes to write the black hole mass as

\[
M = M_N + \mu = \frac{R}{3\sqrt{3}} + \mu.
\]
Therefore, since \(R = \sqrt{3/\Lambda} \) is fixed, the use of (18) and (19) leads us to

\[
\delta M = \delta \mu = \frac{r_b \Delta r \delta r_b}{2R^2},
\]

(22)

where \(\Delta r = r_c - r_b \).

Similarly as we did for the Kerr case, here we can consider \(\delta M = \hbar \Re(\omega_n) \) and in view of (20) and (17) write (\(\hbar = 1 \))

\[
\delta M = \frac{\Delta r}{2r_b^2} \sqrt{(\ell + 2)(\ell - 1) - \frac{1}{4}},
\]

(23)

where we have used \(R^2 \sim 3r_b^2 \) and considered \(V_0 \) for gravitational perturbations.

The variation of the black hole horizon area,

\[
\delta A_b = 8\pi r_b \delta r_b,
\]

(24)

then gives us

\[
\delta A_b = 24\pi \sqrt{(\ell + 2)(\ell - 1) - \frac{1}{4}},
\]

(25)

for gravitational quasi-normal modes and \(\delta A_b = 24\pi \sqrt{\ell(\ell + 1) - \frac{1}{4}} \) otherwise.

Thus we can prescribe the quantum area spectrum for a quasi-Nariai black hole as

\[
A_{b_n} = n\delta A_b \ell_P^2 \simeq 12\pi \sqrt{15}\ell_P^2 n,
\]

(26)

where \(n = 1, 2, \ldots \), or, in the case of scalar or electromagnetic perturbations, \(12\pi \sqrt{7}\ell_P^2 n \).

In summary, with the knowledge of the analytical quasi-normal mode spectrum of near extreme Kerr and near extreme S-dS black holes, as given in [18] and [19], we have prescribed how their horizon area would be quantized. This was done by simply assuming they have a uniformly spaced area spectrum given by \(A_n = \delta A \ell_P^2 n \), where \(\delta A \) is the area variation caused by absorption of a quasi-normal mode. This was done in analogy with the Schwarzschild case, where the spacing of its area spectrum was determined by means of the knowledge of its asymptotic ("large \(n \)") quasi-normal mode frequencies [5]. In the cases regarded here, the results for the spacing of the area spectrum differ from that for Schwarzschild, as well as for non-extreme Kerr [33] black holes, in which cases, the spacing is predicted to be given by
4ln3. This factor comes from the real part of the asymptotic quasi-normal mode frequencies of those black holes [5], [33]. Such a difference may be justified due to the quite different nature of the asymptotic quasi-normal mode spectrum of the near extreme black holes we considered. Furthermore, it should be no a priori reason for expecting the same behaviour for the asymptotic quasi-normal mode frequencies of near extreme and non-extreme black holes.

Acknowledgements

The authors would like to thank CNPq-Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESP-Brazil (Fundação de Amparo à Pesquisa no Estado de São Paulo) for financial support.

References

[1] J. D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974).
[2] J. D. Bekenstein and V. F. Mukahnov, Phys. Lett. B360, 7 (1995).
[3] H. A. Kastrup, Phys. Lett. B385, 75 (1996).
[4] J. D. Bekenstein, in Proceedings of the IX Brazilian School of Cosmology and Gravitation, Rio de Janeiro, Brazil, ed. by M. Novello (Atlantis-sciences, France, 2000); gr-qc/9808028.
[5] S. Hod, Phys. Rev. Lett. 81, 4293 (1998).
[6] O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003); gr-qc/0211076.
[7] G. Kunstatter, gr-qc/0212014.
[8] L. Motl, gr-qc/0212096.
[9] A. Corichi, gr-qc/0212126.
[10] J. D. Bekenstein, Phys. Rev. D7, 2333 (1973).
[11] S. Hawking, Commun. Math. Phys. 31, 161 (1973).
[12] A. Strominger and C. Vafa, Phys. Lett. B379, 99 (1996).
[13] P. Mazur, *Gen. Rel. Grav.* **19**, 1173 (1987).

[14] T. Thiemann, `gr-qc/0110034`.

[15] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, *Phys. Rev. Lett.* **80**, 904 (1998).

[16] C. Rovelli and L. Smolin, *Nucl. Phys.* **B422**, 593 (1995); `gr-qc/9411003`.

[17] A. Ashtekar and J. Lewandowski, *Class. Quant. Grav.* **14**, A55 (1997).

[18] K. Glampedakis and N. Anderson, *Phys. Rev.* **D64**, 104021 (2001). M. Sasaki and T. Nakamura, *Gen. Relat. Grav.* **22** 1351 (1990).

[19] V. Cardoso and J. P. S. Lemos, `gr-qc/0301078`.

[20] S. Chandrasekhar, *The Mathematical Theory of Black Holes*, Cambridge University Press (1983).

[21] K. D. Kokkotas and B. G. Schmidt, *Living Reviews in Relativity* (1999); `gr-qc/9909058`; H.-P. Nollert, *Class. Quant. Grav.* **16**, R159-R216 (1999).

[22] G. T. Horowitz and V. E. Hubeny, *Phys. Rev.* **D62**, 024027 (2000).

[23] D. Birmingham, I. Sachs, and S. N. Solodukhin, *Phys. Rev. Lett.* **88**, 151301 (2002).

[24] V. Cardoso and J. P. S. Lemos, *Phys. Rev.* **D65**, 104032 (2002).

[25] E. Abdalla, B. Wang, A. Lima-Santos, and W. G. Qiu, *Phys. Lett. B* **538**, 435 (2002).

[26] E. Abdalla, K. H. C. Castello-Branco, A. Lima-Santos, *Phys. Rev.* **D66**, 104018 (2002).

[27] B. Wang, E. Abdalla, and R.-K. Su, *Phys. Lett. B* **503**, 394 (2001); *Mod. Phys. Lett. A* **A17**, 23 (2002).

[28] S. Detweiler, *Astrophys. J.* **225**, 687 (1978).

[29] H.-P. Nollert, *Phys. Rev.* **D47**, 5253 (1993).
[30] S. A. Teukolsky, *Phys. Rev. Lett.* **29**, 1114 (1972);
 S. A. Teukolsky and W. H. Press, *Astrophys. J.* **193**, 443 (1974).

[31] H. Nariai, *Sci. Rep. Tohoku Univ.* **34**, 160 (1950); **35**, 62 (1951). R. Bousso, *Adventures in de Sitter Space*, hep-th/0205177.

[32] G. W. Gibbons and S. W. Hawking, *Phys. Rev. D**15**, 2738 (1977).

[33] S. Hod, *gr-qc/0301122*.