Abstract. Previous work on the neutrino spectra from high energy sources has not included the tau neutrinos directly produced by the decays in the source. Here we consider the tau neutrino component and discuss how its inclusion modifies the expected neutrino spectra. We discuss implications for interpreting any observed tau neutrino component in TeV-UHE events as evidence of $\nu_\mu \to \nu_\tau$ oscillations.

1 Introduction

The observation of high energy neutrinos from beyond Earth will open a new window on astrophysics and cosmology. Presently much effort is being expended on designing and deploying detectors and methodologies capable of resolving the flavour of the incoming neutrino flux. One motivation for doing this is that the absolute sensitivity, or relative sensitivity compared with background, may be significantly greater for one neutrino species than the other species (Dutta et al., 2000). Another primary motivation for identifying the neutrino flavour is to test the hypothesis that neutrinos undergo flavour oscillation as they propagate from source to Earth. Indeed a number of atmospheric, accelerator and solar neutrino experiments hint at the existence of neutrino oscillations, although the experiments are not yet sufficiently consistent to delineate a unique solution (Akhmedov, 2000). The most favoured solution, fitting the latest SuperKamiokande data, involves $\nu_\mu \to \nu_\tau$ oscillation with a mass difference of $\Delta m^2_\tau \sim 10^{-3}\text{eV}^2$. Because the non-oscillation production of ν_τ is assumed to be negligible relative to ν_e and ν_μ production, and the cascade ν_τ produced by collisions of primary ν_e and ν_μ flux with the relic cosmic neutrino background is orders of magnitude less than the primary ν_e and ν_μ flux, any detected ν_τ component from a source outside the Solar System is currently expected to be indicative of oscillation.

In this paper, we briefly report some results of our investigation into high energy ν_τ production, presented elsewhere (MacGibbon et al., 2001). We illustrate that the ν_τ component at the high energy end in the hadronic decays is significantly higher than previously assumed and that this can have observational consequences.

2 Neutrino Production

A number of sources for TeV-UHE neutrinos have been postulated: for example active galactic nuclei (AGN) (Athar et al., 2000; Husain, 2000); topological defects such as superconducting, ordinary or VHS cosmic strings (Bhattacharjee and Sigl, 2000; Hill et al., 1987; Wichoski et al., 1998); supermassive gauge and scalar particle (X particle) decay or annihilation (Albuquerque et al., 2000); and Hawking evaporation of primordial black holes (MacGibbon and Carr, 1991; MacGibbon and Webber, 1990; Halzen et al., 1995). In all of these scenarios, the final state particle distributions are expected to be dominated by hadronic decays at the source. In these decays over 90% of the final state emission will be π^0, π^+, and π^-, with the remainder mainly nucleons which decay into protons and antiprotons. On astrophysical timescales, the π^\pm decay into ν_τ and ν_μ and e^\pm. It is known that the final cluster states (pions and nucleons) in QCD jets at accelerator energies are well described by the fragmentation function

$$
\frac{dN}{dx} = \frac{15}{16} x^{-3/2} (1 - x)^2,
$$

where $x = E/m_J$ and m_J is the total energy of the decaying jet (Hill et al., 1987). This distribution continues down to $E \sim 1 \text{GeV}$. When convolved with the π^\pm decay, Eq.(1) leads to, similarly, a dominant $E^{-3/2}$ term in the ν_e and ν_μ spectra at $x \lesssim 0.1$ and $dN_{\nu_e,\nu_\mu}/dE \to 0$ as $x \to 1$. (For a full derivation of the ν_e and ν_μ spectra using fragmentation function (1) see (Wichoski et al., 1998).)

The production channels for the ν_τ, however, are substantially different. The tau neutrinos are only produced in significant numbers once the tau lepton and heavy quark masses,
We also note that below \(m_J = 10 \) TeV \(q \bar{q} \) jets. The solid line represents \(\nu_{\mu} \), the dashed line represents \(\nu_e \), and the dotted line represents \(\nu_{\tau} \).

\[m_{\tau} = 1.78 \text{ GeV}, \quad m_b \sim 4 \text{ GeV}, \quad m_t \sim 174 \text{ GeV}, \] are surpassed. The greatest contribution comes from the \(t \) quark decay. Because \(\nu_{\tau} \) production is suppressed compared with other species, it has been assumed in flux calculations that the \(\nu_{\tau} \) spectrum is orders of magnitude less than the \(\nu_e \) and \(\nu_{\mu} \) spectra at all \(x \). This is not so. While indeed the total number of \(\nu_{\tau} \) produced per jet is less than \(10^{-3} \) of the total number of \(\nu_e \) and \(\nu_{\mu} \), the high \(x \) tau neutrinos are predominantly produced by the initial decays of the heavier quarks with shorter lifetimes and the \(\nu_e \) and \(\nu_{\mu} \) are produced by the final state cluster decays of the much lighter pions. This leads to significantly greater relative contribution from \(\nu_{\tau} \) at high \(x \) than previously assumed. The fragmentation distribution (1) is no longer relevant for the tau neutrino.

In Fig.(1) we show the \(\nu_{\tau} \) spectrum, together with the \(\nu_e \) and \(\nu_{\mu} \) spectra, generated by the decay of 10 TeV \(q \bar{q} \) jets. To simulate these spectra we used the QCD event generator HERWIG (Corcella et al., 2001) and the process \(e^+e^- \rightarrow q\bar{q}, g, i = \text{all} \ q \) flavours. Consistent spectra are obtained with PYTHIA/JETSET (see MacGibbon et al. (2001)). Note that in the region \(0.1 \lesssim x \lesssim 1 \), the tau neutrinos make up more than one tenth of the total neutrino contribution. We also note that below \(x \lesssim 0.1 \), \(dN_{\nu_{\tau}}/dE \) falls off with roughly an \(E^{-1/2} \) slope, and not the \(E^{-3/2} \) slope of the \(\nu_e \) and \(\nu_{\mu} \) spectra. Because the 1 GeV - UHE cosmic ray flux backgrounds are expected to fall off as \(dN/dE \propto E^{-y} \) where \(2 < y < 3 \), we also plot \(E^2dN/dE \) in Fig.(2).

From our 300 GeV - 75 TeV simulations, we find that the \(\nu_{\tau} \) spectrum generated by \(q \bar{q} \) jet decay can be parametrized as

\[
\frac{dN_{\nu_{\tau}}}{dE_{\nu_{\tau}}} \simeq \left(\frac{1}{2m_J} \right) \left[0.15 \left(\frac{E_{\nu_{\tau}}}{m_J} \right)^{-1/2} - 0.36 + 0.27 \left(\frac{E_{\nu_{\tau}}}{m_J} \right)^{1/2} - 0.06 \left(\frac{E_{\nu_{\tau}}}{m_J} \right)^{3/2} \right],
\]

per jet. Similarly the number (multiplicity) of neutrinos produced per \(q \bar{q} \) jet and the average neutrino energy scale as

\[N_{\nu_{\tau}} \simeq 0.035 \left(\frac{m_J}{\text{GeV}} \right)^{0.03}, \quad E_{\nu_{\tau}} \simeq 0.2 \left(\frac{m_J}{\text{GeV}} \right)^{0.9} \text{ GeV}, \quad (3) \]

\[N_{\nu_e} \simeq 2.0 \left(\frac{m_J}{\text{GeV}} \right)^{0.3}, \quad E_{\nu_e} \simeq 0.04 \left(\frac{m_J}{\text{GeV}} \right)^{0.7} \text{ GeV}, \quad (4) \]

\[N_{\nu_{\mu}} \simeq 3.6 \left(\frac{m_J}{\text{GeV}} \right)^{0.3}, \quad E_{\nu_{\mu}} \simeq 0.04 \left(\frac{m_J}{\text{GeV}} \right)^{0.7} \text{ GeV}. \quad (5) \]

Note that the average \(\nu_{\tau} \) energy is significantly higher than the average \(\nu_e \) and \(\nu_{\mu} \) energies, consistent with our remarks above. We derive similar \(dN_{\nu_{\tau}}/dE_{\nu_{\tau}}, N_{\nu_{\tau}} \) and \(E_{\nu_{\tau}} \) parametrizations for the \(\nu_{\tau} \) generated by initial \(\tau \bar{\tau} \) decay, \(b \bar{b} \) decay, \(\tau^+\tau^- \) decay, \(W^+W^- \) decay and decays which include extensions to the Standard Model (e.g. SUSY and Higgs sectors) in (MacGibbon et al., 2001).

In analogy with the use of the fragmentation function (1), we now apply (2), and its high energy extrapolation, to investigate the neutrino fluxes produced in astrophysical and cosmological scenarios.

3 Neutrino Fluxes from Astrophysical and Cosmological Sources

To calculate the expected \(\nu_{\tau} \) flux from a given astrophysical or cosmological source, the above \(\nu_{\tau} \) fragmentation function, Eq.(2), must be convolved with the initial distribution of the decaying particles, the Galactic or cosmological distribution of the sources and the redshift evolution and interactions of the emitted neutrinos as they propagate from source to Earth.

Here we briefly mention two scenarios. The new spectra for the tau neutrino fluxes expected from a number of other astrophysical and cosmological sources, including AGN and primordial black holes, are presented in our paper (MacGibbon et al., 2001).
Our first example is the VHS cosmic string scenario (Wichoski et al., 1998). However, our remarks apply generically to \(p = 1 \) cosmic string models. In the VHS scenario, 1 GeV - UHE particle fluxes are generated by the decay of supermassive scalar and gauge particles emitted by the long strings over the age of the Universe. The neutrino spectra expected at Earth from VHS strings with a mass per unit length of \(G\mu = 10^{-8} \) are shown in Fig.(3) (Wichoski et al., 1998).

The fraction of the \(\nu_\tau \) component which is solely produced in the collisions of the primary \(\nu_\tau \) and \(\nu_\mu \) with the relic cosmic \(1.9^9 K \) neutrino background is represented by the dash-dotted line. (This is the only \(\nu_\tau \) component presented in previous cosmic string papers.) The dotted line represents the \(\nu_\tau \) directly produced in the hadronic decays of the string emission. As can be seen, our results give a significant increase in the expected \(\nu_\tau \) signal at the highest energies. Note too that because the cosmic ray background falls off as \(E^{-9} \), the highest energy region of the spectra is most relevant to detection. In Fig.(4), we show the neutrino spectra from a viable VHS model with \(G\mu = 10^{-10} \) and the comparisons with present and proposed detector sensitivities.

As the second example, we briefly comment on the implications of our results for the simpzilla scenario. The annihilation of strongly interacting superheavy dark matter \(X \) particles captured by our Sun (simpzillas) has recently been explored as a source of observable \(\nu_\tau \) (Albuquerque et al., 2000). In this scenario the \(X \) particle decays into 2 quarks or 2 gluons which then decay into jets. Because of the high solar density, it is argued that only the \(t \to W \to \nu \) chain in the \(X \) decay would produce a significant \(\nu_\tau \) flux capable of escaping the Sun. Assuming the fragmentation function (1) applies to the \(t \) quarks in this decay chain, the authors derive a distribution for the \(\nu_\tau \) produced per \(X \) particle decay which has a leading \(E^{-3/2} \) slope above \(m_t \). However, our full \(W^\pm \) decay simulations show that the \(\nu_\tau \) spectrum falls off with a much weaker slope, inconsistent with an \(E^{-3/2} \) slope from the partial decay. As a resolution to this discrepancy, we believe that the application of Eq.(1) to the initial \(t \) distribution from \(X \) annihilation in the Sun is inappropriate because the short-lived \(t \) quarks are generated in the first step directly by the \(X \) annihilation, whereas Eq.(1) is a fit to the final state cluster distributions. Thus the appropriate distribution of the \(t \) quarks in this chain should be the initial distribution of the \(X \) particles times the relevant branching ratio. This skews the expected \(\nu_\tau \) distribution from solar \(X \) annihilation to higher energies. The modifications are discussed in detail in (MacGibbon et al., 2001).

4 Conclusions

Previous work has assumed that the \(\nu_\tau \) component in TeV - UHE hadronic decays is negligible compared with the \(\nu_e \) and \(\nu_\mu \) components, at all neutrino energies. On examining QCD behaviour at accelerator energies and assuming similar behaviour continues to higher energies, we find this is not so. In particular, for neutrino energies in the decade below the energy of the decaying particle, the tau neutrino component is of similar magnitude to the \(\nu_e \) and \(\nu_\mu \) components. Below these energies the \(\nu_\tau \) spectrum exhibits a slope of slightly less than \(E^{-1/2} \) compared with the \(E^{-3/2} \) slope of the \(\nu_e \) and \(\nu_\mu \) spectra. This analysis modifies the expected spectra in many astrophysical and cosmological high energy neutrino production scenarios. As a consequence, the observation of a significant \(\nu_\tau \) to \(\nu_\mu \) ratio at a given energy in high energy neutrino telescopes and detectors may be due to hadronic decay at the source and not \(\nu_\mu \to \nu_\tau \) oscillation in transit.

Acknowledgements. It is a pleasure to thank Mike Seymour for advice and Robert Brandenberger and Andrew Heckler for encouragement. UFW has been supported by “Fundação para a Ciência e a Tecnologia” (FCT) under the program “PRAXIS XXI”.

Fig. 3. The neutrino spectra from VHS cosmic strings with a mass per unit length of \(G\mu = 10^{-8} \). The dash-dotted curve is the \(\nu_\tau \) component produced by cascades off the relic neutrino background (Yoshida et al., 1997).

Fig. 4. The neutrino spectra from VHS cosmic strings with \(G\mu = 10^{-10} \). Points with arrows represent upper limits for the flux (taken from (Bhattacharjee and Sigl, 2000)).
References

Akhmedov, E. Kh., *Neutrino Physics* hep-ph/0001264v2 (2000).
Albuquerque, F. M., Hui, L., and Kolb, E. W., *High Energy Neutrinos from Superheavy Dark Matter Annihilation*, hep-ph/0009017 (2000).
Athar, H., Parente, G., Zas, E., Phys. Rev. 62, 093010 (2000).
For a review see Bhattacharjee, P. and Sigl G., Phys. Rep. 327, 109 (2000).
Corcella, G. *et al.*, JHEP 0101, 010 (2001).
Dutta, S. I., Reno, M. H., & Sarcevic, I., Phys. Rev. D 62, 123001 (2000).
Halzen, F., Keszthelyi, B., and Zas, E., Phys. Rev. D 52, 3239 (1995).
Hill, C., Schramm, D., and Walker, T., Phys. Rev. D 36, 1007 (1987).
Husain, A., *Cosmic Tau Neutrinos*, hep-ph/0004083.
MacGibbon, J. H., Wichoski U. F., and Webber, B. R., *Tau Neutrinos from Astrophysical and Cosmological Sources* (2001), to be submitted.
MacGibbon, J. H. and Carr, B. J., Astrophys. J. 371, 447 (1991).
MacGibbon, J. H. and Webber, B. R., Phys. Rev. 41, 3052 (1990).
Wichoski, U. F., MacGibbon, J. H., and Brandenberger, R. H., *High Energy Neutrino, Photon and Cosmic Ray Fluxes from VHS Cosmic Strings*, hep-ph/9805419v2 (2001 version).
Yoshida, S. et al., Astrophys. J. 479, 547 (1997).