Variations in floristic composition and community structure between disturbed and undisturbed lowland forest in Aklan, Philippines

Cecilia I. Banag-Moran, Frederick A. Bautista, Karl Anglo M Bonifacio, Clarence Ave Martin L De Guzman, Joshua L. Lim, Danilo N. Tandang, and Nikki Heherson A Dagamac

*Department of Biological Science, College of Science, Manila, Philippines; Department of Biological Science, College of Science, Manila, Philippines; Graduate School; Research Center for the Applied and Natural Sciences, University of Santo Tomas, Manila, Philippines; National Museum of the Philippines, Manila, Philippines; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan; Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany

ABSTRACT

Despite the notable plant biodiversity of the Philippines, the country still exhibits increasing anthropogenic activities in many forests of the archipelago that pose a threat to many floral species of the country. Hence, to test the hypothesis that there are differences in plant distributions and diversity between disturbed and undisturbed tropical forest patches, a rapid floristic assessment in Malinao, Aklan was conducted. A total of 106 species were sampled in both sites, with 68 present in the disturbed site, 53 present in the undisturbed site, and 12 present in both. Rarefied species accumulation curves and calculations of Shannon-Wiener Index (H) showed higher species richness and eveness in the undisturbed forest. Analysis of the similarities in species composition using the nonmetric dimensional scaling combined with the statistical test PERMANOVA showed clear significant difference between the two forest categories. In addition, one species (Artocarpus blancoi (Elmer) Merr.) that is classified as "Vulnerable" according to the IUCN was noted. Thus, standard calls for the establishment of priority areas for forest conservation in the country are recommended.

INTRODUCTION

Tropical forests are considered to be one of the most threatened habitats due to their increasing decline in biodiversity (Posa et al., 2008; Tittensor et al., 2011). This is brought about by the disproportion of the increasing demands of a fast growing human population (Squires, 2014) with the utilization of natural plant resources that are far beyond in their recovering capacity (Naidu & Kumar, 2016; Sahoo et al., 2017). This situation resulted in the decrease on the size of natural rainforest at alarming rate in many countries around the world (Lewis, 2006), particularly in the Philippines, which is considered to be one of the earth’s most important biodiversity hotspots, with approximately 13 000 plant species, 39% of which are endemic. Albeit, Philippine biodiversity is widely concentrated on its primary forest ecosystem, only 3.0% of primary forest in the Philippines remains untouched, putting now the current biodiversity of the country at an extremely high risk (Langenberger et al., 2006). Previously occurring species in the Philippines have become endangered or even extinct through continued deforestation, with slash and burn cultivation (Mukul et al., 2016) accounting for the majority of forest destruction. In addition, most of the deforested lands are now used for agricultural production (Langenberger et al., 2006; Myers et al., 2000; Suarez & Sajise, 2010). Forest fragmentation brought about by deforestation results in greater tree mortality (Reis et al., 2018), easier access to the interior forest, which leads to increased resource exploitation, as well as changes in forest microclimatic conditions (Broadbent et al., 2008; Sánchez-Reyes et al., 2019), and loss of faunal specialized niches (Suarez & Sajise, 2010). Thus, forest management entails thorough understanding of the plant species diversity (Dieler et al., 2017; Turnbull et al., 2016), community structure (Chai et al., 2016), and plant composition (Collins et al., 2017; Ssegawa & Nkuu, 2006). This information would ensure environmental managers on accurate assessments of possible impacts and amelioration of degraded forest ecosystem (Borah et al., 2014). More so, floristic surveys help in proper monitoring and developing of effective conservation strategies (Alsherif & Fadl, 2016; Yates et al., 2019) for many highly threatened or endangered plant species. However, quantitative studies on plant inventories for the Philippines are still relatively scarce since majority of the plant surveys conducted for the country during the last years are concentrated on qualitative species listings (see Ordas et al., 2019; Santiago & Buot, 2017; Villanueva & Buot, 2015).

Disturbances do not only influence diversity, but also post disturbance regeneration (Gill et al., 2017;
Kern et al., 2019) and dominance of tree species (Lawes et al., 2007; Shirima et al., 2015). Ultimately, human disturbance on natural landscapes would lead to the homogeneity in species composition (Fuller et al., 2017; Liebsch et al., 2008). This negative effect decreases reproduction and survival of organisms. Although, the inhabitants may be affected due to the anthropogenic disturbance, there is either little (Bongers et al., 2009) or no consistent correlation (Marcial et al., 2001) between disturbance and tree biodiversity and may warrant for further studies (see Caviedes & Ibarra, 2017; Martínez-Ramos et al., 2016). Nevertheless, an ideal area in the Philippines to conduct such floristic assessment would be the underexplored forest fragments in Barangay Kinalangay Viejo, Malinao, Aklan since portions of the forest are either pristine and are likely to be considered undisturbed or have already been undergoing secondary succession due to rampant anthropogenic disturbance caused by “cut down – burn off” practice by the local communities. Furthermore, no profiling of the floral species diversity and on plant species list has ever been conducted for Malinao, Aklan, thus, extensive plant survey is considered to be of urgency.

Therefore, this plant diversity study aims to (i) determine the floral species present in Barangay Kinalangay Viejo, Malinao, Aklan, (ii) compare the species compositions of the different forest types based on anthropogenic disturbance, and (iii) determine the conservation status of the plant species documented for the area. This study will aid in conservation efforts of Philippine flora, especially on the economically important plant species present in the area.

Materials and methods

Study area

The island of Panay, a triangular island in Western Visayas region, is comprised of four provinces including Aklan province (Figure 1). Aklan has a total land area of 181,789 hectares, of which 74,994 hectares are classified as Forestland or 41% of the province with 46,650 hectares as protection forest and 8,344 hectares as production forest. It is composed of 17 municipalities with 327 Barangays with Kalibo serving as the capital of the province. Malinao is a 4th class municipality composed of 23 barangays. It has a land area of 18,601 hectares with much of it being mountainous. Based on the amount of anthropogenic disturbance on the forested areas of Sitio Bugtong Bato and Sitio Angeles, Barangay Kinalangay Viejo, Malinao, Aklan, two different types of forest were categorized: (i) the undisturbed forest which is basically characterized to be a secondary old growth forest with minimal exposure to extreme human deforestation and forest conversion activities and somehow protected and (ii) the disturbed forest which is intuitively described to be highly exposed to man-made forest conversion due to different farming practices such as the slash and burn farming of the local people.

Taxon sampling and species determination

Two 100 m transects were determined, one each in disturbed and undisturbed forested areas in Sitio Bugtong Bato and Sitio Angeles, Barangay Kinalangay Viejo, Malinao, Aklan (Figure 2). Each plot was divided into ten 10 m x 10 m plots for the assessment of tree species 10 m and above in height. One 5 m x 5 m plot was laid within each of the 10 m x 10 m plot for the assessment of vegetation between 1 m and 10 m high. Subsequently, one 1 m x 1 m plot was laid within each 5 m x 5 m plot for the assessment of vegetation less than 1 m high (Figure 2). Pictures of all specimens were taken, and vouchers were collected for interesting specimens. Identification based on the APG IV system was done through comparison with existing herbarium sheets from the University of Santo Tomas Herbarium (USTH) and Philippine National
Herbarium (PNH), previously identified pictures of specimens from Co’s Digital Flora of the Philippines (http://philippineplants.org/), and consultation with researchers and botanists of the National Museum of the Philippines. Collected specimens were deposited at the Philippine National Herbarium (PNH) and University of Santo Tomas Herbarium (USTH).

Data evaluation

To estimate sampling intensity, individual-based species accumulation curves were constructed for disturbed and undisturbed areas using the “default settings” of EstimateS (Version 9.1, Colwell, 2013, 200 randomizations). In accordance with Rasingim and Parthasarathy (2009), Chao1 estimator (Chao et al., 2005) was used to estimate the theoretical number of species in the area. The estimated value for the exhaustiveness of the survey for the disturbed and undisturbed forest type was then determined by dividing the actual number of species we recorded by the mean number of species expected as estimated by the Chao1 estimator multiplied by 100. Abundance-based species data were initially constructed for the analysis of diversity that includes species richness and further diversity indices and β diversity that considers community composition. To determine the dominant plant species, the variables like the Basal area, Relative Basal Area, Density, Relative Density, and Importance Value Index (IVI) were computed using the formula in accordance to Chowdhury et al. (2019).

Patterns of species diversity were analyzed using the common heterogeneity index (based on abundance and evenness) Shannon-Wiener index (H) based on the formula $H = -\sum p_i \ln p_i$ where, $p_i = n_i/N$ and $N =$ Total number of individuals $n_i =$ Number of individuals of a species.

To quantify species evenness Simpson’s equitability (E_D) based on the formula $E_D = D/D_{max}$ where D represents the calculated Simpson diversity, and Shannon’s Equitability (E_H) based on the formula $E_H = H/\ln S$, where S is the total number of species in the community, were both calculated. To be considered as truly more diverse, an area must show consistently higher values across all the selected indices. To visualize community structures and assessed the floristic similarities between the disturbed and undisturbed forests, a nonmetric multidimensional scaling (NMDS) based on Bray Curtis similarity distances and the semiparametric statistical test PERMANOVA based on 999 total permutations that performs classical partitioning for multivariate data while simultaneously retaining robust statistical properties for variables that are usually consists of counts or abundances for a variety of species (Anderson, 2017) were employed using the R scripts from Dagaet al. (2017) in the vegan package the R environment. For

the determination of the conservation statuses of selected species collected in the area, the local Department of Natural Resources (DENR) List of Threatened Species (2017) and the IUCN Red List of Threatened Species were consulted.

Results

Exhaustiveness of the survey

A total of 2227 individuals were contained in the two transects, with 1599 belonging to the disturbed forest and 628 belonging to the undisturbed forest. The rarefied curve showed that the disturbed transect contained 48.08 species per 628 individuals sampled, while the undisturbed transect contained 53 species per 628 individuals sampled, thus indicating that the disturbed transect has higher species richness compared to the disturbed transect. According to the Chao1 estimator (Table 1) generated using EstimateS, a total of 112.61 theoretical species are present in the disturbed transect, and 67.06 species are present in the undisturbed transect. This shows that sampling in the disturbed and undisturbed transect is 60.39% complete, and is 79.03% complete, respectively. This is the reason why our species accumulation curve (Figure 3) is still increasing and does not yet reach an asymptote.

Family composition and conservation status

A total of 106 species from 10 plots of disturbed agroforest and 10 plots of undisturbed stream bank area, for a total of 20 assessed plots, were recorded (Table 2). Overall, 83.96% were identified up to species level, 100% to genus level, and 100% to family level. Angiosperms accounted for 93.4% of the recorded taxa, with 49 families present. Pteridophytes accounted for 5.66%, with four families present. Only one species of gymnosperm was found (Gnetum gnetom Merr.). The most species-rich families from the recorded plots are Apocynaceae (nine species), Moraceae (eight species), and Rubiaceae (seven species). The ratio of the number of genus to the number of species per family ranged from 1:1 (Acanthaceae) to 1:4 (Moraceae). The floral composition between the

| Table 1. Summary of plant inventory in undisturbed (UND) and disturbed (DIS) forest patches of Aklan, Philippines. |
|---|---|---|
| **Basic data** | **DIS** | **UND** |
| Number of species | 68 | 53 |
| Number of Genera | 59 | 45 |
| Number of Family | 39 | 39 |
| Chao 1 estimated species | 112.61 | 67.06 |
| % Exhausitiveness | 60.39 | 79.03 |
| Diversity indices | | |
| Simpson’s Diversity Index (D) | 0.41 | 0.22 |
| Shannon-Wiener Index (H) | 1.54 | 1.91 |
| Simpson’s equitability (E_D) | 0.22 | 0.50 |
| Shannon’s equitability (E_H) | 0.56 | 0.81 |
disturbed forest and undisturbed forest showed dissimilarities (Table 2). As such, tree and shrub species belonging to the Apocynaceae family such as *Alstonia scholaris*, * Alyxia linearis*, * Cerbera manghas* is reported to the disturbed forest only but the tree species *Ervatamia pandacaqui* and * Hoya mariae* are reported only for the undisturbed forest. Moreover, floral species from families belonging to Araceae (three species), Araliaceae (three), Arecales (one), Asteraceae (two), Commelinaceae (one), Convulvulaceae (one), Costaceae (one), Davaallia (two), Dioscoreaceae (one), Euphorbiaceae (five), Fabaceae (two), Gentianaceae (one), Gnetaceae (one), Lamiaceae (three), Lygodiaceae (one), Malvae (two), Melatomataceae (one), Myrtaceae (one), Polygonaceae (one), Pteridaceae (two), Rosaceae (one), Rutaceae (two), Solanaceae (one), Thymelaceae (one), Vitaceae (one) were found only in the survey of the disturbed forest. On the other hand floral species from families belonging to Acanthaceae (one), Calophylaceae (one), Casuarinaceae (one), Clusiaceae (one), Dipterocarpaceae (two), Nepenthaceae (one), Pandanaceae (one), Phyllantaceae (one), Primulaceae (one), Rhamnaceae (one), Selaginellaceae (one), and Smilacaceae (one), were occurring only on the survey at the undisturbed forest.

These differences in the community composition was further ascertained in terms of community analysis, the nonmetric multidimensional scaling (NMDS) ordination (Figure 4, stress = 0.03) clearly showed the bifurcation in community structure between the disturbed and undisturbed sites. This indicates that the plant communities found in the two sites are significantly different (R = 0.224, p = 0.001) from each other. Of all the identified species, only 16.9% are endemic to the Philippines. 70.8% are indigenous, 12.4% are introduced or exotic species. Out of the introduced species, 2 are considered invasive (*Piper aduncum* L. & *Chromolaena odorata* (L.) R.M. King & H. Rob.). Based on the DENR Updated List of Threatened Philippine Plants and their Categories (2017), five species (*Pterocarpus indicus* Willd., *Shorea contorta* S. Vidal, *Alpinia elegans* (C. Presi) K. Schum., *Prunus grisea* Balkim., *Tristaniopsis decorticata* (Merr.) Peter G. Wilson & Waterhouse) are classified as “Vulnerable” and two are classified as “Other Threatened Species” (*Canarium ovatum* Engl., *Alyxia linearis* Markgr.). In addition, one species (*Artocarpus blancon* (Elmer) Merr.) is classified as “Vulnerable” according to IUCN standards.

Diversity assessments

The calculated importance value index (IVI) of the accumulated plants species determined the dominant species of plants within their respective habitat and plot. The disturbed forest showed high importance value for species of *Imperata cylindrica* (L.) Raesouh. (86.32), *Miscanthus floridulus* (Labill.) Warb ex K. Schum.&Lauterb. (30.02), and *Cocos nucifera* L. (156.64). Undisturbed forest showed high importance value for species of *Machaerina disticha* (C.B. Clarke) T. Koyama (42.10), *Garcinia rubra* Merr. (29.70), and *Casuarina equisitifolia* L. (120.55). For the combined computations of the two sampled forest, the dominant species were *Imperata cylindrica*, *Miscanthus floridulus*, and *Cocos nucifera* with their IVI values of 68.75, 20.80, and 70.24 respectively. In terms of species diversity, the Shannon-Wiener Index (H) calculations showed the same trend with undisturbed forest having a higher mean H than the disturbed forest (Table 1). For the index that takes into considerations evenness measurement, both Simpson’s equitability (E_s) and Shannon’s equitability (E_H) calculations showed greater values for the undisturbed forest in comparison to the disturbed forest (Table 1).

Discussion

Patterns of diversity

A clear pattern of higher diversity of undisturbed forest than the disturbed forest emerges as we look on the results of our diversity indices (Table 1) and the rarefied values (Figure 2) of species richness of the species accumulation curve. It is important to note that in our present study, there were no environmental parameters measured, thus providing an inadequacy to explain what accounts for the species present. Nevertheless, the lower richness of species on anthropogenically disturbed forest may suggest that local communities in the area heavily used much of the forest resources like woods for making charcoals, housing or even building furniture as a source of their livelihood income. This now implicates that anthropogenic factors (Ghosh et al.,

Figure 3. Smooth Species accumulation curve of disturbed and undisturbed areas generated using EstimateS.
Table 2. List of the plant species recorded in the disturbed (DIS) and undisturbed (UND) study areas with their families, habit (Beentje & Williamson, 2010) and conservation status as indicated by the DENR and IUCN.

FAMILY	TAXA	DIS	UND	TOTAL	HABIT	CONSERVATION STATUS	
ACANTHACEAE	Hemigraphis sp.	0	17	17	Herb	Not threatened	
ANACARDIACEAE	Buchanania arborescens (Blume) Blume	6	17	23	Tree	Not threatened	
	Semecarpus cuneiformis Blanco	2	11	13	Tree	Not threatened	
ANNONACEAE	Uvaria littoralis (Blume) Blume	3	0	3	Shrub	Not threatened	
APOCYNACEAE	Alstonia parvifolia Merr.	0	11	11	Tree	Not threatened	
	Alstonia scholaris (L.) R. Br.	1	0	1	Shrub	Not threatened	
	Alyxia linearis Markgr.	0	2	2	Shrub like	Other Threatened	
	Cerbera manghas L.	1	0	1	Tree	Not threatened	
	Eretamnia pandacoccii (Poir.) Pichon	0	3	3	Tree	Not threatened	
	Eretamnia subglobosa (Merr.) Pichon	0	1	1	Tree	Not threatened	
	Hoya mariae (Schltr.) L.Wanntorp & Meve	0	8	8	Vine	Not threatened	
	Hoya buoti Klokpenb.	0	8	8	Shrub	Not threatened	
	Voacanga globosa (Blanco) Merr.	0	3	3	Tree	Not threatened	
ARACEAE	Aglaonema commutatum Schott	1	0	1	Herb	Not threatened	
	Caladium bicolor (Alton) Vent.	1	0	1	Shrub	Not threatened	
	Homalomena philippinensis Engl.	2	0	2	Herb	Not threatened	
ARLIACEAE	Hydrocotyle vulgaris L.	2	0	2	Herb	Not threatened	
	Osmoylan yatesii (Merr.) Philipson	1	0	1	Shrub	Not threatened	
	Schefflera sp.	1	0	1	Shrub	Not threatened	
ARECACEAE	Cocoons nuciera L.	1	0	1	Tree	Not threatened	
ASTERACEAE/	Chromolaena odorata (L.) R.M. King & H. Rob.	14	0	14	Shrub	Not threatened	
COMPOSITAE	Pseudodephalontus spicatus (B.Juss. ex Aubl.) Rohr ex Gleason	22	0	22	Herb	Not threatened	
BURSERACEAE	Canarium hirsutum Willd.	3	1	4	Tree	Not threatened	
	Canarium ovatum Engl.	0	3	3	Tree	Other Threatened	
	CALOPHYLLACEAE	Calophyllum blancoi Planch. & Tiana	0	4	4	Shrub	Not threatened
	CASUARINACEAE	Casuarina equisetifolia L.	0	48	48	Tree	Not threatened
	CLUSIACEAE	Garcinia rubra Merr.	0	94	94	Tree	Not threatened
	COMMELINACEAE	Commelina diffusa Burm. F.	2	0	2	Herb	Not threatened
	CONVOLVULACEAE	Ipomoea batatas (L.) Poir.	1	0	1	Shrub	Not threatened
	COSTACEAE	Costus speciosus (J. Koenig) Sm.	1	0	1	Herb	Not threatened
	CYPERACEAE	Machaerina glomerata (Gaud.) Koyama	1	0	26	Graminoid	Not threatened
		Machaerina disticha (Clarke) Koyama	1	0	91	Graminoid	Not threatened
		Scleria srobcilatae Nees & Meyen	22	0	22	Graminoid	Not threatened
DAVALLIACEAE	Nephrolepis brownii (Desv.) Hovenkamp & Miyam.	73	0	164	Herb	Not threatened	
	Nephrolepis falcatum (Cav.) C. Chr.	71	0	23	Herb	Not threatened	
DIOCIOREACEAE	Dioscorea alata L.	3	0	3	Herb	Not threatened	
DIPTEROCARPACEAE	Shorea contorta S.Vidal	0	2	2	Tree	Vulnerable	
	Shorea guiso Blume	0	6	6	Shrub	Not threatened	
EUPHORBIACEAE	Acalypha amentacea Roxb.	4	0	4	Tree	Not threatened	
	Euphorbia hirta L.	1	0	1	Herb	Not threatened	
	Macaranga hispida (Blume) Mull.Arg.	3	0	3	Shrub	Not threatened	
	Macaranga tamarindus (L.) Mull. Arg.	1	0	1	Tree	Not threatened	
	Manihot esculenta Crantz	14	0	14	Shrub	Not threatened	
FABACEAE/LEMINOSAE	Mimosa pudica Leg.	13	0	13	Herb	Not threatened	
	Pterocarpus indicus Willd.	8	0	8	Tree	Vulnerable	
GENTIANACEAE	Fagarea racemosa Jack	2	0	2	Tree	Not threatened	
GNETACEAE	Gnetum gneton L.	1	0	1	Shrub	Not threatened	
HYPERICACEAE	Crataxyum sumatranum Blume	2	0	2	Tree	Not threatened	
LAMIACEAE	Callicarpa sp.	1	0	1	Shrub	Not threatened	
	Clinodendrum sp.	14	0	14	Shrub	Not threatened	
	Hypiptis capitata Jacq.	12	0	12	Shrub	Not threatened	
LAURACEAE	Litsea perrottetii (Blume) Fern.-Vill.	18	21	39	Tree	Not threatened	
LYGODIACEAE	Lygodium auriculatum Alston	1	0	1	Fern	Not threatened	
MALVACEAE	Sterculia rubiginosa Vent.	1	0	1	Shrub	Not threatened	
Urena lobata L.	3	0	3	Shrub	Not threatened		
MARANTACEAE	Doraes cannformis (G. Forst.) K. Schum.	19	7	26	Herb	Not threatened	
	Phynium pubinerve Blume	7	0	7	Shrub	Not threatened	
MELASTOMATACEAE	Medinilla quadrifolia Blume	1	0	1	Tree	Not threatened	
MELIACEAE	Lansium domesticum Corrêa	7	0	7	Shrub	Not threatened	
Voevea amicorum Benth.	3	0	3	Shrub	Not threatened		
MORACEAE	Artocarpus blancoi Merr.	1	1	2	Tree	Not threatened	
	Artocarpus ovatus Blanco	3	0	3	Shrub	Not threatened	
	Ficus mininassae Miq.	0	1	1	Tree	Not threatened	
	Ficus nata (Blanco) Merr.	8	0	8	Shrub	Not threatened	
	Ficus pseudopalmata Blanco	12	0	12	Shrub	Not threatened	
	Ficus septica Burm. F.	9	0	9	Shrub	Not threatened	

(Continued)
caused by unsustainable exploitation of forest resources have influence on the changing diversity patterns and species compositions (Aleign et al., 2007) in the area. In contrast with other similar floristic studies (Bhurban Hills, Borah et al., 2014; Goalpara district in Western Assam; Rabha, 2014; Rio de Janeiro, Carvalho et al., 2016; New South Wales, Garcia_Florez et al., 2017; Eastern Nepal; Gautam & Mandal, 2018, Arsi Mountains Ethiopia, Girma et al., 2018) our result concurred the similar trend of higher floral diversity for undisturbed forest in comparison to disturbed forest.

Community variations and structure between disturbed and undisturbed forest

A clear significant difference between the plant communities between the anthropogenically disturbed and undisturbed forests in Aklan were noted (Figure 4). Perhaps, the introduction of various plant species in the

FAMILY	TAXA	DIS	UND	TOTAL	HABIT	DENR	IUAN
MUSACEAE	Ficus sp. 1	0	1	1	Herb		
	Ficus sp. 2	1	0	1	Tree		
	Musa paradisiaca L.	106	31	38	Herb	Not threatened	
	Musa sp.	10	0	10	Herb		
MYRTICACEAE	Myristica philippinensis Gand.	3	1	4	Tree	Not threatened	
MYRTACEAE	Tristanopsis decorticata (Merr.) Peter G. Wilson & Waterhouse	1	0	3	Tree	Vulnerable	
NEPENTHACEAE	Nepenthis graciliflora Elmer	0	4	4	Epiphyte	Not threatened	
PANDANACEAE	Freycinetia sp.	0	21	21	Vine		
PHYLLANTHACEAE	Bridelia penangiana Hook. f.	0	1	1	Tree	Not threatened	
PIPERACEAE	Piper aduncum L.	19	2	21	Shrub	Not threatened	
	Piper sp.	1	0	1	Shrub		
POACEAE	Dinochloa luzoniea (Munro) Merr.	0	22	22	Graminoid	Not threatened	
	Imperata cylindrica (L.) Raeusch.	895	0	895	Graminoid	Not threatened	
	Miscanthus floridulus (Labill.) Warb. ex K. Schum. & Lauterb.	106	31	137	Graminoid	Not threatened	
	Phragmites karka (Retz.) Trin. ex Steud.	0	6	6	Graminoid	Not threatened	Least Concern
POLYGONACEAE	Coccocula uvifera (L.) L.	1	0	1	Shrub	Not threatened	
PRIMULACEAE	Myrsine sp.	0	16	16	Tree		
PTERIDACEAE	Pteris sp.	3	0	3	Fern		
	Pters vittata L.	1	0	1	Fern	Not threatened	Least Concern
RHAMNACEAE	Zaphiurus sp.	0	3	3	Shrub		
ROSACEAE	Prunus grisea Kalkman	4	0	4	Shrub	Vulnerable	Lower Risk/Least concern
RUBIACEAE	Antirhea sp.	0	28	28	Shrub		
	Musoaenda philippica A-Rich.	11	0	11	Shrub	Not threatened	
	Neonaucea formicaria (Elmer) Merr.	0	3	3	Shrub	Not threatened	
	Neonaucea puberula (Merr.) Merr.	0	3	3	Shrub	Not threatened	
	Psychotria sp.	0	9	9	Shrub		
	Uncaria radughiana Korth.	1	0	1	Shrub	Not threatened	
	Uncaria sp.	1	0	1	Shrub		
RUTACEAE	Eudia confusa Merr.	2	0	2	Herb	Not threatened	
	Micromelum minutum (G.Forst.) Wight & Arn.	1	0	1	Shrub	Not threatened	
SELAGINELLACEAE	Selaginella delicata (Desv. ex Poir.) Alston	0	15	15	Herb	Not threatened	
SMILACEAE	Smilax sp.	0	3	3	Shrub		
SOLANACEAE	Solanum torvum Sw.	2	0	2	Shrub	Not threatened	
THYMELAEACEAE	Phaleria perrottetiana (Decne.) Fern.-Vill.	1	0	3	Shrub	Not threatened	
URTICACEAE	Leucosyce capillitata Wedd.	18	21	39	Shrub	Not threatened	
	Oreoccline trinervis (Wedd.) Trin.	0	23	23	Tree	Not threatened	
VITACEAE	Lelea philippinensis Merr.	7	0	7	Shrub	Not threatened	
	Lelea sp.	2	0	2	Shrub		
	Tetrastigma loheri Gagnep.	1	0	1	Herb	Not threatened	
ZINGIBERACEAE	Alpinia elegans (C. Presl) K. Schum.	21	3	24	Herb	Vulnerable	

Figure 4. Nonmetric multidimensional scaling of species composition between disturbed and undisturbed forest types. Small dark dots represent the position of plant species in the ordination space. Big blue and red circles represent the 10 plots for each site; ellipses denote dispersion based on standard deviation of point scores.
disturbed community, may have contributed to the uneven distribution of species. Also, naturally occurring forest fires are rare in the Southeast Asian region, and thus, flora and fauna in the said region are more sensitive to human-induced disturbances than in other places such as the boreal regions. These kinds of disturbances may hinder floral reproductive success and thus alter floral demographics and distribution (Aizen & Feinsinger, 1994; Sodhi et al., 2009). At the same time, disturbance can disrupt the biotic interactions which are essential for the maintenance of the ecosystem’s integrity (Lefevre & Rodd, 2009). In the case of this study, it seems that similar with the report of Matson et al. (1997); agricultural expansions have provided anthropogenic alterations to the disturbed forest. Human forest disturbance threatens biodiversity through reduction of species richness in disturbed sites, and through introduction of species, some of which are invasive. Rising disturbance levels would threaten the robustness of forest structure, and thus negatively impact the forest ecosystem (Tripathi & Shankar, 2014). This is evident in our disturbed forest where it showed an abundance of weed species as well as cultivated plant species. In addition, our disturbed forest showed occurrences of all the introduced and invasive plant species in contrast to the undisturbed forest where only two individuals of introduced Piper aduncum L. was noted. Imperata cylindrica scored highest in importance value index of the disturbed forest. This is not that surprising since high occurrences of Imperata cylindrica is common to communities recovering from fires, as it is opportunistic, invasive, highly resistant to heat and water stress, and propagates through aggressive and easily-regenerating rhizomes (Aulakh et al., 2014; Brewer, 2008). Although, the area rarely experience natural forest fires, the slash and burn (kaingin) method used by the local people in the area allowed an opportunity for the weed species to spread in the disturbed forest. The same concept can be observed for the spread and dominance of the species Miscanthus floridulus for the plants in the same disturbed forest. In addition to this, Cocos nucifera is found to be the dominant species in terms of trees which measured 10 meters or more in height. This result can be attributed to the area being formerly used as a coconut plantation site.

With regards to our undisturbed forest, the species of Casuarina equisetifolia, Garcinia rubra, and Machaerina disticha were found to be dominant. Minimal human activities within the area of the undisturbed forest allowed the conservation of its native plant species. The presence and prevalence of the endemic species Garcinia rubra, which are frequently established within primary forests, (Pelser et al., 2011) in the area is an indicator that the fragment is indeed undisturbed. The topography of the forest fragment also contributed to the distribution of its dominant plant species Casuarina equisetifolia commonly found along sandy substrates that can extend inland in sandy valleys along streams, and could reach to a height of 800 meters (Orwal et al., 2009; Pelser et al., 2011). The inclusion of the introduced invasive species of Piper aduncum of the undisturbed plot might be due to the proximity (206.52 meters) of the quadrat to the disturbed forest fragment. Although the species are more common in disturbed forest, they are observed to span as much as 150 km beyond their dominated areas (Padmanaba & Sheil, 2014). Seed dispersal of the invasive species can be attributed to its succulent fruits being dispersed by birds or other animals (Starr et al., 2003). In general, almost all of the identified species of plant in the undisturbed forest were either indigenous or endemic to the area. This shows that even with its proximity, the overall ecological health of the undisturbed forest has not yet been fully influenced by introduced species at this point of time.

Implications for conservation measures

The presence of five vulnerable species (Pterocarpus indicus, Shorea contorta, Alpinia elegans, Prunus grisea, and Tristantiopsis decorticata) and two other threatened species (Canarium ovatum, Alyxia linearis) calls for an increase in conservation efforts, especially for Philippine endemic species. Also, the conduction of further sampling and assessment studies is recommended, especially in the disturbed forest, where sampling is less complete. Of the 15 endemic species sampled, 9 were found only in the undisturbed forest. At the same time both, disturbed and undisturbed forest showed occurrences of threatened species, suggesting that more conservation acts should be promoted in the area by the local government of the Philippines.

Acknowledgments

The researchers would like to thank the Thomasian Angiosperm Phylogeny and Barcoding Group and the Research Center for the Natural Sciences for allowing them to use their facilities. Hon. Frederick I. Rey and family for their hospitality during their stay in Malinao, the local field guides, the Philippine National Museum, specifically the Philippine National Herbarium, and the Commission on Higher Education.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Frederick A. Bautista http://orcid.org/0000-0002-6838-267X

Nikki Heherson A Dagamac http://orcid.org/0000-0002-5155-5415
References

Aizen, M. A., & Feinsinger, P. (1994). Forest fragmentation, pollination and plant reproduction in a chaco dry forest, Argentina. *Ecology*, 75(2), 330–351. https://doi.org/10.2307/1939538

Aleinig, A., Teketay, D., Yemshaw, Y., & Edwards, S. (2007). Diversity and status of regeneration of woody plants on the peninsula of Zegie, Northwestern Ethiopia. *Tropical Ecology*, 48, 37–49.

Alsherif, E. A., & Fadl, M. A. (2016). Floristic study of the Al-Shafa highlands in Taif, Western Saudi Arabia. *Flora*, 225, 20–29. https://doi.org/10.1016/j.flora.2016.09.004

Anderson, M. J. (2017). Permutational multivariate analysis of variance (PERMANOVA). In *Wiley Statsref: Statistical reference online* (pp. 1–15). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07841

Aulakh, J. S., Enloe, S. F., Loewenstein, N. J., Price, A. J., Wehtje, G., & Miller, J. H. (2014). Pushing toward Cogongrass (*Imperata cylindrica*) patch eradication: The Influence of herbicide treatment and application timing on cogongrass rhizome elimination. *Invasive Plant Sci. Manag.*, 7(3), 398–407. https://doi.org/10.1614/IPSM-D-13-00055.1

Beentje, H., & Williamson, J. (2010). *An illustrated dictionary of plant terms*. Surrey, Kew: Richmond.

Bongers, F., Poorter, L., Hawthorne, W. D., & Sheil, D. (2009). The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. *Ecology Letters*, 12(8), 798–805. https://doi.org/10.1111/j.1461-0248.2009.01329.x

Borah, N., Athokpam, F. D., Garkoti, S. C., Das, A. K., & Hore, D. K. (2014). Structural and compositional variations in undisturbed and disturbed tropical forests of Bhuban hills in South Assam, India. *International Journal of Biodiversity Science, Ecosystem Services & Management*, 10(1), 9–19. https://doi.org/10.1080/21513732.2013.873823

Brewer, S. (2008). Declines in plant species richness and endemic plant species in longleaf pine savannas invaded by *Imperata cylindrica*. *Ecological Invasions*, 10(8), 1257–1264. https://doi.org/10.1007/s10350-007-9200-3

Broadbent, E. N., Asner, G. P., Keller, M., Knapp, D. E., Oliveira, P. J., & Silva, J. N. (2008). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. *Biological Conservation*, 141(7), 1745–1757. https://doi.org/10.1016/j.biocon.2008.04.024

Carvalho, F. A., Braga, J. M. A., & Nascimento, M. T. (2016). Tree structure and diversity of lowland Atlantic forest fragments: Comparison of disturbed and undisturbed remnants. *Journal of Forest Research*, 27(3), 605–609. https://doi.org/10.1007/s11676-015-0165-2

Caviedes, J., & Ibarra, J. T. (2017). Influence of anthropogenic disturbances on stand structural complexity in Andean temperate forests: Implications for managing key habitat for biodiversity. *PloS One*, 12(1), e0169450. https://doi.org/10.1371/journal.pone.0169450

Chai, Z., Fan, D., & Wang, D. (2016). Environmental factors and underlying mechanisms of tree community assemblages of pine-oak mixed forests in the Qinling Mountains, China. *Journal of Plant Biology*, 59(4), 347–357. https://doi.org/10.1007/s12374-015-0503-0

Chao, A., Xhazdon, R. L., Colwell, R. K., & Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. *Ecology Letters*, 8(2), 148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x

Chowdhury, M. A., Islam, K. N., Hafiz, N., & Islam, K. (2019). Diversity of trees in a community managed forest: The case of Komolchori VCF, Khagrachari, Bangladesh. *Geology, Ecology, and Landscapes*, 3(2), 95–103. https://doi.org/10.1080/24795088.2018.1508980

Collins, C. D., Banks-Leite, C., Brudvig, L. A., Foster, B. L., Cook, W. M., Damschen, E. I., Andrade, A., Austin, M., Camargo, J. L., Driscoll, D. A., Holt, R. D., Laurance, W. F., Nicholls, A. O., & Orrock, J. L. (2017). Fragmentation affects plant community composition over time. *Ecography*, 40(1), 119–130. https://doi.org/10.1111/ecog.02607

Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples. Version 7. User’s Guide and application. Retrieved April 23, 2014, from. http://purl.oclc.org/estimates

Dagmac, N. H. A., Novozhilov, Y. K., Stephenson, S. L., Lado, C., Rojas, C. A., Dela Cruz, T. E. E., Unterseer, M., & Schnitjer, M. (2017). Biogeographical assessment of myxomycete assemblages from Neotropical and Asian Palaeotropical forest. *Journal of Biogeography*, 44(7), 1524–1536. https://doi.org/10.1111/jbi.12985

Department of Environmental and Natural Resources. 2017. *DENR administrative order* (No. 2017–11). PH Gov

Dieder, J., Uhl, E., Biber, P., Müller, J., Rötzter, T., & Pretzsch, H. (2017). Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. *European Journal of Forest Research*, 136(4), 739–766. https://doi.org/10.1007/s10342-017-1056-1

Fuller, R. J., Williamson, T., Barnes, G., & Dolman, P. M. (2017). Human activities and biodiversity opportunities in pre-industrial cultural landscapes: Relevance to conservation. *Journal of Applied Ecology*, 54(2), 459–469. https://doi.org/10.1111/1365-2664.12762

Garcia Florez, L., Vanclay, J. K., Glencross, K., & Nichols, D. (2017). Understanding 48 years of changes in tree diversity, dynamics and species responses since logging disturbance in a subtropical rainforest. *Forest Ecology and Management*, 393, 29–39. https://doi.org/10.1016/j.foreco.2017.03.012

Gautam, T., & Mandal, T. (2018). Effects of disturbance on plant diversity in moist tropical forest of eastern Nepal. *Our Nature*, 16(1), 1–7. https://doi.org/10.3126/on.v16i11.21558

Ghosh, M. K., Kumar, L., & Roy, C. (2016). Mapping long-term changes in mangrove species composition and distribution in the Sundarbans. *Forest*, 7(12), 305. https://doi.org/10.3390/f7120305

Gill, N. S., Jarvis, D., Veblen, T. T., Pickett, S. T., & Kulakowski, D. (2017). Is initial post-disturbance regeneration indicative of longer-term trajectories? *Ecosphere*, 8(8), e01924. https://doi.org/10.1002/ecs2.1924

Girma, Z., Chuyong, G., Evangelista, P., & Mamo, Y. (2018). Vascular plant species composition, relative abundance, distribution and threats in Arsí Mountains National Park, Ethiopia. *Mountain Research and Development*, 38(2), 143–152. https://doi.org/10.1659/MRD-JOURNAL-D-17-00061.1

IUCN List of Threatened Species. 2016. Retrieved February 10, 2017, from. http://www.iucnredlist.org/search

Kern, C. C., Schwarzmüller, J., Kabrick, J., Gerndt, K., Boyden, S., & Stanovick, J. S. (2019). Mounds facilitate regeneration of light-seeded and browse-sensitive tree species under moderate-severity wind disturbance. *Forest*
predictors of marine biodiversity across taxa. Nature, 466 (7310), 1098–1101. https://doi.org/10.1038/nature09329
Tripathi, A. K., & Shankar, U. (2014). Patterns of species dominance, diversity and dispersion in ‘Khasi hillsal’ forest ecosystem in Northeast India. Forest Ecosystems, 1 (1), 23. https://doi.org/10.1186/s40663-014-0023-2
Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M., & Hector, A. (2016). Understanding the value of plant diversity for ecosystem functioning through niche theory. Proceedings of the Royal Society B: Biological Sciences, 283 (1844), 20160536. https://doi.org/10.1098/rspb.2016.0536
Villanueva, E. L. C., & Buot, I. E., Jr. (2015). Threatened Plant Species of Mindoro, Philippines. IAMURE International Journal of Ecology and Conservation, 14 (1), 168. https://doi.org/10.7718/ijec.v14i1.901
Yates, C. J., Robinson, T., Wardell-Johnson, G. W., Keppel, G., Hopper, S. D., Schut, A. G., & Byrne, M. (2019). High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecology and Evolution, 9(13), 7660–7675. https://doi.org/10.1002/ece3.5318