GALOIS LINES FOR NORMAL ELLIPTIC SPACE CURVES, II

Hisao Yoshihara

Department of Mathematics, Faculty of Science, Niigata University,
Niigata 950-2181, Japan
E-mail:yoshihara@math.sc.niigata-u.ac.jp

Abstract. For each linearly normal elliptic curve C in \mathbb{P}^3, we determine Galois lines and their arrangement. The results are as follows: the curve C has just six V_4-lines and in case $j(C) = 1$, it has eight Z_4-lines in addition. The V_4-lines form the edges of a tetrahedron, in case $j(C) = 1$, for each vertex of the tetrahedron, there exist just two Z_4-lines passing through it. We obtain as a corollary that each plane quartic curve of genus one does not have more than one Galois point.

key words and phrases : Galois line, space elliptic curve, Galois covering

2000 Mathematics Subject Classification number : 14H50, 14H52

1. Introduction

This is a continuation of [1], where we found three V_4-lines for each linearly normal elliptic curve C in \mathbb{P}^3, and four Z_4-lines for such curve C with $j(C) = 1$. However, those lines are not all the ones. In this article we determine all Galois lines and describe their arrangement. First let us recall the definition of Galois lines briefly.

Let k be the ground field of our discussion, we assume it to be algebraically closed, later we assume it the field \mathbb{C} of complex numbers. Let C be a smooth irreducible non-degenerate curve of degree d in the projective three space \mathbb{P}^3 and ℓ a line in \mathbb{P}^3 not meeting C. Let $\pi_\ell : \mathbb{P}^3 \to \ell_0$ be the projection with center ℓ, where ℓ_0 is a line not meeting ℓ. Restricting π_ℓ to C, we get a surjective morphism $\pi_\ell|_C : C \to \ell_0$ and hence an extension of fields $(\pi_\ell|_C)^* : k(\ell_0) \hookrightarrow k(C)$, where $[k(C) : k(\ell_0)] = d$.

Note that the extension of fields does not depend on ℓ_0, but on ℓ.

Definition 1. The line ℓ is said to be a Galois line for C if the extension $k(C)/k(\ell_0)$ is Galois, or equivalently, if $\pi_\ell|_C$ is a Galois covering. In this case $\text{Gal}(k(C)/k(\ell_0))$ is said to be the Galois group for ℓ and denoted by G_ℓ.

If ℓ is the Galois line, then each element $\sigma \in G_\ell$ induces an automorphism of C over ℓ_0. We denote it by the same letter σ. Hereafter, assume C is linearly normal, i.e., the hyperplanes cut out the complete linear series $|\mathcal{O}_C(1)|$. Then, the automorphism σ can be extended to a projective transformation of \mathbb{P}^3, which will be also denoted by the same letter σ.

We use the following notation and convention:

- V_4 : the Klein 4-group
- Z_4 : the cyclic group of order four
- \sim : the linear equivalence of divisors
- $\text{Aut}(C)$: the automorphism group of C
\[L(D) := \{ f \in k(C) \setminus \{0\} \mid \text{div}(f) + D \geq 0 \} \cup \{0\}, \text{ where div}(f) \text{ is the divisor of } f \text{ and } D \text{ is a divisor on } C. \]

\[\langle \cdots \rangle : \text{the group generated by the set } \{ \cdots \} \text{ or the linear subvariety spanned by the set } \{ \cdots \} \]

\[V(F) : \text{the variety defined by } F = 0 \]

\[C \cdot H : \text{the intersection divisor of } C \text{ and } H \text{ on } C, \text{ where } H \text{ is a plane.} \]

\[\ell_{PQ} : \text{the line passing through } P \text{ and } Q \]

2. Statement of Results

We assume \(k = \mathbb{C} \) and use the same notation as in [1].

Definition 2. When \(\ell \) is a Galois line for \(C \) and \(G_\ell \cong V_4 \) (resp. \(Z_4 \)), we call \(\ell \) a \(V_4 \)-line.

There exist \(V_4 \)-lines for the curve which is given by an intersection of hypersurfaces as follows.

Lemma 1. Suppose \(S_1 \) and \(S_2 \) are irreducible quadratic surfaces in \(\mathbb{P}^3 \) satisfying the following conditions:

1. \(S_i \) (\(i = 1, 2 \)) has a singular point \(Q_i \) and \(Q_1 \neq Q_2 \).
2. \(S_1 \cap S_2 \) is a smooth curve \(\Delta \).
3. The line \(\ell \) passing through \(Q_1 \) and \(Q_2 \) does not meet \(\Delta \).

Then, \(\Delta \) is a linearly normal elliptic curve and \(\ell \) is a \(V_4 \)-line for \(\Delta \).

Let \(C \) be a linearly normal elliptic curve in \(\mathbb{P}^3 \). Then, there exists a divisor \(D \) of degree four on an elliptic curve \(E \) such that \(C \) is given by an embedding of \(E \) associated with the complete linear system \(|D| \). Note that \(C \) can be expressed as an intersection of two quadratic surfaces.

Lemma 2. There exist just four irreducible quadratic surfaces \(S_i \) (\(0 \leq i \leq 3 \)) such that each \(S_i \) has a singular point and contains \(C \). Let \(Q_i \) be the unique singular point of \(S_i \). Then the four points are not coplanar.

Remark 3. Let \(\pi_Q : \mathbb{P}^3 \to \mathbb{P}^2 \) be the projection with center \(Q \in \mathbb{P}^3 \setminus C \). If \(\pi_Q \) induces a 2 to 1 morphism from \(C \) onto its image in Lemma 2 then \(Q \) coincides with one of \(Q_i \).

The main theorem is stated as follows:

Theorem 1. For each linearly normal elliptic curve in \(\mathbb{P}^3 \), there exist four non-coplanar points \(Q_i \) (\(0 \leq i \leq 3 \)) such that the lines passing through each two of them are \(V_4 \)-lines for \(C \). Namely, all the \(V_4 \)-lines form the six edges of a tetrahedron. Further, if the Weierstrass normal form of \(E \) is given by \(y^2 = 4(x-e_1)(x-e_2)(x-e_3) \), then we can present explicitly the coordinates of \(Q_i \) (by taking a suitable coordinates of \(\mathbb{P}^3 \)) as follows:

\[Q_0 = (0 : 0 : 0 : 1) \text{ and } Q_i = (1 : -c_i : e_i : 0), \quad (i = 1, 2, 3), \]

where \(c_i = e_i^2 + e_j e_k \) such that \(\{i, j, k\} = \{1, 2, 3\} \).
Remark 4. In the case of an elliptic curve E in \mathbb{P}^2, it has a Galois point if and only if $j(E) = 0$, and then it has just three \mathbb{Z}_3-points.

In the case where the j-invariant $j(C) = 1$, there exists an automorphism of order four with a fixed point. This curve has the other Galois lines as follows.

Theorem 2. Under the same assumption as in Theorem 1, if $j(C) = 1$, then there exist eight \mathbb{Z}_4-lines (in addition to the V_4-lines). To state in more detail, for each vertex Q_i ($0 \leq i \leq 3$) of the tetrahedron in Theorem 1, there exist two \mathbb{Z}_4-lines passing through it. Therefore, for each vertex, there exist three V_4-lines and two Z_4-lines passing through it and the total number of Galois lines is fourteen. Two Z_4-lines do not meet except at one of the vertices.

Let Σ be the set of six V_4-lines in Theorem 1. In the case where $j(C) = 1$ let Σ' be the set of eight Z_4-lines in Theorem 2. The following corollary is an answer to the question for the case of outer Galois point [3, Theorem 2].

Corollary 5. For a plane quartic curve Γ with genus one, the number of (outer) Galois points is at most one. If Γ has the Galois point, then the Galois group G is isomorphic to V_4 or \mathbb{Z}_4. Further, if $G \cong V_4$ (resp. Z_4), then Γ is obtained by a projection $\pi_Q : \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ with center Q, where $Q \in \Sigma$ (resp. $Q \in \Sigma'$) such that $Q \neq Q_i$ ($0 \leq i \leq 3$).

Remark 6. Different from the case of the space quartic curve, a plane quartic curve of genus one does not necessarily have a Galois point.

Remark 7. Since C is given by the embedding associated with a complete linear system and has a Galois line, the embedding is called a Galois embedding, which has been defined in [6].

3. Proofs

First we prove Lemma 1. It is easy to see that Δ has genus one and $\dim H^0(\Delta, O_\Delta(1)) = 4$. Hence Δ is a linearly normal elliptic curve. Let π_{Q_i} be the projection $\mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ with center Q_i ($i = 1, 2$) and put $\Delta_i = \pi_{Q_i}(\Delta) \subset \mathbb{P}^2$ and $R_i = \pi_{Q_i}(\ell \setminus \{Q_i\})$. Then Δ_i is a conic and R_i is a point not on Δ_i. Let ϖ_{R_i} be the projection $\mathbb{P}^2 \dashrightarrow \mathbb{P}^1$ with center R_i. Restricting ϖ_{R_i} to Δ_i, we get a surjective morphism $\varpi_{R_i}|_{\Delta_i} : C_i \dashrightarrow \mathbb{P}^1$. Therefore we have two morphisms

$$\pi_i = \varpi_{Q_i} \circ \pi_{Q_i} : \Delta \dashrightarrow \mathbb{P}^1$$
of degree four. They coincide with the restriction of the projection \(\pi_\ell : \mathbb{P}^3 \to \mathbb{P}^1 \). Note that \(k(\Delta_1) \) and \(k(\Delta_2) \) are distinct subfields of \(k(\Delta) \) and \([k(\Delta) : k(\Delta_i)] = [k(\Delta_i) : k(\mathbb{P}^1)] = 2 \). We infer that \(k(\Delta) \) is a \(V_4 \)-extension of \(k(\mathbb{P}^1) \), hence \(\pi_\ell|_\Delta \) is a \(V_4 \)-Galois covering. This proves Lemma 1.

Fix a universal covering \(\pi : C \to C/\mathcal{L} \), where \(\mathcal{L} \) is the lattice in \(C \) defining a complex torus. We assume \(\mathcal{L} = \mathbb{Z} + \mathbb{Z} \omega \), where \(\Im \omega > 0 \). Let \(\wp(z) \) be the Weierstrass \(\wp \)-function with respect to \(\mathcal{L} \). Then, the map \(\phi : C \to E \) defined by \(\phi(z) = (\wp(z) : \wp'(z) : 1) \), induces an isomorphism \(\bar{\phi} : C/\mathcal{L} \to E \). The defining equation of the elliptic curve \(E \) is the Weierstrass normal form \(y^2 = 4x^3 + px + q \).

We assume it to be factored as \(4(x - e_1)(x - e_2)(x - e_3) \). Put \(P_\alpha = \phi(\alpha) \) for \(\alpha \in \mathbb{C} \).

Denote by \(+ \) the sum of divisors on \(E \) and, at the same time, the sum of complex numbers. For example, \(P_\alpha + P_\beta \) and \(\alpha + \beta \) denote the sum of divisors and complex numbers respectively.

\textbf{Lemma 8.} We have the linear equivalence of divisors on \(E \):
\[P_\alpha + P_\beta \sim P_{\alpha + \beta} + P_0. \]

\textit{Proof.} This may be well-known. See, for example, [2, Ch. IV, Theorem 4.13B]. \(\Box \)

\textbf{Lemma 9.} Let \(D \) be the divisor of degree four on \(E \). By taking a suitable translation \(\tau \) on \(E \), we have \(\tau^*(D) \sim 4P_0 \).

\textit{Proof.} Suppose \(D = \sum_{i=1}^4 P_{\alpha_i} \). Then, take \(\beta = -\sum_{i=1}^4 \alpha_i/4 \). Let \(\tau \) be the translation on \(E \) induced from the one \(z \mapsto z + \beta \) on \(\mathbb{C} \). Then we have \(\tau^*(D) = \sum_{i=1}^4 P_{\alpha_i + \beta} \).

Using Lemma 8 we get \(\tau^*(D) \sim 4P_0 \). \(\square \)

Let \(D \) be a hypeplane section of \(C \). Applying Lemma 9, we see that there exists an elliptic curve \(C_0 \) in \(\mathbb{P}^3 \) given by the embedding associated with \(|4P_0| \) and an isomorphism \(\psi : \mathbb{P}^3 \to \mathbb{P}^3 \) satisfying that \(\psi(C_0) = C \) and \(4P_0 \sim \psi^*(D) \). So that we have the following lemma.

\textbf{Lemma 10.} We can assume \(C \) is given by the embedding associated with \(|4P_0| \).

Therefore it is sufficient for our purpose to consider the curve embedded by \(|4P_0| \). Let \(\phi : E \to C \subset \mathbb{P}^3 \) be the embedding of \(E \) associated with \(|4P_0| \).

\begin{center}
\begin{tikzpicture}
 \node (C) at (0,0) {C};
 \node (pi) at (-2,-2) {π};
 \node (C-L) at (-4,-4) {C/\mathcal{L}};
 \node (varphi) at (-2,-3) {φ};
 \node (varphi-L) at (-4,-5) {$\bar{\varphi}$};
 \node (phi) at (-2,-4) {ϕ};
 \node (E) at (0,-4) {E};
 \node (C-C) at (0,-2) {$C \subset \mathbb{P}^3$};

 \draw[->] (C) -- (pi);
 \draw[->] (pi) -- (C-L);
 \draw[->] (C-L) -- (varphi-L);
 \draw[->] (varphi-L) -- (varphi);
 \draw[->] (varphi) -- (phi);
 \draw[->] (phi) -- (E);
 \draw[->] (E) -- (C-C);
\end{tikzpicture}
\end{center}

In order to study the number and arrangement of Galois lines, we provide some lemmas. Let \(\mathcal{S} \) and \(\mathcal{G} \) be the set of Galois lines for \(C \) and the set of subgroups of
Proof. Since a Galois line ℓ determine the Galois group G_{ℓ} in $\text{Aut}(C)$ uniquely, we can define the following map.

Definition 3. We define an arrangement-map $\rho : S \rightarrow G$ by $\rho(\ell) = G_{\ell}$.

We study the map ρ in detail. Note that each element of G_{ℓ} can be extended to a projective transformation. That is, we have a faithful representation $r : G_{\ell} \rightarrow \text{PGL}(3, \mathbb{C})$.

Lemma 11. The map ρ is injective.

Proof. For two elements ℓ_i of S ($i = 1, 2$), suppose $\rho(\ell_1) = \rho(\ell_2)$ and $\ell_1 \neq \ell_2$. Then, the following two cases take place:

(i) $\ell_1 \cap \ell_2$ consists of one point P.
(ii) $\ell_1 \cap \ell_2 = \emptyset$.

In the case (i), for a general point $Q \in C$, put $H_iQ = \langle \ell_i, Q \rangle$ ($i = 1, 2$) : the plane spanned by ℓ_i and Q. Since $G_{\ell_1} = G_{\ell_2}$, we have $H_iQ \cap \ell_0 = H_2Q \cap \ell_0 = \{R\}$, where ℓ_0 is the line defined in Introduction. Further, since $\pi_{\ell_i}(H_1Q \cap C) = \pi_{\ell_2}(H_2Q \cap C) = R$, the set of four points $H_1Q \cap C$ is equal to that of $H_2Q \cap C$ and they lie on the line $H_1Q \cap H_2Q$, which passes through P. This implies C is contained in the plane spanned by ℓ_0 and P. Since C is assumed to be non-degenerate, this is a contradiction. Next we treat the case (ii). Similarly, for a general point $Q \in C$, put $H_iQ = \langle \ell_i, Q \rangle$. Then, by the same argument as above, the four points $H_1Q \cap C$ and $H_2Q \cap C$ lie on the line $H_1Q \cap H_2Q$. Thus C is contained in a rational normal scroll Σ. However, $H_iQ \cap \Sigma$ is a line, so that Σ must be a plane. This is a contradiction. \qed

We present a criterion when $G \subset \text{Aut}(C)$ can be the image of an element of S. See [3] Theorem 2.2 for a similar one. Hereafter we use the notation $P_\alpha' = \phi(P_\alpha) = (\phi\varphi)_{(\alpha)} \in C$ for brevity.

Lemma 12. A subgroup $G = \{\sigma_1, \ldots, \sigma_4\}$ of $\text{Aut}(C)$ is an image of ρ if and only if G satisfies the following condition (\odot):

(\odot) For each point $Q \in C$ the divisor $\sum_{i=1}^4 \sigma_i(Q)$ is linearly equivalent to $4P_0'$ and C/G is a rational curve.

Proof. If $G = \rho(\ell)$, then clearly $C/G \cong \mathbb{P}^1$. Take a plane H satisfying that $H \ni \ell$ and $H \ni Q$. By definition the point $\sigma_i(Q)$ ($1 \leq i \leq 4$) lies on H, hence the divisor is linearly equivalent to $4P_0'$. Conversely, for a point $Q \in C$, put $D = \sum_{i=1}^4 \sigma_i(Q)$. By assumption we have $D \sim 4P_0'$, hence G acts on $H^0(C, \mathcal{O}_C(1))$. Therefore each element of G can be extended to a projective transformation. Letting $\pi : C \rightarrow C/G \cong \mathbb{P}^1$, we take independent sections s_0 and s_1 of $H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))$ and put $\tilde{s}_i = \pi^*(s_i)$ ($i = 1, 2$). Then we have $\sigma^*(\tilde{s}_i) = \tilde{s}_i$. Taking a basis of $H^0(C, \mathcal{O}_C(1))$ containing \tilde{s}_1 and \tilde{s}_2, we obtain a Galois line ℓ such that $\rho(\ell) = G$. \qed

We study whether $\ell_1 \cap \ell_2 = \emptyset$ or $\neq \emptyset$ by observing $G_{\ell_1} \cap G_{\ell_2}$ in $\text{Aut}(C)$.

Lemma 13. Suppose ℓ_1 and ℓ_2 are distinct Galois lines. Then, the following two cases take place.

1. If $\ell_1 \cap \ell_2 = \emptyset$, then $G_{\ell_1} \cap G_{\ell_2} = \{\text{id}\}$ in $\text{Aut}(C)$.
2. If $\ell_1 \cap \ell_2$ is a point P, then it is a singular point of some quadratic surface containing C. Further, we have $G_{\ell_1} \cap G_{\ell_2} = \langle \sigma \rangle$, where σ has order two and has a fixed point as an automorphism of C.

Proof. Take an element \(\sigma \in G_{\ell_1} \cap G_{\ell_2} \). It can be extended to a projective transformation. Since every plane \(H_i \) containing \(\ell_i \) is invariant by \(\sigma \), we infer \(\sigma|_{\ell_i} = \ell_i \) (\(i = 1, 2 \)). Therefore, for each hyperplane \(H_1 \supset \ell_1 \), if \(H_1 \cap \ell_2 = \{ Q \} \), then \(\sigma|Q = Q \), i.e., \(\sigma|_{\ell_2} = \text{id} \). By the same argument we also have \(\sigma|_{\ell_1} = \text{id} \). Since \(\ell_1 \cap \ell_2 = \emptyset \), \(\sigma \) is identity on \(\mathbb{P}^3 \). Next we treat the second case. Suppose \(\ell_1 \cap \ell_2 \) consists of one point \(P \). Then, for each point \(Q \in C \), put \(H_{iQ} = \langle \ell_i, Q \rangle \) and \(\ell_Q = H_{1Q} \cap H_{2Q} \). Since \(H_{iQ} \supseteq \ell_Q \) for \(i = 1 \) and \(2 \), we have \(\sigma|Q \in \ell_Q \). Therefore \(C \) is contained in the cone passing through \(P \). Clearly the order of \(\sigma \) is two. Since the quotient curve \(C/\langle \sigma \rangle \) is isomorphic to \(\mathbb{P}^1 \), the \(\sigma \) has a fixed point in \(C \).

From Lemma [13] we infer the following remark.

Remark 14. Let \(\ell \) be a Galois line and take a point \(P \in \ell \). Let \(\pi_P : \mathbb{P}^3 \rightarrow \mathbb{P}^2 \) be a projection with center \(P \). If \(P \) is not the vertex of the tetrahedron, then \(\pi_P(\ell \setminus \{ P \}) \) is a Galois point for the quartic curve \(\pi_P(C) \). However, if \(P \) is the one, then \(\pi_P|_C \) turns out to be a 2 to 1 morphism onto its image and \(\pi_P(C) \) is a conic in \(\mathbb{P}^2 \).

Hereafter we denote by \(\sigma_i \) (\(0 \leq i \leq 3 \)) an automorphism of \(E \) such that the representation on \(\mathbb{C} \) is

\[
\sigma_0(z) = -z, \quad \sigma_1(z) = -z + \frac{1}{2}, \quad \sigma_2(z) = -z + \frac{\omega}{2}, \quad \sigma_3(z) = -z + \frac{1+\omega}{2}.
\]

Lemma 15. The number of \(V_4 \)-lines is at most six.

Proof. Suppose \(C \) has a \(V_4 \)-line \(\ell \). Then, let \(H \) be a plane containing \(\ell \) and \(P_0' \). Since \(\pi_{\ell|C} : C \rightarrow \mathbb{P}^1 \) is a \(V_4 \)-covering, the intersection divisor \(H \cdot C \) on \(C \) can be expressed in one of the following two types:

\[
\begin{align*}
\text{(i)} & \quad H \cdot C = 2P_0' + 2P_1' \\
\text{(ii)} & \quad H \cdot C = P_0' + P_1' + P_2' + P_3'.
\end{align*}
\]

Suppose \(G = \langle \sigma, \tau \rangle \), where

\[
\sigma(z) = -z + \alpha \quad \text{and} \quad \tau(z) = z + \beta
\]

on the universal covering \(\mathbb{C} \), where \(2\beta \equiv 0 \pmod{\mathbb{L}} \) and \(\beta \not\equiv 0 \pmod{\mathbb{L}} \). The case (i) (resp. (ii)) occurs when \(\alpha \equiv 0 \pmod{\mathbb{L}} \) (resp. \(\alpha \not\equiv 0 \pmod{\mathbb{L}} \)) in \(\mathbb{L} \). We consider the possibility of \(\alpha \not\equiv 0 \), i.e., we treat the case (ii). Since \(H \cdot C \) is invariant by the action of \(G \), it can be expressed as \(P_0' + P_1' + P_2' + P_3' \). Since this is linearly equivalent to \(4P_0' \), we infer

\[
\begin{align*}
\text{(2)} & \quad P_{\alpha} + P_{\beta} + P_{\alpha+\beta} \sim 3P_0
\end{align*}
\]

on \(E \). The left hand side of (2) is linearly equivalent to \(P_{2(\alpha+\beta)} + 2P_0 \) by Lemma [8]. Therefore we have \(P_{2(\alpha+\beta)} \sim P_0 \). This implies \(2(\alpha + \beta) \equiv 0 \pmod{\mathbb{L}} \), i.e., \(2\alpha \equiv 0 \pmod{\mathbb{L}} \). Then, let us find the distinct subgroups \(G \) of \(\text{Aut}(C) \) such that \(G \) is generated by order two elements. By taking two from \(\sigma_i \) (\(0 \leq i \leq 3 \)), we have six subgroups \(G_{ij} = \langle \sigma_i, \sigma_j \rangle \), where \(0 \leq i < j \leq 3 \). Clearly \(G_{ij} \cong V_4 \). For example, \(G_{12} = \{ \text{id}, \sigma_1, \sigma_2, \sigma_1\sigma_2 \} \), where \((\sigma_1\sigma_2)(z) = z + (1 + \omega)/2 \).

Lemma 16. Putting \(a_i = (e_i - e_j)(e_i - e_k) \), we have

\[
\sigma_0^*(x) = x, \quad \sigma_0^*(y) = -y
\]
Lemma 17. Using the same notation K formulas of \mathcal{P} the point Q coordinates on P σ, φ, ρ bedding π \mathcal{P} \mathcal{L}, \mathcal{L} \mathcal{P} σ_i, σ_j $F_i = XY - Z^2$ and $F_2 = 4YZ + pXZ + qX^2 - W^2$.

Lemma 17. Using the same notation $G_{ij} = \langle \sigma_i, \sigma_j \rangle$ as in the proof of Lemma 15, we denote by $K_{ij} = k(x, y)G_{ij}$ the fixed subfield of $k(x, y)$ by G_{ij}. Then we have $K_{0i} = k \left(\frac{x^2 + c_i}{x - c_i} \right)$, where $1 \leq i \leq 3$ and $1 \leq i < j \leq 3$ and $(k - i)(k - j) \neq 0$. In particular, the Galois lines which correspond to G_{0i} and G_{ij} by the arrangement-map ρ are $Y + c_iX = Z - c_iX = 0$ and $c_kX - Y + 2c_kZ = W = 0$ respectively.

Proof. By making use of Lemma 16, we can check the assertions by direct calculations. □

Now we proceed with the proof of Lemma 17. Let $S = V(F)$ be a surface containing C. Then F can be expressed as $\lambda_1 F_1 + \lambda_2 F_2$, where $(\lambda_1 : \lambda_2) \in \mathbb{P}^1$. In case $\lambda_2 = 0$, the point $Q_0 = (0 : 0 : 0 : 1)$ is the singular point of $V(F_1)$. On the other hand, in case $\lambda_0 \neq 0$, put $b = \lambda_1/\lambda_0$. So we assume $F = bF_1 + F_2$. Consider the condition that $V(F)$ has a singular point, i.e., consider the simultaneous linear equations

(3) \[F_X = F_Y = F_Z = F_W = 0. \]

This is equivalent to consider the rank of the matrix

(4) \[M_b = \begin{pmatrix} 2q & b & p & 0 \\ b & 0 & 4 & 0 \\ p & 4 & -2b & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}. \]
The equations \(Q \) have a non-trivial solution if and only if
\[
(5) \quad b^3 + 4pb - 16q = 0.
\]
It easy to see that the left hand side of \((5) \) can be factored into
\[
(b + 4e_1)(b + 4e_2)(b + 4e_3). \quad \text{Thus, there exist three distinct solutions of \((3) \).}
\]
Since the rank of \(M_b \) is three for each solution of \((3) \), each surface \(S_i = V(b_{i1}F_1 + F_2) \) is irreducible, where \(b_i = -4e_i \). Let \(Q_i \) be the unique singular point of \(S_i \). By simple calculations we obtain \(Q_i = (8 : -2p - b_i^2 : -2b_i : 0) = (1 : -c_i : e_i : 0) \), where
\[
c_i = e_i^2 + e_j e_k \text{ such that } \{i, j, k\} = \{1, 2, 3\}. \quad \text{Since}
\]
\[
\det \begin{pmatrix} 1 & -c_1 & e_1 \\ 1 & -c_2 & e_2 \\ 1 & -c_3 & e_3 \end{pmatrix} = 2(e_1 - e_2)(e_2 - e_3)(e_3 - e_1) \neq 0,
\]
the four points are not coplanar. This completes the proof.

The proof of Remark 3 is as follows. Let \(\Sigma_Q \) be the set \(\{ \ell_{QR} \mid R \in C \} \). Then there exists a cone \(S_Q \) with the singularity at \(Q \) such that \(S_Q \supset C \) and \(S_Q \supset \Sigma \). Therefore, by Lemma 2, we have \(Q = Q_i \) for some \(i \).

Combining Lemmas 1, 2 and 15, we infer readily Theorem 1.

Remark 18. By using the condition \((\Diamond) \) in Lemma 12, we can prove that the number of \(V_4 \)-lines is just six. However, Lemmas 1 and 2 give the more detailed structure of the arrangement of \(V_4 \)-lines.

Now we go to the proof of Theorem 2. Since \(j(C) = 1 \), we can assume \(\omega = \sqrt{-1} \). Hereafter, for simplicity we use \(i \) instead of \(\sqrt{-1} \), so \(\mathcal{L} = \mathbb{Z} + i\mathbb{Z} \).

Lemma 19. The number of \(\mathbb{Z}_4 \)-lines is at most eight.

Proof. Suppose \(C \) has a \(\mathbb{Z}_4 \)-line \(\ell \). Then, let \(H \) be a plane containing \(\ell \) and \(P_0' \). Since \(\pi_{|C} : C \longrightarrow \mathbb{P}^1 \) is a \(\mathbb{Z}_4 \)-covering, one of the following three cases take place:

(i) \(H \cdot C = 4P_0' \).
(ii) \(H \cdot C = 2P_0' + 2P_\gamma' \).
(iii) \(H \cdot C = P_0' + P_\gamma' + P_{\gamma_2'} + P_{\gamma_3'} \).

Suppose \(G = \langle \sigma \rangle \), where
\[
(6) \quad \sigma(z) = iz + \alpha
\]
on the universal covering \(\mathbb{C} \). The case (i) occurs if and only if \(P_0' \) is a fixed point for \(\sigma \), i.e., \(\alpha \equiv 0 \pmod{\mathcal{L}} \) in \((3) \). The case (ii) occurs if and only if \(P_0' \) is a fixed point for \(\sigma^2 \), i.e., \(2\alpha \equiv 0 \pmod{\mathcal{L}} \) in \((3) \). Concerning the last case (iii), since \(H \cdot C \) is invariant by the action of \(G \), it can be expressed as \(P_0' + P_\alpha' + P_{\alpha'} + P_{(1+i)\alpha}' \).

Since this is linearly equivalent to \(4P_0' \), we infer
\[
(7) \quad P_\alpha + P_{i\alpha} + P_{(1+i)\alpha} \sim 3P_0
\]
on the curve \(E \). Moreover the left hand side of \((7) \) is linearly equivalent to \(P_{2(1+i)\alpha} + 2P_0 \) by Lemma \(Q \). Therefore we have \(P_{2(1+i)\alpha} \sim P_0 \). This implies \(2(1 + i)\alpha \equiv 0 \pmod{\mathcal{L}} \). To find the possibility of \(\alpha \), it is sufficient to solve the equation \(2(1 + i)\alpha \equiv 0 \pmod{\mathcal{L}} \). By a simple calculation we have \(\alpha = (m + ni)/4 \), where
\[
(m, n) = (0, 0), (2, 2), (2, 0), (0, 2), (3, 1), (1, 3), (1, 1), (3, 3).
\]
Thus we get eight subroups, which might be the images of ρ of Definition 8. □

Checking the condition (\diamondsuit) of Lemma 12 we now prove Theorem 2. As we see from the proof of Lemma 19 we have $G = \langle \sigma \rangle$, where $\sigma(z) = iz + \alpha$. Since σ has fixed points, the curve C/G is rational. For each point $Q \in C$ there exists $\gamma \in \mathbb{C}$ satisfying that $Q = P_\gamma$. So it is sufficient to prove that $P_\gamma + P_{\sigma(\gamma)} + P_{\sigma^2(\gamma)} + P_{\sigma^3(\gamma)} \sim 4P'_0$. Since $2(1+i)\alpha \equiv 0 \pmod{L}$ as in the proof of Lemma 19 this holds true by Lemma 8. Since $j_1(i) = 1/2$, $e_2 = 1/2$, $e_3 = 0$. Thus we have $Q_0 = (0 : 0 : 0 : 1)$, $Q_1 = (4 : -1 : 2 : 0)$, $Q_2 = (4 : -1 : -2 : 0)$ and $Q_3 = (4 : 1 : 0 : 0)$. Let ℓ_1 and ℓ_2 are Z_4-lines and $G_{\ell_1} = \langle \tau_1 \rangle$ and $G_{\ell_2} = \langle \tau_2 \rangle$. If ℓ_1 and ℓ_2 meet, then we have $\tau_1^2 = \tau_2^2$ by Lemma 13. Letting $\tau_1(z) = iz + \alpha_1$ and $\tau_2(z) = iz + \alpha_2$, we have $(1+i)(\alpha_1 - \alpha_2) \in L$. Denote by $\ell(m, n)$ the line corresponding to the group (τ) by the arrangement-map ρ, where $\tau(z) = iz + (m + ni)/4$. The following assertion is easy to see.

Claim 1. Putting $\sigma_{mn}(z) = iz + (m + ni)/4$ and $G_{mn} = \langle \sigma_{mn} \rangle$, we have $G_0 \cap G_{22} = \langle \sigma_0 \rangle$, $G_20 \cap G_{02} = \langle \sigma_3 \rangle$, $G_{11} \cap G_{33} = \langle \sigma_2 \rangle$ and $G_{31} \cap G_{13} = \langle \sigma_1 \rangle$.

Claim 2. The intersections of the eight Z_4-lines are $\ell(0, 0) \cap \ell(2, 2) = Q_0$, $\ell(2, 0) \cap \ell(0, 2) = Q_3$, $\ell(1, 1) \cap \ell(3, 3) = Q_2$ and $\ell(3, 1) \cap \ell(1, 3) = Q_1$.

Proof. The intersection points are found by Lemma 17. For example, the point $\ell(1, 1) \cap \ell(3, 3)$ is found as follows: Since $G_{11} \cap G_{33} = \langle \sigma_2 \rangle$, the point is the intersection of two lines

\[c_3X - Y + 2e_1Z = W = 0 \quad \text{and} \quad c_1X - Y + 2e_1 = W = 0, \]

where $e_1 = 1/2$, $e_3 = 0$ and $c_1 = 1/4$, $c_3 = -1/4$. So it is Q_2. □

Now, we prove Corollary 1. Let E be the Weierstrass normal form of the normalization of Γ and let $\mu : E \to \Gamma \subset \mathbb{P}^3$ be the normalization morphism. Put $D = \mu^*(L)$ for a line L in \mathbb{P}^2. By Lemma 10 we can assume C is given by the embedding by $|4P_0|$. Therefore, Γ is regained as $\pi_P(C)$, where $\pi_P : \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ is the projection with center P. Suppose Γ has two Galois points Q_1 and Q_2. Then, letting $\ell_1 = \pi_P^*(Q_1)$ and $\ell_2 = \pi_P^*(Q_2)$, they are Galois lines for C and $\ell_1 \cap \ell_2 = \{P\}$. However, as we have seen Remark 14 the projection π_P induces a 2 to 1 morphism from C to Γ and $\pi_P(C)$ is a rational curve, this is a contradiction. On the other hand, if P lies in one of the Galois lines, i.e., $P \in \ell$ and is not the vertex, then π_P induces a birational transformation on C by Remark 3 and $\pi_P(\ell \setminus \{P\})$ is a Galois point for $\Gamma = \pi_P(C)$.

Finally, we mention Remark 6. Take a point $Q \in \mathbb{P}^3$ which does not lie on the Galois lines. Then, the curve $\Gamma = \pi_Q(C)$ is a quartic curve with no Galois point. Because, by Remark 3 it is birational to C. Suppose it has a Galois point. Then, there exists a smooth quartic curve C' in \mathbb{P}^3 and a Galois line ℓ' and a point $P' \in \mathbb{P}^3$ satisfying that $\pi_{P'}(C') = \Gamma$. Moreover, there exists an isomorphism $\varphi : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ such that $\varphi(C') = C$ and $\varphi(\ell')$ coincides with some Galois line for C. Since $\ell' \ni P'$, we have $\varphi(\ell') \nRightarrow P$, which is a contradiction.

Thus we complete all proofs.
Problem. We ask the following questions concerning Galois embedding of elliptic curves.

(a) In case ℓ is not a Galois line, consider the Galois group G of the Galois closure curve [5, Definition 1.3]. If ℓ is general, then the Galois group is a full symmetric group [5, Theorem 2.2], see also [4]. So we ask if ℓ is neither general (i.e., $G \not\sim S_4$) nor Galois, then what group can appear. For the group which appears, how are the arrangements of the lines with the group?

(b) Let D be a divisor of degree $d \geq 5$ on E. Then, study the Galois embedding by $|D|$. In particular, consider the Galois group and the arrangement of Galois subspaces ([6]).

References

1. C. Duyaguit and H. Yoshihara, Galois lines for normal elliptic space curves, *Algebra Colloquium*, 12 (2005), 205–212.
2. R. Hartshorne, Algebraic Geometry, *Graduate Texts in Math.*, 52 (1977), Springer-Verlag.
3. K. Miura, Galois points on singular plane quartic curves, *J. Algebra*, 287 (2005), 283–293.
4. G. P. Pirola and E. Schlesinger, Monodromy of projective curves, *J. Algebraic Geometry*, 14 (2005), 623–642.
5. H. Yoshihara, Galois lines for space curves, *Algebra Colloquium*, 13 (2006), 455–469.
6. , Gaolos embedding of algebraic variety and its application to abelian surface, *Rend. Sem. Mat. Universita di Padova* 117 (2007), 69–85.