INTRODUCTION

Health-related quality of life (HRQoL) is defined as how well a person functions in their life and their perceived well-being in the physical, mental, and social domains of health (1). Recently, HRQoL has been considered a strong predictor of survival in cancer patients (2, 3). In addition, understanding the impact of treatment on HRQoL could help physicians guide patients when deciding between two equally efficacious treatments (4, 5). Furthermore, HRQoL is becoming a major factor for evaluating therapeutic interventions in patients with diseases that are difficult to cure to help patients remain symptom-free, or at least to reduce the disease burden (4, 5).

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer (6, 7). HCC patients have a high mortality rate, with the relative survival rates being 31.0% in 2013–2016 (8). HCC treatment is mainly palliative, unless the disease is in its early stage. HCC patients suffer from symptoms such as sleep disorders, sexual dysfunction, ascites, gynecomastia, pruritus, fatigue, and muscle cramps, in addition to a negatively affected HRQoL (9). According to the Korean Liver Cancer Association–National Cancer Center Korea Practice Guidelines for the Management of Hepatocellular Carcinoma, the ultimate goal of treatment in HCC patients is to increase the survival time and rate, and to improve HRQoL. This requires multidisciplinary treatment planning in various fields, including gastroenterology, hepatology, oncology, surgery, radiology, interventional...
radiology, radiation oncology, pathology, and many other departments (10). HRQoL can be affected by treatment of HCC.

During the past 10 years, there have been dramatic changes in the prevention, diagnosis, and treatment of HCC (11). Active surveillance was promoted among populations at risk of developing HCC, such as people with hepatitis B virus or hepatitis C virus infection, thus enabling early diagnosis (12). The emergence of multiple new treatment modalities has changed the HCC treatment paradigm (13). Local tumor-directed therapies have significantly improved, such as radio-frequency ablation (RFA) and novel agents for transarterial chemoembolization. Furthermore, there have been improvements in procedures such as hepatic resection and liver transplantation. In addition, sorafenib was approved in 2017 as the first effective systemic treatment for HCC. Positive sorafenib results in advanced HCC patients prompted the evaluation of several first- and second-line agents for the treatment of HCC (14). As numerous trial and observational studies have evaluated the effects of these new treatments (11), an increasing number of studies have assessed the HRQoL of HCC patients. In terms of systematic reviews focusing on the HRQoL of HCC patients, there were two review papers published between 1985 and 2013 (15, 16). However, these papers did not include recent studies, which reflect new HCC management strategies. A recent narrative review included studies from 2001 to 2017, but it aimed to review measurement tools to assess HRQoL in HCC patients, and not the study design and outcomes related to HRQoL (17). Thus, this systematic review aims to evaluate studies assessing the HRQoL of HCC patients from 2009 to 2018.

MATERIALS AND METHODS

Information Sources and Search

Two authors performed the 1st and 2nd literature screening. Studies were identified by searching electronic databases, scanning reference lists of articles, and consulting with experts in the field. Database searches were conducted using Cochrane Library, PsychINFO, Embase, and PubMed. First, we searched PubMed for all English-language studies that assessed the HRQoL of HCC patients, published between 2009 and 2018, using the following terms: 1) hepatocellular carcinoma: “Carcinomas, Hepatocellular” OR “Hepatocellular Carcinomas” OR “Liver Cell Carcinoma, Adult” OR “Liver Cancer, Adult” OR “Adult Liver Cancer” OR “Adult Liver Cancers” OR “Cancer, Adult Liver” OR “Cancers, Adult Liver” OR “Liver Cancers, Adult” OR “Liver Cell Carcinoma” OR “Carcinoma, Liver Cell” OR “Carcinomas, Liver Cell” OR “Cell Carcinoma, Liver” OR “Cell Carcinomas, Liver” OR “Liver Cell Carcinomas” OR “Hepatocellular Carcinoma” OR “Hepatoma” OR “Hepatomas”, and 2) quality of life: “Life Quality” OR “Health-Related Quality Of Life” OR “Health Related Quality Of Life” OR “HRQOL” . We then used the same terms to conduct cross-validation searches with Cochrane Library, PsychINFO, and Embase.

Inclusion Criteria and Study Selection

All observational and interventional studies were included if they included HRQoL results, either as an exposure or an outcome. Studies were also included if they included HRQoL as a secondary outcome. Exclusion criteria were as follows: 1) a literature review, commentary, or case study article; 2) studies with samples including children or adolescents only; 3) studies with samples involving heterogeneous populations diagnosed with other cancers or other liver disease; and 4) studies reporting findings not directly relevant to the core concept of HRQoL (Fig. 1).

Data Collection Process

We developed a data extraction sheet, performed a pilot-tested using five randomly selected studies from our search results, and refined it accordingly. Two review authors independently extracted data from the included studies and then discussed the results. Disagreements were resolved by discussion until a consensus was reached between the two review authors. We extracted the data depending on whether HRQoL was measured as an exposure or an outcome. If no agreement could be reached, a senior author (JC) would final decision. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement as a guide to ensure that current standards for systematic review methodology were met (18).

Data Items

The following information and data were extracted from each included study: 1) purpose of assessing HRQoL (exposure or outcome); 2) study design (cross-sectional, cohort, or interventional) and methods (quantitative, qualitative, or mixed); 3) characteristics of the study such as nation, author, year of publication, year the study began, and tool used to measure HRQoL; 4) characteristics
Systematic Review of HRQoL Studies in HCC Patients

of participants such as number of participants included, mean age, mean survival at enrollment, stage, liver function, and patient treatment status at enrollment; and 5) summary of main results. Since studies assessing the HRQoL in HCC patients were heterogeneous in purpose and methodology, we did not use summary measures such as risk ratio or difference in means.

Risk of Bias in Individual Studies
If the study was not a randomized controlled trial, we evaluated the risk of bias in individual studies among those that used HRQoL as primary exposure or outcome. To evaluate the risk of bias, we used Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I). This tool can be used to evaluate the effects of exposure on observational studies—such as cohort studies and case control studies—in which exposed groups are allocated during the course of normal treatment decisions, and quasi-randomized studies in which the method of allocation falls short of full randomization (19). ROBINS-I detected bias due to confounders, bias in participant selection, bias in classifying interventions (or exposure), bias due to deviations from intended interventions, bias due to missing data, bias in measuring outcomes, bias in selecting reported results, and overall risk of bias. We classified risk of bias as low, moderate, serious, critical risk of bias, and no information.

To explore variability in study results (heterogeneity), we specified the following hypotheses before conducting the analysis. We hypothesized that the effect size might differ according to the methodological quality of studies. We did not evaluate risk of bias across studies due to heterogeneous study objectives.

RESULTS

Study Selection
In our PubMed search, we found 542 relevant studies conducted during the study period (2009–2018). When we performed a search using the same research terms in Embase, PsycINFO, and Cochrane Library, we found 7 additional articles, resulting in 549 studies. We excluded 149 studies due to their study design (Fig. 1). Reviews or comments (n = 112), case reports (n = 24), study protocols...
(n = 4), and meta-analysis (n = 1) were also excluded. An additional eight papers were excluded as they were written in other languages. Next, we reviewed the remaining 400 eligible studies and excluded 355 that were not relevant to HCC (n = 203) or HRQoL (n = 152), resulting in 45 studies which met the inclusion criteria.

Study Characteristics

Among the 45 studies, HRQoL was assessed as an outcome in 40 studies (Table 1) and as an exposure in 5 studies (Table 2). USA (n = 10, 23%) and China (n = 10, 23%) conducted the largest number of HRQoL studies, followed by Japan (n = 5, 12%) and France (n = 4, 9%). Seven (16%) studies were multinational. The mean duration since enrolling patients or collecting data to publish the manuscript was 7.3 years (standard deviation = 3.6 years).

Most studies assessed HRQoL using quantitative methods (n = 42, 93%), with only three using qualitative methods.

Table 1. Summary of Studies that Used HRQoL as Outcomes (n = 40)

Study	Year	Nation	Study Design	n	Mean Age (Median)	Severity	Child-Pugh Score	Status at Enrollment	Type of Treatment	Intervention or Treatment	QoL Questionnaire
Wible et al. (29)	2010 USA	Cohort	73	62	All stage	A 34, B 37, C 2	At diagnosis	TACE	SF-36		
Qiao et al. (49)	2012 China	Cross sectional	140	52	All stage	A 84, B 29, C 27	At diagnosis	No treatment	FACT-Hep		
Hsu et al. (59)	2012 Taiwan	Cross sectional	300	62	All stage	A 202, B 88, C 10	All	Combined	EORTC QLQ-C30		
Shun et al. (60)	2012 Taiwan	Cohort	89	61	All stage	A 41, B 42, C 6	After treatment	TACE	SF-12, SDS, HADS		
Fan and Eiser (30)	2012 Taiwan	Cross sectional	33	54	All stage	Unknown	After treatment	Resection, TAE/TACE, Chemo-therapy	Interview		
Cao et al. (27)	2013 China	Cross sectional	155	53	All stage	A 146, B 9	After treatment	TACE	MDASI and SCL		
Fan et al. (61)	2013 Taiwan	Cross sectional	286	60	All stage	A 224, B 42, C 16, 17	Missing 4	After treatment	Resection, TAE/TACE, chemo	EORTC QLQ-C30, Brief IPQ, Jalowiec Coping Scale	
Kaiser et al. (28)	2014 USA	Cross sectional	10	58	Advanced-stage	Not mention	All	Systemic therapy	Pain (FACT), EORTC QLQ-HCC18, and interview		
Butt et al. (62)	2014 USA	Cohort	83	64	All stage	Mean = 6.1 (1.3)	After treatment	Combined	FACT-Hep, BPI, Interference Scale		
Mise et al. (47)	2014 Japan	Cohort	69	69	All stage	Unknown	At diagnosis	Resection	SF-36		
Phillips et al. (63)	2015 Multi	Cohort	167	56	Advanced-stage	A 86, B 69, C 24	At diagnosis	No treatment	EORTC QLQ-C30		
Table 1. Summary of Studies that Used HRQoL as Outcomes (n = 40) (Continued)

Study	Year	Nation	Study Design	n	Mean Age (Median)	Severity Child-Pugh Score	Status at Enrollment	Type of Treatment	Intervention or Treatment	QoL Questionnaire
Lei et al. (39)	2016	China	Cohort	207	47	Early-stage	Unknown	After treatment	Resection or LT	SF-36, SCL-90-R
Hinrichs et al. (64)	2017	Germany	Cohort	79	66	Advanced-stage	A 60 B 19	At diagnosis	TACE	EORTC QLQ-C30, HCC18
Hansen et al. (65)	2017	USA	Cross sectional	18	63	Advanced-stage	Unknown	After treatment	Sorafenib, TACE or radiation	MSAS
Chie et al. (46)	2017	France	Cross sectional	227	61	All stage	A 180 B 40 C 7	After treatment	Rejection, RFA, TACE, or systemic treatment	EORTC QLQ-C30, HCC18
Gill et al. (66)	2018	Multi	Cross sectional	256	(64)	All stage	Unknown	After treatment	Combined	Side Effects and QoL (developed)

Treatment efficacy on HRQoL (n = 17)

Study	Year	Nation	Study Design	n	Mean Age (Median)	Severity Child-Pugh Score	Status at Enrollment	Type of Treatment	Intervention or Treatment	QoL Questionnaire	
Kuroda et al. (45)	2010	Japan	Intervention	35	66	All stage	A 14 B 19 C 2	After treatment	RFA	BCAA SF-8	
Tian et al. (42)	2010	China	Intervention	97	52	Advanced-stage	A 70 B 27	During treatment	Unknown	Chinese medicine therapy, Karnofsky’s Scores	
Chow et al. (44)	2011	Multi	Intervention	185	58	Advanced-stage	A 86 B 69 C 24	At diagnosis	No treatment	MA (320 mg day)	EORTC QLQ-C30
Toro et al. (31)	2012	Italy	Cohort	51	70	All stage	A 28 B 23	At diagnosis	No treatment	Resection, TACE and RFA FACT-G	
Salem et al. (33)	2013	USA	Cohort	56	67	Advanced-stage	A 48 B 8	At diagnosis	No treatment	TACE and 90Y radioembolization FACT-Hep	
Meyer et al. (34)	2013	UK	Intervention	86	63	Advanced-stage	A 71 B 15	At diagnosis	No treatment	TACE and TAE	EORTC QLQ-C30, HCC18, CTCAE
Huang et al. (38)	2014	China	Cohort	348	51	Early-stage	A 348	After treatment	TAE	Resection and RFA FACT-Hep	
Kolligs et al. (35)	2015	Multi	Intervention	28	66	Moderate/late stage	A 25 B 3	At diagnosis	Unknown	SIRT and TACE	FACT-Hep, CTCAE
Xing et al. (26)	2015	USA	Cohort	118	60	Advanced-stage	A 66 B 46 C 6	At diagnosis	No treatment	DEB-TACE SF-36	
Chie et al. (32)	2015	Multi	Cohort	171	62	All stage	A 135 missing 36	At diagnosis	Combined	Resection, RFA, or TACE EORTC QLQ-C30, HCC18	
Anota et al. (36)	2016	France	Intervention	21	64	All stage	A 16 B 5	At diagnosis	Unknown	DEB-TACE (5/10/15 mg) EORTC QLQ-C30, CTCAE	
Kensinger et al. (67)	2016	USA	Cohort	502	54	All stage	Unknown	All	Unknown	LT SF-36, BAI, CES-D	
Table 1. Summary of Studies that Used HRQoL as Outcomes (n = 40) (Continued)

Study	Year	Nation	Study Design	n	Mean Age (Median)	Severity	Child-Pugh Score	Status at Enrollment	Type of Treatment	Intervention or Treatment	QoL Questionnaire
Lv et al. (43)	2016	China	Intervention	120	52	Advanced-stage	A 73 B 47	At diagnosis	Unknown	TACE with Parecoxib sodium	CTCAE, Pain Score (NRS), Self Developed QoL Items
Qiu et al. (68)	2017	China	Intervention	91	65	Advanced-stage	A 17 B 39 C 35	After treatment	TACE, RFA, TACE + RFA, Sorafenib	TIPS in PVTT patients	Karnofsky's Scores
Aliberti et al. (37)	2017	Italy	Cohort	42	65	Advanced-stage	A 31 B 11	After treatment	Resection, RFA, or chemotherapy	TACE and PEG embolics	Palliative Performance Scale, CTCAE
Chau et al. (69)	2017	Multi	Intervention	565	62	Advanced-stage	A(5/6) 553 7 point = 12	After treatment	Sorafenib therapy	Ramucirumab 8 mg/kg	FHSI-8 and EuroQoL-5D
He et al. (70)	2018	China	Cohort	128	46	Early-stage	A 84 B 35 C 9	After treatment	Resection, RFA, or LT	SF-36	

QoL and its associated factors (n = 4)

Study	Year	Nation	Study Design	n	Mean Age (Median)	Severity	Child-Pugh Score	Status at Enrollment	Type of Treatment	Intervention or Treatment	QoL Questionnaire
Mikoshiba et al. (48)	2013	Japan	Cross sectional	128	69	All stage	A 96 B/C 32	After treatment	Unknown	EORTC QLQ-C30, HCC18, CES-D	
Hansen et al. (52)	2015	USA	Cohort	45	62	Advanced-stage	Unknown	After treatment	Any treatment	Interview	
Shomura et al. (41)	2016	Japan	Cohort	54 (71)	62	Advanced-stage	Score of 5 = 33, Higher than 5 point = 27	After treatment	Sorafenib therapy	SF-36	
Jie et al. (51)	2016	China	Cohort	218	50	All stage	Unknown	At diagnosis	Unknown	Resection or RFA	EORTC QLQ-C30, Brief IPQ

Validation (n = 3)

Study	Year	Nation	Study Design	n	Mean Age (Median)	Severity	Child-Pugh Score	Status at Enrollment	Type of Treatment	Intervention or Treatment	QoL Questionnaire
Mikoshiba et al. (53)	2012	Japan	Cross sectional	192	68	All stage	A 127 B 53 C 12	All	Combined	EORTC QLQ-C30, QLQ-HCC18	
Chie et al. (55)	2012	Multi	Cross sectional	227	61	All stage	A 180 B 38 C 2	After treatment	Combined	EORTC QLQ -C30, EORTC QLQ -HCC18	
Yang et al. (54)	2015	China	Cross sectional	114	51	All stage	Unknown	All	Resection or others	EORTC QLQ-C30	

BAI = Beck Anxiety Inventory, BCAA = branched-chain amino acid-enriched nutrient, BPI = Brief Pain Inventory, CES-D = Center for Epidemiologic Studies Depression Scale, CTCAE = Common Terminology Criteria for Adverse Events, DEB = doxorubicin drug-eluting bead, EORTC = European Organization for Research and Treatment of Cancer, EORTC QLQ-C30 = EORTC Quality of Life Questionnaire Core 30, FACT = Functional Assessment of Cancer Therapy, FACT-G = FACT-General, FACT-Hep = FACT-Hepatobiliary, FHSI-8 = FACT Hepatobiliary Symptom Indexes, HADS = Hospital Anxiety and Depression Scale, HCC = hepatocellular carcinoma, HRQoL = Health-Related QoL, IPQ = Illness Perception Questionnaire, LT = liver transplantation, MA = megestrol acetate, MDASI = M. D. Anderson Symptom Inventory, MSAS = Memorial Symptom Assessment Scale, NRS = Numerical Rating Scale, PEG = polyethylene glycol, PVTT = portal vein tumor thrombus, QoL = quality of life, RFA = radio-frequency ablation, SCL = symptom checklist, SDS = Symptom Distress Scale, SF = short form, SIRT = selective internal radiation therapy, TACE = transarterial chemoembolization, TAE = transarterial embolization, TIPS = transjugular intrahepatic portosystemic shunt, VAS = visual analogue scale.
There were 23 (51%), 13 (29%), and 9 (20%) cohort, cross-sectional, and interventional studies, respectively. With cohort and interventional studies, the median follow-up time was 21 months, and on average, HRQoL was assessed three times during the follow-up.

Among 23 cohort studies, 8 (35%) evaluated the effects of specific HCC treatments on HRQoL, and 7 (30%) evaluated the HRQoL of HCC patients over time. Three cohort studies aimed to identify factors associated with HRQoL (13%), and five cohort studies evaluated the impact of HRQoL on the clinical outcome (22%). Among the 14 cross-sectional studies, 9 evaluated the HRQoL at a certain point in time, and 3 were tool validation studies. All intervention studies (n = 9) evaluated the effect of treatment on HRQoL.

HRQoL Measurements

Eight studies used the short form (SF)-36, which is a general measurement tool for assessing HRQoL (20). Half of the studies (n = 25, 56%) used cancer specific HRQoL questionnaires. The most frequently used questionnaire was the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core 30 (QLQ-C30) (n = 17) (21), followed by the Functional Assessment of Cancer Therapy-General (FACT-G) (n = 6) (22). In addition, 38 studies used additional liver cancer-specific questionnaires. The most frequently used liver cancer-specific questionnaires were the EORTC-hepatocellular carcinoma 18 (HCC18) (23) and the FACT-Hepatobiliary (FACT-Hep) questionnaires (24). One study used the FACT Hepatobiliary Symptom Index-8 (FHSI-8), which is an eight-item subset of FACT-Hep, to assess specific symptoms of hepatobiliary carcinoma (25).

Participants

The median sample size was 154 (range, 15–565) participants, and the median age of the study participants was 58.9 years. In total, 18 (40%), 19 (42%), and one (2%) studies were conducted with patients before (at diagnosis), after, and during HCC treatment, respectively. Seven (16%) studies recruited patients at different treatment stages. While 18 studies (40%) assessed the HRQoL of late-stage HCC patients, only 3 studies evaluated the HRQoL of early-stage HCC patients. Similarly, 19 (42%) and 14 studies (31%) were conducted in patients who had a Child-Pugh score of more than C, and A, or B, respectively.

HRQoL as Outcomes

Among 40 studies, which assessed HRQoL as an outcome (Table 1), 16 studies evaluated the HRQoL of HCC patients, and of those, 8 focused on TACE patients and four on resection patients. According to SF-36 scores, when compared to the age-adjusted healthy US population, patients with HCC prior to initiation had lower general health (38.2 vs. 70.1), mental health (45.2 vs. 75.2), physical functioning (36.2 vs. 83.0), role–emotional (37.7 vs. 77.9), role–physical (37.7 vs. 77.9), social functioning...
(38.7 vs. 83.6), and vitality (42.1 vs. 57.0) (26). Patients commonly reported abdominal pain, nausea, jaundice, weight loss, and body image issues. Among late stage HCC patients, the most severe symptoms at diagnosis were fatigue and distress (27), and 90% of patients reported pain during and after treatment (28). The abdomen and lower back were the most common sites of pain (28). Fatigue was the most serious symptom followed by sleep disturbance, distress, sadness, and lack of appetite even after treatment (27). Symptoms of upper gastrointestinal distress and liver function impairment also remained after treatment (27). However, patients exhibited improved mental health scores after the treatment compared to before treatment (29).

According to the results of a qualitative study, patients perceived HCC as a long-term and chronic disease that, while incurable, might be controllable. Control measures included focusing on managing HCC and its symptoms, managing emotional responses, and leading a normal life (30).

HRQoL in Patients Treated with TACE

Seventeen studies compared the effects of treatment methods on the HRQoL. Among them, 7 studies evaluated the HRQoL of TACE patients, and other studies compared the HRQoL of TACE patients to those treated with RFA or resection (n = 2) (31, 32), 90Y therapy, (n = 1) (33), transarterial embolization (n = 1) (34), and/or selective internal radiation therapy (n = 1) (35). Three studies assessed HRQoL by different methods or dose of TACE: doxorubicin drug eluting bead (DEB)-TACE therapies (n = 2) (26), maximum tolerated dose of TACE (n = 1) (36), or TACE using loaded polyethylene glycol (PEG) drug-elutable microspheres (n = 1) (37). Patients treated with TACE had lower baseline scores in all eight HRQoL domains of the SF-36 compared to the US age-adjusted healthy normal participants. The HRQoL post therapy and at 6 or 12 months after completion of TACE did not differ between patients receiving ≥ 4 vs. ≤ 3 DEB-TACE (p > 0.05) (26). Prior to TACE treatment, the 5 most severe symptoms ranked in order were fatigue, distress, sadness, sleep disturbance, and lack of appetite (27). After TACE, fatigue was still the most bothersome symptom, followed by sleep disturbance, distress, sadness, and lack of appetite (27). After TACE, while bodily pain scores improved, vitality scores worsened, which is associated with fatigue (29). Mental health scores improved after 4 months of TACE. However, at 12 and 24 months after treatment, patients continued reporting decreased physical (12 months: -34.29, 24 months: -40.99), social/family (12 months: -35.32, 24 months: -42.27), emotional (12 months: -28.06, 24 months: -37.35), and functional (12 months: -43.07, 24 months: -53.61) well-being (31).

HRQoL in Patients Treated by Resection

The HRQoL of resection patients was compared to that of patients treated with RFA (n = 2) (32, 38), transplantation. (n = 1) (39), or both (n = 1) (40). Patients with liver transplantation or resection had a relatively better HRQoL compared to patients with other treatments (39). After hepatic resection, HRQoL first declined, but then increased to preoperative levels at 6 months after surgery, and slightly improved than preoperative levels at 12 months after surgery (38). Physical, social/family, emotional, and functional well-being of patients treated by hepatic resection were significantly better than for all other treatments at 24 months after resection (31).

HRQoL in Patients Treated with RFA

According to FACT scores, physical, social/family, emotional, and functional well-being declined following RFA treatment, and did not recover to preoperative levels at 24 months after surgery (31). Additionally at 24 months after surgery, changes in physical (RFA: -18.81, surgery: 7.37), social/family (RFA: -24.29, surgery: 7.13), emotional (RFA: -29.98, surgery: 6.73), and functional (RFA: -18.35, surgery: 6.05) well-being before and after RFA treatment were poorer than that of surgery patients (31). However, RFA patients had less bodily pain (RFA: 87.9 vs. transplantation: 80.2 vs. surgery: 80.5, p = 0.01) and more vitality (RFA: 81.9 vs. transplantation: 72.4 vs. surgery: 73.4, p < 0.01) than patients with transplantation or resection at 3 years after treatment (40). Patients treated with RFA reported better physical, social/family, emotional, and functional well-being at 24 months after treatment than patients treated with TACE (31).

HRQoL in Patients Treated with Targeted Therapy (Sorafenib)

Patients receiving sorafenib experienced hand-foot skin reactions, diarrhea, or weight loss. Sorafenib use was associated with deterioration of liver function, and the progressive nature of the disease limited the efficacy of sorafenib. During treatment, symptoms did not improve, and patients experienced decreased physical functioning and vitality over time (41).
Effects of Supportive Care Intervention on the HRQoL

Four studies evaluated the effects of supportive care/intervention on the HRQoL, and all studies were conducted with inoperative or advanced stage HCC patients. Chinese medicine comprehensive therapy (42) and perioperative parecoxib sodium (43) were used for pain relief, and megestrol acetate (MA) (44) and branched-chain amino acid (BCAA)-enriched nutrients (45) were used for nutrition support. Chinese medicine and perioperative parecoxib sodium improved pain scores. Supplementation with BCAA-enriched nutrients for one year showed improved nutrition and HRQoL among patients with inoperable HCC undergoing TACE (45). MA helped alleviate appetite loss and nausea/vomiting in patients with treatment-naïve advanced HCC compared to patients without MA, but demonstrated no role in prolonging overall survival (44).

Factors Associated with HRQoL

Four studies were conducted to identify factors that affected HRQoL among HCC patients. In terms of patient characteristics, being Asian (46), being female (47), living alone (48), and unemployment (48) were associated with poor HRQoL. Regarding clinical characteristics, severe TNM stage (49), Barcelona Clinic Liver Cancer tumor stage (50), and cirrhosis were associated with poor HRQoL. Other physical (fatigue, sleep disturbance, and lack of appetite) (27) and emotional symptoms (distress, sadness, and depression) were significantly associated with poor HRQoL (27, 48). In terms of social function, disclosure of cancer (51) and lack of information were related to worse HRQoL (52). In addition, illness perceptions and personal control of the patients’ own disease were positively correlated with HRQoL (51).

HRQoL Tool Validation Studies

Three Japanese- and Chinese-language studies were conducted to validate the EORTC QLQ-HCC18. Besides two validation studies for the Japanese (53) and Chinese EORTC QLQ-HCC18 (54), one study was conducted for cross-cultural validation (55). Cronbach’s α was used to measure internal consistency, showing a value greater than 0.60 in the Japanese and Chinese EORTC QLQ-HCC18. In the international field validation study, researchers found that there were low or moderate correlations between the QLQ-HCC18 and QLQ-C30. As a result, they recommended the use of EORTC QLQ-HCC18 as a supplementary module for the EORTC QLQ-C30 in clinical trials for patients with HCC.

HRQoL as an Exposure

Five studies measured HRQoL as an exposure (Table 2). Poor HRQoL is an independent prognostic factor of all-cause mortality in palliative HCC patients (56). In addition, experiencing pain, fatigue, poor physical functioning (57), and poor role functioning (50) were shown to be independent factors associated with mortality. Based on the EORTC QLQ-C30, 50 points out of 100 was the optimal cutoff value to predict mortality among HCC patients for global health, 58.3 for physical functioning, 66.7 for role functioning, 66.7 for fatigue, and 33.33 for diarrhea (58).

Risk of Bias

Among studies primarily designed to measure HRQoL, 15 showed a moderate risk of bias, 13 showed a critical risk, and 3 showed a serious risk (Fig. 2). Confounding factors were identified as the most frequent critical or serious risk (11/31). Almost 30% of studies did not control for confounding factors (Fig. 2).

DISCUSSION

This review summarized 45 studies measuring the HRQoL of HCC patients, published between 2009 and 2018. During this period, USA and China conducted the largest number of HRQoL studies, followed by Japan and France. Approximately half of the studies were cohort studies, and one-fifth were intervention studies. In the cohort and interventional studies, the median follow-up time was 21 months, and on average, HRQoL was assessed three times during follow-up. Most studies assessed HRQoL as an outcome and evaluated or compared the HRQoL of HCC patients depending on type of treatment or stage of disease. HCC patients had a worse HRQoL than the general population, including those with early-stage HCC. Patients commonly experienced pain, fatigue, sleep disturbance, distress, and lack of appetite, and these symptoms remained problematic even a few years after treatment. TNM stage, tumor stage, presence of cirrhosis, being Asian, being female, living alone, or being unemployed were associated with poor HRQoL. Additional physical and emotional symptoms were associated with poor HRQoL, and poor HRQoL was an independent prognostic factor of all-cause mortality among advanced stage HCC patients. Despite this significance, only four interventional studies tried to improve the HRQoL in HCC patients.

This review is consistent with previous reviews (15-17) which showed that HCC patients (including early-
stage) have a worse HRQoL in terms of physical function, emotional status, and functional ability than the general population. HCC patients commonly experienced fatigue, sleep disturbance, distress, sadness, and lack of appetite regardless of disease stage or course of treatment. In terms of liver specific problems, patients reported abdominal pain, nausea, jaundice, weight loss, and body image issues.

In general, after treatment completion, the HRQoL of HCC patients improved over time, though results varied based on treatment type and stage at diagnosis. For example, the HRQoL of patients who underwent resection improved over time (comparable to levels before treatment), but the HRQoL of patients treated with TACE did not improve, even several years after treatment completion. While there were a limited number of studies directly comparing HRQoL by treatment method, patients treated by resection/surgery or RFA (with small size tumor) seemed to have a better HRQoL than patients treated with TACE. This might be because patients with early stage HCC were more likely to receive surgery or RFA rather than TACE, and patients with TACE likely had a worse HRQoL at diagnosis compared to patients treated with other methods.

According to previous reviews, few studies focused on assessing the HRQoL of HCC patients and most were conducted in a palliative setting (16). However, in our analysis, we found an increasing number of studies evaluating HRQoL of HCC patients, including several conducted with early or intermittent stage patients. Additionally, studies evaluated and compared HRQoL based on new treatment modalities such as RFA, TACE, and sorafenib. We found that RFA patients had decreasing social/family, emotional, and long-term physical well-being. TACE patients had a worse HRQoL during and after treatment compared to RFA patients. While some studies evaluated the HRQoL 2 or 3 years after treatment, a limited number included long-term survivors, and no study primarily focused on this group. This might be due to the relatively high mortality in liver cancer patients, with health professionals focusing more on the HRQoL of patients under active treatment rather than long-term survivors. Lastly, our review included qualitative studies, which indicated that patients perceived HCC as a long-term difficulty, with challenges that include symptom management, emotional response management, and generally trying to lead a normal life.

Several limitations of this review should be acknowledged. First, we specifically focused on studies conducted with HCC-only patients; we neglected studies that included...
subjects with metastasis or those diagnosed with other types of liver cancer. Secondly, because we found HRQoL studies using the search term ‘quality of life’, we might have missed studies using other terminology or expressions. However, we attempted to identify articles using key words similar to the MeSH terms. Thirdly, since the purpose of this review was to analyze all types of studies on HRQoL, studies included in this review were heterogeneous in purpose and design, and we were unable to conduct a quantitative review. Furthermore, we evaluated the quality of the reviewed studies by identifying potential bias.

In summary, from 2009 to 2018, an increasing number of studies evaluated the HRQoL of HCC patients, with studies becoming more diverse by covering a wider patient population (patients at different stage of disease), various topics (different treatment effects on HRQoL, effect of HRQoL on survivorship and psychosocial well-being), and different study designs (cohort and interventions). Regardless of stage at diagnosis or treatment method, HCC patients experienced various physical and psychosocial symptoms resulting in poor HRQoL and worse progression of the disease, yet there were limited supportive interventions. Given the increase in HCC cases and HCC survivors, more attention is needed to evaluate and improve the HRQoL of HCC patients.

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

ORCID iDs
Hyo Keun Lim
https://orcid.org/0000-0003-3269-7503
Danbee Kang
https://orcid.org/0000-0003-0244-7714
Sungkeun Shim
https://orcid.org/0000-0003-4450-9864
Juhee Cho
https://orcid.org/0000-0001-9081-0266

REFERENCES
1. Hays RD, Reeve BB. Measurement and modeling of health related. In: Kellewo J, Hegenhougen HK, Quah SR, eds. Epidemiology and demography in public health. San Diego, CA: Elsevier, 2010:195-205.
2. Siddiqui F, Pajak TF, Watkins-Bruner D, Konski AA, Coyne JC, Gwede CK, et al. Pretreatment quality of life predicts for locoregional control in head and neck cancer patients: a radiation therapy oncology group analysis. Int J Radiat Oncol Biol Phys 2008;70:353-360
3. Movsas B, Moughan J, Sarna L, Langer C, Werner-Wasik M, Nicolaou N, et al. Quality of life supersedes the classic prognosticators for long-term survival in locally advanced non-small-cell lung cancer: an analysis of RTOG 9801. J Clin Oncol 2009;27:5816-5822
4. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol 2008;26:3770-3776
5. Siddiqui F, Liu AK, Watkins-Bruner D, Movsas B. Patient-reported outcomes and survivorship in radiation oncology: overcoming the cons. J Clin Oncol 2014;32:2920-2927
6. Kim HS, El-Serag HB. The epidemiology of hepatocellular carcinoma in the USA. Curr Gastroenterol Rep 2019;21:17
7. Yoon SK, Chun HG. Status of hepatocellular carcinoma in South Korea. Chin Clin Oncol 2013;2:39
8. De Toni EN, Schlesinger-Raab A, Fuchs M, Schepp W, Uhlig U, Geisler F, et al. Age independent survival benefit for patients with hepatocellular carcinoma (HCC) without metastases at diagnosis: a population-based study. Gut 2020;69:168-176
9. Sun VC, Sarna L. Symptom management in hepatocellular carcinoma. Clin J Oncol Nurs 2008;12:759-766
10. Korean Liver Cancer Association; National Cancer Center. 2018 Korean Liver Cancer Association–National Cancer Center Korea practice guidelines for the management of hepatocellular carcinoma. Korean J Radiol 2019;20:1042-1113
11. Shah C, Mramba HK, Bejjanki H, Chhatrala HS, Chandana SR. Survival differences among patients with hepatocellular carcinoma based on the stage of disease and therapy received: pre and post sorafenib era. J Gastrointest Oncol 2017;8:798-798
12. Singal AG, Pililai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med 2014;11:e1001624
13. de Lope CR, Tremosini S, Forner A, Reig M, Bruix J. Management of HCC. J Hepatol 2012;56 Suppl 1:S75-S87
14. Koebelke D, Dufour JF, Demeter G, Li Q, Ribi K, Samaras P, et al. Sorafenib with or without everolimus in patients with advanced hepatocellular carcinoma (HCC): a randomized multicenter, multinational phase II trial (SAKK 77/08 and SASL 29). Ann Oncol 2016;27:856-861
15. Fan SY, Eiser C, Ho MC. Health-related quality of life in patients with hepatocellular carcinoma: a systematic review. Clin Gastroenterol Hepatol 2010;8:559-564
16. Gandhi S, Khubchandani S, Eyer R. Quality of life and hepatocellular carcinoma. J Gastrointest Oncol 2014;5:296-317
17. Li L, Yeow W. Value of quality of life analysis in liver cancer: a
18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700

19. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;356:i4919

20. Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30:473-483

21. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 1993;85:365-376

22. Cella DF, Tulsky DS, Gray G, Sarafian B, Linn E, Bonomi A, et al. The Functional Assessment of Cancer Therapy scale: development and validation of the general measure. J Clin Oncol 1993;11:570-579

23. Blazey JM, Currie E, Zee BC, Chie WC, Poon RT, Garden OJ. Development of a questionnaire module to supplement the EORTC QLQ-C30 to assess quality of life in patients with hepatocellular carcinoma, the EORTC QLQ-HCC18. Eur J Cancer 2004;40:2439-2444

24. Heffernan N, Cella D, Webster K, Odom L, Martone M, Passik S, et al. Measuring health-related quality of life in patients with hepatobiliary cancers: the functional assessment of cancer therapy-hepatobiliary questionnaire. J Clin Oncol 2002;20:2229-2239

25. Yount S, Cella D, Webster K, Heffernan N, Chang C, Odom L, et al. Assessment of patient-reported clinical outcome in pancreatic and other hepatobiliary cancers: the FACT Hepatobiliary Symptom Index. J Pain Symptom Manage 2002;24:32-44.

26. Xing M, Webber G, Prajapati HJ, Chen Z, El-Rayes B, Spivey JR, et al. Preservation of quality of life with doxorubicin drug-eluting bead transarterial chemoembolization for unresectable hepatocellular carcinoma: longitudinal prospective study. J Gastroenterol Hepatol 2015;30:1167-1174

27. Cao W, Li J, Hu C, Shen J, Liu X, Xu Y, et al. Symptom clusters and symptom interference of HCC patients undergoing TACE: a cross-sectional study in China. Support Care Cancer 2013;21:475-483

28. Kaiser K, Mallick R, Butt Z, Mulcahy MF, Benson AB, Cella D. Important and relevant symptoms including pain concerns in hepatocellular carcinoma (HCC): a patient interview study. Support Care Cancer 2014;22:919-926

29. Wible BC, Rilling WS, Drescher P, Hieb RA, Saenian K, Frangakis C, et al. Longitudinal quality of life assessment of patients with hepatocellular carcinoma after primary transarterial chemoembolization. J Vasc Interv Radiol 2010;21:1024-1030

30. Fan SY, Eiser C. Illness experience in patients with hepatocellular carcinoma: an interpretative phenomenological analysis study. Eur J Gastroenterol Hepatol 2012;24:203-208

31. Toro A, Pulvirenti E, Palermo F, Di Carlo I. Health-related quality of life in patients with hepatocellular carcinoma after hepatic resection, transcatheter arterial chemoembolization, radiofrequency ablation or no treatment. Surg Oncol 2012;21:e23-e30

32. Chie WC, Yu F, Li M, Baccaglini L, Blazey JM, Hsiao CF, et al. Quality of life changes in patients undergoing treatment for hepatocellular carcinoma. Qual Life Res 2015;24:2499-2506

33. Salem R, Gilbertsen M, Butt Z, Memon K, Vouche M, Hickey R, et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol Hepatol 2013;11:1358-1366.e1

34. Meyer T, Kirkwood A, Roughton M, Beare S, Tschatzis E, Yu D, et al. A randomised phase II/III trial of 3-weekly cisplatin-based sequential transarterial chemoembolisation vs embolisation alone for hepatocellular carcinoma. Br J Cancer 2013;108:1252-1259

35. Kolligs FT, Bilbao JI, Jakobs T, Iñarrairaegui M, Nagel JM, Rodriguez M, et al. Pilot randomized trial of selective internal radiation therapy vs. chemoembolization in unresectable hepatocellular carcinoma. Liver Int 2015;35:1715-1721

36. Aliberti C, Carandina R, Sarti D, Mulazzani L, Pizzirani E, Minello A, et al. An explorative study to assess the association between health-related quality of life and the recommended phase II dose in a phase I trial: idarubicin-loaded beads for chemoembolisation of hepatocellular carcinoma. BMJ Open 2016;6:e010696

37. Alliberti C, Carandina R, Sarti D, Mulazzani L, Pizzirani E, Guadagni S, et al. Chemoembolization adopting polyethylene glycol drug-eluting embolics loaded with doxorubicin for the treatment of hepatocellular carcinoma. AJR Am J Roentgenol 2017;209:430-434

38. Huang G, Chen X, Lau WY, Shen F, Wang RY, Yuan SX, et al. Quality of life after surgical resection compared with radiofrequency ablation for small hepatocellular carcinomas. Br J Surg 2014;101:1006-1015

39. Lei JY, Yan LN, Wang WT, Zhu QJ, Li DJ. Health-related quality of life and psychological distress in patients with early-stage hepatocellular carcinoma after hepatic resection or transplantation. Transplant Proc 2016;48:2107-2111

40. He Q, Jiang JJ, Jiang YX, Wang WT, Yang L. Health-related quality of life comparisons after radical therapy for early-stage hepatocellular carcinoma. Transplant Proc 2018;50:1470-1474

41. Shomura M, Kagawa T, Okabe H, Shiraiishi K, Hirose S, Arase Y, et al. Longitudinal alterations in health-related quality of life and its impact on the clinical course of patients with advanced hepatocellular carcinoma receiving sorafenib treatment. BMC Cancer 2016;16:878

42. Tian HQ, Li HL, Wang B, Liang GW, Huang XQ, Huang ZQ, et al. Treatment of middle/late stage primary hepatic carcinoma...
by Chinese medicine comprehensive therapy: a prospective randomized controlled study. *Chin J Integr Med* 2010;16:102-108

43. Lv N, Kong Y, Mu L, Pan T, Xie Q, Zhao M. Effect of perioperative parecoxib sodium on postoperative pain control for transcatheter arterial chemoembolization for inoperable hepatocellular carcinoma: a prospective randomized trial. *Eur Radiol* 2016;26:3492-3499

44. Chow PK, Machin D, Chen Y, Zhang X, Win KM, Hoang HH, et al. Randomised double-blind trial of megestrol acetate vs placebo in treatment-naïve advanced hepatocellular carcinoma. *Br J Cancer* 2011;105:945-952

45. Kuroda H, Ushio A, Miyamoto Y, Sawara K, Oikawa K, Kasai K, et al. Effects of branched-chain amino acid-enriched nutrient for patients with hepatocellular carcinoma following radiofrequency ablation: a one-year prospective trial. *J Gastroenterol Hepatol* 2010;25:1550-1555

46. Chie WC, Blazeby JM, Hsiao CF, Chiu HC, Poon RT, Mikoshiba N, et al. Differences in health-related quality of life between European and Asian patients with hepatocellular carcinoma. *Asia Pac J Clin Oncol* 2017;13:e304-e311

47. Mise Y, Satou S, Ishizawa T, Kaneko J, Aoki T, Hasegawa K, et al. Impact of surgery on quality of life in patients with hepatocellular carcinoma. *World J Surg* 2014;38:958-967

48. Mikoshiba N, Miyashita M, Sakai T, Tateishi R, Koike K. Depressive symptoms after treatment in hepatocellular carcinoma survivors: prevalence, determinants, and impact on health-related quality of life. *Psychooncology* 2013;22:2347-2353

49. Qiao CX, Zhai XF, Ling CQ, Lang QB, Dong HJ, Liu Q, et al. Health-related quality of life evaluated by tumor node metastasis staging system in patients with hepatocellular carcinoma. *World J Gastroenterol* 2012;18:2689-2694

50. Meier A, Yopp A, Mok H, Kandunoori P, Tiro J, Singal AG. Role functioning is associated with survival in patients with hepatocellular carcinoma. *Qual Life Res* 2015;24:1669-1675

51. Jie B, Oiu Y, Feng ZZ, Zhu SN. Impact of disclosure of diagnosis and patient autonomy on quality of life and illness perceptions in Chinese patients with liver cancer. *Psychooncology* 2016;25:927-932

52. Hansen L, Rosenkranz SJ, Vaccaro GM, Chang MF. Patients with hepatocellular carcinoma near the end of life: a longitudinal qualitative study of their illness experiences. *Cancer Nurs* 2015;38:E19-E27

53. Mikoshiba N, Tateishi R, Tanaka M, Sakai T, Blazeby JM, Kokudo N, et al. Validation of the Japanese version of the EORTC hepatocellular carcinoma-specific quality of life questionnaire module (QLQ-HCC18). *Health Qual Life Outcomes* 2012;10:58

54. Yang Z, Wan C, Li W, Cun Y, Meng Q, Ding Y, et al. Development and validation of the Simplified Chinese Version of EORTC QLQ-HCC18 for patients with hepatocellular carcinoma. *Cancer Invest* 2015;33:340-346

55. Chie WC, Blazeby JM, Hsiao CF, Chiu HC, Poon RT, Mikoshiba N, et al. International cross-cultural field validation of an European Organization for Research and Treatment of Cancer questionnaire module for patients with primary liver cancer, the European Organization for Research and Treatment of Cancer quality-of-life questionnaire HCC18. *Hepatology* 2012;55:1122-1129

56. Diouf M, Filleron T, Barbare JC, Fin L, Picard C, Bouché O, et al. The added value of quality of life (Qol) for prognosis of overall survival in patients with palliative hepatocellular carcinoma. *J Hepatol* 2013;58:509-521

57. Li L, Mo FK, Chan SL, Hui EP, Tang NS, Koh J, et al. Prognostic values of EORTC QLQ-C30 and QLQ-HCC18 index-scores in patients with hepatocellular carcinoma-clinical application of health-related quality-of-life data. *BMC Cancer* 2017;17:8

58. Diouf M, Bonneau, B, Barbare JC, Bouché O, Dahlan L, Paolletti X, et al. Optimal cut points for quality of life questionnaire-core 30 (QLQ-C30) scales: utility for clinical trials and updates of prognostic systems in advanced hepatocellular carcinoma. *Oncologist* 2015;20:62-71

59. Hsu WC, Tsai AC, Chan SC, Wang PM, Chung NN. Mini-nutritional assessment predicts functional status and quality of life of patients with hepatocellular carcinoma in Taiwan. *Nutr Cancer* 2012;64:543-549

60. Shun SC, Chen CH, Sheu JC, Liang JD, Yang JC, Lai YH. Quality of life and its associated factors in patients with hepatocellular carcinoma receiving one course of transarterial chemoembolization treatment: a longitudinal study. *Oncologist* 2012;17:732-739

61. Fan SY, Eiser C, Ho MC, Lin CY. Health-related quality of life in patients with hepatocellular carcinoma: the mediation effects of illness perceptions and coping. *Psychooncology* 2013;22:1353-1360

62. Butt Z, Lai JS, Beaumont JL, Kaiser K, Mallick R, Cella D, et al. Psychometric properties of a brief, clinically relevant measure of pain in patients with hepatocellular carcinoma. *Qual Life Res* 2014;23:2447-2455

63. Phillips R, Gandhi M, Cheung YB, Findlay MP, Win KM, Hai HH, et al. Summary scores captured changes in subjects’ Qol as measured by the multiple scales of the EORTC QLQ-C30. *J Clin Epidemiol* 2015;68:899-902

64. Hinrichs JB, Hademir DB, Nordlohe M, Schweitzer N, Wacker F, Vogel A, et al. Health-related quality of life in patients with hepatocellular carcinoma treated with initial transarterial chemoembolization. *Cardiovasc Intervent Radiol* 2017;40:1559-1566

65. Hansen L, Dieckmann NF, Kolbeck KJ, Naugler WE, Chang MF. Symptom distress in patients with hepatocellular carcinoma toward the end of life. *Oncol Nurs Forum* 2017;44:665-673

66. Gill J, Baiceanu A, Clark PJ, Langford A, Latiff J, Yang PM, et al. Insights into the hepatocellular carcinoma patient journey: results of the first global quality of life survey. *Future Oncol* 2018;14:1701-1710

67. Kensinger CD, Feurer ID, O’Dell HW, LaNeve DC, Simmons L, Pinson CW, et al. Patient-reported outcomes in liver
transplant recipients with hepatocellular carcinoma. *Clin Transplant* 2016;30:1036-1045

68. Qiu B, Li K, Dong X, Liu FQ. Transjugular intrahepatic portosystemic shunt for portal hypertension in hepatocellular carcinoma with portal vein tumor thrombus. *Cardiovasc Intervent Radiol* 2017;40:1372-1382

69. Chau I, Peck-Radosavljevic M, Borg C, Malfertheiner P, Seitz JF, Park JO, et al. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib: Patient-focused outcome results from the randomised phase III REACH study. *Eur J Cancer* 2017;81:17-25

70. He Q, Jiang JJ, Jiang YX, Wang WT, Yang L; Liver Surgery Group. Health-related quality of life comparisons after radical therapy for early-stage hepatocellular carcinoma. *Transplant Proc* 2018;50:1470-1474

71. Xing M, Kokabi N, Camacho JC, Kim HS. Prospective longitudinal quality of life and survival outcomes in patients with advanced infiltrative hepatocellular carcinoma and portal vein thrombosis treated with Yttrium-90 radioembolization. *BMC Cancer* 2018;18:75