Spread of Covid-19 in the United States is controlled

Zixin Hu1,2, Qiyang Ge3, Shudi Li4, Tao Xu4, Eric Boerwinkle4 , Li Jin1,2 and Momiao Xiong4,*

1State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.

2Human Phenome Institute, Fudan University, Shanghai, China.

3The School of Mathematic Sciences, Fudan University, Shanghai, China.

4Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

\textbf{Running Title}: Spread of Covid-19 in US

\textbf{Keywords}: Cov-19, artificial intelligence, identification of control systems dynamics, forecasting, causal inference, auto-encoder.

*Address for correspondence and reprints: Dr. Momiao Xiong, Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, P.O. Box 20186, Houston, Texas 77225, (Phone): 713-500-9894, (Fax): 713-500-0900, E-mail: Momiao.Xiong@uth.tmc.edu.
Abstract

As of May 1, 2020, the number of cases of Covid-19 in the US passed 1,062,446, interventions to slow down the spread of Covid-19 curtailed most social activities. Meanwhile, an economic crisis and resistance to the strict intervention measures are rising. Some researchers proposed intermittent social distancing that may drive the outbreak of Covid-19 into 2022. Questions arise about whether we should maintain or relax quarantine measures. We developed novel artificial intelligence and causal inference integrated methods for real-time prediction and control of nonlinear epidemic systems. We estimated that the peak time of the Covid-19 in the US would be April 24, 2020 and its outbreak in the US will be over by the end of July and reach 1,551,901 cases. We evaluated the impact of relaxing the current interventions for reopening economy on the spread of Covid-19. We provide tools for balancing the risks of workers and reopening economy.
Introduction

Although as of May 1, 2020, the confirmed number of cases of Covid-19 in the US has passed 1,062,446, non-pharmaceutical interventions such as strict self-quarantine for families, maintaining social distancing, stopping mass gatherings, and closure of schools and universities among others has dramatically slowed down the spread of Covid-19 and saved a large number of lives. However, public health interventions have restricted economic activities and caused high unemployment. Some investigators who published their mathematical projection of the dynamics of Covid-19 in Science suggested “prolonged or intermittent social distancing” which may drive the outbreak of Covid-19 into 2022 (1). Meanwhile, MIT researchers questioned the “intermittent social distancing” policy and worried that relaxing public interventions may cause an exponential explosion of Covid-19 (2). Now it is a critical decision point as to whether public health intervention measures should remain in place or should be lifted for reopening economy. Can we simultaneously improve both public health and economy? A key to correctly answering this question is to reconstruct the complex epidemic dynamic systems from the data, precisely predict the extent or duration of COVID-19, and develop a causal inference framework for devising practical implementable public health interventions to control the spread of Covid-19 in the US.

The basic mathematical models which underlying many statistical and computer methods for predicting the dynamics of the Covid-19 are the susceptible-exposed-infected-recovered (SEIR) models and their various versions (3-6). Although these epidemiological models are useful for estimating the dynamics of transmission, and evaluating the impact of intervention strategies, they have some critical limitations (7,8). First, the SEIR models assume a homogeneous population which is evenly mixed. Second, the epidemiological models consist of ordinary
differential equations that have many unknown parameters. These parameters are not identified (9), which leads to low accuracy and a wide range of predictions. Third, most models assume that some control parameters are constant and are not time varying and system dependent. This will dramatically limit our ability to simulate interventions and improve prediction accuracy.

To overcome these limitations, we developed an artificial intelligence (AI) and causal inference integrated intervention auto-encoder (IAE) to reconstruct nonlinear time-varying epidemic dynamic systems, model health intervention plan and make multi-step predictions of the response trajectory of the Covid-19 over time with multiple interventions (fig. S1) (10). Interventions include strict travel restriction, no large group gatherings, mandatory quarantine, restricted public transportation, and school closures. Similar to reproducing number R in the epidemiological models, the various interventions are quantified as control variable A_z taking values in the interval $[0, 1]$. A value of 1 for intervention indicates that intervention is the strongest and reproducing number R is close to zero. A value of zero for intervention variables indicates that no restrictions on social-economic activities are imposed. We assume that the time varying intervention variable A_z is system dependent and can be automatically adjusted. As shown in Figure S1, the IAE determines the intervention response (similar to counterfactual outputs) for a set of time varying and system adjusted interventions A_z and evaluates the impact of different intervention strategies and their implementation times on curbing the spread of Covid-19 and provides timely selection of an optimal sequence of intervention strategies to balance public health and economy reopening.

Methods

SEIR model
We first introduce the susceptible-exposed-infected-recovered (SEIR) model which is a mathematical compartmental model based on the average behavior of a population under study (1). The SEIR model is defined as

\[
\frac{dS}{dt} = -\frac{\beta}{N} S(t) I(t)
\]

(1)

\[
\frac{dE}{dt} = \frac{\beta}{N} S(t) I(t) - \sigma E(t)
\]

(2)

\[
\frac{dI(t)}{dt} = \sigma E(t) - r I(t)
\]

(3)

\[
\frac{dR(t)}{dt} = r I(t)
\]

(4)

where \(S(t), E(t), I(t) \) and \(R(t) \) are the numbers of susceptible, exposed, infected and recovered (recovery or death) individuals at time \(t \), respectively, \(N(t) \) is the population size, and \(\beta(t), \sigma(t) \) and \(\gamma(t) \) are transmission, incubation and recovery rate at time \(t \), respectively.

Solving the differential equations (1)-(4), we obtain

\[
I(t) = S(0)E(0)I(0) \int_0^t \int_0^\tau e^{\sigma \nu} e^{\int_0^\nu e^{-\beta(u)} du} I(\nu) d\nu e^{-\sigma \tau} e^{rt} dt e^{-rt}
\]

(5)

where \(S(0), E(0), I(0) \) and \(R(0) \) are the initial values of \(S(t), E(t), I(t) \) and \(R(t) \).

For the convenience of discussion, \(I(t) \) is denoted by \(Y_t \). The observed \(Y_t \) is a nonlinear function of history of \(Y_t \), parameters \(\beta, \sigma \) and \(r \). Public health interventions such as social distancing, regional lockdowns, quarantine and intensive testing can change these parameters. In the classical SEIR and SIR model, we define the basic reproduction number as

\[
R_0(t) = \frac{\beta(t)}{\gamma(t)}
\]

(6)

which measures the transmission dynamic properties.
The parameters β, σ and r depend on the time t and hence are denoted by $\beta(t), \sigma(t)$ and $r(t)$ since it is difficult to quantify public health interventions, the parameters $\beta(t), \sigma(t)$ and $r(t)$ can also be taken as control variables. We can define a scale or vector of intervention measure $A(t)$ to comprehensively represent the control parameters $\beta(t), \sigma(t)$ and $r(t)$. Equation (5) can be generally rewritten as

$$Y_t = f(Y_{t-1}, \ldots, Y_{t-k}, A_t),$$ \hspace{1cm} (7)

where k is the number of time lags.

The intervention measure A_t can also be written as

$$A_t = g(Y_{t-1}, \ldots, Y_{t-k}, A_{t-1}).$$ \hspace{1cm} (8)

Stacked autoencoders

Single layer autoencoder (AE) is a three layer feedforward neural network (2). The first layer is the input layer, the third layer is the reconstruction layer, and the second layer is the hidden layer. The input vector is denoted by $X_t = [Y_t, Y_{t-1}, \ldots, Y_{t-k-1}, A_t]^T$, where Y_t is the number of cases at the time t and $0 \leq A_t \leq 1$ is the public health intervention measure variable. The input vector is mapped to the hidden layer to capture the features of the transmission dynamics of Covid-19 with public health intervention.

AE attempts to generate an output that reconstructs its input by mapping the hidden vector to the reconstruction layer. The single layer AE attempts to minimize the error between the input vector and the reconstruction vector. We develop stacked autoencoders with 4 layers that consist of two single-layer AEs stacked layer by layer (2). The dimensions of the input layer, the first hidden layer and the second hidden layer are 8, 32 and 4, respectively (Figure
After the first single-layer AE is trained, we remove the reconstruction layer of the first single-layer AE and keep the hidden layer of the first single AE as the input layer of the second single-layer AE. Repeat the training process for the second single-layer AE. The output of the final node that fully connects to the hidden layer of the second single-layer AE is the predicted number of cases \hat{Y}_{t+1} and intervention measure \hat{A}_{t+1}.

Potential Outcomes Framework for Evaluating the Dynamics of Covid-19 under a Sequence of Public Health Interventions

The potential outcome framework that is also referred as the Rubin Causal Model (3) is a powerful tool for modeling health intervention plan and making multi-step prediction of the response trajectory of Covid-19 over time with a sequence of public health interventions.

Potential outcomes consist of observed and counterfactual outcomes. We are interested in number of cases of Covid-19 under some specific intervention. We observed the number of new cases or cumulative cases of Covid-19 (actual observation) without intervention or with some specific intervention. However, we want to know what number of new or cumulative cases of Covid-19 (counterfactual, unobserved) would be if other interventions were implemented.

Let A_t be an intervention measure at time t. $A_t = a_t$ can be a binary variable. For example, $a_t = 1$ ($a_t = 0$) indicates that intervention is (not) implemented. $A_t = a_t$ can also be continuous variable taking values in the interval $a_t \in [0, 1]$. If A_t is a continuous variable, the value of $A_t = a_t$ represents the intensity of intervention. $a_t = 1$ indicates that the intervention is the most strict and comprehensive public health intervention. Let $Y_{t+1} = Y(a_t)$ be the potential outcome under intervention a_t and be observed only when $A_t = a_t$. The potential outcome framework assumes the existence of the hypothetical outcome with some interventions which is
not observed in the data. The hypothetical outcome under hypothetical intervention is called counterfactual outcome. The set \(\{ A_t, Y_{t+1} \} \) forms a potential framework for causal inference.

Intervention Autoencoder for Real-Time Identification, Prediction and Control of Nonlinear Time-Varying Epidemic Dynamic Systems

The IAE uses sequence-to-sequence multi-input/output architectures to model health intervention plan and make multi-step prediction of the response trajectory of Covid-19 over time with multiple interventions (Figure S1(b)). The IAE can learn the complex dynamics within the temporal ordering of input time series of Covid-19 and use an internal memory to remember. The health intervention plan has multiple intervention regimens. The IAE consists of two auto-encoders: Auto-encoder (1) is used as encoder and Auto-encoder (2) is used as the decoder. Auto-encoder (1) models input time series and a sequence of interventions (past history of the number of cases of Covid-19 and interventions over time) and predicts future response time series and interventions. Auto-encoder (2) uses the learned features of the dynamics of Covid-19 in the auto-encoder (1) to forecast the potential response time series and interventions as an input to the auto-encoder (2). The feature vector learned in the auto-encoder (1) is then provided as an input to the autoencoder (2) which initiate prediction of the future dynamics of Covid-19 under the future interventions (Figure S1(b)). The algorithm for training and forecasting of IAE is summarized as follows.

Algorithm

Step 1. Initialization.

Randomly select \(A_{i,t}, t = 1, \ldots, T; i = 1, \ldots, n \) for \(n \) samples with \(T \) time points. Using the data for US and all states and regions, we train the network. Repeat above procedure five times.
Step 2. After the networks are trained, for each sample and each window, divide $A_{i,t}$ into ten grids $A_{i,t}^j = j \times 0.1, j = 0, 1, \ldots, 10$. For each $A_{i,t}^j$, train the network:

$$
\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} ||Y_{i,t} - f(Y_{i,t-1}, \ldots, Y_{i,t-k}, A_{i,t}, \theta)||^2.
$$

After the network is trained, for each sample, we calculate the prediction error $e_{i,t}^j$.

$$
e_{i,t}^j = ||Y_{i,t} - f(Y_{i,t-1}, \ldots, Y_{i,t-k}, A_{i,t}, \hat{\theta})||^2.
$$

Select $A_{i,t}^{j_o}$ such that error is the smallest, i.e.,

$$
j_{i,0} = \arg\min_j e_{i,t}^j \text{ and } A_{i,t} = A_{i,t}^{j_{i,o}}.
$$

Step 3. Define the equation that is implemented by neural networks:

$$
\hat{Y}_t = f(Y_{t-1}, \ldots, Y_{t-k}, A_{t-1}, \theta) \quad \text{and} \quad \hat{A}_t = g(Y_{t-1}, \ldots, Y_{t-k}, A_{t-1}, \theta).
$$

Train the network to estimate the parameters in the network, assuming that A_t is estimated in step 2. In other words, we optimize the following problem:

$$
\hat{\theta}_{\text{forecasting}} = \arg\min_{\theta} \sum_{t=1}^{T} ||Y_t - \hat{Y}_t||^2 + ||A_t - \hat{A}_t||^2.
$$

Step 4. Using the trained autoencoder (1) as auto-encoder (2). Predict $\hat{Y}_{t+1}, \hat{Y}_{t+2}, \ldots, \hat{A}_{t+1}, \hat{A}_{t+2}, \ldots$, using the formula:

$$
\hat{Y}_{t+2} = f(Y_{t+1}, \ldots, Y_{t-k+1}, A_{t+1}, \hat{\theta}_{\text{forecasting}})
$$

$$
\hat{A}_{t+2} = g(Y_{t+1}, \ldots, Y_{t-k+1}, A_t, \hat{\theta}_{\text{forecasting}})
$$

Forecasting Procedures
The trained IAE was used to forecast the future number of new or cumulative cases of Covid-19 for US and each state. The recursive multiple-step forecasting involved using a one-step model multiple times where the prediction for the preceding time step and intervention strategy were used as an input for making a prediction on the following time step (Figure S1(b)). For example, for forecasting the number of new confirmed cases for the one more next day, the predicted number of new cases and intervention measure in one-step forecasting would be used as an observational input in order to predict day 2. Repeat the above process to obtain the two-step forecasting. The summation of the final forecasted number of new or cumulative confirmed cases for each state was taken as the prediction of the total number of new or cumulative confirmed cases of Covid-19 in US.

Data Sources

The analysis is based on the surveillance data of confirmed and new Covid-19 cases in the US up to April 24, 2020. Data on the number of confirmed, new and death cases of Covid-19 from January 22, 2020 to April 24 were obtained from the John Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/MAP.HTML).

Data Pre-processing

A segment of time series with 8 days was viewed as a sample of data and N segments of time series was taken as the training samples. One element from the time series and intervention data matrix Z is randomly selected as a start day of the segment and its 7 successive days were selected as the other days to form a segment of time series. Let n be the index of the segment and t_n be the column index of the matrix Z that was selected as the starting day. The n^{th} segment time series can be represented as $\{Z_{t_n}, Z_{t_n+1}, \ldots, Z_{t_n+7}\}$. Data were normalized to...
\[X_{t_n+k} = \frac{Z_{t_n+k}}{s}, \quad k = 0, 1, \ldots, 7, \]

where \(S = \frac{1}{8}\sum_{k=0}^{7} Z_{t_n+k} \). Let \(Y_n = \frac{\hat{Z}_{t_n+8}}{s} \) be the normalized number of new or cumulative cases to forecast. If \(S = 0 \), then set \(Y_n = 0 \). The loss function was defined as

\[L = \sum_{n=1}^{N} W_n (Y_n - \hat{Y}_n)^2, \]

where \(\hat{Y}_n \) was its forecasted number of new or cumulative cases by the SAE, and \(W_n \) were weights. If \(t_{t_n} \) was in the interval \([1, 12]\), then \(W_n = 1 \). If \(t_{t_n} \) was in the interval \([13, 24]\), then \(W_n = 2 \), etc. Repeat training processed 5 times. The average forecasting \(\hat{Y}_{t_n} \) will be taken as a final forecasted number of the new or cumulative confirmed cases for each state.

Results

Prediction accuracy of the dynamics of Covid-19 using IAE

Accurate prediction of the spread of Covid-19 is important for future health intervention planning. To demonstrate that the IAE is an accurate forecasting method, the IAE was applied to confirmed accumulated cases of COVID-19 in the US. Fig. S2 plotted reported and one-step ahead predicted time-case curves of Covid-19 where the blue dotted curve was the number of reported cumulative cases after completion of the analysis. To further reliably evaluate the forecasting accuracy, we reported 10-step ahead forecasting errors of the cumulative cases of Covid-19 in the US, starting with April 16, 2020 (see table S1). The average errors of 1-step, 5-step and 10-step forecasting were 0.0035, 0.016 and 0.0012, respectively.

Outbreak of Covid-19 in the US passed the peak time
We estimated that the outbreak of Covid-19 in the US would reach its peak on April 24, 2020 (Figure 1, table S2). The number of new cases and cumulative cases at peak time in the US would be 36,188 and 905,358, respectively. The forecasted number of new cases of Covid-19 in the US, 10 days after the peak would be 26,428 and drop by 27%.

The peak times of the Covid-19 in the individual 50 states varied from March 24, 2020 (Virgin Islands) to May 24, 2020 (Nebraska) (Table 1 and table S2). The outbreak of the Covid-19 in New York State reached its peak on April 15, 2020 with 11,434 cases. The number of new cases and cumulative cases in the US and in the 50 individual states was summarized in Table 1. We forecasted that the outbreak of Covid-19 in the US would be completely over by the end of July. The maximum number of cases of Covid-19 in the US was 1,551,901. The end time of the outbreak of Covid-19 in the 50 states also varied from May 4 (Montana, 455 cumulative cases) to August 6, 2020 (Massachusetts, 238,370 cumulative cases). The outbreak of Covid-19 in New York State would be over on July 17, 2020 (Table 1). The maximum number of cumulative cases in New York State was 407,041. The reported and forecasted (if there are no reported) number of new cases in the US, 50 states and 5 other regions were summarized in table S2. The time-cumulative case curves of Covid-19 in the 50 states and 7 other regions were clustered into 9 groups using the k-means clustering algorithm (Figure 2). The states and regions in the same group will have the similar levels of forecasted number of cumulative cases at the end time of Covid-19.

To study the impact of relaxing intervention restrictions on the spread of Covid-19 in the US, we presented the results in Figure 1. We considered four scenarios of interventions: scenario 1 followed current intervention measures, scenarios 2 and 3 relaxed 20% and 40% of the intervention measures, and scenario 4 increased 20% of the intervention measure, after April 25,
2020. Figure 1 showed that if we relaxed 40% of the intervention measure, the spread of Covid-19 would be over on August 7, with 1,869,185 cumulative cases (an increase of 317,284 cases or 20.4% of cumulative cases more than if the current intervention measure was followed) of Covid-19 in the US (table S3). To avoid increasing the number of new cases, we can increase the number of coronavirus tests.

Intervention measures taken determines the varying time of the transmission dynamics of Covid-19

Public health interventions such as city lockdowns, traffic restrictions, quarantines, contact tracing, canceling gatherings and school closure will slow down the spread of Covid-19. Traditionally, the effects of the interventions on the transmission dynamics of Covid-19 can be investigated either by the classic SEIR epidemiological model which is determined by the exposure, infection and recovery rates β, σ and γ, respectively, or by the classical SIR epidemiological model which is determined by the infection rate β and recovery rate γ. The reproduction number R_t in both the SEIR and SIR models is defined as

$$R_t = \frac{\beta}{\gamma},$$

which is often used to determine the dynamic behavior of epidemics.

It is clear that information in reproduction number covers all parameters only in the SIR model and misses covering one parameter in the SEIR model. In addition, public health interventions cannot be quantified in the reproduction number. Similar to the reproducing number, we define an intervention measure A_t to control the spread of Covid-19. Figure 3 plotted the intervention measure A_t in the US under four scenarios of interventions as a function
of times starting with January 22, 2020 and ending with the end of September, 2020.

Intervention measure is a metric to quantify the degree of controlling infection. Figure 3 showed that the intervention curve started with a low intervention measure and then the trend of the intervention curve was, in general, increased until the end of February, 2020, when Spring break began. Spring break substantially reduced prevention measures and caused a large-scale outbreak of Covid-19 in the US. Then, the government implemented strict quarantine and social distance policies, and hence the intervention measure increased again. The average intervention measure of the US, 50 states and 5 other regions at the peak time was 0.54 (Table 1 and table S4). In other words, when the intervention measure was close to 0.5, interventions were sufficiently strong to decrease the number of new cases of Covid-19. Finally, the intervention measure steadily and quickly increased to 1 when the number of new cases rapidly deceased and the spread of Covid-19 was completely stopped. Figure 3 also showed that even if the intervention measure was assumed to decrease 40%, the intervention measure could still quickly and steadily increase to 1 and then the spread of Covid-19 would stop.

Table S5 presented correlation coefficients between the number of new cases and the intervention measure in the US, 50 states and 5 other regions. The correlation coefficients between the number of new cases and the intervention measure in the US is -0.4819. A total of 23.2% of the variation of new cases were explained by the intervention measure. Correlation coefficients of the 50 states ranged from -0.4473 (California) to -0.1480 (Northern Mariana Islands). California (-0.4473), Washington (-0.4197), Arizona (-0.4008), Illinois (-0.3759) and Massachusetts (-0.3521) were the top five states with the largest correlation coefficients. Negative correlation coefficients indicated that increasing the intervention measure would decrease the number of new cases. To investigate the relationship between the intervention
measure and widely used reproduction number $R(t)$, we first used SIR model to calculate the reproduction number $R(t)$ and then calculate the Spearman correlation coefficient between the intervention measure and reproduction number $R(t)$. We obtain the Spearman correlation coefficient of 0.585 between the intervention measure and reproduction number, using the number of new cases in the US and 50 states from April 1 to April 29.

Discussion

In summary, this report have addressed several important issues in forecasting the transmission dynamics of Covid-19 and evaluating the effects of the intervention measures on the curbing spread of Covid-19. First issue is low forecasting accuracy of the classical epidemiological models due to the unidentifiability of the model parameters. The classical epidemiological models often give a wide range of predictions of the future trajectories of the epidemics, which causes difficulties for public health intervention planning. As an alternative to epidemiologic mode, we developed data driven IAE for real-time prediction and control of nonlinear time-varying epidemic dynamic systems. The prediction accuracy of the IAE was very high. The 10-step forecasting error of IAE was 0.0012.

Second issue is how to formulate the real-time forecasting and designing intervention strategies for controlling the spread of Covid-19 as a causal inference problem. The data collected for Covid-19 are observational data. It is infeasible to collect the transmission dynamics data from the experiments. These data for both the total US and individual state can be observed only once. Dynamic responses of epidemics under multiple intervention scenarios are counterfactual. Unlike model-based approach where the models are assumed underlying the transmission dynamics of epidemics, the data driven evaluations of intervention strategies
require causal inference as a basic tool for forecasting and evaluating the dynamics of Covid-19 in the US. We used counterfactual outcome as a general framework for modeling health intervention plan and making multi-step prediction of the response trajectory of Covid-19 over time with a sequence of public health interventions. As illustration, we evaluated four scenarios of interventions and predicted that if we relaxed 40% of intervention measure, the spread of Covid-19 would be over on August 7, with 1,869,185 cumulative cases (increased 317,284 cases or 20.4% of cumulative cases than following the current intervention measure) of Covid-19 in US. However, if we increased 20% of the intervention measure, for example, by increasing the ratio of coronavirus tests, the spread of Covid-19 would be over on July 23, with 1,296,487 cumulative cases (reduced 16.5% of cumulative cases than following the current intervention measure).

The third issue is to simultaneously estimate the trajectory of the dynamics of Covid-19 and the intervention measure. We proposed to use intervention measure as a control variable that comprehensively quantified the public health interventions and incorporate the intervention measure as an input into the IAE model. Therefore, the IAE model jointly estimate the number of cases and intervention measure.

The fourth issue is interpretation of intervention measure. We could not investigate the impact of all individual elements of the interventions because many were introduced simultaneously across the US. If the individual intervention data are available, the IAE model can quantify the effect of the specific intervention on the controlling spread of Covid-19. The widely used quantity to characterize the transmission of dynamics is the reproduction number R. We found that the correlation coefficient between the intervention measure and reproduction number was 0.585.
The US passed the peak time of the Covid-19 and the number of new cases decreasing. The interventions such as stay-at-home orders and business closures dramatically slowed down the spread of Covid-19, but at the cost of economy shutdowns. A key to safely reopening the economy is massive virus tests. Relaxing quarantine, self-isolation and business closure is offset by increasing the number of tests. Question is how many number of tests is needed to ensure the curbing the spread of Covid-19 without intriguing the second wave of the outbreak. The IAE model with the ratio of the test as input provides tools for evaluating a sequence of strategies for safely reopening the economy.

Funding

Dr. Li Jin was partially supported by National Natural Science Foundation of China (91846302).
Legend

Figure 1. The reported and forecasted curves of newly confirmed cases of Covid-19 in the US with three scenarios of interventions as a function of time, starting date from January 22, 2020. Scenario 1 followed the current intervention measure, scenarios 2 and 3 relaxed 20% and 40% of the intervention measure, and scenario 4 increased 20% of the current intervention measure.

Figure 2. Time-case plot of 50 states. (A) Time-case plot of New York state, (B) time-case plot of Massachusetts, (C) time-case plot of New Jersey and Illinois, (D) time-case plot of California, Pennsylvania, Iowa, Maryland, Michigan and Connecticut, (E) time-case plot of Virginia, Texas, Florida, Colorado, Georgia, Tennessee, Indiana, Nebraska, Louisiana, Ohio and Rhode Island, (F) time-case plot of North Carolina, Kansas, Minnesota, Arkansas, Washington, Mississippi, and Wisconsin, (G) time-case plot of Arizona, Missouri, New Mexico, Alabama, Kentucky, South Carolina, District of Columbia, Utah, Delaware and Nevada, (H) South Dakota, Oklahoma, New Hampshire, Oregon, North Dakota, Idaho, West Virginia, and (I) time-case plot of Puerto Rico, Maine, Wyoming, Vermont, Hawaii, Montana, Alaska, Guam, Grand Princess, Virgin Islands, Diamond Princess, Northern Mariana Islands and American Samoa.

Figure 3. The intervention measure curves as a function of times under three scenarios of interventions to control the transmission dynamics of Covid-19 in the US.
Supplementary Figure

Figure S1. Architecture of intervention autoencoder. (a) block autoencoder with $8 \times 32 \times 4 \times 2$ dimensions and (b) Process structure of the developed intervention autoencoder model.

Figure S2. Plotted reported and one-step ahead predicted time-case curves of Covid-19 in the US.
References and Notes

1. S. M. Kissler, C. Tedijanto, E. Goldstein E, Y. H. Grad, M. Lipsitch, Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020 Apr 14. pii: eabb5793. doi: 10.1126/science.abb5793. [Epub ahead of print].

2. R. Dandekar and G. Barbastathis, Quantifying the effect of quarantine control in Covid-19 infectious spread using machine learning. medRxiv doi: https://doi.org/10.1101/2020.04.03.20052084 [preprint].

3. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong et al. Early transmission dynamics in Wuhan, China, of novel Coronavirus-infected pneumonia. N Engl J Med. 2020, Jan 29. doi: 10.1056/NEJMoa2001316. [Epub ahead of print].

4. J. T. Wu, K. Leung, G. M. Leung. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 395, 689-697 (2020).

5. Y. Chen, P. Lu, C. Chang, T. Liu, A Time-dependent SIR model for COVID-19 with Undetectable Infected Persons. arXiv:2003.00122 [q-bio.PE].

6. A. R. Tuite, D. N. Fisman, Reporting, epidemic growth, and reproduction numbers for the 2019 novel coronavirus (2019-nCoV) epidemic. Ann Intern Med. 2020. doi: 10.7326/M20-0358. [Epub ahead of print].

7. S. Funk, A. Camacho, A. J. Kucharski, R.M. Eggo, W. J. Edmunds, Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics 22, 56-61 (2018).

8. M. A. Johansson, K. M. Apfeldorf, S. Dobson et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc Natl Acad Sci U S A. 116, 24268-24274 (2019).

9. W. C. Roda, M. B. Varughese, D. Han, M. Y. Li, Why is it difficult to accurately predict the COVID-19 epidemic? Infect Dis Model 5,271-281 (2020).

10. D. Charte, F. Charte, S. García, M. J. D. Jesus, F. Herrera, A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines. Information Fusion 44,78–96 (2019).

11. R. Sameni, Mathematical modeling of epidemic diseases; A case study of the COVID-19 coronavirus. arXiv:2003.11371, April 10, 2020.

12. W. Bao, J. Yue, Y. Rao, A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS One, 12:e0180944 (2017).

13. D. L. Weed, Commentary: Causal inference in epidemiology: potential outcomes, pluralism and peer review. Int J Epidemiol.45(6):1838-1840 (2016).
Figure 1. The reported and forecasted curves of newly confirmed cases of Covid-19 in the US with three scenarios of interventions as a function of time, starting date from January 22, 2020. Scenario 1 followed the current intervention measure, scenarios 2 and 3 relaxed 20% and 40% of the intervention measure, and scenario 4 increased 20% of the current intervention measure.
Figure 2. Time-case plot of 50 states. (A) Time-case plot of New York state, (B) time-case plot of Massachusetts, (C) time-case plot of New Jersey and Illinois, (D) time-case plot of California, Pennsylvania, Iowa, Maryland, Michigan and Connecticut, (E) time-case plot of Virginia, Texas, Florida, Colorado, Georgia, Tennessee, Indiana, Nebraska, Louisiana, Ohio and Rhode Island, (F) time-case plot of North Carolina, Kansas, Minnesota, Arkansas, Washington, Mississippi, and Wisconsin, (G) time-case plot of Arizona, Missouri, New Mexico, Alabama, Kentucky, South Carolina, District of Columbia, Utah, Delaware and Nevada, (H) South Dakota, Oklahoma, New Hampshire, Oregon, North Dakota, Idaho, West Virginia, and (I) time-case plot of Puerto Rico, Maine, Wyoming, Vermont, Hawaii, Montana, Alaska, Guam, Grand Princess, Virgin Islands, Diamond Princess, Northern Mariana Islands and American Samoa.
Figure 3. The intervention measure curves as a function of times under three scenarios of interventions to control the transmission dynamics of Covid-19 in the US.
Figure S1. Architecture of intervention autoencoder. (a) block autoencoder with $8 \times 32 \times 4 \times 2$ dimensions and (b) Process structure of the developed intervention autoencoder model.
Figure S2. Plotted reported and one-step ahead predicted time-case curves of Covid-19 in the US.
| | 1-step | 2-step | 3-step | 4-step | 5-step | 6-step | 7-step | 8-step | 9-step | 10-step | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00245 | NA |
| -0.00884 | -0.01362 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| -0.00104 | -0.01029 | -0.01548 | NA | NA | NA | NA | NA | NA | NA | NA |
| -0.00106 | -0.00250 | -0.01215 | -0.01774 | NA | NA | NA | NA | NA | NA | NA |
| 0.00101 | 0.00034 | -0.00063 | -0.00987 | -0.01505 | NA | NA | NA | NA | NA | NA |
| 0.00583 | 0.00892 | 0.01084 | 0.01205 | 0.00491 | 0.00189 | NA | NA | NA | NA | NA |
| 0.00803 | 0.01707 | 0.02416 | 0.02975 | 0.03445 | 0.03038 | 0.03022 | NA | NA | NA | NA |
| -0.00128 | 0.00622 | 0.01459 | 0.02104 | 0.02595 | 0.03008 | 0.02551 | 0.02480 | NA | NA | NA |
| -0.00209 | -0.00420 | 0.00240 | 0.00996 | 0.01546 | 0.01932 | 0.02260 | 0.01715 | 0.01559 | NA | NA |
| -0.00294 | -0.00621 | -0.00948 | -0.00406 | 0.00237 | 0.00641 | 0.00885 | 0.01075 | 0.00407 | 0.00124 | NA |
| Average | 0.00346 | 0.00771 | 0.01122 | 0.01492 | 0.01637 | 0.01762 | 0.02180 | 0.01757 | 0.00983 | 0.00124 |
| Date | US | California | Connecticut | Illinois | Iowa | Maryland | Massachusetts | Michigan | New Jersey | New York | Pennsylvania |
|------------|--------|------------|-------------|----------|------|----------|---------------|----------|------------|----------|--------------|
| 4/25/2020 | 32796 | 1013 | 647 | 2119 | 647 | 1150 | 2379 | 408 | 3302 | 10553 | 945 |
| 4/26/2020 | 31995 | 1624 | 1087 | 2256 | 541 | 974 | 3436 | 1039 | 3003 | 7620 | 1436 |
| 4/27/2020 | 31644 | 1638 | 1061 | 2338 | 583 | 1038 | 3768 | 928 | 2974 | 7716 | 1337 |
| 4/28/2020 | 31317 | 1597 | 952 | 2365 | 641 | 1018 | 4145 | 917 | 2909 | 7584 | 1555 |
| 4/29/2020 | 30677 | 1604 | 1113 | 2483 | 665 | 1054 | 3928 | 823 | 2823 | 7745 | 1447 |
| 4/30/2020 | 29896 | 1600 | 950 | 2504 | 724 | 1085 | 4160 | 839 | 2756 | 7203 | 1452 |
| 5/1/2020 | 29256 | 1530 | 1060 | 2568 | 752 | 1078 | 4268 | 813 | 2582 | 6680 | 1335 |
| 5/2/2020 | 28315 | 1504 | 1026 | 2554 | 761 | 1102 | 4186 | 714 | 2634 | 6520 | 1308 |
| 5/3/2020 | 27409 | 1513 | 1027 | 2605 | 774 | 1103 | 4412 | 736 | 2449 | 5747 | 1339 |
| 5/4/2020 | 26428 | 1464 | 1000 | 2614 | 808 | 1115 | 4516 | 667 | 2356 | 5700 | 1257 |
| 5/5/2020 | 25415 | 1424 | 977 | 2630 | 840 | 1118 | 4573 | 621 | 2233 | 5288 | 1231 |
| 5/6/2020 | 24338 | 1378 | 967 | 2640 | 862 | 1124 | 4634 | 588 | 2109 | 4990 | 1177 |
| 5/7/2020 | 23208 | 1332 | 928 | 2645 | 890 | 1127 | 4705 | 554 | 1998 | 4741 | 1136 |
| 5/8/2020 | 22066 | 1279 | 909 | 2645 | 905 | 1126 | 4767 | 509 | 1869 | 4448 | 1081 |
| 5/9/2020 | 20885 | 1223 | 873 | 2634 | 926 | 1122 | 4809 | 480 | 1775 | 4064 | 1026 |
| 5/10/2020 | 19754 | 1168 | 844 | 2618 | 947 | 1114 | 4858 | 444 | 1656 | 3868 | 976 |
| 5/11/2020 | 18637 | 1109 | 809 | 2592 | 971 | 1103 | 4893 | 403 | 1556 | 3541 | 919 |
| 5/12/2020 | 17545 | 1050 | 773 | 2558 | 988 | 1088 | 4918 | 369 | 1431 | 3234 | 871 |
| 5/13/2020 | 16471 | 993 | 737 | 2515 | 1008 | 1070 | 4929 | 338 | 1323 | 2971 | 818 |
| 5/14/2020 | 15423 | 937 | 698 | 2464 | 1027 | 1048 | 4929 | 309 | 1206 | 2722 | 770 |
| 5/15/2020 | 14245 | 882 | 661 | 2405 | 1045 | 1023 | 4914 | 280 | 1105 | 2491 | 721 |
| 5/16/2020 | 13141 | 828 | 624 | 2339 | 1062 | 994 | 4884 | 254 | 1012 | 2254 | 670 |
| 5/17/2020 | 11977 | 775 | 588 | 2265 | 1077 | 963 | 4839 | 229 | 921 | 2049 | 615 |
| 5/18/2020 | 10997 | 715 | 553 | 2186 | 1091 | 929 | 4778 | 206 | 837 | 1849 | 564 |
| 5/19/2020 | 10062 | 661 | 518 | 2101 | 1103 | 893 | 4701 | 184 | 756 | 1663 | 517 |
| 5/20/2020 | 9177 | 602 | 485 | 2013 | 1113 | 855 | 4609 | 161 | 683 | 1491 | 473 |
| 5/21/2020 | 8339 | 553 | 441 | 1920 | 1121 | 816 | 4502 | 138 | 613 | 1315 | 432 |
| 5/22/2020 | 7543 | 506 | 414 | 1825 | 1126 | 775 | 4381 | 121 | 549 | 1138 | 393 |
| Date | Value1 | Value2 | Value3 | Value4 | Value5 | Value6 | Value7 | Value8 |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5/23/2020 | 6809 | 461 | 374 | 1728 | 1129 | 734 | 4246 | 107 |
| 5/24/2020 | 6111 | 419 | 344 | 1634 | 1128 | 694 | 4100 | 95 |
| 5/25/2020 | 5478 | 379 | 314 | 1542 | 1125 | 655 | 3944 | 84 |
| 5/26/2020 | 4788 | 342 | 286 | 1452 | 1118 | 616 | 3780 | 74 |
| 5/27/2020 | 4119 | 307 | 260 | 1363 | 1107 | 578 | 3609 | 65 |
| 5/28/2020 | 3608 | 275 | 234 | 1276 | 1093 | 541 | 3433 | 57 |
| 5/29/2020 | 3184 | 239 | 211 | 1181 | 1075 | 499 | 3253 | 50 |
| 5/30/2020 | 2825 | 206 | 189 | 1085 | 1054 | 461 | 3076 | 44 |
| 5/31/2020 | 2505 | 181 | 168 | 991 | 1029 | 420 | 2905 | 38 |
| 6/1/2020 | 2223 | 160 | 145 | 910 | 1001 | 386 | 2736 | 34 |
| 6/2/2020 | 1960 | 142 | 126 | 833 | 970 | 353 | 2570 | 30 |
| 6/3/2020 | 1714 | 126 | 111 | 760 | 936 | 322 | 2408 | 26 |
| 6/4/2020 | 1497 | 112 | 98 | 690 | 900 | 292 | 2239 | 23 |
| 6/5/2020 | 1311 | 98 | 87 | 625 | 862 | 264 | 2047 | 20 |
| 6/6/2020 | 1152 | 86 | 77 | 563 | 823 | 238 | 1893 | 17 |
| 6/7/2020 | 1014 | 75 | 68 | 506 | 783 | 214 | 1726 | 15 |
| 6/8/2020 | 894 | 66 | 60 | 453 | 741 | 192 | 1582 | 13 |
| 6/9/2020 | 788 | 58 | 52 | 396 | 701 | 166 | 1443 | 11 |
| 6/10/2020 | 692 | 51 | 46 | 340 | 662 | 143 | 1312 | 10 |
| 6/11/2020 | 607 | 45 | 40 | 298 | 623 | 125 | 1190 | 9 |
| 6/12/2020 | 532 | 39 | 35 | 263 | 585 | 111 | 1072 | 8 |
| 6/13/2020 | 466 | 34 | 31 | 233 | 548 | 98 | 965 | 7 |
| 6/14/2020 | 409 | 30 | 27 | 207 | 507 | 87 | 865 | 6 |
| 6/15/2020 | 359 | 26 | 24 | 184 | 467 | 77 | 762 | 5 |
| 6/16/2020 | 315 | 23 | 21 | 162 | 426 | 68 | 656 | 4 |
| 6/17/2020 | 277 | 20 | 18 | 141 | 391 | 59 | 572 | 4 |
| 6/18/2020 | 243 | 18 | 16 | 123 | 358 | 52 | 504 | 3 |
| 6/19/2020 | 213 | 15 | 14 | 108 | 327 | 45 | 447 | 3 |
| 6/20/2020 | 187 | 13 | 12 | 95 | 297 | 40 | 396 | 2 |

28
Total US and State	Current Number of Cases	scenario	Peak Time	Peak Number (New)	Peak Number (Cum)	End Time	End Number of Cases
US	938154	Scenario 1	4/24/2020	36188	905358	7/31/2020	1551901
		Scenario 2	5/1/2020	38792	1161618	8/7/2020	1869185
		Scenario 3	5/7/2020	63920	1602278	8/22/2020	3083138
		Scenario 4	4/24/2020	36188	905358	7/23/2020	1296487
Alabama	6026	Scenario 1	4/9/2020	375	2703	6/23/2020	9949
		Scenario 2	4/9/2020	375	2703	6/29/2020	11693
		Scenario 3	4/9/2020	375	2703	7/10/2020	17190
		Scenario 4	4/9/2020	375	2703	6/16/2020	8507
Alaska	339	Scenario 1	3/28/2020	27	85	5/9/2020	360
		Scenario 2	3/28/2020	27	85	5/9/2020	360
		Scenario 3	3/28/2020	27	85	5/13/2020	375
		Scenario 4	3/28/2020	27	85	5/2/2020	347
Arizona	6286	Scenario 1	4/23/2020	299	5772	6/29/2020	12316
		Scenario 2	5/3/2020	333	8766	7/7/2020	15687
		Scenario 3	5/15/2020	617	17026	7/23/2020	29767
		Scenario 4	4/23/2020	299	5772	6/21/2020	9927
Arkansas	2911	Scenario 1	5/16/2020	347	9445.5	7/20/2020	16705
		Scenario 2	5/21/2020	522	14270	7/28/2020	25175
		Scenario 3	5/27/2020	937	25765.5	8/7/2020	45227
		Scenario 4	4/23/2020	323	2599	7/6/2020	9426
California	42368	Scenario 1	4/20/2020	2255	33686	7/11/2020	77978
		Scenario 2	4/20/2020	2255	33686	7/20/2020	101651
		Scenario 3	5/16/2020	4153	116029	8/7/2020	200917
		Scenario 4	4/20/2020	2255	33686	7/5/2020	66237
Colorado	12968	Scenario 1	4/24/2020	978	12256	7/17/2020	39566
Scenario 2	5/14/2020	1260	34000	7/28/2020	60834		
Scenario 3	5/23/2020	2414	66319	8/10/2020	116663		
Scenario 4	4/24/2020	978	12256	7/4/2020	25995		

Connecticut	24583	Scenario 1	4/22/2020	2109	22469	7/11/2020	50220
Scenario 2	4/22/2020	2109	22469	7/18/2020	64210		
Scenario 3	5/17/2020	2779	76206	8/6/2020	134409		
Scenario 4	4/22/2020	21	22469	7/3/2020	41259		

Delaware	3576	Scenario 1	4/22/2020	269	3200	6/28/2020	7659
Scenario 2	4/22/2020	269	3200	7/7/2020	10402		
Scenario 3	5/19/2020	462	12787	7/25/2020	22264		
Scenario 4	4/22/2020	269	3200	6/19/2020	6075		

Diamond Princess	49	Scenario 1	3/17/2020	47	47	3/20/2020	49
Scenario 2	3/17/2020	47	47	3/20/2020	49		
Scenario 3	3/17/2020	47	47	3/20/2020	49		
Scenario 4	3/17/2020	47	47	3/20/2020	49		

District of Columbia	3699	Scenario 1	4/8/2020	229	1440	6/29/2020	8166
Scenario 2	5/7/2020	240	6482	7/9/2020	11520		
Scenario 3	5/19/2020	492	13496	7/26/2020	23712		
Scenario 4	4/8/2020	229	1440	6/19/2020	6260		

Florida	30839	Scenario 1	4/2/2020	2052	9008	6/26/2020	41224
Scenario 2	4/2/2020	2052	9008	7/1/2020	45202		
Scenario 3	4/2/2020	2052	9008	7/9/2020	55868		
Scenario 4	4/2/2020	2052	9008	6/21/2020	38022		

Georgia	23222	Scenario 1	4/17/2020	1525	17194	7/3/2020	38652
Scenario 2	4/17/2020	1525	17194	7/10/2020	47268		
Scenario 3	5/8/2020	1677	41702	7/26/2020	80409		
Scenario 4	4/17/2020	1525	17194	6/25/2020	32650		

Grand Princess	103	Scenario 1	3/28/2020	75	103	3/28/2020	103
Scenario 2	3/28/2020	75	103	3/28/2020	103		
Scenario 3	3/28/2020	75	103	3/28/2020	103		
State	ID	Scenario	Date	Setting	Date	Setting			
Guam	141	Scenario 1	4/5/2020	19	4/28/2020	103			
		Scenario 2	4/5/2020	19	4/28/2020	103			
		Scenario 3	4/5/2020	19	4/28/2020	103			
		Scenario 4	4/5/2020	19	4/27/2020	142			
Hawaii	605	Scenario 1	4/3/2020	63	5/10/2020	631			
		Scenario 2	4/3/2020	63	5/12/2020	642			
		Scenario 3	4/3/2020	63	5/16/2020	663			
		Scenario 4	4/3/2020	63	5/8/2020	626			
Idaho	1887	Scenario 1	4/2/2020	210	6/1/2020	2318			
		Scenario 2	4/2/2020	210	6/4/2020	2474			
		Scenario 3	4/2/2020	210	6/11/2020	2822			
		Scenario 4	4/2/2020	210	5/26/2020	2161			
Illinois	41777	Scenario 1	4/24/2020	2721	7/26/2020	127855			
		Scenario 2	5/13/2020	3822	8/4/2020	184875			
		Scenario 3	5/23/2020	7570	8/19/2020	366106			
		Scenario 4	4/24/2020	2721	7/14/2020	85629			
Indiana	14399	Scenario 1	4/25/2020	718	7/8/2020	31073			
		Scenario 2	5/5/2020	879	7/17/2020	42433			
		Scenario 3	5/18/2020	1772	8/4/2020	85601			
		Scenario 4	4/25/2020	718	6/28/2020	23592			
Iowa	5092	Scenario 1	5/23/2020	1129	8/5/2020	54509			
		Scenario 2	5/27/2020	1789	8/13/2020	86478			
		Scenario 3	6/1/2020	3015	8/21/2020	145783			
		Scenario 4	4/25/2020	647	7/15/2020	21752			
Kansas	3135	Scenario 1	5/18/2020	425	7/23/2020	20472			
		Scenario 2	5/23/2020	639	7/31/2020	30799			
		Scenario 3	5/28/2020	1139	8/10/2020	54984			
		Scenario 4	4/23/2020	390	7/8/2020	10699			
Kentucky	3915	Scenario 1	4/10/2020	352	7/3/2020	9861			
		Scenario 2	4/10/2020	352	8/3/2020	9861			
		Scenario 3	4/10/2020	352	9/1/2020	9861			
State	ID	Scenario 1 Date	Scenario 1 Number	Scenario 1 Value	Scenario 1 Date	Scenario 1 Value	Scenario 1 Date	Scenario 1 Value	
---------------	------	-----------------	-------------------	------------------	-----------------	-----------------	-----------------	------------------	
Louisiana	26512	4/2/2020	2725	9149	6/16/2020	30401			
Maine	965	4/2/2020	73	376	5/27/2020	1201			
Maryland	17766	4/8/2020	1158	5529	7/20/2020	54423			
Massachusetts	53348	4/24/2020	4946	50969	8/6/2020	238370			
Michigan	37074	4/3/2020	1953	12744	6/30/2020	51614			
Minnesota	3446	5/14/2020	353	9585.5	7/18/2020	16991			
Mississippi	5718	4/19/2020	300	4274	7/6/2020	14132			
State	Total Cases	Scenario 1	Date	Scenario 2	Date	Scenario 3	Date	Scenario 4	Date
--------------	-------------	------------------	------------	------------------	------------	------------------	------------	------------------	------------
Missouri	6935	Scenario 1: 465	4/10/2020	Scenario 2: 465	4/10/2020	Scenario 3: 465	4/10/2020	Scenario 4: 465	4/10/2020
Montana	445	Scenario 1: 33	4/2/2020	Scenario 2: 33	4/2/2020	Scenario 3: 33	4/2/2020	Scenario 4: 33	4/2/2020
Nebraska	2719	Scenario 1: 631	5/24/2020	Scenario 2: 947	5/27/2020	Scenario 3: 1694	6/1/2020	Scenario 4: 389	4/23/2020
Nevada	4539	Scenario 1: 310	4/17/2020	Scenario 2: 310	4/17/2020	Scenario 3: 310	4/17/2020	Scenario 4: 310	4/17/2020
New Hampshire	1797	Scenario 1: 217	4/15/2020	Scenario 2: 217	4/15/2020	Scenario 3: 217	4/15/2020	Scenario 4: 217	4/15/2020
New Jersey	105498	Scenario 1: 4305	4/3/2020	Scenario 2: 4305	4/3/2020	Scenario 3: 5673	5/5/2020	Scenario 4: 4305	4/3/2020
New Mexico	2660	Scenario 1: 239	4/22/2020	Scenario 2: 288	5/15/2020	Scenario 3: 556	5/24/2020	Scenario 4: 239	4/22/2020
New York	282143	Scenario 1: 11434	4/15/2020						
Scenario	Date	Value	Date	Value					
----------	------------	--------	------------	--------					
2	4/15/2020	11434	7/22/2020	460684					
3	5/1/2020	12783	8/1/2020	616569					
4	4/15/2020	11434	7/9/2020	362008					
North Carolina	8768	Scenario 1	4/25/2020	478					
				8768					
				7/10/2020	22742				
				7/10/2020	22742				
				7/10/2020	22742				
North Dakota	803	Scenario 1	4/18/2020	135					
				528					
				6/27/2020	2553				
				6/27/2020	2553				
				6/27/2020	2553				
Northern Mariana Islands	14	Scenario 1	4/1/2020	4					
				6					
				4/18/2020	14				
				4/18/2020	14				
				4/18/2020	14				
Ohio	15587	Scenario 1	4/19/2020	1380					
				11602					
				7/3/2020	28284				
				7/3/2020	28284				
				7/3/2020	28284				
Oklahoma	3194	Scenario 1	4/4/2020	171					
				1161					
				6/13/2020	4699				
				6/13/2020	4699				
				6/13/2020	4699				
Oregon	2253	Scenario 1	4/5/2020	169					
				1068					
				6/8/2020	3113				
				6/8/2020	3113				
				6/8/2020	3113				
Pennsylvania	41153	Scenario 1	4/23/2020	2297					
				38379					
				7/9/2020	71072				
				7/9/2020	71072				
				7/9/2020	71072				
Scenario 3	5/9/2020	3091	77944	8/1/2020	149182				
Scenario 4	4/23/2020	2297	38379	7/4/2020	62050				
Puerto Rico	1307	Scenario 1	4/4/2020	136	452	5/29/2020	1602		
		Scenario 2	4/4/2020	136	452	6/2/2020	1716		
		Scenario 3	4/4/2020	136	452	6/7/2020	1895		
		Scenario 4	4/4/2020	136	452	5/24/2020	1503		
Rhode Island	7129	Scenario 1	4/17/2020	648	4177	7/18/2020	27428		
		Scenario 2	5/18/2020	942	25752	7/30/2020	45537		
		Scenario 3	5/25/2020	1726	47341	8/10/2020	83405		
		Scenario 4	4/17/2020	648	4177	7/5/2020	17204		
South Carolina	5253	Scenario 1	4/9/2020	376	2793	6/21/2020	8451		
		Scenario 2	4/9/2020	376	2793	6/28/2020	10170		
		Scenario 3	4/9/2020	376	2793	7/9/2020	14808		
		Scenario 4	4/9/2020	376	2793	6/12/2020	7138		
South Dakota	2147	Scenario 1	4/15/2020	180	1168	6/26/2020	4932		
		Scenario 2	4/15/2020	180	1168	7/5/2020	6863		
		Scenario 3	5/20/2020	304	8387	7/23/2020	14616		
		Scenario 4	4/15/2020	180	1168	6/16/2020	3718		
Tennessee	9189	Scenario 1	4/23/2020	872	8266	7/21/2020	36731		
		Scenario 2	5/18/2020	1312	35972	8/1/2020	63334		
		Scenario 3	5/27/2020	2931	79412	8/16/2020	141634		
		Scenario 4	4/23/2020	872	8266	7/2/2020	18798		
Texas	24153	Scenario 1	4/9/2020	1431	11208	7/4/2020	41289		
		Scenario 2	4/9/2020	1431	11208	7/11/2020	49368		
		Scenario 3	5/9/2020	1736	45163	7/26/2020	83597		
		Scenario 4	4/9/2020	1431	11208	6/29/2020	35839		
Utah	3948	Scenario 1	4/10/2020	247	2103	6/25/2020	7683		
		Scenario 2	4/10/2020	247	2103	7/3/2020	9874		
		Scenario 3	5/16/2020	410	11201	7/21/2020	19749		
		Scenario 4	4/10/2020	247	2103	6/16/2020	6135		
State	Total Cases	Scenario 1	Date	Cases 1	Date	Cases 2			
---------------	-------------	------------	------------	---------	------------	---------			
Vermont	843	4/4/2020	72	461	5/14/2020	895			
		4/4/2020	72	461	5/16/2020	904			
		4/4/2020	72	461	5/20/2020	945			
		4/4/2020	72	461	5/12/2020	880			
Virginia	12366	5/9/2020	895	24037	7/20/2020	43181			
		5/17/2020	1454	39570	8/1/2020	70237			
		5/25/2020	2660	74198	8/13/2020	128592			
		4/25/2020	772	12366	7/7/2020	27688			
Virgin Islands	55	3/24/2020	10	17	4/25/2020	55			
		3/24/2020	10	17	4/25/2020	55			
		3/24/2020	10	17	4/25/2020	55			
		3/24/2020	10	17	4/25/2020	55			
Washington	13319	4/2/2020	781	6389	6/15/2020	16286			
		4/2/2020	781	6389	6/19/2020	17450			
		4/2/2020	781	6389	6/26/2020	19910			
		4/2/2020	781	6389	6/9/2020	15260			
West Virginia	1010	4/26/2020	124	1134	6/13/2020	2016			
		4/26/2020	155	1165	6/24/2020	2930			
		4/26/2020	202	1212	7/16/2020	7242			
		4/19/2020	105	890	6/2/2020	1489			
Wisconsin	5687	4/25/2020	331	5687	7/5/2020	13919			
		5/9/2020	412	11238	7/15/2020	19836			
		5/20/2020	847	23199.5	7/31/2020	40891			
		4/25/2020	331	5687	6/22/2020	9649			
Wyoming	491	4/21/2020	126	443	6/13/2020	1127			
		4/21/2020	126	443	6/21/2020	1477			
		4/21/2020	126	443	7/4/2020	2450			
		4/21/2020	126	443	6/6/2020	884			
Table S4. Estimated time varying intervention measures of US and top 10 states with the largest number of end cases.

Date	US	California	Connecticut	Illinois	Iowa	Maryland	Massachusetts	Michigan	New Jersey	New York	Pennsylvania
4/15/2020	0.5407	0.5463	0.5152	0.5190	0.5044	0.5190	0.5169	0.5572	0.5282	0.5748	0.5258
4/16/2020	0.5513	0.5461	0.5252	0.5238	0.5111	0.5189	0.5222	0.5670	0.5457	0.5674	0.5350
4/17/2020	0.5561	0.5600	0.5167	0.5329	0.5113	0.5182	0.5191	0.5970	0.5459	0.5705	0.5379
4/18/2020	0.5591	0.5592	0.5187	0.5293	0.5060	0.5144	0.5182	0.6026	0.5555	0.5916	0.5361
4/19/2020	0.5625	0.5609	0.5307	0.5290	0.5049	0.5144	0.5212	0.6236	0.5708	0.6162	0.5336
4/20/2020	0.5763	0.5827	0.5631	0.5394	0.4899	0.5265	0.5271	0.6495	0.5732	0.6392	0.5480
4/21/2020	0.5961	0.5581	0.5271	0.5586	0.4889	0.5264	0.5934	0.6749	0.5791	0.6600	0.5738
4/22/2020	0.6096	0.5496	0.5407	0.5627	0.4747	0.5400	0.5601	0.6881	0.5854	0.6769	0.5889
4/23/2020	0.6173	0.5476	0.5200	0.5506	0.4980	0.5579	0.5599	0.6702	0.5932	0.6918	0.6183
4/24/2020	0.6240	0.5417	0.5308	0.5483	0.5133	0.5485	0.5424	0.6516	0.5943	0.6995	0.5871
4/25/2020	0.6183	0.5470	0.5540	0.5313	0.5058	0.5421	0.5122	0.6390	0.6238	0.6908	0.5765
4/26/2020	0.6183	0.5781	0.5872	0.5313	0.5058	0.5421	0.5131	0.6696	0.6348	0.6908	0.6024
4/27/2020	0.6237	0.5947	0.5908	0.5322	0.5058	0.5421	0.5167	0.6771	0.6451	0.6908	0.6182
4/28/2020	0.6311	0.6041	0.5926	0.5362	0.5058	0.5421	0.5195	0.6797	0.6536	0.6908	0.6283
4/29/2020	0.6385	0.6112	0.5998	0.5410	0.5058	0.5421	0.5195	0.6834	0.6624	0.6908	0.6293
4/30/2020	0.6456	0.6201	0.6064	0.5454	0.5058	0.5421	0.5235	0.6921	0.6713	0.6908	0.6346
5/1/2020	0.6535	0.6287	0.6142	0.5501	0.5058	0.5477	0.5246	0.6992	0.6789	0.6908	0.6436
5/2/2020	0.6617	0.6376	0.6199	0.5546	0.5058	0.5538	0.5246	0.7053	0.6861	0.6938	0.6524
5/3/2020	0.6692	0.6457	0.6262	0.5595	0.5058	0.5594	0.5288	0.7112	0.6929	0.7010	0.6602
5/4/2020	0.6767	0.6539	0.6339	0.5655	0.5058	0.5658	0.5324	0.7192	0.6995	0.7097	0.6672
5/5/2020	0.6842	0.6617	0.6413	0.5721	0.5073	0.5724	0.5354	0.7265	0.7067	0.7174	0.6748
5/6/2020	0.6914	0.6693	0.6492	0.5787	0.5093	0.5790	0.5412	0.7336	0.7145	0.7250	0.6823
5/7/2020	0.6984	0.6769	0.6568	0.5864	0.5116	0.5866	0.5471	0.7402	0.7221	0.7324	0.6895
5/8/2020	0.7055	0.6842	0.6645	0.5950	0.5133	0.5952	0.5529	0.7485	0.7292	0.7389	0.6964
5/9/2020	0.7135	0.6913	0.6722	0.6035	0.5150	0.6038	0.5584	0.7617	0.7360	0.7463	0.7030
5/10/2020	0.7211	0.6983	0.6798	0.6120	0.5171	0.6123	0.5646	0.7782	0.7424	0.7580	0.7110
Date	Value1	Value2	Value3	Value4	Value5	Value6	Value7	Value8	Value9	Value10	Value11
------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
5/11/2020	0.7284	0.7055	0.6871	0.6204	0.5212	0.6207	0.5713	0.7971	0.7513	0.7748	0.7188
5/12/2020	0.7352	0.7134	0.6942	0.6288	0.5248	0.6291	0.5778	0.8170	0.7664	0.7925	0.7261
5/13/2020	0.7417	0.7211	0.7011	0.6370	0.5283	0.6374	0.5852	0.8373	0.7829	0.8119	0.7331
5/14/2020	0.7503	0.7283	0.7088	0.6451	0.5316	0.6454	0.5936	0.8558	0.8015	0.8329	0.7397
5/15/2020	0.7645	0.7352	0.7166	0.6531	0.5351	0.6534	0.6021	0.8722	0.8219	0.8519	0.7475
5/16/2020	0.7811	0.7416	0.7241	0.6610	0.5412	0.6613	0.6105	0.8866	0.8417	0.8688	0.7592
5/17/2020	0.7994	0.7503	0.7312	0.6687	0.5472	0.6691	0.6189	0.8993	0.8597	0.8835	0.7761
5/18/2020	0.8196	0.7645	0.7379	0.6763	0.5531	0.6766	0.6273	0.9095	0.8756	0.8967	0.7937
5/19/2020	0.8397	0.7811	0.7450	0.6837	0.5587	0.6841	0.6356	0.9175	0.8898	0.9076	0.8131
5/20/2020	0.8579	0.7994	0.7549	0.6909	0.5650	0.6912	0.6437	0.9244	0.9020	0.9158	0.8339
5/21/2020	0.8740	0.8195	0.7716	0.6979	0.5716	0.6982	0.6517	0.9313	0.9143	0.9230	0.8526
5/22/2020	0.8884	0.8397	0.7884	0.7050	0.5781	0.7053	0.6596	0.9378	0.9192	0.9299	0.8694
5/23/2020	0.9008	0.8578	0.8072	0.7130	0.5855	0.7133	0.6674	0.9433	0.9259	0.9364	0.8843
5/24/2020	0.9105	0.8740	0.8282	0.7206	0.5939	0.7209	0.6750	0.9479	0.9328	0.9421	0.8973
5/25/2020	0.9184	0.8883	0.8474	0.7279	0.6025	0.7282	0.6824	0.9517	0.9391	0.9469	0.9080
5/26/2020	0.9251	0.9007	0.8647	0.7348	0.6109	0.7351	0.6897	0.9548	0.9443	0.9508	0.9162
5/27/2020	0.9321	0.9105	0.8800	0.7413	0.6193	0.7415	0.6967	0.9574	0.9487	0.9541	0.9233
5/28/2020	0.9384	0.9184	0.8935	0.7497	0.6277	0.7501	0.7036	0.9595	0.9524	0.9568	0.9302
5/29/2020	0.9438	0.9251	0.9050	0.7634	0.6360	0.7643	0.7116	0.9613	0.9554	0.9590	0.9367
5/30/2020	0.9483	0.9321	0.9138	0.7801	0.6441	0.7809	0.7193	0.9627	0.9578	0.9608	0.9424
5/31/2020	0.9520	0.9385	0.9212	0.7983	0.6521	0.7993	0.7266	0.9639	0.9599	0.9624	0.9471
US and State	Correlation Coefficients	State	Correlation Coefficients								
-------------	--------------------------	-------	--------------------------								
US	-0.4819	Montana	-0.3078								
Alaska	-0.3069	Nebraska	-0.2822								
Alaska	-0.3065	Nevada	-0.3061								
Arizona	-0.4008	New Hampshire	-0.2781								
Arkansas	-0.2844	New Jersey	-0.3346								
California	-0.4473	New Mexico	-0.2900								
Colorado	-0.3011	New York	-0.3442								
Connecticut	-0.2915	North Carolina	-0.3226								
Delaware	-0.3007	North Dakota	-0.2834								
District of Columbia	-0.3109	Northern Mariana Islands	-0.1480								
Florida	-0.3243	Ohio	-0.3056								
Georgia	-0.3148	Oklahoma	-0.3179								
Guam	-0.2607	Oregon	-0.3126								
Hawaii	-0.2679	Pennsylvania	-0.3235								
Idaho	-0.2558	Puerto Rico	-0.2613								
Illinois	-0.3759	Rhode Island	-0.3018								
Indiana	-0.3231	South Carolina	-0.3039								
Iowa	-0.2790	South Dakota	-0.3050								
Kansas	-0.2886	Tennessee	-0.2949								
Kentucky	-0.2975	Texas	-0.3275								
Louisiana	-0.2804	Utah	-0.3138								
Maine	-0.3030	Vermont	-0.3050								
Maryland	-0.3115	Virginia	-0.3091								
Massachusetts	-0.3521	Virgin Islands	-0.2058								
Michigan	-0.3160	Washington	-0.4197								
Minnesota	-0.3001	West Virginia	-0.2490								
State	Value	State	Value								
-----------	--------	-----------	--------								
Mississippi	-0.3135	Wisconsin	-0.3099								
Missouri	-0.2970	Wyoming	-0.2232								