Robust Data Valuation via Variance Reduced Data Shapley

Mengmeng Wu∗ Ruoxi Jia† Changle Lin‡ Wei Huang§ Xiangyu Chang ¶

November 11, 2022

Abstract

Data valuation, especially quantifying data value in algorithmic prediction and decision-making, is a fundamental problem in data trading scenarios. The most widely used method is to define the data Shapley and approximate it by means of the permutation sampling algorithm. To make up for the large estimation variance of the permutation sampling that hinders the development of the data marketplace, we propose a more robust data valuation method using stratified sampling, named variance reduced data Shapley (VRDS for short). We theoretically show how to stratify, how many samples are taken at each stratum, and the sample complexity analysis of VRDS. Finally, the effectiveness of VRDS is illustrated in different types of datasets and data removal applications.

1 Introduction

The emerging big data in all walks of life has become the driving force of technological and economic development (Ghorbani and Zou, 2019; Huang et al., 2021). Various sectors such as finance and healthcare increasingly rely on individuals’ data for predictions, decision-making, and generating business value, which promotes extensive data transactions (Barua et al., 2012). One of the most critical problems in data trading scenarios is data valuation. We consider data trading scenarios in data markets based on machine learning models, such as DATABRIGHT (Dao et al., 2018) and Sterling (Hynes et al., 2018). The data value in this scenario is largely determined by its contribution to a specific machine learning model. We focus on data valuation in supervised learning, which is one of the main pillars of machine learning. The core challenge is how to fairly evaluate the contribution of each data in the training set to the learning algorithm for a particular performance metric.

A natural way to handle the aforementioned issue is to treat each data as a player in a cooperative game. Then, the value of each player can be assessed through utility functions from a game-theoretic perspective (Jia et al., 2019b). The Shapley value (Shapley, 2016), is a solution concept of fairly distributing both gains and costs to several participators in a coalition, which has been generalized

∗School of Management, Xi’an Jiaotong University; email: mengmengwu@stu.xjtu.edu.cn.
†Virginia Tech, Blacksburg; email: ruoxijia@vt.edu.
‡China Aerospace Academy of Systems Science and Engineering, Institute for Interdisciplinary Information Core Technology; email: changlelin@tsinghua.edu.cn.
§College of Business, Southern University of Science and Technology; email: huangw7@sustech.edu.cn.
¶Corresponding author: Center for Intelligent Decision-Making and Machine Learning, School of Management, Xi’an Jiaotong University; email: xiangyuchang@xjtu.edu.cn.
to evaluate the contribution of each data in supervised learning (Ghorbani and Zou, 2019; Jia et al., 2019a,b; Kwon and Zou, 2022; Tang et al., 2021).

The Shapley value of a player is the average of its marginal contribution to all alliances that do not include itself. Since $2^n - 1$ coalitions exclude it (assuming the number of players is n), the computational complexity of Shapley value is exponential. Indeed, the exact computation of Shapley value is NP-hard in general (Deng and Papadimitriou, 1994). How to effectively approximate the Shapley value of each data in supervised learning is the key to its application. The most widely used algorithm tackles this problem is the permutation sampling algorithm (also called Monte Carlo sampling) (Ghorbani and Zou, 2019; Jia et al., 2019b,a; Kwon and Zou, 2022; Tang et al., 2021; Strumbelj and Kononenko, 2014; Castro et al., 2009; Strumbelj and Kononenko, 2010; Cohen et al., 2007). One first samples a random permutation of training data, then scans one by one from the first element to the last element in the permutation, calculates the marginal contribution of each element to the set of elements in front of it, and finally repeats the same procedure over multiple permutations and takes the average of all their marginal contributions as the approximation of Shapley values. We refer to Shapley value for data valuation as data Shapley.

The permutation sampling gives an unbiased estimate of the data Shapley. However, it does not consider the impact of the cardinality of the training set on the model performance in machine learning. When we sample different permutations, the cardinality of the training set used to calculate the marginal contribution of each data may be different, resulting in relatively significant variances (see Figure 1 for detailed discussions). However, the reproducibility of data valuation is the key to building trust in data transactions, and minimizing the variance of estimation results is critical to data valuation.

Our research aims to figure out the deficiency mentioned above of permutation sampling to estimate data Shapley and provide a more robust data valuation approach that can reduce the variance of estimating data Shapley. Therefore, we propose the following research questions (RQs):

What methods can be adopted to reduce the variance of evaluating data Shapley?

What are their theoretical advantages and disadvantages?

How to efficiently implement the proposed method in practice?

To answer these RQs, we are inspired by the so-called stratified sampling to propose a novel data Shapley estimation method called Variance Reduced Data Shapley (VRDS). Stratified sampling commonly divides the target population into several types or layers according to its attribute characteristics and then randomly selects samples from the layers (Cochran, 1977; Lohr, 2021). Stratified sampling increases the commonality of elements in each layer through classification and stratification, and it is easy to extract representative survey samples and further reduce the estimate variance. Moreover, we establish the total variance of stratified sampling for estimating data Shapley. To minimize the total variance, the optimal proportion of the number of sampled permutations per layer is manifested. The result is that the number of samples in each layer is directly proportional to the standard deviation of the marginal contribution in the corresponding layer. Since the actual standard deviation of each layer is unknown, how to effectively approximate the variance is a problem that must be considered. We justify that the function of set cardinality can be used as an upper bound on the variance, and approximate the variance by it, and then obtain the number of samples of each layer. Finally, the sample complexity analysis has been conducted for VRDS to demonstrate the theoretical property compared with the permutation sampling.

The rest of this paper is organized as follows. We discuss related works and contributions in Section 2. Section 3 introduces the data Shapley in supervised learning and presents the permutation sampling algorithm for estimating data Shapley. We propose the VRDS, including a stratified
sampling algorithm and sample complexity analysis in Section 4. The experimental study of VRDS is provided in Section 5. Section 6 summarizes the conclusions. All the technical proofs are presented in Appendix.

2 Related Work and Contribution

Data valuation or pricing has become a significant role in the digital economy. Thus, various data valuation schemes have been studied in the literature. As we all know, data product replication costs are meager, even close to zero in many scenarios, so the traditional pricing strategy can no longer be directly applied to data valuation (Pei, 2020). In recent years, many articles have emerged to study different fields of data valuation, including arbitrage-free valuation (Li et al., 2014; Chen et al., 2019), revenue maximization valuation (Chawla et al., 2019), fair and truthful valuation (Ghorbani and Zou, 2019; Jia et al., 2019b), and privacy-preserving valuation (Ghosh and Roth, 2015; Li and Raghunathan, 2014). This paper aims to study the fair and truthful valuation of data, that is, price each data fairly according to the impact of data on the model performance in supervised learning.

Shapley value was introduced in the classical game theory (Shapley, 2016). Recent studies have adopted the Shapley value to quantify the contribution of feature and data respectively in supervised learning (Ghorbani and Zou, 2019; Jia et al., 2019b,a; Kwon and Zou, 2022; Tang et al., 2021; Strumbelj and Kononenko, 2014; Castro et al., 2009; Strumbelj and Kononenko, 2010; Cohen et al., 2007). To overcome the high calculation cost of Shapley value, several approximate algorithms for data Shapley have been proposed, such as the permutation sampling algorithm (Ghorbani and Zou, 2019; Jia et al., 2019a), gradient Shapley algorithm (Ghorbani and Zou, 2019), and group testing-based algorithm (Jia et al., 2019a). Among them, the permutation sampling algorithm is not only widely used to data valuation (Ghorbani and Zou, 2019; Jia et al., 2019b,a; Kwon and Zou, 2022; Cohen et al., 2007), but also adopted for feature evaluation (Strumbelj and Kononenko, 2014; Castro et al., 2009). Therefore, the permutation sampling algorithm has been confirmed as the “golden standard” or “most useful baseline” for approximately computing Shapley value. However, the algorithm cannot avoid the deficiency of significant variance due to the random sampling, which hinders the wide application in data valuation (see Figure 1 for discussions). This paper aims to make up for the defects of the permutation sampling algorithm by using the so-called stratified sampling.

The stratified sampling has been considered in the cooperative game theory. Maleki et al. (2013) use the stratified sampling to improve the bound of the approximation error. That is, they first scale the difference between Shapley and its estimated value to obtain the expression related to the sampling number of each layer. By minimizing this difference, they decide the sampling number of each layer and give the specific implementation method of stratified sampling. Castro et al. (2017) employ stratified sampling to estimate Shapley value, by reducing the variance of the estimations obtained by stratified sampling giving the formula of sampling number in every stratum. They consider that one of the sources of variance for each marginal contribution is the player and the order in which that player arrives, so they take two sources of variation when stratifying. Burgess and Chapman (2021) derive a concentration inequality that is tailored to stratified Shapley value estimation using sample variance information. Based on this error bound, they propose an online process of sequentially choosing samples from the strata in order to minimize the estimate error. Our research focuses more on how to apply the Shapley value to the data pricing market. In the data market scenario, the large variance brought by algorithms for estimating data Shapley is unacceptable.
Therefore, we consider using the stratified sampling method, but unlike Maleki et al. (2013), we aim at the minimum variance of estimators from the algorithmic randomness. The algorithm in Castro et al. (2017) applies to situations where the variability of the marginal contributions depends greatly on each player’s arrival position and is also not suitable for our scenario. While the algorithm in Burgess and Chapman (2021) selects samples online according to the conclusion of the central inequality to reduce the estimation error, which increases the unnecessary calculation cost for the data markets, and does not consider the variance of the estimated value. Therefore, we propose a robust data pricing approach specifically for data markets.

We summarize the contributions of this paper as follows:

- Proposing a more robust data Shapley estimation method, VRDS, based on the stratified sampling. The optimal number of samples in each layer is determined by minimizing the variance of VRDS. We justify that the variance of VRDS is less than or equal to the variance estimated by the permutation sampling algorithm.

- Implementing a stratified sampling algorithm for estimating VRDS. We theoretically provide the sample complexity analysis of the algorithm. The theoretical result indicates that the sample number of proposed VRDS based on the stratified sampling has the same order with the permutation sampling up to a log factor for achieving an (ϵ, δ)-approximation.

- Designing expensive experimental studies on rich data sets to illustrate the effectiveness of VRDS. It is found that it can significantly reduce variance and effectively identify data quality.

3 Preliminaries

In this section, we review Shapley value’s concept and basic properties, based on which we set the framework for data valuation. We then introduce data Shapley for supervised learning and discuss the baseline permutation sampling algorithm to approximate the data Shapley.

3.1 Shapley Value

The Shapley value is a classic concept in cooperative game theory (Shapley, 2016). A cooperative game is defined by a tuple $< N, U >$, where $N = \{1, 2, \ldots, n\}$ which denotes the set of all players, and $U : 2^N \rightarrow \mathbb{R}$ is a map that assigns to each coalition $S \subseteq N$ a real number $U(S)$ such that $U(\emptyset) = 0$. It represents the utility of the collaboration of the members in S. The goal is to distribute the total income $U(N)$ among players according to each player’s contribution to the cooperation.

Shapley value of player i is defined as the average marginal contribution of i to all coalition that excludes i

$$\phi_i(U) = \frac{1}{n} \sum_{S \subseteq N \setminus \{i\}, |S| = s} \frac{1}{(n-s)} [U(S \cup \{i\}) - U(S)], \quad i = 1, \ldots, n, \quad (1)$$

where $U(S \cup \{i\}) - U(S)$ is the marginal contribution of player i with respect to S.

It has been justified that Shapley value is the unique solution for cooperative games satisfying the following axioms (Shapley, 2016), which prompts researchers to use it for fair data valuation (Jia et al., 2019a).

Axiom 1. (efficiency axiom) $\sum_{i \in N} \phi_i(U) = U(N)$.

Axiom 2. (symmetry axiom) For players i and j, if $U(S \cup \{i\}) = U(S \cup \{j\})$ holds for all S, where $S \subseteq N$ and $i, j \notin S$, then $\phi_i(U) = \phi_j(U)$.

Axiom 3. (dummy axiom) If $U(S \cup \{i\}) = U(S)$ holds for all S, where $S \subset N$ and $i \notin S$, then $\phi_i(U) = 0$.

Axiom 4. (additivity axiom) For any pair of games U and V, if $(U + V)(S) = U(S) + V(S)$ holds for all S, then $\phi(U + V) = \phi(U) + \phi(V)$.

The efficiency axiom states that players would expect to distribute all utility of their coalition. The symmetry axiom means that if two players have the same marginal contribution to all coalitions excluding them, they should have the same value. The dummy axiom requires value assignment should be sensitive to the player’s contribution to all coalitions. If one player does not contribute to all coalition, its value should be made to zero. The additivity axiom can decompose a given utility function into an arbitrary sum of utility functions, and the value can be calculated respectively. Shapley value satisfies the above properties, prompting researchers to consider using Shapley value for data valuation in supervised learning.

3.2 Data Shapley for Supervised Learning

Consider a dataset $D = \{(x_i, y_i)\}_{i=1}^n$ containing n data points, and x_i describes features of the ith instance and y_i is the corresponding label. We use D to train a given learning algorithm and a metric U to evaluate the performance of the machine learning model \mathcal{A} trained by D. For a classification task in supervised learning (i.e., y_i is discrete), the evaluation metric may be the predictive accuracy, F1-score, ROC, AUC, and so on. Our goal is to evaluate which data makes an essential contribution to the evaluation metric U. We can formulate the data valuation problem as a cooperative game by treating the data as players and the evaluation metric as a utility function. Then the Shapley value could be employed to evaluate the value of data. The Shapley value of each data in supervised learning is referred to data Shapley.

The main challenge in adopting data Shapley is its computational cost. The computational complexity of evaluating the exact data Shapley using Eq.(1) requires $O(2^n)$, since it involves computing marginal contributions of all points to all sets. In addition, for most algorithms, we need to train the machine learning model twice every time to calculate every marginal contribution, which is computationally expensive.

Many works of literature (Ghorbani and Zou, 2019; Jia et al., 2019b) have studied how to approximate data Shapley effectively. Up to now, the permutation sampling algorithm is a widely used baseline algorithm (see Algorithm 1). Recall Shapley value:

$$\phi_i(U) = \mathbb{E}_{O \sim \Pi(N)}(U(P_i^O \cup \{i\}) - U(P_i^O)) = \frac{1}{n!} \sum_{O \in \Pi(N)} (U(P_i^O \cup \{i\}) - U(P_i^O)),$$

where $\Pi(N)$ is all permutations of N, and P_i^O represents the set of data coming before datum i in the permutation O ($P_i^O = \emptyset$ if i is the first element). There are $n!$ permutations of N, so each permutation has a probability in $1/n!$. Intuitively, imagine all data are to be collected in a random order, and that the marginal contribution of every data is to those already collected data. If we average these marginal contributions over all possible data orders, we obtain ϕ_i. Thus, we can regard
\(\phi_i \) as the expectation of marginal contributions and estimate it by the sample mean. The estimator \(\hat{\phi}_i \) of \(\phi_i \) is

\[
\hat{\phi}_i(U) = \frac{1}{m} \sum_{O \in M} (U(P_i^O \cup \{i\}) - U(P_i^O)),
\]

where \(M \) represents permutation samples and \(|M| = m\).

Algorithm 1 Permutation Sampling Algorithm for Data Shapley

Require: Training data \(D = \{(x_i, y_i)\}_{i=1}^n \), learning algorithm \(A \), performance score \(U \), sampling number \(m \).

Ensure: Data Shapley of training data: \(\phi_1, \ldots, \phi_n \).

1: Initialize \(\phi_i := 0 \) for \(i = 1, \ldots, n \);
2: for \(t = 0 \) to \(m \) do
3: \(O^t \): random permutation of training data;
4: \(u_0^t := U(\emptyset, A) \);
5: for \(j = 1 \) to \(n \) do
6: \(u_j^t := U(P_j^O^t, A) \);
7: \(\phi_{O^t[j]} := \frac{t}{t+1} \phi_{O^t-1[j]} + \frac{1}{t}(u_j^t - u_{j-1}^t) \);
8: end for
9: end for

To evaluate the minimum sampling number to achieve a specific error level, we denote the following \((\epsilon, \delta)\)-approximation of data Shapley.

Definition 3.1. \(\hat{\phi} \) is an \((\epsilon, \delta)\)-approximation to \(\phi \) if \(\Pr[|\hat{\phi} - \phi| \leq \epsilon] \geq 1 - \delta \).

Lemma 3.1 provides a lower bound on the sampling number \(m \) in the permutation sampling algorithm to achieve an \((\epsilon, \delta)\)-approximation.

Lemma 3.1. Algorithm 1 returns an \((\epsilon, \delta)\)-approximation to data Shapley of one data if the sampling number of permutations \(m \) satisfies \(m \geq r^2 \log(2/\delta)/2\epsilon^2 \), where \(r \) is the range of the data’s marginal contributions. In particular, if the utility function is the prediction accuracy, setting \(m \geq \log(2/\delta)/2\epsilon^2 \) is sufficient to achieve the \((\epsilon, \delta)\)-approximation.

In machine learning, the range of utility functions is usually determined. For example, if we choose the utility function as the prediction accuracy, then \(0 \leq U \leq 1 \). Therefore, the range of the marginal contributions of all data is \(-1 \leq r \leq 1\), which makes the result of Lemma 3.1 relatively simple and intuitive. It is worth noting that this lemma has been proved by Maleki et al. (2013). We refine the analysis for comparison purposes in subsequent sample complexity analyses of proposed VRDS.

Although the permutation sampling algorithm is easy to operate, sometimes the variance of estimated data Shapley is too large to be accepted for the data marketplace. For instance, Figure 1 shows the data Shapley estimated by Algorithm 1 and its variance of 20 points from the FashionMNIST dataset (Xiao et al., 2017), in which the learning algorithm is the Naive Bayes (NB), the utility function is test accuracy, the sampling number of permutation is 1000, and the calculation is repeated ten times to obtain its mean and variance. It can be seen that the variance is too large compared with the value, which may lead to divergence and failure of transactions in practical application. Inspired by this, we propose the variance reduced data Shapley in the following section.
Figure 1: The data Shapley estimated by Algorithm 1 of 20 training data that are randomly sampled from FashionMNIST.

4 Variance Reduced Data Shapley

This section utilizes stratified sampling to replace the random sampling in robustly estimating data Shapley.

4.1 Stratified Sampling for Data Shapley

The stratified sampling approach (Cochran, 1977) divides the population into several layers according to a specific characteristic and then randomly samples in each layer to form samples (Lohr, 2000).

For data Shapley, the utility function is usually an evaluation metric such as predictive accuracy, F1, etc. The values of evaluation metrics are directly affected by the training sample size. Therefore, for every data, we consider dividing the coalition sets according to their size when calculating the marginal contribution. Recall $\phi_i(U)$ that can be calculated as

$$
\phi_i(U) = \frac{1}{n} \sum_{S \subseteq N \setminus \{i\}, |S| = k} \left(\frac{1}{n-1} \right) \left(U(S \cup \{i\}) - U(S) \right)
$$

(4)

$$
= \frac{1}{n} \sum_{k=0}^{n-1} \sum_{S \subseteq N \setminus \{i\}, |S| = k} \left(\frac{1}{n-1} \right) \left(U(S \cup \{i\}) - U(S) \right).
$$

(5)

In words, by grouping the coalitions which do not contain the data i, based on their sizes, we have n strata $S^0, S^1, \ldots, S^{n-1}$ such that $S^k = \{ S \subseteq N \setminus \{i\}, |S| = k \}$ contains all the coalitions with size k. We suppress the dependency on U when the utility is self-evident and use ϕ_i to represent the value
allocated to data i. Let $\phi_{i,k}$ denote the expected marginal contribution of the data i within stratum S^k, then we denote

$$\phi_{i,k} = \frac{1}{\binom{n-1}{k}} \sum_{S \subseteq N \setminus \{i\}, |S| = k} (U(S \cup \{i\}) - U(S)), \quad (6)$$

and it is obvious that data Shapley of data i can be calculated as follows

$$\phi_i = \frac{1}{n} \sum_{k=0}^{n-1} \phi_{i,k}. \quad (7)$$

Suppose that the random variable $X_i(S) = U(S \cup \{i\}) - U(S)$ represents the marginal contribution of data i to S, and $\phi_{i,k}$ is its expected marginal contribution to all sets that do not contain i and whose size is k. It is natural to use the sample mean to estimate its expectation to reduce computing costs. By denoting m_k the number of samples taken from S^k, we obtain the estimate of ϕ_i as

$$\hat{\phi}_i = \frac{1}{n} \sum_{k=0}^{n-1} \hat{\phi}_{i,k} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{m_k}{m_k} \sum_{j=1}^{m_k} X_{i,k,j}, \quad (8)$$

where $X_{i,k,j}$ represents the marginal contribution of the ith point to the jth sample in stratum S^k. To minimize the variance of $\hat{\phi}_i$, a critical problem is determining the number of samples m_k in each stratum. Theorem 4.1 provides a feasible solution.

Theorem 4.1. Given the total number of samples m, to minimize the variance of $\hat{\phi}_i$, the optimal sampling number of the kth stratum is

$$m^*_{i,k} = m \frac{\sigma_{i,k}}{\sum_{j=0}^{n-1} \sigma_{i,j}}, \quad k = 0, \ldots, n-1 \quad (9)$$

where $\sigma_{i,k}$ denotes the standard deviation of $\hat{\phi}_{i,k}$. In addition, it can be proved that the variance of using the stratified sampling is not greater than that of using permutation sampling.

Theorem 4.1 shows that the variance obtained by the stratified sampling method is less than or equal to that obtained by the permutation sampling method. Moreover, it reflects that when the total number of samples m is fixed, the number of samples in each layer should be proportional to its standard deviation. In practical application, we do not know the variance of each layer, so it is necessary to provide an alternative value of variance to determine the sample size. Indeed, we can justify that the variance of each layer is proportional to the range of the utility function in the layer. It is worth noting that the utility function (i.e., evaluation criteria) in machine learning tends to be stable as the number of training samples increases (Bousquet and Elisseeff, 2002; Jia et al., 2019a). Therefore, it is reasonable to assume that the utility range does not increase for the number of layers k (the size of training set of samples in each layer increases for k). Taking full advantage of the above property, Theorem 4.2 provides a method to allocate the number of samples when the variance is unknown.

Theorem 4.2. The sampling size of kth stratum, ignoring that it is an integer, can be approximately allocated as

$$\tilde{m}_k = m \frac{f(k)}{\sum_{j=0}^{n-1} f(j)}, \quad k = 0, \ldots, n-1, \quad (10)$$

where $f(k)$ is a non-increasing function of k.

Theorem 4.2 proves that the sample size of each stratum can be set as proportional to some non-increasing functions of \(k \). Next, we analyze several specific forms of function \(f \).

- \(f(k) = c \), where \(c \) is a constant, then
 \[
 \hat{m}_k = m \frac{c}{\sum_{j=0}^{n-1} c} = \frac{m}{n}.
 \]
 This means that the number of samples is equally distributed to each layer.

- \(f(k) = \frac{1}{k+1} \), then
 \[
 \hat{m}_k = m \frac{1}{\sum_{j=0}^{n-1} \frac{1}{j+1}}.
 \]
 Contrary to the above, assuming that \(f(k) \) is decreasing with respect to \(k \), because the number of samples per layer is also decreasing with respect to the set cardinality.

- \(f(k) = (k+1)^a, a < 0, a \neq -1 \), where the absolute value of \(a \) reflects the rate at which \(f \) changes with \(k \). In different data sets, different algorithms are used to calculate different amounts of data Shapley. Thus, \(a \) can be considered as a tuning parameter that can influence the performance of estimating data Shapley. In machine learning applications, the utility function of a set \(S \) is often defined as the loss of the model trained over \(S \) for predicting a test point \(z \), i.e., \(U(S) = l(A(S), z) \), where \(A \) represents the underlying learning algorithm that takes in a dataset and outputs a model. Under this utility function definition, the range of \(U(S \cup \{i\} - U(S) \)—the marginal contribution of any data point \(i \) to a subset of size \(k \)—can be upper bounded by uniform stability of \(A \), defined by \(\max_{S \in 2^k} \max_z \max_i |l(A(S \cup \{i\}), z) - l(A(S), z)| \). Prior work (Bousquet and Elisseeff, 2002; Hardt et al., 2016) have shown that the upper bound of uniform stability of many common learning algorithm at size \(k \) is \(O \left(\frac{1}{k+1} \right) \). These theoretical results shed light on our empirical observation that the best choice of \(a \) is usually \(-1\), giving rise to the least variance in data Shapley estimation compared to the other possible choices. Therefore, we provide that a suggested interval of \(a \) is \([-1, -1/2]\). Detailed pieces of evidence will be presented in the experimental section.

Taking into account that sample size should be an integer, we can set the value of \(m_k = \min\{1, \lfloor \hat{m}_k \rfloor \} \). However, this implies that additional samples may be left unused as \(\sum_{k=0}^{n-1} m_k \) may be lower than \(m \). In this case, we sequentially increase the value of \(m_k \) from \(k = 0 \) to \(n-1 \) until the sum exceed \(m \).

So far, we have handled how to use the stratified sampling to reduce the variance of estimated data Shapley. Next, we will give the specific algorithm for the real implementation in Algorithm 2.

4.2 VRDS and Its Sample Complexity Analysis

Algorithm 2 presents the pseudo-code of the stratified sampling algorithm, which first calculates the sampling number of each stratum and then derives the value of each data by taking samples from every stratum. Note that we refer to the estimated data Shapley by Algorithm 2 as variance reduced data Shapley (VRDS for short).

In this section, we will present sample complexity analysis of VRDS to explain the minimum sampling number in the stratified sampling algorithm to achieve an \((\epsilon, \delta)\)-approximation.
Algorithm 2 Stratified Sampling Algorithm for VRDS

Require: Training data $D = \{(x_i, y_i)\}_{i=1}^n$, learning algorithm A, performance score U, and sampling number m.

Ensure: Shapley value of training data: ϕ_1, \ldots, ϕ_n

1. Initialize $\phi_i := 0$ for $i = 1, \ldots, n$ and $t = 0$;
2. $m_k := \min\{1, \left\lfloor m \frac{f(k)}{\sum_{j=0}^{n-1} f(j)} \right\rfloor\}$, for $k = 0, \ldots, n - 1$;
3. while $m - \sum m_k > 1$ do
 4. $m_t := m_t + 1$; $t := t + 1$;
5. end while
6. for $i \in \{1, \ldots, n\}$ do
 7. for $k \in \{0, \ldots, n - 1\}$ do
 8. $l := 0$, $\phi_{i,k} := 0$;
 9. while $l \leq m_k$ do
 10. $S :=$ get a random coalition of $\{1, \ldots, i-1, i+1, \ldots, n\}$ with size k;
 11. $\phi_{i,k} := \phi_{i,k} + (U(S \cup \{i\}, A) - U(S, A))$;
 12. $l := l + 1$;
 end while
 13. $\phi_{i,k} := \frac{\phi_{i,k}}{m_k}$;
 14. $\phi_i := \phi_i + \frac{\phi_{i,k}}{n}$;
 end for
 16. end for

Theorem 4.3. Algorithm 2 gets an (ϵ, δ)-approximation of data Shapley of each data if the sampling number m satisfies

$$m \geq \max \left(\frac{16 \log^{2/3} \epsilon^2 n^2}{17 \epsilon^2 n^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j) \left(\frac{2 \log^{2/3} \epsilon}{\epsilon^2 n^2 (f(n-1))^2} \right)^2 \right).$$ \hspace{1cm} (11)

When $f(k) = \frac{1}{k+1}$, it is sufficient to have

$$m \geq \frac{2 \log \epsilon}{\epsilon} (\log n + 1)^2.$$ \hspace{1cm} (12)

Remark 4.1. From Lemma 3.1, we know that the minimum number of samples achieving (ϵ, δ)-approximation in the permutation sampling algorithm is independent of n. For the stratified sampling algorithm, since the sampling number depends on stratum number n, according to Theorem 4.3, it requires the same order (if we choose the suggested tuning parameter $a = -1$) with the permutation sampling up to a log factor about n for (ϵ, δ)-approximation. The stratified sampling algorithm achieves a small variance when the minimum sample size m does not increase significantly with the increase of n, which provides a theoretical basis for its wide application.

5 Experiments
Data set	Model	Reference
FashionMNIST	LR, KNN	Xiao et al. (2017)
Iris	NB, KNN	Fisher (1936)
Digits	KNN, Tree	Alimoglu and Alpaydin (1996)
Breast Cancer	SVC, KNN	Mangasarian et al. (1995)
Spam classification	NB, LR	https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv
Creditcard	LR	Yeh and Lien (2009)
Vehicle	LR	Duarte and Hu (2004)
Apsfail	LR	https://archive.ics.uci.edu/ml/datasets/IDA2016Challenge
Phoneme	LR	https://sci2s.ugr.es/keel/dataset.php?cod=105
Wind	LR	https://www.openml.org/search?type=data&status=any&id=847
Pol	LR	https://www.openml.org/search?type=data&status=any&id=722
Cpu	LR	https://www.openml.org/search?type=data&status=any&id=796
Fraud	LR	Dal Pozzolo et al. (2015)
2Dplanes	LR	https://www.openml.org/search?type=data&status=active&id=727

Table 1: Data sets

5.1 Experimental Setting

5.1.1 Experimental Objective

Our experiments have the following three purposes.

First, we show that the stratified sampling algorithm for VRDS can estimate the exact data Shapley, and the variance of the estimated value by VRDS is smaller than that by the permutation sampling algorithm. Fortunately, Jia et al. (2019a) propose an elaborate method to compute the exact data Shapley for K-Nearest Neighbor (KNN) algorithm. Therefore, we use KNN in the first experiment.

Second, the performance of VRDS is directly affected by the tuning parameter a, which determines the number of samples per stratum. In order to explore whether different data sets, sample sizes and algorithms affect the selection of a, we use 14 data sets and five commonly used algorithms and conduct experiments with data sizes from 20 to 2000 to obtain the suggested parameter selection scheme of a.

Finally, data quality is a critical indicator for data analysis, mining, and application. It is usually necessary to judge the data quality in the data preprocessing stage and remove the data with poor quality (Wang et al., 2021). Data Shapley can be considered as a data quality measurement. So one of the applications of data Shapley is removing data with poor quality based on data Shapley for improving the prediction performance. In this part, we construct a new criterion based on the estimated variance of data Shapley to remove bad quality data and compare it with the results of the permutation sampling algorithm.

5.1.2 Datasets

We evaluate the performance of the stratified sampling algorithm for VRDS on image data and tabular data. Table 1 describes these data sets. These data sets are chosen to provide classification problems, with varying dimensionality, and a mixture of problem domains. We set data size ranges from 20 to 2000 to verify the algorithm’s robustness.
5.1.3 Machine Learning Model and Performance Metric

To prove that our VRDS is effective for various algorithms, we use Logistic Regression (LR), K-Nearest Neighbor algorithm (KNN), Naive Bayes (NB), Decision Tree (DT), and Support Vector Classification (SVC). To accurately calculate the data Shapley value, another KNN solver in Jia et al. (2019a) is used. Since the performance metric selection has no direct relationship with the model performance, we always use prediction accuracy as the performance evaluation metric of all algorithms.

We set the sampling number from 100 to 5000 to conduct comparative experiments to test the effect of our VRDS and compare the deviation and variance of the estimated values obtained by VRDS and permutation sampling. For each experiment, we randomly sampled five times for estimation to obtain the variance of the estimated value.

5.2 Experimental Results

Unbiased Prediction Results of VRDS. We first compare the exact data Shapley with its estimates obtained by two methods: permutation sampling and stratified sampling for VRDS. In order to efficiently compute the exact data Shapley of more points, we choose the KNN algorithm. This is because Jia et al. (2019a) proposes an algorithm for fast and accurate calculation of data Shapley based on the specific algorithm KNN. Figure 2 shows the exact and approximate data Shapley of 60 points in the FashionMNIST data set. It can be seen that the approximations obtained by permutation sampling and stratified sampling are all around the exact values, and the variance of the estimated values obtained by VRDS \((a = -1)\) is significantly smaller than that obtained by permutation sampling.

Parameter Selection for VRDS. We compare the variance reduction effect of VRDS when parameter \(a\) takes different values, and different data sets, sample sizes, and algorithms are considered. We first make intensive attempts on the parameters with the FashionMNIST dataset. Figure 3(a) shows the variance of data Shapley’s estimates of 100 data calculated using different values of \(a\), where the machine learning model is KNN. The horizontal axis is the number of samples, from 100
Table 2: A summary of the variance of data Shapley estimation when parameter a takes different values in the VRDS algorithm, with LR as the base model. The data volume is 100, the sampling number is 150, and the unit of variance is 10^{-6}. The best result is highlighted in bold.

Dataset	Permutation	$a = 0$	$a = -1/2$	$a = -1$	$a = -2$
Cpu	50.04	2.98	1.80	1.76	2.40
Pol	49.63	2.13	1.43	1.39	2.29
Vehicle	48.37	2.15	2.06	1.86	2.43
2dplanes	49.32	2.05	1.78	1.85	2.70
Creditcard	46.72	2.17	2.40	2.14	2.81
Apsfail	54.68	3.09	1.71	1.43	1.80
Phoneme	48.31	2.65	1.78	1.88	2.35
Fraud	61.18	4.27	2.05	1.46	2.28
Wind	61.48	3.43	1.56	1.29	1.99

Figure 3: Variance of VRDS when a take different values from -2 to 3. The dataset is FashionMNIST, the basic model is KNN and LR, respectively, and the data size is 100 and 30.

We use Table 2 to summarize the variance of the results calculated by different models on different data sets when the algorithm is LR and the number of samples is 150. It can be seen that the variance of the estimated value obtained by VRDS is obviously smaller than that obtained by the permutation sampling algorithm. Moreover, when $a = -1$ and $-1/2$, the VRDS method is better than when a takes other parameters.

We also examine whether VRDS is also effective when the data set is large. Figure 4 shows data Shapley estimated by VRDS of 2000 points in the FashionMNIST data set. The algorithm is LR, and the number of samples is 2200. We can see that the variance of the results calculated by Permutation sampling is the largest, and the variance is the smallest when $a = -1$.

Data Group Removal. We evaluate the VRDS by comparing the performance on the data
Figure 4: Estimation of 2000 data Shapley in FashionMNIST data set, wherein the optimization algorithm is LR and the number of samples is 2200.

Figure 5 shows the data group removal experiment on the FashionMNIST data set. There are 20 groups in total, and each group has 100 data. VRDS with $a = -\frac{1}{2}$ and permutation sampling algorithms are used to calculate the value of data groups. Figure 5(a) shows the removal from the most valuable data group. It can be seen that the performance of VRDS with $a = -\frac{1}{2}$ decreases faster than that of permutation sampling. Figure 5(b) shows the removal according to the value of estimated data Shapley $- 100 \times$ variance, the prediction accuracy of the VRDS with $a = -\frac{1}{2}$ algorithm decreases faster. This indicates that VRDS can identify important data groups more accurately by simultaneously combining the estimated data Shapley and its variance.

So far, we have demonstrated the effectiveness of VRDS in approximating data Shapley and obtained the suggested parameter a that minimizes the variance of the estimated value through various experiments on a large number of different data sets. Finally, the data group removal experiment shows that combining the data value and variance can quickly identify important data sets. To show more evidence of the results, we further present more experiments in E.
Figure 5: Data group removal experiment on the FashionMNIST data set. There are 20 groups and each group has 100 data. VRDS \((a = -\frac{1}{2})\) and permutation sampling algorithms are used to calculate the value of data groups. Figure 5(a) shows the removal from the most valuable data group. Figure 5(b) shows the removal from large to small according to the values of estimated data Shapley \(-100 \times \text{variance}\).

6 Conclusion

In this work, we propose a more robust data Shapley estimation method, VRDS, which is based on a stratified sampling technique and can obtain data Shapley estimates with minor variance. We obtain the optimal sampling number of each stratum in the stratified sampling and provide the sample complexity analysis. Experiments on various data sets show that the variance of estimates calculated by VRDS is always smaller than that calculated by the permutation sampling algorithm. Furthermore, we also get the suggested parameter interval that can obtain the estimation value with minimum variance on these data sets. Finally, the application of VRDS in data quality identification is also discussed. We find that simultaneously considering value and variance can recognize the most valuable data faster. For future work, we wish to continue applying the stratified sampling algorithm to other data Shapley estimation methods (Jia et al., 2019b,a; Kwon and Zou, 2022; Ghorbani et al., 2020) to further reduce the variance of data Shapley estimates to promote the development of the data marketplace.

References

Fevzi Alimoglu and Ethem Alpaydin. Methods of combining multiple classifiers based on different representations for pen-based handwritten digit recognition. In Proceedings of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium. Citeseer, 1996.

Anitesh Barua, Deepa Mani, and Rajiv Mukherjee. Measuring the business impacts of effective data. Report accessed at http://www.sybase.com/files/White_Papers on Sep, 15:2012, 2012.
Olivier Bousquet and André Elisseeff. Stability and generalization. *The Journal of Machine Learning Research*, 2:499–526, 2002.

Mark Alexander Burgess and Archie C Chapman. Approximating the shapley value using stratified empirical bernstein sampling. In *International Joint Conference on Artificial Intelligence*, pages 73–81, 2021.

Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley value based on sampling. *Computers & Operations Research*, 36(5):1726–1730, 2009.

Javier Castro, Daniel Gómez, Elisenda Molina, and Juan Tejada. Improving polynomial estimation of the shapley value by stratified random sampling with optimum allocation. *Computers & Operations Research*, 82:180–188, 2017.

S. Chawla, S. Deep, P. Koutrisw, and Y. Teng. Revenue maximization for query pricing. *Proceedings of the VLDB Endowment*, 13(1):1–14, 2019.

Lingjiao Chen, Paraschos Koutris, and Arun Kumar. Towards model-based pricing for machine learning in a data marketplace. In *Proceedings of the 2019 International Conference on Management of Data*, pages 1535–1552, 2019.

William G Cochran. *Sampling techniques*. John Wiley & Sons, 1977.

Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via coalitional game theory. *Neural Computation*, 19(7):1939–1961, 2007.

Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating probability with undersampling for unbalanced classification. In *2015 IEEE symposium series on computational intelligence*, pages 159–166. IEEE, 2015.

David Dao, Dan Alistarh, Claudiu Musat, and Ce Zhang. Databright: Towards a global exchange for decentralized data ownership and trusted computation. *arXiv preprint arXiv:1802.04780*, 2018.

Xiaotie Deng and Christos H Papadimitriou. On the complexity of cooperative solution concepts. *Mathematics of operations research*, 19(2):257–266, 1994.

Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. *Journal of Parallel and Distributed Computing*, 64(7):826–838, 2004.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. *Annals of eugenics*, 7(2):179–188, 1936.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In *International Conference on Machine Learning*, pages 2242–2251. PMLR, 2019.

Amirata Ghorbani, Michael Kim, and James Zou. A distributional framework for data valuation. In *International Conference on Machine Learning*, pages 3535–3544. PMLR, 2020.

A. Ghosh and A. Roth. Selling privacy at auction. *Games & Economic Behavior*, 91:334–346, 2015.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *International conference on machine learning*, pages 1225–1234. PMLR, 2016.
Lihua Huang, Yifan Dou, Yezheng Liu, Jinzhao Wang, Gang Chen, Xiaoyang Zhang, and Runyin Wang. Toward a research framework to conceptualize data as a factor of production: The data marketplace perspective. *Fundamental Research*, 1(5):586–594, 2021.

N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song. A demonstration of sterling: a privacy-preserving data marketplace. *Proceedings of the VLDB Endowment*, 11(12):2086–2089, 2018.

Ruoxi Jia, David Dao, Boxin Wang, Frances A Hubis, Nezihe M Gürel, Bo Li, Ce Zhang, Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor algorithms. *Proceedings of the VLDB Endowment*, 12(11):1610–1623, 2019a.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the shapley value. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1167–1176. PMLR, 2019b.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework for machine learning. In *International Conference on Artificial Intelligence and Statistics*, pages 8780–8802. PMLR, 2022.

Chao Li, Daniel Yang Li, Gerome Miklau, and Dan Suciu. A theory of pricing private data. *ACM Transactions on Database Systems*, 39(4):1–28, 2014.

Xiao-Bai Li and Srinivasan Raghunathan. Pricing and disseminating customer data with privacy awareness. *Decision support systems*, 59:63–73, 2014.

S. L. Lohr. *Sampling: Design and analysis*. *Technometrics*, 42(2):223–224, 2000.

Sharon L Lohr. *Sampling: design and analysis*. Chapman and Hall/CRC, 2021.

Sasan Maleki, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers. Bounding the estimation error of sampling-based shapley value approximation. *arXiv preprint arXiv:1306.4265*, 2013.

Olvi L Mangasarian, W Nick Street, and William H Wolberg. Breast cancer diagnosis and prognosis via linear programming. *Operations Research*, 43(4):570–577, 1995.

Jian Pei. A survey on data pricing: from economics to data science. *IEEE Transactions on Knowledge and Data Engineering*, 34(10):4586–4608, 2020.

Lloyd S Shapley. 17. a value for n-person games. In *Contributions to the Theory of Games (AM-28), Volume II*, pages 307–318. Princeton University Press, 2016.

Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using game theory. *The Journal of Machine Learning Research*, 11:1–18, 2010.

Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions with feature contributions. *Knowledge and information systems*, 41(3):647–665, 2014.

Siyi Tang, Amirata Ghorbani, Rikiya Yamashita, Sameer Rehman, Jared A Dunnmon, James Zou, and Daniel L Rubin. Data valuation for medical imaging using shapley value and application to a large-scale chest x-ray dataset. *Scientific reports*, 11(1):1–9, 2021.
Tianhao Wang, Yi Zeng, Ming Jin, and Ruoxi Jia. A unified framework for task-driven data quality management. *arXiv preprint arXiv:2106.05484*, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. *Expert systems with applications*, 36(2): 2473–2480, 2009.
A Proof of Lemma 3.1

Given \(r_i \), the range of marginal contributions of data \(i \), and \(r \), the range of marginal contributions of all data, according to Hoeffding’s inequality, we obtain

\[
P[|\phi_i - \hat{\phi}_i| \geq \epsilon] \leq 2 \exp \left(-\frac{2m\epsilon^2}{r_i^2} \right). \tag{A.1}
\]

To get an \((\epsilon, \delta)\)-approximation, we should bound the right band side by \(\delta \), which means

\[
2 \exp \left(-\frac{2m\epsilon^2}{r_i^2} \right) \leq \delta, \tag{A.2}
\]

then we have

\[
m \geq \frac{\log(2/\delta)}{2\epsilon^2}. \tag{A.3}
\]

In particular, if the utility function is the prediction accuracy, we have \(0 \leq U \leq 1 \). Therefore, the range of the marginal contributions \(-1 \leq r \leq 1 \). Since \(r_i \leq r \), \(i = 1, \ldots, n \) and \(r_i^2 \leq 1 \), it is sufficient to make

\[
m \geq \frac{\log(2/\delta)}{2\epsilon^2}. \tag{A.4}
\]

B Proof of Theorem 4.1

We divide the proof into two steps. The first step is to calculate the sampling number in each layer to minimize the variance. The second step is to prove that the variance of the results obtained by the stratified sampling is not greater than that obtained by the permutation sampling.

1. Firstly, optimize the sampling number per layer.

 The variance of data \(i \) using stratified sampling is

 \[
 Var(\hat{\phi}_i) = Var \left(\frac{1}{n} \sum_{k=0}^{n-1} \hat{\phi}_{i,k} \right) = \frac{1}{n^2} \sum_{k=0}^{n-1} Var(\hat{\phi}_{i,k}) = \frac{1}{n^2} \sum_{k=0}^{n-1} \frac{\sigma_{i,k}^2}{m_{i,k}}, \tag{B.1}
 \]

 due to the independent property of samples in each layer.

 Our goal is to determine \(m_{i,0}, m_{i,1}, \ldots, m_{i,n-1} \) such that

 \[
 \min \ Var(\hat{\phi}_i) = \frac{1}{n^2} \sum_{k=0}^{n-1} \frac{\sigma_{i,k}^2}{m_{i,k}}, \tag{B.2}
 \]

 s.t. \(m = \sum_{k=0}^{n-1} m_{i,k} \). \tag{B.3}
Using the Lagrange multiplier method, we get

\[L = Var(\hat{\phi}_i) + \lambda \left(m - \sum_{k=0}^{n-1} m_{i,k} \right) = \frac{1}{m^2} \sum_{k=0}^{n-1} \sigma_{i,k}^2 + \lambda \left(m - \sum_{k=0}^{n-1} m_{i,k} \right). \]

(B.4)

Take the partial derivatives with respect to \(m_{i,k} \) and \(\lambda \),

\[\frac{\partial L}{\partial m_{i,k}} = -\frac{1}{n^2} \sigma_{i,k}^2 m_{i,k}^2 - \lambda = 0, \]

\[\frac{\partial L}{\partial \lambda} = m - \sum_{k=0}^{n-1} m_{i,k} = 0, \]

we get

\[m_{i,k}^* = m \frac{\sigma_{i,k}}{\sum_{j=0}^{n-1} \sigma_{i,j}}. \]

(B.5)

(2) Then, we prove that the variance of the estimator using the stratified sampling is less than or equal to that using the permutation sampling.

For a random variable \(X \) (assuming that it is fixed to a certain point \(i \), for convenience, the subscript \(i \) does not appear in the following proof), we estimate \(\phi \) as the mean of \(m \) random samples \(x_1, x_2, \ldots, x_m \), taken from the population of marginal contributions of the player. Denote estimator adopting the permutation sampling as \(\hat{\phi}_p \), that is \(\hat{\phi}_p = \frac{1}{m} \sum_{i=1}^{m} x_i \). It is an unbiased estimation of \(\phi \), and variance of \(\hat{\phi}_p \) is

\[Var(\hat{\phi}_p) = \frac{1}{m} Var(X) \]

(B.6)

\[= \frac{1}{m} \{ E[Var(X|Y)] + Var[E(X|Y)] \} \]

(B.7)

\[= \frac{1}{m} \sum_{k=0}^{n-1} \frac{1}{n} \sigma_k^2 + \frac{1}{m} Var[E(X|Y)], \]

(B.8)

where the second equality is based on the law of total variance, and we further assume that \(Y = \{ S^0, S^1, \ldots, S^{n-1} \} \) represents the sample stratum.

Due to

\[\frac{1}{m} Var[E(X|Y)] = \frac{1}{m} \sum_{k=0}^{n-1} \frac{1}{n} (\hat{\phi}_k - \phi_k)^2 \geq 0, \]

(B.9)

we have

\[Var(\hat{\phi}_p) \geq \frac{1}{m} \sum_{k=0}^{n-1} \frac{1}{n} \sigma_k^2. \]

(B.10)

According to Eq.(9), we obtain that the variance of estimator using the stratified sampling \(Var(\hat{\phi}_s) \) is

\[Var(\hat{\phi}_s) = \frac{1}{n^2} \sum_{k=0}^{n-1} \frac{\sigma_k^2}{m_k} \]

(B.11)
\[
\frac{1}{m} \left(\sum_{k=0}^{n-1} \frac{\sigma_k}{n} \right)^2 \quad (B.12)
\]

\[
\leq \frac{1}{m} \sum_{k=0}^{n-1} \frac{1}{n} \sigma_k^2. \quad (B.13)
\]

The first equality follows from Eq.(9) and the second one is due to Cauchy-Swarchz inequality. That is
\[
\left(\sum_{k=0}^{n-1} \frac{\sigma_k}{n} \right)^2 \leq \left(\sum_{k=0}^{n-1} \frac{1}{n} \right) \left(\sum_{k=0}^{n-1} \sigma_k^2 \right) \leq \frac{1}{n} \sum_{k=0}^{n-1} \sigma_k^2.
\]

Combining the above inequality Eq.(B.10) and Eq.(B.13) proves the theorem.

C Proof of Theorem 4.2

Let’s consider one data first, assuming that the index of this data is \(i\). Let \(\Delta_{i,k}^{\text{max}}\) denote the maximum value of marginal contribution of data \(i\) in stratum \(k\), that is \(\Delta_{i,k}^{\text{max}} = \max_{S \subseteq N \setminus \{i\}, |S| = k} \{U(S \cup \{i\}) - U(S)\}\). Similarly, the minimum value is defined as \(\Delta_{i,k}^{\text{min}} = \min_{S \subseteq N \setminus \{i\}, |S| = k} \{U(S \cup \{i\}) - U(S)\}\). Denote \(r_{i,k}\) as the range of \(U(S \cup \{i\}) - U(S)\) in stratum \(k\), \(k = 0, 1, \ldots, n - 1\). Now, let us observe that for any random variable bounded between two values (\(\Delta_{i,k}^{\text{max}}\) and \(\Delta_{i,k}^{\text{min}}\) in this case), the maximum variance is reached when this variable takes the two extreme values with the same probability \(\frac{1}{2}\) (Castro et al., 2009). Thus we have

\[
\sigma_{i,k}^2 \leq \frac{1}{2} \left(\Delta_{i,k}^{\text{max}} - \frac{\Delta_{i,k}^{\text{max}} + \Delta_{i,k}^{\text{min}}}{2} \right)^2 + \frac{1}{2} \left(\Delta_{i,k}^{\text{min}} - \frac{\Delta_{i,k}^{\text{max}} + \Delta_{i,k}^{\text{min}}}{2} \right)^2
\]

\[
= \frac{(\Delta_{i,k}^{\text{max}} - \Delta_{i,k}^{\text{min}})^2}{4}
\]

\[
= \frac{r_{i,k}^2}{4}. \quad (C.3)
\]

On the other hand, suppose \(f(k)\) is a non-increasing function of \(k\), since \(n\) is finite, we can always find \(b_i\) and \(d_i\), subject to \(b_i = \min_k \frac{r_{i,k}}{f(k)}\), and \(d_i = \max_k \frac{r_{i,k}}{f(k)}\). Then we get \(b_i f(k) \leq r_{i,k} \leq d_i f(k)\), \(k = 0, 1, \ldots, n - 1\).

Combining Eq.(C.3), we can give the upper bounds on the variance \(\sigma_{i,k}^2\),

\[
\sigma_{i,k}^2 \leq \frac{d_i^2 f(k)^2}{4}. \quad (C.4)
\]

Substitute \(\frac{d_i f(k)}{2}\) for \(\sigma_{i,k}\) in Eq.(9), thus we obtain

\[
\tilde{m}_k = m \frac{f(k)}{\sum_{j=0}^{n-1} f(j)}. \quad (C.5)
\]

It is suitable for all data.
D Proof of Theorem 4.3

To prove Theorem 4.3, we first provide the following lemma that has been shown in Theorem 4.2 of Burgess and Chapman (2021). We rewrite this lemma by using the notations of this paper.

Lemma D.1. Let $\hat{\phi}_i$ be the estimator of data Shapley ϕ_i adopting Algorithm 2. Denote the mean and variance of kth stratum of data i as $u_{i,k}$ and $\sigma^2_{i,k}$, respectively. Let $X_{i,k,j}, j = 0, \ldots, m_k$ be independent random variables which denote the marginal contribution of data i in stratum k, so $-1 \leq X_{i,k,j} \leq 1, j = 0, \ldots, m_k$, $\chi_{i,k} = \frac{1}{m_k} \sum_{j=0}^{m_k} X_{i,k,j}$ is their average and $\hat{\phi}_i = \frac{1}{n} \sum_{k=0}^{n-1} \chi_{i,k}$. Then:

$$P(|\hat{\phi}_i - \phi_i| \geq \epsilon) \leq 2 \exp \left(-\frac{\epsilon^2}{4 \sum_{k=0}^{n-1} \left(\frac{1}{17m_k} + \frac{\sigma^2_{i,k}}{2m_k} \frac{1}{n^2} \right)} \right).$$

Since $\sigma^2_{i,k} \leq \frac{d^2 f(k)^2}{4}$ and $m_k \geq \frac{\tilde{m}_k}{2}$, we can bound it as

$$2 \exp \left(-\frac{\epsilon^2}{4 \sum_{k=0}^{n-1} \frac{\sigma^2_{i,k}}{2m_k} \frac{1}{n^2}} \right) \leq 2 \exp \left(-\frac{\epsilon^2}{4 \sum_{k=0}^{n-1} \frac{2}{17m(k)} \sum_{j=0}^{n-1} f(j) \frac{1}{j^2} + 4 \sum_{k=0}^{n-1} \frac{d^2 f(k)^2}{17m f(k)} \sum_{j=0}^{n-1} f(j) \frac{1}{j^2}} \right) \leq 2 \exp \left(-\frac{\epsilon^2}{\frac{8}{17mn^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j) + \frac{d^2}{mn^2} (\sum_{j=0}^{n-1} f(j))^2} \right) \leq \max \left(2 \exp \left(-\frac{\epsilon^2}{\frac{16}{17mn^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j)} \right), 2 \exp \left(-\frac{\epsilon^2}{\frac{2d^2}{mn^2} (\sum_{j=0}^{n-1} f(j))^2} \right) \right).$$

Setting $2 \exp \left(-\frac{\epsilon^2}{\frac{16}{17mn^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j)} \right) \leq \delta$ and $2 \exp \left(-\frac{\epsilon^2}{\frac{2d^2}{mn^2} (\sum_{j=0}^{n-1} f(j))^2} \right) \leq \delta$ yields

$$m \geq \frac{16 \log \frac{2}{\delta}}{17\epsilon^2 n^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j), \quad (D.1)$$

and

$$m \geq \frac{2d^2 \log \frac{2}{\delta}}{\epsilon^2 n^2} (\sum_{j=0}^{n-1} f(j))^2. \quad (D.2)$$
So

\[m \geq \max \left(\frac{16 \log \frac{2}{\delta}}{17 \epsilon^2 n^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j), \frac{2d^2 \log \frac{2}{\delta}}{\epsilon^2 n^2} \left(\sum_{j=0}^{n-1} f(j) \right)^2 \right) \]

Since \(d_i = \max_k \frac{r_i}{f(k)} \leq \frac{r_i}{f(n-1)} \) and \(r_i \leq 1 \), Eq. (D.2) can be bound as

\[m \geq \frac{2 \log \frac{2}{\delta}}{\epsilon^2 n^2 (f(n-1))^2} \left(\sum_{j=0}^{n-1} f(j) \right)^2. \]

Therefore,

\[m \geq \max \left(\frac{16 \log \frac{2}{\delta}}{17 \epsilon^2 n^2} \sum_{k=0}^{n-1} \frac{1}{f(k)} \sum_{j=0}^{n-1} f(j), \frac{2d^2 \log \frac{2}{\delta}}{\epsilon^2 n^2 (f(n-1))^2} \left(\sum_{j=0}^{n-1} f(j) \right)^2 \right). \]

When \(f(k) = \frac{1}{k+1} \), since

\[\sum_{j=0}^{n-1} \frac{1}{j+1} \leq \log n + 1 \]

and \(\sum_{k=0}^{n-1} (k+1) = \frac{n(n+1)}{2} \), we sufficiently have

\[m \geq \max \left(\frac{8 \log \frac{2}{\delta} (n+1)(\log n + 1)}{17 \epsilon^2 n}, \frac{2 \log \frac{2}{\delta}}{\epsilon^2 n^2 (\log n + 1)^2} \right). \]

Due to \(\frac{2 \log \frac{2}{\delta}}{\epsilon^2} (\log n + 1)^2 \geq \frac{8 \log \frac{2}{\delta} (n+1)(\log n + 1)}{n} \) for large \(n \), it is sufficient to let

\[m \geq \frac{2 \log \frac{2}{\delta}}{\epsilon^2} (\log n + 1)^2. \]

E Experiment Additional Results

In the part of the parameter selection experiment, we carry out experiments on different datasets, different algorithms and different data sizes. Figure 6 shows the same experiment on Iris, Breast cancer and Digits. We use KNN and NB on the Iris dataset, KNN and SVC on the Breast cancer dataset, and KNN and Tree on the Digits dataset. The number of samples varies from 100 to 2500. It can be seen that \(a \in [-1, -1/2] \) performs well in almost all cases.

We also carry out experiments on other datasets in the data removal experiment. Figure 7 shows the data group removal experiment on the Digits data set. There are 10 groups, and each group has a different amount of data. The minimum group has 5 data and the maximum group has 50 data. VRDS with parameter \(a = -\frac{1}{2} \) and permutation sampling algorithms are used to calculate the value of the data groups. Figure 7(a) shows the removal from the most valuable data group to the least valuable data group. It can be seen the performance of VRDS \((a = -\frac{1}{2}) \) decreases faster than that of permutation sampling, which indicates that VRDS \((a = -\frac{1}{2}) \) recognizes most valuable data earlier. Figure 7(b) shows data removal according to the variance value from large to small. Similarly, the prediction accuracy of the VRDS \((a = -\frac{1}{2}) \) algorithm decreases faster.
Figure 6: Variance of estimated data Shapley on Iris, Breast Cancer and Digits datasets. We use KNN and NB on the Iris dataset, KNN and SVC on the Breast cancer dataset, and KNN and Tree on the digits dataset. Data size is 100 and 30 respectively.
Figure 7: Data group removal experiment on the Digits data set. There are 10 groups and each group has different volume data. VRDS \((a = -\frac{1}{2})\) and permutation sampling algorithms are used to calculate the value of the data group. Figure 7(a) shows the removal from the most valuable data group to the least valuable data group. Figure 7(b) shows data removal according to the variance value from large to small.