Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology

Benjamin D. Wandelt1, Eric Hivon1, Krzysztof M. Górski1-2

1Theoretical Astrophysics Center, Juliane Maries Vej 31, DK-2100 Copenhagen, Denmark
2Warsaw University Observatory, Warsaw, Poland

As the era of high precision cosmology approaches, the empirically determined power spectrum of the microwave background anisotropy, C_l, will provide a crucial test for cosmological theories. We present a unified semi-analytic framework for the study of the statistical properties of the C_l coefficients computed from the results of balloon, ground based, and satellite experiments. An illustrative application shows that commonly used approximations bias the estimation of the baryon parameter Ω_b at the 1% level even for a satellite capturing as much as $\sim 70\%$ of the sky.

During the next few years ground based observations and balloon missions [3] as well as satellite observations [2] promise exquisite determinations of the power–spectrum, C_l, of cosmic microwave background (CMB) anisotropies. Recently, pioneering work [3-7] has shown, in the context of inflationary cosmogonies, the tremendous impact these missions will have on our knowledge of cosmological parameters. It is therefore of paramount importance to study the statistical properties of these quantities in detail. The fact that the full solution of the associated likelihood problem poses severe computational difficulties, has prompted many practical analyses to invoke one or more of the following simplifying assumptions: 1) the observed C_l are approximately independent due to nearly full and uniform sky coverage, 2) their sampling distributions do not change appreciably from the χ^2 distributions which apply for the full sky, apart from a rescaling of the mean by the sky fraction to account for lost power, and 3) the sampling distributions are well-approximated by a Gaussian which has the same first and second moments as these rescaled χ^2 distributions.

There are several reasons to assess these approximations and, if necessary, go beyond them. One reason is that in the short term balloon and ground based experiments will provide the leading edge science results to the field. Due to practical limitations we cannot hope to even come close to full sky coverage with these types of experiments. The observation regions are often ring–shaped or cover a circular region of the sky which subtends a small solid angle. It is an urgent matter to assess statistically how these imminent experiments can constrain the power spectrum and cosmological parameters.

Further, the planned satellite missions are aiming to determine the C_l to sub–percentage accuracy. In the case of the Planck Surveyor mission, this has given us the hope of detecting small effects such as secondary anisotropies which are due to nonlinear gravitational effects on the CMB photons during the free–streaming epoch. This is an important issue because a detection would break otherwise present parameter degeneracies and allow a consistent parameter estimation from CMB data alone [8].

More generally, the impact CMB observations will have on cosmology makes it important to use approximations in a controlled way. For example, in the analysis of COBE–DMR data it was realized that using Gaussian approximations for quadratic quantities introduced systematic biases [8,2]. At the same time, we need approximations to make feasible the analysis of the huge CMB data sets we expect in the coming years.

To provide a quantitative basis for this discussion we present in this Letter a semi-analytic framework for the calculation of the sample statistics of the C_l for theories which generate a Gaussian CMB sky. This framework is exact for survey geometries and noise patterns which obey rotational symmetry about one, arbitrary axis, such as polar cap shaped regions, Galactic cuts, rings, and annuli of any size and at any latitude. We find that our methods also allow dealing with arbitrary noise patterns to very good accuracy and conclude by illustrating their use in a first application.

The full sky of CMB temperature fluctuations can be expanded in spherical harmonics, Y_{lm}, as

$$T(\gamma) = \sum_{l=0}^{l_{max}} \sum_m a_{lm} Y_{lm}(\gamma)$$

where γ denotes a unit vector pointing at polar angle θ and azimuth ϕ. A Gaussian cosmological theory states that the a_{lm} are Gaussian distributed with zero mean and specified variance $C_l^{\text{theory}} \equiv \langle |a_{lm}|^2 \rangle$. Hence, for noiseless, full sky measurements, each measured C_l independently follows a χ^2–distribution with $2l + 1$ degrees of freedom and mean C_l^{theory}.

Owing to Galactic foregrounds, limited surveying time or other constraints inherent in the experimental setup,
the temperature map that comes out of an actual measurement will be incomplete. In addition, a given scanning strategy will produce a noise template. We model the noise as a Gaussian field T_N with zero mean which is independent from pixel to pixel and modulated by a spatially varying rms amplitude $W_N(\gamma)$. Therefore the observed temperature anisotropy map is in fact

$$\hat{T}(\gamma) = W(\gamma) \left[T(\gamma) + W_N(\gamma)T_N(\gamma) \right]$$

where W is unity in the observed region and zero elsewhere.

Expanding \hat{T} as in Eq. (1) produces a set of correlated Gaussian variates \tilde{a}_{lm} for the signal and $\tilde{a}_{N\,lm}$ for the noise. These combine into power spectrum coefficients \tilde{C}_l whose statistical properties differ from the ones of the C_l. We therefore refer to these quantities as pseudo-C_l. In what follows we will discuss the statistical properties of these quantities, restricting ourselves to a presentation of results. We relegate detailed derivations and implementation issues to a future publication [11].

If we assume white noise, $C^N \equiv C^N_l$, then each term in the sum Eq. (3) has expectation value

$$\sigma^2_{lm} = \sum_{l' m'} C_{l'} |W_{l' m'}|^2 + C^N \int_O d\gamma W_N(\gamma)^2 \lambda^2_{lm}(\theta) \overline{\lambda^2_{lm}(\theta)}$$

where we abbreviate the polar part of the Y_{lm} as $\lambda_{lm} \equiv \sqrt{2l+1} \frac{l(l+1)}{4\pi} P^m_l$, the $W_{l' m' \, lm}$ is the matrix element of W in Eq. (2) in a spherical harmonic basis and \int_O integrates over the observed region of the sky. Note that the cross-term which comes from expanding the square in Eq. (3) has vanishing expectation value because signal and noise are assumed to be uncorrelated.

To elucidate the correlation structure between the \tilde{a}_{lm} we omit the $\tilde{a}_{N\,lm}$ for simplicity and write Eq. (3) as a quadratic form in the independent normal variates $\tilde{a}_{lm} = a_{lm}/\sqrt{C_l}$. This defines the coupling matrix $\mathcal{M}^{(l)}$ such that $\tilde{C}_l = \alpha^* \mathcal{M}^{(l)} \alpha$. For the full sky

$$\mathcal{M}^{(l)}_{l_1 m_1 \, l_2 m_2} = \frac{1}{2l+1} \sum_{lm} \delta_{l_1 l} \delta_{m_1 m} \delta_{l_2 l} \delta_{m_2 m}.$$

In the case of azimuthal symmetry $\mathcal{M}^{(l)}$ is block diagonal:

$$\mathcal{M}^{(l)} = \frac{1}{2l+1} \left\{ \bigoplus_m \left(V^{lm} \otimes V^{lm} \right) \right\}$$

where $V^{lm} = W^{lm} \sqrt{C_l}$. Each block is the Cartesian product of V with itself. Moreover, if W_N has the same azimuthal symmetry as W, this argument can be extended to include the noise. Eq. (5) is the key fact which allows the derivation and cheap evaluation of the exact results we obtain. (To compute the formulas we present in this Letter, generating the W matrices is the most costly operation. For a maximum l of 1024 this takes just over 1 minute on a single R10000 CPU.)

It follows that while the \tilde{a}_{lm} and $\tilde{a}_{N\,lm}$ terms in Eq. (3) are correlated for different l, they will be uncorrelated for different m. As a consequence, we can view the \tilde{C}_l as sums of independent Chi-squared (χ^2) varied, each with one degree of freedom but different expectations. This allows us to solve for their statistical properties exactly.

We can compute the distribution of these sums analytically using the method of characteristic functions. Defining $\tilde{s}_m^{(l)} = (2/\sigma^2_{lm})$, we produce a closed form solution in terms of incomplete gamma functions $\gamma(\alpha, x)$:

$$P(\tilde{C}_l) = A^{(l)} \sum_{m=1}^{l} \frac{e^{-\tilde{s}_m^{(l)}} \tilde{C}_l \gamma \left(\frac{1}{2}, \frac{1}{\tilde{s}_m^{(l)} \tilde{C}_l} \right)}{\sqrt{(\tilde{s}_m^{(l)} - \tilde{s}_m^{(l)})} \prod_{m=1}^{l} (\tilde{s}_m^{(l)} - \tilde{s}_m^{(l)})}$$

where the primed product symbol \prod' only multiples factors which have $m \neq m'$ and the normalization constant is $A^{(l)} = \sqrt{\tilde{s}_m^{(l)} \prod_m \tilde{s}_m^{(l)}}$.

We can then obtain the cumulants of the pseudo-C_l as $\kappa_n = 2n^{-1} (n-1)! \sum_m (\sigma^2_{lm})^n$. Any moment can be written in terms of these cumulants. We give the following expressions for the mean, variance, skewness $\beta_1 = \frac{<(\Delta \tilde{C}_l)^2>^3}{<(\Delta \tilde{C}_l)^2>^2}$ and kurtosis $\beta_2 = \frac{<(\Delta \tilde{C}_l)^4>}{<(\Delta \tilde{C}_l)^2>^2}$ as examples:

$$\langle \tilde{C}_l \rangle = \sum_m \sigma^2_{lm}, \quad \langle (\Delta \tilde{C}_l)^2 \rangle = 2 \sum_m \sigma^4_{lm}$$

$$\beta_1 = 2 \sum_m \frac{\sigma^6_{lm}}{\left(\sum_m \sigma^4_{lm} \right)^{3/2}}, \quad \beta_2 = 12 \sum_m \frac{\sigma^8_{lm}}{\left(\sum_m \sigma^4_{lm} \right)^2}.$$

The covariance between the pseudo-C_l can be written as $\langle \Delta \tilde{C}_l \Delta \tilde{C}_{l'} \rangle = \text{tr} \mathcal{M}^{(l)} \mathcal{M}^{(l')}$ which reduces to

$$\langle \Delta \tilde{C}_l \Delta \tilde{C}_{l'} \rangle = \sum_m \left(\sum_{l_m} V^{l_{lm}} V^{l_{lm}} \right)^2$$

in the azimuthally symmetric case. All higher order joint moments are computed similarly in terms of traces of products of $\mathcal{M}^{(l)}$ of various l [10].

There are some important situations where the noise pattern does not follow the azimuthal symmetry of the survey geometry. In the case of the Planck satellite the scanning strategy is approximately centered on the ecliptic poles, while the Galactic cut is tilted through $\sim 60^\circ$ with respect to this. In this case Eq. (3) becomes an approximation. We found it to be very accurate indeed to continue using these distributions with the σ^2_{lm} computed for an asymmetric W_N, even for a strongly asymmetric noise pattern. This approximation will be worst in the least interesting, noise dominated regime at very high l.

2
Note that the σ_{l}^2 and hence the (C_l) remain exact (because the λ_{lm} are independent of the azimuth) but the remarks leading to Eq. (1) are no longer exactly true. For applications the final justification comes from the excellent agreement we find when we check against our Monte Carlo simulations.

To test our results we performed 3328 Monte Carlo (MC) simulations for a high resolution CMB satellite, such as MAP or Planck (resulting in a sky coverage comparable to COBE). We simulated realizations of the CMB sky in the standard cold dark matter model ($\Omega_m = 1$, $\Omega_b h^2 = 0.015$, $H_0 = 70 \text{km/s/Mpc}$). From these maps we carved out a $\pm 20^\circ$ Galactic cut and contaminated the remaining area with spatially modulated Gaussian white noise of maximum rms temperature 124 μK per pixel of characteristic size 3.4 arcminutes. We use a tilted noise template $W_N = \sqrt{\sin \theta_E}$, where θ_E is the ecliptic latitude, as a simple model of the noise pattern which would result from scanning along meridians through the ecliptic poles. We then Fourier analyzed these maps and stored the resulting \tilde{C}_l. A Kolmogorov–Smirnov test failed to detect deviations between the distributions of this MC population and Eq. (6) at 99% confidence, which validates our semi-analytical expressions.

To give a visual impression of the resulting probability densities we show four of them in Figure 1, together with the results from the MC simulations. Also shown in this Figure are the χ^2 distributions which the C_l would follow in the full sky case as well as the commonly used Gaussian approximation. These are mean adjusted to account for the lost solid angle due to the Galactic cut. At $l \lesssim 30$ the difference is striking. For higher l the Gaussian approximation becomes better as higher moments die away by dint of the Central Limit Theorem, but there remain visible systematic differences to the true distributions. In particular, there is a residual shift in the mean and the approximations tend to be slightly narrower than the histograms for very high $l \approx 1000$.

This becomes a more quantitative observation when looking at the percentage discrepancies between the mean and variances as a function of l in Figure 2. The discrepancy is of the order of 1% in the mean and 5% in the standard deviation on most scales, except for $l < 70$ where the effect is larger. These discrepancies are important at the level of precision of future almost full sky missions. For medium and small sky coverage the mode couplings are stronger and we expect this to have an even larger effect on the probability distributions. We also compare the skewness β_1 and kurtosis β_2 of the χ^2 distributions to our distributions. The percentage difference is larger than for the first two moments but arguably less important at large l, since β_1 and β_2 decay as $(2l+1)^{-\frac{1}{2}}$ and $(2l+1)^{-1}$, respectively.

As a first application we study the effect of approximating the likelihood for parameter estimation. Since our distributions have the correct means, we simply multiply them together for a simple, unbiased approximation to the likelihood. This is conservative since the marginal distributions have all correlations integrated out and we will therefore overestimate the error bars on the C_l. Using this likelihood, as well as the Gaussian and χ^2 approximations, we attempt to estimate the baryon parameter Ω_b (holding all other parameters constant) from several randomly selected realizations in our MC pool. The results are shown in Figure 3. As expected, Gauss and χ^2 consistently find estimates which are biased about 1.6% high, 3 standard errors of the mean away from the true value, while our likelihood gives a perfect fit. Since the moment discrepancies depend on the underlying cosmological theory, this level of bias is only indicative of the general level of error introduced by using the Gaussian or χ^2 approximations.

We note that numerical techniques have recently been developed [1] which allow the computational solution of the power spectrum estimation for high l applications. These methods are efficient for the case of almost full sky observations. A purely numerical approach still requires significant computational resources, especially if there is signal in modes with $l > 1000$. The results presented in this Letter should be seen as complementary to such calculations. An analytical framework admits a more fundamental approach to understanding and is a useful yardstick against which numerical work can be tested or from which approximate methods can be derived.

To illustrate, we suggest the following computationally cheap and accurate approximation recipe, motivated by the fact that higher moments of the C_l distributions die away quickly with higher l: on measuring the \tilde{C}_l from
the sky, fit a smooth curve through them and use this fit as the input theory for our framework. Then calculate the corrections to the sample means and variances using Eqs. (11). These can in turn be used for simple \(\chi^2 \) fitting in the usual way, at least for high \(l \gtrsim 100 \). Since the discrepancies are small for large sky coverage this will produce a fit which is accurate to second order in the discrepancy, safely within the regime of accuracy envisaged for modern satellite missions.

Apart from the obvious applications to experiments with small and medium sky coverage such as balloons or ground–based missions, many further uses of this framework are conceivable. For example, one could 1) extend this treatment to multi–parameter fits, 2) design ‘optimal’ scanning strategies, encoded in \(W_N \), 3) use Eq. (6) once a theory is estimated to check \(l \) by \(l \) for consistency with the assumption of Gaussian primordial fluctuations and 4) assess more realistically if secondary anisotropies will be detectable with future CMB missions. Finally, all ingredients are there to refine the approximation to the joint likelihood we used in this Letter by taking into account the covariances Eq. (8), for example by using a multivariate Edgeworth expansion around the peak of the likelihood.

To summarize, we have presented a unified theoretical framework for the study of power spectrum determinations of balloon, ground based and satellite experiments. We go beyond current approximations and present a semi-analytic formalism for the computation of sampling distributions of the \(C_l \) for any Gaussian cosmological model and a large and important class of surveying strategies. We show that applying this method to the estimation of \(\Omega_b \) from simulated data is unbiased and hence superior to commonly used analytic approximations which bias the result at the percent level. A number of applications and extensions of this formalism remain to be explored [10].

We wish to thank A. J. Banday for stimulating discussions. This research was supported by the Dansk Grundforskningsfond through its funding for TAC.

[1] For a compendium of experiments refer to e.g. http://www.sns.ias.edu/~max/cmb/experiments.html.
[2] C. L. Bennett et al., "Microwave Anisotropy Probe: A MIDEX Mission Proposal", 1996, see also [http://map.gsfc.nasa.gov]; Bersanelli et al., "COBRAS/SAMBA: Report on the Phase A Study", 1996, see also [http://astro.estex.esa.nl/Planck].
[3] L. Knox, Phys. Rev. D 52, 4307 (1995).
[4] G. Jungman et al., Phys. Rev. D 54, 1332 (1995).
[5] J. R. Bond, G. Efstathiou, and M. Tegmark, MNRAS 291, L33 (1998).
[6] M. Zaldarriaga, D. Spergel, and U. Seljak, Ap. J. 488, 1 (1997).
[7] J. R. Bond, A. Jaffe, and L. Knox, Phys. Rev. D 57, 2117 (1998).
[8] R. Stompor and G. Efstathiou, (1998), astro-ph/9805294, submitted to MNRAS.
[9] A. J. Banday et al., Ap. J. 475, 393 (1997); E. L. Wright et al., Ap. J. 464, L21 (1996).
[10] B. D. Wandelt, E. Hivon, and K. M. Górski, (1998), in preparation.
[11] S. P. Oh, D. N. Spergel, and G. Hinshaw, (1998), astro-ph/9805338, Ap. J. in press.