Constructing a transformation curve of the age resistance coefficient

T A Matseevich1*, E V Korolev1, A A Askadsky1,2
1 National Research Moscow State University of Civil Engineering 26, Yaroslavskoye Highway, Moscow, 129337, Russia
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 28, Vavilov str., Moscow, 119334, Russia

E-mail: MatseevichTA@mgsu.ru

Abstract. One of the possible approaches to the analysis of the materials’ age resistance coefficient dependence physical mechanism is proposed. The material’s durability at constant voltage is described using the Zhurkov equation and at alternating voltage it is described using the Bailey criterion. Under the action of small deformations on the material, its structure is ordered, which is expressed in a decrease the structurally sensitive coefficient value in the Zhurkov equation. This leads to an increase in durability by 20%. The resistance coefficient dependence is of an extreme character and can be maximum observed at the time to failure \(\lg t_p \approx 2 \) (sec).

Introduction

The materials resistance coefficient is defined as the strength current value ratio to its initial value. The resistance coefficient is often used to assess the durability of the material and to predict the duration of its operation under given conditions. The physical meaning analysis of the factors determining the rate of the material’s aging is of great importance, as well as the rate of the structure restoration over time, which can occur simultaneously with aging. Let us consider one of the possible reasons for the peculiar course of the transformation kinetic curve in the age resistance coefficient, which is associated with the strength of polymers. In turn, the strength of the polymer is associated with its durability \(\tau \), which, in accordance with the thermo-fluctuation concept of the fracture mechanism, justified by S.N. Zhurkov, can be determined by the ratio

\[
\tau = \tau_0 e^{\frac{U_0 - \gamma\sigma}{RT}}
\]

(1)

where \(\tau_0 \) is the pre-exponential factor; \(U_0 \) is the initial activation energy of the destruction process; \(\gamma \) defines the material parameter called a structurally sensitive parameter; \(\sigma \) is constant pressure; \(T \) denotes the absolute temperature; \(R \) is a universal gas constant.

The Zhurkov equation is described in detail in monographs [1-6].

Main part

To describe durability let us apply \(t_p \) Bailey criterion, which is valid in case voltage \(\sigma \) is not permanent:

\[
\tau = \tau_0 e^{\frac{U_0 - \gamma\sigma}{RT}}
\]

where \(\tau_0 \) is the pre-exponential factor; \(U_0 \) is the initial activation energy of the destruction process; \(\gamma \) defines the material parameter called a structurally sensitive parameter; \(\sigma \) is constant pressure; \(T \) denotes the absolute temperature; \(R \) is a universal gas constant.

The Zhurkov equation is described in detail in monographs [1-6].

Main part

To describe durability let us apply \(t_p \) Bailey criterion, which is valid in case voltage \(\sigma \) is not permanent:
where \(t_b \) denotes the time elapsed from the moment the load is applied to the sample until it breaks; \(\tau[\sigma(t)] \) is the durability described by the equation (1) at a constant voltage equal to the instantaneous value \(\sigma(t) \).

In this case, the voltage \(\sigma(t) \) may vary in time according to any law. Using the criterion (2), it is possible to calculate the lifetime of a sample when the function is known \(\sigma(t) \), and also, if the equation parameters (1) are known. When calculating \(t_b \) using the equation (2), it is necessary that these parameters do not change during the sample’s loading. The temperature should also be constant. Actually, during the loading process, the structure and temperature of the sample can change (which causes a change in the structurally sensitive parameter \(\gamma \)). Even if the ambient temperature is kept strictly constant under cyclic influences on the sample, its heating can occur. Then, using the Bailey criterion, we get the inflated values of durability \(t_b \), since we will substitute the temperature lower than that which is actually present in the sample.

In the general case, the Bailey criterion for alternating voltages, temperature, and a structurally sensitive parameter should be written as follows:

\[
\int_0^{t_b} \frac{dt}{\tau[\sigma(t); T(t); \gamma(t)]} = 1, \tag{3}
\]

where \(\tau[\sigma(t); T(t); \gamma(t)] \) define the durability described by the equation (1) at a constant voltage equal to the instantaneous value \(\sigma(t) \); constant temperature equal to instantaneous value \(T(t) \); unchanged material structure, which corresponds to the instantaneous value of the structurally sensitive parameter, equal to \(\gamma(t) \).

If the voltage \(\sigma \) and temperature \(T \) in time are constant, and only the structurally sensitive parameter changes \(\gamma \), then the Bailey criterion is written as

\[
\int_0^{t_b} \frac{dt}{\tau[\sigma(t); T(t); \gamma(t)]} = 1. \tag{4}
\]

We assume that the structurally sensitive parameter as a result of the constant voltage action on the sample and the deformation arising from this, decreases linearly within time

\[
\gamma = \gamma_0 - at, \tag{5}
\]

where \(\gamma_0 \) is the initial structurally sensitive parameter, \(a \) is the decrease rate in the structurally sensitive parameter over time as a result of improving the material structure.

Then the equation (1) can be written as:

\[
\tau = \tau_0 e^{-\frac{U_0-(\gamma_0-at)\sigma}{RT}}. \tag{6}
\]

The Bailey criterion has the form:

\[
\int_0^{t_b} \frac{dt}{\tau_0 e^{-\frac{U_0-(\gamma_0-at)\sigma}{RT}}} = 1. \tag{7}
\]

The solution of this integral equation leads to the following relation:
\[
\frac{1}{\tau_0} \cdot \frac{1}{e^{\frac{U_0 - \gamma \sigma}{RT}}} \cdot \left(\frac{-at \sigma}{e^{\frac{-at \sigma}{RT}}} - 1\right) = 1.
\] (8)

It follows from the relation (8) that the time to failure \(t_b \) at constant voltage \(\sigma \) is equal to:

\[
t_b = -\frac{RT}{a \sigma} \ln \left(1 - \frac{\tau_0 \cdot e^{\frac{U_0 - \gamma \sigma}{RT}}}{a \sigma}\right).
\] (9)

We choose the following typical values of the equation parameters (9), the characteristic of many polymers: \(\sigma = 30 \text{ MPa}, U_0 = 150 \text{ kJ/mol}, T = 293 \text{ K}, a = 1.7 \cdot 10^{-8} \text{ sec}^{-1}, \gamma_0 = 1.6 \text{ kJ/mol \cdot MPa}. \) Constant \(R = 8.314 \text{ J/mol \cdot K}, \) constant \(\tau_0 = 10^{-12} \text{ sec}. \)

With these parameters, the expression (9) has the form:

\[
t_b \text{ (sec)} = -4776471 \ln \left(1 - 20.9 \cdot 10^{-20} \cdot 1.57 \cdot 10^{18}\right).
\] (10)

If we want to express \(t_b \) after a number of years then

\[
t_b \text{ (years)} = -0.151 \ln \left(1 - 20.9 \cdot 10^{-20} \cdot 1.57 \cdot 10^{18}\right).
\] (11)

We calculate how the dependency will look \(\sigma \) from \(t_b. \)

Table 1. Durability \(t_b \) at a decline rate in the structural sensitive parameter \(a = 1.7 \cdot 10^{-8} \text{ sec}^{-1}.\)

\(\sigma, \text{MPa} \)	\(t_b, \text{sec} \)	\(\lg t_b \)	\(\sigma / \sigma_0 \)			
29	4605176	6.663	0.879	0.805	0.744	0.690
30	1903576	6.279	0.909	0.833	0.769	0.714
31	895390	5.952	0.939	0.861	0.795	0.738
32	442132	5.645	0.967	0.889	0.820	0.762
33	224715	5.352	1	0.917	0.846	0.786
\textbf{36}	\textbf{30516}	\textbf{4.484}	1	0.923	0.857	
\textbf{39}	\textbf{4212}	\textbf{3.624}	1	0.929		
\textbf{42}	\textbf{590}	\textbf{2.771}				

The data in Table 1 describe the descending branch of the dependence curve \(\sigma / \sigma_0 \) from \(\log t_b. \) To describe the ascending branch of such a curve, we use the original equation (1). According to this equation, the voltage dependence \(\sigma \) from durability \(\tau \) can be described by the relation:

\[
\sigma = \frac{U_0 - 2.3RT (\lg \tau - \lg \tau_0)}{\gamma}.
\] (12)

Table 2. The stress values \(\sigma \), leading to different values of durability \(\tau = t_b.\)

\(\sigma, \text{MPa} \)	\(t_b, \text{sec} \)	\(\lg t_b \)	\(\sigma / \sigma_0 \)
38	363659949	8.561	0.848
39	3039574	6.483	0.879
40	1745901	6.242	0.909
41	859319	5.934	0.939
42	433079	5.637	0.970
43	222301	5.347	1
Figure 1 shows the dependencies σ_t/σ_0 from $\log t_b$, obtained at different initial voltages σ_0 from 33 till 42 MPa.

![Figure 1](https://example.com/figure1.png)

Figure 1. Dependencies σ_t/σ_0 from $\log t_b$ at different initial voltages: 33 MPa (1), 36 (2), 39 (3) and 42 MPa (4). Time t_b is expressed in sec

It is seen that the larger the initial voltage σ_0, the smaller σ_t/σ_0 is the transition from increasing to falling branches of the curve. Thus, the proposed mechanism for the peculiar course of the kinetic transformation curve in the age resistance coefficient, associated with a decrease in the structurally sensitive coefficient in the durability equation, allows us to adequately describe the analyzed curve, which is similar to the Weller curve.

Now we will change the speed a decrease in the structurally sensitive parameter in time. We take the value $a = 1.0 \cdot 10^{-8} \text{sec}^{-1}$. The time to failure at different constant voltages is shown in Table 3.

Table 3. Durability t_b at descent rate structurally sensitive parameter $a = 1.0 \cdot 10^{-8} \text{sec}^{-1}$.

σ, MPa	t_b, sec	$\lg t_b$	σ_t/σ_0
28	9708842	6.987	0.848
29	3039574	6.483	0.879
30	1745901	6.242	0.909
31	859319	5.934	0.939
32	433079	5.637	0.970
33	**222301**	**5.347**	**1**

Now let us take an even smaller value $a = 0.5 \cdot 10^{-8} \text{sec}^{-1}$. Then we obtain the following values of quantities t_b, sec, $\lg t_b$ and σ_t/σ_0 (Table 4).

Table 4. Durability t_b at descent rate structurally sensitive parameter $a = 0.5 \cdot 10^{-8} \text{sec}^{-1}$.

σ, MPa	t_b, sec	$\lg t_b$	σ_t/σ_0
27	17705141	7.248	0.844
From Tables 3 and 4 it follows that the dependencies $\ln t_b$ from σ_t/σ_0 at equal values σ do not differ greatly.

Finally, we analyze the dependence σ_t/σ_0 from $\ln t_b$ at different values of the initial activation energy U_0.

The results of the calculations carried out by the formula (9) are presented in Table 5.

Table 5. Durability t_b at various values of the initial activation energy of the destruction process U_0.

U_0, kJ / mole	σ, MPa	t_b, sec	$\ln t_b$	σ_t/σ_0
150	30	1903576	6.279	0.545
155	35	485719	5.686	0.636
160	40	135534	5.132	0.727
165	45	39190	4.593	0.818
170	50	1869	2.272	0.909
175	55	6.990	0.844	1.0

It can be seen that an increase in the initial activation energy leads to a rapid increase in the ratio σ_t/σ_0. This is due to the fact that stresses σ also increase. Figure 2 shows the relationship σ_t/σ_0 from $\ln t_b$.

Figure 2. Dependence σ_t/σ_0 from $\ln t_b$ at different values of the initial activation energy and voltage. Time t is expressed in sec.

This curve characterizes the descending branch of the resistance coefficient dependence on durability.

Summary
The proposed procedure for constructing a transformation curve of the age resistance coefficient allows us to evaluate the physical nature of such a change. The resistance coefficient is associated with improving the structure of the material during deformation, which leads to a decrease in the structurally sensitive parameter in the durability equation. Of course, this is not the only reason for the formation of the dependence curve k from t with a maximum that is similar in appearance to the Weller curve. Further work in this direction involves taking into account the relaxation processes [7–10] (creep and stress relaxation) that occur during polymer deformation under load.

The present study was supported by the RF Ministry of Science and Higher Education (project Theoretical and experimental design engineering of new composite materials for safety exploitation of buildings and structures under conditions of technogenic and biogenic threats #FSWG-2020-0007).

References
[1] Regel V R, Slutsker A I, Tomashevsky E E 1974 *The kinetic nature of the strength of solids* (Moscow, Science).
[2] Askadsky A A 1973 *Deformation of polymers.* (Moscow, Chemistry) 448.
[3] Tamuzh V P, Kuksenko V S 1978 *The mechanics of the destruction of polymeric materials* (Riga, Zinatne) 284.
[4] Askadsky A A, Popova M N, Kondrashchenko V I 2015 *Physical chemistry of polymer materials and methods for their research* (Moscow, DIA Publishing House) 408.
[5] Andrey Askadskii, Tatyana Matseevich, Alexander Askadskii, Pavel Moroz and Elena Romanova 2019 *Structure and Properties of Wood-Polymer Composites (WPC)* (Cambridge, Cambridge Scholars Publishing) 223.
[6] Frost P A, Askadsky A I, Matseevich T A, Askadsky A A, Romanova E I 2020 *Wood-polymer composites: Structure, properties and applications* (Moscow, DIA Publishing House) 200.
[7] Bartenev G M, Barteneva A G 1992 *Relaxation properties of polymers* (Moscow, Chemistry) 383.
[8] Bartenev G M, Frenkel S Ya 1990 *Physics of Polymers* (Leningrad, Chemistry) 432.
[9] Ghoul V E 1978 *The structure and strength of polymers* (Moscow, Chemistry) 328.
[10] Askadsky A A, Matseevich T A, Popova M N 2017 *Secondary polymeric materials. Mechanical and barrier properties, plasticization, mixtures and nanocomposites* (Moscow, DIA Publishing House) 490.