fNIRS-derived Neurocognitive Ratio as a Biomarker for Neuropsychiatric Diseases

Ata Akın

Acıbadem University, Department of Medical Engineering, İçerenköy Mah., Kayışdağ Cad. No: 32, Ataşehir, İstanbul, Turkey, 34755

Abstract.

Significance: Clinical use of fNIRS derived features has always suffered low sensitivity and specificity due to signal contamination from background systemic physiological fluctuations. This article provides an algorithm to extract cognition related features by eliminating the effect of background signal contamination; hence, improves the classification accuracy.

Aim: The aim in this study is to investigate the classification accuracy of an fNIRS derived biomarker based on global efficiency. To this end, fNIRS data were collected during a computerized Stroop Task from healthy controls, and patients with migraine, obsessive compulsive disorder, and schizophrenia.

Approach: Functional connectivity (FC) maps were computed from [HbO] time series data for Neutral, Congruent and Incongruent stimuli using the partial correlation approach. Reconstruction of FC matrices with optimal choice of principal components yielded two independent networks: Cognitive Mode Network (CM) and Default Mode Network (DM).

Results: Global Efficiency (GE) values computed for each FC matrix after applying principal component analysis yielded strong statistical significance leading to a higher specificity and accuracy. A new index, Neurocognitive Ratio (NCR), was computed by multiplying the Cognitive Quotients (CQ) and ratio of GE of CM to GE of DM. When mean values of NCR over all stimuli were computed, they showed high sensitivity (100%), specificity (95.5%), and accuracy (96.3%) for all subjects groups.

Conclusions: NCR can reliably be used as a biomarker to improve the classification of healthy to neuropsychiatric patients.

Keywords: fNIRS, neuropsychiatric diseases, functional connectivity, global efficiency, cognitive quotient, neurocognitive ratio.

*Ata Akın, ata.akin@acibadem.edu.tr

1 Introduction

Although fNIRS has been around over 30 years now, its clinical efficacy and role are still being questioned due to its low specificity and sensitivity, especially in the area of neuropsychiatric diseases. Many researchers have been trying to improve its efficacy, sensitivity, and specificity in clinical settings by either improving its technology or the post processing analysis methods.

Over the last 20 years, the richness of fNIRS data due to its ease and speed of data collection,
non-invasiveness and access to local activity have become even more attractive to cognitive neuro-
scientists in testing multitude of data processing and neuroscientific hypotheses. Strangely though,
the brain does not work locally.1–4

So far, fNIRS researchers have focused more on the data analytics side than developing of
novel technologies. We have enjoyed the availability of various fNIRS systems but at the cost
of standardization of probe designs, data collection methodologies and even more on the data
analytics.5 The lack of standardization on these issues has made it increasingly more difficult
to compare the findings from different studies.6 Moreover, physics of photon migration through
the layers of the head limits the specificity of the fNIRS device to cortical layers. Collected data
become an amalgam of physiological activity from each layer the photon interacts with. Hence the
data are known to be contaminated with background systemic physiological fluctuations that are
undoubtedly correlated with the cognitive activity.7,8 The low specificity of the CW-fNIRS devices
can be overcome with time resolved systems albeit at a greater cost and unease of data collection.
Many novel data analysis methods have been proposed to extract the brain originated, task related
data from the collected data.9–11 Still there is no consensus on how to approach the fNIRS data,
leading to the unsettling yet quite accurate prediction of Drs. Quaresima and Ferrari:

\begin{quote}
\textit{"The prediction of the future directions of fNIRS for assessing brain function dur-
ing human behavior in natural and social situations is not easy."}5
\end{quote}

So after spending more than 20 years on fNIRS research, I aimed to produce an analysis method
(a pipeline of data analysis) that would avoid the pitfalls of the standardization issues. I recommend
the following minimum hardware, data collection, and analysis requirements:

1. **Hardware Requirements**
1.1. Number of channels ≥ 8

1.2. Collect data from both hemispheres

1.3. Sampling rate ≥ 0.5 Hz per channel

1.4. Number of wavelengths ≥ 2

2. Task Requirements

2.1. Duration of collected data ≥ 10 minutes

2.2. Block stimulus with block duration ≥ 20 seconds

2.3. Stimulus type ≥ 2

2.4. Resting data ≈ 30 seconds

3. Analysis Requirements

3.1. HbO2 data

3.2. Avoid single channel data analysis

3.3. Prefer a dimensionless analysis (i.e. normalization of data)

3.4. Prefer a multichannel analysis (i.e. functional connectivity)

3.5. Prefer a metric that summarizes and captures the behaviour of multichannel data (i.e. functional connectivity strength, global efficiency, etc.)

I have decided to consider these properties in proposing an improved post-processing approach to data obtained from fNIRS recordings over my last paper. The sole aim was to converge on a data analysis pipeline that will be accepted and adapted easily by “fellow fNIRSians”. The proposed algorithm should have a common denominator, a base, for all where anyone can build upon it. The algorithm aims to improve the statistical significance of the fNIRS findings; hence, the trust on the system. I aimed to boost the statistical significance of the Global Efficiency (GE)
values; hence, the accuracy of classification of fNIRS findings in a set clinical data obtained in our
group’s previous studies.

2 Methods and Materials

2.1 Subjects and Experimental Procedure

13 healthy subjects (6 female) at an average age of 26, 20 patients with migraine without aura (12
female) at an average age of 27, 26 patients with obsessive compulsive disorder (11 female) at an
average age of 29, and 21 schizophrenia patients (10 female) at an average age of 28 participated in
this study. The study protocol was approved by the Ethics Committee of Pamukkale University in
2008. Parts of these data were published by our group and coworkers. Consents were obtained
from all subjects and they were all informed about the study before the experiment. Subjects were
seated in a dimly illuminated insulated room and they were told to look at a computer screen placed
in front of them.

Subjects responded to the computerized color word matching Stroop Task that involved 3 sets
of stimuli: Neutral (N), Congruent (C), and Incongruent (I) stimuli. The task involved 15 N, 15
C and 15 I stimuli presented in blocks of five sequential stimuli. The inter stimulus interval was
4 seconds. The rest between each block was 20 seconds. The stimuli blocks were randomized
for each subject. The subject was asked to respond with left or right mouse click depending on
whether the stimulus was a match or not. The task started with a 30 seconds of rest and ended with
a 30 seconds of rest. 21, 23
2.2 fNIRS Equipment

The fNIRS system (NIROXCOPE 301) was developed at the Neuro-Optical Imaging Laboratory of Bogazici University. NIROXCOPE 301 has a sampling frequency of 1.77 Hz and it consists of a data acquisition unit, a data collecting computer and a flexible probe to place on the forehead of the subjects. The probe has a rectangular design housing 4 dual wavelength light emitting diodes (LED) emitting at 730 nm and 850 nm. Each LED is surrounded by 4 detectors placed 2.5 cm away from the center of the LEDs as seen in Figure ??.

The validity of this probe design and its ability to detect brain tissue were discussed in our previous study as well as its efficacy in providing cognition related signals.

2.3 Analysis of the fNIRS Data

fNIRS data are known to be contaminated with systemic background fluctuations. Hence any correlation between two channels will be dominated by this common background signal. I have previously shown that using a high pass filter, computation of the inter-channel correlation via partial correlation provides a better insight into the underlying connectivity due to task. In my previous paper, I have outlined the analysis steps in detail. As a quick summary, I developed a signal processing pipeline to compute the functional connectivity matrices from [HbO] signals by using a partial correlation method, rather than the conventional pearson correlation analysis. Then these matrices were used to compute the global efficiency values. In this paper I propose an additional step between the FC matrices and GE computation by employing the principal component analysis. As a last step I propose two new biomarkers: Neurocognitive Index (NCI) and Neurocognitive Ratio (NCR). The details of the computation of these biomarkers are explained in Section 2.4 and the block diagram of the algorithm based is shown in Figure 1.
Statistical significance of the GE values were improved by adding principal component analysis (PCA) to the FC matrices. This paper will present the results of this PCA based FC analysis, hence called the FC-(PC)2: Functional connectivity analysis via PCA based PC.

2.3.1 Functional Connectivity via PC

Partial correlation (PC) provides a relationship between two variables after removing the overlap from both variables. The partial correlation coefficient between any two channels (i, j) as $r_{i,j|k}$ in the presence of a a common influencer (k) $(r_{i,j|k})$ is as follows:

$$r_{i,j|k} = \frac{r_{i,j} - r_{i,k}r_{j,k}}{\sqrt{(1 - r^2_{i,k})(1 - r^2_{j,k})}},$$

[\text{HbO}] data from each channel is passed through a high pass filter (butterworth, 8th order, $f_c = 0.09$ Hz) to obtain the HBO_H^i. The regressor used in PC-based FC analysis is obtained by averaging this signal over all the channels. Hence $HBO_R = \sum_i HBO_H^i$ is used to regress out the systemic physiological affects from the correlation of the unprocessed [\text{HbO}] signals from two channels. Once the regressor HBO_R is computed, neutral (N), congruent (C), and incongruent (I) stimuli parts are segmented out individually and consolidated to form one individual time series.
from each of these stimuli. The functional connectivity matrices computed for individual time
series are thus termed as $\mathcal{FC}_N, \mathcal{FC}_C, \mathcal{FC}_I$. This analysis is performed for each subject.

2.3.2 Functional Connectivity via PCA based PC

Once the FC matrices are generated, I applied the PCA to the matrices. Since the matrices are
16×16, there are 16 principal components. An optimal choice for these components should
improve the statistical significance of the GE_i values for computed from each \mathcal{FC}_i, (i being the
stimulus type). The assumption in applying PCA to \mathcal{FC} matrices is the following:

$$\mathcal{FC}_i = \mathcal{FC}^{CM}_i + \mathcal{FC}^{DM}_i, \quad \forall i \in N, C, I$$ \hspace{1cm} (2)$$

where \mathcal{FC}^{DM}_i is the FC matrix of the Default Mode Network, while \mathcal{FC}^{CM}_i is the matrix for the
Cognitive Mode Network. Since these two matrices can be assumed to be linearly independent,
I used PCA to separate them. The choice of principal components (PCs) turned out to affect the
statistical significance of the GE values computed after new \mathcal{FC} matrices were reconstructed from
the chosen principal components. The expectation is the convergence to a subset of PCs that will
yield the strongest significance for GE^{CM}_i (as explained in Section 2.3.3) while no significance for
the GE^{DM}_i. 28, 29 A set of PCs are used to reconstruct the new \mathcal{FC}^{CM}_i. Once the best PC subset
is found, this is determined as the CMN. Remaining PCs are then used to reconstruct the DMN
matrices $\mathcal{FC}^{DM}_i, \forall i \in N, C, I$. The expectation from these \mathcal{FC}^{DM}_i matrices is such that the t-
statistics of the $GE^{DM}_i, \forall i \in N, C, I$ will be low (no statistical significance). So the algorithm
works as an optimization approach where the goal is to maximize the t-statistics (minimize the p
value) of the $GE^{CM}_i, \forall i \in N, C, I$.

All rights reserved. No reuse allowed without permission.
2.3.3 Global Efficiency

I decided to use the graph efficiency as a metric to quantify the information sharing efficiency of the $\mathcal{FC}^{CM,DM}_i$ matrices. This approach is intrinsic to cognitive neuroscience where the aim is to investigate the neural correlates of cognition.30–32 Global efficiency is one of the many metrics of graph-based network analysis and has been used in brain connectivity studies.12, 33–35 We considered the channels as a set of vertices V and the partial correlation coefficients as assigned weights on the set of edges E, between vertices to construct an undirected complete weighted graph $G = (V, E)$.36–38 \mathcal{FC} matrices are computed for each type of stimuli.

Global efficiency can be evaluated for a wide range of networks, including weighted graphs.38 Maximal possible global efficiency occurs when all edges are present in the network. The global efficiency value was computed by using the formulation of Latora and Marchiori’s,39 since it applies to work with weighted connectivity graphs. In this case, the global efficiency is:

$$ GE = \frac{1}{N(N-1)} \sum_{i \neq j \in G} \frac{1}{d_{ij}}, $$

where d_{ij} is defined as the “smallest sum of the physical distances throughout all the possible paths in the graph from i to j”.39 For weighted graphs, stronger connection weights correspond to shorter lengths. Equation 3 generates values of GE in the range of $[0, 1]$. In this analysis, a threshold correlation value was determined iteratively for each individual FC matrix and the matrices were hard thresholded leaving only fewer non zero matrix entries. A review on the choice of such a threshold (TH) yielded a value of the highest $10 – 20\%$ of all the entries. A sweep of the best TH that provides the highest statistical significance yielded specific TH_s values for different subject groups. Once the subject-optimized TH is found, the $\mathcal{FC}^{CM,DM}_i$ matrices are converted
to binary matrices for computation of the $GE^{CM,DM}_i$ values by Eq’n 3 by the efficiency.m code from the Brain Connectivity Toolbox.4

\subsection*{2.4 Neurocognitive Index and Ratio}

Cognitive quotient can be considered as a measure of level of cognitive effort exerted to fulfill a task. There are several indices, quotients and metrics proposed to assess this effort. Usually these are in the form of combinations of various neuropsychological task scores40–42 and sometimes in the form of physiological parameters.43 Cognitive load is a similar concept and many physiological measures have also been proposed to quantify this effort.44 The assumption for using physiological measures to quantify cognitive load is that brain, just like a muscle, has to produce some sort of a measurable physiological activity for a specific cognitive task.45 So the holly grail of neuroscience is to find this link between neurophysiological activity and psychological activity, also called the neurobiological basis of behavior.46, 47 Hence, researchers have defined a new concept “neural efficiency” to quantify the level of efficiency of collaborative effort of the brain in solving a difficult cognitive task (For a complete review see48). Neural efficiency can be computed from physiological parameters like the heart rate variability, EEG measurements, fMRI recordings and recently from fNIRS findings.49–51 Researchers preferred to find a relationship between the neuropsychological data and neurophysiological data mostly in terms of correlation coefficients or regression analysis. The equation obtained transforms one finding to another one, consequently assumes a causal relationship.

I have decided to impose the duality principle in brain’s operations; hence, combined the behavioral findings with physiological findings in assessing the neurocognitive effort. I call this new combined metric the Neurocognitive Index (NCI). The analysis left at Section 2.3.3 continues
with the calculation of the Neurocognitive Index (NCI_i^M) where $M = CM$ or DM) with respect to stimulus as follows:

$$NCI_i^M = CQ_i \times GE_i^M$$ \hspace{1cm} (4)$$

$$NCR_i = CQ_i \times \frac{GE_i^{CM}}{GE_i^{DM}}$$ \hspace{1cm} (5)$$

where i is the stimulus type. A further refinement of NCI is the Neurocognitive Ratio (NCR_i). NCR_i, as calculated from Equation 5, can be assumed to be a biomarker specific for each subject group (i.e. healthy controls, patients with migraine, OCD or Schizophrenia disorder). The underlying assumption in proposing this index as a biomarker is that, the global efficiency of a default mode network should be different than the global efficiency computed during a cognitive task and that the ratio of the two is an indicator of attention and inhibition control. In fact one can even hypothesize that an increased demand for inhibitory control can be associated with restructuring of the global network into a configuration that must be more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). Thus, investigation of graph theoretical metrics under varying levels of inhibitory control can guide clinicians in classifying the severity of the disease as well as in prognosis. \cite{46,52,53}

3 Results

3.1 Behavioral Results

The reaction times and accuracy rates for the subjects for all stimuli types are given in Figures 2(a) and 2(b). Reaction times are calculated by averaging the response times to all the responses, not
just the correct answers.

Fig 2 (a) RT values at the columns of Table 2 for all subjects across stimuli. p values are presented on top of bars. (b) ACC values at the columns of Table 3 for all subjects across stimuli. p values are presented on top of bars, (c) CQ values computed by Eq’n 6.

Two-way ANOVA for RT values yielded significant values for subject comparison (p = 0), and stimulus type (p = 0) and no interaction for SUB*STIM (p = 0.749). Accuracy is calculated by taking the ratio of total number correct answers to total number of questions. Two-way ANOVA for the ACC yielded significant values for subject comparison (p = 0), and stimulus type (p = 0) and no interaction for SUB*STIM (p = 0.1588).

A useful score for the behavioral results is the cognitive quotient (CQ) which is calculated by:

\[CQ = \frac{ACC}{RT} \]

where ACC is the accuracy in percentage and RT is the reaction (response) time in seconds.
CQ with respect to subjects and stimuli can be seen in Figure 2(c). Two-way ANOVA for CQ yielded significant values for subject comparison ($p = 0$), and stimulus type ($p = 0$) and no interaction for $SUB \times STIM$ ($p = 0.9958$). CQ can also be considered as a metric of cognitive load. In several studies such scores from different tests are linearly combined (sometimes with weights) to provide a stronger metric.

3.2 fNIRS Data Analysis

3.2.1 GE Analysis

The computation of $GE^{CM,DM}$ from the $FC^{CM,DM}$ matrices yielded quite interesting dynamics as shown in Figures 3(a) and 3(b). Firstly, optimized GE^{CM} values showed a strong statistically significant difference within subjects, as displayed on top of the bars of Figure 3(a).

![GE values for CMN and DMN for all Subjects](a)

Fig 3 (a) $GE^{CM,DM}$ values for all subjects across stimuli. p values are presented on top of bars, (b) Mean of GE values for all stimuli with respect to CMN and DMN. The numbers above the bars are the ratio of GE values for CMN to DMN.

Secondly, both the GE^{CM} and GE^{DM} values are different between subject groups (as more evident from the means graph in Figure 3(b)). As the GE^{CM} value decreases from healthy controls to schizophrenics, the GE^{DM} increases. Higher value of GE^{CM} in controls over patients could mean that a healthy brain recruits a wider brain circuitry with more efficiency during a cognitive
task, while diseased brain cannot. In contrast, higher values of GE^{DM} for diseased population might be due to a domination of the DMN leading to a lesser space for CMN; hence, the poor performance on cognition related activities. Figure 3(b) shows the ratio of mean of GE^{CM}/GE^{DM} for each subject group. The ratio is in favor of healthy controls and significantly lower in diseased groups.

I should note that these values of $GE^{CM,DM}$ depend heavily on the choice of optimal principal components and threshold values when computing the $FC^{CM,DM}$ matrices.

3.2.2 NCI and NCR Analysis

NCI and NCR values computed by Equations 4 and 5 elucidated strong statistical significance between healthy controls and rest of the diseased groups as seen in Figures 4(a) and 4(b).

![Fig 4](a) NCI values as computed by Eq’n 4 for all stimuli across subjects, (b) NCR values as computed by Eq’n 5 for all subjects across stimuli. p values are presented on top of bars.

Two-way ANOVA for NCI yielded significant values for subject comparison ($p = 0$), and stimulus type ($p = 0$) and marginally significant interaction for $SUB \times STIM$ ($p = 0.055$). Two-way ANOVA for NCR yielded significant values for subject comparison ($p = 0$), and stimulus type ($p = 0.001$) and no interaction for $SUB \times STIM$ ($p = 0.3575$). As expected both the NCI and NCR values are highest for the healthy controls.
3.3 ROC Analysis

Receiver Operating Characteristics (ROC) provides a comparison of the accuracy of classification between the healthy controls and the rest of the cases. Figure 5(a) shows the results of the performance of classification among the parameters obtained in this paper. The whole aim to include fNIRS in such a study was to improve the classification accuracy of behavioral data from healthy and non-healthy persons.

![ROC Improvement](image)

Fig 5 (a) ROC values computed for different features. Values are in percentages (%). SENS: Sensitivity, SPEC: Specificity, ACCUR: Accuracy, AUC: Area Under the Curve, $M(NCR) = \overline{NCR}$, (b) ROC values between pairs of subjects, C: Controls, M: Migraineurs, O: OCD patients, S: Schizophrenia patients.

As promised the ROC values show a dramatic increase once the features derived from fNIRS findings are included alongside the behavioral findings. ROC values computed from the \overline{NCR} holds a great promise. The Sensitivity increases by 12.82%, Specificity by 21.39%, Accuracy by 20%, and AUC by 12.81% from the CQ based ROC values as displayed in Figure 5(a). One might wonder how the classification performance of \overline{NCR} behaves between non-healthy subjects. That ROC analysis is given in Figure 5(b). AUC values for Controls vs. diseased patients are very high; hence, the sensitivity and specificity of the \overline{NCR} values are extraordinary in separating healthy from non-healthy brain.
4 Discussions

fnIRSIans have long been search of a killer application that would secure the place of fNIRS in clinical settings. To this end, fNIRS have been applied to subjects of all ages and health conditions.54–57 Discussions regarding the limitations and ways to overcome these are a few yet they all have helped us redirect our efforts in proposing ever more innovative solutions. There are good reviews on the promise of fNIRS in neuropsychiatry.5, 47, 54, 56, 58–61

This study is yet another one that proposes an algorithmic approach to the data analysis pipeline of fNIRS studies. The aim is to improve the clinical significance of the features extracted from fNIRS recordings so as to pledge an everlasting position of fNIRS in clinical settings. Only a handful studies investigated the differential diagnostic accuracy of fNIRS features.62–66 To start-off, I will address the specific expectations of any fNIRS based algorithmic approach for a clinical study:

\textbf{E1:} Provide clinically relevant information regarding brain physiology

\textbf{E2:} Provide strong specificity for clinical data

\textbf{E3:} Provide a better statistics than behavioral data alone

\textbf{E4:} Provide an easy and applicable/adoptable algorithm

fNIRS has been one of the few instruments that can provide insight to brain neurophysiology non-invasively and rapidly. Yet, these two offerings should match with the expectations listed above. Since fNIRS provides information regarding the cerebrovascular reactivity to cognitive or physiological stimuli, we expect that any measurement from patients with brain disorders should provide insight to neurobiology of the disease.
To address **E1**, fNIRS is famous for bestowing local hemodynamic activity. Moreover, GE extracted from the dynamic changes of such a local data elucidate the level of collaborative effort exerted during a cognitive task. So with number such as GE one can capture the hemodynamics of cognition.

To address **E2**, several groups reported medium to high accuracies for classification of fNIRS signals $^{20, 26, 67-70}$ These studies mostly included two groups: healthy controls and a diseased group. No multi-group comparison has been attempted with fNIRS, unlike fMRI. 26 NCR derived from CQ and GE are shown to be highly specific for diseases.

To address **E3**, so far the statistical significance of behavioral data have been praised in many studies in classifying groups. fNIRS is expected to improve the statistics and this is what NCR offers. It gives a higher accuracy in separating healthy from diseased brain, much like a blood pressure monitor.

To address **E4**, I may be biased in thinking that the proposed approach is easy and applicable. It is more of an iterative approach than a theoretical one. Yet, the FC-(PC)2 seems to do the trick in separating the FC matrices.

4.1 On the Classification Accuracy of NCR

There have been several studies that investigated the classifier accuracy for schizophrenia patients. Yet, same cannot be said for migraine and OCD patients. Table 1 is a selection of such studies where search words: \{fNIRS, classification, schizophrenia, accuracy\} were used.

Most of the classification studies including schizophrenia patients reported a classification accuracy in the range of 76% to 89.7% as seen in Table 1. This study achieves at a 100% accuracy
Table 1 Classification Performances of fNIRS studies

Study	Diseased Group	Features	Classifier	Accuracy
Chen et al.	Schizophrenia	GLM based	SVM	85%
Dadgostar et al.	Schizophrenia	Time series	SVM	87%
Einolou et al.	Schizophrenia	Energy	SVM	84%
Eken et al.	SSD	FC based	SVM	82%
Hahn et al.	Schizophrenia	Time series	LOOCV	76%
Ji et al.	Schizophrenia	FC based	SVM	89.7%
Shoushtarian et al.	Chronic tinnitus	FC based	Naïve Bayes	78.3%
Xu et al.	ASD	Time series	CNN & LSTM	93.3%
Yang et al.	Schizophrenia	FC based	SVM	84.67%
Yang et al.	MCI	Time series	CNN	98.61%
Yang et al.	MCI	Time series	CNN	95.81%
Yoo et al.	MCI	Time series	SVM	79.49%

score for schizophrenia patients as seen in Figure 5(b). The strength of this value is inherent to the computation of the \overline{NCR} where behavioral and physiologic data are fused.

Interestingly there are not many studies of other psychiatric diseases. Still there are pioneering works on autism spectrum disorder, obsessive compulsive disorder, depression, and migraine.

There is always those who have not lost faith in fNIRS. A very hopeful study by Ehlis et al. points us to the right direction:

"...future studies should also focus on the usefulness of fNIRS as a supportive tool for choosing the most promising treatment approach for a specific patient. Using fNIRS, neurophysiological markers that might predict treatment outcomes (and may thus be relevant for personalized medicine) could be easily identified."

Several studies actually achieved this ambitious goal set by Ehlis et al. For a good review of use of fNIRS in psychiatry, please see specifically in autism, its role in neurofeedback, in pain, and in neurology. Only a handful of them are listed in Table 1. This study is the first in several aspects: 1) to show a high specificity of fNIRS for various types of neuropsychiatric...
diseases (more than 2), 2) in providing an fNIRS derived biomarker (namely the NCR) with very high accuracy that is also clinically relevant, and 3) in that it does not attempt to find a correlation between behavioral data and physiological data, rather it combines them since behavior cannot be produced without physiological activation.

5 Conclusion

“A science of the relations of mind and brain must show how the elementary ingredients of the former correspond to the elementary functions of the latter.”

This study is an extension of a previous work where I proposed a partial correlation based functional connectivity matrix computation. Separating the FC into a cognitive and default mode network led to ratio of the GE value calculated from these two matrices. This ratio was then multiplied with the cognitive quotient which is a direct measure of cognitive load. Therefore, I was able to generate a new biomarker, neurocognitive ratio (NCR). The statistical value of this biomarker was evaluated for its classification power. The results are all in favor of this biomarker. So we might conclude that fNIRS derived NCR is a strong candidate as a biomarker for neuropsychiatric diseases. It can safely be used in diagnosis and prognosis.

6 Disclosures

Author does not declare any biomedical financial interests or potential conflicts of interest.

Acknowledgments

This project was sponsored by a grant from TUBITAK Project No: 108S101 and Bogazici University Research Fund (BURF Project No: 5106). Authors wish to thank Deniz Nevsehirli for his
contributions to fNIRS optode development, Dr. Nermin Topaloğu and Dr. Sinem Burcu Erdoğan for data collection.

Appendix

The following tables present the values of the figures in the manuscript.

6.1 Behavioural Data

Table 2 Reaction Times in milliseconds (mean ± standard deviation). Number of Subjects are given in parantheses

Group	NS	CS	ICS	p-value
Controls	975.7 ± 134.7	1041.8 ± 190.8	1170.6 ± 227.6	0.0375*
Migraineurs	1233.0 ± 394.6	1352.2 ± 345.9	1560.7 ± 576.8	0.0748
OCD	1593.1 ± 453.3	1631.5 ± 400.7	2019.7 ± 512.7	0.006*
Schizo	1750.9 ± 458.1	1815.5 ± 323.4	2202.2 ± 346.4	< 0.0001*
p-value	< 10^-7	< 10^-9	< 10^-9	0

Table 3 Accuracy rates in percentages (mean ± standard deviation).

Group	NS	CS	ICS	p-value
Controls (13)	98.2 ± 2.2	97.2 ± 4.7	92.8 ± 7.4	0.0297*
Migraineurs	92.0 ± 18.2	95.2 ± 8.4	82.3 ± 24.9	0.0815
OCD	98.4 ± 2.5	96.8 ± 4.4	86.3 ± 17.5	< 0.001*
Schizo	91.4 ± 13.9	90.4 ± 13.7	69.6 ± 21.4	< 0.0001*
p-value	< 10^-7	< 10^-9	< 10^-8	0

Hence the following Table 4 is formed from Tables 2 and 3

Table 4 CQ values are given as (mean ± standard deviation).

Group	NS	CS	ICS	p-value
Controls	102.42 ± 14.15	96.00 ± 16.87	82.44 ± 19.19	0.0147*
Migraineurs	82.80 ± 27.50	75.04 ± 19.68	61.41 ± 28.62	0.0341*
OCD	66.85 ± 19.49	63.12 ± 16.49	47.18 ± 19.44	0.0024*
Schizo	56.99 ± 19.77	52.05 ± 14.62	33.53 ± 15.19	< 0.0001*
p-value	< 10^-7	< 10^-9	< 10^-8	0
6.2 GE Values

Table 5 \(GE_i^{CM}\) values computed from functional connectivity matrix of HbO data (mean ± standard deviation).

Group	NS	CS	ICS	p-value
Controls	0.2951 ± 0.0482	0.3478 ± 0.0543	0.3207 ± 0.0634	0.0326
Migraineurs	0.2821 ± 0.0275	0.2342 ± 0.0321	0.2784 ± 0.0287	0.0017
OCD	0.2350 ± 0.0662	0.2768 ± 0.0549	0.2548 ± 0.0549	0.0197
Schizo	0.1793 ± 0.0527	0.1587 ± 0.0701	0.1624 ± 0.0635	0.0482
p-value	< 0.0001	< 0.0001	< 0.0001	0

Table 6 \(GE_i^{DM}\) values computed from functional connectivity matrix of HbO data (mean ± standard deviation).

Group	NS	CS	ICS	p-value
Controls	0.2951 ± 0.0459	0.3478 ± 0.0463	0.3207 ± 0.0541	0.032
Migraineurs	0.2515 ± 0.0436	0.2423 ± 0.0481	0.2466 ± 0.0444	0.8146
OCD	0.2204 ± 0.0393	0.2478 ± 0.0471	0.2502 ± 0.0499	0.0711
Schizo	0.2464 ± 0.0513	0.2232 ± 0.0414	0.2315 ± 0.0593	0.257
p-value	0.1065	0.1404	0.6088	0.4171
6.3 NCR Values

Table 7

NCR values computed from NE and GE (mean ± standard deviation).

Group	NS	CS	ICS	p-value
Controls	225.97 ± 125.93	226.84 ± 80.88	176.85 ± 80.35	0.342
Migraine	104.00 ± 40.53	81.09 ± 28.04	80.41 ± 45.20	0.098
OCD	57.68 ± 23.92	68.54 ± 27.39	45.88 ± 22.78	0.017
Schizo	49.48 ± 25.05	39.68 ± 15.37	25.48 ± 14.43	<10⁻⁸
p-value	<10⁻¹⁰	<10⁻¹⁰	<10⁻¹⁰	0

Table 8

NCR values computed from Table 7 (mean ± standard deviation).

Group	NCR
Controls	209.89 ± 65.67
Migraine	88.50 ± 33.97
OCD	57.36 ± 20.28
Schizo	38.22 ± 14.52
p-value	<10⁻¹⁰
References

1 B. J. Baars, “The conscious access hypothesis: origins and recent evidence,” *Trends in cognitive sciences* 6(1), 47–52 (2002).

2 B. J. Baars, “Global workspace theory of consciousness: toward a cognitive neuroscience of human experience,” *Progress in brain research* 150, 45–53 (2005).

3 B. Horwitz, “The elusive concept of brain connectivity,” *Neuroimage* 19(2), 466–470 (2003).

4 M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: uses and interpretations,” *Neuroimage* 52(3), 1059–1069 (2010).

5 V. Quaresima and M. Ferrari, “Functional near-infrared spectroscopy (fnirs) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review,” *Organizational Research Methods* 22(1), 46–68 (2019).

6 P. Pinti, F. Scholkmann, A. Hamilton, *et al*., “Current status and issues regarding pre-processing of fnirs neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” *Frontiers in human neuroscience* 12, 505 (2019).

7 E. Kirilina, A. Jelzow, A. Heine, *et al*., “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy;,” *Neuroimage* 61, 70–81 (2012).

8 I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” *Neuropsychotnics* 3(3), 031405 (2016).

9 S. B. Erdoğan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” *Neuroimage* 87, 490–504 (2014).
10 T. J. Huppert, “Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy,” *Neurophotonics* 3(1), 010401 (2016).

11 S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” *Neuroimage* 85 Pt 1, 72–91 (2014).

12 A. Akin, “Partial correlation-based functional connectivity analysis for functional near-infrared spectroscopy signals,” *J Biomed Opt* 22, 1–10 (2017).

13 C. B. Akgul, A. Akin, and B. Sankur, “Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals,” *Med Biol Eng Comput* 44, 945–958 (2006).

14 Ata Akin, Didem Bilensoy, Uzay E Emir, et al., “Cerebrovascular dynamics in patients with migraine: near-infrared spectroscopy study,” *Neurosci Lett* 400, 86–91 (2006).

15 K. Ciftçi, B. Sankur, Y. P. Kahya, et al., “Multilevel statistical inference from functional near-infrared spectroscopy data during stroop interference,” *IEEE Trans Biomed Eng* 55, 2212–20 (2008).

16 M. Dadgostar, S. K. Setarehdan, S. Shahzadi, et al., “Functional connectivity of the pfc via partial correlation,” *Optik-International Journal for Light and Electron Optics* 127(11), 4748–4754 (2016).

17 M. U. Dalmis and A. Akin, “Similarity analysis of functional connectivity with functional near-infrared spectroscopy,” *J Biomed Opt* 20, 86012 (2015).

18 Z. Einalou, K. Maghooli, S. K. Setarehdan, et al., “Functional near Infrared Spectroscopy for
19 Z. Einalou, K. Maghooli, S. K. Setarehdan, et al., “Graph theoretical approach to functional connectivity in prefrontal cortex via fnirs,” Neuro Photonics 4(4), 041407 (2017).

20 Z. Einalou, K. Maghooli, S. K. Setarehdan, et al., “Effective channels in classification and functional connectivity pattern of prefrontal cortex by functional near infrared spectroscopy signals,” Optik-International Journal for Light and Electron Optics 127(6), 3271–3275 (2016).

21 Koray Ciftci, Bulent Sankur, Yasemin P Kahya, et al., “Multilevel statistical inference from functional near-infrared spectroscopy data during stroop interference.,” IEEE Trans Biomed Eng 55, 2212–2220 (2008).

22 Sergul Aydore, M. Kivanc Mihcak, Koray Ciftci, et al., “On temporal connectivity of pfc via gauss-markov modeling of fnirs signals.,” IEEE Trans Biomed Eng 57, 761–768 (2010).

23 S. Zysset, K. Müller, G. Lohmann, et al., “Color-word matching Stroop task: separating interference and response conflict.,” Neuroimage 13, 29–36 (2001).

24 S. Aydöre, M. K. Mihçak, K. Çiftçi, et al., “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” Biomedical Engineering, IEEE Transactions on 57(3), 761–768 (2010).

25 Z. Einalou, K. Maghooli, S. K. Setarehdan, et al., “Functional near infrared spectroscopy to investigation of functional connectivity in schizophrenia using partial correlation.,” Universal Journal of Biomedical Engineering 2(1), 5–8 (2014).
26 Y. Du, Z. Fu, and V. D. Calhoun, “Classification and prediction of brain disorders using functional connectivity: promising but challenging,” *Frontiers in neuroscience* **12**, 525 (2018).

27 G. Marrelec, A. Krainik, H. Duffau, *et al.*, “Partial correlation for functional brain interactivity investigation in functional MRI,” *Neuroimage* **32**, 228–237 (2006).

28 H. Abdi and L. J. Williams, “Principal component analysis,” *Wiley interdisciplinary reviews: computational statistics* **2**(4), 433–459 (2010).

29 I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **374**(2065), 20150202 (2016).

30 R. Adolphs, “Cognitive neuroscience of human social behaviour,” *Nat Rev Neurosci* **4**, 165–178 (2003).

31 R. Adolphs, “Investigating the cognitive neuroscience of social behavior,” *Neuropsychologia* **41**(2), 119–126 (2003).

32 R. Adolphs, “The social brain: neural basis of social knowledge,” *Annu Rev Psychol* **60**, 693–716 (2009).

33 L. Deuker, E. T. Bullmore, M. Smith, *et al.*, “Reproducibility of graph metrics of human brain functional networks,” *Neuroimage* **47**, 1460–1468 (2009).

34 M. A. Klados, K. Kanatsouli, I. Antoniou, *et al.*, “A graph theoretical approach to study the organization of the cortical networks during different mathematical tasks,” *PLoS One* **8**(8), e71800 (2013).

35 S. Palva, S. Monto, and J. M. Palva, “Graph properties of synchronized cortical networks during visual working memory maintenance,” *Neuroimage* **49**, 3257–3268 (2010).
36 E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat Rev Neurosci 10, 186–198 (2009).

37 Y. He and A. Evans, “Graph theoretical modeling of brain connectivity,” Curr Opin Neurol 23, 341–350 (2010).

38 F. Skidmore, D. Korenkevych, Y. Liu, et al., “Connectivity brain networks based on wavelet correlation analysis in parkinson fMRI data,” Neurosci Lett 499, 47–51 (2011).

39 V. Latora and M. Marchiori, “Efficient behavior of small-world networks,” Phys Rev Lett 87, 198701 (2001).

40 W. Van der Elst, M. P. J. Van Boxtel, G. J. P. Van Breukelen, et al., “A large-scale cross-sectional and longitudinal study into the ecological validity of neuropsychological test measures in neurologically intact people,” Arch. Clin. Neuropsychol. 23, 787–800 (2008).

41 W. Kasai, T. Goto, Y. Aoyama, et al., “Association between cognitive quotient test score and hippocampal volume: a novel, rapid application-based screening tool,” Sci Rep 10 (2020).

42 K. Stadskleiv, R. Jahnsen, G. L. Andersen, et al., “Neuropsychological profiles of children with cerebral palsy,” Dev. Neurorehabil. 21(2), 108–120 (2018).

43 S. P. Marshall, “The index of cognitive activity: Measuring cognitive workload,” in Proceedings of the IEEE 7th conference on Human Factors and Power Plants, 7–7, IEEE (2002).

44 J. Sweller, “Cognitive load theory,” in Psychology of learning and motivation, 55, 37–76, Elsevier (2011).

45 F. Paas, J. E. Tuovinen, H. Tabbers, et al., “Cognitive load measurement as a means to advance cognitive load theory,” Educational psychologist 38(1), 63–71 (2003).
46 B. Mišić and O. Sporns, “From regions to connections and networks: new bridges between brain and behavior,” *Current opinion in neurobiology* **40**, 1–7 (2016).

47 P. Pinti, I. Tachtsidis, A. Hamilton, *et al.*, “The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience,” *Annals of the New York Academy of Sciences* **1464**, 5–29 (2020).

48 A. C. Neubauer and A. Fink, “Intelligence and neural efficiency,” *Neuroscience & Biobehavioral Reviews* **33**(7), 1004–1023 (2009).

49 M. Causse, Z. Chua, V. Peysakhovich, *et al.*, “Mental workload and neural efficiency quantified in the prefrontal cortex using fnirs,” *Scientific reports* **7**(1), 1–15 (2017).

50 A. Curtin and H. Ayaz, “Neural efficiency metrics in neuroergonomics: Theory and applications,” in *Neuroergonomics*, 133–140, Elsevier (2019).

51 S. I. Di Domenico, A. H. Rodrigo, H. Ayaz, *et al.*, “Decision-making conflict and the neural efficiency hypothesis of intelligence: A functional near-infrared spectroscopy investigation,” *Neuroimage* **109**, 307–317 (2015).

52 J. M. Spielberg, G. A. Miller, W. Heller, *et al.*, “Flexible brain network reconfiguration supporting inhibitory control,” *Proceedings of the National Academy of Sciences* **112**(32), 10020–10025 (2015).

53 J. Zhang, J. Wang, Q. Wu, *et al.*, “Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder,” *Biological psychiatry* **70**(4), 334–342 (2011).

54 M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” *Neuroimage* **63**, 921–935 (2012).
55. S. Koike, Y. Nishimura, R. Takizawa, et al., “Near-infrared spectroscopy in schizophrenia: a possible biomarker for predicting clinical outcome and treatment response,” *Front Psychiatry* **4**, 145 (2013).

56. M. A. Rahman, A. B. Siddik, T. K. Ghosh, et al., “A narrative review on clinical applications of fnirs,” *J Digit Imaging* **33**, 1167–1184 (2020).

57. F. Scholkmann, S. Kleiser, A. J. Metz, et al., “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” *Neuroimage* **85 Pt 1**, 6–27 (2014).

58. A.-C. Ehlis, S. Schneider, T. Dresler, et al., “Application of functional near-infrared spectroscopy in psychiatry,” *Neuroimage* **85**, 478–488 (2014).

59. N. Hazari, J. C. Narayanaswamy, and G. Venkatasubramanian, “Neuroimaging findings in obsessive-compulsive disorder: A narrative review to elucidate neurobiological underpinnings,” *Indian J Psychiatry* **61**, S9–S29 (2019).

60. F. Irani, S. M. Platek, S. Bunce, et al., “Functional near infrared spectroscopy (fnirs): an emerging neuroimaging technology with important applications for the study of brain disorders,” *The Clinical Neuropsychologist* **21**(1), 9–37 (2007).

61. F. Zhang and H. Roeyers, “Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fnirs) studies,” *International Journal of Psychophysiology* **137**, 41–53 (2019).

62. P.-H. Chou, C.-J. Huang, and C.-W. Sun, “The potential role of functional near-infrared spectroscopy as clinical biomarkers in schizophrenia,” *Curr Pharm Des* **26**(2), 201–217 (2020).
63 K. Feng, S. Law, N. Ravindran, et al., “Differentiating between bipolar and unipolar depression using prefrontal activation patterns: Promising results from functional near infrared spectroscopy (fnirs) findings,” *Journal of Affective Disorders* **281**, 476–484 (2021).

64 K. Hirata, K. Egashira, K. Harada, et al., “Differences in frontotemporal dysfunction during social and non-social cognition tasks between patients with autism spectrum disorder and schizophrenia,” *Sci Rep* **8**, 3014 (2018).

65 M. Kinou, R. Takizawa, K. Marumo, et al., “Differential spatiotemporal characteristics of the prefrontal hemodynamic response and their association with functional impairment in schizophrenia and major depression,” *Schizophrenia research* **150**(2-3), 459–467 (2013).

66 R. Takizawa, M. Fukuda, S. Kawasaki, et al., “Neuroimaging-aided differential diagnosis of the depressive state,” *Neuroimage* **85**, 498–507 (2014).

67 A. Eken, B. Çolak, N. B. Bal, et al., “Hyperparameter-tuned prediction of somatic symptom disorder using functional near-infrared spectroscopy-based dynamic functional connectivity,” *J Neural Eng* **17**, 016012 (2019).

68 X. Ji, W. Quan, L. Yang, et al., “Classification of schizophrenia by seed-based functional connectivity using prefronto-temporal functional near infrared spectroscopy,” *J Neurosci Methods* **344**, 108874 (2020).

69 L. Xu, Z. Sun, J. Xie, et al., “Identification of autism spectrum disorder based on short-term spontaneous hemodynamic fluctuations using deep learning in a multi-layer neural network,” *Clin Neurophysiol* **132**, 457–468 (2021).

70 J. Yang, X. Ji, W. Quan, et al., “Classification of schizophrenia by functional connectivity strength using functional near infrared spectroscopy,” *Front Neuroinform* **14**, 40 (2020).
71 L. Chen, Q. Li, H. Song, et al., “Classification of schizophrenia using general linear model and support vector machine via fnirs,” *Phys Eng Sci Med* **43**, 1151–1160 (2020).

72 M. Dadgostar, S. K. Setarehdan, S. Shahzadi, et al., “Classification of schizophrenia using svm via fnirs,” *Biomedical Engineering: Applications, Basis and Communications* **30**(02), 1850008 (2018).

73 T. Hahn, A. F. Marquand, M. M. Plichta, et al., “A novel approach to probabilistic biomarker-based classification using functional near-infrared spectroscopy,” *Hum Brain Mapp* **34**, 1102–14 (2013).

74 M. Shoushtarian, R. Alizadehsani, A. Khosravi, et al., “Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning,” *PLoS One* **15**(11), e0241695 (2020).

75 D. Yang, R. Huang, S.-H. Yoo, et al., “Detection of mild cognitive impairment using convolutional neural network: Temporal-feature maps of functional near-infrared spectroscopy,” *Front Aging Neurosci* **12**, 141 (2020).

76 D. Yang and K.-S. Hong, “Quantitative assessment of resting-state for mild cognitive impairment detection: A functional near-infrared spectroscopy and deep learning approach,” *J Alzheimers Dis* (2021).

77 S.-H. Yoo, S.-W. Woo, M.-J. Shin, et al., “Diagnosis of mild cognitive impairment using cognitive tasks: A functional near-infrared spectroscopy study,” *Curr Alzheimer Res* **17**(13), 1145–1160 (2020).

78 F. Chang, H. Li, S. Zhang, et al., “Research progress of functional near-infrared spectroscopy in patients with psychiatric disorders,” *Forensic Sciences Research*, 1–7 (2020).
79 C. Y. Lai, C. S. Ho, C. R. Lim, et al., “Functional near-infrared spectroscopy in psychiatry,” *BJPsych Advances* **23**(5), 324–330 (2017).

80 A.-C. Ehlis, B. Barth, J. Hudak, et al., “Near-infrared spectroscopy as a new tool for neurofeedback training: Applications in psychiatry and methodological considerations,” *Japanese Psychological Research* **60**(4), 225–241 (2018).

81 K. D. Karunakaran, K. Peng, D. Berry, et al., “Nirs measures in pain and analgesia: Fundamentals, features, and function,” *Neuroscience & Biobehavioral Reviews* (2020).

82 A. Bonilauri, F. Sangiuliano Intra, L. Pugnetti, et al., “A systematic review of cerebral functional near-infrared spectroscopy in chronic neurological diseases—actual applications and future perspectives,” *Diagnostics* **10**(8), 581 (2020).

83 W. James, *The principles of psychology*, vol. 1, Cosimo, Inc. (2007).