The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms

Petra Zimmermann1,2,3,4*, Victoria C. Ziesenitz5, Nigel Curtis1,2,3 and Nicole Ritz2,4,5

Background: The mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood.

Objectives: To systematically review the evidence for the immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system.

Methods: A systematic literature search was done in MEDLINE using the OVID interface from 1946 to December 2016 according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Original articles investigating the influence of four macrolides (azithromycin, clarithromycin, erythromycin, and roxithromycin) on immunological markers in humans were included.

Results: We identified 22 randomized, controlled trials, 16 prospective cohort studies, and 8 case–control studies investigating 47 different immunological markers (186 measurements) in 1,834 participants. The most frequently reported outcomes were a decrease in the number of neutrophils, and the concentrations of neutrophil elastase, interleukin (IL)-8, IL-6, IL-1beta, tumor necrosis factor (TNF)-alpha, eosinophilic cationic protein, and matrix metalloproteinase 9. Inhibition of neutrophil function was reported more frequently than eosinophil function. A decrease in T helper (Th) 2 cells cytokines (IL-4, IL-5, IL-6) was reported more frequently than eosinophil function. A decrease in Th1 cytokines (IL-2, INF-gamma) was reported more frequently than a decrease in Th1 cytokines (IL-2, INF-gamma).

Conclusion: Macrolides influence a broad range of immunological mechanisms resulting in immunomodulatory effects. To optimize the treatment of chronic inflammatory diseases by macrolides, further studies are necessary, particularly comparing different macrolides and dose effect relationships.

Keywords: azalides, azithromycin, clarithromycin, erythromycin, immunolides, roxithromycin

BACKGROUND

Macrolides are mainly used as antibiotics to treat respiratory, skin and soft tissue, and urogenital infections (1, 2). They derive from Streptomyces species and are characterized by a macrocyclic lactone ring, which is either 14- [erythromycin (ERM), clarithromycin (CAM) and roxithromycin (RXM)], 15- [azithromycin (AZM)], or 16-membered (spiramycin, josamycin, midecamycin) (3).
The antimicrobial activity of macrolides results from inhibition of bacterial protein synthesis through reversible binding to the peptide exit tunnel of ribosomes (4).

In addition to their antibiotic activity, macrolides have immunomodulatory properties, which were first described soon after their introduction in the 1950s (3, 5–7). The concept of using macrolides primarily for their immunomodulatory activities was introduced in the 1970s (8). The seminal study that distinguished between macrolides’ antimicrobial and their immunomodulatory effects was in adults with diffuse panbronchiolitis (DPB) in whom treatment with ERM dramatically improved survival independent of bacterial colonization (9). These results encouraged further research on the use of macrolides for the treatment of other chronic inflammatory conditions (10–14).

The mechanisms underlying the non-antimicrobial effects of macrolides are less well understood. Aside from ribosomal-mediated inhibition of pathogen virulence factor production, a number of other mechanisms have been proposed, including action on host immunity.

The objective of this review was to systematically summarize studies which investigated immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system.

METHODS

This review was done according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) (15). A literature review was done in December 2016 searching MEDLINE using the OVID interface from 1946 to 2016 using the search terms: (macrolide OR azithromycin OR clarithromycin OR erythromycin OR roxithromycin) AND (anti-inflammatory OR immunomodulatory OR immunoregulatory) without any language limitations or limitation of study design (Figure 1). Only studies in humans, in which the participants received one of the four mentioned macrolides and which investigated immunological markers involved in inflammation were included. Studies reporting clinical endpoints only or studies in which macrolides were investigated for their antimicrobial activity were excluded. References were hand-searched for additional publications.

Search results were independently screened by one reviewer, and checked by a second reviewer. Potentially eligible full-text articles were assessed according to our inclusion and exclusion criteria. The following variables were extracted from the included studies: year of study, country, study design, number of participants, age of participants, underlying disease, type, dose and duration of macrolide use, type of samples collected, and measured immune markers. Changes were classified as being significant when the p-value was ≤0.05.

REVIEW

Characteristics of Included Studies

We identified 2,107 studies, of which 45 were included in the final analysis; 22 randomized, controlled trials, 16 prospective cohort studies, and 7 case–control studies (Figure 1). Studies originated from 17 countries (Japan n = 12, United States of America n = 6, China n = 4, Australia n = 4, United Kingdom n = 4, Turkey n = 2, Serbia n = 2, Croatia n = 2, and one each from Belgium, Canada, Greece, the Netherlands, Italy, South Korea, Russia, Sweden, and Switzerland) and included a total of 1,834 participants. Six studies, including 423 participants, were done in children and adolescents (<18 years of age). Details of all studies including a risk of bias analysis are summarise in Table 1 and Table 2.

Immunological Markers Analyzed

A total of 47 different immunological markers were investigated. On average, four markers were investigated per study resulting in a total of 186 measurements (Table 3; Figure 2). The immunological markers were classified into groups: cell counts (n = 9 markers/41 total measurements), neutrophil function (n = 6/25), eosinophil function (n = 2/7), macrophage function (n = 1/1), cytokine concentrations (n = 16/81), inflammatory proteins (n = 6/8), cell adhesion molecules (n = 2/3), molecules involved in inflammatory signaling pathway (n = 1/1), and other markers (n = 5/5, alpha-2-macroglobulin, beta-2-microglobulin, high-sensitivity C reactive protein, calprotectin, nasal nitric oxide).

Overall, a decrease in immunological markers, number, or function was more frequently observed than an increase (139 measurements vs 19). No change of immunological markers reported in 11 immunological markers (28 measurements) in 7 studies. The most frequently reported macrolide-induced changes were a decrease in interleukin (IL)-8 concentration (n = 21), neutrophil count (n = 15), tumor necrosis factor-alpha (TNF-alpha) (n = 9), neutrophil elastase (n = 8), IL-1beta (n = 7), eosinophilic cationic protein (ECP, n = 6), IL-6 (n = 5), matrix metalloproteinase 9 (MMP-9) (n = 5), and oxidative burst activity (n = 5).

Immunomodulatory effects were investigated for four types of macrolides, including CAM (n = 73), AZM (n = 69), ERM (n = 27), and RXM (n = 17). AZM was more frequently associated with no influence on the immunological markers investigated (21/69) compared to any of the other macrolides (Table 4).

Immunomodulatory Properties in Different Diseases

In the following, the immunomodulatory properties of macrolides are summarized and categorized by the disease in which they were investigated (Table 1).

Blepharitis

Blepharitis is a common chronic inflammation of the eye lid leading to dry, itchy, and erythematous eyes. Anterior blepharitis is often associated with bacterial infections, while posterior blepharitis is linked to dysfunction of Meibomian glands. Many studies report clinical improvement in patients with blepharitis treated with topical AZM, due to a decrease in secretions and plugging of the Meibomian glands but did not investigate the underlying immunological mechanisms. The one study which did investigate immunological markers shows that concentrations of IL-1beta, IL-8, and MMP-9 in conjunctival cells of
Periodontitis

Periodontitis is an inflammatory process of the gums with a complex pathogenesis including microorganisms as well as neutrophils, macrophages and fibroblasts. One key immunological mechanism underlying the pathogenesis of periodontitis has been described as a TNF-alpha-induced increase in vascular endothelial growth factor (VEGF) leading to an aberrant angiogenesis (61). Both AZM and RXM decreased TNF-alpha and VEGF concentrations as well as other cytokines including IL-1beta, IL-8, and transforming growth factor beta (TGF-beta) in gingival crevicular fluid (17, 18). Since oral bacteria play an important role in periodontitis, however, some of the some of the benefits of macrolides may be attributable to antimicrobial rather than to immunomodulatory effects.

Chronic Rhinosinusitis and Nasal Polyposis

Chronic rhinosinusitis (CRS) with nasal polyps is characterized by a Th2 helper (Th) 2 cells-dominated inflammation with upregulation of IL-4, IL-5, and IL-13 and an increase in eosinophil count, ECP, and immunoglobulin E. CRS without nasal polyps is characterized by Th1-dominated inflammation with upregulation of IL-2, TGF-beta, and IFN-gamma. Studies in patients with CRS treated with CAM and RXM show a significant reduction in macrophage, neutrophil, and eosinophil counts and concentrations of neutrophil elastase, ECP, CC-chemokine ligand-5 (CCL-5), IL-1beta, IL-6, IL-8, interferon (IFN)-gamma, TNF-alpha, myeloperoxidase (MPO), and alpha-macroglobulin in nasal secretions (19–23, 25, 26, 62). One of the postulated mechanisms by which macrolides inhibit the development of nasal polyps is through their anti-oxidative effects inhibiting the TGF-beta-induced production of reactive oxygen species (24). However, the immunomodulatory mechanisms differ in allergic and non-allergic nasal polypsis patients. While CAM reduces IL-6 and CCL-5 in all patients, it reduces IL-1beta and IL-6 only in patients with allergic CRS and TNF-alpha only in patients with non-allergic CRS (19, 20).

Asthma

Asthma is characterized by chronic airway inflammation, reversible airway obstruction, and airway hyper-responsiveness. In eosinophilic asthma, eosinophils, mast cells, and Th2-mediated inflammation play an important role. Concentrations of IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, vascular cell adhesion molecule-1, CC chemokines, and granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. In severe asthma, in addition to eosinophils, increased neutrophils and
Drug	Dose	Duration (weeks)	Patients (healthy) (n)	Age (years) (mean)	Sample	Measured immune markers	Study design	Reference		
Blepharitis	AZM	1% topical drops	4	24 (8)	34–80 (54)	Conjunctival cells	Decrease in IL-1beta, IL-8, matrix metalloproteinase 9 (MMP-9)	CCS	Zhang et al. (16)	
Periodontitis	RXM	300 mg daily	0.7	47 (16)	28–65 (48)	Gingival cervical fluid	Decrease in IL-1beta, TGF-beta, VEGF	RCT	Gong et al. (18)	
Nasal polyps	CAM	500 mg daily	8	40	25–73 (44)	Nasal secretions	Decrease in CCL-5 in allergic and non-allergic patients	PCS	Peric et al. (19)	
	CAM	500 mg daily	8	40	25–73 (44)	Nasal secretions	Decrease in IL-8 in allergic patients	PCS	Peric et al. (20)	
	CAM	400 mg daily	12	20	28–84 (57)	Nasal secretions	Decrease in IL-8	PCS	Yamada et al. (21)	
Rhinosinusitis	CAM	500 mg BID	2	25	19–70 (45)	Nasal mucosa cells	Decrease in macrophage count, eosinophil activity, neutrophil elastase, IL-6, IL-8, and TNF-alpha	PCS	MacLeod et al. (22)	
	CAM	250 mg daily	12	30	25–63 (48)	Nasal secretions	Decrease in IL-8, ECP	PCS	Cervin et al. (23)	
	CAM	250 mg daily	12	10	27–62 (48)*	Nasal mucosa cells	Decrease in TGF-beta, NF-kappaB (not significant)	PCS	Wallwork et al. (24)	
	CAM	250 mg daily	250 mg BID	52	17	18–67 (51)	Nasal mucosa cells	Increase in nasal nitric oxide (not significant)	PCS	Cervin et al. (59)
	RXM	150 mg daily	1–46	12	16–73 (54)	Nasal secretions	Decrease in neutrophil count, IL-8	PCS	Suzuki et al. (25)	
	Placebo	150 mg daily	12	64	>18	Nasal secretions	Decrease in IL-8	RCT	Wallwork et al. (26)	
Asthma Bronchiale	AZM	250 mg daily	12	71	18–70 (43)	Sputum	No change in eosinophil count, neutrophil count	RCT	Cameron et al. (27)	
	Placebo									
	AZM	NS	12	40	22–52 (35)	Sputum	Decrease in IL-4, IL-5, IFN-gamma	RCT	He et al. (28)	

(Continued)
Drug	Dose	Duration (weeks)	Patients (healthy) (n)	Age (years) (mean)	Sample	Measured immune markers	Study design	Reference
AZM	10 mg/kg daily, 3 times a week	8	16	NS (13)	BAL	Decrease in neutrophil count	RCT	Piacentini et al. (29)
Placebo	CAM 15 mg/kg BID (max 500 mg)	0.7	43	4–17 (9)	Nasopharyngeal secretions	Decrease in TNF-alpha, IL-1, IL-10	RCT	Fonseca-Aten et al. (30)
Placebo	CAM 200 mg BID	8	17	26–49 (38)	Sputum Blood	Decrease in eosinophil count, ECP	RCT	Amayasu et al. (31)
Placebo	CAM 500 mg BID	6	86	NS (33)	BAL Airway tissue	Decrease in TNF-alpha, IL-5, IL-12	RCT	Kraft et al. (32)
CAM	Placebo 500 mg BID	8	45	27–80 (58)	Sputum	Decrease in neutrophil count, neutrophil elastase, IL-8 Decrease in MMP-9 (not significant)	RCT	Simpson et al. (33)
CAM	500 mg BID	8	45	27–80 (60)	Sputum	Decrease in neutrophil count, neutrophil elastase, MMP-9, IL-8	RCT	Wang et al. (34)
Placebo	RXM 150 mg BID	8	14	29–50 (40)	Sputum Blood	Decrease in eosinophil count, ECP	RCT	Shoji et al. (35)
RXM	Placebo 150 mg daily	12	20 (10)	NS (41)	PMNL	Decrease in neutrophil oxidative burst	PCS	Kamo et al. (36)
Bronchiectasis	CAM 500 mg daily	12	22	32–78 (58)	Blood	Decrease in Th17-cells, IL-17	PCS	Fouka et al. (37)
	CAM 15 mg/kg daily	12	34	7–18 (13)	BAL	Decrease in total cell count, neutrophil count, IL-8 Increase in macrophage count	RCT	Yalcin et al. (38)
	Supportive treatment							
RXM	No treatment 150 mg daily	26	52	18–65 (48)	Sputum	Decrease in neutrophil count, neutrophil elastase, IL-8, MMP-9	RCT	Liu et al. (39)
Chronic obstructive pulmonary disease	AZM 500 mg daily	0.4	24	35–70 (62)	Blood	Increase in neutrophil oxidative burst Decrease in leukocyte count, thrombocyte count, IL-8, E-selectin, CRP, lactoferrin, serum amyloid A No change in TNF-alpha, IL-6, GM-CSF	RCT	Parnham et al. (40)
Placebo								

(Continued)
Drug	Dose	Duration (weeks)	Patients (healthy) (n)	Age (years) (mean)	Sample	Measured immune markers	Study design	Reference
CAM	500 mg daily	12	67	NS (65)	Sputum	Decrease in neutrophil chemotaxis (not significant)	RCT	Banerjee et al. (41)
	Placebo					No change in total cell count, neutrophil count, IL-8, leukotriene B 4, TNF-alpha, neutrophil elastase		
ERM	125 mg TDS	24	36	≥40 (69)	Sputum	Decrease in total cell count, neutrophil count, neutrophil elastase	RCT	He et al. (42)
	Placebo							
Diffuse panbronchiolitis								
ERM	250 mg BID	≥24	14	NS (46)	BAL	Decrease in lymphocyte count, IL-2, IFN-gamma, Increase in CD4/CD8 ratio, IL-4, IL-5, IL-13	PCS	Park et al. (43)
ERM	200 mg TDS	24–52	18 (5)	14–63 (39)	BAL	Decrease in total cell count, neutrophil count, neutrophil chemotaxis	CCS	Oda et al. (44)
ERM	NS TDS	24–52	19	NS (42)	BAL	Decrease in total cell count, neutrophil count, neutrophil chemotaxis	CCS	Kadota et al. (45)
ERM	200 mg TDS	8–68	22 (5)	18–70 (45)	BAL	Decrease in neutrophil count, neutrophil chemotaxis, IL-8	CCS	Katsuki et al. (46)
ERM	600 mg daily	12	12	16–75 (47)	BAL	Decrease in neutrophil count, neutrophil elastase	CCS	Ichikawa et al. (47)
Amoxicillin	600 mg daily	4–104	43 (7)	(47)	BAL	Decrease in neutrophil count, IL-1beta, IL-8	CCS	Sakito et al. (48)
ERM	150 mg daily							
RXM	400 mg daily	12	12 (6)	NS	Blood	Decrease in neutrophil oxidative burst	CCS	Umeki (49)
Cystic fibrosis	AZM	NS	4	260	Blood	Decrease in neutrophil count, MPO, high-sensitivity C reactive protein, serum amyloid A, calprotective	RCT	Ratjen et al. (50)
AZM	250 mg daily (≤ 40 kg)	24	41	8–18 (NS)	Sputum	Decrease in IL-8, neutrophil elastase (not significant) (data only available from 17 patients)	RCT	Equi et al. (51)
	500 mg daily (> 40 kg)							
CAM	7.5 mg/kg BID	12	18	3–15 (9)	BAL	Decrease in neutrophil count, neutrophil elastase (not significant)	RCT	Doğru et al. (52)

(Continued)
Drug	Dose	Duration (weeks)	Patients (healthy) (n)	Age (years) (mean)	Sample	Measured immune markers	Study design	Reference
CAM	250 mg daily	52	27	6–17 (12)	Sputum, Blood	Decrease in IL-4, IL-8, TNF-alpha, INF-gamma (not significant) Decrease in IL-4, IL-8, TNF-alpha	PCS	Pukhalsky et al. (53)
Lung transplantation	**AZM**	**NS**	**30**	**36–61 (56)**	BAL	Decrease in neutrophil count, IL-8, MMP-9	**PCS**	Verleden et al. (54)
CAM	200 mg daily	12	16	NS (67)	Urine Blood	Decrease CCL-2	RCT	Tone (60)
Diabetic nephropathy	**CAM**	**12–24**	**30**	**NS (67)**	**Urine**	**Decrease in neutrophil count, IL-8, MMP-9**	**PCS**	Verleden et al. (54)
Placebo	200 mg daily	12	16	NS (67)	Urine Blood	Decrease CCL-2	RCT	Verleden et al. (54)
Coronary atherosclerosis	**CAM**	**500 mg daily**	**8**	**231**	**Blood**	Decrease in CRP, IL-2, IL-6, IL-8, TNF-alpha (not significant)	**RCT**	Berg et al. (55)
Placebo	200 mg daily	12	16	NS (67)	Urine Blood	Decrease CCL-2	RCT	Verleden et al. (54)
Healthy volunteers	**AZM**	**0.4**	**12**	**24–45 (29)**	**Blood**	Increase in neutrophil oxidative burst, apoptosis of neutrophils Increase in TNF-alpha (not significant) Decrease in IL-1beta, IL-6, IL-8, myeloperoxidase, IL-17, soluble vascular cell adhesion molecule-1 Decrease in E-selectin, lactoferrin (not significant) No change in leukocyte count, thrombocyte count, neutrophil elastase, beta2-microglobulin, INF-gamma, GM-CSF	**PCS**	Culić et al. (56)
AZM	500 mg on day 1, then 250 mg daily	0.7	12	23–47 (30)	Sputum	No change in total cell count, neutrophil count, IL-6, IL-8 after ozone exposure during exercise	RCT	Criqui et al. (57)
Placebo	500 mg daily	0.4	19	18–40 (25)	BAL, Blood	No change in TNF-alpha, IL-1beta, IL-6, superoxide generation by alveolar macrophages	PCS	Aubert et al. (58)
AZM	500 mg daily first day, then 250 mg daily	0.4	10	NS (30)	Gingival cervical fluid	Decrease in IL-1beta, IL-8, TNF-alpha, VEGF	PCS	Ho et al. (17)
TABLE 2 | Risk of bias summary of the randomized controlled trials and case–control studies included in the review (NS = not stated).

Reference Publication year	Selection bias	Performance bias	Detection bias	Attrition bias	Reporting bias	
Randomized controlled trials						
Periodontitis						
Gong et al. (18) 2013						
Rhinosinusitis						
Wallwork et al. (26) 2006						
Asthma bronchiale						
Cameron et al. (27) 2013	NS				+	
He et al. (28) 2009	+	NS	NS	NS	+	
Piacentini et al. (29) 2007					+	
Fonseca-Aten et al. (30) 2006					+	
Amayasu et al. (31) 2000					+	
Kraft et al. (32) 2002					+	
Simpson et al. (33) 2008					+	
Wang et al. (34) 2012	+	NS	NS	NS		
Shoji et al. (35) 1999	+				+	
Bronchiectasis						
Yalcin et al. (38) 2006		+	NS	NS		+
Liu et al. (39) 2014					+	
Chronic obstructive pulmonary disease						
Parnham et al. (40) 2005						
Banerjee et al. (41) 2004						
He et al. (42) 2010						
Cystic fibrosis						
Ratjen et al. (50) 2012						
Equi et al. (51) 2002					+	
Dogru et al. (52) 2009						
Diabetic nephropathy						
Tone et al. (60) 2011						
Coronary atherosclerosis						
Berg et al. (55) 2003						
Healthy volunteers						
Criqui et al. (57) 2000						
Case–control studies						
Blepharitis						
Zhang et al. (16) 2015						
Diffuse panbronchiolitis						
Oda et al. (44) 1994						
Kadota et al. (45) 1993						
Katsuki et al. (46) 1996						
Ichikawa et al. (47) 1992						
Sakito et al. (48) 1996						
Umeki (49) 1993						

IL-8 concentrations are found in airways. In patients with asthma, AZM, CAM, and RXM decrease eosinophil and neutrophil counts, inhibit neutrophil migration and oxidative burst activity in phagocytes, decrease concentrations of neutrophil elastase, ECP, IL-1, IL-4, IL-5, IL-8, IL-10, IL-12, MMP-9, TNF-alpha, and INF-gamma in nasopharyngeal secretions, sputum, or bronchoalveolar lavage (BAL) samples (27–30, 32–36). In addition, CAM and RXM also decrease the eosinophil counts and concentrations of ECP in blood and inhibit oxidative burst activity in phagocytes (31, 35, 36).

Bronchiectasis
Bronchiectasis is characterized by permanent enlargement of bronchi and cytokines play an important role in the pathogenesis. In BAL samples of patients with bronchiectasis, elevated concentrations of IL-1beta and IL-8, as well as Th17-cytokines.
Table 3: Macrolide-induced changes in immunological markers based on 43 studies in humans.

Author	Macrolide	Specimen	Total cell count	Leukocyte count	Neutrophil oxidative burst	Neutrophil chemotaxis	Neutrophil elastase	Macrophage count	Eosinophil cationic protein	IL-1 beta	IL-2	IL-4	IL-6	IL-8	IL-12	TNF-alpha	IFN-gamma	TGF-beta	GM-CSF	VEGF	IL-17	Matrix metalloproteinase-9	E-selectin	C-reactive protein	Serum amyloid A
Zhang et al. (16)	AZM	Conjunctiva																							
Gong et al. (18)	RXM	Gingival fluid																							
Peric et al. (19)	CAM	Nasal secretions																							
Peric et al. (20)	CAM	Nasal secretions																							
Yamada et al. (21)	CAM	Nasal secretions																							
MacLeod et al. (22)	CAM	Nasal mucosa																							
Cervin et al. (23)	CAM	Nasal secretions																							
Suzuki et al. (25)	CAM	Nasal mucosa																							
Liu et al. (26)	CAM	Blood																							
-wallwork et al. (26)	CAM	Blood																							
Wallwork et al. (27)	CAM	Nasal secretions																							
Piacentini et al. (29)	AZM	Sputum																							
Amayasu et al. (31)	CAM	Sputum																							
Katsuki et al. (46)	AZM	Blood																							
Ho et al. (42)	AZM	Gingival fluid																							

Significant decrease: No change: Non-significant increase

*Increase of neutrophil oxidative burst, but decrease in myeloperoxidase
FiGURe 2 | Overview of immunomodulatory effects of macrolides based on studies summarized in Table 1. Arrows depict excreted proteins, boxes depict cell counts or functions.

TABLE 4 | Number of measurements and changes in immunological markers for each macrolide.

	Decrease/ non-significant decrease	Increase/ non-significant increase	No change	Total
AZM	33/4	10/1	21	69
CAM	52/12	1/2	6	73
ERM	21/0	4/1	1	27
RXM	17/0	0/0	1	17
Total	123/16	15/4	28	186

Zimmermann et al. Immunomodulatory Effects of Macrolides

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of lung parenchyma and peripheral airways with an increase in alveolar macrophages, neutrophils, T cells (predominantly Th1-, and Th17- cells), and innate lymphoid cells. These cells, as well as structural cells, such as epithelial cells, endothelial cells, and fibroblasts, secrete a variety of pro-inflammatory cytokines. Although most patients with COPD have a predominantly neutrophilic inflammation, some also have elevated eosinophil counts in sputum. Oxidative
stress plays a key role in COPD, and can result in activation of the pro-inflammatory transcription factor nuclear factor (NF)-kappaB. Moreover, COPD is associated with increased apoptosis and defective phagocytosis in the airways. In patients with COPD, IL-1beta, IL-4, IL-8, and TNF-alpha concentrations in blood are elevated, while IL-10 concentrations are lower compared to healthy adults. In patients with COPD, AZM leads to a decrease in white blood cell and platelet counts and concentrations of CRP, IL-8, E-selecitin, and lactoferrin in blood (40). By contrast, macrolides increase neutrophil oxidative burst and neutrophil glutathione peroxidase activity in blood (40). In the sputum of COPD patients, CAM and ERM lead to a significant decrease in total cell and neutrophil count and inhibit neutrophil chemotaxis and decrease concentrations of neutrophil elastase (41, 42).

Diffuse Panbronchiolitis

Diffuse panbronchiolitis (DPB) is a chronic distal airway inflammation characterized by diffuse micronodular pulmonary lesions mostly consisting of neutrophils. Neutrophils and epithelial cells produce IL-8, which is an important chemotactic factor to attract more neutrophils. The neutrophil count in BAL samples of patients with DPB correlates to the concentrations of IL-1beta and IL-8 (48). ERM reduces IL-1beta concentrations in BAL samples of patients with DPB which leads to a subsequent reduction of IL-8 concentrations and a decrease in neutrophil count and neutrophil chemotactic activity (44–48, 63). Furthermore, ERM treatment also results in a decrease in lymphocyte count, IL-2, interferon-gamma, and to increase in CD4/CD8 ratio, IL-4, IL-5, IL-13 in BAL samples of patients with DPB (43).

Cystic Fibrosis

In patients with cystic fibrosis (CF), chronic airway inflammation results from cytokines secreted by epithelial and immune cells, which leads to neutrophil influx into airways. The release of neutrophil proteases, including neutrophil elastase, contributes to the development of bronchiectasis. Sustained inflammation is mainly due to an increase in the transcription of NF-kappaB activity, which leads to an increase in IL-8 production. These immunological mechanisms are influenced by AZM and CAM, which in CF-patients lead to a decrease in neutrophil count, concentrations of neutrophil elastase, IL-4, IL-8, TNF-alpha, and INF-gamma, and to an increase in numbers of macrophages in BAL samples or in sputum (51–53). In CF-patients macrolides also lead to a decrease in neutrophil count, concentrations of IL-4, IL-8, TNF-alpha, MPO, high-sensitivity C reactive protein, serum amyloid A, and calprotectin in blood (50, 53).

DISCUSSION

Macrolides are important therapeutic options in the treatment of many chronic inflammatory diseases because of their immunomodulatory effects. To understand the mechanisms underlying these effects, we reviewed all human studies that analyzed the influence of macrolides on immunological markers. The non-antimicrobial effects of macrolides are extensive and range from changes in cell counts and function, up- and downregulation of cytokine production to expression of adhesion molecules.

The most frequently and consistently reported immunomodulatory effect of macrolides is a reduced neutrophilic inflammation. Reduced numbers of neutrophils and inhibition of neutrophilic function lead to lower concentrations of neutrophil elastase and IL-8, and ultimately to a decrease in tissue injury. Furthermore, macrolides also reduce IL-1beta concentrations, another key mediator of the inflammatory response that is most abundantly produced by monocytes and macrophages. Evidence from animal and in vitro studies show that the inhibition of the key pro-inflammatory cytokines IL-8 and IL-1beta results from macrolides’ ability to alter intracellular signaling, particularly through the inhibition of NF-kappaB activation and expression of activator protein-1 (64–66). Notably, this effect has been observed in the absence of an infectious agent.

On the basis of these observed in vitro immunological effects of macrolides, patients with diseases mediated by neutrophilic inflammation such as periodontitis, severe asthma, DPB, bronchiectasis, COPD, and CF should benefit from treatment with this class of antibiotics. Indeed, clinically beneficial effects have been shown in randomized controlled studies in patients with COPD and CF with improved symptom scores, respiratory function and decreased frequency of exacerbations (67–69). For DPB, bronchiectasis and asthma, however, there is an absence of randomized controlled studies showing clinical beneficial effects of macrolides (70–72).

Macrolides are more commonly and consistently reported to inhibit neutrophilic than eosinophilic function. This is consistent with clinical studies that show patients with eosinophil-driven chronic inflammatory diseases associated with increased IgE (such as CRS or atopic asthma) have significantly lower improvement rates with macrolide treatment than those with normal serum IgE (26, 62, 73). Although the effect of macrolides on eosinophils has been less commonly investigated, a few studies report decreased eosinophil counts, and concentration of ECP (a ribonuclease secreted by eosinophils responsible for local cytotoxic effect). This suggests that there may be a role for the use of macrolides in allergic chronic inflammatory diseases (43, 74, 75). The possible influence of macrolides on eosinophilic inflammation is further supported by the finding that Th2 cytokines, such as IL-4 and IL-5, are more frequently reduced than Th1 cytokines, such as IL-2 and INF-gamma (19, 20, 22, 32, 42, 43, 53, 55, 56). The stronger effect of macrolides on Th2 compared with Th1 responses is further supported by evidence from animal and in vitro studies (74, 75). However, some of the anti-inflammatory effects might also be explained through their antibiotic effect on (undiagnosed) pathogens which trigger and sustain inflammation.

It is likely that immunomodulatory effects vary between different macrolides. Although some studies included more than one macrolide, none of the human studies directly compared different macrolides. Interestingly, AZM was less frequently associated with changes in measured immunological markers compared to the other macrolides. However, most of these studies were either in healthy volunteers or AZM was administered
for only a few days (56–58, 76). By contrast, clinical studies in patients with CF suggest that AZM, but not CAM, leads to an improvement in respiratory function and reduction in pulmonary exacerbations (69, 77). In vitro studies comparing the immunomodulatory effects of different macrolides suggest that CAM has less immunomodulatory activity compared to other macrolides. For example, RXM, but not CAM or ERM, was shown to decrease chemotaxis of Th1 and Th2 cells (78). Similarly, CAM had a significantly weaker effect on reducing IL-6 production by human macrophages than ERM (79). Furthermore, another study showed that AZM, but not CAM or RXM, inhibits IL-1alpha and IL-1beta production (80).

Immunomodulatory effects of macrolides have been described with the recommended dose for antimicrobial treatment. Macrolides have excellent tissue penetration compared to other classes of antibiotics resulting in tissue concentrations generally exceeding serum concentrations (except for RXM). For the immunomodulatory effects macrolides’ ability to accumulate in neutrophils and macrophages is particularly important. Concentrations in macrophages have been shown to be 400- to 800-fold higher compared to serum for CAM and AZM (81–85). This drug accumulation in macrophages has been shown to decrease chemotaxis of Th1 and Th2 cells (78). Similarly, CAM had a significantly weaker effect on reducing chemotaxis of Th1 and Th2 cells (78).

The relationship between macrolide dose and immunological markers measured. Further studies will help delineate the exact mechanisms underlying the immunomodulatory properties of macrolides and the relative activity of different macrolides. This will enable the optimal use of this class of antibiotics in the treatment of chronic inflammatory diseases.

REFERENCES

1. Piscitelli SC, Danziger LH, Rodvold KA. Clarithromycin and azithromycin: new macrolide antibiotics. *Clin Pharm* (1992) 11(2):137–52.
2. Retsema J, Girard A, Schelkly W, Manousos M, Anderson M, Bright G, et al. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. *Antimicrob Agents Chemother* (1987) 31(12):1939–47. doi:10.1128/AAC.31.12.1939
3. Zuckerman JM. Macrolides and ketolides: azithromycin, clarithromycin, telithromycin. *Infect Dis Clin North Am* (2004) 18(3):621–49. doi:10.1016/j.idc.2004.04.010
4. Tenson T, Lovmar M, Ehrenberg M. The mechanism of action of macrolides, lincomamides and streptogramin B reveals the nascent peptide exit path in the ribosome. *J Mol Biol* (2003) 330(5):1005–14. doi:10.1016/S0022-2836(03)00662-4
5. Poliak MS. [Content of monomycin in bile and its effectiveness in inflammatory diseases and surgery of the biliary tract]. *Antibiotiki* (1963) 8:83–7.
6. Parfenova EN, Ryviakova EV. [Use of erythromycin in non-specific inflammatory diseases of the Urogenital System]. *Ural Med* (1963) 28:29–31.
7. Gluzman IS. [Erythromycin ointment treatment of inflammatory diseases of eyelid, conjunctiva and cornea. (Clinico-Experimental Studies)]. *Oftalmol Zh* (1964) 19:450–4.
8. Plewig G, Schopf E. Anti-inflammatory effects of antimicrobial agents: an in vivo study. *J Invest Dermatol* (1975) 65(6):532–6. doi:10.1111/1523-1747.ep1260281
9. Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. *Am J Respir Crit Care Med* (1998) 157(6 Pt 1):1829–32. doi:10.1164/ajrccm.157.6.9710075
10. Hahn DL, Grasmick M, Hetzel S, Yale S, AZMATICs (AZithroMyacin-Asthma Trial In Community Settings) Study Group. Azithromycin for bronchial asthma in adults: an effectiveness trial. *J Am Board Fam Med* (2012) 25(4):422–59. doi:10.3122/jabfm.2012.04.110309
11. Koutsoubari I, Papatheodorou V, Constantinos GN, Makrinioti H, Xepapadaki P, Kafetzis D, et al. Effect of clarithromycin on acute asthma exacerbations in children: an open randomized study. *Pediatr Allergy Immunol* (2012) 23(4):385–90. doi:10.1111/j.1399-3038.2012.01280.x
12. Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais P. Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. *Thorax* (2006) 61(10):895–902. doi:10.1136/thx.2005.057953-2
13. Wong C, Jayaram I, Karalus N, Eaton T, Tong C, Hockey H, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. *Lancet* (2012) 380(9842):660–7. doi:10.1016/S0140-6736(12)60953-2
14. Sadreddini S, Noshad H, Molaeeard M, Moloudi R, Ardalan MR, GhajarehM. A double blind, randomized, placebo controlled study to evaluate the efficacy of erythromycin in patients with knee effusion due to osteoarthritis. *Int J Rheum Dis* (2009) 12(1):44–51. doi:10.1111/j.1756-85X9.2009.01379.x
15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* (2009) 339:b2700. doi:10.1136/bmj.b2700
16. Zhang L, Li SJ, Zhang Z, Lin J, Li DQ, Pflugfelder SC. Effects of azithromycin on gene expression profiles of proinflammatory and anti-inflammatory mediators in the eyelid margin and conjunctiva of patients with meibomian gland disease. *JAMA Ophthalmol* (2015) 133(10):1117–23. doi:10.1001/jamaophthalmol.2015.2326
17. Ho W, Eubank T, Leblebicioglu B, Marsh C, Walters J. Azithromycin decreases crevicular fluid volume and mediator content. *J Dent Res* (2010) 89(8):831–5. doi:10.1177/0022034510368650
18. Gong Y, Lu J, Ding X, Yu Y. Effect of adjunctive roxithromycin therapy on interleukin-1beta, transforming growth factor-beta1 and vascular endothelial growth factor in early remission of chronic rhinosinusitis. *Frontiers in Immunology* (2017) 8:466. doi:10.3389/fimmu.2017.00466
19. Zimmermann et al. Immunomodulatory Effects of Macrolides

AUTHOR CONTRIBUTIONS

PZ and NC designed the study. PZ drafted the initial manuscript and approved the final manuscript as submitted. PZ, VZ, and NR did the risk of bias analysis. VZ, NC, and NR critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

FUNDING

PZ was supported by a Melbourne International Research Scholarship and a scholarship from the Ettore-Rossi Foundation.
28. He J, Zhu N, Chen X. Clinical impacts of azithromycin on lung function and non-eosinophilic refractory asthma. *Am J Respir Crit Care Med* (2002) 166(5):1654–61.

29. Zielinski G, Zhang S, Zhang X, Wei L, Zhang J, et al. Effect of long-term azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with *M. pneumoniae*. *Transpl Immunol* 2010; 24(2):114–21.

30. Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T, et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with *Mycoplasma pneumoniae* infection in asthmatic children: a preliminary report. *Proc Jpn Acad* (2000) 76(3):115–20.

31. Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T, et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with *Mycoplasma pneumoniae* infection in asthmatic children: a preliminary report. *Proc Jpn Acad* (2000) 76(3):115–20.

32. Kraft M, Cassell GH, Pak J, Martin RJ. *Mycoplasm pneumoniae* and *Chlamydia pneumoniae* in asthma: effect of clarithromycin. *Chest* (2002) 121(1):178–82.

33. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. *Am J Respir Crit Care Med* (2008) 177(2):168–55. doi:10.1164/rccm.200707-134OC

34. Wang Y, Zhang S, Qu Y. Effect of clarithromycin on non-neutrophilic refractory asthma. *J Clin Pulm Med* (2012) 17(1):1948–51.

35. Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H. Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma. *Clin Exp Allergy* (1999) 29(7):950–6. doi:10.1046/j.1365-2222.1999.00551.x

36. Kamno H, Kurihara N, Fujisawa H, Hirata K, Takeda T. The macroside antibiotic amoxicillin reduces bronchial hyperresponsiveness and superoxide anion production by polymorphonuclear leukocytes in patients with asthma. *J Allergy* 1995; 32(3):191–7. doi:10.3109/02770909509089507

37. Fouka E, Lamprianiotou E, Arvanitidis K, Filidou E, Kolios G, Miltiadis P, et al. Low-dose clarithromycin therapy modulates Th17 response in non-cystic fibrosis bronchiectasis patients. *Lung* (2014) 192(6):849–55. doi:10.1007/s00137-014-0961-9

38. Peric A, Vojvodic D, Baletic N, Peric A, Miljanovic O. Influence of allergy on the immunomodulatory effects of long-term low-dose macrolide therapy. *J Clin Pharm Ther* (2006) 31(1):49–55. doi:10.1111/j.1365-2710.2006.00708.x

39. Liu J, Zhong X, He Z, Wei L, Zheng X, Zhang J, et al. Effect of low-dose, long-term roxithromycin on airway inflammation and remodeling of stable noncystic fibrosis bronchiectasis. *Mediators Inflamm* (2014) 2014:708608. doi:10.1155/2014/708608

40. Peric A, Vojvodic D, Baletic N, Peric A, Miljanovic O. Influence of allergy on the immunomodulatory effects of long-term low-dose macrolide therapy. *J Clin Pharm Ther* (2006) 31(1):49–55. doi:10.1111/j.1365-2710.2006.00708.x

41. Banerjee D, Honeybourne D, Khair OA. The effect of oral clarithromycin on bronchial airway inflammation in moderate-to-severe stable COPD: a randomized controlled trial. *Treat Respir Med* (2004) 3(1):59–65. doi:10.201518129-200403010-00007

42. He ZY, Ou LM, Zhang JQ, Bai J, Liu GN, Li MH, et al. Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. *Respiration* (2010) 80:550–8. doi:10.1159/000286747

43. Park SJ, Lee YC, Rhee YK, Lee HB. The effect of long-term treatment with azithromycin on T helper 2 cytokines, eosinophil cationic protein and the 'regulated on activation, normal T cell expressed and secreted' chemokine in bronchial secretions of patients with nasal polyposis. *Turk J Pediatr* (2012) 54(1):41–5. doi:10.11803/tj ped.2012.009139

44. Oda H, Kadota J, Kohno S, Hara K. Erythromycin inhibits neutrophil chemotaxis in bronchoalveolar lavage fluid of patients with cystic fibrosis. *Chest* (1994) 106(4):1116–23. doi:10.1378/chest.106.4.1116

45. Katsuki M. Neutrophil chemotactic activity in bronchoalveolar lavage fluid recovered from patients with diffuse panbronchiolitis. *Kurume Med J* (1996) 43(4):279–87. doi:10.2739/kurumemedj.43.279

46. Ichikawa Y, Ninomiya H, Koga H, Tanaka M, Kinoshita M, Tokunaga N, et al. Effect of long-term azithromycin treatment on inflammatory markers in BAL and plasma in patients with cystic fibrosis bronchiectasis. *Lung* (2014) 2014:708608. doi:10.1155/2014/708608

47. Ichikawa Y, Ninomiya H, Koga H, Tanaka M, Kinoshita M, Tokunaga N, et al. Effect of long-term azithromycin treatment on inflammatory markers in BAL and plasma in patients with cystic fibrosis bronchiectasis. *Lung* (2014) 2014:708608. doi:10.1155/2014/708608

48. Banerjee D, Honeybourne D, Khair OA. The effect of oral clarithromycin on bronchial airway inflammation in moderate-to-severe stable COPD: a randomized controlled trial. *Treat Respir Med* (2004) 3(1):59–65. doi:10.201518129-200403010-00007

49. He ZY, Ou LM, Zhang JQ, Bai J, Liu GN, Li MH, et al. Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. *Respiration* (2010) 80:550–8. doi:10.1159/000286747

50. Park SJ, Lee YC, Rhee YK, Lee HB. The effect of long-term treatment with azithromycin on T helper 2 cytokines, eosinophil cationic protein and the 'regulated on activation, normal T cell expressed and secreted' chemokine in bronchial secretions of patients with nasal polyposis. *Turk J Pediatr* (2012) 54(1):41–5. doi:10.11803/tj ped.2012.009139

51. Banerjee D, Honeybourne D, Khair OA. The effect of oral clarithromycin on bronchial airway inflammation in moderate-to-severe stable COPD: a randomized controlled trial. *Treat Respir Med* (2004) 3(1):59–65. doi:10.201518129-200403010-00007

52. Doğru D, Dalgiç F, Kiper N, Ozçelik U, Yalçin E, Aslan AT, et al. Long-term clarithromycin decreases MMP-9 expression in the airways of lung transplant recipients. *Transplant Immunol* (2011) 25(2–3):159–62. doi:10.1016/j.trim.2011.06.006

53. Berg HE, Haraha B, Scheffer GI, Peeters MF, Kluymans JA. Effect of clarithromycin on inflammatory markers in patients with atherosclerosis. *Clin Diag Lab Immunol* (2003) 10(4):525–8.
66. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P. Anti-inflammatory effects of azithromycin on ozone-induced airway neutrophilia and cytokine release. *Eur Respir J* (2000) 15(5):856–62. doi:10.1183/09031936.2000.15e08.x

67. Culić O, Eraković V, Cepelak I, Barisić K, Brajsa K, Ferencić Z, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. *Eur J Pharmacol* (2002) 450(3):277–89. doi:10.1016/S0014-2999(02)00423-3

68. Auerb J, Juillett-Jeanneret L, Fiorioni P, Dayer P, Plan PA, Leuenberger P. Function of human alveolar macrophages after a 3-day course of azithromycin in healthy volunteers. *Pulm Pharmacol Ther* (1998) 11(4):263–9. doi:10.1006/pupt.1998.0123

69. Cervin A, Katman O, Sandkull P, Lindberg S. One-year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery: clinical outcome and effects on mucociliary parameters and nasal nitric oxide. *Otolaryngol Head Neck Surg* (2002) 126(5):481–9. doi:10.1067/mhn.2002.124849

70. Tone A, Shikata K, Nakagawa K, Hashimoto M, Makino H. Renoprotective effects of clarithromycin via reduction of urinary MCP-1 levels in type 2 diabetic patients. *Clin Exp Nephrol* (2011) 15(1):79–85. doi:10.1007/s10157-010-0357-1

71. Booth V, Young S, Cruchley A, Taichman NS, Paleolog E. Vascular endothelial growth factor in human periodontal disease. *J Periodontol* (1998) 69(suppl):491–9. doi:10.1902/jp.1998.69.6sup2439.x

72. Suzuki H, Ikeda H, Romma G, Tohota S, Oshima T, Furukawa M, et al. Prognostic factors of chronic rhinosinusitis under long-term low-dose macrolide therapy. *Otol Otorhinolaryngol Relat Spec* (2000) 62(3):121–7. doi:10.1159/000027731

73. Akiyoshi H, Honda J, Nakahara S, Tokisawa S, Tokunaga N, Ichikawa Y, et al. [Mechanism of efficacy of erythromycin on diffuse panbronchiolitis – effect of erythromycin on cytokine mRNA expression in human whole blood model]. *Kansenshogakuzasshi* (1994) 68(2):209–16. doi:10.11150/kansenshogakuzasshi1970.68.209

74. Bosnar M, Culić Š, Bošnjak B, Nujić J, Ergović G, Marjanović N, et al. Azithromycin inhibits macrophage interleukin-1β production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. *Int Immunopharmacol* (2011) 11(4):424–34. doi:10.1016/j.intimp.2010.12.010

75. Ivetić Tkalčević V, Culić Š, Kramarić MD, Parnham MJ, Eraković Haber V. Topical azithromycin and clarithromycin inhibit acute and chronic skin inflammation in sensitized mice, with apparent selectivity for Th2-mediated processes in delayed-type hypersensitivity. *Inflammation* (2012) 35(1):192–205. doi:10.1007/s10573-011-9305-9

76. Parnham MJ, Eraković Haber V, Giamarellou-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. *Pharmacol Ther* (2014) 143(2):225–45. doi:10.1016/j.pharmthera.2014.03.003

77. Robinson P, Schechter MS, SLY PD, Winfeld K, Smith J, Brennan S, et al. Clarithromycin therapy for patients with cystic fibrosis: a randomized controlled trial. *Pediatr Pulmonol* (2012) 47(6):531–7. doi:10.1002/ppul.21913

78. Ito T, Ito N, Hashizume H, Takigawa M. Roxithromycin inhibits chemokine chemotaxis of Th1 and Th2 cells but regulatory T cells. *J Dermatol Sci* (2009) 54(3):185–91. doi:10.1016/j.jdermsci.2009.01.007

79. Sato Y, Kaneko I, Inoue M. Macrolide antibiotics promote the LPS-induced upregulation of prostaglandin E receptor EP2 and thus attenuate macrophage suppression of IL-6 production. *Prostaglandins Leukot Essent Fatty Acids* (2007) 76(3):181–8. doi:10.1016/j.plfa.2006.12.005

80. Guidoloni GA, Lindscheid T, Schmetterer KG, Hennig A, Steinberger P, Zlabinger GJ. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation. *Sci Rep* (2015) 5:12016. doi:10.1038/srep12016

81. Rodvold KA. Clinical pharmacokinetics of clarithromycin. *Clin Pharmacokinet* (1999) 37(5):385–98. doi:10.2165/00003088-199937050-00003

82. Fouls G, Shepard RM, Johnson RB. The pharmacokinetics of azithromycin in human serum and tissues. *J Antimicrob Chemother* (1999) 25(Suppl A):73–82. doi:10.1093/jac/dak255

83. Fraschini F, Scaioni F, Pintucci G, Maccarinelli G, Dugnani S, Demartini G. The diffusion of clarithromycin and roxithromycin into nasal mucosa, tonsil and lung in humans. *J Antimicrob Chemother* (1991) 27(5):125–33. doi:10.1093/jac/27.5.125

84. Dette GA. [Tissue penetration of erythromycin (author's transl)]. *Biochem Biophys Res Commun* (1970) 350(4):977–82. doi:10.1016/0006-291X(70)91033-7

85. Schentag JJ, Ballow CH. Tissue-directed pharmacokinetics. *Clin Pharmacol Ther* (2004) 76(3):181–8. doi:10.1016/j.cpt.2004.03.001

86. Zimmermann, Ziesenitz, Curtis and Ritz. This is an open-access publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

87. Yang M, Dong BR, Lu J, Lin X, Wu HM. Macrolides for diffuse panbronchitis. *Cochrane Database Syst Rev* (2013) 2:CD007716. doi:10.1002/14651858.CD007716.pub3

88. Brusselle GG, Vanderstichele C, Jordens P, Deman R, Slabbynck H, et al. [Mechanism of efficacy of erythromycin on diffuse panbronchiolitis – clinical outcome and lung in humans]. *Thorax* (2004) 59(4):263–9. doi:10.1136/thoraxjnl-2002-002006

89. Ringoet V, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. *Thorax* (2013) 68(4):322–9. doi:10.1136/thoraxjnl-2012-202698

90. Foertsch K, Ballow CH. Tissue-directed pharmacokinetics. *Am J Med* (1991) 91(3a):5s–11s. doi:10.1016/0002-9343(91)90394-D

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
