Improved ecological insights commission new conservation targets for a crepuscular bird species

R. Evens¹,², A. Jacot¹, T. Artois³, E. Ulenaers⁴, T. Neyens⁵,⁶, L. Rappaz¹, C. Theux¹ & Jean-Nicolas Pradervand¹

1 Swiss Ornithological Institute, Field Station Valais, Sion, Switzerland
2 Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
3 Centre for Environmental Sciences, Research Group: Zoology, Biodiversity, Toxicology and Ecology, Hasselt University, Diedenbeek, Belgium
4 Agentschap Natuur en Bos, Brussels, Belgium
5 Centre for Environmental Sciences, Research Group: Centre for Statistics, Hasselt University, Diedenbeek, Belgium
6 Faculty of Medicine Leuven, Biostatistics and Statistical Bioinformatics Centre, Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

Knowledge on species’ ecological requirements is the key to an effective evidence-based conservation. An adaptive approach can refine management recommendations following the outcomes of previous actions or as improved scientific knowledge about a species’ ecology becomes available. Following severe population declines the majority of the Swiss European Nightjar (Caprimulgus europaeus) population is now restricted to a small core area in the canton of Valais, despite the local application of evidence-based restoration measures to the breeding habitats. The habitat use of this crepuscular bird species is presumed to be restricted to semi-open oak-pine scrublands and rocky steppe. By deploying miniature GPS loggers we assessed the spatial and habitat selection of 42 individuals (25 individuals in 2018 and 30 individuals in 2019; comprising 13 redeploys between years) in five study sites in the canton Valais. We highlight the importance of using fine-scaled movement data to obtain insight into complex multi-scale habitat requirements of a species. Nightjars used multiple habitats, indicating the importance of complementary resources to breed (e.g. open forest and shrub) and to forage (e.g. semi-extensive grasslands and vineyards). The connectivity between these resources was influenced by habitat configuration and composition. Given these new insights for future conservation strategies, our results also suggest that national-level land use changes, mainly due to agricultural intensification processes, have contributed to the long-term population declines in Switzerland. We therefore consider our result in the context of knowledge gaps for species that exploit complementary habitats and the potential shortcomings for conservation planning on discrete species showing complex ecological requirements.

Introduction

Knowledge about species’ ecological requirements holds a pivotal role in evidence-based species conservation during the formulation of conservation strategies, the monitoring of applied restoration actions and the empirical evaluation and reporting of the outcomes (Schwartz et al., 2017; de Bie, Addison & Cook, 2018). The availability of accurate knowledge on species’ requirements differs greatly between taxonomical groups and is often lacking for species with a hidden lifestyle, such as crepuscular or nocturnal species (Gaston et al., 2008). The absence of accurate knowledge is particularly problematic when urgent conservation actions are required to maximize the benefits for rapidly declining species.

Studying habitat use (Johnson, 1980; Morris, 2003) is elementary to comprehend the ecological requirements of a species and spatio-temporal resource availability is a well-recognized determinant of species’ distribution (Weber et al., 2017). Habitat use should, herein, be considered as a multi-scale process (Fattebert et al., 2018; Scherrer, Christie & Giusan, 2019). At a local scale, habitats and their associated resources might, for example, provide opportunities for a species to either breed, forage or rest (Wakefield, Phillips & Matthiopoulos, 2014). However, at a wider landscape scale their importance for a species, that is, the connection and
accessibility of complementary resources, can be determined by the composition and configuration of the local landscape (Ripperger et al., 2015; Collins & Fahrig, 2017) in combination with the variation in individual space use of a species (Jones et al., 2018).

Detailed animal movement data, collected from GPS logging, can be collected in large quantities and provide unbiased knowledge about species’ habitat use at the finest possible spatial scale, which can subsequently be extrapolated to investigate habitat use at larger spatial scales (Kay et al., 2017; Fattorini et al., 2018). Such data, collected during the breeding season, are particularly valuable to understand the importance of complementary resources for breeding and foraging (Schräder et al., 2010). It helps to reveal how the distribution of resources in the available landscape affects foraging behaviour, territory settlement and breeding phenology (Ropert-Coudert et al., 2004; Hinsley et al., 2008; Catry et al., 2013) and whether conservation practices deliver the resource requirements of the species (Law & Dickman, 1998; Sutherland et al., 2004; Lemieux et al., 2018).

There is an urgent need to review the ecological requirements of endangered species, in order to assess the accuracy of current management practices and to introduce more effective and relevant conservation measures into future conservation planning. In this perspective, the European Nightjar (Caprimulgus europaeus, hereafter referred to as nightjar) can be seen as a model system for species with a hidden lifestyle that require urgent conservation actions on different spatio-temporal scales (Evens et al., 2017a, 2018a). During the breeding season, it has been demonstrated that these crepuscular, insectivorous birds require complementary habitats to breed and to forage (Alexander & Cresswell, 1990; Evens et al., 2017a, 2018a). The ongoing decline of this species in several European breeding populations (IUCN, 2020; Jacob et al., 2010; Knaus et al., 2018) may indicate that local conservation measures are most likely not applied to all required habitats and, given the high mobility of the species, not at the proper spatial scale.

In this study, we investigate the multi-scale habitat use of nightjars using fine-scaled space use data in an inner-alpine context in Switzerland. Nightjars are an endangered bird species in Switzerland (Keller et al., 2010). The studied population has undergone a rapid decline in the last decades (Knaus et al., 2018), despite the local application of evidence-based restoration measures to create new breeding habitats (Sierro, 2013, 2016). By following a multi-scale approach, we characterized foraging behaviour and assessed local habitat use (i.e. within home range habitat use) to define foraging habitats. Subsequently, we considered habitat selection in a wider landscape context (i.e. home range placement) to investigate whether the conservation of secondary key habitats, such as meadows and extensively cultivated grasslands, has been omitted. Finally, we extrapolated nightjars’ habitat selection from the wider landscape to the national level (i.e. landscape scale) and investigated whether the disappearance of the species from many atlas grid cells (Knaus et al., 2018) was related to land cover changes. We consider our result in the context of knowledge gaps for species that exploit complementary habitats and the potential shortcomings for conservation planning on discrete species showing complex ecological requirements.

Materials and methods

We tracked the spatial use of nightjars from May to August in 2018 and 2019 at five sites in the canton of Valais (Switzerland), between Sierre (46°N, 7°E) and Visp (46°N, 8°E) in the upper Rhône valley. The sites are 4–16 km apart (Fig. 1) and hold approximately 70% of the Swiss nightjar population (Knaus et al., 2018). The study sites are located on south-exposed slopes between 600 and 1800 m above sea level and are characterized by a continental climate with hot summers and a low amount of annual precipitation (550–700 mm/year) (Winiger et al., 2018). These breeding habitats (Fig. 2) are characterized by semi-open landscapes, mainly dominated by oak-pine scrublands, rocky steppe and open dry forests (Sierro et al., 2001). Within the same altitudinal band, the landscape is interspersed with settlements and grasslands of different degrees of intensification, such as meadows, steppe and extensively grazed pastures (Theux, 2019). On higher elevations, dense pine forests and alpine meadows are the predominant land cover types. On lower elevations, intensively managed vineyards are the predominant agricultural land cover type. Most human activities are concentrated on the lowest elevations, in the plain of the valley (Sierro & Erhardt, 2019).

We captured nightjars using ultra-fine mist nets (Ecotone, 12 × 3 m) and tape lures (Evens et al., 2017a). All birds were captured within their presumed breeding territories and marked with a unique alphanumeric ring from the Swiss Ornithological Institute. We identified sex [M/F] and age [≥1CY, 2CY, ≥2CYs] based on individual’s plumage, but did not discriminate between paired or unpaired individuals because the reproductive state of tracked individuals was often unclear. We fitted a VHF/GPS logger, comprising a 0.7 g Biotrack Ltd. radio tag and a 1.8 g Pathtrack Ltd. nanoFix GPS logger, to the tail using a simple drop-off mechanism (Evens et al., 2018). Tags weighed less than 3.8% of the mean weight of tagged birds (65.3 ± 5.1 g, range: [57–78.1 g], n = 46 weight measurements; for a list of the birds see Supporting Information). We programmed GPS loggers to start fixing positions (3 min intervals) from sunset until sunrise (i.e. 9 PM until 5 AM).

Land cover data

We used two types of land cover data: (i) high resolution (10 × 10 m) remote sensing data and (ii) a lower resolution digital land cover map (100 × 100 m). Both maps were used to study (i) within home range habitat use and (ii) home range placement and national habitat use respectively.

The high resolution (10 × 10 m) grassland productivity map contains the intensification in natural and artificial grasslands of the entire study area. This map was constructed from tailored NDVI maps, calculated from Sentinel II scenes post treated by THEIA (www.theia.cnes.fr), and containing
Grasslands were categorized according a grassland management intensification gradient (GIG) into four types: intensive (GIG = 0 > x < 0.25), semi-intensive (GIG = −0.1 > x < 0), semi-extensive (GIG = −0.1 > x < 0) and extensive grasslands (GIG = < −0.1); grasslands types sensu Delarze et al. (2015); Supporting Information).

The digital habitat layers containing information on land cover on a 100 × 100 m grid, available for 3 time periods (1979–1985, 1992–1997, 2004–2009; Swiss Federal Statistical Office, 2019). We reclassified 72 available habitat types into 12 relevant habitat types (Sierro et al., 2001; Evens et al., 2017a, Evens et al., 2018a,b; Supporting Information). To investigate changes in land cover on a national scale, we...
used habitat layers for the periods 1979–1985, 1992–1997 and 2004–2009. To investigate home range placement, we used the most recent land cover map (period 2004–2009; hereafter referred to as structural habitat map). From the structural habitat map, we then created a functional landscape map by grouping 12 habitat types into three functional categories: (i) breeding or roosting habitat, (ii) foraging habitat and (iii) other habitat types (Evens et al., 2018).

Available habitat maps
To delineate the area of available habitat and to derive the measures of landscape heterogeneity for each foraging flight, we cut out four circular maps (two from the structural and two from the functional habitat map) (sensu Evens et al., 2018a). We made the circular maps and determined their specific scale to avoid inclusion of large areas of unrepresentative habitat related to foraging activity (Evens et al., 2018a).

We defined extra-territorial flights and foraging flights sensu Evens et al. (2018a). Extra-territorial flights include the start in breeding habitat, an outbound flight, an inbound flight to the breeding habitat and arrival in the breeding habitat. An extra-territorial flight can be further defined as a foraging flight when an individual also perches between the outbound and inbound section. In this case, foraging activity is defined as an individual remaining stationary (i.e. flycatching when perching) in presumed foraging habitat. This approach did not account for foraging by hawking (i.e. foraging when flying) (Alexander & Cresswell, 1990) or foraging behaviour within breeding areas, which is not detectable using current GPS-tracking technologies. We used information on foraging activity to calculate Euclidean foraging distance, foraging duration and the timing of foraging events (Evens et al., 2018a).

The centre of each circular available habitat map was always placed at the start position of the corresponding foraging flight. For each habitat map, thus both the structural and functional habitat map, a circular surface was cut with a radius equal to the Euclidian foraging distance (hereafter referred to as ‘foraging buffer’) and another with a radius equal to the mean foraging distance (1311 m; calculated as the mean foraging distance of all foraging flights for all individuals; hereafter referred to as ‘mean foraging buffer’). For each foraging flight, we then quantified four landscape characteristics: two measures of habitat composition (the percentage of available foraging habitat [functional habitat, mean foraging buffer] and habitat diversity [Shannon diversity index; structural habitat, foraging buffer]) and two measures of habitat configuration (Moran’s I [functional habitat; foraging buffer] and mean patch size of foraging habitat [functional habitat; foraging buffer]) (sensu Evens et al., 2018a).

Within home range habitat use
To investigate the effect of individual variables (age and sex) and landscape characteristics on foraging distance, we fitted linear mixed models to our data with individual nested within year (2018 or 2019) and study site as a random factor. After a backward selection procedure, individual variables (age and sex) were removed from the models as fixed effects because they did not significantly affect foraging distance. The selection procedure was initiated from two separate models to account for multicollinearity issues. More specifically, we found a correlation between the following environmental variables: the size of foraging sites and Moran’s I, habitat diversity and Moran’s I, the amount of available foraging habitat and the size of foraging sites, and amount of available foraging habitat and habitat diversity. Finally, three models were fitted containing foraging distance (log-transformed) as outcome variable. The first model contained mean size of foraging habitats [calculated using the foraging buffer; km²] and structural habitat diversity [calculated using the foraging buffer; Shannon Index] as fixed effects. The second model contained mean size of foraging habitats [calculated using the foraging buffer; km²] and functional habitat diversity [calculated using the foraging buffer; Shannon Index] as fixed effects. The third model contained amount of foraging habitat [calculated using the mean foraging buffer; % cover] and Moran’s I [calculated using the foraging buffer; classified as random, dispersed or clustered] as fixed effects.

We also collected information on within home range habitat use by extracting data from the structural habitat map for each GPS position. We investigated the use of specific grassland types by extracting data from the fine-scaled grassland map for each GPS position falling in a grassland pixel. We fitted general linear mixed models to assess possible differences in i) grassland use between breeding and foraging sites and ii) grassland availability between occupied and historically managed sites (Table 2, Fig. 3).

Home range placement
Using GPS positions, we calculated the home range of each individual in each year with a kernel density estimator (KDE) (fixed kernel), using Ranges 7 v0.77 (Anatrack Ltd.) (Aebischer, Robertson & Kenward, 1993). We calculated 50% (core area) and 95% (home range) kernels (Evens et al., 2017a). We used a fixed multiplier, between 0.3 and 2, that limited the number of multimodal home ranges or the inclusion of large unused areas (Fieberg, 2007; Supporting Information). To compare our results with earlier studies (Sierro et al., 2001) and to get a more general assessment of the space covered by individuals, we also calculated the 95% minimum convex polygon for each individual (Aebischer et al., 1993).

To quantify habitat availability for each individual, and to avoid the inclusion of large areas of unrepresentative habitats (Evens et al., 2017a, 2018a), we created a habitat availability map (hereafter referred to as ‘focal buffers’) by cutting out a circular surface from the structural map (center = focal position/mean observation in breeding habitat, radius = furthest observation per individual; sensu Evens et al., 2018). The furthest observation per individual is not necessarily the same as an individual’s longest foraging distance. To assess the availability of specific grassland types in proximity of nightjars’ territories and historically managed sites (Sierro, 2016), we also created a ‘mean buffer’. The centroid of the mean buffer was placed on individuals’ focal position and
on the centroid of historical managed sites. The radius of these buffers was equal to the mean of the distance to the furthest observation of all individuals (1905 m).

To determine regional habitat selection, we compared home range placement (50% and 95% kernels; i.e. habitat use) with the tailored habitat availability maps (focal buffer; i.e. habitat availability). Hence, we carried out a classical compositional analysis (Aebischer et al., 1993) using the R-package 'adehabitatHS' (Calenge, 2011). Paired t-tests determined the differences between habitats (habitats ranked, independent of availability, based on positive differences). Zero values were replaced with 10E-7 and 1000 iterations were chosen for data randomization (Evens et al., 2017a).

National dynamics

In order to assess whether land cover changes in recent decades could have contributed to the decline of the nightjar population in Switzerland, we combined information from the three reclassified land cover maps (1979–1985, 1992–1997 and 2004–2009; Swiss Federal Statistical Office [2019]) with three occupancy maps of the Swiss bird atlas. The occupancy maps contain information on the presence of breeding nightjars in Switzerland for 467 10 × 10 km squares and three atlas periods: 1972–1976 (Schifferli et al., 1980), 1993–1996 (Schmid et al., 1998) and 2013–2016 (Knaus et al., 2018). For each atlas period, we calculated the proportion of the different habitat types in each 10 × 10 km square for the most relevant land cover map: atlas period 1972–1976 with land cover map 1979–1985, atlas period 1993–1996 with land cover map 1992–1997, and atlas period 2013–2016 with land cover map 2004–2009.

Spatio-temporal logistic Bernoulli models were fitted to estimate the effect of available habitat per 10 × 10 km square on nightjar presence. We used period-specific conditional autoregressive (CAR, Besag, York & Mollié, 1991) random effects, with a shared precision parameter, to capture compositional heterogeneity. The covariate effects of time and habitat coverage, which comprises 12 proportional habitat availability variables, were modelled univariately to avoid multicollinearity issues. The habitat availability variables were transformed through a folded exponential transformation (Piepho, 2003). An additional normally distributed unstructured normal random effect that was shared among the three periods accommodated additional overdispersion. This yielded 14 models, which were fitted using Markov chain Monte Carlo (MCMC) via the R (version 3.4.4) package R2OpenBUGS 3.2 (for full model specifications, see Supporting Information).

Animals subjects

The authors declare that all experiments have been performed according to the ethical guidelines of the Swiss veterinarian service under license number VS032018.
Results

We deployed 85 GPS loggers on 46 individuals and recovered 80 GPS loggers from 42 individuals. In total, 73 GPS loggers contained useful tracking data from 25 individuals in 2018 and from 30 individuals in 2019. Fifteen individuals were tracked more than once within a season and 13 individuals were tracked in both years. In order to account for possible differences in the habitat use between years, caused by habitat management, environmental or unknown factors, we will refer to a maximal sample size of 55 year-individuals in this manuscript, except in case of the linear mixed models where individual was nested within year (2018 or 2019).

Altogether the GPS loggers contained 42816 observations on the spatial use and foraging behaviour of nightjars (808 ± 470 observations per individual per year, n = 55, [20–2049 observations]; mean ± standard deviation and [range]). We excluded eight individuals from home range analysis because of presumed nomadic behaviour and long-distance movements of unpaired males in search for a territory and two other individuals were removed from foraging-distance analysis because no foraging behaviour was detected (i.e., unpaired males remaining in a small territory) (Evens et al., 2018b).

Within home range habitat use

We collected 34310 observations while birds were present in the known breeding habitats (for an overview see Table 1), mainly comprising open forests (mean proportion per individual: 32 ± 35% of observations, [0–100%]; mean ± standard deviation and [range]), dense forests (25 ± 29% of observations, [0–86%]) and scrub (14 ± 20% of observations, [0–72%]). Due to the presence of two irrigation channels in the breeding area of one study area, open water was also classified as an important breeding habitat (15 ± 15% of observations, [0–81%]).

We identified 452 flights leaving the breeding habitats (for an overview see Table 1), containing 312 foraging flights. The mean foraging distance is 1.3 ± 0.7 km ([0.2–4.3 km], n = 312 flights of 45 individuals). We did not find any differences in foraging distance between sexes and ages (Table 2). Most foraging flights start 30 min after sundown and 90 min before sunrise (Supporting Information). Nightjars were absent from their breeding habitats for 59 ± 75 min per flight ([3–450 min], n = 452) and forage during 43 ± 73 min ([3–435 min], n = 312).

We collected 7024 observations when the birds were foraging (for a complete overview see Supporting Information), predominantly in dense forests (mean proportion per individual: 25 ± 26%, [0–100%]), vineyards (14 ± 23%, [0–88%]), extensively cultivate agricultural lands (12 ± 16%, [0–68%]), open forests (11 ± 17%, [0–70%]) and alpine meadows (11 ± 15%, [0–48%]) (Table 1).

Foraging distance was modelled via three models (for details, see Table 2). In the first model, we show that foraging distance increases when structural habitat diversity increases (estimate = 2.38, sd = 0.11, df = 3, df = 303, F = 457.91, P < 0.0001). In the second model, we show that foraging distance decreases when functional habitat diversity increases (estimate = −7.78, sd = 1.59, df = 1, df = 294, F = 22.97, P < 0.0001). From the third model, we found that foraging distance increases when the functional habitats were clustered (estimate = −0.69, sd = 0.21, z-value = −3.25, P = 0.003) or dispersed (estimate = −0.34, sd = 0.13, z-value = −2.7, P = 0.018).

Concerning the use of grasslands, we found a significant difference between the types of grasslands used in breeding and foraging areas (estimate = −0.222, sd = 0.025, z-value = 55, Pr(>|z|) = <0.0001; Supporting Information). The difference between the two seems to arise due to a higher proportion of extensive and semi-extensive grasslands in the breeding areas and presence of semi-intensive grasslands in foraging areas (Table 2, Fig. 3). When comparing the

Category	Functional category	Breeding area	Foraging area				
Town	Other	Mean	sd	Max	Mean	sd	Max
Gardens	Other	0	2	14	4	14	70
Recreation	Other	1	2	9	4	8	41
Intensively used agriculture	Other	3	10	62	8	17	72
Extensively used agriculture	Foraging	1	2	9	12	16	68
Vineyards	Foraging	0	1	5	14	23	88
Alpine meadows	Foraging	1	1	7	11	15	48
Dense forests	Breeding	25	29	86	25	26	100
Open forests	Breeding	32	35	100	11	17	70
Small landscape elements	Foraging	8	17	83	3	5	20
Water	Other	15	15	81	5	13	66
Scrub	Breeding	14	20	72	4	12	57

The estimates are based on the amount of GPS observations made in breeding areas and while birds are presumed to be foraging (perched) for each habitat type (Supporting Information).

Table 1 Proportion of habitat types used in breeding and foraging habitat. The table shows mean (±standard deviation) and maximum percentages of each habitat type used by individual nightjars.
Table 2 Summary of the results from the statistical analyses. For each analysis we show the outcome variables, random and fixed effects

Analysis	Model	Outcome	Random Effects Variable	Fixed Effects Variable	Posthoc Tests Variable	Estimation (SD)	F	d.f.	Df.res	Pr(>F)	Difference	Estimate (SD)	z-value	P-value
1	GLMM	ln (Foraging distance)	Bird ID: year Study site	Intercept	0.051 (0.225)	2.28 (0.3)	57.9	1	17	<0.0001				
				Habitat diversity (structural)	0.197 (0.444)	2.38 (0.11)	457.91	1	303	<0.0001				
				Size of foraging habitat patches	Year	0.112 (0.043)	0.003 (0.02)	0.02	1	285	0.895			
2	GLMM	ln (Foraging distance)	Bird ID: year Study site	Intercept	0.176 (0.419)	12.04 (1.05)	126.46	1	270	<0.0001				
				Habitat diversity (functional)	0.087 (0.295)	-7.78 (1.59)	22.97	1	294	<0.0001				
				Size of foraging habitat patches	Year	0.14 (0.375)	-0.02 (0.03)	0.37	1	280	0.546			
3	GLMM	ln (Foraging distance)	Bird ID: year Study site	Intercept	0.144 (0.38)	8.25 (0.42)	351.39	1	92	<0.0001				
				Amount of foraging habitat Moran's I	0.04 (0.199)	-0.2 (0.1)	2.53	1	172	0.114				
				Moran's I	Year	0.008 (0.382)	8.74	2	285	0.0002	dispersed vs. clustered	-0.34 (0.25)	-1.4	0.326
4	GLMM	Scaled (Grassland) Bird ID	Breeding vs foraging	0.002 (0.047)	0.222 (0.004)	55	1	17014	<0.0001					
5	GLMM	Scaled (Amount per mean buffer) Study site	Occupied vs. Abandoned	-0.0013 (0.025)	-0.01	1	326	0.958						

Posthoc tests = Tukey-adjusted P-values.
availability of grassland types between occupied and historically managed sites, we found no clear difference between both groups (estimate = −0.001, SD = 0.025, t-value = −0.053, Pr(>|t|) = 0.958; Table 2), both breeding grounds sharing similar extensive grasslands habitat types.

Home range placement

Home range size was 33 ± 29 ha (95% kernels, $[5$–192 ha], $n = 47$) with core areas of 7 ± 5 ha (50% kernels, $[2$–31 ha], $n = 47$) and MCP of 142 ± 191 ha (95% MCP, $[3$–1062 ha], $n = 47$). Following the outcomes of the compositional analysis, habitat use of nightjars was not random in both 50% kernels (focal buffer: $\lambda = 0.104$, $P = 0.001$) and 95% kernels (focal buffer: $\lambda = 0.099$, $P = 0.001$). Habitats were ranked from most to least (12–0) selected, indicating that habitat use was slightly different between 50% and 95% kernels (Fig. 2, Supporting Information). Within breeding habitats (core areas) open and dense forests, and scrub vegetation were significantly more used compared with other available habitats (e.g. different types of agricultural land; Supporting Information). When nightjars flew further from the breeding habitat (home ranges) alpine meadows, vineyards and agricultural lands (comprising semi-intensive and semi-extensive grasslands) became more important than in the core areas.

National dynamics

Our results suggest a negative tendency (borderline 'non-significant' when applying a 5% significance level) in the Swiss nightjar population during the last 40 years related to land cover changes ($\alpha_t = −0.765$, 95% credible interval (CI) = $[−1.858;0.034]$; Supporting Information). More specifically, our data indicate that increases in the amount of intensively used agricultural areas ($\beta_i = −8.217$, 95% CI = $[−12.750;−4.557]$) have occurred where the nightjar population disappeared, whereas increases in the amounts of extensively used agricultural lands ($\beta_i = 17.245$, 95% CI = $[9.933;29.50]$), small landscape elements ($\beta_i = 33.223$, 95% CI = $[16.549;54.831]$) and dense forest ($\beta_i = 9.013$, 95% CI = $[2.635;20.900]$) occurred where nightjars remained. Furthermore, we have found weak indications that the amount of meadows increased in sites that were abandoned by nightjars ($\beta_i = −3.970$, 95% CI = $[−13.510;−0.561]$).

Discussion

This study highlights the importance of using fine-scaled movement data to obtain insight into complex multi-scale habitat requirements of a crepuscular species. Nightjars used multiple habitat types indicating the importance of complementary resources to breed and to forage. Requirements to breeding habitats of the studied population are in line with previous findings (Sierro *et al.*, 2001; Winiger *et al.*, 2018), while (i) the preference for specific grassland types, alpine meadows and vineyards to forage and (ii) the requirement of a larger space, on average six times higher per individual compared with previous estimates (Sierro *et al.*, 2001), shed new light on future conservation strategies. Furthermore, our results suggest that the land use changes, especially in potential foraging habitat, have contributed to the long-term population declines in Switzerland.

Multiple habitat use

Breeding habitat, in our study, mainly comprises open, low-nutrient habitats such as oak-pine scrubland and pine forests. Here nightjars laid eggs on bare ground close to open vegetation, such as shrub or low-growing oak trees (personal observations). These findings are in line with earlier studies in Switzerland (Sierro *et al.*, 2001; Winiger *et al.*, 2018) and elsewhere in Europe where nightjars have been observed to breed in various types of semi-open, low-nutrient habitats (Wichmann, 2004; Conway *et al.*, 2007; Evens *et al.*, 2017a). It has been suggested that nightjars would also stay within their breeding habitats to forage owing to sufficient food supplies (Sierro *et al.*, 2001; Sharps *et al.*, 2015a) or suitable micro-habitat structures to forage (Sierro *et al.*, 2001; Wichmann, 2004). The lacking evidence of multiple habitat requirements, for the Swiss population, resulted in conservation measures mostly focusing on the management and restoration of lost breeding habitats (Sierro, 2013, 2016). However, almost all tracked nightjars (visual inspection of tracking data) in our study have been recorded foraging in extensively cultivated agricultural grasslands, alpine meadows or in vineyards.

The use of extensively cultivated grasslands for foraging seems to be common among nightjars (Alexander & Cresswell, 1990; Evens *et al.*, 2018a). In our study, both extensive and semi-extensive grasslands, and not the natural xerophytic vegetation, are the predominant grassland types used by nightjars in foraging sites (Fig. 3A). The former grasslands are managed with a low to intermediate level of fertilizers; and it may be that these grasslands host a higher biomass of invertebrate fauna than natural grasslands, despite the presence of rare fauna and flora in the latter (Andrey *et al.*, 2016).

Due to the high availability of vineyards, the compositional analysis probably did not identify nightjars’ preference for this habitat type. From GPS-based foraging data, however, we observe that some individuals almost exclusively forage in vineyards. From field observations we expect that nightjars most likely select specific vineyards with a biodiversity-friendly management and a diverse ground vegetation that is known to promote invertebrate abundance (Bosco, Arlettaz, Jacot 2019a, Bosco *et al.*, 2019b). That nightjars selected intensively managed vineyards would not be expected but can be explained by ongoing changes in management techniques. While still roughly 80% of vineyards in Valais are intensively managed and use herbicides to kill the ground vegetation, a growing minority is applying a more biodiversity-friendly management. Such parcels show a permanent ground vegetation that has a positive effect on insectivorous birds and their prey (Bosco *et al.*, 2019a). In addition, semi-natural structures such as bushes and
hedges on or around vineyard plots are known to be important structures for perching and foraging (Guyot et al., 2017).

It is important to stress that it remains challenging to assess the actual importance small landscape elements or remnants of specific habitat types when such fragments are misclassified at larger spatial scales and important environmental information is lost (English et al., 2017). For this reason, we assume that the actual importance of extensively cultivated agricultural grasslands and biologically managed vineyards is not identified by the compositional analysis in our study, due to their fragmentation within the surrounding intensively cultivated landscape.

Landscape complementation

In order to reach foraging habitats, nightjars flew considerable distances (mean foraging distance: 1.3 ± 0.7 km), even into the urbanized valley. The recorded foraging distances are in line with other telemetry (2.6 ± 1.1 km in Evens et al. [2017a], 3.1 ± 1.2 km in Alexander and Cresswell, 1990) and GPS-tracking studies (range 0.6–3.3 km in Evens et al., 2018a,2018b) performed elsewhere in Europe, but foraging distances in our study are higher compared to an earlier telemetry-based study (0.7 ± 0.5 km in Sharps et al. [2015]). Nightjars are able to connect complementary habitats, even when these are separated by several kilometres (Alexander & Cresswell, 1990; Camacho et al., 2014; Evens et al., 2018a). Herein, landscape heterogeneity influences the connectivity between complementary resources. In case of habitat composition, shorter foraging distances are observed when structural habitat diversity is lower and functional habitat diversity is higher. In our particular case, these findings seem to suggest that high structural habitat diversity was mainly explained by high diversity of unsuitable and breeding/roosting habitat types, whereas low functional habitat diversity most likely is determined by the overabundance of one of these functional habitats. This could imply that nightjars are more reluctant to traverse a high amounts of (unsuitable) habitat in order to reach foraging sites. In line with these findings, we observe that foraging distance is also shorter in randomly distributed landscapes where breeding and foraging habitats probably can be found on a much smaller spatial scale.

Although our study has been performed in a different environment compared to Western-European studies on the same species (Alexander & Cresswell, 1990; Evens et al., 2018a), our results confirm that nightjars require complementary habitats to breed and to forage (Alexander & Cresswell, 1990; Evens et al., 2018a), something which has also been demonstrated for other species of Nightjars (e.g. *Caprimulgus ruficollis* in Camacho et al., 2014). These findings further support the belief that complementary habitat requirements are common among nightjars. Because habitat composition and configuration influence nightjars’ foraging distance in our study, it is clear that landscape heterogeneity affects landscape complementation (sensu Dunning, Danielson & Pulliam, 1992) for nightjars. The similar observations in the afore-mentioned studies suggest that ongoing landscape homogenization and fragmentation of foraging habitats, and in particular those further from breeding habitats, may increase travel distance between non-suitable resources and thus affect nightjar populations. Landscape complementation has a strong influence on the viability of a wide range of animal communities (e.g. Chadès et al., 2015; Ripperger et al., 2015; Collins & Fahrig, 2017), contributing to species occurrence over time (Ikin et al., 2018), yet, factors beyond landscape heterogeneity might also be driving rapid declines of the aerial insectivore guild (English et al., 2017; Grubisic et al., 2018; Wagner, 2020). At a wider landscape scale (e.g. home range placement), animals might select areas where complementary resources are close to minimize movement costs (i.e. high landscape complementation). Yet at a local scale (e.g. within home range habitat use), resource depletion may lead to habitat patches that are ultimately avoided by these animals (Valls-Fox et al., 2018).

In our study area, we have no proof of resource depletion in foraging sites since many individuals have been observed to repeatedly forage in the same spot together during the entire study period (personal observations). Urbanization drives global environmental change causing, among many thing, severe declines of aerial insects (Kronfeld-Schor et al., 2013; Owens & Lewis, 2018; Piano et al., 2020). Unfortunately it is still unclear how nightjars respond to changes in food availability in breeding (Siervo et al., 2001; Sharps et al., 2015b) or foraging habitats (Evens et al., 2018a) and whether alterations in micro-habitat structures (Sharps et al., 2001; Wichmann, 2004; Camacho, 2014) or perhaps even anthropogenically mediated food availability (personal observations; Jackson, 2003; Siervo & Erhardt, 2019) might play a role in the habitat and spatial use of nightjars.

Conservation

Our national approach suggests that, during the last four decades, the Swiss nightjar population has suffered from declines due to land cover changes in foraging habitats. Recently, other factors, such as light pollution, have been proposed to negatively influence the relationship between the nightjar breeding populations in Valais and the growing human population (Siervo & Erhardt, 2019). It is, however, still unclear which factors during the breeding (e.g. light pollution, food availability, land cover change, disturbance or predation) and the non-breeding period (e.g. land cover change or climate change) actually contributed to the decline of nightjars in Switzerland.

Missing the appropriate knowledge on nightjars’ requirement for complementary habitats to breed and to forage, might have substantially contributed to the low efficiency of conservation measures taken during the last decades in our study population. This idea is further supported by our observations that suitable foraging habitats are still available close to the remaining breeding sites in Valais, but have disappeared from breeding sites where most historical conservation measures have taken place. Most of the managed breeding areas are small isolated clearings on southern slopes in areas where semi-extensive meadows have disappeared.
and have been replaced by vineyard and forest; or in the lowland on less dry and exposed areas close to intensive agricultural fields. As a result, the surroundings of the restored sites actually comprise monotone agricultural fields or intensive grasslands used for silage with small landscape elements. We expect that their suitability as foraging habitats is comparable with intensively managed grasslands (e.g. artificially sown meadows). Furthermore, we expect that, without small landscape elements to perch, the access to these grasslands is low since foraging site selection also reflects the ease of prey capture (Sierro et al., 2001) and predator avoidance (Camacho, 2014; Evens et al., 2017b).

Albeit the concept of landscape complementation is all but novel in conservation biology (Dunning et al., 1992), it cannot be considered as long as knowledge about species’ ecological requirements is lacking. For long, the conservation action plan for the nightjar in Switzerland has focused on the optimization of forest structure used as breeding grounds (Sierro, 2016) while important habitats for this endangered species were disappearing. As a result, the process resulting in the abandonment of an important part of the Swiss nightjar territories is still slowly ongoing. Near occupied breeding areas, extensive and semi-natural grasslands are more and more scattered and isolated. These habitats are heavily affected by on-going land use changes and thus considered among the most threatened habitats in mountainous landscapes (Canals & Sebastià, 2000).

Areas with high complementarity between different resources support high population densities (e.g. Brotons et al., 2005; Haynes, Dieköttér & Crist, 2007), also in case of nightjars (Camacho et al., 2014). To promote landscape complementarity, conservationists should improve species’ accessibility to complementary habitats (Pope, Fahrig & Gray, 2000) by considering both habitat configuration and composition (Haase et al., 2017). The similar findings between recent nightjar studies across Western Europe suggest that refining current conservation programs for nightjars in Europe could be done by (i) creating or restoring breeding grounds in proximity of suitable foraging habitats and (ii) focusing on creating/restoring foraging habitats in proximity to breeding habitats. Although higher amounts of habitat can support a higher diversity of macro-moth species (Merckx et al., 2019), the significance of small habitat patches for conservation purposes should not be neglected (Fahrig et al., 2019; Fahrig, 2020) to increase landscape complementation (Fahrig, 2017). This has also been demonstrated in our study by many nightjars foraging at the same time in remnant foraging patches near more intensively managed grasslands or vineyards (personal observations, Supporting Information). Particularly, the preservation and restoration of semi-extensive grassland habitats should be promoted in order to retain a high abundance, diversity and biomass of invertebrates. In the special case of vineyards, we also learnt from field observations that nightjars selected biologically managed vineyards. Since land-sharing policies provide higher ecological value than land-sparing policies (Fahrig, 2017), we suggest to support initiatives that want to create biologically managed vineyards. Moreover, in combination with unproductive areas between vineyards and small, extensively cultivated grasslands comprising small landscape elements such trees, bushes and hedges (Supporting Information), this may have a positive effect on habitat selection processes in nightjars as has been shown for a number of avian species (Guyot et al., 2017).

Acknowledgements

The authors wish to thank M. Evens for his help during fieldwork and R. Spaar, A. Loenders, K. Vanmarcke, and Fien and Fleur Evens for their support and relevant comments on this paper. Permissions were granted by the Laboratoire cantonal et affaires vétérinaires Valais (VS032018). Open access funding enabled and organized by Projekt DEAL.

References

Aebischer, N.J., Robertson, P.A., & Kenward, R.E. (1993). Compositional analysis of habitat use from animal radio-tracking. Ecology 74, 1313–1325.
Alexander, I. & Cresswell, B. (1990). Foraging by nightjars Caprimulgus europaeus away from their nesting areas. Ibis 132, 568–574.
Andrey, A., Humbert, J. Y. & Arlettaz, R. (2016) Functional response of leaf- and planthoppers to modern fertilisation and irrigation of hay meadows. Basic and Applied Ecology. 17(7), 627–637. https://doi.org/10.1016/j.baae.2016.07.002
Besag, J., York, J. & Mollié, A. (1991). A Bayesian image restoration with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–59.
de Bie, K., Addison, P.F.E. & Cook, C.N. (2018). Integrating decision triggers into conservation management practice. J. Appl. Ecol. 55, 494–502. https://doi.org/10.1111/1365-2664.13042
Bosco, L., Arlettaz, R. & Jacot, A. (2019a). Ground greening in vineyards promotes the Woodlark Lullula arborea and their invertebrate prey. J. Ornithol. 160, 799–811. https://doi.org/10.1007/s10336-019-01666-7
Bosco, L., Wan, H.Y., Cushman, S.A., Arlettaz, R. & Jacot, A. (2019b). Separating the effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework. Landsc. Ecol. 34, 105–117. https://doi.org/10.1007/s10980-018-0748-3
Brotons, L., Wolff, A., Paulus, G. & Martin, J.L. (2005). Effect of adjacent agricultural habitat on the distribution of passerines in natural grasslands. Biol. Conserv. 124, 407–414. https://doi.org/10.1016/j.biocon.2005.01.046
Calenge, C. (2011). Exploratory analysis of the habitat selection by the wildlife in R : the adehabitatHS Package. R CRAN Proj. 1–60.
Camacho, C. (2014). “Bodyguard” plants: predator-escape performance influences microhabitat choice by nightjars. Behav. Processes 103, 145–149. https://doi.org/10.1016/j.beproc.2013.11.007.
Camacho, C., Palacios, S., Sáez, P., Sánchez, S. & Potti, J. (2014). Human-induced changes in landscape configuration influence individual movement routines: lessons from a versatile, highly mobile species. *PLoS One* **9**, e104974. https://doi.org/10.1371/journal.pone.0104974.

Canals, R.M. & Sebastià, M.T. (2000). Analyzing mechanisms regulating diversity in rangelands through comparative studies: a case in the southwestern Pyrenees. *Biodivers. Conserv.* **9**, 965–984. https://doi.org/10.1023/A:1008967903169.

Catry, I., Franco, A.M., Rocha, P., Alcazar, R., Reis, S., Cordeiro, A., Ventim, R., Teodóso, J. & Moreira, F. (2013). Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester. *PLoS One* **8**, e58320. https://doi.org/10.1371/journal.pone.0058320.

Chadès, I., Nicol, S., van Leeuwen, S., Walters, B., Firn, J., Reesson, A., Martin, T.G. & Carwardine, J. (2015). Benefits of integrating complementarity into priority threat management. *Conserv. Biol.* **29**, 525–536. https://doi.org/10.1111/cobi.12413.

Collins, S.J. & Fahrig, L. (2017). Responses of anurans to composition and configuration of agricultural landscapes. *Agric. Ecosyst. Environ.* **239**, 399–409. https://doi.org/10.1016/j.agee.2016.12.038.

Conway, G., Wotton, S., Henderson, I. & Langston, R. (2007). *Status and distribution of European Nightjars Caprimulgus europaeus* in the UK in 2004. 54, 98–111.

Delarze, R., Gosnet, Y., Eggenberg, S. & Vust, M. (2015). In *Rossolis, Guide des milieux naturels de Suisse*. 3rd edn, 440 p.

Dunning, J.B., Danielson, B.J. & Pulliam, H.R. (1992). Ecological processes that affect populations in complex landscapes. *Oikos* **65**, 169–175.

English, P.A., Nocera, J.J., Pond, B.A. & Green, D.J. (2017). Habitat and food supply across multiple spatial scales influence the distribution and abundance of a nocturnal aerial insectivore. *Landsc. Ecol.* **32**, 343–359. https://doi.org/10.1007/s10164-016-0454-y.

Evans, R., Beenaerts, N., Neyens, T., Witters, N., Smeets, K. & Artois, T. (2018a). Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. *Sci. Rep.* **8**, 3008. https://doi.org/10.1038/s41598-018-21321-0.

Evans, R., Beenaerts, N., Ulenaers, E., Witters, N. & Artois, T. (2018b). An effective, low-tech drop-off solution to facilitate the retrieval of data loggers in animal-tracking studies. *Ringing Migr.* **33**, 10–18. https://doi.org/10.1080/03078698.2018.1521116.

Evans, R., Beenaerts, N., Witters, N. & Artois, T. (2017a). Study on the foraging behaviour of the European Nightjar *Caprimulgus europaeus* reveals the need for a change in conservation strategy in Belgium. *J. Avian Biol.* **48**, 1238–1245. https://doi.org/10.1111/jav.00996.

Evans, R., Beenaerts, N., Witters, N. & Artois, T. (2017b). Nightjar diversity and microhabitat use in Nechisar National Park, Ethiopia. *Ostrich J. African Ornithol.* **89**(1), 87. https://doi.org/10.2989/0306525.2017.1407004.

Fahrig, L. (2017). Ecological responses to habitat fragmentation per se. *Annu. Rev. Ecol. Evol. Syst.* **48**, 1–23. https://doi.org/10.1146/annurev-ecolsys-110316-022612.

Fahrig, L. (2020). Why do several small patches hold more species than few large patches? *Glob. Ecol. Biogeogr.* **29**, 615–628. https://doi.org/10.1111/geb.13059.

Fahrig, L., Arroyo-Rodríguez, V., Bennett, J.R., Bouchet-Lalonde, V., Cazetta, E., Currie, D.J., Eigenbrod, F., Ford, A.T., Harrison, S.P., Jaeger, J.A.G., Koper, N., Martin, A.E., Martin, J.L., Metzger, J.P., Morrison, P., Rhodes, J.R., Saunders, D.A., Simberloff, D., Smith, A.C., Tischendorf, L., Vellend, M. & Watling, J.J. (2019). Is habitat fragmentation bad for biodiversity? *Biol. Conserv.* **230**, 179–186. https://doi.org/10.1016/j.biocon.2018.12.026.

Fattebert, J., Michel, V., Scherler, P., Naef-Daenzer, B., Milanès, P. & Grüebl, M.U. (2018). Little owls in big landscapes: informing conservation using multi-level resource selection functions. *Biol. Conserv.* **228**, 1–9. https://doi.org/10.1016/j.biocon.2018.09.032.

Fieberg, J. (2007). Kernel density estimators of home range: smoothing and the autocorrelation of red herring. *Ecology* **88**, 1059–1066.

Gaston, K.J., Jackson, S.F., Cantú-Salazar, L. & Cruz-Piñón, G. (2008). The ecological performance of protected areas. *Annu. Rev. Ecol. Evol. Syst.* **39**, 93–113. https://doi.org/10.1146/annurev.ecolsys.39.110707.173529.

Grubisic, M., van Grunsven, R.H.A., Kyba, C.C.M., Manfrin, A. & Höfler, F. (2018). Insect declines and agroecosystems: does light pollution matter? *Ann. Appl. Biol.* **173**, 180–189. https://doi.org/10.1111/aab.12440.

Guyot, C., Arlettaz, R., Korner, P. & Jacot, A. (2017). Temporal and spatial scales matter: circannual habitat selection by bird communities in vineyards. *PLoS One* **12**, 1–28. https://doi.org/10.1371/journal.pone.0170176.

Halse, C.G., Fletcher, R.J., Stone, D.H., Reid, J.P. & Butler, S.M. (2017). Landscape complementation revealed through bipartite networks: an example with the Florida manatee. *Landsc. Ecol.* **32**, 1999–2014. https://doi.org/10.1007/s10164-017-0560-5.

Haynes, K.J., Diekötter, T. & Crist, T.O. (2007). Resource complementation and the response of an insect herbivore to habitat area and fragmentation. *Oecologia* **153**, 511–520. https://doi.org/10.1007/s00442-007-0749-4.

Hinsley, S.A., Hill, R.A., Bellamy, P.E., Harrison, N.M., Speakman, J.R., Wilson, A.K. & Ferns, P.N. (2008). Effects of structural and functional habitat gaps on breeding woodland birds: working harder for less. *Landsc. Ecol.* **23**, 615–626. https://doi.org/10.1007/s10580-008-9225-8.

Ikin, K., Tulloch, A.I.T., Ansell, D. & Lindenmayer, D.B. (2018). Old growth, regrowth, and planted woodland provide complementary habitat for threatened woodland
Improving species’ conservation

R. Evens et al.

birds on farms. *Biol. Conserv.* **223**, 120–128. https://doi.org/10.1016/j.biocon.2018.04.025

IUCN. (2020). *The IUCN Red List of Threatened Species [WWW Document]*. IUCN 2020.

Jackson, H.D. (2003). Another reason for nightjars being attracted to roads at night. *Ostrich* **74**, 228–230.

Jacob, J.-P., Dehem, C., Burname, A., Dambiermont, J.-L., Fasol, M., Kinet, T., van der Elst, D., Paquet, J.-Y. (2010). *Atlas des oiseaux nicheurs de Wallonie 2001–2007*. Aves et Région wallonne, Gembloux.

Johnson, D.H. (1980). The comparison of usage and availability measurements for evaluating resource preference. *Ecology* **61**, 65–71. https://doi.org/10.2307/1937156

Jones, T.B., Park, S.C., Arnould, J.P.Y., Rodriguez-Malagon, M.A., Wells, M.R. & Green, J.A. (2018). Evidence of sociality in the timing and location of foraging in a colonial seabird. *Biol. Lett.* **14**, 9–12. https://doi.org/10.1098/rsbl.2018.0214

Kay, S.L., Gerber, A., Schmid, H., Volet, B. & Zbinden, N. (2010). *Liste rouge Oiseaux nicheurs. Off. fédéral l’environnement, Berne Stn. Ornithol. Suisse, Sempach*.

Knaus, P., Antoniazza, S., Wechsler, S., Guérin, E.D., Dayan, T. & Helfrich-Forster, C. (2013). *Swiss breeding bird atlas 2013–2016*. Distribution and population trends of birds in Switzerland and Liechtenstein. Schweizerische Vogelwarte.

Kronfeld-Schor, N., Dominoni, D., de la Iglesia, H., Levy, O., Mathijsen, E., Pinseel, E., Sablon, R., Schön, I., Stoks, R., Van Doninck, K., Van Dyck, H., Vanormelingen, P., Van Wichen, J., Vyverman, W., De Meester, L. & Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. *Glob. Chang. Biol.* **26**, 1196–1211. https://doi.org/10.1111/gcb.14934

Piperno, H.-P. (2003). The folded exponential transformation. *J. R. Stat. Soc.* **52**, 575–589.

Pope, S.E., Fahrig, L. & Gray, M. (2000). Landscape complementation and metapopulation effects on leopard frog populations. *Ecology* **81**, 2498–2508.

Ripperger, S.P., Kalko, E.K.V., Rodriguez-Herrera, B., Mayer, F. & Tschapka, M. (2015). Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments. *PLoS One* **10**, e0120535. https://doi.org/10.1371/journal.pone.0120535

Ropert-Coudert, Y., Wilson, R.P., Daunt, F. & Kato, A. (2004). Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. *Behav. Ecol.* **15**, 824–830. https://doi.org/10.1093/beheco/arih086

Scherrer, D., Christe, P. & Guisan, A. (2019). Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. *Divers. Distrib.* **25**, 770–782. https://doi.org/10.1111/dad.12893

Schiesser, L., Géroudet, P., Winkler, R., Jacquat, B., Jean-Claude, P. (1980). *Atlas des oiseaux nicheurs de Suisse (1972–1976)*. Sempach: Station ornithologique suisse.

Schmid, H., Luder, R., Naef-Daenzer, B., Graf, R. & Zbinden, N. (1998). *Schweizer Brutvogelatlas. Atlas des Oiseaux Nicheurs de Suisse. Verbreitung der Brutvögel im Gebiet der Schweiz und im Fürstentum Liechtenstein 1993–1996*. Distribution des Oiseaux Nicheurs en Suisse et au Liechtenstein en 1993–1996. Schweizerische Vogelwarte, Sempach.

Schradin, C., Schmohl, G., Rödel, H.G., Schoepf, I., Treffler, S.M., Brenner, J., Bleeker, M., Schubert, M., König, B. & Pillay, N. (2010). Female home range size is regulated by resource distribution and intraspecific competition: a long-term field study. *Anim. Behav.* **79**, 195–203. https://doi.org/10.1016/j.anbehav.2009.10.027

Schwartz, M.W., Cook, C.N., Pressey, R.L., Pullin, A.S., Runge, M.C., Salafsky, N., Sutherland, W.J. & Williamson, M.A. (2017). Decision support frameworks and tools for cross-taxon declines in abundance and diversity at multiple spatial scales. *Glob. Chang. Biol.* **26**, 1196–1211. https://doi.org/10.1111/gcb.14934

Owens, A.C.S. & Lewis, S.M. (2018). The impact of artificial light at night on nocturnal insects: A review and synthesis. *Ecol. Evol.* **8**, 11337–11358. https://doi.org/10.1002/ece3.4557

Piano, E., Souffreau, C., Merckx, T., Baardsen, L.F., Backeljau, T., Bonte, D., Brans, K.I., Cours, M., Dahirel, M., Deportoli, N., Decaestecker, E., De Wolf, K., Engelen, J.M.T., Fontaneto, D., Gianuca, A.T., Govaert, L., Hanashiro, F.T.T., Higuti, J., Lens, L., Martens, K., Matheve, H., Matthysen, E., Pinseel, E., Sablon, R., Schön, I., Stoks, R., Van Doninck, K., Van Dyck, H., Vanormelingen, P., Van Wichen, J., Vyverman, W., De Meester, L. & Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. *Glob. Chang. Biol.* **26**, 1196–1211. https://doi.org/10.1111/gcb.14934
conservation. Conserv. Lett. 11, 1–12. https://doi.org/10.1111/conl.12385
Sharps, K., Henderson, I., Conway, G., Armour-Chelu, N. & Dolman, P.M. (2015). Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape. Ibis 157, 260–272. https://doi.org/10.1111/ibi.12251
Sierro, A. (2013). Mesures de conservation et suivi de l’engoulevent Caprimulgus europaeus en Valais: Bilan 2012. Sempach. https://doi.org/10.3897/rethinkingecology.3.29338
Sierro, A. (2016). Interventions forestières en faveur de l’Engoulevent en Valais (Alpes suisses). Sempach. Swiss Ornithological Institute: rapporte interne.
Sierro, A., Arlettaz, R., Naeff-Daenzer, B., Strebel, S. & Zbinden, N. (2001). Habitat use and foraging ecology of the nightjar (Caprimulgus europaeus) in the Swiss Alps: towards a conservation scheme. Biol. Conserv. 98, 325–331.
Sierro, A. & Erhardt, A. (2019). Light pollution hampers recolonization of revitalised European Nightjar habitats in the Valais (Swiss Alps). J. Ornithol. 160, 749–761. https://doi.org/10.1007/s10336-019-01659-6
Sutherland, W.J., Pullin, A.S., Dolman, P.M. & Knight, T.M. (2004). The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308. https://doi.org/10.1016/j.tree.2004.03.018
Theux, C. (2019). A multiscale modelling approach to understand the requirements of a rare and endangered owl in Switzerland. Lausanne: Université de Lausanne.
Valls-Fox, H., De Garine-Wichatitsky, M., Fritz, H. & Chamaillé-Jammes, S. (2018). Resource depletion versus landscape complementation: habitat selection by a multiple central place forager. Landsc. Ecol. 33, 127–140. https://doi.org/10.1007/s10980-017-0588-6
Wagner, D.L. (2020). Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151
Wakefield, E.D., Phillips, R.A. & Matthiopoulos, J. (2014). Habitat-mediated population limitation in a colonial central-place forager: the sky is not the limit for the black-browed albatross. Proc. Biol. Sci. 281, 20132883. https://doi.org/10.1098/rspb.2013.2883
Weber, M.M., Stevens, R.D., Diniz-Filho, J.A.F. & Grelle, C.E.V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 40, 817–828. https://doi.org/10.1111/ecog.02125
Wichmann, G. (2004). Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. J. Ornithol. 145, 69–73. https://doi.org/10.1007/s10336-003-0013-6
Winiger, N., Korner, P., Arlettaz, R. & Jacot, A. (2018). Vegetation structure and decreased moth abundance limit the recolonisation of restored habitat by the European Nightjar. Rethink. Ecol. 3, 25–39. https://doi.org/10.3897/rethinkingecology.3.29338

Supporting information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Ringing and deployment details.
Appendix S2. Definition of grassland types following Theux (2019).
Appendix S3. Reclassified habitat types
Appendix S4. Spatio-temporal CAR convolution Bernoulli model specification
Appendix S5. Within-home range habitat use based on GPS-observations within breeding habitats and while presumed foraging (perched).
Appendix S6. Workflow to obtain estimates of within home range habitat use, home range placement and national dynamics.
Appendix S7. Foraging distance per study area.
Appendix S8. Departure of foraging trips in relation to sundown and sunrise
Appendix S9. Detailed results from the compositional analysis.
Appendix S10. Effect sizes and credible intervals of land cover change on the Swiss nightjar population.
Appendix S11. Example of a foraging nightjar in a Vineyard.