Adequacy of Lymph Node Staging in Colorectal Cancer: Analysis of 250 Patients and Analytical Literature Review

Mohammad Mohammadianpanah 1, Leila Ghahramani 3, *, Samira Razzaghi 2, Saeedeh Pourahmad 4

1 Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Student Research Committee, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
3 Colorectal Research Center, Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
4 Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran

*Corresponding Author: Leila Ghahramani, Colorectal Research Center, Shaheed Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-7112331006, Fax: +98-7112330724, E-mail: leila_ghahramani@yahoo.com

ABSTRACT

Background: The extent of lymph node involvement is the most important prognostic factor in resected locoregional colorectal cancer. Currently, examination of at least 12 lymph nodes is recommended for adequate colorectal cancer staging.

Objectives: The present study aimed to evaluate the adequacy of lymph node staging in 250 patients with colorectal cancer and analytical literature review.

Patients and Methods: Two hundred fifty patients with histologically proven locoregional invasive colorectal adenocarcinoma from 2005 to 2011 were included. All patients were treated by standard surgical resection for their disease. Twenty-three patients with rectal cancer received neoadjuvant treatment. All potential tumor, patient and treatment variables were evaluated for their impact on the average total number of lymph node examined.

Results: In this study, 147 men and 103 women with a median age of 54 (range 23-84) years were included. The median total number of lymph nodes examined was 7 (mean 9.35). Sixty-nine patients (27.6%) had adequate (≥ 12) lymph nodes examination, and twenty patients (8%) had no nodes examined. In univariate analysis, younger age, colon primary site, larger tumor size, the presence of lymphatic vascular invasion, the lack of neoadjuvant treatments, individual surgeon B and Hospital B were more associated with the average total number of lymph node examined.

Conclusion: This study indicates that only less than a third of patients with colorectal cancer underwent adequate lymph nodes examination. Further investigation using careful pathologic reviewing of specimens with inadequate lymph node examined is suggested for differentiating true inadequate lymph node dissection from inadequate lymph node detection.

Keywords: Colorectal Cancer; Colon; Rectum; Lymph Node Staging; Surgery; Dissection

Article type: Research Article; Received: 28 Feb 2013, Revised: 15 Mar 2013, Accepted: 07 Apr 2013; DOI: 10.5812/acr.11495

Implication for health policy/practice/research/medical education:
Inadequate lymph nodes evaluation is a common problem in colorectal cancer. This issue can potentially lead to understaging diseases and insufficient adjuvant treatment. Careful pathologic reviewing of specimens with inadequate lymph node examined was suggested for differentiating true inadequate lymph node dissection from inadequate lymph node detection.

Please cite this paper as:
Ghahramani L, Razzaghi S, Mohammadianpanah M, Pourahmad S. Adequacy of lymph node staging in colorectal cancer: Analysis of 250 patients and analytical. Ann Colorectal Res: 2013;1(1): 3-11. DOI: 10.5812/acr.11495

Copyright © 2012, Kowsar Corp.; Published by Kowsar Corp.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Background

Colorectal cancer is the fifth most frequently diagnosed cancer and the leading cause of cancer death in developing countries (1). In Iran, colorectal cancer is the fourth most commonly diagnosed cancer in males and the second in females (2). Pathologic stage is the most significant prognostic factor determining the use of adjuvant therapy and predicting outcome in patients with this neoplasm (3-6). The American Joint Committee on Cancer (AJCC) The tumor node metastasis (TNM) staging system is widely used for staging colorectal cancer (4). In AJCC TNM staging system, N0 represents no regional lymph node metastasis; N1, metastasis in 1-3 regional lymph nodes and N2, metastasis in four or more regional lymph nodes (4, 7). According to this staging system, the extent lymph node involvement is one of the most important prognostic factors in resected locoregional disease (4, 5, 7). Currently, examination of at least 12 lymph nodes is recommended for adequate colorectal cancer staging (5, 8, 9). Despite this recommendation, inadequate lymph nodes evaluation is common. In the United States, approximately one third of colorectal cancer patients undergo adequate lymph nodes evaluation (10). Inadequate lymph nodes staging in colorectal cancer can potentially lead to understaging patients and insufficient adjuvant treatment (5).

2. Objectives

The present study aimed to investigate the rate of adequacy of lymph node staging in patients with colorectal cancer in Shiraz, Southern Iran, and analytical literature review.

3. Patients and Methods

In this study, we included 250 patients aged between 23 and 84 years who had locoregional invasive colorectal adenocarcinoma treated at our institution between January 2004 and December 2010. Patients presenting with in situ or metastatic disease, with pathologies other than adenocarcinoma, and with unresectable or inoperable disease were excluded. In addition, we excluded patients with missing or incomplete medical records or who lacked complete pathological reports or who had undergone total colectomy or palliative surgery. All patients were restaged according to the 7th edition of the AJCC TNM staging system (4). The same numbers of primary site (colon, 125 and rectum, 125) were included. All patients with primary colon cancer were initially treated with standard curative surgical resection. In cases with primary rectal cancer; however, 23 patients received neoadjuvant chemoradiation (15 cases) or chemotherapy (8 cases) followed by curative-intent surgery. Concurrent neoadjuvant chemoradiation consisted of conventional external beam radiotherapy using megavoltage telecobalt therapy using megavoltage telecobalt units or linear accelerator photons. A median dose of 50 (range 45-50.5) Gy was delivered via a daily fraction of 1.8-2 Gy, with five fractions per week. Concurrent chemotherapy consisted of oral capecitabine 825 mg/m² twice daily for 14 of every three weeks cycle plus oxaliplatin 85 mg/m² intravenously on day one; or 5-fluorouracil 400 mg/m² bolus day one, followed by 2400 mg/m² over 46 hours plus oxaliplatin 85 mg/m² intravenously on day one, every two weeks. All patients receiving neoadjuvant chemoradiation underwent standard curative surgery with at least 4-6 weeks interval. In this study, we performed a comprehensive literature review of PubMed using the search terms of “node” and “cancer” and “colorectal” or “colon” or “rectum” or “rectal” to find out the major related studies over the last 15 years for discussing the manuscript. Articles in non-English language or with unavailable full text were excluded; however, informative abstracts were included. In all, we selected 55 major series including more than 400000 cases with resected colorectal cancer. The mean and median number of total lymph nodes examined was initially calculated. Subsequently, the percentage of patients who had at least 12 nodes examined and the percentage of patients who had no lymph node in their pathologic report were determined. Using Independent two sample T test and Analysis of Variance (ANOVA) test, the mean number of total lymph nodes examined was compared between groups. All potential tumor (anatomical site, tumor size, grade, surgical margin status, lymphatic-vascular invasion, perineural invasion, bowel obstruction, bowel perforation and the number of involved lymph nodes), patient (age and sex), treatment (surgeon, type of surgery and neoadjuvant treatments) and hospital characteristics were evaluated for their impact on the average total number of lymph node examined. The multivariate analysis using logistic regression modeling method was performed for determining any association between adequate lymph node examined and prognostic factors.

4. Results

There were 147 men and 103 women. The age at presentation was in the range 23-84 years with a median of 54 years. Ninety-six patients were less than or equal to 50 years old and 154 patients were older than 50 years old. The peak incidence was observed in the fifth and sixth decades of life. The age distribution (ages greater or less than 50 years) was not similar in two genders, and men (mean age 56.87 ± 12.97) were significantly older than women (mean age 52.73 ± 12.57) at presentation (P=0.012). Patients with rectal primary site tended to be presented...
Table 1. Patient and Tumor Characteristics by Primary Site

Characteristics	Rectum	Colon	Total	P value
Gender, No.				0.797
Male	72	75	147	
Female	53	50	103	
Age, Mean ± SD	57.2 ± 13.01	53.1 ± 12.60	55.16 ± 12.95	0.013
T stage, No.				0.301
0	1	0	1	
I	3	4	7	
II	37	27	64	
III	82	90	172	
IV	1	4	5	
Tumor grade, No.				0.020
Well differentiated	91	81	172	
Moderately differentiated	29	31	60	
Poorly differentiated	2	12	14	
Lymphatic-Vascular invasion, No.				0.725
Negative	65	61	126	
Positive	44	50	94	
Unknown	16	14	30	
Perineural invasion, No.				0.865
Negative	64	60	124	
Positive	16	18	34	
Unknown	45	47	92	
Tumor size, cm, No.				0.019
≤ 5	96	69	155	
> 5	37	56	93	
Obstruction and/or Perforation, No.				0.014
Negative	110	94	204	
Positive	15	31	46	
Total LN\(^a\)examined, Mean ± SD\(^a\)				0.007
Total LN examined	7.78 ± 7.49	10.92 ± 10.38	9.35 ± 9.17	
Adequate LN examined, No.				0.157
Adequate (≤ 12 LN)	96	85	181	
Inadequate (> 12 LN)	29	40	69	
LN involvement, No.				0.501
No	87	81	168	
Yes	38	44	82	
Positive LN\(^a\), Mean ± SD	1.22 ± 2.87	1.12 ± 3.48	1.17 ± 3.18	0.797

\(^a\)Abbreviation: LN, lymph node; SD, standard deviation
Table 2. Univariate Analysis of Potential Variables on Total Lymph Node Count in 250 Patients with Colorectal Cancer

Variables, No.	Patients	Mean total L.N	95% CI for means’ difference	p-value		
			Lower	Upper		
Gender						
Male	147	9.17				
Female	103	9.61	-2.766	1.883	0.709	
Age, y						
≤ 50 years	96	11.11				
> 50 years	154	8.27	0.261	5.418	0.031	
Primary site						
Rectum	125	7.78				
Colon	125	10.92	-5.392	-0.879	0.007	
Type of surgery						
Laparotomy	243	9.50				
Laparoscopy	7	4.14	-1.546	12.265	0.128	
Type of rectal surgery						
Low anterior resection	90	7.7				
Abdominoperineal resection	35	8	-3.266	2.666	0.084	
Surgeon						
A	58	4.62				
B	192	10.78	-7.894	-4.426	<0.001	
Hospital						
A	79	7.7				
B	171	10.11	-4.552	-0.252	0.029	
Primary tumor stage						
T0	1	0.0				
T1	7	4.71				
T2	64	8.93				
T3	172	9.59				
T4	5	13.20	8.175	10.466	0.045	
Tumor size, cm						
≤ 5 cm	96	11.11				
> 5 cm	153	8.27	0.261	5.418	0.031	
Neoadjuvant treatment						
Not received	227	9.85				
Received	23	4.43	5.415	0.993	<0.001	
Surgical margin status						
Negative	241	9.36				
Positive	9	8.22	-5.006	7.287	0.715	
Tumor grade						
Well differentiated	172	8.84				
Moderately differentiated	59	9.98				
Poorly differentiated	14	14.92	8.307	10.622	0.051	
Lymphatic-vascular invasion						
Negative	126	10.55				
Positive	94	9.20				
Unknown	30	4.76	1.465	10.112	0.007	
Perineural invasion						
Negative	124	9.15				
Positive	34	8.61				
Unknown	92	9.89	8.209	10.494	0.744	
Obstruction and/or Perforation						
Negative	204	8.76				
Positive	46	1195	-3.191	1.859	0.92	
Lymph node involvement						
Negative	168	8.94				
Positive	82	10.19	-1.254	2.235	0.311	

*Abbreviations: CI, confidence interval; L.N, lymph node
a Independent two samples T test;
b ANOVA test
in older age and have well differentiated smaller tumors compared to colon primary site ones. On the other hand, patients with colon primary site presented with higher rate of perforation and/or perforation have higher total number of lymph node examined compared to rectal primary site ones (Table 1).

In whole study population, the median and mean total numbers of examined lymph nodes were 7 and 9.35 respectively. Sixty-nine patients (27.6%) had adequate (≥ 12) lymph nodes examination, and 12 patients (8%) had no examined lymph nodes. Patients with rectal primary site tended to have higher rate of zero lymph node count (17 vs. 3, P = 0.002) compared to colon primary site ones. The majority (64.4%) of patients had 1–10 examined lymph nodes in their pathologic specimen. Figure 1 shows the relative distribution of total lymph node examination in 250 patients with resected colorectal cancer. Eighty-two patients (32.8%) were node positive. There was an association between lymph node positivity and advanced T stages (P = 0.003), the presence of perineural invasion (P = 0.009) and lymphatic vascular invasion (P < 0.001). In univariate analysis, younger age (P = 0.031), colon primary site (P = 0.007), individual surgeon B (P < 0.001), individual hospital B (P = 0.029), larger tumor size (P = 0.31), the presence of lymphatic vascular invasion (P = 0.007) and the lack of neoadjuvant treatments (P < 0.001) were associated with more average number of examined lymph node, (Table 2). Using the stepwise logistic regression modeling method, the independent variables were determined: primary tumor size (P < 0.001, Odds ratio (OR) = 3.141, CI = 1.657-5.953), surgeon (P = 0.001, OR = 7.432, CI = 2.184-25.288), lymphatic vascular invasion (P = 0.001, OR = 0.373, CI = 0.211-0.662), and tumor grade (P = 0.011, OR = 1.984, CI = 1.173-3.355) retained statistical significance in the model.

5. Discussion

Inadequate lymph node examination is a common pitfall in pathologic staging of colorectal cancer. This staging defect causes a great clinical challenge for predicting the prognosis and determining adjuvant treatments (8). Currently, standard management approach for patients with stage III colorectal cancers includes curative surgery combined with adjuvant treatments. In the case of inadequate lymph node examination, patients with actual stage III disease may be classified as stage I or II disease; therefore, they will be divested of optimal treatment (5). Pheby et al. concluded that an increased lymph node harvest was associated with higher rate of stage III disease detection in colorectal cancer patients (11). Despite many reports regarding the adequacy of lymph node staging in resected colorectal cancer in the literature, there is no data regarding this topic in Iran. Colorectal cancers usually occur in the seventh and eighth decades of life (10, 12-15). In the present study, the median age of our patients was 54 years old, which was remarkably lower than that of the results of the literature review in which the average median age of 303632 patients in 15 reported series was 70.7 (range 58-71) years old. To the contrary of the literature, in this study, patients with rectal cancer were found to be older than that of colon ones (13-17). Colorectal cancer is generally more common in women in the literature and in the 11 large studies including 217906 patients, men accounted for 47.4% (range 43%-58%) of all cases (12-15, 18-24); however, in our study, this value was 58.8% for male patients. The mean total number of lymph node examined was 10.9 (range 8.1-19.1) for 72102 patients in 16 studies (11, 12, 16-18, 23, 25-34). In the present study, the mean total number of lymph node examined was 9.3. Likewise, the average median total number of lymph node examined was 9.5 (range 6-20) for 396460 patients in 21 studies (9, 10, 13-15, 17-20, 23, 25, 26, 34, 38, 40). Inadequate lymph node evaluation is common in the literature. By analyzing a pooled data of 23 large series including 379084 patients, only 41.2% (range 13%-79%) of all patients had adequate (≥ 12) lymph node evaluation (10, 12-14, 17-20, 22, 25, 26, 28-32, 34, 35, 37-39, 41, 42). In the present study, 27.6% of patients had an adequate lymph node evaluation which is significantly lower than that of mean value in the literature. Likewise, in this study, we found 8% of patients having no lymph nodes for examination which was significantly higher than 5.4% (range 1.4%-12.7%) among 350701 patients in 11 reported series (10, 13-15, 18, 25, 26, 28, 33, 41, 42), (Table 3).
The cause of inadequate lymph node yield is multifactorial. Several potential patients, tumor, treatment, and hospital factors can cause lymph node yield in resected colorectal cancer (8). In the literature review, among patient’s factors, younger age (10, 14, 16, 17, 19, 20, 23, 25, 26, 35, 37, 38, 41, 43, 44) and female gender (10, 14, 16, 17, 20, 23, 25, 26, 35, 43-45) had the most common association with higher examined lymph node.

In agreement with the literature, younger age was significantly associated with higher examined lymph node in our study; however, gender was not a significant factor for lymph node yield. Regarding the tumor factors, the average number of evaluated lymph nodes was correlated with specimen length (19, 31, 36, 43, 46), tumor size (16, 29, 31, 37, 43, 45-47), primary tumor stage (10, 14, 17, 20, 23, 25, 26, 35, 37, 38, 41, 43, 44), and tumor grade (10, 14, 17, 20, 23, 25, 26, 35, 37, 38, 41, 43, 44).

Table 3. The Status of Lymph Nodes Evaluation in Resected Colorectal Cancer in the Major Reported Series and the Present Study

Authors [ref]	Patients, No.	Primary Site	Stage	Median Age	TLNE, Mean	TLNE, Median	Stage III, Mean %	ALNE, %	Zero TLNE, %
Barbas (12)	371	Colon	I-III	67	19.1	-	39.9	77.9	-
Baxter (10)	116995	Colorectal	I-III	71	-	9	-	37.0	6.5
Baxter (13)	5647	Rectum	I-III	66	-	9	-	30.5	9
Bernhoff (25)	3536	Colon	I-IV	-	13	12	-	50.3	1.4
Bilimoria (14)	142009	Colon	I-IV	72	-	10	-	44.5	3.4
Chang (15)	23809	Rectum	I-IV	58	15.4	-	33	-	-
Dejardin (41)	4197	Colorectal	II-III	-	-	-	-	45.2	2
Elferink (35)	30682	Colon	I-III	-	-	8	-	49.0	-
Elferink (26)	10788	Rectum	I-III	-	8.9	7	40	22.6	5.8
Gelos (36)	341	Colorectal	I-III	-	15	-	-	-	-
Govindarajan (27)	708	Rectum	I-III	-	12.6	-	-	-	-
Hsieh (42)	10460	Colon	I-III	-	-	-	-	43.9	3.7
Kanemitsu (9)	4538	Colorectal	I-III	-	-	19	-	-	-
Joseph (33)	1585	Colon	II-III	-	16.5	16	81	-	4.1
Lagoudianakis (37)	454	Colorectal	I-III	-	-	13	-	58.4	-
Lee (17)	4538	Colon	I-III	64	12.5	11	34.6	51.9	-
Lemmens (20)	2168	Colon	I-III	70	-	6	36.8	13.9	-
Lindboe (10)	1050	Colon	I-III	-	8.1	-	-	22.3	4
Mitchell (38)	444	Colorectal	I-IV	70	-	11	47	49.1	-
Moore (34)	11399	Colon	I-III	-	11.6	10	15	41.9	-
Pheby (11)	1547	Colorectal	I-III	-	11.5	-	-	-	-
Shaw (22)	1194	Colorectal	I-IV	63	-	-	44.5	45.5	-
Shimomura (39)	266	Colorectal	III	64	-	14	100	65.8	-
Stocchi (19)	901	Colon	II	71	-	20	0	79.0	-
Thomas (40)	1098	Colorectal	I-III	-	-	11	41	-	-
Tsai (29)	366	Colorectal	I-III	69	12	-	0	50.0	-
Tsikitis (30)	329	Colon	III	70	14.7	-	100	51.9	-
Valsecchi (31)	337	Colorectal	I-III	-	12.7	-	-	51.9	-
Vather (32)	328	Colon	II	-	16	14	0	-	-
Vather (23)	4109	Colon	II-III	70	11.8	11	54.8	-	-
Wong SL (18)	30625	Colon	O-III	-	9.4	10	9.1	38.5	2
Present study	250	Colorectal	I-III	54	9.3	7	32.8	27.6	8

Abbreviations: ALNE, adequate lymph node examined; TLNE, total lymph node examined
Adequacy of Lymph Node Staging in Colorectal Cancer

Ghahramani L et al.

41, 44), lymphatic invasion (6, 36) site of primary tumor (14, 19, 23, 26, 31, 35-37, 41, 43, 44, 46, 47) and the presence of lymph node metastases (10, 17, 20, 22, 25, 26, 34, 35, 38, 41). In our research, larger tumor size, colon primary site, high grade tumors and the presence of lymphatic invasion were associated with higher average number of examined lymph nodes. According to our results, several reports confirmed the impact of surgeon (19, 22, 26, 35, 41, 48, 49), neoadjuvant treatments (13, 16, 27, 35, 44, 50-53) and pathologist (9, 11, 14, 18, 26, 35, 38, 41, 42, 54) on lymph node yield in resected colorectal cancer. Chang et al. concluded that preoperative radiotherapy was associated with an increased likelihood of zero lymph node in resected rectal specimen compared to postoperative therapy (18.6% vs. 6.2%) (15). There are conflicting reports regarding the impact of other potential factors such as body mass index (BMI) and the type of surgery on examined lymph node. Damadi et al. demonstrated no correlation between the number of lymph nodes and body mass index (BMI) among patients undergoing colectomy for colon cancer (55). In addition, Wu et al., in a meta-analysis investigated the impact of surgical approach on the number of total lymph nodes harvested colorectal cancer. They found no difference in the number of lymph nodes harvested in laparoscopic surgery compared to open surgery in colorectal cancer patients (56). There are some studies indicating significant improvement of lymph node yield over time (10, 22, 53, 57-59). Baxter et al., in a population-based study, found the fraction of patients with adequate (≥12) lymph node examination increased from 32% in 1988 to 44% in 2001 (10). In another study, Reese et al. showed the percentage of specimens achieving adequate lymph node examined increased from 50 to 67% between 1999 and 2006, and also increased from 83 to 87% between 2003 and 2006. In addition, they demonstrated the important role of pathology assistant training in harvesting the lymph nodes in colorectal cancer (57). Likewise, Sjo et al. found an increase in the number of examined lymph nodes and the proportion of patients with stage III disease from 1993 to 2009 (58). In the present study, we did not find an improvement in the number of examined lymph nodes over the study period (P = 0.138). Retrieval and detection of lymph nodes is clearly an essential component in evaluation of colorectal cancer pathologic specimen. Following curative surgery, the retrieval of at least 12 lymph nodes for each pathologic specimen can be achieved in vast majority of patients who had not received neoadjuvant. Therefore, in cases with insufficient lymph nodes examined, re-examination of the pathologic specimen with more accurate method such as fat-clearance or lymphatic staining techniques is highly recommended (6). Frasson et al. introduced another technique named mesocolon quality pathological evaluation protocol and the arterial ex vivo injection of methylene blue for improving pathologic lymph node detection in colorectal cancer specimens. They demonstrated this protocol along with the arterial ex vivo injection of methylene blue can drastically increase the number of nodes detection in colorectal cancer specimens (60). Moreover, some authors suggest different pathologic and lymphatic staining methods that can enhance the further and the smaller lymph node detection and improve the lymph node harvest of resected colorectal specimens (61-63).

This study indicates that only less than a third of patients with colorectal cancer underwent adequate lymph nodes examination in Shiraz, southern Iran. Further investigation using careful pathologic reviewing of specimens with inadequate lymph node examined is suggested for differentiating true inadequate lymph node dissection from inadequate lymph node detection.

Acknowledgements

This study was supported by Shiraz University of Medical Sciences as research number project 90-5680. The authors would like to thank Research Improvement Center of Shiraz University of Medical Sciences, Shiraz, Iran and Ms. A. Keivanshekouh for improving the use of English in the manuscript.

Authors’ Contribution

Leila Ghahramani involved in design, writing, revising the manuscript, and approval of final version. Samira Razzaghi involved in conception, design, data collection, literature review, writing the manuscript and approval of final version. Mohammad Mohammadianpanah, involved in design, data collection, literature review, writing, revising the manuscript, and approval of final version of the manuscript. Saeedeh Pourahmad involved in data analysing, interpretation, writing, revising the manuscript, and approval of final manuscript.

Financial Disclosure

None of the authors has any conflict of interest, financial or otherwise.

Funding/Support

Colorectal research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90.
2. Moradi A, Khayamzadeh M, Guya MM, Mirzaei HR, Salmanian R, Rakhsha A, et al. Survival of colorectal cancer in Iran. Asian Pac J Cancer Prev. 2009;10(4):583-6.
3. Greene FL, Stewart AK, Norton HJ. A new TNM staging strategy for node-positive (stage III) colon cancer: an analysis of 50,042 patients. Ann Surg. 2002;236(4):416-21.
4. Colon and Rectum. In: Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. American Joint Committee on Cancer: AJCC Cancer Staging Manual. 6th ed. Chicago, IL: Springer-Verlag New York; 2002:34-5.
Increased lymph node harvest in patients operated on for right-sided colon cancer: a population-based study. *Colorectal Dis.* 2012;14(6):609-6.

16. Eferinik MA, Siesling S, Lemmens VE, Visser O, Rutten HJ, van Krieken JH, et al. Lymph node evaluation in rectal cancer evaluation in a Dutch nationwide population-based study. *Ann Surg Oncol.* 2011;18(2):3865-9.

17. Govindarajan A, Gonen M, Weiser MR, Sha I, Temple JK, Guillem JG, et al. Challenging the feasibility and clinical significance of current guidelines on lymph node examination in rectal cancer in the era of neoadjuvant therapy. *Clin Oncol.* 2011;29(4):4568-73.

18. Lindboe CF. Lymph node harvest in colorectal adenocarcinoma specimens: the impact of improved fixation and examination procedures. *APMS.* 2011;119(6):347-55.

19. Tsai HL, Lu CY, Hsieh JH, Wu DC, Jan CM, Chai CY, et al. The prognostic significance of total lymph node harvest in patients with T2-4N0M0 colorectal cancer. *J Gastrointest Surg.* 2007;11(6):660-5.

20. Tsikitis VL, Larson DL, Wolf BG, Kennedy G, Diehl N, Qin R, et al. Survival in stage III colon cancer is independent of the total number of lymph nodes retrieved. *J Surg Oncol.* 2009;99(4):542-7.

21. Valsecchi ME, Leighton J, Jr, Tester W. Modifiable factors that influence colon cancer lymph node sampling and examination. *Clin Colorectal Cancer.* 2010;9(1):35-7.

22. Vathar R, Sammour T, Zargar-Shoshkari K, Metcalf P, Connolly A, Hill A. Lymph node examination as a predictor of long-term outcome among patients with rectal cancer. *Int J Colorectal Dis.* 2009;24(2):283-8.

23. Joseph NE, Sigurdsson ER, Hanlon AL, Wang H, Mayer RJ, McDonald JF, et al. Accuracy of determining nodal negativity in colorectal cancer on the basis of the number of nodes retrieved on resection. *Ann Surg Oncol.* 2003;10(3):219-8.

24. Moree J, Hymann N, Callas F, Littenberg B. Staging error does not explain the relationship between the number of lymph nodes in a colon cancer specimen and survival. *Surgery,* 2010;147(1):358-65.

25. Eferinik MA, Siesling S, Visser O, Rutten HJ, van Krieken JH, Tol- lenaar RA, et al. Large variation between hospitals and pathology laboratories in lymph node evaluation in colon cancer and its impact on survival, a nationwide population-based study in the Netherlands. *Ann Oncol.* 2011;22(3):310-7.

26. Geles M, Gelhaus J, Mehnert P, Bonhag G, Sand M, Philippou S, et al. Factors influencing lymph node harvest in colorectal surgery. *Int J Colorectal Dis.* 2008;23(1):53-9.

27. Lagoudianakis E, Pappas A, Koronakis N, Tsekouras D, Dal-liamoudis J, Kontogianni P, et al. Lymph node harvesting in colorectal carcinoma specimens. *Tumori.* 2011;97(7):748.

28. Mitchell PJ, Ravi S, Griffiths B, Reid F, Speake D, Midgley C, et al. Multicenter review of lymph node harvest in colorectal cancer: are we understimating colorectal cancer patients? *Int J Colorectal Dis.* 2009;24(4):915-21.

29. Shimomura M, Ikeda S, Takakura Y, Kagawuchi Y, Tokunaga M, Egi H, et al. Adequate lymph node examination is essential to ensure the prognostic value of the lymph node ratio in patients with stage III colorectal cancer. *Surg Today.* 2011;41(10):3570-9.

30. Thomas M, Biswas S, Mohamed F, Chandrakumar K, Jha M, Wilson R. Dukes C colorectal cancer: is the metastatic lymph node ratio important? *Int J Colorectal Dis.* 2012;27(3):309-17.

31. Dejardin O, Ruault E, Jooste V, Pernet C, Bouvier V, Bouvier AM, et al. Volume of surgical activity and lymph node evaluation for patients with colorectal cancer in France. *Dig Liver Dis.* 2012;44(3):267-71.

32. Hsieh MC, Velasco C, Wu XG, Pareti LA, Andrews PA, Chen WV. Influence of socioeconomic status and hospital type on disparities of lymph node evaluation in colon cancer patients. *Cancer.* 2012;118(3):870-7.

33. Fan I, Levy M, Aguilar CE, Mertens RB, Dhall D, Frishberg DP, et al. Lymph node retrieval from colorectal resection specimens for adenocarcinoma: is it worth the extra effort to find at least 12 nodes? *Colorectal Dis.* 2011;13(4):377-83.

34. Field K, Platell C, Rieger N, Stenner J, Watcho D, Jones I, et al. Lymph node yield following colorectal cancer surgery. *ANZ J Surg.* 2011;81(4):266-71.
Adequacy of Lymph Node Staging in Colorectal Cancer

Ghahramani L et al.

45. Horzic M, Kopljar M. Minimal number of lymph nodes that need to be examined for adequate staging of colorectal cancer-factors influencing lymph node harvest. Hepatogastroenterology. 2005;52(6):365-9.

46. Morikawa T, Tanaka N, Kuchiba A, Nosho K, Yamauchi M, Hornick JL, et al. Predictors of Lymph Node Count in Colorectal Cancer Resections: Data From US Nationwide Prospective Cohort Studies. Arch Surg. 2012.

47. Soreide K, Nedrebo BS, Soreide JA, Slewja A, Korner H. Lymph node harvest in colon cancer: influence of microsatellite instability and proximal tumor location. World J Surg. 2009;33(12):2695-703.

48. Evans MD, Robinson S, Badiani S, Rees A, Stamatatikis JD, Karandikar SS, et al. Same Surgeon: Different Centre Equals Differing Lymph Node Harvest following Colorectal Cancer Resection. Int J Surg Oncol. 2011;2011:406517.

49. Sinan H, Demirbas S, Ersoz N, Ozerhan IH, Yagci G, Akyol M, et al. Who is responsible for inadequate lymph node retrieval after colorectal surgery: surgeon or pathologist? Acta Chir Belg. 2012;112(3):200-8.

50. Wijesuriya RE, Deen KI, Hewavisenth J, Balawardana J, Rebera M. Neoadjuvant therapy for rectal cancer down-stages the tumor but reduces lymph node harvest significantly. Surg Today. 2005;35(6):442-5.

51. Frasson M, Faus C, Garcia-Granero A, Pers J, Flor-Lorente B, Cervantes A, et al. Pathological evaluation of mesocolic resection quality and ex vivo methylene blue injection: what is the impact on lymph node harvest after colon resection for cancer? Dis Colon Rectum. 2012;55(3):307-15.

52. He HF, Zhou MQ, Chen JQ, Tian W, Cai HK, Chen LR, et al. Time-Dependent Trends in Lymph Node Yield and Impact on Adjuvant Therapy Decisions in Colon Cancer Surgery: An International Multi-Institutional Study. Ann Surg Oncol. 2012.

53. Chou JF, Row D, Gonen M, Liu YH, Schrag D, Weiser MB. Clinical and pathologic factors that predict lymph node yield from surgical specimens in colorectal cancer: a population-based study. Cancer. 2010;116(10):2560-70.

54. Bilimoria KY, Bentrem DJ, Stewart AK, Talamonti MS, Winchester DP, Russell TR, et al. Lymph node evaluation as a colon cancer quality measure: a national hospital report card. J Natl Cancer Inst. 2008;100(18):1300-7.