Mostafa Allaoui

Existence results for a class of nonlocal problems involving $p(x)$-Laplacian

Received: 4 April 2014 / Accepted: 4 August 2014 / Published online: 20 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We study the existence of weak solutions for a $p(x)$-Kirchhoff problem. The main tool used is the variational method, more precisely, the Mountain Pass Theorem.

Mathematics Subject Classification 35J48 · 35J66

1 Introduction

In this paper, we consider the following problem:

$$-M \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \text{div}(|\nabla u|^{p(x)-2} \nabla u) = \lambda (a(x)|u|^{q(x)-2}u + b(x)|u|^{r(x)-2}u) \quad \text{in} \ \Omega,$$

$$u = 0 \quad \text{on} \ \partial \Omega,$$

where $\Omega \subset \mathbb{R}^N$, $N \geq 3$, is a bounded domain with smooth boundary $\partial \Omega$, $M : \mathbb{R}^+ \to \mathbb{R}$ is a continuous function, λ is a positive number, p is Lipschitz continuous on Ω, and q, r are continuous functions on Ω with $q^- := \inf_{x \in \Omega} q(x) > 1$, $r^- := \inf_{x \in \Omega} r(x) > 1$, $a(x) > 0$ for $x \in \overline{\Omega}$ such that $a \in L^{q^-}(\Omega)$, $a(x) = \frac{p(x)}{p(x)-q(x)}$ and $b \in L^{r^-}(\Omega)$, $r(x) = \frac{p^*(x)}{p^*(x)-r(x)}$. Hereafter,

$$p^*(x) = \begin{cases} \frac{Np(x)}{N-p(x)}, & \text{if} \ p(x) < N; \\ +\infty, & \text{if} \ p(x) \geq N. \end{cases}$$

We will use the notations such as h^- and h^+, where

$$h^- := \inf_{x \in \Omega} h(x) \leq h(x) \leq h^+ := \sup_{x \in \Omega} h(x) < +\infty.$$

The operator $\nabla_{p(x)} := \text{div}(|\nabla u|^{p(x)-2} \nabla u)$ is called the $p(x)$-Laplacian, and becomes p-Laplacian when $p(x) \equiv p$ (a constant). The $p(x)$-Laplacian possesses more complicated properties than the p-Laplacian; for
example, it is inhomogeneous. The study of problems involving variable exponent growth conditions has a strong motivation due to the fact that they can model various phenomena which arise in the study of elastic mechanics [21] and image restoration [7]. The problem (1.1) is a generalization of a model introduced by Kirchhoff [18]. More precisely, Kirchhoff proposed a model given by the equation

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{\rho_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 \, dx \right) \frac{\partial^2 u}{\partial x^2} = 0, \quad (1.2)$$

which extends the classical D’Alembert’s wave equation, by considering the effects of the changes in the length of the strings during the vibrations. Lions [19] has proposed an abstract framework for the Kirchhoff-type equations. After the work by Lions [19], various equations of Kirchhoff-type have been studied extensively, see [2,5]. The study of Kirchhoff-type equations has already been extended to the case involving the \(p \)-Laplacian (for details, see [3,4,10,11]) and \(p(x) \)-Laplacian (see [9,12]). Motivated by the above papers and the results in [8,20], we consider (1.1) to study the existence of weak solutions.

2 Preliminary

For completeness, we first recall some facts on the variable exponent spaces \(L^{p(x)}(\Omega) \) and \(W^{1,p(x)}(\Omega) \). For more details, see [13–15]. Suppose that \(\Omega \) is a bounded open domain of \(\mathbb{R}^N \) with smooth boundary \(\partial \Omega \) and \(p \in C_+(\overline{\Omega}) \), where

$$C_+(\overline{\Omega}) = \left\{ p \in C(\overline{\Omega}) \text{ and } \inf_{x \in \overline{\Omega}} p(x) > 1 \right\}.$$

Define the variable exponent Lebesgue space \(L^{p(x)}(\Omega) \) by

$$L^{p(x)}(\Omega) = \left\{ u : \Omega \rightarrow \mathbb{R} \text{ is measurable and } \int_\Omega |u|^{p(x)} \, dx < +\infty \right\},$$

with the norm

$$|u|_{p(x)} = \inf \left\{ \tau > 0; \int_\Omega \left| \frac{u}{\tau} \right|^{p(x)} \, dx \leq 1 \right\}.$$

Define the variable exponent Sobolev space \(W^{1,p(x)}(\Omega) \) by

$$W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \},$$

with the norm

$$\|u\| = \inf \left\{ \tau > 0; \int_\Omega \left(\left| \nabla u \right|^{p(x)} + \left| \frac{u}{\tau} \right|^{p(x)} \right) \, dx \leq 1 \right\}.$$

We denote by \(W^{1,p(x)}_0(\Omega) \) the closure of \(C_0^\infty(\Omega) \) in \(W^{1,p(x)}(\Omega) \). Of course the norm \(\|u\| = |\nabla u|_{L^{p(x)}(\Omega)} \) is an equivalent norm in \(W^{1,p(x)}_0(\Omega) \). In this paper, we denote by \(X = W^{1,p(x)}_0(\Omega) \).

Lemma 2.1 ([15]) Both \((L^{p(x)}(\Omega), \cdot \cdot_{p(x)}) \) and \((W^{1,p(x)}(\Omega), \| \cdot \|) \) are separable and uniformly convex Banach spaces.

Lemma 2.2 ([15]) \(\text{Hölder inequality holds, namely} \)

$$\int_\Omega |uv| \, dx \leq \int_\Omega u |v|_{p(x)} \, dx \quad \forall u \in L^{p(x)}(\Omega), v \in L^{p(x)}(\Omega), \text{ where } \frac{1}{p(x)} + \frac{1}{p(x)} = 1.$$

Lemma 2.3 ([6]) Assume that \(h \in L^\infty_c(\Omega), p \in C_+(\overline{\Omega}). \) If \(|u|^{h(x)} \in L^{p(x)}(\Omega) \). Then we have

$$\min\{|u|_{h(x)}^{p(x)}, |u|_{h(x)}^{p(x)}\} \leq |u|^{h(x)}_{p(x)} \leq \max\{|u|_{h(x)}^{p(x)}, |u|_{h(x)}^{p(x)}\}.$$

Lemma 2.4 ([14]) Assume that \(\Omega \) is bounded and smooth.
• Let p be Lipschitz continuous and $p^+ < N$. Then for $h \in L^\infty(\Omega)$ with $p(x) \leq h(x) \leq p^*(x)$ there is a continuous embedding $X \hookrightarrow L^{h(x)}(\Omega)$.

• Let $p \in C(\overline{\Omega})$ and $1 \leq q(x) < p^*(x)$ for $x \in \overline{\Omega}$. Then there is a compact embedding $X \hookrightarrow L^{q(x)}(\Omega)$.

Lemma 2.5 ([16]) Set $\rho(u) = \int_{\Omega} |\nabla u(x)|^{p(x)} \, dx$. Then for $u \in X$, we have

1. $\|u\| < 1$ (respectively $= 1; > 1$) if and only if $\rho(u) < 1$ (respectively $= 1; > 1$);
2. if $\|u\| > 1$, then $\|u\|^{p^-} \leq \rho(u) \leq \|u\|^{p^+}$;
3. if $\|u\| < 1$, then $\|u\|^{p^+} \leq \rho(u) \leq \|u\|^{-}$.

Definition 2.6 A function $u \in X$ is said to be a weak solution of (1.1) if

$$
M \left(\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v \, dx - \lambda \int_{\Omega} a(x)|u|^{q(x)-2}u v \, dx
$$

for all $v \in X$.

The Euler–Lagrange functional associated to (1.1) is

$$
J_{\lambda}(u) = \tilde{M} \left(\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) - \lambda \int_{\Omega} a(x)|u|^{q(x)} \, dx - \lambda \int_{\Omega} b(x)|u|^{r(x)} \, dx,
$$

where $\tilde{M}(t) = \int_0^t M(s) \, ds$. Then

$$
(J_{\lambda}'(u), v) = M \left(\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v \, dx - \lambda \int_{\Omega} a(x)|u|^{q(x)-2}u v \, dx
$$

for all $u, v \in X$, then we know that the weak solution of (1.1) corresponds to the critical point of the functional J_{λ}. Hereafter, $M(t)$ is supposed to verify the following assumptions:

(M_0) There exists $m_1 \geq m_0 > 0$ and $\mu \geq \nu > 1$ such that

$$
m_0 t^{\nu-1} \leq M(t) \leq m_1 t^{\mu-1}.
$$

(M_1) $\exists 0 < d < 1$ such that

$$
\tilde{M}(t) \geq (1-d)M(t)t \quad \text{for all } t \geq 0.
$$

An example of functions satisfying the assumptions (M_0) and (M_1):

$$
M(t) = t \arctan(t).
$$

Throughout this paper, we assume the condition:

$$
1 < q^- \leq q^+ < v p^-, \quad \max \left\{ \mu p^+, \frac{p^+}{1-d} \right\} < r^- \leq r^+ < p^*(x) \quad \text{and} \quad p^+ < N. \tag{2.1}
$$

For simplicity, we use $C_i, i = 1, 2, \ldots$, to denote the general positive constants whose exact values may change from line to line.
3 Main result

Theorem 3.1 Assume p is Lipschitz continuous, $q, r \in C_{+}(\overline{\Omega})$ and Condition (2.1) is fulfilled. Then there exists $\lambda^{*} > 0$ such that for any $\lambda \in (0, \lambda^{*})$, Problem (1.1) possesses a nontrivial weak solution.

Lemma 3.2 There exists $\lambda^{*} > 0$ such that for any $\lambda \in (0, \lambda^{*})$ there exist $\rho, \tau > 0$ such that $J_{\lambda}(u) \geq \tau > 0$ for any $u \in X$ with $\|u\| = \rho$.

Proof In view of Lemma 2.4, there exists a positive constant C_{1} such that

$$|u|_{p(x)} \leq C_{1}\|u\|, \quad |u|_{p^*(x)} \leq C_{1}\|u\|, \quad \text{for all } u \in X. \tag{3.1}$$

Fix $\rho \in [0, 1]$ such that $\rho < \frac{1}{C_{1}}$. Then relation (3.1) implies $|u|_{p(x)} < 1$, $|u|_{p^*(x)} < 1$, for all $u \in X$ with $\|u\| = \rho$. By Lemmas 2.2 and 2.3, we obtain

$$\int_{\Omega} a(x)|u|^{|q(x)} dx \leq 2|a_{u}|_{\alpha(x)}|u|_{p(x)}^{q(x)} \leq 2|a_{u}|_{\alpha(x)}|u|_{p^*(x)}^{q^*(x)}, \tag{3.2}$$

and

$$\int_{\Omega} b(x)|u|^{|r(x)} dx \leq 2|b_{u}|_{\gamma(x)}|u|_{r(x)}^{r(x)} \leq 2|b_{u}|_{\gamma(x)}|u|_{r^*(x)}^{r^*(x)}, \tag{3.3}$$

for all $u \in X$. Combining (3.1), (3.2) and (3.3), we obtain

$$\int_{\Omega} a(x)|u|^{|q(x)} dx \leq 2|a_{u}|_{\alpha(x)}C_{1}^{q^*(x)}\|u\|^{q^*(x)} \quad \text{and} \quad \int_{\Omega} b(x)|u|^{|r(x)} dx \leq 2|b_{u}|_{\gamma(x)}C_{1}^{r^*(x)}\|u\|^{r^*(x)}, \tag{3.4}$$

for all $u \in X$. Hence, from (3.4) and (M0) we deduce that for any $u \in X$ with $\|u\| = \rho$, we have

$$J_{\lambda}(u) \geq \frac{m_{0}}{\nu} \left(\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx \right)^{v} - \frac{\lambda}{q^*(x)} \int_{\Omega} a(x)|u|^{q^*(x)} dx - \frac{\lambda}{r^*(x)} \int_{\Omega} b(x)|u|^{r^*(x)} dx \geq \frac{m_{0}}{\nu(p^+(x))^{v}}\|u\|^{p^+(x)} - \frac{\lambda}{q^*(x)}2|a_{u}|_{\alpha(x)}C_{1}^{q^*(x)}\|u\|^{q^*(x)} - \frac{\lambda}{r^*(x)}2|b_{u}|_{\gamma(x)}C_{1}^{r^*(x)}\|u\|^{r^*(x)}.$$

Putting

$$\lambda^{*} = \min \left\{ \frac{m_{0}q^{v}\rho^{p^+(x)q^{-}}}{4C_{1}^{q^*(x)}}\|a_{u}\|_{\alpha(x)}^{q^{v}(x)}, \frac{m_{0}r^{v}\rho^{p^+(x)r^{-}}}{4C_{1}^{r^*(x)}}\|b_{u}\|_{\gamma(x)}^{r^*(x)} \right\}, \tag{3.5}$$

for any $u \in X$ with $\|u\| = \rho$, there exists $\tau = \frac{m_{0}q^{v}\rho^{p^+(x)q^{-}}}{4C_{1}^{q^*(x)}}$ such that $J_{\lambda}(u) \geq \tau > 0$ for any $\lambda \in (0, \lambda^{*})$. This completes the proof. □

Lemma 3.3 There exists $e \in X$ with $\|e\| > \rho$ (where ρ is given in Lemma 3.2) such that $J_{\lambda}(e) < 0$.

Proof Let $\varphi \in C_{0}^{\infty}(\Omega)$, $\varphi \geq 0$ and $\varphi \neq 0$ and $t > 1$. By (M0) we have

$$J_{\lambda}(t\varphi) = \tilde{M} \left(\int_{\Omega} \frac{1}{p(x)} |\nabla t\varphi|^{p(x)} dx \right) - \lambda \int_{\Omega} \frac{a(x)}{q(x)}|t\varphi|^{q(x)} dx - \lambda \int_{\Omega} \frac{b(x)}{r(x)}|t\varphi|^{r(x)} dx \leq \frac{m_{1}}{\mu} \left(\int_{\Omega} \frac{1}{p(x)} |\nabla \varphi|^{p(x)} dx \right)^{\mu} - \lambda \frac{t^{q^{v}}}{q^{v}} \int_{\Omega} a(x)|\varphi|^{q^*(x)} dx - \lambda \frac{t^{r^{v}}}{r^{v}} \int_{\Omega} b(x)|\varphi|^{r^*(x)} dx \leq \frac{m_{1}}{\mu(p^+(x))^{v}}t^{q^{v}} \int_{\Omega} |\nabla \varphi|^{p(x)} dx - \lambda \frac{t^{q^{v}}}{q^{v}} \int_{\Omega} a(x)|\varphi|^{q^*(x)} dx - \lambda \frac{t^{r^{v}}}{r^{v}} \int_{\Omega} b(x)|\varphi|^{r^*(x)} dx.$$

Since $\mu p^+ < r^-$, we obtain $\lim_{t \to \infty} J_{\lambda}(t\varphi) = -\infty$. Then for $t > 1$ large enough, we can take $e = t\varphi$ such that $\|e\| > \rho$ and $J_{\lambda}(e) < 0$. □

Lemma 3.4 The functional J_{λ} satisfies the Palais–Smale condition (PS).
Proof Suppose that \((u_n) \subset X\) is a (PS) sequence; that is,
\[
\sup |J_\lambda(u_n)| \leq C_2, \quad J'_\lambda(u_n) \to 0 \quad \text{as} \quad n \to \infty.
\] (3.6)

We prove that \((u_n)\) is bounded in \(X\). Arguing by contradiction we assume that, passing eventually to a subsequence, still denote by \((u_n)\), \(\|u_n\| \to \infty\) and \(\|u_n\| > 1\) for all \(n\). By (3.6) and (M₀), (M₁), for \(n\) large enough, we have
\[
1 + C_2 \geq J_\lambda(u_n) - \frac{1}{r^-} (J'_\lambda(u_n), u_n) + \frac{1}{r^-} (J'_\lambda(u_n), u_n)
\]
\[
\geq (1 - d) M \left(\int_\Omega \frac{1}{p(x)} |\nabla u_n|^{p(x)} \, dx \right) \int_\Omega \frac{1}{p(x)} |\nabla u_n|^{p(x)} \, dx - \lambda \int_\Omega \frac{a(x)}{q(x)} |u_n|^{q(x)} \, dx
\]
\[
- \lambda \int_\Omega \frac{b(x)}{r(x)} |u_n|^{r(x)} \, dx - \frac{1}{r^-} M \left(\int_\Omega \frac{1}{p(x)} |\nabla u_n|^{p(x)} \, dx \right) \int_\Omega |\nabla u_n|^{p(x)} \, dx
\]
\[
+ \frac{\lambda}{r^-} \int_\Omega a(x)|u_n|^{q(x)} \, dx + \frac{\lambda}{r^-} \int_\Omega b(x)|u_n|^{r(x)} \, dx + \frac{1}{r^-} (J'_\lambda(u_n), u_n)
\]
\[
\geq \frac{m_0}{v(p^+)} \left(\frac{1 - d}{p^+} - \frac{1}{r^-} \right) \|u_n\|^{p^+} - \lambda \left(\frac{1}{q^-} - \frac{1}{r^-} \right) C_3 |a|_{\alpha(x)} \|u_n\|^{q^-}
\]
\[
- \frac{1}{r^-} \|J_\lambda(u_n)\| \|u_n\|
\]
\[
\geq \frac{m_0}{v(p^+)} \left(\frac{1 - d}{p^+} - \frac{1}{r^-} \right) \|u_n\|^{p^+} - \lambda \left(\frac{1}{q^-} - \frac{1}{r^-} \right) C_3 |a|_{\alpha(x)} \|u_n\|^{q^-} - C_4 \|u_n\|.
\]

Dividing the above inequality by \(\|u_n\|^{p^-}\), taking into account (2.1) holds true and passing to the limit as \(n \to \infty\), we obtain a contradiction. It follows that \((u_n)\) is bounded in \(X\). By the reflexivity of \(X\), for a subsequence still denoted \((u_n)\), we have \(u_n \rightharpoonup u\) in \(X\) and \(u_n \to u\) in \(L^{\hat{h}(x)}(\Omega)\), where \(1 \leq \hat{h}(x) < p^+(x)\). Therefore,
\[
<J'_\lambda(u_n), u_n - u> \to 0,
\] (3.7)
\[
\int_\Omega a(x)|u_n|^{q(x)-2} u_n (u_n - u) \, dx \to 0,
\] (3.8)
and
\[
\int_\Omega b(x)|u_n|^{r(x)-2} u_n (u_n - u) \, dx \to 0.
\] (3.9)

Since \((u_n)\) is bounded in \(X\), passing to a subsequence, if necessary, we may assume that
\[
\int_\Omega \frac{1}{p(x)} |\nabla u_n|^{p(x)} \, dx \to h_0 \geq 0 \quad \text{as} \quad n \to \infty.
\]
If \(h_0 = 0\) then \((u_n)\) converges strongly to \(u = 0\) in \(X\) and the proof is complete. If \(h_0 > 0\) then since the function \(M\) is continuous, we obtain
\[
M \left(\int_\Omega \frac{1}{p(x)} |\nabla u_n|^{p(x)} \, dx \right) \to M(h_0) \geq 0 \quad \text{as} \quad n \to \infty.
\]

Thus, by (M₀), for sufficiently large \(n\), we have
\[
0 < C_5 \leq M \left(\int_\Omega \frac{1}{p(x)} |\nabla u_n|^{p(x)} \, dx \right) \leq C_6.
\] (3.10)

From (3.7), (3.8), (3.9) and (3.10), we deduce that \(A(u) := \int_\Omega |\nabla u_n|^{p(x)-2} \nabla u_n (\nabla u_n - \nabla u) \, dx \to 0\). According to the fact that \(A\) satisfies Condition \((S^+)^*\) (see [17]), we have \(u_n \to u\) in \(X\). This completes the proof. □
Proof of Theorem 3.1 From Lemmas 3.2 and 3.3, we deduce

$$\max(J_\lambda(0), J_\lambda(e)) = J_\lambda(0) < \inf_{\|u\|=\rho} J_\lambda(u) =: \beta.$$

By Lemma 3.4 and the Mountain Pass Theorem (see [1]), we deduce the existence of critical points u of J_λ associated of the critical value given by

$$c := \inf_{g \in \Gamma} \sup_{t \in [0,1]} J_\lambda(g(t)) \geq \beta,$$

(3.11)

where $\Gamma = \{ g \in C([0,1], X) : g(0) = 0 \text{ and } g(1) = e \}$. This completes the proof. \qed

Acknowledgments The author thanks the referees for their careful reading of the manuscript and insightful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Ambrosetti, A.; Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
2. Arosio, A.; Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)
3. Autuori, G.; Pucci, P.; Salvatori, M.C.: Global nonexistence for nonlinear Kirchhoff systems. Arch. Ration. Mech. Anal. 196, 489–516 (2010)
4. Bisci, G.M.; Radulescu, V.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)
5. Cekic, B.; Mashiyev, R.A.: Existence and localization results for $p(x)$-Laplacian via topological methods. Fixed Point Theory Appl. 2010, ID 120646. doi: 10.1155/2010/120646
6. Chung, N.T.: Multiplicity results for a class of $p(x)$-Kirchhoff type equations with combined nonlinearities. Electron. J. Qual. Theory Differ. Equ. 42, 1–13 (2012)
7. Colasuonno, F.; Pucci, P.: Multiplicity of solutions for $p(x)$-polyharmonic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)
8. Edmunds, D.E.; Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143, 267–293 (2000)
9. Fan, X.L.; Han, X.Y.: Existence and multiplicity of solutions for $p(x)$-Laplacian Dirichlet problems. Nonlinear Anal. 52, 1843–1852 (2003)
10. Kirchhoff, G.: Mechanik, Teubner, Leipzig (1883)
11. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: de la Penha, M. (eds.) Proceedings of International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977, vol. 30, pp. 284–346, Math. Stud. North-Holland, Amsterdam (1978)
12. Mihăilescu, M.; Pucci, P.; Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)
13. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 9, 33–66 (1987)