Local System Voting Feature for Machine Translation System Combination

Markus Freitag, Jan-Thorsten Peter, Stephan Peitz, Minwei Feng and Hermann Ney

17. September 2015

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany
1 System Combination

▶ combine the output of multiple strong systems to one hypothesis

▶ combination confusion network approach (used by e.g. BBN, IBM, JHU)
 ▶ combine confusion networks built from the individual system outputs
 ▶ confusion network scored by several models
 ▶ decoding similar phrase-based machine translation decoders

▶ Successfully applied in several evaluation campaigns
 e.g. WMT [Freitag & Peitz⁺ 14], IWSLT [Freitag & Peitz⁺ 13],
 NTCIR [Feng & Freitag⁺ 13], WMT [Peitz & Mansour⁺ 13], WMT [Freitag & Peitz⁺ 12]

▶ Part of open source statistical machine translation toolkit Jane
Confusion Network Generation

- Select one of the input hypotheses as primary hypothesis
- Primary hypothesis determines the word order
 - All remaining hypotheses are word-to-word aligned
- Pairwise alignments generated via GIZA++
- The confusion network can be constructed with the calculated alignment
Decoding

- Do not stick to one primary hypothesis

- Final network is a union of all \(m \) (= amount individual systems) confusion networks (each having a different system as primary system)

- Final Network is scored by \(M \) models in a log-linear framework

 \[
 \sum_{i=1}^{M} \lambda_i h_i
 \]

- Scaling factors optimized with MERT on \(n \)-best lists

- Shortest path algorithm to extract final hypothesis

- All graph operations are conducted with openFST [Allauzen & Riley+ 07]
Features

- m binary system voting features
 - For each word the voting feature for system i ($1 \leq i \leq m$) is 1 iff the word is from system i, otherwise 0

- Binary primary system feature
 - Feature that marks the primary hypothesis

- LM feature
 - 3-gram language model trained on the input hypotheses

- Word penalty
 - Counts the number of words
2 Local System Voting Feature

Motivation:
- Binary voting features give preference to one or few individual systems
- Hypotheses with low voting feature weights have no effect on the final output

Idea:
- Define a local voting feature which give a score based on the current sentence/words
- Train model by a feed-forward neural network (NN) to give also unseen events a reliable score
- Related work from speech recognition: [Hillard & Hoffmeister 07] trained a classifier to learn which word should be selected
Neural Network Unigram Input Example

Best S BLEU path is labeled red

1-of-\(n \) encoding was applied to map words to a suitable NN input
Neural Network Bigram Input Example

Taking history of the individual hypotheses into account

1-of-\(n\) encoding was applied to map words to a suitable NN input
Neural Networks in System Combination

▶ Add one additional model based to the log-linear framework

▶ Training data:
 ▶ Split tuning set into 2 sets (one for NN training, one for MERT)
 ▶ Training samples cover only limited vocabulary
 ⇒ Use word classes

▶ Trainied using NPLM [Vaswani & Zhao 13]
BOLT Arabic → English Results

system combination	word classes	tune	test		
baseline					
		30.1	51.2	27.6	55.8
+unigram neural network model	no				
	yes	31.4	51.2	28.5	56.0
		31.1	51.1	28.3	55.7
+bigram neural network model	no				
	yes	31.3	51.1	28.4	55.8
		31.4	51.2	28.7	56.0

- 5 Systems
- 1510 sentences result in 6.5M training samples
- Test set has a OOV rate of 43.25%
- MERT tune set has a OOV rate of 43.24%
BOLT Chinese→English Results

system combination	word classes	tune	test		
		BLEU	TER	BLEU	TER
baseline		17.9	61.5	18.3	60.9
+unigram neural network model	no	18.1	61.2	18.3	60.3
	yes	18.4	61.5	19.0	60.3
+bigram neural network model	no	18.1	61.3	18.6	60.3
	yes	18.1	61.2	18.7	59.9

- 9 Systems
- 1844 sentences result in 15M training samples
- Test set has a OOV rate of 40.73%
- MERT tune set has a OOV rate of 40.91%
BOLT Chinese→English Analysis

#	baseline	+bigram wcNN
1	120/14072	214/14072
	(0.9%)	(1.5%)
2	592/6129	764/6129
	(9.7%)	(12.5%)
3	1141/4159	1319/4159
	(27.4%)	(31.7%)
4	1573/3241	1669/3241
	(48.5%)	(51.5%)
5	2051/2881	1993/2881
	(71.2%)	(69.2%)
6	2381/2744	2332/2744
	(86.8%)	(85.0%)
7	2817/2965	2820/2965
	(95.0%)	(95.1%)
8	3818/3860	3815/3860
	(98.9%)	(98.8%)
9	11008/11008	11008/11008
	(100.0%)	(100.0%)

More words created by a single or a few systems are used
3 Conclusion

- Proposed novel local system voting model
- Using feedforward neural network models
- Allow confusion network to prefer other systems even in the same sentence
- Improved likelihood to select words created by only few systems
- Use word classes to avoid sparsity problem
- Improvements of 0.7% for Ch-En and 1.1% for Ar-En
Thank you for your attention

Markus Freitag, Jan-Thorsten Peter, Stephan Peitz, Minwei Feng and Hermann Ney

surname@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/
References

[Allauzen & Riley+ 07] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, M. Mohri. OpenFst: A General and Efficient Weighted Finite-State Transducer Library. In J. Holub, J. Zdárek, editors, *Implementation and Application of Automata*, Vol. 4783 of *Lecture Notes in Computer Science*, pp. 11–23. Springer Berlin Heidelberg, 2007. 4

[Feng & Freitag+ 13] M. Feng, M. Freitag, H. Ney, B. Buschbeck, J. Senellart, J. Yang. The system combination rwth aachen: Systran for the ntcir-10 patentmtm evaluation. In *10th NTCIR Conference*, pp. 301–308, Tokyo, Japan, June 2013. 2

[Freitag & Peitz+ 12] M. Freitag, S. Peitz, M. Huck, H. Ney, T. Herrmann, J. Niehues, A. Waibel, A. Allauzen, G. Adda, B. Buschbeck, J. M. Crego, J. Senellart. Joint wmt 2012 submission of the quaero project. In *NAACL 2012 Seventh Workshop on Statistical Machine Translation (WMT)*, pp. 322–329, Montreal, Canada, June 2012. 2

[Freitag & Peitz+ 13] M. Freitag, S. Peitz, J. Wuebker, H. Ney, N. Durrani, M. Huck, P. Koehn, T.-L. Ha, J. Niehues, M. Mediani, T. Herrmann, A. Waibel, N. Bertoldi, M. Cettolo, M. Federico. Eu-bridge mt: Text translation of talks in the eu-bridge
project. In *International Workshop on Spoken Language Translation (IWSLT)*, pp. 128–135, Heidelberg, Germany, December 2013. 2

[Freitag & Peitz + 14] M. Freitag, S. Peitz, J. Wuebker, H. Ney, M. Huck, R. Sennrich, N. Durrani, M. Nadejde, P. Williams, P. Koehn, T. Herrmann, E. Cho, A. Waibel. Eu-bridge mt: Combined machine translation. In *ACL 2014 Ninth Workshop on Statistical Machine Translation (WMT)*, pp. 105–113, Baltimore, Maryland, USA, June 2014. 2

[Hillard & Hoffmeister + 07] D. Hillard, B. Hoffmeister, M. Ostendorf, R. Schlüter, H. Ney. i rover: improving system combination with classification. In *Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)*, pp. 65–68, Rochester, NY, USA, April 2007. Association for Computational Linguistics. 6

[Peitz & Mansour + 13] S. Peitz, S. Mansour, M. Huck, M. Freitag, H. Ney, E. Cho, T. Herrmann, M. Mediani, J. Niehues, A. Waibel, A. Allauzen, Q. K. Do, B. Buschbeck, T. Wandmacher. Joint wmt 2013 submission of the quaero project. In *Eighth Workshop on Statistical Machine Translation (WMT)*, pp. 185–192, Sofia, Bulgaria, August 2013. 2

[Vaswani & Zhao + 13] A. Vaswani, Y. Zhao, V. Fossum, D. Chiang. Decoding with large-scale neural language models improves translation. In *Conference on
BOLT Arabic→English System

	Arabic	English
Sentences		8M
Running words	189M	186M
Vocabulary	608K	519K
Tune sentences	1510 (NN), 1080 (MERT)	
Test sentences		1137

5 Systems
1510 sentences result in 6.5M training samples
Test set has a OOV rate of 43.25% MERT tune set has a OOV rate of 43.24%
BOLT Chinese→English Systems

	Chinese	English
Sentences	13M	
Running words	255M	279M
Vocabulary	370K	833K
Tune sentences	1844 (NN), 985 (MERT)	
Test sentences		1124

9 Systems

1844 sentences result in 15M training samples
Test set has a OOV rate of 40.73% MERT tune set has a OOV rate of 40.91%