Intrusion Detection Using Machine Learning

Adnan Athar Janwari V00959422
MEng, Electrical And Computer Engineering

Supervisor: Dr. Fayez Gebali
Intrusion Detection System?

An Intrusion Detection System (IDS) is software or hardware that detects any suspicious behavior and notifies the network administrator.
Growing cyberattacks and increasing vulnerabilities in network security

Detecting cyberattacks that haven't happened yet
METHODOLOGY

- CSE-CiC-IDS2008 Dataset
- Data Preprocessing
- Feature Reduction
- Model Building and Testing
- Result Analysis
METHODOLOGY (continued)

- CSE-CIC-IDS dataset (Canadian Institute for Cybersecurity and the Communications Security Establishment)
- 14 network attacks and benign traffic
- 80 features
- Weka (Waikato Environment for Knowledge Analysis) is used to implement ML algorithms
METHODOLOGY (continued)

Steps involves in the data preprocessing

• Removal of Zero Value Features
• Removal of Duplicate Value
• Linear Discriminant Analysis (LDA) is used to reduced to dimension of the data
• 10 highly ranked features are selected
METHODOLOGY (continued)

Three classifiers are used.

- Naive Bayes (NB)
- Random Forest (RF)
- Decision Tree (DT)
SMOTE and Resample are used on the dataset to balance it.

- SMOTE is an oversampling technique that replicate the instances of minority classes.
- Resample is an undersampling technique that removes the instances of the majority classes.
METHODOLOGY (continued)

Dataset Instances

Dataset	Total Number of Instances	Benign Instances	Attack Instances
Without under and over sampling	1,714,800	381,936	1,332,864
With under and over sampling	1,893,238	381,936	1,511,302
PERFORMANCE EVALUATION METRICS

- Accuracy
- Precision
- Recall
- F-Measure
- Execution Time
EXPERIMENT ONE RESULT

Result without Oversampling and Undersampling

Classifier	Accuracy	Precision	Recall	F-Measure	Execution Time (s)
Naive Bays	76.10	82.8	76.1	75	14.17
Random Forest	92.99	92.5	93.0	92.7	4165.05
Decision Tree	93.50	93.2	93.5	92.6	351.64
EXPERIMENT TWO RESULT

Result with Oversampling and Undersampling

Classifier	Accuracy	Precision	Recall	F-Measure	Execution Time (s)
Naive Bays	84.14	82.9	84.1	82.7	4.19
Random Forest	93.28	92.8	93.3	92.8	2151.78
Decision Tree	93.39	93.2	93.4	92.5	94.66
RESULT COMPARISON

Result comparison in terms of accuracy with and without Under sampling and Oversampling

Algorithm	Accuracy Without U & O sampling	Accuracy with U & O sampling
NAIVE BAYS	76.1	84.14
RANDOM FOREST	92.99	93.28
DECISION TREE	93.39	93.5
RESULT COMPARISON

Result comparison in terms of execution time with and without Under sampling and Oversampling

METHOD	Execution Time (s) Without U & O sampling	Execution Time (s) with U & O sampling
NAIVE BAYES	14.17	14.17
RANDOM FOREST	4165.05	2151.78
DECISION TREE	351.64	94.66
CONCLUSION

• In terms of accuracy Decision Tree performed the best followed Random Forest and Naive Bays
• Naive Bays execution time was fastest
FUTURE WORK

- Other ML classifiers can be used in future
- WEKA supports ScikitLearnCLassifier written in Python can be considered
Thank You
Question?