Laboratory astrophysical collisionless shock experiments on Omega and NIF

Hye-Sook Park, J. S. Ross, C. M. Huntington, F. Fiuza, D. Ryutov, D. Casey, R. P. Drake, G. Fiksel, D. Froula, G. Gregori, N. L. Kugland, C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. Remington, Y. Sakawa, A. Spitkovsky, H. Takabe, A. B. Zylstra

1 Lawrence Livermore National Lab, 7000 East Ave, Livermore CA, USA
2 Dept. of Atmospheric, Oceanic, and Space Sciences, Univ. of Michigan, Ann Arbor, MI, USA
3 Laboratory for Laser Energetics, Rochester, NY, USA
4 University of Oxford, Oxford, UK
5 Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA, USA
6 Massachusetts Institute of Technology, Cambridge, MA, USA
7 Institute of Laser Engineering, Osaka University, Osaka, Japan
8 Dept. of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
9 Dept. of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

*E-mail: park1@llnl.gov

Abstract. We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ~0.01. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

1. Introduction

Astrophysical collisionless shocks have been of keen interests to the astrophysical community as a mechanism for self-generating magnetic fields and cosmic ray acceleration. A collisionless shock is...
the condition where the Coulomb mean free path is much larger than the system, yet a shock is formed via plasma instabilities. There are many astrophysical objects, both relativistic and non-relativistic, that show these characteristics such as in Supernova remnants and gamma-ray bursts [5]. When a supernova event occurs, the plasma ejecta stream from the explosion and go through interstellar media, encountering various physical conditions. Among possible outcomes, Weibel instabilities can be created from the momentum anisotropy distribution of the ejecta and ambient media [6]. Conceptually, the Weibel instabilities create self-generated magnetic fields that trap the ions via the Lorenz force, thereby imitating collisions in a usual collisional shocks and leading to collisionless shock formation. The most significant aspect of these instabilities is their conversion from kinetic energy to magnetic energy that can be the mechanism for seed magnetic fields in universe [7]. The signature of the instability is a pattern of current filaments stretched along the axis of symmetry of the flows. The exact understanding of the required physical condition for such occurrence has not been well characterized, and laboratory laser experiments can provide a unique platform to study the electromagnetic Weibel instabilities that occur from high-Mach number plasma flows.

2. Experimental set-up

Figure 1 shows our typical laser experimental configuration at the Omega laser facility. Two face-on polyethylene (CH$_2$) plastic foils are illuminated by ~4 kJ of 351 nm laser energy with focal spot diameters of 250 µm on the target surface, generating high-velocity counter-streaming plasma flows. The separation is 8 mm between the targets. We employ Thomson scattering diagnostics to understand the plasma bulk velocity (v), electron temperature (T_e), ion temperature (T_i) and electron density (n_e). The Thomson-scattered (TS) light from the 526.5 nm probe studies a plasma volume of 100 µm x 100 µm x 60 µm at the central region of the counter-streaming plasmas. Thomson scattering is measured from the electron feature (collective scattering from electron-plasma waves) and the ion feature (collective scattering from ion-acoustic waves). An example of time composite electron and ion features from the double foil counter-streaming data is shown in the top right panel in Figure 1.

Another key element of our experiment is proton probing that gives understanding of the magnetic field structures. We use 2 different proton sources: 1) by short pulse generated protons; 2) by imploding a capsule filled with deuterium (D) and 3helium (3He) fuel. The short pulse generated protons are generated by illuminating a 10 ps pulse of up to 800 J of 1053 nm infrared light onto 40 µm diameter spot for an intensity of ~2x1018 W/cm2 on an Au disk target. Electric and magnetic fields deflect the protons which are then recorded on a radiochromic film layered with Al filters to obtain a range of proton energies from 5 to 15 MeV. We also use the 14.7 MeV mono-energetic proton source generated by thermonuclear interaction of D+3He → 4He+p [8]. For our experiments, the 2 µm thin silica capsules are filled with 18 atm D3He fuel (6 atm of D and 12 atm of 3He for equal atomic distribution) and are compressed uniformly by ~9 kJ of laser energy from 18 laser beams. The protons
are generated at the peak of compression creating ~10⁸ protons isotropically lasting ~50 ps with a source size of ~50 μm in diameter. These protons are detected using CR39 film in which the proton tracks are etched and counted to form an image. Examples of these two proton magnetic field imaging are shown in the right-bottom panel in Figure 2.

3. Thomson scattering results

Extensive Thomson scattering data were collected for both single-flow and counter-streaming flows. Time-slices of the data from the electron feature are then fitted with the Thomson scattering form-factor, allowing a measurement of the electron temperature (Tₑ) and electron density (nₑ). With constraints from the electron feature fitting, the ion feature can then be used to measure the ion temperature (Tᵢ) and bulk plasma flow velocity (v). This can be understood from the simplified dispersion relation, $\Delta \lambda = \frac{42}{c} \sqrt{\frac{3}{M}} \sin(\theta/2) \left(\frac{T_e}{M} + \frac{T_i}{M} \right)$. Figure 2 shows the summary of the resulting plasma parameters of v, nₑ, Tₑ, and Tᵢ, where single flow is noted in red and the counter-streaming double flows are marked in blue respectively [9].

The bulk flow velocity, Fig 2a, is > 1000 km/s up to 5 ns and is not suppressed for the double flow case, indicating interpenetration. The single flow nₑ is ~5x10¹⁸ cm⁻³ at maximum and is doubled for the counter-streaming case at 1x10¹⁹ cm⁻³. This indicates that a shock is not quite formed as we should expect a factor of > 2 increase in electron and ion densities at a shock front. A more surprising discovery is the significant increase in Tₑ and Tᵢ. The Tₑ was ~100 eV for the single flow whereas the double flow Tₑ was up to 1 keV increase. The rapid Tₑ increase at early time is explained by electron-ion collisions from ion slowing-down by drag forces caused by the ‘resting’ electron gas [10]. Analytic calculation of the electron temperature increase from this model is plotted in black solid line in Fig 2c showing that the model agrees well with the data at early time. Ignoring the electron thermal conduction in this model explains the late-time discrepancy. While this drag-force model explained the Tₑ increase very well, the ion-ion collisions could not explain the observed Tᵢ increase. When collisional particle-in-cell (PIC) simulations are applied accounting for acoustic two-stream electrostatic instabilities, we are able to reproduce the Tᵢ increase. This instability occurs for Tₑ > Tᵢ and therefore leads to the heating of the ions to temperatures close to Tₑ [1]. Our quantitative plasma state measurements suggest that the intra-flow ion and
electron collisional effects are important and that inter-flow ion collisions are rare from high velocity flows.

4. Observation of self-organizing fields

Using proton probes generated by short pulse lasers on EP, we observe large, stable, reproducible electromagnetic field structures that arise in counter-streaming interpenetrating supersonic plasma flows in the laboratory. Self-organization, whereby energy progressively transfers from smaller to larger scales in an inverse cascade, is widely observed in fluid flows, such as in the nonlinear evolution of multimode Rayleigh-Taylor and Kelvin-Helmholtz instabilities. These surprising structures, predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales, and persist for much longer than the plasma kinetic timescale. One such example image is shown in Fig 3a. This image is taken at 5.2 ns after the laser, and the sharp co-planar field structures are clearly visible. Their origin is now explained by the magnetic field advection process. Here the Biermann battery magnetic field is generated near the target surface in a toroidal shape, and advects along the electron flows, then recompresses near the midplane. A sketch of this process is shown in Fig 3b. The magnetic field strength is evaluated by the caustic analysis by: \[B_0 = \frac{m_c}{el} \sqrt{\frac{5W}{m_p}} \frac{d^2}{\sqrt{\pi a} b \sin \psi} \], where \(W \) is the proton kinetic energy (8.8 MeV), \(b/a \) the aspect ratio (1/20), \(l \) is the distance from proton source to object plane (8 mm), \(\psi \) is the tilt angle of the plane (5 to 10 degrees). When we apply our experimental measurements and observables, we derive \(B_0 = 10T \). The observed plasma self-organizing magnetic field may play an important role in astrophysics how electromagnetic order emerges from high-velocity plasma flows.

5. Observation of Weibel filamentation

We recently used a D\(^3\)He imploding capsule to create a mono-energetic proton source and imaged the counter-stream double flows on the Omega laser. The result was quite spectacular as shown in Fig 4a where filamentary striation field features are clearly visible along with the co-planar structures. We study whether these filaments could be generated by Weibel instabilities (filamentation is the characteristic morphology for Weibel instabilities.) In order to understand both the Weibel and Biermann battery generated magnetic fields in our proton imaging experimental system, we have conducted detailed 3-dimensional particle-in-cell (3D PIC) simulations with OSIRIS [12] along with proton ray tracing through the electromagnetic field. Figure 3. Omega EP short pulse generated proton image of counter-streaming plasmas at 5.2 ns after the laser. Highly stable self-organizing planar magnetic field structures are observed. This is from the Biermann battery magnetic field that is generated near the target surface; advects along the electron flows; then recompress in the mid-plane.

\(\frac{\pi}{2} \) \(\frac{2}{3} \) \(\frac{1}{2} \) \(\frac{1}{3} \) \(\frac{1}{4} \) \(\frac{1}{5} \) \(\frac{1}{6} \) \(\frac{1}{7} \) \(\frac{1}{8} \) \(\frac{1}{9} \) \(\frac{1}{10} \)
\[\sigma = \frac{B^2}{4\pi (\gamma - 1)mc^2} \]. This is the quantity that the kinetic energy converts to magnetic energy in the system.

Figure 5 shows this magnetization as a function of time. The dotted line is the field strength without pre-existing magnetic field where as the solid line is accounting for the initial field by the Biermann battery. The straight line is the theoretical growth rate of the ion Weibel instability. Note that the final total magnetization is 0.01 and the initial Biermann battery field plays little role in the magnetization growth. The Weibel instability filamentation is clearly observed in the laboratory and a significant self-generated magnetization is indicated [4].

Figure 4. Schematic of proton image of D3He3 imploding capsule. (a) is the experimental data where the Weibel filamentary structures are clearly observed; (b) is the 3D Particle-in-cell simulation and the proton ray trajectory from experimental angle. The simulation also added Biermann battery field that shows as the band structure in the middle.

Figure 5. Magnetization level derived from the 3D PIC simulation The magnetization is achieved up to 1% level.

6. NIF experiments

While the Omega experiments produced a remarkable understanding of counter-streaming plasmas, we note that the Weibel mediated collisionless shock is not fully formed as indicated by the electron density measurements and the field formation in the 3D PIC simulation results. Our NIF experimental configuration will apply ~100 kJ per target and separation of 6–8 mm. The radiation hydro simulation (HYDRA) of our single flow simulation indicate that we will have much higher ne (>10^{20} cm^{-3}), \(T_e\) (>1 keV) and higher flow velocity (>2000 km/s) (Fig 6). This will produce a well-formed shock as the ion skin depth will be much shorter and a high magnetic Reynolds number will favor producing higher magnetization. Using this flow condition, the 3D PIC simulation (Fig 7) predicts a much higher magnetic field generation of up to ~3 MG (top row) and a shock density of \(n/n_0 \sim 4\). On NIF we will use the D^3He generated proton source to image the magnetic field structures and x-ray and neutron spectroscopy to measure the plasma state.

Figure 6. HYDRA simulation results for the NIF experimental condition with 100 kJ per target condition. The different color represents the pulse duration. At 5 ns setting, the \(N_e \sim 10^{20} \text{ cm}^{-3}\) and the \(T_e \sim 1 \text{ keV}\) at 4 mm from the target surface.
Figure 7. 3D PIC simulation results of B-field (top row) and electron density (bottom row) for Omega and NIF cases. The NIF experiments will be able to produce fully formed collisionless shocks ($n_e/n_{e0} \sim 4$) and B field near 3 MG.

In conclusion, laser generated counter-streaming plasma flows have been studied in connection to astrophysical collisionless shocks. We observe that the intra-collisional electron-ion interaction by electron-drag force elevates the electron temperature and electrostatic instabilities upraise the ion temperatures for the double flows. We detect very stable self-organizing field structures that originate from the recompression of the advected Biermann battery magnetic field. The Weibel filamentation is directly imaged for the first time and a magnetization level at 0.01 is derived. The NIF experiment will be able to create true Weibel mediated collisionless shocks.

Acknowledgements
This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. Computing support for this work came from an ALCC allocation on Mira and from the LLNL Institutional Computing Grand Challenge program. Additionally, the authors would like to acknowledge the OSIRIS Consortium for the use of the OSIRIS 2.0.

References
[1] Ross J S et al. 2013 Phys. Rev. Let. vol 110 p 145005
[2] Kugland N et al. 2012 Nature Physics vol 8 p 809
[3] Ryutov D D et al. 2013 Phys. Plasmas. Vol 20 p 032703
[4] Huntington C M et al. 2013 Nature Physics, submitted
[5] Gruzinov A and Waxman E,1999 Astrophys. J vol 511 p 852
[6] Weibel E S 1959 Phys. Rev. Let. vol 2 p 83
[7] Medvedev M V et al. 1999 Astrophys. J vol 526 p 697; Medvedev M V 2009 Astrophys. Space Sci vol 322 p 147
[8] Li C K et al. Rev. Sci. Inst. 2006 vol 77 p 10E725
[9] Ross J S et al. 2012 Phys. Plasmas vol 19 p 056501
[10] Ryutov D D et al. 2012 Phys. Plasmas vol 19 p 074501
[11] Kugland N L et al. 2013 Phys. Plasmas vol 20 p 056313
[12] Fonseca R A et al. 2002 Lect. Notes Comp. Sci. 2331 342; Fonseca R A et al. 2008 Plasma Phys. Contr. Fusion vol 50 p 124034