Scalar Field (Wave) Dark Matter

Tonatiuh Matos* and Victor H. Robles**
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, AP 14-740, 0700 D.F., México

ABSTRACT

Recent high-quality observations of dwarf and low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in low mass galaxies remains uncertain.

One model that have received much attention is the scalar field dark matter model. Here the dark matter is a self-interacting ultra light scalar field that forms a cosmological Bose-Einstein condensate, a mass of $10^{-22}\text{eV}/c^2$ is consistent with flat density profiles in the centers of dwarf spheroidal galaxies, reduces the abundance of small halos, might account for the rotation curves even to large radii in spiral galaxies and has an early galaxy formation. The next generation of telescopes will provide better constraints to the model that will help to distinguish this particular alternative to the standard model of cosmology shedding light into the nature of the mysterious dark matter.

Subject headings: dark matter: scalar field

1. INTRODUCTION

The standard model of cosmology assumes the dark matter is cold and effectively collisionless, the galaxies are formed in a hierarchical way, and as they evolve they are subject to frequent collisions and interactions with nearby galaxies that determined the properties that we observed today.

The standard model, also called cold dark matter (CDM) model, is remarkably successful to describe the large scale structure of the universe, as well as large scale observations. Nowadays, galactic observations are becoming more precise that it is possible to assess some of the predictions from the CDM model with more reliability. Moreover, the numerical simulations are rapidly reaching the required resolution to study the inner parts of dwarf galaxies, that is within $\sim 500\text{pc}$. Increasing the resolution has revealed that some discrepancies between the observations and the theoretical expectations might require careful revision to our understanding.

One of them is the longstanding core/cusp discussion, whether the central dark matter (DM) profiles in dwarfs and low surface brightness (LSB) galaxies are more core-like and rounder than the standard cold dark matter (CDM) model predicts (see van Eymeren et al. (2009); see de Blok (2010) for a review). The core profiles most frequently used in the literature and that best fit the observations are empirical (Burkert 1995; Kuzio de Naray et al. 2010). Albeit useful to characterize properties of galaxies, it is desirable to find a theoretical framework capable to produce the cores, since CDM suggest central densities in small galaxies going as $\rho \sim r^{-1}$ at small $r$ (Navarro et al. 2010) whereas observations of LSB galaxies suggest a core-like behavior ($\rho \sim r^{-0.2}$) (Oh et al. 2011; Robles & Matos 2012; de Blok et al. 2001; Kuzio de Naray & Spekkens 2011; Kuzio de Naray & Kaufmann 2013; Boylan-Kolchin et al. 2013). The trend to reduce the inner loga-
rithmic slopes invokes astrophysical processes such as radiation wind, supernovae feedback, etc. (Governato et al. 2010, 2012; Merrit et al. 2006; Graham et al. 2006), although this seems possible in LSB galaxies, the question remains for the fainter galaxies where one supernovae could blow out most of the gas due to the shallower gravitational potential.

Another discrepancy possibly related the over-abundance of satellites (Klypin et al. 1999; Moore et al. 1999; Maci` o et al. 2012; Garrison-Kimmel et al. 2014) is the Too-Big-to-Fail (Boylan-Kolchin et al. 2011; Garrison-Kimmel et al. 2014b) issue. The latter results from the higher number of massive dark matter halos around Milky-Way like host with the most massive galaxies observed in our local neighborhood, assuming the most massive galaxies are in the most massive dark matter halos, there should be about ~10 more around systems of similar mass as our Milky Way or M31 (Andromeda) (Garrison-Kimmel et al. 2014b). There have been some possible solutions, most of them relying on tidal stripping in addition to supernovae feedback.

However, some of these discrepancies might also be solved assuming different properties for the dark matter, such as scalar field dark matter (SFDM) (Sin 1994; Ji & Sin 1994; Lee & Koh 1998; Guzmán & Matos 1998; Hu et al. 2000; Matos & Ureña 2001) considers a self-interacting scalar field with a very small mass, typically of ~10^{-22} eV/c^2, such that the quantum mechanical uncertainty principle and the interactions prevent gravitational collapse in self-gravitating structures, thus the halos are characterized with homogeneous densities (usually referred as a cores) in their centers, in general the core sizes depend on the values of the mass and the self-interacting parameters (Colpi et al. 1986). (for a review see Suárez, Robles & Matos 2013; Rindler-Daller & Shapiro 2014). From the particle physics point of view the most simple way to account for a scalar field with this features is adding a Higgs-like term with a mass ~10^{-22} eV/c^2 to the standard model of particles (Matos & López-Fernández 2014).

Previous studies of the cosmological evolution of a scalar field with mass m ~10^{-22} eV/c^2 have shown that the cosmological density evolution is reproduced and very similar to the one obtained from CDM (Matos & Ureña 2001; Chavanis 2011; Suárez & Matos 2011; Magaña et al. 2012; Schive, Chiueh, & Broadhurst 2014), there is consistency with the acoustic peaks of the cosmic microwave background radiation (Matos & Ureña 2001; Rodríguez-Montoya et al. 2014) and this small mass implies a sharp cut-off in the mass power spectrum for halo masses below 10^8 M⊙ suppressing structure formation of low mass dark matter halos (Matos & Ureña 2001; Marsh & Silk 2014; Bozek et al. 2014; Hu et al. 2000). Moreover, there is particular interest in finding equilibrium configurations of the system of equations that describe the field (Einstein-Klein-Gordon system) and of its weak field approximation (Schrödinger-Poisson(SP) system), different authors have obtained solutions interpreted as boson stars or later as dark matter halos showing agreement with rotation curves in galaxies and velocity dispersion profiles in dwarf spheroidal galaxies (Lee & Koh 1996; Böhmer & Harko 2007; Robles & Matos 2012, 2013; Lora et al. 2012; Lora & Magaña 2014; Martínez-Medina, Robles, & Matos 2015; Diez-Tejedor et al. 2014; Guzmán et al.)

2. SFDM: Previous work

The main idea in the scalar field dark matter model (Sin 1994; Ji & Sin 1994; Lee & Koh 1998; Guzmán & Matos 1998; Hu et al. 2000; Matos & Ureña 2001) considers a self-interacting scalar field with a very small mass, typically of ~10^{-22} eV/c^2, such that the quantum mechanical uncertainty principle and the interactions prevent gravitational collapse in self-gravitating structures, thus the halos are characterized with homogeneous densities (usually referred as a cores) in their centers, in general the core sizes depend on the values of the mass and the self-interacting parameters (Colpi et al. 1986). (for a review see Suárez, Robles & Matos 2013; Rindler-Daller & Shapiro 2014). From the particle physics point of view the most simple way to account for a scalar field with this features is adding a Higgs-like term with a mass ~10^{-22} eV/c^2 to the standard model of particles (Matos & López-Fernández 2014).

Previous studies of the cosmological evolution of a scalar field with mass m ~10^{-22} eV/c^2 have shown that the cosmological density evolution is reproduced and very similar to the one obtained from CDM (Matos & Ureña 2001; Chavanis 2011; Suárez & Matos 2011; Magaña et al. 2012; Schive, Chiueh, & Broadhurst 2014), there is consistency with the acoustic peaks of the cosmic microwave background radiation (Matos & Ureña 2001; Rodríguez-Montoya et al. 2014) and this small mass implies a sharp cut-off in the mass power spectrum for halo masses below 10^8 M⊙ suppressing structure formation of low mass dark matter halos (Matos & Ureña 2001; Marsh & Silk 2014; Bozek et al. 2014; Hu et al. 2000). Moreover, there is particular interest in finding equilibrium configurations of the system of equations that describe the field (Einstein-Klein-Gordon system) and of its weak field approximation (Schrödinger-Poisson(SP) system), different authors have obtained solutions interpreted as boson stars or later as dark matter halos showing agreement with rotation curves in galaxies and velocity dispersion profiles in dwarf spheroidal galaxies (Lee & Koh 1996; Böhmer & Harko 2007; Robles & Matos 2012, 2013; Lora et al. 2012; Lora & Magaña 2014; Martínez-Medina, Robles, & Matos 2015; Diez-Tejedor et al. 2014; Guzmán et al.)
So far the large and small scales observations are well described with the small mass and thus has been taken as a preferred value but the precise values of the mass and self-interaction parameters are still uncertain, tighter constraints can come from numerical simulations (Schive, Chiueh, & Broadhurst 2014) and modeling of large galaxy samples.

Recently the idea of the scalar field has gained interest, given the uncertainty in the parameters the model has adopted different names in the literature depending on the regime that is under discussion, for instance, if the interactions are not present and the mass is $\sim 10^{-22}$eV/c$^2$ this limit was called fuzzy dark matter (Hu et al. 2000) or more recently wave dark matter (Schive, Chiueh, & Broadhurst 2014), another limit is when the SF self-interactions are described with a quartic term in the scalar field potential and dominate over the mass (quadratic) term, this was studied in (Goodman 2000, Slepian & Goodman 2012) and called repulsive dark matter or fluid dark matter by (Peebles 2000).

Notice that for a scalar field mass of $\sim 10^{-22}$eV/c$^2$ the critical temperature of condensation for the field is $T_{\text{crit}} \sim m^{-5/3} \sim$TeV, which is very high, if the temperature of the field is below its critical temperature it can form a cosmological Bose Einstein condensate, if it condenses it is called Bose-Einstein condensed (BEC) dark matter (Matos & Ureña 2001; Guzmán & Matos 1998; Bernal et al. 2010; Robles & Matos 2013; Harko 2011; Chavanis 2011). Sikivie & Yang (2009) mentioned that axions could also form Bose-Einstein condensates even though their mass is larger than the previous preferred value, notice that the result was contested in Davidson & Elmer (2009), this is a characteristic property that distinguishes these dark matter candidates from WIMPs or neutrinos, namely, the existence of bosons in the condensed state, or simply BICS, thus the axion and psyon are BICS.

3. Scalar field dark matter halos

There has been considerable work in finding numerical solutions to the non-interacting SFDM in the non-relativistic regime to model spherically symmetric haloes (Guzmán & Matos 1998; Guzmán & Ureña-López 2004; Ureña-López & Bernal 2010; Bernal et al. 2010; Bray 2010; Kaup 1968), and also for the self-interacting SFDM (Böhmer & Harko 2007; Robles & Matos 2012; Colpi et al. 1986; Rindler-Daller & Shapiro 2012; Balakrishna et al. 1998; Goodman 2000), it is worth noting that as mentioned in Guzmán & Ureña-López (2004) for the weak field limit of the system that determines the evolution of a spherically symmetric...
scalar field, that is, the Einstein and Klein-Gordon equations, for a complex and a real scalar field the system reduces to the Schrödinger-Poisson (SP) equations \( \psi \) (Arbeş et al. 2003). The contraints reported in (Li et al. 2014), obtained by imposing that the SF behaves cosmologically as pressureless matter (dust), imply that the interacting parameter would be extremely small for the typical mass of \( \sim 10^{-22} \text{eV}/c^2 \), therefore we expect that solutions to the SP system with no interactions would behave qualitatively similar to those when self-interactions are included, as supported by the similarity in the solutions of the non-iteracting case and those with a small self-coupling found in other works (Balakrishna et al. 1998; Colpi et al. 1986; Brescese 2011).

One characteristic feature of stationary solutions of the form \( \psi(x, t) = e^{-iE_n t} \phi(r) \) for the SP system is the appearance of nodes in the spatial function \( \phi(r) \), these nodes are associated to different energy states of the SF, the zero node solution corresponds to the ground state, one node to the first excited state, and so on. These excited states solutions fit rotation curves (RCs) of large galaxies up to the outermost measured data and can even reproduce the wiggles seen at large radii in high-resolution observations (Sip 1994; Colpi et al. 1986; Robles & Matos 2013). However, halos that are purely in a single excited state seem to be unstable when the number of particles is not conserved (finite perturbations) and decay to the ground state with different decay rates (Guzmán & Ureña-López 2004; Balakrishna et al. 1998), though they are stable when the number of particles is conserved (infinitesimal perturbations). The ground state solution is stable under finite perturbations and infinitesimal perturbations (Bernal et al. 2010; Seidel & Shu 1990), but has difficulties to correctly fit the rotation curves in large galaxies because its associated RC has a fast keplerian behavior after reaching its maximum value, hence unable to remain flat enough at large radii.

One way to keep the flatness of the RC to large radii is to consider that bosons are not fully in one state, but instead coexist in different states within the dark halo, these multistate halos (MSHs) have been studied in some works (Bernal et al. 2010; Ureña-López & Bernal 2010; Matos & Ureña-López 2007; Robles & Matos 2013).

Martinez-Medina, Robles, & Matos 2015). The size of the MSH is determined by the most excited state that accurately fits the RC for large radii, excited states are distributed to larger radii than the ground state, and in contrast to the halo with single state there are MSHs that are stable under finite perturbations provided the ground state in the final halo configuration has enough mass to stabilize the coexisting state (Ureña-López & Bernal 2010; Bernal et al. 2011).

Although there are still uncertainties in the stability of the MSHs, the appearance of bosons in excited states seems to be a straightforward consequence of quantum interference triggered by halo mergers as confirmed recently in Schive et al. (2014b), and possibly the internal evolution of the halo. Moreover, initial fluctuations that grow due to the cosmological expansion of the universe eventually separate from it and start collapsing due to its own gravity, at this time (known as turnaround) the halo can have a number of psyons that are in different states which depend on the local environment. Depending on the number density of bosons populating the excited states we can have different fates for the halos (Robles et al. 2015).

On the other hand, including rotation in the halo might be needed, in fact, (Guzmán et al. 2014) have included rotation to axis-symmetric halos in the condensed state and show that it can lead to the flattening of the RCs, other works have also included rotation but in the context of MSHs in asymmetric configurations (Bernal 2012), both studies suggest that rotation is a relevant ingredient in halo modeling, in fact it should be, in the end we observed rotation in galaxies embedded in dark halos. However, we require more detail studies to assess the goodness of the agreement with a large sample of galaxies, especially because there are several surveys underway (e.g. GAIA, MANGA) that will provide precise data to test the viability of the standard and alternative dark matter models.

4. Conclusions

There are several DM models in the literature that are addressing some discrepancies found in the standard model of cosmology, one of them is the scalar field dark matter. The quantum prop-
roperties of the field affect kpc scales due to the smallness of the mass. The typical psyon of mass \( m \sim 10^{-22} \text{eV/c}^2 \) reproduces the cosmological evolution just like CDM, it reduces the halo abundance in the faint end of the halo mass function offering a possible solution to the unobserved excess of satellites, and the Heisenberg uncertainty principle generates shallow central densities in dwarf halos contrary to the cuspy profiles found in CDM simulations. It is clear that the SFDM model worths further exploration, in particular, improving the contraints in the mass and interaction parameters such that we can distinguish unambiguously between CDM and SFDM.

This work was supported in part by DGAPA-UNAM grant IN115311 and by CONACyT Mexico grant 49865-E.

REFERENCES

Arbey A., Lesgourgues J., & Salati P., 2003, PRD, 68, 023511
Balakrishna, J., Seidel, E., & Suen, W.M. 1998, Phys. Rev. D, 58, 104004
Bernal, A., Barranco, J., Alic, D., & Palenzuela, C. 2010, in AIP Conf. Proc., 1083, 20-27
Böhmmer, C.G., & Harko, T. 2007, JCAP06, 025
Boylan-Kolchin, M., Bullock, J. S., Kaplinghat, M. 2011, MNRAS, 415, L40
Boylan-Kolchin M., Bullock J.S., Garrison-Kimmel S., 2014, MNRAS, 443, L44
Bozek B., Marsh D.J.E., Silk J., Wyse R.F.G., 2014, arXiv:1409.3544
Bray, H. H. L. Bray,AMS Contemporary Mathematics Volume, vol. 599 (2013), 2010, arXiv:1004.4016
Bray H.L., 2012, arXiv:1212.5745
Briscese F., 2011, Phys.Lett.B, 696, 315
Burkert, A. 1995, ApJ, 447, L25
Colpi, M., Shapiro, S.L., & Wasserman, I. 1986, Phys. Rev. Lett., 57, 2485
Chavanis, P.H. 2011, Phys. Rev. D, 84, 043531
Davé, R., Spergel, D.N., Steinhardt, P.J., & Wandelt, B.D. 2001, ApJ, 547, 574
Davidson S., & Elmer M., 2013, JCAP12, 034
de Blok, W.J.G., McGaugh, S.S., Bosma, A., & Rubin, V.C. 2001, ApJ, 552, L23
de Blok, W.J.G. 2010, Adv. Astron., 2010, Article ID 789293, 14 pages.
Diez-Tejedor A., Gonzalez-Morales A.X., & Profumo S., PRD, 2014, 90, 043517
Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., Lee, K. 2014, MNRAS, 438, 2578
Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., Kirby, E. N. 2014, MNRAS, 444, 222
Goodman J., 2000, New Astronomy 5, 103
Governato, F., Brook, C., Mayer, L., et al. 2010, Nature, 463, 203
Governato, F., Zolotov, A., Pontzen, A., et al. 2012, MNRAS, in press (arXiv:1202.0554v2)
Graham, A.W., Merritt, D., Moore, B., Diemand, J., & Terzić, B. 2006,ApJ, 132, 2701
Guzmán, F. S., & Mateos, T. 1999, Astron. Nachr., 320, 97. Guzmán, F. S., & Mateos, T. 2000, Class. Quant. Grav., 17, L9, arXiv:gr-qc/9810028
Guzmán F.S., & Ureña-López L.A., 2004, PRD, 69, 124033
Guzmán F.S., Lora-Clavijo F.D., González-Avilés J.J., & Rivera-Paleo F.J., 2014, PRD, 89, 063507
Harko T., 2011, MNRAS, 413, 3095
Hu, W., Barkana, R., & Gruzinov, A. 2000, Phys. Rev. Lett., 85, 1158
Ji S.U., & Sin S.J., 1994, PRD, 50, 3655
Kaup D.J., 1968, Phys. Rev., 172, 1331
Klypin, A., Kravstov, A. V., Valenzuela, O., Prada, F. 1999, ApJ, 522, 82
Kuzio de Naray, R., Martinez, G.D., Bullock, J.S., & Kaplinghat, M., et al., 2010, ApJ, 710, L161

5
Kuzio de Naray, R., & Kaufmann, T. 2011, MNRAS, 414, 3617
Kuzio de Naray, R. & Spekkens, K. 2011, ApJ, 741, L29
Lee J.W, & Koh I.G., 1996, PRD, 53, 2236
Li B., Rindler-Daller T., & Shapiro P.R., 2014, PRD, 89, 083536
Lora V., Magaña J., Bernal A., Sánchez-Salcedo F.J., & Grebel E.K., 2012, JCAP02 (2012) 011
Lora V., Magaña J., 2014, JCAP09, 011
Maccìo, A. V., Paduroin, S., Anderhalden, D. et al., 2012 MNRAS, 424, 1105
Magaña J., Matos T., Suárez A., Sánchez-Salcedo F.J., 2012, JCAP 1210, 003
Marsh D.J.E., & Silk J., 2014, MNRAS, 437, 2652
Martinez-Medina L.A., Robles V.H., & Matos T., 2015, PRD, 91, 023519
Matos, T., & Ureña-López, L.A. 2001, Phys Rev. D, 63, 063506
Matos T., Ureña-López L.A., 2007, Gen. Relativ. Gravit., 39, 1279
Matos, T., & López-Fernández, R., arXiv:1403.5243
Merritt, D., Graham, A.W., Moore, B., Diemand, J., & Terzić, B. 2006,ApJ, 132, 2685
Moore, B., Ghigna, S., Governato, F. et al., 1999, ApJ, 524, L19
Navarro, J.F., Ludlow, A., Springel V., et al., 2010, MNRAS, 402, 21
Oh, S.H., de Blok, W.J.G., Brinks, E., Walter, F., & Kennicutt, R.C. Jr. 2011, AJ, 141,193
Peebles P.J.E., 2000, ApJ, 534, L127
Pontzen A., & Governato F., 2012, MNRAS, 421, 3464
Rindler-Daller T., Shapiro P.R., 2012, MNRAS, 422, 135
Rindler-Daller T., & Shapiro P.R., 2014, Mod. Phys. Lett. A, 29, 1430002
Robles, V. H., & Matos, T. 2012, MNRAS, 422, 282
Robles V.H., & Matos T., 2013, ApJ, 763, 19
Robles V.H., & Matos T. 2013b, Phys. Rev. D 88, 083008
Robles V.H., Lora V., Matos T., Sanchez-Salcedo F.J.,2015, arXiv:1404.3424, in press.
Rocha M., Peter A.H.G., Bullock J.S. et al., 2013, MNRAS, 430, 81
Rodríguez-Montoya, I., Magaña, J., Matos, T., & Pérez, L.A. 2010, ApJ, 721, 1509
Scannapieco C., Wadepuhl M., Parry O.H. et al., 2012, MNRAS, 423, 1726
Schive H.Y., Chiueh T., & Broadhurst T., 2014, Nature Physics, 10, 496
Schive H.Y., Liao M.H., Woo T.P.,et al. 2014b, Phys. Rev. Lett. 113, 261302
Seidel E., & Suen W-M., 1990, PRD, 42, 384
Sikivie P., Yang Q., 2009, PRL, 103, 111301
Spergel, D. N., & Steinhardt, P. J. 2000, Physical Review Letters, 84, 3760
Suárez, A., & Matos, T. 2011, MNRAS, 416, 87
Suárez A., Robles V.H., Matos T., 2014, Astrophysics and Space Science Proceedings, 38, 107
Ureña-López L.A., 2009, JCAP01, 014
Ureña-López L.A., & Bernal A., 2010, PRD, 82, 123535
van Eymeren, J.,Trachternach, C., Koribalski, B.S., & Dettmar, R.J. 2009, A&A, 505, 1
Vogelsberger M.,Zavala J., Loeb A., 2012, MNRAS, 423, 3740