Evaluation of the Expression of NLRP1 Inflammasome in Patients with Bacterial Septicemia

Hamid Mosahasankhani, Ashraf Kariminik

1. Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran

10.30699/imm.14.3.201

ABSTRACT

Background: Septicemia is the most important cause of mortality, especially in hospitalized patients, due to the influence of the immune response by infection. NLRP1 (Nod-like receptor P1) is an intracellular receptor that recognizes microbial-dependent molecular patterns. The main intracellular mechanism of anti-septicemia is still being investigated. The purpose of this study was to evaluate the expression of NLRP1 genes in patients with septicemia compared to healthy controls.

Materials & Methods: This cross-sectional study was done on 40 blood samples in patient with septicemia and 40 healthy controls using quota sampling. Bacterial species were identified by microbial culture. NLRP1 gene expression was evaluated using Real Time PCR technique.

Results: Four bacteria such as Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii and Pseudomonas aeruginosa reported for causes of septicemia. The results also showed that the expression of NLRP1 inflammasome at mRNA level was significantly increased in patients with septicemia compared to healthy controls. NLRP1 gene expression was not different among patients with different bacterial infections.

Conclusion: NLRP1 appears to be an important receptor against bacteria during bacterial bloodstream infection, and further research, particularly in reducing the expression level of NLRP1 molecules, may play a key role in blood decontamination.

Keywords: Septicemia, NLRP1 (Nod-like receptor P1), gene expression

Received: 2020/02/28; Accepted: 2020/06/16; Published Online: 2020/06/18

Corresponding Information: Ashraf Kariminik, Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran. Email: a.kariminik@iauk.ac.ir

Copyright © 2020, This is an original open-access article distributed under the terms of the Creative Commons Attribution non-commercial 4.0 International License which permits copy and redistribution of the material just in non-commercial usages with proper citation.

Use your device to scan and read the article online

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Send citation to: Mendeley | Zotero | RefWorks

Introduction

Blood is one of the body's fluids that must be free of any microorganisms in a healthy state. However, under certain conditions, it may change and microorganisms may be transferred to the circulatory system and cause a blood infection. Currently, septicemia is one of the leading causes of death in critically ill patients in the intensive care unit (1,26). Gram-negative bacteria are among the most important causes of toxic septicemia, which has been on the rise in the last 20 years (2). The severity of the disease to some extent determines the outcome of disease. In fact, mortality might occur in septicemia in up to 30%, severe septicemia in 50% and septic shock in 80% (3). At least part of the mortality in septicemia is due to a lack of specific warning clinical signs in its early diagnosis. In addition, the lack of a specific infection marker to diagnose the disease has led to problems in distinguishing infectious agents from non-infectious ones. For this reason, many studies have been conducted in recent decades to access markers that can be used to detect early toxic septicemia. Some recent
studies have reported an increase in serum procalcitonin levels in this group of patients (4). Cytokines play a major role in causing septicemia (5). The mechanism of induction of cytokine production in patients with septicemia has not yet been established. The gene expression of NLRP1 and NLRP3 inflammasomes following septicemia is one of the causes of inflammation and induction of cytokine production in this group of patients. Inflammasomes are a group of cytoplasmic receptors as multi-protein complexes of the innate immune system that are activated in parenchymal and non-parenchymal liver cells and include AIm2, NLRP3, NLRP1 and NLRC4 (6). Stimulation of each of these molecules activates Caspase 1 by the ASC molecule, followed by Caspase 1 leading to activation of Pro-IL-1 and Pro-IL-18 inflammatory cytokines (7). Some studies have suggested that NLRPs may be important regulators of inflammation in microbial infections. The present study was performed to compare the expression of NLRP1 gene expression in patients with toxic bacterial septicemia. Attempts are being made to use the Real time PCR method as a new assay in diagnosing comparisons between NLRP1 gene expression in patients with septicemia and the control group with a general understanding of the human immune system, especially inflammatory cytokines and the NLRP1 gene rely on the background of the research to be presented.

Materials and Methods

Blood Sampling and Culture

This cross-descriptive study was performed in 2018 during 6 months on 40 blood samples of patients with septicemia and 40 blood samples from healthy control individuals in Afzalipour Hospital in Kerman, as an available sample. Sampling was performed based on the hospital’s routine treatment of patients and no blood sampling was performed solely for the present study. In addition, these patients were in the middle age group and did not have underlying diseases such as diabetes. 5 to 10 mL of blood from people with symptoms of septicemia was confirmed on a liquid blood culture medium with the approval of a specialist doctor, and blood culture glasses were incubated for 48 hours at 37°C (8). Then, blood culture was performed under aseptic conditions on Blood Agar and Mc-Conkey agar culture medium by streak method. From the grown and positive samples, bacteriological diagnostic tests including Gram staining, biochemical and diagnostic tests were performed to identify the bacterium causing infection (8).

RNA Extraction and cDNA Synthesis

Buffy coat from a blood sample, 40 patients with septicemia and 40 healthy controls were obtained. The RNA extraction was performed using the based RNX-Plus kit (Cinacilon, Iran) protocol (9). After extracting RNA, the quantity and quality of RNA were evaluated by UV spectrophotometry and agarose gel electrophoresis. In the spectrophotometric method, the concentration of RNA sample was measured using 260 nm wavelength absorption determination. The ratio of A260 / A280 was used to determine the purity of RNA. Samples with the appropriate OD (range 1.8 to 2) were selected for the next steps. In the electrophoresis method, 3 microliters of RNA dissolved in deionized water were used on 1% agarose gel. The presence of two 18S and 28S ribosomal bands indicated that RNA was purity. After extracting the appropriate quality RNA, it is necessary to convert it to cDNA to start RT-PCR. This was performed using the reversal transcriptase. For cDNA synthesis Pars Toos kit (Iran) was used. Thus, the cDNA generated was maintained at -20°C until the real time PCR was performed and expression of the NLRP1 gene was assessed (10).

Gene Expression

To investigate gene expression, Cyber-Green real time PCR was used. To design the primers, the site www.ncbi.nlm.nih.gov and the Primer Blast software were used to evaluate the capabilities of these primers based on their physical and chemical properties, the specificity of the primers, and the possibility of their compatibility with other organisms. The Oligo and Nucleotid Blast programs were then used for more accurate primer verification. Primers designed by Iran Takapozist Company were synthesized. The sequence of primers used for NLRP1: F: 5’-ACTTCTCTAATTTCTCCTAC-3’, R: 5’-GCTTCTGGAAAAACCCCTC-3’, and for beta actin: F: 5’-GGCACCCAGCACAATGAAG-3’, R: 5’-CCGATCCACACGGAGTACTTG-3’. A suitable amount of deionized distilled water was added to the primers to obtain a 100 pmol/µL concentration. A certain volume was separated from the original solution and the residue was stored at -20°C. Before examining the gene expression, to evaluate the quality of the genes studied and also to determine the optimal value of the primer and the connection temperature of the primer, the molecular method of PCR with temperature gradient was used. Therefore, in each reaction, different concentrations of primer (5 and 10 picomoles) were used and the thermocycler system temperature gradient program was used to determine the optimal connection temperature. To perform PCR in a 0.2 mL sterile microtubule, the following ingredients were added (Table 1) and then the microtubules were placed in a thermocycler and the system was set up in accordance with Table 2 protocol. For gene expression, SYBR Premix Ex Taq II Kit (Takara, Japan) using the design and optimized primers according to the kit instructions was used (11).
Table 1. PCR protocol for NLRP1 and β-Actin

Materials	(µl)	Concentration
Buffer 10X PCR	2.5	1X
dNTP 10mM	0.5	0.2 mM
MgCl2 50mM	0.75	1.5 mM
Taq DNA Polymerase 5unit/µL	0.25	1.5 unit
Forward primers 10µM	0.5	1 µM
Reverse primers 10µM	0.5	1 µM
Distilled water	15	---
cDNA	5	---
Final volume	25	---

Table 2. Time program of thermal cycler for NLRP1 and β-Actin

Stage	Temp(°C)	Time	No. of Cycles
Pre-denaturation	94	5 min	1
Denaturation	94	1 min	35
Annealing	55-63	55 Sec	
Extension	72	1 min	
Final extension	72	5 min	1

Melt Curve Analysis

By analyzing the melting curve, the existence of non-specific bonds and dimmer primers can be detected. In the real-time PCR method, in addition to controlling DNA synthesis during the reaction and drawing the multiplication diagram, the melting point of the product was determined at the end of the reaction and the melting curve was drawn. This was done after the PCR process was completed. All PCR products produced by a particular pair of primers have the same melting point, as Cybergreen is unable to distinguish between target DNA and other long-distance DNAs. Using the melting curve, the variety of products in the PCR process can be examined. The melting diagram was drawn for each sample by measuring the fluorescence changes at different temperatures. The sudden decrease in the intensity of the fluorescence that occurs with the opening of the DNA strand can be seen as a peak in this curve. Each peak represents Tm, a PCR product.

Data Analysis and Statistical Methods

The differences between patients with septicemia and healthy controls and female compared to male were calculated using Mann–Whitney U test, and the differences among the patients infected with various bacteria were examined using Kruskal–Wallis test using SPSS software version 18. P-value was considered significant at <0.05. Measurement of gene expression was measured using the conventional Livak method and with the evaluation of $2^{-\Delta\Delta CT}$.

Results

The results of blood culture were determined by observing the growth of bacteria. Escherichia coli: 7, Staphylococcus aureus: 10, Acinetobacter baumannii: 17 and Pseudomonas aeruginosa: 6 cases were responsible for septicemia in patients. The results of primer temperature optimization showed that the best temperature for connecting primer for NLRP1, beta-actin were 57°C and 58°C, respectively. The melting curve also confirmed the accuracy and specificity of the NLRP1 gene expression (Figure 1). Based on the obtained diagram, it was observed that these genes had only one peak in the temperature range of 85 to 90°C, which indicates that they are single-band and the specificity of the related reaction and non-contamination.

Figure 1. Melting curve of NLRP1 gene
Results of Inflamazome NLRP1 Gene Expression in Septicemia Patients and Control Group

Inflamazome NLRP1 had a significant increase in expression in people with septicemia compared to healthy controls, as shown in Figure 2. As shown in Figure 3, the expression of the NLRP1 gene in men was higher than women. Figure 4 shows that there is no significant difference in the expression of NLRP1 gene expression in relation to the bacteria causing the infection isolated from septicemia samples such as Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa.

Discussion

Septicemia is the third leading cause of death after lung infection and AIDS, and is the most common cause of death in the intensive care unit, given the growing trend and subsequent problems, including septic shock and in the last 20 years; the trend has been increasing (12). Septicemia caused by gram-negative bacteria is more deadly than other bacteria, but gram-positive bacteria, anaerobes, fungi, and even viruses can be among the etiologies of these bacteria (13, 14). At least part of the cause of death due to septicemia is due to a lack of specific clinical signs for early diagnosis. In addition, the absence of specific markers of infection in this disease has led to problems in differentiating the syndrome of systemic inflammatory response caused by infectious agents from non-infectious, which in turn leads to low consumption or in some cases high consumption of antimicrobial agents (15). The presence of clinical symptoms alone is not enough to diagnose septicemia and a prompt and appropriate diagnosis of toxic sepsis should be a daily challenge for the emergency department and the intensive care unit. Today, various treatments have improved the survival of patients with septicemia, so a prompt and correct diagnosis is essential. Septicemia has no specific symptoms, microbial culture requires time, and does not show a systemic inflammatory response. At the same time, it does not show a defect in the function of organs and may not yield positive results in some patients with septicemia for various reasons. Septicemia is a systemic reaction of the body to invasive microorganisms, including bacteria and fungi.
About two-thirds of septicemia occurs in hospitalized patients, with a number of factors such as increasing population age, increasing duration of chronic disease, use of antibiotics and corticosteroids, and mechanical and intravascular devices to increase its incidence (1). Septicemia usually occurs in people with weakened immune systems (17). In the present study, similar to previous studies, the prevalence of toxic sepsis was determined, especially in hospitalized individuals, and this could be due to nosocomial infections, the use of catheters, and contaminated instruments. The highest levels of contamination in the present study were related to gram-negative bacteria, and 42.5% of the infections were caused by Acinetobacter baumannii. This bacterium is also one of the major causes of nosocomial infections, especially in the intensive care unit, and has a wide range of antibiotic resistance (27). Primary and innate immune responses play a key role in eradicating infections from tissues, including blood (18) and since NLRP1 and NLRP3, as intracellular receptors, play an important role in inducing primary immune responses; these molecules appear to play an important role in inducing primary immune responses against septicemia-causing bacteria (19). NLRP1 is one of the first known inflammasomes. In some bacterial infections, the path of pyroptosis is activated. ATP leakage from inflammatory macrophages and its entry into the cell through the canexin canal and ATP binding to the P2X7 receptor lead to NLRP1 activation. Decreased cellular ATP activates NLRP1. The two anti-apoptotic proteins Bcl-2 and Bcl-XL prevent the activation of NLRP1. NLRP1 ability to detect cellular energy levels may establish a link between metabolism and the immune system. Some studies have suggested that NLRP1 may be a sensor for hematopoietic stress and an important regulator of inflammation (6, 20). In the present study, NLRP1 also had a significant increase in expression in patients with septicemia compared with the control group.

Investigations have shown that 3NLRP molecules play an important role in identifying and responding appropriately against intracellular infections (21). Other studies suggest that Inflamazom NLRP3 acts as part of the host defense against a large group of activated bacterial, fungal, and viral pathogens, producing IL-18 and IL-1 (22). Another study found that the innate immune system produces a set of cytoplasmic sensors that are activated against viral infections. Activation of these sensors leads to the production of interferon type 1, inflammasome activity, and the production of inflammatory IL-1 and IL-18 cytokines (23). Another study showed that inflammasomes play an important role in causing cirrhosis as well as liver cancer following liver inflammation (24). A study of patients with hepatitis C also found that NLRP3, as one of the inflammasomes, played an important role in activating IL-1 by identifying components of the hepatitis C virus (25).

Conclusion

NLRP1 appears to be an important receptor for bacteria during bacterial bloodstream infection, and further research, especially in reducing the expression of NLRP1 molecules, could play a key role in purifying the blood. Determine the cause of infection.

Acknowledgment

We thank from colleagues of the Microbiology Research Laboratory and the Research Department of the Islamic Azad University, Kerman Branch.

Conflict of Interest

Authors declared no conflict of interests.
بررسی بیان ژن کدکننده اینفلامازوم سپتی سمتی باکتریایی بستری در بیمارستان افضلی‌دور کرمان در سال 1397

حمید موسی حسنخانی، اشرف کریم نیک

گروه میکروبیولوژی، دانشگاه علوم، دانشگاه آزاد اسلامی واحد کرمان، کرمان، ایران

اطلاعات مقاله

نوبنده مسئول:
ارشف کریم نیک، گروه میکروبیولوژی، دانشگاه علوم، دانشگاه آزاد اسلامی واحد کرمان، کرمان، ایران

اکیف نوشته:
Journal homepage: www.ijmm.ir

چکیده
زمینه و اهداف: سیتی‌سی‌سی‌م هسته‌ای عوامل مرگ و میر افراد به‌وجود آمده در بیماران پسندری رود و تحت تأثیر پاسخ ایمنی نیست. این فاکتور از داخل سلول باعث کاهش می‌کند که اگر یک تراکم مولکولی باشد نمی‌تواند به عنوان همکاری و اینکه نمی‌تواند در حال بررسی با افراد سالم مولکولی کنترل کننده است. به همین‌رو به دلیل یافته‌های چانگ کاتاک ژن‌های کاربردی اینفلامازوم که اثربخش است به آن می‌گویند. ابتدا، سمت‌های مولکولی و سمت‌های فعال آن را از طریق سیتی‌سی‌سی‌م در بیماران باکتریایی یافته‌ها در نظر گرفته شده و با استفاده از تکنیک‌های مولکولی ژن‌تکنیک ژن‌های NLRP1 با<NPL1،<PL1 و<b1 (N1LRP1) در میان بیماران باکتریایی مطالعه می‌گردید.

نتیجه‌گیری: به طور میدانی که نیروی نیک دارد نیروی نیک باید در بیماران باکتریایی تشخیص و تشخیص پیش‌گیرانه این مطالعه می‌باشد. NLRP1 می‌تواند نشان دهنده در پایکارکی‌های محور یا عدم وجود چنین محوری بر روی نمود. کلید واژه‌ها: سیتی‌سی‌سی‌م، NLRP1، ژن‌تکنیک

کی‌ای‌ای: ژن‌میکروبی شناسی پزشکی ایران در سال‌های آزاد بی‌بی‌دراز توزیع و نشر برای استفاده غیرتجاری با نکر دما آزاد است.
کننده افتراقی مکانیکی آگار به روش استریکن انجام شد. از نمونه‌های رشد کردگان مثبت شده تا تشخیص باکتریولوژی شامل رنگ آبی، گرم، استیت‌های بوشیمیایی و تشخیص برای شناسایی باکتری عفونت انجام گرفت.

cDNA استخراج RNA و استریکن

از نمونه خون ۴۰ مبتلا به سینئوسیم و ۴۰ کنترل سالم، با استفاده از برنامه Primers Blast، بر اساس خصوصیات فیزیکی و شیمیایی، اختصاصی‌برداری‌ها و احتمال وجود هموئولژی آنان با سایر ارگانیسم‌ها مورد بررسی قرار گرفت. سپس به منظور تأیید دقیق برای برداشت Nucleotid Blast و oligo Primer Blast نمونه‌های مثبت به روش الکتروفورز در نظر گرفت. برای این مراحل کشت در افراد مبتلا به سینئوسیم و گروه کنترل با شناخت NLRP1 در بیماران مبتلا به سینئوسیم با استفاده از RT-PCR انجام شدند. ممکن است به عنوان یک کنترل موثر باشد. تحقیق حاضر به منظور مقایسه میزان باین‌ن سایت‌های NLRP1 در بیماران مبتلا به سینئوسیم با استفاده از روش ویژه یکی از این مکل‌های میکروبی مطرح بوده است. پس از استخراج دسته از عوامل و تکاپوز اساس پژوهش ارائه گردید. سپس به تازگی مورد بررسی قرار گرفت.

روش ژنوهش

نمونه‌گیری و کشت خون

این مطالعه مطبوط-توسعی در سال ۱۳۹۷ تا ۱۳۹۹ بر روی ۴۰ نمونه خون مبتلا به سینئوسیم و ۴۰ نمونه خون سالم از افراد کنترل سالم در بیمارستان افسیضی شهر بیرماس برگزار گردید. بر اساس معمول درمانی بیماری‌های مار دیگر، و خون گیری صرفه برای انجام خاصیت باعث عمل نیامده است. این افراد رنگ-ژن‌های مشترک با شناخت NLRP1 کلی از سیستم‌های مبتلا به سینئوسیم و گروه کنترل بر روی‌ها ترکیب ژن‌های مثبت و منفی از خون افراد مراجعه‌کننده با آزمایش‌های مختلف، بر روی محتوی کننده مثبت خون بالا داده شد. همچنین، کشت بر روی محیط کشت به مدت ۲۸ ساعت در دمای ۳۷ درجه سیلسیوس گرمات‌های ژن‌گسترده در شرایط استبیلک شکستگی کشت خون در شرایط محیطی می‌خوریم.
آنالیز منحنی ذوب برای تعیین اختصاصی بودن محصولات

با انتخاب منحنی ذوب می‌توانیم جدول آزمایشی را تغییر دهیم. روش ریال تایم پی از آن به فرآیند انتخاب منهای تمایل تهیه می‌شود. در نمونه‌هایی که با دمای زد و مثلث توجه می‌شود، باید ذوب DNA به کار رفته نسبت به دمای عنصری انتخاب می‌شود.

به‌منظور تجزیه و تحلیل تتفاوت‌های بین بیماران سبب اثر و سبب اثر، کنترل سالم و مردان در مقابل محور پژوهشی و آزمون‌های از درصد مولکول‌های DNA و غلظت کلر در محصول به کار رفته می‌شود. همچنین، از دستورالعمل SPSS Inc., نسخه 18 برای پردازش داده‌ها استفاده شده است. به‌منظور مقادیر مناسب آب مقطع دیوئیت اضافه شده تا گرفتگی Cgro مقدار 100 Pmol/μl به دست آید. حجم محصولات از محلول اصل جدید و باقی مانده در -20 نگهداری شد. قبل از بررسی میزان بیان زن، به‌منظور ارزیابی کیفیت زن‌های مورد مطالعه و نیز تعیین بهینه مقدار برای و دمات آزمایش، از روش مولکولی پی از آن به شیب دمایی استفاده شد. بین منظور در هر واکنش غلظت‌های مختلف برای (5 و 10 پیکومول) به کار رفته و برای تعیین دمای بهینه انتقال 3- CCGATCCACGAGGACTTTG

مواد و غلظت اولیه	غلظت نهایی (μM)
Buffer 10X PCR	3/5
dNTP 10mM	5/75
MgCl2 50mM	5/25
Taq DNA Polymerase 5unit/μL	5/100
Forward primers 10μM	5/25
Reverse primers 10μM	5/25
Apicl	15/100
cDNA	5/25
حجم نهایی	25/1000

- ACTIN β1 و NLRP1

اندازه‌گیری تغییرات فلورسنس در دمای مختلف صورت گرفت. کاهش تاکتیکی شدت فلورسنس که با بار شدن دوره تهیه می‌شود، به‌صورت یک قله در این منحنی قابل مشاهده است. هر یک از قله‌ها، نمایانگر یک محصول پی از آن است.

تجزیه و تحلیل داده‌ها

با توجه به توسعه داده‌های ناهنجاری، آزمون مان- ویلی نا به‌منظور تجزیه و تحلیل تفاوت‌های بین بیماران سبب اثر و سبب اثر، کنترل سالم و مردان در مقابل محور پژوهشی و آزمون‌های از درصد مولکول‌های DNA و غلظت کلر در محصول به کار رفته می‌شود. همچنین، از دستورالعمل SPSS Inc., نسخه 18 برای پردازش داده‌ها استفاده شده است. به‌منظور مقادیر مناسب آب مقطع دیوئیت اضافه شده تا گرفتگی Cgro مقدار 100 Pmol/μL به دست آید. حجم محصولات از محلول اصل جدید و باقی مانده در -20 نگهداری شد. قبل از بررسی میزان بیان زن، به‌منظور ارزیابی کیفیت زن‌های مورد مطالعه و نیز تعیین بهینه مقدار برای و دمات آزمایش، از روش مولکولی پی از آن به شیب دمایی استفاده شد. بین منظور در هر واکنش غلظت‌های مختلف برای (5 و 10 پیکومول) به کار رفته و برای تعیین دمای بهینه انتقال
انتقلاموزون NLRP1 در افراد از افزایش بیان معنی‌داری در افراد مبتلا به حالت مبتلا به بیماری NLRP1 در مدت سه سال افزایش می‌شود. در مطالعه تایید شده در Chicago, IL., USA از زنگ می‌توان به مزیت استفاده در درمان‌های پرتوکورکوس‌وارون و ارطعه آن‌ها 139±16، با ارزیابی میزان لیولیک در پارامتر P-value در 104 معنی‌دار در نظر گرفته شد.

یافته‌ها
ناظری کش خون روی محیط‌هایی که افتراقی و پایه بررسی با مشاهده رشد باکتری‌ها مشخص گردد و با توجه به نتایج تست‌های تشخیصی و شناسایی انجام گرفته، باکتری‌های افراد گیاهی که با یکی از موارد استفاده می‌شود، استافیلوکوکوس آورزیونزا و سوپر کورکوس آورزیونزا و کمک آزمایش‌های به میزان میزان NLRP1 در ارتباط با باکتری‌های معمول عوامل جدایی از نمونه‌های سنتی سیمی از قبیل استافیلوکوکوس آورزیونزا و مقررات کلی است. NLRP1 بیماری در مدت تحقیق به دقت و مانده از باکتری‌های معمول عوامل به‌طور محدود و محدود به‌طور کلی داشته که دارای تأثیر فیزیولوژیک به آن و عدم آسیبی است.

نتایج
نتایج پایه‌سازی نشان داد که بهترین داشته باشد در افراد برای بررسی و نتایج انجام نمود.

شکل 1. منحنی ذوب NLRP1
نتایج بیان زنی انتقلاموزون NLRP1 در بیماران سیمی و گروه کنترل

409
پروری است. سپسی سمی فقدان علامت و نشانه‌های اختصاصی است. کنتر میکروبی مستلزم صرف وقت بوده و باعث انتهاهی سیستمتیک بیمار را نشان نمی‌دهد. این حال نقص در عملکرد ارگان‌ها را نشان نموده و ممکن است به دلایل متعددی در پیامدهای مبتلا به استفاده از آنتی‌بیوتیک‌ها و سیستمتیکی بدن به میکروگانیسم‌های مهاجم ازجمله باکتری‌ها و قارچ‌ها است (16). حضور در سیستمتیکی مبتلا به باکتری‌ها معمولاً در افراد سوخته و در مبتلا به استودمایی مبتلا به باکتری‌ها از مطالعات نشان داد که در افراد زیر 18 سال، از این باکتری‌ها به عنوان سیستمتیک و کوتوریپاستوئودی و وسایل مکانیکی و داخل عروقی در افزایش بروز آن مشخص شده است (1). سپسی سمی معلول در افرادی که دچار ضعف در سیستمتیکی مبتلا به باکتری‌ها و قارچ‌ها است، ممکن است به دلایل و عوامل متعددی مثل افزایش سیستمتیک و در افزایش باکتری‌های مبتلا به باکتری‌ها از کانترها و باکتری‌های یکنواختند در تحقیق حاضر مربوط به باکتری‌های گرم منفی پدیده را باکتریایی/سیستمتیکی بومی‌های منطقه داد. این باکتری در علت عفونت‌های بیمارسی به‌طور کامل موفقیت گسترش‌زایی است. پایه‌گذاری این باکتری در سیستمتیکی به‌طور کامل موفقیت گسترش‌زایی روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌زا به‌طور کامل روش‌هایی است که از فاصله‌های جز یاده‌ای حمایت‌за
نتایج گیری
با توجه به یافته‌های حاصل از تحقیق حاضر، بین نمرات NLRP1 که گیرنده مهیق در برابر باکتری‌های سبب بیماری اختلالات عفونی به خصوص باعث درد عفونت خونی باکتری‌ای و تحقیقات گسترده، به خصوص در کاهش میزان NLRP1 می‌تواند نشان اصلی در برابر باکتری‌ای خون از غلظ عفونت را رقم بزند.

سیاست‌گذاری
از همکاران محترم از آزمایشگاه تحقیقاتی میکروبیولوژی و حوزه پژوهشی دانشگاه آزاد اسلامی واحد کرمان، سیاست‌گذاری می‌گردد.

تغییر در منافع
این مقاله پژوهش مستند است که بدون حمایت مالی سازمان انجام شده است. در انجام مطالعه حاضر، توسیع‌گران هیچ‌گونه تغییر منافعی نداشته‌اند.

Reference

1. Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for sepsis or sepsis: a challenge for patients and hospitals. NCHS data brief. 2011 (62): 1-8.
2. Blomberg B, Jureen R, Manji KP, Tamim BS, Mwakagile DS, Urassa WK, et al. High rate of fatal cases of pediatric sepsis in Dar es Salaam, Tanzania. Journal of clinical microbiology. 2005; 43(2):745-9. [PMID] [PMCID]
3. Jawad I, Lukšić I, Rafnsson SB. Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. Journal of global health. 2012; 2(1):1-9. [PMID] [PMCID]
4. Nnanna II, Ethier OJ, Sidiquo II, Nnanna IG, Adekunle O. Serum procalcitonin: Early detection of neonatal bacteraemia and sepsis in a tertiary healthcare facility. North American journal of medical sciences. 2011;3(3):157-160. [PMID] [PMCID]
5. Friedland J, Suputanmongkol Y, Remick D, Chawagul W, Strieter R, Kunkel S, et al. Prolonged elevation of interleukin-8 and interleukin-6 concentrations in plasma and of leukocyte interleukin-8 mRNA levels during septicemic and localized Pseudomonas pseudomallei infection. Infection and immunity. 1992;60(6):2402-8. [PMID] [PMCID]
6. Chavarría-Smith J, Vance RE. The NLRP1 inflammasomes. Immunological reviews. 2015;265(1):22-34. [PMID] [PMCID]
7. Proll M, Gerlic M, Mace PD, Reed JC, Riedl SJ. The CARD plays a critical role in ASC foci formation and inflammasome signalling. Biochemical Journal. 2013;449(3):613-21. [PMID] [PMCID]
8. Sinn WC. Koneman's color atlas and textbook of diagnostic microbiology: Lipps and wilkins. 2006.
9. Karimnik A, Yaghobi R, Darbiri S. CXCL9 expression and polyomavirus BK infectivity in renal transplant patients with nephropathy. Cellular and Molecular Biology. 2016;62(1):104-8.
10. Karimnik A, Darbiri S, Yaghobi R. Polyomavirus BK induces inflammation via up-regulation of CXCL10 at translation levels in renal transplant patients with nephropathy. Inflammation. 2016;39(4):1514-9. [PMID] [PMCID]
11. Karimnik A, Yaghobi R, Darbiri S. Association of BK Virus Infection with CXCL11 Gene Expression and Protein Levels in Kidney Transplant Patients. Experimental and clinical transplantation: official journal of the Middle East Society for Organ Transplantation. 2018;16(1):50-4.
12. Haddy RI, Richmond BW, Trapse FM, Fannin KZ, Ramirez JA. Sepsis in patients with AIDS admitted to a university health system: a case series of eighty-three
patients. J Am Board Fam Med. 2012;25(3):318-22. [DOI:10.3122/jabfm.2012.03.110106] [PMID]
13. Mehta M, Dutta P, Gupta V. Antimicrobial susceptibility pattern of blood isolates from a teaching hospital in North India. Japanese journal of infectious diseases. 2005;58(3):174-76.
14. Millar BC, Jiru X, Moore JE, Earle JA. A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. Journal of Microbiological Methods. 2000;42(2):139-47. [DOI:10.1016/S0167-7012(00)00174-3] [PMID]
15. Kurt B, Flynn P, Shenep JL, Pounds S, Lensing S, Ribeiro RC, et al. Prophylactic antibiotics reduce morbidity due to septicemia during intensive treatment for pediatric acute myeloid leukemia. Cancer. 2008;113(2):376-82. [DOI:10.1002/cncr.23563] [PMID]
16. Nwadioha S, Nwokedi E, Kashibu E, Odimayo M, Okwori E. A review of bacterial isolates in blood cultures of children with suspected septicemia in a Nigerian tertiary Hospital. African Journal of Microbiology Research. 2010;4(4):222-5.
17. Paglia MG, D'Arezzo S, Festa A, Del Borgo C, Loiacono L, Antinori A, et al. Yersinia pseudotuberculosis septicemia and HIV. Emerging infectious diseases. 2005;11(7):1128-30. [DOI:10.3201/eid1107.041268] [PMID] [PMCID]
18. Dabiri S, Kariminik A, Kennedy D. The role of CXCR3 and its ligands in renal transplant outcome. European cytokine network. 2016;27(2):34-40. [DOI:10.1684/ecn.2016.0375] [PMID]
19. Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proceedings of the National Academy of Sciences. 2014;111(30):11181-6. [DOI:10.1073/pnas.1402819111] [PMID] [PMCID]
20. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Molecular neurodegeneration. 2016;11(23):1-14. [DOI:10.1186/s13024-016-0088-1] [PMID] [PMCID]
21. Shimada K, Crother TR, Arditi M. Innate immune responses to Chlamydia pneumoniae infection: role of TLRs, NLRs, and the inflammasome. Microbes and infection. 2012;14(14):1301-7. [DOI:10.1016/j.micinf.2012.08.004] [PMID] [PMCID]
22. Leemans JC, Cassel SL, Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunological reviews. 2011;243(1):152-62. [DOI:10.1111/j.1600-065X.2011.01043.x] [PMID] [PMCID]
23. Kanneganti T-D. Central roles of NLRs and inflammasomes in viral infection. Nature Reviews Immunology. 2010;10(10):688-98. [DOI:10.1038/nri2851] [PMID] [PMCID]
24. Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nature reviews Gastroenterology & hepatology. 2015;12(7):387-400. [DOI:10.1038/nrgastro.2015.94] [PMID]