Neoadjuvant Chemotherapy With Capecitabine Plus Cisplatin in Patients With Locally Advanced Nasopharyngeal Cancer: Case Series Study

Reyad Dada
Mohamed El Sayed
Jamal Zekri

Author affiliations and support information (if applicable) appear at the end of this article.

Corresponding author: Reyad Dada, MD, PhD, Department of Oncology, MBC J-64, King Faisal Specialist Hospital and Research Center, PO Box 40047, Jeddah 21499, Kingdom of Saudi Arabia; Twitter: Riad@ichreyad; e-mail: rdada@kfshrc.edu.sa.

455 Volume 3, Issue 5, October 2017 jgo.org

J Glob Oncol 3. © 2016 by American Society of Clinical Oncology
Licensed under the Creative Commons Attribution 4.0 License

abstract

Purpose Capecitabine, an oral fluorouracil (5-FU) derivative, has replaced 5-FU in many chemotherapy regimens used in various GI tract cancers. The experience with capecitabine in nasopharyngeal carcinoma (NPC) is limited.

Patients and Methods We report on eight patients with locally advanced NPC treated with neoadjuvant chemotherapy with capecitabine and cisplatin.

Results All eight patients responded well to the chemotherapy combination and achieved complete remission after definitive chemoradiotherapy. No grade 3/4 toxicities were observed. Five patients experienced a relapse after 6, 8, 9, 12, and 17 months.

Conclusion In the patients studied, capecitabine (in combination with cisplatin) was a safe and effective substitution for 5-FU for the neoadjuvant treatment of locally advanced NPC. Larger prospective clinical studies are required to confirm these results.

J Glob Oncol 3. © 2016 by American Society of Clinical Oncology
Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a chemotherapy-sensitive cancer and more common in Asia, with a reported annual incidence in Far Asia of approximately 25-fold higher than in the Western world. Epstein-Barr virus plays an important role in the pathogenesis of NPC and induces tumor metastasis. Concurrent chemoradiotherapy (CCRT) is the standard for locally advanced NPC (LANPC). However, neoadjuvant chemotherapy (NAC) with cisplatin and 96 hours of infusional fluorouracil (5-FU) may reduce the radiotherapy field, and thus toxicity, and may improve long-term outcomes in select high-risk patients.

Conventional infused 5-FU is an essential part of many chemotherapy regimens used to treat patients with head and neck cancer. At many institutions, it requires central venous access and hospitalization or the use of an ambulatory portable chemotherapy pumps (APCP), which causes substantial inconvenience to patients. Furthermore, central venous catheters can cause immediate and long-term complications, including pneumothorax, thrombosis, and sepsis.

Capecitabine is an oral fluoropyrimidine carbamate that is metabolized to 5-FU through three steps of enzymatic reactions. It has replaced 5-FU in many chemotherapy regimens used to treat patients with various GI tract cancers. Several trials have demonstrated in patients with metastatic colorectal cancer that adjuvant capecitabine is well tolerated and has much of the same antitumor activity as 5-FU. Capecitabine is incorporated in chemotherapy regimens for many other tumor types, such as esophageal, gastric, and breast. Single-agent and combination regimens have also shown advantage in other cancer types, such as prostate, pancreatic, renal cell, and ovarian. The efficacy, safety, and convenience of the oral formulation make capecitabine an attractive option for patients with NPC.

PATIENTS AND METHODS

Cisplatin and 96 hours of infusional 5-FU is the standard regimen for the neoadjuvant treatment of patients with LANPC at our hospital. The treatment is administered intravenously in an inpatient setting or through an outpatient APCP. Intravenous 5-FU is substituted with oral capecitabine twice per...
day on days 1 to 14 every 3 weeks for patients who refuse hospital admission, the placement of a central venous catheter, and the APCP. Patients who achieve excellent clinical response after the second cycle undergo early radiologic examination to confirm their response and are referred for radical CCRT and not undergoing the third cycle of NAC. Thereafter, all patients receive radical combined-modality chemotherapy (cisplatin 100 mg/m² once every 3 weeks) and radiation with the intensity-modulated radiation therapy administered according to standard hospital practice guidelines. The follow-up protocol includes clinical examination with endoscopy every 2 to 3 months during the first year, every 4 to 6 months the second year, and every 6 to 12 months thereafter. Radiologic examination starts 2 to 3 months after the end of radiotherapy and is repeated every 6 months for the first 2 years.

We performed a retrospective case series study to analyze the outcome of patients with LANPC treated with neoadjuvant capecitabine and cisplatin followed by definitive CCRT.

RESULTS

Between March 2013 and June 2016, neoadjuvant capecitabine (with cisplatin) was administered to eight patients (six male and two female) with LANPC. Mean age was 47.8 years. All patients completed the neoadjuvant and combined-modality treatment. As a result of excellent clinical response in four patients, the induction therapy was stopped after two cycles. Computed tomography scans showed 25% complete and 85% partial remissions after NAC. Treatment was well tolerated without grade 3 to 4 toxicities. Furthermore, no dose reduction or delay of NAC cycles was necessary. No toxicity-related hospitalization occurred during NAC. All patients started radical combined-modality chemoradiotherapy (intensity-modulated radiation therapy) within 4 to 6 weeks after NAC. Radiologic response assessment was carried out 2 to 3 months after completion of the therapy. All patients achieved clinical and radiologic complete remission by the end of the planned treatment approach (NAC and CCRT). At the last follow-up (August 2016), three patients remained disease free and five experienced a relapse 6, 8, 9, 12, and 17 months after completing CCRT. All patients were alive at the last follow-up. Table 1 lists the patient characteristics and relevant adverse effects.

DISCUSSION

The patients treated with capecitabine had an excellent outcome with an acceptable adverse effect profile. There was no grade 3 to 4 toxicity. Although the drug is used in many GI tract chemotherapy protocols instead of 5-FU, it has not yet replaced 5-FU in chemotherapy regimens used in patients with head and neck cancer. Several phase II studies confirmed the effectiveness and tolerance of capecitabine combination in head and neck cancer. A randomized study in 153 patients with locally advanced squamous cell head and neck cancer showed a significantly better rate of complete response and better overall response with concurrent cisplatin and capecitabine plus radiotherapy compared with cisplatin and 5-FU plus radiotherapy, with similar progression-free and overall survival.

Data on capecitabine in NPC are scarce and mostly limited to patients with metastatic and refractory disease. These data from four small phase II studies examined the outcome and tolerance to capecitabine in metastatic/refractory NPC. The efficacy results were similar to conventional 5-FU but with better patient acceptance and, in general, a similar tolerability profile. To our knowledge, no data in the literature describe the use of capecitabine in neoadjuvant treatment of NPC apart from preliminary results of one recently reported study from China. In this randomized study in patients with LANPC, capecitabine and cisplatin were better tolerated than 5-FU and cisplatin (neutropenia and electrolyte disturbance) and were associated with better overall survival (hazard ratio, 0.57; 95% CI, 0.34 to 0.97).

Some patients with head and neck cancer can present with dysphagia, which may preclude the routine use of oral formulation drugs. In patients without dysphagia, capecitabine oral treatment is considered an attractive and practical substitute to a long course of intravenous 5-FU infusion. The patients in this study expressed satisfaction with this treatment because it was well tolerated and allowed them more time away from the hospital. This approach relieves the burden on already-stretched health care resources by reducing bed occupancy. Furthermore, the treatment is
more convenient and safe for patients because it avoids the need for a central line that may be associated with complications. In conclusion, capecitabine is an active and safe substitute for 5-FU in patients with LANPC treated in a neoadjuvant setting. Further validation in randomized clinical studies in patients with LANPC and metastatic NPC is required.

Table 1. Patient Characteristics and Capecitabine-Related Adverse Effects During NAC

Characteristic	1	2	3	4	5	6	7	8
Age, years	54	19	54	55	63	57	44	36
ECOG performance status	1	1	2	1	2	1	2	1
TNM stage (AJCC 2010)	T4N1M0	T4N2M0	T4N2M0	T4N1M0	T4N2M0	T4N1M0	T3N2M0	T4N2M0
No. of cycles of NAC	2	3	3	2	3	3	2	2
Vomiting	Grade 1	Grade 1	None	Grade 2	Grade 1	Grade 1	Grade 1	Grade 2
Neutropenia	None	None	Grade 1	None	Grade 1	Grade 1	Grade 2	None
Anemia	None	Grade 1						
Thrombocytopenia	None							
Skin	Grade 1	None	None	Grade 1	None	Grade 1	None	Grade 1
Mucositis	None							
Diarrhea	Grade 2	Grade 1	None	None	Grade 2	None	Grade 1	None

Abbreviations: AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NAC, neoadjuvant chemotherapy.

REFERENCES

1. Tse K-P, Su W-H, Chang K-P, et al: Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am J Hum Genet 85:194-203, 2009
2. Cai L, Ye Y, Jiang Q, et al: Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat Commun 6:7353, 2015
3. Loong HH, Chan AT: Controversies in the systemic treatment of nasopharyngeal carcinoma. Oral Oncol 50:785-790, 2014
4. Van Cutsem E, Hoff PM, Harper P, et al: Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: Integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer 90:1190-1197, 2004

AUTHOR CONTRIBUTIONS

Conception and design: All authors
Administrative support: Reyad Dada
Collection and assembly of data: All authors
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Reyad Dada
No relationship to disclose
Mohamed El Sayed
No relationship to disclose
Jamal Zekri
No relationship to disclose

Affiliations

Reyad Dada, Mohamed El Sayed, and Jamal Zekri, King Faisal Specialist Hospital and Research Center, Jeddah; Reyad Dada and Jamal Zekri, Al-Faisal University, Riyadh, Kingdom of Saudi Arabia; and Mohamed El Sayed, Cairo University, Cairo, Egypt.

DOI: https://doi.org/10.1200/JGO.2016.006924

Published online on jgo.org on November 16, 2016.
5. Schmoll HJ, Twelves C, Sun W, et al: Effect of adjuvant capecitabine or fluorouracil, with or without oxaliplatin, on survival outcomes in stage III colon cancer and the effect of oxaliplatin on post-relapse survival: A pooled analysis of individual patient data from four randomised controlled trials. Lancet Oncol 15:1481-1492, 2014

6. Di Costanzo F, Ravasio R, Sobbero A, et al: Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes' C colon cancer: Economic evaluation in an Italian NHS setting. Clin Drug Investig 28:645-655, 2008

7. Buchler T, Pavlik T, Melichar B, et al: Bevacizumab with 5-fluorouracil, leucovorin, and oxaliplatin versus bev-acizumab with capecitabine and oxaliplatin for metastatic colorectal carcinoma: Results of a large registry-based cohort analysis. BMC Cancer 14:323, 2014

8. Xing L, Liang Y, Zhang J, et al: Definitive chemoradiotherapy with capecitabine and cisplatin for elderly patients with locally advanced squamous cell esophageal cancer. J Cancer Res Clin Oncol 140:867-872, 2014

9. Wang J, Xu B, Yuan P, et al: Capecitabine combined with docetaxel versus vincrinlelbin followed by capecitabine maintenance medication for first-line treatment of patients with advanced breast cancer: Phase 3 randomized trial. Cancer 121:3412-3421, 2015

10. Walko CM, Lindley C: Capecitabine: A review. Clin Ther 27:23-44, 2005

11. Won YW, Park YH, Ahn MJ, et al: A phase II study of combination chemotherapy with capecitabine and cisplatin in patients with metastatic or recurrent squamous cell carcinoma of the head and neck. Ann Oncol 22:417-423, 2011

12. Kim HG, Yoon JH, Kim SH, et al: Bevacizumab combined with capecitabine as first-line therapy for patients with metastatic colorectal cancer: A phase II trial. J Oncol 2010:1-7, 2010

13. Vormittag L, Lemaire C, Radonjic D, et al: Re-irradiation combined with capecitabine in locally recurrent squamous cell carcinoma of the head and neck. A prospective phase II trial. Strahlenther Onkol 188:235-242, 2012

14. Jegannathen A, Mais K, Sykes A, et al: Synchronous chemoradiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck using capecitabine: A single-centre, open-label, single-group phase II study. Clin Oncol (R Coll Radiol) 23:149-158, 2011

15. Gupta S, Khan H, Barik S, et al: Clinical benefits of concurrent capecitabine and cisplatin versus concurrent cisplatin and 5-fluorouracil in locally advanced squamous cell head and neck cancer. Drug Discov Ther 7:36-42, 2013