JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure
—Digest Version—

Hiroyuki Tsutsui; Mitsuaki Isobe; Hiroshi Ito; Hiroshi Ito; Ken Okumura; Minoru Ono; Masafumi Kitakaze; Koichiro Kinugawa; Yasuki Kihara; Yoichi Goto; Issei Komuro; Yoshikatsu Saiki; Yoshihiko Saito; Yasushi Sakata; Naoki Sato; Yoshiaki Saw; Akira Shiose; Wataru Shimizu; Hiroaki Shimokawa; Yoshihiko Seino; Koichi Node; Taiki Higo; Atsushi Hirayama; Miyuki Makaya; Tohru Masuyama; Toshihiro Murohara; Shin-ichi Momomura; Masafumi Yano; Kenji Yamazaki; Kazuhiro Yamamoto; Tsutomu Yoshikawa; Michihiro Yoshimura; Masatoshi Akiyama; Yoshihisa Anzai; Shiro Ishihara; Takayuki Inomata; Teruhiko Imamura; Yu-ki Iwasaki; Tomohito Ohtani; Katsuya Onishi; Takatoshi Kasai; Mahoto Kato; Makoto Kawai; Yoshihara Kinugasa; Shinataro Kinugawa; Toru Kuratan; Shigeki Kobayashi; Yasuhiro Sakata; Atsushi Tanaka; Koichi Toda; Takashi Noda; Kotaro Nochioka; Masaru Hatano; Masaru Hatano; Takeyuki Hidaka; Takeo Fujino; Shigeru Makita; Osamu Yamaguchi; Uichi Ikeda; Takeshi Kimura; Shun Kohsaka; Masami Kosuge; Masakazu Yamagishi; Akira Yamashina on behalf of the Japanese Circulation Society and the Japanese Heart Failure Society Joint Working Group

Table of Contents

Preamble .. 2087
I. Introduction ... 2087
 1. Classes of Recommendations and Levels of Evidence 2087
 2. Major Revisions of the Present Guidelines .. 2087
II. General Principles 2088
 1. Definition and Classification ... 2088
 2. Epidemiology, Etiology, and Prognosis .. 2091
III. Diagnosis ... 2092
 1. Diagnosis (Algorithms) 2092
 2. Symptoms and Signs 2093
 3. Biomarkers 2096
 4. Chest X-ray 2097
 5. Echocardiography 2098
 6. Imaging (MRI, CT, Nuclear Imaging, and PET) ... 2101
 7. Cardiac Catheterization (Hemodynamics and Biopsy) ... 2103
 8. Exercise Tolerance .. 2103
IV. Prevention of Heart Failure 2104
 1. Hypertension .. 2105
 2. Coronary Heart Disease .. 2105
 3. Obesity and Diabetes Mellitus .. 2105
 4. Smoking .. 2105
 5. Alcohol .. 2106
 6. Physical Activity and Exercise .. 2106
 7. Others .. 2106
V. Basic Principles for the Treatment of Heart Failure 2107
 1. Goals of Heart Failure Treatment .. 2107
 2. Treatment Algorithms for Heart Failure .. 2107
VI. Pharmacological Therapy 2108
 1. Heart Failure With Reduced Ejection Fraction (HFrEF) ... 2108
 2. Heart Failure With Preserved Ejection Fraction (HFrEF) ... 2112

(Table of Contents continued the next page.)

J-STAGE Advance Publication released online September 10, 2019
Mailing address: Scientific Committee of the Japanese Circulation Society, 18F Imperial Hotel Tower, 1-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100-0011, Japan. E-mail: meeting@j-circ.or.jp
This English language document is a revised digest version of Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure (JCS 2017/JHFS 2017) reported at the Japanese Circulation Society Joint Working Groups performed in 2017 (Website: http://www.j-circ.or.jp/guideline/pdf/JCS2017_tsutsui_d.pdf).
Joint Working Groups: The Japanese Circulation Society; the Japanese Heart Failure Society; the Japanese Association for Thoracic Surgery; the Japanese Society of Hypertension; the Japanese Society of Echocardiography; the Japanese Society for Cardiovascular Surgery; the Japanese College of Cardiology; the Japanese Association of Cardiac Rehabilitation; the Japan Society of Ultrasonics in Medicine; the Japan Diabetes Society; the Japanese Heart Rhythm Society; “the Study Group on Idiopathic Cardiomyopathy” supported by the Health and Labor Sciences Research Grant on Intractable Diseases; and “the Study Group on the Multi-center Observational Study of Dilated-phase Hypertrophic Cardiomyopathy”, supported by the “Practical Research Project for Rare/intractable Diseases by the Japan Agency for Medical Research and Development”.
ISSN-1346-9843 All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
VII. Nonpharmacological Therapy .. 2112
1. Implantable Cardioverter Defibrillator 2112
2. Cardiac Resynchronization Therapy 2114
3. Respiratory Support .. 2114
4. Exercise Therapy .. 2116
VIII. Treatment of Underlying Conditions 2117
1. Basic Treatment Strategies ... 2117
2. Underlying Conditions That May Modify Treatment Strategies .. 2117
3. Comorbid Conditions Causing Advanced Stage Heart Failure .. 2117
IX. Pathophysiology and Treatment of Comorbidities 2118
1. Atrial Fibrillation .. 2118
2. Ventricular Arrhythmias .. 2120
3. Bradyarrhythmia ... 2120
4. Coronary Artery Disease ... 2121
5. Valvular Heart Disease .. 2123
6. Hypertension .. 2124
7. Diabetes Mellitus .. 2125
8. CKD and Cardiorenal Syndrome 2125
9. Hyperuricemia/Gout .. 2127
10. COPD and Asthma .. 2127
11. Anemia ... 2128
12. Sleep-Disordered Breathing ... 2130
X. Acute Heart Failure ... 2130
1. Definition and Classification 2130
2. Diagnosis ... 2131
3. Treatment Strategies and Flowcharts 2132
4. Pharmacological Therapy .. 2135
5. Nonpharmacological Therapy 2140
6. Human (Autologous) Skeletal Muscle-Derived Cell Sheet (HeartSheet®) .. 2158
7. Waon Therapy .. 2158
8. Omecamtiv Mecarbil (Cardiac Myosin Activator) 2157
9. Vericiguat (cGS Activator) ... 2156
10. Sacubitril/Valsartan (ARNI) 2156
11. Ivabradine (If-Channel Blocker) 2156
12. Comprehensive Cardiac Rehabilitation 2149
XII. Disease Management .. 2153
1. Disease Management Programs (e.g., Educational Programs) and Team Medical Care 2148
2. Comprehensive Cardiac Rehabilitation 2149
XIII. Palliative Care .. 2156
1. Advance Care Planning and Decision-Making Support .. 2149
2. End-Stage Heart Failure and Indication for Palliative Care .. 2152
3. Importance of Multidisciplinary Approaches .. 2152
4. Symptoms and Treatment of End-Stage Heart Failure .. 2153
5. Early Introduction of Palliative Care for Heart Failure .. 2156
XIV. Future Treatment .. 2156
1. Ivabradine (If-Channel Blocker) 2156
2. Sacubitril/Valsartan (ARNI) 2156
3. Vericiguat (cGS Activator) ... 2156
4. Omeceamtiv Mecarbil (Cardiac Myosin Activator) 2157
5. Percutaneous Mitral Valve Repair System (MitraClip®) .. 2158
6. Human (Autologous) Skeletal Muscle-Derived Cell Sheet (HeartSheet®) .. 2158
7. Waon Therapy .. 2158
References ... 2161
Appendix 1
| Year | Japan (The Japanese Circulation Society) | U.S. (ACC/AHA) | EU (ESC) |
|------|--|----------------|----------|
| 1995 | ACC/AHA guidelines for the evaluation and management of heart failure (Chair: Williams)² | Guidelines for the diagnosis of heart failure (The Task Force on Heart Failure of the European Society of Cardiology)⁹ | |
| 1997 | | The treatment of heart failure (Task Force of the Working Group on Heart Failure of the European Society of Cardiology)¹⁰ | |
| 2000 | Guidelines for Treatment of Chronic Heart Failure (Chair: Matsuzaki) Guidelines for Treatment of Severe Acute Heart Failure (Chair: Takekoshi) | ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult (Chair: Hunt)¹³ | Guidelines for the diagnosis and treatment of chronic heart failure (CoChair: Remme and Swederg);¹¹ covering both diagnosis and treatment |
| 2001 | | ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult (Chair: Hunt)⁴ | Guidelines for the diagnosis and treatment of chronic heart failure (Chair: Swedberg)¹² Guidelines on the diagnosis and treatment of acute heart failure (Chair: Nieminen)¹³ |
| 2005 | Guidelines for Treatment of Chronic Heart Failure (Chair: Matsuzaki), revised version | | |
| 2006 | Guidelines for Treatment of Acute Heart Failure (Chair: Maruyama), revised version | | |
| 2008 | | Guidelines for the diagnosis and treatment of acute and chronic heart failure (Chair: Dickstein)⁶ | |
| 2009 | A revised version that contains a new section “The Hospitalized Patient”⁸ | | |
| 2010 | Guidelines for Treatment of Chronic Heart Failure (Chair: Matsuzaki), revised version | | |
| 2011 | Guidelines for Treatment of Acute Heart Failure (Chair: Izumi), revised version | | |
| 2012 | | ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 (Chair: McMurray),¹ as a revision of the previous version | |
| 2013 | 2013 ACCF/AHA Guideline for the Management of Heart Failure (Chair: Yancy)⁷ | | |
| 2016 | | ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2016 (Chair: Ponikowski)¹⁴ | |
| 2017 | 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure (Chair: Yancy)⁸ | | |
| 2018 | Guidelines for diagnosis and treatment of acute and chronic heart failure (Chair: Tsutsui), revised version | | |

ACC, American College of Cardiology; ACCF, American College of Cardiology Foundation; AHA, American Heart Association; ESC, European Society of Cardiology.
Preamble

In Japan, the Japanese Circulation Society (JCS) published the “Guidelines for Treatment of Chronic Heart Failure” and the “Guidelines for Treatment of Acute Severe Heart Failure” in 2000, and revised the guidelines for chronic heart failure in 2005 and 2010 to reflect new evidence. In 2011, the JCS published “Guidelines for Treatment of Acute Heart Failure” as a revision of the Guidelines for Treatment of Acute Severe Heart Failure. Similarly to the revised guidelines published by the European Society of Cardiology (ESC) in 2012 and the American Heart Association (AHA), the revised guideline covered all aspects of heart failure (Table 1). In the United States, the American College of Cardiology (ACC) and the AHA published the Guidelines for the Evaluation and Management of Heart Failure in 1995, and revised them in 2001, 2005, and 2009. The 2009 revision added a new section “the Hospitalized Patient” to align with the 2008 ESC Guideline and covered acute heart failure. The ACC/AHA revised the guideline in 2013 and 2017. In Europe, the ESC published the Guidelines for the Diagnosis of Heart Failure in 1995, and the Treatment of Heart Failure in 1997. In 2001, the ESC revised these documents to publish as one document, the Guidelines for the Diagnosis and Treatment of Chronic Heart Failure in 2005. In 2001, the ESC published the Guidelines for the Diagnosis of Heart Failure in 1995, and the Treatment of Heart Failure in 1997. In 2001, the ESC revised these documents to publish as one document, the Guidelines for the Diagnosis and Treatment of Chronic Heart Failure in 2005. In 2005, the ESC published the Guidelines on the Diagnosis and Treatment of Acute Heart Failure, and then published the Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure to cover both acute and chronic heart failure and revised them in 2012 and 2016. The ESC’s categorization in heart failure guidelines substantially affected guidelines on acute heart failure published by the AHA and JCS.

This revised version of “the Guidelines for Diagnosis and Treatment of Acute and Chronic Heart Failure” was prepared as joint guidelines by the JCS and the Japanese Heart Failure Society (JHFS). The working committee for this project includes members and collaborators involved in the previous versions of the heart failure guidelines and members recommended from 11 societies (the JCS, the JHFS, the Japanese Association for Thoracic Surgery, the Japanese Society of Hypertension, the Japanese Society of Echocardiography, the Japanese Society for Cardiovascular Surgery, the Japanese College of Cardiology, the Japanese Association of Cardiac Rehabilitation, the Japan Society of Ultrasonics in Medicine, the Japan Diabetes Society, and the Japanese Heart Rhythm Society). Also, the working group includes members of “the Study Group on Idiopathic Cardiomyopathy” supported by the Health and Labor Sciences Research Grant on Intractable Diseases and those of “the Study Group on the Multi-center Observational Study of Dilated-phase Hypertrophic Cardiomyopathy”, supported by the “Practical Research Project for Rare/intractable Diseases by the Japan Agency for Medical Research and Development”.

The working group started the process of fully revising the guideline from October 2016, and developed the first draft in January 2017. Members and collaborators reviewed the guideline according to a total of 885 comments based on blinded review, revised 5 times, and further revised according to a total of 141 comments from the independent assessment committee, before being finalized after detailed discussions at 3 study group meetings. The present guidelines intend to describe standard practice for acute and chronic heart failure according to latest information provided in Western guidelines and the evidence and clinical experience accumulated in Japan.

We hope that this document will help all healthcare professionals involved in the diagnosis and treatment of heart failure.

I. Introduction

1. Classes of Recommendations and Levels of Evidence

Classification of recommendations and levels of evidence are described similarly to our previous heart failure guidelines using a style similar to those used in the ACC/AHA guidelines and the ESC guidelines (Tables 2 and 3). In Japan, guidelines for cardiovascular diseases have extensively used a common style that is highly consistent with Western guidelines. On the other hand, the Japan Council for Quality Health Care uses a different style in its Medical Information Network Distribution Service (MINDS) to show grades of recommendations and levels of evidence as described in the “Minds Handbook for Clinical Practice Guideline Development 2007” (Tables 4 and 5). Accordingly, the present document shows classification of recommendations and level of evidence in the tables including both styles; class of recommendation, level of evidence, grade of recommendation (MINDS) and level of evidence (MINDS).

2. Major Revisions of the Present Guidelines

The most important change is that the guidelines on acute heart failure and chronic heart failure are provided in one document, rather than the conventional two separate documents. This reflects our consensus that describing guidelines in two separate documents are not practical since many cases of acute heart failure represents acute worsening of chronic heart failure, and patients require seamless treatment from acute to chronic phase.

In the present guidelines, the following major revisions were made:

1) The definition of heart failure is further clarified, and an easy-to-understand definition is provided for general population. (Section “1. Definition and Classification” in Chapter “II. General Principles”).

2) Stages of heart failure, its risk factors, and treatment goals are described (Section “1. Definition and Classifi-
Pathophysiology and treatment of comorbidities are newly presented (Chapter “V. Basic Principles for the Treatment of Heart Failure”).

3) In the classification of heart failure based on left ventricular ejection fraction (LVEF), a new category of heart failure with mid-range ejection fraction (HFrEF) defined as a LVEF of 40–49%, is added to the conventional two categories of heart failure with reduced ejection fraction (HFrEF), and heart failure with preserved ejection fraction (HFpEF). Another category of patients in whom LVEF recovered after treatment, described as “HFpEF, improved” or “HF with recovered EF”, is added as well (Section “1. Definition and Classification” in Chapter “II. General Principles”).

4) An algorithm for the diagnosis of heart failure is newly presented (Section “1. Diagnosis” in Chapter “III. Diagnosis”).

5) A new chapter is added to describe how to prevent heart failure for each stage of heart failure (Chapter “IV. Prevention of Heart Failure”).

6) An algorithm for the treatment of heart failure is newly presented (Chapter “V. Basic Principles for the Treatment of Heart Failure”).

7) Pathophysiology and treatment of comorbidities are described in detail (Chapter “IX. Pathophysiology and Treatment of Comorbidities”).

8) A flowchart of the treatment and clinical course over time of acute heart failure is newly presented (Chapter “X. Acute Heart Failure”).

9) A flowchart on the use of ventricular assist devices for patients with severe heart failure is newly presented (Chapter “XI. Surgical Treatment”).

10) Palliative care is described in detail (Chapter “XIII. Palliative Care”).

II. General Principles

1. Definition and Classification

1.1 Definition of Heart Failure

Heart failure is defined as a clinical syndrome consisting of dyspnea, malaise, swelling and/or decreased exercise capacity due to the loss of compensation for cardiac pumping function due to structural and/or functional abnormalities of the heart (Table 6).

Heart failure is a disease condition where the heart is...
unable to fill with and eject enough blood for various reasons such as epicardial, myocardial or endocardial lesions, valvular disease, coronary arterial disease, aortic disease, arrhythmias, and endocrine disorders. However, in many cases left ventricular dysfunction is associated with heart failure, and is the most important factor in determining monitoring and treatment strategies. Heart failure should thus be defined and classified according to left ventricular function.

The Japanese Circulation Society has decided to classify heart failure mainly according to left ventricular ejection fraction in the present guidelines for the treatment of acute heart failure and chronic heart failure as the American College of Cardiology Foundation (ACCF)/American Heart Association (AHA) do in their guideline documents. Heart failure with reduced left ventricular ejection fraction (HFrEF) and heart failure with preserved left ventricular ejection fraction (HFpEF) are defined as follows (Table 7).

Table 7. Classification of Heart Failure by Left Ventricular Ejection Fraction (LVEF)

Definition	LVEF	Description
Heart failure with reduced ejection fraction (HFrEF)	≤40%	The main feature is systolic dysfunction. In many clinical studies, patients with a low LVEF despite standard medical treatment for heart failure are enrolled as patients with HFrEF.
Heart failure with preserved ejection fraction (HFpEF)	≥50%	The main feature is diastolic dysfunction. Other diseases that may cause similar symptoms should be ruled out. No effective treatments have been established.
Heart failure with mid-range ejection fraction (HFmrEF)	40 to <50%	Borderline heart failure. Clinical features and prognosis have not yet been fully characterized. Treatment should be selected on an individual basis.
Heart failure with preserved ejection fraction, improved (HFpEF improved) or heart failure with recovered EF (HFrecEF)	≥40%	Patients with an improvement of LVEF from <40% to ≥40% after treatment. It has been suggested that these patients may have a different prognosis from those with HFrEF, but further studies are required.

(SOURCE: Prepared based on Yancy CW, et al. 2013 and Ponikowski P, et al. 2016)

In many large-scale clinical studies in heart failure, HFrEF was defined as heart failure with a left ventricular ejection fraction (LVEF) of ≤35% or <40. In the present guidelines, HFrEF is defined as heart failure with a LVEF of <40%. HFrEF is characterized with the high prevalence of left ventricular enlargement, which is present in more than 50% of patients, and the relatively high prevalence of left ventricular diastolic dysfunction.

Figure 1. Stages in the development and progression of heart failure and treatment goals by stage. ACCF, American College of Cardiology Foundation; AHA, American Heart Association; HF, heart failure; LVEF, left ventricular ejection fraction; QOL, quality of life. (Adapted from The Ministry of Health, Labour and Welfare, 2017 with modifications)
Table 8. Comparison Between the Stages of Heart Failure and the NYHA Functional Classification

Stages of HF	NYHA Functional Classification
A. At high risk for HF but without organic heart disease	None
B. At high risk for HF and with organic heart disease	None
C. Symptomatic heart failure	I. No limitation of physical activity. Ordinary physical activity does not cause severe fatigue, palpitations, dyspnea or angina.
	II. Slight or moderate limitation of physical activity. Comfortable at rest, but ordinary physical activity causes fatigue, palpitations, dyspnea or angina.
	III. Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes fatigue, palpitations, dyspnea or angina.
	IV. Unable to carry on any physical activity without symptoms of HF, or symptoms of HF and angina at rest. Even slight activity worsens symptoms.
D. Refractory heart failure	III. Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes fatigue, palpitations, dyspnea or angina.
	IV. Unable to carry on any physical activity without symptoms of HF, or symptoms of HF and angina at rest. Even slight activity worsens symptoms.

The NYHA functional classification was developed by the New York Heart Association as a system to classify patients with heart diseases according to the severity of symptoms resulting from physical activity, and has been used in the severity classification of heart failure. NYHA class II patients further classified into those with slight limitation of physical activity (IIa) and those with moderate limitation of physical activity (IIb). HF, heart failure; JCS, Japanese Circulation Society; NYHA, New York Heart Association. (Source: Prepared based on Yancy CW, et al. 2013)

1.1.2 HFpEF

It has been reported that about half of patients with symptomatic heart failure have normal or preserved LVEF. In this guideline document, HFpEF is defined as heart failure with a LVEF of ≥50% to differentiate it clearly from HFrEF. HFpEF may be caused by arrhythmias such as atrial fibrillation, coronary heart disease, diabetes mellitus, and dyslipidemia, but the most common cause of HFpEF is hypertension. Patients with a mild reduction in LVEF may present some degree of systolic dysfunction, but their clinical manifestations are often similar to those of HFrEF. However, unlike patients with HFrEF, such patients with borderline LVEF may respond well to treatments that have been demonstrated to be effective in the treatment of systolic dysfunction in HFrEF. Accordingly, this condition is defined as heart failure with mid-range LVEF (HFmrEF) or HFpEF borderline. In the present guidelines, HFmrEF is defined as heart failure with a LVEF of 40 to 49%.

In some patients with heart failure initially presented with low LVEF, the LVEF may improve over time during treatment or follow-up. This type of heart failure is referred to as “HFpEF improved” or “HF with recovered EF” (HFrecEF). This type of heart failure is often observed in patients with tachycardia-induced cardiomyopathy mainly due to tachycardic atrial fibrillation, ischemic heart disease, or dilated cardiomyopathy whose cardiac function has improved with β-blockers. In these patients, left ventricular systolic and/or diastolic function, cardiothoracic ratio (CTR), and brain (B-type) natriuretic peptide (BNP) may return to normal levels.

1.2 Stages of Heart Failure

The ACCF/AHA Stages of Heart Failure is widely used to determine the progression stage of heart failure. The ACCF/AHA created this staging system to help physicians make appropriate treatment intervention, and encourages to treat patients at high risk earlier even when they are asymptomatic. In this guidelines, four stages of heart failure are used according to the ACCF/AHA Stages of Heart Failure: Stage A, asymptomatic patients at high risk of developing heart failure without structural heart disease; Stage B, patients with asymptomatic heart failure who have structural heart disease; Stage C, patients with symptomatic heart failure and structural heart disease, including those with a history of heart failure; and Stage D, patients with refractory heart failure who have had New York Heart Association (NYHA) Class III or IV heart failure despite all available drug therapy or nonpharmacologic therapy with proven efficacy, and are hospitalized for heart failure at least twice a year (Figure 1).

Table 8 outlines a comparison between the JCS stages of heart failure and the NYHA functional classification.

1.3 Classification of Heart Failure

The Forrester classification is one of the most common used criteria to classify the severity of heart failure according to hemodynamic measures (Figure 2). It was originally developed to predict the prognosis of patients with acute heart failure due to acute myocardial infarction, and the correlation between this severity classification and mortality rate has been demonstrated. The Forrester classification is
based on objective measures of organ perfusion and congestion and is thus useful in the assessment of pathophysiological condition of non-ischemic heart failure, but invasive measurements are necessary.

Alternatively, the Nohria-Stevenson classification that can assess the severity of heart failure more easily based only on physical findings is commonly used to assess the risk profile of patients with heart failure according to their peripheral hemodynamics and lung auscultation findings (Figure 3).22

2. Epidemiology, Etiology, and Prognosis

Heart diseases are the second leading cause of death in Japan, next to malignancy (cancer). Heart failure is the most common cause of death from heart disease.23 According to a report of the Japanese registry of all cardiac and vascular diseases, the Japanese Registry of All Cardiac and Vascular Diseases (JROAD) 2015 study,24 the total number of patients hospitalized for heart failure in medical and educational institutions was 238,840 patients in 2015, showing an increase by more than 10,000 each year. The ratio of patients with acute and chronic heart failure was about half and half. Although there are no accurate statistics on the total number of patients with heart failure in Japan, it has been estimated that the number was about 1 million in 2005 and will reach 1.2 million by 2020.25 As the corresponding number in the United States was estimated to be about 5 million in 2005,26,27 the prevalence of heart failure may be relatively lower in Japan than in the United States. However, it is highly likely that heart failure will increasingly become more common in Japan as the population ages.

In Japan, large-scale registry studies such as the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD; patients registered from 2004 to 2005),28 Chronic Heart Failure Analysis and Registry in Tohoku district-1 (CHART-1; 2000 to 2004),29 and CHART-2 (2006 to 2010)30,31 have been conducted. The average age of registered patients was 71 years in the JCARE-CARD study, 69 years in the CHART-1 study, and 67 years among Stage C or D heart failure in the CHART-2 study, indicating that elderly people account for large percentages of the registered patients.

An observational study in the United States has reported that LVEF was maintained at ≥50% in nearly half of patients with heart failure.17 In Japan, patients with HFpEF account for more than 50% of all patients with heart failure, and this percentage tends to increase in recent years.30 The prognosis of patients with HFpEF has been reported to be poor similarly, although not identically, to those with HFrEF.32,33 Physicians should be aware that HFpEF will likely become even more common in the super-aged society.

A variety of diseases cause heart failure (Table 9). Almost all types of heart diseases may lead to heart failure. Heart failure may also result from systemic diseases and myocardial injury due to external causes. The most common cause of heart failure is ischemic heart disease, which is followed by hypertension, and valvular diseases.28–30 Heart failure due to ischemic heart disease is becoming more common,34 while hypertension is considered as the most common cause of HFpEF.34

In the assessment of prognosis in the JROAD 2015, inhospital mortality in patients hospitalized for heart failure was about 8%.24 One-year all-cause mortality in patients with heart failure was 7.3% in the JCARE-CARD and CHART-1 studies. The high rate of rehospitalization due to worsening heart failure is another problem.

According to the JROAD report that described the epidemiology of acute heart failure in Japan, the number of patients hospitalized for acute heart failure was 85,512 in 2013 and increased substantially to 107,049 in 2016.24

The epidemiology of acute heart failure in Japan has been extensively studied in the Heart Institute of Japan
Department of Cardiology – Heart Failure (HIJC-HF) registry, the JCARE-CARD study, and the Acute Decompensated Heart Failure Syndromes (ATTEND) registry in chronological order. The average age of registered patients was over 70 years in all these studies, and many patients had hypertension, diabetes mellitus, dyslipidemia and/or atrial fibrillation. The most common cause of acute heart failure was ischemic heart disease, which accounted for >30% in all studies. As compared with epidemiological findings in other countries, patients with acute heart failure in Japan do not differ substantially from those in other countries in terms of age, gender ratio, and prevalence of hypertension, diabetes, and dyslipidemia. However, it should be noted that the prevalence of ischemic heart disease as an underlying cardiac condition is lower in Japanese patients than those in Western countries, while the prevalence of hypertensive heart disease is higher in Japanese patients than Western patients.

Gender differences should be considered in the diagnosis and treatment of heart failure. Both the results of registry studies in Japan and data in Western countries have indicated that women have a better prognosis than men when adjusted for background characteristics of patients. In Japan where the population is aging rapidly, more women are expected to experience heart failure, but there are only limited data available on gender difference in the treatment of heart failure.

III. Diagnosis

1. Diagnosis (Algorithms) (Figure 4)

In the diagnosis of heart failure, patients should be examined first for symptoms, medical history, their family history, physical findings, ECG, and chest X-ray findings. Next, the concentration of brain (B-type) natriuretic peptide (BNP) or N-terminal pro-brain (B-type) natriuretic peptide (NT-proBNP) in the blood should be determined. **Figure 4** outlines the cut-off levels of BNP and NT-proBNP for the diagnosis of heart failure. However, physicians should be aware that BNP and NT-proBNP levels may be lower than these cut-off levels in patients with mild heart failure or patients with severe obese and heart failure. Accordingly, echocardiography is a reasonable diagnostic method to examine for heart failure even in patients with a BNP of ≥35 or 40 pg/mL or a NT-proBNP of ≥125 pg/mL who are strongly suspected to have heart failure according to their symptoms, patient history or underlying conditions, physical findings, ECG or chest X-ray findings. Patients should be examined comprehensively to determine whether

Table 9. Causes of Heart Failure

Myocardial disease
Ischemic heart disease
Ischemic cardiomyopathy, stunning, hibernation, microcircular disorder

Cardiomyopathy (including genetic forms)
Hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, noncompaction, takotsubo cardiomyopathy

Cardiotoxic substances and other factors
Addictive and abused substances
Alcohol, cocaine, amphetamines, anabolic steroids
Heavy metals
Copper, iron, lead, cobalt, mercury
Drugs
Antitumor drugs (e.g., anthracycline), immunosuppressive drugs, antiangiogenic drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), anesthetic drugs
Radiation damage

Infectious diseases
Myocarditis
e.g., viral, bacterial or rickettsial infections; Chagas’ disease

Immune disorders
e.g., rheumatoid arthritis, systemic lupus erythematosus, polymyositis, mixed connective tissue disease

Pregnancy
Peripartum cardiomyopathy
Including puerperal cardiomyopathy

Infiltrative diseases
Sarcoidosis, amyloidosis, hemochromatosis, invasive malignant tumors

Endocrine disorders
- e.g., hyperthyroidism, Cushing’s disease, pheochromocytoma, adrenal insufficiency, abnormal growth hormone secretion

Metabolic disorders
- Diabetes mellitus

Congenital enzyme abnormality
- Fabry’s disease, Pompe’s disease, Hunter’s syndrome, Hunter’s syndrome

Muscle disorders
- Muscular dystrophy, laminopathy

Abnormal hemodynamics

Hypertension
Valvular disease, cardiac structural abnormality
Congenital conditions
Congenital valvar disease, atrial septal defect, ventricular septal defect, other congenital heart diseases
Acquired conditions
Aortic valve disease, mitral valve disease

Epicardial abnormalities other related conditions
Constrictive pericarditis, cardiac tamponade

High-output heart failure
Severe anemia, hyperthyroidism, Paget’s disease, arteriovenous shunt, pregnancy, beriberi heart

Increased fluid volume
Renal failure, excessive transfusion

Arrhythmias
Tachyarrhythmias
e.g., atrial fibrillation, atrial tachycardia, ventricular tachycardia
Bradyarrhythmias
e.g., sick sinus syndrome, atrioventricular block
additional examinations should be conducted or not. Echocardiography should be performed in patients who have heart murmur suggestive of valvular disease or abnormal ECG findings clearly indicative of the presence of old myocardial infarction regardless of the level of BNP or NT-proBNP.

Stress echocardiography should also be considered for patients who complain of symptoms inconsistent with echocardiographic findings at rest. When the causative disease cannot be identified with echocardiography, other modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging should be used. Since some patients with ischemic heart disease may present only with shortness of breath on effort, patients in whom ischemic heart disease cannot be ruled out should be examined for myocardial ischemia using exercise or pharmacological stress test.

Patients confirmed to have heart failure should receive appropriate treatment according to the causative disease and the stage of heart failure.

2. Symptoms and Signs

Patients with acute heart failure often show symptoms associated with pulmonary venous congestion due to
increased left ventricular end-diastolic pressure or increased left atrial pressure, and/or systemic venous congestion due to increased right atrial pressure, as well as symptoms associated with decreased cardiac output. The Framingham criteria for the diagnosis of heart failure are based on symptoms and findings of left heart failure, right heart failure, and low cardiac output. Patients’ symptoms and physical findings should be categorized accordingly to assess their pathophysiological condition (Table 11). Patients with bilateral cardiac failure show signs and symptoms of both left- and right-sided heart failure. The jugular venous pressure can be estimated based on the vertical distance between the horizontal lines drawn from the highest point of internal jugular venous pulse and the sternal angle when the patient is positioned at a 45° incline (Figure 5). The sternal angle is positioned about 5 cm above the right atrium. A vertical distance between the sternal angle and the top of the jugular venous pulse of ≥3 cm indicates an increased central venous pressure.

The New York Heart Association (NYHA) Functional Classification provides a simple method of classifying the severity of heart failure based on the patient’s symptoms and categorizes patients with heart failure into four groups from Class I to IV. The American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines categorize patients with heart failure into four categories from Stage A (asymptomatic patients at risk for heart failure) to Stage D (patients with refractory heart failure and severe symptoms even at rest) (Table 8 in Section “1. Definitions and Classification” in “II. General Principles”, and Section “8.1. NYHA Functional Classification” in this chapter). These two classifications are different in nature, but are generally well correlated as can be seen in Table 8.7

Table 10. Criteria for Diagnosis of Heart Failure: Framingham Criteria

Major criteria	Major or minor criteria	Minor criteria
Paroxysmal nocturnal dyspnea	Weight loss of 4.5 kg or more in 5 days in response to treatment.	Lower leg edema
Jugular venous distention	When the weight loss is attributable to the treatment of heart failure, it is	Nocturnal cough
Pulmonary rale	considered 1 major criterion.	Dyspnea on ordinary exertion
Cardiomegaly on chest X-ray	Otherwise it is considered a minor criterion.	Hepatomegaly
Acute pulmonary edema		Pleural effusion
Protodiastolic gallop (S3 gallop)		Decrease in vital capacity by one third from
Increased central venous pressure (≥16 cm H2O)		maximum recorded
Increased circulation time (≥25 sec)		Tachycardia (heart rate ≥120 bpm)
Hepatojugular reflux		
(Pulmonary edema, visceral congestion of cardiomegaly on autopsy)		

Diagnosis of heart failure requires the simultaneous presence of at least 2 major criteria or 1 major criterion in conjunction with 2 minor criteria. (Source: Prepared based on Mckee PA, et al. 197144)

Table 11. Symptoms and Signs of Heart Failure

Congestion	Symptoms	Signs
Left-sided heart failure	Dyspnea, shortness of breath, tachypnea, orthopnea	Bubbling rales, wheezing, pink foamy sputum, third or fourth heart sound
Right-sided heart failure	Right hypochondrium pain, anorexia, abdominal swelling, epigastric discomfort	Hepatomegaly, increased hepatobiliary enzymes, jugular venous distention. Signs of pulmonary congestion are not apparent in patients with severe right heart failure.
Low output	Disturbance of consciousness, restlessness, memory disorder	Cold sweat, cold extremities, cyanosis, hypotension, oliguria, agitated or confused

Figure 5. How to estimate jugular venous pressure.
Table 12. Recommendations and Levels of Evidence for the Use of Biomarkers in Heart Failure
Plasma BNP and serum NT-proBNP
Diagnosis
Severity
Prognosis assessment
Efficacy evaluation
Screening

| **Plasma atrial (A-type) natriuretic peptide (ANP)** |
Diagnosis	I	A	A	I
Severity	IIa	B	B	II
Prognosis assessment	IIa	B	B	II
Efficacy evaluation	IIb	C	C1	III
Screening	IIb	C	C1	III

| **Myocardial troponins (T, I)* and plasma noradrenaline#** |
Diagnosis	–	–	–	–
Severity	IIa	B	B	II
Prognosis assessment	IIa	B	B	II
Efficacy evaluation	–	–	–	–
Screening	–	–	–	–

| **Aldosterone# and plasma renin activity#** |
Diagnosis	–	–	–	–
Severity	IIa	C	B	III
Prognosis assessment	IIa	C	B	III
Efficacy evaluation	–	–	–	–
Screening	–	–	–	–

| **Neurohumoral factors (other than above)** |
Diagnosis	–	–	–	–
Severity	IIb	C	C1	V
Prognosis assessment	IIb	C	C1	V
Efficacy evaluation	–	–	–	–
Screening	–	–	–	–

*The use of cardiac troponins as biomarkers for heart failure is not covered by the National Health Insurance (NHI) in Japan. However, the guidelines for the management of heart failure proposed by the American College of Cardiology (ACC), the American Heart Association (AHA), and the Heart Failure Society of America (HFSA) suggest the measurement of cardiac troponins as a Class I recommendation with level of evidence A. The guidelines proposed by the European Society of Cardiology (ECS) suggest as a Class I recommendation with level of evidence C. #The use as a biomarker is not covered by the NHI in Japan.
3. Biomarkers (Table 12)

Among currently available biomarkers for heart failure, BNP and NT-proBNP are the most significant biomarkers for heart failure and have been used extensively for screening, diagnosis, and prognosis assessment of this condition.

3.1 Biomarkers Reflecting Sympathetic Activity

In patients with heart failure, the sympathetic nervous system is overactivated. Congestion and other conditions caused by heart failure reduce the clearance of noradrenaline, and thereby increase noradrenaline levels in the blood. Plasma noradrenaline levels are an indicator of sympathetic activity of the whole body and may be used to assess the prognosis of patients with heart failure.45

3.2 Biomarkers Reflecting the Renin-Angiotensin-Aldosterone System Activity

In patients with heart failure, the renin-angiotensin-aldosterone (RAA) system is overactivated, and angiotensin II is produced excessively. Plasma renin activity may be high in some patients with mild cardiac dysfunction, and may not be high even in patients with severe heart failure. This finding suggests that the tissue RAA system may be activated independently of the circulatory RAA system to play a role in cardiac remodeling.46–48

On the other hand, aldosterone levels in the blood are not necessarily high in patients with heart failure, and thus cannot be used as a sensitive marker of heart failure. However, there are many unclear points concerning the secretion and action of aldosterone in heart failure, and the significance of aldosterone/mineral corticoid receptor cascade, including the activation of mineral corticoid receptors, should not be underestimated.49–51 Measurements of renin activity and aldosterone levels is strongly recommend in the diagnosis and treatment of hypertension, and is also expected to help physicians understand the cause and pathophysiology of heart failure.

Table 13. Comparison of BNP and NT-proBNP

	BNP	NT-proBNP
Molecular weight	ca. 3,500	ca. 8,500
Hormonal activity	+	–
Cross-reactivity	proBNP	proBNP
Half-life	About 20 minutes	About 120 minutes
Clearance	NPR-C, NEP, renal	Renal
Blood samples	EDTA plasma	Serum/heparinized or EDTA plasma
Reference level	≤18.4 pg/mL	≤55 pg/mL
Factors that increase BNP and NT-proBNP levels*	Cardiac dysfunction, renal dysfunction, advanced age, systemic inflammation	
Factors that decrease BNP and NT-proBNP levels*	Obesity	

*Indicating only typical factors that increase or decrease BNP and NT-proBNP levels. Some factors may affect BNP and NT-proBNP levels differently and further studies are needed to characterize the effects of these factors.

Table 13. Comparison of BNP and NT-proBNP

	BNP	NT-proBNP
Molecular weight	ca. 3,500	ca. 8,500
Hormonal activity	+	–
Cross-reactivity	proBNP	proBNP
Half-life	About 20 minutes	About 120 minutes
Clearance	NPR-C, NEP, renal	Renal
Blood samples	EDTA plasma	Serum/heparinized or EDTA plasma
Reference level	≤18.4 pg/mL	≤55 pg/mL
Factors that increase BNP and NT-proBNP levels*	Cardiac dysfunction, renal dysfunction, advanced age, systemic inflammation	
Factors that decrease BNP and NT-proBNP levels*	Obesity	

*Indicating only typical factors that increase or decrease BNP and NT-proBNP levels. Some factors may affect BNP and NT-proBNP levels differently and further studies are needed to characterize the effects of these factors.

BNP, brain (B-type) natriuretic peptide; EDTA; ethylenediamine tetraacetic acid; NEP, neutral endopeptidase; NPR-C, natriuretic peptide receptor-C; NT-proBNP, N-terminal pro-brain (B-type) natriuretic peptide.

Figure 6. Cut-off levels of plasma BNP and NT-proBNP for the diagnosis of heart failure. BNP, brain (B-type) natriuretic peptide; HF, heart failure; NT-proBNP, N-terminal pro-brain (B-type) natriuretic peptide. (Adopted from Japanese Heart Failure Society43)
3.3 Natriuretic Peptides

Natriuretic peptides include atrial (A-type) natriuretic peptide (ANP), BNP, and C-type natriuretic peptide (CNP). ANP and BNP are cardiac hormones that are synthesized mainly in the atrium and ventricle, respectively.52-54 ANP secretion is stimulated by atrial stretch, while BNP secretion is stimulated mainly by ventricular load. Accordingly, BNP levels in the blood reflect the degree of ventricular burden, and thus can be used as a sensitive biochemical marker.54-57

Plasma levels of ANP and BNP are high in patients with heart failure because the production of these peptides is enhanced in the heart and their clearance from the blood is delayed. ANP and BNP are degraded through internalization after binding to the natriuretic peptide receptor C (NPR-C) or metabolized by neutral endopeptidase (NEP). No clear relationship has been shown between the metabolism of ANP and BNP and the pathophysiology of heart failure, but the clearance of these peptides is low in patients with renal dysfunction. When comparing BNP and its N-terminal fragment NT-ProBNP, a precursor of BNP with a larger molecular weight, the effect of renal dysfunction is more substantial on NT-proBNP than on BNP (Table 13).

BNP is superior to ANP in terms of the sensitivity and specificity as a supportive diagnostic marker for heart failure.58 BNP (or NT-proBNP) is useful in confirming the presence and classifying the severity of heart failure, as well as in assessing the prognosis of patients with heart failure.59,64 It also plays a substantial role as a marker to monitor the efficacy of treatment over time in individual patients who may not compare with others.

The Japanese Heart Failure Society has published a statement entitled “Points to consider when using BNP and NT-proBNP levels in the blood for the diagnosis and treatment of heart failure” (Figure 6).43 This publication set a cut-off point of 40 pg/mL for plasma BNP concentration (125 pg/mL for NT-proBNP)43 to identify patients susceptible to heart failure according to the results of the J-ABS multicenter study, although the upper normal limit for plasma BNP is set at 18.4 pg/mL (55 pg/mL for NT-pro BNP).65,66 Plasma BNP levels differ among individuals, and tend to remain low in obese patients in whom the severity of heart failure may be underestimated.

3.4 Markers for Myocardial Injury

Cardiac troponin I and T levels in the blood, which are used as biomarkers for myocardial infarction, have been pointed out to increase in patients with non-ischemic myocardial diseases. Continued increase in troponin levels in the blood indicate a poor prognosis.67-68 High-sensitivity troponin assays are useful in the diagnosis of acute coronary syndrome,69,70 and are expected also useful in risk assessment in patients with chronic heart failure.71,72

3.5 Inflammatory Markers

It has been pointed out that immune cells and their production of cytokines are involved in the development of heart failure. In fact, blood levels of tumor necrosis factor (TNF) α and interleukin (IL)-6 are elevated in patients with heart failure, and also are related to their prognosis.73-75 A report has described that high-sensitivity C-reactive protein (CRP) levels is related to the prognosis of heart failure regardless of whether patients have underlying diseases or not.76 In Western countries, a rapid test for ST2, a receptor for IL-33 that is a member of IL-1 family, has been used. Elevated blood levels of ST2 have been reported in patients with acute heart failure, and this is expected to be useful in prognostic assessment of heart failure.77

3.6 Oxidative Stress Markers

It is considered that oxidative stress is enhanced in patients with heart failure, and causes endothelial damage and cardiac dysfunction. Reports have described that low density lipoprotein (LDL) levels in the blood and levels of 8-isoprostagrandin F2α (also known as 8-iso-PGF2α or 8-isoprostane) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the blood or urine are useful biomarkers of oxidative stress.78-80

3.7 Uric Acid

Although an association between high uric acid levels and heart failure has been indicated,81-84 its sensitivity and specificity as a biomarker of heart failure are not high enough. Further studies are awaited to better clarify its benefits and usage in the diagnosis of or risk assessment for heart failure.

3.8 Vasopressin

Vasopressin, a hormone secreted by the posterior pituitary gland, induces vasoconstriction through V1 receptors and affects fluid balance through V2 receptors. Vasopressin secretion is stimulated in heart failure. It has been reported that levels of copeptin, a fragment of the vasopressin precursor, in the blood are related to the prognosis of heart failure.85

3.9 Others

Metabolic syndrome is a risk factor for ischemic heart disease and heart failure. Reports have described that levels of adiponectin, an adipocytokine related to metabolic syndrome, are high in patients with heart failure and are related to their prognosis.86-88

Endothelin (ET) is a potent vasoconstrictor.89 Plasma levels of ET-1 and big-ET-1 correlate inversely with LVEF, and are determinants of mortality.90,91

Levels of adrenomedullin in the blood increase as the severity of heart failure progresses, and are related to the poor prognosis of heart failure.92 Adrenomedullin is produced in the heart and the systemic vasculature, and has a role in cellular protection.

4. Chest X-ray

Plain chest X-ray has remained as a useful technique to detect the presence of and assess the severity of heart failure (Table 14). Pulmonary congestion is an important X-ray finding of left heart failure, and is used to assess the severity of it (Figure 7). Patients with mild heart failure (pulmonary venous pressure: 15 to 20 mmHg) show redistribution of blood flow towards the apex (cephalization). Patients with interstitial pulmonary edema (pulmonary venous pressure: 20 to 30 mmHg) show peribronchial or perivascular edema.
More advanced patients show alveolar pulmonary edema (pulmonary venous pressure: ≥30 mmHg) with butterfly shadow. Pleural fluid is often found in patients with bilateral cardiac failure, while it is rarely found in patients with right cardiac failure.

Shadows in the mediastinum may be found in association with left atrial enlargement, right ventricular enlargement, or enlarged shadows of the pulmonary artery, but the diagnostic significance of these X-ray findings is not superior to echocardiographic findings.

5. Echocardiography

Echocardiography is used to assess cardiac function and hemodynamics, as well as the cause, pathophysiology, and severity of heart failure. Repetitive measurement is also useful in the assessment of treatment efficacy and prognosis (Table 15). Table 16 lists normal values for transthoracic echocardiographic and Doppler parameters obtained in the Japanese population, which are essential in the assessment of cardiac function in patients with heart failure.95,96

5.1 Assessment of Cardiac Function

5.1.1 Assessment of Left Ventricular Systolic Function

Left ventricular systolic function is assessed with LVEF. Patients with heart failure are classified into those with preserved LVEF (HFpEF), and those with reduced LVEF (HFrEF). LVEF is determined using the modified Simpson method (disc method).

In addition to the LVEF-based assessment of systolic function of the left ventricle as a whole, regional wall motion should also be assessed. Left ventricular global longitudinal strain (GLS) determined with speckle-tracking echocardiography is highly reproducible and useful in early diagnosis of heart failure.97

5.1.2 Assessment of Left Ventricular Diastolic Function

Left ventricular diastolic function consists of left ventricular relaxation that defines early diastolic inflow velocity and left ventricular stiffness that defines mid- and end-diastolic inflow velocity. Left ventricular dilation and inflow may be limited not only by diastolic dysfunction due to left ventricular myocardial damage but also by compression due to right ventricular enlargement, constrictive pericarditis, or cardiac tamponade.

Echocardiographic parameters for the assessment of left ventricular diastolic function are based on secondary changes such as an increase in left atrial pressure and morphological changes. As there is no single parameter that can assess left ventricular diastolic function by itself, multiple parameters as listed below should be assessed comprehensively.

a. Left Ventricular Inflow Velocity Pattern (E/A)

In patients with sinus rhythm, peak blood flow velocity in early diastole (the E wave) and peak flow velocity in late diastole caused by atrial contraction (the A wave) are observed. Patients with an initial phase of diastolic dysfunc-
Clinical characteristics of diastolic heart failure differ from systolic heart failure. Diastolic heart failure may be divided into several patterns: pseudonormalized filling pattern, restrictive filling pattern, and relaxation abnormality patterns.

A. Pseudonormalized filling pattern
- Characterized by a high E/A ratio.
- Patients with pseudonormalized filling pattern show a high E wave and a prolonged E-wave deceleration time (DT).

B. Restrictive filling pattern
- Characterized by a low E/A ratio and prolonged E-wave deceleration time (DT).
- Patients with restrictive filling pattern show a high E wave and a prolonged E-wave deceleration time (DT).

C. Relaxation abnormality patterns
- Patients without advanced diastolic dysfunction show a normal E/A ratio.
- Patients with advanced diastolic dysfunction show a high E/A ratio.

D. Constrictive pericarditis
- A condition that must be differentiated from diastolic dysfunction associated with myocardial disorder, and usually shows high E waves of left and right ventricular inflow with substantial respiratory changes.

Table 16. Normal Range of Echocardiographic Indices of Cardiac Function in Japanese Male and Females

Index	Male	Female
Left ventricular end-diastolic diameter (mm)	48±4	44±3
Left ventricular end-systolic diameter (mm)	30±4	28±3
Left ventricular end-diastolic volume index (mL/m²)	53±11	49±11
Left ventricular end-systolic volume index (mL/m²)	19±5	17±5
Left ventricular ejection fraction (%)	64±5	66±5
Left ventricular mass index (g/m²)	76±16	70±14
Left atrial dimension (mm)	32±4	31±3
Left atrial volume index (mL/m²)	24±7	25±8
Right ventricular end-diastolic diameter (apical four-chamber view at the base level) (mm)	31±5	28±5
Tricuspid annular plane systolic excursion (TAPSE, mm)	44±13	46±11
Tricuspid annular peak systolic velocity (e') (cm/sec)	14.1±2.3	
E/e' (septum)	7.4±2.2	7.9±2.2
e' (septum, cm/sec)	10.0±2.8	10.8±3.2
E/e' (lateral wall)	5.5±1.8	6.2±1.8
e' (lateral wall, cm/sec)	13.5±3.9	13.7±4.1

FAC, fractional area change. (Source: Prepared based on Daimon M, et al. 2008 and Lang RM, et al. 2015)

b. Early Diastolic Mitral Annular Velocity (e')
Patients with diastolic dysfunction show a reduction of early diastolic mitral annular velocity (e'). This should be determined at either the septal side or lateral wall side of the mitral valve annulus or the mean of the measurements at the two locations.

c. E/e' Ratio
E/e' ratio, the ratio of peak early diastolic left ventricular filling (E) to the peak mitral annular velocity (e') is useful in the diagnosis of heart failure independent of LVEF, and positively correlates with left atrial pressure. However, it is noted that the correlation between E/e' and the severity of heart failure is poor in patients with hypertrophic cardiomyopathy in whom a high E/e' ratio may not be associated with high left atrial pressure.

d. Left Atrial Volume Index (LAVI)
Left atrial enlargement is considered to reflect long-term left atrial load due to diastolic dysfunction, and correlates with the severity of diastolic dysfunction.

e. Tricuspid Regurgitant Velocity
High left atrial pressure causes secondary pulmonary hypertension and an increase in the right ventricular systolic pressure. Tricuspid regurgitation velocity (TRV) may indicate an increase in left atrial pressure in patients without pulmonary arterial hypertension.

f. Assessment of Diastolic Function in HFrEF
The presence/absence of diastolic dysfunction in patients with preserved LVEF may be assessed based on E/e', e', TRV, and LAVI (Figure 8). Patients diagnosed as having diastolic dysfunction should be examined as instructed for patients with reduced LVEF to estimate left atrial pressure. Constrictive pericarditis is a condition that must be differentiated from diastolic dysfunction associated with myocardial disorder, and usually shows high E waves of left and right ventricular inflow with substantial respiratory changes.
Figure 8. How to diagnose diastolic dysfunction in patients with HFpEF, HFpEF, heart failure with preserved ejection fraction; LVEF, left ventricular ejection fraction. (Source: Prepared based on Nagueh SF, et al. 2016¹⁰¹ with modification)

Figure 9. Algorithm for the diagnosis of elevated left atrial pressure by echocardiography. CAD, coronary artery disease; LA, left atrium; LAP, left atrial pressure; TR, tricuspid regurgitation. (Adapted from Nagueh SF, et al. 2016¹⁰¹)
g. Assessment of Diastolic Function in HFrEF
Diastolic dysfunction is considered present in all patients with low LVEF. E/A, E wave velocity, E/e', TRV, LAVI, and other parameters are used to assess whether left atrial pressure is high or not (Figure 9).

5.1.3 Assessment of Right Ventricular Function
Right ventricular function may be assessed with relatively simple parameters, such as fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), and tricuspid annular peak systolic velocity (s'). Right ventricular volume cannot be determined using two-dimensional echocardiography because of its complex morphology. Right ventricular volume and ejection fraction may be determined using three-dimensional echocardiography.

5.2 Assessment of Hemodynamics

a. Right Ventricular Systolic Pressure (Pulmonary Artery Systolic Pressure)
Right ventricular systolic pressure (pulmonary artery systolic pressure) may be estimated based on the sum of systolic right ventricular-atrial pressure gradient, which can be calculated from tricuspid regurgitant velocity, and right atrial pressure. However, it cannot be estimated in patients with tricuspid valve separation causing laminar regurgitation flows. Also, it should be noted that patients with substantial right heart dysfunction might show moderately increased or normal pulmonary artery systolic pressure due to low cardiac output.

b. Right Atrial Pressure
Right atrial pressure may be estimated on the basis of inferior vena cava diameter at a distance of 1 to 2 cm from the right atrium and whether or not the diameter changes with respiration.

c. Cardiac Output
Cardiac output is calculated as a product of outflow tract area and velocity-time integral (VTI).

5.3 Stress Echocardiography
Contractile reserve and cardiac viability cannot be assessed solely with parameters at rest. Dobutamine-stress or exercise echocardiography may be useful in such cases. Exercise echocardiography is also beneficial in assessing the presence of diastolic dysfunction or pulmonary hypertension in patients with shortness of breath on effort.

5.4 Assessment for Causative Conditions
It is important to assess the cause of heart failure and its severity in individual patients. Heart failure may develop in ischemic heart disease, hypertensive heart disease, cardiomyopathy, structural valvular disease, and infective endocarditis. Transesophageal echocardiography should be considered in patients who are suspected to have infective endocarditis but do not show abnormal findings on trans-thoracic echocardiograms and in patients after valvular surgery whenever necessary.

5.5 Assessment in Acute Heart Failure
Hemodynamics should be assessed in patients with acute heart failure. LVEF may be determined by visual estimation in these cases.

Patients with pericardial effusion should be suspected for cardiac tamponade. Myocarditis should be suspected in patients with pericardial effusion associated with transient ventricular wall thickening and diffuse wall hypokinesis as well as elevated levels of inflammatory markers and myocardial proteins in the blood.

Lung ultrasound assessment has been reported to be beneficial in the diagnosis of pulmonary edema. B-lines, that appears as 8 lines in the right and left lungs, are useful for differentiating dyspnea due to acute heart failure than that due to other causes with a 94% sensitivity and 92% specificity.

6. Imaging (MRI, CT, Nuclear Imaging, and PET) (Table 17)

6.1 Cardiac Magnetic Resonance Imaging (MRI)

6.1.1 Assessment of Cardiac Morphology and Function
Cardiac MRI is the most reliable imaging technique for the assessment of the morphology and ejection fraction of the left and right ventricles, and left ventricular mass because of its accuracy and reproducibility. Cardiac MRI is used to specify the cause of heart failure according to the results of morphologic assessment and ventricular wall motion based on cine images. MRI is highly useful in the assessment of right ventricular and complex congenital heart diseases that are often difficult to be assessed correctly with echocardiography. However, MRI should be used alternative to echocardiography only when necessary because of the latter is less time-consuming and inexpensive method that does not require substantial expertise in imaging analysis.

6.1.2 Assessment of Myocardial Tissues
The presence of myocardial fibrosis may be detected with late gadolinium enhancement MRI. The distribution of delayed enhancement is useful information in differentiating from ischemic and non-ischemic cardiomyopathy or in evaluating myocardial viability. T1 mapping can be used for similar assessment without using contrast, and is becoming a more common technique. As high signals in T2 weighed images are consistent with edema, this technique can be used in the assessment of inflammation associated with acute myocardial infarction, acute myocarditis, or cardiac sarcoidosis.

6.2 Cardiac CT
Cardiac CT can be used to assess the morphology and function of the heart in addition to anatomical features of the coronary arteries. Considering its high specificity for the diagnosis of ischemic heart disease, cardiac CT should be considered for patients with heart failure whose pre-test probability of coronary artery disease is low or moderate or in whom diagnosis is difficult with other non-invasive stress tests to rule out coronary artery disease.

6.3 Nuclear Imaging

6.3.1 Thallium or Technetium
Patients with ischemic cardiomyopathy should be assessed for myocardial ischemia and viability using thallium chlo-
ride or technetium (Tc) labeled radiopharmaceuticals.111-113 Single-photon emission computed tomography (SPECT) may also provide additional information on cardiac function such as left ventricular volume and LVEF.

6.3.2 I-123 BMIPP and I-123 MIBG

Iodine-123-\(\beta\)-methyl-p-iodophenyl-pentadecanoic acid (I-123 BMIPP), a marker for myocardial fatty acid metabolism, is used to detect myocardial damage associated with infarction, myocardial ischemia, or non-ischemic cardiomyopathy. As washout rate of I-123-\(\beta\)-methyl-dobenzylguanidine (I-123 MIBG) increases and heart/superior mediastinum ratio (H/M) on delayed images decreases in patients with heart failure, this technique can be used in severity assessment.114-118

Table 17. Recommendations and Levels of Evidence for the Use of Imaging Techniques in Heart Failure

Technique	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
MRI				
MRI to assess cardiac anatomy and function	I	C	A	IVb
Patients who cannot be assessed appropriately with echocardiography, patients with congenital heart disease, and patients who require right ventricular assessment				
Delayed-enhancement MRI	I	C	A	IVb
To differentiate between ischemic and non-ischemic cardiomyopathy in patients who cannot be assessed adequately with other procedures				
Delayed-enhancement MRI	Ila	C	B	IVb
To identify underlying heart disease in patients with non-ischemic myocardial cardiomyopathy				
MRI T2-weighted images	Ila	C	B	V
To assess the severity of myocardial inflammation				
CT				
Coronary artery CT	IIa	C	B	IVa
To rule out coronary artery disease in patients with heart failure whose pre-test probability of coronary artery disease is low or moderate				
Nuclear cardiology				
SPECT using thallium chloride or technetium-labeled tracers	I	B	A	II
To assess myocardial ischemia and myocardial viability in patients with ischemic cardiomyopathy				
SPECT using thallium chloride or technetium-labeled tracers	Iib	C	C1	IVa
To assess myocardial blood flow in patients with dilated cardiomyopathy				
ECG-gated SPECT	IIa	C	B	IVb
To assess left ventricular volume and LVEF in patients who cannot be assessed appropriately with echocardiography				
I-123-BMIPP scintigraphy	Iib	C	C1	IVb
To differentiate between ischemic and non-ischemic cardiomyopathy based on a mismatch between I-123-BMIPP uptake and blood flow distribution				
I-123-MIBG scintigraphy	IIa	C	B	IVb
To assess the severity of heart failure				
I-123-MIBG scintigraphy	I	A	A	II
To predict tolerability/efficacy and assess efficacy of drug therapy in patients with dilated cardiomyopathy				
Cardiac pool scintigraphy	I	B	B	III
To assess LVEF in patients who cannot be assessed adequately with other procedures				
Cardiac pool scintigraphy	IIa	B	B	IVa
To assess right ventricular function and anatomy in patients who cannot be assessed adequately with other procedures				
FDG PET	IIb	C	C1	IVb
To assess myocardial viability in patients who cannot be assessed adequately with other procedures				
FDG PET	I	C	A	IVb
To detect active lesions of cardiac sarcoidosis				

BMIPP, \(\beta\)-methyl-p-iodophenyl-pentadecanoic acid; CT, computed tomography; FDG PET, fluorodeoxyglucose positron emission tomography; LVEF, left ventricular ejection fraction; MIBG, \(\beta\)-iododobenzylguanidine; MRI, magnetic resonance imaging; SPECT, single-photon emission computed tomography.
I-123 MIBG is useful in predicting the prognosis of heart failure due to dilated cardiomyopathy and hypertrophic cardiomyopathy,\(^{119,121}\) assessing tolerability of and predicting the efficacy of \(\beta\)-blocker therapy in dilated cardiomyopathy, and evaluating the efficacy of drug therapy in heart failure.\(^{122-124}\)

6.3.3 Tc-99m Pyrophosphate

Tc-99m pyrophosphate (PYP) is useful in the detection of myocardial necrosis and the diagnosis of mutant or wild-type transthyretin-related cardiac amyloidosis.\(^ {125}\)

6.3.4 Gallium Scintigraphy

Gallium scintigraphy is used to detect new lesions of cardiac sarcoidosis, but its diagnostic sensitivity is lower than fluorodeoxyglucose positron emission tomography (FDG PET).\(^ {123-125}\) Gallium scintigraphy is used to detect the presence of inflammatory diseases such as myocarditis and infective endocarditis and cardiac lesions of malignant lymphoma.\(^ {107,112}\)

6.3.5 Cardiac Blood Pool Scintigraphy

Cardiac blood pool scintigraphy is a technique to determine LVEF using Tc-labeled human serum albumin or Tc-labeled red blood cells.\(^ {112,126}\) and can be used to assess left ventricular diastolic function.\(^ {126}\) This technique is also useful in assessing the function of the right ventricle, which has a complex anatomy.\(^ {127,128}\) This is used for patients in whom assessment with echocardiography, MRI, CT, and ECG-gated SPECT is difficult.

6.4 PET

PET can be used in combination with N-13 ammonia to assess the severity of myocardial ischemia, and in combination with F-18 FGD to assess myocardial viability and detect active lesions of cardiac sarcoidosis.\(^ {129,130}\)

7. Cardiac Catheterization (Hemodynamics and Biopsy)

Common indications for right side heart catheterization, left side heart catheterization, and endomyocardial biopsy in patients with heart failure are summarized in Table 18.

8. Exercise Tolerance

Exercise tolerance is the most important determinant of functional status in patients with heart failure. Exercise intolerance is a major manifestation in patients with heart failure, which reflects the severity of heart failure, and is closely related to decreases in activities of daily living and quality of life (QOL) in patients. One of the main purposes of heart failure treatment is to improve exercise tolerance, which is a factor of better prognosis.

8.1 NYHA Functional Classification (Table 8)\(^ {7}\)

The New York Heart Association (NYHA) functional classification is used to assess the severity of heart failure based on the level of ADL,\(^ {131}\) and reflects the QOL of patients. However, this is not a quantitative or objective scaling system.

8.2 Specific Activity Scale

Specific activity scale (SAS) describes the amount of exercise to perform a given activity of daily living with the number of metabolic equivalent units (METs) (Table 19).\(^ {132,133}\) With this scale, the minimum amount of exercise that causes...
The development, progression (exacerbations), and recurrence of heart failure should be prevented through lifestyle management such as diet and exercise and treatment interventions to control risk factors for heart failure and manage asymptomatic heart failure (Table 22). It is also important that patients are managed continuously in hospitals, local centers, and outpatient clinics. The six-minute walking test is a maximal exercise test to measure the maximal distance an individual able to walk in 6 minutes. The reference value for the Japanese population is calculated by multiplying \[\text{height (m)} - 0.66 \times \text{weight (kg)} + 82 \text{ (SD)} \] by height (m). It has been reported that the six-minute walking distance well correlates with NYHA functional classification and peak oxygen uptake (peak VO₂), and is useful in predicting the prognosis of patients with heart failure.

8.4 Cardiopulmonary Exercise Testing

The most objective index of exercise tolerance is oxygen uptake during maximal exercise. Peak VO₂, which is measured during cardiopulmonary exercise testing (CPX), is suitable parameter in assessing the prognosis of patients with heart failure selecting candidates for heart transplantation and classifying the severity of heart failure. Patients with a Peak VO₂ of <14 mL/kg/min have a poor prognosis, and those with <10 mL/kg/min have an extremely poor prognosis. When peak VO₂ is expressed as percentage of age-predicted peak VO₂ (% peak VO₂), patients with a % peak VO₂ of <50% are considered to have a poor prognosis. Table 20 shows the relationship between the NYHA classification, SAS, and % peak VO₂.

The anaerobic threshold, that is defined as the point during exercise when anaerobic metabolism occurs in addition to aerobic metabolism, accounts for about 50 to 55% of the maximal exercise capacity. This threshold is used as an index of daily activity level on which allowable exercise level and exercise prescriptions are determined.

The VE/VO₂ slope indicates the tidal volume needed to eliminate carbon dioxide produced during metabolism, and is considered as a factor related to dyspnea on exertion in patients with heart failure. Patients with a VE/VO₂ slope of >35 are considered to have a poor prognosis.

Table 21 summarizes recommendations for exercise capacity evaluation in heart failure and their evidence levels.

IV. Prevention of Heart Failure

The anaerobic threshold that is defined as the point during exercise when anaerobic metabolism occurs in addition to aerobic metabolism, accounts for about 50 to 55% of the maximal exercise capacity. This threshold is used as an index of daily activity level on which allowable exercise level and exercise prescriptions are determined. The VE/VO₂ slope indicates the tidal volume needed to eliminate carbon dioxide produced during metabolism, and is considered as a factor related to dyspnea on exertion in patients with heart failure.

The development, progression (exacerbations), and recurrence of heart failure should be prevented through lifestyle management such as diet and exercise and treatment interventions to control risk factors for heart failure and manage asymptomatic heart failure (Table 22). It is also important that patients are managed continuously in hospitals, local centers, and outpatient clinics.

Table 20. A Comparison of Major Exercise Capacity Measures in Patients With Heart Failure

NYHA classification	Specific Activity Scale (SAS)	Percent peak oxygen uptake (% peak VO₂)
I	6 METs or more	80% or more of the reference level
II	3.5 to 5.9 METs	60 to 80% of the reference level
III	2 to 3.4 METs	40 to 60% of the reference level
IV	1 to 1.9 METs or less	Impossible to determine or <40% of the reference level

There is no established formula indicating exact correspondence between NYHA functional classes and SAS. In this table, according to a consensus among experts, the following assumption was used: the amount of exercise is 2 METs for walking inside a room, 3.5 METs for usual walking, 4 METs for light exercise or stretching exercise, 5 to 6 METs for fast walking, and 6 to 7 METs for walking upstairs.

METs, metabolic equivalents; NYHA, New York Heart Association.

(Adapted from The Japanese Intractable Diseases Information Center)

Table 19. Questionnaire on Physical Activity

Question	Minimum exercise (METs)
1. Can you have a comfortable sleep at night? (≤1 MET)	2 METs
2. Do you feel comfortable in the lying position? (≤1 MET)	2 METs
3. Can you take meals or wash your face by yourself? (1.6 METs)	3 METs
4. Can you go to the bathroom by yourself? (2 METs)	3 METs
5. Can you change your clothes by yourself? (2 METs)	3 METs
6. Can you do kitchen work or sweep the room with a broom? (2 to 3 METs)	3 METs
7. Can you make your bed by yourself? (2 to 3 METs)	3 METs
8. Can you swab the floor? (3 to 4 METs)	4 METs
9. Can you have a shower without trouble? (3 to 4 METs)	4 METs
10. Can you practice radio gymnastic exercises without any trouble? (3 to 4 METs)	4 METs
11. Can you walk 100–200 m of level ground at the same speed as healthy persons do (4 km/hr) without any trouble? (3 to 4 METs)	4 METs
12. Can you garden (weeding for a brief time, etc.) without any trouble? (4 METs)	4 METs
13. Can you take a bath by yourself? (4 to 5 METs)	5 METs
14. Can you go upstairs at the same speed as healthy persons do without any trouble? (5 to 6 METs)	5 METs
15. Can you do light farming (digging the garden, etc.) (5 to 7 METs)	5 METs
16. Can you walk 200 m of level ground at a quick pace without any trouble? (6 to 7 METs)	6 METs
17. Can you remove snow? (6 to 7 METs)	6 METs
18. Can you practice tennis (or ping pong) without any trouble? (6 to 7 METs)	6 METs
19. Can you practice jogging (at about 8 km/hr) over a distance of 300 to 400 meters without any trouble? (7 to 8 METs)	7 METs
20. Can you practice swimming without any trouble? (7 to 8 METs)	7 METs
21. Can you practice rope skipping without any trouble? (≥8 METs)	8 METs

Minimum amount of physical activity to provoke symptoms: 2 METs

METs, metabolic equivalents. (Excerpted from Sasayama S, et al. 1992 and The Japanese Intractable Diseases Information Center)
communities, and their home by multidisciplinary approach involving diverse healthcare professionals, including physicians, nurses, pharmacists, dieticians, and physical therapists and hospital-clinic collaborations.

1. Hypertension

Antihypertensive treatment has been shown to prevent the development of heart failure and improve the prognosis of patients with hypertension. In addition to lifestyle modifications such as low-salt diet and body weight management, patients should be treated with antihypertensive drugs (e.g., angiotensin converting enzyme [ACE] inhibitors, angiotensin II receptor blockers [ARBs]), diuretics, and β-blockers.

2. Coronary Heart Disease

Patients with coronary artery disease should be treated with ACE inhibitors to prevent cardiovascular events including heart failure and improve the prognosis of patients after myocardial infarction should be treated with ACE inhibitors, β-blockers, statins, and/or mineralocorticoid receptor antagonists (MRA) as secondary prevention for cardiovascular events. ARBs are indicated for patients who are intolerant to ACE inhibitors, especially those with left ventricular dysfunction.

In the Occluded Artery Trial (OAT) that investigated the efficacy of percutaneous coronary intervention (PCI) in the prevention of heart failure in patients after acute myocardial infarction with a LVEF of <50%, PCI to the culprit lesion of complete occlusion during the period between 3 and 28 days after the onset was not effective in preventing cardiac accidents including heart failure for four years after PCI.

3. Obesity and Diabetes Mellitus

As obesity and diabetes mellitus are associated with the development of heart failure, and diabetes mellitus and metabolic syndromes, which are conditions caused by insulin resistance, are major risk factors for cardiovascular diseases, patients with these conditions should receive comprehensive risk management including lifestyle modifications for weight management and exercise therapy as well as drug therapy.

In the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME), the sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin reduced the risk of hospitalization for and death from heart failure in patients with type 2 diabetes mellitus and a history of cardiovascular disease, and reduced the rate of hospitalization for heart failure in patients without a history of cardiovascular events.

Similarly, in the Canagliflozin Cardiovascular Assessment Study (CANVAS), canagliflozin reduced the risk of hospitalization for and death from heart failure in patients with type 2 diabetes mellitus and a history of cardiovascular disease, and reduced the rate of hospitalization for heart failure in patients without a history of cardiovascular events.

These findings indicate that SGLT2 inhibitors are effective in preventing heart failure in patients with type 2 diabetes mellitus who have a history of cardiovascular disease, but further studies should be conducted to demonstrate their efficacy in primary prevention of cardiovascular events or in people aged 75 and over.

4. Smoking

Smokers are strongly advised to receive smoking cessation treatment.
As there is a U-shaped curve between alcohol consumption and the incidence of heart failure, people who have habitual drinking should be advised to drink moderately. A dose-related inverse relation between physical activity and the risk of heart failure has been reported.

Patients with stable, Stage C heart failure should be managed appropriately to prevent rehospitalizations due to worsening heart failure. In order to prevent rehospitalizations for heart failure, patients and their family members should be educated well on the nature of heart failure and the importance of keeping treatment adherence, and receive comprehensive programs (such as patient education) through social supports and multidisciplinary healthcare support.
V. Basic Principles for the Treatment of Heart Failure

1. Goals of Heart Failure Treatment (Figure 1)

The present guidelines classify the development and progression of heart failure into 4 stages. Stages A and B represent conditions at high risk of heart failure rather than the presence of heart failure. The guidelines include recommendations on treatment for patients at risk stages because it is critically important to prevent the onset of heart failure. This staging classification is based on the criteria that was first described in the ACC/AHA guidelines in 2005 and the concept of this classification has remained important for more than a decade also in Japan.

The primary goals of treatment for each stage of heart failure are to prevent the progression to the next stage. Specifically, the primary goals are to prevent structural heart disease that may cause heart failure in Stage A (patients at risk of heart failure); to prevent the progression of structural heart disease and prevent the onset of heart failure in Stage B (patients with structural heart disease); and to improve the prognosis and control symptoms of heart failure in Stage C (patients with established heart failure). The primary goals for patients with stage D heart failure (refractory heart failure) are essentially the same for those in Stage C, but controlling symptoms are the most important goal in patients with end-stage heart failure. Stage-based treatment is therefore important to achieve optimal treatment goals for different stages of patients (See Figure 1 in Section “1. Definition and Classification” in Chapter “II. General Principles”).

2. Treatment Algorithms for Heart Failure (Figure 10)

The clinical course of heart failure is generally chronic and progressive. Heart failure often manifests as acute heart failure, and then progresses to compensated, chronic heart failure (Stage C, the stage of heart failure). Patients with established heart failure show chronic progression, and may have repeated episodes of acute decompensated heart failure. Repeated acute exacerbations gradually lead to the development of more severe heart failure. Sudden death may occur during the progression of heart failure. Accordingly, heart failure does not progress linearly from Stage C to Stage D (refractory heart failure), and it is quite difficult to predict how the disease progresses (See Figure 1 in Section “1. Definition and Classification” in Chapter “II. General Principles”). Heart failure progresses in a way quite different from malignant tumors. Patients who do not respond to standard treatment and have exacerbations repeatedly progress to Stage D heart failure. The clinical course from Stage C to D differs substantially among patients depending on the severity of underlying heart disease and comorbidities. This makes it even difficult to predict the course of heart failure.
Patients with Stage C heart failure need treatment both for chronic heart failure and for acute exacerbations of chronic heart failure. As many patients with heart failure are in Stage C and will stay in this stage even after symptomatic improvement, smooth transition from acute-phase to chronic-phase treatment is important. Treatment modalities for Stage C heart failure include those for heart failure with reduced LVEF (HFrEF) and those for heart failure with preserved LVEF (HFpEF) (Figure 10). As treatments for heart failure with mid-range LVEF (HFmrEF) have not been fully evaluated, physicians should select treatments for them according to the individual patient’s condition. Although many patients require diuretics to control their symptoms of heart failure, no evidence has demonstrated that diuretics improve the prognosis of patients with heart failure. Dose adjustment of diuretics based on the severity of organ congestion is important. Patients who still have severe symptoms at rest despite sufficient Stage C treatment and are repeatedly hospitalized for worsening heart failure should receive Stage D treatment.

VI. Pharmacological Therapy

1. Heart Failure With Reduced Ejection Fraction (HFrEF) (Tables 23, 24, and 25)

1.1.� Drugs for the Treatment of HFrEF

1.1.1. ACE Inhibitors

The results of large-scale clinical studies such as the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) and the Studies of Left Ventricular Dysfunction (SOLVD) trials have demonstrated that angiotensin converting enzyme (ACE) inhibitors improve the prognosis of patients with heart failure due to left heart dysfunction and a reduction of the risk of cardiovascular events. Long-term follow-up of patients who participated in these large-scale studies have demonstrated that ACE inhibitors are also effective in those with asymptomatic left ventricular systolic dysfunction in reducing hospitalizations for heart failure and improving prognosis. ACE inhibitors should thus be given to all patients with left ventricular systolic dysfunction.

1.1.2. Angiotensin II Receptor Blockers (ARBs)

The results of large-scale clinical studies have indicated that ARBs are as effective as ACE inhibitors in reducing cardiovascular events in patients with chronic heart failure due to left ventricular systolic dysfunction. Accordingly, ARBs should be used for patients who cannot receive ACE inhibitors because of intolerance or other reasons.

1.1.3. Mineralocorticoid Receptor Antagonists (MRAs)

In two large-scale clinical studies in patients with contractile dysfunction and clinical studies in Japan, the benefits of spironolactone and eplerenone have been confirmed. Accordingly symptomatic patients with LVEF<35% should be treated with MRAs if not contraindicated. However, it has been reported that the use of spironolactone in combination with ACE inhibitors or ARBs may increase the risk of death and hospitalization through increasing serum potassium levels. Spironolactone should not be used in combination with both ACE inhibitors and ARBs. Careful monitoring should be performed when patients with an estimated glomerular filtration rate (eGFR) of <30mL/min or a serum potassium level of ≥5.0 mEq/L at the start of the treatment with MRAs.

1.1.4. β-Blockers

Large-scale clinical studies have demonstrated that bisoprolol, metoprolol succinate, and carvedilol, a nonselective β-blocker, improves prognosis in patients with heart failure. Evidence has also been published on the efficacy of β-blockers in patients with left ventricular dysfunction without heart failure symptoms.

Treatment with β-blockers for patients with NYHA class III or IV heart failure should be started in the hospital setting to confirm improvement in fluid retention and until the patient is in a stable condition. The dose should then be gradually titrated upwards in intervals of a few days to 2 weeks. Before initiating β-blocker therapy, the absence of underlying conditions that are contraindicated for β-blockers should be confirmed. Dose escalation should be made according to symptoms, pulse rate, blood pressure, cardiothoracic ratio, and chamber size measured with echocardiography, and patients should be monitored carefully for any signs/symptoms of worsening heart failure, excessive hypotension, and bradycardia.

β-blocker therapy should be initiated in the hospital setting during the recovery phase of acute exacerbation of heart failure. Patients should receive the initial doses in the hospital setting, and the dose should then be escalated in the ambulatory setting. When heart failure worsens during β-blocker therapy, the treatment should be continued whenever possible, but discontinuation may be unavoidable depending on the severity of heart failure. β-blocker therapy should be restarted whenever possible after the condition becomes stable.

Large-scale clinical studies of β-blockers in chronic heart failure have demonstrated the efficacy of carvedilol, bisoprolol, and metoprolol succinate. In Japan, the use of carvedilol and bisoprolol in chronic heart failure is covered by the National Health Insurance.

1.1.5. Diuretics

Diuretics are the most effective drugs in the treatment of symptoms of congestion in heart failure, such as dyspnea on exertion and edema. Loop diuretics should be tried first, and thiazide diuretics may be added for patients who do not respond well to loop diuretics. However, these diuretics may cause hypokalemia and hypomagnesemia, increase the risk of digitalis intoxication, and induce serious ventricular arrhythmia. During diuretic therapy, serum levels of potassium and magnesium should be monitored to keep appropriate levels.

Loop diuretics have been used commonly to alleviate congestion during acute exacerbations of heart failure. Many patients with chronic heart failure have routinely received long-term treatment with loop diuretics. Retrospective analyses using data of large-scale clinical studies...
Table 23. Recommendations and Levels of Evidence for Medications for HFrEF

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
ACE inhibitors				
Use in all patients (including asymptomatic patients) unless contraindicated	I	A	A	I
ARBs				
Use in patients intolerable ACE inhibitors	I	A	A	I
Concomitant use with ACE inhibitors	IIb	B	C2	II
β-blockers				
Use in symptomatic patients to improve prognosis	I	A	A	I
Use in asymptomatic patients with left ventricular systolic dysfunction	IIa	B	A	II
Use for rate control in patients with atrial fibrillation with a rapid ventricular response	IIa	B	B	II
MRA				
Use in patients with NYHA Class II-IV, LVEF <35% who are receiving loop diuretics and ACE inhibitors	I	A	A	I
Loop diuretics, thiazide diuretics				
Use in patients with symptoms of congestion	I	C	C1	III
Vasopressin V2 receptor antagonists				
Start treatment during hospitalization to relieve symptoms of fluid retention due to heart failure in patients who do not respond well to other types of diuretics including loop diuretics	IIa	B	B	II
Other diuretics such as carbonate dehydratase inhibitors and osmotic diuretics				
Diuretics other than loop diuretics, thiazide diuretics, and MRAs	IIb	C	C2	III
Digitalis				
Patients in sinus rhythm (maintain digoxin concentration in blood at ≤0.8 ng/mL)	IIa	B	C1	II
Use for rate control in patients with atrial fibrillation with a rapid ventricular response	IIa	B	B	II
Oral inotropic drugs				
Use short-term to improve QOL and discontinue intravenous inotropic drugs	IIa	B	C1	II
Use when initiating β-blockers	IIb	B	C1	II
Long-term use in asymptomatic patients	III	C	D	III
Amiodarone				
Use in patients with a history of serious ventricular arrhythmia leading to cardiac arrest	IIa	B	C1	II
Concomitant use of isosorbide dinitrate and hydralazine				
Use as an alternative to ACE inhibitors or ARBs	IIb	B	C2	II
Others				
Treatment with calcium channel blockers in patients without angina pectoris or hypertension	III	B	C2	II
Long-term oral treatment with Vaughan Williams Class I antiarrhythmic agents	III	B	D	III
Use of α-blockers				

ARB, angiotensin II receptor blocker; ACE, angiotensin converting enzyme; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association; QOL, quality of life; SGLT, sodium glucose cotransporter.
have concluded that furosemide and other loop diuretics may deteriorate prognosis in patients with heart failure.198, 201

The long-acting loop diuretic azosemide is considered not to affect neurohumoral factors substantially as it does not cause significant hemodynamic changes. In a study that compared azosemide and furosemide in Japan, the primary composite endpoint of cardiovascular death or hospitalization for worsening heart failure occurred less frequently in patients receiving azosemide than those receiving furosemide.202

Tolvaptan, a vasopressin V\textsubscript{2} receptor antagonist, blocks vasopressin V\textsubscript{2} receptors on renal medullary collecting duct cells, and thereby increases water excretion. In the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST), a randomized, placebo-controlled study of tolvaptan in patients with acute worsening heart failure, the vasopressin V\textsubscript{2} receptor antagonist improved symptoms of congestion but did not improve the long-term outcome of patients with heart failure.203, 204

1.1.7 Vasodilators

Western guidelines recommend combination therapy using hydralazine and isosorbide dinitrate to improve prognosis in patients who cannot receive ACE inhibitors for various reasons.

Long-term oral treatment with Vaughan Williams Class I antiarrhythmic agents

- **ARs:** Use in symptomatic patients to improve prognosis
- **β-blockers:** Use in asymptomatic patients with left ventricular systolic dysfunction
- **Other diuretics** such as carbonic anhydrase inhibitors and osmotic diuretics: Diuretics other than loop diuretics, thiazide diuretics, and MRAs

Class of Recommendation III

- **Oral inotropic drugs:** Use short-term to improve QOL and discontinue intravenous inotropic drugs
- **Amiodarone:** Use in patients with a history of serious ventricular arrhythmia leading to cardiac arrest

Summary

- **ACE inhibitors:** Use in all patients (including asymptomatic patients) unless contraindicated
- **ARBs:** Use in patients intolerable to ACE inhibitors
- **β-blockers:** Use in symptomatic patients to improve prognosis
- **MRAs:** Use in patients with NYHA Class II-IV, LVEF <35% who are receiving loop diuretics and ACE inhibitors
- **Loop diuretics, thiazide diuretics:** Use in patients with symptoms of congestion

Table 24. Medications for HFrEF According to Class of Recommendation

Class of Recommendation	Medications
Class of Recommendation I	ACE inhibitors: Use in all patients (including asymptomatic patients) unless contraindicated
	ARBs: Use in patients intolerable ACE inhibitors
	β-blockers: Use in symptomatic patients to improve prognosis
	MRAs: Use in patients with NYHA Class II-IV, LVEF <35% who are receiving loop diuretics and ACE inhibitors
	Loop diuretics, thiazide diuretics: Use in patients with symptoms of congestion
Class of Recommendation IIa	β-blockers: Use in asymptomatic patients with left ventricular systolic dysfunction
	β-blockers or digitalis: Use for rate control in patients with atrial fibrillation with a rapid ventricular response
	Vasopressin receptor antagonists: Start treatment during hospitalization to relieve symptoms of fluid retention due to heart failure in patients who do not respond well to other types of diuretics including loop diuretics
	Digitalis (maintain digoxin concentration in blood at ≤0.8 ng/mL): Use in patients in sinus rhythm
	Oral inotropic drugs: Use short-term to improve QOL and discontinue intravenous inotropic drugs
	Amiodarone: Use in patients with a history of serious ventricular arrhythmia leading to cardiac arrest
Class of Recommendation IIb	ARBs: Concomitant use with ACE inhibitors
	Concomitant use of isosorbide dinitrate and hydralazine: Use as an alternative to ACE inhibitors or ARBs
	Oral inotropic drugs: Concomitant use when initiating β-blockers
	Other diuretics such as carbonic anhydrase inhibitors and osmotic diuretics: Diuretics other than loop diuretics, thiazide diuretics, and MRAs
Class of Recommendation III	Oral inotropic drugs: Use long term in asymptomatic patients
	Calcium channel blockers: Use in patients without angina pectoris or hypertension
	Long-term oral treatment with Vaughan Williams Class I antiarrhythmic agents
	Use of α-blockers200

Table 25. Medications for HFrEF: Drugs and Dosing Regimens

Drugs*	Dosing regimen
ACE inhibitors	
Enalapril	Start at 2.5 mg/day, and maintain at 5 to 10 mg/day once daily
Lisinopril	Start at 5 mg/day, and maintain at 5 to 10 mg/day once daily
ARBs	
Candesartan	Start at 4 mg/day (2 mg/day in severe cases or renal dysfunction), and maintain at 4 to 8 mg/day once daily (maximum daily dose: 12 mg/day)
MRAs	
Spironolactone	Start at 12.5 mg/day, and maintain at 25 to 50 mg/day once daily
Eplerenone	Start at 25 mg/day, and maintain at 50 mg/day once daily
β-blockers	
Carvedilol	Start at 2.5 mg/day,** and maintain at 5 to 20 mg/day twice daily
Bisoprolol	Start at 0.625 mg/day,** and maintain at 1.25 to 5 mg/day once daily
Diuretics	
Furosemide	40 to 80 mg/day once daily
Azosemide	60 mg/day once daily
Torasemide	4 to 8 mg/day once daily
Tolvaptan	7.5 to 15 mg/day once daily
Trichlormethiazide	2 to 8 mg/day once daily
Antiarrhythmic drugs	
Amiodarone	Start at 400 mg/day, and maintain at 200 mg/day once or twice daily
Digitalis	
Digoxin	0.125 to 0.25 mg/day once daily
Oral inotropic drugs	
Pimobendan	2.5 to 5.0 mg/day once daily

*National Health Insurance-covered medications. **Start at a half dose in severe cases. ARB, angiotensin II receptor blocker; ACE, angiotensin converting enzyme; MRA, mineralocorticoid receptor antagonist.
reasons. In Japan, such combination therapy is not used proactively. Calcium channel blockers are not generally recommended as long-term treatment because calcium channel blockers may worsen heart failure.

1.1.8 Digitalis

In 1997, results from the Digitalis Investigation Group (DIG) trial were published and described that digoxin reduces the risk of hospitalization for worsening heart failure in patients with normal sinus rhythm, but does not improve their prognosis. The risk of death related to arrhythmia rather tended to increase with the use of digoxin in this population. On the other hand, patients with heart failure and atrial fibrillation are often treated with digitalis to control heart rate and increase left ventricular filling period. Digitalis is used to relieve symptoms, but there is no evidence regarding whether it may improve the prognosis of patients with left ventricular systolic dysfunction and atrial fibrillation.

1.1.9 Oral Inotropic Drugs

Since 1980s, large clinical studies have failed to demonstrate the efficacy of oral inotropic drug in heart failure and experts in the United States do not recommend oral inotropic drugs for the treatment of heart failure. However, given the perspective that prolonging the survival is not the sole purpose of the treatment for patients with chronic heart failure, the possible clinical benefits of oral inotropic drugs in this patient population should be reconsidered.

1.2 Dug Therapy for Heart Failure With Mid-Range Ejection Fraction (HFmrEF)

Some data have indicated that β-blockers and other drugs used to treat HFmrEF are also effective in the treatment of HFmrEF. However, no conclusive evidence has been obtained in this patient population and further studies are awaited.

1.3 Heart Failure Treatment by Stage

1.3.1 Stage C (Symptomatic Heart Failure)

NYHA class II: Introduce β-blockers in addition to ACE inhibitors. Patients with symptoms of fluid retention such as pulmonary congestion and generalized edema should receive diuretics. MRAs should be added to patients with LVEF <35%.

NYHA class III: Similar to NYHA class II patients, ACE inhibitors, β-blockers, and diuretics should be used. MRAs should be added to patients with LVEF <35%.

NYHA class IV: Patients should be hospitalized and receive parenteral medications such as catecholamines, phosphodiesterase (PDE) III inhibitors, diuretics, and carperitide to stabilize the condition. After the condition is stabilized, these regimens should be switched to oral drugs such as ACE inhibitors, diuretics, MRAs, and digitalis. β-blockers should also be tried.

1.3.2 Stage D (Refractory Heart Failure)

Treatment regimens should be reviewed whether the patient is receiving appropriate fluid management and drug therapy. The indication of heart transplantation should be considered (See Section “3. Heart Transplantation” in Chapter “XI. Surgical Treatment” Tables 70, 71,82 and 72). Patients who are not indicated for heart transplantation or ventricular assist devices should receive palliative care to alleviate symptoms based on a consent given by the patient and his or her family members (See Chapter “XIII. Palliative Care” for details).
2. Heart Failure With Preserved Ejection Fraction (HFpEF) (Table 26)

No prospective interventional studies on drugs for the treatment of HFpEF have demonstrated a clear reduction in the risk of death or clinical events. At present, patients with HFpEF should be treated to control the causative condition and thereby alleviate heart failure symptoms, and to treat comorbid conditions that may worsen heart failure.

2.1. Interventions to Reduce Disease Burden

2.1.1 Treatment for Congestion

Diuretics are beneficial in improving subjective symptoms caused by congestion. Loop diuretics are used commonly. In the Japanese Multicenter Evaluation of Long-versus short-acting Diuretics in Congestive heart failure (J-MELODIC) trial conducted in Japan, the long-acting loop diuretic azoseamide was superior to the short-acting loop diuretic furosemide in improving prognosis, especially in preventing re-worsening heart failure.208 In Japan, an increasing number of patients start tolvaptan therapy during hospitalization for acute heart failure, and continue the treatment after discharge.

2.1.2 Treatment for Hypertension

See Section “6. Hypertension” in Chapter “IX. Pathophysiology and Treatment of Comorbidities”.

2.2 Interventions Not Directly Aiming at Reducing the Burden of Heart Failure

ACE inhibitors,211 ARBs,212,213 β-blockers,214 MRA,215 and digitalis216 did not reduce the incidence of the primary endpoint in their prospective interventional studies in HFpEF. However, large-scale observational studies and meta-analyses have indicated that ACE inhibitors/ARBs,217 and β-blockers,218,219 improve the prognosis of patients with HFpEF. MRAs also significantly reduced hospitalizations for heart failure.218

In addition to the above-described common medications for HFpEF, the efficacy of nitrates in HFpEF has been evaluated. In the NEAT-HFpEF (Nitrate's Effect on Activity Tolerance in Heart Failure with Preserved Ejection Fraction) trial, a prospective interventional study, nitrates did not improve exercise capacity of patients with HFpEF, and did reduce their physical activity.220 In a large-scale observational study, the Swedish Heart Failure Registry, nitrates deteriorated the prognosis of patients with HFpEF.221

VII. Nonpharmacological Therapy

1. Implantable Cardioverter Defibrillator

1.1 Secondary Prevention of Sudden Death (Table 27)

Patients with sustained ventricular tachycardia or ventricular fibrillation associated with heart failure and patients resuscitated from sudden cardiac death are at a high risk of recurrent arrhythmias. Implantable cardioverter defibrillators (ICDs) are highly effective in secondary prevention of sudden cardiac death associated with coronary artery disease in these patients.222–224 Especially, patients with heart failure and LVEF ≤35% are expected to benefit more from ICDs.14,225,226 However, sustained ventricular tachycardia or ventricular fibrillation developed during acute phase (within 48 hours after onset) of acute coronary syndrome are not necessarily indicated for ICDs as the risk of recurrent arrhythmias is low after ischemia is treated and arrhythmic substrates are stabilized.227 As the risk of recurrent arrhythmias is high in patients in whom sustained ventricular tachycardia or ventricular fibrillation developed at least 48 hours after the onset of myocardial infarction, they are indicated for ICDs.226,227

Although data on ICDs in secondary prevention of sudden death in patients with heart failure associated with non-ischemic dilated cardiomyopathy are limited, these patients are considered to benefit from ICDs similarly as patients with coronary disease are.222,224

Catheter ablation is now available for hemodynamically

Table 27. Recommendations and Levels of Evidence for the Use of ICD as Secondary Prevention of Sudden Death
Patients who meet both of the following criteria:
(1) Have heart failure associated with structural heart disease
(2) Sustained ventricular tachycardia, ventricular fibrillation, or resuscitated from sudden cardiac death
Class of Recommendation
I
Patients who meet either of the following criteria:
(1) Have limited physical activity due to chronic diseases
(2) Can neither express consent nor cooperate with treatment due to mental disorder or other reasons
(3) Suspected with a life expectancy of 1 year or less
III
unstable patients with ventricular tachycardia or ventricular fibrillation, but ICD therapy should be considered for these patients even after successful ablation.

1.2 Primary Prevention of Sudden Death (Table 28)
The benefits of ICDs in patients with coronary artery disease and low LVEF have been demonstrated in clinical studies conducted mainly in North America, including the Multicenter Automatic Defibrillator Implantation Trial (MADIT-I), MADIT-II, Multicenter Unsustained Tachycardia Trial (MUSTT), and Defibrillator in Acute Myocardial Infarction Trial (DINAMIT) in patients with coronary artery disease, the Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) trial in patients with non-ischemic dilated cardiomyopathy, and the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) in patients with coronary artery disease or non-ischemic dilated cardiomyopathy.

Cohort studies on the prognosis of patients with coronary artery disease in Japan have indicated that patients in Japan generally have a favorable prognosis, and ICDs may not be cost effective if ICD therapy is indicated according to the criteria used in the MADIT-II trial. It is recommended that appropriate evaluations such as electrophysiological testing should be used to stratify the risk of patients with coronary artery disease. The use of ICD for primary prevention after myocardial infarction should be considered for patients who survived for at least 40 days after the onset of myocardial infarction.

A meta-analysis of five clinical studies in non-ischemic dilated cardiomyopathy (n=1,854) revealed that ICDs significantly reduced relative mortality risk. A recent meta-analysis including the data from the Danish Study to Assess the Efficacy of ICDs in Patients with Non-ischemic Systolic Heart Failure on Mortality (DANISH) trial indicated similar results.

There are only limited data on the incidence of sudden death among patients with non-ischemic heart failure in Japan. However, the results of a cohort study on the outcome of patients with chronic heart failure and the Chronic Heart Failure Analysis and Registry in the Tohoku District (CHART) trial suggested that the prognosis of heart failure and incidence of sudden death in patients with non-ischemic dilated cardiomyopathy in Japan may be similar to those in Western countries, and thus such patients should be considered for ICD therapy.
2. Cardiac Resynchronization Therapy (Table 29)

2.1 Clinical Efficacy

Since 2001, several randomized prospective studies have been conducted to assess the efficacy of cardiac resynchronization therapy (CRT) in heart failure. These studies have demonstrated that CRT improves exercise capacity and other QOL measures as well as left ventricular remodeling, and reduced all-cause mortality and hospitalizations for heart failure. A meta-analysis has indicated that CRT reduced all-cause mortality. In addition, the RD-CHF trial and the Biventricular versus Right Ventricular Pacing in Heart Failure Patients with Atrioventricular Block (BLOCK HF) trial demonstrated the benefits of CRT in patients with heart failure who are indicated for pacemaker.

2.2 Points to Consider When Planning CRT

2.2.1 Use of Defibrillation Function

No studies have compared a CRT-pacemaker (CRT-P) and a combined CRT defibrillator (CRT-D) in Japan. The Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPARISON) trial demonstrated that CRT-D was superior to CRT-P in reducing the incidence of sudden cardiac death. CRT-D is recommended for many patients, but is more expensive than CRT-P. Cost-effectiveness should also be considered.

2.2.2 CRT in Patients With Atrial Fibrillation

The Multisite Stimulation in cardiomypathy - Atrial Fibrillation (MUSTIC-AF) trial demonstrates the benefits of CRT in patients with heart failure in whom pacing is indicated to treat chronic bradycardiac atrial fibrillation. The percentage of ventricular pacing after rate control in atrial fibrillation is also important. The Heart Rhythm Society (HRS)/European Heart Rhythm Association (EHRA)/Asia-Pacific Heart Rhythm Society (APHRS)/Sociedad Latinoamericana de Estimulacion Cardiaca y Electrosiologia (SOLAEc) expert consensus recommends to produce the highest achievable percentage of ventricular pacing, preferably >98% in ICD patients with biventricular pacing. In patients with chronic atrial fibrillation in whom an adequate pacing percentage cannot be obtained in CRT, atrioventricular node ablation should be considered.

2.2.3 Effects of CRT by QRS Configuration and Duration

It has been reported that about 30 to 40% of patients undergoing CRT implantation do not respond well to CRT therapy, that is non-responders. A meta-analysis of randomized controlled trials that assessed the influence of QRS configuration on the benefits of CRT therapy has revealed that only patients with a left bundle branch block (LBBB) benefit from CRT. The results of the Cardiac Resynchronization Therapy in Patients with Heart Failure and Narrow QRS (RethinQ) and the Echocardiography Guided Cardiac Resynchronization Therapy (EchoCRT) trial have suggested that CRT therapy is less effective in patients with a QRS duration of <130 msec.

2.2.4 Indications for Patients With Mild Heart Failure

The Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) trial, the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT) and the Resynchronization–Defibrillation for Ambulatory Heart Failure Trial (RAFT) trial have reported that CRT is beneficial in patients with mild heart failure (NYHA class II or greater), and that CRT is especially indicated for patients with a QRS duration of ≥150 msec.

2.2.5 Combination With Drug Therapy

Indication for CRT should be considered only for patients who are receiving optimal medical therapy. Other than exceptional cases, CRT is not indicated for patients who underwent revascularization within the past 3 months and patients who introduced new drugs for the treatment of heart failure within the past 3 months. As some patients can receive higher doses of β-blockers after CRT is introduced, patients should be assessed regularly for whether their drug therapy is optimal.

2.3 Telemetry Monitoring (Table 30)

Current implantable devices such as ICD, CRT-P, and CRT-D have telemetry functions that can send data on arrhythmic events and device information to the data center. As telemetry monitoring can send highly accurate data, device malfunctions and arrhythmias can be detected promptly. In the Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME) trial, heart failure management through telemetry monitoring significantly reduced all-cause mortality, but these findings should be interpreted carefully with clear understanding on their methods of intervention. In Japan, only a limited number of medical institutions have introduced telemetry monitoring systems. Further studies are awaited to clarify how to utilize telemetry data in clinical practice.

3. Respiratory Support (Table 31)

Respiratory support for patients with acute decompensated heart failure and patients with sleep-disordered breathing is described in the relevant sections. This section describes respiratory support for patient with chronic heart failure.

In chronic severe heart failure, respiratory support especially positive pressure ventilation improves hemodynamics and symptoms of chronic heart failure independent of improvement of sleep-disordered breathing by 1) reducing pulmonary congestion and left ventricular preload, 2) reducing left ventricular afterload, and 3) reducing the activity of the sympathetic nerve system. Continuous positive airway pressure (CPAP) can promptly increase cardiac output in patients with severe congestion, but there is no evidence on its long-term efficacy in patients with chronic heart failure with no (or only mild) sleep-disordered breathing. As adaptive servo-ventilation (ASV) has an acute effect similar to that of CPAP, and may maintain a stable tidal volume, it is considered to be more effective in reducing the activity of the sympathetic nerve system. In fact, reports have described that ASV decreases the incidence of cardiac events in patients with heart failure with and without sleep-disordered breathing in Japan.
Table 29. Recommendations and Levels of Evidence for CRT

NYHA Class III/IV	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy				
(2) LVEF ≤35%	I	A	A	I
(3) Left bundle branch block (LBBB) with QRS interval ≥120 msec				
(4) Sinus rhythm				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy				
(2) LVEF ≤35%	IIa	B	B	II
(3) Non-LBBB with QRS interval ≥150 msec				
(4) Sinus rhythm				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy				
(2) LVEF ≤35%	IIb	B	C1	III
(3) Non-LBBB with QRS interval 120 to 149 msec				
(4) Sinus rhythm				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy				
(2) LVEF <50%	IIa	B	B	II
(3) Indicated for pacing or ICD				
(4) Expected to require ventricular pacing frequently				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy				
(2) LVEF ≤35%	IIa	B	B	II
(3) LBBB with QRS ≥120 msec, or non-LBBB with QRS interval ≥150 msec				
(4) Have atrial fibrillation and can undergo biventricular pacing at a high pacing percentage				

NYHA Class II

NYHA Class II	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy	I	B		
(2) LVEF ≤30%				
(3) LBBB with QRS interval ≥150 msec				
(4) Sinus rhythm				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy	IIa	B	B	II
(2) LVEF ≤30%				
(3) Non-LBBB with QRS interval ≥150 msec				
(4) Sinus rhythm				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy	IIb	B	C1	III
(2) LVEF ≤30%				
(3) QRS interval 120 to 149 msec				
(4) Sinus rhythm				
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy	IIa	B	B	II
(2) LVEF <50%				
(3) Indicated for pacing or ICD				
(4) Expected to require ventricular pacing frequently				

NYHA Class I

NYHA Class I	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Patients who meet all the following criteria:				
(1) Receiving optimal medical therapy	IIb	B		
(2) LVEF <50%				
(3) Indicated for pacing or ICD				
(4) Expected to require ventricular pacing frequently				

NYHA Class I to IV

NYHA Class I to IV	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Patients who meet either of the following criteria:				
(1) Have limited physical activity due to chronic diseases	III	C	C2	VI
(2) Can neither express consent nor cooperate with treatment due to mental disorder or other reasons.				
(3) Suspected with a life expectancy of 1 year or less				

Different criteria are set for NYHA Class III/IV and II patients in sinus rhythm:

1. LVEF cut-off value is ≤35% for NYHA Class III/IV patients and, ≤30% for NYHA Class II patients.

2. In patients with a QRS interval of 120 to 149 msec, the use of CRT is a Class I and IIb recommendation for NYHA Class III/IV patients with LBBB and non-LBBB, respectively, and is a Class IIb recommendation for NYHA Class II patients regardless of whether LBBB or non-LBBB is present.

CRT, cardiac resynchronization therapy; ICD, implantable cardioverter defibrillator; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.
Study of Adaptive Servo-Ventilation in Patients with Chronic Heart Failure (SAVIOR-C) trial that evaluated the efficacy of ASV in patients with chronic heart failure with and without sleep-disordered breathing in Japan, LVEF assessed as the primary endpoint did not differ significantly between the ASV and guideline-directed medical therapy, but a clinical composite response assessed as a secondary endpoint improved significantly in the ASV group as compared with the medical therapy group.

In 2016, the National Health Insurance started to cover the use of ASV for the treatment of congestion in patients with heart failure who meet particular conditions. The Japanese Circulation Society and the Japanese Heart Failure Society published the second statement on appropriate use of ASV (See Supplement 1).

As the Treatment of Sleep-Disordered Breathing with Predominant Central Sleep Apnea by Adaptive Servo Ventilation in Patients with Heart Failure (SERVE-HF) trial suggested that ASV may increase the risk of cardiovascular death, patients who meet the inclusion criteria for the SERVE-HF trial should be considered for discontinuing ASV or switching to CPAP when heart failure is stabilized after introducing ASV.

4. Exercise Therapy (Table 32)

4.1 Effects of Exercise Therapy (Supplement 2)

Exercise therapy increases peak VO₂ by 15 to 30% (mean of about 20%), and also improves anaerobic threshold.
It has been described that exercise therapy may elevate exercise capacity by increasing the muscular mass and volume density of mitochondria in skeletal muscle, enhancing the metabolism and function of skeletal muscles, and improving the function of respiratory muscles, among other peripheral mechanisms. Exercise therapy also exerts beneficial effects on neurohumoral factors such as the reduction of C reactive protein (CRP), an inflammatory substance, and cytokines (e.g., TNF-α and IL-6), and improves autonomic nervous system dysfunction, which is an important prognostic factor. A considerable body of evidence has been accumulated on the beneficial effects of exercise therapy on patients with heart failure through relieving anxiety and depression, and improving QOL.

The findings from the Exercise Training Meta Analysis of Trials in Chronic Heart Failure (ExTraMATCH) have indicated that exercise therapy improves the prognosis of patients with heart failure. In the Participants in Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) trial, a large-scale randomized controlled study, exercise therapy reduced the risk of all-cause death or hospitalization by 11% and the risk of cardiovascular death or hospitalization for heart failure by 15% after adjusting for confounding factors. A Cochrane systematic review of exercise-based cardiac rehabilitation for heart failure has indicated that exercise therapy significantly reduces the risk of all-cause and heart-failure-related hospitalizations in patients with heart failure.

4.2 Heart Failure in Patients With Special Conditions

The findings of randomized controlled trials and a meta-analysis in patients with heart failure with preserved ejection fraction (HFpEF) have indicated that exercise training improves exercise capacity measured by peak oxygen uptake as well as QOL in this patient population. Randomized controlled trials of exercise therapy in patients with implantable devices have reported that patients in the exercise therapy group showed significant improvement in peak oxygen uptake, NYHA functional class, and QOL score, among other measures. A recent randomized controlled trial that evaluated effectiveness of exercise therapy in patients with pulmonary hypertension reported that patients in the exercise therapy group showed better improvement in exercise capacity and QOL as compared with the control group. The 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension recommend supervised exercise rehabilitation as a Class IIa recommendation.

4.3 Methodology of Exercise Training

In patients with deconditioning, elderly patients with low muscle strength, and patients with sarcopenia or frailty, resistance training may be highly effective. A recent study addressed the efficacy of high-intensity interval training (HIT) in heart failure. However, a randomized controlled study has concluded that HIT is not superior to continuous exercise training in terms of increasing exercise capacity and preventing left ventricular remodeling.

4.4 Contraindications for Exercise Therapy

Supplement 3 lists contraindications for exercise therapy.

4.5 Exercise Prescription

Exercise therapy for patients with heart failure should be conducted according to appropriate exercise prescriptions (Supplement 4). Supervised exercise therapy is required especially for elderly patients and patients with severe left ventricular dysfunction, high-risk arrhythmias, or a risk of ischemia. These patients may benefit from exercise therapy even with low or intermediate intensity (40 to 60% of peak VO2).

VIII. Treatment of Underlying Conditions

1. Basic Treatment Strategies

Heart failure management consists of two strategies. The first strategy is to treat heart failure, and the second is to treat the cause of heart failure. When patients showed signs and symptoms of heart failure, heart failure is related directly to patients’ complaints and sometimes risk of death, and treatment for heart failure should generally be prioritized over treatment for causative disease.

2. Underlying Conditions That May Modify Treatment Strategies

Some underlying cardiac disorders causing heart failure may require special plan for treatment sequencing. Patients with such cardiac disorders show ever-changing conditions should be treated for the causative disease and the conditions simultaneously. These conditions include acute coronary syndrome and pulmonary thromboembolism, for which revascularization is effective, arrhythmias which can be treated well by defibrillation and pacing, and acute myocarditis for which outcome cannot be readily predicted. Other cardiac disorders require careful decongestion because an abrupt change in intravascular volume may compromise hemodynamics. These disorders include structural heart diseases with significant pressure gradient such as aortic valve stenosis; severe right ventricular dysfunction and other right heart disease causing a significant increase in pulmonary vascular resistance; and severe cardiac diastolic dysfunction such as constrictive pericarditis and restrictive cardiomyopathy.

3. Comorbid Conditions Causing Advanced Stage Heart Failure

Lifestyle-related diseases such as hypertension, diabetes
mellitus, and dyslipidemia are typical risk factors for Stage A heart failure, while there is little evidence on the management of these factors in Stage C or D heart failure. Conditions affecting non-cardiac organs such as chronic kidney disease and chronic obstructive pulmonary disease (COPD) also modify the risk of heart failure, but treatment strategies for these conditions in patients with heart failure have not been established yet.

IX. Pathophysiology and Treatment of Comorbidities

1. Atrial Fibrillation (Table 33)

1.1 Pathophysiology

Atrial fibrillation is one of the most common types of arrhythmias associated with heart failure, and is known to negatively affect cardiac function and hemodynamics, and worsen heart failure.314 A meta-analysis315 has revealed that β-blockers for the treatment of atrial fibrillation do not improve the prognosis of patients with severe chronic heart failure associated with atrial fibrillation. Moreover, β-blockers reduced mortality in patients with heart failure in sinus rhythm and achieving a lower heart rate, but it was not observed in patients with atrial fibrillation. However, atrial fibrillation in the patients with acute heart failure which causes or is expected to cause an abrupt disturbance of hemodynamics or worsening symptoms should receive appropriate treatments. Treatment strategies for atrial fibrillation are classified into “rate control” that accepts the presence of atrial fibrillation and controls heart rate, and “rhythm control” that aims to return to and maintain sinus rhythm. As the effect of atrial fibrillation on hemodynamics differs between patients with acute heart failure and those with atrial fibrillation, appropriate treatment strategies should be selected to address the relevant condition.

1.2 Treatment

1.2.1 Treatment for Atrial Fibrillation With a Rapid Ventricular Response Complicated With Acute Heart Failure

When atrial fibrillation develops during the treatment of acute heart failure and is considered highly likely to negatively affect hemodynamics, electrical cardioversion should be performed immediately. Patients who are not receiving appropriate anticoagulation therapy in whom the duration of atrial fibrillation is unknown should undergo transesophageal echocardiography to confirm the absence of thrombus in the left atrium before starting defibrillation.316–318 Patients with symptoms of heart failure who need rate control therapy immediately may be treated with intravenous digitalis.319 Landiolol has been reported to be beneficial effect for controlling the heart rate as compared with digoxin in the atrial fibrillation or atrial flutter with left ventricular dysfunction, and the use of this drug for this indication is covered with the National Health Insurance in Japan.320 Non-dihydropyridine calcium channel blockers (e.g., verapamil and diltiazem) are contraindicated for patients with decompensated heart failure as they may worsen heart failure via their negative inotropic effects.16

1.2.2 Rate Control

A meta-analysis of clinical trials in Western countries has concluded that β-blockers do not improve the prognosis of patients with chronic heart failure and atrial fibrillation, but many studies included in the analysis were conducted in patients with severe heart failure such as NYHA Class III or IV patients with LVEF <30%.315 It is likely that atrial fibrillation rather than heart rate affects the prognosis of this patient population. On the other hand, a registry of patients with moderate or severe heart failure associated with atrial fibrillation has reported that β-blockers significantly reduced all-cause mortality, and mortality increased significantly in patients with a heart rate of >100 bpm.321 Accordingly, physicians should be aware that the benefits of β-blockers on prognosis may differ depending on the severity of heart failure. Patients with atrial fibrillation who have severe symptom due to tachycardia, and those with elevated and sustained heart rate of >130 bpm are at high risk for developing heart failure, and thus should receive rate control.322 In the Guidelines for Pharmacological of Atrial Fibrillation (JCS 2013) proposed by the Japanese Circulation Society, the target heart rate at rest is set at <110 bpm for patients without heart failure. When no improvement in symptoms or cardiac function is observed, the target should be set at <80 bpm at rest and <110 bpm during moderate exercise.323 Patients with chronic heart failure and atrial fibrillation with mild symptoms and stable hemodynamics should be considered for rate control in atrial fibrillation first. Carvedilol or bisoprolol is an oral β-blocker of choice, and should be started at a low dose considering the severity of heart failure. Oral digoxin exerts rate control and cardiac actions, but unlike β-blockers, may reduce heart rate at night.324,325

1.2.3 Rhythm Control

Rhythm control is selected for patients in whom rate control cannot be achieved with drug therapy and patients in whom maintaining sinus rhythm is beneficial in maintaining hemodynamics and managing heart failure. Amiodarone is the first-choice of oral drugs for rhythm control used in patients with cardiac dysfunction. In Japan, low-dose amiodarone therapy has been effective in maintaining sinus rhythm and reducing heart rate in patients with heart failure and atrial fibrillation,326 and this use is covered by the National Health Insurance in Japan. Regardless of whether heart failure is acute or chronic, sodium channel blockers (with slow kinetic activation kinetics), which may exert negative inotropic action, must not be used to maintain sinus rhythm in patients with heart failure and atrial fibrillation.327

1.2.4 Anticoagulant Therapy

The CHADS2 score has been used extensively to assess the risk of cerebral infarction and systemic embolism in patients with atrial fibrillation (Supplement 5),328 and is used when initiating anticoagulant therapy in Japan. As the stroke rate without antithrombotic therapy is as high as 1.9 per 100 patient-years even in patients with a CHADS2 score of 0,328 Western countries use the CHA2DS2-VASc score to specify truly low-risk patients.329,330 As patients with heart
failure and atrial fibrillation have a CHADS₂ score of ≥1, anticoagulant therapy should be considered for them unless it is contraindicated.

Atrial fibrillation in patients with heart failure have been treated with anticoagulant therapy using warfarin. However, direct oral anticoagulants (DOACs), that have been launched recently, have changed anticoagulant strategies for atrial fibrillation in patients with heart failure. DOACs are as effective as warfarin in patients with heart failure, and are safer than warfarin as the risk of major bleeding such as intracranial hemorrhage is lower in patients treated with DOACs than those treated with warfarin. However, DOACs are indicated only for patients with non-valvular atrial fibrillation, and warfarin should be used for patients with severe mitral valve stenosis and patients using valve prostheses (mechanical valves or bioprosthetic valves). As renal function may change as heart failure advances or improves during treatment, the dose of anticoagulant drugs, especially DOACs, should be adjusted carefully according to the criteria for dose reduction or careful administration. The HAS-BLED score has been used to assess the risk of bleeding during anticoagulant therapy.

Table 33. Recommendations and Levels of Evidence for Treatment of Atrial Fibrillation in Patients With Heart Failure

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Treatment of atrial fibrillation with a rapid ventricular response in patients with acute heart failure			
Urgent electrical cardioversion To restore to sinus rhythm in the patients with hemodynamically compromised atrial fibrillation in whom heart rate control is difficult with drug therapy	I	C	C1 VI
Laniolol To control heart rate	IIA	B	B II
Digoxin To control heart rate	IIA	C	B II
Oral or intravenous non-dihydropyridine calcium channel blockers To control heart rate	III	C	D II
Sodium channel blockers (with slow activation kinetics) To maintain sinus rhythm in patients who returned to sinus rhythm and those who received defibrillation	III	C	D II
Rhythm control			
Oral amiodarone To maintain sinus rhythm	IIA	B	B II
Elective electrical cardioversion To treat persistent atrial fibrillation lasting for <1 year without substantial left atrial enlargement	IIA	C	C1 VI
Catheter ablation To treat symptomatic atrial fibrillation in patients with heart failure who do not respond well to rate control therapy or drug therapy for heart failure	IIb	C	B II
Oral sodium channel blockers (with slow activation kinetics) To maintain sinus rhythm in patients who returned to sinus rhythm and those who received defibrillation	III	A	D II
Rate control			
Oral β-blockers and oral digoxin To control heart rate	IIA	B	A I
Oral amiodarone To control heart rate in patients in whom monotherapy with β-blockers or digoxin or combination of the two drugs are not effective in rate control	IIb	C	C1 VI
Oral non-dihydropyridine calcium channel blockers To control heart rate	III	C	D II
Anticoagulant therapy			
Use of the CHADS₂ score and the HAS-BLED score to predict the benefits of anticoagulant therapy	I	B	A II
Oral anticoagulant therapy for the treatment of atrial fibrillation in patients with heart failure (unless contraindicated)	I	A	A I
Anticoagulant therapy for 3 weeks before and 4 weeks after pharmacological or electrical cardioversion in patients with atrial fibrillation lasting ≥48 hours	I	B	A II
Electrical cardioversion with heparin after ruling out intracardiac thrombi by transesophageal echocardiography in patients with atrial fibrillation who are not receiving anticoagulant therapy	I	C	A II
Considering DOACs as first-line therapy	IIA	B	A II
Concomitant use of DAPT and anticoagulation after coronary intervention in patients with heart failure and ischemic heart disease	IIb	C	C2 II
Use of DOACs in patients using prosthetic valves (mechanical or bioprosthetic valves) and in patients with rheumatic mitral valve disease	III	B	D II

DAPT, dual antiplatelet therapy; DOAC, direct oral anticoagulant.
therapy.374 Patients with heart failure due to ischemic heart disease often receive dual antiplatelet therapy (DAPT) for percutaneous coronary intervention (PCI). When accompanied by atrial fibrillation, anticoagulant therapy is added and the risk of bleeding may further increase.338 The European Society of Cardiology (ESC) guidelines for the management of atrial fibrillation provide recommendations on the contents and duration of anticoagulant and antiplatelet therapy according to the risk of stroke, the risk of bleeding, and patient characteristics.339 In the What is the Optimal antiplatelet and anticoagulant therapy in patients with oral anticoagulation and coronary Stenting (WOEST) trial,338 patients receiving warfarin for the treatment of stable angina underwent PCI were randomized to triple therapy (warfarin, aspirin, and clopidogrel) or duel therapy (warfarin, and clopidogrel). Comparisons between the two groups in terms of the incidence rates of bleeding events and thromboembolic events revealed that all-cause mortality and the incidence of bleeding events were significantly lower in the duel therapy group, and the incidence rates of myocardial infarction, stroke, and in-stent thrombosis did not differ between the two groups.

2. Ventricular Arrhythmias (Table 34)

Ventricular arrhythmias associated with heart failure includes premature ventricular contractions, non-sustained/sustained ventricular tachycardia and ventricular fibrillation. Especially hemodynamically intolerable ventricular tachycardia and ventricular fibrillation should be treated electrical defibrillation immediately. Intravenous amiodarone and nifekalant, as antiarrhythmic drugs, have a rapid onset of actions and are expected to be highly effective in preventing ventricular arrhythmias.340,341 Also, risk factors and predisposing factors for life-threatening ventricular arrhythmias, such as electrolyte imbalance and use of proarrhythmic drugs, should be identified and treated accordingly. When myocardial ischemia is involved in the development of arrhythmia, revascularization to treat the ischemia is important. Polymorphic ventricular tachycardia with prolonged QT interval and torsade de pointes in the patients with heart failure should be confirmed and treated for electrolyte imbalance such as hypokalemia and hypomagnesemia. Intravenous magnesium sulfate is also effective.344

In patients with an implantable cardioverter defibrillator (ICD), the experience of ICD shocks may cause physical and/or mental stress, leading to frequent ICD shocks. Patients who have three or more episodes of life-threatening ventricular arrhythmia within 24 hours, so-called “electrical storm”, and in case of refractory to ICD therapy should receive percutaneous cardiopulmonary support (PCPS) to stabilize hemodynamics and treat arrhythmias. When sustained ventricular arrhythmia cannot be controlled with drug therapy, catheter ablation should also be considered.344,345 Oral β-blockers are effective in preventing the recurrence of life-threatening ventricular arrhythmia and sudden death in patients with chronic heart failure.192,194 Amiodarone is another treatment option,346 but careful observation is required because of its serious adverse drug reactions. Nonpharmacologic therapy using ICDs is mainly used to prevent sudden death in patients with heart failure.234 Antiarrhythmic drugs are used as adjunctive therapy to reduce the frequency of arrhythmic episodes.

3. Bradyarrhythmia (Table 35)

When patients have symptoms of cerebral ischemia associated with bradycardia caused by drug therapy, dose reduction should be considered first. The ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure recommend that when sinus arrest lasting for >3 seconds, bradycardia of <50bpm in sinus rhythm or
Table 35. Recommendations and Levels of Evidence for Pacemaker Treatment for Bradycardia in Patients With Heart Failure

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Pacing for patients with symptomatic heart failure due to bradycardia caused by poor sinus function, sinoatrial block, sinus arrest, or poor rate response during exercise, or caused by second-degree, advanced, or third-degree atrioventricular block (including patients with bradycardia caused by long-term necessary drug therapy)	I	C	A	VI
Pacing for patients with symptomatic heart failure due to bradycardic atrial fibrillation (including patients with bradycardia caused by long-term necessary drug therapy)	I	C	A	VI
Pacing for patients with symptomatic heart failure which has not been confirmed to be caused by bradycardia	IIa	C	B	VI

<60 bpm in atrial fibrillation is occurred, the dose of rate limiting medications should be reconsidered.16 In patients with atrial fibrillation and heart failure, β-blockers and other drugs are effective in the treatment of heart failure. Patients in whom continuation or dose escalation of β-blocker therapy for heart failure is necessary may be considered for pacemaker implantation. Patients with heart failure and bradycardia who are indicated for pacemaker should receive atrioventricular synchronization pacing unless permanent atrial fibrillation is present. Some patients with heart failure may have a wide QRS complex as a result of ventricular pacing for the treatment of bradycardia, and need biventricular cardiac pacing (See Section “2. Cardiac Resynchronization Therapy” in Chapter “VII. Nonpharmacologic Therapy”).

4. Coronary Artery Disease (Table 36)

4.1 Pathophysiology
In addition to hypertension and dilated cardiomyopathy, coronary artery disease is one of the most common conditions that underlies heart failure.347 The prevalence of coronary heart disease among patients with heart failure was 23% in the Chronic Heart Failure Analysis and Registry in the Tohoku District (CHART)-1 Study in which patients were registered from 2000 to 2004, but increased to 47% in the CHART-2 Study in which patients were registered from 2006 to 2010.348 The prevalence of coronary heart disease among patients with acute heart failure was 31% in the Acute Decompensated Heart Failure Syndromes (ATTEND) registry,349 and 32% in the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD).32 The prevalence of patients with ischemic heart failure with preserved LVEF is increasing. For example, in the CHART Studies, the prevalence of ischemic heart failure among patients with LVEF ≥50% was increased from 19% in the CHART-1 Study to 45% in the CHART-2 Study.31

In the CHART-1 Study, three-year mortality in patients with heart failure following myocardial infarction was 29%, which was higher than that in patients with non-ischemic heart failure (12%).350 In the ATTEND study, the mortality in patients with acute heart failure due to ischemic heart disease was similar to those in patients with acute heart failure due to other diseases among patients with LVEF ≥40%, while it was as high as in patients with acute heart failure due to valvular heart disease, both of which were higher that the mortality in those with acute heart failure due to other diseases among those with LVEF <40%.347 Three-year mortality in patients with ischemic heart disease with a NYHA class of II or greater was 29% in the CHART-1 Study, and 15% in the CHART-2 Study, showing a decrease in mortality over time in the CHART Studies.31

Myocardial ischemia impairs systolic and dilative functions of the heart, and myocardial injury due to myocardial infarction causes ventricular dysfunction. Myocardial ischemia and injury may cause fatal arrhythmias and compromise hemodynamics. Patients with coronary risk factors such as lifestyle-related diseases should be monitored carefully as they are susceptible to arteriosclerosis or cardiac dysfunction. Treatment of ischemic heart disease should aim at the management of 1) cardiac function, 2) myocardial ischemia, 3) arrhythmia, and 4) coronary risk factors.

4.2 Treatment
4.2.1 Acute Heart Failure
a. Heart Failure Associated With Acute Myocardial Infarction
In patients with acute myocardial infarction, an abrupt loss of cardiac pump function may lead to acute heart failure. Accordingly, patients with acute myocardial infarction should also receive oxygen therapy and vasodilators to treat acute heart failure as well (See Section “3. Treatment Strategies and Flowcharts” in Chapter “X. Acute Heart Failure”). Whenever necessary, hemodynamics monitoring via Swan-Ganz catheterization should be conducted and PCI coronary artery bypass grafting (CABG), thrombolyis or other appropriate reperfusion therapy should be conducted to treat myocardial ischemia. Additional treatment should be initiated in the acute phase to prevent left ventricular remodeling, and intra-aortic balloon pumping (IABP) or other circulatory assist devices should also be considered if necessary (See Section “2.2. Percutaneous Circulatory Support for Patients With Acute Heart Failure” in Chapter “XI. Surgical Treatment”). Moreover, angiotensin converting enzyme (ACE) inhibitors should be started in acute phase to prevent long-term cardiac remodeling,382 and β-blockers should be started immediately after hemodynamics is stabilized.383 Treatment of arrhythmias, and surgical treatment of mechanical complications and
ischemic mitral valve insufficiency are described in other sections (From Section “1. Atrial Fibrillation” to “3. Bradyarrhythmia” in Chapter “IX. Pathophysiology and Treatment of Comorbidities”, and “5.5. Treatment of Mechanical Complications Associated With Acute Myocardial Infarction” in Chapter “X. Acute Heart Failure”).

b. Acute Exacerbations of Ischemic Heart Failure

In patients with ischemic heart failure, progression of coronary artery lesions, coronary spasm, anemia due to gastrointestinal bleeding, tachycardia due to paroxysmal atrial fibrillation, and/or excessive daily activities may cause imbalance of oxygen supply and demand, and then myocardial (subendocardial) ischemia may occur, resulting in development of acute heart failure due to acute diastolic or systolic dysfunction. Patients with diabetes mellitus or hypertension who have cardiac hypertrophy are susceptible to subendocardial ischaemia, and may experience an abrupt onset of pulmonary edema due to acute diastolic dysfunction. Such patients should be carefully observed, and should undergo reperfusion therapy such as PCI and CABG whenever necessary. Patients with systolic dysfunction due to chronic myocardial ischemia (myocardial hibernation) should also be considered for PCI or CABG.

4.2.2 Chronic Heart Failure

Treatment of chronic ischemic heart failure is basically same as other types of heart failure, and mainly consists of assessment of cardiac function (cardiac protection) and myocardial ischemia, prevention of arrhythmic events, and management of coronary risk factors.

For cardiac protection in patients with ischemic heart failure and reduced LVEF, β-blockers and renin-angiotensin inhibitors (e.g., ACE inhibitors, ARBs, and mineralocorticoid receptor antagonists [MRAs]) are mainly used *(Table 36).* These drugs should be started at low doses to avoid worsening heart failure. Nitrates have not been demonstrated to improve long-term prognosis, but have been shown to improve symptoms of heart failure and hemodynamics and are the first-line treatment for...
angina pectoris. Nicorandil and diuretics should also be considered as needed.

Patients with angina symptoms or proven to have ischemia due to cardiac dysfunction should be considered for PCI or CABG. A cohort study in Japan have suggested that the CABG is superior to PCI in patients with heart failure associated with severe coronary artery disease. According to the recommendations in the Guidelines for Management of Comorbidities, concomitant mitral valve surgery, concomitant tricuspid valve repair is recommended.

For management of risk factors of coronary heart disease and details about exercise therapy, see Sections “6. Hyperuricemia/Goat” in Chapter “VII. Nonpharmacologic Therapy” and Section “9. Hyperuricemia/Goat” in Chapter “IX. Pathophysiology and Treatment of Comorbidities” and Section “4. Exercise Therapy” in Chapter “VII. Nonpharmacologic Therapy”. Regarding management of dyslipidemia and smoking that are not described in the present guidelines, refer to other relevant guidelines.

5. Valvular Heart Disease (Table 37)

Valvular replacement/repair in patients with heart failure associated with severe, structural mitral or aortic valve disease (excluding patients at significantly high risk for surgery)	I	B	B	III
Conducting standard heart failure treatment (e.g., drug therapy and CRT) to reduce mitral regurgitation in patients with heart failure and secondary (functional) mitral valve insufficiency	I	C	C1	IVb
Dobutamine-stress or exercise echocardiography to consider for aortic valve replacement in symptomatic patients with low-flow low-gradient aortic stenosis (aortic valve area <1.0 cm², aortic transvalvular pressure gradient <40 mmHg) and low LVEF	IIa	C	C1	IVb
TAVI in patients with heart failure due to severe aortic stenosis who are determined at high risk for surgery by heart team, and are considered to have a life expectancy of more than 1 year	I	B	B	II

Table 37. Recommendations and Levels of Evidence for the Treatment of Valvular Disease in Patients With Heart Failure

CRT, cardiac resynchronization therapy; LVEF, left ventricular ejection fraction; TAVI, transcatheter aortic valve implantation.

5.2 Tricuspid Valve Insufficiency

As a result of right ventricular overload due to left-sided heart failure or pulmonary hypertension, tricuspid valve insufficiency secondary to tricuspid annular enlargement and tricuspid valve tethering is often observed and is a factor of poor prognosis. Patients with secondary tricuspid valve insufficiency should first be treated to correct underlying condition causing heart failure. During surgery for left-sided valve surgery, concomitant tricuspid valve repair is recommended.

5.3 Aortic Valve Stenosis

When aortic stenosis develops in patients with left ventricular systolic dysfunction due to underlying cardiac condition, the severity of aortic stenosis should be examined carefully. Treatment strategies for patients with low-flow, low-gradient aortic stenosis and reduced LVEF should be based on changes in aortic valve area and aortic transvalvular pressure gradient before and after an increase of stroke volume during dobutamine stress echocardiography.

For details about transcatheter aortic valve implantation (TAVI) and transcatheter aortic valve replacement (TAVR), see Section “1. Surgical Procedures and TAVI” in Chapter “XI. Surgical Treatment”.

Patients with valvular disease and tricuspid valve insufficiency are recommended.
6. Hypertension

6.1 Pathophysiology

Hypertension is a major risk factor on heart disease independent of age and left ventricular dysfunction.172,372 Appropriate treatment for hypertension reduces the risk of the development of heart failure.150–152

6.2 Treatment

Patients with hypertension and cardiovascular disease are classified as high risk, and it is recommended to start antihypertensive treatment promptly, as well as lifestyle modifications (e.g., low-salt healthy diet, exercise, weight reduction in obesity patients, and reducing alcohol consumption).154 However, no clear evidence has been accumulated on treatment goals of blood pressure in patients with heart failure and hypertension, as the etiology and pathophysiology of heart failure are diverse. Although, there have been controversies about optimal blood pressure targets for this patient population,373,374 and it is difficult to establish common goals for diverse patients, target systolic blood pressure of 110 to 130 mmHg has been supported in the United States,375 and is the same in Japan.

6.2.1 Patients With HFrEF and Hypertension (Table 38)

ACE inhibitors,182,184,376 and \(\beta\)-blockers,193–195,377,378 have been demonstrated to improve the long-term prognosis of patients with heart failure and hypertension, and monotherapy or combination therapy of these drug classes are first-line treatment. Patients intolerable to ACE inhibitors may be treated with ARBs.168,187,188 Treatment with \(\beta\)-blockers should be started at low doses, and the dose should be titrated gradually based on tolerability. In patients who do not respond well to antihypertensive drugs or patients with heart failure associated with organ congestion, diuretics should be added, and MRAs added to standard therapy is expected to improve prognosis in patients with severe conditions.163,164,189 Among calcium channel blockers, long-acting dihydropyridines can be used safely without compromising the prognosis of patients with heart failure,379 but other types of calcium channel blockers with negative inotropic effects should be avoided.

6.2.2 Patients With HFpEF and Hypertension (Table 39)

As heart failure with preserved ejection fraction (HFpEF) is generally caused by both cardiovascular diseases (e.g., atrial fibrillation, hypertension, coronary artery diseases, and pulmonary hypertension) and non-cardiovascular diseases (e.g., diabetes, chronic kidney disease, anemia, and COPD), patients should be examined for these underlying conditions and should be treated accordingly.380,381 As hypertension is one of the most common underlying conditions of HFpEF,382 blood pressure control is considered essential. However, there is no sufficient evidence regarding optimal antihypertensive regimens or treatment targets for this patient population, and patients should be treated individually to control blood pressure.

6.2.3 Acute Heart Failure

Patients with acute heart failure except for those corresponding to the clinical scenario (CS) #3 are treated with vasodilators and diuretics according to their conditions.

| Table 38. Recommendations and Levels of Evidence for Drug Therapy for HFrEF in Patients With Hypertension |
|--|--|---------|---------|---------|
| Class of | Level of | Grade of | Level of |
| Recommendation | Evidence | Recommendation (MINDS) | Evidence (MINDS) |
| ACE inhibitors | I | A | A | I |
| ARBs (use in patients intolerable to ACE inhibitors) | I | A | A | I |
| \(\beta\)-blockers | I | A | A | I |
| MRAs | I | A | A | I |
| Diuretics | I | B | A | II |
| Calcium channel blockers* | IIa | B | B | II |

*Calcium channel blockers other than long-acting dihydropyridines should not be used as they have negative inotropic effects. ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker; MRA, mineralocorticoid receptor antagonist.

| Table 39. Recommendations and Levels of Evidence for Drug Therapy for HFpEF in Patients With Hypertension |
|--|--|---------|---------|---------|
| Class of | Level of | Grade of | Level of |
| Recommendation | Evidence | Recommendation (MINDS) | Evidence (MINDS) |
| Appropriate blood pressure management | I | B | B | II |
| Identification and treatment of underlying disease | I | C | B | VI |
in Patients with Diabetes Mellitus - Thrombolysis in Myocardial Infarction 53 (SAVOR-TIMI 53) trial, the incidence of hospitalizations for heart failure increased significantly in patients receiving saxagliptin. Among currently available SGLT2 inhibitors, empagliflozin and canagliflozin have been demonstrated to reduce the composite endpoint of major adverse cardiovascular events including cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke, and the number of hospitalizations for heart failure in patients with type 2 diabetes mellitus and high cardiovascular risk, and are expected to improve the cardiovascular prognosis of patients with type 2 diabetes mellitus and high cardiovascular risk regardless of the presence or absence of heart failure. However, as patients complicated with heart failure account for only 10 to 15% of patients enrolled in these large-scale clinical studies of SGLT2 inhibitors, further studies are necessary to clarify the beneficial effects of these drugs on heart failure. Accordingly, physicians should treat patients with diabetes mellitus and heart failure carefully considering pharmacological characteristics of antidiabetic agents and results of clinical trials while avoiding hypoglycemia.

8. CKD and Cardiorenal Syndrome

8.1 Pathophysiology

As patients with heart failure often have renal dysfunction, treatment strategies should be developed based on the patient’s estimated glomerular filtration rate (eGFR), a clinical indicator of renal function.

The present guidelines describe the benefits of drugs according to chronic kidney disease (CKD) stages that are based on eGFR. Patients with an eGFR of $<60\text{mL/min/1.73\,m}^2$ are classified into CKD stage 3 (eGFR: 30 to 59\,mL/min/1.73\,m2), stage 4 (15 to 29\,mL/min/1.73\,m2) and stage 5 ($<15\text{mL/min/1.73\,m}^2$).

8.2 Treatment (Table 41)

Many large-scale clinical studies in acute or chronic heart diseases excluded patients with renal dysfunction. In
general, patients with CKD stage 3 can be treated almost similarly to patients without CKD. However, little evidence has been obtained in terms of treatment of heart failure in patients with CKD stage 4 or 5, and such patients are treated at the discretion of the attending physicians and/or consulting specialists.

8.2.1 β-Blockers

The efficacy of β-blockers in the treatment of heart failure has been established. A meta-analysis of the data from the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) trial\(^\text{394}\) and Carvedilol Post-infarct Survival Controlled Evaluation (CAPRICORN) trial\(^\text{159}\) that assessed the efficacy of carvedilol in patients with heart failure revealed that carvedilol significantly improved the prognosis of patients with CKD stage 3 with an eGFR of 45 to 60 mL/min/1.73 m\(^2\).\(^\text{395}\) In a sub-analysis of the Cardiac Insufficiency Bisoprolol Study II (CIBIS II) trial that assessed the efficacy of bisoprolol, the drug improved the prognosis of patients with an eGFR of <45 mL/min/1.73 m\(^2\) or 45 to 60 mL/min/1.73 m\(^2\).\(^\text{396}\) In a cohort study investigating the efficacy of β-blockers in patients with heart failure who are undergoing hemodialysis, oral β-blockers significantly improved the prognosis of this patient population.\(^\text{397}\)

8.2.2 ACE Inhibitors and ARBs

The efficacy of angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) in patients with heart failure has been established. In the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) trial\(^\text{182}\) in which patients with a serum creatinine level of ≥3.4 mg/dL were excluded, participants had a mean serum creatinine level of 1.4 mg/dL and an eGFR of about 45 mL/min/1.73 m\(^2\), which indicate that CKD was prevalent among the participants. In a sub-analysis that dichotomized patients according to mean serum creatinine level, the efficacy of enalapril was comparable between patients with higher and lower serum creatinine levels. In a study in patients with heart failure with a serum creatinine level of ≥2.4 mg/dL or a creatinine clearance of <30 mL/min (CKD stage 4 or 5), renin-angiotensin (RA) system inhibitors significantly improved the prognosis of these patients.\(^\text{398}\) It has also been reported that addition of oral RAS inhibitors improved the prognosis of hemodialysis patients receiving oral β-blockers as compared with no addition of RAS inhibitors.\(^\text{397}\) As ACE inhibitors and ARBs may rarely reduce renal function or cause hypokalemia in patients with CKD stage 4 or 5 and elderly patients with CKD, these drugs should be started at low doses.\(^\text{399}\)

8.2.3 MRAs

The Randomized Aldactone Evaluation Study (RALES) trial\(^\text{189}\) and the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS-HF) trial\(^\text{163}\) have reported the benefits of mineralocorticoid receptor antagonists (MRAs) in patients with heart failure, but patients with a serum creatinine level of ≥2.5 mg/dL and patients with an eGFR of <30 mL/min/1.73 m\(^2\) were excluded respectively and almost no evidence is available on the benefits of MRAs in patients with CKD stage 4 or 5. However, in patients with CKD stage 3 (eGFR <60 mL/min/1.73 m\(^2\)), MRAs improved prognosis in a similar degree to patients with an eGFR ≥60 mL/min/1.73 m\(^2\).\(^\text{400,401}\) MRAs should be used carefully in patients receiving ACE inhibitors or ARBs because of concern about hyperkalemia or renal dysfunction.

Table 4.1. Recommendations and Levels of Evidence for Drug Therapy for Patients With Chronic Kidney Disease (CKD) and Heart Failure

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
CKD Stage 3 (eGFR 30 to 59 mL/min/1.73 m\(^2\))			
β-blockers	I	A	A
ACE inhibitors	I	A	A
ARBs	I	B	A
MRAs	I	A	A
Loop diuretics	I	C	C1
CKD Stage 4 to 5 (eGFR <30 mL/min/1.73 m\(^2\))			
β-blockers	IIa	B	B
ACE inhibitors	IIb	B	C1
ARBs	IIb	C	C1
MRAs	IIb	C	C2
Loop diuretics	IIa	C	C1

ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker; CKD, chronic kidney disease; MRA, mineralocorticoid receptor antagonist.
8.2.4 Diuretics
Diuretics are often prescribed to patients with heart failure, and loop diuretics are essential for treatment of patients with congestive heart failure. However, as overuse of loop diuretics may reduce renal function and worsen the prognosis of patients, loop diuretics should be limited to the minimum required for treatment.

8.2.5 Other Drugs
No evidence is available on the efficacy of digitalis in patients with a serum creatinine level of ≥3.0 mg/dL. When digitalis is administered to patients with renal dysfunction, they should be carefully observed for signs of digitalis intoxication. In the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) trial, aliskiren, a direct renin inhibitor, reduced renal function.

8.2.6 Drugs Mainly Used for the Treatment of Acute Heart Failure
In Japan, carperitide is often used for the treatment of acute heart failure, but no conclusion has been reached on whether carperitide has a renal protective effect. Tolvaptan, a vasopressin V2 receptor antagonist, has been reported to reduce the dose of furosemide in patients with CKD stage 3/4 with an eGFR of 15 to 60 mL/min/1.73 m² in a small study. Hemofiltration should be considered for patients with acute heart failure in whom drug therapy do not lead sufficient diuresis, or do not improve hemodynamics or symptoms.

9. Hyperuricemia/Gout

9.1 Pathophysiology
Hyperuricemia is a common comorbid condition in patients with heart failure. Hyperuricemia is defined as a serum uric acid level of >7.0 mg/dL regardless of gender or age. Patients with heart failure have serum uric acid levels higher than healthy individuals in general. It has been suggested that hyperuricemia in heart failure may be explained by excessive production and reduced excretion of uric acid. Xanthine oxidase (XO), the enzyme involved in the final process of uric acid production, is present in a small amount in the myocardium. In patients with myocardial ischemia or heart failure, XO activity is elevated, and uric acid production is enhanced, while uric acid excretion is reduced by decrease in renal blood flow and glomerular filtration rate. Moreover, furosemide and other diuretics that are commonly used for the treatment of heart failure may suppress the uric acid excretion and elevate serum uric acid level even further.

Although a relationship between serum uric acid level and prognosis has been suggested in patients with heart failure and the pathophysiological significance of uric acid in heart failure has gained attention, the details have not been revealed yet. Anker et al conducted a prospective study to investigate a possible relationship between uric acid level and life expectancy in 112 patients with heart failure and concluded that a serum uric acid level of ≥9.5 mg/dL may predict poor prognosis. In a subsequent interventional trial of allopurinol in patients with heart failure, the treatment reduced uric acid levels but did not result in an improvement of cardiovascular outcomes.

Studies on novel drugs that decrease uric acid production such as febuxostat and topiroxostat have been conducted to investigate their effects in patients with heart failure, but no conclusive evidence has been found on whether high uric acid levels and the use of these drugs to reduce uric acid levels may affect the pathophysiology and prognosis of heart failure. (Table 42).

9.2 Treatment
Many patients with heart failure also have underlying diseases such as hypertension, ischemic heart disease, diabetes mellitus, and chronic kidney disease. In Japan, an intervention to control hyperuricemia, consisting of lifestyle modification followed by pharmacotherapy if needed, is recommended for patients with gouty arthritis or gouty tophus with a serum uric acid level of >7.0 mg/dL and patients with underlying disease such as renal dysfunction, hypertension, ischemic heart disease and diabetes mellitus with a serum uric acid level of ≥8.0 mg/dL. Although no evidence has been found regarding the optimal goal of serum uric acid level in patients with chronic heart disease, it would be appropriate to set a goal of ≤7.0 mg/dL considering the above findings.

10. COPD and Asthma (Table 43)

10.1 Pathophysiology
In patients with bronchial asthma, chest X-ray findings are usually normal, and severe symptoms develop during asthma attack.

Chronic obstructive pulmonary disease (COPD) is observed in about 20 to 30% of patients with left-sided heart failure, and is an independent risk factor for the development of left-sided heart failure and cardiovascular death associated with heart failure. BNP or NT-proBNP is a useful tool to differentiate heart failure from exacerbation of COPD in patients with respiratory failure.
10.2 Treatment

10.2.1 Treatment of Heart Failure in Patients With Heart Failure and COPD

Treatment with ACE inhibitors, ARBs, β-blockers and/or diuretics are also recommended for patients with heart failure and COPD.β19,β21 β-blockers can be used safely in most patients with heart failure and COPD.β19,β21 β15,β17 β-blocker therapy should be initiated using β1 selective blockers at low doses, and the dose should be titrated upward slowly. β-blockers should be used carefully in patients with COPD and uncontrolled asthma.β18

10.2.2 Treatment of Heart Failure in Patients With Bronchial Asthma

Treatment with ACE inhibitors, ARBs, and/or diuretics are also recommended for patients with heart failure and bronchial asthma.β49,β41 β-blocker therapy should be initiated using β1 selective blockers at low doses, and the dose should be titrated upward slowly. β1 blockers should be used carefully in patients with COPD and uncontrolled asthma.β18

10.2.3 Treatment of COPD in Patients With Heart Failure

Monotherapy or combination therapy using long-acting β2 agonists and long-acting anticholinergics for the treatment of COPD should be continued in combination with treatment for heart failure.β40

10.2.4 Treatment of Bronchial Asthma in Patients With Heart Failure

Inhaled corticosteroids for the treatment of bronchial asthma are safe and recommended for patients with asthma and heart failure.β49

11. Anemia (Table 44)

Patients with heart failure often have anemia, defined as hemoglobin levels of <13.0 g/dL in men and <12.0 g/dL in women by World Health Organization (WHO). Anemia is an independent prognostic factor in heart failure.β428,β421 Anemia in patients with heart failure is treated with red blood cell transfusion, iron supplementation, and/or erythropoiesis stimulating agents (ESAs). Table 44 lists recommendations and levels of evidence for the treatment of anemia in patients with heart failure.

12. Sleep-Disordered Breathing

The most common pathology of sleep-disordered breathing (SDB) is sleep apnea, which is classified into obstructive sleep apnea (OSA) caused by the obstruction of the upper airway and central sleep apnea (CSA) caused by the loss of respiratory drive. Patients with CSA and heart failure often have Cheyne-Stokes respiration (CSR), which is referred to as central sleep apnea with Cheyne-Stokes respiration (CSR-CSA).

Table 43. Recommendations and Levels of Evidence for Examinations and Treatment for Patients With Heart Failure and COPD or Bronchial Asthma

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Examinations				
Measurement of BNP levels for the diagnosis of HFrEF in patients who also have COPD or bronchial asthma	I	A	A	I
Treatments				
Use of ACE inhibitors or ARBs for the treatment of HFrEF in patients who also have COPD or bronchial asthma	I	A	A	I
Use of β-blockers for the treatment of HFrEF in patients who also have COPD	I	A	A	I
Careful administration of β1 selective blockers for the treatment of HFrEF in patients who also have bronchial asthma	IIa	B	B	II
Continuing treatment of COPD or bronchial asthma during treatment of HFrEF	IIa	B	B	III

ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker; COPD, chronic obstructive pulmonary disease; HFrEF, heart failure with reduced ejection fraction.

Table 44. Recommendations and Levels of Evidence for the Treatment of Anemia in Patients With Heart Failure

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Red blood cell transfusion in patients in whom anemia worsens heart failure and blood transfusion is expected to improve the condition	IIb	C	C1	V
Oral iron supplementation	III	B	D	II
Erythropoiesis stimulating agent	III	B	D	II

Table 44. Recommendations and Levels of Evidence for the Treatment of Anemia in Patients With Heart Failure

Patients with heart failure often have anemia, defined as hemoglobin levels of <13.0 g/dL in men and <12.0 g/dL in women by World Health Organization (WHO). Anemia is an independent prognostic factor in heart failure. Patients with heart failure are treated with red blood cell transfusion, iron supplementation, and/or erythropoiesis stimulating agents (ESAs). Table 44 lists recommendations and levels of evidence for the treatment of anemia in patients with heart failure.
Table 45. Recommendations and Levels of Evidence for the Treatment of OSA in Patients With Heart Failure

Guideline-based CPAP treatment in patients with symptomatic OSA	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
CPAP treatment in patients with HFrEF and moderate* or severe OSA to improve left ventricular function	IIa	A	A	I
CPAP treatment in patients with heart failure and moderate* or severe OSA to improve prognosis	IIb	C	C2	III

*Moderate OSA is commonly defined as AHI ≥15, but the National Health Insurance in Japan covers OSA treatment for patients with AHI ≥20. CPAP, continuous positive airway pressure; OSA, obstructive sleep apnea.

12.1 Pathophysiology

12.1.1 Prevalence of SDB in Patients With Heart Failure

The prevalence of OSA is high among patients with cardiovascular diseases including heart failure. In addition to OSA, CSR-CSA is frequently found in patients with heart failure (about 50%). A considerable percentage of patients with heart failure have both OSA and CSR-CSA.

12.1.2 Effects of SDB on the Onset and Progression of Heart Failure

OSA increases the risk of the onset or exacerbation of cardiovascular diseases through different mechanisms such as hypoxemia associated with apnea, sympathetic hyperactivity, increased left ventricular afterload due to intrathoracic negative pressure, endothelial dysfunction, oxidative stress, inflammation, hypercoagulability, obesity, and insulin resistance and is involved in the development of heart failure. CSR-CSA is caused by the occurrence of low arterial partial pressure of carbon dioxide (PaCO₂) due to pulmonary congestion and excessive response to low PaCO₂ as well as prolonged circulation time. Nocturnal rostral leg fluid displacement worsen OSA by causing upper airway edema that narrows the airways and CSA by pulmonary congestion.

12.1.3 Effects of SDB on the Prognosis of Patients With Heart Failure

Moderate or severe OSA is associated with a poor prognosis in patients with heart failure, and the presence of even mild or severer CSR-CSA is a prognostic factor in patients with heart failure.

12.2 Treatment

12.2.1 Screening for SDB in Patients With Heart Failure

As SDB is often asymptomatic in patients with heart failure, screening for SDB is recommended for patients with heart failure who do not respond well to standard treatment to identify underlying conditions. See the Guidelines for Diagnosis and Treatment of Sleep Disordered Breathing in Cardiovascular Disease (JCS 2010) for detail.

12.2.2 Treatment of Heart Failure

Modifications of lifestyle as risk factors or worsening factors of OSA should be tried first as they are beneficial for the treatment of heart failure. As CSR-CSA is caused by heart failure, optimization of treatment for heart failure is most important.

12.2.3 Positive Pressure Ventilation for the Treatment of SDB in Patients With Heart Failure

a. Positive Pressure Ventilation for OSA (Table 45)

In randomized controlled trials and meta-analyses of continuous positive airway pressure (CPAP) in patients with OSA and reduced LVEF, CPAP improved LVEF. Observational studies have reported that positive pressure ventilation improves the prognosis of patients with heart failure, and no large-scale clinical studies have been conducted to date. At present, OSA should be treated according to the guidelines for the treatment of SDB even in patients with heart failure. CPAP should be considered in patients with heart failure with reduced LVEF and moderate or severe OSA to improve LVEF.

b. Positive Pressure Ventilation for Patients With Heart Failure and CSR-CSA (Table 46)

Positive pressure ventilation is generally considered for patients who still have CSR-CSA even after optimal treatment for heart failure. In the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure (CANPAP) study that investigated the effects of CPAP on the prognosis of patients with CSR-CSA and HFrEF (LVEF ≤45%), the severity of CSR-CSA decreased by about 50% and LVEF increased in patients receiving CPAP, but no improvement in prognosis was observed. However, patients in whom CPAP suppressed CSA at 3 months showed better prognosis than in patients in the control group.

Adaptive servo-ventilation (ASV) has been reported to be more effective in suppression of CSR-CSA, and randomized controlled trials and meta-analyses have indicated that ASV improves LVEF in patients with CSR-CSA and HFrEF (LVEF ≤45%) and decreases BNP. A prospective observational study has reported that ASV may improve the prognosis of patients with heart failure and CSR-CSA, while in the Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure (SERVE-HF) trial, a randomized clinical trial of ASV in patients with heart failure with LVEF ≤45% and predominant CSA, ASV did not improve long-term prognosis, and did significantly increased all-cause deaths and cardiovascular deaths. Accordingly, the 2016 ESC guidelines and the 2017 ACC/AHA/HFSA guidelines described that ASV is not recommended for patients with chronic heart disease with LVEF ≤45% and predominant CSA. However, in Japan, the use of ASV in this patient population is covered with the National Health Insurance even with certain conditions.
limitations, and the Japanese Circulation Society and the Japanese Heart Failure Society have published a statement (second report) for appropriate use of ASV with a consideration of the requirement for NHI coverage (Supplement 1). 271

12.2.4 Oxygen Therapy (Table 47)

Oxygen therapy increases arterial partial pressure of oxygen (PaO2), which reduces central carbon dioxide (CO2) sensitivity and hyperventilation and slightly increases PaCO2 and thereby suppresses CSR-CSA. Short-term studies have reported that nocturnal oxygen therapy is effective in suppressing CSR-CSA, reducing sympathetic nerve activity, improving exercise capacity, and reducing BNP levels in patients with chronic heart failure. 48, 49 In a multicenter clinical study of oxygen therapy in patients with CSR-CSA and HFrEF (LVEF ≤45%) in Japan, three-month oxygen therapy reduced the severity of CSR-CSA and improved the Specific Activity Scale score, and the efficacy of treatment was maintained in patients who continued oxygen therapy for one year. 450, 451 In Japan, oxygen therapy for patients with NYHA class III or IV chronic heart failure and CSR with an apnea hypopnea index (AHI) of ≥20 is covered with the National Health Insurance.

X. Acute Heart Failure

1. Definition and Classification

1.1 Definition

Acute heart failure is defined as the rapid onset or exacerbation of signs and symptoms caused by acute disturbance of pump function that leads to insufficient or inadequate blood filling and poor blood delivery to peripheral tissues due to structural and/or functional abnormalities of the heart.
1.2. Classification

1.2.1 Clinical Classification of Acute Heart Failure in Initial Management: CS Classification

The clinical scenario (CS) classification is a tool to classify patients with acute heart failure according to pathophysiological condition with reference on systolic blood pressure, and provide appropriate initial management for each type of patients.\(^{452}\)

1.2.2 Pathophysiological Classification of Acute Heart Failure

1) Acute pulmonary edema
2) Systemic fluid retention (congestion)
3) Low cardiac output/hypoperfusion (including cardiogenic shock)

1.2.3 Classification by History of Hospitalization for Heart Failure

1) De novo heart failure (patients with no history of hospitalization for heart failure)
2) Rehospitalization for heart failure (patients with history of hospitalization for heart failure)

1.2.4 Killip Classification (Table 48)\(^{453}\)

Killip classification is a tool to classify patients after acute myocardial infarction according to their objective findings. It is also important to identify factors predicting prognosis of heart failure (Table 49).

2. Diagnosis

2.1 Diagnosis (Table 50)

The diagnosis of acute heart failure is based on signs and symptoms and the levels of natriuretic peptides (BNP or NT-proBNP). Biomarkers such as BNP and NT-proBNP are important indicators for diagnosis, treatment, and prognosis of patients with acute heart failure. Acute heart failure is unlikely in patients with BNP of \(\leq 100\) pg/mL or NT-proBNP of \(\leq 400\) pg/mL.\(^{46}\)

2.2 Signs and Symptoms

2.2.1 Congestion

Almost all patients with acute heart failure are hospitalized with congestion such as pulmonary edema and systemic fluid retention. Symptoms of congestion develop when intracardiac pressure abruptly increases from the baseline level.

2.2.2 Low Cardiac Output/Hypoperfusion

Symptoms of low cardiac output include fatigue, feeling of weakness, oliguria, cyanosis, cold extremities, and/or anorexia.

Table 48. Killip Classification

Class	Description
I	No clinical signs of heart failure
II	Mild to moderate heart failure. Rales up to 50% of lung fields or S3 heart sound
III	Severe heart failure. Frank pulmonary edema with rales more than 50% of lung fields
IV	Cardiogenic shock. Signs include hypotension (systolic blood pressure <90 mmHg), oliguria, cyanosis, cold and wet skin, and loss of consciousness

(Source: Prepared based on Killip T, et al. 1967\(^{453}\))

Table 49. Precipitating Factors of Heart Failure

- Acute coronary syndrome
- Tachyarrhythmia (e.g., atrial fibrillation, atrial flutter, and ventricular tachycardia)
- Bradyarrhythmia (e.g., complete atrioventricular block, and sick sinus syndrome)
- Infections (e.g., pneumonia, infective endocarditis, and sepsis)
- Poor adherence (e.g., insufficient salt/water restriction and noncompliance)
- Acute pulmonary thromboembolism
- Acute exacerbation of chronic obstructive pulmonary disease
- Drugs (e.g., nonsteroidal anti-inflammatory drugs [NSAIDs], negative inotropes, and cancer chemotherapy)
- Excessive stress or overwork
- Excessive blood pressure elevation
- Endocrine or metabolism disorders (e.g., hyperthyroidism/hypothyroidism, adrenal dysfunction, and peripartum cardiomyopathy)
- Mechanical complications (e.g., cardiac rupture, acute mitral valve insufficiency, chest trauma, and acute aortic dissection)

Table 50. Recommendations and Levels of Evidence for the Diagnosis of Acute Heart Failure

Recommendation	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Measurement of BNP or NT-proBNP levels at a clinic visit for differential diagnosis	I	A	A	I
Evaluation of ECG, chest X-ray, troponin, blood urea nitrogen, creatinine, electrolytes, blood glucose, blood cell count, liver function test, and thyroid function test at a clinic visit	I	C	B	VI
Evaluation of cardiac function using echocardiography	I	C	B	VI
Evaluation of pulmonary edema and pleural fluid using lung ultrasound	IIA	B	B	III

BNP, brain (B-type) natriuretic peptide; ECG, electrocardiogram; NT-proBNP, N-terminal pro-brain (B-type) natriuretic peptide.
3. Treatment Strategies and Flowcharts

During initial management including diagnosis of acute heart failure, patients should be evaluated carefully to clarify pathological characteristics and communicate the findings with healthcare professionals involved in acute phase treatment and ensure the earliest possible intervention. Clinical evaluation should be repeated whenever necessary to facilitate early improvement.

3.1 Initial Management

Table 51 lists the purpose of initial management for patients arriving at hospital. Arterial blood gas analysis should be performed whenever necessary, and appropriate oxygen therapy should be initiated promptly (Table 52).

Monitoring of vital signs, hemodynamics and respiratory function should be initiated immediately after hospitalization to examine whether peripheral circulation and organ perfusion are maintained (Figure 11). Oxygen saturation, blood pressure, body temperature, respiratory rate, and ECG must be monitored. Urine volume should be monitored whenever possible. In initial management, presence of cardiogenic shock and respiratory failure should be examined and treated appropriately. It is important to rule out specific conditions such as acute coronary syndrome (ACS) and acute thromboembolism. Table 53 lists patients indicated for CCU/ICU care.

Management strategies for the specific conditions are as follows:

1) Myocarditis: With the possibility of fulminant myocarditis in mind, patients should be monitored with ECG and echocardiography. Even in fulminant cases, prompt treatment may help improve the prognosis for many patients. Mechanical circulatory support including ventricular assist devices should be used when necessary. See the Guidelines for Diagnosis and Treatment of Myocarditis (JCS 2009) for detail.

2) Right-sided heart failure: It is important to identify the cause of right-sided heart failure, and select appropriate treatment strategies accordingly. Patients diagnosed as having severe pulmonary arterial hypertension should be treated mainly with intravenous prostacyclin analogs, and the introduction or dose-escalation of the remaining two types of anti-pulmonary hypertension drugs should be considered. Other drugs such as dobutamine should be used whenever necessary to maintain or improve cardiac output. Right-sided heart failure due to constrictive pericarditis or other heart diseases should be differentiated from that due to pulmonary arterial hypertension.

3) Acute Coronary syndrome: Acute heart failure due to acute coronary syndrome should be diagnosed and treated according to the guidelines for the management of patients with ST-elevation acute myocardial infarction (JCS 2013) and the Guidelines for Management of Acute Coronary Syndrome without Persistent ST Segment Elevation (JCS 2012).

4) Hypertensive emergency: Vasodilators should be administered intravenously to reduce blood pressure promptly. Diuretics should be added to patients with systemic fluid retention.

5) Arrhythmias: Patients with acute heart failure due to ventricular tachycardia and other types of tachyarrhythmias should be treated with intravenous amiodarone or direct current defibrillation. Patients with acute heart failure may need specific anti-arrhythmic treatment with intravenous amiodarone, or direct current defibrillation. Patients with acute heart failure may need specific anti-arrhythmic treatment with intravenous amiodarone, or direct current defibrillation.

Table 51. Purpose of Initial Management for Patients With Acute Heart Failure

Recommendation	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
1. Rescue and stabilize vital signs	IIa	C	B	IVb
2. Improve hemodynamics and maintain oxygenation				
3. Relieve dyspnea and other signs and symptoms of congestion				
4. Diagnose acute heart failure and rule out acute coronary syndrome or pulmonary thromboembolism				
5. Prevent the progression of cardiac disorder and other organ disorders				
6. Shorten the duration of ICU/CCU treatment through early intervention to achieve early improvement				

CCU, coronary care unit; ICU, intensive care unit.

Table 52. Recommendations and Levels of Evidence for Oxygen Therapy and Respiratory Management in Patients With Acute Heart Failure

Recommendation	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Measurement of pH, CO₂, and lactic acid levels in venous blood in patients who also have pulmonary edema or COPD. Measurement of pH, CO₂, and lactic acid levels in arterial blood in patients with cardiogenic shock	IIa	C	B	IVb
Oxygen therapy for patients with SpO₂ <90% or PaO₂ <60 mmHg to treat hypoxemia	I	C	B	VI
Prompt introduction of noninvasive positive pressure ventilation (NPPV) in patients with dyspnea (respiratory rate >25 breaths per minute, SpO₂ <90%) to alleviate difficult breathing and avoid tracheal intubation	I	A	A	I
Tracheal intubation for patients who cannot control the following conditions despite above-described treatment: • Hypoxemia (PaO₂ <80 mmHg) • CO₂ retention (PaCO₂ >50 mmHg) • Respiratory acidosis (pH <7.35)	I	C	B	VI

COPD, chronic obstructive pulmonary disease; PaCO₂, arterial partial pressure of carbon dioxide; PaO₂, arterial partial pressure of oxygen; SpO₂, oxygen saturation.
failure due to severe bradycardia should be treated with external pacing.

6) **Acute Mechanical causes**: Acute mechanical causes include free wall rupture, ventricular septal perforation, or papillary muscle rupture associated with ACS, PCI complications such as coronary artery obstruction or perforation, acute aortic dissection, infective endocarditis, malfunctioning mechanical valves, and chest injuries. Echocardiography is essential for the diagnosis of these complications and emergency surgery is often needed.
7) **Acute Pulmonary thromboembolism**: Acute pulmonary thromboembolism should be diagnosed and treated according to the Guidelines for Diagnosis, Treatment and Prevention of Pulmonary Thromboembolism and Deep Vein Thrombosis (JCS 2009).458

8) **High output heart failure**: High output heart failure may be caused by sepsis, thyrotoxicosis, anemia, cardiac shunts, beriberi heart, or Paget’s disease. Pathological assessment should be performed, and causative disease should be diagnosed and treated promptly.

3.2 Basic Principle for Acute Phase Treatment

Table 54, Figure 12452,459

Patients who received initial management in the ICU/CCU should be reassessed for changes in pathological conditions including symptoms of heart failure and body weight, and their treatments should be modified whenever necessary.

3.3 Pathological Conditions and Treatment Strategies in Acute Heart Failure

Figure 12452,459

Although there are various diseases that can cause acute heart failure, the conditions of acute heart failure may be generally classified into three categories: acute cardiogenic pulmonary edema, systemic fluid retention, and hypoperfusion due to low cardiac output.

3.3.1 Acute Cardiogenic Pulmonary Edema

Acute cardiogenic pulmonary edema is a CS 1 condition. Patients often have orthopnea and an oxygen saturation (SpO2) of <90%. Noninvasive positive pressure ventilation (NPPV) is effective in alleviating symptoms, increasing arterial blood oxygenation, and improving hemodynamics. Before intravenous access is established, NPPV, sublingual nitrates, or nitrate spray should be used to treat dyspnea and improve oxygenation promptly. If pulmonary edema persists, vasodilators should be infused intravenously while avoiding an abrupt lowering in blood pressure. Physicians should keep in mind that about 50% of patients with CS 1 have low LVEF,460 and are at risk of low cardiac output during treatment.

3.3.2 Systemic Fluid Retention

Systemic fluid retention is a CS 2 condition. Patients have excessive systemic fluid overload with peripheral edema. Their treatment should be mainly performed by diuretics.

3.3.3 Low Cardiac Output/Hypoperfusion

Low cardiac output or hypoperfusion is a CS 3 condition. The main symptoms are cold extremities, general fatigue, anorexia and reduced physical activity, but some patients may not complain of severe dyspnea or edema and thus treatment should be initiated carefully to avoid abrupt change in hemodynamics. Patients receiving β-blockers should continue treatment unless they present with shock. The use of phosphodiesterase (PDE) III inhibitors461 and dobutamine should be considered for such patients as needed.
3.3.4 Cardiogenic Shock (Table 55)
Cardiogenic shock is defined as a systolic blood pressure of <90 mmHg or a mean arterial blood pressure of ~65 mmHg with signs of tissue hypoperfusion in the absence of decrease in circulatory plasma volume or lack of preload due to bleeding or dehydration. In addition to physical findings, an increase in blood lactate levels (>2 mmol/L, 18 mg/dL) suggests hypoperfusion. All patients with cardiogenic shock must undergo emergency 12-lead ECG and echocardiography to identify the causative condition and treat it accordingly. Rehydration should be attempted in patients without fluid retention. Dobutamine is a first-line drug for this patient population. Addition of PDE III inhibitors can be considered for patients with biventricular cardiac failure. Mechanical circulatory support should be considered in patients who do not respond well to these drugs. The prognosis of patients often depends on the cause and conditions of cardiogenic shock rather than the treatment itself.

3.4 Management During Transition Period From Acute Heart Failure to Chronic Phase
In patients transferred from the CCU/ICU to the general ward with stable condition, treatment for the causative conditions should be continued.

Table 56 summarizes the goal of in-hospital treatment for heart failure during transition from acute heart failure to chronic phase. Management to avoid worsening heart failure is important, and patients should be assessed accurately for symptomatic improvement in orthopnea, jugular venous distention, coarse crackles in the lung fields, peripheral edema, and general fatigue at discharge.

3.5 From Discharge to Ambulatory Care
As rehospitalization due to worsening heart failure often occurs during early period after discharge from hospital, early clinic visit should be scheduled after discharge whenever the patient’s conditions permit. It is desirable to continue multidisciplinary heart failure team care after discharge.

Treatment goals after discharge are as follows:
1) To prevent worsening symptoms and decline in QOL, and improve prognosis.
2) To prevent rehospitalization early phase after discharge.
3) To develop a comprehensive clinical path to help the hospital and clinics collaborate to provide lifestyle modification intervention for each patient.
4) To try increasing the doses of standard treatments such as β-blockers to target levels, even after hospital discharge.
5) To consider for the indication of device therapy, whenever necessary.

4. Pharmacological Therapy
Tables 57 and 58 list the indications and recommended dosage regimens of drugs used for the treatment of acute heart failure in Japan.

4.1 Sedation
4.1.1 Morphine Hydrochloride
Through its central actions, morphine diminishes excessive sympathetic tone and thereby decreases myocardial oxygen demand. It reduces afterload by dilating arterioles, and
improves pulmonary congestion by dilating veins and thereby reducing venous return. Morphine should be administered carefully in patients with hypotension, bradycardia or high-grade atrioventricular block. In patients with intracerebral hemorrhage, decreased consciousness, bronchial asthma, or COPD, morphine should generally be avoided. Based on the reported effects of morphine on prognosis, morphine should not be used as a routine treatment.

4.2 Diuretics

4.2.1 Loop Diuretics

a. Furosemide

Loop diuretics alleviate symptoms of heart failure such as pulmonary congestion and edema, and decreases left ventricular end-diastolic pressure by reducing preload. Furosemide has a rapid onset of action in patients with acute heart failure. Western guidelines recommend diuretics for patients with symptomatic left ventricular systolic heart failure. Findings from an observational study in Japan have indicated the importance of early treatment in patients without fluid retention.

Patients with severe heart failure and renal dysfunction should receive diuretics at higher doses. A study has suggested that patients in whom adequate diuresis was not obtained with a single bolus dose of furosemide may respond well to continuous intravenous infusion of the drug.

The dose of loop diuretics should be limited to minimum necessary. The method of administration, i.e., bolus injection vs. continuous infusion, should be selected based on the individual patient’s condition. The dose should be adjusted based on LVEF or other pathological features.

Loop diuretics are less effective in patients with hypotension (systolic blood pressure: <90 mmHg), hyponatremia, hypoalbuminemia, or acidosis. Patients who do not respond well to loop diuretics may respond to diuretics which have different site of action. However, non-loop diuretics should be used carefully as they may cause electrolyte imbalance and an increase in blood urea nitrogen more frequently than loop diuretics.

4.2.2 Vasopressin V2 Receptor Antagonists (AVP Antagonists)

Tolvaptan is an oral drug that inhibits arginine vasopressin (AVP) type 2 receptors. In Japan, it is indicated for patients with heart failure who are resistant to other diuretics. AVP antagonists suppress hyponatremia and are beneficial in the treatment of patients with intractable heart failure, especially those with heart failure and hyponatremia. Although AVP antagonists are considered effective in fluid management in patients with diuretic-resistant heart failure and severe congestion, the dose should be limited to the minimum necessary. Patients should be observed carefully for adverse reactions such as thirst and hyponatremia.

Table 55. Recommendations and Levels of Evidence for the Treatment of Patients With Cardiogenic Shock
Class of Recommendation

Transfer to ICU/CCU where mechanical circulatory support is available
Continuous monitoring of ECG and arterial blood pressure
Rapid intravenous infusion of physiological saline or Ringer solution (≥200 mL over 15 to 30 min) in patients without fluid retention
Treatment with inotropic drugs (dobutamine) to increase cardiac output
Treatment of vasodilators (norepinephrine) to maintain systolic blood pressure in patients with persistent peripheral hypoperfusion
Routine use of IABP
Short-term use of mechanical circulatory support considering the age, higher brain function, complications and social factors

See the Guidelines for the Management of Patients with ST-Elevation Acute Myocardial Infarction (JCS 2013) and the Guidelines for Management of Acute Coronary Syndrome without Persistent ST Segment Elevation (JCS 2012) for management of ACS.

ACS, acute coronary syndrome; CCU, coronary care unit; IABP, intra-aortic balloon pump; ICU, intensive care unit.
Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Diuretics				
Loop diuretics				
Intravenous and oral administration to alleviate fluid retention in patients with acute heart failure	I	C	B	II
Continuous intravenous infusion to patients not responding to bolus injections	IIa	B	B	IVb
Vasopressin V2 receptor antagonists (tolvaptan)				
Use for the treatment of fluid retention in patients not responding well to other diuretics including loop diuretics (Excluding patients with hyponatremia)	IIa	A	B	II
Use for the treatment of fluid retention in patients with hyponatremia	IIa	C	C1	II
MRAs				
Use in combination with loop diuretics in patients in whom loop diuretics become less effective	IIb	C	C1	III
Use in patients with hypokalemia and normal renal function	IIa	B	B	II
Use in patients with renal dysfunction and hyperkalemia	III	C	D	VI
Thiazide diuretics				
Use in combination with furosemide in patients in whom furosemide becomes less effective	IIb	C	C1	III
Vasodilators				
Nitrates				
Use for the treatment of pulmonary congestion in patients with acute heart failure or acute worsening chronic heart failure	I	B	A	II
Nicorandil				
Use for the treatment of pulmonary congestion in patients with acute heart failure or acute worsening chronic heart failure	IIb	C	C1	II
Carperitide				
Use for the treatment of pulmonary congestion in patients with decompensated heart failure	IIa	B	B	II
Use in combination with inotropes in patients with intractable heart failure	IIa	B	C1	II
Use in patients with serious hypotension, cardiogenic shock, acute right ventricular infarction, or dehydration	III	C	C2	VI
Calcium channel blockers				
Sublingual administration of nifedipine to patients with hypertensive emergency	III	C	D	IVb
Inotropes/vasopressors				
Dobutamine				
Use in patients with pump dysfunction and pulmonary congestion	IIa	C	B	II
Dopamine				
Use in expectation of increase in urine volume and renal protective effect	IIb	A	C2	II
Norepinephrine				
Use in combination with catecholamines in patients with pulmonary congestion and hypotension	IIa	B	B	III
PDE III inhibitors				
Use in patients with non-ischemic pump dysfunction and pulmonary congestion	IIa	A	B	II
Use in patients with ischemic pump dysfunction and pulmonary congestion	IIb	A	B	II
Use in combination with dobutamine in patients with a severe reduction in cardiac output	IIb	C	C1	IVb
Rate controllers				
Digitalis				
Use for rate control of atrial fibrillation in patients with tachycardia-induced heart failure	I	A	B	II
Lanidilol				
Use for rate control of atrial fibrillation in patients with tachycardia-induced heart failure	I	C	B	II

MRA, mineralocorticoid receptor antagonist; PDE, phosphodiesterase.
4.3 Vasodilators

Vasodilators, like diuretics, are effective in the treatment of acute cardiogenic pulmonary edema. In general, vasodilators are the first choice, but diuretics should mainly be used in patients with severe congestion due to fluid retention such as those with acute exacerbation of chronic heart failure. On the other hand, vasodilators may be preferred for patients with high blood pressure, those with myocardial ischemia, and those with mitral valve regurgitation, among others. Vasodilators should not be used for patients with cardiogenic shock with a systolic blood pressure of <90 mmHg. Since excessive hypotension may worsen renal function, the dose of vasodilators should be titrated carefully, and careful monitoring after dosing is crucial. Especially, patients with renal dysfunction, elderly patients, and those with mitral valve stenosis should be carefully observed for hypotension.

4.3.1 Nitrates

Sublingual, spray or intravenous administration of nitroglycerin or isosorbide dinitrate are effective in alleviating pulmonary congestion in patients with acute heart failure and patients with acute exacerbation of chronic heart failure (Table 57). Nitrates dilate venous capacitance vessels at low doses and arterial resistance vessels at high doses, reducing preload (pulmonary capillary pressure) and afterload (a slight increase in cardiac output associated with reduced peripheral vascular resistance). As nitrates dilate coronary arteries, they are often used for the treatment of acute heart failure due to ischemic heart disease.

Adverse drug reactions to nitrates include hypotension, and decrease in arterial oxygen saturation due to increased intrapulmonary shunting. Physicians should be aware that nitrate tolerance may develop rapidly when administered intravenously.

4.3.2 Nicorandil

Nicorandil dilates both veins and arteries, and, like nitrates, reduces pulmonary artery wedge pressure. Nicorandil is less likely to develop tolerance and cause excessive hypotension than nitrates.\(^{460,470}\)

4.3.3 Carperitide

Carperitide, a recombinant human atrial natriuretic peptide (hANP), reduce cardiac load by vasodilation, sodium diuresis, and inhibition of renin and aldosterone synthesis. The drug is indicated for the treatment of pulmonary congestion and is also used in combination of catecholamines or other inotropic drugs for the treatment of refractory heart failure. As with other vasodilators, carperitide have not been demonstrated to improve the prognosis of patients with acute heart failure and further studies are needed to identify patients in whom the drug may improve prognosis.

Carperitide may cause hypotension at the beginning of treatment, carperitide should be administered by continuous intravenous infusion at a low dose, i.e., 0.025 to 0.05 μg/kg/min, and 0.0125 μg/kg/min for some cases. A prospective study in Japan has reported that carperitide is often administered at a dose of 0.05 to 0.1 μg/kg/min (maximum recommended dose is 0.2 μg/kg/min), and improves clinical conditions in 82% of patients.\(^{472}\) The efficacy is especially high in patients with decompensated heart failure due to cardiomyopathy, hypertensive heart disease, or valvular diseases. Carperitide is contraindicated for patients with serious hypotension, cardiogenic shock, acute right ventricular infarction, or dehydration.

4.4 Inotropes and Vasopressors

Drugs with inotropic action are indicated for patients with hypotension, patients with peripheral circulatory failure, and patients not responding to treatment to optimize circulating volume. Inotropes are effective in improving hemodynamics and clinical conditions in the short term, and are often administered to patients with left ventricular enlargement and reduced LVEF. However, these drugs increase myocardial oxygen demand and cause myocardial calcium loading, which may result in arrhythmias, myocardial ischemia or myocardial injury and poor prognosis. Accordingly, it is desirable that dose and duration of inotropic treatment should be limited to minimum necessity.

4.4.1 Catecholamine Inotropes

Catecholamines bind to adrenergic receptors (e.g., α1, α2, β1, β2, and β3), and induce cardiac contractility by increasing myocardial calcium store. They can be classified into three groups: (1) α1-receptor agonists: phenylephrine, (2) β2-receptor agonists: isoproterenol, and (3) mixed agonists: dobutamine and dopamine.

Table 58. Intravenous Drugs and Dosage Regimens for Patients in the Acute Phase of Acute Heart Failure

Drugs	Dosage regimens
Morphine	Dilute an ampule of 5 to 10 mg, and administer 2 to 5 mg intravenously over 3 minutes.
Furosemide	Start treatment with a bolus dose of 10 to 120 mg or an infusion at 1 to 2 mg/hr, then infuse continuously at 1 to 5 mg/hr.
Potassium canrenoate	Dissolve 100 to 200 mg in 10 to 20 mL solution to administer by slow intravenous injection. Do not continue treatment unnecessarily. Limit the daily dose to 600 mg.
Digoxin	Administer 0.125 to 0.25 mg by slow intravenous injection.
Dopamine	Start infusion at 0.5 to 5 μg/kg/min and maintain at 0.5 to 20 μg/kg/min. When discontinuing the infusion, reduce the dose gradually. Limit the dose and treatment duration to minimum necessary.
Dobutamine	Start infusion at 0.5 to 5 μg/kg/min and maintain at 0.5 to 20 μg/kg/min. When discontinuing the infusion, reduce the dose gradually. Limit the dose and treatment duration to minimum necessary.
Norepinephrine	Start and continue infusion at 0.03 to 0.3 μg/kg/min.
Milrinone	Start infusion at 0.05 to 0.25 μg/kg/min and maintain at 0.05 to 0.75 μg/kg/min.
Olprinone	Start infusion at 0.05 to 0.2 μg/kg/min and maintain at 0.05 to 0.5 μg/kg/min.
Colforsin daropate	Start and continue infusion at 0.1 to 0.25 μg/kg/min.
Nitroglycerin	Start and continue infusion at 0.5 to 10 μg/kg/min.
Isosorbide dinitrate	Start and continue infusion at 1 to 8 mg/hr.
Nicorandil	Start and continue infusion at 0.05 to 0.2 mg/kg/min.
Nitroprusside	Start and continue infusion at 0.5 to 3 μg/kg/min.
Carperitide	Start infusion at 0.0125 to 0.05 μg/kg/min and maintain at ≤0.2 μg/kg/min.
Landiolol	Start infusion at 1 μg/kg/min, adjust the dose according to heart rate and blood pressure, and maintain at 1 to 10 μg/kg/min.
β₁, and β₂) and exerts various physiological effects. β-receptors on myocytes are mainly β₁ receptors, and catecholamines enhance myocardial contraction, accelerate myocardial relaxation, increase heart rate, and increase myocardial conduction velocity via β₁ receptors. On the other hand, catecholamines dilate peripheral vessels by stimulating β₂ receptors on vascular smooth muscle cells, exert vasoconstriction through α₁ receptors mainly located in the vascular smooth muscle, and enhance cardiac contraction mildly through the α₁ receptors on myocytes.

a. Dobutamine
Dobutamine is a synthetic catecholamine that stimulates β₁, β₂, and α₁ receptors. As a β₂ receptor stimulant, dobutamine at 5 μg/kg/min or lower doses acts as a mild vasodilator to decrease systemic peripheral vascular resistance and pulmonary capillary pressure. As dobutamine does not increase heart rate or myocardial oxygen demand substantially at 10 μg/kg/min or lower doses, the drug can be used for the treatment of ischemic heart disease. Dobutamine reduces pulmonary artery diastolic pressure more substantially than dopamine does, and is effective in the treatment of pulmonary congestion. In patients with unstable blood pressure, consideration for addition of dopamine or noradrenaline is necessary. Dobutamine may increase the number of eosinophils in the myocardium and blood.

When dobutamine therapy is discontinued, the dose should be tapered gradually. A study evaluated the effect of dobutamine on long-term prognosis have suggested that dobutamine may increase the risk of cardiac accidents. The dose and duration of dobutamine therapy should be limited to minimum necessity.

b. Dopamine
Dopamine is an endogenous catecholamine and a precursor of noradrenaline. Studies with animal model and healthy subjects show that at low doses (≤2 μg/kg/min), dopamine induces diuresis through its vasodilative effects on renal arteries and direct action to renal tubules. At intermediate doses (2 to 10 μg/kg/min), dopamine exerts positive inotropic effects, increases heart rate, and constricts vessels and at high doses (10 to 20 μg/kg/min), increase vascular resistance.

It is unclear whether low-dose dopamine is beneficial in patients with heart failure in terms of increasing urine volume or protecting renal function.

c. Norepinephrine
Norepinephrine is an endogenous catecholamine, and enhances myocardial contraction and increases heart rate by stimulating β₁ receptors and also acts as a potential vasoconstrictor by a receptor located on peripheral veins. Patients in refractory cardiogenic shock should be treated with continuous intravenous infusion of noradrenaline starting at a dose of 0.03 to 0.3 μg/kg/min. Norepinephrine is well indicated for patients with septic shock. As the drug increases afterload and myocardial oxygen consumption and reduces blood flow to the kidneys, brain and other organs, monotherapy with norepinephrine as an inotrope should be avoided, and the dose and duration of noradrenaline therapy should be limited to minimum necessity. In patients who require large doses of noradrenaline, mechanical support such as intra-aortic balloon pump (IABP) and percutaneous cardiopulmonary support (PCPS) should be introduced to decrease the dose of noradrenaline.

4.4.2 Digitalis
Digoxin is beneficial in improving hemodynamics in a short period of time. Digoxin is not expected to improve long-term prognosis, but will reduce the frequency of rehospitalizations in keeping attention to blood concentration. In patients with acute heart failure, digitalis is indicated for the treatment of heart failure induced by tachycardias such as atrial fibrillation. Treatment with digitalis is not recommended for patients with acute heart failure due to acute myocardial infarction or myocarditis.

In general, digoxin is administered slowly intravenously to control heart rate in patients with atrial fibrillation or other conditions at a dose of 0.125 to 0.25 mg while avoiding digitalis toxicity.

Digitalis is contraindicated for patients with bradycardia, second or third degree atrioventricular block, sick sinus syndrome, Wolff-Parkinson-White (WPW) syndrome, hypertrophic obstructive cardiomyopathy, hypokalemia, or hypercalcemia.

4.4.3 PDE III Inhibitors
Strengths of PDE III inhibitors include: 1) they are effective even in patients not responding to catecholamines; 2) they possess both vasodilative and positive inotropic effects and are associated with a smaller increase in myocardial oxygen consumption as compared with catecholamines; 3) and they are less likely to develop tolerance than nitrates. PDE III inhibitors exert rapid onset of action after the initiation of intravenous administration and improve hemodynamics almost in a dose-dependent manner.

For acute worsening heart failure in patients who are receiving β-blockers, PDE inhibitors and adenylyl cyclase activators favorably increase cardiac output and decrease pulmonary capillary pressure because their actions are not mediated by β-receptors.

As with the catecholamine inotropes, PDE III inhibitors should be carefully used for the treatment of appropriate conditions, and the dose and duration of treatment should be limited to minimum necessity. In general, treatment with PDE III should be initiated with continuous intravenous infusion, and patients should be observed carefully for hypotension and arrhythmias.

4.4.4 Adenylyl Cyclase Activators (Colforsin Daropate)
Adenylyl cyclase activators are inotropes available only in Japan. They act as inodilators, but have slower onset of action and induce a larger increase in heart rate as compared with PDE inhibitors. Physicians should be aware that they may induce arrhythmias.

4.4.5 Calcium Sensitizers (Pimobendan)
Although pimobendan increases the myocardial contractility and dilates vessels to increase cardiac output and decrease pulmonary capillary pressure, no clear evidence has been obtained about the efficacy of this drug in the treatment of acute heart failure.

4.5 Myocardial Protective Agents
Survival should be prioritized in the treatment of acute heart failure. Once survival is ensured, then improvement of long-term prognosis and QOL should be aimed. Considering the fact that many cases of acute heart failure are acute worsening of chronic heart failure, physicians should try to protect the myocardium while taking into account...
the management during transition period from the acute to chronic phases. For details, see Chapter “VI. Drug Therapy”.

5. Nonpharmacological Therapy

5.1 Mechanical Ventilation

5.1.1 Pathophysiology of Pulmonary Edema and Oxygen Therapy

Patients with acute left-sided heart failure have high pulmonary capillary pressure, severe pulmonary congestion or pulmonary edema. In patients with normal plasma protein levels, an increase in pulmonary capillary pressure to ≥24 mmHg causes leakage of plasma components into alveoli. As pulmonary capillary pressure increases the severity of pulmonary edema increases in a linear manner. In patients in whom plasma protein levels decrease to half of the lower normal limit, pulmonary edema develops when pulmonary capillary pressure is 11 mmHg or higher.\(^\text{483}\) Treatment of pulmonary edema should prioritize the management of dyspnea and hypoxemia to improve oxygen supply to peripheral tissues.

5.1.2 Oxygen Therapy and Non-Invasive Positive-Pressure Ventilation (NPPV)

In patients with acute heart failure, oxygen administration should be started with a nasal cannula or face mask at 2 to 6 L/min. In patients with a PaO\(_2\) of less than 80 mmHg (oxygen saturation [SpO\(_2\)] of less than 95%) or an arterial partial pressure of carbon dioxide (PaCO\(_2\)) of 50 mmHg or more, or patients in whom symptoms such as tachypnea, forced respiration, and orthopnea are not improved or are worsening, NPPV should be initiated promptly using a mask or bag-mask device (Table 59).

Continuous positive airway pressure (CPAP) is the first-choice treatment for patients with acute heart failure, but patients who still have high CO\(_2\) levels or dyspnea during CPAP should receive bi-level PAP. Patients who do not respond well to NPPV should be intubated promptly to receive artificial respiration. Table 59 summarize how switch from NPPV to endotracheal intubation. In order to ensure the success of ventilation in patients with acute cardiogenic pulmonary edema, oxygen therapy should not be continued aimlessly. Patients who still have hypoxemia and dyspnea despite oxygen therapy should start receiving NPPV without delay.\(^\text{484-485}\)

5.1.3 Mechanical Ventilation With Endotracheal Intubation

In patients with no improvement of respiratory condition or arterial blood gases during NPPV, or patients who have a consciousness disorder, loss of cough reflex, or difficulty in expectoration, artificial respiration under endotracheal intubation is indicated (Table 59).

Patients with acute decompenated heart failure associated with pulmonary congestion or pulmonary edema should receive positive end-expiratory pressure (PEEP) at around 2 to 10 cmH\(_2\)O to maximize oxygen delivery to peripheral tissues unless contraindicated. Typical ventilation conditions include a tidal volume of 10 to 15 mL/kg, a respiratory rate of 10 to 20 breaths per minute (target PaCO\(_2\): 30 to 40 mmHg), and an inhale: exhale ratio of 1 to 1.5:2. These settings should be individualized based on the results of arterial blood gas analysis. Immediately after intubation, the fraction of inspiratory oxygen (FiO\(_2\)) should be set at 1.0, and then should be adjusted to maintain a PaO\(_2\) of ≥80 mmHg. It is desirable that FiO\(_2\) be set at ≤0.5 to prevent oxygen toxicity.

5.1.4 Weaning From Artificial Respiration and Extubation

When the condition required artificial respiration has been corrected with a FiO\(_2\) of <0.5, a PEEP of <5 to 10 cmH\(_2\)O, and a PaO\(_2\) of ≥60 mmHg, weaning from artificial ventilation should be considered (Table 60).\(^\text{486}\) Recently, high-flow nasal cannula oxygen therapy has been tried after extubation.\(^\text{487}\)

5.2 Management With Pacing (Cardiac Resynchronization Therapy and Other Types of Pacing)

5.2.1 Cardiac Resynchronization Therapy (CRT)

No studies have investigated the effects of CRT during the acute phase of acute heart failure. Patients with acute heart

Table 59. Indications and Contraindications of Noninvasive Positive Pressure Ventilation (NPPV) in Patients With Acute Heart Failure and the Criteria for Conversion to Tracheal Intubation

General indications of NPPV	Contraindications of NPPV	Criteria for conversion to tracheal intubation
(1) Patient is alert and cooperative	(1) Patient has undrained pneumothorax	(1) Patient’s condition worsened
(2) The airway is patent	(2) Patient has vomiting, intestinal occlusion, or active gastrointestinal bleeding	(2) Patient shows no improvement or even worsening of arterial blood gas levels
(3) Patient can expectorate	(3) Patient has a large amount of airway secretions	(3) New symptoms/signs (e.g., pneumonia, sputum retention, and nose erosion) or complications developed
(4) Patient has no facial injuries	(4) Patient is at a high risk of aspiration	(4) Symptoms do not disappear
(5) Patient can wear a mask	(5) Patient’s level of consciousness has declined	(5) Patient can wear a mask

Table 60. Criteria for Weaning From Ventilatory Support to Patients With Acute Heart Failure

1. Resolution of acute phase disease
2. Adequate cough
3. Adequate oxygenation (FiO\(_2\) <0.5 and PaO\(_2\) ≥60 mmHg)
4. Stable hemodynamics (heart rate < 140 bpm, stable blood pressure, and no or minimal treatment with vasopressors)
5. Afebrile (temperature ≤38°C)
6. No respiratory acidosis
7. Adequate hemoglobin (8 to 10 mg/dL or higher)
8. Adequate mentation
9. Acceptable electrolytes

FiO\(_2\): fraction of inspiratory oxygen; PaO\(_2\): arterial partial pressure of oxygen. (Source: Prepared based on MacIntyre NR, et al. 2001\(^\text{484}\))
failure should receive pharmacotherapy first, and should then be considered for the indication of CRT during the chronic phase of heart failure (See Section “2. Cardiac Resynchronization Therapy” in Chapter “VII. Nonpharmacologic Therapy”).

5.2.2 Emergency Temporary Pacing

Emergency temporary pacing should be performed promptly in patients with bradycardia leading to compromised hemodynamics or transient cerebral ischemia who do not respond well to atropine regardless of type of causative conditions (Table 61).

5.3 Acute Hemofiltration

In patients with acute decompensated congestive heart failure, hepatic congestion and edema may develop in association with pulmonary congestion and excessive fluid retention. During the acute phase treatment, excessive fluid should be rapidly corrected. Patients with renal dysfunction in whom diuresis cannot be achieved require acute hemofiltration (Table 62).

At present, ultrafiltration should be reserved for patients in whom fluid removal is difficult or impossible with any drug therapies.

5.4 Indications and Methods of Surgical Treatment in Patients With Acute Heart Failure (Cardiac Tamponade and Acute Valvular Disease)

5.4.1 Cardiac Tamponade

Cardiac tamponade is a condition of elevated pericardial pressure caused by pericardial effusion, resulting in decreased venous return during the diastolic phase and impaired ventricular filling.

In cases of urgency, echocardiography-guided pericardiocentesis and drainage are conducted. Inotropes are not effective in urgent situations. In patients with hemorrhagic cardiac tamponade with hypovolemia, drainage is effective in maintaining hemodynamics on a temporary basis. In patients with unsuccessful pericardiocentesis or patients with recurrent pericardial effusion due to hemorrhagic cardiac tamponade, surgical drainage by pericardiotomy through a subxiphoid approach or pericardiotomy should be performed.

5.4.2 Acute Valvular Disease

a. Acute Aortic Regurgitation

Acute aortic regurgitation is an emergent condition that may lead to cardiogenic shock unless prompt surgical intervention is undertaken. Causes of acute aortic regurgitation include aortic dissection, infective endocarditis, injuries, and iatrogenic aortic valve injury. Indication for surgery should be considered promptly for patients with acute aortic regurgitation. Echocardiography is essential for confirmatory diagnosis and severity assessment, and provides information that helps physicians specify the cause and assess the severity of pulmonary hypertension. IABP is contraindicated for patients with acute aortic regurgitation.

b. Acute Mitral Valve Insufficiency

Acute mitral valve insufficiency (mitral valve regurgitation) causes acute volume overload of the left ventricle and left

Table 61. Recommendations and Levels of Evidence for Pacing (Cardiac Resynchronization Therapy and Other Techniques) in Patients With Acute Heart Failure

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Prompt initiation of emergency temporary pacing in patients with bradycardia that worsens hemodynamics and causes transient cerebral ischemia, and who do not respond well to atropine	I	C	C1	VI
Cardiac resynchronization therapy in the very early phase of acute heart failure	IIb	C	C2	VI

Table 62. Recommendations and Levels of Evidence for Hemofiltration in Patients With Acute Heart Failure

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Extracorporeal ultrafiltration method (ECUM)	IIb	B	C2	II
Continuous venovenous hemofiltration (CVVH) for patients with volume overload and stable hemodynamics	IIb	B	C2	II
Hemodialysis				
Hemodialysis	IIb	B	C2	II
Peritoneal dialysis	IIb	B	C2	II
Hemodiafiltration				
Continuous hemodiafiltration (CHDF)	IIb	B	C2	II
atrium, which results in pulmonary edema and cardiogenic shock. Patients with no improvement in hemodynamics after treatment with vasodilators and catecholamines are indicated for emergency surgery. IABP is used to maintain hemodynamics in patients who are waiting for surgery. Accurate color Doppler examination can be performed with transesophageal echocardiography. IABP may stabilize the hemodynamics of patients in preparation for surgery.

5.5 Treatment of Mechanical Complications Associated With Acute Myocardial Infarction

5.5.1 Left Ventricular Free Wall Rupture
Left ventricular free wall rupture develops in 4 to 24% of patients with acute myocardial infarction. Treatment often fails, and deaths due to this condition account for 20% of early deaths from acute myocardial infarction.\(^{489}\) Left ventricular free wall rupture often develops in 1 to 7 days after the onset of acute myocardial infarction. It is classified by mode of onset into oozing (slow rupture) type, which develops as cardiac tamponade caused by gradual accumulation of bloody pericardial effusion, and blow-out type, which develops as an abrupt rupture of the myocardial wall. Oozing cases can be diagnosed before shock develops, and should be treated with pericardial drainage followed by surgery. However, in blow-out cases, pulseless electrical activity develops rapidly, and leads to death. Patients should be diagnosed immediately after onset, receive percutaneous cardiopulmonary support (PCPS) promptly to maintain systemic circulation before undergoing emergency surgery.

5.5.2 Ventricular Septal Perforation
The incidence of ventricular septal perforation has been reported about half the incidence of free wall rupture. Ventricular septal perforation often develops on the third to fifth day after the onset of acute myocardial infarction. Patients with ventricular septal perforation often experience abrupt hemodynamic decompensation, hypotension, bilateral cardiac failure (right-sided heart failure is prominent in some cases), and newly developed holosystolic murmur. Patients with cardiogenic shock should undergo emergency surgery.

5.5.3 Mitral Papillary Muscle Dysfunction\(^{490}\) (Table 63)
Acute mitral regurgitation in patients with acute myocardial infarction is mainly caused by rupture of papillary muscle or chordae. Mitral regurgitation develops in about 14% of patients after acute myocardial infarction as mild to moderate in severity in almost all cases. Severe mitral regurgitation develops in 3% of patients after acute myocardial infarction, and the mortality is high. The prognosis depends on whether patients are diagnosed, and start receiving medical treatment without delay and promptly undergo emergency surgery. Effective medical treatment includes afterload reduction through intense vasodilation and diuresis. IABP is effective as well. Patients should receive medical treatment to stabilize hemodynamics, and undergo surgical treatment as soon as it is ready.

Table 63. Recommendations and Levels of Evidence for Invasive Treatment of Acute Mitral Regurgitation in Patients With Acute Myocardial Infarction

Recommendation	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Surgical repair through prompt IABP insertion	I	B	C1	IVa
Addition of CABG	I	B	C1	IVa

CABG, coronary artery bypass grafting; IABP, intra-aortic balloon pump.

5.6 Cardiac Rehabilitation in Patients With Acute Heart Failure

5.6.1 Significance of Cardiac Rehabilitation in Patients With Acute Heart Failure

The goals of cardiac rehabilitation in patients with acute heart failure are:

1. facilitating early ambulation to prevent consequences of prolonged bed rest (e.g., physical/mental deconditioning, bedsores, and pulmonary embolism);
2. establishing/sharing plans for prompt and safe discharge from hospital and return to society;
3. improving QOL by increasing exercise capacity; and
4. preventing recurrent heart failure andrehospitalization through comprehensive patient education and disease management.

As patients with heart failure are prone to have physical/mental deconditioning or disuse syndrome due to prolonged bed rest, and skeletal muscle atrophy due to malnutrition or increased proinflammatory cytokine levels (“cardiac cachexia”), it is important to start cardiac rehabilitation, consisting of physical therapy, exercise therapy and education/counseling, in the early phase of acute heart failure.

After the disease is stabilized, a comprehensive cardiac rehabilitation program should be initiated. The program should be shifted to an ambulatory cardiac rehabilitation program to continue disease management.\(^{148}\)

Cardiac rehabilitation only during hospitalization has not been demonstrated to improve long-term prognosis in patients with acute heart failure. However, comprehensive ambulatory cardiac rehabilitation programs have been reported to be effective in preventing rehospitalizations of patients with heart failure. In-hospital cardiac rehabilitation programs should aim for not only early ambulation and early discharge but also encouraging patients to participate and continue ambulatory cardiac rehabilitation after discharge.

Patients hospitalized in the ICU for the treatment of acute heart failure tend to have strong anxiety and unstable mental state because they are often overwhelmed with the abrupt onset of the disease, emergency hospitalization, invasive treatment procedures, fear of death, anxiety about the future, and unfamiliar environment apart from the family. They also have physical stress caused by invasive...
procedures and prolonged bed rest as well as mental stress and shame of receiving nursing care. Therefore, mental support for patients in the early stage of acute heart failure is important to alleviate patients' mental stress and improve the QOL of patients during hospital stay. Healthcare professionals should try to detect mental health problems early, provide appropriate mental counseling, prescribe drug therapy, and consider for cognitive behavioral therapy, if necessary.148

\subsection*{5.6.2 Early-Phase Cardiac Rehabilitation in Patients With Severe Heart Failure in the ICU (Table 64)}

Exercise therapy is not recommended for patients with unstable hemodynamics due to acute heart failure or severe heart failure and patients with dyspnea at rest due to pulmonary congestion or fever. However, it has been reported that even patients with severe heart failure on mechanical ventilation, IABP or CHDF or those who are receiving continuous infusion of cardiovascular drugs can safely receive early-phase cardiac rehabilitation including low-strength physical or exercise therapy when they have stable hemodynamics and no symptoms at rest.491 For example, rhythmic low-strength resistance training using a rubber tube or ball can be conducted under the monitoring by ECG and vital signs in the bed or at the bedside. When unsupported sitting becomes possible, patients should prolong sitting time gradually, and then should try to stand. When standing at the bedside becomes possible, patients should try to stand on their tiptoes, among other training.

\begin{table}[h]
\centering
\caption{Recommendations and Levels of Evidence on Rehabilitation for Patients With Acute Heart Failure}\\
\begin{tabular}{|l|c|c|c|c|}
\hline
 & Class of Recommendation & Level of Evidence & Grade of Recommendation (MINDS) & Level of Evidence (MINDS) \\
\hline
Educational programs on the prevention of recurrence and self-management for all patients & I & C & C1 & VI \\
Rehabilitation for patients with heart failure who are treated with intravenous isotropic drugs and have stable hemodynamics, including low-intensity resistance training under strict supervision & IIb & C & C1 & V \\
Comprehensive cardiac rehabilitation programs for all patients with heart failure after stabilization & IIa & C & C1 & VI \\
\hline
\end{tabular}
\end{table}

\section*{XI. Surgical Treatment}

\subsection*{1. Surgical Procedures and TAVI}

\subsection*{1.1 Left Ventricular Reconstruction}

Left ventricular reconstruction was initially introduced as a surgical procedure for the treatment of left ventricular aneurysm in 1980s. As the resection of left ventricular aneurysm, which increases in size during cardiac constriction, increases cardiac output by increasing the effective left ventricular volume and thereby improves cardiac function and symptoms. On the other hand, as prompt reperfusion therapy for the treatment of myocardial infarction has become a common procedure, cases of left ventricular aneurysm due to transmural infarction have become less common, while cases of ischemic cardiomyopathy with akinesis due to post-reperfusion extensive subendocardial infarction have become more common. Since Dor et al492 have reported that left ventricular reconstruction may improve the long-term prognosis of patients with ischemic cardiomyopathy and akinesis, diverse procedures have been developed. In 2009, the results of the Surgical Treatment for Ischemic Heart Failure (STICH) trial, a randomized controlled trial to assess the effects of adding left ventricular reconstruction to coronary-artery bypass grafting (CABG), were published.493 This study had unexpected results that adding left ventricular restoration to CABG are not effective in exercise capacity, symptoms, or prognosis in patients with ischemic cardiomyopathy and LVEF ≤35%. A considerable number of objections have been published, but it is still unclear how surgical left ventricular resizing decreases wall tension against the remodeling myocardium, and thereby reverse the remodeling process. In a study in Japan, adding left ventricular reconstruction to mitral annuloplasty was beneficial in patients with ischemic cardiomyopathy with a left ventricular end-systolic volume index (LVESVI) of 105 to 150 mL/m2.494 While in the J-STICH registry in patients undergoing left ventricular reconstruction, the one-year survival of patients with ischemic cardiomyopathy and severe mitral regurgitation was 60%.495 Myocardial viability should be considered to determine whether surgery is indicated or not. The efficacy of Batista procedure and other left ventricular reconstructive procedures for the treatment of non-ischemic cardiomyopathy has not been established. In 2005, the ACC/AHA guidelines for the diagnosis and treatment of chronic heart failure dropped the use of left ventricular reconstruction for this patient population to a Class III recommendation.4 In Japan, these procedures are conducted only in limited cases.

\subsection*{1.2 Transcatheter Aortic Valve Implantation (TAVI)}

At present, transcatheter aortic valve implantation (TAVI) or transcatheter aortic valve replacement (TAVR) are indicated for the treatment of severe aortic stenosis. The indications and timing of these procedures are in accordance of those of aortic valve replacement (Table 65). For details, refer to latest guidelines for the treatment of valvular heart diseases.370,371,496

TAVI is recommended for patients with severe aortic stenosis who are not indicated for surgery and are expected...
Table 65. Recommendations and Levels of Evidence for Transcatheter Aortic Valve Implantation (TAVI) as a Treatment of Aortic Valve Stenosis

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
TAVI conducted by the multidisciplinary heart team	I	C	C1	VI
TAVI conducted only at medical institutions which have a department of cardiovascular surgery	I	C	C1	VI
TAVI for patients with aortic valve stenosis who cannot undergo cardiotomy and are expected to survive for at least 12 months after the procedure	I	A	A	II
TAVI as an alternative procedure for patients who are indicated for aortic valve replacement but in whom surgery risk is high	Ila	A	B	II
TAVI for patients with aortic valve stenosis in whom treatment is not expected to improve QOL or prognosis	III	A	D	II
TAVI for patients with aortic valve stenosis and low LVEF	III	C	C2	IVa

LVEF, left ventricular ejection fraction; QOL, quality of life; TAVI, transcatheter aortic valve implantation.

Table 66. The INTERMACS and J-MACS Classifications and Options of Device Therapy

Profile	INTERMACS J-MACS	Status	Options of device therapy
1	Critical cardiogenic shock “Crash and burn”	Patients with compromised hemodynamics and peripheral hypoperfusion despite rapid escalation of intravenous inotropes and/or introduction of mechanical circulatory support	IABP, peripheral VA-ECMO, percutaneous VAD, centrifugal pumps for extracorporeal circulation, and paracorporeal VADs
2	Progressive decline despite inotropic support “Sliding on inotropes”	Patients with declining renal function, nutritional status, and signs of congestion despite intravenous inotropes and required incremental doses of them	IABP, peripheral VA-ECMO, percutaneous VAD, centrifugal pumps for extracorporeal circulation, paracorporeal VADs, implantable LVADs
3	Stable but inotrope-dependent “Dependent stability”	Patients with stable hemodynamics on intravenous inotropes at relatively low doses, but physicians are not able to discontinue the intravenous treatment because of the risk of hypotension, worsening symptoms of heart failure, or worsening renal function	Implantable LVADs
4	Resting symptoms “Frequent flyer”	Patients who can be weaned from intravenous inotropic support temporarily and be discharged from hospital, but may soon repeat hospitalizations for worsening heart failure	Consider implantable LVADs (especially patients with modifier A*)
5	Exertion intolerant “House-bound”	Patients who can do daily routines in the house, but have significant limitations in activities of daily livings, and hardly go out	Consider implantable LVADs for patients with modifier A*
6	Exertion limited “Walking wounded”	Patients who can go out, but are difficult in doing anything other than light activities, and have symptoms during walk less than 100-meter	Consider implantable LVADs for patients with modifier A*
7	Advanced NYHA III “Placeholder”	Patients can walk more than 100 meters without fatigue, and have had no hospitalizations in the recent 6 months	Consider implantable LVADs for patients with modifier A*

*Recurrent appropriate ICD shocks due to life-threatening ventricular arrhythmias. IABP, intra-aortic balloon pump; LVAD, left ventricular assist device; PCPS, percutaneous cardiopulmonary support; VAD, ventricular assist device; VA-ECMO, veno-arterial extracorporeal membrane oxygenation. (Source: Prepared based on Stevenson LW, et al. 2009 and the Japanese Association for Thoracic Surgery)

Patients in whom TAVI is not expected to improve symptoms and QOL are not indicated for the procedure. Among patients with severe aortic stenosis and left ventricular dysfunction, those with low-flow/low-gradient aortic stenosis (defined as a valve area of <1 cm², LVEF to live more than 1 year after surgery by the heart team. TAVI should also be considered for high-risk patients who are indicated for surgery when the heart team considers that TAVI is a more preferable treatment option according to the patient’s risk factors and anatomical conditions.
<40%, and a mean aortic transvalvular gradient of <40 mmHg) are known to be associated with worse outcomes, and dobutamine stress echocardiography is useful in identifying such patients.504,505 When the cause of left ventricular dysfunction cannot be determined to be excessive afterload, TAVI may not substantially improve left ventricular function or clinical symptoms, but does improve life expectancy.506 In patients with low cardiac function, some studies have reported favorable early postoperative results,507,508 while other studies have pointed out that low cardiac function predicts poor prognosis after TAVI.509,510 No consensus has been achieved regarding the efficacy of TAVI in patients with cardiac dysfunction. Careful consideration should be given to determine whether TAVI should be conducted or not in patients with cardiac dysfunction.
Circulation Journal Vol.83, October 2019

Profiles of Mechanically Assisted Circulatory Support (J-MACS) profiles

Registry for Mechanically Assisted Circulatory Support

Advanced heart failure is classified by the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profiles\(^{511}\). In the INTERMACS profile, modifier A (arrhythmia) is defined as recurrent appropriate ICD shocks due to life-threatening ventricular arrhythmias.

The use of peripheral VA-ECMO (also called percutaneous cardiopulmonary support [PCPS] in Japan) is considered for patients with INTERMACS profile 1 or 2 in combination with IABP, VA-ECMO is used as a temporal flow support system aiming for hemodynamic stabilization or bailing out of multiple organ failure, which sometimes works as a bridging device towards listing for heart transplant or converting to durable ventricular assist devices (VADs). Since it does not unload left ventricle in itself, an improvement in pulmonary congestion may not be expected.

2. Mechanical Circulatory Support

2.1 Classification of Advanced Heart Failure

Advanced heart failure is classified by the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profiles\(^{511}\) or the Japanese registry for Mechanically Assisted Circulatory Support (J-MACS) profiles\(^{512}\) (Table 66). In the INTERMACS profile, modifier A (arrhythmia) is defined as recurrent appropriate ICD shocks due to life-threatening ventricular arrhythmias.

2.2 Percutaneous Circulatory Support for Patients With Acute Heart Failure

2.2.1 Intra-Aortic Balloon Pump (IABP)

IABP has been traditionally indicated for patients with acute myocardial infarction/complex coronary lesions who need hemodynamic support during reperfusion/revascularization or until surgical repair of complications, although its routine use is not recommended. IABP also has become indicated for patients with advanced heart failure who are categorized as INTERMACS profile 1 or 2. IABP is contraindicated for patients with moderate or severe aortic regurgitation or patients with aortic dissection.

2.2.2 Peripheral Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO)

The use of peripheral VA-ECMO is considered for patients with INTERMACS profile 1 or 2 often in combination with IABP. VA-ECMO is used as a temporal flow support system aiming for hemodynamic stabilization or bailing out of multiple organ failure, which sometimes works as a bridging device towards listing for heart transplant or converting to durable ventricular assist devices (VADs). Since it does not unload left ventricle in itself, an improvement in pulmonary congestion may not be expected.

2.2.3 Percutaneous VAD

In Japan, catheter-based transaortic microaxial pumps (Impella\(^{2}\) 2.5 and 5.0) have been approved as percutaneous VADs for the treatment of cardiogenic shock. These devices are expected to improve pulmonary congestion through unloading left ventricle.

2.3 Mechanical Circulatory Support Requiring Thoracotomy

2.3.1 Centrifugal Pumps for Extracorporeal Circulation

VA-ECMO with central cannulation using centrifugal pumps for extracorporeal circulation can be used for patients who do not respond well to peripheral VA-ECMO and require stronger circulatory support, or who cannot continue peripheral VA-ECMO due to complications such as bleeding from the access site.

The reimbursement of these pumps as VADs is not covered by the Japanese National Health Insurance, and these pumps are often switched to durable VADs approved...

Table 67. Various Strategies for VAD Therapy

Abbreviation	Strategy	Definition
BTD	Bridge to decision	Temporal use of VADs for the treatment of acute-onset cardiogenic shock before deciding the next treatment options
BTR	Bridge to recovery	Use of VADs to support circulation and thereby promote the recovery of cardiac function aiming for removal of VADs
BTB	Bridge to bridge	Conversion from a paracorporeal LVAD to an implantable LVAD
BTC	Bridge to candidacy	LVAD therapy to reverse organ dysfunction to obtain the eligibility for heart transplantation
BTT	Bridge to transplant	LVAD therapy as a bridge to transplant in patients who have been listed for heart transplantation but cannot maintain hemodynamics with medical treatment
DT	Destination therapy	Permanent LVAD therapy as an alternative to heart transplantation in patients who are ineligible for transplantation

LVAD, left ventricular assist device; VAD, ventricular assist device.

Table 68. Criteria for Implantable LVAD Under the Bridge-to-Transplant Policy

Selection criteria	Exclusion criteria	
Patient status	Patient has advanced heart failure with progressive symptoms (generally NYHA class IV) despite standard therapy recommended in the relevant guidelines (stage D), who is listed or being listed for heart transplantation	
Age <65 years	Patient depends on intravenous inotropes (INTERMACS profile 2 or 3), IABP or paracorporeal LVAD, or with modifier A (especially for patients with INTERMACS profile 4)	
Body surface area	Patient and his/her caregivers understand the characteristics of VAD therapy in Japan as a long-term home-based treatment, and the patient is highly expected to return to society	
Severity	Patient with malignancy, collagen disease or other refractory systemic diseases that have poor prognosis	
Social indications	Patient depending on intravenous inotropes (INTERMACS profile 2 or 3), IABP or paracorporeal LVAD, or with modifier A (especially for patients with INTERMACS profile 4)	
Systemic diseases	Severe respiratory failure, irreversible pulmonary hypertension	
Respiratory diseases	Irreversible hepatic or renal dysfunction, insulin-dependent diabetes mellitus	
End-organ dysfunction	Difficult-to-treat aortic aneurysm, untreatable moderate or severe aortic valve insufficiency, mechanical aortic valve that cannot be replaced by a bioprosthetic valve, severe peripheral vascular disease	
Cardiovascular disorders	Women being pregnant or planning to become pregnant	
Pregnancy	Others	Severe obesity

IABP, intra-aortic balloon pump; LVAD, left ventricular assist device; NYHA, New York Heart Association.

Table 69. Recommendations and Levels of Evidence on the Use of Implantable Left Ventricular Assist Devices (LVADs)

Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Treatment with implantable LVADs in patients with stage D HFrEF who are eligible for heart transplantation in order to reduce the risk of death and hospitalizations for heart failure and improve QOL	IIa	C	B	IVa

HFrEF, heart failure with reduced ejection fraction; LVAD, left ventricular assist device; QOL, quality of life.

Table 70. Indications for Heart Transplantation

1. **Indications**

 Heart transplantation is indicated for patients with the following severe heart diseases in whom conventional treatment is not expected to save or prolong life:
 1. Dilated cardiomyopathy, and dilated phase hypertrophic cardiomyopathy
 2. Ischemic myocardial disease
 3. Others (Conditions approved by the Heart Transplantation Indication Review Committee of the Japanese Circulation Society and the Japanese Society of Pediatric Cardiology and Cardiac Surgery)

2. **Eligibility Criteria**

 1. Patients with an intractable end-stage heart disease that meet at least one of the following conditions:
 a. Heart failure requiring long-term or repeated hospitalization
 b. Patients with heart failure that remains in NYHA Class III or IV despite conventional treatment including β-blockers and ACE inhibitors
 c. Patients with life-threatening severe arrhythmias not responding to any currently available treatments
 2. It is desirable that patients be <65 years of age
 3. Patients and their family members should fully understand heart transplantation and can cooperate to the treatment

3. **Exclusion criteria**

 A) Absolute exclusion criteria
 1. Irreversible renal or hepatic dysfunction
 2. Active infection (including cytomegalovirus infection)
 3. Pulmonary hypertension (with pulmonary vascular resistance of ≥6 Wood units despite treatment with vasodilators)
 4. Drug and substance abuse (including alcoholic myocardial disease)
 5. Malignant tumor
 6. Human immunodeficiency virus (HIV) antibody positive

 B) Relative exclusion criteria
 1. Renal or hepatic dysfunction
 2. Active peptic ulcer
 3. Insulin-dependent diabetes mellitus
 4. Mental disorders/neurosis (may be listed as exclusion criterion if no improvement is seen despite efforts to eliminate anxiety about the patient’s own disease or condition)
 5. History of pulmonary infarction, pulmonary vascular obstructive disease
 6. Collagen disorder or other systemic diseases

4. **Determination of eligibility for heart transplantation**

 - For the time being, the institutional review committee and the Heart Transplantation Indication Review Subcommittee of the Japanese Circulation Society will review patients in two stages to determine who are indicated for heart transplantation. The patients and family members provide informed consent and are included in the waiting list. Transplantation is conducted for patients on the list.
 - The indications and the eligibility criteria listed above will be revised according to the advancement of medical/surgical treatment.
 - Other organ donors should be considered carefully to achieve the goal of an individual patient.

ACE, angiotensin converting enzyme; IABP, intra-aortic balloon pump; LVAD, left ventricular assist device; NYHA, New York Heart Association. (Excerpted from the Heart Transplantation Committee of the Japanese Circulation Society. 2013)

2.3.2 Types and Features of VADs

Among VADs currently available in Japan, paracorporeal VADs are pulsatile pumps, while implantable VADs are non-pulsatile (continuous flow) pumps. As these devices support the left ventricle in most cases, they are called left ventricular assist devices (LVADs). Paracorporeal VADs that support the right ventricle are called right ventricular assist devices (RVADs). Implantable LVADs are not approved in Japan.

In Japan, paracorporeal VADs are available only for in-hospital setting. The use of paracorporeal VADs may increase the risk of serious complications such as cerebrovascular disorder and infections, and pump exchanges due to pump thrombosis or device malfunctions are common. Although implantable LVADs are superior to paracorporeal ones in terms of QOL improvement and the risk of complications, the implantable LVADs are reimbursed only in patients listed (or being listed) for heart transplantation.

2.3.3 Therapeutic Strategies With VADs

As indicated in the algorithms (Figure 13) and strategies (Table 67) in the VAD therapy, indications should be carefully evaluated to achieve the goal of an individual patient.\(^{513}\)

2.3.4 Indications and Outcomes of Paracorporeal VADs

Paracorporeal VADs are used as “bridge to decision” (BTD) in patients with INTERMACS profile 1 who cannot maintain hemodynamics even under mechanical circulatory support such as peripheral VA-ECMO, and as “bridge to candidacy” (BTC) in patients with INTERMACS profile 2 who are not immediate candidates for heart transplantation. Studies have reported that one-year survival rate in patients who received paracorporeal VADs implantation at high volume centers in Japan ranged between about 50 to 80%.\(^{514,516}\)

2.3.5 Indications and Outcomes of Implantable LVADs

Table 68 outlines the indication/exclusion criteria for implantable LVADs in Japan.\(^{517}\) According to the J-MACS registry, one-year and two-year survival rates of patients with implantable LVADs were 93.6% and 89.8%, respectively, which were higher than the corresponding rates in patients with paracorporeal LVADs.\(^{518}\) Complications requiring re-hospitalizations reported in patients with implantable LVADs include cerebrovascular disorder, device thrombosis, and drive-line infection.\(^{519}\) Several complications such as gastrointestinal arteriovenous malformation, gastrointestinal bleeding, late-onset right-sided heart failure, and aortic regurgitation are rare among
patients using pulsatile LVADs but have been known to be more common in patients using continuous-flow LVADs.

2.3.6 Recommendations for and Evidence of LVADs (Table 69)

No controlled clinical studies of paracorporeal LVADs have been conducted. The use of implantable LVADs for bridge to transplant (BTT) is recommended, although their benefits have not been proven in randomized clinical trials. For the purpose of destination therapy (DT), the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) trial, a randomized controlled trial of a pulsatile implantable LVAD vs. medical therapy has concluded that the device has a survival benefit. Combined with the result of another randomized clinical trial that reported the superiority of continuous-flow device over the pulsatile device, continuous-flow implantable LVADs are most effective to improve prognosis and is widely recommended.

3. Heart Transplantation

Heart transplantation is performed for patients with underlying cardiovascular disease such as dilated cardiomyopathy or dilated-phase hypertrophic cardiomyopathy, ischemic myocardial disease, and congenital heart disease. Criteria for indication of heart transplantation include lack of effective treatment other than heart transplantation; understanding of heart transplantation by patients and family; and ability to continue lifelong treatment such as immunosuppressive therapy and examinations such as myocardial biopsy (Table 70). Additional conditions for application are patients with heart failure who require long-term or frequent hospitalizations and remain in NYHA Class III or IV despite conventional drug therapy including β-blockers and ACE inhibitors, and those with potentially fatal severe arrhythmia that does not respond to conventional treatment. Both types of patients are preferably under 65 years of age. Absolute exclusion criteria include severe irreversible organ failure, active infection, severe pulmonary hypertension, drug and substance abuse, including tobacco and alcohol, malignant tumor and positive results of human immunodeficiency virus (HIV) antibody test. Patients with irreversible pulmonary hypertension with pulmonary vessel resistance of >6 Wood units despite available treatments are not indicated for heart transplantation, and should be considered for heart-lung transplantation. When heart failure progresses during the waiting period, VAD implantation should be considered before other organ dysfunctions occur. By June 2016, a total of 284 patients underwent heart transplantation, and the survival rates at 5 and 10 years after the transplantation were 92.7% and 89.6%, respectively, which are among the highest in the world. According to an annual report of the heart and lung registries by the International Society for Heart and Lung Transplantation, heart transplantation is proved to be the most favorable for treatment of advanced heart failure compared to other treatment modalities. Table 71 summarizes recommendations and levels of evidence for heart transplantation in patients with heart failure.

XII. Disease Management

1. Disease Management Programs (e.g., Educational Programs) and Team Medical Care

1.1 Disease Management Programs by Multidisciplinary Teams

Table 72 summarizes features and components of disease management for patients with heart failure. It is desirable that disease management for each patient should be operated by a multidisciplinary team of diverse healthcare professionals, including physicians, nurses, pharmacists and dieticians, and the team should contain two or more members who have expertise in the treatment, management and care of heart failure. In order to operate the disease management team efficiently, comprehensive cardiac rehabilitation programs should be utilized proactively. Disease management for patients with heart failure include guideline-based standard drug therapy, nonpharmacologic therapy and exercise therapy, patient education and counseling emphasizing the importance of treatment adherence and selfcare, symptom monitoring, preparation for and support of hospital discharge, appropriate use of social resources, follow-up examinations of patients, periodic assessment of physical, mental, and social functions, and mental support.

1.2 Contents of Disease Management Programs for Patients With Heart Failure (Tables 73 and 74)

1.2.1 Patient Education Emphasizing the Importance of Adherence and Self-Care

Appropriate self-care behaviors play an important role in preventing worsening heart failure, and patient education to prove their self-care capabilities is expected to improve prognosis and QOL. Healthcare professionals should

Table 71. Recommendations and Levels of Evidence for Heart Transplantation

Recommendation	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
Heart transplantation for patients with severe HFrEF resistant to appropriate drug therapies and device treatments				
IIa	C	B	IVa	

HFrEF, heart failure with reduced ejection fraction.
Table 72. Features and Components of Disease Management Programs for Patients With Heart Failure

Features	Components
Multidisciplinary team approaches by cardiologists, cardiovascular surgeons, nurses, pharmacists, physical therapists, nutritionists, social workers, and psychologists, etc.	Drug and nonpharmacologic therapy
Patient education, consultation and support by specially trained healthcare professionals	Exercise therapy
Implementation of comprehensive cardiac rehabilitation programs	Patient education focused on adherence and self-care
	Symptoms monitoring by patients, family members, caregivers, or healthcare professionals
	Discharge planning and support and utilization of social resources
	Post-discharge follow-up
	Continuous assessment of patients’ physical, mental and social functions (e.g., body weight, nutritional status, laboratory findings, ADL, mental status, and QOL changes)
	Provide mental support to patients, family members, and caregivers

ADL, activities of daily living; QOL, quality of life.

evaluate appropriateness of patients’ self-care, and educate and consult patients and their family members to improve the quality of self-care behaviors. In patient education, healthcare professionals should consider their health literacy, the ability to access, understand, and utilize appropriate information on the disease, and should provide materials suitable for individual patients according to the level of health literacy. For patients with limited self-care capabilities such as elderly, people living alone, and patients also suffering from cognitive disorder, healthcare professionals should educate and support their family members, and utilize social resources such as sending home visiting physicians, nurses or caregivers in a more proactive way.

2. Comprehensive Cardiac Rehabilitation

2.1 Significance of Ambulatory Cardiac Rehabilitation in Disease Management Programs

The most common reasons for rehospitalization in patients with heart failure are 1) worsening congestion (fluid retention), 2) non-cardiac comorbidities, 3) poor adherence. It has also been pointed out that sarcopenia and frailty predict the long-term prognosis of elderly patients with heart failure. Accordingly, out-patient and home-based interventions are essential for elderly patients with heart failure and noncardiac comorbidities with a high risk of rehospitalization to improve QOL and exercise capacity and prevent rehospitalization and conditions requiring nursing care. These interventions should include systemic disease management covering both heart failure and noncardiac comorbidities and exercise interventions to prevent sarcopenia and frailty.

Although many studies have reported the efficacy of multidisciplinary intervention/disease management programs in patients with heart failure, and a systematic review has concluded that multidisciplinary interventions significantly reduce rehospitalization rates and all-cause mortality in patients with heart failure, there are many unsolved issues, such that the program contents have not been standardized. In contrast, comprehensive ambulatory cardiac rehabilitation programs, which include lifestyle interventions to prevent recurrent heart failure and clinical monitoring of heart failure, are expected to serve as disease management programs for heart failure, and their benefits have been demonstrated.

2.2 Practical Examples of Ambulatory Cardiac Rehabilitation as a Disease Management Program (Table 75)

Figure 14 outlines a typical flowchart of exercise therapy and heart failure monitoring in an ambulatory cardiac rehabilitation program. Every time when a patient visits the clinic for a rehabilitation session, he/she is checked for physical condition before, during and after the session, and periodically for improvement in exercise capacity (Table 76). When findings suggestive of worsening heart failure are observed, the patient is referred to his or her physician, who may modify the exercise prescription, limit water intake or increase the dose of diuretics, among other measures, to prevent worsening heart failure. Comprehensive ambulatory cardiac rehabilitation sessions as a disease management program for patients with heart failure is superior to medical consultations at clinic in terms of identifying early signs of worsening heart failure through symptoms, signs and ECG changes during exercise.

XIII. Palliative Care

1. Advance Care Planning and Decision-Making Support

The World Health Organization (WHO) describes palliative care as services that must be considered for all patients with life-threatening conditions such as cardiovascular diseases and respiratory diseases. Many patients with heart failure are suffering from total pain and healthcare professionals should support patients with heart failure and their family members from early stages of the disease in a multidisciplinary setting to improve their QOL. In 2014, WHO has reported that nearly 40% of adults who need palliative care have cardiovascular diseases. Although the number of elderly patients with heart failure, are increasing year by year, their recognition about prognosis is substantially more optimistic than the real situation. Also, it is often difficult to introduce palliative care in a timely manner. Advance care planning (ACP) is an important step to help individual patients prepare for future changes in their disease condition. ACP is a process...
Contents of Treatment/Lifestyle Education and Support for Patients With Heart Failure, Family Members, and Caregivers

Contents of education	Specific education/support methods
Knowledge on heart failure	• Definition, causes, symptoms, and clinical course
• Severity assessment (laboratory findings)	
• Factors of worsening heart failure	
• Comorbidities	
• Drug and nonpharmacologic therapy	
• Provide information using appropriate materials suitable for individual patient’s comprehension and health literacy	
Self-monitoring	• Necessity and importance of symptom monitoring by patients themselves
• Self-monitoring skills	
• Utilizing patient diaries	
• Encourage patients to recording in their diaries and utilize recorded information for better practice and patient education	
Management of disease worsening	• Symptoms of worsening heart failure and assessment
• How to contact healthcare professionals when disease worsens	
• Instruct patients to visit clinic when symptoms of worsening heart failure (e.g., dyspnea, swelling, body weight gain by >2 kg in 3 days) develop, and explain how to contact the clinic	
Adherence to treatment	• Name of drugs, expected effects, how to take drugs, adverse drug reactions
• Importance of taking drugs as directed	
• Purpose of device therapy, and how to handle devices during daily life	
• Provide information using appropriate materials suitable for individual patient’s comprehension and health literacy	
• Evaluate adherence to treatment periodically	
• Patients with poor adherence should be educated and supported by healthcare professionals	
Infection control and vaccination	• Infections as factors worsening heart failure
• Necessity of vaccinations against influenza and pneumonia	
• Provide knowledge on how to prevent infections during daily life	
• Provide information on the timing of vaccinations	
Salt and water management	• Risk of excessive water intake
• Limit water intake in patients with severe heart failure	
• Appropriate salt intake (<6 g/day)	
• Importance of maintaining an appropriate body weight	
• Explain how to measure water intake in detail	
• Explain how to reduce salt intake efficacy using educational materials	
• Observe patients for symptoms of decreased appetite due to salt restriction	
Nutritional management	• Importance of well-balanced diet
• Menus considering the nature of complications	
• Observe patients periodically for nutritional status	
• Provide nutritional guidance based on the individual patient’s physical status (e.g., swallowing function) and life style	
• Explain that reduced meal size and appetite may be signs of worsening heart failure	
(Table 73 continued the next column.)	

Contents of education	Specific education/support methods
Alcohol	• Risk of excessive alcohol consumption
• Suggest appropriate alcohol consumption based on the individual patient’s causes of heart failure	
Smoking cessation	• Importance of quit smoking
• See the "Guidelines for Smoking Cessation (JCS 2010)"	
Physical activity	• Importance of appropriate physical activity during stable conditions
• Importance of bed rest and activity restrictions during worsening heart failure	
• Negative effects of excessive bed rest (e.g., decreased exercise capacity)	
• Evaluate exercise capacity and skeletal muscles	
• Evaluate activities of daily living regularly	
• Considering the individual patient’s physical function and living environment, assess the risk of fall and provide detailed guidance on physical activities during daily life	
Bath	• How to take a bath appropriately
• Instruct appropriate methods according to the severity of heart failure and living environment	
Travel	• Precautions during travel (drug therapy, water intake, meals, and physical activity)
• Risk of worsening heart failure during travel	
• How to manage worsening heart failure during travel	
• Explain possible effects of changes in contents and timing of meals, weather and climates, and physical activities, etc. during travel on the condition of heart failure	
• Provide information on pre-travel preparation	
Sex life	• Effects on sexual activity on heart failure
• Relationship between heart failure medications and sexual function	
• Precautions for using erectile dysfunction medications	
• Explain that sexual activity may worsen heart failure	
• Refer to specialist physicians whenever necessary	
Mental support	• Heart failure and mental/psychological changes
• Stress management during daily life	
• Evaluate psychiatric symptoms periodically	
• Explain the importance and methods of stress management during daily life	
• When worsening psychiatric symptoms are suspected, consult the patient to psychiatrists, psychosomatic medicine specialists, and clinical psychotherapists	
Periodic hospital visits	• Importance of periodic clinic visits
• Before discharge, confirm appointments for out-patient clinic visits after discharge	
• Instruct patients to contact medical institutions promptly when symptoms worsen regardless of visit schedule
• Ensure easy access to healthcare professionals (e.g., Telephone consultation, and utilization of social resources) |
to share decisions what the patient and his or her family members decided about what treatment they want and what way of life they want to lead in advance, before the patient becomes difficult to make his or her own decisions. It has been recommended that ACP should be conducted at an annual heart failure review and at the end of hospitalization during which clinical milestones that trigger review of treatment strategies occurred (Table 77). The aim of ACP is to avoid unwanted, invasive treatments near death and improve the quality of death. A randomized controlled trial of ACP in non-cancer patients has reported its benefits. ACP may include completion of an advance directive, a document that describes the patient’s preferences about end-of-life care. Specifically, the patient may make shared decision making, with support from a multidisciplinary team, about Do Not Attempt Resuscitation (DNAR) orders and policies on whether or not to discontinue device therapy such as implantable cardioverter defibrillators (ICDs), cardiac resynchronization therapy (CRT), and left ventricular assist device (LVADs), and prepare an advance directive. At this time, the patient should be informed that he or she can change the contents of the advance directive at any time. When necessary, the patient may designate another person to make health care decisions for him or her when the patient becomes unable to make health care decisions. In the guidelines for decision making with end-of-life care published by the Ministry of Health, Labor and Welfare in 2007, a flow process to determine medical and care policies at the end of life is described (Figure 15). “The statement on the treatment of elderly patients with heart failure” published by the Japanese Heart Failure Society in 2016 describes the importance of pain-relieving treatment for elderly patients and the roles of multidisciplinary conferences and ACP. In 2016, the Japanese Society of Intensive Care Medicine published “Advice on Do Not Attempt Resuscitation (DNAR) Order” to describe that ACR is not a procedure just to determine DNAR policies but is an important process to share the patient’s values and philosophy on life and death with healthcare professionals.
2. End-Stage Heart Failure and Indication for Palliative Care

End-stage heart failure is defined as a heart condition that doesn’t respond to maximal medical or on-pharmaceutical treatments. End of life is defined as the period in which death is imminent due to repeated or rapid worsening of an illness and there is little likelihood of cure. However, patients with advanced chronic heart failure show a clinical course different from that of patients with cancer. It is often difficult to know the end of life is approaching in patients with advanced heart failure (Figure 16). The 2013 ACCF/AHA guideline for the management of heart failure described end-stage heart failure as Stage D heart failure, defined as “patients with truly refractory heart failure who might be eligible for specialized, advanced treatment strategies, such as mechanical circulatory support, procedures to facilitate fluid removal, continuous inotropic infusions, or cardiac transplantation or other innovative or experimental surgical procedures, or for end-of-life care, such as hospice.” The 2016 ESC guidelines for the diagnosis of treatment of acute and chronic heart failure defined heart failure requiring end-of-life care as the conditions, including:

- progressive functional decline (physical and mental) and dependence in most activities of daily living
- severe heart failure symptoms with poor quality of life despite optimal pharmacological and nonpharmacologic therapies
- frequent admissions to hospital or other serious episodes of decompensation despite optimal treatment
- heart transplantation and mechanical circulatory support ruled out
- cardiac cachexia
- clinically judged to be close to end of life

In Japan, the Japanese Circulation Society published the “Statement for End-stage Cardiovascular Care” in 2010. All of these guidelines assume that patients with heart failure receive appropriate treatment throughout the disease course, which clearly differs from the situation of cancer treatment where end-stage patients often do not receive aggressive treatment. To alleviate their signs and symptoms, patients should be treated for heart failure and its complications throughout the life. Moreover, palliative care is not the same as end-of-life care, and is not indicated only for patients nearing the end of life (Figure 17). Palliative care should be initiated in the early phase of heart failure where symptoms begin. ACP should be conducted in the early phase as well, and a multidisciplinary team should repeatedly assess the physical, psychological, and mental needs of patients (Table 78).

3. Importance of Multidisciplinary Approaches

In order to prevent and remove total pain in patients with heart failure, a multidisciplinary approach is essential. A team of physicians, nurses, pharmacists, clinical psychotherapists, physical therapists, registered dieticians, medical social workers, clinical engineers and other health care experts should address this issue.
Typical symptoms of end-stage heart failure include dyspnea, generalized malaise, pain, anorexia, and depression.

4. Symptoms and Treatment of End-Stage Heart Failure

It has been reported that 60 to 88% of patients with end-stage heart failure have dyspnea, 69 to 92% have generalized malaise, and 35 to 68% have pain.\(^{556-558}\) It has also been reported that 70% of patients hospitalized for end-stage heart failure have depression.\(^{559}\) As heart failure itself is considered to lease these problems through causing fluid retention and low cardiac output, heart failure treatment in Stage D should be continued in combination with the following treatments to control these symptoms.

4.1 Dyspnea

It has been reported that low-dose morphine and other opioids are safe and effective in releasing intractable dyspnea.\(^{560,561}\) However, opioids may cause adverse drug reactions such as nausea, vomiting and constipation. Careful dose adjustment is required especially in elderly patients and patients with renal dysfunction to prevent overdosage, which may lead to respiratory depression in some patients.

4.2 Pain

A study has reported that the prevalence of pain increases as NYHA functional class worsens.\(^{562}\) Nonsteroidal anti-inflammatory drugs (NSAIDs) should be avoided whenever possible as they may worsen renal dysfunction and fluid retention in patients with end-stage heart failure. It is recommended that acetaminophen, a non-opioid analgesic, should be tried first and then opioids should be added if pain in difficult to control.
4.3 Generalized Malaise

Patients should be examined not only for low cardiac output but also for depression, hypothyroidism, anemia, overuse of diuretics, electrolyte imbalance, sleep apnea, and occult infections, and should be treated accordingly. As pharmacotherapy is often ineffective in alleviating this condition, and nonpharmacologic therapy such as energy-conservation techniques may work in some patients.563

4.4 Depression and Anxiety

In patients with heart failure, depression predicts poor prognosis and is also associated with poor QOL.564 Depression is commonly treated with selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors, and noradrenergic and specific serotonergic antidepressants, but it has been recently reported that concomitant use of β-blockers and SSRIs may increase the risk of death,565 and antidepressants may not always improve the prognosis of patients with heart failure.566-568

Figure 15. Process of end-of-life medical/care planning. (Adapted from The Ministry of Health, Labor and Welfare, 2017548)

Figure 16. Models of end-stage treatment in chronic heart failure and cancer. ADL, activities of daily livings. (Adopted from: Lynn J. 2001552 with modification)
Tricyclic antidepressants should be used with caution as they may prolong QT intervals and cause anticholinergic effects. Benzodiazepines are the first-line treatment for anxiety. Nonpharmacologic therapy such as cardiac rehabilitation and expert counseling are beneficial as well.

4.5 Delirium

Delirium often develops in patients with end-stage heart failure, especially in elderly. Delirium should be differentiated from dementia and depression, and early intervention should be offered to prevent severe delirium. When delirium develops in a patient with heart failure, the physician should review his/her treatment and environment for whether or not he/she uses drugs that may induce or worsen delirium (e.g. antihypertensives, β-blockers, antiarrhythmics, sympathomimetics, anticholinergics, hypnotics, and antianxiety drugs), take appropriate safety measures, and, if the condition is severe, consult him/her to a psychiatrist and consider for antipsychotic therapy.

4.6 End-of-Life Pain

As the final measure for patients suffering from uncontrollable pain, an appropriate amount of midazolam, a benzodiazepine drug, may be administered.

4.7 Deactivation of Medical Devices

When the patient’s clinical status reaches the end-of-life stage, the patient, his/her family members and the palliative care team should discuss fully to determine whether to deactivate his/her ICD, pacemaker or CRT. In the “Concept of optimizing the indications for ventricular assist devices in Japan: Destination therapy (DT),” the Japan VAD Council has recommended that the physician should explain about end-stage cardiovascular care to the patient and his or her family members before implanting cardiac devices, inform that he/she has an option to deactivate his/her implantable LVAD at the end-of-life stage, and recommend him/her to describe his/her preferences in an advance directive. Healthcare professionals should explain to patients about potential problems of DT (e.g., device malfunction, serious LVAD-related complications, status of comorbidities, and poor QOL after LVAD implantation) fully in advance, and help them plan how to address such problems in future according to the patients’ own life philosophy and values. This process is called “preparedness planning.” The guidelines on the use of implantable LVADs proposed by the Japanese Circulation Society and the Japanese Society for Cardiovascular Surgery in 2013, and the guidelines on end-stage care for patients in emergency room or ICU proposed by the Japanese Association for Acute Medicine, the Japanese Society of Intensive Care

Table 78. Recommendations and Levels of Evidence for Palliative Care for Patients With End-Stage Heart Failure

Class of Recommendation	Level of Evidence	Grade of Evidence (MINDS)	Level of Evidence (MINDS)	
Conduct advance care planning (ACP) in which physicians share decisions with the patient and his/her family members about treatment and care before the patient becomes difficult to make his or her own decisions	I	B	B	II
Continued treatment to manage heart failure and complications and relieve symptoms	I	C	B	II
Multidisciplinary team-based frequent assessment for the patient’s physical, mental and spiritual needs	II	C	C1	VI

Figure 17. Models of palliative care in heart failure. (Adopted from: Gibbs JS, et al. 2002 with modification)
Circulation Journal Vol.83, October 2019

5. Early Introduction of Palliative Care for Heart Failure

The introduction of palliative care for heart failure does not mean abandoning hope for cure. Palliative care is conducted to improve the QOL of the patient and his or her family members, and is continued together with standard heart failure treatment. Accordingly, palliative care should be initiated in the early phase of the disease rather than considering near the end of life.

XIV. Future Treatment

1. Ivabradine (If-Channel Blocker)

Ivabradine decreases heart rate by blocking If channels of sinus node cells. It is indicated only for patients with sinus rhythm. In a randomized, double-blind, placebo-controlled trial of ivabradine in patients who had HFrEF (LVEF <35%), were in sinus rhythm with a heart rate ≥70bpm, had been admitted to hospital for heart failure within the previous year, and were receiving a β-blocker at the recommended or maximum tolerated dose, an angiotensin converting enzyme (ACE) inhibitor (or an ARB), and/or a mineralocorticoid receptor antagonist, ivabradine significantly reduced the composite of cardiovascular death or hospital admission for worsening heart failure.575 This study revealed that increased heart rate is a risk factor in patients with HFrEF in sinus rhythm, and lowering heart rate is an important target for treatment of heart failure.576

2. Sacubitril/Valsartan (ARNI)

Sacubitril/valsartan (LCZ696) is a new class of drug named as an angiotensin receptor neprilysin inhibitor (ARNI), and consists of valsartan, an ARB, and sacubitril (AHU-377), a prodrug of a neprilysin inhibitor, in a 1:1 mixture. Sacubitril is converted to the active form LBQ657, which exerts an inhibitory effect on neprilysin 3 to 4 hours after absorption. LBQ657 mainly inhibits the degradation of endogenous natriuretic peptide but does not inhibit ACE or aminopeptidase P. Therefore, it does not enhance the degradation of bradykinin, and the risk of angioedema is expected to be low. The half-life of LBQ657 is 12 hours and that of valsartan is 14 hours. Sacubitril/valsartan is administered twice daily.

The Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial has revealed that sacubitril/valsartan is superior to ACE inhibitor enalapril in improving prognosis.577 ESC and ACC/AHA Guidelines recommended the replacement from ACE inhibitor to ARNI for HFrEF and the inhibition of the renin-angiotensin system with ACE inhibitors, ARBs, or ARNI in patients with HFrEF as Class I recommendations with Level of Evidence B.14,578

In Japan, the Prospective comparison of ARNI with ACE inhibitor to determine the novel beneficial treatment value in Japanese Heart Failure patients (PARALLEL-HF), a phase III randomized double-blind trial to obtain the approval from the government, is underway.579 Sacubitril/valsartan reduced plasma NT-proBNP levels to a greater extent than did valsartan at 12 weeks in heart failure with preserved ejection fraction (HFrEF) in the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction (PARAMOUNT) trial.580 The Prospective Comparison of ARNI with ARB Global Outcomes in HF With Preserved Ejection Fraction (PARAGON-HF) trial, a large-scale clinical trial to investigate the effects of sacubitril/valsartan on clinical outcomes is underway in countries including Japan. These large-scale clinical trials are expected to provide further evidence on the benefits of ARNI in patients with heart failure.

3. Vericiguat (cGS Activator)

In patients with heart failure, endothelial dysfunction and increased production of reactive oxygen species (ROS) reduce the production and bioavailability of nitric oxide (NO) and activity of the NO receptor, soluble guanylate cyclase (sGC), resulting in decreased activation of cyclic guanosine monophosphate (cGMP), as well as conversion to the NO-insensitive (inactive) sGC by ROS. Accordingly, cGMP-mediated intracellular signaling has attracted attention as a potential treatment target in HFrEF and HfPEF.581-583 Vericiguat is a novel sGC stimulator that directly stimulates sGC to promote NO production in a NO-independent manner via a site other than the NO binding site and also synergizes with NO.581,583

In a dose-finding phase II randomized controlled study of vericiguat in patients with HFrEF with a LVEF of <45% (the SOCRATES-REDUCED trial in the Soluble guanylate Cyclase stimulator in heart failure Study [SOCRATES] program),584 patients who were clinically stable with LVEF <45% within 4 weeks of a worsening chronic heart failure event received placebo (n=92) or 1 of 4 daily target doses of oral vericiguat (1.25 mg, 2.5 mg, 5 mg, or 10 mg: n=91 for each dose) for 12 weeks. The primary endpoint, change from baseline to week 12 in log-transformed NT-proBNP level, was not significantly different between the pooled 3-highest-dose vericiguat group and placebo group, but a secondary analysis revealed that higher vericiguat doses were significantly associated with greater reductions in NT-proBNP level.585

As vericiguat was shown to be tolerable in patients with HFrEF in phase II studies, the drug is currently being evaluated in a global phase III placebo-controlled randomized clinical trial called the Vericiguat Global Study in Subjects With Heart Failure With Reduced Ejection Fraction (VICTORIA) trial.586 The VICTORIA trial plans to
enroll a total of 4,872 patients with NYHA class II to IV heart failure and LVEF >45% by the end of 2020, and will follow them for approximately 3.5 years. The primary endpoint is time to first occurrence of composite endpoint of cardiovascular death or heart failure hospitalization. The trial is conducted in many countries including Japan.

Phase III trials of vericiguat are expected to generate evidence that help position this drug in the treatment of heart failure, which will be described in the relevant guidelines including Western guidelines in the future.

4. Omecamtiv Mecarbil (Cardiac Myosin Activator)

As omecamtiv mecarbil increase the transition rate of myosin from weakly to strongly actin-bound force-generating state and thereby increase myocardial contractility, this drug is expected to increase cardiac function without increasing intracellular calcium concentration and worsening prognosis.

In phase II clinical trial of intravenous omecamtiv mecarbil in patients with HFrEF, left ventricular ejection time and stroke volume increased proportionally with plasma concentration of omecamtiv mecarbil, and higher plasma concentrations were also associated with reductions in left ventricular end-systolic and end-diastolic volumes. Heart rate decreased slightly but significantly. Cardiac ischemia developed in some patients receiving higher doses of the drug.

In a following large-scale randomized controlled trial, the Acute Treatment with Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure (ATOMIC-AHF), 606 patients with acute heart failure who had LVEF ≤40%, elevated natriuretic peptide level, and persistent dyspnea received omecamtiv mecarbil at 3 escalating intravenous doses. Omecamtiv mecarbil resulted in significantly greater dyspnea relief in the higher-dose group as compared with the control group, but plasma troponin levels were significantly higher in patients treated with omecamtiv mecarbil compared with placebo.

In the Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF) trial, a clinical study of oral omecamtiv mecarbil in 448 patients with HFrEF, patients receiving the drug at 25 mg twice daily titrated to 50 mg twice daily guided by pharmacokinetics had longer systolic ejection time, larger cardiac output, smaller left ventricular end-systolic diameter, and lower heart rate than the control group.

A phase III study in about 8,000 patients with HFrEF to evaluate the effect of omecamtiv mecarbil on the risk of cardiovascular death or heart failure events, the Global Approach to Lowering Adverse Cardiac Outcomes Through Improving Contractility in Heart Failure (GALACTIC-HF) trial, is currently ongoing.

Figure 18. Treatment of mitral valve insufficiency with MitraClip®. (Figures courtesy of Abbott Vascular Japan Co., Ltd.)
5. Percutaneous Mitral Valve Repair System (MitraClip®)

Percutaneous mitral valve repair should be considered for patients with mitral valve insufficiency for whom mitral repair is expected to reduce symptoms and improve QOL but surgical risk is high. In Japan, MitraClip® has become available recently (Figure 18). This system facilitates early ambulation after surgery. Symptomatic improvement reported by patients receiving this procedure on day 30 after the procedure is better than those undergoing thoracotomy.

6. Human (Autologous) Skeletal Muscle-Derived Cell Sheet (HeartSheet®)

Myoblast sheet is a cell therapy technology for severe heart failure, and five sheets, each contains 6×10^7 myoblasts, are applied on the epicardium to cover the anterior and lateral walls of the left ventricle through a left lateral thoracotomy. The implanted myoblast sheets secrete cytokines such as hepatocyte growth factor, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal derived factor-1 that are considered to promote neovascularization, induce stem cells, and inhibit fibrosis, and thereby improve cardiac function. In animal models of heart failure, the sheet improved cardiac function and prolonged survival.

It has been reported that among 4 patients with dilated cardiomyopathy supported by a LVAD who received the autologous myoblast sheet implantation, two patients showed an improvement in cardiac function and could remove the LVAD. Safety and efficacy of the myoblast sheet technology for treatment of ischemic cardiomyopathy were demonstrated in clinical research and a multi-center company-sponsored study, and the sheet was approved as the world’s first tissue-engineered medical product, HeartSheet®, under the fast-track designation and reimbursed by the National health Insurance.

Investigator-initiated studies are now underway to assess the efficacy and safety of the product in the treatment of children and adults with dilated cardiomyopathy.

7. Waon Therapy

In Waon therapy, a thermal therapy developed in Japan, patients stay in a far-infrared dry sauna at 60°C for 15 minutes, and then maintain body temperature for 30 minutes after sauna bath.

It has been reported that Waon therapy is beneficial in improving hemodynamics, left ventricular function, heart failure symptoms, QOL and exercise capacity, and peripheral vascular endothelial function, and reducing heart rate variability in patients with heart failure. A retrospective study has revealed that Waon therapy significantly reduced the risk of death and rehospitalization for worsening heart failure, and improved the prognosis of patients with chronic heart failure. In the WAON-CHF trial, a multicenter prospective randomized trial in 149 patients treated in 19 medical institutions, patients receiving Waon therapy once daily for 10 days showed improvement in BNP levels, NYHA functional class, 6-minute walk distance, and cardiothoracic ratio and a favorable safety profile. However, no significant difference between the Waon therapy group and the control group was found in the change in BNP from before and after treatment, which was the primary endpoint of the study.

At present, Waon therapy in the treatment of heart failure is not covered by the National Health Insurance in Japan.
Supplement 1. A Statement on Appropriate Use of Adaptive Servo-Ventilation (ASV) by the Japanese Circulation Society and the Japanese Heart Failure Society (the Second Statement)

1) Adaptive Servo-Ventilation (ASV) for patients whose conditions are similar to the participants in the SERVE-HF trial (patients with heart failure who have predominant central sleep apnea and stable left ventricular systolic dysfunction with left ventricular ejection fraction [LVEF] ≥45%)

The introduction and continuation of ASV in these patients are not contraindicated, but careful consideration is required. In the clinical practice, it is desirable that, as described in the relevant guidelines in Japan,1,2 patients should be first considered for continuous positive airway pressure (CPAP) and then ASV should be considered only for patients who still have sleep apnea despite CPAP or are intolerable to CPAP. After initiating ASV, patients should be observed carefully for clinical conditions, and should be considered for switching to CPAP whenever possible. Healthcare professional should fully inform patients and their family members of the advantages and disadvantages of ASV on the basis not only the relevant guidelines in Japan but also the results of small-scale clinical studies,4 the SERVE-HF study,5 and SAVIOR-C trial,6 Western guidelines, and regulations for use of ASV by regulatory authorities to obtain informed consent from patients to introduce and continue taking ASV.

2) ASV for patients who do not meet the above criteria 1 but have heart failure and sleep apnea (e.g. those with predominant obstructive sleep apnea, and those with sleep apnea and heart failure with preserved ejection fraction [LVEF >45%])

At present, there are no reasons to limit the introduction and continuation of ASV in these patients. However, patients should be observed carefully for their clinical course during the introduction and continuation of ASV to ensure safety of treatment. Patients should first be considered for CPAP, and receive ASV only when it is necessary (the coverage with the National Health Insurance should be reviewed individually).

3) ASV for patients with or without sleep apnea in whom ASV has been effective in the treatment of severe congestion

ASV may be continued in patients with heart failure in whom severe congestion was not alleviated with conventional medical treatment but was successfully treated with ASV when physicians consider that discontinuing ASV would worsen heart failure, regardless of whether sleep apnea is present or not. However, it should be considered whether patients can withdraw from ASV or switch from ASV to other procedures when they become clinically stable or when 6 months has passed since the introduction of ASV. At this time, patients should be assessed for sleep apnea and those with sleep apnea should be treated according to the criteria 1 and 2 above.

4) ASV for patients who do not meet any of the criteria 1 to 3

This statement does not describe the use or appropriateness of ASV for patients who do not meet any of the criteria 1 to 3.

5) ASV in clinical research

No restrictions are placed on the use of ASV in clinical research that is conducted according to the ethical standard at the medical institution even when participating patients have conditions similar to those in the SERVE-HF trial. However, investigators must fully explain to participants and their family members the usage of ASV in non-research settings, as well as the results of small-scale studies, the SERVE-HF trial, and the SAVIOR-C trial before obtaining informed consent. Investigators of ongoing clinical research of ASV must share the results of the SERVE-HF trial as new safety guidelines with all relevant healthcare professionals at participating medical institutions.

6) Other remarks

The above criteria 1 to 5 will be revised and updated when new information is available in the SERVE-HF trial or other studies.

1) The Japanese Circulation Society. Circ J 2010; 74 (suppl. II): 963–1051.
2) Guidelines on Positive Pressure Ventilation (NPPV), Second Revision Nankodo 2015.
3) Aurora RN, et al. J Clin Sleep Med 2016; 12: 757–761.
4) Cowie MR, et al. N Engl J Med 2015; 373: 1095–1105.
5) Momomura S, et al. Circ J 2015; 79: 981–990.
(Adapted from The Japanese Circulation Society271)

Supplement 2. Effects of Exercise Therapy in Heart Failure

1) Exercise capacity: Improvement

2) Effects on the heart
 a) Left ventricular function: No change or slight improvement in LVEF at rest, increase in the increment of cardiac output during exercise, and improvement in left ventricular early diastolic function
 b) Coronary circulation: Improvement in coronary endothelial function, improvement in myocardial perfusion during exercise, and increase in coronary collateral flow
 c) Left ventricular remodeling: Prevention (or inhibition) of progression, decrease in BNP

3) Peripheral effects
 a) Skeletal muscle: Increase in muscle mass/strength, improvement in aerobic metabolism, and increase in expression of antioxidant enzymes
 b) Respiratory muscles: Improvement in respiratory muscle function
 c) Vascular endothelium: Improvement in endothelium-dependent vasodilation responses, and increase in expression of eNOS

4) Neurohumoral factors
 a) Autonomic nervous system function: Suppression of sympathetic nervous activity, increase in parasympathetic activity, and improvement in heart rate variability
 b) Ventilatory response: Improvement in ventilatory response and CO2 sensitivity of the respiratory center
 c) Inflammatory markers: Decreases in inflammatory cytokines (e.g., TNF-α) and CRP

5) QOL: Improvement in health-related QOL

6) Long-term prognosis: Decrease in hospitalizations due to heart failure

BNP: brain (B-type) natriuretic peptide; CRP, C-reactive protein; eNOS, endothelial nitric oxide synthase; LVEF, left ventricular ejection fraction; QOL, quality of life; TNF, tumor necrosis factor. (Adapted from The Japanese Circulation Society248 with modification)
Supplement 3. Contraindications in Exercise Therapy for Patients With Heart Failure

I. Absolute contraindications
1) Exacerbation of heart failure symptoms (e.g., dyspnea, easy fatigability) during the last 3 days
2) Unstable angina or low-threshold myocardial ischemia that is induced by slow walking on a flat surface (2 METs)
3) Severe valvular disease indicated for surgery, especially aortic stenosis
4) Severe left ventricular outflow tract stenosis (hypertrophic obstructive cardiomyopathy)
5) Untreated exercise-induced arrhythmia (ventricular fibrillation, sustained ventricular tachycardia)
6) Active myocarditis/pericarditis
7) Acute systemic disease or fever
8) Other diseases in which exercise therapy is contraindicated (moderate or severe aortic aneurysm, severe hypertension, thrombophlebitis, embolism within past 2 weeks, and serious organ diseases)

II. Relative contraindications
1) NYHA Class IV or hemodynamically unstable heart failure
2) Heart failure with an increase in body weight by ≥2 kg during the last week
3) Exercise-induced decrease in systolic blood pressure
4) Moderate left ventricular outflow tract stenosis
5) Exercise-induced moderate arrhythmia (e.g., nonsustained ventricular tachycardia, tachycardiac atrial fibrillation)
6) Advanced atrioventricular block, exercise-induced Mobitz type II atrioventricular block
7) Occurrence or exacerbation of exercise-induced symptoms (e.g., fatigue, dizziness, excessive sweating, dyspnea)

III. Not contraindicated
1) Elderly patients
2) Decreased LVEF
3) Use of ventricular assist devices (LVADs)
4) Use of implantable cardiac devices (e.g., ICDs, CRT-D)

CRT-D, cardiac resynchronization therapy defibrillator; ICD, implantable cardioverter defibrillator; LVEF, left ventricular ejection fraction; LVAD, left ventricular assist device; METs, metabolic equivalents; NYHA, New York Heart Association. (Adapted from The Japanese Circulation Society¹⁴⁸ with modification)

Supplement 4. Exercise Prescriptions for Patients With Heart Failure

Type of exercise
• Walking (begin with supervised indoor walking), cycle ergometer, light aerobics, low-intensity resistance training (for patients with muscle weakness)
• Jogging, swimming, and vigorous aerobics are not recommended

Exercise intensity
[Early phase]
• Indoor walking at 50 to 80 m/min for 5 to 10 min or a cycle ergometer at 10 to 20 W for 5 to 10 min
• The duration and intensity of exercise should be increased gradually over 1 month as guided by signs/symptoms during exercise

[Goal in the stable phase]
• The target heart rate (HR) is set at 40 to 60% of the peak VO2 or at anaerobic threshold level
• The target HR is set at 30 to 50% of HR reserve, or 50 to 70% of the maximum HR
• Target rating of perceived exertion (RPE) is set at Borg scale 11 (fairly light) to 13 (somewhat hard)

Duration
• Start with 5 to 10 min/session, 2 sessions a day, and then increase gradually from 30 to 60 min/day

Frequency
• 3 to 5 days/week (3 days/week for patients with severe heart failure, and may be increased up to 5 days/week for those with stable condition)
• Low-intensity resistance training may be added at a frequency of 2 to 3 days/week

Precautions
• Exercise during the first month should be light in intensity and careful monitoring for worsening heart failure should be made
• Start with supervised training and then combine with non-supervised (home-based) exercise training during the stable phase
• Changes in subjective symptoms, physical findings, body weight, and blood BNP or NT-proBNP levels should be observed carefully

BNP, brain (B-type) natriuretic peptide; NT-proBNP, N-terminal pro-brain (B-type) natriuretic peptide. (Adapted from The Japanese Circulation Society¹⁴⁸ with modification)
References

1. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. *Eur J Heart Fail* 2012; 14: 803–869. PMID: 22828712

2. Guidelines for the evaluation and management of heart failure. Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Evaluation and Management of Heart Failure). *J Am Coll Cardiol* 1995; 26: 1376–1398. PMID: 7594057

3. Hunt SA, Baker DW, Chin MH, et al. ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Failure Society of America. *Circulation* 2001; 104: 2996–3007. PMID: 11739319

4. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society. *Circulation* 2005; 112: e154–e235. PMID: 16160202

5. Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation. *Circulation* 2009; 119: e391–e479. PMID: 19124966

6. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Committee for Practice Guidelines (CPG). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). *Eur J Heart Fail* 2008; 10: 933–992. PMID: 18826767

7. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. *Circulation* 2013; 128: e240–e327. PMID: 23741058

8. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. *Circulation* 2017; 136: e137–e161. PMID: 28455543

9. Guidelines for the diagnosis of heart failure: The Task Force on Heart Failure of the European Society of Cardiology. *Eur Heart J* 1995; 16: 741–751. PMID: 7588917

10. The treatment of heart failure. Task Force of the Working Group on Heart Failure of the European Society of Cardiology. *Eur Heart J* 1997; 18: 736–753. PMID: 912644

11. Remme WJ, Swedberg K. Task Force for the Diagnosis and Treatment of Chronic Heart Failure, European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure. *Eur Heart J* 2001; 22: 1527–1560. PMID: 11492984

12. Swedberg K, Cleland J, Dargie H, et al. Guidelines for the diagnosis and treatment of chronic heart failure: Executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. *Eur Heart J* 2005; 26: 1115–1140. PMID: 15901669

13. Nieminen MS, Böhm M, Cowie MR, et al. ESC Committee for Practice Guideline (CPG). Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: The Task Force on Acute Heart Failure of the European Society of Cardiology. *Eur Heart J* 2003; 24: 384–416. PMID: 15681577

14. Ponikowski P, Voors AA, Anker SD, et al. Authors/Task Force Members. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. *Eur Heart J* 2016; 37: 2129–2200. PMID: 27206819

15. Mind Treatment Guideline Selection Committee, supervisor. Fukui T, Yoshida M, Yamaguchi N, editors. Minds handbook for clinical practice guideline development, 2007. Tokyo: Igaku Shoin, 2007.

16. Ponikowski P, Voors AA, Anker SD, et al. Authors/Task Force Members. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. *Eur Heart J* 2016; 37: 2129–2200. PMID: 27206819

17. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. *N Engl J Med* 2006; 355: 251–259. PMID: 16855265

18. Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis...
of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous-Doppler-catheterization study. *Circulation* 2000; 102: 1788 – 1794. PMID: 11023933

99. Geseke JB, Soraja P, Nishimura RA, et al. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: Correlation with direct left atrial pressure measurement and the catheterization pressure. *Circulation* 2007; 116: 2702 – 2708. PMID: 18025528

100. Pritchett AM, Mahoney DW, Jacobsen SJ, et al. Diastolic dysfunction and left atrial volume: A population-based study. *J Am Coll Cardiol* 2005; 45: 87 – 92. PMID: 15629380

101. Nagaei SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *Eur Heart J Cardiovasc Imaging* 2016; 17: 1231 – 1360. PMID: 27472699

102. Andersen OS, Smiseth OA, Døkkan H, et al. Estimating left ventricular filling pressure by echocardiography. *J Am Coll Cardiol* 2017; 69: 1937 – 1948. PMID: 28408024

103. Donal E, Lund LH, Oger E, et al. KaRen investigators. Value of exercise echocardiography in heart failure with preserved ejection fraction: A sub-study from the KaRen study. *Eur Heart J Cardiovasc Imaging* 2016; 17: 106 – 113. PMID: 26082167

104. Picano E, Pellikka PA. Ultrasound of extracardiac lumen: A new standard for pulmonary congestion. *Eur Heart J* 2016; 37: 2097 – 2101. PMID: 27174289

105. Karamitsos TD, Francis JM, Myerson S, et al. The role of biomarkers in the diagnosis of dilated cardiomyopathy: A systematic review and meta-analysis. *Eur Heart J* 2019; 40: 2133 – 2140. PMID: 30765524

106. The Japanese Circulation Society. Guidelines for Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy (JCS2012). http://www.j-circ.or.jp/guideline/pdf/JCS2012_dot_h.pdf

107. The Japanese Circulation Society. Guidelines for Management of Dilated Cardiomyopathy and Secondary Cardiomyopathy (JCS 2011). http://www.j-circ.or.jp/guideline/pdf/JCS2011_tomoike_h.pdf

108. Babu-Narayan SV, Giannakoulas G, Valente AM, et al. Imaging of ischaemic heart failure using 123I-metaiodobenzylguanidine scintigraphy for predicting sudden cardiac death in patients with heart failure. *Int Heart J* 2016; 57: 140 – 144. PMID: 26973278

109. Yamazaki J, Muto H, Kabano T, et al. Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy—Clinical meaning of iodine-123-metabolobenzylguanine myocardial single-photon emission computed tomography. *Am J Cardiol* 2001; 88: 645 – 652. PMID: 11275933

110. The Japanese Circulation Society. Guidelines for the evaluation of left ventricular ejection fraction by radionuclide cardiography: Evaluation by the method of variance components. *Br Heart J* 1988; 59: 653 – 662. PMID: 3395524

111. Ghostine S, Caussin C, Habis M, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. *Eur Heart J* 2008; 29: 2133 – 2140. PMID: 18385120

112. The Japanese Circulation Society. Guidelines for Diagnostic and Treatment of Cardiac Amyloidosis (JCS 2016). http://www.j-circ.or.jp/guideline/pdf/JCS2016_terasaki_h.pdf

113. The Japanese Intractable Diseases Information Center. idiopathic dilated cardiomyopathy—Clinical meaning of iodine-123-metabolobenzylguanidine myocardial single-photon emission computed tomography. *Am J Cardiol* 2000; 85: 939 – 944. PMID: 10760330

114. Le Guludec D, Gauthier H, Porcher R, et al. Prognostic value of radionuclide angiography in patients with right ventricular arrhythmias. *Circulation* 2001; 103: 1972 – 1976. PMID: 11306526

115. The Japanese Circulation Society. Guidelines for Diagnosis and Treatment of Cardiac Sarcoidosis (JCS 2016). http://www.j-circ.or.jp/guideline/pdf/JCS2016_terasaki_h.pdf

116. The criteria committee of the New York Heart Association. In: Yasuda H, Kawaguchi H, editors. New aspects in the treatment of failing heart syndrome. Springer-Verlag, 1992: 113 – 117.

117. The Japanese Intractable Diseases Information Center. idiopathic dilated cardiomyopathy (IDCM) (Designated intractable disease category B). http://www.idcn.or.jp/idcm/3960

118. Onishi Y, Sato H, Koretsune Y, et al. Study on distribution of normal values and factors determining 6-minute walking distance. *Jpn Circ J* 1998; 61(Suppl III): 856.

119. Stavaric V, Weiner DH, Yusuf S, et al. SOLVD Investigators. Prediction of mortality and morbidity with 6-minute walk test in patients with left ventricular dysfunction. *JAMA* 1993; 270: 1702 – 1707. PMID: 8411500

120. Forman DE, Fleg JL, Kitzman DW, et al. 6-min walk test provides prognostic utility comparable to cardiopulmonary exercise testing in ambulatory outpatients with systolic heart failure. *J Am Coll Cardiol* 2012; 60: 2653 – 2661. PMID: 23177293

121. Cheatham C, Taylor R, Burke V, et al. The 6-minute walk test does not reliably detect changes in functional capacity of patients awaiting cardiac transplantation. *J Heart Lung Transplant* 2005; 24: 848 – 853. PMID: 15882612

122. Mancini DM, Eisen H, Kussmaul W, et al. Value of peak exercise.
Heart J 2016; 37: 1526–1534. PMID: 26819227

177. Fitchett D, Butler J, van de Borne P, et al. EMPA-REG OUTCOME Investigators. Risk of emapralon on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME trial. Eur Heart J 2018; 39: 363–370. PMID: 29003535

178. Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644–657. PMID: 28605608

179. Dorans KS, Mostofsky E, Levitan EB, et al. Alcohol and incident heart failure among middle-aged and elderly men: Cohort of Swedish men. Circ Heart Fail 2015; 8: 422–427. PMID: 25872788

180. Gonzales A, Claggett B, Jhund PS, et al. Alcohol consumption and risk of heart failure: The Atherosclerosis Risk in Communities Study. Eur Heart J 2015; 36: 939–943. PMID: 25602025

181. Gémes K, Janszky I, Ahnve S, et al. Light-to-moderate drinking and incident heart failure: The Norwegian HUNT study. Int J Cardiol 2016; 203: 553–560. PMID: 26569362

182. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–1435. PMID: 2883575

183. SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327: 685–691. PMID: 1463530

184. SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 313–320. PMID: 2057034

185. Jong P, Yusuf S, Rousseau MF, et al. Effect of enalapril on mortality in severe chronic heart failure. Lancet 2003; 361: 1843–1848. PMID: 1278856

186. Matsutomi A. Assessment of Response to Candesartan in Heart Failure in Japan (ARCH-J) Study Investigators. Efficacy and safety of oral candesartan cilexetil in patients with congestive heart failure. Eur J Heart Fail 2003; 5: 669–677. PMID: 14607207

187. Granger CB, McMurray JJ, Yusuf S, et al. CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure. Lancet 2003; 362: 772–776. PMID: 13678870

188. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan on survival in patients with heart failure and preserved left ventricular systolic function: A randomized trial. Lancet 2003; 361: 1371–1375. PMID: 1278856

189. Ahmed A, Husain A, Love TE, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: An observational study using propensity score methods. Eur Heart J 2006; 27: 1431–1439. PMID: 16700955

190. Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol 2006; 97: 1759–1764. PMID: 16765130

191. Cleland JG, Tendera M, Adamus J, et al. PEP-CHF Investigators. Effects of perindopril in elderly people with chronic heart failure. Lancet 2003; 361: 1349–1355. PMID: 1278856

192. Davis BR, Cutler JA, Furberg CD, et al. ALLHAT Collaborative Research Group. Effect of oral milrinone on mortality in severe chronic heart failure. The EVEREST Clinical Status Trial. JAMA 2007; 297: 1319–1331. PMID: 17384437

193. Konstam MA, Gheorghiade M, Burnett JC, et al. Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) Investigators. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: The EVEREST Clinical Status Trial. JAMA 2007; 297: 1319–1331. PMID: 17384437

194. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure: Results of a veterans administration cooperative study. N Engl J Med 2006; 355: 1547–1552. PMID: 17384437

195. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303–310. PMID: 2057035

196. Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997; 336: 525–533. PMID: 9036306

197. Packer M, Carver JR, Rodeheffer RJ, et al. PROMISE Study Research Group. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991; 325: 1468–1475. PMID: 1944425

198. Cohn JN, Goldstein SO, Greenberg BH, et al. Vascenarone Trial Investigators. A dose-dependent increase in mortality with vascenarone among patients with severe heart failure. N Engl J Med 1996; 314: 1547–1552. PMID: 3520315

199. Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303–310. PMID: 2057035

200. Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997; 336: 525–533. PMID: 9036306

201. Packer M, Carver JR, Rodeheffer RJ, et al. PROMISE Study Research Group. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991; 325: 1468–1475. PMID: 1944425

202. Cohn JN, Goldstein SO, Greenberg BH, et al. Vascenarone Trial Investigators. A dose-dependent increase in mortality with vascenarone among patients with severe heart failure. N Engl J Med 1996; 314: 1547–1552. PMID: 3520315

203. Davis BR, Cutler JA, Furberg CD, et al. ALLHAT Collaborative Research Group. Relationship of antihypertensive treatment regimens and change in blood pressure to risk for heart failure in hypertensive patients randomly assigned to doxazosin or chlorothalidone: Further analyses from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Ann Intern Med 2002; 137: 313–320. PMID: 12204104

204. Cledan JG, Tendera M, Adams J, et al. PEP-CHF Investigators. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006; 27: 2338–2345. PMID: 16963472

205. Yusuf S, Pfeiffer MA, Swedberg K, et al. CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial. Lancet 2003; 362: 777–781. PMID: 1278856

206. Massie BM, Carson PE, McMurray JJ, et al. L-PROVE Investigators. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008; 359: 2456–2467. PMID: 19015058

207. Yamamoto K, Orihara H, Hori M, et al. J-DHF Investigators. Effects of carvedilol on heart failure with preserved ejection fraction.
ization—Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. *N Engl J Med* 2005; 352: 1539–1549. PMID: 15753115

Salukhe TV, Dimopoulos K, Francis D. Cardiac resynchronization may reduce all-cause mortality: Meta-analysis of preliminary COMPANION data with CONTAK-CD, InSync ICD, MIRACLE, and MUSTIC. *Int J Cardiol* 2004; 95: 101–103. PMID: 14975534

Leclercq C, Cazeau S, Lellouche D, et al. Upgrading from single chamber right ventricular to biventricular pacing in permanently paced patients with worsening heart failure: The RD-CHF Study. *Pacing Clin Electrophysiol* 2007; 30: S23–S30. PMID: 17302711

Curts AB, Worley SJ, Adamson PB, et al. Biventricular versus Right Ventricular Pacing in Heart Failure Patients with Atrioventricular Block (BLOCK HF) Trial Investigators. Biventricular pacing for atrioventricular block and systolic dysfunction. *N Engl J Med* 2013; 368: 1585–1593. PMID: 23614585

Auricchio A, Metra M, Gasparini M, et al. Multicenter Longitudinal Observational Study (MILOS) Group. Long-term survival of patients with heart failure and ventricular conduction delay treated with cardiac resynchronization therapy. *Am J Cardiol* 2007; 99: 232–238. PMID: 17223424

Wilkof BL, Faucher L, Stiles MK, et al. Document Reviewers. 2013 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. *European* 2016; 18: 159–183. PMID: 26585598

Sipahi I, Chow JC, Hyden M, et al. Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: Meta-analysis of randomized controlled trials. *Am Heart J* 2012; 163: 260–267.e3. PMID: 22350845

Beshai JF, Grimm RA, Nagueh SF, et al. RethinQ Study. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. *N Engl J Med* 2007; 357: 2461–2471. PMID: 17968493

Ruschitzka F, Abraham WT, Singh JP, et al. EchoCRT Study Investigators. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. *N Engl J Med* 2013; 369: 1395–1405. PMID: 23998714

Linde C, Abraham WT, Gold MR, et al. REVERSE (REactivation versus Remodeling in Systolic left vEntricular dysfunction) Study Group. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction of previous heart failure symptoms. *J Am Coll Cardiol* 2008; 52: 1834–1843. PMID: 19038680

Moss AJ, Hall WJ, Cannom DS, et al. MADIT-CRT Trial Investigators. Cardiac-resynchronization therapy for the prevention of heart-failure events. *N Engl J Med* 2009; 361: 1299–1310. PMID: 19723701

Tang AS, Wells GA, Talajic M, et al. Resynchronization-Defibrillation for Ambulatory Heart Failure Trial Investigators. Cardiac-resynchronization therapy for mild-to-moderate heart failure. *N Engl J Med* 2010; 363: 2385–2395. PMID: 21073365

Mullens W, Kepa J, De Vusser P, et al. Importance of adjunctive heart failure optimization immediately after implantation to improve long-term outcomes with cardiac resynchronization therapy. *Am J Cardiol* 2011; 108: 409–415. PMID: 21550578

Varma N, Epstein AE, Irimpen A, et al. TRUST Investigators. Short-term prognosis and meta-analysis of clinical outcomes. *J Am Coll Cardiol* 2013; 62: 2591–2600. PMID: 25983009

Statement on remote interrogation and monitoring for cardiovascular implantable electronic devices. *Heart Rhythm* 2015; 12: e1–e100. PMID: 26074848

Hindricks G, Taborsky M, Glikson M, et al. IN-TIME study group. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): A randomised controlled trial. *Lancet* 2014; 384: 553–560. PMID: 25193197

Yamada S, Sakakibara M, Yoshida T, et al. Acute hemodynamic effects of adaptive servo-ventilation in patients with heart failure. *Circ J* 2013; 77: 1214–1220. PMID: 23363644

Yoshida M, Kadokami T, Momi H, et al. Enhancement of cardiac performance by bi-level positive airway pressure ventilation in heart failure. *J Card Fail* 2012; 18: 912–918. PMID: 22307079

Ushijima R, Joho S, Akabane T, et al. Differing effects of adaptive servo-ventilation and continuous positive airway pressure on muscle sympathetic nerve activity in patients with heart failure. *Circ J* 2014; 78: 1387–1395. PMID: 24705391

Koyama T, Watanabe H, Igarashi G, et al. Short-term prognosis of adaptive servo-ventilation therapy in patients with heart failure. *Circ J* 2011; 75: 710–712. PMID: 21266785

Momomura S, Seino Y, Kihara Y, et al. SAVIOR-C investigators. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study. *Circ J* 2015; 79: 981–990. PMID: 25912560

The Japanese Circulation Society, the Japanese Heart Failure Society. Second statement on appropriate use of ASV for heart failure. http://www.j-circ.org.jp/Information/ASV_teikineryourep2.pdf

Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. *N Engl J Med* 2015; 373: 1093–1105. PMID: 26323938

Belardinelli R, Georgiou D, Cianci E, et al. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: Effects on functional capacity, quality of life, and clinical outcome. *Circulation* 1999; 99: 1173–1182. PMID: 10069783

Stolen KQ, Kemppainen J, Ukkonen H, et al. Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. *J Am Coll Cardiol* 2003; 41: 460–467. PMID: 12575976

Coats AJ, Adamopoulos S, Radaelli A, et al. Controlled trial of physical training in chronic heart failure: Exercise performance, hemodynamics, ventilation, and autonomic function. *Circulation* 1992; 85: 2119–2131. PMID: 1591831

Piña IL, Apstein CS, Balady GJ, et al. Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. *Circulation* 2003; 107: 1210–1225. PMID: 12615804

Jette M, Heller R, Landry F, et al. Randomized 4-week exercise program in patients with impaired left ventricular function. *Circulation* 1991; 84: 1561–1567. PMID: 1914097

Adamopoulos S, Coats AJ, Brunotte F, et al. Physical training improves skeletal muscle metabolism in patients with chronic heart failure. *J Am Coll Cardiol* 1993; 21: 1101–1106. PMID: 8459063

Hambrecht R, Niebauer J, Fiehn E, et al. Physical training in patients with stable chronic heart failure: Effects on cardiopulmonary fitness and ultrastructural abnormalities of leg muscles. *J Am Coll Cardiol* 1995; 25: 1239–1249. PMID: 7722116

Belardinelli R, Georgioudou D, Scocco V, et al. Low intensity exercise training in patients with chronic heart failure. *J Am Coll Cardiol* 1995; 26: 975–982. PMID: 8620627

Belardinelli R, Georgiou D, Cianci E, et al. Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy. Clinical and prognostic implications. *Circulation* 1995; 91: 2775–2784. PMID: 7758134

Kavanagh T, Myera MG, Baigrie RS, et al. Quality of life and cardiopulmonary function in chronic heart failure: Effects of 12 months’ aerobic training. *Heart* 1996; 76: 42–49. PMID: 8774326

Demopoulos L, Bijou R, Fergus I, et al. Exercise training in patients with severe congestive heart failure: Enhancing peak aerobic capacity while minimizing the increase in ventricular afterload. *J Am Coll Cardiol* 1997; 29: 987–990. PMID: 9060627

Ohtsubo M, Yonezawa K, Nishijima H, et al. Metabolic abnormality of calf skeletal muscle is improved by localised muscle training without changes in blood flow in chronic heart failure. *Heart* 1997; 78: 437–442. PMID: 9415912

Mancini DM, Henson D, La Manca J, et al. Benefit of selective respiratory muscle training on exercise capacity in patients with
chronic congestive heart failure. Circulation 1995; 91: 320–329. PMID: 7805323

286. Chua TP, Anker SD, Harrington D, et al. Inspiratory muscle strength is a determinant of maximum oxygen consumption in chronic heart failure. Br Heart J 1995; 74: 381 – 385. PMID: 7488451

287. Kobayashi N, Tsarouy Y, Iwasawa T, et al. Exercise training in patients with chronic heart failure improves endothelial function predominantly in the trained extremities. Circ 2003; 67: 505 – 510. PMID: 12080267

288. Hambrecht R, Fiehn E, Weigl C, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998; 98: 2709 – 2715. PMID: 9851957

289. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J Am Coll Cardiol 2003; 45: 1563 – 1569. PMID: 15893167

290. Adamopoulos S, Parissis J, Karatzas D, et al. Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol 2002; 39: 653 – 663. PMID: 11849865

291. Oya M, Isoh H, Kato K, et al. Effects of exercise training on the recovery of the autonomic nervous system and exercise capacity after acute myocardial infarction. Jpn Circ J 1999; 63: 843 – 848. PMID: 10598888

292. Dimopoulos S, Anastasimou-Nana M, Sakellariou D, et al. Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 2006; 13: 67 – 73. PMID: 16449866

293. Adamopoulos S, Ponikowski P, Cerquetani E, et al. Circadian pattern of heart rate variability in chronic heart failure patients: Effects of physical training. Eur Heart J 1995; 16: 1380 – 1386. PMID: 7941703

294. Maria Sarullo F, Grisina T, Brusca I, et al. Effect of physical training on exercise capacity, gas exchange and N-terminal pro-brain natriuretic peptide levels in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 2006; 13: 812 – 817. PMID: 17060671

295. Piepoli MF, Davos C, Francis DP, et al. ExTraMATCH Collaborative. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 2004; 328: 189 – 189. PMID: 14729656

296. O’Connor CM, Whellan DJ, Lee KL, et al. HF-ACTION Investigators. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301: 1439 – 1450. PMID: 19351091

297. Sagar VA, Davies EJ, Briscoe S, et al. Exercise-based rehabilitation program on heart rate recovery in patients with heart failure. Eur Heart J 2005; 26: 156 – 157. PMID: 15825161

298. Adamopoulos S, Parissis J, Karatzas D, et al. Physical training improves exercise capacity in patients with chronic heart failure. Circulation 2006; 114: 1482 – 1489. PMID: 16982941

299. Galié N, Humbert M, Vachery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37: 67 – 119. PMID: 26320113

300. Conraads VM, Beckers P, Vaes J, et al. Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Eur Heart J 2004; 25: 1797 – 1805. PMID: 15474694

301. Pandey A, Parashar A, Kumbhani D, et al. Exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. Heart 2008; 95: 1858 – 1866. PMID: 18515805

302. Feierisen P, Delagardelle C, Vaillant M, et al. Is strength training the more effective training modality in chronic heart failure? Med Sci Sports Exerc 2007; 39: 1910 – 1917. PMID: 17986897

303. Jessis D, Ostman C, Smart NA. The effect of resistance training on clinical outcomes in heart failure: A systematic review and meta-analysis. Int J Cardiol 2016; 221: 674 – 681. PMID: 27423089

304. Vigozzi C, Abreu A, Ambrossetti M, et al. Frailty and cardiac rehabilitation: A call to action from the EAPC Cardiac Rehabilitation Section. Eur J Prev Cardiol 2017; 24: 577 – 590. PMID: 27940954

305. Wixluff O, Staylen A, Loennechen JP, et al. Superior cardio-vascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 2007; 115: 8086 – 8094. PMID: 17548726

306. Ellingsen Ø, Halle M, Conraads V, et al. SMARTEx Heart Failure Study (Study of Myocardial Recovery After Exercise Training in Heart Failure) Group. High-intensity interval training in patients with heart failure with reduced ejection fraction. Circulation 2017; 135: 839 – 849. PMID: 28082387

307. Demopoulos L, Yeh M, Gentilucci M, et al. Nonselective beta-adrenergic blockade with carvedilol does not hinder the benefits of exercise training in patients with congestive heart failure. Circulation 1997; 95: 1764 – 1767. PMID: 9107160

308. Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study). Circ J 2009; 73: 739 – 745. PMID: 19249635

309. Kotecha D, Flather MD, Altman DG, et al. Beta-Blockers in Heart Failure Collaborative Group. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol 2002; 39: 142 – 149. PMID: 11823564

310. Sagar VA, Davies EJ, Briscoe S, et al. Exercise-based rehabilitation for heart failure: Systematic review and meta-analysis. Open Heart 2015; 2: e000163. PMID: 25685361

311. Edelmann F, Gelbrich G, Düngen HD, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: Results of the Ex-DHF-exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol 2011; 58: 1780 – 1781. PMID: 21996391

312. Nolte K, Herrmann-Lingen C, Wachter R, et al. Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: The Ex-DHF-P trial. Eur J Prev Cardiol 2015; 22: 582 – 593. PMID: 24627449

313. Kitzman DW, Brubaker PH, Herrington DM, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: A randomized, controlled, single-blind trial. J Am Coll Cardiol 2013; 62: 584 – 594. PMID: 23665370

314. Pandey A, Davies EJ, Briscoe S, et al. Exercise training in patients with heart failure and preserved ejection fraction: Meta-analysis of randomized controlled trials. Circ Heart Fail 2015; 8: 33 – 40. PMID: 25399099

315. Belardinelli R, Capestro F, Mistani A, et al. Moderate exercise training improves functional capacity, quality of life, and endothelium-dependent vasodilation in chronic heart failure patients with implantable cardioverter defibrillators and cardiac resynchronization therapy. Eur J Cardiovasc Prev Rehabil 2006; 13: 818 – 825. PMID: 17001234

316. Patwala A, Woods PR, Sharp L, et al. Maximizing patient benefit from cardiac resynchronization therapy with the addition of structured exercise training: A randomized controlled study. J Am Coll Cardiol 2009; 53: 2323 – 2339. PMID: 19539142

317. Mereles D, Ehtihen N, Krause S, et al. Exercise and respiratory training improves exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006; 114: 818 – 828. PMID: 16585058

318. Li SJ, Sartipy U, Lund LH, et al. Prognostic significance of resting heart rate and use of β-blockers in atrial fibrillation and sinus rhythm in patients with heart failure and reduced ejection fraction: Findings from the Swedish Heart Failure Registry. Circ Heart Fail 2015; 8: 871 – 879. PMID: 26243796

319. Rawles JM. What is meant by a “controlled” ventricular rate in atrial fibrillation? Br Heart J 1990; 63: 157 – 161. PMID: 2183858

320. The Japanese Circulation Society. Guidelines for pharmacotherapy of atrial fibrillation (JCS 2013). http://www.j-circ.or.jp/guideline/pdf/JCS2013_inoue_h.pdf
patients with chronic heart failure treated with angiotensin-converting enzyme inhibition. Circulation 1999; 99: 2652 – 2657. PMID: 103062225

362. Passamani E, Davis KB, Gillespie MJ, et al. A randomized trial of coronary artery bypass surgery: Survival of patients with a low ejection fraction. N Engl J Med 1985; 316: 1665 – 1671. PMID: 3873610

363. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 1999; 33: 2092 – 2197. PMID: 10362225

364. Marui A, Kimura T, Nishiwaki N, et al. CREDO-Kyoto PCI/CABG Registry Cohort-2 Investigators. Three-year outcomes after percutaneous coronary intervention and coronary artery bypass grafting in patients with heart failure: From the CREDO-Kyoto percutaneous coronary intervention/coronary artery bypass graft registry cohort-2. Eur J Cardiothorac Surg 2015; 47: 316 – 321; discussion 321. PMID: 24662243

365. The Japanese Circulation Society. Guidelines for non-pharmacotherapy of cardiac arrhythmias (JCS 2011). http://www.j-circ.or.jp/guideline/pdf/JCS2011_ookuma_h.pdf

366. The Japanese Circulation Society. Guidelines for surgical and interventional treatment of valvular heart disease (JCS 2012). http://www.j-circ.or.jp/guideline/pdf/JCS2012_ookita_h.pdf

367. Michler RE, Smith PK, Parides MK, et al. CTSN. Two-year outcomes of surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med 2016; 374: 1932 – 1941. PMID: 27040451

368. Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC/FDA guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2438 – 2488. PMID: 24603192

369. Vahanian A, Alfieri O, Andreotti F, et al. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC). Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 2012; 33: 2451 – 2496. PMID: 22922415

370. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA 1996; 275: 1557 – 1562. PMID: 8622246

371. Messerli FH, Mancia G, Conti CR, et al. Dogma disputed: Can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med 2006; 144: 884 – 893. PMID: 16785477

372. Cooper-DeHoff RM, Gong Y, Handberg EM, et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA 2010; 304: 61 – 68. PMID: 20659550

373. Rozkur B, Aggarwal D, Deswal A, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: A scientific statement from the American Heart Association. Circulation 2016; 134: e535 – e578. PMID: 27799274

374. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure: Collaborative Group on ACE Inhibitor Trials. JAMA 1995; 273: 1450 – 1456. PMID: 7654273

375. Hjalmarson A, Goldstein S, Fagerberg B, et al. Effects of controlled-release amlodipine on total mortality, hospitalization, and well-being in patients with heart failure: The Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 2000; 283: 1293 – 1302. PMID: 10714728

376. Packer M, Ford I, McMurray JJ, et al. Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 2002; 106: 2194 – 2199. PMID: 12390947

377. Packer M, O’Connor CM, Gahi J, et al. Prospective Randomized Amiodipine Survival Evaluation Study Group. Effect of amiodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med 1996; 335: 1107 – 1114. PMID: 8813041

378. Senni M, Paulus WJ, Gavazzi A, et al. New strategies for heart failure with preserved ejection fraction: The importance of targeted therapies for heart failure phenotypes. Eur Heart J 2014; 35: 2797 – 2815. PMID: 25104786

379. Ferrari R, Böhm M, Cleland JG, et al. Heart failure with preserved ejection fraction: Uncertainties and dilemmas. Eur J Heart Fail 2015; 17: 665 – 671. PMID: 26079907

380. Udelson JE. Heart failure with preserved ejection fraction. Circulation 2011; 124: e540 – e543. PMID: 22105201

381. Choy CK, Rodgers JE, Nappi JM, et al. Type 2 diabetes mellitus and heart failure. Pharmacotherapy 2008; 28: 170 – 192. PMID: 18225964

382. Boyer JK, Thanigaraj S, Schechtman KB, et al. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 2004; 93: 870 – 875. PMID: 15050491

383. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction in the diabetes control and complications trial (DCCT). J Am Coll Cardiol 2010; 55: 300 – 305. PMID: 20171433

384. Miura M, Sakata Y, Miyata S, et al. CHART-2 Investigators. Prognostic impact of diabetes mellitus in chronic heart failure according to presence of ischemic heart disease: With special reference to nephropathy. Circ J 2015; 79: 1764 – 1772. PMID: 26040750

385. Shekelle PG, Rich MW, Morton SC, et al. Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: A meta-analysis of major clinical trials. J Am Coll Cardiol 2003; 41: 1529 – 1538. PMID: 12742294

386. McMurray JJ, Ostergren J, Swedberg K, et al. CHARM Investigators and Committees. Efficacy of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: The CHARM-Added trial. Lancet 2003; 362: 767 – 771. PMID: 13678869

387. Haas SJ, Vos T, Gilbert RE, et al. Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am J Cardiol 2003; 94: 848 – 853. PMID: 14597934

388. Deedwania PC, Giles TD, Klibaner M, et al. MERIT-HF Study Group. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: Experiences from MERIT-HF. J Am Heart J 2005; 149: 159 – 167. PMID: 15600484

389. Fernandez HM, Leipzig RM. Spironolactone in patients with heart failure. N Engl J Med 2000; 342: 132; author reply 133 – 134. PMID: 10636750

390. Scirica BM, Bhatt DL, Braunwald E, et al. SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369: 1317 – 1326. PMID: 23992601

391. Scirica BM, Braunwald E, Raz I, et al. SAVOR-TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin, and diabetes mellitus: Observations from the SAVOR-TIMI 53 randomized trial. Circulation 2014; 130: 1579 – 1588. PMID: 25189213

392. Krum H, Roecker EB, Mohacsi P, et al. Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group. Effects of initiating carvedilol in patients with severe chronic heart failure: Results from the COPERNICUS Study. JAMA 2003; 289: 712 – 718. PMID: 12585949

393. Wali RK, Iyengar M, Beck GJ, et al. Efficacy and safety of carvedilol in treatment of heart failure with chronic kidney disease: A meta-analysis of randomized trials. Circ Fail Heart 2011; 4: 18 – 26. PMID: 21036889

394. Castagno D, Jhund PS, McMurray JJ, et al. Improved survival with bisoprolol in patients with heart failure and renal impairment: An analysis of the Carvedilol Prospective Randomized Invasive strategy II (CIBIS-II) trial. Eur J Heart Fail 2010; 12: 607 – 616. PMID: 20178857
Circulation Journal Vol.83, October 2019

595. Sawa Y, Yoshikawa Y, Toda K, et al. Safety and efficacy of autologous skeletal myoblast sheets (TC-D51073) for the treatment of heart failure due to chronic heart disease. *Circ J* 2015; 79: 991 – 996. PMID: 25912561

596. Tei C. Waon therapy: Soothing warmth therapy. *J Cardiol* 2007; 49: 301 – 304. PMID: 17635366

597. Tei C, Horikiri Y, Park JC, et al. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. *Circulation* 1995; 91: 2582 – 2590. PMID: 7743620

598. Tei C, Tanaka N. Thermal vasodilation as a treatment of congestive heart failure: A novel approach. *J Cardiol* 1996; 27: 29 – 30. PMID: 8683432

599. Miyata M, Kihara T, Kubozoito T, et al. Beneficial effects of Waon therapy on patients with chronic heart failure: Results of a prospective multicenter study. *J Cardiol* 2008; 52: 79 – 85. PMID: 18922381

600. Sobjima M, Nozawa T, Fukui Y, et al. Waon therapy improves quality of life as well as cardiac function and exercise capacity in patients with chronic heart failure. *Int Heart J* 2015; 56: 203 – 208. PMID: 25740582

601. Kisanuki A, Daitoku S, Kihara T, et al. Thermal therapy improves left ventricular diastolic function in patients with congestive heart failure: A tissue doppler echocardiographic study. *J Cardiol* 2007; 49: 187 – 191. PMID: 17460879

602. Kihara T, Biro S, Imamura M, et al. Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. *Am Coll Cardiol* 2002; 39: 754 – 759. PMID: 11869837

603. Kuwahata S, Miyata M, Fujita S, et al. Improvement of autonomic nervous activity by Waon therapy in patients with chronic heart failure. *J Cardiol* 2011; 57: 100 – 106. PMID: 20884178

604. Kihara T, Biro S, Ikeda Y, et al. Effects of repeated sauna treatment on ventricular arrhythmias in patients with chronic heart failure. *Circ J* 2004; 68: 1146 – 1151. PMID: 15564698

605. Kihara T, Miyata M, Fukudome T, et al. Waon therapy improves the prognosis of patients with chronic heart failure. *J Cardiol* 2009; 53: 214 – 218. PMID: 19304125

606. Tei C, Imamura T, Kinugasa K, et al. WAON-CHF Study Investigators. Waon therapy for managing chronic heart failure: Results from a multicenter prospective randomized WAON-CHF study. *Circ J* 2016; 80: 827 – 834. PMID: 27001189

Appendix 1. JCS Joint Working Group

Chair:
- Hirokazu Tsutsui, Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences

Members:
- Yoichi Goto, Yoka Municipal Hospital
- Taiki Hijigo, Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
- Atsushi Hikayama, The Division of Cardiology, Department of Medicine, Nihon University Graduate School of Medicine
- Mitsuaki Isobe, Sakakibara Heart Institute
- Hiroshi Ito, Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine
- Hiroshi Ito, Department of Cardiovascular Medicine, Division of Biophysiologial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Yasuki Kihara, Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Koichiro Kinugawa, Second Department of Internal Medicine, University of Toyama
- Masafumi Kitakaze, Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center
- Isei Komuro, Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
- Miyou Makaya, Kitasato University Graduate School of Nursing
- Tohru Masuyama, Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
- Shin-ichi Momomura, Saitama Medical Center, Jichi Medical University
- Toyoaki Murohara, Department of Cardiology, Nagoya University Graduate School of Medicine
- Kojiichi Node, Department of Cardiovascular Medicine, Saga University
- Ken Okumura, Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
- Minoru Ono, Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo
- Yoshihiko Saito, Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine
- Yoshihiko Saito, Department of Cardiovascular Medicine, Nara Medical University
- Yassushi Sakata, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
- Naoki Sato, Department of Cardiovascular Medicine, Wakaguchi Cardiovascular and Respiratory Hospital
- Yoshihisa Sawa, Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
- Yoshihisa Shiono, Nippon Medical School Chiba Hokusho Hospital
- Wataru Shimizu, Department of Cardiovascular Medicine, Nippon Medical School
- Hiroaki Shimokawa, Department of Cardiovascular Medicine, Toyohoku University Graduate School of Medicine
- Akinori Shiozaki, Department of Cardiovascular Surgery, Kyushu University Graduate School of Medical Sciences

- Kazuhiro Yamamoto, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University
- Kenji Yamazaki, Department of Cardiology Surgery, Tokyo Women's Medical University
- Masafumi Yano, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
- Tsutomu Yoshikawa, Department of Cardiology, Sakakibara Heart Institute
- Michihiro Yoshimura, Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine

Collaborators:
- Masatoshi Akiyama, Department of Cardiovascular Surgery, Tohoku University School of Medicine
- Toshikazu Anzai, Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
- Takeo Fujino, Department of Advanced Cardiopulmonary Failure, Kyushu University Graduate School of Medical Sciences
- Masaru Hatano, Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Takayuki Hadaka, Department of Cardiovascular Medicine, Hiroshima University
- Tatsuhiko Imamura, Department of Medicine, University of Chicago Medical Center
- Takayuki Inomata, Department of Cardiovascular Medicine, Kitasato University Kitasato Institute Hospital
- Shiro Ishihara, Department of Cardiology, Nippon Medical School Musashi-Kosugi Hospital
- Yu-ki Iwasaki, Department of Cardiovascular Medicine, Nippon Medical School
- Takatoshi Kasai, Cardiovascular Respiratory Sleep Medicine, Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
- Mahoto Kato, Department of Cardiovascular Medicine, Nihon University Graduate School of Medicine
- Makoto Kawai, Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
- Yoshiharu Kinugasa, Department of Cardiovascular Medicine, Tottori University Hospital
- Shintaro Kinugawa, Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
- Shigeki Kobayashi, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
- Toru Kurutani, Department of Minimally Invasive Cardiovascular Medicine, Osaka University Graduate School of Medicine
- Shigeru Makita, Department of Cardiac Rehabilitation, Saitama Medical University International Medical Center
- Kotaro Nochioka, Department of Cardiovascular Medicine, Tohoku University School of Medicine
- Takashi Noda, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Tomohito Ohtani, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
- Katsuya Onishi, Onishi Heart Clinic

Circulation Journal Vol.83, October 2019
Appendix 2. Disclosure of Potential Conflicts of Interest (COI): JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure

Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endowed chair	Other rewards	Potential COI of the marital partner, first-degree family members, or those who share income and property
Group leader: Hiroyuki Tsutsui									
Member: Mitsuaki Isobe									
Member: Hiroshi Ito									
Member: Ken Okamura									
Member: Minoru Ono									

(Yasuhiko Sakata, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine)

(Atsushi Tanaka, Department of Cardiovascular Medicine, Saga University)

(Koichi Toda, Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine)

(Osamu Yamaguchi, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine)

Independent Assessment Committee:

(Uichi Ikeda, Nagano Municipal Hospital)

(Takeshi Kimura, Department of Cardiovascular Medicine, Graduate School of Medicine and Faculty of Medicine, Kyoto University)

(Shun Kohsaka, Department of Cardiology, Keio University School of Medicine)

(Masamitsu Kosuge, Division of Cardiology, Yokohama City University Medical Center)

(Masakazu Yamagishi, Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine)

(Akira Yamashina, Medical Education Promotion Center, Tokyo Medical University)

(The affiliations of the members are as of November 2017)
Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endoored chair	Other rewards	Potential COI of the marital partner, first-degree family members, or those who share income and property
Member: Masafumi Kitakaze	AstraZeneca K.K. Mitsubishi Tanabe Pharma Corporation Tokuda Pharmaceutical Company Limited Ono Pharmaceutical Co., Ltd.	KUREHA CORPORATION Boehringer Ingelheim Japan, Inc. Takeda Pharmaceutical Company Limited	Takeda Pharmaceutical Company Limited						
Member: Koichiro Kinugawa	Otsuka Pharmaceutical Co., Ltd. TERUMO CORPORATION Astellas Pharma Inc. Daichi Sankyo Company, Limited Ono Pharmaceutical Co., Ltd. Boehringer Ingelheim Japan, Inc. Mitsubishi Tanabe Pharma Corporation	EP-CRSU Co., Ltd. HuBit genomix Shionogi & Co., Ltd. Otsuka Pharmaceutical Co., Ltd. Kowa Pharmaceutical Co., Ltd. Fukuda Lifitech Chugoku Co., Ltd. BIOTRONIK Japan, Inc. Pfizer Japan Inc. MSD K K. Astellas Pharma Inc. Bayer Yakuhin, Ltd. Takeda Pharmaceutical Company Limited Teijin Pharma Limited Boehringer Ingelheim Japan, Inc.	Otsuka Pharmaceutical Co., Ltd.						
Member: Yasuki Kihara	Medical Corporation Ichiyokai Medical Corporation Kenko Club Medical Corporation Kenseikai Shohara Redcross Hospital								
Member: Issie Komuro	Actelion Pharmaceuticals Japan Ltd. MSD K.K. Daichi Sankyo Company, Limited Takeda Pharmaceutical Company Limited Mitsubishi Tanabe Pharma Corporation Boehringer Ingelheim Japan, Inc. Ono Pharmaceutical Co., Ltd. TOA EIYO LTD		Astellas Pharma Inc. Edwards Lifesciences Corporation Otsuka Pharmaceutical Co., Ltd. Kowa Pharmaceutical Co., Ltd. Daichi Sankyo Company, Limited Sumitomo Dainippon Pharma Co., Ltd. Takeda Pharmaceutical Company Limited Mitsubishi Tanabe Pharma Corporation Teijin Pharma Limited Nipro Corporation TERUMO CORPORATION						
Member: Yoshikatsu Saiki					SENKO MEDICAL INSTRUMENT Mfg. Co., Ltd. Century Medical,Inc. Terumo Corporation Cardiac & Vascular Company				
Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endorsed chair	Other rewards	Potential COI of the marital partner, first-degree family members, or those who share income and property
--------	---	-------------	----------------	------------	------------------------	---------------	---	--------------	--
Member: Yoshihiko Saito	Novartis Pharma K.K., Mitsubishi Tanabe Pharma Corporation, Otsuka Pharmaceutical Co., Ltd., Kowa Pharmaceutical Co., Ltd., Daichi Sankyo Company, Limited, Pfizer Japan Inc.	Novartis Pharma K.K., Ono Pharmaceutical Co., Ltd., St. Jude Medical Japan Co., Ltd., Bayer Yakuhin Ltd.	Daichi Sankyo Company, Limited, Otsuka Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., San WINDOW Corporation, ASTellas Pharma Inc., Takeda Pharmaceutical Company Limited, Ono Pharmaceutical Co., Ltd., Teijin Pharma Limited, Mitsubishi Tanabe Pharma Corporation, Eisai Co., Ltd., ZERIA Pharmaceutical Co., Ltd., Boston Scientific Corporation, Shionogi & Co., Ltd., MSD K.K.						
Member: Yasushi Sakata	Otsuka Pharmaceutical Co., Ltd., Daichi Sankyo Company, Limited, Takeda Pharmaceutical Company Limited, Mitsubishi Tanabe Pharma Corporation, Medtronic Japan Co., Ltd., Boehringer Ingelheim Japan, Inc.	Edwards Lifesciences Corporation, FUJIFILM RI Pharma Co., Ltd., REGN MMUNE Co., Ltd., Roche Diagnostics K.K.	Otsuka Pharmaceutical Co., Ltd., Johnson & Johnson K.K., St. Jude Medical Japan Co., Ltd., Daichi Sankyo Company, Limited, Takeda Pharmaceutical Company Limited, Teijin Pharma Limited, Boehringer Ingelheim Japan, Inc., Bayer Yakuhin Ltd., BIOTRONIK Japan, Inc., Boston Scientific Corporation, Medtronic Japan Co., Ltd.						
Member: Naoki Sato	Otsuka Pharmaceutical Co., Ltd., Novartis Pharma K.K., Ono Pharmaceutical Co., Ltd., Daichi Sankyo Company, Limited	Otsuka Pharmaceutical Co., Ltd., Novartis Pharma K.K.	Bayer Yakuhin Ltd.						
Member: Yoshi Sawa	Cuorips Inc., TERUMO CORPORATION	TERUMO CORPORATION, Asubho Pharma Co., Ltd., Daikin Industries, Ltd., Astellas Pharma Inc., JTEC Corporation, Nacalai Tesque, Inc., Edwards Lifesciences Corporation, Novartis Pharma K.K., Sun Medical Technology Research Corp., Nipro Corporation, Johnson & Johnson K.K., Medtronic Japan Co., Ltd., W.L. Gore & Associates, Inc., Boston Scientific Corporation	Edwards Lifesciences Corporation, Konishi Medical Instruments Co., Ltd., Medtronic Japan Co., Ltd.						

TSUTSUI H et al.
Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endo-owed chair	Other rewards	Potential COI of the marital partner, first-degree family members, or those who share income and property		
Member: Akira Shiose							Edwards Lifesciences Corporation. Kanaya Hakikai St. Jude Medical Japan Co., Ltd. Terumo Corporation Carilane & Vascular Company BIOTRONIK Japan, Inc. LivaNova Japan K.K. KISHIYA INC SENKO MEDICAL INSTRUMENT Mfg Co., Ltd. Japan Lifeline Co., Ltd Hello Bussan Co., Ltd.				
Member: Wataru Shimizu	Daichi Sankyo Company, Limited Bristol-Myers Squibb Boehringer Ingelheim Japan, Inc. Bayer Yakuhin, Ltd. Pfizer Japan Inc. Mitsubishi Tanabe Pharma Corporation Oto Pharmaceutical Co., Ltd.	Daichi Sankyo Company, Limited Bristol-Myers Squibb Boehringer Ingelheim Japan, Inc. Pfizer Japan Inc. Mitsubishi Tanabe Pharma Corporation Otsuka Pharmaceutical Co., Ltd. Bayer Yakuhin, Ltd.									
Member: Hiroaki Shimokawa	Bayer Yakuhin, Ltd. Boehringer Ingelheim Japan, Inc. Daichi Sankyo Company, Limited	Bayer Yakuhin, Ltd. MSD K.K. Nippon Shinyaku Co., Ltd. Daichi Sankyo Company, Limited Mitsubishi Tanabe Pharma Corporation AstraZeneca K.K Kyowa Hakko Kirin Co., Ltd. Boehringer Ingelheim Japan, Inc. Sumitomo Dainippon Pharma Co., Ltd. Novartis Pharma K.K. Bayer Yakuhin, Ltd. Astellas Pharma Inc. Otsuka Pharmaceutical Co., Ltd. GlaxoSmithKline K.K. Kowa Pharmaceutical Co., Ltd. Shionogi & Co., Ltd. Takeda Pharmaceutical Company Limited Chugai Pharmaceutical Co., Ltd. Mochida Pharmaceutical Co., Ltd. Nihon Kohden Corp. Asahi Kasen Pharma Corp. TEROUMO CORPORATION Tesco Medtronic Japan Co., Ltd. Japan Lifeline Co., Ltd. Abbott Vascular Japan Co., Ltd. St. Jude Medical Japan Co., Ltd. Hitachi, Ltd.									
Member: Koichi Node	Teijin Pharma Limited Mitsubishi Tanabe Pharma Corporation Boehringer Ingelheim Japan, Inc. Eli Lilly and Company Astellas Pharma Inc.										
Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endorse chair	Other rewards	Potential COI of the marital partner, first-degree family members, or those who share income and property		
--------------	--	-------------	----------------	------------	-------------------------	----------------	---	--------------	---		
Member:									Atsushi Hirayama		
Atsushi									TOA EIYO LTD. Boehringer Ingelheim Japan, Inc. Sanofi K.K. Astellas Pharma Inc. Sumitomo Dainippon		
Hirayama									Pharma Co., Ltd Bristol-Myers Squibb Amgen Astellas BioPharma K.K. AstraZeneca K.K. Daiichi Sankyo		
									Company, Limited Bayer Yakuhin, Ltd.		Boston Scientific Corporation Ono Pharmaceutical Co., Ltd. Fukuda Denshi Co., Ltd. St. Jude
									Medical Japan Co., Ltd. Medtronic Japan Co., Ltd.		Medical Japan Co., Ltd.
Member:									Tohru Masuyama		
Tohru									Actelion Pharmaceuticals Japan Ltd. Astellas Pharma Inc. MSD K.K. Ono Pharmaceutical Co., Ltd.		
Masuyama									Kowa Pharmaceutical Co., Ltd Daiichi Sankyo Company, Limited Takeda Pharmaceutical Company Limited		
									Mitsubishi Tanabe Pharma Corporation Teijin Pharma Limited Nippon Shinyaku Co., Ltd. Boehringer		
									Ingelheim Japan, Inc. Novartis Pharma K.K. Bayer Yakuhin, Ltd. Pfizer Japan Inc. Fukuda Denshi		
									Co., Ltd. Medtronic Japan Co., Ltd.		Co., Ltd.
Member:									Toyoaki Murohara		
Toyoaki									AstraZeneca K.K. MSD K.K. Daiichi Sankyo Company, Limited Takeda Pharmaceutical Company Limited		
Murohara									Mitsubishi Tanabe Pharma Corporation Bayer Yakuhin, Ltd. Pfizer Japan Inc.		Boehringer Ingelheim Japan, Inc. Pfizer Japan Inc. Ono Pharmaceutical Co., Ltd. Bayer Yakuhin,
									Ltd. Astellas Pharma Inc. MSD K.K. Sanofi K.K. Daiichi Sankyo Company, Limited Sumitomo Dainippon		
									Pharma Co., Ltd Takeda Pharmaceutical Company Limited Teijin Pharma Limited Biotronik Japan, Inc.		
									Novartis Pharma K.K. Bayer Yakuhin, Ltd. Medtronic Japan Co., Ltd.		
									Teijin Pharma Limited Mitsubishi Tanabe Pharma Corporation		
Member:									Shin-ichi Momomura		
Shin-ichi									Novartis Pharma K.K. Boehringer Ingelheim Japan, Inc. Bayer Yakuhin, Ltd. Daiichi Sankyo		
Momomura									Company, Limited Bristol-Myers Squibb		Roche Diagnostics K.K.
Member:									Masafumi Yano		
Masafumi									Otsuka Pharmaceutical Co., Ltd.		
Yano									MSD K.K. Boston Scientific Corporation Otsuka Pharmaceutical Co., Ltd. Daiichi Sankyo Company,		
									Limited Takeda Pharmaceutical Company Limited Pfizer Japan Inc. Astellas Pharma Inc. Bristol-		
									Myers Squibb Novartis Pharma K.K.		MySquibb Novartis Pharma K.K.
Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endorse chair	Other rewards			
-----------------------	---	-------------	----------------	------------	------------------------	----------------	---	--------------			
Member: Kenji Yamazaki	Sun Medical Technology Research Corp.						Edwards Lifesciences Corporation				
							Century Medical, Inc.				
							Isuzu Traum, FrontierMedic Co., Ltd.				
Member: Kazuhiro Yamamoto		Otsuka Pharmaceutical Co., Ltd.	Novartin Pharma K.K.				BIOTRONIK Japan, Inc.				
							Mitsubishi Tanabe Pharma Corporation				
							Daichi Sankyo Company, Limited				
							Mitsubishi Tanabe Pharma Corporation				
							Teledyne Medical Japan, Inc.				
							Pfizer Japan Inc.				
							Astellas Pharma Inc.				
Member: Michihiro Yoshimura		Pfizer Japain Inc	Mitsubishi Tanabe Pharma Corporation				BIOTRONIK Japan, Inc.				
							Daiichi Sankyo Company, Limited				
							Mitsubishi Tanabe Pharma Corporation				
							Teijin Pharma Limited				
							St. Jude Medical Japan Co., Ltd				
Collaborator: Yoshinori Anzai		Otsuka Pharmaceutical Co., Ltd.					Bayer Yakuhin, Ltd.				
Collaborator: Shiro Ishihara		Pfizer Japan Inc	Mitsubishi Tanabe Pharma Corporation				BIOTRONIK Japan, Inc.				
Collaborator: Takayuki Inomata		Daichi Sankyo Company, Limited	Otsuka Pharmaceutical Co., Ltd.								
Collaborator: Teruhiko Imamura							Teijin Pharma Limited				
Collaborator: Tomohito Ohtani		Takeda Pharmaceutical Company Limited									
Collaborator: Katsuya Onishi		Takeda Pharmaceutical Company Limited	Mitsubishi Tanabe Pharma Corporation								
Collaborator: Takatoshiki Kasai		Sanwa Kagaku Kenkyusho Co., Ltd.	Astra Zeneca K.K.				Koninklijke Philips N.V.				
Collaborator: Makoto Kawai							Daiichi Sankyo Company, Limited				
Collaborator: Shigeki Kohiyoshi		Ono Pharmaceutical Co., Ltd.									
Collaborator: Takashi Noda		Medtronic Japan Co., Ltd.	BIOTRONIK Japan, Inc.				Medtronic Japan Co., Ltd.				
							Boston Scientific Corporation				

Circulation Journal Vol.83, October 2019
Author	Employer/leadership position (private company)	Stakeholder	Patent royalty	Honorarium	Payment for manuscripts	Research grant	Scholarship (educational) grant/endoed chair	Other rewards	Potential COI of the marital partner, first-degree family members, or those who share income and property
									Companies are listed only by name. The members and the collaborators other than the above have no relevant COIs.
									Member: Hiroshi Ito, none
									Member: Yoichi Goto, none
									Member: Yoshihiko Seino, none
									Member: Taiki Higo, none
									Member: Miyuki Makaya, none
									Member: Tsutomu Yoshikawa, none
	Collaborator: Masaru Hatano								Collaborator: Yu-ki Iwasaki, none
									Collaborator: Mahoto Kato, none
									Collaborator: Yoshihara Kimugawa, none
									Collaborator: Toru Kuratani, none
	Collaborator: Masatoshi Akiyama, none								Collaborator: Atsushi Tanaka, none
									Collaborator: Kotei Toda, none
									Collaborator: Kotaro Nohioka, none
	Collaborator: Shigeru Makita, none								Collaborator: Osamu Yamaguchi, none
	Collaborator: Mahoto Kato, none								Medtronic Japan Co., Ltd. Social Medical Corporation Chiyukai St. Jude Medical Japan Co., Ltd. Nipro Corporation
	Collaborator: Toru Kuratani, none								Otsuka Pharmaceutical Co., Ltd. Daiichi Sankyo Company, Limited
	Collaborator: Atsushi Tanaka, none								
	Collaborator: Kotei Toda, none								
	Collaborator: Kotaro Nohioka, none								
	Collaborator: Shigeru Makita, none								
	Collaborator: Osamu Yamaguchi, none								