Sudden Cardiac Death-Relevant Events of Hypertrophic Cardiomyopathy in a Regional Japanese Cohort
— Results From the Kochi RYOMA Study —

Toru Kubo, MD; Yuichi Baba, MD; Yuri Ochi, MD; Asa Takahashi, MD; Takayoshi Hirot, MD; Naohito Yamasaki, MD; Naohisa Hamashige, MD; Katsuhito Yamamoto, MD; Fumiaki Kondo, MD; Kanji Bando, MD; Eisuke Yamada, MD; Takashi Furuno, MD; Toshikazu Yabe, MD; Yoshinori L. Doi, MD; Hiroaki Kitaoka, MD

Background: Sudden cardiac death (SCD) is a most devastating complication of hypertrophic cardiomyopathy (HCM). The aim of this study was to clarify the clinical features of HCM in patients who experienced SCD-relevant events in an aged Japanese community.

Methods and Results: In 2004, we established a cardiomyopathy registration network in Kochi Prefecture, and herein report on 293 patients with HCM who are followed as part of the registry. The mean (±SD) age at registration and diagnosis was 63±14 and 56±16 years, respectively. SCD-relevant events occurred in 19 patients during a mean follow-up period of 6.1±3.2 years (incidence rate 1.0%/year): sudden death in 9 patients, successful recovery from cardiopulmonary arrest in 4 patients, and appropriate implantable cardioverter-defibrillator discharge in 6 patients. At registration, 13 patients were in the dilated phase of HCM (D-HCM). During the follow-up period, HCM developed to D-HCM in 21 patients; thus, 34 patients in total had D-HCM. Multivariate analysis revealed that D-HCM at registration or during follow-up and detection of non-sustained ventricular tachycardia (NSVT) during follow-up were significant predictors of SCD-relevant events.

Conclusions: In this HCM population in an aged Japanese community, the annual rate of SCD-relevant events was 1.0%. HCM developed to D-HCM in a considerable number of patients, and D-HCM and NSVT were shown to be independently associated with an increased risk of SCD-relevant events.

Key Words: Arrhythmia; Dilated phase; Hypertrophic cardiomyopathy; Sudden cardiac death

Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder with heterogeneous morphologic, functional, and clinical features.1 5 Sudden cardiac death (SCD) is the most devastating complication of HCM. Although several predictors of SCD have been reported,6 8 there have been few studies on the risk factors for SCD in Japanese community-based HCM cohorts. In 2004 we established the Kochi Cardiomyopathy Network, the named Kochi RYOMA (Registry of Myocardial Diseases) Study, to provide detailed information on the clinical features of HCM in a prospectively assembled regional patient cohort in an aged Japanese community.9 We recently reported the patients’ characteristics and clinical course of HCM in this unselected cohort.10 In the present study, we assessed the clinical features of HCM in patients who experienced SCD-relevant events.

Methods

Subjects
In 2004 we established the Kochi Cardiomyopathy Network, which consists of 9 hospitals serving as primary, secondary,
and tertiary referral medical centers for cardiovascular patients in Kochi Prefecture, Japan, home to approximately 800,000 inhabitants. Between February 2004 and December 2013, 305 patients with a diagnosis of HCM were registered in the Kochi Cardiomyopathy Network. The diagnosis of HCM was based on echocardiographic demonstration of unexplained left ventricular hypertrophy (LVH; i.e., maximum left ventricular [LV] wall thickness ≥15 mm). Shortly after a diagnosis of HCM was made, 3 patients were diagnosed as having specific cardiomyopathy (1 patient with cardiac amyloidosis and 2 patients with cardiac involvement of Fabry disease) and excluded from this study, leaving 302 registered patients. In this longitudinal study, further 9 patients with no follow-up data were excluded; thus, the final study population consisted of 293 patients.

This study was approved by the Ethics Committee on Medical Research of Kochi Medical School, and followed the Declaration of Helsinki and the ethical standards of the responsible committee on human experimentation at each participating institution. Informed consent was obtained from all patients or their parents, in accordance with the guidelines of the Ethics Committee on Medical Research of Kochi Medical School.

Clinical Evaluation

Patient evaluation included a medical history, clinical examination, 12-lead electrocardiography (ECG), M-mode, 2-dimensional (2D), and Doppler echocardiography, and ambulatory 24-h Holter ECG analysis. The severity and distribution of LVH were assessed in the parasternal short-

| Table 1. Clinical Characteristics of the 293 Patients With HCM at Registration |
|---------------------------------|-------|
| **Age at registration (years)** | 63±14 |
| **Male sex** | 197 (67) |
| **Age at diagnosis (years)** | 56±16 |
| **Age at diagnosis <40 years** | 40 (14) |
| **Reason for diagnosis: symptoms** | 136 (46) |
| **Family history of HCM** | 76 (26) |
| **Family history of SCD** | 52 (18) |
| **Presence of symptoms at registration** | 185 (63) |
| **NYHA functional class** | |
| Class I | 163 (56) |
| Class II | 109 (37) |
| Class III | 21 (7) |
| Class IV | 0 (0) |
| **Syncope** | 12 (4) |
| **Presence of AF at registration** | 86 (29) |
| **ICD implantation** | 4 (1) |
| **PM implantation** | 13 (4) |
| **Presence of NSVT** | 60 (28) |
| **ECG data at registration** | |
| **Subtype** | |
| HOCM | 40 (14) |
| MVO | 8 (3) |
| D-HCM | 13 (4) |
| Apical HCM | 52 (18) |
| Others | 180 (61) |
| **Presence of LVOT obstruction**| 36 (12) |
| **Maximum LVWT (mm)** | 19.0±3.9 |
| **LVEDD (mm)** | 46.3±6.0 |
| **FS (%)** | 40.9±8.5 |
| **Left atrial diameter (mm)** | 44.3±7.5 |
| **Medications at registration** | |
| β-blocker | 119 (41) |
| Calcium antagonist | 79 (27) |
| ACEI or ARB | 78 (27) |
| Diuretics | 50 (17) |
| Antiarrhythmic drugs | 64 (22) |
| Anticoagulation therapy | 79 (27) |

Data are presented as the mean±SD or n (%). Holler echocardiography (ECG) was performed in 213 patients during the follow-up period. ACEI, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin II receptor blocker; D-HCM, dilated phase of HCM; FS, fractional shortening; HCM, hypertrophic cardiomyopathy; HOCM, hypertrophic obstructive cardiomyopathy; ICD, implantable cardioverter-defibrillator; LV, left ventricular; LVEDD, LV end-diastolic pressure; LVOT, LV outflow tract; LVWT, LV wall thickness; MVO, midventricular obstruction; NSVT, non-sustained ventricular tachycardia; NYHA, New York Heart Association; PM, pacemaker; SCD, sudden cardiac death.
Sudden Cardiac Death in HCM

axial plane at the level of the mitral valve and papillary muscle. LV end-diastolic diameter (LVEDD) and end-systolic diameter (LVESD) were measured from M-mode and 2D images obtained from parasternal long-axis views, and fractional shortening (FS) was calculated as follows:

$$FS = \frac{(LVEDD - LVESD)}{LVEDD} \times 100$$

The LV outflow tract gradient was calculated from continuous-wave Doppler using the simplified Bernoulli equation. Non-sustained ventricular tachycardia (NSVT) was defined as ≥3 consecutive ventricular beats at a rate of ≥120 beats/min, lasting for <30 s.

Based on morphologic and hemodynamic assessments by echocardiography, patients were divided into the following 5 groups: (1) hypertrophic obstructive cardiomyopathy (HOCM), defined as the presence of basal LV outflow tract (LVOT) obstruction (gradient ≥30 mmHg at rest); (2) midventricular obstruction (MVO), defined as the presence of systolic LV cavity obliteration at the midventricle creating MVO with a peak systolic gradient ≥30 mmHg at rest; (3) dilated phase of HCM (D-HCM), defined as LV systolic dysfunction of global ejection fraction (EF) <50% (global EF was determined using the modified Simpson's method); (4) apical HCM, defined as hypertrophy confined to the LV apex; and (5) others, which included HCM without obstruction other than D-HCM and apical HCM.

For prognostic analysis, 3 modes of HCM-related adverse cardiovascular events were defined as follows: (1) SCD-relevant events were defined as a composite of sudden death, in which unexpected sudden collapse occurred in patients who had previously experienced a relatively stable or uneventful clinical course, successful recovery from ventricular fibrillation or spontaneous sustained ventricular tachycardia associated with hemodynamic instability, and appropriate implantable cardioverter-defibrillator (ICD) discharge; (2) composite heart failure (HF) events included HF-related death and hospitalization for HF; and (3) thromboembolic events were the composite of embolic stroke-related death and admission for arterial thromboembolic events. Data on survival and the clinical status of patients were obtained during serial clinic visits or from records on the patients’ clinical charts, including information from other institutes. The study closed on December 31, 2014.

Data Analysis
All data are expressed as mean±SD or frequency (percentage). The significance of differences in continuous variables was assessed using Student’s t-test or the Mann-Whitney’s U-test. Pearson’s Chi-squared test was used for comparisons between non-continuous variables, and Fisher’s exact test was used when the expected frequency was <5. Event-free estimate curves were calculated by the Kaplan-Meier method, and the log-rank test was used for comparison. The multivariate Cox proportional hazards model was used to analyze the relationships between SCD-relevant events and prognostic parameters including some variables with P≤0.05 in univariate analysis and conventional risk factors for SCD. Statistical significance was defined as 2-sided P≤0.05. Statistical analyses were performed using SPSS version 14.0J (SPSS Inc., Chicago, IL, USA).

Results

Clinical Characteristics at Registration
The clinical characteristics of the 293 patients with HCM at registration are summarized in Table 1. Mean patient age at registration and diagnosis was 63±14 (range 7–88) and 56±16 (range 6–87) years, respectively; 197 patients (67%) were men. Forty patients (14%) were diagnosed with HCM at <40 years of age. Seventy-six patients (26%) had proven familial HCM and 52 patients (18%) had a family history of sudden death. Most of the 293 patients were asymptomatic or mildly symptomatic at registration: 163 (56%) were New York Heart Association (NYHA) Class I, 109 (37%) were NYHA Class II, and only 21 (7%) were...
mortality rate was 0.5%.

With regard to HCM-related adverse events, a total of 77 cardiovascular events occurred in 70 patients during the follow-up period. SCD-relevant events occurred in 19 patients, including sudden death in 9 patients, successful recovery from cardiopulmonary arrest in 4 patients, and appropriate ICD discharge in 6 patients; HF events occurred in 35 patients, including 11 HF deaths; and thromboembolic events occurred in 23 patients, including 3 embolic stroke deaths. The distribution of ages at the time of HCM-related adverse events is shown in Figure 2. Patients in whom SCD-relevant events occurred were younger than patients with HF or embolic events. Figure 1B shows the incidence of SCD-relevant events. The 5-year SCD-relevant event rate was 5.2% and the rate of SCD-relevant events was 1.0% per year.

Table 2. Clinical Characteristics at Registration of Patients With and Without SCD-Relevant Events

SCD-relevant events	Yes (n=19)	No (n=274)	P-value
Age at registration (years)	57±15	64±14	0.066
Male sex	11 (58)	186 (68)	0.370
Age at diagnosis (years)	49±17	57±13	0.044
Reason for diagnosis: symptoms	10 (53)	126 (46)	0.574
Family history of HCM	10 (53)	66 (24)	0.012
Family history of SCD	6 (32)	46 (17)	0.119
Presence of symptoms at registration	15 (79)	170 (62)	0.140
NYHA Class III	3 (16)	18 (7)	0.146
Syncope	2 (11)	10 (4)	0.178
Presence of AF at registration	9 (47)	77 (28)	0.075
Presence of NSVT^A	12 (63)	48 (18)	<0.001

ECG data at registration

Subtype	Yes (n=19)	No (n=274)	P-value
HOCM	3 (16)	37 (14)	0.002
MVO	0 (0)	8 (3)	
D-HCM	4 (21)	9 (3)	
Apical HCM	0 (0)	52 (19)	
Others	12 (63)	168 (61)	
LVOT obstruction	3 (16)	33 (12)	0.716
Maximum LWWT (mm)	19.7±3.0	19.0±4.0	0.414
LVEDD (mm)	49.5±6.3	46.1±6.0	0.019
FS (%)	35.4±10.3	41.3±8.2	0.003
Left atrial diameter (mm)	49.6±8.6	43.9±7.3	0.002
D-HCM at final follow-up	10 (52)	24 (9)	<0.001

Medications at registration

β-blocker	Yes (n=19)	No (n=274)	P-value
Calcium antagonist	3 (16)	76 (28)	0.256
ACEI or ARB	7 (37)	71 (26)	0.297
Diuretic	8 (42)	42 (15)	0.007
Antiarrhythmic drugs	8 (42)	56 (20)	0.041
Class Ia	5 (26)	36 (13)	0.160
Class Ib	0 (0)	6 (2)	1.000
Class Ic	0 (0)	5 (2)	1.000
Class III	3 (16)	8 (3)	0.027
Class IV	0 (0)	1 (1)	1.000
Anticoagulation therapy	9 (47)	70 (26)	0.038

Data are presented as the mean±SD or n (%). *Holter ECG was performed in 213 patients during the follow-up period. Abbreviations as in Table 1.

NYHA Class III. At registration, 86 patients (29%) had documentation of atrial fibrillation (AF). Of all 293 patients, 40 were in the HOCM group, 8 were in the MVO group, 13 were in the D-HCM group, 52 were in the apical HCM group, and 180 were in the “other” group.

SCD-Relevant Events

The mean follow-up period from registration of the patient cohort was 6.1±3.2 years, and 44 patients died. Of these 44 patients, HCM-related deaths occurred in 23: SCD in 9 patients, HF deaths in 11 patients, and embolic stroke deaths in 3 patients. In the 9 patients with SCD, unexpected death occurred during physical labor in only 1 patient. The remaining 8 patients died in a situation of no physical stress (8 patients while sleeping, 2 patients while relaxing after dinner). Figure 1A shows the incidence of SCD events. The 5-year SCD rate was 2.5% and the annual SCD.
SCD-relevant events. There was no sex difference between the 2 groups. The prevalence of a family history of HCM and detection of NSVT in patients with SCD-relevant events were significantly higher in patients with than without SCD-relevant events. Echocardiography showed that the prevalence of HOCM was comparable between the 2 groups. Patients in the SCD-relevant event group had a higher prevalence of D-HCM and a lower prevalence of apical HCM. Patients with SCD-relevant events had a larger LVEDD and left atrial size and lower LV FS than did patients without SCD-relevant events.

Regarding the prevalence of D-HCM, 13 patients were in D-HCM at registration. During the follow-up period, development of HCM to D-HCM occurred in an additional 21 patients, with the annual incidence of D-HCM being 1.2%; thus, in all, 34 patients had D-HCM. Of these 34 patients, 10 experienced an SCD-relevant event. Of particular note is that 7 of these 10 patients had lethal arrhythmic events as the first HCM-related events without a prior HF event.

Predictors of SCD-Relevant Events

Multivariate Cox proportional hazards models are shown in Table 3. Model 1 included parameters that were statistically significant according to univariate analysis (age at diagnosis, sex, family history of HCM, left atrial diameter, D-HCM) and conventional risk factors (family history of SCD, syncope, presence of NSVT, maximum LV wall thickness, presence of LVOT obstruction); Model 2 included only the conventional risk factors for SCD and D-HCM. Detection of NSVT and progression to D-HCM at registration or during follow-up were significant predictors of SCD-relevant events in our regional Japanese HCM cohort. Figure 3A shows SCD-relevant events in HCM patients with and without NSVT. For SCD-relevant events, NSVT on Holter ECG had negative and positive predictive values of 97% and 20%, respectively, and sensitivity and specificity of 63% and 82%, respectively. Figure 3B shows SCD-relevant events in HCM patients with and without the progression of HCM to D-HCM. Of 19 patients with SCD-relevant events, 10 (53%) had D-HCM. D-HCM had negative and positive predictive values of 97% and 29%, respectively, and sensitivity and specificity of 53% and 91%, respectively, for predicting SCD-relevant events. In the remaining 9 patients without D-HCM, 7 had one or more conventional SCD risk factor, and the remaining 2 patients had no conventional risk factors (they had only paroxysmal AF).

Discussion

HCM is a primary myocardial disorder with a heterogeneous clinical presentation and course.1, 4 The natural history of HCM varies from an asymptomatic and benign clinical course to sudden premature death and advanced
patients in HCM cohorts may have NSVT. With NSVT increased with age, and up to 20–30% of previous studies showed that the proportion of patients be identified by the presence of NSVT, confirmation of the absence of NSVT using Holter ECG monitoring is considered useful for identifying patients at low risk of SCD. Second, it is well known that HCM in a subset of patients progresses to the ‘dilated’ or ‘end-stage’ phase characterized by LV systolic dysfunction and that patients with D-HCM have a poor prognosis. In patients with D-HCM, the poor clinical course is due not only to refractory HF, but also SCD. Regarding the severity of cardiac fibrosis evaluated by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR) imaging, D-HCM is typically associated with extensive LGE (25–50% of the whole LV), and more severe fibrosis is related to a greater risk of lethal arrhythmic events. Kawarai et al reported that patients with D-HCM had a high incidence of SCD-relevant events: SCD occurred in 47% of patients over a mean follow-up period of 5±3 years after progression to D-HCM. In the present HCM population, 10 of 34 D-HCM patients experienced SCD-relevant events. Furthermore, it is notable that 7 of these 10 patients had a lethal arrhythmic event as the first HCM-related event without a prior HF event. Considering the frequent SCD events preceding refractory HF status in D-HCM patients, early intervention with ICD implantation should be considered for these patients. However, the high risk of SCD in D-HCM patients has not been directly reflected in the 2011 ACCF/AHA and 2014 ESC guidelines for HCM management. Nakagawa et al reported that the recommendation for ICD implantation by the 2003 ACC/ESC, 2011 ACCF/AHA, and 2014 ESC guidelines was not based on appropriate SCD risk stratification in D-HCM patients. According to the latest 2018 JCS guidelines published, D-HCM itself is regarded as an important SCD risk modifier. We would like to emphasize the clinical effect of D-HCM concerning SCD-relevant events in HCM.

Study Limitations
This study has several limitations that need to be acknowledged. First, the number of SCD-relevant events was small. Therefore, some of the statistical analyses may have been affected, and we may have missed other independent markers for stratification of SCD risk in patients with HCM. Second, Holter monitoring should have been performed in all patients at registration. Only approximately 70% of patients had Holter ECG monitoring during the follow-up period. There may be measurement bias in diagnosis of NSVT. Holter ECG may not have been performed uniformly, but rather in patients with severe symptoms, such as syncope. Third, CMR imaging data were not included in this study. Several studies demonstrated that extensive LGE in CMR was associated with the risk of SCD events in HCM. Therefore, further studies on prognostic factors for SCD in patients with HCM are needed. In 2015, we established a large-scale registration survey of patients with HCM throughout Japan, named the J-HCM Registry Study. This prospective registration study is ongoing, and we believe that this multicenter project will provide important information on prognostic factors in HCM patients, particularly for SCD.

Conclusions
In the unselected Kochi RYOMA registry in an aged Japanese community, the annual rate of SCD-relevant events was 1.0%. In this HCM population, HCM developed to the dilated phase in a considerable number of patients, and D-HCM and NSVT were shown to be independently associated with an increased risk of SCD-relevant events.
Sudden Cardiac Death in HCM

439

Acknowledgments
The participating investigators from the study hospitals are: Kazuya Kawai, MD, Masahiko Fukatani, MD, Shoichiro Kubokawa, MD, Yoko Nakaoka, MD (Chikamori Hospital); Takashi Yasamaki, MD (National Hospital Organization Kochi National Hospital); Yoko Hirakawa, MD (Tosa Municipal Hospital); Masanori Kuwabara, MD (Kochi Prefectural Aki General Hospital); and Katsutoshi Tanioka, MD, Tatsuya Noguchi, MD, and Kazuya Miyagawa, MD (Kochi Medical School). The authors thank the physicians who made this study possible.

Sources of Funding
This study did not receive any specific funding.

Disclosures
H.K. is a member of Circulation Reports’ Editorial Team. The remaining authors have no conflicts of interest to declare.

IRB Information
This study was approved by the Ethics Committee on Medical Research of Kochi Medical School (Reference no. ERB-002382).

References
1. Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med 2018; 379: 655 – 668.
2. Ceccio F, Olivotto I, Montereaggi A, Santoro G, Dolara A, Maron BJ. Hypertrophic cardiomyopathy in Tuscany: Clinical course and outcome in an unselected regional population. J Am Coll Cardiol 1995; 26: 1529 – 1536.
3. Maron BJ, Casey SA, Poliarcic LC, Gohman TE, Almquist AK, Aeppli DM. Clinical course of hypertrophic cardiomyopathy in a United States cohort. JAMA 1999; 281: 650 – 655.
4. Kollard MJM, Ten Cate FJ, van der Lee C, van Domber GT. Hypertrophic cardiomyopathy in a large community-based population: Clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol 2003; 41: 987 – 993.
5. Maron BJ, Olivotto I, Spirito P, Casey SA, Bellone P, Gohman TE, et al. Epidemiology of hypertrophic cardiomyopathy-related death: Revisited in a large non-referral-based patient population. Circulation 2000; 102: 858 – 864.
6. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, et al. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy: A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J 2003; 24: 1965 – 1991.
7. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2011; 124: 2761 – 2796.
8. Elliott PM, Anastassakis A, Borger MA, Borrgreffe M, Ceccio F, Charron P, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 2733 – 2779.
9. Kubo T, Kitaoka H, Okawa M, Hirota T, Hayato K, Yasamaki N, et al. Clinical impact of atrial fibrillation in patients with hypertrophic cardiomyopathy: Results from Kochi RYOMA Study. Circ J 2009; 73: 1599 – 1605.
10. Kubo T, Hirota T, Baba Y, Ochi Y, Takahashi A, Yasamaki N, et al. Patients’ characteristics and clinical course of hypertrophic cardiomyopathy in a regional Japanese cohort: Results from Kochi RYOMA Study. Circ J 2018; 82: 824 – 830.
11. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with hypertrophic cardiomyopathy (JCS 2012): Digest. Circ J 2016; 80: 753 – 774.
12. Spirito P, Raperzi C, Autore C, Braudi P, Bellone P, Ortolani P, et al. Prognosis of asymptomatic patients with hypertrophic cardiomyopathy and nonsustained ventricular tachycardia. Circulation 1994; 90: 2743 – 2747.
13. Monserrat L, Elliott PM, Gimenno JR, Sharma S, Penas-Lado M, McKenna WJ. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: An independent marker of sudden death risk in young patients. J Am Coll Cardiol 2003; 42: 873 – 879.
14. Adagab AS, Casey SA, Kuskowski MA, Zenovich AG, Maron BJ. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol 2005; 45: 697 – 704.
15. Wang W, Lian Z, Rowin EJ, Maron BJ, Maron MS, Link MS. Prognostic implications of nonsustained ventricular tachycardia in high-risk patients with hypertrophic cardiomyopathy. Arhythm Electrophysiol 2017; 10: e004604.
16. Harris KM, Spirito P, Maron MS, Zenovich AG, Formisano F, Lesser JR, et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 2006; 114: 216 – 225.
17. Kawarai H, Kajimoto K, Manami Y, Hagiwara N, Kasanuki H. Risk of sudden death in end-stage hypertrophic cardiomyopathy. J Card Fail 2011; 17: 459 – 464.
18. Goto D, Kinugawa S, Hamaguchi S, Takahama H, et al. Validation of the 2014 European Society of Cardiology sudden cardiac death risk prediction model among Japanese patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2015; 65: 65 – 70.
19. Kubo T, Baba Y, Hirota T, Tanioka K, Yasamaki N, Doi YL, et al. Prognostic significance of no-dilated left ventricular size and mitral regurgitation in patients with dilated phase of hypertrophic cardiomyopathy. Int Heart J 2017; 58: 63 – 68.
20. Tsutsui H, Kitaoka H, Isobe M, Ide T, Ueda H, Ono M, et al. JCS 2018 guideline on diagnosis and treatment of cardiomyopathies (in Japanese). 2019. http://www.j-circ.or.jp/guideline/pdf/JCS2018_tsutsui_kitaoka.pdf (accessed August 31, 2018).
21. Kitaoka H, Kubo T, Okawa M, Hitomi N, Furuno T, Doi YL. Long ventricular remodeling of hypertrophic cardiomyopathy: Longitudinal observation in a rural community. Circ J 2006; 70: 1543 – 1549.
22. Bogaert J, Olivotto I. MR imaging in hypertrophic cardiomyopathy: From magnet to bedside. Radiology 2014; 273: 329 – 348.
23. Nakagawa S, Okada A, Nishimura K, Hamatani Y, Amano M, Takahama H, et al. Validation of the 2014 European Society of Cardiology sudden cardiac death risk prediction model among various phenotypes in Japanese patients with hypertrophic cardiomyopathy. Am J Cardiol 2018; 122: 1939 – 1946.
24. O’Hanlon R, Grasso A, Roughan M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 867 – 874.
25. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 2014; 130: 484 – 495.