Effects of strength training with variable elastic resistance across the lifespan: a systematic review

Efectos del entrenamiento de la fuerza con resistencia variable elástica a lo largo de la vida: una revisión sistemática

Juan C. Colado¹,², Ranulfo Mena¹, Joaquín Calatayud³, Pedro Gargallo², Jorge Flández⁴, Phil Page⁴

¹ Research Unit in Sport and Health, University of Valencia (Spain).
² Research Group in Prevention and Health in Exercise and Sport, University of Valencia (Spain).
³ Institute of Education Sciences. Physical Education and Sport Degree, Austral University of Chile (Valdivia, Chile).
⁴ Franciscan Missionaries of Our Lady University, Baton Rouge, Louisiana (USA).

Correspondencia:
Juan C. Colado
juan.colado@uv.es

Cómo citar el artículo:
Colado, J. C., Mena, R., Calatayud, J., Gargallo, P., Flández, J., & Page, P. (2020). Effects of strength training with variable elastic resistance across the lifespan: a systematic review. Cultura, Ciencia y Deporte, 15(44), 147-164.

Abstract

The benefits of strength training programs with isometric free weights or machines have been well-documented in all age groups. However, exercise and healthcare professionals sometime question whether it is possible to obtain the same results with devices of variable resistance, such as elastic bands. To answer this question, the purpose of this systematic review was to identify and summarize the positive effects of elastic resistance exercises used across the lifespan on health outcomes including body composition, functional and performance capacity, and biochemical variables. A secondary aim was to identify common dosage parameters of strength training programs using elastic resistance.

Key words: elastic bands; functional capacity; body composition; health biomarkers.

Resumen

Los beneficios de los programas de entrenamiento de la fuerza con peso libre y máquinas isocinéticas del tipo isotónico han sido bien documentados en todas las franjas de edad. Sin embargo, los profesionales del ejercicio y la salud algunas veces se preguntan si es posible obtener los mismos resultados con dispositivos de resistencia variable, como por ejemplo las bandas elásticas. Para responder a esta pregunta, el objetivo de esta revisión sistemática fue identificar y resumir los efectos positivos de los ejercicios de fuerza con elásticos empleados a lo largo de las diferentes etapas de la vida sobre resultados relacionados con la salud, incluyendo la composición corporal, capacidad funcional, rendimiento físico y algunas variables bioquímicas. Un objetivo secundario fue identificar los parámetros de dosificación comunes de los programas de entrenamiento de la fuerza usando resistencia elástica.

Palabras clave: bandas elásticas; capacidad funcional; composición corporal; biomarcadores de salud.
Introduction

Resistance training has been recommended across the lifespan for muscular fitness in support of health-related physical fitness. Exercise and health professionals need effective resistance training devices that stimulate these positive adaptations while promoting adherence to exercise (Capodaglio, Ferri & Scaglioni, 2005; Capodaglio et al., 2002; Gómez-Álvarez, Jofré-Hermosilla, Matus-Castillo, & Pavez-Adasme, 2019). Many strength training devices are available, each with its own advantages and disadvantages.

As the most common and traditional devices for external resistance in training programs, free weights and machines have been shown beneficial for physical function, body composition and other health-related variables (Kwak, Kim & Lee, 2016; Liao, Chung & Chen, 2017; Winters-Stone & Snow, 2006). However, free weights and machines often require special facilities and/or great cost, thus limiting allowing access for everyone (Colado & Triplett, 2008). Furthermore, some individuals may fear using free weights and machines because these are commonly associated with high physical demands (Jakobsen, Sundstrup, Andersen, Aagaard & Andersen, 2013) or possible injury.

In contrast, variable resistance training with elastic bands provides a more user-friendly, portable and less-expensive alternative to traditional isotonic resistance training. Furthermore, evidence suggests that elastic resistance can improve muscular hypertrophy, strength and power (Suchomel, Nimphius, Bellon & Stone, 2018). Although these elastic devices have traditionally been used for rehabilitation purposes (Page & Ellenbecker, 2003), the benefits of elastic resistance in apparent healthy populations has been studied as well (Colado et al., 2010). Researchers have demonstrated that variable elastic resistance can provide similar muscle activation as constant-resistance equivalents when matched in intensity, as well as provide a mechanical advantage over the “sticking point” of free weights and machines. (Aboodarda, Hamid, Che Muhamed, Ibrahim & Thompson, 2013; Aboodarda, Page & Behm, 2016; Calatayud et al., 2015; Hughes & Mcbridge, 2005; Kompf & Arandjelovic, 2016; Matheson, Kernozek, Fater & Davies, 2001; Soria-Gila, Chirosa, Bautista, Baena & Chirosa, 2015). In addition, the authors of recent review articles have concluded that elastic resistance training can provide both strength and functional improvements among adults (de Oliveira et al., 2016) and elderly participants (Martins et al., 2013), suggesting elastic resistance may provide benefits across a variety of age groups. However, there are no systematic reviews on the effects or parameters of elastic resistance training throughout the lifespan. For example, while it’s been shown that resistance training produces positive results in youths (Granacher et al., 2016), there is not systematic review of elastic resistance training showing benefits in this specific population.

This knowledge would be necessary to provide effective and safe exercise prescriptions for a wider range of individuals. While individual studies have described adaptations of important physiological variables after elastic resistance training (such as biomarkers or body composition), a systematic review of these adaptations would be beneficial. (Colado, Triplett, Tella, Saucedo & Abellán, 2009; Colado & Triplett, 2008; Flandez et al., 2017; Gargallo et al., 2018; Thiebaud et al., 2013).

Therefore, the aim of this systematic review was to identify and summarize the health outcomes of elastic resistance training across the lifespan on body composition, functional capacity and some biochemical variables. A secondary aim was to identify elastic resistance exercise parameters in order to establish safe and effective exercise prescriptions.

Method

This systematic review is reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations (Moher, Liberati, Tetzlaff & Altman, 2009).

Literature search

We reviewed scientific literature specialized using 9 databases (Web of Science, Pubmed, Sportdiscus, Scopus, Medline, Scielo, Central, Embase and PEDro). The search was limited to full-text, clinical trials studies published in English between 1900 and March 2017. With the search strategy for relevant articles included the following search terms with the Boolean operator “OR”: “elastic band”, “resistance elastic”, “elastic resistance training”, “elastic tubing”, “elastic tubing exercise”, “elastic band”, “elastic band exercise”, “exercise band”, “surgical tubing”, “theraband”, “rubber band”, and “elastic straps”. In the Boolean operators, “and” was also added to provide the corresponding terminology for each age group analyzed in this study: (i) For children: “kids” or “children” or “child” or “lad” or “baby” or “infant” or “laddie” or “cally” or “chap” or “kiddy” or “nipper” or “boyhood” or “girlhood”; (ii) For young people: “adolescent” or “shaver” or “teenager” or “young people” or “teen” or “junior” or “young”; (iii) For adults: “adults” or “middle age”; (iv) and finally for seniors: “old
man” or “old-timer” or “old person” or or “elderly” or “elder” or “ancient” or “aged” or “older adults” or “aging” or “maturation” or “older” or “old people”.

Selection criteria

The studies had to meet the following inclusion criteria: 1) Healthy subjects; 2) Results in at least one of the following variables: Strength, functional capacity, body composition or biomarkers of health; 3) Results of chronic nature. Exclusion criteria were: 1) Descriptive studies, or validation; 2): Results of acute nature; 3) Subjects with pathology; 4) Studies that have not focused on the variables mentioned above; 5) Studies with highly trained subjects.

Classification of the studies

The included articles meeting selection criteria were classified with the following data in Table 1: (1) Author and year of publication; (2) Number, Gender, Age, distribution and characteristics of the sample; (3) Duration of the session and the intervention, weekly sessions, number of series, repetitions, rest, intensity and progression; (4) Groups of training and exercises; (5) Variables analyzed: muscle strength, body composition, functional capacity, and biomarkers of health; (6) Results between pre- and post- intervention.

Methodological quality assessment

The methodological quality of studies, was analyzed using the "PEDro scale", which has been validated by Maher, Sherrington, Herbert, Moseley & Elkins. (2003). Ten of 11 PEDro criteria were scored “yes (1)” or “no (0)” with a maximum score of 10 (the first criterion of the PEDro scale is not used to calculate the PEDro score). Studies with a score of ≥6 were considered of high methodological quality while a score of ≤5 points was considered to be low quality.

Results

Figure 1 shows the PRISMA flow chart diagram from the systematic search: 47 studies were included in the analysis. Included studies were classified into 4 age groups: 3 studies in children and adolescents (youths) (≤18 years), 6 in young adults (19 and 35 years), 6 in middle-aged adults (45-64 years), and finally, 32 in older adults (>64 years). Table 1 presents the main characteristics of these trials.
Characteristics of the studies in youths

Only 3 studies examined elastic resistance training in subjects less than 18 years old (Coskun & Sahin, 2014; Lubans, Aguiar & Callister, 2010; Sahin, Aslan & Demir, 2016). These studies used 2 weekly sessions and included a total of 159 subjects: 65 used elastic bands, 37 free weights and 22 used their own body weight. Two studies used 6 weeks of intervention (Coskun & Sahin, 2014; Sahin, Aslan & Demir, 2016), while Lubans, Aguiar & Callister (2010) used 8 weeks. Coskun & Sahin (2014) and Sahin, Aslan & Demir (2016) used a 10 repetition-maximum (RM) intensity without publishing the time of rest, while Lubans et al. (2010) used between 15 and 18 in the Borg’s scale, performing 2 sets of 10 to 12 repetitions with a rest between sets of 60-90 seconds. The duration of the sessions ranged between 30 and 50 minutes. Sahin, Aslan & Demir (2016) evaluated the effect of using elastic resistance in the squat and the jump, while Coskun & Sahin (2014) and Lubans, Aguiar & Callister (2010) used overall body exercises.

Characteristics of the studies in young adults

Seven studies were included. 136 subjects were studied with adults between 19 to 35 years old: 83 used elastic bands, 12 other devices, and 41 as a control group. The interventions lasted from 6 to 13 weeks, with 6 weeks being the most frequent training duration. Three weekly sessions were conducted in five of the studies. The study protocols ranged from 2 to 9 sets, while 3 sets was the most widely used pattern (Behm, 1991; Rhyu, Kim & Park, 2015; Thorborg et al., 2016). Most trials used 10 repetitions, while one study performed repetitions to maximal muscle fatigue (Hostler et al., 2001). Regarding the intensity, all studies utilized percentage of the 1RM, with 70-75% of 1RM the most representative value; however, Bellar et al. (2011) and Hostler et al. (2001) used between 85% and 100% of 1RM. The rest between sets ranged from 60 to 120 seconds. Unfortunately, no study provided the duration of each session with the exception of Thorborg et al. (2016). The majority of studies compared exercises with elastic resistance and other devices; the most used exercises were the bench press, squat and shoulder press.

Characteristics of the studies in middle-aged adults

Six studies were included with adults 45 to 64 years old. All studies used healthy pre- and post-menopausal women. 244 women were evaluated: 130 used with elastic bands, 28 used weight machines and 32 exercised in the aquatic environment. The programs lasted between 8 and 24 weeks, with the most common durations being 8 (Heislein, Harris & Jette, 1994; Thiebaud et al., 2013) and 10 (Colado et al., 2012a; Colado & Triplett, 2008) weeks. Common parameters included 2-3 sessions per week, 3 sets of 20 repetitions, and rest between sets was 30 seconds. The intensity was generally based on a score of 5 to 7 using the OMNI-RES scale for elastic resistance training (Colado, Triplett, Tella, Saucedo & Abellán, 2009; Colado et al., 2012a; Colado et al., 2012b), while Winters-Stone & Snow (2006) used a 60-80% of the 1RM. Only Colado, Triplett, Tella, Saucedo & Abellán (2009) and Heislein, Harris & Jette (1994) provided the total duration of each session, which was 30 to 60 minutes. Full body exercises were used in nearly all the studies, although Thiebaud et al. (2013) exclusively used upper limbs exercises.

Characteristics of the studies in older adults

For older adults (over 64 years old), 32 studies with a total of 1746 subjects were evaluated: 1045 trained with elastic bands and 701 served as a control group. The duration of the training program ranged between 3 and 52 weeks. The most frequently used durations were 8 and 24 weeks; however, 12 weeks were used in six studies. Weekly training frequency ranged from 2 to 4 days. The number of sets ranged between 1 and 4, and repetitions ranged from 8 to “as many as possible” (Damush & Damush, 1999). Nine studies utilized 10 repetitions per set; unfortunately, 6 trials did not provide repetition information. The least reported parameter in this age group was intensity, with 19 studies (59%) not providing this information. Seven studies used scales of perceived effort to prescribe intensity (five used the Borg’s scale and 2 used the OMNI-RES for elastic bands). Four studies used the % of the 1RM, and Hofmann et al. (2016) prescribed intensity based on the the progressive increase in resistance based on the different colors of the elastic bands. The rest time between exercises was only provided in five studies, ranging between 30 and 120 seconds. Most studies used a 60 minute session duration, although 7 trials did not report this information. 13 studies used multi-joint exercises such as squats, lunges, lat pull down or horizontal rows, among others. 16 trials did not mention the specific exercises that were used, providing only the number of exercises performed in the session. Two articles were exclusively focused on the lower limbs (Kwak, Kim & Lee, 2016; Yasuda et al., 2016), while one study
only used in upper limbs (Yasuda et al., 2014). Both studies of Yasuda et al. (2014, 2016) used blood flow restriction using elastic cuffs.

Methodological quality of included trials

After grading the individual study quality using the PEDro scale, the average data obtained in studies among each age group was: (a) Youths: 5 points on average (High quality: 1 Study; Low Quality: 2 studies). (b) Young Adults: 4.66 points on average (High quality: 2 studies; Low Quality: 4 studies). (c) Middle-aged adults: 4.83 points on average (High quality: 2 studies; Low Quality: 4 studies). (d) Older Adults: 4.68 points on average (High quality: 10 studies; Low Quality: 22 studies).

A majority of studies in each group scored below 6 on the PEDro scale, indicating low methodological quality. Table 1 shows the specific PEDro scores of each article.

Discussion

This systematic review suggests that elastic resistance training programs are effective to improve muscle strength, physical function and other health-related variables across the lifespan. These data expand the current evidence on the effectiveness of these exercise programs among adults (de Oliveira et al., 2016) and elderly participants (Martins et al., 2013). Elastic resistance programs improved the functional capacity of young, middle, and older adults (Colado, Triplett, Tella, Saucedo & Abellán, 2009; Cyarto, Brown, Marshall & Trost, 2008; Franzke et al., 2015) as well as body composition (Colado, Triplett, Tella, Saucedo & Abellán, 2009; Lubans, Aguiar & Callister, 2010) in all ages, except in the oldest adults, where the results were mixed (Skelton, Young, Greig & Malbut, 1995; So et al., 2013). Interestingly, some recent studies have demonstrated positive health effects in 80 year olds (Chupel et al., 2017; Furtado et al., 2019; Rieping et al., 2019). Finally, there were few or irrelevant results on health biomarkers after elastic resistance training (Hostler et al., 2001; Lubans, Mundey, Lubans & Lonsdale, 2013).

Effects of training with elastic bands in youths

An important finding among elastic resistance training studies in youths was improvement in the motivation and participation of the child (Barkley, Ryan, Bellar, Bliss & Roemmich, 2011), possibly because it seems more attractive and provides more security than heavy weights (Annesi, Westcott, Faigenbaum & Unruh, 2005). In addition, elastic resistance training has shown greater physical performance improvements than bodyweight exercises (Coskun & Sahin, 2014). Most likely, the stimulus provided by the bodyweight exercises was not enough or the exercise was too difficult to adapt to each subject (Faingenbaum, 2000), while the elastic band resistance could be easily adapted, thus providing a proper stimulus for the neuromuscular improvements (Ignjatović, Stanković, Radovanović, Marković & Cvečka, 2009). Studies of Lubans, Aguiar & Callister (2010) and Sahin, Aslan & Demir (2016) found improvements in strength similar or higher to free weights training. For body composition, Lubans, Aguiar & Callister (2010) found changes in the percentage of fat-free and fat mass in both sexes, although the bodyweight training group achieved greater results than the elastic resistance group. It is possible that suboptimal dosing of intensity, duration, and frequency of elastic resistance training may provide a low stimulus for improving body composition due to the suboptimal intensity, short duration and frequency of the protocols used. It is also interesting that some investigations were focused on the effects of elastic resistance training in children with special needs such as cerebral palsy (Shin & Kim, 2016). Finally, it’s important to note that no study provided data on functional capacity or health biomarkers, thus leaving a need for further investigation.

Effects of training with elastic bands in young adults

The majority of the studies including young adults were focused on evaluating the effects of elastic resistance training on muscle strength. Bellar et al. (2011) obtained better results by adding elastic bands to a bench press compared to free weights alone; this combination was more effective at improving muscle strength than the isolated use of free weights, even in inexperienced subjects. These results may be due to a mechanical change created by using elastic resistance that helps to overcome the “sticking point” during the concentric phase of the movement, possibly facilitating neural adaptations (Kompf & Arandjelovic, 2016). Hostler et al. (2001) reported an RM increase in the squat with no change in the number of repetitions during knee extension. Behm (1991) analyzed the effect of different devices (i.e. free weights, aquatic resistance and elastic resistance) finding a similar response in muscle strength between them. Sugimoto & Blanpied (2006) analyzed the
EFFECTS OF TRAINING WITH ELASTIC BANDS

J.C. COLADO, R. MENA, J. CALATAYUD, P. GARGALLO, J. FLÁNDEZ, P. PAGE

Effect of elastic band exercise of the shoulder rotator cuff; they found that the elastic resistance provided greater internal and external rotator strength than a flexible foil (Bodyblade). Thorborg et al. (2016) observed an improvement in isometric hip flexion strength after 6 weeks of elastic resistance training. Some researchers have combined elastic resistance with proprioceptive neuromuscular facilitation (PNF) techniques, reporting improvements in joint mobility, reporting benefits in the development of the strength, and the balance through of improving the responsiveness of the skeletal-muscle system (Jonghwan, Chulhyun, Kyumoon, Hyeonju & Byeungok, 2003; Rhyu, Kim & Park, 2015). Only Hostler et al. (2001) analyzed the effect of elastic resistance exercise on some physiological biomarkers of health, finding no significant improvements. No research has been published on body composition and functional capacity outcomes in young adults using elastic resistance training.

Effects of training with elastic bands in middle-aged adults

The majority of the studies including middle-aged adults evaluated the effects of elastic resistance training on on functional capacity. Colado & Triplet (2008), Colado et al. (2009) and Colado et al. (2012b) analyzed functional capacity, reporting significant increases after the intervention. Thiebaud et al. (2013) observed that two training groups (low and medium-high intensity) increased their 1RM in upper and lower limb exercises. Heisleim et al. (1994) reported 20 and 8.8% increases in quadriceps and hamstrings strength respectively, using elastic bands together with PNF techniques similar to Rhyu et al. (2016). Five studies reported improvements after elastic resistance training interventions on body composition, measured with bioelectrical impedance analysis (Colado & Triplet, 2008; Colado, Triplet, Tella, Saucedo & Abellán, 2009; Colado et al., 2012a; Winters-Stone & Snow, 2006) or musculoskeletal ultrasound (Thiebaud et al., 2013). Colado & Triplet (2008), Colado, Triplet, Tella, Saucedo & Abellán (2009) and Colado et al. (2012a) reported more improvements in body composition using elastic bands than compared to other resistance devices. They indicated that a similar routine during a short-term training program is sufficient to reduce the percentage of fat mass, regardless of the type of resistance. Winter-Stone & Snow (2006) assessed bone mineral density after a lower and/ or upper body elastic resistance program that was complemented with jump exercises, demonstrating significant improvement in the greater trochanter, probably because the skeletal system needs high load exercises to maintain or develop their levels of density (Iwamoto, 2013). Only Colado, Triplet, Tella, Saucedo & Abellán (2009) and Flandez et al. (2017) analyzed health-related biomarkers, showing improvement both metabolic health as well as motor function. Colado, Triplet, Tella, Saucedo & Abellán (2009) also showed a reduction in diastolic blood pressure with a medium-term elastic resistance training program. Importantly, the majority of these changes exposed were found in only short and medium-term programs; therefore, it seems logical that longer programs would provide greater results (Braith & Stewart, 2006), although more research is needed.

Effects of training with elastic bands in older adults

In 23 studies of older adults exercising with elastic resistance, functional capacity was the most analyzed variable, reporting improvements of 20-25%. 15 studies reported strength improvements of 15-20%, either in the lower limbs or upper limbs. Eight studies investigated the effect of elastic resistance training on body composition; only 3 found significant improvements. 12 trials carried out measurements on health-related biomarkers using blood tests, hormonal levels, enzyme activity or oxidative stress. Interestingly, chromosomal damage tended to decrease after elastic resistance training (Franzke et al., 2015a and b). Hofmann et al. (2016) showed a decrease in the percentage of myostatin and increases in follistatin, but no change in the hormone IGF-1. Park et al. (2016) found a 14% improvement in systolic blood pressure, while Lubans, Aguia & Callister (2010) reported a tendency to improve. Aniansson, Ljungberg, Rundgren & Wetterqvist (1984) revealed improvements of up to 39% in the myokinases and 44% in the citrate synthase after 40 weeks of exercising with elastic bands and with the own body weight. Lastly, inconsistent data was observed for hemodynamic parameters, such as blood pressure, cardiac output, ejection volume, or heart rate, likely due to a lack of appropriate training stimulus (Vincent, Vincent, Braith, Bhatnagar & Lowenthal, 2003) as was the case in the majority of studies included in this age group.

It appears that elastic resistance training in older adults is beneficial either in healthy subjects or those with pathology. Older adults consistently experience strength gains with elastic resistance training programs (Capodaglio et al., 2002; Martins et al., 2013; Martins et al., 2015; Oh et al., 2016).
findings support the benefits of strength training with elastic resistance to prevent and treat dynapenic and/or sarcopenic processes associated with age (Clark & Manini, 2008; Rosenberg, 1997).

Limitations of the study

Based on data from the included studies, the present systematic review provides novel data about evidence on the effectiveness of elastic resistance training programs across the lifespan. However, the small number of articles using elastic resistance training (especially at the youngest ages) and the general poor quality of the studies are the main limitations of this study. Because of these limitations, and due to the heterogeneity of training parameters between studies, a dose-response relationship can not be provided from these data. In addition, the lack of information about the dose or exercises used in some studies, especially among elderly subjects, limits the ability to provide recommendations.

High-quality dose-response clinical trials are needed to better understand the optimal dose and the effectiveness of these programs at different ages, especially in children. More research is needed on the effects of training with elastic resistance on health-related biomarkers and body composition variables. Future studies should clearly describe the training volume, intensity, frequency, duration and rest intervals used in the exercise programs. Until then, practitioners should follow standard strength training parameters in elastic resistance programs.

Finally, this review included only articles published before March 2017 due to the lengthy time that it was needed for editing, and also due to the usual time needed for being reviewed and accepted to definitive publication in a high quality scientific journal.

Conclusions

Based on this systematic review, training with elastic resistance improves muscle strength and functional capacity across the lifespan. These results suggest that elastic resistance benefits are similar to those seen with traditional isotonic machines and free weights. In addition, elastic training seems to be effective in improving body composition and may have positive results in some health biomarkers, although further research is needed.

Funding

This work was supported by the grant Ignacio Larramendi 2014 from the Mapfre Foundation (Code: OTR2015-140931NVES). Pedro Gargallo was supported by a predoctoral scholarship (FPU15/05634) awarded by the Spanish Ministry of Education, Culture, and Sport.
Table 1. Characteristics, results and PEDro Scale Scores.

Author & year	Nº subject; Gender; Age; Characteristics of the sample	Time Of Intervention; Frequency; Nº Sets/Reps; Intensity; Rest; minutes per session	Training Groups/Exercises	Measurements: Strength; Body Composition; Functional Capacity; Biomarkers; Others	Results
Youths					
Coskun & Sahin (2014)	30 TG: BWG:14 EBG:16	6wk 2d/wk 1-2 sets of 10-12reps 10 RM 30min.	EBG: Hamstring/Curl, legs press, front raises, push-ups, lat pull down. BWG: Push-ups, Squats, Lunge, Box jump.	Leg press (KG), Sit-upy Push-up (Reps) Test	Strength: EBG: ↑ ** Press (15%) and Sit-up (10.4%); ↑ Push-up (21%). BWG: ↑ Press (57.7%), Sit-up (24%) and ↓ Push-up (15%).
Lubans et al. (2010)	108 (56M, 52W) F Weg: 37 EBG: 41 CG: 30 15 ± 0.7 years. Not trained High school students.	8wk 2d/wk 2sets of 10-12 reps (1-4wk): 8-12reps (5-8wk) 15-18 Borg’s scale 60-90” 40-50min.	F Weg and EBG: Squat, lunge, calf raise, vertical row, bench press, front raise, biceps curl, biceps extension, crunch and Russian twist. CG: Normal activity.	1 RM in bench press and legs press. Body composition (Biodimpedance)	Strength: Boys: ↑ ** F Weg (24%) and EBG (12%) in bench press F Weg (35%), and EBG (12%) in the press. CG: No sign. Change Girls: ↑ ** F Weg (23%) and (19%) EBG in Press Without sign. Changes in bench press CG: No sign. Change Body Composition: Boys and girls: ↑ ** (2%) Fat Free Mass and ↓ ** (5.5%) fat mass. % Body Fat: F Weg: ↑ ** (10%) and EBG: ↓ ** (6%) Waist circumference, weight, BMI: No sign. Changes. CG: No sign. Change
Sahin et al. (2016)	21 TG: (BWG:8 EBG:8) CG: 5 11.5 ± 0.53 years. Healthy children with training experience	6wk 2d/wk 2 sets of 20-30reps 10RM.	TG: EBG: Squats with elastic band + vertical jump. BWG: Squats without elastic band + vertical jump. CG: Normal activity.	Static Squat (ES), dynamic (DS) And Vertical Jump (VJ) Test	Strength: EBG: ↑ ** (13%), DS (14%) BWG: ES (26%), DS (33%) and VI (16%). CG: ES (48%), DS (19%), VI (1.5%).
Young Adults					
Behm (1991)	31M 20.4 ± 1.4 years. Healthy men.	10wk 3d/wk 3 sets of 10 reps 50% 1RM 60s.	EBG: Bench press with elastic band. BWG: Bench press with olympic barbell.	Shoulder abduction torque 1RM shoulder press. Specific speed	Strength: Shoulder abduction torque: ↑ ** HP (10.4%), TSP (14.1%) and ETSP (14.7%). 1RM shoulder press: ↑ ** HP (14%), TSP (17.5%) and ETSP (13.8%). No changes in specific speed.
Bellar et al. (2011)	11M TG: F Weg and EBG 23.6 ± 3.2 years. Healthy University students.	13wk 2d/wk 5 sets of 5 reps 1RM 90%	EBG: Bench press with elastic band. BWG: Bench press with olympic barbell.	1RM Bench press.	Strength: EBG: ↑ ** 9.95 ± 3.7Kg (9.9%) F Weg: ↑ 7.56 ± 2 Kg (7.3%)
Hostler et al. (2001)	23 10M:13W M: 20.3 ± 1.1 W: 20.2 ± 1.2 years. Young men and women.	8wk 2d/wk (1-5wk): 3d wk (6-8wk) 2 sets to failure. 60-100% 1RM.	One leg Squat and leg extension	1RM Squat and leg extension. Nº reps. Vo2max. Histochemical analysis of the fibers and cross-sectional area of the vastus lateralis (Biopsy).	Strength: ↑ ** 1RM in Squat (M: 9.6%; W:23.5%); Without change in press. ↑ ** Nº reps in Squat and leg extension in M and W. Biomarkers: Vo2max: No changes. Histochemical analysis: ↑ fibers IAB and ↓ IIB in M and W. (more in W). Cross-sectional area: ↑ fibers I and IAB+IIB in M. No changes in W.
Author & year	N° subject; Gender; Age; Characteristics of the sample	Time OF Intervention; Frequency; N° Sets/Reps; Intensity; Rest; minutes per session	Training Groups/Exercises	Measurements; Strength; Body Composition; Functional Capacity; Biomarkers; Others	Results
----------------	--	--	---------------------------	---	---------
Thorborg et al. (2015)	33 (18M 15W)	6wk 3d/wk 3 sets of 15 (1wk);102-4wk); 8 (5-6wk) reps 15:10-8 RM 10min.	TG: Standing hip flexion with elastic band tied above the knee	Isometric flexion strength. Dominant and non-dominant leg.	Strength: TG: ↑** (17%) Isometric flexion strength in Dominant leg. Without changes in non-dominant leg.
Ryu et al. (2015)	28 (14M 14W)	6wk 3d/wk 16, CG: 17	TG: 16, CG: 17	Power peak, average power, peak speed, average speed, strength peak, average strength of hip abductors. (EN-TreeM).	Strength: TG: ↑** power peak, average power, peak speed, average speed, average strength, and strength peak in lower limbs abductors.
Sugimoto & Blanpied (2006)	40 (13M 27W)	8wk 3d/wk EBG:3 sets of 10-20 reps, 60s.	TG: PNF techniques with elastic bands rotation movements for hips and legs.	TG: PNF techniques with elastic bands rotation movements for hips and legs.	Isometric, concentric and eccentric strength in internal and external shoulder rotators (Dynamometer).
Colado & Triplett (2008)	45W	10wk 2d/wk 2 sets (Lower limbs) 1 set (Upper limbs) (1-4wk), 2 sets (5-8wk), 3 sets (9-10 wk) of 20 reps 5 or “some hard” (1-4wk), 7 or “hard” (EN-TreeM).	6 of 12 exercise/session: Squat, horizontal shoulder abduction, triceps extension, hips abduction, elbow flexion, shoulder abduction, elbow extension, shoulder flexion.	Functional capacity: Knee push-up (KPU) and 60s squat (S) test. Body composition (Bodymass).	Functional capacity: KPU test: ↑** MG (82.4%) EBG (73.3%) 5 test: ↑** EBG (73.3%) MG (21%)
Colado et al. (2009)	46 W	24wk 2d/wk (1-12 wk); 6d/wk (13-24 wk), 1-3 sets of 30 reps (1-18 wk); 2 supersets of 15 reps (19-24 wk) 5 (1-4wk) to 7 (5-6wk) OMNI RES. 35-40; 40 (5-8 wk); 50 (9-12 wk); 60 (13-18 wk) and 60 (19-24wk) min.	EBG: Aluduction shoulder, hips and legs extension, elbow extension, horizontal shoulder extension, hips abduction, trunk flexion, diagonal shoulder abduction, elbow flexion and lateral trunk flexion. AAG: Internal flexion trunk, vertical one leg jump, trunk flexion, diagonal shoulder abduction, elbow flexion ext., hip adduction and abduction, shoulder adduction and abduction, two legs jump.	Functional capacity: Knee push-up (KPU), test abdominal crunch test, 60s squat and sit and reach test. Body composition (Bodymass). Blood test: (cholesterol, triglycerides, glucose and apolipoprotein B) Blood pressure.	Functional capacity: KPU: ↑** Fat-free mass EBG (1.2%) and MG (2.4%) and ↓** fat mass EBG (2.2%) and MG (5%) CG: Without changes.

Middle-aged Adults

| Colado & Triplett (2008) | Middle-aged sedentary women. Young adult without shoulder intervention. | 10wk 2d/wk 2 sets (Lower limbs) 1 set (Upper limbs) (1-4wk), 2 sets (5-8wk), 3 sets (9-10 wk) of 20 reps 5 or “some hard” (1-4wk), 7 or “hard” (EN-TreeM). | TG: PNF techniques with elastic bands rotation movements for hips and legs. | Functional capacity: Knee push-up (KPU) and 60s squat (S) test. Body composition (Bodymass). | Functional capacity: KPU test: ↑** MG (82.4%) EBG (73.3%) 5 test: ↑** EBG (73.3%) MG (21%) |
| Colado et al. (2009) | Post-menopausal women | 24wk 2d/wk (1-12 wk); 6d/wk (13-24 wk), 1-3 sets of 30 reps (1-18 wk); 2 supersets of 15 reps (19-24 wk) 5 (1-4wk) to 7 (5-6wk) OMNI RES. 35-40; 40 (5-8 wk); 50 (9-12 wk); 60 (13-18 wk) and 60 (19-24wk) min. | EBG: Aluduction shoulder, hips and legs extension, elbow extension, horizontal shoulder extension, hips abduction, trunk flexion, diagonal shoulder abduction, elbow flexion and lateral trunk flexion. AAG: Internal flexion trunk, vertical one leg jump, trunk flexion, diagonal shoulder abduction, elbow flexion ext., hip adduction and abduction, shoulder adduction and abduction, two legs jump. | Functional capacity: Knee push-up (KPU), test abdominal crunch test, 60s squat and sit and reach test. Body composition (Bodymass). Blood test: (cholesterol, triglycerides, glucose and apolipoprotein B) Blood pressure. | Functional capacity: KPU: ↑** Fat-free mass EBG (1.2%) and MG (2.4%) and ↓** fat mass EBG (2.2%) and MG (5%) CG: Without changes. |

Post-menopausal women

| Colado et al. (2009) | Post-menopausal women | 24wk 2d/wk (1-12 wk); 6d/wk (13-24 wk), 1-3 sets of 30 reps (1-18 wk); 2 supersets of 15 reps (19-24 wk) 5 (1-4wk) to 7 (5-6wk) OMNI RES. 35-40; 40 (5-8 wk); 50 (9-12 wk); 60 (13-18 wk) and 60 (19-24wk) min. | EBG: Aluduction shoulder, hips and legs extension, elbow extension, horizontal shoulder extension, hips abduction, trunk flexion, diagonal shoulder abduction, elbow flexion and lateral trunk flexion. AAG: Internal flexion trunk, vertical one leg jump, trunk flexion, diagonal shoulder abduction, elbow flexion ext., hip adduction and abduction, shoulder adduction and abduction, two legs jump. | Functional capacity: Knee push-up (KPU), test abdominal crunch test, 60s squat and sit and reach test. Body composition (Bodymass). Blood test: (cholesterol, triglycerides, glucose and apolipoprotein B) Blood pressure. | Functional capacity: KPU: ↑** Fat-free mass EBG (1.2%) and MG (2.4%) and ↓** fat mass EBG (2.2%) and MG (5%) CG: Without changes. |

Young adult without shoulder intervention

| Colado et al. (2009) | Young adult without shoulder intervention. | 10wk 2d/wk 2 sets (Lower limbs) 1 set (Upper limbs) (1-4wk), 2 sets (5-8wk), 3 sets (9-10 wk) of 20 reps 5 or “some hard” (1-4wk), 7 or “hard” (EN-TreeM). | TG: PNF techniques with elastic bands rotation movements for hips and legs. | Functional capacity: Knee push-up (KPU) and 60s squat (S) test. Body composition (Bodymass). | Functional capacity: KPU test: ↑** MG (82.4%) EBG (73.3%) 5 test: ↑** EBG (73.3%) MG (21%) |
| Colado et al. (2009) | Young adult without shoulder intervention. | 24wk 2d/wk (1-12 wk); 6d/wk (13-24 wk), 1-3 sets of 30 reps (1-18 wk); 2 supersets of 15 reps (19-24 wk) 5 (1-4wk) to 7 (5-6wk) OMNI RES. 35-40; 40 (5-8 wk); 50 (9-12 wk); 60 (13-18 wk) and 60 (19-24wk) min. | EBG: Aluduction shoulder, hips and legs extension, elbow extension, horizontal shoulder extension, hips abduction, trunk flexion, diagonal shoulder abduction, elbow flexion and lateral trunk flexion. AAG: Internal flexion trunk, vertical one leg jump, trunk flexion, diagonal shoulder abduction, elbow flexion ext., hip adduction and abduction, shoulder adduction and abduction, two legs jump. | Functional capacity: Knee push-up (KPU), test abdominal crunch test, 60s squat and sit and reach test. Body composition (Bodymass). Blood test: (cholesterol, triglycerides, glucose and apolipoprotein B) Blood pressure. | Functional capacity: KPU: ↑** Fat-free mass EBG (1.2%) and MG (2.4%) and ↓** fat mass EBG (2.2%) and MG (5%) CG: Without changes. |
Author & year	No. subject; Gender; Age; Characteristics of the sample	Time of intervention; Frequency; No. sets/original	Training groups/exercises	Measurements; Strength; Body composition; Functional capacity; Biomarkers; Others	Results
Colado et al. (2012a)	62W; TG: M(14) BEG:21 ADD/DFG:17; CG:10 51.7 ± 0.92 BEG:34.14 ± 0.63; ADD/DFG: 54.71 ± 0.43; Post-menopausal women.	10wk. 20dk. 2 sets of (lower limbs) and 1 set (upper limbs) (7-10wk); 2 sets of (5-8wk) 3 sets (8-10wk) lower and upper limbs. 20 reps.	Quadriceps, humerus and grip strength (Dynamometer).	Functional capacity: Knee push-up test (KPU), 60s squat, abdominal crunch test (CT). Body composition (Bioimpedance).	↑** KPU (EBG: 30.6 %, ADD/DFG: 98%, MG: 62.6%). ↑** ST (EBG: 27.4%, ADD/DFG: 40.2%, MG: 21.1%). ↑** CT (EBG: 16.3%, ADD/DFG: 18.2%, MG: 31.1%).
Heisieen et al. (1994)	18W 55.7 ± 4.5 years. Post-menopausal women.	6 of 12 exercises/session: Squat, horizontal shoulder abduction, triceps extension, hip abduction, elbow flexion, shoulder abduction, elbow extension, shoulder flexion.	Exercises in progressive sequence of weight load from lying down to a standing posture. Limb and trunk movements that incorporate diagonal and rotation movements associated with NMF.	Body composition (Bioimpedance).	↑** Quadriceps, hamstrings (8.8%) and grip strength (14.2%).
Thiebaud et al. (2013)	14W 55.7 ± 4.5 years. Post-menopausal women.	8wk. 3dk. 10 reps; BI-PS: 1 sets of 10 reps; BI-PS: 1 sets of 30 reps followed by 2 sets of 15 reps. 7-9 in OMNI-RES AM or 70-90% of 1RM 30s.	Quadriceps, humerus and grip strength (Dynamometer).	Strength: Both TG: ↑** Upper limbs and lower limbs in all exercises.	Body Composition: Muscles thickness: ↑** in postero-lateral major in both TG.
Winter-Stone & Snow	59 W TG(OMTG:19 UMTG:16) CG:24 LMTG: 35 ± 3.8 UMTG: 41.3 ± 3.8 years. Pre-menopausal women.	12 wk. 3dk. LMTG: 9 sets of 10-12 jump and 2-6 sets of 10-12 reps for other exercise; UMTG: 9 sets of 10-12 jumps and 3 sets of 8-12 reps for other exercises. 8-12 RM. 30-120s.	Quadriceps, humerus and grip strength (Dynamometer).	Body composition (DXA). Bone mineral density (BMD) of hips, greater trochanter, femoral neck, lumbar spine and whole body (X-Ray absorptiometry).	↑** Total lean mass (2%) y ↓** Fat mass (4.5%). Arms: TG: ↑** Lean body mass (3%) y ↓** Fat mass (2.3%). CG: Decrease in all measurements. BMD: TG: ↑** BMD greater trochanter (2.4%); CG: ↑** (0.7%). UMTG: ↑** BMD lumbar spine (13.3%); UMTG: ↓** (0.3%). CG ↓** (0%) Without sign. changes in BMD of femoral neck, hips and whole body.
Aniansson et al. (1984)	26 (22W 4M) M: 73 ± 24 years. Older adults.	40wk. 2dk. 11-14 Borg's scale. 40min.	Home training program based on: exercises for walking, running, and arms, legs, and trunk exercises.	Quadriceps Strength (Dynamometer).	Strength: Quadriceps strength ↑** 7-13%.
Capodaglio et al. (2002)	22M TG:10 CG:12 TG:68 (SC:22.1 years. Older adults.	16wk 3dk. 1 sets of 10 reps 50-80% 1RM (lower limbs); 40-64% (upper limbs).	Leg press, shoulder press, vertical row, bench press, calf raises, lateral shoulder machine press.	Dynamic concentric strength (DCS).	Strength: ↑** MBS (KE: 14.5%); EF: 16.6% and DCS (leg press: 7.2%, calf raises: 27.9%, shoulder press: 95%, bench press 6.1%, vertical row: 3.6%).
Capodaglio et al. (2002)	22M TG:10 CG:12 TG:68 (SC:22.1 years. Older adults.	16wk 3dk. 1 sets of 10 reps 50-80% 1RM (lower limbs); 40-64% (upper limbs).	Leg press, shoulder press, vertical row, bench press, calf raises, lateral shoulder machine press.	Max. Isometric Strength (MSS) of knee extensors (KE) and elbow flexors (EF).	Strength: ↑** MSS (KE: 14.5%); EF: 16.6% and DCS (leg press: 7.2%, calf raises: 27.9%, shoulder press: 95%, bench press 6.1%, vertical row: 3.6%).
Autor & año	N° subject; Gender; Age; Characteristics of the sample	Time of intervention; Frequency; Nº Sets/Reps; Intensity; Rest; minutes per session	Training Groups / Exercises	Measurements: Strength; Body Composition; Functional Capacity; Biomarkers; Others	Results
--------------------------	--	--	----------------------------	---	---------
Capodaglio et al. (2005)	28 G65; 14 G75 77.8 years. Over 75 years old subjects	16wk 3d/wk 1 set of 10 reps 50-80% 1RM (Strength); 4 Borg’s scale (Aerobic).	G65 y G75: leg press and calf raises + 20-45 min in cyclogrometer	1RM leg press (Knee extension KE) and calf raises (Plantar flexors PF)	Strength: G75: ↑↑: PF (49.2%); KE (37.5%). G65: ↑↑: PF (11.8%); KE (29.9%).
Capodaglio et al. (2007)	31 (19M; 19W) Over 75 years. old subjects	20wk 2d/wk TG: 1 set of 12 reps; CG: 20 reps 60-70-80% 1RM 120%. 60 min.	TG: Tai Chi movements; leg press and calf raises.	Max. Isometric knee extension (KE) and plantar flexors (PF) strength. Leg extensor power (LEP). Functional capacity; functional reach (FR); chair rise 1 (CR1) and 10 times (CR10); bed rise (BR); 6 min walking test (6MWT); stair climbing (SC); get up and go (GU&G); one-leg standing (1Ls).	Strength: PF: TGW: +23.5%; CGW: +6.5% TGM: +4%; CMG: -3%. BR: TGW: +27%; CGW: +22%; TGM: +4%; CMG: -3%. CR1: TGW: +27%; CGW: +22%; TGM: +4%; CMG: -3%. CR10: TGW: +27%; CGW: +22%; TGM: +4%; CMG: -3%. ER: TGW: +27%; CGW: +22%; TGM: +4%; CMG: -3%.
Gyarto et al. (2008)	167 (132W 35M) 78.8 ± 6.4 years. Older adults.	20wk 2d/wk TG: 2 sets of 5-15 reps.	TG1 y TG2: 9 strength exercise, with elastics band and body weight, 2 balance exercises and 10 mobility exercises. CG: walking 30 min.	Functional capacity: 30s chair stand test (lower limbs mobility); 30s arm curl test (upper limbs mobility); chair sit-and-reach test (lower limbs mobility); back scratch test (upper limbs mobility); 8-foot, Time up & go test (balance).	Functional capacity: TG2 yTG1: ↑↑ chair stand (TG2: 20.7%; TG1: 20%) and arm curl test (TG2: 29.7%; TG1: 29.2%). TG1: ↑↑ Sit and reach (48.3%) and up and go (7.2%). TG1: ↑↑ back scratch test (24.7%). Without changes in other measurements. CG: J: ↑↑ Sit and reach (7.4%). Without changes in other measurements.
Damush & Damush (1999)	68W TCG: 40:28 68 ± 5.58 years. Older women.	20wk 2d/wk 1 set of "as many repetitions as you can until you reach more than 4 Borg’s scale 90s. 45 min.	TG: seated lat pull down, one leg press, horizontal push press, calf raise, triceps extension, biceps curl, leg extension.	3RM of latissimus dorsi, pectoral major knee extension and handgrip strength. (Dynamometer).	Strength: TG: ↑↑ in latissimus dorsi (19.7%), Pectoral major (27.7%) and quadriceps (16.5%). CG: No changes. Without changes in handgrip.
Frankie et al. (2015a)	105 (92W 13M) TG: (TG: 34 STG: 30) CG: (EC: 32) 83.0 ± 6.1 82.5 ± 7.5 CG: (CEG: 83.5 ± 5) years. Older institutionalized adults.	20wk 2d/wk 1 set of "as many repetitions as you can until you reach more than 4 Borg’s scale 90s. 45 min.	TG: 10 exercise for: legs, back, trunk, chest, shoulder and arms. CG: Cognitive exercises (CEG).	Functional capacity: Chair rise, 6min-walking and handgrip strength test DNA damage (Electrophoresis) Enzymatic activity.	Functional capacity: TG2 yTG1: ↑↑ chair rise (TG2: 27%); STG: 19%) and arm curl test (TG2: 29.7%; TG1: 29.2%). TG1: ↑↑ Sit and reach (48.3%) and up and go (7.2%). TG1: ↑↑ back scratch test (24.7%). Without changes in other measurements. CG: J: ↑↑ Sit and reach (7.4%). Without changes in other measurements.
Frankie et al. (2015b)	97 TG: (TG: 35 STG: 29) CG: (CEG: 32) 83.0 ± 6.1 82.5 ± 7.5 CG: (CEG: 83 ± 5) years. Older institutionalized adults.	20wk 2d/wk 1 set of "as many repetitions as you can until you reach more than 4 Borg’s scale 90s. 45 min.	TG: 10 exercise for: legs, back, trunk, chest, shoulder and arms. CG: Cognitive exercises (CEG).	Functional capacity: Chair rise, handgrip strength and 6 min walking test Chromosomal damage. 812 vitamin.	Functional capacity: TG2 yTG1: ↑↑ Chair rise (TG2: 23%); STG: 19%) and arm curl test (TG2: 29.7%; TG1: 29.2%). Without changes in other measurements. CG: J: ↑↑ enzimatic activity (TG2: 22%) (STG: 6%); CEG: Without changes.
Author & year	N° subject; Gender; Age; Characteristics of the sample	Time OF Intervention; Frequency; N° Sets/Reps; Intensity; Rest; minutes per session	Training Groups/ Exercises	Measurements: Strength; Body Composition; Functional Capacity; Biomarkers; Others	Results
-------------------------------	--	---	---	---	--
Hanirattisai et al. (2015)	40 (7M 33W) TG:20 CG:20 71.0 ± ±1,15 years. Thai women	8wk	TG: Basic movements of activities of daily life; sitting / getting up from a chair, standing up after getting up from a chair, and transfer to the chair + physical activity (walk).	Functional capacity: stand balance, (Berg’s test), security not to fail and physical performance.	TG: ↑** Balance (6%). ↑ Security not to fall (17.3%). ↑** Physical performance (24.4%). CG: No changes.
Hofmann et al. (2016)	91 W TG: (TG:33 STG:28) CG: (CEG:30) 83.6 TG: (TG:82.9 GES: 83.9) CG: (CEG: 84.3) years. Older women.	24wk	TG: TG: Strength training. STG: Strength training + supplementation. CEG: CEG: Cognitive training.	Functional capacity: Chair stand and handgrip test. Myostatin, activina A, folstatin, IGF-1 levels.	TG: ↑** Chair stand test. (TG: 18%) and (STG: 13%). CG: No changes. Handgrip test: Without changes in TG and CG. Biomarkers: TG: ↑** Myostatin. (TG: 7%), STG and CG: No changes. CEG: ↑** Activina A (7%). STG: No changes. TG: ↑** Follstatin. (TG: 18%), STG and CG: No changes. KGF-1: No changes.
Kwak et al. (2016)	45 TG:22 CG:23 TG: 80.1 ± ±4.7 74 ± 5.5 years. Elderly rural people	8wk	TG: Ankle flexion, Ankle extension, Knee flexion, Knee extension, Hip flexion, Hip extension, Hip abduction, Hip abduction + physical therapy. CEG: Physical therapy.	Functional capacity: Chair stand 30s. Test and 2 min knee up. Balance exercises.	TG: ↑** chair stand 30s. Test (102.8%), 2m knee up (45%) and balance (62%). CG: No changes.
Lee et al. (2015)	20 TG:10 CG:10 TG: 73 ± ±6.4 TG: 74 ± 4.6 years. Elderly women	8wk	TG: Core exercises, gymnastic exercises, elbow extension, monster walk, leg press, knee extension, planter flexion. CEG: Normal activity.	Chair stand 30s. Test and 2 min knee up. Balance exercises.	Functional capacity: TG and ↑** RFT (21.5%), BBS (24.6%), UP & G (8.8%), DW (22.5%), SRT (2.3%) and CSBSA (10.3%). CEG: FRT (1.1%), BT (5.7%), UP & G (7.1%), DW (4%), SRT (0.3%) and CSBSA (4.1%).
Liao et al. (2017)	22 TG:10 CG:12 Older adults.	24wk	TG: 12 min. of 7 warm-up exercise, 10 min of 7 aerobic exercise and 18 min of 6 stretching exercise. CEG: Normal activity.	Blood test.	Biomarkers: TG and CEG: Without changes.
Lubans et al. (2013)	44 (23M 21W) TG:22 CG:22 75.8 ± ±5.8 years. Sedentary older adults	8wk	TG: Biops, calf, triceps extension, front raise, pectoral push press, vertical row, squat, lunge, calf raise, core exercises. CEG: 10,000 steps per day.	Functional capacity: Lower limbs (10s chair stand test), Static balance. Body composition (Bioimpedance). Blood pressure and heart rate.	Functional capacity: TG: ↑** 30s chair stand test; ↑** balance. CG: Without changes. Biomarkers: CEG: Without changes. TG: ↑** Blood pressure, heart rate. CG: Without changes.
Martins et al. (2015)	40 TG:20 CG:20 CG: 66 ± ±2.6 TG: 69 ± 1 ± 6.3 years. Untrained older adults	8wk	TG: Bench press, row, knee flexion, hips flexion, hip extension. CEG: Knee torque at 60°/s y 120°/s Handgrip test.	Knee Torque at 60°/s y 120°/s Handgrip test.	Strength: TG: ↑** Knee strength at 120° (4.5%). No changes at 60°. No changes in handgrip test. CG: Without changes.
Milesky et al. (1994)	62 TG:31 CG:31 71 ± ±2.0 years. Older adults	12wk	TG: Chair squat, hips extension knee flexion, ankle dorsiflexion, Wall push-up, vertical row, shoulder abduction, triceps extension, biceps curl and abdominal crunch. CEG: No significant changes in knee flexion (K) and flexors (Kf) in eccentric phase. No significant changes in concentric phase.	Dynamic strength in knee extensors (K) and flexors (Kf).	Strength: TG: ↑** K (11.7%) and Kf (10.1%) in eccentric phase. No changes changes in concentric phase.
Effects of Training with Elastic Bands

J.C. Colado, R. Mena, J. Calatayud, P. Gargallo, J. Flández, P. Page

Training Group/Exercise	Interventions	Frequency	Intensity	Rest	Body Composition	Functional Capacity	Results
Oh et al. (2016)	38-yr-old individuals	18wk (8wk supervised + 10 wk at home)	2d/wk	3 sets of 10-20 reps	10-20 RM	Muscular strength (Knee extensors (KE) and flexors (KF) (Dynamometer))	**↑** Strength at 60º (KE: 11.2%, KF: 18%) and 120º (KE: 9.8%, KF: 5.2%) and **↓** % Fat mass (2.4%) and **↑** % lean mass (3%). No changes in diastolic blood pressure, Stiffness and carotid diameter.
Oesen et al. (2015)	117 (103W, 14M)	24wk	2d/wk	1-2 sets of 15 reps	7 in OMNI-RES scale	Molecular quality (Strength/muscle mass)	**↑** (8.5%) in all tests, except in handgrip and Finger Flexor Test.
Papadopoulos & Jager (2016)	28	2d/wk	112xw/273x143 couples of 7-10 reps	60sec.	Functional capacity (Handgrip test, Chair stand test, Time up & go test)	**↑** (ECG: -3.6s) and (TG: -3.3s) in the Ecological Endurance Test and (TG: -3.3s) in the Chair stand test. **↓** (5%) in the Time up & go test.	
Park et al. (2016)	40-yr-old community	24wk	2d/wk	3 sets (1-12wk) 5 sets (13-24wk) of 10 reps	12xw/207x121 couples of 13-24 reps of 10 reps	Functional capacity (Handgrip test, Chair stand test, Time up & go test)	**↑** (TG: 9.8%) and **↓** (ECG: 9.8%) in the Chair stand test. **↑** (TG: 14.8%) in the Time up & go test.
Park et al. (2017)	30	2d/wk	80min.	24xw/207x121	12xw/207x121	Functional capacity (Handgrip test, Chair stand test, Time up & go test)	**↑** (TG: 9.8%) and **↑** (ECG: 4.8%) in the Chair stand test. **↑** (TG: 14.8%) in the Time up & go test.

Measurements: Strength, balance and mobility.

Body Composition: Functional Capacity: handgrip test; Chair stand up test; Time up & go test; Functional reach test (FRT) and physical activity level.

Functional Capacity: Up and Go and Chair stand test.

Biomarkers: Blood pressure, Blood glucose, Stiffness and carotid diameter.
Author & year	Age; Characteristics of the sample	Time OF Intervention; Frequency; N° Sets/Reps/Intensity; Test; minutes per session	Training Groups/ Exercises	Measurements: Strength; Body Composition; Functional Capacity; Biomarkers; Others	Results
Rogers et al. (2002)	22M Afroamericans elderly women	4wk 3d/wk 3 sets of 8-15 reps 50 min.	TG: Exercises for chest, back, triceps, biceps, knee extension, knee flexors, leg press, calf raises and feet abduction.	Functional capacity: 30s Arm lifting 30s chair stand test, Up and go test, Handgrip test, Sit and reach test.	Functional capacity: TG: ↑* 30s Arm lifting (23.8%), 30s chair stand test (18.8%) and U&G (98%), ↑ handgrip test (5.4%). CG: No changes.
Scherber-Halper et al. (2016)	Older adults.	24wk 2d/wk 1 serie de 15 reps 50 min.	TG: 1-2 exercises for legs, back, trunk, chest, shoulder and arms.	Functional capacity: Handgrip, 6MWT, chair stand and arm-lifting test. Hormonal and blood test.	Functional capacity: TG: ↑* Chair stand test (TG 18% after 3 months and 27% after 6 months); ↑* (STG 15% after 6 months). TG: ↑* Arm lifting test (TG 24%), (STG: 61%). TG: ↑* 6MWT: (TG 9%), STG: No changes. Handgrip test: No changes. CG: No changes. Biomarkers: Hormonal and blood test. No sign. Changes.
Skelton et al. (1995)	Older adults.	12wk 2d/wk 3 sets of 4-8 reps 70% Heart rate. 60 min.	TG: 20 exercises for: Shoulders, abductors, adductors, hip flexors and extensors, elbow flexors and extenders and knee flexions and extensors.	Isometric and power strength of knee extensors (KE), leg extensors (LE) and Knee flexors and extensors (KE). Body composition (Bioimpedance). Functional capacity: Handgrip test, chair stand test, Knee extensor test, sit and reach test, Gait 118m. Test. Step-up test.	Strength: TG: ↑* Strength (27%) and power (27%) in KE; ↑* Strength (18%) and power (18%) in LE; ↑* power (22%) EE. CG: No sign. Changes. Body Composition: TG and CG: No changes. Functional capacity: TG and CG: No changes.
So et al. (2013)	Older adults.	12wk 2d/wk 3 sets of 15-25 reps 60 min.	TG: Shoulder press, front raises, lateral raises, biceps curl, triceps extension, vertical row, seated row, chest push, leg press, squat, good morning, abdominal crunch, glute bridge.	Functional capacity: Senior fitness test: Chair stand, one arm curl, 2min step, chair sit and reach, back scratch 8 feet up and go. Body composition (Bioimpedance). Blood lipid test. Hormonal analysis in blood (GH, IGF-I, and IGF-BP3, anti-inflammatory cytokines).	Functional capacity: TG: ↑*, Chair stand (20.5%), arm curl (15%), 2min step (8.1%), chair sit and reach (60.5%), back scratch (39.8%) and 8 foot up and go. ↑* (-29%). CG: No changes. Body Composition: TG: ↓** average weight (21%), % fat (3.4%), BMI (1.9%) y ↓** lean mass (2.7%). CG: No changes. Biomarkers: Blood and hormonal analysis: TG and CG: No changes.
Topp et al. (1993)	Older adults.	12wk 3d/wk 1-3 sets of 10 reps 60 min.	TG: 12 strength exercises (6 for lower limbs and 6 for upper limbs) that imply balance and gait patterns.	Knee extensors and flexors strength. Gait speed (3-10m). Balance (Romberg’s test).	Strength: TG: ↑* Strength KE and KF. CG: No changes sign. Functional capacity: TG: ↑* gait speed and ↑ Balance. CG: No changes sign.
Topp et al. (1996)	Older adults.	14wk 3d/wk 1 sets of 10 reps.	11 exercises for arms, chest, back, and legs used when walking	Ankle dynamic: Strength: Dorsiflexion and planter flexion. Functional capacity: Postural balance and gait speed.	Strength: TG: ↑* Ankle dorsiflexion (14%). No changes in plantar flexion. CG: ↑* ↓< TG ankle dorsiflexion (7%). No changes in plantar flexion. Functional capacity: TG and CG: No sign. Changes in postural balance or gait speed.
Author & year	N° subject; Gender; Age; Characteristics of the sample	Time Of Intervention; Frequency; N° Sets/Reps; Intensity; Rest; minutes per session	Training Groups/Exercises	Measurements: Strength; Body Composition; Functional Capacity; Biomarkers; Others	Results
-----------------------	---	---	---------------------------	---	---------
Yamauchi et al. (2009)	40; TG: 23 CG: 17; TC: 69.2 ± 5.2 CG: 70.1 ± 6.6 years; Older sedentary adults.	12wk 3d/wk (Strength and aerobic training) 4e wk (Mobility) 20reps (Strength) and 10-12s (mobility) 80-100 min.	TG: Aerobic training: Walking; Strength training: 8 exercises for upper limbs and 9 exercises for lower limbs in seated position 7 Mobility training: 7 exercises for upper limbs and 8 exercises for lower limbs. CG: Mobility exercises	Functional capacity: 30s Arm Curl Test, 30s Chair Stand Test, Back scratch, 8 foot Up and Go test. Chair sit and reach test, 12m walk test.	No sign. Changes in all measurements (Better results after 6 months than after 3 months) CG: ↑.
Yang et al. (2015)	169; TG: 84 CG: 85; 71.28 ± 5.54 years; Older adults.	24wk 3d/wk 40 min.	TG: Elastic bands exercises. CG: Normal activity.	Functional capacity: Cardiorespiratory fitness, mobility, limbs power and endurance.	No sign. Changes in 30s Chair Stand Test, Back scratch, 8 foot Up and Go test, 12m walk test. CG: No changes.
Yasuda et al. (2015)	14; TG: 7 CG: 7; 67 ± 6 years; Older adults.	12wk 2d/wk 4uts of 35 reps (30-20-15-10 reps) 30s	TG: Arm curl, 3Reps extension during blood restriction. CG: Arm curl, triceps extension without blood restriction.	Maximum voluntary isometric contraction (MVIC) in upper limbs. Muscular cross section (MTS) (magnetic resonance). Hemodynamic parameters. Articular functions. Coagulation system. Muscle damage. Oxidative stress.	No sign. Changes in 30s Chair Stand Test, Back scratch, 8 foot Up and Go test, 12m walk test. CG: No changes.
Yasuda et al. (2016)	30; TG: 20 (RS-BI: 10 RS-MI:10; CG: 10; TC: 6 CG: 68 ± 6 years; Older adults.	12wk 2d/wk BR-MI: 5-6-8-4 in OMNI-RES scale or 70-90% de 1RM; BR-LI: 5-9 in OMNI-RES scale.	TG: Squat, leg press and knee extension with blood restriction.	1RM in leg press and knee extension. Maximum voluntary isometric contraction (MVIC) in lower limbs. Body composition. Muscular cross section (MTS) (magnetic resonance). Hemodynamic parameters. Articular functions. Coagulation system. Muscle damage. Oxidative stress.	Strength: TG: ↑** MVIC knee extensions (BR-BI: 13.7%) and 1RM knee extensors (BR-MI: 17.6%). CG: No changes. Body Composition: TG: ↑** MTS: Flexors (6.7%) and extensors (7.5%). CG: No changes. Biomarkers: TG and CG: Hemodynamic parameters, Articular functions, Coagulation system. Muscle damage, Oxidative stress. No changes.
Yu et al. (2015)	30; TG: 15 CG: 15; 75.46 ± 7.36 years; Older adults.	3wk 2d/wk 3sets of 10 reps 60min.	TG: Diagonal raises, abduction exercises, adduction exercises, lateral step, femoral standing cut.	Hamstring and quadriceps power. Functional capacity: Timed up and go and gait speed (6 and 12 m.).	Strength: TG: ↑** quadriceps (24%) and hamstring (15.9%) power. CG: No changes. Functional capacity: TG: ↑** U&G test (11.1%). ** Gait speed (15%) CG: No changes.

: Significant change (p < 0.05); †: Change; ‡ Increases; ‡‡ Decreases; M: Men; W: Women; CG: Control group; TG: Training group; FWG: Free weight group; EBG: Elastic bands group; BWG: Body weight group; BRG: Bodyblade group; UM3G: Lower members training group; UMTG: Upper members training group; MTG: Machines training group; AAG: Aquactic exercise group; ADIDFG: Aquatic devices that increase drag forces group; TAG: Two attempt group; ECG: Cognitive exercise group; BR-MI: Blood restriction middle intensity; BR-LI: Blood restriction low intensity; KE: Knee extensions; KS: Knee flexors; EL: Leg extensions; EE: Elbow extensions; G65: 65 years old group; G75: 75 years old group. PEDro SS: PEDro Scale Score (Methodological quality of the studies -Maher et al., 2003-).
EFFECTS OF TRAINING WITH ELASTIC BANDS

J.C. COLADO, R. MENA, J. CALATAYUD, P. GARGALLO, J. FLÁNDEZ, P. PAGE

The variety of exercise equipment and physical activity participation in children. *Journal of Sport Behavior*, 34(2), 137.

Behm, D. G. (1993). An Analysis of Intermediate Speed Resistance Exercises for Velocity-specific Strength Gains. *The Journal of Strength & Conditioning Research*, 7(1), 1-5. doi:10.1519/1067-4943.84900024-4

Bellar, D. M., Muller, M. D., Barkley, J. E., Kim, C. H., Ida, K., Ryan, E. J., Bliss, M. V., & Glickman, E. L. (2011). The effects of combined elastic-and-free weight resistance training on body composition in older men. *Journal of Strength & Conditioning Research*, 25(2), 459-463. doi:10.1519/JSC.0b013e3181f1efb8

Brath, R. W., & Stewart, K. J. (2006). Resistance exercise training. *Circulation*, 113(22), 2642-2650. doi:10.1161/01.cir.105.190662

Calatayud, J., Borreani, S., Colado, J. C., Martin, F., Tella, V., & Andersen, L. L. (2015). Bench press and push-up at comparable levels of muscle activation results in similar strength gains. *Clinical Biomechanics*, 28, 185-195. doi:10.1016/j.clinbiomech.2014.03.012

Colado, J. C., & Triplett, N. T. (2008). Effects of a short-term resistance training program using elastic bands versus weight machines for sedentary middle-aged women. *The Journal of Strength & Conditioning Research*, 22(2), 1441-1448. doi:10.1519/JSC.0b013e31817ae7a

Colado, J. C., García-Masso, X., Triplett, T. N., Flandez, J., Borreani, S., & Tella, V. (2012b). Concurrent validation of the OMNI-resistance exercise scale of perceived exertion with Thera-band resistance bands. *The Journal of Strength & Conditioning Research*, 26(11), 3018-3024. doi:10.1519/JSC.0b013e318245ec9

Flandez, J., Belando, N., Gargallo, P., Fernández-Garrido, J., Vargas-Foitack, R. A., Devis-Devis, J., & Colado, J. C. (2017). Metabolic and functional profile of premenopausal women with metabolic syndrome after training with elastics as compared to free weights. *Biological research for nursing*, 19(2), 190-197. doi:10.1016/j.brn.2016.04.015

Franzke, B., Halper, B., Hofmann, M., Oesen, S., Jandrasits, W., Baierl, A., et al. (2015a). The impact of six months strength training, nutritional supplementation or cognitive training on DNA damage in institutionalised elderly. *Mutagenesis*, 30(1), 147-153. doi:10.1039/mutagenesis070474

Franzke, B., Halper, B., Hofmann, M., Oesen, S., Piersen, B., Cremer, A., et al. (2015b). The effect of six months of elastic band resistance training, nutritional supplementation or cognitive training on chromosomal damage in institutionalised elderly. *Experimental gerontology*, 65, 16-22. doi:10.1016/j.exger.2015.03.001

Furtado, G., Carvalho, H. M., Loureiro, M., Patrício, M., Uba-Chupel, M., Colado, J. C., Hogervorst, E., Ferreira, J. P., & Ana Maria Teixeira, A. M. (2019). Chair-based Exercise Programs in Institutionalized Older Women: Salivary Steroid Hormones, Disabilities and Frailty Changes. *Experimental Gerontology*, 113, 113-122. doi:10.1016/j.exger.2018.11.007

Gargallo, P., Colado, J. C., Juesas, A., Fernández-Garrido, J., Casellas, R., Fajardo, D., et al. (2015). The variety of exercise equipment and physical activity participation in children. *Journal of Sport Behavior*, 34(2), 137.

References
Conceputal Model for Long-Term Athlete Development. Frontiers in physiology, 7, 164. doi:10.3389/fphys.2016.00164

Harrnirattisai, T., Thongtawe, B., & Raetong, P. (2015). The Effects of a Physical Activity Program for Fall Prevention among Thai Older Adults. Pacific Rim International Journal of Nursing Research, 19(1), 4-18. doi:10.1111/jrnp.123052

Heulein, D. M., Harris, A. B., & Jette, A. M. (1994). A strength training program for postmenopausal women: a pilot study. Archives of Physical Medicine and Rehabilitation, 75(2), 198-204.

Hofmann, M., Schober-Halper, B., Oesen, S., Franze, B., Tschian, H., Rachl, N., et al. (2016). Effects of elastic band resistance training and nutritional supplementation on muscle mass and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). European journal of applied physiology, 116(5), 885-897. doi:10.1007/s00421-016-3344-8

Hostler, D. C., Schwirian, I., Campos, G., Toma, K., Crill, M. T., Hagerman, G. R., Hagerman, F. C., & Staron, R. S. (2001). Skeletal muscle adaptations in elastic resistance-trained young men and women. European journal of applied physiology, 86(2), 112-118. doi:10.1007/s00421-000-0905-z

Hughes, C. J., & McBride, A. (2005). The use of surface electromyography to determine muscle activation during isotonic and elastic resistance exercises for shoulder rehabilitation. Orthopaedic physical therapy practice, 17(2), 18.

Igrjatorovic, A., Stankovic, R., Radovanovic, D., Markovic, Z., & Cveck, Z. (2009). Resistance training for youths. Facta Universitatis: Series Physical Education and Sport, 7(2), 189-196.

Iwamoto, J. (2013). Effects of physical activity on bone: what type of physical activity and how much is optimal for bone health. Journal of Osteoporosis and Physical Activity, 1, 101. doi:10.4172/2329-3048.s1-001

Johansen, M. D., Sundstrup, E., Andersen, C. H., Aagaard, P., & Andersen, L. L. (2013). Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions. Human Movement Science, 32(2), 65-78. doi:10.1016/j.humov.2012.07.002

Jonghwaan, C., Chulhyun, R., Kyoomoon, L., Hyeonju, K., & Byungok, L. (2003). Effect of the PFN and weight training on flexibility, muscular strength, and power in college males. Journal of Physical Growth and Motor Development, 31, 35-43.

Kompf, J., & Arandjelovic, O. (2016). Understanding and overcoming the sticking point in resistance exercise. Sports Medicine, 46(6), 751-762. doi:10.1007/s40279-015-0460-2

Kwak, C. J., Kim, Y. L., & Lee, S. M. (2016). Effects of elastic-band resistance exercise on balance, mobility and gait function, flexibility and fall efficacy in elderly people. Journal of physical therapy science, 28(11), 3189-3196. doi:10.1589/jpts.28.3189

Lee, H. C., Lee, M. L., & Kim, S. R. (2015). Effect of exercise performance by elderly women on balance ability and muscle function. Journal of physical therapy science, 27(4), 989-992. doi:10.1589/jpts.27.989

Liao, I. Y., Chang, W. S., & Chen, K. M. (2017). Free radicals and antioxidant enzymes in older adults after regular senior elastic band physical therapy. Archives of gerontology and geriatrics, 71(1), 189-196. doi:10.1016/j.archger.2013.03.002

Martins, W. R., Safons, M. P., Bottaro, M., Blasczyk, J. C., Diniz, L. R., Fonseca, R. M. C., et al. (2015). Effects of short-term elastic resistance training on muscle mass and strength in untrained older adults: a randomized clinical trial. BMC geriatrics, 15(1), 99. doi:10.1186/s12877-015-0101-5

Matheson, J. W., Kernozeck, T. W., Pater, D. C., & Davies, G. J. (2001). Electromyographic activity and applied load during seated quadriiceps exercises. Medicine and science in sports and exercise, 33(10), 1713-1725. doi:10.1093/ptj/86.4.316-320. doi:10.1123/japa.21.1.20

Mober, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. doi:10.1186/2046-4053-4-1

Oesen, S., Halper, B., Hofmann, M., Jandrasits, W., Franze, B., Strasser, E. M., et al. (2015). Effects of elastic band resistance training and nutritional supplementation on physical performance of institutionalised elderly: a randomized controlled trial. Experimental gerontology, 72, 99-108. doi:10.1016/j.exger.2015.08.013

Oh, S. L., Kim, H. J., Woo, S., Cho, B. L., Song, M., Park, Y. H., et al. (2016). Effects of an integrated health education and elastic band resistance training program on physical function and muscle strength in community-dwelling elderly women: Healthy Aging and Happy Aging II study. Geriatrics & gerontology international, 17(5), 825-833. doi:10.1111/ggi.12795

Page, P., & Ellenbecker, T. S. (2003). The scientific and clinical application of elastic resistance. Champaign, IL: Human Kinetics.

Papadopoulous, C., & Jager, J. M. (2016). The effect of an educational program on strength-training adherence in older adults. Educational Gerontology, 42(5), 342-351. doi:10.1080/03069143.2016.1133943

Park, R. S., Khamoui, A. V., Brown, L. E., Kim, D. Y., Han, K. A., Min, K. W., & An, G. H. (2016). Effects of elastic band resistance training on glucose control, body composition, and physical function in women with short- vs. long-duration type-2 diabetes. The Journal of Strength & Conditioning Research, 30(6), 1688-1699. doi:10.1519/JSC.0000000000001256

Park, S. Y., Kim, J. K., & Lee, S. A. (2015). The effects of a community-centered muscle strengthening exercise program using an elastic band on the physical abilities and quality of life of the rural elderly. Journal of physical therapy science, 27(7), 2061-2063. doi:10.1589/jpts.27.2061

Rhyu, H. S., Kim, S. H., & Park, H. S. (2015). The effects of band exercise using proprioceptive neuromuscular facilitation on muscular strength in lower extremity. Journal of exercise rehabilitation, 11(1), 36. doi:10.12965/jer.1501819

Riepert, T., Furtado, G. E., Letieri, R. V., Chapul, M. U., Colado, J. C., Hogervorst, E., Filaire, E., Teixeira, A. M. M. B., & Ferreira, J. P. (2019). Effects of Different Chair-Based Exercises on Salivary Biomarkers and Functional Autonomy in Institutionalized Older Women. Research quarterly for exercise and sport, 90(3), 36-45. doi:10.1080/02701367.2018.1563272

Rogers, M. E., Sherwood, H. S., Rogers, N. L., & Bohlen, R. M. (2002). Effects of dumbbell and elastic band training on physical function in older inner-city African-American women. Women & health, 36(4), 33-41. doi:10.1300/J013v36n04_03

Rosenberg, J. H. (1997). Sarcoceps: origins and clinical relevance. The Journal of nutrition, 127(5), 9905-9915. doi:10.1093/jn/127.5.9905

Sahin, G., Aslan, M., & Demir, E. (2016). Short-term effect of back squat with an elastic band on the squat and vertical jump performance in trained children. Journal of Physical Education and Sport, 16(1), 97. doi:10.7752/jpes.2016.01016

Schober-Halper, B., Hofmann, M., Oesen, S., Franze, B., Wolf, T., Strasser, E. M., et al. (2016). Elastic band resistance training influences transforming growth factor-b receptor I mRNA expression in peripheral mononuclear cells of institutionalised older adults: the Vienna Active Ageing Study (VAAS). Immunity & Aging, 13(1), 22. doi:10.1186/s12979-016-0077-9

Shin, S. O., & Kim, N. S. (2016). Accessory Respiratory Muscle Activation during Chest Expansion Exercise using Elastic Bands in Children with...
Cerebral Palsy. *Korean Society of Physical Medicine*, 11(3), 119-124. doi:10.13066/kspm.1986.11.3.119

Skelton, D. A., Young, A., Greig, C. A., & Malbutt, K. E. (1995). Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. *Journal of the American Geriatrics Society*, 43(10), 1081-1087. doi:10.1111/j.1532-5415.1995.tb07004.x

So, W. Y., Song, M., Park, Y. H., Cho, B. L., Lim, J. Y., Kim, S. H., & Song, W. (2013). Body composition, fitness level, anabolic hormones, and inflammatory cytokines in the elderly: a randomized controlled trial. *Aging clinical and experimental research*, 25(2), 167-174. doi:10.1007/s40520-013-0032-y

Soria-Gila, M. A., Chirosa, I. J., Bautista, I. J., Baena, S., & Chirosa, L. J. (2015). Effects of variable resistance training on maximal strength: a meta-Analysis. *The Journal of Strength & Conditioning Research*, 29(11), 3260-3270. doi:10.1519/JSC.0000000000000971

Suchomel, T. J., Nimphius, S., Bellon, C. R., & Stone, M. H. (2018). The importance of muscular strength: Training considerations. *Sports Medicine*, 48(4), 765-785. doi:10.1007/s40279-018-0862-z

Sugimoto, D., & Blanpied, P. (2000). Flexible foil exercise and shoulder internal and external rotation strength. *Journal of athletic training*, 36(3), 280.

Thiebaud, R. S., Loenneke, J. P., Fahs, C. A., Rossow, L. M., Kim, D., Abe, T., et al. (2013). The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. *Clinical physiology and functional imaging*, 33(5), 344-352. doi:10.1111/cpf.12033

Thorborg, K., Bandholm, T., Petersen, J., Weeke, K. M., Weinold, C., Andersen, B., et al. (2010). Hip abduction strength training in the clinical setting: with or without external loading? *Scandinavian journal of medicine & science in sports*, 20(2), 70-77. doi:10.1111/j.1600-0838.2010.01186.x

Thorborg, K., Bandholm, T., Zebis, M., Andersen, L. L., Jensen, J., & Hølmich, P. (2016). Large strengthening effect of a hip-flexor training programme: a randomized controlled trial. *Knee Surgery, Sports Traumatology, Arthroscopy*, 24(7), 2346-2352. doi:10.1007/s00167-015-3583-y

Topp, R., Miessler, A., Dayhoff, N. E., & Holt, W. (1996). Effect of resistance training on strength, postural control, and gait velocity among older adults. *Clinical Nursing Research*, 5(4), 407-427. doi:10.1177/105477898600500404

Topp, R., Miessler, A., Wigglesworth, J., Holt, W., & Edwards, J. E. (1993). The effect of a 12-week dynamic resistance strength training program on gait velocity and balance of older adults. *The Gerontologist*, 33(4), 501-506. doi:10.1093/geront/33.4.501

Vincent, K. R., Vincent, H. K., Braith, R. W., Bhatnagar, V., & Lowenthal, D. T. (2003). Strength training and hemodynamic responses to exercise. *The American journal of geriatric cardiology*, 12(2), 97-106. doi:10.1111/j.1076-7460.2003.01588.x

Winters-Stone, K. M., & Snow, C. M. (2006). Site-specific response of bone to exercise in premenopausal women. *Bone*, 39(6), 1203-1209. doi:10.1016/j.bone.2006.06.005

Yamauchi, T., Islam, M. M., Koizumi, D., Rogers, M. E., Rogers, N. L., & Takeshima, N. (2005). Effect of home-based well-rounded exercise in community-dwelling older adults. *Journal of Sports Science and Medicine*, 4(4), 563-571.

Yang, H. J., Chen, K. M., Chen, M. D., Wu, H. C., Chang, W. J., Wang, Y. C., & Huang, H. T. (2015). Applying the transtheoretical model to promote functional fitness of community older adults participating in elastic band exercises. *Journal of advanced nursing*, 71(10), 2338-2349. doi:10.1111/jna.12705

Yasuda, T., Fukumura, K., Iida, H., & Nakajima, T. (2015). Effects of detraining after blood flow-restricted low-load elastic band training on muscle size and arterial stiffness in older women. *Springerplus*, 15(4), 348. doi:10.1186/s40064-015-1132-2

Yasuda, T., Fukumura, K., Fukuda, T., Uchida, Y., Iida, H., Meguro, M., et al. (2014). Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults. *Scandinavian journal of medicine & science in sports*, 24(3), 799-806. doi:10.1111/j.1600-0838.2010.01186.x

Yu, S., Lee, Y., & Kim, S. (2015). Effect of Elastic-Band Exercise and Cognitive Rehabilitation in Cognition and Walking Speed of Elderly People-Pilot Study. *Journal of the Ergonomics Society of Korea*, 34(5), 363-375. doi:10.5143/JESK.2015.34.5.363