Dietary vs non-dietary fatty acid profiles of lake trout ecotypes from Lake Superior and Great Bear Lake: Are fish really what they eat?

| Journal: | Canadian Journal of Fisheries and Aquatic Sciences |
|----------|--------------------------------------------------|
| Manuscript ID | cjfas-2019-0343.R2 |
| Manuscript Type: | Article |
| Date Submitted by the Author: | 18-Feb-2020 |
| Complete List of Authors: | Chavarie, Louise; Michigan State University, Fisheries and Wildlife Hoffmann, Justin; University of Waterloo, Biology Muir, Andrew; Michigan State University, Fisheries and Wildlife; Great Lakes Fishery Commission, Krueger, Charles; Michigan State University, Fisheries and Wildlife Bronte, Charles; U.S. Fish and Wildlife Service, Howland, Kimberly; Department of Fisheries and Oceans Gallagher, Colin; Fisheries and Oceans Canada, Arctic Aquatic Research Division Sitar, Shawn; Michigan Department of Natural Resources, Marquette Fisheries Research Station Hansen, Michael; United States Geological Survey, Great Lakes Science Center Vinson, Mark; U.S. Geological Survey, Great Lakes Science Center Baker, Leanne F.; University of Waterloo, Biology Loseto, Lisa; Central and Arctic Region Freshwater Institute Tonn, William; University of Alberta, Swanson, Heidi; University of Waterloo, Biology |
| Keyword: | Intraspecific diversity, salmonid, aquatic ecology, trophic ecology, Great Lakes, Salvelinus namaycush |
| Is the invited manuscript for consideration in a Special Issue? : | Not applicable (regular submission) |
Dietary vs non-dietary fatty acid profiles of lake trout ecotypes from Lake Superior and Great Bear Lake: Are fish really what they eat?

Chavarie, L.1,2 *, J. Hoffmann3, A.M. Muir4, C.C. Krueger5, C.R. Bronte6, K.L. Howland7,8, C.P. Gallagher7, S.P. Sitar9, M.J. Hansen10, M.R. Vinson11, L.F. Baker3, L.L. Loseto7, W. Tonn8, and H. Swanson3

1 University of British Columbia, Biodiversity Center, 2212 Main Mall, Vancouver, BC, Canada, V6T 1Z4
2 Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
3 University of Waterloo, Department of Biology, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G
4 Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, Michigan, USA, 48105
5 Michigan State University, Center for Systems Integration and Sustainability, 1405 South Harrison Road, 115 Manly Miles Building, East Lansing, Michigan USA 48823
6 U.S. Fish and Wildlife Service, Green Bay Fish and Wildlife Conservation Office, New Franken, WI, USA
7 Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Canada
8 University of Alberta, Department of Biological Sciences, CW 405 BioSciences Building, Edmonton, Canada
9 Michigan Department of Natural Resources, Marquette, MI, USA
10 U.S. Geological Survey Great Lakes Science Center, Hammond Bay Biological Station, USA (retired)
11 U.S. Geological Survey Great Lakes Science Center, Ashland, WI, USA

*Corresponding author: chavarie@ualberta.ca
Abstract:

Fatty acids are well-established biomarkers used to characterize trophic ecology, food-web linkages, and the ecological niche of many different taxa. Most often, fatty acids that are examined include only those previously identified as “dietary” or “extended dietary” biomarkers. Fatty acids considered as non-dietary biomarkers, however, represent numerous fatty acids that can be extracted. Some studies may include non-dietary fatty acids (i.e., combined with dietary fatty acids), but do not specifically assess them, whereas in other studies, these data are discarded. In this study, we explored whether non-dietary biomarkers fatty acids can provide worthwhile information by assessing their ability to discriminate intraspecific diversity within and between lakes. Non-dietary fatty acids used as biomarkers delineated variation among regions, among locations within a lake, and among ecotypes within a species. Physiological differences that arise from differences in energy processing can be adaptive and linked to habitat use by a species’ ecotypes, and likely explains why non-dietary fatty acids biomarkers can be a relevant tool to delineate intraspecific diversity. Little is known about the non-dietary-mediated differences in fatty acid composition, but our results showed that non-dietary fatty acids biomarkers can be useful tool in identifying variation.

Key words: Intraspecific diversity, salmonid, aquatic ecology, trophic ecology, Great Lakes, *Salvelinus namaycush*
Introduction:

Constraints on traditional methods to investigate diets of organisms within aquatic systems have led to the development and use of biochemical tracers (Vinson and Budy 2010). Among these, fatty acids have gained popularity as both qualitative and quantitative trophic markers that reflect foraging patterns and food-web dynamics (Galloway et al. 2014, Iverson 2009). As such, fatty acids have been used to characterize variation within populations and species (e.g., evolutionary units linked to trophic polymorphism; Logan et al. 2000, Scharnweber et al. 2016), and to explore geographical (Hiltunen et al. 2016, Pomerleau et al. 2014, Quérouil et al. 2013) and temporal variation in trophic ecology (e.g., seasonal and annual variations; Eloranta et al. 2013, Hartwich et al. 2012).

Fatty acids are the “building blocks” of lipids and represent the largest constituent of neutral lipids (e.g., triacylglycerols and wax esters) and polar phospholipids (Iverson 2009). The array of fatty acids present in nature is exceptionally complex, routinely ~70 fatty acids can be identified within an organism (Budge et al. 2006, Iverson 2009). The utility of fatty acid analyses to reflect foraging patterns and food web dynamics relies on the assumption that lipids are broken down into their constituent fatty acids and incorporated relatively unchanged into consumer tissues (Howell et al. 2003, Iverson 2009, Iverson et al. 2004). The storage patterns of fatty acids depend on the biochemical limitations of organisms to biosynthesize, modify chain-length, and introduce double bonds into fatty acids, which culminate in vertebrates (Iverson 2009). Fatty acids that are stored in predator tissues, with no or little modification from their prey, have been labelled as “dietary” or “extended dietary” tracers (Budge et al. 2006, Iverson et al. 1997, 2004) and have been the target of analyses in ecological studies. Accordingly, for purposes of this study, we use the terminology of “dietary” versus “non-dietary” derived fatty acids based on the classification.
of Iverson et al. (2004), who identified typical dietary fatty acid markers that are now used across a variety taxa. Often, “non-dietary” fatty acids extracted from tissue samples are not examined, and only those recognized as dietary are analyzed. In other studies, dietary and non-dietary fatty acids may be combined to characterize food-web relationships, but information gained from inclusion of non-dietary fatty acids is not specifically addressed (Hiltunen et al. 2019, Mariash et al. 2017, McMeans et al. 2015, Taipale et al. 2019).

The exclusion or ignoring non-dietary fatty acids from analyses is not misguided, as the purpose of most studies is to describe diet patterns, and this practice has resulted in reliable information being produced across taxa (Galloway et al. 2014, Grosbois et al. 2017, Iverson 2009, Iverson et al. 2004). However, it is unknown whether valid information for other research questions is lost when investigators discard non-dietary fatty acids. Biological (e.g., phenotypic and genetic) and environmental variables can affect lipid and fatty acid composition in fishes (Olsen and Skjervold 1995), including temperature (Farkas et al. 1980, Olsen 1999), salinity (Borlongan and Benitez 1992), and light (Ota and Yamada 1971). Thus, fatty acids not labelled as “dietary” markers could be useful when the aim of a study is to delineate or better understand intraspecific diversity. To investigate this, we compared non-dietary to dietary fatty acids biomarkers among ecotypes of lake trout (Salvelinus namaycush) in Lake Superior and Great Bear Lake, as these ecotypes represent important intraspecific diversity in these lakes.

Salmonids, such as lake trout, inhabit young ecosystems believed to be 10,000 to 15,000 years old, e.g., post-glacial lakes colonized from non-glaciated refugia. The depauperate communities of post-glacial lakes are commonly characterized by reduced interspecific competition and predation, which allows colonizers access to a relatively wide array of resources, conditions that favour development of intraspecific diversity (McPhail 1993, Robinson and Wilson
1994, Smith and Skulason 1996). This high level of ecological opportunity, together with an increase in intraspecific competition after colonization, can promote specialization and divergence within a population, e.g., the development of groups of individuals with similar patterns of resource use (Svanbäck et al. 2007). Phenotypic characteristics of individuals in such groups may evolve as niches incorporate novel foraging resources, referred to as resource divergence (Robinson and Parsons 2002, Skulason and Smith 1995). As niches diverge, ecotypes can develop differences in morphology, genetics, physiology, life-history, and/or behaviour (Bolnick et al. 2007, Schluter and McPhail 1992, Smith and Skulason 1996).

Intraspecific diversity in lake trout has been mostly linked to differences in depth distribution and, not surprisingly, is best known from large (> 500km²), deep lakes, such as Lake Superior (Moore and Bronte 2001, Muir et al. 2014), Lake Mistassini (Zimmerman et al. 2007), Great Slave Lake (Zimmerman et al. 2006), and Great Bear Lake (Chavarie et al. 2013). Although lake trout diversification has often focused on isolation-by-depth (without excluding isolation-by-adaptation) in large, deep lakes (e.g., Lake Superior), diversification also occurs in small lakes or within shallow-water habitats (Bernatchez et al. 2016, Chavarie et al. 2013, Chavarie et al. 2016c, Morissette et al. 2018).

A number of studies have assessed lake trout diets with fatty acids, either qualitatively (Chavarie et al. 2016b, Happel et al. 2017a, Happel et al. 2017b, Hoffmann 2017) or quantitatively (Happel et al. 2016a, Happel et al. 2016b), generating reliable information about dietary patterns. However, pronounced and systematic non-dietary-mediated differences in composition of fatty acids have been reported in lake trout, supporting the rationale that non-dietary fatty acids biomarkers could be important in delineating intraspecific diversity within this species. Goetz et al. (2013) found physiological differences between lean and siscowet ecotypes of lake trout that
reflected genetically based differences in lipid synthesis, metabolism, and transport (Goetz et al. 2010), which suggests information from non-dietary fatty acids biomarkers might be important, especially if they have genetic-based mechanisms. Consequently, where intraspecific diversity is manifested as physiological differences among ecotypes, non-dietary fatty acids biomarkers could assist in identifying variation. Yet, little is known about the non-dietary-mediated differences in fatty acid composition of fish (or other taxa) in an ecological context.

To investigate the use of non-dietary fatty acids biomarkers as an ecological tool, we analyzed a set of non-dietary and dietary fatty acid biomarkers (as classified by the literature), from lake trout ecotypes collected from two lakes that sustain intraspecific diversity along different axes of intraspecific diversification (e.g., depth-dependent and depth-independent). Specifically, we compared: 1) non-dietary and dietary fatty acids biomarkers among four ecotypes of lake trout from each of Great Bear Lake and Lake Superior, and 2) how well non-dietary and dietary biomarkers delineated intraspecific diversity within and between lakes. Answers to these comparisons will help determine if non-dietary fatty acid biomarkers can discriminate fish geographically and among groups within a species, and if they offer different perspectives than dietary fatty acids biomarkers.

**Material and methods**

**Study systems and intraspecific diversity of lake trout**

Located in the northeast corner of Northwest Territories (Canada; 65°92′ N, 120°82′ W), Great Bear Lake is the most northerly lake of its size (~31 000 km²) and is the fifteenth deepest freshwater lake in the world (Fig. 1; Johnson 1975). A UNESCO biosphere reserve, Great Bear Lake is 250 km south of the Arctic Ocean and has characteristics typical of an Arctic lake. The
lake is ultra-oligotrophic and, despite its size, has a simple food web, supporting only 15 fish species (Johnson 1975, MacDonald et al. 2004). The lake and its biota have remained relatively isolated and unexploited and is one of the most pristine large lakes in North America. Great Bear Lake has five semi-isolated arms, but due to sample sizes, data were pooled across multiple sites (see Chavarie et al. 2016b for details).

Great Bear Lake sustains a noteworthy example of lake trout divergence (Fig. 2). With its intraspecific diversity independent of depth-based segregation, the lake also presents an unusual ecological framework for lake trout differentiation (Chavarie et al. 2016a). Currently, four shallow-water ecotypes are described in Great Bear Lake; three are common (Ecotypes 1-3), and one is rare (Ecotype 4). Ecotype 1 has the smallest head and jaws, intermediate fin lengths and body shape intermediate between Ecotypes 2 and 3. The lean-like Ecotype 2 has the largest head and jaws but the smallest fins, and a streamlined body shape. Ecotype 3 has the longest fins, a robust body shape, and a sub-terminal mouth. Ecotype 4 has a thick and curved lower jaw, a streamlined body shape, and the smallest caudal peduncle among the ecotypes. Although Ecotype 4 is a pelagic specialist, Ecotypes 1-3 have more general feeding habits, with varying degrees of omnivory along a weak benthic-pelagic gradient (Chavarie et al. 2016a, Chavarie et al. 2016b).

Lake Superior is a post-glacial, oligotrophic lake between Canada and the USA (47°43’ N, 86°56’ W) (Fig. 1). Lake Superior is the largest lake in the world by surface area (82 100 km²). Most of the waters of Lake Superior can be classified as offshore; 77% of the total area is greater than 80 m deep (maximum depth = 406 m) (see Gorman et al. 2012, Hoffmann 2017, Horns et al. 2003). Lake Superior supports 87 fish species, with lake trout as a main target of the commercial fishery since the 1800s. Lake trout were sampled from two sites, Superior Shoal (48° 3'43.54" N, 87° 8'52.57" W) and Stannard Rock (47°12'26.26" N, 87°12'3.82" W) (Fig. 1).
Lake Superior supports one of the highest levels of sympatric diversity expressed within lake trout (Fig. 2). Four ecotypes are currently recognized; the siscowet, humper, and redfin ecotypes inhabit deep-water (> 70 m), whereas the lean ecotype occupies shallow-water habitats (< 70 m) (Bronte et al. 2003, Bronte and Moore 2007, Muir et al. 2014). The siscowet is characterized by a large head, short snout, long maxilla, large eye, short and deep caudal peduncle, and moderately long paired fins (Muir et al. 2015). Humpers have a small head, short snout, short maxillae, large eyes, and short and narrow caudal peduncle. (Moore and Bronte 2001, Muir et al. 2015). The redfin has the largest head, snout, and eyes, the longest and deepest caudal peduncle, and much longer pelvic and pectoral fins than the other ecotypes (Muir et al. 2014). Finally, lean lake trout have a large, narrow, and pointed head, long snout, small eyes, long and narrow caudal peduncle, short paired fins, and low body lipid content. (Endler 1978, Khan and Qadri 1970, Muir et al. 2015). As vertical migrating visual predators, the three deep-water ecotypes are likely feeding mostly on *Mysis* and deep-water ciscoes (*Coregonus artedi* complex) (Hoffmann 2017, Hrabik et al. 2006, Muir et al. 2014), whereas the lean ecotype is adapted for daytime predation on pelagic fishes in shallow-water habitats (piscivorous feeding strategy; Harvey and Kitchell 2000, Harvey et al. 2003, Janhunen et al. 2009).

**Fatty acids**

Dorsal muscle samples (Budge et al. 2011) from lake trout in both lakes were stored at -20°C (Budge et al. 2006, Chavarie et al. 2016b, Kavanagh et al. 2010, Loseto et al. 2009). Lipids were extracted from 1 g of the homogenate material; after passive overnight extraction (at -20) in 2:1 chloroform:methanol containing 0.01% BHT (v/v/w) (Folch et al. 1957), samples were filtered through Whatman Grade 1 Qualitative filter paper and the filter paper sample was rinsed twice with 2 mL of 2:1 chloroform:methanol. Sample extract was collected in a test tube and 7 mL of
0.88 NaCl solution were added to encourage fatty acids to move into the organic (chloroform) layer. The aqueous layer was discarded, after which the chloroform was dried with sodium sulfate prior to total lipid determination. The extracted lipid was used to prepare fatty acid methyl esters (FAME) by transesterification with Hilditch reagent (0.5 N H$_2$SO$_4$ in methanol) (Morrison and Smith 1964). Samples were heated for 1 h at 100 °C. Gas chromatographic (GC) analysis was performed on an Agilent Technologies 7890N GC equipped with a 30 m J&W DB-23 column (0.25 mm I.D; 0.15 μm film thickness). The GC was coupled to a Flame Ionization Detector operating at 350 °C. Hydrogen was used as carrier gas flowing at 1.25 mL/min for 14 minutes, increasing to 2.5 mL/min for 5 minutes. The split/splitless injector was heated to 260 °C and run in splitless mode. The oven program was as follows: 60 °C for 0.66 min, increasing by 22.82 °C/min to 165 °C with a 1.97 min hold; increasing by 4.56 °C/min to 174 °C and by 7.61 °C/min to 200 °C with a 6 min hold. Peaks were quantified using Agilent Technologies ChemStation software. Fatty acids standards were obtained from Supelco (37 component FAME mix) and Nuchek (54 component mix GLC-463). FAMEs were identified via retention time and known standard mixtures and are reported as percentages of total fatty acids. Fatty acid standards were obtained from Supelco - Oakville Ontario, Canada (37 component FAME mix) and Nuchek - Elysian Minnesota, USA (54 component mix GLC-463). Standards were run to allow creation of a 4 level calibration curve for each set of samples at the start of each sample set. A standard was repeated every 10 samples thereafter. Every 10 th sample was injected in duplicate. All fatty acids values were converted to a mass percentage of the total array, and were named according the IUPAC nomenclature as X:Y n-z, where X is the number of carbons in the fatty acid, Y is the number of methylene-interrupted double bonds present in the chain, and n-z denotes the position.
of the last double bond relative to the methyl terminus (Ronconi et al. 2010). All laboratory analyses were conducted at the Freshwater Institute, Fisheries and Oceans Canada, Winnipeg MB.

For both lakes, tissue samples were taken from individual lake trout previously identified to corresponding ecotypes: 126 samples were collected from Great Bear Lake (Ecotype 1 = 32, Ecotype 2 = 35, Ecotype 3 = 38, and Ecotype 4 = 21, see Chavarie et al. 2016b for more details) and 210 samples were collected from Lake Superior (60 siscowet, 60 humper, 30 redfin, and 60 lean, see Hoffmann 2017 for more details). Overall, fatty acid analysis procedures were divided into two steps, using non-dietary and dietary fatty acid biomarkers (see Appendix 1), following the methods of Iverson et al. (1997, 2004) and Budge et al. (2006) to identify dietary fatty acids biomarkers. Dietary biomarkers were defined as fatty acids ≥ 14 carbons that are generally incorporated into animal tissue from the diet with no or little modification (e.g., rather than come from biosynthesis) (Iverson 2009). Thirty-eight dietary and 24 non-dietary fatty acids biomarkers were found to be shared between the two lakes, and these were selected for further analyses (Table A1 and A2).

**Statistical Analyses**

Unless noted otherwise, statistical analyses were conducted using R software version 3.5.3 (R Core Team 2017). Prior to analysis, fatty acid concentrations were logit transformed (log(p/(1-p))) to normalize the data, and then scaled and centered using a z-score transformation (z=xμ/σ). (Clemmensen et al. 2011, Witten and Tibshirani 2011). Principal Component Analysis (PCA) was performed on all dietary and non-dietary fatty acid biomarkers to provide inference about patterns of variation among locations and ecotypes (Chavarie et al. 2016b). PCA summarizes similarities and differences among individuals, based on their fatty acid profiles, independent of ecotype and location (Chavarie et al. 2016b). For PCAs, 12 outlier individuals from Superior Shoal were
excluded because PCAs are sensitive to outlier variation (but see Fig. A1 for PCAs with outliers included) (Filzmoser et al. 2009, Kriegel et al. 2008).

To test for differences in fatty acid composition among ecotypes within each lake (dietary and non-dietary), we used Permutational Multivariate Analysis of Variance (PERMANOVA; a non-parametric analog of Multivariate Analysis of Variance), followed by post-hoc comparisons with Bonferroni corrections. PERMANOVAs were performed in PAST 3 (Hammer et al. 2001) using 9999 permutations. A similarity percentage routine (SIMPER) using Bray-Curtis was used to determine which fatty acids (dietary and non-dietary) were primarily responsible for observed differences among ecotypes for each lake (King and Jackson 1999). We also performed linear discriminant analysis on fatty acids (dietary and non-dietary) to delineate differences among ecotypes at each location. A jacknife validation procedure, using 20% of our data as unknown, provided a classification success metric to assess how distinct ecotypes appeared in each fatty acids dataset (dietary vs non-dietary).

**Results**

**Combined lakes analyses**

The first two axes of the PCAs explained 42.4 % and 41.5%, respectively, of the variation among individuals in their non-dietary and dietary fatty acid biomarkers (Fig. 3). In both PCAs, lake trout from Great Bear Lake were largely distinct from Lake Superior trout (only ~30 individuals from Great Bear Lake overlapped with individuals from Lake Superior), but trout from the two Lake Superior sites, Stannard Rock and Superior Shoal, overlapped. The non-dietary fatty acids 13:1, 14:1n-7, 15:0, 15:1n8, 15:1n6, 15:0 iso, 16:1n11, 17:0 iso, 20:0, 22:0, 20:2n9, and 24:1n9 contributed to the separation between the two lakes. Separation between the two lakes in
the dietary PCA appeared to be driven by fatty acids associated with pelagic habitat (14:0, 20:1n-9, 20:1n-7, 20:1n-11, and 22:1n-9; toward Lake Superior) versus one dietary fatty acid associated with cannibalism or/and carnivory (20:5n-3; toward Great Bear Lake) (Appendix, Table 1).

Finally, the first two axes of the PCA based on all fatty acids combined explained 39.0% of the variation among lake trout ecotypes from Great Bear Lake and Lake Superior. As before, lake trout from Great Bear Lake were largely separated from the Lake Superior trout, whereas lake trout from Stannard Rock and Superior Shoal in Lake Superior overlapped completely.

Lake Trout intraspecific diversity of Great Bear Lake

Composition of both non-dietary and dietary fatty acid biomarkers were able to discriminate among the four lake trout ecotypes from Great Bear Lake. Non-dietary fatty acid biomarkers differed among the four Great Bear Lake ecotypes (one-way PERMANOVA, $F_{3,122} = 3.6$, $P < 0.01$). Similarly, comparison of non-dietary fatty acids biomarkers showed that all pairs of ecotypes differed from one another ($P < 0.01$) except for ecotypes 1 and 3. The ten most discriminating non-dietary fatty acid biomarkers from SIMPER explained 63.8% of the dissimilarity among groups (Table 1). The first two axes of the linear discriminant analysis explained 55.7% and 27.8% of the variation, and 57.9% of all individuals were correctly classified to ecotype based on non-dietary fatty acids biomarkers (Fig. 4). Dietary fatty acid biomarkers also differed among the four ecotypes from Great Bear Lake (one-way PERMANOVA, $F_{3,122} = 2.95$, $P < 0.01$), and most ecotypes differed from each other (all pairwise $P < 0.01$ except for ecotypes 1 vs. 3). The ten most discriminating dietary fatty acid biomarkers from SIMPER explained 48.8% of the dissimilarity among groups (Table 2). The first two axes of the linear discriminant analysis explained 46.7% and 39.0% of the variation, and 68.3% of all individuals were correctly classified to ecotype based on dietary fatty acids biomarkers (Fig. 4).
Lake Trout intraspecific diversity of Lake Superior, Stannard Rock

Non-dietary fatty acid biomarkers differed among the three ecotypes of lake trout from Stannard Rock (one-way PERMANOVA, $F_{2,87} = 3.9$, $P < 0.01$), and leans differed significantly from both siscowets and humpers ($P < 0.01$). The ten most discriminating non-dietary fatty acids biomarkers from SIMPER explained 70.9% of the dissimilarity among ecotypes (Table 1). The first two axes of the linear discriminant analysis explained 60.2% and 39.8% of the variation, respectively, and 52.2% of all individuals were correctly classified to ecotype based on non-dietary fatty acids biomarkers (Fig. 4). In contrast to results from non-dietary fatty acid biomarkers, no differences in dietary fatty acid composition occurred among the three lake trout ecotypes from Stannard Rock, Lake Superior (one-way PERMANOVA, $F_{2,87} = 1.12$, $P = 0.3$). The ten most discriminating fatty acids from SIMPER explained 55.2% of the dissimilarity among groups (Table 2), and the first two axes of the linear discriminant analysis explained 60.9% and 39.1% of the variation. Fifty percent of individuals were correctly classified to ecotype based on dietary fatty acids biomarkers (Fig. 4).

Lake Trout intraspecific diversity of Lake Superior, Superior Shoal

Like Stannard Rock, composition of non-dietary fatty acid biomarkers differed significantly among the four ecotypes (one-way PERMANOVA, $F_{3,116} = 2.5$, $P < 0.01$); leans differed from redfins ($P < 0.01$) and differences were marginally between redfin and siscowet and between redfin and humper ($P < 0.06$). The ten most discriminating non-dietary fatty acids biomarkers from SIMPER explained ~69.9% of the dissimilarity among groups (Table 1). The first two axes of the linear discriminant analysis explained 64.3% and 25.6% of the variation, and 45.0% individuals were correctly classified to ecotype using non-dietary fatty acids biomarkers (Fig. 4). Similar to what was found at Stannard Rock, we found no differences among the four
ecotypes from Superior Shoal based on dietary fatty acid composition (one-way PERMANOVA, $F_{3,116} = 0.8, P = 0.3$). The ten most discriminating fatty acids from SIMPER explained 55.8% of the dissimilarity among groups (Table 2). The first two axes of the linear discriminant analysis explained 38.6% and 35.6% of the variation, respectively, and 31.7% of fish were correctly classified to ecotype based on their dietary fatty acids (Fig. 4).

**Discussion**

In this study, non-dietary fatty acids showed variation geographically (between lakes), between locations within a lake (i.e., Stannard Rock versus Superior Shoal), and among ecotypes within a lake or location. Although some overlap existed (which reduced the power to discriminate), our results showed that when investigating intraspecific diversity, non-dietary fatty acids biomarkers can be a useful tool to delineate groups, and that sometimes, such as at sites in Lake Superior, were more discriminatory than dietary fatty acids. While characterizing trophic divergence, food-web linkages, and time-integrated niche use across a large array of taxa, most investigators use a common set of fatty acids that are selected from lists that classify fatty acids as “dietary” or “extended dietary” biomarkers (Budge et al. 2006, Iverson et al. 2004). However, our results suggest that discarding non-dietary fatty acid data as a matter of course may result in inadvertent loss of information.

Not all fatty acids provide equivalent information about diet due to metabolism and *de novo* synthesis (Iverson et al. 1993, Iverson et al. 2004). Metabolism, however, can differ within species, as physiological differences often exists among sets of individuals, i.e., “ecotypes” (Miles et al. 2007, Pryke et al. 2007). Such physiological differences within a species may result in non-dietary fatty acids biomarkers being a relevant tool to delineate intraspecific diversity, as we show here for lake trout. In Lake Superior, fat content has long been recognized as an important characteristic

https://mc06.manuscriptcentral.com/cjfas-pubs
that distinguishes lake trout ecotypes along a depth axis (Eschmeyer and Phillips 1965, Eshenroder 2008), and these lipid differences have been linked to genetic differences among ecotypes (Eschmeyer and Phillips 1965, Goetz et al. 2013, Goetz et al. 2010). Thus, fatty acid deposition and metabolism appear to have undergone selection along a depth gradient likely in part to contribute to buoyancy compensation, with differences reported between siscowet (deep-water ecotype) and lean (shallow-water ecotype) lake trout (Eschmeyer and Phillips 1965, Goetz et al. 2010). Until now, no information has been available for redfin and humper ecotypes.

In addition to the variation in lipid accumulation, Goetz et al. (2013) also found differences in lipid composition between siscowet and lean ecotypes. Because a common garden design was used in their experiment, the higher proportion of polyunsaturated fatty acids (PUFAs) found in the muscle lipid profile of siscowet than in lean lake trout could not be attributed to differences in diet. The differences in non-dietary fatty acids biomarkers we observed among the four ecotypes of lake trout from Lake Superior is consistent with the concept of metabolotypes (Goetz et al. 2013). Altogether, differences in energy processing and storage between lean and siscowet lake trout in Lake Superior are adaptive to their respective habitats, deep- vs. shallow-water, and to their life-histories (Goetz et al. 2013). Lipid content, intertwined with buoyancy variations, have been linked to differences in depth distributions and swimming tactics among lake trout ecotypes (Zimmerman et al. 2006, Zimmerman et al. 2007, Zimmerman et al. 2009). While deep-water ecotypes use hydrostatic lift related to lipid content to enhance vertical migration while foraging for *Mysis* and cisco (Henderson and Anderson 2002), the shallow-water lean ecotype likely relies more on hydrodynamic lift, linked to the cruising movements of pelagic predators (Webb 1984). Consistent with the findings of Goetz et al. (2013), we found that non-dietary fatty acid biomarkers differed between shallow- and deep-water ecotypes at Stannard Rock. However, at Superior Shoal,
non-dietary fatty acids biomarkers differed only between the shallow-water lean ecotype and one deep-water ecotype – the redfin. This observation, along with some more subtle differences in non-dietary fatty acid biomarkers among deep-water ecotypes, requires further study as our current knowledge is limited. It is presently unclear if these lake trout ecotypes have adapted physiologically to their habitat leading to metabolotypes and how diets differ among all ecotypes temporally and spatially within Lake Superior. As such, feeding on the same item by different ecotypes might produce different fatty acid accumulations resulting not only in a physiologically interesting questions but also questioning the accuracy of predictions about diet composition.

The concept that dynamics of energy processing and storage are adaptive along a gradient associated with depth does not apply to the intraspecific diversity of lake trout in Great Bear Lake. This diversity is limited to shallow-water habitat, and appears to be independent of major habitat and resource partitioning (Chavarie et al. 2016a, Chavarie et al. 2018). The similarity of results between Great Bear Lake and Lake Superior is thus perplexing, as we were expecting greater differences in non-dietary fatty acid biomarkers among ecotypes in Lake Superior than in Great Bear Lake, due to known buoyancy variation associated with a depth gradient in Lake Superior. If lake trout ecotypes from Great Bear Lake are also under selection (Harris et al. 2014), differences in energy processing and storage may be as pronounced as those that have been observed in Lake Superior. Another question raised by our results is the extent to which ecotypes are independent of major habitat or resource axes (the same question is pertinent for Lake Superior), especially because dietary fatty acid biomarkers in Great Bear Lake were slightly better at delineating intraspecific groups than non-dietary biomarkers than in Lake Superior.

Differences between morphs and sites may be influenced by the total content of fatty acids (µg FA/m) in muscle, rather than by their composition (%). Tissue-specific storage of fatty
acids can vary across space or time, and some fish store lipids as modified adipose or lipid pockets in their muscle (e.g., salmonids; Iverson 2009, Sasaki et al. 1989). In a comparison of fatty acid content between dorsal muscle vs. belly tissue, (Happel et al. 2019) found a threshold response; the tissues became increasingly dissimilar when lipid content of muscle was >~10%. Nevertheless, Happel et al. (2019) found that fatty acid profiles were specific to each of the five lakes they examined, i.e., lake trout displayed broad variation among locations.

Ecological differences in allopatry are often more pronounced than those in sympatry, due to disparate environments and isolation (Fraser et al. 2011, Heggenes 2002, Rundle and Nosil 2005, Yoder et al. 2010). Our results were consistent with this trend, i.e., differences between lakes were greater than differences among ecotypes within a lake for both dietary and non-dietary fatty acid biomarkers. For dietary fatty acids, differences between the two lakes appeared to be due to fatty acids associated with a pelagic environment, such as C20 and C22 monounsaturates, that can be used as biomarkers of food webs based on pelagic copepods (Ahlgren et al. 2009, Budge et al. 2006, Dalsgaard et al. 2003). Although benthic productivity generally dominates in Arctic lakes (Chavarie et al. 2018, Johnson 1975), few lake trout in Great Bear Lake specialized on pelagic resources (i.e., few ecotypes 2 and 4 had fatty acid signatures that overlapped with lake trout from Lake Superior; Chavarie et al., submitted; Chavarie et al. 2016a, Chavarie et al. 2016b).

With the general benthic orientation of lake productivity in Arctic regions, combined with the known distributions in deep-water habitats of lake trout ecotypes from Lake Superior (50-150 m; Muir et al. 2014), our overall results reflected the expected ecological differences of this species from these two systems. Despite these inter-lake differences, similar dietary (e.g., five out of 10) and non-dietary (e.g., 7 out of 10) fatty acid biomarkers were important in identifying intraspecific diversity within each lakes. The greater number of shared non-dietary fatty acids biomarkers
discriminating lake trout intraspecific diversity in the two lakes supports the idea of similar
physiological differences (e.g., energy processing and storage) among ecotypes from both lakes.

A few caveats should be noted that could alter interpretations of this study. First, we cannot
ensure the fatty acid biomarkers defined based on Iverson et al. (2004) truly reflect dietary vs non-
dietary origins, due to the lack of taxa-specific studies on the integration of prey fatty acids. Despite
this uncertainty, the aim of this paper was to examine loss of information from discarding fatty
acids generally considered as non-dietary biomarkers by the literature. Second, no spatial
component was defined for the Great Bear Lake dataset, due to small sample sizes from each
location, which may have introduced variation into the results. The importance of spatial variation
in large, complex systems was shown here for Lake Superior (Chavarie et al. 2015, Hoffmann
2017) and environmental variables (e.g., temperature, light), which may vary spatially, are known
to alter lipid composition in fish tissue (Olsen 1999). Third, multiple sizes and life-stages, e.g.,
juvenile, mature, and resting individuals, were included in the Lake Superior analysis; different
life-stages can vary in lipid metabolism (Sheridan 1989) and large lake trout can rely more on
nearshore-benthic food web resources than small lake trout (Happel et al. 2017a). Finally, some
fatty acids exist at very low amounts ($\leq 2\%$), which can introduce error when interpreting
differences among fatty acids that are found in only trace amounts (e.g., peak shouldering)
(Christie 1998). Despite these limitations, we found some consistent patterns with regards to
intraspecific diversity between lakes and among ecotypes within lakes from two distinct datasets.

**Conclusion**

Our study demonstrated the potential benefits of using both dietary and non-dietary fatty
acid biomarkers for delineating variation within a species. In some instances, non-dietary fatty
acids were better for discriminating ecotypes than dietary ones, in contrast to the popular maxim
associated with trophic markers, “you are what you eat”. Dietary fatty acid biomarkers can
document the occurrence of discrete niche use among sets of individuals (i.e., ecotypes) within a
species (Chavarie et al. 2016b). The fatty-acid composition of individuals that reflects their diet
has been validated for lake trout (Happel et al. 2016a, Happel et al. 2016b). However,
physiological differences in the dynamics of energy processing (e.g., metabolism) and storage
can also be adaptive among ecotypes (Eschmeyer and Phillips 1965, Goetz et al. 2013, Goetz et
al. 2010), which may result differences in non-dietary fatty acids (e.g., greater than dietary fatty
acids) and thus, be useful molecular tools. The lack of information on non-dietary fatty acids in
lake trout (and other taxa), however, raises questions about their physiological role and if
consumers acquire them or not from their diet (e.g., synthesis de novo, elongation). This would
be a fruitful area for future research.

Ultimately, the relative importance of dietary vs. non-dietary fatty acid biomarkers depends
on the question being asked. In our study, non-dietary fatty acids were valuable in delineating
intraspecific variation within a lake, but also in examining differences between lakes. Non-dietary
fatty acid biomarkers can provide useful information; therefore, one should carefully consider if
such information is superfluous or not before data from these fatty acids are discarded.

Acknowledgement

We thank Délina Renewable Resources Council, Délina Lands and Finance Corporation,
the community of Délina, DFO in Hay River, and the Department of Environment and Natural
Resources in Délina, which provided valuable help with field planning and logistics. Financial
support was provided by Fisheries and Oceans Canada (DFO), Natural Sciences and Engineering
Research Council of Canada, Sahtu Renewable Resource Board, Association of Canadian
Universities for Northern Studies, Canadian Circumpolar Institute’s Circumpolar/Boreal Alberta
Research and Northern Scientific Training Program, D. Alan Birdsall Memorial Scholarship Fund, Aboriginal Affairs and Northern Development Canada Northwest Territories Cumulative Impacts Monitoring Program grants, and the Great Lakes Fishery Commission. Logistical and in-kind support were provided by the Polar Continental Shelf Program and USGS. The findings and conclusions in this article are those of the authors and do not necessarily represent those of the U.S. Geological Survey or the U.S. Fish and Wildlife Service.

Data Availability Statement:
All data presented are available by request via e-mail to the first author.

Conflict Of Interest
The authors declare that they have no conflict of interest.

Literature:
Ahlgren, G., Vrede, T., and Goedkoop, W. 2009. Fatty Acid Ratios in Freshwater Fish, Zooplankton and Zoobenthos – Are There Specific Optima? In Lipids in Aquatic Ecosystems. Edited by M. Kainz, M.T. Brett and M.T. Arts. Springer New York, New York, NY. pp. 147-178.
Alfaro, A.C., Thomas, F., Sergent, L., and Duxbury, M. 2006. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science 70(1): 271-286.
Bernatchez, S., Laporte, M., Perrier, C., Sirois, P., and Bernatchez, L. 2016. Investigating genomic and phenotypic parallelism between piscivorous and planktivorous lake trout (Salvelinus namaycush) ecotypes by means of RADseq and morphometrics analyses. Molecular Ecology 25(19): 4773-4792.
Bolnick, D.I., Svanbäck, R., Araújo, M.S., and Persson, L. 2007. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proceedings of the National Academy of Sciences 104(24): 10075-10079.
Borlongan, I.G., and Benitez, L.V. 1992. Lipid and fatty acid composition of milkfish (Chanos chanos Forsskal) grown in freshwater and seawater. Aquaculture 104(1): 79-89.
Bronte, C.R., Ebener, M.P., Schreiner, D.R., DeVault, D.S., Petzold, M.M., Jensen, D.A., Richards, C., and Lozano, S.J. 2003. Fish community change in Lake Superior, 1970-2000. Canadian Journal of Fisheries and Aquatic Sciences 60(12): 1552-1574.
Bronte, C.R., and Moore, S.A. 2007. Morphological variation of siscowet lake trout in Lake Superior. Trans Am Fish Soc 136(2): 509-517.
Budge, S.M., Iverson, S.J., Bowen, W.D., and Ackman, R.G. 2002. Among- and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 59(5): 886-898.
Budge, S.M., Iverson, S.J., and Koopman, H.N. 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22(4): 759-801.

Budge, S.M., Penney, S.N., and Lall, S.P. 2011. Response of tissue lipids to diet variation in Atlantic salmon (Salmosalar): Implications for estimating diets with fatty acid analysis. J Exp Mar Biol Ecol 409(1): 267-274.

Chavarie, L., Harford, W.J., Howland, K.L., Fitzsimons, J., Muir, A.M., Krueger, C.C., and Tonn, W.M. 2016a. Multiple generalist morphs of Lake Trout: Avoiding constraints on the evolution of intraspecific divergence? Ecology and Evolution 6: 7727–7741.

Chavarie, L., Howland, K., Gallagher, C., and Tonn, W. 2016b. Fatty acid signatures and stomach contents of four sympatric Lake Trout: assessment of trophic patterns among morphotypes in Great Bear Lake. Ecology of Freshwater Fish 25: 109-124.

Chavarie, L., Howland, K., Harris, L., and Tonn, W. 2015. Polymorphism in lake trout in Great Bear Lake: intra-lake morphological diversification at two spatial scales. Biol J Linn Soc 114(1): 109-125.

Chavarie, L., Howland, K.L., Hansen, M.J., Harford, W.J., Gallagher, C.P., Baillie, S.M., Malley, B., Tonn, W.M., Muir, A.M., and Krueger, C.C. 2018. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada? PloS One 13(3): e0193925.

Chavarie, L., Howland, K.L., Tonn, W.M. 2013. Symaptic polymorphism in lake trout: the coexistence of multiple shallow-water morphotypes in Great Bear Lake. Transactions of the American Fisheries Society 142(3): 814-823.

Chavarie, L., Muir, A.M., Zimmerman, M.S., Baillie, S.M., Hansen, M.J., Nate, N.A., Yule, D.L., Middel, T., Bentzen, P., and Krueger, C.C. 2016c. Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a small postglacial lake. Biological Journal of the Linnean Society: n/a-n/a.

Clemmensen, L., Witten, D., Hastie, T., and Ersbøll, B. 2011. Sparse Discriminant Analysis. Technometrics 53(4): 406-413.

Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. In Adv Mar Biol. Academic Press. pp. 225-340.

Eloranta, A.P., Mariash, H.L., Rautio, M., and Power, M. 2013. Lipid-rich zooplankton subsidise the winter diet of benthivorous Arctic charr (Salvelinus alpinus) in a subarctic lake. Freshw Biol 58(12): 2541-2554.

Endler, J.A. 1978. A predator's view of animal color patterns. In Evolutionary Biology. Edited by M.K. Hecht, W.C. Steere and B. Wallace. Plenum Press, New York and London.

Eschmeyer, P.H., and Phillips, A.M., Jr. 1965. Fat content of the flesh of siscowets and lake trout from Lake Superior. Trans Am Fish Soc 1965: 62-74.

Eshenroder, R.L. 2008. Differentiation of deep-water lake char Salvelinus namaycush in North American lakes. Environ Biol Fishes 83: 77-90.

Farkas, T., Csengeri, I., Majoros, F., and Oláh, J. 1980. Metabolism of fatty acids in fish: III. Combined effect of environmental temperature and diet on formation and deposition of fatty acids in the carp, Cyprinus carpio Linnaeus 1758. Aquaculture 20(1): 29-40.

Folch, J., Lees, M., and Sloane-Stanley, G. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem 226(1): 497-509.

Fraser, D.J., Weir, L.K., Bernatchez, L., Hansen, M.M., and Taylor, E.B. 2011. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106: 404.

Galloway, A.W.E., Eisenlord, M.E., Dethier, M.N., Holtgrieve, G.W., and Brett, M.T. 2014. Quantitative estimates of isopod resource utilization using a Bayesian fatty acid mixing model. Marine Ecology Progress Series 507: 219-232.
Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., Makhutova, O.N., Kalachova, G.S., and Gribovskaya, I.V. 2009. Benefit-risk ratio of food fish intake as the source of essential fatty acids vs. heavy metals: A case study of Siberian grayling from the Yenisei River. Food Chemistry 115(2): 545-550.

Goetz, F., Jasonowicz, A., Johnson, R., Biga, P., Fischer, G., and Sitar, S. 2013. Physiological differences between lean and siscowet lake trout morphotypes: Are these metabolotypes? Canadian Journal of Fisheries and Aquatic Sciences 71(3): 427-435.

Goetz, F., Rosauer, D., Sitar, S.P., Goetz, G., Simchick, C., Roberts, S., Johnson, R., Murphy, C., Bronte, C.R., and Mackenzie, S. 2010. A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush). Mol Ecol 19 (Suppl. 1): 176-196.

Gorman, O.T., Yule, D.L., and Stockwell, J.D. 2012. Habitat use by fishes of Lake Superior. II. Consequences of diet habitat use for habitat linkages and habitat coupling in nearshore and offshore waters. Aquat Ecosyst Health Manag 15(3): 355-368.

Grosbois, G., Mariash, H., Schneider, T., and Rautio, M. 2017. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Scientific Reports 7(1): 11543.

Hammer, Ø., Harper, D., and Ryan, P. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9.

Happel, A., Jonas, J.L., McKenna, P., Rinchard, J., He, J.X., and Czesny, S.J. 2017a. Spatial Variability of Lake Trout Diets in Lakes Huron and Michigan Revealed by Stomach Content and Fatty Acid Profiles. Canadian Journal of Fisheries and Aquatic Sciences.

Happel, A., Pattridge, R., Walsh, M., and Rinchard, J. 2017b. Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes. Journal of Great Lakes Research.

Happel, A., Stafford, C.P., Rinchard, J., and Czesny, S. 2019. Fatty acid profiles of lake trout reveal the importance of lipid content for interpreting trophic relationships within and across lakes. Journal of Great Lakes Research.

Happel, A., Stratton, L., Kolb, C., Hays, C., Rinchard, J., and Czesny, S. 2016a. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Canadian Journal of Fisheries and Aquatic Sciences 73(8): 1222-1269.

Heggenes, J. 2002. Flexible Summer Habitat Selection by Wild, Allopatric Brown Trout in Lotic Environments. Trans Am Fish Soc 131(2): 287-298.

Hartwich, M., Martin-Creuzburg, D., and Wacker, A. 2012. Seasonal changes in the accumulation of polyunsaturated fatty acids in zooplankton. J Plankton Res 35(1): 121-134.

Harvey, C.J., and Kitchell, J.F. 2000. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web. Can J Fish Aquat Sci 57: 1395-1403.

Harvey, C.J., Schram, S.T., and Kitchell, J.F. 2003. Trophic relationships among lean and siscowet lake trout in Lake Superior. Transactions of the American Fisheries Society 132(2): 219-228.

Heggenes, J. 2002. Flexible Summer Habitat Selection by Wild, Allopatric Brown Trout in Lotic Environments. Trans Am Fish Soc 131(2): 287-298.

Henderson, B.A., and Anderson, D.M. 2002. Phenotypic differences in buoyancy and energetics of lean and siscowet lake trout in Lake Superior. Environ Biol Fishes 64: 203-209.

Hiltunen, M., Peltomaa, E., Brett, M.T., Aalto, S.L., Strandberg, U., Oudenampsen, J., Burgwal, L.M., and Taipale, S.J. 2019. Terrestrial organic matter quantity or decomposition state does not compensate for its poor nutritional quality for Daphnia. Freshwater Biology 64(10): 1769-1786.

Hiltunen, M., Taipale, S.J., Strandberg, U., Kahlilainen, K.K., and Kankaala, P. 2016. High intraspecific variation in fatty acids of Eudiaptomus in boreal and subarctic lakes. J Plankton Res 38(3): 468-477.
Draft
MacDonald, D., Levy, D., Czarnecki, A., Low, G., and Richea, N. 2004. State of the aquatic knowledge of Great Bear Lake watershed. Report to Indian and Northern Affairs Canada. Water Resources Division, MacDonald Environmental Sciences, Nanaimo, British Columbia.

Mariash, H.L., Cazzanelli, M., Kainz, M.J., and Rautio, M. 2011. Food sources and lipid retention of zooplankton in subarctic ponds. Freshwater Biology 56(9): 1850-1862.

Mariash, H.L., Cusson, M., and Rautio, M. 2017. Fall Composition of Storage Lipids is Associated with the Overwintering Strategy of Daphnia. Lipids 52(1): 83-91.

McMeans, B.C., McCann, K.S., Humphries, M., Rooney, N., and Fisk, A.T. 2015. Food Web Structure in Temporally-Forced Ecosystems. Trends in Ecology & Evolution 30(11): 662-672.

McPhail, J. 1993. Ecology and evolution of sympatric sticklebacks (Gasterosteus): origin of the species pairs. Canadian Journal of Zoology 71(3): 515-523.

Miles, D.B., Sinervo, B., Hazard, L.C., Svensson, E.I., and Costa, D. 2007. Relating endocrinology, physiology and behaviour using species with alternative mating strategies. Funct Ecol 21(4): 653-665.

Moore, S.A., and Bronte, C.R. 2001. Delineation of sympatric morphtypes of lake trout in Lake Superior. Transactions of the American Fisheries Society 130(6): 1233-1240.

Morissette, O., Siros, P., Lester, N.P., Wilson, C.C., and Bernatchez, L. 2018. Supplementation stocking of Lake Trout (Salvelinus namaycush) in small boreal lakes: Ecotypes influence on growth and condition. PLoS One 13(7): e0200599.

Morrison, W.R., and Smith, L.M. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. Journal of lipid research 5(4): 600-608.

Muir, A.M., Bronte, C.R., Zimmerman, M.S., Quinlan, H.R., Glase, J.D., and Krueger, C.C. 2014. Ecomorphological diversity of Lake Charr Salvelinus namaycush at Isle Royale, Lake Superior. Trans Am Fish Soc 143(4): 972-987.

Muir, A.M., Hansen, M.J., Bronte, C.R., and Krueger, C.C. 2015. If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish and Fisheries: DOI:10.1111/faf.12114.

Olsen, Y. 1999. Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture? In Lipids in freshwater ecosystems. Edited by M.T. Arts and B.C. Wainman. Springer-Verlag, New York. pp. 161-202.

Olsen, Y., and Skjervold, H. 1995. Variation in content of Q3 fatty acids in farmed Atlantic salmon, with special emphasis on effects of non-dietary factors. Aquaculture International 3(1): 22-35.

Ota, T., and Yamada, M. 1971. Lipids of Masu salmon Oncorhynchus masou. I. Variations of the lipid content and the fatty acid composition of juvenile Masu salmon during the period of smolt-transformation, and on the influence of light upon those variations. Hokkaido Univ Fac Fish Bull. Piché, J., Iverson, S.J., Parrish, F.A., and Dollar, R. 2010. Characterization of forage fish and invertebrates in the northwestern Hawaiian Islands using fatty acid and stable isotope analyses. Mar Biol 160(6): 1325-1337.

Pomerleau, C., Lesage, V., Winkler, G., Rosenberg, B., and Ferguson, S.H. 2014. Contemporary Diet of Bowhead Whales (Balaena mysticetus) from the Eastern Canadian Arctic Inferred from Fatty Acid Biomarkers. Arctic 67(1): 84-92.

Pryke, S.R., Ashtheimer Lee, B., Buttemer William, A., and Griffith Simon, C. 2007. Frequency-dependent physiological trade-offs between competing colour morphs. Biology Letters 3(5): 494-497.

QuéroUIL, S., Kiszka, J., Cordeiro, A.R., Cascão, I., Freitas, L., Dinis, A., Alves, F., Santos, R.S., and Bandarra, N.M. 2013. Investigating stock structure and trophic relationships among island-associated dolphins in the oceanic waters of the North Atlantic using fatty acid and stable isotope analyses. Mar Biol 160(6): 1325-1337.

R Core Team. 2017. R: A language and environment for statistical computing. Available from http://www.R-project.org/.
Robinson, B.W., and Parsons, K.J. 2002. Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Canadian Journal of Fisheries and Aquatic Sciences 59(11): 1819-1833.

Robinson, B.W., and Wilson, D.S. 1994. Character release and displacement in fishes: a neglected literature. Am Nat 144: 596-627.

Ronconi, R., Koopman, H.N., McKinstry, C., Wong, S., and Westgate, A.J. 2010. Inter-annual variability in diet of non-breeding pelagic seabirds Puffinus spp. at migratory staging areas: evidence from stable isotopes and fatty acids. Marine Ecology Progress Series 419: 267-282.

Rundle, H.D., and Nosil, P. 2005. Ecological speciation. Ecol Lett 8(3): 336-352.

Sasaki, S., Ota, T., and Takagi, T. 1989. Compositions of Fatty Acids in the Lipids of Chum Salmon during Spawning Migration. NIPPON SUISAN GAKKAISHI 55(12): 2191-2197.

Scharnweber, K., Strandberg, U., Marklund, M.H.K., and Eklöv, P. 2016. Combining resource use assessment techniques reveals trade-offs in trophic specialization of polymorphic perch. Ecosphere 7(8): e01387.

Schluter, D., and McPhail, J.D. 1992. Ecological character displacement and speciation in sticklebacks. American Naturalist 140: 85-108.

Sheridan, M.A. 1989. Alterations in lipid metabolism accompanying smoltification and seawater adaptation of salmonid fish. Aquaculat 82(1): 191-203.

Skulason, S., and Smith, T.B. 1995. Resource polymorphisms in vertebrates. Trends Ecol Evol 10: 366-370.

Smith, T.B., and Skulason, S. 1996. Evolutinary significance of resource polymorphims in fishes, amphibians, and birds. Annual Reviews in Ecology and Systematics 27: 111-133.

Svanbäck, R., Eklöv, P., Fransson, R., and Holmgren, K. 2007. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos 117(1): 114-124.

Taipale, S.J., Vuorio, K., Aalto, S.L., Peltomaa, E., and Tiirola, M. 2019. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environmental Research 179: 108836.

Tucker, S., Bowen, W.D., and Iverson, S.J. 2008. Convergence of diet estimates derived from fatty acids and stable isotopes within individual grey seals. Marine Ecology Progress Series 354: 267.

Vinson, M.R., and Budy, P. 2010. Sources of variability and comparability between salmonid stomach contents and isotopic analyses: study design lessons and recommendations. Canadian Journal of Fisheries and Aquatic Sciences 66(1): 137-151.

Webb, P.W. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24: 107-120.

Witten, D.M., and Tibshirani, R. 2011. Penalized classification using Fisher’s linear discriminant. Journal of the Royal Statistical Society. Series B, Statistical methodology 73(5): 753-772.

Yoder, J.B., Clancey, E., Des Roches, S., Eastman, J.M., Gentry, L., Godsoe, W., Hagey, T.J., Jochimsen, D., Oswald, B.P., Robertson, J., Sarver, B.A.J., Schenk, J.J., Spear, S.F., and Harmon, L.J. 2010. Ecological opportunity and the origin of adaptive radiations. J Evol Biol 23(8): 1581-1596.

Zimmerman, M.S., Krueger, C.C., and Eshenroder, R.L. 2006. Phenotypic diversity of lake trout in Great Slave Lake: differences in morphology, buoyancy, and habitat depth. Trans Am Fish Soc 135: 1056-1067.

Zimmerman, M.S., Krueger, C.C., and Eshenroder, R.L. 2007. Morphological and ecological differences between shallow- and deep-water lake trout in Lake Mistassini, Quebec. J Great Lakes Res 33: 156-169.

Zimmerman, M.S., Schmidt, S.N., Krueger, C.C., Vander Zanden, M.J., and Eshenroder, R.L. 2009. Ontogenetic niche shifts and resource partitioning of lake trout morphotypes. Can J Fish Aquat Sci 66: 1007-1018.
Table 1. The ten most discriminating non-dietary fatty acids biomarkers from SIMPER analyses to determine which fatty acids were primarily responsible for observed differences. Results are presented for each region, including percentage contribution to overall fatty acid dissimilarity among lake trout morphs. Fatty acids are listed in order of elution; those highlighted in grey are shared among the study three regions. The total percentage of the ten most discriminating fatty acids are given for each region.

| Fatty acids | Great Bear Lake (63.8%) | Stannard Rock (70.9%) | Superior Shoal (69.9%) |
|-------------|-------------------------|-----------------------|------------------------|
| 12:0        | 3.6%                    |                       | 6.1%                   |
| 12:1        | 8.3%                    | 8.9%                  | 14.7%                  |
| 13:1        |                         |                       |                        |
| 14:1n-9     | 5.4%                    | 3.0%                  | 4.5%                   |
| 14:1n-7     | 3.8%                    |                       | 3.3%                   |
| 14:1n-5     |                         |                       | 4.2%                   |
| 14:0 iso    |                         |                       | 6.4%                   |
| 14:0 ante   |                         |                       |                        |
| 15:0        |                         |                       |                        |
| 15:1n-8     | 8.5%                    | 25.9%                 | 18.8%                  |
| 15:1n-6     | 8.2%                    | 3.7%                  | 4.2%                   |
| 15:0 iso    | 3.8%                    | 3.6%                  | 3.6%                   |
| 16:1n-11    |                         |                       |                        |
| 16:1n-9     |                         |                       |                        |
| 16:1n-5     |                         |                       |                        |
| 16:0 iso    | 7.1%                    |                       |                        |
| 7Methyl16:0 | 4.4%                    |                       |                        |
| 17:1        |                         |                       |                        |
| 17:0 iso    |                         |                       |                        |
| 18:1n-5     |                         |                       |                        |
| 20:0        |                         |                       | 4.1%                   |
| 20:2n-9     | 10.2%                   | 4.5%                  | 5.2%                   |
| 22:0        | 4.1%                    | 7.2%                  | 5.3%                   |
| 24:1n-9     |                         |                       |                        |
Table 2. The ten most discriminating dietary fatty acids biomarkers from SIMPER analyses to determine which fatty acids were primarily responsible for observed differences. Results are presented for each region, including percentage contribution to overall fatty acid dissimilarity among lake trout morphs. Fatty acids are listed in order of elution; those highlighted in grey are shared among the study three regions. The total percentage of the ten most discriminating fatty acids are given for each regions.

| Fatty acids | Great Bear Lake (48.8%) | Stannard Rock (55.2%) | Superior Shoal (55.8%) |
|-------------|-------------------------|-----------------------|------------------------|
| 14:0        |                         |                       |                        |
| 16:0        |                         |                       |                        |
| 16:1n-7     |                         |                       |                        |
| 16:2n-6     |                         |                       |                        |
| 16:2n-4     |                         |                       |                        |
| 17:0        |                         |                       |                        |
| 16:3n-4     | 4.0%                    | 2.5%                  | 2.9%                   |
| 16:4n-3     | 3.0%                    | 2.6%                  |                        |
| 16:4n-1     | 7.3%                    | 6.3%                  |                        |
| 18:0        |                         |                       |                        |
| 18:1n-9     |                         | 2.4%                  |                        |
| 18:1n-7     |                         |                       |                        |
| 18:2n-6     |                         |                       |                        |
| 18:2n-4     |                         |                       |                        |
| 18:3n-6     |                         |                       |                        |
| 18:3n-4     |                         |                       |                        |
| 18:3n-3     |                         |                       |                        |
| 18:3n-1     | 3.3%                    |                       | 3.5%                   |
| 18:4n-3     |                         |                       |                        |
| 18:4n-1     | 3.5%                    | 10.5%                 | 11.1%                  |
| 20:1n-11    |                         | 4.0%                  |                        |
| 20:1n-9     |                         |                       |                        |
| 20:1n-7     |                         | 3.6%                  |                        |
| 20:2n-6     |                         |                       |                        |
| 20:3n-6     |                         |                       |                        |
| 20:4n-6     |                         |                       |                        |
| 20:3n-3     |                         |                       |                        |
| 20:4n-3     |                         |                       |                        |
| 20:5n-3     |                         |                       |                        |
| 22:1n-11    | 8.6%                    | 11.9%                 | 12.1%                  |
| 22:1n-9     |                         |                       |                        |
| 22:1n-7     |                         | 2.7%                  | 4.6%                   |
| 22:2n-6     |                         | 6.3%                  |                        |
| 21:5n-3     | 7.5%                    |                       | 4.7%                   |
| 22:5n-6     |                         | 7.2%                  | 3.0%                   |
| 22:4n-3     | 5.0%                    | 2.6%                  | 4.2%                   |
| 22:5n-3     |                         |                       |                        |
| 22:6n-3     |                         | 5.5%                  | 3.4%                   |
List of Figures:

Fig. 1. Location of (1) Great Bear Lake (Canada) and (2) Lake Superior (Canada-USA). Two sampling sites were defined in Lake Superior to account for spatial variation: Superior Shoal and Stannard Rock (QGIS 3.0, Canada Basemap; Hoffmann 2017).

Fig 2. A) The four morphotypes of Lake Trout in Lake Superior, the lean, humper, siscowet, and redfin (defined in Muir et al. 2014). B) The four shallow-water morphotypes of Lake Trout from Great Bear Lake, Morphs1-4 (defined in Chavarie et al. 2013).

Fig. 3. PCA of non-dietary fatty acids biomarkers (top panels), dietary fatty acids biomarkers (middle panels), and all fatty acids (bottom panels) for individual Lake Trout collected from Great Bear Lake, Stannard Rock (Lake Superior), and Superior Shoal (Lake Superior). Vectors of individual fatty acids important to the positioning of lake trout are represented to the right of each PCA. Angles and lengths of vectors represent the direction and strength of relationships, respectively, between variables and the principal components.

Fig. 4. Results of linear discriminant function analyses of non-dietary fatty acids biomarkers (top panel) and dietary fatty acids biomarkers (bottom panel) for Lake Trout collected from Great Bear Lake, Stannard Rock (Lake Superior), and Superior Shoal (Lake Superior). The 95% ellipse of each morph is also provided.
Fig. 1.
Fig 2.

A) Hump

B) Siscowet
Fig. 3.
Fig. 4.
Appendix:

Table A1. List of 38 of 41 fatty acids shared by the two datasets, considered as either “dietary” fatty acids or “extended-dietary” fatty acids biomarkers and used in this study (see Iverson et al., 2004), and the dietary component they are associated with, based on literature: Sargent et al., 1995; Brett & Müller-Navarra, 1997; Kattner et al., 1998; Virtue et al., 2000; Budge et al., 2002; Dalsgaard et al., 2003; Iverson et al., 2004; Käkelä et al., 2005; Alfaro et al., 2006; Tucker et al., 2008; Ahlgren et al., 2009; Gladyshev et al., 2009; Loseto et al., 2009; Stowasser et al., 2009; Piché et al., 2010; Mariash et al., 2011. The fatty acids highlighted are the one discarded because they were not quantified for both lakes.

| Dietary Fatty acids | Dietary component |
|---------------------|-------------------|
| 14:0                | Pelagic (Zooplankton) + diatom |
| 16:0                | Cannibalism or/and carnivorous |
| 16:1n7              | Benthic (bacterial synthesis + diatoms) |
|                     | Cannibalism or/and carnivorous |
| 16:2n6              |                     |
| 16:2n4              | Diatom |
| 17:0                |                     |
| 16:3n-4             |                     |
| 16:4n3              |                     |
| 16:4n1              | Diatom |
| 18:0                | Cannibalism or/and carnivorous |
| 18:1n9              | Pelagic (Zooplankton) |
| 18:1n7              | Benthic (bacterial synthesis + algal) |
| 18:2n6              | Terrestrial |
| 18:2n4              |                     |
| 18:3n6              |                     |
| 18:3n4              |                     |
| 18:3n3              | Terrestrial |
| 18:3n1              |                     |
| 18:4n3              | Pelagic (Zooplankton) |
| 18:4n1              |                     |
| 20:0                | *not used |
| 20:1n11             | Copepod (Iverson, 2009) |
| 20:1n9              | Pelagic (Calanoid copepods diet based) |
| 20:1n7              | Pelagic (Zooplankton) |
| 20:2n9              | *not used |
| 20:2n6              |                     |
| 20:3n6              |                     |
| 20:4n6              | Benthic (diatom) |
| 20:3n3              |                     |
| 20:4n3              |                     |
| Fatty Acid | Description                                  |
|-----------|----------------------------------------------|
| 20:5n3    | Cannibalism or/and carnivorous               |
| 22:1n11   | Copepod                                      |
| 22:1n9    | Pelagic (Zooplankton)                        |
| 22:1n7    |                                              |
| 22:2n6    |                                              |
| 21:5n3    |                                              |
| 22:4n6    | *not used                                    |
| 22:5n6    | Pelagic (Calanoid copepods diet based)       |
| 22:4n3    |                                              |
| 22:5n3    |                                              |
| 22:6n3    | Benthic (Pennate diatoms + dinoflagellates + bivalves) Cannibalism |
Fig. A1. PCA of all fatty acids (top panels), dietary fatty acids biomarkers (middle panels), and non-dietary fatty acids biomarkers (bottom panels) of each morph of Lake Trout from Great Bear Lake, Stannard Rock (Lake Superior), and Superior Shoal (Lake Superior), including the 12 outlier individuals. Vectors of individual fatty acids important to the positioning of lake trout are
represented to the right of each PCA. Angles and lengths of vectors represent the direction and the strength, respectively, of relationships between variables and the principal components.