Singular values of generalized λ functions

October 21, 2011

Noburo Ishii

1 Introduction

For a positive integer N, let $\Gamma_1(N)$ be the subgroup of $\text{SL}_2(\mathbb{Z})$ defined by

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid a - 1 \equiv c \equiv 0 \mod N \right\}.$$

We denote by $A_1(N)$ the modular function field with respect to $\Gamma_1(N)$. For a positive integer $N \geq 6$, let $a = [a_1, a_2, a_3]$ be a triple of integers with the properties $0 < a_i \leq N/2$ and $a_i \neq a_j$ for any i, j. For an element τ of the complex upper half plane \mathcal{H}, we denote by L_τ the lattice of \mathbb{C} generated by 1 and τ and by $\wp(z; L_\tau)$ the Weierstrass \wp-function relative to the lattice L_τ. In [4], we defined a modular function $W_a(\tau)$ with respect to $\Gamma_1(N)$ by

$$W_a(\tau) = \frac{\wp(a_1/N; \tau) - \wp(a_3/N; \tau)}{\wp(a_2/N; \tau) - \wp(a_3/N; \tau)}.$$

This function is one of generalized λ functions introduced by S.Lang in Chapter 18, §6 of [5]. He describes that it is interesting to investigate special values of generalized λ functions at imaginary quadratic points, to see if they generate the ray class field. Here a point of \mathcal{H} is called an imaginary quadratic point if it generates an imaginary quadratic field over \mathbb{Q}. In Theorem 3.7 of [5], we showed, under a rather strong condition that $a_1a_2a_3(a_1 - a_3)(a_2 - a_3)$...
is prime to N, that the values of W_a at imaginary quadratic points are units of ray class fields. Let j be the modular invariant function. We showed in Theorem 5 of [4] that each of the functions $W_{[3,2,1]}, W_{[5,2,1]}$ generates $A_1(N)$ over $C(j)$. In this article, we shall study the functions W_a in the particular case: $a_2 = 2, a_3 = 1$. To simplify the notation, henceforth we denote by Λ_k the function $W_{[k,2,1]}$. We shall prove that if $2 < k < N/2$, then Λ_k generates $A_1(N)$ over $C(j)$. In this article, we shall study the functions W_a in the particular case: $a_2 = 2, a_3 = 1$. To simplify the notation, henceforth we denote by Λ_k the function $W_{[k,2,1]}$. We shall prove that if $2 < k < N/2$, then Λ_k generates $A_1(N)$ over $C(j)$. This result implies that for an imaginary quadratic point α such that $\mathbb{Z}[[\alpha]]$ is the maximal order of the field $K = \mathbb{Q}(\alpha)$, the values $\Lambda_k(\alpha)$ and $e^{2\pi i N}$ generate the ray class field of K modulo N over the Hilbert class field of K. Let $\delta = (k, N)$ be the greatest common divisor of k and N. On the assumption that k satisfies either (i) $\delta = 1$ or (ii) $\delta > 1, (\delta, 3) = 1$ and N/δ is not a power of a prime number, we shall prove that values of Λ_k at imaginary quadratic points are algebraic integers. Throughout this article, we use the following notation:

For a function $f(\tau)$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$, $f[A]_2, f \circ A$ represent

$$f[A]_2 = f \left(\frac{a\tau + b}{c\tau + d} \right) \left(c\tau + d \right)^{-2}, \quad f \circ A = f \left(\frac{a\tau + b}{c\tau + d} \right).$$

The greatest common divisor of $a, b \in \mathbb{Z}$ is denoted by (a, b). For an integral domain R, $R((q))$ represents the ring of power series of a variable q with coefficients in R and $R[[q]]$ is a subring of $R((q))$ of power series with non-negative order. For elements α, β of R, the notation $\alpha | \beta$ represents that β is divisible by α, thus $\beta = \alpha \gamma$ for an element $\gamma \in R$.

2 Auxiliary results

Let N be a positive integer greater than 6. Put $q = \exp(2\pi i \tau/N), \zeta = \exp(2\pi i /N)$. For an integer x, let $\{x\}$ and $\mu(x)$ be the integers defined by the following conditions:

$$0 \leq \{x\} \leq \frac{N}{2}, \quad \mu(x) = \pm 1,$$

$$\begin{cases}
\mu(x) = 1 & \text{if } x \equiv 0, N/2 \mod N, \\
 x \equiv \mu(x)\{x\} \mod N & \text{otherwise}.
\end{cases}$$

2
For an integer s not congruent to $0 \mod N$, let

$$
\phi_s(\tau) = \frac{1}{(2\pi i)^2} \varphi \left(\frac{s}{N}, L_\tau \right) - 1/12.
$$

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$. Put $s^* = \mu(sc)s, u_s = \zeta^{s^*}q^{(sc)\tau}$. Then by Lemma 1 of [4], we have

$$
\phi_s[A]_2 = \begin{cases}
\frac{\zeta^{s^*}}{(1 - \zeta^{s^*})^2} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(1 - \zeta^{n^*})(1 - \zeta^{-n^*})q^{mnN} & \text{if } \{sc\} = 0, \\
\sum_{n=1}^{\infty} nu_n^* - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(1 - u_n^*)(1 - u_s^{-n})q^{mnN} & \text{otherwise.}
\end{cases}
$$

(1)

We shall need next lemmas and propositions in the following sections.

Lemma 2.1. Let r, s, c, d be integers such that $0 < r \neq s \leq N/2$, $(c, d) = 1$. Assume that $\{rc\} = \{sc\}$. Put $r^* = \mu(rc)r, s^* = \mu(sc)s$. Then we have $\zeta^{r^* - s^*} \neq 1$. Further if $\{rc\} = \{sc\} = 0, N/2$, then $\zeta^{r^* + s^*} \neq 1$.

Proof. The assumption $\{rc\} = \{sc\}$ implies that $(\mu(rc)r - \mu(sc)s)c \equiv 0 \mod N$. If $\zeta^{r^* - s^*} = 1$, then $(\mu(rc)r - \mu(sc)s)d \equiv 0 \mod N$. From $(c, d) = 1$, we obtain $\mu(rc)r - \mu(sc)s \equiv 0 \mod N$. This shows $r = s$. Suppose $\{rc\} = \{sc\} = 0, N/2$ and $\zeta^{r^* + s^*} = 1$. Then we have $(r+s)c \equiv 0 \mod N, (r+s)d \equiv 0 \mod N$. Therefore $r + s \equiv 0 \mod N$. This is impossible, because $0 < r \neq s \leq N/2$. \square

Lemma 2.2. Let $k \in \mathbb{Z}, \delta = (k, N)$.

(i) For an integer ℓ, if $\delta | \ell$, then $(1 - \zeta^\ell)/(1 - \zeta^k) \in \mathbb{Z}[\zeta]$.

(ii) If N/δ is not a power of a prime number, then $1 - \zeta^k$ is a unit of $\mathbb{Z}[\zeta]$.

Proof. If $\delta | \ell$, then there exist an integer m such that $\ell \equiv mk \mod N$. Therefore $\zeta^\ell = \zeta^{mk}$ and $(1 - \zeta^k) | (1 - \zeta^\ell)$. This shows (i). Let $p_i (i = 1, 2)$ be distinct prime factors of N/δ. Since $N/p_i = \delta(N/(\delta p_i)), 1 - \zeta^\delta \mid 1 - \zeta^{N/p_i}$. Therefore $1 - \zeta^\delta | p_i (i = 1, 2)$. This implies that $1 - \zeta^\delta$ is a unit. Because of $(k/\delta, N/\delta) = 1, 1 - \zeta^k$ is also a unit.\square

From [11] and Lemma 2.1, we immediately obtain the following two propositions.
Proposition 2.3. Let \(r, s \in \mathbb{Z} \) such that \(0 < r \neq s \leq N/2 \).

(i) If \(\{rc\}, \{sc\} \neq 0 \), then

\[
(\phi_r - \phi_s)[A]_2 \equiv \sum_{n=1}^{\infty} n(u_r^n - u_s^n) + u_r^{-1}q^N - u_s^{-1}q^N \mod q^N \mathbb{Z}[[\zeta]][[q]].
\]

(ii) If \(\{rc\} = 0 \) and \(\{sc\} \neq 0 \), then

\[
(\phi_r - \phi_s)[A]_2 \equiv \frac{\zeta^{rd}}{(1 - \zeta^{rd})^2} - \sum_{n=1}^{\infty} nu_r^n - u_s^{-1}q^N \mod q^N \mathbb{Z}[[\zeta]][[q]].
\]

(iii) If \(\{rc\} = \{sc\} = 0 \), then

\[
(\phi_r - \phi_s)[A]_2 \equiv -\zeta^{sd}(1 - \zeta^{(r-s)d})(1 - \zeta^{(r+s)d}) \mod q^N \mathbb{Z}[[\zeta]][[q]].
\]

Proposition 2.4. Let \(r, s \in \mathbb{Z} \) such that \(0 < r \neq s \leq N/2 \). Put \(\ell = \min(\{rc\}, \{sc\}) \). Then

\[
(\phi_r - \phi_s)[A]_2 = \theta_{r,s}(A)q^\ell(1 + qh(q)),
\]

where \(h(q) \in \mathbb{Z}[\zeta][[q]] \) and \(\theta_{r,s}(A) \) is a non-zero element of \(\mathbb{Q}(\zeta) \) given as follows. In the case \(\{rc\} = \{sc\} \),

\[
\theta_{r,s}(A) = \begin{cases}
-\zeta^s(1 - \zeta^{r-s}) & \text{if } \ell \neq 0, N/2, \\
-\zeta^s(1 - \zeta^{r-s})(1 - \zeta^{r+s}) & \text{if } \ell = N/2, \\
-\zeta^s(1 - \zeta^{r-s})(1 - \zeta^{r+s}) & \text{if } \ell = 0.
\end{cases}
\]

In the case \(\{rc\} \neq \{sc\} \), assuming that \(\{rc\} < \{sc\} \),

\[
\theta_{r,s}(A) = \begin{cases}
\zeta^r & \text{if } \ell \neq 0, \\
\zeta^r & \text{if } \ell = 0.
\end{cases}
\]
3 Values of \(\Lambda_k \) at imaginary quadratic points

In this section, we shall prove that the values of \(\Lambda_k = W_{[k,2,1]} \) at imaginary quadratic points are algebraic integers.

Proposition 3.1. Let \(k \) be an integer such that \(3 \leq k < N/2 \). Put \(\delta = (k, N) \). Assume either (i) \(\delta = 1 \) or (ii) \(\delta > 1, (\delta, 3) = 1 \) and \(N/\delta \) is not a power of a prime number. Then for \(A \in \text{SL}_2(\mathbb{Z}) \), we have

\[
\Lambda_k \circ A \in \mathbb{Z}[\zeta]((q)).
\]

Proof. Put \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). Proposition 2.4 shows

\[
\Lambda_k \circ A = \omega f(q),
\]

where \(\omega = \theta_{k,1}(A)/\theta_{2,1}(A) \) and \(f \) is a power series in \(\mathbb{Z}[\zeta]((q)) \). Therefore it is sufficient to prove that \(\omega \in \mathbb{Z}[\zeta] \). First we consider the case \(\{c\} \neq \emptyset \). Let \(\{2c\} \neq \{c\} \). By (ii) of Proposition 2.4, we see \(1/(\phi_2 - \phi_1)[A]_2 \in \mathbb{Z}[\zeta]((q)) \).

Further if \(\{kc\} \neq \emptyset \), then \((\phi_k - \phi_1)[A]_2 \in \mathbb{Z}[\zeta][[q]] \). If \(\{kc\} = \emptyset \), then \(\delta > 1 \) and \(c \equiv 0 \mod N/\delta \). Therefore \(\zeta^{kd} \) is a primitive \(N/\delta \)-th root of unity. The assumption (ii) shows \(1 - \zeta^{kd} \) is a unit. Thus \((\phi_k - \phi_1)[A]_2 \in \mathbb{Z}[\zeta][[q]] \).

Hence we have \(\omega \in \mathbb{Z}[\zeta] \). Let \(\{2c\} = \{c\} \). Then, since \(\{c\} \neq \emptyset \), we have \(N \equiv 0 \mod 3 \), \((k,3) = 1 \) and \(\{c\} = \{2c\} = \{kc\} = N/3 \), \(\mu(2c) = -\mu(c) \), \(\mu(kc) = (\frac{c}{k})\mu(c) \), where \((\frac{c}{k})\) is the Legendre symbol. By the same proposition, we know that \(\omega = (1 - \zeta^{(\mu(kc)k-\mu(c)d)})/(1 - \zeta^{3\mu(c)d}) \). Since \(\mu(kc)k - \mu(c) \equiv 0 \mod 3 \), we have \(\omega \in \mathbb{Z}[\zeta] \). Next consider the case \(\{c\} = \emptyset \). Then we have \(\{c\} = \{2c\} = \{kc\} = 0 \), \(\mu(c) = \mu(2c) = \mu(kc) = 1 \), \((d, N) = 1 \) and

\[
\omega = \left(\frac{1 - \zeta^{2d}}{1 - \zeta^{kd}} \right)^2 \cdot \frac{(1 - \zeta^{(k-1)d})(1 - \zeta^{(k+1)d})}{(1 - \zeta^d)(1 - \zeta^{3d})}.
\]

If \(\delta = 1 \), then \((kd, N) = 1 \). If \(\delta \neq 1 \), then the assumption (ii) implies \(1 - \zeta^{kd} \) is a unit. Therefore \((1 - \zeta^{2d})/(1 - \zeta^{kd}) \in \mathbb{Z}[\zeta] \). If \(N \neq 0 \) \mod 3, then since \((3d, N) = 1 \), we know

\[
\frac{(1 - \zeta^{(k-1)d})(1 - \zeta^{(k+1)d})}{(1 - \zeta^d)(1 - \zeta^{3d})} \in \mathbb{Z}[\zeta].
\]
If $N \equiv 0 \mod 3$, then $(k, 3) = 1$ and one of $k + 1, k - 1$ is divisible by 3. Lemma 2.1 (i) gives
\[
\frac{(1 - \zeta^{(k-1)d})(1 - \zeta^{(k+1)d})}{(1 - \zeta^d)(1 - \zeta^{3d})} \in \mathbb{Z}[\zeta].
\]
Hence we obtain $\omega \in \mathbb{Z}[\zeta]$. □

Theorem 3.2. Let α be an imaginary quadratic point. Then $\Lambda_k(\alpha)$ is an algebraic integer.

Proof. Let \mathcal{R} be a transversal of the coset decomposition of $\text{SL}_2(\mathbb{Z})$ by $\Gamma_1(N)\{\pm E_2\}$, where E_2 is the unit matrix. Consider a modular equation $\Phi(X, j) = \prod_{A \in \mathcal{R}} (X - \Lambda_k \circ A)$. Since $\Lambda_k \circ A$ has no poles in \mathcal{H} and $\Lambda_k \circ A \in \mathbb{Z}[\zeta][\!(q)\!]$ by Proposition 3.1, the coefficients of $\Phi(X, j)$ are polynomials of j with coefficients in $\mathbb{Z}[\zeta]$. Since $j(\alpha)$ is an algebraic integer (see Theorem 10.23 in [1]), $\Phi(X, j(\alpha))$ is a monic polynomial with algebraic integer coefficients. Because $\Lambda_k(\alpha)$ is a root of $\Phi(X, j(\alpha))$, it is an algebraic integer. □

Further we can show that $\Phi(X, j) \in \mathbb{Z}[j][X]$ and that $\Lambda_k(\alpha)$ belongs to the ray class field of $\mathbb{Q}(\alpha)$ modulo N. For details, see §3 of [5].

Corollary 3.3. Let $A \in \text{SL}_2(\mathbb{Z})$. Then the values of the function $\Lambda_k \circ A$ at imaginary quadratic points are algebraic integers. In particular, the function
\[
\frac{\varphi(k\tau/N; \tau) - \varphi(\tau/N; \tau)}{\varphi(2\tau/N; \tau) - \varphi(\tau/N; \tau)}
\]
takes algebraic and integral values at imaginary quadratic points, for $2 < k < N/2$.

Proof. Let α be an imaginary quadratic point. Then, $A(\alpha)$ is an imaginary quadratic point. Therefore, we have the former part of the assertion. If we put $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, then from the transformation formula of $\varphi((r\tau+s)/N; L_\tau)$ in §2 of [4], we obtain the latter part. □

4 Generators of $A_1(N)$

Let $A(N)$ be the modular function field of the principal congruence subgroup $\Gamma(N)$ of level N. For a subfield \mathfrak{F} of $A(N)$, let us denote by $\mathfrak{F}_{\mathbb{Q}(\zeta)}$ the subfield of \mathfrak{F} consisted of all modular functions having Fourier coefficients in $\mathbb{Q}(\zeta)$.

6
Theorem 4.1. Let \(k \) be an integer such that \(2 < k < N/2 \). Then we have \(A_1(N)_{\mathbb{Q}(\zeta)} = \mathbb{Q}(\zeta)(\Lambda_k,j) \)

Proof. By Theorem 3 of Chapter 6 of [6], the field \(A(N)_{\mathbb{Q}(\zeta)} \) is a Galois extension over \(\mathbb{Q}(\zeta)(j) \) with the Galois group \(SL_2(\mathbb{Z})/\Gamma(N)\{\pm E_2\} \) and the field \(A_1(N)_{\mathbb{Q}(\zeta)} \) is the fixed field of the subgroup \(\Gamma_1(N)\{\pm E_2\} \). Since \(\Lambda_k \in A_1(N)_{\mathbb{Q}(\zeta)} \), to prove the assertion, we have only to show \(A \in \Gamma_1(N)\{\pm E_2\} \), for \(A \in SL_2(\mathbb{Z}) \) such that \(\Lambda_k \cdot A = \Lambda_k \). Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \) such that \(\Lambda_k \cdot A = \Lambda_k \). Since the order of \(q \)-expansion of \(\Lambda_k \) is 0 and that of \(\Lambda_k \cdot A \) is \(\min(\{kc\}, \{c\}) \) - \(\min(\{2c\}, \{c\}) \) by Proposition 2.4, we have

\[
\min(\{kc\}, \{c\}) = \min(\{2c\}, \{c\}).
\]

(2)

By considering power series modulo \(q^N \), thus modulo \(q^N \mathbb{Q}(\zeta)[[q]] \), from Proposition 3.1 we obtain

\[
\theta_{2,1}(E_2)(\phi_k - \phi_1)[A]_2 \equiv \theta_{k,1}(E_2)(\phi_2 - \phi_1)[A]_2 \pmod{q^N} \tag{3}
\]

For an integer \(i \), put \(u_i = \zeta^{\mu(i)c}d, \omega_i = \zeta^{\mu(i)c-\mu(c)d} \). First of all, we shall prove that \(c \equiv 0 \pmod{N} \). Let us assume \(c \neq 0 \pmod{N} \). Suppose that \(\{2c\} = \{c\} \). Since \(\{c\} \neq 0 \), we see \(\{c\} = N/3 \). Further since by \(\{kc\} \geq \{c\} \), we have \((k,3) = 1, \{c\} = \{2c\} = \{kc\} = N/3 \) and \(u_k = \omega_k u_1, u_2 = \omega_2 u_1 \). Lemma 2.1 gives that \(\omega_k, \omega_2 \neq 1, \omega_k \neq \omega_2 \). By (3) and Proposition 2.3

\[
\theta_{2,1}(E_2) \left(\sum_n n(u_k^n - u_1^n) + u_k^{-1}q^N - u_1^{-1}q^N \right) \equiv \theta_{k,1}(E_2) \left(\sum_n n(u_2^n - u_1^n) + u_2^{-1}q^N - u_1^{-1}q^N \right) \pmod{q^N}.
\]

Therefore

\[
\theta_{2,1}(E_2) \left(\sum_n n(\omega_k^n - 1)u_1^n + (\omega_k^{-1} - 1)u_1^{-1}q^N \right) \equiv \theta_{k,1}(E_2) \left(\sum_n n(\omega_2^n - 1)u_1^n + (\omega_2^{-1} - 1)u_1^{-1}q^N \right) \pmod{q^N}.
\]
Since \(q^N = \zeta^{-3\mu(c)d}u_1^2 \),

\[\theta_{2,1}(E_2)((\omega_k - 1)u_1 + (2(\omega_k^2 - 1) + \zeta^{-3\mu(c)d}(\omega_k^{-1} - 1)u_1^2) \equiv \theta_{k,1}(E_2)((\omega_k - 1)u_1 + (2(\omega_k^2 - 1) + \zeta^{-3\mu(c)d}(\omega_k^{-1} - 1)u_1^2) \mod u_1^3. \]

By comparing the coefficients of \(u_1, u_1^2 \) on both sides, we have

\[2(\omega_k + 1) - \omega_k^{-1}\zeta^{-3\mu(c)d} = 2(\omega_k + 1) - \omega_k^{-1}\zeta^{-3\mu(c)d}. \]

This equation implies that \(\zeta^{3\mu(c)d}\omega_k = -1/2 \). We have a contradiction.

Suppose \(\{2c\} > \{c\} \). Then by [2], we know \(\{kc\} \geq \{c\} \). If \(\{kc\} > \{c\} \), then the \(q \)-expansion of \(\Lambda \circ A \) begins with 1. Thus \(\theta_{k,1}(E_2) = \theta_{2,1}(E_2) \). This gives that \((1 - \zeta^{k+2})(1 - \zeta^{k-2}) = 0 \). We have a contradiction. If \(\{kc\} = \{c\} \), then \(\{kc\}, \{c\} \neq 0, N/2 \) and \(u_k = \omega_ku_1 \). By considering \(\mod q^N \) as above, we obtain

\[\theta_{2,1}(E_2) \left(\sum_n n(\omega_k^n - 1)u_1^n + (\omega_k^{-1} - 1)u_1^{-1}q^N \right) \equiv \theta_{k,1}(E_2) \left(\sum_n n(u_2^n - u_1^n) + u_2^{-1}q^N - u_1^{-1}q^N \right) \mod q^N. \]

Thus

\[u_1 + 2(\omega_k + 1)u_1^2 - \omega_k^{-1}u_1^{-1}q^N \equiv u_1 - u_2 + 2u_1^2 - u_2^{-1}q^N + u_1^{-1}q^N - 2u_2^2 + \cdots \mod q^N. \]

Therefore

\[2\omega_ku_1^2 - (\omega_k^{-1} + 1)u_1^{-1}q^N + h_1(u_1) \equiv -u_2 - u_2^{-1}q^N - 2u_2 + h_2(u_2) \mod q^N, \]

where \(h_i(u_i) \) is a polynomial of \(u_i \) with terms \(u_i^n, n > 2 \). Since \(\{2c\} > \{c\} \), we see \(\{2c\} \leq N - \{2c\} < N - \{c\} \). Therefore we have \(\{2c\} < N - \{c\} \) and \(2\{c\} = \{2c\} = N - \{2c\} \) or \(2\{c\} = \{2c\} < N - \{2c\} \). By comparing the coefficients of first terms, we obtain \(2\omega_k\zeta^{2\mu(c)d} = -\zeta^{\mu(2c)2d} + \zeta^{-\mu(2c)2d} \) in the case \(\{2c\} = N - \{2c\} \) and \(2\omega_k\zeta^{2\mu(c)d} = -\zeta^{\mu(2c)2d} \) in the case \(\{2c\} < N - \{2c\} \).

In the former case, \(N \) is even and \(\{2c\} = N/2 \). So we have \(\mu(2c)2c \equiv 0 \mod N/2 \) and \(\mu(2c)2d \equiv 0 \mod N/2 \). Therefore from \((c, d) = 1 \) we obtain \(2 \equiv 0 \mod N/2 \). This is impossible. In the latter case, clearly we have a
contradiction. Suppose \(\{2c\} < \{c\} \). Then \(\{kc\} = \{2c\} \). If \(\{2c\} = 0 \), then \(k, N \) are even and \(\{c\} = N/2 \). From Proposition 2.3 we get

\[
(\phi_k - \phi_1)[A]_2 = \frac{\zeta^{kd}}{(1 - \zeta^{kd})^2} - (\zeta^{d} + \zeta^{-d})q^{N/2} \mod q^N,
\]

\[
(\phi_2 - \phi_1)[A]_2 = \frac{\zeta^{2d}}{(1 - \zeta^{2d})^2} - (\zeta^{d} + \zeta^{-d})q^{N/2} \mod q^N.
\]

By using (3),

\[
\theta_{2,1}(E_2)\frac{\zeta^{kd}}{(1 - \zeta^{kd})^2} = \theta_{k,1}(E_2)\frac{\zeta^{2d}}{(1 - \zeta^{2d})^2},
\]

\[
\theta_{2,1}(E_2)(\zeta^{d} + \zeta^{-d}) = \theta_{k,1}(E_2)(\zeta^{d} + \zeta^{-d}).
\]

If \(\zeta^{d} + \zeta^{-d} = 0 \), then \(2d \equiv 0 \mod N/2 \). Since \(2c \equiv 0 \mod N/2 \) and \((c, d) = 1 \), we see \(2 \equiv 0 \mod N/2 \). This is impossible. Therefore \(\theta_{2,1}(E_2) = \theta_{k,1}(E_2) \) and \(\frac{\zeta^{kd}}{(1 - \zeta^{kd})^2} = \frac{\zeta^{2d}}{(1 - \zeta^{2d})^2} \). This implies that \((1 - \zeta^{(k+2)d})(1 - \zeta^{(k-2)d}) = 0\). Lemma 2.4 gives a contradiction. Hence \(\{2c\}, \{c\} \neq 0, N/2 \). Let \(u_k = \omega u_2 \), where \(\omega = \omega_k/\omega_2 \). By (3),

\[
\theta_{2,1}(E_2)(\sum_n n(\omega^n u_2^n - u_1^n) + \omega^{-1}u_2^{-1}q^N - u_1^{-1}q^N) \equiv \theta_{k,1}(E_2)(\sum_n n(u_2^n - u_1^n) + u_2^{-1}q^N - u_1^{-1}q^N) \mod q^N.
\]

Therefore \(\theta_{2,1}(E_2)\omega = \theta_{k,1}(E_2) \) and

\[
\sum_n n(\omega^n - \omega)u_2^n + (\omega^{-1} - \omega)u_2^{-1}q^N \equiv \sum_n n(1 - \omega)u_1^n + (1 - \omega)u_1^{-1}q^N \mod q^N.
\]

Since by Lemma 2.4, \(\omega \neq 1 \), we have

\[
2\omega u_2^2 - (1 + \omega^{-1})u_2^{-1}q^N + h_2(u_2) \equiv -u_1 - u_1^{-1}q^N - 2u_1^2 + h_1(u_1) \mod q^N,
\]

where \(h_i(u_i) \) is a polynomial of \(u_i \) with terms \(u_i^n, n > 2 \). Since \(\{c\} < N - \{c\} < N - \{2c\} \), we have \(2\{2c\} = \{c\} \) and \(2\omega \zeta^{2\mu(2c)2d} = -\zeta^{\mu(c)c} \). This gives a contradiction. Hence we have \(c \equiv 0 \mod N \). Let \(c \equiv 0 \mod N \). Then
by the definition of ϕ_s, we have $\Lambda_k \circ A = \frac{\phi_{kd} - \phi_{d}}{\phi_{2kd} - \phi_{2d}}$. From now on, to save labor, we put $r = \{2d\}$, $s = \{kd\}$, $t = \{d\}$. Then since r, s, t are distinct from each other and $\min(s, t) = \min(r, t)$, $(d, N) = 1$, we have $r, s, t \neq 0, N/2$ and $t < r, s$. We have only to prove $t = 1$. Let us assume $t > 1$. Let $T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Then

$$\Lambda_k \circ T = \left(\frac{\phi_s - \phi_t}{\phi_r - \phi_t}\right) \circ T. \quad (4)$$

If ℓ is an integer such that $0 < \ell < N/2$, then $\mu(\ell) = 1$, $\ell = \ell$. Let $u = \zeta q$. Then

$$\phi_\ell[T]_2 \equiv \sum_n nu^{\ell n} + u^{N-\ell} \mod q^N. \quad (5)$$

From (4),

$$(\phi_r\phi_1 + \phi_s\phi_2 + \phi_t\phi_k)[T]_2 = (\phi_t\phi_2 + \phi_s\phi_1 + \phi_r\phi_k)[T]_2.$$

By comparing the order of q-series in the both sides, we see $r = t + 1 < s$. Since $t \geq 2$ and $t + 2 \leq s < N/2$, we know that $2t \geq t + 2, N > 2t + 4$. By (5) and by the inequality relations that $r = t + 1, s \geq t + 2, 2t \geq t + 2, N > 2t + 4$, we have modulo $u^{t+4},$

$$\phi_r\phi_1[T]_2 \equiv u^{t+2} + 2u^{t+3} \mod u^{t+4}, \phi_s\phi_2[T]_2 \equiv 0 \mod u^{t+4},$$

$$\phi_t\phi_1[T]_2 \equiv u^{t+k} \mod u^{t+4}, \phi_t\phi_2[T]_2 \equiv u^{t+2} \mod u^{t+4},$$

$$\phi_s\phi_1[T]_2 \equiv u^{s+1} \mod u^{t+4}, \phi_r\phi_k[T]_2 \equiv 0 \mod u^{t+4}.$$

Therefore we obtain a congruence:

$$2u^{t+3} + u^{t+k} \equiv u^{s+1} \mod u^{t+4}.$$

The coefficients of u^{t+3} on both sides are distinct from each other, we have a contradiction. Hence $t = 1$. \square

We obtain the following theorem from the Gee-Stevenhagen theory in [2] and [3]. See also Chapter 6 of [7].

Theorem 4.2. Let N and k be as above. Let $\alpha \in \mathcal{S}$ such that $\mathbb{Z}[\alpha]$ is the maximal order of an imaginary quadratic field K. Then the ray class field of K is generated by $\Lambda_l(\alpha)$ over $\mathbb{Q}(\zeta, j(\alpha))$.

Proof. The assertion is deduced from Theorems 1 and 2 of [2] and Theorem 4.1. \square
References

[1] D.Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1989.

[2] A.Gee, “Class invariants by Shimura’s reciprocity law,” J. Théor. Nombres Bordeaux 11 (1999), 45-72.

[3] A.Gee and P.Stevenhagen, “Generating class fields using Shimura reciprocity,” Algorithmic number theory, Springer LNCS 1423, 1998, pp. 441-453.

[4] N.Ishida and N.Ishii, “Generators and defining equation of the modular function field of the group $\Gamma_1(N)$,” Acta Arith. 101.4 (2002), 303-320.

[5] N.Ishii and M.Kobayashi, “Singular values of some modular functions”, Ramanujan J. 24 (2011), 67-83, DOI 10.1007/s11139-010-9249-y.

[6] S.Lang, Elliptic Functions, Adison-Wesley, London, 1973.

[7] G.Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami-Shoten and Princeton University Press, 1971.

Faculty of Liberal Arts and Sciences
Osaka Prefecture University
1-1 Gakuen-cho, Naka-ku Sakai
Osaka, 599-8531 Japan

e-mail: ishii@las.osakafu-u.ac.jp