Deformation and fracture of alumina ceramics with hierarchical porosity

MIHAIL V. GRIGORIEV • Institute of Strength Physics and Materials Science of RAS, Tomsk Polytechnic University • mrig@ispms.ru
NIKOLAI L. SAVCHENKO • Institute of Strength Physics and Materials Science of RAS • savnick@ispms.ru
TATIANA YU. SABLINA • Institute of Strength Physics and Materials Science of RAS • sabtati@ispms.ru
EMESE KUROVICS • Institute of Ceramics and Polymer Engineering, University of Miskolc • fememese@uni-miskolc.hu
IRINA N. SEVOSTYANOVA • Institute of Strength Physics and Materials Science of RAS • sevir@ispms.ru
SVETLANA P. BUYAKOVA • Institute of Strength Physics and Materials Science of RAS, Tomsk Polytechnic University • sbuyakova@ispms.ru
LÁSZLÓ A. GÖMZE • Institute of Ceramics and Polymer Engineering, University of Miskolc • femgomze@uni-miskolc.hu
SERGEI N. KULKOV • Institute of Strength Physics and Materials Science of RAS, Tomsk Polytechnic University • kulkov@mi.tsc.ru

Abstract

The compression behavior of Al2O3 ceramics with a hierarchical pore structure was studied. The hierarchical pore structure included the pores of three types: coarse porosity with a size of 80 to 100 μm, fine porosity with a size of 14 to 15 μm, and intermediate interblock porosity comprised of elongated (110–120 μm) porous microchannels formed as a result of zonal isolation during sintering. It is shown that the obtained hierarchical porous structure causes the formation of a hierarchical deformation structure in the volume of ceramics and leads to a decrease in the extent of destruction processes from the macroscopic scale in the case of unimodal ceramics to the microscale destruction comparable with the sizes of the blocks formed during sintering. At fixed values of the pore space, the studied ceramics with hierarchical pore structure shows a noticeably higher compressive strength as compared to the ceramics with a unimodal porosity. Keywords: deformation, fracture, pore ceramic, alumina.

1. Introduction

Deformation behavior of porous brittle media, in particular, ceramics, geological materials, etc., is currently studied in detail primarily for ceramic with unimodal pore-size distribution (unimodal porosity), made by the method of partial sintering [1–7]. At the same time, it has been shown that threshold values of the pore-space volume exist for such materials at which both the deformation and subsequent fracture modes change substantially. The macroscopic strain-induced behavior of high-porosity ceramics is depicted by characteristic stress-strain curves that exhibit a fairly long portion corresponding to inelastic strain

of hierarchies of the deformation structure and subsequent destruction. The synthesis of ceramics having a hierarchical porous structure with spatial and interpenetrating structures of different configurations (cells, channels, shells, etc. [1, 2, 10]) is considered to be a very most promising means for creation of porous ceramic materials, as similar elements in the structure can give rise to unusual deformation modes of hierarchically...
organized structures as compared with conventional brittle materials [1, 2, 11]. Nevertheless, there is a lack of such studies because of difficulties arising upon the synthesis of such systems. Typically, a system of pores with sizes commensurate with the grain size, or with larger pore sizes when pore-forming agents are added, develops upon sintering ceramics. These methods include the methods of chemical pore formation, the methods of burnable additives, the foaming methods, etc. [1, 2]. On the other hand, the effect of “zonal segregation” as a consequence of the active shrinkage of samples upon sintering is known [11], which consists in the partition of a sintered sample into regions (blocks) that are significantly larger than the mean particle size of the sintered material. Typically, the following two types of pore structures can be formed: one is determined by the interparticle porosity and the other by the porosity between blocks. Usually, these structures are formed randomly; however, the zonal segregation effect during sintering can be achieved by the addition of relatively large particles of pore-forming agents, which will be removed in the initial stage of sintering.

The study of the difference in the damage evolution in the volume of porous ceramics with unimodal and hierarchical porosity on different structural scales and their subsequent fracture depending on the strain rate, degree of constrained strain, etc., are of considerable academic interest in the hierarchical deformation and fracture structures formed in ceramics and rocks.

The present paper undertakes to investigate the deformation and fracture of porous alumina ceramics with unimodal and hierarchical porosity.

2. Experimental procedure

Two types of samples were obtained: unimodal porosity, obtained due to the partial sintering of ceramic powders, and with a hierarchically organized pore structure obtained by introducing a pore-forming agent into the mixture.

Samples with unimodal distribution of pores and different values of porosity 17 and 70% were produced from Al₂O₃ powder by thermal decomposition of water solutions of metal nitrates in high-frequency discharge plasma [3]. Electron microscopic examination under scanning and transmission electron microscopes revealed that the powders were largely composed of hollow spherical particles of high-density ultra-high molecular weight polyethylene (UHMWPE) with a mean particle size of 20–50 nm. A 3% polyvinyl alcohol solution was added to the initial powders. The mixture was pressed in steel die molds at a pressure of 100 MPa, using a hydraulic press. The resultant specimens were cylindrical (10 mm in diameter and 15 mm in height) in shape. Sintering was performed in air in the temperature range from 1000 to 1600 °C for an isothermal annealing time of 1 h. The heating and cooling rates were 240 °C/h.

Samples with a hierarchically organized pore structure were obtained using the method of slip casting of Al₂O₃ powder, to which spherical particles of high-density ultra-high molecular weight polyethylene (UHMWPE) with a mean particle size of 100 µm in amounts of 15, 20, and 25 wt. % were injected with the subsequent removal of the polymer bond and sintering in air at temperatures of 1400, 1500, and 1600 °C by isothermal exposure.

The density of the sintered specimens was measured by a geometric method. The residual porosity was calculated from theoretical-to-measured density ratio. The structure of the samples after sintering was studied by the methods of optical and scanning electron microscopy. The size of pores and the distance between them in the ceramics after sintering and after compression tests were measured by means of a scanning electron microscope. Several micro images and at least 400 pores were measured for each sample. The two-dimensional pore-size distribution obtained in such a way was transformed into a three-dimensional distribution using Saltykov’s main stereo metric equation [12].

Cylindrical samples were subjected to mechanical-compression tests on a Devotrans universal testing machine at a loading rate of 2×10⁴ s⁻¹. The stiffness of the loading system was determined before testing. A rectilinear portion corresponding to the elastic strain of the specimens was identified in the stress (σ)- strain (ε) curves. The effective elastic moduli were found from the initial rectilinear portions of the σ-ε curves plotted upon the compression testing of the specimens.

3. Results and discussion

After sintering, the ceramics with unimodal porosity had a porosity of 17 - 70%. The pore structure of Al₂O₃ ceramics with unimodal porosity sintered at 1400°C and 1600°C is shown in Fig. 1.a,b. With an increase in sintering temperature, along with decrease in pore space volume, an increase in the average pore size was observed due to the consolidation of fine pores into larger ones.
After sintering, the ceramics with hierarchical porosity had a porosity of 35 - 60%. The inter grain fine porosity appeared in the sample volume as a result of the diffusion and recrystallization processes during sintering and is determined by the sintering temperature. The UHMWPE particles played the role of pore-forming agents promoting the production of coarse porosity in the sintered ceramic samples. The ratio between coarse and fine porosity was changed by selection of the process parameters (temperature and the number of pore-forming agent particles), which made it possible to achieve the “zonal-segregation” effect upon the shrinkage of the samples. The mean size of large pores was about 80 - 100 µm (Fig. 2,a), and the size of small pores was 10 - 15 µm on average (Fig. 2b). The inter-group porosity resulting from the “zonal segregation” effect in the volume of sintered ceramics was present in the form of elongated pore channels connecting large pores with each other and forming a block structure thereby (Fig. 2, a). The mean size of blocks of the sintered material was determined by the distance between the large pores and was in the range from 110 to 120 µm.

The appearance of the stress-strain curves and the fracture behavior of the ceramic samples with the unimodal and hierarchical porosity depended on the porosity level. For the Al2O3 ceramics with unimodal porosity with porosity varying between 10 and 30%, the stress-strain curves exhibited a linear relationship up to multiple fracture of the material (Fig. 3, a, curve 1). An increase in the porosity more than 30% leads to a deviation from linearity in the pre-fracture stage (Fig. 3, a, curves 2 and 3).

The ceramic samples with a hierarchical porosity of up to 40% show stress-strain curves characterized by the elastic behavior until the breakdown (Fig. 3, b, curve 1). The samples with porosity of 40 - 50% are characterized by an increase in the microdamage accumulation region after a solitary macroscopic fracture (Fig. 3, b, curve 2, section i). In the samples with a porosity of more than 50%, microdamage appears already at the active stage of loading (Fig. 3, b, curve 3, section ii), and the stress smoothly drops at the final section of the stress-strain curves after reaching the ultimate tensile strength (maximum loading) (Fig. 3, a, curve 3, section iii).

The dependence of effective elastic modulus (E_eff) and compressive strength values (σ_comp) and on the pore-space volume for alumina ceramics with unimodal and hierarchical porosity illustrated in Fig. 4. The values of the compressive strength and effective elastic modulus of the ceramics decrease exponentially upon an increase in the pore-space volume of the samples. At fixed values of the pore-space volume, the studied ceramics with hierarchical pore structure shows a noticeably higher compressive strength as compared to the ceramics with a unimodal porosity.
After compression tests, the structure of the ceramic with unimodal porosity and low porosity values contained macrocracks. The structure of the high-porosity specimens exhibits multiple microcracking.

The study of the microstructure of the Al$_2$O$_3$ ceramics with hierarchical porosity after compression tests showed that blocks formed during sintering are separated from each other by mesoscopic fractures and discontinuities (Fig. 5, a) that are formed at the boundaries between adjacent blocks owing to the deformation localization in the process of loading. The block structure formed during sintering collapses along the block boundaries because of the destruction of brittle bridges connecting the blocks with each other, forming, as a result of the fracture, fragments comparable in size with a mean size of grains (10 - 20 µm, Fig. 5, b), which leads to broadening of the fracture zones between blocks up to 40 to 50 µm (Fig. 5, b). Such a destruction mechanism reduces the extent of destruction, enhancing the capability of totally brittle ceramics to efficiently resist an applied load, which is evidenced by the increased compressive strength values.

Thus, analysis of the stress-strain curves for the porous alumina ceramics with unimodal and hierarchical porosity has revealed a transition from characteristically brittle fracture of low-porosity specimens attendant with formation of the main crack to the development of multiple fracture sites configured as microcracks in high-porosity specimens. The macroscopic deformation behavior of ceramics exposed to loading is referred to as pseudo-plastic and is similar to that observed in plastic materials. The obtained hierarchical structure of porous ceramics exerts a significant influence on the character of damage produced in the material under compression, bringing about a transition from a brittle state to quasi-plastic failure due to the formation of numerous focal areas of destruction, and the formation of hierarchical deformation structures in the ceramics volume leads to the effect of reducing the destruction processes from the macroscopic scale, in the case of unimodal ceramics, to a mesoscale fracture comparable with the size of blocks formed during sintering. A separate study should be devoted to a more detailed analysis of the mechanisms of formation of such deformation structures.

4. Conclusion

The analysis of stress-strain curves of porous alumina ceramics are shown that during deformation in compression tests; there was a transition from a typically brittle state for dense ceramics to a pseudo-plastic state with a high porosity level.
It is shown that the obtained hierarchical porous structure causes the formation of a hierarchical deformation structure in the volume of ceramics and leads to a decrease in the extent of destruction processes from the macroscopic scale in the case of unimodal ceramics to the microscale destruction comparable with the sizes of the blocks formed during sintering.

At fixed values of the pore space, the studied ceramics with hierarchical pore structure shows a noticeably higher compressive strength as compared to the ceramics with a unimodal porosity.

Acknowledgement
This work was carried out with partial support of project #14.584.21.0026 (RFMEFI58417X0026).

References
[1] Ohji, T. – Fukushima, M.: Macro Porous Ceramics: Processing and Properties. Int. Mater. Rev., 2012, V. 57, pp. 115-131.
[2] Hammel, E. C. – Ighodaro, O. L.-R. – Okolin, O. I.: Review paper Processing and properties of advanced porous ceramics: An application based review. Ceramics International, 2014, V. 40, pp. 15351–15370.
[3] Kulkov, S. N. – Grigor’ev, M. V.: Sintering of Al2O3 ceramics based on different sizes powders. Epitoanyag, 2010, No. 3, pp.66-69.
[4] Kulkov, S. N. – Maslovskiy, V. I. – Buyakova, S. P. – Nikitin, D. S.: Non-Hookean behavior of porous zirconium dioxide under active compression deformation. Technical physics journal, 2002, V. 72/3, pp. 38–42.
[5] Kulkov, S. – Maslovskii, V. – Buyakova, S.: The non-Hooke’s behavior of porous zirconia subjected to high-rate compressive deformation. Technical Physics, The Russian Journal of Applied Physics, 2002, V. 47, № 3, pp. 320-324.
[6] Savchenko, N. L. – Sablina, T. Yu. – Sevost’yanova I. N. – Buyakova, S. P. – Kul’kov S. N.: Deformation and fracture of porous brittle materials under different loading schemes. Russian Physics Journal, 2016, Vol. 58, No. 11, pp.1-5 (Russian Original No. 11, November, 2015).
[7] Tariq, Fatima – Rafique, Uzaira – Yaqoob, Khurrum: Synthesis of alumino-silicates functionalized titanium as potential adsorbent: An industrial possibility. Epitoanyag § Journal of Silicate Based and Composite Materials, 2017, V. 69, No. 3, pp. 94-97.
[8] Tallon, Carolina – Chuanuwatananukul, Chayuda – Dunstan, David E. – Franks, George V.: Mechanical strength and damage tolerance of highly porous alumina ceramics produced from sintered particle stabilized foams. Ceramics International, 2016, V. 42, pp. 8478–8487.
[9] Meille, S. – Lombardi, M. – Chevalier, J. – Montanaro, L.: Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. Journal of the European Ceramic Society, 2012, V. 32, pp. 3959–3967.
[10] Torres-Cadenas, S. – Bravo-Patiño Alejandro – Zarate-Medina, Juan – Contreras-Garcia, María Eugenia: Nest-like BaO6Fe2O6 microspheres with hierarchical porous structure for drug delivery. Építőanyag § Journal of Silicate Based and Composite Materials, 2017, V. 69, No. 1, pp. 2-6.https://dx.doi.org/10.14382/epitoanyag-jscbm.2017.1
[11] Grigor’ev, M. V. – Savchenko, N. L. – Buyakova, S. P. – Kul’kov, S. N.: Inelastic Behavior of Ceramics with Hierarchical Pore Structure under Compression. Technical Physics Letters, 2017, Vol. 43, No. 8, pp. 723–726.
[12] Saltykov, S. A.: Stereometric Metallography (Metallurgiya, Moscow, 1976) [in Russian].