On the metric dimension of amalgamation of sunflower and lollipop graph and caveman graph

Satria Adhi Wijaya and Tri Atmojo Kusmayadi
Mathematics Department of Mathematics and Natural Sciences Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
E-mail: satriadhiwijaya@student.uns.ac.id, tri.atmojo.kusmayadi@gmail.com

Abstract. Let G be a connected nontrivial graph with vertex set $V(G)$ and edge set $E(G)$. The distance between two vertices u and v in G is the shortest path length between u and v denoted $d(u,v)$. Let $W = \{w_1, w_2, \ldots, w_k\}$ be a subset of $V(G)$. The representation of a vertex u with respect to W is a sequential pair of distances between u and all vertices in W, where u is a vertex in G. The set of W is called the resolving set if the representation of each vertex is different to W. Resolving set with a minimum cardinality called the metric basis and the number of element from some basis is called the metric dimension, denoted by $\text{dim}(G)$. In this paper, we determine the metric dimension of amalgamation of sunflower and lollipop graph $\left(\text{SF}_{n}, v_i\right) * (L_{m,p}, u_p)$ and caveman graph $C(n,m)$. The results show that the metric dimension of amalgamation of sunflower and lollipop graph is $\text{dim}\left(\left(\text{SF}_{n}, v_i\right) * (L_{m,p}, u_p)\right) = m + 1$ for $n = 3, 4, \ldots, 7$; $\text{dim}\left(\left(\text{SF}_{n}, v_i\right) * (L_{m,p}, u_p)\right) = \left\lceil \frac{n}{2} \right\rceil + m - 2$ for $n \geq 8$, and the metric dimension of caveman graph is $\text{dim}(C(n,m)) = n$ for $m = 3, 4$; $\text{dim}(C(n,m)) = (m - 4)n$ for $m \geq 5$.

1. Introduction

One of concept in graph theory is the metric dimension. The metric dimension was first introduced by Slater in 1975, which was then continued by Harary and Melter (Caceres et al. [4]). Khuller et al. [6] has applied the concept of metric dimensions in real problems. Until now the concept of the metric dimension is still being studied and developed. Let G be a connected nontrivial graph with vertex set $V(G)$ and edge set $E(G)$. Let $W = \{w_1, w_2, \ldots, w_k\}$ be a subset of the vertex set in a graph G. Representation of a vertex u with respect to W is a sequential pair of distances between u and all vertices in W, where u is a vertex of G and the distance from two vertices is defined as the shortest path from one vertex to other vertices. Slater [7] introduces the concept of W as locating set, while Harary and Melter [5] introduce the concept of W as resolving set. The set of W is called the resolving set if the representation of each vertex is different from W. The resolving set with minimum number of members is called the metric basis and the number of members on the basis is called the metric dimension.

According to Chartrand et al. [3] the metric dimension of G, denoted by $\text{dim}(G)$, is defined as the number of elements of a resolving set with the smallest cardinality at G. Chartrand et al. [3] and Caceres et al. [4] applied the concept of the metric dimension to a particular class of graphs. In the 2000 years, Chartrand et al. [3] discovered the metric dimensions of several graph classes including $\text{dim}(C_n) = 2$ and $\text{dim}(P_p) = 1$, where $n \geq 3$ and $p \geq 2$. In 2005, Caceres et al. [4] found the metric dimension of the fan graph F_n. Then in 2010, Yero et al. [10] located the metric dimension of corona graph $G \odot^k H$, $\text{dim}(G \odot^k H) \geq n_1(n_2 + 1)^{k-1}\text{dim}(H)$ for $n_1, n_2 \geq 2$.

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
and $k \geq 2$.

From existing studies the authors are motivated to investigate the metric dimensions of the amalgamation of sunflower and lollipop graph $(SF_n, v_i) \ast (L_{m,p}, u_p)$ and caveman graph $C(n, k)$ which have not been studied by the previous researchers.

2. Main Results
2.1. Metric Dimension
Following are definitions used to determine the metric dimension taken from Chartrand et al. [3].

If $r(v|W)$ for each vertex $v \in V(G)$ is different, then W is called the resolving set of $V(G)$. The resolving set with minimum cardinality is called the minimum or basis, and the cardinality of the basis is called the metric dimension of G denoted by $dim(G)$.

2.2. The Metric Dimension of Amalgamation of Sunflower and Lollipop Graph
Chartrand and Lesniak [1] defined that the wheel graph denoted by W_n, is a join of a complete graph K_1 and a cycle graph C_n so that $W_n = K_1 + C_n$ for $n \geq 3$, vertex $c \in V(K_1)$ as the central vertex of the wheel graph.

Chartrand and Oellerman [2] defined the sunflower graph SF_n as a graph obtained from wheel W_n with center vertex c and cycle order $c; w_1; w_2; w_3; \ldots; w_n$ and n vertex additional $v_1; v_2; v_3; \ldots; v_n$ where v_i is associated with edge to w_i, w_{i+1} for $i = 1, 2, \ldots, n$ with $i + 1$ is modulo n.

Weisstein [9] defined the lollipop graph $L_{m,p}$ as a complete graph K_m and the path graph P_p connected to a bridge.

Chartrand et al. [3] defined that $(SF_n, v_i) \ast (L_{m,p}, u_p)$ graph is the result of amalgamation operations from vertex u_p of lollipop graph $L_{m,p}$ with a vertex v_i on the sunflower graph SF_n.

![Figure 1. $(SF_n, v_i) \ast (L_{m,p}, u_p)$ graph](image)

Theorem 2.1 For any positive integer n, p and $m \geq 3$ hold

$$dim((SF_n, v_i) \ast (L_{m,p}, u_p)) = \begin{cases} m + 1, & n = 3, 4, \ldots, 7 \\ \lceil \frac{n}{2} \rceil + m - 2, & \text{else} \end{cases}$$

Proof. Let $(SF_n, v_i) \ast (L_{m,p}, u_p)$ be a graph. We consider two cases according to the values of n.

- Case 1, for $n = 3, 4, \ldots, 7$.
 For $n = 3, 4, \ldots, 7$, if the vertex v_2 is amalgamated with vertex u_p and choose $W = \{v_1, v_2, v_3, k_2, k_3, \ldots, k_{m-1}\} \subset (SF_n, v_2) \ast (L_{m,p}, u_p)$. We obtained the representation of each vertex at $(SF_n, v_2) \ast (L_{m,p}, u_p)$ with $n = 3$ with respect to W is,
is,

\[r(w_1|W) = (1, 1, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(w_2|W) = (2, 1, 1, p + 2, p + 2, \ldots, p + 2, p + 2), \]
\[r(w_3|W) = (1, 2, 1, p + 2, p + 2, \ldots, p + 2, p + 2), \]
\[r(v_1|W) = (0, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(v_2|W) = (2, 2, p + 1, p + 1, \ldots, p + 1, p + 1), \]
\[r(v_3|W) = (2, 2, 0, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(u_1|W) = (p + 1, p - 1, p + 1, 2, 2, \ldots, 2, 2), \]
\[r(u_2|W) = (p, p - 2, p, 3, \ldots, 3, 3), \]
\[r(u_3|W) = (p - 1, p - 3, p - 1, 4, 4, \ldots, 4, 4), \]

\[\vdots \]
\[r(u_{p-1}|W) = (3, 1, 3, p, \ldots, p, p), \]
\[r(k_1|W) = (p + 2, p, p + 2, 1, 1, \ldots, 1, 1), \]
\[r(k_2|W) = (p + 3, p + 1, p + 3, 0, 1, \ldots, 1, 1), \]

\[\vdots \]
\[r(k_{m-1}|W) = (p + 3, p + 1, p + 3, 1, 1, \ldots, 1, 0), \]
\[r(k_m|W) = (p + 3, p + 1, p + 3, 1, 1, \ldots, 1, 1). \]

Representation of each vertex at \((SF_n, v_2) * (L_{m,p}, u_p)\) with \(n = 4, 5, 6, 7\) with respect to \(W\) is,

\[r(w_1|W) = (1, 2, n - 2, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(w_2|W) = (1, 1, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(w_3|W) = (2, 1, 1, p + 2, p + 2, \ldots, p + 2, p + 2), \]

\[\vdots \]
\[r(w_{n-1}|W) = (n - 2, n - 3, 1, p + (n - 2), p + (n - 2), \ldots, p + (n - 2), p + (n - 2)), \]
\[r(w_n|W) = (2, n - 2, n - 3, p + (n - 1), p + (n - 1), \ldots, p + (n - 1), p + (n - 1)), \]
\[r(v_1|W) = (0, 2, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(v_2|W) = (2, 0, 2, p + 1, p + 1, \ldots, p + 1, p + 1), \]
\[r(v_3|W) = (2, 2, 0, p + 3, p + 3, \ldots, p + 3, p + 3), \]

\[\vdots \]
\[r(v_{n-1}|W) = (3, n - 2, n - 3, p + (n - 1), p + (n - 1), \ldots, p + (n - 1), p + (n - 1)), \]
\[r(v_n|W) = (2, 3, n - 2, n - 3, p + (n - 1), p + (n - 1), \ldots, p + (n - 1), p + (n - 1)), \]
\[r(c|W) = (2, 2, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \]
\[r(u_1|W) = (p + 1, p - 1, p + 1, 2, 2, \ldots, 2, 2), \]
\[r(u_2|W) = (p, p - 2, p, 3, \ldots, 3, 3), \]
\[r(u_3|W) = (p - 1, p - 3, p - 1, 4, 4, \ldots, 4, 4), \]

\[\vdots \]
\[r(u_{p-1}|W) = (3, 1, 3, p, \ldots, p, p), \]
\[r(k_1|W) = (p + 2, p, p + 2, 1, 1, \ldots, 1, 1), \]
\[r(k_2|W) = (p + 3, p + 1, p + 3, 0, 1, \ldots, 1, 1), \]

\[\vdots \]
\[r(k_{m-1}|W) = (p + 3, p + 1, p + 3, 1, 1, \ldots, 1, 0), \]
\[r(k_m|W) = (p + 3, p + 1, p + 3, 1, 1, \ldots, 1, 1). \]

In the case of the \((SF_n, v_i) * (L_{m,p}, u_p)\) graph with \(n = 3, 4, 5, 6, 7\), we obtained the resolving set having \(m + 1\) element, so that \(\dim((SF_n, v_i) * (L_{m,p}, u_p)) = m + 1\).

- Case 2, for \(n \geq 8\).

We will show that \(\dim((SF_n, v_i) * (L_{m,p}, u_p)) = \left\lceil \frac{n}{2} \right\rceil + m - 2\). By choosing \(W = \)
\{v_1, v_3, v_7, k_2, k_3, \ldots, k_{m-1}\}. We obtained the representation for each vertex at \((SF_8, v_2) * (L_{m,p}, u_p)\) with respect to \(W\) is,

\[
\begin{align*}
 r(w_1[W]) &= (1, 3, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_2[W]) &= (1, 2, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_3[W]) &= (2, 1, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_4[W]) &= (3, 1, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_5[W]) &= (3, 2, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_6[W]) &= (3, 3, 2, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_7[W]) &= (3, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_8[W]) &= (2, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(v_1[W]) &= (0, 3, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(v_2[W]) &= (2, 2, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(v_3[W]) &= (3, 0, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(v_4[W]) &= (4, 2, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(v_5[W]) &= (4, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(v_6[W]) &= (4, 4, 2, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(v_7[W]) &= (4, 4, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(v_8[W]) &= (4, 4, 4, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(c[W]) &= (2, 2, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(u_1[W]) &= (p + 1, p + 1, p + 1, p + 3, 2, 2, \ldots, 2, 2), \\
 r(u_2[W]) &= (p, p, p + 2, p + 2, 3, 3, \ldots, 3, 3), \\
 \vdots \\
 r(u_{p-1}[W]) &= (3, 3, 5, 5, p, \ldots, p, p), \\
 r(k_1[W]) &= (p + 2, p + 2, p + 4, p + 4, 1, 1, \ldots, 1, 1), \\
 r(k_2[W]) &= (p + 3, p + 3, p + 5, p + 5, 0, 1, \ldots, 1, 1), \\
 r(k_3[W]) &= (p + 3, p + 3, p + 5, p + 5, 1, 0, \ldots, 1, 1), \\
 \vdots \\
 r(k_{m-1}[W]) &= (p + 3, p + 3, p + 5, p + 5, 1, 1, \ldots, 1, 1), \\
 r(k_m[W]) &= (p + 3, p + 3, p + 5, p + 5, 1, 1, \ldots, 1, 1). \\
\end{align*}
\]

For \(n = 8\), \(W\) is resolving set with \(3 + (m - 2)\) elements. For \(n = 9\), \(W\) is resolving set with \(3 + (m - 2)\) element. For \(n = 10\), \(W\) is resolving set with \(4 + (m - 2)\) element. For \(n = 11\), \(W\) is resolving set with \(4 + (m - 2)\) element. We obtained the representation for each vertex at \((SF_{12}, v_2) * (L_{m,p}, u_p)\) with respect to \(W\) is,

\[
\begin{align*}
 r(w_1[W]) &= (1, 3, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_2[W]) &= (1, 2, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_3[W]) &= (2, 1, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_4[W]) &= (3, 1, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
 r(w_5[W]) &= (3, 2, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_6[W]) &= (3, 3, 2, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_7[W]) &= (3, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_8[W]) &= (3, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_9[W]) &= (3, 3, 2, 1, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_{10}[W]) &= (3, 3, 3, 1, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_{11}[W]) &= (3, 3, 3, 2, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(w_{12}[W]) &= (2, 3, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
 r(v_1[W]) &= (0, 3, 4, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
\end{align*}
\]
\begin{align*}
r(v_1^2 | W) & = (2, 2, 4, 4, p + 1, p + 1, \ldots, p + 1, p + 1), \\
r(v_3 | W) & = (3, 0, 4, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(v_4 | W) & = (4, 2, 4, 4, p + 4, p + 4, \ldots, p + 4, p + 4), \\
r(v_5 | W) & = (4, 3, 3, 4, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_6 | W) & = (4, 4, 2, 4, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_7 | W) & = (4, 4, 0, 3, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_8 | W) & = (4, 4, 2, 2, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_9 | W) & = (4, 4, 3, 0, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_{10} | W) & = (4, 4, 4, 2, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_{11} | W) & = (3, 4, 4, 3, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_{12} | W) & = (2, 4, 4, 4, p + 4, p + 4, \ldots, p + 4, p + 4), \\
r(c | W) & = (2, 2, 2, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(u_1 | W) & = (p + 1, p + 1, p + 3, p + 3, 2, 2, \ldots, 2, 2), \\
r(u_2 | W) & = (p, p, p + 2, p + 2, 3, 3, \ldots, 3, 3), \ldots \\
r(u_{p - 1} | W) & = (3, 3, 5, 5, p, p, \ldots, p, p), \\
r(k_1 | W) & = (p + 2, p + 2, p + 4, p + 4, 1, 1, \ldots, 1, 1), \\
r(k_2 | W) & = (p + 3, p + 3, p + 5, p + 5, 0, 1, \ldots, 1, 1), \\
r(k_3 | W) & = (p + 3, p + 3, p + 5, p + 5, 1, 0, \ldots, 1, 1), \ldots \\
r(k_{m - 1} | W) & = (p + 3, p + 3, p + 5, p + 5, 1, 1, \ldots, 1, 0), \\
r(k_m | W) & = (p + 3, p + 3, p + 5, p + 5, 1, 1, \ldots, 1, 1).
\end{align*}

For \(n = 12 \), \(W \) is resolving set with \(4 + (m - 2) \) element. By choosing \(W = \{ v_1, v_3, v_7, v_9, \ldots, v_{n-8}, v_{n-6}, k_2, k_3, \ldots, k_{m-1} \} \) for \(n \geq 13 \). We obtained the representation for each vertex at \((SF_n, v_2, (L_{m,p}, u_p) \) with respect to \(W \) is,

\begin{align*}
r(u_1 | W) & = (1, 3, 3, 3, \ldots, 3, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(u_2 | W) & = (1, 2, 3, 3, \ldots, 3, 3, p + 2, p + 2, \ldots, p + 2, p + 2), \\
r(u_3 | W) & = (2, 1, 3, 3, \ldots, 3, 3, p + 2, p + 2, \ldots, p + 2, p + 2), \\
r(u_4 | W) & = (3, 1, 3, 3, \ldots, 3, 3, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(u_5 | W) & = (3, 2, 2, 3, \ldots, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \ldots \\
r(u_{n-1} | W) & = (3, 3, 3, 3, \ldots, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
r(u_n | W) & = (2, 3, 3, 3, \ldots, 3, 3, p + 4, p + 4, \ldots, p + 4, p + 4), \\
r(v_1 | W) & = (0, 3, 4, 4, \ldots, 4, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(v_2 | W) & = (2, 2, 4, 4, \ldots, 4, 4, p + 1, p + 1, \ldots, p + 1, p + 1), \\
r(v_3 | W) & = (3, 0, 4, 4, \ldots, 4, 4, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(v_4 | W) & = (4, 2, 4, 4, \ldots, 4, 4, p + 4, p + 4, \ldots, p + 4, p + 4), \ldots \\
r(v_{n-1} | W) & = (3, 4, 4, 4, \ldots, 4, 4, p + 5, p + 5, \ldots, p + 5, p + 5), \\
r(v_n | W) & = (2, 4, 4, 4, \ldots, 4, 4, p + 4, p + 4, \ldots, p + 4, p + 4), \\
r(c | W) & = (2, 2, 2, 2, \ldots, 2, 2, p + 3, p + 3, \ldots, p + 3, p + 3), \\
r(u_1 | W) & = (p + 1, p + 1, p + 3, p + 3, 2, 2, \ldots, 2, 2), \\
r(u_2 | W) & = (p, p, p + 2, p + 2, 3, 3, \ldots, 3, 3), \\
r(u_3 | W) & = (p - 1, p - 1, p + 1, p + 1, 4, 4, \ldots, 4, 4), \ldots \\
r(u_{p-1} | W) & = (3, 3, 5, 5, p, p, \ldots, p, p), \\
r(k_1 | W) & = (p + 2, p + 2, p + 4, p + 4, 1, 1, \ldots, 1, 1), \ldots
\end{align*}
Theorem 2.2 Let $C(n, m)$ be a caveman graph. For any integer $n, m \geq 3$ hold
\[
\dim(C(n, m)) = \begin{cases}
 n, & m = 3, 4; \\
 (m - 4)n, & m \geq 5.
\end{cases}
\]

Proof. Let $C(n, m)$ be a caveman graph. We consider two cases according to the values of m.

- Case 1, for $m = 3, 4$.
 In the case of $m = 3$, if $W = \{v_1^3, v_2^3, \ldots, v_n^3\} \subset C(n, 3)$, we obtained the representation of each vertex of $C(n, 3)$ with respect to W as follows,
 \[
 \begin{align*}
 r(v_1^3 | W) &= (1, m, m + 2, m + 4, \ldots, m + 4, m + 2, m), \\
 r(v_2^3 | W) &= (0, m - 1, m + 1, m + 3, \ldots, m + 3, m + 1, m - 1), \\
 r(v_3^3 | W) &= (1, m - 2, m + 2, m + 4, \ldots, m + 4, m + 2, m), \\
 r(v_4^3 | W) &= (m, 1, m + 2, m + 4, \ldots, m + 4, m + 2), \\
 r(v_5^3 | W) &= (m - 1, 0, m - 1, m + 1, m + 3, \ldots, m + 3, m + 1), \\
 r(v_6^3 | W) &= (m, 1, m - 2, m + 2, m + 4, \ldots, m + 4, m + 2), \\
 &\vdots
 \end{align*}
\]

Figure 2. $C(n, m)$ graph
\[r(v_i^1 | W) = (m, m + 2, m + 4, \ldots, m + 4, m + 2, m, 1), \]
\[r(v_i^2 | W) = (m - 1, m + 1, m + 3, \ldots, m + 3, m + 1, m - 1, 0), \]
\[r(v_i^3 | W) = (m - 2, m, m + 2, m + 4, \ldots, m + 4, m + 2, m, 1). \]

In the case of \(m = 4 \), if \(W = \{v_1^2, v_2^3, \ldots, v_n^3\} \subset C(n, 4) \), we obtained the representation of each vertex of \(C(n, 4) \) with respect to \(W \) as follows,

\[r(v_i^1 | W) = (1, m + 1, m + 2, \ldots, m + 2, m + 1, m - 1), \]
\[r(v_i^2 | W) = (0, m - 1, m + 1, \ldots, m + 2, m + 1, m - 1), \]
\[r(v_i^3 | W) = (1, m - 1, m + 1, \ldots, m, m - 2), \]
\[r(v_i^4 | W) = (1, m - 1, m + 1, \ldots, m + 1, m - 1), \]
\[r(v_i^5 | W) = (m - 1, 0, m - 1, m + 1, \ldots, m + 2, m + 1), \]
\[r(v_i^6 | W) = (m - 2, 1, m - 1, m + 1, \ldots, m), \]
\[r(v_i^7 | W) = (m - 1, 1, m - 1, m + 1, \ldots, m + 1), \]
\[\vdots \]
\[r(v_i^i | W) = (m + 1, m + 2, \ldots, m + 2, m + 1, m - 1, 1), \]
\[r(v_i^i+1 | W) = (m - 1, m + 1, \ldots, m + 2, m + 1, 1, 0), \]
\[r(v_i^i+2 | W) = (m - 1, m + 1, \ldots, m, 1), \]
\[r(v_i^i+3 | W) = (m - 1, m + 1, \ldots, m + 1, 1). \]

Representation for each vertex on caveman graph \(C(n, m) \) with \(m = 3, 4 \) with respect to \(W \) is different. As a result, \(W \) is the resolving set where \(|W| = n \), so that \(\dim(C(n, m)) = n \).

- Case 2, for \(m \geq 5 \).

In the case of \(m \geq 5 \), we choose \(W = \{v_1^1, v_2^2, v_3^3, \ldots, v_n^3\} \subset C(n, m) \). Suppose \(r(v_j^i | W) = (a_{1}^{i}, a_{2}^{i}, \ldots, a_{j-1}^{i}, a_{j}^{i}, a_{j+1}^{i}, \ldots, a_{m}^{i}) \) is the representation of vertex \(v_j^i \) with respect to \(W \) with \(j = 1, 2, \ldots, k \) and \(a_{1}^{i} = 1, a_{2}^{i} = 0, a_{3}^{i}, \ldots, a_{m-1}^{i} = 1, b_{1}^{i} = 3, b_{m-1}^{i} = 2 \), and \(c_{j+1}^{i} = b_{j}^{i} \) with \(i = 1, 2, \ldots, k \) and \(a_{j}^{i} = c_{j}^{i} + 2 \) then we get the representation of each vertex of \(C(n, m) \) with respect to \(W \) as follows,

\[r(v_1^1 | W) = (1, 4, d_{1}^{1}, f_{1}^{1}, \ldots, e_{1}^{1}, 3, 1, 4, d_{1}^{1}, f_{1}^{1}, \ldots, e_{1}^{1}, 3, \ldots), \]
\[r(v_2^1 | W) = (0, 3, e_{2}^{1}, f_{2}^{1}, \ldots, d_{3}^{1}, 3, 1, 3, e_{2}^{1}, f_{2}^{1}, \ldots, d_{3}^{1}, 3, \ldots), \]
\[r(v_3^1 | W) = (1, 3, e_{3}^{1}, f_{3}^{1}, \ldots, d_{3}^{1}, 3, 3, 3, e_{3}^{1}, f_{3}^{1}, \ldots, d_{3}^{1}, 3, \ldots), \]
\[\vdots \]
\[r(v_{m-1}^1 | W) = (1, 3, e_{m-1}^{1}, f_{m-1}^{1}, \ldots, d_{m-1}^{1}, 2, 1, 3, e_{m-1}^{1}, f_{m-1}^{1}, \ldots, d_{m-1}^{1}, \ldots), \]
\[r(v_1^2 | W) = (1, 2, e_{m}^{1}, f_{m}^{1}, \ldots, d_{m}^{1}, 3, 1, 2, e_{m}^{1}, f_{m}^{1}, \ldots, d_{m}^{1}, 3, \ldots), \]
\[r(v_2^2 | W) = (3, 1, 4, d_{1}^{2}, f_{1}^{2}, \ldots, e_{1}^{2}, 3, 1, 4, d_{1}^{2}, f_{1}^{2}, \ldots, e_{1}^{2}, \ldots), \]
\[r(v_3^2 | W) = (3, 0, 3, e_{2}^{2}, f_{2}^{2}, \ldots, d_{3}^{2}, 3, 1, 3, e_{2}^{2}, f_{2}^{2}, \ldots, d_{3}^{2}, 3, \ldots), \]
\[r(v_2^3 | W) = (3, 1, 3, e_{3}^{2}, f_{3}^{2}, \ldots, d_{3}^{2}, 3, 3, 3, e_{3}^{2}, f_{3}^{2}, \ldots, d_{3}^{2}, 3, \ldots), \]
\[\vdots \]
\[r(v_{m-1}^2 | W) = (2, 1, 3, e_{m-1}^{1}, f_{m-1}^{1}, \ldots, d_{m-1}^{1}, 2, 1, 3, e_{m-1}^{1}, f_{m-1}^{1}, \ldots, d_{m-1}^{1}, \ldots), \]
\[r(v_1^3 | W) = (3, 1, 2, e_{m}^{2}, f_{m}^{2}, \ldots, d_{m}^{2}, 3, 1, 2, e_{m}^{2}, f_{m}^{2}, \ldots, d_{m}^{2}, \ldots), \]
\[r(v_2^3 | W) = (3, 0, 3, e_{2}^{3}, f_{2}^{3}, \ldots, d_{3}^{3}, 3, 0, 3, e_{2}^{3}, f_{2}^{3}, \ldots, d_{3}^{3}, 3, \ldots), \]
\[r(v_3^3 | W) = (3, e_{3}^{3}, f_{3}^{3}, \ldots, d_{3}^{3}, 3, 1, 3, e_{3}^{3}, f_{3}^{3}, \ldots, d_{3}^{3}, 3, 0, \ldots), \]
\[\vdots \]
\[
\begin{align*}
\forall v_{m-1} \in W, \quad & r(v_{m-1}) = (3, e_{m-1}^1, f_{m-1}^1, 1, \ldots), \\
\forall v_{m} \in W, \quad & r(v_{m}) = (2, e_{m}^1, f_{m}^1, \ldots, d_{m}^1, 3, 1, \ldots).
\end{align*}
\]

Representation for each vertex on a caveman graph \(C(n, m) \) with \(m \geq 5 \) with respect to \(W \) is different. As a result, \(W \) is the resolving set where \(|W| = (m - 4)n \). So \(\dim(C(n, m)) = (m - 4)n \).

3. Conclusion

Based on the description in the explanation above, it can be concluded that the metric dimensions of amalgamation of sunflower and lollipop graph as in the Theorem 2.1 and caveman graph \(C(n, m) \) as in Theorem 2.2.

Acknowledgements

The authors gratefully acknowledge the support from Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Indonesia. Then, we wish to thank the referees for their suggestions, which helped to improve the paper.

References

[1] Chartrand, G. and L. Lesniak 1979 Graphs and Digraphs 2nd ed. (Wadsworth Inc., California)
[2] Chartrand, G. and O. R. Oellerman 1993 Applied and Algorithmic Graph Theory, International Series in Pure and Applied Mathematics (McGraw-Hill Inc. California)
[3] Chartrand, G., L. Eroh, M. Johnson, and O. Oellermann 2000 Resolvability in Graphs and the Metric Dimension of Graph Discrete Appl. Math. 105 98-113
[4] Caceres, J.C. Hernando, M. Mora, I. M. Pelayo, and M. L. Puertas 2009 On The Metric Dimension of Infinite Graphs Electronic Notes in Discrete Math. 35 98-113
[5] Harary, F. and R. A. Melter 1976 On the Metric Dimension of a Graph Ars Combinatoria 2 191-195
[6] Khuller, S., B. Raghavachari and A. Rasenveld 1996 Landmarks in Graphs Discrete Appl. Math 70 207-229
[7] Slater, P. J. 1988 Dominating and Reference Sets in a Graph J. Math. Phys. Sci. 22 445-455
[8] Watts, D. J. 1999 Networks, Dynamics, and the Small-World Phenomenon Amer. J. Soc. 105 493-527
[9] Weisstein, E. W. 2003 CRC Concise Encyclopedia of Mathematics CD-ROM 2nd ed. (CRC Press, Boca Raton)
[10] Yero, I. G., D. Kuziak, and J. A. Rodriguez-Velazquez 2010 On The Metric Dimension of Corona Product Graphs Computers and Mathematics with Applications 2 2793-2798