Genetic and Molecular Analysis of Essential Genes in Centromeric Heterochromatin of the Left Arm of Chromosome 3 in Drosophila melanogaster

Monika Syrzycka,*1 Graham Hallson,*1 Kathleen A. Fitzpatrick,* Inho Kim,* Shawn Cotsworth,* Rob E. Hollebakken,* Kevin Simonetto,* Linda Yang,* Stephanie Luongo,* Kevin Beja,* Alistair B. Coulthard,† Arthur J. Hilliker,† Donald A. Sinclair,*2 and Barry M. Honda*,2

*Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr, Burnaby BC V5A 1S6 and †Dept. of Biology, York University, Toronto ON, M3J 1P3, Canada

ABSTRACT A large portion of the Drosophila melanogaster genome is contained within heterochromatic regions of chromosomes, predominantly at centromeres and telomeres. The remaining euchromatic portions of the genome have been extensively characterized with respect to gene organization, function and regulation. However, it has been difficult to derive similar data for sequences within centromeric (centric) heterochromatin because these regions have not been as amenable to analysis by standard genetic and molecular tools. Here we present an updated genetic and molecular analysis of chromosome 3L centric heterochromatin (3L Het). We have generated and characterized a number of new, overlapping deficiencies (Dfs) which remove regions of 3L Het. These Dfs were critically important reagents in our subsequent genetic analysis for the isolation and characterization of lethal point mutations in the region. The assignment of these mutations to genetically-defined essential loci was followed by matching them to gene models derived from genome sequence data: this was done by using molecular mapping plus sequence analysis of mutant alleles, thereby aligning genetic and physical maps of the region. We also identified putative essential gene sequences in 3L Het by using RNA interference to target candidate gene sequences. We report that at least 25, or just under 2/3 of loci in 3L Het, are essential for viability and/or fertility. This work contributes to the functional annotation of centric heterochromatin in Drosophila, and the genetic and molecular tools generated should help to provide important insights into the organization and functions of gene sequences in 3L Het.

KEYWORDS centromeric heterochromatin essential genes functional annotation

Heterochromatin is the darkly-staining, densely-compacted chromatin of higher eukaryotes that occupies defined positions in homologous chromosomes (Heitz 1928, 1929). Constitutive heterochromatin is generally found near centromeres and in telomeres, remains densely packaged throughout the cell cycle, and consists largely of moderately and highly repetitive sequences (Lohe et al. 1993; Hoskins et al. 2007; Smith et al. 2007).

In Drosophila melanogaster, about 60 Mb of DNA (roughly 1/4 of the genome) in females is found within heterochromatic regions, while in males, the 40Mb Y chromosome is almost entirely heterochromatic (Adams et al. 2000; Hoskins et al. 2002). However, while there has been extensive genetic and molecular characterization of genes in Drosophila euchromatin, genes in the heterochromatic regions of the genome have been much more difficult to study. Some obstacles to mapping and assembling heterochromatin sequences include an absence of significant meiotic recombination, a paucity of prominent cytological landmarks, and the high repetitive sequence content within heterochromatin.

A defining property of heterochromatin is its ability to variably “silence”, in a mosaic fashion, euchromatic genes relocated immediately next to or within heterochromatin, a phenomenon called position...
effect variegation (PEV) (reviewed in Eisenberg and Reuter 2009). Genetic screens for second-site suppressors and enhancers of PEV have identified a large number of modifier genes, many of which encode known enzymatic products or structural components associated with establishment/maintenance of heterochromatin (Eisenberg et al. 1990; Reuter et al. 1990; Tschiernich et al. 1994; Schotta et al. 2004). Moreover, heterochromatic regions often contain signature patterns of histone modifications and bound proteins similar to those found in some silenced euchromatic gene regions, including the presence of HP1a, Su(var)3-9 and Su(var)3-7 proteins, as well as histones trimethylated at residues H3K9 and H4K20 (Kharchenko et al. 2011; Riddle et al. 2011).

Although heterochromatin has striking gene silencing properties, genetic analysis has demonstrated that these chromosomal regions contain active genes whose expression is essential for fly development and fertility. A large number of these genes reside in the centromeric heterochromatin of the autosomes—chromosome 2 (Hilliker and Holm 1975; Hilliker 1976; Marchant and Holm 1988a,b; Coulthard et al. 2010) and chromosome 3 (Marchant and Holm 1988a,b; Schulze et al. 2005). In addition, a few essential genes are located on the X (Hilliker and Appels 1982; Mével-Ninio et al. 2007) and Y (Carvalho et al. 2015; Chang and Larraucante 2018) chromosomes, as well as a number on 4, the “dot” chromosome, which has several properties consistent with a heterochromatic environment (Riddle and Elgin 2018).

It is interesting that heterochromatic genes can in turn be repressed when placed in euchromatic locations, strongly suggesting that these genes require a heterochromatin environment for their expression (Wakimoto and Hearn 1990; Eberl et al. 1993; Howe et al. 1995). This hypothesis is further supported by several genetic and molecular studies which suggest that reduced dosage of the HP1α gene, which encodes a product required for heterochromatin integrity, leads to the reduced expression of some heterochromatic genes (Clegg et al. 1998; Sinclair et al. 2000; Lu et al. 2000; Schulze et al. 2005).

The first genetic screens for lethal mutations in chromosome 3 pericentric heterochromatin identified a minimum of 10 essential loci in 3L Het and 2 loci in 3R Het (Marchant and Holm 1988a,b). Subsequent genetic analysis generated more than 30 Het deficiencies, additional alleles of already defined 3L Het genes, as well as mutations in new essential 3L and 3R Het loci, some of which were identified molecularly (for a review, see Fitzpatrick et al. 2005).

Data providing a corresponding physical map of chromosome 3 centric heterochromatin has come from genome sequencing as well as from cytological studies. Progress from the Drosophila Heterochromatin Genome project has provided an extensive physical map from DNA sequencing data, including numerous predicted gene models in centric heterochromatin (Smith et al. 2007; Hoskins et al. 2007, 2015). Comprehensive ChIP-array analysis of histone modifications and chromosomal proteins has also demonstrated different chromatin packaging profiles for heterochromatic vs. euchromatic domains (Riddle et al. 2011).

Koryakov et al. (2002) used various chromosomal rearrangements and heterochromatin banding analysis to produce a cytological map of the essential 3L and 3R Het loci defined by Marchant and Holm (1988b). This group later refined their map using the Suppressor of Under-Replication (SuUR) mutation, which allows visualization of chromatin landmarks in the otherwise rather amorphous heterochromatin (Koryakov et al. 2003). More recently, Andreyeva et al. (2007) used FISH mapping of BAC clones containing known essential 3L and 3R Het genes on polytene chromosomes from SuUR-Su(var)3-9 double mutants to generate a high-resolution map of heterochromatic gene models and highly repetitive satellite sequences.

A comprehensive analysis of essential genes in the centric heterochromatin of chromosome 2 has been provided by extensive genetic and molecular analyses by Hilliker (Coulthard et al. 2003, 2010) and others (Myster et al. 2004). In particular, Coulthard et al. (2010) further refined the genetic and molecular profile of the distal segment of proximal 2R Het, reducing the number of complementation groups defined by Myster et al. (2004) and identifying six additional essential loci in 2R Het via RNAi analysis. Their results complement well the extensive physical map generated by genome sequencing (Hoskins et al. 2007, 2015) and cytological analysis (Rossi et al. 2007; Dimitri et al. 2009).

Here we report on our work to obtain a comprehensive genetic map of chromosome 3L Het. We focused on the identification of essential genetic loci and their alignment with predicted gene models on the physical map, with the overall aim of obtaining a functional annotation of essential genes in this region. This and our previous work has also facilitated the characterization of a number of interesting essential genes in centric heterochromatin e.g., Schulze et al. (2005), Li et al. (2009), Hallson et al. (2008, 2012), Sinclair et al. (2009), as well as genes described in this report.

Briefly, we focused initially on compiling a collection of new genetic lesions, followed by genetic deficiency mapping and a large scale inter se complementation analysis to define genetic loci. Next, we used a PCR-based mapping approach to localize putative heterochromatic sequences from the available genome assembly to defined heterochromatic intervals, thereby allowing us to identify candidate gene(s) for each essential complementation group. We then identified essential loci present by correlating gene sequences to lethal complementation groups, coupled with RNA interference studies (see also Hallson et al. 2012 for examples). Most of the original lethal 3L Het complementation groups identified by Marchant and Holm have now been defined at the molecular level and we have also identified additional essential loci.

Our analysis has revealed a surprisingly high percentage of essential genes in 3L Het. The work also provides an expanded repertoire of genetic reagents, such as deletions (especially those with molecularly defined breakpoints), as well as novel lethal mutations (EMS-, P-element- and radiation-induced); these will be valuable tools for developing a comprehensive profile of gene functions in chromosome 3 heterochromatin.

MATERIALS AND METHODS

Fly strains and crosses
Flies were raised on standard yeast-molasses-cornmeal medium and fly strains were maintained at 18°C. Crosses were performed at 25°C unless otherwise stated and all crosses were scored to completion. If no transheterozygous progeny emerged, or if the number of transheterozygous ozygotes were greater than 5% but substantially less than 50% of those present by correlating gene sequences to lethal complementation groups, coupled with RNA interference studies (see also Hallson et al. 2012 for examples). Most of the original lethal 3L Het complementation groups identified by Marchant and Holm have now been defined at the molecular level and we have also identified additional essential loci.

Our analysis has revealed a surprisingly high percentage of essential genes in 3L Het. The work also provides an expanded repertoire of genetic reagents, such as deletions (especially those with molecularly defined breakpoints), as well as novel lethal mutations (EMS-, P-element- and radiation-induced); these will be valuable tools for developing a comprehensive profile of gene functions in chromosome 3 heterochromatin.
CH(3)119, CH(3)4d, CH(3)53 and CH(3)7 were generated by Zhang and Spradling (1994) and were generously provided by P. Zhang. Df(3L)O-1, Df(3L)K2 and Df(3L)n-28 were generated as described in Schulze et al. (2001).

X-ray mutagenesis and genetic screens

Three- to five-day old KG03264/KG03264 males (carrying a P[SUPor-P] insert at cytological position 80C1 near the nervous locus) were treated with 4,000 rads of X-ray radiation, allowed to recover for 24 hr, and crossed en masse to TM3 Sb Ser/TM6 Hu Tb virgin females. Approximately one thousand single F1 KG03264[w+]/TM3 Sb Ser or KG03264[w+]/TM6 Hu Tb males (where + indicates a mutagenized third chromosome) were then crossed to virgin females carrying a 3L Het deficiency (Df(3L)FX3/TM3 Sb Ser or Df(3L)MX18/TM3 Sb Ser), and the resulting progeny were examined for lethality or visible phenotypes. Stocks of putative lethal mutations were established from KG03264[w+]/TM3 Sb Ser siblings. To further map the newly-isolated lesions, all mutations were separately crossed to flies bearing a subset of smaller 3L Het deficiencies (Df(3L)1-166, Df(3L)n-28, Df(3L)K2, Df(3L)n-56, Df(3L)FX33), and to at least two existing alleles of each lethal complementation group (except where only a single allele existed).

We then conducted a second X-ray screen, designed to isolate lethal lesions in both 3L Het and 3R Het. In this study, 3- to 5-day old e/e males were treated with 4,000 rays of X-ray radiation and crossed en masse to TM3 e/e Sb Ser/TM6 e/e Hu Tb virgin females. Single F1 e+/TM3 e/e Sb Ser males (where + indicates a mutagenized third chromosome) were then crossed to Df(3LR)6B-29/TM3 e/e Ser females, and stocks of putative lethal mutations established from e+/TM3 e/e Ser siblings. To further map the newly isolated lesions, we crossed all mutations to the subset of smaller heterochromatic deficiencies, as described above, with the addition of Df(3R)10-65 and Df(3R)XM3, as well as to alleles of each lethal complementation group.

Screen of the EMS Zuker collection

We obtained 3,400 strains (balanced with TM6 e/Tb) from the Zuker collection that contained putative third chromosome mutations generated with EMS, because it had been reported that approximately one third of the Zuker strains contained third chromosome lethal mutations (Koundakjian et al. 2004). We tested each balanced line for lethality with different 3L or 3R Het Df/TM6 strains: Df(3LR)6B-29, Df(3L)FX33, Df(3L)Delta1AK and Df(3R)XM3. Confirmed lethal mutations were then further mapped by using Df(3LR)n-28, Df(3L)K2, Df(3L)n-56, Df(3L)FX33, Df(3R)XM3 and Df(3R)10-65, each balanced over TM6B Tb. In addition, we tested the lethals for allelism with representative alleles of appropriate lethal complementation groups.

Single embryo PCR for detection of homozygous mutant embryos, deficiency mapping, and sequencing of mutant alleles

We isolated embryos homozygous for chromosomal deficiencies and other induced mutations using the methodology described in Hallson et al. (2008; 2012). In Brief, using DNA from homozygous deficiency strains, along with PCR mapping primers for candidate gene sequences (see Table S1), we tested for the presence or absence of PCR products in homozygous mutant embryos from each strain. The absence of a PCR product indicated that a specific gene sequence mapped to the region covered by the deficiency.

For sequence analysis, DNA was isolated from homozygous mutant embryos, all exon regions were PCR amplified, and purified PCR products were then sequenced to look for corresponding DNA lesions that might result in mutant phenotypes (see Hallson et al. 2008; 2012).

DNA sequencing was performed by UBC NAPS or Genewiz or Macrogen sequencing services. Mutations were identified by comparing sequences to the reference sequences available on Flybase using the BLAST algorithm (Altschul et al. 1990) and multiple protein alignments were carried out using CLUSTALW (Larkin et al. 2007).

RNA interference experiments

Transgenic UAS-RNAi lines, expressing inverted repeats (IRs) under the control of Gal4, were obtained from the Vienna Drosophila RNAi Center (VDRC: http://stockcenter.vdrc.at/control/main), Drosophila Transgenic RNAi Project (TriP: http://www.flyrnai.org/TriP-HOME.html) and the Fly Stocks of the National Institute of Genetics (NIG-fly; http://www.shigen.nig.ac.jp/fly/nfly/index.jsp). We crossed UAS-IR-bearing males to virgin females, initially held at 29°C for at least two days, bearing UAS-Dcr-2/UAS-Dcr-2; tub-Gal4/TM3 Sb. Actin and tubulin driver stocks were used to induce ubiquitous expression of the IR transgenes and a copy of UAS-Dcr2 (a component of the RNAi pathway) was included to sensitize the RNAi interference pathway and enhance knockdown. We maintained crosses at 29°C and then examined them for lethality, sterility and visible phenotypes in flies expressing the IR sequence. Crosses producing UAS-IR driven progeny, but at proportions substantially less than 50% of those expected from the balance classes, were deemed semi-lethal (due to the incomplete penetration/ expression of RNA, some “escapers” may survive).

Data Availability

A comprehensive and representative set of stocks have been sent to Dr Kevin Cook at the Bloomington Drosophila stock center. Supplemental files available at Figshare. Table S1 lists primers used in mapping. Table S2 lists EMS mutations identified. The authors affirm that all data necessary for confirming the conclusions of the article are present within the article, figures, and tables. Supplemental material available at Figshare: https://doi.org/10.25387/g3.7828301.

RESULTS

As a first step in our analysis, we generated and mapped a large number of additional lethal lesions (putative Df and/or point mutations) within 3L and 3R Het. To do this, we conducted two X-ray mutagenesis screens, and in parallel screened 3,400 EMS-mutagenized 3rd chromosomes from the Zuker collection (Koundakjian et al. 2004), as outlined in Materials and Methods.

From these large-scale genetic screens, we isolated 91 novel lesions (46 from the X-ray screens, 45 from the Zuker lines), and of these, 60 mapped to 3L Het and 14 to 3R Het (Table 1). The remaining 17 mutations may be located outside of 3rd chromosome heterochromatin, possibly due to the presence of second site lethal mutations outside of 3L Het, see below.

Screens for lethal lesions in 3L and 3R Het induced by X-rays

Our first X-ray screen with the large Df(3L)FX3 and Df(3L)MX18 deficiencies identified 14 lesions in 3L Het (X-ray #1 in Table 1). To position the new lesions more definitively, we tested them for complementation with deficiencies removing specific intervals of 3L Het and with alleles of previously identified essential loci. Of the aforementioned 14 lesions, 11 failed to complement Df(3L)FX3 (see Figure 1). The remaining three mutations (Df(3L)LoLa, Df(3L)Bac and Df(3L)ZZZ) were Minute-like in phenotype in combination with Df(3L)FX3 or Df(3L)MX18, but it was not possible to map these lesions further. The combined frequency of lethal and Minute-like lesions generated in this screen was 1.4%. The putative X-ray-induced lesions varied in

G3 Genes | Genomes | Genetics

Volume 9 | May 2019 | Genes in 3L Heterochromatin in Drosophila | 1583
size; some were large and spanned several lethal complementation groups, corresponding to many megabases of DNA (e.g., Df(3L)TTT) (Figure 1), whereas others were either small deletions/other rearrangements or possibly point mutations affecting single genes (e.g., Df(3L)GGG) (Figure 1).

In a subsequent larger-scale X-ray screen (X-ray #2 in Table 1), we screened the mutagenized chromosomes for failure to complement Df(3L)R6B-29, a deficiency that removes heterochromatic segments from both 3L and 3R (Marchant and Holm, op. cit.). In total, we isolated 32 lesions in this second screen: 25 on 3L and 7 on 3R. Of the 25 putative 3L Het deficiencies isolated in our second X-ray screen, 21 were used for further analysis (see Figure 2). We then performed inter se complementation tests of each of these lesions in combination with various other 3L Het deficiencies and in combination with representative alleles of existing complementation groups, in order to position the new lesions along the chromosome arm (see Figure 2 for a summary).

Screening for lesions induced by EMS in 3L and 3R Het

As described in Materials and Methods, an initial screen of recessive lethal lines from the Zuker EMS collection (Koundakjian et al. 2004) involved testing each strain for lethality in combination with Df(3LR)6B-29, a deficiency that removes much of chromosome 3 heterochromatin (Marchant and Holm 1988a). All putative 3L and 3R Het lethal mutations identified in this analysis were tested with four other deficiencies that remove segments of 3rd chromosome centric heterochromatin (Df(3L)Delta1-AK, Df(3L)FX53, Df(3L)FX3, and Df(3R)XM3). Of the 45 3L Het EMS lesions identified (Table 1), 44 were lethal or semi-lethal in combination with one of the four deficiencies. The single lesion (Z-4493) that was viable in trans with all four deficiencies was characterized by a curly wings phenotype when tested in combination with Df(3R)XM3. Three other lesions also caused visible phenotypes (black deposits at leg joints, abnormal positioning of legs and curled wings) and were also semi-lethal when hemizygous over particular deficiencies.

Of the 45 EMS mutations identified (designated with an asterisk in Table 1), 21 could be assigned unequivocally to 3L Het, based on complementation tests with Df(3L)FX53, Df(3L)Delta1-AK or lethal alleles (see Table S2). Seventeen of these 21 lesions were allelic with previously identified complementation groups, 2 failed to complement Df(3L)Delta1-AK (distal to SNAP-25), 1 (Z-855) was semi-lethal in

![Figure 1](image-url) Genetic map of EMS mutants and deficiencies isolated from our initial screens of Zuker lines and first X-ray screen. Blue lines - newly discovered deficiencies; red lines - deficiencies used to screen for new lesions; green circles - newly-mapped EMS lesions from the Zuker collection. Dashed lines on deficiencies indicate semi-lethality with alleles of intersecting complementation groups. Df(3L)WWW may be a discontinuous lesion affecting at least two genes (lethal 6 and lethal 7A).
combination with Df(3L)FX53, and 1 failed to complement Df(3L)K2 and Df(3L)1-166. An additional seven lesions were found to be allelic with complementation groups in 3R Het.

None of the remaining 17 lesions could be assigned to known lethal complementation groups in either 3L or 3R Het. It is likely that at least some of the additional mutations are allelic to second-site mutations carried by the deletion chromosomes used for complementation analysis, as accumulation of lethal mutations on permanently heterozygous chromosomes has been well-documented (Mukai 1964).

Our analyses revealed a few inconsistencies with respect to the previously published 3L Het map (Fitzpatrick et al. 2005), as well as one erroneous allele assignment. Our revised genetic map now places Snap-25 and lethal 6 distal to lethal 8, which in turn was placed distal to lethal 7A and 7B (Figure 2). This gene order is now consistent with the physical map provided by genome sequencing (Hoskins et al. 2015), and this order was also confirmed by our mapping and sequencing of lethal complementation groups corresponding to these published gene models. Finally, allele G1c was previously incorrectly assigned to lethal 7B rather than lethal 4B.

Refining the 3L Het physical map

In order to align the genetic and physical maps of 3L Het, we mapped candidate essential genes to specific genetic intervals as defined by our deficiency maps. Using DNA from homozygous deficiency strains and primers for a set of candidate genes, we tested for the presence or absence of PCR products in flies homozygous for a given deficiency strain. The absence of a PCR product indicated that a specific gene sequence was removed by the deficiency. We then refined our analysis by using reference sequences in the physical map as anchor points for our genetic map, limiting the number of candidate genes required for testing with each deficiency.

In order to better align the genetic complementation map to the published heterochromatic sequence in Release 6 (Hoskins et al. 2015), we also mapped endpoints of several large and/or distal deficiencies by PCR relative to 3L Het candidate gene sequences. Since to date, few mutations have been mapped to the distal segment of 3L Het (e.g., between Snap-25 and Mec 2), we were especially interested in determining the distal-most extent of Df(3L)TTT. PCR analysis of homozygous Df(3L)TTT embryos showed that this deficiency removes the CG40470, CG17698, and ago3 loci, but not the α-catenin or the n-AchR4 genes (Figure 3). From our complementation analysis and single embryo PCR mapping data, we conclude that Df(3L)TTT deletes a region predicted to contain at least 3 Mb of DNA. A summary of our refined map is presented in Figure 4.

Correlation of gene models with lethal complementation groups

Our molecular analysis of deficiency strains combined with deletion mapping of essential genes allowed us to narrow the number of candidate genes that could potentially correspond to each genetically identified locus on our map. In an attempt to determine the molecular identity of each vital locus, we amplified and sequenced the entire coding region of each candidate gene from DNA homozygous for mutant alleles representative of a given complementation group. The presence of a significant sequence change (e.g., predicted deleterious effects on gene product) relative to the control background sequence, led us to conclude that a given complementation group corresponded to the candidate gene in which the change was found. In certain cases, we were also able to rescue flies containing appropriate mutations transheterozygous to deficiencies removing the candidate gene by expressing a Gal4 driven cDNA transgene of the corresponding gene of interest. Essential genes identified using this method are listed in Table 2; with putative or confirmed functions of these genes included in Table 6. Taken together with the RNAi results described below, the data from these analyses have allowed us to assign a molecular identity for each lethal complementation group present on our genetic map (shown in Figure 4).
While most of the gene assignments summarized in Tables 2 and 6 were straightforward, the molecular and genetic characterizations of lethal 1 and lethal 7A were slightly more complicated; these are therefore described in more detail below.

Molecular characterization of lethal 1

lethal 1 is the proximal-most genetically identified essential locus in 3L Het (see Figures 4 and 5). The locus was originally identified in mutagenesis screens conducted by Marchant and Holm (1988b) and it has been defined as a putative trithorax group (trxG) gene (Schulze et al. 2001). Numerous lethal 1 alleles were isolated by Marchant and Holm (1988) and Schulze et al. (2001), suggesting that it may encode a large mutagenesis target; however, only two of the original mutations remain: Df(3L)2-30 and In(3L)C90. Df(3L)2-30 is associated with a duplication of proximal heterochromatic material between h48 and h50 (Koryakov et al. 2002), but it also likely carries a small deletion...
Table 2 Known lethal complementation groups in 3L Het, and their molecular assignment based on the DNA lesions identified in mutants. (*These designations based on those used in Marchant and Holm 1988 a,b). More comprehensive data for lethal 6 (nvd) will be reported in Syrzycka et al. manuscript in preparation

Lethal complementation group	Mutant Allele(s):	Mutagen:	Gene Affected:	Resulting change:	Source
lethal 1	In(3L)C90	γ-ray	CG17514	Genes missing	Marchant and Holm (1988b)
			elf-4B/CG10837		
	Df(3L)2-30	γ-ray	elf-4B/CG10837	Gene missing	Marchant and Holm (1988b)
	Z-4577	EMS	CG17514	W1092 > STOP	Zuker collection (Koundakjian et al. 2004)
	Z-1261	EMS	unidentified	unidentified	Zuker collection (Koundakjian et al. 2004)
lethal 2	See Schulze et al. (2005)	Various	RpL15/CG17420	See Schulze et al. (2005)	Schulte et al. (2005)
lethal 3	See Hallson et al. (2008)	Various	rad21/vtd (cohesin) CG17436	See Hallson et al. (2008)	Hallson et al. (2008)
lethal 4A	CH(3)53	P-element	CG40178	P insertion in intron	Zhang and Spradling (1994)
	CH(3)4d	P-element	CG40178	P insertion in intron	Zhang and Spradling (1994)
	Z-110	EMS	CG40178	L326 > STOP	Zuker Collection (Koundakjian et al. 2004)
	G8	EMS	CG40178	W377 > STOP	Deitcher laboratory (Vilinsky et al. 2002)
	G47	EMS	CG40178	K171 > STOP	Deitcher laboratory (Vilinsky et al. 2002)
	G6	EMS	CG40178	K180 > STOP	Deitcher laboratory (Vilinsky et al. 2002)
lethal 4B	G10	EMS	CG17374	A1463 > T	Deitcher laboratory (Vilinsky et al. 2002)
	G11	EMS	CG17374	R1542 > STOP	Deitcher laboratory (Vilinsky et al. 2002)
	G30	EMS	CG17374	G1780 > E	Deitcher laboratory (Vilinsky et al. 2002)
	Z-5413	EMS	CG17374f	G1779 > R	Zukaer Collection (Koundakjian et al. 2004)
	Z-760	EMS	CG17374	I240 > S	Zukaer Collection (Koundakjian et al. 2004)
	Z-1973	EMS	CG17374	A1060 > V	Zukaer Collection (Koundakjian et al. 2004)
	3#69	EMS	CG17374	R67 > S	D. Sinclair (unpublished)
lethal 5	See Hallson et al. (2012)	Various	Set1/CG40351	See Hallson et al. (2012)	Hallson et al. (2012)
lethal 7A	fsa1(3)	EMS	CG40002	Gene missing	Kennison and Tamkun (unpublished)*
lethal 7B	G43	EMS	Scro/CG17594	L250 > STOP	Deitcher laboratory (Vilinsky et al. 2002)
	Z-211	EMS	Scro/CG17594	P insertion of "A"	Zukaer Collection (Koundakjian et al. 2004)
	Z-247	EMS	Scro/CG17594	P insertion of "A"	Zukaer Collection (Koundakjian et al. 2004)
				nucleotide leading to frameshift at a.a. 293	
lethal 8	K125	P-element	mRpSS/CG40049	P insertion in intron 2	Current study
	Z-1555	EMS	mRpSS/CG40049	ATG to ATA	Zukaer Collection (Koundakjian et al. 2004)
	Z-512	EMS	mRpSS/CG40049	G201 > E	Zukaer Collection (Koundakjian et al. 2004)
	G18	EMS	mRpSS/CG40049	No lesion detected	Deitcher Laboratory (Vilinsky et al. 2002)
genitalia, and, often, semi-sterility; this phenotype is most often caused by defects in global protein synthesis (see Marygold et al. 2007).

In single embryo PCR mapping (Figure 5A) two potential candidate genes were absent from Df(3L)2-30: eIF-4B (eukaryotic Initiation Factor 4B or CG10837), a member of the eukaryotic initiation factor complex required for translational activation, and CG17514, a large translation activator. However, In(3L)C90 deletes eIF-4B but not CG17514 (Figure 5C). This was somewhat surprising to us, because lethal 1 is quite mutable, and because CG17514 encodes a much longer protein (2,630 aa) than eIF-4B (459 aa); it therefore seemed more likely to us that lethal 1 would correspond to CG17514. One possible explanation for the presence of CG17514 exon sequences in In(3L)C90 could be that only regulatory regions are mutated, and thus CG17514 expression could still be affected.

Indeed, subsequent sequence analysis of mutant alleles provided evidence to identify CG17514 as corresponding to lethal 1: the EMS-induced lethal 1 allele Z-4577 contains a mutation predicted to change residue W1092 in the eIF-4B gene to a stop codon, strongly suggesting that CG17514 corresponds to the lethal 1 locus.

In order to obtain additional support for our contention that lethal 1 corresponds to CG17514, we carried out RNAi knockdown of CG17514 during late embryogenesis, with no obvious cuticle defects (Fitzpatrick et al. 2005). Molecular and genetic mapping show that lethal 7A is distal to lethal 5 and proximal to lethal 7B (scarcecrow) (see e.g., Figure 6A).

Two gene models, CG40002 and CG40472 (an apparent pseudogene of CG40002), appear the most likely candidates for lethal 7A. The CG40002 gene encodes a 94 a.a. protein that is a member of the NADH dehydrogenase complex (a.k.a. Complex I). The NADH dehydrogenase complex is a conserved complex present throughout Eukarya and is the first major complex in the electron transport chain.

Table 3 lethal 1 inter se complementation matrix. *All transheterozygous progeny were Minute-like. % expected = number of observed progeny / number of expected progeny based on balancer classes (i.e., O/E)* 100%. In addition to deleting lethal 1, Df(3L)9-56, Df(3L)1-166, Df(3L)a #54 and Df(3LR)6B-29 remove the lethal 2 (rpL15) locus and are Minute because of this (data not shown).

	Z-1261	Z-4577 (W1092STOP)	% expected
Df(3LR)6B-29	20M / 162 total	49%	2 M / 195 total
Df(3L)1-166	11M / 148 total	30%	8 M / 182 total
Df(3L)9-56	1M / 111 total	4%	0 / 186 total, i.e., LETHAL
Df(3L)a #54	5M / 214 total	9%	5 M / 249 total
In(3L)C90	1M / 129 total	3%	19 M / 280 total
Df(3L)2-30	24M sterile / 203	47%	11M sterile / 147 total
Z-4577	6M sterile / 229 total	11%	Homozygous lethal
Z-1261	Homozygous lethal	N/A	6M sterile / 229 total

Figure 5 Mapping of eIF-4B and CG17514. A) Molecular positioning of eIF-4B and CG17514 in the lethal 1 region. B) CG17514 and eIF-4B are deleted by Df(3L)2-30, and eIF-4B, but not CG17514, is deleted in the In(3L)C90 strain.
Table 4. RNAi experiments expressing CG17514 RNAi-activating IRs with tub-driven GAL4 (at 29°C) suggest that CG17514 is essential. However, viable progeny emerge when using the elf-4B RNAi line (VDRC 31364). Escapers emerging from the VDRC 47269 CG17514 RNAi cross display a Minute phenotype and are sterile.

Female parent	Balancer progeny	RNAi driven progeny	% of expected RNAi flies
CG17514 RNAi / CG17514 RNAi (VDRC 47269)	195	17	9% (semi-lethal)
CG17514 RNAi / CG17514 RNAi (BL34355)	303	0	0% (lethal)
CG17514 RNAi / CG17514 RNAi (VDRC 47268)	151	105	63% (viable)
elf-4B RNAi / elf-4B RNAi (VDRC 31364)	196	109	71% (viable)
elf-4B RNAi / CyO (BL57305)	324	123	>100% (viable)

RNAi knockdown of heterochromatic genes

Some 3L Het genes that were predicted to have important functions based on the existence of conserved human homologs did not yield mutant alleles in our screens. In order to test for additional essential genes in 3L Het, we performed RNAi knockdown analysis using relevant RNAi lines available from the VDRC, TRiP or NIG collections, which allowed us to target most 3L Het gene models. Each RNAi line was crossed to UAS-Dcr2/UAS-Dcr2; tub-Gal4/TM3 Sb at 29°C; UAS-Dcr2 was used to optimize the RNAi pathway and therefore increase the likelihood of detecting gene knockdown effects. The results identify 9-10 additional essential genes in 3L Het (10 if nAchRalpha4 is included, see Discussion below) not previously identified in mutagenesis studies (Tables 5 and 6). As positive controls, we used some RNAi transgenes targeting known lethal complementation groups, and these were found to be effective.

Summary of essential genes in 3L heterochromatin

The essential 3L Het genes identified either through isolation/analysis of mutant alleles or RNAi analysis are shown in Figure 7 and listed in Table 6. Overall, our data suggest that at least 25/39 genes (roughly 2/3) of genes in 3L Het are essential (26/39 if we include nAchRalpha4 as a putative lethal), an unexpectedly large proportion relative to the roughly 1/3 of euchromatic genes that are predicted to be essential based on analyses of specific euchromatic regions (see Discussion). In addition, it is possible that our estimate of essential 3L Het genes is conservative and the number of essential genes in this region may be higher. We haven’t been able to readily estimate whether more genes may have been missed in our mutagenesis screens (see Hilliker et al. 1981 for a discussion of this point), and there is currently an absence of genetic reagents (RNAi constructs, other) for studying some 3L Het gene models.

Unassigned lethal mutations generated in the current study

A number of lethal mutations characterized in our study have not yet been assigned to known complementation groups but may be located in 3L Het. For example, the Df(3L)XXX allele from the initial X-ray screen fails to complement Df(3L)Y-28, but it does complement Df(3L)1-166 and Df(3L)FX33 (see Figure 4, Df(3L)XXX not shown on map), suggesting that an additional essential gene may reside between the lethal 7B/scarecrow and lethal 8 A loci. There are also several EMS lesions that fail to complement Df(3LR)16B-29, but which have not been assigned to any known complementation group. While some of these may be alleles of second-site mutations on the Df(3LR)16B-29 chromosome, outside of 3L Het, others may represent alleles of unidentified essential 3L Het loci e.g., Z-855 and Z-5460 clearly map to 3L Het, but they complement alleles of all known essential 3L Het complementation groups. In

Figure 6. Mapping of lethal 7A to CG40002. A) Single embryo PCR mapping positions CG40002 in the lethal 7A region. B) sePCR of DNA from 1(3)fsa2 mutants using CG40002, med21 and ucrh primers. The asterisk marks a band that is amplified only from 1(3)fsa2/TM3 animals and likely corresponds to a polymorphic ucrh sequence found on this particular TM3 balancer chromosome.

(Ohnishi et al. 2018). Given the important role of Complex I in the oxidative production of ATP, it would not be surprising if a gene encoding any of its subunits were essential.

There are also two other possible candidate gene models, med21 and ucrh, in the vicinity. However, upon PCR mapping, we found that only the CG40002 gene has been deleted in DNA from homozygous l(3)fsa2 mutant embryos, while med21 and ucrh remain present (Figure 6C). This strongly suggests that lethal 7A corresponds to CG40002.
3L Het gene targeted (from proximal to distal)	RNAi lines used:	Effects of driving RNAi lines:	Phenotypes observed:	Encoded function targeted:
CG17514/lethal1	V47268, V47269, BL34355	V/F, SL (M: 9%, FE: 8%)/S, L	Thin thoracic bristles, tergite defects, body elongation, held out/ blistered wings.	Translational activator.
elf-4B	V31364, BL57305	V/F, V/F	Thin or missing thoracic bristles (V31364).	Translational initiation factor (may have an accessory role).
dbp80	BL3468, V109742	SL (M: 17%, FE: 18%)/S, L	Kinked bristles, tergite defects, wings held out or appear blistered.	RNA helicase. May be required for nuclear export of RNA.
rpl15/lethal2	not tested	N/A	Ectopic thorax bristles, melanotic spots, flipped out wings.	Component of the ribosome.
vtd/lethal3	not tested	N/A	Flies appear wider, segments elongated, flipped out wings.	Sister chromosomal cohesion, gene expression.
CG40228	V110000	SL (M: 11%, FE: 12%)/F	Transcriptional elongation factor. Component of ELL?	Unknown.
CG42598%	V109076	V/F	Flies appear wider, segments elongated, flipped out wings.	Unknown.
CG41284%	V109076	V/F	Flies appear wider, segments elongated, flipped out wings.	Unknown.
CG40160	V109559, BL44268	L, V/F	Peptidase.	Thioredoxin, chaperone.
CG40178/lethal4A	V110089, BL44578	L, L	Fatty acid synthase.	
FASN3 (CG17374)/lethal4B	CG17374-2M, 3M	L, L	Sucrose transporter.	
CG45782	V109249, BL38367, V109094, BL40876	V/S (M only), V/F, L L	Oxidative phosphorylation.	
Ucn/QOCR-11	BL34731, V31940, V109982, V13667	L, V, L L	Transcriptional initiation, component of mediator.	
med21 (CG17397)	BL34731, V31940, V109982, V13667	L, V, L L	H3K4 di- and tri-methylase.	
dSet1/lethal5	V40682, V40683, V10833, V45267	L, L, L L	Oxidative phosphorylation.	
CG40002%/ND-AGGG	V109239, BL43285	V/F, V/F	Oxidative phosphorylation.	
CG40472%	nothing available	N/A	Cell-specific transcription factor.	
scro/lethal7B	V33902	L	Mitochondrial ribosomal protein.	
mRps5/lethal8	BL36202	L	Ec dysone biosynthesis, molting/metamorphosis.	
nvd/lethal6	not tested	N/A	SNARE protein, exocytosis.	
snap-25	BL27306, BL34377	V/F, L	(continued)	
3L Het gene targeted (from proximal to distal)	RNAi lines used:	Effects of driving RNAi lines:	Phenotypes observed:	Encoded function targeted:
--	-----------------	-------------------------------	----------------------	--------------------------
CG40045	V109167	V/F		E2 ubiquitin conjugating enzyme.
CG40470	not tested	N/A		Peptidase.
CG43968	nothing available	N/A		Unknown, may be secreted.
CG17698	V35634, V105884	V/F, L	Curved/kinked thoracic bristles.	Calmodulin dependent kinase, calcium signaling.
CG40298	nothing available	N/A		Unknown.
CG17454/ago3	V20458, BL43199	L, L		Spliceosome component. pRNA biogenesis, germline silencing of transposons.
alpha-Cat	V19182, V20123	L, L		Cellular adhesion, adherens junction formation.
CG32230/ND-MLRQ	V9804, V10316, V101482	V/F, V/F, V/F	Melanin deposits on some flies.	Oxidative phosphorylation.
nAChRa4	V11392, BL31985, V12441	SL/F, V/F, V/F		n-acetylcholine receptor, neurotransmission.
CG34031 vps11/CG32350	V109096, V24731, V107420	L, V/F		Unknown.
nrm	V44176, BL52945	V/F, V/F		Vacular protein sorting, lysosomes/late endosome function.
CG32457	V15966, V15968	L, SL (M: 0%, FE: 10%)/F	Wings often not folded out in male escapers.	Unknown.
CG32461	V26149, V26150, V108971	V/F, V/F, V/F		Unknown.

The sequences of these genes are very similar and are likely to result from annotation issues or more improbably, very recent duplications.
addition, Z-1326 and Z-1605 were identified on the basis of failure to complement Df(3L)Delta1-AK and remain unassigned; however, while these alleles may correspond to distally located 3L Het genes, it is also possible that they are alleles of euchromatic genes at the heterochromatic/euchromatic border which have not yet been well characterized. Further work is necessary to determine the basis of all of the unassigned mutations; however, the next release of an updated Drosophila genome sequence should make it possible to identify and characterize more of these uncharacterized loci.

DISCUSSION

The work reported here links a detailed genetic map of 3L Het with the physical map available on Flybase. In the process, we have been able to assign molecular identities to most of our lethal complementation groups in 3L Het, which in the past have only been studied at a genetic level. Since full characterization of any genome is incomplete without an analysis of heterochromatin, our work provides an initial platform for the functional annotation of essential genes residing within these fascinating, yet poorly understood, regions of the genome. Our collection of mutant strains will be useful for studying the function of heterochromatic genes that have resisted characterization due to their location in a genetically less tractable region of the genome.

Using RNAi knockdown analyses, we have identified an additional group of essential 3L Het genes not identified in mutagenesis screens. Lethality associated with RNAi gene targeting provides good evidence that a gene is essential: the possibility of RNAi off-target effects seems unlikely because for all but one of the genes tested for RNAi knockdown effects, there were no detectable homologies to the 19 b.p. gene regions used in the RNAi transgene design (data not shown); moreover, off-targeting effects in flies have been reported as being very low (Dietzl et al. 2007). The single exception involved two VDRC RNAi lines targeting the nAChRalpha4 gene; each of these exhibits a single

Table 6 Essential genes in 3L Het identified to date

Essential genes in 3L Het (centromere outwards):	Determined essential based on:	Sources:
CG17514/lethal1	Lethality (muts/RNAi)/Male and fem. sterility (RNAi)	this study
dbp80	Male and fem. sterility (RNAi)	this study, Yan et al., 2014
rpl15/lethal2	Lethality (muts)	this study, Schulze et al. 2005
vtd/lethal3	Lethality (muts/RNAi)	Hallson et al. 2008, this study (muts), Vass et al. 2003 (RNAi)
CG40160	Lethality (RNAi)	this study
CG40178/lethal4A	Lethality (muts/RNAi)	this study
FASN3/lethal4B	Lethality (muts/RNAi)	this study
CG45782	Male sterility (RNAi)	this study
dSet1/lethal5	Lethality (RNAi/muts)	Hallson et al. 2012, this study
med21	Lethality (RNAi)	this study
CG40002/lethal7A	Lethality (muts)	this study, Yan et al., 2014
scr3/lethal7B	Lethality (RNAi/muts)	this study
mRps5/lethal8	Lethality (muts/RNAi)	Yoshiyama et al. 2006 (RNAi), Syrzycka et al. in prep
snap-25	Lethality (muts/RNAi)	Vilinsky et al. 2002 (muts), this study (RNAi)
CG17698	Lethality (RNAi)	this study
CG17454	Lethality (RNAi)	this study
ago3	Female sterility (muts)	this study, Li et al. 2009 (muts)
alpha-Cat	Lethality (muts, RNAi)	Sarpal et al. 2012 (muts), this study (RNAi)
nAChRalpha4	Lethality (RNAi)	this study
CG32350	Lethality (RNAi)	this study
CG33217	Lethality (RNAi)	this study
CKilalpha	Lethality (muts)	Lin et al. 2002 (muts)
rpl10/Qm	Lethality (muts, RNAi)	Cook et al. 2012 (muts), this study (RNAi)
rnm	Lethality (muts)	Kania et al. 1993, Kania and Bellen 1995 (muts)
CG32457	Lethality/Sterility (RNAi)	this study

The sequences of these genes are very similar and are likely to result from annotation issues or more improbably, very recent duplications.

*Potential essential gene identified based on failure to recover males in a single RNAi line. Note that this result is not entirely conclusive, as this RNAi line also has 1 predicted off-target.
predicted 19 b.p. off-target dsRNA; however, the majority of dsRNAs available for this gene do result in gene specific targeting, and therefore this single off-target RNA may be inconsequential. A homozygous viable allele of \texttt{nACHRalpha4} has recently been reported to exhibit circadian defects (Shi et al. 2014). However, since this allele is associated with a single amino acid substitution and was obtained in a screen for viable modifier mutations, it is likely not a null allele. If the effects on viability we observe by expressing \texttt{nACHRalpha4} RNAi lines result from direct gene-targeting, the \texttt{nACHRalpha4} protein is likely essential and may have additional biological roles.

There remain some 3L Het gene models for which we have neither RNAi lines nor mutants, so at this point it is not possible to define whether any of these genes are essential. Furthermore, the observed viability when expressing available RNAi lines for certain genes does not prove that these genes are non-essential; an RNAi line may be poorly-expressed or substantial maternal effects may allow survival and thus obscure the effects of RNAi targeting. Indeed, gene expression studies showed that several RNAi lines tested only modestly reduced expression of the target genes (data not shown). Finally, while it seems likely that elf–4B should also be essential, based on its presumed cell function, it is noteworthy that our results, as well as other RNAi analyses to date (http://www.genomernai.org/v17/fullPagePhenotypes/gene/3355041) are not consistent with an essential role for this protein (although again, similar caveats apply).

In terms of other potential caveats, lethal phenotypes resulting from RNAi knockdowns may not indicate that a gene is essential, because in some cases, genetic mutations knocking out the same gene do not show a lethal phenotype. This relatively rare phenomenon has been attributed to other factors such as genetic compensation (Rossi et al. 2015, and refs therein).

Other strategies could be employed to determine whether any of the remaining 3L Het genes are essential. For example, since transposon insertions near genes of interest are becoming increasingly available, these could serve as starting points for generating imprecise excisions that affect adjacent genes. In addition, genetic screens for mutations lethal in trans to the distal-most 3L Het deficiencies (\texttt{Df(3L)TTT} or \texttt{Df(3L)1677}) may yield more lethal mutations between \texttt{ago3} and \texttt{Rpl10}. Analysis of the latter 3L Het segment has proved difficult because deletions that remove the \texttt{Rpl10} locus exhibit dominant semi-lethality and female sterility (K. Fitzpatrick unpublished observations). Lastly, with the innovations of CRISPR technology, plus the availability of newer targeted genetic reagents (e.g., \texttt{Mi[MIC]} and \texttt{Mi[Trojan-GAL4.0]} alleles, see Flybase), it may be possible to extend the current work, although there could be issues with accessibility of DNA sequences when packaged in the chromatin environment of centric heterochromatin.

The findings from this and other studies indicate that although gene density is relatively low in centric heterochromatin, many genes located in this chromatin environment are functionally important. The essential genes identified in the current study appear to span a diverse set of molecular and developmental functions. We and others have noted that there is no correlation between developmental or other specific expression patterns and the location of genes within 3L and other centric Het regions. Although the size of an average heterochromatic gene is considerably larger than that of a typical euchromatic gene, neither is there any apparent correlation between heterochromatic gene size and whether a given gene is essential. While our mutagenesis experiments often produced mutations in larger 3L Het genes (based both on physical locus and gene product length), mutant alleles of some smaller essential genes (\texttt{rpl15} and \texttt{CG40002}) were also isolated, and several other small essential genes (such as \texttt{med21} and \texttt{CG17454}) were identified through RNAi experiments. Thus, although our results indicate an unexpectedly higher proportion of essential genes in 3L Het, there are no obvious properties that distinguish them from euchromatic genes.

As mentioned, our data suggest that approximately 2/3 of genes residing in 3L Het are required for developmental viability and/or adult fertility. In contrast, it is estimated that only about 1/3 of euchromatic genes are essential (Miklos and Rubin 1996; Ashburner et al. 1999; Dietzl et al. 2007; Chen et al. 2010). It remains to be determined whether the large proportion of essential genes in 3L Het is significant or results from the relatively small sample size: in 3R Het, only four of the 11 genes appear to be essential (our unpublished observations), while the overall proportion of essential genes in 2R and 2L Het remains to be established.

The work described here, and the genetic tools generated, provide a foundation for advancing our understanding of the organization, functions and regulation to genes in these unique chromosomal regions. Fly stocks from this work, including representative Dfs across 3L and 3R Het, lethal alleles of individual genes, as well as other reagents (cDNA transgene and RNAi lines) will be available from the Bloomington Drosophila Stock Center, Indiana.

ACKNOWLEDGMENTS

We would like to thank Sarah Padilla, Kelsey Jefferson, Kate Auyeung, Sara Brown, Florence Yuen, Gary Tong, Sabrina Rayworth, Amanda Berscht and a number of talented undergraduate assistants for expert technical assistance. We also thank the Drosophila community for their support, including providing resources necessary for this work. We would particularly like to acknowledge Roger Hoskins, Gary Karpen, the Drosophila Heterochromatic Genome Project and Flybase for access to genome sequence data and physical maps of heterochromatin; Kevin Cook and the Bloomington Drosophila Stock Center; the Vienna Drosophila RNAi Center, National Institute of Japan, and the Transgenic RNAi Projects for RNAi lines; the Zuker and Deitcher laboratories for providing mutant stocks essential for this work; and the Drosophila Genomic Resource Center for cloned cDNAs. This research was funded by a Natural Sciences and Engineering Research Council (NSERC) grants to B.M. Honda and to A.J. Hilliker; a Canadian Institute of Health Research (CIHR) grant to A.J. Hilliker, B.M. Honda, and D.A.R. Sinclair; and NSERC doctoral fellowships to M.A. Syrzycka and G. Hallson.

LITERATURE CITED

Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne et al., 2000 The genomic sequence of Drosophila melanogaster. Science 287: 2185–2195. https://doi.org/10.1126/science.287.5461.2185

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic local alignment search tool. J. Mol. Biol. 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Andreyeva, E. N., T. D. Kolesnikova, O. V. Demakova, M. Mendez-Lago, G. V. Pokholkova et al., 2007 High-resolution analysis of Drosophila heterochromatin organization using SuUR Su(var)3–9 double mutants. Proc. Natl. Acad. Sci. USA 104: 12819–12824. https://doi.org/10.1073/pnas.0704690104

Ashburner, M., S. Misra, J. Roote, S. E. Lewis, R. Blazej et al., 1999 An exploration of the sequence of a 2.9-mb region of the genome of Drosophila melanogaster: The Adh region. Genetics 153: 179–219.

Carvalho, A. B., B. Vicosoa, C. A. M. Russo, B. Swenor, and A. G. Clark, 2015 Birth of a new gene on the Y chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 112: 12450–12455. https://doi.org/10.1073/pnas.1516543112

Chang, C. H., and A. M. Larracuente, 2018 Heterochromatin-enriched assemblies reveal the sequence and organization of the Drosophila
Eissenberg, J. C., and G. Reuter, 2009 Cellular mechanism for targeting... light... 2012 dSet1 is the main H3K4 Di- and tri-methyltransferase throughout... 2009 Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118: 419–435. https://doi.org/10.1007/s00412-009-0211-y

Eberl, D. F., B. J. Dufy, and A. J. Hilliker, 1993 The role of heterochromatin in the expression of a heterochromatic gene, the roiled locus of Drosophila melanogaster. Genetics 134: 277–292.

Eisenberg, J. C., T. C. James, D. M. Foster-Hartnett, T. Hartnett, V. Nagan et al., 1990 Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 9923–9927. https://doi.org/10.1073/pnas.87.24.9923

Eisenberg, J. C., and G. Reuter, 2009 Cellular mechanism for targeting heterochromatin formation in Drosophila, pp. 1–47 in International Review of Cell and Molecular Biology, Vol. 273. chap 1., edited by Jean, K. W. Academic Press, Cambridge, MA.

Fitzpatrick, K. A., D. A. Sinclair, S. R. Schulze, M. Syrzycka, and B. M. Honda, 2005 A genetic and molecular profile of third chromosome centric heterochromatin in Drosophila melanogaster. Genome 48: 571–584. https://doi.org/10.1139/g05-025

Hallson, G., M. Syrzycka, S. A. Beck, J. A. Kennison, D. Dorsett et al., 2008 The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc. Natl. Acad. Sci. USA 105: 12405–12410. https://doi.org/10.1073/pnas.080169105

Hallson, G., R. E. Hollebukken, T. Li, M. Syrzycka, I. Kim et al., 2012 dSet1 is the main H3K4 Di- and tri-methyltransferase throughout Drosophila development. Genetics 190: 91–100. https://doi.org/10.1534 genetics.111.135863

Heitz, E., 1928 Das heterochromatin der moose, Bornträger, Berlin.

Heitz, E., 1929 Heterochromatin, chromocentren, chromomenen. Korn, Fischer, Jena, Germany.

Hilliker, A. J., and R. Appels, 1982 Pleiotropic effects associated with the deletion of heterochromatin surrounding rDNA on the X chromosome of Drosophila. Chromosoma 86: 469–490. https://doi.org/10.1007/BF00330122

Hilliker, A. J., A. Chovnick, and S. H. Clark, 1981 The relative mutabilities of vital genes in Drosophila melanogaster. Drosophila. Inform. Serv. 56: 64–65.

Hilliker, A. J., and D. G. Holm, 1975 Genetic analysis of the proximal region of chromosome 2 of Drosophila melanogaster. I. Detachment products of compound autosomes. Genetics 81: 705–721.

Hilliker, A. J., 1976 Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics 83: 765–782.

Hoskins, R. A., C. D. Smith, J. W. Carlson, A. B. Carvalho, A. Halpern et al., 2002 Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biology 3: RESEARCH0085.1–0085.6.

Hoskins, R. A., J. W. Carlson, C. Kennedy, D. Acevedo, M. Evans-Holm et al., 2007 Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316: 1625–1628. https://doi.org/10.1126/science.1139816

Hoskins, R. A., J. W. Carlson, K. H. Wan, S. Park, I. Mendez et al., 2015 The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 25: 445–485. https://doi.org/10.1101/gr.185579.114

Howe, M., P. Dimitri, M. Berloco, and B. T. Wakimoto, 1995 Cass-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140: 1033–1045.

Kania, A., and H. Bellen, 1995 Mutations in neuromusculin, a gene encoding a cell Roux Arch. Dev. Biol. 204: 259–270. https://doi.org/10.1007/BF00206493

Kania, A., P. I. Han, Y. T. Kim, and H. Bellen, 1993 Neuromusculin, a Drosophila gene expressed in peripheral neuronal precursors and muscles, encodes a cell adhesion molecule. Neuron 11: 673–687. https://doi.org/10.1016/0896-6273(93)90078-6

Karchenko, P. V., A. A. Akekseyenko, Y. B. Schwartz, A. Minoda, N. C. Riddle et al., 2011 Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480–485. https://doi.org/10.1038/nature09725

Koryakov, D. E., I. F. Zhimulev, and P. Dimitri, 2002 Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. Genetics 160: 509–517.

Koryakov, D. E., E. V. Domanitskaya, S. N. Belyakin, and I. F. Zhimulev, 2003 Abnormal tissue-dependent polytenization of a block of chromosome 3 pericentric heterochromatin in Drosophila melanogaster. J. Cell Sci. 116: 1035–1044. https://doi.org/10.1242/jcs.00228

Koundakjian, E. J., D. M. Cowan, R. W. Hardy, and A. H. Becker, 2004 The Ziker Collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167: 203–206. https://doi.org/10.1534/genetics.167.1.203

Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan et al., 2007 Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Li, C., V. V. Vagin, S. Lee, J. Xu, S. Ma et al., 2009 Collapse of germline piRNAs in the absence of argonaute3 reveals somatic piRNAs in flies. Cell 137: 509–521. https://doi.org/10.1016/j.cell.2009.04.027

Lin, J. M., Y. V. Kliman, K. Keggan, B. Paddock, M. Emery-Le et al., 2002 A role for casein kinase 2alpha in the Drosophila circadian clock. Nature 420: 816–820. https://doi.org/10.1038/nature01235

Lindsay, D. L., and R. W. Hardy, 1992 Cytology of In(3L)TM8 and In(3L) TM9. DIS 71: 154.

Lu, B. Y., P. C. Entage, G. J. Dufy, A. J. Hilliker, and J. C. Eisenberg, 2000 Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155: 699–708.

Lohe, A. R., A. J. Hilliker, and P. A. Roberts, 1993 Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

Marchant, G. E., and D. G. Holm, 1988a Genetic analysis of the heterochromatin of chromosomes 3 in Drosophila melanogaster. I. Products of compound autosome detachment. Genetics 120: 503–517.

Marchant, G. E., and D. G. Holm, 1988b Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120: 519–532.

Marygold, S. J., J. Roote, G. Reuter, A. Lambertsson, M. Ashburner et al., 2007 The ribosomal protein genes and minute loci of Drosophila melanogaster. Genome Biol. 8: R216. https://doi.org/10.1186/gb-2007-8-10-r216
Mével-Ninio, M., A. Pelisson, J. Kinder, A. R. Campos, and A. Bucheton, 2007 The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics 175: 1615–1624. https://doi.org/10.1534/genetics.106.068106

Miklos, G. L. G., and G. M. Rubin, 1996 The role of the genome project in determining gene function: insights from model organisms. Cell 86: 521–529. https://doi.org/10.1016/S0092-8674(00)80126-9

Mukai, T., 1964 The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

Myster, S. H., F. Wang, R. Cavallo, W. Christian, S. Bhotika, Schotta, G., M. Lachner, K. Sarma, A. Ebert, R. Sengupta, 2001 Essential genes in proximal 3L heterochromatin of Drosophila melanogaster. Genes Dev. 15: 2177–2187. https://doi.org/10.1101/gad.9046381.0904638.09

Mukai, T., S. T. Ohnishi, and J. C. Salerno, 2018 Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). J. Biol. Chem. Oct 25: 1249–1264.

Reuter, G., M. Giarre, J. Farah, J. Gausz, J. Gausz, 2015 The role of the genome project in determining gene function: insights from model organisms. Cell 86: 521–529. https://doi.org/10.1016/S0092-8674(00)80126-9

Mukai, T., S. T. Ohnishi, and J. C. Salerno, 2018 Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). J. Biol. Chem. Oct 25: 1249–1264.

Rossi, F., R. Caizzi, N. Corradini, and P. Dimitri, 2007 Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics 175: 595–607. https://doi.org/10.1534/genetics.106.065441

Sarpal, R., M. Pellikka, R. R. Patel, F. Y. Hui, D. Godt et al., 2012 Mutational analysis supports a core role for Drosophila α-catenin in adherens junction function. J. Cell Sci. 125: 233–245. https://doi.org/10.1242/jcs.096644

Schotta, G., M. Lachner, K. Sarma, A. Ebert, R. Sengupta et al., 2004 A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev. 18: 1251–1262. https://doi.org/10.1101/gad.300704

Schulze, S., D. A. Sinclair, E. Silva, K. A. Fitzpatrick, M. Singh et al., 2001 Essential genes in proximal 3L heterochromatin of Drosophila melanogaster. Mol. Gen. Genet. 264: 782–789. https://doi.org/10.1007/s004380000367

Schulze, S. R., D. A. Sinclair, K. A. Fitzpatrick, and B. M. Honda, 2005 A genetic and molecular characterization of two proximal heterochromatin genes on chromosome 3 of Drosophila melanogaster. Genetics 169: 2165–2177. https://doi.org/10.1534/genetics.103.023341

Shi, M., Z. Yue, A. Kuryatov, J. M. Lindstrom, and A. Sehgal, 2014 Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount. eLife 3: e01473. https://doi.org/10.7554/eLife.01473

Sinclair, D. A. R., S. Schulze, E. Silva, K. A. Fitzpatrick, and B. M. Honda, 2000 Essential Genes in Autosomal Heterochromatin of Drosophila melanogaster. Genetics 150: 9–18. https://doi.org/10.1023/A:1026500620158

Smith, C. D., S. Q. Shu, C. J. Mungall, and G. H. Karpen, 2007 The release of an annotation of Drosophila melanogaster heterochromatin. Science 316: 1586–1591. https://doi.org/10.1126/science.1139815

Vass, S., S. Cotterill, A. M. Valdeolmillos, J. L. Barbero, E. Lin et al., 2003 Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13: 208–218. https://doi.org/10.1016/S0960-9822(03)00047-2

Vilinsky, I., B. A. Stewart, J. Drummond, I. Robinson, and D. E. Deitcher, 2002 A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission. Genetics 164: 259–271.

Wakimoto, B. T., and M. G. Hearn, 1990 The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125: 141–154.

Yan, D., R. A. Neumüller, M. Buckner, K. Ayers, H. Li, Y. Hu, D. Yang-Zhou et al., 2014 A regulatory network of Drosophila germline stem cell self-renewal. Developmental Cell 28: 459–473.

Yoshiyama, T., T. Namiki, K. Mita, H. Kataoka, and R. Niwa, 2006 Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysony synthesis and insect growth. Development 133: 2565–2574. https://doi.org/10.1242/dev.02428

Zhang, P., and A. C. Spradling, 1994 Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc. Natl. Acad. Sci. USA 91: 3539–3543. https://doi.org/10.1073/pnas.91.9.3539

Communicating editor: J. Birchler