A systematic review of reviews on the prevalence of anxiety disorders in adult populations

Olivia Remes1, Carol Brayne1, Rianne van der Linde2 & Louise Lafortune1

1Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
2London Borough of Hammersmith and Fulham, Westminster City Council, London SW6 6QP, UK

Keywords
Anxiety, anxiety disorders, demographics, epidemiology, international, mental disorders, prevalence

Correspondence
Olivia Remes, Department of Public Health and Primary Care, Strangways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK. Tel: 07776740550; E-mail: or260@medschl.cam.ac.uk

Funding information
UK National Institute for Health Research.

Received: 16 July 2015; Revised: 24 February 2016; Accepted: 8 April 2016

Brain and Behavior, 2016; 6(7), e00497, doi: 10.1002/brb3.497

Abstract

Background: A fragmented research field exists on the prevalence of anxiety disorders. Here, we present the results of a systematic review of reviews on this topic. We included the highest quality studies to inform practice and policy on this issue. Method: Using PRISMA methodology, extensive electronic and manual citation searches were performed to identify relevant reviews. Screening, data extraction, and quality assessment were undertaken by two reviewers. Inclusion criteria consisted of systematic reviews or meta-analyses on the prevalence of anxiety disorders that fulfilled at least half of the AMSTAR quality criteria. Results: We identified a total of 48 reviews and described the prevalence of anxiety across population subgroups and settings, as reported by these studies. Despite the high heterogeneity of prevalence estimates across primary studies, there was emerging and compelling evidence of substantial prevalence of anxiety disorders generally (3.8–25%), and particularly in women (5.2–8.7%); young adults (2.5–9.1%); people with chronic diseases (1.4–70%); and individuals from Euro/Anglo cultures (3.8–10.4%) versus individuals from Indo/Asian (2.8%), African (4.4%), Central/Eastern European (3.2%), North African/Middle Eastern (4.9%), and Ibero/Latin cultures (6.2%). Conclusions: The prevalence of anxiety disorders is high in population subgroups across the globe. Recent research has expanded its focus to Asian countries, an increasingly greater number of physical and psychiatric conditions, and traumatic events associated with anxiety. Further research on illness trajectories and anxiety levels pre- and post-treatment is needed. Few studies have been conducted in developing and under-developed parts of the world and have little representation in the global literature.

Introduction

Anxiety disorders – defined by excess worry, hyperarousal, and fear that is counterproductive and debilitating – are some of the most common psychiatric conditions in the Western world (Simpson et al. 2010). The prevalence of anxiety disorders in the United States is estimated to be 18% (Kessler et al. 2005), and their annual cost is reported to be $42.3 billion (Greenberg et al. 1999). In the European Union (EU), over 60 million people are affected by anxiety disorders in a given year, making them the most prevalent psychiatric conditions in the EU (Wittchen et al. 2011). The Global Burden of Disease (GBD) study estimated that anxiety disorders contributed to 26.8 million disability adjusted life years in 2010. (Whiteford et al. 2013). While a number of reviews have focused on the burden of depression and its economic, social, and health care policy implications, substantially fewer have assessed anxiety.

The past decade has seen increased research interest into anxiety disorders, in large part because of a greater recognition of their burden and the implications associated with untreated illness. Clinical reviews have shown that the presence of an anxiety disorder is a risk factor for the development of other anxiety and mood disorders and substance abuse. In clinical and population-based studies, the development of comorbidities makes the treatment of primary and secondary disorders difficult, contributes to low remission rates, poor prognosis and risk of suicide (Nutt and Ballenger 2003; Simpson et al. 2010). Untreated anxiety has been associated with significant personal and societal costs, related to frequent
primary and acute care visits, decreased work productivity, unemployment, and impaired social relationships (Simpson et al. 2010). A number of primary studies on the prevalence of anxiety have been undertaken, but the variability in findings has made generalizability to the wider population difficult. This variability mainly results from differences in study setting (i.e., culture; clinical vs. population-based), age and sex composition of samples, length of follow-up, methods of anxiety assessment, and caseness criteria (i.e., types and number of disorders examined). Systematic reviews on the prevalence of these conditions in highly select, homogeneous population subgroups have been undertaken, but the selective citation of such estimates presents a distorted view of the overall burden of anxiety and limits generalizability.

The aim of this systematic review of reviews was to provide a comprehensive synthesis and description of the prevalence of anxiety disorders in the general population, as well as in clinical outpatient and inpatient groups affected by a range of chronic physical diseases and psychiatric disorders, as reported by individual reviews. Individuals recruited from the community can have different risk factor profiles than those sampled from clinical settings, potentially giving rise to different rates of mental health problems amongst these groups (Nutt and Ballenger 2003; Simpson et al. 2010). As a result, the burden needs to be assessed across different settings and segments of the population. To provide insight into the demographic groups that are most affected, we reported on estimates for men and women and different age groups, if this information was available. Since a number of studies (Walters et al. 2004; Skapinakis et al. 2005; Simpson et al. 2010) have identified the need to better understand the geographical variation of mental health problems, we included reviews that captured studies conducted across the globe at national and subnational levels. To provide insight into the chronicity of anxiety disorders, we provided period (i.e., 12-month) and lifetime prevalence estimates. If the duration criterion was not clearly stated or the “point” or “current” prevalence was indicated, we simply referred to these estimates as “prevalence”.

Findings from this systematic review will shed light on the groups that are most affected by anxiety disorders, and can be used to inform targeted screening and treatment efforts. This will be important in the planning of health services and the development of evidence-based policy. Finally, results from this review can be used to identify areas where further research is needed.

This is the first study to provide a comprehensive synthesis of the disparate findings from systematic reviews undertaken on the burden of anxiety across the globe and using a systematic approach.

Methods

Search strategy

We defined a systematic review in accordance with the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement (Moher et al. 2009). (Appendix 1) We included high-quality reviews that reported the prevalence of anxiety disorders in the general population or clinic-based settings. We searched for reviews on young, middle-aged, and older adults with risk behaviors (i.e., drug abuse), chronic or infectious diseases, psychiatric conditions, who are vulnerable, and living in countries across the globe. Reviews on the treatment of anxiety were not included, as we consider this to be a separate review topic that would merit an in-depth analysis.

To identify reviews meeting the inclusion criteria, we searched Medline (inception-May, 2015), PsycInfo (1987-May, 2015), and Embase (inception-May, 2015) using combinations of keywords relating to anxiety and prevalence (Appendix 2). Reference lists were hand-searched for additional reviews. Titles and abstracts of non-English language articles were translated to assess relevance. We excluded unpublished data. The review protocol is registered on PROSPERO (Remes et al. 2014).

Inclusion criteria

We searched for reviews that reported the lifetime, period, or point prevalence (or simply “prevalence”) of generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), social anxiety disorder (SAD) or social phobia, agoraphobia, panic disorder (PD) with or without agoraphobia, and simple or specific phobia, and anxiety not otherwise specified (NOS). Studies that reported the prevalence of aggregated anxiety disorders, subthreshold disorders, or anxiety symptoms were also included. Reviews were included regardless of the sampling framework used in primary studies.

Reviews were included regardless of the method of anxiety assessment. Specifically, reviews capturing primary studies on threshold and subthreshold disorders that were assessed through fully, semi-, or unstructured interviews administered by clinicians or trained professionals, symptom checklists, clinician diagnoses, and self-report were accepted. Interviews or self-reported questionnaires that mapped to standard classificatory systems, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric Association, 2010) or the International Classification of Diseases (ICD) (World Health Organization, 2016), were also included.

OR and LL screened titles and abstracts, and disagreements were resolved through discussion. Dissertations, case
Quality assessment

Quality assessment of the reviews meeting the inclusion criteria was undertaken by OR and RvdL. If reviews met at least five of the criteria stipulated by AMSTAR (Shea et al. 2009), a validated measurement tool for assessing the quality of systematic reviews, they were included. For example, some of the AMSTAR quality criteria assess whether an “a priori” design was established, whether there was duplicate study selection and data extraction, if the literature search was comprehensive, whether the quality of primary studies was examined, etc.

Data extraction and analysis

Data extraction was performed by OR and RvdL using the standardized form capturing device: the dates of publication and literature search; objectives; number of studies reviewed; prevalence of anxiety; sample characteristics; sample size range of primary studies; recommendations for future research, and limitations of primary studies and review. Disagreements were resolved through discussion.

Studies were grouped according to five common themes and prevalence was described in the context of: (1) addiction, (2) other mental and neurological disorders, (3) chronic physical diseases, (4) trauma, and (5) vulnerable population subgroups. If there were fewer than three reviews on a chronic physical disease, it was grouped under: “other chronic physical diseases” or “other chronic physical diseases in end-stage”. Vulnerable population subgroups refer to individuals at high risk for poor health, who may experience stigma, marginalization, or health service access barriers.

We did not perform a meta-analysis because of the heterogeneity in study methodology. Quantitative measurement of heterogeneity was not undertaken. Finally, a meta-analysis of primary studies included in 48 systematic reviews would not have been feasible. We described the prevalence of individual and aggregate anxiety disorders, subthreshold disorders, or symptoms of anxiety, as reported by the systematic reviews. If reviews provided clear prevalence estimates for men and women and different age groups, we also included this information.

Results

The search identified 1232 reviews on anxiety. After 338 duplicates were removed, titles and abstracts were screened, and the full text of 198 articles was retrieved. In total, 46 systematic reviews met the inclusion criteria (Fig. 1). Reference searches identified two additional reviews as relevant, yielding a total of 48 reviews in this systematic review (Appendix 3).

Of the 48 reviews, seven focused on the descriptive epidemiology of anxiety disorders, while five reviewed anxiety in relation to addiction. Four focused on mental and neurological disorders. A total of 19 reviews assessed anxiety in the context of chronic physical diseases: most of these focused on CVD (n = 6) and cancer (n = 7), followed by respiratory disease (n = 3) and diabetes (n = 3); the rest examined end-stage physical disease (n = 4), and conditions that have been less commonly studied in the anxiety field (n = 4). Three reviews examined anxiety in the context of trauma, and ten focused on vulnerable population subgroups. Most of the reviews included international studies.

The global distribution of anxiety disorders

Seven reviews focused on the descriptive epidemiology of anxiety disorders, presenting age-, sex-, and time trends. In one international review (Somers et al. 2006), the pooled one-year and lifetime prevalence of total anxiety disorders was estimated to be 10.6% (95% CI: 7.5%, 14.3%) and 16.6% (95% CI: 12.7%, 21.1%), respectively. Given the health care policy and service planning implications of high estimates, a high-quality meta-analysis (Baxter et al. 2014) investigated whether the age-standardized point prevalence of anxiety increased over the last decade. Studies on cultures across the globe were reviewed and findings showed that the prevalence in 1990 (3.8% [95% CI: 3.6%, 4.1%] was very similar to that in 2005 and 2010 (4.0% [95% CI: 3.7%, 4.2%]). A sharp rise in younger people over time was noted, but changing age and population structures were hypothesized to be the drivers of this. Prevalence was found to be lowest in East Asia (2.8% [95% CI: 2.2%, 3.4%]) and highest in North America (7.7% [95% CI: 6.8%, 8.8%]) and the North African/Middle Eastern region (7.7% [95% CI: 6.0%, 10%]) (Baxter et al. 2014). A less rigorous review (Somers et al. 2006) estimated the highest lifetime prevalence of anxiety disorders in Swiss and US populations (23–28.7%), and the lowest in studies on Korea (9.2%). In Pakistan (Mirza and Jenkins 2004), the prevalence of total anxiety ranged from 1.76% to 25%, while a meta-analysis on Germany (Vehling et al. 2012) reported it to be 13.5% (95% CI: 7.1%, 24.3%).

Women are almost twice as likely to be affected as men (female:male ratio of 1.9:1), with sex differences persisting over time and across high and low resource settings (Somers et al. 2006; Baxter et al. 2013; Steel et al. 2014). Irrespective of culture, individuals under the age of 35 years are disproportionately affected by anxiety disorders (Baxter et al. 2013, 2014) with the exception of
Pakistan, where midlife represents a period of high burden (Mirza and Jenkins 2004).

Globally, specific phobia (4.9% [95% CI: 3.4%, 6.8%] and GAD (6.2% [95% CI: 4.0%, 9.2%]) appear to have the highest lifetime prevalence, and panic disorder the lowest (1.2% [95% CI: 0.7%, 1.9%]) (Somers et al. 2006). In Germany, however, specific phobia (5.2%, [95% CI: 3.3%, 8.2%]) and GAD (3.7%, [95% CI: 2.3%, 6.0%]) are reported to be the most prevalent anxiety disorders (Vehling et al. 2012). In addition to geographical variation, caseness criteria are an important consideration when comparing estimates. One review reported an almost twofold higher prevalence of subthreshold GAD when the duration criterion was relaxed from 3 to 1 month (3.6% vs. 6.1%). In this review, older age groups showed the lowest estimates of past-year subthreshold GAD (3%) (Haller et al. 2014).

Addiction

Five reviews focused on anxiety experienced in relation to addictive behaviors, including substance misuse, pathological gambling, and compulsive internet use. A global review on nonmedical prescription opioid use (NMPOU) reported the overall lifetime anxiety prevalence in patients at admissions or in treatment for substance abuse problems to range from 2% to 67% (Fatseas et al. 2010). While the prevalence of anxiety diagnoses is reportedly high at 29% (95% CI: 14%, 44%), that of subthreshold anxiety is higher still, with half of NMPOU populations enrolled in substance abuse treatment in North America reporting symptoms (50% [95% CI: 16%, 84%]) (Goldner et al. 2014). In contrast, general population samples of NMPOU in North America show a substantially lower prevalence of anxiety (16% [95% CI: 1%, 30%]) (Fischer
et al. 2012). No significant age or sex-effects were found in NMPOU groups enrolled in substance use treatment (Goldner et al. 2014).

Two other risk behaviors that have received attention in the addiction field include problem and pathological gambling, and more recently, internet addiction. When a global meta-analysis assessed 11 community samples of pathological gamblers, the prevalence of anxiety disorders was reported to be 37.4% (Lorains et al. 2011). The prevalence of anxiety in the context of internet addiction is lower and comes mostly from studies conducted in Asian countries. A meta-analysis found the prevalence of anxiety to be over two times higher in community samples of people with Internet addiction compared to control subjects (23.3% [95% CI: 14.8, 34.8%] vs 10.3% [95% CI: 5.0, 19.9%]), with those under the age of 39 being most affected (Ho et al. 2014).

Other mental and neurological disorders

In Europe, approximately 13–28% of people with bipolar disorder recruited from clinical and community settings have comorbid anxiety, with GAD and panic disorder being frequently experienced by this population (Fajutrao et al. 2009). In the US and Italian samples with bipolar disorder (Amerio et al. 2014), OCD is also common. The prevalence of this anxiety disorder in those who are bipolar has been shown to range from 11.1% to 21% in population-based studies, and 1.8% to 35.1% in clinical samples.

OCD is also highly comorbid with schizophrenia. A global review (Swets et al. 2014) estimated the prevalence of this disorder in people diagnosed with schizophrenia to be 12.3% (95% CI: 9.7%, 15.4%). The prevalence of obsessive compulsive symptoms (OCS) not meeting full caseness criteria was over twice that of OCD (30.7% [95% CI: 23%, 39.6%]). Lower anxiety prevalence was linked to sub-Saharan African origin. Age and sex did not influence OCD or OCS rates (Swets et al. 2014). These estimates were mainly based on groups from clinical settings.

One of the highest prevalence figures of psychopathology was found by a review on multiple sclerosis (MS) (Marrie et al. 2015), which reported that almost 32% of people with MS have an anxiety disorder and over half experience symptoms. Some of the primary studies included in this review were based on participants recruited from the general population, suggesting that men and women with MS are at high risk for psychopathology. Health anxiety may be an important issue in this population subgroup, given that 26.4% of those with MS are affected. Study methodology made a significant contribution to the figures reported. Estimates of anxiety prevalence were substantially higher if they were derived through self-reported questionnaires (25.5% [95% CI: 16.7%, 34.3%]) compared to administrative databases or medical records (15.4%, [95% CI: 0%, 39.0%]) (Marrie et al. 2015).

Chronic physical diseases

Cardiovascular disease

Six reviews reported the prevalence of anxiety in the context of cardiovascular disease (CVD). Approximately a tenth of patients with cardiovascular disease and living in Western countries are affected by GAD (10.94% [95% CI: 7.8%, 14.0%]) (Tully and Cosh 2013), with women showing higher anxiety levels than men (Clarke and Currie 2009). Anxiety symptom prevalence among patients with congestive heart failure is 2–49% (Janssen et al. 2008), and in end-stage patients suffering from heart disease, it is 49% (Solano et al. 2006). Further, panic disorder is a common diagnosis in patients with coronary artery disease, with the prevalence ranging from 10% to 50% in this subgroup (Clarke and Currie 2009).

Individuals with noncardiac or nonspecific chest pain presenting to emergency departments, particularly women and those who are younger, appear to be disproportionately affected by anxiety. Compared to those with a determined cause of chest pain, anxiety prevalence was found to be higher in those with unknown etiology (21–53.5% of noncardiac chest pain patients have probable anxiety) (Webster et al. 2012).

A high-quality, global meta-analysis of population-, hospital-, and rehabilitation-based studies found the prevalence of anxiety disorders in stroke patients to vary between 18% (95% CI: 8%, 29%) and 25% (95% CI: 21%, 28%) when measured by clinical interview and rating scales, respectively (Campbell Burton et al. 2013). Age and sex did not influence the probability of having anxiety after stroke in most of the included studies. GAD and phobic disorders were the commonest anxiety disorders post-stroke.

Cancer

Seven reviews assessed anxiety among individuals diagnosed with or receiving treatment for cancer and in spouses of cancer patients. The prevalence of anxiety among cancer patients varies between 15% and 23%, with symptoms rising to 69–79% in the later stages of disease. There was no reported evidence with respect to age and sex (Solano et al. 2006; Clarke and Currie 2009).

A meta-analysis (Yang et al. 2013) on working-age and older adults living in Mainland China showed that the overall prevalence of anxiety in individuals with a cancer diagnosis was higher than that in noncancer controls (49.7% [95% CI: 20.0%, 89.1%] and 17.5%, respectively). Among German patients with breast cancer, the
prevalence of anxiety was comparatively lower than in Chinese patients, ranging from 28.0% to 33.0% (Vehling et al. 2012).

Randomized controlled trials (RCT) and non-RCT studies conducted across the globe showed that approximately a fourth to over half of individuals undergoing or who had undergone breast cancer treatment experienced anxiety (Lim et al. 2011). Lower levels of anxiety were observed in patients undergoing radiotherapy rather than chemotherapy. During chemotherapy, young age and high trait anxiety measured before infusions were correlated with the intensity of anxiety experienced (Lim et al. 2011). Among ovarian cancer patients, younger age groups were also disproportionately affected by anxiety. Following treatment for ovarian cancer, psychopathology tended to persist, with almost half (47%) of individuals experiencing anxiety symptoms at three months post-treatment (Arden-Close et al. 2008).

Long-term cancer survivors and their spouses also experience elevated levels of anxiety. In a global meta-analysis of outpatient clinic, hospital, and population-based samples (Mitchell et al. 2013), the prevalence of anxiety in individuals who had been diagnosed with cancer at least 2 years previously was found to be much higher than in healthy controls (17.9% [95% CI: 12.8%, 23.6%] and 13.9% [95% CI: 9.8%, 18.5%], respectively). Further, almost half (40.1% [95% CI: 25.4%, 55.9%]) of spouses of long-term cancer survivors developed anxiety. No age or sex effects were reported.

Respiratory disease

Three reviews focusing on anxiety in the context of respiratory disease indicated that the prevalence of anxiety was high among adults with COPD (32–57%) (Janssen et al. 2008), and higher still among those with far-advanced, end-stage respiratory disease (51–75%) (Solano et al. 2006). Among acute lung injury/acute respiratory distress syndrome (ALI/ARDS) survivors discharged from intensive care units in the United States and Germany, anxiety levels ranged from 23% to 48% (Davydow et al. 2008). No age or sex effects were reported.

Diabetes

Three systematic reviews assessed anxiety in adults with diabetes. One high-quality global review of mostly North American and European studies (Smith et al. 2013) showed that the prevalence is significantly elevated in those with diabetes compared to other groups, but is also dependant on caseness criteria. Approximately 15% to 73% of people with diabetes have anxiety symptoms not meeting threshold criteria (vs. 19.9% to 43.1% of nondiabetic individuals), while 1.4% to 15.6% of people with diabetes meet threshold criteria for an anxiety disorder (vs. 1.6% to 8.8% of nondiabetic individuals).

In another review capturing studies predominantly conducted in primary care or clinical settings, women with diabetes were found to have an almost two-fold higher prevalence of anxiety than men with diabetes (55.3% and 32.9%) (Grigsby et al. 2002). Age effects were not reported. The anxiety disorders that are most common in the context of diabetes are anxiety not otherwise specified, specific phobia, GAD, and social phobia (Grigsby et al. 2002; Clarke and Currie 2009).

Other chronic physical diseases

Four reviews assessed anxiety in population subgroups with polycystic ovary syndrome (PCOS), benign joint hypermobility syndrome, musculoskeletal pain, and age-related macular degeneration. Clinical, mostly Western samples of women with polycystic ovary syndrome (PCOS) had a much higher prevalence of generalized anxiety symptoms than control groups (20.4% and 3.9%, respectively) (Dokras et al. 2012). There is some evidence that social phobia and OCD are comorbid with PCOS. Differences in anxiety levels according to age were not found (Dokras et al. 2012).

Widely varying anxiety prevalence figures have been reported for Mediterranean populations with benign joint hypermobility syndrome (BJHS) (5–68%) (Smith et al. 2014), as well as for Western populations with musculoskeletal pain (0–20.9%) (Andersen et al. 2014). In relation to the latter group, the link between fibromyalgia and anxiety appears to be particularly strong. In people with BJHS, commonly occurring comorbidities are agoraphobia and panic disorder (Smith et al. 2014). The only chronic condition that has failed to show a link with anxiety is age-related macular degeneration; while this review recruited patients from clinics, it was largely based on US studies (Dawson et al. 2014).

Other chronic physical diseases in end-stage

Four reviews assessed anxiety in end-stage conditions. A global meta-analysis of mostly Western studies (Mitchell et al. 2011) estimated the pooled prevalence of anxiety disorders in palliative cancer patients to be 9.8% (95% CI: 6.8%, 13.2%). Estimates appear to vary widely by condition. Among patients with chronic renal failure, the prevalence of anxiety symptoms was found to be 25% in the terminal stage (Janssen et al. 2008), whereas another review found a prevalence of 38% in patients with end-stage renal disease (Murtagh et al. 2007). Although patients suffering from end-stage AIDS showed a high
Symptom prevalence of 8–34%, the highest estimates were found for end-stage COPD (51–75%) and cancer patients (13–79%) (Solano et al. 2006). No associations between age or sex and anxiety were found in palliative-care settings (Mitchell et al. 2011).

Trauma

Three reviews tackled the issue of anxiety in the context of trauma. The first was primarily based on findings from UK and US studies and focused on traumatic limb amputees, and included veterans that had served in Vietnam, Iraq and Afghanistan (McKechnie and John 2014). Very high prevalence figures were found, with anxiety affecting a fourth of traumatic limb amputees in some studies to over half in others. The second review was global in scope and assessed the frequency of lifetime anxiety among individuals with a history of sexual abuse (Chen et al. 2010). Widely varying anxiety estimates were reported by this review, ranging from 2% to 82%. Finally, a third review focused on GAD in refugees resident in high-income Western countries; over half of the refugees were from southeast Asia. This meta-analysis estimated that 4% of refugees experience GAD (Fazel et al. 2005). No age or sex effects in relation to anxiety disorders were reported.

Vulnerable population subgroups

Older people and their caregivers

Five reviews assessed anxiety in older people and their caregivers. The prevalence of anxiety disorders in old age varies widely in community (1.2–14%) and clinical (1–28%) studies conducted mostly in European and North American settings. Estimates are even higher when anxiety symptoms are accounted for. GAD is the commonest anxiety disorder in old age, with the prevalence ranging from 1.3% to 4.7% (Bryant et al. 2008). A random-effects model (Volkert et al. 2013) showed that specific phobia also occurs frequently in older samples living in the community, while agoraphobia is the rarest anxiety disorder (Bryant et al. 2008). Women are at higher risk for psychopathology than men (Bryant et al. 2008).

Older population subgroups with cognitive dysfunction and their caregivers are disproportionately affected by anxiety (Monastero et al. 2009). In older people with mild cognitive impairment (MCI), the prevalence of anxiety symptoms varies from 11% to 75% (Monastero et al. 2009; Yates et al. 2013). Caregivers of older people with cognitive impairment are also affected by anxiety (prevalence estimates of 3.7–76.5%), with women and younger caregivers showing elevated levels (Cooper et al. 2007; Bryant et al. 2008).

Pregnant women

Three reviews focused on pregnant women. A meta-analysis of international studies (Russell et al. 2013) reported higher OCD prevalence in pregnant (2.07%, [95% CI: 1.26%, 3.37%]) and postpartum (up to 12 months) (2.43%, [95% CI: 1.46%, 4.00%]) women compared to the general population (1.08%, [95%: 0.80%, 1.46%]). Asia and Europe had the lowest prevalence of OCD across conditions, while the Middle East and Africa had the highest. In Ethiopian and Nigerian samples recruited from health clinics and the community (Sawyer et al. 2010), the prevalence of anxiety was found to be high during both the pre- and post-natal periods (14.8% [95% CI: 12.3%, 17.4%] and 14.0% [95% CI: 12.9%, 15.2%], respectively), with younger women showing elevated anxiety compared to older women (Sawyer et al. 2010). There is also some evidence from UK and US studies that a high BMI may contribute to anxiety symptoms during pregnancy (Molyneaux et al. 2014).

Individuals identifying as lesbian, gay or bisexual, and self-harm patients

Two reviews focused on (1) predominantly Western individuals living in the community and identifying as lesbian, gay or bisexual (LGB), and (2) self-harm patients presenting to general hospitals in countries across the globe. In LGB men, anxiety prevalence was estimated to be 3–20%, while LGB women showed somewhat higher estimates, at 3–39% (King et al. 2008). In a global meta-analysis of self-harm patients presenting to hospitals, the prevalence of anxiety disorders was found to be 35% (95% CI: 21.9%, 48.6%). Age- and sex-based differences were small, while rates of anxiety were highest in young and old age groups of self-harm adults (Hawton et al. 2013). All non-Western studies of self-harm patients were based in Asia, while most of the Western studies were conducted in the United Kingdom.

Discussion

We have synthesized 48 reviews on prevalence studies conducted across the globe. This is the first review to undertake a comprehensive synthesis of the systematic reviews conducted to date on the prevalence of anxiety disorders. It provides a comprehensive, up-to-date summary of the state of knowledge in this area.

A number of studies within the reviews were conducted in North America (predominantly the United States) and Europe (Fazel et al. 2005; Cooper et al. 2007; Arden-Close et al. 2008; Davydow et al. 2008; Fajutrao et al. 2009; Lorains et al. 2011; Mitchell et al. 2011; Fischer et al. 2011).
et al. 2012; Tully and Cosh 2013; Volkert et al. 2013; Amerio et al. 2014; Goldner et al. 2014; Haller et al. 2014; Mckechnie and John 2014; Molyneaux et al. 2014; Marrie et al. 2015), included clinical and general population samples (Mirza and Jenkins 2004; Bryant et al. 2008; Fajutrao et al. 2009; Monastero et al. 2009; Chen et al. 2010; Sawyer et al. 2010; Lim et al. 2011; Campbell Burton et al. 2013; Hawton et al. 2013; Mitchell et al. 2013; Russell et al. 2013; Yates et al. 2013; Amerio et al. 2014; Haller et al. 2014; Molyneaux et al. 2014), and used mainly DSM or ICD criteria to ascertain diagnoses (Fajutrao et al. 2009; Hawton et al. 2013; Mitchell et al. 2013; Amerio et al. 2014; Goldner et al. 2014; Mckechnie and John 2014; Baxter et al. 2013; Swets et al. 2014). Younger age groups (Arden-Close et al. 2008; Sawyer et al. 2010; Lim et al. 2011; Webster et al. 2012; Hawton et al. 2013; Yates et al. 2013; Baxter et al. 2014; Haller et al. 2014; Ho et al. 2014; Baxter et al. 2013), women (Somers et al. 2006; Bryant et al. 2008; Clarke and Currie 2009; Webster et al. 2012; Baxter et al. 2013, 2014; Hawton et al. 2013; Yates et al. 2013; Haller et al. 2014; Steel et al. 2014), and people from North America and North Africa/Middle East (Somers et al. 2006; Baxter et al. 2014) showed the highest prevalence of anxiety. Estimates remained stable or declined with age (Somers et al. 2006; Baxter et al. 2013), and secular trends were not observed in relation to the prevalence of total anxiety 4 (Baxter et al. 2014).

Compared to healthy populations or control groups, prevalence was higher in individuals with chronic physical diseases (Mitchell et al. 2013; Yang et al. 2013), and the burden was particularly high in the end stage (Solano et al. 2006; Murtagh et al. 2007; Mitchell et al. 2011). Anxiety symptoms tended to persist post-disease if present before disease onset (Sawyer et al. 2010), reflecting a chronic, unremitting pattern of psychopathology. Individuals exposed to trauma or who were vulnerable and at risk for stigma (Cooper et al. 2007; Bryant et al. 2008; King et al. 2008; Monastero et al. 2009; Sawyer et al. 2010; Hawton et al. 2013; Russell et al. 2013; Volkert et al. 2013; Yates et al. 2013; Molyneaux et al. 2014), such as older people with cognitive impairment (Yates et al. 2013), were also more likely to experience anxiety. Prevalence figures were heterogeneous, and this made comparison between studies difficult. Heterogeneity was driven by differences in case-ness criteria and sampling methods. For example, a meta-regression (Swets et al. 2014) that assessed the influence of instrument differences on OCD prevalence in the context of schizophrenia showed that the prevalence was higher with the use of the Yale-Brown Obsessive Compulsive Scale (YBOCS)/Obsessive Compulsive Inventory (OCI) (Goodman et al. 1989; Foa et al. 1998) compared to other instruments. Also, the lower the threshold of the YBOCS, the higher the estimated prevalence. A range of methods was used to measure anxiety, such as, standardized, structured interviews administered by trained professionals, clinician diagnoses, symptom checklists, and self-report. Some reviews attempted to handle the assessment of anxiety in alternative ways. For example, one review (Baxter et al. 2013) mapped estimates onto ICD or DSM diagnostic criteria and conducted a meta-analysis to provide an aggregate measure of anxiety. Other reviews either did not attempt a meta-analysis, or because of very large differences in sampling methods within primary studies, reported disaggregated estimates and ranges found in primary studies. Across reviews, higher prevalence figures were found when subthreshold disorders or symptoms were assessed (Bryant et al. 2008; Goldner et al. 2014; Haller et al. 2014; Swets et al. 2014; Marrie et al. 2015) and when lifetime rather than past-year or current prevalence was estimated (Somers et al. 2006; Volkert et al. 2013).

With the exception of one review (Monastero et al. 2009), authors did not account for the use of psychoactive prescription medicines, such as anxiolytics, which could influence the reporting of anxiety symptoms.

Reviews produced inflated prevalence estimates with the use of less robust methodologies. Within reviews, low and variable response rates across primary studies were identified as another limitation (Somers et al. 2006; Haller et al. 2014). In one review, response rates across studies ranged from 45.9% to 99.5% (Steel et al. 2014).

The areas that received the most attention in the anxiety field include addiction and chronic physical diseases (mainly cancer, CVD, and respiratory diseases), while anxiety disorders other than PTSD in the context of (1) trauma and (2) psychiatric or neurological conditions, such as internet addiction and multiple sclerosis, are relatively new and underresearched areas. Surprisingly, only one review (King et al. 2008) examined LGB groups, despite this population being at high risk for poor health (Fredriksen-Goldsen et al. 2013). Authors of this review (King et al. 2008) called for further research to produce more refined and consistent definitions of LGB and the recruitment of more representative samples.

Although most of the reviews included in this systematic review were conducted in the last few years, the field of anxiety is rapidly gaining research interest. Some differences in findings and methodologies between older and more recent reviews were noted. For example, recent reviews are increasingly recognizing that early adulthood is the period with the highest peak in anxiety (Arden-Close et al. 2008; Sawyer et al. 2010; Lim et al. 2011; Webster et al. 2012; Hawton et al. 2013; Yates et al. 2013; Baxter et al. 2014; Haller et al. 2014; Ho et al. 2014; Baxter et al. 2013), and the contexts within which psychopathology is assessed are expanding to a greater number of physical diseases and newly emergent disorders.
Recommendations for future research and clinical practice

Recommendations for future research were made by review authors, such as the use of longitudinal designs to address temporality issues (Murtagh et al. 2007; Arden-Close et al. 2008; Bryant et al. 2008; Janssen et al. 2008; King et al. 2008; Clarke and Currie 2009; Sawyer et al. 2010; Dokras et al. 2012; Fischer et al. 2012; Webster et al. 2012; Russell et al. 2013; Smith et al. 2013; Goldner et al. 2014; Ho et al. 2014; Mckechnie and John 2014); population-based research that is less susceptible to the help-seeking/self-selection bias often present in clinical studies (Grigsby et al. 2002; Murtagh et al. 2007); and the use of valid and reliable instruments and consistent approaches to examine anxiety levels pre- and post-disease (Davydow et al. 2008; Monastero et al. 2009; Sawyer et al. 2010; Webster et al. 2012; Campbell Burton et al. 2013; Smith et al. 2013; Volkert et al. 2013; Goldner et al. 2014; Molyneaux et al. 2014; Swets et al. 2014; Marrie et al. 2015). The measure of “total” or “any anxiety” is not clinically meaningful and is discouraged in favor of the assessment of individual disorders (Smith et al. 2013; Tully and Cosh 2013). Consensus on definitions used to define study samples (e.g., sexual orientation) (King et al. 2008; Fischer et al. 2012; Ho et al. 2014) and diagnostic standardization with respect to the measurement of psychiatric disorders were also emphasized (Monastero et al. 2009; Goldner et al. 2014; Swets et al. 2014), as well as research into the risk factors, illness trajectory, hereditary, and biological markers of anxiety (Somers et al. 2006; Davydow et al. 2008; Monastero et al. 2009; Chen et al. 2010; Dokras et al. 2012; Russell et al. 2013; Amerio et al. 2014; Ho et al. 2014; Smith et al. 2014), and the appropriateness of anxiety screening measures in the context of physical diseases and cultures around the world (who may express distress differently) (Fazel et al. 2005; Bryant et al. 2008; Sawyer et al. 2010; Baxter et al. 2013; Hawton et al. 2013; Steel et al. 2014). Research questions should be structured around theories (Arden-Close et al. 2008; Webster et al. 2012). Recommendations were made for the inclusion of appropriate control subjects in studies to determine whether prevalence differs between exposed and comparison groups (Yang et al. 2013; Dawson et al. 2014). Finally, further treatment or intervention studies are needed to alleviate anxiety (Mirza and Jenkins 2004; Murtagh et al. 2007; Arden-Close et al. 2008; Clarke and Currie 2009; Fatseas et al. 2010; Lim et al. 2011; Amerio et al. 2014; Goldner et al. 2014; Haller et al. 2014; Ho et al. 2014; Smith et al. 2014; Swets et al. 2014).

Clinical recommendations included the administration of targeted anxiety screening and, if necessary, treatment. For example, suggestions were made for the screening of substance users at treatment entry (Fatseas et al. 2010) or patients with noncardiac chest pain presenting to acute care (Webster et al. 2012). It was also shown that certain anxiety disorders were more common in certain groups, such as OCD in schizophrenia (Swets et al. 2014), PD and GAD in CVD (Campbell Burton et al. 2013), and SP in diabetes (Grigsby et al. 2002). Additional research on individual anxiety disorders is needed to confirm these findings, but once this is underway, further impetus will be provided for the targeted screening of high-risk groups in relation to individual anxiety disorders.

This review has some limitations. Despite extensive database searches, it is possible that some reviews have been missed. Also, the high heterogeneity in anxiety assessment methods and sampling frameworks within primary studies contributed to large differences in prevalence estimates within and across reviews, making it difficult to draw conclusions about the burden of anxiety. Also, a number of the reviews were based on English-language studies conducted in predominantly Western settings, making generalizability to other parts of the world difficult.

Conclusions

Anxiety disorders are increasingly being recognized as important determinants of poor health and major contributors to health service use across the globe (Nutt and Ballenger 2003; Simpson et al. 2010). Despite epidemiologic advances in this field, important areas of research remain under- or unexplored. There is a need for further studies on the prevalence of anxiety disorders in the context of: personality disorders; Indigenous cultures in Canada, the United States, New Zealand, and Australia; African, Middle Eastern, Eastern European, Asian and South American countries; and marginalized populations, such as injection drug users, street youth, and sex workers. These recommendations can serve to guide the research agenda, and most importantly, help develop tailored and timely interventions.

Acknowledgments

We thank Isla Kuhn for her help in designing the search strategy.
Conflict of interest
None declared.

References
American Psychiatric Association. 2010. Diagnostic and statistical manual of mental disorders.
Amerio, A., A. Odone, C. C. Liapsis, and S. N. Ghaemi. 2014. Diagnostic validity of comorbid bipolar disorder and obsessive-compulsive disorder: a systematic review. Acta Psychiatr. Scand. 129:343–358.
Andersen, L. N., M. Kohberg, B. Juul-Kristensen, L. G. Herborg, K. Sogaard, and K. K. Roessler. 2014. Psychosocial aspects of everyday life with chronic musculoskeletal pain: a systematic review. Scand. J. Pain 5:131–148.
Arden-Close, E., Y. Gidron, and R. Moss-Morris. 2008. Psychological distress and its correlates in ovarian cancer: a systematic review. Psychooncology 17:1061–1072.
Baxter, A. J., K. M. Scott, T. Vos, and H. A. Whiteford. 2013. Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychol. Med. 43:897–910.
Baxter, A. J., K. M. Scott, A. J. Ferrari, R. E. Norman, T. Vos, and H. A. Whiteford. 2014. Challenging the myth of an “epidemic” of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010. Depress Anxiety 31:506–516.
Bryant, C., H. Jackson, and D. Ames. 2008. The prevalence of anxiety in older adults: methodological issues and a review of the literature. J. Affect. Disord. 109:233–250.
Campbell Burton, C. A., J. Murray, J. Holmes, F. Astin, D. Greenwood, and P. Knapp. 2013. Frequency of anxiety after stroke: a systematic review and meta-analysis of observational studies. Int. J. Stroke 8:545–559.
Chen, L. P., M. H. Murad, M. L. Paras, K. M. Colbenson, A. L. Sattler, E. N. Goranson, et al. 2010. Sexual abuse and lifetime diagnosis of psychiatric disorders: systematic review and meta-analysis. Mayo Clin. Proc. 85:618–629.
Clarke, D. M., and K. C. Currie. 2009. Depression, anxiety and their relationship with chronic diseases: a review of the epidemiology, risk and treatment evidence. Med. J. Aust. 190:S54–S60.
Cooper, C., T. B. Balamurali, and G. Livingston. 2007. A systematic review of the prevalence and covariates of anxiety in caregivers of people with dementia. Int. Psychogeriatr. 19:175–195.
Davydow, D. S., S. V. Desai, D. M. Needham, and O. J. Bienvenu. 2008. Psychiatric morbidity in survivors of the acute respiratory distress syndrome: a systematic review. Psychosom. Med. 70:512–519.
Dawson, S. R., C. D. Mallen, M. B. Gouldstone, R. Yarham, and G. Mansell. 2014. The prevalence of anxiety and depression in people with age-related macular degeneration: a systematic review of observational study data. BMC Ophthalmol. 14:78.
Dokras, A., S. Clifton, W. Futterweit, and R. Wild. 2012. Increased prevalence of anxiety symptoms in women with polycystic ovary syndrome: systematic review and meta-analysis. Fertil. Steril. 97:225–230.
Fajutrao, L., J. Locklear, J. Priaulx, and A. Heyes. 2009. A systematic review of the evidence of the burden of bipolar disorder in Europe. Clin. Pract. Epidemiol. Ment. Health 23:3.
Fatseas, M., C. Denis, E. Lavie, and M. Auriacombe. 2010. Relationship between anxiety disorders and opiate dependence-A systematic review of the literature: implications for diagnosis and treatment. J. Subst. Abuse Treat. 38:220–230.
Fazel, M., J. Wheeler, and J. Danesh. 2005. Prevalence of serious mental disorder in 7000 refugees resettled in western countries: a systematic review. Lancet 365:1309–1314.
Fischer, B., A. Lusted, M. Roerecke, B. Taylor, and J. Rehm. 2012. The prevalence of mental health and pain symptoms in general population samples reporting nonmedical use of prescription opioids: a systematic review and meta-analysis. J. Pain 13:1029–1044.
Foa, E. B., M. J. Kozak, P. M. Salkovskis, M. Coles, and N. Amir. 1998. The validation of a new obsessive compulsive disorder scale: the Obsessive-Compulsive Inventory (OCI). Psychol. Assess. 10:206–214.
Fredriksen-Goldsen, K. I., H. J. Kim, S. E. Barkan, A. Muraco, and C. P. Hoy-Ellis. 2013. Health disparities among lesbian, gay, and bisexual older adults: results from a population-based study. Am. J. Public Health 103:1802–1809.
Goldner, E. M., A. Lusted, M. Roerecke, J. Rehm, and B. Fischer. 2014. Prevalence of Axis-1 psychiatric (with focus on depression and anxiety) disorder and symptomatology among non-medical prescription opioid users in substance use treatment: systematic review and meta-analyses. Addict. Behav. 39:520–531.
Goodman, W. K., L. H. Price, S. A. Rasmussen, C. Mazure, R. L. Fleischmann, C. L. Hill, et al. 1989. The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch. Gen. Psychiatry 46:1006–1011.
Greenberg, P. E., T. Sisitsky, R. C. Kessler, S. N. Finkelstein, E. R. Berndt, J. R. Davidson, et al. 1999. The economic burden of anxiety disorders in the 1990s. J. Clin. Psychiatry 60:427–435.
Grigsby, A. B., R. J. Anderson, K. E. Freedland, R. E. Clouse, and P. J. Lustman. 2002. Prevalence of anxiety in adults with diabetes: a systematic review. J. Psychosom. Res. 53:1053–1060.
Hallm, H., H. Cramer, R. Lauche, F. Gass, and G. J. Dobos. 2014. The prevalence and burden of subthreshold generalized anxiety disorder: a systematic review. BMC Psychiatry 14:128.
Hawton, K., K. Saunders, A. Topiwala, and C. Haw. 2013. Psychiatric disorders in patients presenting to hospital following self-harm: a systematic review. J. Affect. Disord. 151:821–830.
Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med. 3:e123.

Marrie, R. A., S. Reingold, J. Cohen, O. Stuve, M. Trojano, P. Mitchell, A. J., M. Chan, H. Bhatti, M. Halton, L. Grassi, C. Mirza, I., and R. Jenkins. 2004. Risk factors, prevalence, and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62:593–602.

King, M., J. Semlyen, S. S. Tai, H. Killaspy, D. Osborn, D. Symonds. 2013. Depression and anxiety in long-term cancer survivors compared with spouses and healthy controls: a systematic review of interview-based studies. Lancet Oncol. 14:721–732.

Smith, K. J., M. Beland, M. Clyde, G. Gariepy, V. Page, G. Badawi, et al. 2013. Association of diabetes with anxiety: a systematic review and meta-analysis. J. Psychosom. Res. 74:89–99.

Smith, T. O., V. Easton, H. Bacon, E. Jerman, K. Armon, F. Poland, et al. 2014. The relationship between benign joint hypermobility syndrome and psychological distress: a systematic review and meta-analysis. Rheumatology (Oxford) 53:114–122.

Solano, J. P., B. Gomes, and I. J. Higginson. 2006. A comparison of symptom prevalence in far advanced cancer, AIDS, heart disease, chronic obstructive pulmonary disease and renal disease. J. Pain Symptom Manage. 31:58–69.

Somers, J. M., E. M. Goldner, P. Waraich, and L. Hsu. 2006. Prevalence and incidence studies of anxiety disorders: a systematic review of the literature. Can. J. Psychiatry 51:100–113.

Swets, M., J. Dekker, K. van Emmerik-van Oortmerssen, G. E. Smid, F. Smit, L. de Haan, et al. 2014. The obsessive compulsive spectrum in schizophrenia, a meta-analysis and meta-regression exploring prevalence rates. Schizophr. Res. 152:458–468.

Tully, P. J., and S. M. Cosh. 2013. Generalized anxiety disorder prevalence and comorbidity with depression in adults with pervasive developmental disorders: a systematic review. Am. J. Psychiatry 170:207–219.

Van’ De Bovenkamp, M. H., J. P. van der Heijden, and P. J. P. Klinkenberg-de Jong. 2012. The prevalence and incidence of anxiety disorders in cancer: a systematic review. Support. Care Cancer 20:1249–1258.
coronary heart disease: a meta-analysis. J. Health Psychol. 18:1601–1616.

Vehling, S., U. Koch, N. Ladehoff, G. Schon, K. Wegscheider, U. Heckl, et al. 2012. Prevalence of affective and anxiety disorders in cancer: systematic literature review and meta-analysis. Psychother. Psychosom. Med. Psychol. 62:249–258.

Volkert, J., H. Schulz, M. Harter, O. Wlodarczyk, and S. Andreas. 2013. The prevalence of mental disorders in older people in Western countries – a meta-analysis. Ageing Res. Rev. 12:339–353.

Walters, K., E. Breeze, P. Wilkinson, G. M. Price, C. J. Bulpitt, and A. Fletcher. 2004. Local area deprivation and urban-rural differences in anxiety and depression among people older than 75 years in Britain. Am. J. Public Health 94:1768–1774.

Webster, R., P. Norman, S. Goodacre, and A. Thompson. 2012. The prevalence and correlates of psychological outcomes in patients with acute non-cardiac chest pain: a systematic review. Emerg. Med. J. 29:267–273.

Whiteford, H. A., L. Degenhardt, J. Rehm, A. J. Baxter, A. J. Ferrari, H. E. Erskine, et al. 2013. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382:1575–1586.

Wittchen, H. U., F. Jacobi, J. Rehm, A. Gustavsson, M. Svensson, B. Jonsson, et al. 2011. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21:655–679.

World Health Organization. 2016. International classification of diseases and related health problems. WHO, Geneva.

Yang, Y.-L., L. Liu, Y. Wang, H. Wu, X.-S. Yang, J.-N. Wang, et al. 2013. The prevalence of depression and anxiety among Chinese adults with cancer: a systematic review and meta-analysis. BMC Cancer 13:393.

Yates, J. A., L. Clare, and R. T. Woods. 2013. Mild cognitive impairment and mood: a systematic review. Rev. Clin. Gerontol. 23:317–356.

Appendix 1: Checklist of items to include when reporting a systematic review or meta-analysis.

Section/Topic	No.	Checklist item
Title	1	Identify the report as a systematic review, meta-analysis, or both
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number
Introduction	3	Describe the rationale for the review in the context of what is already known
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS)
Methods	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number
Protocol and registration	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale
Eligibility criteria	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched
Information sources	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated
Search	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis)
Study selection	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means)
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) for each meta-analysis
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies)
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified
Appendix 1. Continued.

Section/Topic	No.	Checklist item
Results		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12)
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (1) simple summary data for each intervention group and (2) effect estimates and confidence intervals, ideally with a forest plot
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15)
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16])
Discussion		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers)
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias)
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research
Funding		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review

Appendix 2: Search terms

Embase

1 exp Meta Analysis/
2 ((meta adj analy$) or metaanaly$.tw.
3 (systematic adj (review$1 or overview$1)).tw.
4 or/1–3
5 cancerlit.ab.
6 cochrane.ab.
7 embase.ab.
8 (psychlit or psyclit).ab.
9 (psychinfo or psycinfo).ab.
10 (cinahl or cinhal).ab.
11 science citation index.ab.
12 bids.ab.
13 or/5–12
14 reference lists.ab.
15 bibliograph$.ab.
16 hand-search$.ab.
17 manual search$.ab.
18 relevant journals.ab.
19 or/14–18
20 data extraction.ab.
21 selection criteria.ab.
22 20 or 21
23 review.pt.
24 22 and 23
25 letter.pt.
26 editorial.pt.
27 animal/
28 human/
29 27 not (27 and 28)
30 or/25–26, 29
31 4 or 13 or 19 or 24
32 31 not 30
33 anxiety/or generalized anxiety disorder/or anxiety disorder/
34 prevalence.mp.
35 32 and 33 and 34
36 prevalen*.mp. [mp = title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword]
37 32 and 33 and 36

Medline

1 Meta-Analysis as Topic/
2 meta analy$.tw.
Prevalence of Anxiety Disorders in Adult Populations

O. Remes et al.
Appendix 3

Table A1. Systematic reviews describing the prevalence of anxiety disorders.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results	
Global distribution of anxiety disorders					
Somers 2006	Adults	Range: 500-20,000	Community surveys using probability sampling	Diagnostic criteria, standardized instruments or clinician diagnosis	Pooled one-year and lifetime prevalence of: Total anxiety disorders: 10.6% (7.5, 14.3), 16.6% (12.7, 21.1) PD: 1.0% (0.6, 1.5), 1.2% (0.7, 1.9) Agoraphobia: 1.6% (1.0, 2.3), 3.1% (2.1, 4.4) SAD: 4.5% (3.0, 6.4), 2.5% (1.4, 4.0) SP: 3.0% (1.0, 5.8) and 4.9% (3.4, 6.8) OCD: 0.5% (0.3, 0.9), 1.3% (0.9, 1.8) GAD: 2.6% (1.4, 4.2), 6.2% (4.0, 9.2) Anxiety higher in women SAD rates decline with age Switzerland, US: 23–28.7; Korea: 9.2
Baxter 2013	Adults	Range: 113-2620	Community surveys	Interview schedules, semi-structured instruments, diagnostic instruments that mapped to DSM or ICD	Global prevalence: 7.3% (4.8–10.9), 5.3% (3.5, 8.1) in African & 10.4% (7.0, 15.5) in Euro/Anglo cultures Women 2 × men; younger people more affected Adults 55 + 20% less anxiety than 35–55 20–50% lower risk in cultures compared to Euro/Anglo
Mirza 2004	Adults: ages 18–65 years from community and clinical settings	Range: 113-2620	Population-based, community, primary care samples; patients presenting to traditional or faith healers; psychiatric outpatients or inpatients Clinical and community settings in Pakistan	Psychiatric diagnoses, diagnoses made by trained workers using validated instruments	Anxiety prevalence: 1.76–25% Middle-aged more affected
Vehling 2012	Adults: 38–73 years	Mostly US studies	Structured clinical interviews	4-week prev. of anxiety disorders: 10.2% (6.9, 14.8) [International & German]; 13.5% (7.1, 24.3) [German only] Germans with breast cancer: anxiety 28–33%; SP 5.2% (3.3, 8.2) & GAD 3.7% (2.3, 6.0) common	
Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results	
----------------	---	-----------------	---------------------------	---	
Baxter 2014	DSM/ICD community studies on people, all ages; GHQ for studies on secular trends	Community-based studies	Surveys, diagnostic criteria	Age-standardized global point prev.: 3.8% (3.6–4.1%) in 1990; 4.0% (3.7–4.2%) in 2005 and 2010	
	Range: 116–78,290			Anxiety women:men ratio of 1.9:1	
				Sharp rise in adolescents; highest prev. 15–35 years	
				Prev. lowest in East Asia [2.8% (2.2–3.4%)] and highest in North America & North Africa/ Middle East [7.7%, (6.8–8.8%) vs.7.7% (6.0–10%)]	
Haller 2014	Pop-based studies of subthreshold DSM/ICD GAD in adults 15–96 years	General population and primary care sample	Diagnostic criteria	12-month median prev. – 3.9% (range: 2.1–6.6%)	
	Range: 90–17,739	Clinical and community settings		When GAD duration criterion relaxed, prev of subthreshold GAD increased: 12 month prev. with 3 + mo. vs. 1 + mo. duration: 3.6% vs. 6.1%	
		Mostly North American and European data		Higher prev in younger people in clinical samples, but higher in older people in community (3%)	
				Median point prev. in primary care: 5.9% (1.3–8.3%)	
				Women higher prev than men	
				42% of young women with subthreshold GAD also had other subthreshold mental disorders	
				Subthreshold GAD mostly comorbid with other anxiety disorders	
Steel 2014	26 high-income and 37 LMIC countries	Population sample: Census or probabilistic epidemiological procedures used in surveys		Period prev of anxiety disorders in men 4.3% (3.7–4.9%), 8.7% (7.7–9.8%) in women	
Search: Jan 2014	Mostly 16–65 years	Community settings		Lifetime prev of anxiety disorders in men 10.1% (8.8–11.6%), 18.2% (16.2–20.4%) in women	
# incl. studies: 174	Samples of 450+ people			Same pattern of gender differences in HIC and LMIC countries	
Meta-analysis: yes	Median n: 2314				
Addiction	All-age participants with opiate dependence	Clinical samples from drug treatment programs	Structured interviews and diagnostic criteria	Lifetime prev: 2-58% and 5–67%	
Fatseas 2010	Range: 50–716			SP, SAD, GAD common	
Search: Jan 2009				Narrower prev with recent DSM criteria	
# incl. studies: 18					
Meta-analysis: no					
Table A1. Continued.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
Fischer 2012	Adults	General population samples Community settings All North American, mostly US studies	Standardized (clinical diagnostic) and nonstandardized indicators or symptoms	Symptoms prev in general pop: 16% (1–30)
Search: Dec. 2011	# incl. studies 9			
Meta-analysis: yes	Range: 1,086–166,453			
Goldner 2014	Patients at admission or in treatment for substance abuse problems from US and Canada	Chart review of admissions and discharges, survey of people entering treatment programs Clinical settings All North American, mostly US studies	Clinical diagnostics based on DSM, other clinical assessments, or symptom self-reports	Prev of diagnosis and symptoms: 38% (14–63) Diagnosis prev: 29 (14–44); symptoms: 50% (16–84) No significant age or sex-effects
Search: April 2012	# incl. studies 11			
Meta-analysis: yes	Sample size not rep.			
Lorains 2011	Adults	General population samples/surveys Community settings Mostly US studies	Validated screening tool standardized measurement tools	Prev: 37.4%
Search: Sept. 2010	# incl. studies 11			
Meta-analysis: yes	Range: 2417–43,093			
Ho 2014	Age 10+	Postal survey, students, respondents to ads Community settings Mostly Asian samples	Standard questionnaires, symptom checklists, interviews	Prev of anxiety in IA patients vs normal controls: 23.3% (95% CI: 14.8–34.8) vs 10.3% (5.0–19.9) Anxiety most prev in young age groups with IA (19–39 years highest burden)
Search: 2012	# incl. studies 8			
Meta-analysis: yes	1641 patients with internet addiction (IA) and 11,210 controls without IA			
Other mental and neurological disorders				
Fajutrao 2009	Patients with bipolar disorder	Surveys: general population, inpatients Clinical and community settings European studies	DSM diagnoses	13–28% of bipolar patients with anxiety GAD and PD common 70%, 24% 16% for Italy, France, Germany
Search: past 10 years	# incl. studies 26			
Meta-analysis: no	Range: 72–1,631,462			
Amerio 2014	Pop-based and hospital-based studies on DSM OCD in bipolar disorder (BD), ages 6+	Clinical and community settings Most studies conducted in Europe and North America	Interviews, DSM criteria	Pop-based US, Italian studies: lifetime prev of OCD in BD: 11.1–21% Hospital-based studies: lifetime prev: 1.8–35.1% OCD onset usually concomitant with first mood episode
Search: Mar 2013	# incl. studies 64			
Meta-analysis: no	Range: 15–1416			
Swets 2014	Schizophrenia patients	Mainly clinical settings	Interviews, symptom scales, DSM	Prev of OCD and OCS in schizo: – 12.3% (9.7–15.4%) & 30.7% (23–39.6%); meta-regression: prev of OCS: 30.3% Lower OCD prev: Sub-Saharan African origin, recent onset schizo. Higher OCD prev: DSM-IV and Y-BOCS; after adjustment: OCD prev 13.6% (11.8–15.8%) Higher prev with Y-BOCS, OCI Prevalence of OCD/OCS in studies using YBOCS/OCCI: 16.9% (13.25–21.1%) vs studies not using YBOCS/OCCI: 8.0 (5.3–11.9%) Higher the YBOCS threshold, lower OCS prev
Search: Dec 2009	# incl. studies 43			
Meta-analysis: yes	18–509			
Table A1. Continued.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
Marrie 2015	MS populations; all ages Range: not rep.	Population-based, possibly other sampling Some studies conducted in community settings Most studies from Central or Western Europe or parts of North America	Structured diagnostic interviews, medical records review, self-reported diagnoses, validated instruments	Anxiety at MS symptom onset: 2.72% vs 6.23% at diagnosis; prev. of health anxiety in MS: 26.4% Pop-based studies – anxiety prev: 21.9% (8.76–35.0%) Anxiety prev questionnaires vs admin data/medical records: 25.5% (16.7–34.3) vs. 15.4% (0.39)

Chronic physical diseases

Cardiovascular disease

Study	Search	# incl. studies	Meta-analysis	Population	Sampling methods	Anxiety assessment methods	Anxiety prevalence
Jansen 2008	May 2007	39	no	End-of-life CHF, COPD, CRF patients Mean age: 38–86	Proxies and patients recruited, chart/medical record review	Single diagnosis interviews, chart review, self-reported diagnoses	↓ CHF: 2.49% (anxiety prev) COPD: 32–57% CRF: 20–41% CRF terminal: 25%
Solano 2006	June 2004	64	no	Adults with advanced cancer, AIDS, heart disease, COPD, renal disease Range: 19–10,379	Medical records, interviews with patients’ families, proxies used, prescriptions for psychotropic drugs Some studies conducted in clinical settings	Lifetime GAD: 25.8% (20.84, 30.8)	
Tully 2013	May 2011	12	no	Older people: median age: 60 years Range: 86–1015	Primary care sample, CHD patients attending rehab, outpatient clinic, people going in for surgery Clinical studies Mostly US studies	Diagnostic interview tools	GAD prevalence: 10.94% (7.8, 14.0) Lifetime GAD: 25.8% (20.84, 30.8)
Clarke 2009	May 2003	159	no	Sample size: not rep.			Heart disease – PD: 10–50% Diabetes mellitus: 14% with GAD Cancer: 15–23%; more advanced stage: 69% Arthritis and osteoporosis link to anxiety Women more anxiety than men (55.3% vs 32.9%)
Table A1. Continued.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
Webster 2012	Adults with (nonspecific) acute chest pain in acute care Range: 50–1300	Patients admitted to ED Clinical studies	Symptom checklists	21–53.5% of NCCP patients had probable anxiety Women and younger patients – elevated anxiety Anxiety levels in NCCP similar to or higher than in CCP or healthy controls
Campbell Burton 2013	Mean age: 66-71 years Range: 15–498	Population-based (all stroke patients recruited from particular geographical area), hospital- and rehabilitation-based (inpatients or those attending rehab facilities), community-based (did not attempt to capture all stroke cases in geographic area)	Anxiety symptom scales, clinical diagnoses, single question measure, researcher-developed questions	Prev of anxiety disorders: 18% (8–29) PD & GAD common Anxiety caseness (sitting scales): 25% (21–28) 1/3 of patients with post-stroke anxiety had pre-stroke mood or anxiety High anxiety-depression comorbidity
Cancer	Clarke 2009 – previously described			
	Solano 2006 – previously described			
Yang 2013	Adults 18 + years from Mainland China Range: 380–2554	Undear (assessed “patients”) Mainland China studies	Clinical diagnosis, symptom checklists, self-report questionnaires	Anxiety prev: 49.7% (range: 20–89.1) in cancer, and 17.50% in the noncancer control group
Vehling 2012 – previously described				
Lim 2011	Patients 21–65 on treatment for early-stage breast cancer Range: 48–332	Women who were undergoing/had undergone breast cancer treatment (ex. RCT studies: patients from the center randomly selected to receive various treatment types; non-RCT studies: women undergoing various cancer treatments/surgeries, patients from oncology clinics; patients assessed at home)	Symptom checklists	20% to 58% Less anxiety if given treatment choice More state/trait anxiety during chemo than radiotherapy Greater trait anxiety in young women during chemo
Arden-Close 2008	Ovarian cancer patients Range: 9-246	Undear (included patients, cancer survivors) Mostly US studies	Standardized and nonstandardized assessment tools, symptom checklists	Prev: 47% at 3 months following treatment Anxiety levels increased from treatment completion date to 3-month follow-up Young age groups disproportionately affected
Table A1. Continued.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
Mitchell 2013	Adult patients compared with spouses, IQR sample size: 145–270	Cases: outpatient clinic, database cancer registry, hospitals, general population; recruitment: random sample (population-based), patients treated in a certain time period; prescription for psychotropic drugs; Controls: comparator matching by sociodemographics, convenience sample, matched partner pair Clinical and community settings	Symptom checklists, structured questionnaire for DSM, prescription of psychotropic drugs, clinical diagnosis	Prev. long-term cancer survivors vs. healthy controls: 17.9% (12.8–23.6), 13.9% (9.8–18.5); anxiety higher in cancer patients regardless of methodological factors Long-term cancer survivors vs. spouses: 28% (22.3–33.9), 40.1% (25.4–55.9); age/sex effect not rep.
# incl. studies	43			
Meta-analysis:	yes			
Janssen 2008	Previously described			
Davydov 2008	Adults survivors in the United States and Germany	Sampling not mentioned – assessed patients following ICU discharge US and German studies	Symptom checklists	23–48%
# incl. studies	10			
meta-analysis:	no			
Solano 2006	Previously described			
Diabetes				
Smith 2013	Adults ages 16+ years Range: 635–217,379	Sampling not mentioned/unclear Mostly North American and European studies	Surveys, clinical interview(s), validated scale	Prev (HADS-A): 15–73% in diabetic patients and 19.9–43.1% in ref groups Prev of anxiety disorders (clinical interviews): 1.4–15.6% in diabetic patients; 1.6–8.8% in ref
# incl. studies	12			
meta-analysis:	yes			
Grigsby 2002	Adults ages 18+ Range: 20–634 (for diabetic subjects) Mast studies based on primary care/clinical samples	Structured or semi-structured diagnostic interviews, self-report measures	Current and lifetime prev (%) of anxiety in diabetes: GAD: 13.5, 20.5; panic: 1.2, 1.9 OCD: 1.3, 1.1; Agoraphobia: 4.6, 10.2 SP: 21.6, 24.8; SAD: 7.3, 9.3 Any phobia: 6.8, 10.4 Any anxiety disorder: 14.0, 25.8 Anxiety not otherwise specified: 26.5, 39.0 Elevated symptoms: 39.6 Higher prev of anxiety symptoms in women than in men: 55.3 vs. 32.9 No diff by diab. Type; GAD most prevalent Anxiety dis. & symp: 25.8%, & 39.6%	
Table A1. Continued.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
Other chronic physical diseases				
Clarke 2009 -- previously described				
Dokras 2012	PCOS subjects and non-PCOS controls	Screened clinic populations, 1 study used telephone screening	Anxiety screening tool	Anxiety prev: 1–37.5% in PCOS; 0–13 in controls Prev of generalized anxiety symptoms in PCOS and controls: 20.4% vs. 3.9% SAD and OCD more common in PCOS; age effects not rep.
# incl. studies 9	Range: 44–206	Mostly clinical settings	Mostly/Western studies	
Meta-analysis: yes				
Smith 2014	Mostly adult, Mediterranean pop.	Clinically representative participants Recruited participants from school settings, university, primary care/ community health care settings, hospital outpatient departments		Anxiety prev: 5–68% in BIHS; 5–32% in non-BIHS BIHS have more PD, agoraphobia and fear than non-BIHS
# incl. studies 14	30 BIHS people & 25 controls-182 people BIHS & 1123 controls			
Meta-analysis: yes				
Andersen 2014	Adults (mean age: 43–50) from Western countries with musculoskeletal pain >= 3 months	Primary care clinics or hospital services; recruitment general population, through ads.; mostly outpatients	Symptom checklists and structured clinical interview	Pooled one-year and lifetime prevalence of: Clinical and general anxiety levels: 0–20.9% (highest prev. with SCID) Highest anxiety prev. in fibromyalgia
# incl. studies 24	Range: 84–3928	Western studies		
Meta-analysis: no				
Dawson 2014	Adults with age-related macular degeneration (AMD) age 18+	Recruited from eye clinics, GP clinics Clinical specialist setting	Almost all symptom checklists, structured clinical interview	Generally no link with anxiety found, but one study reported prev of 30.1% in AMD
# incl. studies 16	Range: 51–32,702	Western studies, many US		
Meta-analysis: no				
Other chronic physical diseases in end-stage				
Mitchell 2011	4007 adults age 18+ in palliative care; 10,071 adults in palliative care and oncological settings	Patients from oncological, hematological, and palliative-care settings	Psychiatric interviews	9.8% (6.8–13.2) in palliative-care, and 10.3% (5.1–17.0) in oncological and hematological settings
# incl. studies 94		Mostly/Western studies		
Meta-analysis: yes				
Janssen 2008 – previously described				
Murtagh 2007	Adult patients diagnosis of end-stage renal disease	Clinical settings	Standardized psychiatric interview, survey, validated screening tools	Anxiety prev: 38% (12–52)
# incl. studies 60	Range: 19–5256			
Meta-analysis: No				
Table A1. Continued.

Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
Solano 2006 – previously described				
Mckechnie 2014	Traumatic limb amputees, age 18 +	Military patients (including veterans from Vietnam, Iraq, Afghanistan)	ICD or DSM diagnoses, symptom checklists	Anxiety ranged from 25.4-57% in this pop
Search: June 2013	Range: NR	Mostly UK and US studies		
# incl. studies 13				
Meta-analysis: no				
Chen 2010	Individuals with history of sexual abuse compared to those without	Registries, school health or GP records; referral from the rape crisis center, conscripts, voters, general population, friends of victims (controls)	Mostly structured diagnostic interview	Lifetime anxiety in people with sex abuse: 2-82% Associations between sexual abuse and MD persisted regardless of sex of survivor and age at which abuse occurred
Search: Dec. 2008	Range: 34–1,574,100	Clinical, community settings		
# incl. studies 37 studies				
Meta-analysis: yes				
Fazel 2005	Adult refugees from southeast Asia, former Yugoslavia, middle east, Central America; weighted mean age = 27	Opportunistic sampling (ex. student enrolment lists, health-screening programs)	Clinical interview, trained interviewers using validated diagnostic methods	4% (3-6) of refugees diagnosed with GAD
Search: Dec. 2002	Range: 6743 adult refugees	High-income western countries; ¾ participants from southeast Asia	Community settings	
# incl. studies 20				
Meta-analysis: yes				

Vulnerable population subgroups

Older people and their caregivers

Bryant 2008	People 60 + years in community or clinical settings	Community surveys, GP lists, geriatric hospital, general hospital, case register, clinic referrals, consecutive series; participants included institutionalized older adults, nursing home residents	Checklists, self-report, clinical record review, clinical diagnoses	Anxiety in community: 1.2–14%; anxiety in clinical samples: 1–28% Anxiety symptoms: 15–52.3% in community and 15–56% in clinical samples PD: 1.4–25.6%; Agoraphobia: 0.4–20% SP: 5.9–13.1%; SAD: 0.0–18.7% OCD: 0.6–1.8%; PD: 0.0–10.5% GAD commonest & more women with anxiety
Search: 2007	Range: 286–10,641			
# incl. studies 49				
Meta-analysis: no				
Volkert 2013	Older people 50 + years mainly from Germany, US, Sweden	Mostly random samples, representative samples, 1 study contacted all elderly of one town, sample stratification according to various criteria	Diagnostic interviews, dimensional instruments	Current and lifetime PD: 0.88% (0.76, 0.99), 2.63% (2.43, 2.84) Agoraphobia: 0.53% (0.39, 0.66), 1.00% (0.54, 1.45); SP: 4.52% (4.15, 4.89), 6.66% (6.17, 7.15) SAD: 1.31% (1.18, 1.44), 5.07% (4.82, 5.32) GAD: 2.30% (2.03, 2.57), 6.36% (5.57, 7.14) OCD: 0.90% (0.63, 1.17), 0.97 (0.55, 1.38) Lower SP prev in old
Search date: Dec. 2011	Range: 242–22,777	Community settings		
# incl. studies 25				
Meta-analysis: yes				

Prevalence of Anxiety Disorders in Adult Populations

O. Remes et al.

Brain and Behavior, doi: 10.1002/brb3.497 (22 of 33)

© 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]), and summary of results
Monastero 2009	Mean age at baseline ranged from 65–80 years	Hospital-based samples with MCI, population-based samples with MCI, clinical trial of MCI subjects	Behavioral instruments including diagnostic interviews (clinical interview, trained interviewer)	Prev: 11–74% Anxiety is common in Alzheimer’s disease
Yates 2013	Clinical samples with MCI or community samples of older people	People self-referred or referred by GP to memory clinic; people recruited from general population	Anxiety symptom scales	Prev of anxiety: 11–75% in elderly with MCI Women and younger caregivers higher anxiety
Cooper 2007	Caregivers of people with dementia	Case-note review to identify caregivers of old people referred to psychiatry service; cohort studies UK and US studies	Diagnostic interview schedules, symptom scale	3.7–76.5% Prev depended on study time period, sample, anxiety caseness definition
Russell 2013	Pregnant and postpartum women (up to 12 months)	Community and outpatient referrals Controls: general population samples All continents included	Structured diagnostic interviews	Overall prev: 1.08% (0.80, 1.46) in general pop of women; 2.07% (1.26, 3.37) during pregnancy; 2.43% (1.46, 4.00) during postpartum
Molyneaux 2014	Overweight or obese women at start of pregnancy vs normal weight control women Total 540,373 women	Medical records; women seeking prenatal care; primary care or hospital centre sample; all women living in Avon expected to deliver in a certain time period; Recruitment from prenatal exercise classes, obstetrician and gynaecologist waiting rooms (through newsletter), women with low-income insurance Clinical and community Mostly Western studies (esp. UK and US)	Diagnostic and screening measures; did not include measures of state anxiety	Low-income Brazilian women: anxiety prev: 35% obese, 35.7% overweight, 31% normal weight Postpartum anxiety prev: symptoms across studies ranged from 4.7% in obese (4% in overweight, 4.2% in normal weight) to 33.3% (13.3% in overweight, 16.4% normal weight)
Sawyer 2010	Ethiopian and Nigerian women Range: 101–632 (anxiety studies)	Antenatal and postnatal health clinics, community All studies from Africa, most from Nigeria	Most used structured clinical interviews, many used self-administered measures, some used both	Pre- and postnatal anxiety prevalence: 14.8% (12.3–17.4) and 14.0% (12.9–15.2) Younger women more anxious
Review details	Population characteristics and sample size	Sampling methods	Anxiety assessment methods	Anxiety prevalence (prevalence %, [95% CI]) and summary of results
---------------	---	-----------------	----------------------------	---
LGB and self-harm patients				
King 2008	Anxiety in LGB and heterosexual groups	Random sampling, multi-stage sampling, snowball sampling, some primary studies did not specify method	Standardized scales	Anxiety prev: 3–20% and 3–39% in men and women
Search: 2005	Range: 79–194 (for anxiety studies)	Community settings		Stigma and discrimination contributors
# incl. studies 25				
Meta-analysis yes				
Hawton 2013	All age patients presented to hospitals following self-harm (self-poisoning, self-injury, suicide attempt)	Consecutive admissions to different departments, recruitment on specific days, consecutive referrals to suicide unit, random sample	Research diagnostic criteria and clinical diagnoses converted to DSM-IV	Prev of anxiety disorders: 34.6% (21.9–48.6) Anxiety prev in women and men: 42% & 38% Small sex-based diff; prev high in young and old
Search: Nov. 2011	Range: 22–1158	Clinical samples		
# incl. studies 50	All studies of non-Western countries from Asia, most Western studies from UK			
Meta-analysis yes				

SP, specific or simple phobia; PD, panic disorder; GAD, generalized anxiety disorder; SAD, social anxiety disorder; OCD, obsessive compulsive disorder; anx, anxiety; NR, not reported.
Table A2. Directions for future research and reported limitations.

Review details	Directions for future research	Reported limitations	QA*
Global distribution of anxiety disorders			
Somers 2006	Incidence and onset studies needed	Original studies	5
Search: 2004	Research on anxiety risk & protective factors, and social variables as mediators	Heterogeneity: diagnosis criteria and instruments used (ex. lower estimates with use of DIS and DSM-III than CIDI and DSM-III-R)	
# incl. studies 39	Prev of anxiety in special groups (e.g., medical patients, residents of nursing homes)	Review	
Meta-analysis: yes	Clarify epidemiology of anxiety to help with deployment of treatment	Heterogeneity: diff countries, response rate, sample size	
Baxter 2013		Original studies	10
Search: 2009	Further research on: Impact of conflict on mental health	Limited measurement equivalence across cultures – results should be interpreted with caution	
# incl. studies 87	Aspects of wealth related to anxiety	Rural study results – should be interpreted with caution	
Meta-analysis: yes	Cultural aspects (ex. psycho-stressors) related to anxiety	Study design differences	
Mirza 2004		Review	
Search: March 2002	Robust evidence (ex. conduct national, mental health epidemiology surveys) to develop mental health policy with strategic implementation plan for Pakistan	Most studies from Punjab and Sind	5
# incl. studies: 20	More outcome studies, prevention and treatment trials needed	Heterogeneity in study design and instruments – limited generalizability	
Meta-analysis: no		Review	
Vehling 2012		Original studies	7
Search: not rep.	Representative studies	Estimate heterogeneity and study quality	
# incl. studies 89		Limited generalizability	
Meta-analysis: yes		Review	
Baxter 2014		Original studies	10
Search: 2009		Limited or no data from Central Asia, Andean Latin America, Oceania, Central sub-Saharan Africa, Central Europe, South-east Asia	
# incl. studies 91		Possibly biased population samples (ex. conflict region studies may have oversampled those exposed to conflict)	
Meta-analysis: yes		Review	
Haller 2014	Clarify subthreshold GAD vs. nonpathological anxiety – use impairment criterion for this	Original studies	7
Search: 2006	Should treatment strategies used for threshold disorders be used for subthreshold cases?	Inadequate study response rates	
# incl. studies 18		Heterogeneous definitions of subthreshold GAD	
Meta-analysis: no		Review	
Steel 2014		Some studies missed	
Search: Jan 2014		Difficult to define search terms for subthreshold GAD	
# incl. studies 174		Insufficient studies for subpopulations	
Meta-analysis: yes		Different study quality	

© 2016 The Authors. *Brain and Behavior* published by Wiley Periodicals, Inc. Brain and Behavior, doi: 10.1002/brb3.497 (25 of 33)
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Addiction			
Fatseas 2010	Effectiveness of treatment for phobias in opiate-dependent patients	Original studies	5
Search: Jan. 2009			
# incl. studies 18			
Meta-analysis: no			
Fischer 2012	Longitudinal studies to assess reasons for using NMPOU in individuals with mental health problems	Original studies	6
Search: Dec. 2011			
# incl. studies 9			
Meta-analysis: yes			
Goldner 2014	Relationship between NMPOU and mental illness	Original studies	8
Search: April 2012			
# incl. studies 11			
Meta-analysis: yes			
Lorains 2011	Health care workers should: Assess for comorbidities	Original studies	5
Search: Sept. 2010			
# incl. studies 11			
Meta-analysis: yes			
Ho 2014	Genetic transmission of IA: Patients with IA should be screened for anxiety and vice versa & integrated treatment recommended	Original	8
Search: 2012			
# incl. studies 8			
Meta-analysis: yes			
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Other mental and neurological disorders			
Fajutrao 2009	Bipolar disorder in Europe	Original studies	5
Search: past 10 years		Anxiety assessment and reporting methods differ	
# incl. studies 26		Retrospective and nonrepresentative samples	
Meta-analysis: no		Review	
		Focus on electronic databases; language selection criteria	
Amerio 2014	Assess history of mood disorders in OCD patients	Original studies	5
Search: Mar 2013	Treatment research (ex. use of mood stabilizers)	Differences in evaluation, diagnosis, reporting	
# incl. studies 64	Studies on hereditary and biological markers,	Mostly observational, retrospective studies, lack of control group, small sample size, sampling bias	
Meta-analysis: no	diagnostic validity of BD-OCD comorbidity and its treatments		
Swets 2014	Use random sampling	Original studies	5
Search: Dec 2009	Training needed to assess OCS	Different instruments and criteria used (ex. lower estimates with DSM-IV-R than later versions; lower prev with DIGS)	
# incl. studies 43	Diagnostic standardization needed, careful patient selection	Sampling variability (different patient characteristics)	
Meta-analysis: yes	Detailed assessment of OCD; use SCID OCD def. followed by Y-BOCS administration	Possible sampling bias, help-seeking/patients selection can influence prev rates	
	Assess OCS in patients with psychosis		
	Shift from descriptive to treatment studies		
Marrie 2015	Be consistent: compare psychometric properties of instruments and use same instrument to assess anxiety	Original	5
Search: Nov. 2013	Standardize estimates to common (world) population	Differences in study design: different data sources, populations, definitions of psychiatric disorders	
# incl. studies 118		Little info on age-, sex-, or ethnicity-specific estimates	
Meta-analysis: yes		Review	
		NR	

Chronic physical diseases

Cardiovascular disease			
Janssen 2008	Prospective research that considers view of patients, their families, their physician for symptom management	Original studies	5
Search: 2007		Different rates of symptom reporting with different proxies and depending on timing of interview	
# incl. studies 39		Differences in: methods of reporting; definition of end-of-life (ex. different estimates in last week vs. last year of life); patient characteristics; definition and measurement of symptoms	
Meta-analysis: no		Review	
Solano 2006		NR	5
Search: June 2004			
# incl. studies 64		Heterogeneity in definition of symptoms (different criteria), methods to detect cases of symptoms (different questionnaires and screening methods used), study design, sampling, study setting, methods of data collection	
Meta-analysis: no			
Tully 2013	Further GAD research in CHD	Original studies	6
Search: May 2011	Specific anxiety disorders rather than trait/state anxiety	Heterogeneity: diagnostic criteria for GAD, gender ratio, patient age	
# incl. studies 12	“Any anxiety” not clinically informative in cardiac settings	Review	
Meta-analysis: yes		Low rate of publications on GAD	
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Clarke 2009	**Effectiveness of interventions** Large prospective studies Anxiety assessed in parallel with chronic conditions	Original studies Different rating tools & diagnostic criteria; low power Review Heterogeneity	
Webster 2012	**Theory-driven research to examine link between patients’ perceptions (ex. chest pain) and mental health** Does providing explanations for patients’ chest pain reduce their anxiety? Longitudinal design to assess mental health trajectory in NCCP Use reliable and valid measures for mental disorders with recommended cut-offs	Original studies Different caseness cut-offs Risk factor research used cross-sectional designs Few studies on correlates of poor mental health in NCCP Review Possible publication bias Large heterogeneity in study settings	5
Campbell Burton 2013	**Mood assessment tools appropriate for stroke patients** Guidance on best time to screen for anxiety What is the impact of anxiety and its economic burden in the context of stroke?	Original studies Different cut-off scores used Most studies cross-sectional, so difficult to determine whether pre-stroke anxiety is linked to post-stroke anxiety Few studies differentiated btw. “first-ever” and “current anxiety” Some scales were not validated in stroke populations Review Potential publication bias & heterogeneity Some studies not included in review	10

Cancer

Review details	Directions for future research	Reported limitations	QA*
Clarke 2009 – previously described			
Solano 2006 – previously described			
Yang 2013	**Use control groups with diseases other than cancer**	Original studies Anxiety assessed using different instruments Studies were cross-sectional so cannot determine temporality between anxiety and cancer development Review Few studies & lacking international literature Potential publication bias	9
Vehling 2012 – previously described			
Lim 2011	**Studies in different settings assessing effect of cancer treatment on anxiety** Interventions for anxiety in women with breast cancer Ways to decrease state anxiety and help women cope with chemotherapy, despite their level of trait anxiety	Original studies Small sample sizes Review Difference in treatment, tools & timing of measurement	6
Arden-Close 2008	**Longitudinal studies and RCTs needed to clarify directionality between immunity and mental illness** Prospective research needed to test trajectories of change in mental illness following cancer diagnosis and treatment Interventions targeting distress (ex. coping) Attention to sample size and validation of questionnaires	Original studies Certain correlates of mental illness tested in too few studies Lack of validation of assessment tools Small sample sizes Residual confounding Limited generalisability (US)	6
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Respiratory disease			
Mitchell 2013	Link between health-related quality of life and anxiety	Original studies	11
Search: March 2013	Studies on anxiety in palliative settings or in patients with advanced cancer	Differences in: quality of matching with healthy controls, study quality, study design, case ascertainment	
# incl. studies 43	More reliable estimates by use of interview methods	Possible uncontrolled factors	
Meta-analysis: yes		Heterogeneity in healthy controls (review authors had limited info on recruitment of healthy controls in studies)	
		Review – NR	
Diabetes			
Smith 2013	Risk factors for psychopathology	Original studies	5
Search: July 2012	More rigorous assessment of psychopathology	Mostly psychiatric questionnaires used with diff. sensitivities, ex. screening instruments or measures of symptom severity (not necessarily validated for ARDS survivors)	
# incl. studies 12	Anxiety in ICU as risk factor for post-ALI/ARDS psychopathology	Small sample sizes	
Meta-analysis: yes	To what extent are risk factors for ALI/ARDS related to development of mental illness in those without ALI/ARDS	Review	
		Small number of studies	
Other chronic physical diseases			
Dokras 2012	Longitudinal studies to identify behavioral and physiological mechanisms related to anxiety in diabetes	Original studies	6
Search: April 2011	More community-based studies to estimate anxiety prev in diabetes	Small sample sizes	
# incl. studies 9	Assess potential moderators	Lacking data on race/ethnicity influence on anxiety prev	
Meta-analysis: yes	Studies on causal mechanisms	Differences in scales used to measure anxiety and in aggregation/reporting of results (ex. assessment of 1 anxiety disorder vs. aggregate of several anxiety disorders)	
		Lack of data on prev of anxiety by diabetes type	
		Review	
		Small number of studies	
		Few studies included nondiabetic comparison group	

© 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. Brain and Behavior, doi: 10.1002/brb3.497 (29 of 33)
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Smith 2014	Longitudinal studies for insight into etiology and trajectory of anxiety in PCOS	Review	Small sample sizes, possible publication bias
Search: January 2013	Degree of BIHS related to mental illness	Original studies	Limited generalizability (mainly Mediterranean adult populations), mostly cross-sectional designs
# incl. studies 14	Biological link between BIHS and anxiety (ex. abnormal reactive autonomic nervous system)		Possible cross-cultural differences in expression of anxiety
Meta-analysis: yes	Influence of nonpharmacologic treatment on alleviating anxiety in those with BIHS		
	Anxiety in BIHS in other cultures		
Andersen 2014	Degree of BIHS related to mental illness	Original studies	Different recruitment methods, study inclusion criteria
Search: Sept. 2012	Biological link between BIHS and anxiety (ex. abnormal reactive autonomic nervous system)		Most study patients were women, thus, possible overestimation of significance of results
# incl. studies 24	Influence of nonpharmacologic treatment on alleviating anxiety in those with BIHS		Different measurement methods: questionnaires, clinical evaluations, structured interviews (some methods not validated for pain patients)
Meta-analysis: no	Anxiety in BIHS in other cultures	Review	Search strategy
Dawson 2014	Does anxiety come before onset of AMD?	Original studies	Is anxiety different in different forms of AMD?
Search: Feb 2012	Link between length of time since AMD diagnosis and AMD treatments in relation to patient’s mental health		Different definition and measurement of anxiety
# incl. studies 16	Include control group to compare prev of anxiety between AMD and non-AMD populations	Review	Comparison group may not be representative
Meta-analysis: no	Use tools with clear cut-off for clinical anxiety		Small number of studies

Other chronic physical diseases in end-stage

Review details	Directions for future research	Reported limitations	QA*
Mitchell 2011	Studies on incidence and prevalence of symptoms in ESRD, their causes, and interventions	Original studies	No consensus about optimum psychiatric diagnostic approach in cancer settings
Search: Nov. 2010	Population-based, longitudinal studies		Studies of variable quality, mostly cross-sectional designs, some used convenience sampling, different anxiety measurement methods
# incl. studies 94	More information on generalizability of available studies		Could not determine correlates of anxiety
Meta-analysis: yes	How do symptoms vary between those managed without dialysis and those withdrawing from dialysis?	Review	Few studies with defined period of prevalence
	Symptoms burden in ESRD		Possible publication bias
	Symptoms experienced at end of life		
Janssen 2008 – previously described	Identify what is common and different between those dying from ESRD and other palliative populations	Original studies	Heterogeneity: symptom definition, who defines a symptom (reporting), different periods over which prevalence is measured, different tools used
Murtagh 2007	Studies on incidence and prevalence of symptoms in ESRD, their causes, and interventions	No population-based studies	
Search: April 2005	Population-based, longitudinal studies	Review	
# incl. studies 60	More information on generalizability of available studies		
Meta-analysis: No	How do symptoms vary between those managed without dialysis and those withdrawing from dialysis?	Search strategy	
	Symptoms burden in ESRD		
	Symptoms experienced at end of life		
Solano 2006 – previously described	Identify what is common and different between those dying from ESRD and other palliative populations		

Prevalence of Anxiety Disorders in Adult Populations

O. Remes et al.

Brain and Behavior, doi: 10.1002/brb3.497 (30 of 33) © 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Trauma			
McKeechnie 2014	Prospective studies assessing long-term levels of anxiety in post-traumatic amputees, and whether rehab programmes are successful and mental health issues continue after the programme ends	Original meta-analysis: no info on how prev changes with time since amputation (anxiety assessed at fixed time point) Different scoring systems in different populations at various follow-up times Selected specialist samples not representative of all traumatic amputees Sampling – possible selection bias Attrition during follow-up	8
Chen 2010	Interplay between stressful life events, vulnerability genes, and development of psychiatric disorders (gene-environment interactions)	Original studies Self-report (recall bias), abuse underreport Anxiety affected by unmeasured forms of abuse?	8
Fazel 2005	Original studies Measurement equivalence issues: differences in sampling methods, diagnostic instruments Insufficient data on refugees in developing countries, asylum seekers, people internally displaced in their own countries Updated info on recently displaced refugees	Review	5

Vulnerable population subgroups

Older people and their caregivers

Review details	Directions for future research	Reported limitations	QA*
Bryant 2008	Hypothesis-driven research with late-life anxiety as primary focus Longitudinal designs Studies on anxiety in old age Prevention and early treatment should target old people in poor health and who are at risk for anxiety	Original studies Differences in definition and measurement of anxiety Measurement equivalence issues in elderly – is anxiety experienced differently in elderly? (case definition) Difficult to disentangle physical symptoms & anxiety in elderly Possible selection bias Older people may underreport anxiety Mostly cross-sectional studies	5
Volkert 2013	Studies on anxiety in elderly using improved methodology and accounting for changes in old age (adapted instruments)	Differences in instruments and diagnostic criteria Difficult to disentangle anxiety from physical diseases, somatoform disorders, and depression in elderly Instruments not designed for elderly – what constitutes anxiety in elderly? Heterogeneity: studies of different geographic and cultural regions and using different case definitions and case identification methods Difficult to recruit elderly for studies Review Studies in English and German – limited generalizability No missing data analysis	8
Review details	Directions for future research	Reported limitations	QA*
----------------	---------------------------------	----------------------	-----
Monastero 2009	Health care worker to distinguish primary behavioral changes from cognitive impairment Large, cohort studies using standardized instruments to assess NPS as prognostic factors in MCI Optimum ways to assess NPS in those with MCI Genetic and biological markers linking NPS to MCI and dementia	Original studies Possible selection bias Differences in age and sex distributions within studies Differences in instruments used/methods of reporting symptoms Review	5
Yates 2013	Anxiety and depression should both be considered Classification systems for MCI should consider anxiety Clarify directionality between anxiety and MCI	Original studies Heterogeneity: sampling differences, small samples (may not be representative), different ways of assessing mood/NPS Lacking info on link between anxiety and MCI subtypes Review Possible publication bias, English articles	5
Cooper 2007	Cohort studies Research on coping in relation to anxiety (this could be intervention target)	Original studies Lack of info on determinants of anxiety caseness in caregivers Review	5
Russell 2013	Prospective studies examining OCD during pregnancy and postpartum period Incidence studies needed Course of OCD across reproductive events Influence of biological determinants on OCD exacerbation throughout reproductive period	Original studies Small samples Difficult to match control studies on various factors Possible overestimation of OCD prev in some control studies OCD evaluated at different pregnancy time points, making comparisons difficult Review Published studies	8
Molyneaux 2014	Validation of anxiety scales for specific populations needed, ex. women in early pregnancy	Original	6
Sawyer 2010	Longitudinal studies to determine anxiety prev at different time points during and after pregnancy Develop cross-cultural measures of mental health	Original studies Small number of studies Measurement issues, timing of mental health assessment varied (thus, anxiety trajectory over time is unclear) Few studies on antenatal mental health and associated risk factors in African women Insufficient info on how maternal psychological problems impact children Review – NR	6
King 2008	Prospective studies to determine risk factors of mental disorders Refine definition of sexual orientation	Original studies Difficult to recruit and define LGB group Study design heterogeneity Heterogeneity in definitions of exposure and outcome	7
Table A2. Continued.

Review details	Directions for future research	Reported limitations	QA*
Hawton 2013	Studies on mental disorders in those who repeat self-harm	Original studies	6
Search: Nov. 2011		Measurement equivalence issues	
# incl. studies 50		Heterogeneity: methods used to recruit participants, different diagnostic measures used, differences in study participant gender ratios	
Meta-analysis: yes		cross-sectional studies	
Review		English language studies	

*prev, prevalence; anx, anxiety; NR, not reported; QA, quality assessment based on AMSTAR criteria.