A Nationwide Survey of Spinal Cord-Related Pain Syndrome in Japan: Clinical Characteristics and Treatment

Hideaki Nakajima, Kenzo Uchida, Masakazu Takayasu and Takahiro Ushida

1) Departments of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimaizaki, Eiheiji, Japan
2) Departments of Neurosurgery, Aichi Medical University, Nagakute, Japan
3) Multidisciplinary Pain Centre, Aichi Medical University, Nagakute, Japan

Abstract:

Introduction: In this study, we defined chronic neuropathic pain (NeP) in patients with diseases associated with spinal cord damage, such as spinal cord-related pain syndrome, and performed a nationwide survey investigating the prevalence, actual status, and features of this syndrome in Japan in order to gather basic information needed for planning control measures.

Methods: In this nationwide epidemiologic survey, a mail-in questionnaire was sent to 3,206 institutions throughout Japan certified by the Japanese Orthopaedic Association (2,065 institutions) and the Japan Neurosurgical Society (1,141 institutions). The survey included the number of patients, frequency, and type of allodynia, concomitant diseases, and types of and responses to treatment.

Results: Valid responses were obtained from 552 institutions on 3,401 patients. Of these, 1,719 (50.5%) patients experienced no pain, and thus the study involved the analysis of data of the remaining 1,682 patients with pain. The most frequent underlying conditions were cervical spondylotic myelopathy (26.7%), spinal cord injury (17.4%), and ossification of the posterior longitudinal ligament (OPLL) of the cervical spine (14.1%). Among the 1,682 patients, 62.5% reported at-level pain, among which 43.0% presented with allodynia. On the other hand, 38.7% presented with below-level pain. The majority of patients (73.4%) used nonsteroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants (46.6%). The effectiveness of treatment was significantly higher in patients using anticonvulsants (31.1%) than in those using other medications. About a third of the patients stopped the treatment for either lack of effect or adverse effects.

Conclusions: The characteristics of NeP in patients with spinal cord-related pain syndrome varied according to its level in relation to the affected spinal segment (at-level and/or below-level). Unfortunately, medications are sometimes ineffective and have potential adverse effects. Further classification of allodynia is needed for effective symptom-based treatment.

Keywords:
spinal cord-related pain syndrome, nationwide survey, neuropathic pain, clinical characteristics, treatment

Introduction

Neuropathic pain (NeP), as defined by the International Association for the Study of Pain (IASP), is pain initiated or caused by a primary lesion or dysfunction in the nervous system. NeP may be spontaneous or evoked, as an increased response to a painful stimulus (hyperalgesia) or a painful response to a normally nonpainful stimulus (allo-
There is even lack of basic information necessary to plan control measures against spinal cord-related pain syndrome, and this paucity is probably due to the small number of cases available through individual medical facilities. Therefore, we organized the “Spinal Cord-Related Pain Syndrome Research Group (through the Health and Labor Sciences Research Grants)” to conduct research on this topic. The objective of this nationwide survey was to determine the prevalence, actual status, and features of spinal cord-related pain syndrome in Japan and to gather sufficient data necessary for formulating control measures from the demographic characteristics of individuals and perspectives of clinical medicine and public health.

Materials and Methods

First, we defined the criteria of chronic NeP (greater than or equal to three months) in patients with diseases associated with spinal cord damage identified by magnetic resonance imaging inspection as “spinal cord-related pain syndrome.” The criteria required an agreement between clinical findings (pain region and characteristics) and imaging findings (spinal cord damage consistent with neurological findings) (Table 1). Second, we also established a five-point grade classification to estimate the degree of pain (Table 2).

In this nationwide epidemiologic survey, a mail-in questionnaire was used, which was sent to 3,206 medical facilities throughout Japan certified by the Japanese Orthopaedic Association (2,065 institutions) and the Japan Neurosurgical Society (1,141 institutions). Table 3 includes the questionnaire sent to these institutions. The questionnaire was designed to determine the number of patients in the past one year, as well as a detailed assessment of the frequency and type of allodynia, concomitant diseases, and types and effectiveness of treatment of these patients with grade ≥1 pain. The management of personal information and registration were performed by the staff at each institution based on their hospital records.

The \(\chi^2 \) test was used to analyze the effects of each medication. A \(p \)-value less than 5% denoted the presence of statistical significance. The study protocol was approved by the Human Ethics Review Committee and Institutional Review Board of the corresponding author’s affiliated institution.

Results

Grade classification of patients with spinal cord-related pain syndrome

Valid responses were obtained from 552 institutions (17.2%) with experience in treatment of patients with spinal cord-related pain syndrome. The responses included information on 3,401 patients. Patients were categorized using

Table 1. Criteria of Spinal Cord-related Pain Syndrome.

Pain Characteristics at Region 1	Persistent pain and/or numbness (three months or more) at and/or below the level of the affected spinal cord segment identified by magnetic resonance imaging inspection.
Pain Characteristics at Region 2	Sensory disturbances at the pain regions or those around.
Imaging Findings	Compressive lesions, signal intensity areas, intumescences, or spinal cord atrophy consistent with neurological findings.
Characterization of Pain as an Intractable Disorder	Poor effect of NSAIDs on pain.
Exclusions	Pain associated with neurodegenerative diseases, brain diseases, and peripheral nerve disorders (e.g., diabetic neuropathy, stranulated neuropathy).

Table 2. Grade Classification of Spinal Cord-related Pain Syndrome.

| Grade 0: No pain, numbness, and/or hyper- or hypoesthesia |
| Grade 1: No debilitating pain |
| Grade 2: Inability to work because of pain |
| Grade 3: Pain interferes with daily life activities |
| Grade 4: Pain interferes with living alone |
Table 3. The Questionnaire Used in the Study (Translated from the Original Version in Japanese).

| 1. How many patients fulfilled the following criteria of spinal cord-related pain syndrome? |
|------------------|-----------------|-----------------|-----------------|-----------------|
| Grade 0 | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
| The following questions are related to patients with grade 1 pain (see Table 2). |
| 2-1. How many patients presented with clinical symptoms at affected spinal cord segment levels (at pain level)? |
| 2-2. Of the above patients, how many presented with allodynia? |
| 2-3. In how many patients did the following type of stimulus evoke pain? (Select all that apply) |
| Cold stimuli (e.g., metal) |
| Warm stimuli |
| Pressure |
| Pain relieved by covering |
| Spontaneous pain |
| 3-1. How many patients presented with symptoms below the affected spinal cord segment (below pain level)? |
| 3-2. How many patients exhibited the following types of lower limb symptoms? (Select all that apply) |
| Sensation of muscle discomfort |
| Numbness and pain |
| Burning pain |
| Cold-induced pain |
| Allodynia |
| 4. How many patients had the following concomitant diseases? |
| Cervical spondylotic myelopathy |
| Cervical disc herniation |
| Cervical spine OPLL |
| Cervical spondylotic radiculopathy |
| Syringomyelia |
| Thoracic spine OPLL |
| Thoracic spine OLF |
| Thoracic disc herniation |
| Spinal cord tumor |
| Spinal cord traumatic injury |
| Cervical sprain |
| Other |
| 5. How many patients were provided with the following types of treatment for pain relief? (Select all that apply) |
| NSAIDs |
| Muscle relaxants |
| Anticonvulsants |
| Antidepressants |
| Anxiolytic agents |
| Herbal medicines |
| Physical therapy |
| Other medications |

Characterization of symptoms in patients with spinal cord-related pain syndrome

Table 4 summarizes the clinical characteristics of the 1,682 patients. The most frequent diagnoses were cervical spondylotic myelopathy (n = 449, 26.7%), spinal cord injury (n = 292, 17.4%), and cervical spine OPLL (n = 238, 14.1%). Of the 1,682 patients, 1,051 (62.5%) reported pain at the affected level (at-level pain), among whom 452 (43.0%) presented with allodynia. The types of stimuli that
evoked allodynia in these patients were spontaneous pain ($n = 435, 96.2\%$), cold stimuli ($n = 236, 52.2\%$), pressure ($n = 215, 47.6\%$), covering ($n = 180, 39.8\%$), and warm stimuli ($n = 49, 10.8\%$) (Fig. 2). On the other hand, among the same patients, 651 (38.7\%) presented with pain below the level of the affected area (below-level pain). In these patients, lower-limb symptoms included the following: numbness and pain ($n = 440, 67.6\%$), sensation of muscle discomfort ($n = 301, 46.2\%$), cold pain ($n = 187, 28.7\%$), burning pain ($n = 132, 20.3\%$), and allodynia ($n = 114, 17.5\%$) (Fig. 3). Above-level pain was not assessed in this study.

Selection and effectiveness of medications for spinal cord-related pain syndrome

The majority of patients ($n = 1,235, 73.4\%$) used nonsteroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants ($n = 783, 46.6\%$). Some patients used anxiolytics ($n = 301, 46.2\%$), cold pain ($n = 187, 28.7\%$), or herbal medicines ($n = 1,235, 73.4\%$) used nonsteroidal anti-inflammatory drugs; OPLL, ossification of posterior longitudinal ligament; OLF, ossification of ligamentum flavum.

Average effectiveness of medications for spinal cord-related pain syndrome					
NSAIDs	Muscle relaxants	Anticonvulsants	Antidepressants	Anxiolytics	Herbal medicines
Very effective					
Mildly effective					
Poorly effective					
Not effective					

Table 3. continued

6-1. In how many patients were the medications effective? (Select all that apply)

Medication Type	Very effective	Mildly effective	Poorly effective	Not effective
NSAIDs				
Muscle relaxants				
Anticonvulsants				
Antidepressants				
Anxiolytics				
Herbal medicines				

Very effective, symptoms disappeared; mildly effective, beneficial effects render the treatment an option for continuous therapy; poorly effective, very little effect—used as long-term medication due to lack of therapeutic options; not effective, drug discontinued despite lack of other therapeutic options.

6-2. How many patients had the following indications for treatment cessation?

Liver- and/or kidney-related side effects
Gastrointestinal side effects
Sleepiness, dullness
Dizziness, giddiness
Requested by patients (for reasons other than side effects)

Table 4. Summary of the Data of the 1,682 Patients.

| Disorders | Cervical spondylotic myelopathy | Spinal cord injury | Cervical spine OPLL | Cervical disc herniation | Cervical spondylotic radiculopathy | Spinal cord tumor | Syringomyelia | Thoracic spine OLF | Cervical sprain | Thoracic spine OPLL | Thoracic disc herniation | Others |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Number of cases (%) | 449 (26.7\%) | 292 (17.4\%) | 238 (14.1\%) | 115 (6.8\%) | 92 (5.5\%) | 76 (4.5\%) | 61 (3.6\%) | 48 (2.9\%) | 40 (2.4\%) | 33 (2.0\%) | 18 (1.1\%) | 77 (4.6\%) |

Characteristics of pain

Location of pain	At affected level	Below affected level
Number of cases (%)	1,051 (62.5\%)	651 (38.7\%)

Data are shown as the number of cases (%). OPLL: ossification of the posterior longitudinal ligament; OLF: ossification of ligamentum flavum.

Figure 1. Classification of spinal-cord-related pain syndrome.
Figure 2. Types of allodynia in the patients at the affected level.

Figure 3. Types of lower-limb symptoms in patients with pain below the affected spinal level.

Figure 4. Types of medications used by patients with spinal-cord-related pain syndrome.

Discussion

Previous studies on NeP arising from the spinal cord often included patients with spinal cord injuries, syringomyelia, and spinal intramedullary tumors. Up to 80% of patients with spinal cord injuries develop chronic NeP, which can be localized below, at, or above the level of the spinal cord injury lesion. The reported incidence of dysesthesia following the resection of intramedullary tumors is about 50%-70%. These studies included small numbers of patients and provided only a few clinical details. In their cross-sectional study, Yamashita et al. reported a prevalence of NeP related to spinal cord disorders of 53.3% (990/1,857). The frequency of NeP tended to be higher in pa-
tients with diseases associated with spinal cord damage and lower in patients with diseases that primarily manifested as somatic pain. In this study, we termed chronic NPE in patients with diseases associated with spinal cord damage as “spinal cord-related pain syndrome.” We conducted a nationwide survey on patients with this syndrome to assess the prevalence, actual status, and features of the syndrome in Japan, which were the basic information needed for planning control measures.

In our study, 49.5% (1,682/3,401) of patients meeting the criteria of spinal cord-related pain syndrome experienced pain. Among these patients, 62.5% (1,051/1,682) presented with at-level pain, whereas 38.7% (651/1,682) experienced below-level pain. Among patients with at-level pain, 43.0% (452/1,051) presented with allodynia. Furthermore, spontaneous pain (stimulus-independent) was more common than evoked pain (stimulus-dependent). On the other hand, in below-level pain, only 17.5% (114/651) had allodynia: numbness and pain (67.6%) and sensations of muscle discomfort (46.2%) were the most common types of below-level pain. Our results indicated that the characteristics of NPE in patients with spinal cord-related pain syndrome also varied according to the location of pain in relation to the level of spinal column pathology.

The characteristics of NPE in patients with spinal cord injury are different in those presenting with at-level pain compared with patients with below-level pain. For at-level pain, 37%-50% of the patients seem to have damaged nerve root segments that could progressively induce sprouting, leading to the stimulation of primary afferent fibers and causing evoked persistent pain that is generally not related to activity or affected by position. On the other hand, in below-level pain, 76%-83% of the patients described pain as burning, tingling, numbness, aching, or throbbing. In the majority of cases, NPE is associated with more than one pain mechanism, and the mechanism usually changes over time. In addition, the same underlying pathology can cause different symptoms, whereas different diseases can sometimes present with similar symptoms.

Response to treatment is difficult and sometimes unpredictable. Unfortunately, medications are sometimes ineffective in providing consistent significant pain relief for NPE and have the potential to induce adverse effects. In our study, although 73.4% of the patients used NSAIDs, only 14.3% described the treatment to be effective. In a previous study that provided a systematic review of the literature, it was concluded that there was no evidence supporting or refuting the benefits of oral NSAIDs in the treatment of NPE.
related conditions26. Even anticonvulsants, the most effective medication in this study, which are considered the first-line treatment in the updated therapeutic algorithm for NeP by IASP29, were found to be effective by only 31.1\% in this survey. Interestingly, more than 30\% of patients with spinal cord-related pain syndrome stopped their medications because they considered them to be ineffective or they thought they caused adverse effects. In addition to physical modulation, psychological factors also play an important role in the allodynic phenomena in patients with spinal cord-related pain syndrome30. Although pharmacological treatment is the mainstay of NeP treatment, the phenotype of NeP is reported to be associated with the efficacy of pharmacologic treatment, and symptom-based treatment can result in more efficient alleviation of NeP31.

Further classification of allodynia according to the types of stimuli could provide additional information. This, together with the selection of a multidisciplinary approach, could enhance our understanding of the underlying mechanism(s) of pain in these patients and may help in the design of different management protocols. The low response rate to our survey, the selection of the study population, and the diagnosis accuracy of the patients with spinal cord-related syndrome recruited from multiple centers might have affected the accuracy of our prevalence estimations. Based on this perspective, we are planning a second survey on patients recruited from institutions with the largest number of patients in this survey, employing clinician- and patient-based measures to evaluate the nature of pain, daily life, quality of life, social loss, and effectiveness of treatment in patients with NeP grade \geq 232.

Conflicts of Interest: The authors declare that there are no relevant conflicts of interest.

Acknowledgement: This study was supported by grants from the Ministry of Health, Labour and Welfare of Japan to the Spinal Cord-Related Pain Syndrome Research Group.

Author Contributions: Nakajima wrote and prepared the manuscript, and all of the authors participated in the study design. All authors have read, reviewed, and approved the article.

References

1. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924-35.

2. Woolf CJ, Mannion RJ. Neuropathic pain: aetiopathogenesis, mechanisms, and management. Lancet. 1999;353(9168):1959-64.

3. Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain: re-definition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5.

4. Bennett MI, Ramey C, Hjermstad M, et al. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain. 2012;153(2):359-65.

5. Davies M, Brophy S, Williams R, et al. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29(7):1518-22.

6. Sadosky A, McDermott AM, Brandenburg NA, et al. A review of the epidemiology of painful diabetic peripheral neuropathy, postherpetic neuralgia, and less commonly studied neuropathic pain conditions. Pain Pract. 2008;8(1):45-56.

7. Van Acker K, Bouhassira D, De Bacquer D, et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatient clinics. Diabetes Metab. 2009;35(3):206-13.

8. Yamashita T, Takahashi K, Yonenobu K, et al. Prevalence of neuropathic pain in cases with chronic pain related to spinal disorders. J Orthop Sci. 2014;19(1):15-21.

9. Doth AH, Hansson PT, Jensen MP, et al. The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain. 2010;149(2):338-44.

10. Inoue S, Taguchi T, Yamashita T, et al. The prevalence and impact of chronic neuropathic pain on daily and social life: A nationwide study in a Japanese population. Eur J Pain. 2017;21(4):727-37.

11. Jensen MP, Chodoff MJ, Dworkin RH. The impact of neuropathic pain on health-related quality of life: review and implications. Neurology. 2007;68(15):1178-82.

12. van Hecke O, Austin SK, Khan RA, et al. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014;155(4):654-62.

13. Gajjia C, Murray J, Birger R, et al. Identification of patients with neuropathic pain using electronic primary care records. Inform Prim Care. 2011;19(2):83-90.

14. Toth C, Lander J, Wiebe S. The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population. Pain Med. 2009;10(5):918-29.

15. Breivik H, Collett B, Ventafridda V, et al. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287-333.

16. Finnerup NB, Johannesen IL, Sindrup SH, et al. Pain and dises-thesia in patients with spinal cord injury: A postal survey. Spinal Cord. 2001;39:256-62.

17. Nakamura M, Tsuji O, Iwanami A, et al. Central neuropathic pain after surgical resection in patients with spinal intramedullary tumor. J Orthop Sci. 2012;17(4):352-7.

18. Calmels P, Mick G, Perrooun-Verbe B, et al; SOFMER (French Society for Physical Medicine and Rehabilitation). Neuropathic pain in spinal cord injury: identification, classification, evaluation. Ann Phys Rehabil Med. 2009;52(2):83-102.

19. Nagoshi N, Kaneko S, Fujiyoshi K, et al. Characteristics of neuropathic pain and its relationship with quality of life in 72 patients with spinal cord injury. Spinal Cord. 2016;54(9):656-61.

20. Min K, Oh Y, Lee SH, et al. Symptom-based treatment of neuropathic pain in spinal cord-injured patients: A randomized crossover clinical trial. Am J Phys Med Rehabil. 2016;95(5):330-8.

21. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162-73.

22. Harden RN. Chronic neuropathic pain. Mechanisms, diagnosis, and treatment. Neurologist. 2005;11(2):111-22.

23. Siddall PJ, Middleton JW. A proposed algorithm for the management of pain following spinal cord injury. Spinal Cord. 2006;44 (2):67-77.

24. Moore RA, Chi CC, Wiffen PJ, et al. Oral nonsteroidal anti-inflammatory drugs for neuropathic pain. Cochrane Database Syst Rev. 2015;(10):CD010902.

25. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuro-

325
pathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924-35.

26. Nakajima H, Uchida K, Taguchi T, et al. Multicenter cross-sectional study of the clinical features and types of treatment of spinal cord-related pain syndrome. J Orthop Sci. 2019;24(5):798-804.