Microbial Population and Beneficial Properties of Rhizospheric Soil as Influenced by Different Amendments in Various Land Use Systems: A Review

Neha¹*, B. S. Bhople² and Anil Kumar³

¹Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, India
²Department of Soil Science, Regional Research Station, Ballowal Saunkhri, Punjab, India
³Farm Science Centre, Guru Angad Dev Veterinary & Animal Sciences University, Tarn Taran, India

*Corresponding author

A B S T R A C T

Plant roots, soil and microbial interactions result in alteration of soil physical and chemical properties that in turn affect the micro-biological properties in the rhizosphere region. The growth and productivity of plant depends upon the diversity and composition of soil microflora present near rhizosphere zone. The aim of this study is to review the effect of organic, inorganic and integrated use of nutrients on soil properties under different land use systems in rhizospheric region. The studies highlight positive as well as negative influence of organic, inorganic and integrated use of fertilizers on the rhizosphere population. As the addition of above material influence physical and chemical properties of soil, they have a direct influence on soil microbial properties. Studies evident deteriorated soil quality as well as health as we follow intensive chemical fertilizers application. Therefore, various researches suggested an improvement in soil health and crop productivity on sustainable basis through conjoint usage of different package of nutrient sources.

Keywords
Land use systems, Microflora, Rhizosphere, Soil amendments and Physico-chemical properties

Introduction
Rhizosphere is the vital soil microenvironment where the plant roots, soil properties and microbial activity are interconnected. Rhizosphere microorganisms have direct as well as indirect impact on composition and biomass of natural plant populations (Van der Heijden et al., 1998, 2006, 2008; Schnitzer et al., 2011). Therefore, microbial species abundance in rhizosphere can therefore be used as indicator of aboveground plant diversity and productivity. Plant roots, soil and microbial interactions results in alteration of soil physical, chemical properties that in turn affect the
microbiological properties in the rhizosphere region (Nihorimbere et al., 2011). The beneficial rhizosphere microorganisms can help in maintenance of ecosystem balance through organic matter decomposition and cycling of nutrients that serves as an indicator of land use changes and ecosystem sustainability (Ros et al., 2006; Balser et al., 2010).

The soil physico-chemical properties strongly influence the microbial properties such as (bacteria, fungi and actinomycetes), basal soil respiration, enzymatic activity, microbial biomass carbon, mineralizable carbon, nitrogen, phosphorus, sulphur etc. Such intense microbial properties occur in rhizosphere zone due to presence of several nutrient rich exudates.

Land-use activities specifically related to agricultural practices can have a significant impact on the quantity and activity of soil microbial community and biological health of soil (Das et al., 2011). Joanisse et al., (2007) and Liu et al., (2002) also stated that anthropogenic activities and various soil physico-chemical properties such as soil pH, soil organic matter, texture etc have great influence on soil microbial activity.

Intensive utilization of inorganic fertilizers without organic manures are responsible for deterioration in soil health in terms of soil physical and chemical properties, lowers soil microbial activity as well as soil humus (Anjanappa et al., 2012).

Nambiar (1997) stated that the integrated use of chemical and organic fertilizers is more effective, not only providing greater stability but also maintains a better soil health. The purpose of this study is to review the impact of different soil amendments on rhizosphere microbial communities and soil physico-chemical properties under different land use systems.

Soil properties in relation to different soil amendments

Various soil amendments have greater impact on soil microbiological properties that are also responsible for the maintenance and determination of soil physico-chemical properties such as soil pH, EC, soil organic matter, nutrient availability in soil that effect crop yield.

Organic mulches are widely used for soil surface application in order to suppress weeds and diseases, control soil temperature and conserve soil moisture conditions (Robinson, 1988; Hoitink and Boehm, 1999).

It has also been recognised that mulches have greater potential to improve soil structure, increase in soil organic matter content and create nutrient cycling patterns more similar to natural ecosystems (Tukey and Schoff, 1963; Roe, 1998).

On the other hand, plant health and soil sustainability could be maintained by liquid organic fertilizers due to availability of soluble nutrients and abundant soil organic matter (Hou et al., 2017 and Dordas et al., 2007). The integration of watering and fertilizer patterns may be attributed to increase in nutrient use efficiency and decrease in nutrient loss risk (Toonsiri et al., 2016 and Ceretta et al., 2010).

Additionally, suitable vermicompost application along with chemical fertilizer could also be result in inhibition of soil pests and soil-borne diseases (Edwards and Norman,2004) and also causes reduction in plant parasitic nematodes and infection rates in plants (Arancon et al., 2002). Brussard et al., (2007) suggested that application of organic amendments is the most effective way of managing biodiversity in the soils (Table 1).
Table 1 The various favourable and unfavourable influences of different soil amendments on soil properties in rhizospheric soil in different land use systems

Sr.	Land use/plant rhizosphere	Soil amendment	Physico chemical properties of soil/plant characteristics/yield attributes	Microbial properties/ enzymatic activities	Place of study	Reference					
			Positive	Negative	Positive	Negative					
Field crops			Positive	Negative	Positive	Negative					
1.	Rice rhizosphere	Integrated	50% Nitrogen (recommended) through urea + compost/bhattian sludge	Nil	Nil	Maximum count of fungi, bacteria, diazotroph, PSB, actinomycetes and enzymatic activities such as dehydrogenase, alkaline phosphatase and urease activity were also increased	Nil	Punjab, India	Gill et al., 2016		
		Chemical	100% Nitrogen (recommended) through urea	Nil	Decrease in soil pH and increase in soil EC	Nil	Suppressed microbial activity				
2.	Wheat rhizosphere	Integrated	Chemical nitrogen (\(^{15}\)N-labeled urea) + swine manure	Nitrogen rate was two times faster than inorganic fertilizer application.	Increased microbial biomass carbon and increased enzymatic activities such as invertase, urease and protease	Nil		China	Yuan et al., 2011		
		Inorganic	Chemical nitrogen (\(^{15}\)N-labeled urea)	Nil	No changes	Increased urease activity	Nil				
3.	Wheat rhizosphere	Organic	Farm yard manure and organic liquid booster like Jeevamruth and Beejamruth	Nil	Nil	Enhances rhizosphere mycoflora population and diversity of species - Acremonium sp.,	Nil	India	Shaikh and Gachand, 2013		
4. Wheat	Integrated fertilizers	Increase in water holding capacity, organic carbon, available N, P and K and decreased bulk density	Nil	Increased dehydrogenase, phosphatase enzyme activity, soil microbial biomass carbon and microbial properties of soil.	Nil	India	Parewa et al., 2014				
---	---	---	---	---	---	---	---				
5. Maize	Different coated urea	Higher NPK content when 100% rec N applied through Neem Coated Urea.	Nil	Lower availability of nutrients	Nil	India	Shilpha et al., 2017				
6. Maize	Integrated	Biochar addition and nitrogen reduction	Nil	Influences rhizosphere metabolome, quality and quantity of root exudates	Nil	China	Cheng et al., 2018				
7. Sugarcane

Type	Description	pH	Organic Carbon	N	P	K	Decrease in NO\textsubscript{3}-N
Inorganic	Nitrogen addition through urea	Nil	Nil	Nil	Nil	Nil	Decreases the rhizosphere microbial communities and quantity and quality of root exudates also lesser.
	High dose of nitrogen (200 kg N/ha/year)	Nil	Nil	Nil	Nil	Nil	Ascomycetes fungi (pathogenic fungi) Australia Paungfoo-Lonhienne et al., 2017
	Low dose of nitrogen (40 kg N/ha/year)	Nil	Nil	Nil	Nil	Nil	Basidiomycetes fungi (lignin decomposer, helps in carbon cycling), lesser abundance of ascomycetes Nil

8. Maize-cabbage

Type	Description	pH	Organic Carbon	N	P	K	Fungus genera:
Bioorganic fertilizers	Soil amended with organic fertilizer + *Trichoderma guizhouense* NJAU 4742	Higher levels of soil pH, the concentrations of total organic carbon, Total N, total P, total K, NH\textsubscript{4}-N, avail P and avail K	Decrease in NO\textsubscript{3}-N	Fungus genera: *Humicola*, *Derxomyces*, *Rhizophydium* and *Trichoderma* were significantly higher	Bacterial genera *Zavarzinella*, *Rubritepida* and *Bdellovibrio*, were significantly depleted	Jiangsu province, China Qiao et al., 2019	
Chicken manure	-do-	-do-	Bacterial genus abundance: *Massilia*, *Zavarzinella* and *Rubritepida* Fungus genus abundance: *Massaria*, *Naumovozyma*, *Cladorhinum*	-nil-			

9. Soybean rhizosphere

Type	Description	Available phosphorus	Greater microbial population of fungi and Nil	
Organic	Plant compost (PC), vermicompost (VC), Ph, moisture content, Total N,	Available phosphorus	Nil	India Das and Dkhar,

i.e. Increases the levels of amino acids and organic acids.
Plant Species	Type of Fertilizer	Treatment	Soil Parameters	Microbial Parameters	Notes				
Soybean	Organic	Nitrophospha-	Nil	Nil	Significant higher enzymatic activities like urease, DHA, alkaline phosphatase, aryl sulphatase.				
		Sulphocompost, Phosphocompost			Nil				
Chickpea	Integrated	Inoculation with *Trichoderma koningiopsis* strain (NBRI-PR5)+FYM+NPK (different doses)	Enhanced plant growth parameters, soil pH	Nil	Phosphorus solubilization, modifying the rhizosphere microbial quantity and quality as well as enzymatic activities.				
		Commercially available fertilizers NPK	Nil	Less beneficial without inoculation	Nil				
Red Amaranth	Organic	Different leaf litter (acacia, eucalyptus, teak, Sal)	Highest Organic matter, total nitrogen, available phosphorus, exchangeable available calcium and available magnesium.	Nil	Lower level of beneficial without inoculation				
		Chemical fertilizers	Nil	The lower level of beneficial without inoculation	Nil				
#	Crop/Species	Treatment	Fertilizer	Soil Characteristics	Soil Microbiota	Origin			
---	-------------	-----------	------------	---------------------	-----------------	--------			
13	*Sitanion Hystrix* and *Agropyron smithii*	Fertilized	Chemical fertilizers	Nil	Decreased organic matter and organic carbon, Nil	Decreases in fungal hyphae length of rhizosphere of both grasses, decreased microbial biomass (*S. Hystrix*)	USA	Klein & Frederick, 1989	
	Control	no treatment	Higher amount of soil organic matter and organic carbon were observed	Nil	Increased fungal length, more microbial biomass.	Nil			
Forest crops									
14	Poplar	Integrated (inorganic + biofertilizer s)	Urea and DAP (100% rec) fertilizer + Consortium biofertilizer/azotobacter/PSB	Nil	Nil	Highest Fungi, bacteria, diazotroph, PSB, Plant growth promoting bacteria, Maximum enzymatic activities such as DHA, alkaline phosphatase and urease enzyme.	Actinomycetes	India	Khipla *et al.*, 2017
15	*Eucalyptus camaldulensis*	Organics	Mixture of biofertilizers (Azotobacter chroococcum, Bacillus circulans and Arbuscular mycorrhizal fungi AMF)	Highest content of chemical constituents (chlorophylls a, b, carotenoids content, total Carbohydrates, N, P and K %)	-	Mixture treatment recorded higher microbial population, mycorrhizal colonization (%) and Inoculation with mixture of microorganisms including Enzymatic activities, including nitrogenase activity.	Nil	Egypt	Kh *et al.*, 2014
	Control	Without treatments	Nil	Lesser content of	Nil	Nil			
			chemical constituents						
---	---	---	-------------------------------	---	---	---			
16	Red oak, Sugar maple, Yellow birch.	Inorganic	Fertilized with solid fertilizer like nitrogen, phosphorus, potassium, calcium and magnesium.	Nil	Nil	Nil			
			Reduction in carbon dioxide flux from soil, suppression of fungal activity due to decreased decomposition rate, reduction in microbial respiration and fine root biomass (except no changes observe in case of red oak in fine root biomass)	USA	Phillips and Fahey, 2008				
	Control	No treatment	Nil	Nil	More activity of rhizosphere microbial activity occurs as compare to fertilized soil.	Nil			
17	Pine forest	Inorganic	Fertilized with ammonium nitrate/urea for 10 years	Increase in soil carbon content	Nil	Nil			
			Reduction in respiration rate of microbes, ATP and microbial biomass carbon.	Sweden	Arne Brant et al., 1988				
	Control	No fertilizers added	Nil	Decrease in carbon content	Increased respiration rate, ATP, Microbial biomass carbon.	Nil			
Horticultural crops									
18	Banana	Organic	Compost prepared from the mixture of filter mud from sugar factory, plant residues and conc. Molasses solution.	Higher concentrations Of calcium, magnesium,	Nil	Enzymes like urease, catalase, alkaline Phosphatase, acid phosphatase and invertase	Nil		
	Guangxi province, South China	Zhang et al., 2019							
available nitrogen, available potassium, Fe, Zn, soil organic carbon and exchangeable cation exchange capacity.

Method	Treatment	Result	Country						
Inorganic	Lime @ 3.1 t ha⁻¹	Nil	China						
		Significantly lesser nutrient levels than organic.	Li et al., 2017						
19 Citrus Grandis var. Longanyou rhizosphere	Organic / Integrated fertilizer	All applied organic fertilizers/organic fertilizers + chemical fertilizers like N P K	Nil	China	Li et al., 2017				
		Total N, available N, available Fe, available Mn and exchangeable Mg and organic matter was significantly higher than chemical fertilizers/organics were significantly at par with integrated system but higher than chemical fertilizers.	Nil	China	Li et al., 2017				
No.	Plant	Type	Treatment	Effect	Control	Method			
-----	----------------	----------	---	--	--	--			
20	Pomegranate rhizosphere	Organic	Biofertilizers (A. Chroococcum + G. Mosseae)	Maximum uptake of N, P, K, Ca, Mg and micronutrients.	Nil	Dehydrogenase, alkaline phosphatase and nitrogenase, hydrolysis of fluorescein diacetate in rhizosphere Soils	India Aseri et al., 2008		
			Control Without any treatments						
21	Guava	Organic	Biofertilizers (Kotengin, Biomagic, Hummer, phosphorine, Rhizobacterin, Biovit solution)	Increased vegetative growth measurements (stem height, stem diameter, number of shoots per plant, number Of leaves per plant and leaf area), leaf photosynthetic Pigments content (chlorophyll A, B and carotenoids) were increased as well as leaf mineral contents (N, P, K, Ca, Mg, Fe, Mn and Zn)	Nil	Infected with native AM fungi	Nil	Egypt Khamis et al., 2014	
			Control Superphosphate, (NH₄)₂SO₄, K₂SO₄						
22	Tomato	Organic	Chicken manure	Higher plant height and higher	Nil	Nil	Nil	West Africa Agyematn et al., 2014	
23	Tomato	Organic	Vermicompost, compost, Integrated plant nutrient system (IPNS).	Improved soil pH and EC. Highest number of flower clusters, fruit clusters, fruit yield and plant height (IPNS)	Nil	Nil	Nil	Bangladesh	Islam et al., 2017
24	Cucumber	Integrated	50% (recommended) through inorganic + 50% (recommended) through poultry manure	Positive effects on soil pH, electrical conductivity, organic carbon and available nitrogen, phosphorus and potassium.	Nil	Nil	Nil	Maharashtra, India	Ghayal et al., 2017
Inorganic	Chemical fertilizers	Nil							
-----------	----------------------	-----							
25 Cucumber rhizosphere	Organic	Mulches such as recycled, groundwood pallets and composted yard waste	Soil mulched with compost yard increases the CEC, OM, P, K, Calcium and total N	Nil	Significantly higher microbial respiration and microbial nitrogen, higher population of fluorescent Pseudomonas	Nil	USA	Tiquia et al., 2002	
Inorganic	Chemical fertilizers	Nil	Nil	Nil	Nil	Nil			
26 Cucumber rhizosphere	Integrated	Inorganic compound fertilizer + Vermicompost	Increase in soil EC, total nitrogen, total and available phosphorus, available potassium and total carbon content and Decrease in soil pH and bulk density	Nil	Increased the relative abundance of beneficial fungi (Ascomycota, Chytridiomycota, Sordariomycetes, Eurotiomycetes, and Saccharomycetes) and decreased those of pathogenic fungi (Glomeromycota, Zygomycota, Dothideomycetes Agaricomycetes and Incertae sedis)	Nil	China	Zhao et al., 2017	
Inorganic	Chemical compound fertilizer	Nil	Lower availability of nutrients and carbon content	Nil	Lowers the beneficial fungi and promote harmful pathogens.				
27 Spinach rhizosphere	Organic	Biochar	Higher values of pH, Eh, total nitrogen, total	Nil	Higher abundance of bacteria, fungi and actinomycetes,	Nil	Liaoning, China	Han et al., 2013	
phosphorus, total potassium, total carbon, total sulphur, C/N ratio and total carbon were recorded

Control	Without biochar	Higher total sulphur, C/N ratio, and total sodium content	Nil	Nil	Nil	
28	Chrysanthemum rhizosphere	Liquid organic fertilizers Shrimp extract, plant decomposition, vermicompost, seaweed extracts and fish extracts.	Increase in nutrient levels (mineral nitrogen, available phosphorus and potassium)	Nil	Stimulate microbial activity and functional diversity	Nil
Chemical fertilizers	Nitrogen, phosphorus and potassium fertilizers	Nil	Decreased nutrient levels	Nil		
29	Arecanut palm rhizosphere	Organic Farmyard manure, green leaf, bone meal and wood ash	Soil organic carbon and soil pH showed significant results	Nil	Higher microbial population (bacteria, fungi, actinomycetes) and Trichoderma sp. and Aspergillus sp. were dominated.	Nil
Inorganic	Nitrogen, phosphorus and potassic fertilizers.	Nil	Nil	Nil	Lesser microbial population as compared to organic	

Jiangsu, China
Ji, 2017

Karnataka, India
Bopaiah and Bhat, 1981
Biochar as one of the organic amendments may affect the microbial biomass in many ways as it provides habitat for microflora, protect against hazards and serves as a substrate for microbes (Thies and Rillig, 2011 and Lehmann and Joseph, 2009). Warnock et al., (2007) observed that addition of biochar resulted in promotion of colonization and abundance of mycorrhizal fungi on plant roots.

The studies highlight that integrated use of different organic and inorganic nutrition package may offer feasible and friendly approach towards soil health maintenance and sustainability. As evident by various studies continuous and sole application of inorganic fertilizers resulted in soil quality deterioration, however, combined use of organic and inorganic sources not only contributes significantly to soil health and productivity, but also increase crop productivity and quality on long term sustainable basis.

Acknowledgement

The authors are highly thankful to researchers whose findings are included directly or indirectly in preparing this manuscript.

References

Agyeman, K., Osei-Bonsu, I., Berchie, J.N., Osei, M.K., Mochiah, M.B., Lampety, J.N., Osei, K., and Bolfrey-Arku.K., 2014. Effect of poultry manure and different combinations of inorganic fertilizers on growth and yield of four tomato varieties in Ghana. Agri. Sci. 4, 27-34.

Anjanappa, M., Venkatesh, J., Suresh, and Kumara, B., 2012. Influence of organic, inorganic and biofertilizers on flowering, yield and yield attributes of cucumber (cv. Hassan Local) in open field condition. J. Agri. Sci. 25, 493-497.

Arancon, N.Q., Edwards, C.A., and Bierman, P., 2006. Influences of vermicomposts on field strawberries: part 2. Effects on soil microbiological and chemical properties. Bioresour. Technol. 97, 831–840.

Arnebrant, K., and Soderstrom, B., 1992. Effects of different fertilizer treatments on ectomycorrhizal colonization potential in two scots pine forests in Sweden. For. Ecol. Manage. 53, 77-89.

Aseri, G.K., Jain, N., Panwar, J., Rao, A.V., Meghwal, P.R., 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar desert. Scientia Horticulturae 117, 130–135.

Balser, T.C., Wixon, D., Moritz., 2010. The microbiology of natural soils. In: Dixon G R abd Tilston E L (Eds.) Soil Microbiology and Sustainable Crop Production. pp. 27-58. Springer, Heidelberg.

Bopaiah, B.M., and Bhat N.T., 1981. Effect of continuous application of manures and fertilizers on rhizosphere microflora in arecanut palm. Plant Soil 63, 497-499.

Brussaard, L.D., Ruiter, P.C., and Brown, G.G., 2007. Soil biodiversity for agricultural sustainability. Agri. Eco. Environ. 121, 233-244.

Ceretta, C.A., Girotto, E., Lourenzi, C.R., Trentin, G., Vieira, RCB., and Brunetto, G., 2010. Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agric. Ecosyst. Environ. 139, 689–699.

Cheng, N., Peng, Y., Kong, Y., Li, J., and Sun, C., 2017. Combined effects of biochar addition and nitrogen fertilizer reduction on the rhizosphere metabolomics of maize (Zea mays L.)
seedlings. *Plant Soil*. 433, 1-17.

Das, B.D., and Dkhar, M.S., 2011. Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. *American-Eurasian J. Agric. Environ. Sci.* 10, 140-150.

Dordas, C.A., Lithourgidis, A.S., Matsi, T., Barbayiannis, N., 2007. Application of liquid cattle manure and inorganic fertilizers affect dry matter, nitrogen accumulation, and partitioning in maize. *Nutr. Cycl. Agroecosyst.* 80, 283–296.

Edwards, C.A., and Norman, Q.A., 2004. Vermicomposts suppress plant pest and disease attacks. *Pro. Quest. Agric. J.* 45, 51–54.

Ghayal, R.G., Vaidya, K.P., and Tapkeer, P.B., 2017. Effect of different organic manures and inorganic fertilizers on chemical properties of cucumber (*Cucumis sativus* L.) in lateritic soils of Konkan. *Int. J. Chem. Stud.* 5: 1626-1630.

Gill, G.K., Gosal, S.K., and Sharma, S., 2016. Microbial activities and soil health in rice rhizosphere as affected by long term integrated use of organic and inorganic fertilizers. *Int. J. Curr. Microbiol. App. Sci.* 5: 568-580.

Han, G., Meng, J., Zhang, W., and Chen, W., 2013. Effect of biochar on microorganism’s quantity and soil physicochemical property in rhizosphere of spinach (*Spinacia oleracea* L.). *Appl. Mech. Mat.* 298: 210-219.

Hoitink, H.A.J., Boehm, M.J., 1999. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. *Annu. Rev. Phytopathol.* 37, 427-446.

Hou, J.Q., Li, M.X., Mao, X.H., Hao, Y., Ding, J., Liu, D.M., Xi, B.D., and Liu, H.L., 2017. Response of microbial community of organic-matter-

impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste. *Plos one* 12, 45-52.

Islam, M.A., Islam, S., Akter, A., Rahman, M.H., and Nandwani, D., 2017. Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in Bangladesh. *Agriculture* 7, 18-25.

Ji, R., Dong, G., Shi, W., Min, J., 2017. Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of chrysanthemum. *Sustainability.* 9, 841-849.

Joanisse, G.D., Bradley, R.L., Preston, C.M., and Munson, A.D., 2007. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of *Kalmia angustifolia*. *New. Phytol.* 175, 535-546.

Kh, Z., Al-Hadad., Soliman, A.S, Morsy, E.M., Kamel, S.M., El-Sayed, A.A., 2014. Effect of different biofertilizers and soil media on growth and chemical composition of *Eucalyptus camaldulensis* in North Africa. *J. Horti. Sci. Ornament. Plants.* 6, 59-70.

Khamis, M.A., Sharaf, M.M., Bakry, K.H., and Abdel- Moty, A.S., 2014. Response of guava transplants to somebio-
fertilizers. *Mid. East. J. Agri. Res.* 3, 1184-1188.

Khipla, N., Gosal, S.K., Gill, and R.I., 2017. Influence of biofertilizers and inorganic fertilizers on soil microbial population and enzyme activities in rhizosphere of poplar. *Chem. Sci. Rev. Lett.* 6, 2324-2331.

Klein, D.A., and Frederick, B.A., 1989. Fertilizer effects on soil microbial communities and organic matter in the rhizosphere of *Sitanion hystrix* and *Agropyron smithii*. *Arid Soil Res. Rehabilit.* 3, 397-404.
Lehmann, J., and Joseph, S., 2009. Biochar for Environmental Management (Eds.), London.

Li, R., Chang, Y., Hu, T., Jiang, X., Liang, G., Lu, Z., Y, Y., and Guo, Q., 2017. Effects of different fertilization treatments on soil, leaf nutrient and fruit quality of Citrus grandis var. longanyou. World J. Engineer Technol. 5, 1-14.

Liu, Z.G., Zou, X.M., 2002. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecol. Appl. 12, 1406–1417.

Nambiar, M.K.K., 1997. Soil health and organic matter: Changing scenario. Proc. Nat. Acad. Sci. India. 141-160.

Nihorimbere, V., Ongena, M., Smargiassi, and M., Thonart, P., 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 15, 327-337.

Palekar, S., 2006. Text book on shoonya bandovalada naisargika krushi, published by Swamy Anand, Agri Prakashana, Bangalore.

Parewa, H.P., Yadav, J., and Rakshit, A., 2014. Effect of fertilizer levels, FYM and bioinoculants on soil properties in inceptisol of Varanasi, Uttar Pradesh, India. Int J Agri Environ Biotechnol 7, 517-525.

Paungfoo-Lonhienne, C., Wang, W., Yeoh, Y.K., and Halpin, N., 2017. Legume crop rotation suppressed nitrifying microbial community in a sugarcane cropping soil. Nature 7, 16707.

Phillips, R.P., and Fahey, T.J., 2008. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Sci. Soc. Am. J. 72, 453-61.

Qiao, C., Ryan, Penton, C., Xiong, W., Liu, C., Wang, R., Liu, Z., Xu, Xu., Li, R., and Shen, Q., 2019. Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system. Appl. Soil Ecol. 142, 136-146.

Robinson, D.W. 1988. Mulches and herbicides in ornamental plantings. Hort. Sci. 23, 547-552.

Roe, N.E., 1998. Compost utilization for vegetable and fruit crops. Hort. Sci. 33: 934–937.

Ros, M., Klammer, S., Knapp, B., Aichberger, K., and Insam, H., 2006. Long term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use. Manag. 22, 209-218.

Sarkar, U.K., Saha, B.K., Goswami, C., and Chowdhury, M.A.H., 2010. Leaf litter amendment in forest soil and their effect on the yield quality of red amaranth. J. Bangladesh Agril. Univ. 8, 221–226.

Schnitzer, S.A., Klironomos, J.N., HilleRis, and Lambers, J., et al., (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92, 296–303.

Shaikh, N.F., and Gachande, B.D., 2013. Effect of organic bio-booster and inorganic inputs on rhizosphere mycoflora population and species diversity of wheat. Int. J. Sci. Res. 4, Article ID: SUB158726

Shilpha, S.M., Soumya, T.M., Girijesh, G.K., and Dhananjaya, B.C., 2017. Effect of different natural oil coated urea fertilizers on productivity and nutrient uptake of maize. J. Pure. App. Biosci. 5, 807-812.

Souza, A.D., Deshmukh, P.W., and Bhoyar, S.M., 2017. Effect of enriched composts on rhizosphere so enzymatic activity of soybean in vertisols. Int. J. Curr. Microbiol. App. Sci. 6, 105-111.

Tandon, A., Fatima, T., Gautam, A., Yadav, U., Srivastava, S., and Singh, P.C., 2018. Effect of Trichoderma
koningiopsis on chickpea rhizosphere activities under different fertilization regimes. *J. Soil. Sci.* 8: 261-275.

Thies, J.E., and Rillig, M.C., 2011. Characteristics of biochar: biological properties, pp 85-105.

Tiquia, S.M., Lloyd, J., Hermesb, D.A., Hoitink, H.A.J., Frederick, C., and Jr, M., 2002. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. *Appl. Soil Ecol.* 21, 31-48.

Toonsiri, P., Del, Grosso, S.J., Sukor, A., and Davis, J.G., 2016. Greenhouse gas emissions from solid and liquidorganic fertilizers applied to lettuce. *J. Environ. Qual.* 45, 1812–1821.

Tukey, R.B., and Schoff, E.L., 1963. Influence of different mulching materials upon the soil environment. *Proc. Am. Soc. Hort. Sci.* 82, 68–76.

Van, der., Heijden, MGA., Bakker, R., Verwaal, J., Scheuvin, T.R., Rutten, M., Van, Logtestijn, R., and Staeelin, C., 2006. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. *FEMS. Microbiol Ecol.* 56, 178–187.

Van, der., Heijden, MGA., Bardget, R.D., and Van, Straalen, NM., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. *Ecol. Lett.* 11, 296–310.

Van, der., Heijden, MGA., Boller, T., Wiekmen, A., and Sanders, I.R., 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. *Ecology* 79, 2082-2091.

Warnock, D.D., Lehmann, J., Kuyper, T.W., and Rillig, M.C., 2007. Mycorrhizal responses to biochar in soil concepts and mechanisms. *Plant Soil* 300, 9-20.

Yuan, L., Bao, D.J., Jin, Y., Yang, Y.H., and Huang, J.G., 2011. Influence of fertilizers on nitrogen mineralization and utilization in the rhizosphere of wheat. *Plant Soil* 343, 187–193.

Zhang, J., Bei, S., Li, B., Zhang, J., Christie, P., and Li, X., 2019. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. *Appl. Soil. Ecol.* 136, 67–79.

Zhao, HT., Li, TP., Zhang, Y., Hu, J., Bai, YC., Shan, YH., and Ke, F., 2017. Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. *J. Soil. Sediment.* 17, 2718–2730.

How to cite this article:

Neha, B. S. Bhople and Anil Kumar. 2020. Microbial Population and Beneficial Properties of Rhizospheric Soil as Influenced by Different Amendments in Various Land Use Systems: A Review. *Int.J.Curr.Microbiol.App.Sci.* 9(04): 1584-1600.

doi: https://doi.org/10.20546/ijcmas.2020.904.186