Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19

Milena Sokolowska1,2 | G Enrico Rovati3 | Zuzana Diamant4,5,6 | Eva Untersmayr7 | Jürgen Schwarze8 | Zuzanna Lukasik9 | Florentina Sava10 | Alba Angelina11 | Oscar Palomares11 | Cezmi A. Akdis1,2 | Liam O'Mahony12 | Milos Jesenak13 | Oliver Pfaar14 | María José Torres15 | Marek Sanak16 | Sven-Erik Dahlén17 | Grzegorz Woszczek18

1Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
2Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
3Department of Pharmaceutical Sciences, Section of Pharmacology and Biosciences, University of Milan, Milano, Italy
4Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
5Department Microbiology Immunology and Transplantation, Ku Leuven, Catholic University of Leuven, Belgium
6Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
7Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
8Child Life and Health and Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
9VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
10London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
11Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
12Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
13Department of Pulmonology and Phthisiology, Department of Allergology and Clinical Immunology, Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Slovakia
14Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
15Allergy Unit, Málaga Regional University Hospital-IBIMA-UMA, Málaga, Spain
16Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
17Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institute, and the Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
18Asthma UK Centre in Allergic Mechanisms of Asthma, School of Immunology and Microbial Sciences, King's College London, London, UK

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic...
inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.

KEYWORDS
asthma, biologicals, COVID-19, LTRA, NSAID

1 | INTRODUCTION

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are one of the most frequently used anti-inflammatory medications worldwide against symptoms of infections, other acute and chronic inflammatory diseases, and pain. Eicosanoids, including prostaglandins (PGs), leukotrienes (LTs), thromboxanes (TXs), hydroxyeicosatetraenoic acids (HETEs), lipoxins (LXs), and many recently proposed pro-resolving mediators constitute a wide range of active lipid mediators possessing pro- and anti-inflammatory, as well as pro-resolution properties. They are products of the major unsaturated fatty acids: arachidonic acid (AA), dihomo-γ-linolenic acid (DHGLA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), metabolized in three main pathways: cyclooxygenase (COX), lipoxygenase (LO or LOX), and cytochrome P450 (Figure 1). Those active lipid mediators play substantial roles in the development and resolution of inflammation, including allergic and viral inflammation, which we have reviewed extensively in the previous report. Even though NSAIDs and other eicosanoid pathway modifiers are so commonly consumed and are relatively safe for the majority of people, the current pandemic of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) revealed substantial knowledge gaps in understanding their modes of action, benefits, and risks related to their use in patients with respiratory and allergic diseases. Unfortunately, this resulted in the conflicting messages sent to the public from the scientific community. Therefore, we, the European Academy of Allergy and Clinical Immunology Task Force (EAACI TF) on Eicosanoids, here critically review the most recent findings on the roles of NSAIDs, leukotriene antagonists (LTRAs), prostaglandin D2 (PGD2) receptor antagonists, and cannabinoids, as well as we summarize their selectivity, and additional modes of actions in allergic airway diseases, drug allergy, and respiratory virus infections. In addition, we also describe here the effects of novel T2 biologicals used in allergic diseases on eicosanoid pathways.

2 | NSAIDs IN ASTHMA AND VIRAL ASTHMA EXACERBATIONS

Aside from NSAIDs-exacerbated respiratory disease (NERD), NSAIDs are usually well tolerated by patients with asthma, and therefore, they are often used in real life against symptoms of respiratory infection such as fever and pain, even during asthma exacerbations together with intensified asthma treatment in children and adults. Current Global Initiative for Asthma (GINA) guidelines are stating with evidence level A, that aspirin and other NSAIDs are generally not contraindicated in patients with asthma, unless there is a history of previous reactions to those medications. Nevertheless, it is still not very well studied whether NSAIDs facilitate or inhibit achievement of asthma control following exacerbations, and if they affect the speed of resolution of airway inflammation. Exacerbations of asthma are most often induced by common respiratory viruses including rhinovirus (RV), respiratory syncytial virus (RSV), bocavirus, influenza viruses, adenovirus, and others. RV is responsible for up to 76% of exacerbations of wheeze in children and up to 83% of asthma attacks in adults. Recurrent viral infections do not only cause acute disease and exacerbations of established disease, but they also contribute to the pathophysiology of early wheeze in children and the development of asthma. Prophylaxis of RSV-induced bronchiolitis with palivizumab, an anti-RSV monoclonal antibody, in late pre-term infants decreased the risk of recurrent infant wheeze and
the rate of parent-reported asthma symptoms at 6 years of age, however, without any effect on lung function or doctor-diagnosed asthma.6,7 The majority of respiratory viruses are known to modify several major eicosanoid pathways, including the COX and the LOX pathways8 (Figure 2). RV infection increases expression of 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and cyclooxygenase-2 (COX-2), as well as the production of prostaglandins E\textsubscript{2} (PGE\textsubscript{2}) and PGD\textsubscript{2} by the respective isomerases in human bronchial epithelial cells, with higher levels in asthmatic patients than in controls.9 In addition, cysteinyl leukotriene (cysteinyL LT) levels, 5-LOX-positive cells, and FLAP-positive cells in bronchoalveolar lavage fluid are increased in humans upon RV infection and correlate with the emergence of upper respiratory symptoms.10 Infection with RV affects airway mucosal barriers and also the peripheral blood and distant tissues. PGE\textsubscript{2} plays an important role in optimal antibody synthesis, as COX inhibitors reduce antibody release by plasma cells, also in case of viral infections.11,12 Healthy individuals experimentally infected with RV showed a suppressed serum neutralizing antibody response when treated with aspirin or acetaminophen.13 Significant increase in COX-2 (PTGS2) expression and in COX-derived metabolites is a hallmark of RSV14 and influenza virus infection.15 Pharmacologic inhibition of the COX pathway decreased RSV-induced lung pathology, although this was not linked to a specific metabolite.14,16 At a later stage of RSV infection there is an increase in LOX metabolites, which might promote appropriate resolution of infection-induced
NSAIDs

replication at the early stages of infection, but in some instances, NLRP3 inflammasome activation can contribute to limiting viral growth in human monocytes and macrophages, and COX pathway blockade with NSAIDs antagonists demonstrated enhanced protection against lethal influenza infection. Glucocorticoids (GCs) reduce the activity of phospholipase A2 (PLA2) and COX-2, therefore restricting both the upstream substrate for eicosanoid production and subsequent enzyme. NSAIDs block COX-1 and COX-2-mediated synthesis of prostaglandins by both bronchial epithelial cells and immune cells. This reduces tissue inflammation and alleviates the symptoms of infection, but at the same time affects the antiviral response. LTRAs block eicosanoid leukotriene signaling at the receptor level, reducing activation of granulocytes. Biologics used in the treatment of allergic diseases (anti-IL-5, anti-IL-5Rα, and anti-IgE) interfere with the eicosanoid signaling in a non-direct manner, by preventing undue activation of eosinophils and Th2 cells, as well as degranulation of basophils and mast cells. BAS—basophil; COX—cyclooxygenase; 1—cyclooxygenase 1; Ptges—cysteinyl leukotrienes; DC—dendritic cell; EOS—eosinophil; GCs—glucocorticoids; IFN—interferon; IL—interleukin; LOX—lipoxygenase; LTE4—leukotriene E4; LXA—lipoxin A4; MC—mast cell; MO—monocyte; Mφ—macrophage; NEU—neutrophil; NSAIDs—non-steroidal anti-inflammatory drugs; PLA2—phospholipase A2; PGD2—prostaglandin D2; PGE2—prostaglandin E2; PGD2-inh—prostaglandin D2 inhibitors; PUFA—polyunsaturated fatty acids; and TSLP—thymic stromal lymphopoietin

In summary, prostaglandins and other COX-dependent metabolites are involved in a complex way in the pathogenesis of respiratory viral infections and thus in virus-induced exacerbation of asthma. Therefore, the use of NSAIDs to alleviate symptoms of viral infections in general population and in patients with asthma should be re-evaluated with assessment of the effects of the timing of the administration, their selectivity, and the long-term effects.
NSAIDs are used worldwide to alleviate symptoms of viral infections and inflammation, such as fever, cough, and pain. Since NSAIDs inhibit COX-1 and COX-2 and thus decrease the release of many downstream lipid mediators, such as various PGs, prostacyclin, and TXs, they have very broad effects on inflammation and immune responses, ranging from anti-inflammatory, immunosuppressive, and anti-thrombotic to pro-resolving (Figure 2). Therefore, at the beginning of the COVID-19 pandemic, there were several concerns and uncertainties about the effects of NSAIDs on SARS-CoV-2 infection and the course of COVID-19. They were suspected to alter the expression of angiotensin-converting enzyme 2 (ACE2), the main entry receptor for SARS-CoV-2 and/or modify viral replication. In addition, they could be either harmful by impairing antiviral response and delaying resolution of inflammation or be beneficial by dampening of hyperinflammation and cytokine storm and preventing thrombosis (Figure 3). Some of these concerns have now been addressed experimentally and epidemiologically, and several clinical trials have been initiated. Indeed, SARS-CoV-2 increases PTGS2 (COX-2) gene expression in variety of cell lines, in mouse lungs and in primary human bronchial epithelial cells as well many eicosanoids and docosanoids are increased in the lungs of severe COVID-19 patients. However, inhibition of the COX pathway by either ibuprofen (non-selective COX1/COX2 inhibitor) or meloxicam (more selective COX-2 inhibitor) or naproxen (which is a non-selective COX-1/COX-2 inhibitor) has been shown to bind to the nucleocapsid protein N of SARS-CoV-2, which led to inhibition of SARS-CoV-2 replication in VeroE6 cells and primary human bronchial epithelial cells and protected epithelium against SARS-CoV-2-induced barrier damage. There were no analogous effects in similar experiments with paracetamol (acetaminophen, which may affect PG production in the brain or may act via its metabolite on the cannabinoid receptors), or celecoxib (selective COX-2 inhibitor). Naproxen is currently examined in the clinical trial in COVID-19.

FIGURE 3 Non-steroidal anti-inflammatory drugs and leukotriene antagonists in SARS-CoV-2 infection. Increased levels of eicosanoids have been found in bronchoalveolar lavage fluid of patients with severe COVID-19, with predominance of prostaglandins and thromboxane. There are strong grounds to explore eicosanoid inhibition as a potential therapeutic target in SARS-CoV-2 infections. Prostaglandins amplify innate immune responses to pathogen- and damage-associated molecular patterns, enhance the cascade of proinflammatory cytokine release, activate Th1 and Th17 cells, and contribute to recruitment of macrophages and T cells. Moreover, studies in mouse adapted to SARS-CoV-2 infection showed that PGD2 inhibition protected from severe disease. Despite the initial mixed reports on the use of NSAIDs in COVID-19, it has been concluded that these medications can be safely used to alleviate the symptoms of SARS-CoV-2 infection. This effect is attributed to the disruption of inflammatory circuits. Other effects of NSAIDs in COVID-19 are being investigated, and preliminary studies suggest that a non-selective NSAID naproxen could negatively influence SARS-CoV-2 replication. Furthermore, the efficacy of leukotriene antagonist montelukast is being evaluated in a series of clinical trials. The hypothesized mode of action in COVID-19 includes inhibition of leukotriene signaling, as well as direct antiviral effect (damage to the viral lipid membrane and genome), as reported for other viruses.
4 | LEUKOTRIENE RECEPTOR ANTAGONISTS—NOVEL MECHANISMS OF ACTION

All clinically available LTRAs (montelukast, zafirlukast, and pranlukast) act on the cysteinyl leukotriene type 1 receptor (CysLT₁) and by competitive antagonism at this receptor are believed to be responsible for the control of airway inflammation, bronchoconstriction, and remodeling. However, anti-inflammatory activity of LTRAs independent of CysLT₁ antagonism has been suggested. LTRAs reduced the eosinophil protease activity and inhibited TNFα or UDP-mediated cytokine expression, as well as NF-κB activation in human mononuclear or epithelial cells through processes that appear to be distinct from CysLT₁ antagonism. Although mechanisms of these non-CysLT₁-related LTRA activities are not fully understood, concentration-dependent inhibition of distinct receptors such as P2Y1, P2Y2, P2Y6, and GPR17 by LTRAs have been reported, suggesting, at least for P2Y receptor, a non-competitive mechanism of action. Interestingly, it was also shown that LTRAs may have a potent inhibitory effect on 5-LOX activity (i.e., LT production) and transport of LTs by the multidrug resistance protein ABCC4, suggesting a much broader mechanism of action for these drugs than previously suspected. Indeed, non-CysLT₁-related mechanisms of LTRA might represent another level of variability in the response to treatment in patients with asthma and allergy. Some of these activities may be compound-specific or may depend on drug concentration (most non-CysLT₁-related effects required micromolar drug concentrations) in contrast to nanomolar levels needed for CysLT₁ antagonism or may depend on the presence of a particular inflammatory pathway in patients with asthma (allergy), and therefore, clinically significant effects of treatment may be observed in some, but not all, treated patients. It should be emphasized that initial clinical interventional studies of montelukast in asthma used doses up to 200 mg a day showing greater lung function improvement than in subsequent studies using recommended dose of 10 mg, suggesting that higher doses of currently knownLTRAs or new compounds derived from this class of drugs may represent a novel strategy for finding more efficient therapy. The demonstration that the bronchoconstrictive actions of LTE₄ in asthma are solely mediated by the CysLT₁ receptor further supports that effects on other targets than the CysLT receptors may take place.

5 | PREDICTING RESPONSES TO LTRA THERAPY

Heterogeneous effects of LTRA therapy in asthma and allergic diseases have been reported in many studies. Although some genetic and acquired factors have been suggested, other reasons for this heterogeneity remain unclear. While currently no clinical characteristics or laboratory assay can reliably predict responses to LTRAs, the most plausible biomarker that could potentially serve as response predictor to LTRAs seems LTE₄ production. Urinary LTE₄ (uLTE₄) is a biomarker of total body cysteinyl-LT production, associated with Type 2 asthma, asthma severity, exacerbations, and NERD. Increased uLTE₄ to fractional exhaled nitric oxide (LTE₄:FeNO) ratio has been suggested to predict favorable response to LTRA therapy (montelukast) in asthmatic children, but these observations have not been confirmed in adult patients. There is a considerable amount of evidence supporting the concept that some patients or clinical phenotypes seem sensitive to LTRAs, especially in a real-life setting, due to enhanced cysteinyl-LT production, better adherence to oral therapy or oral drug delivery. LTRAs have proven to be particularly effective in exercise-induced asthma, asthma associated with allergic rhinitis, NERD, viral-induced wheezing episodes, and patients having difficulties with inhaled therapy such as children and elderly. Cigarette smoking while inhibiting steroid anti-inflammatory responses increases cysteinyl-LT production, leading to a greater response to montelukast in smokers with asthma, suggesting that LTRA could be more effective in treating such individuals. In fact, asthmatic patients with smoking history above 11 pack-years showed more benefit with montelukast treatment than inhaled steroids. Obesity is another potential risk factor for asthma development and efficacy of treatment. Interestingly, higher body mass index (BMI) is associated with increased LT production in asthmatics and as therapeutic response to inhaled corticosteroids decreases with increasing BMI, response to montelukast remains unaffected, suggesting LTRA therapy to be more effective in obese patients. The response to LTRA may also be associated with sex differences. The existence of a sex bias in LT biology is already suggested by the fact that many LT-related diseases including asthma, allergic rhinitis, rheumatoid arthritis, or NERD have a higher occurrence in women compared to men, pointing to more pronounced pathophysiological roles of LTs in females. Furthermore, several observations suggest that female sex is associated with higher LT biosynthesis, while androgens seem to exert a suppressing role on...
LT formation both in vitro and in vivo.86-90 Although the clinical significance of these data is still to be confirmed, in a small prospective cohort study, montelukast showed superior effects on symptoms and lung function in women compared to men,91 while a tendency for a better response to montelukast was evident in girls exposed to tobacco smoke.92

6 | LEUKOTRIENE MODIFYING DRUGS IN COVID-19 TREATMENT

Due to the involvement of complement, coagulation, and inflammation in COVID-19,32,93,94 anti-inflammatory drugs have gained great interest as disease modifiers (Figure 3).95 Already at the beginning of the COVID-19 pandemic, researchers suggested the use of the LTRA montelukast for treatment of COVID-19.96-98 The reason for this early interest in LT-modifying drugs was on the one hand related to the viral cell entry via ACE2 receptors and the known inhibitory effect of montelukast on bradykinin-related airway response99 and on the other hand to the fact that patients with severe COVID-19 develop an overwhelming state of inflammation that has been labeled COVID-19 cytokine storm syndrome (CSS).32,100,101 Moreover, the most important cause of death in COVID-19 was recognized as the progressive respiratory failure with limited response to treatment together with hyperinflammation and hypoxia, quite similar to a severe acute respiratory distress syndrome (ARDS), which has been demonstrated to be characterized by an elevated level of LTs.24 Of note, high levels of LTE\textsubscript{4} have been detected in bronchoalveolar lavage (BAL) of hospitalized patients with severe COVID-19,34 as well as there is a shift in serum eicosanoids into the increase of 5-LOX products in such patients.35 Indeed, specific benefits of montelukast, or other LTRAs, have been suggested in the situation of hyperinflammation and massive cytokine release103 to reduce elevated levels of LPS-induced IL-6, TNF-\textgreek{a}, and MCP-1 production in the peripheral blood MNCs of patients with asthma,104 as well as to reduce levels of many cytokines and chemokines (IL-4, IL-5, IL-1\beta), TNF-\textgreek{a}, RANTES, and IL-8) in nasal mucosa105 possibly due to modulation of TNF-\textgreek{a}-stimulated IL-8 expression through changes in NF-\textgreek{x}B p65-associated histone acetyltransfere activity.50 In addition to its anti-inflammatory properties in humans, in silico studies also suggested, but still to be demonstrated, a direct antiviral effect by showing a high-affinity binding of montelukast to the terminal end of the virus’ main protease enzyme needed for viral protein assembly.106

Thus, with increasing understanding of disease mechanisms, LTRAs have been also considered for treatment of COVID-19. Indeed, in a small retrospective study on COVID-19-hospitalized subjects, patients receiving montelukast had fewer episodes of confirmed COVID-19 or experienced significantly fewer events of clinical deterioration compared to patients not receiving montelukast.107,108 These lipid mediators might not only contribute to inflammation and lung pathologies associated with COVID-19, but can also be involved in thrombosis, fibrosis, neuronal damage, and cardiovascular disease.97,109,110 Interestingly, we have recently demonstrated that montelukast inhibits platelet activation and microvesicles release induced by plasma from COVID-19 patients, as well as the formation of circulating monocyte- and granulocyte-platelet aggregates.111 All these data suggest the repurposing of montelukast as a possible auxiliary treatment for COVID-19 syndrome. Accordingly, since May 2020 a series of clinical trials involving montelukast have been registered (https://clinicaltrials.gov). However, not only antagonism of the CysLT receptors could be beneficial for patients with COVID-19, but interventions targeting LT biosynthesis, using, for example, Zileuton, might represent promising targets, specifically at the turning point from a mild to critical disease course.112

7 | PGD\textsubscript{2} RECEPTOR ANTAGONISTS

In sensitized subjects, PGD\textsubscript{2} is initially released by allergen-triggered mast cells and plays a key role in the sequelae of the allergic response. Its proinflammatory effects are mediated through the interaction with G-protein-coupled receptors (GPCR): DP1, thromboxane (TP), and chemoattractant-homologous receptors (CRTH2 or DP2).113 Apart from its broncho- and vaso-active properties in allergic airway disease, PGD\textsubscript{2} also acts as an important link between the allergen-induced early (EAR) and late phase allergic response (LAR) through the interaction with the DP2-receptors on key effector cells. DP2-receptors are expressed on immune (ILCs, Th2), inflammatory (eosinophils, basophils), and structural (epithelial) cells and involved in the recruitment and activation of these cells as well as the subsequent release of Th2-cytokines during the LAR.113-116 Therefore, DP2 (CRTH2) antagonists have been initially aimed for the treatment of allergic airway disease (allergic rhinitis, asthma).117,118

In two proof-of-concept studies in (unphenotyped) allergic asthmatics, DP2 (CRTH2) antagonists (timapiprant and setipiprant, respectively) showed only modest reduction (approx. 25%) in the allergen-induced EAR119 while no convincing effects were observed on the allergen-induced changes in T2 biomarkers (blood eosinophils, FeNO)120 with only a minimal reduction in sputum eosinophils post-allergen.119 In addition, there was no decrease in the EAR in either study. The (relative) lack of protection against allergen-induced airway responses may (partly) consist with the fact that even with effective DP2-blockade, an allergen-triggered mast cell (lacking DP2)121 mediator release (histamine, PGD\textsubscript{2}, cysteinyl-LTs) may still occur which is capable of causing an EAR and/or an LAR122,123 and therefore, especially in allergic asthma, a combined blockade of, for example, DP2 ± DP1 ± TP ± cysteinyl-LT-R might provide a superior protection.

In line with this reasoning—and despite prior evidence of superior efficacy in phase 2B studies of patients with an allergic (T2) profile (atopy ± eosinophils ≥250/mCL)124,125—several DP2 (CRTH2) antagonists (e.g., setipiprant, fevipiprant) failed in phase 3 clinical trials of allergic airway disease.125 More recently, DP2-blockade has been associated with the reduction in airway smooth muscle mass by decreasing airway eosinophilia and the recruitment of myofibroblasts and fibrocytes.126 Therefore, with several clinical trials still
ongoing, (add-on) DP2-blockade may show efficacy in more severe T2 asthma127 and related conditions based on its anti-inflammatory and disease-modifying potential.126,128

Respiratory viruses (e.g., RSV) represent other important triggers of chronic inflammatory airway disease capable of activating the PGD\textsubscript{2}/DP2 receptor-mediated pathway, thereby eliciting a “non-allergen-induced” T2-immune response through airway epithelial cells and innate immune cells.129 Indeed, RSV has been associated with upregulation of the PGD\textsubscript{2}/DP2 pathway and increased PGD\textsubscript{2} levels both in experimental and in clinical studies, while DP2-blockade alone or combined with DP1 agonism showed protective potential in preclinical studies.130 Therefore, selective targeting of PGD\textsubscript{2} receptors has been postulated to protect against respiratory viral infections, and more recently, including SARS-CoV-2.131 Presently, this hypothesis awaits clinical evidence. In addition, the potent bronchoconstrictive actions of PGD\textsubscript{2} and other constrictive prostanoids in human airways call for trials with TP receptor antagonists in patients with asthma.132

8 | CANNABINOIDS IN ASTHMA, ALLERGIC DISEASES, AND VIRAL INFECTIONS

The human endogenous cannabinoid system (ECS) is involved in many physiological processes. It consists of the cannabinoid receptors (CBRs), the endogenous ligands (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), and the proteins related to their synthesis and degradation.133 Cannabinoid receptor 1 (CB1) and 2 (CB2) are the main CBRs. CB1 is largely expressed in the central nervous system but also in peripheral tissues and immune cells. CB2 is mainly expressed in immune cells but also in other cell types such as progenitor neurons.134,135 The biosynthesis and inactivation of endocannabinoids involve several enzymes. AEA can be synthetized by the hydrolysis of its precursor N-acyl-phosphatidylethanolamine (NAPE) by NAPE-hydrolyzing phospholipase D (NAPE-PLD). Alternative pathways involving other phospholipases have been described. AEA can be also obtained from the reverse reaction of fatty acid amide hydrolase (FAAH) by the conjugation of ethanolamine and AA. The main pathway for the synthesis of 2-AG is the hydrolysis of AA-containing 1,2-diacylglycerol (DAG) species by DAG lipase-\textalpha or \mu. Endocannabinoids are rapidly metabolized. The hydrolysis of AEA is mediated by FAAH, whereas 2-AG is hydrolyzed by monoacylglycerol lipase (MGL). The resulting products of AEA and 2-AG degradation are AA, and ethanolamine and glycerol, respectively (Figure 4).133,136 Moreover, endocannabinoids are susceptible to be metabolized by eicosanoid biosynthetic enzymes including COX2, 12-LOX, 15-LOX, and P450.136 FAAH and MGL are considered promising therapeutic targets for the treatment of several disorders, including inflammation. Pharmacological inhibitors of FAAH and MGL increase the levels of AEA and 2-AG, prolonging their anti-inflammatory effects, and decrease AA levels.137,138 The NSAIDs that inhibit COX2 also enhance endocannabinoid levels and reduce AEA- and 2-AG-derived prostaglandins.139,140 In addition, some NSAIDs such as ibuprofen can influence the endocannabinoid levels by inhibiting FAAH (Figure 4).

The role of cannabinoids in allergic diseases is still a bit controversial.141 Sukawara et al demonstrated that endocannabinoids limited mast cell maturation and activation in human airway mucosa and skin through CB1.142,143 Tetrahydrocannabinol (THC) and cannabidiol (CBD) attenuated airway allergic inflammation, decreased cytokine production, cell infiltration, mucus secretion, and bronchial hyperresponsiveness in mice.144,146 Similarly, the synthetic agonist CP55,940 induced lung protection in ovalbumine (OVA)-induced asthma guinea pig models via CB1 and CB2.147 In keratinocytes, CB1 prevented transepithelial water loss and skin inflammation, cell infiltration and cytokine production in atopic dermatitis mouse model.148 Anandamide and different CB1 agonists also accelerated skin barrier recovery and reduced proinflammatory cytokine production and cell recruitment.149,150 Several cannabinoids have also shown a protective role in allergic contact dermatitis by reducing inflammatory responses.151-153 CB1 activation may also induce bronchodilation in the airways.147,154 In human bronchial epithelial cells, the synthetic agonist WIN55212-2 restored the epithelial barrier disruption induced by RV.155 In addition, WIN55212-2 decreased the immediate anaphylactic reaction in a mouse model of peanut allergy and promoted the generation of allergen-specific regulatory T cells.156 Currently, different studies suggest the therapeutic potential of cannabinoids in COVID-19 pandemic.157-159 In contrast, Frei et al showed that CB2 activation enhanced migratory responsiveness of eosinophils in an OVA-asthma mouse models.160 Accordingly, the lack of CB2 decreased allergic inflammation in asthma and dermatitis mouse model.161 This result correlated with increased number of NK cells and reduced number of ILC2s in the lung of CB2 knockout mice, demonstrating that NK cells are negative regulators of ILC2s.162 Interestingly, it has been described that mRNA expression levels of CB1 are upregulated in tonsils and peripheral blood of patients with allergic rhinitis, atopic dermatitis, and food allergy, but the functional relevance remains unknown.163 These studies suggest that the ECS could be explored as a potential therapeutic target in the treatment of asthma, allergic and skin diseases, and viral infections.

9 | THE EFFECT OF T2-TARGETED BIOLOGICALS ON EICOSANOIDs

Ample evidence from clinical trials showing effectiveness of drugs targeting T2-inflammation (targets include IgE and the cytokines IL5, IL4, and IL13) on asthma exacerbations, as well as improvements in symptoms and disease severity in chronic rhinosinusitis with nasal polyps (CRSwNP),164,165 underscored the involvement of T2-inflammation in these conditions.166,167 As mentioned above, the majority of asthma exacerbations are precipitated by respiratory viruses (esp. RSV and RV),168 while in sensitized subjects, allergen exposure may enhance virally triggered exacerbations due to synergistic interaction through joint mechanisms including the
Both viral and allergen-triggered pathways include several inflammatory and immune (effector) cells, such as mast cells, basophils, Th2 cells, ILCs, macrophages, neutrophils, and eosinophils. Many of these cells are capable of releasing eicosanoids upon activation and/or possess one or more eicosanoid receptors, thus contributing to the exacerbation and its sequelae (e.g., bronchoconstriction, airway inflammation, and bronchial hyperresponsiveness). In CRSwNP, the T2-inflammatory pathway is also triggered by several stimuli such as viruses, bacteria, and allergens, which stimulate inflammatory cell- and cytokine-mediated pathomechanisms in the nasal and paranasal mucosa.

Although in vitro data indicate that biologicals may influence eicosanoid pathways in mast cells and basophils, so far there are no published data on direct effects of T2-targeted biologicals on the synthesis or release of eicosanoids in humans in vivo (Figure 5). However, it makes sense that, by blocking pathways and cells (esp. mast cells, basophils, eosinophils, and neutrophils) responsible for the release of these proinflammatory mediators, may consequently also reduce eicosanoid levels. In addition, previous evidence from clinical studies in asthma showed (partial) reduction of both allergen- and virus-induced airway responses and asthma exacerbations by selective eicosanoid antagonists. Besides, clinical studies on biologicals in CRSwNP also included a representative cohort of patients with NERD and also found a good clinical response and a reduced T2-biomarker profile in this subpopulation. However, so far there are no data on the direct effect of T2 biologicals on the individual eicosanoids nor head-to-head studies comparing biologicals with selective eicosanoid blockers or combinations.

NERD, also called AERD-aspirin-exacerbated respiratory disease or AIA-aspirin-intolerant asthma, is a phenotype of asthma recognized in 5 to 25% asthmatics. It is characterized by a non-immunological hypersensitivity to low doses of NSAIDs and a cross-reactivity (a multi-responder phenotype). Profound changes in biosynthesis of eicosanoids comprise overproduction of cysteinyl-LTs, excreted in urine as LTE₄. Some patients have higher excretion of LTE₄ also during a stable period of NERD. It is debatable, which
cells produce cysteinyl-LTs in NERD. Since overproduction of PGD$_2$ and increase of histamine concentration accompany symptoms of NERD, these could be mast cells. However, eosinophils in NERD overexpress leukotriene C4 synthase (LTC4S), thus can contribute to the symptoms and concurrent release of eosinophilic cationic protein was observed. PGE$_2$ plays a key role in NERD, where both decreased production of PGE$_2$ and reduced EP$_2$ expression were observed.180,184 When PGE$_2$ is further decreased, it leads to mast cell activation and bronchoconstriction because it removes the stabilizing effect of PGE$_2$ on mast cell mediator release.132 Accordingly, inhalation of PGE$_2$ before aspirin challenge prevented reduction in pulmonary function and mast cell activation.185 However, inhibition of PGE$_2$ biosynthesis by NSAIDs is difficult to measure, since this prostaglandin is produced by most cells of the body. Interestingly, patients with NERD have also an imbalance in pro-resolving lipoxin A$_4$ (LXA$_4$) that may contribute to the increased severity of this particular asthma endotype.186 The minimal dose triggering bronchial constriction and extra bronchial symptoms (cutaneous flush, nasal obstruction, irritation of conjunctiva) varies across patients, but generally it reflects NSAID potency to inhibit cyclooxygenase-1 isoenzyme (COX-1).187,188 Highly selective inhibitors of COX-2 like coxibs (e.g., celecoxib, etoricoxib)189 are well tolerated in most NERD patients, whereas preferential COX-2 inhibitors (nimesulide, meloxicam) can trigger symptoms at high doses190 (Table 1). Diclofenac, ketorolac, ibuprofen, naproxen, indomethacin, or pyrazolone derivatives inhibit both COX-2 and COX-1,191 therefore are contraindicated in NERD. Acetylsalicylic acid is more potent inhibitor of COX-2 than COX-1,189,192 This was the first NSAID ever reported to trigger symptoms at high doses.193
EICOSANOIDs IN DRUG ALLERGY

Most of the information available on the role of eicosanoids in allergy and related diseases concerns NERD.193,194 This fact can be explained because it was the first clinical phenotype in which a link between NSAIDs pharmacological activity and the inhibition of PGE$_2$ synthesis by blocking COX-1 and the subsequent increase in cysteinyl-LTs release was established.195 Nevertheless, some data are also available for cutaneous NSAID-induced cross-hypersensitivity. Thus, increased LTE$_4$ and 9α,11β-PGF$_2$ urinary levels have been described for NERD196-199 and for NSAID-induced acute urticaria/angioedema (NIUA).199

For NSAID-exacerbated cutaneous disease (NECD), contrasting results have been found regarding eicosanoids levels at basal state. Thus, Di Lorenzo et al. did not report baseline differences for LTE$_4$ in patients with chronic urticaria and hypersensitivity to acetylsalicylic acid (ASA, aspirin) or food additives,200 and no variations at basal state were reported for LTE$_4$ and 9α,11β-PGF$_2$ by two other independent studies.197,199 However, Mastalerz et al. reported increased LTE$_4$ levels in NECD patients with a positive aspirin challenge with respect to those with a negative aspirin challenge, and with no changes found for 9α,11β-PGF$_2$.201 It has been recently published that NIUA and NECD showed similar increased levels in both LTE$_4$ and 9α,11β-PGF$_2$ within the first 3 hours following a positive aspirin challenge; however, after this time interval, these mediators showed different behaviors, being such levels long-lasting in NECD.199 In spite of these differences being not statistically significant, the reasons explaining the existence of these particular profiles are at present unknown although they may be due to the presence of additional factors in NECD, which could include sensitization to autoantibodies or the existence of histamine-releasing factors.199

Drug	Group	Target	Remarks	References
Ketoprofen	NSAID	COX-1 >> COX-2		204
Aspirin	NSAID	COX-1 >> COX-2		192
Naproxen	NSAID	COX-1, COX-2		204
Ibuprofen	NSAID	COX-1, COX-2		204
Diclofenac	NSAID	COX-1, COX-2		191
Ketorolac	NSAID	COX-1, COX-2		205
Indomethacin	NSAID	COX-1, COX-2		206
Dipyrone (metamizole)	NSAID	COX-1, COX-2		207
Piroxicam	NSAID	COX-2 > COX-1		192
Meloxicam	NSAID	COX-2 >> COX-1		192
Nimesulide	NSAID	COX-2 >> COX-1		189
Celecoxib	NSAID	COX-2 >> >COX-1		189
Etoricoxib	NSAID	COX-2 >> >COX-1		189
Paracetamol (acetaminophen)	Related to NSAIDs	COX-1, COX-2-non-substrate mechanism	38,39	
Montelukast	LTRA	CysLTR1	Additional immunomodulatory properties have been suggested	46
Zafirlukast	LTRA	CysLT1		46
Pranlukast	LTRA	CysLT1		46
Zileuton	Leukotriene synthesis inhibitor	5-LOX		208
Fevipiprant	Prostaglandin receptor antagonist	DP2	Phase 3 clinical trials	209
Asapiprant	Prostaglandin receptor antagonist	DP1	Phase 2 clinical trials	ClinicalTrials.gov Identifier: NCT04705597
Laropiprant	Prostaglandin receptor antagonist	DP1	Temporarily approved in Europe as a component of a hypolipidemic drug	210
Vidupiprant	Prostaglandin receptor antagonist	DP2 > DP1	Phase 2 clinical trials	ClinicalTrials.gov Identifier: NCT01018550
Data on the role of eicosanoids beyond NSAIDs-hypersensitivity are scarce. However, a potential role for cysteinyl-LTs was proposed in adverse reactions to non-ionic contrast media. Thus, iopromide and iotrolan induced a significant increase of cysteinyl-LTs in vivo, with no changes in preformed mediators levels. However, a previous study showed the heterogeneity of the effects of contrast media on mediator release, showing an increase in histamine and tryptase release from different human cells without changes in LTE₄ or PGD₂ levels.

12 | CONCLUSIONS AND UNMET NEEDS

NSAIDs, LT modifiers, and biologicals are used every day in clinical practice in treatment of viral infections and common respiratory or allergic diseases. Although a significant progress has been made in our understanding how these medications act and how they affect eicosanoid pathways, there are still no sufficient data available to fully address all issues important for prediction of their activities affecting immune response and estimation of their clinical efficacy. This consensus report summarizes up to date knowledge in this complex area and identifies major knowledge gaps and unmet needs to be addressed in the future.

12.1 | Unmet needs

- Assessment of NSAIDs role in alleviating symptoms of viral infections in general population and in patients with asthma/ allergy with the strong emphasis on the timing of its administration, their selectivity, and long-term effects.
- Further basic in vitro, in vivo, and large clinical studies assessing NSAIDs influence on the pathogenesis and treatment of COVID-19 are greatly needed.
- Understanding molecular and cellular mechanisms of eicosanoids activity in immune response with focus on balance between pro- and anti-inflammatory properties.
- Characterization of emerging sub-phenotypes, and sub-endotypes of allergic diseases (asthma, rhinitis, and NERD) and potential biomarkers for the more effective therapy using eicosanoid pathway modifying drugs (NSAIDs, LTRA, and CRTH2 antagonists)
- Evaluation of how the effectiveness of new biologicals for the treatment of allergic diseases relates to the eicosanoids.
- Re-assessment of the effects of prostanoids in allergic and asthmatic reactions in humans by targeted intervention studies with selective inhibitors of receptors or tissue-specific syntheses.
- Development and testing of novel treatment modalities targeting lipid mediators (eicosanoids) and their receptors.

CONFLICT OF INTEREST

MiSo has received research grants from the Swiss National Science Foundation, GlaxoSmithKline, Novartis, and AstraZeneca speaker fee. ZD acted as a director respiratory/allergy for QPS-NL (2012-2020); she has received consulting fees from ALK, Antabio, GSK, Sanofi-Genzyme, QPS-NL; has participated in the speaker's bureaus of Boehringer Ingelheim, Sanofi-Genzyme; she serves in EUFOREA as an Asthma Expert Panel Chair. OsPa has received fees for lectures and/or participation in Advisory Boards from Allergy Therapeutics, Amgen, AstraZeneca, Diater, GSK, Immunotek SL, Novartis, Sanofi-Genezyme, Regeneron, and Stallergenes. OP has received research grants from Immunotek SL and Novartis SL. CA has received research grants from the Swiss National Science Foundation, Christine Kühne-Center for Allergy Research and Education, European Commission Horizon's 2020 Framework Programme “CURE,” Novartis Research Institutes, GlaxoSmithKline and AstraZeneca. He took part in the advisory board and received research grants from GlaxoSmithKline, Sanofi/Regeneron, SciBase, and Novartis. He is the editor in chief of Allergy. LOM is a consultant to PrecisionBiotics and has received research funding from GSK and Chiesi. LOM has participated in speaker’s bureau for Nestle, Nutricia, Reckitt, and Abbott. MJ has received consulting fees (ALK-Abello, Stallergenes-Greer, Takeda, Zentiva); honoraria for lectures, presentations (ALK-Abello, Stallergenes-Greer, Takeda, Zentiva, Mundipharma, AstraZeneca, SOBI, Chiesi, CSL Behring, Novartis, Benela, Pfizer, Viatris); support for attending meetings and/or travel (ALK-Abello, Stallergenes-Greer, Takeda, Novartis, Sanofi Pasteur) and honoraria for participation on Advisory Boards (ALK-Abello, Stallergenes-Greer, Chiesi, Novartis, SOBI, Pfizer, Sanofi Genzyme/Pasteur). OJPh reports grants and personal fees from ALK-Abellô, grants and personal fees from Allergopharma, grants and personal fees from Stallergenes Greer, grants and personal fees from HAL Allergy Holding B.V./HAL Allergie GmbH, grants and personal fees from Bencard Allergie GmbH/Allergy Therapeutics, grants and personal fees from Lofarma, grants from Biomay, grants from Circassia, grants and personal fees from ASIT Biotech Tools S.A., grants and personal fees from Laboratorios LETI/LETI Pharma, personal fees from MEDA Pharma/MYLAN, grants and personal fees from Anergis S.A., personal fees from Mobile Chamber Experts (a GA2LEN Partner), personal fees from Indoor Biotechnologies, grants and personal fees from GlaxoSmithKline, personal fees from Astellas Pharma Global, personal fees from EUFOREA, personal fees from ROXALL Medizin, personal fees from Novartis, personal fees from Sanofi-Aventis and Sanofi-Genzyme, personal fees from Med Update Europe GmbH, personal fees from Streamedup! GmbH, grants from Pohl Boskamp, grants from Immunotek S.L., personal fees from John Wiley and Sons, AS, personal fees from Paul-Martini-Stiftung (PMS), personal fees from Regeneron Pharmaceuticals Inc., personal fees from RG Aerztefortbildung, personal fees from Institut für Disease Management, personal fees from Springer GmbH, personal fees from AstraZeneca, personal fees from IQVIA Commercial, personal fees from Ingress Health, outside the submitted work; and member of EAACI Excom, member of ext. board of directors DGAKI; co-ordinator, main or co-author of different position papers and guidelines in allergology and allergen-immunotherapy. SED has received consultation fees from AZ, GSK, Merck, Novartis, Regeneron, Sanofi, Teva; has participated in the speaker’s bureaus of AZ, GSK, Sanofi. Other authors do not have any COI to declare.
AUTHORS’ CONTRIBUTIONS
MiSo and GW led the Task Force and supervised the project. MiSo, GER, ZD, EU, JS, ZL, FS, AA, OP, CA, LOM, MJ, OP, MJT, MS, SED, and GW conceptualized the project, reviewed the literature, wrote different sections of the manuscript, and edited the manuscript.

ORCID
Milena Sokolowska https://orcid.org/0000-0001-9710-6685
G Enrico Rovati https://orcid.org/0000-0002-8788-9783
Zuzana Diamant https://orcid.org/0000-0003-0133-0100
Eva Untersmayr https://orcid.org/0000-0002-1963-499X
Florentina Sava https://orcid.org/0000-0001-8936-3542
Oscar Palomares https://orcid.org/0000-0003-4516-0369
Cezmi A. Akdis https://orcid.org/0000-0001-8020-019X
Liam O’Mahony https://orcid.org/0000-0003-4705-3583
Milos Jesenak https://orcid.org/0000-0001-7976-2523
Oliver Pfaar https://orcid.org/0000-0003-4374-9639
Maria José Torres https://orcid.org/0000-0001-5228-471X
Grzegorz Woszczek https://orcid.org/0000-0003-0675-085X

REFERENCES
1. Sokolowska M, Rovati GE, Diamant Z, et al. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy. 2021;76(1):114-130.
2. Sheehan WJ, Mauger DT, Paul IM, et al. Acetaminophen versus ibuprofen in Young Children with Mild Persistent Asthma. N Engl J Med. 2016;375(7):619-630.
3. Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and bacteria in acute asthma exacerbations—a GA(2) LEN-DARE systematic review. Allergy. 2011;66(4):458-468.
4. Turunen R, Koistinen A, Vuorinen T, et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatr Allergy Immunol. 2014;25(6):796-803.
5. Christensen K, Kesti O, Elensius V, et al. Human bocaviruses and paediatric infections. Lancet Child Adolesc Health. 2019;3(6):418-426.
6. Simoes EA, Carbonell-Estrany X, Rieger CH, et al. The effect of rhinovirus infection on eicosanoids in asthma and allergic diseases: EAACI Task Force targets. J Investig Allergol Clin Immunol. 2015;13(1):97-106.
7. Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791-1799.
8. McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm. 2012;2012:236345.
9. Jakieła B, Gielicz A, Plutecka H, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhino virus infection. Am J Respir Cell Mol Biol. 2014;51(2):229-241.
10. Seymour ML, Gilby N, Bardin PG, et al. Rhinovirus infection increases 5-lipoxygenase and cyclooxygenase-2 expression in bronchial biopsy specimens from nonatopic subjects. J Infect Dis. 2002;185(4):540-544.
11. Bancos S, Bernard MP, Topham DJ, Phipps RP. Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells. Cell Immunol. 2009;258(1):18-28.
12. Ryan EP, Pollock SJ, Murant TI, Bernstein SH, Felgar RE, Phipps RP. Activated human B lymphocytes express cyclooxygenase-2 and cyclooxygenase inhibitors attenuate antibody production. J Immunol. 2005;174(5):2619-2626.
13. Graham NM, Burrell CJ, Douglas RM, Debelle P, Davies L. Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers. J Infect Dis. 1990;162(6):1277-1282.
14. Shirey KA, Lai W, Pletneva LM, et al. Role of the lipoxigenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol. 2014;7(3):549-557.
15. Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213-227.
16. Shirey KA, Pletneva LM, Puche AC, et al. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent. Mucosal Immunol. 2010;3(3):291-300.
17. Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol. 2013;13(1):59-66.
18. Coulombe F, Jaworska J, Verway M, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity. 2014;40(4):554-568.
19. Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep. 2016;6:27912.
20. Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest. 2011;121(12):4921-4930.
21. Andreakos E, Papadaki M, Serhan CN. Dexamethasone, pro-resolving lipid mediators and resolution of inflammation in COVID-19. Allergy. 2021;76(3):626-628.
22. Moore N, Bosco-Levy P, Thrun N, Blin P. Droz-Perroteau C. NSAIDs and COVID-19: a systematic review and meta-analysis. Drug Saf. 2021;44(9):929-938.
23. Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis in streptozotocin-induced diabetic rats. Cardiology. 2015;131(2):97-106.
24. Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. Embo J 2017;36(1):5-24.
25. Alfajaro MM, Choi JS, Kim DS, et al. Activation of COX-2/PGE2 promotes sapovirus replication via the inhibition of nitric oxide production. J Virol. 2017;91(5).
26. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, and SARS-CoV-2 in human tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829-2845.
27. Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Investig. 2011;121(12):4921-4930.
28. Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213-227.
29. Shelby KA, Lai W, Pletneva LM, et al. Role of the lipoxigenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol. 2014;7(3):549-557.
30. Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213-227.
31. Shelby KA, Lai W, Pletneva LM, et al. Role of the lipoxigenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol. 2014;7(3):549-557.
32. Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics, and perspectives—a report of the European Academy of Allergy and Clinical Immunology (EAACI). *Allergy*. 2020;75(10):2445-2476.

33. Chen JS, Alfajaro MM, Chow RD, et al. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. *J Virol*. 2021;95(7).

34. Archambault AS, Zaid Y, Rakotoarivelono V, et al. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. *Faseb J*. 2021;35(6):e21666.

35. Schwarz B, Sharma L, Roberts L, et al. Cutting edge: severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipopide, resulting in dysregulation of eicosanoid immune mediators. *J Immunol*. 2021;206(2):329-334.

36. Buchheit KM, Hacker JJ, Gakpo DH, Mullur J, Sohail A, Laidlaw TM. Influence of daily aspirin therapy on ACE2 expression and function—implications for SARS-CoV-2 and patients with aspirin-exacerbated respiratory disease. *Clin Exp Allergy*. 2021;51(7):968-971.

37. Terrier O, Dilly S, Pizzorno A, et al. Antiviral properties of the NSAID drug naproxen targeting the nucleoprotein of SARS-CoV-2 coronavirus. *Molecules* (Basel, Switzerland). 2021;26(9):2593.

38. Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action. *Paediatr Anaesth*. 2008;18(10):915-921.

39. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The influence of daily aspirin therapy on ACE2 expression and function—implications for SARS-CoV-2 and patients with aspirin-exacerbated respiratory disease. *Clin Exp Allergy*. 2021;51(7):968-971.

40. Reese JT, Coleman B, Chan L, et al. NSAID use and clinical outcomes in COVID-19 patients: A 38-center retrospective cohort study. *medRxiv*. 2021. doi:10.1101/2021.04.13.21255438

41. Rinott E, Kozer E, Shapiro Y, Bar-Haim A, Youngster I. Ibuprofen use and clinical outcomes in COVID-19 patients. *Clin Microbiol Infect*. 2020;26(9):1259.e1255-1259.e1257.

42. Abu Esba LC, Alqahtani RA, Thomas A, Shamas N, Alswaidan L, Mardawi G. Ibuprofen and NSAID use in COVID-19 infected patients is not associated with worse outcomes: a prospective cohort study. *Infect Dis Ther*. 2021;10(1):253-268.

43. Drake TM, Fairfield CJ, Pius R, et al. Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. *Lancet Rheumatol*. 2021;3(7):e498-e506. doi:10.1016/S2215-1779(21)00104-1

44. Park J, Lee SH, You SC, Kim J, Yang K. Non-steroidal anti-inflammatory agent use may not be associated with mortality of coronavirus disease 19. *Sci Rep*. 2021;11(1):5087. doi:10.1038/s41598-021-96626-7

45. Ricke-Hoch M, Stelling E, Lasswitz L, et al. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. *PLOS One*. 2021;16(8):e0255335.

46. Peters-Golden M, Henderson WR Jr. Leukotrienes. *N Engl J Med*. 2007;357(18):1841-1854.

47. Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. *Med Res Rev*. 2007;27(4):469-527.

48. Diamant Z, Mantzouranis E, Bjorner M. Montelukast in the treatment of asthma and beyond. *Expert Rev Clin Immunol*. 2009;5(6):639-658.

49. Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. *J Allergy Clin Immunol*. 2006;118(1):113-119.

50. Tahan F, Jazrawi E, Moodley T, Rovati GE, Adcock IM. Montelukast inhibits tumour necrosis factor-alpha-mediated interleukin-8 expression through inhibition of nuclear factor-kappaB p65-associated histone acetyltransferase activity. *Clin Exp Allergy*. 2008;38(5):805-811.

51. Mamedova L, Capra V, Accamozzo MR, et al. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. *Biochem Pharmacol*. 2005;71(1-2):115-125.

52. Woszczek G, Chen LY, Alsaaty S, Nagnini S, Shelhamer JH. Concentration-dependent noncysteinyl leukotriene type 1 receptor-mediated inhibitory activity of leukotriene receptor antagonists. *J Immunol*. 2010;184(4):2219-2225.

53. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsumura T, Furukawa S. Pranlukast inhibits NF-κB B activation in human monocytes/macrophages and T cells. *Clin Exp Allergy*. 2003;33(6):802-807.

54. Ishigami H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF-κB B activation and MUC2 gene expression in cultured human epithelial cells. *Pharmacology*. 2005;73(2):89-96.

55. Ciana P, Fumagalli M, Trincavelli ML, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. *EMBO J*. 2006;25(19):4615-4627.

56. Ramires R, Calaffa MF, Tursi A, Haeggstrom JZ, Macchia L. Novel inhibitory effect on 5-lipoxygenase activity by the anti-asthma drug montelukast. *Biochem Biophys Res Commun*. 2004;324(2):815-821.

57. Rius M, Humeel-Henzeis J, Keppler D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABC4B (MRP4). *J Pharmacol Exp Ther*. 2008;324(1):86-94.

58. Ravasi S, Capra V, Panigalli T, Rovati GE, Nicosa S. Pharmacological differences among CysLT(1) receptor antagonists with respect to LTC4(4) and LTD4(4) in human lung parenchyma. *Biochem Pharmacol*. 2002;63(8):1537-1546.

59. Lynch KR, O’Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. *Nature*. 1999;399:789-793.

60. Sarau HM, Ames RS, Chambers J, et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. *Mol Pharmacol*. 1999;56(3):657-663.

61. Reiss TF, Altman LC, Chervinsky P, et al. Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. *J Allergy Clin Immunol*. 1996;98(3):528-534.

62. Altman LC, Munk Z, Seltzer J, et al. A placebo-controlled, dose-ranging study of montelukast, a cysteinyl leukotriene-receptor antagonist. *Montelukast Asthma Study Group*. *J Allergy Clin Immunol*. 1999;102(1):50-56.

63. Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast significantly reduces airway hyperresponsiveness in adults with mild persistent asthma: a randomized, controlled trial. *Montelukast/Beclomethasone Study Group*. *Ann Intern Med*. 1999;130(6):487-495.

64. Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. *J Allergy Clin Immunol*. 2018;142(4):1080-1089.

65. Drazen JM, Yandava CN, Dubé L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. *Nat Genet*. 1999;22(2):168-170.

66. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. *Pharmacogenet Genomics*. 2009;19(2):129-138.

67. Scott JP, Peters-Golden M. Antileukotriene agents for the treatment of lung disease. *Am J Respir Crit Care Med*. 2013;188(5):538-544.

68. Kolmert J, Gomez C, Balgoma D, et al. Urinary leukotriene E4 and cysteinyl leukotrienes in saliva, induced sputum, urine and plasma of patients with asthma and chronic obstructive pulmonary disease. *Eur Respir J*. 2018;52(6):1800352.
blood from patients with aspirin-intolerant asthma. Thorax. 2008;63(12):1076-1082.

70. Rabinovitch N, Graber NJ, Chinchilli VM, et al. Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma. J Allergy Clin Immunol. 2010;126(3):545-551.e4.

71. Rabinovitch N, Mauger DT, Reisdorph N, et al. Predictors of asthma control and lung function responsiveness to 3 therapy in children with uncontrolled asthma. J Allergy Clin Immunol. 2014;133(2):350-356.

72. Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group. Ann Intern Med. 2000;132(2):97-104.

73. Price DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy. 2006;61(6):737-742.

74. Dahlen SE, Malmstrom K, Nizankowska E, et al. Improvement of asthma control with the leukotriene receptor antagonist pranlukast. Proc Natl Acad Sci USA. 2005;102(8):2655-2660.

75. Bisgaard H, Zielen S, Garcia-Garcia ML, et al. Montelukast reduces asthma exacerbations in 2- to 5-year-old children with intermittent asthma. Am J Respir Crit Care Med. 2005;171(4):315-322.

76. Bozek A, Warkocz-Szoltysek B, Filipowska-Gronska A, Jarzab J. Montelukast as an add-on therapy to inhaled corticosteroids in the treatment of severe asthma in elderly patients. J Asthma. 2012;49(5):530-534.

77. Price D, Musgrave SD, Shepstone L, et al. Leukotriene antagonists as first-line or add-on asthma-controller therapy. N Engl J Med. 2011;364(18):1695-1707.

78. Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax. 2002;57(3):226-230.

79. Gaki E, Papaetheodorou G, Ischaki E, Grammenou V, Papa I, Loukides S. Leukotriene E4 in urine in patients with asthma and COPD—the effect of smoking habit. Respir Med. 2007;101(4):826-832.

80. Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am J Respir Crit Care Med. 2007;175(8):783-790.

81. Price D, Popov TA, Bjerner L, et al. Effect of montelukast for treatment of asthma in cigarette smokers. J Allergy Clin Immunol. 2013;131(3):763-771.

82. Giouleka P, Papaetheodorou G, Lyberopoulos P, et al. Body mass index is associated with leukotriene inflammation in asthmatics. Eur J Clin Invest. 2011;41(1):30-38.

83. Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006;27(3):495-503.

84. Kowalski ML, Makowska JS, Blanca M, et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) - classification, diagnosis and management: review of the EAACI/ENDA(#) and GAZLEN/HANNA*. Allergy. 2011;66(7):818-829.

85. Pace S, Sautebin L, Werz O. Sex-bias eicosanoid biology: impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol. 2017;145:1-11.

86. Pergola C, Dodt G, Rossi A, et al. ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci USA. 2008;105(50):19881-19886.

87. Pace S, Pergola C, Dehm F, et al. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest. 2017;127(8):3167-3176.

88. Pergola C, Schaalbe AM, Nikels F, Dodt G, Northoff H, Werz O. Progesterone rapidly down-regulates the biosynthesis of 5-lipoxygenase products in human primary monocytes. Pharmacol Res. 2015;94:42-50.

89. Rossi A, Roviezzo F, Sorrentino R, et al. Leukotriene-mediated sex dimorphism in murine asthma-like features during allergen sensitization. Pharmacol Res. 2019;139:182-190.

90. Pace S, Werz O. Impact of androgens on inflammation-related lipid mediator biosynthesis in innate immune cells. Front Immunol. 2020;11:1356.

91. Esposito R, Spaziano G, Giannattasio D, et al. Montelukast improves symptoms and lung function in asthmatic women compared with men. Front Pharmacol. 2019;10:1094.

92. Rabinovitch N, Strand M, Stuhlmak K, Gelfand EW. Exposure to tobacco smoke increases leukotriene E4-related albuterol usage and response to montelukast. J Allergy Clin Immunol. 2008;121(6):1365-1371.

93. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564-1581.

94. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76(2):428-455.

95. Sisakht M, Sohljoo A, Mahmooodzadeh A, Fathalipour M, Kabiri M, Sakhteman A. Potential inhibitors of the main protease of SARS-CoV-2 and modulators of arachidonic acid pathway: Non-steroidal anti-inflammatory drugs against COVID-19. Comput Biol Med. 2021;136:104686.

96. Fidan C, Aydugu A. As a potential treatment of COVID-19: montelukast. Med Hypotheses. 2020;142:109828.

97. Aigner L, Pietrantonio F, Bessa de Sousa DM, et al. The leukotriene receptor antagonist montelukast as a potential COVID-19 therapeutic. Front Mol Biosci. 2020;7:610132.

98. Barré J, Sabatier JM, Annweiler C. Montelukast drug may improve COVID-19 prognosis: a review of evidence. Front Pharmacol. 2020;11:1344.

99. Crini N, Mastruzzo C, Pagano C, Lisitano N, Palermo F, Vancheri C. Montelukast protects against bradykinin-induced bronchospasm. J Allergy Clin Immunol. 2005;115(4):870-872.

100. England JT, Abdulla A, Biggs CM, et al. Weathering the COVID-19 storm: lessons from hematologic cytokine syndromes. Blood Rev. 2021;45:100707.

101. Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383(23):2255-2273.

102. Sala A, Murphy RC, Voelkel NF. Direct airway injury results in elevated levels of sulfidopeptide leukotrienes, detectable in airway secretions. Prostaglandins. 1991;42(1):1-7.

103. Sanghali N, Tramner GK. Taming the cytokine storm: repurposing montelukast for the attenuation and prophylaxis of severe COVID-19 symptoms. Drug Discov Today. 2020;25(12):2076-2079.

104. Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S. Effect of montelukast on nuclear factor kappaB activation and proinflammatory molecules. Ann Allergy Asthma Immunol. 2005;94(6):670-674.

105. Ueda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene receptor antagonist pranlukast suppresses eosinophil infiltration and cytokine production in human nasal mucosa of perennial allergic rhinitis. Ann Otol Rhinol Laryngol. 2003;112(11):955-961.

106. Almerie MQ, Kerrigan DD. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Med Hypotheses. 2020;143:109883.

107. Khan AR, Misrany C, Yegya-Raman N, et al. Montelukast in hospitalized patients diagnosed with COVID-19. J Asthma. 2021;1-7.

108. Bozek A, Winterstein J. Montelukast’s ability to fight COVID-19 infection. J Asthma. 2021;58(10):1348-1349.

109. Hoeha M, Teodesco CC, Quaglini S, et al. Montelukast use decreases cardiovascular events in asthmatics. Front Pharmacol. 2020;11:611561.

110. Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov. 2005;4(8):664-672.
111. Camera M, Canzano P, Brambilla M, Rovati GE. Montelukast inhibits its platelet activation induced by plasma from COVID-19 patients. *Front Pharmacol*. 2022;13.

112. Funk CD, Ardakani A. A novel strategy to mitigate the hyperinflammatory response to COVID-19 by targeting leukotrienes. *Front Pharmacol*. 2020;11:1214.

113. Pettipher R, Hansel TT, Armer R. Antagonism of the prostanoid D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. *Nat Rev Drug Discov*. 2007;6(4):313-325.

114. Cłaar D, Hartert TV, Peebles RS Jr. The role of prostanoids in allergic lung inflammation and asthma. *Expert Rev Respir Med*. 2015;9(1):55-72.

115. Boonpiyahad T, Capova G, Duchna HW, et al. Impact of high-altitude therapy on type-2 immune responses in asthma patients. *Allergy*. 2020;75(1):84-94.

116. Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of asthma severity, control, and TH2 inflammation promotes severe viral bronchiolitis by suppressing IFN-lambda production. *J Allergy Clin Immunol*. 2018;10(440).

117. Gupta A, Chander CK. Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID-19 disease. *Med Hypotheses*. 2020;143:11012-02.

118. Safholm J, Manson ML, Bood J, et al. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostaglandin subtype 2 receptor. *J Allergy Clin Immunol*. 2015;136(5):1232-1239.e1231.

119. Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. *Biol Psychiatry*. 2016;79(7):516-525.

120. Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. *Nat Rev Drug Discov*. 2018;17(9):623-639.

121. Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as antitumour agents. *Nat Rev Cancer*. 2012;12(6):436-444.

122. Burdett S, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. *J Leukoc Biol*. 2015;97(6):1049-1070.

123. Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. *Acta Pharm Sin B*. 2020;10(4):582-602.

124. Celorio M, Fernandez-Suarez D, Rojo-Bustamante E, et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. *Brain Behav Immun*. 2016;57:94-105.

125. Alhouayek M, Muccioli GG. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. *Trends Pharmacol Sci*. 2014;35(6):284-292.

126. Fowler CJ. NSAIDs: endocannabinoid stimulating anti-inflammatory drugs? *Trends Pharmacol Sci*. 2012;33(9):468-473.

127. Angelina A, Perez-Diego M, Lopez-Abente J, Palomares O. The role of cannabinoids in allergic diseases: Collegium Internationale Allergologicum (CIA) update 2020. *Int Arch Allergy Immunol*. 2020;181(8):565-584.

128. Sugawara K, Zakany N, Hundt T, et al. Cannabinoid receptor 1 controls human mucosal-type mast cell degranulation and maturation in situ. *J Allerg Clin Immunol*. 2013;121(2):182-193.

129. Sugawara K, Biro T, Tsuruta D, et al. Endocannabinoids limit excessive mast cell maturation and activation in human skin. *J Allergy Clin Immunol*. 2012;129(3):726-738.e728.

130. Braun A, Engel T, Aguilar-Pimentel JA, et al. Beneficial effects of cannabinoids (CB) in a murine model of allergen-induced airway inflammation: role of CB1/CB2 receptors. *Immunobiology*. 2011;216(4):466-476.

131. Vuolo F, Abreu SC, Michels M, et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. *Eur J Pharmacol*. 2019;843:251-259.

132. Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice. *Toxicol Appl Pharmacol*. 2003;188(1):24-35.

133. Giannini L, Nistri S, Mastroianni R, et al. Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs. *J Cell Mol Med*. 2008;12(6A):2381-2394.

134. Gaffal E, Glodde N, Jakobs M, Bald T, Tuting T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate-induced mouse atopic-like dermatitis. *Exp Dermatol*. 2014;23(6):401-406.

135. Kim HJ, Kim B, Park BM, et al. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. *Int J Dermatol*. 2015;54(10):e401-408.

136. Nam G, Jeong SK, Park BM, et al. Selective cannabinoid receptor-1 agonists regulate mast cell activation in an oxazolone-induced atopic dermatitis model. *Ann Dermatol*. 2016;28(1):22-29.

137. Petrocino S, Verde R, Vaia M, Allara M, Iuvene T, Di Marzo V. Anti-inflammatory properties of cannabidiol, a nonpsychotropic cannabinoid, in experimental allergic contact dermatitis. *J Pharmacol Exp Ther*. 2018;365(3):652-663.
152. Vaia M, Petrosino S, De Filippis D, et al. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. *Eur J Pharmacol*. 2016;791:669-674.

153. Petrosino S, Cristino L, Karsak M, et al. Protective role of palmitoylethanolamide in contact allergic dermatitis. *Allergy*. 2010;65(6):698-711.

154. Bozkurt TE, Kaya Y, Durlu-Kandili NT, Onder S, Sahin-Erdemli I. The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice. *Respir Physiol Neurobiol*. 2016;231:7-13.

155. Angelina A, Martin-Fontecha M, Ruckert B, et al. The cannabinoid WIN55212-2 restores rhinovirus-induced epithelial barrier disruption. *Allergy*. 2021;76(6):1900-1902.

156. Angelina A, Pérez-Diego M, López-Abente J, et al. Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprogramming. *Mucosal Immunol*. 2022;15(1):96-108.

157. Esposito G, Pesce M, Seguella L, et al. The potential of cannabidiol in pulmonary inflammation in mice. *Respir Physiol Neurobiol*. 2021;261(6):1900-1902.

158. Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid receptor type 2 is involved in allergic inflammation. *Eur J Pharmacol*. 2022;879:113314.

159. Ferrini ME, Hong S, Stierle A, et al. CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. *Allergy*. 2017;72(6):937-947.

160. Martin-Fontecha M, Eiwegger T, Jartti T, et al. The expression of chemoattractant receptor-homologous molecule expressed on Th2 cells in adult patients with asthma: a meta-analysis and systematic review. *Respir Res*. 2018;19(1):217.

161. Fitzgerald DA, Mellis CM. Leukotriene receptor antagonists in virus-induced wheezing: evidence to date. *Treat Respir Med*. 2006;5(6):407-417.

162. Dunican EM, Fahy JV. The role of type 2 inflammation in the COVID-19 pandemic. *Br J Pharmacol*. 2020;177(21):4967-4970.

163. Calhoun WJ, Dick EC, Schwartz LB, Busse WW. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. *J Clin Investig*. 1994;94(6):2200-2208.

164. Peters-Golden M, Expanding roles for leukotrienes in airway inflammation. *Curr Allergy Asthma Rep*. 2008;8(4):367-373.
than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. *Proc Natl Acad Sci USA*. 1999;96(13):7563-7568.

193. Dona I, Perez-Sanchez N, Eguiluz-Gracia I, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. *Allergy*. 2020;75(3):561-575.

194. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. *Allergy*. 2018;73(12):2290-2305.

195. Szczeklik A, Gryglewski RJ, Czerniawska-Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin-sensitive patients. *BMJ*. 1975;1(5949):67-69.

196. Zembowicz A, Mastalerz L, Setkowicz M, Radziszewski W, Szczeklik A. Safety of cyclooxygenase 2 inhibitors and increased leukotriene synthesis in chronic idiopathic urticaria with sensitivity to nonsteroidal anti-inflammatory drugs. *Arch Dermatol*. 2003;139(12):1577-1582.

197. Setkowicz M, Mastalerz L, Podolec-Rubis M, Sanak M, Szczeklik A. Clinical course and urinary eicosanoids in patients with aspirin-induced urticaria followed up for 4 years. *J Allergy Clin Immunol*. 2009;123(1):174-178.

198. Di Lorenzo G, Pacor ML, Candore G, et al. Polymorphisms of cyclooxygenases and 5-lipoxygenase-activating protein are associated with chronic spontaneous urticaria and urinary leukotrienes E4. *Eur J Dermatol*. 2011;21(1):47-52.

199. Doña I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. *Allergy*. 2019;74(6):1135-1144.

200. Di Lorenzo G, Pacor ML, Vignola AM, et al. Urinary metabolites of histamine and leukotrienes before and after placebo-controlled challenge with ASA and food additives in chronic urticaria patients. *Allergy*. 2002;57(12):1180-1186.

201. Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma. *J Allergy Clin Immunol*. 2004;113(4):771-775.

202. Bohm I, Speck U, Schild H. A possible role for cysteinyl-leukotrienes in non-ionic contrast media induced adverse reactions. *Eur J Radiol*. 2005;55(3):431-436.

203. Stellato C, de Crescenzo G, Patella V, Mastronardi P, Mazzarella B, Marone G. Human basophil/mast cell releasability. XI. Heterogeneity of the effects of contrast media on mediator release. *J Allergy Clin Immunol*. 1996;97(3):838-850.

204. Cryer B, Feldman M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. *Am J Med*. 1998;104(5):413-421.

205. Waterbury LD, Silliman D, Jolas T. Comparison of cyclooxygenase inhibitory activity and ocular anti-inflammatory effects of ketorolac tromethamine and bromfenac sodium. *Curr Med Res Opin*. 2006;22(6):1133-1140.

206. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. *Proc Natl Acad Sci USA*. 1993;90(24):11693-11697.

207. Campos C, de Gregorio R, Garcia-Nieto R, Gago F, Ortiz P, Alemany S. Regulation of cyclooxygenase activity by metamizol. *Eur J Pharmacol*. 1999;378(3):339-347.

208. Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. Zileuton Clinical Trial Group. *JAMA*. 1996;275(12):931-936.

209. Castro M, Kerwin E, Miller D, et al. Efficacy and safety of fevipiprant in patients with uncontrolled asthma: Two replicate, phase 3, randomised, double-blind, placebo-controlled trials (ZEAL-1 and ZEAL-2). *EClinicalMedicine*. 2021;35:100847.

210. Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. *N Engl J Med*. 2014;371(3):203-212.

How to cite this article: Sokolowska M, Rovati GE, Diamant Z, et al. Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19. *Allergy*. 2022;77:2337-2354. doi:10.1111/all.15258