A nonlinear plate control without linearization

Abstract: In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

Keywords: Nonlinear plate, Optimality, Vibration, Maximum principle

MSC: 35-XX, 35Q93, 49J20, 49N05, 74H45

1 Introduction

The linear vibration control for civil structures are studied in a large number of papers, not limited to; [3]-[14]. But nonlinear vibration control stands as a challenging problem. Controlling and analyzing nonlinear systems is not easy due to both the presence of nonlinearity and the extensive computation required. So, researchers generally tend to transform these nonlinear systems to linearized ones [26]-[29]. But the linearized form of a nonlinear system, no matter how good, is not able to preserve the crucial features of the main system. Due to this reason, nonlinear control of civil structures has attracted great attention [15]-[22]. Therefore, the present paper deals with the vibration control of a nonlinear system to show that the controlling of a nonlinear system is both possible and easy without linearization of the nonlinear system via the maximum principle [3]-[13].

The original contribution of the present study to literature is that the papers existing in the literature present the control of nonlinear system by using linearized form of the nonlinear system or by using lengthy computation procedures while the present paper gives a simpler algorithm for obtaining the control function analytically without linearization and lengthy computation. Also, the maximum principle is employed for controlling the nonlinear system in the current study without linearization. In contrast, in the literature it is used for controlling linear or linearized systems. The obtained results have the potential to be extended to control other nonlinear systems.

In this study, the vibration control problem for a nonlinear plate is considered. For controlling the system, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the nonlinear plate consists of a weighted quadratic functional of the displacement and velocity and also includes a quadratic functional of the control function as a penalty term. By means of maximum principle, the optimal control function is analytically obtained for the nonlinear plate without linearization.
2 Mathematical formulation of the problem

In this study, the vibration control problem for a nonlinear plate is considered as follows [2]:

\[w_{tt} + \frac{D}{\rho}\nabla^4 w - \frac{\epsilon \mu}{\rho} w_t - \left(\frac{N_1}{\rho} + \frac{T}{2\rho} \int_\Omega w_x^2 dxdy \right) w_{xx} - \left(\frac{N_2}{\rho} + \frac{T}{2\rho} \int_\Omega w_y^2 dxdy \right) w_{yy} = f(x, y, t). \]

Eq. (1) is subject to the boundary conditions

\[w(0, y, t) = 0, \quad w(\ell, y, t) = 0, \quad w_{xx}(0, y, t) = 0, \quad w_{xx}(\ell, y, t) = 0, \]

and the initial conditions

\[w(x, 0, t) = 0, \quad w(x, \ell, t) = 0, \quad w_{yy}(x, 0, t) = 0, \quad w_{yy}(x, \ell, t) = 0, \]

where \(w(x, y, t) \) is the vertical displacement of the plate, \(x, y \) are space variables in \(\Omega = (0, \ell) \times (0, \ell), t \) is the time variable in \((0, t_f), t_f \) is the terminal time, \(Q = \Omega \times (0, t_f), N_1 \) is the normal load per unit length in the \(x \)-direction, \(N_2 \) is the normal load per unit length in the \(y \)-direction, \(D = \frac{Eh^3}{12(1-v^2)} \) is the plate rigidity in which \(E, h \) and \(v \) are modulus of elasticity, plate thickness and Poisson’s ratio, respectively, \(\rho \) is the material density, \(T \) is the normal load per unit area, \(\epsilon > 0 \) is a small parameter, \(\mu \) is the damping coefficient of the plate and

\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \]

is the control function. In [2], existence and uniqueness of the solution to the nonlinear homogeneous plate equation is given. In order to ensure integrity of the present study, let us recall the existence of the solution. Define the scalar product and norm in standard \(L^2 \) space as follows:

\[(w, v) = \int_\Omega wvd\Omega, \quad \|w\|^2 = \int_\Omega |w|^2 d\Omega. \]

Also, let us define the Sobolev spaces as follows:

\[V = \{ w \in H^4_0(\Omega) \cap H^2(\Omega); \quad H = L^2(\Omega), \quad E_0 = V \times H, \quad E_1 = V_1 \times V \}

\[V_1 = \{ w \in H^4_0(\Omega) \cap H^2(\Omega) \mid w_{xx}(0, y) = w_{xx}(\ell, y) = w_{yy}(x, 0) = w_{yy}(x, \ell) = 0 \}. \]

Let the initial data \(\{w_0, w_1\} \) belong to \(E_0 \). Then there exists a function \(w(t) \) with \(w(t) \in L^\infty(0, t_f; V_1), w_t(t) \in L^\infty(0, t_f; V), w_{tt}(t) \in L^\infty(0, t_f; H) \) which satisfies initial conditions Eq. (3) and Eq. (1) in the sense that

\[(w_{tt}, \varphi) + \frac{D}{\rho} (w_{xx}, \varphi_{xx}) + \frac{2D}{\rho} (w_{xy}, \varphi_{xy}) + \frac{D}{\rho} (w_{yy}, \varphi_{yy}) + \frac{\epsilon \mu}{\rho} (w_t, \varphi) \]

\[- \left(\frac{N_1}{\rho} + \frac{T}{2\rho} \int_\Omega w_x^2 dxdy \right) (w_{xx}, \varphi) - \left(\frac{N_2}{\rho} + \frac{T}{2\rho} \int_\Omega w_y^2 dxdy \right) (w_{yy}, \varphi) = (f, \varphi), \quad \varphi \in V. \]

Then, \(w(t) \) is a weak solution of the system under consideration (see [1, 2]). By introducing the following lemma, let us show that the system given by Eqs. (1)-(3) has a unique weak solution.

Lemma 2.1. Let \(w_\epsilon \) satisfy the system given by Eqs. (1)-(3) corresponding to the control function \(f_\epsilon(x, y, t) \). Also, \(w^0 \) is the optimal state function corresponding to the optimal control function \(f^0(x, y, t) \). Difference function is defined by

\[\Delta w(x, y, t) = w_\epsilon(x, y, t) - w^0(x, y, t). \]

Note that $\Delta w(x, y, t)$ satisfies the following equation

$$\Delta w_{tt} + \frac{D}{\rho} \nabla^4 \Delta w + \frac{\epsilon \mu}{\rho} \Delta w_t - \frac{N_1}{\rho} \Delta w_{xx} - \frac{N_2}{\rho} \Delta w_{yy} - \Delta \sigma = \Delta f(x, y, t)$$ \hspace{1cm} (6)

in which

$$\Delta \sigma = \sigma - \sigma^0 = \left[\frac{T w_{xx}^2}{2\rho} \int_{\Omega} w_{xx}^2 \, d\Omega + \frac{T w_{yy}^2}{2\rho} \int_{\Omega} w_{yy}^2 \, d\Omega \right] - \left[\frac{T w_{xx}^2}{2\rho} \int_{\Omega} w_{xx}^2 \, d\Omega + \frac{T w_{yy}^2}{2\rho} \int_{\Omega} w_{yy}^2 \, d\Omega \right]$$

and the following homogeneous boundary conditions

$$\Delta w(0, y, t) = 0, \quad \Delta w(\ell, y, t) = 0, \quad \Delta w_x(0, y, t) = 0, \quad \Delta w_x(\ell, y, t) = 0,$$ \hspace{1cm} (7a)

$$\Delta w(x, 0, t) = 0, \quad \Delta w(x, \ell, t) = 0, \quad \Delta w_y(x, 0, t) = 0, \quad \Delta w_y(x, \ell, t) = 0,$$ \hspace{1cm} (7b)

in addition to the zero initial conditions

$$\Delta w(x, y, 0) = 0, \quad \Delta w_t(x, y, 0) = 0.$$ \hspace{1cm} (8)

Then

$$\iint_{\Omega} \Delta w^2(x, y, t_f) \, d\Omega = o(\varepsilon), \quad \iint_{\Omega} \Delta w_t^2(x, y, t_f) \, d\Omega = o(\varepsilon)$$

and

$$\iiint_{Q} \Delta w^2(x, y, t) \, dQ = o(\varepsilon).$$

$o(\varepsilon)$ is a quantity such that

$$\lim_{\varepsilon \to 0} (o(\varepsilon)/|\varepsilon|) = 0.$$

Proof. Let $(x_1, y_1, t_1), \ldots, (x_p, y_p, t_p)$ be P arbitrary points in the open region Q and ε_j are the coefficients such that the regions, $R_j = [x_j, x_j + \sqrt{\varepsilon_j}] \times [y_j, y_j + \sqrt{\varepsilon_j}] \times [t_j, t_j + \sqrt{\varepsilon_j}]$ do not have any intersection for $1 \leq j \leq p$.

Let us define the following energy integral like in [7, 25]:

$$E(t) = \frac{1}{2} \iint_{\Omega} \{((\Delta w))^2 + \frac{D}{\rho} \nabla^4 (\Delta w)^2 - \frac{N_1}{\rho} \frac{\partial^2}{\partial x^2}(\Delta w)^2 - \frac{N_2}{\rho} \frac{\partial^2}{\partial y^2}(\Delta w)^2 \} \, d\Omega.$$ \hspace{1cm} (9)

Eq. (9) can be written in the following form:

$$E(t) = \int_{0}^{t} \frac{dE(\tau)}{d\tau} \, d\tau = \iint_{Q} \{2 \Delta w_t \Delta w_{tt} + \frac{D}{\rho} \nabla^4 (2 \Delta w \Delta w_t) - \frac{N_1}{\rho} \frac{\partial^2}{\partial x^2}(2 \Delta w \Delta w_t) - \frac{N_2}{\rho} \frac{\partial^2}{\partial y^2}(2 \Delta w \Delta w_t) \} \, dQ.$$ \hspace{1cm} (10)

With integration by parts and using homogeneous boundary conditions given by Eq. (7), Eq. (10) becomes

$$E(t) = \int_{0}^{t} \frac{dE(\tau)}{d\tau} \, d\tau = \iint_{Q} \{\Delta w_{tt} + \frac{D}{\rho} \nabla^4 (\Delta w) - \frac{N_1}{\rho} \frac{\partial^2}{\partial x^2}(\Delta w) - \frac{N_2}{\rho} \frac{\partial^2}{\partial y^2}(\Delta w) \} \Delta w_t \, dQ.$$

$$= \iint_{Q} \{\Delta f(x, y, t) + \Delta \sigma \} \Delta w_t \, dQ \leq \iint_{Q} \{\Delta f(x, y, t) + \Delta \sigma \} \Delta w_t \, dQ.$$
Applying the Cauchy-Schwartz inequality to the space integral, one obtains
\[
E(t) \leq \int_0^t \left[\int_\Omega (\Delta w_t)^2 d\Omega \right]^{1/2} \left[\int_\Omega (\Delta f(x, y, t) + \Delta \varpi)^2 d\Omega \right]^{1/2} dt \\
\leq \left[\int_0^t E^{1/2}(\tau) d\tau \right] \left[\int_\Omega (\Delta f(x, y, t) + \Delta \varpi)^2 d\Omega \right]^{1/2} \]
(11)
Taking the sup of the both sides of Eq. (11) leads to
\[
\sup_{t \in [0, t_f]} E(t) \leq \sup_{t \in [0, t_f]} E^{1/2}(t) \int_0^t \left[\int_\Omega (\Delta f(x, y, t) + \Delta \varpi)^2 d\Omega \right]^{1/2} dt \\
= \sup_{t \in [0, t_f]} E^{1/2}(t) \sum_{i=1}^P O(\varepsilon_i^{4/3})
\]
where \(O(r) \) is a quantity such that
\[
\lim_{r \to 0+} \frac{O(r)}{r} = \text{constant}.
\]
By means of Eq. (12), the following inequality is observed for each \(t \in [0, t_f] \):
\[
0 \leq E^{1/2}(t) \leq O(\varepsilon_i^{4/3}).
\]
Because \(4/3 > 1 \), the following equality is obtained
\[
E(t) = o(\varepsilon).
\]
Because the coefficients of Eq. (1) are bounded away from zero, the conclusion of Lemma 2.1 is obtained from Eq. (13).

Corollary 2.2. It is concluded from Lemma 2.1 that
\[
\lim_{\Delta f(x, y, t) \to 0} \Delta w(x, y, t) = 0.
\]
Then, Eqs. (1)-(3) have a unique weak solution. Hereafter, by a solution to Eqs. (1)-(3), we shall always mean the weak solution in the sense of Eq. (4) above.

Now, consider that in order to preserve the uniqueness of the solution, the control function \(f \), corresponding to the unique solution \(w \), must be unique. Note that the system under consideration has a unique solution and unique control function. Then, it is called observable. The Hilbert Uniqueness method proved that observable is equal to the controllable [14, 24]. Namely, the system under consideration is controllable.

Hilbert Uniqueness method has introduced J. L. Lions in 1988 for showing that observable is equal to the controllable. This method has aroused a lot of interest among scientists, from both origins: partial differential equations and general dynamic systems [23].

3 Optimal control problem and maximum principle

The aim of the optimal control problem is to determine an optimum function \(f(x, y, t) \) to minimize the performance index functional of the plate at \(t_f \) with the minimum expenditure of the control. Therefore, the performance index functional is defined by the weighted dynamic response of the plate and the expenditure of the control over \((0, t_f)\) as follows:
\[
\mathcal{J}(f(x, y, t)) = \int_\Omega [\mu_1 w^2(x, y, t_f) + \mu_2 w^2_t(x, y, t_f)] d\Omega + \int_0^{t_f} \int_\Omega \mu_3 f^2(x, y, t) dQ
\]
(14)
where \(\mu_1, \mu_2 \geq 0, \quad \mu_1 + \mu_2 \neq 0 \quad \text{and} \quad \mu_3 > 0 \) are weighting constants. The first integral in Eq. (14) is the modified dynamic response of the plate and the last integral represents the measure of the total control expense that accumulates over \((0, t_f)\). The set of admissible control functions is given by

\[
\mathcal{J}(f^0(x, y, t)) = \min_{f \in \mathcal{F}_{ad}} \mathcal{J}(f(x, y, t))
\]

subject to Eqs. (1)-(3). In order to achieve the maximum principle, let us introduce an adjoint variable \(v(x, y, t) \) satisfying the equation

\[
v_{tt} + \frac{D}{\rho} \nabla^4 v - \frac{\epsilon \mu}{\rho} v_t - \frac{N_1}{\rho} v_{xx} - \frac{N_2}{\rho} v_{yy} = 0
\]

and boundary conditions

\[
v(0, y, t) = 0, \quad v(\ell, y, t) = 0, \quad v_{xx}(0, y, t) = 0, \quad v_{xx}(\ell, y, t) = 0,
\]

as well as the terminal conditions

\[
v_t(x, y, t_f) - \frac{\epsilon \mu}{\rho} v(x, y, t_f) = -2\mu_1 w^0(x, y, t_f)
\]

\[
v(x, y, t_f) = 2\mu_2 w^0(x, y, t_f).
\]

A maximum principle in terms of the Hamiltonian functional is derived as a necessary condition for the optimal control function. In [3], it is proved that under some convexity assumptions, which are satisfied by Eq. (14), on performance index function, the maximum principle is also a sufficient condition for the control function to be optimal. Deriving the maximum principle, the nonlinear control problem is reduced to solving a system of partial differential equations for the state variable and the adjoint variable subjected to boundary, initial and terminal conditions. Also, the maximum principle gives an explicit expression for the optimal control function and relates the optimal control to the state variable implicitly. Then, the maximum principle can be given as follows:

Theorem 3.1 (Maximum principle). The maximization problem states that if

\[
\mathcal{H}[t; v^0, f^0(x, y, t)] = \max_{f \in \mathcal{F}_{ad}} \mathcal{H}[t; v, f(x, y, t)]
\]

in which \(v = v(x, y, t) \) satisfies the adjoint system given by Eqs. (16)-(18) and the Hamiltonian function is defined by

\[
\mathcal{H}[t; v, f(x, y, t)] = -vf(x, y, t) - \mu_3 f^2(x, y, t) - v\sigma,
\]

then

\[
\mathcal{J}(f^0(x, y, t)) = \min_{f \in \mathcal{F}_{ad}} \mathcal{J}(f(x, y, t))
\]

where \(f^0(x, y, t) \) is the optimal control function.

Proof. Before starting the proof, let us introduce an operator and its adjoint operator as follows:

\[
\mathcal{Y}(w) = w_{tt} + \frac{D}{\rho} \nabla^4 w + \frac{\epsilon \mu}{\rho} w_t - \frac{N_1}{\rho} w_{xx} - \frac{N_2}{\rho} w_{yy},
\]

(22a)
The deviations are given by $\Delta w = w - w^o$, $\Delta w_t = w_t - w^o_t$ in which w^o is the optimal displacement. The operator $\mathcal{Y}(\Delta w)(x, y, t) = \Delta f(x, y, t) + \Delta \sigma$ is subject to the following boundary conditions

$$\begin{align*}
\Delta w(0, y, t) &= 0, \\
\Delta w(\ell, y, t) &= 0, \\
\Delta w_{xx}(0, y, t) &= 0, \\
\Delta w_{xx}(\ell, y, t) &= 0.
\end{align*}$$

(23a)

and initial conditions

$$\begin{align*}
\Delta w(x, 0, t) &= 0, \\
\Delta w(x, \ell, t) &= 0, \\
\Delta w_{yy}(x, 0, t) &= 0, \\
\Delta w_{yy}(x, \ell, t) &= 0.
\end{align*}$$

(23b)

and initial conditions

$$\Delta w(x, y, t) = \Delta w_{t}(x, y, t) = 0 \quad \text{at} \quad t = 0.$$

(24)

Consider the following functional

$$\mathcal{J}[f(x, y, t)] = \int_{Q} v \mathcal{Y}(\Delta w) - \Delta w\mathcal{Y}^*(v) dQ = \int_{Q} v(\Delta f(x, y, t) + \Delta \sigma) dQ.$$

(25)

Integrating the left side of Eq. (25) by parts, twice with respect to t and four times with respect to x, using Eqs. (23)-(24), one observes the following relation:

$$\int_{Q} v \mathcal{Y}(\Delta w) - \Delta w\mathcal{Y}^*(v) dQ = \int_{\Omega} v(x, y, t_f) \Delta w_{t}(x, y, t_f) - \Delta w(x, y, t_f) \left[v_{t}(x, y, t_f) - \frac{\Delta \sigma}{\Delta \sigma^2}\right] d\Omega.$$

(26)

In view of Eq. (18), Eq. (26) becomes

$$\int_{Q} v \mathcal{Y}(\Delta w) - \Delta w\mathcal{Y}^*(v) dQ = 2 \int_{\Omega} (\mu_1 w^o(x, y, t_f) \Delta w(x, y, t_f) + \mu_2 w_t(x, y, t_f) \Delta w^o_t(x, y, t_f)) d\Omega.$$

(27)

Consider the difference of the performance index

$$\Delta \mathcal{J}[f(x, y, t)] = \mathcal{J}[f(x, y, t)] - \mathcal{J}[f^0(x, y, t)] = \int_{\Omega} \left\{ \mu_1 [w^2(x, y, t_f) - w^o^2(x, y, t_f)] \\
+ \mu_2 [w^2_t(x, y, t_f) - w^o^2_t(x, y, t_f)] + \mu_3 [f^2(x, y, t) - f^o^2(x, y, t)] \right\} d\Omega.$$

(28)

Let us expand the $w^2(x, y, t_f)$ and $w^2_t(x, y, t_f)$ terms by Taylor series about $w^o^2(x, y, t_f)$ and $w^o^2_t(x, y, t_f)$, respectively. Then, one observes the following

$$w^2(x, y, t_f) - w^o^2(x, y, t_f) = 2w^o(x, y, t_f) \Delta w(x, y, t_f) + r,$$

(29a)

$$w^2_t(x, y, t_f) - w^o^2_t(x, y, t_f) = 2w^o_t(x, y, t_f) \Delta w_t(x, y, t_f) + r_t,$$

(29b)

where $r = (\Delta w)^2 > 0$ and $r_t = (\Delta w_t)^2 > 0$. Substituting Eq. (29) into Eq. (28) gives

$$\Delta \mathcal{J}[f(x, y, t)] = \int_{\Omega} \left\{ \mu_1 [2w^o(x, y, t_f) \Delta w(x, y, t_f) + r] \\
+ \mu_2 [2w^o_t(x, y, t_f) \Delta w_t(x, y, t_f) + r_t] + \mu_3 [f^2(x, y, t) - f^o^2(x, y, t)] \right\} d\Omega.$$

(30)
From Eq. (27), and because of $\mu_1 r + \mu_2 r_t > 0$, one obtains
\[
\Delta J[f(x, y, t)] \geq \iint_Q v[\Delta f(x, y, t) + \Delta \varphi]dQ + \iint_Q \mu_3[f^2(x, y, t) - f^o^2(x, y, t)]dQ \geq 0
\]
which leads to
\[
v f(x, y, t) + \mu_3 f^2(x, y, t) + \varphi \varphi \geq v f^o(x, y, t) + \mu_3 f^o^2(x, y, t) + \varphi \varphi^o
\]
that is,
\[
\mathcal{H}[t; v^o, f^o] \geq \mathcal{H}[t; v, f].
\]
Hence, we obtain
\[
J(f^o(x, y, t)) = \min_{f \in f_{ad}} J(f(x, y, t))
\]
By taking the first variation of the Hamiltonian, the optimal control function is obtained as follows:
\[
f(x, y, t) = -\frac{v(x, y, t)}{2\mu_3}.
\]
\[
(32)
\]
\section{4 Conclusion}

The nonlinear optimal vibration control problem is defined with a nonlinear partial differential equation and a performance index functional, which is chosen as a quadratic functional of the displacement, velocity and control function. Wellposedness and controllability of the system are discussed. While using the maximum principle, the linearized form of the nonlinear term is not taken into account. Hence, it is shown that optimal control of nonlinear systems can be obtained without linearization of the nonlinear term for and the optimal control function can be obtained analytically for nonlinear systems without linearization. The results in the present study can be extended to the other nonlinear control systems. Hence, by means of the results obtained in the present paper, nonlinear control problems can be solved preserving the crucial features of the main system and without lengthy computation.

\textbf{References}

[1] Ackleh A.S., Banks D.S., Pinter G.A., A nonlinear beam equation, Applied Mathematics Letters, 2002, 15, 381-387.
[2] Wang D., Zhang J., Global attractor for a nonlinear plate equation with supported boundary conditions, Journal of Math. Analysis and Appl., 2010, 363, 468-480.
[3] Barnes E.A., Necessary and sufficient optimality conditions for a class of distributed parameter control systems, SIAM Journal on Control, 1971, 9, 62-82.
[4] Clarke F.H., Maximum principle under minimal hypotheses, SIAM J. Control Optimization, 1976, 14, 1078-1091.
[5] Egorov A.I., Necessary optimality conditions for distributed parameter systems, SIAM Journal on Control, 1967, 5, 352-408.
[6] Kucuk I., Yildirim K., Sadek I., Adali S., Optimal control of a beam with Kelvin-Voigt damping subject to forced vibrations using a piezoelectric patch actuator, Journal of Vibration and Control, 2015, 21(4), 701-713.
[7] Kucuk I., Yildirim K., Necessary and sufficient conditions of optimality for a damped hyperbolic equation in one space dimension, Abstract and Applied Analysis, 2014, 493130, Doi:10.1155/2014/493130.
[8] Kucuk I., Yildirim K., Adali S., Optimal piezoelectric control of a plate subject to time-dependent boundary moments and forcing function for vibration damping, Computers and Mathematics with Applications, 2015, 69, 291-303.
[9] Kucuk I., Sadek I., Yilmaz Y., Active control of a smart beam with time delay by Legendre wavelets, Applied Mathematics and Computation, 2012, 218, 8968-8977.
[10] Lee E.B., A sufficient condition in the theory of optimal control, SIAM Journal on Control, 1963, 1, 241-245.
[11] Yildirim K., Optimal forced vibration control of a smart plate, Applied Mathematical Modelling, 2016, 40, 6424-6436.
[12] Sadek I., Necessary and sufficient conditions for the optimal control of distributed parameter systems subject to integral constraints, Journal of the Franklin Institute, 1988, 325, 565-583.
[13] Yildirim K., Kucuk I., Active piezoelectric vibration control for a Timoshenko beam, Journal of the Franklin Institute, 2016, 353(1), 95-107.
[14] Guliyev H.F., Jabbarova K.S., The exact controllability problem for the second order linear hyperbolic equation, Differential Equations and Control Processes, 2010, N3, 10-19.
[15] Ahmadabadi N., Khadem S.E., Nonlinear vibration control of a cantilever beam by a nonlinear energy sink, Mechanism and Machine Theory, 2012, 50, 134-149.
[16] Sheng G.G., Wang X., Nonlinear vibration control of functionally graded laminated cylindrical shells, Composites Part B: Engineering, 2013, 52, 1-10.
[17] Ahmadabadi N., Khadem S.E., Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device, Journal of Sound and Vibration, 2014, 333, 4444-4457.
[18] Liu C., Ren C., Liu L., Xu Y., Optimal control of nonlinear vibration resonances of single-walled nanotube beams, Journal of Sound and Vibration, 2014, 27, 648-656.
[19] Dai L., Sun L., Chen C., Control of an extending nonlinear elastic cable with an active vibration control strategy, Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3901-3912.
[20] Li K., Gauthier J.Y., Guyomar D., Structural vibration control by synchronized switch damping energy transfer, Journal of Sound and Vibration, 2011, 330, 49-60.
[21] Oueini S.S., Nayfeh A.H., Pratt J.R., A nonlinear vibration absorber for flexible structures, Nonlinear Dynamics, 1998, 15, 259-282.
[22] Pai P.F., Wen B., Naser A.S., Schulz M.J., Structural vibration control using PZT patches and nonlinear phenomena, Journal of Sound and Vibration, 1998, 215, 273-296.
[23] Bensoussan A., An introduction to the hilbert uniqueness method, Lecture Notes in Control and Information Sciences, 2007, 185, 184-198.
[24] Pedersen M., Functional Analysis in Applied Mathematics and Engineering, CRC press, Florida, 1999.
[25] Koshlyakov N.S., Smirnov M.M., Gliner E.B., Differential Equations of Mathematical Physics, North-Holland Publishing Company, Amsterdam, 1964.
[26] Shang Y., A parallel two-level linearization method for incompressible flow problems, Applied Mathematics Letters, 2011, 24, 364-369.
[27] Wang Y., Low K.H., Damped response analysis of nonlinear cushion systems by a linearization method, Computers and Structures, 2005, 83, 1584-1594.
[28] Wu S.T., General decay of solutions for a viscoelastic equation with Balakrishnan-Taylor damping, Taiwanese Journal of Mathematics, 2015, 19, 553-566.
[29] Zielinski A.P., Frey F., On linearization in non-linear structural finite element analysis, Computers and Structures, 2001, 79, 825-838.