Macular Vessel Density Changes in Young Adults With High Myopia: A Longitudinal Study

Ya Shi1,2†, Luyao Ye1,2†, Qiuying Chen1,2, Guangyi Hu1,2, Yao Yin2, Ying Fan1, Jianfeng Zhu2, Jiangnan He2*, Zhi Zheng1*, Haidong Zou1,2 and Xun Xu1,2

1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China, 2 Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China

Background: To characterize the longitudinal changes of macular vessel density in young adults and its associated factors.

Methods: The right eyes of 309 participants (75 high myopic, 194 mild-to-moderate myopic, and 40 healthy) were followed up for 21 months. OCTA images were acquired at two visits using follow-up scans. Macular vessel density was calculated globally and in the nine early treatment diabetic retinopathy study (ETDRS) subfields of the macula superficial layer.

Results: The macular vessel density significantly decreased in young myopes after a 21-month follow up ($p < 0.05$), with variations among sectors. Compared with healthy eyes, HM group exhibited a faster reduction in global macula r vessel density ($p = 0.0307$) as well as in sectors of inner-inferior (II), inner-temporal (IT), and outer-temporal (OT) (all $p < 0.05$). Multivariate regression analysis showed that longer baseline axial length (AL) was significantly associated with larger reduction of macular vessel density in the inner-inferior, inner-temporal and outer-temporal sectors (all $p < 0.05$).

Conclusions: Compared with emmetropes, high myopes presented greater loss of macular vessel density over time in global and in the inner-inferior, inner-temporal and outer-temporal sectors. A longer baseline AL was associated with larger changes of macular vessel density in the inner-inferior, inner-temporal and outer-temporal sectors.

Keywords: macular vessel density, high myopia, optical coherence tomography angiography, retinal thickness, longitudinal study

INTRODUCTION

Myopia has become a serious public health concern due to its significantly increasing prevalence, especially in East Asia (1–4). As a leading cause of vision loss worldwide (5), high myopia (HM) may result in retinal disorders, including lacquer crack formation, Forster-Fuchs’ spots, chorioretinal atrophy, choroidal neovascularization, foveoschisis, and posterior staphyloma (6, 7). These complications are highly associated with morphological changes of retinal vessels (8, 9). Therefore, the change of retinal microvasculature in HM has been an important issue for several
Study Procedures

All participants attended two visits and underwent comprehensive eye examinations at each time, including refractive error assessment using an autorefractor machine (KR-8900; Topcon, Tokyo, Japan), measurement of IOP (TX-F; Topcon, Tokyo, Japan), slit-lamp bio-microscopy, and color fundus examination. Central corneal thickness, lens thickness, anterior chamber depth, and AL were measured using optical low-coherence reflectometry (Aladdin; Topcon, Japan). Subjective refraction was performed by a trained optometrist for all of the participants. The BCVA was converted into the logarithm of minimal angle resolution (logMAR). Additionally, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, height, and weight were measured. A detailed medical history was also recorded for each participant.

Swept-Source Optical Coherence Tomography Imaging

The ganglion cell complex (GCC) thicknesses and retinal thicknesses (RT) were measured using SS-OCT (DRI OCT-1 Atlantis; Topcon, Tokyo, Japan), which had a lateral resolution of 10 \(\mu \text{m} \) and an axial resolution of 8 \(\mu \text{m} \). The tomography thickness map of the entire macular area (6 \(\times \) 6 mm) was obtained from an average of four overlapped consecutive scans. The segmentation of each layer was automatically carried out using the built-in software, and manual segmentation was performed where the automatic segmentation misjudged the borderline of each layer. All measurements corrected for the magnification effects of refractive error and AL were conducted by a single technician who was expert in taking OCT images. Follow-up mode was performed to ensure the same location for follow-up scans as the baseline measurement. Images with signal strength index \(\leq 60 \) were excluded from the statistical analysis.

OCTA Imaging

Spectral-domain OCTA imaging was performed using a Cirrus AngioPlex device (Carl Zeiss Meditec, Inc., Dublin, CA, USA). This instrument had a center wavelength of 840 nm, a bandwidth of 90 nm, an A-scan depth of 2.0 mm in tissue (1,024 pixels), a lateral resolution at the retinal surface estimated at \(\sim 5 \mu \text{m} \), and a scanning rate of 68,000 A-scans per second. All scans were centered on the fovea at two visits using follow-up model after correcting for the magnification effects of refractive error and AL, and FastTrac motion correction software (Carl Zeiss Meditec, Inc., Dublin, CA, USA) was used while the images were acquired (16, 17). The OCTA scans with a signal strength index \(< 40 \) and images with segmentation errors or residual motion artifacts were excluded.

Quantitative analysis was undertaken using Cirrus HD-OCT Review Software (version 10.0.0.14618) according to the Early Treatment Diabetic Retinopathy Study (ETDRS) grid (Figure 1). The diameters of the central foveal circle, inner ring, and outer ring were 1, 3, and 6 mm, respectively, and they were further divided into nine sectors (center, IS-inner superior, IN-inner nasal, II-inner inferior, IT-inner temporal, OS-outer superior, ON-outer nasal, OL-outer inferior, OT-outer temporal). The
vessel density (VD) was defined as the total length of perfused vasculature per unit area in a region of measurement. The inner plexiform layer boundary was calculated as 70% of the distance from the internal limiting membrane to an estimated boundary of the outer plexiform layer, which was automatically detected by the software.

Statistical Analysis

In the present study, only the right eye of each participant was selected for statistical analysis. SE was calculated as the sphere plus half a cylinder. The mean arterial pressure (MAP) was calculated according to the following equation: MAP = DBP + 1/3 (SBP-DBP) \(^{(18)}\). Mean ocular perfusion pressure (MOPP) was calculated as follows: MOPP = \((2/3 \times \text{MAP} - \text{IOP})\) \(^{(19)}\). The body mass index (BMI) was formulated in the following: \(\text{BMI} = \frac{\text{weight (kg)}}{[\text{height (m)}]^2} \). All participants were divided into three groups by the length of ocular axis at baseline as follows: emmetropia (EM) group with an AL of 24 mm or less; mild-to-moderate myopia (MIM/MOM) group with an AL between 24 and 26 mm; and HM group with an AL of 26 mm or more.

Demographic and ocular parameters were reported as counts or proportions for categorical data, and as mean ± standard deviation for continuous data. The normal distribution of all variables was examined using the Kolmogorov-Smirnov test. Cochran-Mantel-Haenszel test, or one-way analysis of variance (ANOVA) with post-hoc test (Bonferroni) was performed to detect differences in demographic and ocular parameters at baseline among the three groups, as appropriate. Biometric changes between 2016 (baseline) and 2018 (follow-up) measured using OCTA and SS-OCT were compared using paired \(t \)-test.
The differences in biometric changes across different refraction groups were analyzed using one-way ANOVA test with post-hoc test (Bonferroni). The univariate regression analysis was used to investigate the association between changes in VD and ocular parameters. All the variables with a \(p \)-values <0.05 in the univariate analysis were considered for the multivariable models. After excluding variables that showed multicollinearity, multivariable regression models were constructed to explore the independent factors for the changes in VD. All statistical analyses were performed using SPSS 25.0 software (IBM, Armonk, NY, USA). A \(p \)-value <0.05 was considered statistically significant.

RESULTS

Seven hundred sixty participants were recruited at baseline visit, and 447 (58.82%) participants from the same cohort were followed up 21 months later. The loss to follow-up was chiefly due to school graduation. Moreover, 138 participants were further excluded at follow-up because of lacking OCTA examination (\(n = 128 \)), poor-quality OCTA images (\(n = 5 \)), and refractive surgery history (\(n = 5 \)) and eventually, a total of 309 participants were involved in the final analysis. In the study, 40 participants had EM (12.95%), 194 had MIM or MOM (62.78%), and 75 had HM (24.27%). Demographic and ocular characteristics of participants at baseline are expressed in Table 1. There were no significant differences in age, BMI, SBP, DBP, heart rate, IOP, MOPP, central corneal thickness, and lens thickness among the three groups. However, HM group included fewer female participants (\(p < 0.05 \)), presented significantly lower SE, worse BCVA, deeper ACD, and longer AL than EM group (all \(p < 0.05 \)).

Table 2 and Figure 2 demonstrates the baseline and the longitudinal changes of VD and ocular parameters over follow-up period. There was no significant difference in the baseline VD, RT and GCC among the three groups (all \(p > 0.05 \)). The macular VD significantly decreased while AL increased in the follow-up in all the three groups (all \(p < 0.05 \)). Of note, the HM group showed a larger reduction in VD (\(-1.96 \pm 2.57 / \text{mm} \)) compared with the EM group (\(-0.61 \pm 0.97 / \text{mm} \) (\(p = 0.0307 \)). There were reductions in both RT and GCC thickness after 2-year follow-up in HM and MIM/MOM groups (both \(p < 0.01 \)), which was not seen in emmetropic eyes (both \(p > 0.05 \)).

The changes of macular VD in all sectors of ETDRS grid were presented in Supplementary Table 1 and Figure 3. The sectoral VD significantly decreased through follow-up in all the three groups (all \(p < 0.05 \)), except for that in the outer nasal sector in EM group (\(p = 0.2521 \)). In each group, the nasal sector minimally changed, whereas the temporal sector maximally changed in both inner ring and outer ring. In addition, the changes in the inner ring were more significant than those in the outer ring for the majority of sectors. Compared with EM group, HM group had notably higher change rate in the II sector (\(-3.15 \pm 9.62 \% \) vs. \(-14.88 \pm 20.11 \% \) vs. \(-17.22 \pm 22.88 \% \) vs. \(-16.20 \pm 20.80 \% \) vs. \(-16.20 \pm 20.80 \% \) vs. \(-14.88 \pm 20.11 \% \) vs. \(-17.22 \pm 22.88 \% \) vs. \(p = 0.0073 \)). IT sector (\(-4.88 \pm 8.43 \% \) vs. \(p = 0.0298 \)), and OT sector (\(-7.15 \pm 8.40 \% \) vs. \(-16.20 \pm 20.80 \% \) vs. \(-16.20 \pm 20.80 \% \) vs. \(-16.20 \pm 20.80 \% \) vs. \(p = 0.0308 \)).

The results of the univariate regression analysis adjusted for age and gender are presented in Supplementary Tables 2–5. For the average macular VD, no variable was found to be correlated with the changes of VD (all \(p > 0.05 \)). The associations of macular VD changes with other ocular parameters were further explored in selected sectors where great macular VD reduction were observed in HM group. The changes of VD significantly correlated with SE, baseline AL and the changes of AL in the II, IT, and OT sectors. BCVA and the changes of GCC thickness were negatively associated with the changes of VD in the II and IT sectors. Additionally, the changes of VD were positively correlated with baseline RT and the changes of RT in the II
Comparisons between the baseline and the follow-ups using the paired t-test. Comparison among the three groups were using the one-way ANOVA test with post-hoc test (Bonferroni).

	EM (N = 40)	MIM/MOM (N = 194)	HM (N = 75)	p-value	Post-hoc
VD, mm					
Baseline	19.00 ± 0.71	18.82 ± 1.52	18.95 ± 1.36	0.5843	/
Follow-up	18.39 ± 1.01	17.99 ± 4.87	17.01 ± 2.60	0.1392	/
Changes	−0.61 ± 0.97	−0.81 ± 5.08	−1.96 ± 2.57	0.0307	EM < HM
p-value	0.0003	<0.0001	<0.0001		
AL, mm					
Baseline	23.53 ± 0.40	25.06 ± 0.54	26.59 ± 0.59	<0.0001	EM < MIM/MOM < HM
Follow-up	23.56 ± 0.41	25.15 ± 0.58	26.67 ± 0.62	<0.0001	EM < MIM/MOM < HM
Changes	0.04 ± 0.10	0.08 ± 0.18	0.08 ± 0.13	0.0384	EM < MIM/MOM, HM
p-value	0.0253	<0.0001	<0.0001		
RT, µm					
Baseline	280.08 ± 12.96	277.33 ± 11.05	273.99 ± 13.13	0.0530	/
Follow-up	278.29 ± 11.46	275.80 ± 10.74	267.13 ± 35.02	0.0052	EM, MIM/MOM > HM
Changes	−0.79 ± 2.97	−1.86 ± 3.32	−6.94 ± 32.17	0.1585	/
p-value	0.1783	<0.0001	0.0006		
GCC, µm					
Baseline	108.92 ± 4.88	109.86 ± 6.04	109.19 ± 5.89	0.6318	/
Follow-up	108.88 ± 5.00	109.32 ± 6.54	105.25 ± 16.48	0.3053	/
Changes	−0.14 ± 2.19	−0.46 ± 2.99	−3.66 ± 15.34	0.2452	/
p-value	0.7382	<0.0001	0.0031		

Data are presented as mean ± standard deviation.

Comparisons between the baseline and the follow-ups using the paired t-test. Comparison among the three groups were using the one-way ANOVA test with post-hoc test (Bonferroni). EM, emmetropia; GCC, ganglion cell complex; MIM, mild myopia; MOM, moderate myopia; HM, high myopia; RT, retinal thickness; VD, macular vessel density.

The present study used OCTA to investigate the changes of retinal microvascular in HM, and they have reported controversial findings (13, 25–28). Guo et al. (28) pointed out that HM causes a lower superficial peripapillary microvascular density, but no significant difference was found in parfoveal microvascular density among all groups. Wang et al. (26) also found a decreased vessel density in the peripapillary area, rather than in the parafoveal area of high myopic eyes. On the contrary, our previous study and a number of cross-sectional studies (13, 25, 27) have yielded a reduced parafoveal microvascular density in HM. It may lead to controversial results because the vessel density was quantified in different ways. In Guo’s and Wang’s studies, the vessel density was defined as the proportion of the total area occupied by vessels, while the vessel density was defined as the total length of perfused vasculature per unit area in this study. Moreover, the previous studies were all cross-sectional studies with different simple sizes. The present research prospectively

DISCUSSION

This prospective study, which enrolled three hundred and nine university students over 21 months, was the first longitudinal study evaluating macular microvasculature changes in young adults observed by OCTA. A significant decrease in macular VD over time was documented. In high myopes, macular VD presented larger reduction globally and in the II, IT and OT sectors. A longer baseline AL was associated with greater loss of VD in these sectors.

Earlier studies reported that age was determinant of macular VD measured by OCTA (20–22). However, these studies were generally conducted in healthy eyes. In our longitudinal study, macular microvasculature was significantly decreased in both emmetropes and myopes over a 21-month period. Jo et al. (20) reported that the majority of the sectoral peripapillary and macular VDs were significantly reduced with increase of age in healthy eyes but the VD of papillomacular bundle area was not age-dependent. The present study also demonstrated that the macular VD in the ON sector did not decrease in emmetropic students, while this sectoral VD reduced in myopic students, which indicating the effect of myopia on macular perfusion reflected in the area of papillomacular bundle area. It was revealed that the ischemic injury of the papillomacular bundle could predict poor vision in both central retinal artery occlusion and branch retinal artery occlusion (23, 24). Thus, the effects of VD loss in the papillomacular bundle area on visual impairment in myopes and its underlying mechanism still require further investigations.

Several studies used OCTA to investigate the changes of retinal microvascular in HM, and they have reported controversial findings (13, 25–28). Guo et al. (28) pointed out that HM causes a lower superficial peripapillary microvascular density, but no significant difference was found in parafoveal microvascular density among all groups. Wang et al. (26) also found a decreased vessel density in the peripapillary area, rather than in the parafoveal area of high myopic eyes. On the contrary, our previous study and a number of cross-sectional studies (13, 25, 27) have yielded a reduced parafoveal microvascular density in HM. It may lead to controversial results because the vessel density was quantified in different ways. In Guo’s and Wang’s studies, the vessel density was defined as the proportion of the total area occupied by vessels, while the vessel density was defined as the total length of perfused vasculature per unit area in this study. Moreover, the previous studies were all cross-sectional studies with different simple sizes. The present research prospectively

TABLE 2 | Comparison of globally VD and ocular parameters between baseline and the end of follow-up period.

sector, whereas negatively correlated with ACD in the OT sector. Variables with a significance p-value < 0.05 were included in the stepwise multivariate models except for SE that had a stronger correlation with AL. The results of multivariable regression analysis (Table 3 and Figure 4) revealed the baseline AL was independently associated with the changes of VD in II, IT, and OT sectors (all p < 0.05). According to the models, each 1 mm increase in baseline AL was associated with a 0.57/mm decrease in inner-inferior macular VD, a 0.73/mm decrease in inner-temporal macular VD, and a 0.44/mm decrease in outer-temporal macular VD, separately.

This prospective study, which enrolled three hundred and nine university students over 21 months, was the first longitudinal study evaluating macular microvasculature changes in young adults observed by OCTA. A significant decrease in macular VD over time was documented. In high myopes, macular VD presented larger reduction globally and in the II, IT and OT sectors. A longer baseline AL was associated with greater loss of VD in these sectors.

Earlier studies reported that age was determinant of macular VD measured by OCTA. However, these studies were generally conducted in healthy eyes. In our longitudinal study, macular microvasculature was significantly decreased in both emmetropes and myopes over a 21-month period. Jo et al. reported that the majority of the sectoral peripapillary and macular VDs were significantly reduced with increase of age in healthy eyes but the VD of papillomacular bundle area was not age-dependent. The present study also demonstrated that the macular VD in the ON sector did not decrease in emmetropic students, while this sectoral VD reduced in myopic students, which indicating the effect of myopia on macular perfusion reflected in the area of papillomacular bundle area. It was revealed that the ischemic injury of the papillomacular bundle could predict poor vision in both central retinal artery occlusion and branch retinal artery occlusion (23, 24). Thus, the effects of VD loss in the papillomacular bundle area on visual impairment in myopes and its underlying mechanism still require further investigations.

Several studies used OCTA to investigate the changes of retinal microvascular in HM, and they have reported controversial findings. Guo et al. (28) pointed out that HM causes a lower superficial peripapillary microvascular density, but no significant difference was found in parafoveal microvascular density among all groups. Wang et al. (26) also found a decreased vessel density in the peripapillary area, rather than in the parafoveal area of high myopic eyes. On the contrary, our previous study and a number of cross-sectional studies have yielded a reduced parafoveal microvascular density in HM. It may lead to controversial results because the vessel density was quantified in different ways. In Guo’s and Wang’s studies, the vessel density was defined as the proportion of the total area occupied by vessels, while the vessel density was defined as the total length of perfused vasculature per unit area in this study. Moreover, the previous studies were all cross-sectional studies with different simple sizes. The present research prospectively
evaluated the changes of macular VD and showed a significantly greater loss of VD in HM group than in EM group. However, no significant difference of global and sectoral VD changes was noted between MIM/MOM group and HM group, which was in line with Yang et al.’s findings (29). When it comes to sectoral changes of macular VD, there was no unified understanding. In the comparison with EM group, HM group presented larger longitudinal changes of macular VD in the II, IT, and OT sectors in this study, indicating these sectors might be critical focus areas in clinical practice.
We previously compared the peripapillary and parafoveal vessel density with AL and retina thickness, and found a significant negative correlation between AL and vessel density (13). Li et al. (27) pointed out that microvascular density was negatively correlated with AL in myopia in both superficial and deep vascular plexuses. Ucak et al. (30) reported that the macular vessel density reduced with increase of AL and decrease of GCC thicknesses in patients with HM. The current study uncovered that the longitudinal changes of macular VD were only correlated with baseline AL in the II, IT, and OT sectors, suggesting the macular vessel loss mainly results from the elongation of eyeballs. It is suggested that with the increase of AL in myopia, the eyeball stretches, causing mechanically expanding and thinning of retina, resulting in a narrowing of the vessel diameter, which leads to the decrease of vessel density (27). Meanwhile, the macular thickness showed different rates of change in different sectors according to age and refractive status (31, 32). Since the oxygen demands of those sectors might reduce resulting from the thinning of retina, the vessels supplying blood to those regions was likely to decrease accordingly. As well as the mechanical stretch, there might be some changes in myopia-related signaling pathways, resulting in subsequent changes in vessel density. However, it is not clear which of structural changes or biochemical changes came first. Despite this, the mechanisms of sectoral changes in macular vessel density still require further study.

The capillary networks in the human retina mainly distributed in the inner five layers of the retina, of which the superficial capillary network is mainly distributed in the nerve fiber layer and the ganglion cell layer, while the deep capillaries are mainly distributed in the inner plexiform layer and the inner nuclear layer (33). There has been increasing evidence that HM has longer AL, lower peripapillary VD, and thinner peripapillary retinal nerve fiber layer thickness (26, 28, 34, 35). In addition, AL was also noted to be negatively correlated with thickness of the outer nuclear layer and photoreceptor outer segment layer (36). But the RT and GCC thickness were not related with the loss of macular VD in our multivariate regression analysis. The underlying biochemical mechanism.
might give reason to changes of macular VD as well as the mechanical stretch. Dopamine, secreted by dopaminergic amacrine cell (DAC) in the inner layer of the retina, was indicated to be a key molecule in the retinal signaling pathway during myopia development, working with Melatonin and retinal ganglion cells (RGCs) (37–39). The structural changes in myopia may affect the DAC, RGCs, and outer photoreceptor cells, leading to subsequent changes in DA and melatonin synthesis and release, thereby influencing further development of myopia.

This study has several limitations. Firstly, the low follow-up rate made it not representative. Secondly, the examinations were only performed at two visits, so that we could not observe the dynamic changes during this period. Thirdly, the small sample size, especially for EM and HM groups, may significantly impact the reliability of our findings. Fourthly, OCTA deep slab images were not included in the analysis because several projection artifacts prevented qualified images.

In conclusion, the macular VD significantly decreased over time in all the sectors in young myopes, while the macular VD in the papillomacular bundle area was not age-dependent in emmetropes. A larger reduction of macular VD was observed in HM group compared with healthy eyes and correlated with longer baseline AL in the II, IT and OT sectors. Although the underlying mechanisms of physiological and pathological macular VD changes remain unknown, the reduction of macular VD might be considered as a preclinical characteristic in patients with HM. Therefore, further studies with longer follow-up periods are needed to investigate correlations between structure and function.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethical committee of Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

YF, JZ, JH, and XX: study concept and design. YS, QC, GH, and YY: data collection and management. YS and LY: analysis and interpretation of data. YS: writing the manuscript. JZ, JH, ZZ, and HZ: critical revision of the manuscript. XX: supervision. All authors read and approved the final manuscript.

FUNDING

This study was funded by National Natural Science Foundation of China (Grant No. 81703287, Beijing, China), National Key R&D Program of China (Grant Nos. 2016YFC0904800, 2019YFC0840607), Shanghai Science and Technology Commission Research Project (Grant No. 17ZR1426900), National Science and Technology Major Project of China (Grant No. 2017ZX09304010), National Science and Technology Major Project of China (Grant No. 2017ZX09304010), Shanghai Health Committee, Clinical Research (Project No. 201924021), and Shanghai Shenkang Hospital Clinical Research Program (Project No. SHDC12019X18, SHDC12020127). The sponsor or funding organization had no role in the design or conduct of this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.648644/full#supplementary-material
REFERENCES

1. Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. *Ophthal Physiol Optics.* (2012) 32:3–16. doi: 10.1111/j.1475-1313.2011.00884.x

2. Dinani M, Chan YH, Gazzard G, Hornbrook DM, Leo SW, Selvaraj P, et al. Prevalence of refractive error in Singaporean Chinese children: the strabismus, amblyopia, and refractive error in young Singaporean Children (STARS) study. *Investig Ophthalmol Vis Sci.* (2010) 51:1348–55. doi: 10.1016/j.ios.2009.3587

3. Ding BY, Shih YF, Lin LLK, Hsiao CK, Wang IJ. Myopia among schoolchildren in East Asia and Singapore. *Survey Ophthalmol.* (2017) 62:677–97. doi: 10.1016/j.survophthal.2017.03.006

4. Lim DH, Han J, Chung TY, Kang S, Yim HW. The high prevalence of myopia in Korean children with influence of parental refractive errors: the 2008-2012 Korean National Health and Nutrition Examination Survey. *PloS ONE.* (2018) 13:e0207690. doi: 10.1371/journal.pone.0207690

5. Holden BA, Fricke TR, Wilson DA, Mridha KS, Sankariadurg P, et al. Global prevalence of myopia and myopia and temporal trends from 2000 through 2025. *Ophthalmology.* (2016) 123:1036–42. doi: 10.1016/j.ophtha.2016.01.006

6. Moriyama M, Ohno-Matsui K, Hayashi K, Shimada N, Yoshida T, Tokoro T, et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. *Ophthalmology.* (2011) 118:1626–37. doi: 10.1016/j.ophtha.2011.01.018

7. Cho BJ, Shin JY, Yu HG. Complications of pathologic myopia. *Eye Contact Lens.* (2016) 42:9–15. doi: 10.1016/j.ctl.2015.02.003

8. Li H, Mitchell P, Rochtchina E, Burlutsky G, Wong TY, Wang J. Retinal vessel caliber and myopic retinopathy: the blue mountains eye study. *Ophthalmic Epidemiol.* (2011) 18:275–80. doi: 10.3109/09286586.2011.602508

9. Kim YM, Yoon JU, Koh HJ. The analysis of lacquer crack in the assessment of myopic choroidal neovascularization. *Eye.* (2011) 25:937–46. doi: 10.1038/eeye.2011.94

10. Azemin MZ, Daud NM, Ab Hamid F, Zahari I, Sapuan AH. Influence of age-related macular degeneration, and normals. *J Glaucoma.* (2013) 60:3492–8. doi: 10.1097/OPX.0b013e3182947285

11. Meng W, Butterworth J, Malecze F, Calvus P. Axial length of myopia: a review of current research. *Ophthalmologica.* (2011) 225:127–34. doi: 10.1159/000317072

12. He J, Chen Q, Yin Y, Zhou H, Fan Y, Zhu J, et al. Association between retinal microvasculature and optic disc alterations in high myopia. *Eye (2019) 33:1494–503. doi: 10.1038/s41433-019-0438-7

13. Chen Q, He J, Hua Y, Fan Y. Exploration of peripapillary vessel density in highly myopic eyes with peripapillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomography angiography. *Clin Exp Ophthalmol.* (2017) 45:884–93. doi: 10.1111/ceo.12986

14. Spaide RF, Fujimoto JG, Waheed NK, Sack SS, Staufinger G. Optical coherence tomography angiography. *Prog Retinal Eye Res.* (2018) 64:1–55. doi: 10.1016/j.preteyeres.2017.11.003

15. An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. *Optics Express.* (2008) 16:11438–52. doi: 10.1364/OE.16.011438

16. Wang RK. Optical microangiography: a label free 3D imaging technology to visualize and quantify blood circulations within tissues in vivo. *IEEE J Sel Top Quantum Electron.* (2010) 16:545–54. doi: 10.1109/JSTQE.2009.2033609

17. Barbosa-Breda J, Abegao-Pinto L, Van Keer K, Jesus DA, Lemmens S, Vandewalle E, et al. Heterogeneity in arterial hypertension and ocular perfusion pressure definitions: towards a consensus on blood pressure-related parameters for glaucoma studies. *Acta Ophthalmol.* (2019) 97:e487–92. doi: 10.1111/aos.13942

18. Rishi P, Rishi E, Mathur G, Raval V. Ocular perfusion pressure and choroidal thickness in eyes with polymodal choroidal vasculopathy, wet-age-related macular degeneration, and normals. *Eye.* (2013) 27:1038–43. doi: 10.1038/eye.2013.106

19. Mao J, Liu S, Qin W, Li F, Wu X, Tan Q. Levodopa inhibits the development of form-deprivation myopia in guinea pigs. *Optometry Vision Sci.* (2010) 87:53–60. doi: 10.1097/OPX.0b013e3181c12b3d
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.