Probable chronic renal failure caused by Lonemia caterpillar envenomation

Poliana Abrantes Schmitberger, Tâssia Clara Fernandes, Robson Corrêa Santos, Rafael Campos de Assis, Andréia Patricia Gomes, Priscila Karina Siqueira, Rodrigo Roger Vitorino, Eduardo Gomes de Mendonça, Maria Goreti de Almeida Oliveira and Rodrigo Siqueira-Batista

Abstract

Erucism is a skin reaction to envenomation from certain poisonous caterpillar bristles. In Brazil, most reports of erucism provoked by Lonemia caterpillars are from the southern region. Most manifestations of erucism are local and include burning pain, itching, local hyperthermia and, rarely, blisters (benign symptoms with spontaneous regression in a few hours). General symptoms such as nausea and vomiting, headache, fever, myalgia, abdominal pain and conjunctivitis may also occur. Uncommon symptoms include arthritis, coagulation disorders (manifested as bruising and bleeding), intracerebral hemorrhage and acute renal failure, which comprise serious complications. The present study reports the case of 60-year-old patient from Rio de Janeiro state, Brazil, who came into contact with a caterpillar and developed, a few days later, chronic renal disease.

Background

Recently lepidopterans of the species Lonemia obliqua (order: Lepidoptera; family: Saturniidae) have been extensively studied due to the severe manifestations provoked by contact with their larval forms (caterpillars), such symptoms are known as erucism. These stinging caterpillars have bristles filled with toxins, which are able to cause lesions, blood and kidney disorders [1,2]. Two species are directly involved and may cause serious or fatal harm to humans, Lonemia obliqua and Lonemia achemelous [2-6].

This article reports the case of patient who came into contact with a caterpillar and developed, a few days later, chronic renal disease.

Case presentation and discussion

A 60-year-old black man – born in the Rio de Janeiro city and living in Teresópolis, RJ, Brazil – reported that when he was taking the mail from his mailbox, he accidentally put his left arm on six specimens of light green and brown caterpillars, which had about 5 cm length. The animals were crushed by the arm of the man, who, immediately, withdrawn it. He washed the arm using soap and water, applied alcohol to the affected area and also took an anti-allergy drug (could not say which).

The site affected by the caterpillars became swollen and after 20 minutes a burning sensation started. The victim also noticed a painful lymph node in the ipsilateral axilla, which disappeared spontaneously shortly after. In the same night, after dinner, he had abdominal distension associated with discomfort and vomiting. He did not take medicines to relieve the symptoms. As there was improvement, he laid down to sleep. After that, the man woke up at dawn feeling an intense abdominal pain (flank region) and arthralgia (upper and lower limbs), which became worse when he attempted to move.

Subsequently, the patient looked for medical assistance and went to a local hospital. His clinical picture was described as pain associated with sudden anuria. He was admitted to the hospital to treatment. The man reported a previous history of nephrolithiasis and received treatment with saline solution, analgesics and urinary catheter to provide relief. He also received treatment for arterial hypertension with atenolol, 50 mg/day; until this time there was no evidence of kidney injury.

During the hospitalization, the patient had developed diffuse edema, flank pain and the anuria remained, despite of use of intravenous hydration and furosemide
infusion. Laboratory and imaging tests were performed (Tables 1 and 2).

After two more days, the patient was transferred to the Hospital das Clínicas de Teresópolis Costantino Ottaviano (HCTCO), where he remained for forty-five days due to hemodialysis treatment. Four days after the admission to HCTCO, he remembered the episode with the caterpillars in the morning before the painful crisis and anuria. That was the moment when the suspicion of erucism by *Lonomia* aroused (seven days after the accident).

The use of SALon was not indicated because the patient did not meet the criteria for it, particularly due to the time elapsed since the accident, hospital care for more than 10 hours and less than or equal to 36 hours [1]. During the admission the patient showed bruises scattered on upper and lower limbs and two voluminous cases of melena. After those events, there was no spontaneous recovery of renal function, which progressed to chronic renal disease (CRD), stage V – end-stage renal disease, when the glomerular filtration rate is below 15% of normal and the patient needs, invariably, renal replacement therapy.

Table 1 Report of laboratory tests

Tests	4th day	7th day	10th day	14th day	16th day	Benchmarks
Leukocytes	18.000	10.800	–	14.800	–	5.000-11.000/mm³
Basophils	0	0	–	0	–	0-1%
Eosinophils	1	0	–	0	–	1-5%
Myelocytes	0	0	–	0	–	0%
Metamyelocytes	0	0	–	0	–	0%
Neutrophil/Ban	7	3	–	7	–	1-5%
Neutrophil/Seg	–	74	–	71	–	45-70%
Lymphocytes	14	21	–	19	–	20-45%
Monocytes	5	2	–	3	–	4-10%
Erythrocyte	3.83	2.79	–	2.8	–	3.80-5.20 × 10⁹/mm³
Hematocrit	34	24.6	24.4	25.9	27.7	36-50%
MCV	89	88.1	89.9	–	–	80-100 fl
MCH	30	30.3	29.8	–	–	28-32 pg
Platelets	154.000	111.000	148.000	278.000	–	150-400 × 10⁹/mm³
PR	–	–	17.6*	15.75*	–	12.7-15.4*
aPTT	–	–	56*	44*	–	26.3-39.4*
Sodium	132	133	135	136	–	135-145 mEq/L
Potassium	7.8	4.8	4.2	4.3	–	3.5-4.5 mEq/L
Urea	190	145	115	113	184	10-50 mg/dL
Creatinine	7.8	9.6	7.8	7.6	11.9	0.6-1.2 mg/dL
ESR	–	46	–	–	–	up to 20 mm/h
CT	–	7*	–	–	–	5-10 min
BT	–	1*	–	–	–	< 7.1 min
c-ANCA	–	Negative	–	–	–	Negative
p-ANCA	–	Negative	–	–	–	Negative
Blood glucose	–	112	–	101	–	70-125 mg/dL

Source: patient's records.

CT: coagulation time; BT: bleeding time; ESR: erythrocyte sedimentation rate; PR: prothrombin ratio; aPTT: activated partial thromboplastin time; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; c-ANCA: cytoplasmic antineutrophil cytoplasmic antibodies; p-ANCA: perinuclear antineutrophil cytoplasmic antibodies.

Table 2 Medical imaging tests

Test	Changes
Kidney and urinary system ultrasonography	Enlarged kidneys
Computed tomography	Inflammatory infiltration of the perinephric fat, uncomplicated renal calculus on the right and a small amount of fluid in the pelvis

Source: patient's records.
Lononia caterpillar has about six to seven centimeters long, and its color ranges from light brownish-green to yellowish-brown with three longitudinal stripes of dark-brown [4]. Its body is covered with bristles that contain toxins. The transformation to an adult moth occurs after a in ten weeks after three to six months of larval life [7,8].

Lononia is found throughout Brazil, however, numerous registered cases of erucism occurred in the southern region, mainly in Rio Grande do Sul and Santa Catarina states, and were attributed to L. obliqua [9,10]. In recent years, there have been accidents in Minas Gerais, Goiás, Maranhão and Rio de Janeiro states [1,4,7].

Erucism caused by Lononia is uncommon in the state of Rio de Janeiro. Therefore, the present study is one of the first cases reported in the state. The increased rate of envenomations – especially in areas where they were not previously described – has been attributed to deforestation of indigenous trees, natural habitat of caterpillars, which are forced migrating to fruit trees in urban areas [1,8].

The symptoms of Lononia envenomation range from local cutaneous manifestations to serious and potentially fatal systemic reactions [11]. General symptoms such as headache, unspecific indisposition, fever, nausea, vomit, arthralgia, myalgia, conjunctivitis and abdominal pain vary depending on the species involved, the intensity of the contact and the victim’s response [7,8,12,13]. Hemorrhagic syndrome and acute renal failure (ARF) are unusual outcomes, but potentially fatal [7,14-18].

The pathophysiological mechanisms of ARF in Lononia envenomog are not clear yet. Probably, there is a relation between renal ischemia and systemic hypotension and/or fibrin deposition in glomerular capillaries [19-21]. Another hypothesis is that venom components may act directly on the kidneys [22,23].

Lononia spp. venom is rich in several toxins that have procoagulant and fibrinolytic activities, which can significantly affect the blood coagulation process. For example, the enzyme lonofibrase is able to trigger a hemorrhagic syndrome similar to disseminated intravascular coagulation; SALon: Antilonomic serum.

Abbreviations
CRD: Chronic renal disease; ARF: Acute renal failure; DIC: Disseminated intravascular coagulation; SALon: Antilonomic serum.

Conclusion
The present study comprises an important report concerning the occurrence of Lononia accidents in Rio de Janeiro, Brazil, a very uncommon situation in the area. This case also emphasizes the unusual progression of the envenomation to CRD, which, to the best of our knowledge, was not previously reported in the literature.

Consent
Informed consent was obtained from the patient for publication of this case report. The research project was submitted for analysis and approved by the UNIFESP Ethical Committee for research with human subjects (CEP), in accordance with Resolução 196/96 and Resolução 251–97 of the Brazilian National Health Council (Conselho Nacional de Saúde do Brasil).

Authors’ contributions
PAS, TCF, RCS and RCA described the case and drafted the first version of the text. All authors read and approved the final manuscript.

Competing interests
The authors declare that there are no competing interests.

References
1. Corrêa MS, Siqueira-Batista R, Gomes AP, Franco-Barbosa A, Verzola ACA, Oliveira FRQ, Siqueff FA, Mota-Leal-Filho IM, Tavares RH, Amonim DS, De-Maria-Moreira NL, Santos SS: Erucismo por Lononia spp em Teresópolis, RJ, Brasil: relato de um caso provável e revisão da literatura. Rev Soc Bras Med Trop 2004, 37(5):418–421.
2. Brasil. Ministério da Saúde: Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. 2ª edição. Brasília: Fundação Nacional de Saúde; 2001.
3. Kovacs PA, Cardoso J, Entre M, Novak EM, Wennec LC: Fatal intracerebral hemorrhage secondary to Lonomia obliqua caterpillar envenoming: case report. Arq Neuropsiquiatr 2006, 64(4):1030–1032.

4. Lisete ML, Corseuil E: Aspectos morfológicos de Lonomia obliqua walker (Lepidoptera: Saturniidae). Neotrop Entomol 2001, 30(3):373–378.

5. Veiga ABG: Activador de antigénica expressa e princípios aristos envolvidos nos distúrbios da coagulação e da fibrinólise. Dissertação de mestrado. Universidade Federal do Rio Grande do Sul, 2005 [http://www.lume.ufrgs.br/bitstream/handle/10183/6566/000531846.pdf?sequence=1].

6. Instituto Butantan: Acidentes por animais peçonhentos. [http://www.butantan.gov.br].

7. Gamborg GP: Insuficiência renal aguda em pacientes após acidente com lagarta do espécie – Lonomia obliqua, Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul, 2004 [http://www.lume.ufrgs.br/handle/10183/7807].

8. Hossler EW: Caterpillars and moths – Part I. Dermatologic manifestations of encounters with Lepidoptera. J Am Acad Dermatol 2010, 62(1):1–10.

9. Garcia CM, Danni-Oliveira IM: Ocorrência de acidentes provocados por Lonomia obliqua Walker, no Estado do Paraná, no período de 1989 a 2001. Rev Soc Bras Med Trop 2007, 40(2):242–246.

10. Rubio GBG: Vigilância epidemiológica da distribuição da lagarta Lonomia obliqua Walker, 1855, no Estado do Paraná: Brasil. Rio de Janeiro. Cad Saúde Pública 2001, 17(4):1036.

11. Hossler EW: Caterpillars and moths. Dermatol Ther 2009, 22(4):353–366.

12. Centro de Informações Toxicológicas de Santa Catarina: Acidentes por animais peçonhentos. [http://www.cnmsc.sc.gov.br/index.php?p=monografias].

13. Bohrer CB, Reck Junior J, Fernandes D, Sordi R, Guimarães JA, Assreuy J, Termignoni C: Kallikrein-kinin system activation by Lonomia obliqua caterpillar bristles: involvement in edema and hypotension responses to envenomation. Toxicon 2007, 49(5):663–669.

14. Chudzinski-Tavassi AM, Carrijo-Carvalho LC: Biological and biochemical properties of Lonomia obliqua bristle extract. J Venom Anim Toxins incl Trop Dis 2006, 12(2):155–171.

15. Prezoto BC, Maffei FH, Mattar L, Chudzinski-Tavassi AM, Curi PR: Antithrombotic effect of Lonomia obliqua caterpillar bristle extract on experimental venous thrombosis. Braz J Med Biol Res 2002, 35(6):703–712.

16. Berger M, Reck J Jr, Terra RM, Pinto AF, Termignoni C, Guimarães JA: Lonomia obliqua caterpillar envenomation causes platelet hypoaggregation and blood incoagulability in rats. Toxicon 2010, 55(1):33–44.

17. Chan K, Lee A, Onell R, Biches W, Nahimiak S, Bagshaw SM, Larrat LM: Caterpillar-induced bleeding syndrome in a returning traveler. Canadian Med Assoc J 2008, 179(2):158–161.

18. Alvarez Flores MP, Zannin M, Chudzinski-Tavassi AM: New insight into the mechanism of Lonomia obliqua envenoming: toxin involvement and molecular approach. Pathophysiol Haemost Thromb 2010, 37(1):11–16.

19. Duarte CA, Cavilli J, Lorini I, Lorini D, Mantovani G, Sumida J, Manfre PC, Silveira RC, Moura SP: Insuficiência renal aguda por acidentes com lagartas. J Bras Nefrol 1990, 12(4):184–187.

20. Mendonça RZ, Greco KN, Sousa APB, Melo RL, Rodrigues CJ, Chudzinski-Tavassi AM: A lipocalin-derived peptide modulating fibrinolasts and extracellular matrix proteins. J Toxicol 2012 [http://www.hindawi.com/journals/jt/2012/325250/].

21. Walker GM: Acidente com Lonomia: tratamento com sais antinômicos e insuficiência renal aguda, Tese de Mestrado. Universidade Federal do Rio Grande do Sul; 1999 [http://www.lume.ufrgs.br/handle/10183/26141].

22. Pinto AF, Berger M, Reck J Jr, Terra RM, Guimarães JA: Lonomia obliqua venom: In vivo effects and molecular aspects associated with the hemorrhagic syndrome. Toxicon 2010, 56(7):1103–1112.

23. Arao-Pinho CL, Bueno B: Lonomia genus caterpillar envenomation: clinical and biological aspects. Haemostasia 2001, 31(3):288–293.

24. Centro de Informação Toxicológica do Rio Grande do Sul: Manual de Diagnóstico e Tratamento de Acidentes por Lonomia; 1999 [http://www.bvsalud.org/bvs/saludmanual/nt/ntlonomida.pdf].

25. Gonçalves LR, Sousa-e-Silva MC, Tomy SC, Sano-Martins IS: Efficacy of serum therapy on the treatment of rats experimentally envenomed by bristle extract of the caterpillar Lonomia obliqua: comparison to epsilon-aminocaproic acid therapy. Toxicon 2007, 50(3):349–356.

Cite this article as: Schmitberger et al.: Probable chronic renal failure caused by Lonomia obliqua caterpillar envenomation. Journal of Venomous Animals and Toxins including Tropical Diseases 2013 19:14.

Submit your manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit