Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions [version 1; referees: 2 approved]

Eugene V. Koonin
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA

Abstract
The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of 'lateral genomics' to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly) universal genes, translates into the notion of a statistical tree of life (STOL), which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT) dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller’s ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies.
Corresponding author: Eugene V. Koonin (koonin@ncbi.nlm.nih.gov)

How to cite this article: Koonin EV. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions [version 1; referees: 2 approved] F1000Research 2016, 5(F1000 Faculty Rev):1805 (doi: 10.12688/f1000research.8737.1)

Copyright: © 2016 Koonin EV. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.

Grant information: The author’s research is supported by intramural funds of the US Department of Health and Human Services (to the National Library of Medicine).

Competing interests: The author declares that he has no competing interests.

First published: 25 Jul 2016, 5(F1000 Faculty Rev):1805 (doi: 10.12688/f1000research.8737.1)
Pervasive horizontal gene transfer in microbial evolution and the statistical tree of life

As soon as several complete bacterial and archaean genomes were sequenced in the mid to late 1990s, comparative and phylogenomic analyses have revealed a surprising complexity of microbial genome evolution\textsuperscript{1-6}. These observations can be broadly summarized in the form of three major trends: i) bacterial and archaean genomes have dramatically different gene compositions, with only a small set of core genes being universally conserved; ii) unexpected patterns of gene sharing have been detected, in particular many genes shared between hyperthermophilic archaee and bacteria; and iii) topologies of the phylogenetic trees for many bacterial genes were rarely fully compatible between each other or with the 16S ribosomal RNA (rRNA) tree, although at least some of these trees were highly reliable, indicating that the discrepancies could not be caused by methodological artifacts alone. Taken together, these findings appeared impossible to explain without invoking widespread horizontal gene transfer (HGT), prompting the concept of ‘lateral genetics’, which posits that the dominant process in microbial evolution is gene exchange between organisms rather than vertical descent along a tree\textsuperscript{7-20}. In its extreme form, lateral genetics denies the relevance of tree-like evolution and “tree thinking” in biology altogether\textsuperscript{11,12}. This concept triggered an intense debate that continued for over a decade, with the entire spectrum of positions expressed forcefully, from complete dismissal of HGT as a consequential aspect of microbial evolution to an equally adamant denial of the importance of trees\textsuperscript{11}. A characteristic epiphenomenon that might epitomize this entire extended discussion occurred in 2006. A computational pipeline that automatically produced a comprehensive ‘Tree of Life’ (TOL) from a concatenated sequence alignment of 31 universal proteins was hailed as a major advance of phylogenomics\textsuperscript{14}, only to be immediately debunked as a “tree of 1%”, i.e. one that (at best) accurately reflects the evolutionary history of only a small fraction of microbial genes\textsuperscript{15}.

Now, exactly 20 years after the comparison of complete microbial genomes became possible, where do we stand on the status of trees and HGT in microbial evolution? Not only phylogenies of individual genes but also the microbial TOL are clearly alive and apparently rather well. A remarkable testimony to the staying power of the TOL has changed irrevocably. Given the unprecedented evidence that the topologies of the phylogenetic trees (species tree, for short) as a scaffold for evolutionary reconstruction. Briefly, all the genes in the pan-genome of a species or another group of microbes (i.e. the entirety of the genes represented in the available isolates of the given group\textsuperscript{19}) are mapped to the leaves of the species tree. This mapping is used to reconstruct the evolutionary scenario for the pan-genome, i.e. the history of gene gains, losses, and duplications. Initially, the reconstruction was performed using simple, intuitive maximum parsimony methods which identify the scenario with the minimum number of events\textsuperscript{11-13}. At present, the approaches of choice are based on more sophisticated maximum likelihood algorithms that employ evolutionary birth-and-death models to derive statistical estimates for the number of different genomic events associated with each branch of the species tree\textsuperscript{14-17}.

Application of the maximum likelihood approach to the reconstruction of evolution for diverse groups of closely related bacteria and archaean has revealed a striking picture of genomes in turmoil\textsuperscript{38}. Although the rates of gene gain, loss, and duplication greatly differ across the bacterial diversity, in the most dynamic groups, several gene gains and losses occur during the time the genome accumulates, on average, one nucleotide substitution per gene. Strikingly, the most common process of genome dynamics is actually loss of genes for most (although not all) groups of microbes, evolutionary reconstructions indicate a twofold to threefold excess of losses over gains per nucleotide substitution. In the long term, excess of gene
losses obviously would lead to genome degradation and eventually extinction, and indeed such is the fate of many groups of microbes, in particular parasites and symbionts\textsuperscript{39,40}. In general, however, the gradual gene loss appears to be offset by episodic, massive gene gain that might accompany the emergence of major groups of prokaryotes\textsuperscript{41} (see more below on such putative bursts of innovation). The same reconstructions indicate that in all analyzed groups of microbes, the rate of gene gain exceeds the gene duplication rate by at least an order of magnitude\textsuperscript{38,42}. The primary source of gene gain is HGT, which accordingly is the principal route of evolutionary innovation in bacteria and archaea.

Taken together, the reconstructions of the dynamics of microbial genome evolution show that, in the microbial world, evolution primarily occurs not via the classic Darwinian process adopted by the Modern Synthesis of Evolutionary Biology, i.e. gradual accumulation of numerous, “infinitesimally small” changes (mutations)\textsuperscript{13,14}, but rather by much bigger, at least gene-sized, leaps. In a sharp contrast to eukaryotes, in bacteria and archaea, the dominant feature of genome evolution is not gene duplication\textsuperscript{43-45} but rather evolution by extensive gene loss and gene gain via HGT.

### Essentiality and evolvability of horizontal gene transfer in bacteria and archaea

Can microbes evolve without substantial HGT, simply via the competition of clonal populations? Apparently not, as population genetic modeling indicates that this evolutionary regime is unsustainable in the long term\textsuperscript{46}. Clonal populations typically deteriorate due to the action of the evolutionary mechanism known as Muller’s ratchet, i.e. gradual loss of fitness and eventual extinction caused by accumulation of slightly deleterious mutations via genetic drift\textsuperscript{30,47}. Demise caused by Muller’s ratchet appears to be the typical fate of bacteria that are confined to intracellular parasitism or symbiosis, although the ratchet can be slowed down by lowering the mutation rate\textsuperscript{48}. However, such mechanisms cannot stop the ratchet altogether. The only route of actual escape from Muller’s ratchet appears to be gene acquisition via HGT resulting in either displacement of a mutated gene by a functional copy or gain of new genes that offsets the deleterious effects of accumulating mutations\textsuperscript{49}. Notably, the model shows that, thanks to the stochastic nature of the mutation process, protection from the ratchet is achievable despite the fact that environmental DNA that comes from dead microbes on average has a higher mutational load than the DNA of living recipient cells\textsuperscript{49}. Thus, in prokaryotes, HGT plays the same role of preventing mutational meltdown that in eukaryotes is played by meiotic sex\textsuperscript{50}.

Escape from Muller’s ratchet can be considered the most fundamental benefit of HGT in microbial evolution but it certainly is not the only one. Acquisition of new genes and whole operons appears to be the principal route of metabolic network expansion in microbes\textsuperscript{42,51}. As the network grows, gain of a single enzyme is increasingly likely to provide access to a new nutrient leading to increased fitness\textsuperscript{52}.

Given the indispensability of HGT for the survival of microbial populations, a plausible hypothesis seems to be that HGT is evolvable, i.e. is an adaptive, selectable trait. However, whether or not this is the case is not an easy question because HGT might be considered a by-product of the presence of substantial amounts of DNA in the environment combined with genetic processes such as transformation and bacteriophage infection that leads to gene transduction\textsuperscript{53}. Diverse bacteria and archaea are competent for natural transformation that is mediated by dedicated DNA intake pumps\textsuperscript{54}. These pumps can be legitimately considered devices for utilization of environmental DNA as a source of nucleotides (simply put, food), with HGT being a fringe benefit. However, the demonstration that at least in some bacteria the ingested DNA is protected against degradation, thus preventing its use as a nucleotide source and conversely facilitating HGT, implies that, at least in part, natural competence evolved as a gene transfer mechanism\textsuperscript{55}. The long-known existence of DNA uptake signal sequences and proteins that bind them, which jointly comprise a discrimination mechanism allowing bacteria to preferentially take up DNA from closely related organisms, is another piece of evidence in support of the view of transformation as an evolved route of gene transfer, apart from the nutritional value of DNA\textsuperscript{56,57}.

Bacterial and archaeal conjugation (prokaryotic sex) is a mechanism of genetic material transfer between microbial cells that combines features of selfish genetic elements and devices for gene transfer. Conjugative plasmids encode proteins required for autonomous replication, whereas integrative and conjugative elements (ICEs, or conjugative transposons) typically replicate while integrated into the host chromosome but have the ability to excise and form plasmid-like molecules\textsuperscript{58,59}. Both types of elements are transferred by the conjugation molecular machinery (type IV secretion systems) and typically carry ‘cargo’ genes unrelated to the transposon life cycle. Thus, these selfish elements are at the same time vehicles for HGT that mediate microbial adaptation by introducing new genes into the recipient genomes\textsuperscript{60}.

Perhaps the most striking showcase for dedicated vehicles of HGT are the gene transfer agents (GTAs), defective prophages that form virus particles in which they package apparently random fragments of the bacterial chromosome rather than the phage genome\textsuperscript{61,62}. The GTAs then infect other bacteria or archaea, and the transferred DNA integrates into the recipient genome. In marine bacterial communities, the rate of GTA-mediated gene transfer appears to be quite high and often involves distantly related organisms\textsuperscript{63}. Notably, the GTAs confer on their carriers the ability to donate rather than bind them, which jointly comprise a discrimination mechanism of genetic material transfer between microbial cells that combines features of selfish genetic elements and devices for gene transfer. Conjugative plasmids encode proteins required for autonomous replication, whereas integrative and conjugative elements (ICEs, or conjugative transposons) typically replicate while integrated into the host chromosome but have the ability to excise and form plasmid-like molecules\textsuperscript{58,59}. Both types of elements are transferred by the conjugation molecular machinery (type IV secretion systems) and typically carry ‘cargo’ genes unrelated to the transposon life cycle. Thus, these selfish elements are at the same time vehicles for HGT that mediate microbial adaptation by introducing new genes into the recipient genomes\textsuperscript{60}.

These examples highlight the apparent major route of evolution of HGT vehicles, through stepwise domestication and “enslavement” of selfish genetic elements, such as plasmids and viruses, whereby the hosts exploit the inherent ability of such elements to transfer genetic material (Figure 1).

### Horizontal gene transfer and evolutionary transitions

Several large-scale reconstructions of microbial genome evolution suggest that gene loss occurs in a roughly clock-like manner whereas gene gain tends to be episodic, occurring in bursts that
involve acquisition of many genes over a short time. These observations prompted the hypothesis that emergence of new major groups of organisms often, perhaps typically, involves massive gene gain via HGT (in microbes) or extensive, in some cases, whole genome duplication (in eukaryotes) followed by gradual genome streamlining via gene loss in each of the lineages. The importance of massive HGT in at least two major evolutionary transitions, namely the origin of eukaryotes and the origin of the eukaryotic supergroup Archaeplastida (algae and plants), is beyond doubt. In these special cases, the sources of the hundreds if not thousands of transferred genes were mitochondria and chloroplasts, respectively, i.e. bacterial endosymbionts on the path to becoming eukaryotic organelles. Can the model of punctuated gene gain be validated in a more general context? Comprehensive search of archaean genomes for acquired bacterial genes has led to the conclusion that the origin of most, if not all, major archaean clades was associated with and possibly caused by acquisition of hundreds or even thousands of bacterial genes. The largest influx of bacterial genes was detected in mesophilic archaean groups such as Halobacteria and Methanobacteria and apparently led to fundamental innovation, i.e. adaptation to new lifestyles and ecological niches. The conclusion on the acquisition of numerous bacterial genes at the roots of the major archaean clades, as opposed to more uniform gain along the respective evolutionary lineages, has been reached by Nelson-Sathi and colleagues using an original statistical procedure for topological comparison of the phylogenetic tree of the (candidate) acquired bacterial genes and resident genes in the recipient group of archaean cells. A re-evaluation of these results using more traditional methods for reconstruction of gene gain and loss yielded results that were better compatible with piecemeal gene acquisition. Nevertheless, a more biologically oriented analysis seems to suggest that, at least for the origin of several groups of mesophilic archaean, acquisition of multiple bacterial genes has been the trigger of the lifestyle transition. Clearly, additional and probably extensive research with different methods is required to resolve this conundrum.

Two more recent, complementary studies have further addressed the question of episodic vs. continuous acquisition of genes via HGT in the context of symbiogenesis and early evolution of eukaryotes. One of these employed comprehensive comparison of the topologies of phylogenetic trees of eukaryotic genes of apparent bacterial and archaean origin and arrived to the conclusion that eukaryotes acquired the majority of bacterial genes in the two major bursts associated with the origin of mitochondria and chloroplasts whereas subsequent, continuous acquisition of bacterial genes was limited in extent. The other analysis makes an attempt to go even further by directly comparing the phylogenetic distances from the

Figure 1. Domestication of selfish genetic elements en route to dedicated vehicles for horizontal gene transfer. The figure depicts the hypothetical stages of the evolutionary paths from a lytic phage to a gene transfer agent and from a small, high copy number plasmid to an integrative and conjugative element. Abbreviations: GTA, gene transfer agent; ICE, integrative and conjugative element.
closest bacterial homologs for the genes of apparent α-proteobacterial origin encoding proteins localized to the mitochondria and genes apparently derived from other bacteria. The conclusion is that the proto-mitochondrial genes are the closest homologs to their bacterial ancestors, hence probably the latest large bunch of bacterial genes acquired by eukaryotes.

The ‘mitochondria late’ conclusion superficially could be interpreted as an indication that the host of the proto-mitochondrion was an ‘archezoon’, a primitive amitochondrial eukaryote. However, this does not appear to be a necessary implication of the actual observations. On the contrary, these findings seem to be fully compatible with the conclusions of Ku et al. on the scarcity of late, non-organellar HGT in eukaryotes and with the earlier scenarios of eukaryogenesis, which proposed a complex archaeon with many acquired bacterial genes as the host of the proto-mitochondria (Figure 2). Under this scenario, acquisition of the mitochondria precipitated the series of dramatic changes in the organization of the chimeric cell which led to the curtailment of HGT. Thus, the acquisition of numerous genes from the proto-mitochondrion comes across as the last major burst of HGT (other than the acquisition of chloroplast genes at the base of the Archaeplastida), although numerous lineage-specific acquisitions of relatively small but biologically consequential groups of bacterial genes as well as eukaryote-to-eukaryote transfers undoubtedly occurred at later stages.

Concluding remarks
Over a decade ago, the question has been asked whether the concept of HGT would soon ‘come of age’, causing a rather tense discussion. These days, I believe, it is clear that the field has matured. There is no reasonable doubt anymore that HGT is a dominant process in microbial evolution that generally occurs at a high rate. Moreover, the relevance of ‘horizontal’ as applied to gene flow is validated by the strong evidence of the existence of a central vertical, tree-like trend in genome evolution. Thus, the focus of research has shifted towards the ‘how’s’ and ‘why’s’ of HGT and, in these directions, much more remains to be done than has been accomplished already.

Both theoretical models and tantalizing experimental clues suggest that HGT is essential for microbial survival and could be an evolvable, adaptive capacity mediated by dedicated vehicles originating from domesticated selfish elements. Yet this concept runs afoot of the distrust of ‘evolution of evolvability’ that is deeply ingrained among biologists. Indeed, much work remains to be done to make a compelling case for the evolvability of HGT. Somewhat similarly, albeit in a different area, there is accumulating evidence for ‘evolution of evolvability’ in other contexts.

Figure 2. Eukaryogenesis and horizontal gene transfer. The figure presents the ‘endosymbiotic’ model of eukaryogenesis under which the host of the protomitochondriall endosymbiont was a typical archaeon albeit one with a relatively complex intracellular organization and numerous genes captured from bacteria via HGT. Abbreviations: HGT, horizontal gene transfer.
evidence of a major role of HGT in evolutionary transitions. Yet these conclusions rest on the analysis of deep phylogenies which are inherently error prone and recalcitrant to definitive interpretation. Much like evolution itself, extensive HGT in the microbial world is a fact and not a ‘theory’. However, understanding the routes, causes, and consequences of horizontal gene flow as well as constructing the actual, quantitative theoretical framework of this pervasive process will keep many biologists busy for decades to come.

Competing interests
The author declares that he has no competing interests.

Grant information
The author’s research is supported by intramural funds of the US Department of Health and Human Services (to the National Library of Medicine).

References

1. Kolbe AB: Dynamic bacterial genome organization. Mol Microbiol. 1997; 24(2): 241–8. PubMed Abstract | Publisher Full Text
2. Koonin EV, Mushagen AR, Galperin MY, et al.: Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol. 1997; 26(4): 619–37. PubMed Abstract | Publisher Full Text
3. Koonin EV, Mushagen AR, Rudd KE: Sequencing and analysis of bacterial genomes. Curr Biol. 1996; 6(4): 404–16. PubMed Abstract | Publisher Full Text
4. Doolittle WF: Phylogenetic classification and the universal tree. Science. 1999; 284(5423): 2124–9. PubMed Abstract | Publisher Full Text
5. Fraser CM, Eisen JA, Salzberg SL: Estimating the life history of the eubacteria. Science. 2000; 280(5368): 799–803. PubMed Abstract | Publisher Full Text
6. Koonin EV, Makarova KS, Aravind L: Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001; 55: 709–42. PubMed Abstract | Publisher Full Text | Free Full Text
7. Aravind L, Tatusov RL, Wolf YI, et al.: Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 1998; 14(11): 442–4. PubMed Abstract | Publisher Full Text
8. Nelso KE, Clayton RA, Gil SR, et al.: Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999; 399(6734): 323–9. PubMed Abstract | Publisher Full Text
9. Doolittle WF: Lateral genomics. Trends Cell Biol. 1999; 9(12): M5–8. PubMed Abstract | Publisher Full Text
10. Martin W: Mosaic bacterial chromosomes: a challenge en route to a tree of life. Trends Genet. 1999; 15(11): 492–500. PubMed Abstract | Publisher Full Text
11. Baptiste E, Busko E, Laugh J, et al.: Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol. 2005; 5: 33. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
12. Doolittle WF, Baptiste E: Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci U S A. 2007; 104(7): 2043–9. PubMed Abstract | Publisher Full Text | Free Full Text
13. O’Malley MA, Boucher Y: Paradigm change in evolutionary microbiology. Stud Hist Philos Biol Biomed Sci. 2005; 36(1): 183–208. PubMed Abstract | Publisher Full Text
14. Cricarelli FD, Doersk T, von Mering C, et al.: Toward automatic reconstruction of a highly resolved tree of life. Science. 2006; 311(5765): 1283–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation
15. Dagan T, Martin W: The tree of one percent. Genome Biol. 2006; 7(10): 118. PubMed Abstract | Publisher Full Text | Free Full Text
16. Hug LA, Baker BJ, Anantharaman K, et al.: A new view of the tree of life. Nat Microbiol. 2016; 1(5): 16048. Publisher Full Text | F1000 Recommendation
17. Puigbò P, Wolf YI, Koonin EV: Search for ‘a Tree of Life’ in the thicket of the phylogenetic forest. J Mol Evol. 2005; 60(6): 590–6. PubMed Abstract | Publisher Full Text | Free Full Text
18. Puigbò P, Wolf YI, Koonin EV: Seeing the Tree of Life behind the phylogenetic forest. BMC Evol Biol. 2013; 13: 11. PubMed Abstract | Publisher Full Text | Free Full Text
19. Puigbò P, Wolf YI, Koonin EV: The tree and net components of prokaryote evolution. Genome Biol Evol. 2010; 2: 745–56. PubMed Abstract | Publisher Full Text | Free Full Text
20. Doolittle WF: Eradicating typological thinking in prokaryotic systematics and evolution. Cold Spring Harb Quant Biol. 2009; 74: 197–204. PubMed Abstract | Publisher Full Text
21. Martin WF: Early evolution without a tree of life. Biol Direct. 2011; 6: 36. PubMed Abstract | Publisher Full Text | Free Full Text
22. O’Malley MA, Koonin EV: How stands the Tree of Life a century and a half after The Origin? Biol Direct. 2011; 6: 32. PubMed Abstract | Publisher Full Text | Free Full Text
23. Gogarten JP, Doolittle WF, Lawrence JG: Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002; 19(12): 2226–38. PubMed Abstract
24. Andam CP, Gogarten JP: Blased gene transfer in microbial evolution. Nat Rev Microbiol. 2011; 9(7): 543–55. PubMed Abstract | Publisher Full Text
25. Andam CP, Williams D, Gogarten JP: Blased gene transfer mimics patterns created through shared ancestry. Proc Natl Acad Sci U S A. 2010; 107(23): 10679–84. PubMed Abstract | Publisher Full Text | F1000 Recommendation
26. Abby SS, Tannier E, Anantharaman K, et al.: Evidence for lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci U S A. 2012; 109(13): 4962–7. PubMed Abstract | Publisher Full Text | Free Full Text
27. Perna NT, Plunkett G 3rd, Burland V, et al.: Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001; 409(6819): 529–33. PubMed Abstract | Publisher Full Text
28. Espinger M, Marmel MK, Leclerc JE, et al.: Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A. 2011; 108(50): 20142–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
29. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science. 1997; 278(5338): 631–7. PubMed Abstract | Publisher Full Text
30. Tettelin H, Riley D, Cattuto C, et al.: Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008; 11(5): 472–7. PubMed Abstract | Publisher Full Text
31. Snell B, Bork P, Huynen MA: Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 2002; 12(1): 17–25. PubMed Abstract | Publisher Full Text | F1000 Recommendation
32. Mirkin BG, Fenner TI, Galperin MY, et al.: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol. 2003; 3: 2. PubMed Abstract | Publisher Full Text | Free Full Text
33. Kunin V, Ozouzian CA: The balance of driving forces during genome evolution in prokaryotes. Genome Res. 2003; 13(7): 1589–94. PubMed Abstract | Publisher Full Text | Free Full Text
34. Cohen O, Rubinstein ND, Stem A, et al.: A likelihood framework to analyse phyletic patterns. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1512): 3903–11. PubMed Abstract | Publisher Full Text | Free Full Text
35. Courtois M: Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010; 26(15): 1910–2. PubMed Abstract | Publisher Full Text
36. Courtois M, Miklós I: Genomes in turmoil: quantification of genome. J Mol Evol. 2009; 69(9): 2087–95. PubMed Abstract | Publisher Full Text | Free Full Text
37. Courtois M, Miklós I: Streamingline and large ancestral genomes in Archaea inferred from a phylogenetic birth-and-death model. Mol Biol Evol. 2009; 26(9): 2087–95. PubMed Abstract | Publisher Full Text | Free Full Text
38. Puigbò P, Lobkovsky AE, Kristensen DM, et al.: Genomes in turbulence: quantification
of genome dynamics in prokaryote supergenomes. BMC Biol. 2014; 12: 66.

39. Merhe V, Georgiadis K, Raoult D: Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics. 2013; 12(4): 291–304.

42. Takeuchi N, Kaneko K, Koonin EV: The evolution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Genet Elements. 2009; 249: 379–405.

48. Takeuchi N, Kaneko K, Koonin EV: The evolution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Genet Elements. 2009; 249: 379–405.

52. Takeuchi N, Kaneko K, Koonin EV: The evolution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Genet Elements. 2009; 249: 379–405.

57. Johnston C, Polard P: The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev. 2009; 33(3): 643–56.

62. Johnson GM, Grossman AD: Vertical and Horizontal Conjugation in Bacteria: What They Do and How They Work. Annu Rev Genet. 2015; 49: 577–601.

66. Lang AS, Beaty JT: The role of horizontal gene transfer in the evolution of the yersinia pestis genome. Annu Rev Microbiol. 2015; 69: 207–30.

71. Lang AS, Beaty JT: The role of horizontal gene transfer in the evolution of the yersinia pestis genome. Annu Rev Microbiol. 2015; 69: 207–30.

76. Lang AS, Beaty JT: The role of horizontal gene transfer in the evolution of the yersinia pestis genome. Annu Rev Microbiol. 2015; 69: 207–30.

81. Whitaker JW, McConkey GA, Westhead DR: On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Journal of the Proceedings of the Linnean Society of London. Zoology. 1858; 3(9): 45–62.

86. Whitaker JW, McConkey GA, Westhead DR: On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Journal of the Proceedings of the Linnean Society of London. Zoology. 1858; 3(9): 45–62.

91. Whitaker JW, McConkey GA, Westhead DR: On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Journal of the Proceedings of the Linnean Society of London. Zoology. 1858; 3(9): 45–62.

96. Whitaker JW, McConkey GA, Westhead DR: On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Journal of the Proceedings of the Linnean Society of London. Zoology. 1858; 3(9): 45–62.
Open Peer Review

Current Referee Status: ✔️ ✔️

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Olga Zhaxybayeva, Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
   Competing Interests: No competing interests were disclosed.

2 Purificacion Lopez-Garcia, Unité d'Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
   Competing Interests: No competing interests were disclosed.