FULLY COMPUTABLE A POSTERIORI ERROR ESTIMATOR USING ANISOTROPIC FLUX EQUILIBRATION ON ANISOTROPIC MESHES*

NATALIA KOPTEVA

Abstract. Fully computable a posteriori error estimates in the energy norm are given for singularly perturbed semilinear reaction-diffusion equations posed in polygonal domains. Linear finite elements are considered on anisotropic triangulations. To deal with the latter, we employ anisotropic quadrature and explicit anisotropic flux reconstruction. Prior to the flux equilibration, divergence-free corrections are introduced for pairs of anisotropic triangles sharing a short edge. We also give an upper bound for the resulting estimator, in which the error constants are independent of the diameters and the aspect ratios of mesh elements, and of the small perturbation parameter.

Key words. a posteriori error estimate, anisotropic triangulation, anisotropic flux equilibration, flux reconstruction, anisotropic quadrature, energy norm, singular perturbation, reaction-diffusion.

AMS subject classifications. 65N15, 65N30.

1. Introduction. We consider linear finite element approximations to singularly perturbed semilinear reaction-diffusion equations of the form

\[Lu := -\varepsilon^2 \Delta u + f(x, y; u) = 0 \quad \text{for} \quad (x, y) \in \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega, \tag{1.1} \]

posed in a, possibly non-Lipschitz, polygonal domain \(\Omega \subset \mathbb{R}^2 \). Here \(0 < \varepsilon \leq 1 \). We also assume that \(f \) is continuous on \(\Omega \) and satisfies \(f(\cdot; s) \in L_\infty(\Omega) \) for all \(s \in \mathbb{R} \), and the one-sided Lipschitz condition \(f(x, y; u) - f(x, y; v) \geq C_f|u - v| \) whenever \(u \geq v \), with some constant \(C_f \geq 0 \). Then there is a unique \(u \in W^2_\ell(\Omega) \subseteq W^1(\Omega) \subset C(\Omega) \) for some \(\ell > 1 \) and \(q > 2 \) [9 Lemma 1]. We additionally assume that \(C_f + \varepsilon^2 \geq 1 \) (as a division by \(C_f + \varepsilon^2 \) immediately reduces (1.1) to this case).

Our goal is to give explicitly and fully computable a posteriori error estimates on reasonably general anisotropic meshes (such as on Fig. 2.1 and Fig. 2.2) in the energy norm defined by

\[\|v\|_{\varepsilon, \Omega} := \left\{ \varepsilon^2 \|\nabla v\|^2_{\Omega} + C_f \|v\|^2_{\Omega} \right\}^{1/2}, \]

where \(\| \cdot \|_{D} := \| \cdot \|_{L_\infty(D)} \forall D \subseteq \Omega \). This goal is achieved by a certain combination of explicit flux reconstruction and flux equilibration.

Flux equilibration for equations of type (1.1) was considered in [1, 3, 4, 7] on shape-regular meshes (see also [2 Chap.6] for the case \(\varepsilon = 1 \)), and in [10] on anisotropic meshes. The estimators in [3 4 7] are based on flux reconstructions, while [1 10] employ solutions of certain local problems.

Our approach in this paper differs from the previous work in a few ways.

- The fluxes are equilibrated within a local patch using anisotropic weights depending on the local, possibly anisotropic, mesh geometry (see (5.3)).
- Prior to the flux equilibration, divergence-free corrections are introduced for pairs of anisotropic triangles sharing a short edge (see (6.2)).
- A certain anisotropic quadrature is used on anisotropic elements (see (3)).

This is motivated by some observations made in [13], and also enables us to drop some mesh assumptions made in recent papers [14 15].

*The author was partially supported by Science Foundation Ireland grant SFI/12/IA/1683
†Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland (natalia.kopteva@ul.ie).
• Our estimator is explicitly and fully computable in the sense that it involves no unknown error constants (unlike other estimators on anisotropic meshes, such as in [10] [14] [15]).

• In contrast to [10], an upper bound for our estimator involves no matching functions (which we discuss below). In fact, the error constant C in the upper bound (1.2) is independent not only of the diameters and the aspect ratios of mesh elements, but also of the small perturbation parameter ε.

• Unlike [13] [4] [7], and also [23] [18] [20] [19], we consider the semilinear case, which mostly simplifies the presentation (as if f may include a few linear terms).

• By contrast, dealing with anisotropic elements requires some non-incemental changes in the flux construction and also a more intricate analysis compared to the isotropic-mesh case.

• The efficiency of error estimators on anisotropic meshes was addressed in [18] [20] [19] using the standard bubble function approach. However, a numerical example will be given in [9] that clearly demonstrates that short-edge jump residual terms in such bounds are not sharp. So, under additional restrictions on the anisotropic mesh, we shall give a new bound for the short-edge jump residual terms, and thus show that at least for some anisotropic meshes the error estimator constructed in the paper is efficient.

The robustness of our estimator, denoted by E, with respect to the mesh aspect ratios, as well as the small perturbation parameter ε, is demonstrated by the following upper bound (which follows from Theorems 4.1 and 4.3):

$$E \leq C \left\{ \sum_{z \in \mathcal{N}} \min\{1, \varepsilon h_z^{-1}\} \|\varepsilon J_z\|_{\omega_z} + \sum_{z \in \mathcal{N}} \min\{1, h_z\varepsilon^{-1}\} \|f'_h\|_{\omega_z}^2 + \|f_h - f'_h\|_{\Omega}^2 \right. \\
+ \left. \sum_{T \in \mathcal{T}} \left| \lambda_T \text{osc}(f'_h; T) \right| T^2 + \sum_{z \in \mathcal{N}_z^*} \|\lambda_T f_h(z)\|_{\omega_z}^2 \right\}^{1/2},$$

(1.2)

where C is independent of the diameters and the aspect ratios of elements in the triangulation \mathcal{T}, and of ε. Here \mathcal{N} is the set of nodes in \mathcal{T}, and ω_z is the patch of elements surrounding any $z \in \mathcal{N}$, while J_z is the maximum within ω_z of the standard jump in the normal derivative of the computed solution u_h across an element edge, $f_h = f(\cdot; u_h)$ and f'_h is its standard piecewise-linear Lagrange interpolant. We also use $\lambda_T = \min\{1, H_T^{-1}\}$, $H_T \approx \text{diam}(T)$, $h_T \approx H_T^{-1}|T|$, and $h_z \approx |\omega_z|/\text{diam}(\omega_z)$ (and some notation defined in the final paragraph of this section). The boundary subset \mathcal{N}_z^* of \mathcal{N} is defined in (2.4).

To relate (1.2) to interpolation error bounds (as well as to possible adaptive-mesh construction strategies), note that $|J_z|$ may be interpreted as approximating the diameter of ω_z under the metric induced by the squared Hessian matrix of the exact solution (while f'_h approximates $\varepsilon^2 \Delta u$). Note also that the right-hand side in (1.2) is similar to the estimator in the recent paper [16], and reduces, in the case of shape-regular meshes, to a version of the estimator given by [23].

Explicit residual-type a posteriori error estimates for problems of type (1.1) were also given in [23] [9] on shape-regular meshes, [22] [12] [6] on anisotropic tensor-product meshes, and [18] [20] [19] [14] [15] [16] on more general anisotropic meshes (for $\varepsilon = 1$ in [22] [18]). All these estimates are not fully guaranteed in the sense that they involve unknown error constants. (The cited papers deal with the energy norm, except for [6] [9] [12] [14] addressing the maximum norm.)

Note that the error constants in the estimators of [18] [19] [20] (as well as the upper bound for the estimator [10]) that we already mentioned) involve the so-called
The indicator function \(1 \) and \(\sigma \) are discussed in the paper by discussing lower error bounds on anisotropic meshes in the constructed estimator is illustrated by some numerical results in §8. We conclude the paper by discussing lower error bounds on anisotropic meshes in §9.

Notation. We write \(a \approx b \) when \(a \leq \varepsilon b \) and \(a \geq b \), \(a = \mathcal{O}(b) \) when \(|a| \leq \varepsilon b \), and \(a \lesssim b \) when \(a \leq \varepsilon b \) with a generic constant \(C \) depending on \(\Omega \) and \(f \), but \(C \) does not depend on either \(\varepsilon \) or the diameters and the aspect ratios of elements in \(T \). Also, we write \(a \ll b \) when \(a < c_0 b \) with a fixed small constant \(c_0 \) (used to distinguish between anisotropic and isotropic elements). The indicator function \(1_A \) takes value 1 if condition \(A \) is satisfied, and vanishes otherwise. For any \(\mathcal{D} \subset \Omega \), we let \(\| \cdot \|_{\mathcal{D}} := \| \cdot \|_{L_2(\mathcal{D})} \), and \(\operatorname{osc}(v; \mathcal{D}) := \sup_{\mathcal{D}} v - \inf_{\mathcal{D}} v \forall v \in L_{\infty}(\mathcal{D}) \), while \(\nu \) and \(\mu \), possibly subscripted, denote the unit vectors on \(\partial \mathcal{D} \) in the outward normal and counterclockwise tangential direction, respectively. For any triangles \(T \) and \(T' \) sharing an edge, a standard notation is used:

\[
[\tau \cdot \nu]_{\partial T \cap \partial T'} := \tau \cdot \nu|_T + \tau \cdot \nu|_{T'}, \quad [\nu \cdot \nabla u_h]_{\partial T \cap \partial T'} := [\nabla u_h \cdot \nu]_{\partial T \cap \partial T'}.
\]

2. Triangulation assumptions. We shall use \(z, S \) and \(T \) to respectively denote particular mesh nodes, edges and triangular elements, while \(\mathcal{N}, \mathcal{S} \) and \(\mathcal{T} \) will respectively denote their sets. For each \(T \in \mathcal{T} \), let \(H_T \) be the maximum edge length and \(h_T := 2H_T^{-1}|T| \) be the minimum altitude in \(T \). For each \(z \in \mathcal{N} \), let \(\omega_z \) be the patch of elements surrounding any \(z \in \mathcal{N} \), \(S_z \) the set of edges originating at \(z \), and

\[
H_z := \text{diam}(\omega_z), \quad h_z := \max_{T \subset \omega_z} h_T, \quad \hat{h}_z := \min_{T \subset \omega_z} h_T, \quad \gamma_z := S_z \setminus \partial \Omega. \tag{2.1}
\]

(With slight abuse of notation, such as in the latter formula, we occasionally treat subsets of \(\mathcal{N}, \mathcal{S} \) and \(\mathcal{T} \) as sets of points.)

Throughout the paper we make some triangulation assumptions. All of them are automatically satisfied by shape-regular triangulations.

- Maximum Angle condition. Let the maximum interior angle in any triangle \(T \in \mathcal{T} \) be uniformly bounded by some positive \(\lambda_0 < \pi \).
- Let the number of triangles containing any node be uniformly bounded.
- For any \(z \in \mathcal{N} \), one has

\[
h_T \approx \hat{h}_z \quad \text{and} \quad H_T \geq H_z \quad \text{or} \quad h_T \approx H_T \quad \forall T \subset \omega_z. \tag{2.2}
\]
We also distinguish subsets \(N_{\text{ani}}, N_{\text{iso}} \) and \(N_{\text{B}}^\# \) of \(\mathcal{N} \) (see Fig. 2.2). Note that \(N_{\text{ani}} \cap N_{\text{iso}} = \emptyset \), while \(N \setminus (N_{\text{ani}} \cup N_{\text{iso}}) \) is not necessarily empty.

1. **Anisotropic nodes**, whose set is denoted by \(N_{\text{ani}} \), are such that
 \[
 h_z \ll H_z, \quad h_T \approx h_z \quad \text{and} \quad H_T \approx H_z \quad \forall T \subset \omega_z. \tag{2.3}
 \]
 Note that (2.3) implies (2.2), while \(z \in N_{\text{ani}} \) implies \(h_z \approx h_z \).

2. **Isotropic nodes**, to whose set we shall refer as \(N_{\text{iso}} \), are such that
 \[h_z \gg H_z. \]

3. One may expect anisotropic elements near the boundary to be aligned along it. To distinguish some boundary nodes for which it is not the case, we introduce
 \[
 N_{\text{B}}^\# := \left\{ z \in N_{\text{ani}} \cap \partial \Omega \backslash \{\text{corners of } \Omega\} \text{ and } |S_z \cap \partial \Omega| \approx h_z \ll \varepsilon \right\}. \tag{2.4}
 \]
 Occasionally, we shall make additional assumptions that we describe below.

\(A_1 \) Each \(z \in \mathcal{N} \) with \(h_z \leq \varepsilon \) satisfies \(z \in N_{\text{ani}} \setminus \{\text{corners of } \Omega\} \) and condition \(A_{1,\text{ani}} \), or it satisfies condition \(A_{1,\text{mix}} \); see below.

\(A_{1,\text{ani}} \) Quasi-non-obtuse anisotropic elements. Let the maximum triangle angle at \(z \in N_{\text{ani}} \) be bounded by \(\frac{\pi}{2} + \lambda_1 \frac{h_z}{h_T} \) for some positive constant \(\lambda_1 \).

\(A_{1,\text{mix}} \) With \(\hat{S}_z := \{S \subset S_z : |S| \approx \hat{h}_z\} \text{ and } \hat{\omega}_z := \{T \subset \omega_z : h_T \approx H_T \approx \hat{h}_z\} \) respectively denoting the sets of edges and isotropic triangles of diameter \(\approx \hat{h}_z \) within \(\omega_z \), let \((\hat{\omega}_z \cup \hat{S}_z) \backslash \{z\} \) be connected.

\(A_2 \) Each \(z \in \mathcal{N} \) with \(h_z \geq \varepsilon \) satisfies \(\hat{h}_z \geq \sqrt{6} \varepsilon \).

Note that \(A_{1,\text{ani}} \) is always satisfied by isotropic elements, so it requires only some of the anisotropic part of the mesh to be close to a non-obtuse triangulation. \(A_{1,\text{mix}} \) is also always satisfied on shape-regular meshes (as then \(\omega_z = \omega_z \)). For anisotropic nodes, \(A_{1,\text{mix}} \) may be satisfied if \(z \in \partial \Omega \) (in this case, \(\hat{\omega}_z = \emptyset \), while \(\hat{S}_z \backslash \{z\} \) is connected only if \(\hat{S} \) contains a single edge). Note also that \(A_2 \) is satisfied for any \(z \notin N_{\text{iso}} \), while for isotropic nodes it does impose a mild restriction (as for the latter, \(h_z \approx H_z \), so whenever \(h_z \geq \varepsilon \), within \(\omega_z \) we impose \(h_T \geq \sqrt{6} \varepsilon \)).

We shall also consider a weaker version of \(A_1 \).

\(A^*_1 \) Each \(z \in \mathcal{N} \) with \(h_z \leq \varepsilon \) satisfies \(z \in N_{\text{ani}} \setminus \partial \Omega \) and condition \(A^*_1 \), or \(z \in N_{\text{B}}^\# \) and satisfies \(A_{1,\text{ani}} \), or it satisfies condition \(A_{1,\text{mix}} \).

\(A^*_1 \) Local Element Orientation condition. For \(z \in N_{\text{ani}} \), there exists a rectangle \(R_z \supset \omega_z \) such that \(|R_z| \approx |\omega_z| \).

Fig. 2.1. Example of a mesh that satisfies all assumptions made in \(\S \) (including \(A_1 \) and \(A_2 \)).
3. Finite element method with quadrature. We discretize \ref{eq:1.1} using linear finite elements. Let $S_h \subset H^1_0(\Omega) \cap C(\Omega)$ be a piecewise-linear finite element space relative to a triangulation T, and let the computed solution $u_h \in S_h$ satisfy

$$\varepsilon^2 \langle \nabla u_h, \nabla v_h \rangle + \langle f_h, v_h \rangle_h = 0 \quad \forall v_h \in S_h, \quad f_h(\cdot) := f(\cdot; u_h). \quad \text{(3.1)}$$

Here $\langle \cdot, \cdot \rangle$ is the $L_2(\Omega)$ inner product, and $\langle \cdot, \cdot \rangle_h$ is its quadrature approximation.

We now describe $(f_h, v_h)_h$ used in \eqref{eq:3.1}. For the integral over $T \in T$, a quadrature formula Q_T is employed, which is anisotropic on a certain subset T^* of anisotropic elements:

$$Q_T(w) = |T| \sum_{j=1}^3 \theta_{T; z_j} w(z_j) := \begin{cases} \frac{1}{3} |T| (w(z_1) + w(z_2) + w(z_3)) & \text{for } T \in T \setminus T^*, \\ \frac{1}{2} |T| (w(z_1) + w(z_2)) & \text{for } T \in T^*. \end{cases} \quad \text{(3.2)}$$

Here $(z_j)_{j=1}^3$ are the vertices of T, with $z_3 =: z^*$ opposite the shortest edge, while $T^* := \{ T \in T : h_T \ll H_T \text{ and } h_T \lesssim \varepsilon \} \setminus T_0$, \eqref{eq:3.3}, with $T_0 \subset \{ T \in T : z^* \in N_{iso} \text{ and } z_1, z_2 \notin N_{ani} \setminus \partial \Omega \}$ (so, unless one wants to minimize T^*, the simplest option is $T_0 := \emptyset$). Now, let

$$\langle f_h, v_h \rangle_h := \sum_{T \in T \setminus T^*} Q_T(f_h v_h) + \sum_{T \in T^*} Q_T(\bar{f}_h v_h). \quad \text{(3.4)}$$

where

$$\bar{f}_h = \bar{f}_{h,T} := \frac{1}{3} [f_h(z_1) + f_h(z_2) + f_h(z_3)] \quad \forall T \in T. \quad \text{(3.5)}$$

As \bar{f}_h is an elementwise constant approximation of f_h, so $Q_T(\bar{f}_h v_h) = \bar{f}_{h,T} Q_T(v_h)$.

Note that the discretization \eqref{eq:3.1}, \eqref{eq:3.2}, \eqref{eq:3.3}, \eqref{eq:3.4} can be written as

$$\sum_{S \subset \gamma_z} \frac{1}{2} \varepsilon^2 |S| \langle c_\nu u_h \rangle_S + \sum_{T \subset \omega_z} \theta_{T; z} |T| F_{T; z} = 0 \quad \forall z \in N \setminus \partial \Omega, \quad \text{(3.6)}$$

where $F_{T; z} := f_h(z)$ for $T \in T \setminus T^*$ and $F_{T; z} := \bar{f}_{h,T}$ for $T \in T^*$. It will be sometimes convenient to replace the second sum here using an average \bar{F}_z of $F_{T; z}$, associated with z, defined by

$$\bar{F}_z \sum_{T \subset \omega_z} \theta_{T; z} |T| := \sum_{T \subset \omega_z} \theta_{T; z} |T| F_{T; z} \quad \forall z \notin \partial \Omega, \quad \bar{F}_z := \begin{cases} 0 & \text{for } z \in N_{iso}^*: H_z \gtrsim \varepsilon, \\ f_h(z) & \text{otherwise for } z \in \partial \Omega. \end{cases} \quad \text{(3.7)}$$
Remark 3.1. The above quadrature yields the standard linear lumped-mass finite element discretization on $\mathcal{T}\setminus \mathcal{T}^\ast$. On \mathcal{T}^\ast, a special anisotropic quadrature is employed (designed to address certain convergence issues reported in [13]). The resulting method may be also interpreted as the vertex-centered finite volume method (or the box method) with a special choice of control volumes, applied to the approximation of our equation $-\varepsilon^2 \Delta u + f(\cdot; u) = 0$. A related interpretation as a Petrov-Galerkin method is also possible.

Remark 3.2. Our results remain valid, if $Q_T(f_hv_h)$ is replaced by $Q_T(\tilde{f}_hv_h)$ in the first sum in (3.4). However, using $Q_T(f_hv_h)$ for $h_T \gg \varepsilon$ yields a superior discretization (as in this case the local stiffness matrices become negligible so diagonal mass matrices are preferable). On the other hand, replacing $Q_T(f_hv_h)$ by $Q_T(f_hv_h)$ in the second sum in (3.4) yields a less standard lumped-mass discretization on \mathcal{T}^\ast. For the latter choice, our estimator will enjoy a version of the upper bound (1.2) with λ_T replaced by 1 whenever $h_T \ll H_T \leq \varepsilon$. Furthermore, all our results remain valid without any changes if $Q_T(f_hv_h)$ is used only for $T \in \mathcal{T}^\ast$: $H_T \leq \varepsilon$.

4. A posteriori error estimator. Main Results. We start with a relatively standard auxiliary result, a version of which can be found, for example, in [3, Lemma 1] and [7, Theorem 3.1].

Theorem 4.1. For any $u_h \in S_h$, let $\tau \in H^1(\text{div}, \mathcal{T}) \forall T \in \mathcal{T}$ also satisfy
\[
[\tau \cdot \nu] = [\tau_h] \quad \text{on all} \quad S \in \mathcal{S}\setminus \partial \Omega.
\]
Then, for a solution u of (1.1), with $C_f > 0$, one has
\[
\|u_h - u\|_{\varepsilon; \Omega} \leq E := \left\{ \varepsilon^2 \|\tau\|_{\Omega}^2 + C_f^{-1} \varepsilon^2 \|\text{div} \tau\|_{\Omega}^2 + f_h\|_{\Omega}^2 \right\}^{1/2}.
\]

Proof. With $v := u_h - u$, one has
\[
\|u_h - u\|_{\varepsilon; \Omega}^2 \leq \varepsilon^2 \langle \nabla (u_h - u), \nabla v \rangle + \langle f(\cdot; u_h) - f(\cdot; u), v \rangle
\]
\[
= \varepsilon^2 \langle \nabla u_h, \nabla v \rangle + \langle f(\cdot; u_h), v \rangle
\]
\[
= \varepsilon^2 \langle \tau, \nabla v \rangle + \langle \varepsilon^2 \text{div} \tau + f_h, v \rangle,
\]
which immediately implies (4.2). Here we employed the observation (obtained using $\Delta u_h = 0$ in any T, and (4.1)) that
\[
\langle \nabla u_h, \nabla v \rangle + \langle \Delta u_h, v \rangle = \sum_{S \in \mathcal{S}} \int_S v [\tau_h]_{\tau} = \langle \tau, \nabla v \rangle + \langle \text{div} \tau, v \rangle.
\]
Note that here (as well as in (4.2)), with slight abuse of notation, we understood Δu_h and $\text{div} \tau$ as regular functions in Ω defined elementwise.

Remark 4.2 (Cases $C_f \geq 0$ and $C_f = C_f(x, y)$). An inspection of the above proof shows that the estimator E in (4.2) can be replaced by a more general
\[
E := \left\{ (1 - \vartheta)^{-1} \varepsilon^2 \|\tau\|_{\Omega}^2 + (C_f + \varepsilon^2 C^2 \vartheta)^{-1} \varepsilon^2 \|\text{div} \tau\|_{\Omega}^2 + f_h\|_{\Omega}^2 \right\}^{1/2},
\]
where C_{Ω} is the Poincaré constant, and $\vartheta \in [0, 1]$ is an arbitrary constant, with $\vartheta > 0$ unless $C_f > 0$. Note also that if $C_f = C_f(x, y)$, the above result remains valid with an obvious modification of the energy norm to $\|v\|_{\varepsilon, \Omega} := \{ \varepsilon^2 \|\nabla v\|_{\Omega}^2 + \|f_h\|_{\Omega}^2 \}^{1/2}$ and a similar modification of E.
4.1. Structure of \(\tau \). Clearly, \(\tau \) that satisfies the conditions of Theorem 4.1 is not unique, and there are various choices available in the literature.

Our task in this paper is to explicitly define \(\tau \) to be used in \((4.2) \) in a way that is appropriate for anisotropic meshes. We introduce a suitable \(\tau \) in the form

\[
\tau := \sum_{z \in N} \tau_z + \sum_{T \in T'} \tau_T^f + \sum_{S \in S^*} \tau_S^j, \quad T^f := \{ T \in T : H_T \leq \varepsilon \},
\]

where \(\tau_z, \tau_T^f, \) and \(\tau_S^j \) have support on \(\omega_z, T, \) and \(T \cup T' \) for \(S = \partial T \cap \partial T' \), respectively. It is also convenient to set \(\tau_T^f \) and \(\tau_S^j \) to 0 whenever respectively \(T \notin T' \) and \(S \notin S^* \).

Under condition A1, we set \(\lambda^0 := \emptyset \), while otherwise \(\lambda^0 \) is essentially the set of short edges shared by pairs of anisotropic triangles (see \(\square \) for details).

To be more precise, in the case \(\lambda^0 = \emptyset \), the function \(\tau_z \), with support on \(\omega_z \), is simply required to satisfy

\[
[\tau_z \cdot \nu] = \phi_z [\partial \nu u_h] \quad \text{on } \gamma_z, \quad \tau_z \cdot \nu = 0 \quad \text{on } \partial \omega_z \setminus \partial \Omega,
\]

where \(\{ \phi_z \}_{z \in N} \) are the standard basis hat functions. The function \(\tau_T \), with support in \(T \), satisfies

\[
\tau_T \cdot \nu = 0 \quad \text{on } \partial T \quad \text{and} \quad \varepsilon^2 \text{div} \tau_T + (f_T^h - \tilde{f}_h) = 0 \quad \text{in } T \quad \forall T \in T',
\]

and is explicitly defined (see, e.g., \(\square \) (22)) by

\[
\tau_T^f := b_1 \phi_1 \phi_3 |S_1| \mu_1 + b_2 \phi_3 \phi_1 |S_2| \mu_2 + b_3 \phi_1 \phi_2 |S_3| \mu_3, \quad b_j := \frac{1}{2} \varepsilon^{-2} \nabla f_T^h |S_j| \mu_j,
\]

where \(\{ z_j \}_{j=1}^3 \) are the vertices of \(T \) with the corresponding basis functions \(\phi_j := \phi_{z_j} \), and for \(j = 1, 2, 3 \), the edge \(S_j \) is opposite to \(z_j \), while the counterclockwise tangential unit vector \(\mu_j \) lies along \(S_j \); see Fig. 4.1.

4.2. Upper bound for the estimator. In this section, we present a theorem, which, combined with \((4.2) \), gives the upper bound \((1.2) \) for the estimator \(\mathcal{E} \). At the same time, this theorem provides valuable information on the local properties of the components of \(\tau \) in \((4.3) \). These components (except for \(\tau_T^f \)) are constructed and analyzed in \(\square \) for the case \(h \leq \varepsilon \), and in \(\square \) for the case \(h \geq \varepsilon \). So, with the exception of \((4.9) \), all bounds in the following theorem will be obtained in these forthcoming sections. (To be more precise, here we summarize the results of Lemmas 5.5, 5.6, 6.3 and 7.5)

Theorem 4.3. Let \(u_h \) solve \((3.1) \) with \((\cdot, \cdot)_h \) defined in \(\square \) and set

\[
J_z := \max_{S \subseteq \gamma_z} |\partial \nu u_h|_S \quad \text{and} \quad \lambda_T := \min \{ 1, H_T \varepsilon^{-1} \} \quad \forall T \in T.
\]
(i) Under conditions $A1$ and $A2$, one can construct τ, subject to (4.1), in the form (4.3) with $S^* = \emptyset$, where τ_z and an associated function g_z, both with support in ω_z, satisfy, for any $z \in \mathcal{N}$,
\[
\sum_{z \in \mathcal{N}; \, h_z \leq \varepsilon} \varepsilon^2 \text{div} \tau_z + f_h = \sum_{z \in \mathcal{N}} g_z \quad \text{in } \Omega, \tag{4.7}
\]
where
\[
\mathbf{1}_{h_z \leq \varepsilon} \| \varepsilon^2 \text{div} \tau_z \|_{\omega_z} + \| \varepsilon \tau_z \|_{\omega_z} + \| g_z \|_{\omega_z} \leq \min \{ 1, \varepsilon h_z^{-1} \} \| \varepsilon J_z \|_{\omega_z} + \min \{ 1, h_z \varepsilon^{-1} \} \| f_h \|_{\omega_z} + \sum_{T \subset \omega_z} \lambda_T \| \text{osc}(f_h^1[T]) \|_{T} + \mathbf{1}_{z \in \mathcal{N}, \omega_z} \| \lambda_T f_h(z) \|_{\omega_z}, \tag{4.8}
\]
while τ_{T} from (4.6) satisfies (4.5), and, for any $T \in \mathcal{T}$,
\[
\| \varepsilon^2 \text{div} \tau_{T}^f + (f_h - f_h^I) \|_{T} + \| \varepsilon \tau_{T}^f \|_{T} \leq \lambda_T \| \text{osc}(f_h^1[T]) \|_{T} + \| f_h - f_h^I \|_{T}. \tag{4.9}
\]

(ii) Under conditions $A1^*$ and $A2$, one can construct τ, subject to (4.1), in the form (4.3) with $S^* \neq \emptyset$, such that the above relations (4.7), (4.8), (4.9) hold true and, in addition, for any edge $S = \partial T \cap \partial T^\prime \in S^*$ with an endpoint z, τ_{S},
\[
\text{div} \tau_{S}^f = 0 \quad \text{in } T \cup T^\prime, \quad \| \varepsilon \tau_{S}^f \|_{T \cup T^\prime} \lesssim \| \varepsilon \tau_{S}^f \|_{T \cup T^\prime} \lesssim \min \{ 1, \varepsilon h_z^{-1} \} \| \varepsilon J_z \|_{\omega_z}. \tag{4.10}
\]

Proof of (4.9). If $T \in \mathcal{T}^I$, so, by (4.3), $\lambda_T \approx H_T \varepsilon^{-1}$, a calculation [3, §3.3] shows that (4.6) implies (4.5), while $|\gamma_j| \leq \varepsilon^{-2} \text{osc}(f_h^1[T])$ yields $|\varepsilon \tau_{T}^f| \lesssim H_T \varepsilon^{-1} \text{osc}(f_h^1[T])$. The desired bound (4.9) for $T \in \mathcal{T}^I$ follows. Otherwise, i.e. if $T \notin \mathcal{T}^I$, so $\lambda_T \approx 1$, one has $\tau_{T}^f = 0$, while $|f_h - f_h^I| \leq |f_h - f_h^I| + \text{osc}(f_h^1[T])$, so we again get (4.9).

Remark 4.4. Note that for $z \in \mathcal{N}_{\partial \Omega}$, the bound (4.8) involves $\lambda_T |f_h(z)| \approx \min \{ \varepsilon^{-1}, H_z^{-1} \} H_z |f_h(z)|$, where $\varepsilon^{-2} H_z |f_h(z)|$ may be interpreted as the diameter of ω_z under the metric induced by the squared Hessian matrix of the exact solution at $z \in \partial \Omega$. Indeed, as $u = 0$ on $\partial \Omega$, the Hessian matrix involves only the normal derivatives, while $\varepsilon^{-2} f_h = \varepsilon^{-2} f(\cdot; 0) = \partial_{\nu}^2 u$ on $\partial \Omega$; see also the definition of $N_{\partial \Omega}$.

5. Construction of τ_z for $h_z \lesssim \varepsilon$ under condition $A1$. Let the patch ω_z be formed by N_z triangles $\{ T_i \}_{i=1}^{N_z} \subset \mathcal{T}$, numbered counterclockwise so that γ_z is formed by the edges $\partial T_{i-1} \cap \partial T_i$ for $i = 1, \ldots, N_z$ if $z \notin \partial \Omega$ (with the notation $T_0 := T_N$), and for $i = 2, \ldots, N_z$ if $z \in \partial \Omega$ (see Fig. 5.1 (left, centre)). For each $T_i \subset \omega_z$, let z be opposite to the edge denoted S_i, with the outward normal and the counterclockwise tangential unit vectors denoted ν_i and μ_i (see Fig. 5.1 (right)).

Define τ_z associated with z by
\[
\tau_z := \phi_z(\alpha_i \nu_i + \beta_i d_i^{-1} \mu_i) \quad \forall T_i \subset \omega_z, \quad d_i := 2 |T_i| |S_i|^{-1}, \tag{5.1a}
\]
where, using F_{T_i} and \tilde{F}_{T_i} from (4.6), (3.7),

\[
\alpha_i := -\varepsilon^{-2} d_i \theta_{T_i}; \tilde{F}_{T_i}, \quad \tilde{F}_{T_i} := \begin{cases} \tilde{F}_z & \text{if } H_z \gtrsim \varepsilon \text{ and } z \in \mathcal{N}_{\text{ani}}, \\ F_{T_i} & \text{otherwise}. \end{cases} \tag{5.1b}
\]

Here we require $\{ \beta_i \}_{i=1}^{N_z}$ to satisfy
\[
\beta_{i-1} - \beta_i + c_{1-1} \nu_{i-1} \cdot S_{i-1}^+ \nu_{i-1} + \alpha \nu_i \cdot S_i^- \nu_i^- = |S_i^-| \left[\tilde{\nu}_i \omega_h \right]_{\partial T_{i-1} \cap \partial T_i} \tag{5.1c}
\]
for $i = 1, \ldots, N_z$ if $z \notin \partial \Omega$, and for $i = 2, \ldots, N_z$ if $z \in \partial \Omega$. We use the notation $S_{i}^\pm := \partial T_i \cap \partial T_{i \pm 1}$, as well as ν_i^\pm and μ_i^\pm for the outward normal and the counterclockwise tangential unit vectors of the edge S_i^\pm in triangle T_i (see Fig. 5.1 (right)).
Lemma 5.1. Let \(h_z \leq \varepsilon \). Then relations (5.1) for \(\tau_z \) imply (4.4) and

\[
\varepsilon^2 \text{div} \tau_z + \theta_{T_{\omega}} \tilde{F}_{T_{\omega}} = 0 \quad \forall \ T \subset \omega_z, \tag{5.2a}
\]

\[
\|\varepsilon \tau_z\|_{\omega_z} \leq \|h_z \varepsilon^{-1} f_k\|_{\omega_z} + \varepsilon \left\{ \sum_{i=1}^{N_z} \beta_i^2 d_i^{-2}|T_i| \right\}^{1/2}. \tag{5.2b}
\]

The system (5.1c) for \(\{\beta_i\}_{i=1}^{N_z} \) is consistent and has infinitely many solutions.

Proof. Combining \(\text{div}(\phi_z \cdot \mu_i) = \nabla \phi_z \cdot \mu_i = 0 \) with \(\text{div}(\phi_z \cdot \nu_i) = \nabla \phi_z \cdot \nu_i = -d_i^{-1} \) one gets \(\text{div} \tau_z + \alpha_i d_i^{-1} = 0 \) in \(\mathcal{T}_i \subset \omega_z \), which immediately implies (5.2a). For (5.2b), note that \(d_i \theta_{T_{\omega}} \leq h_z \theta_{T_{\omega}} \), because, in view of (3.2), (3.3), unless \(d_i \leq h_z \), one has \(T_i \in \mathcal{T}^* \) and \(z = z_{\mathcal{T}}^* \) so \(\theta_{T_{\omega}} = 0 \). Now, \(\|\alpha_i \|_{\omega_z} \leq (h_z \varepsilon^{-1}) \theta_{T_{\omega}} \leq \tilde{F}_{T_{\omega}} \). Combining this with (5.1b) and (3.7), one gets (5.2b).

Next, note that (4.4), combined with (5.1a), is equivalent to

\[
(\alpha_i \nu_{i-1} + \beta_i d_i^{-1} \mu_{i-1}) \cdot \nu_{i-1}^+ + (\alpha_i \nu_{i} + \beta_i d_i^{-1} \mu_{i}) \cdot \nu_{i}^- = \left[\partial \nu \cdot \partial_{T_{\omega}} \right]_{T_{\omega} \cap \partial \mathcal{T}_i}.
\]

Multiplying this by \(|S_{i-1}^+| = |S_{i-1}^-| \) and noting that \(d_i \mu_i \cdot |S_{i}^+| \nu_{i}^+ = -\mu_{i} \cdot |S_{i}^-| \nu_{i}^- \), one gets (5.1c). So (5.1c) is, indeed, equivalent to (4.4).

Finally, consider the system (5.1c) for \(\{\beta_i\}_{i=1}^{N_z} \). For this system to be consistent, it suffices to show that it is under-determined (as then, taking any specific \(\beta_i \), one can uniquely compute all other \(\{\beta_i\} \)). For \(z \in \partial \Omega \), there are \(N_z - 1 \) equations, so this system is clearly under-determined. For \(z \not\in \partial \Omega \), this is also the case as an application of \(\sum_{i=1}^{N_z} \beta_i d_i^{-2}|T_i| \) yields 0. To check the latter, one first employs the observation that \(\nu_{i} \cdot (|S_{i}^+| \nu_{i}^+ + |S_{i}^-| \nu_{i}^-) + 2|T_i| d_i^{-2} = 0 \), and then recalls (5.1b), as well as (3.6) and (3.7).

Remark 5.2 (Anisotropic flux equilibration). The choice of a particular solution \(\{\beta_i\} \) of (5.1c) is crucial, as our estimator, roughly speaking, involves the component \(\sum_{i=1}^{N_z} \beta_i^2 d_i^{-2}|T_i| \) from (5.2b), while, unless the mesh is shape-regular, \(d_i^{-2}|T_i| = \frac{1}{4} |S_{i}|^2 |T_i|^{-1} \) may vary very significantly within \(\omega_z \). One simple and useful approach is to minimize this component, i.e. given any particular solution \(\{\beta_i\} \) of (5.1c), let

\[
\beta_i := \hat{\beta}_i - C_z, \quad \text{where} \quad \sum_i (\hat{\beta}_i - C_z) d_i^{-2}|T_i| = 0. \tag{5.3}
\]

(Alternatively, one can set \(\beta_i := 0 \) for the element \(T_i \) with the largest \(d_i^{-2}|T_i| \) within \(\omega_z \), or choose \(\{\beta_i\} \) as in the proof of Lemma 5.6.)
the somewhat imprecise condition $(\text{Here we in fact minimize Lemma 5.6})$ highlighted by the grey color:

$$\sum_{i=1}^{N_z} \left(\frac{\varepsilon^2}{h^2} \alpha_i^2 + \frac{\varepsilon^2}{h^2} \beta_i^2 + \frac{\theta_{T_i}}{h_{T_i}} + \varepsilon^{-1} \alpha_i d_i^{-1} \right) [T_i] \quad \text{subject to (5.1c).} \tag{5.4}$$

(Here we in fact minimize $\|\varepsilon \tau_z\|_{\omega_z} + \|\varepsilon \div \tau_z + \theta_{T_i} F_{T_i} \|_{\omega_z}$, while (5.1b) is dropped). Then Theorem 4.3 remains valid (in view of the results in §5.1 and §5).

Remark 5.4. It is assumed throughout this section that any $z \in N_{\text{ani}}$ with $h_z \leq \varepsilon$ also satisfies $\omega_z \subset \mathcal{T}^\star$. This is consistent with the definition (3.3) of \mathcal{T}^\star as long as the somewhat imprecise condition $h_T \leq \varepsilon$ used in (3.3) always follows from $h_z \leq \varepsilon$.

5.1. Proof of (4.7) and (4.8) in Theorem 4.3(i) for $h_z \leq \varepsilon$. Our findings in this section are presented as two lemmas.

Lemma 5.5. Let $\{\tau_z\}$ satisfy (5.1a), (5.1b) for any $z \in N$ with $h_z \leq \varepsilon$. Then for any $z \in N$, there is a function g_z with support on ω_z that satisfies (4.7) and (4.8).

Proof. In any $T \subset \omega_z$, let $g_z := \varepsilon^2 \div \tau_z + \theta_{T_i} F_{T_i}$ if $h_z \leq \varepsilon$, and $g_z := \theta_{T_i} F_{T_i}$ otherwise. In view of (3.2), (3.6), $\sum_{T \in \Omega_{\omega_z}} \theta_{T_i} F_{T_i} = \int h_T = \int h$ in any $T \in \mathcal{T}$, so the first assertion (4.7) follows. Next, if $h_z \geq \varepsilon$, i.e. $\min(1, h_z \varepsilon^{-1}) \geq 1$, one immediately gets $\| g_z \|_{\omega_z} \leq \min(1, h_z \varepsilon^{-1}) \| f_h \|_{\omega_z}$. Otherwise, if $h_z \leq \varepsilon$, a version of (5.2a) implies $g_z = \theta_{T_i} F_{T_i} - \varepsilon^2 \alpha_i d_i^{-1} = \theta_{T_i} (F_{T_i} - \hat{F}_{T_i})$, and so $|g_z| \leq |F_{T_i} - \hat{F}_{T_i}|$ for any $T \subset \omega_z$. By (5.1b), unless $g_z = 0$, one has $|g_z| \leq |F_{T_i} - \hat{F}_{T_i}| \leq \text{osc}(f_h^{\perp}_{\omega_z}) + \sum_{T \in \Omega_{\omega_z}} |T| f_h(z)$, where we also used (3.7). At the same time, $H_z \geq \varepsilon$ implies $1 \approx \min(1, H_z \varepsilon^{-1}) \approx h_T$ (as $z \in N_{\text{ani}}$ so $H_z \approx h_T$). Combining these observations with $|T| \approx |\omega_z|$ for any $T \subset \omega_z$ yields $|g_z| \leq \varepsilon \omega_z$.

Lemma 5.6. Under condition A1, for any $z \in N$ with $h_z \leq \varepsilon$, there is a solution $\{\beta_i\}_{i=1}^{N_z}$ of (5.1c) such that τ_z defined by (5.1) satisfies (4.8).

Proof. Our task is to show that $\|\varepsilon \tau_z\|_{\omega_z}$ satisfies (4.8), in which the right-hand side involves $\min(1, h_z \varepsilon^{-1}) \approx 1$ and $\min(1, h_z \varepsilon^{-1}) \approx h_z \varepsilon^{-1}$. So it suffices to prove

$$\|\varepsilon \tau_z\|_{\omega_z} \leq \|\varepsilon J_z\|_{\omega_z} + h_z \varepsilon^{-1} \| f_h \|_{\omega_z} + \sum_{T \subset \omega_z} \lambda_T \| \text{osc}(f_h^{\perp}(T)) \|_{T} + \sum_{T \in \Omega_{\omega_z}} 1_{\frac{1}{2} \leq h_T} \| \lambda_T, f_h(z) \|_{\omega_z}. \tag{5.5}$$

An inspection of the proof of Lemma 5.1 reveals that if $\hat{F}_{T_i} = F_{T_i}$ in (5.1b), then

$$\sum_{T \subset \omega_z} \sum_{\tau_z \in \mathcal{T}^\star} \|\varepsilon \alpha_i\|_{\omega_z} = \|\varepsilon J_z\|_{\omega_z} + h_z \varepsilon^{-1} f_h(z) \|_{\omega_z} + \sum_{T \subset \omega_z} \sum_{\tau_z \in \mathcal{T}^\star} |d_{T_i} f_h(T)|^2 \leq \sum_{T \subset \omega_z} \sum_{T \in \mathcal{T}^\star} |d_{T_i} f_h(T)|^2,$$

where for the first relation we used (3.6) combined with (3.2), (3.3), and for the second, $|\omega_z| \approx h_z H_z$ and $h_T, H_z \approx |T_i|$ for any $T_i \in \mathcal{T}^\star$. One gets a similar conclusion for
the case $\hat{F}_{T; z} = \hat{F}_z$ in (5.1b) (in fact, the latter case is more straightforward as then $z \in N_{ani}$ so $|T_i| \approx |\omega_z|$ for any $T_i \in \omega_z$). Now, in view of (5.2b), to get the desired assertion (5.5), it suffices to show that
\[
|\beta d_{i-1}^{-1}| \leq |J_z| + \max_{j=1, \ldots, N_z} |\alpha_j| + |\tilde{\sigma}_z|,
\tag{5.6}
\]
with some $\tilde{\sigma}_z$ such that $\varepsilon |\tilde{\sigma}_z|_{\omega_z}$ satisfies a version of (5.5).

For (5.6), we start with a straightforward observation that follows from (5.1c):
\[
\text{if } |S_i^+| \approx d_i \geq d_{i-1} \implies |\beta d_{i-1}^{-1}| \leq |\beta_{i-1} d_{i-1}^{-1}| + |\alpha_{i-1}| + |\alpha_i| + |J_z|.
\tag{5.7}
\]
Consider three cases (a), (b) and (c).

(a) Suppose that z satisfies $A_{1_{ani}}$. Then the N_z triangles in ω_z can be numbered counterclockwise so that the set $\{T_i\}_{i=1}^N \neq \emptyset$, with some $n = n_z \leq N_z$, is formed by all triangles having at least one edge in S_z (see Fig. 5.2). To be more precise, this set will include all triangles from ω_z, and, possibly, one or two anisotropic triangles that either share an edge with $\omega_z \neq \emptyset$ or, if $\omega_z = \emptyset$ and so S_z includes a single edge, touch this edge. Note that then $d_i \approx h_i$ for $i = 1, \ldots, n$ and $d_i \approx H_z$ for $i > n$, while $|S_i^-| \approx \hat{h}_z$ for $i = 2, \ldots, n$. So setting $\beta_1 := 0$ and applying (5.7) for $i > 1$, we arrive at (5.6) with $\tilde{\sigma}_z := 0$.

(b) Next, consider $z \notin N_{ani} \setminus \partial \Omega$ that satisfies $A_{1_{ani}}$ (and so not $A_{1_{mix}}$). Then S_z includes exactly two edges of length $\leq h_z \approx h_z$. Let the triangles $\{T_i\}_{i=1}^N$ forming the patch ω_z be numbered counterclockwise so that $S_z = \{\partial T_{i-1} \cap \partial T_i\}_{i=1, m+1}$, for some $m = m_z \leq N_z - 2$ (see Fig. 5.3 (left)).

Note that $d_i \approx h_z$ only for $i = 0, 1, m, m + 1$ and $d_i \approx H_z$ otherwise, while $|S_i^-| \approx h_z$ for $i = 1, m$ and $\approx H_z$ otherwise. Hence, one can employ (5.7) for $i \neq 0, m$. So it remains to get the desired bound (5.6) only for $i = 0, m$. For this, let
\[
\tilde{\sigma}_z := \sum_{i=2}^m |S_i^-||\nabla \nu u_h|_{\partial T_{i-1} \cap \partial T_i} + 2\varepsilon^{-2} \sum_{i=1}^m \theta_{T_i; z} |T_i| \hat{F}_{T_i; z}
\tag{5.8}
\]
(compare with (3.4)). Now, an application of $\sum_{i=1}^m$ to (5.1c) (and also noting that $\nu_i \cdot (|S_i^-| + |\nu_i| + 2|T_i| d_i^{-1} = 0)$ yields
\[
\beta_0 - \beta_m + \alpha_0 \nu_0 \cdot |S_0^+| \nabla \nu_0 + \alpha_m \nu_m \cdot |S_m^+| \nabla \nu_m = |S_1^-||\nabla \nu u_h|_{\partial T_0 \cap \partial T_1} + \tilde{\sigma}_z.
\tag{5.9}
\]
So, for example, one can set $\beta_0 := 0$ and compute and then estimate β_m from (3.9).

Or, one can choose β_0 and β_m, in agreement with (5.9), but in a more balanced way. Importantly, one can ensure for $i = 0, m$ that $|\beta d_i^{-1}| \leq |\alpha_i| + |J_z| + \hat{h}_z^{-1} |\tilde{\sigma}_z|$. Consequently, we get (5.6) for all i with $\tilde{\sigma}_z := \hat{h}_z^{-1} \tilde{\sigma}_z$.

Finally, similarly to (5.7), define a version of (5.8):
\[
\sigma_z := \sum_{i=2}^m |S_i^-||\nabla \nu u_h|_{\partial T_{i-1} \cap \partial T_i} + 2\varepsilon^{-2} \sum_{i=1}^m \theta_{T_i; z} |T_i|.
\tag{5.10}
\]
By (5.1b), unless $\tilde{\sigma}_z = \sigma_z$, one has $\hat{F}_{T_i; z} \neq \hat{F}_z$ and so $H_z \varepsilon^{-1} \approx \min\{1, H_z \varepsilon^{-1}\} \approx \lambda_T$ (the latter is also because $z \in N_{ani}$), so $\varepsilon h_z^{-1} |\tilde{\sigma}_z - \sigma_z| \leq \sum_{T \subset \omega_z} \lambda_T \osc(f_T^z; T)$. Combining this with a technical result (5.13) (obtained below in (5.2), one arrives at
\[
|\varepsilon h_z^{-1} \tilde{\sigma}_z| = |\varepsilon \sigma_z| \leq |\varepsilon J_z| + h_z \varepsilon^{-1} |\hat{F}_z| + \sum_{T \subset \omega_z} \lambda_T \osc(f_T^z; T).
\tag{5.11}
\]
As $\|\hat{F}_z\|_{\omega_z} \lesssim \|f_T^z\|_{\omega_z} \varepsilon$ (by (3.6), (3.7)), so we have again obtained (5.6) with $\|\varepsilon \tilde{\sigma}_z\|_{\omega_z}$ now satisfying a version of (5.5). This completes the proof of (5.5) for this case.
(c) It remains to consider \(z \in \mathcal{N}_T^2 \), which satisfies \(A_{1\text{ani}} \) but not \(A_{1\text{mix}} \). This case is similar to case (b), with a version of (5.9) becoming
\[
\beta_1 - \beta_m - \alpha_1 \nu_1 \cdot |S_1^-| \nu_1^- - \alpha_m \nu_m \cdot |S_m^+| \nu_m^+ = \tilde{\sigma}_z.
\]
Again, using (5.13), we get a version of (5.11) with an additional term \(H_z \varepsilon^{-1} |\tilde{F}_z| \) in the right-hand side. As, by (3.7), unless \(\tilde{F}_z = 0 \), one has \(\tilde{F}_z = f_h(z) \) and \(H_z \varepsilon^{-1} \approx \min \{ 1, H_z \varepsilon^{-1} \} \approx \lambda_T \) for \(z \in \mathcal{N}_T^2 \), we again get (5.5). \(\square \)

5.2. Estimation of \(\sigma_z \). Here we give one technical result on \(\sigma_z \). Throughout this section, we use the notation from the proof of Lemma 5.6.

Lemma 5.7. (i) If \(z \in \mathcal{N}_{ani} \setminus \partial \Omega \), with \(h_z \lesssim \varepsilon \), satisfies \(A_{1\text{ani}} \), then for \(\sigma_z \) of (5.10) one has
\[
\varepsilon h_z^{-1} |\sigma_z| - \sum_{i=1}^{m+1} \mu_{i}^+ \cdot i_z \left(\frac{H_{T_i}^- H_{T_i}^-}{H_{T_i}^- + H_{T_i}^+} \right) \left[\nu_i \cdot \nu_{T_i} \right] \lesssim |\varepsilon J_z| + h_z \varepsilon^{-1} |\tilde{F}_z|,
\]
where \(i_z \) is the unit vector that points from \(z \) in the direction of any edge from \(\{S_i^+ \}_{i=2}^m \).

(ii) If \(z \in \mathcal{N}_{ani} \setminus \partial \Omega \), with \(h_z \lesssim \varepsilon \), satisfies \(A_{1\text{ani}} \) but not \(A_{1\text{mix}} \), then
\[
\varepsilon h_z^{-1} |\sigma_z| \lesssim |\varepsilon J_z| + h_z \varepsilon^{-1} |\tilde{F}_z| + \mathbb{1}_{z \in \mathcal{N}_{ani}^1} H_z \varepsilon^{-1} |\tilde{F}_z|.
\]

Proof. (i) For any scalar \(w \), let \([u]_{\partial T_{i-1} \cap \partial T_i} := w|_{\partial T_i} - w|_{\partial T_{i-1}} \). Furthermore, for fixed \(z \in \mathcal{N} \), introduce the local cartesian coordinates \((\xi, \eta)\) such that \(z = (0,0) \), and \(i_z \) points in the \(\xi \) direction (see Fig. 5.3 (left)). In these coordinates, let \((\xi_i, \eta_i)\) be the endpoint of the edge \(S_i^- = \partial T_{i-1} \cap \partial T_i \) on \(\partial \omega_z \).

Now, a calculation shows that \(|\varepsilon J_z| = \varepsilon \| \varepsilon J_z \| \lesssim \eta \| \varepsilon J_z \| \leq 1 \| \varepsilon J_z \| \), where, by \(A_{ani} \) and the maximum angle condition, any \(|\eta_i| \lesssim h_z \), while \(H_z^+ := \min_{i=2, \ldots, m} \xi_i \simeq H_z \) and \(0 \leq \xi_i - H_z^+ \lesssim h_z \), so
\[
\sigma_z = -\sum_{i=2}^{m} H_z^+ \| \varepsilon J_z \| + O(h_z |J_z|) + \varepsilon^{-2} \tilde{F}_z \sum_{i=1}^{m} |T_i|.
\]

Here also we used \(\theta_{T_i} := 0 \) for \(i = 2, \ldots, m - 1 \) and \(\theta_{T_i} := \frac{1}{2} \) for \(i = 1, m \) in view of \(T_i \subset T^* \) for any \(T_i \subset \omega_z \) (see also (3.2), (3.3)).

Next, multiplying (3.6) combined with (3.7) by \(2 \varepsilon^{-2} \), then subtracting \(\sigma_z \) and applying a similar argument, one gets
\[
-\sigma_z = -\sum_{i=m+2}^{N} H_z^- \| \varepsilon J_z \| + O(h_z |J_z|) + \varepsilon^{-2} \tilde{F}_z \sum_{i=m+1}^{N} |T_i|.
\]

Here \(H_z^- := \min_{i=m+2, \ldots, N} |\xi_i| \simeq H_z \), and we also used \(|S_i^-| \simeq h_z \) for \(i = 1, m + 1 \).

Finally, using \(|T_i| = \frac{1}{2} |\xi_1 \eta_1 - \xi_i \eta_i| = \frac{1}{2} \eta_i H_z^+ + O(h_z^2) \) (where \(|\xi_1| + |\eta_2| \lesssim h_z \)) and similar observations for the other triangle areas, we arrive at
\[
\sum_{i=1}^{m} H_z^- |T_i| - \sum_{i=m+1}^{N} H_z^+ |T_i| = O(h_z^2 H_z).
\]
Combining this with (5.14), (5.15) and \(\sum_{i=1}^{N} \| \partial \eta_{\nu} u_{h} \|_{\partial T_{i-1} \cap \partial T_{i}} = 0 \) yields

\[(H_{z}^{+} + H_{z}^{-}) \sigma_{z} = \sum_{i=1}^{N} H_{z} \| \partial \eta_{\nu} u_{h} \|_{\partial T_{i-1} \cap \partial T_{i}} + h_{z} H_{z} \mathcal{O}(|J_{z}| + h_{z} \varepsilon^{-2}|\bar{F}_{z}|) . \]

The desired assertion (5.12) follows in view of \(H_{z}^{+} = H_{T_{i}} + \mathcal{O}(h_{z}) \) for \(i = 1, m \) and a similar relation with \(H_{z}^{-} \) for \(i = m + 1, N \), as well as

\[\| \partial \eta_{\nu} u_{h} \|_{\partial T_{i-1} \cap \partial T_{i}} = \mu_{i-1} \cdot \hat{i}_{z} \left[\partial \nu_{\nu} u_{h} \right]_{\partial T_{i-1} \cap \partial T_{i}} . \]

The latter follows from \(\partial \eta = \mathbf{i}_{ \eta } \nabla \) combined with \(\| \nabla u_{h} \|_{\partial T_{i-1} \cap \partial T_{i}} = \mathbf{v}_{i} \left[\partial \nu_{\nu} u_{h} \right]_{\partial T_{i-1} \cap \partial T_{i}} \) and \(\mathbf{v}_{i} \cdot \mathbf{i}_{z} = \mathbf{i}_{ i-1 } \cdot \hat{i}_{z} . \)

(ii) If \(z \in N_{N} \setminus \partial \Omega \), then A1 implies \(| \mu_{i-1} \cdot \hat{i}_{z} | \lesssim h_{z} H_{z}^{-1} \), so (5.12) implies (5.13). It remains to consider \(z \in N_{\partial \Omega} \). In view of A1 and (2.4), one may choose the unit vector \(\mathbf{i}_{z} \) in part (i) of this proof to be normal to \(\partial \Omega \). As \(u_{h} = \partial \eta_{\nu} u_{h} = 0 \) on \(\partial \Omega \) so \(\sum_{i=2}^{m} \| \partial \eta_{\nu} u_{h} \|_{\partial T_{i-1} \cap \partial T_{i}} = 0 \), so (5.14) again yields the desired assertion (5.13). \(\square \)

6. Construction of \(\tau_{S} \) for \(h_{z} \lesssim \varepsilon \) under weaker condition A1*.

Proof of Theorem 4.3(ii). This section deals with a weaker version A1* of A1. For this we need to address the terms subtracted from \(\sigma_{z} \) in (5.12) (which are \(\lesssim h_{z}|J_{z}| \) under assumption A1, but not under A1*).

Let \(S^{*} \subset S \) in the definition (4.3) of \(\tau \) be

\[S^{*} := \{ S \text{ is shortest edge in } T \text{ and } T' : h_{T} \ll H_{T}, h_{T'} \ll H_{T'}, H_{T} \approx H_{T'} \ll \varepsilon \} . \] (6.1)

Roughly speaking, \(S^{*} \subset S \) is the set of short edges shared by pairs of anisotropic triangles. Now, we include a non-trivial component \(\sum_{S \in S^{*}} \tau_{S}^{*} \) in \(\tau \), where \(\tau_{S}^{*} \) has support on \(T \cup T' \) for any \(S = \partial T \cap \partial T' \in S^{*} \), and

\[\tau_{S}^{*} := \kappa_{S} (d_{S}^{*})^{-1} (\phi_{z} + \phi_{z'}) \mu_{T}^{*} \in T, \quad \kappa_{S} := \mu_{T}^{*} \cdot i_{T}^{*} \frac{H_{T}H_{T'}}{H_{T} + H_{T'}} \left[\partial \nu_{\nu} u_{h} \right]_{S} . \] (6.2)

Here \(d_{S}^{*} := 2|T||S|^{-1} \), \(\mu_{T}^{*} \) is the tangential unit vector along \(S \) in the counterclockwise direction in \(T \), the edge \(S \) joins the nodes \(z' \) and \(z \), with \(\mu_{T}^{*} \) pointing from \(z' \) to \(z \), and \(i_{T}^{*} \) is the unit vector in the direction from \(z^{*} \) to \(z^{*} \), the latter being the vertices opposite to \(S \) in \(T' \) and \(T \) respectively; see Fig. 5.3 (right). Note that \(\mu_{T}^{*} = -\mu_{T} \), and \(i_{T}^{*} = -i_{T}^{*} \) so the definition of \(\kappa_{S} \) is consistent for \(T \) and \(T' \).
Lemma 6.1. For any $S = \partial T \cap \partial T' \in S^*$ with the notation (6.1), (6.2), one has (4.10) and
\[
\tau^*_S \cdot \nu = 0 \text{ on } S, \quad |S^\sigma|\tau^*_S \cdot \nu = \kappa_S(\phi_{z'} - \phi_{z'}) \text{ on any edge } S' \subset \partial T\setminus S. \tag{6.3}
\]

Proof. For $\text{div}\tau^*_S = 0$ in (4.10), as well as (6.3), imitate the proof of Lemma 5.1. For the first bound on $\varepsilon\tau^*_S$ in (4.10), note that $d^*_{T'} \approx d^*_{T} \approx H_T$ implies $|\tau^*_S| \approx H_T^{-1}|\kappa_S| \leq \|(\partial_{\nu} u_{h})_{S}\|$. For the final assertion in (4.10), note that $|T \cup T'| |\omega|^{-1} \leq (h_T + h_{T'})h_{z}^{-1} \leq \min\{1, \varepsilon h_{z}^{-1}\}$. \(\square\)

Now that $\sum_{S \in S^*} \tau^*_S$ is included in τ, we need to ensure that τ still satisfies (4.1). For this, the definition of τ_z should be updated to take into account the possibly non-trivial jumps $|\tau^*_S \cdot \nu|$ across γ_z. For a possible modification of τ_z in the case $h_z \gtrless \varepsilon$, see Remark 6.4.

For $h_z \gtrless \varepsilon$, the definition (5.1) of τ_z is tweaked as follows. Relations (5.1a) and (5.1b) remain unchanged, while in (5.1c) we replace $\{\beta_i\}_{i=1}^{N(z)}$ by $\{\beta^*_i\}_{i=1}^{N(z)}$, where
\[
\beta_i := \beta^*_i + \kappa_i + \kappa_{i+1}, \quad \kappa_i := \begin{cases}
\kappa_{\partial T_{i-1} \cap \partial T_i} & \text{if } \partial T_{i-1} \cap \partial T_i \in S^*, \\
0 & \text{otherwise.}
\end{cases} \tag{6.4}
\]

Remark 6.2 (Anisotropic flux equilibration). The observations of Remark 5.2 remain valid (although a version of system (5.1c) is now solved for $\{\beta^*_i\}$). One can simply use (5.3) (or choose $\{\beta_i\}$ as in the proof of Lemma 6.3). Similarly, one can minimize (5.4), only subject to (5.1c), with $\{\beta_i\}$ replaced by $\{\beta^*_i\}$ in the latter.

Lemma 6.3. Under condition $A1^*$, for any $z \in N$ with $h_z \leq \varepsilon$, let τ_z be defined by (5.1a) and (5.1b) and use the notation (6.1), (6.2). Then there is a solution of the system (5.1c), in which $\{\beta_i\}_{i=1}^{N(z)}$ is replaced by $\{\beta^*_i\}_{i=1}^{N(z)}$, of (6.4), such that τ of (4.1) satisfies (4.4) and the results of Lemmas 5.1, 5.5 and 5.6 remain true.

Proof. One can easily check that, indeed, the results of Lemmas 5.1 and 5.5 remain true, while for Lemma 5.6 it suffices to obtain (5.6). That the normal jumps in τ satisfy (4.4) can be checked by a direct calculation using (6.3) and taking into account that if $\partial T_{i-1} \cap \partial T_i \in (\gamma_z \cap S^*)$, then $\beta_i - \beta_{i-1} = \beta^*_i - \beta^*_{i-1}$ (in view of $\kappa_{i-1} = \kappa_{i+1} = 0$). Note that in the latter case (5.7) is still true.

Otherwise, i.e. for $\partial T_{i-1} \cap \partial T_i \notin (\gamma_z \cap S^*)$, a version of (5.7) will be employed:
\[
|S_{-i}| \approx d_i \gtrsim d_{i-1} \Rightarrow |\beta_i d_{i-1}^{-1}| \leq |\beta_{i-1} d_{i-1}^{-1}| + \max_j |\alpha_j| + \max_j |\kappa_j| d_{i-1}^{-1} + |J_z|. \tag{6.5}
\]

Next, consider two cases (a) and (b), as in the proof of Lemma 5.6, to get the bound (5.6) for $\beta_i d_{i-1}^{-1}$ and thus complete the proof.

(a) Suppose that z satisfies $A1_{\text{mix}}$. Unless $\gamma_z \cap S^* = \emptyset$ (and so the results of Lemma 5.6 apply), $\omega_z = \emptyset$ and $S_z = \gamma_z \cap S^*$ contains exactly one edge $\partial T_{i-1} \cap \partial T_i$. Then note that $\kappa_i = 0$ unless $i = 2$. Set $\beta_i := 0$ and use (5.7) with $i = 2$ as in the proof of Lemma 5.6. For $i > 2$, use (6.5), where $d_i \approx H_z$, so the additional term $\max_j |\kappa_j| d_{i-1}^{-1} = |\kappa_2| H_{Z}^{-1} \lesssim |J_z|$. So we get (5.6) with $\hat{\sigma}_z := 0$.

(b) It remains to consider $z \in N_{\text{ani}} \setminus \partial \Omega$ under condition $A1^*_{\text{ani}}$ (as $z \in N_{\text{ani}} \cap \partial \Omega$ satisfies either $A1_{\text{ani}}$ or $A1_{\text{mixed}}$, so have been considered in part (a) or in Lemma 5.6). We shall imitate part (b) from the proof of Lemma 5.6. Note that $\partial T_{i-1} \cap \partial T_i \subset (\gamma_z \cap S^*)$ (and so $\kappa_i \neq 0$) only for $i = 1, m+1$. Hence, we employ (5.7) for $i = 1, m+1,$
and (6.5) with \(d_i \simeq H_z \) for \(i \neq 1, m, m + 1, N \), and it remains to bound \(\beta_i d_i^{-1} \) for \(i = 0, m \). For the latter, combining (5.9) with (6.4) yields
\[
[\beta_0 - \kappa_1] - [\beta_m - \kappa_{m+1}] = \tilde{\sigma}_z + O(h_z |J_z|).
\]
From this bound, one gets (5.6) only now \(\hat{\epsilon} z^{-1}(\tilde{\sigma}_z + \kappa_1 - \kappa_{m+1}) \). As \(|\tilde{\sigma}_z - \sigma_z| \) was bounded in the proof of Lemma 5.6, to complete the proof, it remains to show \(\hat{\epsilon} h_z^{-1}|\sigma_z + \kappa_1 - \kappa_{m+1}| \lesssim |\epsilon J_z| \).

The above follows from (5.12) using the following observations. For \(\kappa_1 = \kappa_6 h_z^{-6} T_z \), we use the triangle \(T_0 \) with \(\mu^+_0 = \mu^+ \) and \(|\Sigma^+_0 + \eta_0| \lesssim h_z^{-6} \). Similarly, for \(\kappa_m + 1 = \kappa_6 T_m \cap \epsilon T_{m+1} \), we use the triangle \(T_m \) with \(\mu^+_m = \mu^+ \) and \(|\Sigma^+_m - \eta_m| \lesssim h_z^{-6} \). ⊙

7. Construction of \(\tau_z \) for \(h_z \gtrsim \epsilon \) under condition \(\mathcal{A}2 \). Throughout this section, for any \(T \subset \omega_z \), we use \(S_T, \nu_T \) and \(\mu_T \), as well as \(S^\pm_T, \nu^\pm_T \) and \(\mu^\pm_T \), defined as in \(\Box \) (see Fig. 5.1 (right)) only with subscript \(T \) in place of \(i \) when dealing with element \(T \). We start with two useful technical results.

Lemma 7.1. Let \(h_T \geq \sqrt{6}\epsilon \). For any triangle \(T \) with a vertex \(z \), there exist two functions \(\tau^\pm_{z:T} \) and \(\tau_{z:T} \) in \(T \) such that
\[
\tau^\pm_{z:T} \cdot \nu = 0 \quad \text{on } \partial T \cap S^\pm_T, \quad \tau^\pm_{z:T} \cdot \nu = \phi_z \quad \text{on } S^\pm_T,
\]
\[
\| \epsilon \text{div} \tau^\pm_{z:T} \|_T^2 = \| \tau^\pm_{z:T} \|_T^2 = \frac{1}{2\sqrt{6}} \epsilon |S^\pm_T| |\xi|, \quad \varsigma_z : = \sin \angle(S^\pm_T, T). \tag{7.1b}
\]

Proof. Let \(\epsilon' = \sqrt{6}\epsilon \) and, skipping the subscripts when there is no ambiguity, set
\[
\tau^+ := -\epsilon^{-1} \varphi^+_z \mu^-, \quad \tau^- := \epsilon^{-1} \varphi^-_z \mu^+.
\]
Here \(\varphi^+_z \) is a barycentric coordinate in the triangle \(T^+ \) formed by the edge \(S^+_T = T^+ \) and the point \(z + \epsilon' \mu^- \) such that \(\varphi^+_z |_{\partial T} = 1 \); see Fig. 7.1. Similarly, \(\varphi^-_z \) is a barycentric coordinate in the triangle \(T^- \) formed by the edge \(S^-_T = T^- \) and the point \(z - \epsilon' \mu^+ \).

The boundary properties (7.1a) are satisfied as \(\mu^+ \cdot \nu^+ = 0 \) and \(\varsigma = -\mu^- \cdot \nu^+ = \mu^+ \cdot \nu^- \). Next, using \(|T^+| = \frac{1}{2}\epsilon^2 |S^+| |\varsigma| \),
\[
\| \epsilon \text{div} \tau^\pm_{z:T} \|_T^2 = \frac{1}{2}\epsilon^2 \varsigma^{-2} |T^+| = \frac{1}{2\sqrt{6}} \epsilon^2 \varsigma^{-2} |S^+|,
\]
while \(\text{div} \tau^+ = -\epsilon^{-1} \partial_\mu \varphi^+_z = \epsilon^{-1} \epsilon'^{-1} \) so \(\| \epsilon \text{div} \tau^+ \|_T^2 = (\epsilon/\epsilon')^2 \epsilon^{-2} |T^+| = \| \tau^+ \|_T^2 \). ⊙

Remark 7.2 (Version of \(\mathcal{A}2 \)). In \(\mathcal{A}2 \), one can impose that each \(z \in \mathcal{N} \) with \(h_z \geq \epsilon \) satisfies \(h_z \gtrsim \epsilon^c \) for any fixed positive constant \(c' \) (rather than \(h_z \gtrsim \sqrt{6}\epsilon \)). For this case, one can employ a version of the above lemma under the condition \(h_T \geq \epsilon^c \).

Choosing \(\epsilon' := \epsilon^c \) in the proof, one, indeed, arrives at the following version of (7.1b): \(\| \epsilon \text{div} \tau^\pm_{z:T} \|_T^2 = 6c'^{-2} \| \tau^\pm_{z:T} \|_T^2 = (2c')^{-1} \epsilon |S^\pm_T| |\varsigma|^{-1} \).

![Figure 7.1](image-url)
LEMMA 7.3. For any triangle T with a vertex z and its opposite edge S_T satisfying $|S_T| > 4\sqrt{6} \varepsilon$, there exists a function $\varphi_{z:T} \in C(\bar{T})$ such that
\[
\varphi_{z:T} = \phi_z \quad \text{on } \partial T, \quad \|\varepsilon \div (\varphi_{z:T} \mu_T)\|_T^2 \leq \|\varphi_{z:T}\|_T^2 = \frac{2}{\sqrt{6}} \varepsilon |S_T|^{-1} \leq \varepsilon H_T. \tag{7.2}
\]

Proof. Introduce the two triangles $T^-, T^+ \subset T$, each T^\pm formed by the edge S_T^\pm and a common vertex lying on the median of T originating at z. Introduce a subset ω_z^\pm of ω_z and, using $\varphi_{z:T}$ from Lemma 7.1, set
\[
\omega_z^\pm := \bigg\{ T \subset \omega_z : |S_T| \gg h_T \ll H_T \bigg\}, \quad \phi_z^\pm := \bigg\{ \varphi_{z:T} \quad \text{on } T \subset \omega_z^\pm : |S_T| > 4\sqrt{6} \varepsilon, \\
\phi_z \quad \text{otherwise.} \bigg\}.
\tag{7.3}
\]

Thus, ω_z^\pm includes only triangles with extremely small angles at z, so $\omega_z \setminus \omega_z^\pm \neq \emptyset$ (see Fig. 7.3). Note also that $\phi_z^\pm = \phi_z$ on γ_z. Now, using $\tau_{z:T}^\pm$ from Lemma 7.1 set
\[
\tau_z := \begin{cases}
\frac{1}{2}(J_{z}\bigg|_{S_T^\pm} \tau_{z:T} + J_{z}\bigg|_{S_T^\pm} \tau_{z:T}) & \text{for } T \subset \omega_z \setminus \omega_z^+, \\
(\beta_T d_T^{-1}) \phi_z^+ \mu_T, & \text{for } T \subset \omega_z^+,
\end{cases}
\tag{7.4}
\]
where, with the convention $[\partial \nu u_h]_{S_T^\pm} := 0$,
\[
J_{z}\bigg|_{S_T^\pm} := \begin{cases}
[\partial \nu u_h]_{S_T^\pm} & \text{if } S_T^\pm \neq \partial \omega_z^+,
|S_T^\pm|^{-1} \sum_{S \in \gamma_z^{S_T^\pm}} |S| [\partial \nu u_h]_S & \text{otherwise.}
\end{cases}
\tag{7.5}
\]

Fig. 7.2. Notation used in Lemma 7.3.\[\text{ each triangle } T^\pm \subset T \text{ is formed by the edge } S_T^\pm \text{ and a common vertex lying on the median of } T \text{ originating at } z.\]

\[\begin{align*}
\text{Fig. 7.3. For various nodes, the set } \omega_z^\pm \text{ (defined in 7.3) is highlighted by the grey color.}
\end{align*}\]
To define γ^\pm_z in (7.5), it is convenient to assume that ω_2^\ast includes triangles with their boundaries. Now, let ω_1^\ast be the maximal connected subset of $\omega_2^\ast \setminus \{z\}$ that shares the edge S^+_z with T. The set of all edges originating at z that are contained in this subset ω_1^\ast (including S^+_z) is denoted γ^+_z.

The unique set of values $\{\beta_T\}$ for $T \subset \omega_1^\ast$ in (7.4) is chosen to satisfy (4.4). For example, consider a bundle of m triangles $\omega_{i=1}^m T = \omega_{i=1}^m T = \{T_1\}_{i=1}^m$, numbered counterclockwise, that touches $T, T' \subset \omega \setminus \omega_*$. Now, (4.4) is equivalent to a version of (5.1c):

$$
\beta_{i-1} - \beta_i = |S^+_i| [\partial_\nu u_h]_{T_{i-1}, T_i}, \quad i = 1, \ldots, m + 1,
$$

(7.6a)

where the notation $\beta_i := \beta_{T_i}$ is used for $i = 1, \ldots, m$, while

$$
\beta_0 = -\beta_{m+1} := \frac{1}{2} \sum_{i=1}^{m+1} |S^+_i| [\partial_\nu u_h]_{T_{i-1} \cap T_i} = \frac{1}{2} |S^+_1| |J_z|_S^+ = \frac{1}{2} |S^-_1| |J_z|_S^-.
$$

(7.6b)

Note that the above system involves $m + 1$ equations for $\{\beta_i\}_{i=1}^m$, but is consistent and has a unique solution. This becomes clear on application of $\sum_{i=1}^{m+1}$ to (7.6a), which yields a relation for $\beta_0 - \beta_{m+1}$ consistent with (7.6b).

If for a bundle of m triangles $\omega_{i=1}^m T_i = \omega_{i=1}^m T_i$ numbered counterclockwise, one has $S^+_i \subset \partial T_i$, then we use (4.6a) with $i \neq m + 1$, and β_0 from (7.6b) (while β_{m+1} remains undefined). Similarly, if $S_i^- \subset \partial \Omega$, then use (7.6a) with $i \neq 1$ combined with the definition of β_{m+1} from (7.6b) (and β_0 remaining undefined).

Remark 7.4 ($\gamma_z \cap S^* \neq \emptyset$). Note that S^*, defined by (6.1), can be chosen so that $\gamma_z \cap S^* = \emptyset$ whenever $h_z \geq \varepsilon$ under condition $A2$ (as then $h_T \geq \varepsilon$). If, however, $\gamma_z \cap S^* \neq \emptyset$, then the non-trivial jumps $[\tau^\pm_\nu - \nu]$ across γ_z are easily taken into account by replacing $[\partial_\nu u_h]_{T_{i-1} \cap T_i}$ with $[\partial_\nu u_h]_{T_{i-1} \cap T_i} + |S^+_i|^{-1}(\kappa_i - \kappa_{i+1})$ in (7.5) and (7.6) (where κ_i is defined in (6.3)). With this modification, Lemma 7.9 below remains valid as $|\kappa_i| \leq H_z |J_z| \forall i$ (the latter follows from (6.2)).

7.2. Proof of (4.8) in Theorem 4.3 for $h_z \geq \varepsilon$. It suffices to prove the following.

Lemma 7.5. Under condition $A2$, for any $z \in N$ with $h_z \geq \varepsilon$, the function τ_z defined by (7.1), (7.2), (7.3), (7.4), (7.5), (7.6) satisfies (4.4) and

$$
\|\varepsilon^2 \text{div } \tau_z\|^2 + \|\varepsilon \tau_z\|^2 \leq \sum_{S \in \gamma_z} \varepsilon |S| \left(\varepsilon |\partial_\nu u_h|_S\right)^2 \leq \varepsilon h_z^{-1} \|\varepsilon J_z\|_{\omega_z},
$$

(7.7)

where $\varepsilon |S| \approx \min\{\varepsilon |S|, |\omega_z|\}$ for any $S \in \gamma_z$.

Proof. Condition (4.4) is satisfied by the construction of τ_z in (7.1), so it remains to establish (7.7).

First, for each fixed $S \in \gamma_z \cap \tilde{S}_z$ (i.e. $|S| \approx \tilde{h}_z$), we shall trace the contribution of $[\partial_\nu u_h]_S$ to τ_z of (7.4). In this case, $[\partial_\nu u_h]_S$ is involved in τ_z only on the triangles adjacent to S (such triangles are not in ω^*_2 in the form of the terms $J_z \mid S = [\partial_\nu u_h]_S$). Hence, the contribution of the considered $[\partial_\nu u_h]_S$ to the left-hand side of (7.7) is indeed bounded by $\varepsilon |S| (\varepsilon |\partial_\nu u_h|_S)^2$, as can be shown by an application of (7.1b) with $|S^+_z| = |S|$ and $\kappa^{\pm}_z \approx 1$. Furthermore, $|S| \leq H_z$ implies $\varepsilon |S| \leq \varepsilon h_z^{-1} |\omega_z|$ and so $\varepsilon |S| (\varepsilon |\partial_\nu u_h|_S)^2 \leq \varepsilon h_z^{-1} \|\varepsilon |\partial_\nu u_h|_S\|_{\omega_z}^2$.

It remains to bound the contribution to the left-hand side of (7.7) of $[\partial_\nu u_h]_S$ for the edges $S \notin \tilde{S}_z$. In this case, $|S| \approx H_z$, so $\varepsilon |S| (\varepsilon |\partial_\nu u_h|_S)^2 \approx \varepsilon h_z^{-1} \|\varepsilon |\partial_\nu u_h|_S\|_{\omega_z}^2$.

This observation implies that it now suffices to prove only the second relation in (7.7), or, equivalently, show that \(\| \varepsilon \div \tau_z \|_T^2 + \| \tau_z \|_T^2 \leq \varepsilon H_z J_z^2 \) for any \(T \in \omega_z \), to which we proceed.

Suppose \(T \in \omega_z^* \). By (7.3), \(d_T \simeq H_T \simeq H_z \), and, by (7.6), \(|\beta_T| \simeq H_z J_z \), so \(|d_T\beta_T| \lesssim |J_z| \). Now, if \(\phi_x^* \equiv \phi_x : T \) in \(T \), then the desired bound on \(\| \varepsilon \div \tau_z \|_T^2 + \| \tau_z \|_T^2 \) follows from (7.2) combined with \(\varepsilon H_T \lesssim \varepsilon H_z \). Otherwise, \(\phi_x^* = \phi_x \) in \(T \) implies \(\varepsilon \div \tau_z = 0 \) (see the proof of Lemma 5.1), and also \(h_T \lesssim \varepsilon \) (in view of the definition of \(\phi_x^* \) in (7.3)), so again \(\| \tau_z \|_T^2 \lesssim |T||J_z|^2 \lesssim \varepsilon H_z |J_z|^2 \). Finally, suppose \(T \in \omega \backslash \omega_z^* \). Note that \(|J_z| \lesssim |J_z| \), which follows from (7.5) as \(|S| \simeq |H_T| \) for all edges \(S \in \tau_z \) including \(S_T \). Now, the desired bound on \(\| \varepsilon \div \tau_z \|_T^2 + \| \tau_z \|_T^2 \) follows from (7.1b) with \(|\tau_z| \lesssim H_z \) and \(\varepsilon^{-1} \simeq 1 \).

8. Numerical results. Our estimator is tested using a simple version of (1.1) with \(\Omega = (0,1)^2 \) and \(f = u - F(x,y) \), where \(F \) is such that the unique exact solution \(u = 4y(1-y)[C_u \cos(\pi x/2) - (e^{-x/\varepsilon} - e^{-1/\varepsilon})/(1 - e^{-x/\varepsilon})] \) (the latter exhibits a sharp boundary layer at \(x = 0 \)); the constant parameter \(C_u \) in \(u \) will take values 1 and 0. We consider an a-priori-chosen layer-adapted non-obtuse triangulation, as on Fig. 8.1 (left), which is obtained by drawing diagonals from the tensor product of the Bakhvalov grid \(\{ \chi(\frac{1}{2}) \}_{j=1}^N \) in the \(x \)-direction and a uniform grid \(\{ \frac{1}{4} \}_{j=0}^M \) in the \(y \)-direction with \(M = \frac{1}{2} N \). The continuous mesh-generating function \(\chi(t) = t \) if \(\varepsilon > \frac{1}{6} \); otherwise, \(\chi(t) = 3e \ln \frac{1}{1-2t} \) for \(t \in (0, 1-3e) \) and is linear elsewhere subject to \(\chi(1) = 1 \). Furthermore, to test our estimator on a mesh with obtuse triangles and, in particular, the role of the estimator components \(\tau_S \) in (4.3) for \(S \in S^* \), we distort the initial non-obtuse triangulation by moving some of the nodes upwards/downwards by \(\min \{ h_z, \frac{1}{6} H_z \} \); see Fig. 8.1 (right).

In our numerical experiments, we set \(T_0 := \emptyset \) in (3.3) and replace \(\leq \) by \(\leq \in \) in (3.3), (4.3), when dealing with the two cases \(h_z \leq \varepsilon \) and \(h_z \leq \varepsilon \), as well as with \(h_T \leq \varepsilon \) in (6.1). Also, we understand \(a \leq b \) as \(a \leq \frac{1}{4} b \) for any two quantities \(a \) and \(b \) (so, for example, (3.3) becomes \(T^* := \{ T \in T : h_T \leq \frac{1}{8} H_T \) and \(h_T \leq \varepsilon \} \).

We compute the estimator \(E \) from (4.2) with \(C_f := 1 \) and \(\tau \) from (4.3), (4.6). For the non-obtuse mesh of Fig. 8.1 (left), conditions A1 and A2 are satisfied, so we set \(S^* = \emptyset \). The component \(\tau_z \) in (4.3) is computed by (5.1) combined with (5.3) for \(h_z \leq \varepsilon \), and, otherwise, using (7.3), (7.4), (7.5) combined with (7.6). Note that instead of explicitly including the components involving \(\tau_{z,T} \) (from (7.4)) in \(\tau \), we use (7.1b) (as well as Remark 7.2). This somewhat simplifies the computations, but yields a slightly less sharp estimator. Similarly, whenever \(\phi_x^* \neq \phi_x \) in (7.4), we employ the bounds from (7.2). When computing the error and the estimator, we replace \(\nabla u \) by its linear Lagrange interpolant, and \(u \) and \(f_h \) by their quadratic Lagrange interpolants.

![Fig. 8.1. Non-obtuse triangulation used in (left); its version with obtuse triangles (right).](image-url)
Table 8.1

Test problem with \(C_u = 1 \), non-obtuse triangulation (see Fig. 8.1 [left]).

\(N \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
Errors \(\| u_h - u \|_{\varepsilon, \Omega} \)							
64	3.203e-2	5.204e-3	6.734e-4	6.576e-4	6.571e-4	6.571e-4	6.571e-4
128	1.602e-2	2.594e-3	4.534e-4	1.641e-4	1.636e-4	1.636e-4	6.571e-4
256	8.011e-3	1.296e-3	2.157e-4	5.33e-5	4.081e-5	4.080e-5	4.080e-5
512	4.006e-3	6.479e-4	1.062e-4	2.130e-5	1.020e-5	1.019e-5	1.019e-5

\(S^* = \emptyset \) in (4.3): Estimators (odd rows) & Effectivity Indices (even rows)

\(N \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
Errors \(\| u_h - u \|_{\varepsilon, \Omega} \)							
64	3.301e-2	6.994e-3	1.325e-3	6.878e-4	6.581e-4	6.572e-4	6.571e-4
128	1.647e-2	2.698e-3	6.007e-4	1.928e-4	1.645e-4	1.636e-4	1.636e-4
256	8.232e-3	1.335e-3	2.928e-4	6.541e-5	4.178e-5	4.083e-5	4.080e-5
512	4.115e-3	6.668e-4	1.460e-4	2.753e-5	1.115e-5	1.022e-5	1.019e-5

\(\hat{S} \) in (6.1), and also compare the latter with a simpler choice \(\hat{S} = \emptyset \). Whenever \(\hat{S} \neq \emptyset \), the estimator involves \(\tau_0^J \) computed by (6.2), while the computation of \(\tau_z \) employs (6.4) and Remark 7.4.

When using the mesh with obtuse triangles of Fig. 8.1 (right), we consider \(\hat{S} \) defined by (6.1), and also compare the latter with a simpler choice \(\hat{S} = \emptyset \). Whenever \(\hat{S} \neq \emptyset \), the estimator involves \(\tau_0^J \) computed by (6.2), while the computation of \(\tau_z \) employs (6.4) and Remark 7.4.

Table 8.2

Test problem with \(C_u = 1 \), mesh with obtuse triangles (see Fig. 8.1 [right]).

\(N \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
Errors \(\| u_h - u \|_{\varepsilon, \Omega} \)							
64	3.334e-2	5.311e-3	1.095e-3	7.218e-4	7.072e-4	7.067e-4	7.067e-4
128	1.669e-2	2.647e-3	4.580e-4	1.913e-4	1.768e-4	1.763e-4	1.763e-4
256	8.352e-3	1.323e-3	2.161e-4	5.774e-5	4.451e-5	4.404e-5	4.402e-5
512	4.177e-3	6.612e-4	1.061e-4	2.170e-5	1.149e-5	1.101e-5	1.100e-5

\(\hat{S} \) in (4.3): Estimators (odd rows) & Effectivity Indices (even rows)

\(N \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
Errors \(\| u_h - u \|_{\varepsilon, \Omega} \)							
64	3.546e-2	8.155e-3	1.666e-3	7.554e-4	7.083e-4	7.068e-4	7.067e-4
128	1.772e-2	3.556e-3	8.999e-4	2.370e-4	1.913e-4	1.768e-4	1.763e-4
256	8.866e-3	1.770e-3	5.948e-4	1.254e-4	8.999e-5	4.417e-5	4.403e-5
512	4.434e-3	8.839e-4	3.927e-4	1.063e-4	2.169e-5	1.148e-5	1.100e-5

\(\hat{S} \) in (6.1), and also compare the latter with a simpler choice \(\hat{S} = \emptyset \). Whenever \(\hat{S} \neq \emptyset \), the estimator involves \(\tau_0^J \) computed by (6.2), while the computation of \(\tau_z \) employs (6.4) and Remark 7.4.

When using the mesh with obtuse triangles of Fig. 8.1 (right), we consider \(\hat{S} \) defined by (6.1), and also compare the latter with a simpler choice \(\hat{S} = \emptyset \). Whenever \(\hat{S} \neq \emptyset \), the estimator involves \(\tau_0^J \) computed by (6.2), while the computation of \(\tau_z \) employs (6.4) and Remark 7.4.
Table 8.3
Test problem with \(C_u = 0 \), mesh with obtuse triangles (see Fig. 8.1, right).

\(N \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
Errors	\(\| u_h - u \|_{L^2(\Omega)} \)						
64	5.329e-2	4.862e-3	8.425e-4	1.489e-4	2.633e-5	4.655e-6	8.228e-7
128	2.680e-2	2.438e-3	4.222e-4	7.469e-5	1.320e-5	2.334e-6	4.126e-7
256	1.344e-2	1.220e-3	2.110e-4	3.740e-5	6.611e-6	1.169e-6	2.066e-7
512	6.727e-3	6.104e-4	1.051e-4	1.871e-5	3.308e-6	5.848e-7	1.034e-7

\(S^* = \emptyset \) in (4.3): Estimators (odd rows) & Effectivity Indices (even rows)

\(S^* = \emptyset \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
64	5.729e-2	7.763e-3	1.487e-3	2.422e-4	4.282e-5	7.569e-6	1.338e-6
128	2.881e-2	3.330e-3	6.870e-4	1.215e-4	2.148e-5	3.797e-6	6.712e-7
256	1.444e-2	1.660e-3	3.437e-4	6.086e-5	1.076e-5	1.902e-6	3.362e-7
512	7.231e-3	8.301e-4	1.715e-4	3.046e-5	5.385e-6	9.519e-7	1.683e-7

\(S^* \neq \emptyset \) in (4.3): Estimators (odd rows) & Effectivity Indices (even rows)

For the test problem with \(C_u = 1 \), the errors \(\| u_h - u \|_{L^2(\Omega)} \) are compared with the corresponding estimators \(\mathcal{E} \) in Tables 8.1 and 8.2. One observes that the effectivity indices (computed as the ratio of the estimator to the error) do not exceed 1.633, as long as \(S^* = \emptyset \) for the mesh with obtuse triangles. By contrast, \(S^* \neq \emptyset \) on the mesh with obtuse triangles larger and less stable effectivity indices. But the superiority of the estimator with \(S^* = \emptyset \) is particularly evident for the test problem with \(C_u = 0 \) on the mesh with obtuse triangles; compare the effectivity indices for the two choices of \(S^* \) in Table 8.3. Some additional numerical results are given in Appendix A.

Overall, for the considered ranges of \(\varepsilon \) and \(N \), the aspect ratios of the mesh elements take values between 2 and \(3.6e+8 \). Considering these variations, our estimator \(\mathcal{E} \) performs quite well and its effectivity indices do not exceed 1.63 and stabilize as \(\varepsilon \to 0 \) and \(N \) increases (as long as \(S^* = \emptyset \) is used for the mesh with obtuse triangles). We have also observed that the inclusion of the estimator components \(\tau_J \) in (4.3) for \(S \in S^* \neq \emptyset \), in general, yields a superior estimator. A more comprehensive numerical study of the proposed estimator certainly needs to be conducted, and will be presented elsewhere.

9. Lower error bounds. Estimator efficiency. Throughout this section, we additionally assume that \(f(x, y; \cdot u) - f(x, y; v) \leq |u - v| \), and use the additional notation \(J_S := [\partial_D u_h] S \) and \(\omega_S := T \cup T' \) for any \(S = \partial T \cap \partial T' \in \mathcal{S} \) (with the obvious modification \(\omega_S := T \) for the case \(S \subseteq \partial T \cap \partial \Omega \)).

9.1. Standard lower error bounds are not sharp. Numerical example. Consider a simple test problem (1.1) with \(\varepsilon = 1 \), the unique exact solution
Table 9.1
Lower error estimators for test problem with \(u = \sin(\pi ax) \) and \(\varepsilon = 1 \).

	\(a = 1 \)	\(a = 3 \)				
	\(N = 20 \)	\(N = 40 \)	\(N = 80 \)	\(N = 20 \)	\(N = 40 \)	\(N = 80 \)
Errors \(\| u_h - u \|_{\Omega} \) (odd rows) & \(\| h_T(f_h - f^I_h) \|_{\Omega} \) (even rows)						
\(M = 2N \)	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
	3.87e-4	4.84e-5	6.05e-6	2.87e-2	3.59e-3	4.50e-4
\(M = 8N \)	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
	1.07e-4	1.34e-5	1.68e-6	7.95e-3	9.97e-4	1.25e-4
\(M = 32N \)	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
	2.70e-5	3.38e-6	4.22e-7	2.00e-3	2.51e-4	3.14e-5
\(M = 128N \)	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
	6.76e-6	8.45e-7	1.06e-7	5.01e-3	6.28e-5	7.86e-6

Using \(\rho_S \) pr.19 square (odd rows) & Effectivity Indices (even rows)

	\(M = 2N \)	\(M = 8N \)	\(M = 32N \)	\(M = 128N \)
\(\tilde{E}_h \) using \(g_S \) [19] (odd rows) & Effectivity Indices (even rows)				
\(M = 2N \)	2.89e-1	1.45e-1	7.24e-2	7.24e-2
	2.87	2.88	2.88	2.87
\(M = 8N \)	1.32e-1	6.59e-2	3.30e-2	3.30e-2
	1.31	1.31	1.31	1.31
\(M = 32N \)	6.27e-2	3.14e-2	1.57e-2	1.57e-2
	0.62	0.62	0.62	0.62
\(M = 128N \)	3.10e-2	1.55e-2	7.75e-3	7.75e-3
	0.31	0.31	0.31	0.31

	\(M = 2N \)	\(M = 8N \)	\(M = 32N \)	\(M = 128N \)
\(\tilde{E}_h \) using \(g_S \) [19] (odd rows) & Effectivity Indices (even rows)				
\(M = 2N \)	3.00e-1	1.50e-1	7.52e-2	7.52e-2
	2.98	2.98	2.98	2.98
\(M = 8N \)	2.51e-1	1.26e-1	6.28e-2	6.28e-2
	2.49	2.49	2.49	2.49
\(M = 32N \)	2.47e-1	1.23e-1	6.18e-2	6.18e-2
	2.45	2.45	2.45	2.45
\(M = 128N \)	2.46e-1	1.23e-1	6.17e-2	6.17e-2
	2.44	2.45	2.45	2.45

\(u = \sin(\pi ax) \) (for \(a = 1, 3 \)), and \(f = u - F(x, y) \) on \(\Omega = (0, 1)^2 \). We employ the triangulation obtained by drawing diagonals from the tensor product of the uniform grids \(\{ \frac{N}{2} \}_i=0 \) and \(\{ \frac{M}{2} \}_j=0 \) respectively in the \(x \)- and \(y \)-directions (with all diagonals having the same orientation). The standard lumped-mass quadrature, i.e. \(T \in (3.2) \), will be used in numerical experiments in this section (while the anisotropic quadrature with \(T \) produces very similar results on this mesh).

For this problem, we compare two lower error estimators: obtained using the standard bubble function approach [19] (see also Lemma 9.1 in §9.2) and the one obtained in §9.3 (combine Theorem 9.4 with Lemma 9.1). They can be described by

\[
\tilde{E}_h := \left\{ \sum_{S \in \mathcal{S}_h \setminus \partial \Omega} g_S J^S_h + \| h_T f^I_h \|_{\Omega}^2 \right\}^{1/2} \leq \| u_h - u \|_{\Omega} + \| h_T (f_h - f^I_h) \|_{\Omega},
\]

where the weight \(g_S \) for \(S \in \mathcal{S}_h \setminus \partial \Omega \) is defined by

\[
g_S = \begin{cases}
\rho_S [19] = |S| \min_{T \subset \omega_S} \{ h_T \}, & \text{[19] using bubble functions (also [9.2]),} \\
\rho_S [9.3] = \frac{1}{2} |\omega_S|, & \text{see Theorem 9.4 in [9.3]}
\end{cases}
\]
To be more precise, when \(g_S(\rho) \) is used, the term \(\| h_T (f_h - f_h^I) \|_{\Omega} \) in the right-hand side of (9.1a) should be replaced by a larger \(\| h_T \|_{\Omega} \) for details.)

To address whether the left-hand side \(E \) in (9.1a) is sharp, the errors \(\| u_h - u \|_{\Omega} \) (as well as \(\| h_T (f_h - f_h^I) \|_{\Omega} \)) are compared with \(E \) in Table 9.1. Clearly, the standard lower estimator using the weights \(g_S(\rho) \) is not sharp. Not only its effectivity indices strongly depend on the ratio \(M/N \), but, perhaps more alarmingly, \(E \) converges to zero as \(M/N \) increases, i.e. the mesh is anisotropically refined in the wrong direction (while the error remains almost independent of \(M/N \)). By contrast, the estimator of (9.3) performs quite well, with the effectivity indices stabilizing.

When comparing the two estimators, note that \(g_S(\rho) \approx g_S(\rho) \) when \(|S| \approx \text{diam} \omega_S \), however, \(g_S(\rho) \approx g_S(\rho) \) when \(|S| \ll \text{diam} \omega_S \), i.e. for short edges. Hence, our numerical experiments suggest that it is the short-edge jump residual terms in the standard lower estimator that are not sharp. We shall address this theoretically in (9.3).

9.2. Lower error bounds using the standard bubble approach

Here, for completeness, we prove a version of the lower error bounds from [19, Theorem 4.3] for the semilinear case (similar, but less sharp bounds can also be found in [18, 20]).

Lemma 9.1. For a solution \(u \) of (1.1) and any \(u_h \in S_h \), one has

\[
\min\{1, h_T \varepsilon^{-1}\} \| f_h^I \|_T \lesssim \| u_h - u \|_{\Omega} + \min\{1, h_T \varepsilon^{-1}\} \| f_h^I - f_h^I \|_T \quad \forall T \in T, \quad (9.2a)
\]

\[
|S|^{1/2} \varepsilon |J_S| \lesssim \sum_{T \subseteq \omega_S} \mathcal{Y}_T \min\{\varepsilon, h_T\}^{-1/2} \quad \forall S \subseteq \partial \Omega. \quad (9.2b)
\]

Corollary 2. If \(|\omega_z| \approx |T| \) for any \(T \subseteq \omega_z \), then

\[
\min\{1, \varepsilon h_z^{-1}\}^{1/2} \| \varepsilon \tilde{J}_z \|_{\omega_z} + \min\{1, h_z \varepsilon^{-1}\} \| f_h^I \|_{\omega_z} \lesssim \sum_{T \subseteq \omega_z} \mathcal{Y}_T,
\]

where \(\tilde{J}_z := \max_{S \subseteq \gamma_z, |S| \approx H_z} |J_S| + (h_z H_z^{-1})^{1/2} \max_{S \subseteq \gamma_z, |S| \approx H_z} \frac{|J_S|}{|J_z|} \).

Remark 3. (Estimator efficiency under an adaptive-mesh-alignment condition.)

It appears that the above result is as sharp as one can get using the bubble function approach, while in [9.7] we have seen that the short-edge jump residual terms are not sharp in such bounds. On the other hand, the interpolation error bounds suggest that a reasonably optimal and correctly-aligned mesh may be expected to satisfy \(\tilde{J}_z \approx \tilde{J}_z \). Consequently, it appears reasonable to impose a mild version of this condition:

\[
\varepsilon \tilde{J}_z \lesssim \varepsilon \tilde{J}_z + \min\{1, \varepsilon h_z^{-1}\}^{-1/2} \min\{1, h_z \varepsilon^{-1}\} \| f_h^I \|_{L^2(\omega_z)}, \quad (9.4)
\]

when constructing a mesh adaptively. Clearly, if both (9.4) and the condition of the above corollary are satisfied for all \(z \in \mathcal{N} \), then the upper error estimator from (1.2) is efficient.

Proof of Lemma 9.1. (i) On any \(T \in T \), consider \(w := f_h \phi_1 \phi_2 \phi_3 \), where \(\{\phi_i\}_{i=1}^3 \) are the standard hat functions associated with the three vertices of \(T \). Now, a standard calculation yields \(\| f_h^I \|_T^2 \approx \langle f_h^I, w \rangle \). So, using \(f_h = -\varepsilon^2 \Delta u_h + f_h^I \) and (1.1) yields
\[\|f_h\|^2 \leq \varepsilon^2 \langle \nabla (u_h - u), \nabla w \rangle + \langle f_h - f(\cdot; u), w \rangle. \]

Next, invoking \(\|\nabla w\|_T \leq h_T^{-1} \|w\|_T \), one arrives at
\[\|f_h\|^2 \leq \left((\varepsilon h_T^{-1} + 1) \|u_h - u\|_{\varepsilon,T} + \|f_h - f(\cdot; u)\|_T \right) \|w\|_T. \]

Here we also used \(|f_h - f(\cdot; u)| \leq |u_h - u| + |f_h - f(\cdot; u)| \). The desired result follows in view of \(\|w\|_T \leq \|f_h\|_T \) and \(\varepsilon h_T^{-1} + 1 \approx \min\{1, h_T^{-1}\}^{-1}. \)

(ii) For each of the two triangles \(T \subset \Omega \), introduce a triangle \(\tilde{T} \subset T \) with an edge \(S \) such that \(|\tilde{T}| \approx \min\{\varepsilon, h_T\}|S| \). Next, set \(w := J_S \tilde{\varphi}' \tilde{\varphi}'' \), where \(\tilde{\varphi}' \) and \(\tilde{\varphi}'' \) are the hat functions on the triangulation \(\{\tilde{T}\}_{T \in \Omega} \) associated with the two end points of \(S \) (with \(w := 0 \) on each \(T \)). A standard calculation using \(\Delta u_h = 0 \) in \(T \subset \Omega \), yields
\[|S| (\varepsilon J_S)^2 \approx \varepsilon^2 \int_S w [\tilde{\varphi}' u_h]_S = \varepsilon^2 \langle \nabla (u_h - u), \nabla w \rangle = \varepsilon^2 \langle \nabla (u_h - u), \nabla w \rangle - \langle f(\cdot; u), w \rangle. \]

Next, invoking \(\|\nabla w\|_T \leq \min\{\varepsilon, h_T\}^{-1} \|w\|_T \) for any \(T \subset \Omega \), we arrive at
\[|S| (\varepsilon J_S)^2 \leq \sum_{T \subset \Omega} \left(\min\{1, h_T \varepsilon^{-1}\}^{-1} \|u_h - u\|_{\varepsilon,T} + \|f_h\|_T \right) \|w\|_T. \]

In view of \(\min\{1, h_T \varepsilon^{-1}\}^{-1} \min\{\varepsilon, h_T \}^{1/2} \varepsilon^{-1} \approx \min\{\varepsilon, h_T \}^{-1/2} \), one gets (9.2a).

9.3. New lower error bound with sharp short-edge jump residual terms.
Throughout this section, we make additional restrictions on the anisotropic mesh as follows. Let \(\Omega := (0, 1)^2 \), and \(\{x_i\}_{i=0}^n \) be an arbitrary mesh in the \(x \) direction on the interval \((0, 1) \). Then, let each \(T \in \mathcal{T} \), for some \(i \), (i) have the shortest edge on the line \(x = x_i \); (ii) have a vertex on the line \(x = x_{i+1} \) or \(x = x_{i-1} \) (see Fig. 9.1). Also, let \(\mathcal{N} = \mathcal{N}_{ani} \), i.e. each \(z \in \mathcal{N} \) be an anisotropic node in the sense of (2.3) and satisfy A1_ani. The above conditions essentially imply that all mesh elements are anisotropic and aligned in the \(x \)-direction. The main result of this section is the following.

Theorem 9.4 (Short-edge jump residual terms). Let \(u \) and \(u_h \) respectively satisfy (1.1) and (3.1), and \(\Omega_i := (x_{i-1}, x_{i+1}) \times (0, 1) \). If either no no quadrature is used in \(\Omega_i \) (i.e. (3.1) involves \(\langle f_h, v_h \rangle = \langle f_h, v_h \rangle \forall v_h \in S_h \) with support in \(\Omega_i \)), or \(\langle \cdot, \cdot \rangle_h \) is defined by (3.2) with either \(T \subset \Omega_i \subset T^* \), or \(\Omega_i \subset T^* = \emptyset \), then
\[\sum_{S \subset S \cap \{x = x_i\}} \min\{\varepsilon |S|, |\omega_S|\} (\varepsilon J_S)^2 \leq \|u_h - u\|_{\varepsilon, \Omega_i}^2 + \|\lambda_T \text{osc}(f_h; T)\|_{\Omega_i}^2. \]
To prove this theorem, we shall use an auxiliary result.

Lemma 9.5. (i) If $\gamma_z \cap \{x = x_i\}$ is formed by exactly two edges S^- and S^+, then
\[
|J_{S^+} - J_{S^-}| \lesssim h_z H_z^{-1} \sum_{S \in \gamma_z \setminus \{x=x_i\}} |J_S|.
\]
(9.6)

(ii) If $\gamma_z \cap \{x = x_i\}$ is formed by a single edge S^+, then J_{S^-} in (9.6) is replaced by 0.

Proof. (i) Note that in this case $z \notin \partial \Omega$. Using the notation $\{T_i\}$ of (5) (see Fig. 5(c) centre), let $\|\nabla u_h\|_{\partial T_i \cap \partial \Omega} := \nabla u_h|_{\partial T_i} - \nabla u_h|_{\partial T_i}$. Then $\sum_{S \in \gamma_z} \|\nabla u_h\|_S = 0$. Multiplying this relation by the unit vector i_x in the x-direction, and noting that $\|\nabla u_h\|_{S^+} \cdot i_x = \pm J_{S^+}^{-1}$, one gets the desired assertion. We also use the observation that for $S \in \gamma_z \setminus \{x = x_i\}$, one has $\|\nabla u_h\|_S \cdot i_x \simeq |J_S \nu_S \cdot i_x|$, where ν_S is a unit vector normal to S, where, in view of A_{lim}, one has $|\nu_S \cdot i_x| \lesssim h_z H_z^{-1}$.

(ii) Now $z \in \partial \Omega$, so extend u_h to $\mathbb{R}^2 \setminus \Omega$ by 0 and imitate the above proof with the modification that now $\sum_{S \in \Omega} |\nabla u_h|_S = 0$. When dealing with the two edges on $\partial \Omega$, note that for $S \in \partial \Omega \cap \partial \Omega$, one gets $\nu_S \cdot i_x = 0$. \[\square\]

Proof of Theorem 9.4. Set $H := x_{i+1} - x_{i-1}$, and $\theta := \min\{e H^{-1}, \frac{1}{2}\}$, and then $x_{i \pm 1} := x_i \pm \theta|x_{i+1} - x_i|$ and $\Omega_i := (x_{i-1}, x_{i+1}) \times (0, 1)$ (so Ω_i is a rectangular domain, at least, twice as narrow as Ω). Furthermore, define a triangulation \mathcal{T}_i in Ω_i by dividing each trapezoid in the partition $\mathcal{T} \cap \Omega_i$ into two triangles.

Now, define $v \in C(\Omega)$ with support in Ω_i (so $v = 0$ on $\partial \Omega_i$) using the standard piecewise-linear interpolation on \mathcal{T}_i. Its node values in the interior of Ω_i are defined by $v(z) := J_S$ for any $z \in \mathcal{N}$ on $\{x = x_i\} \setminus \partial \Omega$, where $S \in \gamma_z \setminus \{x = x_i\}$ is any vertical short edge originating at z. (For definiteness, let S connect z with the node above it.)

Also, let $v_i = S_i$ be the piecewise-linear interpolant of v on the original triangulation \mathcal{T} (then $v \in C(\Omega)$ has support in Ω_i), and $w := v - \theta v_h$. Now, a standard calculation yields
\[
\varepsilon^2 \langle \nabla(u_h - u), \nabla v \rangle + \langle \hat{f}_h - f(\cdot; u), v \rangle = \varepsilon^2 \langle \nabla u_h, \nabla v \rangle + \langle \hat{f}_h, v \rangle,
\]
\[
= \psi_1 + \varepsilon^2 \langle \partial_x u_h, \partial_x w \rangle + \varepsilon^2 \langle \partial_y u_h, \partial_y w \rangle + \langle \hat{f}_h, v \rangle - \theta \langle \hat{f}_h, v_h \rangle h.
\]
\[
= \psi_2
\]
(9.7)

Here we used a function $\hat{f}_h \approx f_h$, which will be specified later subject to the condition $\|\lambda_T(\hat{f}_h - f_h)\|_{\Omega_i} \lesssim \|\lambda_T \text{osc}(f_h; T)\|_{\Omega_i} \lesssim \gamma_i$.

With $\nu_x := (\nu \cdot i_x)i_x$ (which is the standard vector projection of the outward normal vector ν onto i_x), one gets
\[
\langle \partial_x u_h, \partial_x w \rangle = \sum_{S \subset S \cap \Omega_i} \int_S [\nabla u_h \cdot \nu_x]w = \sum_{S \subset S \cap \{x=x_i\}} \int_S [\nabla u_h \cdot \nu_x]w,
\]
where for $S \subset S \cap \Omega_i \setminus \{x = x_i\}$, we used $\int_S w = \int_S v - \theta \int_S v_h = 0$ (as each of v and v_h is linear on its support on S, and $v = v_h$ on $\{x = x_i\}$). Next, note that for $S \subset S \cap \{x = x_i\}$, one has $|S| \simeq H^{-1}|\omega_S|$, while $\nabla u_h \cdot \nu_x = J_S$ and $w = (1 - \theta)v$ with $v \geq J_S - \text{osc}(v; S)$ (as $v = J_S$ at one of the end points of S), so
\[
\langle \partial_x u_h, \partial_x w \rangle \geq (1 - \theta)H^{-1} \sum_{S \subset S \cap \{x=x_i\}} |\omega_S| J_S \{J_S - \text{osc}(v; S)\}.
\]
Combining the latter with (9.7) multiplied by θH, and noting that $1 - \theta \geq \frac{1}{2}$, one now gets

$$
\sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| (\epsilon J_S)^2 \leq \sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| \left(\epsilon \text{osc}(v; S) \right)^2 + \theta H |\psi_1 - \psi_2|.
$$

(9.8)

We claim that, to complete the proof, it suffices to get a somewhat similar bound:

$$
\sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| (\epsilon J_S)^2 \leq \sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| \left(\epsilon H |S|^{-1} \text{osc}(v; S) \right)^2.
$$

(9.9)

Indeed, this implies (9.5), as here in the left-hand side, $\theta |\omega_S| \approx \min \{\epsilon |S|, |\omega_S|\}$. Furthermore, using Lemma 9.5 to estimate $\text{osc}(v; S)$, the sum in the right-hand side of (9.9) is bounded by $\sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| (\epsilon J_S)^2 \leq \sum_{T \subset \Omega} \gamma_T^2 \approx \gamma_i^2$. The latter assertion follows from (9.24) in view of $\theta |\omega_S| \approx \min \{\epsilon h_T, |\omega_S|\} \approx \min \{\epsilon |S|, h_T |T|\}$ for any $T \subset \Omega$. So it remains to derive (9.9) from (9.8).

For ψ_1, defined in (9.7), in view of $|f_h - f(\cdot; u)| \leq |u_h - u|$ and $\|\lambda_T(f_h - f_h)\|_{\Omega_i} \leq \gamma_i$, one has

$$
|\psi_1| \leq \gamma_i \left\{ \epsilon \|\nabla v\|_{\Omega_i} + \|\lambda_T^{-1}v\|_{\Omega_i} \right\}.
$$

(9.10a)

Here, recalling the definition of v, note that $\partial_y v = 0$ in any triangle in $\widehat{\Omega}$, with a single vertex on $\{x = x_i\}$, while $\partial_y v = \pm |S|^{-1} \text{osc}(v; S)$ and $|\widehat{T}| \approx \theta |\omega_S|$ for any triangle $\widehat{T} \subset \Omega$ sharing an edge S with $\{x = x_i\}$, so

$$
\|\epsilon \partial_y v\|_{\Omega_i}^2 \leq \sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| \left(\epsilon |S|^{-1} \text{osc}(v; S) \right)^2.
$$

(9.10b)

Furthermore, any triangle $\widehat{T} \subset \Omega$ touches an edge $S \subset \{x = x_i\}$ such that $|\epsilon \partial_x v| \leq \epsilon (\theta h)^{-1} \max_{\partial T} |v| = \epsilon (\theta h)^{-1} J_S$, while $\lambda_T^{-1} \approx \epsilon (\theta H)^{-1}$ implies a similar bound for $|\lambda_T^{-1}v|$. Combining these observations with $|\widehat{T}| \approx \theta |\omega_S|$ yields

$$
\|\epsilon \partial_x v\|_{\Omega_i}^2 + \|\lambda_T^{-1}v\|_{\Omega_i}^2 \leq \sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| \left(\epsilon (\theta H)^{-1} J_S \right)^2 = \theta H \sum_{S \subset S \cap \{x = x_i\}} \theta |\omega_S| \left(\epsilon J_S \right)^2.
$$

(9.10c)

To estimate ψ_2 (defined in (9.7)), set $\widehat{f}_h(x, y) := f_h^i(x, y)$ and $\widehat{v}(x, y) := v(x, y)$ in Ω_i. Note that

$$
\langle \partial_y u_h, \partial_y v \rangle = \theta \langle \partial_y u_h, \partial_y \varphi_i \rangle, \quad \int_{\Omega_i} \widehat{f}_h \widehat{\varphi}_i(x) = \theta \int_{\Omega_i} \widehat{f}_h \widehat{\varphi}_i(x),
$$

(9.11)

where $\widehat{\varphi}_i(x)$ and $\varphi_i(x)$ are the standard one-dimensional hat functions on the intervals $(\bar{x}_{i-1}, \bar{x}_{i+1})$ and (x_{i-1}, x_{i+1}), respectively, with $\widehat{\varphi}_i(x_i) = \varphi_i(x_i) = 1$. For the first relation in (9.11), we relied on the observations made on $\partial_y v$ when obtaining (9.10b), as well as similar properties of u_h.

First, consider the case of no quadrature used in Ω_i, i.e. $\langle \widehat{f}_h, v \rangle_{\Omega} = \langle \widehat{f}_h, v \rangle$. Then

$$
\psi_2 = \int_{\Omega_i} \widehat{f}_h (v - \widehat{\varphi}_i(x)) - \theta \int_{\Omega_i} \widehat{f}_h (v_h - \widehat{\varphi}_i(x)).
$$

(9.12)
From this one can show (we shall comment on this below) that
\[
|\psi_2| \lesssim \min\{1, h_T^{-1}\} f^I_T \left\{ \sum_{S \in \mathcal{S} \setminus \{x = x_i\}} \theta |\omega_S| \left(\min\{1, |S|^{-1}\} \operatorname{osc}(v; S) \right)^2 \right\}^{1/2}.
\]

Now, combining (9.10) and (9.13) with (9.8) one arrives at the desired assertion (9.9).

To complete the proof, we still need to show that that (9.13) follows from (9.12), as well as \(|\lambda_T(f^n_h - f_h)|_{\Omega} \lesssim |\lambda_T \operatorname{osc}(f_h; T)|_{\Omega}^c\). For each \(T \subset \Omega_i\), introduce the minimal rectangle \(R_T = (x_{i-1}, x_{i+1}) \times (y_T^-, y_T^+)\) containing \(T\) (i.e. \((y_T^-, y_T^+)\) is the range of \(y\) values within \(T\)). Note that, crucially, by condition \(A_{\text{ani}}\) there is \(K \leq 1\) such that \(|R_T| = |T|\) and \(R_T \subset \omega_T^{(K)} \cap \Omega_i\), with the notation \(\omega_T^{(j+1)}\) for the patch of elements in/touching \(\omega_T^{(j)}\) and \(\omega_T^{(0)} := T\). Now, \(|v - \hat{v}_h| \lesssim \operatorname{osc}(v; R_T \cap \{x = x_i\})\) for any \(T \subset \Omega_i\), so (9.12) implies a version of (9.13) with \(f^I_h\) replaced by \(\hat{f}_h\), and \(\operatorname{osc}(v; S)\) replaced by \(\operatorname{osc}(v; R_T \cap \{x = x_i\})\). As \(h_T \approx h_T\) and \(H_T \approx H_T\) for any triangle \(T' \cap R_T \neq \emptyset\), (9.13) follows. Similarly, \(|f_h - f_h| \lesssim \operatorname{osc}(f^I_h; R_T)\) for any \(T \subset \Omega_i\) implies \(|\lambda_T(f^n_h - f_h)|_{\Omega} \lesssim |\lambda_T \operatorname{osc}(f_h; T)|_{\Omega}^c\).

Finally note that (9.12) is valid only if no quadrature is used in \(\Omega\). Otherwise, the estimation of \(\psi_2\) needs to be slightly adjusted. For the case \(T \cap \Omega_i \subset T^*\), tweak the definition of \(\hat{f}_h\) to \(\tilde{f}_h(x, y) := \hat{f}_i(y)\), where \(\hat{f}_i(y)\) is a one-dimensional piecewise-constant interpolant of \(f_h\) on \(\{x = x_i\} \cap \Omega\) such that it is constant on each edge \(S \subset \{x = x_i\}\). With this modification, \(\int_{\Omega} \hat{f}_h \delta \tilde{v}_i(x) = \left\langle \hat{f}_h, v \right\rangle_h\), so the second term in (9.12) vanishes, while all other arguments apply. For the case \(\Omega_i \cap T^* = \emptyset\), one has \(\left\langle \hat{f}_h, v \right\rangle_h = \int_{\Omega} (\tilde{f}_h, v)^I\), so the bound (9.13) on \(\psi_2\) will additionally include \(|\lambda_T \operatorname{osc}(f^I_h; T)|_{\Omega}^c\), so (9.10c) is employed again for this additional term.

Remark 9.6. Combining the lower error bounds (9.2) and (9.5) and comparing the resulting lower bound with the upper error bound (1.2), one concludes that for the estimator to be efficient, the term \(\min\{1, e h^{-1}\} \|e J_z\|^2\) should be replaced by \(\sum \min\{1, |S|^{-1}\} \|e J_z\|^2\), and, equivalently, in (9.8). When \(h \gtrsim e\), this improvement follows from the first relation in (7.7). Otherwise, if \(H \lesssim e\), this follows from \(|\omega| \lesssim |S|\). For the remaining case \(h \gtrsim e \gtrsim H\), assuming \(z \in N_{\text{ani}}\) under condition \(A_{\text{ani}}\), this sharper upper bound can be shown for a slightly more intricate version of \(\tau_z\), defined as follows. Using the notation of (5.1a) and (7.1) (see Fig. 5.3 (left)); also assume that \(\tau_z, T \in L_2(\Omega)\) has support on \(T\), set

\[
\tau_z := \frac{1}{2} \sum_{i=1, m_z} J^-_{S_i} \left(\tau_{z, T_{i-1}} + \tau_{z, T_i} \right) + \phi_z \sum_{i=1}^{N_z} \left(\alpha_i \mu_i + \beta_i d_i^{-1}\mu_i \right) 1_{(x, y) \in T_i},
\]

where \(\alpha_i\) and \(\beta_i\) are chosen to minimize (5.4) subject to the constraints (5.1c), in which \(\hat{c}_{\nu u_h} \|\nabla T_{i-1} \cap \tau T\|\), for \(i = 1, m_z\) are replaced by 0; see Appendix E.

It appears, however, that in most practical situations, this modification of \(\tau_z\) will not improve the estimator, as the short-edge jump residual terms in the upper error estimator are expected to be dominated by the other terms (as discussed in Remark 9.3).
REFERENCES

[1] M. AINSWORTH and I. BABUŠKA, Reliable and robust a posteriori error estimating for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 36 (1999), pp. 331–353.
[2] M. AINSWORTH and J. T. ODEN, A posteriori error estimation in finite element analysis, Wiley-Interscience, New York, 2000.
[3] M. AINSWORTH and T. VEICHODSKÝ, Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems, Numer. Math., 119 (2011), pp. 219–243.
[4] M. AINSWORTH and T. VEICHODSKÝ, Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension, Comput. Methods Appl. Mech. Engrg., 281 (2014), pp. 184–199.
[5] N. S. BAKHVALOV, On the optimization of methods for solving boundary value problems with boundary layers, Zh. Vychisl. Mat. Mat. Fis., 9 (1969), pp. 841–859 (in Russian).
[6] N. M. CHADHA and N. KOPTEVA, Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem, Adv. Comput. Math., 35 (2011), pp. 33–55.
[7] I. CHEDDADI, R. FUČÍK, M. I. PRIETO and M. VOHRALÍK, Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion equations, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 867–888.
[8] C. CLAVERO, J. L. GRACIA and E. O’RIORDAN, A parameter robust numerical method for a two dimensional reaction-diffusion problem, Math. Comp., 74 (2005), pp. 1743–1758.
[9] A. DEMLOW and N. KOPTEVA, Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems, Numer. Math., 133 (2016), pp. 707–742.
[10] S. GROSMA, An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes, M2AN Math. Model. Numer. Anal., 40 (2006), pp. 239–267.
[11] N. KOPTEVA, Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem, Math. Comp., 76 (2007), pp. 631–644.
[12] N. KOPTEVA, Maximum norm a posteriori error estimate for a 2d singularly perturbed reaction-diffusion problem, SIAM J. Numer. Anal., 46 (2008), pp. 1602–1618.
[13] N. KOPTEVA, Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations, Math. Comp., 83 (2014), pp. 2061–2070.
[14] N. KOPTEVA, Maximum-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes, SIAM J. Numer. Anal., 53 (2015), pp. 2519–2544.
[15] N. KOPTEVA, Energy-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes, Numer. Math., (2017), to appear.
[16] N. KOPTEVA, Energy-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes, Numer. Math., (2016) submitted for publication, http://www.staff.ul.ie/natalia/pubs.html
[17] N. KOPTEVA and E. O’RIORDAN, Shishkin meshes in the numerical solution of singularly perturbed differential equations, Int. J. Numer. Anal. Model., 7 (2010), pp. 393–415.
[18] G. KUNERT, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes, Numer. Math., 86 (2000), pp. 471–490.
[19] G. KUNERT, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes, Adv. Comput. Math., 15 (2001), pp. 237–259.
[20] G. KUNERT and R. VERFÜRTH, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes, Numer. Math., 86 (2000), pp. 283–303.
[21] H.-G. ROOS, M. STYNES and L. TOHISKA, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 2008.
[22] K. G. SIEBERT, An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), pp. 373–398.
[23] R. VERFÜRTH, Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation, Numer. Math., 78 (1998), pp. 479–493.

Appendix A. Additional numerical results. We again consider the test problem and the meshes from §8 but now look at two components of the the error in the energy norm. It is reasonable to assume that

\[\| u_h - u \|_{\varepsilon} \approx \left\{ \varepsilon^2 \| \nabla u_h - (\nabla u)^f \|_\Omega^2 + \| u_h - u \|_\Omega^2 \right\}^{1/2} + \| u - u \|_\Omega^2. \]
This error decomposition is useful as the two error components in (A.1) exhibit somewhat different behaviour in our experiments, as $\varepsilon^{1/2}N^{-1}$ and εN^{-2}, respectively (compare, for example, the upper parts of Tables A.1 and A.2). Furthermore, one can identify that $E_{f_h \approx f_h}$ (obtained from (4.2) by replacing f_h with its linear interpolant f_h) essentially estimates the first error component in (A.1) (see Table A.1), while $\|f_h - f_h\|\Omega$ provides a reasonable estimator for the remaining error component.
Table A.3
Test problem with \(C_u = 1 \), mesh with obtuse triangles (see Fig. 8.1, right): error component \(\{ \varepsilon | \nabla u_h - (\nabla u)| \|^2 \Omega + |u_h - u|^2 \Omega \}^{1/2} \) from (A.1) compared with \(E[|\varepsilon|, f_h - f_h] \).

\(N \)	\(\varepsilon = 1 \)	\(\varepsilon = 2^{-5} \)	\(\varepsilon = 2^{-10} \)	\(\varepsilon = 2^{-15} \)	\(\varepsilon = 2^{-20} \)	\(\varepsilon = 2^{-25} \)	\(\varepsilon = 2^{-30} \)
Errors (odd rows) & Computational Rates (even rows)							
64	3.334e-2	5.274e-3	8.452e-4	1.489e-4	2.632e-5	4.653e-6	8.225e-7
128	1.669e-2	2.642e-3	4.236e-4	7.469e-5	1.320e-5	2.334e-6	4.126e-7
256	8.352e-3	1.322e-3	2.117e-4	3.740e-5	6.611e-6	1.169e-6	2.066e-7
512	4.177e-3	6.611e-4	1.055e-4	1.871e-5	3.308e-6	5.848e-7	1.034e-7
\(S^* = \emptyset \) in (4.3): Estimators (odd rows) & Effectivity Indices (even rows)							
64	3.534e-2	8.142e-3	1.516e-3	2.681e-4	4.739e-5	8.378e-6	1.481e-6
1.060	1.544	1.794	1.800	1.801	1.801	1.801	
128	1.771e-2	3.552e-3	8.404e-4	1.586e-4	2.803e-5	4.955e-6	8.759e-7
1.060	1.344	2.087	2.123	2.123	2.123	2.123	
256	8.864e-3	1.770e-3	5.936e-4	1.174e-4	2.076e-5	3.670e-6	6.487e-7
1.060	1.339	2.804	3.139	3.140	3.140	3.140	
512	4.434e-3	8.842e-4	3.927e-4	1.057e-4	1.870e-5	3.306e-6	5.843e-7
1.060	1.337	3.722	5.648	5.652	5.652	5.652	

Appendix B: Justification of Remark 9.6 To get a sharper version of the upper bound \([1.2] \) for our estimator, with \(\min \{ 1, \varepsilon h^{-1} \} \| J_S \|^2 \Xi \) replaced by a sharper term \(\sum_{S \in T} \min \{ \varepsilon |S|, |\omega_z| \} \| J_S \|^2 \Xi \), we need to tweak the definition of \(\mathfrak{t}_z \) in (5.1). To be more precise, whenever \(h_z \leq \varepsilon \leq H_z \), and \(h_z \neq H_z \), let

\[
\mathfrak{t}_z := \mathfrak{t}_z' + \left\{ \sum_{i=1}^{1,m} \frac{1}{2} J_{S_i}^+ (\mathfrak{t}_z^+; T_{i-1}^+) + \mathfrak{t}_z^-; T_i \right\} \quad \text{if } z \in N_{\text{mix}} \backslash \Omega, \\
\frac{1}{h_z J_z^+} \left(|S_1|^{-1} \mathfrak{t}_z^+; T_1 + |S_n|^{-1} \mathfrak{t}_z^-; T_n \right) \quad \text{if } z \text{ satisfies } A_{\text{mix}},
\]

\(\mathfrak{t}_z' := \phi (\alpha_i \omega_i + \beta_i d_i^{-1} \mu_z) \quad \forall T_i \subset \omega_z, \quad \mathfrak{t}_z^+ := h_z^{-1} \sum_{i=2}^{n} |S_i^{-}| J_{S_i}^- \).
of Lemma 5.6. If $z \in \mathcal{N}^*_\gamma$, or $z \in \partial \Omega$ satisfies $A_{1 \text{mix}}$ and $n_z = 1$, the definition (5.1) of τ_z remains unchanged.

Lemma B.1. Let τ_z be modified to (B.1) whenever $h_z \leq \varepsilon \leq H_z$ and $h_z \neq H_z$. Set $\{\alpha_i, \beta_i\}_{i=1}^{N_z}$ in (B.1) to minimize $\mathcal{F}(\varepsilon)$ subject to the constraint $|\tau_z \cdot \nu| = \phi_z[\partial \nu u_h]$ on γ_z. Then Theorem 4.3(b) is valid with the term $\min\{1, \varepsilon h_z^{-1}\}^{1/2} \|\varepsilon J_z\|_{\omega_z}$ in (4.8) replaced by a sharper $\{\sum_{S \in \gamma_z} \min\{\varepsilon |S|, |\omega_z|\} (\varepsilon |J_S|)^{1/2}\}$.

Proof. For the case $h_z \geq \varepsilon$, the sharper version of (4.8) follows from the first relation in (7.7). Otherwise, if $h_z \leq \varepsilon \leq H_z$, this follows from $|\omega_z| \leq \varepsilon |S|$.

For the remaining case $h_z \leq \varepsilon \leq H_z$, using the notation \tilde{J}_z and \hat{J}_z of (9.3), we need to show (4.8) with $\min\{1, \varepsilon h_z^{-1}\}^{1/2} \|\varepsilon J_z\|_{\omega_z}$ replaced by $\{\varepsilon \hat{h}_z\}^{1/2} \varepsilon \tilde{J}_z + \varepsilon |J_z|_{\omega_z}$. For $\tau_z - \tau^*_z$, we employ Lemma 7.1 in particular, (7.11) implies $\|\varepsilon \text{div}(\tau_z - \tau^*_z)\|_{\omega_z} \approx \|\varepsilon \text{div} \tau_z\|_{\omega_z}$. Recalling that $g_z = \varepsilon^2 \text{div} \tau_z + \varepsilon T_{1z} F_{T,z}$ for $h_z \leq \varepsilon$, it suffices to prove the desired version of (4.8) for $\|\varepsilon \text{div} \tau^*_z\|_{\omega_z} + \|\varepsilon^2 \text{div} \tau^*_z + \varepsilon T_{1z} F_{T,z}\|_{\omega_z}$. In fact, it suffices for the latter to be established for one specific set $\{\alpha_i, \beta_i\}_{i=1}^{N_z}$ subject to $|\tau_z \cdot \nu| = \phi_z[\partial \nu u_h]$ on γ_z. Here the constraint is equivalent to a version of (5.1e) taking into account the possibly non-trivial jumps $[(\tau_z - \tau^*_z) \cdot \nu]$ across γ_z.

As in the proof of Lemma 5.6 consider three cases (a), (b) and (c).
(a) Suppose that z satisfies A_{mix} with $n_z \geq 2$. Now, let

\[\alpha_i := \varepsilon^{-2} d_i \theta_{T_i, z} (\hat{F}_{T_i, z} - A_{z}) : A_{z} \sum_{i=1}^{N} 2 \varepsilon^{-2} \theta_{T_i, z} |T_i| := -\hat{h}_z J_z. \]

(B.2)

Now, the constraint $[\tau_z \cdot \nu] = \phi_z [c_{\nu} u_h] \text{ on } \gamma_z$ yields a version of (5.1c), in which $\frac{1}{2} \hat{h}_z J_z (1_{z, x} + 1_{z, y})$ is subtracted from the right-hand side. Note that the described version of (5.1c) gives a consistent system for $\{\beta_i\}_{i=1}^{N}$ with infinitely many solutions, which is shown as in the proof of Lemma 5.1. In particular, if $z \not\in \partial \Omega$, the consistency of this system can be shown by adding all N equations in this system (and also using $\nu_i \cdot (|S_i^+| \nu_i^+ + |S_i^-| \nu_i^-) + 2|T_i|d_i^{-1} = 0$), which yields the second relation in (B.2).

Note that the latter uniquely defines A_{z} and implies $|A_{z}| \leq \varepsilon^2 |\omega_z|^{-1} \hat{h}_z J_z$.

Next, set $\beta_1 := 0$, and imitate the proof of Lemma 5.6. Now an application of $\sum_{i=2}^{N}$ to the current version of (5.1c) yields $|\beta_i d_i^{-1}| \leq |\beta_i d_i^{-1}| \leq \max_{j=1, \ldots, j} |\alpha_j|$. Consequently, a version of (5.1c) implies $|\beta_i d_i^{-1}| \leq J_z + \max_{j=1, \ldots, j} |\alpha_j|$ for $i = 2, \ldots, n - 1$, and $|\beta_i d_i^{-1}| \leq J_z + \max_{j=1, \ldots, j} |\alpha_j|$ for $i = n + 1, \ldots, N$. Note that for $i = 2, \ldots, n - 1$, one has $|T_i| \approx \hat{h}_z \leq \hat{h}_z$ so $\|\varepsilon J_z\|_{T_i} \leq \|\varepsilon J_z\|_{\omega_z}$ for $i = n + 1, \ldots, N$. Comparing these observations with the desired version of (4.8) implies that to bound $\|\varepsilon J_z\|_{\omega_z}$, it remains to estimate $\max_{j=1, \ldots, j} |\alpha_j|$.

For the latter, recall that it was shown in the proof of Lemma 5.1 that if one sets $A_{z} := 0$ in the current definition of α_i, then $\max |\varepsilon \alpha_i|_{\omega_z} \leq \|h_z f_i|_{\omega_z}$. For the remaining component $\varepsilon^{-2} d_i \theta_{T_i, z} A_{z}$ of α_i, recall that $d_i \theta_{T_i, z} \approx h_{T_i} \leq \hat{h}_z \leq \varepsilon$, so $\|\varepsilon \alpha_i|_{\omega_z} \leq \|h_{T_i} f_i|_{\omega_z}$. On the other hand, $\|\varepsilon \partial_z \theta_{T_i, z} F_{T_i, z}|_{\omega_z}$, we proceed to the bound $\|A_{z}|_{\omega_z} \leq |\varepsilon J_z|_{\omega_z}$ (in view of $\|\varepsilon J_z\|_{\omega_z}$). This observation completes the proof of the desired version of (4.8) in case (a).

(b) Next, consider $z \in N_{\text{ani}} \setminus \partial \Omega$ that satisfies A_{ani} (and so not A_{mix}). Let

\[\alpha_i := \varepsilon^{-2} d_i \theta_{T_i, z} (\hat{F}_{T_i, z} - a_i) := \sum_{i=1}^{N} 2 \varepsilon^{-2} \theta_{T_i, z} |T_i| a_i = - \sum_{i=1}^{m} |S_i^-| J_{S_i^-}. \]

(B.3)

Now, the constraint $[\tau_z \cdot \nu] = \phi_z [c_{\nu} u_h] \text{ on } \gamma_z$ yields a version of (5.1c), in which $1_{z, x} + 1_{z, y}$ is subtracted from the right-hand side. Note that the described version of (5.1c) gives a consistent system for $\{\beta_i\}_{i=1}^{N}$ with infinitely many solutions, which is shown as in the proof of Lemma 5.1. To be more precise, adding all N equations in this system (and also using $\nu_i \cdot (|S_i^+| \nu_i^+ + |S_i^-| \nu_i^-) + 2|T_i|d_i^{-1} = 0$) yields the second relation in (B.3).

Set

\[a_i := \begin{cases} A_i^+ & \text{for } i = 1, \ldots, m, \\ A_z & \text{for } i = m + 1, \ldots, N, \\ A_z^+ \sum_{i=1}^{m} 2 \varepsilon^{-2} \theta_{T_i, z} |T_i| := \tilde{a}_z, \end{cases} \]

where \tilde{a}_z is from (5.8), while A_z^- is now uniquely defined by the second relation in (B.3). Then, $|A_z^-| \leq \varepsilon H_z^{-1} |\varepsilon J_z|$ and $|A_z^-| \leq |A_z^-| + \varepsilon H_z^{-1} |\varepsilon J_z|$. Combining these two observations with (5.11) (which was obtained under assumption A_{ani}), one gets

\[A_z := \max_{i=1, \ldots, N} |a_i| \leq \varepsilon H_z^{-1} |\varepsilon J_z| + h_z \varepsilon^{-1} |F_z| + \sum_{T \subset \omega_z} \lambda_T \text{osc}(f_i; T) \]

(B.4)
(where we also used \(\varepsilon H_z^{-1} \lesssim 1 \) for the final two terms).

With these definitions, one gets a version of Lemma 5.1:

\[
|\varepsilon^2 \text{div} t_z + \theta_{T,z} F_{T,z}| \lesssim A_z \quad \forall \, T \subset \omega_z, \tag{B.5a}
\]

\[
|\varepsilon t_z'| H_z \lesssim \|h_z \varepsilon^{-1} (|f'_n| + A_z)\|_{\omega_z} + \varepsilon \left\{ \sum_{i=1}^{N} \beta_i^2 d_i^{-2}|T_i| \right\}^{1/2}. \tag{B.5b}
\]

Furthermore, the current version of (5.1c) implies a version of (5.9) with 0 in the right-hand side: \(\beta_0 - \beta_m + \alpha_0 \sigma_0 \cdot |S_0^+| \sigma_0^+ - \alpha_m \nu_m \cdot |S_m^+| \nu_m^+ = 0 \). So for \(i = 0, m \), set \(\beta_i := -\alpha_i \sigma_i \cdot |S_i^+| \sigma_i^+ \). For the remaining \(\{ \beta_i \} \), a version of (5.7) in which now \(J_z \) is replaced by \(\hat{J}_z \), yields

\[
|\beta_i d_i^{-1}| \lesssim \max_{j=1,\ldots,N} |\alpha_j| + |\hat{J}_z|,
\]

(this is also true for \(i = 0, m \)). Now, imitating the proof of Lemma 5.1, the second term in the right-hand side of (B.5b) is bounded by the first term + \(\|\varepsilon \hat{J}_z\|_{\omega_z} \). As \(h_z \varepsilon^{-1} \lesssim 1 \), so \(\|h_z \varepsilon^{-1} A_z\|_{\omega_z} \lesssim \|A_z\|_{\omega_z} \), so it now remains to estimate \(\|A_z\|_{\omega_z} \). In fact, the terms in the right-hand side of the bound (B.4) for \(A_z \) were estimated in the proof of Lemma 5.6, except for the component \(\varepsilon H_z^{-1} |\varepsilon \hat{J}_z| \). For the latter, \(\|\varepsilon H_z^{-1} |\varepsilon \hat{J}_z|\|_{\omega_z} = |\omega_z|^{1/2} \varepsilon H_z^{-1} |\varepsilon \hat{J}_z| \lesssim \{\varepsilon h_z\}^{1/2} |\varepsilon \hat{J}_z|\) (in view of \(\{\|\omega_z \varepsilon H_z^{-1}\|\} \approx \{\varepsilon h_z\}^{1/2} \) combined with \(\varepsilon H_z^{-1} \lesssim 1 \)). Combining this with \(h_z \approx h_z \) (as \(z \in N_{\text{ani}} \)), and \(\varepsilon h_z \lesssim |\omega_z| \), one gets \(\|\varepsilon H_z^{-1} |\varepsilon \hat{J}_z|\|_{\omega_z} \lesssim \{\varepsilon h_z\}^{1/2} \varepsilon \hat{J}_z + \|\varepsilon \hat{J}_z\|_{\omega_z} \). This completes the proof for case (b).

(c) If either \(z \in N_{\gamma_0} \) satisfies \(A_{1\text{ani}} \) but not \(A_{1\text{mix}} \), or \(z \in \partial \Omega \) satisfies \(A_{1\text{mix}} \) and \(n_z = 1 \), then \(\gamma_z = \emptyset \), so \(J_z \) does not involve \(\hat{J}_z \) (i.e. \(J_z = 0 \)), so the original version of (4.8) is equivalent to the desired version of this bound. \(\Box \)