Predictors of mortality and length of stay in hospitalized cases of 2009 influenza A (H1N1): Experiences of a tertiary care center

Rajesh Chawla, Sudha Kansal¹, Munish Chauhan¹, Ashish Jain², Bipin Narayanrao Jibkhate¹

Aim: To study the clinical characteristics and outcome of admitted patients of H1N1 (hemagglutinin-H neuraminidase-N) influenza in a tertiary level hospital, from Oct 2009 to Dec 2010. Materials and Methods: A retrospective analysis of 77 confirmed patients admitted in this unit with H1N1 infection. Results: Of the 77 patients studied, 33 (42.8%) were female. Mean age was 40.88 ± 13.45 years, majority (70.13%) being less than 50 years. Thirty eight (49.3%) patients had at least one co-morbidity; diabetes mellitus being the most common (n = 15, 19.5%). The most common presenting symptom was fever in 75 (97.4%) patients, cough in 67 (87%) and dyspnoea in 59 (76.6%) patients. At admission, mean PaO2/FiO2 ratio was 213.16 ± 132.75 mmHg (n = 60) while mean PaCO2 was 40.14 ± 14.86 mmHg. One or more organ failure was present in 45 (58.4%) patients. Nineteen (24.60%) patients required invasive mechanical ventilation. Circulatory failure was observed in 10 (13%) patients while 2 patients required hemodialysis. Overall, 13% mortality (n = 10) was observed. PaCO2 level at admission (OR 1.093; 95% confidence interval: 1.002-1.193; P = 0.044) and number of organ failure (OR 8.089; 95% confidence interval: 1.133-57.778; P = 0.037) were identified as independent risk- factors for mortality. Conclusion: Increased duration of dyspnoea prior to admission, pneumonia, low PaO2/FiO2 ratio at admission and 24 hours later, higher PaCO2 values on admission, higher O2 requirement, number of organ failures and use of corticosteroids and delay in specialized treatment were associated with a poorer outcome.

Keywords: 2009 influenza A, H1N1, hospitalized, length of stay, mortality, predictors

Introduction

A new strain of H1N1 influenza virus caused the 2009 flu pandemic of the “swine flu.”[1-4] In India, the first case was discovered in Hyderabad airport on 13 May’09. Since May 2009, total 46,142 cases were confirmed until date with 2728 mortalities. The majority of confirmed cases (11,164) were from Delhi with mortalities in 149 cases.[8]

This study describes the epidemiology, clinical features and outcome of patients admitted with confirmed H1N1 influenza in intensive care unit (ICU) of a tertiary level hospital in New Delhi, India during 2009 and 2010.

Materials and Methods

This retrospective study included all patients of H1N1 confirmed by real-time reverse-transcriptase polymerase-chain-reaction (RT-PCR) assay admitted in the 7 bedded H1N1 unit of Indraprastha Apollo hospitals between October 2009 and December 2010. As all the data collected were retrospective and no novel methods of treatment were adopted, need for consent was waived off by the ethics committee.

Data were collected retrospectively from the patient records and limited largely to clinical and laboratory parameters at admission. Laboratory tests and interventions performed were based on independent
decision of the physician in charge. The following data were recorded: Sex, age, history of contact and travel, comorbidities (type and number), symptoms at onset and duration of onset before admission (first admission and admission at our center), major laboratory results on hospital admission (chest radiology, blood gases, and total leucocyte count), organ failures (type and number), oxygen and ventilation requirement (invasive/non-invasive), antiviral treatment, use of steroids, supportive treatment (vasopressors, dialysis, and diuretics), and analyzed with respect to outcome and length of stay.

Statistical analysis

Continuous variables were expressed as mean and standard deviation and categorical variables as counts and percentage. Continuous variables between the two groups were compared using the Student’s t-test or Mann-Whitney test. The Chi-square test or Fisher’s exact test was used for comparison of categorical variables between the same groups. A multivariate logistic regression model was analyzed to identify independent predictors of mortality associated with H1N1 influenza. Multivariate model was constructed using variables found to be statistically significant in univariate analysis, after excluding potential confounding factors by assessing for interactions among the variables. Missing values of the variables with incomplete data were excluded from the analysis. Blood gas analysis was available in 77.9% cases on admission and was repeated after 24 hours in 50.6% cases only. Total leukocyte count was available in 98.7% cases and lymphocytes in 96.1% cases. A P value of less than 0.05 was considered to indicate statistical significance.

All analyses were carried out with the use of SPSS v. 17.0 software for Windows.

Results

Patients presenting to our center in the year 2009-2010 with influenza A (H1N1) infection and requiring hospitalization were included in the study. Among the total 151 patients admitted with suspicion of 2009 influenza A (H1N1) infection, 77 cases (33 females and 44 males) were confirmed. The mean age was 40.88 years (±13.45); range 10-72 years. A majority of patients (n = 54; 70.1%) were between 21 years and 50 years of age. Only 45% of the patients had a history of contact and 13% had a history of travel outside of the local region [Table 1]. The most common comorbidity associated with the group was Diabetes Mellitus (n = 15; 19.5%), followed by Hypertension (n = 14; 18.2%) and Asthma (n = 13; 16.9%). Coronary Artery Disease was present in only 5 patients (6.5%). Hypothyroidism in 4 (5.2%) while 6 patients (7.8%) were on immunosuppressants for various reasons. Three patients were peripartum. Of the total 77, 18 patients had one comorbidity, 13 patients had two comorbidities, 5 patients had three comorbidities and 2 patients had up to 4 comorbidities.

Mean duration of symptoms before admission to any hospital was 4.65 (±2.43) days and before admission to our hospital was 7.03 (±3.22) days.

The most common presenting symptom was fever present in 97.4% (n = 75) patients followed by cough (87%, n = 67). Dyspnoea was present in 76% patients (n = 59). Only 32.5% patients (n = 25) had sore throat, while hemoptysis at presentation was present in only 9.1% cases (n = 7). Body ache was present in 15.6% (n = 12) cases, chest pain of non-cardiac cause in 5.2% (n = 4) cases, and altered sensorium in 2.6% (n = 2) cases. On radiological evaluation, 63.6% cases (n = 49) were found to have bilateral and unilateral in 18.2% cases (n = 14). The chest X-ray was apparently normal in 16.9% cases (n = 13). Arterial blood gas (ABG) samples were analyzed in 60 patients at admission. Thirty nine of these patients were evaluated with further ABG analysis at 24 hours after admission based on clinical condition of the patient. The mean PaO2/FiO2 (P/F) ratio in a subset analysis of 39 cases with ABG performed at admission and 24 h later, had improved from 149.25 (±132.75) at admission to 174.77 (±101.2) at 24 h. Mean PaCO2 at admission was 40.14 (±14.86) mmHg. Lymphopenia (ALC <800/mm3) was found in 27 (35.1%) of 74 [Table 2].

During their stay in the hospital 41.6% patients (n = 32) developed a single organ failure, while 6.5% (n = 5) and 10.4% (n = 8) patients developed a failure of two and three organ systems respectively. The respiratory system was the most common organ to be involved (55.8%, n = 43) followed by renal (16.9%, n = 13).

Parameter	No. of patients (%) (n=77)
Sex (males)	44 (57.1)
Age in years; mean (SD)	40.88 (±13.4)
Age groups	Age groups
<=20	5 (6.5)
21-30	14 (18.2)
31-40	20 (26)
41-50	15 (19.5)
51-60	18 (23.4)
>60	5 (6.5)
Contact history (%)	35 (45.5)
Travel history (%)	13 (16.9)

SD: Standard deviation.
Table 2: clinical parameters of the study population (n=77, unless specified)

Comorbidity (no. of patients (%))	38 (49.40)	18 (23.28)	13 (16.89)	5 (6.49)	2 (2.60)	
No comorbidity						
Single comorbidity						
Two comorbidities						
Three comorbidities						
Four comorbidity						
Type of comorbidity (no. of patients (%))	13 (16.9)	14 (18.2)	15 (19.5)	5 (6.5)	1 (1.3)	
Asthma						
Hypertension						
Diabetes						
Coronary artery disease						
COPD						
Immunosuppression						
Pregnancy/postpartum						
Malignancy						
Duration of symptoms before admission (mean±SD)	4.65 (±2.43)	7.03 (±3.23)	174.78 (±101.20)	213.16 (±132.75)	149.25 (±132.75)	
First admission						
At IAH						
Fever	75 (97.4)	67 (87.0)	7 (9.1)	25 (32.5)	12 (15.6)	4 (5.2)
Cough						
Hemoptysis						
Dyspnoea	59 (76.6)	21 (27.3)	1 (1.3)			
Sore throat	25 (32.5)	1 (1.3)	12 (15.6)	4 (5.2)		
Bodyache						
Chest pain (non-cardiac)						
Duration of dyspnoea before admission (mean±SD)	4.22 (±3.07)	4.22 (±3.07)	213.16 (±132.75)	149.25 (±132.75)	174.78 (±101.20)	
At IAH						
PaO2/FiO2 ratio (mean±SD)						
On admission (n=60)	213.16 (±132.75)	149.25 (±132.75)	174.78 (±101.20)			
On admission (sub group) (n=39)	149.25 (±132.75)	174.78 (±101.20)				
At 24 h (n=39)	149.25 (±132.75)	174.78 (±101.20)				
Laboratory results at time of admission (mean±SD)	40.14 (±14.86)	9.91 (±7.51)	1377.15 (±1339.36)	2.32 (±0.92)		
PaCO2 at admission (mmHg) (PaCO2, n=60)	40.14 (±14.86)	9.91 (±7.51)	1377.15 (±1339.36)	2.32 (±0.92)		
Total leukocyte counts (×10⁹/cumm) (n=76)	9.91 (±7.51)	1377.15 (±1339.36)	2.32 (±0.92)			
Total lymphocyte count (per cumm.) (n=74)	1377.15 (±1339.36)	2.32 (±0.92)				
Platelet counts (×10⁵/µL) (n=75)	2.32 (±0.92)					
COPD: Chronic obstructive pulmonary disease; IAH: Indraprastha Apollo Hospital; SD: Standard deviation						

Mean duration of dyspnoea at presentation in the expired patients was 6.10 (±3.11) days, which was found to be significantly higher than in the survivors, i.e., 3.84 (±2.95); (P = 0.02). There was a significant relationship of mortality with the presence of bilateral infiltrates on chest radiography (P = 0.004). The PaO2/FiO2 ratio on admission was significantly lower (P = 0.035) in the expired group (mean = 140.80) compared to the survivors (mean = 227.63). In 39 patients with ABG repeated at 24 hours, the PaO2/FiO2 ratio in the survivors improved from 152.27 at admission to 193.15 over first 24 hours while it deteriorated from 140.80 to 121.50 in the expired group. An upward trend in the PaO2/FiO2 ratio at 24 hours was found to be significantly associated with a better survival (P = 0.025), though the same was not true for the relation of a decreasing PaO2/FiO2 ratio and poor survival (P = 0.386). The baseline PaCO2 value was significantly higher in the expired group (54.80 ± 23.64) than the discharged group (37.26 ± 10.63) (P = 0.002) [Table 3]. As far as organ failure was concerned, patients with a single organ failure were found to have a greater likelihood of survival than those with two or three organs involved [Table 4]. The oxygen requirement was significantly higher (P = 0.001) in the expired group (FiO2 0.73 ± 0.25) than in the discharged group (FiO2 0.42 ± 0.22). The use of corticosteroids was associated with a poorer outcome (P = 0.007), though there was a tendency of them being used in sicker patients.
The patients requiring vasopressors and diuretics had a greater mortality risk (Table 4). There was no significant relation of outcome with age (P = 0.447), sex (P = 0.311), comorbidities (P = 0.770) or dose (P = 0.148), and duration (P = 0.404) of Oseltamivir.

A multivariate model to identify independent predictors associated with mortality in H1N1 influenza was constructed using following variables: use of vasopressor, PaCO₂ level at admission, requirement of mechanical ventilation, number of organ failure, and FiO₂ requirement at admission. Other variables found to have significant association in univariate analysis were excluded from multivariate logistic regression analysis due to high inter-co-linearity with one or more variables mentioned. The multivariate analysis identified PaCO₂ level at admission (odds ratio, 1.093; 95% confidence interval, 1.002-1.193; P = 0.044) and number of organ failure (odds ratio, 8.089; 95% confidence interval, 1.133-57.778; P = 0.037) as independent risk-factors for in-hospital mortality. Hosmer-Lemeshow test showed a good fit for the model (P = 0.79) [Table 5].

The length of stay was increased by a lower PaO₂/FiO₂ ratio at admission and 24 hours post-admission; and the presence of organ failures. Those reporting at a later stage of illness to the tertiary center were found to have a lower PaO₂/FiO₂ ratio at admission though the correlation was not significant at 24 hours. Moreover, the risk of organ failure was found to be significantly increased in patients with a lower PaO₂/FiO₂ ratio at admission and 24 hours post-admission [Table 6].

Discussion

We are reporting a series of patients hospitalized in our tertiary care hospital, with symptoms and signs suggestive of H1N1 2009 influenza infection, later confirmed by RT-PCR assay carried out in our accredited laboratory. In our retrospective study, a mortality of 12.99% was observed, which was comparable to previous reports, which also observed similar frequency of indices of poorer outcome as ours e.g., comorbidities, pneumonia, dyspnea and need for mechanical ventilation; though the absence of APACHE and SOFA scores limits the comparison.[6-10]

A majority of the hospitalized patients belonged to the younger age group, 63.6% between 21 years and 50 years. This may be attributable to the presence of cross-reacting protective antibodies due to previous exposures to seasonal flu amongst the older population. Nonetheless, risk of death is reported to be higher in the older age group in spite of a lower incidence.[6] In our study, 17.3% (4 out of 23) of the patients above 50 years of age...
did not survive, while the mortality below 50 years was 11.1% (6 of 54), though the difference was not statistically significant. Among the non-survivors, older patients were observed to die at an earlier stage in the course of illness as suggested by non-parametric correlation values [Table 6]. No specific female preponderance could be derived in occurrence though 60% of non-survivors were females. Lack of increased risk in females was observed in earlier studies also,[11,12] though one Canadian study had observed a greater risk.[13]

In our study group, 49.3% had at least one comorbidity, diabetes, hypertension, and asthma being the most common as in other studies.[8,13-15] Though, many previous studies have reported otherwise,[6,10,13,16,17] our group of non-survivors did not have significantly more comorbidities than the survivors. Still one of the deaths occurred in a patient with 4 comorbidities (Hypertension, Diabetes, Rheumatic heart disease, and Coronary artery disease) and other one in a patient with 3 comorbidities (Asthma, Hypertension, and Coronary artery disease). Coronary artery disease and asthma in particular have been labeled as being associated with a fatal outcome in previous studies.[8,13-15] This lack of association with comorbidities maybe associated with a younger study population. Though, pregnancy has also been reported to be associated with mortality in previous epidemics (1918, 1957),[18-20] and the present one,[21,22] our study was inconclusive due to too few numbers. Out of the two pregnant and one immediate postpartum female in our study, both of our pregnant patients survived, while the latter had a fatal outcome. Out of 6 immuno-compromised patients, 4 survived the disease.

The patients suffered with symptoms for average of 4-5 days prior to any admission, deteriorating over the next 2 days, being referred to our tertiary hospital from smaller centers. The progression was no faster in the non-survivors. Fever, cough, and dyspnoea were the most common symptoms in decreasing frequency along with hemoptysis, sore throat, and myalgia, which was similar to earlier studies and the WHO danger signs.[23] Similar to a Chinese study,[24] our study did not find an appreciable incidence of gastrointestinal symptoms contrary to earlier reports.[7,13,25] One distinguishing feature was the occurrence of dyspnea. Early onset of dyspnea was found to be associated with a greater mortality risk, which has not found much mention in previous studies on H1N1 influenza.[8,16]

One of the most important feature of H1N1 influenza reported has been pneumonia,[20] mentioned in earlier studies and corroborated in ours also. Though, commonly bilateral consolidation was seen, in some cases unilateral involvement was also present on chest

Table 4: Course in hospital and relation to outcome

Parameters	Discharged (n=67)	Expired (n=10)	Total (n=77)	P value
Number of organ failure (%)				
None	32 (47.8)	0 (0.0)	32 (41.6)	0.000
One	31 (46.3)	1 (10.0)	32 (41.6)	
Two	2 (3.0)	3 (30.0)	5 (6.5)	
Three	2 (3.0)	6 (60.0)	8 (10.4)	
Organ failure (%)				
Respiratory failure	33 (49.3)	10 (100)	43 (55.8)	0.002
Cardiovascular/shock	2 (3.0)	7 (70.0)	9 (11.7)	0.000
Acute renal failure	5 (7.5)	8 (80)	13 (16.9)	0.000
FiO2 requirement	0.42 (±0.22)	0.73 (±0.24)	0.46 (±0.25)	0.001
Non-invasive ventilation	17 (25.37)	0 (0.0)	17 (22.07)	
Invasive ventilation (%)	9 (13.4)	10 (100.0)	19 (24.60)	0.001
Oseltamivir Dose (in mg twice daily)	95.45 (±33.66)	112.50 (±39.52)	97.70 (±34.68)	0.148
Duration	8.39 (±4.17)	9.10 (±3.54)	8.49 (±4.08)	0.404
Corticosteroids Used (%)	29 (43.3)	9 (90.0)	38 (49.4)	0.007
Duration	10.48 (±8.47)	11.0 (±6.0)	10.61 (±7.85)	0.565
Vasopressors/inotropes (%)	3 (4.5)	7 (70.0)	10 (13.0)	0.000
Diuretics (%)	20 (29.9)	10 (100%)	30 (39.0)	0.000
Dialysis (%)	1 (1.5)	2 (2.6)		0.244
Length of stay	10.94 (±14.67)	12.90 (±9.20)	11.19 (±14.05)	0.128

BiPAP: Bilevel positive airway pressure

Table 5: Multivariate logistic analysis for predicting mortality in influenza A influenza

Parameters	B	SE	P value	OR	95% CI
PaCO2	0.089	0.044	0.044	1.093	1.002-1.193
Organ failure	2.091	1.003	0.037	8.089	1.133-57.778

B: Regression coefficient; SE: Standard error; OR: Odds ratio; CI: Confidence interval
skigrams. As these findings were present on admission, they are more likely to be due to direct viral invasion or ARDS, rather than of secondary bacterial etiology. This is in contrast to earlier studies, which held concomitant bacterial pneumonia as a major determinant of mortality in influenza infection.[27,28] In our study, presence of bilateral opacities on chest skigram was found to be associated with a significant risk of death during the course of illness, whereas patients with unilateral involvement fared better. The PaO₂/FiO₂ ratio at admission and 24 hours later was significantly lower in the non-survivors.[16,29] Moreover, the non-survivors did not show a major improvement in the ratio over 24 hours, whereas, the survivors had a significant improvement in the PaO₂/FiO₂ ratio over the first 24 hours of admission.[8,29] Furthermore, amongst the survivors, a lower PaO₂/FiO₂ ratio at admission and 24 hours later was associated with an increased length of stay. Patients presenting later in the course of their disease to our center were found to have a lower PaO₂/FiO₂ ratio at admission, but not at 24 hours, indicating the need for tertiary care in H1N1 patients who are not doing well otherwise. Another interesting finding relating to the blood gases was of the PaCO₂. The value at admission was significantly higher in the non-survivors. It meant that the non-survivors not only had an impaired oxygenation but also impaired ventilation whereas the survivors had only impaired oxygenation with normal ventilation.[29] Using multivariate logistic-regression models, higher PaCO₂ at admission was found to be a risk-factor associated with increased mortality risk from 2009 H1N1 influenza. The oxygen requirement at admission was also found to be an important predictor of mortality, being significantly higher in the non-survivors. Mortality risk also increased with the number of organ systems dysfunction,[16,29] risk rising significantly if more than one system was involved and this finding was supported by multivariate logistic regression studies. The respiratory system was the most common organ to be involved.[16,29] Understandably, the non-survivors were more likely to be administered vasopressors, diuretics, and dialysis support. The presence of an isolated respiratory failure was found to be significantly associated with an increased mortality risk. However, the use of supportive ventilation, invasive or non-invasive was not found statistically to be a predictor of mortality. The risk of organ failure was increased in patients who had a lower PaO₂/FiO₂ ratio at admission and 24 hours later. Moreover, the length of stay amongst survivors was also greater in patients with multiple organs involved.

The use of steroids was not found to improve survival. However, they were used in patients who were already sick with a poor expected outcome, as has been the case in other studies.[10,16,29,30] Still, studies have indicated a relation between steroid use and mortality, and increased duration and load of viral shedding in previous pandemics.[31,32] Thus, it may be prudent to use steroids for conventional indications as recommended co-existent with H1N1 influenza, until we have further studies supporting its role in H1N1.[33] The time of initiation of Oseltamivir from the onset of illness was difficult to derive in our study as several patients were referred to us from different centers and might have been delayed beyond 48 hours of onset. Thus, we cannot comment whether it has any bearing on the duration or severity of illness as has been suggested.[29,34-36] We were not able to find any relation of mortality or duration of illness with the dose and duration of Oseltamivir like many previous studies.[16,24,29]

Published reports from other Indian centers have reported variable mortalities. Chacko et al.[37] reported mortality of 19.4% in 31 patients admitted to intensive care with confirmed H1N1 influenza. Seventy one out of 87 (81.6%) patients with severe H1N1 influenza admitted to intensive care died in a study by Chudasama et al.[38] In a retrospective study of 7 H1N1 patients in ICU, Sahoo et al.[39] reported no mortality. Our study included, all the patients admitted to the H1N1 unit irrespective of disease severity. This might partly explain the lower mortality rate in our study. Significant predictors or risk-factors associated with mortality in these studies include Acute Physiology and Chronic Health Evaluation (APACHE)

Table 6: Correlations

Parameters	Correlation with	Correlation	P value	Level of significance
Age (expired group)	Length of stay	−0.792	0.006	0.01
PaO₂/FiO₂ ratio on admission	Duration before IAH admission	−0.388	0.002	0.01
PaO₂/FiO₂ ratio at 24 hours	Duration before IAH admission	−0.262	0.107	
Length of stay	PaO₂/FiO₂ ratio on admission	−0.556	0.000	0.01
Length of stay	PaO₂/FiO₂ ratio at 24 hours	−0.341	0.034	0.05
Length of stay	No. of organ failures	0.553	0.000	0.01
PaO₂/FiO₂ ratio at 24 hours	PaO₂/FiO₂ ratio on admission	0.632	0.000	0.01
No. of organ failures	PaO₂/FiO₂ ratio on admission	−0.628	0.000	0.01
No. of organ failures	PaO₂/FiO₂ ratio at 24 hours	−0.497	0.001	0.01

IAH: Indraprastha Apollo Hospital
II score,[37] poor lung compliance,[37] presence of at least one co-morbidity,[38] length of hospital stay[38], and pregnancy.[38] Significantly higher pCO2 values in non-survivors in our study might be indicative of poor lung compliance and higher PEEP requirement as highlighted in other studies.[37] However, we did not find presence of pre-existing co-morbidities, length of hospital stay or pregnancy as statistically significant predictors of mortality in our study. Gender and time from onset of symptoms to hospital admission or treatment initiation were not associated with significantly higher mortality in agreement with other studies.[37,38] However, a worse PaO2/FiO2 ratio at admission and especially its trend over 24 hours (in the subgroup of patients requiring a repeat ABG) was associated with poorer outcome in our study. Similar to the findings by Chudasama et al.[38] bilateral infiltrates on chest X-ray was associated with a poorer outcome.

Our study had several limitations. Being a retrospective study, there was a selection bias, and all the parameters and tests were assessed on clinical need and were not standardized according to a protocol. Thus, data for some variables were not available for all the patients. Moreover, the sample size was small as selection was confined to patients sick enough to warrant hospitalization.

Conclusions

In our study, we have tried to identify specific parameters at admission that are associated with the outcome and length of stay. We found that 2009 H1N1 affects relatively younger age groups (21-50 years) in the sub population affected severely enough to require admission. In comparison to the discharged group, increased duration of dyspnoea prior to admission (in other words, early onset of dyspnoea), presence of bilateral pneumonia, a low PaO2/FiO2 ratio at admission and 24 hours later, higher PaCO2 values at admission, higher oxygen requirement and number of organ failures have been found to be associated with a poorer outcome. A lower PaO2/FiO2 ratio at admission and 24 hours, organ failure and delay in specialized treatment were found to prolong the course of illness among survivors.

References

1. Centers for Disease Control and Prevention (CDC). Outbreak of swine-origin influenza A (H1N1) virus infection—Mexico, March-April 2009. MMWR Morb Mortal Wkly Rep 2009;58:467-70.
2. Centers for Disease Control and Prevention (CDC). Swine-origin influenza A (H1N1) virus infections in a school-New York City, April 2009. MMWR Morb Mortal Wkly Rep 2009;58:470-2.
3. Centers for Disease Control and Prevention (CDC). Swine influenza A (H1N1) infection in two children—Southern California, March-April 2009. MMWR Morb Mortal Wkly Rep 2009;58:400-2.
4. Influenza A (H1N1)-update 14. Geneva: World Health Organization; 2009. Available from: http://www.who.int/csr/don/2009_05_04a/en/index.html [Last accessed on 2009 May 04].
5. Weekly Data of Influenza A H1N1 (For the week ending 2nd January 2011) and cumulative no. of Lab confirmed cases and deaths-State wise. New Delhi: Office of the Director, Emergency Medical Relief, Directorate General of Health Services, India; 2011. Available from: http://www.mohfw-h1n1.nic.in/documents/PDF/SituationalUpdatesArchives/deceber2010/Situational%20reports%20as%20on%2027.12.2010.pdf [Last accessed on 2011 Jan 02].
6. Louie JK, Aseota M, Winter K, Jean C, Gavali S, Schechter R, et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A (H1N1) infection in California. JAMA 2009;302:1896-902.
7. Dominguez-Cherit G, Lapinsky SE, Macias AE, Pinto R, Espinosa-Perez L, de la Torre A, et al. Critically ill patients with 2009 influenza A (H1N1) in Mexico. JAMA 2009;302:1880-7.
8. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quiñones-Falconi F, Bautista E, et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med 2009;361:680-9.
9. Gómez-Gómez A, Magaña-Aquino M, García-Sepúlveda C, Ochoa-Pérez UR, Falcón-Escobedo R, Conas-García A, et al. Severe pneumonia associated with pandemic (H1N1) 2009 outbreak, San Luis Potosí, Mexico. Emerg Infec Dis 2010;16:27-34.
10. Jain S, Kamimoto L, Branley AM, Schmitz AM, Benoit SR, Louie J, et al. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N Engl J Med 2009;361:1935-44.
11. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S, Fimmel I, Shaw MW, Lindstrom S, Garten RJ, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009;360:2068-70.
12. Thompson WW, Shlay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, et al. Influenza-associated hospitalizations in the United States. JAMA 2004;292:1333-40.
13. Kumar A, Zarychanski R, Pinto R, Cook DJ, Marshall J, Laerko J, et al. Critically ill patients with 2009 influenza A (H1N1) infection in Canada. JAMA 2009;302:1872-9.
14. van ’t Klooster TM, Welders CC, Donker T, Isken L, Meijer A, van den Wijngaard CC, et al. Surveillance of hospitalisations for 2009 pandemic influenza A (H1N1) in the Netherlands, 3 June-31 December 2009. Euro Surveill 2010;15:pii=19461.
15. Chen KF, Gaydos C, Rothman NE. Update on emerging infections: News from the Centers for Disease Control and Prevention. Hospitalized patients with novel influenza A (H1N1) virus infection— California, April-May, 2009. Ann Emerg Med 2009;54:732-6.
16. Xi X, Xu Y, Jiang L, Li A, Duan J, Du B, et al. Hospitalized adult patients with 2009 influenza A (H1N1) in Beijing, China: Risk factors for hospital mortality. BMC Infect Dis 2010;10:256.
17. Hanslik T, Boelle PY, Planellet A. Preliminary estimation of risk factors for admission to intensive care units and for death in patients infected with A (H1N1) 2009 influenza virus, France, 2009-2010. PLoS Curr 2010;2:RRN1150.
18. Abrahmowitz LJ. The effect of Asian influenza on pregnancy. S Afr Med J 1958;32:1155-6.
19. Beigi RH. Pandemic influenza and pregnancy: A call for preparedness planning. Obstet Gynecol 2007;109:1193-6.
20. Dodds L, McNeil SA, Fell DB, Allen VM, Combs A, Scott J, et al. Impact of influenza exposure on rates of hospital admissions and physician visits because of respiratory illness among pregnant women. CMAda 2007;176:463-8.
21. Lapinsky SE. H1N1 novel influenza A in pregnant and immunocompromised patients. Crit Care Med 2010;38:S52-57.
22. Jamieson DJ, Homein MA, Rasmussen SA, Williams JL, Swerdlow DL, Bigggerstaff MS, et al. Factors associated with death in hospitalized pneumonia patients with 2009 H1N1 influenza in Shenyang, China. BMC Infect Dis 2010;10:145.
25. ANZIC Influenza Investigators, Webb SA, Pettiti V, Seppelt I, Bellomo R, Bailey M, et al. Critical care services and 2009 H1N1 influenza in Australia and New Zealand. N Engl J Med 2009;361:1925-34.

26. Rothberg MB, Haessler SD, Brown RB. Complications of viral influenza. Am J Med 2008;121:258-64.

27. Treanor J. Influenza virus. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and Practice of Infectious Diseases. Philadelphia: Churchill Livingstone Elsevier; 2005. p. 2060-85.

28. Oliveira EC, Marik PE, Colice G. Influenza pneumonia: A descriptive study. Chest 2001;119:1717-23.

29. Chien YS, Su CP, Tsai HT, Huang AS, Lien CE, Hung MN, et al. Predictors and outcomes of respiratory failure among hospitalized pneumonia patients with 2009 H1N1 influenza in Taiwan. J Infect 2010;60:168-74.

30. Anyangwe TW, Lee JS, Lai WK, Choi CH, Lee HK, Lee JS, et al. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: A retrospective cohort study. J Infect 2006;51:98-102.

31. Shlomai A, Nutman A, Kotlovsky T, Schechmer V, Carmeli Y, Guzner-Gur H. Predictors of pandemic (H1N1) 2009 virus positivity and adverse outcomes among hospitalized patients with a compatible syndrome. Isr Med Assoc J 2010;12:622-7.

32. Lieu NT, Tung CV, Hieu ND, Hieu TT, Chau NQ, Long HT, et al. Clinical features of human influenza A (H5N1) infection in Vietnam: 2004-2006. Clin Infect Dis 2009;48:1639-46.

33. WHO Guidelines for Pharmacological Management of Pandemic Influenza A (H1N1) 2009 and Other Influenza Viruses. Geneva: World Health Organization; 2010. Available from: http://www.who.int/csr/resources/publications/swineflu/h1n1_use_antivirals_20090820/en/index.html [Last accessed on 2010 Feb].

34. Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza, Baunias E, Chotpitayasunondh T, Gao Z, Harper SA, Shim W, et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2010;362:1708-19.

35. Updated interim recommendations for the use of antiviral medications in the treatment and prevention of influenza for the 2009-2010 season. Atlanta: Centers for Disease Control and Prevention; 2009. Available from: http://www.cdc.gov/h1n1flu/recommendations.htm [Last accessed on 2011 Mar 10].

36. McGeer A, Green KA, Plevneshi A, Shigayeva A, Siddiqi N, Raboud J, et al. Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada. Clin Infect Dis 2007;45:1568-73.

37. Chauko J, Gogonu B, Ashok E, Radha M, Hemnauth HV. Critically ill patients with 2009 H1N1 infection in an Indian ICU. Indian J Crit Care Med 2010;14:77-82.

38. Chaudhara RK, Verma PB, Gohel B, Savariya D, Nimana R. Correlates of severe disease in patients admitted with 2009 pandemic influenza A (H1N1) infection in Saurashtra region, India. Indian J Crit Care Med 2010;14:113-20.

39. Sahoo JN, Poddar B, Azim A, Singh RK, Gurjar M, Baronia AK. Pandemic (H1N1) 2009 influenza: Experience from a critical care unit in India. Indian J Crit Care Med 2010;14:156-9.