The relationship between socio-economic and geographic factors and asthma among Canada’s Aboriginal populations

Eric J. Crighton1, Kathi Wilson2, Sacha Senécal3,4

1 Department of Geography, University of Ottawa, Ottawa, Canada
2 Department of Geography, University of Toronto Mississauga, Mississauga, Canada
3 Indian and Northern Affairs Canada, Strategic Research and Analysis Directorate, Gatineau, Canada
4 Department of Sociology, University of Western Ontario, London, Canada

ABSTRACT

Objectives. To examine the prevalence, exacerbations and management of asthma among Canada’s Aboriginal populations, and its relationship to socio-economic and geographic factors.

Study design. Secondary analysis of a national cross-sectional questionnaire survey.

Methods. Data were collected in 2000 and 2001 through a survey of Aboriginal children and adults residing on- and off-reserve as part of the 2001 Aboriginal People's Survey (APS). The asthma related outcome variables – physician-diagnosed asthma, attack in past year and regular use of inhalants – were examined in relation to socio-economic and geographic factors such as income, education, housing and location of residence. Statistical analyses were based on weighted univariate and multivariate logistic regressions.

Results. The results show variations in asthma diagnosis, attacks and inhalant use across geographic location, socio-economic and demographic characteristics. Geographic location was found to be significantly associated with asthma for both adults and children, with those living in the northern territories, on-reserve or rural locations being the least likely to be diagnosed. Geographic location and Aboriginal identity were also found to be significantly associated with asthma medication use.

Conclusions. While these findings may suggest a “healthier” population in more remote locations, they alternatively point to a general pattern of under-diagnosis, potentially due to poor health care access, as is typical in more remote locations.

Keywords: asthma, Aboriginal, Indian, SES, geography, Canada
INTRODUCTION

There is a disproportionate disease burden between Aboriginal and non-Aboriginal Canadians for a wide range of conditions, including infectious diseases, diabetes, renal diseases and mental illness (1-6). Lower-than-average Aboriginal life expectancies - ranging from 5 to 12 years - illustrate this disparity (2,7). Unlike many other health conditions, asthma had previously been thought of as relatively uncommon in the Canadian Aboriginal community (1) and has received little attention. Recent evidence now suggests that prevalence of asthma and rates of exacerbation (e.g., asthma attacks and related emergency room visits and hospitalizations) may in fact be higher than previously thought (8,9) and that these outcomes are associated with the geographic and socio-economic circumstances in which Aboriginal people live (10-14). In an effort to better understand these relationships in Canada’s Aboriginal populations, an analysis of the 2001 Aboriginal People’s Survey was conducted.

Research on asthma in Aboriginal populations generally (15-17) and the Canadian Aboriginal population more specifically (8,9,18,19) is limited to only a handful of studies. Senthilselvan et al. (19), using outpatient data for the Canadian province of Saskatchewan, found disproportionately high prevalence rates among Aboriginal populations compared to non-Aboriginal populations as well as a steady increase in prevalence throughout the 1980s and early 1990s. A population-based cohort study by Sin et al. (9), using administrative health data for the province of Alberta, found that Aboriginals were more than twice as likely to visit an emergency department (ED) or physician’s office for asthma as compared to non-Aboriginals. Furthermore, Aboriginals were less likely to undergo spirometry or to receive specialized asthma management care. It is suggested that a disproportionate asthma burden combined with access barriers to quality health care account for these findings. Most recently, Gao et al. (18) compared asthma between Aboriginal and non-Aboriginal children in northern Canada using the National Longitudinal Survey of Children and Youth. Here, Aboriginal children reported asthma and asthma-like symptoms at rates significantly lower than non-Aboriginal children. By comparison, a recent U.S. study by Meng et al. (17) found that American Indians/Alaska Natives had the highest prevalence of active asthma compared to other ethnic groups. In Australia, Valerie et al. (20) found significant variation in asthma prevalence among remote Indigenous communities and that, overall, asthma symptom and prevalence rates were as high as in non-Indigenous communities.

The geographical variability of asthma outcomes in non-Aboriginal populations has been well documented. A national cross-sectional survey by Dales et al. (10) of approximately 18,000 individuals looked at self-reported asthma measures, including past hospitalizations, physician diagnoses and persistent cough, and found rates to be consistently the highest in eastern Canada and the lowest in the province of British Columbia, even after controlling for environmental characteristics. More recent studies have identi-

1 In Canada, the term “Aboriginal” is used to refer to the descendants of the original inhabitants of Canada. The Constitution Act of Canada (1982) recognizes 3 broad Aboriginal identity groups: North American Indians (i.e., First Nations peoples), Métis and Inuit.
Asthma among Canada's Aboriginal populations

fied lower asthma prevalence in rural areas (8,21,22) and also among children living on farms (23). Lajoie et al. (24) found strong regional variability of ED visits for asthma in the province of Quebec as did Lougheed et al. (11) in Ontario. In both cases, the authors suggest that ED visit rates are determined not by actual prevalence of asthma but rather by under-diagnosis, access to alternative care and how well asthma is managed in the community. With regards to Aboriginal populations, preliminary tables produced from the 2001 APS show strong provincial variability in asthma prevalence among urban and rural residents (25).

A considerable body of international research now exists on the relationship between socio-economic status (SES) and asthma outcomes, including wheezing, attacks, hospital admissions and emergency department visits among non-Aboriginals. Results typically show that outcomes such as these are more common among low social class groups (12-14,26,27) as well as among ethnic minorities (17,28). It has also been shown that adherence to medications is less common among low SES groups (29). On the other hand, there is considerable uncertainty in the literature with regards to the role SES factors play in determining asthma prevalence. While studies in the U.S. and Europe have found low SES to be an important risk factor (17,30), other studies have found no relationship (31,32). Differences in asthma definitions and SES indicators could partially explain these inconsistencies, as could differences in access to physicians for diagnosis. These relationships have not been examined among Canadian Aboriginals, a population facing numerous socio-economic disparities (33,34). Thus, questions remain as to what role geographical and SES factors such as income, education, location of residence and housing conditions may play in determining asthma outcomes among Aboriginal peoples in Canada.

Examining these geographic and SES relationships to asthma in the context of Canada's Aboriginal population is important for the development of informed policies and programs aimed at reducing this disease burden, and directing health care services towards better asthma management. Thus, the main objectives of this research were (1) to examine the differences in asthma prevalence between Canadian Aboriginal populations; (2) to assess if there are differences in asthma exacerbation and asthma management across these populations; and (3) to explore the SES and geographic factors that may explain identified differences.

MATERIAL AND METHODS

The 2001 Aboriginal Peoples Survey undertaken by Statistics Canada identifies First Nations, on- and off-reserve Aboriginal people, Métis and Inuit respondents residing in private dwellings in Canada's 10 provinces and 3 territories. The survey includes questions on education, health, language, labour activity, income, mobility, housing, perceptions of social problems and connectivity, among others. One of the key components of the 2001 APS was a section on chronic diseases, including asthma.

The APS sample was identified from responses to the 2001 census. For the adult core survey, a total of 60,500 individuals were interviewed. A supplemental Children and Youth Questionnaire aimed at 0 to 14 year-olds residing on- and off-reserve was also admin-
istered to 35,495 respondents. The person most knowledgeable about the child or youth answered the questionnaire on his or her behalf. In the majority of cases, the respondent was a parent (93%). However, grandparents (4%) and other relatives also responded on behalf of children and youth. For the sake of simplicity, the person most knowledgeable about the child will be referred to as the parent. The overall response rate for both surveys was 84.1%. Further details about the survey, sampling methods and sample characteristics can be found at http://www.statcan.ca/english/aboriginal/aps/aps2001-en.htm.

The APS is a post-censal survey, meaning that the potential sample population is drawn from individuals who completed the 2001 Census of Canada. To be eligible to participate in the APS, individuals had to indicate on the 2001 Census that they had one of the following: (1) Aboriginal ancestry; (2) Aboriginal identity; (3) Registered or Treaty Indian Status; or (4) First Nations or Indian band membership. If, for some reason, an individual refused to indicate the above, they were not included in the APS sample. Further, since the APS sample is derived from those who completed the Census, APS data ARE not available for First Nations communities that refused to participate or were incompletely enumerated in the Census. While the number of First Nations communities refusing to participate in the Census of Canada has declined over time, 30 were incompletely enumerated in the 2001 Census, and another 22 communities were incompletely enumerated in the APS (http://dsp-psd.tpsgc.gc.ca/Collection/Statcan/89-591-X/89-591-XIE2003001.pdf).

From the Children and Youth Survey, the following questions related to asthma were examined:

1. Which, if any, of the following long-term conditions or health problems does ____ have that have been diagnosed by a doctor, nurse or health professional? Asthma? (yes/no)
2. Has ____ had an attack of asthma in the past 12 months? (yes/no)
3. Does ____ take any of the following medications on a regular basis: Ventolin, inhalers or puffers for asthma? (yes/no)

From the Adult Core Survey, the following questions were examined:

1. Have you ever been told by a doctor, nurse or other health professional that you have asthma? (yes/no)
2. Do you take any treatment or medication for this condition? (yes/no)

From these questions, the following dependent variables were derived: ever diagnosed with asthma, attack in past year (children only) and regular use of medication.

Explanatory variables examined in this study relate primarily to geographic, socio-economic and demographic factors that come from both the APS and from linked 2001 Canadian Census data. The choice of explanatory variables was informed by the population health framework (35) and more specifically by the determinants of asthma literature (12,14,23,26-29,36-38) as well as by some practical considerations pertaining to APS data availability, quality and confidentiality. We considered the following SES variables in our analysis: economic family income, year home was built, home in need of major repairs, highest level of education (adults) and highest level of education of primary caregiver (children) and number of parents in the household (children). Three geographic variables were examined: living in an urban or rural location, on- or
Asthma among Canada’s Aboriginal populations

off-reserve residency and province of residence. More refined geographic coding was limited for reasons of confidentiality. Demographic variables include age, gender and Aboriginal identity (North American Indian, Inuit, Métis and those reporting multiple identities). Recent use of health care services defined as a visit to a doctor, nurse practitioner or nurse in the past year were also considered. Chronic bronchitis, emphysema (adults only) and BMI (body mass index; adults only), smoking status (adults only), birth weight (children only) and attack in past year (children only) were included in the regression analysis as potential confounders of the associations of interest.

Statistical analyses
We analysed the data with SPSS v.16 (SPSS Inc., Chicago) and Stata v.9. (StataCorp LP, College Station, Texas) using bivariate and multivariate techniques. The bivariate descriptive analysis was used to identify potential explanatory variables for each outcome of interest. Multivariate logistic regression analysis was then applied to assess the association between outcome variables and potential predictors, while adjusting for other identified explanatory variables including gender, age, chronic health conditions and smoking (adults only). Sample weights were applied for the descriptive analysis and bootstrap weights for the regression analysis.

RESULTS
In all, 12% of Aboriginal children were reported as having been diagnosed with asthma. Asthma prevalence was statistically significantly higher among boys and in the oldest age group (10-14 year-olds; Table I). Inuit children had the lowest asthma prevalence at just over 5%, as compared to approximately 12%-13% for all other Aboriginal identity groups. Significant geographic differences were also seen with those living off-reserve, in urban areas and in the province of Ontario having the highest prevalence. The biggest differences in the SES variables were seen in income, where 19% of children in the lowest income group were reported to have asthma as compared to 11% in the highest income group. Children living in older homes, homes in need of major repairs or in single-parent households were also reported as having a significantly higher prevalence of asthma.

When parents were asked about asthma attacks in the past year, 43.7% reported that their children had experienced an attack. While there was no difference by gender, rates were significantly higher among 0-4 year-olds (49.3%) as compared to 5-9 year-olds (40.8%) and 10-14 year-olds (43.7%). By identity group, findings were similar across groups, ranging from 40%-41%, with the exception of the Métis identity group, where rates were reported as higher. Children living on-reserve reported lower rates than those living off-reserve, and those living in Quebec had dramatically lower rates than other regions. In Quebec, 17.4% of children were reported to have had an asthma attack in the past year as compared to British Columbia at 59.1%. Among the SES factors examined, only the relationship between recent attacks and parents’ education was found to be significant, with the highest rates reported among children whose parents’ education were lower. With regards to health care, rates of asthma attacks in the past year were more than double among those children who had not recently seen a physician or nurse.
Table 1. Asthma prevalence, recent attacks and asthma management among those diagnosed with asthma by select characteristics for Aboriginal children (0-14 years).

Characteristics	Diagnosed asthma (n=35 500) %	Attack in past year1 (n=3260) %	Regular use of medications† (n=3320) %
Total	12.0	43.9	60.1
Gender			
Male	14.6	45.2	59.9
Female	9.4	41.7	60.4
Age (years)			
0-4	p<0.001	ns	ns
5-9	8.8	49.3	63.6
10-14	13.5	43.7	59.1
Identity			
NA	12.4	41.5	65.3
Metis	12.9	50.6	60.2
Inuit	5.2	40.0	50.0
other/mixed	11.8	41.3	51.6
Reserve residence	p<0.001	p<0.05	ns
On	9.5	36.7	56.3
Off	12.4	44.4	60.3
Urban/rural residence	p<0.001	ns	p<0.001
Urban	13.1	43.6	61.9
Rural	10.1	43.9	56.0
Region of residence	p<0.001	p<0.001	p<0.001
Atlantic	13.7	43.5	56.5
Quebec	9.2	17.4	41.7
Ontario	16.9	41.1	60.2
Prairies	11.1	45.5	60.6
British Columbia	10.6	59.1	68.9
Northern territories	4.4	40.0	60.0
Education	p<0.05	p<0.05	p<0.05
High school or higher	11.5	42.6	58.4
< high school	12.5	46.9	62.2
Home in need of major repairs	p<0.001	ns	p<0.001
Yes	13.8	40.6	67.6
No	11.6	44.7	58.1
Year house built	p<0.001	ns	p<0.001
1981-2001	10.6	42.5	63.2
1961-1981	11.8	45.8	64.2
<1961	14.8	41.9	52.6
Income	p<0.001	ns	p<0.05
<20,000	19.0	44.4	57.6
20,000 to <40,000	12.8	45.5	62.2
40,000 to 60,000	10.3	43.9	64.4
>60,000	11.1	41.4	57.5
Recent health care visit2	p<0.001	p<0.001	p<0.001
Yes	13.4	19.6	62.8
No	7.5	47.8	43.7

1 Refers to respondents who reported a diagnosis of asthma.
2 Recent health care visit refers to having seen a family physician (or pediatrician), other medical doctor or nurse in the past 12 months.
Overall, 60.1% of the Aboriginal children who were reported to have been diagnosed with asthma use asthma medications such as Ventolin puffers or inhalers regularly (Table I). While no significant differences were reported by gender or age, medication use rates were significantly higher among North American Indians as compared to other groups. By place of residence, rates were higher in urban areas compared to rural areas; however, no significant differences were identified between those living on- and off-reserve. By region, the lowest rates were seen in Quebec (41.7%) and the highest in British Columbia (68.9%), a finding consistent with the asthma attack data described above. Significant differences in medication use is apparent when comparing across SES variables, with higher use occurring among children of less-educated respondents, those who live in homes in need of major repairs, those living in more recently built homes and those in the middle-income groups. Rates were also significantly higher among those who have had a recent health care visit (62.8%) as compared to those who had not (43.7%).

Among Aboriginal adults (Table II), 11.2% of respondents reported having been diagnosed with asthma. Prevalence was significantly higher for women than for men, and for the very oldest and youngest age groups as compared to the middle-age groups. Inuit adult respondents reported a significantly lower prevalence of asthma (5.4%) as compared to other Aboriginal identity groups, while North American Indians, Métis and mixed identity groups all reported comparable prevalence. With regards to geographic factors, the highest prevalence was found among those individuals living off-reserve, in urban areas and in the province of Ontario. These differences were all found to be

Characteristics	Diagnosed asthma (n=59,209)	Use of medications\(^1\) (n=5,167)
Total	11.2	76.2
Gender		
Male	8.5	73.3
Female	13.6	77.7
Age (years)		
15-24	12.1	67.6
25-34	9.7	75.0
35-44	11.5	77.2
45-54	10.5	81.0
55 and over	12.3	84.9
Identity		
NA	11.5	75.9
Métis	11.7	73.5
Inuit	5.4	87.5
Other/mixed	10.6	78.2
Reserve residence		
On	7.3	73.3
Off	11.6	76.2
Urban/rural residence		
Urban	12.5	76.1
Rural	8.7	75.8
Region of residence		
Atlantic	11.0	74.4
Quebec	9.9	75.0
Ontario	14.9	79.3
Prairies	10.2	73.5
British Columbia	9.9	76.0
Northern territories	5.2	75.0
Education\(^2\)		
High school or higher	10.9	75.8
Currently in high school	13.7	75.9
< high school	11.1	77.7
Home in need of major repairs	12.1	76.9
Yes	11.0	75.9
No		
Year house was built		
1981-2001	9.8	77.5
1961-1981	10.5	76.3
< 1961	13.9	74.6
Income		
< 20,000	13.8	77.7
20,000 to < 40,000	10.3	75.7
40,000 to 60,000	11.2	75.7
> 60,000	10.2	75.5
Recent health care visit\(^3\)		
Yes	12.9	78.6
No	5.5	55.2

\(^1\) Refers to respondents who reported a diagnosis of asthma.
\(^2\) This category was deemed necessary given the number of “adults” in the sample within the school-age range (i.e., 15-19 years).
\(^3\) “Recent health care” visit refers to having seen a family physician, other medical doctor or nurse in the past 12 months.
Asthma among Canada’s Aboriginal populations

Those living in homes in need of major repairs, those living in the oldest homes and those in the lowest income groups all reported significantly high asthma prevalence. Prevalence of asthma was higher among respondents who reported having a recent health care visit as compared to those who had not.

Overall, 76.2% of Aboriginal adults who reported having been diagnosed with asthma indicated that they use asthma medications. Rates of medication use were found to be significantly high among females, older age groups and the Inuit identity group (Table II). By place of residence, significant differences were seen between

Table III. Factors associated with reported diagnosis of asthma and use of asthma medications among Aboriginal children and adults.

Characteristics	Children (0-14 years)	Regular use of medications	Adults (15+ years)	Use of medications
	Diagnosed asthma†	Use of medications‡	Diagnosed asthma‡	Use of medications‡
	OR 95% CI	OR 95% CI	OR 95% CI	OR 95% CI
Gender (male)	1.63*** 1.34-1.99	0.76 0.50-1.16	0.65*** 0.55-0.76	0.79 0.17-1.10
Age (years)	1.03*** 1.01-1.05	0.97 0.92-1.03	0.98*** 0.98-0.99	1.01* 1.00-1.02
Identity				
NA	1.00 - 1.00	1.00 -	1.00 -	1.00 -
Métis	0.93 0.73-1.17	0.66 0.42-1.01	0.92 0.78-1.09	0.89 0.47-1.21
Inuit	0.70 0.46-1.05	0.32* 0.12-0.88	0.85 0.44-1.66	1.72 0.16-3.68
Other/mixed	0.79 0.59-1.07	0.48*** 0.27-0.86	0.86 0.69-1.07	1.11 0.63-1.73
Off-reserve residence	1.25 1.04-1.50	1.49*** 1.22-1.82		
Rural residence	1.00 0.80-1.27	0.63* 0.42-0.94	0.80* 0.66-0.95	
Region				
Atlantic	1.00 - 1.00	1.00 -	1.00 -	1.00 -
Quebec	0.67 0.41-1.10	0.62 0.25-1.58	0.99 0.73-1.36	0.93 0.84-1.85
Ontario	1.18 0.80-1.73	1.01 0.45-2.27	1.25 0.92-1.69	1.45 0.22-2.61
Prairies	0.74 0.53-1.02	0.90 0.45-1.78	0.91 0.71-1.16	1.04 0.87-1.66
British Columbia	0.67*** 0.47-0.95	1.23 0.53-2.88	0.78 0.59-1.03	1.04 0.89-1.82
Northern territories	0.38*** 0.26-0.56	1.45 0.59-3.55	0.62*** 0.43-0.89	0.64 0.14-1.17
Education††				
High school or more	1.00 - 1.00	1.00 -	1.00 -	1.00 -
No diploma but in school	1.36*** 1.04-1.79	1.00 -	1.00 -	1.00 -
Less than high school	0.95 0.77-1.18	1.29 0.84-1.99	1.10 0.90-1.33	
Home needs major repair	1.31*** 1.01-1.70	1.74 0.98-3.13	1.13 0.92-1.38	
Year house built	<1961 1.16 0.87-1.56	1.34 0.76-2.36	1.07 0.86-1.33	
1961-1980	0.97 0.78-1.20	1.55* 1.00-2.40	0.88 0.73-1.07	
>1980	1.00 - 1.00	1.00 -	1.00 -	1.00 -
Income ($ CAD)				
<20,000	1.20 0.90-1.60	0.63 0.35-1.14	1.19 0.96-1.49	
20,000 - <40,000	1.21 0.93-1.57	0.88 0.49-1.58	0.87 0.71-1.08	
40,000 to 60,000	0.88 0.66-1.18	1.25 0.71-2.18	1.03 0.83-1.27	
>60,000	1.00 - 1.00	1.00 -	1.00 -	1.00 -
Recent health care visit	1.01* 1.00-1.02	1.57 0.86-2.86	2.09*** 1.69-2.60	2.36*** 1.49-3.73
% correct	65.3	60.1	89.1	76.8
Pseudo r-square	0.176	0.243	0.168	0.088

OR = adjusted odds ratios; CI = confidence interval
*p<0.05; **p<0.01; ***p<0.001
†Refers to respondents who reported a diagnosis of asthma.
††For the Children model, education refers to education of caregiver - the reference category is high school or more.
1Model adjusted for chronic bronchitis and birth weight as well as variables where model results are displayed.
2Model adjusted for chronic bronchitis, birth weight and asthma attack in past year as well as for variables where model results are displayed.
3Model adjusted for BMI, smoking status, chronic bronchitis and emphysema as well as for variables where model results are displayed.
regions, with the highest reported rates occurring in Ontario (79.3%), and the lowest in the Prairie provinces (73.5%). No significant differences in rates were seen between those living on- and off-reserve or in urban and rural areas. There were also no differences in rates of medication use within any of the SES variables examined. Rates were, however, significantly higher among those who had had a recent health care visit (78.6%) as compared to those who had not (55.2%).

Adjusted odds ratios and 95% confidence intervals for the regression analyses are presented in Table III. For Aboriginal children, the likelihood of being diagnosed with asthma was higher for males with each year that age increased, for those living in homes in need of major repairs and for those who have had a recent health care visit. The likelihood was also higher for those living off-reserve, while it was lower among those living in the province of British Columbia and the northern territories. The likelihood of reporting regular use of medications for asthma was lower for Inuit and other/mixed Aboriginal identity groups as well as for those living in rural areas, and it was higher for those living in older homes.

For adults (Table III), the likelihood of being diagnosed with asthma was higher for those with no high school diploma but still in school and for those who had had a recent health care visit. The likelihood was lower for males, younger respondents, those living on-reserve, those living in rural areas and those living in the northern territories. In the final model, it was found that the likelihood of Aboriginal adults taking asthma medication increased with each year of age and was higher among those reporting having had a recent health care visit.

DISCUSSION

The goal of this exploratory analysis was to examine asthma prevalence, exacerbations and management among Canada's Aboriginal populations, and its relationship to socio-economic and geographic factors. Before discussing the significance of the findings, a few limitations of the study must be addressed. First, the APS is a cross-sectional study, making it impossible to determine the directionality of relationships observed. Secondly, although the sample is large, it is not representative of the Canadian Aboriginal populations. Data are not available for communities that refused to participate in the 2001 Census, or for individuals that did not indicate in the Census that they were of Aboriginal ancestry/identity, had Treaty Status or band membership. Related to this is the problem of systematic exclusion of some of the smaller and more remote First Nations communities, many of which could be expected to have very different socio-economic and health care circumstances. Thus, the APS should not be considered a representative sample. Thirdly, due to reasons of confidentiality and anonymity, specific bands or communities could not be identified. As a result, only crude geographic measures have been employed. Further, as is common with national health survey data, the data collected are based on self-reports and are therefore dependent upon the ability of respondents to recall information (39) as well as on the accuracy of the initial diagnosis. It has been found, for example, that community physicians commonly do not diagnose asthma according to recommended guidelines (e.g., spirometry testing) leading to misdiagnoses (40). Such misdiagnoses could be more common in the context of
remote on-reserve or hamlet nursing stations. Finally, health is only 1 small component of the Aboriginal People's Survey and, as a result, data for several key variables including asthma medication use among adults and measures of second-hand smoke exposure are lacking. It is recommended that future iterations of the survey attempt to address some of these shortcomings.

The results of the analysis show that a total of 12% of Aboriginal children were reported to have been diagnosed with asthma, a finding just below the 13.4% reported for Canadian children and youth overall as found in the nationally representative National Longitudinal Survey of Children and Youth conducted in the same year (NLSCY) (see 41). For Aboriginal adults, 11.2% reported having been diagnosed with asthma as compared to 8.4% in the Canadian population as a whole, based on findings from the 2003 Canadian Community Health Survey (25,42). While caution is required in making direct comparisons between these surveys, they suggest that either asthma prevalence among Aboriginal populations may be slightly lower, or that there is poorer case detection in Aboriginal populations. Asthma and other chronic conditions are measured in the APS by a question that asks respondents to identify physician-diagnosed conditions. Those in rural and northern locations are known to experience limited physician and other health care access (43,44), thus poor case detection could be expected. It was found here that those who live on reserves, in rural areas and in the northern territories were all significantly less likely to have had a recent health care visit as compared to their more urban or southern counterparts (data not shown).

With respect to geographic determinants of asthma, we note some interesting findings. Our results demonstrate that place of residence is a significant predictor of asthma diagnoses among both children and adults. Specifically, those living on reserves, in the northern territories and in rural areas (adults only) have a lower likelihood of being diagnosed with asthma. These findings may reflect the environmental characteristics of these areas. Outdoor air pollution, which has been found to be associated with various negative asthma outcomes (45,46), is typically less of a problem in Canada's northern and rural areas. Further, higher rates of microbial exposure associated with, for example, growing up around animals or on farms, has been shown to influence the development of the immune system and potentially reduce the likelihood of developing allergies and asthma - this is known as the hygiene hypothesis (47). Alternatively, the findings also point to poor case detection associated with lower levels of health care access, a long-recognized problem faced by Aboriginal populations living in northern and rural areas (9,43,44). Where individuals with less severe cases of asthma might seek health care if it were readily available, cases might otherwise go undiagnosed. Evidence of poor case detection comes from Gao et al. (18), who compared Aboriginal and non-Aboriginal children in northern Canada who had not been diagnosed with asthma and found that wheezing, a symptom associated with asthma, was significantly higher in Aboriginal children. Related to this is the finding that Inuit and rural children diagnosed with asthma were significantly less likely to report regular use of asthma medications. This finding suggests that either Inuit and rural children have less
access to appropriate health care and doctor-patient communication, a factor which has been shown to lead to lower levels of medication adherence in other contexts (48), or that these populations simply have less severe disease requiring less pharmacological treatment. Given the health care access issues faced by many remote Aboriginal communities (9,43,44) and existing evidence that links low SES to low medication adherence (29), the former explanation for low regular use of asthma medication in this context seems most appropriate.

Socio-economic factors were found to be significantly associated with asthma outcomes in the descriptive analysis. In the case of children, it was found that there were higher reported rates of physician-diagnosed asthma among those living in homes in need of major repairs, in the lowest income groups and in single-parent households. Similar relationships have been identified in other populations, often being explained by factors including obesity (49,50), second-hand smoke exposure (30) and chronic maternal stress (51), issues more commonly facing low SES groups (52). Nevertheless, in the multivariate models here, the relationships between asthma diagnosis and SES did not typically hold. While this may indicate that low SES does not, for example, equate with greater risk of asthma, it may alternatively suggest that the SES measures used in this study are not sufficiently sensitive.

The results revealed that demographic characteristics play an important role in determining asthma diagnoses. Among Aboriginal children, increased age and male gender were both found to be independently associated with increased risk of reporting physician-diagnosed asthma, whereas among Aboriginal adults these relationships were reversed. These findings are consistent with studies of other non-Aboriginal populations in Canada as well as in Australia and other international contexts (20,41,53-56). The positive relationship between age and asthma prevalence in children may be explained simply by the fact that older children have had more time to develop the disease. Explanations for gender differences are more complex, although higher prevalence of adult onset asthma has been explained by such things as underlying hormonal (55,56) and psychosocial factors (54).

Findings from this research suggest that asthma is more of a health issue among Aboriginal populations than has previously been thought (1), and that there may be a general pattern of under-diagnosis due to poor access to health care and health professionals. This implies a need for better access to health care services, particularly in northern locations and remote rural reserves. This study demonstrates a clear need for research that defines asthma prevalence through indicators that are not dependent on past health care access. Further research employing more refined socio-economic and geographic measures is also recommended.

Acknowledgements
This research has been funded through a contract from the Strategic Research and Analysis Directorate (SRAD) of Indian and Northern Affairs Canada (INAC). The authors express their gratitude to the staff at the Carleton, Ottawa, Outaouais Local Research Data Centre (COOL RDC), and to Julia Vedom from the Department of Geography at the University of Ottawa for her help with the data presentation.

Conflicts of interest statement
This research was funded through a research contract from Indian and Northern Affairs Canada. There are no conflicts of interest to declare.
REFERENCES

1. Royal Commission on Aboriginal Peoples. Report of the Royal Commission on Aboriginal peoples. Volume III: gathering strength. Ottawa: Canada Communications Group; 1996. 166 p.

2. Health Canada. A Statistical Profile on the Health of First Nations in Canada for the Year 2000. Ottawa: First Nations and Inuit Health Branch, Health Canada; 2005. Summary available from http://www.hc-sc.gc.ca/fnhssi/pubs/gen/stats_prof_e.html [accessed 2010 March 17].

3. MacMillan HL, MacMillan AB, Offord DR, Dingle JL. Aboriginal health. CMAJ 1996;155(11):1569-1578.

4. MacMillan HL, Walsh CA, Jamieson E, et al. The health of Ontario First Nations people: results from the Ontario First Nations Regional Health Survey. Can J Public Health 2003;94(3):168-172.

5. Webster D, Weerasinghe S, Stevens P. Morbidity and mortality rates in a Nova Scotia First Nations community, 1996-1999. Can J Public Health 2004;95(5):369-374.

6. Young TK, Reading J, Elias B, O'Neil JD. Type 2 diabetes mellitus in Canada's First Nations: status of an epidemic in progress. CMAJ 2000;163(5):561-566.

7. Wilkins R, Uppal S, Fines P, Senecal S, Guimond E, Dion R. Life expectancy in the Inuit-inhabited areas of Canada, 1989 to 2003. Health Rep 2008;19(1):7-19.

8. Senthilselvan A, Lawson J, Rennie DC, Dosman JA. Stabilization of an increasing trend in physician-diagnosed asthma prevalence in Saskatchewan, 1991 to 1998. Chest 2003;124(2):438-448.

9. Sin DD, Wells H, Svenson LW, Man SF. Asthma and COPD among Aboriginals in Alberta, Canada. Chest 2002;121(6):1841-1846.

10. Dales RE, Raizenne M, El-Saadany S, Brook J, Burnett R. Prevalence of childhood asthma across Canada. Int J Epidemiol 1994;23(4):775-781.

11. Lougheed MD, Garvey N, Chapman KR, et al. The Ontario Asthma Regional Variation Study: emergency department visit rates and the relation to hospitalization rates. Chest 2006;129(4):909-917.

12. Babey SH, Hastert TA, Meng YY, Brown ER. Low-income Californians bear unequal burden of asthma. Policy Brief UCLA Cent Health Policy Res 2007(PB2007-1):1-7.

13. Higgins BG, Britton JR. Geographical and social class effects on asthma mortality in England and Wales. Respir Med 1995;89(5):341-346.

14. Rona RJ. Asthma and poverty. Thorax 2000;55(3):239-244.

15. Moore H, Burgner D, Carville K, Jacoby P, Richmond P, Lehmann D. Diverging trends for lower respiratory infections in non-Aboriginal and Aboriginal children. J Paediatr Child Health 2007;43(6):451-457.

16. Dawson AP. Asthma in the Australian Indigenous population: a review of the evidence. Rural Remote Health 2004;4(1):238.

17. Meng YY, Babey SH, Hastert TA, Brown ER. California’s racial and ethnic minorities more adversely affected by asthma. Policy Brief UCLA Cent Health Policy Res 2007(PB2007-3):1-7.

18. Gao Z, Rowe BH, Majaecis C, O’Hara C, Senthilselvan A. Prevalence of asthma and risk factors for asthma-like symptoms in Aboriginal and non-Aboriginal children in the northern territories of Canada. Can Respir J 2008;15(3):139-145.

19. Senthilselvan A, Habbick BF. Increased asthma hospitalizations among registered Indian children and adults in Saskatchewan, 1970-1989. J Clin Epidemiol 1995;48(10):1277-1283.

20. Valery PC, Purdie DM, Chang AB, Masters IB, Green A. Assessment of the diagnosis and prevalence of asthma in Australian Indigenous children. J Clin Epidemiol 2003;56(7):629-635.

21. Nicolai T. Epidemiology of pollution-induced airway disease: urban/rural differences in East and West Germany. Allergy 1997;52(38 Suppl):26-29; discussion 35-36.

22. Nilsson L, Castor O, Löfman O, Magnusson A, Kjellman NI. Allergic disease in teenagers in relation to urban or rural residence at various stages of childhood. Allergy 1999;54(7):716-721.

23. Ernst P, Cormier Y. Relative scarcity of asthma and atopy among rural adolescents raised on a farm. Am J Respir Crit Care Med 2000;161(5):1563-1566.

24. Lajoie P, Laberge A, Lebel G, et al. Cartography of emergency department visits for asthma - targeting high-morbidity populations. Can Respir J 2004;11(6):427-433.

25. Statistics Canada. Aboriginal People’s Survey 2001: initial release - supporting tables. Ottawa: Statistics Canada; 2003a. Catalogue no. 89-592-XIE. 84 p.

26. Corvalan C, Amigo H, Bustos P, Rona RJ. Socioeconomic risk factors for asthma in Chilean young adults. Am J Public Health 2005;95(8):1375-1381.

27. Lang DM, Polansky M. Patterns of asthma mortality in Philadelphia from 1969 to 1991. N Engl J Med 1994;331(23):1542-1546.

28. Akinbami LJ, Rhodes JC, Lara M. Racial and ethnic differences in asthma diagnosis among children who wheeze. Pediatrics 2005;115(5):1254-1260.

29. Blais L, Beauchesne MF, Levesque S. Socioeconomic status and medication prescription patterns in pediatric asthma in Canada. J Adolesc Health 2006;38(5):607 e9-16.

30. Gwynn RC. Risk factors for asthma in U.S. adults: results from the 2000 Behavioral Risk Factor Surveillance System. J Asthma 2004;41(1):91-98.

31. Klinnert MD, Nelson HS, Price MR, Adinoff AD, Leung DY, Mrazek DA. Onset and persistence of childhood asthma: predictors from infancy. Pediatrics 2001;108(4):E69.

32. Strachan DP, Butland BK, Anderson HR. Incidence and prognosis of asthma and wheezing illness from early childhood to age 33 in a national British cohort. BMJ 1996;312(7040):1195-1199.

33. Hull J. Post-secondary education and labour market outcomes Canada, 2001. Winnipeg, Manitoba: Prologis Canada; 2003a. Catalogue no. 89-592-XIE. 84 p.

34. McHardy M, O’Sullivan E. The Community Well-being Index (CWI): Well-being in First Nations communities, present, past and future. In: White JP, Beavon D, Spence N, editors. Aboriginal well-being: Canada’s continuing challenge. Toronto, Ontario: Thompson Educational Publishing; 2007. p. 111-148.

Asthma among Canada’s Aboriginal populations

International Journal of Circumpolar Health 69:2 2010 149
Asthma among Canada’s Aboriginal populations

35. Evans RG, Stoddart GL. Producing health, consuming health care. Soc Sci Med 1990;31(12):1347-1363.

36. Berghout J, Miller JD, Mazeronne R, et al. Indoor environmental quality in homes of asthmatic children on the Elsipogtog Reserve (NB), Canada. Int J Circumpolar Health 2005;64(1):77-85.

37. Buckeridge DL, Glazier R, Harvey BJ, Escobar M, Armhein C, Frank J. Effect of motor vehicle emissions on respiratory health in an urban area. Environ Health Perspect 2002;110(3):293-300.

38. Levesque B, Rhainds M, Ernst P, et al. Asthma and allergic rhinitis in Quebec children. Can Respir J 2004;11(5):343-348.

39. Redelmeier DA, Tu JV, Schull MJ, Ferris LE, Hux JE. Problems for clinical judgement: 2. Obtaining a reliable past medical history. CMAJ 2001;164(6):809-813.

40. Linden Smith J, Morrison D, Deveau C, Hernandez P. Over-diagnosis of asthma in the community. Can Respir J 2004 Mar;11(2):111-116.

41. Garner R, Kohen D. Changes in the prevalence of asthma among Canadian children. Health Reports 2008;19(2):45-50.

42. Chen E, Johanson MD, Thillaiampalam S, Sambell C. Asthma. Health Reports 2005;16(2):4.

43. Newbold KB. Aboriginal physician use in Canada: location, orientation and identity. Health Econ 1997;6(2):197-207.

44. Shah BR, Gunraj N, Hux JE. Markers of access to and quality of primary care for Aboriginal people in Ontario, Canada. Am J Public Health 2003;93(5):798-802.

45. Gilliland FD. Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. Pediatrics 2009;123(Suppl 3):S168-S173.

46. Brauer M, Hoek G, Smit HA, et al. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 2007;29(5):879-888.

47. Martinez F. The coming-of-age of the hygiene hypothesis. Respir Res 2001;2(3):129-132.

48. Cochrane GM, Horne R, Chanez P. Compliance in asthma. Respir Med 1999;93(11):763-769.

49. Vlaski E, Stavric K, Isjanovska R, Seckova L, Kimovska M. Overweight hypothesis in asthma and eczema in young adolescents. Allergol Immunopathol (Madr) 2006;34(5):199-205.

50. Epstein LH, Wu YY, Paluch RA, Cerny FJ, Dorn JP. Asthma and maternal body mass index are related to pediatric body mass index and obesity: results from the Third National Health and Nutrition Examination Survey. Obes Res 2000;8(8):575-581.

51. Chen E, Johanson MD, Paterson LQ, Griffin MJ, Walker HA, Miller GE. Socioeconomic status and inflammatory processes in childhood asthma: the role of psychological stress. J Allergy Clin Immunol 2006;117(5):1014-1020.

52. Pomerleau J, Pederson LL, Østbye T, Speechley M, Speechley KN. Health behaviours and socio-economic status in Ontario, Canada. Eur J Epidemiol 1997;13(6):613-622.

53. Crighton EJ, Mamdani MM, Upshur RE. A population-based time series analysis of asthma hospitalisations in Ontario, Canada: 1988 to 2000. BMC Health Serv Res 2001;1(1):7.

54. Kimbell-Dunn M, Pearce N, Beasley R. Seasonal variation in asthma hospitalizations and death rates in New Zealand. Respiriology 2000;5(3):241-246.

55. Lieberman D, Kopernik G, Porath A, Lazer S, Heimer D. Sub-clinical worsening of bronchial asthma during estrogen replacement therapy in asthmatic postmenopausal women. Maturitas 1995;21(2):153-157.

56. Troisi RJ, Speizer FE, Willett WC, Trichopoulos D, Rosner B. Menopause, postmenopausal estrogen preparations, and the risk of adult-onset asthma. A prospective cohort study. Am J Respir Crit Care Med 1995;152(4 Pt 1):1183-1188.

Eric J. Crighton, Ph.D.
Department of Geography, University of Ottawa
60 University Private
Ottawa, ON K1N 7Z5
CANADA
Email: eric.crighton@uottawa.ca