Abstract. Background/Aim: Surgical site infections (SSI) are associated with increased morbidity and mortality, and they occur more frequently during unplanned emergency surgical procedures than elective. Our aim was to determine the incidence of SSI within our ES cohort and to identify risk factors for SSI. Patients and Methods: Data from consecutive patients undergoing ES in a single institution during a 5-year period were prospectively collected and analyzed. Results: A total of 838 consecutive patients were included. The median age was 52 (IQR=25-71) years and some 368 (44%) were female. 157 (18.7%) of those patients developed SSI. The most commonly isolated pathogen was E. Coli (55.4%) followed by Staphylococcus Aureus (40.1%). The 30-day mortality rate of patients who presented SSIs was 14.6% compared to 6.8% of patients without SSI (p=0.002). Multivariable analysis showed that the type of wound, American Society of Anesthesiology score, severity and duration of surgery >90 min were independent risk factors for the occurrence of SSI. Conclusion: Identification of modifiable causative factors for SSI within an ES unit is paramount as they can critically impact postoperative outcomes.

Surgical site infections (SSI) represent a major burden for surgical patients and are associated with increased morbidity, protracted hospital length of stay, higher intensive care unit (ICU) admissions and hospital readmissions, as well as increased mortality and last but not least, increased economic costs (1). Over the past decades, prevention of SSIs has attracted substantial interest from surgeons, infection preventionists, and health care authorities (2). In particular, patients undergoing emergency surgery (ES) are at higher risk for developing SSIs compared to those undergoing elective surgery due to dirtier and more contaminated wounds. Notably, while SSIs in patients undergoing elective surgery may range from 1.5% to 5%, in patients undergoing ES, SSIs may account for 7-32% (3, 4). Patients undergoing ES have higher morbidity and mortality rates. In this context, predicting and preventing the occurrence of SSIs in these vulnerable patient groups are of cardinal importance.

A plethora of patient and procedure-related factors have been strongly associated with the occurrence of SSI over the past decades (5). Advanced age, poor nutritional status, increased body mass index (BMI), smoking, remote infections, and administration of immunosuppressive medication are amongst the most common patient-related risk factors for the occurrence of SSI. On the other hand, prolonged operative time, contaminated wound status, prophylactic administration of antibiotics, and emergency nature of surgery are among the most common procedure-related risk factors (5, 6).

Morbidity and mortality rates in these high-risk patients could be actively decreased by interventions focused on potentially modifiable risk factors for the development of SSI. For that reason, the objective of our study was to identify the incidence and risk factors of SSI within our ES cohort.

Patients and Methods

Study design. This study was a prospective, observational study, which was approved from the Institutional Review Board of “Agios Panteleimon” General Hospital of Nikea. A patient information sheet and an informed consent form were provided to patients eligible to be included in the study. Signed informed consent was
obtained from each included patient. All patient data were de-
idified, and the authors assumed written responsibility for the
protection of patient data according to the regulations of the
Hellenic Data Protection Authority.

Setting. The study took place at the “Agios Panteleimon”
General Hospital of Nikea from January 1st, 2010 to December
31st, 2014. Data were collected with the use of a prospectively
maintained Excel spreadsheet (Microsoft, Redmond, WA, USA),
starting immediately after institutional review board (IRB)
approval was obtained.

Inclusion and exclusion criteria. Consecutive patients who
underwent ES at the First Surgical Department of “Agios
Panteleimon” General Hospital of Nikea were considered eligible
for inclusion. We have excluded patients which underwent ES for
skin and soft tissue infections, as there is no standard definition of
SSI for these operations, given the difficulty to assess the presence
of SSI in soft tissue infections.

Definitions. We have used the Centers for Disease Control and
Prevention/National Healthcare Safety Network (CDC/NHSN)
criteria of SSI (7). For surgical wound class we have used the
standard definitions of American College of Surgeons Committee
on Control of Surgical Infections (8).

Recorded variables. The following variables were recorded: a)
Patient information (demographics and personal history): gender,
age, body mass index (BMI), smoking status, presence of diabetes
mellitus, coronary heart disease, heart failure, chronic respiratory
failure and chronic renal failure, administration of anticoagulants,
and American Society of Anesthesiology score (9). b) Data of the
surgery: surgical wound class, severity and duration of operation,
perioperative red blood cell unit (RBCU) transfusions, antimicrobials before surgery, other remote infection,
chemoprophylaxis or antimicrobial treatment, and intensive care
unit (ICU) admission. c) SSI Data: SSI classification, pathogenic
cause of SSI, antimicrobial treatment administered, other
postoperative infections, postoperative complications (graded
according to Clavien-Dindo classification) (8) d) Outcomes: length
of hospital stay, readmission, and 30-day mortality. The severity of
the surgical procedure performed was independently assessed by
two surgeons (AP and CV) based on predetermined criteria (Figure
1). The grading of the surgical wound class in each patient was
similarly independently assessed by the same two surgeons (10).

Statistical analysis. Statistical analysis was performed using IBM
SPSS Statistics for Windows, Version 26.0 (IBM, Armonk, NY,
USA). Chi-square test and Fisher’s exact test were used for
comparisons among groups with categorical variables. Logistic
regression analysis was used for multivariable analysis of risk
factors for SSI. All the tests were two-tailed. Results were
considered statistically significant if the p-value was less than 0.05.

Results

Patient characteristics. A total of 838 patients who
underwent ES during the study period were included. The
mean age was 50.9 years (SD=23.0) and 368 (44%) of them
were female. One hundred and fifty-five (18.7%) of these
patients developed SSI. Characteristics of patients with and

	Mild	Moderate	Severe
Acute appendicitis	Appendectomy for inflammatory appendicitis	Appendectomy for suppurative appendicitis	Appendectomy/colostomy for perforated appendicitis / generalized peritonitis
Acute cholecystitis	Cholecystectomy for mild cholecystitis	Total/subtotal cholecystectomy for GB empyema	Total/subtotal cholecystectomy for GB perforation / biliary peritonitis
Acute diverticulitis	-	Primary repair/resection for perforated bowel / local abscess	Resection for perforated bowel / generalized peritonitis
Gastrointestinal perforation	Primary repair for recent perforation / no abscess-peritonitis	Primary repair/resection for local abscess	Resection for generalized peritonitis
Obstructive ileus	Adhesiolysis (no ischaemia)	± Resection (ischaemia present)	Resection for perforation / generalized peritonitis
Strangulated hernia	Simple repair (no ischaemia)	± Resection (ischaemia present)	Resection for perforated bowel
Trauma with haemorrhage		Repair/resection for single organ trauma	Resection for multiorgan trauma
Trauma with peritonitis		Primary repair/resection for localized peritonitis	Resection for generalized peritonitis
Upper gastrointestinal bleeding		Primary repair/short segment resection	Extended resection
Lower gastrointestinal bleeding		Short segment resection	Extended resection
Vascular ischaemia	-	Short segment resection	Extended resection

Figure 1. Study classification of severity of surgical procedures with examples.
without SSI are shown in detail in Table I. Characteristics associated with the presence of SSI were older age, higher BMI, presence of diabetes, coronary heart disease or congestive heart failure, and chronic obstructive pulmonary disease. Patients with SSI were more frequently receiving anticoagulants, aspirin, and steroids compared to the non-SSI group, confirming the higher comorbid state of these patients. Finally, patients with SSI had significantly higher ASA score and were more frequently admitted to our hospital >1 day before undergoing ES.

Perioperative outcomes. The indications for ES as well as perioperative outcomes are shown in Table II. The primary wounds of patients who developed SSI were more commonly dirty or contaminated, compared to the non-SSI group of patients (p<0.0001), whilst they also underwent more severe procedures compared to the latter (p<0.0001). Surgical procedures lasted more frequently longer than 90 minutes in patients who eventually developed SSI (p<0.0001), whilst these patients were more frequently transfused with >2 RBC units. The most common type of infection was superficial (60.5%), followed by deep incisional (21.7%), and organ/space infections (17.8%). The most commonly isolated pathogen was *E. Coli* (55.4%) followed by *Staphylococcus aureus* (40.1%), *Enterococcus spp.* (21.6%), *Pseudomonas aeruginosa* (19.7%), *Klebsiella spp.* (15.4%), *coagulase-negative staphylococci* (12.7%), and *Acinetobacter spp.* (6.4%). Patients who developed SSI had significantly higher CD complications (>grade II) (p<0.0001), and were more frequently reoperated (p<0.0001) and readmitted (p<0.0001), compared to non-SSI patients. Patients not developing SSI had a median length of hospital stay of 5 days (IQR=5-6), while those who developed SSI had a median stay of 17 (IQR=14-23) days. The 30-day mortality rate of patients who presented SSIs was higher (23/157, 14.6%) compared to (47/681, 6.8%) that of patients without SSI (p=0.002).

Multivariable analysis. All variables associated with SSI in univariate analysis were entered into a multivariable logistic regression model in which the outcome was the presence of SSI. Ordinal variables were transformed into binary: ASA score 1 vs. 2-5, severity mild vs. moderate and severe, wound category clean vs. non-clean categories. Logistic regression analysis showed that non-clean wound class (odds ratio (OR)=3.312, 95% confidence intervals (CI)=1.266-8.663, p=0.015), ASA score ≥2 (OR=3.895, 95% CI=1.702-8.914, p=0.001), moderate or higher severity (OR=4.735, 95% CI=2.501-8.963, p<0.0001) and duration of surgery >90 min (OR=1.876, 95% CI=1.186-2.969, p=0.007) were independent risk factors for the occurrence of SSI (Figure 2).
Discussion

Our study demonstrated that the incidence of SSI in patients who underwent ES in a single unit during a 5-year period was 18.7%, with *E. coli* being the most frequently isolated pathogen. Patients who developed SSI were, in accordance to what has been reported in the literature, older, had higher BMI, had more comorbidities, and underwent more severe surgical procedures, which lasted longer and had contaminated wounds more frequently compared to those who did not develop SSIs.

American Society of Anesthesiology performance status scoring was an independent predictor for the occurrence of SSI. Van Walraven *et al.* demonstrated a similar outcome in a study, which investigated risk factors of SSI using the National Surgical Quality Improvement Program (11), while Mezemir *et al.* showed that patients with ASA class I had decreased likelihood of developing SSI (OR=0.3) compared to ASA class III patients (12). Khan *et al.* demonstrated a similarly strong association of ASA score and SSI rates in clean and clean-contaminated wounds of surgical patients (13). A large international prospective multicenter study, which included a total of 12,539 patients who underwent gastrointestinal surgery, 1,538 (12.2%) of whom developed SSI also demonstrated that ASA scores II and III were independently associated with SSI (14).

Operative time is a potentially modifiable risk factor, in contrast to other inherent or acquired risk factors such as chronic kidney dysfunction, pulmonary obstructive diseases,

Presence of SSI	Total n (%)	No n (%)	Yes n (%)	p-Value
Indication for surgery				
GI bleeding	14 (1.7)	5 (0.7)	9 (5.7)	<0.0001
Obstructive Ileus	189 (22.6)	147 (21.6)	42 (26.8)	
Intra-abdominal infection*	564 (67.4)	465 (68.4)	99 (63.1)	
Other	17 (2)	17 (2.5)	0 (0)	
Trauma with bleeding	40 (4.8)	36 (5.3)	4 (2.5)	
Trauma with peritonitis	5 (0.6)	5 (0.7)	0 (0)	
Vascular ischemia	8 (1)	5 (0.7)	3 (1.9)	
Wound category				
Clean	116 (13.9)	111 (16.3)	5 (3.2)	<0.0001
Clean-contaminated	382 (45.6)	342 (50.3)	40 (25.5)	
Contaminated	297 (35.5)	212 (31.2)	85 (54.1)	
Dirty	42 (5)	15 (2.2)	27 (17.2)	
Severity				
Mild	388 (46.4)	374 (55)	14 (8.9)	<0.0001
Moderate	259 (30.9)	206 (30.2)	53 (33.8)	
Severe	190 (22.7)	100 (14.7)	90 (57.3)	
Duration >90 min	370 (44.2)	253 (37.2)	117 (74.5)	<0.0001
Transfusion of >2 RBCU	73 (8.7)	43 (6.3)	30 (19.1)	<0.0001
Pre-operative antimicrobials				
Prophylaxis	205 (24.5)	179 (26.3)	26 (16.6)	<0.0001
Treatment for remote infection	25 (3)	11 (1.6)	14 (8.9)	
Treatment for surgical infection	606 (72.4)	489 (71.9)	117 (74.5)	
Treatment for surgical infection, Prophylaxis	1 (0.1)	1 (0.1)	0 (0)	
SSI classification				
Deep incisional	34 (4.1)	0 (0)	34 (21.7)	
No SSI	680 (81.2)	680 (100)	0 (0)	
Organ/space	28 (3.3)	0 (0)	28 (17.8)	
Superficial incisional	95 (11.4)	0 (0)	95 (60.5)	
Clavien-Dindo				
Grade I	92 (11)	86 (12.6)	6 (3.8)	<0.0001
Classification				
Grade II	133 (15.9)	72 (10.6)	61 (38.9)	
Grade III	48 (5.7)	8 (1.2)	40 (25.5)	
Grade IV	45 (5.4)	19 (2.8)	26 (16.6)	
Grade V	69 (8.2)	46 (6.8)	23 (14.6)	
None	450 (53.8)	449 (66)	1 (0.6)	
Reoperation	80 (9.6)	19 (2.5)	61 (38.9)	<0.0001
Readmission	45 (5.4)	18 (2.7)	27 (17.2)	<0.0001
30-day mortality	70 (8.4)	47 (6.9)	23 (14.6)	0.002

SSI: Surgical site infection; LOS: length of stay; GI: gastrointestinal; RBCU: red blood cell unit; *including appendicitis, cholecystitis & diverticulitis.
or diabetes mellitus. In addition, it is also influenced by several other factors such as surgical experience and operative planning. Our analysis confirmed the detrimental role of prolonged operative time in causing SSIs. Such outcome is in line with the findings of several prospective and retrospective studies throughout multiple surgical disciplines and different types of procedures (15-17). A recently published systematic review and meta-analysis demonstrated a statistically significant association between operative time and occurrence of SSI (16). Although the included studies covered a wide range of surgical procedures, based on their pooled analysis, the authors showed that the likelihood of developing SSI was twice as high among individuals who underwent surgical procedures with protracted operative times. Lastly, Li et al. also showed that surgical duration >120 minutes was independently associated with development of SSI in patients undergoing emergency abdominal surgery (18). Therefore, the adoption of measures such as improved operative planning, whenever possible, is of paramount importance.

Several inherent limitations to our study should be acknowledged. In particular, there was significant heterogeneity among the surgical procedures undertaken. Furthermore, there is no widely accepted international classification of severity of ES procedures, thus our classification may be subject to bias. Nevertheless, these criteria were predetermined and all patients were independently assessed by two surgeons to ensure adherence to our criteria. Moreover, our study evaluated only a certain number of risk factors, which however have been previously validated in the literature, thus other potential risk factors, patient-, procedure- or perioperative care-associated, may remain elusive.

Identification of patients at risk for developing SSI is critical, because reduction of SSI can reduce the associated morbidity and mortality. Interdisciplinary cooperation between surgeons, anesthesiologists, infectious diseases specialists, operative theater and nursing staff is crucial for achieving the best possible outcomes in this high-risk group of patients. As patient safety is of utmost importance in the practice of surgery nowadays and as patients undergoing ES are more vulnerable and at higher risk of developing SSI, every surgical unit should audit their outcomes in order to pinpoint modifiable risk factors.

Conflicts of Interest

The Authors declare that they have no competing interests in relation to this study.

Authors’ Contributions

Conception and design: AP, MS, CV, GLD; Acquisition of data: AP, CC, EM, DB; Analysis and interpretation: MS, NM, GT; Drafting the manuscript: AP, NM, SK, CC, DB; Revising the manuscript: NM, MS, GT, CV, GLD; Final approval for submission: all Authors.

References

1 De Simone B, Sartelli M, Coccolini F, Ball CG, Brambillasca P, Chiarugi M, Campanile FC, Nita G, Corbella D, Leppaniemi A, Boschini E, Moore EE, Biffl W, Peitzmann A, Kluger Y, Sugrue M, Fraga G, Di Saverio S, Weber D, Sakakushev B, Chiara O,
Abu-Zidan FM, Ten Broek R, Kirkpatrick AW, Wani I, Coimbra R, Baiocchi GL, Kelly MD, Ansaloni L and Catena F: Intraoperative surgical site infection control and prevention: a position paper and future addendum to WSES intra-abdominal infections guidelines. World J Emerg Surg 15(1): 10, 2020. PMID: 32041636. DOI: 10.1186/s13017-020-0288-4

Global Guidelines for the Prevention of Surgical Site Infection. WHO Guidelines Approved by the Guidelines Review Committee, Geneva, 2016. Available at: https://www.who.int/gpsc/global-guidelines-web.pdf?ua=1 [Last accessed on September 13, 2021]

Pinkney TD, Calvert M, Bartlett DC, Gheorghe A, Redman V, Dowswell G, Hawkins W, Mak T, Youssef H, Richardson C, Hornby S, Magill L, Haslop R, Wilson M, Morton D, West Midlands Research Collaborative and ROSSINI Trial Investigators: Impact of wound edge protection devices on surgical site infection after laparotomy: multicentre randomised controlled trial (ROSSINI Trial). BMJ 347: f4305, 2013. PMID: 23903454. DOI: 10.1136/bmj.f4305

Uchino M, Ikeuchi H, Matsuoka H, Takahashi Y, Tomita N and Takesue Y: Surgical site infection and validity of staged surgical procedure in emergent/urgent surgery for ulcerative colitis. Int Surg 98(1): 24-32, 2013. PMID: 23438273. DOI: 10.9738/CC83.1

Dominioni L, Imperatori A, Rotolo N and Rovera F: Risk factors for surgical infections. Surg Infect (Larchmt) 7 Suppl 2: S9-12, 2006. PMID: 16895516. DOI: 10.1089/sur.2006.7.s2-9

Aga E, Keinan-Boker L, Eithan A, Mais T, Rabinovich A and Nassar F: Surgical site infections after abdominal surgery: incidence and risk factors. A prospective cohort study. Infect Dis (Lond) 47(11): 761-767, 2015. PMID: 26114986. DOI: 10.3109/23744235.2015.1055587

National Healthcare Safety Network Surgical Site Infection Event. Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf [Last accessed on September 13, 2021]

Altemeier WA, Burke JF, Pruitt BA and Sandusky WR: Manual on Control of Infection in Surgical Patients. 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1984

Doyle DJ and Garmon EH: American Society of Anesthesiologists Classification (ASA Class). StatPearls, Treasure Island (FL), 2020.

Ortega G, Rhee DS, Papandria DJ, Yang J, Ibrahim AM, Shore AD, Makary MA and Abdullah F: An evaluation of surgical site infections by wound classification system using the ACS-NQIP. J Surg Res 174(1): 33-38, 2012. PMID: 21962737. DOI: 10.1016/j.jss.2011.05.056

van Walraven C and Musselman R: The surgical site infection risk score (SSIRS): A model to predict the risk of surgical site infections. PLoS One 8(6): e67167, 2013. PMID: 23826224. DOI: 10.1371/journal.pone.0067167

Mezemir R, Seid A, Gishu T, Demas T and Gize A: Prevalence and root causes of surgical site infections at an academic trauma and burn center in Ethiopia: a cross-sectional study. Patient Saf Surg 14: 3, 2020. PMID: 31921353. DOI: 10.1186/s13037-019-0229-x

Khan M, Rooh-ul-Muqim, Zarin M, Khalil J and Salman M: Influence of ASA score and Charlson Comorbidity Index on the surgical site infection rates. J Coll Physicians Surg Pak 20(8): 506-509, 2010. PMID: 20688013. DOI: 08.2010/ICPSP.506509

GlobalSurg Collaborative: Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study. Lancet Infect Dis 18(5): 516-525, 2018. PMID: 29452941. DOI: 10.1016/S1473-3099(18)30101-4

Lee JS, Terjeimanian MN, Tishberg LM, Alawieh AZ, Harbaugh CM, Sheetz KH, Holcombe SA, Wang SC, Sonnenday CJ and Englesbe MJ: Surgical site infection and analytic morphometric assessment of body composition in patients undergoing midline laparotomy. J Am Coll Surg 213(2): 236-244, 2011. PMID: 21601491. DOI: 10.1016/j.jamcollsurg.2011.04.008

Cheng H, Chen BP, Soleas IM, Ferko NC, Cameron CG and Hinoul P: Prolonged operative duration increases risk of surgical site infections: a systematic review. Surg Infect (Larchmt) 18(6): 722-735, 2017. PMID: 28832271. DOI: 10.1089/sur.2017.089

Smith BP, Fox N, Fakhro A, LaChant M, Pathak AS, Ross SE and Seamons MJ: “SCIP”ping antibiotic prophylaxis guidelines in trauma: The consequences of noncompliance. J Trauma Acute Care Surg 73(2): 452-46; discussion 456, 2012. PMID: 22846955. DOI: 10.1097/TA.0b013e31825f8670

Li Z, Li H, Lv P, Peng X, Wu C, Ren J and Wang P: Prospective multicenter study on the incidence of surgical site infection after emergency abdominal surgery in China. Sci Rep 11(1): 7794, 2021. PMID: 33833359. DOI: 10.1038/s41598-021-87392-8

in vivo. 35: 3569-3574 (2021)

Received August 25, 2021
Revised September 10, 2021
Accepted September 13, 2021