On weak separation property for self-affine Jordan arcs.

Olesya Chelkanova Andrey Tetenov

June 24, 2020

Abstract

We consider self-affine arcs in \mathbb{R}^2 and prove that violation of "inner" weak separation property for such arcs implies that the arc is a parabolic segment. Therefore, if a self-affine Jordan arc is not a parabolic segment, then it is the attractor of some multizipper.

2010 Mathematics Subject Classification. Primary: 28A80.

Keywords and phrases. self-affine set, weak separation property, multizipper.

1 Introduction

The idea of associated family of similarities for a system $S = \{S_1, ..., S_m\}$ of similarities in \mathbb{R}^d was initially proposed by C. Bandt and S. Graf [2] to analyse the measure and dimension properties of the attractor K of the system S. This approach was developed in [10] to result in Weak Separation Condition [6, 9, 5, 15]. Violation of WSC results not only in the measure drop for K [8, 14] in its dimension, but it also implies some special geometric properties of K and rigidity phenomena for the deformations of self-similar structure on K [4, 12, 13].

Though this scope of ideas and methods initially had self-similar sets as its target, there always was an attractive idea to extend it to more general classes of self-similar sets.

We consider how Weak Separation Condition (or its violation) applies to self-affine Jordan arcs in plane and show that structure and rigidity theorems for self-similar Jordan arcs [1, 11] have their self-affine analogues.

The main result of the current paper is the following
Theorem 1 Let \(\gamma \) be a self-affine Jordan arc in \(\mathbb{R}^2 \) which is not a parabolic segment. Then \(\gamma \) is a component of the attractor of some self-affine multi-zipper \(Z \).

As a main step for this result we prove the following rigidity theorem for a very general class of self-affine arcs, which need not be finitely generated:

Theorem 2 Let \(\gamma = \gamma(a_0, a_1) \) be a Jordan arc with endpoints \(a_0, a_1 \) in \(\mathbb{R}^2 \) such that

(i) For any \(\varepsilon > 0 \) and for any non-degenerate subarc \(\gamma' \subset \gamma \) there is an affine map \(S \) such that \(S(\gamma) \subset \gamma' \) and \(\text{Lip } S < \varepsilon \)

(ii) There is a sequence of affine maps \(f_k \) converging to \(\text{Id} \) such that \(f_k(\gamma) \cap \gamma = \gamma(f(a_0), a_1) \) and \(\text{fix}(f_k) \cap \gamma = \emptyset \).

Then \(\gamma \) is a parabolic segment.

In finitely generated case this theorem becomes

Theorem 3 Let a Jordan arc \(\gamma \subset \mathbb{R}^2 \) with endpoints \(a_0, a_1 \) be the attractor of a system \(S = \{S_1, \ldots, S_m\} \) of contracting affine maps. Let \(\mathcal{F}(S) \) be the associated family for the system \(S \). If there is a sequence \(f_n \in \mathcal{F}(S) \setminus \{\text{Id}\} \) such that \(f_n \to \text{Id} \), and \(f_n(\gamma) \cap \gamma \neq \emptyset \) then \(\gamma \) is a parabolic segment.

The proof of Theorems 2 and 3 uses the result of C. Bandt and A. S. Kravchenko [3] that except for parabolic arcs and segments, there are no twice continuously differentiable self-affine curves in the plane.

1. Definitions and notation.

Let \(S = \{S_1, \ldots, S_m\} \) be a system of contracting affine maps in \(\mathbb{R}^d \). The unique nonempty compact set \(K = K(S) \) such that \(K = \bigcup_{i=1}^{m} S_i(K) \), is called the attractor of the system \(S \), or a self-affine set generated by the system \(S \).

A system \(S \) is irreducible if, for every proper subsystem \(S' \subset S \), the attractor of \(S' \) is different from the attractor of the system \(S \).

By \(I = \{1, 2, \ldots, m\} \) we denote the set of indices, \(I^* = \bigcup_{n=1}^{\infty} I^n \) is the set of all multiindices \(i = i_1i_2...i_n \), and we denote \(S_1 = S_{i_1}, S_{i_2}, \ldots, S_{i_n} \). The set of all infinite sequences \(I^\infty = \{\alpha = \alpha_1\alpha_2\ldots, \alpha_i \in I\} \) is the index space.
and $\pi : I^\infty \to K$ is the index map, which maps a sequence α to the point $\bigcap_{n=1}^{\infty} K_{\alpha_1...\alpha_n}$.

The set \mathcal{F} of all compositions $S_j^{-1}S_i$, where $i, j \in I^*$ and $i_1 \neq j_1$ is called the associated family of affine mappings for the system S. The system S has the weak separation property (WSP) if and only if $\text{Id} \notin \mathcal{F} \setminus \text{Id}$.

If γ is a Jordan arc with endpoints a_0, a_1, we denote its subarc γ' with endpoints $x, y \in \gamma$ by $\gamma(x, y)$. We order the points in γ putting $a_0 < a_1$ and write $x < y$ if $y \in \gamma(x, a_1)$. We denote the diameter of a set A by $|A|$.

2. Representing γ as a limit of ε-nets $P(k, x)$.

Applying if necessary a coordinate change, we may suppose that the arc γ lies in the unit disc $D = \{x^2 + y^2 \leq 1\}$.

It follows from the condition (ii) that the subarcs $\sigma_{k,0} = \gamma \setminus f_k(\gamma)$ and $\sigma_{k,1} = f_k(\gamma) \setminus f_k^2(\gamma)$ are disjoint. Proceeding by induction we get a sequence of subarcs

$$\sigma_{k,n} = f_k^n(\sigma_{k,0}) = f_k^n(\gamma) \setminus f_k^{n+1}(\gamma)$$

which have endpoints $f_k^n(a_0), f_k^{n+1}(a_0)$ and have disjoint interiors as long as respective subarcs lie in γ. Since f_k has no fixed points in γ, there is a maximal number N_k for which

$$\bigcup_{n=0}^{N_k-1} \sigma_{k,n} = \gamma(a_0, f_k^{N_k}(a_0)) \subset \gamma.$$ Let $\sigma_{k,N_k} = f_k^{N_k}(\sigma_{k,0}) \cap \gamma = \gamma(f_k^{N_k}(a_0), a_1)$.

By the compactness of the arc γ for any $\varepsilon > 0$ there is such δ, that if $x_1, x_2 \in \gamma$ and $d(x_1, x_2) < \delta$, then the diameter of the subarc $\gamma(x_1, x_2)$ is less than ε.

Therefore for any $\varepsilon > 0$ there is such N, that if $k < N$ then $\|f_k(x) - x\| < \delta$ for any $x \in \gamma$, therefore the diameters of the subarcs $\sigma_{k,n}$ are not greater than ε.

For any k and for any $x \in \gamma$ the point x lies in one of subarcs $f_k^{n_k}(\sigma_{x,0})$. Denote $P(k, x) = \{f_k^n(x), -n_k \leq n \leq N_k - n_0\}$. Then Hausdorff distance between $P(k, x)$ and γ is not greater than $\max\{\|\sigma_{k,n}\|, 0 \leq n \leq N_k\}$.

3
Therefore for any choice of the sequence $x_k \in \gamma$ the sequence of sets $P(k, x_k)$ converges to γ in Hausdorff metrics.

3. Five types of affine maps and their associated vector fields.

Since the sequence f_k converges to Id, we suppose that all f_k are sufficiently close to Id so that for any f_k we can correctly define its power $f_k^t, t \in \mathbb{R}$, satisfying the conditions:

1. For any $t_1, t_2 \in \mathbb{R}$, $f_k^{t_1} \circ f_k^{t_2} = f_k^{t_1 + t_2}$;
2. $f_k^0 = \text{Id}$ and $f_k^1 = f_k$.

For that reason we divide the set of non-degenerate affine maps $f(x) = Ax + b$ on \mathbb{R}^2, where A is a non-degenerate matrix and b is a vector to five following types, depending on the eigenvalues λ_1 and λ_2 of the matrix A and on the translation vector b:

Type 1. If both eigenvalues λ_1 and λ_2 are not equal to 1, then the map $f(x)$ has unique fixed point $x_0 = (E - A)^{-1}b$. By our assumptions, $\|A - E\| < 1$, therefore $A = e^B$, where $B = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(A - E)^n}{n}$ is the matrix logarithm of A. Since $f(x) = A(x - x_0) + x_0$, we put

$$f^t(x) = e^{Bt}(x - x_0) + x_0 \quad \text{(2)}$$

In this case for any $x \neq x_0$, $\{f^t(x), t \in \mathbb{R}\}$ is an integral curve of autonomic system $\dot{x} = B(x - x_0)$.

Types 2 and 3. If $\lambda_1 \neq 1$ and $\lambda_2 = 1$ and e_1, e_2 are respective eigenvectors, then the map f can be represented by $f(x) = Ax + ae_1 + be_2$.

In this case the matrix logarithm B has eigenvalues $\log \lambda_1$ and 0 and the equation

$$f^t(x) = e^{Bt}x + a \frac{\lambda_1^t - 1}{\lambda_1 - 1}e_1 + bte_2 \quad \text{(3) ?}$$

defines some integral curve of the autonomic system

$$\dot{x} = Bx + a \frac{\log \lambda_1}{\lambda_1 - 1}e_1 + be_2 \quad \text{(4) dyn2}$$

We refer f to the Type 2 if $b = 0$. In this case the right side in (4) is a multiple of e_1, and integral curves are straight lines parallel to e_1. If
\[x = \frac{a}{1 - \lambda_1} e_1 + t e_2, \] then \[Bx = -\frac{a \log \lambda_1}{\lambda_1 - 1} e_1, \] so the right side in (4) vanishes, and \[L = \left\{ \frac{ae_1}{1 - \lambda_1} + e_2 t, t \in \mathbb{R} \right\} \] is the line consisting of fixed points of \(f \).

\(S \) is referred to \textbf{Type 3} if \(b \neq 0 \). The system (4) has no fixed points in this case. The right side of (4) on the line \(L \) is equal to \(be \), so \(L \) is the invariant straight line. The vector field is invariant under translations by \(te_2, t \in \mathbb{R} \), and there is the minimal value for \(\| \dot{x} \| \) which is equal to \(|b| |e_1| \sin \alpha_{12} \), where \(\alpha_{12} \) is the angle between \(e_1 \) and \(e_2 \).

\textbf{Type 4.} It is the case when the eigenvalues of \(A \) are \(\lambda_1 = \lambda_2 = 1 \), and \(A \neq \text{Id} \), while \(f(x) = Ax + ae_1 \), where \(e_1 \) is the eigenvector for \(A \). In this case the matrix logarithm \(B \) is similar to degenerate Jordan cell. The lines \(f^t(x), t \in \mathbb{R} \) are the integral curves for the autonomous system \(\dot{x} = Bx + be_1 \). Since \(Bx \) is a real multiple of \(e_1 \), the right side of the equation (4) is the multiple of \(e_1 \), so these curves are straight lines parallel to \(e_1 \). The line \(L = \{-be_2 + te_1, t \in \mathbb{R}\} \) is the set of fixed points for \(f \).

\textbf{Type 5.} This is the case when \(\lambda_1 = \lambda_2 = 1 \), \(A \neq \text{Id} \), and \(f(x) = Ax + ue_1 + ve_2 \), where \(e_2 \) is the root vector for \(A \) and \(v \neq 0 \). In this case \(f \) has no fixed points. One can see that the integral curves corresponding to \(f \) are parabolas obtained from each other by parallel translations:

Notice that matrix logarithm of \(A \) is equal to \(B = A - E \) and \(B^2 = 0 \).

Therefore the system \(\dot{x} = Bx + \beta \) with initial value \(x(0) = x_0 \), has the solution

\[
x(t) = x_0 + (Bx_0 + \beta)t + B \frac{t^2}{2} \quad \text{ (5) } \]

Denoting \(ue_1 + ve_2 = b \), we get \(\beta = (I - \frac{B}{2}) \cdot b \) and \(x(t) = Bb \frac{t^2}{2} + (b - \frac{1}{2} Bb + Bx_0)t + x_0 \), while the vector field for \(f \) is

\[
\dot{x} = Bx + b - \frac{1}{2} Bb \quad \text{or} \quad \dot{x} = (A - I)x + \left(\frac{3}{2} E - \frac{1}{2} A \right) b. \quad \text{ (6) } \]

Taking into account that for \(x = \xi e_1 + \eta e_2 \) \(Bx = \eta e_1 \), we see, that the right side in (6) \(\eta e_1 + (u - v/2) e_1 + ve_2 \) does not depend on \(\xi \) and vanishes 0 if \(v = 0 \) and \(\eta = -u \), which corresponds to Type 4.
Therefore if \(f \) belongs to the Type 5 the vector field has no stationary points and is preserved by translations by \(te_1 \), so the minimal value of \(\|\dot{x}\| \) is \(|v| \cdot \|e_2\| \cdot |\sin \alpha_{12}| \), where \(\alpha_{12} \) is the angle between \(e_1 \) and \(e_2 \).

Lemma 4 Suppose that under the conditions of Theorem 2 all the maps \(f_n \) belong to the Type 1. Then there is such sequence of non-degenerate affine maps \(h_n \) satisfying the conditions of Theorem 2 that their fixed points \(y_n = \text{fix}(h_n) \notin \overline{D} \).

If \(\gamma \) is not a straight line segment, there is such a ball \(B_1 \subset \mathbb{D} \), that \(\gamma \cap B_1 \neq 0 \) and the set \(\{ n : \text{fix} f_n \subset CB_1 \} \) is infinite.

By the condition (i) of the Theorem 2 there is such affine map \(g \), that \(g(\gamma) \subset \gamma' \) and \(g(B_1) \subset \mathbb{D} \). Then, if \(\text{fix} f_n = x_n \in CB \), then \(\text{fix}(g^{-1} \cdot f \cdot g) = g^{-1}(x_n) \in Cg^{-1}(B_1) \subset CD \).

Thus all the fixed points of the sequence of maps \(f'_n = g^{-1} \cdot f_n \cdot g \) lie in the complement of \(D \).

If \(y = Tx + C \), then the fixed points \(y_n \) of the map \(f'_n(x) \) are given by the equation \(y_n = T^{-1}(x_n - C) \) and the map \(f'_n \) is given by the equation \(f'_n(x) = T^{-1}A_nT(x - y_n) + y_n \).

At the same time the eigenvalues of the matrix \(A'_n \) are the same as the ones of \(A_n \), and the sequence \(f'_n \rightarrow \text{Id} \).

Notice that for sufficiently large \(n \) \(f_n(g(a)) \subset g(\gamma) \). Since \(f_n \) has no fixed points in \(\gamma \), \(f_n(g(\gamma)) \cap g(\gamma) = \gamma(f_n(g(a_0), g(a_1))) \).

Therefore \(f'_n(\gamma) \cap \gamma = \gamma(f'_n(a_0), a_1) \) and the sequence \(f'_n \) satisfies the conditions of Theorem 2.

Proof of Theorem 2

Let \(f_n \) be the sequence of maps satisfying the conditions (i),(ii) of the Theorem 2.

Without loss of generality we may assume that all \(f_k \) belong to one and the same of the Types 1-5.

If all \(f_k \) belong to the Type 2 or 4 then the set \(P(x, a_0) \) lies on the segment \(l_k = [a_0, f_k^{N_k}(a_0)] \), and the sequence \(l_k \) converges to the segment \([a_0, a_1] \), therefore \(\gamma = [a_0, a_1] \).

Thus we need to prove the statement of the Theorem 2 for the case when \(f_n \) belong to Type 1,3 or 5.
If \(f_n \) belong to the Type 3 or 5, then the maps \(f_n \) as well as their associated vector fields have no fixed points.

If all \(f_n \) belong to the Type 1, Lemma 4 allows us to assume that fixed points of the maps \(f_n \) lie outside of \(D \).

Let \(L_k \) denote the set \(\{ f_k^t(a_0), 0 \leq t \leq N_k \} \). Since \(P(k, a_0) \subset L_k \) and \(\lim_{k \to \infty} P(k, a_0) = \gamma \), we have \(\gamma \subset \lim_{k \to \infty} L_k \).

The sets \(L_k \) are the subarcs of integral curves of linear dynamical systems \(\dot{x} = B_k x + b_k \), and the endpoints of \(L_k \) are \(a_0 \) and \(f_k^{N_k}(a_0) \).

Let \(m_k = \max \{ \| B_k x + b_k \|, x \in D \} \). If we replace the right sides \(B_k x + b_k \) of respective equations by \(B'_k x + b'_k \), where \(B'_k = B_k \setminus m_k \) and \(b'_k = b_k \setminus m_k \), we obtain a sequence of linear dynamical systems in \(D \), which have no stationary points in \(D \), and whose integral curves are the same as the ones for the systems \(\dot{x} = B_k x + b_k \). At the same time \(\max \{ \| B'_k(x) + b'_k \|, x \in D \} \) is equal to 1 and by convexity of the function \(\| B'_k(x) + b'_k \| \), is assumed at some point \(x \in \partial D \).

Denote \(g_k(x) = B'_k x + b'_k \). The affine map \(g_k \) sends \(D \) to some ellipse \(g_k(D) \subset D \) which is tangent to \(\partial D \) at some point and which does not contain \(0 \). The sequence of maps \(g_k \) satisfies the conditions of Arcela’s theorem and one can find a subsequence \(g_{n_k} \) which converges uniformly on \(D \) to some affine function \(g_0(x) \).

By continuous dependence of solutions of differential equations on their right sides, the solutions of the differential equations \(\dot{x}(t) = g_n(x), x(0) = a_0 \) converge uniformly with all their derivatives to the solution of the equation \(\dot{x}(t) = g_0(x), x(0) = a_0 \), and the integral curves \(L_{n_k} \) converge to the curve \(L_0 \). The curve \(L_0 \) belongs to the class \(C^2 \) if \(\| g_0(x) \| \neq 0 \) so we need to control zero points of \(g_0(x) \).

For that reason we consider the limit \(g_0(D) \) of the sequence of ellipses \(g_n(D) \).

If \(g_0(D) \) is a non-degenerate ellipse, then since \(g_0(D) = \lim g_{n_k}(D) \), and \(g_{n_k}(D) \notin 0, g_0(D) \) can contain \(0 \) only on its boundary. Since \(\gamma \subset \bar{D}, g_0(\gamma) \notin 0 \) in this case.

If \(g_0(D) \) is a line segment, for which \(0 \) is its inner point, then \(g_0^{-1}(0) \) is a chord \(\Lambda \) in the disc \(D \). If \(\gamma \subset \Lambda \) then \(\gamma \) is a line segment. Otherwise \(\gamma \) contains a subarc \(\gamma' \), which is disjoint from \(\Lambda \). By the condition (i) we may assume that \(\gamma' = S(\gamma) \) for some affine mapping \(S \). The arc \(\gamma' \) is contained in the integral curve of the equation \(\dot{x} = g_0(x) \), which starts at the point
Since $\|g_0(x)\| \neq 0$ on γ', it belongs to the class C^2. Therefore γ is twice differentiable.

By Theorem of C.Bandt and A.S.Kravchenko [3, Theorem 3], γ is a segment of a parabola or straight line.

Proof of Theorem 3.

Let $f_n = S_{i_n}^{-1} S_{j_n}$ be the sequence converging to Id for which $f_n(\gamma) \cap \gamma \neq \emptyset$. Since f_n is close to Id, the maps f_n and f_n^{-1} preserve the orientation on γ. Notice that for self-affine arcs the condition (i) of Theorem 2 holds automatically. Therefore, following the argument of Lemma 4, the sequence f_n can be chosen in such a way that for any n, $\text{fix}(f_n) \cap \gamma = \emptyset$. Then up to permutation of i and j we may suppose that for any n, $S_{i_n}(\gamma) \cap S_{j_n}(\gamma) = \gamma(S_{j_n}(a_0), S_{i_n}(a_1))$. Therefore $f_n(\gamma) \cap \gamma = \gamma(f_n(a_0), a_1)$ and we can apply Theorem 2 to complete the proof.

Definition 5. Let γ_1, γ_2 be Jordan arcs in \mathbb{R}^d. We say that γ_1 and γ_2 have proper intersection if the set $\gamma_1 \cap \gamma_2$ is a non-degenerate subarc in γ_1 and γ_2 and one of its endpoints is an endpoint of γ_1 and the other is an endpoint of γ_2.

Corollary 6. Let S be a system of non-degenerate contracting affine mappings with a Jordan attractor γ. Let $A_\delta(\gamma)$ be the set of subarcs $\alpha = h(\gamma) \cap \gamma$ such that $|\alpha| \geq \delta$, h is an affine map, and the arcs $h(\gamma)$ and γ have regular intersection. If the set $A_\delta(\gamma)$ is infinite, then γ is a segment of parabola.

2 The partition to elementary subarcs.

Theorem 7. Let $S = \{S_1, ..., S_m\}$ be a system of contractive affine maps in \mathbb{R}^2 with Jordan attractor γ. If γ is different from a segment of a parabola or straight line, there is a multizipper Z such that the arc γ is one of the components of the attractor of Z.

Proof. We suppose the system S is irreducible. Let us order the maps $S_1, ..., S_m$ so that $\gamma_i \cap \gamma_j \neq \emptyset$ if and only if $|i - j| = 1$, while $a_0 \in \gamma_1$ and $a_1 \in \gamma_m$. For two points $x, y \in \gamma$ we write, that $x < y$, if $y \in \gamma(x, a_1)$.

First we construct such finite set $\mathcal{P} \subset \gamma$, whose points $a_0 = p_0 < p_1 < ... < p_{N-1} < p_N = a_1$ define a partition of γ to subarcs $\delta_i, i = 1, ..., N$, satisfying the conditions
1. For any δ_i and any $k = 1, ..., m$ there is δ_j such that $S_k(\delta_i) \subseteq \delta_j$;
2. For any $k_1, k_2 = 1, ..., m$ and for any $\delta_{i_1}, \delta_{i_2}$, $S_{k_1}(\delta_{i_1})$ and $S_{k_2}(\delta_{i_2})$ are either equal or disjoint.

Let \mathcal{G} be the set of all affine mappings g such that the set $\gamma \cap g(\gamma)$ contains a connected component which is a subarc $\gamma_g \subset \gamma$, whose endpoints are the points $g(a_i)$ and a_j, $i, j \in \{0, 1\}$. Let \mathcal{P} be the set consisting of a_0, a_1 and of points $g(a_i)$, where $g \in \mathcal{G}$, $i = 0, 1$, and $g(a_i) \in \gamma \cap \dot{\gamma}$. Let \mathcal{P}_i be the set of those $p \in \mathcal{P} \cap \gamma$, which are the endpoints of subarcs γ_g, that do not contain a_{1-i}. Thus, $\mathcal{P} = \{a_0, a_1\} \cup \mathcal{P}_0 \cup \mathcal{P}_1$.

Notice two properties of \mathcal{P}, which directly follow from its definition:

- **b1.** Let g be affine map of \mathbb{R}^2 for which $g(\gamma) \subset \gamma$. Then $\mathcal{P} \cap \dot{g}(\gamma) \subset g(\mathcal{P})$.
- **b2.** Let g_1, g_2 be two affine maps such that $g_1(\gamma), g_2(\gamma)$ are subarcs of γ, having proper intersection. Then the endpoint of the subarc $g_1(\gamma)$, contained in $g_2(\gamma)$, lies in $g_2(\mathcal{P})$, and vice versa.

In the case when a Jordan arc γ is the attractor of a system of contracting affine maps \mathcal{S}, the conditions **b1** and **b2** imply the properties:

- **c1.** For any $j \in I$, $\mathcal{P} \cap \dot{\gamma}_j \subset S_j(\mathcal{P})$;
- **c2.** For any $1 \leq j \leq m-1$, $S_j(\{a_0, a_1\} \cap \dot{\gamma}_{j+1} \subset \gamma_{j+1}(\mathcal{P})$ and $S_{j+1}(\{a_0, a_1\} \cap \dot{\gamma}_{j+1} \subset \gamma_{j+1}(\mathcal{P})$.

Lemma 8 Let a Jordan arc $\gamma \subset \mathbb{R}^2$ with endpoints a_0, a_1 be the attractor of irreducible system $\mathcal{S} = \{S_1, ..., S_m\}$ of contracting affine maps, and γ is not a segment of a parabola or a straight line. Then:

- **d1.** The set of limit points of \mathcal{P} is contained in $\{a_0, a_1\}$.
- **d2.** There are such neighbourhoods U_i of the points a_i, where $i = 0, 1$, that $P_{1-i} \cap U_i = \emptyset$, and
- **d3.** If for some $k \in \{1, m\}$ and some $i, j \in \{0, 1\}$, $S_k(a_i) = a_j$, then S_k is a bijection of $U_i \cap P_i$ to $S_k(U_i) \cap P_j$.

Proof. First we show that the set \mathcal{P} has no limit points in $\dot{\gamma}$. Suppose there is a $c \in \dot{\gamma} \cap \mathcal{P}$. Then for one of the endpoints of γ, say, for a_0, there is a sequence $g_n \in \mathcal{G}$, such that $g_n(a_0) \to c$. It follows from Corollary 6, that γ is a segment of a parabola, which contradicts the assumptions of the
Lemma, so \(d1 \) is true. The same argument shows that \(a_1 \) cannot be a limit point of \(P_0 \) and \(a_0 \) cannot be a limit point of \(P_1 \). Therefore there are such neighbourhood \(U_i \) of the points \(a_i \), that \(P_{1-i} \cap U_i = \emptyset \). Moreover, we choose \(U_0, U_1 \) in such a way that \(\gamma \cap U_0 \subset \gamma_1 \) and \(\gamma \cap U_1 \subset \gamma_m \).

To check \(d3 \), consider first the case when \(S_1(a_1) = a_0 \). If \(p \in P_0 \cap U_0 \) and \(p = g(a_i) \), then \(S^{-1}_1 \circ g \in S \) and \(S^{-1}_1(p) \in P_1 \cap S^{-1}_1(U_0) \). Conversely, if \(p \in P_1 \cap U_1 \), and \(p = g(a_i) \), then \(S_1 \circ g \in S \) and \(S_1(p) \in P_0 \cap S(U_1) \). Therefore \(S_1 \) defines a bijection \(P \cap U_0 \cap S_1(U_1) \) to \(P \cap U_1 \cap S^{-1}_1(U_0) \). Enumerating all possibilities:

1. \(S_1(a_0) = a_0, S_m(a_1) = a_1 \);
2. \(S_1(a_0) = a_0, S_m(a_1) = a_0 \);
3. \(S_1(a_0) = a_1, S_m(a_1) = a_1 \);
4. \(S_1(a_0) = a_1, S_m(a_1) = a_0 \);

we find the desired pairs of neighborhoods for each of the cases. ■

\(\text{Lemma 9} \) The set \(P \) contains a finite subset \(P' \), which also satisfies \(c1 \) and \(c2 \).

\textbf{Proof.} For each of the points \(S_k(a_i) \in \gamma \), where \(k \in I \) and \(i = 0, 1 \) we denote by \(w(k, i) \) the connected component of the set \(\gamma_k \setminus P \), which has \(S_k(a_i) \) as its endpoint, whereas for \(S_k(a_i) = a_j \) we put \(w(k, i) = U_j \). Let \(W_i = \bigcap_{k \in I} S^{-1}_k(w(k, i)) \cap U_i \).

Let \(P' = \{a_0, a_1\} \cup P \setminus (W_0 \cup W_1) \).

The set \(P' \) is finite, so we denote its elements by \(a_0 = p_0 < p_1 < ... < p_M = a_1 \), and the subarcs \(\gamma(p_{k-1}, p_k) \) by \(\delta_k \).

For any \(j \in I \), \(S_j(P) \subset S_j(W_0 \cup W_1) \cup S_j(P') \). At the same time the definition of \(P' \) implies that \(S_j(W_0 \cup W_1) \cup S_j(P') = S_j(\{a_0, a_1\}) \). Therefore \(P' \cap \gamma_j \subset S_j(P') \). Thus the set \(P' \) satisfies the condition \(c1 \). The condition \(c2 \) directly follows from the definition of \(P' \). ■

\(\text{Lemma 10} \) Each of the subarcs \(\delta_i, i = 1, ..., M \) and \(\gamma_i, i \in I \) is an union of subarcs \(S_j(\delta_k) \) for some \(j \in I \) and some \(k \in \{1, ..., M\} \) whose interiors are disjoint.

\textbf{Proof.} The system \(S \) is irreducible, therefore each subarc \(\gamma_j \), \(1 < j < m \) intersects two adjacent subarcs \(\gamma_{j-1}, \gamma_{j+1} \), so that \(\gamma_j \setminus (\gamma_{j-1} \cup \gamma_{j+1}) \neq \emptyset \). For
any subarc $\bar{\gamma}_j = \gamma_j \setminus (\hat{\gamma}_{j-1} \cup \hat{\gamma}_{j+1})$ its endpoints by c_2 are contained in $S_j(P')$; let them be the points $S_j(p_{k_j}), S_j(p_{K_j})$. The arc $\bar{\gamma}_j$ has unique representation $\bigcup_{i=0}^{K_j-1} S_j(\delta_i)$. For each of the subarcs $\gamma_j \cap \gamma_{j+1}$ there are exactly two partitions: first, to the subarcs $S_j(\delta_i)$ and second, to the subarcs $S_{j+1}(\delta_i)$; choose one of them. Taking the union over all subarcs and renumbering all the points, we get the desired partition for the whole γ. By the property c_1, the partition we obtained is at the same time a partition for each of the subarcs δ_k. ■

Proof of the Theorem 7 Now we can construct a Jordan multizipper, for which the components of the attractor will be the subarcs δ_j. Each of the subarcs $\delta_j, j = 1, \ldots M$ is a finite union of consequent subarcs $S_i(\delta_k)$, which form a partition of δ_j. Therefore we can create a graph \tilde{G} whose vertices are $u_j = \delta_j$ and an edge e_{ij} is directed from u_i to u_j if there is such S_k, that $S_k(U_j) \subset \delta_i$. ■

References

[ATK] [1] V. V. Aseev, A. V. Tetenov, A. S. Kravchenko, Self-similar Jordan curves on the plane// Sibirsk. Mat. Zh., 44(2003), pp. 481-492.

[SSS7] [2] C. Bandt, S. Graf, Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure.// Proc.Amer.Math.Soc., 114(1992), No.4, pp.995-1001.

[BK] [3] C. Bandt, A. S. Kravchenko, Differentiability of fractal curves //Nonlinearity 24 (2011) 2717

[BR] [4] C. Bandt and H. Rao, Topology and separation of self-similar fractals in the plane// Nonlinearity 20 (2007), pp. 1463 - 1474.

[DE] [5] M. Das, G. A. Edgar, Finite type, open set conditions and weak separation conditions // Nonlinearity 24 (2011), 2489

[Edgdas] [6] G. A. Edgar, M. Das , Separation properties for graph-directed self-similar fractals// Top.appl.,152(2005), 138-156.

[Fal] [7] K. J. Falconer , Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, 1990.
[KT2F][8] K. G. Kamalutdinov, A. V. Tetenov, Twofold Cantor sets in R// Siberian Electr. Math. Rep., 15 (2018), pp. 801-814, DOI 10.17377/semi.2018.15.066.

[Lau][9] K. S. Lau and S. M. Ngai, Multifractal measures and a weak separation condition, //Adv. Math. 141 (1999), 45–96. MR1667146

[Schief][10] A. Schief, Separation properties for self-similar sets// Proc. Amer. Math. Soc., 124:2 (1996), pp. 481–490.

[Atet1][11] A. V. Tetenov, Self-similar Jordan arcs and graph-directed systems of similarities //Sibirsk. Mat. Zh., 47 (2006), pp. 11471159.

[Trg][12] A. V. Tetenov, On the rigidity of one-dimensional systems of contraction similitudes // Siberian Electr. Math. Rep., 3 (2006), 342–345.

[TCh][13] A. V. Tetenov, A. K. B. Chand, On weak separation property for affine fractal functions// Siberian Electr. Math. Rep., 12 (2015), 967972.

[TKV][14] A. V. Tetenov, K. G. Kamalutdinov, D. A. Vaulin, Self-similar Jordan arcs which do not satisfy OSC, arXiv:1512.00290

[Zer][15] M. P. W. Zerner, Weak separation properties for self-similar sets./// Proc.Amer.Math.Soc. 1996, 124, No. 11, pp.3529–3539.