THE AVERAGE SIZE OF RAMANUJAN SUMS OVER QUADRATIC NUMBER FIELDS(II)

WENGUIANG ZHAI

Abstract: In this paper we study Ramanujan sums $c_m(n)$, where m and n are integral ideals in an arbitrary quadratic number field. We give some new results about the asymptotic behavior of sums of $c_m(n)$ over both m and n.

1. Introduction and statements of results

1.1. Ramanujan sums over rationals. For any positive integers m and n, the classical Ramanujan sum $c_m(n)$ is defined by (see, for example, Krätzel [7])

$$c_m(n) := \sum_{1 \leq j \leq m, \gcd(j,m) = 1} e\left(\frac{jn}{m}\right) = \sum_{d | \gcd(m,n)} d \mu\left(\frac{m}{d}\right),$$

where $e(z) := e^{2\pi iz}$ and $\mu(\cdot)$ is the Möbius function. The Ramanujan sum is an interesting and important object in number theory and there are lots of papers in this area.

In 2012, Chan and Kumchev [1] dealt with the question of the average order of $c_m(n)$ with respect to both variables m and n. Let $Y \geq X \geq 3$ be two large real numbers and $k \geq 1$ be a fixed integer. Define

$$C_k(X, Y) : = \sum_{1 \leq n \leq Y} \left(\sum_{1 \leq m \leq X} c_m(n) \right)^k.$$

When $k = 1$, they proved that the asymptotic formula

$$C_1(X, Y) = Y - \frac{3}{2\pi^2} X^2 + O(XY^{1/3} \log X) + O(X^3Y^{-1})$$

holds, which implies that if $Y \asymp X^\delta$ then

$$S_1(X, Y) \sim \begin{cases}
Y, & \text{if } \delta > 2, \\
\frac{3}{2\pi^2} X^2, & \text{if } 1 < \delta < 2.
\end{cases}$$

When $k = 2$, Chan and Kumchev proved that if $Y \geq x^2(\log B)^B$ for some fixed $B > 0$, then

$$C_2(X, Y) = \frac{YX^2}{2\zeta(2)} + O(X^4 + XY \log X).$$
1.2. Ramanujan sums over quadratic number fields. Suppose \mathbb{F}/\mathbb{Q} is a number field of degree $d \geq 2$ and its ring of algebraic integers is denoted by \mathcal{O}_F. For any nonzero integral ideal I in \mathcal{O}_F, the Möbius function is defined as follows (see, for example [3], Page 100):

$$\mu(I) = 0 \text{ if there exists a prime ideal } P \text{ such that } P^2 \text{ divides } I,$$

and

$$\mu(I) = (-1)^r \text{ if } I \text{ is a product of } r \text{ distinct prime ideals.}$$

For any ideal I, the norm of I is denoted by $N(I)$. For two nonzero integral ideals m and n, the Ramanujan sum is defined by

$$(1.6) \quad c_m(n) := \sum_{d \in \mathcal{O}_F} N(d)\mu\left(\frac{m}{d}\right),$$

which is an analogue of (1.1). The definition (1.6) of Ramanujan sums can be considered in the much more general context of arbitrary arithmetical semigroups. See, for example, Grytczuk [2] and the monograph by Knopfmacher [6].

For each $n \geq 1$, let $a_F(n)$ denote the number of integral ideals I in \mathcal{O}_F such that $N(I) = n$. Then we have

$$(1.7) \quad \sum_{n \leq X} a_F(n) = \rho_F x + P_F(x), \quad P_F(x) = O(x^{\delta+1}),$$

where ρ_F is a constant depending only on \mathbb{F}. The asymptotic formula (1.7) is a classical result of Landau (see [8]), which was improved by many authors (see, for example, Müller [9], Nowak [10]).

Let $X \geq 3$ and $Y \geq 3$ be two large real numbers and $k \geq 1$ be a fixed integer. Define

$$(1.8) \quad C_{F,k}(X, Y) := \sum_{1 \leq N(n) \leq Y} \left(\sum_{1 \leq N(m) \leq X} c_m(n) \right)^k,$$

which is an analogue of the sum $C_k(X, Y)$ defined by (1.2).

In [11], W. G. Nowak proved that if \mathbb{F} is a fixed quadratic number field, then the asymptotic formula

$$(1.9) \quad C_{F,1}(X, Y) \sim \rho_F Y$$

holds provided that $Y > X^\delta$ for some $\delta > 1973/820 = 2.40609 \cdots$. In [12], W. G. Nowak had considered the Gaussian field case $\mathbb{F} = \mathbb{Q}(i)$, where he proved that the asymptotic formula (1.9) holds provided that $Y > X^\delta$ for $\delta > 29/12 = 2.41\bar{6}$.

In [16], the author proved that the asymptotic formula (1.9) holds provided that $Y > X^\delta$ for $\delta > 79/34 = 2.3235 \cdots$. It was also proved that (1.9) holds on average for $2 < \delta \leq 79/34$.

In this paper, we shall prove that (1.9) holds provided that $Y > X^\delta$ for any $\delta > 2$. More precisely, we have the following Theorem 1.

Theorem 1. Let \mathbb{F} be a fixed quadratic number field and $3 \leq X < Y$ be two large real numbers. Then we have

$$(1.10) \quad C_{F,1}(X, Y) = \rho_F Y + O\left(XY^{1/2}(\log Y)^7 + X^2\right).$$

Remark 1. Let $\lambda = \lambda(t)$ be an increasing function such that $\lim_{t \to \infty} \lambda(t) = \infty$ and $\lambda(t) = o(\log t)$ as $t \to \infty$. If $Y \geq X^2(\log X)^{14}\lambda(X)$, then (1.9) holds.
We can also study the sum for $k = 2$. In this case we have the following Theorem 2, which is an analogue and generalization of (1.5).

Theorem 2. Let F be a fixed quadratic number field and $3 \leq X < Y$ be two large real numbers. If $Y > X^2$, then

\[
C_{F,2}(X,Y) = \frac{\rho_F^2}{2\zeta_F(2)}X^2Y + \frac{\zeta_\mathbb{R}(0)\rho_F^2}{4\zeta_F(2)}X^4
\]

\[
+ O\left(X^{\frac{21}{5}}Y^{-\frac{2}{5}} + X^2Y^{\frac{2}{5}}\log^5 Y + X^{\frac{2}{5}}Y\log^3 Y\right)
\]

Remark 2. In [16], the method of exponential sums was applied. However, in this paper, we apply the method of complex integration.

Notation. Throughout this paper, we use the following notations. \mathbb{N}, \mathbb{Q} and F denote the set of positive integers, the set of rational numbers and a number field of degree $d \geq 2$, respectively. We say n is a half integer if $n - 1/2 \in \mathbb{N}$. For each $n \in \mathbb{N}$, $a_F(n)$ denotes the number of integral ideals \mathcal{I} such that $N(\mathcal{I}) = n$, $\tau_\ell(n)$ denotes the number of ways n can be written as a product of ℓ positive integers, $\tau(n) = \tau_2(n)$ is the well-known Dirichlet divisor function. $\zeta(s)$ is the Riemann zeta-function, and $\zeta_F(s)$ is the Dedekind zeta-function of the field F. ε always denotes a small positive constant, which may be different at different places.

2. **Preliminary Lemmas**

We suppose that F is a fixed number field of degree $d \geq 2$. The Dedekind zeta function of F is defined by

\[
\zeta_F(s) := \sum_{\substack{\mathcal{I} \in \mathcal{O}_F \\ \mathcal{I} \neq 0}} \frac{1}{N^s(\mathcal{I})} \quad (\text{Re}(s) > 1).
\]

Then

\[
\zeta_F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s} \quad (\text{Re}(s) > 1),
\]

where $a_F(n)$ denotes the number of integral ideals \mathcal{I} such that $N(\mathcal{I}) = n$.

We have

\[
\frac{1}{\zeta_F(s)} = \sum_{\substack{n \in \mathcal{O}_F \\ n \neq 0}} \frac{\mu(n)}{N^s(n)} \quad (\text{Re}(s) > 1).
\]

Lemma 2.1. Suppose F is a fixed number field of degree $d \geq 2$. Then we have the functional equation

\[
\zeta_F(s) = \chi_F(s)\zeta_F(1 - s)
\]

such that the estimate

\[
\chi_F(s) \ll (|t| + 1)^{d(\frac{1}{2} - \sigma)} \quad (|t| \to \infty)
\]

holds in any fixed critical strip.

Proof. See, for example, Iwaniec and Kowalski [5].
Lemma 2.2. Suppose \mathbb{F} is a fixed number field of degree $d \geq 2$.

If $\sigma \geq 1$, then
\begin{equation}
\zeta_{\mathbb{F}}(\sigma + it) \ll_{\mathbb{F}} (|t| + 2) \log(|t| + 2).
\end{equation}

If $\sigma \geq 1$, then
\begin{equation}
\frac{1}{\zeta_{\mathbb{F}}(\sigma + it)} \ll_{\mathbb{F}} (|t| + 2) \log(|t| + 2).
\end{equation}

If $0 \leq \sigma \leq 1$, then
\begin{equation}
\zeta_{\mathbb{F}}(\sigma + it) \ll_{\mathbb{F}} (|t| + 2)^{\frac{d(d-1)}{2}} \log(|t| + 2).
\end{equation}

If $-2 \leq \sigma \leq 0$, then
\begin{equation}
\zeta_{\mathbb{F}}(\sigma + it) \ll_{\mathbb{F}} (|t| + 2)^{d(\frac{1}{2} - \sigma)} \log(|t| + 2).
\end{equation}

Proof. Let $x = (|t| + 2)^{d+1}$. Suppose $\sigma > 1$. We write
\begin{equation}
\zeta_{\mathbb{F}}(\sigma + it) = \Sigma_1 + \Sigma_2,
\end{equation}
where
\begin{equation}
\Sigma_1 := \sum_{n \leq x} \frac{a_{\mathbb{F}}(n)}{n^{\sigma+it}}, \quad \Sigma_2 := \sum_{n > x} \frac{a_{\mathbb{F}}(n)}{n^{\sigma+it}}.
\end{equation}

Let $A_{\mathbb{F}}(u) = \sum_{n \leq u} a_{\mathbb{F}}(n)$. By partial summation we have
\begin{equation}
\Sigma_2 = \int_{x}^{\infty} \frac{dA_{\mathbb{F}}(u)}{u^{\sigma+it}} = \rho_{\mathbb{F}} \int_{x}^{\infty} \frac{du}{u^{\sigma+it}} + \int_{x}^{\infty} \frac{dP_{\mathbb{F}}(u)}{u^{\sigma+it}}
\end{equation}
\begin{equation}
= \rho_{\mathbb{F}} \frac{x^{1-\sigma-it}}{\sigma-1+it} - \frac{P_{\mathbb{F}}(x)}{x^{\sigma+it}} + (\sigma + it) \int_{x}^{\infty} \frac{P_{\mathbb{F}}(u)}{u^{\sigma+1+it}} du.
\end{equation}

By the estimate $P_{\mathbb{F}}(u) \ll u^{(d-1)/(d+1)}$ we see that (2.8) is valid for $\sigma > (d-1)/(d+1)$. So for $\sigma \geq 1$ we have (recalling the definition of x)
\begin{equation}
\Sigma_2 \ll 1 + (|t| + 2)x^{-\frac{1}{d+1}} \ll 1.
\end{equation}

For Σ_1 we have by partial summation that
\begin{equation}
\Sigma_1 \ll \sum_{n \leq x} \frac{a_{\mathbb{F}}(n)}{n} \ll \log x \ll \log(|t| + 2) \quad (\sigma \geq 1).
\end{equation}

Now the estimate (2.3) follows from (2.7)-(2.10). The proof of (2.4) is similar and easier.

By (2.3) and Lemma 2.1 we get
\begin{equation}
\zeta_{\mathbb{F}}(it) \ll_{\mathbb{F}} (|t| + 2)^{\frac{d}{2}} \log(|t| + 2).
\end{equation}

So (2.5) follows from (2.11) and $\zeta_{\mathbb{F}}(1+it) \ll_{\mathbb{F}} \log(|t| + 2)$ with the help of Phragmen-Lindelöf principle. The estimate (2.6) follows from (2.3) and Lemma 2.1. \hfill \Box

Lemma 2.3. Suppose \mathbb{F} is a quadratic number field. Then the estimate
\begin{equation}
\int_{-U}^{U} |\zeta_{\mathbb{F}}(\sigma + it)|^2 dt \ll U (\log U)^4 \quad (U \geq 2)
\end{equation}
holds uniformly for $1/2 \leq \sigma \leq 1$.
Proof. Suppose \mathbb{F} is a quadratic number field, then there exists a real primitive Dirichlet Character χ_D of modulo $|D|$ such that $\zeta_{\mathbb{F}}(s) = \zeta(s)L(s, \chi_D)$, where $L(s, \chi_D)$ is the Dirichlet L-function corresponding to χ_D. Now Lemma 2.3 follows from the fourth power moment of $\zeta(s)$ and the fourth power moment of $L(s, \chi_D)$.

Lemma 2.4. Suppose \mathbb{F} is a quadratic number field. Then the estimate

$$\int_{-U}^{U} |\zeta_{\mathbb{F}}(\sigma + it)|^4 dt \ll U \quad (U \geq 2)$$

holds uniformly for $2/3 \leq \sigma \leq 1$.

Proof. We have

$$\int_{1}^{U} \left| \zeta\left(\frac{2}{3} + it\right) \right|^8 dt \ll U \quad (U \geq 2).$$

In [4] we can find even much stronger results. Similarly, we have

$$\int_{1}^{U} \left| L\left(\frac{2}{3} + it, \chi_D\right) \right|^8 dt \ll U \quad (U \geq 2).$$

So Lemma 2.4 follows from the above two estimates and Cauchy’s inequality.

Lemma 2.5. Suppose \mathbb{F} is a quadratic number field. Then for $1/2 \leq \sigma \leq 1$ we have the estimate

$$\zeta_{\mathbb{F}}(\sigma + it) \ll_{\mathbb{F}} (|t| + 2)^{\frac{2}{3}(1-\sigma)} \log(|t| + 2).$$

Proof. This estimate follows from (2.3) with $d = 2$, the well-known bound

$$\zeta_{\mathbb{F}}(1/2 + it) \ll_{\mathbb{F}} (|t| + 2)^{\frac{1}{3}}$$

and the Phragmen-Lindelöf principle.

Lemma 2.6. Let $k \geq 2$ be a fixed integer, and $f(n_1, \ldots, n_k)$ is a multivariable arithmetic function such that its Dirichlet series

$$F(s_1, \ldots, s_k) = \sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \frac{f(n_1, \ldots, n_k)}{n_1^{s_1} \cdots n_k^{s_k}}$$

is absolutely convergent for $\text{Re}(s_j) > \sigma_j$ ($j = 1, \ldots, k$), where $\sigma_1 > 0, \ldots, \sigma_k > 0$. Suppose $x_1, \ldots, x_k, T_1, \ldots, T_k \geq 5$ are parameters such that $x_j \notin \mathbb{N}$ ($j = 1, \ldots, k$), and define

$$b_j = \sigma_j + \frac{1}{\log x_j}, \quad (j = 1, \ldots, k).$$

Then we have

$$\sum_{n_1 \leq x_1} \cdots \sum_{n_k \leq x_k} f(n_1, \ldots, n_k)$$

is absolutely convergent for $\text{Re}(s_j) > \sigma_j$ ($j = 1, \ldots, k$).
where
\begin{equation}
E := \sum_{j=1}^{k} \sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \frac{|f(n_1, \ldots, n_k)|}{n_1^{b_1} \cdots n_k^{b_k}} \times \frac{1}{T_j |\log \frac{x_j}{n_j}| + 1}.
\end{equation}

Proof. For $b > 0, a > 0, T > 1$, we have
\begin{equation}
\frac{1}{2\pi i} \int_{b-iT}^{b+iT} a^s \frac{ds}{s} = \delta(a) + O \left(\frac{a^b}{T |\log a| + 1} \right),
\end{equation}
where $\delta(a) = 1$ when $a > 1$, and $\delta(a) = 0$ when $0 < a < 1$. See for example, Chapter 2 in the second part of Tenenbaum [13].

The Dirichlet series (2.12) is absolutely convergent for Re $s_j > \sigma_j$ ($j = 1, \ldots, k$). So we have by (2.15) that
\begin{equation}
\frac{1}{(2\pi i)^k} \int_{b_1-iT_1}^{b_1+iT_1} \cdots \int_{b_k-iT_k}^{b_k+iT_k} F(s_1, \ldots, s_k) \prod_{j=1}^{k} \frac{x_j^{s_j}}{s_1 \cdots s_k} ds_k \cdots ds_1
\end{equation}
\begin{align*}
&= \frac{1}{(2\pi i)^k} \int_{b_1-iT_1}^{b_1+iT_1} \cdots \int_{b_k-iT_k}^{b_k+iT_k} \prod_{j=1}^{k} \frac{x_j^{s_j}}{s_1 \cdots s_k} \left(\frac{1}{\prod_{j=1}^{k} \frac{x_j^{s_j}}{s_j}} \right) \frac{1}{\prod_{j=1}^{k} \frac{x_j^{s_j}}{s_j}} ds_k \cdots ds_1
\end{align*}
\begin{equation}
= \prod_{j=1}^{k} \left(\frac{x_j}{n_j} \right) \delta \left(\frac{x_j}{n_j} \right) + E_j \left(\frac{x_j}{n_j} \right),
\end{equation}
where
\begin{equation}
E_j \left(\frac{x_j}{n_j} \right) = O \left(\frac{(x_j/n_j)^{b_j}}{T_j |\log \frac{x_j}{n_j}| + 1} \right) (j = 1, \ldots, k).
\end{equation}

For any integer $n_j > 0$ we have
\begin{equation}
\delta \left(\frac{x_j}{n_j} \right) \leq \left(\frac{x_j}{n_j} \right)^{b_j} \leq \left(\frac{x_j}{n_j} \right)^{\sigma_j}.
\end{equation}
\begin{equation}
E_j \left(\frac{x_j}{n_j} \right) \leq \left(\frac{x_j}{n_j} \right)^{\sigma_j} \times \frac{1}{T_j |\log \frac{x_j}{n_j}| + 1} (j = 1, \ldots, k).
\end{equation}

Thus we have
\begin{equation}
\prod_{j=1}^{k} \left(\delta \left(\frac{x_j}{n_j} \right) + E_j \left(\frac{x_j}{n_j} \right) \right)
\end{equation}
\begin{align*}
&= \delta \left(\frac{x_1}{n_1} \right) \cdots \delta \left(\frac{x_k}{n_k} \right) + \sum_{j=1}^{k} O \left(\frac{x_1^{\sigma_j} \cdots x_k^{\sigma_j}}{n_1^{b_1} \cdots n_k^{b_k}} \times \frac{1}{T_j |\log \frac{x_j}{n_j}| + 1} \right).
\end{align*}
Now Lemma 2.4 follows from (2.16) and (2.17) by noting that
\[
\sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} f(n_1, \ldots, n_k) \delta \left(\frac{x_1}{n_1} \right) \cdots \delta \left(\frac{x_k}{n_k} \right) = \sum_{n_1 \leq x_1} \cdots \sum_{n_k \leq x_k} f(n_1, \ldots, n_k).
\]
\[\Box\]

3. Some special Dirichlet series

3.1. Dirichlet series involving \(c_m(n) \). For fixed \(k \geq 1 \), we define a multivariate arithmetic function \(f(m_1, \ldots, m_k, n) \) over the number field \(\mathbb{F} \) by
\[
f(m_1, \ldots, m_k, n) := c_{m_1}(n) \cdots c_{m_k}(n).
\]
Note that when \(k = 1 \), \(f(m_1, n) = c_{m_1}(n) \).

Suppose \(s_1, \ldots, s_k, w \in \mathbb{C} \) with \(\text{Re}(s_j) > 1(j = 1, \ldots, k) \), \(\text{Re}(w) > 2 \). Define the Dirichlet series
\[
\mathcal{F}(s_1, \ldots, s_k, w) := \sum_{m_1, \ldots, m_k, n} \frac{f(m_1, \ldots, m_k, n)}{N^{s_1}(m_1) \cdots N^{s_k}(m_k) N^w(n)}.
\]
For any \(\theta \in \mathbb{C} \) and any non-zero integral ideal \(n \), we define the weighted divisor function
\[
\sigma_\theta(n) := \sum_{d | n} N^\theta(d).
\]
We have the following Lemma 3.1.

Lemma 3.1. Suppose \(\theta_1, \theta_2, w \in \mathbb{C} \).

If \(\text{Re} w > \max(1, 1 + \text{Re}(\theta_1)) \), then we have the identity
\[
\sum_n \frac{\sigma_{\theta_1}(n)}{N^w(n)} = \zeta_\mathbb{F}(w) \zeta_\mathbb{F}(w - \theta_1).
\]

If \(\text{Re} w > \max(1, 1 + \text{Re}(\theta_1), 1 + \text{Re}(\theta_1), 1 + \text{Re}(\theta_1 + \theta_2)) \), then we have the Ramanujan’s identity
\[
\sum_n \frac{\sigma_{\theta_1}(n) \sigma_{\theta_2}(n)}{N^w(n)} = \frac{\zeta_\mathbb{F}(w) \zeta_\mathbb{F}(w - \theta_1) \zeta_\mathbb{F}(w - \theta_2) \zeta_\mathbb{F}(w - \theta_1 - \theta_2)}{\zeta_\mathbb{F}(2w - \theta_1 - \theta_2)}.
\]

Proof. The formula (3.4) follows from the definitions of \(\sigma_\theta(\cdot) \) and the Dedekind zeta-function (2.1). The formula (3.5) can be proved in the same way as the proof of the formula (1.3.3) in [14]. We omit the details. \(\Box\)

For the function \(\mathcal{F}(s_1, \ldots, s_k, w) \), we then have the following

Proposition 3.1. Suppose \(w, s_1, s_2 \in \mathbb{C} \).

If \(\text{Re}(w) > 1, \text{Re}(w + s_1) > 2 \), then
\[
\mathcal{F}(s_1, w) = \frac{\zeta_\mathbb{F}(w) \zeta_\mathbb{F}(w + s_1 - 1)}{\zeta_\mathbb{F}(s_1)}.
\]

If \(\text{Re}(w) > 1, \text{Re}(w + s_1) > 2, \text{Re}(w + s_2) > 2, \text{Re}(w + s_1 + s_2) > 3 \), then
\[
\mathcal{F}(s_1, s_2, w) = \frac{\zeta_\mathbb{F}(w) \zeta_\mathbb{F}(w + s_1 - 1) \zeta_\mathbb{F}(w + s_2 - 1) \zeta_\mathbb{F}(w + s_1 + s_2 - 2)}{\zeta_\mathbb{F}(s_1) \zeta_\mathbb{F}(s_2) \zeta_\mathbb{F}(2w + s_1 + s_2 - 2)}.
\]
Proof. Obviously we can rewrite the formula (3.2) in the form

\[\mathcal{F}(s_1, \cdots, s_k, w) = \sum_n \frac{1}{N^w(n)} \prod_{j=1}^{k} \left(\sum_{m_j} \frac{c_{m_j}(n)}{N^{s_j}(m_j)} \right). \]

Suppose \(s \in \mathbb{C} \) such that \(\text{Re}(s) > 1 \). By (1.6) we have

\[\sum_m \frac{c_{m}(n)}{N^s(m)} = \sum_m \frac{1}{N^s(m)} \sum_{d|m,d|n} N(d) \mu \left(\frac{m}{d} \right) \]

\[= \sum_{d|n} N^{1-s}(d) \sum_{m} \mu(m^*) \frac{\mu(m)}{N^s(m^*)} \]

\[= \frac{\sigma_{1-s}(n)}{\zeta_F(s)}. \]

From (3.8) and (3.9) we get

\[\mathcal{F}(s_1, \cdots, s_k, w) = \frac{1}{\zeta_F(s_1) \cdots \zeta_F(s_k)} \sum_n \frac{\sigma_{1-s_1}(n) \cdots \sigma_{1-s_k}(n)}{N^w(n)}. \]

Now Proposition 3.1 follows from (3.10) and Lemma 3.1. \(\square \)

3.2. Dirichlet series involving \(c_m^*(n) \). For non-zero integral ideals \(m \) and \(n \), define

\[c_m^*(n) := \sum_{d|n} N(d) \left| \mu \left(\frac{m}{d} \right) \right|. \]

It is easily seen that

\[|c_m(n)| \leq c_m^*(n). \]

Suppose \(s \in \mathbb{C} \) such that \(\text{Re}(s) > 1 \). It is easy to see that

\[\sum_{m} \frac{\mu(m_1)}{N^{s}(m_1)} = \frac{\zeta_F(s)}{\zeta_F(2s)}. \]

So for any non-zero integral ideal \(n \), we have for \(\text{Re}(s) > 1 \) that

\[\sum_{m} \frac{c_m^*(n)}{N^{s}(m)} = \sum_m \frac{1}{N^s(m)} \sum_{d|m,d|n} N(d) \left| \mu \left(\frac{m}{d} \right) \right| \]

\[= \sum_{d|n} N^{1-s}(d) \sum_{m_1} \frac{\mu(m_1)}{N^s(m_1)} \]

\[= \frac{\zeta_F(s)}{\zeta_F(2s)} \sigma_{1-s}(n). \]
4. Estimates of some sums

Suppose $X, Y, T \geq 3$ are large real numbers such that both X and Y are half integers and $X \leq Y$. Let $\sigma_0 = 1 + 1/\log X$ and $k \geq 1$ be a fixed integer. In this section we shall estimate the sums $E_{j,k}(X, T)$ ($j = 1, 2, \cdots, k$) and $\mathcal{E}_k(Y, T)$, which are defined by

$$E_{j,k}(X, T) := \sum_{m_1, \cdots, m_k \in \mathbb{Z}^k} \frac{c^*_m(n) \cdots c^*_m(n)}{N^{\sigma_0}(m_1) \cdots N^{\sigma_0}(m_k) N^{\sigma_0}(n)} \times \frac{1}{T \left| \log \frac{X}{N(m_j)} \right| + 1}$$

and

$$\mathcal{E}_k(Y, T) := \sum_{m_1, \cdots, m_k \in \mathbb{Z}^k} \frac{c^*_m(n) \cdots c^*_m(n)}{N^{\sigma_0}(m_1) \cdots N^{\sigma_0}(m_k) N^{\sigma_0}(n)} \times \frac{1}{T \left| \log \frac{Y}{N(n)} \right| + 1}$$

respectively. It is easy to see that $E_{1,k}(X, T) = E_{2,k}(X, T) = \cdots = E_{k,k}(X, T)$. Thus it suffices to bound $E_{1,k}(X, T)$ and $\mathcal{E}_k(Y, T)$.

4.1. **An auxiliary estimate.** Suppose T and U are large real numbers such that U is a half integer, $g(n)$ is a non-negative arithmetic function such that $g(n) \ll n^\varepsilon$ holds for any $\varepsilon > 0$. Define

$$G(s) := \sum_{n=1}^{\infty} \frac{g(n)}{n^s} \quad (\text{Re}(s) > 1),$$

which is obviously absolutely convergent for $\text{Re}(s) > 1$. Suppose $1 < \sigma_1 < 11/10$. Define

$$E(U, T; \sigma_1) := \sum_{n=1}^{\infty} \frac{g(n)}{n^{\sigma_1}} \times \frac{1}{T \left| \log \frac{U}{n} \right| + 1}.$$

We write

$$E(U, T; \sigma_1) = E_1(U, T; \sigma_1) + E_2(U, T; \sigma_1) + E_3(U, T; \sigma_1),$$

where

$$E_1(U, T; \sigma_1) := \sum_{n \leq U/2} \frac{g(n)}{n^{\sigma_1}} \times \frac{1}{T \left| \log \frac{U}{n} \right| + 1},$$

$$E_2(U, T; \sigma_1) := \sum_{U/2 < n \leq 2U} \frac{g(n)}{n^{\sigma_1}} \times \frac{1}{T \left| \log \frac{U}{n} \right| + 1},$$

$$E_3(U, T; \sigma_1) := \sum_{n > 2U} \frac{g(n)}{n^{\sigma_1}} \times \frac{1}{T \left| \log \frac{U}{n} \right| + 1}.$$

Trivially we have

$$E_1(U, T; \sigma_1) + E_3(U, T; \sigma_1) \ll \frac{1}{T} \sum_{n=1}^{\infty} \frac{g(n)}{n^{\sigma_1}} = \frac{G(\sigma_1)}{T}. \quad (4.2)$$

For $E_2(U, T; \sigma_1)$, we have

$$E_2(U, T; \sigma_1) \ll U^{\varepsilon-1} \sum_{U/2 < n \leq 2U} \frac{1}{T \left| \log \frac{U}{n} \right| + 1} \ll U^{\varepsilon} T^{-1}, \quad (4.3)$$
where we used the estimate
\[
\sum_{U/2 < n \leq U} \frac{1}{T |\log \frac{U}{n}| + 1} < \frac{U \log U}{T},
\]
which is well-known in analytic number theory.

From (4.1)-(4.3) we get the estimate
\[(4.4)\quad E(U, T; \sigma_1) \ll \frac{G(\sigma_1)}{T} + \frac{U^\varepsilon}{T}.
\]

4.2. Estimate of $E_k(Y, T)$. We write
\[
E_k(Y, T) = \sum_{n \in \mathcal{O}_F} \frac{1}{N^{\sigma_0}(n)} \times \frac{1}{T |\log \frac{Y}{N(n)}| + 1} \left(\sum_{m \in \mathcal{O}_F} \frac{c_m^*(n)}{N^{\sigma_0}(m)} \right)^k,
\]
which combining (3.14) gives
\[(4.5)\quad E_k(Y, T) = \sum_{n \in \mathcal{O}_F} \frac{1}{N^{\sigma_0}(n)} \times \frac{1}{T |\log \frac{Y}{N(n)}| + 1} \left(\frac{\zeta_F(\sigma_0)}{\zeta_F(2\sigma_0)} \sigma_{1-\sigma_0}(n) \right)^k.
\]

by noting that
\[
\sigma_{1-\sigma_0}(n) = \sum_{d|n} (N(d))^{-\frac{1}{\log X}} \leq \sum_{d|n} 1 = \sigma_0(n).
\]

Suppose s such that $\text{Re}(s) > 1$. Then we have
\[
\sum_n \frac{\sigma_0(n)}{N^s(n)} = \zeta_F^2(s) = \sum_{n=1}^\infty \frac{a_F * a_F(n)}{n^s},
\]
where
\[
a_F * a_F(n) = \sum_{n=n_1n_2} a_F(n_1)a_F(n_2).
\]

So for $\text{Re}(s) > 1$ we can write
\[(4.6)\quad G_1(s) := \sum_{n \in \mathcal{O}_F} \frac{\sigma_0^k(n)}{N^s(n)} = \sum_{n=1}^\infty \frac{g_1(n)}{n^s},
\]
where
\[
g_1(n) := (a_F * a_F(n))^k a_F(n).
\]
By the well-known bound $a_F(n) \ll n^\varepsilon$ we get that $g_1(n) \ll n^\varepsilon$. So from (4.4)-(4.6) we get
\[(4.7)\quad E_k(Y, T) \ll \frac{\zeta_F^k(\sigma_0)}{\zeta_F^k(2\sigma_0)} \times \frac{1}{T} (G_1(\sigma_0) + Y^\varepsilon).
\]
THE AVERAGE SIZE OF RAMANUJAN SUMS OVER QUADRATIC NUMBER FIELDS (II)

By Euler’s product we have

$$\sum_{n \in \mathcal{O}_F} \frac{\sigma_0^k(n)}{N^s(n)} = \prod_{p \in \mathcal{O}_F} \left(1 + \sum_{\alpha=1}^{\infty} \frac{\sigma_0^k(p^\alpha)}{N^s(p^\alpha)}\right)$$

$$= \prod_{p \in \mathcal{O}_F} \left(1 - \frac{1}{N^s(p)}\right)^{-2k} \prod_{p \in \mathcal{O}_F} \left(1 + \sum_{\alpha=1}^{\infty} \frac{\sigma_0^k(p^\alpha)}{N^s(p^\alpha)}\right) \left(1 - \frac{1}{N^s(p)}\right)^{2k}$$

$$= (\zeta_F(s))^{2k} H(s),$$

where

$$H(s) = \prod_{p \in \mathcal{O}_F} \left(1 + \sum_{\alpha=1}^{\infty} \frac{\sigma_0^k(p^\alpha)}{N^s(p^\alpha)}\right) \left(1 - \frac{1}{N^s(p)}\right)^{2k}.$$

It is easy to see that $H(s)$ is absolutely convergent for Re(s) > 1/2. So We have

$$(4.8) \quad G_1(\sigma_0) \ll (\zeta_F(\sigma_0))^{2k}.$$

From (2.3), (4.7) and (4.8) we get

$$(4.9) \quad \mathcal{E}_k(Y, T) \ll \frac{(\log X)^{2k+k}}{T} + \frac{Y^\varepsilon}{T} \ll \frac{Y^\varepsilon}{T}$$

by noting that $X \ll Y$.

4.3. Estimate of $E_{1,k}(X, T)$. By (3.14) and the definition of $c_m^*(n)$ in last section we have

$$(4.10) \quad E_{1,k}(X, T)$$

$$= \sum_{m \in \mathcal{O}_F} \frac{c_{m_1}^*(n)}{N^s(m_1)} \sum_{m_1 \in \mathcal{O}_F} \frac{c_m^*(n)}{N^s(m)} \frac{1}{\sigma_{1-s_0}^0(m_1) T \log \frac{X}{N(m_1)}} + 1 \left(\sum_{m \in \mathcal{O}_F} \frac{c_m^*(n)}{N^s(m)}\right)^{k-1}$$

$$= \frac{\zeta_F^{k-1}(\sigma_0)}{\zeta_F^{k-1}(2\sigma_0)} \sum_{n \in \mathcal{O}_F} \frac{\sigma_0^{k-1}(n)\sigma_0^{k-1}(n\mu(m))}{N^s(n)N^s(m_1)N^{2s_0-1}(d)} \frac{1}{T \log \frac{X}{N(m_1)}} + 1$$

$$= \frac{\zeta_F^{k-1}(\sigma_0)}{\zeta_F^{k-1}(2\sigma_0)} \sum_{n, m \in \mathcal{O}_F} \frac{\sigma_0^{k-1}(n)\sigma_0^{k-1}(d)\mu(m)}{N^s(n)N^s(m)N^{2s_0-1}(d)} \frac{1}{T \log \frac{X}{N(m)N(d)}} + 1$$

$$= \frac{\zeta_F^{k-1}(\sigma_0)}{\zeta_F^{k-1}(2\sigma_0)} \sum_{n \in \mathcal{O}_F} \frac{\sigma_0^{k-1}(n)}{N^s(n)} \sum_{d \in \mathcal{O}_F} \frac{\sigma_0^{k-1}(d)\mu(m)}{N^s(m)N^s(d)} \frac{1}{T \log \frac{X}{N(m)N(d)}} + 1$$

$$\ll \zeta_F^{k+1-2k+1}(\sigma_0) \sum_{d, m \in \mathcal{O}_F} \frac{\sigma_0^{k-1}(d)\mu(m)}{N^s(m)N^s(d)} \frac{1}{T \log \frac{X}{N(m)N(d)}} + 1.$$
where in the fifth line we used the bound $\sigma_0(dn) \leq \sigma_0(d)\sigma_0(n)$ and in the final line we used (4.8), which holds for any $k \geq 0$.

Define
\[g(n) := \sum_{n=md} \sigma_0^{-1}(d)|\mu(m)|, \quad G_2(s) = \sum_{n \in \mathcal{O}_E} \frac{g(n)}{N^s(n)} \quad (\text{Re } s > 1). \]

Then we have
\[
(4.11) \quad \sum_{d,m \in \mathcal{O}_E} \frac{\sigma_0^{-1}(d)|\mu(m)|}{N^s(m)N^s(d)} T \left| \frac{1}{\log \frac{X}{N^s(m)N^s(d)}} + 1 \right| = \sum_{n \in \mathcal{O}_E} \frac{g(n)}{N^s(n)} \left| \frac{1}{\log \frac{x}{N(n)}} + 1 \right|.
\]

It is easily seen that $g(n)$ is multiplicative. For any prime ideal p, we have
\[g(p) = \sigma^{-1}(p) + |\mu(p)| = 2^{k-1} + 1. \]

Thus for $\text{Re } s > 1$ we have
\[G_2(s) = \sum_{n \in \mathcal{O}_E} \frac{g(n)}{N^s(n)} = \prod_{p \in \mathcal{O}_E} \left(1 + \sum_{\alpha=1}^{\infty} \frac{g(p^\alpha)}{N^s(p^\alpha)} \right) = (\zeta_F(s))^{2^{k-1}+1}H(s), \]

where $H(s)$ is absolutely convergent for $\text{Re } s > 1/2$. So we have
\[(4.12) \quad G_2(\sigma_0) \ll (\zeta_F(\sigma_0))^{2^{k-1}+1}. \]

If we write
\[G_2(s) = \sum_{n=1} g_2(n) n^{-s}, \]
then it is easy to see that $g_2(n) \ll n^\varepsilon$. So from (4.4), (4.10), (4.11)(4.12) and (2.3) we get
\[(4.13) \quad E_{1,k}(X,T) \ll \frac{X^\varepsilon}{T}. \]

5. Proof of Theorem 1

Without loss of generality, we suppose that both X and Y are half integers with $3 \leq X < Y$. Let $T \geq 3$ be a parameter to be determined later. Define
\[b := 1 + \frac{1}{\log X}, \quad T_1 := T, \quad T_2 := 2T. \]

By the definition of $C_{\mathbb{F}_1}(X,Y)$ and Lemma 2.6 we have
\[(5.1) \quad C_{\mathbb{F}_1}(X,Y) = I_{\mathbb{F}_1}(X,Y,T) + O(XYE_{\mathbb{F}_1}(X,T) + XY\mathcal{E}_1(Y,T)), \]

where
\[
I_{\mathbb{F}_1}(X,Y,T) := \frac{1}{(2\pi i)^2} \int_{b-iT_1}^{b+iT_1} ds \int_{b-iT_2}^{b+iT_2} \frac{\zeta_F(w)\zeta_F(w+s-1) X^s Y^w}{sw} dw,
\]
\[
E_{\mathbb{F}_1}(X,T) := \sum_{m} \sum_{n} \frac{|c_m(n)|}{N^b(m)N^b(n)} \times \frac{1}{T \left| \frac{X}{N(n)} \right| + 1},
\]
\[
\mathcal{E}_1(X,T) := \sum_{m} \sum_{n} \frac{|c_m(n)|}{N^b(m)N^b(n)} \times \frac{1}{T \left| \frac{Y}{N(n)} \right| + 1}.
\]
From (4.9) and (4.13) with $k = 1$, we have

$$\tag{5.2} E_{\mathcal{F},1}(X, T) \ll \frac{X^\varepsilon}{T}, \quad \mathcal{E}_1(X, T) \ll \frac{Y^\varepsilon}{T}. $$

We consider the rectangle domain of w formed by the four points $b \pm iT_2$ and $1/2 \pm iT_2$. Let

$$G(w; x, X, Y) := \frac{\zeta_{\mathcal{F}}(w)\zeta_{\mathcal{F}}(w + s - 1)}{\zeta_{\mathcal{F}}(s)} \frac{X^sY^w}{sw}. $$

In this domain, $G(w; x, X, Y)$ has two simple poles, which are $w = 1$ and $w = 2 - s$, respectively. It is easy to see that

$$\text{Res}_{w=1}G(w; s, X, Y) = \rho_{\mathcal{F}}Y \frac{X^s}{s} ,$$
$$\text{Res}_{w=2-s}G(w; s, X, Y) = \rho_{\mathcal{F}} \frac{\zeta_{\mathcal{F}}(2-s)X^sY^{2-s}}{s(2-s)} . $$

By the residue theorem we get

$$\tag{5.3} I_{\mathcal{F},1}(X, Y, T) = \mathcal{J}_1(X, Y, T) + \mathcal{J}_2(X, Y, T) + H_1(X, Y, T) + H_2(X, Y, T) - H_3(X, Y, T), $$

where

$$\tag{5.4} \mathcal{J}_1(X, Y, T) := \rho_{\mathcal{F}}Y \frac{1}{2\pi i} \int_{b-iT_1}^{b+iT_1} \frac{X^s}{s} ds,$$
$$\mathcal{J}_2(X, Y, T) := \rho_{\mathcal{F}} \frac{1}{2\pi i} \int_{b-iT_1}^{b+iT_1} \frac{\zeta_{\mathcal{F}}(2-s)X^sY^{2-s}}{\zeta_{\mathcal{F}}(s)} \frac{1}{s(2-s)} ds,$$
$$H_1(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b-iT_1}^{b+iT_1} ds \int_{1/2+iT_2}^{1/2+iT_2} \frac{\zeta_{\mathcal{F}}(w)\zeta_{\mathcal{F}}(w + s - 1)X^sY^w}{sw} dw,$$
$$H_2(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b-iT_1}^{b+iT_1} ds \int_{1/2-iT_2}^{1/2-iT_2} \frac{\zeta_{\mathcal{F}}(w)\zeta_{\mathcal{F}}(w + s - 1)X^sY^w}{sw} dw,$$
$$H_3(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b-iT_1}^{b+iT_1} ds \int_{1/2-iT_2}^{1/2-iT_2} \frac{\zeta_{\mathcal{F}}(w)\zeta_{\mathcal{F}}(w + s - 1)X^sY^w}{sw} dw.$$

We consider $H_1(X, Y, T)$ first. Suppose

$$s = b + it, \ |t| \leq T, \ w = u + 2iT, \ 1/2 \leq u \leq b.$$

From Lemma 2.2 we have

$$G(w; x, X, Y) \ll \begin{cases}
\frac{X^{bY^uT^{1-2u}}}{|t|+1} \log^3 T, & 1/2 \leq u \leq 1, \\
\frac{X^{bY^u}}{|t|+1} \log^3 T, & 1 \leq u \leq b,
\end{cases} $$

which implies that

$$\tag{5.5} H_1(X, Y, T) \ll \int_{b-iT_1}^{b+iT_1} \frac{X^b}{|t|+1} dt \left(\int_{1/2}^{1} Y^u T^{1-2u} du + \int_{1}^{b} \frac{Y^u}{T} du \right) \log^3 T $$
$$\ll XY^{1/2} \log^4 T + XY^{bT^{-1}} \log^4 T.$$

Similarly we have

$$\tag{5.6} H_2(X, Y, T) \ll XY^{1/2} \log^4 T + \frac{XY^b}{Y T} \log^4 T.$$
Now we consider $H_2(X, Y, T)$. Suppose
\[s = b + it, \ |t| \leq T, \ w = 1/2 + iv, \ |v| \leq 2T. \]
We have
\[H_2(X, Y, T) \ll XY^{1/2} \log T \times \mathcal{H}(X, Y, T), \]
where
\[\mathcal{H}(X, Y, T) := \int_{b-iT_1}^{b+iT_1} dt \int_{1/2-iT_2}^{1/2+iT_2} \frac{\left| \zeta_F\left(\frac{1}{2} + iv\right) \zeta_F\left(\frac{1}{2} + \frac{1}{\log X} + i(t + v)\right) \right|}{(|t| + 1)(|v| + 1)} dv. \]
Write
\[\mathcal{H}(X, Y, T) = \mathcal{H}_1(X, Y, T) + \mathcal{H}_2(X, Y, T), \]
where
\[\mathcal{H}_1(X, Y, T) := \int_{|t| \leq |v|} \left| \frac{\zeta_F\left(\frac{1}{2} + iv\right) \zeta_F\left(\frac{1}{2} + \frac{1}{\log X} + i(t + v)\right)}{(|t| + 1)(|v| + 1)} \right| dv dt, \]
\[\mathcal{H}_2(X, Y, T) := \int_{|v| \leq |t|} \left| \frac{\zeta_F\left(\frac{1}{2} + iv\right) \zeta_F\left(\frac{1}{2} + \frac{1}{\log X} + i(t + v)\right)}{(|t| + 1)(|v| + 1)} \right| dv dt. \]

From Lemma 2.3 and partial integration we have that
\[\int_{-U}^{U} \frac{\left| \zeta_F(u + iv) \right|^2}{|v| + 1} dv \ll (\log U)^5 \quad (1/2 \leq u \leq 1). \]
and
\[\int_{-U}^{U} \frac{\left| \zeta_F(u + iv) \right|}{|v| + 1} dv \ll (\log U)^3 \quad (1/2 \leq u \leq 1). \]
If $|t| \leq |v|$, then $|v + t| \leq |v| + |t| \leq 2|v|$, which combining with (5.9) and Cauchy’s inequality implies that
\[\mathcal{H}_1(X, Y, T) \ll \int_{|t| \leq T} \frac{1}{|t| + 1} dt \int_{|t| \leq |v|} \left| \frac{\zeta_F\left(\frac{1}{2} + iv\right) \zeta_F\left(\frac{1}{2} + \frac{1}{\log X} + i(t + v)\right)}{(|v| + 1)^{1/2}(|v + t| + 1)^{1/2}} \right| dv \]
\[\ll \int_{|t| \leq T} \frac{dt}{|t| + 1} \left(\int_{|t| \leq |v|} \left| \frac{\zeta_F\left(\frac{1}{2} + iv\right)^2}{|v| + 1} \right| dv \right)^{1/2} \left(\int_{|t| \leq |v|} \left| \frac{\zeta_F\left(\frac{1}{2} + \frac{1}{\log X} + i(v + t)\right)^2}{|v + t| + 1} \right| dv \right)^{1/2} \]
\[\ll (\log T)^6. \]
If $|v| \leq |t|$, then $|v + t| \leq |v| + |t| \leq 2|t|$, which combining with (5.10) gives
\[\mathcal{H}_2(X, Y, T) \ll \int_{|v| \leq T} \left| \frac{\zeta_F\left(\frac{1}{2} + iv\right)}{|v| + 1} \right| dv \int_{|v| \leq |t|} \left| \frac{\zeta_F\left(\frac{1}{2} + \frac{1}{\log X} + i(t + v)\right)}{|v + t| + 1} \right| dt \]
\[\ll (\log T)^6. \]

From (5.7), (5.8), (5.11) and (5.12) we get
\[H_2(X, Y, T) \ll XY^{1/2}(\log T)^7. \]
From (2.15) we get

\[(5.14) \quad \tilde{J}_1(X, Y, T) = \rho_Y Y + O\left(\frac{XY}{T \log X}\right).\]

Finally we consider \(\tilde{J}_2(X, Y, T) \). Let

- \(IP_1 = \{ s = \sigma - iT_1 : b \leq \sigma \leq 2 \} \), \(IP_2 = \{ s = 2 + it : -T \leq t \leq -\frac{1}{\log X} \} \),
- \(IP_3 = \{ s = \frac{e^{i\theta}}{\log X} : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \} \),
- \(IP_4 = \{ s = 2 + it : \frac{1}{\log X} \leq t \leq T \} \), \(IP_5 = \{ s = \sigma + iT_1 : b \leq \sigma \leq 2 \} \).

By the residue theorem we have

\[(5.15) \quad \tilde{J}_2(X, Y, T) = \frac{\zeta_{\varphi}(0)}{2\zeta_{\varphi}(2)} X^2 + \sum_{j=1}^{4} \frac{\zeta_{\varphi}(2-s)}{\zeta_{\varphi}(s)} \int_{IP_j} X^s Y^{2-s} ds \quad (j = 1, 2, 3, 4).\]

By Lemma 2.2 we have

\[(5.16) \quad \tilde{J}_{21}(X, Y, T) \ll \int_{b}^{2} T^{\sigma-3} X^\sigma Y^{2-\sigma} \log^2 T d\sigma \ll \frac{XY}{T^2} \log^2 T + \frac{X^2}{T} \log^2 T.\]

and

\[(5.17) \quad \tilde{J}_{25}(X, Y, T) \ll \int_{b}^{2} T^{\sigma-3} X^\sigma Y^{2-\sigma} \log^2 T d\sigma \ll \frac{XY}{T^2} \log^2 T + \frac{X^2}{T} \log^2 T.\]

By Lemma 2.2 again we have

\[(5.18) \quad \tilde{J}_{24}(X, Y, T) \ll X^2 \int_{\log X}^{T_1} \frac{\log(t+1)}{t(t+1)} dt = X^2 \left(\int_{\log X}^{1} \frac{\log(t+1)}{t(t+1)} dt + \int_{1}^{T_1} \frac{\log(t+1)}{t(t+1)} dt \right) \ll X^2.\]

by noting that \(\log(1+t) \ll t \) (0 < t < 1). Similarly

\[(5.19) \quad \tilde{J}_{22}(X, Y, T) \ll X^2 \int_{\log X}^{T_1} \frac{\log(t+1)}{t(t+1)} dt \ll X^2.\]

For \(\tilde{J}_{23}(X, Y, T) \) we have

\[(5.20) \quad \tilde{J}_{23}(X, Y, T) \ll X^2.\]

From (5.15)-(5.20) we get

\[(5.21) \quad \tilde{J}_2(X, Y, T) \ll \frac{XY}{T^2} \log^2 T + \frac{X^2}{T} \log^2 T + X^2.\]
From (5.1)-(5.6), (5.13), (5.14) and (5.21) we have

\[C_{F,1}(X, Y) = \rho_2 Y + O \left(\frac{X Y^{1+\varepsilon}}{T} + X Y^{1/2} \log^7 T \right) + O \left(X^2 + \frac{X^2}{T} \log^4 T \right) \]

\[= \rho_2 Y + O \left(X Y^{1/2} \log^7 Y + X^2 \right) \]

by choosing \(T = XY \). This completes the proof of Theorem 1.

6. Proof of Theorem 2

Without loss of generality, we suppose that both \(X \) and \(Y \) are half integers and \(X < Y \). Let \(T \geq 3 \) be a parameter to be determined later. Define

\[b_1 := 1 + \frac{1}{\log X}, \quad b_2 := 1 + \frac{2}{\log X}, \quad b_3 := 1 + \frac{3}{\log X} \]

\[T_1 = T, \quad T_2 = 2T, \quad T_3 := 4T. \]

By the definition of \(C_{F,2}(X, Y) \) and Lemma 2.6 we have

\[C_{F,2}(X, Y) = I_{F,2}(X, Y, T) + O(X^2 Y^b E_{F,1}(X, T) + X^2 Y^b \mathcal{E}_2(Y, T)), \]

where

\[I_{F,2}(X, Y, T) := \frac{1}{(2\pi i)^3} \int_{b_1 - iT_1}^{b_1 + iT_1} ds_1 \int_{b_2 - iT_2}^{b_2 + iT_2} ds_2 \int_{b_3 - iT_3}^{b_3 + iT_3} \mathcal{G}(w; s_1, s_2)dw, \]

\[E_{F,1}(X, T) := \sum_{m_1} \sum_{m_2} \sum_n \frac{|c_{m_1}(n)c_{m_2}(n)|}{N^{b_1}(m_1)N^{b_1}(m_2)N^{b_1}(n)} \times \frac{1}{T \left\lfloor \frac{X}{N(m)} \right\rfloor + 1}, \]

\[\mathcal{E}_2(X, T) := \sum_{m_1} \sum_{m_2} \sum_n \frac{|c_{m_1}(n)c_{m_2}(n)|}{N^{b_1}(m_1)N^{b_1}(m_2)N^{b_1}(n)} \times \frac{1}{T \left\lfloor \frac{Y}{N(n)} \right\rfloor + 1} \]

and

\[\mathcal{G}(w; s_1, s_2) := \frac{\zeta_F(w)\zeta_F(w + s_1 - 1)\zeta_F(w + s_2 - 1)\zeta_F(w + s_1 + s_2 - 2)}{\zeta_F(s_1)\zeta_F(s_2)\zeta_F(2w + s_1 + s_2 - 2)} \frac{X^{s_1 + s_2} Y^w}{s_1 s_2 w}. \]

From (4.9) and (4.13) with \(k = 2 \), we have

\[E_{F,1}(X, T) \ll \frac{X^\varepsilon}{T}, \quad \mathcal{E}_2(X, T) \ll \frac{Y^\varepsilon}{T}. \]

We consider the rectangle domain of \(w \) formed by the four points \(b_3 \pm iT_3 \) and \(2/3 \pm iT_3 \). In this domain, \(\mathcal{G}(w; s_1, s_2) \) has four simple poles, which are \(w_1 = 1 \), \(w_2 = 2 - s_1 \), \(w_3 = 2 - s_2 \) and \(w_4 = 3 - s_1 - s_2 \) respectively. By the residue theorem we get

\[I_{F,2}(X, Y, T) = \mathcal{L}_1(X, Y, T) + \mathcal{L}_2(X, Y, T) + \mathcal{L}_3(X, Y, T) + \mathcal{L}_4(X, Y, T) + K_1(X, Y, T) + K_2(X, Y, T) - K_3(X, Y, T). \]
where
\[
\mathcal{L}_j(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} Res_{w=w_j} G(w; s_1, s_2) ds_2 \quad (j = 1, 2, 3, 4),
\]
\[
K_1(X, Y, T) := \frac{1}{(2\pi i)^3} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} ds_2 \int_{b_3-iT_3}^{b_3+iT_3} G(w; s_1, s_2) dw,
\]
\[
K_2(X, Y, T) := \frac{1}{(2\pi i)^3} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} ds_2 \int_{2/3+iT_3}^{2/3+iT_3} G(w; s_1, s_2) dw,
\]
\[
K_3(X, Y, T) := \frac{1}{(2\pi i)^3} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} ds_2 \int_{2/3-iT_3}^{2/3-iT_3} G(w; s_1, s_2) dw.
\]

6.1. Upper bound of $K_j(X, Y, T)$ ($j=1,2,3$). We first consider $K_1(X, Y, T)$. Suppose
\[
s_1 = b + it_1, \quad |t_1| \leq T_1, \quad s_2 = b + it_2, \quad |t_2| \leq T_2, \quad w = u + iT_3, \quad 2/3 \leq u \leq b.
\]
By Lemma 2.5 we have
\[
G(w; s_1, s_2) \ll \frac{X^{2b}}{(|t_1| + 1)(|t_2| + 1)} T^{\frac{2}{3} - \frac{s_1}{Y}} Y^u \log^6 T, \quad 2/3 \leq u \leq b,
\]
which implies that
\[
K_1(X, Y, T) \ll X^2 Y^{\frac{2}{3}} T^{-\frac{1}{3}} \log^8 T + X^2 Y^b T^{-1} \log^8 T.
\]
Similarly we have
\[
K_3(X, Y, T) \ll X^2 Y^{\frac{2}{3}} T^{-\frac{1}{3}} \log^8 T + X^2 Y^b T^{-1} \log^8 T.
\]
We now consider $K_2(X, Y, T)$. By (2.4) of Lemma 2.2 we write
\[
K_2(X, Y, T) \ll J X^2 Y^{\frac{2}{3}} \log^2 T,
\]
where
\[
J := \int_{b_1-iT_1}^{b_1+iT_1} dt_1 \int_{b_2-iT_2}^{b_2+iT_2} dt_2 \int_{2/3-iT_3}^{2/3+iT_3} \frac{|g(t_1, t_2, v)|}{(|t_1| + 1)(|t_2| + 1)(|v| + 1)} dv
\]
with
\[
g(t_1, t_2, v) := \zeta_F \left(\frac{2}{3} + iv \right) \zeta_F \left(\frac{2}{3} + \frac{1}{\log X} + i(v + t_1) \right) \zeta_F \left(\frac{2}{3} + \frac{1}{\log X} + i(v + t_2) \right) \zeta_F \left(\frac{2}{3} + \frac{2}{\log X} + i(v + t_1 + t_2) \right)
\]
With the help of Lemma 2.4 we can show that
\[
J \ll \log^3 T.
\]
The proof of (6.8) is similar to the arguments of $H_2(T)$ in Tóth and Zhai [15]. So we omit its details.
From (6.6)-(6.8) we get
\[
K_2(X, Y, T) \ll X^2 Y^{\frac{2}{3}} \log^5 T.
\]
We now consider the first integral in (6.10). We have

\[
\mathcal{L}_1(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} ds_2 \frac{\zeta(s) - 1}{\zeta(s + 1)} \frac{X^{s_1+s_2}Y}{s_1s_2} ds_2.
\]

By the residue theorem, we have

\[
\mathcal{L}_1(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} \frac{\rho_{\pi}^2}{\zeta(2)} \frac{X^{s_1+s_2}}{s_1s_2} ds_1.
\]

By Lemma 2.2 it is easy to see that

\[
\mathcal{L}_1(X, Y, T) \ll \frac{X^{2Y}}{T} \log T + \frac{X^{2Y}}{T^{1/2}} \log T.
\]

For \(\mathcal{L}_2(X, Y, T)\), we have

\[
\mathcal{L}_2(X, Y, T) \ll \frac{YX^{2Y}}{T} \log T + \frac{X^{2Y}}{T^{1/2}} \log T.
\]
where \(\int_{(b)} \) means that \(\int_{b-i\infty}^{b+i\infty} \). Moving the integral line from \(b \) to \(\text{Re}(s_1) = 1 \), we get

\[
(6.14) \quad \frac{1}{2\pi i} \int_{b-iT_1}^{b+iT_1} \frac{\rho^2_F}{\zeta_F(2)} \frac{X^2Y}{s_1(2 - s_1)} ds_1 = c_F X^2Y + O \left(\frac{X^2Y \log T}{T} \right),
\]

with

\[
c_F = \frac{\rho^2_F}{\zeta_F(2)} \frac{1}{2\pi i} \int_{1} \frac{1}{s_1(2 - s_1)} ds_1 = \frac{\rho^2_F}{2\zeta_F(2)}.
\]

From (6.10)-(6.14) we get

\[
(6.15) \quad \mathcal{L}_1(X, Y, T) = \frac{\rho^2_F}{2\zeta_F(2)} X^2Y + O \left(\frac{X^2Y \log T}{T} + Y X^{3/2} \log T \right).
\]

6.3. Upper bound of \(\mathcal{L}_2(X, Y, T) \). It is easy to see that

\[
\text{Re} s_{w=2-s_1} G(w; s_1, s_2) = \frac{\zeta_F(2 - s_1) \zeta_F(1 - s_1 + s_2)}{\zeta_F(s_1) \zeta_F(2 - s_1 + s_2)} \frac{X^{s_1+s_2} Y^{2-s_1}}{s_1 s_2 (2 - s_1)}
\]

So we have

\[
\mathcal{L}_2(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} \rho_F \frac{\zeta_F(2 - s_1) \zeta_F(1 - s_1 + s_2)}{\zeta_F(s_1) \zeta_F(2 - s_1 + s_2)} \frac{X^{s_1+s_2} Y^{2-s_1}}{s_1 s_2 (2 - s_1)} ds_2.
\]

We consider the rectangle domain of \(s_2 \) formed by the four points \(1/2 \pm iT_2 \) and \(b_2 \pm iT_2 \). In this domain, the integral function in the above integral is \(s_2 = s_1 \) with residue

\[
\frac{\rho^2_F}{\zeta_F(2)} \frac{\zeta_F(2 - s_1)}{\zeta_F(s_1)} \frac{X^{2s_1} Y^{2-s_1}}{s_1^2 (2 - s_1)}.
\]

By the residue theorem we get

\[
(6.16) \quad \mathcal{L}_2(X, Y, T) = \mathcal{L}_{20}(X, Y, T) + \mathcal{L}_{21}(X, Y, T) + \mathcal{L}_{22}(X, Y, T) - \mathcal{L}_{23}(X, Y, T)
\]

where

\[
\begin{align*}
\mathcal{L}_{20}(X, Y, T) &:= \frac{\rho^2_F}{\zeta_F(2)} \frac{1}{2\pi i} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \frac{\zeta_F(2 - s_1)}{\zeta_F(s_1)} \frac{X^{2s_1} Y^{2-s_1}}{s_1^2 (2 - s_1)} ds_1, \\
\mathcal{L}_{21}(X, Y, T) &:= \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{1/2+iT_2}^{1/2-iT_2} \rho_F \frac{\zeta_F(2 - s_1) \zeta_F(1 - s_1 + s_2)}{\zeta_F(s_1) \zeta_F(2 - s_1 + s_2)} \frac{X^{s_1+s_2} Y^{2-s_1}}{s_1 s_2 (2 - s_1)} ds_2, \\
\mathcal{L}_{22}(X, Y, T) &:= \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{1/2-iT_2}^{1/2+iT_2} \rho_F \frac{\zeta_F(2 - s_1) \zeta_F(1 - s_1 + s_2)}{\zeta_F(s_1) \zeta_F(2 - s_1 + s_2)} \frac{X^{s_1+s_2} Y^{2-s_1}}{s_1 s_2 (2 - s_1)} ds_2, \\
\mathcal{L}_{23}(X, Y, T) &:= \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{1/2-iT_2}^{1/2+iT_2} \rho_F \frac{\zeta_F(2 - s_1) \zeta_F(1 - s_1 + s_2)}{\zeta_F(s_1) \zeta_F(2 - s_1 + s_2)} \frac{X^{s_1+s_2} Y^{2-s_1}}{s_1 s_2 (2 - s_1)} ds_2.
\end{align*}
\]

By Lemma 2.2 we have

\[
(6.17) \quad \mathcal{L}_{21}(X, Y, T) \ll Y \log T \int_{-T_1}^{T_1} \frac{|\zeta(2 - b_1 - it_1)|}{(|t_1| + 1)^2} dt_1 \int_{1/2}^{b_2} T^{-\sigma_2} X^{b_1+\sigma_2} d\sigma_2
\]

\[
\ll \frac{X^2Y \log T}{T} + Y X^{3/2} \log T
\]
and

\begin{equation}
(6.18) \quad \mathcal{L}_{23}(X, Y, T) \ll \frac{X^2 Y \log T}{T} + \frac{Y X^{3/2} \log T}{T^{1/2}}.
\end{equation}

By (2.4) of Lemma 2.2 we have

\begin{equation}
(6.19) \quad \mathcal{L}_{22}(X, Y, T) \ll X^{3/2} Y \log^2 T \int_{-T_1}^{T_1} dt_1 \int_{-T_2}^{T_2} \frac{|\zeta_F(\frac{1}{2} - \frac{1}{\log X} + i(t_2 - t_1))|}{(|t_1| + 1)^2(|t_2| + 1)} dt_2 \ll X^{3/2} Y \log^5 T,
\end{equation}

where we used the bound

\[\int_{-T_1}^{T_1} dt_1 \int_{-T_2}^{T_2} \frac{|\zeta_F(\frac{1}{2} - \frac{1}{\log X} + i(t_2 - t_1))|}{(|t_1| + 1)^2(|t_2| + 1)} dt_2 \ll \log^3 T, \]

whose proof is similar to (5.11) and (5.12).

Finally we consider \(\mathcal{L}_{20}(X, Y, T) \). We write

\[\mathcal{L}_{20}(X, Y, T) = \frac{\rho_F^2}{\zeta_F(2)} \cdot \frac{1}{2\pi i} \int_{(b_1)} \frac{\zeta_F(2 - s)}{\zeta_F(s)} \cdot \frac{X^{2s_1} Y^{2 - s_1}}{s_1^2(2 - s)} ds_1 + O \left(\frac{X^2 Y \log^2 T}{T^2} \right). \]

Moving the integral line to \(\text{Re} s_1 = 12/5 \), we encounter a simple pole \(s_1 = 2 \). We have

\[\frac{\rho_F^2}{\zeta_F(2)} \cdot \frac{1}{2\pi i} \int_{(b_1)} \frac{\zeta_F(2 - s)}{\zeta_F(s)} \cdot \frac{X^{2s_1} Y^{2 - s_1}}{s_1^2(2 - s)} ds_1 = \frac{\zeta_F(0)\rho_F^2}{4\zeta_F^2(2)} X^4 + \frac{\rho_F^2}{2\pi i} \int_{(12/5)} \frac{\zeta_F(2 - s)}{\zeta_F(s)} \cdot \frac{X^{2s_1} Y^{2 - s_1}}{s_1^2(2 - s)} ds_1. \]

By Lemma 2.1 we see that if \(s_1 = 12/5 + it \), then

\[\frac{\zeta_F(2 - s_1)}{\zeta_F(s_1)s_1^2(2 - s_1)} \ll \frac{1}{(|t| + 1)^{6/5}}, \]

which implies that

\[\int_{(12/5)} \frac{\zeta_F(2 - s)}{\zeta_F(s)} \cdot \frac{X^{2s_1} Y^{2 - s_1}}{s_1^2(2 - s)} ds_1 \ll X^{\frac{24}{5}} Y^{-\frac{2}{5}}. \]

From the above estimates we have

\begin{equation}
(6.20) \quad \mathcal{L}_{20}(X, Y, T) = \frac{\zeta_F(0)\rho_F^2}{4\zeta_F^2(2)} X^4 + O \left(\frac{X^2 Y \log^2 T}{T^2} + X \frac{24}{5} Y^{-\frac{2}{5}} \right).
\end{equation}

From (6.16) to (6.20) we get

\begin{equation}
(6.21) \quad \mathcal{L}_2(X, Y, T) = \frac{\zeta_F(0)\rho_F^2}{4\zeta_F^2(2)} X^4 + O \left(\frac{X^2 Y \log T}{T} + X^\frac{3}{2} Y \log^5 T + X \frac{24}{5} Y^{-\frac{2}{5}} \right).
\end{equation}
6.4. Upper bound of $\mathcal{L}_3(X, Y, T)$. It is easy to see that
\[
\text{Res}_{w=2-s_2} G(w; s_1, s_2) = \rho_F \frac{\zeta_F(2-s_2)\zeta_F(1+s_1-s_2)}{\zeta_F(2-s_1+s_2)} X^{s_1+s_2} Y^{2-s_2}.
\]
So we have
\[
\mathcal{L}_2(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1+iT_1}^{b_1+iT_1} ds_1 \int_{b_2+iT_2}^{b_2+iT_2} \rho_F \frac{\zeta_F(2-s_2)\zeta_F(1+s_1-s_2)}{\zeta_F(2-s_1+s_2)} X^{s_1+s_2} Y^{2-s_2} ds_2.
\]
We consider the rectangle domain of s_2 formed by the four points $b_2 \pm iT_2$ and $7/4 \pm iT_2$. By the residue theorem we get
\[
(6.22) \quad \mathcal{L}_3(X, Y, T) = -\mathcal{L}_{31}(X, Y, T) + \mathcal{L}_{32}(X, Y, T) + \mathcal{L}_{33}(X, Y, T)
\]
where
\[
\mathcal{L}_{31}(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2+iT_2}^{b_2+iT_2} \rho_F \frac{\zeta_F(2-s_2)\zeta_F(1+s_1-s_2)}{\zeta_F(2-s_1+s_2)} X^{s_1+s_2} Y^{2-s_2} ds_2,
\]
\[
\mathcal{L}_{32}(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{7/4-iT_2}^{7/4+iT_2} \rho_F \frac{\zeta_F(2-s_2)\zeta_F(1+s_1-s_2)}{\zeta_F(2-s_1+s_2)} X^{s_1+s_2} Y^{2-s_2} ds_2,
\]
\[
\mathcal{L}_{33}(X, Y, T) := \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{b_2+iT_2} \rho_F \frac{\zeta_F(2-s_2)\zeta_F(1+s_1-s_2)}{\zeta_F(2-s_1+s_2)} X^{s_1+s_2} Y^{2-s_2} ds_2.
\]
From Lemma 2.2 it is easy to see that
\[
(6.23) \quad \mathcal{L}_{31}(X, Y, T) \ll \frac{X^2 Y}{T^2} \log^3 T + \frac{X^{\frac{11}{2}} Y^{\frac{1}{2}}}{T^2} \log^3 T
\]
and
\[
(6.24) \quad \mathcal{L}_{33}(X, Y, T) \ll \frac{X^2 Y}{T^2} \log^3 T + \frac{X^{\frac{11}{2}} Y^{\frac{1}{2}}}{T^2} \log^3 T.
\]
By (2.4) of Lemma 2.2 we can write
\[
\mathcal{L}_{32}(X, Y, T) \ll X^{\frac{11}{2}} Y^{\frac{1}{2}} \log T \times \mathcal{L}_{32}^*(X, Y, T),
\]
where
\[
\mathcal{L}_{32}^*(X, Y, T) := \int_{-T_1}^{T_1} dt_1 \int_{-T_2}^{T_2} \frac{|\zeta_F\left(\frac{1}{4} - it_2\right)\zeta_F\left(\frac{1}{4} + \frac{1}{\log X} + i(t_1 - t_2)\right)|}{(|t_1| + 1)(|t_2| + 1)^2} dt_2.
\]
By Lemma 2.1 we have
\[
\mathcal{L}_{32}^*(X, Y, T) \ll \int_{-T_1}^{T_1} dt_1 \int_{-T_2}^{T_2} \frac{|\zeta_F\left(\frac{3}{4} + it_2\right)\zeta_F\left(\frac{3}{4} - \frac{1}{\log X} - i(t_1 - t_2)\right)|}{(|t_1| + 1)(|t_2| + 1)^{\frac{3}{2}}} \times (|t_1 - t_2| + 1)^{\frac{1}{2}} dt_2.
\]
Similar to (5.11) and (5.12) we have
\[
\mathcal{L}_{32}^*(X, Y, T) \ll \log^2 T.
\]
Thus
\[
(6.25) \quad \mathcal{L}_{32}(X, Y, T) \ll X^{\frac{11}{2}} Y^{\frac{1}{2}} \log^3 T.
\]
From (6.22)-(6.25) we get
\[
(6.26) \quad \mathcal{L}_3(X, Y, T) \ll X^{\frac{11}{2}} Y^{\frac{1}{2}} \log^3 T + \frac{X^2 Y}{T^2} \log^3 T.
\]
6.5. **Upper bound of \(\mathcal{L}_4(X, Y, T) \).** It is easy to see that

\[
Rc s_{w=3-s_1-s_2} G(w; s_1, s_2) = \rho \frac{\zeta_F(3-s_1-s_2)\zeta_F(2-s_2)}{\zeta_F(s_1)\zeta_F(s_2)\zeta_F(4-s_1-s_2)} \frac{X^{s_1+s_2}Y^{3-s_1-s_2}}{s_1s_2(3-s_1-s_2)} = m(s_1, s_2),
\]
say. By the residue theorem we can write

\[
(6.27) \quad \mathcal{L}_4(X, Y, T) = -\mathcal{L}_{41}(X, Y, T) + \mathcal{L}_{42}(X, Y, T) + \mathcal{L}_{43}(X, Y, T),
\]

where

\[
\mathcal{L}_{41}(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2+iT_2}^{\frac{3}{2}+iT_2} m(s_1, s_2) ds_2,
\]

\[
\mathcal{L}_{42}(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{\frac{3}{2}-iT_2}^{\frac{3}{2}+iT_2} m(s_1, s_2) ds_2,
\]

\[
\mathcal{L}_{43}(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{b_1-iT_1}^{b_1+iT_1} ds_1 \int_{b_2-iT_2}^{\frac{3}{2}+iT_2} m(s_1, s_2) ds_2.
\]

Suppose \(b_1 \leq \sigma_1 \leq 3/2, |t_1| \leq T \) and \(b_2 \leq \sigma_2 \leq 3/2, |t_2| \leq 2T \). By Lemma 2.2 it is easy to check that

\[
(6.28) \quad m(s_1, s_2) \ll \frac{X^{\sigma_1+\sigma_2}Y^{3-\sigma_1-\sigma_2} \log^2(|t_1|+1) \log^2(|t_2|+1) \log(|t_1+t_2|+1)}{(|t_1|+1)^{2-\sigma_1}(|t_2|+1)^{2-\sigma_2}(|t_1+t_2|+1)^{3-\sigma_1-\sigma_2}}.
\]

From (6.28) we get \((t_2 = T_2 = 2T)\)

\[
(6.29) \quad \mathcal{L}_{41}(X, Y, T) \ll \frac{X^2Y \log^5 T}{T^2} + \frac{X^{\frac{5}{2}}Y^{\frac{1}{2}} \log^5 T}{T}
\]

and \((t_2 = -T_2 = -2T)\)

\[
(6.30) \quad \mathcal{L}_{43}(X, Y, T) \ll \frac{X^2Y \log^5 T}{T^2} + \frac{X^{\frac{5}{2}}Y^{\frac{1}{2}} \log^5 T}{T}.
\]

Now we consider \(\mathcal{L}_{42}(X, Y, T) \). Change the order of \(s_1 \) and \(s_2 \) and then use the residue theorem to \(s_1 \) we get

\[
(6.31) \quad \mathcal{L}_{42}(X, Y, T) = -\mathcal{L}_{421}(X, Y, T) + \mathcal{L}_{422}(X, Y, T) + \mathcal{L}_{423}(X, Y, T),
\]

where

\[
\mathcal{L}_{421}(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{\frac{3}{2}-iT_2}^{\frac{3}{2}+iT_2} ds_2 \int_{b_1+iT_1}^{\frac{3}{2}+iT_1} m(s_1, s_2) ds_1,
\]

\[
\mathcal{L}_{422}(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{\frac{3}{2}-iT_2}^{\frac{3}{2}+iT_2} ds_2 \int_{\frac{3}{2}-iT_1}^{\frac{3}{2}+iT_1} m(s_1, s_2) ds_1,
\]

\[
\mathcal{L}_{423}(X, Y, T) = \frac{1}{(2\pi i)^2} \int_{\frac{3}{2}-iT_2}^{\frac{3}{2}+iT_2} ds_2 \int_{b_1-iT_1}^{\frac{3}{2}+iT_1} m(s_1, s_2) ds_1.
\]
From (6.28) we get

\[(6.32) \quad \mathcal{L}_{421}(X, Y, T) \ll \int_{-T_2}^{T_2} \frac{1}{(|t_2| + 1)^{1/2}} dt_2 \int_{b_1}^{\frac{T}{2}} \frac{X^{\sigma_1 + \frac{3}{2} Y^{\frac{3}{2} - \sigma_1} \log^5 T}}{T^{2 - \sigma_1} (|T + t_2| + 1)^{\frac{3}{2} - \sigma_1}} d\sigma_1
\]

\[\ll \frac{X^{\frac{5}{2}} Y^{\frac{1}{2}} \log^5 T}{T} \int_{-T_2}^{T_2} \frac{1}{(|t_2| + 1)^{1/2} (|T + t_2| + 1)^{1/2}} dt_2
\]

\[+ \frac{X^{3} \log^5 T}{T^{1/2}} \int_{-T_2}^{T_2} \frac{1}{(|t_2| + 1)^{1/2}} dt_2
\]

\[\ll \frac{X^{\frac{5}{2}} Y^{\frac{1}{2}} \log^5 T}{T} + X^{3} \log^5 T
\]

by noting that

\[\int_{-T_2}^{T_2} \frac{1}{(|t_2| + 1)^{1/2} (|T + t_2| + 1)^{1/2}} dt_2 \ll 1.
\]

Similarly we have

\[(6.33) \quad \mathcal{L}_{423}(X, Y, T) \ll \frac{X^{\frac{5}{2}} Y^{\frac{1}{2}} \log^5 T}{T} + X^{3} \log^5 T.
\]

Finally we consider \(\mathcal{L}_{422}(X, Y, T)\). Suppose \(s_1 = 3/2 + it_1, s_2 = 3/2 + it_2\). By Lemma 2.2 we have

\[m(s_1, s_2) \ll X^{3} \log^{3} T \times \frac{|\zeta_{\mathbb{F}}(\frac{1}{2} + it_1)\zeta_{\mathbb{F}}(\frac{1}{2} + it_2)|}{(|t_1| + 1)(|t_2| + 1)},
\]

which combining with (5.10) implies that

\[(6.34) \quad \mathcal{L}_{422}(X, Y, T) \ll X^{3} \log^{9} T.
\]

From (6.27) and (6.29)-(6.34) we have

\[(6.35) \quad \mathcal{L}_{4}(X, Y, T) \ll X^{3} \log^{9} T + \frac{X^{\frac{5}{2}} Y^{\frac{1}{2}} \log^5 T}{T} + \frac{X^{2} Y \log^5 T}{T^2}.
\]

6.6. Proof of Theorem 2: completion.
Choose $T = Y^2$. From (6.1)-(6.5), (6.9), (6.15), (6.21), (6.26), (6.35) we get

$$C_{p,2}(X, Y) = \frac{\rho_p^2}{2 \zeta_p(2)} X^2 Y + \frac{\zeta_{2p}(0) \rho_p^2}{4 \zeta_p^2(2)} X^4 + O \left(\frac{X^2 Y^{1+\varepsilon} + X^{\frac{5}{2}} Y Y \log^7 T}{T} \right)$$

$$+ O \left(X^3 \log^9 T + X^{\frac{11}{4}} Y^{\frac{1}{4}} \log^3 T + X^{\frac{5}{2}} Y \log^3 T \right)$$

$$+ O \left(X^{\frac{24}{5}} Y^{\frac{3}{5}} + X^2 Y^{\frac{3}{4}} \log^5 T \right)$$

by noting that $Y \geq X^2$. This completes the proof of Theorem 2.

References

[1] T. H. Chan and A.V. Kumchev, On sums of Ramanujan sums, Acta arithm. 152 (2012), 1-10.
[2] A. Grytczuk, On Ramanujan sums on arithmetical semigroups, Tsukuba J. Math. 16 (1992), 315-319.
[3] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, 2nd ed., Chelsea Publ. Co., (New York, 1948).
[4] A. Ivić, The Riemann Zeta-Function. Theory and Applications, Wiley, New York, 1985.
[5] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS, 2004.
[6] J. Knopfmacher, Abstract analytic number theory, North Holland Publ. Co., (Amsterdam-Oxford, 1975).
[7] E. Krätzel, Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, (Berlin, 1981).
[8] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. 2nd ed. New York 1949.
[9] W. Müller, On the distribution of ideals in cubic number fields. Monatsh. Math. 106 (1988), 211-219.
[10] W. G. Nowak, On the Distribution of Integer Ideals in Algebraic Number Fields, Math. Nachr. 161 (1993), 59-74.
[11] W. G. Nowak, The average size of Ramanujan sums over quadratic number fields, Arch. Math. 99 (2012), 433-442.
[12] W. G. Nowak, On Ramanujan sums over the Gaussian integers. Math. Slovaca, 63 (2013), No. 4, 725-732.
[13] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Third edition, Graduate Studies in Mathematics 163, AMS 2015.
[14] E. C. Titchmarsh, The theory of the Riemann Zeta-Function, Oxford University Press, Oxford, 1951.
[15] L. Tóth and W. Zhai, On the average number of the cyclic subgroups of the groups $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \mathbb{Z}_{n_3}$ with $n_1, n_2, n_3 \leq x$, Res. Number Theory (2020), 6:12.
[16] W. Zhai, The average size of Ramanujan sums over quadratic number fields, Ramanujan J., to appear.
THE AVERAGE SIZE OF RAMANUJAN SUMS OVER QUADRATIC NUMBER FIELDS (II)

Wenguang Zhai
Department of Mathematics,
China University of Mining and Technology,
Beijing 100083, P. R. China
e-mail: zhaiwg@hotmail.com