BIG regulates dynamic adjustment of circadian period in *Arabidopsis thaliana*

Hearn TJ1, Marti MC1, Abdul-Awal SM1,2, Wimalasekera R1, Stanton CR1, Haydon MJ3, Theodoulou FL4, Hannah MA5 and Webb AAR1*

1 Department of Plant Sciences, University of Cambridge, UK, CB2 3EA
2 Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
3 School of BioSciences, The University of Melbourne, Victoria 3010, Australia
4 Plant Sciences Department, Rothamsted Research, Harpenden, UK, AL5 2JQ
5 Bayer CropScience SA-NV, Technologiepark 38, 9052 Gent (Zwijnaarde), Belgium

Corresponding Author:
AAR Webb, aarw2@cam.ac.uk, +44 (0)1223 333948

Short Title:
BIG dynamically adjusts the circadian period

One-sentence summary:
BIG contributes to the dynamic adjustment of the circadian period to establish the correct phase of daily rhythms in Arabidopsis.

Author contributions

TH, MJH, MAH and AW devised the study. TH, AA, CS, RM and MM conducted the experiments. TH, MM, FLT, and AW wrote the manuscript.

TH was supported by a BBSRC CASE studentship 1090203 supported by Bayer Cropscience and BBSRC Grant BB/M006212/1. MM was supported by a University of Cambridge Broodbank Fellowship.

Abstract

Circadian clocks drive rhythms with a period near 24 hours, but the molecular basis of the circadian period’s regulation is poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis thaliana, with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronised to rhythmic signals such as light and dark cycles, as well as changes in internal metabolism. To identify molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function.
that was previously shown to play a role in light signalling. We found that son1 has
an early entrained phase, suggesting that the dynamic alteration of circadian period
contributes to the correct timing of biological events. Our data provide insight into
how dynamic period adjustment of circadian oscillators contributes to establishing a
correct phase relationship with the environment, and they show that BIG is involved
in this process.

Introduction

The circadian clock is an endogenous oscillator that in *Arabidopsis thaliana* consists
of nuclear and cytosolic feedback loops. It is often considered that the circadian
oscillator runs with a period of 24-hour but the circadian period is plastic, depending
on environmental conditions. For example, in diurnal organisms such as Arabidopsis
(*Arabidopsis thaliana*), the circadian clock has a reduced period with increased light
intensity (Aschoff 1960). This is commonly referred to as Aschoff’s rule and was the
foundation for the model of parametric entrainment that describes how the circadian
oscillator synchronises with environmental cycles (Aschoff 1960). We have
discovered that exogenous application of two common metabolites also regulates
circadian period in Arabidopsis. Sucrose reduces circadian period under dim light
conditions (Haydon et al., 2013), whereas nicotinamide makes the circadian clock
run more slowly, with a period near 27 h (Dodd et al., 2007).

The way in which circadian clocks regulate and adjust circadian period is unknown.
We refer to this ability of the circadian clock to adapt to the environmental conditions
as dynamic adjustment of circadian period. To investigate this dynamic adjustment,
we have used nicotinamide as a tool that increases circadian period. Previously, we have proposed that nicotinamide affects circadian period through its action as an antagonist of Ca\(^{2+}\) signalling (Dodd et al., 2007). There is circadian regulation of cytosolic free calcium ([Ca\(^{2+}\)\(_{\text{cyt}}\)]) in mesophyll cells (Marti et al., 2013), and this encodes information about light intensity and quality (Xu et al., 2007; Love et al., 2004). In Arabidopsis, circadian regulation of [Ca\(^{2+}\)\(_{\text{cyt}}\)] is driven by the second messenger cyclic adenosine diphosphate ribose (cADPR) under the control of the morning oscillator gene \textit{CIRCadian CLOCK ASSOCIATED 1} (\textit{CCA1}) (Xu et al., 2007; Dodd et al., 2007). Nicotinamide, the by-product of cADPR synthesis, inhibits both cADPR accumulation (Dodd et al., 2007) and ADPR cyclase activity (Abdul-Awal et al., 2016). There is no gene in Arabidopsis with homology to any of the known ADPR cyclases (Hunt et al., 2007). However, the existence of a completely novel ADPR cyclase in the green lineage cannot be ruled out, as many cyclases are yet to be characterised at the genetic level in mammals (Masuda et al., 1997).

Nicotinamide increases circadian period in all organisms tested, including Arabidopsis (Dodd et al., 2007), mouse (Asher et al., 2008) and Ostreococcus (O’Neill et al., 2011). In animals, nicotinamide has been hypothesised to affect both circadian period and amplitude through inhibition of poly-ADP-ribose polymerase (PARPs; Ramsey et al., 2008) or SIRTUINs (Asher et al., 2008). Similar to ADPR cyclase, SIRTUINS are enzymes belonging to the NADase superfamily, that release nicotinamide as a by-product with ADPR production. However, consistent with the effect of nicotinamide on circadian period being due to inhibition of ADPR cyclase, a knock out mutation of \textit{CD38}, the main mammalian ADPR cyclase, causes a long circadian period in mice (Sahar et al., 2011).
We have used nicotinamide as a tool to understand the potential mechanisms that regulate the dynamic adjustment of circadian period and to determine how nicotinamide regulates the circadian clock. We have performed a forward genetic screen to identify loci that affect the sensitivity of the circadian oscillator to nicotinamide. Previous genetic analysis of the circadian system has focused on identification of components of the circadian oscillator through screens for a short or long circadian period in constant light (Millar et al., 1995; Panda et al., 2002; Somers et al., 2000; Hazen et al., 2005) or constant darkness (Kevei et al., 2007; Hong et al., 2010; Martin-Tryon et al., 2007; Ashelford et al., 2011). We have taken a different approach by screening for mutations that are affected in their ability to change circadian period in response to altered conditions. We predicted that such a screen might identify genes involved in the response to nicotinamide and, more importantly, genes that participate in the dynamic adjustment of circadian period. We report the mapping-by-sequencing of an Arabidopsis mutant that is oversensitive to the effect of nicotinamide on circadian period, and identification of the causal mutation in the gene BIG. Phenotypic and genotypic analysis of the mutant indicate a wider role for BIG in the dynamic adjustment of circadian period. We tested the hypothesis that mutations in this gene that affect dynamic adjustment of free-running period also affect the entrained phase. We find that this dynamic adjustment of circadian period is associated with establishing the correct phase relationship with the environment. Our data therefore identify a genetic component required for the correct regulation of circadian period and suggest that circadian period is not fixed at 24 hours, thus permitting entrainment to different photoperiods. Our screen has provided important
insight into how circadian clocks entrain to environmental cycles and therefore how
plants tell the time.
Results

Forward genetic screen identifies mutants that are compromised in their ability to adjust circadian period in response to nicotinamide

To identify mutants with an altered response of circadian period to nicotinamide, we mutated a Ws-2 dual reporter line with ethyl methanesulphonate (EMS), which generates A-G and C-T transitions in base sequence. This line carries both the **CHLOROPHYLL A/B BINDING PROTEIN2 promoter:LUCIFERASE**⁺ (*CAB2:LUC⁺; Hall et al., 2003) and CaMV 35S promoter:*APOAEQUORIN* (*35S:AEQ*; Xu et al., 2007) reporters. The EMS population was initially screened in the M2 generation for period and amplitude of *CAB2:LUC⁺* in the presence of 10 mM nicotinamide. We used the *CAB2:LUC⁺* reporter because this had previously been used to study the effect of nicotinamide on the Arabidopsis circadian clock (Dodd et al., 2007). By measuring the behaviour of circadian clock output in *CAB2* we could examine the consequence of the entire oscillator dynamics, which is not possible when measuring the behaviour of a single oscillator component. This screen of 16,000 M2 plants identified 372 putative mutants. These mutants were categorized as: *iS* period Insensitive to Nicotinamide (*sin*), *iS* period Oversensitive to Nicotinamide (*son*), or *iS* Amplitude insensitive to Nicotinamide (*san*), based upon a circadian period that was outside of 2 standard deviations of Ws-2 circadian period (*sin* <24.0 h, *son* >26.1 h) or amplitude (*san* >0.40 or <0.18) of *CAB2:LUC⁺* in the presence of 10 mM nicotinamide. The nature of the M2 screen meant that in addition to nicotinamide response mutants, it was possible that mutations affecting free-running period could have also been selected.
We performed a rescreen of the M3 to confirm initial mutants and exclude those that were just free-running circadian period mutants. In the M3 screen, wild-type Ws-2 plants responded to 20 mM nicotinamide with an increase in circadian period of $CAB2:Luc^+$ from 23.9 ± 0.2 h to 26.2 ± 0.3 h and amplitude reduced from 1.1 ± 0.04 normalised luminescence counts (n.c.) to 0.6 ± 0.03 n.c. (Figure 1a). Sixty-three mutants were confirmed by the rescreening of the M3 generation which also allowed the exclusion of false positives from the M2 screen (Figure 1b, Supplemental Table S1).

Twenty-five mutants were confirmed for the sin phenotype with either no significant period increase in the presence of 20 mM nicotinamide, or with a reproducibly smaller increase in period than Ws-2 (Supplemental Table S1). Sixteen mutants were confirmed for the son phenotype with significantly greater period in the presence of 20 mM nicotinamide compared to Ws-2 (Supplemental Table S1). Similarly, 25 san mutants were confirmed to have either no significant decrease in amplitude in response to nicotinamide, or significantly smaller amplitude than Ws-2 (Supplemental Table S1).
The strongest phenotypes (Figure 1c) were seen in son1 with a nicotinamide-induced circadian period increase of 6.02 ± 0.75 h (son1 H2O: 22.6 ± 0.1 h, 20 mM NAM: 28.6 ± 0.7 h, p<0.01 T=8.05), sin1 with no period increase (sin1 H2O: 25.2 ± 0.3 h, 20 mM NAM: 25.0 ± 0.3 h, p=0.19 T=0.92) and san11 which had a circadian period increase of 1.3 h but with a rising amplitude of CAB2:LUC+ compared to damping amplitude in wild type (san11 H2O: 1.08 ± 0.03 n.c., 20 mM NAM: 1.05 ± 0.0 n.c., T=0.83 p=0.21). The san lines all had very low amplitude compared to Ws-2
in the absence of nicotinamide, making the phenotypes difficult to measure robustly and map in segregating populations. Therefore, our laboratory has focussed our attention on the sin and son period mutant classes.

Dose response curves demonstrated that son1 was hypersensitive to nicotinamide, with significant increases in circadian period with addition of 1 mM nicotinamide (Supplemental Figure S1a; ANOVA: F=6.87 df=15 p=0.02), whilst Ws-2 circadian period of CAB2:LUC+ did not vary significantly until addition of 10 mM nicotinamide.
sin1 was hyposensitive to nicotinamide, as there was no variation in circadian period of \(\text{CAB2:LUC}^+ \) between 0.1 mM and 20 mM nicotinamide (Supplemental Figure S1b; ANOVA: \(F=2.15 \) df=18 \(p=0.11 \)). The mutants were backcrossed twice to the parental Ws-2 line carrying 35S:AEQ and \(\text{CAB2:LUC}^+ \) for mapping. Here we describe our findings of \textit{son1}, the first mutant that we have mapped from the population, which has the strongest phenotype of all those identified.

\textit{son1} maps to a mutation in a splice acceptor in \textit{BIG}

We mapped the causal mutation for \textit{son1} using a mapping population of 25 BC\(_1\)F\(_2\) plants clearly displaying the mutant phenotype and sequenced pooled DNA to 50-fold coverage. SHOREmap analysis (Schneeberger et al., 2009) using a sliding window of allele frequency identified a region on the long arm of chromosome 3 where no recombination had occurred (Figure 2a). Underlying this region was a 750 kb interval containing eight SNPs, with three mutations at positions 433767, 474568 and 697938 predicted to cause functional changes to gene products (Figure 2b). We confirmed the existence of these SNPs using dCAPs analysis and Sanger sequencing, and fine-mapped the mutation by analysing the segregation pattern in the BC\(_2\)F\(_3\) using the M3 screening conditions (Supplemental Figure S2, Figure 2c). When the segregation pattern of the SNPs was compared with the segregation of the \textit{son1} phenotype, the SNP on chromosome 3 at position 433767 was the only SNP that segregated with the \textit{son1} phenotype in the BC\(_2\)F\(_3\) (Figure 2c; Supplemental Figure S2, e-f). The wild-type and heterozygous 3:433767 populations were not distinct from one another, with wild type period difference (plus and minus
Figure 2. A causal mutation in BIG underlies son1

(A) SHOREmap backcross mapping by sequencing analysis of son1 generated from 25-fold coverage illumina sequence data obtained from 25 BC$_1$F$_2$ individual plants with the son1 phenotype. Individual chromosomes are shown separately with allele frequency sliding window generated with a moving average of 50 Kb. A region with allele frequency of one is found on the long arm of chromosome 3. (B) SNPs found on Chromosome 3 in son1 with allele frequency of 1.0. Mutations highlighted in red are predicted to cause a functional change in gene product. (C) BC$_1$F$_3$ segregation of son1 phenotype with mutation at 3:433767. Period difference in the presence of 20 mM nicotinamide was calculated by FFT-NLLS and plotted rounded to nearest 0.2 h. Each line consisted of 8 biological replicates, 45 lines were genotyped and phenotyped. Mean and SD for each 3:433767 G-A genotypic sub-population (Wt, heterozygous, and homozygous) were used to plot normal distributions overlaid on period histogram. (D) RT-PCR of BIG exons 11 – 12 showing the effect of son1 on BIG transcript isoforms. Lane 1 has Ws-2 genomic DNA product of predicted size 458bp. Lane 2-4 have son1 c-DNA products of 314and 458 bp. Lane 5-7 have Ws-2 c-DNA product of 316bp. 1 Kb Ladder annotated with fragment sizes is shown. Independently isolated BC$_1$F$_3$ pedigrees were used. (E) Gene structure of At3g02260 (BIG), the potential UBR (CRD1) and ZZ zinc finger domains and positions of son1 and doc1-1 mutations are labelled. (F) Circadian period difference between the presence and absence of 20 mM nicotinamide for delayed chlorophyll fluorescence rhythms in Ws-2, son1, Col-0, doc1-1 and son1 doc1-1 F1. Period estimates calculated using FFT-NLLS analysis (n = 10). Data are representative of two independent experiments. (G) Delayed chlorophyll fluorescence rhythm for son1 x doc1-1 F1 in the presence or absence of 20 mM nicotinamide (NAM) across four days in constant light. White and grey bars show subjective day and night. Mean ± SEM shown for n = 10. Data are representative of two independent crosses. (H) Circadian period difference between the presence and absence of 20 mM nicotinamide for delayed chlorophyll fluorescence rhythms in of Col-0, Ws-2, Col-0 x Ws-2 F1, son1, doc1, son1 x ws-2 F1 and doc1 x Ws-2 F1. Period estimates calculated using FFT-NLLS analysis (n = 10).
compared to the homozygous 3:433767 period difference of 4.3 ± 0.3 h. This SNP resulted in a G-A transition causing a mutation in the 3’ splice acceptor site of exon 12 of At3G02260 (Figure 2d). At3G02260 encodes BIG, a callosin-like protein of 5098 amino acids and unknown molecular function (Gil et al., 2001). The M3 line carrying son1 is slightly short period (Figure 1). This short period phenotype in the M3 generation was reproducible but not significant (period diff = 0.53, p>0.05, Supplemental Figure S3). However, the short period phenotype was not present in the M4 generation, or in the BC₁F₃ (Supplemental Figure S3) or BC₂F₃ (Supplemental Figure S2), indicating that the phenotype was not linked to the son1 phenotype after backcrossing to Ws-2 and that the son1 mutation does not cause a classical circadian period phenotype.

To test the effect of the 3:433767 mutation on transcript splicing in the son1 mutant, PCR products were amplified from cDNA using primers spanning exon 11 - 12 of BIG in three independent BC₂F₃ pedigrees. In addition to the 316 bp product amplified from wild-type cDNA (Figure 2d, lane 6-8), an additional product was amplified from son1 mutants (Figure 2d, lane 3-5) that was of equivalent size to the 458 bp PCR product amplified from wild-type genomic DNA (Figure 2d lane 2), indicating that it represented an unspliced transcript. Sequencing of both At3G02260 splice variants in son1 demonstrated that there was a G-A transition corresponding to 3:433737 in both products (Supplemental Figure S4). The smaller fragment was 2 bp smaller than the Ws-2 product, with a second AG immediately downstream of the first being used as a splice acceptor instead, whilst the larger 458 bp product contained the full sequence of intron 11 - 12 suggesting it is retained in son1, due to
inefficient splicing. Thus, the G-A 3:433767 causes both the production of an unspliced transcript, and the use of a cryptic splice site in son1, both of which result in frameshifts and are predicted to cause premature stop codons.

To confirm that the son1 phenotype was due to the G to A transition in BIG, we assessed the response to nicotinamide in mutants in BIG identified from previous mutant screens, dark over-expressor of cab1-1 (doc1-1) (Li et al., 1994) and auxin transport inhibitor response 3 (tir3-101) (Ruegger et al., 1997), using delayed chlorophyll fluorescence (Gould et al., 2009). doc1-1 has an increase in photosynthesis-related gene expression, including CAB genes, in etiolated seedlings in the dark (Li et al., 1994; Gil et al., 2001) caused by a G-A transition resulting in a Cys to Thr amino acid substitution in the first cysteine rich domain (CRD-1, also known as a UBR box). tir3-101 is reported to have impaired polar auxin transport giving rise to a dwarf phenotype (Ruegger et al., 1997; Prusinkiewicz et al., 2009).

Both doc1-1 and tir3-101 were oversensitive to nicotinamide compared to their respective wild types (Figure 2f, Supplemental Figure S5; Col-0: 2.9 ± 0.5 h, doc1-1: 4.5 ± 0.4 h, tir3-101 4.4 ± 0.9 h). The increased response of circadian period in the three different son1, doc1-1 and tir3-101 alleles of BIG suggested that the mutations in BIG are causal for the nicotinamide oversensitive phenotype, and none have a circadian period phenotype in constant high light.

As confirmation, we tested whether son1 is allelic to doc1-1. The doc1-1 son1 F1 plants had significantly greater period increase in the presence of nicotinamide (4.3 ± 0.7 h) than either Ws-2 (1.7 ± 1.2 h, T=2.22, df=19, p<0.05) or Col-0 (2.4 ± 0.6 h, T=2.16, df=19, p<0.05), and were not statistically different to either doc1-1 (4.2 ± 0.4
h; T=0.22, df=19, p=0.42) or son1 (4.9 ± 0.4 h, T=0.81, df=19, p=0.21) in the presence of 20 mM nicotinamide (Figure 2f - g). To control for ecotype or dominance effects we analysed delayed fluorescence in the presence and absence of nicotinamide for F1 of crosses between son1 and Ws-2, son1 and Col-0 and doc1 and Ws-2 (Figure 2h, Supplemental Figure S6). These crosses all behaved as wild-type, and had circadian period increases that corresponded to the heterozygous BC2F3 on the segregation analysis (Figure 2c). This demonstrates that doc1-1 is allelic to son1 and that BIG regulates sensitivity of the circadian oscillator to nicotinamide.

Having established that son1 and doc1-1 are both nicotinamide-oversensitive for circadian period, we tested whether son1 plants exhibit the doc1 phenotype of increased photosynthesis related gene expression in etiolated seedlings in the dark (Li et al., 1994; Gil et al., 2001). CAB2:LUC+ expression was higher in etiolated seedlings of son1 than wild type in constant dark (DD) (Supplemental Figure S7 a-c), indicating that son1 also had a dark-over expresser of CAB phenotype consistent with allelism to doc1-1. Similar to doc1-1, higher CAB2 expression in constant dark was not associated with premature de-etiolation (Supplemental Figure S7 d-e).

To test if BIG could be part of the transcriptional feedback loops of the oscillator we looked at the transcript profile for BIG in the publicly available diurnal transcriptomic datasets under long and short days (Supplemental Figure S8). BIG does not oscillate in either long or short photoperiods in two separate 48 h microarray experiments (Endo et al., 2014; Mockler et al., 2007). The abundance of BIG transcript also does not appear to be regulated by the circadian oscillator, with no detectable oscillations using JTK cycle (p>0.05) in a circadian transcriptome taken over 48 hours in constant conditions (Dalchau et al., 2010). The lack of circadian or diel changes in
BIG transcript abundance suggests BIG is not part of transcriptional feedback loops in the circadian oscillator.

son1 affects circadian [Ca\(^{2+}\)]\(_{\text{cyt}}\) signalling

In addition to increasing circadian period, nicotinamide abolishes circadian regulation of [Ca\(^{2+}\)]\(_{\text{cyt}}\), potentially through inhibition of the ADPR cyclase activity that generates the Ca\(^{2+}\) agonist cADPR (Dodd et al., 2007; Abdul-Awal et al., 2016). We investigated the effect of son1 on Ca\(^{2+}\) signalling using the 35S:AEQ reporter. In Ws-2 there was sinusoidal circadian regulation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) which had an estimated period of 24.2 ± 0.9 h and RAE of 0.3 ± 0.0 (Figure 3a). son1 affected the circadian regulation of [Ca\(^{2+}\)]\(_{\text{cyt}}\), leading to a non-sinusoidal oscillation with an increasing basal level and dampening over time. This resulted in fast Fourier transform-non-linear least squares (FFT-NLLS) analysis estimating the rhythm as only weakly rhythmic with an RAE of 0.5 ± 0.1 (period = 23.1 ± 0.2 h; Figure 3a). Both son1 and Ws-2 circadian [Ca\(^{2+}\)]\(_{\text{cyt}}\) signals were inhibited by 20 mM nicotinamide (Figure 3b; Ws-2: RAE = 0.7 ± 0.1; son1: 0.7 ± 0.1).

Because we have proposed previously that circadian regulation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) arises from cADPR-mediated Ca\(^{2+}\) release, we measured the activity of ADPR cyclase in wild type and mutant. son1 had significantly higher ADPR cyclase activity compared to Ws-2, (p=0.01) in the middle of the photoperiod representing peak [Ca\(^{2+}\)]\(_{\text{cyt}}\) (Figure 3c). [Ca\(^{2+}\)]\(_{\text{cyt}}\) was also elevated at the same time point in son1 compared to Ws-2 (Figure 3d; p<0.05). This effect was more pronounced after 72 h in constant light, where the LL 35S:AEQ data had previously indicated there to be a much higher basal level of [Ca\(^{2+}\)]\(_{\text{cyt}}\) (p<0.05). [Ca\(^{2+}\)]\(_{\text{cyt}}\) at both time points was reduced by incubation with 20 mM nicotinamide (Figure 3d). Thus, although nicotinamide
reduced [Ca$^{2+}$]$_{cyt}$ to similar concentrations in wild-type and son1, the change in [Ca$^{2+}$]$_{cyt}$ in son1 was greater as untreated plants have higher [Ca$^{2+}$]$_{cyt}$, indicating that the [Ca$^{2+}$]$_{cyt}$ increase in son1 might be ADPR cyclase-dependent.

son1 affects circadian oscillator gene expression
Circadian clocks evolved to provide competitive advantage in light and dark cycles and therefore, to investigate the role of BIG in the daily timing of Arabidopsis we examined the effect of son1 on oscillator gene transcript abundance in light and dark cycles and in constant light. As our phenotype was based on the CAB2 gene, we measured abundance of CCA1, a main circadian regulator of CAB2, and also the direct regulators of CCA1 – TOC1, PRR7 and CHE. son1 affected circadian oscillator transcript levels in light dark cycles. The expression of CCA1 immediately before dawn was higher in son1 compared to Ws-2 (Figure 4a; p<0.01) which corresponded to a reduction in TOC1 expression immediately before dusk (Figure 4a; p=0.01) and with a significant reduction in CHE expression at both dawn and dusk in son1 (Figure 4a; p<0.01). We also measured the expression of CCA1, TOC1, CHE and PRR7 in constant light across a 48 h time course in son1 and Ws-2 in the presence and absence of 20 mM nicotinamide and estimated circadian period using JTK-cycle (Hughes et al., 2010). We performed this to confirm the son1 phenotype at the level of gene expression and identify if there were any changes in gene expression between mutant and wild-type in the absence of nicotinamide (Figure 4b). In Ws-2, nicotinamide treatment significantly reduced the peak expression of all the genes in the first cycle (p<0.05). Nicotinamide also significantly reduced peak CCA1 and PRR7 transcript levels in son1, however there was no significant change in TOC1 and CHE at any time point. In son1, CCA1 and PRR7 rhythms had an increased circadian period in the presence of nicotinamide compared to Ws-2, with period of 28 h in son1 (p<0.001) but 24 h in wild-type (p<0.001). CHE was not rhythmic with JTK-cycle in either Ws-2 (p=1) or son1 (p=0.08). TOC1 was rhythmic with JTK-cycle in Ws-2 with period of 24 h (p<0.05) but not rhythmic in son1 (p=0.16). Thus, the son1 phenotype can be seen in rhythms
Figure 4. *son1* affects circadian clock gene expression in LD and constant light

(A) *CCA1, PRR7, TOC1* and *CHE* expression from *son1* (red) and *Ws-2* (white) samples harvested immediately preceding dawn (ZT0) and dusk (ZT12).

(B) *CCA1, PRR7, TOC1* and *CHE* expression from *Ws-2* and *son1* in the absence (left) and in the presence of 20 mM nicotinamide (right) across 48 hours in constant 70 μmol m−2 s−1 light from ZT24 – ZT72. Relative expression of genes normalised to UBQ10f expression is given ± standard deviation [n=3]. Plants were grown as clusters of 5 plants for 11 days in light dark cycles prior to experiment.

of *CCA1* and *PRR7*, but in the presence of nicotinamide rhythms of *CHE* and *TOC1* were suppressed with *TOC1* also being suppressed in *son1* in the absence of nicotinamide.
son1 affects dynamic period adjustment of the circadian oscillator to regulate the entrained phase

As son1 is compromised in the ability to regulate changes in circadian period in response to nicotinamide, we tested whether it was also affected in its ability to adjust period correctly to other stimuli. Response to light is the most well characterised dynamic adjustment of the circadian period and is described by Aschoff's rule (Aschoff 1960). We tested the hypothesis that son1 might be compromised in the ability to regulate circadian period at different light intensities by performing a fluence response curve (Figure 5a).

There was no difference between the period length of CAB2:LUC+ rhythms in Ws-2 and son1 at 100 µmol m⁻² s⁻¹ light (Ws-2: 23.2 ± 0.1 h, son1: 23.0 ± 0.1 h,) which was the intensity of light used for entrainment, indicating again that son1 is not a circadian period mutant. However, son1 had a significantly shorter circadian period compared to wild type under low fluence rates (Figure 5a, Supplemental Figure S9): under 5 µmol m⁻² s⁻¹ light son1 had a period of 26.6 ± 0.8 h and Ws-2 had a period of 29.0 ± 0.3 h (p<0.01, Figure 5b). This indicates that son1 cannot properly regulate circadian period in response to changes in light intensity. A similar phenotype was detected in doc1-1. Under 5 µmol m⁻² s⁻¹ light doc1-1 had a circadian period of CAB2:LUC+ of 25.7 ± 0.1 h and Col-0 had a period of 29.2 ± 0.2 h (p<0.01, Supplemental Figure S9).

Having previously established that son1 affects the expression of circadian clock genes in a light and dark cycle, we next investigated the effect of son1 on the entrained phase to investigate the potential roles of BIG in the daily timing of Arabidopsis. Wild-type Ws-2 had a typical phase shift of later phase with increasing
Figure 5. *son1* affects dynamic circadian period adjustment by light and photoperiod

(A) Fluence response curve for circadian period of *CAB2:LUC* in Ws-2 and *son1* estimated in equal mix red and blue light (Mean ± SEM, n = 8-12). Data are pooled from three independent experiments. (B) *CAB2:LUC* rhythm of *son1* and Ws-2 assayed over five days in constant 5 μmol m⁻² s⁻¹ equal mix red and blue light (Mean ± SEM, n = 8). Data are representative of two independent experiments in the BC1F₂ generation. In Figure 4a the small error bars are obscured by symbols. (C) *CAB2:LUC* luminescence (counts s⁻¹) from *son1* (red) and Ws-2 (black) seedlings grown in 8:16, 12:12 and 16:8 photoperiods. Plants grown in 12:12 were treated with media supplemented with or without 20 mM nicotinamide (NAM) 2 days prior to entrainment in camera chamber (Mean ± SEM, n=8). Plants were grown in entrainment conditions since germination, and transferred to camera chamber one day before imaging, maintaining the same entrainment regime. Data are representative of three independent experiments. (D) Peak time of *CAB2:LUC* from LD cycles in (C). (E) Photoperiod response curve for circadian period of *CAB2:LUC* in Ws-2 and *son1* estimated in equal mix 80 μmol m⁻² s⁻¹ red and blue light (Mean ± SEM, n = 8). Data are pooled from two independent experiments. Plants were entrained in either photoperiods of either 16, 12 or 8 hours prior to transfer to constant light. (F) *CAB2:LUC* rhythm of *son1* and Ws-2 entrained in 16:8 LD cycles and released into constant light for five days (Mean ± SEM, n = 8).
at 8.1 ± 0.2 h (16:8). By contrast, son1 was an early phase mutant (Figure 5c-d, peak at 3.5 ± 0.2 h (8:16), peak at 5.5 ± 0.2 h (12:12) peak at 5.7 ± 0.1 h (16:8).

These data demonstrate that BIG is required for correct circadian entrainment. Lastly, we measured the effect of nicotinamide on entrained phase under 12:12 (Figure 5c), and found that it caused a phase delay of CAB2:LUC+ peak expression of 1 h in Ws-2 and 3 h in son1 (Ws-2: ZT 7.8 ± 0.2, son1: ZT 8.8 ± 0.2), consistent with the effect of nicotinamide on free running-period in both backgrounds.

Finally, having identified that BIG regulates dynamic adjustment of circadian period and that it is required for correct circadian entrainment, we wanted to investigate whether oscillator period is associated with entrainment and whether the effect of BIG on phase could be involved in this regulation. To do this, we studied whether entrainment photoperiod affects free-running period in Ws-2 and son1 (Figure 5e). The results showed that there is a relationship between length of entrainment photoperiod and the length of circadian period in Ws-2 (Figure 5e). However, this relationship was lost in son1, whose circadian period was not affected by the duration of the photoperiod during entrainment. As a result of this, son1 did not have significantly shorter free-running period of CAB2:LUC+ compared to Ws-2 when released from entrainment cycles of 8:16 and 12:12 (son1: 22.6 ± 0.07 h (8:16), 22.8 ± 0.14 h (12:12); Ws-2: 22.7 ± 0.04 h (8:16), 23.1 ± 0.14 h (12:12). However, when plants were entrained in 16:8 son1 had free-running period of 22.7 ± 0.2 h, an hour shorter than Ws-2 (23.7 ± 0.06 h, p<0.05; Figure 5f). This shows that the photoperiod-determined entrained phase of the circadian clock affects the free-running period in constant light, and son1 does not adjust circadian period correctly in 16:8. We performed the same series of experiments but with circadian free-run in
constant darkness, in the presence of sucrose to sustain the oscillation of
CAB2:Luc (Dalchau et al., 2011). Similar to the result in constant light, we saw that
in wild-type plants free-running period length increased with longer entraining
photoperiod (Supplemental Figure S10), and for plants entrained in 16:8 *son1* had
significantly shorter free-running period than wild-type (Ws-2: 27.0 ± 0.4 h; *son1*:
25.7 ± 0.5 h; p<0.05).

Thus, *son1* cannot correctly adjust period and has impaired phase in response to
photoperiod. Collectively, these data demonstrate that nicotinamide targets a
pathway involved in establishing the phase relationship between the circadian
oscillator and the external environment and that *BIG* contributes to the correct timing
of physiology in light and dark cycles, through regulating the pace of the oscillator.
Using a forward genetic screen, we found that \textit{BIG} is a regulator of the dynamic adjustment of circadian period and phase. The period of the circadian oscillator is not fixed to 24 hours, but instead is a dynamically plastic phenotype and dependent on environmental conditions. Typically, experimentalists measure circadian period in constant conditions that allow the circadian oscillator to free run. In these constant conditions, the period of the Arabidopsis circadian oscillator decreases with increasing light intensity (Somers et al., 1998a), temperature (Salome et al., 2010) and sucrose (Haydon et al., 2013) and increases with nicotinamide (Dodd et al., 2007). We have identified a nicotinamide over-sensitive phenotype resulting from a mutation in \textit{BIG}. \textit{son1} is allelic to \textit{doc1-1}, a previously characterised mutation in \textit{BIG} confirming that \textit{BIG} is a regulator of the sensitivity of the circadian oscillator to nicotinamide.

Whilst NAD is an abundant metabolite, we do not suggest that cellular nicotinamide derived from NAD breakdown directly regulates the pace of the circadian oscillator as part of the normal functioning of the plant. Instead, we consider nicotinamide as a probe that can be used to understand the potential mechanisms by which the circadian oscillator dynamically adjusts circadian period. Previously, we proposed that nicotinamide affects circadian period through the inhibition of ADPR cyclase activity and therefore the production of cADPR, which is a Ca$^{2+}$ agonist (Dodd et al., 2007; Abdul-Awal et al., 2016). Our demonstration that mutations in \textit{BIG} affecting the sensitivity of the circadian oscillator to nicotinamide also affect the regulation of [Ca$^{2+}$]$_{cyt}$ are supportive of the hypothesis that nicotinamide regulates circadian period
through a Ca2+-sensitive mechanism. *son1* has higher [Ca2+]\textsubscript{cyt} and ADPR cyclase activity than wild-type, and that increased [Ca2+]\textsubscript{cyt} is nicotinamide-sensitive. This might indicate that increased effect of nicotinamide on circadian period is related to the altered [Ca2+]\textsubscript{cyt} in the mutant. However, we do not exclude the possibility of additional Ca2+-insensitive modes of action of nicotinamide on the circadian system (Malapeira et al., 2012).

Animal homologues of BIG, UBR4/p600 in mammals and Calossin/Pushover in Drosophila, are confirmed calmodulin-binding proteins (Xu et al., 1998; Nakatani et al., 2005; Belzil et al., 2013) and have been proposed to act as part of a Ca2+ sensing/signalling mechanism. In mammalian neurons, UBR4, calmodulin and calmodulin-dependent protein kinase II\textalpha form a complex upon glutamate-induced Ca2+ entry through NMDA receptors or inositol trisphosphate receptor-mediated Ca2+ release from the ER (Belzil et al., 2013). Since BIG has a putative calmodulin binding domain (Yap et al., 2000), it is tempting to speculate that this could also play a role in Ca2+ signalling, although the interacting molecular players will be different in plants.

BIG was originally identified as a light signalling regulator (Li et al., 1994), and was later shown to also control multiple hormone signalling pathways (Kanyuka et al., 2003), including auxin transport (Guo et al., 2013), and has recently been implicated in CO\textsubscript{2}-induced stomatal closure (He et al., 2018). The precise biochemical functions of BIG are unknown but mutations in *Pushover* and knockout or down-regulation of UBR4 also produce pleiotropic phenotypes (Richards et al., 1996; Sekelsky et al., 1999; Yager et al., 2001; Nakatani et al., 2005; Belzil et al., 2014). BIG, UBR4 and Pushover contain a zinc finger-like domain, the UBR box, found in ubiquitin E3
ligases specific to the N-end rule for targeted protein degradation (Gil et al., 2001; Tasaki et al., 2005; 2009). The N-end rule is a conserved pathway in which proteins are targeted for destruction dependent on their N-terminal residue and has diverse roles in different organisms (Bachmair et al., 1986; Gibbs et al., 2014). Whilst UBR4 is required for degradation of model and physiological N-end rule substrates, it contains no HECT or RING domains and hence is considered unlikely to act as an E3 ligase in isolation, rather, it may act as a substrate (N-degron) recognition subunit of a complex (Tasaki et al., 2005; 2009). It is not known whether BIG belongs to an E3 ligase complex or whether it has intrinsic E3 ligase activity. Direct evidence for the ability of the recombinant UBR box of mammalian UBR4 to bind N-degrons is lacking (Tasaki et al., 2009) but previous bioinformatics analysis identified a ZZ domain in BIG (Gil et al., 2001). The ZZ domain is structurally and evolutionarily related to the UBR box (Kaur and Subramanian, 2015) and has recently been shown to bind N-degrons in the autophagic adaptor protein p62 (Cha-Molstad et al., 2017).

There is a precedent for regulation of circadian period through control of protein turnover since a double mutant lacking two ubiquitin-specific proteases UBP12 and UBP13 exhibits a short period circadian clock phenotype (Cui et al., 2013). Thus, one potential mode of action of BIG on the circadian oscillator is through a role in protein degradation, but further study will be required to confirm or reject this hypothesis.

The effect of the son1 mutation on levels of \([\text{Ca}^{2+}]_{\text{cyt}}\) was greater during the night or subjective night than during the day or subjective day. This is indicative of a time-dependent effect of BIG in the circadian system. Similarly, the doc1-1 allele of BIG specifically affects the expression of CAB and other photosynthetic genes at night, rather than in the day. These data suggest that BIG acts at night in the circadian
system. Previous studies have demonstrated that BIG plays a role in conveying light information, and partially suppresses the phenotype of phytochromeA and phytochromeB mutations on hypocotyl length (Kanyuka et al., 2003). Thus, BIG may be involved in conveying light signalling for circadian entrainment. However, it is likely that BIG regulates period or entrainment more widely, due to the effect of son1 on both nicotinamide period lengthening, and photoperiod regulation of period, indicating that BIG has a further role outside of light signalling.

Time-dependent effects on the circadian oscillator are also sometimes associated with entrainment, which is the matching of the phase and period of the oscillator with that of the external photoperiod. Synchronisation of the circadian oscillator through entrainment ensures that cellular events occur at the right time of day and ensures that the circadian oscillator can track dawn and dusk as they change through the year. This is essential to co-ordinate whole organism responses as circadian period is different between organs (Takahashi et al., 2015), and is age dependent (Kim et al., 2016). We found that son1 has an early entrained phase in long day cycles, suggesting an impact on entrainment. The early phase of son1 and the reduced ability to dynamically alter circadian period to light and nicotinamide might be related through parametric entrainment. The inability of son1 to adjust period depending on entrainment photoperiod strongly suggests this. A previous study demonstrated that tissue-specific changes in circadian period are accompanied by corresponding changes in entrained phase (Takahashi et al., 2015). The effect of photoperiod on the entrained phase of the oscillator has been widely reported (Yeang 2015, Millar and Kay 1996, and Millar et al., 2015). Importantly, Millar et al., 2015 report that the circadian mutant cca1 lhy has the same phase under 8:16, 12:12 and 16:8 photoperiods and thus is unable to adjust phase to entrainment photoperiod unlike
the wild-type which had a 2.6 h difference. This is similar to the result we find here for son1 which has the same phase under 12:12 and 16:8 photoperiods. Unlike CCA1, the transcript of BIG does not oscillate either in light dark cycles or in constant light, and shows no modulation by photoperiod. This indicates that BIG is not part of the transcription-based oscillator loops.

When previously identified Arabidopsis circadian mutants are viewed in the context of phenotypic plasticity to light, they can be assigned to one of four categories (Supplemental Table S2). Mutants can have a constitutive effect on circadian period at all intensities of light and the mutation therefore has no effect on dynamic plasticity of the circadian oscillator. Alternatively, mutants might have no plastic response to light, appearing insensitive with period unchanging at all light intensities. Finally, using the conventions in the literature (Martin-tryon et al 2008) we have defined mutations as hyposensitive, with is a shallow response curve to light, or hypersensitive in which the response curve is steep. Ten mutations do not affect dynamic adjustment to either red or blue light, including four mutations that do not affect the response to both wavelengths: the toc1-1 allele (Somers et al., 1998a), cry2-1 (Somers et al., 1998b), fio1-1 (Kim et al 2008) and tej (Panda et al., 2002).

There are eight mutations reported to cause insensitivity to either red or blue light including prr7-11 to red light (Farre et al., 2005) and gi-200 (Martin-Tryon et al., 2007) to both red and blue light. Seven mutations cause hypersensitivity to either red or blue light including toc1-2 (Martin-Tryon and Harmer 2008), lwd1 lwd2 (Wang et al., 2011), and light signalling mutants phyA-201 and cry1-1 (Somers et al., 1998b). The “hypersensitivity” in terms of the effect of light on circadian period for phyA-201 and cry1-1 is caused by a very steep fluence response curve due to the inability to sense low light intensities. However, only three reported mutations cause
hyposensitivity to light. *rve4 rve6 rve8* (Gray et al., 2017) and *phyB-1* (Somers et al., 1998b) confer hyposensitivity to red light, and *prr7-3* to blue light (Farre et al., 2005). The phenotype of *son1* for the white light fluence response curve is also hyposensitive. However, as shown in Supplemental Table S2, *rve4 rve6 rve8* (Gray et al., 2017) and *phyB-1* (Somers et al., 1998b) both have long period phenotypes in addition to hyposensitivity phenotypes whereas *son1* has no period phenotype under the light intensity used for the initial entrainment in 12:12 (Figure 5; Supplemental Figure S3). Thus, the phenotype of *son1* indicates a function in adjusting period to stimuli, rather than being a core oscillator component, as under normal conditions there is no evidence for it being an oscillator component, since period defects are conditional, and the transcript abundance does not oscillate. The short period of *son1* after entrainment only to long days, or through maintenance in constant low light (Figure 5) demonstrates that the effect of *son1* is conditional on environmental input, suggesting that BIG is associated with regulation of plastic period of the oscillator by environmental signals, rather than acting as a core oscillator component. There is variability in the reported phenotypes of *prr7* mutants, with them being described as long period (Farre et al., 2005) or wild type (Nakamichi et al., 2005; Seki et al., 2016). This and the hyposensitivity to light suggest that *prr7* mutants might also have a defect in plasticity similar to *son1* in terms of responses to light. The mechanisms might be different because PRR7 is an oscillator component, whilst there is no evidence for BIG being so.

Alterations in circadian period are thought to be required for entrainment though there is not yet a consensus on how this is achieved. It is envisaged that changes in circadian period are a result of phase adjustment of the oscillator. For example, a phase advance will reduce the period of the cycle in which the advance occurred by
an amount equal to the phase advance (Johnson, 1992). Additionally, changes in the velocity of the oscillator can affect period. Whilst changes in period are associated with entrainment, it is not known if this is due to changes in velocity, phase or both and whether these occur continuously or discontinuously (Daan, 2000). Our discovery of a mutant that is specifically compromised in the ability to dynamically alter circadian period and has altered entrained phase provides a tool to study the mechanism of entrainment and the pathways of this essential feature of the circadian oscillator. The study of how the circadian clock establishes a correct phase relationship with the environment is essential to understand the role of the circadian oscillator in the plant, because the timing of events within the diel cycle constitute the likely evolutionary pressure that resulted in the emergence and optimisation of circadian clocks.

Materials and Methods

Plant materials and growth conditions

Arabidopsis thaliana (Arabidopsis) ecotype Wassilewskija-2 (Ws-2) carrying *CHLOROPHYLL A/B BINDING PROTEIN2:LUCIFERASE*+ (*CAB2:LUC*+) (Hall et al., 2003) and transformed with *CaMV 35S:AEQUORIN* (*35S:AEO*) was described previously (Xu et al., 2007). *doc1-1* (Gil et al., 2001) was obtained from Nottingham Arabidopsis Seed Stock Centre (Arabidopsis.org). *tir3-101* was a gift from Ottoline Leyser (Sainsbury Laboratory at Cambridge University, Cambridge, UK). Plant growth on agar or soil was as described previously (Xu et al., 2007).

Mutagenesis

31
Ws-2 seeds homozygous for *CAB2:LUC*⁺ and *35S:AEQ* were mutagenized using ethyl methane sulphonate (EMS; Sigma, UK). Seeds were suspended in 150 mM EMS 0.1% (v/v) KCl for 4 hours in an atmosbag (Sigma, UK). Seeds were washed three times in 100 mM sodium thiosulphate (Fisher, UK) before overnight stratification at 4 °C and sowing on soil at a density of 10 seeds per 4 cm² of soil. Ten percent of the M1 seedlings had regions of chlorosis, indicative of EMS-induced alterations to the genomic sequence. Seeds were harvested in 10 plant M2 pools. 100 seeds were screened from 160 pools, with a total of 16,000 M2 seeds screened.

Circadian phenotyping

Luciferase imaging. *CAB2:LUC*⁺ luminescence was imaged from either clusters of 10 seedlings or individual seedlings (Haydon et al., 2017). Nicotinamide treatment was applied by transferring membranes (1µm, Sefar) with seven-day-old seedlings to 10 mM nicotinamide-containing media. Clusters of plants were transferred to nicotinamide-containing plates at seven days old using a sterile toothpick, lifting plants under the hypocotyls. Treatment with luciferin and imaging with a Nightshade CCD camera and imaging chamber (Berthold, UK) mounted with an 18 mm lens was as described in Haydon et al (2017). Where the effect of light intensity was investigated, the assay plates were covered with combinations of the following neutral density filters: Lee Technical Filter #211 (Lee filters, UK) and Roscolux #397, #97, #98 (Rosco, USA). Light intensity was measured using a Skye Quantum Sensor (Skye instruments limited, Wales).
Delayed chlorophyll fluorescence imaging. Delayed chlorophyll fluorescence was measured from excised leaves of 28-day-old plants. Leaves were excised at the petiole and transplanted to fresh media in 25 well plates at dawn. The camera chamber was supplied with constant RB LED light at 70 μmol m⁻² s⁻¹ and was cooled to 20 °C. Measurements were automated and data extracted using IndiGO software (Berthold). Delayed chlorophyll fluorescence measurements were taken by acquiring luminescence for 60 seconds immediately following illumination.

Aequorin bioluminescence imaging. Aequorin bioluminescence was imaged from clusters of 15 seedlings as described in Hearn and Webb (2014).

Genetic Mapping

Segregation analysis. Crosses were made with paternal Ws-2 and maternal mutant. BC₁F₂ seedlings were screened as individual seedlings for circadian period of CAB2:LUC⁺ on 10 mM nicotinamide. BC₂F₃ seedlings were screened as clusters of seedlings for circadian period of CAB2:LUC⁺ in the presence or absence of 20 mM nicotinamide.

Mapping by sequencing. Genomic DNA was extracted from 20-day-old plants using the Qiagen Plant Maxi Kit and quantified using a nanodrop. Sequencing libraries were prepared using Illumina Tru-seq. DNA was sequenced by VIB nucleomics (Ghent, Belgium) using an Illumina Hiseq 2000. Paired-end reads supplied in fastq format were trimmed using Fast X0.0.13 to remove reads with Q<20 or read length <35bp. Adapters were removed using cutadapt 1.2.1. Reads were further filtered to remove those with greater than 90% A content (poly-A reads), all ambiguous reads containing an N in any position, reads with <Q25, and artefact reads using FastX
0.0.13 and ShortRead 1.20.0. Contaminant reads were removed by discarding reads that aligned to phix_illumina using Bowtie 2.1.0. Sequencing data in fastq format can be obtained from NCBI SRA (ncbi.nlm.nih.gov/sra) under accession SRP119118. Paired-end reads were aligned to the TAIR10 reference genome (Arabidopsis.org) using Bowtie2 v.2.0.2 (Langmead 2010). SNP calling was performed using SAMtools 0.1.18 mpileup and bcftools (Li 2011). Vcf files were converted to SHORE format using SHOREmap 2.1 convert. Allele frequency estimation and plots were generated using SHOREmap backcross. The Ws-2 parental strain and Ws-2 1001 genomes project (http://1001genomes.org/data/MPI/MPIcollab2011/releases/current/strains/Ws-2/) were used for background correction for BC1F2 in SHOREmap backcross. SNPs with background frequency <16 were discarded. The workflow was automated in a pipeline using bpipe 0.9.8.5. (Supplemental Table S3). Sliding allele frequencies were generated for SNPs based on the R statistic in SHOREmap.

SNP verification with dCAPS and Sanger sequencing. Genomic DNA was extracted from 300 µg plant material using the Plant Mini Kit (Qiagen). DNA was eluted into 150 µl of dH2O (Sigma, UK). dCAPS was used to verify and genotype SNPs in wild-type, BC1F2 pools and BC2F3 pedigrees. Primers and restriction enzymes used for dCAPS were as follows, product sizes once amplicons had been digested are given in brackets: AT3G02260 F: TTAACATGTAATGTATTCCTCTGCAR: TCCAGTTTCCTCGTTACTGAC HindIII 300 bp (276 bp, 24 bp), AT3G02330 F: GAGATTTCGTGACCTGGAACGR: GCATCTCTCGAATAAGCTCTAATG TasI 300 bp (276 bp, 24 bp), AT3G03070 F: CATCGGCAATCACAACCG R: TTTCAAGAATGAACAATTCCCTGT BsmI 300 (275, 25). PCR reagents were purchased as part of the Biotaq Kit (Bioline, UK) or as part of the Phusion...
Polymerase Kit (NEB). PCR products were purified using the QIAquick PCR Purification Kit (Qiagen) and quantified using a nanodrop 2000 (Thermo Scientific). HindIII (Fisher Scientific), TasI (NEB) and BsmI (NEB) reactions were prepared for 100 µg DNA in their optimal buffers as specified in their instructions. Restriction digestions were run in a Darwin thermocycler for 4 hours at 37 °C (HindIII) or 72 °C (TasI, BsmI). Restriction enzyme reactions were deactivated by addition of 4 M TRIS pH 8.4 purple loading dye (Bioline). Digested and undigested products were run on 2.5% and 4% fine molecular biology grade agarose (Bioline) 1x TAE buffer for resolution of small fragments. Hyperladder 100 bp (Bioline) was used for size comparison. Gels were imaged using a transilluminator controlled by GeneSnap software with 80 s exposure. Alternatively, purified PCR products were Sanger sequenced using reverse primers as the sequencing primers. Sequencing was performed by Source Bioscience. Sequencing of SNPs was accepted if the chromograph had a quality score greater than 20.

Isolation of RNA, determination of size and abundance

RNA extraction and reverse transcription. RNA was extracted using RNeasy® Plant Mini Kit (Qiagen) and RNase free DNase set (Qiagen). RNA was double eluted into 30 µl RNase-free H₂O. cDNA was generated from RNA using RevertAid First Strand cDNA Synthesis Kit (K1622; Fermentas) using 0.5 µg RNA in a 10µl reaction volume.

RT-PCR and RT-qPCR. Primers were generated using NCBI-primer BLAST as follows: **AT3G02260** F: GATGGTGAAGCTACTGAGCCT R: CTTCAGCTGGCTCCATAGCA (predicted product size for gDNA 458 bp and cDNA 316 bp), **UBQ10** F: GGCCTTGTATAATCCCTGATGAATAAG R:
RT-PCR was performed using the PCR settings and electrophoresis described above. RT-qPCR was performed as previously described (Haydon et al., 2013).

Cytosolic-free calcium measurements

Plants grown on agar plates for 11 days were transferred to cuvettes and dosed with coelenterazine to determine the free Ca2+ as described in Marti et al., (2013).

Nicotinamide guanine dinucleotide (NGD) assay of ADPR cyclase activity

ADPR cyclase activity was measured using the NGD assay as described in Abdul-Awal et al., (2016) from 3- to 4-week-old plants grown on agar plates. Rosette tissue (5-10 g) pooled from at least 25 rosettes was harvested as a single biological replicate. Data were collected from three biological replicates.

Estimation of circadian parameters

Data were analysed using the BRASS plug-in for MS excel (http://www.amillar.org) to carry out Fast Fourier Transform Non-Linear Least Squares (FFT-NLLS) analysis and manual phase estimation (Plautz et al., 1997). Rhythms were analysed for at least three cycles in constant light after the first 24 hours. FFT-NLLS was performed with period limits between 18 and 35 hours at 95% confidence level. Phase was calculated using the BRASS peak time analysis function. Rhythms in RT-qPCR and microarray time courses were analysed using JTK-cycle (Hughes et al., 2010) with period limits between 20 and 32 hours.
Microarray analysis

Microarray datasets were downloaded from array express (E-GEOD-19271 and E-GEOD-50438) and the DIURNAL long day and short day expression sets.

Statistical tests

Two-sample T-tests, single-factor ANOVA and Chi-squared statistical tests were performed using MS Excel. Probability of rejecting the null hypothesis \(p\), calculated T-, F-, or Chi-squared statistic \((T, F, x^2)\) and degrees of freedom \(df\) are quoted in the text for each analysis in the form \((T=n\ df=n\ p=n)\).

Accession numbers

Sequence data for genes used in this study can be found in the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following accession numbers: locus identifiers: BIG (AT3G02260), CAB2 (AT1G29920), CCA1 (AT2G46830), TOC1 (AT5G61380), CHE (AT5G08330), PRR7 (AT5G02810), ZTL (AT5G57360). Sequencing data in fastq format can be obtained from NCBI SRA (ncbi.nlm.nih.gov/sra) under accession SRP119118.

Supplemental Materials

Supplemental Figure S1. Dose response of circadian period to nicotinamide in Ws-2, sin1 and son1.

Supplemental Figure S2. son1 segregates with 3:433767 in BC2F3
Supplemental Figure S3. son1 plants do not have a circadian period phenotype in the absence of nicotinamide.

Supplemental Figure S4. Sequencing of cDNA for son1 fragments.

Supplemental Figure S5. The effect of nicotinamide on delayed chlorophyll fluorescence rhythms in son1, doc1-1 and tir3-101.

Supplemental Figure S6. Allelism of son1 and doc1 is not due to ecotype differences.

Supplemental Figure S7. doc1-1 phenotype in son1.

Supplemental Figure S8. BIG expression does not oscillate in long or short day photoperiods or in constant light.

Supplemental Figure S9. Circadian rhythms of CAB2:LUC+ in BIG mutants under different light intensities.

Supplemental Figure S10. son1 does not adjust period due to photoperiod entrainment.

Supplemental Table S1 – Results of an M3 forward genetic screen for the effect of nicotinamide on the circadian clock.

Supplemental Table S2 - Arabidopsis thaliana circadian clock genes with circadian and entrainment phenotypes.

Supplemental Table S3 – bpipe script for mapping by sequencing.

Acknowledgements and funding.
We thank Ian Henderson for advice on genetic mapping. TH was supported by a BBSRC CASE studentship 1090203 supported by Bayer Cropscience and BBSRC Grant BB/M006212/1. MM was supported by a University of Cambridge Broodbank Fellowship.

Figure legends

Figure 1. A forward genetic screen separates period and amplitude effects of nicotinamide. (A) *CAB2:LUC* \(^+\) rhythms in wild-type Ws-2 in the presence or absence of 20 mM nicotinamide (NAM) in one entraining 12:12 light dark cycle (black and white bars) and transferred into four days in constant light (white and grey bars) at dawn (Zeitgeber [ZT] 0). Mean FFT-NLLS period estimates are shown ± SEM (n = 8). (B) Free-running circadian period and amplitude difference of M3 plants in a forward genetic screen for the effect of 20 mM nicotinamide on circadian oscillations of *CAB2:LUC* \(^+\). Period-insensitive mutants (*sin*) are indicated in green, period-oversensitive mutants (*son*) in red and amplitude-sensitive mutants (*san*) in blue. Plants with no detectable nicotinamide-response phenotype in the screen of the M3 population are shown in white, and mean wild-type Ws-2 ± SEM from all experiments (n = 64) is shown overlaid in yellow. Data are pooled from eight separate experiments. (C) *CAB2:LUC* \(^+\) rhythms in *sin1*, *son1* and *san11* mutants (labelled in B) in the presence or absence of 20 mM nicotinamide in one entraining 12:12 light
dark cycle and four days in 70 μmol m\(^{-2}\) s\(^{-1}\) constant light (n = 8). Data are representative of two independent experiments in the M3 generation.

Figure 2. A causal mutation in BIG underlies *son1*

(A) SHOREmap backcross mapping by sequencing analysis of *son1* generated from 25-fold coverage Illumina sequence data obtained from 25 BC\(_1\)F\(_2\) individual plants with the *son1* phenotype. Individual chromosomes are shown separately with allele frequency sliding window generated with a moving average of 50 kb. A region with allele frequency of one is found on the long arm of chromosome 3. (B) SNPs found on chromosome 3 in *son1* with allele frequency of 1.0. Mutations highlighted in red are predicted to cause a functional change in gene product. (C) BC\(_2\)F\(_3\) segregation of *son1* phenotype with mutation at 3:433767. Period difference in the presence of 20 mM nicotinamide was calculated by FFT-NLLS and plotted rounded to nearest 0.2 h. Each line consisted of eight biological replicates, 45 lines were genotyped and phenotyped. Mean and SD for each 3:433767 G-A genotypic sub-population (Wt, heterozygous, and homozygous) were used to plot normal distributions overlaid onto period histogram. (D) RT-PCR of *BIG* exons 11-12 showing the effect of *son1* on *BIG* transcript isoforms. Lane 1 has Ws-2 genomic DNA product of predicted size 458bp. Lanes 2-4 have *son1* c-DNA products of 314 and 458 bp. Lanes 5-7 have Ws-2 c-DNA product of 316bp. 1 Kb ladder annotated with fragment sizes is shown. Independently isolated BC\(_2\)F\(_3\) pedigrees were used. (E) Gene structure of At3G02260 (*BIG*), the potential UBR and ZZ type zinc finger domains and positions of *son1* and *doc1-1* mutations are labelled. (F) Circadian period difference between
the presence and absence of 20 mM nicotinamide for delayed chlorophyll fluorescence rhythms in Ws-2, son1, Col-0, doc1-1 and son1 doc1-1 F1. Period estimates calculated using FFT-NLLS analysis (Mean ± SE shown, n = 10). Data are representative of two independent experiments. (G) Delayed chlorophyll fluorescence rhythm for son1 x doc1-1 F1 in the presence or absence of 20 mM nicotinamide (NAM) across four days in constant light. White and grey bars show subjective day and night. Mean ± SEM shown for n = 10. Data are representative of two independent crosses. (H) Circadian period difference between the presence and absence of 20 mM nicotinamide for delayed chlorophyll fluorescence rhythms of Col-0, Ws-2, Col-0 x Ws-2 F1, son1, doc1, son1 x ws-2 F1 and doc1 x Ws-2 F1. Period estimates calculated using FFT-NLLS analysis (Mean ± SEM shown, n = 10).

Figure 3. son1 affects circadian [Ca²⁺]_{cyt} signals

Bioluminescence (photon counts/1500 seconds) from son1 and Ws-2 expressing 35S:AEQUORIN across two light dark cycles and five days in constant 70 µmol m⁻² s⁻¹ white light grown on 20 mM mannitol (A) or 20 mM nicotinamide (NAM) (B). Mean luminescence ± SEM shown, n = 8. Data are representative of three independent experiments in the BC₂F₃ generation. (C) ADPR cyclase activity measured using NGD assay at ZT4 in 70 µmol m⁻² s⁻¹ white light from 3-4 week old Ws-2 (white) and son1 (red) seedlings, mean of three biological replicates shown with SEM. (D) [Ca²⁺]_{cyt} measured at zeitgeber (ZT) 4 and ZT 72 in constant 70 µmol m⁻² s⁻¹ white light from 11 and 14 day old Ws-2 (white) and son1 (red) seedlings respectively, n=12. Data are representative of three independent experiments in the BC₂F₃ generation.
Figure 4. *son1* affects circadian clock gene expression in light dark cycles and constant light

(A) *CCA1, PRR7, TOC1* and *CHE* expression from *son1* (red) and Ws-2 (white) samples harvested immediately preceding dawn and dusk. ** represents significance at p<0.01 with T-test. Relative expression of genes normalised to UBQ10f expression is given ± standard deviation [n=3].

(B) *CCA1, PRR7, TOC1* and *CHE* expression from Ws-2 and *son1* in the absence (left) and in the presence of 20 mM nicotinamide (right) across 48 hours in constant 70 µmol m⁻² s⁻¹ light from ZT24–ZT72. Relative expression of genes normalised to UBQ10f expression is given ± standard deviation [n=3]. Plants were grown as clusters of five plants for 11 days in light dark cycles prior to experiment.

Figure 5. *son1* affects dynamic circadian period adjustment by light and photoperiod

(A) Fluence response curve for circadian period of *CAB2:LUC* in Ws-2 and *son1* estimated in equal mixed red and blue light (Mean ± SEM, n = 8-12). Data are pooled from three independent experiments.

(B) *CAB2:LUC* rhythm of *son1* and Ws-2 assayed over five days in constant 5 µmol m⁻² s⁻¹ equal mixed red and blue light (Mean ± SEM, n = 8). Data are representative of two independent experiments in the BC2F3 generation. In Figure 4a, the small error bars are obscured by symbols.

(C) *CAB2:LUC* luminescence (counts s⁻¹) from *son1* (red) and Ws-2 (black) seedlings grown in 8:16, 12:12 and 16:8 photoperiods. Plants grown in 12:12 were treated with media supplemented with or without 20 mM nicotinamide (NAM) 2 days
prior to entrainment in camera chamber (mean ± SEM, n=8). Plants were grown in
entrainment conditions from germination and transferred to the camera chamber one
day before imaging, maintaining the same entrainment regime. Data are
representative of three independent experiments. (D) Peak time of CAB2:LUC+ from
LD cycles in (C). Mean peak time of CAB2:LUC+ ± SEM plotted, n=8). ** indicates
P<0.05 with T-test.

(E) Photoperiod response curve for circadian period of CAB2:LUC+ in Ws-2 and
son1 estimated in equal mixed 80 µmol m⁻² s⁻¹ red and blue light (Mean ± SEM, n =
8). Data are pooled from two independent experiments. Plants were entrained in
either photoperiods of either 16, 12 or 8 hours prior to transfer to constant light. (F)
CAB2:LUC+ rhythm of son1 and Ws-2 entrained in 16:8 LD cycles and released into
constant light for five days (Mean ± SEM, n = 8).
A bdul-Aわl, S.M., Hotta, C.T., Davey, M.P., Dodd, A.N., Smith A.G. and Webb, A.A.R. (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis. Plant Physiology. 171, 623–631.

Aschoff J. (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 25, 11-28.

Ashelford, K., Eriksson, M.E., Allen, C.M., D’Amore, R., Johansson, M., Gould, P., Kay, S., Millar, A.J., Hall, N., and Hall, A (2011). Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol. 12, R28.

Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, and Schibler U. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134, 317-28.

Bachmair A, Finley D, Varshavsky A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science. 234, 179-186.

Belzil, C., Asada, N., Ishiguro, K., Nakaya, T., Parsons, K., Pendolino, V., Neuermeyer, G., Mapelli, M., Nakatani, Y., Sanada, K., Nguyen, M.D. (2014) p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex. Biol. Open. 3, 475-485.

Belzil, C., Neuermeyer, G., Vassilev, A.P., Yap, K.L., Konishi, H., Rivest, S., Sanada, K., Ikura, M., Nakatani, Y., Nguyen, M.D. (2013) A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J. Biol. Chem. 34, 24452-24464.

Cha-Molstad, H., Yu, J.E., Feng, Z., Lee, S.H., Kim, J.G., Yang, P., Han, B., Sung, K.W., Yoo, Y.D., Hwang, J., et al. (2017) p62/SQSTM1/Sequesterome-1 is an N-recognin of the N-end rule pathway which modulates autophagosom e biogenesis. Nat. Commun. 8, 102.

Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X, Cao X. (2013) Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol. 162, 897-906.

Dalchau N, Hubbard KE, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Gonçalves JM, Webb AA (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A. 108, 5104-9.

Daan S, (2000) Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. Biol. Rhythms. 15, 195–207.

Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Gonçalves JM, Webb AA (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A. 108, 5104-9.

Dalchau N, Hubbard KE, Robertson FC, Hotta CT, Briggs HM, Stan GB, Gonçalves JM, and Webb AA (2010) Correct biological timing in Arabidopsis requires multiple light-signaling pathways. Proc Natl Acad Sci U S A 107, 13171-6.

Dodd AN, Gardner MJ, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie JM, Robertson FC, Jakobsen MK, Gonçalves J, Sanders D, and Webb AA. (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science. 318, 1789-92.

Endo M, Shimizu H, Nohales MA, Araki T, and Kay SA. (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature. 515:419-22.

Farinas, B., and Mas, P. (2011). Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J. 66, 318–329.
Farré, E.M., Harm er, S.L., Harmon, F.G., Yanovsky, M.J., and Kay, S. a (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47–54.

Gibbs DJ, Bacardit J, Bachm air A , Holdsworth MJ. (2014) The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24, 603-611.

Gil P, Dewey E, Frim l J, Zhao Y, Snowden KC, Putterill J. Palme K, Estelle M, Chory J. (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 15, 1985-97.

Gould PD, Diaz P, Hogben C, Kusakina J, Salem R, Hartwell J, Hall A (2009) Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J. 58, 893-901.

Gray JA , Shalit-Kaneh A , Chu DN, Hsu PY, and Harm er SL. (2017) The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. Plant Physiol. 173, 893-901.

Guo Y, and Tan J. (2013) Applications of delayed fluorescence from photosystem II. Sensors (Basel). 13, 17332-45.

Hall, A., Bastow, R.M., Davis, S.J., Hanano, S., McWatters, H.G., Hibberd, V., Doyle, M.R., Sung, S., Halliday, K.J., Amasino, R.M., et al. (2003). The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15, 2719–2729.

Haydon MJ, Mielczarek O, Frank A , Roman Á , and Webb AAR. (2017) Sucrose and Ethylene Signaling Interact to Modulate the Circadian Clock. Plant Physiol. 175, 947-958.

Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE & Webb AAR. (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature. 502, 689–692.

Hazen, S.P., Schultz, T.F., Pruneda-Paz, J.L., Borevitz, J.O., Ecker, J.R., and Kay, S. A (2005). LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl. Acad. Sci. U. S. A. 102, 10387–10392.

He, J., Zhang, R.-X., Peng, K., Tagliavia, C., Li, S., Xue, S., Liu, A, Hu, H., Zhang, J., Hubbard, K. E., Held, K., McAtosh, M. R., Gray, J. E., Kudla, J., Schroeder, J. I., Liang, Y.-K. and Hetherington, A M. (2018), The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2. New Phytol. doi:10.1111/nph.14957

Hearn TJ and Webb AAR. (2014) Measuring circadian oscillations of cytosolic-free calcium in Arabidopsis thaliana. Methods Mol Biol. 1158, 215-26.

Hong, S., Song, H.-R., Lutz, K., Kerstetter, R. A Michael, T.P., and McClung, C.R. (2010). Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 107, 21211–21216.

Huang WY, Wu YC, Pu HY, Wang Y, Jang GJ, and Wu SH. (2017) Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis. Plant Cell Environ. 40, 1735-1747.

Hughes ME, Hogenesch JB, Kornacker K. (2010) JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 25, 77-80.
Hunt L, Holdsworth MJ, and Gray JE. (2007) Nicotinamidase activity is important for germination. Plant J. 51, 341-51.

Johnson CH (1992) Phase response curves: What can they tell us about circadian clocks? In: Hiroshige T. and Honma K. (eds.), Circadian Clocks from Cell to Human Hokkaido Univ. Press, Sapporo. pp. 209-249.

Jones MA, Williams BA, McNicol J, Simpson CG, Brown JW, and Harmer SL. (2012) Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects. Plant Cell. 24, 4066-82.

Kaczorowski, K. a, and Quail, P.H. (2003). Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell 15, 2654–2665.

Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ. (2003) Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant Journal. 35, 57-70.

Kaur, G., Subramanian, S. (2015) The UBR box and its relationship to binuclear RING-like treble clef zinc fingers. Biol. Direct. 10, 36

Kevei E, Gyula P, Hall A, Kozmá-Bognár L, Kim WY, Eriksson ME, Tóth R, Hanano S, Fehér B, Southern MM, Bastow RM, Viczián A, Hibberd V, Davis SJ, Somers DE, Nagy F, and Millar AJ. (2006) Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol. 140, 933-45.

Kim H, Kim Y, Yeom M, Lim J, Nam HG. (2016) Age-associated circadian period changes in Arabidopsis leaves. J Exp Bot. 67, 2665-73.

Kim J, Kim Y, Yeom M, Kim JH, Nam HG. (2008) FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell. 20, 307-19.

Langmead, B. (2010). Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics. 11, 11.7.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993.

Li, H.M., Altschmied, L., and Chory, J. (1994). Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev. 8, 339–349.

Love, J., Dodd, A.N., and Webb, A.A.R. (2004). Circadian and Diurnal Calcium Oscillations Encode Photoperiodic Information in Arabidopsis. Plant Cell 16, 956–966.

Malapeira, J., Khaitova, L.C., and Mas, P. (2012). Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc. Natl. Acad. Sci. U.S.A. 109, 21540-5.
Martí, M.C., Stancombe, M. A, and Webb, A R. (2013). Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol. 163, 625–634.

Martin-Tryon EL, Kreps JA, Hamer SL. (2007). GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiology. 143, 473-86.

Martin-Tryon, E.L., and Hamer, S.L. (2008). XAP5 CIRCADIAN TIMEKEEPER coordinates light signals for proper timing of photomorphogenesis and the circadian clock in Arabidopsis. Plant Cell 20, 1244–1259.

Masuda, W., Takenaka, S., Inageda, K., Nishina, H., Takahashi, K., Katada, T., Tsuyama, S., Inui, H., Miyatake, K., and Nakano, Y. (1997). Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis. FEBS Lett. 405, 104–106.

Millar, A J., and Kay, S. a (1996). Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 93, 15491–15496.

Millar, A J., Carré, I. A, Strayer, C. A, Chua, N.H., and Kay, S. A (1995). Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.

Millar, A J., Carrington, J. T., Tee, W. V. and Hodge, S.K. (2015) Changing planetary rotation rescues the biological clock mutant lhy cca1 of Arabidopsis thaliana. bioRxiv, DOI: https://doi.org/10.1101/034629

Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay S, and Chory J. (2007) THE DIURNAL PROJECT: Diurnal and circadian expression profiling, model-based pattern matching and promoter analysis. Cold Spring Harb Symp Quant Biol. 72, 353-63.

Nakamichi N, Kita M, Ito S, Yamashino T, and Mizuno T. (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana. Plant and Cell Physiology 46, 686–698

Nakatani, Y., Konishi, H., Vassilev, A, Kurooka, H., Ishiguro, K., Sawads, J., Ikura, T., Korsmeyer, S.J., Qin, J., Herlitz, A.M. (2005) p600 is a unique protein required for membrane morphogenesis and cell survival. Proc. Natl. Acad. Sci. U. S. A. 102, 15093-15098.

Neill, J.S.O., Ooijen, G. Van, Dixon, L.E., Troein, C., Bouget, F., Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription in a eukaryote. Nature. 469, 554–558.

Panda, S., Poirier, G.G., and Kay, S. A (2002). tej defines a role for poly(ADP-ribosylation in establishing period length of the Arabidopsis circadian oscillator. Dev. Cell. 3, 51–61.

Park, D.H. (1999). Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA Gene. Science 285, 1579–1582.

Plautz, J.D., Straume, M., Stanewsky, R., Jamison, C.F., Brandes, C., Dowse, H.B., Hall, J.C., and Kay, S.A. (1997). Quantitative Analysis of Drosophila period Gene Transcription in Living Animals. J. Biol. Rhythms 12, 204–217.

Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O. (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A. 106,17421-6.
Ramsey, K.M., Yoshino, J., Brace, C.S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H.-K., Chong, J.L., Buhr, E.D., Lee, C., et al. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 324, 651–654.

Richards, S., Hillman, T., Stern, M. (1996) Mutations in the Drosophila pushover gene confer increased neuronal excitability and spontaneous synaptic vesicle fusion. Genetics. 142, 1215-1223.

Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Mudad G, Estelle M. (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell. 9, 745-57.

Rugnone, M.L., Faigón Soverna, A., Sanchez, S.E., Schlaen, R.G., Hernando, C.E., Seymour, D.K., Mancini, E., Chernomoretz, A., Weigel, D., Más, P., et al. (2013). LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc. Natl. Acad. Sci. U. S. A. 110, 12120–12125.

Sahar, S., Nin, V., Barbosa, M.T., Chini, E.N., and Sassone-corsi, P. (2011). Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging. 3, 1–9.

Salomé PA, Weigel D, and McClung CR. (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell. 22, 3650-61.

Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A.H., Nielsen, K.L., Jørgensen, J.-E., Weigel, D., and Andersen, S.U. (2009). SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat. Methods. 6, 550–551.

Sekelsy, J.J., McKim, K.S., Messina, L., French, R.L., Hurley, W.D., Arbel, T., Chin, G.M., Deneen, B., Force, S.J. et al. (1999) Identification of novel Drosophila meiotic genes recovered in a P-element screen. Genetics 152, 529-542

Seki M, Ohara T, Hearn TJ, Frank A, da Silva VCH, Caldana C, Webb AAR, Satake A. (2017) Adjustment of the Arabidopsis circadian oscillator by sugar signalling dictates the regulation of starch metabolism. Sci Rep. 16:8305.

Takahashi N, Hirata Y, Aihara K, Mas P. (2015) A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system. Cell. 163,148-59.

Tasaki, T., Mulder, L.C.F., Iwamatsu, A., Lee, M.J., Davydov, I.V., Varshavsky, A., Muesing, M., Kwon, Y.T. (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognise N-degrons. Mol. Cell Biol. 25, 7120-7136.
Tasaki, T., Zakrzewska, A., Dudgeon, D., Jiang, Y., Lazo, J.S., Kwon, Y.T. (2009) The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284, 1884-1895.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, and Ma L. (2012) SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell. 24, 3278-95.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, and Wu SH. (2011) LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell. 23, 486-98.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Wu, J.-F., Wang, Y., and Wu, S.-H. (2008). Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol. 148, 948–959.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung CR, and Xu X. (2014) LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell. 26, 2843-57.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Xu, X., Hotta, C.T., Dodd, A.N., Love, J., Sharrock, R., Lee, Y.W., Xie, Q., Johnson, C.H., and Webb, A.A.R. (2007). Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell 19, 3474–3490.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Xu, X-Z., Wes, P.D. Chen, H. Li, H-S., Yu, M., Morgan, S., Liu, Y., Montell, C. (1998) Retinal targets for calmodulin include proteins implicated in synaptic transmission. J. Biol. Chem. 273, 31297-31307.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Yager, J., Richards, S., Hekmat-Scafe, D.S., Hurd, D.D., Sundaresan, V., Caprette, D.R., Saxton, W.M., Carlson, J.R., Stern, M. (2001) Control of Drosophila perineural glial growth by interacting neurotransmitter-mediated signalling pathways. Proc. Natl. Acad. Sci. U.S.A. 98, 10445-10450.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Yap, K.L., Kim, J., Truong, K., Sherman, M., Yuan, T., Ikura, M. (2000) Calmodulin target database. J. Struct. Funct. Genom. 1, 8-14

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Yeang HY. (2015) Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis. Ann Bot. 116, 15-22.

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title