Kondo decoherence: finding the right spin model for iron impurities in gold and silver

T. A. Costi¹, ², L. Bergqvist¹, A. Weichselbaum³, J. von Delft³, T. Micklitz⁴, ⁷, A. Rosch⁴, P. Mavropoulos¹, ², P. H. Dederichs¹, F. Mallet⁷, L. Saminadayar⁵, ⁶, and C. Bäuerle⁵

¹Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
²Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
³Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80333 München, Germany
⁴Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
⁵Institut Néel - CNRS and Université Joseph Fourier, 38042 Grenoble, France
⁶Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France and ⁷Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Dated: February 3, 2009)

We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a longstanding question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S = 3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi 1-dimensional wires to numerical renormalization group predictions for S = 1/2, 1 and 3/2, finding excellent agreement for S = 3/2.

PACS numbers: 73.23.-b, 75.20.Hr, 72.70.+m, 73.20.Fz

Introduction.--- The Kondo effect of magnetic impurities in non-magnetic metals, e.g. Mn, Fe or Co in Cu, Ag or Au, first manifested itself in the early 1930’s as an anomalous rise in resistivity with decreasing temperature, leading to a resistivity minimum [1]. In 1964 Kondo explained this effect [2] as resulting from an antiferromagnetic exchange coupling between the spins of localized magnetic impurities and delocalized conduction electrons.

However, for many dilute magnetic alloys a fundamental question has remained unresolved to this day: which effective low-energy Kondo-type model yields a realistic description of the relevant multiple bands, spin and orbital degrees of freedom [3]? Cases in point are Fe impurities in Au and Ag, the former being the very first magnetic alloy known to exhibit an anomalous resistivity minimum [3]. Previous attempts to fit experimental data on, for example, Fe impurities in Ag (abbreviated as AgFe) with exact theoretical results for thermodynamics, by assuming a fully screened low-energy effective Kondo model [4, 5], have been inconclusive: specific heat data is absent and the local susceptibility of Fe in Ag obtained from Mössbauer spectroscopy [6] indicated a spin of S = 3/2 while a fully screened S = 2-model has been used to fit the temperature dependence of the local susceptibility [7].

A promising alternative route to identify the model for Fe in Au or Ag is offered by studying transport properties of high purity quasi-one dimensional mesoscopic wires of Au and Ag, doped with a carefully controlled number of Fe impurities by means of ion-implantation [8, 9, 10, 11, 12, 13]. Magnetic impurities affect these in two different ways. Besides causing the afore-mentioned resistivity anomaly, they also make an anomalous contribution \(\gamma_m(T) \) to the electronic phase decoherence rate \(\gamma(T) \) measured in weak (anti)localization: an itinerant electron which spin-flip-scatters off a magnetic impurity leaves a mark in the environment and thereby suffers decoherence. By checking model predictions for both effects against experimental observations over several decades in temperature, decoherence can thus be harnessed as a highly sensitive probe of the actual form of the effective exchange coupling. Experiments along these lines [11, 12] were consistent with a Kondo model in which the impurity spin is fully screened and inconsistent with underscreened or overscreened Kondo models [11]. A consistent description of both resistivity and decoherence measurements using the simplest fully screened Kondo model, the \(S = 1/2 \) single-channel Kondo model, was, however, not possible: different Kondo scales were required for fitting the resistivity and decoherence rates [11, 12].

In this Letter we address the above problem via the following strategy: (i) We carry out density functional theory calculations within the local density approximation (LDA) for Fe in Au and Ag to obtain information that allows us to prescribe a low-energy effective model featuring 3 bands coupling to impurities with spin \(S = 3/2 \). (ii) We calculate the resistivity \(\rho_m(T) \) and decoherence rate \(\gamma_m(T) \) due to magnetic impurities for three fully screened Kondo models, with \(n = 2S = 1, 2 \) and 3, using Wilson’s numerical renormalization group (NRG) approach. (iii) We compare these predictions to experimental data: extracting the characteristic Kondo temperature \(T_K \) for each choice of \(n \) from fits to \(\rho_m(T) \) and using these \(T_K \) to obtain parameter-free predictions for \(\gamma_m(T) \), we find that the latter agree best with experiment for \(n = 3 \).

LDA calculations.--- Fully relaxed density functional theory calculations employing the VASP code [14] showed that low-symmetry Fe configurations (split-interstitials [15]) are energetically unfavorable: Fe impurities prefer an environment with cubic symmetry. As the calculated defect formation energy of an Fe interstitial was found to be about 2 eV higher...
than the energy of a substitutional defect, we discuss the latter case in the following. This is in line with experiments on Fe-implantation in AgAu alloys, where only substitutional Fe-atoms are found [16].

Fig. 1 shows the d-level local density of states (LDOS) of substitutional Fe in Ag and Au, obtained by spin-polarized calculations using a 108 atom supercell, with similar results being found for a 256 atom supercell. The cubic local symmetry leads to e_g (doublet) and t_2g (triplet) components with a e_g-t_2g splitting, $\Delta \gtrsim 0.15$ eV in LDA (Fig. 1a-b). The widths Γ_{e_g} and Γ_{t_2g} of the e_g and t_2g states close to the Fermi level (E_F) are of the order of 1 eV, resulting from a substantial coupling to the conduction electrons. The large t_2g component at E_F persists within LDA+U (Fig. 1c-d) using $U = 3$ eV and a Hund’s coupling $J_H = 0.8$ eV.

The spin and orbital moments are given in the legends of Fig. 1 (spin-polarized Korringa-Kohn-Rostoker calculations yielded similar values [16]): Within spin-polarized LDA a large spin moment μ_S of approximately 3.1 μ_B forms spontaneously, consistent with Mössbauer measurements that give 3.1-3.2 μ_B for the spin moment for Fe in Ag [8]. In contrast, there is no tendency for a sizable orbital moment (or a Jahn-Teller distortion). The small orbital moments μ_L of < 0.1 μ_B (consistent with experimental results [17]) arise only due to weak spin-orbit coupling. We therefore conclude that the orbital degree of freedom is quenched on an energy scale set by the width Γ_{t_2g} of the t_2g orbitals. Moreover, since the spin-orbit splitting of the localized spin in the cubic environment is proportional to μ_L^2, it is tiny, well below our numerical precision of 0.01 meV, and, therefore, smaller than the relevant Kondo temperatures.

Low-energy effective models.— The above results justify formulating an effective low-energy model in terms of the spin-degree of freedom only. The large spin moment μ_S of $3.1-3.2$ μ_B suggests an effective spin $S = 3/2$. Our LDA results thus imply as effective model a spin-3/2 3-channel Kondo model, involving local and band electrons of t_2g symmetry. An alternative possibility, partially supported by the large (almost itinerant) t_2g component at E_F, would be to model the system as a spin-1 localized in the e_g orbitals, that is perfectly screened by two conduction electron channels of e_g symmetry. This spin is then also coupled to (almost itinerant) t_2g degrees of freedom via the ferromagnetic J_H. At high temperature, the latter binds an itinerant t_2g spin 1/2 to the local spin 1 to yield an effective spin-3/2, consistent with the spin-moment of 3.1 μ_B obtained within LDA, whereas in the high temperature limit, the irrelevance of J_H under renormalization [4] leads to the stated effective spin-1, 2-band model. Though such a model is well justified only for $J_H \ll \Gamma_{t_2g}$, which is not the case here where $J_H \sim \Gamma_{t_2g}$, our LDA results do not completely exclude such a model. To identify which of the models is most appropriate, we shall confront their predictions with experimental data below.

We thus describe Fe in Ag and Au using the following fully screened Kondo model:

$$H = \sum_{k\alpha} \varepsilon_k c_{k\alpha}^\dagger c_{k\alpha} + J \sum_\alpha S \cdot s_\alpha. \quad (1)$$

It describes n channels of conduction electrons with wave vector k, spin σ and channel index α, whose spin density $\sum_\sigma s_\alpha$ at the impurity site is coupled antiferromagnetically to an Fe impurity with spin $S = n/2$. Whereas our LDA results suggest $n = 3$, we shall also consider the cases $n = 1$ and 2.

NRG calculations.— The resistivity $\rho_m(T)$ and decoherence rate $\gamma_m(T)$ induced by magnetic impurities can be obtained from the temperature and frequency dependence of the impurity spectral density $I_{n}^{\text{imp}}(\omega)$, enhanced spin-flip scattering causes both $\rho_m(T)$ and $\gamma_m(T)$ to increase with decreasing temperature. For $T \lesssim T_K^{\text{imp}}$ the effective exchange coupling becomes so strong that the impurity spins are fully screened by conduction electrons, forming spin singlets, causing $\rho_m(T)$ to saturate to a constant and $\gamma_m(T)$ to drop to zero. While these effects are well-known [8, 9, 10, 11, 12], it is of central importance for the present study that they depend quite significantly on $S = n/2$, in such a way that conduction electrons are scattered and decohered more strongly the larger the local spin S: With increasing S, (i) both resistivities and decoherence rates decay more slowly with T at large temperatures ($\gg T_K^{\text{imp}}$), and (ii) the “plateau” near the maximum of $\gamma_m(T)$

![Fig. 1: (color online). The d-level local density of states (LDOS) of substitutional Fe in Ag and Au within spin-polarized LDA (a,b) and LDA+U (c,d), with inclusion of spin-orbit interactions, and showing the e_g (red) and t_{2g} (black) components of the d-level LDOS of FeAg (left panels) and FeAu (right panels). Majority/minority components of the t_{2g} component at E_F persist within LDA+U (Fig. 1(c-d) using $U = 3$ eV and a Hund’s coupling $J_H = 0.8$ eV). The cubic local symmetry leads to e_g (doublet) and t_{2g} (triplet) components with a e_g-t_{2g} splitting, $\Delta \gtrsim 0.15$ eV in LDA (Fig. 1a-b). The widths Γ_{e_g} and $\Gamma_{t_{2g}}$ of the e_g and t_{2g} states close to the Fermi level (E_F) are of the order of 1 eV, resulting from a substantial coupling to the conduction electrons. The large t_{2g} component at E_F persists within LDA+U (Fig. 1c-d) using $U = 3$ eV and a Hund’s coupling $J_H = 0.8$ eV.](#)
increases slightly in maximum height \(\gamma_{m}^{\text{max}} \) and significantly in width. These changes turn out to be sufficient to identify the proper value of \(S \) when comparing to experiments below.

Comparison with experiment.— We compared our theoretical results for \(\rho_{m}(T) \) and \(\gamma_{m}(T) \) to measurements on quasi 1-dimensional, disordered wires, for two AgFe samples [11], (AgFe 2 and AgFe 3 having 27 ± 3 and 67.5 ± 7 ppm Fe impurities in Ag, respectively), with a Kondo scale \(T_{K} \) for each \(S \) via \(\rho_{m}(T/T_{K}^S) = \rho_{m}(0)/2 \). Dashed lines in (a) show that the empirical form \(\rho_{m}(T)/\rho_{m}(0) \approx f_{S}(T/T_{K}^S) \) with \(f_{S}(x) = (1 + (2^{1/\nu_{f} - 1}) x^{2})^{-\nu_{f}} \), used to fit experimental to NRG results for \(S = 1/2 \) [23], also adequately fits the NRG results for \(S = 1 \) and \(S = 3/2 \).

Here \(\delta \) is an (unknown) offset [24] and \(\Delta \rho(T) \) is expressed per magnetic impurity. For temperatures low enough that \(\rho_{ph}(T) \) can be neglected, \(\Delta \rho(T) - \delta \) corresponds to the theoretical curve \(\rho_{m}(T) = \rho_{m}(0)f_{S}(T/T_{K}^S) \) [cf. caption of Fig. 2], where \(\rho_{m}(0) \) = \(\Delta \rho(0) - \delta \) is the unitary Kondo resistivity. Fig. 3 illustrates how we extract the Kondo scale \(T_{K}^S \) and \(\rho_{m}(0) \) from the experimental data, by fitting the Kondo-dominated part of \(\Delta \rho(T) \) in a fixed temperature range (specified in the caption of Fig. 3) to the NRG results of Fig. 2(a), using the Ansatz

\[
\Delta \rho(T) \approx \delta + (\Delta \rho(0) - \delta) f_{S}(T/T_{K}^S) .
\]

Such fits are made for each of the fully screened Kondo models, using \(T_{K}^S \) and \(\delta \) as fit parameters. Importantly, the values for \(T_{K}^S \) and \(\rho_{m}(0) \) obtained from the fits, given in the inset and caption of Fig. 3 respectively, show a significant \(S \)-dependence: both \(T_{K}^S \) and \(\rho_{m}(0) \) increase with \(S \), since the slope of the logarithmic Kondo increase of the theory curves for \(\rho_{m} \) [cf. Fig. 2] decreases significantly in magnitude with \(S \). Nevertheless, all three models fit the Kondo contribution very well, as shown in Fig. 3 so a determination of the appropriate model from resistivity data alone is not possible.

To break this impasse, we exploit the remarkably sensitive \(S \)-dependence of the spin-flip-induced decoherence rate \(\gamma_{m}(T) \). Fig. 4 shows the measured dimensionless decoherence rate \(\gamma_{m}(T)/\gamma_{m}^{\text{max}} \) for Ag and Au samples (symbols) as function of \(T/T_{K}^S \) for \(S = 1/2, 1 \) and \(3/2 \), using the \(T_{K}^S \) values extracted from the resistivities, together with the corresponding parameter-free theoretical predictions (lines), taken

FIG. 2: (color online). (a) Resistivity \(\rho_{m}(T) \) (solid lines), and, (b) decoherence rate \(\gamma_{m}(T) \) for \(2S = n = 1, 2, 3 \); \(\rho_{m}(0) = 2\tau\rho_{e}/\pi h\nu_{e} \), \(\gamma_{m}^{0} = 2/\pi h\nu_{e} \), where \(\tau \) is the residual scattering time, \(\rho_{e} \) the density of states per spin and channel, \(\nu_{e} \) the elastic scattering time, and \(\gamma_{m}^{\text{max}} \) is the maximum value of \(\gamma_{m}(T) \). We defined the Kondo scale \(T_{K}^S \) for each \(S \) via \(\rho_{m}(T/T_{K}^S) = \rho_{m}(0)/2 \). Dashed lines in (a) show that the empirical form \(\rho_{m}(T)/\rho_{m}(0) \approx f_{S}(T/T_{K}^S) \) with \(f_{S}(x) = (1 + (2^{1/\nu_{f} - 1}) x^{2})^{-\nu_{f}} \), used to fit experimental to NRG results for \(S = 1/2 \) [23], also adequately fits the NRG results for \(S = 1 \) and \(S = 3/2 \).
from Fig. 2(b). The agreement between theory and experiment is poor for $S = 1/2$, better for $S = 1$ but excellent for $S = 3/2$, confirming the conclusion drawn above from \textit{ab initio} calculations. The dependence on S is most strikingly revealed through the width of the plateau region (in units of T/T_K^S), which grows with S for the theory curves but shrinks with S for the experimental data (for which T_K^S grows with S), with $S = 3/2$ giving the best agreement.

Conclusions.— In this Letter we addressed one of the fundamental unresolved questions of Kondo physics: that of deriving and solving the effective low-energy Kondo model appropriate for a realistic description of Fe impurities in Au and Ag. Remarkably, for both Ag and Au samples, the use of a fully screened $S = 3/2$ three channel Kondo model allows a \textit{quantitatively consistent} description of both the resistivity and decoherence rate with a single T_K (for each material). Our results set a benchmark for the level of quantitative understanding attainable for the Kondo effect in real materials.

L. B. acknowledges support from the EU within the Marie Curie Actions for Human Resources and Mobility; P.M. from the ESF programme SONS, contract N. ERAS-CT-2003-980409; T. M. from the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-06CH11357; L.S. and C.B. acknowledge technical support from the Quantronics group, Saclay and A.D. Wieck and financial support from ANR PNNANO "QuSPIN". Support from the John von Neumann Institute for Computing (Jülich), the DFG (SFB 608, SFB-TR12 and De730/3-2) and from the Cluster of Excellence \textit{Nanosystems Initiative Munich} is gratefully acknowledged.

\begin{thebibliography}{22}
\bibitem{1} W. J. de Haas, J. de Boer, and G. J. van den Berg, Physica (Amsterdam) \textbf{1}, 1115 (1934).
\bibitem{2} J. Kondo, Prog. Theor. Phys. \textbf{32}, 37 (1964).
\bibitem{3} P. Nozières and A. Blandin, J. Phys. (Paris) \textbf{41}, 193 (1980).
\bibitem{4} A. C. Hewson, \textit{The Kondo Problem To Heavy Fermions}, Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, England, 1997).
\bibitem{5} H. U. Desgranges, J. Phys. C \textbf{18}, 5481 (1985).
\bibitem{6} P. Steinier and S. Hüfner, Phys. Rev. B \textbf{12}, 842 (1975).
\bibitem{7} P. Schlottmann and P. D. Sacramento, Adv. Phys. \textbf{42}, 641 (1993).
\bibitem{8} F. Pierre et al., Phys. Rev. B \textbf{68}, 085413 (2003).
\bibitem{9} F. Schopfer et al., Phys. Rev. Lett. \textbf{90}, 056801 (2003).
\bibitem{10} C. Bäuerle et al., Phys. Rev. Lett. \textbf{95}, 266805 (2005).
\bibitem{11} F. Mallet et al., Phys. Rev. Lett. \textbf{97}, 226804 (2006).
\bibitem{12} G. M. Alzoubi and N. O. Birge, Phys. Rev. Lett. \textbf{97}, 226803 (2006).
\bibitem{13} T. Capron et al., Phys. Rev. B \textbf{77}, 033102 (2008).
\bibitem{14} G. Kresse and J. Furthmüller, Phys. Rev. B\textbf{54}, 11169 (1996).
\bibitem{15} G. Vogl, W. Mansel, and P. H. Dederichs, Phys. Rev. Lett. \textbf{36}, 1497 (1976).
\bibitem{16} R. Kirsch et al., Europhys. Lett. \textbf{59}, 430 (2002).
\bibitem{17} W. D. Brewer et al., Phys. Rev. Lett. \textbf{93}, 077205 (2004).
\bibitem{18} T. Micklitz et al., Phys. Rev. Lett. \textbf{96}, 226601 (2006).
\bibitem{19} G. Zarand et al., Phys. Rev. Lett. \textbf{93}, 107204 (2004).
\bibitem{20} A. Weichselbaum and J. von Delft, Phys. Rev. Lett. \textbf{99}, 076402 (2007).
\bibitem{21} R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. \textbf{80}, 395 (2008); T. A. Costi, A. C. Hewson, and V. Zlatić, J. Phys. Condens. Matter \textbf{6}, 2519 (1994); O. Sakai, Y. Shimizu, and N. Kaneko, Physica (Amsterdam) \textbf{186-188B}, 323 (1993).
\bibitem{22} R. Peters, T. Pruschke, and F. B. Anders, Phys. Rev. B \textbf{74}, 245114 (2006); F. B. Anders and A. Schiller, Phys. Rev. Lett. \textbf{95}, 196801 (2005); W. Hofstetter, Phys. Rev. Lett. \textbf{85}, 1508 (2000); R. Bulla, A. C. Hewson, and Th. Pruschke, J. Phys. Condens. Matter \textbf{10}, 8365 (1998).
\bibitem{23} D. Goldhaber-Gordon, et al., Phys. Rev. Lett. \textbf{81}, 5225 (1998).
\bibitem{24} B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitzky, J. Phys. C \textbf{15}, 7367 (1982).
\bibitem{25} Below this temperature, the smaller signal to noise ratio makes the measurements less accurate.
\bibitem{26} Experiments measure resistance \textit{changes} on ramping up the temperature, hence the unknown offset δ.
\end{thebibliography}