A NOTE ON THE WEAK LEFSCHETZ PROPERTY OF MONOMIAL COMPLETE INTERSECTIONS IN POSITIVE CHARACTERISTIC

HOLGER BRENNER AND ALMAR KAID

Abstract. Let K be an algebraically closed field of characteristic $p > 0$. We apply a theorem of C. Han to give an explicit description for the weak Lefschetz property of the monomial Artinian complete intersection $A = K[X,Y,Z]/(X^d, Y^d, Z^d)$ in terms of d and p. This answers a question of J. Migliore, R. M. Miró-Roig and U. Nagel and, equivalently, characterizes for which characteristics the rank-2 syzygy bundle $\text{Syz}(X^d, Y^d, Z^d)$ on \mathbb{F}^2 satisfies the Grauert-Mülich theorem. As a corollary we obtain that for $p = 2$ the algebra A has the weak Lefschetz property if and only if $d = \left\lfloor \frac{2t+1}{3} \right\rfloor$ for some positive integer t. This was recently conjectured by J. Li and F. Zanello.

Mathematical Subject Classification (2010): primary: 13D02, 13E10, 14J60, secondary: 13C13, 13C40, 14F05.

Keywords: syzygy, stable bundle, Grauert-Mülich Theorem, weak Lefschetz property, Artinian algebra, monomial complete intersection.

1. Introduction

Let $R = K[X_0, \ldots, X_N]$ be the polynomial ring in $N + 1$ variables over an algebraically closed field K and let f_1, \ldots, f_n denote R_+-primary homogeneous polynomials in R (i.e., $\sqrt{(f_1, \ldots, f_n)} = R_+$). Then the quotient $A := R/(f_1, \ldots, f_n)$ is an Artinian graded K-algebra, i.e., A is of the form $A = K \oplus A_1 \oplus \ldots \oplus A_s$ for some integer $s \geq 0$. The algebra A has the weak Lefschetz property (abbreviated by WLP) if for every general linear form $\ell \in R_1$ the multiplication maps $A_m \xrightarrow{\ell} A_{m+1}$ have maximal rank for $m = 0, \ldots, s - 1$.

We also associate to the polynomials f_1, \ldots, f_n the syzygy bundle on $\mathbb{P}^N = \text{Proj} R$. This vector bundle is given by the short exact sequence

$$0 \rightarrow \text{Syz}(f_1, \ldots, f_n) \rightarrow \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^N}(-d_i) \rightarrow \mathcal{O}_{\mathbb{P}^N} \rightarrow 0,$$
2 HOLGER BRENNER AND ALMAR KAID

where \(d_i := \deg(f_i) \). If \(N = 2 \) and \(\text{char}(K) = 0 \), we gave in our article [2] a characterization for the weak Lefschetz property of the Artinian algebra \(A \) in terms of the generic splitting type of the syzygy bundle \(\text{Syz}(f_1, \ldots, f_n) \) (see [2, Theorem 2.2]). As a consequence we obtained, using the theorem of Grauert-Mülich (see [6, Theorem 3.0.1]), the result of Harima-Migliore-Nagel-Watanabe saying that every Artinian complete intersection in \(K[X, Y, Z] \) has the weak Lefschetz property (see [5, Theorem 2.4] and [2, Corollary 2.4]). The easy examples of the stable syzygy bundles \(S = \text{Syz}(X^p, Y^p, Z^p) \) over a field of characteristic \(p \) show that neither Grauert-Mülich (\(S \) splits on every line \(L \subset \mathbb{P}^2 \) as \(S|_L \cong O_L(-p) \oplus O_L(-2p) \); cf. also the example of L. Ein in [3, Section 4]) nor the theorem of Harima et al. holds in positive characteristic (cf. [8, Example 7.10]).

The aim of this paper is to give a numerical characterization of the WLP for monomial Artinian complete intersections \(K[X, Y, Z]/(X^d, Y^d, Z^d) \) in positive characteristic. This answers [8, Question 7.12] of Migliore-Miró-Roig-Nagel and, equivalently, characterizes for which characteristics the rank-2 syzygy bundle \(\text{Syz}(X^d, Y^d, Z^d) \) on \(\mathbb{P}^2 \) satisfies the Grauert-Mülich theorem. As a consequence we obtain a proof for the recent conjecture [7, Conjecture 3.9] of J. Li and F. Zanello.

Besides our geometric approach, the key ingredient for our investigation is a theorem of C. Han which computes the syzygy gap introduced in [9] by P. Monsky. Let \(K \) be an algebraically closed field and consider the ideal \(I := (X^{d_1}, Y^{d_2}, (X + Y)^{d_3}) \) in \(S := K[X, Y] \). The minimal graded free resolution of the quotient \(S/I \) is given by

\[
0 \longrightarrow S(a) \oplus S(b) \longrightarrow S(-d_1) \oplus S(-d_2) \oplus S(-d_3) \longrightarrow S \longrightarrow S/I \longrightarrow 0,
\]
with integers \(a, b, a \geq b\). The difference \(\delta(d_1, d_2, d_3) := a - b\) is called the \textit{syzygy gap} and constitutes a function \(\delta : \mathbb{N}^3 \to \mathbb{N}\). It is easy to see that \(a + b = -(d_1 + d_2 + d_3)\) and hence \(\delta(d_1, d_2, d_3) \equiv d_1 + d_2 + d_3 \mod 2\).

\textbf{Corollary 2.2.} Let \(K\) be an algebraically closed field (of any characteristic), \(A = K[X, Y, Z]/(X^d, Y^d, Z^d)\) and denote by \(\mathcal{S} = \text{Syz}(X^d, Y^d, Z^d)\) the corresponding syzygy bundle. Then the following conditions are equivalent.

1. The algebra \(A\) has the weak Lefschetz property.
2. The bundle \(\mathcal{S}\) splits on a generic line \(L\) as \(\mathcal{S}|_L \cong \mathcal{O}_L(a) \oplus \mathcal{O}_L(b)\) with \(a \geq b\) and \(0 \leq a - b \leq 1\) (i.e., the theorem of Grauert-Mülich holds).
3. We have \(\delta(d, d, d) \leq 1\).

\textit{Proof.} The equivalence (1) \(?\) (2) is proved in Lemma 2.1.

(2) \(?\) (3). If we want to compute the splitting type of \(\mathcal{S}\) on a line \(L\) given by the equation \(Z = uX + vY\) with coefficients \(u, v \in K\), \(u, v \neq 0\) (in particular this holds for a generic line), we can assume without loss of generality that \(u = v = 1\). Hence computing the generic splitting type of \(\mathcal{S}\) is the same as computing the syzygy gap \(\delta(d, d, d) = a - b\).

We denote by \(\delta^* : [0, \infty)^3 \to [0, \infty)\) the continuous continuation of \(\delta\); see [9, Definition 19 and the following] for this function and some of its properties.

We set \(L_{\text{odd}} := \{(u_1, u_2, u_3) \in \mathbb{Z}^3 : \sum_{i=1}^3 u_i \text{ odd} \} \subset \mathbb{Z}^3\).

An element \(u = (u_1, u_2, u_3) \in \mathbb{Z}^3\) belongs to \(L_{\text{odd}}\) if and only if all entries of \(u\) are odd or if there is only one odd entry \(u_i\), \(i \in \{1, 2, 3\}\). Further, we denote by \(\text{td}\) the \textit{taxi-cab distance} in \(\mathbb{R}^3\) defined as \(\text{td}(v, w) := \sum_{i=1}^3 |v_i - w_i|\) for triples \(v = (v_1, v_2, v_3), w = (w_1, w_2, w_3) \in \mathbb{R}^3\).

The following theorem due to C. Han yields an effective way to compute \(\delta^*\) for a given triple \(v = (v_1, v_2, v_3) \in [0, \infty)^3\).

\textbf{Theorem 2.3 (Han).} Let \(K\) be an algebraically closed field of characteristic \(p > 0\) and assume the entries of \(v = (v_1, v_2, v_3) \in [0, \infty)^3\) satisfy \(v_1 \leq v_2 \leq v_3\) and \(v_3 < v_1 + v_2\). If there exists \(s \in \mathbb{Z}\) and a triple \(u = (u_1, u_2, u_3) \in L_{\text{odd}}\) such that \(m := \text{td}(p^s v, u) < 1\), then there exists such a pair \(s, u\) with minimal \(s\). With these data \(s, u\) and \(m\) we have

\[\delta^*(v) = p^{-s}(1 - m).\]

If no such pair exists, then \(\delta^*(v) = 0\).

\textit{Proof.} See [4, Theorems 2.25 and 2.29] or [9, Corollary 23] for an easier proof.

\textbf{Lemma 2.4.} Let \(d \in \mathbb{N}_+\) and \(p\) be a prime number. Then the following conditions are equivalent.
(1) There exists \(k \in \mathbb{N} \) and \(n \in \mathbb{N} \) such that
\[
\frac{3d}{6k + 2} > p^n > \frac{3d}{6k + 4}.
\]

(2) There exists an odd number \(u \in \mathbb{N} \) and \(s \in \mathbb{Z} \), \(s \leq 0 \), such that
\[
u - \frac{1}{3} < dp^s < u + \frac{1}{3}.
\]

(3) There exists an integer \(s \), \(s \leq 0 \), such that the taxi-cab distance of \((dp^s, dp^s, dp^s)\) to some point in \(L_{\text{odd}} \) is < 1.

Proof. To proof the equivalence between (1) and (2) we set \(s = -n \) and \(u = 2k + 1 \). The condition in (1) is equivalent with
\[
\frac{3}{3u - 1} > \frac{p^n}{d} > \frac{3}{3u + 1}
\]
and by inverting it is equivalent with
\[
u - \frac{1}{3} < dp^s < u + \frac{1}{3}.
\]

If (2) is true, then we have \((u, u, u) \in L_{\text{odd}}\) and the taxi-cab distance between \((dp^s, dp^s, dp^s)\) and \((u, u, u)\) is < 1. On the other hand, the distance of a point on the diagonal to any point in \(L_{\text{odd}} \) outside the diagonal is at least 1, so we only have to consider points on the diagonal. \(\square\)

Lemma 2.5. Let \(d \in \mathbb{N}_+ \) and \(p \) be a prime number. Suppose that there exists \(0 \leq n' < n \) and \(k', k \in \mathbb{N} \) such that
\[
\frac{3d - 1}{6k' + 2} > p^{n'} > \frac{3d + 1}{6k' + 4}
\]

and
\[
\frac{3d}{6k + 2} > p^n > \frac{3d}{6k + 4}.
\]

Then
\[
\frac{3d - 1}{6k + 2} > p^n > \frac{3d + 1}{6k + 4}.
\]

Proof. Otherwise we would have either
\[
\frac{3d + 1}{6k + 4} \geq p^n > \frac{3d}{6k + 4}
\]
or
\[
\frac{3d}{6k + 2} > p^n \geq \frac{3d - 1}{6k + 2}.
\]
This gives either
\[p^n(6k + 4) = 3d + 1\]
or
\[p^n(6k + 2) = 3d - 1.\]
We plug this in the first inequality and get in the first case
\[
\frac{p^n(6k + 4) - 2}{6k' + 2} > p^{n'} > \frac{p^n(6k + 4)}{6k' + 4}
\]
and by dividing through \(p^n \) we get
\[
\frac{3k + 2 - \frac{1}{p^n}}{3k' + 1} > \frac{p^{n'-n}}{3k' + 2} > \frac{3k + 2}{3k' + 2}.
\]
By inverting we obtain
\[
\frac{3k' + 1}{3k + 2 - \frac{1}{p^n}} < \frac{p^{n-n'}}{3k' + 2} < \frac{3k' + 1}{3k + 2}.
\]
From the right hand side we get \(p^{n-n'} \leq \frac{3k' + 1}{3k + 2} \) which yields the contradiction
\[
\frac{3k' + 1}{3k + 2 - \frac{1}{p^n}} < \frac{3k' + 1}{3k + 2}.
\]
In the second case we obtain
\[
\frac{p^n(6k + 2)}{6k' + 2} > p^{n'} > \frac{p^n(6k + 2) + 2}{6k' + 4}
\]
and similar manipulations yield a contradiction. \(\square \)

The following theorem gives an explicit answer to [8, Question 7.12]. This question was also answered in [7, Corollary 3.6] but in a less explicit way.

Theorem 2.6. Let \(K \) be a field of characteristic \(p > 0 \) and consider the monomial Artinian complete intersection \(A := K[X, Y, Z]/(X^d, Y^d, Z^d) \). Then the following holds:

1. If \(d \) is even, then \(A \) does not have the weak Lefschetz property if and only if there exists a \(k \in \mathbb{N} \) and an \(n \in \mathbb{N}_+ \) such that
 \[
 \frac{3d}{6k + 2} > p^n > \frac{3d}{6k + 4}.
 \]
2. If \(d \) is odd, then \(A \) does not have the weak Lefschetz property if and only if there exists a \(k \in \mathbb{N} \) and an \(n \in \mathbb{N}_+ \) such that
 \[
 \frac{3d - 1}{6k + 2} > p^n > \frac{3d + 1}{6k + 4}.
 \]

Proof. We prove (1). Assume that we have
\[
\frac{3d}{6k + 2} > p^n > \frac{3d}{6k + 4}
\]
for some \(k \in \mathbb{N} \) and \(n \in \mathbb{N}_+ \). We set \(s := -n \), \(u := 2k + 1 \). Then we have \(m := \text{td}(p^s(d, d, d), (u, u, u)) < 1 \) by Lemma 2.4 and hence \(\delta^s(d, d, d) = p^{-s}(1 - m) > 0 \). Since \(\delta^s(d, d, d) = a - b \) and \(a + b = -3d \) we must have \(\delta^s(d, d, d) \geq 2 \). We apply Corollary 2.2 and see that \(A \) does not have the WLP.
Now we assume that the numerical condition does not hold. Then by Lemma 2.4 there is no \(s \leq 0 \) such that the taxi-cab distance from \(p^s(d, d, d) \) to an element \((u, u, u) \in L_{\text{odd}}\) is < 1. This is also true for \(s > 0 \) since \(d \) is even. Hence it follows from Han’s Theorem 2.3 that \(\delta^*(d, d, d) = 0 \) which implies by Corollary 2.2 the WLP for the algebra \(A \).

Next we prove (2). First we remark that, since \(d \) is odd, the condition

\[
\frac{3d}{6k + 2} > p^n > \frac{3d}{6k + 4}
\]

is always fulfilled for \(n = 0 \) and \(k \) such that \(d = 2k + 1 \). We choose \(n > 0 \) maximal such that

\[
\frac{3d}{6k + 2} > p^n > \frac{3d}{6k + 4}
\]

holds for some \(k \). Hence we can apply Han’s Theorem 2.3 with \(s := -n \) (minimal) and \(u := 2k + 1 \) to compute the syzygy gap.

Suppose that the numerical condition of part (2) is fulfilled for some \(k' \in \mathbb{N} \) and \(n' \in \mathbb{N}_+ \). According to Lemma 2.5 we may assume that this condition also holds for the chosen (maximal) \(n \), hence

\[
\frac{3d - 1}{6k + 2} > p^n > \frac{3d + 1}{6k + 4}.
\]

Then we have in particular

\[
u - \frac{1}{3} = \frac{6k + 2}{3} < dp^s < \frac{6k + 4}{3} = u + \frac{1}{3}
\]

by Lemma 2.4. Now we distinguish two cases.

Case 1: Let \(u > dp^s \). Then the taxi-cab distance from \(p^s(d, d, d) \) to the element \((u, u, u) \in L_{\text{odd}}\) equals

\[
m := \text{td}(p^s(d, d, d), (u, u, u)) = 3(u - dp^s)
\]

and we have \(m < 1 \) (by Lemma 2.4). So we obtain for the syzygy gap:

\[
\delta^*(d, d, d) = p^{-s}(1 - m) = p^{-s}(1 - 3u + 3dp^s)
\]

\[
= p^{-s}(1 - 3u) + 3d = -p^n(6k + 2) + 3d
\]

\[
> -(3d - 1) + 3d = 1.
\]

Therefore the syzygy gap is indeed \(\geq 3 \). Hence it follows from Corollary 2.2 that \(A \) does not have the WLP.

Case 2: Let \(u \leq dp^s \). Then we obtain

\[
m := \text{td}(p^s(d, d, d), (u, u, u)) = 3(dp^s - u)
\]
which is again < 1. So we can estimate the syzygy gap as follows:

$$\delta^*(d,d,d) = p^{-s}(1 - m)$$

$$= p^{-s}(1 + 3u - 3dp^s)$$

$$= (1 + 3u)p^{-s} - 3d$$

$$= (6k + 4)p^n - 3d$$

$$> 3d + 1 - 3d$$

$$= 1.$$

Again we conclude that A does not have the WLP.

Next suppose that the numerical condition of part (2) does not hold. Then we have either

$$\frac{3d + 1}{6k + 4} \geq p^n > \frac{3d}{6k + 4} \text{ or } \frac{3d}{6k + 2} > p^n \geq \frac{3d - 1}{6k + 2},$$

where n and k are chosen as in the beginning of the proof of part (2).

Case 1: Let $\frac{3d + 1}{6k + 4} \geq p^n > \frac{3d}{6k + 4}$. Then we even have

$$p^n(6k + 4) = p^n(3u + 1) = 3d + 1.$$

Since

$$\frac{d}{u} = \frac{3d}{3u} > \frac{3d + 1}{3u + 1} = \frac{3d + 1}{6k + 4} = p^n,$$

we have $dp^s > u$. So we obtain

$$m := td(p^s(d,d,d),(u,u,u)) = 3(dp^s - u)$$

which is < 1. This gives:

$$\delta^*(d,d,d) = p^{-s}(1 - m)$$

$$= p^{-s}(1 + 3u - 3dp^s)$$

$$= (1 + 3u)p^{-s} - 3d$$

$$= p^n(3u + 1) - 3d$$

$$= 1.$$

Hence A has the WLP by Corollary 2.2.

Case 2: Let $\frac{3d}{6k + 2} > p^n \geq \frac{3d - 1}{6k + 2}$. This implies

$$p^n(6k + 2) = -p^n(1 - 3u) = 3d - 1.$$

Since

$$p^n = \frac{3d - 1}{6k + 2} = \frac{3d - 1}{3u - 1} < \frac{d}{u},$$

we now have $u > dp^s$. Hence

$$m := td(p^s(d,d,d),(u,u,u)) = 3(u - dp^s) < 1.$$
Once again we get
\[
\delta^*(d, d, d) = p^{-s}(1 - m) = p^{-s}(1 - 3u - 3dp^s) = p^n(1 - 3u) + 3d = -(3d - 1) + 3d = 1.
\]

We conclude as above that \(A \) has the WLP. \(\square \)

As a corollary we obtain [7, Conjecture 3.9].

Corollary 2.7. Let \(K \) be a field of characteristic 2. Then the Artinian complete intersection \(A := K[X, Y, Z]/(X^d, Y^d, Z^d) \) has the weak Lefschetz property if and only if \(d = \left\lfloor \frac{2^t+1}{3} \right\rfloor \) for some positive integer \(t \).

Proof. Let \(n \in \mathbb{N} \) such that
\[
\frac{3d}{2} > 2^n > \frac{3d}{4}
\]
(note that there is only one such \(n \) since \(\frac{3d}{4} \) is the half of \(\frac{3d}{2} \)). This \(n \) corresponds to \(k = 0 \) and is the exponent we have to consider by Theorem 2.6. So it follows from part (1) of Theorem 2.6 that the algebra \(A \) never enjoys the WLP for \(d \) even. So we may assume that \(d \) is odd. If
\[
\frac{3d - 1}{2} > 2^n > \frac{3d + 1}{4}
\]
holds then again \(A \) does not have the WLP. So \(A \) does have the WLP if either
\[
\frac{3d - 1}{2} \leq 2^n < \frac{3d}{2} \text{ or } \frac{3d}{2} < 2^{n+1} \leq \frac{3d + 1}{2}
\]
holds, i.e., if we have either \(3d - 1 = 2^{n+1} \) or \(3d + 1 = 2^{n+2} \). This gives the assertion of the corollary. \(\square \)

Remark 2.8. As remarked in [7] and indicated in our proof, Corollary 2.7 implies that the monomial complete intersection \(K[X, Y, Z]/(X^d, Y^d, Z^d) \) does not have the WLP in characteristic 2 if \(d \) is even.

Theorem 2.6 implies in particular that for given \(d \) the weak Lefschetz property might only fail in characteristic \(p \leq \frac{3d}{2} \). It is easy to generate the list of exceptional characteristics with the help of this numerical criterion.

Corollary 2.9. Let \(d \) be odd and let \(p \) be a prime factor of \(d \). Then the Artinian algebra \(K[X, Y, Z]/(X^d, Y^d, Z^d) \) does not have the weak Lefschetz property in characteristic \(p \).
Proof. We write \(d = p^n u \) with \(u = 2k + 1 \) odd, \(n \geq 1 \). Then \[p^n = \frac{d}{2k + 1} = \frac{3d}{6k + 3}. \]
Since the numerator is larger than the denominator, this number is strictly between \(\frac{d + 1}{6k + 3} \) and \(\frac{3d + 1}{6k + 3} \), so this fulfills the condition of Theorem 2.6(2). \(\square \)

Remark 2.8 and Corollary 2.9 imply that only for \(d = 1 \) the WLP holds in all characteristics. We will see in the examples below that for \(d \) even the weak Lefschetz property can hold in characteristics dividing \(d \) (but not in characteristic 2).

Example 2.10. We consider \(d \) even and determine the exceptional prime numbers (here we mean by exceptional that the Artinian complete intersection \(A = K[X,Y,Z]/(X^d,Y^d,Z^d) \) does not enjoy the WLP in these characteristics).

- \(d = 2 \). The only exceptional prime number is 2.
- \(d = 4 \). The condition for \(k = 0 \) is \(12/2 = 6 > p^n > 12/4 = 3 \), hence the exceptional prime numbers are 2 and 5 (no larger \(k \) have to be considered).
- \(d = 6 \). For \(k = 0 \) we get \(9 > p^n > 4.5 \), which yields the exceptional primes 2, 5, 7 (no larger \(k \)). The prime number 3 divides \(d \), but the weak Lefschetz property does hold in characteristic 3.
- \(d = 8 \). For \(k = 0 \) we get \(12 > p^n > 6 \), which yields the exceptional primes 2, 3, 7, 11 (no larger \(k \)).
- \(d = 10 \). For \(k = 0 \) we get the exceptional primes 2, 3, 11, 13 (no larger \(k \)).
- \(d = 12 \). For \(k = 0 \) we get the exceptional primes 2, 11, 13, 17 (no larger \(k \)).
- \(d = 14 \). For \(k = 0 \) we get the condition \(21 > p^n > 10.5 \), which yields the exceptional primes 2, 11, 13, 17, 19. For \(k = 1 \) we get the condition \(\frac{42}{8} > p^n > \frac{42}{8} \), which yields \(p = 5 \).
- \(d = 20 \). For \(k = 0 \) we get the exceptional primes 2, 3, 5, 17, 19, 23, 29 and for \(k = 1 \) we also get 7. Note that 5 does divide \(d \) and the algebra does not have the weak Lefschetz property in characteristic 5.

Example 2.11. We consider \(d \) odd and determine the exceptional prime numbers.

- \(d = 1 \). For \(k = 0 \) we get the condition \(1 > p^n > 1 \), which has no solution, hence \(K[X,Y,Z]/(X,Y,Z) \cong K \) has the weak Lefschetz property in every characteristic, which is clear anyway.
- \(d = 3 \). The condition for \(k = 0 \) is \(8/2 = 4 > p^n > 10/4 = 2.5 \), hence the only exceptional prime number is 3 (no larger \(k \) have to be considered).
- \(d = 5 \). For \(k = 0 \) we get \(7 > p^n > 4 \), which yields the only exceptional prime 5 (no larger \(k \)). The prime number 7 fulfills \(7 = \frac{14}{2} = \frac{3d - 1}{2} \), which corresponds to the second case in the proof of Lemma 2.5. For \(p = 7 \) the Han number is \(s = -1 \), but the syzygy gap is 1 and not 3.
For $k = 0$ we get $10 > p^n > 5.5$, which yields the exceptional primes 2, 3, 7 (no larger k).

For $k = 0$ we get the exceptional primes 2, 3 and 11 (no larger k).

For $k = 0$ we get the condition $46 > p^n > 23.5$, which yields the exceptional primes 2, 3, 5, 29, 31, 37, 41, 43. For $k = 1$ we get the condition $\frac{92}{7} > p^n > \frac{44}{10}$, which yields also $p = 11$.

References

1. H. Brenner, Looking out for stable syzygy bundles, Adv. Math. 219 (2008), no. 2, 401–427.
2. H. Brenner and A. Kaid, Syzygy bundles on \mathbb{P}^2 and the weak Lefschetz property, Illinois J. Math. 51 (2007), no. 4, 1299–1308.
3. L. Ein, Stable vector bundles on projective spaces in char p, Math. Ann. 254 (1980), 53–72.
4. C. Han, The Hilbert-Kunz function of a diagonal hypersurface, PhD thesis, Brandeis University, 1991.
5. T. Harima, J. C. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian k-algebras, J. Algebra 262 (2003), 99–126.
6. D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Viehweg, 1997.
7. J. Li and F. Zanello, Monomial complete intersections, the weak Lefschetz property and plane partitions, Preprint (2010), arXiv:1002.4400.
8. J. Migliore, R. M. Miró-Roig, and U. Nagel, Monomial ideals, almost complete intersections and the weak Lefschetz property, Preprint (2008), to appear in Trans. Amer. Math. Soc., arXiv:0811.1023.
9. P. Monsky, Mason’s theorem and syzygy gaps, J. Algebra 303 (2006), no. 1, 373–381.

Universität Osnabrück, Fachbereich 6: Mathematik/Informatik, Albrechtstr. 28a, 49069 Osnabrück, Germany

E-mail address: hbrenner@uni-osnabrueck.de and akaid@uni-osnabrueck.de