Effects of intensified or conventional milk feeding on pre-weaning health and feeding behavior of Holstein female calves around weaning

Masoud Alimirzaei1, Younes Ali Alijoo1*, Mehdi Dehghan Banadaky2, Mehdi Eslamizad2

1 Department of Animal Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran; 2 Department of Animal Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract

Health, inflammatory, and stress indices as well as feeding behavior around weaning were measured for Holstein female calves fed intensified milk or conventionally during the pre-weaning period. Calves (n = 48) were randomly assigned to one of two experimental treatments including a conventional (CF) or an intensified feeding (IF) groups. In CF group, calves (n = 24) received 0.52 kg of dry matter (DM) per day from pasteurized whole milk (23.00% crude protein (CP) and 27.00% fat) until day 50 of age. In IF group, calves (n = 24) fed 0.97 kg of DM per day on average for the first three weeks, and then, milk allowance decreased gradually to reach 0.52 kg DM per day and continued until day 50. All calves were gradually weaned from day 51 to 56. Blood samples were taken on days 14, 28, and 57 at 06:30 AM for serum amyloid A (SAA), cortisol, alanine aminotransferase (ALT), and iron analyses. Conventionally fed calves had more days with fever during the pre-weaning period. Blood SAA and cortisol levels were higher in CF calves on day 14. However, SAA levels were higher for IF calves on day 57. Intensified milk-fed calves spent more time for standing than CF calves. A trend to be significant was observed for non-nutritive oral behavior in IF calves. In summary, dairy calf health can be improved by intensified milk feeding during the pre-weaning period; however, this method has the potential to reduce calves welfare around weaning transition.

Introduction

Dairy calves are susceptible to many infectious diseases during the early weeks of age, especially the first two weeks. According to the National Animal Health Monitoring System, calf mortality in the pre-weaning period is still high in many dairy farms (approximately 7.50 to 10.00%).1 It is believed that future milk production and herd life may be affected by calf health during the early weeks of age. It has been shown that early life dullness can be a risk factor of calf mortality after 90 days of age and shorter herd life.2 Feeding and other management practices in dairy farms are considered as main factors influencing calves health and well-being. It seems that a higher rate of mortality in the critical pre-weaning period is mostly related to calves poor welfare.3 Poor nutrition or under-nutrition accompanied by disease, weaning, and transportation, is one of the most important stress factors for dairy calves.4 Calves respond to inflammation and stressors by an increased level of some acute-phase proteins such as serum amyloid A (SAA). These proteins are also recognized as animal health biomarkers and used for early diagnosis of diseases.4 In addition to health status, expressing natural behavior in relatively natural life is defined as an index of animal welfare.5 Rearing dairy calves in intensive farming systems had a significant effect on the expression of calves behavior due to separating from dams and raising according to farm management practices.5 Conventionally, calves are fed about 10.00% of body weight which is equal to 4.00 - 5.00 kg of milk or milk replacer per day. This system is based on solid feed intake and early rumen development and has been used for many years by producers.6 However, during the last two decades, this feeding method has been challenged by several studies.7-9 Studies on milk feeding programs have shown that conventional feeding methods can reduce calves weight gain10 and

*Correspondence:
Younes Ali Alijoo, PhD
Department of Animal Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
E-mail: y.alijoo@urmia.ac.ir

© 2020 Urmia University. All rights reserved.
welfare as well. Other authors have observed abnormal behavior in restricted milk or conventionally fed calves. Opponent system called an intensified milk feeding program provides as much as twice more nutrients rather than a conventional feeding method, supporting greater weight gain and well-being of calves. Soberon et al. have reported that there is a positive relationship between pre-weaning average daily gain (ADG) and heifer's subsequent milk production. They have announced that 25.00% of the variation in the first lactation can be explained by ADG amounts in the pre-weaning period. Besides many advantages, intensified feeding programs reduce calves starter intake, causing low rumen development. As mentioned above, improved growth performance of calves in different feeding programs has been reported in many studies; however, the effect of early milk feeding methods on calf's health is under debate. On the other hand, a few studies have investigated the feeding behavior of calves around the weaning transition.

The first objective of this study was to evaluate if the early life milk feeding amounts influence health indices of female calves during the pre-weaning period and if the feeding behavior of calves around weaning can be affected by early feeding methods.

Materials and Methods

Calves, housing, and treatments. This study was conducted on a commercial dairy farm (Behroozi Dairy Farm, Tehran, Iran) from May to September 2016. All experimental procedures and guidelines involving animals were approved by the animal experiment committee at University of Tehran, Karaj, Iran. Forty-eight Holstein female calves were randomly assigned to either an intensified (IF, n = 24; 38.20 kg of initial weight) or a conventional feeding (CF, n = 24; 39.50 kg of initial weight) patterns. After birth, calves were separated from their dams within 1 hr and transported to individual pens (1.40 × 2.35 m) which were evenly distributed in a barn. There was an opening in front of pens that calves would be able to access water and starter buckets. All calves fed 3.00 or 3.50 L of high-quality colostrum, measured by a colostrometer (Kruuse, Langeskov, Denmark), according to their appetite at the first meal and received 2.00 L 12 hr later. Pasteurized whole milk [23.00% crude protein (CP) and 27.00% fat] was fed to each group three times a day at 07:00, 15:00, and 23:00 in equal amounts. In CF group, calves fed 0.52 kg of dry matter (DM) per day from pasteurized whole milk (about 10.00% of body weight) until the beginning of the weaning process at day 50 of age. Intensified milk-fed calves received 0.91, 0.98, and 1.02 kg of DM per day for the first, second, and third weeks, respectively. Therefore, they fed 0.97 kg of DM per day on average in the first three weeks (about 20.00% of body weight). Milk was offered according to each calf's appetite, refusals were recorded daily and milk consumption of calves was calculated. Milk allowance decreased gradually to reach 0.52 kg of DM per day like CF calves and continued until day 50. Allocated milk volume was gradually decreased to wean calves on day 56. All calves had free access to clean water and starter throughout the study. Starter refusals were recorded and renewed every day after milk feeding at 07:30 AM. Daily starter allocation increased (about 50.00%) when the refusals were less than 20.00% of the offered amount. Ingredients and chemical composition of starter are presented in Table 1. Chopped alfalfa hay (10.00%) was included in the starter on day 42 of age and mixed starter and hay were fed to calves for the rest of the study.

Table 1. Ingredients and chemical composition of the starter diet on a dry matter (DM) basis.

Ingredient	Percentage
Corn grain, ground	47.24
Barley grain	10.00
Soybean meal	26.00
Fish meal	2.00
Wheat bran	3.00
Beet pulp	6.00
Dicalcium phosphate (Ca 23.00%+P 18.00%)	0.50
Limestone	1.10
Mineral vitamin mix*	1.10
Sodium bicarbonate	1.10
Salt	0.50
Zeolite	1.10

Chemical composition

Dry matter	89.09
Crude protein	20.31
Ether extract	3.02
Neutral detergent fiber	14.76
Acid detergent fiber	6.97
Not fibrous carbohydrate	52.55
Calcium	0.95
Phosphorus	0.57
Gross energy, Mcal kg-1 of DM	3.60

* Mineral vitamin mix composition: 10,000,000 IU kg-1 of vitamin A; 2,000,000 IU kg-1 of vitamin D3; 6,000 IU kg-1 of vitamin E; 0.50 g kg-1 of vitamin B1; 0.50 g kg-1 of vitamin B2; 48.00 g kg-1 of Mg; 35.00 g kg-1 of Zn; 30.00 g kg-1 of Mn; 23.00 g kg-1 of Fe; 10.00 g kg-1 of Cu; 0.60 g kg-1 of I; 0.40 g kg-1 of Co; 0.10 g kg-1 of Se.

Measurements and analysis. Milk and starter intakes of each calf were measured daily. Starter samples were taken at different times (at beginning, middle, and end of study), mixed and one sample (0.10 kg) was sent to a laboratory for subsequent analysis. Dry matter, CP, and ether extract were analyzed according to the Association of Official Analytical Chemists method at the Nutritional Laboratory of Urmia University, Urmia, Iran. Neutral detergent fiber and acid detergent fiber were measured by ANkom system based on Van Soest et al. Blood samples were taken through the jugular vein and drawn in 6.00 mL evacuated tubes without any additives on day 14, 28, and 56. Tubes were located askew and allowed to clot. Samples were approved by the animal experiment committee at University of Tehran, Karaj, Iran. Forty-eight Holstein female calves were randomly assigned to either an intensified (IF, n = 24; 38.20 kg of initial weight) or a conventional feeding (CF, n = 24; 39.50 kg of initial weight) patterns. After birth, calves were separated from their dams within 1 hr and transported to individual pens (1.40 × 2.35 m) which were evenly distributed in a barn. There was an opening in front of pens that calves would be able to access water and starter buckets. All calves fed 3.00 or 3.50 L of high-quality colostrum, measured by a colostrometer (Kruuse, Langeskov, Denmark), according to their appetite at the first meal and received 2.00 L 12 hr later. Pasteurized whole milk [23.00% crude protein (CP) and 27.00% fat] was fed to each group three times a day at 07:00, 15:00, and 23:00 in equal amounts. In CF group, calves fed 0.52 kg of dry matter (DM) per day from pasteurized whole milk (about 10.00% of body weight) until the beginning of the weaning process at day 50 of age. Intensified milk-fed calves received 0.91, 0.98, and 1.02 kg of DM per day for the first, second, and third weeks, respectively. Therefore, they fed 0.97 kg of DM per day on average in the first three weeks (about 20.00% of body weight). Milk was offered according to each calf's appetite, refusals were recorded daily and milk consumption of calves was calculated. Milk allowance decreased gradually to reach 0.52 kg of DM per day like CF calves and continued until day 50. Allocated milk volume was gradually decreased to wean calves on day 56. All calves had free access to clean water and starter throughout the study. Starter refusals were recorded and renewed every day after milk feeding at 07:30 AM. Daily starter allocation increased (about 50.00%) when the refusals were less than 20.00% of the offered amount. Ingredients and chemical composition of starter are presented in Table 1. Chopped alfalfa hay (10.00%) was included in the starter on day 42 of age and mixed starter and hay were fed to calves for the rest of the study.

Table 1. Ingredients and chemical composition of the starter diet on a dry matter (DM) basis.

Ingredient	Percentage
Corn grain, ground	47.24
Barley grain	10.00
Soybean meal	26.00
Fish meal	2.00
Wheat bran	3.00
Beet pulp	6.00
Dicalcium phosphate (Ca 23.00%+P 18.00%)	0.50
Limestone	1.10
Mineral vitamin mix*	1.10
Sodium bicarbonate	1.10
Salt	0.50
Zeolite	1.10

Chemical composition

Dry matter	89.09
Crude protein	20.31
Ether extract	3.02
Neutral detergent fiber	14.76
Acid detergent fiber	6.97
Not fibrous carbohydrate	52.55
Calcium	0.95
Phosphorus	0.57
Gross energy, Mcal kg-1 of DM	3.60

* Mineral vitamin mix composition: 10,000,000 IU kg-1 of vitamin A; 2,000,000 IU kg-1 of vitamin D3; 6,000 IU kg-1 of vitamin E; 0.50 g kg-1 of vitamin B1; 0.50 g kg-1 of vitamin B2; 48.00 g kg-1 of Mg; 35.00 g kg-1 of Zn; 30.00 g kg-1 of Mn; 23.00 g kg-1 of Fe; 10.00 g kg-1 of Cu; 0.60 g kg-1 of I; 0.40 g kg-1 of Co; 0.10 g kg-1 of Se.

Measurements and analysis. Milk and starter intakes of each calf were measured daily. Starter samples were taken at different times (at beginning, middle, and end of study), mixed and one sample (0.10 kg) was sent to a laboratory for subsequent analysis. Dry matter, CP, and ether extract were analyzed according to the Association of Official Analytical Chemists method at the Nutritional Laboratory of Urmia University, Urmia, Iran. Neutral detergent fiber and acid detergent fiber were measured by ANkom system based on Van Soest et al. Blood samples were taken through the jugular vein and drawn in 6.00 mL evacuated tubes without any additives on day 14, 28, and 56. Tubes were located askew and allowed to clot. Samples...
were centrifuged at 3,000 g for 15 min and partitioned serum was collected by sterile samplers and stored at −20.00 °C for the next analysis. Serum amyloid A was measured using an enzyme-linked immunosorbent assay method (Bioassay Technology Laboratory, Shanghai, China) at the Nutritional Laboratory of Urmia University, Urmia, Iran. Serum cortisol concentration was measured using Immulite (Siemens Healthcare Diagnostics, Deerfield, USA). Alanine aminotransferase (ALT) and serum iron (Fe) concentrations were measured by an autoanalyzer (model 912; Hitachi, Tokyo, Japan). The fecal score for fluidity was determined by the procedure of Larson et al.16 as follows: 1: Normal, 2: Soft, 3: Runny, and 4: Watery. Scouring was conducted every morning before milk feeding at 06:30 AM. Other health indices such as days with diarrhea, days treated, days with fever, and rectal temperature at weaning were also recorded daily.

Feeding behavior. Feeding behavior of calves was measured using the method described by Castells et al.17 Eight calves in each group were selected randomly to evaluate feeding behavior. Direct observation was used to record the duration of each behavior (lying without chewing, starter eating, ruminating, standing, and non-nutritive oral behavior). Observations were divided into two periods including pre- and post-weaning four times. Times included two weeks before weaning, a week before weaning, a week after weaning, and two weeks after weaning. During the pre-weaning period, behaviors were recorded twice a week immediately after morning milk feeding and starter offering for 1 hr. For the post-weaning period, behaviors were also recorded twice a week immediately after a starter offering for 1 hr. Observed behaviors at the beginning of each min were assumed for a total of one min. Therefore, each calf was evaluated 8 hr for each feeding behavior.

Statistical analysis. All data recorded throughout the time analyzed using a completely randomized design with repeated measurement method of the MIXED procedure of SAS (version 9.20; SAS Institute Inc., Cary, USA). The effects of treatments (feeding method), time and interaction of treatment with time were included in the model. Treatment and time were used as fixed effects and the individual calf was considered as a random effect. For feeding behavior, the effects of the period (pre-and post-weaning), time (weeks before and after weaning), and individual calf were included in the model. Least square means (± SEM) were reported and differences between treatments were considered at p < 0.05 and tendency at p ≤ 0.1 by Tukey test.

Results

Milk DM intake. Data are belonging to early pre-weaning (EPW; day 1 to 21), late pre-weaning (LPW; day 22 to 56), and overall pre-weaning (OPW; day 1 to 56). Milk DM intake increased as calves aged and intensified milk-fed calves consumed more DM from milk than CF ones during the first three weeks and EPW (p < 0.01), LPW (p = 0.02), and OPW (p < 0.01) periods (Table 2).

Health. Fecal fluidity was not affected by the milk feeding method during the OPW period; but IF calves numerically had a higher fecal fluidity score. The milk feeding method also had no significant effect on the incidence of diarrhea. Conventionally fed calves significantly had higher days with fever (p < 0.05) than IF calves. A tendency to be significant was observed in the case of days treated for CF calves (p = 0.06). The rectal temperature at weaning was numerically higher for CF calves and a tendency was observed (p = 0.06; Table 3). Serum amyloid A was measured as one of the most important components of inflammatory reactions. A treatment × time interaction was detected for SAA. Conventionally fed calves showed higher levels of SAA than IF calves on day 14 (p < 0.05), whereas, the concentration of SAA was higher in IF calves on day 57 (p < 0.01). Serum cortisol was considered as a marker of stress status. Cortisol level increased with calf age (p < 0.05). Conventionally fed calves had higher serum cortisol level on day 14 (p < 0.05) as observed previously.

Intake1	Feeding pattern2	SEM	Treatment	Time	Treatment × Time	
Milk dry matter (kg per day)	Intensified	Conventional				
Week 1	0.91	0.52	0.01	<0.01	<0.01	<0.01
Week 2	0.98	0.52	0.01	<0.01	<0.01	<0.01
Week 3	1.02	0.52	0.01	<0.01	<0.01	<0.01
Day 1 to 21	0.97	0.52	0.009	<0.01	<0.01	<0.01
Day 22 to 56	0.50	0.48	0.009	<0.02	<0.01	0.01
Pre-weaning	0.68	0.49	0.009	<0.01	<0.01	<0.01

1 Periods include Week 1: From 1 to 7 days of age; Week 2: From 8 to 14 days of age; Week 3: From 15 to 21 days of age; Pre-weaning: From 1 to 56 days of age.
2 Different patterns of nutrition were used in the pre-weaning period. In the intensified feeding, the calves (n = 24) were fed whole milk at the rate of 20.00% of body weight (BW) for the first three weeks of age. After that, milk allowance reduced gradually to 10.00% of BW and continued until day 50. Then, calves were weaned gradually between 51 and 56 days of age. In conventional feeding, the calves were fed at 10.00% of BW from the beginning of the experiment until day 50. Calves weaning procedure was similar to the intensified feeding group.
for SAA. A similar serum ALT concentration was observed for both groups \((p > 0.05) \) and its level was increased as calves aged \((p < 0.01) \). There was a treatment \times \) time interaction for Fe concentration. Serum Fe level was higher for CF calves on day 14 \((p < 0.05; \) Table 4).

Table 3. Health indices of Holstein female calves fed intensified milk or conventionally during the pre-weaning period.

Items	Feeding pattern*	Intensified	Conventional	SEM	\(p \)-value
Fecal fluidity score	1.20	1.14	0.03	0.29	
Days with diarrhea	1.47	1.14	0.35	0.51	
Days treated	2.09	3.57	0.55	0.06	
Days with fever	0.38	0.71	0.10	0.03	
Rectal temperature	39.00	39.30	0.12	0.06	

* Different patterns of nutrition were used in the pre-weaning period. In the Intensified feeding, the calves \((n = 24) \) were fed whole milk at the rate of 20.00% of body weight (BW) for the first three weeks of age. After that, milk allowance reduced gradually to 10.00% of BW and continued until day 50. Then, calves were weaned gradually between 51 and 56 days of age. In conventional feeding, the calves were fed at 10.00% of BW from the beginning of the experiment until day 50. Calves weaning procedure was similar to intensified feeding group.

Feeding behavior: The duration of each feeding behavior (min) and an average of a total of 8 hr observation are presented in Table 5. The effects of the period (pre-and post-weaning) and time (weeks before and after weaning) were also reported. Duration of lying without chewing decreased from pre-weaning to post-weaning period \((p < 0.01) \); however, it was not affected by treatments \((p < 0.05) \). Starter eating time increased as calves aged \((p < 0.01) \), but there was not a significant difference between treatments on average of 8 hr observation time \((p < 0.05) \). Intensified milk-fed calves spent more time for standing than CF calves during 8 hr observation time around weaning \((p < 0.05) \). A tendency to be significant was observed for non-nutritive oral behavior \((p < 0.05) \). Intensified milk-fed calves numerically spent more time on non-nutritive oral behavior than those fed conventionally during the pre-weaning period.

Table 4. Serum amyloid A (SAA), cortisol, alanine aminotransferase (ALT), and iron concentrations of Holstein female calves fed intensified (IF) milk or conventionally (CF) during the pre-weaning period.

Discussion

Dairy calves can safely consume a high volume of milk during the early weeks of age. Greater DM intake from milk resulted in a greater weight gain in IF calves during EPW and OPW periods (unpublished data). Providing high amounts of milk during the early weeks of age did not affect the fecal fluidity score of calves in the current study. The effects of feeding methods on the health of calves have been investigated by several studies; however, the results are controversial. In agreement with this study, some studies have reported that increasing milk feeding level has no effect on fecal fluidity score, but in some cases, the increased fecal score was observed following the use of intensive milk feeding programs. This inconsistency in the results can be related to differences in management practices and environmental conditions. These factors likely play an important role in the fecal score and incidence of diarrhea rather than milk feeding levels. On the other hand, increased fecal scores in some studies may be due to a simple response to supply more nutrients. Conventionally fed calves had greater days with fever and days treated than those fed intensified milk \((0.71 \) versus 0.38). It is well known that feeding calves below maintenance can influence the immune system and predispose calves to infectious diseases. In this case, several studies suggested that inadequate metabolizable energy intake can impair immune function. Godden et al. have indicated that pasteurized whole milk-fed calves have lower days treated and mortality rather than milk replacer-fed calves. In this study, loss of body weight was observed in CF calves and further confirmed that feeding limited amounts of milk does not cover even the maintenance requirements, therefore, this situation can impair immune function. Other researchers have reported that lower milk consumption during the early weeks of age can reduce calves growth rate and predispose them to illness. Serum amyloid A, an acute-phase protein, as a biomarker of inflammation and stress is used to early
diagnosis of diseases in animals. For example, SAA is particularly used to early diagnosis of mastitis in cattle. Researchers have found a higher concentration of SAA in calves with diarrhea. Increased level of SAA in CF calves on day 14 indicated that they are more susceptible to diseases in the critical first two weeks of life. In another study comparing two limited or IF systems, higher levels of haptoglobin, an acute-phase protein, were observed in limited fed calves. On the other hand, the SAA level was higher in IF calves at weaning, indicating more weaning stress. Also, we observed serum cortisol levels to be higher in CF calves than IF ones further indicating more stress experienced by conventionally fed calves on day 14 and 28. Presumably, under-nutrition or nutritional stress is responsible for elevated cortisol levels in CF calves.

Higher blood concentration of some enzymes such as ALT can be a sign of gastrointestinal or liver inflammation being reported in calves with enteritis. Similar levels of ATL between treatments in the current study indicate that feeding a high volume of milk to dairy calves does not affect calves gastrointestinal health. Serum Fe level was lower in IF calves than CF ones on day 14 when the milk intake was at the highest level. Iron is transported by a protein called transferrin around the body to provide it for growing cells. However, to avoid bacterial growth, serum Fe is stored in liver as ferritin during the acute phase of inflammation. Lipopolysaccharide challenge and following inflammation can alter serum Fe level which can be alleviated by supplementing omega-3 fatty acids.

In this study, decreased concentration of Fe in serum of IF calves on day 14 may not be related to any inflammatory reaction in these calves because of lower SAA and ALT concentrations and it can be due to lower Fe intake from milk during the time that milk consumption is in the highest level, while starter intake is in the lowest level. Results of our study were in line with others indicating lower blood iron concentration in neonatal calves. On the other hand, this iron deficiency may be more severe in IF calves than CF ones on day 14 because of consuming more milk which is naturally deficient in iron content.

Table 5. Feeding behavior of Holstein female calves around weaning.

Behavior (min)	Feeding pattern1	SEM	Treatment	Period2	Time3	
Lying without chewing						
Two weeks before weaning	70.60	59.90	10.50	0.90	< 0.01	0.33
One week before weaning	51.80	69.90	10.50	0.60	< 0.01	0.33
Week after weaning	37.60	50.90	10.50	0.90	< 0.01	0.33
Two weeks after weaning	32.80	44.40	10.50	0.90	< 0.01	0.33
Average of 8 hr	48.20	56.30	5.50	0.10	-	-
Starter eating						
Two weeks before weaning	11.00	17.25	4.50	0.80	< 0.01	< 0.01
One week before weaning	27.00	20.25	4.50	0.80	< 0.01	< 0.01
One week after weaning	42.20	47.75	4.50	0.90	< 0.01	< 0.01
Two weeks after weaning	54.20	49.50	4.50	0.90	< 0.01	< 0.01
Average of 8 hr	33.10	33.60	2.30	0.90	-	-
Ruminating						
Two weeks before weaning	13.20	12.58	7.40	1.00	0.17	0.67
One week before weaning	19.00	19.00	7.40	1.00	0.17	0.67
One week after weaning	12.20	12.30	7.40	1.00	0.17	0.67
Two weeks after weaning	9.20	9.30	7.40	1.00	0.17	0.67
Average of 8 hr	13.40	13.30	3.80	0.90	-	-
Non-nutritive behavior						
Two weeks before weaning	8.40	10.20	3.80	0.90	0.09	0.84
One week before weaning	11.40	4.40	3.80	0.60	0.09	0.84
One week after weaning	7.00	2.90	3.80	0.90	0.09	0.84
Two weeks after weaning	8.00	3.20	3.80	0.90	0.09	0.84
Average of 8 hr	8.70	5.20	2.10	0.90	-	-
Standing without chewing						
Two weeks before weaning	17.20	13.33	4.70	0.90	0.62	0.48
One week before weaning	14.80	13.08	4.70	0.90	0.62	0.48
One week after weaning	19.08	9.08	4.70	0.63	0.62	0.48
Two weeks after weaning	15.80	9.08	4.70	1.10	0.62	0.48
Average of 8 hr	19.90	11.15	2.40	0.02	-	-

1Different feeding methods were used in the pre-weaning period. In the intensified feeding method, whole milk was fed to calves (n = 24) at the rate of 20.00% of body weight (BW) for the first three weeks of age. After that, milk allowance was reduced gradually to 10.00% of BW and continued until day 50. Then, calves were weaned gradually between day 51 and 56 of age. In conventional feeding, the calves were fed at 10.00% of BW from the beginning of the experiment until day 50. Calves weaning procedure was similar to intensified feeding group. 2Period: Pre- and post-weaning. 3Time: Weeks related to weaning.
In the current study, conventionally fed calves consumed more DM from starter feed during pre-weaning period. Increased non-nutritive oral behavior in IF calves in this study may be attributed to lower energy intake during transition from milk to solid feed. Spending time for standing behavior in IF calves was also longer than CF ones. Increased standing behavior around weaning can be related to hunger and reduced welfare in IF calves. Early solid feed intake is crucial for rapid rumen development and smooth transition from milk to solid feed intake after weaning. In the present study, impaired rumen development in IF calves due to lower starter intake in EPW and OPW periods may be effective in the expression of hunger behaviors such as standing, hungry and exhibiting subsequent behaviors may be related to delayed rumen development and lower nutrients digestibility in IF calves. With regard to the results of this study and as mentioned by other authors, it is suggested that the weaning time of intensified milk fed calves should be reconsidered.

Dairy calves not only ingest high amounts of milk safely but also they are less likely to become ill in the first week of age. However, concerning some feeding behaviors of calves and serum SAA levels, it seems that the intensified feeding method has the potential to reduce calves welfare during weaning transition.

Acknowledgments

The authors thank Behroozi Dairy Farm (Tehran, Iran) for providing the facilities and calves.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. USDA. 2010. Dairy 2007, Heifer Calf Health and Management Practices on U.S. Dairy Operations, 2007 USDA:APHIS:VS, CEAH. Fort Collins, CO #550.01102.
2. Curtis CR, White ME, Erb HN. Effects of calfhood morbidity on long-term survival in New York Holstein herds. Prev Vet Med 1989;7(3):173-186.
3. von Keyserlingk MAG, Rushen J, de Passillé AM, et al. Invited review: The welfare of dairy cattle-Key concepts and the role of science. J Dairy Sci 2009; 92(9):4101-4111.
4. Yun CH, Wynn P, Ha JK. Stress, acute phase proteins and immune modulation in calves. Anim Prod Sci 2014;54:1561-1568.

5. de Passillé AM. Sucking motivation and related problems in calves. Appl Anim Behav Sci 2001;72(3):175-187.

6. Kertz AF, Prewitt LR, Everett JP, Jr. An early weaning calf program: Summarization and review. J Dairy Sci 1979;62(11):1835-1843.

7. Jasper J, Weary DM. Effects of ad libitum milk intake on dairy calves. J Dairy Sci 2002;85(11):3054-3058.

8. Khan MA, Lee HJ, Lee WS, et al. Pre- and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. J Dairy Sci 2007;90(2):876-885.

9. Soberon F, Raffrenato E, Everett RW, et al. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. J Dairy Sci 2012;95(2):783-793.

10. Hammon HM, Schiessler G, Nussbaum A, et al. Feed intake patterns, growth performance, and metabolic and endocrine traits in calves fed unlimited amounts of colostrum and milk by automate, starting in the neonatal period. J Dairy Sci 2002;85(12):3352-3362.

11. Rushen J, de Passillé AM. The motivation of non-nutritive sucking in calves, Bos taurus. Anim Behav 1995;49:1503-1510.

12. Drackley JK. Calf nutrition from birth to breeding. Vet Clin North Am Food Anim Pract 2008;24(1):55-86.

13. Hill TM, Bateman 2nd HG, Aldrich JM, et al. Effect of milk replacer program on digestion of nutrients in dairy calves. J Dairy Sci 2010;93(3):1105-1115.

14. Association of Official Analytical Chemists (AOAC). Official methods of analysis 15th ed. Arlington, USA: AOAC1990.

15. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74(10):3583-3597.

16. Larson LL, Owen FG, Albright JL, et al. Guidelines toward more uniformity in measuring and reporting calf experimental data J Dairy Sci 1977;60:989-991.

17. Castells Li, Bach A, Araujo G, et al. Effect of different forage sources on performance and feeding behavior of Holstein calves. J Dairy Sci 2012;95(1):286-293.

18. Almirizaei M. Investigating different patterns of nutrition during pre and post-weaning period on inflammatory response, fecal bacterial count, growth performance and feeding behavior of Holstein female calves. PhD Thesis. 2016; Urmia University, Urmia, Iran.

19. Quigley JD, Wolfe TA, Elsaesser TH. Effects of additional milk replacer feeding on calf health, growth, and selected blood metabolites in calves. J Dairy Sci 2006;89(1):207-216.

20. Khan MA, Weary DM, von Keyserlingk MAG. Invited review: effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J Dairy Sci 2011;94(3):1071-1081.

21. Godden SM, Fetrow JP, Feitrag JM, et al. Economic analysis of feeding pasteurized nonsaleable milk versus conventional milk replacer to dairy calves. J Am Vet Med Assoc 2005;226(9):1547-1554.

22. de Passillé AM, Rabeyrin M, Rushen J. Associations between milk intake and activity in the first days of a calf’s life and later growth and health. Appl Anim Behav Sci 2016;175:2-7.

23. Pedersen LH, Aalbaek B, Røntved CM, et al. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis. J Comp Pathol 2003;128(2-3):156-164.

24. Tóthová C, Nagy O, Seidel H, et al. Acute phase proteins in relation to various inflammatory diseases of calves. Comp Clin Pathol 2012;21:1037-1042.

25. Schäff CT, Gruse J, Maciej J, et al. Effects of feeding milk replacer Ad Libitum or in restricted amounts for the first five weeks of life on the growth, metabolic adaptation, and immune status of newborn calves. PLOS ONE 2016;11(12):e0168974. doi: 10.1371/journal.pone.0168974.

26. Griebel PJ, Schonhunderwoerd M, Babiuk LA. Ontogeny of the immune response: effect of protein energy malnutrition in neonatal calves. Can J Vet Res 1987;51(4):428-435.

27. Kabu M, Elitok B, Kucukkurt I. Detection of serum amyloid-A concentration in the calf clinically diagnosed with pneumonia, enteritis and pneumoenteritis. Cienc Rural 2016;46(2):293-299.

28. Huebers HA, Finch CA. The physiology of transferrin and transferrin receptors. Physiol Rev 1987;67(2):520-582.

29. Tothova C, Nagy O, Kovac. Acute phase proteins and their use in the diagnosis of diseases in ruminants: a review. Vet Med (Praha) 2014;59(4):163-180.

30. Ballou MA, Cruz GD, Pittroff W, et al. Modifying the acute phase response of Jersey calves by supplementing milk replacer with omega-3 fatty acids from fish oil. J Dairy Sci 2008;91(9):3478-3487.

31. Hibbs J, Conrad HR, Vandersall JL, et al. Occurrence of iron deficiency anemia in dairy calves at birth and its alleviation by iron dextran injection. J Dairy Sci 1963;46:1118-1124.

32. Chua B, Coenen E, van Delen J, et al. Effects of pair versus individual housing on behavior and performance of dairy calves. J Dairy Sci 2002;85(2):360-364.

33. Camiloti TV, Fregonesi JA, von Keyserlingk MA, et al. Short communication: Effects of bedding quality on the lying behavior of dairy calves. J Dairy Sci 2012; 95(6):3380-3383.

34. Rechtschaffen A. Current perspectives on the function of sleep. Perspect Biol Med 1998;41(3):359-390.
35. Siegel JM. Clues to the functions of mammalian sleep. Nature 2005;437(7063):1264-1271.
36. Nielsen PP, Jensen MB, Lidfors L. Milk allowance and weaning method affect the use of a computer controlled milk feeder and the development of cross-sucking in dairy calves. Appl Anim Behav Sci 2008;109(2-4):223-237.
37. Miller-Cushon EK, Bergeron R, Leslie KE, et al. Effect of milk feeding level on development of feeding behavior in dairy calves. J Dairy Sci 2013;96(1):551-564.
38. Baldwin RLV, McLeod KR, Klotz JL, et al. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J Dairy Sci 2004;87. doi:10.3168/JDS.S0022-0302(04)70061-2.
39. Swanson EW, Harris Jr JD. Development of rumination in the young calf. J Dairy Sci 1958;41:1768-1776.
40. Leruste H, Brscic M, Cozzi G, et al. Prevalence and potential influencing factors of non-nutritive oral behaviors of veal calves on commercial farms. J Dairy Sci 2014;97(11):7021-7030.
41. Miller-Cushon EK, Bergeron R, Leslie KE, et al. Effect of early exposure to different feed presentations on feed sorting of dairy calves. J Dairy Sci 2013;96:4624-4633.
42. Borderas TF, de Passillé AMB, Rushen J. Feeding behavior of calves fed small or large amounts of milk. J Dairy Sci 2009;92(6):2843-2852.
43. Hulbert LE, Moisá SJ. Stress, immunity, and the management of calves. J Dairy Sci 2016;99(4):3199-3216.
44. De Paula Vieira A, Guesdon V, de Passillé AM, et al. Behavioral indicators of hunger in dairy calves. Appl Anim Behav Sci 2008;109(2-4):180-189.
45. Terré M, Devant M, Bach A. Effect of level of milk replacer fed to Holstein calves on performance during the preweaning period and pellet digestibility at weaning. Livest Sci 2007;110(1):82-88.