Recent Advances in Functionalization of Cotton Fabrics with Nanotechnology

Tarek M. Abou Elmaaty 1,* , Hanan Elsisi 1, Ghada Elsayad 2, Hagar Elhadad 2 and Maria Rosaria Plutino 3

1 Department of Textile Printing, Dyeing & Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt
2 Department of Spinning, Weaving and Knitting, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt
3 Stituto per lo Studio dei Materiali Nano strutturati, ISMN—CNR, Palermo, c/o Department of ChiBio FarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
* Correspondence: tasaid@du.edu.eg

Abstract: Nowadays, consumers understand that upgrading their traditional clothing can improve their lives. In a garment fabric, comfort and functional properties are the most important features that a wearer looks for. A variety of textile technologies are being developed to meet the needs of customers. In recent years, nanotechnology has become one of the most important areas of research. Nanotechnology’s unique and useful characteristics have led to its rapid expansion in the textile industry. In the production of high-performance textiles, various finishing, coating, and manufacturing techniques are used to produce fibers or fabrics with small nano sizes. Humans have been utilizing cotton for thousands of years, and it accounts for around 34% of all fiber production worldwide. The clothing industry, home textile industry, and healthcare industry all use it extensively. Nanotechnology can enhance cotton fabrics’ properties, including antibacterial activity, self-cleaning, UV protection, etc. Research in the field of functional cotton fabrics with nanotechnology is presented in the present study.

Keywords: multifunctional cotton fabrics; nanotechnology; metal nanoparticles

1. Introduction

Textiles are commonly used in industries and households. The surface modification of textiles to impart multiple functions has recently gained a lot of attention. Researchers have successfully functionalized textiles for antibacterial, self-cleaning, flame retardant, UV protection, and enhanced performance properties [1]. Therefore, high-tech materials and fabric constructions will improve wearer comfort while incorporating distinctive features [2]. Among natural fibers, cotton is the most popular because of its softness, breathability, safety, low cost, regeneration performance, strength, elasticity, biodegradability, and hydrophilicity [3,4]. Cotton fabric does, however, have some disadvantages, including the possibility of microbial attacks on its fibrous structure, the ease with which creases form, and the loss of mechanical strength [5]. Microorganisms can easily grow and propagate on cotton fabrics because they are able to store humidity and have a high specific surface area [6]. A variety of fields, including health and medicine, have benefited from cotton fibers with antimicrobial properties [7]. Hygienic, functional, durable, and comfortable cotton fabrics are expected in modern times. Utilizing nanotechnology in cotton cloth is a significant challenge in achieving these characteristics and advancements [8]. Nanoparticles have been incorporated into textile finishing stages to address the inherent problems while also imparting functional properties to textile materials [9–15].

In a variety of applications, nanotechnology is widely regarded as having enormous potential around the world [16]. The textile industry has discovered nanotechnology,
resulting in a new area of textile finishing called “Nano finishing”. Nano-sized particles have many desirable properties without adding a lot of weight, thickness, or stiffness to fabrics [17]. The first company to use nanotechnology in textiles was Nano-Tex, a subsidiary of Burlington Industries in the United States. As a result, a growing number of textile companies began investing in nanotechnology development [16]. While traditional textile finishing techniques do not always result in permanent effects and their functionality is lost after laundering or use, nanotechnology can provide a highly stable treatment [18,19].

In this review, we discuss recent developments in nanoparticles (primarily metals and metal oxide nanoparticles) used to modify and finish cotton fabrics from 2018 to 2022 to provide antimicrobial (antibacterial, antifungal), antiviral, UV protection, self-cleaning, water-repellent, and flame-retardant properties.

2. Common Types of Nanomaterials

There are many types of nanotechnology-produced materials, but the following four are receiving significant attention:

2.1. Nanofinishing

The process of nanofinishing involves applying colloidal solutions or ultrafine dispersions of nanomaterials to fabrics to improve some of their functionalities [20]. In the case of nanofinishing, a smaller quantity of nanomaterials is required in comparison to the bulk materials used in traditional finishing to achieve a similar effect. These nanofinishings do not alter the aesthetic feel of textile materials. They are more durable because they have a higher surface area-to-volume ratio in textile materials as well as a homogeneous distribution [21]. By using nanofinishing, existing processes can be improved, or new functional properties can be achieved that are not possible with traditional finishes [22].

2.2. Nanocoating

As part of nanocoating, a thin layer of less than 100 nm in thickness is deposited on a substrate to improve some properties or to add new functionality [23] such as enhanced color fastness, flame retardance, water or oil repellency, wrinkle resistance, and antimicrobial properties. Traditionally, textile coatings have thicknesses in the micrometer or millimeter range. However, conventional coatings can make fabrics completely impermeable, affecting their handling, feel, and breathability [24].

2.3. Nanofibers

As compared to conventional fibers, nanofibers have higher stiffness and tensile strength, as well as a very high surface area to weight ratio, low density, and a high pore volume. Because of these characteristics, nanofibers can be used in a wide variety of applications [25]. A variety of techniques can be used to fabricate nanofibers. One example of these techniques is phase separation, template synthesis, self-assembly fibers, and electrospinning (ELS). Electrospinning is a low-cost method for producing nanofibers [26].

2.4. Nanocomposites

It is possible to create nanocomposite fibers by dispersing nanosized fillers within a fiber matrix. Nanocomposite fibers can be developed with high electrical conductivity, superior strength, toughness, and lightweight using fillers such as nanosilicates, metal oxide nanoparticles, graphite nanofibers (GNFs), and single-wall and multi-wall carbon nanotubes (CNTs) [27].
3. Metal Nanoparticles (MNPs)

Among the nanomaterials used, metal nanoparticles (MNPs) are the most popular and versatile. For their diverse functional properties, numerous types of nanoparticles (NPs) have been integrated into various textile materials [28].

Inorganic nanoparticles, such as TiO$_2$, ZnO, SiO$_2$, Cu$_2$O, CuO, Al$_2$O$_3$, and reduced graphene oxide, are more commonly used than organic nanoparticles due to their thermal and chemical durability at high temperatures, their permanent stability under ultraviolet rays, and their non-toxicity [29,30]. A summary of the functions of metal nanoparticles can be found in Figure 1. Their ability to stick to fibers is also heavily influenced by their size. It is logical to assume that the largest particle cluster will easily be removed from the fiber surface, but the smallest particles will penetrate deeper and stick more firmly to the fabric. Reduced particle size results in changes in the material’s properties [31]. The presence of a reducing and stabilizing agent is essential in the preparation of these metallic nanoparticles. Metal nanoparticles are prepared by the reduction of metal salt solutions [32].

![MNPs Diagram](image)

Figure 1. Metal nanoparticles and their functions used in textiles.

Nanoparticles are synthesized using a variety of physical, chemical, and biological methods. [33,34]. The synthesis of NPs can be summarized in Figure 2. The nanoparticles synthesized using the green approach appear to be more stable and beneficial. Besides being simple and inexpensive, it is easy to characterize as well. A major advantage of green synthesis is that it produces nanoparticles with lower toxicity, making them less harmful to the environment [35,36].
3.1. Silver Nanoparticles (AgNPs)

One of the most used antimicrobial nanoparticles is silver (Ag). It acts as a doping antimicrobial agent and exhibits antimicrobial activity without affecting mechanical properties [37]. AgNPs have strong antiviral properties. Furthermore, AgNP’s interactions with viruses can be improved by evaluating their physiochemical properties such as size, shape, surface charge, dispersion, and protein corona effects [38]. As part of a finishing procedure, AgNPs can be deposited on the surface of textile products to functionalize them, such as spraying (using plasma), surfaced by pad baths or coating (sol-gel or “layer-by-layer”), or producing AgNPs directly on fiber surfaces and inside them [39]. Cotton fabrics have been coated with AgNPs using a variety of techniques [40]. The functionalization of cotton fabrics incorporating AgNPs is summarized in Table 1.

Xu et al., 2018 [41] created durable antimicrobial cotton fabrics using AgNPs that were applied to cotton fabric using the pad-dry-cure technique. After 50 washing cycles, the cotton fabrics showed excellent antimicrobial activity (94%) against Escherichia coli and Staphylococcus aureus. Cotton’s original properties, such as tensile strength, water absorption, and vapor permeability, are not significantly affected by the modification. Rajaboopathi and Thambidura [42] fabricated functional cotton fabrics with AgNPs. A seaweed extract (Padinagymnospora) was used to synthesize AgNPs, and citric acid was used as a crosslinker for applied AgNPs. The functionalized cotton fabrics were tested against S. auris (Gram-positive) and E. coli (Gram-negative). Cotton functionalized with AgNPs inhibited bacteria growth and provided better UV protection. A study by Patil et al. [43] used sonochemistry and deposition to create AgNP-coated cotton fabrics with antimicrobial properties. They found that AgNPs uniformly deposited on cotton fabrics and showed excellent antibacterial activity against Gram-negative bacteria and Gram-positive bacteria. According to Ramezani et al., AgNPs produced by polyol methods were used to functionalize cotton fabrics with antibacterial and antifungal properties in 2019 [44]. A cotton textile coated with antimicrobial activity inhibited the growth of Staphylococcus aureus, Escherichia coli, and Candida albicans. In 2020, Maghimaa et al. [45] evaluated the antimicrobial and wound-healing activity of coated cotton fabric with AgNPs.
Peltophorumpterocarpum leaf extracts were used in the synthesis of AgNPs. The AgNPs cotton fabrics showed a good zone of inhibition against *S. aureus*, *P. aeruginosa*, *S. pyogenes*, and *C. albicans* and good wound healing activity when tested against fibroblast. The antibacterial activity of functionalized textiles with AgNPs against *Escherichia coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Klebsiella oxytoca*, and *Proteus mirabilis*, and antifungal activities against *Aspergillus Niger* were reported by Aguda and Lateef [46]. AgNPs were synthesized using wastewater from fermented seeds of Parkia biglobosa. Using a pad-dry-cure approach, AgNPs were applied to cotton and silk. The AgNPs-functionalized textiles prevented bacteria growth up to the fifth cycle of washing.

In the same year, Deeksha et al. [47] developed antibacterial cotton fabrics with AgNPs using the medicinal plant Vitex leaf extract. The fabrics showed 100% antifungal potency against *Aspergillus Niger*. According to Hamouda et al. [48], cotton treated with AgNPs had the greatest antibacterial, antifungal, and antiviral activity with 51.7% viral inhibition against MERS-CoV, high antibacterial activity against Gram-positive and Gram-negative bacteria, and the greatest antifungal activity against *A. niger* and *C. albicans*. Chavez et al. [49] also developed cotton fabrics that were antibacterial and antifungal. They used AgNPs to finish the fabric against *Escherichia coli*, *Staphylococcus aureus*, *Candida albicans*, and *Aspergillus Niger*. Fabrics treated with AgNPs showed 100% antibacterial activity and good antifungal activity.

Table 1. Summary of the functionalization of cotton fabrics integrated with AgNPs.

Types of Fabric	Nanomaterials	NPs Size	Synthesis Method	Application Method	Functionality	Ref Year
Cotton	AgNPs	* n.a	Seaweed (Padi-nagymnospora) extract	Pad-dry-cure	Antibacterial and UV protection	[41] 2018
Cotton	AgNPs	* n.a	Sonochemical	-	Antibacterial	[42] 2018
Cotton	AgNPs	50–100 nm	Polyl method	Dip coating	Antibacterial and Antimicrobial and wound healing activity	[43] 2019
Cotton	AgNPs	15–40 nm	Peltophorumpterocarpum leaf extracts	Coating	Antibacterial and Antifungal	[44] 2019
Cotton	AgNPs	11.00–83.30 nm	Parkiabiglobosa wastewater	Pad-dry-cure	Antibacterial and Antifungal	[45] 2020
Cotton	AgNPs	91–100 nm	Medicinal plant *Vitex* leaf extract	-	Antibacterial	[46] 2021
Cotton	AgNPs	* n.a	Chemical method	Coating	Antibacterial, antifungal, and antiviral	[47] 2021
Cotton	AgNPs	5–20 nm	Exhaustion method	-	Antibacterial and Antifungal	[48] 2021

* n.a = not available.

3.2. Titanium Dioxide Nanoparticles (TiO₂ NPs)

TiO₂ is an inorganic material with many applications in textile manufacturing, particularly UV protection [50], self-cleaning, and antimicrobial properties [51]. Due to its unique properties such as stability, non-toxicity, photocatalytic, chemical resistance, and convenient production technique [52], TiO₂ has drawn a lot of attention. In the presence of TiO₂, reactive oxygen species (ROS) such as superoxide and hydroxyl radicals can be generated. ROS can damage bacteria’s cell walls, causing them to die. It is this property of
TiO₂ nanoparticles that has been used in antibacterial textiles [53]. The percentage of bacteria killed by combining TiO₂ with other metal/metal oxide/polymer/carbon nanoparticles/matrices has been shown in many studies [54]. Using an in-situ sol-gel approach, Peter et al. [55] investigated how TiO₂ nanoparticles can be produced and incorporated into cotton fabrics for self-cleaning purposes. The self-cleaning performance of cotton fabrics loaded with TiO₂ was improved. The pad-dry-cure process was developed by Wang et al. [56] to finish cotton fabric with multifunctional TiO₂ NPs. In a variety of stains, the finished fabric demonstrated excellent self-cleaning properties. A piece of UV-protective cotton fabric was developed by Cheng et al. [57]. Layer-by-layer self-assembly was used to apply TiO₂ NPs to cotton fabric. The UPF values According to the UPF values, the TiO₂ NPs cotton fabrics provided excellent UV protection.

In 2019, Riaz et al. [58] investigated the applications of TiO₂ with 3-(Trimethoxyxilil) propyl-N,N,N-dimethyloctadecy lammonium chloride and 3-(Glycidoxypropyl)trimethoxy-silane in textiles. As a result, they found that treated cotton showed durable super-hydrophobicity, self-cleaning, and antibacterial properties. Alipourmohamadi et al. [59] reported self-cleaning and antibacterial properties of cotton fabrics with TiO₂ NPs. As compared to uncoated cotton fabrics, TiO₂ NPs-coated materials possess superior self-cleaning and antibacterial properties. Bekrani et al. [60] created antibacterial and UV-protective cotton fabrics coated with TiO₂ NPs. The nano-textiles displayed excellent activity against Gram-negative and Gram-positive bacteria. The UV-blocking of treated samples revealed that when exposed to UV irradiation, all samples have very low transmission.

In 2020, El-Bisi et al. [61] developed cotton fabrics with improved antibacterial and ultraviolet properties after treating them with TiO₂ NPs with Moringaoleifera extract. The UPF and antibacterial properties of TiO₂ NPs cotton fabrics are improved.

The TiO₂ NPs were synthesized by using Aloe vera extract in a green method by Saleem et al. [62]. The TiO₂-coated fabric demonstrated excellent self-cleaning properties. The tensile strength of the fabric decreased slightly but increased after the TiO₂ coating. A list of the functionalization of cotton fabrics integrated with TiO₂ NPs is presented in Table 2.

Table 2. A list of the functionalization of cotton fabrics integrated with TiO₂ NPs.

Types of Fabric	Nanomaterials	NPs Size	Synthesis Method	Application Method	Functionality	Reference Year
Cotton	TiO₂ NPs	n.a	In situ sol-gel	Immersion, drying	Self-cleaning	[55] 2018
Cotton	TiO₂ NPs	Small size	Sol-gel	Pad-dry-cure	Self-cleaning	[56] 2018
Cotton	TiO₂ NPs	50–120 nm	In situ hydrothermal under sonication	Layer-by-layer self-assembly	UV protection	[57] 2018
Cotton	TiO₂ NPs	40 nm	Chemical method	Dip coating	Durable super-hydrophobicity, self-cleaning and antibacterial.	[58] 2019
Cotton	TiO₂ NPs	20–25 nm	In situ ultrasonic assisted sol-gel	Immersion, drying, curing	Self-cleaning and antibacterial	[59] 2019
Cotton	TiO₂ NPs	Less than 50 nm	-	Immersion, heating, drying	Self-cleaning and antibacterial	[60] 2019
Cotton	TiO₂ NPs	n.a	-	Immersion, pad-dry-cure	Self-cleaning and antibacterial	[61] 2020
Cotton	TiO₂ NPs	11.27 nm	Aloe vera extract in a green method	Pad dry	Self-cleaning	[62] 2021
3.3. Silica Nanoparticles (SiO$_2$ NPs)

Silica nanoparticles (SiO$_2$NPs) have recently received a lot of attention because of their potential applications in several fields of science and industry. Their properties include self-cleaning, water-repellency, UV protection, and antibacterial properties. Textiles are most modified with nano silica [63]. In cotton fibers, SiO$_2$NPs penetrate easily and bind tightly to the fiber structure. Consequently, cellulose hydroxyl groups and SiOH form covalent bonds in SiO$_2$NPs. SiO$_2$NPs are added to the surfaces of materials to improve their mechanical properties, durability, function, activity, and stability [64].

Rethinam et al. [65] developed antibacterial/ultraviolet cotton fabrics using SiO$_2$NPs produced from xerogels at different concentrations (1, 2, and 3% w/v). Among the different concentrations of SiO$_2$NPs used, 3% (w/v) exhibited better mechanical properties, breaking strength, elongation at break, and tearing strength, and demonstrated the highest antibacterial activity against Staphylococcus aureus and Escherichia coli, as well as UV protection. Using SiO$_2$NPs, Riaz et al. [66] developed highly durable superhydrophobic and antibacterial cotton fabrics. Cotton fabric was treated with SiO$_2$NPs using a pad-dry-cure technique.

The study also revealed excellent antibacterial properties and super hydrophobicity, as well as high comfort properties such as bending rigidity and tensile strength and maximum laundry durability. According to Zakir et al. [67], SiO$_2$NPs were used to fabricate superhydrophobic cotton fabrics. Dip-coating was used to deposit SiO$_2$NPs on cotton fabrics. The results showed that cotton sample surface wettability changed from superhydrophilicity to true superhydrophobicity. PFOA-Free Fluoropolymer-Coated SiNPs or Omni Block, created by Kwon et al. [68], demonstrated excellent oil and water repellency on cotton fabrics. PFOA-free fluoropolymer was cross-linked between Si-O-Si groups to produce PFOA-free fluoropolymer-coated Si NPs. After coating the cotton fabric with PFOA-free fluoropolymer-coated SiNPs via a dip-dry-cure method, a rough, high-surface-area oleophobic structure developed. The cotton fabric’s thermal stability and mechanical strength were improved by the coating.

Because SiO$_2$NPs have high thermal stability, they can also be used to prepare flame-retardant textiles. In 2021, Shahidi et al. [69] used in-situ synthesis to deposit SiO$_2$NPs on cotton fabrics. By impregnating the cotton fabrics with SiO$_2$NPs, the flame-retardant properties have greatly improved, and samples have been found to be hydrophilic. Amibo et al. [70] investigated the antibacterial properties of SiO$_2$NPs loaded with AgNPs-coated cotton fabrics. Selected strains of bacteria such as Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested for antimicrobial activity with improved activities by the treated fabric. Hasabo and Rahma [71] fabricated a superhydrophobic, water-repellent cotton fabric coated with SiO$_2$NPs. The hydrophilic surface of cotton fabric was not changed by SiO$_2$NPs treatment, indicating that water drops were absorbed into fabrics due to the hydroxyl groups on both the cotton and silica NPs surfaces. Abou Elmatay et al. [64] studied the effects of both adding lycra yarns with different densities and SiO$_2$NPs on the functional performance of pile cotton fabrics. They concluded that treated cotton/lycra (90.5/9.2%) 19 pick/cm showed excellent antibacterial, highly self-cleaning, and excellent UV protection. The reported functionalization of cotton fabrics with SiO$_2$NPs is presented in Table 3.

Table 3. A survey of the functionalization of cotton fabrics with SiO$_2$NPs.

Types of Fabric	Nanomaterials	NPs Size	Synthesis Method	Application Method	Functionality	Ref Year
Cotton	SiO$_2$NPs	20–100 nm	Xerogels synthesis-ed Immersion, drying from cotton pods	Antibacterial and UV protection	Durable superhydrophobic and antibacterial	[65] 2018
Cotton	SiO$_2$NPs	20–30 nm	-	Pad-dry-cure		[66] 2019
3.4. Zinc Oxide Nanoparticles (ZnO NPs)

In textile finishing, zinc oxide (ZnO) has gained popularity because of its following numerous advantages: UV protection [50], antibacterial and antifungal properties, and the ability to speed wound healing [72]. ZnO nanoparticles have been deposited or incorporated into cotton using various chemical/physical techniques to develop antibacterial, antifungal, and UV-protective nanotextiles. Table 4. summarizes the functionalization of cotton fabrics treated with ZnO NPs.

Using ZnO-NPs, Fouda et al. [73] fabricated multifunctional medical cotton fabrics. Using secreted proteins from Aspergillus terreus AF-1, ZnO nanoparticles were synthesized on cotton fabric to investigate antibacterial activity and UV-protection properties. Bacteria were inhibited by the functionalized fabrics. The ZnO NPs have an excellent ability to block UV rays, resulting in an increase in the UPF value of the cotton fabric treated with them. Salat et al. [74] also investigated the antibacterial properties of cotton medical fabrics with ZnO NPs and gallic acid (GA). Cotton fabric was uniformly coated with ZnO NPs. Despite 60 cycles of washing, the antibacterial efficacy of ZnO NPs-GA-coated fabrics remained above 60%. To obtain antibacterial fabrics, Souza et al. [75] used the sole chemical process for ZnONPs on cotton fabrics. The antibacterial activity of cotton fabrics against *Staphylococcus aureus* and *Pseudomonas aeruginosa* was tested. The antibacterial activity of the treated cotton was higher against *Staphylococcus aureus* than against *Pseudomonas aeruginosa*.

In another study, Roy et al. [76] synthesized ZnONPs using a chemical method. ZnO NPs were then applied to cotton fabric using dip coating. Antifungal and antibacterial activities of treated samples were examined at various mole concentrations of ZnO NPs (1M, 1.5M, 2M, 2.5M, and 3M). The fabrics treated were tested for antifungal activity against *Aspergillus Nigir* as well as antibacterial activity against *staphylococcus aureus* and *Escherichia coli*. At a concentration of 2M, the antibacterial and antifungal activity is highest. Mulchandani et al. [77] prepared ZnONPs using a wet chemical method and applied them to cotton fabrics in different concentrations (0.01%, 0.05%, 0.10%, and 0.25%). After 50 cycles of washing, 0.1% of ZnO NPs showed excellent antimicrobial activity against *Staphylococcus aureus* and *Klebsiella pneumoniae*. To impart antibacterial activity to cotton (woven, single jersey, rib/double jersey), Momotaz et al. [78] used spin coating and pad-dry-cure methods. The pad-dry-cure technique gave better antibacterial activity than spin coating. Double jersey fabric showed the highest antibacterial activity against (S. aureus and E. coli.) than woven and single jersey fabric. In the next study, Mousa and Khairy [79] produced cotton defense clothing. They used a liquid precipitation method to synthesize ZnONPs and investigated the antimicrobial and UV protection of cotton fabrics. ZnONPs were incorporated onto cotton fabrics using the dip and curing method. The nano treated
fabrics showed the highest antimicrobial activity for *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans*, and the highest UPF values.

Tania and Ali [80] created cotton functional fabrics using the following three different ZnONP recipes: ZnONPs (ZnO-A), ZnONPs with a binder (ZnO-B), and ZnONPs with a binder and wax emulsion (ZnO-C). The treated fabrics were tested within one hour for *Staphylococcus aureus* and *Escherichia coli*. Nanotreated fabrics significantly reduced the growth of the two bacteria by 50.5–90.43%. ZnO-B and ZnO-C nano fabrics showed 99% reductions. Nano ZnO-B and nano ZnO-C have excellent UPF values. Patil et al. [81] prepared ZnONPs using sono synthesis and applied them to cotton fabrics in 2021. Finished fabrics with ZnO NPs demonstrated flexural rigidity, tensile strength, water contact angle, and air permeability. Against *Escherichia coli* and *Staphylococcus aureus* bacteria, they showed excellent antibacterial activities.

Table 4. Summary of the functionalization of cotton fabrics treated with ZnO NPs.

Types of Fabric	Nanomaterials	NPs Size	Synthesis Method	Application Method	Functionality	Reference Year
Cotton	ZnONPs	n.a	(Biological method) secreted proteins by the isolated fungus *Aspergillus terreus* AF-1	Pad-dry-cure	Antibacterial and UV protection	2018 [73]
Cotton	ZnONPs	<100 nm	In situ sono-chemical	Coating	Antibacterial	2018 [74]
Cotton	ZnONPs	n.a	Sono-chemical	Immersion, drying	Antibacterial	2018 [75]
Cotton	ZnONPs	n.a	Chemical method	Dip coating	Antibacterial and Antifungal	2020 [76]
Cotton	ZnONPs	n.a	Wet chemical	Pad-dry-cure	Antibacterial	2020 [77]
Cotton	ZnONPs	n.a	-	Spin coating & Pad-dry-cure	Antibacterial	2020 [78]
Cotton	ZnONPs	26 nm	liquid precipitation	Dip and curing	Antibacterial, antifungal and UV protection	2020 [79]
Cotton	ZnONPs	70 (±5) nm	Wet chemical	Mechanical thermo-fixation (Pad-dry-cure)	Antibacterial and UV protection	2021 [80]
Cotton	ZnONPs	n.a	Sono synthesis	Coating	Antibacterial	2021 [81]

3.5. Copper/Copper Oxide Nanoparticles (Cu/CuO NPs)

Due to their abundance, availability, and low cost, copper nanoparticles are gaining popularity [82]. As a result, CuONPs are used in a variety of applications, including antifungal, antiviral, antibiotics, anticancer, photocatalytic, biomedical, and agricultural fields [83]. CuONPs possess antimicrobial activity against *Bacillus subtilis*, *E. coli*, *Staphylococcus aureus*, *Micrococcus luteus*, *Pseudomonas aeruginosa*, *Salmonella enterica*, and *Enterobacteria aerogenes*, as well as antifungal activity against *Fusarium oxysporum* and *Phytophthora capsici*. Accordingly, CuONPs have shown significant antiviral activity against human influenza A (H1N1), avian influenza (H9N2), and many other viruses, including COVID-19 [84].

In 2018, Nourbakhsh and Iranfar [85] prepared cotton fabrics with antibacterial properties by using CuONPs with different concentrations (0.01, 0.03, 0.05, 0.1, 0.2, 0.5, 10%).
These fabrics were tested against *Escherichia coli* and *staphylococcus aureus* for their antibacterial properties. At 1% of CuONPs, the antibacterial activity of *E. coli* and *S. aureus* increased with increasing CuONP concentration (99% and 98%, respectively). Despite 5 laundering cycles, antibacterial activity for both bacteria decreased by 92%. The recovery angle, bending length, and wetting time all increased with increasing CuONP concentrations. A cotton fabric with antibacterial properties was developed by Sun et al. [86] by synthesizing CuONPs and applying them by ATRP and electroless deposition on cotton fabrics. A uniform distribution of CuONPs was observed on the cotton fabric’s surface. CuONP-functionalized cotton fabric exhibited excellent antibacterial activity against *S. aureus* and *E. coli*. Despite 30 cycles of washing, CuO nanoparticles were incorporated into cotton fabrics by Paramasivan et al. [87]. Using Cassia alata leaf extract as a reducing agent, CuONPs were synthesized. *Escherichia coli* bacteria were significantly inhibited by nanocotton fabric. Even after 15 washes, these nanocomposites retained antibacterial activity, indicating that they contained permanent CuONPs.

Shaheen et al. [88] treated cotton fabrics with CuO NPs to produce antibacterial textiles in 2021. *Aspergillus terreus* AF-1 biomass filtrate was used to synthesize CuONPs. CuO NP-treated cotton fabrics showed significant antibacterial activity against Bacillus subtilis and *P. aeruginosa*, but this efficacy was reduced against *S. aureus* and *E. coli*. Alagarasan et al. [89] also produced a cotton fabric treated with CuONPs for enhanced antibacterial and antifungal properties. Cotton fabrics were coated with CuONPs using the pad-dry-cure technique. They tested the antimicrobial activity against *S. aureus*, *E. coli*, *P. fluorescens*, and *B. subtilis*, as well as the antifungal activity against *Candida albicans*. Nanocoated fabrics showed better antibacterial and antifungal properties. CuO NPs-coated cotton fabrics were also investigated by El-Nahhal et al. [90]. The treated fabric showed improved antimicrobial activity against selected strains of bacteria such as *E. coli* and *S. aureus*. In addition to their antiviral properties, they may also be useful in combating the spread of the COVID-19 Corona Virus. Table 5 summarizes the functionalization of cotton fabrics with Cu/CuO NPs.

Table 5. Summary of the functionalization of cotton fabrics with Cu/CuO NPs.

Types of Fabric	Nanomaterials	NPs Size	Synthesis Method	Application method	Functionality	Ref Year
Cotton	Cu NPs	Less than 100 nm	-	Immersion, drying	Antibacterial	[85] 2018
Cotton	Cu NPs	130 ± 20 nm	ATRP and electroless deposition	Immersion, drying	Antibacterial	[86] 2018
Cotton	CuO NPs	40–100nm	Green synthesis (Cassia alata leaf extract)	Dip coating, Shaking+	Antibacterial	[87] 2018
Cotton	CuO NPs	11–47 nm	Green synthesis (Biomass Filtrate of Aspergillus terreus AF-1)	Immersion, pad-dry-cure	Antibacterial	[88] 2021
Cotton	CuO NPs	10–100nm	In situ synthesis	Pad-dry-cure	Antibacterial and Antifungal	[89] 2021
Cotton	CuO NPs	n.a	-	Ultrasound irradiation	Antibacterial and antiviral	[90] 2021
3.6. Gold Nanoparticles (Au NPs)

The optical, electronic, and magnetic properties of Au NPs have drawn a lot of attention in textile research. Textiles also contain Au NPs for electronic and medical applications [91].

In 2018, Shanmugasundaram and Ramkumar [92] attempted to improve the antibacterial property of cotton fabric by coating it with keratin protein and Au NPs using a pad-ded method. AuNPs were synthesized using a chemical reduction method. Incorporating Au NPs and keratin improved antibacterial efficacy against *S. aureus*, *P. aeruginosa*, *E. coli*, and *K. pneumoniae*. A coating of keratin and AuNPs reduced the fabric’s porosity and water absorption. In a recent study, Abou Elmaaty et al. [93] coated cotton and polyester fabrics with Au NPs and Ag NPs using a simple printing and paste method. Gold nanoparticles were synthesized with gold chloride hydrate and sodium citrate, while AgNPs were synthesized with Pluchea dioecoridis leaf extract. After that, the solution was made into a paste and printed using a flat screen. There is excellent color fastness, antibacterial activity, and UV protection in nano-printed fabrics.

Ganesan and Prabu [94] modified cotton fabrics with AuNPs synthesized from chloroauric acid and extract of *Acorus calamus* rhizome and then applied them to cotton fabrics using pad-dry-cure technology. In addition, the antibacterial activity of treated cotton against *Staphylococcus aureus* and *Escherichia coli* was excellent. The AuNPs improved the UV-blocking properties of cotton fabric. A study by Baruah et al. [95] focused on improving the catalytic activity of cotton fabrics containing ZnO nanorods and AuNPs. Before AuNPs were deposited on the fabric, ZnONRs were applied. AuNPs were prepared by ex situ synthesis and citrate reduction and applied to a cotton fabric coated with ZnONRs using the dip-coating technique. The photocatalytic dye degradation and recycling properties of the composite materials were excellent. By immersing cotton fabrics in colloidal solutions, Boomi et al. [96] synthesized AuNPs by reducing HAuCl₄ with *Coleus aromaticus* leaf extract. The antibacterial properties were tested on these fabrics. epidermidis and *E. coli*. A nano cotton fabric was found to have outstanding UV-blocking and antibacterial properties.

Boomi et al. [97] synthesized AuNPs using Croton sparsiflorus leaf extract in 2020 and deposited them on cotton fabric through the pad-dry-cure method to improve their antibacterial, anticancer, and UV properties. Cotton fabrics coated with AuNPs showed excellent antibacterial activity against *S. epidermidis* and *E. coli*, good UPF values, and significant anticancer activity against HepG2. An aqueous extract of *Acalypha indica* was used by Boomi et al. [98] to prepare AuNPs. A pad-dry-cure procedure was used to coat the intact extract onto the cotton fabric. The antibacterial activity of treated cotton fabric against *S. epidermidis* and *E. coli* was evaluated, and it demonstrated remarkable inhibition. Similarly, Dakineni et al. [99] reported that cotton fabrics containing AuNPs were antibacterial, anticancer, and UV protective. Using Pergularia daemia leaf extract and chloroauric acid, they prepared Au NPs and loaded them on cotton fabrics using pad-dry-cure. Antibacterial activity was significantly enhanced by AuNPs-coated cotton fabric against *Epidermidis* and *E. Coli*, with superior UV-protection efficiency and limited anticancer activity against HepG2. Table 6 summarizes the functionalization of cotton fabrics with AuNPs.
Table 6. Summary of the functionalization of cotton fabrics with Au NPs.

Types of Fabric	Nanomaterials	NPs Size	Synthesis Method	Application Method	Functionality	Ref Year
Cotton	Au NPs	8–30 nm	Chemical reduction	Padding	Antibacterial	[92] 2018
Cotton	Au NPs	Average size 14nm	Au (Chemical reduction)	Printing and paste	Coloration, antibacterial, and UV protection	[93] 2018
Cotton	Au NPs	13–20 nm	Green method (extract of Acoruscalamusamurhizome)	Pad-dry-cure	Antibacterial and UV protection	[94] 2019
Cotton	Au NPs	Less than 100 nm	Chemical reduction	Dip coating	Photocatalysis	[95] 2019
Cotton	Au NPs	18.5 ± 2.8nm	Biological reduction	Pad-dry-cure	Antibacterial and UV protection	[96] 2019
Cotton	Au NPs	Different sizes (<20 nm)	Biological reduction	Pad-dry-cure	Antibacterial, anticancer, and UV protection	[97] 2020
Cotton	Au NPs	16.6–17 nm	Green synthesis	Pad-dry-cure	Antibacterial	[98] 2020
Cotton	Au NPs	19 nm	Green synthesis (Acalypha indica extract)	Pad-dry-cure	Antibacterial	[99] 2022
Cotton	Au NPs	15–30 nm	Biological reduction	Pad-dry-cure	Antibacterial, anticancer, and UV protection	

3.7. Mixtures of Metal Nanoparticles

To improve the properties of individual MNPs, binary and tertiary nanoparticles have been developed and studied. To impart multifunctional properties to cotton fabric, bimetallic nanoparticles (ZnO/TiO$_2$ NPs) were deposited on the fabric using the sol-gel technique and then applied using the pad-dry-cure method. Nanocomposite cotton fabrics have excellent antimicrobial activity against Escherichia coli, high UPF values, and are highly self-cleaning. ZnO and TiO$_2$ coatings on cotton fabric can improve multifunctional properties significantly compared to ZnO and TiO$_2$ coatings alone [100].

To enhance cotton fabrics’ antibacterial properties, Mamatha et al. [101] used Aloe vera leaf extract to generate Ag/Cu NPs. Using aqueous solutions of AgNO$_3$ and CuSO$_4$.5H$_2$O, cotton fabrics infused with Aloe vera leaf extracts were immersed in these metallic source solutions and stirred. Cotton fabrics coated with Ag/Cu NPs exhibit good antibacterial activity against E. coli, Pseudomonas, Bacillus, Klebsiella, and Staphylococcus. In addition, Rao et al. [102] generated Ag/Cu NPs in cotton fabrics using aqueous red sand extracts as a reducing agent. NPs matrices were generated by dipping cotton fabrics in red sander extract solutions. The antibacterial activity of Ag and Cu NPs and Ag-Cu bimetallic NPs (BMNPs) was compared. BMNPs generated in cotton fabrics highly showed activity against E. coli, P. aeruginosa, S. aureus, and B. lichenomomas. Saraswat et al. [103] developed antimicrobial and self-cleaning cotton fabrics using Ag/TiO$_2$NPs. The photo-assisted deposition (PAD) method was used to synthesize Ag/TiO$_2$ NPs. Tetraethyl orthosilicate (TEOS) was added as a precursor to SiO$_2$ to enhance the hydrophilic and self-cleaning properties of TiO$_2$ during the modified dip coating process used to impregnate the Ag/TiO$_2$ treated cotton fabrics. The antimicrobial activity of Ag/TiO$_2$ NPs-coated cotton fabrics was tested against E. coli bacteria and Candida albicans fungi. They found that
3% Ag/TiO₂ has excellent antibacterial and antifungal properties, with a disinfection efficiency of 100%. Due to silica’s structural effects and high dispersion, SiO₂ coatings demonstrated greater photocatalytic activity than Ag/TiO₂ coatings alone. Another study coated cotton fabrics with Ag/ZnO and Cu NPs to enhance their antibacterial activity, UV protection, and conductivity. For the formation of nanoparticles using functionalized polyethyleneimine (FPEI) or polymethylol (PMC), metal salts such as AgNO₃, Zn(NO₃)₂, and Cu(NO₃)₂ were used as precursors. Even after 20 cycles of washing against S. aureus and E. coli, the treated cotton fabrics demonstrated excellent ultraviolet and electrical conductivity [104].

Using AgNO₃ and trisodium citrate, Ansari et al. [105] produced Ag, TiO₂, and ZnO nanoparticles, while TiO₂:NP s were produced by mixing TiCl₄ and ammonium carbonate. ZnONPs were produced by combining ZnCl₂ and sodium hydroxide. After immersing cotton fabrics in polyurethane solution, they were immediately immersed in ZnONPs solution and TiO₂:NP s solution. Using the AgNP s solution, the procedure was repeated. Shigella, Salmonella typhi, and other bacteria showed the best photocatalytic and antibacterial activities on fabrics coated with Ag, ZnO, and TiO₂:NP s.

The Gao research group [106] prepared (Ag/ZnO)NPs by chemical precipitation to obtain treated cotton fabrics with improved hydrophobicity, UV resistance, antibacterial, and anti-mildew properties. A cotton fabric was tested for antimicrobial activity against bacteria (S. aureus, E. coli) and fungi (C. albicans). The antifungal activity of these fabrics was also tested against A. flavus. Silver NPs with anti-mildew properties must contain at least 1% silver, with 3% silver NPs being the best for achieving a proof grade 1 (a proof grade 4 means no mildew resistance). Antibacterial and mildew resistance were demonstrated by cotton fabrics treated with Ag/ZnO (3% Ag) NPs. Materescu et al. [107] improved the self-cleaning properties of cotton fabrics using commercial aqueous colloidal dispersions of SiO₂-TiO₂ nanoparticles (1:0.5; 1:1; 1:1.5). A TiO₂/SiO₂ NPs mixture enhanced self-cleaning properties, with the highest photocatalytic activity when the molar concentration of TiO₂/SiO₂ NPs was 1:1.

Silva et al. [108] developed antimicrobial and antiviral cotton fabrics with Ag/TiO₂ NPs synthesized by sonochemistry using AgNO₃ as a reductant and stabilizer. More than 50% of infectious SARS-CoV-2 remains active after prolonged direct contact with self-disinfecting materials that inhibit the proliferation of Escherichia coli and Staphylococcus aureus. Table 7 summarizes the functionalization of cotton fabrics with NP mixtures and their applications.

Types of Fabric	Nanomaterial	NPs Size	Synthesis Method	Application Method	Functionality	Applications	Ref Year
Cotton	ZnO/TiO₂ NPs	n.a	Sol-gel	Pad-dry-cure	Antimicrobial activity, UV protection, and self-cleaning	Various household and medical applications	[100] 2018
Cotton	Ag/Cu NPs	61 nm	In situ generation using Aloe vera leaf extract	Immersion, drying	Antibacterial activity	Dressing, wound healing, packaging, and medical applications	[101] 2018
Cotton	Ag/Cu NPs	80–90 nm Average size 100 nm	In situ method using aqueous red sand extracts	Dip coating	Antibacterial activity	Antibacterial bed and dressing materials	[102] 2019
4. Conclusions

There has been a lot of research performed on the surface modification of cotton fabrics with nanostructures in the last five years to provide them with multifunctional properties such as antimicrobial, antiviral, UV protection, self-cleaning, water-repellent, and flame-retardant properties. This has been accomplished using metal and metal oxide nanoparticles (mainly Ag, TiO₂, SiO₂, ZnO, CuO, and Au) and mixtures of metal and metal oxide nanoparticles (such as ZnO/TiO₂, Ag/Cu, Ag/TiO₂, Ag/ZnO, TiO₂/SiO₂, Ag/ZnO/Cu, and Ag/ZnO/TiO₂). Nanotechnology breakthroughs may be of interest to researchers working on applications such as household industries, dressings, wound healing, packaging, footwear, sportswear, and protective and medical products. The review is primarily focusing on the functionalization of cotton fabrics with Ag, TiO₂, SiO₂, ZnO, CuO, and Au NPs, but the exploitation of different types of NPs is expected to lead to novel capabilities, which could expand the applications of nanotextiles.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Definition
UV	Ultraviolet
ELS	Electrospinning
GNF	Graphite nanofibers
CNT	Carbon nanotubes

Cotton

Material	Method/Property	Application	
Ag/TiO₂ NPs	Photo-assisted deposition (PAD)	Antimicrobial activity and self-cleaning	Footwear application [103] 2019
Ag/ZnO/Cu NPs	Chemical synthesis	Antibacterial activity, UV protection, and conductivity properties	Upholster beds, underwear, and protective clothing [104] 2019
Ag/ZnO/TiO₂ NPs	Chemical synthesis	Photocatalytic and antibacterial activities	Hospital and sportswear [105] 2020
Ag/ZnO NPs	Chemical precipitation	Hydrophobicity, UV resistance, antibacterial, and anti-mildew activity	Protective clothing [106] 2020
TiO₂/SiO₂ NPs	Immersion, pad-dry-cure	Self-cleaning	Self-cleaning textile [107] 2020
Ag/TiO₂ NPs	Sonoechemistry method	Antimicrobial and antiviral activities	Protective and medical applications [108] 2021
MNPs Metal nanoparticles
NPs Nanoparticles
AgNPs Silver nanoparticles
TiO₂ NPs Titanium dioxide nanoparticles
ROS Reactive oxygen species
UPF Ultraviolet protection factor
SiO₂ NPs Silicon dioxide nanoparticles (Silica)
ZnO NPs Zinc oxide nanoparticles
GA Gallic acid
Cu/CuO NPs Copper/Copper oxide nanoparticles
Au NPs Gold nanoparticles
NRs Nanorods
BMNPs Bimetallic nanoparticles
PAD Photo-Assisted Deposition
TEOS Tetraethyl orthosilicate
FPEI Functionalized polyethyleneimine
PMC Polymethyl

References
1. Agrawal, N.; Sijia, P.; Tan, J.; Fong, E.; Lai, Y.; Chen, Z. Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles. Nano Mater. Sci. 2020, 2, 281–291. https://doi.org/10.1016/j.nams.2019.09.004.
2. Toprak, T.; Anis, P. Textile industry’s environmental effects and approaching cleaner production and sustainability, an overview. J. Text. Eng. Fash. Technol. 2017, 2, 429–442. https://doi.org/10.15406/jteft.2017.02.00066.
3. Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles. Text. Res. J. 2019, 89, 867–880. https://doi.org/10.1177/0040517518758002.
4. Elmaaty, T.A.; Abdelaziz, E.; Nasser, D.; Abdelfattah, K.; Elkadi, S.; El-Nagar, K. Microwave and Nanotechnology Advanced Solutions to Improve Eco-friendly Cotton’s Coloration and Performance Properties. Egypt. J. Chem. 2018, 61, 493–502. https://doi.org/10.21608/EJCHEM.2018.2927.1270.
5. Ali, S.; Mughal, M.A.; Shoukat, U.; Baloch, M.A.; Kim, S.H. Effect of the coating of zinc oxide (ZnO) nanoparticles with binder on the functional and mechanical properties of cotton fabric. Mater. Today 2015, 37, 18–26. https://doi.org/10.1016/j.mattod.2014.09.064.
6. Shahidi, S.; Ghoraneviss, M. Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Clothing. Text. Res. J. 2015, 34, 37–47. https://doi.org/10.1177/0887302X15594455.
7. Ashayer, R.; Hunt, C.; Thomas, O. Fabrication of highly conductive stretchable textile with silver nanoparticles. Text. Res. J. 2015, 86, 1041–1049. https://doi.org/10.1177/00405175115603813.
8. Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R.; Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in textiles. ACS Nano 2016, 3, 3042–3068. https://doi.org/10.1021/acsnano.5b08176.
9. Tania, I.; Ali, M. Effect of the coating of zinc oxide (ZnO) nanoparticles with binder on the functional and mechanical properties of cotton fabric. Mater. Today 2020, 38, 2607–2611. https://doi.org/10.1016/j.mattod.2020.08.171.
10. Ibrahim, N.A.; Eid, B.M.; Abd El-Aziz, E.; Abou Elmaaty, T.M.; Ramadan, S.M. Loading of chitosan—Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. Int. J. Biol. Macromol. 2017, 105, 769–776. https://doi.org/10.1016/j.ijbiomac.2017.07.099.
11. Ibrahim, N.A.; Abou Elmaaty, T.M.; Eid, B.M.; Abd El-Aziz, E. Combined antimicrobial finishing and pigment printing of cotton/polyester blends. Carbohydr. Polym. 2013, 95, 379–388. https://doi.org/10.1016/j.carbpol.2013.02.078.
12. Ibrahim, N.A.; Eid, B.M.; Abd El-Aziz, E.; Abd El-Aziz, T.M. A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr. Polym. 2013, 94, 612–618. https://doi.org/10.1016/j.carbpol.2013.01.040.
13. Ibrahim, N.A.; Eid, B.M.; Abd El-Aziz, E.; Abou Elmaaty, T.M. Functionalization of linen/cotton pigment prints using inorganic nanostructure materials. Carbohydr. Polym. 2013, 97, 537–545. https://doi.org/10.1016/j.carbpol.2013.04.084.
14. Ibrahim, N.A.; Eid, B.M.; Abd El-Aziz, E.; Abou Elmaaty, T.M.; Ramadan, S.M. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 2017, 7, 33219–33230. https://doi.org/10.1039/C7RA05403C.
15. Abou Elmaaty, T.M.; Abdeldayem, S.A.; Elshafa, N. Simultaneous Thermochromic Pigment Printing and Se-NP Multifunctional Finishing of Cotton Fabrics for Smart Clothing. Cloth. Text. Res. J. 2020, 38, 182–195. https://doi.org/10.1177/0887302X19899992.
16. Sobha, K.; Surendranath, K.; Meena, V.; Jwala, T.K.; Swetha, N.; Latha, K.S.M. Emerging trends in nanobiotechnology. Biotechnol. Mol. Biol. Rev. 2010, 5, 1–12. https://doi.org/10.5897/BMBR2010.0002.
17. Bhatia, S.C. Pollution Control in Textile Industry; Woodhead Publishing India Pvt. Ltd.: New Delhi, India, 2017.
https://doi.org/10.1201/9781315148588.

18. Raut, S.; Vasavada, S.; Chaudhari, S. Effect of Nano TiO\textsubscript{2} on the Functional Performance of Fabric. Int. J. Innov. Res. Technol. Sci. Eng. 2017, 6, 117–130. https://doi.org/10.15680/IJRSET.2017.0601044.

19. Mohamed, O. Opportunities, and risks of nanotechnology–changes in some of the main properties associated with comfortable in cellulose materials. J. Archit. Arts Humantist. Sci. 2018, 11, 423–435. https://doi.org/10.12861/0046507.

20. Ghosh, G.; Sidpara, A.; Bandyopadhyay, P.P. High efficiency chemical assisted nano finishing of HVOF sprayed WC-Co coating. Surf. Coat. Technol. 2018, 334, 204–214. https://doi.org/10.1016/j.surfcoat.2017.11.041.

21. Saleem, H.; Zaidi, S. Sustainable Use of Nanomaterials in Textiles and Their Environmental Impact. Materials 2020, 13, 5134.
https://doi.org/10.3390/ma13225134.

22. Montazer, M.; Harifi, T. Nano Finishing of Textile Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. https://doi.org/10.1016/C2015-0-06081-6.

23. Joshi, M.; Adak, B. Advances in Nanotechnology Based Functional, Smart and Intelligent Textiles: A Review; Elsevier, B.V. Delhi: New Delhi, India, 2019. https://doi.org/10.1016/B978-0-12-803581-8.10471-0.

24. Joshi, M.; Khanra, R.; Shekhar, R.; Jha, K. Chitosan Nanocoating on Cotton Textile Substrate Using Layer-by-Layer Assembly Technique. J. Appl. Polym. Sci. 2011, 119, 2793–2799. https://doi.org/10.1002/app.32867.

25. Islam, S.; Ang, B.; Andriyana, A.; Afifi, A. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 2019, 1, 1248. https://doi.org/10.1007/s42452-019-1288-4.

26. Berton, F.; Porrelli, D.; Di Lenarda, R.; Turco, G. Critical Review on the Production of Electrospun Nano Fibres for Guided Bone Regeneration in Oral Surgery. Nanomaterials 2019, 10, 16. https://doi.org/10.3390/nnanomaterials10010016.

27. Patra, J.K.; Gouda, S. Application of nanotechnology in textile engineering: An overview. J. Eng. Technol. Res. 2013, 5, 104–111. https://doi.org/10.5897/JETR2013-0309.

28. Fernandes, M.; Padrão, J.; Ribeiro, A.; Fernandes, R.; Melro, L.; Nicolau, T.; Mehravani, B.; Alves, C.; Rodrigues, R.; Zille, A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. Nanomaterials 2022, 12, 1006.
https://doi.org/10.3390/nano12061006.

29. Ahmad, S.; Fatma, A.; Manal, E.; Ghada, A.M. Applications of Nanotechnology and Advancements in Smart Wearable Textiles: An Overview. Egypt. J. Chem. 2020, 63, 2177–2184. https://doi.org/10.21608/ijchem.2019.18223.2112.

30. Zhang, Y.Y.; Xu, Q.B.; Fu, F.Y.; Liu, X.D. Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 2016, 23, 2791–2808. https://doi.org/10.1007/s10570-016-1012-0.

31. Ranjan, S.; Dasgupta, N.; Lichtfouse, E. Nanoscience in Food and Agriculture I; Springer International Publishing: Cham, Switzerland, 2016. https://doi.org/10.1007/978-3-319-39303-2.

32. Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poiner, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials 2015, 8, 7278–7308. https://doi.org/10.3390/ma8115377.

33. Parveen, K.; Banse, V.; Ledwani, L. Green Synthesis of Nanoparticles: Their Advantages and Disadvantages; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1724, p. 02048. https://doi.org/10.1063/1.4945168.

34. Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. https://doi.org/10.1080/21691401.2019.1577878.

35. Nair, G.; Sajini, T.; Mathew, B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open 2022, 5, 100030. https://doi.org/10.1016/j.talo.2021.100080.

36. Abou Elmaaty, T.; Ramadan, S.; Nasr Eldin, S.; Elgamal, J. One Step Thermochromic Pigment Printing and Ag NPs Antibacterial Functional Finishing of Cotton and Cotton/PET Fabrics. Fibers Polym. 2018, 19, 2317–2323. https://doi.org/10.1007/s12221-018-8609-x.

37. Islam, S.; Butola, B. Advances in Functional and Protective Textiles; Woodhead Publishing: Shaston, UK, 2020. https://doi.org/10.1016/B978-0-12-802257-9.00020-5.

38. Auria, C.; Nesma, T.; Juanes, P.; Viñuela, A.; Gomez, H.; Acebes, V.; Góngora, R.; Parra, M.; Roman, R.; Fuentes, M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. Nanomaterials 2019, 9, 1365. https://doi.org/10.3390/nano9101365.

39. Pivec, T.; Hribarnek, S.; Kola, M.; Kleinsche, K. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbonyl deriv. Polym. 2017, 163, 92–100. https://doi.org/10.1016/j.carbpol.2017.01.060.

40. Granados, A.; Pleixats, R.; Vallriber, A. Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules 2021, 26, 3008. https://doi.org/10.3390/ molecules26103008.

41. Xu, Q.; Ke, X.; Shen, L.; Ge, N.; Zhang, Y.; Fu, F.; Liu, X. Surface modification by carboxymethyl chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. Int. J. Biol. Macromol. 2018, 111, 796–803. https://doi.org/10.1016/j.ijbiomac.2018.01.091.

42. Rajabopathi, S.; Thambidurai, S. Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles. J. Photochem. Photobiol. B Biol. 2018, 183, 75–87. https://doi.org/10.1016/j.jphotobiol.2018.04.028.
43. Patil, A.; JadHAV, S.; More, V.; Sonawane, K.; Patil, P. Novel One Step Sono synthesis and Deposition Technique to Prepare Silver Nanoparticles Coated Cotton Textile with Antibacterial Properties. Colloid J. 2019, 81, 720–727. https://doi.org/10.1134/S1061933X19070019.

44. Ramezani, M.; Kosak, A.; Lobnik, A.; Hadela, A. Synthesis and characterization of an antimicrobial textile by hexagon silver nanoparticles with a new capping agent via the polyol process. Text. Res. J. 2019, 89, 5130–5143. https://doi.org/10.1177/0040517519848162.

45. Maghima, M.; Alharbi, S. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111806. https://doi.org/10.1016/j.jphotobiol.2020.111806.

46. Aguda, O.N.; Latee, A. Novel biosynthesis of silver nanoparticles through valorization of Parkiabiglobosa fermented-seed wastewater: Antimicrobial properties and nanotextile application. Environ. Technol. Innov. 2021, 24, 102077. https://doi.org/10.1016/j.eti.2021.102077.

47. Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bio reduction method. J. Bioreour. Bioprod. 2021, 6, 75–81. https://doi.org/10.1016/j.jobab.2021.01.003.

48. Hamouda, T.; Ibrahim, H.; Kafafy, H.; Mashaly, H.; Mohamed, N.; Aly, N. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Int. J. Biol. Macromol. 2021, 181, 990–1002. https://doi.org/10.1016/j.ijbiomac.2021.04.071.

49. Chávez, C.; Holland, L.; Esquivel, A.; Risco, A.; Arcentales, S.; Yáñez, J.; Gonzales, C. Antibacterial and Antifungal Activity of Functionalized Cotton Fabric with Nanocomposite Based on Silver Nanoparticles and Carboxymethyl Chitosan. Processes 2022, 10, 1088. https://doi.org/10.3390/pr10061088.

50. AbouElmaaty, T.; Mandour, B. ZnO and TiO2 Nanoparticles as Textile Protecting Agents against UV Radiation: A Review. Asian J. Chem. Sci. 2018, 4, 1–14. https://doi.org/10.9734/AJCS/2018/40329.

51. Ibrahim, N.A.; Abd El-Aziz, E.; Eid, B.M.; Abou Elmaaty, T.M. Single-stage process for bifunctionalization and eco-friendly pigment coloration of cellulosic fabrics. J. Text. Inst. 2015, 107, 1022–1029. https://doi.org/10.1080/00215124.2015.1082784.

52. Rashid, M.; Simoncic, B.; Tomsic, B. Recent advances in TiO2-functionalized textile surfaces. Surf. Interfaces 2021, 22, 100890. https://doi.org/10.1016/j.surfinf.2020.10089.

53. Shah, M.; Pirzada, B.; Price, G.; Shibiru, A.; Qurashi. A. Applications of nanotechnology in smart textile industry. J. Adv. Res. 2022, 38, 55–75. https://doi.org/10.1016/j.jare.2022.01.008.

54. Pachaiappan, R.; Rajendran, S.; Show, P.; Manavalan, K.; Naushad, M. Metal/metal oxide nanocomposites for bactericidal effect: A review. Chemosphere 2020, 272, 128607. https://doi.org/10.1016/j.chemosphere.2020.128607.

55. Peter, A.; Cozmuta, A.; Nicula, C.; Cozmuta, L.; Vulpoi, A.; Baia, L. Fabric impregnated with TiO2 gel with self-cleaning property. Int. J. Appl. Ceram. Technol. 2018, 16, 666–681. https://doi.org/10.1111/ijac.13075.

56. Wang, P.; Dong, Y.; Li, B.; Li, Z.; Bian, L. A sustainable and cost effective surface functionalization of cotton fabric using TiO2 hydrogel produced in a pilot scale: Condition optimization, sunlight-driven photocatalytic activity and practical applications. Ind. Crop. Prod. 2018, 123, 197–207. https://doi.org/10.1016/j.indcrop.2018.06.067.

57. Cheng, D.; He, M.; Cai, G.; Wang, X.; Ran, J.; Wu, J. Durable UV-protective cotton fabric by deposition of multilayer TiO2 nanoparticles films on the surface. J. Coat. Technol. Rev. 2018, 15, 603–610. https://doi.org/10.1007/s11998-017-0021-8.

58. Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M.; Younus, A. Fabrication of Robust Multifaceted Textiles by Application of Functionalized TiO2 Nanoparticles. Nanoloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123799. https://doi.org/10.1016/j.colsurfa.2019.123799.

59. Aalipourmohammadi, M.; Davodiroknabadi, A.; Nazari, A. Homogeneous coatings of titanium dioxide nanoparticles on corona-treated cotton fabric for enhanced self-cleaning and antibacterial properties. Austex Res. J. 2019, 21, 101–107. https://doi.org/10.2478/auat-2019-0058.

60. Bekrani, M.; Zohoori, S.; Davodiroknabadi, A. Producing multifunctional doped with nano cotton TiO2 fabrics and ZnO using nano CeO2. Austex Res. J. 2019, 20, 78–82. https://doi.org/10.2478/auat-2019-0057.

61. El-Bisi, M.; Othman, R.; Yassin, F. Improving Antibacterial and Ultraviolet Properties of Cotton Fabrics via Dual Effect of Nanometal Oxide and Moringaoleifera Extract. Egypt. J. Chem. 2020, 63, 3441–3451. https://doi.org/10.21608/ejchem.2020.39534.2805.

62. Saleem, M.; Naz, M.; Shukrulla, S.; Ali, S.; Hamdani, S. Ultrasonic biosynthesis of TiO2 nanoparticles for improved self-cleaning and wettable coating of DBD plasma pre-treated cotton fabric. Appl. Phys. A 2021, 127, 608. https://doi.org/10.1007/s00339-021-04767-4.

63. Smiechowicz, E.; Niekraszewicz, B.; Strzelinska, M.; Zielecka, M. Antibacterial fibers containing nanosilica with immobilized silver nanoparticles. Austex Res. J. 2020, 20, 441–448. https://doi.org/10.2478/auat-2020-0036.

64. Abou Elmaaty, T.; Elsisi, H.; Elsayad, G.; Elhadad, H.; Ahmed, K.; Plutino, M. Fabrication of new multifunctional cotton/lycra composites protective textiles through deposition of nano silica coating. Polymers 2021, 13, 2888. https://doi.org/10.3390/polym13172888.

65. Rethinam, S.; Ramamoorthy, R.; Robert, B.; Nallathambi, G. Production of silica nanoparticles bound fabrics and evaluation of its antibacterial/ultraviolet protection properties. Micro Nano Lett. 2018, 13, 1404–1407. https://doi.org/10.1049/mnl.2018.5033.
66. Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M. Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose 2019, 26, 5159–5175. https://doi.org/10.1007/s10570-019-02440-x.
67. Zakir, K.; Shahzadi, S.; Rasool, S.; Kanwal, Z.; Riaz, S.; Naseem, S.; Raza, M. Fabrication and characterization of superhydrophobic coatings on cotton fabrics using silica nanoparticles for self-cleaning applications. World J. Adv. Res. Rev. 2020, 8, 33–39. https://doi.org/10.30574/wjarr.2020.8.3.0458.
68. Kwon, J.; Jung, H.; Jung, H.; Lee, J. Micro/Nanstructured Coating for Cotton Textiles That Repel Oil, Water, and Chemical Warfare Agents. Polymers 2020, 12, 1826. https://doi.org/10.3390/polym12081826.
69. Shahidi, S.; Mohammadbagherloo, H.; Elahi, S.; Dalalsharifi, S.; Mongkhrollattanasit, R. In Situ Synthesis of SiO$_2$ Nanoparticles by Sol-Gel Method on Cotton Fabrics and Investigation of Their Physical and Chemical Properties. Key Eng. Mater. 2021, 891, 37–42. https://doi.org/10.4028/www.scientific.net/KEM.891.37.
70. Amibo, T.; Beyan, S.; Mustefaa, M.; Prabh, S.; Bayu, A. Development of Nanocomposite based Antimicrobial Cotton Fabrics Impregnated by Nano SiO$_2$ Loaded AgNPs Derived from Ergrotosis Teff straw. Mater. Res. Innov. 2021, 25, 1–10. https://doi.org/10.1080/14328917.2021.2022372.
71. Ahmed, H.; Hassan, R. Fabrication of Super hydrophobicity of cotton fabric treated with silica Nano particles and water repellant agent. IJEAS 2021, 5, 50–57.
72. Gudkov, S.; Burmistrov, D.; Serov, D.; Rebezov, M.; Semenova, A.; Lisitsyn, A. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Front. Phys. 2021, 9, 641481. https://doi.org/10.3389/fphy.2021.641481.
73. Fouda, A.; Saad, E.; Salem, S.S.; Shaheen, T.I. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 2018, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030.
74. Salat, M.; Petkova, P.; Hoyo, I.; Perelshtein, I.; Gedanken, A.; Tzanov, T. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr. Polym. 2018, 189, 198–203. https://doi.org/10.1016/j.carbpol.2018.02.033.
75. Souza, D.A.R.; Gusatti, M.; Ternus, R.Z.; Fiori, M.A.; Riella, H.G. In Situ Growth of ZnO Nanostructures on Cotton Fabric by Solochemo Process for Antibacterial Purposes. J. Nanomater. 2018, 9082191. https://doi.org/10.1155/2018/9082191.
76. Roy, T.; Shamim, S.; Rahman, M.; Ahmed, F.; Gafur, M.A. The Development of ZnO Nanoparticle Coated Cotton Fabrics for Antifungal and Antibacterial Applications. Mater. Sci. Appl. 2020, 11, 601–610. https://doi.org/10.4236/msa.2020.119040.
77. Mulchandani, N.; Karnad, V. Application of Zinc Oxide Nanoparticles on Cotton fabric for imparting Antimicrobial properties. Int. J. Environ. Rehabil. Conserv. 2020, 1, 1–10. https://doi.org/10.11208/essence.2020.11.1.101.
78. Momotaz, F.; Siddika, A.; Shalhan, T.; Islam, A. The Effect of Zno Nano Particle Coating and their Finishing Process on the Antibacterial Property of Cotton Fabrics. J. Eng. Sci. 2020, 11, 61–65. https://doi.org/10.3329/jes.v11i11.49547.
79. Mousa, M.A.; Khairy, M. Synthesis of nano-zinc oxide with different morphologies and its application on fabrics for UV protection and microresistant defense clothing. Text. Res. J. 2020, 90, 2492–2503. https://doi.org/10.1177/0040517520920952.
80. Tania, I.S.; Ali, M. Coating of ZnO nanoparticle on cotton fabric to create functional textile with enhanced mechanical properties. Polymers 2021, 13, 2701. https://doi.org/10.3390/polym13162701.
81. Patil, A.H.; Jadhav, S.A.; More, V.B.; Sonawane, K.D.; Vhanbatte, S.H.; Kadole, P.V.; Patil, P.S. A new method for single step sonosynthesis and incorporation of ZnO nanoparticles in cotton fabrics for imparting antimicrobial property. Chem. Pap. 2021, 75, 1247–1257. https://doi.org/10.1007/s11696-020-01358-0.
82. Shah, K.; Lu, Y. Morphology, large scale synthesis and building applications of copper nanomaterials. Constr. Build. Mater. 2018, 180, 544–578. https://doi.org/10.1016/j.conbuildmat.2018.05.159.
83. Santhoshkumar, J.; Agarwal, H.; Menon, S.; Rajeshkumar, S.; Venkat Kumar, S.A. Biological Synthesis of Copper nano particles and Its Potential Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019. https://doi.org/10.1016/C2017-0-02526-0.
84. Harishchandra, B.; Pappuswamy, M.; Pu, A.; Shama, G.; Pragatheesh, A.; Arumugam, V.; Periyaswamy, T.; Sundaram, R. Copper Nanoparticles: A Review on Synthesis, Characterization and Applications. Asian Pac. J. Cancer Biol. 2020, 5, 201–210. https://doi.org/10.31557/APJCB.2020.5.4.201.
85. Nourbakhsh, S.; Irania, S. Investigation on Durability of Copper Nano Particles onCotton Fiber. J. Appl. Chem. Res. 2018, 12, 30–41. https://doi.org/10.2011.1.20083815.2018.12.3.3.
86. Sun, C.; Li, Y.; Li, Z.; Su, Q.; Wang, Y.; Liu, X. Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials. J. Nanomater. 2018, 2018, 6546193. https://doi.org/10.1155/2018/6546193.
87. Paramasivan, S.; Nagarajan, E.R.; Nagarajan, R.; Anumakonda, V.R.; Hariram, N. Characterization of cotton fabric nanocomposites with in situ generated copper nanoparticles for antimicrobial applications. Prep. Biochem. Biotechnol. 2018, 48, 578–581. https://doi.org/10.1080/10826068.2018.1466150.
88. Shaheen, T.; Fouda, A.; Salem, S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. https://doi.org/10.1021/acs.iecr.0c04880.
89. Alagarasan, D.; Harikrishnan, A.; Surendiran, M.; Indira, K.; Khalifa, A.; Elesawy, B. Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Appl. Nanosci. 2021. https://doi.org/10.1007/s13204-021-02054-5.
90. El-Nahhal, I.; Salem, J.; Kodeh, F.; Anbar, R.; Elmanama, A. Preparation of CuO-NPs Coated Cotton, Starched Cotton and its CuO-Ag Nanocomposite, Cu(II) Curcumin Complex Coated Cotton and their Antimicrobial Activities. J. Nanomed. Nanotechnol. 2021, 12, 566. https://doi.org/10.35248/2157-7439.21.12.568.

91. Alamer, F.; Beyari, R.; Overview of the Influence of Silver, Gold, and Titanium Nanoparticles on the Physical Properties of PEDOT: PSS-Coated Cotton Fabrics. Nanomaterials 2022, 12, 1609. https://doi.org/10.3390/nano12091609.

92. Shanmugasundaram, O.L.; Ramkumar, M. Characterization and Study of Physical Properties and Antibacterial Activities of Human Hair Keratin–Silver Nanoparticles and Keratin–Gold Nanoparticles Coated Cotton Gauze Fabric. J. Ind. Text. 2018, 47, 798–814. https://doi.org/10.1177/152803716749004.

93. Abou Elmaaty, T.; El-Nagare, K.; Raouf, S.; Abdelfattah, K.; El-Kadi, S.; Abdelaziz, E. One-Step Green Approach for Functional Printing and Finishing of Textiles Using Silver and Gold NPs. RSC Adv. 2018, 8, 25546–25557. https://doi.org/10.1039/C8RA02573H.

94. Ganesan, R.M.; Prabu, H.G. Synthesis of gold nanoparticles using herbal Acoruscalamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab. J. Chem. 2019, 12, 2166–2174. https://doi.org/10.1016/j.arabjc.2014.12.017.

95. Baruah, B.; Downer, L.; Agyeman, D. Fabric-Based Composite Materials Containing ZnO-NRs and ZnO-NRs-AuNPs and Their Application in Photocatalysis. Mater. Chem. Phys. 2019, 231, 252–259. https://doi.org/10.1016/j.matchemphys.2019.04.006.

96. Boomi, P.; Ganesan, R.M.; Poorani, G.; Gurumallesh Prabu, H.; Ravikumar, S.; Jeyakanthan, J. Biological Synergy of Greener GoldNanoparticles by Using Coleus Aromaticus Leaf Extract. Mater. Sci. Eng. C 2019, 99, 202–210. https://doi.org/10.1016/j.msec.2019.01.10.

97. Boomi, P.; Poorani, G.P.; Selvam, S.; Palanisamy, S.; Jegatheeswaran, S.; Anand, K.; Balakumar, C.; Premkumar, K.; Prabu, H.G. Green Biosynthesis of Gold Nanoparticles Using Croton Sparsiflorus Leaves Extract and Evaluation of UV Protection, Antibacterial and Anticancer Applications. Appl. Organomet. Chem. 2020, 34, e5574. https://doi.org/10.1002/aoc.5574.

98. Boomi, P.; Ganesan, R.; Poorani, G.P.; Jegatheeswaran, S.; Balakumar, C.; Prabu, H.G.; Anand, K.; Prabhu, N.M.; Jeyakanthan, J.; Saravanan, M. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int. J. Nanomed. 2020, 15, 7553–7568. https://doi.org/10.2147/IJNN.S257499.

99. Dakineni, S.; Budireddi, N.; Kolli, D.; Rudraraju, R. Gold nanoparticles synthesized from Pergulariaadens leaves extract for Antibacterial, anticancer and UV protection. Mater. Today 2022, 51, 928–934. https://doi.org/10.1016/j.mateoday.2021.06.301.

100. Butola, B.S.; Garg, A.; Garg, A.; Chauhan, I. Development of Multi-functional Properties on Cotton Fabricby In Situ Application of TiO2 and ZnO Nanoparticles. J. Inst. Eng. India Ser. E 2019, 99, 93–100. https://doi.org/10.1007/s40034-018-0118-3.

101. Mamatha, G.; Rajulu, A.V.; Madhukar, K. In situ generation of bimetallic nanoparticles in cotton fabric using aloe vera leaf extractas reducing agent. J. Nat. Fibers 2018, 17, 1121–1122. https://doi.org/10.1080/1757666X.2018.1558146.

102. Rao, A.V.; Ashok, B.; Mahesh, M.U.; Subbareddy, V.C.; Sekhar, V.C.; Ramanamurth, G.V.; Rajulu, A.V. Antibacterial cotton fabrics with in situ generated silver copper bimetallic nanoparticles using red sanders powder extract as reducing agent. Int. J. Polym. Anal. Charact. 2019, 24, 346–354. https://doi.org/10.1080/1023666X.2019.1598631.

103. Saraswati, M.; Permadani, R.L.; Slamat, A. The innovation of antimicrobial and self-cleaning using Ag/TiO2: nanocomposite coated on cotton fabric for footwear application. IOP Conf. Ser. Mat. Sci. Eng. 2019, 509, 012091. https://doi.org/10.1088/1757-899X/509/1/012091.

104. Hassabo, A.H.; El-Naggar, M.E.; Mohamed, A.L.; Hebeish, A.A. Development of multifunctional modified cotton fabric withtricomponent nanoparticle of silver, copper, and zinc oxide. Carbohydr. Polym. 2019, 210, 144–156.https://doi.org/10.1016/j.carbpol.2019.01.066.

105. Ansari, M.; Saajad, S.A.; Sahebian, S.; Heidari, E.K. Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics. ChemistrySelect 2020, 5, 8370–8378. https://doi.org/10.1002/slct.202001655.

106. Gao, D.; Liu, J.; Lu, Y.; Li, Y.; Ma, J.; Baig, W. Construct the multifunction of cotton fabric by synergism between nano ZnO and Ag. Fiber Polym. 2020, 21, 505–512. https://doi.org/10.1007/s12221-020-9347-4.

107. Mateescu, A.O.; Mateescu, G.; Burducea, I.; Mereuta, P.; Chirila, L.; Popescu, A.; Stroe, M.; Nila, A.; Baibara, M. Textile Materials Treatment With Mixture of TiO2: And SiO2: Nanoparticles for Improvement of Their Self-Cleaning Properties. J. Nat. Fibers 2020, 19, 2443–2456. https://doi.org/10.1080/15440478.2020.1818349.

108. Silva, D.; Souza, A.; Ferreira, G.; Duran, A.; Cabral, A.; Fonseca, F.; Bueno, R.; Rosa, D. Cotton Fabrics Decorated with Antimicrobial Ag-Coated TiO2 Nanoparticles Are Unable to Fully and Rapidly Eradicate SARS-CoV-2. ACS Appl. Nano. Mater. 2021, 4, 12949–12956. https://doi.org/10.1021/acsanm.1c03492.