Modulation of Epigenetic Targets for Anticancer Therapy: Clinicopathological Relevance, Structural Data and Drug Discovery Perspectives

Federico Andreoli*, Arménio Jorge Moura Barbosa#, Marco Daniele Parenti# and Alberto Del Rio*

Department of Experimental Pathology, Alma Mater Studiorum - University of Bologna, Via S.Giacomo 14, 40126 Bologna, Italy

Abstract: Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails and are likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of small-molecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives.

Keywords: Epigenetics, anticancer therapy, DNA methyltransferases, protein methyltransferases, demethylases, deacetylases, acetyltransferases, histone post-translational modifications, drug design, crystallography, small-molecule inhibitors.

1. INTRODUCTION

The term epigenetics currently refers to the mechanisms of temporal and spatial control of gene activity that do not depend on the DNA sequence, influencing the physiological and pathological development of an organism. The molecular mechanisms by which epigenetic changes occur are complex and cover a wide range of processes including paramutation, bookmarking, imprinting, gene silencing, carcinogenesis progression, and, most importantly, regulation of heterochromatin and histone modifications [1]. At a biochemical level, epigenetic alterations in chromatin involve methylation of DNA patterns, several forms of histone modifications and microRNA (miRNA) expression. All these processes modulate the structure of chromatin leading to the activation or silencing of gene expression [2-6]. More specifically, the chromatin remodeling is accomplished by two main mechanisms that concern the methylation of cytosine residues in DNA and a variety of post-translational modifications (PTMs) occurring at the N-terminal tails of histone proteins. These PTMs include acetylation, methylation, phosphorylation, ubiquitination, sumoylation, glycosylation, ADP-ribosylation, carboxylation, citrullination and biotinylation [7,8]. Among all PTMs for example, histone tails can have its lysine residues acetylated, methylated or ubiquitilated; arginine can be methylated; serine and threonine residues can be phosphorylated [9-17]. These covalent modifications are able to cause other PTMs and the ensemble of this cross-talk is known as the histone code, which can be positively or negatively correlated with specific transcriptional states or organization of chromatin [11,18-20]. The fine regulation of histone PTMs and DNA methylation is controlled and catalyzed by many different classes of enzymes whose existence and functions have been elucidated with an extraordinary progression in the last decade [12,20-25]. Epigenetic modifications are reversible nuclear chemical reactions that are due to enzymes able to exercise opposing catalytic effects [5,20]. Along with metabolism [26-28] and regulation of the immune system [29,30], epigenetic changes are at the limelight of cancer research. Many studies have found that alterations in the epigenetic code may contribute to the onset of growth and progression of a variety of cancers [20,21,23,31-41]. For this reason, these enzymes are attractive therapeutic targets for the development of new cancer therapies [3,42-45].

In this review we aim to present and discuss the relationship of the available information on epigenetic targets related to cancer pathologies and their structural data describing also the perspective for considering these enzymes as new targets for anticancer drug discovery initiatives.

2. EPIGENETIC IN CANCER DISEASES

Although in the last decade several cancer pathologies have been associated to specific epigenetic changes, the way in which epigenetic modifications are regulated is still largely unknown. In this section we describe the current knowledge linking various cancer types with epigenetic targets, considering that demonstrated cause-consequence might not necessarily indicate that these targets are validated for anticancer drug design purposes. In (Fig. 1) we summarized the connections between the most important cancer diseases and the various classes of epigenetic targets, associating them to relevant drug discovery information.

Breast Cancer

Epigenetic alterations such as DNA methylation and chromatin remodeling play a significant role in breast cancer development and, although extensive research has been done, the causes, mechanisms and therapies of breast cancer are still to be fully elucidated [47-50]. Epigenetic changes in different classes of this type of cancer have been studied, including: estrogen receptor positive (ER+), that are estrogen-level dependent; estrogen receptor negative (ER-), whose tumor cells are not responsive to estrogen thus resistant to antiestrogenic drugs such as tamoxifen and aromatase inhibitors; progesterone receptor (PR); and human epidermal growth factor 2 (HER2)-related cancers [49,51-58]. A number of genes has been identified to be aberrantly methylated in breast cancer and their number is rapidly growing [48,56,59]. Likewise, altered expression of micro RNAs has been found to regulate key genes in the devel-
opment of breast cancer [59-62]. Biological rationales for breast cancer therapies have been deeply studied by inhibiting DNA methyltransferases (DNMT) and histone deacetylases (HDAC) proteins. Furthermore, several epigenetic-based synthetic drugs, which can reduce DNA hypermethylation and histone deacetylation, are undergoing preclinical and clinical trials [49,57,63-65]. These epimdrugs [55,66] are a promising strategy for breast cancer therapies as they could restore the estrogen receptor α (ERα) activity in ER- cancer patients, reactivating cancer cell growth in an estrogen-dependent manner resulting sensible to antiestrogenic
Colorectal Cancer

Extensive loss of DNA methylation has been observed in colon cancer cells almost 30 years ago [78]. Epigenetic abnormalities associated with colorectal cancer (CRC) have been, since then, intensively studied to identify the methylation patterns appearing at the various stages of colorectal cancer progression [79-83]. Frequent targets of aberrant methylation processes and CRC markers have been recently reviewed [84-86]. Epigenetic changes in colorectal cancer have been studied in relation to chromosomal instability [81-83,87], inflammation and microenvironmental role of gut microbiota [88], genetic polymorphism [89] and nutraceuticals [90-92]. In addition, epigenetically modified miRNAs have also been found to play a role in CRC [93,94]. The silencing of some miRNAs is associated with CpG island hypermethylation. The aberrant hypermethylation of two miRNAs (miR-34b/c and miR-148a) has been reported as a possible early screening and disease progression markers.[95] Further investigations identified 35 miRNAs related to colon cancer that were epigenetically silenced and revealed 162 molecular pathways potentially altered by eight methylated/downregulated miRNAs in CRC [61,96]. As major pathways of colorectal carcinogenesis are tightly connected to epigenetic changes, growing evidence shows that the risk of CRC can be influenced by lifestyle and environmental factors [91]. For instance, flavonoids and folates in a human diet have been shown to alter DNA methylation and modify the risk of human colon cancer and cardiovascular diseases, even though these mechanisms are yet to be ascertained.[90,97] Additional researches on the effects of nutraceuticals on epigenetic changes in the intestinal mucosa promise to be relevant for preventive and therapeutic interventions [91].

Pharmacological inhibition of Class I and Class II HDACs and the emerging role of Class III (in particular Sirt1) have been studied for their capacity to induce growth arrest, differentiation and apoptosis of colon cancer cells in vitro and in vivo [98-101]. Consequently, several clinical trials were initiated to repurpose compounds for CRC that were already approved or were in late-stage trials for the treatment of hematopoietic and solid tumors.

Hematological Malignancies

DNA and histone post-translational modifications have been demonstrated to be associated with several mutations in epigenetic targets for different hematologic malignancies [102].

In leukemias the role of different epigenetic enzymes has been investigated mainly for acute promyelocytic leukemia (APL) [103,104] and acute myeloid leukemia (AML) [103]. Biological players that have been studied for clinical applications include deacetylases [32,105-108], DNA and histone methyltransferases [32,35,103,104,109-125] and miRNA [104,119,126,127]. Besides APL and AML, further data have been collected for leukemiaogenesis, including transforming factors and epigenetic alterations [106,111,128-131]. Several small organic molecules have been proposed for clinical use in different leukemia pathologies. Histone deacetylase inhibitors (HDACi) such as Panobinostat (LBH589), Belinostat (PXD-101), 4SC-202 and AR-42 are currently in clinical trials for the treatment of chronic myeloid leukemia (CML), AML and chronic lymphocytic leukemia (CLL) [35,104-107,132]. A considerable interest in using HDACis is the study of combined regimens with other agents that can enhance cancer cell lethality. Among those agents there are cyclin-dependent kinase and tyrosine kinase inhibitors as well as Hsp90 and proteasome inhibitors [133,134]. Histone methyltransferases have also been the object of drug design approaches for leukemias. For instance, disruptor of telomeric silencing 1-like (DOT1L) has been discussed as a potential target of for the mixed-lineage leukemia (MLL) fusions. The potent SAM-competitive DOT1L inhibitor EPZ004777 was reported together with clinical implications for the personalized treatment of such an aggressive form of leukemia [109,110,113]. In addition, the structure of the newly developed inhibitor GSK2816126 targeting EZH2 for the treatment of AML was unveiled at the 2012 American Association for Cancer Research (AACR) annual meeting [135]. This compound was found to abrogate histone overmethylation, and the treatment of cell cultures and laboratory animals with this compound demonstrated a reduced proliferation of tumor cells.

The interest in modulating epigenetic enzymes is also rising in the treatment of lymphomas and myelomas, particularly as combination therapies. For instance, HDACi and DNMTi inhibitors have been tested for the treatment of aggressive non-Hodgkin’s Lymphomas (NHLs) [136-145].

Overall, pre-clinical and clinical studies in hematological malignancies are presently focused on histone deacetylases and DNA methyltransferases, but growing evidence points to the development of therapies that are directed to other classes of epigenetic enzymes, especially histone methyltransferases [146].

Lung

Epigenetic changes in lung cancers contribute to cell transformation by modulating chromatin structure and specific expression of genes; these include DNA methylation patterns, covalent modifications of histone and chromatin by epigenetic enzymes, and microRNA. All these changes are involved in the silencing of tumor suppressor genes and enhance the expression of oncogenes [147-152]. Genome-wide technologies and bioinformatics studies demonstrated that global alterations of histone patterns are linked to DNA methylation and are causal in lung cancer [153,154]. These techniques were also used for the prediction of specific miRNAs targeting the epidermal growth factor receptor (EGFR) in lung cancer [155]. Many genes were found to be silenced by methylation promoters in lung cancers in response to radiation stimuli [156]. DNA methylation patterns may also predict early recurrence of stage I non-small-cell lung carcinoma (NSCLC) [149].

As lung cancer is the major cause of cancer death worldwide and the five-year survival is extremely poor, the need of more effective therapeutic agents is of utmost importance [154]. In particular, NSCLCs are relatively insensitive to chemotherapy when compared to small cell carcinomas, so efforts are now directed to the study of the epigenetic changes occurring in these type of cancers and in pulmonary hypertension [154,157]. Restoration of the expression of epigenetically silenced genes with new targeted approaches and combined therapy with azacitidine and entinostat, as well as DNMTi and HDACi, were investigated in phase I/II trials for the treatment of NSCLCs [158-160].

Ovarian

Ovarian cancer is the most lethal gynecologic cancer. In advanced ovarian and endometrial carcinomas, current therapies that are initially responsive, evolve to a fully drug-resistant phenotype [161,162]. Among the factors that contribute negatively to the progression and therapeutic resistance against ovarian and endometrial cancer, there are several genetic mutations and epigenetic anomalies which are frequent in both malignancies [163-168]. Epigenetic changes include aberrant DNA methylation, atypical histone modifications and unregulated expression of distinct microRNAs, result-
ing in altered gene-expression patterns favoring cell survival [162, 169, 170].

As for other cancer diseases, the therapeutic intervention aimed at reversing oncogenic chromatin aberrations have been primarily studied with DNMTs and HDACs inhibitors [162, 168, 171, 172]. In addition, epigenetic phenomena, in which post-transcriptional gene regulation by small non-coding microRNAs is relevant, have also been investigated. Targeting of specific miRNAs has been performed using antagonir oligonucleotides for both mechanistic studies and investigation of possible in vivo therapeutic applications [170].

Prostate

Prostate cancer is one of the most commonly diagnosed cancers in men. A rapid increase of the incidence for this cancer is expected as the male population over the age of fifty is growing worldwide. In this cancer, epigenetic alterations appear earlier and more frequently than genetic mutations. Multiple genes silenced by epigenetic alterations have been identified [173]. Several reviews describing epigenetic changes in prostate cancer have been published recently [173-179]. Anti-cancer drug research has been stimulated by the fact that, for patients who are not cured by local treatment and have metastasis, neither androgen ablation nor chemotherapy can abrogate progression. For this reason, finding pharmacological strategies aimed to control prostate cancer initiation and disease progression is still a medical challenge. Several studies connecting prostate cancer and epigenetics include insights into: hypermethylation and hypomethylation patterns [180-184], involvement of histone modifiers such as HDACs, histone acetyltransferases (HATs), protein lysine methyltransferase (PKMTs) [185-187], multicomponent epigenetic regulatory complexes [188-191], new molecular biomarkers and therapeutic implications [192, 193] and prevention with dietary components [183, 194, 195]. Preclinical evidence involving the epigenome as a key mediator in prostate carcinogenesis has entailed initial clinical trials with epimers such as HDACs inhibitors [174]. It is expected that future drugs could become useful for new combination regimens aimed at treating prostate cancer.

Gastric

Gastrointestinal (GI) carcinogenesis causes some of the most common types of tumors worldwide, including esophagus, stomach, bowel, and anus. Even thought it has been recognized that the major reason for GI carcinogenesis resides in at least one genetic mutation that either activates an oncogene or inhibits the function of a tumor suppressor gene, recent data indicate that epigenetic abnormalities are critical in regulating benign tumorigenesis and eventual malignant transformation in gastorintestinal (GI) carcinogenesis [196-202]. In particular, aberrant histone acetylation regulated by HATs and HDACs have been linked to gastric cancer [196]. Epigenetic alterations have also been identified in presence of Epstein-Barr virus [203-205], while Helicobacter pylori, which constitutes a main cause of gastric cancer, was shown to reduce HDACs activity. These data suggest that pharmacological actions of HDACi in GI might be detrimental or beneficial depending on the clinicopathological context [206, 207]. Despite the fact that various links between GI cancer and HATs and HDACs have been identified, comparing to other cancers, fewer progresses have been reported to treat GI carcinogenesis with epimers. A Phase I study has combined Vorinostat with radiotherapy in GI carcinoma [208]. This, as well as other studies, created foundations for additional initiatives to improve the therapeutic potential of HDACi and other epigenetic enzymes for GI tumors [196].

Liver

Hepatocellular carcinoma (HCC) originates from hepatocytes and is the most common liver cancer. Cancer rates and etiology of HCC vary considerably by age, gender, ethnic origin, lifestyle (in particular alcohol abuse [209]) and environmental pollution [210]. Other factors include the infection by hepatitis B and C virus (HBV and HCV) [211, 212], exposure to aflatoxins, hypertension and diabetes [210, 213]. Both genetic and epigenetic factors form the molecular basis of HCC. Epigenetic alterations may predispose to genetic changes and, vice versa, genetic changes may also initiate aberrant epigenetic modifications [210, 213-216]. DNA methylation and various histone modifications, as well as RNA interference, have been reported as epigenetic events contributing to HCC development [210, 215, 217]. It should be remarked that the use of epigenetic biomarkers for detecting hepatocellular carcinoma has expanded the potential for non-invasive screening of high-risk populations [218]. However, the road to develop small-molecule compounds targeting epigenetic enzymes for HCC cancer treatment is at its beginning. Presently only HDACs have been studied for the treatment of HCC [217, 219-221].

Kidney

Kidney cancer accounts for 2% of all adult cancer malignancies and the majority of them (80-85%) are renal cell carcinomas (RCCs) originated from the renal parenchyma. While the direct causes of this type of cancer are still vaguely defined, smoking and chemical carcinogens (e.g. asbestos and organic solvents) have been related to renal tumorigenesis [222]. Furthermore pathologies like obesity, hypertension and the use of antihypertensive medications, have been reported as risk-factors for RCCs [222, 223]. Stepwise accumulation of DNA methylation has been observed by comparing normal renal tissues, renal tumor tissues and non-tumor renal tissues of patients with renal tumors [222]. These results highlighted that regional CpG patterns may participate in the early and precancerous stage of renal tumorigenesis. On the contrary, DNA hypomethylation does not seem to be a major event during renal carcinogenesis. DNA methylation alterations at a precancerous stage may further predispose renal tissue to epigenetic and genetic alterations, generating more malignant cancers and even determining the patient outcome [223]. At present there are few clinical trials of Phase I/II for testing inhibitors of HDACs (i.e. LBH-589 and Vorinostat) in advanced RCC [224, 225].

3. STRUCTURAL DATA OF EPIGENETIC TARGETS

The research aiming at developing new therapeutic anticancer strategies against epigenetic targets has flourished in the last years. Several review articles recently described rationales, targets, new drugs, approaches, novel compounds and methodologies [12, 17, 18, 20, 22-25, 35-41, 65, 226-229]. A large amount of these insightful articles have been dedicated to well established drug targets such as the histone deacetylases (HDACs) and DNA methyltransferases, and to the status of the development of small-molecule compounds [25, 31, 45, 55, 230, 231]. However, despite the intensive research effort, molecular processes linking specific epigenetic targets to DNA-dependent biological functions, and their cause-consequence relationships, have been hard to elucidate. Beyond the fairly well characterized epigenetic processes of histone acetylation and methylation, many other PTMs require further biological elucidations, currently collected by many scientists conducting research on cancer epigenetics. In the next paragraphs, we describe classes and families of proteins that have been directly and/or indirectly associated to the modulation of the epigenetic code, taking into account their importance in cancer pathologies. We emphasize that structural information does not imply that these proteins can be considered validated drug targets for anticancer treatments, as other factors need to be considered. Figure 1 provides a graphical view of the information related to these targets. In the next sections we describe in tabular form the ensemble of structural data related to these targets, as suggested by the current state-of-the-art in the field. For additional information, the reader will be referred to other important reviews and articles in each relevant section.
Acetylation

Class I, II and IV Deacetylases

Histone Deacetylases (HDACs) contribute to the regulation of transcriptional activity by catalyzing the hydrolysis of acetylated Lys side chains of histone and non-histone proteins in Lys and acetate. By restoring the positive charge of Lys residues, HDAC enzymes reverse the catalytic activity of histone acetyltransferases that will be described below. Deacetylation of histones alters the chromatin structure and represses transcription. Abnormal activity of these enzymes is implicated in several diseases, especially in cancer [20,23,31,98,107,136,159,232-238].

To date, 18 HDACs have been isolated in humans. They are organized into: class I (HDACs 1, 2, 3 and 8), class IIa (HDACs 4, 5, 7 and 9), class IIb (HDACs 9 and 10), class III (designated sirtuins SIRT1 to 7) and class IV (HDAC11). Class III enzymes are NAD+-dependent deacetylases that are catalytically distinct from other HDAC classes, thus they will be discussed in the next paragraph. X-ray crystal structures (Table 1) are available for human HDACs (2, 3, 4, 6, 7, and 8) and for three HDAC-related deacyt-

izations with other subunits and/or substrate (see Table 1) [267]. The first three-dimensional structure of a HDAC-related protein was the histone deacetylase-like protein (HDLp) from *Aquarellae aequilis* in complex with the inhibitors Tricostatin A and SAHA (Vorinostat) [239]. This data provided the structural basis for the catalytic mechanism and the inhibition of this family of enzymes, paving the way for the design of new bioactive molecules able to interfere with the deac-
tylation reaction. Several compounds targeting HDACs entered clinical trials in the last year and have been reviewed elsewhere [98,105,139,141,234,237,240-243]. These proteins belong to the open α/β folding class, with an eight-stranded parallel β-sheet sandwiched between α-helices. The active site consists of an extended and tight primarily hydrophobic tunnel with the catalytic machinery located at its end. During the deacetylation reaction the tunnel is occupied by methylene groups belonging to the substrate acetylated Lys, while the acetyl moiety binds a metal ion in the center of the active site. The deacetylase reaction requires a transition metal ion and, although the HDACs are typically considered Zn²⁺-containing enzymes, the metal ion in the active site, as demonstrated by the X-ray structure of HDAC8, can be substituted by Fe²⁺, Co²⁺ and Mn²⁺ [244]. This is consistent with the hypothesis that HDACs could function as a Fe³⁺-catalyzing enzyme in *vivo* (Table 1) [245]. The overall fold of other recently crystallized HDACs is similar to the previously reported structures, even if several key features distinguish the various classes. A comprehensive review on these structural aspects has been published by Lombardi et al [246]. Besides the large number of non-mutated X-ray structures of the catalytic domain, often in complex with known inhibitors, three-dimensional structures of other HDAC domains have also been published. In particular, three structures of the zinc-binding domain of HDAC6 and two structures of the glutamine-rich domain of HDAC4, both responsible of protein-protein interactions and formation of large protein complexes, have been solved (Table 1). In addition, the large number of complexes with point mutations in the catalytic domain, especially for HDAC8, HDAC4 and bacte-

rrial APAH, highlight the importance of some key residues in the binding of substrate and small-molecule inhibitors.

Class III Deacetylases (Sirtuins)

Sirtuins represent the class III family of histone deacetylases (HDACs). Structure and function of these proteins differ from other HDACs since sirtuins require NAD⁺ to catalyze the removal of an acetyl moiety from a Lys residue within specific protein targets, including histone tails. As seen in the previous section, this family of enzymes is largely conserved from bacteria to humans [264] and is involved in important physiological processes and disease conditions including longevity, metabolism and DNA regulation, cancer and inflammation [265,266]. In the last years, the three-dimensional structures of many sirtuin homologs have been solved by X-ray crystallography allowing a better understanding of the catalytic mechanism and specific structural features of this enzyme family (Table 2). The first three-dimensional structure obtained was a Sir2 homolog from *A. Fulgidus* complexed with NAD⁺ [267]. This structure provided the first insights into the structural features and catalytic mechanism of sirtuins. Afterward, several details were provided about the active site characteristics, deacetylation reaction and inhibitors/substrate binding as a result of several X-ray structures complexed with different substrates. Examples include: p53 peptides or histone H3/H4 peptides, and different reaction intermediates, like 2-O-acetyl-ADP-ribose (see Table 2 for details). The inhibition mechanism of the endogenous regulator nicotinamide, a key step in the development of new sirtuins effectors, was also studied [268,269]. Although a large number of synthetic sirtuins inhibitors and activators are described in literature, only one crystal structure reports an inhibitor, Suramin, showing the structural basis for inhibitor binding and allowing the rational design of new and more potent compounds [270]. Several bacterial Sir2 structures and human Sirt2, Sirt3, Sirt5 and Sirt6 are available whereas no structures exist at present for Sirt1, Sirt4 and Sirt7 (Table 2). All these PDB entries contain the catalytic domain, formed approximately by 270 residues, and variable N-terminal and C-terminal regions. The catalytic core of sirtuins is conserved among the various isoforms; it is formed by a large Rossmann-fold domain, present in many NAD⁺-binding proteins, and a small zinc-binding domain. A number of flexible loops bring together the two domains to form a large groove that accommodates both cofactor and substrate. A review on sirtuins is also part of the current journal issue [271].

Acetyltransferases

Histone acetyltransferases (HATs) utilize acetyl-CoA (AcCoA) as cofactor and catalyze the transfer of an acetyl group to the ε-amino group of Lys side chains of histone proteins to promote gene activation. Two major classes of HATs have been identified, Type-A and Type-B. Type A HATs can be classified into three families, based on sequence homology and conformational structure: GNAT, p300/CBP, and MYST [288]. These proteins are able to acetylate multiple sites within the histone tails, and also additional sites on the globular histone core. Type-B HATs are mostly cytoplasmic and acetylate newly synthesized histones, H3 and H4, at specific sites prior to their deposition into chromatin. Proteins in this class are highly conserved and share some sequence identity with HAT1 from yeast, the most studied member of this family [289]. Three-dimensional structures of different HATs reveal a structurally conserved catalytic core domain that mediates the binding of the cofa-
tor AcCoA and non-conserved N-terminal and C-terminal domains specific for each protein to mediate histone binding [290]. HAT proteins are often associated with other subunits in large multiprotein complexes playing important roles in modulating enzyme recruitment, specificity and activity. The combination of these subunits contributes to the unique features of each HAT complex. For example, some subunits have domains such as bromodomains, chromodomains, Tudor domains and PHD fingers that cooperate to the enrollment of HAT complexes to the appropriate location in the genome by means of modified histone tail recognition [291]. To date, several three-dimensional structures obtained both from X-ray crystallography or NMR are available for human and bacterial HATs; among these, only few structures report the full-length protein, while others describe only specific domains and their interactions with other subunits and/or substrate (see Table 3).
Class	Name	Organism	PDB ID	Ligand	Domain	Reference
	HDAC2	**Homo sapiens**	3MAX	N-(4-aminobiphenyl-3-yl)benzamide	Catalytic Domain	[247]
	HDAC3	**Homo sapiens**	4A69	Nuclear receptor corepressor 2 and inositol tetraphosphate	Catalytic Domain	[248]
I			1T64	Trichostatin A	Catalytic Domain	[249]
			1T67	M344 (B3N⁺)	Catalytic Domain	
			1T69	SAHA	Catalytic Domain	
			1VKG	Cra-19156	Catalytic Domain	
			1W22	Hydroxamic acid inhibitor	Catalytic Domain	[250]
			2V5W	Acetylated substrate	Catalytic Domain (mutate)	[251]
			2V5X	Hydroxamic acid inhibitor	Catalytic Domain	
			3EW8	M344 (B3N⁺)	Catalytic Domain (mutate)	
			3EWF	Substrate Peptide	Catalytic Domain (mutate)	
			3EZP	M344 (B3N⁺)	Catalytic Domain (mutate)	
			3EZW	M344 (B3N⁺)	Catalytic Domain (mutate)	
			3F06	M344 (B3N⁺)	Catalytic Domain (mutate)	
			3F07	APHA	Catalytic Domain	
			3F0R	Trichostatin A	Catalytic Domain	
			3MZ3	M344 (B3N⁺)	Catalytic Domain (Co²⁺)	[244]
			3MZ4	M344 (B3N⁺)	Catalytic Domain (Mn²⁺)	
			3MZ6	M344 (B3N⁺)	Catalytic Domain (Fe²⁺)	
			3MZ7	M344 (B3N⁺)	Catalytic Domain (Co²⁺)	
			3RDQ	Largazole	Catalytic Domain	[253]
			3SFF	Aminoacid derived inhibitor	Catalytic Domain	[254]
			3SFH	Aminoacid derived inhibitor	Catalytic Domain	
IIa			2H8N	Glutamine Rich Domain	Glutamine Rich Domain	[255]
			2O94	Glutamine Rich Domain	Glutamine Rich Domain	
			2VQJ	Trifluoromethylketone inhibitor	Catalytic Domain	
			2VQM	Hydroxamic acid inhibitor	Catalytic Domain	
			2VQO	Trifluoromethylketone inhibitor	Catalytic Domain (mutate)	
			2VQQ	Trifluoromethylketone inhibitor	Catalytic Domain (mutate)	
			2VQV	Hydroxamic acid inhibitor	Catalytic Domain (mutate)	
			2VQW	Hydroxamic acid inhibitor	Catalytic Domain (mutate)	
	HDAC7	**Homo sapiens**	3COY		Catalytic Domain	[257]
			3COZ	SAHA	Catalytic Domain	
			3C10	Trichostatin A	Catalytic Domain	
Table 1. Contd.

Class	Name	Organism	PDB ID	Ligand	Domain	Reference	
				3C5K	Zinc Finger Domain	[258]	
				3GV4	Ubiquitin C-terminal peptide	Zinc Finger Domain	
				3PHD	Ubiquitin	Zinc Finger Domain	[258]
IIb	HDAC6	Homo sapiens	1ZZ0	Acetate	Catalytic Domain	[259]	
			1ZZ1	SAHA	Catalytic Domain	[259]	
			1ZZ3	CypX	Catalytic Domain	[259]	
			2GH6	Trifluoromethylketone inhibitor	Catalytic Domain	[260]	
			2VCG	ST-17	Catalytic Domain	[261]	
	HDAH	Alcaligenes sp.	1C3P		Catalytic Domain	[239]	
Bacterial			1C3R	Trichostatin A	Catalytic Domain	[239]	
			1C3S	SAHA	Catalytic Domain	[239]	
	HDLP	Aquifex Aeuricus	3Q9B	M344	Catalytic Domain	[262]	
			3Q9C	N8-acetyl spermidine	Catalytic Domain (mutate)	[262]	
			3Q9E	Acetylspermine	Catalytic Domain (mutate)	[262]	
			3Q9F	CAPS	Catalytic Domain	[263]	
	APAH	Mycoplasma ramosa	3Q9B	M344	Catalytic Domain	[262]	
			3Q9C	N8-acetyl spermidine	Catalytic Domain (mutate)	[262]	
			3Q9E	Acetylspermine	Catalytic Domain (mutate)	[262]	
			3Q9F	CAPS	Catalytic Domain	[263]	
			Burholderia pseudomalaei	3MEN	Catalytic Domain	[263]	

*PDB ligand ID

Table 2. Available Three-dimensional Structures of Human and Bacterial Sirtuins

Name	Organism	PDB ID	Ligand	Reference
SIRT2	Homo sapiens	1J8F	-	[272]
SIRT3	Homo sapiens	3GLR	Acetyl-lysine AceCS2 peptide	[273]
		3GLS	-	[273]
		3GLT	Thioacetyl-lysine AceCS2 peptide	[273]
		3GLU	AceCS2 peptide	[273]
SIRT5	Homo sapiens	2B4Y	ADPR	[270]
		2NYR	Suramin	[274]
		3RIG	-	[274]
		3RIY	NAD⁺	[274]
SIRT6	Homo sapiens	3K35	ADPR	[275]
		3PKI	ADPR	[275]
		3PKJ	2'-N-Acetyl-ADPR	[275]
CobB	Thermotoga	1YC5	Nicotinamide	[268]
(Sir2)	maritima	2H2D	p53 peptide	[276]
		2H2F	p53 peptide	[276]
		2H2G	Histone H3 peptide	[276]
Name	Organism	PDB ID	Ligand	Reference
-----------	------------------------	--------	---------------------------------	-----------
	CobB2			
	(Sir2Af2)			
	CobB1			
	CobB			
	Sir2			
	Sir2			
			Histone H4 peptide	[277]
			p53 peptide/NAD^+	[278]
			p53 peptide/NAD^+	[279]
			p53 peptide/ADPR	[280]
			p53 peptide/DADMe-NAD^+	
			S-alkylamidate intermediate	
			Acetylated Peptide	
			Propionylated p53 peptide	
			NAD/ADPR/Nicotinamide	[268]
			ADPR/NAD	[281]
			Acetylated p53 peptide	[282]
			ADPR	
			Histone H4 peptide/2-O-acetyl-ADPR	[283]
			Histone H4 peptide/CarbaNAD	[284]
			Histone H4 peptide/ADPR	[285]
			Acetylated Histone H4 peptide/CarbaNAD	[284]
			Acetylated Histone H4 peptide/ADP-HPD	[269]
			Histone H4 peptide/ADP-HPD/Nicotinamide	[281]
			Acetylated Histone H4 peptide/ADP-HPD	[280]
			Histone H4 peptide/ADP-HPD/ADPR	
			Acetylated Histone H4 peptide	
			NAD^+	
			ADPR	
			ADPR	
			ADPR	
			2-O-acetyl-ADPR	
			Acetylated Histone H4 peptide	
			Acetyl-ribosyl-ADP/Nicotinamide	
			Acetylated Histone H4 peptide	
			histone 3 myristoyl lysine 9 peptide/ NAD^+	[287]
			histone 3 myristoyl lysine 9 peptide	
	CobB2		Histone H4 peptide	[286]
	CobB1		Histone H4 peptide	[267]
	Sir2		Histone H4 peptide	[268]
	Sir2		Histone H4 peptide	[269]

(Table 2) Contd....
Class	Family	Name	Organism	PDB ID	Ligand	Domain	Reference
Type A							
	p300	Homo sapiens		IL3E		CH1 domain	[303]
				IP4Q		CH1 domain	[304]
				2K8F		Taz2 Domain	[305]
				3BIY		Lys-CoA	[306]
				3I3J		Bromodomain	[294]
				3IO2		Taz2 Domain	[307]
				3PS7		Taz2 Domain	[308]
	p300/ CBP	Homo sapiens		ILSP		Bromodomain	[309]
				1LIQ		CH1 domain	[310]
				1WO3		CHANCE Domain (mutate)	[311]
				1WO4		CHANCE Domain (mutate)	[311]
				1WO5		CHANCE Domain (mutate)	[311]
				1WO6		CHANCE Domain (mutate)	[311]
				1WO7		CHANCE Domain (mutate)	[311]
	CBP	Homo sapiens		1ZOQ		IRF-3 Binding Domain	[312]
				2D82		Bromodomain	[313]
				2KJE		Taz2 Domain	[314]
				2KWF		KIX Domain	
				2L84	J28	Bromodomain	[315]
				2L85	L85	Bromodomain	
Table 3 Contd….

Class	Family	Name	Organism	PDB ID	Ligand	Domain	Reference
				2RNY		Bromodomain	[301]
				3DWY		Bromodomain	
				3P1C		Bromodomain	[294]
				3P1D		Bromodomain	
				3P1E	DMSO	Bromodomain	
				3P1F	3PF	Bromodomain	
				3SVH		KRG	
				4A9K	Tylenol	Bromodomain	[316]
				1F81		Taz2 Domain	[317]
				1JJS		IRF-3 Binding Domain	[318]
Mus musculus				1KBH		IRF-3 Binding Domain	[319]
				1KDX		KIX Domain	[320]
				1L8C		Taz1 Domain	[321]
				1R8U		Taz1 Domain	[322]
				1SB0		KIX Domain	[323]
				1TOT		ZZ Domain	[324]
				1U2N		Taz1 Domain	[325]
				2AGH		KIX Domain	[326]
				2C52		SRC1 Interaction Domain	[327]
				2KA4		Taz1 Domain	[328]
				2KA6		Taz2 Domain	
				2KKJ		Nuclear Coactivator Binding Domain	[329]
				2L14		Nuclear Coactivator Binding Domain	[330]
	Homo sapiens	KAT5 (TIP60)	Homo sapiens	2EKO		Histone tail binding domain	
				2OU2	AcCoA	HAT Domain	
	Homo sapiens	KAT6A (MOZ)	Homo sapiens	1M36		Zinc Finger Domain	
				2OZU	AcCoA	HAT Domain	
				2RC4	AcCoA	HAT Domain	[331]
	Homo sapiens	KAT8 (MOF)	Homo sapiens	2GIV	AcCoA	HAT Domain	
				2PQ8	AcCoA	HAT Domain	
MYST				2Y0M	AcCoA	HAT Domain	[332]
				3QAH		HAT Domain	[333]
				3TOA		HAT Domain	[334]
				3TOB		HAT Domain (mutate)	
	Homo sapiens	1WGS	Homo sapiens			Tudor Domain	

Mus musculus

KAT5 (TIP60)

KAT6A (MOZ)

MYST

KAT8 (MOF)
A growing interest on novel drug design initiatives is currently focused on the primary readers of the histone code, the histone binding domains (HBDs). Notable HBDs are the Bromodomain (BD) proteins, which are structurally small and evolutionary conserved modules that bind acetyl-Lys and are part of larger BCPs (bromodomain containing proteins) [344]. These modules are frequently found in HATs as well as members of the histone methyltransferase (HMT) family and ATP-dependent remodeling enzymes [19,345]. At least 56 BDs are encoded in the human genome and translated in 42 different known proteins whose structures, for half of them, have been determined by X-ray crystallography [344,346]. The research focused on inhibition of BDs has been stimulated by the discovery of two potent compounds (I-BET762 and JQ1) with in vivo efficacy in murine models of NUT (nuclear protein in testis) midline carcinoma, as well as AML and severe immune inflammation [347-350]. Other recent works show the application of fragment-based drug discovery techniques for the identification of new BD inhibitors [316,347,348,351,352] in addition to evidence that the pharmacological inhibition of BET (bromodomains and extra terminal domain) family proteins leads to rapid and potent abrogation of MYC gene transcription [353].

Methylation

Histone Methyltransferases

Protein methyltransferases (PMTs) are a group of histone-modifying enzymes belonging to the large number of coded PTMs [73,354,355]. Currently two different classes of PMTs are recognized: protein lysine methyltransferases (PKMT) and protein arginine methyltransferases (PRMT), which are encoded in 51 and 45 genes [356], respectively. PMTs emerged recently as new important targets for cancer therapy since they were found to be overexpressed or repressed in several types of cancer [73]. PKMTs can mono-, di- or tri-methylate target Lys residues, whereas PRMTs are able to mono- or di-methylate the histone Arg residues [41,72,73,191,355,357-363]. PKMTs share a conserved active site in the so-called SET (Su(Var)3-9, Enhancer of zeste, Trithirax) domain. The only known exception is the DOT1L, which has PKMT activity without having the SET domain in its structure. DOT1L also shares a higher homology towards PRMTs and is often reported in the PRMTs family tree diagrams as having a PKMT function [72,73,355,356]. In order to methylate a certain Lys or Arg residues in a histone, PMTs use a reactive S-adenosyl methionine (SAM) which leaves a methyl group to the respective Lys or Arg residue, becoming S-adenosyl homocysteine (SAH). SAM is used as substrate by proteins other than PMTs and this raises the question whether pharmacological modulation of the SAM binding site may guarantee an adequate selectivity against other SAM-binding proteins. The structural characteristic that differentiates PMTs to other SAM-binding proteins is their elongated active site geometry. In PMTs the SAM binding pocket entrance is in the opposite position of the hydrophobic and narrow histone (Lys or Arg) binding pocket of the methyltransferase; these two tunnels have a contact area where methylation of histones occurs [73,364]. Several reviews published recently, including one of the current journal issue, describe the mechanism of action of PMTs [41,72,73,191,355,357-
Because of the importance of PMTs as new biological targets for anticancer therapy, elucidation of their structure is fundamental to undertake drug design campaigns. In the following sections we describe the current structural knowledge available on PMTs.

PKMTs

To date there are 26 crystallized Lys methyltransferases available in the Protein Data Bank (Table 4). With the exception of DOT1L, all of them share the canonical SET domain [72,73,355,356] and have S-adenosyl methionine (SAM), S-adenosyl homocysteine (SAH, the product of the methylation reaction), or early inhibitors co-crystallized. Structures with reported inhibitors are DOT1L, EHMT1, EHMT2, SETD7, SMYD1, SMYD2, SMYD3 (Table 4). Emerging crystallographic structures are likely to allow the implementation of structure-based drug design approaches as these targets become more and more validated for specific anticancer therapies. Moreover, due to the presence of additional proteins interacting with PKMTs during histone methylation, some structures, i.e. MLL1, EHMT1, SETD7, SETD8, SETMAR and SMYD2, were resolved with bound peptide partners. This information is also relevant to the design of potential protein-protein interaction inhibitors. However, to our knowledge, no work has been so far reported in this context. The most direct approach for developing PKMTs ligands seems to be focused on the SET domain. However, whether the most effective approach is to target the SAM or histone binding sites is still subject of investigations, although some co-crystal structures demonstrate that both might be pursued (Table 4) [73,364]. The complete list of crystallographic structures available PKMTs is reported in Table 3. PKMTs with resolved SET domain include: MLL1, EHMT1, EHMT2, SUV39H2, NSD1, SETD3, SETD6, SETD7, SETD8, SETD2, SETMAR, ASH1L, SUV420H1, SUV420H2, SMYD1, SMYD2, SMYD3, PRDM1, PRDM4, PRDM10, PRDM11, PRDM12. This structural information may help to predict selectivity of PKMTs ligands to one or more proteins of this family.

PRMTs

As for PKMTs, Arg histone residues can likewise be methylated by protein methyltransferases. Specific PRMTs can monomethylate or di-methylate, symmetrically or asymmetrically, specific Arg residues in histones through a mechanism similar to the one of PKMTs: a SAM molecule donates a methyl group to an Arg residue becoming SAH [72,73,355]. Interestingly, Arg methylation can be correlated with active transcription or its inhibition. An example is the methylation of Arg 2 of histone 3: when mono-methylated, transcription of DNA is active. Conversely, after di-methylation operated by PRMT6, the transcription is inhibited [402]. PRMTs, like the coactivator-associated arginine methyltransferase (CARM1) and PRMT5, have been described to play an important role in cancer as their expression increases in breast and prostate cancers, for CARM1, and lymphoma, for PRMT5. Research conducted on new modulating agents of these PRMTs has been documented [72,73]. In particular, CARM1 has been described as a potential oncological target as its interactions with nuclear transcription factors and p53 may represent a new approach for treating cancer [403]. Its crystal structure (Table 5) has been resolved with a bound indole-based inhibitor, providing new insightful information for the inhibition of this Arg methyltransferase. Other PRMTs that have been crystallized are: PRMT1, PRMT2, PRMT3, ECE2, METTL11A.

DNA Methyltransferases

DNA methyltransferases are enzymes that methylate DNA patterns involved in several biological functions like gene silencing, X-chromosome inactivation, DNA repair, and reprogramming elements responsible for carcinogenesis [408]. In the last decade, the variety of functions intrinsic to this family of enzymes has propelled research on their biology and pharmacology. In mammals, DNA methylation occurs at the C5 position of cytosine (5mC), predominantly within CpG dinucleotides belonging to the CpG islands. These enzymes use the same substrate of PMTs, a SAM molecule, that is responsible for donating a methyl group to the cytosine nucleotide [359,408-411]. The mechanism of reaction requires the binding of the DNA methyltransferase to the DNA strand. This interaction projects the double helix outwards, thereby causing a cytosine base-flipping. A subsequent attack from the conserved nucleophile cysteine on the cytosine C6 is followed by the transfer of the methyl group from SAM to the activated cytosine C5 [408,410].

DNMTs can be divided into three groups according to their function: DNMT1, the most abundant DNA methyltransferase, regarded as a maintenance enzyme; DNMT3s A and B considered de novo methyltransferases because they have the ability to newly methylate cytosines; DNMT3L itself (part of the second group of DNMTs) does not have any catalytic activity but it is required for the function of DNMT3A and B; finally, DNMT2, the least studied DNA methyltransferase, has been solved by X-ray crystallography and biochemical data demonstrate that it functions as an aspartic acid transfer RNA (tRNA)sp. Recent data suggest that there are additional functions for this DNA methyltransferase [227,412]. The structure of DNMTs is mainly composed of a large N-terminal region, with several domains and variable size, and a C-terminal domain. While the N-terminal domain has several distinct regulatory functions, the catalytic site is located in the C-terminal domain [408,411]. Among the regulatory functions of the N-terminal region, there are the guidance of these proteins towards the nucleus and their interaction with DNA and chromatin. The C-terminal domain is more conserved between bacterial and eukaryotic DNMTs and, in its active site, a set of ten residues constitutes the motif for all DNMTs that methylate C5 cytosines. The core of the catalytic domain of all DNMTs is common along this enzyme family and is termed AdoMet-dependent M\textsubscript{t}ase fold. In this domain, conserved regions are involved in catalysis and co-factor binding, whereas the non-conserved region is involved in DNA recognition and specificity to methylate certain cytosines [408,411]. The ensemble of structural data of DNMTs is shown in Table 6.

It is important to note that the close relationship between DNMTs functions on the cell and cancerogenesis led this family of proteins to be intensively studied for a number of cancer pathologies (see previous chapters). Comprehensive reviews providing more detail on inhibitor development and major milestones in targeting DNMTs have been published recently [65,227,357,360,361,413].

Demethylases

The focus in the last decade in understanding protein methylation led to the discovery of histone demethylases. The existence of this protein family was first described by Shi et al., who identified the first protein with histone demethylase activity, the lysine-specific demethylase 1 (LSD1) [421]. Since then, histone demethylation was identified as an important regulator for gene transcription and the interest in this protein family increased rapidly in subsequent years. Tsukada et al. [422] described a member of the JMJC (Jumonji C) domain family of proteins as having demethylase activity. Soon thereafter, 30 members of the JMJC domain family were found employing bioinformatics approaches, but only 18 of them have been reported to exhibit demethylase activity [423]. Histone demethylases are currently divided into two families: LSD demethylases and JMJC demethylases. These two protein families differ in their mechanism of Lys demethylation, in their structure and in substrate specificity.

The LSD family has two members, LSD1 and LSD2, and uses FAD to demethylate the histone Lys residues H3K4 and H3K9 through a FAD-dependent oxidative reaction [424]. Through this mechanism, both demethylases are only able to operate on mono- or
Table 4. Available Three-dimensional Structures of Mammals PKMTs

Name	Organism	PDB ID	Ligand	Domain	References
DOT1L	Homo sapiens	1NW3, 3QOW	SAM		[365,366]
		3QOX	SAH		[366]
		3SX0	brominated SAH analog		
		3SR4	TT8°		[367]
		3UWP	5-iodotubercidin		
MLL1	Homo sapiens	2W5Y	SAH	Methyltransferase	[368]
		2W5Z	Histone peptide, SAH	Methyltransferase	[368]
		2KU7	PHD3-Cyp33 RRM chimeric protein (NMR)		[369]
		3LPY	PHD3-bromo cassette		
		3LQH	Third PHD finger and bromo		
		3LQI	H3(1-9)K4me2 peptide PHD3-bromo		[369]
		2KYU	PHD3 finger PHD3 finger		[370]
EHMT1	Homo sapiens	2IQQ	SAH	C-terminal	[371]
		2RFI	SAH	Catalytic	[371]
		3B7B	SAH	Ankyrin repeat domains	[372]
		3B95	Histone H3 N-terminal Peptide	Ankyrin repeat	[371]
		3FPD	BIX-01294°, SAH	SET	[373]
		3HNA	Mono-Methylated H3K9 Peptide SAH	Catalytic	[371]
		3M00	E11°, SAH	SET	[364]
		3M02	E67°, SAH	SET	
		3M05	E72°, SAH	SET	
		3SW9	Dnmt3a peptide, Sinefungin	C-terminal	[374]
		3SWC	Dnmt3a peptide, SAH	C-terminal	[374]
EHMT2	Homo sapiens	2O8J	SAH	SET	[371]
		3K5K	DXQ°, SAH,	SET	[375]
		3RJW	CIQ°, SAH	SET	[376]
		3DM1			
SUV39H1	Homo sapiens	3MTS		Chromo	
SUV39H2	Homo sapiens	2R3A	SAM	Methyltransferase	[371]
NSD1	Homo sapiens	3OOI	SAM	SET	[377]
WHSC1L	Homo sapiens	2DAQ		PWWP (NMR)	
SETD1A	Homo sapiens	3S8S		RRM	
SETD3	Homo sapiens	3SMT	SAM		
SETD6	Homo sapiens	3QXY	SAM	N-lysine methyltransferase	[378]
SETD7	Homo sapiens	1H3I		N-terminal, SET	[379]
Name	Organism	PDB ID	Ligand	Domain	References
------	----------	--------	--------	--------	------------
1MT6	SAH	N-terminal, SET	[380]		
1MU5	SAM	SET	[381]		
1N6A	SAH, N-methyl-lysine	N-terminal, SET	[382]		
1XQH	p53 peptide, SAH, N-methyl-lysine	N-terminal, SET	[383]		
2FGH	TAF10 peptide, SAH, N-methyl-lysine	N-terminal, SET	[384]		
3CBM	Estrogen receptor peptide, SAH	SET	[385]		
3CBO	Estrogen receptor peptide, SAH				
3CBP	Estrogen receptor peptide, SAH, Sinefungin				
3M53, 3M54, 3M55, 3M56, 3M57, 3M58, 3M59, 3M5A	TAF peptide, SAH	SET with various mutations			
3OS5	Dnmt1 peptide, SAH, N-methyl-lysine	SET	[386]		
4E47	SAM, 0N6a	SET			
1ZKK	Histone 4 peptide, SAH	SET	[387]		
2BQZ	Histone 4 peptide, SAH, N-methyl-lysine	SET	[388]		
3F9W	Histone 4 peptide, SAH	SET (Y334F)	[389]		
3F9X	Histone 4 peptide, SAH, N-dimethyl-lysine	SET (Y334F)			
3F9Y	Histone 4 peptide, SAH, N-methyl-lysine	SET (Y334F)			
3F9Z	Histone 4 peptide, SAH	SET (Y334F)			
3H6L	SAM	SET			
3DLM	Tudor				
3BO5	SAH	N-methyltransferase			
3F2K	LTFA peptide, selenomethionine	Transposase	[391]		
3K9J	Transposase				
3K9K	Transposase				
3MQM	Bromo		[294]		
3OPE	SAM	SET			
3S8P	SAM, selenomethionine	SET			
3RQ4	SAM	SET			
3N71	Sinefungin	SET and MYND	[392]		
3QWV, 3QWW	SAH, Sinefungin	SET and MYND	[393]		
3RIB	SAH	SET and MYND	[394]		
3S7B	NH5a, SAM	SET and MYND	[395]		
Table 4 Contd….

Name	Organism	PDB ID	Ligand	Domain	References
		3S7D	Monomethylated p53 peptide, SAH		
		3S7F	p53 peptide, SAM		
		3S7J	SAM		
		3TG4	SAM	SET and MYND	[396]
		3TG5	p53 peptide, SAH		
SMYD3	Homo sapiens	3MEK	Selenomethionine, SAM	SET and MYND	
		3OXF	SAH	SET and MYND	
		3OXG			[397]
		3OXL			
		3PDN	Sinefungin	SET and MYND	[398]
		3QWP	SAM	SET and MYND	
		3RU0	Sinefungin	SET and MYND	[399]
PRDM1	Homo sapiens	3DAL		SET	
PRDM2	Homo sapiens	2JV0		SET (NMR)	[400]
PRDM2	Homo sapiens	2QPW		SET	[371]
PRDM4	Homo sapiens	2L9Z		Residues 366-402	[401]
		3DB5	Selenomethionine	SET	
PRDM10	Homo sapiens	3HX		SET	
PRDM11	Homo sapiens	3RAY		SET	
PRDM12	Homo sapiens	3EP0		SET	

*ligand PDB ID

Table 5. Available Three-dimensional Structures of Mammals PRMTs

Name	Organism	PDB ID	Ligand	Domain	References
	PRMT1	1OR8	Substrate peptide, SAH	Full length	[405]
	Rattus norvegicus	1ORH	Substrate peptide, SAH	Full length (E153Q)	
		1OR1	SAH	Full length	
		3Q7E	SAH	Full length	

Rattus norvegicus

Mus musculus

Homo sapiens

CARM1

Rattus norvegicus

Mus musculus

Homo sapiens

Sinefungin, 8495

Sinefungin, 8455
Table 5. Available Three-dimensional Structures of PRMTs

Name	Organism	PDB ID	Ligand	Domain	References
PRMT2	*Homo sapiens*	1X2P	SH3		
PRMT3	*Mus musculus*	1WIR	C2H2 zinc finger		
Rattus norvegicus	1F3L	SAH	C2H2 zinc finger, SAM binding and catalytic	[406]	
Homo sapiens	2FY7	SAH	SAM binding and catalytic		
		3SMQ	TDU^a	SAM binding and catalytic	
ECE2	*Homo sapiens*	2PXX	SAH	Methyltransferase-like region (R100C)	[407]
METTL11A	*Homo sapiens*	2EX4	SAH	Full length	

^aligand PDB ID

Table 6. Available Three-dimensional Structures of Mammals DNMTs

Name	Organism	PDB ID	Ligand	Domain	References	
DNMT1	*Mus musculus*	3AV4	DNMT1			
		3AV5	SAH	DNMT1		
		3AV6	SAM	DNMT1		
		3PT6	DNA, SAH			
		3PT9	SAH	DNMT1 and DNA complex		
	Homo sapiens	3EPZ	RFTS domain, Beta-d-glucose	DNMT1	[415]	
		3PTA	DNA, SAH	RFTS	[414]	
		3SWR	Sinefungin, MES^a,	DNMT1 and DNA complex	[386]	
		3OS5	SETD7, SAH	DNMT1	[414]	
DNMT2	*Homo sapiens*	1G55	SAH	Complex with SETD7	[412]	
DNMT3A	*Homo sapiens*	2QRV	DMNT2 (deleted in 191-237)		[416]	
		3A1A	DNMT3a-DNMT3L C-terminal complex		[417]	
		3A1B	ADD and histone H3 complex			
		3LLR	ADD and histone H3 complex			
DNMT3B	*Mus musculus*	1KHC	PWWP		[419]	
	Homo sapiens	3FLG	PWWP		[418]	
		3QKJ	PWWP		[418]	
DNMT3L	*Homo sapiens*	2PVO	PWWP		[420]	
		2PVC	Histone H3 peptide	DNMT3L	[420]	
		2QRV	SAH	DNMT3L - DNMT3a C-terminal complex		[416]

^aligand PDB ID
Table 7. Available Three-dimensional Structures of Demethylases

Name	Organism	PDB ID	Ligand	Domain	References
		2COM	-	SWIRM	[432]
		2DW4	FAD		
		2EJR	F2N′		[433]
		2Z3Y	F2N′		
		2Z5U	FA9′	Full length	[434]
		2H94	FAD		[435]
		2HK0	FAD		
		2IW5	CoREST 1 peptide, FAD	SWIRM, amine oxidase and linker	[436]
		2L3D		SWIRM domain	
		2UXN	CoREST 1 peptide, Histone H3 peptide, FAD	SWIRM domain, amine oxidase domain and linker	[437]
		2UXX			
		2V1D	CoREST 1 peptide, Histone H3 peptide, FAD	SWIRM domain, amine oxidase domain and linker	[438]
		2X0L			[439]
		2XAF	CoREST 1 peptide, FAD, TCFβ		
		2XAG			
		2XAH	CoREST 1 peptide, FAD, 3PLβ	Full length	[440]
		2XAJ	CoREST 1 peptide, FAD, TCAβ		
		2XAS	CoREST 1 peptide, FAD, M80β		
		2Y48	CoREST 1 peptide, Zinc finger protein SNAI1, FAD	Full length	[441]
		3ABT	amine oxidase domain 2, 2PFβ		
		3ABU	amine oxidase domain 2, 12Pβ		[442]
		3UYJ	AKGβ	JmjC	
		4AAP	OGAβ	JmjC	
		3K2O	-		[443]
		3LD8	antibody Fab fragment		
		3LDB	antibody Fab fragment, AKGβ		
		2YU1	AKGβ		
		2YU2	-		
		3KV5	OGAβ		[444]
		3KV6	AKGβ	JmjC	
		3KV9	-		
		3KVA	AKGβ		
Name	Organism	PDB ID	Ligand	Domain	References
------	----------	--------	--------	--------	------------
3KVB		OGA\(^b\)			
3U78		AKG, E67\(^a\)		JmjC	[445]
3N9L	Caenorhabditis elegans	Histone H3 peptide, OGA\(^b\)		PHD and JmjC	[446]
3N9M	Caenorhabditis elegans	-		PHD	
3N9N	Caenorhabditis elegans	Histone H3 peptide, OGA\(^b\)		PHD and JmjC	[446]
3N9O	Caenorhabditis elegans	Histone H3 peptides, OGA\(^b\)		PHD and JmjC	[446]
3N9P	Caenorhabditis elegans	Histone H3 peptide, OGA\(^b\)		PHD and JmjC	[446]
3N9Q	Caenorhabditis elegans	Histone H3 peptides, OGA\(^b\)		PHD and JmjC	[446]
3PUQ	Caenorhabditis elegans	AKG\(^c\)		PHD	[447]
3PUR	Caenorhabditis elegans	2HG\(^d\)		PHD	
1WEP	Mus musculus	-		PHD	
2WWU	Homo sapiens	BGC\(^e\)		PHD and JmjC	[448]
3K3N	Homo sapiens	-		PHD	[449]
3K3O	Homo sapiens	AKG\(^f\)		PHD	
3KV4	Homo sapiens	OGA\(^b\)		PHD	[444]
3KQI	Homo sapiens	Histone H3 peptide		PHD finger	[450]
3PTR	Homo sapiens	-		JmjC	[451]
3PU3	Homo sapiens	OGA\(^b\)		JmjC	[451]
3PU8	Homo sapiens	OGA\(^b\)		JmjC	[451]
3PUA	Homo sapiens	OGA\(^b\)		JmjC	[451]
3PUS	Homo sapiens	OGA\(^b\)		JmjC	[451]
2XUE	Homo sapiens	AKG\(^f\)		JmjC	[451]
2XXZ	Homo sapiens	8XQ\(^d\)		JmjC	[451]
3AVS	Homo sapiens	OGA\(^b\)		JmjC	[452]
3AVR	Homo sapiens	OGA\(^b\)		JmjC	[452]
2GF7	Homo sapiens	-		tudor	[453]
2GFA	Homo sapiens	-			
2GP3	Homo sapiens	AKG\(^f\)		JmjC	[454]
2GP5	Homo sapiens	OGA\(^b\)		JmjC	[454]
2OQ6	Homo sapiens	OGA\(^b\)		JmjC	[455]
2OQ7	Homo sapiens	OGA\(^b\)		JmjC	[455]
2OS2	Homo sapiens	Histone H3 peptide, OGA\(^b\)		JmjC	[455]
2OT7	Homo sapiens	Histone H3 peptide monomethyl, OGA\(^b\)		JmjC	[455]
2OX0	Homo sapiens	synthetic peptide, OGA\(^b\)		JmjC	[456]
2P5B	Homo sapiens	Histone H3 peptide, OGA\(^b\)		JmjC	[456]
2PXJ	Homo sapiens	monomethylated Histone H3 peptide, OGA\(^b\)		JmjC	[456]
Table 7 Continued

Name	Organism	PDB ID	Ligand	Domain	References
JMJD2C	Homo sapiens	2XDP	-	tudor	[463]
		2XML	OGA	JmjC	[458]
JMJD2D	Homo sapiens	3DXT	-	JmjC	[464]
		3DXU	OGA	JmjC	[464]
JARID1B	Mus musculus	2EQY	-	ARID	[467]
JARID1C	Homo sapiens	2JRZ	-	ARID	[467]
JARID1D	Homo sapiens	2E6R	-	PDH	[467]
		2YQE	-	ARID	[467]
JARID1A	Homo sapiens	2JXJ	-	ARID	[467]
		2KG	Histone H3 peptide	C-terminal PHD finger	[466]
		2KG1	Histone H3 peptide	C-terminal PHD finger	[466]
JARID2	Mus musculus	2RQ5	-	ARID	[467]
MINA	Homo sapiens	2XDV	OGA	JmjC	[457]
NO66	Homo sapiens	4DIQ	PD2	JmjC	[457]

* PDB ligand ID
* N-Oxalylglycine
* α-Ketoglutaric acid

Di-methylated Lys residues. Currently, structural data is only available for LSD1 (Table 7). The complete structure of the LSD1 comprises an amine oxidase domain with two lobes: a FAD binding region and the substrate binding region. The latter is responsible for the enzymatic activity of the LSD1, as the active site is located at the interface of the two lobes and is similar to conventional FAD-dependent amine oxidases [424]. Furthermore, this protein has an N-terminal SWIRM (derived from Swi3p, Rsc8p, and Moira) domain which is responsible for protein-chromatin interactions. The SWIRM and amino oxidase domains are packed together, forming a globular structure. Interestingly, LSD1 was demonstrated to demethylate in vitro methylated peptides but is itself unable to demethylate methyl-Lys of the nucleosome [424-426]. Only in complex with the co-repressor protein (CoREST) this protein is able to demethylate nucleosomes, indicating that LSD1 protein partners are likely to be involved in enzymatic activity in vivo [424].

All demethylases of the JMJC family have a JMJC domain in common which has been demonstrated to fold into eight β-sheets, in a jellyroll-like β-fold [423,424,427,428]. In the inner part of this jellyroll structural motif, the active site is buried and has a Fe²⁺ metal which is coordinated by α-ketoglutarate (α-KG) and three conserved residues, a Glu and two His. The enzyme uses molecular
oxygen in order to convert the methyl group of the methylated Lys in hydroxymethyl, which is successively released as formaldehyde. This type of active site permits JMJC demethylases to demethylate mono- and di-methylated lysines, and to also act on tri-methylated lysines [423,424,427-429]. The jellyroll motif is surrounded by other structural elements which help to maintain the structural integrity of the catalytic core and contribute to substrate recognition [424].

LSD and JMJC demethylases have been reported as regulators of various cellular processes. A considerable effort is currently directed to the discovery of small-molecule inhibitors able to modulate their catalytic activity. The number of structures of demethylases available from the PDB is growing rapidly (Table 7) [430,431].

Ubiquitylation and Sumoylation

The formation of an isopeptide bond between the C-terminal Gly76 of ubiquitin (Ub) and an ε-amino group on one of the internal Lys residues of a substrate protein is known as ubiquitylation. This PTM of proteins occurs through a series of enzymatic steps involving E1, E2 and E3 proteins. Firstly, Ub is activated to form a thioester with a specific cysteine residue located in the E1 enzyme, also known as ubiquitin-activating (UBA) enzymes. The activated Ub is subsequently transferred to one of the Ub-conjugating enzymes (E2) and, eventually, an Ub ligase (E3) interacts with the ubiquitylation target and transfers the activated Ub from E2 to one of the Lys on the protein substrate, including histones [12]. In contrast to other histone PTMs, ubiquitylation involves a significant change at molecular level since the Ub is a 76 amino acids protein that marks proteins for ATP-dependent proteolytic degradation by 26S proteasomes in the so called Ubiquitin-proteasome system (UPS). Some E1, E2 and E3 enzymes have been found to be responsible for the addition and removal (via DUB enzymes) of ubiquitin from histones H2A and H2B [15,24]. These studies highlighted that H2A and H2B ubiquitylation, especially the mono-ubiquitylation, plays a key role in regulating several epigenetic processes within the nucleus, including transcription initiation, elongation, silencing and also DNA repair [15,468-470]. A correlated PTM is the sumoylation, which consists in the attachment of ubiquitin-like fragments on histone Lys residues through ubiquitylating enzymes [471]. This PTM is still scarcely characterized but appears to exert a transcriptional repression role by competing with ubiquitylation at the substrate level [472]. Some three-dimensional structures of UBA proteins have been resolved [473,474], though the current knowledge on the ubiquitylating enzyme cascade is still fragmentary in relation to the involvement of these proteins as epigenetic controllers of histones. Consequently, the road to the full comprehension of structural data and their involvement in the mechanistic processes is still a major area of research. Moreover, the identification of small-molecule modulators of ubiquiting ligases is currently an active field of research for novel anti-cancer drugs [475-479]. Small molecules have been described for Mdm2 and R7112, but their action seems to primarily affect the ubiquitinating enzyme cascade. The full understanding of histone ADP-ribosylation is currently a major topic of research, especially for the identification of ADP-ribosylation sites in vivo and the development of specific tools to locate these histone modifications [483,484]. Several studies indicate that histones are covalently modified by mono-ADP-ribose in response to genotoxic stress, and others that the extent of mono-ADP-ribosylation of histones depends on the cell cycle stage, proliferation activity and degree of terminal differentiation [485-490].

While the role of ADP-ribosylation as histone PTM is being elucidated [491-495], it should be acknowledged that ARTDs and sirtuins emerged in the last decades as important biological targets for many other cellular processes [484]; moreover several medicinal chemistry approaches aimed at the discovery of novel inhibitors recently appeared [483,490,496-500]. The most studied ADP-ribosylating enzyme has been ARTD1, however growing evidences indicate important roles of other mono- and poly-ADP-ribosylating enzymes, including tankyrases [490,501-503]. Crystallographic and NMR data exist for some ARTD members and have been recently described [502]. ARTCs are less characterized from a structural point of view. A review on this topic is available in the current journal issue [482]. For available structural data on ADP-ribosylating sirtuins see the previous sections.

Even though the role that ADP-ribosylation plays in histone modifications has not yet been completely characterized, it should be acknowledged that this PTM was shown to largely contributes to the epigenetic control of several important process, such as regulation of genomic methylation patterns in gene expression [504,505], effects on chromatin structure [506-508] and transcriptional activator and co-activator functions [492]. It is expected that further definition of specific functions of ADP-ribose modifications will incite efforts towards the identification of new therapeutic routes based on small-molecule inhibitors of these enzymes.

Phosphorylation

Histone phosphorylation plays a key role in cell cycle control, DNA repair, apoptosis, gene silencing, chromatin structure and cellular differentiation [8,11,12,509-515]. It occurs on Ser, Thr, Tyr and His residues and is not limited to histone tails [12,516-518]. The regulation of histone phosphorylation is operated by the enzymatic activity of kinases that transfer a phosphate group to a target residue and phosphatases that counter this activity by hydrolyzing phosphates. Identified kinases that contribute to dynamic phosphorylation marks on histones include Aurora B [511], MSK1 [513], HHK [517], among others [514,519]. Structural data about some of these kinases are documented in the available literature while other kinases are still not well described. The mechanism and pharmacological interventions on histone phosphorylation are still poorly understood. However, it is worth noting that the pattern of expression of histone H4 His kinase (HHK) has been suggested as a useful diagnostic marker for hepatocellular carcinoma [517]. To our knowledge, no compounds addressing the pharmacological modulation of histone phosphorylation have been approved to date, though several Aurora kinase inhibitors have been identified and some have entered phase II clinical trials [24].

ADP-ribosylation

Histone proteins have been described to be mono- and poly-ADP-ribosylated, thus these PTMs have been directly linked to the epigenetic code [480]. The transfer of one ADP-ribose from NAD* to specific residues is known as mono-ADP-ribosylation and is catalyzed by ADP-ribosyltransferases referred to as ARTC (Clostridia-toxin-like) or ARTD (diphtheria toxin-like; formerly known as PARPs), as well as by mitochondrial SIRT4 and nuclear SIRT6 sirtuin family members [480,481]. The subcellular location of ARTC does not allow mono-ADP-ribosylation of histone tails as these proteins are ecto-enzymes [480]; vice versa some ARTD members and SIRT6 can be involved in nuclear mono-ADP-ribosylation of histones. Furthermore, ADP-ribosylation of protein-linked ADP-ribose results in poly-ADP-ribosylated proteins, a reaction that is catalyzed by certain members of the ARTD family. ARTD1 (also known as PARP1) activity causes chromatin decondensation by poly-ADP-ribosylating core histones and the linker histone H1 [482]. The full understanding of histone ADP-ribosylation is currently a major topic of research, especially for the identification of ADP-ribosylation sites in vivo and the development of specific methodologies to locate these histone modifications [483,484]. Several studies indicate that histones are covalently modified by mono-ADP-ribose in response to genotoxic stress, and others that the extent of mono-ADP-ribosylation of histones depends on the cell cycle stage, proliferation activity and degree of terminal differentiation [485-490].
Glycosylation

The addition of N-acetylglucosamine (GlcNAc) to Ser and Thr residues (O-GlcNAc) of nuclear and cytoplasmic proteins is an unconventional type of glycosylation that represents an important PTM. This kind of glycosylation is atypical for at least three reasons. First, it involves the addition of a single monosaccharide; second, it takes place in the cytoplasm and modified glycoproteins are usually nuclear and cytoplasmic, including RNA polymerase II, ER, c-Myc proto-oncogene and histones; third, it is reversible in the way that the monosaccharide can repeatedly be attached and detached. In general, the addition of O-GlcNAc is reciprocal with Ser and Thr phosphorylation, either by modification of the same residue or nearby residues [520]. This PTM modification is regulated by only two enzymes: a glycosyltransferase that catalyzes the transfer of GlcNAc to substrate proteins, also known as O-GlcNAc transferase (OGT), and a glycose hydrolase, also known as O-GlcNAcase (OGA) or O-N-acetylglucosaminidase, that catalyzes the hydrolysis of the glycosidic linkage [521]. While it is interesting to note that in mammalians only these two highly conserved enzymes are responsible of O-GlcNAc cycling, it is worth emphasizing that the targeting of these enzymes is highly specific and is controlled by many interacting subunits.

Only recently O-GlcNAc was linked to the epigenetic code, demonstrating that the four core histones are substrates for O-GlcNAc modifications and cycle genetically and physically in order to interact with other PTMs of histones [520, 522-526]. In addition, OGT has been described to target key members of the Polycomb and Trithorax groups [527]. The role of O-GlcNAc as a PTM able to alter key cellular signaling pathways has been discussed by linking epigenetic changes and metabolism [523]. Even though the role of ‘conventional’ glycosylation in cancer [528-532] and in ageing is well recognized, little is known on the role of O-GlcNAc histone modification in cancer [531].

Details about how OGT recognizes and glycosylates its protein substrates, including histone proteins, were almost unknown until recent years, when novel protein structural data became available (PDB codes: 1W3B and 3TAX) [521, 534, 535]. In 2011, the first two crystal structures of human OGT were solved: a binary complex with uridine 5'-diphosphate (UDP) and a ternary complex with UDP and a peptide substrate, including the catalytic region (PDB codes: 3PE3 and 3PE4) [536]. Additional reports discussing the mechanism underlying OGT and OGA activities as well as small-molecule inhibitors and drug discovery methodologies have recently appeared [537-543]. Glycosyltransferases have been recently used to derive glycosylated analogues of novobiocin with improved activity against several cancer cell lines [544]. While glycosylation represents an emerging PTM of histones that is expected to provide new biological clues in cancer epigenetics, both OGT and OGA have not yet been validated for drug design purposes. Nevertheless, small inhibitors for both enzymes, e.g. by PUGNAc and related derivatives, have been described in literature [521, 545-554]. It is expected that the discovery of other inhibitors of these enzymes, for use as cellular probes, will help the full understanding of O-GlcNAc as a covalent histone modification and will contribute to foster research toward new epigenetic therapeutic agents.

Carbonylation

Covalent modification of cysteines by reactive carbonyl species (RCS) is known as carbonylation. Production of RCS is a feature of redox signaling by enzymes like peroxiredoxins, tyrosine phosphatases/kinas and transcription factors (e.g. p53, NfB and Nrf2) [549, 550]. Intracellular levels of RCS are originated from non-enzymatic and enzymatic peroxidation of lipids, especially arachidonic acid; this process generates unsaturated aldehydes (enals), like 4-hydroxy-2-nonenal (4HNE), crotonaldehyde and acrolein, as well as unsaturated ketones (enone), like cyclopentenone prosta-glandins. RCSs are able to act on membrane and cytosolic proteins, while little is known about the actions of RCS on nuclear proteins and the overall extent of changes in cell signaling and gene expression. Histones have been found to undergo carbonylation [549-551]. However, differently to other PTMs, carbonylation occurs without the specific action of enzymes as RCSs are directly responsible for the chemical attack of histone modification sites. In addition, the absence of enzymes that oppose histones carbonylation seems to predispose carbonylated histones to accumulate. This fact was observed in rat pheochromocytoma cells following alkylating stress [550].

Because carbonylation is in general a hallmark of protein oxidation it has been mostly connected to aging, inflammaging, caloric restriction and age-related pathologies [552]. There is scarce knowledge about how carbonylation enzymes might govern other cellular redox processes, including those leading to cancer via histone covalent modifications.

Citrullination/Deimination

Citrullination or deamination is exerted by protein-arginine deiminases (PAD), in particular PAD4 [553], and serve as a sort of Arg demethylase as it converts methyl-arginines to citrulline with release of melainylurea, thereby regulating histone Arg methylation [12, 554, 555]. This kind of mechanism is not to be considered a demethylation reaction in a strict sense as it produces a citrulline instead of a charged Arg residue. Citrullination of histones has been described in relation to its capacity to antagonize arginine methylation by CARM1 [554], but its role in cancer diseases is starting to be delineated now [556, 557].

Some classes of compounds have been described to inhibit PAD4 [558-561]. There are several available crystallographic structures of these enzymes, also in complex with inhibitors (PDB codes: 1W8D, 1W9D, 1WDA, 2DEW, 2DEX, 2DEY, 2DW5, 3APM, 3APN, 3B1T, 3B1U and 4DKT) [560-563]. It is expected that further work in this direction will help to elucidate the role of histone citrullination in cancer diseases.

Biotinylation

Biotinylation is the attachment of biotin to a protein, nucleic acid or other molecule. Biotinylation of histones was described in several histone variants and is likely to be involved in gene silencing, cell proliferation, and cellular response to DNA damage [8, 564-569]. Amino-acid residues that undergo biotinylation have been identified in some recent studies [570, 571] but the role of histone biotinylation in cancer pathologies remains largely unclear. Recent findings suggest that an altered biotin status in some population subgroups might affect chromosomal stability and cancer risk [569]. This PTM is catalyzed by biotin-protein ligase (also known as holocarboxylase synthetase) which specifically acts on substrate proteins by attaching biotin covalently. The opposing catalytic activity is exerted by biotinidase. In both cases, no structural data of the human proteins is yet available. Nonetheless, some structures of biotin-protein ligase of Pyrococcus horikoshii have been recently published (PDB codes: 2DXU, 2DZC, 2DXU, 1WQW) [572, 573]. To the best of our knowledge no drug- or lead-like ligand has been yet identified to interfere with histone biotinylation.

Other PTMs

Other PTMs have been reported in the literature such as histone tail clipping and histone proline isomerization [12]. Histone tail clipping consists in the removal of the N-terminal tail of a histone with potential consequences for transcription and many other events involving chromatin remodeling. The capacity to clip histone tails was demonstrated to date in yeast H3 [574]. Proline isomerization is a particular PTM that does not imply a covalent modification of histones but a cis-trans isomerization of Pro residues. As only Pro amides allow this conformational flexibility, proline isomerization is considered to play important biochemical roles including control
of protein folding, initiation of transmembrane signaling, recognition of peptide antigens and regulation of peptide breakdown. In the context of histone modifications, Pro isomerization was found to be catalyzed by Pro isomerase Fpr4 in Saccharomyces cerevisiae. Regulating transcription and cross-talk with histone Lys methylation was also described for Fpr4 [575].

The catalytic effectors of these PTMs are subject of investigations [12], while proteomics techniques aimed at elucidating their biological roles are under development [8]. Further tools and studies are expected to provide new insights into the mechanism, dynamics and impact of these modifications in association with cancer pathologies.

miRNAs Regulating Proteins

Noncoding miRNAs are capable of inducing heritable changes in gene expression profiles without altering the DNA sequence. miRNAs and Piwi-interacting (P-element-induced wimpy testes) RNAs (piRNAs) are classes of small RNAs that are generated by the activity of RNaseIII enzymes; they have a variety of biological functions, such as heterochromatin formation, mRNA inactivation and transcriptional regulation. Their role contributes to global epigenetic mechanisms as miRNAs can: i) modulate the expression of chromatin remodelers involved in epigenetic modifications (e.g. HDACs, DNMTs and Polycomb proteins) with specific epigenetic enzymes; ii) guide the recruitment of chromatin remodelers on DNA either by the interaction with promoter-associated RNA (pRNA) or by directly targeting complementary promoter sequences, thus promoting transcriptional gene silencing [577,578]; iii) be subjected to epigenetic modifications of their corresponding promoter loci [579].

As seen in the previous chapter, deregulation of miRNAs is associated with the development and progression of several cancer types [61,96,576,580-583]. The bioactivity of miRNA is generally linked to Argonaute (Ago)-family proteins that serve as a direct interaction partner of the miRNA within the RNA-induced silencing complex (RISC). In particular, the miRNA guides the RISC to its target mRNA, while Ago protein complex leads to silencing of gene expression by repressing mRNA translation or by inducing deadenylation-dependent miRNA decay [22,584-586].

The research aimed at elucidating structure and function of miRNA-pathway components has been stimulated in the last year by crystallographic data and NMR spectra of several proteins that have been reviewed in another article of this journal issue [61]. It should be noted that, since the biogenesis and function of microRNAs and endo- and exo- siRNAs are regulated by Ago2, the identification of non-miRNA compounds, that can be used to block the cycle of miRNA loading, might constitute a new therapeutic approach to several cancer diseases. The design of new modulators for the miRNA/siRNA pathway might be facilitated by the development of new assay for HTS, while the discovery of new bioactive compounds would have the potential to broaden their applications in functional studies of Argonaute and individual miRNAs in cell biology and human disease [587]. It is therefore expected that future studies in epigenetic regulation of miRNA expression coupled to downstream signaling pathways will most likely lead to the discovery of novel drug targets for novel anticancer therapies [61,96,588].

4. SUMMARY AND DRUG DISCOVERY PERSPECTIVES

Major research efforts are currently directed toward the discovery of new small-molecules able to modulate target proteins described in the previous chapters which are involved in chromatin remodeling and DNA methylation [19,231]. Recent success stories document the potential to successfully interfere with the epigenetic code with small organic molecules [25]. Moreover, the first pre-clinical and clinical results obtained in the last years, especially for HDACs and DNMTs, lead to the perception that many other epigenetic enzymes might be effective as combination therapies to control the process of genesis and progression of several forms of cancer. While it is hard to predict whether these results will eventually guide to novel anticancer therapies, several aspects concerning epigenetic drug design still need to be fully assessed. Here as follows we describe some of the requirements, challenges and perspectives.

Validation of Anti-cancer Targets

Despite the numerous studies in the field, much of the research still focus on elucidating the biological functions of the majority of the above-discussed epigenetic enzymes. Beyond the problem of the identification of specific drug-like compounds, the most relevant challenge remains to establish the biological extent by which a putative pharmacological action would impact specific signaling pathways or specific cancer pathologies. This fact is tightly related to the proper validation of the target, a crucial step in the drug discovery pipeline [589]. In this direction, several aspects still need to be addressed. For instance, the discovery of new biomolecules to use as cellular probes, the design of bioassays to measure biological activities and the possibility to setup and perform HTS. At present, most of the enzymes described have not been fully validated (Fig. 1) [589]. It is worth emphasizing that the increasing availability of structural data, herein described, should be relevant for the identification of new tool compounds. These could boost the biological research to validate and determine the specific functions of epigenetic targets in cancer diseases.

Understanding the Selectivity/Polypharmacology

It is now clear that a target-centric approach consisting in the design of small-molecules having maximal selectivity profiles, also referred to magic bullets [590], has been very successful for certain diseases but failed in other cases [591]. On the other hand, the intrinsic polypharmacological nature of many chemical scaffolds might result in lack of selectivity on epigenetic targets as several families use common substrates and cofactors (e.g. NAD+/NADH, FAD, SAM, AcCoA, α-Ketoglutarate and ATP) to exert their catalytic activity. For these reasons, extensive assessments of small-molecules need to be performed in order to study their impact on the epigenome. Collecting comprehensive activity profiles is of particular importance as sought compounds might be selective or promiscuous depending on the biological application [592]. Of particular interest is the elucidation of the polypharmacological behavior of dietary and nutraceutical components. Indeed, many clinical, physiopathological and epidemiological studies highlighted the detrimental or beneficial role of nutritional factors in conjunction to epigenetic alterations [27,37,66,91,238,593].

Mechanism of Action

A deeper understanding of the mechanisms of action of small-molecules needs to be obtained. These mechanisms include: allosteric regulation, inhibition/activation and enzymatic kinetics (e.g. reversible/irreversible, substrate and cofactors competition/non-competition). These tasks may be challenging, especially when natural and/or dietary bioactive components are involved. A representative example is the current diatribe concerning resveratrol and its analog compounds as modulators of sirtuins [271,594-597]. Besides, the study of the action mechanisms plays a critical role also during the early-stage development of novel bioactive compounds. For instance, in the case of methyltransferases a question is raised on whether drug design approaches should be addressed to target the S-adenosyl methionine cofactor binding site or the substrate binding site where Lys or Arg residues of the histones are methylated (Fig. 2).
The long-term effectiveness of traditional medicinal chemistry approaches has not yet been fully demonstrated to the development of new epidiags. On the other hand, new medicinal chemistry paradigms such as the repurposing of known drugs [604,605] and the screening of nutraceutical components and natural compounds [606,607], are attracting a lot of interest in different areas of research and could also be effective for targeting epigenetic enzymes.

Apart from new paradigms of medicinal chemistry, it should also be noted how, established but powerful drug design methodologies, are currently being re-evaluated. An example is the resurgence of phenotypic screening, i.e. where compounds are screened in cellular or animal disease models to identify those causing desirable changes in the phenotype. These kind of screens accounted in the last decade for a surprising number of identification of blockbuster drugs with novel mechanisms of action in respect to target-based screening [608]. Since the assessment of the tightly-regulated mechanisms of epigenetic modifications might be difficult to track-down in all cases, the use of phenotypic screens might constitute a valuable tool for the identification of new epidiags [609].

Remaining all the above-mentioned considerations, it is unquestionable that epigenetics framework will play a major role in the near future to develop new therapies against cancer. We hope that this review will stimulate new and original initiatives in this direction.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
Authors gratefully thank Francesco Fazi, Maria Di Girolamo, Fabio Dall’Olio and Elena Bellavista for helpful discussions. This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) - Emilia Romagna Start-Up grant 6266.

ABBREVIATIONS

Abbreviation	Full Form
α-KG	α-Ketoglutarate
AACR	American Association for Cancer Research
AcCoA	Acetyl coenzyme A
AML	Acute myeloid leukemia
APAH	Acetylpolyamine aminohydrolase
APL	Acute promyelocytic leukemia
ARTC	ADP-ribosyltransferase clostridial toxin-like
ARTD	ADP-ribosyltransferase diphtheria toxin-like
ATP	Adenosine triphosphate
BCP	Bromodomain containing proteins
BD	Bromodomains
CADD	Computer-aided drug design
CARM1	Coactivator-associated arginine methyltransferase
CBP	(cAMP-responsive element binding protein)-binding protein
CLL	Chronic lymphocytic leukemia
CML	Chronic myeloid leukaemia
CoREST	Corepressor RE1 silencing transcription
CpG	Cytosine-phosphate-guanine
CREB	cAMP-responsive element binding protein
CRC	Colorectal cancer
DOT1	Disruptor of telomeric silencing 1
DNA	Desoxyribonucleic acid
Modulation of Epigenetic Targets for Anticancer Therapy

DNMT = DNA methyltransferase
DUB = Deubiquitinating enzymes
EGFR = Epidermal growth factor receptor
ER = Estrogen receptor
EZH2 = Enhancer of zeste homolog 2
FAD = Flavin adenine dinucleotide
Gcn5 = General Control non-derepressible 5
GNATs = (General Control non-derepressible 5)-related N-acetyltransferases
HAT = Histone acetyltransferases
HBD = Histone binding domains
HBV = Hepatitis B virus
HCV = Hepatitis C virus
HCC = Hepatocellular carcinoma
HDAC = Histone deacetylases
HDACi = Histone deacetylase inhibitors
HDALP = Histone deacetylase-like amidohydrolase
HER2 = Human epidermal growth factor 2
HMT = Histone methyltransferases
HTS = High-throughput screening
miRNA = Micro RNA
mRNA = Messenger RNA
MLL = Mixed-lineage leukemia
NAD+/NADH = Nicotinamide adenine dinucleotide
NADP+/NADPH = Nicotinamide adenine dinucleotide phosphate
NHL = Non-Hodgkin’s Lymphoma
NSCLCs = Non-small-cell lung carcinoma
NUT = Nuclear protein in testis
OGA = O-GlcNAcase
O-GlcNac = O-linked N-acetylglucosamine
OGT = O-GlcNAc transferase
PAD = Protein-arginine deiminase
PARP = Poly ADP-ribose polymerase
PKMT = Protein lysine methyltransferase
piRNA = Piwi-interacting RNA
Piwi = P- element-induced wimpy testes
PcG = Polycomb
PMTs = Protein methyltransferases
PR = Progesterone receptor
PRC2 = Polycomb repressive complex
PRMT = Protein arginine methyltransferase
PTM = Post-translational modifications
RCC = Renal cell carcinomas
RCS = Reactive carbonyl species
RISC = RNA-induced silencing complex
RNA = Ribonucleic acid
SAH = S-adenosyl homocysteine
SAHA = Suberoylanilide hydroxamic acid (Vorinostat)
SAM = S-adenosyl methionine
SET = Su(Var)3-9, Enhancer of zeste, Trithirax
siRNA = Small interfering RNA
Ub = Ubiquitin
UBA = Ubiquitin-activating (UBA) enzyme
UDP = Uridine 5’-diphosphate
UPS = Ubiquitin-proteasome system

REFERENCES

[1] Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr opinion cell Biol 2007; 19(5): 266-72.
[2] Herceg Z, Ushijima T. Introduction: epigenetics and cancer. 1st ed. Elsevier Inc.; 2010.
[3] Baylin SB. Epigenetics and Cancer. In: The Molecular Basis of Cancer. 2008. p. 57-65.
[4] Jones P A, Baylin SB. The epigenomics Cancer. Cell 2007; 128(4): 683-92.
[5] Kouzarides T. Chromatin modifications and the fuction. Cell 2007; 128(4): 693-705.
[6] Kelly TK, De Carvalho DD, Jones P A. Epigenetic modifications as therapeutic targets. Nature Biotechnol 2010; 28(10): 1069-78.
[7] Gardner KE, Allis CD, Strahl BD. Operating on chromatin, a colorful language where context matters. J Mol Biol 2011; 409(1): 36-46.
[8] Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 2012.
[9] Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nature structural Mol Biol 2004; 11(11): 1037-43.
[10] Cosgrove MS, Wolberger C. How does the histone code work? Biochemistry and cell biology = Biochimie et biologie cellulaire 2005; 83(4): 468-76.
[11] Cnuckshack MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino acids 2010; 39(5): 1087-105.
[12] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3): 381-95.
[13] Imhof A. Epigenetic regulators and histone modification. Briefings Functional Genomics Proteomics 2006; 5(3): 222-7.
[14] Mellor J, Dudek P, Clynies D. A glimpse into the epigenetic landscape of gene regulation. Curr opinion in genetics & development 2008; 18(2): 116-22.
[15] Weake VM, Workman JL. Histone ubiquitination: triggering gene activity. Molecular cell 2008; 29(6): 653-63.
[16] Loyola A, Almouzni G. Marking histone H3 variants: how, when and why? Trends in Biochem Sci 2007; 32(9): 425-33.
[17] De Koning L, Corpet A, Haber JE, Almouzni G. Histone chaperones: an escort network regulating histone traffic. Nature Structural Mol Biol 2007; 14(11): 997-1007.
[18] Suganuma T, Workman JL. Crosstalk among Histone Modification, Cell 2008; 135(4): 604-7.
[19] Sippl W, Jung M. Epigenetic targets in drug discovery. 2009.
[20] Chi P, Alulis CD, Wang GG. Covalent histone modifications—misswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10(7): 457-69.
[21] Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J cancer (Oxford, England : 1990) 2005; 41(16): 2381-402.
[22] Golbabapour S, Abdulla MA, Hajeirezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. 2011.
[23] Rius M, Lyko F. Epigenetic cancer therapy: rationale, targets and drugs. Oncogene 2011; 1: 1-9.
[24] Copeland R A, Ollaha EA, Scott MP. Targeting epigenetic enzymes for drug discovery. Curr opinion Chem Biol 2010; 14(4): 505-10.
[25] Dhanak D. Cracking the Code: The Promise of Epigenetics. ACS Medicinal Chemistry Letters 2012;
[26] Cairns R A, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11(2): 85-95.
[27] Gerhäuser C. Cancer cell metabolism, epigenetics and the potential influence of dietary components - A perspective. Biomedical Res 2012; 23(1): 1-21.
[28] Semenza GL. A return to cancer metabolism. J molecular medicine (Berlin, Germany) 2011; 89(3): 203-4.
[29] Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012;11(March).

[30] Cavallo F, De Giovannì C, Nanni P, Forni G, Lollini P-L. 2011: the immune hallmarks of cancer. Cell 2011; 60(3): 319-26.

[31] Ellis L, Atadja PW, Johnston RW. Epigenetics in cancer: targeting chromatin modifications. Molecular cancer therapeutics 2009; 8(6): 1409-20.

[32] Altucci L, Minucci S. Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer (Oxford, England: 1990) 2009; 45(7): 1137-45.

[33] Herranz M, Esteller M. New therapeutic targets in cancer: the epigenetic connection. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2006; 8(4): 242-9.

[34] Graham JS, Kaye SB, Brown R. The promises and pitfalls of epigenetic therapies in solid tumours. Eur J Cancer (Oxford, England: 1990) 2009; 45(7): 1129-36.

[35] Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nature medicine 2011; 17(3): 330-9.

[36] Kulis M, Esteller M. DNA methylation and cancer. Advances in genetics 2010; 70(10): 27-56.

[37] Meieran SM, Ahmed A, Tollesbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clinical epigenetics 2010; (3-4): 101-16.

[38] Ljunghman M. Targeting the DNA damage response in cancer. Chemical reviews 2009; 109(7): 2929-50.

[39] Claes B, Buyschaert I, Lambrechts D. Pharmacopo-epigenomics: discovering therapeutic approaches and biomarkers for cancer therapy. Heredity 2010; 105(1): 152-60.

[40] Pollock RM, Richon VM. Epigenetic approaches to cancer therapy. Drug Discov Today: Therapeutic Strategies 2009; 6(2): 71-9.

[41] Spannhoff A, Sippel W, Jung M. Cancer treatment of the future: main trends. European journal of cancer (Oxford, England: 1990) 2009; 45(1): 162-73.

[42] Cuzick J. Aromatase inhibitors in early breast-cancer treatment: The story so far. Breast (Edinburgh, Scotland) 2008; 17 Suppl 3: S2-8.

[43] Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast cancer. International J biological sciences 2012; 8(1): 59-65.

[44] Copeland RA. Protein methyltransferase inhibitors as personalized cancer therapies. Drug Discov Today: Therapeutic Strategies 2011; xxx(xx): 1-8.

[45] Copeland R a, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 2009; 8(9): 724-32.

[46] Kurebayashi J. Resistance to endocrine therapy in breast cancer. Cancer chemotherapy and pharmacology 2005; 56 Suppl 1: 39-46.

[47] Copeland R a, Solomon ME, Richon VM. Protein methyltransferase inhibitors as personalized cancer therapies: realizing the promise. Drug Discov Today: MedChemComm 2012; 3(2): 61-8.

[48] Grady WM. Genomic instability and colon cancer. Cancer metastasis reviews 2004; 23(1-2): 5-17.

[49] BCR 2008-2009 and 2002-2003. National Cancer Institute of Mexico 2006; 8(9): 724-32.

[50] S2-8.

[51] Ferdinand J, Schussler AK, Atadja PW, Vaillant F. Directed signaling of mammary epithelium and stroma: implications for breast cancer-preventive actions of dietary factors. J Nutritional BioChem 2011; 22(7): 35-41.

[52] Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast cancer. International J biological sciences 2012; 8(1): 59-65.

[53] Copeland R a, Solomon ME, Richon VM. Protein methyltransferase inhibitors as personalized cancer therapies. Drug Discov Today: Therapeutic Strategies 2011; xxx(xx): 1-8.

[54] Copeland R a, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 2009; 8(9): 724-32.

[55] Géranton SM. Targeting epigenetic mechanisms for pain relief. Current opinion in pharmacology 2012; 12(1): 35-41.

[56] Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes in colorectal neoplasia. Gut and liver 2007; 1(1): 1-11.

[57] Kim YS, Deng G. Epigenetic changes (aberrant DNA methylation) in colorectal neoplasia. Gut and liver 2007; 1(1): 1-11.

[58] Billam M, Witt A. The silent estrogen receptor. Cancer Biology & 2009; (March): 485-96.

[59] Bièche I, Lidereau R. Genome-based and transcriptome-based molecular classification of breast cancer. Curr opinion Oncool 2011; 23(1): 93-9.

[60] Velkovka A, Monteiro AN a. Epigenetic tumor suppression by BRCA1. Nature medicine 2011; 17(10): 1183-5.

[61] De Santa F, Issue I, Del Río A, Fazi F. microRNA biogenesis pathway as a therapeutic target for human disease and cancer. Curr Pharm Des 2013; 19(4): 745-64.
Modulation of Epigenetic Targets for Anticancer Therapy

[86] Samowitz WS. Genetic and epigenetic changes in colon cancer. Experimental and molecular pathology 2008; 85(1): 64-7.

[87] Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008; 135(4): 1079-99.

[88] Garagnani P, Pirazzini C, Franceschi C. Colorectal Cancer Microenvironment: between Nutrition, Gut Microbiota, Inflammation and Epigenetics. Curr Pharm Des 2013; 19(4): 765-78.

[89] Slattery ML, Wolff RK, Curtin K, et al. Colon tumor mutations and epigenetic changes associated with genetic polymorphism: insight into disease pathways. Mutation Res 2009; 600(1-2): 12-21.

[90] van Engelund M, Herman JG. Viewing the epigenetics of colorectal cancer through the window of folate acid effects. Cancer prevention research (Philadelphia, Pa.) 2010; 3(12): 1509-12.

[91] Nyström M. Diet and epigenetics in colon cancer. World J Gastroenterology 2009; 15(3): 257.

[92] Giardina C, Madigan JP, Tierney CAG, et al. Targeted therapy in leukemia. Modern pathology 2010; 23(4): 463-8.

[93] Cho WC, Serravalle S, Biagi C, et al. The role of HDACs inhibitors in childhood and adolescence acute leukemias. J bioltherapeutic applications. Epigenomics 2011; 3(5): 581-4.

[94] Diederich M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Curr Pharm Des 2011; 17(1): 1-3.

[95] Hora A, Zhang H, Zong SH, et al. Climate modulates risk of colorectal cancer through the window of folic acid effects. Cancer prevention research (Philadelphia, Pa.) 2011; 3(3): 46-9.

[96] Chen J, Odenike O, Rowley JD. Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10(1): 11-23.

[97] Fathi AT, Abdel-Wahab O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol 2012; 2012: 469592.

[98] Issa JP, Kajjooraj HM. Targeting DNA methylation. Clinical cancer research: an official J Am Ass Cancer Res 2009; 15(12): 3938-46.

[99] Pootsch AR, Plass C. Transcriptional regulation by DNA methyla. Cancer Treatment Rev 2011; 37 Suppl 1: S1-8.

[100] Wu W, Shu H-B. MLL/WDR5 complex in leukemogenesis and epigenetic regulation. Chinese J Cancer 2011; 30(4): 240-6.

[101] Klaue K, de Haan G. Polycomb group proteins in hematopoietic stem cell aging and malignancies. Int J Hematol 2011; 94(1): 11-23.

[102] Bernt KM, Armstrong SA. A role for DOT1L in MLL-rearranged leukemias. Epigenomics 2011; 3(6): 677-690.

[103] Bullinger L, Armstrong S. A HELP for AML: methylation profiling opens new avenues. Cancer Cell 2010; 17(1): 1-3.

[104] Schotte D, Pieters R, Den Boer ML. MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia: official J Leukemia Society of America, Leukemia Research Fund, U.K 2012; 26(1): 1-12.

[105] Ansari KL, Mandal SS. Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J 2010; 277(8): 1790-804.

[106] Tsiftsoglou AS, Bonovolias ID, Tsiftsoglou SA. Multiple targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Therapeut 2009; 122(3): 264-80.

[107] Garcia-Manero G, Demethylation agents in myeloid malignancies. Curr opinion Oncol 2008; 20(6): 705-10.

[108] Yu MK. Epigenetics and chronic lymphocytic leukaemia. Ame J Hematol 2006; 81(11): 864-9.

[109] Holloway F, Oakford PC. Targeting epigenetic modifiers in cancer. Curr medicinal Chem 2007; 14(24): 2540-7.

[110] Heider U, von Metzler I, Kaiser M, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma. Eur J Haematol 2008; 80(2): 133-42.

[111] Nawardi ST, Carew JS, Maclean KH, et al. Mhc regulates aggre- some formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood 2008; 112(7): 2917-26.

[112] Cancer’s epicentre [Internet]. 2012: Available from: http://www.economist.com/node/21552168

[113] Mercurio C, Minucci S, Pellicci PG. Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacological research: the official J Italian Pharmacol Soc 2010; 62(1): 18-34.
[137] Mahadevan D, Fisher RI. Novel therapeutics for aggressive non-Hodgkin’s lymphoma. J clinical oncology: official J Am Soc Clin Oncol 2011; 29(14): 1876-84.

[138] Zain J, O’Connor O a. Targeting histone deacetylases in the treatment of B- and T-cell malignancies. Investigational New Drugs 2010; 28 Suppl 1: 858-78.

[139] Cotto M, Cabanillas F, Tirado M, García MV, Pacheco E. Epigenetic therapy of lymphoma using histone deacetylase inhibitors. Clin Translational Oncol 2010; 12(6): 401-9.

[140] Ellis L, Pan Y, Smyth GK, et al. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clinical cancer research: an official J Am Cancer Soc Res 2008; 14(14): 4500-10.

[141] Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 2003; 109(1): 80-8.

[142] Berry NB, Bapat S a. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype. J ovarian Res 2008; 1: 8.

[143] Barton C a, Hacker NF, Clark SJ, O’Brien PM. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecologic Oncol 2008; 109(1): 129-39.

[144] Balch C, Huang TH-M, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. J Am Obstetrics and gynecology 2004; 191(5): 1552-72.

[145] Balch C, Matei DE, Huang TH-M, Nephew KP. Role of epigenetics in ovarian and endometrial cancers. Gynecologic Oncol 2011; 2(2): 419-47.

[146] Takai N, Nara B, Narahara H. Histone deacetylase inhibitor therapy in epithelial ovarian cancer. J Oncol 2010; 2010: 458431.

[147] Takai N, Nara H. Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr medicinal Chem 2007; 14(24): 2548-53.

[148] Chin SP, Dickinson JL, Holloway AF. Epigenetic regulation of breast cancer and molecular systemic therapy for the anaplastic large cell lymphoma. Curr Oncol 2010; 29(1): 95-107.

[149] Lumpkin MB, Xu J, Huang TH-M, Nephew KP. DNA methylation and ovarian cancer drug resistance and resensitization. Ame J obstetrics and gynecology 2004; 191(5): 1552-72.

[150] Reynolds M a. Molecular alterations in prostate cancer. Cancer letters 2010; 291(1): 1-13.

[151] Reynolds M a. Molecular alterations in prostate cancer. Cancer letters 2010; 291(1): 1-13.

[152] Chen M, Zhao X. Epigenetics in prostate cancer: understanding cancer progression, therapeutic implications. Journal of Controlled Release 2012; 160(1): 54-60.

[153] Patel JS, Carter JS, Carter JS, Carter JS. The expanding role of epigenetics in prostate cancer: a review of key epigenetic players. Brit J Cancer 2012; : 1-8.

[154] Balch C, Matei DE, Huang TH-M, Nephew KP. Novel targeted therapies for prostate cancer. J Oncol 2011; 2011: 458431.

[155] Takai N, Nara H. Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr medicinal Chem 2007; 14(24): 2548-53.

[156] Henrique R, Jerónimo C. Molecular detection of prostate cancer: a review of current methods and future perspectives. Molecular Pathology 2010; 2(2): 419-47.

[157] Dobosy JR, Roberts JLW, Fu VX, Jarrard DF. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J urology 2007; 171(3): 822-31.

[158] Nakayama M, Gonzalez ML, Vegnasubramanian S, Lin X, De Marzo AM, Nelson WG. GSP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cellular Biochem 2004; 91(3): 540-52.

[159] Henrique R, Jerónimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. European urology 2004; 46(5): 660-9; discussion 669.

[160] Meiers I, Shank HJ, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology 2007; 39(3): 299-304.

[161] Li L-C, Okino ST, Daiya R. DNA methylation in prostate cancer. Biochimica et biophysica acta 2004; 1704(2): 87-102.

[162] Antonarakis ES, Carducci M a, Eisenberger M a. Novel targeted therapies for prostate cancer. J Hematol Oncol 2011; 29(14): 1876-84.

[163] Balch C, Fang F, Matei DE, Huang TH-M, Nephew KP. Minireview: epigenetic changes in ovarian cancer. Endocrinology 2009; 150(9): 4003-11.

[164] Berry NB, Bapat S a. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype. J ovarian Res 2008; 1: 8.

[165] Barton C a, Hacker NF, Clark SJ, O’Brien PM. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecologic Oncol 2008; 109(1): 129-39.

[166] Balch C, Huang TH-M, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. J Am Obstetrics and gynecology 2004; 191(5): 1552-72.

[167] Balch C, Matei DE, Huang TH-M, Nephew KP. Role of epigenetics in ovarian and endometrial cancers. Gynecologic Oncol 2011; 29(1): 95-107.

[168] Balch C, Matei DE, Huang TH-M, Nephew KP. Role of epigenetics in ovarian and endometrial cancers. Gynecologic Oncol 2011; 29(1): 95-107.
drogen-independent lethal phenotype. Urologic Oncol 2006; 24(2): 119-21.

[188] Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology 2009; 150(9): 3991-4002.

[189] Schulz W a, Hoffmann MJ. Epigenetic mechanisms in the biology of prostate cancer. Seminars in cancer Biol 2009; 19(3): 172-80.

[190] Cooper CS, Foster CS. Concepts of epigenetics in prostate cancer development. British J cancer 2009; 100(2): 240-5.

[191] Pinti A, Pasini D. Epigenetic factors in cancer development: polycomb group proteins. Future oncology (London, England) 2011; 7(1): 57-75.

[192] Ahmed H. Promoter Methylation in Prostate Cancer and its Application for the Early Detection of Prostate Cancer Using Serum and Urine Samples. Biomarkers in Cancer 2010; : 17.

[193] Jerónimo C, Esteller M. DNA methylation markers for prostate cancer with a stem cell twist. Cancer prevention research (Philadelphia, Pa.) 2010; 3(9): 1053-5.

[194] Wang LG, Chiao JW. Prostate cancer chemopreventive activity of phenethyl isothiocyanate through epigenetic regulation (review). International J Oncol 2010; 37(3): 533-9.

[195] Donkena KV, Young CYF, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. Obstetrics and gynecology international 2010; 2010: 30250J.

[196] Sun W-jian, Zhou X, Zheng J-hang, et al. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta biochimica et biophysica Sinica 2012; 44(1): 80-91.

[197] Niwa T, Ushijima T. Induction of epigenetic alterations by chronic inflammation and its significance on carcinogenesis. 1st ed. Elsevier Inc.; 2010.

[198] Selaru FM, David S, Meltzer SJ, Hamilton JP. Epigenetic events in gastrointestinal cancer. The Ame J gastroenterology 2009; 104(8): 1910-2.

[199] Izzo JG, Amani J a, Thinking in and out of the box when it comes to epigenetics. The lancet Oncol 2010; 11(5): 459-64.

[200] Lachenmayer A, Alsinet C, Chang CY, Llovet JM. Molecular approaches to treatment of hepatocellular carcinoma. Digestive and liver disease: official J Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2010; 42 Suppl 3: S264-72.

[201] Buschvarov AG, Coleman WB. The use of epigenetic biomarkers for preclinical detection of hepatocellular carcinoma: potential for non-invasive screening of high-risk populations. Clinical cancer research: an official J Am Ass Cancer Res 2007; 13(8): 2309-12.

[202] Dressler GR. Epigenetics, development, and the kidney. J American Society of Nephrology 2008; 19(11): 2060-7.

[203] Jhun S, Seruga B, Knox JJ. Targeted Therapies for Renal Cell Carcinoma - More Gains from Using Them Again. Curr Oncol 2009; 16(S1): 45-51.

[204] Coradini D. Speranza A. Invited review Histone deacetylase inhibitors for treatment of hepatocellular carcinoma. 2005; 26(9): 1025-33.

[205] Arai E, Kanai Y. Genetic and epigenetic alterations during renal carcinogenesis. International J clinical and experimental pathology 2010; 4(1): 58-73.

[206] Medina-Franco JL, Caulfield T. Advances in the computational analysis of DNA methylation and histone acetylation. Update on Cancer genetics: an attractive target for anticancer therapy. Medicinal research reviews 2005; 25(3): 337-43.

[207] Sippl W, Jung M. Epigenetic drug discovery special issue. Bioorganic Med Chem 2011; 19(12): 3603-4.

[208] Sippel W, Jung M. Epigenetic drug discovery special issue. Bioorganic Med Chem 2011; 19(12): 3603-4.

[209] Roeper S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Molecular Oncol 2007; 1(1): 19-25.

[210] Donepudi S, Mattison RJ, Khislingere JG, Godley L a. Modulators of DNA methylation and histone acetylation. Update on Cancer Therapeutics 2007; 2(4): 157-69.

[211] Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutation Res 2011; 727(3): 55-61.

[212] Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatits B virus-induced hepatocellular carcinoma. J gastroenterology and hepatology 2011; 26 Suppl 1: 144-52.
[238] Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Critical reviews in biochemistry and molecular biology 2011; 46(3): 181-99.

[239] Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999; 401(6749): 188-93.

[240] Di Marcotullio L, Canettieri G, Infante P, Greco A, Gulino A. Proteomic aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem 2012; 287(4): 2317-27.

[241] Nielsen TK, Hildmann C, Dickmanns A, Schwienhorst A, Ficner R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J Mol Biol 2005; 354(1): 107-20.

[242] Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase homologue bound to the TSA and SAHA inhibitors. J Biol Chem 2003; 278(12): 9901-10.

[243] Guo L, Han A, Bates DL, Cao J, Chen L. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc Nat Acad Sci USA 2007; 104(11): 4297-302.

[244] Bottomley MJ, Lo Surdo P, D’Inverno PF, Massey P, Gustafsson E-A, Pommier Y. A regulatory structural zinc-binding domain. J Biol Chem 2008; 283(15): 10749-57.

[245] Marsoni S, Damia G, Camboni G. A work in progress: the clinical development of HDAC inhibitors. J structural and functional genomics 2011; 12(2): 83-95.

[246] Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2004; 427(6973): 806-9.

[247] Hoff KG, Avalos JL, Sens K, Wolberger C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetyl-esterified peptide. Structure (London, England : a journal of the Royal Society of Medicine) 2007; 15(3): 377-89.

[248] Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. Structural studies of human histone deacetylase 4 and its site-specific variants complexed with substrate and inhibitors. BioChem 2008; 47(51): 13554-63.

[249] Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW. Structural basis of the antiproliferative activity of largazole, a de-ubiquitinase and demalonylase. Science (New York, N.Y.) 2011; 333(6057): 806-9.

[250] Hawse WF, Wolberger C. Structure of Sir2 homoolog-NAD complex. Cell 2001; 105(2): 269-79.

[251] Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C. Structure and biochemical functions of SIRT6. J Biol Chem 2003; 278(12): 11355-63.

[252] Hoff KG, Avalos JL, Sens K, Wolberger C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetyl-esterified peptide. Structure (London, England : a journal of the Royal Society of Medicine) 2007; 15(3): 377-89.

[253] Ficner R. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor. Acta crystallographica. Section F, Structural biology and crystallization communications 2007; 63(Pt 4): 270-3.
plicated in chromatin targeting. J Biol Chem 2007; 282(50): 36603-13.

[332] Kadlec J, Hallaci E, Lipp M, et al. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nature structural Mol Biol 2011; 18(2): 142-9.

[333] Sun B, Guo S, Tang Q, et al. Regulation of the histone acetyltransferase activity of hMOF via autoacetylation of Lys274. Cell Res 2011; 21(8): 1262-6.

[334] Yuan H, Rossetto D, Mellert H, et al. MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 2012; 31(1): 58-70.

[335] Yan Y, Barleb N, a, Haley RH, Berger SL, Marmorstein R. Crystal structure of yeast Esal suggests a unified mechanism for catalysis and substrate bind by histone acetyltransferases. Molecular cell 2000; 6(5): 1195-205.

[336] Yan Y, Harper S, Speicher DW, Marmorstein R. The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acylated intermediate. Nature structural Biol 2002; 9(11): 862-9.

[337] Shimojo H, Sano N, Moriwayi Y, Okuda M, Horikoshi M, Nishimura Y. Novel structural and functional mode of a bromo domain for RNA binding activity of the Esal presumed chromodom. J Mol Biol 2008; 387(5): 987-1001.

[338] Duttnall RN, Tatrov ST, Sternglanz R, Ramakrishnan V. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 1998; 94(4): 427-38.

[339] Lin C, Yuan YA. Structural insights into histone H3 lysine 56 acetylation by Rtt109. Structure (London, England) 1993; 2008; 16(10): 1503-10.

[340] Stavropoulos P, Nagy V, Blobel G, Hoelz A. Molecular basis for the autoregulation of the protein acetyl transferase Rtt109. Proc Nat Acad Sci USA 2008; 105(34): 12236-41.

[341] Tang Y, Holbert M, a Delgoishein N, et al. Structure of the Rtt109-ACoA/Avp75 complex and implications for chaperone-mediated histone acetylation. Structure (London, England) 1993; 2011; 19(2): 221-31.

[342] Su D, Hu Q, Zhou H, et al. Structure and histone binding properties of the Vps75-Rtt109 chaperone-lysine acetyltransferase complex. J Biol Chem 2011; 286(18): 15625-9.

[343] Tang Y, Holbert MA, Wurtele H, et al. Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nature structural Mol Biol 2008; 15(7): 738-45.

[344] Chung C-wa, Tough DF. Bromodomains: a new target class for small molecule drug discovery. Drug Discov Today: Therapeutic Strategies 2012; xxx(xx): 1-10.

[345] Loyola A, Almounzi G. Bromodomains in living cells participate in deciphering the histone code. Trends in cell Biol 2004; 14(6): 279-81.

[346] Jones MH, Hamana N, Nezu J, Shimane M. A novel family of bromodomains genes. Genomics 2000; 63(1): 40-5.

[347] Filipakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010; 468(7327): 1067-73.

[348] Chung C-W, Coste H, White JH, et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J medicinal Chem 2011; 54(11): 3827-38.

[349] Blobel G a, Kalota A, Sanchez PV, Carroll M. Short hairpin RNA mediated siRNA screening reveals bromodomain proteins as novel targets in acute myeloid leukemia. Cancer cell 2011; 20(3): 287-8.

[350] Dameron M, a Priehk NJ, Dittmann A, a, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. Nature 2011; 478(7370): 529-33.

[351] Hemings DS, Wang M, Philpott M, et al. 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J medicinal Chem 2011; 54(19): 6761-70.

[352] Bamborough P, Dahl O, Goodacre JD, et al. Fragment-based discovery of bromodomain inhibitors part 2: optimization of phenylisoxazole sulfonamides. J medicinal Chem 2012; 55(2): 587-96.

[353] Merz J a, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Nat Acad Sci USA 2011; 108(40): 16609-74.

[354] Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS letters 2011; 585(13): 2024-31.

[355] Nimura K, Ura K, Kanaeda Y. Histone methyltransferases: regulation of transcription and contribution to human disease. J molecular medicine (Berlin, Germany) 2010; 88(12): 1213-20.

[356] Copeland RA, Richon VM. The human protein methyltransferases. 2011;
Modulation of Epigenetic Targets for Anticancer Therapy

[382] Xiao B, Jing C, Wilson JR, et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 2003; 421(6923): 652-6.

[383] Chukov S, Kurash JK, Wilson JR, et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432(7015): 353-60.

[384] Couture J-F, Collazo E, Hauk G, Trievel RC. Structural basis for the methylation site specificity of SET7/9. Nature structural Mol Biol 2006; 13(2): 140-6.

[385] Subramanian K, Jia D, Kapoor-Vazirani P, et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Molecular cell 2008; 30(3): 336-47.

[386] Estève P-O, Chang Y, Samaranayake M, et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nature structural Mol Biol 2011; 18(1): 42-8.

[387] Xiao B, Jing C, Kelly G, et al. Specificity and mechanism of the histone methyltransferase Prv7. Genes & development 2005; 19(12): 1455-66.

[388] Li M, Phattani HP, Gao Z, et al. Structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Nat Acad Sci USA 2008; 105(52): 20659-64.

[389] Couture J-F, Dirk LM a, Brunselje JS, Hauk G, Trievel RC. Structural origins for the product specificity of SET domain protein methyltransferases. Proc Nat Acad Sci USA 2008; 105(19): 7336-41.

[390] Goodwin KD, He H, Imasaki T, et al. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. The PR/SET domain in PRDM4 is preceded by a zinc knuckle. Biochemical and biophysical research communications 2008; 370(2): 202-10.

[391] Li M, Phatnani HP, Guan Z, et al. Structural basis for a conformational transition structure of cardiac-specific histone methyltransferase Smyd1 reveals unusual active site architecture. J Biol Chem 2010; 285(23): 18188-97.

[392] Li M, Phatnani HP, Gao Z, et al. Structural basis for the autoinhibition and posttranslational activation of histone methyltransferase Smyd2 reveals insights into the substrate divergence of histone and p53 methyltransferase Smyd2 reveals a conformational flexibility of the autoinhibitory C-terminal domain. PLoS one 2011; 6(6): e19560.

[393] Xu S, Zhong C, Zhang T, Ding J. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J molecular cell Biol 2011; 3(5): 293-300.

[394] Ferguson AD, Larsen N a, Howard T, et al. Structural basis of substrate methylation and inhibition of SMYD2. Structure (London, England) 2003; 11(14): 1753-63.

[395] Wang L, Li M, Zhou P, et al. Structural basis of a histone H3K4 methyltransferase fold is encoded by the human endothelin-1 splice variant. Structure (London, England) 2011; 19(14): 2023-33.

[396] Sirinupong N, Brunselje J, Ye J, et al. Crystal structure of the conserved core histone methyltransferase Smyd1 reveals unusual active site architecture. J Biol Chem 2010; 285(23): 18188-97.

[397] Jiang Y, Sirinupong N, Brunselje J, Yang Z. Structural studies of histone and p53 methyltransferase Smyd2 reveal a conformational flexibility of the autoinhibitory C-terminal domain. PLoS one 2011; 6(6): e19560.

[398] Xu S, Zhong C, Zhang T, Ding J. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J molecular cell Biol 2011; 3(5): 293-300.

[399] Ferguson AD, Larsen N a, Howard T, et al. Structural basis of substrate methylation and inhibition of SMYD2. Structure (London, England) 2003; 11(14): 1753-63.

[400] Wang L, Li M, Zhou P, et al. Structural basis of a histone H3K4 methyltransferase fold is encoded by the human endothelin-1 splice variant. Structure (London, England) 2011; 19(14): 2023-33.
Varier R a, Timmers HTM. Histone lysine methylation and deacetylase pathways in cancer. Biochimica et biophysica acta 2011; 1815(1): 75-89.

Loehse B, Kristensen JL, Kristensen LH, et al. Inhibitors of histone demethylases. Bioorganic Med Chem 2011; 19(12): 3625-36.

Heightsman TD. Chemical biology of lysine demethylases. Curr chemical genomics 2011; 5(Suppl 1): 62-71.

Tochio N, Umehara T, Koshiba S, et al. Solution structure of the SWIRM domain of human histone demethylase LSD1. Structure (London, England) 1993; 2006; 4(3): 457-68.

Mimasa S, Sengoku T, Fukuzawa S, Umehara T, Yokoyama S. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 A. Biochemical and biophysical research communications 2008; 366(1): 15-22.

Stavropoulos P, Blobel G, Hoelz A. Crystal structure and mechanism of human lysine-specific demethylase-1. Nature structural Mol Biol 2006; 13(7): 626-32.

Chen Y, Yang Y, Wang F, et al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc Nat Acad Sci USA 2006; 103(8): 13956-61.

Yang M, Gocke CB, Luo X, et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Molecular cell 2006; 23(3): 377-87.

Yang M, Culhane JC, Szwczuk LM, et al. Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nature structural Mol Biol 2007; 14(6): 535-9.

Forneris F, Binda C, Adamo A, Battaglioni E, Mattevi A. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J Biol Chem 2007; 282(28): 20704-4.

Zibetti C, Adamo a., Binda C, et al. Alternative Splicing of the Histone Demethylase LSD1/KDM1 Contributes to the Modulation of Neurite Morphogenesis in the Mammalian Nervous System. J Neuroscience 2010; 30(7): 2521-32.

Binda C, Valente S, Romanenqi M, et al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J American Chemical Society 2010; 132(19): 6827-33.

Baron R, Binda C, Tortorici M, McCammon IA, Mattevi A. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure (London, England) 2003; 11; 2(12): 212-20.

Mimasa S, Umezawa N, Sato S, Higuchi T, Umehara T, Yokoyama T. Structural insights into histone lysine demethylation; crystallographic and biochemical studies. J Mol Biol 2009; 390; 649-503.

Mamti M, Krojer T, Bagg EA, et al. Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. J Mol Biol 2010; 401(2): 211-22.

Horton JR, Upadhyay AK, Qi HH, Zhang X, Cheng X. Structural basis for human PHF2 Jumonji domain interaction with metal ions. J Mol Biol 2011; 406(1): 1-8.

Sengoku T, Yokoyama S. Structural basis for histone H3 Lys 27 demethylation by UTX/KDM6A. Genes & development 2011; 25(21): 2266-77.
Waaler J, Machon O, Tumova L, Di Girolamo M, Dani N, Stilla A, Corda D. Physiological relevance of PARP inhibition: PARP-1 and beyond. Nat Rev Cancer 2010; 10(4): 255-265.

Dani N, Barbosa AIM, Del Rio A, Di Girolamo M. ADP-ribosylated proteins as old and new targets for anticancer therapy. Curr Pharm Des 2013; 19(4): 264-33.

Hottiger MO. ADP-ribosylation of histones by ARTD1: an additional module of the histone code? FEBS letters 2011; 585(11): 1595-9.

Dani N, Mayo E, Stilla A. PARP inhibition: PARP-1 and histone HI at promoters specifies transcriptional outcomes. Science (New York, N.Y.) 2008; 319(5864): 819-21.

Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F. ADP-ribosylation of histones by ARTD1: an additional module of the histone code? FEBS letters 2011; 585(11): 1595-9.

Dani N, Mayo E, Stilla A, Buzzai M. PARP inhibition: PARP-1 and beyond. Nat Rev Cancer 2010; 10(4): 255-265.

Dani N, Barbosa AIM, Del Rio A, Di Girolamo M. ADP-ribosylated proteins as old and new targets for anticancer therapy. Curr Pharm Des 2013; 19(4): 264-33.

Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 2010; 35(4): 208-19.

Laing S, Unger M, Koch-Nolte F, Haag F. ADP-ribosylation of arginine. Amino acids 2011; 41(2): 257-69.

Hottiger MO, Massi L, Buser P, et al. PARP1 and beyond. Curr Pharm Des 2013; 19(4): 624-33.

Ferraris DV. Evolution of poly(ADP-ribose) polymerase (PARP) in cancer chemotherapy. Recent Pat Drug Discov 2005; 4(5): 421-40.

Quénet D, El Ramy R, Schreiber V, Dantzer F. The role of poly(ADP-ribose)ylation in epigenetic events. The international J biochemistry & cell Bio 2009; 41(1): 60-5.

Hakme A, Wong H-K, Dantzer F, Schreiber V. The expanding field of poly(ADP-ribosylation) reactions. “Protein Modifications: Beyond the Usual Suspects” Review Series. EMBO reports 2008; 9(11): 1094-100.

Mendes F, Groessl M, Nazarov A a, et al. ADP-ribosyltransferase-2: official J DNA Methylation Society 2009; 4(5): 107(46): 19915-20.

Rouleau M, Aubin RA, Poirier GG. Poly(ADP-ribosyl)ated chromatin domains: access granted. J cell science 2004; 117(Pt 6): 815-25.

Krishnakumar R, Gamble MJ, Fizzell KM, Berrocal JG, Kininis KM, Kraus WL. Reciprocal binding of PARP-1 and histone HI at promoters specifies transcriptional outcomes. Science (New York, N.Y.) 2008; 319(5864): 819-21.

Rogakou EP, Filch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol chemistry 1998; 273(10): 5858-68.

Xu Y, Price BD. Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 2011; 10(2): 261-7.

Fischle W, Tseng BS, Dormann HL, et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005; 438(7071): 1116-22.

Thomson CE, et al. Comprehensive phosphoprotein analysis of linker histone HI from Tetrahymena thermophila. Molecular & cellular proteomics 2006; 5(9): 1593-609.

Hanover J a., Krause MW, Love DC. Post-translational modification by interplay between different post-translational modifications on human histone H3. J Cellular Biochem 2010; 110(7): 2801-6.

Banerjee T, Chakravarti D. A peek into the complex reality of histone phosphorylation. Molecular and cellular Biology 2011; 31(24): 4858-73.

Hottiger MO. ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiology and molecular biology reviews: MMBR 2006; 70(3): 789-829.

Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J medicinal Chem 2010; 53(12): 4561-84.

Waaler J, Machon O, Tumova L, et al. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res 2012; 72(18): 4565-75.
tiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 2011; 286(43): 38734-95.

[526] Fujiki R, Hashiba W, Sekine H, et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 2011; 480(7378): 557-60.

[527] Sinclair DAR, Syrzycka M, Macauley MS, et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycistron group (PcG) gene, super sex combs (sxc). Proc Nat Acad Sci USA 2009; 106(32): 13427-32.

[528] Dall’olio F, Malagolini N, Trinchera M, Chiricolo M. Mechanisms of cancer-associated glycosylation changes: Frontiers in bioscience: a journal and virtual library 2012; 17(9): 670-99.

[529] Caretti A, Sirchia SM, Tabano S, Zulotta A, Dall’olio F, Trinchera M. DNA methylation and histone modifications modulate the β1,3 galactosyltransferase [βGal-T5] native promoter in cancer cells. The international J biochemical & cell Biol 2012; 44(1): 84-90.

[530] Dall’olio F, Malagolini N, Chiricolo M. Glycosylation in Cancer. Carbohydrate Chem 2011; :

[531] Slawson C, Hart GW. O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 2011; 11(9): 678-84.

[532] Li M, Song L, Qin X. Glycan changes: cancer metastasis and anti-cancer vaccines. J Biosciences 2010; 35(4): 665-73.

[533] Dall’olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Francheschi C. N-glycosic biomarkers of biological aging and longevity: A link with inflammation. Ageing research reviews 2012; 22: 1453-64.

[534] Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nature structural Mol Biol 2004; 11(10): 1001-7.

[535] Jiang J, Lazarus MB, Pasquina L, Sliż P, Walker S. A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nature chemical Biol 2012; 8(1): 72-7.

[536] Lazarus MB, Nam Y, Jiang J, Sliż P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 2011; 469(7311): 564-7.

[537] Jakeman DL. Mechanisms of glycosyltransferases: the in and out. Chembiochem: a Eur J chemical Biol 2011; 12(17): 2540-2.

[538] Roychoudhury R, Pohl NLB, Nguyen TH, Members ACS. New structures, chemical functions, and inhibitors for glycosyltransferases. Cur opinion Chem Biol 2010; 14(2): 168-73.

[539] Hosoguchi K, Maeda T, Furukawa JI, et al. An efficient approach to the discovery of potent inhibitors against glycosyltransferases. J medicinal Chem 2010; 53(15): 5607-19.

[540] Agard NJ, Bertozzi CR. Chemical approaches to perturb, profile, and perceive glycans. Accounts of chemical Res 2009; 42(6): 788-97.

[541] Eskandari R, Kuntz D a, Rose DR, Pinto BM. Potent glucosidase inhibitors: de-O-sulfonated ponkoranol and its stereoisomer. Organic & biomolecular Chem 2006; 4(5): 839-45.

[542] Vakoc B, Vorechovsky I, Torres-Jerez I, et al. Novel histone biotinylation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes. J biological Chem 2011; 286(1): 21-30.

[543] Dall’olio F, Malagolini N, Trinchera M, Chiricolo M. Glycosylation in Cancer. Carbohydrate Chem 2011; : 1741-27.
and its complexes: structural basis of biotin activation. J Mol Biol 2005; 353(2): 322-33.

[573] Bagautdinov B, Matsura Y, Bagautdinova S, Kunishima N. Protein biotinylation visualized by a complex structure of biotin protein ligase with a substrate. J Biol Chem 2008; 283(21): 14739-50.

[574] Santos-Rosa H, Kirmizis A, Nelson C, et al. Histone H3 tail clipping regulates gene expression. Nature structural Mol Biol 2009; 16(1): 17-22.

[575] Nelson CJ, Santos-Rosa H, Kouzarides T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 2006; 126(5): 905-16.

[576] Fabbri M, Calin G a. Epigenetics and miRNAs in human cancer. 1st ed. Elsevier Inc.; 2010.

[577] O’Connell RM. MicroRNAs function on a new level. Blood 2012; 119(17): 3875-6.

[578] Benhamed M, Herbig U, Ye T, Dejean A, Bischof O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nature cell Biol 2012; 14(3): 266-75.

[579] Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 2011; 31(13): 1609-22.

[580] Cho WCS. Grand Challenges and Opportunities in Deciphering the Role of Non-Coding RNAs in Human Diseases. Frontiers in genetics 2011; 2(January): 1.

[581] Cho WC. Exploiting the therapeutic potential of microRNAs in human cancer. Exp opinion on therapeutic targets 2012; 16(4): 345-50.

[582] Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug discov 2010; 9(10): 775-89.

[583] Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J clinical oncology: official J Am Soc Clin Oncoly 2009; 27(34): 5848-56.

[584] Parker JS. How to slice: snapshots of Argonaute in action. Silence 2009; 27(34): 5848-56.

[585] Beher D, Wu J, Cumine S, et al. Phenotypic screening, take two. Science-Business eXchange 2012; 5(15): 1-3.

[586] Boutaou M, Bagautdinov B, Matsura Y, Kunishima N. Protein biotinylation visualized by a complex structure of biotin protein ligase with a substrate. J Biol Chem 2008; 283(21): 14739-50.

[587] Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J. Structural basis of EZH2 recognition by EED. Structure (London, England 2006; 14(3): 1609-22.

[588] Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11(12): 849-64.

[589] Chen X-ping, Du G-hua. Target validation for cancer therapy. Nat Rev Drug discov Ther 2007; 1(1): 23-9.

[590] Flemming A. Chemoinformatics: Where “magic bullets” go astray. Nat Rev Drug discov 2009; 8(12): 933.

[591] Bottegoni G, Favia AD, Recanatini M, Cavalli A. The role of fragment-based and computational methods in polypharmacology. Drug Discov Today 2012; 17(1-2): 23-34.

[592] Petrelli A, Giordano S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 2008; 15(5): 422-32.

[593] Vel Szic KS, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 2010; 80(12): 1816-32.

[594] Beher D, Wu J, Cumine S, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 2009; 74(6): 619-24.

[595] Denu JM. Fortifying the Link between SIRT1, Resveratrol, and Mitochondrial Function. Cell Metabol 2012; 15(5): 566-7.

[596] Price NL, Gomes AP, Ling AJY, et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism 2012; 15(5): 675-90.

[597] Moniot S, Weyand M, Steegborn C. Structures, substrates, and regulators of Mammalian siRNA - opportunities and challenges for drug development. Frontiers in pharmacology 2012; 3(February): 16.

[598] Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J. Structural basis of EZH2 recognition by EED. Structure (London, England 1993) 2007; 15(10): 1306-15.

[599] Barbosa AJM, Del Rio A. Freely accessible databases of commercial compounds for high-throughput virtual screenings. Curr Topics Med Chem 2012; 12(8): 866-77.

[600] Del Rio a, Barbosa AJM, Caporuscio F, Mangiatordi GF. CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Molecular bioSystems 2010; 6(11): 2122-8.

[601] Del Rio a, Barbosa A, Caporuscio F. Use of large multiconformational databases with structure-based pharmacophore models for fast screening of commercial compound collections. J Cheminformatics 2011; 3(Suppl 1): P27.

[602] Sanders MPA, Barbosa AJM, Zarzycka B, et al. A comparative analysis of pharmacophore screening tools. J Chem Information Modeling 2012;

[603] Heinke R, Carlino L, Kannan S, Jung M, Sippl W. Computer- and structure-based lead design for epigenetic targets. Bioorganic Med Chem 2011; 19(12): 3605-15.

[604] Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009; 462(7270): 175-81.

[605] Chong CR, Sullivan DJ. New uses for old drugs. Nature 2007; 448(7154): 645-6.

[606] Harvey AL. Natural products as a screening resource. Curr opinion Chem Biol 2007; 11(5): 480-4.

[607] Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13(19-20): 894-901.

[608] Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug discov 2011; 10(7): 507-19.

[609] Kotz J. Phenotypic screening, take two. Science-Business eXchange 2012; 5(15): 1-3.