Transcriptome and Comparative Chloroplast Genome Analysis of Vincetoxicum versicolor: Insights Into Molecular Evolution and Phylogenetic Implication

Xiaolei Yu1, Wenxiu Wang1, Hongxia Yang1, Xiaoying Zhang1, Dan Wang2* and Xiaoxuan Tian1*

1 State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2 Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China

Vincetoxicum versicolor (Bunge) Decne is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma. The lack of information on the transcriptome and chloroplast genome of V. versicolor hinders its evolutionary and taxonomic studies. Here, the V. versicolor transcriptome and chloroplast genome were assembled and functionally annotated. In addition, the comparative chloroplast genome analysis was conducted between the genera Vincetoxicum and Cynanchum. A total of 49,801 transcripts were generated, and 20,943 unigenes were obtained from V. versicolor. One thousand thirty-two unigenes from V. versicolor were classified into 73 functional transcription factor families. The transcription factors bHLH and AP2/ERF were the most significantly abundant, indicating that they should be analyzed carefully in the V. versicolor ecological adaptation studies. The chloroplast genomes of Vincetoxicum and Cynanchum exhibited a typical quadripartite structure with highly conserved gene order and gene content. They shared an analogous codon bias pattern in which the codons of protein-coding genes had a preference for A/U endings. The natural selection pressure predominantly influenced the chloroplast genes. A total of 35 RNA editing sites were detected in the V. versicolor chloroplast genome by RNA sequencing (RNA-Seq) data, and one of them restored the start codon in the chloroplast ndhD of V. versicolor. Phylogenetic trees constructed with protein-coding genes supported the view that Vincetoxicum and Cynanchum were two distinct genera.

Keywords: Vincetoxicum versicolor (Bunge) Decne, transcriptome, chloroplast genome, comparative analysis, phylogeny

INTRODUCTION

Apocynaceae is a large family of plants distributed globally, which contains around 4,500 species in approximately 370 genera (Endress et al., 2014; Fishbein et al., 2018). Vincetoxicum versicolor (also known as Cynanchum versicolor in Flora of China) belongs to the Apocynaceae family and is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma
(Chinese Pharmacopoeia Commission, 2015). However, the genus of this plant has not been unified due to the controversial phylogenetic relationship between the genera *Vincetoxicum* and *Cynanchum*, which may affect the Cynanchi Attrati Radix et Rhizoma application in the world. The phylogenetic relationship between *Vincetoxicum* and *Cynanchum* has been controversial since the first transfer of *Vincetoxicum hirundinaria* and several other Eurasian *Vincetoxicum* species to the genus *Cynanchum* by Persoon in 1805 (Persoon, 1805). Some researchers have suggested that *Vincetoxicum* should be grouped into the genus *Cynanchum* based on the corona structure similarity (Jiang and Li, 1977; Gilbert et al., 1996). On the other hand, these two genera were considered to be distinct, and *Vincetoxicum* was regarded as an independent genus based on molecular data and chemical substances (Qiu et al., 1989; Liede-Schumann, 2000). Besides, the second opinion is supported by studies based on some regions of the nuclear and chloroplast DNA (Yamashiro et al., 2004; Fishein et al., 2018). Although *Vincetoxicum* is generally considered an independent genus in Apocynaceae taxonomy around the world (Goyder et al., 2012; Endress et al., 2014; Liede-Schumann et al., 2016; Liede-Schumann and Meve, 2018), the concept of *Vincetoxicum* as a section of the genus *Cynanchum* is still reflected in the taxonomy of modern flora in China (Feng et al., 2012; Li et al., 2012; Yang J. et al., 2018). Therefore, more evidence should be provided to confirm uniformity in the phylogenetic relationship between *Vincetoxicum* and *Cynanchum*.

Chloroplasts originated from ancient endosymbiotic cyanobacteria and are active metabolic centers that sustain life on Earth by converting solar energy into carbohydrates via the photosynthesis process and oxygen release (Leister, 2003; Daniell et al., 2016). Chloroplasts carry their own genomes and genetic systems. The typical angiosperm chloroplast genome has a quadruplicate structure, with a genome size of 107–218 kb and gene content of 120–130 genes (Daniell et al., 2016; Kim et al., 2019). The chloroplast genome has the characteristics of uniparental inheritance, moderate nucleotide substitution rate, haploid status, and no homologous recombination (Shaw et al., 2005; Hansen et al., 2007; Yang et al., 2019b). These features make it a suitable tool for molecular identification of species and genetic diversity studies (Zhang et al., 2017; Chen et al., 2018). Moreover, the entire chloroplast genome contains more informative sites than chloroplast DNA fragments, which can provide a higher resolution of the phylogenetic relationship at multiple taxonomic levels (Yang X.-Y. et al., 2018). The development of next-generation sequencing technology has led to more and more angiosperm chloroplast genomes available, making comparative chloroplast genomics a convenient and efficient method for phylogenetic and evolutionary studies (Ge et al., 2018; Gu et al., 2019).

Next-generation sequencing not only greatly improves our ability to obtain genomic resources in non-model species but also facilitates the development of the RNA-Seq technique. RNA-Seq is an efficient technology for large scale transcriptome investigations, which provides a convenient way to obtain information from expressed genomic regions quickly and offers an opportunity to solve comparative transcriptomic-level problems for non-model organisms (Logacheva et al., 2011; Zhang et al., 2013). Transcriptome analysis provides an effective way for novel gene discovery (Emrich et al., 2007) and expression profile construction (Fox et al., 2014), as well as for molecular marker development (Zhang et al., 2013) and analysis of adaptive evolution (Jia et al., 2017). As a non-model species, *V. versicolor* lacks transcriptome analysis, delaying molecular studies at the transcriptional level.

RNA editing, which is identified primarily by the RNA-Seq technique, is a repair mechanism derived by species in response to abnormal DNA mutations during evolution. RNA editing is a post-transcriptional process in which the nucleotide in the transcript differs from the encoded DNA sequence by nucleotide insertion, deletion, or conversion (Takenaka et al., 2013). Most RNA editing events occur in internal codons, resulting in amino-acid substitutions. However, in some cases, the ACG codon is restored to the AUG start codon because of the C-to-U RNA editing, contributing to the conservation of the translation start signals at the gene level, which is essential for protein synthesis (Hirose and Sugiuira, 1997). This editing-restored start codon has been reported in the chloroplast transcripts from *maize* (rpl2), *tobacco* (psbL), but especially in the *ndhD* transcript of several species, including *Arabidopsis*, *Betrula*, *tobacco*, *spinach*, and *snapdragon* (Neckermann et al., 1994; Wang et al., 2018).

Here, we de novo assembled the transcriptome and chloroplast genome of *V. versicolor* and performed a comparative chloroplast genome analysis between species of the genera *Vincetoxicum* and *Cynanchum*. The aims of this study were (1) to characterize the transcriptome and chloroplast genome of *V. versicolor*, (2) to explore the *V. versicolor* molecular evolution, and (3) to provide insights into the phylogenetic relationship between the genera *Vincetoxicum* and *Cynanchum*.

MATERIALS AND METHODS

Plant Materials Collection and DNA and RNA Extraction

The young fresh leaves of a single plant of *V. versicolor* were collected in August 2019 from Tianjin University of Traditional Chinese Medicine (117.066°E, 38.96°N), Tianjin City, China. The voucher specimens were deposited at Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China (voucher number 2019bsbq). The collected leaves were snap-frozen in liquid nitrogen and then stored at -80°C until DNA and RNA extraction. The total DNA was extracted using the extract Plant DNA kit (QIAGEN, Germany) following the manufacturer’s instructions. Total RNA was extracted using the QIAGEN RNasy Plant Mini Kit (QIAGEN, Germany) following the manufacturer’s instructions. The purity and concentration of DNA and RNA were checked using NanoPhotometer®-spectrophotometer (IMPLEN, CA, United States) and Qubit® DNA Assay.
The DNA-Seq library with an average insert size of 350 bp was constructed using the TrueSeq Nano DNA HT Sample Preparation Kit (Illumina United States). The strand-specific RNA-Seq library was constructed using the protocol described by Zhong et al. (2011). Then, the RNA-Seq library was sequenced on the Illumina HiSeqTM 2,500 platform. Subsequently, clean DNA and RNA data were obtained by removing adaptors and low-quality reads from the raw data. The clean DNA and RNA data were obtained by removing adaptors and low-quality reads from the raw data. The V. versicolor chloroplast genome was de novo assembled using NOVOPlasty3.7.2 (Dierckxsens et al., 2017). To validate the reads coverage of the assembled chloroplast genome, clean data were mapped to the V. versicolor chloroplast genome using bowtie 2 (Langmead and Salzberg, 2012), and the average reads coverage was 2,418×. The V. versicolor chloroplast genome was annotated using GeSeq (Tillich et al., 2017), coupled with manual corrections for the start and stop codons. Finally, the V. versicolor chloroplast genome was deposited in the National Center for Biotechnology Information (NCBI) GenBank under accession number MT558564. For the transcriptome assembly, high-quality RNA-Seq data were de novo assembled into transcripts using Trinity (Grabherr et al., 2011) with min_kmer_cov set to two and other parameters set to default. The trinity-obtained contigs were then linked into transcripts. To remove redundant transcripts and obtain the primary representative of each gene locus, only the longest transcript in each cluster was selected as the unigene for subsequent analysis. Finally, the obtained unigenes were annotated using a BLAST search against the following databases, namely KOG (euKaryotic Ortholog Groups), GO (Gene Ontology), KO (KEGG Ortholog), Swiss-Prot (a manually annotated and reviewed protein sequence database), Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), and Pfam (protein family).

Results and Discussion

Transcriptome Features

Illumina pair-end sequencing produced 52,502,062 raw reads for V. versicolor, and 51,764,112 clean reads were obtained after removing adaptors and low-quality data (Table 1). The base quality value Q20 and Q30 reached 97.51 and 93.01%, respectively, which indicated that the produced data could be used for further analysis. A total of 49,801 transcripts were generated in V. versicolor, of which 20,943 unigenes (N50 = 2,128 bp, average length = 1,491 bp) were identified. Most transcripts and unigenes were 1,001–2,000 bp, and the number of transcripts and unigenes over 2,000 bp were 14,787 and 5,443, respectively (Supplementary Figure 1). There were 16,895 unigenes (80.60%) for V. versicolor with at least one significant match to the databases discussed earlier and 3,177...
TABLE 1 | Summary of statistics for the transcriptomes of V. versicolor.

Assembly results		Annotation results	
Type	Number	Database	Number (percentage)
Total number of raw reads	52,502,062	KOG	5,344 (25.52%)
Total number of clean reads	51,764,112	GO	12,369 (59.06%)
Q20 of clean data (%)	97.51	KO	6,705 (32.02%)
Q30 of clean data (%)	93.01	Swiss-Prot	13,334 (63.67%)
Total number of transcripts	49,801	NR	16,025 (76.52%)
Total number of unigenes	20,943	NT	11,680 (55.77%)
Min length of unigenes (bp)	301	PFAM	12,369 (59.06%)
Max length of unigenes (bp)	15,605	At least one database	16,895 (80.60%)
N50 of unigenes (bp)	2,128	All	3,177 (15.17%)
Mean length of unigenes (bp)	1,491		

unigenes (15.17%) with all significant matches to the databases mentioned earlier (Table 1).

Gene Ontology and Biochemical Pathways Prediction

The GO concept aims to use a common vocabulary to annotate homologous genes and protein sequences in various organisms in a flexible and dynamic way. Thus, scientists can query and retrieve genes and protein sequences based on their shared biology (Ashburner et al., 2000). The functional classification of unigenes in the GO database was assigned into three categories: biological processes, cellular components, and molecular functions (Figure 1). A total of 12,369 unigenes were assigned to the GO classification groups. In the “Biological processes” group, “Cellular process” (7,374) was the most abundant term. Regarding “Cellular components,” “Cell” (4,159), and “Cell part” (4,159) were the dominant items. In the “Molecular functions” category, “Binding” (7,101) was the largest cluster. Interestingly, the most abundant terms in the corresponding GO categories in V. versicolor were highly similar to other angiosperm transcriptomes, such as Raphanus (Mei et al., 2016), Glycyrrhiza (Jiang et al., 2020), and Dipteronia (Zhou et al., 2016). These data suggested that these gene groups are highly expressed and have functional importance in angiosperms.

The KO database is an integrated database resource composed of genes, protein, small molecules, reactions, pathways, diseases, drugs, organisms, and viruses, as well as more conceptual objects, aiming to assign functional meanings to genes and genomes, both at the molecular and higher levels (Kanehisa et al., 2017). For the biochemical pathways prediction in the KO database, a total of 6,705 unigenes were assigned to the KO pathways (Figure 2). The cluster for “Translation” (799) represented the largest group, followed by “Carbohydrate metabolism” (542) and “Folding, sorting and degradation” (477), which indicated that these pathways might be crucial for the V. versicolor development.

Detection of Transcription Factors

Transcription factors play pivotal roles in complex biological processes under multiple environmental signals by regulating
FIGURE 2 | Annotation of unigenes of V. versicolor in KO database. “A” presents “Cellular processes,” “B” presents “Environmental information processing,” “C” presents “Genetic information processing,” “D” presents “Metabolism,” and “E” presents “Organismal Systems.”

TABLE 2 | Transcription factor families and corresponding unigenes number identified in V. versicolor.

Family	Count	Family	Count	Family	Count	Family	Count	Family	Count	Family	Count	Family	Count
Alfin-like	4	CPP	1	HRT	1	NF	24	STAT	1				
AP2/ERF	56	CSD	4	HSF	13	OIF	5	SWI/SNF	17				
ARID	8	DBB	2	IWS1	5	Others	36	TAZ	5				
AUX/IAA	20	DBP	1	Jumonj	14	PHD	25	TCP	16				
B3	27	DTT	6	LIM	2	PLATZ	3	Tify	7				
BBR-BPC	5	E2F-DP	5	LOB	9	Pseudo ARR-B	4	TRAF	16				
BES1	7	EIL	2	LUG	2	RB	1	Trihelix	22				
bHLH	57	FAR1	20	MAOS	17	Rcd1-like	2	TUB	9				
BSD	1	GAP	25	MBF1	2	RWP-RK	5	UTL	1				
bZIP	35	GbBP	6	MED6	1	S1Fa-like	2	VOZ	1				
C2C2	46	GNAT	22	MED7	1	SBP	12	Whirly	2				
C2H2	46	GRAS	29	mTERF	24	SET	24	WRKY	13				
C3H	38	GRF	1	MYB	31	SNF2	26	zf-HD	7				
CAMTA	2	HB	37	MYB-related	46	SCH1	1						
Coactivator p15	3	HMG	6	NAC	28	SRS	1						

the gene transcription through binding to specific DNA sequences in the target gene promoters (Honys and Twell, 2004). Transcription factors are generally classified into different families based on their DNA-binding domains (Jin et al., 2014). A total of 1,032 unigenes V. versicolor were classified into 73 functional families (Table 2). Among these families, bHLH
transcription factors were the most abundant (57), followed by AP2/ERF (56). It is worth paying attention to these two transcription factor families in the ecological adaptation studies of *V. versicolor*, as they play essential roles in resistance to abiotic stress in plants (Chinnusamy et al., 2003; Yang et al., 2016; Tripathi et al., 2017).

Chloroplast Genome Features

The complete chloroplast genome of *V. versicolor* was 159,907 bp in length, including a pair of 24,971-bp IRs separated by 19,456-bp SSC and 90,509-bp LSC regions (Figure 3). This quadripartite structure was a typical feature of the chloroplast genome of most angiosperms (Yu et al., 2019, 2020; Tan et al., 2020). The AT content of the *V. versicolor* chloroplast genome was 62.2%, whereas the AT contents of the LSC, SSC, and IR regions were 63.9, 68.8, and 56.8%, respectively. These data showed that the chloroplast genome exhibited an obvious AT preference and such preference was most evident in the SSC region. The chloroplast genome of *V. versicolor* contained 133 genes, of which 88 were protein-coding genes, 37 were tRNA genes, and 8 were rRNA genes (Table 3). Among these genes, 19 were duplicated in the IR regions, including eight protein-coding genes (*rpl2, rpl23, ycf2, ndhB, rps7, rps12, ycf15*, and *ycf1*), seven tRNA genes (*trnR-ACG, trnL-CAA, trnV-GAC, trnI-CAU, trnI-GAU, trnA-UGC, and trnA-UGC*), and eight other genes. The distribution of genes in the chloroplast genome is shown in Figure 3.
and trn-N-GUU), and four rRNA genes (rrn23, rrn16, rrn5, and rrn4.5). There were 21 genes with introns, and 19 of which (atpF, petB, petD, ndhA, ndhB × 2, rpsC1, rps16, rpl16, rpl2 × 2, trnK-UUU, trnL-UAA, trnG-GCC, trnV-UAC, trnA-UGC × 2, trnI-GAU × 2) contained one intron, while two genes (clpP, ycf3) contained two introns. Although the chloroplast genome sizes of V. versicolor, Vincetoxicum shaanxiense (NCBI accession number MH210646), Cynanchum wilfordii (NC_029459), and Cynanchum auriculatum (NC_029460) ranged from 159,907 to 161,241 bp, the gene order, gene content, intron content, and AT content of these genomes were similar (Table 3 and Supplementary Table 2).

Detection of Chloroplast RNA Editing Sites

The RNA editing sites in the V. versicolor chloroplast genome were identified based on RNA-Seq data. The type and position of the editing sites are shown in Table 4. All RNA editing sites identified were C-to-U. A total of 35 RNA editing sites were detected in the V. versicolor chloroplast genome, of which 33 contained two introns, and the remaining two were located in the tRNA region (trn-N-GUU). All identified RNA editing sites occurred at the first and second positions of the codon, resulting in amino acid changes at the transcription level. Among these changes, the change from serine (S) to leucine (L) was the most abundant.

We found an interesting phenomenon when checking the annotated genes, in which the chloroplast ndhD of V. versicolor did not seem to have a start codon at the genome level (the sequence was validated by a polymerase chain reaction and Sanger sequencing data). A further comparison of the chloroplast ndhD between species of the genera Vincetoxicum and Cynanchum showed that only the C. auriculatum ndhD started with the standard AUG. In contrast, the ndhD of V. versicolor, V. shaanxiense, and C. wilfordii exhibited ACG instead of AUG at the corresponding codon position (Figure 4). Therefore, we speculated that RNA editing restored the start codon AUG in V. versicolor, V. shaanxiense, and C. wilfordii, as observed in Arabidopsis, tobacco, spinach, Betula, and snapdragon (Neckermann et al., 1994; Wang et al., 2018). Examination

Genotype	Genome size (bp)	LSC size (bp)	SSC size (bp)	IR size (bp)	Number of genes	Protein genes [unique]	tRNA genes [unique]	rRNA genes [unique]	Duplicated genes in IRs	AT content (%)	AT content in LSC (%)	AT content in SSC (%)	AT content in IRs (%)
V. versicolor	159,907	90,509	19,456	24,971	133	88 (80)	37 (30)	8 (4)	19	62.2	63.9	68.2	56.8
V. shaanxiense	160,308	91,335	19,185	24,894	133	88 (80)	37 (30)	8 (4)	19	62.2	63.9	68.2	56.8
C. wilfordii	161,241	91,995	19,930	24,658	133	88 (80)	37 (30)	8 (4)	19	62.2	63.9	68.2	56.8
C. auriculatum	160,840	91,973	19,667	24,600	133	88 (80)	37 (30)	8 (4)	19	62.2	63.9	68.2	56.8

TABLE 3 | Summary statistics of chloroplast genomes of Vincetoxicum and Cynanchum species.

TABLE 4 | RNA editing sites in the V. versicolor chloroplast genome detected by RNA-Seq data.

Gene name	**Genome position**	**Gene position**	**Codon position**	**Editing type**	**Codon change**	**Amino acid change**
matK	2,257	1,195	1	C => U	OGG => UGG	R => W
atpA	10,941	914	2	C => U	UCA => UUA	S => L
atpF	11,064	791	2	C => U	CCC => UGC	P => L
atpH	11,082	773	2	C => U	UCA => UUA	S => L
ndhA	15,016	620	2	C => U	UCA => UUA	S => L
ndhB	16,340	248	2	C => U	UCA => UUA	S => L
ndhC	16,454	134	2	C => U	ACA => AUA	T => I
ndhD	21,942	2,840	2	C => U	UCU => UUU	S => F
petB	28,538	2,426	2	C => U	UCA => UUA	S => L
rpoB	30,398	566	2	C => U	UGC => UUG	S => L
rpsC1	30,413	551	2	C => U	UCA => UUA	S => L
rpsC2	30,491	473	2	C => U	UCA => UUA	S => L
rpsD	42,255	149	2	C => U	CCA => UAU	P => L
rpsE	42,324	80	2	C => U	UCA => UUA	S => L
rpsH	64,582	1,214	2	C => U	UCG => UUG	S => L
psaA	65,640	71	2	C => U	UGU => UUA	S => F
psaB	65,645	76	1	C => U	CAU => UAU	H => Y
psbA	70,280	214	1	C => U	CUCU => UCU	P => S
psbB	82,349	611	2	C => U	CCA => UQA	P => L
psbE	92,256	71	2	C => U	UCU => UUU	S => F
rpl23	92,274	89	2	C => U	UCA => UUA	S => F
trnN-GUU	113,909	39	/	C => U	/	/
ndhF	117,658	290	2	C => U	UCA => UUA	S => L
ndhH	121,200	1,490	2	C => U	UCU => UUU	S => F
ndhI	121,380	1,310	2	C => U	UCA => UUA	S => L
ndhJ	121,392	1,298	2	C => U	UCA => UUA	S => L
ndhK	121,812	878	2	C => U	UGU => UUG	S => L
psaI	121,392	1,298	2	C => U	UCA => UUA	S => L
psbA	122,016	674	2	C => U	UGU => UUG	S => L
psbB	122,091	599	2	C => U	UCA => UUA	S => L
psbE	122,688	2	2	C => U	ACG => AUG	T => M
ndhG	123,911	347	2	C => U	CCA => UQA	P => L
ndhH	125,380	1,079	2	C => U	UCC => UUC	S => F
trn-N-GUU	136,508	39	/	C => U	/	/
rpl23	158,143	89	2	C => U	UCA => UUA	S => F
atpH	158,161	89	2	C => U	UCA => UUA	S => F

“Genome position,” “gene position,” and “codon position” refer to the positions of RNA editing in the chloroplast genome, genes, and codons, respectively.
of *V. versicolor* transcripts revealed seven RNA editing sites in *ndhD*, one of which appeared on the *ndhD* first codon, causing the codon change from ACG to AUG (this editing site was validated by a reverse transcription-polymerase chain reaction, Supplementary Figure 2). This confirmation of the editing-restored *ndhD* start codon in *V. versicolor* strongly supported our hypothesis despite lacking the transcripts from the other two species.
FIGURE 6 | ML and BI phylogenetic trees of Apocynaceae based on 88 protein-coding genes in the chloroplast genome. Numbers below the lines represented ML bootstrap proportions and BI posterior probabilities. *Halenia corniculata* and *Swertia ledeci* were set as the outgroups. (A) ML tree; (B) BI tree.
To further verify whether the editing-restored \textit{ndhD} start codon was a common phenomenon in Apocynaceae, the \textit{ndhD} of 17 Apocynaceae species was compared (Supplementary Table 3). The results showed that almost all of the examined Apocynaceae species exhibited ACG in the first \textit{ndhD} codon (except for \textit{C. auriculatum}), suggesting that the editing-restored \textit{ndhD} start codon was prevalent in Apocynaceae. This kind of editing-restored \textit{ndhD} start codon had also been reported in other angiosperms, especially in dicots (López-Serrano et al., 2001; Tsuzuki et al., 2001). In Apocynaceae, only \textit{C. auriculatum} showed the appropriate AUG start codon in \textit{ndhD}, suggesting that the mutation in this species corrected the start codon of \textit{ndhD} at the genomic level after the interspecific differentiation in \textit{Cynanchum}, as implied by previous studies on Liliaceae and Aloaceae (López-Serrano et al., 2001).

Codon Usage Analyses

As an important evolutionary feature, the codon usage pattern has been widely investigated in plant chloroplast genomes (Gao et al., 2018; Somaratne et al., 2019; Yang et al., 2019a). To explore the codon usage pattern in the chloroplast genomes of the \textit{Vincetoxicum} and \textit{Cynanchum} species, we calculated the number of codons and RSCU of protein-coding genes in the four chloroplast genomes using Mega X (Supplementary Table 4). The 88 shared protein-coding genes were encoded by 26729, 26671, 26716, and 26586 codons in the chloroplast genomes of \textit{V. versicolor}, \textit{V. shaanxiense}, \textit{V. wilfordii}, and \textit{C. auriculatum}, respectively. AAA encoding lysine was the most commonly used codon in the chloroplast genome of \textit{V. versicolor}, whereas AUU encoding isoleucine was the most abundant codon in the chloroplast genomes of \textit{V. shaanxiense}, \textit{V. wilfordii}, and \textit{C. auriculatum}. In the four chloroplast genomes, the A/U content in the third codon position was 68.70–69.11%, showing the preference for A/U-ending codons. Codon bias contributes to the efficiency of gene expression and, therefore, is generated and maintained by selection pressure (Hershberg and Petrov, 2008). The bias toward A/U in the third codon position is commonly observed in the angiosperm chloroplast genomes (Cui et al., 2019; Mehmood et al., 2020). This reflects the strong selection pressure that affects the codon usage of the chloroplast genome, thus regulating the chloroplast gene expressions. Additionally, except for UUG, all preferred synonymous codons (RSCU > 1) ended with A/U. The usage of the initial codon AUG and tryptophan UGG had no bias (RSCU = 1), as observed in other angiosperms (Li et al., 2019).

The plot of the ENc values against the GC3 values is a useful indicator to explore the factors that affect the codon usage. The predicted values are in the expected curve when the codon usage of a gene is constrained only by the G + C mutation bias. Moreover, the predicted values are much lower than the expected curve when natural selection played a major role in optimizing codon usage bias (Wright, 1990). The four chloroplast genomes shared the analogous codon bias pattern (Figure 5). A small number of protein-coding genes followed the standard curve, suggesting that the codon bias of these genes was caused mainly by the nucleotide composition bias in the third codon position. In particular, more than half of the genes were below the curve, indicating that natural selection predominantly influenced these genes. The photosynthesis-related genes represent most of them, revealing their importance so that strong selection pressure is necessary to keep these genes conserved. However, not all photosynthesis-related genes were below the curve. These photosynthesis-related genes exhibited discrete distribution, which implies that other factors such as gene expression level can also affect codon bias (Hershberg and Petrov, 2008).

Phylogenetic Analysis

Complete chloroplast genomes can provide abundant genetic information for understanding the phylogenetic relationships at various taxonomic levels (Huang et al., 2019; Yang et al., 2019b). To explore the phylogenetic relationship between the genera \textit{Vincetoxicum} and \textit{Cynanchum} in the Apocynaceae family, the phylogenetic analysis was conducted based on protein-coding genes of chloroplast genomes of 19 Apocynaceae species (Figure 6). ML and BI trees had a highly similar typology at most branches, except that the position of \textit{Vincetoxicum hainanense} between ML and BI trees was inconsistent. In the ML and BI trees, four \textit{Vincetoxicum} species (\textit{V. versicolor}, \textit{V. shaanxiense}, \textit{V. hainanense}, and \textit{V. rossicum}) were clustered into a monophyletic branch (bootstrap proportions = 100, posterior probabilities = 1), whereas two \textit{Cynanchum} species formed another monophyletic branch (bootstrap proportions = 100, posterior probabilities = 1). Phylogeny between \textit{Vincetoxicum} and \textit{Cynanchum} was described as \{\textit{Cynanchum} + [\textit{Vincetoxicum} + (\textit{Asclepias} + \textit{Calotropis})]\}, which strongly supports the previous view (Liede-Schumann, 2000; Yamashiro et al., 2004; Alessandro et al., 2007) that there was no close phylogenetic relationship between the genera \textit{Vincetoxicum} and \textit{Cynanchum}.

CONCLUSION

This study was the first effort to characterize the transcriptome and chloroplast genome of \textit{V. versicolor}. A total of 49,801 transcripts were generated, and 20,943 unigenes were obtained from \textit{V. versicolor}. The GO classification showed that “Cellular process,” “Cell,” “Cell part,” and “Binding” were the most abundant terms in the corresponding categories. KO pathway prediction indicated that the “Translation” cluster represented the largest group. A total of 1,032 unigenes from \textit{V. versicolor} were classified into 73 functional transcription factor families. The bHLH and AP2/ERF transcription factors were significantly abundant, suggesting that they should be carefully evaluated in the \textit{V. versicolor} ecological adaptation studies. The comparative analysis showed that the \textit{Vincetoxicum} and \textit{Cynanchum} chloroplast genomes were highly conserved in terms of gene order, gene content, and AT content. They shared an analogous codon bias pattern in which their protein-coding genes exhibited a preference for A/U-ending codons. More than half of the chloroplast genes were predominantly influenced by natural selection pressure, and photosynthesis-related genes accounted for most of them. The RNA-Seq data revealed 35 editing sites.
in the chloroplast genome of *V. versicolor*, and one of which restored the *ndhD* start codon in *V. versicolor*. Phylogenetic analysis based on ML and BI trees strongly supported the view that *Vincetoxicum* and *Cynanchum* were two distinct genera. Thus, *Vincetoxicum* should be regarded as an independent genus in the Apocynaceae family. Overall, this study provided valuable insights into the evolution and phylogeny of *V. versicolor*.

DATA AVAILABILITY STATEMENT

The dataset generated for this study can be found in NCBI Sequence Read Archive (SRA) under the accession numbers SRR10838756 (DNA) and SRR10838799 (RNA). The assembled chloroplast genome of *V. versicolor* can be found in GenBank under the accession number MT558564.

AUTHOR CONTRIBUTIONS

XT and DW designed the study and revised the manuscript. XY assembled, annotated, analyzed the chloroplast genome and transcriptome, and drafted the manuscript. XY and WW performed the experiment. XY, HY, and XZ analyzed the data. All authors contributed to the article and approved the submitted version.

REFERENCES

Alessandro, R., Cássio van den, B., and Sigrid, L.-S. (2007). Diversification of Asclepiadoideae (Apocynaceae) in the new world. *Ann. Missouri Bot. Gard.* 94, 407–422.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. *Nat. Genet.* 25, 25–29. doi: 10.1038/75556

Chen, X., Zhou, J., Cui, Y., Wang, Y., Duan, B., and Yao, H. (2018). Identification of Ligularia herbs using the complete chloroplast genome as a super-barcode. *Front. Pharmacol.* 9:695. doi: 10.3389/fphar.2018.00695

FUNDING

This work is supported by grants from the State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.602528/full#supplementary-material

Supplementary Figure 1 | Number and length of transcripts and unigenes of the *V. versicolor* transcriptome.
regulatory mechanism for the expression of a chloroplas operon consisting of functionally unrelated genes. *EMBO* J. 16, 6804–6811. doi: 10.1093/emboj/16.22.6804

Honys, D., and Twell, D. (2004). Transcriptome analysis of haploid male gametophyte development in *Arabidopsis*. *Genome Biol.* 5:R85. doi: 10.1186/gb-2004-5-11-r85

Huang, Y., Yang, Z., Huang, S., An, W., Li, J., and Zheng, X. (2019). Comprehensive analysis of *Rhododendron tomentosum* chloroplast genome. *Plants* 8:90. doi: 10.3390/plants8040089

Jia, Y., Liu, M. L., Yue, M., Zhao, Z., Zhao, G. F., and Li, Z. H. (2017). Comparative transcriptome analysis reveals adaptive evolution of *Nototyris incisum* and *Nototyris franchetii*, two high-alpine species endemic to China. *Molecules* 22:1158. doi: 10.3390/molecules22071158

Jiang, W., Tan, W., Gao, H., Yu, X., Zhang, H., Bian, Y., et al. (2020). Transcriptome and complete chloroplast genome of *Glycyrrhiza inflata* and comparative analysis with the other two licorice species. *Genomics* 112, 4179–4188. doi: 10.1016/j.genom.2020.07.007

Jiang, Y., and Li, B. (1977). *Flora of China*. Beijing: Science press.

Jin, J., Zhang, H., Kong, L., Gao, G., and Luo, J. (2014). PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. *Nucleic Acids Res.* 42, D1182–D1187. doi: 10.1093/nar/gkt1016

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589. doi: 10.1038/nmeth.4285

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). *KEGG: new perspectives on genomes, pathways, diseases and drugs*. *Nucleic Acids Res.* 45, D353–D361. doi: 10.1093/nkjw2/gkw1092

Kim, S. H., Yang, J., Park, J., Yamada, T., Maki, M., and Kim, S. C. (2019). Comparison of whole plastome sequences between thermogenic skunk cabbage *Symplecos renufolius* and Nonthermogenic *Symplecos renufolius*. *Acta Bot. Yunnan.* 11, 41–50.

Konquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic analysis and model choice across a large model space. *Syst. Biol.* 61, 539–542. doi: 10.1093/sysbio/sys029

Mao, X., Cai, T., Olyarchuk, J. G., and Wei, L. (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. *Bioinformatics* 21, 3787–3793. doi: 10.1093/bioinformatics/bti430

Mehmood, F., Abdullah, S. I., Ahmed, I., Waheed, M. T., and Mirza, B. (2020). Characterization of *Withania somnifera* chloroplast genome and its comparison with other selected species of Solanaceae. *Genomics* 112, 1522–1530. doi: 10.1016/j.ygeno.2019.08.024

Mei, S., Liu, T., and Wang, Z. (2016). Comparative transcriptome profile of the cytoplasmic male sterile and fertile floral buds of radish (*Raphanus sativus L*). *Int. J. Mol. Sci.* 17:42. doi: 10.3390/ijms17100402

Minh, B. Q., Nguyen, M. A., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. *Mol. Biol. Evol.* 30, 1188–1195. doi: 10.1093/molbev/ms3024

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., and Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. *Nucleic Acids Res.* 35, W518–W515. doi: 10.1093/nar/gkm321

Neckermann, K., Zeltz, P., Igloi, G. L., Kössel, H., and Maier, R. M. (1994). The role of RNA editing in conservation of start codons in chloroplast genomes. *Gene* 146, 177–182. doi: 10.1016/0378-1119(94)90290-9

Nguyen, L. T., Schmidt, H. A., van Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32, 268–274. doi: 10.1093/molbev/msu300

Peden, J. (1999). *Analysis of Codon Usage*. Ph. D thesis, University of Nottingham, Nottingham.

Persoon, C. H. (1805). *Synopsis Plantarum: Seu Enchorridium Botanicum, Complectens Enchiridion Systematicum Specierum Hucusque Cognitarum*. Paris: apud CE Cramerum, 456.

Qiu, X. S., Li, D. Z., Zhang, Z. X., Zhou, J., and Wu, Y. Z. (1989). Chemotaxonomy of *Cynanchum* and its allied genera with notes on the genetic characteristics of *Vincetoxicum*. *Acta Bot. Yunnan.* 11, 41–50.

Rouqunt, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61, 539–542. doi: 10.1093/sysbio/sys029

Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., et al. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *Am. J. Bot.* 92, 142–166. doi: 10.3732/ajb.92.1.142

Somarate, Y., Guan, D. L., Wang, W. Q., Zhao, L., and Xu, S. Q. (2019). The complete chloroplast genomes of two *Lepedesca* species: insights into codon usage Bias, RNA editing sites, and phylogenetic relationships in Desmodieae (Fabaceae: Papilionoideae). *Plants* 9:51. doi: 10.3390/plants9010051

Straub, S. C., Cronn, R. C., Edwards, C., Fishbein, M., and Liston, A. (2013). Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). *Genome Biol. Evol.* 5, 1872–1885. doi: 10.1093/gbe/evt140

Takenaka, M., Zehrmann, A., Verbitskiy, D., Härterl, B., and Brennicke, A. (2013). RNA editing in plants and its evolution. *Annu. Rev. Genet.* 47, 335–352. doi: 10.1146/annurev-genet-111211-133519

Tan, W., Gao, H., Zhang, H., Yu, X., Tian, X., Jiang, W., et al. (2020). The complete chloroplast genome of Chinese medicine (*Porosera coryphylia*): molecular structural, barcoding and phylogenetic analysis. *Plant Genet. 21*:100216. doi: 10.1016/j.plgene.2019.100216

Tillich, M., Lehewk, P., Pelizzier, T., Ullbricht-Jones, E. S., Fischer, A., Bock, R., et al. (2017). GeSeq - versatile and accurate annotation of organelle genomes. *Nucleic Acids Res.* 45, W6–W11. doi: 10.1093/nar/gkw391

Tripathi, S., Sangwan, R. S., Narolnayi, L. K., Srivastava, Y., Mishra, B., and Sangwan, N. S. (2017). Transcription factor repertoire in Ashwagandha (*Withania somnifera*) through analytics of transcriptomic resources: insights into regulation of development and withanolide metabolism. *Sci. Rep.* 7:16649. doi: 10.1038/s41598-017-14657-6

Tsuzuki, T., Waksugi, T., and Sugiuira, M. (2001). Comparative analysis of RNA editing sites in higher plant chloroplasts. *J. Mol. Evol.* 53, 327–332. doi: 10.1007/s002390010222

Wang, S., Yang, C., Zhao, X., Chen, S., and Qu, G. Z. (2018). Complete chloroplast genome sequence of *Betaia platyphylla* gene organization, RNA editing, and comparative and phylogenetic analyses. *Mol. Genom.* 19:950. doi: 10.1017/s12864-018-01346-x
Wright, F. (1990). The ‘effective number of codons’ used in a gene. *Gene* 87, 23–29. doi: 10.1016/0378-1119(90)90491-9

Yamashiro, T., Fukuda, T., Yokoyama, J., and Maki, M. (2004). Molecular phylogeny of *Vincetoxicum* (Apocynaceae-Asclepiadoideae) based on the nucleotide sequences of cpDNA and nrDNA. *Mol. Phylogenet. Evol.* 31, 689–700. doi: 10.1016/j.ympev.2003.08.016

Yang, J., Qing, Z., Wang, D., and Yang, H. (2018). Distribution of medicinal plant resources of *Cynanchum* in Guizhou. *Guizhou Sci.* 36, 50–52.

Yang, T., Yao, S., Hao, L., Zhao, Y., Lu, W., and Xiao, K. (2016). Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely theABA-associated pathway. *Plant Cell Rep.* 35, 2309–2323. doi: 10.1007/s00299-016-2036-5

Yang, X.-Y., Wang, Z., Luo, W.-C., Guo, X., Zhang, C.-H., Liu, J.-Q., et al. (2018). Plastomes of *Betulaceae* and phylogenetic implications. *J. Syst. Evol.* 57, 508–518. doi: 10.1111/jse.12479

Yang, Z., Huang, Y., An, W., Zheng, X., Huang, S., and Liang, L. (2019a). Sequencing and structural analysis of the complete chloroplast genome of the medicinal plant *Lycium chinense* Mill. *Plants* 8:87. doi: 10.3390/plants8040087

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biol.* 11:R14. doi: 10.1186/gb-2010-11-2-r14

Yu, X., Jiang, W., Tan, W., Zhang, X., and Tian, X. (2020). Deciphering the organelle genomes and transcriptomes of a common ornamental plant *Ligustrum quihoui* reveals multiple fragments of transposable elements in the mitogenome. *Int. J. Biol. Macromol.* 165(Pt B), 1988–1999. doi: 10.1016/j.ijbiomac.2020.10.075

Yu, X., Tan, W., Zhang, H., Gao, H., Wang, W., and Tian, X. (2019). Complete chloroplast genomes of *Amelopis humifolia* and *Amelopis japonica*: molecular structure, comparative analysis, and phylogenetic analysis. *Plants* 8:410. doi: 10.3390/plants8100410

Zhang, D., Gao, F., Jakovljić, I., Zou, H., Zhang, J., Li, W. X., et al. (2020). PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 20, 348–355. doi: 10.1111/1755-0998.13096

Zhang, L., Yan, H. F., Wu, W., Yu, H., and Ge, X. J. (2013). Comparative transcriptome analysis and marker development of two closely related Primrose species (Primula poissonii and Primula wilsonii). *BMC Genom.* 14:329. doi: 10.1186/1471-2164-14-329

Zhang, S. D., Jin, J. J., Chen, S. Y., Chase, M. W., Soltis, D. E., Li, H. T., et al. (2017). Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. *New Phytol.* 214, 1355–1367. doi: 10.1111/nph.14461

Zheng, Y., Jiao, C., Sun, H., Rosli, H. G., Pombo, M. A., Zhang, P., et al. (2016). iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein Kinases. *Mol. Plant* 9, 1667–1670. doi: 10.1016/j.molp.2016.09.014

Zhong, S., Joung, J. G., Zheng, Y., Chen, Y. R., Liu, B., Shao, Y., et al. (2011). High-throughput illumina strand-specific RNA sequencing library preparation. *Cold Spring Harb. Protoc.* 2011, 940–949. doi: 10.1101/pdb.prot5652

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yu, Wang, Yang, Zhang, Wang and Tian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.