Unsupervised Learning of Prototypical Fillers for Implicit Semantic Role Labeling

Niko Schenk & Christian Chiarcos
{nschenk, chiarcos}@em.uni-frankfurt.de

Applied Computational Linguistics Lab
Institut für Informatik und Mathematik
Goethe-University Frankfurt am Main, Germany

June 15, 2016
“The answer isn’t price reductions.”, he said.

From the Penn Treebank / WSJ:2396:19:5
Implicit Semantic Role Labeling (iSRL) — Motivation

“The answer isn’t price reductions.”, he said.

From the Penn Treebank / WSJ:2396:19:5

Typically, different semantic roles are associated with the nominal predicate *price*:

1. seller (A0)
2. commodity, goods / price for what? (A1)
3. amount of the price, money (A2)
4. potential buyer (A3)
Implicit Semantic Role Labeling (iSRL) — Motivation

“*The answer isn’t price reductions.*”, he said.

From the Penn Treebank / WSJ:2396:19:5

Typically, different semantic roles are associated with the nominal predicate *price*:

1. seller (A0)
2. commodity, goods / price for what? (A1)
3. amount of the price, money (A2)
4. potential buyer (A3)

However, none of these roles are present within the immediate syntactic context of the predicate, i.e. ⇒ they cannot be detected by traditional SRL.
Implicit Semantic Role Labeling (iSRL) — Motivation

“The answer isn’t price reductions.”, he said.

From the Penn Treebank / WSJ:2396:19:5

Typically, different semantic roles are associated with the nominal predicate price:

1. seller (A0)
2. commodity, goods / price for what? (A1)
3. amount of the price, money (A2)
4. potential buyer (A3)

However, none of these roles are present within the immediate syntactic context of the predicate, i.e. ⇒ they cannot be detected by traditional SRL.
Probable Fillers for the A1/Commodity Role for *price*

Stock price?

Niko Schenk & Christian Chiarcos

Unsupervised Learning of Prototypical Fillers for Implicit SRL
Probable Fillers for the A1/Commodity Role for *price*

Oil price?
Probable Fillers for the A1/Commodity Role for *price*

Gold *price*?
Probable Fillers for the A1/Commodity Role for \textit{price}

\$\$\$ \ ????

Niko Schenk & Christian Chiarcos
Finding the Filler for the A1/Commodity Role for \textit{price}

How can we detect the missing \textit{implicit} role?
Finding Implicit Semantic Roles in the Context

Fortunately, some role fillers appear in the immediate (extra-sentential) context:

Left context (1 sentence):

“He questions whether that will be enough to stop Tandem’s first mainframe from taking on some of the functions that large organizations previously sought from Big Blue’s machines.

Target sentence:

“The answer isn’t price reductions.”, he said.
Previous Approaches to iSRL

The state-of-the-art in iSRL

1. integrates **supervised learning algorithms** which rely on costly **gold-annotated training data**:
 - Gerber and Chai (2012), Silberer & Frank (2012), Li et al. (2015)

2. proposes to **combine different scarce resources**:
 - Padó & Feizabadi (2015)

3. requires **language-specific** tools:
 - Laparra & Rigau (2013)
Can we do (mostly) **unsupervised**, i.e. **without annotated training data**, hand-crafted features and **without manual feature engineering**?
Generating Prototypical Fillers

We train predicate-specific *prototypical fillers* for each frame element (role) individually:

\[
\vec{\nu}_{\text{protofiller}} = \frac{1}{N} \sum_{i=0}^{N} E(w_i)
\]

- generated from large amounts of **explicit** SRL annotations in **automatically labeled** corpora.
- capturing the idiosyncratic **syntactic and semantic properties** of a role.
Generating a Role-Specific $A1$-Protofiller for the \textit{price} Predicate

\[
\text{Final aggregation:} \quad \text{embedding function} \quad \text{Vector Average} \\
\frac{1}{N} \sum_{i=0}^{N} \mathbb{E}(w_i)
\]

\[
\text{1st aggregation:} \\
w_1 \quad w_2 \quad w_1 \quad w_1 \quad w_2 \quad w_1 \quad w_2 \quad w_1
\]

Explicit SRL fillers: (from large corpora)

\begin{align*}
\text{[for gold]} & \quad \text{[energy]} & \quad \text{[of expensive cars]} & \quad \text{[crude oil]} & \quad \text{[land]} & \ldots & \quad \text{[of a ticket]} \\
A1 & \quad A1
\end{align*}
Identifying Implicit Roles

1. We collect a set of (parsed) candidate constituents and compute their vector representations. (by means of Eq. 1).

2. We then measure similarity between a trained protofiller \vec{v}^p and a candidate constituent \vec{v}^c by cosine similarity

$$\cos(\theta) = \frac{\vec{v}^p \cdot \vec{v}^c}{\|\vec{v}^p\| \|\vec{v}^c\|}$$

(2)

and predict a candidate as implicit role which maximizes the inner product with the protofiller.
Training Resources, Tools & Evaluation Data

SRL labelers:
- SEMAFOR / FrameNet-style parser (Das et al., 2014)
- MATE / PropBank/NomBank-style parser (Björkelund et al., 2009)

Embeddings:
- SENNA word embeddings (Collobert et al., 2011)
- Dependency-based word embeddings (Levy and Goldberg, 2014)
- Google News vectors (Mikolov et al., 2013)
- Custom trained embeddings (skip-gram and CBOW with word2vec)
Evaluation sets:
- Augmented NomBank data (Gerber and Chai, 2010)
- SemEval 2010 Task 10 on FrameNet-style iSRL (Ruppenhofer et al., 2010)
Training Resources, Tools & Evaluation Data

Evaluation sets:

- Augmented NomBank data (Gerber and Chai, 2010)
- SemEval 2010 Task 10 on FrameNet-style iSRL (Ruppenhofer et al., 2010)
SemEval Task 10 – FrameNet iSRL (Linking Performance)

Model Name	Type	P	R	F1
Silberer and Frank (2012) M₁	supervised	30.8	25.1	27.7
Silberer and Frank (2012) M₁'	supervised	35.6	20.1	25.7
Gorinski et al. (2013) 4X	supervised	26.0	24.0	25.0
Gorinski et al. (2013) VEC	unsupervised	21.0	18.0	19.0
Our approach: C&W embeddings	unsupervised	27.2	25.7	26.4

Our protofiller method

1. is competitive with supervised systems and particularly effective for same-sentence implicit roles (44.4% accuracy).
SemEval Task 10 – FrameNet iSRL (Linking Performance)

Model Name	Type	P	R	F₁
Silberer and Frank (2012) M₁	supervised	30.8	25.1	27.7
Silberer and Frank (2012) M₁'	supervised	35.6	20.1	25.7
Gorinski et al. (2013) 4X	supervised	26.0	24.0	25.0
Gorinski et al. (2013) VEC	unsupervised	21.0	18.0	19.0
Our approach: C&W embeddings	unsupervised	27.2	25.7	26.4

Our protofiller method

1. is competitive with supervised systems and particularly effective for **same-sentence** implicit roles (44.4% accuracy).
2. outperforms a very similar vector-based strategy (VEC, >7%)
SemEval Task 10 – FrameNet iSRL (Linking Performance)

Model Name	Type	P	R	F₁
Silberer and Frank (2012) M₁	supervised	30.8	25.1	27.7
Silberer and Frank (2012) M₁'	supervised	35.6	20.1	25.7
Gorinski et al. (2013) 4X	supervised	26.0	24.0	25.0
Gorinski et al. (2013) VEC	unsupervised	21.0	18.0	19.0
Our approach: C&W embeddings	unsupervised	27.2	25.7	26.4

Our protofiller method

1. is competitive with **supervised** systems and particularly effective for **same-sentence** implicit roles (44.4% accuracy).
2. outperforms a very similar vector-based strategy (**VEC**, >7%)
 - is not restricted to **syntactic heads** (including **function words** is important!).
SemEval Task 10 – FrameNet iSRL (Linking Performance)

Model Name	Type	P	R	F₁
Silberer and Frank (2012) M₁	supervised	30.8	25.1	**27.7**
Silberer and Frank (2012) M₁'	supervised	35.6	20.1	25.7
Gorinski et al. (2013) 4X	supervised	26.0	24.0	25.0
Gorinski et al. (2013) VEC	unsupervised	21.0	18.0	19.0
Our approach: C&W embeddings	**unsupervised**	27.2	**25.7**	26.4

Our protofiller method

1. is competitive with *supervised* systems and particularly effective for **same-sentence** implicit roles (44.4% accuracy).
2. outperforms a very similar vector-based strategy (VEC, >7%)
 - is not restricted to *syntactic heads* (including *function words* is important!).
 - employs SRL-guided, *distributed representations* vs. mere context vectors.
We have described an **unsupervised** approach to implicit semantic role labeling.
We have described an **unsupervised** approach to implicit semantic role labeling.

- **Idea**: prototypical role fillers
 - induced from large amounts of explicit SRL annotations
We have described an **unsupervised** approach to implicit semantic role labeling.

- **Idea**: prototypical role fillers
 - induced from large amounts of explicit SRL annotations
- **Similarity-based**:
 - implicit roles are found by means of distributional similarity
Summary

We have described an **unsupervised** approach to implicit semantic role labeling.

- **Idea:** prototypical role fillers
 - induced from large amounts of explicit SRL annotations
- **Similarity-based:**
 - implicit roles are found by means of distributional similarity
- **Knowledge-poor:**
 - no manual gold annotations required
 - mainly language-independent
 - builds a strong baseline for knowledge-poor iSRL (NomBank)
We have described an **unsupervised** approach to implicit semantic role labeling.

- **Idea**: prototypical role fillers
 - induced from large amounts of explicit SRL annotations

- **Similarity-based**: Implicit roles are found by means of distributional similarity

- **Knowledge-poor**: No manual gold annotations required
 - mainly language-independent
 - builds a strong baseline for knowledge-poor iSRL (NomBank)

- **Competitive**: With supervised systems on a standard evaluation set
Thank you!

The protofillers are available at:

www.acoli.informatik.uni-frankfurt.de/resources
Backup Slides
Explicit Fillers for Training Protofillers

	CLMET	Gigaword
# explicit roles	21.9M	264.0M
# predicate instances	9.5M	122.5M
# roles per predicate	2.3¹	2.2
# predicates per sentence	7.6	4.2

Statistics on the number of explicit fillers used for training protofillers.

¹FrameNet specifies 9.7 frame elements per lexical frame (including non-core roles): https://framenet.icsi.berkeley.edu/fndrupal/current_status.
Statistics on Implicit Gold Arguments and Candidate Phrases

	SemEval	NomBank
# predicate instances		
in training set	1,370	816
in test set	1,703	437
# implicit arguments		
in training set	245	650
in test set	259	246
# of candidate phrases (in test set)		
per predicate instance	27.6	52.2
proportion of single tokens	63.4%	47.9%
proportion of phrases	36.6%	52.1%
∅ token length of candidate phrase (in test set)	5.8	7.1
NomBank iSRL Data Set (Gerber & Chai, 2010)
The 10 NomBank Predicates in Protofiller Space
Gerber & Chai 2010 Data – NomBank iSRL

predicates:	B				Laparra & Rigau					Proto W2Vcbow			
	F_1	P	R	F_1									
sale	36.2	47.2	**41.7**	**44.2**	41.2	39.4	40.3	60.8	26.8	37.2			
price	15.4	36.0	32.6	34.2	**53.3**	**53.3**	**53.3**	21.8	36.6	27.3			
investor	9.8	36.8	40.0	38.4	**43.0**	39.5	**41.2**	24.1	**57.2**	33.9			
bid	32.3	23.8	19.2	21.3	**52.9**	**51.0**	**52.0**	40.0	41.5	40.7			
plan	38.5	**78.6**	**55.0**	**64.7**	40.7	40.7	40.7	44.3	51.0	47.4			
cost	34.8	**61.1**	**64.7**	**62.9**	56.1	50.2	53.0	49.9	29.3	36.9			
loss	52.6	**83.3**	**83.3**	**83.3**	68.4	63.5	65.8	54.7	63.8	58.9			
loan	18.2	**42.9**	33.3	37.5	25.0	20.0	22.2	33.2	44.2	37.9			
investment	0.0	40.0	25.0	30.8	**47.6**	**35.7**	**40.8**	39.2	34.3	36.6			
fund	0.0	14.3	16.7	15.4	66.7	33.3	44.4	75.0	25.0	37.5			
Overall	**26.5**	**44.5**	**40.4**	**42.3**	**47.9**	**43.8**	**45.8**	33.5	39.2	36.1			
1. We generalize over labeled filler instances of the PLACING frame, e.g.,
 - placed on the middle picture, planted on the top of the church, hung over the river, laid on the table, etc.

2. exploiting their syntactic (here: prepositional) and semantic properties (inanimate, spacial NPs)

3. capturing a composed meaning

4. approximating the correct implicit role

\[\text{In the centre of this room} \] there was an upright beam,
\[\text{which} \] had been placed \[\text{at some period} \] as a support for the old worm-eaten baulk of timber which spanned the roof.