Tracking the nematicity in cuprate superconductors: a resistivity study under uniaxial pressure

Tao Xie,1,2,3 Zhaoyu Liu,1,2 Yanhong Gu,1,2 Dongliang Gong,1,2 Huican Mao,1,2 Jing Liu,1,2 Cheng Hu,1,2 Xiaoyan Ma,1,2 Yuan Yao,1 Lin Zhao,1 Yingjiang Zhou,1,2,4,5 John Schneeloch,6 Genda Gu,6 Sergey Danilkin,7 Yi-feng Yang,1,2,4,5 Huiqian Luo,1,5 and Shiliang Li1,2,4,5

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
5Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
6Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
7Australian Centre for Neutron Scattering, Australian National University and Technology Organization, Lucas Heights NSW-2234, Australia

Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been suggested that the rotational symmetry is broken in this state and may result in a nematic phase transition, whose temperature seems to coincide with the onset temperature of the pseudogap state T^* around optimal doping level, raising the question whether the pseudogap results from the establishment of the nematic order. Here we report results of resistivity measurements under uniaxial pressure on several hole-doped cuprates, where the normalized slope of the elastoresistivity ζ can be obtained as illustrated in iron-based superconductors. The temperature dependence of ζ along particular lattice axis exhibits kink feature at T_n and shows Curie-Weiss-like behavior above it, which may suggest a spontaneous nematic transition. While T_n seems to be the same as T^* around the optimal doping and in the overdoped region, they become very different in underdoped La$_{2-x}$Sr$_x$CuO$_4$. Our results suggest that the nematic order, if indeed existing, is an electronic phase within the pseudogap state.

I. INTRODUCTION

Many electronic orders such as electronic stripes and charge ordering [16,17], and nematic order that break the in-plane rotational symmetry from C_4 to C_2 [6-14] have been observed in the pseudogap state in high-T_c superconducting cuprates. Previous results from Nernst measurements show two types of nematicity in YBa$_2$Cu$_3$O$_{6+\delta}$ (YBCO) within the pseudogap state [8-12]. The first type tracks the charge-density-wave (CDW) modulations around hole concentration $p = 0.12$ and the second one tracks the pseudogap energy with the onset temperature of nematicity T_{nem} much lower than the onset temperature of the pseudogap state T^* for $p < 0.11$. However, torque-magnetometry measurements in YBCO ($p \geq 0.11$) and HgBa$_2$CuO$_{4+\delta}$ (Hg-1201) provide thermodynamic evidence for the rotational symmetry breaking at T^*, suggesting the onset of pseudogap state is associated with a second-order nematic phase transition [13,14]. It is not clear whether these contradictory results come from the different techniques and standards in determining the relevant temperatures. What’s more, Raman scattering measurements and elastoresistance measurements on Bi$_2-y$Pb$_y$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi-2212) suggest the existence of a nematic quantum critical point around the endpoint of the pseudogap [17,18]. Resonant X-ray scattering study on the La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ indicates the vanishment of nematic order beyond the pseudogap state [19]. A recent temperature-dependent angle-resolved photoemission spectroscopy (ARPES) study of nematicity in slightly overdoped Bi-2212 shows that the nematicity is enhanced in the pseudogap state and is suppressed in the superconducting state [20]. These studies highlight the correlation between the nematicity and pseudogap state, which means that nematicity could be an important part to understand the pseudogap and superconductivity in high-T_c superconductors.

The studies on the nematic order in iron-based superconductors show that the spontaneous nematic transition can be well studied by measuring the elastoresistivity above the transition temperature [21-24], which suggests that it may also provide key information in understanding the nematicity in cuprate superconductors.

Taking classical magnet as an example, the zero-field magnetic susceptibility should show a divergent behavior when approaching the transition temperature from the paramagnetic state. For the nematic transition, when the conjugated field is uniaxial pressure/strain [25], the nematic susceptibility can be obtained by measuring the uniaxial pressure/strain dependence of a physical property tracking the nematic order, such as resistivity. Indeed, elastoresistivity measurements on many iron-based superconductors show divergent behavior of nematic susceptibility above T_{nem} [21,23,26], pro-

*sli@iphy.ac.cn
viding thermodynamical evidences for the nematic order. Compared to the direct measurement of resistivity anisotropy, the nematic susceptibility measurement has a much higher resolution and does not suffer from the effect of residual strain from glue, etc. \cite{27}, and the external pressure that is usually used to detwin the sample. Therefore, one may expect to observe a similar behavior of the nematic susceptibility in cuprates if there is a state that is indeed associated with a nematic phase transition \cite{28}. A Curie-Weiss-like evolution of the nematic susceptibility was recently reported in Bi-2212 cuprates \cite{18}, and the potential divergent behavior of the nematic susceptibility around the T^* suggests the presence of a nematic phase transition. Motivated by these existing elastoresistivity studies in iron-based superconductors and Bi-2212 cuprates, here we study the elastoresistivity in several kinds of cuprates to seek more experimental evidences that whether the pseudogap state in cuprates is correlated with a nematic transition or not.

II. EXPERIMENTAL DETAILS

In this study, we have chosen three classes of hole-doped cuprates, La$_{2-x}$Sr$_x$CuO$_4$ (LSCO), Bi$_{1.74}$Sr$_{1.88}$Pb$_{0.38}$CuO$_{6+\delta}$ (Bi-2201) and Bi$_{2-y}$Pb$_y$Sr$_2$CaCu$_2$O$_{8+\delta}$ ($y = 0$ or 0.7), which were all grown by the traveling solvent floating zone method \cite{29–32}. The hole concentration p is determined by the value of T_c in Bi-2212 and Bi-2201 \cite{33,34}, while that in LSCO is determined by the Sr doping level x. The orientations of the crystals were determined by X-ray Laue camera, single-crystal X-ray diffraction and scanning transmission electron microscope (STEM). The samples were cut into thin rectangular plates along either the Cu-O-Cu or diagonal direction [see Fig. 2(a)] by a high-precision diamond wire saw. The uniaxial pressure was applied along the longer edge of the rectangle by a home-made device based on the piezo-bender as described in Ref. \cite{23}, which is able to avoid the effect of residual strain from glue and measure the resistivity change across zero pressure continuously by compressing and stretching the sample. The pressure applied on the sample is controlled by the voltage applied on the piezo bender \cite{23}. The standard resistivity and elastoresistivity were measured by the standard four-probe method on a Quantum Design Physical Property Measurement System (PPMS). The DC magnetic susceptibility measurements were performed on a Quantum Design Magnetic Property Measurement System (MPMS) with zero-field-cooling (ZFC) method. The neutron diffraction data of the $x = 0.17$ LSCO sample were collected at the thermal neutron triple-axis spectrometer TAIPAN at Australian Centre for Neutron Scattering, ANSTO, Australia, with a fixed incident and final energy $E_i = E_f = 14.87$ meV.

FIG. 1. Characterizations of our cuprate crystals. (a) Nuclear reflection $(1 0 4)$ of the $x = 0.17$ LSCO sample measured at a series of temperatures. (b) Temperature dependence of the peak intensity at $Q = (1 0 4)$. (c)–(d) Temperature dependence of resistance and magnetic susceptibility of the $x = 0.17$ LSCO sample, which show sharp superconducting transitions at $T_c \sim 37$ K. The inset of (d) is a typical Laue diffraction pattern of our LSCO crystal. (e)–(f) Two examples of the resistance-temperature curves of our Bi-2212 and Bi-2201 sample. The inset of (e) is a STEM ABF image of the Bi2212 crystal. The inset of (f) is a typical Laue diffraction pattern of the Bi-2201 crystal.

III. RESULTS AND DISCUSSIONS

The neutron diffraction measurements on a $x = 0.17$ LSCO sample show that the nuclear Bragg peak at $Q = (1 0 4)$ (orthorhombic notation) loses its intensity with the increasing temperature and disappears completely above ~ 140 K [Fig. 1(a) and (b)], which indicates an orthorhombic-tetragonal structural transition at $T_s \sim 140$ K \cite{35,36}. The resistance and magnetic susceptibility as a function of temperature show sharp superconducting transitions at $T_c \sim 37$ K for $x = 0.17$ LSCO crystals [Figs. 1(c) and 1(d)]. Two typical resistance-temperature curves of the Bi-2212 and the Bi-2201 sample are shown in Figs. 1(e) and 1(f), respectively. The insets in Figs. 1(d) and 1(f) present typical Laue diffraction patterns and STEM annular bright field (ABF) image of the LSCO, Bi-2212, and Bi-2201 crystals, respectively, which represent how the orientations of the crystals were determined. The high symmetry directions are indicated by arrows.
Figure 2(c) presents the temperature dependence of ζ along the Cu-O-Cu direction for the $x = 0.17$ LSCO. The most promising features are the kink at $T_k = 110$ K and the sharp increase of $|\zeta|$ above it. The solid line in Fig. 2(c) is a Curie-Weiss-like fitting of the data as $\zeta = A/(T - T') + \rho_0$, where A, T' and ρ_0 are all temperature-independent parameters. T' is lower than T_k, which may be caused by the coupling between the electronic system and the lattice as suggested in iron-based superconductors [21]. Below T_k, ζ becomes independent of temperature. The result along the diagonal direction [Fig. 2(d)] also shows a kink at the similar temperature. Different from that along the Cu-O-Cu direction, ζ along the diagonal direction changes little above T_k but dramatically below it. The small difference of T_ks for Cu-O-Cu and diagonal direction is most likely due to slightly inhomogeneous doping during the growth since these two samples have T_c of 37 K and 36.5 K, respectively. It should be noted that the tetragonal-orthorhombic structural transition at about 140 K for this doping level [Fig. 1(a)–(b)] seems to have no effect on the elastoresistivity data, suggesting that the resistivity difference between the orthorhombic axes can be neglected. Figures 2(e) and 2(f) show the same analyses of ζ on the overdoped $x = 0.21$ LSCO. No obvious temperature dependence of ζ can be seen along both directions and all the features in the $x = 0.17$ sample disappear.

For the underdoped $x = 0.07$ and 0.08 LSCO samples, similar kink feature and divergent behavior of ζ are also observed along the diagonal direction, as shown in Figs. 2(g) and 2(h). At lower temperatures, we can find an additional kink feature, below which the $|\zeta|$ increases dramatically. The origin of this additional kink is currently unknown, while the influence from the superconductivity can be one of the candidates. The changes of ζ in these two samples are much larger than that in the $x = 0.17$ LSCO. In a previous study of resistivity anisotropy in LSCO samples with lower doping levels ($x \leq 0.04$), the resistivity along the orthorhombic b direction is smaller than that along the orthorhombic a direction at high temperature, i.e., $\rho_b < \rho_a$ [6], which suggests that the positive value of ζ at high temperature in the $x = 0.07$ and 0.08 samples here may result from the domains change under uniaxial pressure. Interestingly, ρ_b/ρ_a quickly increases with decreasing temperature and becomes larger than 1 at low temperature [6], which is also consistent with the sign change of ζ in our measurements.

Figures 3(a)–3(c) show results of the Bi-2212 samples, where again the kink features are found in the $p = 0.13$ ($T_c \sim 88.5$ K) and $p = 0.134$ sample ($T_c \sim 90.5$ K), and the direction showing the kinks is along the diagonal di-
This ubiquitous kink features of ζ along specific directions and its possible divergent behavior above T_k suggest that nematic transition may be widely present in cuprates as that shown in iron-based superconductors [21, 24], but very different behaviors of elastoresistivity are found among different materials. First, it seems that there is no one unified crystallographic direction to probe nematicity. The direction along which the kink feature and the divergent behavior (above T_k) of ζ can be observed is the Cu-O-Cu direction in LSCO ($x = 0.17$) and Bi-2201, but it is the diagonal direction in Bi-2212 and very underdoped LSCO ($x = 0.07$ and 0.08). This difference may be related to the crystal structure since both Bi-2212 and very underdoped LSCO are in the orthorhombic structure at room temperature [37, 38]. It is consistent with the fact that the nematic direction may be affected by the crystal structure as shown in both iron-based [25] and cuprate superconductors [14]. It is worth noting that the nematicity in Bi-2212 observed from the scanning tunneling microscope (STM) measurements is along the Cu-O-Cu direction [9], which is also different from our observations in Bi-2212 here and has been explained otherwise [39]. Second, the elastoresistivity below T_k behaves dramatically different with each other. The $|\zeta|$ along the nematic direction decreases slowly with decreasing temperature in Bi-2212 and Bi-2201, but is unchanged in the $x = 0.17$ LSCO. In both $x = 0.07$ and 0.08 LSCO, additional kink features can be observed below T_k. Third, the change of $|\zeta|$ with temperature in Bi-2201 is not as dramatic as those in LSCO and Bi-2212, probably due to the presence of very strong disorders in Bi-2201 [34]. What’s more, the change of $|\zeta|$ with temperature in all these studied cuprates are within one order of magnitude, which is a kind of small when compare with that in iron-based superconductors, where the change of $|\zeta|$ can cross two orders of magnitude [21, 24].

Despite the above differences among these cuprate superconductors, the kink temperature T_k seems to be related to the onset temperature of pseudogap T^*, especially around the optimal and overdoped region. Figure 4 gives the schematic phase diagram of these three classes of cuprates [12, 33, 34], where the T_ks are almost the same with T^*s around the optimal doping level and in the overdoped region. As described above, in the samples of LSCO and Bi-2212 with kink features, the ζ above T_k can be fitted by the Curie-Weiss-like function to some extent, suggesting a divergent behavior like that observed in iron-based superconductors [21, 24]. It seems to be consistent with the suggestion that the onset of the pseudogap state in hole-doped cuprates is associated with a spontaneous nematic transition [15]. However, this picture is not valid if we consider the underdoped LSCO ($x = 0.07$ and 0.08), where T_ks are much lower than T^*s. Moreover, ζ shows no feature around T^* (~ 200 K) [Figs. 3(g) and 3(h)]. From this point of view, it can be observed along the diagonal direction, the ζ shows opposite sign in the $p = 0.175$ and 0.2 Bi-2201 samples [Fig. 3(d)].

FIG. 3. Elastroresistivity results of the Bi-2212 and Bi-2201 samples. (a)–(c) Temperature dependence of ζ for the Bi-2212 samples along the diagonal direction and Cu-O-Cu direction. The solid lines in (a) and (b) are Curie-Weiss fittings with $T' = 278$ K and 135 K, respectively. (d)–(f) Temperature dependence of ζ for the Bi-2201 samples along the diagonal direction and Cu-O-Cu direction. The dashed lines indicate the kink temperatures T_k.

In Bi-2201, we found the kink features of ζ along the Cu-O-Cu direction [Figs. 3(c) and 3(f)], which is just opposite to the case in the Bi-2212 samples [Figs. 3(a) and 3(b)]. However, above the kink temperature T_k, the increase of $|\zeta|$ with decreasing temperature is not as dramatic as those in LSCO and Bi-2212, so it cannot be fitted by the Curie-Weiss-like function. Interestingly, although no kink feature and divergent behavior of ζ can
FIG. 4. Schematic phase diagram of cuprates. The black, red and blue dashed lines (shadow areas) represent the upper bounds of T^* (superconducting domes) for LSCO, Bi-2212, and Bi-2201 [12, 33, 34], respectively. The solid square, circle, and triangle symbols are the kink temperature T_k of ζ for LSCO, Bi-2212 and Bi-2201, respectively. The values of T_k for the $x = 0.21$ LSCO and $p = 0.209$ Bi-2212 are set to zero. The vertical error bars on the symbols are estimated uncertainties of the corresponding T_k.

Our elastoresistivity studies in several classes of cuprate superconductors widely observe kink features of ζ along particular crystallographic directions. The divergent behavior of ζ above T_ks may point to nematic transitions. While the nematic transition may happen at T^* around optimal doping level and overdoped region, it becomes significantly lower than T^* for the very underdoped cases. Therefore, the nematic order in cuprates may be just another phase within the pseudogap state, such as the stripes and CDW order [1–5, 40], which makes it as one of the competing or intertwined orders [11, 12]. Compared to the CDW state, the nematic phase can exist at much higher temperature and lower doping at least in LSCO and YBCO, which suggests a very close relationship between these two orders [12, 33]. Overall, our studies provide a wide perspective on the nematicity and pseudogap in cuprates, although some questions like the non-uniform nematic directions still need to be answered by further studies.

ACKNOWLEDGEMENTS

This work is supported by the Ministry of Science and Technology of China (Grants Nos. 2020YFA0406003, 2021YFA1400401, 2018YFA0704200, 2017YFA0303100, 2017YFA0302903, 2015CB921302, and 2015CB921303), the National Natural Science Foundation of China (Grants Nos. 11674406, 11774401, 11522435, 11822411, and 11961160699), the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (Grants Nos. XDB33010100, XDB25000000, and XDB07020000), and the K. C. Wong Education Foundation (Grants No. GJTD-2020-01). Work at Oak Ridge National Laboratory (ORNL) was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work at Brookhaven was supported by the Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE), through Contract No. DE-SC0012704. J. S. is supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science. H. L. and Y. Y. are supported by the Youth Innovation Promotion Association of CAS.

[1] J. Tranquada, B. Sternlieb, J. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
[2] T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. Hardy, R. Liang, D. Bonn, and M.-H. Julien, Nature 477, 191 (2011).
[3] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. Brookes, G. De Luca, A. Frano, D. Hawthorn, F. He, et al., Science 337, 821 (2012).
[4] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gynis, J. Wen, J. Schneeloch, Z. Xu, et al., Science 343, 393 (2014).
