Seaweed resources of Kerala coast and its economic potential

Palanisamy M*, Yadav S K and Murthy G V S

Botanical Survey of India, Southern Regional Centre, Tamil Nadu Agricultural University, Coimbatore - 641 003

ABSTRACT

Marine macro algae, popularly known as seaweeds, are one of the most important marine natural resources and used as raw material for the production of phytochemicals, food products and in various industries. More than 20,000 seaweeds are distributed throughout the world, of which only 221 (1.1%) are commercially utilized, which includes 145 species for food and 110 species for phycocolloid production (Sahoo, 2000). In the present work, a comprehensive survey of the Kerala coast have been carried out between 2011–2015 and a total of 147 taxa of seaweeds including 42 economically important species have been enumerated from Kerala coast. The economic prospects of seaweed resources of Kerala are discussed in the present study in order to highlight the potentiality of these resources for future demands.

Keywords: Seaweeds, Kerala coast, Economic, Resources.

INTRODUCTION

India, being one of the megadiverse countries in the world, has a coastline of about 7500 km length and harbours about 865 taxa of seaweeds (Rao and Gupta, 2015). Kerala, located in the south west coast of India, has a coastline of about 580 km length and geographically lies between 8°18’–12°48’ N latitude and 74°52’–77°22’ E longitude. The coastline is remarkably straight and is interrupted by natural rocky landscapes and artificially laid stones, beaches, cliffs, rivers, estuaries and backwaters at many places, which support the luxuriant growth of several sea-weeds. However, there no any comprehensive survey of the coast and only sporadic reports are available in literature (Nair et al. 1982, 1986a, b; Sobha & Nair, 1983; Chennubhotla et al. 1988; Mathew, 1991; Kaliaperumal and Chennubhotla, 1997; Sulekha and Panikkar, 2006). Therefore, we have carried out comprehensive survey of the entire Kerala coast in all the seasons for a period of 4 years between 2011-15 to primarily document the seaweed diversity and to review the prospects of these promising marine resources for its further utilisation for human being.

Methods

The present work is mainly based on the fresh collection of seaweeds from the Kerala coast and a thorough scrutiny of the relevant literature. During the years 2011–2015, 8 field tours were conducted in all the seasons. Totally 149 sites were surveyed and collected 1272 field numbers of seaweeds in duplicate. The original field photographs showing the habits and habitats of seaweeds were taken using the underwater (Olympus) and digital cameras (Nikon COOLPIX L120) and geo locations of the collection sites were recorded using portable GPS (Garmin 12 channels). The seaweed samples were collected randomly from the inter-tidal regions, thoroughly washed and herbarium sheets were prepared for each species and the representative samples were preserved in 4% formalin solution. All the wet and dry specimens were examined carefully under the light and computer attached stereo microscopes (NIKON SMZ1500 and NIKON ECLIPSE 50i) and identified following the standard available literatures (K.S. Srinivasan, 1969, 1973; Desikachary et al., 1990, 1998; Silva et al., 1996; Krishnamurthy, 2000; Jha et al., 2009; Krishnamurthy and Baluswamy, 2010; Kraft, 2007, 2009; Huisman, 2015) and online resources such as Algaebase (www.algaebase.org), WoRMS (www.marinespecies.org), Macroalgal Herbarium Portal (macroalgae.org), International Phycological Society (www.intphycsoc.org/) etc. All the wet and dry herbarium specimens are deposited at Madras Herbarium (MH), Botanical Survey of India, Coimbatore.

RESULTS AND DISCUSSION

A total of 147 taxa (including varieties and forms) of seaweeds were recorded from the Kerala coast, which accounts about 17% of the Indian seaweeds. The enumeration includes 48 taxa of Chlorophyceae, 43 taxa of Phaeophyceae and 56 taxa of Rhodophyceae (Table 1). Among these, the
Table 1. Summary of taxonomic account of seaweed enumerated in Kerala coast.

Class	Order	Family	Genus	Species	% value of species
Chlorophyceae	6	9	16	48	33%
Phaeophyceae	5	7	17	43	29%
Rhodophyceae	10	18	28	56	38%
Total	21	34	61	147	100%

The result also shows that the maximum diversity of seaweeds was recorded during the post-monsoon season whereas 34 species were found throughout the year. During the monsoon and post-monsoon seasons, Chlorophyceae shows the highest diversity (14 species), followed by Rhodophyceae (10 species) and Phaeophyceae (6 species). It is also revealed that out of 147 taxa, 19 taxa were found common, whereas 37 taxa were distributed moderately and 92 taxa were rare or very scanty in distribution (Table 2). Species like Centrocerca clavulatum, Chaetomorpha antennina, Cladophora vagabunda, Enteromorpha compressa, E. flexuosa, E. prolifera, Gelidiopsis variabilis, Gelidium micropterum, Gracilaria corticata, Grateloupia filicina, G. lithophila, Padina tetrastromatica, Hypnea musciformis, Sargassum tenerimum, Ulva fasciata etc. were found widely distributed in Kerala coast. Similarly, species like Acanthophora spicifera, Bryopsis pinnata, B. plumosa, Caulerpa peltata, C. racemosa, C. taxifolia, Chaetomorpha linum, Chondracanthus acicularis, Dictyota dichotoma, Gelidium pusillum etc. were moderately distributed at most of the places. Whereas species like Bostrychia tenella, Champia compressa, Caulerpa scalpelliformis, C. sertularioides, Dictyopteris delicatula, Enteromorpha linza, Gelidiella acerosa, Struvea anastomosans, Ulva reticulata etc. were found very scantily distributed. The rich diversity and luxuriant growth of seaweeds were recorded at Mullurkadalapuram, Vizhinjam, Kovalam, Varkala, Edava, Thangassery, Thirumullavaram, Baypore, Thikkodi, Mahe, Ezhimala, Manjeshwar and Hosabettu coasts.

Table 2. Distributional density of seaweeds of Kerala coast

Class	Common	Moderate	Rare	Total number of species
Chlorophyceae	7	12	29	48
Phaeophyceae	4	7	32	43
Rhodophyceae	8	17	31	56
Total	19	36	92	147

Economical prospective

Seaweeds are the marine renewable natural resource and have the potential to be utilised in various ways such as food (in the form of recipes, salads, soups, jellies and vinegar), fodder, fertilisers
Table 3. List of the economically important seaweeds of Kerala coast, India

Name of the taxa	Uses	References
CHLOROPHYCEAE		
Enteromorpha compressa (L.) Nees	Edible, Fodder, Medicinal	Kaliaperumal et al., 1995; Shynu et al., 2014
Ulva fasciata Delile	Edible, Fodder, Medicinal	Sobha et al., 2008; Shynu et al., 2014
Ulva lactuca L.	Edible, Fodder, Medicinal, Manure	Shynu et al., 2014
Ulva reticulata Forssk.	Edible	Sobha et al., 2008; Kaliaperumal et al., 1995
Ulva rigida C.Agardh	Edible	Kaliaperumal et al., 1995; Shynu et al., 2014
Ulva quillonensis Sindhuv&Panikkar	Edible, Fodder, Medicinal	Kaliaperumal et al., 1995; Shynu et al., 2014
Acrosiphonia orientalis(J. Agardh) P.C. Silva	Medicinal	Manilal et al., 2012.
Cladophora prolifera(Roth) Kutz.	Edible, Fodder	Shynu et al., 2014
Cladophora fascicularis (G. Mertens ex C.Agardh) Kutz.	Edible, Fodder	Kaliaperumal et al., 1995; Shynu et al., 2014
Bryopsis plumosa(Huds.) C. Agardh	Edible, Fodder, Manure	Shynu et al., 2014
Caulerpa peltata J.V. Lamour.	Edible, Fodder, Manure	Shynu et al., 2014
Caulerpa racemosa (Forssk.) J. Agardh	Edible	Kaliaperumal et al., 1995; Sobha et al., 2008
Caulerpa serrulatoides (S.G. Gmel.) M. Howe	Edible, Fodder, Manure	Kaliaperumal et al., 1995; Shynu et al., 2014
Caulerpa taxifolia (Wahi) C. Agardh	Edible, Fodder, Manure	Shynu et al., 2014
Dicryopteris bartayresiana J.V. Lamour.	Edible, Fodder, Medicinal, Manure	Shynu et al., 2014
Lobophora variegata (J.V. Lamour.) Womersley ex E.C. Oliveira	Industrial	Shynu et al., 2014
Padina gymnospora (Kutz.) Sond.	Edible, Fodder, Industrial, Manure	Shynu et al., 2014
Padina tetrastrumastica Hauck	Edible, Fodder, Industrial, Manure	Sobha et al., 2008; Shynu et al., 2014
Sargassum myrioctystum J. Agardh	Edible, Manure, Industrial (Agar)	Kaliaperumal et al., 1995; Shynu et al., 2014
Sargassum tenerimum J. Agardh	Edible, Manure, Industrial (Agaroid)	Kaliaperumal et al., 1995; Shynu et al., 2014
Sargassum wightii	Edible, Manure, Industrial (Agar)	Kaliaperumal et al., 1995; Sobha et al., 2008; Shynu et al., 2014
Turbinaria conoides (J. Agardh) Kutz.	Industrial (Agar)	Kaliaperumal et al., 1995
Turbinaria ornata (Turner) J. Agardh	Edible, Industrial (Agaroid)	Kaliaperumal et al., 1995; Shynu et al., 2014
Porphyra indica V. Krishnam. & Baluswani	Edible	Kaliaperumal et al., 1995
Porphyra kanyakumariensis V. Krishnam. & Baluswani	Edible	Shynu et al., 2014
Gelidiolum micropterum Kutz.	Edible, Industrial (Agar)	Kaliaperumal et al., 1995; Shynu et al., 2014
Gelidium pusillum (Stackhouse) Le Jolis	Industrial (Agar)	Kaliaperumal et al., 1995
Gelidella acerosa (Forssk.) J. Feldmann & G. Hamel	Industrial (Agar)	Kaliaperumal et al., 1995
Gracilaria corticata (J. Agardh) J. Agardh var. cylindrica M.U. Rao	Industrial (Agar)	Kaliaperumal et al., 1995; Sobha et al., 2008; Shynu et al., 2014
Gracilaria corticata (J. Agardh) J. Agardh	Industrial (Agar)	Kaliaperumal et al., 1995; Shynu et al., 2014
Gracilaria edulis (S.G. Gmel.) P.C. Silva	Edible, Industrial (Agar)	Kaliaperumal et al., 1995; Shynu et al., 2014
Gracilaria foliifera (Forssk.) Borgesen	Industrial	Shynu et al., 2014
Gracilaria verrucosa (Huds.) Papenf.	Manure, Industrial (Agar)	Kaliaperumal et al., 1995; Shynu et al., 2014
Asparagopsis taxiformis (Delle) Trevis.	Edible, Industrial (Antifouling agent)	Kaliaperumal et al., 1995; Manilal et al., 2010
Grateloupia filicina (J.V. Lamour.) C.Agardh	Edible, Industrial (Carageenan)	Shynu et al., 2014; Sahu and Kumar, 2014
Corallina elongata J. Ellis & Sol.	Medicinal	Shynu et al., 2014
Jania adhrens J.V.Lamour.	Industrial	Shynu et al., 2014
Hypnea muscosiformis (Wulf.) J.V. Lamour.	Edible, Medicinal, Industrial (Carageenan)	Kaliaperumal et al., 1995; Pramitha and Lipton, 2013; Shynu et al., 2014
Hypnea valentiae (Turner) Mont.	Edible, Medicinal, Industrial (Carageenan)	Kaliaperumal et al., 1995; Pramitha and Lipton, 2013; Shynu et al., 2014
Gelidopsis intricata (C. Agardh) Vickers	Industrial	Shynu et al., 2014
Sphyrillops hypnoides (Bory) Papenf.	Industrial (Agaroid)	Chennubhotla et al., 1987; Kumar and Bai, 2008.
Acanthophora spicifera (Vahl.) Borgesen	Edible, Industrial (Agaroid)	Chennubhotla et al., 1987; Shynu et al., 2014
(SLF), Biofuels, and in various industries. Since ancient times, they are used as food in various forms, especially in South East Asian countries (Japan, China, Korea, Indonesia) and Pacific (Hawaii). Presently, there are 42 countries in the worldwide with reports of commercial exploitation of seaweeds. Among them, China holds first, followed by North Korea, South Korea, Japan, Philippines, Chile, Norway, Indonesia, USA and India. These top 10 countries of the world contribute up to 95 % of the world’s commercial seaweed utilization (Khan and Satam, 2003). According to Braune & Guiry (2011), seaweeds like Porphyra for Nori, Laminaria for Kombu, Undaria for Wakame are cultivated on large scale and annually harvested a quantity of about 400,000 tons.

The utilization of seaweed resources plays an important role in supporting the economy in many parts of the world. However, in India, the attention in this regard is drawn only in the recent years (Chennubhotla et al., 2013 a and b). Only experimental scale cultivation of commercially important seaweed such as Gelidiella acerosa, Gracilaria edulis, Hypnea musciformis, Acanthophora spicifera and Sargassum for Kombu, Undaria for Wakame is reported. Seaweeds are one of the most important marine natural resources, contrary to its name as ‘weed’. First of all, awareness should be created among the coastal villagers regarding the direct uses of seaweeds as food (in the form of salad, soup, jellied etc.), industries (pharmaceuticals, textile, cosmetics, painting, manures, fertilizers etc.) and for cattle feed. For continuous supply of raw materials, large scale cultivation should be promoted which will improve the financial status of the local people by providing employment. The economically important seaweed cultivations boom to the fishery villagers.

REFERENCES

Braune, W. & M. D. Guiry, 2011. Seaweeds, A colour guide to common benthic green, brown and red algae of the world’s oceans. A.R.G. GantnerVerlag K.G., Rug. gell, Liechtenstein, Germany. 601.

Chennubhotla, V.S.K., B.S. Ramachandrudu, P. Kaladharan & S.K. Dharmaraja, 1988. Seaweed resources of Kerala coast. Bull. Aqu. Biol. 7: 69–74.

Chennubhotla, V.S.K., M. Umamaheswara Rao & K.S. Rao, 2013a. Exploitation of marine algae in Indo-Pacific region. Seaweed Res. Utiln., 35 (1&2): 1-7.

Chennubhotla, V.S.K., M. U. Rao & K.S. Rao, 2013b. Commer- cial importance of marine macro algae. Seaweed Res. Utiln., 35 (1&2): 118-128.

Desikachary, T.V., V. Krishnamurthy & M.S. Balakrishnan, 1990, 1998.Rhodophyta Vols. I & II. Madras Science Foundation, Chennai.

Huisman, J.M., 2015. Algae of Australia: Marine Benthic Al- gae of North-western Australia, 1: Green andBrown Algae. CSIRO Publishing, Melbourne. Australia.

Jha, B., C.R.K. Reddy, M.K. Thakur & M.U. Rao, 2009. Sea-weeds of India. The diversity and distribution of Sea-weeds in Gujarath Coast.CSMCRI, Bhavnagar. 215.

Kaliaperumal, N, 2005. Prospects of seaweed farming in In- dia. Proc. Ocean Life, Proceedings of Ocean Life Food & Medicine Expo. 384–393.

Kaliaperumal, N. & V.S.K. Chennubhotla, 1997. Seaweed distribution and resources in Kerala coast. Seaweed Res. Utiln. 9 (1&2): 29–32.

Kaliaperumal, N., S. Kalamathu & J.R. Ramalingam, 1995. Economically Important Seaweeds. CMFRI special publication, 62: 1–35.

Kambathy, Y., K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Bhrahmbhatt, K. Eswaran & P.K. Ghosh.
2012. Kap- paphycus alvarezi as a source of bioethanol. *Bioresource Technology*, **103**(1): 180-185.

Khan, Sajid I. & S.B. Satam, 2003. Seaweed Mariculture: scope and potential in India. *Aquaculture Asia*, **4**(4): 26-28.

Kraft, G. T., 2007, 2009. Algae of Australia: Marine Benthic Algae of Lord Howe Island and the Southern Great Barrier Reef, 1: Green Algae; 2: Brown Algae. CSIRO Publishing, Melbourne, Australia.

Krishnamurthy, V. 2000. Algae of India and neighbouring countries I. Chlorophycota; Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi. 210.

Krishnamurthy, V. & M. Baluswami, 2010. Phaeophyceae of India and neighbourhood. Vol. I, Krishnamurthy Institute of Algology, Chennai. 192.

Kumar, R.A.S. & R.S. Bai, 2008. Effect of aqueous extracts of seaweeds and seagrass on amylase activity in Zea mays L. var Pioneer. *Seaweed Res. Utiln.*, **30**: 259-262.

Manilal, A., J. Selvin, S. Sujith, G.S. Kiran & M.V.N. Panikkar, 2012. Evaluation of therapeutic efficiency of Indian alga Acrosiphonia orientalis (J. Agardh) P.C. Silva in the treatment of Vibrosis in Penaeus monodon. *Thalassas*, **28**(1): 33-46.

Manilal, A., S. Sujith, B. Subarathnam, G. SeghalKirann, Joseph Selvin, ChippuShakir & Aaron Premnath Lipton, 2010. Bioactivity of the Red algae Asparagopsis taxi-formis collected from the south western coast of Kerala. *Braz. J. Oceanography*, **58**(2): 93-100.

Mathew, S. S., 1991. Some Observations on the Ecology and Biochemical Aspects of the Seaweeds of Kerala Coast. Ph.D. thesis, Cochin University of Science and Technology, Kochi, India. [Unpublished].

Nair, B.N., V. Sobha & M. Arunachalam, 1982. Algae from southern Kerala coast. *Indian J. Mar. Sci.*, **11**(3): 266–26.

Nair, B. N., V. Sobha, R. Chandran, M. Rathianmal, P. I. Miranda, S. Maya & H. Suryanarayanan, 1986a. Algal sources of Kerala coast II. An up-to-date list of Indian marine algae. *Aquat. Biol.* **6**: 25–52.

Nair, B.N., V. Sobha, R. Chandran, P.A. Paul, P.I. Miranda & H. Suryanarayanan. 1986b. Nature and distribution of the littoral algae and seagrasses of the southwest coast of India. Proc. Indian Nation. Sci. Acad., Part B, *Biol. Sci.* **52**: 733–744.

Pramitha, V.S. & A.P. Lipton, 2013. Antibiotic potentials of red macroalgae Hypnea musciformis (Wulfen) Lamouroux and Hypnea valentiae (Turner) Mont. *Sea- weed Res. Utiln.*, **35**(1&2): 95-107.

Rao, P.S.N. & R.K. Gupta, 2015. Algae of India, Vol 3: A checklist of Indian Marine Algae (Excluding Diatoms & Dinoflagellates). Botanical Survey of India, Kolkata. pp 93.

Sahoo, D., 2000. Farming the Ocean – Seaweeds cultivation and utilization. *Aravalli Books International (P.) Ltd.*, New Delhi. pp. 44.

Sahu, Nivedita & C. Ganesh Kumar, 2014. Characterization of isolated Polysaccharide and biochemical tributes of red algae, Grateloupia filicina. *International Journal of Science and Research*, (3): 960-963.

Shynu, S.P., S. Shibu & V. Jayaprakash. 2014. The economical- ly valuable seaweeds of Thirumullavaram, southwest coast of Kerala. *J. Aquat. Biol. Fish.* **2**(1): 233–237.

Sobha, V., S. Santhosh, G. Ghita & E. Valsalakumar, 2008. Food products from seaweeds of south Kerala coast. *Seaweed Res. Utiln.* **30**(1&2): 199–2003.

Sobha, V & N. B. Nair, 1983. Marine algae of Southwest coast of India. In: Krishnamurthy, V. (ed.), Marine Plants, 17–24.

Srinivasan, K.S. 1969, 1973. *Phycologia Indica*. (Icones of Indian marine algae) Vols. I & II. Botanical Survey of India, Calcutta.

Sulekha, S. & M.V.N. Panikkar, 2006. Marine green algal flora of Kollam Coast, Kerala, South India. *Seaweed Res. Utiln.* **28**(1): 5–21.

The Times of India, Times Nation, 13, published On 25 Dec. 2014 (http://epaperbeta.timesofindia.com/Article.aspx?eid=31804&articlexml=Women-dive-deep-to-weed-out-gender-barrier25122014013012)

Yadav, S.K., M. Palanisamy & G.V.S. Murthy, 2015. Econom- ically important seaweeds of Kerala coast, India – A Review. *Elix. Biosci.* **82**: 32147–32152. (http://www.elixirpublishers.com).