An Embedded Visualization Method through Temporal Bibliographic Analysis

Yan WANG1,*, Mingyu SUN1, Ning HU1, Sentao LIU1 and Juncheng SI1

1 State Grid Shandong DongYing Electric Power Company, DongYing 257091, Shandong Province, China
E-mail: * zdhkj2019@163.com

Abstract. Visual analytics play an important role in understanding complex datasets, e.g. the bibliographic data set. Word clouds, which use a compact visual description of words, have been leveraged widely to provide the content overview of a set of documents, especially the hot topic trends. In this paper, we proposed a visualization method that embedding the temporal patterns along the word to visually illustrate the hot topic evolution.

1. Introduction
In recent years, word clouds (or tag clouds), which use a compact visual form of words, have been used widely to provide the content overview of a set of documents, e.g. the bibliographic data set. Word clouds are text-based visual representations that describe word significance in terms of popularity and importance by applying different font sizes and colors. Existing methods in creating effective word clouds have attained certain success especially in embracing aesthetic issues. However, traditional word clouds are insufficient in portraying temporal topic evolution of a collection of bibliography documents. For example, to understand how a hot research topic have varied during the last decade could be a difficult task if we just visualize the bibliography collections one by one using word clouds. A simple animation between different word clouds at different time points would be inadequate to preserve the context for effectively tracking the evolution of the topic to find the sequential patterns or correlations.

To facilitate the understanding of temporal content evolution in a set of bibliography documents, we propose a visualization method that embedding the temporal patterns along the word to visually illustrate the hot topic evolution.

2. Related Work
This paper reviews previous work related to word cloud visualization and temporal word clouds.

2.1. Word Cloud Visualization
A word cloud, also called a tag cloud, is a visualization representation of the text data that has been applied on the web since 1997 [1]. A word cloud encodes the density of the words of the given text into font size and color [2], and arranges the words on a canvas area spatially. The word cloud visualization techniques use an orthogonal line-by-line layout, where the words have been sorted alphabetically or by their weight. To produce more impacted and esthetic visualizations, a large number of alternative layout methods have been proposed [3,4,5,6,7,8]. Among them, the most well-
known algorithm is EdWordle[8], a method for consistently editing word clouds, which allows users to move and edit words while preserving the neighborhoods of other words. However, such enhancements still do not capture the relationships between words, let alone the temporal trends of time-varying text data. Thence, a variety of temporal word cloud render methods have been proposed in recent years.

2.2. Temporal Word Clouds
The temporal word clouds attempt to visualize the temporal trends on a given time-varying set of words while preserving the temporal coherence. Collins et al. [9] present the Parallel TagClouds which combine parallel coordinates with conventional word clouds, where the words of each document are arranged along each coordinate axis. Lee et al. [10] introduce the SparkClouds that visualize trends between multiple word clouds by embedding spark lines into a word cloud. Both methods perform well in the visualization of tendency, however the SparkClouds performs better in terms of scalability. Cui et al. [11] mix a trend chart with multiple word clouds together to show the temporal changes of the implicit data. This method creates semantic and stable word clouds by combining multidimensional scaling and force-directed layout. Recently, Chi et al. [12] introduce a morphable word clouds, which specifies the sequence of spatial shapes as a boundary for a collection of time-varying word clouds. By leveraging the rigid body dynamics, they stratify words within the given shape sequence therefore temporal changes are presented by both the topographies and the content of the word clouds. In this paper, we proposed an embedded temporal visualization method to present the temporal patterns in the text.

3. Proposed Technique

3.1. Motivation
Models of bibliographic data need to conceive many varieties of information. Scientific articles are usually accompanied by metadata such as publication data, authors, categories and time [13]. Bibliographic analysis interprets the citation network, the author’s research areas and the paper content among other things, which can be combined into a topic model that creates a bibliographic model of authors, topics and documents. In this paper, we propose a novel and efficient inference visualization algorithm to explore the constantly change of the hot topics.

3.2. System Overview
To facilitate generation of visual representation at all three levels, a flexible mapping strategy is required. Such a strategy has been manifested as the so-called visualization pipeline. The visualization pipeline leveraged in this paper is proposed by Santos and Brodlie[14], which consists of the three steps: filtering, mapping and rendering (see Figure 1).

The filtering step prepares the raw input data for processing through the remaining steps of the pipeline. This is done with respect to the given analysis task and includes not only selection of relevant data but also operations for data enrichment or data reduction, interpolation, data cleansing, grouping, dimension reduction, and others.

Literally, the mapping step maps the prepared data to appropriate visual variables. This is the most crucial step as it largely influences the expressiveness and effectiveness of the resulting visual representation.

Finally, the rendering step generates actual images from the previously computed geometry and visual attributes. This general pipeline model is the basis for many visualization systems.
4. Temporal Display Design

The bibliography raw data usually is collected in plain text files, and organized by a standard rule, such as BibTex, EndNote etc. In this paper, we use the IEEE VIS conference series data[15] from 1990 to 2016 to illustrate the usage of our method. The data used in our experiments contains IEEE VIS publications, i.e., InfoVis, SciVis, VAST, or Vis. Each record consists of 11 fields, including conference type, publication year, paper title, DOI, abstract, author names, and references (inside this dataset only). In the purpose of exploring research topic, only some fields are involved in the proposed method, which contains the topic features and temporal features. Specifically, the topic features will be extracted from these fields, which are paper title, abstract, and full text if available. The temporal features will be aggregated by the time granularity, which is the 'year' data field in this case.

4.1. Data Processing

The raw data contains topic features and temporal features will be filtered into the focus data by the data processing approach. The raw data is composed by records, which could be distinct from each other by some specific notations or punctuation, such as a semicolon or a line break. Let's define the raw data set is $X := \{X(1), X(2), \ldots, X(n)\}$, where the n is the number of records contained in the raw data, and the $X(i)$ means the ith record in X with $1 \leq i \leq n$.

To show the temporal visualization of the bibliography data set, both the words variable and the times variable should be considered in the data processing approach. To achieve a better visualization presentation with clarity and concision, the method proposed in this paper gives a general pipeline to declare the details of the data processing.

An ignored word list and a merged word list should be initialized before the data processing approach, and will be continuous updated during the data exploring activity.

The ignored word list contains frequently used words (such as and, the, because, and so on) or words that you do not want indexed, which will be excluded from the result. The data processing program comes with a default set of ignored words that you can modify as needed. The ignored word list could be defined as $P := \{P_1, P_2, \ldots, P_m\}$, where P_i with $1 \leq i \leq m$ means a single word will be ignored.

The merged word list is composed by several word groups, each group contains the words which is a synonym for each other. The merged word list is defined as $M := \{M(1), M(2), \ldots, M(n)\}$, where $M(i)$ with $1 \leq i \leq n$ means the ith merged word group. The merged word group is an order-sensitive sequence, which is defined as $M(i) := \{M_1(i), M_2(i), \ldots, M_m(i)\}$, and all the words in the same merged word group will be merged into the first word in the sequence. The merged word list can be initialized by several approaches. One of the most leveraged method is the word distance algorithm, such as the Levenshtein algorithm, which is a string metric for measuring difference between two sequences. Informally, the Levenshtein distance between two words is the minimum number of single-character
edits (i.e. insertions, deletions or substitutions) required to change one word into the other. But the word distance algorithm should be applied under supervision. For example, the words "universe" and "university" are quite similar but with very different meaning.

Given the ignored word list and the merged word list, the raw data processing program could be leveraged to produce the focus data set, which is defined as \(R := \{ R_1, R_2, ..., R_n \} \), where \(R_i := \{ \text{word}, \text{weight}, \text{seq} \} \) and \(\text{seq} := \{ (t_1, v_1), ..., (t_n, v_n) \} \). Considering the visual dimension, the focus data set only contains the \(n \) records of the whole data set, following the rule of sorting the records in descending order by the weight variable of each record.

4.2. Data Mapping
The mapping from focus data to geometric data is the core of our method. Compared to traditional word cloud visualization algorithm, e.g. the Wordle layout algorithm, our method has considered the relevant temporal patterns additionally.

The whole process of the algorithm is similar to the Wordle layout algorithm, but with one bit improvement, which is the placement of the underline pattern bar under the word area before the detection of the intersections. For each word in the focus data, the algorithm gives the dimension of the word and the relevance font size when there is no intersection with any previously placed words.

The temporal pattern related to each word is encoded into the underline pattern bar, which is split joint by a rectangle sequence filled with a correlated color. There is a one-to-one relationship between the temporal pattern and the rectangle sequence, and the numeric value in the temporal pattern is encoded to a color.

4.3. Visualization Result
To demonstrate the proposed visualization method in this paper, an evaluation experiment is developed based on the IEEE VIS conference series data (as mentioned in section 4). The experiment is implemented by JavaScript program language, and exhibited in the chrome browser. The data mapping part of the algorithm leverages the "Canvas" technique to perform the intersection detection during the word layout phase. The final visualization effect is achieved by the "SVG" specification provided by a third-party library named D3[16]. A final visual snapshot of the system is shown in the figure 2. By utilizing the system, a researcher could have a good understanding what aspects to consider when selecting a topic for the research paper.

4. Conclusion
In this paper, we proposed an embedded visualization method to facilitate the understanding of temporal content evolution in a set of bibliography documents by visually illustrating the hot topic evolution. A system is developed and demonstrated to evaluate the method, which given a very positive feedback. But the current version of the system is lacking of an interactive user interface,
which causes a bad performance in parameter adjustment. In the future work, an interactive control panel will be mounted on the interface, which will improve the user experience.

Acknowledgements
This work was supported by "Research on Lightweight Active Immune Technology for Electric Power Supervisory Control System", a science and technology project of State Grid Co., Ltd in 2019.

References
[1] Viegas F B and Wattenberg M 2008 *interactions* 15 49
[2] Rivadeneira A W, Gruen D M, Muller M J and Millen D R 2007 Getting our head in the clouds *the SIGCHI Conference* (New York, New York, USA: ACM Press) p 995
[3] Locarek-Junge H and Weihs C (eds) 2010 *Classification as a Tool for Research* Proceedings of the 11th IFCS Biennial Conference and 33rd Annual Conference of the Gesellschaft für Klassifikation e.V., Dresden, March 13-18, 2009 (Berlin, Heidelberg: Springer Berlin Heidelberg)
[4] Kaser O and Lemire D 2007 *arXiv preprint cs/0703109*
[5] Seifert C, Kump B, Kienreich W, Granitzer G and Granitzer M On the Beauty and Usability of Tag Clouds 2008 12th International Conference Information Visualisation (IV) (IEEE) pp 17-25
[6] Strobelt H, Spicker M, Stoel A, Keim D and Deussen O 2012 *Computer Graphics Forum* 31 1135-1144
[7] Viegas F B, Wattenberg M and Feinberg J *IEEE Transactions on Visualization and Computer Graphics* 15 1137-1144
[8] Wang Y, Chu X, Bao C, Zhu L, Deussen O, Chen B and Sedlmair M 2018 *IEEE Trans. Vis. Comput. Graph.* 24 647-656
[9] Collins C, Viegas F B and Wattenberg M Parallel Tag Clouds to explore and analyze faceted text corpora 2009 *IEEE Symposium on Visual Analytics Science and Technology* (IEEE) pp 91-98
[10] Lee B, Riche N H, Karlson A K and Carpendale S *IEEE Transactions on Visualization and Computer Graphics* 16 1182-1189
[11] Cui W, Wu Y, Liu S, Wei F, Zhou M X and Qu H Context preserving dynamic word cloud visualization 2010 *IEEE Pacific Visualization Symposium (PacificVis)* (IEEE) pp 121-128
[12] Chi M T, Lin S S, Chen S Y, Lin C H and Lee T Y *IEEE Transactions on Visualization and Computer Graphics* 21 1415-1426
[13] Lim K W and Buntine W 2016 *Machine Learning* 103 185-213
[14] dos Santos S and Brodlie K 2004 *Computers & Graphics* 28 311-325
[15] Isenberg P, Heimerl F, Koch S, Isenberg T, Xu P, Stolper C D, Sedlmair M, Chen J, Moller T and Stasko J 2016 *IEEE Transactions on Visualization and Computer Graphics* 23 2199-2206
[16] Bostock M, Ogievetsky V and Heer J *IEEE Transactions on Visualization and Computer Graphics* 17 2301-2309