The study of the fatty acid composition of camelina oil obtained by cold pressing

A N Ostrikov, N L Kleimenova, M V Kopylov and I N Bolgova

Voronezh State University of Engineering Technologies, 19 Revolution Ave., Voronezh, 394036, Russia

E-mail: klesha78@list.ru

Abstract. Non-traditional oilseeds include camelina seeds, which are widely known in the global production of oils and blends. The seeds of this plant are a source of polyunsaturated fatty acids, including linoleic and linolenic acids. A distinctive feature of the seeds of this culture is the oil content – 40% and crude protein – 30%. The object of the study was oil obtained by cold pressing and the seeds of camelina of the Penzyak variety. Samples were obtained in an experimental installation under the following conditions: a pressing chamber annular clearance was 0.3 mm; the screw rotational speed was 160 rpm at a temperature of 336 K. The fatty acid composition of the camelina oil sample was determined by gas-liquid chromatography on a Chromotech 5000. The presented results of camelina oil studies by fatty acid composition show that unsaturated fatty acids -9 prevail in the test oil. It was determined that fatty acids of groups 18 and 16, 20 predominate in camelina oil. At the next work stage, studies were carried out on the chemical composition of the sample, as a result of which it was found that camelina oil contains 4 vitamins (vitamins A, K, δ and γ-tocopherols) and traces of vitamin K, the purpose of which is to provide increased biological and nutritional value of the product.

1. Introduction

Currently, such an oilseed crop as camelina is very popular in oil production. It is widely used in the production of oils by cold pressing and the development of blends. Successful developments in the field of camelina selection as an oilseed crop are well known [1].

The relevance and prospects of the use of camelina seeds in oil production are determined by the unpretentiousness and high productivity of this crop. Its seeds contain about 40 - 45% of drying oil and about 30% of crude protein [2]. The fields of its application are different: medicine, dietary nutrition, paint and varnish industry, perfumery and cosmetic products [3, 4].

The main advantage of this choice of the study object is that camelina oil is a rich in polyunsaturated fatty acids: linolenic acid (ω-3) from 36 to 41%; linoleic acid (ω-6) from 16 to 20% [5, 6]. The ratio of ω-3: ω-6 is 2.5: 1. This ratio of camelina oil fatty acids is recommended for people who have high blood cholesterol. The composition of this oil contains natural antioxidants – tocopherols (60 – 109 mg%), and the amount of erucic acid is relatively low (1.5 – 4.2%).

Camelina is resistant to frost and drought. The camelina culture technique is easy and does not require economic costs [7]. Another feature of this culture is its early maturation, which is attributed to biological value [8, 9]. The camelina oil obtained by cold pressing of seeds has a high content of...
vitamin E and polyunsaturated fatty acids, it contains a natural complex of tocopherol, and carotene promotes less oxidation and prolongs the shelf life of the oil [10].

In a modern industrial society with a predominance of megacities, one of the main problems in human nutrition is vitamin deficiency [11]. In the basic human diet, the necessary balance of proteins, carbohydrates, vitamins and amino acids should be present [12]. Therefore, the aim of the study is to determine the fatty acid and vitamin composition of camelina oil [13, 14].

2. Materials and methods

The object of the study was the seeds of camelina winter varieties Penzyak. The main qualitative characteristic of camelina oil is the fatty acid composition. An analysis of the literature on the fatty acid composition of camelina oil is presented in table 1.

Table 1. Fatty acid composition of camelina oil

Acid	Literature data, % of total fatty acid content	Literature data, % of total fatty acid content	Literature data, % of total fatty acid content
C 16:0 Hexadecanoic (palmitic)	4.3	5.3	-
C 16:1 Hexadecenoic (palmitoleic)	0.07	0.1	-
C 18:0 Octadecanoic (stearic)	2.3	2.1	9.57
C 18:1 Octadecenic (oleic)	12.73	14.8	-
C 20:0 Eicosanoic; (arachidic)	1.04	1.8	-
C 20:1 Eicosenoic (gondoinic)	11.19	12.8	-
C 22:0 Docosanoic (behenic)	0.31	0.3	2.18
C 22:1 Docosenoic (erucic)	2.38	3.5	-
C 18:2 Octadecadienoic (linoleic)	24.29	2.4	4.57
C 18:3 Octadecatrienoic (linolenic)	36.92	33.7	52.55

This oil is influenced by the cold pressing mode, which allows preserving the curative properties of camelina oil. Investigations of the cold pressing process of camelina seeds were carried out in an experimental installation in the following ranges of technological parameters: pressing chamber annular clearance – 0.3 mm, screw rotation speed – 160 rpm, pressing temperature - 336 K.

Based on the requirements of National Standard 31665-2012 “Vegetable oils and animal fats. Obtaining methyl esters of fatty acids” methyl esters of fatty acids and the fatty acid composition of camelina oil were defined. In this case, an SP-2560 column was used, as well as a Chromotech 5000 gas chromatograph.

The objective of the study was to identify the peaks of the obtained chromatograms for camelina oil. For this purpose, the area normalization method was used to determine the qualitative characteristics of the oil composition of interest.
3. Results

The study results on the composition of fatty acids of camelina oil are presented in Table 2.

Acid component	Time, min	Area, mV·s	Area, %	Response factor	Concentration, %
C4:0-Butyric	8.997	7.719	0.044	1.428	0.059
C6:0- Caproic	9.529	4.298	0.024	1.237	0.029
C8:0- Caprylic	10.537	3.197	0.018	1.114	0.019
C10:0- Capric	12.374	7.606	0.043	1.041	0.043
C12:0- Lauric	15.415	10.898	0.062	1.016	0.060
C14:0- Myristic	19.801	41.160	0.235	0.997	0.221
C14:1- Myristoleic	21.799	2.842	0.016	1.001	0.015
C15:0- Pentadecanoic	22.431	7.203	0.041	1.007	0.039
C16:0- Palmitic	25.305	1004.049	5.722	1.000	5.411
C16:1- Palmitoleic	27.170	20.826	0.119	0.997	0.112
C17:0- Margaric	28.247	9.515	0.054	1.009	0.052
C18:0- Stearic	31.567	465.766	2.654	1.005	2.523
C18:1n9- Elaidic	33.213	5.215	0.030	1.029	0.029
C18:1n9c- Oleic	33.707	3001.547	17.105	0.997	16.128
C18:2n6c- Linoleic	37.149	3081.933	17.563	1.011	16.792
C20:0- Arachic	39.756	238.904	1.361	0.981	1.263
C18:3c9- alpha-linolenic	41.896	6029.709	34.361	1.149	37.338
C20:1- Eicosenoic	42.617	2510.713	14.308	0.991	13.409
C20:2- Eicosadienoic	46.321	327.686	1.867	1.091	1.927
C22:0- Behenic	48.445	50.304	0.287	0.986	0.267
C20:3n11c- Eicosatrienoic	49.909	243.026	1.385	1.074	1.407
C22:1- Erucic	50.363	444.907	2.535	1.122	2.690
C22:2- Docosadienoic	53.028	18.809	0.107	1.040	0.105
C20:5-Eicosapentaenoic	53.399	10.148	0.058	1.114	0.061

Analysis of the data obtained from Table 2 and Figure 1 showed that fatty acids of groups 18 and 16, 20 predominate in camelina oil. The sum of the concentrations of all other components is considered to be 100%. Thus, the main profile in the chromatogram in the test sample is saturated acids - palmitic; unsaturated acids - linoleic and oleic; polyunsaturated acids - eicosenoic and linolenic.
It should be noted that the data obtained on the fatty acid composition of the analyzed camelina oil sample correlate well with the literature data presented in Table 1, which indicates a high accuracy of the studies.

Figure 2 demonstrates the results of the analysis of the fatty acid composition of camelina oil in comparison with standard values [18, 19].

![Figure 2](image_url)

Figure 2. The results of the fatty acid composition of camelina oil

The values obtained are within normal limits. The content of erucic acid, which is not removed from the oil, is 2.69%, therefore, camelina oil is recommended to be used as a nutritionally complete food product, since the content of erucic acid meets the requirements of the standards (no more than 5%).

Linoleic acid is also present in camelina oil, which helps to reduce the risk of malignant diseases. ω-6 acids are well digested.

The vitamin composition of camelina oil was determined in accordance with the requirements of National Standard 30417-96 “Vegetable oils. Methods for determining the mass fractions of vitamins A and E”. As a result of the studies, it was determined that in the composition of camelina oil includes 4 vitamins and minor traces of vitamin K (Table 3).

The analysis showed that camelina oil contains vitamin E and α, β+γ and δ-tocopherols, the presence of which helps to maintain the ability to oxidize during storage. However, camelina oil has a specific smell; therefore, in order to satisfy consumers, it is better to recommend it for the development of functional blends as part of preventive nutrition. The analyzed chemical composition of the studied oil corresponds to the values of international and interstate standards [18].
Table 3. The chemical composition of the test sample

No.	Measured values	Unit/samples	Camelina oil
1	Vitamin A	mg%	0.02±0.005
2	Vitamin B1	mg %	–
3	Vitamin B4	mg %	–
4	Vitamin B6	mg %	–
5	Vitamin D	mg %	–
6	Vitamin E	mg %	0.72±0.005
7	α-tocopherol	mg %	0.3±0.005
8	β+γ-tocopherol	mg %	–
9	δ-tocopherol	mg %	0.21±0.005
10	β-carotene	mg %	–
11	Vitamin K	mg %	traces

4. Conclusion
An analysis of the research results showed that camelina oil obtained by cold pressing has a valuable fatty acid composition, is characterized by a low amount of saturated fatty acids (primarily myristic, stearic, arachic and behenic) and a high content of unsaturated acids (oleic, lenoleic, erucic). The content of erucic acid in camelina oil is 2.69%, that is, almost 2 times lower than in National Standard 31665-2012, National Standard 30417-96 (no more than 5%) [18]. Given there is specific smell of camelina oil, it is advisable to continue the development of blends of various oils.

References
[1] Malik M R, Tang J, Sharma N, Burkitt C, Ji Y, Mykytyshyn M, Bohmert-Tatarev K, Peoples O and Snell K D 2018 Camelina sativa, an oilseed at the nexus between model system and commercial crop Plant cell reports 37 (10) 1367-1381
[2] Marcheva M P 2016 Evaluation of morphology, productive potential, oil content and composition of plant genetic resources of camelina sativa Bulgarian Journal of Agricultural Science 22 (5) 778-782
[3] Luo Z, Dyer J M, Abdel-Haleem H, Brock J, Kutchan T, Augustin M, Fahlgren N, Schachtman D and Ge Y 2019 Genetic diversity and population structure of a camelina sativa spring panel Frontiers in Plant Science 10 (1) 184
[4] Subburaj S, Lee G J, Kim A Y, Lee S, Kim K N, Suh M C and Kim G J 2016 Identification of novel stress-induced micrornas and their targets in camelina sativa using computational approach Plant biotechnology reports 10 (3) 155-169
[5] Tulkubaeva S A and Vasin V G 2018 Camelina (camelina sativa) cultivation in the north of Kazakhstan International Journal of Pharmaceutical Research 10 (4) 798-802
[6] Lupova E I 2017 About the benefits of camelina oil Materials of the first international environmental forum in Ryazan: A healthy environment is the basis of regional security 2 226
[7] Khromtsev D F 2013 Possibility of cultivation of oilseeds and essential oil crops in the Ryazan region International technical and economic journal 4 52-54
[8] Kurasia-Popowska D and Stuper-Szablewska K 2020 The phytochemical quality of Camelina sativa seed and oil Acta Agriculturae Scandinavica Section B: Soil and Plant Science 70 (1) 39-47
[9] Kanclerz A, Drozinska E and Kurek M A 2019 Microencapsulation of camelina sativa oil using selected soluble fractions of dietary fiber as the wall material Foods 8 (12) 681
[10] Artyukhova S I and Bondareva G I 2015 On the relevance of the use of camelina oil in the production of the use of camelina oil in the production of bio-products for the nutrition of students *International Journal of Experimental Education* **8** (1) 102

[11] Isabel Oroz Guinea, Katja Zorn and Uwe T. Bornscheuer 2019 Enrichment of erucic and gondoic fatty acids from crambe and camelina oils catalyzed by geotrichum candidum lipases I and II *JAOCS, Journal of the American Oil Chemists’ Society* **96** (12) 1327-1335

[12] Deng Q, Huang F, Huang Q, Xu J and Liu C 2011 Lipid-lowering evaluation of cold-pressed camelina sativa oil *Journal of Food, Agriculture and Environment* **9** (3-4) 157-162

[13] Mateyev Y Z, Shalginbaev D B, Mateyeva S Z, Ostrikov A N, Terekhina A V and Kopylov M V 2019 Environmental study of fatty acid composition of safflower oil received by cold pressing method *EurAsian Journal of BioSciences* **13** (1) 385-391

[14] Sarv V, Trass O and Diosady L L 2017 Preparation and characterization of camelina sativa protein isolates and mucilage *JAOCS, Journal of the American Oil Chemists’ Society* **94** (10) 1279-1285

[15] Brashkin V S and Khokhlov A L 2018 Fatty acid composition of camelina oil and mixed camelina-mineral fuel *Materials of the II International Student Scientific Conference* 80-83

[16] Buyankin V I and Fedorova V M 2013 Oil of camelina seeds of different varieties as a source of essential fatty acids in our diet *Scientific-agronomical journal* **2** (93) 17-19

[17] Danyliv M M, Bogdanova E V, Plutaloa M V and Shirobokov A A 2015 Gas chromatographic analysis of the fatty acid composition of vegetable oils as applied to the meat industry *Scientific almanac* **11-3(13)** 109-112

[18] CXS 210-1999 2019 *Standard for named vegetable oils*