Stepanyuk, Tetiana A.
Estimates for logarithmic and Riesz energies of spherical t-designs. (English) [Zbl 07240109]
Tuffin, Bruno (ed.) et al., Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1–6, 2018. Cham: Springer. Springer Proc. Math. Stat. 324, 467-484 (2020)

Summary: In this paper we find asymptotic equalities for the discrete logarithmic energy of sequences of well separated spherical t-designs on the unit sphere $S^d \subset \mathbb{R}^{d+1}$, $d \geq 2$. Also we establish exact order estimates for discrete Riesz s-energy, $s \geq d$, of sequences of well separated spherical t-designs.

For the entire collection see [Zbl 1440.65006].

MSC:
65C05 Monte Carlo methods

Keywords:
sphere; well separated spherical t-design; logarithmic energy; Riesz energy

Full Text: DOI arXiv

References:
[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press (1999) · Zbl 0920.33001
[2] Betermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39-44 (2018) · Zbl 1391.82002
[3] Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443-452 (2013) · Zbl 1270.05026 · doi:10.4007/annals.2013.178.2.2
[4] Bondarenko, A., Radchenko, D., Viazovska, M.: Well-separated spherical designs. Constr. Approx. 41(1), 93-112 (2015) · Zbl 1314.52020 · doi:10.1007/s00365-014-9238-2
[5] Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: Universal upper and lower bounds on energy of spherical designs. Dolomites Res. Notes Approx. 8(Special Issue), 51-65 (2015) · Zbl 1370.31003
[6] Brauchart, J.S.: Optimal logarithmic energy points on the unit sphere. Math. Comput. 77(263), 1599-1613 (2008) · Zbl 1196.41009 · doi:10.1090/S0025-5718-08-02085-1
[7] Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complex. 31(3), 293-326 (2015) · Zbl 1320.65007
[8] Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. 578, 31-61 (2012) · Zbl 1318.31011
[9] Hesse, K.: The s-energy of spherical designs on S^2. Adv. Comput. Math. 28(4), 331-354 (2008) · Zbl 1176.31011 · doi:10.1007/s10444-007-9026-7
[10] Hesse, K., Leopardi, P.: The coulomb energy of spherical designs on S^2. Adv. Comput. Math. 28(4), 331-354 (2008) · Zbl 1166.31003 · doi:10.1007/s10444-007-9026-7
[11] Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523-538 (1998) · Zbl 0896.52019 · doi:10.1090/S0002-9947-98-02119-9
[12] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics, 3rd enlarged edn. Die Grundlehren der mathematischen Wissenschaften, vol. 52. Springer New York, Inc., New York (1966) · Zbl 0135.27501
[13] Szegö, G.: Orthogonal polynomials, 4th edn. American Mathematical Society, Providence, R.I., American Mathematical Society, Colloquium Publications, Vol. XXIII (1975) · Zbl 0005.15701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.