Ultrasound-guided central venous cannulation—Missing climacteric step?

Sir,

A 12-year male, diagnosed as a case of extrahepatic portal venous obstruction, was on regular endoscopic therapy at our institute for the past 5 years for recurrent haematemesis during the last 3 years. The child had recurrent haematemesis along with moderate splenomegaly, hypersplenism, and growth retardation, which warranted a surgical intervention for portal hypertension. The child was posted for splenectomy with a central end-to-side splenorenal shunt.

The anaesthetic induction was uneventful and post-induction of anaesthesia, 7 Fr triple lumen central venous catheter (CVC) was inserted in right internal jugular vein (IJV) under ultrasound guidance under all aseptic precautions. All ports were checked and properly flushed. The surgical procedure was uneventful with a duration of 6 hours and post-surgery, the child was extubated. Post-extubation it was found that there was reduced air entry on the right side of the chest and it was thought to be atelectasis due to prolonged surgery. The child was encouraged to do incentive spirometry as trained in the preoperative stage. On post-operative
day (POD)-1, the child developed slight respiratory distress and his oxygen saturation fell to 90%. Oxygen was administered through nasal cannula along with chest physiotherapy and incentive spirometry.

On examination of the chest, it was found that there was decreased air entry in the right lung field, which persisted in the mid and lower zone. Further, a chest skiagram was done, which revealed opacity in the middle and lower zone of the right lung [Figure 1a]. Initially, this was managed conservatively with aggressive chest physiotherapy and incentive spirometry. The blood and sputum cultures were sent and the patient remained afebrile with a normal leukocyte count. However, the opacity persisted on follow-up chest skiagram imaging despite aggressive chest physiotherapy and incentive spirometry [Figure 1b] and therefore, an ultrasonography (USG) chest was done, which revealed a fluid collection in the right side of the chest. Following the USG chest, a USG guided needle aspiration was done and around 200 ml thick haemorrhagic fluid was drained. Repeat chest ultrasound done on the very next day again revealed persistent opacity in the right side of the chest [Figure 1c]. So, a right intercostal drain (ICD) was finally placed to drain out the residual collection and it drained out approximately 300 ml haemorrhagic fluid (a total of approximately 500 ml drained). This ICD placement was followed by an expansion of the right lung field [Figure 1d]. The ICD was further removed after 2 days.

Even in most experienced hands, complications during CVC insertion can occur, viz. pneumothorax, haemothorax, carotid artery puncture, haematoma etc.[1-3]

In our case, we operated upon a child with significant haemothorax for major surgery and this could have been a major event but, somehow, we were fortunate. Such iatrogenic haemothorax may lead to serious events intraoperatively and postoperatively. The cause of such haemothorax could be due to vascular injury during guidewire insertion or dilatation phase. Sometimes, even the azygous vein rupture during right-sided cannulation of IJV can be the cause.[5]

Real-time USG guided IJV cannulation significantly reduces, but does not wholly eliminate, the incidence of complications associated with central venous cannulations.[4]

Nath et al.[5] also recommended from their experience that free venous outflow must be carefully checked in all the ports of the CVC, and following placement of such a catheter, a chest radiograph should be done to confirm the position of the catheter.

We emphasise upon careful auscultation followed by a brief ultrasound of the chest after placement of CVC as chest x rays are not done immediately post-insertion of CVC in the operative rooms.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form, the legal guardian has given his consent for images and other clinical information to be reported in the journal. The guardian understands that names and initials will not be published and due efforts will be made to conceal identity, but anonymity cannot be guaranteed.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.
Sir,

Granulomatous mastitis is a rare, benign, inflammatory disease of the breast that mimics an abscess or carcinoma. The presence of a painful mass warrants immediate attention. Conventional treatment includes steroids, immunosuppressants or surgery. We report a case of severe pain managed with pharmacotherapy and multiple injection costotransverse block (MICB) described by Nielsen.

A 28-year-old female, with right granulomatous mastitis, was referred from the surgical ward for pain management. She had severe, sharp, stabbing pain (Numeric pain rating scale (NRS)-8/10) in the right breast, shoulder, axilla and right-paraspinal region [Figure 1]. Examination revealed oedema over right breast, shoulder, arm and forearm. Shoulder joint movement was painful but not restricted. Blood investigations were normal except a total leucocyte count of 15,000/mm3. The patient was receiving antibiotics and antifungals. Ultrasound (US) of the right breast revealed oedema in subcutaneous-glandular tissue.

We prescribed oral diclofenac 50 mg twice daily for 5 days, pregabalin 75 mg twice daily, paracetamol 650 mg 6 hourly and later intravenous fentanyl infusion 40 µg/hour. After 10 days of oral medication and 2 days of fentanyl infusion, the patient had partial pain relief over the breast (NRS-5/10); however, pain persisted in the paraspinal region (T1-T3) (NRS-9/10). Considering the location of pain, MICB was planned for breaking the pain cycle. The procedure was performed in pain clinic under standard monitoring after taking the patient's consent. In sitting position, sonographic identification of T1, T2, T3 transverse processes (TP) was done using low-frequency (2–5MHz), curvilinear probe (Sonosite-M-turbo, Bothell, WA-USA) placed longitudinally in para-sagittal region. The base of TP and the neck of inferior rib (NR) were visualised. Under aseptic precautions and after infiltrating 2%-lignocaine, 22G-spinal (Quincke's) needle was inserted in-plane, in cephalo-caudad direction parallel to superior costotransverse ligament (SCTL) at T2–T3 levels and 5mL of ropivacaine 0.25% with dexamethasone 4 mg was deposited after hitting the NR [Figure 2]. Another injection was done at T1–T2.

REFERENCES

1. Naik VM, Mantha SS, Rayani BK. Vascular access in children. Indian J Anaesth 2019;63:737-45.
2. Govil N, Dhar M, Masaipeta K, Ahmed I. Displaced paediatric central venous catheter causing extravasation of intravenous fluid due to relatively longer gap between the distal and proximal lumens. Indian J Anaesth 2019;63:157-9.
3. Bharati SJ, Chowdhury T, Sapra H. Azygous vein rupture after right internal jugular vein cannulation: A rare complication. Indian J Anaesth 2013;57:215-7.
4. Srinivasan S, Govil D, Gupta S, Patel S, Jagadeesh KN, Tomar DS. Incidence of posterior wall penetration during internal jugular vein cannulation: A comparison of two techniques using real-time ultrasound. Indian J Anaesth 2017;61:240-4.
5. Nath MP, Gupta S, Chakrabarty A. Extravasation of catheter tip following central venous catheterisation: A near fatal complication. Indian J Anaesth 2010;54:572-3.