Integral structures in automorphic line bundles on the p-adic upper half plane

ELMAR GROSSE-KLÖNNE

Abstract

Given an automorphic line bundle $O_X(k)$ of weight k on the Drinfel’d upper half plane X over a local field K, we construct a $GL_2(K)$-equivariant integral lattice $O_{\hat{X}}(k)$ in $O_X(k) \otimes_K \hat{K}$, as a coherent sheaf on the formal model \hat{X} underlying $X \otimes_K \hat{K}$. Here \hat{K}/K is ramified of degree 2. This generalizes a construction of Teitelbaum from the case of even weight k to arbitrary integer weight k.

We compute $H^*(\hat{X}, O_{\hat{X}}(k))$ and obtain applications to the de Rham cohomology $H^1_{dR}(\Gamma \setminus X, \text{Sym}^k_{\hat{K}}(\text{St}))$ with coefficients in the k-th symmetric power of the standard representation of $SL_2(K)$ (where $k \geq 0$) of projective curves $\Gamma \setminus X$ uniformized by X: namely, we prove the degeneration of a certain reduced Hodge spectral sequence computing $H^1_{dR}(\Gamma \setminus X, \text{Sym}^k_{\hat{K}}(\text{St}))$, we re-prove the Hodge decomposition of $H^1_{dR}(\Gamma \setminus X, \text{Sym}^k_{\hat{K}}(\text{St}))$ and show that the monodromy operator on $H^1_{dR}(\Gamma \setminus X, \text{Sym}^k_{\hat{K}}(\text{St}))$ respects integral de Rham structures and is induced by a “universal” monodromy operator defined on \hat{X}, i.e. before passing to the Γ-quotient.

Introduction

Let K be a local field and let X be the Drinfel’d upper half plane over K; that is, the projective line over K with its K-rational points removed. $G = GL_2(K)$ acts on X. Let $O_X(k)$ be the structure sheaf on the rigid space X, endowed with the automorphic
action by G of weight $k \in \mathbb{Z}$. For $k \geq 0$ and even, Teitelbaum [8] constructed a G-invariant integral lattice in $\mathcal{O}_X(k)$, as a line bundle on the natural formal \mathcal{O}_K-scheme \mathfrak{X} underlying X. He then reduced this bundle modulo the maximal ideal of \mathcal{O}_K and determined explicitly its global sections, as a representation of G on an infinite dimensional vector space over the residue field \mathbb{F} of K. The first aim of this paper is to extend his results to any weight $k \in \mathbb{Z}$. Now it is not hard to see that for odd k there is no G-equivariant \mathcal{O}_X-line bundle lattice in $\mathcal{O}_X(k)$. Let \hat{K} be a ramified extension of K of degree 2, let $\hat{\mathfrak{X}} = \mathfrak{X} \otimes_{\mathcal{O}_K} \mathcal{O}_{\hat{K}}$ be the base extended formal $\mathcal{O}_{\hat{K}}$-scheme, let $\hat{\mathfrak{X}} = \mathfrak{X} \otimes_{\mathcal{O}_K} \mathbb{F} = \hat{\mathfrak{X}} \otimes_{\mathcal{O}_{\hat{K}}} \mathbb{F}$. We show that for any $k \in \mathbb{Z}$, if we twist the automorphic action on $\mathcal{O}_X(k)$ by a suitable character, there is a G-equivariant $\mathcal{O}_{\hat{\mathfrak{X}}}$-module $\mathcal{O}_{\hat{\mathfrak{X}}}(k)$ which is a lattice inside $\mathcal{O}_X(k) \otimes_K \hat{K}$.

If k is even it is a line bundle, if k is odd it is not: around the singular points of \mathfrak{X} it needs two generators. We show that $H^0(\hat{\mathfrak{X}}, \mathcal{O}_{\hat{\mathfrak{X}}}(k))$ for $k \geq 0, k \neq 1$ and $H^1(\hat{\mathfrak{X}}, \mathcal{O}_{\hat{\mathfrak{X}}}(k))$ for $k \leq -1$ are precisely those cohomology groups which do not vanish. We prove that they are $\mathcal{O}_{\hat{K}}$-flat and that their formation commutes with base change to the special fibre \hat{X}. Finally, if $\text{char}(K) = 0$, we demonstrate that integral structures are a strong tool for studying the ”reduced” de Rham complex

$$R_X^\bullet = [\mathcal{O}_X(-k) \xrightarrow{dz} \mathcal{O}_X(k+2)]$$

on X considered in [5], [6], for $k \geq 0$ (here z is a global variable on $X \subset \mathbb{P}^1_K$). It computes the de Rham cohomology $H^\bullet(X, \Omega^\bullet_X \otimes \text{Sym}^k_X(\text{St}))$ of X with coefficients in the k-th symmetric power $\text{Sym}^k_X(\text{St})$ of the standard representation of $\text{SL}_2(K)$. Its differential respects our integral structures, hence a complex

$$R_{\hat{\mathfrak{X}}}^\bullet = [\mathcal{O}_{\hat{\mathfrak{X}}}(-k) \xrightarrow{dz} \mathcal{O}_{\hat{\mathfrak{X}}}(k+2)]$$

on $\hat{\mathfrak{X}}$. We show that for $k > 0$ we have $H^j(\hat{\mathfrak{X}}, R_{\hat{\mathfrak{X}}}^\bullet) = 0$ for $j \neq 1$, while $H^1(\hat{\mathfrak{X}}, R_{\hat{\mathfrak{X}}}^\bullet)$ decomposes as

$$H^1(\hat{\mathfrak{X}}, R_{\hat{\mathfrak{X}}}^\bullet) \cong H^1(\hat{\mathfrak{X}}, \mathcal{O}_{\hat{\mathfrak{X}}}(-k)) \oplus H^0(\hat{\mathfrak{X}}, \mathcal{O}_{\hat{\mathfrak{X}}}(k+2))$$

(*).

As an application, we show that structural features of the cohomology of varieties uniformized by X can be deduced from (*), thus show up already on X (or rather $\hat{\mathfrak{X}}$) itself.
Namely we get the well known Hodge decomposition (first obtained by de Shalit [7], see also [5])

\[H^1_{dR}(\Gamma \setminus X, \text{Sym}_K^k(\text{St})) = H^1(\Gamma, \text{Sym}_K^k(\text{St})) \oplus H^0(\pi, \mathcal{O}(k+2)) \]

of \(H^1_{dR}(\pi, \text{Sym}_K^k(\text{St})) = H^1(\Gamma \setminus X, (\Omega_X^n \otimes K \text{Sym}_K^k(\text{St}))^\Gamma) = H^1(\Gamma \setminus X, (\mathcal{R}_X^n)^\Gamma) \) simply by taking \(\Gamma \)-invariants for a cocompact discrete (torsionfree) subgroup \(\Gamma < \text{SL}_2(K) \); no higher \(\Gamma \)-group cohomology is needed. Again, while earlier proofs were truly analytic we reduce everything to algebraic geometry on the irreducible components of \(\tilde{X} \) (these are all isomorphic to \(\mathbb{P}^1_k \)).

As a bonus of our method we obtain the degeneration of the "reduced" Hodge spectral sequence computing \(H^1_{dR}(\Gamma \setminus X, \text{Sym}_K^k(\text{St})) \), as conjectured by Schneider [5], and a complete description (in particular their dimensions) of the cohomology spaces \(H^j(\Gamma \setminus X, \mathcal{O}(r)) \) (any \(j, r \)). Moreover, for \(k > 0 \), we describe a monodromy operator on \(H^1(\tilde{X}, \mathcal{R}_X^n) \) as an isomorphism \(H^0(\tilde{X}, \mathcal{O}_\tilde{X}(k+2)) \cong H^1(\tilde{X}, \mathcal{O}_\tilde{X}(-k)) \). It induces the monodromy operator on \(H^1_{dR}(\Gamma \setminus X, \text{Sym}_K^k(\text{St})) \) predicted by \(p \)-adic Hodge theory, so in particular we see that the latter respects integral de Rham structures (which in \(p \)-adic Hodge theory can not be expected in general) and that its monodromy filtration splits the Hodge filtration.

We mention that the integral structures in \(\mathcal{O}(k) \) and in the "reduced" de Rham complex considered in this paper play an important role in the recent work of Breuil [1].

Notations: \(K \) denotes a non-archimedean locally compact field and \(K_a \) its algebraic closure, \(\mathcal{O}_K \) its ring of integers, \(\pi \in \mathcal{O}_K \) a fixed prime element and \(\mathbb{F} \) the residue field with \(q \) elements, \(q \in \mathbb{P}^\mathbb{N} \). We choose \(\widehat{\pi} \in K_a \) such that \(\widehat{\pi}^2 = \pi \). Then \(\widehat{K} = K(\widehat{\pi}) \) is a ramified extension of \(K \) of degree 2 with ring of integers \(\mathcal{O}_{\widehat{K}} \). We let \(\omega : K_a^\times \rightarrow \mathbb{Q} \) be the extension of the discrete valuation \(\omega : K^\times \rightarrow \mathbb{Z} \) normalized by \(\omega(\pi) = 1 \). For formal \(\mathcal{O}_K \)-schemes resp. \(K \)-rigid spaces we denote by a superscript \(\widehat{\cdot} \) the formal \(\mathcal{O}_{\widehat{K}} \)-schemes resp. \(\widehat{K} \)-rigid space obtained by the base change \(\mathcal{O}_K \rightarrow \mathcal{O}_{\widehat{K}} \) resp. \(K \rightarrow \widehat{K} \). For \(E = K \) or \(E = \widehat{K} \) and a formal (admissible) \(\mathcal{O}_E \)-scheme \(\mathcal{M} \) we let \(\mathcal{M}_E \) be its generic fibre, as a \(E \)-rigid space. We need the characters \(\chi : G \rightarrow \widehat{K}^\times, \chi(\gamma) = \pi^{\omega(\gamma)}, \) and \(\varepsilon : G \rightarrow \mathcal{O}_K^\times, \varepsilon(\gamma) = \pi^{-\omega(\gamma)} \text{det } \gamma, \) of \(G = \text{GL}_2(K) \) and denote the Bruhat-Tits tree of \(G \) by \(\mathcal{BT} \). For \(r \in \mathbb{R} \) we define \(\lfloor r \rfloor, \lceil r \rceil \in \mathbb{Z} \) by requiring \(\lfloor r \rfloor \leq r < \lfloor r \rfloor + 1 \) and \(\lceil r \rceil - 1 < r \leq \lceil r \rceil \).

1 Integral structures in automorphic line bundles

Let \(X = \Omega^{(2)}_K \) be Drinfel’d’s symmetric space of dimension 1 over \(K \). This is the \(K \)-rigid space obtained by removing all \(K \)-rational points from the projective line \(\mathbb{P}^1_K \) over \(K \). We
choose a coordinate z and define an action of G on X (on the left) by

$$
\gamma z = \frac{-b + az}{d - cz} \quad \text{for} \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G
$$

(\mathfrak{S} takes the other left action). Fix $k \in \mathbb{Z}$. For $f \in \mathcal{O}_{\tilde{X}}$ set

$$(1) \quad f|_{\gamma}(z) = \chi_k(\gamma)(a + cz)^{-k}f\left(\frac{b + dz}{a + cz}\right) \quad \text{for} \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.
$$

Denote by $\mathcal{O}_{\tilde{X}}(k)$ the structure sheaf of the \tilde{K}-rigid space \tilde{X} endowed with the G-action on the left defined by (1). (This is a left action; in [8] a right action is considered.)

As explained in [8], the K-rigid space X is the generic fibre of a certain π-adic strictly semistable formal \mathcal{O}_K-scheme \mathfrak{X}: the set F^0 of irreducible components of the reduction $\tilde{\mathfrak{X}}$ of \mathfrak{X} is in natural bijection with the set of vertices of BT. Let F^1 be the set of subsets $\{Z_1, Z_2\} \subset F^0$ with $Z_1 \cap Z_2 \neq \emptyset$ and $Z_1 \neq Z_2$; it corresponds to the set of edges of BT.

Each $Z \in F^0$ is isomorphic to $\mathbb{P}^1_{\mathcal{O}_K}$. The action of G on X extends to $\tilde{\mathfrak{X}}$. The admissible open subset

$$
U = \{ P \in \mathbb{P}^1; \quad \omega(z(P)) > -1 \quad \text{and} \quad \omega(z(P) - x) < 1 \quad \text{for all} \quad x \in \mathcal{O}_K \}
$$

of X is the tube (=preimage under the specialization map $X \to \mathfrak{X}$) of the central (with respect to z) irreducible component Z_{γ_0} of $\tilde{\mathfrak{X}}$. For $\gamma \in G$ define the irreducible component Z_{γ} of $\tilde{\mathfrak{X}}$ as $Z_{\gamma} = \gamma.Z_{\gamma_0}$. For $n \in \mathbb{Z}$ let

$$
\gamma_n = \begin{pmatrix} 1 & 0 \\ 0 & \pi^n \end{pmatrix} \in G.
$$

For a subset $E \subset F^0$ let $\tilde{\mathcal{U}}_E$ be the maximal open subscheme of $\tilde{\mathfrak{X}}$ contained in $\cup_{Z \in E} Z$; in other words, the complement in $\tilde{\mathfrak{X}}$ of the union of all irreducible components not in E. Let \mathcal{U}_E be the open formal subscheme of \mathfrak{X} lifting $\tilde{\mathcal{U}}_E$. Letting

$$
\mathfrak{Y} = \mathcal{U}_{\{Z_{\gamma_n}; n \in \mathbb{Z}\}}
$$

we have the open covering

$$
\mathfrak{X} = \bigcup_{g \in \text{SL}_2(K)} g.\mathfrak{Y}
$$

($\text{SL}_2(K)$ acts transitively on F^1). Let $f_{n, n} \in \mathcal{O}_{\mathfrak{Y}}(\mathcal{U}_{\{Z_{\gamma_n}, Z_{\gamma_{n+1}}\}})$ (resp. $f_{n, n+1} \in \mathcal{O}_{\mathfrak{Y}}(\mathcal{U}_{\{Z_{\gamma_n}, Z_{\gamma_{n+1}}\}})$) be an equation for the closed subscheme $Z_{\gamma_n} \cap \tilde{\mathcal{U}}_{\{Z_{\gamma_n}, Z_{\gamma_{n+1}}\}}$ (resp. $Z_{\gamma_{n+1}} \cap \tilde{\mathcal{U}}_{\{Z_{\gamma_n}, Z_{\gamma_{n+1}}\}}$) of $\mathcal{U}_{\{Z_{\gamma_n}, Z_{\gamma_{n+1}}\}}$. In local coordinates, there is an open embedding $\mathcal{U}_{\{Z_{\gamma_n}, Z_{\gamma_{n+1}}\}} \to \text{Spf}(\mathcal{O}_K <
$X_1, X_2 > / (X_1 X_2 - \pi)$ such that $f_{n,n} = X_1$ and $f_{n,n+1} = X_2$. Viewing $f_{n,n}$ and $f_{n,n+1}$ as sections of $\mathcal{O}_{\mathfrak{H}}(\mathfrak{U}_f(z_n, z_{n+1}))$ we define

$$\mathcal{O}_{\mathfrak{U}_f(z_n, z_{n+1})}(k) = \mathcal{O}_{\mathfrak{U}_f(z_n, z_{n+1})}. f_{n,n}^{[k_n]} f_{n,n+1}^{[k_{n+1}]} + \mathcal{O}_{\mathfrak{U}_f(z_n, z_{n+1})}. \hat{\pi} f_{n,n}^{[k_n]} f_{n,n+1}^{[k_{n+1}]};$$

i.e. the $\mathcal{O}_{\mathfrak{U}_f(z_n, z_{n+1})}$-submodule of $\mathcal{O}_{\mathfrak{U}_f(z_n, z_{n+1})} \otimes \hat{K}$ generated by the two elements $f_{n,n}^{[k_n]} f_{n,n+1}^{[k_{n+1}]}$ and $\hat{\pi} f_{n,n}^{[k_n]} f_{n,n+1}^{[k_{n+1}]}$. If k is even this is just the line bundle generated by the element z^{-k}. If k is odd this is not a line bundle; an explicit pair of generators is $\hat{\pi}^{n+1} z^{-(k-1)/2}, \hat{\pi}^{-n} z^{-(k+1)/2}$.

The $\mathcal{O}_{\mathfrak{U}_f(z_n, z_{n+1})}(k)$ glue into an $\mathcal{O}_{\mathfrak{H}}$-submodule $\mathcal{O}_{\mathfrak{H}}(k)$ of $\mathcal{O}_{\mathfrak{H}} \otimes \hat{K}$. Note that

$$(2) \quad \mathcal{O}_{\mathfrak{H}}(k)|_{\mathfrak{U}_f(z_n)} = \hat{\pi}^{kn} \mathcal{O}_{\mathfrak{U}_f(z_n)} \quad \text{inside} \quad \mathcal{O}_{\mathfrak{U}_f(z_n)} \otimes \hat{K}.$$

As we remarked, if k is even, $\mathcal{O}_{\mathfrak{H}}(k)$ is the line bundle generated by the element $z^{-k} \in H^0(\mathfrak{H}, \mathcal{O}_{\mathfrak{H}} \otimes \hat{K})$. For any k again we have a canonical identification of sheaves $sp_* \mathcal{O}_{\hat{X}}(k) = \mathcal{O}_{\hat{X}} \otimes \hat{K}$ where $sp: \hat{X} \to \hat{K}$ is the specialization map; we write $sp_* \mathcal{O}_{\hat{X}}(k)$ when we refer to the G-equivariant structure on $\mathcal{O}_{\hat{X}} \otimes \hat{K}$ induced by that on $\mathcal{O}_{\hat{X}}(k)$.

Proposition 1.1. Let $\hat{\mathfrak{W}}, \hat{\mathfrak{W}}'$ be open formal subschemes of $\hat{\mathfrak{H}}$, let $\gamma \in G$ such that $\gamma \hat{\mathfrak{W}} = \hat{\mathfrak{W}}'$. Then the isomorphism

$$\gamma : sp_* \mathcal{O}_{\hat{X}}(k)|_{\hat{\mathfrak{W}}} \cong sp_* \mathcal{O}_{\hat{X}}(k)|_{\hat{\mathfrak{W}}'}$$

induces an isomorphism of subsheaves

$$\gamma : \mathcal{O}_{\mathfrak{H}}(k)|_{\hat{\mathfrak{W}}} \cong \mathcal{O}_{\mathfrak{H}}(k)|_{\hat{\mathfrak{W}}'}.$$

PROOF: (a) First we assume $\hat{\mathfrak{W}} \subset \hat{\mathfrak{U}}(z_n)$ for some n; then also $\hat{\mathfrak{W}}' \subset \hat{\mathfrak{U}}(z_{n'})$ for some n' and (2) applies to $\hat{\mathfrak{W}}$ and $\hat{\mathfrak{W}}'$. In that situation we must show

$$(3) \quad 2\omega((a + cz(P))^{-k}) + k \omega(ad - bc) = k(n' - n) \quad \text{for} \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

for each point P in the generic fibre $\hat{\mathfrak{W}}_K^{\mathfrak{W}}$ of $\hat{\mathfrak{W}}'$. Note that $\gamma Z_{z_n} = Z_{z_{n'}}$, and thus $\gamma_{n'}^{-1} \gamma_{n}$ stabilizes Z_{z_n}, hence is an element of $K^\times, GL_2(\mathcal{O}_K)$; in other words, $\gamma = \gamma_0 \delta \gamma_{n}^{-1}$ for some $\delta \in K^\times, GL_2(\mathcal{O}_K)$. Therefore it suffices to check (3) in the cases

(i) $\gamma = \gamma_m$ and $n' = n + m$ for some $m \in \mathbb{Z}$;
(ii) $b = c = 0 = n = n'$ and $a = d$;
(iii) $n = n' = 0$ and $\gamma \in GL_2(\mathcal{O}_K)$.

In either case (3) is immediate; for the case (iii) note that $\omega(z(P) - \beta) = 0$ for any $\beta \in \mathcal{O}_K$.

5
(b) Now let \(\hat{\mathfrak{W}}, \hat{\mathfrak{W}}'\) be arbitrary. By construction, both \(L_1 = \gamma_*(O_{\hat{\mathfrak{W}}}(k)|_{\hat{\mathfrak{W}}})\) and \(L_2 = O_{\hat{\mathfrak{W}}}(k)|_{\hat{\mathfrak{W}}'}\) are \(O_{\hat{\mathfrak{W}}'}\)-modules contained in \(O_{\hat{\mathfrak{W}}'} \otimes_{\hat{\mathfrak{K}}} \hat{\mathfrak{K}}\) as lattices, i.e. \(L_i \otimes_{O_{\hat{\mathfrak{K}}} \hat{\mathfrak{K}}} \hat{\mathfrak{K}} = O_{\hat{\mathfrak{W}}'} \otimes_{O_{\hat{\mathfrak{K}}} \hat{\mathfrak{K}}} \hat{\mathfrak{K}}\). By (a) we have \(L_1|_{\hat{\mathfrak{W}}} = L_2|_{\hat{\mathfrak{W}}}\) for an open formal subscheme \(\hat{\mathfrak{W}}\) of \(\hat{\mathfrak{W}}'\) whose reduction is dense in the reduction of \(\hat{\mathfrak{W}}'\). All this implies \(L_1 = L_2\), using the following fact: for open formal subschemes \(\hat{\mathfrak{W}}_1 \subset \hat{\mathfrak{W}}_2\) of \(\hat{\mathfrak{W}}\) with \(\hat{\mathfrak{W}}_1\) dense in \(\hat{\mathfrak{W}}_2\), and for \(f \in (O_{\hat{\mathfrak{W}}_1}(k) \otimes_{O_{\hat{\mathfrak{K}}} \hat{\mathfrak{K}}} \hat{\mathfrak{K}})(\hat{\mathfrak{W}}_2)\) we have \(f \in O_{\hat{\mathfrak{W}}_2}(k)(\hat{\mathfrak{W}}_2)\) if and only \(f \in O_{\hat{\mathfrak{W}}_1}(k)(\hat{\mathfrak{W}}_1)\). To see this fact it suffices to show that for \(g \in (O_{\hat{\mathfrak{W}}_1}(k)/(\hat{\pi}))(\hat{\mathfrak{W}}_2)\) we have \(g = 0\) if and only \(g|_{\hat{\mathfrak{W}}_1} = 0\) in \((O_{\hat{\mathfrak{W}}_1}(k)/(\hat{\pi}))(\hat{\mathfrak{W}}_1)\). This is immediate from the local analysis in section 2 below. □

Thanks to \[1.1\] we can now move around \(O_{\hat{\mathfrak{W}}}(k)\) by means of the \(G\)-action on \(\hat{x}\) and obtain a \(G\)-equivariant coherent \(O_{\hat{x}}\)-module lattice \(O_{\hat{x}}(k)\) inside \(sp_*O_{\hat{x}}(k)\).

For \(k_1, k_2 \in \mathbb{Z}\) we have a \(G\)-equivariant surjective map (not needed in the sequel)

\[
O_{\hat{x}}(k_1) \otimes_{O_{\hat{x}}} O_{\hat{x}}(k_2) \to O_{\hat{x}}(k_1 + k_2)
\]

which is multiplication of functions. This follows from equation \[2\] and the argument in part (b) of the proof of \[1.1\]. It is an isomorphism if at least one of \(k_1\) or \(k_2\) is even, for in that case we are tensoring with a line bundle. On the other hand, it cannot be an isomorphism if both \(k_1\) and \(k_2\) are odd, because then the fibres of both \(O_{\hat{x}}(k_j)\) at singular points of \(\hat{x}\) are 2-dimensional, whereas \(O_{\hat{x}}(k_1 + k_2)\) is a line bundle (in this case).

2 Cohomology

For divisors \(D\) on \(\mathbb{P}_\mathbb{F}^1\) let \(L(D)\) be the corresponding line bundle on \(\mathbb{P}_\mathbb{F}^1\). By the usual convention, \(L(-D) \subset O_{\mathbb{P}_\mathbb{F}^1}\) if \(D\) is an effective divisor. Fix a system \(R\) of representatives for \(\mathbb{F}\) in \(O_{\mathfrak{K}}\). For \(a \in R\) and \(n \in \mathbb{Z}\) let

\[
\gamma_{a,n} = \begin{pmatrix} 1 & \pi^{-n}a \\ 0 & 1 \end{pmatrix}.
\]

An easy consideration on \(BT\) shows that

\[
\{Z_{\gamma_{a,n+1}}\} \cup \{Z_{\gamma_{a,n},\gamma_{n-1}}; a \in R\}
\]

is the set of the \(q + 1\) many irreducible components of \(\hat{x}\) meeting \(Z_{\gamma_n}\). (The function \(\pi^{n-1}z + \pi^{-1}a\) is a coordinate on \(\hat{U}_{\{Z_{\gamma_{a,n},\gamma_{n-1}}\}}\) in the sense that \(\omega(\pi^{n-1}z(P) + \pi^{-1}a) = 0\) for any \(P \in (\hat{U}_{\{Z_{\gamma_{a,n},\gamma_{n-1}}\}})\)). Since \(\gamma_{a,n}\) acts on \(sp_*O_{\hat{x}}(k)\) with trivial automorphy factor it induces an isomorphism

\[
\gamma_{a,n} : \hat{\pi}^{k(n-1)}O_{\hat{x}}(k)|_{\hat{U}_{\{Z_{\gamma_{a,n},\gamma_{n-1}}\}}} \cong \hat{\pi}^{k(n-1)}O_{\hat{x}}(k)|_{\hat{U}_{\{Z_{\gamma_{a,n},\gamma_{n-1}},\gamma_n\}}}.
\]
Using this we can now give a local description of the G-equivariant coherent \mathcal{O}_X-module $\mathcal{O}_\hat{X}(k)/(\tilde{\pi})$ which we denote by $\mathcal{O}_\hat{X}(k)$.

(a) First assume that k is even. Let $h_a \in \mathcal{O}_{Z_{\gamma}}$ be a local equation for $Z_{\gamma} \cap Z_{\gamma,n} \cap Z_{\gamma,n+1}$ in Z_{γ}, let $h_\infty \in \mathcal{O}_{Z_{\gamma}}$ be a local equation for $Z_{\gamma} \cap Z_{\gamma,n+1}$ in Z_{γ}. Then $\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_{Z_{\gamma}}$ is isomorphic to the following $\mathcal{O}_{Z_{\gamma}}$-submodule of the constant ”rational function field” sheaf on $Z_{\gamma} \cong \mathbb{P}_F^1$: locally around $Z_{\gamma} \cap Z_{\gamma,n} \cap Z_{\gamma,n+1}$ it is generated by $h_a^{k(n+1)-\frac{k(n+1)}{2}}$, locally around $Z_{\gamma,n} \cap Z_{\gamma,n+1}$ it is generated by $h_\infty^{\frac{k(n+1)}{2}}$, and locally around other points it coincides with $\mathcal{O}_{Z_{\gamma}}$. Thus

\begin{equation}
\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z \cong \mathcal{L}(\frac{-k}{2} \infty + \sum \frac{k}{2} b)
\end{equation}

for $Z = Z_{\gamma}$. By equivariance we get \(5\) for any $Z \in F^0$. In particular, $\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z$ is of degree $\frac{(q-1)k}{2}$.

(b) Now assume that k is odd. For $Z \in F^0$ let

\begin{equation}
(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c = \frac{\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z}{(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)_{torsion}}.
\end{equation}

We then have

\begin{equation}
\mathcal{O}_\hat{X}(k)|_{\tilde{\mathcal{U}}(z_{\gamma,n},z_{\gamma,n+1}+1)} = (\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_{Z_{\gamma,n}})^c|_{\tilde{\mathcal{U}}(z_{\gamma,n},z_{\gamma,n+1}+1)} \oplus (\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_{Z_{\gamma,n+1}})^c|_{\tilde{\mathcal{U}}(z_{\gamma,n},z_{\gamma,n+1}+1)}.
\end{equation}

Explicitly, $(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_{Z_{\gamma,n}})^c|_{\tilde{\mathcal{U}}(z_{\gamma,n},z_{\gamma,n+1}+1)}$ is generated by $f_n, f_{n,n+1}$ if n is even, and by $\tilde{\pi} f_{n,n}^{k(n+1)-\frac{k(n+1)}{2}} f_{n+2,n}^{\frac{k(n+1)}{2}}$ if n is odd. $(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_{Z_{\gamma,n+1}})^c|_{\tilde{\mathcal{U}}(z_{\gamma,n},z_{\gamma,n+1}+1)}$ is generated by $\tilde{\pi} f_{n,n}^{k(n+1)-\frac{k(n+1)}{2}} f_{n+2,n}^{\frac{k(n+1)}{2}}$ if n is even, and by $f_{n,n}^{\frac{k(n+1)}{2}} f_{n+2,n}^{\frac{k(n+1)}{2}}$ if n is odd. Now we proceed as in (a). By what we just saw, $(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_{Z_{\gamma,n}})^c$ is generated around $Z_{\gamma,n} \cap Z_{\gamma}$ by $h_\infty^{\frac{k(n+1)}{2}} - \frac{k(n+1)}{2}$, and around $Z_{\gamma,n} \cap Z_{\gamma,n+1}$ by $h_a^{\frac{k(n+1)}{2}} - \frac{k(n+1)}{2}$ (by equivariance, it suffices to check the latter for $a = 0$). Thus

\begin{equation}
\mathcal{O}_\hat{X}(k) = \prod_{Z \in F^0} (\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c,
\end{equation}

\begin{equation}
(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c \cong \mathcal{L}(\frac{-k-1}{2} \infty + \sum \frac{k-1}{2} b)
\end{equation}

for $Z = Z_{\gamma}$. By equivariance we get \(6\) for any $Z \in F^0$. In particular, $(\mathcal{O}_\hat{X}(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c$ is of degree $\frac{(q-1)(k-1)}{2} - 1$.

7
Theorem 2.1. (a) $H^*(\tilde{X}, \mathcal{O}_{\tilde{X}}(k))$ is \mathcal{O}_R-flat and

$$H^*(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = H^*(\tilde{X}, \mathcal{O}_{\tilde{X}}(k))/\pi.$$

(b) For $k \leq -1$ and also for $k = 1$ we have $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = 0$.

c) For $k \geq 0$ we have $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = 0$.

PROOF: (i) First assume k is even. To prove (c) it is enough to prove

$$\mathbb{R}^1 \lim_{\tilde{t}} H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)/(\tilde{\pi}^t)) = 0$$

and also for

$$\mathbb{R}^1 \lim_{\tilde{t}} H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)/(\tilde{\pi}^t)) = 0.$$

For (7) it suffices to show surjectivity of all transition maps $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)/(\tilde{\pi}^{t+1})) \to H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)/(\tilde{\pi}^t))$. Using the long exact cohomology sequence associated with

$$0 \to \mathcal{O}_{\tilde{X}}(k) \to \mathcal{O}_{\tilde{X}}(k)/(\tilde{\pi}^t) \to 0$$

this will be implied by

$$H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = 0.$$

Also (8) is reduced to (10) using (9), so let us prove (10). We have an exact sequence

$$0 \to \mathcal{O}_{\tilde{X}}(k) \to \prod_{Z \in F^0} \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z \to \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_1 \cap Z_2} \to 0$$

and a corresponding long exact sequence in cohomology. We know

$$H^1(\tilde{X}, \prod_{Z \in F^0} \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z) = \prod_{Z \in F^0} H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z) = 0$$

because $\mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z$ is isomorphic to a line bundle on $\mathbb{P}^1 \cong Z$ of non-negative degree as we saw above (since $k \geq 0$). On the other hand

$$H^0(\tilde{X}, \prod_{Z \in F^0} \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z) \to H^0(\tilde{X}, \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_1 \cap Z_2})$$

is surjective: This follows from the contractibility of $\mathcal{B}T$ and again the fact that each $\mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z$ has non-negative degree, which implies that

$$H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_1}) \to H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_1 \cap Z_2})$$

for any $\{Z_1, Z_2\} \in F^1$ is surjective. To prove (b), since $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = \lim_{\tilde{t}} H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)/(\pi^t))$ we can reduce, using the long exact cohomology sequence associated with (9), to the statement

$$H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = 0.$$
But this follows immediately from the injectivity of
\[H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) \rightarrow H^0(\tilde{X}, \prod_{Z \in P^0} \mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z) \]
and the fact that \(\mathcal{O}_{\tilde{X}}(k) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_Z \) for each \(Z \in P^0 \) is isomorphic to a line bundle on \(\mathbb{P}^1 \cong Z \) of negative degree as we saw above. To see the \(\mathcal{O}_K \)-flatness of \(H^*(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) \) in (a) we need to show injectivity of multiplication with \(\pi \). This follows from (the proof of) (b) and (c) and the long exact cohomology sequence associated with
\[0 \rightarrow \mathcal{O}_{\tilde{X}}(k) \xrightarrow{\pi} \mathcal{O}_{\tilde{X}}(k) \rightarrow \mathcal{O}_{\tilde{X}}(k) \rightarrow 0. \]
The base change statement follows similarly.

(ii) For odd \(k \) the proofs are similar but easier in view of the decomposition \([5] \). \(\square \)

The important vanishing \(H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) = 0 \) was asserted for even \(k \geq 0 \) in \([6] \) Cor.24. However, the comparison with \(H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) \) invoked there does not seem to be justified.

Let \(\Gamma < \text{SL}_2(K) \) be a cocompact discrete subgroup which for simplicity we assume to be torsion free (in general it contains a torsion free subgroup of finite index). Let \(X_\Gamma = \Gamma \backslash X, \tilde{X}_\Gamma = \Gamma \backslash \tilde{X}, \tilde{X}_\Gamma = \Gamma \backslash \tilde{\tilde{X}} \) and \(\tilde{X}_\Gamma = \Gamma \backslash \tilde{\tilde{X}} \) be the quotients for the free action by \(\Gamma \); they all algebraize to projective schemes.

Corollary 2.2. (a) For \(k > 0 \) we have
\[H^0(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(-k)^\Gamma) = H^1(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(k + 2)^\Gamma). \]
In particular, \(H^0(X_\Gamma, \mathcal{O}_X(-k)^\Gamma) = H^1(X_\Gamma, \mathcal{O}_X(k + 2)^\Gamma) \).
(b) \(H^0(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(k + 2)^\Gamma) \) and \(H^1(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(-k)^\Gamma) \) are \(\mathcal{O}_K \)-flat and
\[H^0(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(k + 2)^\Gamma) \otimes_{\mathcal{O}_K} \mathbb{F} = H^0(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(k + 2)^\Gamma) \]
\[H^1(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(-k)^\Gamma) \otimes_{\mathcal{O}_K} \mathbb{F} = H^1(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(-k)^\Gamma). \]
(c) Serre duality identifies \(H^1(X_\Gamma, \mathcal{O}_X(-k)^\Gamma) \) with the dual of \(H^0(X_\Gamma, \mathcal{O}_X(k + 2)^\Gamma) \).
(d) \(H^j(\tilde{X}_\Gamma, \mathcal{O}_{\tilde{X}}(1)^\Gamma) = 0 \)
for any \(j \). In particular, \(H^j(X_\Gamma, \mathcal{O}_X(1)^\Gamma) = 0 \).

Proof: (a) For odd \(k \) literally the same proof as in \([2.1] \) applies, because in that case we have the decomposition \([5] \) which allows us to reduce to problems on each irreducible component — these are the same for \(\tilde{X} \) and \(\tilde{X}_\Gamma \). Now let \(k \) be even. From \([2.1] \) we
get $H^0(\tilde{X}, \mathcal{O}_X(-k)) = 0$ and $H^0(\tilde{X}, \mathcal{O}_X(-k)) = 0$. In particular $H^0(\tilde{X}_\Gamma, \mathcal{O}_X(-k)\Gamma) = H^0(\tilde{X}, \mathcal{O}_X(-k))\Gamma = 0$ and $H^0(\tilde{X}_\Gamma, \mathcal{O}_X(-k)\Gamma) = H^0(\tilde{X}, \mathcal{O}_X(-k))\Gamma = 0$. Now we have a $SL_2(K)$-equivariant isomorphism $\mathcal{O}_X(2) \cong \Omega^1_{\tilde{X}}$ on \tilde{X}, where $\Omega^1_{\tilde{X}}$ is the sheaf of relative logarithmic differentials for the log smooth formal $\text{Spf}(\mathcal{O}_K)$-scheme \tilde{X} (with respect to the pull back log structures from the canonical log structures on X and $\text{Spf}(\mathcal{O}_K)$). Thus $\mathcal{O}_X(2)\Gamma$ can be identified with the sheaf of relative logarithmic differentials for the log smooth projective $\text{Spec}(\mathcal{O}_K)$-scheme \tilde{X}_Γ. This is a dualizing sheaf by [3] Ch.I, sect.2, where it is called the sheaf of regular differentials (the generalization to general projective log schemes is [9] Theorem 2.21). Since $\mathcal{O}_X(k + 2)\Gamma = (\mathcal{O}_X(-k)\Gamma)^{\otimes (-1)} \otimes \mathcal{O}_X(2)\Gamma$ (note that since k is even we are dealing with line bundles here) we get $H^1(\tilde{X}_\Gamma, \mathcal{O}_X(k + 2)\Gamma) = 0$ by Serre duality. The same argument works for the sheaves $\mathcal{O}_X(.)$. For (b) we may now proceed as in [2.11]. For (c) note that $\mathcal{O}_X(2)$ is $SL_2(K)$-equivariantly isomorphic with the sheaf Ω^1_X of differentials on X, hence $\mathcal{O}_X(k + 2)\Gamma \cong (\mathcal{O}_X(-k)\Gamma)^{\otimes (-1)} \otimes \Omega^1_X\Gamma$ (for even k we just saw the integral version in (a)). The statements in (d) follow immediately from [2.11]

The fact $H^0(X_\Gamma, \mathcal{O}_X(1)\Gamma) = 0$ ("there are no non zero automorphic forms for Γ of weight one") was proven by analytic methods in [6] Cor.13. For the K-vector space dimensions of $H^1(X_\Gamma, \mathcal{O}_X(-k)\Gamma)$ and of $H^0(X_\Gamma, \mathcal{O}_X(k + 2)\Gamma)$ see [5,3] below.

3 Modular representations

Denote by $\mathcal{I} \subset \mathcal{O}_X$ the ideal sheaf of functions vanishing at the singular points of \tilde{X}. For $k \in \mathbb{Z}$ and $i \geq 0$ let

$$\mathcal{O}_X(k)(i) = \mathcal{O}_X(k) \otimes_{\mathcal{O}_X} \mathcal{T}^i.$$

Let $Z \in F^0$. If k is odd we let

$$(\mathcal{O}_X(k)(i) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c = (\mathcal{O}_X(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c \otimes_{\mathcal{O}_X} \mathcal{T}^i.$$

To unify notations, if k is even we let $(\mathcal{O}_X(k)(i) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c = \mathcal{O}_X(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z$ and

$$(\mathcal{O}_X(k)(i) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c = \mathcal{O}_X(k) \otimes_{\mathcal{O}_X} \mathcal{O}_Z \otimes_{\mathcal{O}_X} \mathcal{T}^i,$$

i.e. for even k the outer $(.)^c$ is redundant. We have

$$\mathcal{O}_X(k)(i) = \prod_{Z \in F^0} (\mathcal{O}_X(k)(i) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c. \tag{11}$$

if k is odd and $i \geq 0$ arbitrary, and also if k is even and $i > 0$. In particular, for such (k, i) we have for any $Z \in F^0$ the natural injection

$$\iota_Z : (\mathcal{O}_X(k)(i) \otimes_{\mathcal{O}_X} \mathcal{O}_Z)^c \longrightarrow \mathcal{O}_X(k)(i)$$

and the canonical projection map

\[\rho_Z : \mathcal{O}_{\tilde{x}}(k)(i) \to (\mathcal{O}_{\tilde{x}}(k)(i) \otimes_{\mathcal{O}_{\tilde{x}}} \mathcal{O}_Z)^\gamma. \]

We denote maps induced by \(\iota_Z \) resp. \(\rho_Z \) in cohomology again by \(\iota_Z \) resp. \(\rho_Z \).

Lemma 3.1. Suppose \(i \geq 0 \) if \(k \) is odd, or \(i > 0 \) if \(k \) is even. Then we have a canonical \(G \)-equivariant isomorphism

\[H^*(\tilde{x}, \mathcal{O}_{\tilde{x}}(k)(i)) \cong \text{Ind}^{\mathbb{Q}}_{K^\times \text{GL}_2(O_K)}H^*(\tilde{x}, (\mathcal{O}_{\tilde{x}}(k)(i) \otimes_{\mathcal{O}_{\tilde{x}}} \mathcal{O}_{Z_{\gamma_0}})^\gamma) \]

Proof: By definition, \(\text{Ind}^{\mathbb{Q}}_{K^\times \text{GL}_2(O_K)}H^*(\tilde{x}, (\mathcal{O}_{\tilde{x}}(k)(i) \otimes_{\mathcal{O}_{\tilde{x}}} \mathcal{O}_{Z_{\gamma_0}})^\gamma) \) is the space of locally constant functions \(u : G \to H^*(\tilde{x}, (\mathcal{O}_{\tilde{x}}(k)(i) \otimes_{\mathcal{O}_{\tilde{x}}} \mathcal{O}_{Z_{\gamma_0}})^\gamma) \) which satisfy \(u(\gamma) = \eta(u(\gamma)) \) for \(\eta \in K^\times \text{GL}_2(O_K) \), \(\gamma \in G \). The action of \(G \) is by \((\gamma, u)(\gamma') = u(\gamma' \gamma) \). Note that \(K^\times \text{GL}_2(O_K) \) is the stabilizer of \(Z_{\gamma_0} \) in \(G \). Let \(S \subset G \) be a subset such that \(\gamma \mapsto Z_\gamma \) is a bijection between \(S \) and \(F^0 \). The desired map is

\[f \mapsto [u : G \to H^*(\tilde{x}, (\mathcal{O}_{\tilde{x}}(k)(i) \otimes_{\mathcal{O}_{\tilde{x}}} \mathcal{O}_{Z_{\gamma_0}})^\gamma), \gamma \mapsto \rho_{Z_{\gamma_0}}(\gamma, f)]. \]

Its inverse is

\[[u : G \to H^*(\tilde{x}, (\mathcal{O}_{\tilde{x}}(k)(i) \otimes_{\mathcal{O}_{\tilde{x}}} \mathcal{O}_{Z_{\gamma_0}})^\gamma)] \mapsto \sum_{\gamma \in S} \gamma(\iota_{Z_{\gamma_0}}(u(\gamma^{-1}))). \]

Note that \(\gamma(\iota_{Z_{\gamma_0}}(u(\gamma^{-1}))) \) is supported only on \(Z_\gamma \).

For a commutative ring \(A \) and integers \(n, s \) with \(n \geq 0 \) let us denote by \(\text{Sym}^n_A(\text{St})[s] \) the free \(A \)-module of homogeneous polynomials \(F(X, Y) \) of degree \(n \) in the variables \(X, Y \) with coefficients in \(A \), together with its \(\text{GL}_2(A) \)-action

\[\gamma.F(X, Y) = (ad - bc)^s(F(dX + bY, cX + aY)) \quad \text{for} \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(A). \]

Now consider for \(k \in \mathbb{Z} \) the action of \(\text{GL}_2(\mathbb{F}) \) on \(\mathbb{F}(z) \) given by

\[f|_{\gamma}(z) = \left(\frac{1}{a + cz} \right)^k f\left(\frac{b + dz}{a + cz} \right) \quad \text{for} \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \]

We view \(\mathbb{F}(z) \) as the function field of \(\mathbb{P}^1_{\mathbb{F}} = \text{Spec}(\mathbb{F}[z]) \cup \{ \infty \} \) and will consider line bundles on \(\mathbb{P}^1_{\mathbb{F}} \) stable for \((12) \). Let \(i \geq 0 \).

Lemma 3.2. (a) Suppose \(k \) is even and \(t = \frac{(q - 1)k}{2} - i(q + 1) \geq 0 \). Then, as \(\text{GL}_2(\mathbb{F}) \)-representations,

\[\text{Sym}^t_{\mathbb{F}}(\text{St})[i - \frac{k}{2}] \cong H^0(\mathbb{P}^1_{\mathbb{F}}, \mathcal{L}(\sum_{l \in \mathbb{F}} (\frac{k}{2} - i)b - (\frac{k}{2} + i).\infty)). \]
(b) Suppose k is odd and $t = \frac{(q-1)k-(q+1)}{2} - i(q+1) \geq 0$. Then, as $GL_2(\mathbb{F})$-representations,

$$\text{Sym}_\mathbb{F}^t(\text{St})[i - \frac{k-1}{2}] \cong H^0(\mathbb{P}^1_{\mathbb{F}}, L(\sum_{b \in \mathbb{F}} \frac{k-1}{2} - i) \cdot b - \frac{k+1}{2} + i) \cdot \infty).$$

Proof: In (a) the map sends $X^r Y^{t-r}$ to $z^r(z - z')^{t-r}$ for $0 \leq r \leq t$. In (b) it sends $X^r Y^{t-r}$ to $z^r(z - z')^{t-r}$ for $0 \leq r \leq t$. We view $\text{Sym}^n(\text{St})[s]$ as a $GL_2(\mathcal{O}_K)$-representation via the canonical map $GL_2(\mathcal{O}_K) \to GL_2(\mathbb{F})$, and we then extend the action further to an action by $K \times GL_2(\mathcal{O}_K)$ by sending $\pi \in K^\times$ (i.e. the diagonal matrix with both entries equal to $\pi = \hat{\pi}^2$) to the identity.

Theorem 3.3. (a) Suppose k is even, $i > 0$ and $t = \frac{(q-1)k}{2} - i(q+1) \geq 0$. Then we have a canonical G-equivariant isomorphism

$$H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)(i)) \cong \text{Ind}_{K^\times GL_2(\mathcal{O}_K)}^G \text{Sym}_\mathbb{F}^t(\text{St})[i - \frac{k}{2}].$$

(b) Suppose k is odd, $i \geq 0$ and $t = \frac{(q-1)(k-1)}{2} - 1 - i(q+1) \geq 0$. Then we have a canonical G-equivariant isomorphism

$$H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)(i)) \cong \text{Ind}_{K^\times GL_2(\mathcal{O}_K)}^G \text{Sym}_\mathbb{F}^t(\text{St})[i - \frac{k-1}{2}].$$

Proof: We lift the $GL_2(\mathbb{F})$-action on $H^0(\mathbb{P}^1_{\mathbb{F}}, L(\sum_{b \in \mathbb{F}} \frac{k-1}{2} - i) \cdot b - \frac{k+1}{2} + i) \cdot \infty))$ if k is even, resp. on $H^0(\mathbb{P}^1_{\mathbb{F}}, L(\sum_{b \in \mathbb{F}} \frac{k-1}{2} - i) \cdot b - \frac{k+1}{2} + i) \cdot \infty))$ if k is odd, to an action by $K \times GL_2(\mathcal{O}_K)$ in the same way as explained for $\text{Sym}^n(\text{St})[s]$. Identifying the reduction of the global variable z with our projective coordinate z on $Z_{\gamma_0} \cong \mathbb{P}^1_{\mathbb{F}}$ we use [3] and [4] to get $K \times GL_2(\mathcal{O}_K)$-equivariant isomorphisms

$$H^0(\mathbb{P}^1_{\mathbb{F}}, L(\sum_{b \in \mathbb{F}} \frac{k-1}{2} - i) \cdot b - \frac{k+1}{2} + i) \cdot \infty)) = H^0(\tilde{X}, (\mathcal{O}_{\tilde{X}}(k)(i) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_{\gamma_0}}) \cdot c)$$

if k is even, resp.

$$H^0(\mathbb{P}^1_{\mathbb{F}}, L(\sum_{b \in \mathbb{F}} \frac{k-1}{2} - i) \cdot b - \frac{k+1}{2} + i) \cdot \infty)) = H^0(\tilde{X}, (\mathcal{O}_{\tilde{X}}(k)(i) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_{\gamma_0}}) \cdot c)$$

if k is odd, thus we conclude by 3.1 and 3.2.

We can now filter the representation $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k))$ and determine its subquotients. For $k odd, i \geq 0$ and $t = \frac{(q-1)(k-1)}{2} - 1 - i(q+1) \geq q+1$ we have $H^1(\tilde{X}, (\mathcal{O}_{\tilde{X}}(k)(i+1) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_{\gamma_0}}) \cdot c) = 0$ (use [6]), hence

$$\frac{\text{Sym}_\mathbb{F}^t(\text{St})[i - \frac{k-1}{2}]}{\text{Sym}_\mathbb{F}^{t-(q+1)}(\text{St})[i + 1 - \frac{k-1}{2}]} \cong \frac{H^0(\tilde{X}, (\mathcal{O}_{\tilde{X}}(k)(i) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_{\gamma_0}}) \cdot c)}{H^0(\tilde{X}, (\mathcal{O}_{\tilde{X}}(k)(i+1) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{Z_{\gamma_0}}) \cdot c)}$$
is a representation of $\text{GL}_2(\mathbb{F})$ on the $(q + 1)$-dimensional \mathbb{F}-vector space with basis the \mathbb{F}-rational points of $\mathbb{P}^1_{\mathbb{F}}$. Explicitly, this is the quotient

$$\frac{\text{Sym}_F^t(\text{St})[i - \frac{k-1}{2}]}{< XjY^{t-j} - Xq+j-1Y^{t-q-j+1}; 1 \leq j \leq t-q >_F}$$

One might ask for its composition series. For example, if $q = 2$, $k = 9$, $i = 0$, $t = 3$, then the class of $X^3 + Y^3 + X^2Y$ (i.e. the class of $X^3 + Y^3 + XY^2$) in this quotient spans a $\text{GL}_2(\mathbb{F})$-stable line. The results for even k are similar, with $i > 0$ and $t = \frac{(q-1)k}{2} - i(q + 1) \geq q + 1$, see also [8]. For the last i, the one for which $q \geq t \geq 0$, we get $\text{Sym}_F^t(\text{St})[i - \frac{k-1}{2}]$ (if k is odd), resp. $\text{Sym}_F^t(\text{St})[i - \frac{k}{2}]$ (if k is even). To complete the picture it remains to observe that for even $k \geq 4$ we have

$$H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)) \cong \text{Ind}_N^G 1$$

where $N \subset G$ denotes the stabilizer of an (arbitrary) non-oriented edge $\{Z_1, Z_2\} \in F^1$ and 1 its trivial representation: use $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k)(1)) = 0$.

As an application, if q is odd, Teitelbaum [8] constructs modular forms mod π of weight $q+1$ (in fact, elements of $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(q+1)(\frac{q+1}{2} - 1))$ for the entire group $\text{SL}_2(K)$. Here we will do the same if q is even. The action of $\text{SL}_2(K)$ on the set F^0 has two orbits: the orbit F^0_{even} of $Z_{\gamma_0} \in F^0$ and the orbit F^0_{odd} of $Z_{\gamma_1} \in F^0$. Choose subsets S_{even} and S_{odd} of $\text{SL}_2(K)$ such that $\gamma \mapsto Z_{\gamma}$ defines bijections $S_{\text{even}} \cong F^0_{\text{even}}$ and $S_{\text{odd}} \cong F^0_{\text{odd}}$. Recall that we fixed a coordinate z on X. For any $\gamma \in \text{SL}_2(K)$ we get another function $z \circ \gamma$ on X.

Theorem 3.4. The $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(q+1))$-elements

$$b^+_{q+1} = \sum_{\gamma \in S_{\text{even}}} (\iota_{Z_{\gamma}} \circ \rho_{Z_{\gamma}})((z \circ \gamma^{-1} - (z \circ \gamma^{-1})^q)^{-1})$$

$$b^-_{q+1} = \sum_{\gamma \in S_{\text{odd}}} (\iota_{Z_{\gamma}} \circ \rho_{Z_{\gamma}})((z \circ \gamma^{-1} - (z \circ \gamma^{-1})^q)^{-1})$$

are invariant for $\text{SL}_2(K)$, and interchanged by $\begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$.

Now let us look at the modular representations $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(k))$ for $k < 0$. If k is even we get from

$$0 \rightarrow \mathcal{O}_{\tilde{X}}(k) \rightarrow \prod_{Z \in F^0} \mathcal{O}_{\tilde{X}}(k) \otimes \mathcal{O}_Z \rightarrow \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{O}_{\tilde{X}}(k) \otimes \mathcal{O}_{\tilde{X}} \mathcal{O}_{Z_1 \cap Z_2} \rightarrow 0$$
the exact sequence

\[0 \rightarrow H^0(\tilde{\mathcal{X}}, \prod_{\{Z_1, Z_2\} \in \mathcal{F}^1} \mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_{Z_1 \cap Z_2}) \rightarrow \]

\[H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{\mathcal{X}}}(k)) \rightarrow H^1(\tilde{\mathcal{X}}, \prod_{Z \in \mathcal{F}^0} \mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_Z) \rightarrow 0. \]

Here \(H^0(\tilde{\mathcal{X}}, \prod_{\{Z_1, Z_2\} \in \mathcal{F}^1} \mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_{Z_1 \cap Z_2}) \) is as in (13). If \(k \) is odd things are easier because then we have

\[H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{\mathcal{X}}}(k)) \cong H^1(\tilde{\mathcal{X}}, \prod_{Z \in \mathcal{F}^0} (\mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_Z)^c). \]

Thus for any \(k \), even or odd, we need to understand \(H^1(\tilde{\mathcal{X}}, \prod_{Z \in \mathcal{F}^0} (\mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_Z)^c) \) as a \(G \)-representation; by (the proof of) 3.1 this means understanding \(H^1(\tilde{\mathcal{X}}, (\mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_{Z_0})^c) \) as a \(\text{GL}_2(\mathbb{F}) \)-representation. By an explicit computation on \(\mathbb{P}^1_{\mathbb{F}} \), using the formulas (4) and (6), we see that Serre duality yields a \(\text{GL}_2(\mathbb{F}) \)-equivariant isomorphism

\[H^1(\tilde{\mathcal{X}}, (\mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_{Z_0})^c) \cong \text{Hom}_F(H^0(\tilde{\mathcal{X}}, (\mathcal{O}_{\tilde{\mathcal{X}}}(-k + 2)(1) \otimes \mathcal{O}_{Z_0})^c), F) \]

if \(k \) is even, resp.

\[H^1(\tilde{\mathcal{X}}, (\mathcal{O}_{\tilde{\mathcal{X}}}(k) \otimes \mathcal{O}_{Z_0})^c) \cong \text{Hom}_F(H^0(\tilde{\mathcal{X}}, (\mathcal{O}_{\tilde{\mathcal{X}}}(-k + 2) \otimes \mathcal{O}_{Z_0})^c), F) \]

if \(k \) is odd. The duals of these representations have been determined above. For example, for odd \(k < 0 \), setting \(t = \frac{(g-1)(k-1)}{2} - 1 \) we get a canonical \(G \)-equivariant isomorphism

\[H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{\mathcal{X}}}(k)) \cong \text{Ind}_K^{G} \times_{\text{GL}_2(\mathcal{O}_K)} \text{Hom}_F(\text{Sym}_{\mathbb{F}}^t(\mathcal{S}t)[\frac{k-1}{2}], F). \]

On the other hand, in section 31 below we will obtain for any \(k < 0 \), even or odd, \(G \)-equivariant isomorphisms

\[H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{\mathcal{X}}}(k)) \otimes \varepsilon^{-k-1} \cong H^0(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{\mathcal{X}}}(2 - k)). \]

4 Harmonic cochains

Fix \(k \geq 0 \). On \(\text{Hom}_{\tilde{\mathcal{X}}}(\text{Sym}_K^k(\mathcal{S}t)[1] \otimes \chi^{-k-2}, \tilde{\mathcal{K}}) \) the \(G \)-action is given by \((\gamma, h)(x) = h(\gamma^{-1} \cdot x) \) for \(\gamma \in G \), \(x \in \text{Sym}_K^k(\mathcal{S}t)[1] \otimes \chi^{-k-2} \) and \(h \in \text{Hom}_{\tilde{\mathcal{X}}}(\text{Sym}_K^k(\mathcal{S}t)[1] \otimes \chi^{-k-2}, \tilde{\mathcal{K}}) \). — (In everything here and below we could replace \(\text{Hom}_{\tilde{\mathcal{X}}}(\text{Sym}_K^k(\mathcal{S}t)[1] \otimes \chi^{-k-2}, \tilde{\mathcal{K}}) \) by the isomorphic \(G \)-representation \(\text{Sym}_K^k(\mathcal{S}t)[-k-1] \otimes \chi^k+2 \); the isomorphism sends \(h_j \) (as defined below) to \(X^{k-j}Y^j \).) — We set

\[C^1(k + 2) = \prod_{\{Z_1, Z_2\} \in \mathcal{F}^1} \text{Hom}_{\tilde{\mathcal{X}}}(\text{Sym}_K^k(\mathcal{S}t)[1] \otimes \chi^{-k-2}, \tilde{\mathcal{K}}). \]
\[C^0(k + 2) = \prod_{Z \in F^0} \text{Hom}_{\hat{\mathbb{K}}}((\text{Sym}_k\hat{\mathbb{K}}(\text{St})[1] \otimes \chi^{-k-2}, \hat{\mathbb{K}}) \]

(products of copies of \(\text{Hom}_{\hat{\mathbb{K}}}((\text{Sym}_k\hat{\mathbb{K}}(\text{St})[1] \otimes \chi^{-k-2}, \hat{\mathbb{K}})\), indexed by \(F^1\) resp. \(F^0\)). On \(C^1(k + 2)\) we define a \(G\)-action by

\[(\gamma.f)(z_1, z_2) = \gamma(f_{\gamma^{-1}}(z_1, z_2)) \]

for \(\gamma \in G\) and \((f_{\{z_1, z_2\}}(z_1, z_2) \in C^1(k + 2)\). For \(Z \in F^0\) let \(\text{sg}(Z) = 1\) if \(Z \in F^0_{\text{even}}\) and \(\text{sg}(Z) = -1\) if \(Z \in F^0_{\text{odd}}\). Moreover let

\[* (Z) = \{ Z' \in F^0; \{ Z, Z' \} \in F^1 \}. \]

Then we have the operator

\[C^1(k + 2) \xrightarrow{\Delta} C^0(k + 2), \quad (f_{\{z_1, z_2\}}(z_1, z_2) \mapsto (\text{sg}(Z) \sum_{Z' \in * (Z)} f_{\{z, z'\}})z \]

and we define \(C^1_{\text{har}}(k + 2)\) by the exact sequence

\[0 \longrightarrow C^1_{\text{har}}(k + 2) \longrightarrow C^1(k + 2) \xrightarrow{\Delta} C^0(k + 2). \]

This is the variant with non-trivial coefficients of the space \(C^1_{\text{har}}(\hat{\mathbb{K}})\) of \(\hat{\mathbb{K}}\)-valued harmonic cochains on \(\mathcal{B}T\) which is defined by the exact sequence

\[0 \longrightarrow C^1_{\text{har}}(\hat{\mathbb{K}}) \longrightarrow \prod_{\{Z_1, Z_2\} \in F^1} \hat{\mathbb{K}} \xrightarrow{\Delta} \prod_{Z \in F^0} \hat{\mathbb{K}}. \]

Let \(\Omega^1_{\hat{\mathbb{K}}}\) denote the sheaf of logarithmic differential forms for the morphism of log schemes \(\hat{\mathcal{X}} \rightarrow \text{Spf}(\mathcal{O}_{\hat{\mathbb{K}}})\) (with log structures defined by the respective special fibres). Define

\[\text{res} : \Gamma(\hat{\mathcal{X}}, \Omega^1_{\hat{\mathbb{K}}}) \rightarrow C^1_{\text{har}}(\hat{\mathbb{K}}) \]

to be the unique \(G\)-equivariant morphism of \(\mathcal{O}_{\hat{\mathbb{K}}}-\text{modules with} \]

\[\text{res}(\eta)_{\{Z_{\gamma_0}, Z_{\gamma-1}\}} = a_{-1} \]

for \(\eta \in \Gamma(\hat{\mathcal{X}}, \Omega^1_{\hat{\mathbb{K}}})\), where

\[\eta(z) = \sum_{j \in \mathbb{Z}} a_j z^j dz \]

is the Laurent expansion of \(\eta\) on the annulus \(|Z_{\gamma_0} \cap Z_{\gamma-1}| = sp^{-1}(Z_{\gamma_0} \cap Z_{\gamma-1}) \subset \hat{\mathcal{X}}\) reducing to \(Z_{\gamma_0} \cap Z_{\gamma-1}\). (That \(\text{res}(\eta)\) indeed lies in \(C^1_{\text{har}}(\hat{\mathbb{K}})\) follows from the residue theorem on \(\mathbb{P}^1\).) This map also has a version with non-trivial coefficients, as follows. Consider the \(G\)-equivariant map

\[\Gamma(\hat{\mathcal{X}}, \mathcal{O}_{\hat{\mathbb{K}}}(k + 2)) \longrightarrow \text{Hom}_{\hat{\mathbb{K}}}((\text{Sym}_k\hat{\mathbb{K}}(\text{St})[1] \otimes \chi^{-k-2}, \Gamma(\hat{\mathcal{X}}, \Omega^1_{\hat{\mathbb{K}}})) \]

\(g \mapsto \Phi_g\)
where Φ_g is defined by
\[
\Phi_g(X^iY^{k-i}) = g(z)z^idz, \quad 0 \leq i \leq k.
\]
We use it to define the G-equivariant map
\[
\text{Res}^0 : \Gamma(\mathcal{X}, \mathcal{O}_\mathcal{X}(k+2)) \to \text{Hom}(\text{Sym}^k_{\hat{K}}(\text{St})[1] \otimes \chi^{-k-2}, C^1_{\text{har}}(\hat{K})) = C^1_{\text{har}}(k+2)
\]
\[
g \mapsto \text{res} \circ \phi_g.
\]
We will work with the following more explicit description of Res^0: it is the unique G-equivariant morphism of $\mathcal{O}_\hat{K}$-modules with
\[
(\text{Res}^0(g)(z_{\gamma_0},z_{\gamma_{-1}})))(X^iY^{k-i}) = a_{-i-1}
\]
for $g \in \Gamma(\mathcal{X}, \mathcal{O}_\mathcal{X}(k+2))$ and $0 \leq i \leq k$, where
\[
g(z) = \sum_{j \in \mathbb{Z}} a_j z^j
\]
is the Laurent expansion of g on the annulus $]Z_{\gamma_0} \cap Z_{\gamma_{-1}}[= sp^{-1}(Z_{\gamma_0} \cap Z_{\gamma_{-1}}) \subset \mathcal{X}$ reducing to $Z_{\gamma_0} \cap Z_{\gamma_{-1}}$. Equivalently, $(\text{Res}^0(g)(z_1,z_2))(X^iY^{k-i})$ for arbitrary $\{Z_1, Z_2\} \in F^1$ can be described follows. Choose a $\gamma \in G$ such that $\gamma \cdot \{Z_1, Z_2\} = \{Z_{\gamma_0}, Z_{\gamma_{-1}}\}$. Let $\sum_{j \in \mathbb{Z}} a_j z^j$ be the Laurent expansion of $\gamma \cdot g$ on $]Z_{\gamma_0} \cap Z_{\gamma_{-1}}[\cap \mathcal{X}$ and write
\[
\gamma \cdot (X^iY^{k-i}) = \sum_{s=0}^k c_s X^s Y^{k-s}
\]
in $\text{Sym}^k_{\hat{K}}(\text{St})[1] \otimes \chi^{-k-2}$. Then $(\text{Res}^0(g)(z_1,z_2))(X^iY^{k-i}) = \sum_{s=0}^k a_{s-1} c_s$. This is independent of the choice of γ.

We want to show that Res^0 is injective and to describe its image. For $Z \in F^0$ choose $\gamma \in G$ with $Z = Z_{\gamma}$ and define
\[
L_Z = \gamma \cdot \text{Hom}_{\mathcal{O}_\hat{K}}(\text{Sym}^k_{\mathcal{O}_\hat{K}}(\text{St})[1], \mathcal{O}_\hat{K}) \subset \text{Hom}_{\hat{K}}(\text{Sym}^k_{\hat{K}}(\text{St})[1] \otimes \chi^{-k-2}, \hat{K}).
\]
In this definition we consider $\text{Hom}_{\mathcal{O}_\hat{K}}(\text{Sym}^k_{\mathcal{O}_\hat{K}}(\text{St})[1], \mathcal{O}_\hat{K})$ not as a $\text{GL}_2(\mathcal{O}_K)$-representation but only as a $\mathcal{O}_\hat{K}$-submodule of the \hat{K}-vector space underlying the G-representation $\text{Hom}_{\hat{K}}(\text{Sym}^k_{\hat{K}}(\text{St})[1] \otimes \chi^{-k-2}, \hat{K})$. For $\{Z_1, Z_2\} \in F^1$ we write $L_{\{Z_1, Z_2\}} = L_{Z_1} \cap L_{Z_2}$ and then let
\[
Z^1(k+2) = \prod_{\{Z_1, Z_2\} \in F^1} L_{\{Z_1, Z_2\}},
\]
\[
Z^0(k+2) = \prod_{Z \in F^0} L_Z,
\]
subspaces of $C^1(k+2)$ resp. of $C^0(k+2)$. We define $Z^1_{\text{har}}(k+2)$ by the exact sequence
\[
0 \to Z^1_{\text{har}}(k+2) \to Z^1(k+2) \xrightarrow{\Delta} \prod_{Z \in F^0} L_Z.
\]
Lemma 4.1. The image of Res^0 lies in $Z^1_{\text{har}}(k + 2)$.

Proof: By G-equivariance it suffices to check $\text{Res}^0(g)(Z_{\gamma_0}, Z_{\gamma_1}) \in L_{Z_{\gamma_0}} \cap L_{Z_{\gamma_1}}$ for all $g \in \Gamma(\tilde{X}, \mathcal{O}_{\tilde{X}}(k + 2))$. Let $g(z) = \sum_{j \in \mathbb{Z}} a_j z^j$ be the Laurent expansion of g on $]Z_{\gamma_0} \cap Z_{\gamma_1}[$. From (2) we deduce

(16) \[\omega(g(P)) \geq 0 \quad \text{for all closed points } P \in]\tilde{U}_{Z_{\gamma_0}}[\]

(17) \[\omega(g(P)) \geq \frac{-k - 2}{2} \quad \text{for all closed points } P \in]\tilde{U}_{Z_{\gamma_1}}[. \]

From (16) we get $\omega(a_j) \geq 0$ for all j (with a point $P \in]Z_{\gamma_0} \cap Z_{\gamma_1}[$ approach $]\tilde{U}_{Z_{\gamma_0}}[$], hence $\text{Res}^0(g)(Z_{\gamma_0}, Z_{\gamma_1}) \in \text{Hom}_{\hat{k}}(\text{Sym}^k_{\hat{k}}(\text{St})[1], \mathcal{O}_{\hat{K}}) = L_{Z_{\gamma_0}}$. From (17) we get $\omega(a_j) \geq \frac{-k - 2}{2}$ for all j (with a point $P \in]Z_{\gamma_0} \cap Z_{\gamma_1}[$ approach $]\tilde{U}_{Z_{\gamma_1}}[$). Now in $\text{Sym}^k_{\hat{k}}(\text{St})[1] \otimes \chi^{-k-2}$ we have $\gamma_{-1}(X^i Y^{k-i}) = \pi^{k-2i} X^i Y^{k-i}$. Thus $\text{Res}^0(g)(Z_{\gamma_0}, Z_{\gamma_1})(\gamma_{-1}(X^i Y^{k-i})) = \pi^{k-2i} \text{Res}^0(g)(Z_{\gamma_0}, Z_{\gamma_1})(X^i Y^{k-i}) = \pi^{k-2i} a_{-i-1}$ lies in $\mathcal{O}_{\hat{K}}$, thus $\gamma_{1}\text{Res}^0(g)(Z_{\gamma_0}, Z_{\gamma_1})$ lies in $\text{Hom}_{\hat{k}}(\text{Sym}^k_{\hat{k}}(\text{St})[1], \mathcal{O}_{\hat{K}})$, thus $\text{Res}^0(g)(Z_{\gamma_0}, Z_{\gamma_1})$ lies in $L_{Z_{\gamma_1}}$.

Theorem 4.2.

$\text{Res}^0 : \Gamma(\tilde{X}, \mathcal{O}_{\tilde{X}}(k + 2)) \longrightarrow Z^1_{\text{har}}(k + 2)$ is an isomorphism.

Proof: (i) First we claim that the sequence (15) is also exact on the right. Let $\tilde{Z}^1(k + 2) = Z^1(k + 2)/\hat{\pi}$ and for $Z \in F^0$ let $\tilde{L}_Z = L_Z/\hat{\pi}$. Then it is enough to show that the map

$$\tilde{Z}^1(k + 2) \xrightarrow{\Delta} \prod_{Z \in F^0} \tilde{L}_Z$$

induced by Δ is surjective. For $\{Z_1, Z_2\} \in F^1$ let

$$D_{(Z_1, Z_2)}^\ast = \text{Im}(L_{(Z_1, Z_2)} \to \tilde{L}_{Z_1})$$

$$E_{(Z_1, Z_2)} = \text{Im}(L_{(Z_1, Z_2)} \to (L_{Z_1} + L_{Z_2})/\hat{\pi})$$

(images under the natural maps). Note that $\dim_{\pi}(D_{(Z_1, Z_2)}^\ast) = \frac{k+2}{2}$ and $\dim_{\pi}(E_{(Z_1, Z_2)}) = 1$ if k is even, and $\dim_{\pi}(D_{(Z_1, Z_2)}^\ast) = \frac{k+1}{2}$ and $E_{(Z_1, Z_2)} = 0$ if k is odd (for explicit descriptions see below). For $Z \in F^0$ let

$$\tilde{Z}^1(k + 2)_Z = \prod_{Z' \in \ast(Z)} D_{(Z, Z')}^\ast.$$

Then Δ factors as

$$\tilde{Z}^1(k + 2) \xrightarrow{\beta} \prod_{Z \in F^0} \tilde{Z}^1(k + 2)_Z \xrightarrow{\delta = \prod_{Z \in F^0} \delta_Z} \prod_{Z \in F^0} \tilde{L}_Z$$
where β is the product of the natural projection maps. We have an exact sequence

$$0 \longrightarrow \tilde{Z}_i^1(k+2) \xrightarrow{\beta} \prod_{Z \in F^0} \tilde{Z}_i^1(k+2)_Z \xrightarrow{\alpha} \prod_{\{Z_1, Z_2\}} E_{\{Z_1, Z_2\}}$$

where α is defined as

$$\alpha(((gz, z')z'_{\ast}(z))_{Z \in F^0})_{\{Z_1, Z_2\}} = sg(Z_1)gz_1z_2 + sg(Z_2)gz_2z_1$$

for $\{Z_1, Z_2\} \in F^1$. For $Z \in F^0$ we define $\tilde{Z}_i^1(k+2)_Z$ by the exact sequence

$$0 \longrightarrow \tilde{Z}_i^1(k+2)_Z \xrightarrow{\nu_Z} \tilde{Z}_i^1(k+2)_Z \xrightarrow{\delta_Z} \tilde{L}_Z.$$

Now it is enough to prove that each δ_Z (and hence δ) is surjective, and that

$$\prod_{Z \in F^0} \tilde{Z}_i^1(k+2)_Z \xrightarrow{\mu_{Z_1, Z_2}} \prod_{\{Z_1, Z_2\}} E_{\{Z_1, Z_2\}}$$

is surjective. The surjectivity of $\alpha \circ (\prod Z \nu_Z)$, an empty statement if k is odd, will be implied by the surjectivity of its factors

$$\tilde{Z}_i^1(k+2)_{Z_1} \xrightarrow{\mu_{Z_1, Z_2}} E_{\{Z_1, Z_2\}}.$$

Let us make the objects explicit. By equivariance we may assume $Z = Z_{\gamma_0}$, resp. $\{Z_1, Z_2\} = \{Z_{\gamma_0}, Z_{\gamma-1}\}$. For $0 \leq j \leq k$ define $h_j \in \text{Hom}_K(K_k^j(\text{Sym}_K^k(\text{St})[1] \otimes \chi^{-k-2}, K))$ by

$$h_j(X^iY^{k-i}) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

Then one finds

$$L_{\gamma_0} = \bigoplus_{j=0}^k O_K \cdot h_j, \quad L_{\gamma_1} = \bigoplus_{j=0}^k (\hat{\pi}^{k-2j}) \cdot h_j, \quad L_{\gamma-1} = \bigoplus_{j=0}^k (\hat{\pi}^{2j-k}) \cdot h_j,$$

$$D_{\{Z_{\gamma-1}, Z_{\gamma_0}\}}^{Z_{\gamma_0}} = \bigoplus_{j=0}^k \mathbb{F} \cdot h_j, \quad D_{\{Z_{\gamma_1}, Z_{\gamma_0}\}}^{Z_{\gamma_0}} = \bigoplus_{j=0}^k \mathbb{F} \cdot h_j$$

and if k is even also $E_{\{Z_{\gamma-1}, Z_{\gamma_0}\}} = \mathbb{F} \cdot h_\frac{k}{2}$. The surjectivity of δ_{γ_0} follows from $\tilde{L}_{\gamma_0} = D_{\{Z_{\gamma-1}, Z_{\gamma_0}\}}^{Z_{\gamma_0}} + D_{\{Z_{\gamma_1}, Z_{\gamma_0}\}}^{Z_{\gamma_0}}$. For the surjectivity of $\mu_{Z_{\gamma_0}, Z_{\gamma-1}}$ (if k is even): the element $h_\frac{k}{2} \in E_{\{Z_{\gamma-1}, Z_{\gamma_0}\}}$ is the image of the $\tilde{Z}_i^1(k+2)_{Z_{\gamma_0}}$-element with entry $h_\frac{k}{2}$ in the $\{Z_{\gamma-1}, Z_{\gamma_0}\}$-component, with entry $-h_\frac{k}{2}$ in the $\{Z_{\gamma_1}, Z_{\gamma_0}\}$-component, and with entry 0 at all other components.

(ii) Let $\tilde{Z}_i^1(k+2) = Z_i^1(k+2)/(\hat{\pi})$. To prove the theorem, since $\Gamma(\hat{\mathcal{X}}, O_{\hat{K}}(k+2))$ and $Z_i^1(k+2)$ are $\hat{\pi}$-adically complete and separated, and since $Z_i^1(k+2)$ is $O_{\hat{K}}$-flat, it is enough to prove that the induced map

$$\widetilde{\text{Res}}^0 : \Gamma(\hat{\mathcal{X}}, O_{\hat{K}}(k+2))/(\hat{\pi}) \rightarrow \tilde{Z}_i^1(k+2)$$

is surjective.
is an isomorphism. Since \(\prod_{Z \in F^0} L_Z \) is \(\mathcal{O}_\delta \)-flat it follows from (i) that (4.1) reduces modulo \((\tilde{\pi})\) to an exact sequence

\[
0 \longrightarrow \bar{Z}^1_{\text{har}}(k + 2) \longrightarrow \bar{Z}^1(k + 2) \overset{\bar{\delta}}{\longrightarrow} \prod_{Z \in F^0} \bar{L}_Z.
\]

We then also obtain from (i) for any \(Z \in F^0 \) exact sequences

\[
0 \to \bar{Z}^1_{\text{har}}(k + 2) \to \prod_{Z \in F^0} \bar{Z}^1_{\text{har}}(k + 2)_Z \to \prod_{\{Z_1, Z_2\} \in F^1} E_{\{Z_1, Z_2\}} \to 0
\]

and (by surjectivity of \(\delta_Z \)) the estimates

\[
\dim_F(\bar{Z}^1_{\text{har}}(k + 2)_Z) = \begin{cases} \frac{(q-1)(k+1)}{2} & : k \text{ odd} \\ \frac{(q-1)(k+2)}{2} + 1 & : k \text{ even} \end{cases}
\]

Now let us look at the source of \(\tilde{\text{Res}}^0 \). By [2.1] we know that this is \(H^0(\bar{\mathfrak{X}}, \mathcal{O}_{\bar{\mathfrak{X}}}(k + 2)) \). Our discussion in section 2 implies that the natural restriction maps induce an exact sequence (note \(H^1(\bar{\mathfrak{X}}, \mathcal{O}_{\bar{\mathfrak{X}}}(k + 2)) = 0 \))

\[
0 \to H^0(\bar{\mathfrak{X}}, \mathcal{O}_{\bar{\mathfrak{X}}}(k + 2)) \to \prod_{Z \in F^0} H^0(\bar{\mathfrak{X}}, (\mathcal{O}_{\bar{\mathfrak{X}}}(k + 2) \otimes_{\mathcal{O}_{\bar{\mathfrak{X}}}} \mathcal{O}_Z)^c) \to \prod_{\{Z_1, Z_2\} \in F^1} J_{\{Z_1, Z_2\}} \to 0
\]

where \(\dim_F(J_{\{Z_1, Z_2\}}) = 1 \) if \(k \) is even, and \(J_{\{Z_1, Z_2\}} = 0 \) if \(k \) is odd. Since \(\tilde{\text{Res}}^0 \) induces isomorphisms \(J_{\{Z_1, Z_2\}} \simeq E_{\{Z_1, Z_2\}} \) it now suffices to see that the map

\[
H^0(\bar{\mathfrak{X}}, (\mathcal{O}_{\bar{\mathfrak{X}}}(k + 2) \otimes_{\mathcal{O}_{\bar{\mathfrak{X}}}} \mathcal{O}_Z)^c) \to \bar{Z}^1_{\text{har}}(k + 2)_Z
\]

induced by \(\tilde{\text{Res}}^0 \) is an isomorphism for any \(Z \in F^0 \), or, by equivariance, for \(Z = Z_{\gamma_0} \). Recall that identifying \(\mathbb{P}_F^1 \cong Z_{\gamma_0} \) as before we have

\[
(\mathcal{O}_{\bar{\mathfrak{X}}}(k + 2) \otimes_{\mathcal{O}_{\bar{\mathfrak{X}}}} \mathcal{O}_{Z_{\gamma_0}})^c \simeq \begin{cases} \mathcal{L}(\frac{k-3}{2}, \infty + \sum_{b \in \mathbb{F}} \frac{k+1}{2}b) & : k \text{ odd} \\ \mathcal{L}(\frac{k-2}{2}, \infty + \sum_{b \in \mathbb{F}} \frac{k+2}{2}b) & : k \text{ even} \end{cases}
\]

For \(k \) odd, if \(g \in H^0(\bar{\mathfrak{X}}, (\mathcal{O}_{\bar{\mathfrak{X}}}(k + 2) \otimes_{\mathcal{O}_{\bar{\mathfrak{X}}}} \mathcal{O}_{Z_{\gamma_0}})^c) = H^0(\mathbb{P}_F^1, \mathcal{L}(\frac{k-3}{2}, \infty + \sum_{b \in \mathbb{F}} \frac{k+1}{2}b)) \) lies in the kernel of \(\tilde{\text{Res}}^0 \) then it is an element even of \(H^0(\mathbb{P}_F^1, \mathcal{L}(\frac{k-3}{2}, \infty)) \) and therefore it vanishes. Thus \(\tilde{\text{Res}}^0 \) is injective. Similarly for even \(k \). On the other hand by our above computation we find \(\dim_F(H^0(\bar{\mathfrak{X}}, (\mathcal{O}_{\bar{\mathfrak{X}}}(k + 2) \otimes_{\mathcal{O}_{\bar{\mathfrak{X}}}} \mathcal{O}_{Z_{\gamma_0}})^c)) = \dim_F(\bar{Z}^1_{\text{har}}(k + 2)_Z) \), thus \(\tilde{\text{Res}}^0 \) is also surjective and the proof is complete. \(\square \)

The \(p \)-adic Shimura isomorphism [3] p.98 is an immediate consequence of [4.2].
5 The reduced de Rham complex

In this section \(\mathrm{char}(K) = 0 \). Fix \(k \geq 0 \) and for our fixed coordinate \(z \) let \(\partial = \frac{d}{dz} \). Let \((\Omega^\bullet_X \otimes_K \text{Sym}^k_K(\text{St}), \partial \otimes \text{id}) \) be the de Rham complex on \(X \) with coefficients in \(\text{Sym}^k_K(\text{St}) \). By \([6]\) p.97 this complex is \(\text{SL}_2(K) \)-equivariantly quasi-isomorphic with the "reduced de Rham complex"

\[
\mathcal{R}^\bullet_X = [\mathcal{O}_X(-k) \xrightarrow{\partial^{k+1}} \mathcal{O}_X(k+2)]
\]

on \(X \). (The genesis of this "theta operator" \(\partial^{k+1} \) from \((\Omega^\bullet_X \otimes_K \text{Sym}^k_K(\text{St}), \partial \otimes \text{id}) \) is completely parallel to that of the theta operator on classical modular forms, cf. \([2]\)).

We change bases \(K \rightarrow \hat{K} \). Since \(\omega(z(P)) = -n \) for any \(n \) and any point \(P \in (\hat{U}_{(z_m)})_{\hat{K}} \) the operator \(\partial \) on \(\mathcal{O}_{\hat{U}_{(z_m)}} \otimes_{\hat{K}} \hat{K} = sp \mathcal{O}_{\hat{U}_{(z_m)}} \) restricts to a map \(\partial : \mathcal{O}_{\hat{U}_{(z_m)}} \rightarrow \pi^n \mathcal{O}_{\hat{U}_{(z_m)}} \). Iterating we get a map \(\partial^{k+1} : \mathcal{O}_X(-k)|_{\hat{U}_{(z_m)}} \rightarrow \mathcal{O}_X(k+2)|_{\hat{U}_{(z_m)}} \). By equivariance we see that \(\partial^{k+1} \) induces a map \(\partial^{k+1} : \mathcal{O}_X(-k)|_{\hat{U}(z)} \rightarrow \mathcal{O}_X(k+2)|_{\hat{U}(z)} \) for any \(Z \in F^0 \). By an argument similar to that at the end of the proof of \([4]\) it follows that \(\partial^{k+1} \) respects these integral structures also above the singular points of \(\hat{X} \), hence a complex

\[
\mathcal{R}^\bullet_{\hat{X}} = [\mathcal{O}_X(-k) \xrightarrow{\partial^{k+1}} \mathcal{O}_X(k+2)].
\]

We denote by \(\mathcal{H}^i(\mathcal{R}^\bullet_{\hat{X}}) \) for \(i = 0 \) and \(i = 1 \) the cohomology sheaves.

Theorem 5.1. For any \(i, j \) we have canonical isomorphisms

\[
H^i(\hat{X}, \mathcal{H}^j(\mathcal{R}^\bullet_{\hat{X}})) \cong H^j(\hat{X}, \mathcal{R}^i_{\hat{X}}).
\]

Proof: For \(i = 0 \) the map is induced by the canonical injection \(\mathcal{H}^0(\mathcal{R}^\bullet_{\hat{X}}) \rightarrow \mathcal{R}^0_{\hat{X}} = \mathcal{O}_X(-k) \), for \(i = 1 \) it is induced by the canonical surjection \(\mathcal{R}^1_{\hat{X}} \rightarrow \mathcal{H}^1(\mathcal{R}^\bullet_{\hat{X}}) \). Once we know the claim for \(i = 0 \) it follows that \(H^*(\hat{X}, \mathcal{B}) = 0 \) for \(\mathcal{B} = \text{Im}(\mathcal{R}^0_{\hat{X}} \rightarrow \mathcal{R}^1_{\hat{X}}) = \text{Ker}(\mathcal{R}^1_{\hat{X}} \rightarrow \mathcal{H}^1(\mathcal{R}^\bullet_{\hat{X}})) \), hence the claim for \(i = 1 \). Thus we concentrate on the case \(i = 0 \). Denote by \((\cdot)_m \) reduction modulo \(\pi^m \). Since \(\mathcal{H}^0(\mathcal{R}^\bullet_{\hat{X}}) = \lim_m (\mathcal{H}^0(\mathcal{R}^\bullet_{\hat{X}}))_m \) and \(\mathcal{R}^0_{\hat{X}} = \lim_m (\mathcal{R}^0_{\hat{X}})_m \), the spectral sequence for the composition of derived functors \(\mathcal{R} \lim_m \mathcal{R}\Gamma(\hat{X}, \cdot) \) shows that it suffices to show

\[
H^i(\hat{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_{\hat{X}}))_m) \cong H^i(\hat{X}, (\mathcal{R}^0_{\hat{X}})_m)
\]

for any \(m \). Now \(\mathcal{R}^0_{\hat{X}} \) and hence also its subsheaf \(\mathcal{H}^0(\mathcal{R}^\bullet_{\hat{X}}) \) is \(\mathcal{O}_{\hat{K}} \)-flat. Therefore one gets exact sequences of sheaves

\[
0 \rightarrow \mathcal{F}_{m-1} \xrightarrow{\hat{\pi}^{m-1}} \mathcal{F}_m \rightarrow \mathcal{F}_1 \rightarrow 0
\]

for \(\mathcal{F} = \mathcal{R}^0_{\hat{X}} \) and \(\mathcal{F} = \mathcal{H}^0(\mathcal{R}^\bullet_{\hat{X}}) \). Using the associated long exact cohomology sequences we reduce our task to proving the isomorphism just stated in the case \(m = 1 \). Now observe
that \(\mathcal{H}^0(\mathcal{R}_X^* \otimes_K \widehat{K}) \) is precisely the locally constant sheaf generated by the \(\widehat{K} \)-vector space of polynomials in the variable \(z \) of degree at most \(k \). Thus \(\mathcal{H}^0(\mathcal{R}_X^*) \) consists of such polynomials subject to growth conditions. Namely, since \(\mathcal{R}_X^0|_{U(z_m)} = \mathcal{O}_X(-k)|_{U(z_m)} = \pi^{-kn}\mathcal{O}_X|_{U(z_m)} \) and \(\omega(z(P)) = -n \) for any \(n \) and any point \(P \in (U(z_m)) \), we have

\[
\mathcal{H}^0(\mathcal{R}_X^*)_Z(z_m) = \{ \sum_{0 \leq t \leq k} d_t z^t \mid d_t \in \widehat{K}, \omega(d_t) \geq tn - \frac{kn}{2} \},
\]

\[
\mathcal{H}^0(\mathcal{R}_X^*)_{U(z_m, z_{m-1})} = \mathcal{H}^0(\mathcal{R}_X^*)_{U(z_m)} \cap \mathcal{H}^0(\mathcal{R}_X^*)_{U(z_{m-1})}
\]

\[
= \{ \sum_{0 \leq t \leq k} d_t z^t \mid d_t \in \widehat{K}, \omega(d_t) \geq \begin{cases} tn - \frac{kn}{2} & : t \geq \frac{k}{2} \\ t(n - 1) - \frac{k(n-1)}{2} & : t \leq \frac{k}{2} \end{cases} \}
\]

(any \(k \), even or odd). For \(Z \in F^0 \) let \((\mathcal{H}^0(\mathcal{R}_X^*))^Z \) be the image of the composition

\[
\mathcal{H}^0(\mathcal{R}_X^*) \rightarrow \mathcal{R}_X^0 = \mathcal{O}_X(-k) \rightarrow (\mathcal{O}_X(-k) \otimes \mathcal{O}_Z)^c.
\]

Then the above shows

\[
(\mathcal{H}^0(\mathcal{R}_X^*))^Z_1(z_m, U(z_m)) = \{ \sum_{0 \leq t \leq k} d_t z^t \mid d_t \in \left(\frac{z^{(2t-k)n}}{z^{(2t-k)n+1}} \right) \}
\]

\[
(\mathcal{H}^0(\mathcal{R}_X^*))^Z_{U(z_m, z_{m-1})} = \{ \sum_{\frac{k}{2} \leq t \leq k} d_t z^t \mid d_t \in \left(\frac{z^{(2t-k)n}}{z^{(2t-k)n+1}} \right) \}
\]

\[
(\mathcal{H}^0(\mathcal{R}_X^*))^Z_{U(z_m, z_{m+1})} = \{ \sum_{0 \leq t \leq k} d_t z^t \mid d_t \in \left(\frac{z^{(2t-k)n}}{z^{(2t-k)n+1}} \right) \}
\]

Similar descriptions hold at other \(Z \in F^0 \), resp. \(\{Z_1, Z_2\} \in F^1 \), by equivariance. We find

\[
(\mathcal{H}^0(\mathcal{R}_X^*))_1 = \prod_{Z \in F^0} (\mathcal{H}^0(\mathcal{R}_X^*))^Z_1
\]

if \(k \) is odd (because then there are no summands \(d_t z^t \) to consider). If \(k \) is even we find an exact sequence

\[
0 \rightarrow (\mathcal{H}^0(\mathcal{R}_X^*))_1 \rightarrow \prod_{Z \in F^0} (\mathcal{H}^0(\mathcal{R}_X^*))^Z_1 \rightarrow \prod_{\{Z_1, Z_2\} \in F^1} (\mathcal{H}^0(\mathcal{R}_X^*))_1^{Z_1, Z_2} \rightarrow 0
\]

where \((\mathcal{H}^0(\mathcal{R}_X^*))_1^{Z_1, Z_2} \) for \(\{Z_1, Z_2\} \in F^1 \) is a sheaf with \((\mathcal{H}^0(\mathcal{R}_X^*))_1^{Z_1, Z_2}(U) \cong \mathbb{F} \) if \(U \cap Z_1 \cap Z_2 \neq \emptyset \), and 0 for other open \(U \subset \widehat{X} \). On the other hand we have

\[
(\mathcal{R}_X^0)_1 = \mathcal{O}_X(-k) = \prod_{Z \in F^0} (\mathcal{O}_X(-k) \otimes \mathcal{O}_Z)^c
\]
if \(k\) is odd, and an exact sequence

\[
0 \to (\mathcal{R}_x^0)_{1} \to \prod_{Z \in F^0} (\mathcal{O}_x(-k) \otimes \mathcal{O}_Z) \to \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{O}_x(-k) \otimes \mathcal{O}_Z \cap \mathcal{O}_{Z_1 \cap Z_2} \to 0
\]

if \(k\) is even. For \(Z \in F^0\) let

\[
\alpha_Z : (\mathcal{H}^0(\mathcal{R}_x^*)_1)^Z \to (\mathcal{O}_x(-k) \otimes \mathcal{O}_Z)^c
\]

be the inclusion. If \(k\) is even then for \(\{Z_1, Z_2\} \in F^1\) the maps \(\alpha_{Z_1}\) and \(\alpha_{Z_2}\) commute with obvious isomorphisms

\[
\alpha_{Z_1, Z_2} : (\mathcal{H}^0(\mathcal{R}_x^*)_1)^{Z_1, Z_2} \to \mathcal{O}_x(-k) \otimes \mathcal{O}_{Z_1 \cap Z_2}.
\]

Since the \(\alpha_z\) also commute with our map \((\mathcal{H}^0(\mathcal{R}_x^*)_1) \to (\mathcal{R}_x^0)_{1}\) in question, it remains to prove that the \(\alpha_z\) induce isomorphisms in cohomology. By equivariance it is enough to do this for \(Z = Z_{\gamma_0}\). We identify \(\text{Spec}(\mathbb{F}[z]) \cup \{\infty\} = \mathbb{P}^1_{\mathbb{F}} \cong Z_{\gamma_0}\) such that this \(z\) on \(\mathbb{P}^1_{\mathbb{F}}\) is induced by the global variable \(z\) on \(X\). In particular, \(\infty \in \mathbb{P}^1_{\mathbb{F}}\) corresponds to \(Z_{\gamma_0} \cap Z_{\gamma_1}\), and \(0 \in \mathbb{P}^1_{\mathbb{F}}\) corresponds to \(Z_{\gamma_0} \cap Z_{\gamma_{-1}}\). Let \(\iota : \mathbb{P}^1_{\mathbb{F}} \cong Z_{\gamma_0} \to \tilde{x}\) be the closed immersion. Since we have

\[
H^*(\tilde{x}, \mathcal{F}) = H^*(\mathbb{P}^1_{\mathbb{F}}, \iota^{-1}\mathcal{F})
\]

for both \(\mathcal{F} = (\mathcal{H}^0(\mathcal{R}_x^*)_1)^{Z_{\gamma_0}}\) and \(\mathcal{F} = (\mathcal{O}_x(-k) \otimes \mathcal{O}_{Z_{\gamma_0}})^c\), we must show that

\[
H^*(\mathbb{P}^1_{\mathbb{F}}, \iota^{-1}(\mathcal{H}^0(\mathcal{R}_x^*)_1)^{Z_{\gamma_0}}) \to H^*(\mathbb{P}^1_{\mathbb{F}}, \iota^{-1}(\mathcal{O}_x(-k) \otimes \mathcal{O}_{Z_{\gamma_0}})^c)
\]

is an isomorphism. If on \(\mathbb{P}^1_{\mathbb{F}}\) we define the divisor

\[
D = \left\{ \begin{array}{ll}
\frac{k}{2}, \infty - \sum_{b \in \mathbb{F}_{k/2}} b & : k \text{ even} \\
\frac{k+1}{2}, \infty - \sum_{b \in \mathbb{F}_{k/2}} b - \frac{1}{2}, b & : k \text{ odd}
\end{array} \right.
\]

then we have a natural identification

\[
\mathcal{L}(D) = \iota^{-1}(\mathcal{O}_x(-k) \otimes \mathcal{O}_{Z_{\gamma_0}})^c.
\]

In this way we may view \(\iota^{-1}(\mathcal{O}_x(-k) \otimes \mathcal{O}_{Z_{\gamma_0}})^c\) as a subsheaf of \(\mathcal{L}(k, \infty)\). On the other hand we may view \(\iota^{-1}(\mathcal{H}^0(\mathcal{R}_x^*)_1)^{Z_{\gamma_0}}\) as a subsheaf of the constant \(\mathbb{F}\)-vector space sheaf \(\mathcal{H}\) on \(\mathbb{P}^1_{\mathbb{F}}\) with value \(\bigoplus_{i=0}^k \mathbb{F}.z^i\) (as a sub \(\mathbb{F}\)-vector space of the function field \(\mathbb{F}(z)\)). The inclusion \(\beta : \mathcal{H} \to \mathcal{L}(k, \infty)\) induces our map \(\iota^{-1}(\mathcal{H}^0(\mathcal{R}_x^*)_1)^{Z_{\gamma_0}} \to \mathcal{L}(D)\) in question. It also induces an isomorphism between the respective cokernel (skyscraper) sheaves

\[
\mathcal{H} \quad \frac{\mathcal{L}(k, \infty)}{\mathcal{L}(D)} \approx \frac{\mathcal{L}(k, \infty)}{\mathcal{L}(D)}
\]

(try the above local description of \(\iota^{-1}(\mathcal{H}^0(\mathcal{R}_x^*)_1)^{Z_{\gamma_0}}\). Since clearly \(\beta\) induces isomorphisms

\[
H^*(\mathbb{P}^1_{\mathbb{F}}, \mathcal{H}) \cong H^*(\mathbb{P}^1_{\mathbb{F}}, \mathcal{L}(k, \infty))
\]

we are done. \(\square\)
Corollary 5.2. We have the Hodge decomposition

\[(18) \quad H^1(\hat{X}, R^*_X) \cong H^0(\hat{X}, \mathcal{O}_\hat{X}(k+2)) \oplus H^1(\hat{X}, \mathcal{O}_\hat{X}(-k)).\]

Proof: Consider the canonical maps of sheaf complexes

\[\mathcal{H}^0(\mathcal{R}^*_X) \to \mathcal{R}^1_X \to \mathcal{R}^*_X\]

on \(\hat{X}\). By 5.1 both of them induce isomorphisms in cohomology; together we thus obtain the isomorphism

\[\mathbb{R}\Gamma(\hat{X}, R^*_X) \cong \mathbb{R}\Gamma(\hat{X}, [\mathcal{R}^0_X \to \mathcal{R}^1_X]).\]

We derive the stated Hodge decomposition. \(\square\)

Let again \(\Gamma < \text{SL}_2(K)\) be a cocompact discrete torsion free subgroup.

Theorem 5.3. (a) The reduced Hodge spectral sequence

\[E_1^{r,s} = H^s(X_\Gamma, (\mathcal{R}^r_X)\Gamma) \Rightarrow H^{r+s}(x_\Gamma, (\mathcal{R}^*_X)\Gamma) = H^{r+s}(X_\Gamma, (\Omega^r_X \otimes_K \text{Sym}_K^k(\text{St}))\Gamma)\]

degenerates in \(E_1\).

(b) \(H^1(X_\Gamma, (\Omega^*_X \otimes_K \text{Sym}_K^k(\text{St}))\Gamma) = H^1(X_\Gamma, (\mathcal{R}^*_X)\Gamma)\) decomposes naturally as

\[H^1(X_\Gamma, (\Omega^*_X \otimes_K \text{Sym}_K^k(\text{St}))\Gamma) = H^1(\Gamma, \text{Sym}_K^k(\text{St})) \oplus H^0(X_\Gamma, \mathcal{O}_X(k+2)\Gamma).\]

(c) If \(\Gamma\) is the free group on \(g\) generators and if \(k > 0\), then

\[\dim_K(H^1(X_\Gamma, \mathcal{O}_X(-k)\Gamma)) = \dim_K(H^0(X_\Gamma, \mathcal{O}_X(k+2)\Gamma)) = (g-1)(k+1).\]

Proof: We may of course change bases from \(K\) to \(\hat{K}\). Statement (a) is a consequence of 2.2 (if \(k > 0\)) but we can also argue as follows. It is enough to show that the inclusion of sheaf complexes

\[\mathcal{H}^0(\mathcal{R}^*_X)\Gamma \to (\mathcal{R}^1_X)\Gamma \hookrightarrow (\mathcal{R}^*_X)\Gamma\]

on \(\hat{X}_\Gamma\) induces isomorphisms

\[H^*(\hat{X}_\Gamma, [\mathcal{H}^0(\mathcal{R}^*_X)\Gamma \to (\mathcal{R}^1_X)\Gamma]) \cong H^*(\hat{X}_\Gamma, (\mathcal{R}^*_X)\Gamma).\]

For this it suffices to show that \(\mathcal{H}^0(\mathcal{R}^*_X)\Gamma \to (\mathcal{R}^0_X)\Gamma\) induces isomorphisms in cohomology. Now \(\hat{X}_\Gamma\) is quasi-compact, hence \(H^*(\hat{X}_\Gamma, .)\) commutes with \(\otimes_{\hat{K}}\). Therefore it suffices to show that the morphism of sheaves \(\mathcal{H}^0(\mathcal{R}^*_X)\Gamma \to (\mathcal{R}^0_X)\Gamma\) on \(\hat{X}_\Gamma\) induces isomorphisms

\[(19) \quad H^*(\hat{X}_\Gamma, \mathcal{H}^0(\mathcal{R}^*_X)\Gamma) \cong H^*(\hat{X}_\Gamma, (\mathcal{R}^0_X)\Gamma).\]
Using the covering spectral sequences
\[E_2^{s,t} = H^t(\Gamma, H^s(\tilde{X}, \mathcal{F})) \Rightarrow H^{t+s}(\tilde{X}_\Gamma, \mathcal{F}^\Gamma) \]
for \(\mathcal{F} = \mathcal{H}^0(\mathcal{R}_\tilde{X}^\bullet) \) and \(\mathcal{F} = \mathcal{R}_\tilde{X}^0 \) we see that it is enough to prove that the maps
\[H^t(\Gamma, H^s(\tilde{X}, \mathcal{H}^0(\mathcal{R}_\tilde{X}^\bullet))) \rightarrow H^t(\Gamma, H^s(\tilde{X}, \mathcal{R}_\tilde{X}^0)) \]
are isomorphisms. But they are, as follows from [5, 1]. We turn to (b). We have
\[
H^1(\tilde{X}_\Gamma, (\mathcal{R}_\tilde{X}^\bullet)^\Gamma) = H^1(\tilde{X}_\Gamma, (\mathcal{R}_\tilde{X}^\bullet)^\Gamma) \otimes_{\mathcal{O}_\tilde{X}} \hat{K} \\
= H^1(\tilde{X}_\Gamma, \mathcal{H}^0(\mathcal{R}_\tilde{X}^\bullet)^\Gamma) \otimes_{\mathcal{O}_\tilde{X}} \hat{K} + H^0(\tilde{X}_\Gamma, (\mathcal{R}_\tilde{X}^1)^\Gamma) \otimes_{\mathcal{O}_\tilde{X}} \hat{K} \\
= H^1(\tilde{X}_\Gamma, \mathcal{H}^0(\mathcal{R}_\tilde{X}^\bullet)^\Gamma) \oplus H^0(\tilde{X}_\Gamma, (\mathcal{R}_\tilde{X}^1)^\Gamma)
\]
where the first and the third equality follow again from the quasi-compactness of \(\tilde{X}_\Gamma \), and the second equality from [19]. Now \(\mathcal{R}_\tilde{X}^\bullet = \mathcal{O}_X(k+2) \), and on the other hand
\[
H^1(X_\Gamma, \mathcal{H}^0(\mathcal{R}_X^\bullet)^\Gamma) = H^1(\Gamma, \mathcal{R}(X, \mathcal{H}^0(\mathcal{R}_X^\bullet))).
\]
But \(H^0(X, \mathcal{H}^0(\mathcal{R}_X^\bullet)) = H^0(X, \mathcal{R}_X^\bullet) = \text{Sym}_K^k(St) \) and \(H^j(X, \mathcal{H}^0(\mathcal{R}_X^\bullet)) = 0 \) for \(j \neq 0 \) because \(\mathcal{H}^0(\mathcal{R}_X^\bullet) \) is the locally constant sheaf on \(X \) generated by \(H^0(X, \mathcal{R}_X^\bullet) = H^0(X, \mathcal{O}_X^\bullet \otimes K \text{Sym}_K^k(St)) = \text{Sym}_K^k(St) \). In (c) for the equality \(\dim_K(H^0(X_\Gamma, \mathcal{O}_X(k+2)^\Gamma)) = (g-1)(k+1) \) see [6] p.98. The equality \(\dim_K(H^1(X_\Gamma, \mathcal{O}_X(-k)^\Gamma)) = (g-1)(k+1) \) follows from statement (a) together with [5] p.628 and [6] p.98.

The decomposition in (b) is not new. It was established for the first time in [7] and later again in [5]. Both these (mutually different) proofs use sophisticated analytic methods (e.g. Coleman integration in [7]). The degeneration of the spectral sequence in (a) however, conjectured in [5], seemed to be unknown before (cf. [5] p.649). Note that the spectral sequence for the non-reduced de Rham complex does not degenerate in general at \(E_1 \) (cf. loc. cit.).

Corollary 5.4. The intersection of \(H^0(\tilde{X}, \mathcal{O}_\tilde{X}(k+2)) \) and of
\[
\text{Im}[H^0(\tilde{X}, \mathcal{O}_\tilde{X}(-k)) \otimes_k H^0(\tilde{X}, \mathcal{O}_\tilde{X}(k+2))] \]
inside \(H^0(\tilde{X}, \mathcal{O}_\tilde{X}(k+2)) = H^0(\tilde{X}, \mathcal{O}_\tilde{X}(k+2)) \) is zero. In particular, \(H^0(\tilde{X}, \mathcal{O}_\tilde{X}(k+2)) \) can be viewed as a submodule of \(H^1(\tilde{X}, \mathcal{R}_X^\bullet) = H^1(\tilde{X}, \mathcal{O}_X^\bullet \otimes K \text{Sym}_K^k(St)) \).

Proof: This follows immediately from the injectivity of the map \(R_s^0 \) in [4, 2].

Theorem 5.5. For \(k > 0 \) there is a natural \(G \)-equivariant isomorphism
\[
\theta : Z^1_{\text{har}}(k+2) \otimes k^{k+1} \cong H^1(\tilde{X}, \mathcal{H}^0(\mathcal{R}_X^\bullet)).
\]
PROOF: Observe $\varepsilon = \det \cdot \chi^{-2}$, which relates the twisting here to that in Section 4. We have a G-equivariant isomorphism

$$\text{Hom}_K(\text{Sym}_K^k(\text{St})[-k] \otimes \chi^k, \hat{K}) \xrightarrow{\sigma} H^0(\hat{\mathfrak{X}}, \mathcal{H}^0(\mathcal{R}_\hat{X}^*)),$$ \quad h_j \mapsto z^{k-j}$$

with $h_j \in \text{Hom}_K(\text{Sym}_K^k(\text{St})[-k] \otimes \chi^k, \hat{K})$ as in the proof of [4,2] i.e. $h_j(X^iY^{k-j}) = 1$ and $h_j(X^iY^{k-j}) = 0$ for $i \neq j$. For $Z \in F^0$ and $\{Z_1, Z_2\} \in F^1$ we define sheaves \mathcal{G}_Z and $\mathcal{G}_{\{Z_1, Z_2\}}$ on $\hat{\mathfrak{X}}$: for open $U \subset \hat{\mathfrak{X}}$ we let

$$\mathcal{G}_Z(U) = \begin{cases} H^0(\mathcal{R}_\hat{X}^*)(\hat{\mathfrak{X}}(Z)) & : U \cap Z \neq \emptyset \\ 0 & : U \cap Z = \emptyset \end{cases}$$

$$\mathcal{G}_{\{Z_1, Z_2\}}(U) = \begin{cases} \mathcal{G}_{Z_1}(U) + \mathcal{G}_{Z_2}(U) & : U \cap Z_1 \cap Z_2 \neq \emptyset \\ 0 & : U \cap Z_1 \cap Z_2 = \emptyset \end{cases}.$$

Then we have an exact sequence

$$0 \rightarrow H^0(\mathcal{R}_\hat{X}^*) \rightarrow \prod_{Z \in F^0} \mathcal{G}_Z \xrightarrow{\delta} \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{G}_{\{Z_1, Z_2\}} \rightarrow 0 \quad (20)$$

where δ is the product of all maps $sg(Z_1)\cdot \text{id} : \mathcal{G}_{Z_1} \rightarrow \mathcal{G}_{\{Z_1, Z_2\}}$. In cohomology we get

$$\frac{H^0(\hat{\mathfrak{X}}, \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{G}_{\{Z_1, Z_2\}})}{H^0(\hat{\mathfrak{X}}, \prod_{Z \in F^0} \mathcal{G}_Z)} \cong H^1(\hat{\mathfrak{X}}, \mathcal{H}^0(\mathcal{R}_\hat{X}^*)].$$

We claim that

$$Z_{\text{har}}^1(k+2) \otimes \varepsilon^{k+1} \rightarrow H^0(\hat{\mathfrak{X}}, \prod_{\{Z_1, Z_2\} \in F^1} \mathcal{G}_{\{Z_1, Z_2\}})$$

$$(f(z_1, z_2))_{\{Z_1, Z_2\} \in F^1} \mapsto \prod_{\{Z_1, Z_2\} \in F^1} \sigma(f(z_1, z_2))$$

induces an isomorphism $\theta : Z_{\text{har}}^1(k+2) \otimes \varepsilon^{k+1} \rightarrow H^1(\hat{\mathfrak{X}}, \mathcal{H}^0(\mathcal{R}_\hat{X}^*))$. Since $H^1(\hat{\mathfrak{X}}, \mathcal{H}^0(\mathcal{R}_\hat{X}^*)) = H^1(\hat{\mathfrak{X}}, \mathcal{O}_\hat{X}(-k))$ is flat it suffices to show that the induced map

$$\tilde{\theta} = \theta/(\tilde{\pi}) : \tilde{Z}_{\text{har}}^1(k+2) \rightarrow H^1(\hat{\mathfrak{X}}, (\mathcal{H}^0(\mathcal{R}_\hat{X}^*))_1)$$

is an isomorphism (with notations from the proof of [3,1]). Let us first assume $k > 0$ is even. Consider the submodule

$$\tilde{Z}_{\text{har}}^1(k+2)(1) = \left\{ f = (f(z_1, z_2))_{\{Z_1, Z_2\} \in F^1} \in \tilde{Z}_{\text{har}}^1(k+2); \right. \left. (\gamma.f)(Z_{\gamma_1}, Z_{\gamma_2}) (X^{\frac{\gamma_1}{2}}Y^{\frac{\gamma_2}{2}}) = 0 \text{ for all } \gamma \in G \right\}$$

of $\tilde{Z}_{\text{har}}^1(k+2)$ (this is nothing but the image of $H^0(\hat{\mathfrak{X}}, \mathcal{O}_\hat{X}(k+2)(1))$ under $\text{Res}^0\cdot \tilde{\pi}$). If for $Z \in F^0$ we let $\tilde{Z}_{\text{har}}^1(k+2)(1)_Z$ be the image of $\tilde{Z}_{\text{har}}^1(k+2)(1) \rightarrow \tilde{Z}_{\text{har}}^1(k+2) \rightarrow \tilde{Z}_{\text{har}}^1(k+2)_Z$, then

$$\tilde{Z}_{\text{har}}^1(k+2)(1) = \prod_{Z \in F^0} \tilde{Z}_{\text{har}}^1(k+2)(1)_Z.$$
In particular we have natural injections \(\iota_Z : \tilde{Z}_{\text{har}}(k + 2)(1)_{\tilde{X}} \to \tilde{Z}_{\text{har}}(k + 2)(1) \). We claim that for each \(Z \in F^0 \) the composition

\[
\tilde{Z}_{\text{har}}(k + 2)(1)_{\tilde{X}} \xrightarrow{\iota_Z} \tilde{Z}_{\text{har}}(k + 2)(1) \xrightarrow{\tilde{\theta}} H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1) \to H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z),
\]

which we denote by \(\beta_Z \), is an isomorphism. To see this we may assume \(Z = Z_{\gamma} \). From the proof of [5,11] we infer an exact sequence

\[
0 \to H^0(\mathbb{P}^1, \mathcal{H}) \to H^0(\mathbb{P}^1, \frac{\mathcal{H}}{l^{-1}(\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z}) \to H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z) \to 0.
\]

Here \(\iota : \mathbb{P}^1 \cong Z_{\gamma} \to \tilde{X} \) is the natural embedding, \(\mathcal{H} \) is the constant sheaf with value \(\bigoplus_{i=0}^{k} \mathbb{F}.z^i \), and the quotient \(\mathcal{H}/l^{-1}(\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z \) is a skyscraper sheaf whose only stalks are \(\frac{k}{2} \)-dimensional \(\mathcal{F} \)-vector spaces at the \(\mathcal{F} \)-rational points of \(\mathbb{P}^1 \). Namely, in notations from section [2] the \(\mathcal{F} \)-rational points of \(\mathbb{P}^1 \cong Z_{\gamma} \) are just the intersections \(Z_{\gamma} \cap Z_{\gamma_0, \gamma_1} \) with \(a \in R \), and \(Z_{\gamma} \cap Z_{\gamma_1} \). The stalk of \(\mathcal{H}/l^{-1}(\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z \) at \(Z_{\gamma} \cap Z_{\gamma_0, \gamma_1} \) is (canonically identified with) \(\bigoplus_{i=0}^{k} \mathbb{F}.(z - \overline{a})^i \) (with \(\overline{a} \in \mathbb{F} \) the image of \(a \in R \)), and the stalk at \(Z_{\gamma} \cap Z_{\gamma_1} \) is (canonically identified with) \(\bigoplus_{i=0}^{k} \mathbb{F}.z^i \). From the proof of [1,2] we get the exact sequence

\[
0 \to \tilde{Z}_{\text{har}}(k + 2)(1)_{Z_{\gamma}} \to \bigoplus_{j=0}^{\frac{k}{2}} \mathbb{F}.h_j \times \prod_{a \in R} \bigoplus_{j=\frac{k}{2}+1}^{k} \mathbb{F}.(\gamma_a, 0)h_j \to \sum_{j=0}^{k} \bigoplus_{j=0}^{k} \mathbb{F}.h_j
\]

(the first factor in the middle term is the \(\{Z_{\gamma_0}, Z_{\gamma_1}\} \)-component). Now \(\sigma \) maps \(\gamma_a, 0 \) to \(\gamma_{a, 0}.z^{-k-j} = (z - \overline{a})^{k-j} \), hence defines a map

\[
\tilde{Z}_{\text{har}}(k + 2)(1)_{Z_{\gamma}} \to H^0(\mathbb{P}^1, \frac{\mathcal{H}}{l^{-1}(\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z})
\]

whose composition with the projection to \(H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z) \) is an isomorphism: this isomorphism is our \(\beta_Z \). We have shown that \(\tilde{\theta} |_{\tilde{Z}_{\text{har}}(k+2)(1)} \) is injective and that its image \(\text{Im}(\tilde{\theta} |_{\tilde{Z}_{\text{har}}(k+2)(1)}) \subset H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1) \) maps isomorphically to \(H^1(\tilde{X}, \prod_{Z \in F^0}(\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z) \). From the exact sequence

\[
0 \to H^0(\tilde{X}, \prod_{\{Z_1, Z_2\} \in F^1} (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^{Z_1, Z_2}) \to H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1) \to H^1(\tilde{X}, \prod_{Z \in F^0}(\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^Z) \to 0
\]

we therefore get

\[
\frac{H^1(\tilde{X}, (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1)}{\text{Im}(\tilde{\theta} |_{\tilde{Z}_{\text{har}}(k+2)(1)})} \cong H^0(\tilde{X}, \prod_{\{Z_1, Z_2\} \in F^1} (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^{Z_1, Z_2}).
\]

In particular we get a map

\[
\frac{\tilde{Z}_{\text{har}}(k + 2)(1)}{\tilde{Z}_{\text{har}}(k + 2)(1)} \to H^0(\tilde{X}, \prod_{\{Z_1, Z_2\} \in F^1} (\mathcal{H}^0(\mathcal{R}^\bullet_X))_1^{Z_1, Z_2})
\]
induced by $\tilde{\theta}$ and it remains to show that this map is bijective. But this is clear, as both sides can be identified with $\text{ker}(\mathcal{N})$. If $k > 0$ is odd things are easier since there are no terms $(\mathcal{H}^0(\mathcal{R}^\bullet_\hat{X}))_{1}^{Z_1, Z_2}$ and we only need to show bijectivity of the maps

$$\tilde{Z}_\text{har}^{1}(k+2)_Z \overset{\text{res}}{\rightarrow} \tilde{Z}_\text{har}^{1}(k+2) \overset{\tilde{\theta}}{\rightarrow} H^1(\tilde{\mathcal{X}}, (\mathcal{H}^0(\mathcal{R}^\bullet_\hat{X})))_{1} \rightarrow H^1(\tilde{\mathcal{X}}, (\mathcal{H}^0(\mathcal{R}^\bullet_\hat{X}))_{1}^{Z}).$$

We can proceed just as before, now the sums in our local analysis run from 0 to k, resp. from $k+\frac{1}{2}$ to k.

At this point we see that by considering integral structures in our automorphic line bundles $\mathcal{O}_X(k)$ on X we obtain genuinely new structures in cohomology. Namely, whereas Theorem 4.2 does have a non-integral counterpart — the isomorphism

$$\text{Res} : \frac{\Gamma(X, \mathcal{O}_X(k+2))}{\text{im}[\Gamma(X, \mathcal{O}_X(-k)) \overset{\partial^{k+1}}{\rightarrow} \Gamma(X, \mathcal{O}_X(k+2))]} \cong C^1_{\text{har}}(K)$$

from [3] p.97 —, Theorem 5.5 has no non-integral counterpart (in fact $H^1(X, \mathcal{H}^0(\mathcal{R}^\bullet_\hat{X})) = 0$). As an application of Theorem 5.5 we get a global version of the monodromy operator, as follows. From [4.2], [5.1] and [5.5] we obtain G-equivariant isomorphisms (if $k > 0$)

$$H^0(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(k+2)) \cong Z^1_{\text{har}}(k+2) \cong H^1(\tilde{\mathcal{X}}, \mathcal{H}^0(\mathcal{R}^\bullet_\hat{X})) \otimes \varepsilon^{-k-1} \cong H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(-k)) \otimes \varepsilon^{-k-1}$$

whose composition we denote by ν.

Definition: The monodromy operator $N : H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X}) \rightarrow H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X})$ is the composition

$$H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X}) \overset{\text{pr}}{\rightarrow} H^0(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(k+2)) \overset{\nu}{\rightarrow} H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(-k)) \overset{i}{\rightarrow} H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X})$$

where pr resp. i is the natural projection resp. inclusion in (18).

Thus N is G-equivariant when viewed as a map $H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X}) \rightarrow H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X}) \otimes \varepsilon^{-k-1}$. Its monodromy filtration $\text{ker}(N) = \text{im}(N) = H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(-k))$ splits the Hodge filtration $H^0(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(k+2))$ of $H^1(\tilde{\mathcal{X}}, \mathcal{R}^\bullet_\hat{X})$. Now we restrict our attention to the action by $\text{SL}_2(K)$. If $\Gamma < \text{SL}_2(K)$ is a cocompact discrete torsion free subgroup, we only need to take Γ-invariants and invert p in (18) to obtain the Hodge decomposition

$$H^1(\tilde{\mathcal{X}}_{\Gamma}, (\mathcal{O}_{\tilde{X}}^\bullet \otimes_{\hat{K}} \text{Sym}^k_{\hat{K}}(\text{St}))^\Gamma) = H^0(\tilde{\mathcal{X}}_{\Gamma}, \mathcal{O}_{\tilde{X}}(k+2)^\Gamma) \oplus H^1(\Gamma, \text{Sym}^k_{\hat{K}}(\text{St}))$$

from [5.3] (we saw $H^1(\Gamma, \text{Sym}^k_{\hat{K}}(\text{St})) = H^1(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{X}}(-k))^\Gamma \otimes \mathbb{Q}$ in [5.3]): no higher Γ-group cohomology is needed for this passage. It is not hard to see that the monodromy operator we thus obtain on $H^1(\tilde{\mathcal{X}}_{\Gamma}, (\mathcal{O}_{\tilde{X}}^\bullet \otimes_{\hat{K}} \text{Sym}^k_{\hat{K}}(\text{St}))^\Gamma)$ is the one predicted by p-adic Hodge theory, using the description of the latter given in [4]. In particular this shows that N respects the integral de Rham structures (as opposed to integral Hyodo-Kato cohomology
structures) in $H^1(\hat{X}_\Gamma, (\Omega^*_\hat{X} \otimes_K \text{Sym}^k_R(\text{St}))^\Gamma)$, a fact which the general p-adic Hodge theory does not seem to suggest. We so obtain an infinite rank filtered monodromy module over $\mathcal{O}_\hat{K}$ which comprises all the filtered monodromy modules $H^1(\hat{X}_\Gamma, (\Omega^*_\hat{X} \otimes_K \text{Sym}^k_R(\text{St}))^\Gamma)$ for the various Γ.

For $k = 0$ we still can define N de Rham integrally as the composition

$$H^1(\hat{X}_\Gamma, (\mathcal{R}^*_\hat{X})^\Gamma) \xrightarrow{pr} H^0(\hat{X}_\Gamma, \mathcal{O}_{\hat{X}}(2)^\Gamma) \xrightarrow{Res^0} Z^1_{\text{par}}(2)^\Gamma,$$

$\xi \mapsto H^0(\hat{X}, \prod_{(Z_1, Z_2)} \mathcal{G}_{(Z_1, Z_2)}(\delta) \xrightarrow{i} H^1(\hat{X}_\Gamma, (\mathcal{R}^*_\hat{X})^\Gamma)$.

Here sheaves \mathcal{G}_Z and $\mathcal{G}_{(Z_1, Z_2)}$ and a map $Z^1_{\text{par}}(2) \to H^0(\hat{X}, \prod_{(Z_1, Z_2)} \mathcal{G}_{(Z_1, Z_2)})$ are defined just as in the proof of 5.5 and ξ is the restricted map on Γ-invariants. The map δ is the connecting homomorphism in group cohomology (observe that for $k = 0$ application of $H^0(\hat{X}, \cdot)$ to the sequence (20) preserves its exactness). Inverting p in the above composition gives the correct N on $H^1(\hat{X}_\Gamma, \Omega^*_\hat{X})$ (at least up to sign, see [4]).

6 Complements

(A) Let $\mathcal{R}^*_\hat{X} = \mathcal{R}^*_\hat{X}/(\hat{\pi})$. One can prove the analogs of 5.1 and 5.3 for $\mathcal{R}^*_\hat{X}$, namely:

$$H^1(\hat{X}, \mathcal{R}^*_\hat{X}) = H^1(\hat{X}, \mathcal{H}^0(\mathcal{R}^*_\hat{X})) \oplus H^0(\hat{X}, \mathcal{O}_{\hat{X}}(k + 2))$$

$$H^1(\hat{X}_\Gamma, (\mathcal{R}^*_\hat{X})^\Gamma) = H^1(\hat{X}_\Gamma, (\mathcal{H}^0(\mathcal{R}^*_\hat{X}))^\Gamma) \oplus H^0(\hat{X}_\Gamma, \mathcal{O}_{\hat{X}}(k + 2)^\Gamma).$$

Note that this is not obvious from the proof of 5.1 there we did not consider $\mathcal{H}^0(\mathcal{R}^*_\hat{X})$.

(B) Let $k \in \mathbb{Z}$ be even and let $\omega^\frac{k}{2}_{\hat{X}/\mathcal{O}_R}$ be the logarithmic differential module of the log smooth morphism $\hat{X} \to \text{Spf}(\mathcal{O}_K)$: an invertible $\text{PGL}_2(K)$-equivariant line bundle on \hat{X}.

We have an $\text{SL}_2(K)$-equivariant isomorphism

$$\mathcal{O}_{\hat{X}}(k) \cong \omega^\frac{k}{2}_{\hat{X}/\mathcal{O}_R}, \quad f \mapsto fdz^\frac{k}{2}.$$

Now $dz^\frac{k}{2}$ is not a generator of $\omega^\frac{k}{2}_{\hat{X}/\mathcal{O}_R}$, not even a global section of $\omega^\frac{k}{2}_{\hat{X}/\mathcal{O}_R}$ if $k < 0$. Let $k > 0$ and even. For $a \in \mathcal{O}_K$ the local section $d\log(z - a)$ is a generator of $\omega^\frac{k}{2}_{\hat{X}/\mathcal{O}_R}$ on an appropriate open formal subscheme of \hat{X}. There, the complex $\mathcal{R}^*_\hat{X}$ becomes isomorphic to

$$\omega^\frac{k}{2}_{\hat{X}/\mathcal{O}_R} \xrightarrow{\sim} \omega^\frac{k+2}{2}_{\hat{X}/\mathcal{O}_R},$$

$$f d\log(z - a) \xrightarrow{\text{def}} (D_a \prod_{j=1}^{k} (D_a^2 - j^2) f) d\log(z - a) \omega^\frac{k+2}{2}_{\hat{X}/\mathcal{O}_R}.$$
where $D_a = (z-a)\partial = \frac{(z-a)d}{d(z-a)}$. For the proof you need to show $(z-a)^{k+1} (z-a)^{\frac{1}{2}} = D_a \prod_{j=1}^{k} (D_a - j^2)$. For this show by induction on n, departing from $D_a = \partial (z-a) - 1$ that $(z-a)^n \partial^n = D_a (D_a-1) \cdots (D_a-n+1)$ and $\partial^n (z-a)^n = (D_a+n)(D_a+n-1) \cdots (D_a+1)$. Also note $-D_a = (z-a)^{-1} \frac{d}{d(z-a)}$.

(C) For even weights $k \in \mathbb{Z}$ the \mathcal{O}_X-modules $\mathcal{O}_X(k)$ are in fact line bundles, and the base extension $K \to \hat{K}$ is unnecessary, i.e. everything we did here descends from \hat{K} to K. The automorphic action of even weight k in [5] is the one we get by replacing the factor $\chi^k(\gamma)$ with the factor $\det(\gamma)^{\frac{k}{2}}$ in equation (11). All our results carry over to this situation (and in 5.5 no ε^{k+1}-twist is needed). But also if the weight k is odd, if one is willing to restrict the automorphic action on $\mathcal{O}_X(k)$ to a smaller group, the base extension $K \to \hat{K}$ can be avoided and one has equivariant integral structures which are even line bundles. Let $G^{even} = \{\gamma \in G; \omega(\det(\gamma)) \text{ even}\}$. Note that the restriction to G^{even} of the automorphic action (defined in equation (1)) only depends on the choice of π, not of $\hat{\pi}$. In notations from section 1 define the following $\mathcal{O}_{\hat{U}(Z_{\gamma n},Z_{\gamma n+1})}$-submodule of $\mathcal{O}_{\hat{U}(Z_{\gamma n},Z_{\gamma n+1})} \otimes \mathcal{O}_K K$:

$$\mathcal{O}_{\hat{U}(Z_{\gamma n},Z_{\gamma n+1})}(k) = \mathcal{O}_{\hat{U}(Z_{\gamma n},Z_{\gamma n+1})} \cdot f_{n,n}^{\left[\frac{k}{2}\right]} f_{n,n+1}^{\left[\frac{k+1}{2}\right]}.$$

The $\mathcal{O}_{\hat{U}(Z_{\gamma n},Z_{\gamma n+1})}(k)$ glue into an invertible $\mathcal{O}_{\hat{Y}}$-submodule $\mathcal{O}_{\hat{Y}}(k)$ of $\mathcal{O}_{\hat{Y}} \otimes \mathcal{O}_K K$. Observe

$$\mathcal{O}_{\hat{Y}}(k)|_{\hat{U}(Z_{\gamma n})} = \pi^{\left[\frac{k}{2}\right]} \mathcal{O}_{\hat{U}(Z_{\gamma n})} \text{ inside } \mathcal{O}_{\hat{U}(Z_{\gamma n})} \otimes \mathcal{O}_K K.$$

As in [11] one sees that $\mathcal{O}_{\hat{Y}}(k)$ globalizes to a G^{even}-equivariant line bundle $\mathcal{O}_X(k)$ on X, an integral structure in $\mathcal{O}_X(k)$. Our entire analysis of $\mathcal{O}_X(k)$ can be repeated with $\mathcal{O}_X(k)$, with essentially the same results (e.g. those from section 2 however, the case $k = 1$ is slightly harder in this context). One additional feature is that one has to study $\mathcal{O}_X(k) \otimes \mathcal{O}_Z$ for $Z \in F_{even}$ and for $Z \in F_{odd}$ separately (the two orbits of G^{even} acting on F^0) and the shapes of these two types are indeed different if k is odd.

References

[1] C. Breuil, Invariant \mathcal{L} et série spéciale p-adique, preprint

[2] R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124, 215–241 (1996)

[3] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques. Modular functions of one variable, II (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972), 143–316. Lecture Notes in Math. 349, Springer, Berlin (1973)

[4] A. Iovita and M. Spiess, Derivatives of p-adic L-functions, Heegener cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), no.2, 333–384

[5] P. Schneider, The cohomology of local systems on p-adically uniformized varieties, Math. Ann. 293, 623–650 (1992)

[6] P. Schneider and U. Stuhler, The cohomology of p-adic symmetric spaces, Invent. Math. 105 (1991), no.1, 47–122

[7] E. de Shalit, Differentials of the second kind on Mumford curves, Isr. J. Math. 71 (1990), 1–16

[8] J. Teitelbaum, Modular representations of PGL$_2$ and automorphic forms for Shimura curves. Invent. Math. 113 (1993), no. 3, 561–580.

[9] T. Tsuji, Poincaré duality for logarithmic crystalline cohomology. Compositio Math. 118 (1999), no. 1, 11–41.

Mathematisches Institut der Universität Münster
Einsteinstrasse 62, 48149 Münster, Germany
E-mail address: klonne@math.uni-muenster.de