Pulse NMR of 3He in aerogel at temperature 1.5 K

A Klochkov1, V Kuzmin1, K Safiullin1, M Tagirov1, A Yudin1, and N Mulders2

1 Physics Department, Kazan State University, 18 Kremlyovskaya st., Kazan, 420008, Russia

2 Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

klochkov@kzn.ru

Abstract. Experimental data of 3He pulse NMR in contact with aerogel (95%) in a nuclear Larmor frequency range of 5 to 20 MHz at $T=1.5$ K are reported. For the first time spin kinetics of 3He (adsorbed, gaseous and liquid) has been studied systematically at temperatures higher than degeneracy temperature of this quantum liquid. It has been shown, that in all cases the nuclear spin-lattice relaxation time T_1 is linearly proportional to the Larmor frequency, while the spin-spin relaxation time T_2 is frequency independent. The magnetic relaxation times T_1 and T_2 are linearly proportional to the ratio of the magnetization of whole spin system to magnetization of the adsorbed layer of 3He.

1. Introduction

Aerogel consists of a network of randomly interconnected solid particles of amorphous SiO$_2$, 3-5 nm in size with an average distance between strands of about 50 nm. Because of open geometry and large porosity (in a present work a sample of aerogel 95% porosity has been used), as well as a large surface area (as much as 1000 m2/g), aerogel is a unique system for the study of impurity and surface effects.

Superfluid 3He in aerogel is studied extensively, and by a wide variety of methods, but little information exists on the nuclear magnetic relaxation of either the degenerate and nondegenerate Fermi liquid 3He (The degeneracy temperature is about 0.5 K) in aerogel [1,2]. The spin kinetics of 3He in different phases in confined geometry is also a matter of interest [3,4].

The goal of present work was to determine impact of different mechanisms on the nuclear magnetic relaxation of 3He in contact with aerogel. The experiments were all done at a temperature of 1.5 K.

2. Experimental part

The spin kinetics of 3He in contact with aerogel has been studied using pulse NMR techniques in a Larmor frequency range between 5 MHz and 20 MHz.

A 95% porous aerogel sample (d=5 mm, h=7 mm) was sealed leak tight in a glass tube. Gaseous 3He was condensed in the sample at temperature 1.5 K. A home-made pulse NMR spectrometer was used to measure the nuclear magnetic relaxation. Spin-lattice relaxation times were measured using the "saturation-recovery" method, by measuring the free induction decay (FID) amplitude after the saturating pulse and $\pi/2$-pulse. Spin-spin relaxation times were measured by Hann method. The temperature 1.5 K was achieved by pumping on a 4He bath.

The saturation of aerogel by 3He was carried out in the following sequence: gaseous 3He was condensed in the experimental cell in small amounts (about 0.5 cm3 STP). The pressure in the system...
was monitored, and when it reached a value less than 10^{-2} torr the next dose of 3He was added. When the equilibrium pressure in the system rose above 10^{-1} torr, the entire surface of the aerogel was assumed to be covered by 3He. Further condensation of 3He led to an increase of the pressure with most of the 3He remaining in the gas phase. When the pressure approached the saturation value (50.3 torr at 1.5 K), the liquid phase appeared and further dosing of 3He was controlled by the 3He NMR signal amplitude.

3. Results
In all experiments, with 3He adsorbed on the surface, adsorbed and gaseous 3He as well as with adsorbed and liquid 3He present in the aerogel, T_1 and T_2 showed behavior that could be characterized by a single exponential. No separate NMR signals that could be attributed to mobile (liquid and vapor) and a localized (i.e. adsorbed) 3He were observed. This can be explained by fast molecular exchange in the system.

![Figure 1](image1.png)

Figure 1. Frequency dependence of spin-lattice relaxation time T_1 and spin-spin relaxation time T_2 in aerogel at $T=1.5$ K: ○ – adsorbed 3He, ▲ – adsorbed and gaseous 3He (25 torr), ■ – adsorbed and liquid 3He

![Figure 2](image2.png)

Figure 2. The dependence of spin-lattice relaxation time T_1 and spin-spin relaxation time T_2 on the amount of 3He in the aerogel, $f_0=10$ MHz, $T=1.5$ K.

In all cases the spin-lattice relaxation time T_1 linearly depends on the 3He Larmor frequency (Fig.1a), while the spin-spin relaxation times in all phases of 3He in aerogel is independent of the
NMR frequency (Fig.1b). In Fig.2a and Fig.2b the dependence of T_1 and T_2 on the amount of 3He in the system is presented. As can be seen, these dependences are linear.

To further investigate the influence of the adsorbed 3He film on the magnetic relaxation of 3He, experiments have been conducted in which the aerogel surface was coated with (non-magnetic) 4He. The amount of 4He necessary to cover the sample surface was determined by the same methods as for 3He. After the aerogel surface was covered by a layer of 4He, 3He was added until the equilibrium pressure reached 25 torr. This coverage of the aerogel surface slows down the magnetic relaxation by more than an order of magnitude (Fig.3a and Fig.3b).

![Figure 3.](image)

Figure 3. The 3He longitudinal magnetization recovery and transverse magnetization decay curves of gaseous 3He in aerogel with the surface covered by: ○ 3He, ● 4He, both at an equilibrium 3He pressure of 25 torr and T=1.5 K.

4. Discussion

The linear frequency dependence of T_1 and the fact that T_2 is independent of frequency in adsorbed 3He layer (Fig.1a and Fig.1b) may be explained on the basis of Cowan’s mechanism for magnetic relaxation for 3He in 2-D films [5]. This mechanism is dependent on quantum exchange in the solid adsorbed layer of 3He. Cowan introduced the conception of 2-D spin-diffusion with a characteristic frequency ω_c. At some condition on a correlation function in frames of this theory calculations give linear dependence of T_1 on frequency in frequency range $0.3<\omega/\omega_c<3$. For explanation of linear dependence of T_1 on frequency for substrate with non-homogenous surface, for instance DLX-6000 powder, by Maegawa et al [6] has been proposed the idea about existence of ω_c frequency spectra, which corresponds to localization of 3He in cavities with different surface area and linear frequency dependence of T_1 exists in a wide frequency range. It is not clear to what extend this theory, which was constructed for purely 2-D systems, is applicable to the fractal structure of aerogel.

The measurements of T_1 and T_2 versus amount of 3He in the system (Fig.2a and Fig.2b) show, that both T_1 and T_2 are linearly proportional to the relaxation times in the adsorbed layer and the magnetization of the entire spin system scaled by that of the atoms in the adsorbed layer, i.e.:

\[
T_1 = T_{1S} \cdot N_0 / N_S, \tag{1}
\]

\[
T_2 = T_{2S} \cdot N_0 / N_S, \tag{2}
\]

where T_1 and T_{1S} are the spin-lattice relaxation times, T_2 and T_{2S} the spin-spin relaxation times, and N_0 and N_S are the number of spins for the entire spin system and for adsorbed layer respectively.

Surprisingly, the transition from a system consisting of a gas phase plus an adsorbed layer, and one that contains liquid has no effect on the magnetic relaxation rates of the spin system as a whole. The amount of 3He in gaseous and liquid states was estimated by comparison of FID amplitude in these
phases and the FID amplitude of the adsorbed layer. From Fig.2a and Fig.2b can be seen, that amount of 3He in the adsorbed layer is about 9% of maximum amount of 3He in aerogel.

These results can be explained by the magnetic reservoir model of Hammel and Richardson [7]. According to this model the entire 3He magnetization relaxed via the adsorbed, ("localized"), 3He on the substrate surface with the process of magnetization transfer between "localized" and "mobile" spins taking place faster than T_{1S}.

Experiments with the aerogel surface coated with nonmagnetic 4He support the idea that the magnetic relaxation of "mobile" (liquid and gaseous) 3He takes place via the immobile surface layer of 3He. Magnetic relaxation times rises more than on order of magnitude (Fig.3a and Fig.3b) at the same 3He pressure.

The non-exponential behavior of the 3He transverse magnetization decay in the system with a 4He coating (Fig.3b) is due to a non-homogenous magnetic field H_0 and the existence of an additional mechanism for transverse magnetization decay.

5. Conclusions
Summarizing all experimental data, we can conclude, that the nuclear magnetic relaxation of the entire 3He spin system occurs through the 3He layer adsorbed on the aerogel. The intrinsic relaxation mechanisms in the liquid and gas phases is much weaker than that in the adsorbed layer. To explain the observed nuclear magnetic relaxation in the adsorbed layer a new theoretical model is needed that is applicable for the aerogel structure.

Acknowledgments
Authors are grateful to V.V. Dmitriev and D.A. Tayurskii for their constant interest to this work and to G.V. Mamin for help in sample preparation. This work was done with the support of the Russian Fund of Basic Research (N 09-02-01253).

6. References
[1] Dmitriev V V, Kosarev I V, Mulders N, Zavjalov V V, Zmeev D Ye 2003 *Physica B:Condensed Matter* 329-333 322
[2] Dmitriev V V, Kosarev I V, Mulders N, Zavjalov V V, Zmeev D Ye 2003 *Physica B:Condensed Matter* 329-333 296
[3] Mamin G V, Suzuki H, Tagirov M S, Efimov V N, Yudin A N 2003 *Physica B: Condensed Matter* 329-333 1237
[4] Tagirov M S, Yudin A N, Mamin G V, Rodionov A A, Tayurskii D A, Klochkov A V, Belford R L, Ceroke P J, Odintsov B M 2007 *J.Low.Temp. Phys.* 148 815
[5] Cowan B P 1983 *J. Low. Temp. Phys.* 50 135
[6] Maegawa S, Schuhl A, Meisel M W, Chapellier M 1986 *Europhys.Lett.* 1 83
[7] Hammel P C, Richardson R C 1984 *Phys. Rev. Lett.* 51 1441