Prevalence of Hepatitis B and Hepatitis C Infection and Their Associated Factors Among HIV-Infected Individuals in Same-Day Antiretroviral Therapy Initiation Program in Bangkok, Thailand

Supanat Thitipatarakorn (supanat.t@ihri.org)
Institute of HIV Research and Innovation

Tanat Chinbunchom
Institute of HIV Research and Innovation

Jitsupa Peelay
Institute of HIV Research and Innovation

Pich Seekaew
Department of Epidemiology, Columbia University Mailman School of Public Health

Sorawit Amatavete
Institute of HIV Research and Innovation

Monsiri Sangsai
Thai Red Cross Anonymous Clinic, Thai Red Cross AIDS Research Centre

Tippawan Pankam
Thai Red Cross Anonymous Clinic, Thai Red Cross AIDS Research Centre

Anchalee Avihingsanon
HIV-NAT, Thai Red Cross AIDS Research Centre

Matthew Avery
Family Health International 360

Praphan Phanuphak
Institute of HIV Research and Innovation

Reshmie Ramautarsing
Institute of HIV Research and Innovation

Nittaya Phanuphak
Institute of HIV Research and Innovation

Research Article

Keywords: hepatitis B, hepatitis C, HIV, viral hepatitis vaccines, sexual and gender minorities, transgender persons
Abstract

Background

Viral hepatitis is highly prevalent among people living with HIV (PLHIV) and can lead to chronic liver complications. Thailand started universal hepatitis B vaccination at birth in 1992. We explored prevalence rates of hepatitis B and C and associated factors among PLHIV from same-day antiretroviral therapy (SDART) service at the Thai Red Cross Anonymous Clinic, Bangkok, Thailand.

Methods

We collected baseline characteristics from PLHIV enrolled in the SDART service between July 2017 and November 2019. Multivariate logistic regression was carried out to determine factors associated with positive hepatitis B surface antigen (HBsAg) and hepatitis C antibody (anti-HCV).

Results

We included a total of 4,011 newly diagnosed PLHIV who had HBsAg or anti-HCV results at baseline. Included were 2,941 men who have sex with men (MSM; 73.3%), 851 general population (21.2%), 215 transgender women (TGW; 5.4%), and 4 transgender men (0.1%). Median age was 27 years. Overall seroprevalence of HBsAg and anti-HCV were 6.0% and 4.1%, respectively. Subgroup prevalence rates were 6.2% and 4.7% among MSM, 4.6% and 2.4% among general population, and 9.3% and 3.7% among TGW. Factors associated with HBsAg positivity were being MSM (adjusted odds ratio [aOR] 1.64, 95% confidence interval [CI] 1.13 to 2.40), being TGW (aOR 2.87, 95% CI 1.60 to 5.17), birth year before 1992 (aOR 2.32, 95% CI 1.69 to 3.16), CD4 count < 200 cells/mm³ (aOR 1.38, 95% CI 1.03, 1.86), and alanine aminotransferase ≥ 62.5 U/L (aOR 2.39, 95% CI 1.66 to 3.43). Factors associated with anti-HCV positivity were being MSM (aOR 2.11, 95% CI 1.26 to 3.55), age > 30 years (aOR 1.54, 95% CI 1.10 to 2.17), alanine aminotransferase ≥ 62.5 U/L (aOR 7.74, 95% CI 5.48 to 10.9), creatinine clearance < 60 ml/min (aOR 5.58, 95% CI 1.95 to 16.0), and having syphilis (aOR 1.95, 95% CI 1.36 to 2.78).

Conclusions

Around 5–10% of newly diagnosed PLHIV in Bangkok had hepatitis B infection after 25 years of universal vaccination. Anti-HCV positivity was found in 4–5% of PLHIV who were MSM and TGW. Every PLHIV should be routinely tested for hepatitis B and C and immediately linked to appropriate prevention and treatment interventions.

Background
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are prevalent worldwide. In 2015, chronic HBV infection was estimated to be in 3.5% of the world population [1]. People living with HIV (PLHIV) had a higher estimated prevalence rate of 7.4% [1]. In Thailand, a study estimated that 5.1% of the general population was infected with HBV in 2015 [2]. The rates of infection were higher at 8.1% among men who have sex with men (MSM) and 8.1% among PLHIV [2]. A study conducted from 2006 to 2008 reported an infection rate of 13.8% among MSM living with HIV [3]. Worldwide hepatitis C prevalence in 2015 was 1.0%, and among PLHIV was 6.2%, though subgroup prevalence ranged from 82.4% in PLHIV who inject drugs and 6.4% in MSM living with HIV to 2.4% in PLHIV without those risk factors [1]. In Thailand, a national survey of the general population in 2014 showed hepatitis C antibody (anti-HCV) seroprevalence of 0.9% [4]. In contrast, a study focused on PLHIV found that anti-HCV seroprevalence in this population was 7.7% [5].

More than 70% of people infected with HCV and less than 6% of people who acquired HBV as an adult could turn into chronic carriers [1, 6]. Twenty per cent of chronic carriers could develop cirrhosis and hepatocellular carcinoma which are life threatening [1]. Having cofactors such as HIV infection and alcohol use can also accelerate the development of end-stage liver diseases [1, 6]. HBV and HCV are not only transmitted from mother to child but also sexually transmitted and share routes of transmission: percutaneous and mucosal exposures [6, 7]. Having unprotected sex, multiple partners, injection drug use, and a history of other sexually transmitted diseases are important factors associated with HBV acquisition [6]. HCV is transmitted mainly through unsafe healthcare settings and injection drug use [1]. However, sexual transmission of HCV among PLHIV and MSM has been observed [6, 8–12]. MSM and transgender women (TGW) are prone to HCV infection due to the high prevalence of needle sharing either for illicit drugs or cosmetic injections and mucosal trauma associated with anal intercourse [9, 13–16].

Unlike HCV infection, HBV infection is a vaccine-preventable disease. Universal hepatitis B vaccination at birth was integrated into Thailand’s Expanded Program on Immunization (EPI) in 1992 [17]. In 2014, a difference in HBV infection rate was seen among population born before 1992 (4.5%) and population born after 1992 (0.6%) [17]. The program reached over 95% coverage in 1999. Nonetheless, in 2014, 55.2% of population born after 1992 still had negative hepatitis B surface antibody, and thus were susceptible to HBV infection [17]. National HIV treatment guidelines recommended baseline screening of newly diagnosed PLHIV with hepatitis B surface antigen (HBsAg) and anti-HCV, as HBV and HCV coinfections are commonly found and play a role in selecting antiretroviral therapy regimens [18].

The Thai Red Cross Anonymous Clinic (TRCAC) is the largest testing center for HIV and sexually transmitted infections in Bangkok, Thailand. Eligible clients who test positive for HIV are included in the same-day antiretroviral therapy (SDART) service [19]. Because this service includes a mixed population consisting of general population, MSM, TGW, and TGM, this study aimed to explore prevalence rates and associated risk factors of HBV and HCV seropositivity among PLHIV in the SDART service and prompt providers to consider management plans according to the risk factors.

Methods
This study is a cross-sectional descriptive study collecting demographic and laboratory data of clients in the SDART service from 13 July 2017 to 30 November 2019. Included in this study were PLHIV newly diagnosed at TRCAC who tested for either HBsAg or anti-HCV at baseline. Demographic data included gender, age, birth year, educational level, residential location, and level of income. Persons born in or after 1992 were classified as “born after EPI,” and persons born before 1992 were “born before EPI.” This translates to the age of 25 years for individuals who tested in 2017, 26 in 2018, and 27 in 2019. Baseline laboratory tests included HBsAg, anti-HCV, CD4 count, alanine aminotransferase (ALT), creatinine clearance (CrCl), treponemal test, and nontreponemal test. A severe decrease in CD4 count was defined as a CD4 count of less than 200 cells/mm3 [20]. Regarding ALT, a cutoff of 62.5 U/L calculated from 1.25 times the upper normal limit of the local laboratory was used to indicate a mild increase [20]. Creatinine clearance was calculated with the Cockcroft-Gault equation and categorized as severely decreased if less than 60 ml/min [20]. Syphilis was diagnosed when the treponemal test (enzyme immunoassay, chemiluminescent microparticle immunoassay, rapid immunochromatographic assay, or treponema pallidum hemagglutination assay) and nontreponemal test (either rapid plasma reagin or venereal disease research laboratory) were both positive. Clients who did not initiate antiretroviral therapy at TRCAC might not have all baseline laboratory test results.

Data analysis

Data were analyzed using Stata Version 15.0. Continuous parameters were presented as median with interquartile range (IQR). Categorical parameters were expressed in frequency and percentages. The prevalence rates of positive HBsAg and anti-HCV were calculated. Univariate and multivariate analyses were carried out to determine factors associated with positive HBsAg and anti-HCV. Univariate analysis comparing HBsAg-positive PLHIV with HBsAg-negative using the simple logistic regression model was tested. Factors with p value of less than 0.2 were carried over to the multivariate analysis. Multivariate analysis with a stepwise multiple logistic regression model including associated factors related to positive HBsAg or anti-HCV was tested and reported with an adjusted odds ratio (aOR) and a 95% confidence interval (CI). A p value of less than 0.05 was considered significant.

Results

The total number of PLHIV who had HBsAg or anti-HCV results at baseline was 4,011 out of 6,037. Specifically, all of 4,011 tested for HBsAg, while 3,990 tested for anti-HCV. Most of them were MSM (73.3%), followed by general population (21.2%), TGW (5.4%), and transgender men (TGM, 0.1%). Median age was 27 years (IQR 23–34). Sociodemographic and laboratory characteristics are shown in Table 1. Of the included clients, 46.0% were born after EPI, 25.9% had a CD4 count of less than 200 cells/mm3, and 19.3% had syphilis diagnosed at baseline.
Table 1
Distribution of HIV-Positive Individuals by Sociodemographic and Laboratory Characteristics

Characteristic	Total	HBsAg Positive	Anti-HCV Positive
	n (%)	n (%)	n (%)
	or value	or value	or value
Sociodemographic data			
Gender	4011	242	164
MSM	2941 (73.3)	182 (75.2)	136 (82.9)
General population	851 (21.2)	39 (16.1)	20 (12.2)
TGW	215 (5.4)	20 (8.3)	8 (4.9)
TGM	4 (0.1)	1 (0.4)	0 (0.0)
Age (years), median (IQR)	27 (23–34)	31 (26–37)	29 (24–37)
Age (years)	4011	242	164
≤ 20	438 (10.9)	13 (5.4)	8 (4.9)
21–30	2112 (52.7)	107 (44.2)	81 (49.4)
31–40	1016 (25.3)	89 (36.8)	51 (31.1)
41–50	349 (8.7)	27 (11.2)	19 (11.6)
> 50	96 (2.4)	6 (2.5)	5 (3.0)
Birth year	4011	242	164
< 1992	2167 (54.0)	176 (72.7)	105 (64.0)
≥ 1992	1844 (46.0)	66 (27.3)	59 (36.0)
Educational level	2320	138	112
High school or below	794 (34.2)	49 (35.5)	27 (24.1)
College or above	1526 (65.8)	89 (64.5)	85 (75.9)
Residential location	2019	116	99
Bangkok	1381 (68.4)	75 (64.7)	66 (66.7)
Outside Bangkok	638 (31.6)	41 (35.3)	22 (33.3)
Monthly income (baht)	1337	78	62
≤ 10,000	256 (19.1)	7 (9.0)	8 (12.9)

HBsAg, hepatitis B surface antigen; anti-HCV, hepatitis C antibody; MSM, men who have sex with men; TGW, transgender women; TGM, transgender men; ALT, aspartate aminotransferase; CrCl, creatinine clearance.
Laboratory data

Characteristic	Total n (%) or value	HBsAg Positive n (%) or value	Anti-HCV Positive n (%) or value
>10,000	1081 (80.9)	71 (91.0)	54 (87.1)
Laboratory data			
HBsAg	4011	-	164
Positive	242 (6.0)	-	12 (7.3)
Negative	3769 (94.0)	-	152 (92.7)
Anti-HCV	3990	221	-
Positive	164 (4.1)	12 (5.4)	-
Negative	3826 (95.9)	209 (94.6)	-
CD4 count (cells/mm3)	4004	240	163
< 200	1038 (25.9)	86 (35.8)	37 (22.7)
≥ 200	2966 (74.1)	154 (64.2)	126 (77.3)
ALT (U/L)	3976	219	162
< 62.5	3623 (91.1)	177 (80.8)	98 (60.5)
≥ 62.5	353 (8.9)	42 (19.2)	64 (39.5)
CrCl (ml/min)	3923	213	160
< 60	29 (0.7)	0 (0.0)	5 (3.1)
≥ 60	3894 (99.3)	213 (100.0)	155 (96.9)
Syphilis	3972	225	163
Positive	767 (19.3)	54 (24.0)	54 (33.1)
Negative	3205 (80.7)	171 (76.0)	109 (66.9)

HBsAg, hepatitis B surface antigen; anti-HCV, hepatitis C antibody; MSM, men who have sex with men; TGW, transgender women; TGM, transgender men; ALT, aspartate aminotransferase; CrCl, creatinine clearance.

The overall prevalence of positive HBsAg was 6.0%. TGW had a prevalence of 9.3%, followed by MSM, 6.2%. People born after the EPI (in or after 1992) had a prevalence of 3.6% as compared to 8.1% in people born before the EPI.
Regarding HCV infection, the overall anti-HCV seroprevalence was 4.1%. MSM carried the highest prevalence among all study population (4.7%). People aged over 30 years had a prevalence of 5.2%, while it was 3.5% among people younger than 30 years. Of 3,990 who tested for both HBsAg and anti-HCV, 12 (0.3%) were positive for both. They were counted toward the HBsAg-positive and anti-HCV-positive groups according to their viral hepatitis profile. Overall and age-stratified prevalence of HBsAg and anti-HCV are shown in Table 2.

Age (Years)	HBsAg	Anti-HCV		
	No. of HBsAg+ / No. of Tested	%	No. of Anti-HCV+ / No. of Tested	%
Overall	242/4011	6.0	164/3990	4.1
≤ 20	13/438	3.0	8/435	1.8
21–30	107/2112	5.1	81/2106	3.8
31–40	89/1016	8.8	51/1007	5.1
41–50	27/349	7.7	19/346	5.5
> 50	6/96	6.3	5/96	5.2

Table 2

Overall and Age-Stratified Prevalence of Hepatitis B Surface Antigen and Hepatitis C Antibody

Factors found significant at the 95% confidence level from the univariate analysis were carried over to the multivariate analysis as presented in Table 3 and Table 4. Factors associated with positive HBsAg were being MSM (adjusted odds ratio [aOR] 1.64, 95% CI 1.13 to 2.40, p = 0.010), being TGW (aOR 2.87, 95% CI 1.60 to 5.17, p < 0.001), being born before 1992 (aOR 2.32, 95% CI 1.69, 3.16, p < 0.001), CD4 count < 200 cells/mm³ (aOR 1.38, 95% CI 1.03 to 1.86, p = 0.031), and ALT ≥ 62.5 U/L (aOR 2.39, 95% CI 1.66 to 3.43, p < 0.001). Factors associated with positive anti-HCV were being MSM (aOR 2.11, 95% CI 1.26 to 3.55, p = 0.005), age > 30 years (aOR 1.54, 95% CI 1.10 to 2.17, p = 0.012), ALT ≥ 62.5 U/L (aOR 7.74, 95% CI 5.48 to 10.9, p < 0.001), CrCl < 60 ml/min (aOR 5.58, 95% CI 1.95 to 16.0, p = 0.001), and syphilis positive (aOR 1.95, 95% CI 1.36 to 2.78, p < 0.001).
Table 3
Hepatitis B Surface Antigen Prevalence in HIV-Infected Individuals and Associated Factors Assessed by Univariate and Multivariate Analyses

Factor	No. of HBsAg+ / No. of Tested	%	Univariate	Multivariate†
			Crude OR	Adjusted OR
			(95% CI)	(95% CI)
			p	p
Gender	4011			
General population	39/851	4.6	Reference	Reference
MSM	182/2941	6.2	1.37	1.64
			(0.96 to 1.96)	(1.13 to 2.40)
TGW	20/215	9.3	2.14	2.87
			(1.22 to 3.74)	(1.60 to 5.17)
TGM	1/4	25.0	6.94	5.77
			(0.71 to 68.3)	(0.57 to 58.7)
Birth year	4011			
< 1992	176/2167	8.1	2.38	2.32
			(1.78 to 3.18)	(1.69 to 3.16)
≥ 1992	66/1844	3.6	Reference	Reference
Monthly income (baht)	1337			
≤ 10,000	7/256	2.7	Reference	
> 10,000	71/1081	6.6	2.50	0.023
			(1.14 to 5.50)	
Residential location	2019			
Bangkok	75/1381	5.4	Reference	

HBsAg, hepatitis B surface antigen; CI, confidence interval; anti-HCV, hepatitis C antibody; ALT, alanine aminotransferase; CrCl, creatinine clearance.

†n = 3974
Factor	No. of HBsAg+ / No. of Tested	%	Univariate	Multivariate†
			Crude OR	Adjusted OR
			(95% CI)	(95% CI)
			p	p
Outside Bangkok	41/638	6.4	1.20	0.372
			(0.81 to 1.77)	
Educational level	2320		Reference	
College or above	89/1526	5.8	Reference	
High school or below	49/794	6.2	1.06	0.743
			(0.74 to 1.52)	
Anti-HCV	3990		Reference	
Negative	209/3826	5.5	Reference	
Positive	12/164	7.3	1.37	0.311
			(0.75 to 2.50)	
CD4 count (cells/mm³)	4004			
< 200	86/1038	8.3	1.65	1.38
			(1.25 to 2.17)	(1.03 to 1.86)
			< 0.001	0.031
≥ 200	154/2966	5.2	Reference	Reference
ALT (U/L)	3976			
< 62.5	177/3623	4.9	Reference	Reference
≥ 62.5	42/353	11.9	2.63	2.39
			(1.84 to 3.75)	(1.66 to 3.43)
			< 0.001	< 0.001
CrCl (ml/min)	3923			
< 60	0/29	0.0		-

HBsAg, hepatitis B surface antigen; CI, confidence interval; anti-HCV, hepatitis C antibody; ALT, alanine aminotransferase; CrCl, creatinine clearance.

†n = 3974
Factor	No. of HBsAg+ / No. of Tested	%	Univariate	Multivariate†		
			Crude OR (95% CI)	p	Adjusted OR (95% CI)	p
≥ 60	213/3894	5.5	-	-		-
Syphilis	3972		Reference			
Negative	171/3205	5.3				
Positive	54/767	7.0	1.34 (0.98 to 1.84)	0.067		

HBsAg, hepatitis B surface antigen; CI, confidence interval; anti-HCV, hepatitis C antibody; ALT, alanine aminotransferase; CrCl, creatinine clearance.

†n = 3974
Table 4
Hepatitis C Antibody Prevalence in HIV-Infected Individuals and Associated Factors Assessed by Univariate and Multivariate Analyses

Factor	No. of Anti-HCV+ / No. of Tested	%	Univariate	Multivariate†
			Crude OR [95% CI]	Adjusted OR [95% CI]
			p	p
Gender	3990		Reference	Reference
General population	20/849	2.4	Reference	Reference
MSM	136/2923	4.7	2.02	2.11
			(1.26 to 3.25)	(1.26 to 3.55)
			0.004	0.005
TGW	8/214	3.7	1.61	1.78
			(0.70 to 3.71)	(0.74 to 4.30)
			0.263	0.199
TGM	0/4	0.0	-	-
Age	3990		Reference	Reference
≤ 30	89/2541	3.5	Reference	Reference
> 30	75/1449	5.2	1.51	1.54
			(1.10 to 2.06)	(1.10 to 2.17)
Monthly income (baht)	1330		Reference	Reference
≤ 10,000	8/256	3.1	Reference	
> 10,000	54/1074	5.0	1.64	0.199
			(0.77 to 3.49)	
Residential location	1999		Reference	
Bangkok	66/1367	4.8	Reference	

Anti-HCV, hepatitis C antibody; CI, confidence interval; ALT, alanine aminotransferase; CrCl, creatinine clearance.

†n = 3901
Factor	No. of Anti-HCV+ / No. of Tested	%	Univariate	Multivariate†
			Crude OR	Adjusted OR
			[95% CI]	[95% CI]
			p	p
Outside Bangkok	33/632	5.2	1.09	0.706
			(0.71 to 1.67)	
Educational level	2301		Reference	0.022
College or above	85/1514	5.6	Reference	
High school or below	27/787	3.4	0.60	
			(0.38 to 0.93)	
CD4 count (cells/mm³)	3985		Reference	
< 200	37/1027	3.6	Reference	
≥ 200	126/2958	4.3	1.19	0.360
			(0.82 to 1.73)	
ALT (U/L)	3975		Reference	Reference
< 62.5	98/3623	2.7	Reference	Reference
≥ 62.5	64/352	18.2	7.99	7.74
			< 0.001	< 0.001
			(5.71 to 11.2)	(5.48 to 10.9)
CrCl (ml/min)	3923		Reference	Reference
< 60	5/29	17.2	5.03	5.58
			0.001	0.001
			(1.89 to 13.3)	(1.95 to 16.0)
≥ 60	155/3894	4.0	Reference	Reference
Syphilis	3965		Reference	Reference
Negative	109/3203	3.4	Reference	Reference

Anti-HCV, hepatitis C antibody; CI, confidence interval; ALT, alanine aminotransferase; CrCl, creatinine clearance.

†n = 3901
Table

Factor	No. of Anti-HCV+ / No. of Tested	%	Univariate	Multivariate†
			Crude OR	Adjusted OR
			[95% CI]	[95% CI]
			p	p
Positive	54/762	7.1	2.16	1.95
			(1.55 to 3.03)	(1.36 to 2.78)

Anti-HCV, hepatitis C antibody; CI, confidence interval; ALT, alanine aminotransferase; CrCl, creatinine clearance.

†n = 3901

Discussion

Among PLHIV who were newly diagnosed at the largest HIV testing center in Bangkok, we found 6% prevalence of HBV and 4% prevalence of anti-HCV positivity. Being MSM, TGW, and born before the inclusion of universal hepatitis B vaccination in Thailand’s EPI were associated with HBV infection. Moreover, being MSM and having syphilis increased the chance of being anti-HCV positive.

More than 70% of our population were MSM, and 5% were TGW, reflecting proportions of new HIV infections in Thailand as projected by the AIDS Epidemic Model [21]. We found the HBV prevalence to be highest among TGW (9%), followed by MSM (6%). The anti-HCV seroprevalence was highest among MSM (5%), followed by TGW (4%). These data confirmed findings from previous studies which demonstrated higher prevalence rates of HBV and HCV among PLHIV who were MSM and TGW than those who were general population [1, 15, 22–25]. The HBV prevalence shown in our population is quite concerning as almost half of them were born after EPI, indicating that the HBV epidemic is still ongoing. Nevertheless, the prevalence of HBV and HCV found in our study were slightly lower than that of the global and Thai reports among PLHIV [1, 2, 5], likely due to the younger age of our population. Apart from viral hepatitis, almost 20% of our clients had syphilis at baseline, showing higher burden than what was reported in general MSM population by World Health Organization (WHO; 6%) in 2018 [26].

MSM and TGW had 1.6 and 2.9 times higher odds of HBV infection than the general population, respectively, which could be explained by sexual practices and routes which are more prone to mechanical trauma [27]. Consistent with the national survey [17], we saw a contrast of HBV prevalence between people who were born before and after EPI (8% vs. 4%). PLHIV who were born before EPI had 2.3 times higher odds of having HBV infection. Another explanation of the association to birth year would be that younger people had less time exposed to the infection than older people. Nonetheless, this study exhibited that HBV infection was not completely eliminated by the EPI. Some newborns might be born to an HBV-infected mother, not complete the full course of the immunization, not respond to HBV vaccination, or be unvaccinated. Regarding PLHIV who do not have immunity to HBV, it is advised to
immunize all PLHIV regardless of CD4 level [18], even though the lower CD4 count is one of the factors affecting the effectiveness of the HBV immunization [28–30].

We found that being MSM and having syphilis each increases the risk of having positive anti-HCV by around two times in our study. There are many reports of the HCV epidemic among MSM living with HIV in major cities of the world in Europe, Asia-Pacific, and Thailand [8–10, 31–37], and many findings demonstrated an upward trend of HCV infection [9, 31–37]. For example, a study in Thailand found that HCV incidence increased from 0.7–1.1 per 100 person-years in 2014–2016 to 4.5 per 100 person-years in 2018 [31]. HCV infection is widely known as associated with recreational drug use [9, 10, 31, 32, 36, 38–41], as some MSM utilize recreational drugs to improve their sexual pleasure, so-called chemsex [43, 44]. Studies on people who did not use injection drugs found that HCV infection was still associated with recreational drug use and syphilis [34, 36, 45], suggesting transmission of HCV associated with sexual encounter. Unfortunately, we did not collect data on substance use and chemsex systematically in our study and could not look at these potential associations. However, as MSM and syphilis were key factors associated with HCV infection among our clients, we hypothesized that HCV acquisition in our HIV-positive MSM population was likely linked to sexual transmission and possibly in the chemsex context.

There were a few limitations in this study. This study was conducted at one site and two-thirds of our PLHIV clients lived in Bangkok. Thus, our study population might not represent the overall population of PLHIV in Thailand. We could not retrieve hepatitis B vaccination history from original medical records, and therefore needed to use PLHIV clients’ birth year as a surrogate. We did not record substance use and chemsex data and could not explore their associations with HBV and HCV infections in our study. Lastly, we did not perform HCV RNA in anti-HCV-positive clients; therefore, the observed anti-HCV seroprevalence may be higher than the actual infection rate.

WHO aimed to eliminate hepatitis B and C infections by 2030 [46]. To achieve this, a country must target the areas determined to have beneficial impacts as described in Table 5 [46, 47]. In Thailand, HBV vaccination has reached 95% coverage since 1999 [17]. However, Thailand’s diagnosis and treatment coverage of HBV and HCV are far from the target [47]. From the results of this study, HBV and HCV screening of everyone living with HIV regardless of age would uncover a high proportion of undiagnosed infections and be a chance to bring them to treatment. Testing more undiagnosed PLHIV would also bring in more undiagnosed people living with HBV and HCV. PLHIV without HBV infection should be assessed for the need of HBV vaccination or booster. Costs of HCV genotyping and treatment have been high, but the voluntary licensing of pan-genotypic direct-acting antiretroviral (DAA) medications is becoming implemented in Thailand [48]. However, the current restriction to only start DAA in individuals with fibrosis METAVIR Stage F2 means that individuals with HCV can continue to transmit the virus to others. Future studies will need to explore strategies to timely and efficiently test and treat HCV, especially among PLHIV, to contribute to the elimination of HCV.
Table 5
Global Baseline and Thailand’s Progress Toward the Elimination of Hepatitis B and C by 2030

Target Area	Global Baseline 2015	Thailand Estimates 2019	WHO Target 2030
HBV birth dose	38%	99%	90%
HBV 3+ doses	82%	97%	90%
Blood safety	89%	100%	100%
Injection safety	5%	100%	90%
Syringes per PWID†	20	24	300
HBV diagnosed	< 5%	7%	90%
HBV treated	< 1%	1%	80%
HCV diagnosed	< 5%	36%	90%
HCV treated	< 1%	11%	80%

WHO, World Health Organization; HBV, hepatitis B virus; PWID, person who injects drugs; HCV, hepatitis C virus

†Number of sterile needles and syringes provided per person who injects drugs per year

Conclusions

Thailand’s EPI has successfully reduced HBV infection. However, the infection rate among newly diagnosed PLHIV remained at around 5–10%. Hepatitis C infection was found in 4–5% of PLHIV who were MSM and TGW. These findings highlight the need for routine HBV and HCV screening for all PLHIV regardless of age, along with immediate linkages to appropriate prevention and treatment interventions.

List Of Abbreviations

aOR, adjusted odds ratio
CI, confidence interval
CrCl, creatinine clearance
ALT, alanine aminotransferase
Anti-HCV, hepatitis C antibody
DAA, direct-acting antiretroviral
EPI, Expanded Program on Immunization
Declarations

Ethics approval and consent to participate

The Same-Day Antiretroviral Therapy Initiation protocol (NCT04032028) was approved by the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University with Approval Number 158/56. Institutional Review Board of the Faculty of Medicine, Chulalongkorn University has waived the informed consent for the study. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding
The SDART program and this study was funded by the United States Agency for International Development (USAID) and the U.S. President’s Emergency Plan for AIDS Relief (PEPFAR).

Authors’ contributions

ST, TC, SA, TP, AA, PP, RR, and NP contributed to the design and concept of the study. ST, TC, SA, and MS contributed the data. JP and SA extracted and prepared the data. ST and JP analyzed the data. ST wrote the manuscript. TC, PS, AA, MA, and NP assisted in interpretation of the data, provided intellectual input, and provided edits. All authors have reviewed and approved the final version.

Acknowledgements

This work was made possible by the generous support of the American people through USAID and PEPFAR. The contents are the responsibility of the LINKAGES project and do not necessarily reflect the views of USAID, PEPFAR, or the United States Government. LINKAGES, a five-year cooperative agreement (AID-OAA-A-14-00045), is led by FHI 360. Additional acknowledgements to the Thai Red Cross Anonymous Clinic and its staff for providing facility and data collection, Oranuch Nampaisan for the precious advice on statistics, and Dr. Nipat Teeratakulpisarn for the contribution to the conceptualization.

References

1. World Health Organization. Global hepatitis report 2017 [Internet]. Geneva: World Health Organization; 2017 [cited 2021 Mar 09]. Available from: https://apps.who.int/iris/bitstream/handle/10665/255016/9789241565455-eng.pdf.

2. Leroi C, Adam P, Khamduang W, Kawilapat S, Ngo-Giang-Huong N, Ongwandee S, et al. Prevalence of chronic hepatitis B virus infection in Thailand: a systematic review and meta-analysis. Int J Infect Dis. 2016 Oct;51:36–43. doi: 10.1016/j.ijid.2016.08.017.

3. Linkins RW, Chonwattana W, Holtz TH, Wasinrapee P, Chaikummao S, Varangrat A, et al. Hepatitis A and hepatitis B infection prevalence and associated risk factors in men who have sex with men, Bangkok, 2006–2008. J Med Virol. 2013 Sep;85(9):1499–505. doi: 10.1002/jmv.23637.

4. Wasitthankasem R, Posuwan N, Vichaiwattana P, Theamboonlers A, Klinfueng S, Vuthitanachot V, et al. Decreasing hepatitis C virus infection in Thailand in the past decade: evidence from the 2014 National Survey. PLoS One. 2016 Feb 12;11(2):e0149362. doi: 10.1371/journal.pone.0149362. Erratum in: PLoS One. 2016 May 18;11(5):e0152451. doi: 10.1371/journal.pone.0152451.

5. Phuangchoei P, Chotiypatutta W, Chayakulkeeree M. Clinical characteristics of hepatitis B and C virus infections in HIV-infected patients. J Med Assoc Thai. 2015 Mar;98(3):226–31.

6. Workowski KA, Bolan GA; Centers for Disease Control and Prevention (US). Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015 Jun 5;64(RR-03):1-137. PubMed PMID: 26042815; PubMed Central PMCID: PMC5885289.
7. Schillie S, Vellozzi C, Reingold A, Harris A, Haber P, Ward JW, et al. Prevention of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep. 2018 Jan 12;67(1):1–31. doi: 10.15585/mmwr.rr6701a1.

8. van de Laar T, Pybus O, Bruisten S, Brown D, Nelson M, Bhagani S, et al. Evidence of a large, international network of HCV transmission in HIV-positive men who have sex with men. Gastroenterology. 2009 May;136(5):1609–17. doi: 10.1053/j.gastro.2009.02.006.

9. Urbanus AT, van de Laar TJ, Stolte IG, Schinkel J, Heijman T, Coutinho RA, et al. Hepatitis C virus infections among HIV-infected men who have sex with men: an expanding epidemic. AIDS. 2009 July 31;23(12):F1-7. doi: 10.1097/QAD.0b013e32832e5631.

10. Rauch A, Rickenbach M, Weber R, Hirschel B, Tarr PE, Bucher HC, et al. Unsafe sex and increased incidence of hepatitis C virus infection among HIV-infected men who have sex with men: The Swiss HIV Cohort Study. Clin Infect Dis. 2005 Aug 1;41(3): 395–402. doi: 10.1086/431486.

11. Danta M, Brown D, Bhagani S, Pybus OG, Sabin CA, Nelson M, et al. Recent epidemic of acute hepatitis C virus in HIV-positive men who have sex with men linked to high-risk sexual behaviours. AIDS. 2007 May 11;21(8):983 – 91. doi: 10.1097/QAD.0b013e3281053a0c.

12. Li H, Marks KM, Talal AH, van Seggelen WO, Akil B, Radix A, et al. Assessing routes of hepatitis C transmission in HIV-infected men who have sex with men using single genome sequencing. PLoS One. 2020 July 15;15(7):e0235237. doi: 10.1371/journal.pone.0235237.

13. Dionne-Odom J, Osborn MK, Radziewicz H, Grakoui A, Workowski K. Acute hepatitis C and HIV coinfection. Lancet Infect Dis. 2009 Dec;9(12):775–83. doi: 10.1016/S1473-3099(09)70264-6.

14. Reback CJ, Fletcher JB. HIV prevalence, substance use, and sexual risk behaviors among transgender women recruited through outreach. AIDS Behav. 2014 Jul;18(7):1359–67. doi: 10.1007/s10461-013-0657-z.

15. Luzzati R, Zatta M, Pavan N, Serafin M, Maurel C, Trombetta C, et al. Prevalence of human immunodeficiency virus, hepatitis B Virus, and hepatitis C virus infections among transgender persons referred to an Italian center for total sex reassignment surgery. Sex Transm Dis. 2016 Jul;43(7):407–11. doi: 10.1097/OLQ.0000000000000452.

16. Bastos FI, Bastos LS, Coutinho C, Toledo L, Mota JC, Velasco-de-Castro CA, et al. HIV, HCV, HBV, and syphilis among transgender women from Brazil. Medicine (Baltimore). 2018 May 1;97(1 Suppl):S16-24. doi: 10.1097/MD.0000000000009447.

17. Posuwan N, Wanlapakom N, Sa-Nguanmoo P, Wasitthankasem R, Vichaiwattana P, Klinfueng S, et al. The success of a universal hepatitis B immunization program as part of Thailand's EPI after 22 years' implementation. PLoS One. 2016 Mar 3;11(3):e0150499. doi: 10.1371/journal.pone.0150499.

18. Ministry of Public Health; Department of Disease Control; Bureau of AIDS, TB and STIs (TH). Thailand national guidelines on HIV/AIDS treatment and prevention 2017. Nonthaburi: Bureau of AIDS, TB and STIs, Department of Disease Control, Ministry of Public Health (TH); 2017. Thai.

19. Seeaew P, Teeratakulpisarn N, Surapuchong P, Teeratakulpisarn S, Amatavete S, Jomja P, et al. Same-day ART initiation in HIV/STI testing center in Bangkok, Thailand: initial results from an
implementation research [abstract]. Proceedings of the AIDS 2018: 22nd International AIDS Conference; 2018 Jul 23–27.

20. U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of AIDS. Division of AIDS (DAIDS) Table for Grading the Severity of Adult and Pediatric Adverse Events, Corrected Version 2.1 [Internet]. Bethesda (MD): National Institutes of Health (US); 2017 July [cited 2021 Mar 1]. Available from: https://rsc.niaid.nih.gov/sites/default/files/daidsgradingcorrectedv21.pdf.

21. Thailand Working Group on HIV/AIDS Projection. AIDS epidemic model projection for HIV/AIDS in Thailand 2021–2030 summary report [Internet]. AIDS Data Hub; 2015 [cited 2021 Mar 1]. Available from: https://www.aidsdatahub.org/sites/default/files/resource/projection-hiv-aids-thailand-2010-2030.pdf.

22. Linkins RW, Chonwattana W, Holtz TH, Wasin rapee P, Chaikummao S, Varangrat A, et al. Hepatitis A and hepatitis B infection prevalence and associated risk factors in men who have sex with men, Bangkok, 2006–2008. J Med Virol. 2013 Jun 24;85(9):1499–505. doi: 10.1002/jmv.23637.

23. Cardona-Arias JA, Correa JCC, Higuita-Gutiérrez LF. Prevalence of hepatitis B/C viruses and associated factors in key groups attending a health services institution in Colombia, 2019. PLoS One. 2020 Sep 22;15(9):e0238655. doi: 10.1371/journal.pone.0238655.

24. Hadikusumo AA, Utsumi T, Amin M, Khairunisa SQ, Istimagfirah A, Wahyuni RM, et al. High rates of hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus infections and uncommon HBV genotype/subtype and HCV subtype distributions among transgender individuals in Surabaya, Indonesia. Jpn J Infect Dis. 2016 Nov 22;69(6):493-9. doi: 10.7883/yoken.JJID.2015.384.

25. Grov C, Westmoreland DA, Carrico AW, Nash D. Are we on the precipice of a new epidemic? Risk for hepatitis C among HIV-negative men-, trans women-, and trans men- who have sex with men in the United States. AIDS Care. 2020 May;32(sup2):74–82. doi: 10.1080/09540121.2020.1739204.

26. World Health Organization. Men who have sex with men (MSM) with active syphilis (%) [Internet]. Geneva: World Health Organization; 2020 July 21 [cited 2021 Mar 7]. Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/men-who-have-sex-with-men-(msm)-with-active-syphilis-(-).

27. Schreeder MT, Thompson SE, Hadler SC, Berquist KR, Zaidi A, Maynard JE, et al. Hepatitis B in homosexual men: prevalence of infection and factors related to transmission. J Infect Dis. 1982 Jul 1;146(1):7–15. doi: 10.1093/infdis/146.1.7.

28. Kim HN, Harrington RD, Van Rompaey SE, Kitahata MM. Independent clinical predictors of impaired response to hepatitis B vaccination in HIV-infected persons. Int J STD AIDS. 2008 Sep;19(9):600–4. doi: 10.1258/ijsa.2007.007197.

29. Pasricha N, Datta U, Chawla Y, Singh S, Arora SK, Sud A, et al. Immune responses in patients with HIV infection after vaccination with recombinant hepatitis B virus vaccine. BMC Infect Dis. 2006 Mar 30;6:65. doi: 10.1186/1471-2334-6-65.
30. Cornejo-Juárez P, Volkow-Fernández P, Escobedo-López K, Vilar-Compte D, Ruiz-Palacios G, Soto-Ramírez LE. Randomized controlled trial of Hepatitis B virus vaccine in HIV-1-infected patients comparing two different doses. AIDS Res Ther. 2006 April 6;3:9. doi: 10.1186/1742-6405-3-9.

31. Wansom T, Pinyakorn S, Kolsteeg CJ, Kroon E, Sacdalan CP, Chomchey N, et al. Brief report: Group sex and methamphetamine use fuel an explosive epidemic of hepatitis C among HIV-infected men who have sex with men in Bangkok, Thailand. J Acquir Immune Defic Syndr. 2020 Aug 1;84(4):331-5. doi: 10.1097/QAI.0000000000002356.

32. Ramière C, Charre C, Miailhes P, Bailly F, Radenne S, Uhres AC, et al.; Lyon Acute Hepatitis Study Group. Patterns of hepatitis C virus transmission in human immunodeficiency virus (HIV)-infected and HIV-negative men who have sex with men. Clin Infect Dis. 2019 Nov 27;69(12):2127–35. doi: 10.1093/cid/ciz160.

33. Lin AWC, Wong KH, Chan K. More safer sex intervention needed for HIV-positive MSM with higher education level for prevention of sexually transmitted hepatitis C. J Int AIDS Soc. 2014;17(4Suppl 3):19663. doi: 10.7448/IAS.17.4.19663.

34. Sun HY, Chang SY, Yang ZY, Lu CL, Wu H, Yeh CC, et al. Recent hepatitis C virus infections in HIV-infected patients in Taiwan: incidence and risk factors. J Clin Microbiol. 2012 Mar;50(3):781–7. doi: 10.1128/JCM.06014-11.

35. Sun HY, Uemura H, Wong NS, Chan DP, Wong BC, Lin PH, et al. Molecular epidemiology of acute HCV infection in HIV-positive patients from Hong Kong, Taipei, Tokyo. Liver Int. 2019 Jun;39(6):1044–51. doi: 10.1111/liv.14073.

36. Nishijima T, Shimbo T, Komatsu H, Hamada Y, Gatanaga H, Oka S. Incidence and risk factors for incident Hepatitis C infection among men who have sex with men with HIV-1 infection in a large Urban HIV clinic in Tokyo. J Acquir Immune Defic Syndr. 2014 Feb 1;65(2):213-7. doi: 10.1097/QAI.0000000000000044.

37. van der Helm JJ, Prins M, del Amo J, Bucher HC, Chêne G, Dorrucci M, et al.; CASCADE Collaboration. The hepatitis C epidemic among HIV-positive MSM: incidence estimates from 1990 to 2007. AIDS. 2011 May 15;25(8):1083–91. doi: 10.1097/QAD.0b013e3283471cce.

38. Han WM, Colby DJ, Khlaiphuengsin A, Apornpong T, Kerr SJ, Ubolyam S, et al. Large transmission cluster of acute hepatitis C identified among HIV-positive men who have sex with men in Bangkok, Thailand. Liver Int. 2020 Sep;40(9):2104–9. doi: 10.1111/liv.14578.

39. Centers for Disease Control and Prevention (US). Sexual transmission of hepatitis C virus among HIV-infected men who have sex with men—New York City, 2005–2010. MMWR Morb Mortal Wkly Rep. 2011 Jul 22;60(28):945–50. PMID: 21775948.

40. Schmidt AJ, Rockstroh JK, Vogel M, An der Heiden M, Baillot A, Krznaric I, et al. Trouble with bleeding: risk factors for acute hepatitis C among HIV-positive gay men from Germany—a case-control study. PLoS One. 2011 Mar 8;6(3):e17781. doi: 10.1371/journal.pone.0017781.

41. Vanhommerig JW, Lambers FA, Schinkel J, Geskus RB, Arends JE, van de Laar TJ, et al. Risk factors for sexual transmission of hepatitis C virus among human immunodeficiency virus-infected men
42. Sun HY, Chang SY, Yang ZY, Lu CL, Wu H, Yeh CC, et al. Recent hepatitis C virus infections in HIV-infected patients in Taiwan: incidence and risk factors. J Clin Microbiol. 2012 Mar;50(3):781–7. doi: 10.1128/JCM.06014-11.

43. Piyaraj P, van Griensven F, Holtz TH, Mock PA, Varangrat A, Wimonsate W, et al. The finding of casual sex partners on the internet, methamphetamine use for sexual pleasure, and incidence of HIV infection among men who have sex with men in Bangkok, Thailand: an observational cohort study. Lancet HIV. 2018 Jul;5(7):e379-89. doi: 10.1016/S2352-3018(18)30065-1. Erratum in: Lancet HIV. 2018 Jul;5(7):e340.

44. Guadamuz TE, Boonmongkon P. Ice parties among young men who have sex with men in Thailand: Pleasures, secrecy and risks. Int J Drug Policy. 2018 May;55:249–55. doi: 10.1016/j.drugpo.2018.04.005.

45. Breskin A, Drobnik A, Pathela P, Chan C, Braunstein S, Bornschlegel K, et al. Factors associated with hepatitis C infection among HIV-infected men who have sex with men with no reported injection drug use in New York City, 2000–2010. Sex Transm Dis. 2015 Jul;42(7):382–6. doi: 10.1097/OLQ.0000000000000293.

46. World Health Organization. Global health sector strategy on viral hepatitis 2016–2021 towards ending viral hepatitis [Internet]. Geneva: World Health Organization; 2016 [cited 2021 Mar 6]. Available from: https://apps.who.int/iris/bitstream/handle/10665/246177/WHO-HIV-2016.06-eng.pdf.

47. CDA Foundation. Polaris Observatory [Internet]. Lafayette, CO: CDA Foundation; 2020 [updated 2020 Apr 17; cited 2021 Mar 7]. Available from: https://cdafound.org/polaris/.

48. Posuwan N, Wanlapakorn N, Sintusek P, Wasitthankasem R, Poovorawan K, Vongpunsawad S, et al. Towards the elimination of viral hepatitis in Thailand by the year 2030. J Virus Erad. 2020 Sep;6(3):100003. doi: 10.1016/j.jve.2020.100003.