Identification of volatile organic compounds (VOCs) in different colour carrot (*Daucus carota* L.) cultivars using static headspace/gas chromatography/mass spectrometry

Zehra Güler, Fatih Karaca and Halit Yetisir

Cogent Food & Agriculture (2015), 1: 1117275
Identification of volatile organic compounds (VOCs) in different colour carrot (Daucus carota L.) cultivars using static headspace/gas chromatography/mass spectrometry

Zehra Güler1*, Fatih Karaca2 and Halit Yetisir3

Abstract: Volatile organic compounds (VOCs) as well as sugar and acid contents affect carrot flavour. This study compared VOCs in 11 carrot cultivars. Gas chromatography/mass spectrometry using static headspace technique was applied to analyse the VOCs. The number of VOCs per sample ranged from 17 to 31. The primarily VOCs identified in raw carrots with the exception of “Yellow Stone” were terpenes, ranging from 65 to 95%. The monoterpenes with values ranging from 31 to 89% were higher than those (from 2 to 15%) of sesquiterpenes. Monoterpene α-terpinolene (with ranging from 23 to 63%) and (-)-α-pinene (26%), and alcohol ethanol (35%) was the main VOC in extracts from the nine carrot cultivars, “Purple” and “Yellow Stone”, respectively. As a result, among 16 identified monoterpenes, 7 monoterpenes (-)-α-pinene, (-)-β-pinene, β-myrcene, d-limonene, γ-terpinene, α-terpinolene and p-cymene constituted more than 60% of total VOCs identified in carrots including “Atomic Red”, “Nantes”, “Cosmic Purple”, “Red Samurai”, “Eregli Black”, “White Satin”, “Parmex” and “Baby Carrot”. Thus, these cultivars may advise to carrot breeders due to the beneficial effects of terpenes, especially monoterpenones on health.

Subjects: Environment & Agriculture; Food Chemistry; Food Science & Technology

Keywords: carrot; volatile compounds; static headspace; terpenes

ABOUT THE AUTHORS
Zehra Güler is a professor at University of Mustafa Kemal, Agricultural Faculty, Food Engineering Department currently. Zehra’s research programme focuses on free fatty acids and volatile compounds. In particular, Zehra is interested in chromatographic analysis in foods and has done numerous studies on volatile organic compounds fruits and dairy products.

Fatih Karaca is working as an agricultural high engineer at Anadolu Seed.

Halit Yetisir is a professor at University of Erciyes, Agricultural Faculty, Horticultural Science currently. Halit’s research programme focuses on grafting, especially watermelons.

PUBLIC INTEREST STATEMENT
Carrot production in the world and in Turkey in the last decade has been increased by 48 and 41%, respectively. Increased consumption of carrot is mainly due to its sweetness and pleasant flavour and health benefits. The characteristic aroma and flavour of carrot are mainly due to its volatile compounds. Different coloured carrot cultivars (creamy-white, yellow, purple or violet root) have recently been bred by breeders. The present study describes the volatile organic compound (VOC) profiles in carrots with different colour grown in Turkey. This research is the first report on carrot cultivars grown under identical conditions in Turkey. The study showed that VOCs were markedly varied from cultivar to cultivar, in terms of their number and their percentage composition. VOCs were mostly made up of terpenes. Dark coloured carrots had higher levels of terpenes than light coloured carrots.
1. Introduction
Turkey is the 10th largest carrot (*Daucus carota* subsp. *sativus*) and turnip producer country with 569,855 tons in 25,901 ha area in the world (FAO, 2013). Studies have showed that carrots have anticancer, especially colon cancer, antiviral, antimicrobial, antifungal and antioxidant effects on human metabolism due to its falcarinol, terpenes, β-carotene, vitamins and fibre contents (Brandt et al., 2004; Paduch, Kandefer-Szerszeń, Trytek, & Fiedurek, 2007; Van Duyn & Pivonka, 2000). The optimal dietary manipulation could be a good alternative in preventing, mainly carcinoma diseases. Plants are cultivated by humans not only for their nutritional value and medicinal properties, but also for their unique aromas. Sweetness (sugar content), volatile compounds and color are important quality parameters for consumer acceptability of carrots (Gajewski, Szymczak, & Radzanowska, 2010). The distribution of volatile compounds in carrots is influenced by cultivar (genotype), growing conditions and genotype x environment interaction (Da Silva et al., 2007; Kebede et al., 2014; Kreutzmann, Thybo, Edelenbos, & Christensen, 2008). The flavour compounds are important for both eating quality of carrot and juice-processing industries, which demand attractive sensory cultivars. Recently, carrot cultivars with different colours (creamy-white, yellow, purple or violet root) have been bred by breeders. However, they show a large diversity in quality (Alasalvar, Grigor, Zhang, Quantick, & Shahidi, 2001; Kreutzmann et al., 2008).

Chromatographic methods enable the identification and quantification of individual volatile component. Static headspace (SHS), dynamic headspace and solid-phase microextraction (SPME) analysis techniques have gained in popularity for analysing volatile compounds in various foods such as dairy products (Güler, 2007; Güler & Gürsoy-Balcı, 2011) and fruits such as cucumber (Güler, Karaca, & Yetisir, 2013), melon (Güler, Karaca, & Yetisir, 2014), and carrots (Kjeldsen, Christensen, & Edelenbos, 2001; Kreutzmann et al., 2008). Of these techniques, SHS may be more attractive as a technique for routine quality control due to its operational simplicity and reproducibility (Alasalvar, Grigor, & Quantick, 1999). In addition, SHS is report to more closely reflect the true flavour profile, but compounds are present at low levels, and some may not be detected (Teranishi & Kint, 1993).

Although there were many studies on volatile compounds in various carrots (Alasalvar et al., 2001; Kjeldsen et al., 2001; Kjeldsen, Christensen, & Edelenbos, 2003; Kreutzmann et al., 2008), no study has been carried out on volatile compounds of a large cultivar variation including fresh carrots with black, red, purple, orange, yellow and white colours grown under the same conditions in open field. Thus, the objectives of present study were: (1) to identify volatile organic compounds (VOCs) in eleven carrot cultivars grown under the same conditions; (2) to determine whether the VOCs responsible for carrot flavour can be related to carrot colour.

2. Material and methods

2.1. Plant material
Eleven carrot (*D. carota* L.) cultivars including “Eregli Black”, “Purple”, “Red Samurai”, “Yellow Stone”, “Rainbow”, “Baby Carrot”, “Atomic Red”, “Cosmic Purple”, “White Satin”, “Parmex” and “Nantes” were used in this study. The soil was a sandy loam soil and 0.5 ton da$^{-1}$ composted manure and 40 kg da$^{-1}$ NH$_4$NO$_3$ were added to soil before seed sowing. Since soil potassium (K) and phosphor (P) contents were at sufficient level, these mineral elements were not added. No pesticide were used for pest and disease control in carrots.

Carrot seeds were sown with 15 × 4 cm spacing in 11 November 2009. Experimental design was randomized block and each cultivar replicated three times with 100 plants. Baby carrot and Parmex were harvested in 1 April 2010, Yellow Stone and White Satin were harvested 3 April 2010 and other carrot cultivars were harvested in 05 April 2010. Carrots being physical undamaged and representing characteristic size and colour for each cultivar were sampled for volatile compound analysis.

2.2. VOC determination
Samples for determination of VOCs were prepared in triplicate from five carrots at each replication. Roots were washed and brushed under running water; top and tail were cut using a sharp knife. Then
each carrot was cut into 1 cm³ pieces and placed in a chilled mortar and ground with a pestle. Ten grams of the homogenized sample was immediately transferred in 20-mL headspace vial (Agilent, USA), containing 3 g of NaCl, to inhibit enzyme reactions. The vials were sealed using crimp-top caps with TFE/silicone headspace septa (Agilent, USA). According to procedure described by Güler et al. (2013), extraction and identification of the volatile compounds were carried out by means of SHS—Agilent model 6890 gas chromatography (GC) and 5973 N mass spectrometry (MS) (Agilent, Palo Alto, CA, USA) equipped with a HP-INNOWAX capillary column (60 m × 0.25 mm id × 0.25 μm film thickness). Helium was used as carrier gas at a flow rate of 1 mL min⁻¹. The injector temperature was 200°C, set for splitless injection. The oven temperature program was initially held at 45°C for 1 min and then programmed from 45°C by a ramp of 1.5°C min⁻¹ up to 80°C and then at 10°C min⁻¹ to reach a final temperature of 200°C, which was held for 15 min. The mass selective (MS) detector was operating in the scan mode within a mass range 33–330 m z⁻¹ at 1 scan s⁻¹, with electron energy of 70 eV. The interface line to MS was set at 250°C. The total analysis time was 42.3 min. Volatile compounds were identified by a computer matching of their mass spectral data supplemented with a Wiley7n.1 and Nist 02.L. GC-MS libraries and then the identities of most were confirmed by GC retention time and MS ion spectra of authentic standards. The retention indices were also determined for all constituents by using homologous series of n-alkanes C₅–C₂₅. Results from the volatile analyses were expressed as the percentage of each compounds integrated area relative to the total integration of compounds identified.

2.3. Statistical analysis
Data were analysed using SAS procedures (SAS, 2005). The means and standard deviations were calculated using PROC TABULATE. PROC PRINCOMP was used to conduct principle component (PC). The output of this analysis is eigenvalues, eigenvectors and standardized principal component scores. The accessions plotted using PROC P3G with PC scores. Differences in means were examined using Tukey’s studentized range test (t-test).

3. Result and discussion
VOCs identified in carrots were classified into three main chemical classes: monoterpenes, sesquiterpenes and aldehydes (Table 1). Only a few volatiles were detected in other chemical classes: ketones, polypropanoids and alcohols. The number of volatiles per sample ranged from 17–31. All carrot cultivars contained 12 VOCs in common: monoterpenes (-)β-pinene, β-myrcene, d-limonene, γ-terpinene, α-terpinolene, p-cymene, sesquiterpenes (-)β-caryophyllene, trans-γ-bisabolene; aldehydes acetaldehyde, hexanal and octanal; alcohol ethanol. These 12 VOCs may be characteristic for carrot flavour. Our data are in agreement with previous reports that the terpenes are considered to be the most important volatiles identified in raw carrots (Alasalvar et al., 1999; Kjeldsen et al., 2001, 2003; Kreutzmann et al., 2008). In the present study, the percentages of terpenes showed a wide variation from cultivar to cultivar (Table 1). Terpenes with the highest value made up 94% of the total of VOCs in “Atomic Red”, and they were the lowest in “Yellow Stone” (40%). The monoterpenes were predominant VOCs in carrots over sesquiterpenes (Figure 1). Among 16 identified monoterpenes, 7 monoterpenes presented in relatively high proportions in all samples: (-)-α-pinene (0.71–25.68%), (-)-β-pinene (0.57–5.06%), β-myrcene (0.48–14.55%), d-limonene (1.41–4.78%), γ-terpinene (1.16–21.18%), α-terpinolene (17.67–62.90%) and p-cymene (1.20–11.55%). Monoterpene sabinen was not detected in “Eregli Black”. As reported by Kreutzmann et al. (2008), the levels of sabinen in “Yellow Stone” and “White Satin” carrots were significantly higher than those in red and purple carrots. Monoterpene α-terpinolene was the most abundant VOCs in the nine carrot cultivars including “Eregli Black”, “Cosmic Purple”, “Red Samurai”, “Atomic Red”, “Parmex”, “Nantes”, “Baby carrot”, “Rainbow” and “White Satin”. These results were similar to the report by Kjeldsen et al. (2001). “Purple” and “Yellow Stone” cultivars had α-pinene and ethanol as the most abundant VOC, respectively. The second highest VOC for five cultivars (“Red Samurai”, “Atomic Red”, “Parmex”, “Nantes”, “Baby Carrot”) was γ-terpinene, ranging from 9 to 22%. p-Cymene (11%) for “Eregli Black”, α-terpinolene (21–18%) for “Purple” and “Yellow Stone”, β-myrence (16%) for “Cosmic Purple” and acetaldehyde (20–18%) for “Rainbow” and “White Satin” were found as the second highest VOC. So these VOCs may be specific for each cultivar mentioned. When compared with the other carrots, “Eregli Black”, “Cosmic Purple”,...
Table 1. The percentages of volatile organic compounds (VOCs) in 11 carrot cultivars

Compounds	Chemical group	RI - E. Black	A. Red	R. Samurai	Parmex	Nantes	B. Carrot	C. Purple	Purple	Y. Stone	Rainbow	W. Satin	LSD	
(-)-α-Pinene	MT	969	0.71	6.62	6.51	4.58	2.91	3.55	4.50	25.68	1.42	6.93	4.57	4.38**
Camphene	MT	1,010	0.19	0.21	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	0.09**	
(1)-β-Pinene	MT	1,051	2.01	5.06	3.76	0.83	0.57	2.78	0.21	2.04	1.74	1.87	4.19	0.24**
(+)-Sabinen(Thuene)	MT	1,060	0.60	0.38	3.23	0.82	3.39	1.62	0.45	3.23	2.10	2.02	0.11**	
β-Mycene	MT	1,097	1.99	1.20	2.74	0.54	0.48	0.65	14.55	1.14	2.03	1.88	0.96**	
α-Phellandrene	MT	1,105	0.54	Nd	Nd	Nd	0.29	0.24	Nd	Nd	Nd	Nd	0.29**	
γ-Terpinene	MT	1,118	0.15	0.14	Nd	Nd	1.10	0.85	Nd	Nd	Nd	Nd	0.27**	
α-Terpinene	MT	1,132	4.45	3.40	3.05	2.22	2.02	1.80	3.41	1.48	1.41	2.49	4.48	1.24**
p-Cymene	MT	1,195	10.67	6.99	7.41	11.55	3.82	7.81	4.66	3.00	4.04	6.94	1.34**	
Carvone	MT	1,330	0.17	Nd	0.13	Nd	Nd	Nd	Nd	Nd	Nd	Nd	0.04**	
Isobornylacetate	MT	1,598	0.36	0.81	0.38	Nd	0.84	0.10	0.62	Nd	Nd	0.43	0.13	0.36**
p-Cymene	MT	1,383	1.92	0.63	0.47	Nd	0.47	0.52	Nd	Nd	Nd	Nd	0.14	0.35**
δ-Cadene	ST	1,459	0.21	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd
(1)-β-Caryophyllene	ST	1,638	0.75	0.74	0.82	3.49	1.50	8.85	0.16	4.72	5.22	7.72	3.85	2.72**
Trans-β-farnesene	ST	1,731	0.19	0.35	0.13	Nd	0.12	2.26	0.34	Nd	Nd	0.26	0.45**	
α-Humulene	ST	>1,924	0.75	0.30	Nd	Nd	0.40	0.65	Nd	0.30	0.60	Nd	Nd	Nd
α-Zingberene	ST	1,806	0.35	0.12	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	0.06**
Trans-β-bisabolene	ST	1,924	3.21	2.14	0.98	1.82	2.40	2.25	2.66	2.69	3.60	6.54	0.80	1.27**
α-Cadinol	ST	>1,924	1.07	1.34	Nd	0.18	0.94	0.29	0.36	Nd	0.08	0.16	0.18	Nd
Acetophenone	FAD	<900	7.83	3.37	7.74	15.78	6.26	12.23	8.01	17.81	13.91	19.54	17.67	5.92**
Hexanol	FAD	1,021	1.71	0.20	0.45	1.74	0.18	1.22	0.73	0.49	3.73	1.47	2.32	0.72**
Heptanol	FAD	1,120	1.56	0.26	0.36	0.71	0.14	0.36	0.64	Nd	0.41	0.63	0.61**	
Octanol	FAD	1,210	2.15	0.39	0.39	1.22	0.34	0.90	0.33	0.71	2.14	0.92	1.41	0.49**
6-Methyl-5-Hepten-2-one	IT	1,259	1.36	0.95	0.65	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	0.45**
Ethanol	PP	<900	5.20	2.23	9.94	4.48	1.83	6.49	4.85	16.85	34.57	8.14	5.17	2.53**
2-Methyl coumarin	PP	1,383	0.25	0.19	0.15	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	0.13**
α-Allyltoluene	PP	>1,924	1.00	0.25	0.09	Nd	Nd	Nd	Nd	Nd	Nd	Nd	Nd	0.12**

Note: E. Black: Eregli Black; C. Purple: Cosmic Purple; R. Samurai: Red Samurai; A. Red: Atomic Red; B. Carrot: Baby Carrot; Y. Stone: Yellow Stone; W. Satin: White Satin.

*p < 0.05.

**p < 0.001.

*Mass spectra (MS) and GC retention indices (RI) were consistent with those of reference compounds unless noted.

†Tentatively identified. No standard available but the MS is consistent with published data (Wiley7n.1/ Nist 02.L).

MT: monoterpene; ST: sesquiterpene; IT: irregular terpene; FAD: fatty acid derivative; PP: phenylpropanoid.
“Purple”, “Red Samurai”, “Atomic Red” and “White Satin” carrots may possess high antimicrobial and antifungal activities due to high levels of \(\alpha\)-terpinolene and \(\alpha\)-pinene which accounted for 44–66% of the total VOCs identified in carrots mentioned (Poduch et al., 2007). Interestingly, orange coloured carrots especially “Baby Carrot” and “Nantes” contained considerably higher \(\gamma\)-terpinene than the other carrots. \(\gamma\)-Terpinene has an inhibitory activity against \(E.\ coli\) (Cox, Mann, & Markham, 2001). Red coloured carrots (“Atomic Red” and “Red Samurai”) have the largest monoterpene, which may affect consumers’ preference compared with carrots with orange, yellow and white colour. It was also noted that monoterpene carvone newly identified in “Red Samurai” and “Atomic Red” genotypes only.

With respect to sesquiterpenes, all seven identified sesquiterpenes were present only in “Atomic Red” carrot (Table 1). The relative value of sesquiterpene per carrot ranged from 2 to 15%. Cultivars “Purple” and “Red Samurai” contained the least sesquiterpenes in terms of their number and their percentage composition. The major sesquiterpenes identified in carrots were \((-\gamma\)-caryophyllene and trans-\(\gamma\)-bisabolene. “Rainbow” had the highest per cent value (15.5%) of sesquiterpenes. However, the relative proportion of sesquiterpenes per carrot was markedly lower than results reported by Kjeldsen et al. (2003). This may be due to the differences in cultivar and growing conditions since the experimental carrots were grown on open field. Sesquiterpene \(\delta\)-cadinene newly identified in “Atomic Red” carrot only was found to be major constituent of fruit oil of Cinnamon (Paranagama et al., 2001).

As for aldehydes, acetaldehyde, hexanal and octanal were detected in all cultivars (Table 1). Hexanal, heptanal and octanal were detected at trace levels over acetaldehyde. As shown in Figure 1, light coloured carrots such as “Rainbow”, “White Satin”, “Yellow Stone”, “Parmex” and “Purple” had aldehydes, especially acetaldehyde, at high levels compared with dark coloured genotypes (“Eregli Black”, “Red Samurai”, “Atomic Red”). Cultivars “Purple” and “Rainbow” also did not contain heptanal. Aldehydes hexanal, heptanal and octanal are produced by plants as a result of oxidative degradation of C18 unsaturated fatty acid linoleic and linolenic acids in surface lipids (Reddy & Guerrero, 2004). However, acetaldehyde is formed from alanine amino acid via Strecker degradation.

Ethanol identified in all carrots was the most abundant VOCs in “Yellow Stone” accounting for approximately 34% of the total volatiles. This finding was similar to the report by Soria, Sanz, and Villamiel (2008) for fresh Nadir variety using SPME technique. Interestingly, cultivar “Yellow Stone”
also contained at the less number (17) of VOCs compared with the other cultivars. This may be due to suppress in recovery of minor volatile compounds of high ethanol level (Deibler & Delwiche, 2003). Seljasen, Hoftun, and Bengtsson (2001) reported that acetaldehyde and ethanol markedly increased in carrots during refrigerated storage. The present study showed that the existence of both aldehydes and ethanol in all fresh carrots and their levels are probably related to carrot variety rather than volatile extraction technique and storage conditions.

Concerning phenolpropanoids, 2-methyl coumarin and myristicin (o-allyltoluen) were detected only in “Eregli Black”, “Red Samurai” and “Atomic Red” at trace levels. Phenylpropanoids have antifungal activity, which defends plants against herbivores and pathogens (Galeotti, Barile, Curir, Dolci, & Lanzotti, 2008). Myristicin alone has been previously detected in carrots (Kjeldsen et al., 2001, 2003; Soria et al., 2008). Compound 2-methyl coumarin was newly identified in carrots. Coumarins, bioactive compounds, are characterized by bitter flavours. They can play a significant role for the health-promoting properties of carrots. Irregular terpene 6-methyl-5-hepten-2-one is formed from degradation of carotenoids (Lewinsohn et al., 2005). Like phenylpropanoids, 6-methyl-5-hepten-2-one was detected in carrots with dark colour such as “Eregli Black”, “Purple”, “Red Samurai” and “Atomic Red”.

PCA was applied to whole data obtained from VOCs analyses. This multivariate statistical technique allows clustering and grouping of observations with similar properties group. According to statistical results, the carrots were divided into three groups (Table 2). Principal component one (PC1) distinguished the VOCs of “Red Samurai” and “Atomic Red” from “Purple”, “Yellow Stone” and “Rainbow”. Although both “Red Samurai” and “Atomic Red” had volatile compounds camphene, carvone, isobornylacetate, p-cymene, 2-methyl coumarin and myristicin, “Purple”, “Yellow Stone” and “Rainbow” did not contain them. PC2 contained “Eregli Black” only. As “Eregli Black” had no sabinen, and had the lowest level of \(\alpha \)-pinene and the highest levels of limonene and myristicin. It was completely different from the other carrot. PC3 distinguished “Baby Carrot” and “Parmex” from “Cosmic Purple” and “Nantes”. “Cosmic Purple” and “Nantes” had the similar proportions of \(\alpha \)-phellandrene, isobornylacetate and p-cymene, and did not contain trans-\(\alpha \)-ocimene, whereas “Baby Carrot” and “Parmex” had no compounds mentioned and had trans-\(\alpha \)-ocimene. According to PCA, VOCs camphene, carvone, isobornylacetate, p-cymene, 2-methyl coumarin, myristicin, sabinen, \(\alpha \)-pinene, limonene \(\alpha \)-phellandrene and trans-\(\alpha \)-ocimene can play a key role for distinguishing of carrot cultivars.

Carrots	Principal component		
	1	2	3
Eregli Black	0.92	5.89	−0.53
Purple	−2.12	−1.64	−1.42
Red Samurai	3.32	−0.17	0.91
Yellow Stone	−4.49	1.17	0.00
Rainbow	−2.41	−1.64	−0.43
Baby Carrot	−1.76	−1.42	2.46
Atomic Red	5.67	−0.76	1.76
Cosmic Purple	1.64	−0.66	−2.82
White Satin	−1.20	0.98	0.02
Parmex	−1.53	−0.14	2.21
Nantes	1.96	−1.63	−2.15
Variance (%)	56.8	22.40	10.30

Notes: The percentage variance accounted for by each PC. Carrots in each principal component, in proportion to the magnitude of their variation value (bold numeric), are independent from the carrots in the other principal component. Carrots in the same principal component are related to each other, according to positive and negative variation.
Overall, although the investigated carrot cultivars were grown under identical soil and climate conditions, there were wide variations in numbers and proportions of VOCs among the investigated cultivars. This finding indicates that genetic factors are responsible, which is in agreement with the previous reports (Howard et al., 1995).

4. Conclusion
The results showed that the distribution of VOCs significantly varied from cultivar to cultivar. This situation may lead to the diversity of flavours among carrot cultivars. Except for cultivars “Purple” and “Yellow Stone”, the most important specific component for carrot aroma was α-terpinolene which especially in orange coloured cultivar “Nantes” with value of about 63% was predominant VOC. Actually, in terms of the percentage composition of VOCs, cultivar “Nantes” was similar to “Atomic Red” carrot. Both cultivars contained terpenes at the highest levels and aldehydes at the lowest levels. Dominance for a low content of carrot volatile terpenoids has been observed in cultivar “Yellow Stone”. Carvone, 2-methyl coumarin and δ-cadinene were newly identified in carrot cultivars. VOCs are important for carrot flavour, which are plentiful in dark coloured cultivars such as “Atomic Red”, “Red Samurai”, “Cosmic Purple” and “Nantes”. This could be attributed to the aroma compounds of carrots are formed mostly at red and orange stages, so it is important to regulate these two stages in order to improve the desirable quality of carrots. Further studies may be desired to determine the correlations between individual aroma compound and flavour attributes in carrot cultivars.

Acknowledgement
The authors gratefully thank Professor Dr. Park W. Young, Fort Valley State University, Fort Valley - Georgia, for his proof reading.

Funding
GC-MS in this work was supported by the T.R. Prime Ministry State Planning Organization (DPT) project [project number 02K 120860].

Competing interests
The authors declare no competing interest.

Author details
Zehra Güler
E-mails: zguler@mku.edu.tr, zehra_guler@yahoo.com
Fatih Karaca
E-mail: Raraca16s@gmail.com
Halit Yetisir
E-mail: yetisir1@yahoo.com

1 Faculty of Agriculture, Department of Food Engineering, Mustafa Kemal University, Tayfur Sokmen Campus, 31034 Hatay, Turkey.
2 Anadolu Seed Company, Bursa, Turkey.
3 Department of Horticulture, Erciyes University, Kayseri, Turkey.

Citation information
Cite this article as: Identification of volatile organic compounds (VOCs) in different colour carrot (Daucus carota L.) cultivars using static headspace/gas chromatography/mass spectrometry, Zehra Güler, Fatih Karaca & Halit Yetisir, Cogent Food & Agriculture (2015), 1: 1117275.

Cover image
Source: Authors.

References
Alasalvar, C., Grigor, J. M., & Quantick, P. C. (1999). Method for the static headspace analysis of carrot volatiles. Food Chemistry, 65, 391–397. Retrieved from http://www.journals.elsevier.com/food-chem http://dx.doi.org/10.1016/S0308-8146(98)00202-7
Alasalvar, C., Grigor, J. M., Zhang, D., Quantick, P. C., & Shahidi, F. (2001). Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. Journal of Agricultural and Food Chemistry, 49, 1410–1416. doi:10.1021/ja000595h
Brandt, K., Christensen, L. P., Hansen-Møller, J., Hansen, S. L., Haraldsdottir, J., Jespersen, L., & Kobaek-Larsen, M. (2004). Health promoting compounds in vegetables and fruits: A systematic approach for identifying plant components with impact on human health. Trends in Food Science & Technology, 15, 384–393. doi:10.1016/j.tifs.2003.12.003
Cox, S. D., Mann, C. M., & Markham, J. L. (2001). Interactions between components of the essential oil of Melaleuca alternifolia. Journal of Applied Microbiology, 91, 492–497. http://dx.doi.org/10.1046/j.1365-2672.2001.01406.x
Debille, K. D., & Delwiche, J. (2003). Handbook of flavour characterization sensory analysis chemistry and physiology, New York, NY: Taylor & Francis.
Debille, K. D., & Delwiche, J. (2003). Handbook of flavour characterization sensory analysis chemistry and physiology, New York, NY: Taylor & Francis.
Debille, K. D., & Delwiche, J. (2003). Handbook of flavour characterization sensory analysis chemistry and physiology, New York, NY: Taylor & Francis.
FAO. (2013). Food and agricultural commodities production. Countries by commodity, carrots. Retrieved from http://www.fao.org/3/a-i4754e.pdf
Gajewski, M., Szymczak, P., & Rodzwanowska, J. (2010). Sensory quality of orange, purple and yellow carrots stored under controlled atmosphere. Notulae Botanicae Horti Agrobotanici, 38, 169–176. Retrieved from http://www.notulaebotaniciro
Galeotti, F., Barile, E., Curri, P., Delci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus Caryophyllum) and their antifungal activity. Phytochemistry Letters, 1, 44–48. doi:10.1016/j.phytol.2007.10.001
Güler, Z. (2007). Changes in salted yoghurt during storage. International Journal of Food Science and Technology, 42, 235–245. http://dx.doi.org/10.1111/j.1365-2672.2007.01406.x
Güler, Z., & Gürsoy-Balci, A. C. (2011). Evaluation of volatile compounds and free fatty acids in set types yogurts made of ewes’, goats’ milk and their mixture using two
different commercial starter cultures during refrigerated storage. Food Chemistry, 127, 1065–1071. doi:10.1016/j.foodchem.2011.01.090

Güler, Z., Karaca, F., & Yetisir, H. (2013). Volatile compounds in the peel and flesh of cucumber (Cucumis sativus L.) grafted onto bottle gourd (Lagenaria siceraria) rootstock. The Journal Horticultural Science & Biotechnology, 88, 123–128.

Güler, Z., Karaca, F., & Yetisir, H. (2014). Volatile compounds and sensory properties in various melons, which were chosen from different species and different locations, grown in Turkey. International Journal of Food Properties, 16, 168–179. doi:10.1080/10942912.2010.528110

Howard, L. R., Braswell, D., Heymann, H., Lee, Y., Pike, L. M., & Aselage, J. (1995). Sensory attributes and instrumental analysis relationships for strained processed carrot flavor. Journal of Food Science, 60, 145–148. doi:10.1111/j.1365-2621.1995.tb05625.x

Kebede, B. T., Grouvet, T., Palmers, S., Vervoort, L., Carle, R., Hendricks, M., & Van Loey, A. (2014). Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chemistry, 153, 340–352. http://dx.doi.org/10.1016/j.foodchem.2013.12.061

Kjeldsen, F., Christensen, L. P., & Edelenbos, M. (2001). Quantitative analysis of aroma compounds in carrot (Daucus carota L.) cultivars by capillary gas chromatography using large-volume injection technique. Journal of Agricultural Food and Chemistry, 49, 4342–4348. http://dx.doi.org/10.1021/jf010213n

Kjeldsen, F., Christensen, L. P., & Edelenbos, M. (2003). Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage. Journal of Agricultural Food and Chemistry, 51, 5400–5407. http://dx.doi.org/10.1021/jf030212q

Kreutzmann, S., Thybo, A. K., Edelenbos, M., & Christensen, L. P. (2008). The role of volatile compounds in aroma and flavour perception in coloured raw carrot genotypes. International Journal of Food and Science Technology, 43, 1619–1627. http://dx.doi.org/10.1111/jifs.2008.43.issue-9

Lewinsohn, E., Sirkit, Y., Bar, E., Azulay, Y., Ibda, M., Meir, A., ... Tadmor, Y. (2005). Not just colors—Carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends in Food Science and Technology, 16, 407–415. doi:10.1016/j.tifs.2005.04.004

Peduch, R., Kandefer−Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: Substances useful in human healthcare. Archivium Immunologicae et Therapiae Experimentalis, 55, 315–327. http://dx.doi.org/10.1007/s00005-007-0039-1

Paranagama, P. A., Wimalasena, S., Jayatilleke, G. S., Jayawardena, A. L., Senanayake, U. M., & Mubarak, A. M. (2001). A comparison of essential oil constituents of bark, leaf, root and fruit of cinnamon (Cinnamomum zeylanicum blum) grown in Sri Lanka. Journal of the National Science Foundation Sri Lanka, 29, 147–153. doi:10.4038/jnsfsr.v29i3-4.2613

Reddy, G. V. P., & Guerrero, A. (2004). Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 9, 253–261. doi:10.1016/j.plants.2004.03.009

SAS Institute. (2005). SAS Online Doc., Version 8. Cary: Author.

Seljasen, R., Hoftun, H., & Bengtsson, G. B. (2001). Sensory quality of ethylene-exposed carrots (Daucus carota L.) related to the contents of 6-methoxymellein, terpenes and sugars. Journal of the Science of Food and Agriculture, 81, 54–61. doi:10.1007/s13165-005-0112-8

Soria, A. C., Sanz, J., & Villamil, M. (2008). Analysis of volatiles in dehydrated carrot samples by solid-phase microextraction followed by GC-MS. Journal of Separation Science, 31, 3548–3555. doi:10.1002/jssc.200800282

Teranishi, R., & Kint, S. (1993). Sample preparation. In T. Acree & R. Teranshi (Eds.), Flavor science: Sensible principles and techniques (pp. 137–167). Washington, DC: American Chemical Society.

Van Duyne, M. A. S., & Pivonka, E. (2000). Overview of the health benefits of fruit and vegetable consumption for the dietics professional. Journal of the American Dietetic Association, 100, 1511–1521. doi:10.1016/S0002-8223(00)00420-X