COHOMOLOGICAL TENSOR FUNCTORS ON REPRESENTATIONS OF THE GENERAL LINEAR SUPERGROUP

TH. HEIDERSDORF, R. WEISSAUER

ABSTRACT. We define and study cohomological tensor functors from the category T_n of finite-dimensional representations of the supergroup $Gl(n|n)$ into T_{n-r} for $0 < r \leq n$. In the case $DS : T_n \to T_{n-1}$ we prove a formula $DS(L) = \bigoplus L_i[n_i]$ for the image of an arbitrary irreducible representation. In particular $DS(L)$ is semisimple and multiplicity free. We derive a few applications of this theorem.

Part 1. Cohomological tensor functors
1. The superlinear groups
2. The Duflo-Serganova functor DS
3. Cohomology Functors
4. Support varieties and the kernel of DS
5. The tensor functor D
6. The relation between $DS(V)$ and $D(V)$
7. Hodge decomposition
8. The case $m > 1$
9. Boundary maps
10. Highest Weight Modules
11. The Casimir

Part 2. The Main Theorem and its proof
12. The language of Brundan and Stroppel
13. On segments and sectors
14. The Main theorem
15. Strategy of the proof
16. Mixed tensors
17. Modules of Loewy length 3
18. Inductive Control over DS
19. Moves

Part 3. Consequences of the Main Theorem
20. Tannaka Duals
21. Cohomology I
22. Cohomology II
23. The forest formula
24. Kac module of 1
Little is known about the decomposition of tensor products between finite-dimensional representations of the general linear supergroup $Gl(m|n)$ over an algebraically closed field of characteristic 0. In this article we define and study cohomological tensor functors from the category $T_n = \text{Rep}(Gl(n|n))$ of finite-dimensional representations of $Gl(n|n)$ to T_{n-r} for $0 < r \leq n$. Our aim is to reduce questions about tensor products between irreducible representations by means of these functors to lower rank cases where the question can hopefully be inductively understood. This is indeed the case as the $Gl(1|1)$-case has been completely worked out in [GQS07], and the $Gl(2|2)$-case is partially controlled by the theory of mixed tensors [Hei14].

The tensor functors that we study are variants and generalizations of a construction due to Duflo-Serganova [DS05] and Serganova [Ser10]. For any $x \in X = \{x \in g_1 \mid [x,x] = 0\}$, where g_1 denotes the odd part of the underlying Lie superalgebra $gl(m|n)$, the cohomology of the complex

\[\cdots \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots \]

obtained by multiplication with x defines a functor $M \mapsto M_x : T_n \to T_{n-r}$ (where r is the so-called rank of x) which preserves tensor products. We often work in an abelian subcategory \mathcal{R}_n such that $\mathcal{T}_n = \mathcal{R}_n \oplus \Pi \mathcal{R}_n$, where Π denotes the parity shift. We fix a special x of rank 1 in section 2 and denote the corresponding tensor functor by $DS : \mathcal{R}_n \to \mathcal{T}_{n-1}$. We refine this construction in section 3 to define for any $V \in \mathcal{R}_n$ a complex

\[\xrightarrow{\partial} \Pi(V_{2\ell-1}) \xrightarrow{\partial} V_{2\ell} \xrightarrow{\partial} \Pi(V_{2\ell+1}) \xrightarrow{\partial} \]

whose cohomology in degree ℓ is denoted by $H^\ell(V)$, so that

\[DS(V) = \bigoplus_{\ell \in \mathbb{Z}} \Pi^\ell(H^\ell(V)). \]

The tensor functors DS and $DS_{n,n-r}$ are not $*$-invariant in the sense that $DS(V^*) \neq DS(V)^*$. In section 5 we therefore define an analog D of the Dirac operator and we denote the corresponding cohomology groups by

\[H_D(V) = \ker(D : V \to V)/\text{Im}(D : V \to V). \]
This defines a $*$-invariant tensor functor. It agrees with DS on irreducible modules and gives rise to an analog of Hodge decomposition. These definitions and results easily generalize to functors $\omega_{n,n-r} : T_n \to T_{n-r}$ with graded pieces $\omega^k_{n,n-r}$ as described in section 8.

The second part is devoted to our main theorem. In this main theorem we give an explicit formula for the image of an irreducible representation L of atypicality k (for $0 < k \leq n$) under the functor DS. In particular,

$$DS(L) = \bigoplus L_i[n_i]$$

is always semisimple and multiplicity free. The proof occupies the entire second part. By an involved induction, the proof is reduced to the case of ground-states; these are irreducible modules in a block such that all the cups in their associated cup-diagram (in the sense of Brundan-Stroppel [BS12a]) are completely nested inside each other and are to the left of all crosses and circles. We list some applications and note that our explicit formula allows to reprove the generalized Kac-Wakimoto conjecture, and also give a formula for the modified superdimension of an irreducible module.

In the third part we apply the main theorem. One application is the computation of the refined cohomology

$$H^\bullet(L(\lambda)) = \bigoplus_{i=1}^k L(\lambda_i)[-\sum_{j<i} d_j]$$

of an irreducible maximal atypical representation $L = L(\lambda)$ in theorem 22.1, where the d_j are the distances between the sectors of L in the sense of section 13. We also give a nice formula for the Laurent polynomial

$$\sum_{\nu \in \mathbb{Z}} sdim(\omega^\ell_{n,0}(L)) \cdot t^\ell.$$

of irreducible maximal atypical representations.

Since the image of an irreducible representation under DS is therefore understood, it is natural to look at the image $DS(I)$ of an indecomposable representations I. The kernel of DS is the tensor ideal of representations with a filtration by anti-Kac modules by section 4. In other cases it is hard to determine $DS(I)$. In the last sections we give a cohomological criterion 27.5 for an indecomposable representation to be equal to the trivial representation. Most of the results in this article can be rephrased for representations of the supergroup $Gl(m|n)$ where $m \neq n$. This will be discussed elsewhere.
Part 1. Cohomological Tensor Functors

1. The Superlinear Groups

Let k be an algebraically closed field of characteristic zero. A super vector space V over k is a $\mathbb{Z}/2\mathbb{Z}$-graded k-vector space $V = V^{(0)} \oplus V^{(1)}$. Its superdimension is $sdim(V) = \dim(V^{(0)}) - \dim(V^{(1)})$. The parity shift functor Π on the category of super vector spaces over k is defined by $\Pi(V) = V^{(1)}$ and $\Pi(V) = V^{(0)}$ and the parity endomorphism of V is $p_V = id^{(0)} + id^{(1)}$ in $End_k(V)$.

The categories F and T. Let $g = gl(m|n) = g^{(0)} \oplus g^{(1)}$ be the general Lie superalgebra. The even part $g^{(0)} = gl(m) \oplus gl(n)$ of $gl(m|n)$ can be considered as the Lie algebra of the classical subgroup $G^{(0)} = Gl(m) \times Gl(n)$ in $G = Gl(m|n)$. By definition a finite dimensional super representation ρ of $gl(m|n)$ defines a representation ρ of $Gl(m|n)$, if its restriction to $g^{(0)}$ comes from an algebraic representation of $G^{(0)}$, also denoted by ρ. For the linear supergroup $G = Gl(m|n)$ over k let F be the category of the super representations ρ of $Gl(m|n)$ on finite dimensional super vector spaces over k. For (V, ρ) in F also $\Pi(V, \rho)$ is in F. The morphisms in the category F are the G-linear maps $f : V \to W$ between super representations, where we allow even and odd morphisms with respect to the gradings on V and W, i.e., morphisms with $f \circ p_V = \pm p_W \circ f$. For $M, N \in F$ we have $Hom_F(M, N) = Hom_F(M, N, \Pi)^{\Pi} \oplus Hom_F(M, N, \Pi^T)^{\Pi}$, where $Hom_F(M, N, \Pi)$ are the even morphisms. Then

$$Hom_F(M, N) = Hom_F(M, \Pi N)^{\Pi} = Hom_T(M, \Pi N).$$

Let $T = sRep_{\Lambda}(G)$ be the subcategory of F with the same objects as F and $Hom_T(M, N) = Hom_F(M, N, \Pi)$. Then $sRep_{\Lambda}(G)$ is an abelian category, whereas F is not.

The duality *. The Lie superalgebra $g = gl(m|n)$ has a consistent [Kac78] \mathbb{Z}-grading $g = g_{(-1)} \oplus g_0 \oplus g_{(1)}$, where $g^{(0)} = g_0$ and where $g^{(1)} = g_{(-1)} \oplus g_{(1)}$ is defined by the upper triangular block matrices $g_{(1)}$ and $g_{(-1)}$ by the lower triangular block matrices. The supertranspose x^T (see [Sch79], (3.35) and (4.14)) of a graded endomorphism $x \in End(k^{m|n})$ is defined by

$$x = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix} \mapsto x^T = \begin{pmatrix} m_1^t & -m_3^t \\ m_2^t & m_4^t \end{pmatrix}, \quad x \in g$$

where m_i^t denotes the ordinary transpose of the matrices m_i. If we identify g and $End(k^{m|n})$, then $\tau(x) = -x^T$ defines an automorphism of the super Lie algebra g such that $\tau(g_{(i)}) = g_{(-i)}$ holds for $i = -1, 0, 1$. For a representation $M = (V, \rho)$ in T and homogenous x in g the Tannaka dual representation $M^\vee = (V^\vee, \rho^\vee)$ is the representation $x \mapsto -\rho(x)^T$ on V, using the supertranspose $\rho(x)^T$ of $\rho(x)$ in $End(V)$. Finally we define the representation $M^* = (V^\vee, \rho^\vee \circ \tau)$, where $\tau(x) = -x^T$ is the automorphism of g defined
by the supertranspose on \(g\). See also [BKN09a], 3.4 using a different convention. \(V \in \mathcal{R}_n\) (see below) implies \(V^* \in \mathcal{R}_n\) by [Bru03], lemma 4.43. For simple and for projective objects \(V\) of \(T\) furthermore \(V^* \cong V\). Also \(V^*|_{G^\sigma} \cong V|_{G^\sigma}\) for all \(V\) in \(T_n\). Notice that both \(\vee\) and \(*\) define contravariant functors on \(T_n\).

The category \(\mathcal{R}\). Fix the morphism \(\varepsilon : \mathbb{Z}/2\mathbb{Z} \to G^\sigma = GL(m) \times GL(n)\) which maps \(-1\) to the element \(\text{diag}(E_m, -E_n) \in GL(m) \times GL(n)\) denoted \(\varepsilon_{mn}\). We write \(\varepsilon_n = \varepsilon_{mn}\). Notice that \(\text{Ad}(\varepsilon_{mn})\) induces the parity morphism on the Lie superalgebra \(gl(m|n)\) of \(G\). We define the abelian subcategory \(\mathcal{R} = s\text{Rep}(G, \varepsilon)\) of \(T\) as the full subcategory of all objects \((V, \rho)\) in \(T\) with the property \(p_V = \rho(\varepsilon_{mn})\); here \(\rho\) denotes the underlying homomorphism \(\rho : GL(m) \times GL(n) \to GL(V)\) of algebraic groups over \(\Lambda\). The subcategory \(\mathcal{R}\) is stable under the dualities \(\vee\) and \(*\). For \(G = GL(n|n)\) we usually write \(T_n\) instead of \(T\), and \(\mathcal{R}_n\) instead of \(\mathcal{R}\), to indicate the dependency on \(n\).

Weights. Consider the standard Borel subalgebra \(b\) of upper triangular matrices in \(g\) and its unipotent radical \(u\). The basis \(\Delta\) of positive roots associated to \(b\) is given by the basis of the positive roots associated to \(b \cap g^\sigma\) for the Lie algebra \(g^\sigma\) and a single odd root \(x\) whose weight will be called \(\mu\). The diagonal elements \(t = \text{diag}(t_1, \ldots, t_n, t'_n, \ldots, t'_1)\) in \(G^\sigma\) act by semisimple matrices on \(V\) for any representation \((V, \rho)\) in \(T_n\). Hence \(V\) decomposes into a direct sum of eigenspaces \(V = \bigoplus_{\lambda} V_{\lambda}\) for certain characters \(t^\lambda = t_1^{\lambda_1} \cdots t_n^{\lambda_n} (t'_n)^{\lambda_n} \cdots (t'_1)^{\lambda_1}\). Then write \(\lambda = (\lambda_1, \ldots, \lambda_n; \lambda'_n, \ldots, \lambda'_1)\). A primitive weight vector \(v\) (of weight \(\lambda\)) in a representation \((V, \rho)\) of \(g\) is a nonzero vector in \(V\) with the property \(\rho(X)v = 0\) for \(X \in u\) and \(\rho(t)v = t^\lambda\). An irreducible representation \(L\) has a unique primitive weight vector (up to a scalar), the highest weight vector. Its weight \(\lambda\) uniquely determines the irreducible module \(L\) up to isomorphism in \(\mathcal{R}_n\). Therefore we write \(L = L(\lambda)\).

The Berezin. The Berezin determinant of the supergroup \(G = G_n\) defines a one dimensional representation \(B = Ber\). Its weight is is given by \(\lambda_i = 1\) and \(\lambda'_i = -1\) for \(i = 1, \ldots, n\).

Equivalence. Two irreducible representations \(M, N\) on \(T\) are said to be equivalent \(M \sim N\), if either \(M \cong Ber^r \otimes N\) or \(M^\vee \cong Ber^r \otimes N\) holds for some \(r \in \mathbb{Z}\). This obviously defines an equivalence relation on the set of isomorphism classes of irreducible representations of \(T\). A self-equivalence of \(M\) is given by an isomorphism \(f : M \cong Ber^r \otimes M\) (which implies \(r = 0\) and \(f\) to be a scalar multiple of the identity) respectively an isomorphism \(f : M^\vee \cong Ber^r \otimes M\). If it exists, such an isomorphism uniquely determines \(r\) and is unique up to a scalar and we say \(M\) is of type (SD). Otherwise we say \(M\) is of type (NSD). The isomorphism \(f\) can be viewed as a nondegenerate \(G\)-equivariant bilinear form

\[
M \otimes M \to Ber^r,
\]
which is either symmetric or alternating. So we distinguish between the cases (SD$_{\pm}$). Let $V^+(n)$ denote the set of equivalence classes of irreducible representations in \mathcal{R}_n (we restrict to \mathcal{R}_n instead of T for later convenience).

Negligible objects. An object $M \in T_n$ is called negligible, if it is the direct sum of indecomposable objects M_i in T_n with superdimensions $sdim(M_i) = 0$. The tensor ideal of negligible objects is denotes N or \mathcal{N}_n.

2. The Duflo-Serganova functor DS

An embedding. Fix some $1 \leq m \leq n$. We view $G_{n-m} = Gl(n-m|n-m)$ as an ‘outer block matrix’ in $G_n = Gl(n|n)$ and G_1 as the ‘inner block matrix’ at the matrix positions $n \leq i, j \leq n + 1$. We fix some invertible $m \times m$-matrix J with the property $J = J^t = J^{-1}$. For example take J to be the identity matrix E, or the matrix with nonzero entries equal to 1 only in the antidiagonal. We furthermore fix the embedding

$$\varphi_{n,m} : G_{n-m} \times G_1 \hookrightarrow G_n$$

defined by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} A & 0 & 0 & B \\ 0 & aE & bJ & 0 \\ 0 & cJ & dE & 0 \\ C & 0 & 0 & D \end{pmatrix}$$

We use this embedding to identify elements in G_{n-m} and G_1 with elements in G_n. In this sense $\epsilon_n = \epsilon_{n-m}\epsilon_1$ holds in G_n, for the corresponding elements ϵ_{n-m} and ϵ_1 in G_{n-m} resp. G_1, defined in section 1.

Two functors. One has a functor $(V, \rho) \mapsto V^+ = \{ v \in V \mid \rho(\epsilon_1)(v) = v \}$

$$+: \mathcal{R}_n \to \mathcal{R}_{n-m}$$

where V^+ is considered as a G_{n-m}-module using $\rho(\epsilon_1)\rho(g) = \rho(g)\rho(\epsilon_1)$ for $g \in G_{n-m}$. Indeed $Ad(\epsilon_1)(g) = g$ holds for all $g \in G_{n-m}$. The grading on V induces a grading on V^+ by $(V^+)_{\overline{0}} = V_{\overline{0}} \cap V^+$ and $(V^+)_{\overline{1}} = V_{\overline{1}} \cap V^+$. For this grading the decomposition $V^+ = (V^+)_{\overline{0}} \oplus (V^+)_{\overline{1}}$ is induced by the parity morphism $\rho(\epsilon_n)$ or equivalently $\rho(\epsilon_{n-1})$. With this grading on V^+ the restriction of ρ to G_{n-m} preserves V^+ and defines a representation (V^+, ρ) of G_{n-m} in \mathcal{R}_{n-m}.

Similarly define $V^- = \{ v \in V \mid \rho(\epsilon_1)(v) = -v \}$. With the grading induced from $V = V_{\overline{0}} \oplus V_{\overline{1}}$ this defines a representation V^- of G_{n-m} in \mathcal{R}_{n-m}. Obviously

$$(V, \rho)|_{G_{n-m}} = V^+ \oplus V^-.$$
The exact hexagon. Fix the following element \(x \in g_n \)

\[
x = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \in g_n \text{ for } y = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots \\ J & 0 & 0 & 0 \end{pmatrix}
\]

for the fixed invertible \(m \times m \)-matrix \(J \).

Since \(x \) is an odd element with \([x, x] = 0 \), we get

\[
2 \cdot \rho(x)^2 = [\rho(x), \rho(x)] = \rho([x, x]) = 0
\]

for any representation \((V, \rho)\) of \(G_n \) in \(\mathcal{R}_n \). Notice \(d = \rho(x) \) supercommutes with \(\rho(G_{n-m}) \). Furthermore \(\rho(x) : V^\pm \to V^\mp \) holds as a \(k \)-linear map, an immediate consequence of \(d\rho(\varepsilon_1) = -\rho(\varepsilon_1)d \), i.e. of \(\text{Ad}(\varepsilon_1)(x) = -x \). Since \(\rho(x) \in \text{Hom}_F(V, V)_1 \) is an odd morphism, \(\rho(x) \) induces the following even morphisms (morphisms in \(\mathcal{R}_{n-m} \))

\[
\rho(x) : V^+ \to \Pi(V^-) \text{ and } \rho(x) : \Pi(V^-) \to V^+.
\]

The \(k \)-linear map \(\partial = \rho(x) : V \to V \) is a differential and commutes with the action of \(G_{n-m} \) on \((V, \rho) \). Therefore \(\partial \) defines a complex in \(\mathcal{R}_{n-m} \)

\[
\begin{array}{cccccc}
\partial & \to & V^+ & \partial & \to & \Pi(V^-) & \partial & \to & V^+ & \partial & \to & \ldots
\end{array}
\]

Since this complex is periodic, it has essentially only two cohomology groups denoted \(H^+(V, \rho) \) and \(H^-(V, \rho) \) in the following. This defines two functors \((V, \rho) \mapsto D_{n,n-m}^\pm(V, \rho) = H^\pm(V, \rho)\)

\[
D_{n,n-m}^\pm : \mathcal{R}_n \to \mathcal{R}_{n-m}.
\]

It is obvious that an exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & A & \overset{\alpha}{\longrightarrow} & B & \overset{\beta}{\longrightarrow} & C & \longrightarrow & 0
\end{array}
\]

in \(\mathcal{R}_n \) gives rise to an exact sequences of complexes in \(\mathcal{R}_{n-m} \). Hence

Lemma 2.1. The long exact cohomology sequence defines an exact hexagon in \(\mathcal{R}_{n-m} \)

\[
\begin{array}{cccccccc}
H^+(A) & \overset{H^+ (\alpha)}{\longrightarrow} & H^+(B) & \overset{\delta}{\longrightarrow} & H^-(C) & \overset{H^- (\beta)}{\longrightarrow} & H^+(C) & \overset{\delta}{\longrightarrow} & \ldots
\end{array}
\]

\[
\begin{array}{cccccccc}
H^-(B) & \overset{H^- (\alpha)}{\longrightarrow} & H^-(A) & \overset{\delta}{\longrightarrow} & H^-(C) & \overset{H^- (\beta)}{\longrightarrow} & H^+(C) & \overset{\delta}{\longrightarrow} & \ldots
\end{array}
\]

Alternative point of view. For the categories \(T = T_n \) resp. \(T_{n-m} \) (for the groups \(G_n \) resp. \(G_{n-m} \)) consider the tensor functor of Duflo and Serganova
in [DS05]

\[DS_{n,m} : T_n \to T_{n-m} \]

defined by \(DS_{n,m}(V, \rho) = V_x := \text{Ker}(\rho(x))/\text{Im}(\rho(x)) \). Then for \((V, \rho) \in R_n\)

\[H^+(V, \rho) \oplus \Pi(H^-(V, \rho)) = DS_{n,m}(V). \]

Indeed, the left side is \(DS_{n,m}(V) = V_x \) for the \(k \)-linear map \(\partial = \rho(x) \) on \(V = V^+ \oplus V^- \). Hence \(H^+ \) is the functor obtained by composing the tensor functor

\[DS_{n,m} : R_n \to T_{n-m} \]

with the functor

\[T_{n-1} \to R_{n-m} \]

that projects the abelian category \(T_{n-m} \) onto \(R_{n-m} \) using

Lemma 2.2. Every object \(M \in T_n \) decomposes uniquely as \(M = M_0 \oplus M_1 \) with \(M_0 \in R_n \) and \(M_1 \in \Pi(R_n) \). This defines a block decomposition of the abelian category

\[T = R_n \oplus \Pi(R_n). \]

Proof. For any \(M, N \in R_n \) the \(\mathbb{Z}_2 \)-graded space \(\text{Ext}_T^i(M, N) \) is concentrated in degree zero [Bru03], Cor. 4.44.

Tensor property. As a graded module over \(R = k[x]/x^2 \) any representation \(V \) decomposes into a direct sum of a trivial representation \(T \) and copies of \(R \) (ignoring shifts by \(\Pi \)). To show that \(DS_{n,m}(V) = R_x \oplus T_x = T \) is a tensor functor, it suffices that \((R \otimes R)_x = 0\). For this we use that the underlying tensor product is the supertensor product! Indeed for \(R = V_{\chi} \oplus V_{\bar{\chi}} \) and \(V_{\chi} = k \cdot 1 \) and \(V_{\bar{\chi}} = k \cdot x \) we have \(x(e_1) = e_2 \) and \(x(e_2) = 0 \). The induced superderivation \(d \) on \(R \otimes R \) satisfies \(d(1 \otimes 1) = x \otimes 1 + 1 \otimes x \), \(d(x \otimes 1) = -x \otimes x \), \(d(1 \otimes x) = x \otimes x \) and \(d(x \otimes x) = 0 \). Hence \(\text{Im}(d) = \text{Ker}(d) = k \cdot (1 \otimes x + x \otimes 1) \oplus k \cdot x \otimes x \) and therefore \((R \otimes R)_x = 0\).

3. Cohomology Functors

In this section we assume \(V \in T_n \) and \(m = 1 \). In the following let \(DS \) be the functor \(DS_{n,n-1} \) (for \(J = 1 \)).

Enriched weight structure. The maximal torus of diagonal matrices in \(G_n \) naturally acts on \(DS(V) \) so that \(DS(V) \) decomposes into weight spaces \(DS(V) = \bigoplus_\lambda DS(V)_\lambda \) for \(\lambda \) in the weight lattice \(X(n) \) of \(g_n \). Indeed for the weight decomposition \(V = \bigoplus_\lambda V_\lambda \) every \(v \in V \) has the form \(v = \sum_\lambda v_\lambda \) for \(v_\lambda \in V_\lambda \). Now \(\partial v = 0 \) if and only if \(\partial v_\lambda = 0 \) holds for all \(\lambda \), since \(\partial(V_\lambda) \subseteq V_{\lambda+\mu} \) for the odd simple weight \(\mu \) (ignoring parities on \(V \)). Similarly \(v = \partial w \) if and only if \(v_\lambda = \partial w_\lambda \) for all \(\lambda \), since we can always project on the weight eigenspaces. This trivial remark shows that \(DS(V) \) naturally carries a weight decomposition with respect to the weight lattice \(X(n) \) of
\[g_n. \] The weight structure for \(g_{n-1} \) is obtained by restriction. The kernel of the restriction \(X(n) \to X(n - 1) \) of weights, denoted by
\[\lambda \mapsto \overline{\lambda}, \]
are the multiples \(\mathbb{Z} \cdot \mu \) of the odd simple root \(\mu = e_{n,n} - e_{n+1,n+1} \). We may therefore view \(DS(V) \) as endowed with the richer weight structure coming from the \(G_n \)-module \(V \). This decomposition induces a natural decomposition of \(DS(V) \) into eigenspaces \(DS(V) = \bigoplus_\ell DS(V)_\ell \). To make this more convenient consider the torus of elements \(\text{diag}(1, ..., 1, t^{-1}, 1, ..., 1) \), called the small torus. These elements commute with \(G_n \) and hence we obtain a decomposition of \(G_n \)-modules \(V \). Obviously \(V_\ell = 0 \) for \(\ell \notin [\ell_0, \ell_1] \) and suitable \(\ell_0, \ell_1 \). For the odd morphism \(\partial = \rho(x) \) the properties \(\partial(V_\lambda) \subseteq V_{\lambda+\mu} \) and \(\mu(\text{diag}(1, ..., 1, t^{-1}, 1, ..., 1)) = t \) show that
\[\frac{\partial}{\partial} \Pi(V_{2\ell-1}) \xrightarrow{\partial} V_{2\ell} \xrightarrow{\partial} \Pi(V_{2\ell+1}) \xrightarrow{\partial} V_{2\ell+2} \xrightarrow{\partial} \]
defines a complex. Its cohomology is denoted \(H^\ell(V) \). Obviously
\[\Pi^\ell(H^\ell(V)) = DS(V)_\ell \]
and hence we obtain a decomposition of \(DS(V, \rho) \) into a direct sum of \(G_{n-1} \)-modules
\[DS(V, \rho) = \bigoplus_{\ell \in \mathbb{Z}} \Pi^\ell(H^\ell(V)). \]
An exact sequence
\[0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0 \]
in \(\mathcal{R}_n \) then gives rise to a long exact sequence in \(\mathcal{R}_{n-1} \).
\[\ldots \to H^{\ell-1}(C) \to H^\ell(A) \to H^\ell(B) \to H^\ell(C) \to H^{\ell+1}(A) \to \ldots \]
Finally define \(B = \Pi^n(\text{Ber}) \) in \(T_n \). Then

Lemma 3.1. For \(V \) in \(T_n \) we have \(H^\ell(B \otimes V) = B \otimes H^{\ell-1}(V) \). For the Tannaka dual \(V^\vee \) of \(V \) furthermore \(H^\ell(V^\vee) = H^{n-\ell}(V) \) holds for all \(\ell \in \mathbb{Z} \) (isomorphisms of \(G_{n-1} \)-modules).

Proof. The first property follows from \(DS(B \otimes V)_\ell = DS(B) \otimes DS(V)_{\ell-1} \) and \(\Pi(DS(B)) = B \). Notice \(\Pi^\ell(H^\ell(V)) = DS(V)_\ell \). Furthermore \(DS(V^\vee) \cong DS(V)^\vee \), since \(DS \) is a tensor functor. Hence the second claim follows from \((V^\vee)^{-\ell} = (V_\ell)^\vee \), since \(\Pi^2 \) is the identity functor and duality ‘commutes’ with the parity shift \(\Pi \).

Notice, for \(V_\ell \in T_{n-1} \) the module \((V_\ell)^* \in T_{n-1} \) is isomorphic to \((V^*)_\ell \).

Finally, for \((V, \rho) \in \mathcal{R}_n \) we get \(V^+ = \bigoplus_{\ell \in \mathbb{Z}} V_\ell \) and \(\Pi(V^-) = \bigoplus_{\ell \in 1+2\mathbb{Z}} V_\ell \). Hence
Lemma 3.2. For V in \mathcal{R}_n we get

$$H^+(V) = \bigoplus_{t \in \mathbb{Z}} H^t(V), \quad H^-(V) = \bigoplus_{t \in 1+2\mathbb{Z}} H^t(V).$$

4. Support varieties and the kernel of DS

Support varieties. We review results from [BKN10], [BKN09b] and [BKN09a] on support varieties. Recall the decomposition $g = g_{(-1)} \oplus g(0) \oplus g_{(-1)}$. The support varieties are defined by

$$V_{g_{(\pm 1)}}(M) = \{ \xi \in g_{(\pm 1)} \mid M \text{ not projective as a } U(\langle \xi \rangle) - \text{module} \} \cup \{0\}.$$

Notice that $\xi \in g_{(\pm 1)}$ generates an odd abelian Lie superalgebra $\langle \xi \rangle$ with $[\xi, \xi] = 0$, which up to isomorphisms has only two indecomposable modules: The trivial module and its projective cover $U(\langle \xi \rangle)$. By [BKN10], prop 6.3.1

$$V_{g_{(\pm 1)}}(M \otimes N) = V_{g_{(\pm 1)}}(M) \cap V_{g_{(\pm 1)}}(N).$$

The associated variety of Duflo and Serganova is defined as

$$X_M = \{ \xi \in X \mid M_\xi \neq 0 \}$$

where X is the cone $X = \{ \xi \in g_{(1)} \mid [\xi, \xi] = 0 \}$. For $\xi \in X$ the condition $M_\xi \neq 0$ is equivalent by [BKN09a], 3.6.1, to the condition that M is not projective as a $U(\langle \xi \rangle)$-module. Hence X_M is the set of all $\xi \in X$ such that M is not projective as a $U(\langle \xi \rangle)$-module together with $\xi = 0$. Thus

$$V_{g_{(-1)}}(M) \cup V_{g_{(1)}}(M) \subseteq X_M, \quad V_{g_{(\pm 1)}}(M) = X_M \cap g_{(\pm 1)}.$$

Kac and anti-Kac objects. We denote by \mathcal{C}^+ the tensor ideal of modules with a filtration by Kac modules in \mathcal{R}_n and by \mathcal{C}^- the tensor ideal of modules with a filtration by anti-Kac modules in \mathcal{R}_n and quote from [BKN09a], thm 3.3.1, thm 3.3.2

$$M \in \mathcal{C}^+ \iff V_{g_{(1)}}(M) = 0, \quad M \in \mathcal{C}^- \iff V_{g_{(-1)}}(M) = 0.$$

Hence M is projective if and only if $V_{g_{(1)}}(M) = V_{g_{(-1)}}(M) = 0$ holds.

Vanishing criterion. For any $\xi \in X$ there exists $g \in Gl(n) \times Gl(n)$ and isotropic mutually orthogonal linearly independent roots $\alpha_1, \ldots, \alpha_k$ such that $Ad_g(\xi) = \xi_1 + \ldots + \xi_m$ with $\xi_i \in g_{\alpha_i}$. The number $m = r(\xi)$ is called the rank of ξ [Ser10]. The orbits for the action of $Gl(n) \times Gl(n)$ on $g_{(1)}$ are [BKN09a], 3.8.1

$$(g_{(1)})_m = \{ \xi \in g_{(1)} \mid r(\xi) = m \} \quad \text{for} \quad 0 \leq m \leq n.$$

By a minimal orbit for the adjoint action of $Gl(n) \times Gl(n)$ on $g_{(\pm 1)}$ we mean a minimal non-zero orbit with respect to the partial order given by containment in closures. The unique minimal orbit $(g_{(1)})_1$ is the orbit of the element x defined earlier. The situation is analogous for $g_{(-1)}$, where $\overline{x} = \tau(x)$ generates the corresponding minimal orbit. A slight modification of [BKN09a], thm 3.7.1 and its proof gives...
Theorem 4.1. For $\xi \in g_{(1)}$ and $M \in C^-$ we have $M_\xi = 0$. For $\xi \in g_{(-1)}$ and $M \in C^-$ we have $M_\xi = 0$. For $\xi = x$ we have $M_x = 0$ if and only if $M \in C^-$ and $M_\varepsilon = 0$ if and only if $M \in C^+$.

Proof. Let $M \in C^-$. Then the definition of Kac objects implies $V_{g_{(1)}}(M) = 0$. Hence $\{ \xi \in g_{(1)} \mid M_\xi \neq 0 \} = 0$. Conversely assume $M_x = 0$. Since $V_{g_{(1)}}(M)$ is a closed $Gl(n) \times Gl(n)$-stable variety, it contains a closed orbit. Since the orbits $(g_{(1)})_m$ are closed only for $m = 1$, unless $V_{g_{(1)}}(M)$ is empty, it must contain $(g_{(1)})_1$. This implies $M_x \neq 0$, a contradiction. Hence $V_{g_{(1)}}(M) = \emptyset$. □

Corollary 4.2. For our fixed $x \in (g_{(1)})_1$

(1) M is projective if and only if $M_x = 0$ and $M_{xx} = 0$.

(2) M is projective if and only if $M_x = 0$ and $M^*_x = 0$

(3) If $M = M^*$, then M is projective if and only if $M_x = 0$.

Proof. $M_x = 0$ implies $V_{g_{(1)}}(M) = 0$ and $M_{xx} = 0$ implies $V_{g_{(-1)}}(M) = 0$, hence (1). Now (2) and (3) follow from [BKN09a], 3.4.1 using $V_{g_{(\pm 1)}}(M^*) = \tau(V_{g_{(\pm 1)}}(M))$. □

5. The tensor functor D

In this section we assume $V \in T_n$. For $t \in k^*$ the diagonal matrices
diag(E_{n-1}, t, t, E_{n-1}) \in G_{\overline{\varepsilon}}
define a one dimensional torus, the center of G_1; for this recall the embeddings $G_1 = id \times G_1 \hookrightarrow G_{n-1} \times G_1 \hookrightarrow G_n$. The center of G_1 commutes with $G_{n-1} \times id \subset G_n$. Hence the center of G_1 naturally acts on $DS(V)$ in a semisimple way for any representation $(V, \rho) \in T$. Hence the underlying vectorspace V decomposes into H-eigenspaces for $H = diag(0_{n-1}, 1, 1, 0_{n-1})$ in $g_n = \text{Lie}(G_n)$ generating the Liealgebra of this torus.

Let $x \in g_n$ be the fixed nilpotent element specified in section 2. Let $\overline{x} = x^T$ denote the supertranspose of x. Now $Ad(\varepsilon_1)(H) = H$ and $[H, x] = [H, \overline{x}] = 0$ imply that the operators $\partial = \rho(x)$ and $\overline{\partial} = c \cdot \rho(\overline{x})$ (for any $c \in k^*$) commute with H. Furthermore $[x, \overline{x}] = H$ for the odd elements x and \overline{x} implies

$$\partial \overline{\partial} + \overline{\partial} \partial = c \cdot \rho(H) .$$

Since H commutes with x, the operator $\rho(H)$ acts on V_x. Since H commutes with ε_1 the grading V^\pm is compatible with taking invariants V^H. On V the
odd operator $\bar{\partial}$ defines a homotopy of the complex

\[
\begin{array}{ccccccccc}
\partial & \Pi(V_{2\ell-1}) & \partial & V_{2\ell} & \partial & \Pi(V_{2\ell+1}) & \partial & V_{2\ell+2} & \partial \\
\bar{\partial} & \Pi(V_{2\ell-1}) & \bar{\partial} & V_{2\ell} & \bar{\partial} & \Pi(V_{2\ell+1}) & \bar{\partial} & V_{2\ell+2} & \bar{\partial}
\end{array}
\]

Hence $c \cdot \rho(H)$ is homotopic to zero. In particular, the natural action of $\rho(H)$ on the cohomology modules $H^\ell(V)$ is trivial. Therefore

Lemma 5.1. $\rho(H)$ acts trivially on the cohomology $DS(V) = V_x$.

Since H acts in a semisimple way, taking H-invariants $V \mapsto V^H$ is an exact functor and commutes with the cohomology functor $V \mapsto V_x$. Thus

\[DS(V) = M_x \quad \text{for} \quad M = V^H\]

and similarly $H^\pm(V) = H^\pm(V^H)$ etc. Notice $(V^H)^\pm = (V^\pm)^H$. Since the operators ∂ and $\bar{\partial}$ commute with H, they preserve $M = V^H$ and anti-commute on M, hence we obtain double complex for $M = V^H$ defined by

\[
\begin{array}{cccccc}
\bar{\partial} & M^+ & \bar{\partial} & \Pi(M^-) & \bar{\partial} \\
\partial & \Pi(M^-) & \partial & M^+ & \partial \\
\end{array}
\]

The Dirac operator. This double complex is related to the complex

\[
\cdots \xrightarrow{D} M^+ \xrightarrow{D} \Pi(M^-) \xrightarrow{D} M^+ \xrightarrow{D} \Pi(M^-) \xrightarrow{D} \cdots
\]

attached to the Dirac operator

\[D = \partial + \bar{\partial} .\]

Since $M = M^+ \oplus \Pi(M^-)$, the two cohomology modules $H_D^+(V)$ and $H_D^-(V)$ of this periodic complex compute

\[H_D(V) = \text{Kern}(D : M \to M) / \text{Im}(D : M \to M)\]

in the sense that

\[H_D(V) = H_D^+(V) \oplus \Pi(H_D^-(V))\]

gives the decomposition of $H_D(V)$ into its R_n and $\Pi(R_n)$-part.

Remark. Note that D commutes with $\rho(H)$. Hence the operator D respects the eigenspaces of H on V. Since $D^2 = \partial^2 + (\partial \bar{\partial} + \bar{\partial} \partial) + \bar{\partial}^2 = (\partial \bar{\partial} + \bar{\partial} \partial) = c \cdot \rho(H)$, we have $\text{Ker}(D : V \to V) = \text{Kern}(D : V^H \to V^H)$. However $D(V)$ is in general different from $D(V^H)$, although both spaces have the same intersection with V^H.

\[12\]
Lemma 5.2. There exist natural isomorphisms $H^+_{D}\langle V \rangle^* \cong H^+_{D}(V^*)$ and $H^{-+}_{D}(V)^* \cong H^+_{D}(V^\vee)$ of G_{n-1}-modules. For short exact sequences in \mathcal{R}_n one obtains an exact hexagon in \mathcal{R}_{n-1} for the functors H^+_{D}.

Now, for the preferred choices of the constant $c = \pm i$ (a square root of -1 in k), we also get

$$H_D(V^*, \rho^*) \cong H_D(V, \rho)^*.$$

In fact $\tau(x + i\pi) = -(\pi - i\pi) = i(x + i\pi)$, since $\tau^2(x) = -x$. Next recall that $\rho^*(D) = \rho^\vee(\tau(D)) = i\rho^\vee(D)$ is defined as endomorphism on $V^* := V^\vee$. Hence $H_D(V^*, \rho^*)$, by definition the cohomology of $\rho^*(D)$ on $(V^*)^H$, can be identified with the space

$$\text{Ker}(i\rho^\vee(D)) : (V^\vee)^H \to (V^\vee)^H/\text{Im}(i\rho^\vee(D)) : (V^\vee)^H \to (V^\vee)^H.$$

Of course we can ignore the factor i, and identify this representation with the representation on

$$(\text{Ker}(\rho(D)) : V_H \to V_H)/\text{Im}(\rho(D)) : (V_H \to V_H))^{\vee}$$

or hence with

$$H_D(V, \rho)^\vee = (\text{Ker}(\rho(D)) : V^H \to V^H)/\text{Im}(\rho(D)) : (V^H \to V^H)^{\vee},$$

using the dual $(V_H)^\vee \to (V^H)^\vee$ of the natural morphism $V^H \to V_H$, which is an isomorphism by the semisimplicity of H. Finally recall $H_D(V, \rho)^\vee = H_D(V, \rho)^*$ for the underlying representation spaces.

So from now on assume $c = i$. Then, in contrast to lemma 3.1, we obtain

Lemma 5.3. There exist natural isomorphisms of functors $\mathcal{R}_n \to \mathcal{R}_{n-1}$

$$\mu_V : H^\pm_{D}(V^*) \cong H^\pm_{D}(V^*)^*.$$

Proof. It remains to show that the isomorphism $\mu_V : H^\pm_{D}(V^*) \cong H^\pm_{D}(V^*)^*$ given above defines a natural transformation. For a G_n-linear map $f : V \to W$ the induced map $f^* : W^* \to V^*$ is nothing but the morphism $f^\vee : W^\vee \to V^\vee$, using $V^* = V^\vee$ and $W^* = W^\vee$. This now easily shows that the above identifications μ_V, μ_W induce a commutative diagram

$$\begin{array}{ccc}
H_D(W^*) & \xrightarrow{H_D(f^*)} & H_D(V^*) \\
\mu_W \downarrow & & \mu_V \downarrow \\
H_D(W^*) & \xrightarrow{H_D(f^*)} & H_D(V^*)
\end{array}$$

Example. Let V be the Kac module $V(1)$ in \mathcal{R}_1. Then $DS(V^*) = 0$ and $DS(V) = 1 \oplus \Pi(1)$. On the other hand $H_D(V) = 0$ and $H_D(V^*) = 0$.

Remark. It is not a priori clear how to define a Dirac analog of the modules $H^\ell(V)$. Indeed $\overline{\partial}$ and ∂ (in the sense of odd morphisms) satisfy $\overline{\partial} : V_\lambda \to V_{\lambda - \mu}$ and $\partial : V_\lambda \to V_{\lambda + \mu}$ for the odd simple weight μ. Hence
$\overline{\partial} : V_\ell \to V_{\ell-1}$ and $\partial : V_\ell \to V_{\ell+1}$ and therefore $D = \partial + \overline{\partial}$ does not simply shift the grading. We address this question in section 7.

H_D as a tensor functor. Although taking H-invariants $V \mapsto M = V^H$ is not a tensor functor, H_D is nevertheless a tensor functor. To show this it is enough to restrict the representations (V, ρ) to $G_1 \hookrightarrow G_n$. Hence it suffices to show that the functor

$$H_D : T_1 \to T_0 = {svec}_k$$

is a tensor functor. H generates the center of $gl(1|1)$ and $D^2 = \rho(H)$. Hence $Kern(D) \subset V^H$. Since H is semisimple, the Jordan blocks of D on V (ignoring the grading!) are Jordan blocks B_λ of length 1 except for the eigenvalue $\lambda = 0$, where they are either Jordan blocks B_0 of length 1 or Jordan blocks R of length 2. (Indeed the square of an indecomposable Jordan block of length a and eigenvalue λ is again an indecomposable Jordan block of length a for $\lambda \neq 0$. Since $D^2 = \rho(H)$ is semisimple, this implies $\lambda = 0$ and $a \leq 2$ for $a > 1$.) By definition, for $V = \bigoplus \lambda k_\lambda(V) \cdot B_\lambda \oplus k(V) \cdot R$ we have $H_D(V) = k_0(V) \cdot B_0$, if we ignore the grading. Now $B_\lambda \otimes B_{\lambda'} = B_{\lambda \pm \lambda'}$, where the sign depends on the parity of B_λ. Furthermore the characteristic polynomial of D on $R \otimes B_\lambda$ is $X^2 - \lambda^2$, hence D has eigenvalue 0 on $R \otimes B_\lambda$ only for $\lambda = 0$, in which case $R \otimes B_\lambda$ is isomorphic to R. Finally $R \otimes R \cong R^2$. Hence the only possible deviation from the tensor functor property for H_D might come from tensor products $B_\lambda \otimes B_{\lambda'}$ where $\lambda \pm \lambda' = 0$. In this case $H = \lambda^2 \cdot id$ on B_λ and $B_{\lambda'}$, hence $H = 2\lambda^2 \cdot id$ on $B_\lambda \otimes B_{\lambda'}$. But the even operator D^2 then acts by $2\lambda^2 \cdot id$ on $B_\lambda \otimes B_{\lambda'}$. Hence D does not have the eigenvalue zero on $B_\lambda \otimes B_{\lambda'}$ unless $\lambda = \lambda' = 0$. Therefore $B_0 \otimes B_0 \cong B_0$ is the only relevant case. Hence $H_D(V \otimes W) = k_0(V) k_0(W) \cdot B_0 = k_0(V) \cdot B_0 \oplus k_0(W) \cdot B_0 = H_D(V) \otimes H_D(W)$. This remains true if we also take into account gradings.

Lemma 5.4. $H_D : T_n \to T_{n-1}$ is a tensor functor.

6. The relation between $DS(V)$ and $D(V)$

For $(V, \rho) \in T_n$ the eigenvalue decomposition with respect to the small torus gives a decomposition

$$V = \bigoplus_{\ell \in \mathbb{Z}} V_\ell$$

into G_{n-1}-modules V_ℓ. Furthermore $\overline{\partial}$ and ∂ (in the sense of odd morphisms) satisfy $\overline{\partial} : V_\ell \to V_{\ell-1}$ and $\partial : V_\ell \to V_{\ell+1}$.

Since the generator H of the center of $Lie(G_1)$ commutes with the small torus, for the invariant subspace $M = V^H \subset V$ we get the induced decomposition

$$M = \bigoplus_{\ell} \Pi^\ell(M_\ell)$$

where
for $\Pi^\ell(M_\ell) = M_\ell \cap V_\ell = (V_\ell)^H$. Notice $M = M^+ \oplus \Pi(M^-)$ for $(V, \rho) \in \mathcal{R}_n$ with
\[
M^+ = \bigoplus_{\ell \in \mathbb{Z}} M_\ell, \quad M^- = \bigoplus_{\ell \in 1+2\mathbb{Z}} M_\ell
\]
in \mathcal{R}_n. The spaces M_ℓ are G_{n-1}-modules.

On M the operators ∂ and $\overline{\partial}$ are even morphisms and they anticommute. Hence we get a double complex $K = K^{\bullet, \bullet}$ in T_{n-1} attached to (V, ρ)

\[
\begin{array}{c}
M_{\ell+2} \xrightarrow{\partial} M_{\ell+1} \xrightarrow{\partial} M_{\ell} \xrightarrow{\partial} M_{\ell-1} \\
| \quad | \quad | \\
M_{\ell+1} \xrightarrow{\partial} M_{\ell} \xrightarrow{\partial} M_{\ell-1} \xrightarrow{\partial} M_{\ell-2} \\
| \quad | \quad | \\
M_{\ell} \xrightarrow{\partial} M_{\ell-1} \xrightarrow{\partial} M_{\ell-2} \xrightarrow{\partial} M_{\ell-3}
\end{array}
\]

with $K^{i,j} = M_{j-i}$. This double complex is periodic with respect to $(i, j) \mapsto (i+1, j+1)$. The modules $K^{i,j}$ vanish for $j-i \notin [\ell_0, \ell_1]$ and certain $\ell_0, \ell_1 \in \mathbb{Z}$.

The associated single complex $(\text{Tot}(K), D)$ has the objects $\text{Tot}(K)^n = \bigoplus_{i \in \mathbb{Z}} M_{n+2i}$ and the differential $D = \partial + \overline{\partial}$. The total complex therefore is periodic with $\text{Tot}^0(K) = M^+$ and $\text{Tot}^1(K) = \Pi(M^-)$ and computes the cohomology $H^n(\text{Tot}(K), D) = H^n_D(V)$ for $n \in 2\mathbb{Z}$ and $H^n(\text{Tot}(K), D) = H^n_D(V)$ for $n \in 1+2\mathbb{Z}$.

On the total complex $(\text{Tot}(K), D)$ we have a decreasing filtration defined by $F^p \text{Tot}^n(K) = \bigoplus_{r+s = n, r \geq p} K^{r,s}$. This filtration induces decreasing filtrations on the cohomology of the total complex
\[
... \supseteq F^p(H^q_D(V)) \supseteq F^{p+1}(H^q_D(V)) \supseteq ...
\]
and a spectral sequence $(E^r_{p,q}, d_r)$ converging to
\[
E^\infty_{p,q} = \text{gr}^H H^{p+q}(\text{Tot}(K), D).
\]

Indeed the convergence of the sequence follows from the fact that the higher differentials $d_r : E^r_{p,q} \rightarrow E^r_{p+r,q+r+1}$ vanish for $2r - (q - p + 1) > \ell_1 - \ell_0$. The E_1-complex of the spectral sequence is the direct sum over all q of the horizontal complexes $E_1^{p,q} = (H^q_D(K_\ell^\bullet), \overline{\partial})$. For the various q these complexes are the same up to a shift of the complex. So, if we ignore this shift, these complexes are given by the natural action of $\overline{\partial}$ on $DS(V) = \bigoplus_\ell H^\ell(V)$ defining the complex
\[
... \xrightarrow{\overline{\partial}} H^{q+1}(V) \xrightarrow{\overline{\partial}} H^q(V) \xrightarrow{\overline{\partial}} H^{q-1}(V) \xrightarrow{\overline{\partial}}
\]
The decreasing filtration F^p induced on
\[
E_1(K)^n = \bigoplus_{i \in \mathbb{Z}} H^{n+2i}(V)
\]
has graded terms $gr^p(E_1(K)^n) = H_0(K^{p,n-p}) = H_0(M_{n-2p}) = H^{n-2p}(V)$. We now define the subquotient $H_D^{n-2p}(V) := gr^p(E_\infty(K)^n)$ of $H^{n-2p}(V)$, hence

$$H_D^p(V) := gr^p(E_\infty(K)^{n+2p})$$

Notice, this definition does not depend on the choice of p. We thus obtain

Lemma 6.1. For $T \in T_n$ the cohomology modules $H_D^p(V)$ admit canonical decreasing filtrations F^p whose graded pieces are the G_{n-1}-modules $H_D^{n-2p}(V)$ for $H_D^p(V)$ and $H_D^{2p-1}(V)$ for $H_D^p(V)$.

Condition T. We say that condition T holds for (V, ρ) in T_n if the natural operation of the operator $\mathcal{D} = \rho(\tau(x))$ on $DS(V, \rho)$ is trivial.

Example. The standard representation $X = X_st$ of G_n on $k^{n|n}$ satisfies condition T.

Remark. If $\tau(x)$ act trivially both on $DS(V)$ and $DS(W)$ for some $V, W \in T_n$, then $\tau(x)$ acts trivially on $DS(V \otimes W) = DS(V) \otimes DS(W)$. If $\tau(x)$ acts trivially on $DS(U)$ for $U \in T_n$, then $\tau(x)$ act trivially on every retract of $DS(U)$. Hence: Condition T for $(V, \rho) = L(\lambda)$ implies condition T for every retract U of $DS(V \otimes W)$. Thus the subcategory of objects in \mathcal{R}_n satisfying condition T is closed under tensor products and retracts.

Now consider the following conditions for (V, ρ)

1. (V, ρ) is irreducible.
2. $H^+(V) \oplus H^-(V)$ is multiplicity free.
3. $H^+(V)$ and $H^-(V)$ do not have common constituents.
4. Condition T holds.
5. \mathcal{D} acts trivially on $DS(V)$.
6. The $E_1^{p,q}$ and the $E_2^{p,q}$ terms of the spectral sequence coincide

$$H_\mathcal{D}(H^\ell(V)) = H^\ell(V)$$

where $\ell := n - 2p = q - p$.

Later in theorem 14.3 we prove that (1) implies (2). Furthermore it is trivial that (2) \implies (3) \implies (4) \implies (5) \implies (6).

Proposition 6.2. If condition (3) holds, then the spectral sequence degenerates at the E_1-level and $H_D^p(V)$ is naturally isomorphic to $H^\pm(V)$.

Proof. The differentials of the spectral sequence $d_r : E_r^{pq} \rightarrow E_r^{p+r,q-r+1}$ define maps from the subquotient E_r^{pq} of $H^{n-2p}(V)$ (for $n = p+q$) to the subquotient $E_r^{p+r,q-r+1}$ of $H^{n-2p-2r+1}(V)$. If $H^{n-2p}(V)$ contributes to $H^\pm(V)$, then $H^{n-2p-2r+1}(V)$ contributes to $H^\pm(V)$. Since all the higher differentials are G_{n-1}-linear, condition (3) forces all differentials d_r to be zero for $r \geq 1$. Hence the spectral sequence degenerates at the E_1-level. \square
Proposition 6.3. The spectral sequence always degenerates at the E_2-level, i.e. for all objects (V, ρ) in T_n we have

$$H_\sigma^q(H^i(V)) \cong H_D^i(V).$$

Proof. This is a general assertion on spectral sequences arising from a double complex K such that $K^{i,j} = M_{j-i}$ for maps $\partial: M_{\ell} \to M_{\ell+1}$ and $\overline{\partial}: M_{\ell} \to M_{\ell-1}$ between finite dimensional k-vectors. Assume without restriction of generality, that K is an object in T_1. Using $T_1 = \mathcal{R}_1 \oplus \Pi(\mathcal{R}_1)$ we can decompose, and assume without restriction of generality, that M is an object in \mathcal{R}_1. However, then it defines a maximal atypical object in the category \mathcal{R}_1. For instance, that \mathcal{R}_1 can be identified with the category of objects in \mathcal{R}_1 with trivial central character. Notice that this condition on the central character for a representation (V, ρ) of G_1 simply means $V = V^H = M$, since H generates the center of $\text{Lie}(G_1)$. This reduces our claim to the special case $n = 1$ for (V, ρ) in \mathcal{R}_1^0. Obviously we can assume that (V, ρ) is indecomposable.

The indecomposable objects V in \mathcal{R}_1^0 were classified by Germoni [Ger98]. Either $V \in \mathcal{C}^+$ (Kac object), or $V \in \mathcal{C}^-$ or there exists an object $U \subset V, U \in \mathcal{C}^-$ with irreducible quotient L or there exists a quotient Q of V in \mathcal{C}^- with irreducible kernel L'. Since $DS(N) = 0$ for all objects in \mathcal{C}^- (theorem 4.1), we conclude from the long exact sequence of H^ℓ-cohomology that we can assume either $V \in \mathcal{C}^+$ or we can assume that V is irreducible, since in the remaining cases $DS(V) = 0$ or $DS(V) \cong DS(L)$ or $DS(L') \cong DS(V)$. As already mentioned, by the later theorem 14.3 for irreducible V the spectral sequence already abuts. For $r = 1$ however this is obvious anyway, since any atypical irreducible L is isomorphic to a Berezin power $L \cong \text{Ber}^m$. Hence $H_D^r(L) = H^r(L) = k$ for $r = m$ and $H_D^r(L) = H^r(L) = 0$ otherwise. So it remains to consider the case of indecomposable Kac objects $V \in \mathcal{C}^+$ in \mathcal{R}_1^0. Unless $V \in \mathcal{C}^+ \cap \mathcal{C}^-$, then by Germoni’s result $V \cong V(i; m)$ for $i \in \mathbb{Z}$ and $m \in \mathbb{N}$ is a successive extension

$$0 \to V(i-2; m-1) \to V(i; m) \to V(\text{Ber}^i) \to 0$$

of the Kac objects with $V(i; 1) = V(\text{Ber}^i)$. Furthermore the Kac module $V(\text{Ber}^i)$ is an extension of Berezin modules

$$0 \to \text{Ber}^{i-1} \to V(\text{Ber}^i) \to \text{Ber}^i \to 0,$$

hence $H^\ell(V(\text{Ber}^i)) \cong k$ for $\ell = i, i-1$ and is zero otherwise. From the long exact cohomology sequence and induction hence $\dim H^\nu(V(i; m)) = 1$ for $\nu \in \{i, i-1, \ldots, i-2m+1\}$, and $H^\nu(V(i; m)) = 0$ otherwise. So (for fixed q) the complexes in the E_1-term of the spectral sequence for $V = V(i; m)$ have the form

$$0 \to H^i(V) \to H^{i-1}(V) \to \ldots \to H^{i-2m+2}(V) \to H^{i-2m+1}(V) \to 0$$
with differentials ∂ and $H^\nu(V)$ of dimension one for $\nu = i, i-1, \ldots, i-2m+1$. We have to show that these complexes are acyclic for all $V = V(i; m)$. For this it suffices that the first differential $\partial : H^i(V) \to H^{i+1}(V)$, the third differential $\partial : H^{i+2}(V) \to H^{i+3}(V)$ and so on, are injective. Then the E_2-term of the spectral sequence is zero by dimension reasons. Hence the spectral sequence abuts at $r = 2$, which proves our claim.

To proof the injectivity for the first, third and so on differential ∂ we use induction on m. For $m = 1$ and $V = V(Ber^i) \in \mathcal{C}^+$, by theorem 4.1 and lemma 5.3 we know $H_D(V) = 0$. Since $H^\nu(V) = 0$ for $\nu \neq i, i-1$, all higher differentials d_r for $r \geq 2$ are zero by degree reasons. Hence $\partial : H^i(V) \to H^{i+1}(V)$ must be an isomorphism.

For the induction step put $V_i := V(i, 1)$ and $N = V(i-2, m-1)$; then $V/N \cong V_i$. Hence we get a commutative diagram with horizontal exact sequences

$$
... \xrightarrow{\partial} H^{i-1}(N) \xrightarrow{\partial} H^{i-1}(V_i) \xrightarrow{\partial} H^{i}(N) \xrightarrow{\partial} ...
$$

$$
... \xrightarrow{\partial} H^{i-2}(N) \xrightarrow{\partial} H^{i-2}(V_i) \xrightarrow{\partial} H^{i-1}(N) \xrightarrow{\partial} ...
$$

Since $H^\nu(N) = 0$ for $\nu > i - 2$ and $H^\nu(V_i) = 0$ for $\nu \neq i, i-1$

$$
\begin{array}{ccc}
0 & \to & H^{i-1}(N) \to H^{i-1}(V_i) \to H^i(V_i) \to 0 \\
\partial & \downarrow & \partial & \downarrow & \partial \\
0 & \to & H^{i-2}(N) \to H^{i-2}(V_i) \to H^{i-1}(V_i) \to 0
\end{array}
$$

Thus $\partial : H^i(V) \to H^{i+1}(V)$ is injective by a comparison with V_i. The assertion for the third, fifth and so on differential ∂ follows from the induction assumption on N, since $H^\nu(V) \cong H^\nu(N)$ for $\nu \leq i - 2$.

\[\square \]

7. Hodge decomposition

Now put $F_p = F^{-p}$. This defines a decreasing filtration of G_{n-1}-modules $F_p(H^D_{\mathbb{C}}(V))$ on $H^D_{\mathbb{C}}(V)$ in the last section for $V \in T_n$. Here

$$
F_p(H^D_{\mathbb{C}}(V)) = \text{Im}(\bigoplus_{\ell \geq 2p} M^\pm_{\ell} \cap \text{Ker}(D) \to H^D_{\mathbb{C}}(V)).
$$

One has also a decreasing filtration of G_{n-1}-modules $\overline{F}_q(H^D_{\mathbb{C}}(V))$ on $H^D_{\mathbb{C}}(V)$ defined by the second filtration of the cohomology of $(\text{Tot}(K), D)$ for the double complex $K^\bullet \bullet$ defined in the last section. It is defined by the subcomplexes $\overline{F}^q((\text{Tot}(K))^n) = \bigoplus_{s = n, s \geq q} K^{r,s}$ of $(\text{Tot}(K), D)$. Notice that

$$
\overline{F}^q(H^D_{\mathbb{C}}(V))
$$
is the image of the D-cohomology of this subcomplex in $H_D(K)$. This filtration has analogous properties. In particular

$$\mathcal{P}^n_{-2q}(V) := \mathcal{P}^n(Tot^n(K))/\mathcal{P}^{n+1}(Tot^n(K))$$

by an analog of proposition 6.3 is isomorphic to

$$\overline{H}_D^q(V) \cong H_\partial(\overline{H}_D^q(V))$$

where $\overline{H}_D^q(V)$ is defined as $H_D^q(V)$, only by using ∂ instead of ∂.

We remark that both filtrations are functorial with respect to morphisms $f : V \to W$ in T_n. Hence also $V \mapsto \mathcal{P}^n(H_D^n(V)) \cap F_p(H_D^n(V))$ defines a functor from T_n to T_{n-1}.

Proposition 7.1. For all objects V in T_n we have a canonical decomposition of $H_D^\pm(V)$ into G_{n-1}-modules

$$H_D^\pm(V) = \bigoplus_{\nu \in \mathbb{Z}} H_D^\nu(V)$$

for $\varepsilon = (-1)^\nu$

$$H_D^\nu(V) := F_\nu(H_D^\nu(V)) \cap \mathcal{P}_\nu(H_D^\nu(V))$$.

Furthermore

$$F_\mu(H_D^\pm(V)) \cap \mathcal{P}_\mu(H_D^\mp(V)) = 0$$

for $\mu > \nu$.

Corollary 7.2. For a short exact sequence $0 \to A \to B \to C \to 0$ in T_n the sequences

$$H_D^\nu(A) \to H_D^\nu(B) \to H_D^\nu(C)$$

are exact for all ν.

Remark. As shown after lemma 24.2 these halfexact sequences can not be extended to long exact sequences!

Proof. If $x \in H_D^\nu(B)$ maps to zero in $H_D^\nu(C) \subset H_D(C)$, there exist $y \in H_D(A)$ such that x is the image of y by the exact hexagon for H_D^ν. But then, for the decomposition $y = \sum y_\nu$ and $y_\nu \in H_D^\nu(C)$ given in proposition 7, the components y_ν also maps to x by the functoriality of $H_D^\nu(.)$. □

Proof of proposition 7.1. As in the proof of proposition 6.3 we can reduce to the case of an indecomposable object V in R^0_1. For such V either $H_D(V) = 0$, in which case the assertion is trivial, or V is of the form is of the form

$$0 \to L \to V \to Q \to 0$$

with irreducible L and $Q \in C^-$ or of the form

$$0 \to U \to V \to L \to 0$$

with irreducible L and $U \in C^-$. These two situation are Tannaka duals of each other. So we restrict ourselves to the first case. The irreducible module
isomorphic to Ber^m for some $m \in \mathbb{Z}$. Then according to \cite{Ger98} the quotient module Q has socle and cosocle

$$socle(Q) = \bigoplus_{i=1}^{s} Ber^{m+2i}$$

$$cosocle(Q) = \bigoplus_{i=1}^{s} Ber^{m+2i-1}.$$

Recall $H^m(V) = H^*(V)$, and hence $H_D(V) = H^m(V)$. Hence by the abutment of the spectral sequences

$$H^\nu(T^\nu(V)) = H^\nu(V) = k$$

for $\nu = m$ and is zero otherwise. Hence $H^m(V) \cong H_D(V)$, since the filtration F^ν only jumps for $p = m$. Similarly

$$H^\nu(T^\nu(V)) = T^\nu(V) = k$$

for $\nu = m$ and is zero otherwise. Hence $T^m(V) \cong H_D(V)$, since the filtration F^q only jumps for $q = m$. This simultaneous jump shows

$$H^m_D(V) = T^m(D_H(V)) \cap F_m(H_D(V))$$

and also

$$T^q(H_D(V)) \cap F_p(H_D(V)) = 0$$

for $q > p$. □

8. The Case $m > 1$

As the diligent reader may have observed, the results obtained in the last sections on the functor carry over to the case of the more general functors $DS_{n,n-m}$. For this fix $m \geq 1$. The enriched weight structure $DS_{n,n-m}$ (which depends on m) is obtained from the eigenvalue decomposition of $(V, \rho) \in T_n$ with respect to the small torus $\varphi_{n,m}(E \times diag(1, t^{-1}))$. This allows to gives a decomposition

$$DS_{n,n-m}(V) = \bigoplus_{\ell} DS^\ell_{n,n-m}(V)$$

and long exact sequences in T_{n-m} attached to short exact sequences in T_n as in section 2. Furthermore lemma 3.1 and lemma 3.2 carry over verbatim. Notice

$$DS^\ell_{n,n-m}(Ber) = Ber, \quad \ell = m$$

and is zero otherwise.

For $n - m_1 = n_1$ and $n_1 - m_2 = n_2$ the functors $DS_{n,n_1} : T_n \to T_{n_1}$ and $DS_{n_1,n_2} : T_{n_1} \to T_{n_2}$ are related to the functor $DS_{n,n_2} : T_n \to T_{n_2}$ by a Leray type spectral sequence with the E_2-terms

$$\bigoplus_{p+q=k} DS^p_{n_1,n_2}(DS^q_{n,n_1}(V)) \Rightarrow DS^k_{n,n_2}(V).$$
To be more precise, choose matrices

\[J = \begin{pmatrix} 0 & J_2 \\ J_1 & 0 \end{pmatrix} \]

and \(m_i \times m_i \)-matrices \(J_i, i = 1, 2 \) with zero entries except for the entries 1 in the antidiagonal. Then \(J \) and \(J_1 \) define functors \(DS_{n, n_1}(V, \rho) = (V, \rho)_x \) resp. \(DS_{n, n_1}(V, \rho) = (V, \rho)_{x_1} \) and \(J_2 \) defines a functor \(DS_{n, n_2}(W, \psi) = (W, \psi)_{x_2} \). Obviously we have \(DS \circ DS = DS \).

Then indeed \(\partial = \partial_1 + \partial_2 \) and \(\partial_1 \partial_2 + \partial_2 \partial_1 = 0 \) for \(\partial = \rho(x), \partial_1 = \rho(x_1) \) and \(\partial_2 = \psi(x_2) \). Consider the weight decomposition

\[V = \bigoplus_{p, q \in \mathbb{Z}} V^{p, q} \]

of \((V, \rho)\) with respect to the matrices

\[g(t_1, t_2) = \text{diag}(1, \ldots, 1; t_1^{-1}, \ldots, t_1^{-1}, t_2^{-1}, \ldots, t_2^{-1}, 1, \ldots, 1) \]

in \(G_n \) \((m_1 \text{ entries } t_1^{-1} \text{ and } m_2 \text{ entries } t_2^{-1})\) so that \(v \in V^{p, q} \) iff \(g(t_1, t_2)v = t_1^p t_2^q \cdot v \). Then \(\partial_2 : V^{p, q} \to V^{p+1, q} \) and \(\partial_1 : V^{p, q} \to V^{p, q+1} \). Hence the Leray type spectral sequence is obtained by the spectral sequence of this double complex. For this note that the eigenvalues \(t^k \) of elements \(g(t, t) \) define the functors \(D^k_{n, n_2} \).

Proposition 8.1. For irreducible maximal atypical objects \(L \) in \(T_n \) the Leray type spectral sequence degenerates:

\[DS_{n, n_2}(L) \cong DS_{n, n_2}(DS_{n, n_1}(L)) \]

Proof. Up to a parity shift, we can replace \(L = L(\lambda) \) by \(X_\lambda \) in \(T_n \), so that \(\text{sdim}(X_\lambda) > 0 \) using that \(\text{sdim}(X) \neq 0 \) [Ser10], [Wei10]. Then it suffices to prove inductively for \(DS \) applied \(m \) times

\[(DS \circ DS \cdots \circ DS)(X_\lambda) \cong DS_{n, n-m}(X_\lambda) \]

The case \(m = 1 \) is obvious by definition, since \(DS_{n, n-1} = DS \). Suppose this assertion holds for \(m \). Let us show that it then also holds for \(m \) replaced by \(m + 1 \). Indeed, the \(E_2 \)-term of the spectral sequence

\[DS \circ (DS \circ DS \cdots \circ DS)(X_\lambda) \Rightarrow D_{n-m-1}(X_\lambda) \]

are of the form

\[DS \circ (DS \circ DS \cdots \circ DS)(X_\lambda) \cong \bigoplus_{\mu} X_\mu \]

for irreducible representations \(X_\mu \) in \(T_{n-m-1} \) of superdimension \(\text{sdim}(X_\mu) > 0 \). Indeed this follows by repeatedly applying the later theorem 14.3, which implies \(DS(X_\lambda) \cong \bigoplus_{i=1}^k DS(X_{\lambda_i}) \) for irreducible maximal atypical objects \(X_{\lambda_i} \) in \(T_{n-1} \) with \(\text{sdim}(X_{\lambda_i}) > 0 \). Now \(DS \) is a tensor functor, and hence
preserves superdimensions. Hence $\text{sdim}(X_\lambda) = \sum_\mu \text{sdim}(X_\mu)$. If the spectral sequence would not degenerate at E_2-level, then the E_∞-term is a proper subquotient of the semisimple E_2-term. Hence

$$\text{sdim}(D_{n-m-1})(X_\lambda) < \sum_\mu \text{sdim}(X_\mu),$$

since $\text{sdim}(X_\lambda) > 0$. This would imply

$$\text{sdim}(D_{n-m-1})(X_\lambda) < \text{sdim}(X_\lambda).$$

However this is a contradiction, since D_{n-m-1} is a tensor functor and hence $\text{sdim}(D_{n-m-1})(X_\lambda) = \text{sdim}(X_\lambda)$. □

We have seen in the last proposition that the Leray type spectral sequence degenerates at the E_2-level for irreducible maximal atypical objects. Let F^p be the decending first (or second) filtration of the total complex. This implies

Lemma 8.2. Suppose given a finite double complex $(K^{p,\bullet}, d_{\text{hor}}, d_{\text{vert}})$ with associated total complex $K^\bullet = \text{tot}(K^{p,\bullet})$ and total differential d. Suppose the associated spectral sequence for the first (second) filtration degenerates at the E_2-level and suppose $x \in F^p(K^\bullet)$ is a boundary in K^\bullet. Then there exists $y \in F^{p-1}(K^\bullet)$ such that $x = dy$.

Proof. We can assume that $x = \sum_{i=p}^\infty x_{p,n-p}$ has fixed degree n. The spectral sequence degenerates at E_2 and $[x] = 0$ in $F^pH^n(K^\bullet)$. Hence the class of x in $Gr^p(H^n(K^\bullet)) = H^p_{\text{hor}}(H^n_{\text{vert}}(K^{p,\bullet}))$ vanishes. In other words there exists $v \in K^{p,n-p-1}$ and $u \in K^{p-1,n-p}$ such that $d_{\text{vert}}u = 0$ and such that $d_{\text{hor}}(u) + d_{\text{vert}}v = x_{p,q}$. Hence $x - d(u + v) \in F^{p+1}(K^\bullet)$ with $u + v \in F^{p-1}(K^\bullet)$ again is closed. Iterating this argument we conclude that for any r large enough we find $y \in F^{p-1}(K^\bullet)$ such that $x - dy \in F^r(K^\bullet)$. If r is large enough, then $F^r(K^\bullet) = 0$ and hence the claim follows. □

Dirac cohomology. Similarly for $\partial = \rho(x)$ and $\overline{\partial} = c \cdot \rho(x)$ and $D = \partial + \overline{\partial}$ the results of section 5 hold verbatim. In particular, for a generator z of the Liealgebra of the center of G_1 let H denote its image $\varphi_{n,m}(z) \in g_n$. The D-cohomology of the fixed space V^H then gives objects $\omega_{n,n-m}(V,\rho)$ so that

$$\omega_{n,n-m} : T_n \to T_{n-m}$$

defines a tensor functor generalizing $H_D = \omega_{n,n-1}$.

As in section 6 there is a spectral sequence that allows to define a filtration on $\omega_{n,n-m}(V)$ whose graded pieces are

$$\omega_{n,n-m}^k(\omega_{n,n-m}(V)) \cong H_{\overline{\partial}}(D_{n,n-m}^k(V)).$$

This generalizes proposition 6.3. Furthermore the results of proposition 7.1 and corollary 7.2 of section 7 carry over and define a Hodge decomposition for $\omega_{n,n-m}$ in terms of the functors $\omega_{n,n-m}^k$. Finally the same argument used in the proof of proposition 8.1 also shows
Proposition 8.3. For irreducible maximal atypical objects \(L \) in \(T_n \) the spectral sequence above degenerates

\[
\omega^\ell_{n,n-m}(L) \cong D^\ell_{n,n-m}(L).
\]

Lemma 8.4. Suppose for irreducible \(V \in T_n \) that \(DS_{n,n_1}(V) \cong \omega_{n,n_1}(V) \) holds. Then

\[
\omega_{n,n_2}(V) \cong \omega_{n_1,n_2}(DS_{n,n_1}(V))
\]

holds.

Proof. Use that \(\overline{\vartheta} = \vartheta_1 + \vartheta_2 \). By the assumption \(DS_{n,n_1}(V) \cong \omega_{n,n_1}(V) \) the differential \(\vartheta_1 \) is trivial on \(DS_{n,n_1}(V) \), hence trivial on \(DS_{n,n_2}(DS_{n,n_1}(V)) \cong DS_{n,n_2}(V) \). Therefore the \(\overline{\vartheta} \)-homology of \(DS_{n,n_2}(V) \) is the same as the \(\vartheta_2 \)-homology of \(DS_{n,n_2}(DS_{n,n_1}(V)) \). □

This implies \(\omega^\ell_{n,n-m}(L) \cong D^\ell_{n,n-m}(L) \) for any irreducible \(L \) in \(T_n \). We prove this by induction on \(m \). For \(m = 1 \) this follows from the fact, that irreducible representations satisfy property \(\mathcal{T} \). Now we use \(\omega_{n,n-m-1}(L) \cong \omega_{n-m,n-m-1}(DS_{n,n-m}(L)) \) from lemma 8.4. Since \(DS_{n,n-m}(L) \) is semisimple by proposition 8.1 (as iteration of \(m \) times \(DS \)), we have

\[
\omega_{n,m,n-m-1}(DS_{n,n-m}(L)) = DS(DS_{n,n-m}(L)) = DS_{n,m-1}(L).
\]

This implies

Proposition 8.5. For all irreducible objects \(L \) in \(T_n \) and all \(\ell \) we have

\[
\omega^\ell_{n,n-m}(L) \cong D^\ell_{n,n-m}(L).
\]

The case \(m = n \) is of particular interest. Notice that \(T_0 \) is the category \(\text{svec}_k \) of finite dimensional super \(k \)-vectorspaces. Hence

\[
\omega = \omega_{n,0} : T_n \rightarrow \text{svec}_k.
\]

The torus \(A \). Let \(A \subseteq G_n \) denote the diagonal torus of all elements of the form \(\text{diag}(t_1, ..., t_n, t_n, ..., t_1) \). It commutes with all operators \(\partial_{n,n-i}, \overline{\partial}_{n,n-i} \) and \(D_{n-i} \) and hence acts on \(DS_{n,n-i}(V) \) respectively \(\omega_{n,n-i}(V) \). We claim

Lemma 8.6. The action of \(A \) on \(DS_{n,n-i}(V) \) and \(\omega_{n,n-i}(V) \) is trivial.

Proof. For this we can assume without loss of generality that \(i = n \). The \(H_{n,n-i} \) for \(i = 1, ..., n \) generate the Liealgebra of the torus \(A \). Hence it suffices that all \(H_{n,n-i} \) act trivially. This follows from the Leray type spectral sequence \(DS_{n,n-i,0} \circ DS_{n,n-i} \Rightarrow DS_{n,0} \). We already have shown in lemma 5.1 that \(H_{n,n-i} \) acts trivially on \(DS_{n,n-i}(V) \). Hence by the spectral sequence \(H_{n,n-i} \) acts by a nilpotent matrix on \(D_{n,0}(V) \). On the other hand \(A \), and hence \(H_{n,n-i} \in \text{Lie}(A) \), acts in a semisimple way. This proves the claim. □
9. Boundary maps

Suppose given a module S in \mathcal{R}_n. Consider $D_{tot} = D + D'$ for $D = D_{n,n-i}$ and $D' = D_{n-i,0}$. Notice that $DD' = -D'D$ and $D^2 = c\rho(H)$, $(D')^2 = c\rho(H')$ and $D^2_{tot} = c\rho(H_{tot})$.

We have $H_D(S) = K(M(D : S \to S)/(S^H \cap \text{Im}(D : S \to S))$. We have also shown that this is equal to $H_{D_{tot}}(S) = K(M(D_{tot} : S \to S))/(S^H \cap \text{Im}(D_{tot} : S \to S))$ for the torus A whose Lie algebra is generated by all $H_{n,n-j}$ for $j = 1, \ldots, n$.

In a similar way $H_{D_{tot}}(S) = K(M(D_{tot} : S \to S))/(S^H \cap \text{Im}(D_{tot} : S \to S))$ for the torus A whose Lie algebra is generated by all $H_{n,n-j}$ for $j = 1, \ldots, n$.

Let $U \subseteq S$ denote the image of $D' : S^A \to S^A$. Then U as well as S^A/U is stable under D and D'. If $s \in S^A$ is in $K(M(D_{tot})), then Ds = -D's \in U$. Hence $s \mapsto s + U$ defines a map from $K(M(D_{tot} : S^A \to S^A)/\text{Im}(D_{tot} : S^A \to S^A))$ to $K(M(D : S^A \to S^A)/\text{Im}(D_{tot} : S^A \to S^A))$, hence a map or

$$
\sigma_S : H_{D_{tot}}(S) \to H_D(S).
$$

Suppose given modules S, V, L in \mathcal{R}_n defining an extension

$$0 \to S \to V \to L \to 0.$$

We get a boundary map

$$
\delta_{tot} : H_{D_{tot}}^\pm(L) \to H_{D_{tot}}^\pm(S)
$$

defined as usually by $K(M(D_{tot} : L \to L) \cap \mathfrak{m} \mapsto [s], s = D_{tot}v \in L$. Here $v \in V^A$ is any lift of $\pi \in L^A$ (it exists by the semisimple action of A on V). Obviously $D_{tot}(s) = 0$, since $D^2_{tot} = 0$ on the space of A-invariant vectors. Therefore the class $[s]$ of s in $H_{D_{tot}}^\pm(S)$ is well defined.

In a completely similar way one defines the boundary map

$$
\delta : H_D^\pm(L) \to H_D^\pm(S).
$$

We claim that there exists a commutative diagram

$$
\begin{array}{ccc}
H_D^\pm(L) & \xrightarrow{\delta} & H_D^\pm(S) \\
|_{\sigma_L} & & |_{\sigma_S} \\
H_{D_{tot}}^\pm(L) & \xrightarrow{\delta_{tot}} & H_{D_{tot}}^\pm(S)
\end{array}
$$
In fact on the level of representatives \(v \in V^A \) it amounts to the assertion

\[
\overline{v} = v \mod U \xrightarrow{\sigma_L} \overline{\pi} = D\overline{\pi} \xrightarrow{\sigma_S} \overline{s} = D_{tot}\overline{s}
\]

using \(D_{tot}v \equiv Dv \mod U_L \).

We now consider two extension \((S, V, L)\) and \((\tilde{S}, \tilde{V}, \tilde{L})\). Then the commutative diagram

\[
\begin{array}{ccc}
H_D^+(\tilde{L}) & \xrightarrow{\delta} & H_D^-(S) & \xrightarrow{\delta} & H_D^+(L) \\
\sigma_L & & \sigma_S & & \sigma_L \\
H_{D_{tot}}^+(\tilde{L}) & \xrightarrow{\delta_{tot}} & H_{D_{tot}}^-(S) & \xrightarrow{\delta_{tot}} & H_{D_{tot}}^+(L)
\end{array}
\]

implies

Lemma 9.1. Suppose \(L \cong 1 \). Then \(\text{Im}(\delta_{tot}) \) is not contained in \(\text{Im}(\tilde{\delta}_{tot}) \), if there exists an integer \(i \) for \(1 \leq i \leq n \) such that

- \(H_D^+(\tilde{L}) \) does not contain \(1 \) as a \(G_{n-i} \)-module.
- \(\delta(1) \neq 0 \) in \(H_D^-(S) \).

for \(D = D_{n,n-i} \).

Remark. If \(S = L_n(j) \) for some \(1 \leq j \leq n \) is one of the hook representation discussed in section 27, then the smallest integer \(i \) for which \(\delta(1) \neq 0 \) in \(H_D^-(S) \) holds is given by \(n - i = j - 1 \). Indeed we later show that although \(0 \to D_{n,j}^0(S) \to D_{n,j}^0(V) \to 1 \to 0 \) is exact, the map \(D_{n,j-1}^0(V) \to 1 \) is not surjective any longer. So in the later applications, to apply the last lemma, we have to check whether \(H_D^+(L) \) contains the trivial \(G_{j-1} \)-module in this case or not.

10. Highest Weight Modules

Irreducible representations. The irreducible \(Gl(n|n) \)-modules \(L \) in \(R_n \) are uniquely determined up to isomorphism by their highest weights \(\lambda \). These highest weights \(\lambda \) are in the set \(X^+(n) \) of dominant weights, where \(\lambda \) is in \(X^+(n) \) if and only if \(\lambda \) is of the form

\[
\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n; \lambda_{n+1}, \ldots, \lambda_{2n}) = (\lambda_1, \lambda_2, \ldots, \lambda_n; -\lambda'_1, \ldots, -\lambda'_n)
\]

with integers \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) and \(\lambda'_1 \geq \lambda'_2 \geq \ldots \geq \lambda'_n \).

We remark that the condition

\[
\lambda_n = \lambda'_n
\]

for \(\lambda \) is equivalent to the condition \(\lambda(H) = 0 \). In the language of Brundan and Stroppel in section 12 the condition \(\lambda(H) = 0 \) is tantamount to the condition that the irreducible representation \(L(\lambda) \) is not projective and the
smallest \lor-hook is to the left of all \times's and \circ's. Any at least 1-atypical block contains such $L(\lambda)$. If these equivalent conditions hold we write

$$\overline{\lambda} = (\lambda_1, \ldots, \lambda_{n-1}; -\lambda_n', \ldots, -\lambda_1')$$

defining an irreducible representation $L(\overline{\lambda})$ in \mathcal{R}_{n-1}.

Using the notation of [Dro09] the irreducible maximally atypical $Gl(n|n)$-modules L in \mathcal{R}_n are given by highest weights λ of the form

$$\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n; -\lambda_n, \ldots, -\lambda_1)$$

with integers $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. We abbreviate this by writing $[\lambda_1, \ldots, \lambda_n]$ for the corresponding irreducible representation. The full subcategory of \mathcal{R}_n generated by these will be denoted \mathcal{R}_n^0.

Highest weight modules. Recall that a vector $v \neq 0$ in a module (V, ρ) in \mathcal{R}_n is called primitive, if $\rho(X)v = 0$ holds for all X in the standard Borel subalgebra b of $g = g_n$. A highest weight vector of a module V (of weight λ) in \mathcal{R}_n is a vector $v \in V$ that is a primitive eigenvector of b (of the weight λ) generating the module V. In this case V is called a highest weight module (of weight λ). Every irreducible representation $L(\lambda)$ in \mathcal{R}_n is a highest weight module of weight λ. Every highest weight module V of weight λ has cosocle isomorphic to $L(\lambda)$.

Lemma 10.1. For $(V, \rho) = L(\lambda)$, or more generally a cyclic representation generated by a highest weight vector of weight λ, the weight space in V of weight $\lambda - \mu$ is generated by $\rho(\tau)v$, where v is a highest weight vector of (V, ρ).

Proof. For the convenience of the reader we give the argument. For the simple positive roots $\Delta = \{\alpha_1, \ldots, \alpha_r\}$, i.e. the union of the odd simple root $\{\mu\}$ and the even simple roots in $g_{\mathbb{R}}^+$ with respect to the standard Borel subalgebra of upper triangular matrices, choose generators $X_\alpha \in u$. Put $\tau(X_\alpha) = Y_{-\alpha}$ and $V_0 = F \cdot v$. Recursively define $V_i = V_{i-1} + \sum_{\alpha \in \Delta} \rho(Y_{-\alpha})(V_{i-1})$. We claim that $V_\infty = \bigcup_{i=0}^{\infty} V_i$ is a g-submodule of V, hence equal to V. This claim also implies that the weight space $V_{\lambda-\mu}$ is generated by $\rho(\tau(x))v$.

V_∞ is invariant under all $\rho(Y_{-\alpha}), \alpha \in \Delta = \{\alpha_1, \ldots, \alpha_r\}$. Each V_i obviously is invariant under $\rho(X)$ for diagonal $X \in g$. Indeed each V_i/V_{i-1} decomposes in weight spaces for weights

$$\lambda - \sum_{j=1}^{r} n_j \alpha_j, \quad \sum_{j=1}^{r} n_j = i \quad (n_j \in \mathbb{N}_{\geq 0}).$$

Note $\rho(X_\alpha)\rho(Y_{-\beta}) \pm \rho(Y_{-\beta})\rho(X_\alpha) = \rho(H_\alpha)$ for $\alpha = \beta \in \Delta$ and $\rho(X_\alpha)\rho(Y_{-\beta}) \pm \rho(Y_{-\beta})\rho(X_\alpha) = \rho([X_\alpha, Y_{-\beta}]) = 0$ for $\alpha, \beta \in \Delta$ and $\alpha \neq \beta$ [since $\alpha - \beta \notin \Phi^+ \cup \Phi^-$ for $\alpha, \beta \in \Delta$].

Hence V_∞ is invariant under g, since $Y_{-\beta}, \beta \in \Delta$ nd diagonal X and $X_\alpha, \alpha \in \Delta$, generate g as a Lie superalgebra. \qed
Lemma 10.2. Suppose for \(\lambda = (\lambda_1, \ldots, \lambda_{n-1}, \lambda_n; -\lambda_n', -\lambda_{n-1}', \ldots, -\lambda_1') \)
\(\lambda_n = \lambda_n' \)
holds. Then, for highest weight representations \(V \) in \(\mathcal{R}_n \) generated by a highest weight vector \(v \) of weight \(\lambda \), the module \(H^\lambda(V) \) as a direct summand of \(H^\varepsilon(V) \), for \(\varepsilon = (-1)^{\lambda_n'} \), contains a highest weight submodule of weight \(\lambda' \) generated by the image of \(v \). In particular the representation \(L(\lambda') \) in \(\mathcal{R}_{n-1} \) is a Jordan-Hölder constituent of \(H^\lambda(V) \).

Proof of the lemma. The highest weight vector \(v \) of \(V \) is a highest weight vector of the restriction of \(V \) to the subgroup \(G_{n-1} \) of \(G_n \) and is annihilated by \(\rho(x) \). By our assumption on the weight \(\lambda \) furthermore \(v \in V^H \). To prove our claim it suffices to show that \(v \) is not contained in \(Im(\rho(x)) \). Suppose \(v = \rho(x)(w) \). Since the weight of \(x \) is \(\mu \), we can assume that the weight of \(w \) is \(\lambda - \mu \). Since \(V \) is a highest weight representation, by lemma 10.1 then \(w \) is proportional to \(\rho(\tau)v \). So that to show \(\rho(x)w = 0 \) and to finish our proof, it suffices that by \([x, \tau] = H \)
\(\rho(x)\rho(\tau)v = -\rho(\tau)\rho(x)v + \rho(H)v = 0 \)
vanishes, since \(\rho(x)v = 0 \) and \(v \in V^H \).

Notice
\(z_i = [x_i, \tau] = x_i\tau + \tau x_i \), \(z_i' = [x_i', \tau] = x_i'\tau + \tau x_i' \)
are in the unipotent Liealgebra \(u_\tau \subset u \) of the standard Borel \(b_\tau \) of \(g_\tau \) for all \(i = 1, \ldots, n-1 \). Suppose \((V, \rho) \) is a representation of \(G_n \).

If \((V, \rho) \) has a highest weight vector \(v \), then \(\rho(X)v = 0 \) holds for all \(X \) in the unipotent radical \(u \) of the standard Borel of \(g \). In particular
\(\rho(x)v = 0, \rho(x_i)v = 0, \rho(x_i')v = 0, \rho(z_i)v = 0, \rho(z_i')v = 0 \)
and hence by the commutation relations above this implies for \(i = 1, \ldots, n-1 \) also
\(\rho(x_i)\rho(\tau)v = 0 \), \(\rho(x_i')\rho(\tau)v = 0 \).

Now also suppose \(v \in V^H \) and put \(w = \rho(\tau)v \). Then \(\rho(x)w = 0 \), as shown in the proof of lemma 10.2. Similarly one can show \(\rho(x_i)w = 0 \) (since \(\rho(x_i)v = \rho(z_i)v = 0 \)) and \(\rho(x_i')w = 0 \). All elements \(u \cap g_{n-1} \) commute with \(\rho(\tau) \) and annihilate \(v \), hence annihilate \(w \). Finally, since \(\rho(\tau) \) and \(\rho(x_i), \rho(x_i') \) annihilate \(w \), also \(\rho(z_i) \) and \(\rho(z_i') \) annihilate \(w \). It follow \(\rho(X)w = 0 \) for all \(X \in u \), since \(u \) is spanned by \(u \cap g_{n-1} \) and the \(x, x_i, x_i', z_i, z_i' \). This implies that \(w \) is a highest weight vector in \((V, \rho) \) of weight \(\lambda - \mu \), if \(w \neq 0 \). Hence

Corollary 10.3. If \((V, \rho)\) is a highest weight representation with highest weight vector \(v \) and highest weight \(\lambda \) so that \(\lambda(H) = 0 \), then \(w = \rho(\tau)v \) defines a highest weight vector of weight \(\lambda - \mu \) in \(V \), if \(w \neq 0 \).

In the situation of the last corollary, the following conditions are equivalent

(1) \(w = 0 \)
(2) $D(v) = 0$
(3) $D(v) = 0$ and v defines a nonvanishing cohomology class in $H_D(V)$. Indeed $D(v) = i\rho(\overline{x})v + \rho(x)v = iw$. Furthermore, if $v = D(\tilde{w})$, then $v = i\rho(\overline{x})\tilde{w}_1 + \rho(x)\tilde{w}_2$ for $w_1 \in V_{\lambda + \mu}$ and $w_2 \in V_{\lambda - \mu}$. Since λ is highest weight, therefore $V_{\lambda + \mu} = 0$. Furthermore $V_{\lambda - \mu}$ is generated by w, and $\rho(x)w = 0$. Hence $v \notin D(V)$.

A highest weight representation V of weight λ has irreducible cosocle $L = L(\lambda)$. Let $q : V \to L$ denote the quotient map.

Corollary 10.4. In the highest weight situation of corollary 10.3 the following holds for the representation V:

1. If V contains a highest weight subrepresentation $W \neq 0$ of weight $\lambda - \mu$, then $H^0_D(V)$ has trivial weight space $H^0_D(V)_{\lambda} = H^0_D(V)_{\lambda - \mu}$.
2. If the natural map $H_D(q) : H_D(V) \to H_D(L)$ is surjective, then V does not contain a highest weight subrepresentation $W \neq 0$ of weight $\lambda - \mu$.

Proof. For the first assertion, notice that $D(v) = 0$ implies $w = 0$ and w generates $V_{\lambda - \mu}$. For the second assertion notice that the highest weight vector $v \in V$ maps to the highest weight vector $q(v)$ of L. By the first assertion and lemma 10.2, applied for L, the vector $q(v)$ is D-closed and defines a nonzero class in $H^0_D(L)_{\lambda}$. Since now $H_D(q)$ is surjective by assumption, corollary 7.2 implies that this class is the image of a nonzero cohomology class η in $H^0_D(V)$. This class is represented by a nonzero $\overline{\sigma}$ closed class in $H^0_D(V) = DS_{\lambda} \in$ in the weight space $\overline{\lambda}$. Hence this class has a D-closed representative v' in V_{λ}, since the enriched weight structure on $DS(V)$ allows to recover the weight structure of V. Since V is a highest weight representation, the space V_{λ} has dimension one and therefore v' is proportional to v. Thus $D(v) = 0$. But, as explained above, this implies $w = 0$ and hence $V_{\lambda - \mu} = 0$.

Since Kac modules $V(\lambda)$ are highest weight modules of weight λ with $H_D(V(\lambda)) = 0$, lemma 10.2 and its corollaries above imply

Lemma 10.5. For λ in X^+ with $\lambda_n = \lambda'_n = 0$ the cohomology $H^0(V(\lambda))$ of the Kac module $V(\lambda)$ contains a highest weight module of weight $\overline{\lambda}$. Furthermore $V(\lambda)$ contains a nontrivial highest weight representation of weight $\lambda - \mu$.

Example. For the Kac module $(V, \rho) = V(1)$ in \mathcal{R}_2 of the trivial representation notice $DS(V^*) = 0$ and $DS(V) \neq 0$, since V is not projective. The module V is a cyclic module generated by its highest weight vector of weight $\lambda = 0$ (this is not true for the anti-Kac module V^*). Furthermore V has Loewy length 3 with Loewy series $(Ber^{-2}_2, Ber^{-1}_2 S^1, 1)$. We claim

$$DS(V) = (Ber^{-2}_1 \oplus 1) \otimes (1 \oplus 1[1])$$.
Theorem 14.3: \(d(Ber_2) = -Ber_1 \) and \(d(S^1) = Ber_1^{-1} + Ber_1 \) imply \(d(V) = 0 \), hence \(DS(V) \) has at most 4 Jordan-Hölder constituents \(Ber_1^{-2}, Ber_1^{-2}[1], 1, 1[1] \).

By Lemma 10.2 the constituent 1 occurs. By Tannaka duality then also the constituent \(Ber_1^{-2} \) must occur. Now from \(d(V) = 0 \) also \(Ber_1^{-2}[1], 1[1] \) must occur. Finally apply proposition 18.1. This example shows that \(DS \) in general does not preserve negligible objects.

Highest weights. Suppose \((V, \rho)\) is a highest weight module of weight \(\lambda \) such that \(\lambda(H) = 0 \). Let \(\nu \) be a weight of \(V \). Then

\[
\nu = \lambda - \sum_{\alpha \in \Delta_n} \mathbb{N}_{\geq 0} \cdot \alpha
\]

for the set \(\Delta_n \) of simple positive roots \(\alpha \) of \(G_n \).

Now suppose \(\nu \) contributes to \(DS(V) \). Then \(\nu \) is a weight of \(V^H \) and hence \(\nu(H) = 0 \). Notice \(\Delta_n \) is the union of \(\Delta_n^+ = \{ e_1 - e_2, \ldots, e_{n-1} - e_n, e_{n+1} - e_{n+2}, \ldots, e_{2n-1} - e_{2n} \} \) and \(\Delta_n^- = \{ e_n - e_{n+1} \} \). The restriction of the simple roots \(\alpha \in \Delta_n \) are in \(\Delta_n^- \) (i.e. simple root of \(G_{n-1} \)) except for the even simple roots \(\alpha = e_{n-1} - e_n, \alpha = e_{n+1} - e_{n+2} \) and the odd simple root \(\alpha = e_n - e_{n-1} \). A linear combination \(\sum_{\alpha \in \Delta_n} n_\alpha \alpha \) annihilates \(H \) if and only if the coefficient, say \(m \), of \(e_{n-1} - e_n \) and \(e_{n+1} - e_{n+2} \) coincides; hence this holds iff \(\nu \) is of the form \(\sum_{\alpha \in \Delta_n^-} n_\alpha \alpha + (n_\mu - m) \cdot (e_n - e_{n+1}) + m \cdot (e_{n-1} - e_{n+2}) \).

Notice that \(\mu = (e_n - e_{n+1}) \) is trivial on the maximal torus of \(G_{n-1} \) and that \((e_{n-1} - e_{n+2}) \) defines the new odd simple root in \(\Delta_{n-1}^- \). Hence the restriction of \(\nu \in V^H \) is of the form

\[
\nu|_{k \cap g_{n-1}} \in \lambda|_{k \cap g_{n-1}} - \sum_{\alpha \in \Delta_{n-1}} \mathbb{N}_{\geq 0} \cdot \alpha
\]

under our assumptions above. Notice for \(V_{\lambda} \subset V^H \subset V \) we have

\[
\ell = \lambda(diag(1, \ldots, 1; t^{-1}, 1, \ldots, 1)) = n_\mu - m = \chi_n.
\]

The discussion above implies

Lemma 10.6. For a highest weight module \((V, \rho)\) in \(T_n \) of weight \(\lambda \) with \(\lambda(H) = 0 \) the module \(DS(V, \rho) \) has its weights \(\nu \) in \(\lambda - \sum_{\alpha \in \Delta_{n-1}} \mathbb{N}_{\geq 0} \cdot \alpha \).

Corollary 10.7. Given \((V, \rho) \in T_n \), suppose \(L(\lambda) \) is a Jordan-Hölder constituent of \((V, \rho) \) such that for all Jordan-Hölder constituents \(L(\nu) \) of \((V, \rho) \) we have \(\nu \in \lambda - \sum_{\alpha \in \Delta_n} \mathbb{N}_{\geq 0} \cdot \alpha \) and \(\nu(H) = 0 \). Then \(L(\lambda) \) appears in \(DS(V, \rho) \) and all other irreducible constituents \(L(\nu) \) or \(L(\nu)[1] \) of \(DS(V, \rho) \) satisfy \(\nu' \in \lambda - \sum_{\alpha \in \Delta_{n-1}} \mathbb{N}_{\geq 0} \cdot \alpha \).

Proof. This follows from the last lemma and the weak exactness of the functor \(DS \).
11. The Casimir

Consider the fixed element \(x \in g_n \)

\[
 x = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \in g_n \quad \text{for} \quad y = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 \end{pmatrix}
\]

Similarly we define \(x_i, x_i' \) for \(i = 1, \ldots, n-1 \)

for matrices \(y = y_i \) resp. \(y_i' \) with a unique entry 1 in the first column resp. last row at positions different from the entry 1 in the above \(y \)

\[
 \begin{pmatrix} \ast & 0 & \cdots & 0 \\ \ast & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & * & * \end{pmatrix}
\]

Then \(x, x_i, x_i' \) are in \(u \) for \(i = 1, \ldots, n-1 \). The elements \(x_i, x_i' \) satisfy \([x_i, x] = 0 = [x_i', x] \).

Using Brundan-Stroppel’s notations [BS12a, (2.14)], let \(e_{r,s} \in g_n \) be the \(rs \)-matrix unit. Then the Casimir operator \(C_n = \sum_{r,s=1}^{n} (-1)^r e_{r,s}e_{s,r} \) of the super Liealgebra \(g_n = \text{Lie}(G_n) \) is recursively given by

\[
 C_n = C_{n-1} + C_1 + 2(\overline{e}_{1} z_1 + \cdots + \overline{e}_{n-1} z_{n-1}) + (e_{1,1} + \cdots + e_{n-1,n-1} - (n-1)e_{n,n})
\]

\[
 -2(\overline{e}_{1} z'_1 + \cdots + \overline{e}_{n-1} z'_{n-1}) - (e_{1,1} + \cdots + e_{n-1,n-1} + (n-1)e_{n,n})
\]

\[
 + 2(\overline{e}_{1} x'_1 + \cdots + \overline{e}_{n-1} x'_{n-1}) - (e_{n+2,n+1} + \cdots + e_{2n,2n} + (n-1)e_{n,n})
\]

with the notations \(x_i = e_{n,i+1}, x'_i = e_{i,n+1}, z_i = e_{i,i} \) and \(z'_i = e_{n+1,i+1} \). Furthermore \(\overline{e}_i, \overline{e}'_i, \overline{z}_i \) and \(\overline{z}'_i \) denote the supertransposed of \(x_i, x'_i, z_i \) and \(z'_i \).

Hence

\[
 C_n = C_{n-1} + C_1 + 2(\overline{e}_{1} z_1 + \cdots + \overline{e}_{n-1} z_{n-1} - \overline{z}'_1 + \cdots - \overline{z}'_{n-1})
\]

\[
 + 2(\overline{e}_{1} x_1 + \cdots + \overline{e}_{n-1} x_{n-1} + \overline{x}'_1 + \cdots + \overline{x}'_{n-1}) - 2(n-1)H
\]

using \([\tau(x), x] = z_i \) and \([\tau(x), x'] = z'_i \) and

\[
 [z_i, \overline{z}_i] = e_{i,i} - e_{n,n} \quad \text{and} \quad [z'_i, \overline{z}'_i] = e_{n+1,n+1} - e_{2n+1-1,2n+1-1}
\]

and \([x_i, x] = e_{i,i} + 2e_{n+1,n+1} \) and \([x_i', x] = e_{n,i+1} + e_{n+2-i,n+2-i} + e_{n,n} \). Notice \(\overline{e}_i x_i - x_i \overline{e}_i = 2\overline{e}_i x_i - 2\overline{e}_i \overline{x}_i' - e_{n,n} \) and \(\overline{e}_i x_i' - x_i' \overline{e}_i = 2\overline{e}_i x_i' - 2\overline{e}_i \overline{x}_i - e_{n,n} \).

Finally \(C_1 = e_{n,n}^2 - e_{n+1,n+1} - x_1 \overline{e}_1 + \overline{e}_1 x_1 = e_{n,n}^2 + e_{n+1,n+1} + 2\overline{e}_1 x_1 - H \).

Representations. Suppose \((V, \rho)\) is a representation of \(g_n \). On \(DS(V, \rho) \) we have \(\rho(H) = 0 \) and \(\rho(x) = 0 \). Since

\[
 [x, x] = [x, x'] = [x, z] = [x, z'] = 0
\]

the elements \(x_i, x'_i, z_i, z'_i \) naturally act on the cohomology \(DS(V) = V_x \).

Since \(x \) commutes with \(H \), the spaces \(Ker(x) \) and its subspace \(Im(x) \)
decompose into H-eigenspaces $\text{Kern}(x)(j)$ and $\text{Im}(x)(j)$ for $j \in \mathbb{Z}$. By lemma 5.1 however $\text{Kern}(x)(j) = \text{Im}(x)(j)$, expect for the zero-eigenspace of H. Now, although x, π commute with H, the operators $y \in \{x_i, x'_i, z_i, z'_i\}$ satisfy $[H, y] = \pm y$ and hence map the zero eigenspace $M = V^H$ into the ± 1-eigenspace of H on V. Since the $j = \pm 1$-eigenspaces do not give a nonzero contribution to the cohomology $DS(V) = V_x$, this implies

Lemma 11.1. The natural action of $\rho(x_i), \rho(x'_i), \rho(z_i), \rho(z'_i)$ and $\rho(x), \rho(H)$ on $DS(V, \rho)$ is trivial.

Notice that C_n commutes with all elements in g_n, hence induces a linear map on $DS(V, \rho)$ that commutes with the action of G_{n-1} on $DS(V, \rho)$.

Lemma 11.2. The restriction of the Casimir C_n acts on $DS(V, \rho)$ like the Casimir C_{n-1} of T_{n-1} acts on $DS(V, \rho) \in T_{n-1}$.

Proof. By lemma 11.1 the restriction of C_n to $DS(V, \rho)$ is the sum of C_{n-1} and the operator $C_1 = c^2_{2,n} - c^2_{2,n+1}$. Now consider a weight space of $DS(V, \rho)$ with eigenvalue λ. Then λ is the restriction of an eigenvalues λ of the weight decomposition of (V, ρ). Since $DS(V, \rho)$ is represented by elements in $M = V^H$, the condition $\lambda(H) = 0$ implies $\lambda_n = -\lambda_{n+1}$ and hence $\lambda^2_n - \lambda^2_{n+1} = 0$. Therefore C_1 acts trivially on $DS(V, \rho)$. \qed

2. The Main Theorem and its Proof

12. The Language of Brundan and Stroppel

Weight diagrams. Consider a weight $\lambda = (\lambda_1, \ldots, \lambda_n; \lambda'_1, \ldots, \lambda'_1)$. Then $\lambda_1 \geq \ldots \geq \lambda_m$ and $\lambda'_1 \geq \ldots \geq \lambda'_1$ are integers, and every $\lambda \in \mathbb{Z}^{m+n}$ satisfying these inequalities occurs as the highest weight of an irreducible representation $L(\lambda)$. The set of highest weights will be denoted by $X^+ = X^+(n)$. Following [BS12a] to each highest weight $\lambda \in X^+(n)$ we associate two subsets of cardinality n of the numberline \mathbb{Z}

\[
I_\times(\lambda) = \{\lambda_1, \lambda_2 - 1, \ldots, \lambda_n - n + 1\}
\]

\[
I_\circ(\lambda) = \{1 - n - \lambda'_n, 2 - n - \lambda'_{n-1}, \ldots, -\lambda'_1\}.
\]

We now define a labeling of the numberline \mathbb{Z}. The integers in $I_\times(\lambda) \cap I_\circ(\lambda)$ are labeled by \vee, the remaining ones in $I_\times(\lambda)$ resp. $I_\circ(\lambda)$ are labeled by \times respectively \circ. All other integers are labeled by \wedge. This labeling of the numberline uniquely characterizes the weight vector λ. If the label \vee occurs r times in the labeling, then $r = \text{atyp}(\lambda)$ is called the degree of atypicality of λ. Notice $0 \leq r \leq n$, and for $r = n$ the weight λ is called maximal atypical.

Blocks. A block Γ of $X^+(n)$ (or \mathcal{R}_n) is a connected component of the Ext-quiver of \mathcal{R}_n. Let \mathcal{R}_Γ be the full subcategory of objects of \mathcal{R}_n such that all composition factors are in Γ. This gives a decomposition $\mathcal{R}_n = \bigoplus_{\Gamma} \mathcal{R}_\Gamma$ of the abelian category. Two irreducible representations $L(\lambda)$ and $L(\mu)$ are in
the same block if and only if the weights λ and μ define labelings with the same position of the labels \times and \circ. The degree of atypicality is a block invariant, and the blocks Λ of atypicality r are in 1-1 correspondence with pairs of disjoint subsets of \mathbb{Z} of cardinality $n - r$ resp. $n - r$. Let \mathcal{R}_n^i be the full subcategory of \mathcal{R}_n defined by the blocks of atypicality $n - i$. In particular \mathcal{R}_n has a unique maximally atypical block, and any block of atypicality r in \mathcal{R}_n is equivalent to the maximally atypical block in \mathcal{R}_r.

Cups. To each weight diagram we associate a cup diagram as in [BS11]. Here a cup is a lower semi-circle joining two points in \mathbb{Z}. To construct the cup diagram go from left to right through the weight diagram until one finds a pair of vertices $\lor \land$ such that there only x’s, \circ’s or vertices which are already joined by cups between them. Then join $\lor \land$ by a cup. This procedure will result in a weight diagram with r cups. For example the trivial representation with weight $(0, \ldots, 0|0, \ldots, 0)$ is a maximally atypical representation with labelled cup diagram (n=4)

![Cup Diagram](image)

Sectors and segments. For the purpose of this paragraph we assume $\lambda \in X^+$ to be in a maximal atypical block, so that the weight diagram does not have labels \times or \circ. Some of the r cups of a cup diagram may be nested. If we remove all inner parts of the nested cups we obtain a cup diagram defined by the (remaining) outer cups. We enumerate these cups from left to right. The starting point of the j-th lower cup is denoted a_j and its endpoint is denoted b_j. Then there is a label \lor at the position a_j and a label \land at position b_j. The interval $[a_j, b_j]$ of \mathbb{Z} will be called the j-th sector of the cup diagram. Adjacent sectors, i.e. with $b_j = a_{j+1} - 1$ will be grouped together into segments. The segments again define intervals in the numberline. Let s_j be the starting point of the j-th segment and t_j the endpoint of the j-th segment. Between any two segments there is a distance at least ≥ 1. In the following case the weight diagram has 2 segments and 3 sectors

![Segment Diagram](image)

whereas the following weight diagram has 1 segment and 1 sector.
Removing the outer circle would result in a cup diagram with two sectors and one segment. We can also define the notion of a sector or segment for blocks which are not maximally atypical. In this case we say that two sectors are adjacent (and belong to the same segment) if they are only separated by \times or \circ’s. For our purpose the \times and \circ’s will not play a role and we will often implicitly assume that we are in the maximally atypical block.

Important invariants. Note that the segment and sector structure of a weight diagram is completely encoded by the positions of the \vee’s. Hence any finite subset of \mathbb{Z} defines a unique weight diagram in a given block. This will lead to the notion of a *plot* in the next section where we associate to a maximal atypical highest weight the following invariants:

- the type (SD) resp. (NSD),
- the number $k = k(\lambda)$ of sectors of λ,
- the sectors $S_\nu = (I_\nu, K_\nu)$ from left to right (for $\nu = 1, \ldots, k$),
- the ranks $r_\nu = r(S_\nu)$, so that $\#I_\nu = 2r_\nu$,
- the distances d_ν between the sectors (for $\nu = 1, \ldots, k-1$),
- and the total shift factor $d_0 = \lambda_n + n - 1$.

If convenient, k sometimes may also denote the number of segments, but hopefully no confusion will arise from this.

A maximally atypical weight is called basic if $\lambda_i = \lambda'_i$ holds for $i = 1, \ldots, n$ such that $[\lambda] := (\lambda_1, \ldots, \lambda_n)$ defines a decreasing sequence $\lambda_1 \geq \cdots \geq \lambda_{n-1} \geq \lambda_n = 0$ with the property $n - i \geq \lambda_i$ for all $i = 1, \ldots, n$. The total number of such basic weights in $X^+(n)$ is the Catalan number C_n. Reflecting the graph of such a sequence $[\lambda]$ at the diagonal, one obtains another basic weight $[\lambda]^\ast$. We will show that a basic weight λ is of type (SD) if and only if $[\lambda]^\ast = [\lambda]$ holds. To every maximal atypical highest weight λ is attached a unique maximal atypical highest weight λ_{basic}

$$\lambda \mapsto \lambda_{basic}$$

having the same invariants as λ, except that $d_1 = \cdots = d_{k-1} = 0$ holds for λ_{basic} and the leftmost \vee is at the vertex $-n + 1$. For example, the basic weight attached to the irreducible representation $[5, 4, -1]$ in \mathcal{R}_3 with cup diagram

is the basic representation $[2, 1, 0]$ with weight diagram
13. ON SEGMENTS AND SECTORS

A plot λ is a map

$$\lambda : \mathbb{Z} \to \{\square, \Vert\}$$

such that the cardinality r of the fiber $\lambda^{-1}(\square)$ is finite. Then by definition $r = r(\lambda)$ is the degree and $\lambda^{-1}(\Vert)$ is the support of λ. As usual an interval $[a, b] \subset \mathbb{Z}$ is the set $\{x \in \mathbb{Z} \mid a \leq x \leq b\}$. Replacing \square by 1 and \Vert by -1 we may view $\lambda(x)$ as a real valued function extended by $\lambda(x) := \lambda([x])$ to a function on \mathbb{R} for $[x] = \max_{n \in \mathbb{Z}} \{n \leq x\}$.

Segments and sectors. An interval $I = [a, b]$ of even cardinality $2r$ and a subset K of cardinality of rank r defines a plot λ of rank r with support K. We call (I, K) a segment, if $f(x) = \int_a^x \lambda(x) dx$ is nonnegative on I. Notice, then $a \in K$ but $b \notin K$.

Factorization. For a given plot λ put $a = \min(\text{supp}(\lambda))$ and for the first zero $x_0 > a$ of the function $f(x) = \int_a^x \lambda(x) dx$ put $b = x_0 - 1$. This defines an interval $I = [a, b]$ of even length, such that $\lambda|_I$ (now again viewed as a function on $I \cap \mathbb{Z}$) admits the values 1 and -1 equally often. If $\text{supp}(\lambda) \subset I$, then λ is called a prime plot. If λ is not a prime plot, the plot λ_1 with support $I \cap \text{supp}(\lambda)$ defines a prime plot. It is called the first sector of the plot λ. Now replace the plot λ by the plot, where the support K_1 of the first sector $I = I_1$ is removed from the support K of λ. Repeating the process above, we obtain a prime plot λ_2 with support K_2 defining a segment (I_2, K_2). This segment is called the second sector of λ. Obviously I_1 is an interval in \mathbb{Z} on the right of I_1, hence in particular they are disjoint. Continuing with this process, one defines finitely many prime plots $\lambda_1, \ldots, \lambda_k$ attached to a given plot defining disjoint segments $S_1 = (I_1, K_1), \ldots, S_k(I_k, K_k)$. These segments S_ν are called the sectors of the plot λ. Let

$$d_\nu = \text{dist}(I_\nu, I_{\nu+1}) \quad , \quad \nu = 1, \ldots, k-1$$

denote the distances between these sectors S_ν, i.e. $d_\nu = \min(S_{\nu+1}) - \max(S_\nu)$.

For disjoint segments (I_1, K_1) and (I_2, K_2) the union $(I, K) = (I_1 \cup I_2, K_1 \cup K_2)$ again is a segment, provided $I = I_1 \cup I_2$ is an interval in \mathbb{Z}.

Grouping together adjacent sectors of λ with distances $d_\nu = 0$ defines the segments of λ. In other words, the union of the intervals I_ν of the sectors S_ν of the λ_ν can be written a disjoint union of intervals I of maximal length. These intervals I define the segments of λ as $(I, T \cap \text{supp}(\lambda))$.

We consider formal finite linear combinations $\sum n_\lambda \cdot \lambda_\nu$ of plots with integer coefficients. This defines an abelian group $R = \bigoplus_{r=0}^\infty R_r$ (gradation by rank r). We define a commutative ring structure on R so that the product of two plots λ_1 and λ_2 is zero unless the segments of λ_1 and λ_2 are disjoint,
in which case the support of the product becomes the union of the supports. A plot λ that can not be written in the form $\lambda_1 \cdot \lambda_2$ for plots λ_i of rank $r_i > 0$ is called a prime plot.

Lemma 13.1. Every plot can be written as a product of prime plots uniquely up to permutation of the factors.

Of course this prime factorization of a given plot λ is given by the prime factors λ_ν attached to the sectors S_ν, $\nu = 1, \ldots, k$ of λ. Hence for $\lambda = \prod_i \lambda_i$ with prime plots λ_i, the sectors of λ are the segments attached to the prime factors λ_i. The interval $I = [a, ..., b]$ attached to a prime plot λ is the unique sector or the unique segment of the prime plot λ. It has cardinality $2r(\lambda)$, and the support K of λ defines a subset of the sector I of cardinality r. Recall $a \in K$ but $b /\in K$.

Differentiation. We define a derivation on R called derivative. Indeed the derivative induces an additive map
\[r : R_n \to R_{n-1} \]
To differentiate a plot of rank $n > 0$, or a segment, we use the formula
\[(\prod_i \lambda_i)' = \sum_i \lambda_i' \cdot \prod_{j \neq i} \lambda_j \]
in the ring R to reduce the definition to the case of a prime plot λ. For prime λ let (I, K) be its associated sector. Then $I = [a, b]$. Using $a \in K$, $b /\notin K$, for a sector (I, K) of a prime plot λ it is easy to verify by the integral criterion that
\[\partial(I, K) = (I, K)' = (I', K') \]
for $I' = [a + 1, b - 1]$ and $K' = I \cap K$ again defines the sector of a prime plot λ' of rank $r(\lambda') = r(\lambda) - 1$. Then for prime plots λ of rank n with sector (I, K) we define λ' in R by
\[\lambda' = \partial(I, K) \quad , \quad I = [a, b] . \]

Integration. For a segment (I, K) with $I = [a, b]$ put
\[\int (I, K) = ([a-1, b+1], K \cup \{a-1\}) \]
increasing the rank by 1. Observe, that the integral criterion implies that $([a-1, b+1], K \cup \{a-1\})$ always defines a prime segment. Obviously
\[\partial \int (I, K) = (I, K) . \]
Similarly $\int \partial(I, K) = (I, K)$ for a prime segment (I, K) of rank > 0.

Lowering sectors. For a sector $S = (I, K)$ with $I = [a, b]$ define
\[S_{\text{low}} = ([a-1, a], \{a-1\}) \cup \partial(S) . \]
Notice that S_{low} is a segment with interval $[a-1, b-1]$.

35
Melting sectors. Suppose λ_1 and λ_2 are prime plots. Let (I_1, K_1) and (I_2, K_2) be their defining sectors. Assume that $(I, K) = (I_1 \cup I_2, K_1 \cup K_2)$ defines a segment with plot λ. Hence $I_1 = [a, i]$ and $I_2 = [i + 1, b]$ for some $i \in \mathbb{Z}$ and $i \notin K_1$ and $i + 1 \in K_2$. Then by the integral criterion

$$(I, K)^{\text{melt}} = (I_1 \cup I_2, K_1 \cup \{i\} \cup (K_2 - \{i + 1\})$$

defines a prime plot with $I = [a, b]$.

Example. We can represent plots with labelled cup diagrams. A plot of rank r has r cups. For instance the irreducible representation $[3, 3, 1, 1] \in \mathcal{R}_4$ has the cup diagram

![Cup Diagram 1](image1)

The corresponding plot is defined by its support $\{-2, -1, 2, 3\}$. Its derivative is the sum of two plots of rank 3 corresponding to the two cup diagrams

![Cup Diagram 2](image2)

If we integrate the first segment of the plot we get the plot of rank 5 with support $\{-3, -2, -1, 2, 3\}$ with corresponding cup diagram

![Cup Diagram 3](image3)

The plot of $[3, 3, 1, 1]$ has two adjacent sectors. Melting these two gives the plot with support $\{-2, -1, 1, 3\}$ which can be represented by the cup diagram

![Cup Diagram 4](image4)
The not maximally atypical case. As with sectors and segments we can define the notion of a plot for representations which are not maximally atypical. We fix the block of the irreducible representations, i.e., the positions of the \(\times \) (say at the vertices \(x_1, \ldots, x_r \)) and the positions of the \(\circ \)'s (say at the vertices \(\circ_1, \ldots, \circ_r \)). Once these are fixed we define \(Z_{\times \circ} := \mathbb{Z} \setminus (\{x_1, \ldots, x_r\} \cup \{\circ_1, \ldots, \circ_r\}) \). Then a plot is a map \(\lambda : Z_{\times \circ} \to \{\sqcup, \sqsubset\} \). The reader can convince himself that all the previous definitions and operations on plots (factorization, derivatives etc) can be adapted easily to this more general setting. However this amounts in practice only to fixing the positions of the \(\times \) and \(\circ \)'s and then ignoring them. We will associate to every weight of atypicality \(k \) a plot of rank \(k \) (without \(\times \)'s and \(\circ \)'s) and work with these instead.

14. The Main theorem

Signs. We attach to every irreducible representation a sign. If \(L(\lambda) \) is typical in \(\mathcal{R}_n \) we put \(\epsilon(\lambda) = 1 \). If \(L(\lambda) \) is maximally atypical we put \(\epsilon_a(L(\lambda)) = (-1)^{p(\lambda)} \) for the parity \(p(\lambda) = \sum_{i=1}^{\lambda} \lambda_i \). If \(L(\lambda) \) is of atypicality \(k \) we fix an equivalence \(\phi \) of its block with the maximal atypical block of \(\text{Gl}(k|k) \). For a \(k \)-fold atypical weight in \(X^+(n) \) its weight diagram has \(n-k \) vertices labelled with \(\times \) and \(n-k \) vertices labelled with \(\circ \). Let \(j \) be the leftmost vertex labelled either by \(\times \) or \(\circ \). By removing this vertex and shifting all vertices at the positions \(> j \) one position to the left, recursively we remove all vertices labelled by \(\times \) or \(\circ \) from the given weight diagram. The remaining finite subset \(K \) of labels \(\lor \) has cardinality \(k \), and defines a unique irreducible maximally atypical module in \(\mathcal{R}_k \). We denote this equivalence by \(\phi \). Then define

\[
\epsilon_a(\lambda) = (-1)^{k(-n+k)}(-1)^{p(\phi(\lambda))}
\]

where \(p \) is the parity in the maximal atypical block of \(\text{Gl}(k|k) \). We will use the same equivalence in section 17 to associate to such a weight a plot.

Lemma 14.1. We have \(\text{Ext}^1_{\mathcal{R}_n}(L(\lambda), L(\mu)) = 0 \) if \(\epsilon(\lambda) = \epsilon(\mu) \).

Proof. This follows from [Wei10] since \(\text{Ext}^1_{\mathcal{R}_n}(L(\lambda), L(\mu)) = 0 \) if \(p(\lambda) \equiv p(\mu) \text{ mod } 2 \) in the maximally atypical case. \(\square \)

Now for \(\epsilon \in \{\pm 1\} \) define the full subcategories \(\mathcal{R}_n(\epsilon) \). These consists of all objects whose irreducible constituents \(X \) have sign \(\epsilon_a(X) = \epsilon \). Then the last lemma implies

Corollary 14.2. The categories \(\mathcal{R}_n(\epsilon) \) are semisimple categories.

Theorem 14.3. Suppose \(L(\lambda) \in \mathcal{R}_n \) is an irreducible atypical representation, so that \(\lambda \) corresponds to a cup diagram

\[
\bigcup_{j=1}^{r} [a_j, b_j]
\]
with \(r \) sectors \([a_j, b_j]\) for \(j = 1, \ldots, r \). Then

\[
DS(L(\lambda)) \cong \bigoplus_{i=1}^{r} L(\lambda_i)[n_i]
\]

is the direct sum of irreducible atypical representations \(L(\lambda_i) \) in \(R_{n-1} \) with shift \(n_i \equiv \varepsilon_a(\lambda) - \varepsilon_a(\lambda_\nu) \mod 2 \). The representation \(L(\lambda_i) \) is uniquely defined by the property that its cup diagram is

\[
[a_i + 1, b_i - 1] \cup \bigcup_{j=1, j \neq i}^{r} [a_j, b_j],
\]

the union of the sectors \([a_j, b_j]\) for \(1 \leq j \neq i \leq r \) and (the sectors occurring in) the segment \([a_i + 1, b_i - 1]\).

Consequence. In particular this implies that for irreducible representation \((V, \rho)\) the \(G_{n-1} \)-module \(H^+(V) \oplus H^-(V) \) is semisimple in \(R_{n-1} \) and multiplicity free. Furthermore the sign of the constituents in \(H^\pm(V) \) is \(\pm \text{sign}(V) \).

Example. The maximally atypical weight \([3, 0, 0]\) has cup diagram

It splits into the two irreducible representations \([3, 0]\) and \(\Pi[-1, -1] \) in \(R_2 \oplus R_2[1] \).

Example. Denote by \(S^i \) the irreducible representation \([i, 0, \ldots, 0]\). Consider a nontrivial extension \(0 \to S^2 \to E \to Ber(S^2)\bigvee \to 0 \) in \(R_3 \) (such extensions exist). Then \(sdim(E) = 0 \) and \(E \) is indecomposable, hence negligible. The derivative of \(S^2 = [2, 0, 0] \) is \((S^2)' = [2, 0] + Ber^{-1} \) and the derivative of \(Ber(S^2)\bigvee = [2, 2, 1] \) is \([2, 2, 1]' = (Ber[1, 1, 0])' = -Ber([1, 1, 0]') = -2, 2, -2] \). From \([2, 2] = Ber^2 \) then \(H^+(E) = Ber^{-1} \oplus ? \) and \(H^-(E) = Ber^2 \oplus ? \) where ? is either \([2, 0]\) or zero. Hence \(E \) is negligible in \(R_3 \), but \(D^2(E) = D(D(E)) \neq 0 \). In particular, \(D(N_3) \) is not contained in \(N_2 \).

The main theorem has a number of useful consequences. Applications regarding tensor products will be discussed elsewhere.

Cohomology. The main theorem permits us to compute the cohomology \(H^i(L) \) of maximally atypical irreducible modules \(L \) in section 22. It also shows the degeneration of the spectral sequences from 8 and shows

\[
DS_{n,n_2}(L) \simeq DS_{n_1,n_2}(DS_{n,n_1}(L)).
\]

The degeneration is also true in the not maximally atypical case, see below.
Modified superdimensions. The main theorem can be used to reprove the generalized Kac-Wakimoto conjecture on modified superdimensions [Ser10]. We sketch this and prove the analog of proposition 8.3.

Assume \(L \) maximally atypical. Applying \(DS \) \((n-1)\)-times gives \(DS^{n-1} : \mathcal{R}_n \to \mathcal{R}_1 \oplus \mathcal{R}_1[1] \). If \(sdim(L) > 0 \),

\[
DS(L(\lambda)) \cong \bigoplus_{i=1}^{n} L(\lambda_i)[n_i]
\]
splits into a direct sum of irreducible modules of positive superdimension. Indeed the parity shift \([n_i]\) occurs if and only if \(p(\lambda) \neq p(\lambda_i) \mod 2 \). Hence \(DS^{n-1}(L) \) splits into a direct sum of irreducible representations of superdimension 1. Applying \(DS \) \(n \)-times gives a functor \(\mathcal{R}_n \to svec \), hence \(DS^n(L) \cong m k \oplus m'k[1] \) for positive integers \(m, m' \), hence \(m = 0 \) if and only if \(sdim(L) < 0 \) and \(m' = 0 \) if and only \(sdim(L) > 0 \). By [Wei10] the super dimension of a maximal atypical irreducible representation in \(\mathcal{R}_n \) is given by

\[
sdim(L(\lambda)) = (-1)^{p(\lambda)}m(\lambda)
\]
for a positive integer \(m(\lambda) \) (see below for the definition). In particular

\[
m(\lambda) = \begin{cases} m & p(\lambda) = 0 \\ m' & p(\lambda) = 1. \end{cases}
\]

By proposition 8.3 this also holds for \(DS_{n-n} : \mathcal{R}_n \to svec \): If \(DS_{n-n}(L) \cong m k \oplus m'k[1] \), we get that either \(m \) or \(m' \) is zero.

If \(at(L(\lambda)) < n \), \(sdim(L) = 0 \). However one can define modified superdimension of \(L \) as follows. We recall some definitions and results from [Kuj11], [GKPM11] and [Ser10]. Denote by \(c_{V,W} : V \otimes W \to W \otimes V \) the usual flip \(v \otimes w \mapsto (-1)^{p(v)p(w)} w \otimes v \). Put \(ev'_V = ev_V \circ c_{V,V} \) and \(coev'_V = c_{V,V} \circ coev_V \). For any pair of objects \(V, W \) and an endomorphism \(f : V \otimes W \to V \otimes W \) we define

\[
tr_L(f) = (ev_V \otimes id_W) \circ (id_V \otimes f) \circ (coev'_V \otimes id_w) \in End_T(W)
\]

\[
tr_R(f) = (id_V \otimes ev'_W) \circ (f \otimes id_W) \circ (id_V \otimes coev_W) \in End_T(V)
\]

For an object \(J \in \mathcal{R}_n \) let \(I_J \) be the tensor ideal of \(J \). A trace on \(I_J \) is by definition a family of linear functions

\[
t = \{ t_V : End_{\mathcal{R}_n}(V) \to k \}
\]

where \(V \) runs over all objects of \(I_J \) such that following two conditions hold.

1. If \(U \in I_J \) and \(W \) is an object of \(\mathcal{R}_n \), then for any \(f \in End_{\mathcal{R}_n}(U \otimes W) \) we have

\[
t_{U\otimes W}(f) = t_U(t_R(f)).
\]

2. If \(U, V \in I \) then for any morphisms \(f : V \to U \) and \(g : U \to V \) in \(\mathcal{R}_n \) we have

\[
t_V(g \circ f) = t_U(f \circ g).
\]
For V an object of \mathcal{R}_n a linear function $t : \text{End}_{\mathcal{R}_n}(V) \to K$ is an ambidextrous trace on V if for all $f \in \text{End}_{\mathcal{R}_n}(V \otimes V)$ we have

$$t(t_L(f)) = t(t_R(f)).$$

An object is ambidextrous if it is irreducible and admits a nonzero ambidextrous trace.

Theorem 14.4. [Kuj11], thm 2.3.1 Let L be irreducible. If I_L admits a trace then the map t_L is an ambidextrous trace on L. Conversely, an ambidextrous trace on L extends uniquely to a trace on I_L. The trace on I_L and the ambidextrous trace on L are unique up to multiplication by an element of k.

Given a trace on I_J, $\{t_V\}_{V \in I_J}$, define the modified dimension function on objects of I_J as the modified trace of the identity morphism:

$$d_J(V) = t_V(id_V).$$

Tensor ideals. By [Ser10] any two irreducible object of atypicality k generate the same tensor ideal. Therefore write I_k for the tensor ideal generated by any irreducible object of atypicality k. Clearly $I_0 = \text{Proj}$ and $I_n = T_n$ since it contains the identity. This gives the following filtration

$$\text{Proj} = I_0 \subsetneq I_1 \subsetneq \ldots \subsetneq I_{n-1} \subsetneq I_n = T_n$$

with strict inclusions by [Ser10] and [Kuj11].

The projective case. Denote by Δ_0^+ the positive even roots and by Δ_1^+ the positive odd roots for our choice of Borel algebra. The half sums of the positive even roots is denoted ρ_0, the half-sum of the positive odd roots by ρ_1 and we put $\rho = \rho_0 - \rho_1$. We define a bilinear form $(,)$ on \mathfrak{h}^* as follows: We put $(\epsilon_i, \epsilon_j) = \delta_{ij}$ for $i, j \leq m$, $(\epsilon_i, \epsilon_j) = -\delta_{ij}$ for $i, j \geq m+1$ and $(\epsilon_i, \epsilon_j) = 0$ for $i \leq m$ and $j > m$. Define for any typical module the following function

$$d(L(\lambda)) = \prod_{\alpha \in \Delta_0^+} \frac{(\lambda + \rho, \alpha)}{\rho, \alpha} \prod_{\alpha \in \Delta_1^+} (\lambda + \rho, \alpha).$$

Then $d(L(\lambda)) \neq 0$ for every typical $L(\lambda)$. By [GKPM11], 6.2.2 for typical L

$$d_J(L) = \frac{d(L)}{d(J)}.$$

Since the ideal I_0 is independent of the choice of a particular J and any ambidextrous trace is unique up to a scalar, we normalize and define the modified normalized superdimension on I_0 to be

$$\text{sdim}_0(L) := d(L).$$

A formula for the superdimension. Applying DS iteratively k-times to a module of atypicality k we obtain the functor

$$DS^k := DS \circ \ldots \circ DS : \mathcal{R}_n \to T_{n-k}$$

which sends M with $\text{atyp}(M) = k$ to a direct sum of typical modules.
Denote by t^P the normalized ambidextrous trace on $I_0 = \text{Proj}$. Now we define for $M \in I_k$

$$t_M := t^P_{D S^k(M)} f_{D S^k(M)} : \text{End}_{\mathcal{R}_n}(M) \to k$$

where $f_{D S^k(M)}$ is the image of f under the functor $D S^k$. We claim that this defines a nontrivial trace on I_k: Let $M = L$ be irreducible and put

$$t_L(\text{id}_L) := t^P_{D S^k(L)}(\text{id}_{D S^k(L)}).$$

Now we compute $D S^k(L)$. By the main theorem the irreducible summands in $D S(L)$ are obtained by removing one of the outer cups of each sector. Applying $D S$ k-times gives then the typical module in T_{n-k} given by the cup diagram of L with all \rotatebox{90}{\vee}'s removed. Applying $D S^k$ to any other irreducible module in the same block will result in the same typical weight. Following Serganova [Ser10] we call this unique irreducible module the core of the block L_{core}. Hence $D S^k(L) = m(L) \cdot L_{\text{core}} \oplus m'(L) \cdot L_{\text{core}}[1]$.

We define the normalized modified superdimension as

$$sdim_k(L) = sdim_0(D S(L)) = sdim_0(mL_{\text{core}} \oplus m'(L)_{\text{core}}[1]).$$

By a comparison with the maximal atypical case \mathcal{R}_k-case either m or m' is zero. In particular the modified super dimension does not vanish. Since the positive integers m and m' only depend on the nesting structure of the cup diagram λ, we may compute them in the maximally atypical case. The positive integer $m(\lambda)$ for a maximally atypical weight is defined as follows: We let $\lambda \lambda$ be the associated oriented cup diagram to the weight λ. To each such cup diagram we can associate a forest $F(\lambda)$ with n nodes, i.e. a disjoint union of rooted trees as in [Wei10]. If F is a forest let $|F|$ the number of its nodes. We define the forest factorial $F!$ as the the product $\prod_{x \in F} |F_x|$ where F_x for a node $x \in F$ denotes the subtree of F rooted at the node x. Then the multiplicity is given by

$$m(\lambda) = \frac{|F(\lambda)|!}{F(\lambda)!}.$$

For example $m(\lambda)$ for irreducible module in \mathcal{R}_4 with cup diagram

\[
\begin{array}{c}
\bigcirc \\
\bigcirc \\
\bigcirc \\
\end{array}
\]

is computed as follows: The associated planar forest is

\[
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\]

Hence

$$sdim(L(\lambda)) = \frac{24}{3 \cdot 1 \cdot 1 \cdot 1} = 8.$$
It can be analogously defined for a k-fold atypical weight in \mathcal{R}_n since it depends only on the nesting structure of the cups. As in the maximally atypical case a parity shift happens in $DSL(L(\lambda))$ if and only if $\epsilon(\lambda) \not\equiv \epsilon(\lambda_i) \mod 2$. Hence

$$m(\lambda) = \begin{cases} m & \epsilon(\lambda) \equiv 0 \mod 2 \\ m' & \epsilon(\lambda) \equiv 1 \mod 2. \end{cases}$$

Accordingly

$$sdim_k(L(\lambda)) = (-1)^{\epsilon(\lambda)} m(\lambda)sdim_0(L^{core}).$$

Consider for example the irreducible 4-fold atypical representation in \mathcal{R}_6 with cup diagram

\[
\begin{array}{c}
\circ \\
\times \\
\circ \\
\times \\
\circ \\
\end{array}
\]

We have already seen above that $m(\lambda) = 8$ in this case. The core is given by the typical representation $L(3, -4|5, -5)$.

As a consequence of our construction and the sign rule of the main theorem we get

Corollary 14.5. If L is irreducible of atypicality k, then $sdim_k(L) = sdim_{k-1}(DS(L))$. If $sdim_k(L) > 0$, then all summands in $DS(L)$ have $sdim_{k-1}(L) > 0$.

We can now copy the proof of proposition 8.1 to get

Corollary 14.6. For irreducible atypical objects L in T_n the Leray type spectral sequence degenerates:

$$DS_{n,n_2}(L) \cong DS_{n_1,n_2}(DS_{n,n_2}(L)).$$

15. **Strategy of the proof**

We will first prove the Main Theorem for the groundstates of each block. A groundstate is a weight with completely nested cup diagram such that all the vertices labelled \times or \circ are to the right of the cups. In the maximally atypical case the ground state are just the Berezin-powers. In the lower atypical cases every ground state is a Berezin-twist of a mixed tensor and we can easily see that these satisfy the main theorem. This is proven in section 16. The proof of the general case will be a reduction to the case of groundstates.

In the singly atypical case we just have to move the unique label \vee to the left of all of the crosses and circles. We will see in section 17 that we
can always move \vee’s to the left of \circ’s or \times. The proof of the general case will induct on the degree of atypicality, hence we will always assume that the theorem is proven for irreducible modules of lower atypicality. Hence for the purpose of explaining the strategy of the proof we will focus on the maximally atypical case.

The modules S^i. Let us consider the following special maximally atypical case. Let $Ber \simeq [1, \ldots, 1] \in \mathcal{R}_n$ be the Berezin representation. Let S^i denote the irreducible representation $[i, 0, \ldots, 0]$. Every S^{i-1} occurs as the socle and cosocel of a mixed tensor denoted $\mathcal{A}_{S^{i-1}}$ [Hei14]. The Loewy structure of the modules $\mathcal{A}_{S^i} := R((i), (1^i)) \in \mathcal{R}_n$ is the following:

$$\mathcal{A}_{S^i} = (S^{i-1}, S^i \oplus S^{i-1}, S^{i-1})$$

for $i \neq n$ and $i \geq 1$ and $n \geq 2$. Furthermore

$$\mathcal{A}_{S^n} = (S^{n-1}, S^n \oplus Ber^{-1} \oplus S^{n-2}, S^{n-1}).$$

We will see in 16 that for all mixed tensors $DS(R(\lambda^L, \lambda^R)) = R(\lambda^L, \lambda^R)$ holds, so we have $DS(\mathcal{A}_{S^i}) = \mathcal{A}_{S^i}$ for all $i \geq 1$. Notice that by abuse of notation we view S^i and also \mathcal{A}_{S^i} as objects of \mathcal{R}_n for all n.

The image $S^i \rightarrow DS(S^i)$ can be computed recursively from the two exact sequences in \mathcal{R}_n

$$
\begin{array}{ccccccc}
0 & \rightarrow & K_n^i & \rightarrow & \mathcal{A}_{S^i} & \rightarrow & S^{i-1} & \rightarrow & 0 \\
0 & \rightarrow & S^{i-1} & \rightarrow & j \rightarrow & K_n^i & \rightarrow & S^i \oplus S^{i-2} & \rightarrow & 0
\end{array}
$$

induced by projection p onto the cosocle and the inclusion j of the socle.

By the main theorem we get for $n \geq 2$ ($Ber_n)_x = Ber_{n-1}[1]$ and

1. $DS(S^i) = S^i$ for $i < n - 1$,
2. $DS(S^i) = S^i \oplus Ber^{-1}[n-1-i]$ for $i \geq n - 1$.

We proof this for $i \leq n-1$. First notice $H^{-}(\mathcal{A}_{S^i}) = 0$ and $H^{+}(\mathcal{A}_{S^i}) = \mathcal{A}_{S^i}$. Suppose $i \leq n - 1$ and that $H^{-}(S^j) = 0$, $H^{+}(S^j) = S^j$ already holds for $j < i$ by induction. This is justified since $S^0 = k$ equals the trivial module. Then the exact hexagons give

$$
\begin{array}{ccccccc}
\text{H}^+(K_n^i) & \rightarrow & \mathcal{A}_{S^i} & \rightarrow & S^{i-1} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & H^{-}(K_n^i)
\end{array}
$$

and

$$
\begin{array}{ccccccc}
S^{i-1} & \rightarrow & H^+(K_n^i) & \rightarrow & H^+(S^i \oplus ?) \oplus S^{i-2} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^{-}(S^i \oplus ?) & \leftarrow & H^{-}(K_n^i) & \leftarrow & 0
\end{array}
$$

If $H^+(p) = 0$, then $H^+(K_n^i) \cong \mathcal{A}_{S^i}$. Hence $H^+(K_n^i) \rightarrow H^+(S^i \oplus ?) \oplus S^{i-2}$ composed with the projection to S^{i-2} is zero, since the cosocle of
we associate to every irreducible module a formula for \mathbb{A}. We show that under certain axioms on the modules H the property that all other composition factors of A are verified in section 18. Assuming that the Main Theorem holds for all composition factors except possibly L^up we prove in section 17 a formula for $DS(F_i(L^{\times_0}))$. In section 18 we show that under certain axioms on the modules $F_i(L^{\times_0})$ and their image under DS the module $DS(L^{\text{up}})$ is semisimple. These axioms are verified in section 19. Here it is very important that we can control the

$H^+(K_n^i) \cong \mathbb{A}_{S_i}$ is S_i^{1}. This implies $S_i^{1} - 1 = 0$, which is absurd. Hence $H^+(p)$ is surjective. Therefore $H^-(K_n^i) = 0$ and $H^+(K_n^i) = K_n^{i-1}$, and in particular then

$$H^+(K_n^i) = K_n^{i-1}$$

is indecomposable. Hence $K_n^{i-1} \to H^+(S_i^\oplus?) \oplus S_i^{1-2}$ is surjective, and $H^-(S_i^1) = 0$. Furthermore

$$H^+(S_i^1) = S_i^1 \quad , \quad i < n - 1$$

and

$$H^+(S_i^1) = S_i^1 \oplus Ber^{-1} \quad , \quad i = n - 1 .$$

The proof for the cases $i \geq n$ is similar.

The method described in the S_i^1-case doesn’t work in general. In the general case we do not have exact analogs of the $\mathbb{A}_{S_i^1}$ - mixed tensors with the property $DS(\mathbb{A}) = \mathbb{A}$. In section 17 we associate to every irreducible module three weights, the weight L, the auxiliary weight L^{aux} and the weight L^{\times_0} and an indecomposable rigid module $F_i(L^{\times_0})$ of Loewy length 3 with Loewy structure (L, A, L) such that the irreducible module we started with and which we denote L^{up} for reasons to be explained later is one of the composition factors of A. If we apply this construction to irreducible modules of the form $S_i^1 = [i, 0, \ldots, 0]$ we recover the modules $\mathbb{A}_{S_i^1}$. Our aim is to use these indecomposable modules as a replacement for the modules $\mathbb{A}_{S_i^1}$.

In the S_i^1-case we reduced the computation of $DS(S_i^1)$ by means of the indecomposable modules $\mathbb{A}_{S_i^1}$ to the trivial case $DS(1) = 1$. In the general case we will reduce the computation of $DS(L)$ by means of the indecomposable modules $F_i(L^{\times_0})$ to the case of ground states. For that we define an order on the set of cup diagrams for a fixed block such that the completely nested cup diagrams (for which the Main Theorem holds) are the minimal elements. We prove the general case by induction on this order and will accordingly assume that the main theorem holds for all irreducible modules of lower order then a given module L. The key point is that for a given module L^{up} we can always choose our weights L^{aux} and L^{\times_0} such that all other composition factors of $F_i(L^{\times_0})$ are of lower order then L^{up}. Hence the Main Theorem holds for all composition factors of $F_i(L^{\times_0})$ except possibly L^{up}. This setup is similar to the $\mathbb{A}_{S_i^1}$-case where we assumed by induction on i that the Main Theorem held for all composition factors of $\mathbb{A}_{S_i^1} = (S_i^{1-1}, S_i^{1-2} + S_i^{1}, S_i^{1-1})$ except possibly S_i^1. Unlike the $\mathbb{A}_{S_i^1}$ the indecomposable modules $F_i(L^{\times_0})$ are not mixed tensors and hence we do not know a priori their behaviour under DS. However assuming that the Main Theorem holds for all composition factors except possibly L^{up} we prove in section 17 a formula for $DS(F_i(L^{\times_0}))$. In section 18 we show that under certain axioms on the modules $F_i(L^{\times_0})$ and their image under DS the module $DS(L^{\text{up}})$ is semisimple. These axioms are verified in section 19. Here it is very important that we can control the
composition factors of the $F_i(L^{\times o})$. The composition factors in the middle Loewy layer will be called moves since they can be obtained from the labelled cup diagram of L by moving certain \vee’s in a natural way. The moves are described in detail in section 17.

We still have to explain how the induction process works, i.e. how we relate a given irreducible module to irreducible modules with lesser number of segments respectively sectors. This is done by the so-called Algorithms I and II described first in [Wei10]. As above for a given module L^{up} all other composition factors of $F_i(L^{\times o})$ are of lower order then L^{up}. For L^{up} with more then one segment we can choose i and the weights L^{aux} and $L^{\times o}$ in such a way that all composition factors have one segment less then L^{up}. We can now apply the same procedure to all the composition factors of $F_i(L^{\times o})$ with more then one segment - i.e. we choose for each of these (new) weights L^{aux} and $L^{\times o}$ such that the composition factors of the (new) associated indecomposable modules have less segments then them. Iterating this we finally end up with a finite number of indecomposable modules where all composition factors have weight diagrams with only one segment. This procedure is called Algorithm I. In Algorithm II we decrease the number of sectors in the same way: If we have a weight with only one segment but more then one sector we can choose i and the weights L^{aux} and $L^{\times o}$ such that the composition factors of $F_i(L^{\times o})$ have less sectors then L^{up}. Applying this procedure to the composition factors of $F_i(L^{\times o})$ and iterating we finally relate the cup diagram of L^{up} to a finite number of cup diagrams with only one sector.

Hence after finitely many iterations we have reduced everything to irreducible modules with one segment and one sector. This sector might not be completely nested, e.g. we might end up with weights with labelled cup diagrams of the type

\[\begin{array}{c}
 \hline
 \end{array} \]

In this case we can apply Algorithm II to the internal cup diagram having one segment enclosed by the outer cup. If we iterate this procedure we will finally end up in a collection of Kostant weights (i.e. weights with completely nested cup diagrams) of this block.

We still have to find the decomposition of the semisimple module $DS(L^{up})$ into its simple summands. Since we know the semisimplicity, we can compute $DS(L^{up})$ on the level of Grothendieck groups. Essentially we compute this in the following way: We compute

\[
d(\lambda) = H^+(\lambda) - H^-(\lambda) = 2d(L) + d(A) = 2d(L) + d(L^{up}) + d(A - L^{up})
\]
in $K_0(R_{n-1})$ where we do not know $d(L^{up})$ and compare this to the known composition factors of $\Delta = DS(\Lambda)$. For this we need the so-called commutation rules for Algorithm I and Algorithm II. Using that the main theorem holds for all composition factors of Λ except possibly L^{up} we can cancel most composition factors. The remaining factors have to be the simple factors of $DS(L^{up})$ and these factors are exactly those given by the derivative of L^{up}, finally proving the theorem. This is done in section 18.

15.1. **The case $[2, 2, 0]$**. We illustrate the above strategy with an example. In this part we ignore systematically all signs or parity shifts. The module $[2, 2, 0]$ has the labelled cup diagram

```
\(\begin{array}{c}
  \vdots \\
  \vdots \\
  \vdots \\
\end{array}\)
```

hence it has two segments and two sectors. We will associate to $[2, 2, 0]$ an auxiliary weight L and a twofold atypical weight L^{\times_0} in T_3 such that $[2, 2, 0]$ is of the form L^{up} in the indecomposable module $F_i(L^{\times_0})$. The auxiliary weight is in this case $[2, 1, 0]$ with labelled cup diagram

```
\(\begin{array}{c}
  \vdots \\
  \vdots \\
  \vdots \\
\end{array}\)
```

with one segment and three sectors. The weight λ^{\times_0} is obtained from $[2, 1, 0]$ by replacing the $\lor\land$ at the vertices 0 and 1 by \times_0

```
\(\begin{array}{c}
  \vdots \\
  \vdots \\
  \vdots \\
\end{array}\)
```

The module $F_0(L^{\times_0})$ is $*$-selfdual of Loewy length 3 and socle and cosocle $[2, 1, 0]$. It contains the module $[2, 2, 0]$ with multiplicity 1 in the middle Loewy layer. The rules of section 17 give the following composition factors (moves) in the middle Loewy layer. In the labelled cup diagram of $[2, 1, 0]$ there is one internal upper sector $[2, 3]$. The internal upper sector move gives the labelled cup diagram

```
\(\begin{array}{c}
  \vdots \\
  \vdots \\
  \vdots \\
\end{array}\)
```

hence the composition factor $[1, 1, 0]$. The labelled cup diagram of $[2, 1, 0]$ has one internal lower sector, namely the interval $[-2, -1]$. The associated internal lower sector move gives the labelled cup diagram

```
\(\begin{array}{c}
  \vdots \\
  \vdots \\
  \vdots \\
\end{array}\)
```
The sector \([0, 1]\) is unencapsulated, it is in the middle of the segment \([-2, 3]\). Hence we also have the unencapsulated boundary move, i.e. we move the \(\vee\) at the vertex 0 to the vertex -3, resulting in the labelled cup diagram

\[\text{Diagram} \]

\[\text{Composition factor: } [2, -1, -1]. \] The upward move of \([2, 1, 0]\) gives the composition factor \(L^{up} = [2, 2, 0]\). Hence the Loewy structure of the indecomposable module \(F_0(L^{aux})\) is

\[\left(\begin{array}{c} [2, 1, 0] \\ [2, -1, -1] + [1, 1, 0] + [2, 0, 0] + [2, 2, 0] \\ [2, 1, 0] \end{array} \right). \]

We remark that all the composition factors have only one segment, hence we will not have to apply Algorithm I any more. Since the proof inducts on the degree of atypicality we know \(DS(L^{\times 0})\) and we can apply 17.4 to conclude \(DS(F_0(L^{\times 0})) = F_1(DS(L^{\times 0})) = F_1(L_1 \oplus L_2)\) for two irreducible module obtained by applying \(DS\) to \(L^{\times 0}\). By the main theorem \(DS(L^{\times 0})\) gives the modules

\[\text{Diagram} \]

and

\[\text{Diagram} \]

Applying \(F_0\) to the first summand gives the module \(A_1\) with socle and cosocle \([2, 1]\). The upward move gives the composition factor \([2, 2]\). The unique internal upper sector move gives the composition factor \([1, 1]\). We do not have any lower sector moves. The non-encapsulated boundary move gives the composition factor \([2, 0]\). This results in the Loewy structures of \(A_1 = F_0(L_1)\) and \(A_2 = F_0(L_2)\)

\[\begin{align*}
A_1 &= \left(\begin{array}{c} [2, 1] \\ [1, 1] + [2, 0] + [2, 2] \\ [2, 1] \end{array} \right), \\
A_2 &= \left(\begin{array}{c} [0, -1] \\ [1, -1] + [-1, -1] + [-2, -2] \\ [0, -1] \end{array} \right).
\end{align*} \]

The irreducible modules in the middle Loewy layers give the module \(\hat{A}\). We compare \(\hat{A}\) and \(A'\) in \(K_0\): Taking the derivative of \(A = [2, -1, -1] + [1, 1, 0] + [2, 0, 0] + [2, 2, 0]\) gives

\[A' = [2, -1] + [-2, -2] + [1, -1] + [1, 1] + [2, 0] + [-1, -1] + [2, -1] + [2, 2] \]

\[\text{Diagram} \]
with the module \([2, -1] = L^{aux}\) appearing twice. The computation above of \(A_1\) and \(A_2\) gives
\[
\tilde{A} = [-2, -2] + [1, -1] + [1, 1] + [2, 0] + [-1, -1] + [2, 2].
\]
This shows the following commutation rule in this example
\[
A' = \tilde{A} + 2(-1)^{i+n}L^{aux} \text{ in } K_0(\mathcal{R}_{n-1}).
\]
We remark that the composition factors \([2, 0]\) in \(A_1\) and \([-1, -1]\) are detecting objects in the sense of section 19.

We will prove in section 19 that the properties of the modules \(A, A_1\) and \(A_2\) imply that \(DS(L^{up})\) is semisimple. Hence we can compute \(DS(L^{up})\) by looking at \(K_0\).

In Algorithm II we reduce everything to a single sector. Take one of the composition factors of \(F_0(L^{\times0})\) with more than one sector, e.g. \([2, 1, 0]\) with one segment and three sectors. The associated auxiliary weight is in this case the weight \([2, 0, 0]\) with the twofold atypical weight \(L^{\times0}\) given by the labelled cup diagram

\[
\begin{array}{c}
\circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \\
\end{array}
\]

The module \(F_{-1}(L^{\times0})\) has socle and cosocle \([2, 0, 0]\) and the following modules in the middle Loewy layer: The upward move gives \([2, 1, 0]\) and the upper sector move of the upper sector \([2, 3]\) gives the weight \([0, 0, 0]\).

There are no non-encapsulated boundary moves and no internal lower sector moves, hence we get the Loewy structure
\[
F_{-1}(L^{\times0}) = \begin{pmatrix}
[2, 0, 0] \\
[0, 0, 0] + [2, 1, 0] \\
[2, 0, 0]
\end{pmatrix}
\]
We compute \(DS(F_{-1}(L^{\times0}))\) (using \(DS(F_1(L^{\times0})) = F_1(DS(L^{\times0}))\)) (lemma 17.4). By the main theorem \(DS(L^{\times0})\) splits into two direct summands.

Applying \(F_{-1}\) to the first and second summand gives the indecomposable modules
\[
A_1 = \begin{pmatrix}
[2, 0] \\
[2, 1] + [2, -1] + [0, 0] \\
[2, 0]
\end{pmatrix}, \quad A_2 = \begin{pmatrix}
[-1, -1] \\
[0, -1] \\
[-1, -1]
\end{pmatrix}
\]
We remark that all the factors in the middle Loewy layers are detecting objects in the sense of section 18. As shown in section 18 these properties already imply that \(DS([2, 1, 0])\) is semisimple. To compute it we need the commutation rules for Algorithm II, i.e. we compare the derivative \(A'\) of the middle Loewy layer of \(F_{-1}(L^{\times0})\) with the modules \(A = A_1 + A_2\) in the
middle Loewy layers of A_1 and A_2. In both cases we get $[2, 1] + [2, -1] + [0, 0] + [0, -1]$, hence the commutation rule
\[\tilde{A} = A'. \]

The general case is proven in lemma 19.7.

16. Mixed Tensors

Let MT denote the full subcategory of mixed tensors in R_n whose objects are direct sums of the indecomposable objects in R_n that appear in a decomposition $X^{sr}_st \otimes (X^\vee X^{st})^{\otimes _s}$ for some natural numbers $r, s \geq 0$, where $X_{st} \in R_n$ denotes the standard representation. By [BS12b] and [CW11] the indecomposable objects in MT are parametrized by (n, n)-cross bipartitions. Let $R_n(\lambda^L, \lambda^R)$ denote the indecomposable representation in R_n corresponding to the bipartition (λ^L, λ^R) under this parametrization.

To any bipartition we attach a weight diagram in the sense of [BS11], i.e. a labelling of the numberline \mathbb{Z} according to the following dictionary. Put
\[I_\wedge(\lambda) := \{ \lambda_1^L, \lambda_2^L - 1, \lambda_3^L - 2, \ldots \} \quad \text{and} \quad I_\vee(\lambda) := \{ 1 - \lambda_1^R, 2 - \lambda_2^R, \ldots \}. \]

Now label the integer vertices i on the numberline by the symbols $\wedge, \vee, \circ, \times$ according to the rule
\[
\begin{align*}
\circ & \text{ if } i \notin I_\wedge \cup I_\vee, \\
\wedge & \text{ if } i \in I_\wedge, i \notin I_\vee, \\
\vee & \text{ if } i \in I_\vee, i \notin I_\wedge, \\
\times & \text{ if } i \in I_\wedge \cap I_\vee.
\end{align*}
\]

To any such data one attaches a cup-diagram as in section 12 or [BS11] and we define the following three invariants
\[
a(\lambda) = \text{number of crosses} \\
d(\lambda) = \text{number of cups} \\
k(\lambda) = a(\lambda) + d(\lambda)
\]

A bipartition is (n, n)-cross if and only if $k(\lambda) \leq n$. By [BS12b] the modules $R(\lambda^L, \lambda^R)$ have irreducible socle and cosocle equal to $L(\lambda^\dagger)$ where the highest weight λ^\dagger can be obtained by a combinatorial algorithm from λ. Let
\[\theta : \Lambda \to X^+(n) \]
denote the resulting map $\lambda \mapsto \lambda^\dagger$ between the set of (n, n)-cross bipartitions Λ and the set $X^+(n)$ of highest weights of R_n.

Theorem 16.1. [Hei14] $R = R(\lambda^L, \lambda^R)$ is an indecomposable module of Loewy length $2d(\lambda) + 1$. It is projective if and only if $k(\lambda) = n$, in which case we have $R = P(\lambda^\dagger)$. 49
Hence R is irreducible if and only if $d(\lambda) = 0$, and then $R = L(\lambda^\dagger)$.

Deligne’s interpolating category. For every $t \in k$ we dispose over the category $\text{Rep}(Gl_t)$ defined in [Del07]. This is a k-linear abelian rigid tensor category. By construction it contains an object st of dimension t, called the standard representation. Given any k-linear pseudoabelian tensor category C with unit object and a tensor functor

$$F : \text{Rep}(Gl_t) \to C$$

the functor $F \to F(st)$ is an equivalence between the category of \otimes-functors of $\text{Rep}(Gl_t)$ to C with the category of t-dimensional dualisable objects $X \in C$ and their isomorphisms.

In particular, given a dualizable object X of dimension t in a k-linear pseudoabelian tensor category, a unique tensor functor $F_X : \text{Rep}(Gl_t) \to C$ exists mapping st to X. Hence, for our categories R_n and $t = 0$, we get a tensor functor $F_n : \text{Rep}(Gl_0) \to R_n$ by mapping the standard representation of $\text{Rep}(Gl_0)$ to the standard representation of $Gl(n|n)$ in R_n. Every mixed tensor is in the image of this tensor functor ([CW11]). The indecomposable elements in Deligne’s category are parametrized by the set of all bipartitions. The kernel of F_n contains those indecomposables labelled by bipartitions that are not (n,n)-cross. Any (n,n)-cross bipartion λ defines an indecomposable object in the image of $\text{Rep}(Gl_0)$. By the universal property of Deligne’s category any tensor functor from $\text{Rep}(Gl_0)$ to a tensor category C is fixed up to isomorphism by the choice of an image of the standard representation of $\text{Rep}(Gl_0)$.

Lemma 16.2. [Hei14] $\text{DS}(R_n(\lambda, \rho)) = R_{n-1}(\lambda, \rho)$ holds unless $R_n(\lambda, \rho)$ is projective, in which case $\text{DS}(R_n(\lambda, \rho)) = 0$.

Note that the vanishing of $R_n(\lambda, \rho)_x$ in the projective case is just a special case of lemma 4.2 (i) and (ii).

Proof. An easy computation shows that under the Duflo-Serganova functor the standard representation of g_n is mapped to the standard representation of g_{n-1}. Since any indecomposable mixed tensor module is in the image of a tensor functor from Deligne’s category $\text{Rep}(Gl_0)$ [CW11] the result follows from the commutative diagram

$$\begin{array}{ccc}
\text{Rep}(Gl_0) & \xrightarrow{F_n} & R_n \\
\downarrow & & \downarrow \text{DS} \\
\mathcal{R}_n & \xrightarrow{F_{n-1}} & \mathcal{R}_{n-1}
\end{array}$$

The kernel of F_n is the set of bipartitions with $k(\lambda) > n$, the kernel of F_{n-1} the set of bipartitions with $k(\lambda) \geq n$. Hence $R(\lambda, \rho) \in \ker(\text{DS})$ if and only if $k(\lambda) = n$ which is equivalent to $R(\lambda)$ projective.

Example. As in section 15 put $\mathcal{A}_{S^i} := R((i), (1^i)) \in \mathcal{R}_n$. By lemma 16.2 we have $\langle \mathcal{A}_{S^i} \rangle_x = \mathcal{A}_{S^i}$ for all $i \geq 1$. 50
Corollary 16.3. Every indecomposable projective module of \mathcal{R}_{n-1} is in the image of DS.

Proof. The indecomposable projective modules are precisely the modules $DS(R(\lambda^L, \lambda^R))$ with $k(\lambda) = n-1$. Note that every indecomposable projective module is a mixed tensor. □

Irreducible mixed tensors. By the results above the map $\theta : \Lambda \to X^+(n)$ is injective if restricted to bipartitions with $d(\lambda) = 0$. We denote by θ^{-1} its partial inverse. A closer inspection [Hei14] of the assignment $\theta : \lambda \mapsto \lambda^\dagger$ shows that θ and θ^{-1} are given by the following simplified rule: Define

\[
m = \text{maximal coordinate of a } \times \text{ or } \circ \\quad t = \max(k(\lambda) + 1, m + 1) \\quad s = \begin{cases}
0 & m + 1 \leq k(\lambda) + 1 \\
 m - k(\lambda) & m + 1 > k(\lambda) + 1 \end{cases}
\]

The weight diagram of λ^\dagger is obtained from the weight diagram of λ by switching all \lor’s to \land’s and vice versa at positions $\geq t$ and switching the first $s + n - k(\lambda)$ \land’s at positions $< t$ to \lor’s and vice versa. The numbers labelled by a \land or \lor will be called free positions. Conversely if $L(\lambda^\dagger)$ is some irreducible representation in MT, the corresponding bipartition with $\theta^{-1}(\lambda^\dagger) = \lambda$ is obtained in the same way: Define t, m, s as above and apply the same switching rules to the weight diagram of λ^\dagger.

Proposition 16.4. Let

\[L = L(\lambda^\dagger) = L(\lambda_1, \ldots, \lambda_{n-i}, 0, \ldots, 0, \lambda_{n+i+1}, \ldots, \lambda_{2n})\]

be any irreducible i-fold atypical representation. Then L is a mixed tensor $L = R(\lambda)$ for a unique bipartition of defect 0 and $rk = n-i$. Then

\[DS(L) = R_{n-1}(\lambda) = L(\check{\lambda}^\dagger),\]

where $\check{\lambda}^\dagger$ is obtained from λ^\dagger by removing the two innermost zeros corresponding to λ^\dagger_n and λ^\dagger_{n+1}.

Proof. We apply θ^{-1} to λ. It transforms the weight diagram of λ into some other weight diagram which might not be the weight diagram of a bipartition. However if the resulting weight diagram is the weight diagram of an (n, n)-cross bipartition of defect 0, then $\theta(\lambda) = \lambda^\dagger$ and $R(\lambda) = L(\lambda^\dagger)$. For λ^\dagger

\[I_x = \{\lambda_1, \lambda_2 - 1, \ldots, \lambda_{n-i} - (n-i) + 1, -n + i, \ldots, -n + 1\}\]

\[I_0 = \{1 - n, 2 - n, \ldots, i - n, i + 1 - n - \lambda_{n+1+i}, \ldots, -\lambda_{2n}\}.
\]

Then $I_x \cap I_0 = \{-n + 1, \ldots, -n + 1\}$ (since the atypicality is i) and the $n-i$ crosses are at the positions $\lambda_1, \lambda_2 - 1, \ldots, \lambda_{n-i} - (n-i) + 1$ and the $n-i$ circles at the positions $i + 1 - n - \lambda_{n+1+i}, \ldots, -\lambda_{2n}$. Define m, t, s as above. Note that $k(\lambda^\dagger) = n-i$. We distinguish two cases, either $t = n-i+1$ or $t = m+1$. Assume first $m+1 \leq n-i+1$. Switch all free labels at positions
However there are exactly \(n - (n - i) = i \) free labels at positions \(< t \). By assumption the \(2n - 2i \) crosses and circles lie at positions \(> i - n \) and \(< n - i + 1 \). However there are exactly \(2n - 2i \) such positions. Hence the switches at positions \(< t \) turn exactly the \(i \) \(\vee \)'s at positions \(i - n, \ldots, 1 - n \) into \(\wedge \)'s. In the second case \(t = m + 1 > n - i + 1 \) switch the first \(m + n - 2(n - i) \) free labels at positions \(< t \). There are exactly \(m + n - i \) positions between \(m \) and \(i - n, m - n + 2i \) switches and \(2n - 2i \) crosses and circles between \(i - n \) and \(t \). This results in \(m - n + i \) free positions between \(i - n \) and \(t \). The remaining \(i \) switches switch the \(i \) \(\vee \)'s. Hence in both cases \(\theta^{-1} \) transforms the weight diagram of \(\lambda^i \) into a weight diagram where the rightmost \(\wedge \) is at position \(i - n \) and the leftmost \(\vee \) is at the first free position \(> i - n \) and all labels at positions \(\geq t \) are given by \(\vee \)'s. This is the weight diagram of a bipartition of defect 0 and rank \(n - i \) and accordingly the weight diagram of \(\lambda \) do not depend on \(n \). Neither do \(t, m, s \) and the switches at positions \(\geq t \). To get \(\lambda^i \) in \(\mathcal{R}_n \) from \(\lambda \) we switch the first \(s + n - (n - i) \) free labels \(< t \). To get \(\lambda^i \) in \(\mathcal{R}_{n-1} \) from \(\lambda \) we switch the first \(s + (n - 1) - (n - i) \) free labels \(< t \). This results in removing the leftmost \(\vee \) at position \(1 - n \).

Ground states. Let \(A_i \subset \mathcal{R}_n \) denotes the full block subcategory of \(i \)-atypical objects. Every block in \(A_i \) contains irreducible objects with the property that all \(i \) labels \(\vee \) are adjacents and to the left of all \(n - i \) labels \(\times \) and all \(n - i \) labels \(\circ \). We call such an irreducible object a groundstate of the corresponding block in \(A_i \). Each block in \(A_i \) uniquely defines its groundstate up to a simultaneous shift of the \(i \) adjacent labels \(\vee \). The weight \(\lambda \) of such a groundstate \(L(\lambda) \) is of the form

\[
\lambda = (\lambda_1, \ldots, \lambda_{n-i}, \lambda_{n}, \ldots, \lambda_n ; -\lambda_n, \ldots, -\lambda_n, \lambda_{n+1+i}, \ldots, \lambda_{2n})
\]

with \(\lambda_n \leq \min(\lambda_{n-i}, -\lambda_{n+1+i}) \) (here \(\lambda_n \mapsto \lambda_n - 1 \) corresponds to the shift of the \(i \) adjacent labels \(\vee \)). The coefficients \(\lambda_1, \ldots, \lambda_{n-i}, \lambda_{n+1+i}, \ldots, \lambda_{2n} \) determine and are determined by the position of the labels \(\times \) and \(\circ \) defining the given block in \(A_i \). We define

\[
\overline{\lambda} = (\lambda_1, \ldots, \lambda_{n-i}, \lambda_{n}, \ldots, -\lambda_n, \lambda_{n+1+i}, \ldots, \lambda_{2n})
\]

by omitting the innermost \(\lambda_n; -\lambda_n \) pair. Then \(L(\overline{\lambda}) \in A_{i-1} \subset T_{n-1} \).

Berezin twists. Twisting with Ber = Ber\(_n \) induces an endofunctor of \(A_i \) and permutes blocks. By a suitable twist one can replace a given block in \(A_i \) such that it contains the groundstate

\[
\lambda' = (\lambda_1 - \lambda_n, \ldots, \lambda_{n-i} - \lambda_n, 0, \ldots, 0, \lambda_{n+1+i} + \lambda_n, \ldots, \lambda_{2n} + \lambda_n)
\]
Proposition 16.5. For a groundstate \(L = L(\lambda) \) of a block in \(\mathcal{A}_i \subset \mathcal{R}_n \) the image \(DS(L) \) in \(T_{n-1} \) of \(L \) under the Duflo-Serganova functor is
\[
DS(L(\lambda)) = L(\lambda)[\lambda_{n+1}]
\]
for \(i > 0 \) or \(DS(L) = 0 \) for \(i = 0 \).

In particular therefore theorem 14.3 holds for the groundstates \(L = L(\lambda) \) of blocks in \(\mathcal{A}_i \subset \mathcal{R}_n \).

Proof. We can assume \(i > 0 \). Then we can assume \(\lambda_n = \lambda_{n+1} = 0 \) by a suitable Berezin twist. Hence
\[
L = R_n(\lambda^L, \lambda^R)
\]
for an \((n, n)\)-cross bipartition \((\lambda^L, \lambda^R)\) and therefore
\[
DS(L) = R_{n-1}(\lambda^L, \lambda^R)
\]
is irreducible of weight \(\lambda \), i.e. \(DS(L(\lambda)) = L(\lambda) \). This proves the claim, since by assumption now \(\lambda_{n+1} = 0 \).

\[
\square
\]

17. Modules of Loewy Length 3

Let \(\lambda \) in \(\mathcal{R}_n \) be any atypical weight with a \(\lor \land \)-pair in its weight diagram, i.e. such that there exists an index \(i \) labelled by \(\lor \) and the index \(i + 1 \) is labelled by \(\land \). Fix such an index \(i \) and replace \((\lor \land)\) by the labelling \((x, \circ)\).

This defines a new weight \(\lambda_{x \circ} \) of atypicality \(atyp(\lambda) - 1 \). We denote by \(F_i, i \in \mathbb{Z} \), the endofunctor from [BS12a]. The functor \(F_i \) has an avatar \(F_i \) on the side of Khovanov-modules. This projective functor \(F_i \) is defined by
\[
F_i := \bigoplus K^{l_i(\Gamma)}_{(\Gamma - \alpha_i)\Gamma} \otimes K -
\]
for one specific \(i \)-admissible \(\Gamma \).

Here the matching between \((\Gamma - \alpha_i)\) and \(\Gamma \) is given by the diagram above and the rule that all other vertices, except those labelled by \(\times \) or \(\circ \), are connected by a vertical identity line segment. We want to determine its composition factors and Loewy layers. For that one considers the modules \(F_i L(\lambda_{x \circ}) \) as modules in the graded category of \(K = K(n, n) \)-modules where \(K(n, n) \) is the Khovanov algebra from [BS12a]. We recall some facts from [BS11] and [BS12a], see also [Hei14].
Let \(\Lambda \) be any block. For a graded \(K \)-module \(M = \bigoplus_{j \in \mathbb{Z}} M_j \), we write \(M < j > \) for the same module with the new grading \(M < j > := M_{i-j} \). Then the modules \(\{ L(\lambda) < j > \mid \lambda \in \Lambda, \ j \in \mathbb{Z} \} \) give a complete set of isomorphism classes of irreducible graded \(K_\Lambda \)-modules. For the full subcategory \(\text{Rep}(K_\Lambda) \) of \(\text{Mod}_{sf}(K_\Lambda) \) consisting of finite-dimensional modules, the Grothendieck group is the free \(\mathbb{Z} \)-module with basis given by the \(L(\lambda) < j > \). Viewing it as a \(\mathbb{Z}[q, q^{-1}] \)-module, so that by definition \(q^i[M] := [M < j >] \) holds, \(K_0(\text{Rep}(K_\Lambda)) \) becomes the free \(\mathbb{Z}[q, q^{-1}] \)-module with basis \(\{ L(\lambda) \mid \lambda \in \Lambda \} \). We refer to [BS10a], section 2, for the definition of the functors \(G^t_{\Lambda \Gamma} \). For terminology used in the statement of the next theorem see loc.cit or section 26. We quote from [BS10a], thm 4.11

Theorem 17.1. Let \(t \) be a proper \(\Lambda \Gamma \)-matching and \(\gamma \in \Gamma \). Then in the graded Grothendieck group

\[
[G^t_{\Lambda \Gamma}L(\gamma)] = \sum_\mu (q + q^{-1})^{n_\mu}[L(\mu)]
\]

where \(n_\mu \) denotes the number of lower circles in \(\mu t \) and the sum is over all \(\mu \in \Lambda \) such that a) \(\gamma \) is the lower reduction of \(\mu t \) and b) the rays of each lower line in \(\mu t \) are oriented so that exactly one is \(\vee \) and one is \(\wedge \).

Up to a grading shift by \(-\text{caps}(t) \) we have \(F_iL(\lambda \times 0) = G^t_{\Gamma [\alpha]}(\Gamma L(\gamma) \times 0) \) for some \(\gamma \) and we may apply the theorem above to compute their Loewy structure. By [BS12a], lemma 2.4.v, \(F_iL(\lambda \times 0) \) is indecomposable with irreducible socle and head isomorphic to \(L(\lambda) \).

Proposition 17.2. \(F_iL(\lambda \times 0) \) has a three step Loewy filtration

\[
F_iL(\lambda \times 0) = \begin{pmatrix} L(\lambda) \\ F \\ L(\lambda) \end{pmatrix}
\]

where all irreducible constituents in (the semisimple) \(F \) occur with multiplicity 1.

Proof. Let \(F(j) \) be the submodule of \(F_iL(\lambda \times 0) \) spanned by all graded pieces of degree \(\geq j \). Let \(k \) be large enough so that all constituents of \(F_iL(\lambda \times 0) \) have degree \(\geq -k \) and \(\leq k \). Then

\[
F = F(-k) \supset F(-k+1) \supset \ldots \supset F(k)
\]

with successive semisimple quotients \(F(j)/F(j+1) \) in degree \(j \). In our case we take \(k = 1 \), since the irreducible socle and top \(L(\lambda) = L(\lambda \wedge 0) \) satisfies \(n_\lambda = 1 \). Then all other composition factors \(L(\mu) \) necessarily satisfy \(n_\mu = 0 \) (we ignore the shift by \(-\text{caps}(t) \) here). The grading filtration thus gives our three step Loewy filtration. The statement about the multiplicity follows since the multiplicity of \(L(\mu) \) in \(F \) is given by \(2^{n_\mu} \). The Loewy filtration of

\[
F_iL(\lambda \times 0)
\]
is preserved by the Morita equivalence
\[E^{-1} : K(n, n)\text{-mod} \to \mathcal{R}_n. \]

\[\square \]

Lemma 17.3. \(F_iL(\lambda_{\times 0}) \) is *-invariant.

\textit{Proof}. For fixed \(i \), \(\lambda \) and \(\lambda_{\times 0} \) determine each other. Assume \(j \neq i \). If the labelling of \((j, j + 1) \) of \(\lambda_{\times 0} \) is not of the type \((\times, \circ)\), then \(F_jL(\lambda_{\times 0}) \) is either irreducible or zero by \([\text{BS12a}], \text{lemma 2.4}\), hence not isomorphic to \(F_iL(\lambda_{\times 0}) \). If the labelling at \((j, j + 1) \) is \((\times, \circ)\), then \(F_jL(\lambda_{\times 0}) \) has a three-step Loewy filtration with top and socle given by \(\lambda' \) where \(\lambda' \) is obtained from \(\lambda \times \circ \) by replacing the \((\times, \circ)\) at position \((j, j + 1)\) with \((\vee, \wedge)\). In particular \(\lambda' \neq \lambda \). Hence \(F_iL(\lambda) \) embeds as a direct summand with multiplicity 1 in \(X \otimes L_{\times 0} \) by \([\text{BS12a}], \text{cor.2.9}\). Since \(X \otimes L_{\times 0} \) is *-invariant, * permutes its indecomposable summands. The indecomposable summands are either irreducible or are of the form \(F_jL(\lambda_{\times 0}) \) for some \(j \) with labeling \((\times, \circ)\) at position \((j, j + 1)\). Since * preserves irreducible modules, the indecomposable summands corresponding to the \((\times, \circ)\)-pairs in \(\lambda_{\times 0} \) are permuted amongst themselves. Since * preserves irreducible modules \([M^*] = [M] \) in \(K_0 \). However all the non-irreducible \(F_j(L(\lambda_{\times 0})) \) lie in different blocks for \(j \neq j' \) by the rules of \([\text{BS12a}], \text{lemma 2.4}\). \[\square \]

Composition factors. We describe the composition factors of \(F_i(L^{\times 0}) \). We first explain why we can restrict ourselves to the maximally atypical block (i.e. we can ignore \(\times \)'s and \(\circ \)'s).

Let \(\lambda \) be \(k \)-fold atypical. Since \(F_i(L(\lambda_{\times 0})) \) is indecomposable, any highest weight of a composition factor \(\mu \) has the same positioning of the \(n - k \) crosses and \(n - k \) circles as \(\lambda \). In particular it has the same positioning of the circles and crosses as \(\lambda_{\times 0} \) except at the position \((i, i + 1)\). Let \(F_i(L(\lambda_{\times 0})) \) be given by a matching \(t \) as follows

\[
\begin{array}{c|c|c|c|c|c|c|c}
\times & \cdot \& \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]

Now start with the leftmost position of \(t \) which does not connect the upper and lower part by a line segment and which is not at position \(i \). This corresponds to a position of \(\times \) or \(\circ \) in the weight diagram of \(\lambda \). Then construct a new matching by shifting all vertices left of this position in the upper and down-part one position to the right. Apply this shift procedure again to the new matching until every vertex in \(\Gamma \) is connected by an identity line segment to the vertex in \((\Gamma - \alpha_i) \) below except for the positions \(i \) and...
We call this the reduced matching t_{red} of t. It is a $\Gamma_{\text{red}}(\Gamma - \alpha_i)_{\text{red}}$ matching for the blocks obtained by removing all circles and crosses (except at $(i, i+1)$) from Γ and $(\Gamma - \alpha_i)$ and shifting the other labels to the right as above. Similarly define λ_{red} in $(\Gamma - \alpha_i)_{\text{red}}$ by removing all crosses and circles and shifting labels to the right. Now consider $G_{\Lambda(\alpha_i)_{\text{red}}}^t L(\lambda_{\text{red}})$. Assume μ_{red} is the weight of a composition factor, i.e. λ_{red} is the lower reduction of μ_{red}. Assume that the crosses in Γ are at the positions x_1, \ldots, x_{n-k} and the circles at position o_1, \ldots, o_{n-k}. Start by reversing the construction from t to t_{red} by taking the rightmost such position (say x_{n-k}) and shifting it and all positions along with all line segments by one to the left. Since this is done simultaneously in the up-and-down part and since the crosses and circles do not connect with any line segments and are not part of a cup or cap the lower reduction and lower line property are satisfied in the obvious way for our modified matching and the obvious modified weight μ_{red} defined from μ_{red} by fixing all labels at positions greater then x_{n-k}, inserting a \times at position x_{n-k} and shifting all labels by one to the left. If we repeat this procedure for every position of a cross or circle we end up in a weight μ which is clearly a composition factor of $G_{\Lambda(\alpha_i)} L(\lambda_{\text{red}})$. Hence we can pass in the same way from μ to μ_{red}. Hence the correspondence $\mu \mapsto \mu_{\text{red}}$ defines a bijection between the composition factors of $G_{\Lambda(\alpha_i)}(\Lambda - \alpha_i)_{\text{red}} L(\lambda_{\text{red}})$ and $G_{\Lambda(\alpha_i)} L(\lambda_{\text{red}})$. Hence we may (and will) assume to work in the maximally atypical block of $G_{\Lambda(\alpha_i)}$. In this case the composition factors can be determined from the segment and sector structure of λ as in [Wei10]. They are as follows. For symbols $x, y \in \{\circ, \wedge, \vee, \times\}$ we write λ_{xy} for the diagram obtained from λ with the ith and $(i+1)$th vertices relabeled by x and y, respectively.

- **Socle and cosocle.** They are defined by $L(\mu)$ for $\mu = \lambda_{\vee\wedge}$.
- **The upward move.** It corresponds to the weight $\mu = \lambda_{\wedge \vee}$ which is obtained from $\lambda_{\vee\wedge}$ by switching \vee and \wedge at the places i and $i+1$. It is of type $\lambda_{\wedge\wedge}$.
- **The nonencapsulated boundary move.** It only occurs in the nonencapsulated case. It moves the \vee in $\lambda_{\vee\wedge}$ from position i to the left boundary position a. The resulting weight μ is of type $\lambda_{\wedge\vee}$.
- **The internal upper sector moves.** For every internal upper sector $[a_j, b_j]$ (i.e., to the right of $[i, i+1]$) there is a summand whose weight is obtained from $\lambda_{\vee\wedge}$ by moving the label \vee at a_j to the position $i+1$. These moves define new weights μ of type $\lambda_{\vee\vee}$.
- **The internal lower sector moves.** For every internal lower sector $[a_j, b_j]$ (i.e., to the left of $[i, i+1]$) there is a summand whose weight is obtained from $\lambda_{\vee\wedge}$ by moving the label \vee from the position i to the position b_j. These moves define new weights μ of type $\lambda_{\wedge\wedge}$.
For examples see [Wei10] or section 15. It follows from the maximal atypical case and the definition of our sign \(c(L) \) that we have \(F_i L(\lambda_{ox}) = (L, F, L) \) with \(L \in \mathcal{R}_n(\pm \varepsilon) \) and \(F \in \mathcal{R}_n(\mp \varepsilon) \).

Lemma 17.4. Suppose theorem 14.3 holds for the irreducible representation \(L^{\infty} = L(\lambda_{ox}) \) in the block \(\Gamma \) of \(\mathcal{R}_n \). Suppose \(i \in \mathbb{Z} \) is \(\Gamma \)-admissible in the sense of [BS12a], p.6. Then for the special projective functor \(F_i \) the following holds:

\[
\text{DS}(F_i L^{\infty}) = F_i \text{DS}(L^{\infty})
\]

Proof. Given \((V, \rho)\) in \(\mathcal{R}_n \) the Casimir \(C_n \) of \(\mathcal{R}_n \) restricts on \(\text{DS}(V, \rho) \) to the Casimir \(C_{n-1} \) of \(\mathcal{R}_{n-1} \) by lemma 11.2. On irreducible representations \(V \) the Casimir acts by a scalar \(c(V) \). Given representations \(V_1, V_2 \) in \(\mathcal{R}_n \), such that \(C_n \) acts by \(c(V_i) \cdot \text{id}_{V_i} \) on \(V_i \), and \(v \in V_1 \otimes V_2 \), then \(C_n(v) = (c(V_1) + c(V_2)) \cdot v + 2\Omega_n(v) \) for \(\Omega_n = \sum_{r,s=1}^{n} (-1)^{r+s} \varepsilon_{r,s} \in \mathfrak{g}_n \otimes \mathfrak{g}_n \).

Note \(F_i(?) = pr_{\Gamma - \alpha_i} \circ (\otimes X_{st}) \circ pr_{\Gamma} \), so \(F_i L(\lambda_{ox}) = pr_{\Gamma - \alpha_i}(L\lambda_{ox}) \otimes X_{st} \). By [BS12a], lemma 2.10, this is also the generalized \(i \)-eigenspace of \(\Omega_n \) on \(L(\lambda_{ox}) \otimes X_{st} \). Put \(c = c(L(\lambda_{aux})) + c(X_{st}) + 2i \). Then \(F_i L(\lambda_{ox}) \) is the generalized \(c \)-eigenspace of \(C_n \) on \(L(\lambda_{ox}) \otimes X_{st} \). Hence \(\text{DS}(F_i L(\lambda_{ox})) \) is the generalized \(c \)-eigenspace of \(C_{n-1} \) on \(\text{DS}(L(\lambda_{ox}) \otimes X_{st}) = \text{DS}(L(\lambda_{ox})) \otimes \text{DS}(X_{st}) = \text{DS}(L(\lambda_{ox})) \otimes X_{st,n-1} \). Observe that \(c(\text{DS}(V_1)) + c(\text{DS}(V_2)) = c(V_1) + c(V_2) \), since \(C_n \) induces \(C_{n-1} \) on \(\text{DS}(V_i) \).

By the main theorem 14.3 (using induction over degree of atypicality) \(\text{DS}(L(\lambda_{ox})) \) is in a unique block \(\bar{\Gamma} \). So \(F_i \text{DS}(L(\lambda_{ox})) = pr_{\bar{\Gamma} - \alpha_i} \circ (\otimes X_{st,n-1}) \circ pr_{\bar{\Gamma}} \text{DS}(L(\lambda_{ox})) = pr_{\bar{\Gamma} - \alpha_i}(\text{DS}(L(\lambda_{ox})) \otimes X_{st,n-1}) \), and again by [BS12a], lemma 2.10, this is the generalized \(c \)-eigenspace of the Casimir \(C_{n-1} \) on \(\text{DS}(L(\lambda_{ox})) \otimes X_{st,n-1} \). Thus \(\text{DS}(F_i L(\lambda_{ox})) \cong F_i \text{DS}(L(\lambda_{ox})) \). ⊓⊔

Weights, sectors, segments. For a \(k \)-fold atypical weight in \(X^+(n) \) its weight diagram has \(n-k \) vertices labelled with \(\times \) and \(n-k \) vertices labelled with \(\circ \). Let \(X^+_k(n) \) denote this set of weights. Define a map

\[
p : X^+_k(n) \rightarrow \{ \text{plots of rank } k \}
\]

as follows: For a weight in \(X^+(n) \) let \(j \) be the leftmost vertex labelled either by \(\times \) or \(\circ \). By removing this vertex and shifting all vertices at the positions \(\geq j \) one position to the left, we remove recursively all vertices labelled by \(\times \) or \(\circ \) from the given weight diagram. The remaining finite subset \(K \) of labels \(\vee \) has cardinality \(k \) and defines the support of the image plot.

The map \(p \) depends only on the positions of the labels \(\times \) and \(\circ \). All weights in \(X^+_k(n) \) with fixed positions of the labels \(\times \) and \(\circ \) correspond to the irreducible representations in a given block \(\Lambda \) of \(\mathcal{R}_n \). So for each block \(\Lambda \) we obtained a map

\[
p = p_{\Lambda} : \mathbb{Z} \rightarrow \mathbb{Z}.
\]
Let $X^+_\Lambda \subset X^+_\Lambda(n)$ denote the subset of weights in the fixed block Λ. Then restricted to the weights in X^+_Λ, the map $p = p_\Lambda$ induces a bijection

$$p_\Lambda : X^+_\Lambda \cong \{\text{plots of rank } r\}.$$

Each plot has defining segments and sectors, and by transfer with p_Λ this defines the segments and sectors of a given weight diagram in X^+_Λ.

Shifting \(\times\) and \(\circ\). We now quote from [BS12a], lemma 2.4

Lemma 17.5. Let $\lambda \in X^+(n)$ and $i \in \mathbb{Z}$. For symbols $x, y \in \{\circ, \wedge, \lor, \times\}$ we write λ_{xy} for the diagram obtained from λ with the ith and $(i+1)$th vertices relabeled by x and y, respectively.

(i) If $\lambda = \lambda_{\lor\times}$ then $E_i L(\lambda) \cong L(\lambda_{\times\lor})$. If $\lambda = \lambda_{\times\lor}$ then $F_i L(\lambda) \cong L(\lambda_{\lor\times})$.

(ii) If $\lambda = \lambda_{\land\times}$ then $E_i L(\lambda) \cong L(\lambda_{\times\land})$. If $\lambda = \lambda_{\times\land}$ then $F_i L(\lambda) \cong L(\lambda_{\land\times})$.

(iii) If $\lambda = \lambda_{\lor\circ}$ then $F_i L(\lambda) \cong L(\lambda_{\circ\lor})$. If $\lambda = \lambda_{\circ\lor}$ then $E_i L(\lambda) \cong L(\lambda_{\lor\circ})$.

(iv) If $\lambda = \lambda_{\land\circ}$ then $F_i L(\lambda) \cong L(\lambda_{\circ\land})$. If $\lambda = \lambda_{\circ\land}$ then $E_i L(\lambda) \cong L(\lambda_{\land\circ})$.

(v) If $\lambda = \lambda_{\times\circ}$ then: $F_i L(\lambda)$ has irreducible socle and head both isomorphic to $L(\lambda_{\lor\land})$, and all other composition factors are of the form $L(\mu)$ for $\mu \in \lambda$ such that $\mu = \mu_{\lor\land}$, $\mu = \mu_{\land\lor}$ or $\mu = \mu_{\lor\land}$. Likewise for $\lambda = \lambda_{\circ\times}$ and $E_i L(\lambda)$.

(ii) If $\lambda = \lambda_{\lor\land}$ then $F_i L(\lambda) \cong L(\lambda_{\circ\times})$.

For a pair of neighbouring vertices $(i,i+1)$ in the weight diagram of $\lambda = \lambda_{\lor\times}$, labelled by $(\lor\times)$, we get

$$E_i L(\lambda_{\lor\times}) = L(\lambda_{\times\lor})$$

from 17.5.1. In other words, the functor replaces the irreducible representation of weight $\lambda_{\times\lor}$ by the irreducible representation of weight $\lambda_{\lor\times}$, which has the same weight diagram as $\lambda_{\times\lor}$, except that the positions of \times and \lor are interchanged. Notice

$$p(\lambda_{\lor\times}) = p(\lambda_{\times\lor}) ,$$

but $L = L(\lambda_{\lor\times})$ and $L^{up} = L(\lambda_{\times\lor})$ lie in different blocks.

Lemma 17.6. Suppose for the representation $L = L(\lambda_{\lor\times})$ in \mathcal{R}_n^{n-r} the assertion of theorem 14.3 holds. Then it also holds for the representation $L^{up} = L(\lambda_{\times\lor})$.

Proof. By assumption we have a commutative diagram

\[
\begin{array}{ccc}
L & \xrightarrow{p} & \lambda \\
\downarrow & & \downarrow \\
DS(L) & \xrightarrow{p} & X'
\end{array}
\]
We have to show that we have the same diagram for L^{up} instead of L. Let S_ν denote the sectors of the plot $\lambda = p(\lambda_{\vee \times})$ and let S_j denote the sector containing the integer $p(i)$. Then $DS(L)$ is a direct sum of irreducible representations L_ν, whose sector structure either is obtained by replacing one of the sectors $S_\nu, \nu \neq j$ by ∂S_ν, and there is the unique irreducible summand L_j whose sector structure either is obtained by replacing the sectors S_j by ∂S_j. We would like to show that $DS(L^{up})$ can be similarly described in terms of the sector structure of L^{up}. The sectors of L^{up} literally coincide with the S_ν for $\nu \neq j$, and for $\nu = j$ the remaining sector of L^{up} is obtained from the sector S_j by transposing the positions at the labels $i, i+1$ (within this sector). Hence to show our claim, it remains to show that $DS(L^{up})$ is isomorphic to a direct sum of irreducible representations L^{up}_ν whose sector structures either are obtained by applying the functor E_i (i.e. replacing the positions of \vee and \times at the labels $i, i+1$). Indeed, the derivative ∂ for sectors commutes with the interchange of labels at $i, i+1$ in our situation (the sign rule is obviously preserved). Hence it remains to show

$$E_i(DS(L(\lambda_{\vee \times}))) = DS(E_i(L(\lambda_{\vee \times}))) .$$

But this assertion follows by an argument similarly to the one used for the proof of lemma 17.4. □

Likewise by lemma 17.5 one can show

Lemma 17.7. Suppose for the representation $L = L(\lambda_{\vee \circ})$ in R^{n-r}_n the assertion of theorem 14.3 holds. Then it also holds for the representation $L^{up} = L(\lambda_{\circ \vee})$.

Lemma 17.8. Suppose the main theorem holds for the representation $L = L(\lambda_{\times \circ})$ in R^{n-r}_n. Then it also holds for the representation $L^{up} = L(\lambda_{\circ \times})$.

Lemma 17.9. Suppose the main theorem holds for the representation $L = L(\lambda_{\circ \times})$ in R^{n-r}_n. Then it also holds for the representation $L^{up} = L(\lambda_{\times \circ})$.

Sign normalization. For prime plots of rank k associated to k-fold atypical representations in R_n we normalize the derivative of section 13 by

$$\lambda' = (-1)^{a+n-1} \partial(I, K)$$

where $I = [a,b]$ (i.e. the leftmost \vee is at a). The reason for this is as follows. The sign has to be normalized in such a way that for objects $X = L(\lambda)$ in the stable range of the given block we get $d(X) = X'$ for the map d of section 18. The leftmost \vee for the mixed tensor

$$L(\lambda_1, \ldots, \lambda_{n-i}, 0, \ldots, 0 ; 0, \ldots, 0, \lambda_{n+i+1}, \ldots, \lambda_{2n})$$

is at the vertex $-n+1$, hence this normalization. We have to check that this normalization is compatible with the sign rule of the main theorem. Assume first that we are in the maximally atypical R_n-case and consider a weight with associated prime plot λ. The parity of the weight λ is $p(\lambda) = \sum_{i=1}^{n} \lambda_i$. 59
Applying DS removes the \lor in the outer cup. The parity of the resulting weight in T_{n-1} is given by $p(\lambda') = \sum_{i=1}^{n-1} \lambda_i$, hence $p(\lambda) - p(\lambda') = \lambda_n$ and we get a shift by $n_i \equiv (-1)^{\lambda_n}$. The leftmost \lor is at the vertex $a = \lambda_n - n + 1$, hence $(-1)^{n+n-1} = (-1)^{\lambda_n}$ and the two shifts agree.

Let us now assume $at(L(\lambda)) = k < n$ and that the weight defines a prime plot of rank k. Here we have to use the normalized plot associated to the weight λ by the map p from section 17 in which case the two shifts agree again. We may pass to the maximally atypical case due to the lemmas 17.7, 17.8, 17.9 which allow us to shift all the circles and crosses sufficiently far to the right.

The sign factor $\epsilon(L(\lambda))$ attached to an irreducible representation of atypicality k was defined as

$$\epsilon(\lambda) = (-1)^{k(-n+k)}(-1)^{p(\phi(\lambda))}$$

where p is the parity in the maximal atypical block of $Gl(k|k)$. The reason for this choice is the following: We want that the categories $\mathcal{R}_n(\epsilon)$ (see section 14) are semisimple and that the modules $F^i L(\lambda \times \alpha)$ have Loewy structure (L, F, L) with $L \in \mathcal{R}_n(\pm \epsilon)$ and $F \in \mathcal{R}_n(\mp \epsilon)$. This determines the sign function up to a global ± 1 on each block. The sign function has to be normalized in such a way that a mixed tensor does not pick up a parity shift under DS according to section 16. Without the additional factor $(-1)^{k(n-k)}$ a mixed tensor would pick up a parity shift $[1]$ under DS. The sign $(-1)^{k(n-k)}$ is chosen in such a way that mixed tensors always have sign $+1$. Indeed under ϕ the mixed tensor $L(\lambda_1, \ldots, \lambda_{n-i}, 0, \ldots, 0 : 0, \ldots, 0, \lambda_{n+i+1}, \ldots, \lambda_{2n})$ maps to Ber^{-n+k}.

18. Inductive Control over DS

In the following we formulate axioms which later allow an inductive proof of theorem 14.3 using the proposition 18.3 below. First recall, that for $\epsilon \in \{\pm 1\}$ the full abelian subcategories $\mathcal{R}_n(\epsilon)$ of \mathcal{R}_n consist of all objects whose irreducible constituents X have sign $\epsilon_\alpha(X) = \epsilon$. We quote from section 14 the following

Proposition 18.1. The categories $\mathcal{R}_n(\epsilon)$ are semisimple abelian categories.

Definition. An object M in \mathcal{R}_n is called semi-pure (of sign ϵ), if its socle is in the category $\mathcal{R}_n(\epsilon)$. Every subobject of a semi-pure object is semi-pure. For semi-pure objects M the second layer of the lower Loewy series (i.e. the socle of $M/socle(M)$) is in $\mathcal{R}_n(-\epsilon)$ by the last proposition. Hence by induction, the i-th layer of the lower Loewy filtration is in $\mathcal{R}_n((-1)^{i-1}\epsilon)$. Hence all layers of the lower Loewy filtration are semi-pure. The last layer
top(M) of the lower Loewy series is semisimple. Hence top(M) is a quotient of the cosocle of M, the maximal semisimple quotient of M. Since cosocle(M) \cong cosocle(M)^* \cong socle(M^*) this easily implies

Lemma 18.2. For semi-pure *-selfdual indecomposable objects M in \(R_n \) of Loewy length \(\leq 3 \) the lower and the upper Loewy series coincide.

We now formulate certain axioms for an object \(\mathcal{A} \) of \(R_n \):

1. \(\mathcal{A} \in R_n \) is indecomposable with Loewy structure \((L, A, L)\).
2. \(\mathcal{A} \) is *-selfdual.
3. \(L \in R_n(\varepsilon) \) is irreducible and satisfies theorem 14.3 with \(A \in R_n(-\varepsilon) \).
4. \(\bar{A} := DS(\mathcal{A}) = \bar{A}^+ \oplus \Pi(\bar{A}^-) \) is the direct sum of \(\bar{A}^+ := H^+(\mathcal{A}) \) and \(\bar{A}^- := H^-(\mathcal{A}) \) such that \(\bar{A}^+ = \bigoplus_{\mu} \bar{A}_\mu \) and \(\bar{A}^- = \bigoplus_{\nu} \bar{A}_\nu \) with indecomposable objects \(\bar{A}_\mu \in R_{n-1} \) of Loewy structure \(\bar{A}_\mu = (\bar{L}_\mu, \bar{A}_\mu, \bar{L}_\mu) \) resp. \(\bar{A}_\nu \in R_{n-1} \) of Loewy structure \(\bar{A}_\nu = (\bar{L}_\nu, \bar{A}_\nu, \bar{L}_\nu) \) resp. \(\bar{A}_\mu \in R_{n-1} \) of Loewy structure \(\bar{A}_\mu = (\bar{L}_\mu, \bar{A}_\mu, \bar{L}_\mu) \) resp. \(\bar{A}_\nu \in R_{n-1} \) of Loewy structure \(\bar{A}_\nu = (\bar{L}_\nu, \bar{A}_\nu, \bar{L}_\nu) \).
5. All \(\bar{L}_\mu \) and \(\bar{L}_\nu \) are irreducible so that \(\bar{L}_\mu \in R_{n-1}(\varepsilon) \) and \(\bar{L}_\nu \in R_{n-1}(-\varepsilon) \); furthermore \(\bar{A}_\mu \in R_{n-1}(-\varepsilon) \) and \(\bar{A}_\nu \in R_{n-1}(\varepsilon) \).
6. For each \(\mu = \nu \) (resp. \(\mu = \bar{\nu} \)) there exist irreducible detecting objects
 \[
 A'_\mu \subseteq \bar{A}_\mu ,
 \]
 also contained in \(H^+(A) \) (resp. in \(H^-(A) \)), such that
 \[
 \text{Hom}_{R_{n-1}}(A'_\mu, H^+(L)) = 0 \quad \text{and} \quad \text{Hom}_{R_{n-1}}(A'_\mu, \bigoplus_{\rho \neq \nu} \bar{A}_\rho) = 0 .
 \]

Remark. For *-selfdual indecomposable objects as above the layers (graded pieces) of the upper and lower Loewy filtrations coincide, since otherwise proposition 18.1 would give a contradiction. In the situation above we assume that \(\mathcal{A} \) is *-selfdual of Loewy length 3 with socle \(\text{socle}(\mathcal{A}) = L \) and \(\text{cosocle}(\mathcal{A}) \cong \text{socle}(\mathcal{A})^* \cong \text{socle}(\mathcal{A})^* \cong L^* \cong L \) and middle layer \(A \).

Remark. For the later applications we notice that we will construct the detecting objects \(A'_\mu \) in \(H^+(A^{\text{down}}) \) (resp. \(H^-(A^{\text{down}}) \)) where \(A^{\text{down}} \) will be an accessible summand of \(A \). By induction we later will also know that these submodules \(A'_\mu \), therefore already satisfy theorem 14.3. Hence it suffices to check the properties \(A'_\mu \subseteq \bar{A}_\mu \) and \(A'_\mu \subset H^+(A) \), since these already imply by the main theorem (valid for summands of \(A^{\text{down}} \)) the stronger assertion made in the axiom telling whether \(A'_\mu \) appears in \(H^+(A) \) or \(H^-(A) \). Notice \(A'_\mu \subseteq \bar{A}_\mu \) and \(
A_\mu, \bar{A}_\mu \in R_{n-1}(\varepsilon) \) depending on \(\mu = \nu \) resp. \(\bar{\nu} \). On the other hand \(A^{\text{down}} \subseteq A \in R_n(-\varepsilon) \). Hence, if the main theorem is valid for \(A^{\text{down}} \), we get \(A'_\mu \in H^+(A) \) for \(\mu = \nu \) and \(A'_\mu \in H^-(A) \) for \(\mu = \bar{\nu} \).

Proposition 18.3. Under the assumptions on \(\mathcal{A} \) from above the \(H^\pm(A) \) will be semisimple objects in \(R_{n-1}(\varepsilon) \).

The ring homomorphism \(d \). As an element of the Grothendieck group \(K_0(R_{n-1}) \) we define for a module \(M \in R_n \)

\[
\text{d}(M) = H^+(M) - H^-(M) .
\]
Notice \(d\) is additive by lemma 2.1. Notice
\[
K_0(T_n) = K_0(\mathcal{R}_n) \oplus K_0(\mathcal{R}_n[1]) = K_0(\mathcal{R}_n) \otimes (\mathbb{Z} \oplus \mathbb{Z} \cdot \Pi).
\]
We have a commutative diagram
\[
\begin{array}{ccc}
K_0(T_n) & \xrightarrow{d} & K_0(\mathcal{R}_n) \\
DS \downarrow & & \downarrow d \\
K_0(T_{n-1}) & \xrightarrow{d} & K_0(\mathcal{R}_{n-1})
\end{array}
\]
where the horizontal maps are surjective ring homomorphisms defined by
\[
\Pi \mapsto -1.
\]
Since \(DS\) induces a ring homomorphism, it is easy to see that \(d\) defines a ring homomorphism.

The assertion of the last proposition implies that \(H^+(A)\) and \(H^-(A)\) have no common constituents in \(\mathcal{R}_{n-1}\) and that they are semisimple. Therefore \(d(A) = H^+(A) - H^-(A) \in K_0(\mathcal{R}_{n-1})\) uniquely determines \(H^\pm(A)\) up to an isomorphism. By the additivity of \(d\) and \(d(\hat{A}) = \hat{A}\) we get \(2d(L) + d(A) = 2\hat{L} + \hat{A}\) in \(K_0(\mathcal{R}_{n-1})\). Hence

Corollary 18.4. \(H^+(A) \in \mathcal{R}_{n-1}(\varepsilon)\) and \(H^-(A) \in \mathcal{R}_{n-1}(\varepsilon)\) are uniquely determined by the following formula in \(K_0(\mathcal{R}_{n-1})\)
\[
H^+(A) - H^-(A) = d(A) = \hat{A} + 2(\hat{L} - d(L)).
\]
We later apply this in situations where \(\hat{L} - d(L) = (-1)^{i+n}L^{aux}\) holds by lemma 19.1 and 19.4 and \(A' - \hat{A} = 2(-1)^{i+n}L^{aux}\) holds by lemma 19.3 and 19.7, for some object \(L^{aux}\). Here \(A'\) denotes the derivative of the class of \(A\), introduced in section 13, defining a homomorphism
\[
\iota: K_0(\mathcal{R}_n) \rightarrow K_0(\mathcal{R}_{n-1}).
\]
Hence the last corollary implies the following theorem, which repeatedly applied proves theorem 14.3 by induction.

Theorem 18.5. Under the axioms on \(\mathcal{A}\) from above \(d(A) = H^+(A) - H^-(A)\) is the derivative \(A'\) of \(A\).

Proof of the proposition 18.3. Step 1). Assumption (4) implies \(H^+(\hat{A}) = \hat{A}^+\) and \(H^-(\hat{A}) = \hat{A}^-\) in \(\mathcal{R}_{n-1}\).

Step 2). Axiom (1) on the Loewy structure of \(\mathcal{A}\) therefore gives exact hexagons in \(\mathcal{R}_{n-1}\) for \(K := Ker(\mathcal{A} \rightarrow L)\) using \(K/L \cong A\):
\[
\begin{array}{cccc}
H^+(K) & \xrightarrow{\delta} & \hat{A}^+ & \xrightarrow{H^+(p)} & H^+(L) \\
& & & & \\
H^-(L) & \xrightarrow{H^-(p)} & \hat{A}^- & \xrightarrow{H^-(K)} & H^-(K)
\end{array}
\]
\[
\begin{array}{cccc}
H^+(K) & \xrightarrow{H^+(j)} & H^+(A) & \xrightarrow{H^-(j)} & H^-(L) \\
& & & & \\
H^+(L) & \xrightarrow{H^-(K)} & H^-(A) & \xrightarrow{H^-(K)} & H^-(K)
\end{array}
\]
Step 3) Assumption (3),(4),(5) on the Loewy structure of the \tilde{A}_ν and $H^+(L)$ imply the following factorization property for \tilde{A}^+ (and then similarly also for \tilde{A}^-)

$$\tilde{A}^+ = \bigoplus_{\nu} \tilde{A}_\nu \xrightarrow{H^+(p)} H^+(L) \bigoplus_{\nu} \tilde{L}_\nu$$

Step 4) Let Σ be the set of all ν such that $p_\nu = 0$. (Similarly let $\overline{\Sigma}$ be the set of all $\overline{\nu}$ such that $p_{\overline{\nu}} = 0$). Then we obtain exact sequences

$$0 \to \bigoplus_{\nu \in \Sigma} \tilde{L}_\nu \to H^-(L) \xrightarrow{\delta} H^+(K) \to \bigoplus_{\nu \in \Sigma} \tilde{A}_\nu \bigoplus_{\nu \not\in \Sigma} \tilde{K}_\nu \to 0$$

Step 5) The detecting object $A'_\nu \to H^+(A)$ has trivial image in $H^-(L)$ by axiom (6), hence can be viewed as a quotient object of $H^+(K)$. Again by axiom (6) we can then view A'_ν as a nontrivial quotient object of $H^+(K)/(I + \delta(H^-(L)))$

where $I := H^+(j)(H^+(L))$ is the image of $H^+(L)$ in $H^+(K)$.

Step 6) The cosocle of $\bigoplus_{\nu \in \Sigma} \tilde{A}_\nu \bigoplus_{\nu \not\in \Sigma} \tilde{K}_\nu$ is $\bigoplus_{\nu \in \Sigma} \tilde{L}_\nu \bigoplus_{\nu \not\in \Sigma} \tilde{A}_\nu$ by assumption (4) on the Loewy structure of $\tilde{A}_\nu, \tilde{K}_\nu$.

Step 7) The simple quotient object A'_ν of $H^+(K)$ can be viewed as a nontrivial quotient object of the cosocle of $H^+(K)$ by step 5). We have an exact sequence

$$H^-(L)/\bigoplus_{\nu \not\in \Sigma} \tilde{L}_\nu \to \text{cosocle}(H^+(K)) \to \text{cosocle}(\bigoplus_{\nu \in \Sigma} \tilde{A}_\nu \bigoplus_{\nu \not\in \Sigma} \tilde{K}_\nu) \to 0$$

and we can view A'_ν as a nontrivial quotient object of

$$\text{cosocle}(\bigoplus_{\nu \in \Sigma} \tilde{A}_\nu \bigoplus_{\nu \not\in \Sigma} \tilde{K}_\nu) = \bigoplus_{\nu \in \Sigma} \tilde{L}_\nu \bigoplus_{\nu \not\in \Sigma} \tilde{A}_\nu$$

by step 5) and 6). Notice that we can consider A'_ν for arbitrary ν. For $\nu \in \Sigma$ the last assertion contradicts axiom (6):

$$\text{Hom}_{\mathcal{R}_{\mathbb{R}^{-1}}}(\bigoplus_{\mu \in \Sigma} \tilde{L}_\mu \bigoplus_{\mu \not\in \Sigma} \tilde{A}_\mu, A'_\nu) = 0.$$
So we obtain two exact sequences

\[0 \to \bigoplus_{\nu} \tilde{L}_{\nu} \to H^-(L) \to H^+(K) \to \bigoplus_{\nu} \tilde{K}_{\nu} \to 0 \]

\[0 \to \bigoplus_{\nu} \tilde{L}_{\nu} \to H^+(L) \to H^-(K) \to \bigoplus_{\nu} \tilde{K}_{\nu} \to 0 \]

Step 8) The last step 7) proves that

\[H^+(p) \text{ is injective on the cosocle } \bigoplus_{\nu} \tilde{L}_{\nu} \text{ of } H^+(A). \]

Let \(i : L \hookrightarrow A \) be the composition of \(j : L \hookrightarrow K \) and the inclusion \(K \hookrightarrow A \).

Then \(i : L \hookrightarrow A \) is the *-dual of the projection \(p : A \twoheadrightarrow L \) by the axiom (2). Hence by *-duality we get from the previous assertion on \(H^+(p) \) the following assertion

\[H^+(i) \text{ surjects onto the socle } \bigoplus_{\nu} \tilde{L}_{\nu} \text{ of } H^+(A). \]

Now considering

\[
\begin{CD}
K @>i>> A \\
\downarrow j @. @. @. \\
\Lambda
\end{CD}
\]

and

\[
\begin{CD}
\text{socle}(H^+(K)) @>>> \text{socle}(\Lambda^+) \cong \bigoplus_{\nu} \tilde{L}_{\nu}
\end{CD}
\]

we see that \(\bigoplus_{\nu} \tilde{L}_{\nu} \) can also be embedded into the semisimple \(I \) as a submodule \(\bigoplus_{\nu} \tilde{L}_{\nu} \hookrightarrow I \).

Step 9) Recall the following diagram

\[
\begin{CD}
\bigoplus_{\nu} \tilde{L}_{\nu} @>>> H^-(L) @>\delta>> H^+(K) @>\pi>> \bigoplus_{\nu} \tilde{K}_{\nu} @>>> 0
\end{CD}
\]

Since \(I \) is in \(\mathcal{R}_{n-1}(\varepsilon) \) and \(H^-(L) \in \mathcal{R}_{n-1}(-\varepsilon) \) by our axioms, we also have

\[[\delta(H^-(L)) \cap I = \{0\}]. \]

Hence the composite of \(\pi \) and the inclusion \(I \hookrightarrow H^+(K) \) maps the semisimple module \(I \) injectively into the socle of \(\bigoplus_{\nu} \tilde{K}_{\nu} \). Since \(\text{socle}(\bigoplus_{\nu} \tilde{K}_{\nu}) = \bigoplus_{\nu} \tilde{L}_{\nu} \) and since \(I \) contains \(\bigoplus_{\nu} \tilde{L}_{\nu} \) as a submodule, this implies that

\[\pi : I \sim \text{socle}(\bigoplus_{\nu} \tilde{K}_{\nu}) \cong \bigoplus_{\nu} \tilde{L}_{\nu} \]

is an isomorphism. Notice \((\bigoplus_{\nu} \tilde{K}_{\nu})/\text{socle}(\bigoplus_{\nu} \tilde{K}_{\nu}) \cong \bigoplus_{\nu} \tilde{A}_{\nu} \).

Step 10) The last isomorphism of step 9) gives the exact sequence

\[0 \to \bigoplus_{\nu} \tilde{L}_{\nu} \to H^-(L) \to \left(H^+(K)/I \right) \to \bigoplus_{\nu} \tilde{A}_{\nu} \to 0. \]
By our assumptions $H^-(L)$ is in $\mathcal{R}_{n-1}(-\varepsilon)$, and hence semisimple. Furthermore all \tilde{A}_i, are semisimple and contained in $\mathcal{R}_{n-1}(-\varepsilon)$. Hence by proposition 18.1 $H^+(K)/I$ is semisimple and contained in $\mathcal{R}_{n-1}(-\varepsilon)$.

Step 11). By step 10) and the exact hexagon

$$
\begin{array}{ccc}
H^+(K) & \longrightarrow & H^+(A) & \longrightarrow & H^-(L) \\
\downarrow & & & & \downarrow \\
H^+(I) & \longrightarrow & H^+(L) & \longrightarrow & H^+(K)
\end{array}
$$

$H^+(A)$ defines an extension of the semisimple module $H^+(K)/I$ by a submodule of $H^-(L)$

$$0 \rightarrow H^+(K)/I \rightarrow H^+(A) \rightarrow \text{Ker} \left(H^-(L) \rightarrow H^-(K) \right) \rightarrow 0.
$$

Since $H^+(K)/I$ and $\text{Ker}(H^-(L) \rightarrow H^-(K))$ are both in $\mathcal{R}_{n-1}(-\varepsilon)$, the proposition 18.1 implies that

$$H^+(A) \cong \left(H^+(K)/I \right) \oplus \text{Ker} \left(H^-(j) : H^-(L) \rightarrow H^-(K) \right)
$$

is semisimple and contained in $\mathcal{R}_{n-1}(-\varepsilon)$. The first summand has been computed above. Similarly then

$$H^-(A) \cong \left(H^-(K)/I \right) \oplus \text{Ker} \left(H^+(j) : H^+(L) \rightarrow H^+(K) \right)
$$

is semisimple and contained in $\mathcal{R}_{n-1}(\varepsilon)$. □

Example. Recall the indecomposable $*$-selfdual objects A_i in \mathcal{R}_n, $n \geq 2$ for $i = 1, 2, \ldots$ with Loewy structure (L, A, L) where $L = S^{i-1}$ and

$$A = S^i \oplus S^{i-2} \oplus \delta^i_n \cdot \text{Ber}_{n-1}.
$$

Concerning the notations: δ^i_n denotes Kronecker’s delta and $S^{-1} = 0$. The conditions (1)-(5) are satisfied for $\varepsilon = (-1)^{i-1}$ and $A' = S^{i-2}$. Indeed condition (5) follows, since by induction on i one can already assume that $H^-(L) = H^-(S^{i-1})$ is Ber^{-1} or zero and that $H^+(S^{i-2})$ contains S^{i-2}. Then by induction on i the computation of $H^\pm(A)$ in terms of $A, \tilde{L}, H^\pm(L)$ from above easily gives the following result

Proposition 18.6. Suppose $n \geq 2$. Then for the functor $DS : \mathcal{R}_n \rightarrow T_{n-1}$ of Duflo-Serganova we obtain $DS(\text{Ber}_n) = \Pi(\text{Ber}_{n-1})$ and

1. $DS(S^i) = S^i$ for $i < n - 1$,
2. $DS(S^i) = S^i \oplus \Pi^{n-1-i}(\text{Ber}^{-1})$ for $i \geq n - 1$.
19. Moves

Let \(L = (I, K) \) for \(I = [a, b] \) be a segment with sectors \(S_1, \ldots, S_k \) from left to right. Suppose \(S_j = [i, i + 1] \) is a sector of rank 1. Then the segment may be visualized as

\[
L = (S_1 \cdots S_{j-1} [\sqcup_i, \sqcup_{i+1}] S_{j+1} \cdots S_k).
\]

We define the upward move of the segment \(L \) as the plot defined by the two segments with intervals \([a, i - 1]\) and \([i + 1, b + 1]\)

\[
L^{\text{up}} = (S_1 \cdots S_{j-1}) \sqcup_i (S_{j+1} \cdots S_k).
\]

Similarly, we define the downward move of the segment \(L \) as the plot defined by the two segments with intervals \([a - 1, i]\) and \([i + 2, b]\)

\[
L^{\text{down}} = (S_1 \cdots S_{j-1}) \sqcup_{i+1} (S_{j+1} \cdots S_k).
\]

Furthermore for \(r \neq j \) we define additional \(r \)-th internal lower resp. upper downward moves \(L_{r}^{\text{down}} \) by the plots associated\(^1\) to the single segments

\[
(S_1 \cdots S_{r-1} \int (S_r \int (S_{r+1} \cdots S_{j-1})) \ S_{j+1} \cdots S_k)
\]

for each \(1 \leq r \leq j - 1 \) respectively

\[
(S_1 \cdots S_{j-1} \int (S_{j+1} \cdots S_{r-1}) \ S_{r+1} \cdots S_k)
\]

for each \(j + 1 \leq r \leq k \). Explaining the notion ’internal’, notice that the segments defined by these internal downward moves have the same underlying interval \(I = [a, b] \) as the segment \(L \) we started from. We remark that the last formulas do remind on partial integration. Formally by setting \(L_{r}^{\text{down}} := L_{\nu}^{\text{down}} \) for \(r = j \), we altogether obtain \(k \) downward moves and one upward move. All these moves preserve the rank.

The plot \(L \) has a sector \([i, i+1]\) of rank 1. The auxiliary plot \(L^{\text{aux}} \) attached to \(L \) (and \([i, i+1]\)) is the plot of rank \(r(L) - 1 \) defined by two segments with intervals \([a, i - 1]\) and \([i + 2, b]\)

\[
L^{\text{aux}} = (S_1 \cdots S_{j-1}) \sqcup_i \sqcup_{i+1} (S_{j+1} \cdots S_k)
\]

and we also consider

\[
L^{\times_0} = (S_1 \cdots S_{j-1}) \times_i c_{i+1} (S_{j+1} \cdots S_k).
\]

Algorithm I (lowering sectors). For a plot with \(k \) sectors \(S_\nu \) with ranks \(r_\nu = r(S_\nu) \geq 0 \) and the distances \(d_\nu \geq 0 \) for \(\nu = 1, \ldots, k \) (from left to right) we formally define \(r_{k+1} = r_{k+1} = \ldots = 0 \) and \(d_k = d_k = \ldots = 0 \). We can then compare different plots with respect to the lexicographic ordering of the sequences

\[
(-r_1, d_1, -r_2, d_2, \ldots).
\]

\(^1\)For \(r = j - 1 \) or \(r = j + 1 \) the inner integral over the empty sector is understood to give the sector \((\{i - 1, i\}, \{i - 1\})\) respectively \((\{i + 1, i + 2\}, \{i + 1\})\).
Within the set of plots of fixed rank say n, the minimum with respect to this ordering is attained if $r_1 = n$, i.e. if there exists only one sector.

Algorithm I will be applied to given plots, say $\lambda_{\wedge\vee}$, with more than one segment. The upshot is: In this situation one can always find a lexicographic smaller plot L so that the given plot is of the form $\lambda_{\wedge\vee} = L^\text{up}$ and such that L and all plots obtained by the moves $L^{-\text{down}}_r$ of L are strictly smaller than the starting plot L^up. Algorithm I is used for induction arguments to reduce certain statements (e.g. theorem 14.3) to the case of plots with 1 segment.

Definition of L. For a given plots say $\lambda_{\wedge\vee}$, with more than one segment, $d_r > 0$ holds for some integer ν. So choose j so that the distances $\text{dist}(S_1, S_2) = ... = \text{dist}(S_{j-2}, S_{j-1}) = 0$ for the sectors $S_1, ..., S_{j-1}$ of $\lambda_{\wedge\vee}$ and $\text{dist}(S_{j-2}, j-1) > 0$. We temporarily write S for the next sector S of $\lambda_{\wedge\vee}$. Interpret $S = \{S_{j+1}, ..., S_k\}$ for some sectors $S_j, ..., S_k$. This is possible, but keep in mind that $S_j, ..., S_k$ are not sectors of $\lambda_{\wedge\vee}$ but will be sectors of L, and this explains the notation. Indeed, for $i + 1 = \min(S)$, we define L to be

$$L = (S_1 \cdots S_{j-1}) \cdots d_{j-1} \cdots (S_j S_{j+1} \cdots S_k) \cdots d_k \cdots$$

with S_j of rank 1 at the positions $[i, i+1]$. To simplify notations we do not write further sectors to the right, since the sectors of $\lambda_{\wedge\vee}$ to the right of S will not play an essential role in the following. Indeed, they will appear verbatim in the sector structure of L up to some distance shifts at the following positions

$$\text{dist}(S_{j-1}, S) = 1 + d_{j-1}, \quad \text{dist}(S, \text{next sector}) = d_k - 1.$$

Concerning the lexicographic ordering

$$\text{dist}(S_{j-1}, S_j) = d_{j-1} < \text{dist}(S_{j-1}, S) = 1 + d_{j-1}$$

shows that L is smaller than $L^\text{up} = \lambda_{\wedge\vee}$. We leave it to the reader to check that also all $L_j^{-\text{down}}$ are smaller than $L^\text{up} = \lambda_{\wedge\vee}$. Notice, here we apply the moves as in the preceding paragraph with the notable exceptions that

1. There may be further sectors beyond S_k. These are just appended, and do not define new moves.

2. If $d_{j-1} \geq 1$ the sector S_{j-1} has distance > 0 to the sector S_j and therefore does not define downward moves, so that only the downward moves $L_r^{-\text{down}}$ for $r = j, ..., k$ are relevant.

In the later discussion we always display the more complicated case where $d_{j-1} = 0$ (without further mentioning). For the case $d_{j-1} > 0$ one can simply ‘omit’ $S_1, ..., S_{j-1}$, by just appending them in the same way as we agreed to ‘omit’ sectors to the right of S_k.

Construction of detecting objects for algorithm I. Fix $L = L(\lambda_{\wedge\vee})$ with the sector $[i, i + 1]$. Then L is determined by its sectors. For the construction of detecting objects we are only interested in down moves. In the following it therefore suffices only to keep track of the sectors below $[i, i + 1]$ in the segment containing the sector $[i, i + 1]$. Notice that L is a union of the sector
\[[i, i+1] \text{ and, say } s, \text{ other sectors } S_\nu. \] Let \(S_1, \ldots, S_{j-1} \) denote the sectors below \([i, i+1]\) in the segment of \([i, i+1]\). Hence \(L \) is

\[\sqcup S_1 \cdots S_{j-1} \sqcup [\sqcup i, \sqcup i+1] \]

and the union of other disjoint sectors \(S_\nu \) for \(j + 1 \leq \nu \leq s \). Then \(L^{\times 0} \) is

\[\sqcup S_1 \cdots S_{j-1} \sqcup [\sqcup i, \sqcup i+1] \]

and the union of other disjoint sectors \(S_\nu \) for \(j + 1 \leq \nu \leq s \). We define \(A = L^{\times 0} \) and \(L^{\times 0} \) is self-dual of Loewy length \(3 \) with socle and cosocle \(L \). The term \(A \) in the middle is semisimple and the weights of its irreducible summands are given by \(L^{up} \) and the \(k \) down moves of \(L \).

To determine \(\tilde{A} = DS(\tilde{A}) \) we use induction (!) and Lemma 17.4. This implies that \(\tilde{A} \) is the direct sum of \(\tilde{A}_\nu [m_\nu] \) for indecomposable objects \(\tilde{A}_\nu \) in \(R_{n-1} \), which uniquely correspond to the irreducible summands of \(DS(L^{\times 0}) \). However these correspond to the irreducible summands \(\tilde{L}_\mu \) of \(DS(L^{aux}) \). Again by induction (now induction on the degree of atypicity !) the summands of \(DS(L^{\times 0}) \) respectively \(DS(L^{aux}) \) are already known to be given by the derivative of \(\lambda^{aux} \). These facts imply the next

Lemma 19.1. We have

\[\tilde{A} = \bigoplus_{\mu=1}^{s} \tilde{A}_\mu [m_\mu] \]

where each \(\tilde{A}_\mu \in R_{n-1} \) has Loewy length \(3 \) with irreducible socle and cosocle \(\tilde{L}_\mu \) defined by the \(s \) plots for \(\mu = 1, \ldots, s \)

\[\sqcup [\sqcup i, \sqcup i+1] \cup S'_\mu \cup \bigcup_{\nu \neq \mu} S_\nu. \]

In particular, for \(m^{aux} \) (which is congruent to \(i + n - 1 \) modulo 2), we get

\[DS(L) \cong L^{aux} [m^{aux}] \oplus \bigoplus_{\mu=1}^{s} \tilde{L}_\mu [m_\mu]. \]

Hence in \(K_0(R_{n-1}) \)

\[d(L) = L' = \tilde{L} + (-1)^{i+n-1} \cdot L^{aux}. \]

Now each \(\tilde{A}_\mu \) is determined from \(\tilde{L}_\mu \) by applying certain upward and the downward moves starting from \(\tilde{L}_\mu \).

We indicate that the segment of \(\tilde{L}_\mu \) containing \(\sqcup [\sqcup i, \sqcup i+1] \) has less than \(r \) sectors, if \(1 \leq \mu \leq j - 1 \). Indeed the union of the sectors of \(\tilde{L}_\mu \) in the segment of \([\sqcup i, \sqcup i+1] \) is

\[\ldots \sqcup S_{\mu+1} \cdots S_{j-1} [\sqcup i, \sqcup i+1] S_{j+1} \cdots S_r \sqcup \ldots \]

\[^2 \text{assuming that theorem 14.3 holds for } L, \text{ say by induction assumption.} \]
for $\mu \leq j - 2$ and by $[\bowtie_{i=1}^{\ell+1}]S_{j+1} \cdots S_{r} \cdots$ for $\mu = j - 1$. We are now able to define the detecting objects $A'_\mu \subseteq \tilde{A}_\mu$ for $\mu = 1, \ldots, s$ by $\tilde{L}^{\downarrow}_{\mu}$, given by induction as follows

1. $(f(S_1 \cdots S_{j-1})) \bowtie_{i=1}^{\mu+1} \bigcup_{j-1 < \epsilon \in \ell} S_\epsilon$ for $\mu \notin \{1, \ldots, j - 1\}$,
2. $S_1 \cdots S'_\mu(f(S_\mu+1 \cdots S_{j-1})) \bowtie_{i=1}^{\mu+1} S_{j+1} \cdots S_k \cup \bigcup_{k < \ell} S_\epsilon$ for $\mu \leq j - 2$,
3. $S_1 \cdots S_{j-2} \bowtie S'_{j-1}(\bowtie_{i=1}^{\mu}) \bowtie_{i=1}^{\mu+1} S_{j+1} \cdots S_k \cup \bigcup_{k < \ell} S_\epsilon$ for $\mu = j - 1$.

It is therefore clear that the detecting object is different from all objects in $\text{DS}(L)$, which by induction (!) are known to be given by the derivative of L. Furthermore $A'_\mu \subseteq \tilde{A}_\mu$. It requires some easy but tedious inspection to see that A'_μ is not contained in \tilde{A}_ν for $\nu \neq \mu$. Hence to see that the A'_μ are detecting objects, it suffices to show the next

Lemma 19.2. The objects A'_μ are contained in $\text{DS}(A)$. If L^{\uparrow} is stable, then L is stable and $A'_\mu \subset H^{+}(A) \oplus H^{-}(A)$ for all μ.

Proof. Recall

$$A \cong \text{A}^{up} \oplus \text{A}^{down}$$

for $\text{A}^{up} := L^{up}$ and $\text{A}^{down} := \bigoplus_{i=1}^{k} L^{\downarrow}_{i}$.

We do not know how to compute $\text{DS}(\text{A}^{up})$. However by induction we already know that the derivative computes $\text{DS}(\text{A}^{down})$. In $\text{A}^{down} \subset A$ we have the following objects A_μ

1. $(f(S_1 \cdots S_{j-1})) \bowtie_{i=1}^{\mu+1} \bigcup_{j-1 < \epsilon} S_\epsilon$ for $\mu \notin \{1, \ldots, j - 1\}$,
2. $S_1 \cdots f(S'_\mu(f(S_\mu+1 \cdots S_{j-1})) S_{j+1} \cdots S_k \cup \bigcup_{k < \ell} S_\epsilon$ for $\mu \leq j - 2$,
3. $S_1 \cdots S_{j-2} \bowtie S'_{j-1}(\bowtie_{i=1}^{\mu}) \bowtie_{i=1}^{\mu+1} S_{j+1} \cdots S_k \cup \bigcup_{k < \ell} S_\epsilon$ for $\mu = j - 1$.

Their derivative $\text{DS}(A_\mu)$ contains

1. $(f(S_1 \cdots S_{j-1}) \bowtie_{i=1}^{\mu+1} (S'_\mu) \bowtie_{i=1}^{\mu+1} S_\epsilon$ for $\mu \notin \{1, \ldots, j - 1\}$,
2. $S_1 \cdots S'_\mu(f(S_\mu+1 \cdots S_{j-1})) \bowtie_{i=1}^{\mu+1} S_{j+1} \cdots S_k \cup \bigcup_{k < \ell} S_\epsilon$ for $\mu \leq j - 2$,
3. $S_1 \cdots S_{j-2} \bowtie S'_{j-1}(\bowtie_{i=1}^{\mu}) \bowtie_{i=1}^{\mu+1} S_{j+1} \cdots S_k \cup \bigcup_{k < \ell} S_\epsilon$ for $\mu = j - 1$.

This proves $A'_\mu \subset \text{DS}(A_\mu)$ and hence our claim. □

Commutation rule for algorithm I. Now we discuss how moves commute with differentiation for a given L as above. It is rather obvious from the definitions that for this we can restrict ourselves to the situation where L is the single segment

$$L = (S_1 \cdots S_{j-1} \bowtie_i \bowtie_{i+1} S_{j+1} \cdots S_k)$$

So let us assume this for simplicity of exposition.

1) **Computation of \tilde{A}.** Taking first the derivative we obtain L^{aux} and $(k-1)$ plots \tilde{L}_μ of the form

$$S_1 \cdots S'_\mu(S_\mu+1 \cdots S_{j-1} \bowtie_i \bowtie_{i+1} S_{j+1} \cdots S_k)$$

(lower group where $\mu \leq j - 1$) respectively

$$(S_1 \cdots S_{j-1} \bowtie_i \bowtie_{i+1} S_{j+1} \cdots S_{j-1}) S'_\mu \cdots S_k$$
(upper group where $\mu \geq j + 1$). The sign in the Grothendieck group attached to these is $(-1)^{\nu+n-1} = (-1)^{i+n-1}$ for $S_{\mu} = [a_{\mu}, b_{\mu}]$.

Notice that L_{aux} does not define any moves. The segment containing $\boxplus \oplus_{i+1}$ (indicated by the brackets) defines the possible moves of each of these derived plots \bar{L}_{μ}. These are e.g. in the lower group case the upward move

\[S_1 \cdots S_\mu' S_{\mu+1} \cdots S_{j-1} \oplus_i \int (S_{j+1} \cdots S_k) \]

and the downward move

\[S_1 \cdots S_\mu' \int (S_{\mu+1} \cdots S_{j-1}) \oplus_{i+1} S_{j+1} \cdots S_k \]

and the internal upper/lower downward moves

\[S_1 \cdots S_\mu' S_{\mu+1} \cdots S_{j-1} \int (\int (S_{j+1} \cdots S_{r-1}) S'_r S_{r+1} \cdots S_k) \]

\[S_1 \cdots S_\mu' S_{\mu+1} \cdots S_{r-1} \int (S'_r \int (S_{r+1} \cdots S_{j-1})) S_{j+1} \cdots S_k \]

2) Computation of the derivative A'. Now we revert the situation and first consider the moves of L, the upward and downward moves

\[L_{\text{up}} = S_1 \cdots S_{j-1} \oplus_i \int (S_{j+1} \cdots S_k), \]

\[L_{\text{down}} = \int (S_1 \cdots S_{j-1}) \oplus_{i+1} S_{j+1} \cdots S_k, \]

and the internal downward moves (for lower sectors)

\[S_1 \cdots S_{r-1} \int (S'_r \int (S_{r+1} \cdots S_{j-1})) S_{j+1} \cdots S_k \]

respectively (for upper sectors)

\[S_1 \cdots S_{j-1} \int (\int (S_{j+1} \cdots S_{r-1}) S'_r) S_{r+1} \cdots S_k. \]

If we differentiate L_{up}, we get the plots of the form

\[S_1 \cdots S_\mu' \cdot S_{j-1} \oplus_i \int (S_{j+1} \cdots S_k) \]

with sign $(-1)^{\nu+n-1} = (-1)^{i+n-1}$ and similarly

\[L_{\text{aux}} = S_1 \cdots S_{j-1} \oplus_i \oplus_{i+1} S_{j+1} \cdots S_k \]

with sign $(-1)^{i+n}$. If we differentiate L_{down}, we get $\int (S_1 \cdots S_{j-1}) \oplus_{i+1} S_{j+1} \cdots S'_\mu \cdots S_k$ and similarly

\[L_{\text{aux}} = S_1 \cdots S_{j-1} \oplus_i \oplus_{i+1} S_{j+1} \cdots S_k \]

with sign $(-1)^{i+n}$. If we derive the plots defined by the internal moves (lower group, where we derive at $\nu \leq j - 1$) we get the plots of the form

\[S_1 \cdots S_{r-1} S'_r \int (S_{r+1} \cdots S_{j-1}) \oplus_{i+1} S_{j+1} \cdots S_k \]

with sign $(-1)^{\nu+n-1} = (-1)^{i+n-1}$ together with

\[S_1 \cdots S_\mu' S_{\mu+1} \cdots S_{j-1} \int (\int (S_{j+1} \cdots S_{r-1}) S'_r) S_{r+1} \cdots S_k \]
\[
S_1 \cdots S'_\mu S_{\mu+1} \cdots S_{r-1} \int (S'_r \int (S_{r+1} \cdots S_{j-1})) S_{j+1} \cdots S_k
\]
of sign \((-1)^{i+n-1}\) respectively similar terms for the upper group, where we
differentiate at \(\mu \geq j + 1\). Altogether, besides two additional signed plots of
the form \(L^\text{aux}\), these give precisely the plots obtained before. This implies

Lemma 19.3. The differential of the moves of \(L\) gives the term \(2 \cdot L^\text{aux}\) plus the moves of the differential of \(L\), i.e.

\[
A' = \tilde{A} + 2(-1)^{i+n} \cdot L^\text{aux}
\]
holds in \(K_0(\mathcal{R}_{n-1})\).

Algorithm II (melting sectors). Suppose \(\lambda_\wedge \vee\) is a plot with a single segment and at least two sectors. \([a, i]\) and point \(i\) respectively left boundary point \(i + 1\) of the segment defining the plot \(\lambda_\wedge \vee\). In algorithm II we melt the first two adjacent sectors \([a, i]\) and \([i+1, b]\) together into a single sector \(S^\text{melt}\) to obtain a new plot \(\lambda_{\wedge \vee}\) so that

\[
supp(\lambda_\wedge \vee) - \{i+1\} = supp(\lambda_{\wedge \vee}) - \{i\}.
\]
This new plot \(\lambda_\wedge \vee\) again has a unique segment with the same underlying interval as the plot \(\lambda_\wedge \vee\). But the sector structure is different, since the number of sectors decreases by one.

Notice, opposed to algorithm I, the interval \([i, i+1]\) does not define a sector of the original plot \(\lambda_\wedge \vee\). However \([i, i+1]\) defines a sector of the ’internal’ plot

\[
L_{\text{int}} := \partial(S^\text{melt}),
\]
with sector structure say

\[
L_{\text{int}} = S_1 \cdots S_{j-1}[\square_i \square_{i+1}]S_{j+1} \cdots S_k,
\]
so that

\[
\lambda_{\wedge \vee} = (\int L_{\text{int}}) \text{ other sectors} \quad , \quad \lambda_{\times 0} := (\int (L_{\text{int}})^{\times 0}) \text{ other sectors}
\]
We similarly define for \(r = 1, \ldots, k\) and \(r \neq j\) the plots

\[
\lambda_r^{\text{down}} := (\int (L_{\text{int}})^{\text{down}}) \text{ other sectors}.
\]
Finally \(\lambda_{\wedge \vee} = (\int (L_{\text{int}})^{\text{up}})\text{other sectors} ,\) which is the plot we started from. Since \(\int (L_{\text{int}})^{\text{up}}\) has two sectors, all the plots \(\lambda_r^{\text{down}}\) for \(1 \leq r \neq j \leq k\) have less sectors than the plot \(\lambda_{\wedge \vee}\). Indeed, the plots \(\int (L_{\text{int}})^{\text{down}}\) are irreducible as an easy consequence of the integral criterion.

Construction of detecting objects for algorithm II. Fixing \(\lambda_\wedge \vee\) as above,

\[
\mathcal{A} = F_i(L(\lambda_{\times 0})) = (L, A, L)
\]
defines a *-self dual object in \(\mathcal{R}_n\) of Loewy length 3 with socle and cosocle \(L\), where

\[
L = L(\lambda_{\wedge \vee})
\]
and \(A = A^{up} \oplus A^{down} \) for \(A^{up} = L(\lambda_{\wedge \vee}) \) and \(A^{down} = \bigoplus_{r \neq j} L(\lambda_r^{down}) \).

To determine \(DS(\tilde{\Lambda}) = \bigoplus_{\mu} \tilde{\Lambda}_\mu[m_\mu] \) we use induction (!) and lemma 17.4. This implies that \(\tilde{\Lambda} \) is the direct sum of \(\tilde{\Lambda}_\mu[m_\mu] \) for indecomposable objects \(\tilde{\Lambda}_\mu \) in \(R_{n-1} \), which uniquely correspond to the irreducible summands \(\tilde{L}_\mu \) of \(DS(L^{\times \circ}) \). But by induction (now induction on the degree of atypicity !) the irreducible summands of \(DS(L^{\times \circ}) \), that determine the irreducible modules \(\tilde{L}_\mu \), can be computed by the derivative of \(\lambda_{aux} \). Since in the present situation replacing \(i, i+1 \) by \(x, o \) commutes with the derivative, these facts imply the next

Lemma 19.4. If \(L \) has \(s \) sectors, for the melting algorithm we have

\[
\tilde{\Lambda} = \bigoplus_{\mu=1}^{s} \tilde{\Lambda}_\mu[m_\mu]
\]

where each \(\tilde{\Lambda}_\mu \in R_{n-1} \) has Loewy length 3 of Loewy structure \((\tilde{L}_\mu, \tilde{A}_\mu, \tilde{L}_\mu)\) with irreducible socle and cosocle \(\tilde{L}_\mu \). For the various summands, for varying \(\mu \), up to the shift \(m_\mu \), the socles \(L_\mu \) are defined by the \(s-1 \) different plots arising from the derivative

\[
(\int L_{int}) \text{ (other sectors)'}
\]

together with the plot

\[
L_{int} \text{ (other sectors)'.}
\]

In particular\(^3\), if \(L \) has \(s \) sectors, \(DS(L) \cong \bigoplus_{\mu=1}^{s} \tilde{L}_\mu[m_\mu] \). This gives in \(K_0(R_{n-1}) \) the formula

\[
d(L) = L' = \tilde{L}.
\]

Corollary 19.5. In the situation of the last lemma the morphisms

\[
H^i(p) : H^i(\tilde{\Lambda}) \to H^i(L)
\]

are surjective for all \(i \in \mathbb{Z} \).

Proof. We already know that \(H^\pm(p) : H^\pm(\tilde{\Lambda}) \to H^\pm(L) \) induces injective maps on the cosocle of \(H^\pm(\tilde{\Lambda}) \). By lemma 19.4 therefore these induced maps are bijections between the cosocle of \(H^\pm(\tilde{\Lambda}) \) and \(H^\pm(L) \). In particular the morphisms \(H^\pm(p) : H^\pm(\tilde{\Lambda}) \to H^\pm(L) \) are surjective. This implies the assertion. \(\square \)

This being said note that \(2d(L) + d(A) = d(\tilde{\Lambda}) = d(\tilde{A}) = 2\tilde{L} + \tilde{A} \) together with the assertion \(d(L) = \tilde{L} \) from the lemma 19.4 above implies \(d(A) = \tilde{A} \). Any \(\tilde{L}_\mu \) defines a nontrivial term \(\tilde{A}_\mu \). We claim that any irreducible summand \(\tilde{A}'_\mu \subset \tilde{A}_\mu \) is a detecting object now. Indeed any summand \(\tilde{A}'_\mu \) of \(\tilde{A} \) appears in \(H^+(A) \) by the formula \(d(A) = H^+(A) - H^-(A) = \tilde{A} \). Checking the possible moves that define the constituents of \(\tilde{A}_\mu \) from \(\tilde{L}_\mu \) it is clear that \(\tilde{A}'_\mu \) is not a constituent of any \(\tilde{A}_\nu \) for \(\nu \neq \mu \). Hence

\(^3\)assuming that theorem 14.3 holds for \(L \) and \(L^{\times \circ} \), say by induction assumption.
Lemma 19.6. Detecting objects A'_p exist for algorithm II.

Commutation rule for algorithm II. Now we discuss how moves commute with differentiation for a given L as above. It is rather obvious from the definitions that we can restrict ourselves for this to the situation where the segment of plot λ_{Λ^A} has only two sectors. In other words we claim that we can assume without restriction of generality that the terms ‘other factors’ does not appear, so that $s = 2$ holds in the last lemma 19.4. The reason for this is, that moves for L_{int} (others sectors) are the same as for $\int L_{\text{int}}$ (others sectors)', since by [BS10a] the relevant moves are moves 'within' the sector $\int L_{\text{int}}$. Hence for the proof of the next lemma we can assume that $L = \int L_{\text{int}}$ has a unique sector so that $d(L) = \tilde{L} = L' = L_{\text{int}}$, which has a single segment.

Lemma 19.7. The differential of the moves of L gives the moves of the differential of L, i.e.

$$A' = \tilde{A}$$

holds in $K_0(R_{n-1})$.

Proof. Without restriction of generality we can assume that the plot λ_{Λ^A}, we are starting with, is a segment with only two sectors, so that $L = \int L_{\text{int}}$. Let the single segment of L_{int} have the form

$$S_1 \cdots S_{j-1}[\boxplus i, i+1]S_{j+1} \cdots S_k$$

with k sectors $S_1, ..., S_k$ where the underlying interval of S_j is $[i, i+1]$.

1) Computation of \tilde{A}. According to [BS10a], [Wei10] the constituents of $\tilde{A} = \bigoplus_{\mu=1}^s \tilde{k}_\mu[m_\mu]$ are obtained from the socle module \tilde{L}_μ of \tilde{k}_μ by moves. The last lemma shows that $\tilde{L} = \bigoplus_\mu \tilde{L}_\mu$ is the derivative $L' = (\int L_{\text{int}})' = L_{\text{int}}$ of L up to a shift determined by the sign factor $(-1)^{a+n-1}$. Since $s = 1$ by assumption, $\tilde{A} = (\tilde{L}, \tilde{A}, \tilde{L})$ is an indecomposable module with socle $\tilde{L} = L_{\text{int}}$. Up to a parity shift by $m = a + n - 1$, the module \tilde{A} therefore is the direct sum

$$\tilde{A} = (L_{\text{int}})_{\text{up}}^a \bigoplus \bigoplus_{r=1}^k (L_{\text{int}})_{\text{down}}^r$$

of the irreducible modules obtained from $\tilde{L} = L_{\text{int}}$ by the unique upward and the k downward moves. Notice $(L_{\text{int}})^{\text{down}}_j = (L_{\text{int}})^{\text{down}}_j$ is the ‘nonencapsulated’ downward move in the notions of [Wei10]. Here it occurs, since $[i, i+1]$ is one of the sectors of the L.

2) Computation of the derivative A'. Now we revert the situation and first consider $\tilde{A} = (\tilde{L}, A, \tilde{L})$ and the moves of $\tilde{L} = \int L_{\text{int}}$ that determine the
irreducible summands of A. Indeed

$$A = \left(\int L_{\text{int}} \right)^{\text{up}} \oplus \bigoplus_{r \neq j, r = 1}^{k} \left(\int L_{\text{int}} \right)^{\text{down}}_{r}$$

holds for the irreducible modules obtained from $L = \int L_{\text{int}}$ by the upward move L^{up} and the $k - 1$ internal inner/upper downward moves $(L_{\text{int}})^{\text{down}}_{r}$ for $r \neq j$. Notice that $(L_{\text{int}})^{\text{down}}_{j} = (L_{\text{int}})^{\text{down}}$, as opposed to the situation above, this time does not appear as a move, since we are in the 'encapsulated' case in the notions [Wei10] where $[i, i + 1]$ is not a sector of L (but only an internal sector of L).

The formulas above imply that $A' = (A^{\text{up}})' \oplus (A^{\text{down}})'$ is a direct sum of the two irreducible summands

$$(A^{\text{up}})' = B_1 \oplus B_2,$$

coming from $((\int L_{\text{int}})^{\text{up}})' = (L^{\text{up}})' = L(\lambda^{\text{NN}})'$ for $\lambda^{\text{NN}} = [a, i][i + 1, b]$ with derivative $(-1)^{a+n-1}(\partial([a, i]) \cup [i + 1, b]) + (-1)^{i+n-1}([a, i] \cup \partial([i + 1, b]))$, and the $k - 1$ irreducible summands $(A^{\text{down}})'_{r}$ of $(A^{\text{down}})'$ given by

$$(A^{\text{down}})'_{r} = \left(\left(\int L_{\text{int}} \right)^{\text{down}}_{r} \right)' .$$

This gives $2 + (k - 1) = k + 1$ irreducible factors in \tilde{A}, and all signs coincide by $(-1)^{i+n-1} = (-1)^{a+n-1}$.

The comparison. Since all signs are $(-1)^{a+n-1}$ for both computations, we can ignore the parity shift. Then observe that $(\int L_{\text{int}})^{\text{down}}_{r} = (L_{\text{int}})^{\text{down}}_{r}$ holds for $r \neq j$, hence $(A^{\text{down}})'_{r} = ((\int L_{\text{int}})^{\text{down}}_{r})' = (L_{\text{int}})^{\text{down}}_{r}$ for $r \neq j$. So it remains to compare the two remaining summands

$$B_1, \quad B_2$$

doing A' and the two remaining summands

$$(L_{\text{int}})^{\text{up}} \quad , \quad (L_{\text{int}})^{\text{down}}_{j}$$

doing \tilde{A}. The latter correspond to the plots $S_1 ... S_{j-1} \sqcup_1 \int (S_{j+1} ... S_k)$, giving the upward move, resp. $\int (S_1 ... S_{j-1}) \sqcup_{j+1} S_{j+1} ... S_k$, giving the downward move. Obviously these two define the plots $\partial([a, i]) \cup [i + 1, b]$ respectively $[a, i] \cup \partial([i + 1, b])$ defining the two summands B_1 and B_2.

\section*{Part 3. Consequences of the Main Theorem}

We describe some applications of the main theorem in the maximal atypical case. We assume throughout $L \in R^0_n$.

74
20. Tannaka Duals

Let λ be a maximal atypical weight, and $[\lambda] = [\lambda_1, \ldots, \lambda_n]$ the associated irreducible representation. Note that $(Ber^k \otimes [\lambda])^\vee = Ber^{-k} \otimes [\lambda]^\vee$. To compute the Tannaka duals we may therefore assume $\lambda_1 = 0$. Furthermore recall that λ uniquely corresponds to a plot, also denoted λ. Let $\lambda(s) = \prod_i \lambda_i(s)$ be its prime factorization. For each prime factor $\lambda_i(s) = (I, K)$ with segment I and support K we define $\lambda_i^c(s) := (I, K^c)$, where $K^c = I - K$ denotes the complement of K in I. Then put

$$\lambda^c(s) := \prod_i \lambda_i^c(s).$$

Proposition 20.1. The Tannaka dual representation λ^\vee of a maximal atypical representation λ is given by the plot

$$\lambda^\vee(s) = \lambda^c(1 - s).$$

Notice that $[\lambda] = \text{socle}(P(\lambda)) = \text{cosocle}(P(\lambda))$, since projective modules are $*$-self dual. Hence $[\lambda]^\vee = \text{socle}(P(\lambda)^\vee)$, so it suffices to compute the socle of $P(\lambda)^\vee$. Now $P(\lambda) = R(\lambda_L, \lambda^R)$ for the unique bipartition $(\lambda^L, \lambda^R) = \theta^{-1}([\lambda])$ by [Hei14]; note $k(\lambda^L, \lambda^R) = n$. In the case where $\lambda_1 = 0$ the rules of [Hei14] show that the weight diagram of (λ^L, λ^R) is obtained from the weight diagram of λ as follows: Put \vee's at the same vertices as in λ and put \wedge's at all vertices $\geq n$. The remaining vertices are labelled by \wedge. Since the position of the \vee's is given by the set

$$I_\vee(\lambda_L, \lambda^R) = \{1 - \lambda^R_1, 2 - \lambda^R_2, \ldots\}$$

this shows

$$\lambda^R = (n - \lambda_n, n - \lambda_{n-1}, \ldots, n - \lambda_2, n).$$

The dual of any mixed tensor is $R(\lambda_L, \lambda^R)^\vee = R(\lambda^R, \lambda^L)$, and a mixed tensor is maximally atypical if and only if $(\lambda_L)^* = \lambda^R$, so we simply write $R(\lambda_L, \lambda^R) = R(\lambda^L)$ in this case. We say that a symbol \vee or \wedge is bound in a cup if the underlying vertex is the start or end point of a cup.

Proof. For $\lambda = [0, \lambda_2, \ldots, \lambda_n]$ the set

$$I_{\wedge}(\lambda) = \{0, \lambda_2 - 1, \ldots, \lambda_n - n + 1\}.$$

defines the left starting points of the sectors of the weight λ. Let (λ_L, λ^R) be such that $P(\lambda) = R(\lambda_L, \lambda^R)$. Since dualising means interchanging λ^L and λ^R we have to compute the socle of $R(\lambda^R, \lambda^L)$ for λ^R as above. For this specific λ^R we get

$$I_{\wedge} = \{n - \lambda_n, n - \lambda_{n-1} - 1, \ldots, n - n + 1, -n, -n - 1, \ldots\}$$

and $I_{\vee} = \mathbb{Z} \setminus I_{\wedge}$. Exactly n of the vertices in I_{\vee} will be bound in cups. The largest vertex labelled by \vee is at position $n - \lambda_n$. We go from the right to the left starting from $n - \lambda_n$ to determine the n labels \vee’s bound in cups. If

$$\lambda^L_1 = \ldots = \lambda^L_{s_1} > \lambda^L_{s_1+1} = \ldots = \lambda^L_{s_2} > \lambda^L_{s_2+1} = \ldots$$

then

$$\lambda^L_1 = \ldots = \lambda^L_{s_1} > \lambda^L_{s_1+1} = \ldots = \lambda^L_{s_2} > \lambda^L_{s_2+1} = \ldots$$

75
put \(\delta_1 = s_1 \) and \(\delta_i = s_i - s_{i-1} \) and \(\Delta_i = \lambda^L_{s_i} - \lambda^L_{s_{i+1}} \):
\[
\Delta_1 \delta_1 \Delta_2 \delta_2 \Delta_3 \delta_3 \ldots \vee \ldots \vee \wedge \ldots \vee \wedge \ldots \vee \wedge \ldots \wedge
\]
In the weight diagram we have \(\delta_1 \) labels \(\wedge \) at the positions
\[
\{ n - \lambda_n, n - \lambda_{n-1}, \ldots, n - \lambda_n - \delta_1 + 1 \}
\]
followed by \(\Delta_1 \) labels \(\vee \) to the left. These labels \(\vee \) will form \(\min(\Delta_1, \delta_1) \) cups with the \(\wedge \)'s to the right. Hence we get \(\min(\Delta_1, \delta_1) \) bound \(\vee \)'s at the positions \(n - \lambda_n - s_1, n - \lambda_n - s_1 - 1, \ldots, n - \lambda_n - s_1 - \min(\delta_1, \Delta_1) + 1 \) and so on. Now consider the weight diagram of \(\lambda \). The \(n \) labels \(\vee \) are at the positions \(\lambda_1, \lambda_2 - 1, \ldots, \lambda_n - n + 1 \). These are bound in \(n \) cups. These \(\vee \)'s will be transformed into \(\wedge \)'s by the change \((I, K) \rightarrow (I, I - K) \). Going from left to right thought the weight diagram we have \(s_1 \vee \)'s to the left, then \(\Delta_1 \wedge \)'s, then \(\delta_2 \vee \)'s, then \(\Delta_2 \wedge \)'s and so on:
\[
\delta_1 \Delta_1 \delta_2 \Delta_2 \delta_3 \Delta_3 \ldots \vee \ldots \vee \wedge \ldots \vee \wedge \ldots \vee \wedge \ldots \wedge
\]
Hence the rule for determining the \(n \) labels \(\wedge \) bound in cups is exactly the same in reverse order as the rule for the \(n \) labels \(\vee \) bound in cups in the weight diagram of \(\lambda^L \). Hence (if \(\tilde{\lambda} \) denotes the weight defined by the plot \(\lambda^V(s) \)) after the reflection \(s \mapsto 1 - s \) we get \(\tilde{\lambda} = (\lambda)^V + Ber^k \) for some \(k \in \mathbb{Z} \). We have to show \(k = 0 \). Now the leftmost \(\vee \) in the weight diagram of \(\lambda \) is at position \(\lambda_n - n + 1 \) and the leftmost \(\wedge \) in a cup is at position \(\lambda_n - n + 1 + s_1 \). It will give the rightmost \(\vee \) after the reflection \(s \mapsto 1 - s \). It maps under the reflection to \(n - \lambda_n - s_1 \). This is also the position of the rightmost \(\vee \) in the weight diagram of \(\lambda^V \), hence \(k = 0 \).

Corollary 20.2. \(L(\lambda) = [0, \lambda_2, \ldots, \lambda_n] \neq 1 \) is never selfdual.

Proof. \(L(\lambda) \) is selfdual if and only if
\[
(\lambda^L)^* = \lambda^L \text{ for } \lambda^L = (n - \lambda_n, n - \lambda_{n-1}, \ldots, n - \lambda_2, n).
\]
This follows from the proof since a maximally atypical \(R(\lambda) \) is self-dual if and only if \(\lambda = \lambda^* \). However the partition is evidently never self-conjugate.

Example 1. Suppose \(\lambda = [0, \lambda_2, \ldots, \lambda_n] \) holds with \(0 > \lambda_2 \) and \(\lambda_i > \lambda_{i+1} \) for \(2 \leq i \leq n - 1 \). Then \(\lambda^V = [n - \lambda_n - 1, n - \lambda_{n-1} - 1, \ldots, n - \lambda_2 - 1, n - 1] \).

Lemma 20.3. For maximal atypical irreducible \(L = [\lambda_1, \ldots, \lambda_n] \) such that \(\lambda_n = 0 \) the following assertions are equivalent.

1. \(L^V \cong [\rho_1, \ldots, \rho_n] \) holds such that \(\rho_n \geq 0 \).
2. \(L \) is basic, i.e. \(\lambda_1 \geq \ldots \lambda_n \geq 0 \) and \(\lambda_i \leq n - i \) holds for all \(i = 1, \ldots, n \).
3. \(\lambda_1 \leq n - 1 \) and \(L^V \cong [\lambda_1^*, \ldots, \lambda_n^*] \) holds for the transposed partition \(\lambda^* = (\lambda_1^*, \ldots, \lambda_n^*) \) of the partition \(\lambda = (\lambda_1, \ldots, \lambda_n) \).
Remark. The number of basic maximal atypical weights in $X^+(n)$ is equal to the Catalan number C_n.

Proof. i) implies ii): If $\rho_n = 0$ the leftmost \lor in the weight diagram of $[\rho]$ is at position $-n + 1$. Then the smallest \land bound in a cup is at a position ≤ 1 and $\geq 1 - n$. After the change $(I, K) \mapsto (I, I - K)$ and the reflection $s \mapsto 1 - s$ this means that the rightmost \lor in $[\rho]^\lor$ is at position $\leq n - 1$ and ≥ 0 which is equivalent to $0 \leq \lambda_1 \leq n - 1$. Likewise the i-th leftmost \land bound in a cup is at a position $\geq -n + i + 1$ and $\leq n$. It will give the i-th largest \lor in the weight diagram of $[\lambda]$. After the change $(I, K) \mapsto (I, I - K)$ and the reflection the i-th largest \lor is at a position $\leq n - 2i + 1$ which is equivalent to $\lambda_i \leq n - i$. ii) implies i): If λ is basic the largest \lor is at position $\leq n - 1$, hence the smallest \land bound in a cup is at position $\leq n$. It gives the smallest \lor of $[\lambda]^\lor$. Hence the smallest \lor of $[\lambda]^\lor$ is at a position $\geq 1 - n$ which is equivalent to $\lambda^n_0 \geq 0$.

ii) implies iii): If λ is basic, the $2n$ vertices in cups form the interval $J := [-n + 1, n]$ of length $2n$. If J_v is the subset of vertices labelled by \lor, the subset $J \setminus J_v$ is the subset of vertices labelled by \land. The interval J is preserved by the reflection $s \mapsto 1 - s$. If λ is basic, so is λ^*. As in the proof of 20.1 we use the following notation: If

$$\lambda_1 = \ldots = \lambda_{s_1} > \lambda_{s_1 + 1} = \ldots = \lambda_{s_2} > \lambda_{s_2 + 1} = \ldots = \lambda_s > \lambda_{s+1} = 0$$

put $\delta_i = s_i$ and $\delta_i = s_i - s_i - 1$ and $\Delta_i = \lambda_{s_i} - \lambda_{s_i + 1}$: Likewise for λ^* with δ_i^* and Δ_i^*. Then

$$\delta_i = \Delta_i^*$$

Then the weight diagram of $[\lambda^*]$ looks, starting from n and going to the left

$$\underbrace{\lor \ldots \lor}_{\delta_1^*} \ldots \lor \underbrace{\land \ldots \land}_{\Delta_1^*} \lor \ldots \lor \underbrace{\land \ldots \land}_{\delta_2^*} \ldots \lor \underbrace{\land \ldots \land}_{\Delta_2^*} \lor \ldots \lor \underbrace{\land \ldots \land}_{\delta_3^*} \ldots \lor \ldots \lor \land \ldots \land$$

and the weight diagram of $[\lambda]$ looks, starting from $-n + 1$ and going to the right like

$$\lor \underbrace{\land \ldots \land}_{\delta_1} \lor \ldots \lor \underbrace{\land \ldots \land}_{\Delta_1} \lor \ldots \lor \underbrace{\land \ldots \land}_{\delta_2} \lor \ldots \lor \underbrace{\land \ldots \land}_{\Delta_2} \lor \ldots \lor \land \ldots \land$$

We can argue now exactly as in the proof of 20.1. The two weight diagrams are mirror images of each other and the rule for the \lor’s in cups in one is the same as the rule for the \land’s in the cups of the other. Hence after the change $(I, K) \mapsto (I, I - K)$ and the reflection $s \mapsto 1 - s$ the two weight diagrams agree. iii) implies i): trivial.

Example 3. Duals in the R_3-case. If $a > b > 0$, then $[a, b, 0]^\lor = [2, 2 - b, 2 - a] = BER^{2-a}[a, a - b, 0]$. If $a \geq 1$ then $[a, a, 0]^\lor = [2, 1 - a, 1 - a] = BER^{1-a}[a + 1, 0, 0] = BER^{1-a}S^{a+1}$.

77
21. Cohomology I

In corollary 19.5 we have seen that in the situation of the melting algorithm one obtains surjective maps \(H^i(p) : H^i(A) \to H^i(L) \) for all \(i \in \mathbb{Z} \). For \(K = \text{Ker}(p : A \to L) \) we therefore get exact sequences

\[
0 \to H^i(K) \to H^i(A) \to H^i(L) \to 0
\]

for all integers \(i \). Hence, if in addition \(H^i(A) = 0 \) and \(H^i(L) = 0 \) vanish for all \(i \neq 0 \), then \(H^i(K) = 0 \) holds for all \(i \neq 0 \). Then \(K/L \cong A \) implies \(H^i(A) = 0 \) for \(i \neq -1, 0 \). Suppose, the same conditions are satisfied for \(A^\vee \) as well. Then also \(H^i(A^\vee) = 0 \) holds for \(i \neq -1, 0 \). Then, by duality \(H^i(A)^\vee \cong H^{-i}(A^\vee) \), the cohomology modules \(H^i(A) \) vanish for \(i \neq 0 \). This proves

Proposition 21.1. For irreducible basic modules \(V = [\lambda_1, \ldots, \lambda_{n-1}, 0] \) in \(\mathcal{R}_n \) the cohomology modules \(H^i(V) \) vanish for all \(i \neq 0 \).

Proof. We use induction with respect to the degree \(d = \sum \lambda_i \), where \(\lambda_i \) for \(i = 1, \ldots, n \) denote the coefficients of the weight vector. By induction assume the assertion holds for all irreducible basic modules of degree \(< d \). For \(V \) of degree \(d \) by the melting algorithm there exists an irreducible basic module \(L \) of degree \(d - 1 \) and \(A \) with layer structure \((L, A, L) \) such that \(A = V \oplus A' \), where \(A' \) is a direct sum of irreducible basic modules of degree \(< d \). Since \(H^i(L) = 0 \) for \(i \neq 0 \), \(H^i(A) = 0 \) for \(i \neq 0 \) now follows from lemma 19.4. The same applies for the dual modules \(A^\vee \) and \(L^\vee \). Indeed the dual module of a basic irreducible module is basic irreducible again with the same degree \(< d - 1 \) (lemma 20.3) using \(\sum \lambda_i = \sum \lambda_i^* \). Hence the remarks preceding proposition 21.1 imply \(H^i(A) = 0 \) for \(i \neq 0 \). Since \(V \) is a direct summand of \(A \), this proves our assertion. \(\square \)

22. Cohomology II

Proposition 22.1. For maximal atypical irreducible \(L(\lambda) \) in \(\mathcal{R}_n \) with weight \(\lambda \), normalized so that \(\lambda_n = 0 \), suppose \(\lambda \) has sectors \(S_1, \ldots, S_i, \ldots, S_k \) (from left to right). Then the constituents \(L(\lambda_i) \) of \(DS(L(\lambda)) \) for \(i = 1, \ldots, k \) have sectors \(S_1, \ldots, \partial S_i, \ldots, S_k \), and the cohomology of \(L(\lambda) \) can be expressed in terms of the distances \(d_1, \ldots, d_{k-1} \) between these sectors as follows:

\[
H^*(L(\lambda)) = \bigoplus_{i=1}^k L(\lambda_i)[\sum_{j<i} d_j].
\]

Proof. In the special case where all distances vanish \(d_1 = \cdots = d_k = 0 \), i.e. in case where the plot of \(\lambda \) has only one segment, the assertion of the proposition has been shown in proposition 21.1. We then prove the general case of nonvanishing distances by induction with respect to \(n \) and the lexicographic ordering used for algorithm I. This means: We prove proposition
 recursivelly for L^{up}, thereby assuming that we already know the cohomology degrees of L^{down}_r, L and L^{aux} (using the notations of algorithm I). First recall the notations used for algorithm I:

$$L = (S_1 \cdots S_{j-1}) \leftarrow \text{distance } d_j \rightarrow (S_j S_{j+1} \cdots S_k) \leftarrow \text{distance } d_k \rightarrow \ldots$$

$$L^{up} = (S_1 \cdots S_{j-1}) \leftarrow \text{dist. } (d_j + 1) \rightarrow \int (S_{j+1} \cdots S_k) \leftarrow \text{dist. } (d_k - 1) \rightarrow \ldots$$

for a sector S_j with $r(S_j) = 1$ supported at $i \in \mathbb{Z}$. Recall $\mathbb{A} = (L, A, L)$ with

$$A = L^{up} \oplus \bigoplus_{r=1}^{k} L^{down}_r.$$

Furthermore $DS(L) = L^{aux}[m_{aux}] \oplus \bigoplus_{\mu=1}^{s} \tilde{L}_\mu[m_\mu]$ for $DS(\mathbb{A}) = \bigoplus_{\mu=1}^{s} \mathbb{A}_\mu$ and $\mathbb{A}_\mu = (\tilde{L}_\mu, \tilde{A}_\mu, \tilde{L}_\mu)$ such that the derivative $d(A)$ of A is

$$d(A) = \tilde{A} + 2(-1)^{i+n-1} L^{aux}$$

in $K_0(\mathbb{R}_n)$. Obviously $DS(L^{up})$ has the summands

$$\bigoplus_{\nu=1}^{j-1} (S_1 \cdots \partial S_\nu \cdots S_{j-1}) ...(d_j - 1) \cdots (d_k - 1) \cdots \partial S_{k+1} \cdots$$

$$\bigoplus_{\nu>k} (S_1 \cdots S_{j-1}) ...(d_j - 1) \cdots (d_k - 1) \cdots \partial S_{\nu} \cdots$$

and

$$L^{aux} = (S_1 \cdots S_{j-1}) ...(d_j - 2) \cdots (S_{j+1} \cdots S_k) ...(d_k) \cdots S_{k+1} \cdots.$$

This immediately implies the next

Lemma 22.2. The following holds

1. $DS(L^{up}) \subseteq L^{aux} \oplus DS(L)^{up}$.
2. None of the summands of $DS(L^{up})$ different from L^{aux} is contained in $DS(L)$.
3. L^{aux} is not a summand of $\bigoplus_\mu \tilde{A}_\mu$.

Proof. The last assertion holds, since the constituents of $\bigoplus_\mu \tilde{A}_\mu$ are obtained from \tilde{L}_μ by moves. It can be checked that L^{aux} can not be realized in this way.

The $d_{j-1} \pm 1$ alternative. By the induction assumption $H^\bullet(L)$ contains L^{aux} with multiplicity 1, and L^{aux} appears in cohomology at the degree d_{j-1}. To determine $H^i(L^{up}) \subseteq H^i(A)$ we may use step 11) of the proof of theorem 18.3. It easily implies by a small modification of the arguments that

$$H^i(A) = \bigoplus_{m_{\mu} = -i} \tilde{A}_\mu \oplus H^{i-1}(L) / H^{i-1}(\bigoplus_{\mu} \tilde{L}_\mu) \oplus \text{Kern}(H^{i+1}(L) \rightarrow H^{i+1}(K)) .$$
Since $H^\bullet(L)/(\bigoplus_\mu \tilde{L}_\mu) \cong L^{aux}$ by lemma 19.1 and since
\[H^{i-1}(L)/(\bigoplus_{\mu=1-i} \tilde{L}_\mu) \cong L^{aux} \]
for $i-1 = d_{j-1}$ by the induction assumption, we get
\[\text{Kern}(H^\bullet(L) \to H^\bullet(K)) = L^{aux}, \]
and this implies
\[\text{Kern}(H^{i+1}(L) \to H^{i+1}(K)) = L^{aux} \]
for $i+1 = d_{j-1}$. In other words $DS(A) = \tilde{A} + 2 \cdot L^{aux}$ and the two copies of L^{aux} occur in the two possible cohomology degrees
\[d_{j-1} \pm 1. \]

Continuation of the proof for proposition 22.1. By lemma 22.2 the cohomology degree of the constituents of $H^\bullet(L^{up})$ that appear in
\[\tilde{A}_\mu \subseteq \bigoplus_{m_\mu = -i} \tilde{A}_\mu \]
can be immediately read of from the degrees m_μ, i.e. from the cohomology degrees of \tilde{L}_μ in $H^\bullet(L)$. These degrees are known by the induction assumption. This easily proves proposition 22.1 for all constituents $L(\lambda_i)$ of $H^\bullet(L^{up})$ that are not isomorphic to L^{aux}. Indeed, according to our claim the cohomological degrees for the constituents $L(\lambda_i) \neq L^{aux}$ of $H^\bullet(L^{up})$ are given by
\[0, \ldots, 0, d_{j-1} + 1, d_{j-1} + d_k, \ldots, \]
and the summand L^{aux} should occur in degree $d_{j-1} + 1$. The cohomology of $H^\bullet(L)$ on the other hand is concentrated in the degrees
\[0, \ldots, 0, d_{j-1}, d_{j-1} + d_k, \ldots \]
with the summand L^{aux} corresponding to degree d_{j-1}. All summands $\neq L^{aux}$ precisely match, so this proves proposition 22.1 for all constituents of $H^\bullet(L^{up})$ except for L^{aux}.

It remains to determine the cohomology degree of $L^{aux} \subseteq H^\bullet(L^{up})$. As already explained, the summand L^{aux} occurs in degree $d_{j-1} - 1$ or $d_{j-1} + 1$. So to show that L^{aux} occurs in $H^\bullet(L^{up})$ for degree $d_{j-1} + 1$, it now suffices by the $d_{j-1} + 1$ alternative to show that L^{aux} occurs in $H^\nu(\bigoplus_r L^{down}_r)$ in the degree $\nu = d_{j-1} - 1$. Indeed L^{aux} appears in $DS(L^{down}) = \bigoplus_\nu H^\nu(L^{down})$ for $L^{down} := L^{down}_j$. This follows from the structure of the sectors of
\[L^{down} = \int (S_1 \cdots S_{j-1}) \Box \ldots (d_{j-1} - 1) \Box \ldots i_{i+1} S_{j+i+1} \cdots S_k \]
and the induction assumption. It gives the degree $d_{j-1} - 1$, for $d_{j-1} \geq 1$, respectively in degree $d_{j-1} - 1 = -1$, for $d_{j-1} = 0$, for the summand L^{aux} in $H^\bullet(L^{down})$. Hence
\[L^{aux} \subseteq H^{d_{j-1} + 1}_{j-1}(L^{up}) \].
which completes the proof of proposition 22.1. □

23. THE FOREST FORMULA

For $L \in \mathcal{R}_n$ we define the Laurent polynomial
$$\omega(L, t) = \sum_{\nu \in \mathbb{Z}} s \dim(\omega^\nu(L)) \cdot t^\nu.$$

From $\omega(Ber_n^i, t) = t^{n_i}$ for $Ber_n \in \mathcal{R}_n$ we get
$$\omega(Ber_n^i \otimes L, t) = t^{n_i} \cdot \omega(L, t).$$

Furthermore $V^\vee \cong Ber_n^i \otimes V$ implies $\omega(V, t^{-1}) = t^{n_i} \omega(V, t)$. From theorem 14.3 we furthermore conclude

Lemma 23.1. $\omega(L, t)$ has parity $\varepsilon(L) = \pm 1$ for irreducible $L = L(\lambda)$ in \mathcal{R}_n.

Let L be an irreducible representation. Associated to its plot λ is the basic plot λ_{basic} and the numbers d_0, \ldots, d_k. Let $S_1 S_2 \cdots S_k$ denote the sector structure of λ_{basic}. For $r_i = r(S_i)$ we define the number
$$D(\lambda) = \sum_{i=1}^k r_i \sum_{j<i} d_j = \sum_{i=1}^k r_i \delta_i.$$

Consider the vector D with the coordinates $\delta_1 = d_0$, $\delta_1 = d_0 + d_1$ and so on $\delta_i = \sum_{j=0}^i d_i$. Obviously $\delta_1 \leq \delta_2 \leq \cdots \leq \delta_k$ with $\delta_i \in \mathbb{Z}^k$. Together with λ_{basic} the knowledge of D determines λ. We express this by formally writing $\lambda = D \times \lambda_{\text{basic}}$ in the following arguments. Using this abbreviation $DS(L)$ gives the following element in $K_0(\mathcal{R}_{n-1}) \otimes k[t]$
$$DS(\begin{pmatrix} \delta_1 \\ \delta_{i-1} \\ \delta_i \\ \delta_{i+1} \end{pmatrix} \times (S_1 \cdots S_k)_{\text{basic}}) = \sum_{i=1}^k t^{\delta_i} \begin{pmatrix} \delta_1 - 1 \\ \delta_{i-1} - 1 \\ \delta_i \\ \delta_{i+1} + 1 \end{pmatrix} \times (S_1 \cdots \partial S_i \cdots S_k)_{\text{basic}}.$$

This implies that DS commutes with translations of D, i.e. with substitutions of the form $\delta_\nu \rightarrow \delta_\nu + \delta_\nu'$ for some δ_ν' and $\nu = 1, \ldots, k$. Now of course ∂S_i may introduce new sectors in $(S_1 \cdots \partial S_i \cdots S_k)_{\text{basic}}$. So if we want to treat everything on equal footing, we better add to the sectors S_i all subsectors. This amounts to consider instead of the vector D the vector with the entries $\delta_1, \ldots, \delta_1 (r_1 \text{ times})$ $\delta_2, \ldots, \delta_2 (r_2 \text{ times})$ and so on. Then $D(\lambda)$ is just the sum of the coordinates of this vector. With this vector we have an analogous formula for DS. The similar commutativity with translations now immediately shows the following translation formula
$$\omega(L(\lambda), t) = t^{D(\lambda)} \cdot \omega(L(\lambda_{\text{basic}}), t).$$
This being said, we use that the basic plots of rank \(n \) are in 1-1 correspondence with planar forests \(\mathcal{F} \) with \(n \) nodes \(x \in \mathcal{F} \) [Wei10]. For each node \(x \in \mathcal{F} \) let \(\mathcal{F}(x) \) denote the subtree of the tree containing \(x \) with all nodes removed that are not below the node \(x \). So \(x \) is the root of \(\mathcal{F}(x) \). For a forest \(\mathcal{F} \) we define recursively the quantum forest factorials

\[
\mathcal{F}! = \prod_{x \in \mathcal{F}} [\# \mathcal{F}(x)]_t
\]

where \(m = \# \mathcal{F}(x) \) denotes the number of nodes in \(\mathcal{F}(x) \) and where for \(m \in \mathbb{N} \) we define

\[
[m]_t := \frac{t^m - t^{m-1}}{t - t^{-1}}.
\]

The quantum factorial \([n]_t! = \prod_{m=1}^n [m]_t \) occurs as a special case of the forest factorial \(\mathcal{F}! \) (for the forest with one linear tree). For a planar forest \(\mathcal{F} \), given as the union of trees \(T_i \) for \(i = 1, \ldots, k \) with \(r_i \) nodes respectively, one has \(\mathcal{F}! = \prod_{i=1}^k T_i! \) and hence

\[
[\# \mathcal{F}]_t! = \frac{[\sum_i r_i]_t!}{[r_1]_t! \cdots [r_k]_t!} \prod_{i=1}^k [\# T_i]_t!.
\]

Finally for a tree \(T \) the value \([\# T]_t! \) does not change under grafting.

Lemma 23.2. For an irreducible maximal atypical representation \(L = L(\lambda) \) in \(\mathcal{R}_n \) we have the formula

\[
\omega(L, t) = t^{D(\lambda)} \cdot \frac{[n]_t!}{\lambda_{\text{basic}}!}.
\]

where \(\lambda_{\text{basic}} \) is viewed as the planar forest associated to \(L \).

Proof. From the arguments above it suffices to consider the case where \(\delta_1 = \delta_2 = \cdots = \delta_k = 0 \) and hence \(\lambda = \lambda_{\text{basic}} \). Let us look at the simplest cases of basic representations, where all sectors \(S_i \) for \(i = 1, \ldots, k \) are intervals \(I_i = [a_i, a_i + 2r_i - 1] \) so that the support of the plot \(S_i \) is \([a_i, \ldots, a_i + r_i - 1]\). The corresponding \(\omega(t) = \omega_{r_1, \ldots, r_k}(t) \) then only depends on the ranks \(r_1, \ldots, r_k \) of the sectors \(S_1, \ldots, S_k \). But then again by the translation invariance explained above, for general basic \(\lambda \) with sector structure \(S_1 \cdots S_k \) and \(r_i = r(S_i) \) we get the following generalized Leibniz rule

\[
\omega(L(\lambda), t) = \omega_{r_1, \ldots, r_k}(t) \cdot \prod_{i=1}^k \omega(L(S_i), t),
\]

where \(L(S_i) \) denotes the irreducible basic maximal atypical representation in \(\mathcal{R}_{r_i} \) whose plot is \(S_i \) (up to a translation on the numberline). Now each of these \(S_i \) has a unique sector. For basic plots \(S \) with a unique sector (like the \(S_i \)) we have the obvious grafting formula

\[
\omega(L(S_i), t) = \omega(L(\partial S), t),
\]

where \(L(\partial S) \) denotes the unique maximal atypical basic representation in \(\mathcal{R}_{r(S)-1} \) whose plot is \(\partial S \).
It is clear that inductively the translation formula, the generalized Leibniz formula and the grafting formula determine the $\omega(L,t)$ uniquely. Hence it suffices for our proof that the stated formula satisfies these properties and that it holds for $n = 1$. Indeed our assertion is obvious for $n = 1$. The grafting formula is also obvious. To check the generalized Leibniz formula it is suffices to prove that

$$\omega_{r_1, \ldots, r_k}(t) = \frac{[\sum_i r_i]!}{\prod_{i=1}^k [r_i]!}.$$

To this end it is helpful to observe for $a = r_1 + \cdots + r_i$ and $b = r_{i+1} + \cdots + r_k$ that the following version of the Leibniz formula holds

$$\omega_{r_1, \ldots, r_k}(t) = \omega_{a,b}(t) \omega_{r_1, \ldots, r_2}(t) \omega_{r_3, \ldots, r_k}(t).$$

So it suffices to verify that $\omega_{a,b}(t)[a]_t! [b]_t! = [a+b]_t!$ which can be done by induction on $n = a + b$. Indeed, using the translation formula, more or less by definition

$$\omega_{a,b}(t) = t^{b} \cdot \omega_{a-1,b}(t) + t^{-a} \cdot \omega_{a,b-1}(t)$$

holds. Indeed the derivative of the two sectors $S_1 S_2$ give $\partial S_1 S_2$ with $d_0 = 0$, $d_1 = 1$ respectively $S_1 \partial S_2$ with $d_0 = -1$, $d_1 = 1$. Hence $D(\partial S_1 S_2) = 0 \cdot (a-1) + 1 \cdot b = b$ and $D(S_1 \partial S_2) = -a + 0 \cdot (b-1) = -a$. Hence using the induction assumption this finally amounts to the generalized Pascal rule

$$[a+b]_t = t^{b} \cdot [a]_t + t^{-a} \cdot [b]_t$$

that completes the proof.

\[\square\]

Example. For S^{n-1+d} in R_n and for integers $d \geq 0$

$$\omega(S^{n-1+d}, t) = \epsilon^{d-n+1} + \epsilon^{d-n+3} + \cdots + \epsilon^{d+n-1} = \epsilon^d \cdot \omega(S^{n-1}, t).$$

24. Kac module of 1

The constituents of the Kac module $V(1) \in R_n$ are

$$L_a = Ber^{-a} \otimes [a, \ldots, a, 0, \ldots, 0] \quad \text{for} \quad a = 0, \ldots, n,$$

where the last entry of a is at the position $i = n - a$. Therefore $Ber^a \otimes L_a$ is basic and therefore has cohomology concentrated in degree zero, hence the cohomology of L_a is concentrated in degree $-a$ and

$$H^{-a}(L_a) \cong I_a \oplus I_{a-1}, \quad a = 0, 1, \ldots, n$$

where $I_{-1} := I_n := 0$ and

$$I_a := Ber^{-a-1} \otimes [a + 1, \ldots, a + 1, 0, \ldots, 0]$$

(with $n-a-1$ entries $a + 1$ and a entries 0). Notice $I^\vee_1 \cong Ber \otimes S^{a-1}$ and $I_0 = 1$, $I_1 = [0, 0, 0, -2], \ldots, I_{n-1} = Ber^n$. For the cyclic quotient Q_n of $V(1)$ with socle L_n this inductively implies
Lemma 24.1. The natural quotient map $Q_a \rightarrow 1$ induces an isomorphism $H^0(Q_a) \cong H^0(1) \cong 1$ and

$$H^{-\nu}(Q_a) = \begin{cases} I_\nu \oplus I_{\nu-1} & \nu = 0, \ldots, a, \\ 0 & \text{otherwise}. \end{cases}$$

Similarly as in the proof of the last lemma for $K_a = Ker(V(1) \rightarrow Q_a)$, we obtain exact sequences

$$0 \rightarrow H^\bullet(K_a) \rightarrow H^\bullet(V(1)) \rightarrow H^\bullet(Q_a) \rightarrow 0,$$

since the cohomology of $H^\bullet(K_a)$ is concentrated in degrees $\leq -a - 1$, whereas the cohomology of $H^\bullet(Q_a)$ is concentrated in degrees $\geq -a$. Notice $Q_a = V(1)$ for $a = n$ and $Q_a = 1$ for $a = 0$. We can view these as short exact sequences of homology complexes

$$0 \rightarrow (H^\bullet(K_a), \partial) \rightarrow (H^\bullet(V(1)), \partial) \rightarrow (H^\bullet(Q_a), \partial) \rightarrow 0.$$

Hence the long exact homology (!) sequence for $H_{\mathcal{T}}$-homology has at most one nonvanishing connecting morphism δ, namely at degree $-a$

$$H^{-a}_D(K_a) \longrightarrow H^{-a}_D(V(1)) \longrightarrow H^{-a}_D(Q_a) \xrightarrow{\delta} H^{-a-1}_D(K_a) \longrightarrow H^{-a-1}_D(V(1)) .$$

Since $H^{-\nu}_D(V(1)) = 0$ for all ν, this implies $H^{-\nu}_D(Q_a) \cong H^{-\nu-1}_D(K_a)$. The right side $H^{-\nu}_D(Q_a)$ vanishes unless $\nu - 1 \in \{-1 - a, -2 - a, \ldots\}$ and the left side $H^{-\nu-1}_D(K_a)$ vanishes unless $\nu \in \{0, \ldots a\}$. Therefore $H^{-\nu}_D(Q_a) = 0$ for $\nu \neq -a$. Since there is unique common irreducible module I_a in the cohomology $H^{1-a}(K_a)$ and $H^{-a}(Q_a)$, such that $d(Q_a) = \pm I_a$, we get

Lemma 24.2.

$$H^{-\nu}_D(Q_a) = \begin{cases} I_a & \nu = -a, \\ 0 & \text{otherwise}. \end{cases}$$

Remark. This result implies that there are no long exact sequences attached to short exact sequences in \mathcal{R}_a for H^{\bullet}_D-cohomology. If these would exist, then $Q_1/L_1 \cong 1$ would imply $H^{-1}_D(L_1) \cong H^{-1}_D(Q_1)$ in contrast to $H^{-1}_D(L_1) \cong I_1 \oplus 1$ and $H^{-1}_D(Q_1) \cong I_1$.

Corollary 24.3. $H^{-\bullet}_D(\nu) = 0$ and hence $H^0_D(V) = 0$ for $V = Q_a$ and $(Q^*_a)\nu$ for $a \geq 1$.

Next in the case $a = 1$ we analyse the nontrivial extension

$$0 \rightarrow [0, \ldots, 0, -1] \rightarrow Q_1 \rightarrow 1 \rightarrow 0 .$$

Since $L_1^\nu \cong [0, \ldots, 0, -1]^{\nu} \cong Ber \otimes S^{n-1}$, also $V = (Q_1^\nu)$ defines a nontrivial extension

$$0 \rightarrow Ber \otimes S^{n-1} \rightarrow V \rightarrow 1 \rightarrow 0 .$$
Lemma 24.4. \(V = (Q_1^n)^\vee \) defines a nontrivial extension between 1 and \(\text{Ber} \otimes S^{n-1} \) in \(R_n \) such that in \(R_{n-1} \)

\[
H_D^\nu(V) \cong H^\nu(V) = \begin{cases}
\text{Ber} \otimes S^{n-1} & \nu = 1, \\
0 & \text{otherwise}.
\end{cases}
\]

In particular \(H_D^0(V) = 0 \).

Proof. Since the cohomology of the anti-Kac module \((V(1)^*)^\vee \) vanishes

\[
0 \to (K_1^*)^\vee \to (V(1)^*)^\vee \to V \to 0 \text{ gives } H^{\ell-1}(V) \cong H^\ell((K_1^*)^\vee) \cong H^{-\ell}(K_1^*)^\vee, \quad \text{for all } \ell.
\]

\(K_1^* \) is filtered with graded components \(L_2, \ldots, L_n \), so that the cohomology of \(K_1^* \) vanishes, if the cohomology of the \(L_i \) vanishes. Hence \(H^{-\ell}(K_1^*) = 0 \) unless \(-\ell \not\in \{-2, -3, \ldots, -n\} \) and \(H^\nu(V) = 0 \) for all \(\nu \leq 0 \) and all \(\nu \geq n \).

On the other hand \(H^\nu(\text{Ber} \otimes S^{n-1}) = 0 \) for \(\nu \neq 1 \) and \(H^1(\text{Ber} \otimes S^{n-1}) = 1 \oplus (\text{Ber} \otimes S^{n-1}) \). Since \(H^\nu(V) = 0 \), if \(H^\nu(1) = 0 \) and \(H^\nu(\text{Ber} \otimes S^{n-1}) = 0 \), therefore \(H^\nu(V) = 0 \) unless \(\nu = 1 \).

\[\square \]

Applying \((n-1) \) times the functor \(D S \) to \(D S(V) \in R_{n-1} \), the last lemma gives

Lemma 24.5. If we apply \(n \) times the functor \(D S \) to \(V = (Q_1^n)^\vee \) in \(R_n \), we obtain that

\[
DS \circ DS \circ \cdots \circ DS(V) = \bigoplus_{\nu=0}^{n-2} k[-1-2\nu]
\]

in \(R_0 \) is concentrated in the degrees 1, 3, \ldots, 2n - 3.

The Leray type spectral sequences therefore imply the following result

Corollary 24.6. For the module \(V = (Q_1^n)^\vee \) in \(R_n \), defining a nontrivial extension between 1 and \(\text{Ber} \otimes S^{n-1} \), we have

\[
DS_{n,0}^\ell(V) = 0 \text{ and } \omega_{n,0}^\ell(V) = 0 \quad \text{for } \ell \leq 0.
\]

25. Strict morphisms

Recall the functor \(\omega : T_n \to svec_k \) defined by \(\omega = \omega_{n,0} \). A morphisms \(q : V \to W \) in \(T_n \) will be called a strict epimorphism, if the following holds

1. \(q \) is surjective.
2. \(\omega(q) \) is surjective.

For a module \(Z \) in \(T_n \) and semisimple \(L \) and

\[q : Z \to L \]

we make the following
Assumption (S). The induced morphism
\[\omega(q) : \omega(Z) \to \omega(L) \]
is surjective, i.e. \(q \) is a strict epimorphism.

Of course (S) holds for irreducible \(Z \). In the special case \(L = 1 \) condition (S) is equivalent to \(\omega(q) \neq 0 \).

For any submodule \(U \subseteq \text{Kern}(q) \) the map \(q : Z \to L \) factorizes over the quotient \(p : Z \to V = Z/U \) and induces the analogous morphism \(q_V : V \to L = \text{cosocle}(Z/U) \). Hence
\[q = q_V \circ p , \quad \omega_{n,i}(q) = \omega_{n,i}(q_V) \circ \omega_{n,i}(p) . \]

implies: \(\omega_{n,i}(q) \) is surjective \(\implies \omega_{n,i}(q_V) \) is surjective. For \(i = 0 \) thus
- If \(Z \) is indecomposable, then \(V \) is indecomposable.
- Condition (S) for \(q \) implies condition (S) for \(q_V \).
- \(\omega(q_V) = 0 \) implies \(\omega(q) = 0 \).

Indecomposable \(Z \). Now assume \(Z \) is indecomposable and has upper Loewy length \(m \geq 2 \). If \(m \geq 3 \), there exists a submodule \(U \subseteq Z \) such that \(V = Z/U \) has Loewy length 2 and such that \(V \) again is indecomposable and satisfies assumption (S). So \(V \) has Loewy length two and is indecomposable with cosocle \(L \). Then \((V, q_V) \) is a nontrivial extension
\[0 \to S \to V \to C \to 0 \]
with semisimple socle \(S \) decomposing into irreducible summands \(S_\nu \) and cosocle \(C \). The map \(q \) is obtained from a projection map \(\text{pr}_L : C \to L \) by composition with the canonical map \(V \to C \). Since \(V \) is indecomposable with cosocle \(C \), all extensions \((V_\nu, q_\nu) \) obtained as pushouts
\[\begin{array}{ccccccccc}
0 & \longrightarrow & \oplus_\mu S_\mu & \longrightarrow & V & \xrightarrow{p} & C & \longrightarrow & 0 \\
& & \downarrow{\pi_\nu} & & \downarrow{\pi_\nu} & & \downarrow{\pi_\nu} & & \\
0 & \longrightarrow & S_\nu & \longrightarrow & V_\nu & \xrightarrow{p_\nu} & C & \longrightarrow & 0 \\
\end{array} \]
must be nontrivial extensions. All \(V_\nu \) again satisfy condition (S): Indeed \(\text{Im}(\omega(q)) \subseteq \text{Im}(\omega(q_\nu)) \)
The projection $\text{pr}_L : C \to L$ splits by an inclusion $i_L : L \to C$, since C is semisimple. Hence $C \cong L \oplus L'$ so that pr_L and i_L are considered as the canonical projection resp. inclusion for the first summand.

Since V is indecomposable, $\text{Ext}^1(L, S_\nu) \neq 0$ holds for at least one S_ν. Now divide by the submodule $U' \subset S$ generated by all S_ν with the property $\text{Ext}^1(L, S_\nu) = 0$ and obtain $V' = V/U'$. Then divide by the maximal submodule U'' of L' that splits in V'. Then V'/U'' is indecomposable and the map q factorizes over this quotient and satisfies condition S.

Resume. Suppose Z is indecomposable but not irreducible, $q : Z \to L$ satisfies condition (S), the cosocle of Z is $C = L \oplus L'$. Then there exists a quotient V of Z and a quotient \tilde{L} of L' such that

\[
0 \to S \to V \xrightarrow{p} L \oplus \tilde{L} \to 0
\]

with

- V is indecomposable,
- S is irreducible such that $\text{Ext}^1(L, S) \neq 0$ and $\text{Ext}^1(\tilde{L}, S) \neq 0$,
- the map $q = \text{pr}_L \circ p$ satisfies condition (S).

The irreducible representations $X \ncong 1$ with the property $\text{Ext}^1(X, S) \neq 0$ will be called descendants of S.

In the situation of the resume we get the extensions $E = E_S^L$ and $\tilde{E} = E_S^{\tilde{L}}$ defined by submodules of V. Hence $V/E_S^L \cong \tilde{L}$ and $V/E_S^{\tilde{L}} \cong L$ and we get the following exact sequences

\[
\begin{array}{ccc}
\tilde{L} & \to & L \\
\uparrow & & \uparrow \\
\tilde{E} & \to & V & \to & L \\
\uparrow & & \uparrow & & \uparrow \\
S & \to & E & \to & L
\end{array}
\]

One of the potential candidates for S_ν is the irreducible representation $L(\lambda - \mu)$ that appears in the second upper Loewy level of the Kac module $V(\lambda)$. Indeed this follows from lemma 10.5, since $H_D(V(\lambda)) = 0$. Since Z_ν is indecomposable, Z_ν is in this case a highest weight representation of weight λ. This is clear, because all weights of Z_ν are in $\lambda - \sum_{\alpha \in \Delta_*} Z \cdot \alpha$. By corollary 10.4 a highest representation V contains a (nontrivial) highest weight subrepresentation W of weight $\lambda - \mu$ only if $H_D(V)$ has trivial weight space $H_D(V)_\lambda$. For $V = Z_\nu$ as above this gives a contradiction, if $S_\nu = L(\lambda - \mu)$ occurs in the socle of Z. Indeed, notice that $H_D(L)$ contains $L(\lambda)$ by lemma 10.2. By condition (S) then also $H_D(Z)$ contains $L(\lambda)$. So by corollary 10.4 $L(\lambda - \mu)$ is not contained in Z_ν. This proves

Lemma 25.1. Suppose Z is an (indecomposable) module with irreducible maximal atypical cosocle $L = L(\lambda)$. If Z satisfies condition (S), then the
second layer of the upper Loewy filtration of Z does not contain the irreducible module $L(\lambda - \mu)$.

A case of particular interest is $L = 1$. Fix some irreducible S with the property $Ext_{R_n}(S, 1) \neq 0$. In section 27 we will show for $L = 1$ that $\omega^0(qE) = 0$ (lemma 27.4).

26. The module $R((n))$

We describe a certain maximal atypical mixed tensor for $n \geq 2$.

We recall some terminology from [BS11]. Given weights $\lambda, \mu \sim \alpha$ in the same block one can label the cup diagram λ resp. the cap diagram μ with α to obtain λ_α resp. $\alpha_t\mu$. These diagrams are by definition consistently oriented if and only if each cup resp cap has exactly one \forall and one \land and all the rays labelled \land are to the left of all rays labelled \forall. Set $\lambda \subset \alpha$ iff $\lambda \sim \alpha$ and λ_α is consistently oriented.

A crossingless matching is a diagram obtained by drawing a cap diagram underneath a cup diagram and then joining rays according to some order-preserving bijection between the vertices. Given blocks Δ, Γ a $\Delta\Gamma$-matching is a crossingless matching t such that the free vertices (not part of cups, caps or lines) at the bottom are exactly at the position as the vertices labelled \circ or \times in Δ; and similarly for the top with Γ. Given a $\Delta\Gamma$-matching t and $\alpha \in \Delta$ and $\beta \in \Gamma$, one can label the bottom line with α and the upper line with β to obtain $\alpha_t\beta$. $\alpha_t\beta$ is consistently oriented if each cup resp cap has exactly one \forall and one \land and the endpoints of each line segment are labelled by the same symbol. Notation: $\alpha \rightarrow^t \beta$.

For t a crossingless $\Delta\Gamma$ and $\lambda \in \Delta$, $\mu \in \Gamma$ label the bottom and the upper line as usual. The lower reduction $\text{red}(\lambda_t)$ is the cup diagram obtained from λ_t by removing the bottom number line and all connected components that do not extend up to the top number line.

Theorem 26.1. [BS12b], Thm 3.4. and [BS10a], Thm 4.11: In $K_0(R_n)$ the mixed tensor $R(\lambda)$ attached to the bipartition λ satisfies

$$[R(\lambda)] = \sum_{\mu \subset \alpha \rightarrow^t 1, \text{red}(\mu) = 1} [L(\mu)]$$

where t is a fixed matching determined by λ between the block Γ of 1 and the block Δ of λ^\dagger [BS12b], 8.18. If $L(\mu)$ is a composition factor of $R(\lambda)$, its graded composition multiplicities are given by

$$\sum_{\mu} (q + q^{-1})^{n_\mu} [L(\mu)]$$

where n_μ is the number of lower circles in μ_t. 88
Lemma 26.2. The module $R = R((n)^n)$ in \mathcal{R}_{n+r+1}, $r \geq 0$, has Loewy length $2n + 1$ with socle and cosocle equal to 1. We have $DS(R((n)^n)) = R((n)^n)$. If $r = 0$, $DS(R) = P(1)$. R contains 1 with multiplicity 2^{2n}. It contains the irreducible module $L(h) = [n, 1, \ldots, 1, 0, \ldots, 0]$ (with 1 occurring $n - 1$-times) in the second Loewy layer. The multiplicity of $L(h)$ in R is $2^{2(n-1)}$. It contains the module $[n, n, \ldots, n, 0, \ldots, 0]$ as the constituent of highest weight in the middle Loewy layer with multiplicity 1. It does not contain the modules $BS^{n-1} = [n, 1, \ldots, 1]$, $BS^n = [n + 1, 1, \ldots, 1]$, $[n, 1, \ldots, 1, -1]$ and $[n, 1, \ldots, 1, -1, \ldots, -1]$ (with 1 occurring $n - 1$-times) as composition factors.

Proof. The Loewy length of a mixed tensor is $2d(\lambda) + 1$ (where $d(\lambda)$ is the number of caps) and $d((n - 1)^n) = n - 1$ [Hei14]. The composition factors of R are given as a sum $\sum \mu (q + q^{-1})^n[L(\mu)]$. For our choice of $\lambda = (n - 1)^n$ the matching is given by [Hei14] (picture for $n = 4$)

with n caps and where the rightmost vertex in a cap is at position n. The irreducible module in the socle and cosocle is easily computed from the rules of the section 16. The weight

\[h = (n, 1, \ldots, 1, 0|0, -1, \ldots, -1, n - n) \]

easily seen to satisfy $h \rightarrow^t 1$, $red(h^t) = 1$, hence occurs as a composition factor. The number of lower circles in the lower reduction ht is $n - 1$, hence $L(h)$ occurs with multiplicity $2^{2(n-1)}$. If we number the Loewy layers starting with the socle by $1, 2, \ldots, 2n + 1$, $L(h)$ occurs in the $2k$-th Loewy layer ($k = 1, \ldots, n$) with multiplicity $\binom{n - 1}{k - 1}$. Likewise for 1 with $n_1 = n - 1$. We note: A weight μ can only satisfy $red(\mu^t) = 1$ if the vertices $-n, -n - 1, \ldots, -n - r$ (the first vertices left of the caps) are labelled by \vee. Hence:

- BS^{n-1} does not occur as a composition factor. The vertex $-n$ is labelled by \wedge.
- $[n, 1, \ldots, 1, -1]$ does not occur as a composition factor. The vertex $-n$ is labelled by \wedge.
- $[n+1, 1, \ldots, 1]$ does not occur as a composition factor since all composition factors $[\mu_1, \ldots, \mu_n]$ satisfy $\mu_1 \leq n$ since $[n, \ldots, n, 0, \ldots, 0]$ is the constituent of highest weight.

\[\square \]
Remark: In particular the constituent 1 occurs with the same multiplicity as in \(P(1) \in \mathcal{R}_n \).

Remark: The module \(R(n^n) \) can be obtained as follows. Let \(\{n^n\} \) be the covariant module to the partition \((n^n) \) and \(\{n^n\}^{\vee} \) its dual. Then \(R(n^n) \) is the projection on the maximal atypical block of \(\{n^n\} \otimes \{n^n\}^{\vee} \).

Example: For \(\text{Gl}(3|3) \) the Loewy structure of the module \(R(2^2) \) is

\[
\begin{pmatrix}
[0, 0, 0] \\
[1, 0, 0] \oplus [2, 1, 0] \\
[2, 0, 0] \oplus [2, -1, -1] \oplus [0, 0, 0] \oplus [0, 0, 0] \oplus [1, 1, 0] \oplus [2, 2, 0] \\
[1, 0, 0] \oplus [2, 1, 0] \\
[0, 0, 0]
\end{pmatrix}.
\]

27. THE BASIC HOOK REPRESENTATIONS \(S \)

The case \(L = 1 \). Suppose \(Z \) has cosocle 1 and the projection \(q : Z \to 1 \) satisfies condition (S). If \(Z \) is not simple, we constructed objects \(V_\nu \) with cosocle 1 and simple socle \(S_\nu = \text{Ker}(q_\nu) \). In this situation \(\text{Ext}^1_{\mathcal{R}_n}(1, S_\nu) \neq 0 \).

Proposition 27.1. For any nontrivial extension

\[
0 \longrightarrow S_\nu \longrightarrow V \longrightarrow 1 \longrightarrow 0
\]

the vectorspace \(\omega_{n,0}^0(V) \) is zero (for simple \(S_\nu \)). Hence \(\omega(q) : \omega(V) \to \omega(1) \) is the zero map.

For the proof we use several lemmas. Finally lemma 27.4 proves the proposition.

Lemma 27.2. Up to isomorphism there are \(n + 1 \) irreducible modules \(L \) in \(\mathcal{R}_n \) such that \(\text{Ext}^1(1, L) \neq 0 \). They are

1. \(L_n(n) = \text{Ber}_n \otimes S^{n-1} \)
2. its dual \(L_n(n)^{\vee} \cong [0, \ldots, 0, -1] \), and for
3. \(i = 1, \ldots, n - 1 \) the basic selfdual representations

\[
L_n(i) = [i, 1, \cdots, 1, 0, \cdots, 0]
\]

(with \(n - i \) entries 0).

In all cases \(\dim(\text{Ext}^1(L, 1)) = 1 \). Furthermore

\[
DS_{n,j}(L_n(i)) = L_j(i)
\]

holds for \(i < j \leq n \) and

\[
DS_{n,i}(L_n(i)) = L_i(i) \oplus L_i(i)^{\vee} \oplus Y
\]

where \(Y \neq 1 \) is an irreducible module with \(\text{Ext}^1(1, Y) = 0 \) and sector structure

\[
[V_n, \wedge_{n+1}] \wedge_{n+2} [-n + 3, \ldots, n - 2] \wedge_{n-1} [V_n, \wedge_{n+1}].
\]
Example. \(L_n(1) = S^1 \).

Proof. \(L^* \cong L \) for irreducible objects \(L \) implies \(Ext^1(1, L) \cong Ext^1(L, 1) \).
Furthermore \(Ext^1(L, 1) \cong Ext^1((L^*)^\vee, 1) \) and \(L = L^* \), hence
\[
Ext^1(L, 1) \cong Ext^1(L^\vee, 1).
\]
By [BS10a], cor. 5.15 for \(L = L(\lambda) \)
\[
\dim Ext^1(L(\lambda), 1) = \dim Ext^1(V(\lambda), 1) + \dim Ext^1(V(0), L(\lambda))
\]
holds. Since 1 is a Kostant weight, there exists a unique weight \(\lambda \) characterized by \(\lambda \leq 0 \) (Bruhat ordering) and \(l(\lambda, 0) = 1 \) in the notations of loc. cit. lemma 5.2, such that \(\dim Ext^1(V(\lambda), 1) \neq 0 \). One easily shows \(L(\lambda) \cong [0, \ldots, 0, -1] \).

On the other hand \(\dim Ext^1(V(0), L(\lambda)) \neq 0 \) implies \(0 < \lambda \) (see the explanations preceding loc. cit. (5.3) and loc. cit. lemma 5.2(i)). Then for any pair of adjacent labels \(i, i + 1 \) of \(\rho \) of type \(i = \lor, i + 1 = \land \) we write \(\rho \in \Lambda^\lor,^\land \), if the labels of \(\rho \) at \(i, i + 1 \) are the same \(i = \lor, i + 1 = \land \). Then lemma 5.2(ii) of loc. cit. gives
\[
\dim(Ext^1_{R_n}(V(\rho), L(\lambda))) = \begin{cases}
\dim(Ext^1_{R_{n-1}}(V(\rho'), L(\lambda'))) & \text{if } \lambda \in \Lambda^\lor,^\land \\
\dim(Hom_{R_n}(V(\rho''), L(\lambda))) & \text{otherwise}
\end{cases}
\]
Here \(\lambda', \mu' \) are obtained from \(\lambda, \mu \) by deleting \(i, i + 1 \), and \(\rho'' \) is obtained by transposing the labels at \(i, i + 1 \).

This shows our assertion, since for
\[
L(\rho) = 1
\]
there is a unique pair of such neighbouring indices for
\[
[\lor_{-n+1}, \ldots, \lor_0, \land_1, \ldots, \land_n],
\]
namely at the position \((i, i + 1) = (0, 1) \). We now assume \(n \geq 2 \). Then switching this pair gives \(L_n(1) \) below. Freezing then also \((1, \ldots, 2) \) gives \(L_n(2) \) and so on. Hence applying this lemma of loc. cit. several times will prove our first claim. Indeed, as long as we freeze less than \(n - 2 \) pairs, we end up for every \(j \) from \(1, \ldots, n - 1 \) with a representation \(L_n(j) \). It has only one sector
\[
[\lor_{1-n}, \ldots, \lor_{j-1} [\lor_{j-2}, \ldots, \lor_0, \land_1, \ldots, \land_{j-1} [\lor_j, \land_{j+1}] \lor_{j+2}, \ldots, \land_n].
\]
In addition, if we freeze \(n - 1 \) pairs we end up with \(L_n(n) \) with the sector structure
\[
[\lor_{2-n}, \lor_3, \ldots, \land_{n-1}, \land_n][\lor_{n}, \land_{n+1}].
\]
Indeed \(L_n(n) \cong \Ber_n \otimes S^{n-1} \).

The remaining assertions now follow from theorem 14.3, since \(L_{n+1}(n) \) has sectors
\[
S_1S_2S_3 = [\lor_{-n}, \land_{-n+1} [\lor_{n-2}, \ldots, n-1] [\lor_n, \land_{n+1}].
\]
Hence \(DS(L_{n+1}(n)) = (Ber \otimes S^{n-1}) \oplus (Ber \otimes S^{n-1})^\vee \oplus Y \) for \(Y \) with sector structure \([\vee_{-n}, \wedge_{n+1}][-n + 3, ..., n - 2] \wedge_{n-1} [\vee_n, \wedge_{n+1}]\).

Basic cases. For a nontrivial extension

\[
\begin{array}{ccc}
0 & \longrightarrow & L_n(i) \\
\longrightarrow & V & \longrightarrow \end{array}
\]

first suppose \(S = L_n(i) \) is basic, so \(i \in \{1, ..., n - 1\} \). Since \((L_n(i)^*)^\vee \cong L_n(i)^\vee \cong L_n(i) \) for \(i < n \), \((V^*)^\vee \) again defines a nontrivial extension

\[
\begin{array}{ccc}
0 & \longrightarrow & L_n(i) \\
\longrightarrow & (V^*)^\vee & \longrightarrow \end{array}
\]

We now use \(DS(L_n(i)) = L_{n-1}(i) \) for \(1 \leq i < n - 1 \). In \(T_{n-1} \) the induced long exact sequence

\[
H^{-1}(1) \longrightarrow H^0(S) \longrightarrow H^0(V) \longrightarrow H^0(1) \longrightarrow H^1(S)
\]

remains exact, since \(H^\ell(S) = L_{n-1}(i) \) for \(\ell = 0 \) and is zero otherwise and similarly \(H^\ell(1) = 1 \) for \(\ell = 0 \) and is zero otherwise. In other words for basic \(S \) we obtain from the given extension in \(\mathcal{R}_n \) an exact sequence in \(\mathcal{R}_{n-1} \)

\[
\begin{array}{ccc}
0 & \longrightarrow & L_{n-1}(i) \\
\longrightarrow & DS(V) & \longrightarrow \end{array}
\]

Repeating this \(n - i \) times we obtain an exact sequence

\[
\begin{array}{ccc}
0 & \longrightarrow & L_i(i) \oplus L_i(i)^\vee \oplus Y \\
\longrightarrow & DS_{n,i}(V) & \longrightarrow \end{array}
\]

Since \(Ext^1(1,Y) = 0 \) this implies

\[
DS_{n,i}(V) = E \oplus Y
\]

for some selfdual module \(E \) defining an extension between \(1 \) and \(L_i(i) \oplus L_i(i)^\vee \). We claim that this exact sequence does not split in \(T_i \).

Proposition 27.3. Suppose \(r \) is an integer \(\geq 0 \). For an indecomposable module \(V \) defining a nontrivial extension between \(1 \) and \(L_{n+1+r}(n) \) in \(\mathcal{R}_{n+r+1} \), the object \((DS)^{or+1}(V)\) decomposes into the direct sum of the irreducible module \(Y \) from above and an indecomposable extension module \(E \) in \(\mathcal{R}_n \).

Proof. Notice any two such indecomposable extensions define isomorphic modules \(V \), since the relevant \(Ext \)-groups are one-dimensional. We assume \(r = 0 \) for simplicity. Since the constituents \(L_{n+1}(n) \) and \(1 \) of \(V \) are basic, this implies \(DS(V) = H^0(V) = Y \oplus E \). If the module \(E \) is not indecomposable, it is semisimple (for this use Tannaka duality). We proceed as follows:

For the mixed tensor \(R = R_{n^n} \) in \(\mathcal{R}_{n+1} \) we know that its image \(DS(R_{n^n}) \) is the projective hull \(P(1) \) of \(1 \) in \(\mathcal{R}_n \) and \(P(1) \) is an indecomposable module with top \(1 \). The module \(R_{n^n} \) admits as quotient an indecomposable module \(V \) defining a nontrivial extension between \(1 \) (the top of \(R \)) and the module
$L_{n+1}(n)$ (which sits in the second layer of the Loewy filtration of R). Hence $R/K \cong V$ for some submodule K of R. We claim that

$$
0 \longrightarrow H^0(K) \overset{i}{\longrightarrow} H^0(R) \overset{p}{\longrightarrow} E \oplus Y \longrightarrow H^1(K) \longrightarrow 0
$$

is exact and $H^\nu(K) = 0$ for $\nu \neq 0, 1$. For this use $H^\ast(V) = H^0(V)$ and $H^\nu(R) = P(1)$ for a unique ν. If $\nu \neq 0$, then $H^\nu(K) \to H^\nu(R) = P(1)$ would be surjective and therefore $H^\nu(K) = P(1)$. We exclude this later. So suppose for the moment $\nu = 0$.

The image of p cannot contain the irreducible module $Y \ncong 1$, since the top of $P(1)$ is 1. If E splits, it is semisimple. Then the image of p can contain E either, since again this would contradict that $P(1)$ has top 1. Therefore the image of p is 1 or zero, if E splits. This leads to a contradiction:

Look at all constituents X of R with $Ber \otimes S^{n-1}$ in $H^\nu(X)$ for $\nu = -1, 0, 1$. These X are isomorphic to the following irreducible modules X_{-1}, X_0, X_1 with $Ber \otimes S^{n-1}$ occurring in $H^i(X_i)$ respectively: the basic module $X_0 = L_{n+1}(n)$ with sector structure $[-n, -n + 1][-n + 2, ..., n - 1][n, n + 1]$ and X_1 with sector structure $[1 - n][2 - n, ..., n - 1][n, n + 1][n + 2]$ and X_{-1} with sector structure $[-n - 1, -n][2 - n, ..., n - 1][n, n + 1]$. Then $Ber \otimes S^{n-1}$ occurs in $H^i(X_i)$ for $i = 0, \pm 1$.

Let $F^i(.)$ denote the descending Loewy filtration. For a module Z let $m(Z)$ denote the number of Jordan-Hölder constituents of Z that are isomorphic to $Ber \otimes S^{n-1}$. Next we use that for all i

$$X_1, X_{-1} \text{ does not occur in the } gr^i_{F}(R).$$

Indeed according to section 26 all irreducible constituents $[\lambda]$ satisfy the property $\lambda_{n+1} = 0$ except for one given by $[n, -n + 1, ..., -n + 1]$. Therefore $m(H^{i+1}(gr^i_{F}(R))) = 0$ and hence $m(H^1(F^i(X))) = 0$. Since also $m(H^{-1}(gr^1_{F}(R))) = 0$, then

$$H^{-1}(gr^i_{F}(R)) \to H^0(F^i(R)) \to H^0(F^{i-1}(R)) \to H^0(gr^i_{F}(R)) \to H^1(F^i(R))$$

implies $m(H^0(F^i(R))) = m(H^0(F^{i-1}(R))) + m(H^0(gr^i_{F}(R)))$. For small i we have $F^i(R) = R$ and therefore

$$m(H^0(R)) = \sum_i m(H^0(gr^i_{F}(R))).$$

They same argument then applies for the submodule K of R. Hence

$$m(H^0(K)) = m(H^0(R)) - 1$$

by counting the multiplicities of X_0 in K resp. R. Hence the image of p must contain $Ber \otimes S^{n-1}$ and hence E is an indecomposable quotient of $P(1)$.

93
Now let us address the assertion \(\nu = 0 \) from above. If \(\nu \neq 0 \), then \(H^0(K) \cong P(1) \oplus ? \) gives a contradiction using the same counting argument.

In the case \(r > 0 \) one uses the same kind of argument. Again the extension defined by \(V \) in \(\mathcal{R}_{n+r+1} \) can be realized as a quotient of \(R = R_n \) in \(\mathcal{R}_{n+r+1} \). The argument is modificatis modificandis the same.

The non-basic cases. For a nontrivial extension in \(T_n \) of the form

\[
0 \rightarrow L_n(n) \rightarrow V \rightarrow 1 \rightarrow 0.
\]

we get a dual nontrivial extension

\[
0 \rightarrow [0, ..., 0, -1] \rightarrow (V)^\vee \rightarrow 1 \rightarrow 0.
\]

In lemma 24.1 and lemma 24.2 we defined \(Q_a \), which for \(a = 1 \) defines a nontrivial extension between \(1 \) and \(L_n(n)^\vee \). Since \(\dim(Ext^1(1, L_n(n)^\vee)) = 1 \), we get

\[
(V)^\vee \cong Q_1.
\]

By corollary 24.6 we get \(DS_{n,0}^\ell(V) = 0 \) and \(\omega_{n,0}^\ell(V) = 0 \) for all \(\ell \leq 0 \). Similarly the by duality \(DS_{n,0}^\leq((V^*)^\vee) = 0 \) for \(\ell \geq 0 \). This implies \(\omega_{n,0}^\leq((V^*)^\vee) = 0 \) for \(\ell \geq 0 \).

Finally consider the nontrivial extension \(V_i \) between \(1 \) and \(L_n(i) \) in \(\mathcal{R}_n \) and the nontrivial extension \(DS_{n,i}(V_i) \) in \(\mathcal{R}_i \) from above. It has the form

\[
DS_{n,i}(V_i) = E \oplus Y
\]

for

\[
0 \rightarrow L_i(i) \oplus L_i(i)^\vee \rightarrow E \rightarrow 1 \rightarrow 0.
\]

Since \(DS_{n,i}((V_i^*)^\vee)/Y = \omega_{n,i}((V_i^*)^\vee)/Y = (\omega_{n,i}(V_i)^*Y)^\vee/Y \) are both pull-backs of a nontrivial extension of \(1 \) by \(L_i(i) \)

\[
0 \rightarrow L_i(i) \rightarrow E \rightarrow 1 \rightarrow 0
\]

and of the nontrivial extension of \(1 \) by \(L_i(i) \)

\[
0 \rightarrow L_i(i) \rightarrow E' \rightarrow 1 \rightarrow 0
\]

Hence there exists an exact sequence

\[
0 \rightarrow DS_{n,i}(V_i)/Y \rightarrow E \oplus E' \rightarrow 1 \rightarrow 0
\]

so that

\[
DS_{i,0}^{-1}(1) \rightarrow DS_{i,0}^0(DS_{n,i}(V_i)/Y) \rightarrow DS_{i,0}^0(E) \oplus DS_{i,0}^0(E') \rightarrow
\]

is exact. Since \(DS_{i,0}^0(E) = 0 \) and \(DS_{i,0}^0(E') = 0 \) by corollary 24.6 and since \(DS_{i,0}^{-1}(1) = 0 \), therefore \(DS_{i,0}^0(DS_{n,i}(V_i)) = 0 \). Hence \(\omega_{i,0}^0(DS_{n,i}(V_i)) = \omega_{i,0}^0(Y) \). The Leray type spectral sequence

\[
DS_{i,0}^{p+q}(DS_{n,i}(V)) \implies DS_{n,0}^{p+q}(V)
\]

\(^4\)The same method should show \(H^\ell(R(\mu, \rho)) \neq 0 \) only for \(\ell = \lambda_n - n + 1 \) where \(L(\lambda) = \text{top}(R(\mu, \rho)) \).

94
degenerates, since $DS_{n,i}^q(V) = 0$ for $q \neq 0$. Furthermore therefore also $\omega_{n,i}(V) \cong DS_{n,i}(V)$. One can now argue as in the proof of lemma 8.4 to show

$$\omega_{n,0}^0(V_i) = \omega_{i,0}^0(DS_{n,i}(V_i)) = \omega_{i,0}(Y).$$

Since the map

$$\omega_{n,i}(q : E \oplus Y \to 1)$$

is trivial on the simple summand $Y \neq 1$, hence

Lemma 27.4. For every nontrivial extension

$$0 \longrightarrow S \longrightarrow V \overset{q}{\longrightarrow} 1 \longrightarrow 0$$

of 1 by a simple object S in R_n, the map $\omega^0(q_V)$ vanishes.

The last lemma completes the proof of proposition 27.1. Now we come to the main result:

Corollary 27.5. Suppose Z is indecomposable and $\text{cosocle}(Z) \cong 1$. If the quotient map $q : Z \to 1$ is strict, then $q : Z \cong 1$.

Corollary 27.6. For a nontrivial extension V between 1 and $L_n(n)$ or its dual $L_n(n)^{\vee}$

$$H^\nu_D(V) = 0, \quad \nu \neq 1$$

holds, and hence the induced map $H_D(q) : H_D(V) \to H_D(1)$ is trivial.

REFERENCES

[BKN09a] Boe, B. D. and Kujawa, J. R. and Nakano, D. K., *Complexity and module varieties for classical Lie superalgebras*, arXiv e-prints, 0905.2403, (2009)

[BKN09b] Boe, B. D. and Kujawa, J. R. and Nakano, D. K., *Cohomology and support varieties for Lie superalgebras II*, Proc. Lond. Math. Soc. (3), 98, 1, (2009)

[BKN10] Boe, B. D. and Kujawa, J. R. and Nakano, D. K., *Cohomology and support varieties for Lie superalgebras*, Trans. Am. Math. Soc., 362, 12, (2010)

[Bru03] Brundan, J., *Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n)*, J. Am. Math. Soc., 16, 1, (2003)

[BS10a] Brundan, J. and Stroppel, C., *Highest weight categories arising from Khovanov’s diagram algebra. II: Koszulity*, Transform. Groups, 15, 1, (2010)

[BS11] Brundan, J. and Stroppel, C., *Highest weight categories arising from Khovanov’s diagram algebra. I: cellularity*, Mosc. Math. J., 11, 4, (2011)

[BS12a] Brundan, J. and Stroppel, C., *Highest weight categories arising from Khovanov’s diagram algebra. IV: the general linear supergroup*, J. Eur. Math. Soc. (JEMS), 14, 2, (2012)

[BS12b] Brundan, J. and Stroppel, C., *Gradings on walled Brauer algebras and Khovanov’s arc algebra*, Adv. Math., 231, 2, (2012)

[CW11] Comes, J. and Wilson, B., *Deligne’s category $\text{Rep}(GL_\lambda)$ and representations of general linear supergroups*, arXiv e-prints, 1108.0652, (2011)

[Del07] Deligne, P., *La catégorie des représentations du groupe symétrique S_t, lorsque t n’est pas un entier naturel*, Mehta, V. B. (ed.), Algebraic groups and homogeneous spaces. Proceedings of the international colloquium, Mumbai, India, January 6–14, 2004, 209-273, (2007)
[Dro09] Drouot, Fr., *Quelques proprietes des representations de la super-algebre der Lie \(gl(m, n) \)*, PhD thesis, (2009)

[DS05] Dulio M. and Serganova V., *On associated variety for Lie superalgebras*, arXiv:math/0507198v1, (2005)

[Ger98] Germoni, J., *Indecomposable representations of special linear Lie superalgebras*, J. Algebra , 209, 2, (1998)

[Ger05] Duflo M. and Serganova V., *On associated variety for Lie superalgebras*, arXiv:math/0507198v1, (2005)

[GKPM11] Geer, N. and Kujawa, J. and Patureau-Mirand, B., *Generalized trace and modified dimension functions on ribbon categories*, Sel. Math., New Ser., 17, 2, (2011)

[GQS07] Goetz, G. and Quella, Th. and Schomerus, V., *Representation theory of \(sl(2|1) \)*, J. Algebra, 312, 2, (2007)

[Hei14] Heidersdorf, Th., *Mixed tensors of the General Linear Supergroup*, preprint, (2014)

[Kac78] Kac, V., *Representations of classical Lie superalgebras*, Differ. geom. Meth. math. Phys. II, Proc., Bonn 1977, Lect. Notes Math. 676, 597-626 (1978)

[Kuj11] Kujawa, J., *The generalized Kac-Wakimoto conjecture and support varieties for the Lie superalgebra \(osp(m|2n) \)*, arXiv e-prints, 1112.3384, (2011)

[Sch79] Scheunert, M., *The theory of Lie superalgebras. An introduction*, 1979, Lecture Notes in Mathematics. 716. Berlin-Heidelberg-New York: Springer-Verlag, X, 271 p. (1979)

[Ser10] Serganova, V., *On the superdimension of an irreducible representation of a basic classical Lie super algebra*, Supersymmetry in mathematics and physics. UCLA Los Angeles, USA 2010. Papers based on the presentations at the workshop, Februar 2010, Berlin: Springer (2011)

[Wei10] Weissauer, R., *Monoidal model structures, categorial quotients and representations of super commutative Hopf algebras II: The case \(Gl(m, n) \)*, arXiv e-prints, (2010)