Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy

Junchao Chen1,6, Xin-Ping Wu2,3,6*, Michael A. Hope4,6, Kun Qian1, David M. Halat4, Tao Liu4, Yuhong Li1, Li Shen1, Xiaokang Ke1, Yujie Wen1, Jia-Huan Du1, Pieter C.M.M. Magusin4, Subhradip Paul5, Weiping Ding1, Xue-Qing Gong2, Clare P. Grey4* & Luming Peng1*

Compared to nanomaterials exposing nonpolar facets, polar-faceted nanocrystals often exhibit unexpected and interesting properties. The electrostatic instability arising from the intrinsic dipole moments of polar facets, however, leads to different surface configurations in many cases, making it challenging to extract detailed structural information and develop structure-property relations. The widely used electron microscopy techniques are limited because the volumes sampled may not be representative, and they provide little chemical bonding information with low contrast of light elements. With ceria nanocubes exposing (100) facets as an example, here we show that the polar surface structure of oxide nanocrystals can be investigated by applying 17O and 1H solid-state NMR spectroscopy and dynamic nuclear polarization, combined with DFT calculations. Both CeO4-termination reconstructions and hydroxyls are present for surface polarity compensation and their concentrations can be quantified. These results open up new possibilities for investigating the structure and properties of oxide nanostructures with polar facets.
Polar surfaces, which have a permanent dipole moment perpendicular to the surface, are of great importance in both physical and chemical applications. Due to the very large energies of uncompensated surfaces, polarity compensation is required, generating different and complex surface configurations for these facets. Therefore, it is extremely difficult to understand the atomic-scale structure of polar surfaces, which is essential in order to design related nanomaterials for a targeted property. By applying electron microscopy and computational modelling, a variety of polarity compensation mechanisms have been proposed, including ordered surface reconstructions, surface disorder, adsorption of environmental gas molecules, surface metal layers deposition, and subsurface oxygen vacancies. Despite the many advantages of microscopy techniques, they are limited to the visualization of a small fraction of the sample which may not yield reliable quantitative information about the whole sample, and are typically performed at high vacuum conditions that may alter the surface environment.

Furthermore, light elements, such as hydrogen and oxygen which are of key importance for many materials, are difficult to probe with such techniques. Although significant developments have been made in environmental electron microscopy, which allows materials to be investigated under adjustable pressure conditions and in variable gaseous environments, the other disadvantages remain and complementary methods are required.

Solid-state NMR spectroscopy is a powerful method which can provide rich local structural information for solids, complementary to the information obtainable from diffraction and microscopy techniques. Recently, 17O solid-state NMR spectroscopy has been developed as a new approach for determining the surface structure of oxide nanomaterials, with help from surface-selective labeling and DFT calculations. Oxygen ions in different layers of ceria nanostructures can be distinguished according to the NMR shifts. However, only non-polar facets were studied previously and no attempt was made to investigate the more challenging oxide nanostructures with polar facets. Furthermore, quantification of different surface species was not possible using exclusively 17O NMR, due to the quadrupolar nature of 17O and the potentially non-uniform isotopic labeling procedure.

Ceria nanocubes expose (100) facets, which show exceptional properties as both the catalytically active plane and the support facet; this is a relatively simple polar surface, making ceria nanocubes an ideal model. Using the example of ceria nanocubes, we introduce a strategy of qualitative 17O and quantitative 1H solid-state NMR spectroscopy combined with DFT calculations to characterize oxide nanocrystals with polar facets. We thereby quantitatively determine detailed polar surface structural information, specifically the presence and concentration of reconstructed Ce terminated structures (CeO2-t) and hydroxyl groups.

Results

Morphology of the ceria nanocubes. Ceria nanocubes were hydrothermally synthesized with Ce(NO3)3·6H2O and NaOH (see methods). The X-ray diffraction (XRD) data (Supplementary Fig. 1) confirms the formation of ceria with a fluorite structure (JCPDS No. 34-0394). High-resolution transmission electron microscopy (HRTEM) images show that the samples adopt a cubic morphology with sizes of 18 to 40 nm, dominated by (100) polar surfaces before and after 17O enrichment (Supplementary Fig. 2). Inductively coupled plasma mass spectrometry (ICP-MS), elemental analysis and X-ray photoelectron spectroscopy (XPS) data show that there are no detectable Na+ or NO3− impurities (Supplementary Fig. 3 and Supplementary Table 1). In addition, the concentration of oxygen vacancies at the surface is only 1.0% according to analysis of Raman spectroscopy data and, therefore, their influences are not considered further (Supplementary Fig. 4 and Supplementary Note 1).

NMR spectra of the ceria nanocrystals. The 17O solid-state NMR spectra of ceria nanocubes enriched with 17O2 at 523 K (NCs-17O2) and H217O at 373 K (NCs-H217O) are shown in Fig. 1. The 17O NMR spectrum of NCs-17O2 is dominated by the peak at 877 ppm (see the untruncated spectrum in Supplementary Fig. 5) due to the OCe4 environment in the bulk of the ceria nanocubes, but other signals can also be observed at 970, 935, and 825 ppm. 17O NMR signals for ceria samples with (111) facets have previously been observed at 1040, 920, and 825 ppm due to oxygen ions in the first, second, and third (sub-)surface layers respectively; the shoulder resonance at 825 ppm in the NCs-17O2 spectrum is therefore most likely due to a deeper sub-surface layer while the signals at 970 and 935 ppm, which have not previously been observed, may be tentatively assigned to the oxygen ions at the (100) surface.

For the spectrum of NCs-H217O, in addition to the bulk signal with a maximum at 877 ppm, two broad peaks centered at approximately 250 and 1012 ppm can be observed. The latter can again, based on its high frequency compared to the bulk resonance, be attributed to under-coordinated surface oxygen ions. Surface-selective isotopic labeling is achieved by exposing the samples to 17O2 gas or to H217O vapor at relatively low temperatures, although there are differences between the spectra that will be discussed later.

A possible explanation for the higher frequency signal in the spectrum of NCs-H217O is the formation of some degree of the thermodynamic (111) surface, given that the first surface layer in this case has been observed at 1040 ppm. However, the HRTEM images show little evidence for (111) facets (Supplementary Fig. 2), and after re-enriching NCs-H217O with 17O2 gas, the surface signals are identical to those of NCs-17O2 and do not
Deconvolution of 1H spectra and the summarized 1H chemical shifts. Spectral Assignments from DFT Calculations. DFT calculations have previously proved successful in aiding spectral assignment for surface oxygen ions in oxide nanostructures\cite{28,29}. The differences between the calculated and experimental results are generally around or less than 10 ppm\cite{26}, allowing reliable spectral assignment. An oxygen terminated (O-t) model of ceria (100) surface was previously investigated for DFT calculations\cite{28} (Fig. 3a), however, the calculated 17O NMR parameters (Supplemental Figs. 8–10 and Supplementary Table 4) are not in agreement with our NMR observations, i.e., no surface species in the calculations are associated with resonant frequencies at 970, 935 or \sim1012 ppm and the calculated signal for the 1st layer two-coordinate oxygen ion (17O$_{2c}$), with a high frequency chemical shift (1117 ppm), is not observed in the experimental spectrum.

As seen from the 1H and 17O NMR spectra, a significant number of hydroxyl groups are present at the surface, which must be considered. A previous computational study reported that dissociative adsorption of water is much more favorable than the molecular adsorption of water on the (100) O-t surface\cite{41}; accordingly, DFT calculations were performed on O-t models with 1, 2, 3 and 4 dissociatively adsorbed H$_2$O molecules per O-t

The 1H → 17O HETCOR NMR spectrum of NCs-H$_2^{17}$O (Fig. 2c) shows correlations between the 17O signals at around 250 ppm with the 1H signals due to hydroxyl groups, confirming the assignment of the 17O NMR spectra. Furthermore, hydroxyl sites with higher 17O shifts are associated with higher 1H shifts, and thus a stronger acidity (although stronger hydrogen bonding can also result in larger shifts)\cite{39}. The conclusion that bridging hydroxyl groups are more acidic than terminal hydroxyls is in agreement with previous reports in zeolites\cite{39}. Since the 17O NMR shift range is much wider than for 1H NMR shifts, 17O NMR spectroscopy may provide an alternative and more sensitive probe of the acidity and acid-catalysis reactivity for oxide nanomaterials. However, 17O NMR experiments often require spectra acquired at multiple magnetic fields, preferably higher fields, or with high resolution techniques (e.g., MQMAS\cite{40}), in order to decrease the linewidths arising from quadrupolar interactions.

Spectral Assignments from DFT Calculations. DFT calculations have previously proved successful in aiding spectral assignment for surface oxygen ions in oxide nanostructures\cite{28,29}. The differences between the calculated and experimental results are generally around or less than 10 ppm\cite{26}, allowing reliable spectral assignment. An oxygen terminated (O-t) model of ceria (100) surface was previously investigated for DFT calculations\cite{28} (Fig. 3a), however, the calculated 17O NMR parameters (Supplemental Figs. 8–10 and Supplementary Table 4) are not in agreement with our NMR observations, i.e., no surface species in the calculations are associated with resonant frequencies at 970, 935 or \sim1012 ppm and the calculated signal for the 1st layer two-coordinate oxygen ion (17O$_{2c}$), with a high frequency chemical shift (1117 ppm), is not observed in the experimental spectrum.

As seen from the 1H and 17O NMR spectra, a significant number of hydroxyl groups are present at the surface, which must be considered. A previous computational study reported that dissociative adsorption of water is much more favorable than the molecular adsorption of water on the (100) O-t surface\cite{41}; accordingly, DFT calculations were performed on O-t models with 1, 2, 3 and 4 dissociatively adsorbed H$_2$O molecules per O-t.
surface unit (Supplementary Figs. 11–23 and Supplementary Tables 5–8). On reaction with water, the under-coordinated O$_{2C}$ sites with high chemical shifts are protonated to form hydroxyl groups with calculated shifts of 191–360 ppm, as observed in the experimental 17O NMR spectra; four dissociated H$_2$O molecules per O-t surface unit are required to protonate all the O$_{2C}$ sites (monolayer hydroxylation, see Supplementary Fig. 20). However, there are no calculated resonances at 970, 935 or ~1012 ppm; this suggests that the structure of polar (100) facets in ceria nanocubes is more complicated than the simple O-t model.

Two recent studies suggested that a fraction of ceria (100) facets may form CeO$_4$ terminated (CeO$_4$-t) reconstructions, which yield a lower surface energy than cerium terminated (Ce-t) or O-t surfaces10,42. Therefore, DFT calculations were performed on a model comprising CeO$_4$-t reconstructions linked by O$_{2C}$ sites (CeO$_4$-t surface, Fig. 3b) — a pure CeO$_4$-t reconstruction has previously been shown to have a high surface energy and is thus unstable10.

First, the relative energies of dissociative and molecular adsorption were calculated for a single H$_2$O molecule per CeO$_4$-t surface unit (Supplementary Figs. 24–26). A comparison of the adsorption energies shows that H$_2$O molecules also prefer to adsorb dissociatively on clean CeO$_4$-t ceria (100) surfaces (Supplementary Table 9). The models M$_0$, M$_1$, M$_2$ and M$_3$ then correspond to 0, 1, 2 and 3 dissociatively adsorbed H$_2$O molecules per CeO$_4$-t surface unit. The most energetically favorable H$_2$O adsorption sites in M$_1$, M$_2$, and M$_3$ were then determined by calculating and comparing the adsorption energies of several possible structural models (the lowest energy structure for each model is shown in Supplementary Figs. 26–28). The corresponding 17O NMR calculation results for M$_0$, M$_1$, M$_2$, and M$_3$ are shown in Figs. 4 and 5, Supplementary Figs. 29–38 and Supplementary Tables 10–13 (also see more discussion in Supplementary Note 2 and Supplementary Fig. 39).

The O$_{2C}$ ions in the first layer of models M$_0$ and M$_1$ are associated with very high chemical shifts of 1162 and 1168 ppm respectively; such high frequency signals are not present in the experimental 17O NMR spectra. This again indicates that these high energy, under-coordinated species have reacted with water to form more stable hydroxyl species, as observed in the 1H and 17O NMR spectra.

The calculated 17O NMR shifts (center of gravity, δ_{CG}) based on the CeO$_4$-t model with two or three H$_2$O molecules dissociatively adsorbed on each surface unit (M$_2$ and M$_3$, Figs. 4 and 5, Supplementary Figs. 35–38, Supplementary Tables 12 and 13) are in good agreement with the experimental spectra. All the O$_{2C}$ ions on the surface are consumed by reacting with H$_2$O molecules to form hydroxyl groups, therefore there is no calculated signal at a shift higher than 1100 ppm, as observed experimentally. For the O$_{3C}$ surface species in the CeO$_4$ reconstruction, the calculated shifts in M$_2$ are 943 and 968 ppm, which match the observed resonances at 935 and 970 ppm in the experimental spectrum of NCs-17O$_2$, while the calculated O$_{3C}$ shifts in M$_3$ are 910 and 996 ppm, in accordance with the experimental signals at 907 and ~1012 ppm for NCs-H$_2^{17}$O. The resonance at ~1012 ppm is quite broad, which is presumably due to a distribution of local environments caused by different arrangements of nearby dissociative H$_2$O molecules. The observation that the resonant frequencies are higher for lower-coordinated oxygen ions on the surface is similar to the previous studies on ceria nanoparticles exposing (111) facets and titania nanostructures29,34.

The DFT calculations predict that the O$_{4C}$ ions in the 2nd or 3rd layer for both NCs-17O$_2$ and NCs-H$_2^{17}$O have resonant frequencies closer to the bulk shift of 877 ppm, which is consistent with the relatively broad component observed experimentally for the peak centered at 877 ppm. The predicted peak in the 2nd layer at 756 ppm for M$_3$ is not experimentally observed; this environment, although fully coordinated, is highly distorted (see Supplementary Fig. 40). This distortion may be lost on addition of a bridging hydroxyl between the CeO$_4$ reconstructions (e.g. H$_b$ see Fig. 6), which is above the distorted environment, or the distortion may be averaged at non-zero temperatures due to rapid interconversion of different local environments with similar energies.
Fig. 4 17O NMR spectrum, calculated 17O NMR shifts and the structure model of ceria NCs-17O$_2$. **a** 17O Solid-State NMR spectra of ceria NCs-17O$_2$ (shown in Fig. 1). **b** The summarized 17O NMR shifts (δ_{CGs}) predicted for the CeO$_4$-t model with two H$_2$O molecules dissociatively adsorbed on each surface unit (M_2). **c** The hydrated CeO$_4$-t model used in the DFT calculations with NMR shifts (δ_{CGs}) for oxygen ions and the layer number shown on the right. Red, off-white, and white balls represent bulk oxygen, cerium, and hydrogen ions, respectively. Surface oxygen ions with different shifts are shown in different colors. The calculated 17O NMR parameters for each oxygen ion are shown in Supplementary Table 12. A line broadening of 600 was applied to the enlarged spectrum in the blue region, no line broadening was applied to the enlarged spectrum in the red region.

Fig. 5 17O NMR spectrum, calculated 17O NMR shifts and the structure model of ceria NCs-H$_2$-17O. **a** 17O Solid-State NMR spectra of ceria NCs-H$_2$-17O (shown in Fig. 1). **b** The summarized 17O NMR shifts (δ_{CGs}) predicted for the CeO$_4$-t model with three H$_2$O molecules dissociatively adsorbed on each surface unit (M_3). **c** The hydrated CeO$_4$-t model used in the DFT calculations with calculated NMR shifts (δ_{CGs}) for oxygen ions and the layer number shown on the right. Red, off-white, and white balls represent bulk oxygen, cerium, and hydrogen ions, respectively. Surface oxygen ions with different shifts are shown in different colors. The calculated 17O NMR parameters for each oxygen ion are shown in Supplementary Table 13.
Terminal hydroxyl sites (–OH\textsubscript{T}) are calculated to have 17O shifts (\textit{t}C\textsubscript{CGS}) of 69 ppm for \textit{M \textsubscript{2}} and 71 ppm for \textit{M \textsubscript{3}}, while bridging hydroxyl sites (–OH\textsubscript{B}) for both samples have calculated 17O shifts (\textit{t}C\textsubscript{CGS}) of 206–291 ppm. These sites are predicted to have relatively large \textit{C\textsubscript{CGS}} (5.5–7.6 MHz), thus the corresponding resonances are expected to exhibit significant second order quadrupolar broadening. This agrees well with the broad resonance observed at lower shifts in the experimental spectrum of N\textit{C}\textsubscript{s}-\textit{H\textsubscript{2}}17O; the hydroxyl groups have been largely unenriched for N\textit{C}\textsubscript{s}-\textit{O\textsubscript{2}}, see above.

The above results indicate that the concentration of surface hydroxyl groups has a great impact on the NMR shifts of surface oxygen ions. Furthermore, in order to reproduce the experimental 17O NMR spectra, both dissociated water and CeO\textsubscript{4}-t reconstructions must be included in the calculations. Thus, the ceria (100) surface can be regarded as a combination of CeO\textsubscript{4}-t and O-t surface units, where the under-coordinated O\textsubscript{2C} ions have been converted to bridging hydroxyl groups and terminal hydroxyl groups have formed on some under-coordinated cerium ions.

The 1H NMR chemical shifts were also calculated using DFT, confirming the assignment of the 1H NMR signals at 2–16 ppm and 2.5 ppm to bridging (–OH\textsubscript{B}) and terminal (–OH\textsubscript{T}) hydroxyl groups on the surface (Fig. 6 and Table 1)38,39. The calculated 1H shift for –OH\textsubscript{T} is the most negative, and since the lowest frequency signal in the experimental 1H NMR spectrum is the relatively sharp peak at 2.5 ppm, this resonance is assigned to –OH\textsubscript{T}. The broad signal is attributed to –OH\textsubscript{B}. Different –OH\textsubscript{B} environments are associated with a range of chemical shifts and the distribution is wider for the model with three dissociatively adsorbed H\textsubscript{2}O molecules (M\textsubscript{3}) than for two (M\textsubscript{2}); in particular, the very large shift of H\textsubscript{4} in M\textsubscript{2} is due to hydrogen bonding to the oxygen ions of H\textsubscript{2} and H\textsubscript{3}. This at least partially explains why the experimental –OH\textsubscript{B} resonance is broad and why the spectral line width for N\textit{C}\textsubscript{s}-\textit{H\textsubscript{2}}17O is broader than for N\textit{C}\textsubscript{s}-\textit{O\textsubscript{2}}, given the higher hydroxyl content of the former. An inhomogeneous distribution of dissociated water and variable hydrogen bonding may also contribute to the broadness of the signals.

Based on the quantitative 1H NMR data and the above assignments from the DFT calculations, the fractions of CeO\textsubscript{4}-t and O-t surface units comprising the (100) facets of ceria nanocubes can be determined (Table 2). This is based on the fact that each CeO\textsubscript{4}-t surface unit contains one characteristic terminal hydroxyl group (–OH\textsubscript{T}) and either three (M\textsubscript{3}, Fig. 2a) or five (M\textsubscript{2}, Fig. 2b) bridging hydroxyl groups (–OH\textsubscript{B}); while each hydroxylated O-t surface unit contains eight bridging hydroxyls (–OH\textsubscript{B}) (Supplementary Fig. 21). The fractions of CeO\textsubscript{4}-t and O-t surface units calculated for N\textit{C}\textsubscript{s}-\textit{H\textsubscript{2}}17O (57.1% for O-t and 42.9% for CeO\textsubscript{4}-t) are very close to those for N\textit{C}\textsubscript{s}-\textit{O\textsubscript{2}} (57.5% for O-t and 42.5% for CeO\textsubscript{4}-t), supporting the assignment of these models.

Table 1 Calculated 1H NMR chemical shiftsa for \textit{M \textsubscript{2}} and \textit{M \textsubscript{3}}.

H\textsubscript{iso}/ppm	Assignment	H\textsubscript{iso}/ppm	Assignment
1	–OH\textsubscript{T}	1	–OH\textsubscript{T}
2	–OH\textsubscript{B}	2	–OH\textsubscript{B}
3	–OH\textsubscript{B}	3	–OH\textsubscript{B}
4	–OH\textsubscript{B}	4	–OH\textsubscript{B}
5	–OH\textsubscript{B}	5	–OH\textsubscript{B}
6	–OH\textsubscript{B}	6	–OH\textsubscript{B}

aThe chemical shifts (H\textsubscript{iso}) are referenced to the experimental chemical shift of the terminal hydroxyl (2.50 ppm) (Supplementary Figs. 41 and 42) and summarized under the 1H spectra in Fig. 2a, b.

Table 2 The contents of terminal hydroxyls (–OH\textsubscript{T} and –OH\textsubscript{B}) and different surface units.

Sample	Hydroxyl\textsubscript{a}/%	Surface Unit\textsubscript{a}/%		
–OH\textsubscript{T}	–OH\textsubscript{B}	O-t	CeO\textsubscript{4}-t	
N\textit{C}\textsubscript{s}-\textit{H\textsubscript{2}}17O	6.3	86.1	57.1	42.9
N\textit{C}\textsubscript{s}-\textit{H\textsubscript{2}}17O	5.6	88.6	57.5	42.5

aThe –OH\textsubscript{T} and –OH\textsubscript{B} contents are determined from the deconvoluted peak intensities of the 1H NMR spectra (Fig. 2, Supplementary Table 2).
cross-polarization to the nucleus of interest, can yield greater enhancements in some cases, but for 17O NMR only oxygen atoms directly bonded to H can be observed, so indirect DNP cannot be used to detect the unhydroxylated (sub-)surface oxygen environments. Therefore, direct DNP SENS was applied to study ceria nanocubes and aid spectral assignments. The intensities for the bulk 17O peak at 875 ppm are 5.2 times stronger with microwave irradiation than without, for both NCs-17O$_2$ and NCs-H$_2^{17}$O (Fig. 7a, b). For NCs-17O$_2$, the enhancement factor for the peak at 970 ppm is ~8, while the surface signals for NCs-H$_2^{17}$O can only be observed in the “on” spectrum, indicating that hyperpolarization is more efficient for these species than for the bulk, and therefore that these resonances are indeed surface oxygen species.

The DNP build-up time, T_{DNP}, can also be fitted to distinguish external and internal 17O nuclei, since nuclei close to the surface hyperpolarize faster and hence have a shorter T_{DNP}. For NCs-17O$_2$, the T_{DNP} values for the peaks at 970, 880, and 870 ppm are much smaller than for the bulk signal at 875 ppm, implying that the former arise from surface species in NCs-17O$_2$ (Fig. 7c and Table 3). Broader peaks are observed for the 17O DNP SENS spectra than for the room temperature 17O spectra, which can be attributed to the freezing out of motional averaging of the dynamic surface sites at the low temperatures required for DNP, as previously observed for ceria (111) facets.

The 17O DNP spectrum of NCs-H$_2^{17}$O has spinning sidebands which overlap with other resonances due to the lower spinning speeds achievable at 100 K and the higher field at which the DNP experiments were performed (which results in a smaller separation of sidebands in ppm, for the same spinning frequency). Therefore, 17O DNP projection magic angle turning and phase adjusted sideband separation (MATPASS) NMR experiments were performed to resolve the isotropic resonances (Supplementary Fig. 43). Four non-bulk resonances at 1012, 970, 895, and 853 ppm can be deconvoluted, and were used to fit the saturation recovery data and obtain the T_{DNP}s (Fig. 7d and Table 3). Again, these peaks are associated with shorter T_{DNP}s than the peak at 875 ppm arising from the bulk part of the ceria nanocubes.

Table 3

Resonance	NCs-17O$_2$	NCs-H$_2^{17}$O
T_{DNP}/s	329 53 30 95	212 23 38 40
β	0.8 0.8 0.7 0.6	0.5 0.8 0.7 0.6

The 17O DNP spectrum of NCs-H$_2^{17}$O has spinning sidebands which overlap with other resonances due to the lower spinning speeds achievable at 100 K and the higher field at which the DNP experiments were performed (which results in a smaller separation of sidebands in ppm, for the same spinning frequency). Therefore, 17O DNP projection magic angle turning and phase adjusted sideband separation (MATPASS) NMR experiments were performed to resolve the isotropic resonances (Supplementary Fig. 43). Four non-bulk resonances at 1012, 970, 895, and 853 ppm can be deconvoluted, and were used to fit the saturation recovery data and obtain the T_{DNP}s (Fig. 7d and Table 3). Again, these peaks are associated with shorter T_{DNP}s than the peak at 875 ppm arising from the bulk part of the ceria nanocubes.
sample, in agreement with our assignments from conventional 17O NMR spectroscopy.

Discussion

17O and 1H solid-state NMR spectroscopy, combined with DFT calculations, were employed to determine the surface structure of ceria (100) polar surfaces. The results obtained in this work provide compelling evidence that CeO$_2$-t reconstructions and hydroxyl groups are present on the surface of ceria nanocubes, both of which are expected to reduce the surface energy and afford polarity compensation. The amount of hydroxy groups alters the 17O NMR shifts of oxygen ions at the surface of the nanocubes, making 17O a very sensitive probe for the surface structure and, therefore, its properties. Furthermore, the fractions of CeO$_2$-t and O-t surface units can be determined with quantitative 1H NMR measurements. DNP SENS results confirm the 17O spectral assignments, however, although DNP SENS spectroscopy generally provides a stronger signal-to-noise ratio compared to conventional NMR spectroscopy, due to the restricted spinning rates and broader surface signals at low temperature, certain species can be resolved better with the latter. The strategy introduced here can be applied to gain insight into the surface structures of oxide nanocrystals and materials with polar surfaces.

Methods

Preparation of ceria nanocubes. In a typical synthesis procedure47, 1.96 g Ce(NO$_3$)$_3$·6H$_2$O was added into 40 mL distilled water. After stirring for 5 min, 30 mL NaOH solution (pH = 14) was slowly added into the mixture before it was vigorously stirred for another 30 min at room temperature. The mixture was then transferred into a 100 mL Teflon-lined hydrothermal reactor and heated at 453 K for 24 h before it was allowed to cool to room temperature. The resulting white sediment was centrifuged, washed with distilled water and dried at 353 K overnight. Finally, the solid was annealed in a tube furnace at 573 K for 5 h in flowing oxygen gas to obtain calcined ceria nanocubes.

Characterization. Powder X-Ray Diffraction (XRD) characterization was performed with a Philips X’Pert X-ray diffractometer with Cu Ka irradiation ($\lambda = 1.54184$ Å) operating at 40 kV and 40 mA. High-Resolution Transmission Electron Microscope (HRTEM) images were recorded on a JEOL JEM-2100 instrument at an acceleration voltage of 200 kV. X-ray Photoelectron Spectroscopy (XPS) was measured on a Thermo ESCALAB 250 X with Al K$_\alpha$ X-rays as the excitation source. The binding energies in XPS spectra were referenced to C 1 s as 284.8 eV. Brunauer–Emmett–Teller (BET) specific surface area information was obtained from nitrogen adsorption at 77 K on a Micromeritics ASAP 2020 system. Raman spectra were acquired with a Bruker Multi RAM FT-Raman spectrometer using 514 nm light from a He–Ne laser source. The content of Na ions was analyzed by an Optima 5300DV inductively coupled plasma mass spectrometer (ICP-MS) while the N content was determined with a Heraus CHN-O-Rapid elemental analyzer.

17O Isotopic labeling procedure. Ceria nanocubes were 17O-labeled on a vacuum cleaner system17 with 90% 17O-enriched O$_2$ gas and H$_2^{17}$O, respectively (Isotec Inc.). In a typical 17O isotopic labeling procedure, 200 mg sample was placed in a glass tube and calcined at 523 K under 1 × 10$^{-3}$ Torr for 3 h, in order to remove most of the physically adsorbed water and surface hydroxyl groups. The nanocubes were allowed to cool down to room temperature before O$_2$ gas or H$_2^{17}$O vapor was introduced into the glass tube. The glass tube was sealed and then heated to the target temperature (523 K for 17O, and 373 K for H$_2^{17}$O labeling) for 10 h. After the enrichment with H$_2^{17}$O, the samples were exposed to vacuum to remove physisorbed water.

Solid-State NMR Spectroscopy. 17O and 1H Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) experiments were recorded on a Bruker Avance III 400 spectrometer equipped with an 89 mm wide-bore 9.4 T superconducting magnet yielding Larmor Frequencies of 54.2 and 400 MHz, respectively. All of the samples were packed into 3.2 mm rotors inside a 1H2 labeled glove box. 17O and 1H chemical shifts are referenced to H$_2$O at 0.0 ppm and to adamantane at 1.92 ppm, respectively.

17O data were dynamic polarization (DNP) NMR experiments were performed at a Larmor frequency of 81.3 MHz on a 14.1 T Bruker Avance III HD 600 spectrometer equipped with a 395 GHz grytrosen microwave source and a 3.2 mm MAS probe. The microwave source power applied for 17O direct DNP measurements was 7.0 W. 17O labeled ceria nanocubes were mixed with radical solution (16 mM TEKPd$^{4+}$ in dried tetrachloroethane, TCE) in an Ar-filled glove box. 17O chemical shifts of the DNP NMR spectra were referenced to bulk ceria at 875 ppm at 100 K.

Details of DFT calculations. All spin-polarized DFT calculations were carried out using the Vienna Ab initio Simulation Package (VASP)48. The Perdew-Burke-Emzerhof (PBE) functional49 with the Hubbard U correction (DFT + U)50 were used for all calculations. The effective U value of 5.0 eV was only applied to the localized Ce 4f orbitals31,32; our previous study shows that the calculated chemical shifts from PBE + U (5.0 eV) are in quantitative agreement with the experimental values.28 The projector augmented wave method23 was used to describe the interaction between core and valence electrons. A plane-wave kinetic energy cutoff of 500 eV was used for all calculations. For geometry optimization, all of the atoms were allowed to relax until the Hellman–Feynman forces were lower than 0.002 eV Å$^{-1}$. For electronic minimization, we used an energy convergence criterion of 10^{-3} eV for optimizing geometries and a higher criterion of 10^{-8} eV for chemical shift and electric field gradients (EFGs) calculations.28 The optimized lattice parameter of ceria using PBE + U (5.0 eV) is 5.448 Å, which is in reasonable agreement with the experimental value (5.411 Å)33.

We used a 2 × 2 × 2 surface cell to model the ceria (100) surface. The ceria (100) surface slab model with 12 oxygen layers was found to be sufficiently thick, i.e., the middle layers of this model mimic the bulk environment in terms of chemical shift (Supplementary Figs. 9, 12, 15, 18, 22, 30, 33, 36 and 38). All the slabs contain a large vacuum gap (>10 Å) to remove the slab-slab interactions. The k-point mesh was sampled using a 2 × 2 × 1 Monkhorst–Pack grid.

We used the same method as our previous work28 to calculate chemical shifts, quadrupole coupling constants (C_Q) and asymmetry parameters (η). For the electric EFGs calculations to obtain C_Q and η of oxygen species, we used the experimental quadrupole moment (Q) of −0.02558 barns17 for 17O. For calculating the isotropic chemical shift (δ_{iso}), we used the following equation:

$$\delta_{iso} = \delta_{unaligned} + \delta_{aligned}$$

where $\delta_{unaligned}$ is the aligned DFT chemical shift, $\delta_{aligned}$ is the reference chemical shift. The averaged value of the unaligned DFT chemical shifts of oxygen species in the middle layers (layers 4–9) of every prototype slab models is 835 ppm. By aligning 835 ppm to the corresponding experimental value of 877 ppm, we obtained the $\delta_{aligned}$ of 42 ppm.

The average adsorption energies of each water molecule (E_{ads}) on the (100) surface with the O-t or CeO$_2$-t model were calculated as the following:

$$E_{ads} = -\frac{1}{n} \cdot [E_{H_2O/CeO_2} + E_{CeO_2} - nE[H_2O]]$$

where n is the number of adsorbed water molecules, $E_{H_2O/CeO_2}, E_{CeO_2}$ and E_{H_2O} are the DFT calculated total energies of the adsorption complex, the ceria substrate and the gas phase H$_2$O molecule, respectively.

Thermodynamic stabilities of different water adsorption structures on O-t and CeO$_2$-t surface units at given water partial pressure and temperature were determined by calculating the surface free energy per unit area ($y(p,T)$)41,36,37.

$$y(p, T) = \frac{1}{A} \cdot [G_{ads}[nH_2O/CeO_2](p, T) - nG_{ads}[CeO_2](p, T) - nT[pH_2O(p, T)]]$$

where A is the area of the surface of the slab, n is the number of adsorbed water molecules, m is the number of CeO$_2$ bulk (i.e., Ce$_4$O$_8$) units in the slab model, μ is the chemical potential, and G is the Gibbs free energy.

We assumed that the surfaces are in thermodynamic equilibrium with gas phase H$_2$O. So, $\mu[H_2O(p, T)]$ can be calculated as follows:

$$\mu[H_2O(p, T)] = E[H_2O(p, T)] + \Delta H_0[H_2O(p, T)] = E[H_2O] + H[H_2O(p, T)]$$

where p is the standard state pressure (0.1 MPa); enthalpy (H) and entropy (S) terms were taken from the website of NIST59. As the DFT total energies of the solid components can be regarded as good approximations of corresponding Gibbs free energies28, then we obtained:

$$y(p, T) = \frac{1}{A} \cdot [G_{ads}[nH_2O/CeO_2](p, T) - nG_{ads}[CeO_2](p, T) - nT[pH_2O(p, T)]) - nT[pH_2O(p, T)]$$

Note that the vibration contributions and the pV (V denotes volume) term of solid components were not considered.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 6 March 2019; Accepted: 7 November 2019;
Published online: 28 November 2019
References

1. Kong, X. Y., Ding, Y. & Wang, Z. L. Single crystal nanorods formed by epitaxial self-coiling of polar nanobelts. *Science* 303, 1348–1351 (2004).

2. Yu, L. & Zunger, A. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces. *Nat. Commun.* 5, 5118 (2014).

3. Métois, J. J., Saül, A. & Müller, P. Measuring the surface stress polar dependence. Nano Lett. 11, 361–364 (2011).

4. Wang, Z. L. et al. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. *Adv. Funct. Mater.* 14, 943–956 (2004).

5. Mclaren, A. et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity. *J. Am. Chem. Soc.* 131, 12540–12541 (2009).

6. Zhang, J. et al. Extra-low-temperature oxygen storage capacity of CeO2 nanoparticles. *Chem. Commun.* 53, 2142–2145 (2017).

7. Ratcliffe, C. I., Rimpeester, J. A. & Tse, J. S. NMR chemical shifts of dilute 1H in inorganic solids. *Chem. Phys. Lett.* 120, 427–432 (1985).

8. Gill, L. et al. Fast MAS 1H NMR study of water adsorption and dissociation on the surface of ceria: A fully hydroxylated, hydrated ceria surface. *J. Phys. Chem. C* 121, 7450–7465 (2017).

9. Kim, G., Blanc, F., Hu, Y. Y. & Grey, C. P. Understanding the conduction mechanism of the protonic conductor CsH4PO4 by solid-state NMR spectroscopy. *J. Phys. Chem. C* 117, 6504–6515 (2013).

10. Mogilevsky, G., Karwacki, C. J., Peterson, G. W. & Wagner, G. W. Surface hydroxyl concentration on Zr(OH)4 quantified by 1H MAS NMR. *Chem. Phys. Lett.* 511, 384–388 (2011).

11. Freude, D. et al. 1H NMR studies on the acidity of zeolites. *Chem. Phys. Lett.* 128, 62–66 (1986).

12. Medek, A., Harwood, J. S. & Frydman, L. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. *J. Am. Chem. Soc.* 127, 12779–12787 (2005).

13. Kropp, T., Paier, J. & Sauer, J. Interactions of water with the (111) and (100) surfaces of ceria. *J. Phys. Chem. C* 121, 21571–21578 (2017).

14. Pan, Y. et al. Ceria nanocrystals exposing wide (100) facets: Structure and polarity compensation. *Adv. Mater. Interfaces* 1, 1400404 (2014).

15. Di, Q. Z. et al. High frequency dynamic nuclear polarization. *Acc. Chem. Res.* 46, 1933–1941 (2013).

16. Zagdoun, A. et al. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. *J. Am. Chem. Soc.* 135, 12790–12797 (2013).

17. Halat, D. M. et al. Probing oxide-ion mobility in the mixed ionic-electronic conductor La2(1-x)Ca2xO4-δ by solid-state 17O MAS NMR spectroscopy. *J. Am. Chem. Soc.* 138, 11958–11969 (2016).

18. Khoury, M. et al. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz. *J. Am. Chem. Soc.* 134, 1898–1901 (2012).

19. Liu, J. et al. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals. *Phys. Chem. Chem. Phys.* 17, 31862–31871 (2015).

20. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-melt-meromorphic-semiconductor transition in germanium. *Phys. Rev. B* 49, 14251–14269 (1994).

21. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77, 3865–3868 (1996).

22. Golubov, S. L., Bottom, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. *Phys. Rev. B* 57, 1506–1509 (1998).

23. Nolan, M., Parker, S. C. & Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. *Surf. Sci.* 595, 223–227 (2006).

24. Wu, X.-P. & Gong, X.-Q. Clustering of oxygen vacancies at CeO2(111): critical role of hydroxyls. *Phys. Rev. Lett.* 116, 086102 (2016).

25. Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* 50, 17953–17979 (1994).

26. Kimmerle, E. A. & Heger, G. The structures of C-CoO2-x, CeO2-x, and C-CoO2-x. *J. Solid State Chem.* 147, 485–499 (1999).

27. Durak, D. & Olsen, J. Finite element multiconfiguration Hartree-Fock calculations on carbon, oxygen, and neon: The nuclear quadrupole moments of 1C, 12O, and 21Ne. *J. Phys. Chem.* 96, 627–630 (1992).

28. Hu, X.-P. & Gong, X.-Q. Unique electronic and structural effects in Vanadia/Ceria-catalyzed reactions. *J. Am. Chem. Soc.* 137, 13228–13231 (2015).

29. Fronzi, M., Assadi, M. H. N. & Hanaor, D. A. H. Theoretical insights into the hydrophobicity of low index CeO2 surfaces. *Appl. Surf. Sci.* 478, 68–74 (2019).

30. Chase, M. W. *NIST-JANAF Thermochemical Tables*. (American Institute of Physics 1998).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) – Royal Society Joint Program (21611310419) and NSFC (19745202, 21573103, and 21825301). The ECUST group also thanks the Programme of Introducing Talents of Discipline to Universities (B16017) and National Super Computing Centre in Jinan for computing time. L.P. thanks the Royal Society and the Newton Fund for Royal Society-Newton Advanced Fellowship. This work was also supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. M.A. is grateful for support from NEC CES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0012583. We...
would like to thank Prof. Bingwen Hu and Dr. Ming Shen in East China Normal University for invaluable discussions and help in this work.

Author contributions
J.C. and K.Q. carried out the synthesis of ceria nanocubes; J.C., L.S., Y.W. and J.-H.D. carried out XRD, HRTEM, Raman, ICP-MS, N element analyzing, XPS and surface area measurement; J.C., T.L., M.A.H., P.C.M.M.M., L.S., Y.L., X.K. and L.P. performed \(^{17}\)O isotope enrichment, and collected, as well as analyzed the \(^{17}\)O and \(^{1}\)H NMR spectra; J.C., M.A.H., D.M.H. and S.P. collected and analyzed the \(^{17}\)O DNP NMR spectra; X.-P.W. and X.-Q.G. conducted the DFT calculations; J.C., X.-P.W., M.A.H., W.D., C.P.G. and L.P. wrote the manuscript, and all authors discussed the experiments and final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-13424-7.

Correspondence and requests for materials should be addressed to X.-P.W., C.P.G. or L.P.