COLORED KAC-MOODY ALGEBRAS, PART I

ALEXANDRE BOUAYAD

ABSTRACT. We introduce a parametrization of formal deformations of Verma modules of \mathfrak{sl}_2. A point in the moduli space is called a coloring. We prove that for each coloring ψ satisfying a regularity condition, there is a formal deformation $U_h(\psi)$ of $U(\mathfrak{sl}_2)$ acting on the deformed Verma modules. We retrieve in particular the quantum algebra $U_h(\mathfrak{sl}_2)$ from a coloring by q-numbers. More generally, we establish that regular colorings parametrize a broad family of formal deformations of the Chevalley-Serre presentation of $U(\mathfrak{sl}_2)$. As a corollary, we obtain a new rigidity result for $U(\mathfrak{sl}_2)$. This paper is the first of a series aimed to lay the foundations of a new approach to deformations of Kac-Moody algebras. Colored Kac-Moody algebras have been originally devised by the author as an attempt to solve conjectures formulated by Frenkel and Hernandez in [6] on Langlands duality for quantum groups. A positive answer to these conjectures will appear in a forthcoming paper.

1. Introduction

1.1. Deformation by Tannaka duality. The Lie algebra \mathfrak{sl}_2 formed by 2-by-2 matrices with zero trace is the easiest example of a semisimple Lie algebra, or more generally of a Kac-Moody algebra. The Chevalley-Serre presentation \cite{13} of \mathfrak{sl}_2 consists of the Chevalley generators X^-, H, X^+ and of the relations

\begin{align}
[H, X^\pm] &= \pm 2X^\pm, \\
[X^-, X^+] &= H.
\end{align}

We present in this paper a new approach, both elementary and systematic, to deformations of the universal enveloping algebra $U(\mathfrak{sl}_2)$, over a ground field K of characteristic zero. Deformations here are formal, i.e. they are considered over the power series ring $K[[h]]$. We shall give a precision. It follows from a cohomological rigidity criterion of Gerstenhaber \cite{8} that formal deformations of the structure of associative algebra of $U(\mathfrak{sl}_2)$ are all trivial, i.e. they are conjugate to the constant formal deformation. In this paper though we are interested in deforming a slightly richer structure, which consists of the algebra $U(\mathfrak{sl}_2)$ together with the Chevalley generators. In other words, when considering a formal deformation of $U(\mathfrak{sl}_2)$, we want to specify within it a deformation of the generators X^-, H, X^+. Equivalently, we may say that we are looking at formal deformations of the Chevalley-Serre presentation \mathfrak{h} of $U(\mathfrak{sl}_2)$.

Representations of \mathfrak{sl}_2 carry all the information of the algebra $U(\mathfrak{sl}_2)$, in the sense that $U(\mathfrak{sl}_2)$ can be reconstructed by Tannaka duality from the category $\text{Rep}(\mathfrak{sl}_2)$ of representations of \mathfrak{sl}_2. More specifically, $U(\mathfrak{sl}_2)$ can be defined as the algebra of

\section*{Date:} December 31, 2014.
\section*{Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK.}
endomorphisms (namely the natural transformations) of the forgetful functor from Rep(\mathfrak{sl}_2) to the category of vector spaces.

We propose to construct deformations of $U(\mathfrak{sl}_2)$ via Tannaka duality. In our view, the category Rep(\mathfrak{sl}_2) would be too large to be deformed in one go. We need to look for a more modest subcategory to start with. One first candidate that comes easily in mind is the subcategory of finite-dimensional representations of \mathfrak{sl}_2. On the one hand, the subcategory is rich enough to distinguish by Tannaka duality every finite-dimensional representations of \mathfrak{sl}_2 semisimple, and irreducible finite-dimensional representations of \mathfrak{sl}_2, on every finite-dimensional representations of \mathfrak{sl}_2. On the other hand, the category of finite-dimensional representations of \mathfrak{sl}_2 is notably elementary: all objects are semisimple, and irreducible finite-dimensional representations of \mathfrak{sl}_2 are classified by their dimensions. There is however a slightly larger category which appears more suited to our purpose. This category is generated by Verma modules, in a sense which we will make precise in a next paper. Note that we consider here only integral Verma modules, that is to say Verma modules for which the action of H has integral eigenvalues. One reason to prefer Verma modules rather than finite-dimensional representations is that the former are all equal when forgetting the action of \mathfrak{sl}_2 (they share the same underlying vector space). This makes deformation and Tannaka duality easier to deal with. Another reason is that Verma modules are induced by one-dimensional representations of a Borel subalgebra of $U(\mathfrak{sl}_2)$. We will use this property in a next paper to induce deformations of the whole category Rep(\mathfrak{sl}_2) from deformations of Verma modules.

1.2. Summary of the main results.

Definition 1. A coloring is a sequence $\psi = (\psi^p(n))_{p \geq 0}$ with values in $K[[h]]$ depending on $n \in \mathbb{Z}$ and satisfying

(C1) $\psi^p(n) \equiv (p + 1)(n - p) \pmod{h}$ for all $p \in \mathbb{Z}_{\geq 0}$ and for all $n \in \mathbb{Z}$,

(C2) $\psi^p(n) = 0$ for all $p \in \mathbb{Z}_{\geq 0}$,

(C3) $\psi^{n+p+1}(n) = \psi^p(-n - 2)$ for all $p, n \in \mathbb{Z}_{\geq 0}$.

For $n \in \mathbb{Z}$, we denote by $M(n)$ the integral Verma module of \mathfrak{sl}_2 of highest weight n. Forgetting the action of X^+, integral Verma modules of \mathfrak{sl}_2 become representations of the Borel subalgebra \mathfrak{b} spanned by X^- and H. The action of X^+ can be retrieved from the natural coloring N, defined by $N^p(n) = (p + 1)(n - p)$. In view of the axiom (C1), colorings can then be regarded as formal deformations of the action of X^+ on the integral Verma modules of \mathfrak{sl}_2.

Definition 2. We denote by $M_{h}(n, \psi)$ the $K[[h]]$-module $M(n)[[h]]$ endowed with the constant deformation of the action of \mathfrak{b} on $M(n)$, together with the deformation of the action of X^+ that yields the coloring ψ.

Here is where Tannaka duality comes into the picture.

Definition 3. We denote by $U_h(\psi)$ the $K[[h]]$-algebra generated by X^-, H, X^+ and subject to the relations satisfied in every representation $M_{h}(n, \psi)$.

We prove that $U_h(\psi)$ deforms the algebra $U(\mathfrak{sl}_2)$, provided that the coloring ψ satisfies a regularity condition. We call it a colored Kac-Moody algebra.

1For the reader who may find unclear why this definition involves Tannaka duality, let us mention that there is a category built directly from the representations $M_{h}(n, \psi)$ and whose Tannaka dual algebra is canonically isomorphic to $U_h(\psi)$. Details will appear in a next paper.
Theorem 1. The algebra $U_h(\psi)$ is a formal deformation of the algebra $U(\mathfrak{sl}_2)$ if and only if the coloring ψ is regular, i.e.

(R1) $\psi^p(n) = \sum_{m \geq 0} \psi^p_m(n) h^m$ where $\psi^p_m(n)$ is a polynomial function of n,
(R2) for each m the degree of $\psi^p_m(n)$ is a function of p bounded above.

A colored Kac-Moody algebra defines not only a formal deformation of the algebra $U(\mathfrak{sl}_2)$, but also a formal deformation of the Chevalley generators of $U(\mathfrak{sl}_2)$. As a result, it defines unambiguously – once we have fixed a basis of $U(\mathfrak{sl}_2)$, e.g., the canonical PBW basis of $U(\mathfrak{sl}_2)$ – a formal deformation of the Chevalley-Serre presentation of $U(\mathfrak{sl}_2)$.

Theorem 2. When the coloring ψ is regular, the $K[[h]]$-algebra $U_h(\psi)$ is generated by X^-, H, X^+ and subject to the relations

$$[H, X^\pm] = \pm 2X^\pm,$$
$$X^+ X^- = \sum_{a=0}^{\infty} (X^-)^a \xi^a(H) (X^+)^a \quad \text{with } \xi^a(H) \in K[H][[h]],$$

where the structure constants ξ^a form the regular solution of an infinite-dimensional linear equation (see section 3).

Let \mathfrak{a} be the Lie algebra generated by X^-, H, X^+ and subject to the relations (1a) of the Chevalley-Serre presentation of $U(\mathfrak{sl}_2)$. The Lie algebra \mathfrak{a} is a cover of the Lie algebra \mathfrak{sl}_2. There is in particular an algebra homomorphism from $U(\mathfrak{a})$ to $U(\mathfrak{sl}_2)$; we say that $U(\mathfrak{sl}_2)$ is an \mathfrak{a}-algebra. The relations (1a) hold in $U_h(\psi)$ for every coloring ψ. Put in other words, the colored Kac-Moody algebra $U_h(\psi)$ is a $U_h(\mathfrak{a})$-algebra, i.e. there is an algebra homomorphism from $U_h(\mathfrak{a})$ to $U_h(\psi)$, where $U_h(\mathfrak{a})$ designates the $K[[h]]$-algebra $U(\mathfrak{a})[[h]]$. We may then regard $U_h(\psi)$ as a formal deformation of the structure of \mathfrak{a}-algebra of $U(\mathfrak{sl}_2)$.

For any symmetrizable Kac-Moody algebra \mathfrak{g}, Drinfel’d [4] and Jimbo [9] have defined a formal deformation $U_h(\mathfrak{g})$ of the universal enveloping algebra of \mathfrak{g}.\footnote{The structure of associative algebra of $U_h(\mathfrak{sl}_2)$ was first discovered by Kulish-Sklyanin [10].} We prove in this paper that $U_h(\mathfrak{sl}_2)$ is an example of a colored Kac-Moody algebra. More precisely, we show that $U_h(\mathfrak{sl}_2)$ arises from a coloring N_q, defined from the natural coloring N by replacing natural numbers with q-numbers.

Theorem 3. The quantum algebra $U_h(\mathfrak{sl}_2)$ is isomorphic as $U_h(\mathfrak{a})$-algebra to the colored Kac-Moody algebra $U_h(N_q)$.

It has been proved by Drinfel’d [5] that for \mathfrak{g} semisimple, $U_h(\mathfrak{g})$ is a \mathfrak{h}-trivial formal deformation of $U(\mathfrak{g})$, i.e. there exists an equivalence of formal deformation between $U(\mathfrak{g})[[h]]$ and $U_q(\mathfrak{g})$ fixing the Cartan subalgebra \mathfrak{h} of \mathfrak{g}. We establish that regular colorings classify all \mathfrak{h}-trivial formal deformations of the structure of \mathfrak{a}-algebra of $U(\mathfrak{sl}_2)$.

Theorem 4. Every \mathfrak{h}-trivial formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ is isomorphic as $U_h(\mathfrak{a})$-algebra to a unique colored Kac-Moody algebra $U_h(\psi)$.

As a corollary, we obtain a new\footnote{To the best of the author’s knowledge.} rigidity result for $U(\mathfrak{sl}_2)$.

Reference [4].
Theorem 5. Every \mathfrak{h}-trivial formal deformation A of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ is also \mathfrak{b}-trivial, i.e. there exists an equivalence of formal deformation between $U(\mathfrak{sl}_2)[[\hbar]]$ and A fixing both X^- and H.

1.3. Colored Kac-Moody algebras. The present paper is the first of a series. We present here results in the rank one case, focusing on one-parameter formal deformations of the structure of \mathfrak{a}-algebra of $U(\mathfrak{sl}_2)$. We will investigate in a next paper formal deformations of the structure of Hopf algebra of $U(\mathfrak{sl}_2)$. It will be proved that regular (di)colorings provide a classification of formal deformations of the Hopf algebra $U(\mathfrak{sl}_2)$ (together with formal deformations of the Chevalley generators). More generally, we will show that there is a natural group action on the set of colorings and that the resulting action groupoid is equivalent to the groupoid formed by formal deformations of the Hopf algebra $U(\mathfrak{sl}_2)$. These results will be generalized in subsequent papers from \mathfrak{sl}_2 to any symmetrizable Kac-Moody algebra \mathfrak{g}. Let us precise that we won’t be concerned with all the deformations of the Hopf algebra $U(\mathfrak{g})$, as we will restrict ourselves to those deformations which preserve the grading of $U(\mathfrak{g})$ by the weight lattice of \mathfrak{g}.

Colored Kac-Moody algebras are defined by Tannaka duality. In a next paper, we will explain how a coloring ψ induces in an elementary way a closed monoidal category $\text{Rep}(\mathfrak{g}, \psi)$ and we will show that this category is a deformation of the category of all representations of \mathfrak{g}. The colored Kac-Moody algebra $U(\mathfrak{g}, \psi)$ will be defined as the Hopf algebra corresponding by Tannaka duality to the category $\text{Rep}(\mathfrak{g}, \psi)$. Note that whereas the construction of the category $\text{Rep}(\mathfrak{g}, \psi)$ is aimed to be as elementary as possible, the colored Kac-Moody algebra $U(\mathfrak{g}, \psi)$ itself may be in general difficult to describe explicitly (consider for example the Chevalley-Serre presentation of $U_\hbar(\psi)$, see theorem 4.2).

Colored Kac-Moody algebras should be understood as multi-parameters deformations of usual Kac-Moody algebras, with as many deformation parameters as there are degrees of freedom in the choice of a coloring – an example of a colored Kac-Moody algebra of rank one with two deformation parameters has been developed in [1]. We will show in a next paper that all constructions and results obtained over the power series ring $K[[h]]$ hold over more general rings. We will show that there is a generic colored Kac-Moody algebra, which is universal in the sense that every other colored Kac-Moody algebra can be obtained from it by specializing generic deformation parameters. Specializations will be a key feature of colored Kac-Moody algebras, with several applications, as for example crystallographic Kac-Moody algebras to name one – we will show that there is a natural correspondence between representations of crystallographic Kac-Moody algebras and crystals of representations of quantum Kac-Moody algebras.

1.4. Langlands interpolation. Littelmann [11] and McGerty [12] have revealed the existence of relations between representations of a symmetrizable Kac-Moody algebra \mathfrak{g} and representations of its Langlands dual $^L\mathfrak{g}$ (the Kac-Moody algebra defined by transposing the Cartan matrix of \mathfrak{g}). They have proved that the action of the quantum algebra $U_q(\mathfrak{g})$ on certain representations interpolates between an action of \mathfrak{g} and an action of $^L\mathfrak{g}$; namely, they have shown that the actions of \mathfrak{g} and $^L\mathfrak{g}$ can be retrieved from the action of $U_q(\mathfrak{g})$ by specializing the parameter.

\footnote{The \mathfrak{b}-triviality of the quantum algebra $U_\hbar(\mathfrak{sl}_2)$ had been already proved by Jimbo [9] and Chari-Pressley [3].}
COLORED KAC-MOODY ALGEBRAS, PART 1

q to 1 and to some root of unity ϵ, respectively. For \mathfrak{g} semisimple, Frenkel and Hernandez introduced in [6] an algebra depending on an additional parameter t and they conjectured the existence of representations for this algebra interpolating between representations of the quantum algebras $U_q(\mathfrak{g})$ and $U_t(\mathfrak{l})$. They besides conjectured that the constructions could be extended to any symmetrizable Kac-Moody algebra \mathfrak{g}. They lastly suggested a Langlands duality for crystals.

We will give in a forthcoming paper a positive answer to these conjectures. More precisely, we will show that for any symmetrizable Kac-Moody algebra \mathfrak{g} there exists a colored Kac-Moody algebra $U(\mathfrak{g},N_q,t)$ whose representations possess the predicted interpolation property. Using crystallographic Kac-Moody algebras, we will moreover confirm manifestations of Langlands duality at the level of crystals.

Let us precise that the colored Kac-Moody algebra $U(\mathfrak{g},N_q,t)$ is related to Frenkel-Hernandez’s algebra only when $\mathfrak{g} = \mathfrak{sl}_2$. For \mathfrak{g} of higher ranks, the two algebras differ significantly.

Let us mention that Langlands duality for quantum groups might have promising connections with the geometric Langlands correspondence, see [7] and [6].

1.5. Organization of the paper. In section 2, we introduce colorings and we construct the deformed Verma modules $M_h(n,\psi)$ induced by a coloring ψ. We briefly recall the notion of formal deformation of associative algebras and we give several definitions suited to the context of this paper. We define the algebra $U_h(\psi)$ and we prove that $U_h(\psi)$ is “almost” a formal deformation of $U(\mathfrak{sl}_2)$. In section 3, we express the action of $U_h(\psi)$ on $M_h(n,\psi)$ in terms of infinite-dimensional linear equations (proposition 3.2). We prove that these equations always admit regular solutions if and only if ψ is regular (proposition 3.3); this is the key technical result of this paper. In section 4, we prove that $U_h(\psi)$ is a formal deformation of $U(\mathfrak{sl}_2)$ if and only if the coloring ψ is regular (theorem 4.1). We give a Chevalley-Serre presentation of the colored Kac-Moody algebra $U_h(\psi)$ (theorem 4.2). We show that the constant formal deformation $U(\mathfrak{sl}_2)[[h]]$ and the quantum algebra $U_h(\mathfrak{sl}_2)$ can be realized as colored Kac-Moody algebras (theorem 4.3). We prove that regular colorings classify \mathfrak{h}-trivial formal deformations of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ (theorem 4.4). We prove that $U_h(\psi)$ is a \mathfrak{h}-trivial deformation of $U(\mathfrak{sl}_2)$ for all regular colorings (theorem 4.5). As a corollary, we obtain that every \mathfrak{h}-trivial formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ is also \mathfrak{b}-trivial (corollary 4.6).

2. Preliminaries

2.1. Notations and conventions.

2.1.1. The integers are elements of $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. The non-negative integers are elements of $\mathbb{Z}_{\geq 0} = \{0, 1, 2, \ldots\}$. We recall that K designates a field of characteristic zero. We denote by $K^\mathbb{Z}$ the K-vector space formed by functions from \mathbb{Z} to K.

2.1.2. We denote by $K[[h]]$ the power series ring in the variable h over the field K. An element λ in $K[[h]]$ is of the form $\lambda = \sum_{m \geq 0} \lambda_m h^m$ with $\lambda_m \in K$, we denote by $\lambda_{h=0}$ the scalar λ_0.
2.1.3. Associative algebras and their homomorphisms are unital. Representations are left. Let \mathfrak{g} be a Lie algebra over K, its universal enveloping algebra is denoted by $U(\mathfrak{g})$. We identify as usual representations of \mathfrak{g} with representations of $U(\mathfrak{g})$.

2.1.4. Let B be a R-algebra ($R = K, K[[h]]$). A B-algebra is a R-algebra A, together with a structural R-algebra homomorphism $f : B \to A$. Let A' be another B-algebra, a B-algebra homomorphism from A to A' is a R-algebra homomorphism $g : A \to A'$ such that $g \circ f = f'$, where f' designates the structural homomorphism from B to A'. Let \mathfrak{g} be a Lie algebra over K, a \mathfrak{g}-algebra is a $U(\mathfrak{g})$-algebra.

2.1.5. For V_0 a K-vector space, we denote by $V_0[[h]]$ the $K[[h]]$-module formed by series of the form $\sum_{m \geq 0} v_m h^m$ with $v_m \in V_0$. A structure of K-algebra on a K-vector space B_0 induces a structure of $K[[h]]$-algebra on the $K[[h]]$-module $B_0[[h]]$. Similarly, a representation V_0 of the K-algebra B_0 induces a representation $V_0[[h]]$ of the $K[[h]]$-algebra $B_0[[h]]$. More generally, a B_0-algebra A_0 induces a $B_0[[h]]$-algebra $A_0[[h]]$.

2.1.6. For V a $K[[h]]$-module, we denote by $V_{h=0}$ the K-vector space V/hV. Let $f : V \to W$ be a $K[[h]]$-linear map, we denote by $f_{h=0}$ the K-linear map induced by f from $V_{h=0}$ to $W_{h=0}$. A structure of $K[[h]]$-algebra on a $K[[h]]$-module B induces a structure of K-algebra on the K-vector space $A_{h=0}$. Similarly, a representation V of the $K[[h]]$-algebra B induces a representation $V_{h=0}$ of the K-algebra $B_{h=0}$, and a B-algebra A induces a $(B_{h=0})$-algebra $A_{h=0}$.

2.1.7. The h-adic topology of a $K[[h]]$-module V is the linear topology whose local base at zero is formed by the $K[[h]]$-submodules $h^m V$ ($m \in Z_{\geq 0}$). A $K[[h]]$-module isomorphic to $V_0[[h]]$ for some K-vector space V_0 is said topologically free.

2.2. Colorings. We call the relations

$$[H, X^\pm] = \pm 2X^\pm$$

the non-deformable relations of \mathfrak{sl}_2. We denote by \mathfrak{a} the Lie algebra over K generated by X^-, H, X^+ and subject to the non-deformable relations of \mathfrak{sl}_2. We are interested in this paper in deformations of the algebra $U(\mathfrak{sl}_2)$ where the non-deformable relations of \mathfrak{sl}_2 still hold. Representations of such deformations of $U(\mathfrak{sl}_2)$ are in particular representations of the constant formal deformation $U(\mathfrak{a})[[h]]$. In order to simplify the notation, we will denote this algebra by $U_h(\mathfrak{a})$.

We denote by \mathfrak{b}^+ the Borel subalgebra of \mathfrak{sl}_2 spanned by H and X^+. We recall that a Verma module of \mathfrak{sl}_2 is a representation of \mathfrak{sl}_2 induced from a one-dimensional representation of \mathfrak{b}^+. For $n \in Z$, the (integral) Verma module $M(n)$ of highest weight n is equal to $\bigoplus_{p \geq 0} K h_p$ as vector space, together with the action of \mathfrak{sl}_2 defined by

$$H.b_p = (n - 2p)b_p,$$

$$X^-b_p = b_{p+1},$$

$$X^+.b_p = \begin{cases} 0 & \text{if } p = 0, \\ p(n - p + 1)b_{p-1} & \text{if } p > 0. \end{cases}$$

We remark that X^-, H and X^+ act on $M(n)$ as scalar multiplication operators between $Z_{\geq 0}$ copies of K.

$$\tag{2}$$
Let B^+ designate the quiver formed by the bottom arrows of the previous graph. We can think of the action of X^+ on integral Verma modules of \mathfrak{sl}_2 as a \mathbb{Z}-graded representation of the quiver B^+. This representation, which we denote by N, assigns to each vertex of B^+ the K-vector space $\bigoplus_{n \in \mathbb{Z}} K$, and assigns to the $(p+1)$th arrow $(p \in \mathbb{Z}_{\geq 0})$ the K-linear map represented by the diagonal matrix $\text{Diag}(N^p(n); n \in \mathbb{Z})$ where $N^p(n) = (p+1)(n-p)$.

Fixing the actions of X^- and H, a formal deformation of the action of the Lie algebra \mathfrak{a} on the integral Verma modules of \mathfrak{sl}_2 then corresponds to a formal deformation of the \mathbb{Z}-graded representation N of the quiver B^+. Such a deformation is specified by a deformation $\psi^p(n)$ in $K[[h]]$ of the scalar $N^p(n)$, for each $p \in \mathbb{Z}_{\geq 0}$ and for each $n \in \mathbb{Z}$.

Let us recall that for each $n \in \mathbb{Z}_{\geq 0}$ there is a nonzero morphism from the Verma module $M(n-2)$ to the Verma module $M(n)$. At the level of the representation N of the quiver B^+, the property becomes: $N^0(n) = 0$ and $N^{n+p+1}(n) = N^p(-n-2)$ for all $n, p \in \mathbb{Z}_{\geq 0}$. A formal deformation of the representation N which preserves these conditions is called a coloring.

Definition 2.1. A coloring is a sequence $\psi = (\psi^p)_{p \geq 0}$ where ψ^p is a formal power series of the form $\sum_{p \geq 0} \psi^p_m h^m$ with $\psi^p_m \in K^Z$, satisfying

\begin{align*}
(C1) & \quad \psi^p_0(n) = (p+1)(n-p) \quad \text{for all } p \in \mathbb{Z}_{\geq 0} \text{ and for all } n \in \mathbb{Z}, \\
(C2) & \quad \psi^p(n) = 0 \quad \text{for all } n \in \mathbb{Z}_{\geq 0}, \\
(C3) & \quad \psi^{n+p+1}(n) = \psi^p(-n-2) \quad \text{for all } p, n \in \mathbb{Z}_{\geq 0}.
\end{align*}

As explained before, a coloring encodes a formal deformation of the action of X^+ on the integral Verma modules of \mathfrak{sl}_2, in such a way that the non-deformed relations of \mathfrak{sl}_2 remain satisfied.

Definition 2.2. Let ψ be a coloring and let $n \in \mathbb{Z}$. We denote by $M_h(n, \psi)$ the representation of $U_h(\mathfrak{a})$ whose underlying $K[[h]]$-module is $\left(\bigoplus_{p \geq 0} K b_p\right)[[h]]$ and where the action of $U_h(\mathfrak{a})$ is defined by

$$
H b_p = (n-2p)b_p,
$$

$$
X^- b_p = b_{p+1},
$$

$$
X^+ b_p = \begin{cases}
0 & \text{if } p = 0, \\
\psi^{p-1}(n)b_{p-1} & \text{if } p \geq 1.
\end{cases}
$$

Example 2.3. There is a unique coloring ψ which satisfies $\psi^p_m = 0$ for all $p \in \mathbb{Z}_{\geq 0}$ and for all $m \in \mathbb{Z}_{\geq 1}$. We denote it again by N and we call it the natural coloring. The natural coloring encodes the action of \mathfrak{a} on the integral Verma modules of \mathfrak{sl}_2: $M_h(n, N) = M(n)[[h]]$ as representations of $U_h(\mathfrak{a})$ for all $n \in \mathbb{Z}$.
Example 2.4. The quantum algebra $U_h(\mathfrak{sl}_2)$ is the $K[[h]]$-algebra generated topologically by X^-, H, X^+ and subject to the relations

$$[H, X^\pm] = \pm 2X^\pm,$$

$$[X^+, X^-] = \frac{q^H - q^{-H}}{q - q^{-1}}$$

with $q = \exp(h)$ and $q^H = \exp(hH)$, i.e. $U_h(\mathfrak{sl}_2)$ is the quotient of the $K[[h]]$-algebra $K\langle X^-, H, X^+\rangle[[h]]$ by the smallest closed (for the h-adic topology) two-sided ideal containing the previous relations.

We denote by N_q the coloring defined by

$$N_q(n) = [p + 1]_q[n - p]_q$$

where $[k]_q = \frac{q^k - q^{-k}}{q - q^{-1}}$ for $k \in \mathbb{Z}$.

We call it the q-coloring. The q-coloring encodes the action of X^+ on the integral Verma modules of $U_h(\mathfrak{sl}_2)$: for all $n \in \mathbb{Z}$, the representation $M_h(n, N_q)$ is the Verma module of $U_h(\mathfrak{sl}_2)$ of highest weight n, when viewed as representation of $U_h(a)$.

2.3. Formal deformation of associative algebras. A formal deformation of a K-algebra A_0 usually designates a $K[[h]]$-algebra A such that the $K[[h]]$-modules A and $A_0[[h]]$ are isomorphic, together with a K-algebra isomorphism f_0 from $A_{h=0}$ to A_0. Two formal deformations (A, f_0) and (A', f'_0) are said equivalent if there exists a $K[[h]]$-algebra isomorphism g from A to A' such that $f'_0 \circ g_{h=0} = f_0$.

As already mentioned, we are interested in this paper in formal deformations of $U(\mathfrak{sl}_2)$ where the non-deformable relations of \mathfrak{sl}_2 still hold. In other words, the deformations of interest will be the formal deformations of $U(\mathfrak{sl}_2)$ within the category of \mathfrak{a}-algebras – $U(\mathfrak{sl}_2)$ has a canonical structure of \mathfrak{a}-algebra, induced by the projection map from \mathfrak{a} to \mathfrak{sl}_2. Remark that specifying a B-algebra structure on an algebra A not only forces every relation in the algebra B to be satisfied in A, but also fixes pointwise in A the image of B. A formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ should then be understood as a formal deformation of the K-algebra $U(\mathfrak{sl}_2)$, together with a formal deformation of the Chevalley generators X^-, H, X^+ within the deformed algebra, in such a way that the non-deformable relations of \mathfrak{sl}_2 are preserved.

Definition 2.5. Let B_0 be a K-algebra and let A_0 be a B_0-algebra. We suppose that the structural homomorphism from B_0 to A_0 is surjective. A formal deformation of the B_0-algebra A_0 is a $B_0[[h]]$-algebra A such that

(D1) the $K[[h]]$-modules A and $A_0[[h]]$ are isomorphic,

(D2) the B_0-algebras $A_{h=0}$ and A_0 are isomorphic.

Axioms (D2) may need a precision: the structure of $B_0[[h]]$-algebra on A induces a structure of $(B_0[[h]]_{h=0})$-algebra on $A_{h=0}$, and thus a structure of B_0-algebra (the K-algebras $B_0[[h]]_{h=0}$ and B_0 are canonically isomorphic).

As the structural homomorphism from B_0 to A_0 is surjective, there is a unique way to identify the B_0-algebras $A_{h=0}$ and A_0. This shows that definition 2.5 extends the usual definition of formal deformation of K-algebras.

Remark also that in view of axiom (D1) the formal deformation A is in particular Hausdorff and complete for the h-adic topology. This implies that the structural homomorphism from $B_0[[h]]$ to A is necessarily surjective.

Example 2.6. The quantum algebra $U_h(\mathfrak{sl}_2)$ (as defined in example 2.4) is a formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$.
With formal deformations of algebras come naturally formal deformations of representations.

Definition 2.7. Let B_0 be a K-algebra and let V_0 be a representation of B_0. A formal deformation of V_0 along $B_0[[h]]$ is a representation V of $B_0[[h]]$ such that

1. the $K[[h]]$-modules V and $V_0[[h]]$ are isomorphic,
2. the representations $V_{h=0}$ and V_0 are isomorphic.

Let A be a formal deformation of a B_0-algebra A_0. We suppose that the structural homomorphism from B_0 to A_0 is surjective and we suppose that the action of B_0 on V_0 factorizes through A_0. We say that V is a formal deformation of V_0 along A if the action of $B_0[[h]]$ on V factorizes through A.

Axiom [D2] may need again a precision: the action of $B_0[[h]]$ on V induces an action of $(B_0[[h]]|_{h=0})$ on $V_{h=0}$, and thus an action of B_0 on $V_{h=0}$.

Example 2.8. For every $n \in \mathbb{Z}$, the representation $M_h(n,N_q)$ is a formal deformation along $U_h(\mathfrak{sl}_2)$ of the Verma module $M(n)$ (see example 2.4).

The following lemma gives an example of formal deformations along $U_h(a)$.

Lemma 2.9. Let ψ be a coloring. For every $n \in \mathbb{Z}$, the representation $M_h(n,\psi)$ is a formal deformation along $U_h(\mathfrak{a})$ of the Verma module $M(n)$ when viewed as representation of $U(\mathfrak{a})$.

Proof. Immediate from the coloring axiom [C1] \hfill \square

2.4. **The algebra $U_h(\psi)$.** The integral Verma modules of \mathfrak{sl}_2 distinguish elements in the algebra $U(\mathfrak{sl}_2)$: an element in $U(\mathfrak{sl}_2)$ is zero if and only if it acts by zero on $M(n)$ for all $n \in \mathbb{Z}$. This remains true if we replace integral Verma modules of \mathfrak{sl}_2 with irreducible finite-dimensional representations of \mathfrak{sl}_2. These are known facts. We give a proof of them, for the reader’s convenience.

Proposition 2.10. Let $x \in U(\mathfrak{sl}_2)$. The following assertions are equivalent.

1. The element x is zero.
2. The element x acts by zero on all the integral Verma modules of \mathfrak{sl}_2.
3. The element x acts by zero on all the irreducible finite-dimensional representations of \mathfrak{sl}_2.

Proof. The implication (i) \Rightarrow (ii) is immediate. For $n \in \mathbb{Z}_{\geq 0}$ we denote by $L(n)$ the unique (up to isomorphism) irreducible representation of \mathfrak{sl}_2 of dimension $n+1$. The representation $L(n)$ is a quotient of the integral Verma module $M(n)$. Hence, assertion (ii) implies assertion (iii). Let x be a nonzero element in the algebra $U(\mathfrak{sl}_2)$ and suppose that x acts by zero on $L(n)$ for all $n \in \mathbb{Z}$. The K-algebra $U(\mathfrak{sl}_2)$ has a \mathbb{Z}-gradation, defined by $\deg(H) = 0$ and $\deg(X^\pm) = \pm 1$. Without loss of generality, we can assume that x is a homogeneous element of $U(\mathfrak{sl}_2)$. Let d be the degree of x. The algebra is spanned by monomials $(X^-)^a H^b (X^+)^c$ with $a, b, c \in \mathbb{Z}_{\geq 0}$ (this is an immediate consequence of the Serre-Chevalley relations). It follows that there are nonzero polynomials $\xi_{a_1}, \xi_{a_1+1}, \ldots, \xi_{a_2}$ in $K[H]$ with $a_1 = \max(0,d)$ and $a_2 \geq a_1$, such that $x = \sum_{a=a_1}^{a_2} (X^-)^{a-d} \xi_a(H)(X^+)^a$. According to the definition (2) of the Verma module $M(n)$, the action of x on b_{a_1} then satisfies

$$x.b_{a_1} = \xi_{a_1}(H)(X^+)^{a_1}.b_{a_1} = \xi_{a_1}(n) \frac{a_1! n!}{(n-a_1)!} b_{a_1}.$$
The image of b_{a_1} in the quotient $L(n)$ being nonzero for all $n \geq a_1$, it follows that $\xi^{a_1}(n)$ is zero for all $n \geq a_1$. The polynomial ξ^{a_1} is therefore zero, which is a contradiction. \hfill \Box

In other words, one can define the algebra $U(\mathfrak{s\ell}_2)$ as the quotient of $\mathfrak{u}(a)$ by I, where I designates the two-sided ideal of $\mathfrak{u}(a)$ formed of the elements acting by zero on all the integral Verma modules of $\mathfrak{s\ell}_2$, when viewed as representations of $\mathfrak{u}(a)$. This construction of $U(\mathfrak{s\ell}_2)$ may be viewed as an expression of a Tannaka duality between the algebra $U(\mathfrak{s\ell}_2)$ on the one side, and the Verma modules $M(n)$ on the other. We propose to consider the same construction, where integral Verma modules of $\mathfrak{s\ell}_2$ now carry a “colored” action of X^+.

Definition 2.11. Let ψ be a coloring.

1. We denote by $I_h(\psi)$ the two-sided ideal of $U_h(a)$ formed of the elements acting by zero on all the representations $M_h(n, \psi)$ $(n \in \mathbb{Z})$.
2. We denote by $U_h(\psi)$ the quotient of $U_h(a)$ by $I_h(\psi)$.

The algebra $U_h(\psi)$ has a natural structure of $U_h(a)$-algebra, given by the projection map from $U_h(a)$ to $U_h(\psi)$, and it follows from the definition that the action of $U_h(a)$ on $M_h(n, \psi)$ factorizes through $U_h(\psi)$. The algebra $U_h(\psi)$ is universal for this property.

Proposition 2.12. Let ψ a coloring. If A is a $U_h(a)$-algebra such that

- the structural homomorphism from $U_h(a)$ to A is surjective,
- the action of $U_h(a)$ on $M_h(n, \psi)$ factorizes through A for all $n \in \mathbb{Z}$,

then there is a unique $U_h(a)$-algebra homomorphism from A to $U_h(\psi)$.

Proof. Let A be a $U_h(a)$-algebra which satisfies the two conditions of the proposition, and let f be the structural homomorphism from $U_h(a)$ to A. As f is surjective, a $U_h(a)$-algebra homomorphism from A to $U_h(\psi)$ is necessarily unique. Let x be an element in $U_h(a)$ such that $f(x) = 0$. Since the action of $U_h(a)$ on $M_h(n, \psi)$ factorizes through A for all $n \in \mathbb{Z}$, it follows that x acts by zero on $M_h(n, \psi)$ for every $n \in \mathbb{Z}$. It implies by definition of the algebra $U_h(\psi)$ that the image of x in $U_h(\psi)$ is zero. Put in other words, the projection map from $U_h(a)$ to $U_h(\psi)$ factorizes through A. \hfill \Box

The algebra $U_h(\psi)$ is not in general a formal deformation of $U(\mathfrak{s\ell}_2)$. We will give in section 3 a sufficient and necessary condition on the coloring ψ for $U_h(\psi)$ to be a formal deformation of $U(\mathfrak{s\ell}_2)$. However, the algebra $U_h(\psi)$ always satisfies one of the axioms of a formal deformation. Namely, $U_h(\psi)$ is topologically free (recall that a $K[[h]]$-module is said topologically free if it is isomorphic to $V_0[[h]]$ for some K-vector space V_0).

Lemma 2.13. For any coloring ψ, the $K[[h]]$-module $U_h(\psi)$ is topologically free.

Proof. The $K[[h]]$-module $U_h(\psi)$ is by definition topologically free. It is in particular complete for the h-adic topology. As $U_h(\psi)$ is a quotient of $U_h(a)$, it is also complete. For $n \in \mathbb{Z}$ we denote by $E(n)$ the $K[[h]]$-algebra $\text{End}_{K[[h]]}(M_h(n, \psi))$ and we denote by f_n the $K[[h]]$-algebra homomorphism from $U_h(a)$ to $E(n)$ given by the representation $M_h(n, \psi)$. We denote by f the product of the f_n’s $(n \in \mathbb{Z})$. Remark that by definition $I_h(\psi)$ is equal to $\ker(f)$. The $K[[h]]$-modules $M_h(n, \psi)$ are topologically free. They are in particular Hausdorff for the h-adic topology and torsion-free. Hence so is $E = \prod_{n \in \mathbb{Z}} E(n)$. In view of the equality $I_h(\psi) = \ker(f)$,
Proof. The structural homomorphisms from U are topologically free; see for example [2].

Therefore, proving that $U_h(\psi)$ is a formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ consists from now in proving that $U_h(\psi)_{h=0}$ is isomorphic as \mathfrak{a}-algebra to $U(\mathfrak{sl}_2)$. As mentioned earlier, this is not true for a general coloring ψ. Nevertheless, we can show that the algebra $U_h(\psi)_{h=0}$ is always a cover of $U(\mathfrak{sl}_2)$.

Lemma 2.14. For any coloring ψ, there is a unique surjective \mathfrak{a}-algebra homomorphism from $U_h(\psi)_{h=0}$ to $U(\mathfrak{sl}_2)$.

Proof. The structural homomorphisms from $U(\mathfrak{a})$ to the \mathfrak{a}-algebras $U_h(\psi)_{h=0}$ and $U(\mathfrak{sl}_2)$ are surjective. It implies that an \mathfrak{a}-algebra homomorphism from $U_h(\psi)_{h=0}$ to $U(\mathfrak{sl}_2)$ is necessarily unique and surjective. Consider the functor $(\bullet)_{h=0}$ from the category of $K[[h]]$-modules to the category of K-vector spaces. It is is a right-exact functor. Hence, there is a natural isomorphism between $U_h(\psi)_{h=0}$ and the quotient of $U_h(\mathfrak{a})_{h=0}$ by the two-sided ideal $I_h(\psi)_{h=0}$. As the algebra $U_h(\mathfrak{a})_{h=0}$ is canonically isomorphic to $U(\mathfrak{a})$, proving the lemma then reduces to proving that every element of $I_h(\psi)_{h=0}$ is zero in $U(\mathfrak{sl}_2)$. For every $n \in \mathbb{Z}$, the representation $M_h(n, \psi)$ is a formal deformation along $U_h(\mathfrak{a})$ of the Verma module $M(n)$ when viewed as representation of $U(\mathfrak{a})$ (lemma 2.9). This implies that every element x in $I_h(\psi)_{h=0}$ acts by zero and all the integral Verma modules of \mathfrak{sl}_2, and in consequence that x is zero in $U(\mathfrak{sl}_2)$ (proposition 2.10). \hfill \Box

3. THE EQUATION $M(\psi), \xi = \theta$

We proved in section 2 that for every coloring ψ the algebra $U_h(\psi)$ is “almost” a formal deformation of the \mathfrak{a}-algebra $U_h(\psi)$; namely $U_h(\psi)$ is a topologically free $K[[h]]$-module and there is a surjective \mathfrak{a}-algebra homomorphism from $U_h(\psi)_{h=0}$ to $U(\mathfrak{sl}_2)$. It follows that $U_h(\psi)$ is an actual formal deformation of $U(\mathfrak{sl}_2)$ if and only if the aforementioned homomorphism is also injective. It is equivalent to prove that there is a relation in $U_h(\psi)$ which deforms the relation $[X^+, X^-] = H$ of $U(\mathfrak{sl}_2)$, or that the element X^+X^- can be expressed in $U_h(\psi)$ as a linear combination of the monomials $(X^-)^a H^b (X^+)^c$ ($a, b, c \in \mathbb{Z}_{\geq 0}$); see section 4. In order to address this problem, we introduce in the present section a family of infinite-dimensional linear equations which encode the action of $U_h(\psi)$ on $M_h(n, \psi)$ (proposition 3.2).

We prove that these equations always admit regular solutions if and only if the coloring ψ is regular (proposition 3.2); this is the key technical result of this paper.

3.1. Definition. We denote by Ξ the $K[[h]]$-module formed by sequences of the form $\xi = (\xi^a)_{a \geq 0}$ with $\xi^a = \sum_{n \geq 0} \xi^a_n h^n$ and $\xi^a_n \in K^Z$. For $d \in \mathbb{Z}$ we denote by Ξ_d the $K[[h]]$-submodule of Ξ formed of the sequences ξ such that ξ^a is zero for all $a < d$. We say that a sequence $\xi = (\xi^a)_{a \geq 0}$ in Ξ is regular if $\xi^a(n)$ is a polynomial function of n for all $a, m \in \mathbb{Z}_{\geq 0}$ and if for each m the polynomial $\xi^a(n)$ is zero for all but finitely many a.

We denote by Θ the $K[[h]]$-module formed by sequences of the form $\theta = (\theta^p)_{p \geq 0}$ with $\theta^p = \sum_{m \geq 0} \theta^p_m h^m$ and $\theta^p_m \in K^Z$, satisfying the third coloring axiom

\[\theta^{n+p-1}(n) = \theta^p (-n - 2) \quad \text{for all } n, p \in \mathbb{Z}_{\geq 0}. \]

For $d \in \mathbb{Z}$ we denote by Θ_d the $K[[h]]$-submodule of Θ formed of the sequences θ such that θ^p is zero for all $p < d$. We say that a sequence $\theta = (\theta^p)_{p \geq 0}$ in Θ is
regular if \(\theta_{m,n}^p(n) \) is a polynomial function of \(n \) for all \(p, m \in \mathbb{Z}_{\geq 0} \) and if for each \(m \) the degree of \(\theta_{m,n}^p(n) \) is a function of \(p \) bounded above.

Let \(\psi \) be a coloring. We denote by \(M(\psi) \) the \(K[[h]] \)-linear map from \(\Xi \) to \(\Theta \) defined by (an empty product is by convention equal to 1)

\[
(M(\psi)\xi)(n) = \sum_{a=0}^{p} \left(\prod_{b=p-a}^{p-1} \psi_b \right) \xi^a(n - 2p + 2a)
\]

for \(\xi \in \Xi \) and for \(n \in \mathbb{Z} \).

Remark 3.1. A sequence \(\theta \) in \(\Theta \) is regular if and only if for all \(m \in \mathbb{Z}_{\geq 0} \), \(\theta_{m,n}^p(n) \) is a polynomial function of the two variables \(p \) and \(n \). Whereas we do not use this fact in the present paper, the author believes it is interesting in its own.

Proof of remark 3.1. Let \(\theta \) be a regular vector in \(\Theta \) and let \(m \in \mathbb{Z}_{\geq 0} \). There are functions \(c_0, \ldots, c_l \) \((l \geq 0)\) from \(\mathbb{Z}_{\geq 0} \) to \(K \) such that \(\theta_{m,n}^p(n) = \sum_{b=0}^{l} c_b(p)n^b \). Let \(f^p \in K^N \) defined by \(f^p(n) = \theta_{m,n}^p(n) - \theta_{m,n}^p(n-1) \). The coloring axiom (C3) for \(\theta \) implies that \(\theta_{m,n}^{p+1}(n) \) is a polynomial function of \(n \) for every \(p \in \mathbb{Z}_{\geq 0} \). When \(l = 0 \) it implies that \(c_0(p) \) is a polynomial function of \(p \). When \(l \geq 1 \) it implies that there are functions \(c_0', \ldots, c_{l-1}' \) from \(\mathbb{Z}_{\geq 0} \) to \(K \) with \(c_{l-1}' = lc_l \), such that \(f^p(n) = \sum_{b=0}^{l-1} c'_b(p)n^b \) and such that \(f^{n+p+1}(n) \) is a polynomial function of \(n \) for every \(p \in \mathbb{Z}_{\geq 0} \). It follows by induction on \(l \) that \(c_0(p), \ldots, c_l(p) \) are polynomial functions of \(p \). This proves that if \(\theta \) is regular in \(\Theta \), then \(\theta_{m,n}^p(n) \in K[p,n] \). The converse implication is immediate. \(\square \)

3.2. Interpretation

Let \(\psi \) be a coloring. We say that an element \(x \) in \(U_h(\psi) \) is of degree \(d \) \((d \in \mathbb{Z})\) if for every \(p \geq d \) and for every \(n \in \mathbb{Z} \), \(x.b_p \) is equal to \(\theta^p(n)b_{p-d} \) in \(M_h(n,\psi) \) for some \(\theta^p(n) \in K[[h]] \). It follows from the definition of \(M_h(n,\psi) \) that the values \(\theta^p(n) \) define a sequence in \(\Theta_d \). We denote this sequence by \(\psi(x) \). Remark that the degree \(d \) of \(x \) is unique (by definition of \(U_h(\psi) \) the element \(x \) is zero if and only if it acts by zero on \(M_h(n,\psi) \) for all \(n \in \mathbb{Z} \)). Let us also remark that \(H \) and \(X^\pm \) are of degrees 0 and \(\pm 1 \) in \(U_h(\psi) \).

Proposition 3.2. Let \(\psi \) be a coloring. Let \(\theta \in \Theta_d \) \((d \in \mathbb{Z})\) and let \(\xi \) be a regular sequence in \(\Xi_d \). The following two assertions are equivalent.

(i) The sequence \(\theta \) is equal to \(\psi(x) \) for \(x = \sum_{a=\max(0,d)}^{\infty} (X^-)^{a-d}\xi^a(H)(X^+)^a \).

(ii) The sequence \(\xi \) is a solution of the equation \(M(\psi)\xi = \theta \).

Proof. The sequence \(\xi \) is regular in \(\Xi \). In other words \(\xi^a(n) \) belongs to \(K[n][[h]] \) and tends to zero for the \(h \)-adic topology as \(a \) goes to infinity. Therefore, \(\xi^a(H) \) defines an element in \(U_h(\psi) \) which tends to zero for the \(h \)-adic topology as \(a \) goes to infinity. As \(U_h(\psi) \) is Hausdorff and complete for the \(h \)-adic topology (lemma 2.13), the series \(\sum_{a=\max(0,d)}^{\infty} (X^-)^{a-d}\xi^a(H)(X^+)^a \) then converges to a unique element \(x \) in \(U_h(\psi) \). Remark that \(x \) is of degree \(d \). By definition of \(\psi(x) \), assertion (i) holds if and only if the equality

\[
\sum_{a=\max(0,d)}^{\infty} (X^-)^{a-d}\xi^a(H)(X^+)^a b_p = \theta^p(n)b_{p-d}
\]
holds in the representation $M_h(n, \psi)$ for every $p \geq d$ and for every $n \in \mathbb{Z}$. In other words, assertion (i) is true if and only if the equality

$$\sum_{a=\max(0,d)}^{p} \left(\prod_{b=p-a}^{p-1} \psi^b \right) \xi^a(n-2p+2a) = \theta^p(n)$$

holds for all $p \geq d$ and for all $n \in \mathbb{Z}$. \hfill \Box

3.3. Regular solutions.

Proposition 3.3. Let ψ be coloring.

1. The equation $M(\psi)\xi = \psi$ admits a regular solution ξ in Ξ if and only if ψ is regular in Θ.

2. Suppose that ψ is regular in Θ. For each $d \in \mathbb{Z}$ the map $\xi \mapsto M(\psi)\xi$ defines a $K[[h]]$-linear isomorphism from regular sequences in Ξ_d to regular sequences in Θ_d.

Proof of proposition 3.3.

Step 1. If the equation $M(\psi)\xi = \psi$ admits a solution ξ in Ξ such that $\xi^a(n)$ belongs to $K[n][h]$ for all $a \in \mathbb{Z}_{\geq 0}$, then $\psi^p(n)$ belongs to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$.

Proof. Let ξ be a sequence in Ξ such that $\xi^a(n)$ belongs to $K[n][\Theta]$ for all $a \in \mathbb{Z}_{\geq 0}$. If $M(\psi)\xi = \psi$ holds, i.e. if ξ satisfies

$$\sum_{a=\max(0,d)}^{p} \left(\prod_{b=p-a}^{p-1} \psi^b \right) \xi^a(n-2p+2a) = \psi^p(n)$$

for all $p \in \mathbb{Z}_{\geq 0}$ and for all $n \in \mathbb{Z}$, then it follows by induction on p that $\psi^p(n)$ belongs to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$. \hfill \Box

Step 2. Let ξ be a regular sequence in Ξ. If $\psi^p(n)$ belongs to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$, then the sequence $M(\psi)\xi$ is regular in Θ.

Proof. Let θ be the sequence $M(\psi)\xi$ and suppose that $\psi^p(n)$ belongs to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$. As $\xi^p(n)$ also belongs to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$, so does $\theta^p(n)$. Let $m \in \mathbb{Z}_{\geq 0}$. As ξ is a regular in Ξ, there exists $a(m)$ such that $\xi^{a(m)}(n) \in h^{m+1} K[n][\Theta]$ for all $a > a(m)$. Therefore, the equality

$$\sum_{a=0}^{a(m)} \left(\prod_{b=p-a}^{p-1} \psi^b(n) \right) \xi^a(n-2p+2a) = \theta^p(n)$$

holds in $K[n][\Theta]/h^{m+1} K[n][\Theta]$ for all $p \geq a(m)$. It follows that the degree of the polynomial $\theta^p(n)$ in $K[n]$ is a function of p bounded above. \hfill \Box

Step 3. Let $\theta \in \Theta$. If $\psi^p(n)$ and $\theta^p(n)$ belong to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$, then the equation $M(\psi)\xi = \theta$ admits a solution ξ in Ξ such that $\xi^a(n)$ belongs to $K[n][\Theta]$ for all $a \in \mathbb{Z}_{\geq 0}$.

Proof. Suppose that $\psi^p(n)$ and $\theta^p(n)$ belong to $K[n][\Theta]$ for all $p \in \mathbb{Z}_{\geq 0}$. Let us fix $p \in \mathbb{Z}_{\geq 0}$ and let $\xi^0(n), \xi^1(n), \ldots, \xi^p(n)$ in $K[n][\Theta]$ satisfying

$$\sum_{a=0}^{l} \left(\prod_{b=p-a}^{p-1} \psi^b(n) \right) \xi^a(n-2l+2a) = \theta^p(n)$$

for every $l \geq 0$. Then $\sum_{a=0}^{\max(0,d)} \left(\prod_{b=p-a}^{p-1} \psi^b \right) \xi^a(n-2p+2a) = \psi^p(n)$ holds. \hfill \Box
for all $0 \leq l \leq p$. As ψ satisfies the coloring axioms [C1] and [C2], $\psi^b(n)$ is equal to $(n - b)^f(n)$ for some invertible element $f^b(n)$ in $K[[h]]$. Therefore, there exists $\xi^{p+1}(n)$ in $K[[h]]$ such that

$$
\sum_{a=0}^{p} \left(\prod_{b=p+1-a}^{p} \psi^b(n) \right) \xi^a(n - 2(p + 1) + 2a) + \left(\prod_{b=0}^{p} \psi^b(n) \right) \xi^{p+1}(n) = \theta^{p+1}(n)
$$

if only if the equality

$$
\sum_{a=0}^{p} \left(\prod_{b=p+1-a}^{p} \psi^b(n') \right) \xi^a(n' - 2(p + 1) + 2a) = \theta^{p+1}(n')
$$

holds in $K[[h]]$ for all $n' \in \{0, 1, \ldots, p\}$. For such n', the left-hand side of (4) is equal to

$$
\sum_{a=0}^{p-n'} \left(\prod_{b=p+1-a}^{p} \psi^b(n') \right) \xi^a(n' - 2(p + 1) + 2a)
$$

by [C2]

$$
= \sum_{a=0}^{p-n'} \left(\prod_{b=p+1-a}^{p} \psi^{b-n'-1}(-n' - 2) \right) \xi^a(n' - 2(p + 1) + 2a)
$$

by [C3]

$$
= \sum_{a=0}^{p-n'} \left(\prod_{b=p-n'-a}^{p-n'-1} \psi^b(-n' - 2) \right) \xi^a(-n' - 2 - 2(p - n') + 2a).
$$

As θ satisfies the coloring axiom [C3], it follows that for all $n' \in \{0, 1, \ldots, p\}$ equality (4) is equivalent to the equality

$$
\sum_{a=0}^{p-n'} \left(\prod_{b=p-n'-a}^{p-n'-1} \psi^b(-n' - 2) \right) \xi^a(-n' - 2 - 2(p - n') + 2a) = \theta^{p-n'}(-n' - 2),
$$

which is equality (3) for $l = p - n'$ and for $n = -n' - 2$. We therefore have proved by induction on p that the equation $M(\psi), \xi = \theta$ admits a solution ξ in Ξ such that $\xi^a(n)$ belongs to $K[[h]]$ for all $a \in \mathbb{Z}_{\geq 0}$.

Step 4. Let $\theta \in \Theta$. If ψ and θ are regular sequences in Θ, then the equation $M(\psi), \xi = \theta$ admits a regular solution ξ in Ξ.

Proof. Suppose that ψ and θ are regular sequences in Θ and let ξ be a solution of the equation $M(\psi), \xi = \theta$ such that $\xi^a(n)$ belongs to $K[[h]]$ for all $a \in \mathbb{Z}_{\geq 0}$ (step 3). Let us prove by induction on m that $\xi^a_m(n)$ is zero for sufficiently large a. Let $m \in \mathbb{Z}_{\geq 0}$ and suppose that there exists $a(m)$ such that $\xi^a_m(n)$ is zero for all $a > a(m)$ and for all $m' \leq m$. We denote by $\bar{\theta}$ the sequence in Θ defined by

$$
\bar{\theta}^p(n) = \theta^p(n) - \sum_{a=0}^{a(m)} \left(\prod_{b=p-a}^{p-1} \psi^b(n) \right) \xi^a(n - 2p + 2a)
$$

for $p \in \mathbb{Z}_{\geq 0}$ and for $n \in \mathbb{Z}$. As ψ and θ are regular, there is $l \geq 0$ such that the degree of the polynomial $\bar{\theta}^p_{m+1}(n)$ in $K[n]$ is less than or equal to l for all $p \in \mathbb{Z}_{\geq 0}$.
Since $\zeta^a_m(n)$ is zero for all $a > a(m)$ and for all $m' \leq m$, the equality $M(\psi).\xi = \theta$ implies

$$\sum_{a=a(m)+1}^p \left(\prod_{b=p-a}^{p-1} \psi^b_0(n) \right) \zeta^a_{m+1}(n-2p+2a) = \theta^p_{m+1}(n)$$

for all $p \geq a(m) + 1$ and for all $n \in \mathbb{Z}$. According to the coloring axiom (C1), the polynomial $\psi^b_0(n)$ is of degree 1 in $K[n]$. Equality (5) therefore implies that if $l(a) (a \in \mathbb{Z}_{\geq 0})$ designates the degree of the polynomial $\zeta^a_{m+1}(n)$ in $K[n]$, then

$$\sum_{a=a(m)+1}^p l(a) + a \leq l \text{ for all } p \geq a(m) + 1.$$

Hence, it follows from (5) again, with p replaced by $p+1$, that $l(p+1) + (p+1) \leq l$ for all $p \geq a(m) + 1$. As a consequence, the polynomial $\zeta^a_{m+1}(n)$ is zero for sufficiently large a.

\textbf{Step 5.} Let $\theta \in \Theta$. The equation $M(\psi).\xi = \theta$ admits at most one solution ξ in Ξ such that $\xi^a(n)$ belongs to $K[n][[h]]$ for all $a \in \mathbb{Z}_{\geq 0}$.

\textit{Proof.} Let ξ be a solution in Ξ of the equation $M(\psi).\xi = 0$, i.e.

$$\sum_{a=0}^p \left(\prod_{b=p-a}^{p-1} \psi^b(n) \right) \xi^a(n-2p+2a) = 0$$

for all $p \in \mathbb{Z}_{\geq 0}$ and for all $n \in \mathbb{Z}$. Suppose that $\xi^a(n)$ belongs to $K[n][[h]]$ for all $a \in \mathbb{Z}_{\geq 0}$. It follows by induction on $p \in \mathbb{Z}_{\geq 0}$ that $(\prod_{b=0}^{p-1} \psi^b(n))\xi^p(n)$ is zero for all $n \in \mathbb{Z}$. It follows from the coloring axiom (C1) that $\psi^b(n)$ is zero only if $n = b$. Therefore, $\xi^p(n)$ is zero for infinitely many values of n. As $\xi^p(n)$ belongs to $K[n][[h]]$, it follows that ξ^p is zero.

\textbf{Step 6 (Conclusion).}

Step 1 together with step 2 for $\theta = \psi$, prove that if the equation $M(\psi).\xi = \psi$ admits a regular solution ξ in Ξ, then ψ is a regular sequence in Θ. Conversely, step 2 proves that if ψ is a regular sequence in Θ, then the equation $M(\psi).\xi = \psi$ admits a regular solution ξ in Ξ.

Suppose that ψ is a regular sequence in Θ. Step 2 proves that $\xi \mapsto M(\psi).\xi$ defines a map from regular sequences in Ξ to regular sequences in Θ. Step 2 proves that the map is surjective and step 5 proves it is injective.

\textbf{Remark 3.4.} Let ψ a coloring and let $\theta \in \Theta$ (we do not assume here that ψ and θ are regular). We see from the proof of proposition 3.3 (step 5) that the equation $M(\psi).\xi = \theta$ admits as many solutions ξ in Ξ as they are choices for the values $\xi^p(n)$ ($0 \leq n \leq p$) – we see in particular that if not regular, a solution of $M(\psi).\xi = \theta$ is not unique. It may be interesting to find a condition on these values characterizing regularity for the solution ξ, when ψ and θ are regular.

4. Colored Kac-Moody algebras of rank one

We present here the main results of this paper. We prove that $U_h(\mathfrak{sl}_2)$ is a formal deformation of $U(\mathfrak{sl}_2)$ if and only if the coloring ψ is regular (theorem 4.1), and we give a Chevalley-Serre presentation of $U_h(\psi)$ for ψ regular (theorem 4.2). We show that the constant formal deformation $U(\mathfrak{sl}_2)[[h]]$ and the quantum algebra $U_h(\mathfrak{sl}_2)$ can be realized as colored Kac-Moody algebras (theorem 4.3). We prove that regular colorings classify \mathfrak{g}-trivial formal deformations of the \mathfrak{g}-algebra $U(\mathfrak{sl}_2)$.
(theorem 1.2). We prove that $U_h(\psi)$ is a h-trivial deformation of $U(\mathfrak{sl}_2)$ for all regular colorings ψ (theorem 3.4). As a corollary, we obtain that every h-trivial formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$ is also h-trivial (corollary 4.4).

4.1. Formal deformations of $U(\mathfrak{sl}_2)$. We say that a coloring ψ is regular if ψ is a regular sequence in Θ, i.e. if ψ satisfies

(R1) $\psi_m^p(n)$ is a polynomial function of n for all $p, m \in \mathbb{Z}_{\geq 0}$,

(R2) for each m the degree of $\psi_m^p(n)$ is a function of p bounded above.

For ψ regular, we call the algebra $U_h(\psi)$ a colored Kac-Moody algebra.

Theorem 4.1. Let ψ be coloring. The following three assertions are equivalent.

(i) The coloring ψ is regular.

(ii) The algebra $U_h(\psi)$ is a formal deformation of the K-algebra $U(\mathfrak{sl}_2)$.

(iii) The algebra $U_h(\psi)$ is a formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$.

Proof of theorem 4.1. We denote by f the surjective \mathfrak{a}-algebra homomorphism from $U_h(\psi)_{h=0}$ to $U(\mathfrak{sl}_2)$ (lemma 2.14). Remark that as $U_h(\psi)$ is topologically free (lemma 2.13), it is sufficient to prove that f is injective in order to prove that $U_h(\psi)$ is a formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$.

Step 1. Assertion (i) implies assertion (iii).

Proof. Suppose that the coloring ψ is regular. Then the equation $M(\psi)\xi = \psi$ admits a regular solution $\xi = (\xi^a)_{a \geq 0}$ in Ξ (proposition 3.3). It implies that the series $\sum_{a \geq 0}(X^-)^a \xi^a(H)(X^+)^a$ converges in $U_h(\psi)$ (for the h-adic topology) to a unique element x such that $\psi(x) = \psi(X^+X^-)$ (proposition 3.2). It means that for every $n \in \mathbb{Z}$ the elements X^+X^- and x act identically on $M_h(n, \psi)$ when viewed as representation of $U_h(\psi)$. By definition of $U_h(\psi)$, the relation $X^+X^- = x$ therefore holds in $U_h(\psi)$. It follows that $U_h(\psi)_{h=0}$ is spanned by the monomials $(X^-)^a H^b(X^+)^c$ ($a, b, c \in \mathbb{Z}_{\geq 0}$). These monomials form a basis in $U(\mathfrak{sl}_2)$ (namely, the canonical PBW basis). In other words, f sends a spanning subset to a basis. This implies that f is injective.

Step 2. Assertions (ii) and (iii) are equivalent.

Proof. Suppose that $U_h(\psi)$ is a formal deformation of the K-algebra $U(\mathfrak{sl}_2)$. Then there is a K-algebra isomorphism f' from $U(\mathfrak{sl}_2)$ to $U_h(\psi)_{h=0}$. We therefore have a surjective K-algebra endomorphism $g = f \circ f'$ of $U(\mathfrak{sl}_2)$. We denote by $L(n)^g$ the pullback by g of the irreducible representation $L(n)$ of \mathfrak{sl}_2 of dimension n ($n \geq 0$). The pullback $L(n)^g$ is a representation of $U(\mathfrak{sl}_2)$ of dimension n, irreducible again as g is surjective. The representation $L(n)^g$ is thus isomorphic to $L(n)$. Consider now an element x in $U(\mathfrak{sl}_2)$ such that $g(x) = 0$. The element x then acts by zero on the pullback $L(n)^g$ for every $n \geq 0$. As a consequence, x acts by zero on $L(n)$ for every n, and is thus equal to zero (proposition 2.10). In other words, g is injective. It implies that f is injective. We hence have proved that assertion (ii) implies assertion (iii). The converse implication is immediate.

Step 3. Assertion (iii) implies assertion (i).

Proof. We denote by T the subset $\{(X^-)^a H^b(X^+)^c; a, b, c \geq 0\}$ of $U_h(\psi)$. As $U_h(\psi)$ is Hausdorff and complete for the h-adic topology (lemma 2.13), the inclusion map from T to $U_h(\psi)$ induces a $K[[h]]$-linear map j from $(KT)[[h]]$ to $U_h(\psi)$. Suppose that $U_h(\psi)$ is a formal deformation of the \mathfrak{a}-algebra $U(\mathfrak{sl}_2)$. Then the image of T
in \(U_h(\psi)_{h=0} \) is a basis of \(U_h(\psi)_{h=0} \) – it corresponds to the canonical PBW basis of \(U(\mathfrak{sl}_2) \) via the unique \(\mathfrak{a} \)-algebra isomorphism between \(U_h(\psi)_{h=0} \) and \(U(\mathfrak{sl}_2) \). The map \(f_{h=0} \) is therefore surjective. It follows that \(j \) is surjective, since \(U_h(\psi) \) is Hausdorff and complete for the \(h \)-adic topology. In other words, there exists a regular sequence \(\xi = (\xi_a)_{a \geq 0} \) in \(\Xi \) such that the relation

\[
X^+ X^- = \sum_{a=0}^{\infty} (X^-)^a \xi^a (H)(X^+)^a
\]

holds in \(U_h(\psi) \) (the series converges to a unique element in \(U_h(\psi) \) for the \(h \)-adic topology since \(U_h(\psi) \) is Hausdorff and complete). It implies that \(\xi \) is a solution of the equation \(M(\psi) \xi = \psi \) (proposition \ref{prop:regular_solution}). The coloring \(\psi \) is therefore regular (proposition \ref{prop:regularity}). \(\square \)

4.2. Generators and relations.

Theorem 4.2. Let \(\psi \) be a regular coloring. The \(K[[h]] \)-algebra \(U_h(\psi) \) is generated topologically by \(X^-, H, X^+ \) and subject to the relations

\[
\begin{align*}
(6a) & \quad [H, X^\pm] = \pm 2 X^\pm, \\
(6b) & \quad X^+ X^- = \sum_{a=0}^{\infty} (X^-)^a \xi^a (H)(X^+)^a,
\end{align*}
\]

where \(\xi = (\xi_a)_{a \geq 0} \) is the regular solution in \(\Xi \) of the equation \(M(\psi) \xi = \psi \).

Proof. Since \(\psi \) is regular the equation \(M(\psi) \xi = \psi \) admits a unique regular solution \(\xi = (\xi^a)_{a \geq 0} \) in \(\Xi \) (proposition \ref{prop:regular_solution}). The element \(\xi^a \) tends to zero in \(K[H][[h]] \) for the \(h \)-adic topology when \(a \) goes to infinity. It implies that the series in \(6b \) converges to a unique element in the \(K[[h]] \)-algebra \(K\langle X^-, H, X^+ \rangle[[h]] \) (which is Hausdorff and complete for the \(h \)-adic topology). Let \(U \) be the quotient of \(K\langle X^-, H, X^+ \rangle[[h]] \) by the smallest closed (for the \(h \)-adic topology) two-sided ideal containing the relations \(6b \). Since \(\xi \) is a regular solution in \(\Xi \) of the equation \(M(\psi) \xi = \psi \), it follows from proposition \ref{prop:regular_solution} (see the proof of theorem \ref{thm:principal_ideal}) that the relation \(6b \) holds in \(U_h(\psi) \). Therefore, as \(U_h(\psi) \) is complete and Hausdorff for the \(h \)-adic topology (lemma \ref{lem:complete_hausdorff}), there is a canonical \(K \)-algebra homomorphism \(f \) from \(U \) to \(U_h(\psi) \). It follows from the relation \(6b \) that \(U_{h=0} \) is spanned by the monomials \((X^-)^a H^b (X^+)^c \) with \(a, b, c \in \mathbb{Z}_{\geq 0} \). These monomials form a basis in \(U_h(\psi)_{h=0} \) – it corresponds to the canonical PBW basis of \(U(\mathfrak{sl}_2) \) via the unique \(\mathfrak{a} \)-algebra isomorphism between \(U_h(\psi)_{h=0} \) and \(U(\mathfrak{sl}_2) \). In other words, the map \(f_{h=0} \) sends a spanning subset to a basis. This implies that \(f_{h=0} \) is bijective. As \(U \) is Hausdorff and complete (for the \(h \)-adic topology), and since \(U_h(\psi) \) is Hausdorff and torsion-free (lemma \ref{lem:torson-free}), it follows that \(f \) is bijective. \(\square \)

4.3. Classical and quantum realizations. Let us recall that the quantum algebra \(U_h(\mathfrak{sl}_2) \) designates the \(K[[h]] \)-algebra generated topologically by \(X^-, H, X^+ \) and subject to the relations

\[
\begin{align*}
(7a) & \quad [H, X^\pm] = \pm 2 X^\pm, \\
(7b) & \quad [X^+, X^-] = \frac{q^H - q^{-H}}{q^{-1} - q} \quad & \text{with } q = \exp(h) \text{ and } q^H = \exp(hH),
\end{align*}
\]
i.e. $U_h(\mathfrak{sl}_2)$ is the quotient of the $K[[h]]$-algebra $K\langle X^-, H, X^+ \rangle[[h]]$ by the smallest closed (for the h-adic topology) two-sided ideal containing the previous relations.

We recall that N and N_q designate the natural coloring and the q-coloring, defined by

\[N^p(n) = (p+1)(n - p), \]
\[N_q^p(n) = [p + 1]_q[n - p], \quad \text{where } [k]_q = \frac{q^k - q^{-k}}{q - q^{-1}} \text{ for } k \in \mathbb{Z}. \]

Theorem 4.3. The colored Kac-Moody algebras $U_h(N)$ and $U_h(N_q)$ are isomorphic as $U_h(a)$-algebras to $U(\mathfrak{sl}_2)[[h]]$ and $U_h(\mathfrak{sl}_2)$, respectively.

Proof. The algebra $U(\mathfrak{sl}_2)[[h]]$ has a canonical structure of $U_h(a)$-algebra. Remark that the structural homomorphism from $U_h(a)$ to $U(\mathfrak{sl}_2)[[h]]$ is surjective. The relation $[X^+, X^-] = H$ holds in the representation $M_h(n,N)$ for all $n \in \mathbb{Z}$. In view of the Chevalley-Serre presentation of $U(\mathfrak{sl}_2)$, and since $M_h(n,N)$ is Hausdorff for the h-adic topology, it implies that the action of $U_h(a)$ on $M_h(n,N)$ factorizes through $U(\mathfrak{sl}_2)[[h]]$ for all $n \in \mathbb{Z}$. It follows by the universal property of $U_h(N)$ (proposition 2.12) that there is a $U_h(a)$-algebra homomorphism f from $U(\mathfrak{sl}_2)[[h]]$ to $U_h(N)$. Since the structural homomorphism from $U_h(a)$ to $U_h(N)$ is surjective, so is f. The a-algebra $U(\mathfrak{sl}_2)[[h]]_{h=0}$ is isomorphic to $U(\mathfrak{sl}_2)$. Therefore, there is an a-algebra homomorphism g_0 from $U_h(\psi)_{h=0}$ to $U(\mathfrak{sl}_2)[[h]]_{h=0}$. Consider then the map $g_0 \circ f_{h=0}$. It is an a-algebra endomorphism of $U(\mathfrak{sl}_2)[[h]]_{h=0}$. Hence it is equal to the identity map. This implies that $f_{h=0}$ is injective. Since $U_h(N)$ is torsion-free (lemma 2.13) and since $U(\mathfrak{sl}_2)[[h]]$ is Hausdorff for the h-adic topology, it follows that f is injective, and therefore bijective.

The proof for $U_h(\mathfrak{sl}_2)$ is similar. Namely, the algebra $U_h(\mathfrak{sl}_2)$ has a canonical structure of $U_h(a)$-algebra. Remark that the structural homomorphism from $U_h(a)$ to $U_h(\mathfrak{sl}_2)$ is surjective. The relation 2.13 holds in the representation $M_h(n,N_q)$ for all $n \in \mathbb{Z}$. In view of the presentation (7a) of $U_h(\mathfrak{sl}_2)$, and since $M_h(n,N_q)$ is Hausdorff for the h-adic topology, it implies that the action of $U_h(a)$ on $M_h(n,N_q)$ factorizes through $U_h(\mathfrak{sl}_2)$ for all $n \in \mathbb{Z}$. It follows by the universal property of $U_h(N_q)$ (proposition 2.12) that there is a $U_h(a)$-algebra homomorphism f from $U_h(\mathfrak{sl}_2)$ to $U_h(N_q)$. Since the structural homomorphism from $U_h(a)$ to $U_h(N_q)$ is surjective, so is f. The a-algebra $U_h(\mathfrak{sl}_2)_{h=0}$ is isomorphic to $U(\mathfrak{sl}_2)$ (the functor $(\bullet)_{h=0}$ from the category of $K[[h]]$-modules to the category of K-vector spaces is is a right-exact functor). Therefore, there is an a-algebra homomorphism g_0 from $U_h(\psi)_{h=0}$ to $U_h(\mathfrak{sl}_2)_{h=0}$. Consider then the map $g_0 \circ f_{h=0}$. It is an a-algebra endomorphism of $U_h(\mathfrak{sl}_2)_{h=0}$. Hence it is equal to the identity map. This implies that $f_{h=0}$ is injective. Since $U_h(N_q)$ is torsion-free (lemma 2.13) and since $U_h(\mathfrak{sl}_2)$ is Hausdorff for the h-adic topology, it follows that f is injective, and therefore bijective.

4.4. Classification. Let A be a formal deformation of the a-algebra $U(\mathfrak{sl}_2)$. The elements X^-, H and X^+ in A designate the images of X^-, H and X^+ in $U_h(a)$ by the structural homomorphism from $U_h(a)$ to A.

We say that the formal deformation A is h-trivial if there exists a $K[[h]]$-algebra homomorphism g from $U_h(N)$ to A such that $g(H) = H$ and such that $g_{h=0}$ is an a-algebra homomorphism. The homomorphism g is called a h-trivialization of A.
Theorem 4.4. For every \(h \)-trivial formal deformation \(A \) of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{sl}_2) \), there is a unique regular coloring \(\psi \) such that \(A \) and \(U_h(\psi) \) are isomorphic as \(U_h(\mathfrak{a}) \)-algebras.

Proof of theorem 4.4. Let \(n \in \mathbb{Z} \) and let \(\varphi = (\varphi^p)_{p \geq 0} \) be a sequence with values in \(K[[h]] \). We denote by \(M_h(n, \varphi) \) the representation of \(U_h(\mathfrak{a}) \) whose underlying \(K[[h]] \)-module is \((\bigoplus_{p \geq 0} K b_p)[[h]] \) and where the action of \(U_h(\mathfrak{a}) \) is defined by

\[
H b_p = (n - 2p) b_p, \\
X^+ b_p = b_{p+1}, \\
X^- b_p = \begin{cases} 0 & \text{if } p = 0, \\ \varphi^{p-1} b_{p-1} & \text{if } p \geq 1. \end{cases}
\]

Step 1. Let \(A \) be a formal deformation of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{sl}_2) \) and let \(n \in \mathbb{Z} \). There is at most one sequence \(\varphi \) with values in \(K[[h]] \) such that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \varphi) \) factorizes through \(A \).

Proof. Let \(V(n) \) be the representation of \(A \) generated topologically by \(v \) and subject to the relations \(H.v = nv \) and \(X^+.v = 0 \) - i.e. the representation \(V(n) \) is the quotient of the left regular representation \(A.v \) of \(A \) by the smallest closed (for the \(h \)-adic topology) subrepresentation containing the elements \(H.v - nv \) and \(X^+.v \). Let \(\varphi \) be a sequence with values in \(K[[h]] \) such that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \varphi) \) factorizes through \(A \). We regard from now \(M_h(n, \varphi) \) as a representation of \(A \). By definition of \(V(n) \), and since \(M_h(n, \varphi) \) is Hausdorff for the \(h \)-adic topology, there is a morphism \(f \) from \(V(n) \) to \(M_h(n, \varphi) \) such that \(f(v) = b_0 \). The representation \(V(n)_{h=0} \) of \(A_{h=0} \) is generated by the image \(v_0 \) of \(v \), and the relations \(H.v_0 = nv_0 \) and \(X^+.v_0 = 0 \) hold in \(V(n)_{h=0} \). Since \(A \) is a formal deformation of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{sl}_2) \), the relations \([H, X^{-}] = -2X^{-} \) and \([X^+, X^{-}] = H \) hold in \(A_{h=0} \). It follows by induction on \(p \) that the vectors \((X^{-})^p.v_0 \ (p \in \mathbb{Z}_{\geq 0}) \) span the \(K \)-vector space \(V(n)_{h=0} \). As a consequence, the \(\mathfrak{a} \)-algebra homomorphism \(f_{h=0} \) sends a spanning subset of \(V(n)_{h=0} \) to a basis of \(M_h(n, \varphi)_{h=0} \). The map \(f_{h=0} \) is therefore bijective. As \(V(n) \) is Hausdorff and complete (for the \(h \)-adic topology), and since \(M_h(n, \varphi) \) is Hausdorff and torsion-free, it follows that \(f \) is bijective. Suppose that there is another sequence \(\varphi' \) with values in \(K[[h]] \) such that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \varphi') \) factorizes through \(A \). Then, as for \(\varphi \), there is an \(A \)-isomorphism \(f' \) from \(V(n) \) to \(M_h(n, \varphi') \) such that \(f'(v) = b_0 \). It follows that there is an \(A \)-isomorphism \(g \) from \(M_h(n, \varphi) \) to \(M_h(n, \varphi') \) such that the image of \(b_0 \) by \(g \) is \(b_0 \). Since \(g \) commutes with the action of \(X^- \), the image of \(b_p \) by \(g \) is \(b_p \) for all \(p \in \mathbb{Z}_{\geq 0} \). Since \(g \) commutes with the action of \(X^+ \), it follows that \(\varphi \) and \(\varphi' \) are equal.

Step 2. Let \(\psi, \psi' \) be two regular colorings. If \(U_h(\psi) \) and \(U_h(\psi') \) are isomorphic as \(U_h(\mathfrak{a}) \)-algebras, then \(\psi = \psi' \).

Proof. Let \(n \in \mathbb{Z} \). By definition, the actions of \(U_h(\mathfrak{a}) \) on the representations \(M_h(n, \psi) \) and \(M_h(n, \psi') \) factorize through \(U_h(\psi) \) and \(U_h(\psi') \), respectively. Suppose that \(U_h(\psi) \) and \(U_h(\psi') \) are isomorphic \(U_h(\mathfrak{a}) \)-algebras. It implies that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \psi') \) also factorizes through \(U_h(\psi) \). It follows from step 1 that \(\psi^p(n) = (\psi')^p(n) \) for all \(p \in \mathbb{Z}_{\geq 0} \).

Step 3. Let \(A \) be a formal deformation of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{sl}_2) \). If \(\psi \) is a coloring such that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \psi) \) factorizes through \(A \) for all \(n \in \mathbb{Z} \), then \(A \) and \(U_h(\psi) \) are isomorphic as \(U_h(\mathfrak{a}) \)-algebras.
and since \(A \) is Hausdorff and complete for the \(h \)-adic topology, it follows that \(f \) is surjective. Let then \(\psi: A \to U_h(\mathfrak{a}) \) be a coloring such that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \psi) \) factorizes through \(A \) for all \(n \in \mathbb{Z} \). It follows by the universal property of \(U_h(\psi) \) (proposition \(\ref{2.12} \)) that there is a \(U_h(\mathfrak{a}) \)-algebra homomorphism \(\tilde{f} \) from \(A \) to \(U_h(\psi) \). The map \(\tilde{f} \) is surjective, since the structural homomorphism from \(U_h(\mathfrak{a}) \) to the \(U_h(\mathfrak{a}) \)-algebra \(U_h(\psi) \) is. Since \(A_{h=0} \) and \(U(\mathfrak{a}_2) \) are isomorphic as \(\mathfrak{a} \)-algebras, there is an \(\mathfrak{a} \)-algebra homomorphism \(g_0 \) from \(U_h(\psi)_{h=0} \) to \(A_{h=0} \) (lemma \(\ref{2.14} \)). Consider then the map \(g_0 \circ \tilde{f}_{h=0} \). It is an \(\mathfrak{a} \)-algebra endomorphism of \(A_{h=0} \). Hence it is equal to the identity map. This implies that \(\tilde{f}_{h=0} \) is injective. Since \(U_h(\psi) \) is torsion-free (lemma \(\ref{2.13} \)) and since \(A \) is Hausdorff for the \(h \)-adic topology, it follows that \(\tilde{f} \) is injective, and therefore bijective.

\(\square \)

Step 4. For every \(\mathfrak{b} \)-trivial formal deformation \(A \) of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{a}_2) \), there exists a regular coloring \(\psi \) such that \(A \) and \(U_h(\psi) \) are isomorphic as \(U_h(\mathfrak{a}) \)-algebras.

Proof. Let \(A \) be a \(\mathfrak{b} \)-trivial formal deformation of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{a}_2) \) and let \(f \) be a \(\mathfrak{b} \)-trivialization of the \(\mathfrak{a} \)-algebra \(A \). We denote by \(V(n) \) (\(n \in \mathbb{Z} \)) the pullback of the representation \(M(n)[[h]] \) by \(f^{-1} \). Consider the grading of \(U(\mathfrak{a}_2) \) defined by \(\deg(H) = 0 \) and \(\deg(X^\pm) = \pm 1 \). An element \(x \) in \(U(\mathfrak{a}_2) \) has degree \(d \) if and only if \(\deg(x) = 2d \). Since \(\deg(H, X^\pm) = \pm 2X^\pm \) holds in \(A \) and since \(f \) is a \(\mathfrak{b} \)-trivialization, it follows that there exist \(\alpha^p(n) = \sum_{m \geq 0} \alpha^p_m(n) h^m \) and \(\beta^p(n) = \sum_{m \geq 0} \beta^p_m(n) h^m \) in \(K([[h]]) \) such that

\[
H.b_p = (n-2p)b_p, \quad X^-b_p = \alpha^p(n)b_{p+1}, \quad X^+b_{p+1} = \beta^p(n)b_p
\]

holds in \(V(n) \) for all \(p \in \mathbb{Z}_{\geq 0} \), with \(\alpha^0_p(n) = 1 \) and \(\beta^0_p(n) = (p+1)(n-p) \). If \(b'_p \) \((p \in \mathbb{Z}_{\geq 0})\) designates the vector \((X^-)^p.0 \) in \(V(n) \), then

\[
H.b'_p = (n-2p)b'_p, \quad X^-b'_p = b'_{p+1}, \quad X^+b'_{p+1} = \psi^p(n)b'_p
\]

holds in \(V(n) \) for all \(p \in \mathbb{Z}_{\geq 0} \), with \(\psi^p(n) = \alpha^p(n)\beta^p(n) \). When \(n \geq 0 \) the \(K \)-vector subspace \(\bigoplus_{p \geq n+1} K b_p \) is a subrepresentation of \(M(n) \), and \(\bigoplus_{p \geq n+1} K b_p[[[h]]] \) is thus subrepresentation of \(V(n) \). It implies that \(\beta^n(n) \) is zero for all \(n \in \mathbb{Z}_{\geq 0} \). It then follows from step \(\ref{3.1} \) that \(\psi^{p+n+1}(n) = \psi^p(-n-2) \) for all \(p, n \in \mathbb{Z}_{\geq 0} \). The values \(\psi^p(n) \) hence define a coloring \(\psi \) such that for every \(n \in \mathbb{Z} \) the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \psi) \) factorizes through \(A \). It follows from step \(\ref{3.3} \) that \(A \) and \(U_h(\psi) \) are isomorphic as \(U_h(\mathfrak{a}) \)-algebras. It implies in particular that \(U_h(\psi) \) is a formal deformation of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{a}_2) \). The coloring \(\psi \) is therefore necessarily regular (theorem \(\ref{2.11} \)).

\(\square \)

4.5. **\(\mathfrak{b} \)-triviality.** Recall that for a formal deformation \(A \) of the \(\mathfrak{a} \)-algebra \(U(\mathfrak{a}_2) \), the elements \(X^- \), \(H \) and \(X^+ \) in \(A \) designate the images of \(X^- \), \(H \) and \(X^+ \) in \(U_h(\mathfrak{a}) \) by the structural homomorphism from \(U_h(\mathfrak{a}) \) to \(A \).

We say that the formal deformation \(A \) is **\(\mathfrak{b} \)-trivial** if there exists a \(K[[[h]]] \)-algebra homomorphism \(g \) from \(U(\mathfrak{a}_2)[[[h]]] \) to \(A \) such that \(g(H) = H \), \(g(X^-) = X^- \) and such that \(g = 0 \) is an \(\mathfrak{a} \)-algebra homomorphism. The homomorphism \(g \) is called a **\(\mathfrak{b} \)-trivialization** of \(A \).

Theorem 4.5. Let \(\psi \) be a regular coloring. The colored Kac-Moody algebra \(U_h(\psi) \) is \(\mathfrak{b} \)-trivial and admits a unique \(\mathfrak{b} \)-trivialization.
Every \(\mathfrak{h}\)-trivial formal deformation of the \(\mathfrak{a}\)-algebra \(U(\mathfrak{s}l_2) \) is as \(U_h(\mathfrak{a}) \)-algebra isomorphic to \(U_h(\psi) \) for a regular coloring \(\psi \) (theorem 4.5). Theorem 4.5 then implies the following result.

Corollary 4.6. A formal deformation of the \(\mathfrak{a}\)-algebra \(U(\mathfrak{s}l_2) \) is \(\mathfrak{h}\)-trivial if and only if it is \(\mathfrak{b}\)-trivial, and it admits at most one \(\mathfrak{b}\)-trivialization.

Proof of the theorem 4.5.

Step 1. There exists a \(K[[\mathfrak{h}]]\)-algebra homomorphism \(g \) from \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \) to \(U_h(\psi) \) such that \(g(X^-) = X^- \) and \(g(H) = H \).

Proof. Consider the natural coloring \(N \) and consider the sequence \(N(X^+) \) in \(\Theta \geq 1 \) defined by \(N(X^+)^p = N^{p-1} \) for \(p \geq 1 \). As the coloring \(N \) is regular, so is the sequence \(N(X^+) \). As \(\psi \) is also regular, it follows that the equation \(M(\psi).\xi = N(X^+) \) admits a regular solution \(\xi \) in \(\Xi_{\mathfrak{h}} \geq 1 \) (proposition 3.3). According to proposition 3.2, the equality \(M(\psi).\xi = N(X^+) \) implies that the sequences \(N(X^+) \) and \(\psi(x^+)\) are equal, where \(x^+ \) is the element in \(U_h(\psi) \) defined by

\[
x^+ = \sum_{a=1}^{\infty}(X^-)^{a-1}\xi^a(H)(X^+)^a
\]

Let then \(f \) be the surjective \(K[[\mathfrak{h}]]\)-algebra homomorphism from \(U_h(\mathfrak{a}) \) to \(U_h(N) \) defined by \(f(X^-) = X^- \), \(f(H) = H \) and \(f(X^+) = x^+ \). By definition of the sequences \(N(X^+) \) and \(\psi(x^+)\), the equality \(N(X^+) = \psi(x^+) \) implies that the action of \(U_h(\mathfrak{a}) \) on \(M_h(n, \psi) \) factorizes through \(f \) for every \(n \in \mathbb{Z} \). Hence, there exists, by the universal property of \(U_h(\psi) \) (proposition 2.12), a \(U_h(\mathfrak{a})\)-algebra homomorphism \(g \) from \(U_h(N) \) to \(U_h(\psi) \), with \(U_h(N) \) endowed with the \(U_h(\mathfrak{a})\)-algebra structure defined by \(f \). In particular, \(g \) satisfies \(g(X^-) = X^- \) and \(g(H) = H \). As \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \) and \(U_h(\mathfrak{a}) \)-algebras (theorem 4.3), step 1 follows.

Step 2. The identity map is the unique \(K[[\mathfrak{h}]]\)-algebra endomorphism of \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \) which fixes both \(X^- \) and \(H \).

Proof. Let \(g \) be a \(K[[\mathfrak{h}]]\)-algebra endomorphism of \(U(\mathfrak{s}l_2)[N] \) which fixes both \(X^- \) and \(H \), and let \(x^+ \) be the image of \(X^+ \) by \(g \). The Chevalley-Serre relations \([H,X^+] = 2X^+ \) and \([X^+,X^-] = H \) hold in \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \), hence so do the relations \([H,x^+] = 2x^+ \) and \([x^+,X^-] = H \). Let \(n \in \mathbb{Z} \) and consider the representation \(M(n)[[\mathfrak{h}]] \) of \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \). The relation \([H,x^+] = 2x^+ \) implies that \(H.(x^+.b_0) = (n+2)(x^+.b_0) \) holds in \(M(n)[[\mathfrak{h}]] \). Hence, \(x^+.b_0 = 0 \). The relation \([x^+,X^-] = H \) then implies by induction on \(p \) that \(x^+.b_p = p(n-p+1)b_{p+1} \) for all \(p \geq 1 \). As a consequence, \(x^+ - X^+ \) acts by zero on \(M(n)[[\mathfrak{h}]] \) for every \(n \in \mathbb{Z} \). Since \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \) is isomorphic as \(U_h(\mathfrak{a})\)-algebra to \(U_h(N) \), and as \(M(n)[[\mathfrak{h}]] \) and \(M_h(n,N) \) are equal as representations of \(U_h(\mathfrak{a}) \), it follows by definition of the algebra \(U_h(\mathfrak{a}) \) that \(x^+ - X^+ = 0 \).

Step 3. (Conclusion)

The unicity of a \(\mathfrak{b}\)-trivialization for \(U_h(\psi) \) follows from step 2. Let then \(g \) be a \(K[[\mathfrak{h}]]\)-algebra homomorphism from \(U(\mathfrak{s}l_2)[[\mathfrak{h}]] \) to \(U_h(\psi) \) such that \(g(X^-) = X^- \) and \(g(H) = H \) (step 1). The map \(g_{n=0} \) satisfies in particular \(g_{n=0}(X^-) = X^- \) and \(g_{h=0}(H) = H \). Denote by \(\bar{g} \) the \(K[[\mathfrak{h}]]\)-algebra homomorphism induced by \(g_{h=0} \) from \((U(\mathfrak{s}l_2)[[\mathfrak{h}]]_{h=0})[[\mathfrak{h}]] \) to \((U_h(\psi)_{h=0})[[\mathfrak{h}]] \). As \(U_h(\mathfrak{a})\)-algebra, \((U(\mathfrak{s}l_2)[[\mathfrak{h}]]_{h=0})[[\mathfrak{h}]] \)
is isomorphic to $U(\mathfrak{sl}_2)[[\hbar]]$. The same holds for $U_h(\psi)$, since $U_h(\psi)$ is a formal deformation of the α-algebra $U(\mathfrak{sl}_2)$ (theorem [4]). Step 2 therefore implies that \tilde{g} is a $U_h(\alpha)$-algebra homomorphism, hence that $g_h=0$ is an α-algebra homomorphism.

References

[1] A. Bouayad. Groupes quantiques d’interpolation de Langlands de rang 1. Int. Math. Res. Not. IMRN, 2013(6):1268–1323, 2013.
[2] N. Bourbaki. Éléments de mathématique. Algèbre commutative. Chapitre 3. Hermann, Paris, 1961.
[3] V. Chari and A. Pressley. A guide to quantum groups. Cambridge University Press, Cambridge, 1995.
[4] V. G. Drinfel’d. Quantum groups. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 798–820. Amer. Math. Soc., Providence, RI, 1987.
[5] V. G. Drinfel’d. Almost cocommutative Hopf algebras. Algebra i Analiz, 1(2):30–46, 1989.
[6] E. Frenkel and D. Hernandez. Langlands duality for representations of quantum groups. Math. Ann., 349(3):705–746, 2011.
[7] E. Frenkel and N. Reshetikhin. Deformations of \mathcal{W}-algebras associated to simple Lie algebras. Comm. Math. Phys., 197(1):1–32, 1998.
[8] M. Gerstenhaber. On the deformation of rings and algebras. Ann. of Math. (2), 79:59–103, 1964.
[9] M. Jimbo. A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys., 10(1):63–69, 1985.
[10] P. P. Kulish and E. K. Sklyanin. Quantum spectral transform method. Recent developments. In Proceedings of the Symposium on Integrable Quantum Field Theory held in Tvärminne, March 23–27, 1981, volume 151 of Lecture Notes in Phys., pages 61–119. Springer, Berlin-New York, 1982.
[11] P. Littelmann. The path model, the quantum Frobenius map and standard monomial theory. In Algebraic groups and their representations (Cambridge, 1997), volume 517 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 175–212. Kluwer Acad. Publ., Dordrecht, 1998.
[12] K. McGerty. Langlands duality for representations and quantum groups at a root of unity. Comm. Math. Phys., 296(1):89–109, 2010.
[13] J. P. Serre. Algèbres de Lie semi-simples complexes. W. A. Benjamin, inc., New York-Amsterdam, 1966.