Thermal environment characteristics of large space building
with stratified air conditioning based on Block-Gebhart model
during the cooling season

Yufeng Miao 1, Chen Huang 1*, Tong Yang 2, Jingsi Ma 2, Xin Wang 1, and Fei Wang 1

1 University of Shanghai for Science and Technology, School of Environment and Architecture, 516 Jungong Road, China
2 Tongji Architectural Design (Group) Co., Ltd, 1230 Siping Road, China

Abstract. The thermal environment of large space building with stratified air distribution is characterized
by its obvious gradient of vertical temperature, and the stratified air conditioning load (SACL) is closely
related to the thermal environment. The Block-Gebhart (B-G) model in summer is established for an actual
large space building which has two stratified air distribution (STRAD) systems. One system is the air supply
nozzles (ASN) arranged at middle sidewall, the other is the half-cylinder diffusers (HCD) arranged at low
sidewall. In order to quickly calculate the air temperature of unoccupied zone (ATUZ), two regression
equations for the air temperature gradient under the conditions of two STRAD systems were proposed.
Considering six factors, the B-G model was used to calculate 648 cases and the two equations were obtained
by multiple regression analysis. Through the field measurement in summer, in three cases of ASN system,
the mean absolute error (MAE) between predicted and experimental values of ATUZ was 1.71°C, and the
mean absolute percentage error (MAPE) was 4.5%; in three cases of HCD system, the MAE was 1.0°C and
the MAPE was 3.0%. The results of this study establish the foundation for the calculation of SACL.

1 Introduction

Large space buildings often use stratified air conditioning
to reduce energy consumption [1-3]. Previous studies
have shown that the thermal environment of large space
buildings with stratified air distribution is characterized
by its obvious gradient of vertical temperature [4-6]. And
the stratified air conditioning load (SACL) is susceptible
to the thermal environment [7-9].

Mathematical models are often used to predict the
indoor thermal environment. Among them, the earlier
ones include the zonal model [10] and the nodal model
[11]. The principles of the both two models are to divide
the object space into several regions or nodes in the
vertical direction. Togari [12] proposed the Block model
based on the zonal model to study the indoor thermal
environment. At present, the Block model has developed
into the Block-Gebhart (B-G) model [13, 14], in which the
air temperature and the inner wall temperature are
calculated synchronously by combining the Block model
with the Gebhart radiation model. Wang [15] predicted
the vertical air temperature distribution in three hybrid
ventilation scenarios based on the B-G model. The results
of field measurements showed that the average deviations
of air temperature were 0.85°C (in summer), 0.80°C (in
summer), 0.32°C (in winter).

Through the above study, it was found feasible and
accurate to use the B-G model to predict the thermal
environment of the actual large space buildings, but the
model was still complicated in engineering applications.

2 B-G model

2.1 Block model

The B-G model divides the space into several regions in
vertical direction. The indoor air temperatures can be
calculated by establishing the mass and energy balance
equations for each region. The schematic diagram of
Block model is shown as Fig. 1. The energy balance
equation of Block i is as expressed in Eq. (1).

* Corresponding author: hcyhywyj@163.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
\[
\sum_{i=1}^{\infty} \left[C_p M_\infty \right] (i,k) T_a(i,k) - C_p M_\infty \right] (i,k) T(i) \\
+ C_p M_i (i+1) T(i+1) - C_p M_i (i) T(i) + C_p M T_i \\
- C_p M T_a - C_p M_a T + C_p M T_a - C_p M T_a + C_p M T_a + C_p M T_a \\
+ C_p A_k [T(i+1) - T(i)] \\
+ C_p A_k [T(i+1) - T(i)] + h A_k [\theta - T(N)] \\
+ h_j A_j [\theta - T(i)] + \beta_{\text{conv}} Q_n (i) = 0 \\
\]

where \(i \) is the index of Block; \(m \) is the number of wall divisions in Block \(i \); \(C_p \) is the specific heat capacity of the air, \(V/(kg \cdot ^\circ C) \); \(M_\infty (i,k) \) is the mass flow rate from wall surface airflow \(k \) to Block \(i \) (kg/s); \(T_m (i,k) \) is the temperature of wall surface airflow \(k \) in Block \(i \) (\(^\circ C\)); \(M_\infty (i,k) \) is the mass flow rate from Block \(i \) to wall surface airflow \(k \) (kg/s); \(T(i) \) is the air temperature in Block \(i \), \(1 \sim N \) in bracket means Block \(1 \sim N \) (\(^\circ C\)); \(M(i+1) \) is the vertical mass flow rate from Block \(i + 1 \) to \(i \) (kg/s); \(M_a, M_e, M_s, M_r, M_k \) are the mass flow rates of air supply, return, exhaust and entrainment (kg/s); \(T_m, T_n, T_e, T_s \) are the temperature of air supply, return, exhaust and entrainment (\(^\circ C\); \(C_k \) is the temperature difference heat transfer factor [W/(m\(^2\)\(^\circ\)C)]; \(A_b \) is the area of the interface between the Blocks (m\(^2\)); \(h_c, h_r \) are the convective heat transfer coefficient of the ceiling and floor [W/(m\(^2\)\(^\circ\)C)]; \(A_c, A_f \) are the area of the ceiling and floor (m\(^2\)); \(\theta, \theta \) are the inner wall temperature of the ceiling and floor (\(^\circ C\)); \(\beta_{\text{conv}} (i) \) is the convective fraction of internal heat sources in Block \(i \), the recommended values are given in Ref [16]; \(Q_n (i) \) is the internal heat source in Block \(i \) (W).

For a specific Block, the constituent elements such as air supply, air return, air exhaust and air entrainment are added or deducted according to the real condition.

2.2 Gebhart model

Gebhart model [17] is a theoretical model that can calculate the radiant heat transfer between inner wall surfaces. The energy balance equation of each inner wall surfaces is established to achieve the temperature distribution of the inner wall surfaces as shown in Eq. (2):

\[
\frac{1}{K_i} \left[t_{i,k} - \theta_i \right] + q_{i,k} = 0 \\
\]

where \(K_i \) is the convective heat transfer coefficient of surface \(k \) (W/(m\(^2\)\(^\circ\)C)); \(\theta, \theta \) are the inner wall temperature of surface \(j \) and \(k \) (\(^\circ C\)); \(T_m \) is the area-weighted average temperature of the inner wall surface (\(^\circ C\)); \(\varepsilon_k \) is the emittance of surface \(k \); \(\sigma \) is Stephen-Boltzmann constant, \(5.67 \times 10^{-8} \) [W/(m\(^2\)\(^\circ\)C\(^4\)]; \(j \) is the index of wall surface in the horizontal direction; \(G_k \) is the Gebhart absorption factor from surface \(j \) to surface \(k \); \(K_s \) is the envelope heat transfer coefficient of wall \(k \) [W/(m\(^2\)\(^\circ\)C)]; \(q_{i,k} \) is the sol-air temperature of wall \(k \) (\(^\circ C\)); \(q_{i,k} \) is the radiant heat emitted by all internal heat sources to the wall \(k \) (W/m\(^2\)).

2.3 B-G model

For the Block model, we can calculate the indoor air temperatures by the known inner wall temperatures. In the same way, for the Gebhart model, we can also calculate the wall temperatures by the known air temperatures. Therefore, the B-G model is to combine the Block model with Gebhart model to synchronously calculate the air and wall temperatures. There is a coupling relationship between the air and wall temperatures, so the iterative method is adopted. The details of B-G model can be found in the previous study [14].

3 Methodology

3.1 Research object

The research object of this paper is a large space computerized numerical control (CNC) machine zone. It has two stratified air distribution (STRAD) systems. One system is the air supply nozzles (ASN) arranged at middle sidewall, the other is the half-cylinder diffusers (HCD) arranged at low sidewall. Eight nozzles are installed at a height of 5.5 m on the east wall, with the same diameter of 373 mm. The height of each half-cylinder diffuser is 1.5 m and the diameter is 1.0 m. The air return vent is installed at a height of 0.5 m with a size of 3 m×2 m. And the exhaust devices are installed at the top of the building.

When establishing the B-G model of the research object, the building with slope roof is simplified into a cuboid building according to the principle of equal volume, and the equivalent height is 10.8 m. The vertical direction is divided into 6 Blocks. The specific Block division of HCD system is shown as Fig. 2. The Block division of ASN system is 2.6 m, 2.9 m, 1.5 m, 1.5 m, 1.5 m and 0.8 m from bottom to top.

3.2 Experimental scheme

The arrangement of vertical temperature measuring points is shown as Fig. 3. The air temperatures in the space above 3 m were measured by the PT1000 temperature sensors (an accuracy of ±0.2 \(^\circ\)C) fixed on the vertical measuring lines. The air temperatures below 3 m were measured by Testo 174T (an accuracy of ±0.5 \(^\circ\)C) at line A, C, E, I, K.
Experimental conditions are shown in Table 1, in which A1–A3 are the cases of ASN system, B1–B3 are the cases of HCD system, and the parameters in the table are the experimentally measured values.

Table 1. Experimental conditions

Case	Supply air temperature (°C)	Outdoor temperature (°C)	Supply air volume (m³/h)	Horizontal irradiance (W/m²)	Internal heat source (W)
A1	16.1	32.2	22030	156	11410
A2	15.4	33.0	18764	675	280
A3	17.6	37.4	21613	670	280
B1	18.9	33.8	25297	517	17290
B2	17.7	36.0	22117	427	17220
B3	17.7	35.8	21576	328	20220

4 Results and analysis

4.1 Calculation conditions

Six factors that may affect the thermal environment are comprehensively considered, and the indoor vertical air temperature gradient V_l under different conditions are calculated by changing each factor. The air temperature gradient V_l is as expressed in Eq. (3). The design temperature of the occupied zone is a known parameter. After obtaining V_l according to the influencing factors, the air temperature of unoccupied zone (ATUZ) can be quickly calculated according to Eq. (3).

$$ V_l = \frac{(T_{uo} - T_o)}{\Delta h} \tag{3} $$

where V_l is the vertical air temperature gradient (°C/m), T_{uo}, T_o are the air temperature of unoccupied zone and occupied zone (°C), Δh is the height difference between the unoccupied zone and occupied zone (m).

Six influencing factors and the value ranges are shown in Table 2 [18]. A total of 648 calculation conditions are designed, and there are 324 calculation conditions for ASN system and HCD system respectively. In all the calculation cases, only the values of six influencing factors are changed. The outdoor parameters are selected in Shanghai [18]. The design temperature of the occupied zone is 26°C. It assumes that the air is exhausted at the top of the unoccupied zone. The exhaust ratio $\beta_e = \frac{M_{ex}}{M_e}$.

4.2 Multiple regression analysis

The indoor vertical air temperatures of 648 cases were calculated based on the B-G model, and two regression equations for the air temperature gradient under the conditions of two STRAD systems were proposed by the multiple regression method. The temperature gradient has a high correlation with q_1, q_2, β_e and H, but has a low correlation with L and W. In the multiple regression, L and W are eliminated, and the first-order polynomial regression equations for temperature gradient are obtained. The equations are shown as Eq. (4) and Eq. (5).

$$ V_l = 0.016 q_1 + 0.037 q_2 - 0.441 n_{e0} + 2.912 \times 0.861 n_{ex} + 0.102 \tag{4} $$

$$ \beta_e = 0.004 L + 0.047 L - 0.431 n_{e0} + 4.006 \times 0.870 n_{ex} + 0.201 \tag{5} $$

where n_{e0} is the air exhaust per hour in unoccupied zone (h⁻¹). $n_{ex}=M_{ex}/V_2$, V_2 is the volume of unoccupied zone (m³). Since the exhaust ratio β_e is difficult to obtain in the design stage, n_{ex} is used to describe the air exhaust.

Fig. 4 shows the relative error of T_{uo} between the results obtained from B-G model and Eq.(4),(5). It can be seen that the relative error is basically within ±10%. The applicable ranges of two regression equations are: $q_1<150W/m^3$, $q_2<80W/m^3$, $n_{ex}<4$ h⁻¹, $H<55m$.
4.3 Experimental validation

According to the experimental scheme in Section 3.2, the ATUZ T_{wo} under six experimental conditions were obtained. The regression equations proposed in this paper can also be used to calculate the ATUZ T_{wo}. The calculated values of the ATUZ T_{wo} were compared with the experimental values as shown in Table 3. It could be seen that in the three cases of ASN system, the MAE between the experimental and calculated values was $1.4 \degree C$, and the MAPE was 4.5%. In the three cases of HCD system, the MAE was $1.0 \degree C$ and the MAPE was 3.0%. It indicates that the two regression equations proposed in this paper can be used to predict the vertical air temperature gradient and the ATUZ T_{wo} of the actual large space buildings.

Case	Experimental value (°C)	Calculated value (°C)	Absolute error (°C)	Relative error
A1	29.2	31.0	1.8	6.1%
A2	30.0	31.8	1.8	6.0%
A3	33.1	33.6	0.5	1.5%
A1–A3	MAE (°C)	MAPE		
B1	33.1	34.0	0.9	2.6%
B2	34.8	33.9	-0.9	-2.6%
B3	33.0	34.3	1.3	3.8%
B1–B3	MAE (°C)	MAPE	1.4	4.5%
			1.0	3.0%

5 Conclusion

In this paper, a thermal environment experiment was carried out in a large space CNC machine zone. Two B-G models were established for two STRAD systems. Considering six factors, 648 cases were calculated based on B-G model. Then two equations for V_i were proposed by multiple regression analysis, and the ATUZ T_{wo} can also be calculated. Finally, the regression equations proposed in this paper were experimentally verified according to the six experimental cases. The results showed that in the three cases of ASN system, the MAE was $1.4 \degree C$, and the MAPE was 4.5%. In the three cases of HCD system, the MAE was $1.0 \degree C$, and the MAPE was 3.0%.

This work is financially supported by the National Natural Science Foundation of China (No. 51278302).

References

1. Y. Huang, J. Niu, A review of the advance of HVAC technologies as witnessed in ENB publications in the period from 1987 to 2014, Energy Build, 130, 33-45 (2007).
2. B. Wei, L. Li, Y. Gao, X. Yang, Energy saving potentials of all cold air distribution system with stratified air conditioning in large space building, in Proceedings of Energy Sustainability 2008, 10-14 August 2008, Jacksonville, Florida USA (2008).
3. Y. Cheng, J. Niu, N. Gao, Stratified air distribution systems in a large lecture theatre: A numerical method to optimize thermal comfort and maximize energy saving, Energy Build, 55, 515-525 (2012).
4. M.N.A. Said, R.A. MacDonald, G.C. Durrant, Measurement of thermal stratification in large single-cell buildings, Energy Build, 24, 105-115 (1996).
5. K. Zhao, J. Weng, J. Ge, On-site measured indoor thermal environment in large spaces of airports during winter, Build. Environ, 167, 106463 (2020).
6. C. Huang, Z. Zou, M. Li, X. Wang, W. Li, W. Huang, J. Yang, X. Xiao, Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons, Build. Environ, 42, 1869-1877 (2007).
7. C. Huang, J. Yue, T. Bai, L. Lv, Q. Zhang, J. Chen, A preliminary research on load calculation method of stratified air conditioning system with low-sidewall air inlets and middle-height air outlets in large space building, Procedia Engineering, 205, 2561-2568 (2017).
8. H. Wang, P. Zhou, C. Guo, X. Tang, Y. Xue, C. Huang, On the calculation of heat migration in thermally stratified environment of large space building with sidewall nozzle air-supply, Build. Environ, 147, 221-230 (2019).
9. L. Lin, X. Liu, T. Zhang, X. Liu, X. Rong, Cooling load characteristic and uncertainty analysis of a hub airport terminal, Energy Build, 231, 110619 (2021).
10. F. Haghighat, Y. Li, A. C. Megri, Development and validation of a zonal model — POMA, Build. Environ, 36, 1039-1047 (2001).
11. Y. Li, M. Sandberg, L. Fuchs, Vertical temperature profiles in rooms ventilated by displacement: full-scale measurement and nodal modelling, Indoor Air, 2, 225-243 (1992).
12. S. Togari, Y. Arai, K. Miura, A simplified model for predicting vertical temperature distribution in a large space, ASHRAE Transactions, 99, 84-99 (1993).
13. C. Huang, R. Li, Y. Liu, J. Liu, X. Wang, Study of indoor thermal environment and stratified air-conditioning load with low-sidewall air supply for large space based on Block-Gebhart model, Build. Environ, 147, 495-505 (2019).
14. X. Wang, C. Huang, W. Cao, Mathematical modeling and experimental study on vertical temperature distribution of hybrid ventilation in an atrium building, Energy Build, 41, 907-914 (2009).
15. X. Wang, Y. Yang, Y. Xu, F. Wang, Q. Zhang, C. Huang, Prediction of vertical thermal stratification of large space buildings based on Block-Gebhart model: Case studies of three typical hybrid ventilation scenarios, J. Build. Eng, 41, 102452 (2021).
16. ASHRAE, ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta (2017).
17. B. Gebhart, A New Method for Calculating Radiant Exchanges, ASHRAE Transactions, 65, 321-332 (1959).
18. China Academy of Building Research, Design code for heating ventilation and air conditioning of civil buildings GB 50736-2012, China Architecture & Building Press, Beijing (2012).