Given a smooth projective variety X, the Hilbert scheme $X^{[n]}$ of n points on X is again a smooth projective variety of dimension $\dim X^{[n]} = n \dim X$. Each vector bundle E on X defines the \textit{vector bundle} $E^{[n]} = p_2_* p_1^* E$. Here p_k is the projection to the k-factor from the universal subscheme $\Pi_n \subset X \times X^{[n]}$. The bundle $E^{[n]}$ is called the Fourier-Mukai transform of E (with respect to Π_n). By work of Lehn and Leh-Sorger, these transforms are important tools to study the topology and geometry of Hilbert schemes. Conversely, they are useful to study bundles on X itself e.g. by work of Voison, Ein-Lazarsfeld and Agostini.

The present article enhances the Fourier-Mukai transform to so-called V-cotwisted Hitchin pairs (E, θ). Here E and V are vector bundles on X and $\theta : E \otimes V \to E$ is a section. The outcome of the enhanced Fourier-Mukai transform are $V^{[n]}$-cotwisted Hitchin pairs $(E^{[n]}, \theta^{[n]})$ on $X^{[n]}$. Note here that if $V = T_X$, then $V^{[n]} \cong T_{X^{[n]}}(- \log B_n)$ (by a result of Stapleton) where $B_n \subset X^{[n]}$ is the locus of non-reduced subschemes of X. In particular, the enhanced Fourier-Mukai transforms of Higgs bundles (i.e. T_X-cotwisted Hitchin pairs) are logarithmic Higgs bundles on $X^{[n]}$.

After establishing basic results on the enhanced Fourier-Mukai transform, which are of independent interest, the authors prove various interesting results on the relationship between Hitchin pairs on X and their enhanced Fourier-Mukai transforms (similar results for vector bundles were already obtained by the second author), for example:

- If $(E, \theta)^{[n]} \cong (F, \eta)^{[n]}$ on $X^{[n]}$, then $(E, \theta) \cong (F, \eta)$ on X where X is any smooth projective curve of genus ≥ 1 or any smooth quasi-projective variety of $\dim X \geq 2$;
- relationship between the stability conditions for (E, θ) on X and $(E, \theta)^{[n]}$ on $X^{[n]}$ for any smooth projective curve X.

Reviewer: Florian Beck (Hamburg)

MSC:

- 14D23 Stacks and moduli problems
- 14D20 Algebraic moduli problems, moduli of vector bundles
- 14H30 Coverings of curves, fundamental group
- 14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
- 14C05 Parametrization (Chow and Hilbert schemes)

Keywords:

- logarithmic Higgs bundle; Hilbert scheme; Fourier-Mukai transformation; stability

Full Text: DOI arXiv

References:

[1] Agostini, Daniele, Asymptotic syzygies and spanned line bundles (2017), arXiv:1706.03508
[2] Biswas, Indranil; Nagaraj, D. S., Reconstructing vector bundles on curves from their direct image on symmetric powers, Arch. Math. (Basel), 99, 4, 327-331 (2012) · Zbl 1257.14030
[3] Biswas, Indranil; Nagaraj, D. S., Fourier-Mukai transform of vector bundles on surfaces to Hilbert scheme, J. Ramanujan Math. Soc., 32, 1, 43-50 (2017) · Zbl 1288.14026
[4] Bottacin, Francesco, Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. Éc. Norm. Supér., 28, 391-433 (1995) · Zbl 1084.14004
[5] Ein, Lawrence; Lazarsfeld, Robert, The gonality conjecture on syzygies of algebraic curves of large degree, Publ. Math. Inst. Hautes Études Sci., 122, 301-313 (2015) · Zbl 1342.14070
[6] Hitchin, Nigel J., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., 55, 59-126 (1987) · Zbl 0634.53045

[7] Krug, Andreas, Stability of tautological bundles on symmetric products of curves (2018), arXiv:1809.06450 · Zbl 1402.14017

[8] Krug, Andreas; Rennemo, Jørgen Vold, Some ways to reconstruct a sheaf from its tautological image on a Hilbert scheme of points (2018), arXiv:1808.05931

[9] Lehn, Manfred, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math., 136, 1, 157-207 (1999) · Zbl 0919.14001

[10] Lehn, Manfred; Sorger, Christoph, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J., 110, 2, 345-357 (2001) · Zbl 1093.14008

[11] Lehn, Manfred; Sorger, Christoph, The cup product of Hilbert schemes for \((\mathcal{K} 3,\cdot)\) surfaces, Invent. Math., 152, 2, 305-329 (2003) · Zbl 1035.14001

[12] Mochizuki, Takuro, Kobayashi-hitchin correspondence for tame harmonic bundles and an application, Astérisque, 309 (2006) · Zbl 1119.14001

[13] Mochizuki, Takuro, Wild harmonic bundles and twistor \((\mathcal{D})\)-modules, (Proceedings of the International Congress of Mathematicians-Seoul 2014, Vol. 1 (2014), Kyung Moon Sa: Kyung Moon Sa Seoul), 499-527 · Zbl 1373.14021

[14] Nagaraj, D. S., Vector bundles on symmetric product of curves (2017), arXiv:1702.05294

[15] Ngô, Bao Châu, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci., 111, 1-169 (2010) · Zbl 1200.22011

[16] Simpson, Carlos T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1, 867-918 (1988) · Zbl 0669.58008

[17] Simpson, Carlos T., Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. Inst. Hautes Études Sci., 79, 47-129 (1994) · Zbl 0891.14005

[18] Stapleton, David, Geometry and stability of tautological bundles on Hilbert schemes of points, Algebra Number Theory, 10, 6, 1173-1190 (2016) · Zbl 1359.14040

[19] Voisin, Claire, Green’s generic syzygy conjecture for curves of even genus lying on a \((\mathcal{K} 3,\cdot)\) surface, J. Eur. Math. Soc. (JEMS), 4, 363-404 (2002) · Zbl 1080.14525

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.