Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis

Viviane Lima Batista 1, Tales Fernando da Silva 1, Luís Cláudio Lima de Jesus 1, Nina Dias Coelho-Rocha 1, Fernanda Alvarenga Lima Barroso 1, Laisa Macedo Tavares 1, Vasco Azevedo 1, Pamela Mancha-Agresti 1,2* and Mariana Martins Drumond 1,3*

1 Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; 2 Faculdade de Minas, FAMINAS-BH, Belo Horizonte, Brazil; 3 Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Brazil

Intestinal mucositis, a cytotoxic side effect of the antineoplastic drug 5-fluorouracil (5-FU), is characterized by ulceration, inflammation, diarrhea, and intense abdominal pain, making it an important issue for clinical medicine. Given the seriousness of the problem, therapeutic alternatives have been sought as a means to ameliorate, prevent, and treat this condition. Among the alternatives available to address this side effect of treatment with 5-FU, the most promising has been the use of probiotics, prebiotics, synbiotics, and paraprobiotics. This review addresses the administration of these “biotics” as a therapeutic alternative for intestinal mucositis caused by 5-FU. It describes the effects and benefits related to their use as well as their potential for patient care.

Keywords: lactic acid bacteria, chemotherapy, intestinal inflammation, treatment, mucosite

INTRODUCTION

Cancer is a disease characterized by uncontrolled proliferation of cells with cellular differentiation properties, having the capacity to invade tissues and organs and spread to other regions of the body, causing metastases (World Health Organization [WHO], 2018). This disease is the second leading cause of death globally, according to the World Health Organization, accounting for an estimated 9.6 million deaths in 2018; lung (1.76 million deaths), colorectal (862,000 deaths), stomach (783,000 deaths), liver (782,000 deaths), and breast cancer (627,000 deaths) are the most common types and have the highest mortality rates (World Health Organization [WHO], 2018).

Despite the high incidence and mortality rates, when identified early, cancer is a potentially curable and treatable disease. Treatment may be done through surgery, chemotherapy, radiotherapy, or bone marrow transplantation, depending on the type of cancer, degree of tumor aggressiveness, as well as the patient’s physical and immunological status. It is often necessary to combine more than one type of treatment to achieve satisfactory results (World Health Organization [WHO], 2018).

Antineoplastic chemotherapy consists of the use of drugs that destroy cancer cells, inhibit their growth, and prevent their spread by targeting DNA or critical processes involved in cell division (Guichard et al., 2017; Shields, 2017). The traditional chemotherapeutics are classified according to their mechanisms of action, including antimetabolites, microtubule-targeting agents, topoisomerases, and antibiotics (Shields, 2017). The therapeutic arsenal mostly used in the...
MECHANISM OF ACTION OF 5-FU

The drug 5-FU is an antimetabolite analogous to uracil, which differs by the substitution of a hydrogen atom with fluorine at the fifth position of the uracil molecule. Developed in the 1950s and introduced in cancer therapy to inhibit cell division and proliferation of cancer cells, this substance is among the class of antineoplastic drugs with a vast spectrum of action in oncological practice, being widely used for the treatment of a variety of tumors (Thomas et al., 2016; Kato et al., 2017).

To control the abnormal proliferation of cancer cells, 5-FU enters into the cells through facilitated transport, which is the same mechanism involved in its intracellular conversion into active metabolites [fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine triphosphate (FdUTP), and 5-fluorouridine triphosphate (FUTP)]. These metabolites may exhibit three different mechanisms of action: (1) FdUMP inhibits the activity of the enzyme thymidylate synthase causing an imbalance in the pool of nucleotides, consequently decreasing the concentration of the deoxynucleotides dTTP and dATP, essential for DNA repair; (2) FdUTP binds to the DNA structure, inhibiting its synthesis, blocking cell division; and (3) FUTP can be incorporated into RNA, damaging it, leading to functional loss and cell death (Longley et al., 2003; Zhang et al., 2008; Miura et al., 2010, Figure 2).

Clinical evidence of patients undergoing oncologic therapy with 5-FU shows that the effects of this chemotherapy vary among users. From 20 to 40% of the patients treated with the standard dose of this drug (10–15 mg/kg body weight, for 3–4 days intravenously) develop some degree of mucositis, and about 80–100% of the patients treated with high doses (350–500 mg/kg body weight) develop GIT problems (Crombie and Longo, 2016; Cinausero et al., 2017).

EFFECTS OF 5-FU ON THE GASTROINTESTINAL TRACT

In addition to having a digestive and nutrient absorption role, the GIT mucosa acts as a physical and immunological barrier, having the ability to defend the body against potentially harmful agents that can trigger inflammatory responses in the intestine (Salvo Romero et al., 2015; König et al., 2016). The intestinal barrier is categorized according to the various levels of protection, as well as the location and nature of its cellular and extracellular components (Vancamelbeke and Vermeire, 2017). These include mainly the mucus layer associated with the commensal microbiota of the gut, antimicrobial peptide and immunoglobulin A (IgA) secretion, the monolayer of specialized epithelial cells (enterocytes, Paneth cells, goblet cells, stem cells, and enteroendocrine cells), and the lamina propria, a specialized connective tissue in which innate and adaptive immune cells reside, such as T cells, B cells, dendritic cells (DCs), macrophages, neutrophils, eosinophils, and the newly discovered innate lymphoid cells (ILCs) (Vancamelbeke and Vermeire, 2017).
Although the intestinal barrier plays an essential role in the body's homeostasis, it is susceptible to 5-FU oncologic therapy (Yu, 2013). The intestinal mucositis caused by 5-FU mainly affects the small intestine (duodenum, jejunum, and ileum), characterized by inflammation, loss of intestinal structure and functionality, villous atrophy, goblet and Paneth cell degeneration, reduction in mucin secretion, increased intestinal permeability, cell death, polymorphonuclear cell infiltration, and increased production of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), mucosal tissue exposed to infection, and alteration of the intestinal microbiota composition (Chang et al., 2012; Lee, 2014).

The pathology of mucositis can be divided into five phases (initiation, response to primary damage, signal amplification, ulceration, and healing) (Sonis, 2004; Figure 3). The *initiation phase* occurs when the intestinal mucosa is exposed to 5-FU, which promotes DNA/RNA damage, either because it binds directly to these biomolecules or through the oxidative stress caused by reactive oxygen species (ROS) production. These factors induce tissue damage (Sonis, 2004; Villa and Sonis, 2015; Cereda et al., 2018), which activates several signal transduction pathways, such as nuclear factor κB (NF-κB) pathway signaling. This situation leads to the induction of various inflammatory mediators, such as IL-8, TNF-α, cyclooxygenase-2 enzyme (COX-2), IL-6, and IL-1β, among others, that are responsible for mucosal toxicity (Sonis, 2004; Cinausero et al., 2017).

The recruitment of these proinflammatory cytokines acts indirectly on *signal amplification* (amplification phase) via a positive feedback mechanism, activating pathways that increase...
FIGURE 3 | The five phases of 5-FU-induced intestinal mucositis: The initiation phase occurs when the intestinal mucosa is first exposed to the toxicity of 5-FU, promoting DNA damage and inducing the production of reactive oxygen species (ROS). Consequently, this activates several signaling transduction pathways (response to primary damage) such as the NF-κB pathway, related to the induction of several inflammatory mediators [interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 enzyme (COX-2), IL-6, and IL-1β] that play an important role in mucosal toxicity, causing signal amplification via a positive feedback mechanism, activating pathways that increase cytokine production as well as oxidative stress, exacerbating the lesion, progressively destroying the mucosa leading to an ulceration phase. Finally, spontaneous ulcer healing, characterized by cell proliferation and differentiation on average 3–4 days after the end of chemotherapy treatment, leads to mucosal restoration.

proinflammatory cytokine production (TNF-α, IL-1β, and IL-6), as well as oxidative stress. The increase in the production of these factors initiates a cascade of reactions that leads to the activation of matrix metalloproteinases, resulting in tissue damage or an increase in TNF-α production, exacerbating the initial lesion (Sonis, 2004).

The progressive destruction of the mucosa culminates in an ulceration phase, which occurs when loss of integrity and function of the epithelium occurs. At this stage, there are symptomatic lesions that, apart from being prone to pathogenic bacterial colonization, stimulate the activation and infiltration of defense cells, including macrophages, neutrophils, and eosinophils, in the intestinal mucosa. These cells increase the production of oxidant compounds, resulting in an increase in the depth of intestinal ulcers, consequently increasing bacterial translocation (Villa and Sonis, 2015; Cinausero et al., 2017; Cereda et al., 2018).

Finally, the healing phase is characterized by cell proliferation and differentiation. This phase occurs, on average, 3–4 days after the last chemotherapy treatment, leading to restoration of the mucosa (Sonis, 2004; Villa and Sonis, 2015).

EFFECTS OF 5-FU ON INTESTINAL MICROBIOTA

In addition to causing structural damage to the intestinal epithelium, the mucositis caused by chemotherapeutic agents has a crucial influence on the intestinal microbiota (van Vliet et al., 2010). The GIT has a complex ecological population, constituted by more than a thousand different species of microorganisms, though their distribution varies along the GIT (Mowat and Agace, 2014; Rajilić-Stojanović and de Vos, 2014); low concentrations and bacterial diversity (up to 10^3 CFU/ml) are found in the upper GIT (stomach, duodenum, jejunum, and proximal ileum) (Walter and Ley, 2011). A larger number of bacteria (10^9–10^12 CFU/ml) reside
in the lower compartments of the GIT (distal ileum and colon), which constitutes, to date, the habitat with the highest known microbial density (Mowat and Agace, 2014; Jandhyala et al., 2015; Thursby and Juge, 2017). Due to the low oxygen tension in the colon, the most prevalent bacterial groups consist of anaerobic species, such as Clostridia, Enterobacteria, Enterococcus, Bacteroides, Bifidobacteria, Fusobacteria, Lactobacilli, Peptococci, Peptostreptococci, Prevotellaceae, Roseburia, Ruminococci, and Verrucomicrobia (Simon and Gorbach, 1982; Bäckhed et al., 2005; Mowat and Agace, 2014).

The intestinal microbiota acts through several mechanisms to maintain the homeostasis of the organism, living in mutuality with the host, benefiting from the nutrient-rich environment offered by the organism and, in exchange, performing innumerable beneficial functions, including elimination of pathogens, production of vitamins and short-chain fatty acids (SCFA), as well as modulation of the enteric and systemic immune systems (Lane et al., 2017; Thursby and Juge, 2017). However, when this mutualism becomes unbalanced, the intestinal microbiota can contribute to the onset of infectious diseases, chronic inflammation, and autoimmune diseases (de Oliveira et al., 2017).

The commensal microbiota, such as Bifidobacterium infantis and Bacteroides thetaiotaomicron, have been shown to decrease NF-κB activation, decreasing levels of endotoxins and of plasma proinflammatory cytokines (Stringer et al., 2009). Studies have demonstrated that treatment with 5-FU alters the relative abundance of several genera of the intestinal microbiota, such as Clostridium, Lactobacillus, Enterococcus, Bacteroides, Staphylococcus, Streptococcus, and Escherichia (Stringer et al., 2009). Thus, disrupted homeostasis of the intestinal microbiota can affect the mucosal immune system due to an imbalance between the production of pro- and anti-inflammatory mediators, resulting in intestinal inflammation (Autenrieth and Baumgart, 2017; Holleran et al., 2017).

Given the possibility that intestinal mucositis is closely related to intestinal microbiota dysbiosis (von Bültzingslöwen et al., 2003; Yu, 2018), probiotic microorganisms have been presented as an alternative treatment due to their beneficial properties in the GIT. Given these characteristics, several studies have shown that probiotics can be an effective therapeutic alternative for the reduction of antineoplastic-induced intestinal mucositis.

PROBIOTICS

In order, to be considered a probiotic and to be able to exert health benefits for the host, microorganisms must have some specific attributes, such as being capable of remaining viable during transport and storage, and tolerating the low pH of the gastric lumen and the action of bile, and pancreatic and intestinal secretions. Many probiotics are able to colonize the GIT and stimulate the immune system (Wang M. et al., 2016; Mokoena, 2017). Furthermore, resistance to antibiotics in probiotic strains should be analyzed in order to assess their safety, as well as the level and the source of this resistance (Zhang et al., 2018). Intrinsic resistance is unlikely to spread horizontally between bacteria (Mathur and Singh, 2005), while acquired resistance could be transferred to other organisms, including pathogens, representing a potential risk to the health of the host (van Reenen and Dicks, 2011). The most well-studied and characterized probiotics belong to the lactic acid bacteria (LAB) group. However, other microorganisms also present probiotic properties, such as some Saccharomyces spp., and bacteria of the genera Bifidobacterium and Faecalibacterium (Pot et al., 2013; Bastos et al., 2016; Chang et al., 2019).

LAB mainly include the genera Lactobacillus, Leuconostoc, Lactococcus, Pedicoccus, and Streptococcus, among others, and constitute a group of Gram-positive microorganisms, anaerobic or aerotolerant, non-spore forming, resistant to low pH, and able to produce lactic acid as the final product of the fermentation of carbohydrates (Wang Y. et al., 2016; Mokoena, 2017; Plavec and Berlec, 2019). Furthermore, these bacteria have been used for a long time in several industrial processes for the production of fermented foods, such as cheese, yogurts, etc. (Soccol et al., 2010), and they frequently present probiotic properties. Additionally, these organisms have been explored for protein heterology production and as live delivery systems for gene and biotherapeutic vaccines, with potential applications for the treatment and prevention of various pathological conditions, in both human and veterinary medicine (Carvalho et al., 2017; Gomes-Santos et al., 2017; LeCureux and Dean, 2018; Kuczewska et al., 2019).

MECHANISMS OF ACTION OF PROBIOTICS

Studies have shown that benefits for human health are attributed to consumption of probiotics, mainly for GIT diseases (Fedorak et al., 2015; Acucio et al., 2017), though also for other diseases, including osteoporosis (Collins et al., 2018), cancer (Zaharuddin et al., 2019), obesity and type 2 diabetes (Saenz-Lara et al., 2015; Wang et al., 2017; Hsieh et al., 2018), depression (Wallace et al., 2020), and atopic dermatitis (Rather et al., 2016). In this context, the main mechanisms of action described for these microorganisms in the host include: (i) colonization and regulation of a dysbiotic intestinal microbiota (Shi et al., 2017); (ii) protection of the epithelial barrier by maintaining tight junction integrity (Blackwood et al., 2017); (iii) induction of mucin production (Aliakbarpour et al., 2012) and B-cell-secreting IgA, which are important defense mechanisms necessary to maintain epithelial integrity and to protect the intestine from the external environment; (iv) increasing adherence to the intestinal mucosa and inhibiting of concomitant pathogen adherence based on competition for available nutrients and sites of mucosal adhesion (Collado et al., 2010; Monteagudo-Mera et al., 2019); (v) competitive exclusion of pathogenic microorganisms, such as Staphylococcus aureus and Salmonella typhimurium (Halder et al., 2017; Plaza-Díaz et al., 2017); (vi) production of antimicrobial substances such as acetic and lactic acids, and bacteriocins, which have strong inhibitory effects against Gram-negative bacteria and have been considered as the main antimicrobial compounds produced by probiotics against pathogens (Alakomi et al., 2000; De Keersmaecker et al., 2006; Makras et al., 2006; Bermudez-Brito et al., 2012; Mokoena, 2017;
Gaspar et al., 2018; Castilho et al., 2019); (vii) production and secretion of metabolites of SCFAs with anti-inflammatory properties, such as acetate, propionate, and butyrate, which exert beneficial effects on intestinal and immune cells, being important compounds for cell proliferation, cell differentiation, and gene expression, and they are signaling molecules of immunological pathways; butyrate is the primary energy source of colonocytes, and it has an epithelial barrier function; SCFAs can also induce expression of the anti-inflammatory cytokine IL-10, inhibiting inflammatory responses (Parada Venegas et al., 2019); (viii) inhibition of the activation of the NF-κB signaling pathway (Kaci et al., 2011; Gao et al., 2015); (ix) interaction with the gut–brain axis via the production of metabolites such as γ-aminobutyric acid (GABA) (Kim N. et al., 2018); and (x) modulation of the host’s innate and/or adaptive immune system responses through interaction with epithelial cells, dendritic cells, monocytes, macrophages, and lymphocytes (Azad et al., 2018).

In addition, probiotics can act by inducing host autophagy to attenuate oxidative stress-induced intestine injury (Wu et al., 2019; Figure 4).

Thus, due to the numerous possible pathways in which probiotics could be involved, their study as therapeutics of various diseases, especially those related to the GIT, is of particular importance.

EFFECTS OF PROBIOTICS ON INTESTINAL MUCOSITIS

The proposed mechanisms of action for the beneficial effects of probiotic microorganisms in diseases affecting the GIT are diverse, heterogeneous, strain specific, and depend on the quantity of probiotics used (Plaza-Díaz et al., 2017). Since the immunomodulatory and anti-inflammatory effects...
reported for LAB, as well as other probiotics, are strain
dependent, it is necessary to identify and characterize species
and strains with probiotic potential and investigate their effects
on different targets or diseases (Plaza-Díaz et al., 2017). Table 1
presents the main findings for the effects of probiotics on
intestinal mucositis.

In this context, studies conducted in vitro using Caco-
2 cells (Fang et al., 2014) and in vivo with rats and mice

Probiotics strain	Effects of intestinal mucositis	References
Lactobacillus acidophilus	Inhibited nuclear factor κB (NF-κB) (NF-κB) pathway signaling	Justino et al., 2015
	Regulated levels of the proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and the C-X-C motif chemokine ligand (CXCL)]	
Lactobacillus acidophilus A4	Stimulated the overexpression of mucin genes (MUC2 and MUC5AC)	Oh et al., 2017
Lactobacillus casei variety rhamnosus (Lcr35)	Reduced production of proinflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-10, and IL-6); Attenuated the loss of goblet cells, decreased Firmicutes and increased Bacteroidetes	Yeung et al., 2015; Chang et al., 2018
Bifidobacterium bifidum G9-1	Attenuated histopathological alteration, with decrease cell infiltrate in crypts	Kato et al., 2017
Bifidobacterium infantis	Improved the histologic parameters, ameliorating mucosal damage	Mi et al., 2017
Association: (B. breve, L. acidophilus, L. casei, and Streptococcus thermophiles)	Reduced neutrophil infiltration, proinflammatory cytokines (TNF-α, IL-4, and IL-6), and intestinal permeability	Tang et al., 2017
Association: (L. acidophilus, L. paracasei, L. rhamnosus, and B. lactis)	Restored of the intestinal epithelium architecture	
Association: Whey protein isolate, to skim milk fermented by L. casei and Propionibacterium freudenreichii	Reduced inflammatory parameters: neutrophil, eosinophil, leukocyte infiltrate reduction, and immunoglobulin A (IgA) secretion	Quaresma et al., 2019
Lactobacillus delbrueckii subsp. lactis CIDCA 133	Prevented body mass loss	De Jesus et al., 2019
	Inhibited length reduction of the intestine caused by 5-fluorouracil (5-FU)	
	Restored histopathological damage	
	Reduced inflammatory parameters: neutrophil, eosinophil, leukocyte infiltrate reduction, and immunoglobulin A (IgA) secretion	
	Reduced intestinal permeability	
Saccharomyces boulardii	Reduced cells apoptosis and inflammatory factors (nitrite concentration, neutrophil infiltrate TNF-α, IL-1β cytokines, and CXCL-1 chemokine)	Justino et al., 2015, 2020
	Improved the intestinal functions such as gastric emptying, gastrointestinal transit, absorption, and intestinal permeability	
	Modulated the expression of TLR2, TLR4, MyD88, NF-κB extracellular signal, regulated kinase 1/2 (ERK1/2), phospho-p38 MAPK, phospho-c-Jun N-terminal kinase (phospo-JNK) in jejunum/ileum and in Caco2 cells	

| Prebiotics | Fructooligosaccharide (FOS) | Reduced MPO activity in jejunum section | Smith et al., 2008; Galdino et al., 2018 |
| | Decreased inflammatory infiltrate and preserved intestinal epithelium | |

Symbiotics	Simbioflora®	Attenuated weight loss	Trindade et al., 2018
	Improved histology of the intestinal mucosa and preserved epithelial architecture		
	Reduced eosinophil infiltrate		
	Decreased intestinal permeability		
	Increased the production of extracellular factors, such as SCFA (acetate and butyrate)		

| Paraprobiotics | L. rhamnosus inactivated by heat | Prevented the expression of monocyte chemoattractant protein 1 (MCP-1) | Fang et al., 2014 |
| | Regulated the expression of TNF-α, IL-12 | |
have demonstrated strain-dependent effects of probiotics for the prevention/treatment of experimental mucositis induced by 5-FU, proving to be an effective therapeutic alternative for the treatment of this disease. Thus, they could be used in parallel with chemotherapy to promote the attenuation of gastrointestinal toxicity caused by cancer drugs, which is promising for improving the quality of life of patients undergoing chemotherapy treatment (Mi et al., 2017; Chang et al., 2018).

Lactobacillus acidophilus can decrease intestinal damage caused by 5-FU (applied at a dose of 450 mg/kg) by inhibiting the signaling of the NF-κB pathway, reducing levels of proinflammatory cytokines, such as TNF-α, IL-1β, and the C-X-C motif chemokine ligand 1 (CXCL-1); reversion in gastrointestinal dysmotility and increased gastric emptying and intestinal transit were observed (Justino et al., 2015). This probiotic was able to reduce inflammation and normalize bowel function in mice (Justino et al., 2015). Additionally, Oh et al. (2017) demonstrated that *L. acidophilus* A4 decreased the severity of intestinal mucositis induced by 5-FU (150 mg/kg) by stimulating overexpression of mucin genes (MUC2 and MUC5AC), reducing myeloperoxidase (MPO) activity, and inhibiting expression of proinflammatory cytokines, such as IL-1β, in mice (Oh et al., 2017).

Lactobacillus casei variety rhamnosus (Lcr35, Antibiofilus®, France) reduced the production of proinflammatory cytokines (TNF-α, IL-1β, IFN-γ, and IL-6), attenuated the loss of goblet cells, reduced the frequency of diarrhea, and restored the villus/crypt ratio, demonstrating an anti-inflammatory effect on tissue damage caused in the intestinal mucosa by administering 5-FU (30 mg/kg) for 5 days (Yeung et al., 2015). The protective effect of Lcr35 (1 × 10^7 CFU) was also demonstrated in a colorectal cancer model; Balb/c mice were treated with a chemotherapeutic association called FOLFOX (30 mg/kg of 5-FU; 10 mg/kg of leucovorin, and 1 mg/kg of oxaliplatin) during 5 days (Chang et al., 2018). Lcr35 treatment was able to attenuate intestinal mucosa damage through regulation of the expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-10) induced by FOLFOX in the jejunum segment and also affected the gut microbiota composition, decreasing *Firmicutes* and increasing *Bacteroidetes* abundance (Chang et al., 2018). Thus, Lcr35 is promising therapeutic strategy for the prevention or management of chemotherapy-induced intestinal mucositis (Chang et al., 2018).

A component in the intestinal microbiota, *Bifidobacterium bifidum* G9-1 (BBG9-1), has been widely used as a treatment for diarrhea and constipation, as well as for intestinal mucositis induced by 5-FU (50 mg/kg/6 days) (Kato et al., 2017). This probiotic can reduce diarrhea and interrupt weight loss, as well as being able to attenuate villus shortening and goblet cell degeneration. It can decrease inflammatory infiltrate in crypt cells, reduce MPO activity, reduce TNF-α and IL-1β levels, and also regulate the intestinal microbiota (decrease *Firmicutes* and increase *Bacteroidetes* abundance), demonstrating its ability to reduce the severity of 5-FU-induced intestinal mucositis (Kato et al., 2017).

Mi et al. (2017) demonstrated that *B. infantis* (1 × 10^9 CFU/11 days) administration, in a syngenic colorectal cancer treatment model with 5-FU (75 mg/kg/3 days) and oxaliplatin (8 mg/kg/3 days), was able to reduce the deleterious effects to the intestinal mucosa induced by chemotherapy. This probiotic improved the histology parameters, ameliorating the mucosal damage by decreasing Th1 and Th17 cells, and increasing the CD4+ CD25+ Foxp3+ Tregs response (Mi et al., 2017).

A combination of probiotic strains also demonstrated effectiveness in the reduction of intestinal damage induced by 5-FU chemotherapy. DM#1 mixture (B. breve DM8310, *L. acidophilus* DM8302, *L. casei* DM8121, and *Streptococcus thermophilus* DM8309) administration improved the restoration of the epithelial architecture, reduced neutrophil infiltration, reduced proinflammatory cytokines (TNF-α, IL-4, IL-6), and decreased intestinal permeability in mice treated with 5-FU (30 mg/kg/5 days) (Tang et al., 2017). Another study using a probiotic mix (*L. acidophilus, L. paracasei, L. rhamnosus*, and *B. lactis*) showed that the mixture was able to prevent epithelial injury in intestinal mucositis induced by 5-FU (450 mg/kg), with an increase in the villus/crypt ratio and reduced malondialdehyde (MDA), MPO, TNF-α, and IL-6 levels in all small intestinal segments (duodenum, jejunum, and ileum) (Quaresma et al., 2019). In addition, administration of the probiotic mix resulted in an increase in glutathione (GSH) levels in the duodenum and jejunum sections and attenuated the delay in gastric emptying (Quaresma et al., 2019).

The therapeutic effects of probiotics also have been demonstrated for fermented products, which can be consumed by cancer patients. Milk fermented by *Lactobacillus delbrueckii* CIDCA 133 (7.5 × 10^7 CFU) attenuated the damage caused to the intestinal mucosa by 5-FU (300 mg/kg), both in the recovery of the architecture of the epithelium, including prevention of goblet cell degeneration, and reduction of the polymorphonuclear cell infiltrate, with reduced IgA secretion and intestinal permeability (De Jesus et al., 2019).

A mulberry leaf extract fermented by *L. acidophilus* A4 strain stimulated overexpression of mucin genes (MUC2 and MUC5AC), promoted reduction of MPO, inhibited expression of proinflammatory cytokines, such as IL-1β, and reduced the loss of intestinal barrier function generated by 5-FU (150 mg/kg) administration (Oh et al., 2017).

The role of whey protein isolate (WPI) added to skim milk fermented by *Lactobacillus casei* BL23 (*L. casei* BL23) or by *Propionibacterium freudenreichii* CIRM-BIA138 (*P. freudenreichii* 138) was studied in a 5-FU-induced mucositis mouse model (Cordeiro et al., 2018). Milk fermented by both bacteria was sufficient to reduce weight loss, reduce histological scores, and prevent villus shortening and degeneration of goblet cells. WPI addition to fermented milk improved the effects of these probiotics, compared to when they were administered alone (Cordeiro et al., 2018).

In addition to bacteria, yeasts can also have a beneficial effect on gastrointestinal mucositis. In this context, Porto et al. (2019) showed the effect of *Saccharomyces cerevisiae* UFMG A-905 alone or after enrichment with selenium, for intestinal mucositis treatment. This probiotic composition was able to preserve intestinal architecture and reduce nitrite concentration,
lipid peroxidation, intestinal permeability, and inflammatory parameters, protecting mice against pathological consequences caused by 5-FU administration (Porto et al., 2019).

The probiotic, thermophilic, non-pathogenic yeast, *Saccharomyces boulardii*, was also tested for intestinal mucositis treatment; the histopathological changes caused by 5-FU were significantly reduced, including cell apoptosis and inflammatory parameters (nitrite concentration, neutrophil infiltrate, TNF-α and IL-1β cytokines, and CXCL-1 chemokine). This probiotic organism also improved the intestinal functions, such as gastric emptying, gastrointestinal transit, absorption, and intestinal permeability (Justino et al., 2015).

The effects of *S. boulardii* were evaluated by in vitro (Caco-2 cells treated with 1 mM 5-FU/24 h) and in vivo assays [Swiss mice treated with *S. boulardii* (1 × 10^9 CFU/kg/3 days), mucositis induction by 5-FU (450 mg/kg)] (Justino et al., 2020). *S. boulardii* was able to modulate TLR2, TLR4, MyD88, NF-κB, ERK1/2, phospho-p38, phospho-JNK, TNF-α, IL-1β, and CXCL-1 expression, in these two different experimental models.

Based on the above studies, probiotics could be an effective therapeutic alternative for attenuating, preventing, and treating 5-FU-induced intestinal mucositis, although clinical studies will be required to test their safeness and usefulness for treatment.

PREBIOTICS, SYNBIOTICS, PARAPROBIOTICS, AND POSTBIOTICS

The use of probiotics to treat intestinal mucositis is widely reported; however, research has also demonstrated the importance of fiber consumption to improve their benefit for the intestinal microbiota. These fibers are used by the microbiota organisms during the fermentation process, resulting in the production of various compounds, such as SCFAs, which are able to modulate the function of immune cells in the intestine, showing mainly anti-inflammatory effects (Tan et al., 2014; Luu and Visekruna, 2019).

To classify dietary fibers as prebiotic, it is necessary to satisfy six basic criteria: (i) they must be resistant to gastric acidity, hydrolysis by mammalian enzymes, and gastrointestinal absorption, (ii) they should not be digested in the upper gastrointestinal tract, (iii) they should be fermented in the colon by beneficial bacteria, (iv) they should be beneficial to the host's health, (v) they should stimulate the growth of probiotics, and (vi) they should withstand food processing conditions while remaining unchanged (Wang, 2009; Markowiak and Śliżewska, 2017; Cerdó et al., 2019).

Prebiotics may be added to food or may be obtained through consumption of natural products, such as fruit, vegetables, cereals, and other edible plant products in which carbohydrate availability is high (Markowiak and Śliżewska, 2017). A wide variety of compounds have the potential to be classified as prebiotics. Most are non-digestible oligosaccharides extracted from plants, including fructooligosaccharide (FOS) (L’homme et al., 2003), galactooligosaccharide (GOS) (Ziegler et al., 2007), mannanoligosaccharide (MOS), and xylooligosaccharide (XOS) (Playne and Crittenden, 2002), oligofructose, and inulin (Roberfroid, 2007).

Prebiotic compounds stimulate growth, activating metabolism and promoting protection of bacteria that are beneficial to the host organism (e.g., saccharolytic bacteria, *Bifidobacterium*, and *Lactobacillus*). Prebiotic fermentation by indigenous microbiota can modulate the composition and the function of these microorganisms (Gibson and Roberfroid, 1995; Slavin, 2013; Davani-Davari et al., 2019). Furthermore, prebiotic fermentation can benefit the host through production of some compounds, such as SCFAs and lactic acid, produced by *Bifidobacterium* and *Lactobacillus* spp., which cause a reduction in the intestinal pH, inhibiting the development of gastrointestinal pathogens (Gibson and Wang, 1994; Bovee-Oudenhoven et al., 2003; Amani Denj et al., 2015). Prebiotics are also able to exert beneficial effects via mucin production by providing fermentable compounds that contribute to a lower incidence of bacterial translocation (Satchithanandam et al., 1999; Schley and Field, 2002).

Another mechanism proposed for prebiotics is their interaction with carbohydrate receptors (mannose, fucose and C-type lectin receptors, and galectins) on immune cells [phagocytes, natural killer (NK) cells, DCs]. The production of metabolites (e.g., folate and riboflavin, vitamins, and SCFAs) during their fermentation by gut microbiota showcases antimicrobial activity and maintains a healthy gut barrier (Hosono et al., 2003; Roller et al., 2004; Furusawa et al., 2013; Comstock et al., 2014; Levit et al., 2018; Enam and Mansell, 2019).

As prebiotics stimulate probiotic action, the synbiotic concept was created to overcome difficulties faced by probiotics in the GIT, demonstrating that this association (prebiotics + probiotics) intensifies their individual beneficial effects (Markowiak and Śliżewska, 2017).

Information on prebiotic stimulation of known probiotic strains leads to the choice of the ideal microorganism–substrate synbiotic pairs; the consumption of appropriately selected probiotics and prebiotics can increase the beneficial effects of each. Synbiotics have beneficial synergistic effects, greater than those observed for individual administration of prebiotics and probiotics (Geier et al., 2006).

The main criteria for synbiotic formulation should be a selection of appropriate probiotic and prebiotic pairs; the prebiotic should selectively stimulate the growth of probiotic microorganisms, having a beneficial effect on health, with no or limited stimulation of other microorganisms. The main probiotic species and prebiotics used in synbiotic formulations include, respectively, *Lactobacillus* spp., *Bifidobacteria* spp., *S. boulardii*, and *B. coagulans*, and FOS, GOS, and XOS. The health benefits from the administration of synbiotics to humans include: (i) increased levels of *lactobacilli* and *bifidobacteria* and balanced gut microbiota, (ii) improvement of immunomodulating ability, (iii) prevention of bacterial translocation; and (iv) improvement of liver function and reduction of incidence of nosocomial infections in surgical patients (Pandey et al., 2015; Markowiak and Śliżewska, 2017). Evidence shows that physical and chemical changes in the colon and intestinal microbiota caused by synbiotic
consumption, such as increased production of SCFAs and an increase in antitumor or antimitagenic compounds, can provide protection against rectal colon cancer, as they result in an improved immune response due to changes in the microbiota (Machado et al., 2014).

The studies listed above show the advantages of using live organisms; however, despite the fact that probiotics have proven benefits for the health of the host, current research emphasizes that the living organisms are not necessary for probiotic action; their different components, such as carbohydrates, proteins, lipids, vitamins, organic acids, cell wall components, and other complex molecules, generated after cell death, also have health benefits (Cuevas-González et al., 2020). The administration of non-viable organisms and their secreted products can present advantages in safety, reducing the possibility of infection and microbial translocation, which have been reported after the administration of probiotics to immunocompromised individuals (Aguilar-Toalá et al., 2018; Cuevas-González et al., 2020).

In this context, the terms “paraprobiotics” and “postbiotics” have been defined to refer to inactivated organisms and their metabolites. The difference between them is that paraprobiotics, also known as “non-viable probiotics” refer to inactivated cells, while postbiotics refer to soluble factors, which can be products (or metabolic byproducts) secreted by viable bacteria or released after their lysis (Cuevas-González et al., 2020). It is already possible to find products on the market that contain inactivated bacteria (e.g., Lactéol Fort from PUMC Pharmaceutical Co., Ltd. and Fermenti Lattici Tindalizzati from Frau, AF United Spa) (Taverniti and Guglielmetti, 2011).

Microorganisms can be inactivated through ultrasound (Ojha et al., 2016), high temperatures (Chuang et al., 2007), UV radiation (Lopez et al., 2008), and other options. However, it is necessary to evaluate some details to choose the best inactivation method, as well as to evaluate the effects on microbial structure and components (Ananta and Knorr, 2009; Taverniti and Guglielmetti, 2011).

The mechanism of action of paraprobiotics is not yet fully understood, but it is known that they are capable of acting in immunomodulation (Adams, 2010). L. rhamnosus GG (LGG), inactivated by UV radiation (Lopez et al., 2008) or heat killed (Li et al., 2009), has shown interesting results. UV-inactivated LGG is as effective as living LGG in downregulating the IL-8 response in Caco-2 cells; IL-8 is a proinflammatory chemokine released by intestinal cells (Lopez et al., 2008). Heat-killed LGG was tested in an infant rat model with LPS-induced inflammation and both live and inactivated strains administered enterally (10^8 CFU/kg); both were able to decrease proinflammatory mediators induced by LPS and to positively regulate anti-inflammatory mediators in the liver, plasma, and lung (Li et al., 2009).

The strains L. acidophilus A2, L. gasseri A5, and L. salivarius A6 inactivated by heat, in an in vitro experiment, were both able (at 10^5 CFU/ml) to stimulate splenocyte and dendritic cell proliferation and production of IL-10, IL-12-p70, and IFN-γ. Likewise, L. salivarius was able to activate splenocytes and dendritic cells in mice to induce T cells toward a Th1 immune response. It was concluded that heat-inactivated bacteria can play an important role in modulating the immune response (Chuang et al., 2007).

A comparison was made of the in vitro potential of viable L. rhamnosus, the same bacteria inactivated by heat and the culture supernatant, for inducing the synthesis of cytokines by macrophages. Viable and heat-inactivated L. rhamnosus were able to induce the production of TNF-α, IL-6, and IL-10, demonstrating a capability to exert an immunoregulatory effect on macrophages (Jorjão et al., 2015).

Postbiotics is another term that emerged after it was found that not only live probiotic bacteria are capable of promoting health benefits. Postbiotics comprise all products obtained from the metabolic processes of live bacteria or released after bacterial lysis, with biological benefits for the host (Tsiliringir and Rescigno, 2013). These products include cell surface proteins (surface-layer proteins), cell-free supernatants (CFS), cell lysates, bacteriocins, enzymes such as glutathione peroxidase (GPx) and superoxide dismutase (SOD), peptides, teichoic acids, exopolysaccharides, B-group vitamins, secreted polysaccharides, organic acids (lactate), and SCFAs (acetate, propionate, and butyrate) (Tsiliringir and Rescigno, 2013).

Postbiotic mechanisms of action have not been fully elucidated; nonetheless, there is evidence that they promote antioxidant (Xu et al., 2011; Xing et al., 2015) and antiproliferative effects (Escamilla et al., 2012; Chuah et al., 2019), stimulating antipathogenic, immunomodulatory, and anti-inflammatory proprieties (Wang et al., 2018; Gao et al., 2019).

PREBIOTICS, SYNBIOITS, AND PARAPROBIOTICS IN INTESTINAL MUCOSITIS

A few studies describe the action of prebiotics (Figure 5A), synbiotics (Figure 5B), and paraprobiotics (Figure 5C) on intestinal mucositis. Table 1 presents the main findings of their effects in intestinal mucositis. FOS supplement (3 and 6%) was administered to evaluate the effect on 5-FU (150 mg/kg)-induced intestinal mucositis in a murine model (Smith et al., 2008; Galdino et al., 2018). FOS was able to reduce MPO activity in a jejunum section. This was the only parameter that showed a significant reduction (Smith et al., 2008). In addition, beneficial effects of FOS (6%) administration in an experimental model of intestinal mucositis induced by 5-FU (300 mg/kg) were observed (Galdino et al., 2018). There was a decrease in inflammatory infiltrate, partial preservation of the intestinal epithelium, attenuation in body weight loss, and increased catalase levels, showing that supplementation with FOS could be an important adjuvant for the prevention and treatment of intestinal mucositis (Galdino et al., 2018).

Regarding the effects of synbiotics on intestinal mucositis, a commercial product called Simbioflora®, which is a synbiotic compound composed of 5.5 g of FOS plus four probiotic strains, L. paracasei, L. rhamnosus, L. acidophilus, and B. lactis, was evaluated (Trindade et al., 2018). This synbiotic was able to attenuate weight loss, decrease intestinal permeability,
FIGURE 5 | The mechanisms of action of prebiotics, synbiotics, and paraprobiotics. Prebiotics (A) act as nourishment for beneficial bacteria in the commensal microbiota, inducing the production of mucins, SCFAs, and bacteriocins, the latter two causing pathogen inhibition. Another mechanism by which prebiotics can inhibit pathogens is by interaction with an adhesion receptor, such as the lectin receptor, demonstrating an antiadhesive action. Sub-units of prebiotics and SCFAs can be used by the host cells for energy production and promote directly or indirectly, via dendritic cells, immunomodulation of lymphocytes, stimulating production of IgA and anti-inflammatory cytokines. Synbiotics (B) have mechanisms of action of both probiotics (Figure 4) and prebiotics (A). Moreover, synbiotics have the advantage of generating a synergic effect, which promotes balance in the gut microbiota, increased immunomodulation, reduced bacterial translocation, and reduction of infections due to strong competition by probiotics against pathogens. The mechanism of action of paraprobiotics (C) is still not fully understood, though immunomodulation of T cells by dendritic cells has been reported, stimulating their differentiation into Th1 cells, promoting the production of anti-inflammatory cytokines. Another proposed mechanism is inhibition of signaling pathways related to LPS stimulation, resulting in a reduction of proinflammatory mediators, especially IL-8.

The effects of paraprobiotics on mucositis were demonstrated by Fang et al. (2014). To examine the immunomodulatory properties of *L. rhamnosus*, the bacteria were inactivated by heat and evaluated in an *in vitro* model of intestinal mucositis using Caco-2 cells (Fang et al., 2014). This revealed that heat does not affect the cell integrity of this bacterial species, maintaining its rod-shaped structure intact, considerably reducing the expression of monocyte...
chemoattractant protein 1 (MCP-1), and regulating the expression of TNF-α and IL-12. The same results were obtained with live bacteria, revealing that this bacterial species conserved intact probiotic properties after heat inactivation, making it a promising candidate for further studies (Fang et al., 2014).

In a study of the postbiotic effect on 5-FU-induced intestinal mucositis, Prisciandaro et al. (2011) found that *Escherichia coli Nissle 1917* (EcN) supernatant partially protected the mouse intestine from 5-FU damage (150 mg/kg) (Prisciandaro et al., 2011). It was observed that this postbiotic was able to help avoid histological damage (villus height and crypt depth) and prevented a decrease in acidic mucin-producing goblet cells. Another study showed that oral butyrate supplementation (9 mM) was able to reduce the damage to the intestinal mucosa caused by this antineoplastic agent (200 mg/kg). Reduction in histological damage, ulceration, and amelioration in intestinal permeability were observed. The gene expression of the tight junction protein ZO-1 (zonulin) was increased, and proinflammatory cytokines, such as TNF-α and IL-6, were reduced (Ferreira et al., 2012).

The supernatant of mulberry leaf extract fermented by *L. acidophilus A4* was able to reduce gene expression of proinflammatory cytokines IL-1β and myeloperoxidase (MPO), and stimulate overexpression of mucin genes (MUC2 and MUC5AC), thus reducing the severity of intestinal mucositis induced by 5-FU (150 mg/kg) (Oh et al., 2017). Additionally, *Lactobacillus plantarum* supernatant inhibited the expression of the specific markers CD44, CD133, CD166, and ALDH1 of 5-FU-resistant colorectal cancer cells (CRC) (HT-29 and HCT116) (An and Ha, 2016). The combination therapy of this postbiotic and 5-FU induced an anticancer mechanism by inactivating the Wnt/β-catenin signaling of chemoresistant CRC cells and led to cell death by inducing caspase-3 activity. These results suggest that probiotic secretory substances can regulate cell proliferation in colorectal cancer and may be a therapeutic alternative for treating chemoresistant colorectal cancer (An and Ha, 2016).

To date, there have been few rigorous investigations examining the effect of prebiotics on 5-FU-induced intestinal mucositis. Knowing its potential in the intestinal mucosa, their supplementation with probiotics may be an attractive therapeutic alternative to ameliorate symptoms caused by mucositis, as well as other diseases involving the GIT.

Despite the significant impact of mucositis and advances in research to understand this pathology, existing therapies are mainly limited to clinical management of symptoms, aiming at electrolyte replacement, oral rehydration, and the use of adjuvant agents, such as loperamide octreotide, sucralfate enemas, sulfasalazine, and hyperbaric oxygen, to reduce fluid loss and decrease intestinal motility and diarrhea associated with mucositis, which are important debilitating symptoms (Van Sebille et al., 2015; Ribeiro et al., 2016). Given that it is necessary to find more effective therapeutic alternatives to combat intestinal mucositis, the “biotics” are strong candidates.

FINAL CONSIDERATIONS

The antineoplastic drug 5-FU is an essential and useful option for cancer treatment; however, its side effects, especially mucositis, can complicate treatment continuity and may lead to death. Effective measures to combat these symptoms, improving the quality of life of cancer patients, are crucially needed.

The probiotics have been investigated in various studies because of their beneficial properties for the GIT, including attenuation of dysbiosis. Several probiotic bacteria studied in intestinal mucositis murine models were able to attenuate and prevent intestinal histological damage, and also decrease weight loss and proinflammatory cytokine secretions, proving to be quite efficient in ameliorating the side effects to the intestine caused by 5-FU.

Though they can improve the health of the host, administration of viable microorganisms to immunosuppressed individuals still leads to controversial clinical findings. Paraprobiotics could be an effective alternative to address this concern, since microbial cells are dead or inactivated, thus avoiding risks associated with their administration to immunocompromised individuals.

Prebiotics are also described in the literature for their regulatory ability, acting to modify the commensal microbiota to a beneficial state. However, there are a few studies evaluating their potential for helping avoid intestinal mucositis. The existing studies demonstrate that prebiotics, when associated with a probiotic, are more efficient than when they are used separately, attenuating the symptoms of mucositis and improving to almost normal status the histology of the GIT.

Therefore, probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics may be useful alternatives for the treatment of intestinal mucositis induced by 5-FU. However, further studies are needed to elucidate all of the mechanisms of action of these bacteria and prebiotics to evolve into human clinical trials.

AUTHOR CONTRIBUTIONS

VB, TS, LT, LJ, FB, and NC-R wrote the original draft of the manuscript. VA, MD, and PM-A reviewed and revised the manuscript, obtained funding, and supervised the project. All authors contributed to the article and approved the submitted version.

FUNDING

This work was financially supported by grants from the Brazilian funding agencies, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG) and Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy.
REFERENCES

Acuerdo, L. B., Sandes, S. H. C., Bastos, R. W., Sant'anna, F. M., Pedroso, S. H. S. P., Reis, D. C., et al. (2017). Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella typhimurium infection. Benef. Microbes 8, 579–588. doi: 10.3920/BM2016.01613

Adams, C. A. (2010). The probiotic paradox: Live and dead cells are biological response modifiers. Nat. Rev. Drug Discov. 9, 373–386. doi: 10.1038/nrd3150

Aguilar-Toalá, J. E., García-Varela, R., García, H. S., Mata-Haro, V., González-Adams, C. A. (2010). The probiotic paradox: Live and dead cells are biological response modifiers. Nat. Rev. Drug Discov. 9, 373–386. doi: 10.1038/nrd3150

Alakomi, H.-L., Skytta, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., and Heliö, I. M. (2000). Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane. Appl. Environ. Microb. 66, 2001–2005. doi: 10.1128/AEM.66.5.2001-2005.2000

Aliakbarpour, H. R., Chamani, M., Rahimi, G., Sadeghi, A. A., and Quijeq, D. (2012). The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers. Asian Austr. J. Anim. Sci. 25, 1285–1293. doi: 10.5713/ajas.2012.12110

Amani Denj, K., Raazeghi Ma, M., Akrami, R., Ghabadi, S., Jafarpour, S. A., and Mirbeigi, S. K. (2015). Effect of Dietary Probiotic Mannan Oligosaccharide (MOS) on Growth Performance, Intestinal Microflora, Body Composition, Haematological and Blood Serum Biochemical Parameters of Rainbow Trout (Oncorhynchus mykiss) Juveniles. J. Fish. Aquat. Sci. 10, 255–265. doi: 10.3923/jfas.2015.255.265

An, J., and Ha, E.-M. (2016). Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluorauracil Increases Chemosensitivity in Colorectal Cancer Cells. J. Microbiol. Biotechnol. 26, 1490–1503. doi: 10.4102/jmbs.v16i05.05024

Ananta, E., and Knorr, D. (2009). Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol. 26, 542–546. doi: 10.1016/j.fm.2009.01.008

Autenrieth, D., and Baumgart, D. (2017). Mikrobiom und entzündliche Darmerkrankungen. DMW Dtsch. Medizinische Wochenschrift 142, 261–266. doi: 10.1055/s-0042-111608

Azad, M. A. K., Sarker, M., and Wan, D. (2018). Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed Res. Int. 2018:806364. doi: 10.1155/2018/806364

Bäckhed, F., Ley, R. E., Sonnenschein, J. L., Peterson, D. A., and Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–1920. doi: 10.1126/science.1104816

Bastos, R. W., Pedroso, S. H. S. P., Vieira, A. T., Moreira, L. M. C., França, C. S., Cartelle, C. T., et al. (2016). Saccharomyces cerevisiae UFMG A-3103 by thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol. 26, 542–546. doi: 10.1016/j.fm.2009.01.008

Bermúdez-Brito, M., Plaza-Diaz, M., Muñoz-Quezada, S., Gómez-Llorente, C., and Bäckhed, F., Ley, R. E., Sonnenburg, J. L., et al. (2018). Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Front. Microbiol. 9:983. doi: 10.3389/fmicb.2018.00983

Castilho, N. P. A., Colombo, L. M., Oliveira, L. L., de Todorov, S. D., and Nero, L. A. (2019). Lactobacillus curvatus UVF-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiol. 19:63. doi: 10.1186/s12866-019-1436-3

Cerdá, T., García-Santos, J. A., Bermúdez-Humarán, L. G., and Hunter, C. J. (2017). Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. J. Fish. Aquat. Sci. 26, 1490–1503. doi: 10.4172/2329-8901.1000159

Cerdá, T., García-Santos, J. A., Bermúdez-Humarán, L. G., and Hunter, C. J. (2017). Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. J. Fish. Aquat. Sci. 26, 1490–1503. doi: 10.4172/2329-8901.1000159

Crombie, J., and Longo, D. L. (2016). Principles of Cancer Treatment. Netherland: Elsevier.

Cuelas-González, P. F., Liceaga, A. M., and Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 136:109502. doi: 10.1016/j.foodres.2020.109502

Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., et al. (2019). Probiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 8:92. doi: 10.3390/foods8030092

De Jesus, L. C., Drumond, M. M., de Carvalho, A., Santos, S. S., Martins, F. S., Ferreira, É, et al. (2019). Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 Fluorouracil-Induced intestinal mucositis. J. Funct. Foods 53, 197–207. doi: 10.1016/j.jff.2018.12.027

De Keersmaeker, S. C., Verhoeven, T. L. A., Desair, I., Marchal, K., Vanderleyden, J., and Nagy, I. (2006). Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett. 259, 89–96. doi: 10.1111/1574-6968.2006.00250.x

Cassidy, S., and Syed, B. A. (2017). Colorectal cancer drugs market. Nat. Rev. Drug Discov. 16, 525–526. doi: 10.1038/nrd2017.59

Castilho, N. P. A., Colombo, L. M., Oliveira, L. L., de Todorov, S. D., and Nero, L. A. (2019). Lactobacillus curvatus UVF-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiol. 19:63. doi: 10.1186/s12866-019-1436-3
de Oliveira, G. L. V., Leite, A. Z., Higuchi, B. S., Gonzaga, M. I., and Mariano, V. S. (2017). Intestinal dysbiosis and probiotic applications in autoimmune diseases. *Immunology* 152, 1–12. doi: 10.1111/imm.12765

Duncan, M., and Grant, G. (2003). Mucositis-Causes and Possible Treatments. *Alim. Pharmacol. Ther.* 18, 853–874. doi: 10.1046/j.1365-2813.2003.01784.x

Enam, F., and Mansell, T. J. (2019). Prebiotics: tools to manipulate the gut microbiome and metabolome. *J. Ind. Microbiol. Biotechnol.* 46, 1445–1459. doi: 10.1007/s10295-019-02023-204

Escamilla, J., Lane, M. A., and Maitin, V. (2012). Cell-Free Supernatants from de Oliveira, G. L. V., Leite, A. Z., Higuchi, B. S., Gonzaga, M. I., and Mariano, V. S. (2017). Intestinal dysbiosis and probiotic applications in autoimmune diseases. *Immunology* 152, 1–12. doi: 10.1111/imm.12765

Fedorak, R. N., Feagan, B. G., Hotte, N., Leddin, D., Dieleman, L. A., Petrunia, G., Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., et al. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. *Nat. Rev. Gastroenterol. Hepatol.* 14, 491–502. doi: 10.1038/nrgastro.2017.75

Gibson, G. R., and Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. *J. Nutr.* 125, 1401–1412. doi: 10.1093/ijnc/125.6.1401

Gibson, G. R., and Wang, X. (1994). Regulatory effects of bifidobacteria on the growth of other colonic bacteria. *Appl. Environ. Microbiol.* 60, 1924–1927. doi: 10.1128/aem.60.8.1924-1927.1994

Gomes-Santos, A. C., Oliveira, R. P., de Moreira, T. G., Castro-Junior, A. B., Horta, B. C., Lemos, L., et al. (2017). Hsp65-Producing Lactobacillus lactis Prevents Inflammatory Intestinal Disease in Mice by IL-10- and TLR2-Dependent Pathways. *Front. Immunol.* 8:380. doi: 10.3389/fimmu.2017.00380

Guichard, N., Guillarme, D., Bonnabry, P., and Fleury-Souverain, S. (2017). Antineoplastic drugs and their analysis: a state of the art review. *Analyst* 142, 2273–2321. doi: 10.1039/c7an00367f

Hyöö, T., Malon, J., Kononen, J., Onnell, C., Jokelainen, J., Heikkinen, T. M., et al. (2012). Bifidobacteria and Tumor Environments. *Front. Immunol.* 3:249. doi: 10.3389/fimmu.2012.00249

Holleran, G., Lopetuso, R. L., Ianio, G., Pecere, S., Pizzoferrato, M., Petitto, V., et al. (2017). Gut microbiota and inflammatory bowel disease: so far so gut! *Minerva Gastroenterol.* Distel 63, 373–384. doi: 10.23736/S1121-421X.17.0238 62388

 Hosono, A., Ozawa, A., Kato, R., Ohnishi, Y., Nakashii, Y., Kimura, T., et al. (2003). Dietary Fructooligosaccharides Induce Immunoregulation of Intestinal IgA Secretion by Murine Peyer's Patch Cells. *Biosci. Biotechnol. Biochem.* 67, 758–764; doi: 10.1271/bbb.67.758

Hsieh, M.-C., Tsai, W.-H., Jheng, Y.-P., Su, S.-L., Wang, S.-Y., Lin, C.-C., et al. (2018). The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. *Sci. Rep.* 8:16791. doi: 10.1038/s41598-018-35041-5

Jamali, J., Dayo, A., Adeel, A., Qureshi, Y., Khan, T., and Begum, S. (2018). A survey on gastrointestinal adverse drug reactions of Doxorubicin and Cyclophosphamide combination therapy. *J. Pak. Med. Assoc.* 68, 926–928.

Jandhyala, S. M., Talukdar, S., Subramaniam, C., Vuyyuru, H., Sasanaka, M., and Reddy, D. N. (2015). Role of the normal gut microbiota. *World J. Gastroenterol.* 21, 8836–8847. doi: 10.3748/wjg.v21.i29.8778

Jørgensen, H., Leffers, H., Jørgensen, B. M., Egeblad, M., Winter, K., et al. (2017). Colonization with probiotics or prebiotics reduces the growth of other colonic bacteria. *FEMS Microbiol. Lett.* 372, 1–15. doi: 10.1093/femsle/nax081

Kaci, G., Lahkhadi, O., Doré, J., Ehrlich, S. D., Renault, P., Blottière, H. M., et al. (2011). Inhibition of the NF-κB Pathway in Human Intestinal Epithelial Cells by Commensal Streptococcus salivarius. *Appl. Environ. Microbiol.* 77, 4681–4684. doi: 10.1128/AEM.03213-10

Kato, S., Hamouda, N., Kano, Y., Okawa, Y., Tanaka, Y., Matsumoto, K., et al. (2017). Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. *Clin. Exp. Pharmacol. Physiol.* 44, 1017–1025. doi: 10.1111/1440-1681.12792

Kim, H. J., Kim, J. H., Moon, W., Park, J., Park, S. J., Song, G. A., et al. (2015). Rebamipide Attenuates 5-Fluorouracil-Induced Small Intestinal Mucositis in a Mouse Model. *Biol. Pharm. Bull.* 38, 179–183. doi: 10.1248/bpb.b14- 00400

Kim, N., Yun, M., Oh, Y. J., and Choi, H.-J. (2018). Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. *J. Microbiol.* 56, 172–182. doi: 10.1007/s12275-018-80328-0

Kim, S., Chun, H., Choi, H., Kim, E., Keum, B., Seo, Y., et al. (2018). Ursodeoxycholic acid attenuates 5-fluorouracil-induced mucositis in a rat model. *Oncol. Lett.* 16, 2585–2590. doi: 10.3892/ol.2018.8893

König, J., Wells, J., Cani, P. D., García-Ródenas, C. L., MacDonald, T., Mercenier, A., et al. (2016). Human intestinal barrier function in health and disease. *Clin. Transl. Gastroenterol.* 7:e196. doi: 10.1038/ctg.2016.54

Kuczkowska, K., Øverland, L., Rocha, S. D. C., Ejsink, V. G. H., and Mathiesen, G. (2019). Comparison of eight Lactobacillus species for delivery of surface displayed mycobacterial antigen. *Vaccine* 37, 6371–6379. doi: 10.1016/j.vaccine.2019.09.012

Lane, E. R., Zisman, T. L., and Suskind, D. L. (2017). The microbiota in inflammatory bowel disease: Current and therapeutic insights. *J. Inflamm. Res.* 10:63–73. doi: 10.2147/JIR.S86088

LeCureux, J. S., and Dean, G. A. (2018). Lactobacillus Mucosal Vaccine Vectors: Immune Responses against Bacterial and Viral Antigens. *mSphere* 3, e00061-18. doi: 10.1128/mSphere.00061-18
Lee, C. S. (2014). Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation. World J. Gastroenterol. 20:3751–3761. doi: 10.3748/wjg.v20.i14.3751

Levit, R., Savoy de Giori, G., de Moreno, de LeBlanc, A., and LeBlanc, J. G. (2018). Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition 54, 165–172. doi: 10.1016/j.nut.2018.03.056

L’homme, C., Arbelot, M., Puigserver, A., and Biagini, A. (2003). Kinetics of Hydrolysis of Fructooligosaccharides in Mineral-Buffered Aqueous Solutions: Influence of pH and Temperature. J. Agric. Food Chem. 51, 224–228. doi: 10.1021/jf0204699

Li, N., Russell, W. M., Douglas-Escobar, M., Hauser, N., Lopez, M., and Neu, J. (2008). Live and heat-killed lactobacillus rhamnosus GG: Effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastro-intestinally fed infant rats. Pediatr. Res. 66, 203–207. doi: 10.1203/PDR.0b013e3181abbdff

Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003). Regional specialization within the intestinal barrier function and its involvement in inflammatory bowel diseases. Front. Immunol. 10:277. doi: 10.3389/fimmu.2019.00227

Plavec, T. V., and Berlec, A. (2019). Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl. Microbiol. Biotechnol. 103, 2053–2066. doi: 10.1007/s00253-019-09628-y

Playne, K., and Crettenden, M. (2002). Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 58, 297–302. doi: 10.1007/s00253-001-0886883

Plaza-Díaz, J., Ruiz-Ojeda, F., Vilchez-Padial, L., and Gil, A. (2017). Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients 9:555. doi: 10.3390/nu9060555

Porto, B. A. A., Monteiro, C. F., Souza, ÉL. S., Leocádio, P. C. L., Alvarez-Leite, J. I., Generoso, S. V., et al. (2019). Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice. Cancer Chemother. Pharmacol. 84, 117–126. doi: 10.1007/s00280-019-03865-8

Rad, A. H., Aghabati-Maleki, L., and Abbasi, A. (2020). Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr. 15, 1–17. doi: 10.1080/10408398.2020.1765310

Rajili´c-Stojanovi´c, M., and de Vos, W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1017. doi: 10.1111/1574-6976.12075

Ribeiro, R. A., Wanderley, C. W. S., Wong, D. V. T., Mota, J. M. S. C., Leite, C. A. V. G., Souza, M. H. L. P., et al. (2016). Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother. Pharmacol. 78, 881–893. doi: 10.1007/s00280-016-3139-y

Roberfroid, M. B. (2007). Inulin-Type Fructans: Functional Food Ingredients. J. Nutr. 137, 2493S–2502S. doi: 10.1093/jn/137.12.2493S

Roller, M., Reckemmer, G., and Watzl, B. (2004). Prebiotic Inulin Enriched with Oligofructose in Combination with the Probiotics Lactobacillus rhamnosus and Bifidobacterium lactis Modulates Intestinal Immune Functions in Rats. J. Nutr. 134, 153–156. doi: 10.1093/jn/134.1.153

Salvo Romero, E., Alonso Cotoner, C., Pardo Camacho, C., Casado Bedmar, M., and Vicario, M. (2015). The intestinal barrier function and its involvement in digestive disease. Rev. Española EnfermedadesDig. 108, 686–695. doi: 10.17235/ rev2015.384/2015

Satchithanandan, S., Vargocák-Apker, M., Calvert, R. J., Lees, A. R., and Cassidy, M. M. (1990). Alteration of Gastrointestinal Mucin by Fiber Feeding in Rats. J. Nutr. 120, 1179–1184. doi: 10.1093/jn/120.10.1179
Shields, M. (2017). Sonis, S. T. (2004). The pathobiology of mucositis. Frontiers in Microbiology | www.frontiersin.org

van Reenen, C. A., and Dicks, L. M. T. (2011). Horizontal gene transfer amongst

Stringer, A. M., Gibson, R. J., Logan, R. M., Bowen, J. M., Yeoh, A. S. J., Hamilton,

Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits.

van Vliet, M. J., Harmsen, H. J. M., de Bont, E. S. J. M., and Tissing, W. J. E. (2010). The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis. PLoS Pathog. 6:e1000879. doi: 10.1371/journal.ppat.1000879

Vancambele, M., and Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 11, 821–834. doi: 10.1517/17474124.2017.1543143

Villa, A., and Sonis, S. T. (2015). Mucositis: Pathobiology and management. Curr. Opin. Oncol. 27, 159–164. doi: 10.1097/CCO.0000000000001018

von Bülztingslöwen, I., Adlerberth, I., Wold, A. E., Dahlén, G., and Jontell, M. (2003). Oral and intestinal microflora in 5-fluorouracil treated rats, translocation to cervical and mesenteric lymph nodes and effects of probiotic bacteria. Oral Microbiol. Immunol. 18, 278–284. doi:10.1034/j.1399-302x.2003.00785.x

Wallace, C. J. K., Foster, J. A., Soares, C. N., and Mälev, R. V. (2020). The Effects of Probiotics on Symptoms of Depression: Protocol for a Double-Blind Randomized Placebo-Controlled Trial. Neuropsychobiology 79, 108–116. doi: 10.1159/0004946406

Walter, J., and Ley, R. (2011). The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annu. Rev. Microbiol. 65, 411–429. doi: 10.1146/annurev-micro-090110102830

Wang, G., Li, X., Zhao, J., Zhang, H., and Chen, W. (2017). Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 8, 3155–3164. doi: 10.1039/C7FO00593H

Wang, H., Zhang, L., Xu, S., Pan, J., Zhang, Q., and Lu, R. (2018). Surface-Layer Protein from Lactobacillus acidophilus NCFM Inhibits Lipopolysaccharide-Induced Inflammation through MAPK and NF-kB Signaling Pathways in RAW264.7 Cells. J. Agric. Food Chem. 66, 7655–7662. doi:10.1021/acs.jafc.8b02012

Wang, M., Gao, Z., Zhang, Y., and Pan, L. (2016). Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl. Microbiol. Biotechnol. 100, 5691–5701. doi: 10.1007/s00253-016-7557-x

Wang, Y., George, S. P., Roy, S., Pham, E., Esmaeilniaakoooghkhazi, A., and Khurana, S. (2016). Both the anti-and pro-apoptotic functions of villin regulate cell turnover and intestinal homeostasis. Sci. Rep. 6, 1–10. doi: 10.1038/srep35491

Wang, Y. (2009). Prebiotics: Present and future in food science and technology. Food Res. Int. 42, 8–12. doi:10.1016/j.foodres.2008.09.001

World Health Organization [WHO] (2018). No Title. Fact sheets-Cancer. Switzerland: WHO.

Wu, Y., Wang, B., Xu, H., Tang, L., Li, Y., Gong, L., et al. (2019). Probiotic Bacillus Attenuates Oxidative Stress-Induced Intestinal Injury via p38-Mediated Autophagy. Front. Microbiol. 10:2185. doi: 10.3389/fmicb.2019.02185

Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., et al. (2015). Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods. PLoS One 10:e0119058. doi: 10.1371/journal.pone.0119058

Xu, R., Shang, N., and Li, P. (2011). In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 17, 226–231. doi:10.1016/j.anaerobe.2011.07.010

Yeung, C. Y., Chan, W. T., Jiang, C., Bin, Cheng, M. L., Liu, C. Y., et al. (2015). Amelioration of chemotherapy-induced intestinal mucositis by orally administrated probiotics in a mouse model. PLoS One 10:e0118050. doi: 10.1371/journal.pone.0118050

Yu, J. (2013). Intestinal stem cell injury and protection during cancer therapy. Transl. Cancer Res. 2, 384–396. doi:10.3978/j.issn.2218-676X.2013.07.03

Yu, L. C. H. (2018). Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J. Biomed. Sci. 25:79. doi:10.1186/s12929-018-0483-8

Zaharakudin, L., Mokhtar, N. M., Muhammad Nasawi, K. N., and Raja Ali, R. A. (2019). A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 19:131. doi: 10.1186/s12876-019-10471044
resistance in Lactobacillus plantarum. *J. Dairy Sci.* 101, 2867–2874. doi: 10.3168/jds.201713323

Zhang, N., Yin, Y., Xu, S. J., and Chen, W. S. (2008). 5-Fluorouracil: Mechanisms of resistance and reversal strategies. *Molecules* 13, 1551–1569. doi: 10.3390/molecules13081551

Ziegler, E., Vanderhoof, J. A., Petschow, B., Mitmesser, S. H., Stolz, S. I., Harris, C. L., et al. (2007). Term Infants Fed Formula Supplemented With Selected Blends of Prebiotics Grow Normally and Have Soft Stools Similar to Those Reported for Breast-fed Infants. *J. Pediatr. Gastroenterol. Nutr.* 44, 359–364. doi: 10.1097/MPG.0b013e31802fca8c

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Batista, da Silva, de Jesus, Coelho-Rocha, Barroso, Tavares, Azevedo, Mancha-Agresti and Drumond. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.