INTRODUCTION

The emergence of multidrug-resistant bacteria has led to global concerns about failure to cure certain highly dangerous infectious diseases. *Staphylococcus aureus* is an opportunistic Gram-positive bacterium that may cause dangerous infections, due to its ability to carry the resistance genes for many antibiotics [1]. Currently, the most prevalent resistant bacterium, particularly in a hospital environment is the methicillin-resistant *S. aureus* (MRSA). Acquisition of the mecA gene and its ability to over-express efflux pumps as well as to produce a β-lactamase enzyme are the underlying causes for the resistance of MRSA toward many antibiotics, especially β-lactam antibiotics [2]. A high prevalence of nosocomial infections caused by MRSA has been reported from many countries worldwide [3]. The increasing drug resistance of Gram-negative bacteria, including *Pseudomonas aeruginosa*, mainly due to mutation in target enzymes [4] has also raised concerns. Consequently, the identification and development of new antibiotics with new targets and modes of action are urgently needed, but major time...
Plant-derived compounds are recognized as an important source of new antibacterials. Many flavonoids have been reported to have antimicrobial activity [6], and some have been demonstrated to exert a synergistic effect on the activity of commercial products against resistant bacteria including MRSA [7,8]. Artocarpanone (Figure 1) is a flavonoid isolated from Artocarpus heterophyllus, which exhibits a range of pharmacological properties including antibacterial, anti-tyrosinase, and cytotoxic activity [9-11]. However, we have found no reports describing the synergistic effect of artocarpanone on the activity of antibiotics. The aim of the present study was to determine whether artocarpanone could enhance the antibacterial activity of the conventional antibiotics tetracycline, ampicillin, and norfloxacin that are normally used against S. aureus but are not effective against MRSA. The study as also extended to encompass the Gram-negative bacteria, P. aeruginosa and Escherichia coli. We also investigated the ability of artocarpanone/antibiotic combinations to disrupt bacterial cell membranes in a synergistic manner.

MATERIALS AND METHODS

Chemicals

Artocarpanone was purified from the crude ethyl acetate extract of A. heterophyllus heartwoods as described previously [9]. The antibiotics ampicillin, tetracycline, and norfloxacin were purchased from Sigma (Sigma-Aldrich, UK). Crystal violet was obtained from LabChem Inc. (Laboratory Chemical, Australia). Brain–heart infusion (BHI) was from the Becton, Dickinson and Company (Franklin Lakes, New Jersey, USA).

Bacterial Strains

MRSA (DMST 20654), P. aeruginosa (DMST 15442), and E. coli (ATCC 25922) were obtained from the Department of Medical Sciences, Ministry of Public Health, Thailand.

Determinaton of Minimum Inhibitory Concentrations (MICs)

A microdilution assay was used to determine the MIC of each antibiotic system against the selected bacteria strains [12]. Two-fold dilutions of each sample in BHI were prepared in a sterile 96-well plate. Bacterial suspensions were prepared in 0.85% NaCl, and the turbidity was adjusted to 0.5 McFarland standard (equivalent to 1 × 10⁶ CFU/mL). The suspension was diluted with normal saline to contain 1 × 10⁶ CFU/mL and added into each well. The final cell concentration was 5 × 10⁶ CFU/mL. The plate was incubated at 37°C for 24 h, and the MIC was recorded as the lowest concentration of the sample that produced suppression of visible growth.

Checkerboard Assay for Antibacterial Activity

The antibacterial activity of combination antibiotics was evaluated against the selected bacteria as described by Chang et al., with a slight modification [13]. The assay was performed using artocarpanone in combination with ampicillin, tetracycline, and norfloxacin, respectively, in 96-well plates. Two-fold dilutions of artocarpanone were prepared in BHI along the X-axis, while 2-fold dilutions of the antibiotics were prepared along the Y-axis. Subsequently, each well was inoculated with bacteria suspension of 1 × 10⁶ CFU/mL and the plates were incubated at 37°C for 24 h. The fractional inhibitory concentration index (FICI) was quantified as the FIC for artocarpanone and the FIC for antibiotic, where the FIC for artocarpanone was the MIC of artocarpanone in combination divided by MIC for artocarpanone alone, while the FIC for antibiotic was the MIC of antibiotic in combination divided by the MIC of antibiotic alone.

FICI = MIC of artocarpanone or antibiotics in combination

FIC = MIC of artocarpanone or antibiotics alone

The results were interpreted as synergistic (FICI ≤ 0.5), additive (0.5 ≤ FICI ≤ 1), indifferent (1 ≤ FICI ≤ 4), or antagonistic (FICI > 4) [14].

Time-kill Assay

Bacterial suspension containing 1 × 10⁶ CFU/mL was added to BHI broth containing various combinations of antibiotics to reach a final cell concentration of 5 × 10⁶ CFU/mL, then incubated at 37°C. A time-kill assay was performed at eight time intervals (0, 1, 2, 4, 6, 8, 12, and 24 h). Aliquots (50 µL) of the cultures were diluted (1:10) with 450 µL of normal saline, and 20 µL of each dilution was cultured on BHI agar. The numbers of viable colonies were recorded after a 24-h incubation [15].

Bacteriolysis Assay

The alteration of cell membrane permeability was investigated by measuring uptake of crystal violet [16]. Briefly, a suspension of MRSA in normal saline was prepared from an overnight culture on BHI agar. A single dose of artocarpanone and norfloxacin as well as artocarpanone in combination with norfloxacin was added to the cell suspension and incubated at 37°C for 1 h. The final cell concentration was 5 × 10⁶ CFU/mL. Untreated suspensions of MRSA were used as a negative control. The cells were harvested at 13,400 × g for 5 min and resuspended in a crystal violet solution (10 µg/mL in normal saline). The cells were incubated at 37°C for 10 min and harvested by centrifugation at 25°C for 15 min. The optical density (OD of the supernatant) at 590 nm was measured using an ultraviolet-visible (UV-Vis) spectrophotometer (Genesis-6, Becthai, Bangkok). The OD reading of the crystal violet solution used for the assay was considered to represent the value of 100%.
The percentage crystal violet uptake was calculated as the OD value of the sample supernatant/OD value of the crystal violet solution × 100. This experiment was performed in triplicate.

Loss of 260 nm Absorbing Material

The concentration of released UV-absorbing material from bacteria exposed to antibiotics is a measure of metabolites, nucleic acid, and ion that were detected at 260 nm [16-18]. Overnight cultures of MRSA were washed with normal saline and resuspended in normal saline. Artocarpanone and norfloxacin alone as well as combinations of artocarpanone and norfloxacin were added to the cell suspensions to give a final cell concentration of 5 × 10⁷ CFU/mL. Untreated cell suspensions were used as the control. Test samples were incubated at 37°C for 1 h and then centrifuged at 25°C at 13,400 × g for 15 min. The OD₂₆₀ of the supernatant was measured using a UV-Vis spectrophotometer to determine the quantity of intracellular UV-absorbing material released by the cells. The assay was performed in triplicate.

Statistical Analysis

All experiments were carried out in triplicate with the average value and standard deviations reported. The data were analyzed using ANOVA followed by the Tukey’s honestly significant difference post-hoc test to identify significant difference between group means. Statistical significance was accepted at the level P < 0.01.

RESULTS

MICs

Artocarpanone exhibited strong antibacterial activity against *E. coli* with an MIC of 7.8 µg/mL, but it had a weak antibacterial activity against *P. aeruginosa* and MRSA with MICs of 500 and 125 µg/mL, respectively [Table 1]. Norfloxacin showed the strongest antibacterial activity against *E. coli* and *P. aeruginosa* with MICs of 1.9 µg/mL while tetracycline and ampicillin also demonstrated strong antibacterial activity with MIC values of 7.81-15.62 µg/mL. However, all tested antibiotics only revealed moderate-weak antibacterial activity against MRSA (MIC of 62.5-125 µg/mL).

Checkerboard Analysis

Interaction between artocarpanone (125 µg/mL) and norfloxacin (0.9 µg/mL) showed an additive effect against *P. aeruginosa* (FICI of 0.75), while combination of artocarpanone (250 µg/mL) and tetracycline (7.8 µg/mL) as well as artocarpanone (125 µg/mL) and ampicillin (15.6 µg/mL) gave the indifference effects with FICIs of 1 and 1.25, respectively [Table 2]. On the one hand, artocarpanone (3.9 µg/mL) exhibited an additive effect on the antibacterial activity of tetracycline (1.9 µg/mL) against *E. coli* with FICI of 0.75 and showed indifference effect in combination artocarpanone (0.9 µg/mL) and ampicillin (15.6 µg/mL) as well as artocarpanone (3.9 µg/mL) and norfloxacin (0.5 µg/mL) with FICIs of 1.1 and 1, respectively [Table 3]. In case of MRSA, artocarpanone (31.2 µg/mL) also performed additive effects when combined with tetracycline (31.2 µg/mL) and ampicillin (15.6 µg/mL) with FICIs of 0.3. Interestingly, in combination with norfloxacin, artocarpanone (31.2 µg/mL) enhanced the antibacterial activity of norfloxacin (3.9 µg/mL) with a synergistic effect (FICI value of 0.28) [Table 4].

Time-kill Assay

The combination of 31.2 µg/mL artocarpanone and 3.9 µg/mL norfloxacin completely inhibited bacterial growth at the limit of quantification (10²) within 12 h, while artocarpanone and norfloxacin alone at the concentration of 62.5 µg/mL did not completely inhibit bacterial growth until 24 h [Figure 2].

Bacteriolysis

The percentage of uptake of crystal violet indicated the bacteriolytic activity of the compounds against MRSA.
Artocarpanone significantly increased the uptake of crystal violet when compared to the control ($P < 0.01$), while norfloxacin did not have any significant effect. It was of interest that the crystal violet uptake of artocarpanone in combination with norfloxacin was significantly higher than the other groups, including the control as well as a single dose of artocarpanone and norfloxacin ($P < 0.01$).

Loss of 260 nm Absorbing Material

The result indicated that the absorbance of the combined artocarpanone and norfloxacin was significantly higher than for the control group as well as those of the single compounds, artocarpanone and norfloxacin ($P < 0.01$) [Figure 4].

Table 2: Effect of artocarpanone on the antibacterial activity of antibiotics against *P. aeruginosa*

Interaction	MIC\(^a\) (µg/mL)	MIC\(^c\) (µg/mL)	FIC	FICI	Interaction
Artocarpanone-Tetracycline					
Artocarpanone	500	250	0.5	1	Indifference
Tetracycline	15.6	7.8	0.5		
Artocarpanone-Ampicillin					
Artocarpanone	500	125	0.25	1.25	Indifference
Ampicillin	15.6	15.6	1		
Artocarpanone-Norfloxacin					
Artocarpanone	500	125	0.25	0.75	Additive
Norfloxacin	1.9	0.9	0.5		

\(^a\)MIC of one sample alone, \(^c\)MIC of samples in combination

FIC (fractional inhibitory concentration), FICI (fractional inhibitory concentration index)

Table 3: Effect of artocarpanone on the antibacterial activity of antibiotics against *E. coli*

Interaction	MIC\(^a\) (µg/mL)	MIC\(^c\) (µg/mL)	FIC	FICI	Interaction
Artocarpanone-Tetracycline					
Artocarpanone	7.8	3.9	0.5	0.75	Additive
Tetracycline	7.8	1.9	0.25		
Artocarpanone-Ampicillin					
Artocarpanone	7.8	0.9	0.1	1.1	Indifference
Ampicillin	15.6	15.6	1		
Artocarpanone-Norfloxacin					
Artocarpanone	7.8	3.9	0.5	1.0	Indifference
Norfloxacin	1.9	0.5	0.5		

\(^a\)MIC of one sample alone, \(^c\)MIC of samples in combination

FIC (fractional inhibitory concentration), FICI (fractional inhibitory concentration index)

Table 4: Effect of artocarpanone on the antibacterial activity of antibiotics against MRSA

Interaction	MIC\(^a\) (µg/mL)	MIC\(^c\) (µg/mL)	FIC	FICI	Interaction
Artocarpanone-Tetracycline					
Artocarpanone	125	31.2	0.25	0.5	Additive
Tetracycline	125	31.2	0.25		
Artocarpanone-Ampicillin					
Artocarpanone	125	31.2	0.25	0.5	Additive
Ampicillin	62.5	15.6	0.25		
Artocarpanone-Norfloxacin					
Artocarpanone	125	31.2	0.25	0.28	Synergistic
Norfloxacin	125	3.9	0.3		

\(^a\)MIC of one sample alone, \(^c\)MIC of samples in combination

FIC (fractional inhibitory concentration), FICI (fractional inhibitory concentration index)

DISCUSSION

On the basis of the broth microdilution method, artocarpanone has demonstrated variable antibacterial activity against tested bacteria. Against Gram-negative bacteria, norfloxacin was the strongest agent. However, all tested antibiotics as well as artocarpanone only showed a weak antibacterial activity against MRSA. It has been known that many antibiotics in sublethal
concentration cannot significantly exhibit any activities against MRSA due to its resistant mechanism. One appealing strategy to overcome resistant problem is the use of drug in combination. This strategy may increase their biological activities due to the interaction of each compound. Checkerboard method was used to determine the interaction of combination between artocarpanone and antibiotics. Interestingly, against resistant bacteria, artocarpanone only had a synergistic interaction when combined with norfloxacin. By this combination, artocarpanone could decrease the dose of norfloxacin by 32-fold. The time-kill assay was conducted to confirm the synergistic effect of artocarpanone on the anti-MRSA activity of norfloxacin. These results indicated that artocarpanone may overcome the problems associated with MRSA when used in combination with the conventional antibiotic, i.e., norfloxacin.

A use of drug in combination may increase their biological activities due to the interaction of each compound. Different compounds may have different target sites and influence each site to achieve the same response that leads to enhanced biological activities in the cells. On the other hand, the different compounds might affect the same target site and that could result in an agonistic activity [19]. Over-expression of the efflux pump is one of the resistance mechanisms of MRSA toward antibiotics. It has been suggested that the efflux pump can be inhibited by altering the membrane permeability as well as by inhibiting the metabolic pathway [20]. Cell membrane disruption is one of the antibacterial mechanisms of flavonoids [6,21]. This study therefore also focused on investigation any cell membrane disruption by artocarpanone, norfloxacin, and their synergistic mixtures. Based on the bacteriolyis assay, artocarpanone in combination with norfloxacin had a bacteriolytic activity by increasing the uptake of crystal violet. A further study was performed to determine the release of UV-absorbing material at 260 nm which indicated the leakage of the intracellular components of MRSA as an indicator for membrane damage [22]. This result corresponded well with the synergistic bacteriolytic effect of the mixture of artocarpanone and norfloxacin. It implied that the mixture of artocarpanone and norfloxacin enabled the alteration of the membrane permeability and caused a release of intracellular components.

This finding indicated that the synergistic activity of artocarpanone and norfloxacin against MRSA may be operated through different targets sites. It has been shown that the incorporation of flavonoids, especially a flavone at the hydrophilic side of the cell membrane, can cause a reduction of membrane fluidity [23]. For example, sophoraflavanone G isolated from Sophora exigua exhibited antibacterial activity against MRSA by reducing the fluidity of the cellular membrane as well as by reducing the cytoplasmic contents [20,24]. Therefore, such membrane alteration may allow norfloxacin to enter the cells more easily and occupy its site of action for inhibiting the DNA gyrase that resulted in interfering with cell division and induced the cells death [25]. Investigation of this synergistic activity between artocarpanone and norfloxacin may provide opportunities for understanding their mechanism of actions against MRSA and provide a new prospect for the discovery an alternative strategy to overcome resistance problems. Nevertheless, further experiments are required to elucidate other mechanisms of action including any inhibitory activity on the efflux pumps.

ACKNOWLEDGMENTS

We wish to thank Prince of Songkla University and the Directorate General of Higher Education, Ministry of National Education and Culture, Indonesia, for providing financial support. We thank Dr. Brian Hodgson and Prof. Allan Coombes for assistance with English editing of the manuscript.

REFERENCES

1. Sandel MK, McKillip JL. Virulence and recovery of Staphylococcus aureus relevant to the food industry using improvements on traditional approaches. Food Control 2014;15:5-10.

2. Qin R, Xiao K, Li B, Jiang W, Peng W, Zheng J, et al. The combination of catechin and epicatechin callate from fructus crataegi potentiates beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo. Int J Mol Sci 2013;14:1802-21.

3. Zuo GY, Han ZQ, Hao XY, Han J, Li ZS, Wang GC. Synergy of aminoglycoside antibiotics by 3-benzylchroman derivatives from the Chinese drug Caesalpinia sappan against clinical methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2014;21:936-41.

4. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002;95:22-6.

5. Wagner H, Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009;16:97-110.

6. Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011;38:99-107.

7. Chan BC, Ip M, Gong H, Lui SL, See RH, Jolivalt C, et al. Synergistic effects of diosmetin with erthromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220[pUL5054] and inhibition of MRSA pyruvate kinase. Phytomedicine 2013;20:611-4.

8. Eunkeb G, Siriwong S, Thumanu K. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J Photochem Photobiol B 2012;117:247-53.

9. Septama AW, Panichyapakaranant P. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods. Pharm Biol 2015;53:1809-13.

10. Dei-Adisaa S, Meexhil J, Puripattanavong J, Kummee S. Antityrosinase and antimicrobial activities from Thai medicinal plants. Arch Pharm Res 2014;37:473-83.

11. Arung ET, Yoshikawa K, Shimizu K, Kondo R. Isoprenoid-substituted flavanoids from wood of Artocarpus heterophyllus on B16 melanoma cells: Cytotoxicity and structural criteria. Fitoterapia 2010;81:120-3.

12. NCCLS (National Committee for Clinical Laboratory Standard). Performance Standard for Antimicrobial Susceptibility Testing. Ninth Informational Supplement. Pennsylvania, USA: National Committee for Clinical Laboratory Standard;2008.

13. Chang SC, Chen YC, Lue HT, Hsieh WC. In vitro activity of antimicrobial agents, alone and in combination, against Acinetobacter baumannii isolated from blood. Diagn Microbiol Infect Dis 1998;23:105-10.

14. Milne KE, Gould IM. Combination antimicrobial susceptibility testing of multidrug-resistant Stenotrophomonas maltophilia from cystic fibrosis patients. Antimicrob Agents Chemother 2012;56:4071-7.

15. Hamoud R, Zimmermann S, Reichling J, Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine 2014;21:443-7.

16. Devi KP, Nisha SA, Sakthivel R, Pandian SK. Eugenol (an essential oil of cloves) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 2010;130:107-15.
31-1: An antilisteria bacteriocin produced by *Lactobacillus pentosus* from Chinese traditional ham. Food Control 2008;19:817-22.

18. Oonnetta-aree J, Suzuki T, Gasaluck P, Eumkeb G. Antimicrobial properties and action of galangal (*Alpinia galanga* Linn.) On *Staphylococcus aureus*. LWT Food Sci Technol 2006;39:1214-20.

19. Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamics basis. Fitoterapia 2014;92:133-47.

20. Gibbons S. Phytochemicals for bacterial resistance - Strengths, weaknesses and opportunities. Planta Med 2008;74:594-602.

21. Tsuchiya H, Inuma M. Reduction of membrane fluidity by antibacterial sophorafavanone G isolated from *Sophora exigua*. Phytomedicine 2000;7:161-5.

22. Vaara M, Vaara T. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and-resistant *Salmonella typhimurium*. Antimicrob Agents Chemother 1981;19:578-83.

23. Hendrich AB. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sin 2006;27:27-40.

24. Mun SH, Joung DK, Kim SB, Park SJ, Seo YS, Gong R, et al. The mechanism of antimicrobial activity of sophorafavanone B against methicillin-resistant *Staphylococcus aureus*. Foodborne Pathog Dis 2014;11:234-9.

25. Crumplin GC, Kenwright M, Hirst T. Investigations into the mechanism of action of the antibacterial agent norfloxacin. J Antimicrob Chemother 1984;13 Suppl B:9-23.