SOLUTIONS OF THE SYSTEM OF OPERATOR EQUATIONS

\[BXA = B = AXB \] VIA *-ORDER

MEHDI VOSOUTH AND MOHAMMAD SAL MOSLEHIAN

Abstract. In this paper, we establish some necessary and sufficient conditions for the existence of solutions to the system of operator equations \[BXA = B = AXB \] in the setting of bounded linear operators on a Hilbert space, where the unknown operator \(X \) is called the inverse of \(A \) along \(B \). After that, under some mild conditions we prove that an operator \(X \) is a solution of \(BXA = B = AXB \) if and only if \(B^* \leq AXA \), where the \(*\)-order \(C^* \leq D \) means \(CC^* = DC^* \), \(C^*C = C^*D \). Moreover we present the general solution of the equation above. Finally, we present some characterizations of \(C \leq D \) via other operator equations.

1. Introduction and preliminaries

Throughout the paper, \(\mathcal{H} \) and \(\mathcal{K} \) are complex Hilbert spaces. We denote the space of all bounded linear operators from \(\mathcal{H} \) into \(\mathcal{K} \) by \(\mathcal{B}(\mathcal{H}, \mathcal{K}) \), and write \(\mathcal{B}(\mathcal{H}) \) when \(\mathcal{H} = \mathcal{K} \). Recall that an operator \(A \in \mathcal{B}(\mathcal{H}) \) is positive if \(\langle Ax, x \rangle \geq 0 \) for all \(x \in \mathcal{H} \) and then we write \(A \geq 0 \). We shall write \(A > 0 \) if \(A \) is positive and invertible. An operator \(A \in \mathcal{B}(\mathcal{H}) \) is a generalized projection if \(A^2 = A^* \). Let \(\mathcal{S}(\mathcal{H}), \mathcal{Q}(\mathcal{H}), \mathcal{OP}(\mathcal{H}), \mathcal{GP}(\mathcal{H}) \) be the set of all self-adjoint operators on \(\mathcal{H} \), the set of all idempotents, the set of orthogonal projections and the set of all generalized projections on \(\mathcal{H} \), respectively. For \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \), let \(\mathcal{R}(A) \) and \(\mathcal{N}(A) \) be the range and the null space of \(A \), respectively. The projection corresponding to a closed subspace \(M \) of \(\mathcal{H} \) is denoted by \(P_M \). The symbol \(A^- \) stands for an arbitrary generalized inner inverse of \(A \), that is, an operator \(A^- \) satisfying \(AA^- A = A \). The Moore–Penrose inverse of a closed range operator \(A \) is the unique operator \(A^\dagger \in \mathcal{B}(\mathcal{H}) \) satisfying the following equations

\[
AA^\dagger A = A, \quad A^\dagger AA^\dagger = A^\dagger, \quad (AA^\dagger)^* = AA^\dagger, \quad (A^\dagger A)^* = A^\dagger A.
\]

Then, \(A^*AA^\dagger = A^* = A^\dagger AA^* \) and we have the following properties

\[
\mathcal{R}(A^\dagger) = \mathcal{R}(A^*), \quad \mathcal{N}(A^\dagger) = \mathcal{N}(A^*), \quad P_{\mathcal{R}(A)} = AA^\dagger \text{ and } P_{\mathcal{N}(A)} = A^\dagger A.
\]

(1.1)

For \(A, B \in \mathcal{S}(\mathcal{H}) \), \(A \leq B \) means \(B - A \geq 0 \). The order \(\leq \) is said to be the Löwner order on \(\mathcal{S}(\mathcal{H}) \). If there exists \(C \in \mathcal{S}(\mathcal{H}) \) such that \(AC = 0 \) and \(A + C = B \), then we write \(A \preceq B \). The order \(\preceq \) is said to be the logic order on
\(\mathcal{J}(\mathcal{H}) \). For \(A, B \in \mathcal{B}(\mathcal{H}) \), let \(A^{*} \) mean

\[
AA^{*} = BA^{*}, \quad A^{*}A = A^{*}B. \tag{1.2}
\]

It is known that, for \(A, B \in \mathcal{J}(\mathcal{H}) \), \(A \preceq B \) if and only if \(A^{*} \preceq B \); see [6]. We denote by \(A \wedge B \) the infimum (or the greatest lower bound) of \(A \) and \(B \) over the \(*- \) order and \(A \vee B \) the supremum (or the least upper bound) of \(A \) and \(B \) over the \(*- \) order, if they exist; cf. [12].

It is known that if \(A \in \mathcal{B}(\mathcal{H},\mathcal{H}) \) has closed range, then by considering

\[\mathcal{H} = \mathcal{R}(A^{*}) \oplus \mathcal{N}(A) \] and \(\mathcal{H} = \mathcal{R}(A) \oplus \mathcal{N}(A^{*}) \)

we can write

\[
A = \begin{bmatrix} A_{1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^{*}) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^{*}) \end{bmatrix}, \tag{1.3}
\]

where \(A_{1} : \mathcal{R}(A^{*}) \rightarrow \mathcal{R}(A) \) is invertible; see [8, Lemma 2.1]. Therefore, the Moore–Penrose generalized inverse of \(A \) can be represented as

\[
A^{†} = \begin{bmatrix} A_{1}^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^{*}) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^{*}) \\ \mathcal{N}(A) \end{bmatrix}. \tag{1.4}
\]

Many results have been obtained on the solvability of equations for matrices and operators on Hilbert spaces and Hilbert \(C^{*} \)-modules. In 1976, Mitra [11] considered the matrix equations \(AX = B, AXB = C \) and the system of linear equations \(AX = C, XB = D \). He got the necessary and sufficient conditions for existence and expressions of general Hermitian solutions. In 1966, the celebrated Douglas Lemma was established in [9]. It gives some conditions for the existence of a solution to the equation \(AX = B \) for operators on a Hilbert space. Using the generalized inverses of operators, in 2007, Dajić and Koliha [4] got the existence of the common Hermitian and positive solutions to the system \(AX = C, XB = D \) for operators acting on a Hilbert space. In 2008, Xu [17] extended these results to the adjointable operators. Several general operator equations and systems in some general settings such as Hilbert \(C^{*} \)-modules have been studied by some mathematicians; see, e.g., [7, 10, 13, 16].

The matrix equation \(AXB = C \) is consistent if and only if \(AA^{-}CB^{-}B = C \) for some \(A^{-}, B^{-} \), and the general solution is \(X = A^{-}CB^{-} + Y - A^{-}AYBB^{-} \), where \(Y \) is an arbitrary matrix; see [11]. In 2010, Gonzalez [1] got some necessary and sufficient conditions for existence of a solution to the equation \(AXB = C \) for operators on a Hilbert space.

Let \(A, B \) or \(C \) have closed range. Then, the operator equation \(AXB = C \) is solvable if and only if \(\mathcal{R}(C) \subseteq \mathcal{R}(A) \) and \(\mathcal{R}(C^{*}) \subseteq \mathcal{R}(B^{*}) \); see [1, Theorem 3.1]. Therefore, if \(A \) or \(C \) has closed range, then the equation \(AXC = C \) is solvable if and only if \(\mathcal{R}(C) \subseteq \mathcal{R}(A) \), and \(CXA = C \) is solvable if and only if \(\mathcal{R}(C^{*}) \subseteq \mathcal{R}(A^{*}) \). Deng [5] investigated the equation \(CAX = C = XAC \), which is essentially different from ours. In this paper, we first characterize the existence of solutions of the system of operator equations \(BXA = B = AXB \) by means
of *— order. After that, we generalize the solutions to the system of operator equations $BXA = B = AXB$ in a new fashion.

2. THE EXISTENCE OF SOLUTIONS OF THE SYSTEM $BXA = B = AXB$

We start our work with the celebrated Douglas lemma.

Lemma 2.1 (Douglas Lemma). [9] Let $A, C \in \mathbb{B}(\mathcal{H})$. Then, the following statements are equivalent:

(a) $\mathcal{R}(C) \subseteq \mathcal{R}(A)$.

(b) There exists $X \in \mathbb{B}(\mathcal{H})$ such that $AX = C$.

(c) There exists a positive number λ such that $CC^* \leq \lambda^2 AA^*$.

If one of these conditions holds, then there exists a unique solution $\tilde{X} \in \mathbb{B}(\mathcal{H})$ of the equation $AX = C$ such that $\mathcal{R}(\tilde{X}) \subseteq \mathcal{R}(A^*)$ and $\mathcal{N}(\tilde{X}) = \mathcal{N}(C)$.

Lemma 2.2. Let $A, B \in \mathbb{B}(\mathcal{H})$. If $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and $\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*)$, then $B = B_1 \oplus 0$, where $B_1 \in \mathbb{B}(\mathcal{R}(A^*), \mathcal{R}(A))$.

Proof. Let A, B be operators from the decomposition $\mathcal{H} = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$ into the decomposition $\mathcal{H} = \mathcal{R}(A) \oplus \mathcal{N}(A^*)$. If $\mathcal{R}(B) \subseteq \mathcal{R}(A)$, then, by Lemma 2.1, there exists $C \in \mathbb{B}(\mathcal{H})$ such that $B = AC$ and $\mathcal{N}(C) = \mathcal{N}(B)$. Since $\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*)$, so $\mathcal{R}(C^*) \subseteq \mathcal{R}(C^*) = \mathcal{R}(B^*) \subseteq \mathcal{R}(A^*) = \mathcal{N}(P_{\mathcal{R}(A)})$. Hence, $P_{\mathcal{R}(A)}C^* = 0$ and so $CP_{\mathcal{R}(A)} = 0$. It follows from $\mathcal{N}(C) = \mathcal{N}(B)$ that $BP_{\mathcal{R}(A)} = 0$.

If $\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*)$, then a similar reasoning shows that $P_{\mathcal{R}(A^*)}B = 0$. Therefore, $P_{\mathcal{R}(A)}BP_{\mathcal{R}(A)} = P_{\mathcal{R}(A)}BP_{\mathcal{R}(A^*)} = P_{\mathcal{R}(A)}BP_{\mathcal{R}(A)} = 0$. Hence, $B = B_1 \oplus 0$, where $B_1 = P_{\mathcal{R}(A)}BP_{\mathcal{R}(A)}$.

Theorem 2.3. Let $A \in \mathbb{B}(\mathcal{H})$ and $B \in \mathcal{I}(\mathcal{H})$. If A has closed range, then the following statements are equivalent:

1. The system of operator equations $BXA = B = AXB$ is solvable;

2. $AA^\dagger BA^\dagger A = B$;

3. $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and $\mathcal{R}(B) \subseteq \mathcal{R}(A^*)$.

Proof. $(1) \implies (2) :$ Using (1.1) and $B = BXA$, we get that $\mathcal{R}(B) \subseteq \mathcal{R}(A^*) = \mathcal{R}(A^\dagger A)$. Hence, by Lemma 2.1, there exists $C^* \in \mathbb{B}(\mathcal{H})$ such that $B = A^\dagger AC^*$. Hence, $B = CA^\dagger A$. Applying (1.1) and $AXB = B$, we derive that $\mathcal{R}(B) \subseteq \mathcal{R}(A) = \mathcal{R}(AA^\dagger)$. Thus, by Lemma 2.1, there exists $\tilde{C} \in \mathbb{B}(\mathcal{H})$ such that $B = A^\dagger \tilde{C}$. It follows that $AA^\dagger BA^\dagger A = AA^\dagger (AA^\dagger \tilde{C})A^\dagger A = AA^\dagger \tilde{C}A^\dagger A = BA^\dagger A = (CA^\dagger A)A^\dagger A = CA^\dagger A = B$.

$$
AA^\dagger BA^\dagger A = AA^\dagger (AA^\dagger \tilde{C})A^\dagger A = AA^\dagger \tilde{C}A^\dagger A = BA^\dagger A = (CA^\dagger A)A^\dagger A = CA^\dagger A = B.
$$
(2) → (3): Let $AA^*BA^*A = B$. Then, $\mathcal{R}(B) \subseteq \mathcal{R}(A)$. It follows from $B = B^* = (AA^*BA^*A)^* = A^*ABAA^*$ and (1.1) that $\mathcal{R}(B) \subseteq \mathcal{R}(A^*)$.

(3) → (1): Let $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and $\mathcal{R}(B) \subseteq \mathcal{R}(A^*)$. Upon applying Lemma 2.2, $B = B_1 \bigoplus 0$, where $B_1 = P_{\mathcal{R}(A)}BP_{\mathcal{R}(A^*)}$. Since A has closed rang, so by using (1.3) and (1.4) we have

\[
A = \begin{bmatrix}
A_1 & 0 \\
0 & 0
\end{bmatrix} \quad \text{and} \quad A^* = \begin{bmatrix}
A_1^{-1} & 0 \\
0 & 0
\end{bmatrix}.
\]

Hence, $AA^*B = B$ and $BA^*A = B$. Thus $X = A^*$ is a solution of the system $BXA = B = AXB$. \hfill \Box

Proposition 2.4. Let $A, B, X \in \mathbb{B}(\mathcal{H})$. Then,

\[
\mathcal{R}(A) \subseteq \mathcal{R}(B), \quad \mathcal{N}(B) \subseteq \mathcal{N}(A) \quad \text{and} \quad BXA = B = AXB
\]

if and only if

\[
\mathcal{N}(B) = \mathcal{N}(A), \quad \mathcal{R}(B) = \mathcal{R}(A) \quad \text{and} \quad AXA = A.
\]

Proof. (\Rightarrow): Suppose that $\mathcal{R}(A) \subseteq \mathcal{R}(B), \mathcal{N}(B) \subseteq \mathcal{N}(A)$ and $BXA = B = AXB$. It follows from $BXA = B$ and $\mathcal{N}(B) \subseteq \mathcal{N}(A)$ that $\mathcal{N}(A) \subseteq \mathcal{N}(B) \subseteq \mathcal{N}(A)$. Hence, $\mathcal{N}(A) = \mathcal{N}(B)$. It follows from $AXB = B$ and $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ that $\mathcal{R}(A) \subseteq \mathcal{R}(B) \subseteq \mathcal{R}(A)$. Therefore, $\mathcal{R}(A) = \mathcal{R}(B)$. Moreover, $(I - AX)B = 0$ and $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ Hence, we derive that $(I - AX)A = 0$. So, $AXA = A$.

(\Leftarrow): Suppose that $\mathcal{N}(B) = \mathcal{N}(A), \mathcal{R}(B) = \mathcal{R}(A)$ and $AXA = A$. Hence,

\[
(I - AX)A = 0 \implies \mathcal{R}(A) \subseteq \mathcal{N}(I - AX) \implies \mathcal{R}(B) \subseteq \mathcal{N}(I - AX) \implies B = AXB,
\]

\[
A(I -XA) = 0 \implies \mathcal{R}(I -XA) \subseteq \mathcal{N}(A) \implies \mathcal{R}(I -XA) \subseteq \mathcal{N}(B) \implies B = BXA.
\]

\hfill \Box

3. System of operator equations $BXA = B = AXB$ via $*$-order

We know that $(\mathbb{B}(\mathcal{H}), \leq)$ is a partially ordered set; see [2]. Let $G_1, G_2 \in \mathbb{B}(\mathcal{H})$ be invertible and $G_1 \leq A, G_2 \leq A$. Then, $G_1G_1^* = AG_1^*$ and $G_2G_2^* = AG_2^*$. Hence, we obtain $G_1 = G_2 = A$. This fact leads us to consider the characterizations of $A \leq B$. Now we state the necessary and sufficient conditions in which the common $*$- lower or $*$- upper bounds of A and B exist.

We need the following essential lemmas.

Lemma 3.1. [18, Lemma 2.1] Let $A, B \in \mathbb{B}(\mathcal{H})$ and $\overline{\mathcal{H}}$ denote the closure of a space \mathcal{H}.

(a) $AA^* = BA^* \iff A = BP_{\mathcal{R}(A)} \iff A = BQ$ for some $Q \in \mathcal{G}(\mathcal{H})$;

(b) $A^*A = A^*B \iff A = P_{\mathcal{R}(A)}B \iff A = PB$ for some $P \in \mathcal{G}(\mathcal{H})$;

(c) $A \leq B \iff B = A + P_{\mathcal{N}(A^*)}BP_{\mathcal{N}(A)}$;
(d) \(A^* \leq B \iff A = P_{\mathcal{R}(A)}B = BP_{\mathcal{R}(A^*)} = P_{\mathcal{R}(A)}BP_{\mathcal{R}(A^*)}; \)

(e) \(A^* \leq B \iff A = A_1 \bigoplus 0, B = A_1 \bigoplus B_1; \)

where \(A_1 \in \mathcal{B}(\mathcal{R}(A^*), \mathcal{R}(A)), B_1 \in \mathcal{B}(\mathcal{N}(A), \mathcal{N}(A^*)) \) and \(A \bigoplus B \) means the block matrix \[
\begin{bmatrix}
A & 0 \\
0 & B
\end{bmatrix}.
\]

The following Lemma is a version of Lemma 2.1 when the operator \(A \) has closed range.

Lemma 3.2. [4, Theorem 3.1]. Let \(A \in \mathcal{B}(\mathcal{H}) \) have closed range. Then, the equation \(AX = C \) has a solution \(X \in \mathcal{B}(\mathcal{H}) \) if and only if \(AA^*C = C \), and this if and only if \(\mathcal{R}(C) \subseteq \mathcal{R}(A) \). In this case, the general solution is \(X = A^*C + (I - A^*A)T, \) where \(T \in \mathcal{B}(\mathcal{H}) \) is arbitrary.

Proposition 3.3. Let \(A, B \in \mathcal{B}(\mathcal{H}) \). Then,

(a) If \(A \) has closed range and \(B^* \leq A \), then \(X = A^* \) is a solution of the system \(BXA = B = AXB \).

(b) If \(B \) has closed range and \(B^* \leq A \), then \(X = B^* \) is a solution of the system \(BXA = B = AXB \).

Proof. (a) Let \(A \) be a closed range operator and \(B \leq A \). It follows from Lemma 3.1(d) that \(B = AP_{\mathcal{R}(B^*)} \) and \(B = P_{\mathcal{R}(B^*)}A \). Hence, \(\mathcal{R}(B) \subseteq \mathcal{R}(A) \) and \(\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*) \). It follows from \(\mathcal{R}(B) \subseteq \mathcal{R}(A) \) and Lemma 3.2 that \(AA^*B = B \). It follows from \(\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*) \) and Lemma 3.2 that \(BA^*A = ((A^*A)^*B^*)^* = (A^*A)^*B^* \). Hence, \(X = A^* \) is a solution of the system of operator equations \(BXA = B = AXB \).

(b) Let \(B \) be a closed range operator and \(B \leq A \). It follows from Lemma 3.1 that \(B = AP_{\mathcal{R}(B^*)} \) and \(B = P_{\mathcal{R}(B^*)}A \). Applying (1.1), we conclude that \(AB^*B = B \) and \(BB^*A = A \). Hence, \(X = B^* \) is a solution of the system \(BXA = B = AXB \). \(\square \)

Proposition 3.4. Let \(A, B, X \in \mathcal{B}(\mathcal{H}) \).

If \(A \leq B \) and \(BXA = B = AXB \), then \(\mathcal{N}(B) = \mathcal{N}(A), \mathcal{R}(B) = \mathcal{R}(A) \) and \(AXA = A \).

Proof. Let \(A \leq B \) and \(BXA = B = AXB \). Applying Lemma 3.1(d) we have \(A = P_{\mathcal{R}(A)}B = BP_{\mathcal{R}(A)} \). Hence, \(\mathcal{R}(A) \subseteq \mathcal{R}(B) \) and \(\mathcal{N}(B) \subseteq \mathcal{N}(A) \). Using Proposition 2.4,

\[\mathcal{N}(B) = \mathcal{N}(A), \mathcal{R}(B) = \mathcal{R}(A) \text{ and } AXA = A. \]

\(\square \)

Remark 3.5. Note that the converse of Proposition 3.4 is not true, in general. Set \(A^*, A, A \) instead of \(A, B, X \). If \(A \in \mathcal{B}(\mathcal{H}) \) has closed range, then, by (1.1),
we have \(\mathcal{R}(A^*) = \mathcal{R}(A^t), \mathcal{N}(A^*) = \mathcal{N}(A^t) \) and \(A^t A A^t = A^t \) but not \(A^t \leq A^* \).

Indeed, if \(A^t \leq A^* \), then by utilizing Lemma 3.1(d), we have \(A^t = P_{\mathcal{R}(A^t)} A^* \). It follows from \(\mathcal{R}(A^t) = \mathcal{R}(A^*) \) that \(A^t = P_{\mathcal{R}(A^t)} A^* = A^* \).

Theorem 3.6. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) and \(B \leq A \). Then, the following statements are equivalent:

(a) There exists a solution \(X \in \mathbb{B}(\mathcal{H}) \) of the system \(BXA = B = AXB \);

(b) \(B \leq AXA \)

Proof. \((a) \implies (b): \) Let \(X \in \mathbb{B}(\mathcal{H}) \) is a solution of the system \(BXA = B = AXB \).

Hence, \(B - BXA = 0 \) and \(B - AXB = 0 \). It follows from the assumption \(B \leq A \) and Lemma 3.1(d) that \(B = P_{\mathcal{R}(B)} A \) and \(B = AP_{\mathcal{R}(B^*)} \). Hence,

\[
P_{\mathcal{R}(B)}(B - AXA) = B - P_{\mathcal{R}(B)} AXA = B - BXA = 0
\]

and

\[
(B - AXA) P_{\mathcal{R}(B^*)} = B - AXAP_{\mathcal{R}(B^*)} = B - AXB = 0.
\]

Therefore, \(B \leq AXA \).

\((b) \implies (a): \) Suppose that \(B \leq AXA \). Applying Lemma 3.1(d), we infer that \(P_{\mathcal{R}(B)}(B - AXA) = 0 \) and \((B - AXA) P_{\mathcal{R}(B^*)} = 0 \). It follows from the assumption \(B \leq A \) and Lemma 3.1(d) that \(B = P_{\mathcal{R}(B)} A \) and \(B = AP_{\mathcal{R}(B^*)} \), whence

\[
B - BXA = B - P_{\mathcal{R}(B)} AXA = P_{\mathcal{R}(B)}(B - AXA) = 0
\]

and

\[
B - AXB = B - AXAP_{\mathcal{R}(B^*)} = (B - AXA) P_{\mathcal{R}(B^*)} = 0.
\]

Therefore, \(X \) is a solution of the system \(BXA = B = AXB \). \(\square \)

Let \(A, B \in \mathbb{B}(\mathcal{H}) \) have closed ranges. It follows from Proposition 3.3 that \(A^t \) and \(B^t \) are solutions of the system \(BXA = B = AXB \). Therefore, we are interested in the study of the following system of operator equations:

\[
BXA = B = AXB; \tag{3.1}
\]

\[
BAX = B = XAB. \tag{3.2}
\]

Let \(A, B \in \mathbb{B}(\mathcal{H}) \). An operator \(C \in \mathbb{B}(\mathcal{H}) \) is said to be an inverse of \(A \) along \(B \) if it fulfills one of the equations (3.1) or (3.2). If \(A \in \mathbb{B}(\mathcal{H}) \) is invertible, then \(X = A^{-1} \) is a solution of the system \(AXA = I = AX \). Hence, \(A^{-1} \) is an inverse of \(A \) along \(I \), where \(I \) is the identity of \(\mathbb{B}(\mathcal{H}) \).

Let \(A \in \mathbb{B}(\mathcal{H}) \) have closed range. Using (1.1), we have \(AA^t A = A = AA^t A \).

Hence, \(A^t \) satisfies Eq. (3.1). Therefore, \(A^t \) is the inverse of \(A \) along \(A \).
It follows from (1.1) that $A^*AA^\dag = A^* = A^\dag AA^*$. Hence, A^\dag satisfies Eq. (3.2). Therefore, A is the inverse of A along A^*.

Lemma 3.7. [11, Theorem 2.1] Let $C \in \mathbb{B}(\mathcal{H})$ and $A, B \in \mathbb{B}(\mathcal{H})$ have closed ranges. Then, the equation $AXB = C$ has a solution $X \in \mathbb{B}(\mathcal{H})$ if and only if $\mathcal{R}(C) \subseteq \mathcal{R}(A), \mathcal{R}(C^*) \subseteq \mathcal{R}(B^*)$, and this if and only if $AA^\dag CB^\dag B = C$. In this case, $X = A^\dag CB^\dag + U - A^\dag AUBB^\dag$, where $U \in \mathbb{B}(\mathcal{H})$ is arbitrary.

In the next result we provide a general solution of the system $BXA = B = AXB$.

Theorem 3.8. Let $A, B \in \mathbb{B}(\mathcal{H})$ have closed ranges and $B \leq A$. Then, the general solution of the system of operator equations $BXA = B = AXB$ is

$$X = A^\dag BB^\dag + A^\dag \left[(I - AA^\dag) + (A - B)S \right] (A - B)^\dag + T - A^\dag AT(A - B)^\dag(A - B)$$

$$-A^\dag B(I - AA^\dag)(A - B)^\dag BB^\dag - A^\dag (A - B)S(A - B)^\dag BB^\dag$$

$$-A^\dag ATBB^\dag + A^\dag AT(A - B)^\dag(A - B)BB^\dag.$$

where $S, T \in \mathbb{B}(\mathcal{H})$.

Proof. Let A, B have closed ranges. It follows from the assumption $B \leq A$ and Lemma 3.1(d) that $B = AP_{\mathcal{R}(B^*)}$. Hence, $\mathcal{R}(B) \subseteq \mathcal{R}(A)$. Using Lemma 3.2, we have $AA^\dag B = B$. It follows from $AA^\dag BB^\dag B = B$ and Lemma 3.7 that the equation $AXB = B$ is solvable. In this case, the general solution is

$$X = A^\dag BB^\dag + W - A^\dag AWBB^\dag,$$

where $W \in \mathbb{B}(\mathcal{H})$ is arbitrary. If X satisfies the equation $BXA = B$, then

$$B(A^\dag BB^\dag + W - A^\dag AWBB^\dag)A = B.$$

It follows from the assumption $B \leq A$ and Lemma 3.1(d) that $B = P_{\mathcal{R}(B)}A$. Applying (1.1), $BB^\dag A = B$. Hence,

$$BA^\dag B + BWA - BA^\dag AWB = B.$$

Therefore, $B(A^\dag B + WA - A^\dag AWB) = B$. So, $A^\dag B + WA - A^\dag AWB$ is a solution of the equation $BX = B$. Utilizing Lemma 3.2 again, we have

$$A^\dag B + WA - A^\dag AWB = B^\dag B + (I - B^\dag B)S,$$

where $S \in \mathbb{B}(\mathcal{H})$ is arbitrary. Multiply the left hand side of Eq. (3.4) by A, to get

$$AA^\dag B + AWB - AA^\dag AWB = AB^\dag B + A(I - B^\dag B)S$$

It follows from the assumption $B \leq A$ and Lemma 3.1(d) that $B = AP_{\mathcal{R}(B^*)}$. Applying (1.1), $AB^\dag B = B$. We derive that

$$AA^\dag B + AWB - AWB = B + (A - B)S.$$

Now, we get $AW(A - B) = B(I - AA^\dag) + (A - B)S$. So, W is a solution of the equation $AX(A - B) = B(I - AA^\dag) + (A - B)S$. Using Lemma 3.2, we get that

$$W = A^\dag \left[B(I - AA^\dag) + (A - B)S \right] (A - B)^\dag T - A^\dag AT(A - B)^\dag(A - B),$$

where $T \in \mathbb{B}(\mathcal{H})$. Therefore, $T = U - A^\dag AUBB^\dag$, where $U \in \mathbb{B}(\mathcal{H})$ is arbitrary.
where \(T \in \mathbb{B}(\mathcal{H}) \) is arbitrary. By putting \(W \) in Eq. (3.3), we reach
\[
X = A^\dagger BB^\dagger + A^\dagger [B(I - AA^\dagger) + (A - B)S] (A - B)^\dagger + T - A^\dagger AT(A - B)^\dagger (A - B) \\
- A^\dagger A(A^\dagger [B(I - AA^\dagger) + (A - B)S] (A - B)^\dagger \\
+ T - A^\dagger AT(A - B)^\dagger (A - B) BB^\dagger
\]
\[
= A^\dagger BB^\dagger + A^\dagger [B(I - AA^\dagger) + (A - B)S] (A - B)^\dagger + T - A^\dagger AT(A - B)^\dagger (A - B) \\
- A^\dagger AA^\dagger B(I - AA^\dagger)(A - B)^\dagger BB^\dagger - A^\dagger AA^\dagger (A - B)S(A - B)^\dagger BB^\dagger \\
- A^\dagger ATBB^\dagger + A^\dagger AT(A - B)^\dagger (A - B) BB^\dagger
\]
\[
(\text{by } (1.1))
\]
\[
= A^\dagger BB^\dagger + A^\dagger [B(I - AA^\dagger) + (A - B)S] (A - B)^\dagger + T - A^\dagger AT(A - B)^\dagger (A - B) \\
- A^\dagger B(I - AA^\dagger)(A - B)^\dagger BB^\dagger - A^\dagger (A - B)S(A - B)^\dagger BB^\dagger \\
- A^\dagger ATBB^\dagger + A^\dagger AT(A - B)^\dagger (A - B) BB^\dagger
\]

\[
\square
\]

Theorem 3.9. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) where \(A \) has closed range. If the system \(BXA = B =AXB \) is solvable, then the system \(XB = A^\dagger B, BX = BA^\dagger \) is solvable. Conversely, If \(B \leq A \) and the system \(XB = A^\dagger B, BX = BA^\dagger \) is solvable, then the system \(BXA = B =AXB \) is solvable.

Proof. (\(\implies \)): Let \(X \) be a solution of the system \(BXA = B =AXB \). It follows from \(B = A\tilde{X}B \) that \(\mathcal{R}(B) \subseteq \mathcal{R}(A) \). Using Lemma 3.2, \(AA^\dagger B = B \). It follows from (1.1) that
\[
P_{\mathcal{R}(A^\dagger)}XAA^\dagger B = (A^\dagger A)\tilde{X}(AA^\dagger)B = (A^\dagger A)\tilde{X}(AA^\dagger)B = A^\dagger (A\tilde{X}B) = A^\dagger B.
\]
So, \(P_{\mathcal{R}(A^\dagger)}XAA^\dagger \) is a solution of the equation \(XB = A^\dagger B \). Since \(B^* = (B\tilde{X}A)^* = A^*\tilde{X}B^* \), we have \(\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*) \). Applying Lemma 2.1, there exists \(Y \in \mathbb{B}(\mathcal{H}) \) such that \(B = YA \). Hence,
\[
BP_{\mathcal{R}(A^\dagger)}XAA^\dagger \quad = \quad B(A^\dagger A)\tilde{X}(AA^\dagger) = Y(AA^\dagger A)\tilde{X}(AA^\dagger) \\
\quad = \quad (YA\tilde{X}A)A^\dagger = (B\tilde{X}A)A^\dagger = BA^\dagger.
\]
Therefore, \(P_{\mathcal{R}(A^\dagger)}XAA^\dagger \) is a solution of the equation \(B = BA^\dagger \). Thus \(P_{\mathcal{R}(A^\dagger)}XAA^\dagger \) is a solution of the system \(XB = A^\dagger B, BX = BA^\dagger \).

(\(\impliedby \)) Suppose that \(\tilde{X} \) is a solution of the system \(XB = A^\dagger B, BX = BA^\dagger \). It follows from the assumption \(B \leq A \) that \(B = AP_{\mathcal{R}(B^*)} \) and \(B = P_{\mathcal{R}(B^*)}A \). Hence, \(\mathcal{R}(B) \subseteq \mathcal{R}(A) \) and \(\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*) \). It follows from \(\mathcal{R}(B) \subseteq \mathcal{R}(A) \) to Lemma 3.2 that \(AA^\dagger B = B \). Hence, \(A\tilde{X}B = A(A^\dagger B) = AA^\dagger B = B \). It follows from \(\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*) \) and Lemma 2.1 that there exists \(Z \in \mathbb{B}(\mathcal{H}) \) such that \(B = ZA \). Hence,
\[
B\tilde{X}A = (BA^\dagger)A = BA^\dagger A = ZAA^\dagger A = ZA = B.
\]
Therefore, \(\tilde{X} \) is a solution of the system \(BXA = B =AXB \). \(\square \)
Lemma 3.10. [4, Theorem 4.2] Let $A, B, C, D \in \mathcal{B}(\mathcal{H})$ and $A, B, M = B^*(I - A^1A)$ have closed ranges. Then, the system $AX = C$, $XB = D$ have a hermitian solution $X \in \mathcal{B}(\mathcal{H})$ if and only if

$$AA^\dagger C = C, \quad DB^\dagger B = D, \quad AD = CB$$

and AC^* and B^*D are hermitian. In this case, the general hermitian solution is

$$X = A^\dagger C + (I - A^\dagger A)M^\dagger s(T) + (I - A^\dagger A)(I - M^\dagger M) [A^\dagger C + (I - A^\dagger A)M^\dagger s(T)]^* + (I - A^\dagger A)(I - M^\dagger M)W(I - M^\dagger M)^*(I - A^\dagger A)^*,$$

where $W \in \mathcal{B}(\mathcal{H})$ is hermitian and $s(T) = D^* - B^*A^\dagger C$ is the so-called Schur complement of the block matrix $T = \begin{bmatrix} A & C \\ B^* & D^* \end{bmatrix}$.

Theorem 3.11. Suppose that $A, B \in \mathcal{B}(\mathcal{H})$ have closed ranges. If $B \leq A$ and $B^*A^\dagger B, BA^\dagger B^*$ are hermitian, then the system $BXA = B = AXB$ has a hermitian solution.

Proof. Replace A, B, C, D in Lemma 3.10 by $B, BA^\dagger, A^\dagger B$ to get

$$AA^\dagger C = BB^\dagger(BA^\dagger) = BA^\dagger = C, \quad DB^\dagger B = (A^\dagger B)B^\dagger B = A^\dagger B = D$$

and

$$AD = B(A^\dagger B) = (BA^\dagger)B = CB, \quad AC^* = B(BA^\dagger)^* = BA^\dagger B^*, \quad B^*D = B^*A^\dagger B.$$

Using Lemma 3.10, the system $XB = A^\dagger B, BX = BA^\dagger$ has a hermitian solution, say, \tilde{X}. It follows from the assumption $B \leq A$ that $B = AP_{\mathcal{R}(B^*)}$ and $B = P_{\mathcal{R}(B^*)}A$. Hence, $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and $\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*)$. It follows from $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and Lemma 3.2 that $AA^\dagger B = B$. Hence, $A\tilde{X}B = A(A^\dagger B) = AA^\dagger B = B$.

It follows from $\mathcal{R}(B^*) \subseteq \mathcal{R}(A^*)$ and Lemma 2.1 that there exists $Z \in \mathcal{B}(\mathcal{H})$ such that $B = ZA$. Hence,

$$B\tilde{X}A = (BA^\dagger)A = BA^\dagger A = ZAA^\dagger A = ZA = B.$$

Therefore, \tilde{X} is a hermitian solution of the system $BXA = B = AXB$. □

4. $*$-ORDER VIA OTHER OPERATOR EQUATIONS

Generally speaking, the inequality $PB \leq B$ does not hold for any $P \in \mathcal{P}(\mathcal{H})$ even if $\mathcal{R}(P) \subseteq \overline{\mathcal{R}(B)}$. In [2, Lemma 2.6], some conditions are mentioned which give a one-sided description of the relation $A \leq B$ regarding (1.2).

The next result is known.

Proposition 4.1. [2, Proposition 2.6] Let $B \in \mathcal{B}(\mathcal{H})$.

(a) If \(P \in \mathcal{O}(\mathcal{H}) \) and \(\mathcal{R}(P) \subseteq \overline{\mathcal{R}(B)} \), then \(PB \leq B \) if and only if \(PBB^* = BB^*P \).

(b) If \(Q \in \mathcal{O}(\mathcal{H}) \) and \(\mathcal{R}(Q) \subseteq \overline{\mathcal{R}(B^*)} \), then \(BQ \leq B \) if and only if \(QB^*B = B^*BQ \).

In the following, we state a generalization of Proposition 4.1.

Proposition 4.2. Let \(B \in \mathbb{B}(\mathcal{H}) \). If there exist \(P, Q \in \mathcal{O}(\mathcal{H}) \) such that \(\mathcal{R}(P) \subseteq \overline{\mathcal{R}(B)} \) and \(\mathcal{R}(Q) \subseteq \overline{\mathcal{R}(B^*)} \), then \(PBQ \leq B \) if and only if \(PBB^* = BB^*P \) and \(QB^*B = B^*BQ \).

Proof. \((\Rightarrow):\) Let \(PBQ \leq B \). Applying (1.2), we get that
\[
PBB^* = (PBQ)B^* = B(PBQ)^* = BB^*P
\]
and
\[
B^*PBQ = B^*(PBQ) = (PBQ)^*B = QB^*PB.
\]

\((\Leftarrow):\) Let \(PBQB^* = BQB^*P \) and \(QB^*PB = B^*PBQ \). Applying (1.2), we obtain that
\[
(PBQ)(PBQ)^* = PBQB^*P = (BQB^*P)P = BQB^*P = B(PBQ)^*
\]
and
\[
(PBQ)^*(PBQ) = QB^*PBQ = Q(QB^*PB) = QB^*PB = (PBQ)^*B.
\]
\(\Box\)

The next known theorem gives a characterization of the order \(\leq \).

Theorem 4.3. [6, Theorem 2.3] Let \(A \in \mathbb{B}(\mathcal{H}) \) and \(C \in \mathcal{Q}(\mathcal{H}) \). Then, \(C^* \leq A \) if and only if there exists \(X \in \mathbb{B}(\mathcal{H}) \) such that \(A = C + (I - C^*)X(I - C^*) \).

In the following, we establish an analogue of Theorem 4.3 for generalized projections on a Hilbert space. Recall that an operator \(A \in \mathbb{B}(\mathcal{H}) \) is a generalized projection if \(A^2 = A^* \).

Lemma 4.4. [14, Theorem A.2] Let \(A \in \mathbb{B}(\mathcal{H}) \) be a generalized projection. Then, \(A \) is a closed range operator and \(A^3 \) is an orthogonal projection on \(\mathcal{R}(A) \). Moreover, \(\mathcal{H} \) has decomposition
\[
\mathcal{H} = \mathcal{R}(A) \bigoplus \mathcal{N}(A)
\]
and \(A \) has the following matrix representation
\[
A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix},
\]
where the restriction \(A_1 = A|_{\mathcal{R}(A)} \) is unitary on \(\mathcal{R}(A) \).

Theorem 4.5. Let \(A \in \mathbb{B}(\mathcal{H}) \) and \(B \in \mathcal{Q}(\mathcal{H}) \). Then, \(B^* \leq A \) if and only if there exists \(X \in \mathbb{B}(\mathcal{H}) \) such that \(A = B + (I - BB^*)X(I - B^*B) \).
Proof. (\implies): Let $B \in \mathcal{P}(\mathcal{H})$ and $B \leq A$. Employing Lemma 4.4, we infer that B has closed range and $B^3 = P_{\mathcal{H}(B)}$. It follows from (1.1) that
\[\mathcal{R}(B^*) = \mathcal{R}(B^*B) = \mathcal{R}(B^3) = \mathcal{R}(BB^*) = \mathcal{R}(B). \]
Hence, $P_{\mathcal{H}(B)} = P_{\mathcal{H}(B^*)} = BB^* = B^*B$. Therefore, $P_{\mathcal{H}(B)} = P_{\mathcal{H}(B^*)} = I - BB^* = I - B^*B$. Applying Lemma 3.1(c), we get $A = B + P_{\mathcal{H}(B^*)}AP_{\mathcal{H}(B)}$. Hence, $A = B + (I - BB^*)A(I - B^*B)$.

(\impliedby): Let $X \in \mathcal{B}(\mathcal{H})$ be a solution of the equation $A = B + (I - BB^*)X(I - B^*B)$. Since B is a generalized projection, so $B^*BB^* = B^*$. Hence,
\[B^*A = B^*B + B^*(I - BB^*)X(I - B^*B) = B^*B \]
and
\[AB^* = BB^* + (I - BB^*)X(I - B^*B)B^* = BB^*. \]
Therefore, $B \leq A$ by (1.2). \hfill \Box

In the next result, we show that if A is a generalized projection and $B \leq A \land A^*$, then AA^* can be written as the sum of two idempotents.

Theorem 4.6. Let $A \in \mathcal{P}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{H})$. If $B \leq A \land A^*$, then B is an idempotent and there exist an idempotent X such that $AA^* = B + X$ and $B^*X = XB^* = 0$.

Proof. Let $B \leq A \land A^*$. It follows from the assumption $A^2 = A^*$ and Lemma 3.1(d) that
\[B^2 = (P_{\mathcal{H}(B)}A^*)(A^*P_{\mathcal{H}(B)}^*) = P_{\mathcal{H}(B)}A^2P_{\mathcal{H}(B)}^* = P_{\mathcal{H}(B)}AP_{\mathcal{H}(B)}^* = BP_{\mathcal{H}(B)}^* = B. \]
Using Lemma 3.1, we get that
\[AB = A(AP_{\mathcal{H}(B)}^*) = A^2P_{\mathcal{H}(B)}^* = A^*P_{\mathcal{H}(B)}^* = B, \]
\[BA = (P_{\mathcal{H}(B)}A)A = P_{\mathcal{H}(B)}A^2 = P_{\mathcal{H}(B)}A^* = B, \]
\[A^*B = A^*(A^*P_{\mathcal{H}(B)}^*) = A^2P_{\mathcal{H}(B)}^* = AP_{\mathcal{H}(B)}^* = B \]
and
\[BA^* = (P_{\mathcal{H}(B)}A^*)A^* = P_{\mathcal{H}(B)}A^*A^2 = P_{\mathcal{H}(B)}A = B. \]
Let $X = AA^* - B$. It follows from the assumption $B \leq A \land A^*$ that
\[X^2 = (AA^* - B)^2 = (AA^*)^2 + B^2 - AA^*B - BA^* \]
\[= AA^* + B - AB - BA^* \]
\[= AA^* + B - B = AA^* - B = X. \]
Hence, X is an idempotent. Applying (1.2), we have
\[B^*X = B^*(AA^* - B) = B^*AA^* - B^*B = B^*A^*A - B^*B = B^*A - B^*B = 0 \]
and
\[XB^* = (AA^* - B)B^* = AA^*B^* - BB^* = AB^* - BB^* = 0. \]
Lemma 4.7. Let $A \in \mathcal{Q}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{H})$. Then, $B \preceq A$ if and only if B is an idempotent and there exists an idempotent X such that $A = B + X$ and $B^*X = XB^* = 0$.

Proof. (\Longrightarrow): Let $B \preceq A$. It follows from the assumption $A^2 = A$ and Lemma 3.1(d) that

$$B^2 = (P_{\mathcal{Q}(\mathcal{H})}A)(AP_{\mathcal{Q}(\mathcal{H})}) = P_{\mathcal{Q}(\mathcal{H})}A^2P_{\mathcal{Q}(\mathcal{H})} = (P_{\mathcal{Q}(\mathcal{H})}A)P_{\mathcal{Q}(\mathcal{H})} = BP_{\mathcal{Q}(\mathcal{H})} = B.$$

Utilizing Lemma 3.1(d), we obtain that

$$AB = A(AP_{\mathcal{Q}(\mathcal{H})}) = A^2P_{\mathcal{Q}(\mathcal{H})} = AP_{\mathcal{Q}(\mathcal{H})} = B$$

and

$$BA = (P_{\mathcal{Q}(\mathcal{H})}A)A = P_{\mathcal{Q}(\mathcal{H})}A^2 = P_{\mathcal{Q}(\mathcal{H})}A = B.$$

Hence, $X = A - B$ is an idempotent and $B^*X = B^*(A - B) = 0$ and $XB^* = (A - B)B^* = 0$.

(\Longleftarrow): Let $A = B + X$ and $B^*X = XB^* = 0$ for some idempotent X. Then, $B^*(A - B) = B^*X = 0$ and $(A - B)B^* = XB^* = 0$. Therefore, $B \preceq A$ by (1.2). \square

Corollary 4.8. Let $A \in \mathcal{Q}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{H})$. Then, $B \preceq AA^*$ if and only if B is an idempotent and there exists an idempotent X such that $AA^* = B + X$ and $B^*X = XB^* = 0$.

Proof. Let $A \in \mathcal{Q}(\mathcal{H})$. Then, $(AA^*)^2 = AA^*AA^* = AA^*$. Hence, AA^* is an idempotent. Now apply Lemma 4.7. \square

We end our work with the following result.

Proposition 4.9. Let $A \in \mathcal{B}(\mathcal{H})$ and $C \in \mathcal{Q}(\mathcal{H})$. Then, $B \in \mathcal{B}(\mathcal{H})$ is common \preceq lower bound of A and CC^* if and only if B is an idempotent and there exist $X, Y \in \mathcal{B}(\mathcal{H})$ such that

$$A = B + (I - B^*)X(I - B^*), \text{ and } CC^* = B + Y,$$

where $B^*Y = YB^* = 0$.

Proof. (\Longrightarrow): If B be a common \preceq lower bound of A and CC^*, then $B \preceq A$ and $B \preceq CC^*$. It follows from the assumption $B \preceq CC^*$ and Lemma 4.7 that B is an idempotent and there exists an idempotent $Y \in \mathcal{B}(\mathcal{H})$ such that $CC^* = B + R$, where $B^*R = RB^* = 0$. Since B is an idempotent and $B \preceq A$, by Theorem 4.3, there exists $S \in \mathcal{B}(\mathcal{H})$ such that $A = B + (I - B^*)S(I - B^*)$.

(\Longleftarrow): If there exists an idempotent Y such that $CC^* = B + Y$ with $B^*Y = 0$ and $YB^* = 0$, then $B \preceq CC^*$. The assumption $A = B + (I - B^*)S(I - B^*)$ and the fact that B is an idempotent yield $B^*(A - B) = 0$ and $(A - B)B^* = 0$. Hence, $B \preceq A$ and B is a common \preceq lower bound of A and CC^*. \square
REFERENCES

[1] M.L. Arias and M.C. Gonzalez. Positive solutions to operator equations $AXB = C$. *Linear Algebra and its Applications*, 433:1194–1202, 2010.

[2] J. Antezana, C. Cano, I. Mosconi and D. Stojanoff. A note on the star order in Hilbert spaces. *Linear and Multilinear Algebra*, 58:1037–1051, 2010.

[3] D. Cvetković-Ilić. Re-visited solutions of the matrix equation $AXB = C$. *Journal of the Australian Mathematical Society*, 84:63–72, 2008.

[4] A. Dajić and J. J. Koliha. Positive solutions to the equations $AX = C$ and $XB = D$ for Hilbert space operators. *Journal of Mathematical Analysis and Applications*, 333:567–576, 2007.

[5] C. Deng. On the solutions of operator equation $CAX = C = XAC$. *Journal of Mathematical Analysis and Applications*, 398:664–670, 2013.

[6] C. Deng and A.Yu. Some relations of projection and star order in Hilbert space. *Linear Algebra and its Applications*, 474:158–168, 2015.

[7] F.O. Farid, M.S. Moslehian, Wang, Qing-Wen, Wu and Zh.Ch. Wu. On the Hermitian solutions to a system of adjointable operator equations. *Linear Algebra and its Applications*, 437:1854–1891, 2012.

[8] D.S. Djordjević. Characterizations of normal, hyponormal and EP operators. *Journal of Mathematical Analysis and Applications*, 329:1181–1190, 2007.

[9] R.G. Douglas. On majorization, factorization and range inclusion of operators in Hilbert space. *Proceeding of the American Mathematical Society*, 17:413–416, 1966.

[10] Z.-H. He and Q.-W. Wang. The general solutions to some systems of matrix equations. *Linear and Multilinear Algebra*, 63:2017–2032, 2015.

[11] C.G. Khatri and S.K. Mitra. Hermitian and nonnegative definite solutions of linear matrix equations. *SIAM Journal on Applied Mathematics*, 31:579–585, 1976.

[12] L. Long and S. Gudder. On the supremum and infimum of bounded quantum observables. *Journal of Mathematical physics*, 52:122101, 2011.

[13] Z. Mousavi, F. Mirzapour and M.S. Moslehian. Positive definite solutions of certain non-linear matrix equations. *Operators and Matrices*, 10:113–126, 2016.

[14] S. Radosavljević and D.S. Djordjević. On pairs of generalized and hypergeneralized projections on a Hilbert space. *Functional Analysis, Approximation and Computation*, 5:67–75, 2013.

[15] Z. Sebestyén. Restrictions of positive operators. *Acta Scientiarum Mathematicarum (Szeged)*, 46:299–301, 1983.

[16] Q.-W. Wang and C.-Z. Dong. Positive solutions to a system of adjointable operator equations over Hilbert C^*-modules. *Linear Algebra and its Applications*, 433:1481–1489, 2010.

[17] Q. Xu. Common Hermitian and positive solutions to the adjointable operator equations $AX = C$, $XB = D$. *Linear Algebra and its Applications*, 429:1–11, 2008.

[18] X.M. Xu, H.K. Du, X.C. Fang and Y. Li. The supremum of linear operators for the $*$-order. *Linear Algebra and its Applications*, 433:2198–2207, 2010.

Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

E-mail address: vosough.mehdi@yahoo.com

Department of Pure Mathematics, Center Of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

E-mail address: moslehian@um.ac.ir and moslehian@member.ams.org