Secondhand nicotine vaping at home and respiratory symptoms in young adults

Talat Islam 1,1 Jessica Braymiller,1 Sandrah P Eckel,1 Feifei Liu,1 Alaya P Tackett,1 Meghan E Rebuli,2 Jessica Barrington-Trimis,1 Rob McConnell1

ABSTRACT
Rationale Despite high prevalence of e-cigarette use (vaping), little is currently known regarding the health effects of secondhand nicotine vape exposure.
Objective To investigate whether exposure to secondhand nicotine vape exposure is associated with adverse respiratory health symptoms among young adults.
Method We investigated the effect of secondhand nicotine vape exposure on annually reported wheeze, bronchitic symptoms and shortness of breath in the prospective Southern California Children Health Study cohort. Data were collected from study participants (n=2097) with repeated annual surveys from 2014 (average age: 17.3 years) to 2019 (average age: 21.9). We used mixed effect logistic regression to evaluate the association between secondhand nicotine vape and respiratory symptoms after controlling for relevant confounders.
Results Prevalence of secondhand nicotine vape increased from 11.7% to 15.6% during the study period in this population. Prevalence of wheeze, bronchitic symptoms and shortness of breath ranged from 12.3% to 14.9%, 19.4% to 26.0% and 16.5% to 18.1%, respectively, during the study period. Associations of secondhand nicotine vape exposure with bronchitic symptoms (OR 1.40, 95% CI 1.06 to 1.84) and shortness of breath (OR 1.53, 95% CI 1.06 to 2.21) were observed after controlling for vaping, active and passive exposure to tobacco or cannabis, and demographic characteristics (age, gender, race/ethnicity and parental education). Stronger associations were observed when analysis was restricted to participants who were neither smokers nor vapers. There were no associations with wheezing after adjustment for confounders.
Conclusion Secondhand nicotine vape exposure was associated with increased risk of bronchitic symptoms and shortness of breath among young adults.

INTRODUCTION
The prevalence of e-cigarette use (vaping, largely with nicotine) increased from 11% to 25.4% among 12th graders in the USA between 2017 and 2019. Therefore, secondhand nicotine vape exposure is likely to be common. Although there is increasing evidence that e-cigarette use is associated with adverse health outcomes, there has been little study of health effects of secondhand nicotine vape exposure. A recent cross-sectional study reported an association between asthma exacerbation and secondhand nicotine vape exposure; however, to our knowledge, there has been no longitudinal study investigating the chronic effect of secondhand nicotine vape exposure on respiratory health outcomes. This is an important question because, unlike active smoking, secondhand nicotine vape exposure is not a voluntary exposure. Evidence of adverse health effects of secondhand nicotine vape would provide a compelling rationale for reducing home exposure to secondhand nicotine vape, and for restricting vaping in public places, just as adverse health effects of secondhand smoking resulted in regulation of smoking in public places. Parents often have more relaxed ‘vape-free’ policies at home than ‘smoke-free’ policies. In a recent survey, smoking inside the home was allowed in 37.4% of homes of current and former smokers, while vaping inside the home was allowed in 60.4% of homes of vapers, as secondhand nicotine vape exposure was perceived to be less harmful than secondhand smoking. Although secondhand exposure to particulate matter from e-cigarettes is lower than from combustible cigarettes, the ultrafine particle concentration in e-cigarette aerosol can be higher than in cigarette smoke, potentially delivering toxins to the distal airways and alveoli. E-cigarette aerosol also contains volatile aldehydes and oxidant metals compounds that are known to cause lung toxicity. Based on the known toxicity of vaping aerosols, we hypothesised that secondhand nicotine vape exposure would be associated with adverse respiratory symptoms such as wheezing, bronchitic
Environmental exposure

symptoms and shortness of breath. We addressed this question in the Southern California Children’s Health Study, a cohort with detailed annual information on self-reported active vaping and secondhand nicotine vape exposure, combusted tobacco and cannabis smoke exposure, and self-reported respiratory health outcomes.

METHODS

Study design

A baseline (wave 1) population of 2097, 11–12th grade Children Health Study participants (mean age 17.3 years, SD 0.6 years), were enrolled in this study from a cohort from schools throughout Southern California. Detailed exposure and health data were collected using self-completed paper questionnaires in classrooms for wave 1 and online using research electronic data capture (REDCap) tools hosted at the University of Southern California across three additional waves of follow-up through 2019. The current analysis was limited to 2090 participants who provided data on secondhand nicotine vape exposure in at least one of the four waves. The total number of participants was 2090 in wave 1 (year 2014), 1609 in wave 2 (year 2015), 1502 in wave 3 (year 2017) and 1637 (78.3% of the original sample) in wave 4 (year 2018). An initial loss of 481 participants (23%) in wave 2 occurred during the transition from classroom to online collection after completing high school, some of whom participated in later follow-up. Those who were lost to follow-up at wave 2 were more likely to be male, Hispanic whites and parents not having any college education, compared with those who remained in the study (online supplemental table S1). The prevalence of secondhand nicotine vape exposure, bronchitic symptoms and wheeze did not differ substantially between those who were lost to follow-up in wave 2 and those who remained at wave 2. Additional description of the cohort has been reported previously.

Measures

Respiratory symptoms

Respiratory symptoms assessed, based on prior reports of effects of vaping, were bronchitic symptoms, wheeze and shortness of breath during the previous year. Bronchitic symptoms (bronchitis, cough or phlegm bronchitic symptoms) were based on reported (1) bronchitis in the previous 12 months, (2) daily cough in the morning for 3 months in a row, (3) daily cough at other times of the day for 3 months in a row or (4) congestion or phlegm other than when accompanied by a cold. Participants were considered to have bronchitic symptoms if they responded yes to any of the four symptoms. Wheeze was based on a report of wheezing or whistling in the chest during the previous 12 months. Shortness of breath was based on a report of having been troubled by shortness of breath when hurrying on level ground or walking up a slight hill. Information on shortness of breath was collected starting in wave 2 of the study.

SECONDHAND VAPING AND SMOKING EXPOSURE

Detailed information on secondhand exposure to e-cigarette aerosol and cigarette smoke was collected at each wave. Secondhand nicotine vape exposure at each wave was defined based on participants’ reports that anyone in the household ‘smoked or vaped cannabis’. Information on secondhand cannabis was available only in waves 3 and 4.

Primary vaping or smoking was defined based on participants’ reports of any active vaping or smoking of nicotine or cannabis in the previous 30 days (yes/no) at each wave. Use of cannabis was available only in waves 3 and 4.

Sociodemographic information

Information was available on participants’ gender, ethnicity (Hispanic white, non-Hispanic white, Asian, African American and other (ie, Pacific Islander, native American/Alaska Native, multiracial or not defined)), and highest parental educational level, as previously described.

Statistical analysis

Mixed effect logistic regression models were used to evaluate the association between secondhand nicotine vape exposure in each wave and each respiratory symptom (bronchitic symptoms, wheeze and shortness of breath) in that wave. All models included a participant-level intercept (random effect) to account for multiple observations over time, with adjustment (fixed effect) for sex, race/ethnicity, baseline age and parental education. All models were additionally adjusted for primary vaping or smoking and secondhand smoking/secondhand cannabis exposure. To assess the impact of the timing of exposure, we also fitted a model containing a four-level categorical exposure variable based on the joint distribution of 1-year lagged and current secondhand nicotine vape exposure: no secondhand nicotine vape exposure in the previous and current year (reference group), secondhand nicotine vape exposure in previous year only, secondhand nicotine vape exposure in current year only and secondhand nicotine vape exposure in both previous and current year. As sensitivity analyses, we additionally restricted the sample to participants (1) without primary vaping or smoking, (2) who were not lost to follow-up in wave 2 and (3) who reported no history of physician diagnosed asthma at wave 1. Statistical analyses were conducted using SAS V.9.4 (SAS Institute).

RESULTS

Study population

Among the 2090 study participants, about half were Hispanic white (51.8%) and male (50.4%; table 1). The distribution of the demographic factors of participants with respiratory symptoms was largely similar to that of the overall population, except that participants with shortness of breath were more likely to be female (shortness of breath participants: 70.2% female versus non-shortness of breath participants: 43.4% female, p<0.01).

Prevalence of vaping and smoking exposure

The prevalence of secondhand nicotine vape exposure increased from 11.7% to 15.6% from wave 1 to wave 4 in the study population (figure 1), while the prevalence of secondhand smoking decreased from 26.6% to 20.6%. Past 30-day use of cigarettes, e-cigarettes and cannabis (wave 3 to wave 4) increased over the study period. None of those changes were statistically significant except for the observed increase of primary vaping or smoking from 12.1% in wave 1 to 34.0% in wave 4 (p<0.001).

A majority of the participants (76.0%–93.1%) who had secondhand nicotine vape exposure during any of the study waves was also likely to have personal use of tobacco or cannabis products or secondhand exposure to combustible products (online supplemental table S2). For example, during wave 4, out of the
Environmental exposure

participants who reported secondhand nicotine vape (n=223), only 6.9% had no other vaping or smoking related exposures, while 11.5% had primary vaping or smoking, but no second-hand smoking exposure, 33.2% had secondhand smoking, but no primary vaping or smoking exposure, and 48.4% had both secondhand smoking and primary vaping or smoking exposure.

Prevalence of respiratory symptoms

Over the study period, an increase in the prevalence of wheeze and bronchitic symptoms was observed in the study population (not statistically significant). The prevalence increased from 12.3% to 14.9% for wheeze and 19.4% to 26.0% for bronchitic symptoms (figure 2). The prevalence of shortness of breath did not show any clear trend over time, with prevalence of 16.5% in wave 2, 18.1% in wave 3 and 17% in wave 4.

Effect of secondhand nicotine vape exposure on respiratory symptoms

Compared with unexposed participants, participants with secondhand nicotine vape exposure had increased odds of reporting wheeze during the same year (OR 1.56, 95% CI 1.12 to 2.17), bronchitic symptoms (OR 1.90, 95% CI 1.48 to 2.44) and shortness of breath (OR 1.87, 95% CI 1.33 to 2.63), after controlling for age, sex, race/ethnicity and parental education.

![Figure 1](https://example.com/figure1.png)

Figure 1 Prevalence of personal and secondhand tobacco and cannabis smoking and nicotine vaping during the study period (waves 1–4). CurrEcg, e-cigarette use in past 30 days; Currmj, smoking or vaping cannabis in past 30 days; CurrSmk, smoking cigarette, cigar or cigarillos in past 30 days; PVS, personal vaping or smoking of nicotine or cannabis products in the previous 30 days; SHNV, secondhand vape exposure (nicotine); SHS, secondhand smoke exposure (tobacco); SHC-secondhand cannabis (vape or smoke) exposure.

![Figure 2](https://example.com/figure2.png)

Figure 2 Prevalence of wheeze, bronchitic symptoms (BCP) and shortness of breath (SOB) during the study period (waves 1–4). BCP, Bronchitic symptoms reported in previous 12 months; Currwhz, wheeze reported in 12 months; SOB, shortness of breath reported in previous 12 months.

Table 1	Demographic characteristics of participants and those who reported wheeze, bronchitic symptoms, shortness of breath or secondhand nicotine vape exposure during the study period*
	Total Wheeze† Bronchitic symptoms† Shortness of breath† Secondhand nicotine vape exposure†
---------	---
Race	N=2090 N=811 N=480 N=542
Asian	72 (3.4) 16 (3.1) 27 (3.3) 19 (4.0)
Black	31 (1.5) 9 (1.8) 12 (1.5) 2 (0.4)
Hispanic white	1081 (51.8) 214 (42.0) 378 (46.7) 254 (53.0)
Non-hispanic white	732 (35.1) 222 (43.5) 320 (39.5) 168 (35.1)
Others	172 (8.2) 49 (9.6) 73 (9.0) 36 (7.5)
Parental education at baseline	
Completed grade 12 or less	574 (27.5) 113 (22.2) 185 (22.8) 142 (29.6) 128 (23.6)
Some college	648 (31.0) 164 (32.2) 268 (33.0) 154 (31.2) 208 (38.4)
Completed college or more	622 (29.8) 183 (35.9) 279 (34.4) 136 (28.3) 153 (28.2)
Missing	246 (11.8) 50 (9.8) 79 (9.7) 48 (10.0) 53 (9.8)
Sex	
Female	1036 (49.6) 258 (50.6) 419 (51.7) 337 (70.2) 264 (48.7)
Male	1054 (50.4) 252 (49.4) 392 (48.3) 143 (29.8) 278 (51.3)

*χ² tests were performed comparing the demographic characteristics of participants with wheeze, bronchitic symptoms, shortness of breath, secondhand nicotine vape exposure to participants without the specific respiratory outcome or secondhand nicotine vape. N (%) is shown in the table. Significant differences (p<0.05) are shown in bold.

†Total number of participants reporting wheeze, bronchitic symptoms, shortness of breath or secondhand nicotine vape exposure, at least once, over the study period (waves 1–4).
After additionally adjusting for secondhand smoking, secondhand cannabis, and primary vaping or smoking, the secondhand nicotine vape exposure associations with bronchitic symptoms (OR 1.40, 95% CI 1.06 to 1.84) and shortness of breath (OR 1.53, 95% CI 1.06 to 2.21) were attenuated, and the association between secondhand nicotine vape exposure and wheeze was not statistically significant (table 2: model 2). We observed no statistically significant modifying effect of race/ethnicity, sex, and age on the association between secondhand nicotine vape exposure and respiratory outcomes.

Sensitivity analysis

We restricted the analysis to the participants who reported no primary vaping or smoking in past 30 days (n=1181) in order to reduce potential for confounding by personal use. A stronger association was observed between secondhand nicotine vape exposure and respiratory symptoms in this sub-population (table 3: sensitivity analysis 1). The odds of reporting wheeze, bronchitic symptoms and shortness of breath were 2.27 (95% CI 0.74 to 6.95), 3.10 (95% CI 1.52 to 6.35) and 2.05 (95% CI 1.01 to 4.19), respectively, among those who reported past 30-day exposure to secondhand nicotine vape, compared with those not reporting current secondhand nicotine vape exposure, after adjusting for demographic factors and secondhand smoking/secondhand cannabis. To assess the potential influence of lost to follow-up in wave 2, we removed those participants from the analysis (table 3: sensitivity analysis 2). The estimates of association between secondhand nicotine vape exposure and respiratory symptoms were similar to those in the corresponding table 2: model 2. To address the possibility that the effect of secondhand nicotine vape exposure was largely among participants with asthma, we restricted the analysis to participants without any history of physician diagnosed asthma at wave 1 (table 3: sensitivity analysis 3). The effect estimate remained largely unchanged from table 2: model 2.

Among ever reporters of secondhand nicotine vape exposure, 75.5% reported secondhand nicotine vape in at least two consecutive waves (eg, waves 1 and 2; waves 2 and 3 or waves 3 and 4). Therefore, we investigated whether the timing and consistency of exposure (previous, current and both) had different effects on respiratory symptoms in a subpopulation (n=1609) who had exposure and respiratory symptom information in at least two consecutive waves (online supplemental table S3). After adjusting for demographic factors, primary vaping or smoking, secondhand smoking and secondhand cannabis, no substantial difference was observed in the strength of association of secondhand nicotine vape exposure, based on timing and consistency of exposure, with respiratory symptoms (online supplemental table S3).

Table 2

Effect of past 30-day secondhand nicotine vape exposure on wheeze, bronchitic symptoms and shortness of breath; N=2090*

	Wheeze OR (95% CI)	Bronchitic symptoms OR (95% CI)	Shortness of breath OR (95% CI)
Model 1†	1.56 (1.12 to 2.17)	1.90 (1.48 to 2.44)	1.87 (1.33 to 2.63)
Model 2‡	1.21 (0.84 to 1.72)	1.40 (1.06 to 1.84)	1.53 (1.06 to 2.21)

*Model 1: OR and 95% CI is based on mixed-effect logistic regression with person-specific random intercept and adjustment (fixed effect) for wave, age, sex, race and parental education.
†Model 2: OR and 95% CI is based on mixed-effect logistic regression similar to model 1 with additional adjustment (fixed effect) for primary smoking or vaping of nicotine or cannabis, and secondhand smoking or cannabis smoking or vaping exposure.
‡The OR and 95% CI for wheeze, bronchitic symptoms and shortness of breath is based on mixed-effect logistic regression models.

Table 3

Effect of past 30-day secondhand nicotine vape exposure on wheeze, bronchitic symptoms and shortness of breath in sensitivity analyses restricted to participants with no past 30-day primary vaping or smoking of nicotine or cannabis§

	Wheeze OR (95% CI)	Bronchitic symptoms OR (95% CI)	Shortness of breath OR (95% CI)
Sensitivity analysis 1*	2.27 (0.74 to 6.95)	3.10 (1.52 to 6.35)	2.05 (1.01 to 4.19)
Sensitivity analysis 2†	1.30 (0.90 to 1.87)	1.39 (1.05 to 1.84)	1.56 (1.08 to 2.26)
Sensitivity analysis 3‡	1.15 (0.74 to 1.80)	1.63 (1.16 to 2.31)	1.47 (0.93 to 2.32)

*Sensitivity analysis 1: Analysis was restricted to participants without any reported primary vaping or smoking of nicotine or cannabis in the past 30 days (primary vaping or smoking) (n=1181).
†Sensitivity analysis 2: Participants were included if they participated in both wave 1 and wave 2 (n=1609), adjusted additionally for primary vaping or smoking.
‡Sensitivity analysis 3: Participants who reported no history of physician diagnosed asthma at wave 1 (n=1463), adjusted additionally for primary vaping or smoking.
§OR and 95% CI are based on mixed-effect logistic regression models.
The estimated effects of secondhand nicotine vape exposure on bronchitic symptoms in this study were similar in magnitude to those of secondhand smoking. For example, in a recent study of bronchitic symptoms among Chinese adolescents, the OR for secondhand smoking, compared with adolescents with no secondhand smoking exposure, was 1.53 (95% CI 1.25 to 1.87). \(^3\) Bronchitic symptoms are a response to irritant exposures such as secondhand smoking, active smoking and ambient particulate matter, among others.

Increased risk of shortness of breath has also been associated with secondhand smoking.\(^20\) The interpretation of shortness of breath associated with secondhand nicotine vape exposure is not clear, but shortness of breath is a central feature of bronchiolitis obliterans that has been reported in workers heavily exposed to diacetyl and 2, 3-pentanedione, which are flavourings that have also been measured in e-cigarette liquids.\(^9\) \(^13\) \(^21\)-\(^24\) There is a growing body of evidence that vaping is associated with a number of pulmonary diseases, including bronchiolitis obliterans,\(^25\) acute respiratory distress syndrome\(^26\) and acute eosinophilic pneumonia.\(^27\) A recently published report described a case of hypersensitivity pneumonitis with secondhand nicotine vape exposure.\(^28\) While only 3 years of data were collected in the current analysis to assess the effect of secondhand nicotine vape exposure on shortness of breath, the observed associations were both moderately strong and robust to confounders. Further study is warranted to determine potential causes of shortness of breath associated with secondhand nicotine vape exposure.

Many study participants with secondhand nicotine vape exposure were also exposed to a variety of other tobacco and cannabis products (online supplemental table S2). Disentangling the effect of secondhand nicotine vape exposure on respiratory symptoms from effects of other products was challenging. However, the models provided stable estimates of secondhand nicotine vape effects after adjustment for coexposures. We also observed stronger effects of secondhand nicotine vape exposure on respiratory symptoms among study participants who reported no past 30-day use of e-cigarette or combustible products (comparing table 3, sensitivity analysis 1 with table 2, model 2).

A potential explanation for the observed association between secondhand nicotine vape exposure and respiratory symptoms is selection bias due to the lost to follow-up of 481 participants following high-school graduation (at wave 2). However, those who remained in the study at wave 2 and those who were lost to follow-up had similar secondhand nicotine vape exposure and respiratory symptoms (online supplemental table S1). There were some modest differences in sociodemographic characteristics between those retained and those lost to follow-up, but all analyses were adjusted for those factors. Furthermore, secondhand nicotine vape exposure effect estimates in analyses restricted to participants not lost to follow-up at wave-2 (table 3, model 2) were similar to the estimates in the entire population (table 2). Therefore, selection bias is not likely to explain the associations with secondhand nicotine vape exposure we observed.

We also assessed whether the associations between secondhand nicotine vape exposure and respiratory symptoms were due to secondhand nicotine vape exposure induced asthma exacerbation.\(^7\) However, when we restricted the analysis to participants without any history of asthma at study entry, the secondhand nicotine vape exposure effect estimates (table 3, sensitivity analysis 3) were similar to effects in the entire sample (table 2, model 2). Asthma status of the subjects did not substantially affect the effect estimates observed between secondhand nicotine vape exposure and the respiratory outcomes (online supplemental table S4).

Measurement error due to self-reported exposure and respiratory outcomes could have occurred. Because respiratory health outcomes were reported for last 12 months, it is possible that the participants under-reported symptoms occurring many months back. Exposure misclassification was likely to be small as exposure was assessed for the previous 30 days and seems unlikely to have been substantially differential with respect to outcome that could have biased the estimated effects of exposure.

CONCLUSION

We observed associations of secondhand exposure to e-cigarettes in the home with bronchitic symptoms and shortness of breath, after accounting for coexposures to other tobacco and cannabis products. The study satisfies several criteria of causation, including prospective assessment of the temporal relationship, relatively strong associations and biological plausibility. However, these findings need to be replicated in other study populations and in study designs including secondhand nicotine vape exposure challenge studies, and merit study in animal models, to establish a causal association between secondhand nicotine vape exposure and respiratory symptoms. If causal, reduction of secondhand e-cigarette exposure in the home would reduce the burden of respiratory symptoms and would provide a compelling rationale for regulation of e-cigarette use in public places.
Environmental exposure

5 Li D, Shi H, Xie Z, et al. Home smoking and vaping policies among US adults: results from the population assessment of tobacco and health (PATH) study, wave 3. Prev Med 2020;139:106215.

6 Nahhas GJ, Braak D, Cummings KM, et al. Rules about smoking and vaping in the home: findings from the 2016 international tobacco control four country smoking and vaping survey. Addiction 2019;114 Suppl 1:107–14.

7 National Academies of Sciences E, Medicine, HealthEaton DL, Kwan LF, Stratton K, eds. Public health consequences of e-cigarettes. Washington (DC): National Academies Press (US), 2018.

8 Palmissani J, Di Gilio A, Palmieri L, et al. Evaluation of second-hand exposure to electronic cigarette vaping under a real scenario: measurements of ultrafine particle number concentration and size distribution and comparison with traditional tobacco smoke. Toxics 2019;7:59.

9 Barrington-Trimis JL, Samet JM, McConnell R. Flavorings in electronic cigarettes: an unrecognized respiratory health hazard? JAMA 2014;312:2493–4.

10 Talih S, Balhas Z, Salman R, et al. “Direct dripping”: a high-temperature, high-formaldehyde emission electronic cigarette use method. Nicotine Tob Res 2016;18:453–9.

11 Jensen BP, Luo W, Pankow JF, et al. Hidden formaldehyde in e-cigarette aerosols. N Engl J Med Overseas Ed 2015;372:392–4.

12 Saffari A, Daher N, Ruprecht A, et al. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure. Environ Sci Process Impacts 2014;16:2259–67.

13 Allen JG, Flanigan SJ, LeBlanc M, et al. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetal in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ Health Perspect 2016;124:733–9.

14 Lee M-S, LeBouf RF, Son Y-S, et al. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco-and menthol-flavored e-cigarettes. Environ Health 2017;16:42.

15 McConnell R, Barrington-Trimis JL, Wang K, et al. Electronic cigarette use and respiratory symptoms in adolescents. Am J Respir Crit Care Med 2017;195:1043–9.

16 Harris PA, Taylor R, Thistle R, et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.

17 McConnell R, Berhane K, Yao L, et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect 2006;114:766–72.

18 Gotts JE, Jordt S-E, McConnell R, et al. What are the respiratory effects of e-cigarettes? BMJ 2019;1:5275.

19 Chen Z, Liu G, Chen J, et al. Frequency–risk relationships between second-hand smoke exposure and respiratory symptoms among adolescents: a cross-sectional study in South China. BMJ Open 2018;8:e019875.

20 LC A, Beng CJ, Klett CM. Symptoms of cough and shortness of breath among occasional young adult smokers. Nicotine Tob Res 2009;11:126–33.

21 Klager S, Vallainino J, MacNaughton P, et al. Flavoring chemicals and aldehydes in e-cigarette emissions. Environ Sci Technol 2017;51:10806–13.

22 Kreiss K, Gomaa A, Kullman G, et al. Clinical bronchiolitis obliterans in workers at a microwave-popped popcorn plant. N Engl J Med Overseas Ed 2002;347:330–8.

23 Kreiss K. Work-related spirometric restriction in flavoring manufacturing workers. Am J Ind Med 2014;57:129–37.

24 Cummings KJ, Boylstein RJ, Stanton ML, et al. Respiratory symptoms and lung function abnormalities related to work at a flavouring manufacturing facility. Occup Environ Med 2014;71:549–54.

25 Landman ST, Dhaliwal I, Mackenzie CA, et al. Life-threatening bronchiolitis related to electronic cigarette use in a Canadian youth. Can Med Assoc J 2019;191:E1321–31.

26 Lilly CM, Khan S, Waksmandzki-Silva K, et al. Vaping-associated respiratory distress syndrome: case classification and clinical guidance. Crit Care Explor 2020;2:e0081.

27 Chaaban T. Acute eosinophilic pneumonia associated with non-cigarette smoking products: a systematic review. Adv Respir Med 2020;88:142–6.

28 Galiatsatos P, Gomez E, Lin CT, et al. Secondhand smoke from electronic cigarette resulting in hypersensitivity pneumonitis. BMJ Case Rep 2020;13:e233381.
Secondhand Nicotine Vaping at Home and Respiratory Symptoms in Young Adults

Talat Islam, Ph.D.1, Jessica L.1 Braymiller, Ph.D.1, Sandrah P Eckel Ph.D.1, Feifei Liu M.Sc.1, Alayna P. Tackett, Meghan E. Rebuli, Ph.D.2, Jessica L. Barrington-Trimis1, Rob McConnell M.D.1

Online Supplementary Tables
Table E1: Comparison of sociodemographic characteristics, respiratory symptoms and secondhand nicotine vaping between participants participating in wave 2 and those who were lost to follow-up at wave 2

	Participants lost to Follow-up in wave 2	Participants in wave 2
	N = 481	N = 1609
Race†		
Asian	10 (2.1)	62 (3.9)
Black	13 (2.7)	18 (1.1)
Hispanic White	290 (60.4)	791 (49.2)
Non-Hispanic White	121 (25.2)	611 (38.0)
Others	46 (9.6)	126 (7.8)
Parental Education at Baseline		
Completed grade 12 or less	177 (36.8)	397 (24.7)
Some college	147 (30.6)	501 (31.1)
Completed college or more	73 (15.2)	549 (34.1)
Missing	84 (17.5)	162 (10.1)
Sex†		
Female	209 (43.5)	827 (51.4)
Male	272 (56.5)	782 (48.6)
Respiratory Symptoms		
Wheeze	55 (11.4)	201 (12.6)
Bronchitic Symptoms	81 (17.6)	302 (19.8)
Secondhand nicotine vaping	59 (12.3)	183 (11.5)

* Shortness of breath information was not available in wave-1, therefore it was not included in this table.

† Chi-square p-value ≤ 0.05
Table E2: Primary exposure to vaping and smoking (tobacco or cannabis or both), and secondhand exposure to tobacco smoking and cannabis (smoking or vaping), among study participants with secondhand nicotine vaping (N=810)*

Wave	Primary Vaping or Smoking †	Secondhand Smoking or Cannabis ‡	Primary Vaping or Smoking and Secondhand Smoking or Cannabis	No Exposure to primary or secondhand smoking or vaping or cannabis
Wave 1 (N=242)	4.5%	55%	26.5 %	14.0 %
Wave 2 (N=184)	10.5%	46.5%	33.1 %	9.9 %
Wave 3 (N=161)	9.6%	34.4%	42.0 %	14.0 %
Wave 4 (N=223)	11.5%	33.2%	48.4 %	6.9 %

* A total of 542 study participants reported secondhand nicotine vape exposure during the study period with some reporting exposure in multiple years (total reports=810).
† Participants who reported smoking cigarettes, vaping e-cigarettes, or using (smoking or vaping) cannabis in past 30 days), but no other secondhand exposure besides secondhand nicotine vape exposure.
‡ Participants who reported exposure to secondhand combustible tobacco or secondhand exposure to cannabis, but had no primary smoking or vaping.
Table E3: Odds of developing respiratory symptoms among young adults exposed to secondhand nicotine vaping in previous, current, and both years compared to those with no secondhand nicotine vape exposure (N=1,609)

Secondhand Nicotine Vape Exposure	Wheeze* OR (95%CI)	Bronchitic Symptoms* OR (95%CI)	Shortness of Breath* OR (95%CI)
Not Exposed	Ref	Ref	Ref
Exposed in Previous Year	1.23 (0.72, 2.11)	1.63 (1.07, 2.46)	1.67 (1.06, 2.64)
Exposed in Current Year	1.28 (0.76, 2.14)	1.57 (1.06, 2.33)	1.67 (1.08, 2.59)
Exposed in Current and Previous Year	1.03 (0.50, 2.14)	1.58 (0.92, 2.74)	1.94 (1.04, 3.62)

* OR and 95% CI is based on a regression model with person specific random intercept and adjustment for wave, age, sex, race, parental education, personal smoking or vaping of nicotine or cannabis, and secondhand smoking or cannabis (smoking or vaping) exposure.
Table E4: Effect of past 30-day secondhand nicotine vaping on wheeze, bronchitic symptoms and shortness of breath, additionally adjusted for asthma status (N=2090)

	Wheeze	Bronchitic Symptom	Shortness of Breath
Model1	1.57 (1.14, 2.17)	1.87 (1.46, 2.40)	1.84 (1.31, 2.58)
Model2	1.19 (0.84, 1.68)	1.37 (1.04, 1.79)	1.46 (1.01, 2.11)

* The odds ratio (OR) and 95% confidence interval (CI) for wheeze, bronchitic symptoms and shortness of breath is based on mixed-effect logistic regression models.

† Model 1: OR and 95% CI is based on logistic regression with person specific random intercept and adjustment (fixed effect) for wave, age, sex, race, parental education and asthma status.

‡ Model 2: OR and 95% CI is based on logistic regression similar to Model 1 with additional adjustment (fixed effect) for primary smoking or vaping of nicotine or cannabis, and secondhand smoking, or cannabis smoking or vaping exposure.
Secondhand nicotine vaping at home linked to heightened risk of bronchitic symptoms in young adults

If proved causal, “compelling rationale” for e-cig ban in public places, say researchers

Secondhand exposure at home to the nicotine vapour from e-cigarettes is linked to a heightened risk of bronchitic symptoms and shortness of breath among young adults, finds research published online in the respiratory journal *Thorax*.

If these findings prove causal, there would be a “compelling rationale” for banning the use of e-cigarettes and other vaping devices in public spaces, conclude the researchers.

Despite the popularity of vaping, little is currently known about the possible health effects of secondhand exposure to nicotine vapour from e-cigarettes and other vaping devices, say the researchers.

And while secondhand exposure to particulate matter from e-cigarettes is lower than that from conventional cigarettes, levels of ultrafine particles in e-cigarette aerosol can be higher. This aerosol also contains volatile compounds and metals known to harm lung tissue.

To explore the impact on respiratory health further, the researchers drew on information supplied by 2090 participants in the Southern California Children’s Health Study.

This study collected detailed annual information on respiratory health, and active and secondhand nicotine vaping, and conventional tobacco and cannabis smoke exposure in the household from 2014, when participants were 17, on average, to 2019.

Participants were considered to have bronchitic symptoms if they reported any of the following: bronchitis in the previous 12 months; daily cough in the morning for 3 consecutive months; daily cough at other times of the day for 3 months in a row; congestion or phlegm that weren’t cold symptoms.

Wheeze was based on self-reported wheezing or whistling in the chest during the previous 12 months. And shortness of breath was based on experiencing this when hurrying on level ground or walking up a slight hill.

The prevalence of secondhand nicotine vaping increased from 12% to 16% between 2014 and 2019, while the prevalence of secondhand smoking fell from 27% to 21%. Past 30-day active use of cigarettes, e-cigarettes, and cannabis rose over the study period.

Most participants (76%–93%) who had been exposed to secondhand nicotine vaping during any of the study years were also more likely to actively use tobacco or cannabis products themselves or to have been exposed to secondhand smoking.
The prevalence of self-reported wheeze and bronchitic symptoms rose from 12% to 15% and from 19.5% to 26%, respectively. The prevalence of shortness of breath didn’t show any clear trend over time, ranging from 16.5% to 18%.

Compared with participants who hadn’t been exposed to secondhand nicotine vaping, those who had, were more likely to report bronchitic symptoms and shortness of breath, but not wheeze.

After adjusting for secondhand smoking and cannabis exposure, and active vaping or smoking, those exposed to secondhand nicotine vaping were 40% more likely to report bronchitic symptoms and 53% more likely to report shortness of breath.

When the analysis was restricted to the 1181 participants who reported no personal vaping or smoking in the past 30 days, stronger associations emerged.

These participants were more than twice as likely to report wheeze, 3 times as likely to report bronchitic symptoms, and twice as likely to report shortness of breath as those who hadn’t been exposed to secondhand nicotine vaping, after adjusting for demographic factors and secondhand smoking/cannabis exposure.

This is an observational study, and as such, can’t establish cause. But the findings are similar in magnitude to those observed for secondhand smoking, say the researchers.

If proved causal in further studies, a ban on vaping in public places would be warranted, they suggest.

“If causal, reduction of secondhand e-cigarette exposure in the home would reduce the burden of respiratory symptoms and would provide a compelling rationale for regulation of e-cigarette use in public places,” they write.

In a linked editorial, Drs Anna Lucia Fuentes and Laura Crotty Alexander of, respectively, the University of California San Diego and the San Diego Healthcare System, point out that vaping devices were originally marketed as a lower health risk nicotine replacement.

“But increasing evidence points to the contrary,” they write. “Even more concerning is that marketing has targeted the vulnerable adolescent population, with 78% of middle school and high school students exposed to at least one e-cigarette advertisement between 2014 and 2016.”

They add: “Some may be comforted by studies that argue that nicotine use has not increased with the rise of vaping. However, it is important to note that the nicotine content reported on product labels and what is chemically measured can vary widely.

“This means that users may be unaware of what they are truly vaping and thus are at risk of unwittingly becoming nicotine addicts.”
They conclude: “While association is not causation, this study is the first to describe the negative effects of [secondhand nicotine vape] exposure on respiratory symptoms.

“More work needs to be done to prove that this exposure directly causes harm. Ultimately, this is a public health concern that—if not addressed—has the potential to negatively affect our population, including those who are most vulnerable.”