Research Article

Eventually Periodic Solutions of a Max-Type Difference Equation

Taixiang Sun, Jing Liu, Qiuli He, Xin-He Liu, and Chunyan Tao

1 College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China
2 College of Electrical Engineering, Guangxi University, Nanning, Guangxi 530004, China

Correspondence should be addressed to Taixiang Sun; stx1963@163.com

Received 25 April 2014; Accepted 19 June 2014; Published 1 July 2014

Academic Editor: Baojian Hong

Copyright © 2014 Taixiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the following max-type difference equation

\[x_n = \max\{\frac{A_n}{x_{n-r}}, x_{n-k}\}, \quad n = 1, 2, \ldots \]

where \(\{A_n\}_{n=1}^{\infty}\) is a periodic sequence with period \(p\), and \(k, r \in \{1, 2, \ldots\}\) with \(\gcd(k, r) = 1\) and \(k \neq r\), and the initial conditions \(x_{-d}, x_{-d-1}, \ldots, x_0\) are real numbers with \(d = \max\{r, k\}\).

1. Introduction

The max operator arises naturally in certain models in automatic control theory (see [1]). In recent years, the discrete case involving difference equations with maximum has been receiving increasing attention, for some results in this area, see, for example, [2–4].

In this paper, we consider the following max-type equation:

\[x_n = \max\left\{\frac{A_n}{x_{n-r}}, x_{n-k}\right\}, \quad n = 1, 2, \ldots \tag{1} \]

where \(\{A_n\}_{n=1}^{\infty}\) is a periodic sequence with period \(p\) and \(k, r \in \{1, 2, \ldots\}\) with \(\gcd(k, r) = 1\) and \(k \neq r\), and the initial conditions \(x_{-d}, x_{-d-1}, \ldots, x_0\) are real numbers with \(d = \max\{r, k\}\).

In [5], Iričanin and Elsayed showed that every well-defined solution of (1) is eventually periodic with period 4 when \(k = 4, r = 1, p = 1\). Elsayed and Stević [6] showed that every well-defined solution of (1) is eventually periodic with period 3 when \(k = 3, r = 1, p = 1\). In [7], Xiao and Shi showed that if \(k = 2, r = 1, p = 1\), then every well-defined solution of (1) is eventually periodic with period 2. Qin et al. [8] showed that every well-defined solution of (1) is eventually periodic with period \(k\) when \(r = 1\) and \(p = 1\).

In this paper, we will generalize the results of [5–8] to the general case.

2. Main Results and Example

In this section, we are ready to state and prove the main results.

Theorem 1. Let \(\{A_n\}_{n=1}^{\infty}\) be a periodic sequence with period \(p\), and \(k, r \in \{1, 2, \ldots\}\) with \(\gcd(k, r) = 1\) and \(k \neq r\).

(1) If \(p \geq 2\) and \(k\) is odd, then every well-defined solution of (1) is eventually periodic with period \(k\).

(2) If \(p = 1\), then every well-defined solution of (1) is eventually periodic with period \(k\).

Proof. Let \(\{x_n\}_{n=1}^{\infty}\) be a well-defined solution of (1). It follows from (1) that, for any \(n \geq 0\) and any \(i \geq 0\),

\[x_{(n+1)k+i} = \max\left\{\frac{A_{(n+1)k+i}}{x_{(n+1)k+i-r}}, x_{nk+i}\right\} \geq x_{nk+i} \tag{2} \]
Then, for every \(i \geq 0\), \(\{x_{nk}\}_{n=0}^{\infty}\) is increasing, and \(x_{nk} < 0\) for all \(n \geq 0\) or there exists \(N_i > 0\) such that \(x_{nk+i} > 0\) for all \(n \geq N_i\).

We claim that \(\{x_{nk}\}_{n=0}^{\infty}\) is a constant sequence eventually. Indeed, if \(\{x_{nk}\}_{n=0}^{\infty}\) is not constant sequence eventually, then there exist \(kr < n_1 < n_2 < \cdots\) such that \(x_{nk} > x_{nk+i}\) and \(A_{nk}\) is a constant sequence for all \(i \geq 1\) since \(\{A_n\}_{n=1}^{\infty}\) is a periodic sequence. Thus we have

\[
\begin{align*}
x_{n,k} &= \max\left\{ \frac{A_{n,i+k} - x_{n,i-k}}{x_{n,i+k} - x_{n,k}} \right\} \\
&= \frac{A_{n,i+k}}{x_{n,i+k}} > \frac{x_{n,i-k}}{x_{n,i-k}} \quad (3)
\end{align*}
\]

From this we obtain that, for all \(i \geq 1\),

\[
\frac{A_{n,k} (x_{n,i+k} - x_{n,k})}{x_{n,i+k} - x_{n,k}} < 0. \quad (4)
\]

It follows that, for all \(i \geq 1\),

\[
x_{n,k} x_{n,k-i} = A_{n,k} < 0, \quad x_{n,i+k} > x_{n,k-r}. \quad (5)
\]

Therefore we have \(x_{nk} x_{nk-r} < 0\) eventually. By induction, we can show that \(x_{nk-i} x_{nk-kr} < 0\) eventually for all \(1 \leq i \leq k-1\) and every \(\{x_{nk-i}\}_{n=0}^{\infty} (1 \leq i \leq k-1)\) is not constant sequence eventually.

If \(p \geq 2\) and \(k = 2\), then we have \(x_{nk} x_{nk-2} x_{nk-4} \cdots x_{nk-2(k-1)} < 0\) eventually. This is a contradiction.

If \(p = 1\) and \(k = 2\), then we write \(A_{n} = A\) for all \(n \geq 1\) and choose \(m_0 \geq m_1 \geq \cdots \geq m_2k\) such that \(x_{m,j+i} < x_{(m+1),j+i} < x_{(m+2),j+i}\) and \(x_{(m+1),j+i} < x_{(m+2),j+i}\) for any \(j \in \{0, 1, 2k-1\}\). Thus

\[
x_{(m+1),k} = \max\left\{ \frac{A_{m,k}}{x_{m+1},k} \right\} \\
&= \frac{A}{x_{m+1},k} \\
&= \frac{A}{x_{m+1},k} \\
&= \max\left\{ \frac{A}{x_{m+1},k - 2r} x_{m+1},k - r \right\}
\]

which is a contradiction. This completes the proof of the claim.

By the above claim we may choose an \(N > 0\) such that \(x_{nk} = x_{Nk}\) for all \(n \geq N\). Since \(A_n\) is a periodic sequence, we can choose an \(N_1 > N\) such that \(A_{n,k+1} / x_{Nk} = \max\{A_{n,k+1} / x_{Nk} : n \geq N\}\). Then, for all \(n \geq N_1\),

\[
x_{nk} = \max\left\{ \frac{A_{nk+1}}{x_{Nk}} \right\}. \quad (7)
\]

Thus \(x_{nk} = x_{Nk}\) for all \(n \geq N_1\), and \(x_{nk} > x_{Nk}\) for some \(m \geq N_1\), then we have \(x_{nk+1} = A_{nk+1}/x_{Nk} > x_{(n-1)k} > x_{Nk+1}/x_{Nk}\) for all \(n \geq N_1\), which is a contradiction. By induction, we can show that \(x_{nk} = x_{Nk}\) for all \(n \geq N_1\) if \(x_{nk} > x_{Nk}\) is a constant sequence eventually for every \(1 \leq j \leq k\).

Note that \(j \mod k = \{0, 1, 2, \ldots, k-1\}\) since \(\gcd(k,r) = 1\). Then \(x_{nk} = x_{Nk}\) is constant eventually for every \(i \in \{0, 1, \ldots, k-1\}\), which implies that \(\{x_{nk}\}_{n=1-d}^{\infty}\) is eventually periodic with period \(k\).

From the proof of Theorem 1 we obtain the following corollary.

Corollary 2. Let \(k, r \in \{1, 2, \ldots\} \) with \(k \neq r\). If \(\{A_n\}_{n=1}^{\infty}\) is a periodic sequence, then every positive (or negative) solution of (1) is eventually periodic with period \(k\).

Theorem 3. Let \(\{A_n\}_{n=1}^{\infty}\) be a periodic sequence with period \(p \geq 2\), and \(k, r \in \{1, 2, \ldots\} \) with \(\gcd(k,r) = 1\) and \(k \neq r\). If \(A_1 \geq 0\) for some \(s \in \{1, 2, \ldots, p\}\), then every well-defined solution of (1) is eventually periodic with period \(k\).

Proof. Let \(\{x_{nk}\}_{n=0}^{\infty}\) be a well-defined solution of (1). Using arguments similar to the ones developed in the proof of Theorem 1, we know that, for every \(i \geq 0\), \(\{x_{nk+i}\}_{n=0}^{\infty}\) is increasing, and \(x_{nk+i} < 0\) for all \(n \geq 0\) if there exists \(N_i > 0\) such that \(x_{nk+i} > 0\) for all \(n \geq N_i\).

We may assume without loss of generality that \(A_1 \geq 0\). We claim that \(\{x_{nk}\}_{n=0}^{\infty}\) is a constant sequence eventually. Indeed, \(\{x_{nk}\}_{n=0}^{\infty}\) is not constant sequence eventually, then there exist \(kr < n_1 < n_2 < \cdots\) such that \(x_{nk} > x_{nk+i}\) with \(A_{nk}\) being a constant sequence for all \(i \geq 1\). Thus we have

\[
x_{n+1,k} = \max\left\{ \frac{A_{n+k}}{x_{n+1,k-1}} \right\} \\
&= \frac{A_{nk}}{x_{n+1,k-1}} \\
&= \frac{A_{nk}}{x_{n+1,k-1}} \\
&= \max\left\{ \frac{A_{n+k}}{x_{n+1,k-2}} x_{n+1,k-1} \right\}
\]
Consider the max-type equation

\[x_{n,k} = \max \left\{ A_{k}^{n}, x_{k,n-1} \right\} \]

\[x_{n,k} = A_{n,k}, \quad x_{n,k-1} \geq A_{k} \geq 0. \] (8)

From this we obtain that, for all \(i \geq 1 \),

\[x_{n,k} x_{n,k-1} \geq A_{k} \geq 0. \] (9)

Thus \(A_{n,k} \geq 0 \) and

\[A_{n,k} \left(x_{n,k-1} - x_{n,k-2} \right) < 0. \] (10)

It follows that, for all \(i \geq 1 \),

\[x_{n,i} - x_{n,i-1} < x_{n,i-1} - x_{n,i-2}. \] (11)

This is a contradiction.

Using arguments similar to the ones developed in the proof of Theorem 1, we can show that \(x_{n,k,i} \) is a constant sequence eventually for every \(1 \leq j \leq k \). Note \(\{ j \mid 1 \leq j \leq k \} \mod k = \{ 0, 1, 2, \ldots, k-1 \} \) since \(\gcd(k, r) = 1 \). Then \(x_{n,i} \) is a constant sequence eventually for every \(i \in \{ 0, 1, \ldots, k-1 \} \), which implies that \(\{ x_{n,i} \}_{i=1}^{k-1} \) is eventually periodic with period \(k \).

Now we construct an example with \(p \geq 2 \) and \(k \) being even which has a well-defined solution that is not eventually periodic.

Example 4. Consider the max-type equation

\[x_{n} = \max \left\{ A_{n}, x_{n-r}, x_{n-s} \right\}, \quad n = 1, 2, \ldots \] (12)

where \(k, r \in \{ 1, 2, \ldots \} \) and \(k \) is even with \(\gcd(k, r) = 1 \) and \(k \neq r \) and \(A_{n} \) is a periodic sequence with \(A_{2i} = A_{2i-1} = B < 0 \) for all \(i \geq 1 \). Choose the initial conditions \(x_{i} = B \) for odd \(i \in \{ 0, 1, \ldots, d \} \) and \(x_{i} = 1 \) for even \(i \in \{ 0, 1, \ldots, d \} \) with \(d = \max\{r, k\} \); we can obtain a solution \(\{ x_{n} \}_{n=1}^{\infty} \) of (12) such that

(1) If \(r < k \), then

\[x_{n,i} = \begin{cases} B & \text{if } i \in \{ 1, 3, \ldots, r \}, \\ A & \text{if } i \in \{ r+2, \ldots, k-1 \}, \\ B & \text{if } i \in \{ 2, \ldots, k \}. \] (13)

It is easy to verify that \(\lim_{n \to \infty} x_{2n} = \infty \) and \(\lim_{n \to \infty} x_{2n-1} = 0. \)

(2) If \(r > k \), then

\[x_{n,i} = \begin{cases} B & \text{if } i \in \{ 1, 3, \ldots, r \}, \\ A & \text{if } i \in \{ r+2, \ldots, 2r-1 \}, \\ B & \text{if } i \in \{ 2, \ldots, 2r \}. \] (14)

It is easy to verify that \(\lim_{n \to \infty} x_{2n} = \infty \) and \(\lim_{n \to \infty} x_{2n-1} = 0. \)

Remark 5. Consider the max-type equation

\[x_{n} = \max \left\{ A_{n}, x_{n-r}, x_{n-s} \right\}, \quad n = 1, 2, \ldots \] (15)

where \(\{ A_{n} \}_{n=1}^{\infty} \) is a periodic sequence with period \(ps \) and \(s, k, r \in \{ 1, 2, \ldots \} \) with \(\gcd(k, r) = 1 \) and \(k \neq r \), and \(p = 1 \) (or \(p \geq 2 \)), and the initial conditions \(x_{1}, x_{2}, \ldots, x_{0} \) are real numbers with \(d = \max\{sr, sk\} \). Write \(y_{n} = x_{n+i} \) for every \(1 \leq i \leq s \) and \(n = 0, 1, 2, \ldots \). Then (12) reduces to the equation

\[y_{n} = \max \left\{ A_{n+i}, y_{n-r}, y_{n-s} \right\}, \quad 1 \leq i \leq s, \quad n = 0, 1, 2, \ldots \] (16)

(1) If \(p = 1 \) (or \(p \geq 2 \) and \(k \) is odd), then it follows from Theorem 1 that, for every \(1 \leq i \leq s \), every well-defined solution of equation \(y_{n} = \max\{ A_{n+i}, y_{n-r}, y_{n-s} \} \) is eventually periodic with period \(k \). Thus every well-defined solution of (15) is eventually periodic with period \(sk \).

(2) If \(p \geq 2 \) and, for every \(1 \leq i \leq s \), there exists some \(j_{i} \) such that \(A_{j_{i}} \geq 0 \), then it follows from Theorem 3 that for every \(1 \leq i \leq s \), every well-defined solution of equation \(y_{n} = \max\{ A_{n+i}, y_{n-r}, y_{n-s} \} \) is eventually periodic with period \(k \). Thus every well-defined solution of (15) is eventually periodic with period \(sk \).

(3) If \(p \geq 2 \) and \(k \) is even, then it follows from Example 4 that, for every \(1 \leq i \leq s \), we can construct an equation \(y_{n} = \max\{ A_{n+i}, y_{n-r}, y_{n-s} \} \) such that it has a well-defined solution which is not eventually periodic. Thus we can construct an equation

\[x_{n} = \max \left\{ A_{n}, x_{n-r}, x_{n-s} \right\}, \quad n = 1, 2, \ldots \] (17)

such that it has a well-defined solution which is not eventually periodic.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments

The project is supported by NNSF of China (11261005) and NSF of Guangxi (2012GXNSFDA276040).

References

[1] E. P. Popov, Automatic Regulation and Control, Nauka, Moscow, Russia, 1966, (Russian).

[2] A. Gelšken and C. Činar, “On the global attractivity of a max-type difference equation,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 812674, 5 pages, 2009.

[3] W. Liu and X. Yang, “Quantitative bounds for positive solutions of a Stević difference equation,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 235808, 14 pages, 2010.

[4] T. Sun, B. Qin, H. Xi, and C. Han, “Global behavior of the max-type difference equation $x_{n+1} = \max \{1/x_n, A_n/x_n-1\},” Abstract and Applied Analysis, vol. 2009, Article ID 152964, 10 pages, 2009.

[5] B. D. Iričanin and E. M. Elsayed, “On the max-type difference equation $x_{n+1} = \max \{A/x_{n+1}, A_{n+1}/x_{n+1} \},” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 675413, 13 pages, 2010.

[6] E. M. Elsayed and S. Stević, “On the max-type equation $x_{n+1} = \max \{A/x_n, x_{n+1} \},” Nonlinear Analysis: Theory, Methods and Applications, vol. 71, no. 3-4, pp. 910–922, 2009.

[7] Q. Xiao and Q. Shi, “Eventually periodic solutions of a max-type equation,” Mathematical and Computer Modelling, vol. 57, no. 3-4, pp. 992–996, 2013.

[8] B. Qin, T. Sun, and H. Xi, “Dynamics of the max-type difference equation $x_{n+1} = \max \{A/x_n, x_{n+k} \},” Journal of Computational Analysis and Applications, vol. 14, pp. 856–861, 2012.