FOOD SCIENCE & TECHNOLOGY | REVIEW ARTICLE

Chemistry, encapsulation, and health benefits of \(\beta \)-carotene - A review

Khalid Gul\(^1\), Afshan Tak\(^2\), A. K. Singh\(^1\), Preeti Singh\(^3\), Basharat Youssuf\(^4\) and Ali Abas Wani\(^5,6\)

Abstract: \(\beta \)-carotene is a principle carotenoid in carrots, and of the most common and widely studied carotenoids. Carotenoids are the phytonutrients that impart a distinctive yellow, orange, and red color to various fruits and vegetables. \(\beta \)-carotene is important not only for the color that it imparts to the food stuffs, but also because of the myriad of associated health benefits. It is the most potent precursor of vitamin A and is present naturally as a mixture of various isomers \((\text{cis and trans})\) of \(\beta \)-carotene molecule. It has a potent antioxidant capacity and offers an array of health benefits such as lowering the risk of heart diseases and certain types of cancers, enhancing the immune system, and protection from age-related macular degeneration—the leading cause of irreversible blindness among adults. Consumer attitude towards bioactive compounds, including \(\beta \)-carotene, as natural colorants and for health benefits is promising. Incorporation of \(\beta \)-carotene in various food systems is limited by its poor water solubility and instability in presence of light, heat, and oxygen. Encapsulation can be a way forward to improve the stability and help in effective delivery of \(\beta \)-carotene.

ABOUT THE AUTHORS

Khalid Gul is a doctoral research fellow at Punjab Agricultural University in Processing & Food Engineering. He researches on food biopolymers and bioactives.

Afshan Tak is master’s student at Sant Longowal Institute of Engineering & Technology, Longowal, India.

A. K. Singh is a professor (Food Engineering) at Punjab Agricultural University in Processing & Food Engineering.

Preeti Singh is research scientist at Chair of Food Packaging Technology, Technische Universität München, 85350, Freising- Weihenstephan, Germany.

Basharat Youssuf is a senior research fellow at the Department of Post Harvest Engineering, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.

Ali Abas Wani is a senior assistant professor at the Department of Food Technology, Islamic University of Science & Technology, Awantipora, India, and is presently working as senior scientist at Process Development for Plant Raw Materials, Fraunhofer Institute for Process Engineering & Packaging, IVV, 85354, Freising, Germany.

PUBLIC INTEREST STATEMENT

\(\beta \)-carotene is one of the important bioactive components with potent antioxidant activity. The review focuses on various aspects concerning the chemistry and health benefits of this important carotenoid. The present work collects information that may be of interest both to industry and to researchers as regards the opportunity of healthier diets and their role in disease prevention.
1. Introduction
Carotenoids are organic pigments found in chloroplast of plants and other photosynthetic organisms like algae, some bacteria, and fungi. Carotenoids are defined by their chemical structures having 40 carbon chains and are classified as: (i) Carotenes comprised entirely of carbon and hydrogen, e.g. \(\alpha\)-carotene, \(\beta\)-carotene, and lycopene; and (ii) Oxygenated derivatives of these hydrocarbons known as xanthophylls, e.g. lutein and zeaxanthin (Britton, 1995; Qian, Decker, Xiao, & McClements, 2012).

Beta carotene (Greek \(\beta\) and Latin \(\text{carota}\) (carrot)) is an important member of the carotenoid family and is a strongly red orange-colored pigment abundant in plants and fruits. \(\beta\)-carotene is regarded as the major carotenoid present in human diet (Johnson, 2002) and is in turn the main source of vitamin A in humans. It is a precursor of vitamin A having potential to yield two retinol molecules in presence of oxygen by the action of \(\beta\)-carotene 15, 15\(^{\prime}\)-monooxygenase (Van-Arnum, 2000). The main sources of \(\beta\)-carotene are apricots, asparagus, carrots, broccoli, Chinese cabbage, grapefruits, chilli powder, and paprika (Table 1). \(\beta\)-carotene is most widely studied of the major carotenoids in the human diet, blood, and tissue as it has the highest provitamin A activity and its deficiency can result in xerophthalmia, blindness, and premature death (Mayne, 1996).

Table 1. \(\beta\)-carotene content in various foods

Source	\(\beta\)-carotene content/range	Reference
Carrot	5,340 (\(\mu\)g/100 g)	Patricia, Nizu, and Rodriguez (2006)
	11,210 (\(\mu\)g/100 g)	Ahamad, Saleemullah, Shah, Khilil, and Saljoqi (2007), Ullah et al. (2011)
	47.5 (\(\mu\)g)	EL-Qudah (2009)
	1,030 (\(\mu\)g)	Ben-Amotz and Fishier (1998)
	61 (\(\mu\)g)	Niziu and Rodriguez-Amaya (2005)
Tomato	1,610 (\(\mu\)g/100 g)	Ahamad et al. (2007), Ullah et al. (2011)
	3,500 (\(\mu\)g/100 g)	Patricia et al. (2004)
	0.79 (\(\mu\)g)	EL-Qudah (2009)
	14.5 (\(\mu\)g/g)	Ben-Amotz and Fishier (1999)
	61 (\(\mu\)g/g)	Niziu and Rodriguez-Amaya (2005)
Spinach	9,940 (\(\mu\)g/100 g)	Ahamad et al. (2007)
Lady finger	520 (\(\mu\)g/100 g)	Williams, Bolleau, and Erdman (1996)
	3,320 (\(\mu\)g/100 g)	Ahamad et al. (2007)
	3,220 (\(\mu\)g/100 g)	Ullah et al. (2011)
Brinjal	2,100 (\(\mu\)g/100 g)	Ahamad et al. (2007), Ullah et al. (2011)
Green chilli	1,750 (\(\mu\)g/100 g)	Ahamad et al. (2007), Ullah et al. (2011)
Strawberry	8.5 (\(\mu\)g/100 g)	Charoensiri, Kongkachuchai, Suknicom, and Sungpuag (2009)
Green beans	0.23 (\(\mu\)g/g)	EL-Qudah (2009)
Grapes	6.6 (\(\mu\)g/100 g)	Charoensiri et al. (2009)
	24.5 (\(\mu\)g/100 g)	Kim, Giraud, and Driskell (2007)
β-carotene, used in food industry as a precursor of vitamin A or as a natural colorant, is a labile compound and easily degraded by heat, light, and oxygen. Attempts are being made to increase the shelf stability of β-carotene towards various processing conditions. Among several strategies to protect β-carotene, encapsulation is one of the prominent means and has improved its stability for use in food and allied industries. This review aims to explore various functionalities of β-carotene including its chemistry, isolation, encapsulation, and the associated health benefits.

2. Chemistry and isolation of β-carotene
β-carotene is an isoprenoid compound and one of the approximately 600 fat-soluble carotenoids found in plants (Khachik, Beecher, & Smith, 1995) and micro-organisms (EFSA, 2012) with chemical formula C_{40}H_{56} and molecular weight 536.88. It is biosynthesized by tail-to-tail linkage of two C_{10} geranyl-geranyl diphosphate molecules, producing parent C_{40} carbon skeleton from which all individual variations are derived (Dutta, Raychaudhuri, & Chakarborty, 2005a). β-carotene is recognized as an antioxidant capable of preventing cellular damage and is a promising potent antioxidant with capability of quenching up to 1,000 free radicals per molecule. β-carotene occurs in the form of red to brownish-red to violet crystals or crystalline powder, and contains predominantly all trans-isomer of β-carotene with varying amounts of the cis-isomer depending on different formulations. Most β-carotene is naturally present in the all-trans form; however, some amounts of cis-form are also present in foods (Ma, Xu, Zhang, Shangguan, & Li, 2008); with relative abundances in following order: all-trans>9-cis>13-cis>15-cis (Guo, Tu, & Hu, 2008). All trans-β-carotene is highly unstable and is easily isomerized into cis-isomers. Trans-β-carotene immediately undergoes thermal and chemical oxidation, isomerization, and photosensitization when exposed to oxygen, light, and high temperature during processing and storage. Some of the important characteristic features of β-carotene are presented in Table 2.

More than 600 different carotenoids have been isolated and characterized from natural sources. β-carotene, a principle carotenoid in foods, can reliably be determined either by using an open column chromatography (OCC) or high-performance liquid chromatography (HPLC) and the purity of β-carotene standard obtained and quantified by HPLC is between 92.21 and 97.95% (Noorshazila, Irwandi, Othman, & Yumi-Zuhanis, 2012). Isolation of β-carotene from fruits abundant in carotenoids is commonly done using column chromatography (Jing, Qun, & Rohre, 2012). The separation of β-carotene is based on the polarity of a compound. As β-Carotene is non-polar in nature; it is separated with a non-polar solvent such as hexane (Mercadante, Steck, & Pfander, 1999). Filtration method is required after the extraction before analyzing the extract further. Sample and the solvent are placed in a round-bottom flask equipped with a condenser. The mixture is heated to reflux for a predetermined time and the sample is possibly taken during the time of the session to analyze the reaction progress and eventually all the solute is extracted from the matrix without too much solvent consumption. Most researchers use hexane for extraction and measure OD at 450–460 nm (Kim & Gerber, 1988; Zhou, Gugger, & Erdman, 1994). In case of algae, extraction can be carried out by using large amounts of edible oil where the mass transfer is promoted by homogenization at high pressure. Other methods of extraction have also been used such as supercritical carbon dioxide extraction (Macias-Sánchez et al., 2005), extraction using pressurized liquids (Herrero, Jaime, Martin-Alvarez, Cifuentes, & Ibanez, 2006), and solvent extraction with solvents like hexane, acetone, and ethanol. Marchal, Majoat-Guermi, Foucault, and Pruvost (2013) employed centrifugal partition chromatography (CPC) to extract β-carotene from Dunaliella salina and optimized the process for efficient and biocompatible recovery of metabolites.
Extraction of carotenoids with water and separation is the general method used and same stands true for β-carotene as well. However, the hydrogen-carbon skeleton of the molecule endows it a lipophilic property and even marginally soluble in oil at room temperature (Mattea, Martin, Matias-Gago, & Cocero, 2009; Ribeiro & Cruz, 2005). The extraction yield of β-carotene is strongly influenced by the time, temperature, and treatment (storage) given to particular food. Heat treatments such as blanching, cooking, and steaming can help release carotenoids bound by proteins and render them easily extractable (Dutta, Raychaudhuri, & Chakarborty, 2005b). The influence of various conditions (time, temperature, and storage) on extraction yield of β-carotene (Table 3) has been reported by Fikselova, Silhar, Marecek, and Francakova (2008).

Table 2. Some of the characteristic features of β-carotene

S. No	Characteristics	Description
1	Structure/chemistry	
	Molecular formula	C_{40}H_{56}
	Molecular mass	536
	Double bonds	11
	Beta-ionone ring	Present
	Solubility	Highly lipophilic
2	Activity	
	In vitro antioxidant	Modest
	In vitro prooxidant	Yes, at high concentrations and partial pressures
	In vivo antioxidant	Circumstantial evidence for lipids
	Smoking oxidation products	Yes
	Conversion to retinoids	Substantial, by multiple routes
	Immune function	Enhanced
	Cell-to-cell communication	Enhanced
	Cell cycle progression	Circumstantially inhibits
	Carcinogen metabolism	Can modulate
	Animal cancer studies	Antitumor
3	Exposure sources	
	Diet	Dark green, yellow, and orange fruits and vegetables, red palm oil, food colorant
	Dominant source	Carrots, cantaloupe, broccoli, spinach, and mixed greens
	Supplements	Multivitamins, single-source supplements, and food/beverage fortification
4	Metabolism	
	Bioavailability	Poorly available from greens and carrots
		Cooking enhances
		Dietary fat enhances
		Highly available from supplements
	Isomerization	All trans-in circulation
	Tissue accumulation	Found in all human tissues
		Supra-accumulation in testes and adrenal glands
	Major storage pool	Adipose tissue and liver
	Circulation half-life	< 12 days
	Plasma concentrations	Multifactor dependency: Diet, Lipoprotein concentrations, Adiposity, and Smoking

Source: Adapted and modified from Arab, Steck-Scott, and Bowen (2001).
The successful incorporation of this carotenoid in various food systems is limited by low water solubility accompanied with crystalline nature at ambient temperature.

3. Bioavailability of β-carotene

The bioavailability is the proportion of a particular nutrient that is digested, absorbed, and metabolized through normal pathways. There are diverse factors which limit the bioavailability of β-carotene (Sy et al., 2012). In general, bioavailability of β-carotene has often been found to be limited depending on the accompanying components present in the food (Ribeiro, Chu, Ichikawa, & Nakajima, 2008). Various studies have been carried out to understand the bioavailability of β-carotene in different model systems (Garrett, Failla, & Sarama, 1999; Gireesh, Nair, & Siddhakaran, 2004; Granado-Lorencio et al., 2007; Haskell, 2012; Rodriguez-Amaya, 2010). Fruits and vegetables and their co-products are the major dietary sources of β-carotene. In plant tissues, it is localized in cellular plastids where carotenoids are associated with light harvesting complexes or crystalline structures. Intestinal absorption of β-carotene in humans depends largely on a number of factors, but not limited to amount of β-carotene consumed in a meal, conversion of provitamin A carotenoids to vitamin A, rate of absorption, transport, chemical nature, nutrient status of the host, genetic factors, host-related factors, interactions of these factors, fat content of the diet, and the complexity of its release in GI tract during digestion (Castenmiller & West, 1998; Parada & Aguilera, 2007; Parker, 1997; Qian et al., 2012).

The type of food matrix in which carotenoids are located is a major factor influencing the bioavailability of β-carotene (Haskell, 2012). The bioavailability of β-carotene from vegetables in particular has been reported to be low (14% from mixed vegetables) compared with that of purified β-carotene added to a simple matrix (Gireesh et al., 2004). The relatively low bioavailability of carotenoids from natural sources has been attributed to the fact that they exist either as crystals or are located within protein complexes that are not fully released during digestion within GI tract (Williams et al., 1998).

Carotenoid (β-carotene) is extracted from the food matrix, solubilized in bile acid micelles, and absorbed by the enterocytes, also called as intestinal absorptive cells. Dietary fat and endogenous emulsifiers (bile acids) are necessary to incorporate carotenoids released from the food matrix into mixed micelles. It appears that 3–5 g of fat is sufficient for the absorption of carotenoids (van Het Hof, West, Westrate, & Hautcast, 2000). Factors such as food, food treatment and composition, secretion of digestive enzymes and bile acids into the small intestine make it difficult to predict the relative bioavailability of β-carotene for any subject on the basis of his fruit and vegetable consumption.

In vitro models can help investigate the uptake of particular carotenoid, simultaneously avoiding the effects of certain factors like efficacy of food matrix disruption, solubilization of carotenoid, and incorporation into mixed micelles, which are difficult to control (Briviba, Schnabele, Schwertle, Blockhaus, & Rechkemmer, 2001).

Table 3. Influence of time, temperature, and storage conditions on extraction yield (mg/100 g) of β-carotene from carrot

Time of extraction (min)	Treatment of samples at 60°C	Extraction time (min)	Treatment of samples at 60°C				
	After harvest	Cold storage	Freezing	After harvest	Cold storage	Freezing	
60	2.11	2.35	2.52	10	2.59	2.9	3.63
120	2.14	2.56	2.56	60	4.12	5.22	5.68
180	2.19	2.59	2.59	120	4.22	5.29	6.22
240	2.3	2.61	2.61	180	4.05	5.14	6.33
300	2.47	2.69	2.69	240	3.98	5.11	6.45

Source: Adapted and modified from Fikselova et al. (2008).
4. Encapsulation of β-carotene

The utilization of β-carotene as a nutraceutical ingredient or natural colorant within foods is currently limited by a number of factors such as poor water solubility, high melting point, chemical instability, lipophilic character, and low bioavailability (Gutiérrez et al., 2013; Liang, Huang, Ma, Shoemaker, & Zhong, 2013; Qian et al., 2012). β-carotene is also highly unstable and susceptible to physical and photochemical degradation during food processing and storage due to the effects of chemical, mechanical, and thermal stresses (Desobry, Netto, & Labuza, 1998; Nguyen & Schwartz, 1998; Mao et al., 2009). The nature of being prone to degradation results in loss of its properties. Low water solubility and crystalline nature at ambient temperature means that β-carotene has to be dissolved in oils or dispersed in suitable matrices before it can be utilized in various food systems (Donhowe, Flores, Kerr, Wicker, & Kong, 2014).

Encapsulation techniques have been found to offer possible solutions to enhance bioavailability, water solubility, and stability of hydrophobic carotenoids (Rascon, Beristain, Garcia, & Salgado, 2011; Sutter, Buera, & Elizalde, 2007). Therefore, to address the concerns of stability, handling, and bioavailability, encapsulation of β-carotene is carried out which has created an opportunity for the development of β-carotene forms for supplementation and food fortification. Microencapsulation has been often applied and was found to enhance the stability of carotenoids (Rascon et al., 2011; Sutter et al., 2007). It is the technique by which sensitive ingredients are packed within a coating or wall material (Loksuwan, 2007). Different methods for encapsulation of β-carotene in appropriate delivery system, such as nanoemulsion (Liang et al., 2013; Qian et al., 2012), microemulsion (Donhowe et al., 2014), liposome (Lee et al., 2002), solid lipid nanoparticles (Cornacchia & Roos, 2011), and complex assemblies with macromolecules (Pan, Yao, & Jiang, 2007) are reported. Effectiveness of microencapsulation depends on the method employed (Donhowe et al., 2014). The method used significantly affects moisture content, water activity, particle size, morphology of microcapsules, and encapsulation efficiency. Oil-in-water nanoemulsions are considered to be efficient, low-cost, and convenient way to increase the dispersibility, stability, and bioavailability of nutraceuticals (Huang, Yu, & Ru, 2010). In spite of having improved thermal stability, nanoemulsions are sensitive to the environment stresses such as heat, freezing, and thawing, and alterations in pH can further destabilize the encapsulated compound (McClements, 1999).

To overcome this limitation, a drying process, spray drying is one of the most popular, attractive, and widely studied encapsulation technologies owing to high-production capacity and minimal operation costs. The key steps for spray drying are the choice of a suitable wall material with good emulsifying properties and good film forming properties during dehydration (Madene, Jacquot, Scher, & Desobry, 2006). But the use of this method must be justified by verifying bioavailability in addition to preserving functionality (Desobry et al., 1998). Different wall materials for coating can be used and polysaccharides such as maltodextrin, inulin, gum Arabic, tapioca starch, and citrus fiber are often used. Other matrix materials like glucose syrup and soy protein isolate are also used. Starches being widely available can be used for containment of bioactives by spray drying in a manner that will provide an oxidative protection and for a controlled release over defined period of time (Wani et al. 2012). The use of natural polymers as coating material can enhance the stability of β-carotene and help in controlled release of this functional ingredient in the human body for more efficient nutraceutical usage. Maltodextrins have been demonstrated to be a good compromise between price and preservation as they are bland in flavor, have low viscosity at a high solid ratio, and afford good protection against oxidation (Desobry et al., 1998). Spray drying of carotene with maltodextrins improved shelf by 100–200 times when compared to a carrot juice that was spray dried with no excipients (Wagner & Warthesen, 1995). Preservation and enhancement of the storage stability of β-carotene by spray drying has been successfully reported by Desobry, Netto, and Labuza (1997) and Loksuwan (2007). However, β-carotene bioavailability and release during in vitro digestion was not carried. Bioavailability of β-carotene in spray-dried chitosans–alginate microcapsules has been reported by Roman, Burri, and Singh (2012). Donhowe et al. (2014) recently reported physical characterizations of spray-dried β-carotene, water-dispersible β-carotene, and β-carotene
chitosans alginate microcapsules, and studied release and bioavailability during in vitro digestion as affected by different food matrices. Microencapsulation method significantly influences release and incorporation into micells, regardless of the food matrix (Donhowe et al., 2014).

In addition to spray-dried powders and microcapsules, the development of water-dispersible β-carotene holds promise because it has significantly higher bioavailability in vivo than in carrot juice (Thurmann et al., 2002). Other encapsulation processes have been tested (Desobry et al., 1997) and, surprisingly, drum has provided a better retention of β-carotene than spray drying and freeze drying. Although this may serve as a low-cost alternative, however, these results need to be validated with release properties as well which have not been carried out. From all research studies on encapsulation, one can conclude that spray drying β-carotene has proved to be one of the acceptable methods to preserve β-carotene while maintaining bioavailability.

5. Physiological/Health benefits of β-carotene

Various carotenoids, found in different foods, such as β-carotene, lycopene, lutein, and zeaxanthin are believed to have a role in maintaining bodily functions and preventing diseases. β-carotene, along with many other carotenoids, is a source of provitamin A. Vitamin A, a fat soluble vitamin, is an important nutrient not only for the vision and, preventing nyctolopia (night blindness) and xerophthalmia (lack of tears/abnormal dryness), but it also helps to strengthen the ability of immune system to resist infections, proper growth, development, gastrointestinal function, and functioning of reproductive systems (Handelman, 2001; Haskell, 2012; Grune et al., 2010; Semba & Bloem, 2001). Humans lack the ability to synthesize vitamin A de novo (Haskell, 2012; Semba & Bloem, 2001) and, therefore, must get proper amounts of it from the dietary sources, rich in β-carotene, like dark green leafy vegetables (e.g. spinach), fruits, and vegetables (e.g. carrot, orange, and mango) (Gul, Singh, & Jabeen, 2015). The rising awareness of the potential health benefits of β-carotene has lead to the development of functional foods enriched with β-carotene (Sy, Dangles, Borel, & Caris-Veyrat, 2013). Besides, being attractive natural colorant, β-carotene provides additional advantages due to its provitamin and antioxidant properties. As β-carotene has highest vitamin A activity among other provitamin A carotenoids (α-carotenes and cryptoxanthins) (Donhowe et al., 2014) and most efficient conversion to vitamin A (Yeum & Russell, 2002), it stands as one of the most widely studied of all carotenoids present in nature. Apart from the primary role that β-carotene plays in being as the nutrient source of vitamin A, β-carotene has a myriad of health benefits associated to it when consumed at appropriate levels. It is a potent antioxidant and can function as a lipid scavenger and a singlet oxygen quencher due to the unique structure of conjugated double bonds and inone rings (Grune et al., 2010). Epidemiological studies and clinical trials have established a number of potential health benefits of β-carotene, e.g. decreased risk of some cancers, cardiovascular disease, age-related macular degeneration, and cataracts, and increased immune response (Boon, McClements, Weiss, & Decker, 2010; Gerester, 1993; Walter, 1995). The physiological benefits that have been proposed to account for the health benefits include preventing oxidative damage, quenching singlet oxygen, altering transcriptional activity, and serving as a precursor of vitamin A (Abdel-Aal & Akhtar, 2006; Qian et al., 2012; Singh & Goyal, 2008).

Various studies have demonstrated possible relationships between consumption of β-carotene and prevention of cancers (Backer & Meydany, 1994; Goralczyk 2009; Grewal, 1995; Naves & Moreno, 1998; van Poppel & Goldbohom, 1995), and there has been a general consensus that individuals who consume large quantity of carotenoid-rich fruits and vegetables have a decreased risk of cancer at the tumor site (Block, Patterson, & Subar, 1992). Le-Marchand et al. (1993) found that the dietary intake of β-carotene was associated with reduced lung cancer and high dietary intake of β-carotene has been associated with reduced risk of cancers at several specific organs especially lung cancer (van Poppel & Goldbohom, 1995; Ziegler, 1989). Infante et al. (1991) reported their laboratory findings in patients receiving high dose of vitamin A as an adjunct for the treatment of stage 1 lung cancer. However, no effects or even protective effects have been demonstrated in smokers and intervention studies have unexpectedly reported increased lung tumor rates after high, long-term
β-carotene supplementation; however, in non-smokers, there is no evidence for adverse events and even suggestion for protective effects (Goralczyk, 2009). Recently it has been reported that β-carotene inhibits neuroblastoma—most prevalent extracranial solid tumor in childhood (Kim et al., 2014). The authors also claimed that their study provides the first evidence which shows that β-carotene may act as an effective chemotherapeutic agent by regulating invasion and metastasis of neuroblastoma. Although carotenes does not have hormone-like properties of retinol, they do have potent antioxidant effect and could thus reduce cancer risk by preventing oxidative tissue damage (Mukherjee, Ghosh, & Hossain, 2011). Britton (1995) defined carotenoids as effective antioxidant, it would have to remove the free radicals from the system either by reacting with them to yield harmless products or by disrupting free radical chain reactions. The chemo preventive actions of β-carotene have been mainly demonstrated in the initiation or early promotion stages, inhibiting the formation of preneoplastic lesions in both in vitro and in vivo experimental models (Bertram et al., 1991; He, Root, Parker, & Campbell, 1997; Moreno et al., 1991).

β-carotene has been considered nearly non-toxic because humans can tolerate high dietary intake of β-carotene without possible harm (Bendich, 1988; Hathcock et al. 1990). The free radical scavenging nature of β-carotene and its immediate involvement in trapping singlet oxygen providing an overall increased reducing environment in the hepatic tissues involves the anticancer potential of long-term exposure to β-carotene (Mukherjee et al., 2011). β-carotene has shown to inhibit ultraviolet-induced skin cancer or oral carcinomas caused by dimethyl benzanthracene and colon tumors caused by dimethyl hydrazine treatment given to animals in laboratory (Krinsky, 1989). β-carotene goes through metabolism to retinol (vitamin A), which is required for normal cell differentiation of stem cells in epithelial tissue (Bender & Mayes, 2003).

Although controversies regarding the effectiveness of β-carotene against various forms of cancers exist, the findings are suggestive of its potential role against chemical induced carcinogenesis. Further research needs to be conducted to elucidate the exact mechanisms and provide a deep insight of its protective effects.

6. Conclusion
β-carotene is one of the important bioactive components with potent antioxidant activity. Apart from its nutritive value and health benefits, β-carotene can serve as a substitute to synthetic dyes as the poor stability and solubility issues can be addressed by encapsulation. A number of potential health benefits have been associated with the consumption of this bioactive at appropriate levels; however, despite large number of publications the exact characteristics that make this carotenoid effective are still at large unknown. More research is needed to fully understand the antioxidant mechanisms involved in β-carotene physiology in addition to knowing the exact possibility of this carotenoid acting as an anticarcinogen at appropriate dosage.

Funding
The authors received no direct funding for this research.

Author details
Khalid Gul1
E-mail: fud.biopolymer@gmail.com
Afshan Toli2
E-mail: afeetak3@gmail.com
A. K. Singh1
E-mail: dsingh@pu.edu
Preeti Singh3
E-mail: preeti.ndri@rediffmail.com
Basharat Yousuf4
E-mail: yousufbasharat@gmail.com
Ali Abas Wani5
E-mail: ali.abbas.wani@gmail.com
ORCID ID: http://orcid.org/0000-0002-4904-3699
1 Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
2 Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, Punjab, India.
3 Chair of Food Packaging Technology, Technische Universität München, Freising-Weihenstephan, 85350, Germany.
4 Faculty of Agricultural Sciences, Department of Post Harvest Engineering, Aligarh Muslim University, Aligarh 202002, India.
5 Department of Food Technology, Islamic University of Science & Technology, Awantipora 192122, Jammu and Kashmir, India.
6 Process Development for Plant Raw Materials, Fraunhofer Institute for Process Engineering & Packaging IVV, Freising 85354, Germany.

Citation information
Cite this article as: Chemistry, encapsulation, and health benefits of β-carotene - A review, Khalid Gul, Afshan Toli, A. K. Singh, Preeti Singh, Basharat Yousuf & Ali Abas Wani, Cogent Food & Agriculture (2015), 1: 1018696.
References
Abdel-Aal, E. S. M., & Akhtar, M. H. (2006). Recent advances in the analyses of carotenoids and their role in human health. Current Pharmaceutical Analysis, 2, 195–204. http://dx.doi.org/10.2174/157341206776819319
Ahmad, M. N., Soleemullah, M., Shah, H. U., Khalil, I. A., & Saloji, A. U. R. (2007). Determination of beta carotene content in fresh vegetables using high performance liquid chromatography. Sarhad Journal of Agriculture, 23, 767–770.
Arab, L., Steck-Scott, S., & Bowen, P. (2001). Participation of lycopene and beta-carotene in carcinogenesis: Defenders, aggressors, or passive bystanders? Epidemiologic Reviews, 23, 211–230. http://dx.doi.org/10.1093/oxfordjournals.epirev.a000803
Becker, K. R., & Meydany, M. (1994). β-carotene as an antioxidant in immunity and cancer. Journal of Optimal Nutrition, 3, 39–50.
Baranska, M., Schlütze, W., & Schulz, H. (2006). Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry, 78, 8456–8461. http://dx.doi.org/10.1021/ac061220j
Bertram, J., Pung, A., Churley, M., Kappock, T. J., Block, G., Patterson, B., & Subar, A. (1991). Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutrition and Cancer, 18, 1–29. http://dx.doi.org/10.1207/s15327942nc1801_1
Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Stability of β-carotene and β-lutein in commonly consumed in Israel. Food Chemistry, 62, 515–520. http://dx.doi.org/10.1016/j.foodchem.2009.04.027
Bender, D. A., & Mayes, P. A. (2003). Vitamins and minerals. In R. K. Murray, D. K. Granner, P. A. Mayes, & V. W. Rodwell (Eds.), Harper’s Illustrated biochemistry (26th ed., Vol. 3, pp. 681–683). New York, NY: McGraw-Hill.
Bendich, A. (1988). The safety of β-carotene. Nutrition and Cancer, 11, 207–214. http://dx.doi.org/10.1080/016355889151389
Bertram, J., Pung, A., Churley, M., Kappock, T. J., Wilkins, L. R., & Cooney, R. V. (1991). β-carotene: A theoretical study. Journal of Physical Chemistry B, 112, 140–151.
Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50, 515–532. http://dx.doi.org/10.1080/10408390902755889
Britten, G. (1995). Carotenes by their chemical structure. Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). β-carotene inhibits growth of human colon carcinoma cells by induction of apoptosis. Journal of Biological Chemistry, 382, 1663–1668.
Castenmiller, J. J., & West, C. E. (1999). Bioavailability and biocconversion of carotenoids. Annual Review of Nutrition, 19, 19–38. http://dx.doi.org/10.1146/annurev.nutr.18.1.19
Charoenwai, R., Kongkauchuichai, R., Suknicom, S., & Sungprap, P. (2009). Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chemistry, 113, 202–207. http://dx.doi.org/10.1016/j.foodchem.2008.07.074
Corredig, M., & Roos, Y. H. (2011). Stability of β-carotene in protein-stabilized oil-in-water delivery systems. Journal of Agricultural and Food Chemistry, 59, 7013–7020. http://dx.doi.org/10.1021/jf200841k
Desory, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science, 62, 1158–1162. http://dx.doi.org/10.1111/j.1399-6277.1997.tb06159.x
Desory, S. A., Netto, F. M., & Labuza, T. P. (1998). Preservation of β-carotene from carrots. Critical Reviews in Food Science and Nutrition, 38, 381–396. http://dx.doi.org/10.1080/1040869981274255
Donhowe, E. G., Flores, F. P., Kerr, W. L., Wicker, L., & Kong, F. (2014). Characterization and in vitro bioavailability of β-carotene: Effect of microencapsulation method and food matrix. LWT—Food Science and Technology, 57, 42–48. http://dx.doi.org/10.1016/j.lwt.2013.12.037
Dutta, D., Raychaudhuri, U., & Chakraborty, R. (2005a). Structure, health benefits, antioxidant property and processing and storage of carotenoids. African Journal of Biotechnology, 4, 1510–1520.
Dutta, D., Raychaudhuri, U., & Chakraborty, R. (2005b). Retention of β-carotene in frozen carrots under varying conditions of temperature and time of storage. African Journal of Biotechnology, 4, 102–108.
EFSA. (2012). EFSA panel on additives and substances used in animal feed (FEEDAP). Scientific Opinion on the safety and efficacy of beta-carotene as a feed additive for all animal species and categories. EFSA Journal, 10, 2737. doi:10.2903/j.efsa.2012.2737
El-Qudah, J. M. (2009). Identification and quantification of major carotenoids in some vegetables. American Journal of Applied Sciences, 6, 492–497. http://dx.doi.org/10.3844/ajassp.2009.492.497
Fiskelova, M., Silhar, S., Marecek, J., & Francalova, H. (2008). Extraction of carrot (Daucus carota L) carotenes under different conditions. Czech Journal of Food Sciences, 26, 288–274.
Garrett, D. A., Failla, M. L., & Sarna, R. J. (1999). Development of an in vitro digestion method to assess carotenoid bioavailability from meals. Journal of Agricultural and Food Chemistry, 47, 4301–4309. http://dx.doi.org/10.1021/jf990329h
Gerster, H. (1993). Anticarcinogenic effect of common carotenoids. International Journal for Vitamin and Nutrition Research, 15, 1507–1516.
Gireesh, T., Noir, P. P., & Sudhakaran, P. R. (2004). Studies on the bioavailability of the provitamin A carotenoid, β-carotene, using human exfoliated colonic epithelial cells. British Journal of Nutrition, 92, 241–245. http://dx.doi.org/10.1079/BJN20041175
Goralczyk, R. (2009). β-carotene and lung cancer in smokers: Review of hypotheses and status of research. Nutrition and Cancer, 61, 767–774. http://dx.doi.org/10.1080/01635580903281555
Grande-Lorenzo, F., Olmedillo-Alonso, B., Herrera-Barbudo, C., Perez-Sorciàn, B., Blanco-Navarro, I., & Bidañez-García, S. (2006). Carotenoids: A theoretical study. International Journal for Vitamin and Nutrition Research, 76, 845–854. http://dx.doi.org/10.1139/j95-139
Grewal, H. S. (1995). Antioxidants in oral cancer prevention. American Journal of Clinical Nutrition, 62, 1410–1416.
Gruene, T., Lietz, G., Palou, A., Ross, A. C., Stahl, W., Tang, G., & Beilisovski, H. K. (2010). β-carotene is an important vitamin a source for humans. Journal of Nutrition, 140, 22685–22855. http://dx.doi.org/10.3945/jn.109.119024
Guo, W. H., Tu, C. Y., & Hu, C. H. (2008). cis-Trans isomerizations of β-carotene and lycopene: A theoretical study. The Journal of Physical Chemistry B, 112, 12158–12167. http://dx.doi.org/10.1021/jp8019705
Gutierrez, F. I., Albillos, S. M., Casas-Sanz, E., Cruz, Z., Garcia-Estrada, C., Garcia-Guerra, A., … Mussons, M. (2013). Methods for the nanoencapsulation of β-carotene in the food sector. Trends in Food Science & Technology, 32, 73–83. http://dx.doi.org/10.1016/j.tifs.2013.05.007

Page 9 of 12
Handelman, G. J. (2001). The evolving role of carotenoids in human biochemistry. Nutrition, 17, 818–822. http://dx.doi.org/10.1054/jsfa.20000640-2
Haswell, M. J. (2012). The challenge to reach nutritional adequacy for vitamin A; β-carotene bioavailability and conversion evidence in humans. American Journal of Clinical Nutrition, 96, 11935–12035. http://dx.doi.org/10.1093/ajcn/112.3.034850
Hathcock, J. N., Hatton, D. G., Jenkins, M. Y., McDonald, J. T., Sundareshan, P. R., & Wilkening, A. L. (1990). Evaluation of vitamin A toxicity. American Journal of Clinical Nutrition, 51, 183–202.
He, Y., Root, M. M., Parker, R. S., & Campbell, T. C. (1997). Effects of carotenoid-rich food extracts on the development of proneoplastic lesions in rat liver and on in vivo and in vitro antioxidant status. Nutrition, 23, 278–284. http://dx.doi.org/10.1016/S0163-5589(97)00514532
Herrero, M., Jaime, L., Martín-Álvarez, P. J., Cifuentes, A., & Ibáñez, E. (2004). Optimization of the extraction of antioxidants from Dunaliella salina microalgae by pressurized liquids. Journal of Agricultural and Food Chemistry, 52, 5579–5603. http://dx.doi.org/10.1021/jf040564v
Huang, D. R., Yu, H. L., & Ru, Q. R. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75, R50–R57. http://dx.doi.org/10.1111/j.2010.75.issue-1
Infante, M., Pastorino, U., Chiesa, G., Bera, E., Pisini, P., Valente, M., & Ravasi, G. (1991). Laboratory evaluation during high-dose vitamin A administration: A randomized study on lung cancer patients after surgical resection. Journal of Cancer Research and Clinical Oncology, 117, 156–162. http://dx.doi.org/10.1007/BF01613140
Jing, C., Gun, X., & Rohde, J. (2012). HPLE separation of all-trans-β-carotene and its isomide-isolating isomers using a C8 column. Thermo Scientific: Retrieved April 06, 2014, from www.thermoscientific.com
Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5, 56–65. http://dx.doi.org/10.1006/nicc.2002.0004.x
Khachik, F., Beecher, G. R., & Smith, Jr., J. C. (1999). Lutein, lycopene, and their oxidative metabolites in chemoprevention of cancer. Journal of Cell Biology, 22, 236–246.
Kim, H. Y., & Gerber, L. E. (1988). Influence of processing on quality of carrot juice. Korean Journal of Food Science and Technology, 20, 683–690.
Kim, Y., Graud, D. W., & Dinkell, J. A. (2007). Tocopherol and carotenoid contents of selected Korean fruits and vegetables. Journal of Food Composition and Analysis, 20, 458–465. http://dx.doi.org/10.1016/j.jfca.2007.02.001
Kim, Y. S., Lee, H. A., Lim, J. Y., Kim, Y., Jung, C. H., Yoo, S. H., & Kim, Y. (2014). β-carotene inhibits neuroblastoma cell invasion and metastasis in vitro and in vivo by decreasing VEGF and CTGF expression. The Journal of Nutritional Biochemistry, 25, 655–664. http://dx.doi.org/10.1016/j.jnutbio.2014.02.006
Krisnys, N. L. (1989). Carotenoids and cancer in animal models. The Journal of Nutrition, 119, 123–126.
Le-Morchand, L., Hankin, J. H., Kolonen, L. N., Beecher, C. R., Wilkening, L. R., & Zhao, L. P. (1993). Intake of specific carotenoids and lung cancer risk. Cancer Epidemiology Biomarkers & Prevention, 2, 182–187.
Lee, S. C., Yuh, H. G., Lee, D. H., Lee, K. E., Hwang, Y., & Ludescher, R. D. (2002). Stabilization of retinol through incorporation into liposomes. Journal of Biochemistry and Molecular Biology, 35, 358–363.
Li, R., Huang, Q., Ma, J., Shoemaker, C. F., & Zhong, F. (2013). Effect of relative humidity on the store stability of spray-dried beta carotene nanoemulsions. Food Hydrocolloids, 33, 225–233. http://dx.doi.org/10.1016/j.foodhyd.2013.03.015
Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21, 928–935. http://dx.doi.org/10.1016/j.foodhyd.2006.10.011
Mo, Y. K., Xu, L. N., Zhang, J., Shangguan, L. J., & Li, X. B. (2008). Effect of ultra-high pressure physical energy on carotenoid isomers in carrot juice. Food Science (China), 29, 105–108.
Macias-Sánchez, M. D., Mantell, C., Rodríguez, M., Martínez de la Ossa, E., Lubín, L. M., Montero, O., & Montero, O. (2007). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66, 245–251. http://dx.doi.org/10.1016/j.jfoodeng.2004.03.021
Madsen, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release—A review. International Journal of Food Science and Technology, 41, 1–21. http://dx.doi.org/10.1111/j.ifs.2006.61.issue-1
Mao, L. K., Xu, D. Y., Yang, J., Yuan, F., Gao, X. Y., & Zhao, J. (2009). Effect of small and large molecule emulsifiers on the characteristics of beta-carotene nanoemulsions prepared by high pressure homogenization. Food Science and Technology and Biotechnology, 47, 336–342.
Marchal, M., Mogajor-Gemiri, M., Foucault, A., & Pruvost, J. (2013). Centrifugal partition extraction of β-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites. Bioresource Technology, 124, 396–400. http://dx.doi.org/10.1016/j.biotechlet.2013.02.019
Masseto, F., Martin, A., Mattias-Gago, A., & Cazorl, M. J. (2009). Supercritical antisolvent precipitation from an emulsion: β-carotene nanoparticle formation. The Journal of Supercritical Fluids, 51, 238–247. http://dx.doi.org/10.1016/j.supflu.2009.08.013
Maughan, R. (2006). Basic metabolism II: Carbohydrate. Surgery (Oxford), 23, 156–158.
Mogae, S. T. (1999). Betacarotene, carotenoids and disease prevention in humans. The FASEB Journal, 10, 690–701.
McClements, D. J. (1999). Food emulsions: Principles, practices and techniques (2nd ed.). Boca Raton, FL: CRC Press.
Mercadante, A., Steck, A., & Pflander, H. (1999). Carotenoids from Guava (Psidium guajava L.): Isolation and structure elucidation. Journal of Agricultural and Food Chemistry, 47, 145–151. http://dx.doi.org/10.1021/jf980405r
Moreno, F. S., Rigol, M. B. S. D., Dogli, M. L. Z., & Penteado, M. C. V. (1991). Inhibitory effects of β-carotene on proneoplastic lesions induced in Wistar rats by the resistant hepatocyte model. Carcinogenesis, 12, 1817–1822. http://dx.doi.org/10.1093/carcin/12.10.1817
Mukherjee, B., Ghosh, M. K., & Hossain, C. M. (2011). Anticancer potential of vitamin A and beta-carotene: Mechanistic approach. NISMM Journal of Pharmacy and Healthcare Management, 2, 1–12.
Naves, M. M. V., & Moreno, F. S. (1999). β-carotene and cancer chemoprevention: from epidemiological associations to cellular mechanisms of action. Nutrition Research, 18, 1807–1824. http://dx.doi.org/10.1016/S0271-5317(98)00137-7
Nguyen, M. L., & Schwartz, S. J. (1998). Lycopene stability during food processing. Experimental Biology and Medicine, 218, 101–105. http://dx.doi.org/10.1351/0014432X9303181013
Nishiz, P. Y., & Rodríguez-Arayo, D. B. (2005). New data on the carotenoid composition of raw salad vegetables. Journal of Food Composition and Analysis, 21, 445–463.
Norshazliza, S., Iwandi, J., Othman, R., & Yumi-Zuhanis, H. H. (2012). Scheme of obtaining β-carotene standard from pumpkin (Cucurbita moschata) flesh. International Food Research Journal, 19, 531–535.
Pan, X., Yao, P., & Jiang, M. (2007). Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene.
