Dwell-time control sets and applications to the stability analysis of linear switched systems

Mario Sigalotti
Inria team CAGE & Laboratoire Jacques-Louis Lions

in collaboration with
F. Boarotto (Università di Padova, Italy)

Journée CAGE-McTAO
Inria Sophia Antipolis, 9/12/2019
Outline

1. Linear switched systems and their Lyapunov exponents
2. Invariant control sets of general nonlinear systems
3. Invariant control sets for projected linear switched systems and periodization
4. Dwell-time invariant control sets for general nonlinear systems
5. Dwell-time invariant control sets and linear switched systems with dwell-time
Linear switched systems and their Lyapunov exponents
Consider a switched system on \mathbb{R}^d of the type

$$\dot{x} = A(t)x, \quad A(\cdot) \in S$$

(Σ)

S class of signals from \mathbb{R} to some set $S \subset M_d(\mathbb{R})$.

Examples:

- $S_0 = \{ A : \mathbb{R} \to S \mid A$ piecewise constant $\}$ \rightarrow arbitrary switching

- $S_\tau = \{ A : \mathbb{R} \to S \mid A$ piecewise constant, discontinuities at distance $\geq \tau$ $\}$ \rightarrow switching with (guaranteed) dwell-time τ

- other classes can be introduced in terms of average dwell-time constraints, persistence of excitation, Lipschitz constraints, ...$

Crucial property of switched systems: uniform asymptotic stability with respect to $A \in S$
Measures of stability of linear switched systems

$A \in S \rightarrow$ fundamental matrix $\Phi_A(\cdot)$ solution to

$$\frac{d}{dt} \Phi_A(t) = A(t) \Phi_A(t), \quad \Phi_A(0) = \text{Id}_d$$

- S-attractive: $\Phi_A(t) \rightarrow 0$ for every $A \in S$
- S-uniform exponential stability: $\exists C, \lambda > 0$ s.t. $\forall A \in S$
 \[
 \|\Phi_A(t)\| \leq Ce^{-\lambda t}, \quad \forall t \geq 0 \tag{\star}
 \]
Measures of stability of linear switched systems

\(A \in S \quad \overset{\text{fundamental matrix}}{\rightarrow} \quad \Phi_A(\cdot) \) solution to

\[
\frac{d}{dt} \Phi_A(t) = A(t)\Phi_A(t), \quad \Phi_A(0) = \text{Id}_d
\]

- **S-attractive:** \(\Phi_A(t) \to 0 \) for every \(A \in S \)
- **S-uniform exponential stability:** \(\exists C, \lambda > 0 \) s.t. \(\forall A \in S \)

\[
\| \Phi_A(t) \| \leq Ce^{-\lambda t}, \quad \forall t \geq 0
\]

(\(\star \))

- **uniform exponential rate:**

\[
\lambda(S) = \limsup_{t \to +\infty} \sup_{A \in S} \frac{\log(\| \Phi_A(t) \|)}{t} = \inf\{ \lambda \mid \exists C \text{ s.t. } (\star) \forall A \in S \}
\]

- **S-uniform exponential stability** \(\Leftrightarrow \lambda(S) < 0 \)
Measures of stability of linear switched systems

\[A \in \mathcal{S} \longrightarrow \text{fundamental matrix } \Phi_A(\cdot) \text{ solution to} \]

\[\frac{d}{dt} \Phi_A(t) = A(t)\Phi_A(t), \quad \Phi_A(0) = \text{Id}_d \]

- **\(\mathcal{S}\)-attractive:** \(\Phi_A(t) \to 0\) for every \(A \in \mathcal{S}\)
- **\(\mathcal{S}\)-uniform exponential stability:** \(\exists C, \lambda > 0\) s.t. \(\forall A \in \mathcal{S}\)

\[\|\Phi_A(t)\| \leq Ce^{-\lambda t}, \quad \forall t \geq 0 \] \((\star)\)

- uniform exponential rate:

\[\lambda(\mathcal{S}) = \limsup_{t \to +\infty} \sup_{A \in \mathcal{S}} \frac{\log(\|\Phi_A(t)\|)}{t} = \inf\{\lambda \mid \exists C \text{ s.t. } (\star) \forall A \in \mathcal{S}\} \]

- **\(\mathcal{S}\)-uniform exponential stability** \(\iff\) \(\lambda(\mathcal{S}) < 0\)
- maximal Lyapunov exponent:

\[\hat{\lambda}(\mathcal{S}) = \sup_{A \in \mathcal{S}} \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)\|)}{t} = \inf\{\lambda \mid \forall A \in \mathcal{S}, \exists C \text{ s.t. } (\star) \} \]

- \(\hat{\lambda}(\mathcal{S}) \leq \lambda(\mathcal{S})\)
Equality between $\lambda(S_\tau)$ and $\hat{\lambda}(S_\tau)$

Lemma (Fenichel)

Let $S = S_\tau$ for $\tau \geq 0$. Then (Σ) is S-attractive if and only if it is S-uniformly exponentially stable.

Corollary

For every $\tau \geq 0$, $\lambda(S_\tau) = \hat{\lambda}(S_\tau)$.

From now on

$$\lambda_\tau(S) := \lambda(S_\tau)$$

Our aim: give a useful characterization of $\lambda_\tau(S)$.
Let $S = \{1, \ldots, N\}$ and $Q = (q_{ij})_{i,j=1}^{N}$ be Markov transition matrix $(q_{ij} \geq 0, \sum_{j=1}^{N} q_{ij} = 1)$

A trajectory is a random variable, as well as its switching law $(i_k, t_k)_{k \in \mathbb{N}}$:

- the initial index i_1 in S is a random variable
- transition $A_{i_k} \rightarrow A_{i_{k+1}}$ at time t_k with probability $q_{i_k i_{k+1}}$
- we can introduce a dwell-time:

$$P(\{t_{k+1} - t_k \leq \theta\}) = \begin{cases} 0 & \text{if } \theta < \tau \\ \nu \int_{\tau}^{\theta} e^{-\nu(t-\tau)} dt & \text{if } \theta \geq \tau \end{cases}$$

- duration of each interval between switching times:

$$P(\{t_{k+1} - t_k \leq \theta\}) = \nu \int_{0}^{\theta} e^{-\nu t} dt$$

Furstenberg–Kesten theorem: if Q is strongly connected, then, with probability one \(\exists \lim_{t \to \infty} \frac{1}{t} \| \Phi_A(t) \| = \chi(\tau) \)
Invariant control sets of general nonlinear systems
Invariant control sets

M manifold, F family of smooth complete vector fields on M
$f(\cdot) \in \mathcal{F}_0$ piecewise constant with values in F, q initial condition
\rightarrow solution $t \mapsto \phi(t, q, f)$
Attainable set from $q \in M$: $A(q) = \{ \phi(t, q, f) \mid t \geq 0, \; f \in \mathcal{F}_0 \}$

Definition

$\emptyset \neq D \subset M$ invariant control set (ICS) if $D = \overline{A(q)}$ for every $q \in D$

Example: $A_1, \ldots, A_m \in M_d(\mathbb{R}), \, x_1, \ldots, x_m \in \mathbb{R}^d$.
If

- $\dot{x} = A_{i(t)}x$ is asymptotically stable
 (with arbitrary switching)

then

$\overline{A(x_1)} = \bigcap_{\Omega \neq \emptyset} \Omega$ compact invariant Ω

is a ICS for $\dot{x} = A_{i(t)}(x - x_{i(t)})$
Existence of invariant control sets

Theorem (see, e.g., Colonius–Kliemann, 2000)

Let M be compact. For each $q \in M$ there exists a nonempty ICS D_q contained in $\overline{A(q)}$. Assume, moreover, that F has the Lie algebra rank condition (LARC). Then

- D_q has nonempty interior
- there exists $\mathcal{C}_q \subset D_q$ open and dense in D_q such that $A(q') = \mathcal{C}_q$ for every $q' \in \mathcal{C}_q$
- there exist finitely many distinct ICS

- existence by Zorn lemma: $\overline{A(q')} \subset \overline{A(q)}$ if $q' \in \overline{A(q)}$
- nonempty interior by Krener theorem ($D_q = \overline{A(q')} \cap \overline{A(q)}$ for $q' \in D_q$)
Invariant control sets for projected linear switched systems and periodization
Some link between linear switched systems and invariant control sets

Interesting properties on the behavior of a linear switched system can be deduced from its angular component:

\[x(t) \rightarrow (\|x(t)\|, [x(t)]) =: (r(t), s(t)) \in (0, +\infty) \times \mathbb{RP}^{d-1} \]

Using local identification \([x] = \frac{\dot{x}}{\|x\|}, \dot{x} = Ax\) can be rewritten as

\[\frac{\dot{r}}{r} = \langle s, As \rangle, \quad \dot{s} = (A - \langle s, As \rangle \text{Id}_d)s =: (\pi_*A)s \]

\((\pi \Sigma)\) projected linear system on \(\mathbb{RP}^{d-1}\) associated with \(F := \pi_*S\)
Some link between linear switched systems and invariant control sets

Interesting properties on the behavior of a linear switched system can be deduced from its angular component:

\[x(t) \rightarrow (\|x(t)\|, [x(t)]) =: (r(t), s(t)) \in (0, +\infty) \times \mathbb{RP}^{d-1} \]

Using local identification \([x] = \frac{x}{\|x\|}, \dot{x} = Ax\) can be rewritten as

\[\frac{\dot{r}}{r} = \langle s, As \rangle, \quad \dot{s} = (A - \langle s, As \rangle \text{Id}_d)s =: (\pi_\ast A)s \]

\((\pi \Sigma)\) projected linear system on \(\mathbb{RP}^{d-1}\) associated with \(F := \pi_\ast S\)

- **[Arnold, Kliemann, Oeljeklaus, 1986]** → if \(F\) LARC on \(\mathbb{RP}^{d-1}\), then \((\pi \Sigma)\) has a unique ICS \(D\) and \(\text{int}(D) \neq \emptyset\)
- **[Colonius, Kliemann, 1993]** → if \(F\) LARC on \(\mathbb{RP}^{d-1}\), then \(\lambda_0(S)\) is equal to

\[\lambda_0^{\text{per}}(S) := \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)x_0\|)}{t} \mid A \in S_0, (A(\cdot), \pi\Phi_A(\cdot)x_0) \text{ periodic} \right\} \]

- For PDMP ICSs characterize support of invariant measures
 [Benaïm, Colonius, Lettau, 2017]
Interest of periodization

The identity $\lambda_0(S) = \lambda_0^{\text{per}}(S)$:

- provides a monotone finite horizon approximation scheme
- proves the Gelfand-like formula

$$\lambda_0(S) = \limsup_{t \to +\infty} \sup_{A \in S, \ x_0 \neq 0} \frac{\log(\rho(\Phi_A(t)))}{t}$$

with ρ spectral radius

- can be used to show continuity of $S \mapsto \lambda_0(S)$
- first introduced to bound large deviations for Piecewise Deterministic Markov Processes [Arnold, Kliemann, 1987]
Let $x(t) = \Phi_A(t)x_0$ be (quasi-)maximizing for $\lambda_0(S)$

In order to prove that $\lambda_0^{\text{per}}(S) \geq \lambda_0(S) - \varepsilon$ we should be able to close the loop and, for t large, use $(\pi \Sigma)$ to go from $[x(t)]$ to $[x_0]$
Periodization (proof by Colonius and Kliemann)

\[\lambda_0(S) = \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)x_0\|)}{t} \mid A \in S_0, x_0 \neq 0 \right\} \]

\[\lambda_{0}^{\text{per}}(S) = \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)x_0\|)}{t} \mid A \in S_0, (A(\cdot), \pi \Phi_A(\cdot)x_0) \text{ periodic} \right\} \]

Let \(x(t) = \Phi_A(t)x_0 \) be (quasi-)maximizing for \(\lambda_0(S) \)

In order to prove that \(\lambda_{0}^{\text{per}}(S) \geq \lambda_0(S) - \varepsilon \) we should be able to close the loop and, for \(t \) large, use \((\pi \Sigma)\) to go from \([x(t)]\) to \([x_0]\)

- **Step 1:** Choose \(x_0 \) appropriately. Take \(D \) the unique ICS for \((\pi \Sigma)\), fix \(v_1, \ldots, v_d \) linearly independent in \(\text{int} D \). Since
 \[\| M \| = \max_{i=1}^{d} \| Mv_i \| \] is a norm on \(M_d(\mathbb{R}) \), we can take as \(x_0 \) one of the \(v_i \)

- **Step 2:** guarantee that there exist a uniform controllability time \(T \) for driving \((\pi \Sigma)\) from any point in \(D \) to any of the \(v_i \) within time \(T \)
Dwell-time invariant control sets for general nonlinear systems
Goal: extend control sets analysis to the dwell-time case

- The definition of invariant control sets does not suit the dwell-time case (invariance fails to see dwell-time)
- Mathematically, the difficulty come from non-concatenability of the class of admissible signals
- Equivalently, the family of admissible flows is not a semigroup
- Idea: recover main geometric properties by looking not at attainable sets (built with entire trajectories issuing from a point) but only at points which are attainable in a *concatenable* manner

Dwell-time attainable set: \(A_\tau(q) = \{ \phi(T, q, f) | f|_{[0,T]} \in \mathcal{F}_\tau \} \)

with

\[\mathcal{F}_\tau = \{ f_1 \ast \cdots \ast f_m | m \in \mathbb{N}, f_i \text{ constant on a interval of length } \geq \tau \} \]

Note: \(\mathcal{F}_\tau \) not shift invariant!
Semigroups of concatenable flows

\[\mathcal{S}_\tau = \{ \phi(T, \cdot, f) \mid f|_{[0,T]} \in \mathcal{F}_\tau \} \]

Then \(A_\tau(q) = \mathcal{S}_\tau(q) \).

Definition

\(D \) is a dwell-time invariant control set (\(\tau \)-ICS) if \(D = \overline{A_\tau(q)} \) for every \(q \in D \).

Remark

[San Martin, 1993] already studied control sets for orbits of not necessarily connected semigroups, in a setting which does not directly applies here (semigroup with nonempty interior in a Lie group \(G \) and action on some \(X/G \)).
Basic properties of dwell-time attainable and control sets

Theorem

Let M be compact, $\tau \geq 0$. For each $q \in M$ there exists a τ-ICS D_q contained in $\overline{A_\tau(q)}$. If, moreover, F has the LARC, then $\text{int} D_q \neq \emptyset$

Remark: if there exists \bar{q} such that $\bar{q} \in D_q$ for every $q \in M$, then there exists a unique τ-ICS ($= \overline{A_\tau(\bar{q})}$)

Lemma

Let F satisfy LARC and assume that $D \subset M$ is a τ-ICS. Then

(i) $\overline{\text{int}(D)} = D$

(ii) $\Phi(\text{int}(D)) \subset \text{int}(D)$ for every $\Phi \in \mathcal{S}_\tau$

(iii) There exists an open and dense subset \mathcal{C} of D such that $\mathcal{C} = \mathcal{S}_\tau(q)$ for all $q \in \mathcal{C}$
Dwell-time invariant control sets and linear switched systems with dwell-time
Example of dwell-time control set for projected linear switched system

\[f_1, f_2 \text{ vector fields on } \mathbb{RP}^1, \text{ conjugate to } \dot{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x \]

\[A' := e^{\tau f_1}(B), \quad B' := e^{\tau f_2}(A) \]

- \[D = \hat{AA'} \cup \hat{B'B} \text{ unique } \tau\text{-ICS} \]
- if \(\tau_* \) is such that \(e^{\tau_* f_1}(B) = e^{\tau_* f_2}(A) \) then \(\tau \leq \tau_* \rightarrow D = \hat{AB}; \quad \tau > \tau_* \rightarrow D \text{ disconnected} \)
- \(C = \text{int}(\hat{AA'}) \cup \text{int}(\hat{B'B}) \) (\(\neq \text{int}D \) for \(\tau = \tau_* \))
Theorem (F. Boarotto, M.S., JDE, to appear)

Let $S \subset M_d(\mathbb{R})$ and $\tau \geq 0$. Then $\lambda_\tau(S) = \lambda_\tau^{\text{per}}(S)$

Idea: restrict the projected system to some orbit for the family $\pi_* S$

$O([x_0]) = \{ [x(t)] \mid \dot{x} = A(t)x, \, x(0) = x_0, \, A(t) \in S \cup -S \}$

$(M, F) = (O([x_0]), \pi_* S)$

Advantages

- $O([x_0])$ has the structure of smooth manifold (Orbit theorem)
- LARC of the system restricted to M is for free
Periodization without LARC condition

Theorem (F. Boarotto, M.S., JDE, to appear)

Let $S \subset M_d(\mathbb{R})$ and $\tau \geq 0$. Then $\lambda_{\tau}(S) = \lambda_{\tau}^{\text{per}}(S)$

Idea: restrict the projected system to some orbit for the family π_*S

$O([x_0]) = \{[x(t)] \mid \dot{x} = A(t)x, \ x(0) = x_0, \ A(t) \in S \cup -S\}$

$(M, F) = (O([x_0]), \pi_*S)$

Advantages

- $O([x_0])$ has the structure of smooth manifold (Orbit theorem)
- LARC of the system restricted to M is for free

Difficulties

- we should guarantee that the orbit carries all informations about asymptotic behavior \rightarrow reduction to irreducible case
- existence of τ-ICS requires compactness of orbits
Existence of a closed orbit

Theorem

Let B be the group generated by $\{e^{tA_j} \mid t \in \mathbb{R}, j = 1, \ldots, m\}$ (any connected Lie subgroup of $GL(\mathbb{R}, d)$). Then the action

$$\varphi : B \times \mathbb{S}^{d-1} \to \mathbb{S}^{d-1}, \quad \varphi(b, x) = \frac{bx}{\|bx\|},$$

induced by B on the $(d - 1)$-dimensional unit sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ admits at least one closed orbit in \mathbb{S}^{d-1} (and the same is true for \mathbb{RP}^{d-1})

Existence (and even uniqueness) of τ-ICS is obtained and Colonius–Kliemann’s periodization argument can be performed, proving $\lambda_\tau(S) = \lambda_\tau^{\text{per}}(S)$
We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold).
Conclusions and perspectives

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold).

- This gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time [Wirth, 2005].
Conclusions and perspectives

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold).

- This gives an alternative proof of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time [Wirth, 2005].

- Existence of a compact orbit for a projected linear system could be useful for other control problems.
Conclusions and perspectives

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold)
- this gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time \cite{Wirth, 2005}
- existence of a compact orbit for a projected linear system could be useful for other control problems
- τ-ICS to characterizes support of the invariant measure for piecewise deterministic random process with dwell time
Conclusions and perspectives

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case \(\tau = 0 \) when the LARC does not hold)
- This gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time \([\text{Wirth, 2005}]\)
- Existence of a compact orbit for a projected linear system could be useful for other control problems
- \(\tau \)-ICS to characterizes support of the invariant measure for piecewise deterministic random process with dwell time
- **Ongoing work:** adapt our technique to a more abstract setting applying to other non-concatenable classes of switching signals