An Adaptive Optimal Multi-Surface Back-Stepping Sliding Mode Control Design for the Takagi-Sugeno Fuzzy Model of Uncertain Nonlinear System with External Disturbance

Farzad Soltanian1, Mokhtar Shasadeghi1, Saleh Mobayen2-3, and Aref Fekih4

1Electrical Engineering Faculty, Shiraz University of Technology, Shiraz, Iran
2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran
3 Future Technology Research Center, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
4 Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, USA

ABSTRACT This paper proposes a novel scheme of the multi-objective robust control design for a class of uncertain nonlinear systems in strict-feedback form based on Takagi–Sugeno fuzzy model (TSFM). The nonlinear system contains both the matched and the unmatched uncertainties and also subjected to the external disturbances. The TSFM provides the generalization of the linear systems concepts to the nonlinear systems field in a convex framework. First, a new sliding surface is defined using a convex combination of the surfaces which are defined for each fuzzy rule consequence local linear subsystems. Then, their gains are designed optimally via a generalized eigenvalue problem (GEVP). Also, the upper-bounds of the matched and unmatched uncertainties are estimated using the adaptive update laws. The multi-objective control aims not only to satisfy the H_2-optimization performance, but also, α-stability region is formulated to improve the transient response performance. The H_2-optimization characterization and α-stability design conditions are derived in terms of new linear matrix inequalities (LMIs) conditions. Finally, the effectiveness of the proposed approach is demonstrated by considering a comparative practical example.

INDEX TERMS Back-Stepping Sliding Mode Control Approaches, H_2-Performance, LMI, Regional Pole Placement, Takagi–Sugeno Fuzzy Model, Unknown Bounded Uncertainty.

I. INTRODUCTION

Takagi-Sugeno (T-S) fuzzy model with sector nonlinearity approaches is commonly used to describe an exact model of a nonlinear system with uncertainties [1]. The basic idea behind the T-S fuzzy approach is to decompose a non-linear system into several local linear models. Then, each linear model aggregates in a convex structure in terms of the normalized weighting. The linear control theory can be applied to each local linear model. After that, the nonlinear control can be obtained by fuzzy blending. These advantages make the T-S fuzzy model a useful tool to model the complex nonlinear system.

A. Review of the literature of nonlinear control approaches

Backstepping control is a powerful nonlinear control method [9, 10], but it is not inherently robust against the inevitable undesired phenomena such as uncertainties and external disturbance. To design a robust backstepping control, some robust approaches have been synthesized with this scheme [11, 12]. However, these studies were concerned just for special classes of nonlinear systems including, e.g., strict-feedback systems [13], block-strict-feedback systems [14, 15] and special practical systems [16, 17]. Furthermore, backstepping control does not generate a constrained control input and the previous studies that considered the constrained control are established for a strict class of the systems or special cases [18, 19]. Summary of the above, a universal backstepping control in which incorporate the robustness, constraints and optimality, simultaneously for a wide class of the nonlinear systems is not presented up to now. However, the desired tracking performance for the systems with parameters/ functions uncertainty cannot be guaranteed via back-stepping control law design. The system stability also may be destroyed in some cases. In contrast, sliding mode control
control (SMC) is a powerful technique that make ensures robustness of the desired system performance in presence of uncertainty [20-25]. It has received a great deal of attention in study of nonlinear control field such as biological systems, fault-tolerant control systems, robotic systems, space, and so on [26-29]. In addition, SMC has been utilized to compensate the additional uncertainties of the T–S fuzzy system [30]. In [31], for a class of uncertain discrete systems with packet losses, time delays, and ambient noise, a sliding surface was designed. Their studied system can be considered as a linear system with a matched nonlinear uncertainty which instead of the external disturbance, the ambient noise is studied. As a restriction of the approach in [31], satisfying some of the conditions are necessary, which can reduce the applicability of the proposed scheme. On another side, in [31], during the sliding surface design, they neglect some of the system dynamic terms. To do this, a gain is considered in both the integral sliding mode surface and the sliding mode controller structures to attenuate the noise effects on the dynamics. The approach in [31] may lead to non-optimal sliding surface and then needs to more control effort to reach the sliding surface. Since, utilizing SMC design requires a priori knowledge of the uncertainties, a new sliding mode back-stepping technique was proposed in [32] by combining sliding mode control design and the adaptive back-stepping technique with tuning functions to make ensure the movement of the tracking error will be along the sliding hyperplane. Besides, internal dynamic stability is a necessity for applying the SMC approach [33]; but, the system’s zero dynamics stability seldom has been inspected in the literature.

Recently, to solve the robust performance control design problem, many back-stepping sliding mode controls (BSMCs) schemes through the combination of back-stepping control mechanism and SMC design have been developed, while the unmatched uncertainty generally was not considered [21, 22, 34]. In [22], for a knee exoskeleton used in order to assist human movement, a nonlinear disturbance observer was suggested and combined with a back-stepping sliding mode control. The approach in [22] had been used to reduce the influence of the modeling uncertainty and disturbance. In [21], an observer based backstepping terminal sliding mode controller for three degrees of freedom (DOF) robot manipulator was employed. In [34], using high-order extended state observer for the six DOF quadrotor unmanned aerial vehicle system, a BSMC algorithm was proposed to overcome the problems of the external wind disturbances and etc. Since, in the above-mentioned BSMC designs, the control system stability is strictly guaranteed in a step-by-step backstepping algorithm; therefore, the unstable zero dynamics effect on the system can be avoided. However, information about the parameter uncertainty and external disturbance upper bounds must be available to derive the switching gain of the BSMC; but, in most cases, such information cannot be obtained and if one uses a conservative method to make ensure the system stability by selecting a large switching gain, severe chattering may be occurred [35]. In other sides, H_2-characterization can be used in the SMC design to optimize the desired performance [36, 37]. In [36], a combination of the H_2-characterization and partial eigenstructure assignment was proposed to obtain the optimal gain of the conventional sliding surface for the linear system with matched uncertainty and external disturbances. In order to improve the buck converter robustness, a different hybrid H_2 model following control based on the digital redesign SMC approach was proposed in [37]. In addition, to improve the transient time performance, pole placement has been combined with H_2-characterization problem [38, 39]. In [38], an optimal control with H_2-characterization and regional pole constraint had been formulated using static state feedback. The design conditions were derived in terms of the LMIs and was employed on a power system model. In [39], for a small power system to be secured against inter-area modes, its controllers were designed with a mixed H_2/H_{∞} optimization with regional pole placement.

The literature reviews show that the existing works tolerates from some practical issues in their design methods, i.e., poor transient response, practical aspects such as uncertainties and disturbances, and control effort. Thanks to fruitful TSFM representations of complex nonlinear systems, allows generalizing the well-known techniques in linear systems theory to nonlinear systems analysis and design. Transient response improvement for SMC-based nonlinear controller design is an interesting and challenging topic. Convex structure of TSFM representation of nonlinear systems provides us to design linear controller for the consequence subsystems optimally and then aggregate the controllers for the original nonlinear system. Moreover, elaborations of uncertainties and external disturbances, simultaneously, are another challenge topic for considering practical considerations in controller design.

In this paper, TSFM is used to describe a class of nonlinear systems with both the matched and the unmatched uncertainties. In this work, we suppose that the studied TSFM has an unknown bound of uncertainty and is exposed to an external disturbance. Therefore, as a well-known approach in robust control of nonlinear systems with bounded norm uncertainty, SMC has been utilized in this paper. Besides, due to the weakness of the SMC attenuation of the unmatched uncertainty as well as the matched uncertainty, by proposing new sliding surfaces to deal with both of the matched and the unmatched uncertainties, a new scheme of the SMC design based on the back-stepping procedure is proposed. Also, some adaptive laws are derived to estimate the bound of uncertainties. This paper aims to reduce the undeniable chattering phenomena in high frequency and tries to attenuate the external disturbance. In addition, in contrast to the previous works, we design an optimal sliding gain by considering all of the system specification, system limitation, and the required control effort to reach the desired transient time performance. To do this, first, the sliding surface and the optimal control input are defined such that they depend on the desired optimal state feedback gains. The optimal state feedback gains are designed such that the H_2-performance
specification and α-stability condition are satisfied. Hence, in this paper to overcome the SMC weakness, a new robust control scheme is proposed to design an optimal dynamic BSMC for the nonlinear system described by TSFM. The main advantage and contribution of our proposed approach can be recurred as following:

1- An optimal and adaptive BSMC scheme is designed for a nonlinear system with all kinds of uncertainties and subjected to the external disturbance. To do this, we consider the H_∞-performance problem specification and α-stability constraint during the sliding surface design. In addition, we propose a novel virtual control law to improve the robust performance of the nonlinear system.

2- The SMC design approaches usually suffer from knowing a priori knowledge about the bounds of the uncertainties. These bounds of the uncertainties are not available in many practical systems; therefore, to solve this, we derived some adaptive laws to estimate the unknown bounds of the uncertainties.

3- In this paper, we use the hyperbolic function instead of the signum function to reduce the chattering phenomena; i.e., tan $h(\cdot)$.

This paper is organized as follows: In Section II, a class of nonlinear system with the matched and unmatched uncertainties based on TSFM description is introduced. In Section III, a novel sliding mode controller is proposed to be designed based on the back-stepping approach. In Section IV, first, new LMI characterization for the H_∞-problem and the α-stability constraint will be introduced to find optimal state feedback gain. Then, in the framework of the convex optimization problem, the optimal matrix gains of the sliding surface are designed. In Section V, to show the effectiveness of the proposed method, a two-link robot manipulator system is considered in a comparative example and the paper conclusion and future works are drawn in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a T-S fuzzy model of the nonlinear system with the matched and the unmatched uncertainties as follows:

$$\dot{x}_1(t) = x_2(t) + d_1(x)$$

$$\dot{x}_2(t) = \sum_{i=1}^{r} h_i(\mu_i) \{A_{s_i}x(t) + B_{1_{s_i}}u(t)\} + d_2(x)$$

(1)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, and $z \in \mathbb{R}^q$ denote the state vector, the control input vector, the measured output vector, and the H_∞-performance output vector, respectively. The state vector $x \in \mathbb{R}^n$ are defined as $x = [x_1 \ x_2]^T; x_1 \in \mathbb{R}^{n_1}; x_2 \in \mathbb{R}^{n_2}; n_1 + n_2 = n$, and $n_1 = n_2$. Also, $d_1(x) \in \mathbb{R}^{n_1}$ and $d_2(x) \in \mathbb{R}^{n_2}$ denote the bounded matched and unmatched uncertainty with unknown bound, respectively. The system uncertainty satisfies the boundary conditions as $\|\tilde{d}_1(x)\| < \delta_1\|x(t)\|$, $\|d_2(x)\| < \delta_2\|x(t)\|$, and $\|\tilde{d}_1(x)\| < \delta_3\|x(t)\|$, where parameters δ_1, δ_2, and δ_3 are positive constants. $A_{s_i} \in \mathbb{R}^{n \times n}$; $B_{1_{s_i}} \in \mathbb{R}^{n \times m}; C_i \in \mathbb{R}^{r_{1_s} \times n}$; $D_i \in \mathbb{R}^{r_{2_s} \times m}$ are the system matrices with appropriate dimensions. Also, $h_i(\mu_i)$ denotes the relative weighting value (normalized membership function), in which $h_i(\mu_i) \geq 0$ and $\sum_{i=1}^{r} h_i(\mu_i) = 1$. In this paper, we suppose that $q \leq m \leq \frac{n}{2}$. Using parallel distributed controller (PDC) [1] for the TSFM (1), the control input is considered as

$$u(t) = \sum_{i=1}^{r} h_i(\mu_i) K_i x(t)$$

(2)

where K_i denotes the control input gain for the ith fuzzy rule consequence subsystem, and $h_i(\mu_i)$ stands for the normalized membership function.

In this paper to handle both the matched and the unmatched uncertainties, first, the system states (1) are decoupled into the two subsystems as follows:

$$\dot{x}_1(t) = x_2(t) + d_1(x)$$

(3)

In subsystem (3), by considering the state variable $x_2(t)$ as a virtual control input, the matched uncertainty $d_1(x)$ can be handled by SMC approaches. Using system decomposition, the second subsystem is presented as follows:

$$\dot{x}_2(t) = \sum_{i=1}^{r} h_i(\mu_i) \{A_{s_i}x(t) + B_{1_{s_i}}u(t)\} + d_2(x)$$

(4)

where the matched uncertainty $d_2(x)$ can be handled by selecting an appropriate control input. We will aim to design a BSMC for dynamics (3)-(4) to achieve transient response improvement optimally and providing acceptable attenuation level of the effects of the uncertainties and external disturbances. Moreover, practical issues are considered in the control effort design. Therefore, a multi-objective controller design is designed based on H_∞-performance characterization and α-stability methods in the BSMC framework.

III. BACKSTEPPING-BASED SLIDING MODE CONTROLLER DESIGN

In this section, a new approach to design SMC for the nonlinear system (1) is proposed. Since $y(t)$ is the measured output vector, consider $y_d(t)$ as the desired output vector, the output tracking error can be defined as $e_1(t) = x_1(t) - y_d(t)$. Hence, the first and the second time-derivatives of $e_1(t)$ are obtained as follows:

$$\dot{e}_1(t) = x_2(t) - y_d(t)$$

(5)

$$\ddot{e}_1(t) = x_2(t) + d_1(x(t)) - y_d(t)$$

(6)

Define $e_2 := e_1$, the tracking error dynamics (5)-(6) can be rewritten as

$$\dot{e}_2 = \sum_{i=1}^{r} h_i(\mu_i) \{A_{s_i}x(t) + B_{1_{s_i}}u(t)\} + d_2(x)$$

(7)

$$\ddot{e}_2 = \sum_{i=1}^{r} h_i(\mu_i) \{A_{s_i}x(t) + B_{1_{s_i}}u(t)\} + d_2(x)$$

(8)

Now, a sliding mode controller for the tracking error dynamic (7)-(8) will be designed based on the back-stepping approach in two steps. In the first step, a virtual controller is designed for (7). After that, in the second step, a controller is designed for (8), and consequently, for the overall output tracking error system.

Step1: Consider $x_2(t)$ as the virtual control input, then, (5) is rewritten as follows:

$$\dot{e}_1 = x_1 - y_d = x_2(t) + d_1(x(t)) - y_d$$

(9)

where $x_2(t) = \alpha(e_1(t)) + y_d(t) - \int_0^t \rho_s \mathbf{sgn}(\alpha_1) \, dt$ stands the virtual control input to be obtained such that the first state
vector $e_1(t)$ reaches to zero at finite-time in the presence of the uncertainty $d_1(x)$. To do this, consider the sliding surface for (9) as follows:

$$\sigma_1 = S(e_1 + k_1 e_1)$$ \hspace{1cm} (10)

where $S \in \mathbb{R}^{m \times n_1}$ and $k_1 \in \mathbb{R}$, $k_1 > 0$ are the sliding gains to be obtained. Moreover, the switching matrix gain is defined as $S = \sum_{i=1}^{r} h_i(\mu) S_i(\mu)$. One can select the virtual control input as

$$x_{2d}(t) = \alpha(e_1(t)) + \gamma_d - \int_0^t \hat{\beta}_1 \text{sign} (\sigma_1) d\tau$$

where $\alpha(e_1(t)) = -k_1 e_1(t)$, and show that the system dynamic (9) will be asymptotically stable using the virtual control input $x_{2d}(t)$.

Now, the sliding surface (10) can be rewritten as

$$\sigma_1 = S(e_1 + k_1 e_1)$$

$$= S(x_{2d}(t) + d_1(x) - \gamma_d + k_1 e_1)$$

$$= -k_1 e_1(t) + \gamma_d - \int_0^t \hat{\beta}_1 \text{sign} (\sigma_1) d\tau$$

$$+ d_1(x) + k_1 e_1(t) - \gamma_d$$

$$= S(- \int_0^t \hat{\beta}_1 \text{sign} (\sigma_1) d\tau + d_1(x))$$

$$\sigma_1 = S(e_1 + k_1 e_1)$$

$$= S(x_{2d}(t) + d_1(x) - \gamma_d + k_1 e_1)$$

$$= -k_1 e_1(t) + \gamma_d - \int_0^t \hat{\beta}_1 \text{sign} (\sigma_1) d\tau$$

$$+ d_1(x) + k_1 e_1(t) - \gamma_d$$

$$= S(- \int_0^t \hat{\beta}_1 \text{sign} (\sigma_1) d\tau + d_1(x))$$

(11)

The bound of uncertainty can be calculated by proposing the constant bound as $\rho_1 = \epsilon_1 + \delta_1 \|x(t)\|$, where ϵ_1 is a known positive small scalar value.

To estimate the bound $\hat{\beta}_1$, define $\hat{\delta}_1 = \hat{\delta}_1 - \delta_1$ as the error between the estimated and the true values of the coefficient in the uncertainty bound equation. Then, the estimated bound of the uncertainty and the coefficient are obtained as

$$\hat{\beta}_1 = \epsilon_1 + \hat{\delta}_1 \|x(t)\|$$

$$\hat{\delta}_1 = \eta_1 \|\sigma_1\| \|S\| \|x(t)\|$$

where η_1 is an arbitrary small positive constant value.

Lemma 1: The tracking error trajectory (9) is asymptotically stable using $x_{2d}(t) = -k_1 e_1(t) - \int_0^t \hat{\beta}_1 \text{tanh} (\sigma_1) d\tau$ with parameters update rule given in (12).

Proof: Consider the Lyapunov function candidate as follows:

$$V_1 = \frac{1}{2} \sigma_1^T \sigma_1 + \frac{1}{2\eta_1} \hat{\delta}_1^2$$

(13)

Take the time-derivative on (13), one has

$$\dot{V}_1 = \sigma_1^T \dot{\sigma}_1 + \frac{1}{\eta_1} \hat{\delta}_1 \dot{\hat{\delta}}_1$$

$$\dot{V}_1 < -\epsilon_1 \|\sigma_1\| \|S\| - \|\sigma_1\| \|S\| \|x(t)\| \hat{\delta}_1 + \frac{1}{\eta_1} \hat{\delta}_1 \dot{\hat{\delta}}_1$$

(14)

Substitute $\hat{\beta}_1$ from (12) in (14) yields

$$\dot{V}_1 < -\epsilon_1 \|\sigma_1\| \|S\| - \|\sigma_1\| \|S\| \|x(t)\| \hat{\delta}_1 + \frac{1}{\eta_1} \hat{\delta}_1 \dot{\hat{\delta}}_1$$

$$\dot{V}_1 < -\epsilon_1 \|\sigma_1\| \|S\| - \|\sigma_1\| \|S\| \|x(t)\| \hat{\delta}_1 + \frac{1}{\eta_1} \hat{\delta}_1 \dot{\hat{\delta}}_1$$

(15)

Substitute $\hat{\beta}_1$, given in (12), in (15) yields

$$\dot{V}_1 < -\epsilon_1 \|\sigma_1\| \|S\| < 0$$

(16)

From (16), the proof is completed.

Step 2: Since the $x_2(t)$ is not necessarily available, we propose the new variable $z_2(t) = x_2(t) - x_{2d}(t)$ as the difference between $x_2(t)$ and the desired virtual control input. Also, we define $\delta_2 = \delta_2 - \delta_3$ and $\delta_3 = \delta_3 - \delta_3$ as the difference between the estimated and the true values of the upper-bounds of both uncertainties; i.e., $d_2(x)$ and $d_1(x)$. Then, for $d_2(x)$, the estimated upper-bound and parameter adaption law are obtained as follows:

$$\hat{\rho}_2 = \epsilon_2 + \delta_2 \|x(t)\|$$

$$\hat{\delta}_2 = \eta_2 \|\sigma_2\| \|S\| \|x(t)\|$$

where η_2 is an arbitrary small positive constant value. In addition, the estimated upper-bound and parameter adaption law for $d_1(x)$ are obtained as

$$\hat{\rho}_1 = \epsilon_3 + \delta_3 \|x(t)\|$$

$$\hat{\delta}_3 = k_1 \eta_3 \|\sigma_2\| \|S\| \|x(t)\|$$

where η_3 is an arbitrary small positive constant value, and k_1 is the same as the constant value in (10) which to be designed.

Now, consider a traditional sliding surface for the system dynamics (4) as follows:

$$\sigma_2 = S(x_2(t) - x_{2d}(t))$$

Theorem 1 shows that the error $e_2(t)$ in (8) converges to origin with the control input $u(t)$ as follows:

$$u(t) = -\frac{S}{2S_2} \text{tanh} (\sum_{i=1}^{r} h_i(\mu) \{A_{s,i} x(t)\} - k_x^2 x(t))$$

$$+ \frac{S}{2S_2} \text{tanh} (\sum_{i=1}^{r} h_i(\mu) \{B_{s,i} u(t)\} + d_2(x)$$

$$+ \frac{S}{2S_2} \text{tanh} (\sum_{i=1}^{r} h_i(\mu) \{\beta_1 x(t)\} + d_1(x))$$

(19)

Moreover, one can select the membership functions and sliding gains as follows:

$$\eta_{s,i} = \eta_{s,i} \|\sigma_{s,i}\| \|S\| \|x(t)\|$$

$$k_{s,i} = k_{s,i} \|\sigma_{s,i}\| \|S\| \|x(t)\|$$

(20)

where $\eta_{s,i}$ and $k_{s,i}$ are the sliding gains and sliding membership functions.

Theorem 1: The tracking error dynamics (8) is asymptotically stable using the control input (20) and parameters updating rules (17)-(18).

Proof: Select the Lyapunov candidate as follows:

$$V_2 = \frac{1}{2} \sigma_2^T \sigma_2 + \frac{1}{2\eta_2} \hat{\delta}_2^2$$

(21)

Time-derivative of $z_2(t)$ is obtained as

$$\dot{z}_2(t) = \dot{x}_2(t) - \dot{x}_{2d}(t)$$

(21)

Substituting $\dot{x}_2(t)$ and $x_{2d}(t) = x_{2d}(t) + d_1(x)$ in (22), one has

$$z_2(t) = \sum_{i=1}^{r} h_i(\mu) \{A_{s,i} x(t) + B_{s,i} u(t)\} + d_2(x)$$

$$+ \frac{S}{2S_2} \text{tanh} (\sum_{i=1}^{r} h_i(\mu) \{\beta_1 x(t)\} + d_1(x))$$

(23)

Now, using (23), time-derivative of (21) is obtained as

$$\dot{V}_2 = \frac{1}{2} (S \dot{z}_2)^T (S \dot{z}_2) + \frac{1}{2} (S \dot{z}_1)^T (S \dot{z}_1) + \frac{1}{\eta_3} \dot{\hat{\delta}}_3 + \frac{1}{\eta_2} \dot{\hat{\delta}}_3$$

(24)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3148606, IEEE Access
Substituting the control input (20) with \(k_2 > 0 \) in (24), one has
\[
V_2 = (S\sigma_2)^T(-S\delta\sigma_2 + k_1\delta\sigma_2) + Sd_2(x) + k_1\sigma_2 \leq 0
\]
for the nonlinear system (30), the following statements are equivalent:

\[a\) \exists K_j, j = 1, \ldots, r, such that \(A_i + B_{1,i}K_j \) is stable and the \(H_2 \) performance from the disturbance \(w(t) \) to the output \(z \) is less than \(\gamma \).
\[
\sum_{i=1}^{r} \sum_{j=1}^{\infty} h_i(\mu) \left(\left[C_i + D_{i,j} \right] \right) \times \left[SI - \left(A_i + K_j \right) \right]^{-1} B_{2,i} \right]^2 < \gamma
\]
\[b\) \exists X > 0 and \(Z > 0 \) such that
\[
\sum_{i=1}^{r} \sum_{j=1}^{\infty} h_i(\mu) \left[A_i X + B_{1,i} Y_i + Y_i X A_i^T + Y_i^T B_{1,i}^T \right] \left(C_i X + D_{i,j} Y_i \right) \gamma I < 0
\]
\[c\) \exists X > 0, Z > 0 and nonsingular matrix \(G \) such that
\[
\sum_{i=1}^{r} \sum_{j=1}^{\infty} h_i(\mu) \left[G A_i + G B_{1,i} Y_i + X + X^T \right] \left[C_i G + D_i Y_i \right] \gamma I < 0
\]
trace(\(Z\)) < 1 \tag{37}

where \(Y_f = K_f G\) and \(X > 0, Z > 0\) are positive definite matrices and \(G\) is a general nonsingular matrix variable.

Proof: Note that parts (a& b) are equivalent forms of the standard \(H_2\) state-feedback synthesis which is developed by Lemma (1) in [41] for the T-S fuzzy system. To prove part (c), it is based on a convex combination upon the extended \(H_2\)-characterization suggested in [42]. The \(H_2\)-characterization can be rewritten [42] for each consequence linear subsystem (30) as

\[
\begin{bmatrix}
-(G + G^T) & * & * & * \\
A_i G + B_{i1} Y_j + X & -X & * & * \\
C_i G + D_i Y_j & 0 & -\gamma I & * \\
G & 0 & 0 & -X
\end{bmatrix} < 0
\tag{38}
\]

Using Schur complement, (38) is rewritten as

\[
\begin{bmatrix}
-(G + G^T) + G^T X^{-1} G & * & * \\
A_i G + B_{i1} Y_j + X & -X & * \\
C_i G + D_i Y_j & 0 & -\gamma I \\
-(G + G^T) & X & 0 & 0
\end{bmatrix} < 0
\tag{39}
\]

trace(\(Z\)) < 1

Lemma 3: For the nonlinear system (30), the following statements are equivalent:

a) For \(i, j = 1, \ldots, r\)

\[
(A_i + B_{i1} K_f)X + X(A_i + B_{i1} K_f)^T + 2\alpha X < 0 \tag{49}
\]

b) \(\exists X > 0, (G + G^T) > 0\) and nonsingular matrix \(Y_f\) such that

\[
\sum_{i=1}^{r} \sum_{j=1}^{r} h_i h_j \begin{bmatrix}
(G + G^T) & * \\
X + A_i G + B_{i1} Y_j & -2X
\end{bmatrix} < 0 \
\sqrt{2\alpha G} \begin{bmatrix} 0 & -X
\end{bmatrix} < 0
\tag{50}
\]

Proof: Using Schur complement lemma, (50) can be rewritten for each consequence subsystem as

\[
\begin{bmatrix}
-(G + G^T) + 2\alpha G^T X^{-1} G & * \\
X + A_i G + B_{i1} Y_j & -2X
\end{bmatrix} < 0 \tag{51}
\]

which \(G + G^T > 0\). Applying the congruence transformation by \(G^{-T} \begin{bmatrix} 0 & X^{-1} \end{bmatrix} G\) in (51), results in

\[
\begin{bmatrix}
-(G + G^T) + 2\alpha \bar{X} & * \\
X A_i + X B_{i1} K_f + \bar{X} & -2\bar{X}
\end{bmatrix} < 0 \tag{52}
\]

where \(\bar{G} = G^{-1}, \bar{X} = X^{-1}\), and \(K_f = Y_f G^{-1}\). Then (52) can be rewritten as

\[
\begin{bmatrix}
2\alpha \bar{X} & * \\
X A_i + X B_{i1} K_f + \bar{X} & -2\bar{X}
\end{bmatrix} < 0 \tag{53}
\]

Employing the Projection lemma, (53) holds if the following inequalities are satisfied

\[
\begin{bmatrix} I \\ I \end{bmatrix} \begin{bmatrix}
2\alpha \bar{X} & * \\
X A_i + X B_{i1} K_f + \bar{X} & -2\bar{X}
\end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix} < 0 \tag{54}
\]

\[
\begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix}
2\alpha \bar{X} & * \\
X A_i + X B_{i1} K_f + \bar{X} & -2\bar{X}
\end{bmatrix} \begin{bmatrix} 0 \\ I \end{bmatrix} < 0 \tag{55}
\]

Inequality (55) indicates \(-\bar{X} < 0\) and (54) is equivalent to

\[
\bar{X}(A_i + B_{i1} K_f) + (A_i + B_{i1} K_f)^T \bar{X} + 2\alpha \bar{X} < 0 \tag{56}
\]

Pre- and post-multiplying \(X = \bar{X}^{-1}\) in (58), yields

\[
(A_i + B_{i1} Y_j)X + X(A_i + B_{i1} Y_j)^T + 2\alpha X < 0 \tag{57}
\]

where \(Y_f = K_f X\). Employing Schur complement lemma on (57), shows that it is equivalent to (49). The proof is completed.

To design the multi-objective state feedback control and to achieve the transient performance improvement and disturbance attenuation objects concurrently, the following generalized eigenvalue problem (GEVP) is proposed:

\[
\text{minimize } \gamma \\
\text{subject to } \\
(37), (38), (39) \text{ and } (50) \text{ for } (30).
\tag{58}
\]

To obtain the sliding gain \(S\) in (10), the \(j\)th sliding gain \(S_j\) is calculated from the following equation

\[
\begin{aligned}
&- (S_j B_{1s,j})^{-T} S_j (A_i - (k_i - k_2) k_i) A_{2j} + k_2 x + S_j Y_{d,j} \quad \text{for } j = 1, \ldots, r \tag{59}
\end{aligned}
\]

Suppose that \(S_j = B_{1s,j}^{-T} P_j\), where \(P_j\) are positive definite matrices. Assume that \(S_j B_{1s,j}\) is invertible. If \(S_j B_{1s,j}\) is not invertible, one may use regularization approach [43, 44] to
proceed the design procedure. Then, to obtain P_j, using a simple relaxation method, (59) can be rewritten as

$$\minimize \delta_j$$

subject to

$$\left\| B_i^T P_j \left(A_{i,j} x + \hat{y}_d - B_{i,j} K_j x \right) \right\| < \delta_j,$$

for $j = 1, \ldots, r$.

(60)

where $A_{i,j} = [A_{i,j} - (k_1 - k_2) k_1 A_{2,i} + k_2], \delta_j > 0$, and K_j are the j-th state-feedback gains in (2).

Using Schur complement lemma, the GEVP problem (60) is rewritten as follows:

$$\minimize \delta_j$$

subject to

$$\left[B_i^T P_j (A_{i,j} x + \hat{y}_d - B_{i,j} K_j x) - \delta_j I \right] < 0,$$

for $j = 1, \ldots, r$.

(61)

The summary of the proposed design procedure is illustrated by Algorithm 1.

Algorithm 1. The pseudo-code of the proposed control system design procedure

1. Initialize the small arbitrary values for the updating rules (12) and (17)-(18) parameters; i.e., $\delta_1, \delta_2, \delta_3$, and k_1.
2. Initialize the control input (20) parameter $k_2 > 0$; e.g., $k_2 = 2k_1$.
3. Solve GEVP (58), to obtain Y_j and G_j, and then, $K_j = Y_j G_j^{-1}$.
4. Optimal sliding mode control design
5. Obtain $S_i = B_i^T P_j$.
6. Calculate the switching matrix gain $S = \sum_{i=1}^{n} h_i(u) S_i(u)$.
7. Define the switching surface (10) as $\sigma_t = \sum_{i=1}^{n} \omega_i e_i(t)$.
8. Define the virtual control input as $x_{\phi}(t) = -k_i e_i(t) - \int_0^t \hat{e}_i(t) \tan(\sigma_i) d\tau$.
9. Define the switching surface (19) as $\sigma_t = \sum_{i=1}^{n} (x_2(t) - x_{\phi}(t))$.
10. Generate the control law $u(t)$ from (28).
11. Update the adaptive parameter estimation by (12) and (17)-(18).
12. GOTO step 7.

V. SIMULATION RESULTS

To evaluate the effectiveness of the proposed approach a two-link robot system is studied. Consider the two-link robot system depicted in Fig. 1, where $f_1(x), f_2(x), g_1(x),$ $g_1(x), g_2(x)$ and $g_2(x)$ have been defined in [45]. x_1 and x_2 are the angular positions, m_1 and m_2 are the link masses, l_1 and l_2 are the links length, τ_1 and τ_2 are the applied torques. The equations of the two-link robot manipulator are expressed as [42]

$$\begin{align*}
\dot{x}_1 &= x_2 + d_1(x) + w_1 \\
\dot{x}_2 &= f_1(x) + g_1(x) r_1 + g_2(x) r_2 + d_2(x) + w_2 \\
\dot{r}_1 &= x_4 + d_1(x) + w_3 \\
\dot{r}_2 &= f_2(x) + g_2(x) r_1 + g_2(x) r_2 + d_2(x) + w_4 \\
y_1 &= x_1, y_2 = x_3, z = x_1 + x_3,
\end{align*}$$

(62)

where $d(x) = [d_1(x), d_2(x), d_1(x), d_2(x)]^T$ and $w(t) = [w_1, w_2, w_3, w_4]^T$ denote the additional/ unmatched uncertainty and the external disturbance, respectively.

![FIGURE 1. A two-link robot manipulator configuration](image)

The TSFM matrices of (62) with 9 rules are as follows [45]:

$$A_1 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
5.92 & -0.001 & -0.315 & -8.4 \times 10^{-6} \\
0.00 & 0.00 & 0.00 & 1.00 \\
-6.85 & 0.002 & 3.155 & 6.2 \times 10^{-6}
\end{bmatrix}$$

$$A_2 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
3.04 & -0.0011 & 0.1791 & -0.0002 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
3.54 & 0.0313 & 2.5611 & 1.1 \times 10^{-5}
\end{bmatrix}$$

$$A_3 = \begin{bmatrix}
0.00 & 0.00030 & 0.4339 & -0.0001 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
6.27 & 0.0158 & -1.0574 & -3.2 \times 10^{-5}
\end{bmatrix}$$

$$A_4 = \begin{bmatrix}
0.00 & 0.00 & 0.00 & 1.0000 \\
6.45 & 0.0017 & 1.2427 & 0.0002 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
-3.18 & -0.0306 & 5.1911 & -1.8 \times 10^{-5}
\end{bmatrix}$$

$$A_5 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
11.13 & 0.00 & -1.81 & 0.0 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
-0.09 & 0.00 & 9.1638 & 0.0000
\end{bmatrix}$$

$$A_6 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
6.17 & -0.001 & 1.6870 & -0.0002 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
-2.35 & 0.0314 & 4.5298 & 1.1 \times 10^{-5}
\end{bmatrix}$$

$$A_7 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
6.27 & -0.0041 & 0.6205 & 0.0001 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
8.89 & -0.0193 & -1.01 & 4.4 \times 10^{-5}
\end{bmatrix}$$

$$A_8 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
3.64 & 0.0018 & 0.0721 & 0.0002 \\
0.00 & 0.00 & 0.00 & 1.0000 \\
0.00 & 0.00 & 1.00 & 0.0000 \\
4.29 & -0.0305 & 2.9832 & -1.9 \times 10^{-5}
\end{bmatrix}$$

$$A_9 = \begin{bmatrix}
0.00 & 1.00 & 0.00 & 0.00 \\
6.93 & -0.0009 & -0.2188 & -1.2 \times 10^{-5} \\
0.00 & 0.00 & 0.00 & 1.0000 \\
-7.46 & 0.0024 & 3.2693 & 9.2 \times 10^{-6}
\end{bmatrix}$$

$$B_{1,1} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
-1 & 2 & 0 & 1
\end{bmatrix}$$

$$B_{1,2} = \begin{bmatrix}
0.5 & 0.0 & 0.0 & 0.0 \\
0.5 & 0.0 & 0.0 & 0.0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$B_{1,3} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$B_{1,4} = \begin{bmatrix}
0.5 & 0.0 & 0.0 & 0.0 \\
0.5 & 0.0 & 0.0 & 0.0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$B_{1,5} = \begin{bmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$B_{1,6} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Consider the nonlinear sliding coefficients as \(k_1 = 10, k_2 = 20 \); the initial state condition as \(x(t) = [-1, 0, 1, 0]^T \); the unmatched uncertainty as \(d_{11}(x) = 0.01x_2(t), d_{12}(x) = 0.01x_4(t) \); the matched uncertainty as \(d_{21}(x) = 0.01x_1(t), d_{22}(x) = 0.01x_3(t) \); the upper bounds uncertainty parameters as \(\varepsilon = 10^{-8}, \eta_1 = 10^{-5}, \eta_2 = 0.1, \eta_3 = 0.1/k_1 \); and the external disturbance as follows \(w(t) = 0.005\cos(8\pi t)B_2[1, 1]^T \).

The desired transient time purpose is to assign the poles of each local linear subsystem into the region with \(\alpha = 0.75 \). Then, solving the GEVP optimization problem (58), we obtain the \(H_2 \) performance index from the external disturbance vector to the \(H_2 \) output vector as \(\gamma = 3.5117 \). The optimal sliding gains via GEVP optimization (61) is obtained as

\[
S_1 = 10^{-13} \times \begin{bmatrix}
0.2070 & -0.1370 \\
-0.1598 & 0.3211 \\
0.3657 & -0.3869 \\
-0.7738 & 0.8473 \\
0.0076 & -0.0034 \\
-0.3480 & 0.3486 \\
0.1918 & -0.2066 \\
-0.4132 & 0.4742
\end{bmatrix},
S_2 = 10^{-12} \times \begin{bmatrix}
0.2070 & -0.1370 \\
-0.1598 & 0.3211 \\
0.3657 & -0.3869 \\
-0.7738 & 0.8473 \\
0.0076 & -0.0034 \\
-0.3480 & 0.3486 \\
0.1918 & -0.2066 \\
-0.4132 & 0.4742
\end{bmatrix},
S_3 = 10^{-11} \times \begin{bmatrix}
0.2070 & -0.1370 \\
-0.1598 & 0.3211 \\
0.3657 & -0.3869 \\
-0.7738 & 0.8473 \\
0.0076 & -0.0034 \\
-0.3480 & 0.3486 \\
0.1918 & -0.2066 \\
-0.4132 & 0.4742
\end{bmatrix},
S_4 = 10^{-12} \times \begin{bmatrix}
0.2070 & -0.1370 \\
-0.1598 & 0.3211 \\
0.3657 & -0.3869 \\
-0.7738 & 0.8473 \\
0.0076 & -0.0034 \\
-0.3480 & 0.3486 \\
0.1918 & -0.2066 \\
-0.4132 & 0.4742
\end{bmatrix}.

To compare the proposed approach efficacy with the similar works, a backstepping quasi-continues higher-order sliding mode controller (BQSMC_TS) for a TSFM [46] is studied under the same control signal effort. The illustrative comparison simulations are brought in Figs. 2-7.
The uncertainties and the

VOLUME XX, 20

FIGURE 6. The evolution of the sliding surface $\sigma_2(t)$.

FIGURE 7. The trajectory of $x(t)$.

VI. CONCLUSION

In this paper, for the strict-feedback form of the nonlinear systems represented by the TSFM, a new robust control scheme was developed based on BSMC. The proposed BSMC tries to design a novel multi-objective multi-sliding surfaces robust control against the uncertainties and the external disturbances. To do this, in the first step, a BSMC is developed to be optimized for the TSFM of the nonlinear system. Next, using a convex optimization approach, a state feedback gain is obtained for each fuzzy rule consequent. Then, the sliding surface gain is derived by solving the convex optimization problem associated with the state feedback obtained from the previous step. The proposed approach provides major advantages including: (i) the matched and the unmatched uncertainty can be manipulated concurrently; (ii) the adaptive laws were derived to estimate the unknown bounds of the uncertainties; (iii) the amplitude of the control efforts were constrained by the BSMC; (iv) another object, i.e. α-stability, was incorporated during the design SMC to improve the transient response indices; (v) sliding mode controller was computed by numerical methods.

The future works of this study may be directed to evolutionary algorithms for optimization, using more advanced and higher-order SMC approaches, or dynamic surface control-BSMC method to enhance the robustness and address stability issues. Moreover, relaxations in LMI design conditions may be noted.

REFERENCES

[1] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley & Sons, 2004.

[2] K. Ali, A. Mehmood, and J. Iqbal, "Fault-tolerant scheme for robotic manipulator—Nonlinear robust back-stepping control with friction compensation," PLOS ONE, vol. 16, no. 8, p. e0256491, 2021.

[3] L.-C. Guo, J. Ni, J.-B. Liu, X.-K. Fang, Q.-H. Meng, and Y.-D. Peng, "Backstepping Output Feedback Control for the Stochastic Nonlinear System Based on Variable Function Constraints with the Subsea Intelligent Electroexecution Robot System," Complexity, vol. 2021, 2021.

[4] F. Alyoussef and I. Kaya, "A review on nonlinear control approaches: sliding mode control, back-stepping control and feedback linearization control," in International Engineering and Natural Sciences Conference (HENSIC 2019), 2019, vol. 2019, pp. 608-619.

[5] Q. Ye, C. Liu, and J. Sun, "A backstepping-based guidance law for an exoatmospheric missile with impact angle constraint," IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 2, pp. 547-561, 2018.

[6] F.-J. Lin, S.-G. Chen, and C.-W. Hsu, "Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor servo drive system," IEEE Transactions on Fuzzy Systems, vol. 27, no. 3, pp. 413-427, 2018.

[7] R. S. Butt, I. Ahmad, R. Iftikhar, and M. Arsalan, "Integral backstepping and synergetic controller for tracking of infected cells during early antiretroviral therapy," IEEE Access, vol. 7, pp. 69447-69455, 2019.

[8] M. S. Khan, I. Ahmad, and F. Z. U. Abideem, "Output voltage regulation of FC-UC based hybrid electric vehicle using integral backstepping control," IEEE Access, vol. 7, pp. 65693-65702, 2019.

[9] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and control. Princeton university press, 2011.

[10] Z. Zhao, X. Wang, S. Zhang, and G. Zong, "Adaptive neural backstepping control design for a class of nonsmooth nonlinear systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp. 1820-1831, 2018.

[11] H. Ramirez-Rodriguez, V. Parra-Vega, A. Sanchez-Orta, and O. Garcia-Salazar, "Robust backstepping control based on internal sliding modes for tracking of quadrotors," Journal of Intelligent & Robotic Systems, vol. 73, no. 1, pp. 51-66, 2014.

[12] Y. Wang and H. Wu, "Adaptive robust backstepping control for a class of uncertain dynamical systems using neural networks," Nonlinear Dynamics, vol. 81, no. 4, pp. 1597-1610, 2015.

[13] Y. Wang, L. Xu, and H. Wu, "Adaptive robust backstepping output tracking control for a class of uncertain nonlinear systems using neural network," Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 7, p. 071014, 2018.

[14] A. Humaidi, M. Hameed, and A. Hameed, "Design of block backstepping controller to ball and arc system based on zero dynamic theory," Journal of Engineering Science and Technology, vol. 13, no. 7, pp. 2084-2105, 2018.

[15] S. Rudra, R. K. Barai, and M. Maitra, "Nonlinear state feedback controller design for underactuated mechanical system: A modified block backstepping approach," ISA transactions, vol. 53, no. 2, pp. 317-326, 2014.

[16] L. Ye, B. Tian, H. Liu, Q. Zong, B. Liang, and B. Yuan, "Anti-Windup Robust Backstepping Control for an Underactuated Reusable Launch Vehicle," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[17] X. Bu, X. Wu, R. Zhang, Z. Ma, and J. Huang, "Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle," Journal of the Franklin Institute, vol. 352, no. 4, pp. 1739-1765, 2015.

[18] L. Sonnevelop, Q. Chu, and J. Mulder, "Nonlinear flight control design using constrained adaptive backstepping," Journal of Guidance, Control, and Dynamics, vol. 30, no. 2, pp. 322-336, 2007.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3148060, IEEE Access

BIOGRAPHIES

FARZAD SOLTANIAN received the B.S. degree from Shahid Rajaji Teacher Training University, Tehran, Iran, and the M.S. degree from Sahand University of Technology, Tabriz, Iran, both in electrical engineering in 2008 and 2011, respectively. He is currently pursuing the Ph.D. degree in electrical engineering at Shiraz University of Technology, Shiraz, Iran.

His research interest includes the Takagi-Sugeno fuzzy based nonlinear control, robust control design, robotic, and fault tolerant control design.

SALEH MOBAYEN received the B.Sc. and M.Sc. degrees in control engineering from the University of Tabriz, Tabriz, Iran, in 2007 and 2009, respectively, and the Ph.D. degree in control engineering from Tarbiat Modares University, Tehran, Iran, in January 2013. From February 2013 to December 2018, he was as an Assistant Professor and a Faculty Member with the Department of Electrical Engineering, University of Zanjan, Zanjan, Iran, where he has been an Associate Professor of control engineering with the Department of Electrical Engineering, since 2018.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
December 2018. Currently, he collaborates with the National Yunlin University of Science and Technology as an Associate Professor of Future Technology Research Center. His research interests include control theory, sliding mode control, robust tracking, non-holonomic robots, and chaotic systems.

AFEF FEKIH (Senior Member, IEEE) received the B.S., M.S., and Ph.D. degrees in electrical engineering from the National Engineering School of Tunis, Tunisia, in 1995, 1998, and 2002, respectively. She is currently a Full Professor with the Department of Electrical and Computer Engineering and also the Chevron/BORSF Professor of engineering with the University of Louisiana, Lafayette. Her research interests include control theory and applications, including nonlinear and robust control, optimal control, and fault tolerant control with applications to power systems, wind turbines, unmanned vehicles, and automotive engines. Dr. Fekih is a member of the IEEE Control Systems Society and of the IEEE Women in Control Society.