Determining the Contribution of a High-Fructose Corn Syrup Formulation to Hepatic Glycogen Synthesis During Ad-libitum Feeding in Mice

Giada Di Nunzio#, Getachew D. Belew#, Alejandra N. Torres, Joao Gabriel Silva, Luis P. Silva, Cristina Barosa, Ludgero Tavares, and John G. Jones*

Center for Neurosciences and Cell Biology, University of Coimbra, Portugal

#Joint first authors

Supplementary Data, Figure 1: 13C NMR spectra of liver aqueous fractions from mice provided with glucose/fructose mixtures enriched with [U-13C]glucose (A) and [U-13C]fructose (B). The
lactate carbon 3 and glucose carbon 1β signals are shown in expanded form and the multiplet components indicated as follows: $S =$ natural-abundance singlet, $D_{23} =$ doublet from $^{13}\text{C}-^{13}\text{C}$-coupling between lactate carbon 3 and carbon 2; $M =$ multiplet from coupling of glucose carbon 1β with carbons 2β, 3β and 6β and representing $[\text{U-}^{13}\text{C}]\text{glucose}$; $Q_{123} =$ quartet from coupling of glucose carbon 1β with carbons 2β and 3β and representing $[1,2,3-^{13}\text{C}_3]\text{glucose}$; $D_{12} =$ doublet from coupling of glucose carbon 1β with carbon 2β and representing $[1,2-^{13}\text{C}_2]\text{glucose}$.