Statistical guarantee of timeliness in networks of IoT devices

Antonio Franco1 · Björn Landfeldt1 · Ulf Körner1 · Christian Nyberg1

Accepted: 25 April 2022 / Published online: 8 June 2022 © The Author(s) 2022

Abstract
The Internet of Things (IoT) paradigm, has opened up the possibility of using the ubiquity of small devices to route information without the necessity of being connected to a Wide Area Network (WAN). Use cases of IoT devices sending updates that are routed and delivered by other IoT devices have been proposed in the literature. In this paper we focus on receivers only interested in the freshest updates from the sending device. In particular, the dynamic network created by routing/gossiping through small devices creates the possibility of delivering updates out of order. Thus, the entire process can be studied well through a queueing system with infinitely many servers, all serving updates with a random service time. Age of Information (AoI) was proposed as the main metric to measure information freshness. We study the amount of time that the AoI is over a certain threshold at the receiver end as a Quality of Service (QoS) measure, called update outage probability. Particularly, given the recent interest in the literature for time domain analysis of the AoI, we obtain the exact expressions for the AoI, peak AoI (pAoI), effective service time and effective departure time distributions for an M/M/∞ queueing system from a time domain perspective, and study the interdependence between the various parameters involved in order to satisfy a given statistical constraint on timeliness.

Keywords Age of information · Queuing theory · Internet of things

1 Introduction

The ubiquitous nature of the Internet of Things (IoT), creates a vast array of benefits, as well as a rich set of challenges. The vast number of deployed devices – as well as their mobility potential – creates the possibility of using them to convey and route information among themselves without having to be connected to the Wide Area Network (WAN) all the time. The possibility of gossiping and routing updates in IoT dynamical based networks, and in general, small device networks was explored in the literature for many use cases [4,14,15,17,37,40].

We consider a receiver (that we call “sink”) interested only in the most recent update sent by an IoT monitor; the monitor routes the pieces of information via other IoT devices. Given the highly dynamic and unpredictable topology of an IoT network, updates bear the possibility of coming out of order, resulting in a number of those being discarded by the receiver. Fig. 1 gives an example of the previously introduced scenario. The variability in the order of arrival of updates at the receiver end can be approximated well using a queueing system with an infinite number of servers, all serving updates with a random service time drawn from a random distribution.

The best metric to address timeliness is the Age of Information metric [27]. It is the age of the last received update by the sink, measured from the generation time of said update by the sender. Most of the early literature focused on the average AoI in different queueing systems (for a thorough review of the initial literature we point the reader to the excellent work in [28]). The recent trend has been to instead study the entire distribution of the AoI at the receiver end, since its Survival Function (i.e. one minus its Cumulative Distribution Function (CDF)) gives the probability of the AoI going over a certain threshold, thus allowing a stricter control over Quality of Service (QoS). Particularly, formulas for the Laplace Transform of the AoI distribution were calculated for the G/G/1 First Come First Served (FCFS) system [23]; exact expressions for the AoI distribution for GI/GI/1/1 and GI/GI/1/2* Systems with preemption were calculated in

This work was supported by the “Excellence Center at Linköping-Lund in Information Technology (ELLIIT), Sweden”.

Antonio Franco antonio.franco@eit.lth.se

1 Department of Electrical and Information Technology, Lund University, Box 118, 221 00 Lund, Sweden
Age aware protocols have been introduced in the literature. Freshness aware Medium Access Control (MAC) protocols were introduced in [18,24], while IoT latency/age aware protocols were introduced in [7,10,11,26,29,36,39,41]. Additionally, in [3], a complete real life implementation of an IoT network was carried out and AoI measurements taken. In this work we instead study the performances in terms of timeliness of a protocol-independent multi path IoT network.

In this work, the main contribution is the derivation of closed form expressions for the AoI, peak AoI (pAoI) [8], timeliness of an effective service time and effective departure time distributions for an M/M/∞ queuing system, based on an alternative proof in the time domain. We then proceed to numerically study its performance based on these metrics. As recently argued in [20], the AoI being a time domain measure, it is important to have expressions in this domain. These expressions that we derive give more immediate intuitions on how QoS constraints can be applied by varying the different parameters involved (e.g. the update generation rate). In previous work [22], the authors provided a formula for the Laplace transform of the AoI in a network of parallel infinite servers, but expressions in the time domain were not presented.

The rest of this paper is organized as follows. In Sect. 2 the scenario is described in detail. In Sect. 3 an expression for update outage probability is derived. In Sect. 4 the expression of the outage probability for the effective departure rate is computed. In Sect. 5 the previous expressions are compared with simulations and numerical results analyzed. Finally in Sect. 6 conclusions are discussed.

2 Scenario description

The source generates pieces of information (i.e. updates) with an average rate of λ updates per second; the servers all serve updates with an average rate of μ updates per second. All the updates arrive to a sink, that is interested only in the freshest update generated by the source, thus from the perspective of the sink, an update generated before the freshest update received is without informative value; from the AoI perspective, an outdated update does not contribute to its value.

Specifically, our system consists of an M/M/∞ queuing system sending updates to a sink. We will call an update that is not discarded an informative update, while an update that is discarded, an obsolete update. As previously stated, the sink is interested only in the freshest updates, thus discarding obsolete updates (i.e. updates generated before the generation time of the last update received). The timestamping part can be included in the payload of the packet, at the application level at the source side (e.g. by using a format similar to an NTP timestamp [30], or a more precise one, depending on the QoS requirements); then it is simply passed transparently to the sink by the other nodes. The sink can then read the timestamp by the same means as the source. Both the inter generation times and the service times follow an exponential distribution i.e. their respective Probability Density Functions (PDFs) are:

$$f_X(t) = \lambda e^{-\lambda t} H(t),$$

and

$$f_S(t) = \mu e^{-\mu t} H(t),$$

where $H(t)$ is the Heaviside step function defined as:

$$H(t) = \begin{cases} 1, & t \geq 0 \\ 0, & t < 0 \end{cases}.$$
and its outcome as \(x^b \). Finally, unless stated otherwise, all the random variables have non negative support.

In Fig. 2 a typical time period is shown, along with the AoI function \(\Delta(t) \). Generation times are marked as \(t_i \), while the corresponding departure times (i.e. the times when the sink receives the update) are marked as \(\tau_i \). Update 1 is generated at \(t_1 \), and arrives at the sink after a time \(S_1 \), at the instant \(\tau_1 \). The AoI will then jump to the service time experienced by update 1. Then it will continue to grow with slope 1, until update 2 arrives at the sink, where it again jumps to its service time \(S_2 \). Notice that, since update 3 is generated before update 4, but arrives after the latter, it is discarded, i.e., is an obsolete update. The time between two informative updates we call the effective inter-generation time, described by the random variable \(B \). Also, the service time experienced by an informative update we call the effective service time, \(\tau \), where the two random variables are not statistically independent, as we will see in Sect. 3.2.

Notice that, since both the inter-arrival process and the inter-departure process for informative updates are two identical distributed Poisson point processes subject to the same thinning, they are statistically equivalent, and can be used interchangeably for the purpose of calculating the AoI process. Also, since our system is ergodic, and we are considering the steady state distributions, we can calculate the CDF of the AoI (represented by the random variable \(\Delta \)) by using [23, Lemma 1]:

\[
F_{\Delta}(t) = \lambda e \int_0^t F_Z(y) - F_T(y)dy,
\]

where \(\lambda e \) is the effective departure rate, expressed in updates per second.

3 Distribution of the age of information

In order to find the update outage probability, we need to find the survival function \(G_{\Delta}(t) \) of the AoI \(\Delta \). In order to do that, we need to find the relevant statistics for the service times for informative updates \(Z \). Also, since we need the pAoI \(\gamma \), being the sum of the inter-arrival times for informative updates \(B \), and the service times for informative updates \(Z \), we need their joint distribution. Once found, they can be used in order to find the CDF of the AoI \(\Delta \) via (3), to finally find the update outage probability.

3.1 Distribution of the service times for informative updates

First, we notice that the joint PDF of \(n \) inter-arrivals \(f_{X_1}(t) \) is just the product of the PDFs of \(n \) independent and identically distributed (i.i.d.) random variables distributed as (1), i.e.:

\[
f_{X_1}(x^n) = \prod_{k=1}^{n} f_X(x_k) = \lambda^n e^{-\lambda \sum_{k=1}^{n} x_k}.
\]

The random variable describing the inter-arrival times after update \(i \), is a vector, with non negative support, indicated as \(X \). Notice that, as found in [25, Appendix A] it is independent of the update number \(i \). Further, we notice that the random variable \(Z = S_1 | E_1(i) \) describing service time experienced by informative updates could be expressed as:

\[
f_{Z}(t) = \Pr \{ S_1 = t | E_1(i) \}
= \frac{f_{X}(t)}{\Pr \{ E_1(i) \}} \times \prod_{j=0}^{\infty} \Pr \{ E_1(i) | S_1 = t, X_{i+1}^\infty = x_{i+1}^\infty \} \times f_{X_{i+1}^\infty}(x_{i+1}^\infty) dx_{i+1}^\infty.
\]
where $|x|$ represents the cardinality of the (possibly infinite) set x and \cite[Section III-D]{25}:

\[
\Pr \{ E_1(i) \} = \frac{1}{\rho + 1} + \sum_{r=1}^{\infty} \left[\frac{\rho^r}{(r+1)!} \prod_{k=1}^{r} (\rho + k) \right] (1 - \frac{\rho}{\rho + r + 1})
\]

\[
= \frac{\rho}{\rho + 1} F_2 \left(1, 1; 2, \rho + 1; \rho \right) - \frac{\rho}{\rho + 1} F_2 \left(1, 1; 2, \rho + 2; \rho \right),
\]

where we used the definition of the hyper-geometric function $F_2(a, b; c, d; e)$ \cite{31} to solve the series and $\rho = \lambda / \mu$ is the load per server. From \cite[Eq. (5)]{25} we know:

\[
\Pr \{ E_1(i) | S_i = t, X_i^{\infty} = x_i^{\infty} \} = \mathbb{1} \{ t < x_{i+1} \} + \sum_{r=1}^{\infty} \left(e^{-\mu (t - \sum_{k=1}^{r} (r-k+1) x_{i+k})} \right)
\]

\[
\times \mathbb{1} \left\{ \sum_{k=1}^{r-1} x_{i+k} < t < \sum_{k=1}^{r} x_{i+k} \right\},
\]

where $\mathbb{1} \{ E \}$ is the indicator function defined as:

\[
\mathbb{1} \{ E \} = \begin{cases} 1, & E \text{ is true} \\ 0, & E \text{ is false}. \end{cases}
\]

By using (6) in (4), after some algebraic manipulations, we obtain:

\[
f_Z(t) = \frac{\mu e^{-\lambda + \mu t}}{\Pr \{ E_1(i) \}} \left[1 + \sum_{r=1}^{\infty} \left(1 - e^{-\mu t} \right)^r \right]
\]

\[
= \frac{\mu e^{-\lambda + \mu t}}{\Pr \{ E_1(i) \}} e^{-\lambda - \mu t},
\]

where we used the fact that the future arrivals are all i.i.d.; the associated CDF is then:

\[
F_Z(t) = \frac{\mu e^{t}}{\Pr \{ E_1(i) \}} \int_0^t e^{-\lambda + \mu t'} - e^{-\mu t'} dt'
\]

\[
= \frac{\rho^{-\rho + 1} e^{t}}{\Pr \{ E_1(i) \}} \int_{e^{-\mu t}}^1 q^{\rho - 1} e^{-q} dq
\]

\[
= \frac{\rho^{-\rho + 1} e^{t}}{\Pr \{ E_1(i) \}} \left[\gamma(\rho + 1, \rho) - \gamma(\rho + 1, e^{-\mu t}) \right],
\]

where $\gamma(s, x)$ is the lower incomplete gamma function defined as:

\[
\gamma(s, x) = \int_0^x t^{s-1} e^{-t} dt.
\]

3.2 Distribution of the peak age of information

We first need the joint distribution of the inter-arrival times of the previous n updates, and the service time of update i, given that the update i is informative and has rendered the previous n updates obsolete i.e.

\[
f_{X_i^{\infty}, S_i | \mathcal{E}(n)} \left(x_i^{\infty}, s_i \right)
\]

\[
= \frac{f_S(s_i) f_{X_i^{\infty}, s_i | \mathcal{E}(n)} \left(x_i^{\infty}, s_i \right)}{\Pr \{ \mathcal{E}(n) \}}
\]

\[
\times \Pr \{ \mathcal{E}(n) | S_i = s_i, X_i^{\infty} = x_i^{\infty} \}
\]

\[
= \frac{f_S(s_i) f_{X_i^{\infty}, s_i | \mathcal{E}(n)} \left(x_i^{\infty}, s_i \right)}{\Pr \{ \mathcal{E}(n) \}} \int_0^{\infty} \cdots \int_0^{\infty} f_{X_i^{\infty}} \left(x_i^{\infty} \right) dx_i^{\infty},
\]

where $\Pr \{ \mathcal{E}(n) \}$ is given in \cite[Eq. (9)]{25}:

\[
\Pr \{ \mathcal{E}(n) \} = \frac{\lambda^n \mu}{\prod_{k=1}^{n+1} (\lambda + k \mu)} = \rho^n \frac{\Gamma(\rho + 1)}{\Gamma(\rho + n + 2)}.
\]

where we used the recurrence relation of the Gamma function:

\[
\Gamma(z + 1) = z \Gamma(z)
\]

to solve the product; By using conditional independence given $S_i = s_i$ \cite{25}, we can write:

\[
\Pr \{ \mathcal{E}(n) | S_i = s_i, X_i^{\infty} = x_i^{\infty} \}
\]

\[
= \Pr \{ E_1(i) | S_i = s_i, X_i^{\infty} = x_i^{\infty} \}
\]

\[
\times \Pr \{ E_2(n) | S_i = s_i, X_i^{\infty} = x_i^{\infty} \}.
\]

By inserting the previous in (8):

\[
\int_0^{\infty} \cdots \int_0^{\infty} \Pr \{ E_1(i) | S_i = s_i, X_i^{\infty} = x_i^{\infty} \}
\]

\[
\times \int_{X_i^{\infty}}^{\infty} \cdots \int_{X_i^{\infty}}^{\infty} f_{X_i^{\infty}} \left(x_i^{\infty} \right) dx_i^{\infty},
\]

We notice that the integral in the previous is the same as the integral in (4), so, together with (6) and \cite[Eq. (6)]{25} we obtain:
\[f_{X_{i-n}, S_i|E(n)}(x_{i-n}, s_i) \]
\[= \lambda \mu (\rho + n + 2) e^{\rho - \rho e^{-\mu s} - [\lambda + (n+1)\mu]s_i} \]
\[\times \left[e^{-\sum_{k=0}^{n-1} (\lambda + k\mu) x_{i-n-k}} - e^{-\mu s_i - \sum_{k=0}^{n-1} (\lambda + k\mu) x_{i-n-k-1}} \right]. \]

We call \(B'(i, n) \) the random variable describing the sum of the previous \(n \) inter-arrivals with respect to update \(i \), and \(B(n) \) the sum of the inter-arrival times of the previous \(n \) updates given that the update \(i \) is informative and has rendered the previous \(n \) updates obsolete. We notice that:

\[B(n) = B'(i, n) | E(n) = \sum_{k=i-n}^{i} X_k | E(n), \]

so we use the previous in order to find the joint PDF of \(B(n) \) and \(Z(n) = S_i | E(n) \) as:

\[f_{B(n), Z(n)}(t, s) = f_{B'(i, n), S_i | E(n)}(t, s) \]
\[= \int_{0}^{+\infty} \cdots \int_{0}^{+\infty} f_{X_{i-n}, S_i | E(n)}(x_{i-n+1}, t - \sum_{k=0}^{n-1} x_{i-k}, s_i) \]
\[\times e^{-\lambda t} \left(1 - e^{-\mu t} \right)^{n} \left(1 - e^{-\mu (s+t)} \right). \]

Notice that, in the above, the dependency between the two random variables rests on the last term, i.e. it tends to disappear as \(\mu \) increases. The effective inter-arrival time \(B \) is the sum of the inter-arrivals between two informative updates, i.e. \(B = \sum_{k=i-N}^{i-N} X_k | E_1(i) = B(N) | E_1(i) \), where \(N \) is the random variable describing the number of previous updates rendered obsolete by the informative update \(i \). Reasoning the same way, the effective service time will be \(Z = Z(N) | E_1(i) \). We notice:

\[f_{B, Z}(t) = f_{B(N), Z(N) | E_1(i)}(t) \]
\[= \frac{\lambda \mu}{\Pr \{ E_1(i) \}} \int_{0}^{t} e^{-\lambda t'} \left(1 - e^{-\mu t'} \right)^{n} e^{-\rho e^{-\mu t'}} dt' \]
\[= \frac{\lambda e^{-\lambda t}}{\Pr \{ E_1(i) \}} \int_{0}^{t} e^{-\lambda t'} \left(1 - e^{-\mu t'} \right)^{n} e^{-\rho e^{-\mu t'}} \rho^{n-1} e^{-q} dq \]
\[= \frac{\lambda e^{-\lambda t}}{\Pr \{ E_1(i) \}} \left[(\chi(\rho) - \chi(\rho e^{-\mu t})) \right], \]

where:

\[\chi(x) = \rho^2 \gamma(\rho, x) - 2 \rho \gamma(\rho + 1, x) + \gamma(\rho + 2, x). \]

3.3 Distribution of the age of information

The effective rate is simply the arrival rate \(\lambda \), multiplied by the probability of an update being informative (5). By using the previous observation, and substituting (7) and (12) in (3), we obtain:

\[G_{\Delta t} = 1 - \lambda e^{\rho} \int_{0}^{t} e^{-(1+2\rho) \gamma(\rho + 1, \rho)} \]
\[- \rho^2 \gamma(\rho, \rho) - (1 + 2\rho) \gamma(\rho + 1, e^{-\mu t'}) + \rho^2 \gamma(\rho, e^{-\mu t'}) + \gamma(\rho + 2, e^{-\mu t'}) \]
\[- \gamma(\rho + 2, \rho) \rho^{n-1} e^{-q} dq \]
\[- \gamma(\rho + 2, \rho) \rho^{n-1} e^{-q} dq \]
\[= 1 - \lambda e^{\rho} \rho^{n-1} e^{-q} \left[[(1+2\rho) \gamma(\rho + 1, \rho) - \rho^2 \gamma(\rho, \rho) \right], \]

\[+ \rho^2 \gamma(\rho, e^{-\mu t'}) + \gamma(\rho + 2, e^{-\mu t'}) - \gamma(\rho + 2, \rho) \rho^{n-1} e^{-q} dq \]
where, by using [34, Eq. (2.10.1.1)] in order to simplify the integral:

\[
\zeta(a, b) = \mu^{-1} \int_0^b q^{-1} \gamma(\rho + a, \rho q) dq = \mu^{-1}(\rho b)^{\rho+a} \sum_{k=0}^{\infty} \frac{(-b)^k}{k!(\rho + a + k)^2},
\]

and:

\[
\omega(a) = \zeta(a, 1) - \zeta(a, e^{-\mu t}).
\]

4 Distribution of the inter-arrival times for informative updates

The random variable for the inter-arrival times for informative updates is statistically identical to the random variable for the inter-departure times for informative updates. It allows to compute not only the average rate – already known in the literature (9), but also all the statistics relative to the effective rate departing from the system.

We make use of the distribution of the inter-arrival times of the previous \(n \) updates given that the update \(i \) is informative and has rendered the previous \(n \) updates obsolete in [25, Appendix C]. The random variable describing the previous \(n \) inter-arrival times is a vector, with non negative support, indicated as \(\mathbf{X}_{i-n} = \{X_{i-n}, \ldots, X_i\} \). After some algebraic modifications we have:

\[
f_{\mathbf{X}_{i-n} \mid \mathcal{E}(n)}(\mathbf{x}_{i-n}) = \lambda \mu^n \frac{\Gamma(n + \rho + 2)}{\Gamma(\rho + 1)} \left(\frac{1}{\rho + n + 1} \right) \sigma(n) \times e^{-\sum_{k=1}^{n-1}[\rho + \mu(n-k)]X_{i-k}} e^{-\lambda \mu x_{i-n}} - \lambda \mu^n \frac{(\rho + n + 1)\Gamma(n + \rho + 2)}{\rho \Gamma(\rho + 1)} \sigma(n) \times e^{-\sum_{k=1}^{n}[\rho + \mu(n-k+1)]X_{i-k}} e^{-(\rho + \mu)X_{i-n}}.
\]

Also:

\[
\sigma(n) = \Gamma(\rho + n + 1) \sum_{r=1}^{\infty} \left(\frac{\rho^r}{\Gamma(r + \rho + n + 2)} \right)
\]

\[
= e^\rho \frac{\rho^{\rho + n + 1}}{\rho + n + 1} \gamma(\rho + n + 2, \rho),
\]

where we used [33, Eq. (5.2.7.20)] to solve the sum.

Using the same reasoning as in Sect. 3.2, we use (14) in order to find the PDF of \(B(n) \) as:

\[
f_{B(n)}(t) = f_{B(i,n) \mid \mathcal{E}(n)}(t)
\]

\[
= \frac{f_{B(N) \cap E_1(i)}(t)}{Pr\{E_1(i)\}} = \frac{\sum_{n=0}^{\infty} f_{B(N) \cap E_1(i) \cap E_2(n)}(t)}{Pr\{E_1(i)\}}
\]

\[
= \frac{\sum_{n=0}^{\infty} f_{B(N) \cap E_1(i)}(t) Pr\{E_1(n)\}}{Pr\{E_1(i)\}}
\]

As we did in Sect. 3.2. We notice:

\[
f_B(t) = f_{B(N) \cap E_1(i)}(t)
\]

\[
= \frac{f_{B(N) \cap E_1(i)}(t)}{Pr\{E_1(i)\}}
\]

\[
= \frac{\sum_{n=0}^{\infty} f_{B(I,n) \cap E_1(i)}(t) Pr\{E_1(n)\}}{Pr\{E_1(i)\}}
\]

\[
= \frac{\sum_{n=0}^{\infty} f_{B(n)}(t) Pr\{E_1(n)\}}{Pr\{E_1(i)\}}.
\]

By combining (15) and (9), after some algebraic manipulations we obtain:

\[
f_{B(N) \cap E_1(i)}(t) = \sum_{n=0}^{\infty} f_{B(n)}(t) Pr\{E_1(n)\}
\]

\[
= \lambda e^{-\lambda t} \sum_{n=0}^{\infty} \left(\frac{\rho(1-e^{-\mu t})}{n(n + \rho + 1)} \right)^n + \lambda e^{\rho t} \sum_{n=0}^{\infty} \frac{(1-e^{-\mu t})}{n!} (\rho n + 2, \rho) - \lambda e^{\rho t} \sum_{n=0}^{\infty} \frac{(1-e^{-\mu t})}{n!} (\rho n + 2, \rho) + \lambda e^{\rho t} \sum_{n=0}^{\infty} \frac{(1-e^{-\mu t})}{n!} (\rho n + 2, \rho) - \lambda e^{\rho t} \sum_{n=0}^{\infty} \frac{(1-e^{-\mu t})}{n!} (\rho n + 2, \rho) + \lambda e^{\rho t} \sum_{n=0}^{\infty} \frac{(1-e^{-\mu t})}{n!} (\rho n + 2, \rho) - \lambda e^{\rho t} \sum_{n=0}^{\infty} \frac{(1-e^{-\mu t})}{n!} (\rho n + 2, \rho)
\]

where we used the recurrence relation for the incomplete gamma function:

\[
\gamma(a + 1, x) = a \gamma(a, x) - x^a e^{-x},
\]

and, subsequently, [34, Eq. (5.2.3.1)] for the two surviving sums. Then, by using the previous in (16) we obtain:
\[f_B(t) = \frac{\lambda e^{\rho+\mu t} \rho^{-\rho-1}}{\Pr\{E_1(t)\}} \left[\gamma (\rho + 1, \rho e^{-\mu t}) - \frac{1}{\rho} \gamma (\rho + 2, \rho e^{-\mu t}) \right]. \]

Finally, its survival function is:

\[G_B(t) = 1 - \frac{\lambda e^{\rho} \rho^{-\rho-1}}{\Pr\{E_1(t)\}} \left[\int_0^t e^{\mu t'} \gamma (\rho + 1, \rho e^{-\mu t'}) \, dt' - \rho^{-1} \int_0^t e^{\mu t'} \gamma (\rho + 2, \rho e^{-\mu t'}) \, dt' \right] \]
\[= 1 - \frac{\lambda e^{\rho} \rho^{-\rho-1}}{\Pr\{E_1(t)\}} \left[\alpha(1, 1) - \alpha(1, e^{-\mu t}) - \rho^{-1} \alpha(2, 1) + \rho^{-1} \alpha(2, e^{-\mu t}) \right], \tag{17} \]

where, by using \([34, \text{Eq. (2.10.1.1)}]\) in order to simplify the integral:

\[\alpha(a, b) = \mu^{-1} \int_0^b q^{-2} e^{(\rho + a, \rho q)} dq = \mu^{-1} \rho^{-\rho+a} b^{-\rho+a-1} \]
\[\times \sum_{k=0}^{\infty} \left(-b \rho \right)^k \frac{k!}{(\rho + a + k)(\rho + a + k - 1)}. \]

5 Numerical results

We conducted simulation studies using OMNeT++ [38]. We fixed \(\lambda = 100\) updates/sec and let \(\mu\) vary between 50 and 200 updates per second. All plots involving simulations are presented with 95% confidence intervals, allowing for a sufficient warm-up period before taking measurements; in some points the intervals are too tight to show at 95% confidence. All the plots make use of a black and white printer-friendly and accessible color scheme [9]. As we can see in Fig. 3 and Fig. 4, the analytical findings all agree with the simulations.

We then investigated the effects of the update generation rate \(\lambda\) for threshold varying from 10 to 100 ms for different service rates \(\mu\) (Fig. 5); the boundaries for the threshold are chosen to be between the reaction time for haptic internet [16] and the update time needed in Personal Area Networks of energy harvesting sensors for medical applications [2, 21]. Given the large span of values on the Z axis, we chose to apply a logarithmic scale on the latter. As we can see we have an exponential effect on the update outage probability, with respect to all the involved parameters. Finally, as an example, we plotted the outage probability vs both the average generation rate \(\lambda\) and the the threshold (Fig. 6), with \(\mu\) fixed at 100 updates per second. It is a contour plot, where there are isolevels lines for the updated outage probability for constraints of interest. If a designer finds itself with a constrained average service time, Fig. 6 is a useful tool for choosing an average update generation rate for a given QoS.

6 Conclusions

In this work, we studied the update violation probability in an IoT routing scenario in the time domain. We highlighted that in such a scenario, the dynamical nature of the network can very well result in updates sent by an IoT monitor arriving out of order at a receiver. Thus we argued the importance of having the expression of the update outage probability in the time domain, to better understand the interplay between the various parameters involved and in order to ensure a sufficient QoE.

Particularly, we obtained the exact expressions for the AoI, peak AoI (pAoI), effective service time and effective departure time distributions for an M/M/\(\infty\) queueing system, and from their survival functions, derived the corresponding violation probabilities. Numerical results were obtained,
Effects of the update generation rate on the Update outage probability (13); notice the logarithmic scale on the Z axis.

Contour plot for varying λ and threshold; μ is fixed at 100 updates per second providing the designer of IoT update systems with a tool to estimate QoS parameters given a statistical constraint.

Open access funding provided by Lund University. This work was supported by the “Excellence Center at Linköping-Lund in Information Technology (ELLIIT), Sweden”.

Not applicable.

The authors declare that they have no conflict of interest.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdel-Aziz, M. K., Samarakoon, S., Liu, C., Bennis, M., & Saad, W. (2020). Optimized age of information tail for ultra-reliable low-latency communications in vehicular networks. IEEE Transactions on Communications, 68(3), 1911–1924.
2. Bersch, S. D., Azzi, D., Khusainov, R., Achumba, I. E., & Ries, J. (2014). Sensor data acquisition and processing parameters for human activity classification. Sensors, 14(3), 4239–4270. https://doi.org/10.3390/s140304239. https://www.mdpi.com/1424-8220/14/3/4239.
3. Beytur, H.B., Baghaee, S., & Uysal, E. (2020). Towards aoi-aware smart iot systems. In 2020 International Conference on Computing, Networking and Communications (ICNC), (pp. 353–357). https://doi.org/10.1109/ICNC47757.2020.9049792.
4. Chaintreau, A., Le Boudec, J. Y., & Ristanovic, N. (2009). The age of gossip: spatial mean field regime. ACM SIGMETRICS Performance Evaluation Review, 37(1), 109–120.
5. Champati, J.P., Al-Zubaidy, H., & Gross, J. (2018). Statistical guarantee optimization for age of information for the D/G/1 queue. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (pp. 130–135). https://doi.org/10.1109/INFCOMW.2018.8406909.
6. Champati, J.P., Al-Zubaidy, H., & Gross, J. (2019). On the distribution of aoi for the g/gi/1/1 and g/gi/1/2* systems: Exact expressions and bounds. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, (pp. 37–45).
7. Choudhury, B., Shah, V.K., Fedowsi, A., Reed, J.H., & Hou, Y.T. (2021). Aoi-minimizing scheduling in uav-relayed iot networks. In 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), (pp. 117–126). IEEE.
8. Costa, M., Codreanu, M., & Ephremides, A. (2016). On the age of information in status update systems with packet management. IEEE Transactions on Information Theory, 62(4), 1897–1910.
9. Cynthia Brewer, Mark Harrower and The Pennsylvania University: ColorBrewer. http://colorbrewer2.org (2013).
10. Desikan, K.E.S., Srinivasan, M., & Murthy, C.S.R. (2017). A novel distributed latency-aware data processing in fog computing-enabled iot networks. In Proceedings of the ACM Workshop on Distributed Information Processing in Wireless Networks, DIPWN’17. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3083181.3083183.
11. Deva Priya, M., Suganya, T., Christy Jeba Malar, A., DhivyaPrabha, E., Prasad, P.K., & Vishnu Vardhan, L.R. (2020). An efficient scheduling algorithm for sensor-based iot networks. In G. Ranganathan, J. Chen, A. Rocha (eds.) Inventive Computing and Computational Technologies, (pp. 1323–1331). Singapore: Springer Singapore.
12. Divassy, R., Durisi, G., Ferrante, G. C., Simeone, O., & Uysal, E. (2019). Reliable transmission of short packets through queues and noisy channels under latency and peak-age violation guarantees. IEEE Journal on Selected Areas in Communications, 37(4), 721–734.
13. Devassy, R., Durisi, G., Ferrante, G.C., Simeone, O., & Uysal-Biyikoglu, E. (2018). Delay and peak-age violation probability in short-packet transmissions. In 2018 IEEE International Symposium on Information Theory (ISIT), (pp. 2471–2475). https://doi.org/10.1109/ISIT.2018.8437671.

14. Dhanapala, D.C., Jayasumana, A.P., & Han, Q. (2009). Performance of random routing on grid-based sensor networks. In 2009 6th IEEE Consumer Communications and Networking Conference, (pp. 1–5). IEEE.

15. Dhanapala, D.C., Jayasumana, A.P., & Han, Q. (2011). On random routing in wireless sensor grids: A mathematical model for rendezvous probability and performance optimization. Journal of Parallel and Distributed Computing, 71(3), 369–380.

16. Dohler, M., Mahmoodi, T., Lema, M.A., Condoluci, M., Sardis, F., Antonakoglou, K., & Aghvami, H. (2017). Internet of skills, where robotics meets ai, 5g and the tactile internet. In 2017 European Conference on Networks and Communications (EuCNC), (pp. 1–5). https://doi.org/10.1109/EuCNC.2017.7980645.

17. Farazi, S., Klein, A.G., McNeill, J.A., & Brown, D.R. (2018). On the age of information in multi-source multi-hop wireless status update networks. In 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), (pp. 1–5). IEEE.

18. Franco, A., Fitzgerald, E., Landfeldt, B., Pappas, N., & Angelakis, V. (2016). Lupmac: A cross-layer mac technique to improve the age of information over dense wlan. In 2016 23rd International Conference on Telecommunications (ICT), (pp. 1–6). https://doi.org/10.1109/ICT.2016.7500469.

19. Franco, A., Landfeldt, B., & Körner, U. (2020). Extended analysis of age of information threshold violations. Computer Communications, 161, 191–201. https://doi.org/10.1016/j.comcom.2020.07.038

20. Hu, L., Chen, Z., Dong, Y., Jia, Y., Liang, L., & Wang, M. (2021). Status update in iot networks: Age of information violation probability and optimal update rate. IEEE Internet of Things Journal, 8(14), 11329–11344. https://doi.org/10.1109/JIOT.2021.3051722.

21. Hughes, J., & Iida, F. (2018). Multi-functional soft strain sensors for wearable physiological monitoring. Sensors, 18(11), 3822. https://doi.org/10.3390/s18113822.

22. Inoue, Y. (2020). The probability distribution of the aoi in queues with infinitely many servers. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (pp. 297–302). IEEE.

23. Inoue, Y., Masuyama, H., Takine, T., & Tanaka, T. (2017). The stationary distribution of the age of information in FCFS single-server queues. In 2017 IEEE International Symposium on Information Theory (ISIT), (pp. 571–575). https://doi.org/10.1109/ISIT.2017.8006592.

24. Kadota, I., Rahman, M.S., & Modiano, E. (2020). Age of Information in Wireless Networks: From Theory to Implementation. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3372224.3418171.

25. Kam, C., Kompella, S., Nguyen, G.D., & Ephremides, A. (2016). Effect of message transmission path diversity on status age. IEEE Transactions on Information Theory, 62(3), 1360–1374. https://doi.org/10.1109/TIT.2015.2511791

26. Kamat, P., Xu, W., Trappe, W., & Zhang, Y. (2009). Temporal privacy in wireless sensor networks: Theory and practice. ACM Transactions on Sensor Networks (TOSN), 5(4), 1–24. https://doi.org/10.1145/1614379.1614380

27. Kaul, S., Yates, R., & Gruteser, M. (2012). Real-time status: How often should one update? In 2012 Proceedings IEEE INFOCOM, (pp. 2731–2735). https://doi.org/10.1109/INFCOM.2012.6195689.

28. Kosta, A., Pappas, N., & Angelakis, V. (2017). Age of information: A new concept, metric, and tool. Foundations and Trends® in Networking, 12(3), 162–259. https://doi.org/10.1561/1300000060

29. Modina, N., El-Azouzi, R., De Pellegrini, F., & Menasche, D.S. (2020). Joint traffic offloading and aging control in 5g iot networks. In 2020 32nd International Teletraffic Congress (ITC 32), (pp. 147–155). https://doi.org/10.1109/ITC3249928.2020.00026.

30. Network Time Protocol (NTP). RFC 958 (1985). https://doi.org/10.17487/RFC0958. https://rfc-editor.org/rfc/rfc958.txt.

31. Oberhettinger, F. (1972). Hypergeometric functions. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables., chap. 15, (pp. 556–565). New York, NY, USA: Dover Publications, Inc.

32. Östman, J., Devassy, R., Durisi, G., & Uysal, E. (2019). Peak-age violation guarantees for the transmission of short packets over fading channels. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (pp. 109–114).

33. Prudnikov, A. & Marichev, O. (1998). Integrals and Series, Elementary Functions, Integrals and Series, vol. 1. Gordon and Breach Science Publishers.

34. Prudnikov, A. & Marichev, O. (1998). Integrals and Series, Special Functions, Integrals and Series, vol. 2. Gordon and Breach Science Publishers.

35. Seo, J., & Choi, J. (2019). On the outage probability of peak age-of-information for d/g/1 queuing systems. IEEE Communications Letters, 23(6), 1021–1024. https://doi.org/10.1109/LCOMM.2019.2911505

36. Tong, X., Li, L., Zhao, G., Chang, B., & Chen, Z. (2020). Beyond fresh update: Packet management for real-time feedback control. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, (pp. 1–6). https://doi.org/10.1109/PIMRC48278.2020.9217335.

37. Van De Bovenkamp, R., Kuipers, F., & Van Mieghem, P. (2012). Gossip-based counting in dynamic networks. In International conference on research in networking, (pp. 404–417). Springer.

38. Varga, A. (2001). The OMNET++ discrete event simulation system. In ESM’01.

39. Wang, X., Chen, C., He, J., Zhu, S., & Guan, X. (2021). Aoi-aware control and communication co-design for industrial iot systems. IEEE Internet of Things Journal, 8(10), 8464–8473. https://doi.org/10.1109/JIOT.2020.3046742.

40. Williamson, G., Cellai, D., Dobson, S., & Nixon, P. (2009). Modelling periodic data dissemination in wireless sensor networks. In 2009 Third UKSim European Symposium on Computer Modeling and Simulation, (pp. 499–504). IEEE.

41. Yang, T., Jiao, J., Xu, L., Wu, S., & Zhang, Q. (2021). Age-optimal multi-slot pilot allocation random access protocol for s-iot. In 2021 IEEE Wireless Communications and Networking Conference (WCNC), (pp. 1–6). https://doi.org/10.1109/WCNC49053.2021.9417428.

42. Yates, R. D. (2020). The age of information in networks: Moments, distributions, and sampling. IEEE Transactions on Information Theory, 66(9), 5712–5728.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Antonio Franco received his M.S. degree in Electrical Engineering in 2009 from Roma Tre University. He worked for Vector Srl as a programmer analyst from 2009 to 2012. He received his Licentiate Degree in 2017 from Lund University. He is currently affiliated with the Department of Electrical and Information Technology in Lund University. His current research revolves around Age of Information in communication systems.

Björn Landfeldt got his PhD in 2000 from University of New South Wales, Australia. He then joined Ericsson Research in Stockholm as a senior researcher following which, he took up a position as CISCO Senior Lecturer at the University of Sydney, Australia. In 2012 he took up his current position as Chaired professor at Lund University, Sweden. He has published over 150 papers in international journals and conferences and also holds 15 patents. Furthermore, he has been acting as TPC or General Chair of over 30 IEEE and ACM conferences and edited many special issues in journals. His research interests include network and distributed architecture modeling and optimisation as well as protocol design and evaluation.

Ulf Körner received his doctoral degree and docent degree (habilitation) in Communications Systems both from Lund University, Sweden. In 1990 he obtained the Chair in Communications Systems at Lund Institute of Technology/Lund University. He has spent three sabbaticals at North Carolina State University, Raleigh, NC, USA in 1986, 1987 and 1992 respectively. From 1995 to 1998 he was the Dean of Electrical Engineering and Computer Engineering at Lund University. His areas of research interests are communication network architectures and protocols, performance modeling and evaluation. He is a member of the Royal Physiographic Society in Lund founded in 1772. For more than 10 years Prof. He served as a member of the Board of Directors of the Post and Telecommunications Agency in Sweden, which is the regulating body there. He has also for years been in the board of directors for several communication technology companies.

Christian Nyberg is an Associate Professor at the Department of Electrical and Information Technology at Lund University, Sweden. He is also Assistant Director of the Bachelor Programme in Computer Science and Engineering and teaches courses in computer communications, performance analysis and introductory courses for students of computer science. Most of his research is in the areas overload control of communication systems and performance of distributed systems.