We have extended the compressible liquid-drop model (CLDM) with a density-dependent surface term (eCLDM), which allows for a unified description of both the nuclear ground state energies and the incompressibility modulus in finite nuclei K_A. We analyse the role of the nuclear empirical parameters, e.g., K_{sat}, Q_{sat}, L_{sym} and K_{sym}, which contribute to the bulk properties, as well as the role of the finite size contributions. For the bulk properties, the density and isospin dependencies of the nuclear incompressibility in infinite matter are characterized by introducing new empirical parameters, and two new constraints for the value of K_{sym} are suggested. For finite nuclei, we employ a Bayesian approach coupled to a Markov-Chain Monte-Carlo (MCMC) exploration of the parameter space to confront the model predictions of K_A in Zr, Sn and Pb isotopes to the experimental data. We show that $Q_{\text{sat}} \approx -950 \pm 200$ MeV describes the experimental measurements of K_A in these isotopes. This value is different from the ones deduced from phenomenological nuclear energy density functionals, suggesting a possible explanation of their difficulty to accurately describe Zr, Sn and Pb data all together. In addition we explore the impact of a fictitious measurement of the Giant Monopole Resonance energy in 132Sn. We show that this measurement, provided it is accurate enough, will allow to better determine K_{sym} and K_τ. Finally we explore the properties of the sound speed around saturation density and show the important role of finite size terms in finite nuclei since they reduce the sound speed to approximately half compared to nuclear matter.

I. INTRODUCTION

The response of nuclear matter to compression and expansion plays a very important role in many phenomena in nature, from finite nuclei [1], which can be viewed as non-uniform pieces of nuclear matter squeezed by the effects of the surface terms, up to astrophysical nuclear systems such as neutron stars, supernovae or kilonovae [2], where nuclear matter explores densities and isospin asymmetries in extreme regimes. In finite nuclei, the repulsive surface tension and the Coulomb interaction counter balance the attractive bulk nuclear force and allow the exploration of densities close to the saturation density of nuclear matter ($\rho_{\text{sat}} \approx 0.155$ fm$^{-3}$ [3]), while in compact stars, the bulk nuclear force resists gravity for densities corresponding to several times saturation density. In these examples, the equilibrium states of these systems represent a balance between the bulk properties and the action of external forces (finite size terms or gravitational force). It is then important to quantify precisely the response of bulk nuclear matter (incompressibility) from analyses of finite nuclei properties (giant monopole resonances), which is the scope of the present study.

At first order, the energy required to compress matter from its equilibrium state, is given by the incompressibility modulus K_{sat} with an isospin asymmetry dependence driven by the parameter K_τ [1]: $K_{\text{sat}} + \delta^2 K_\tau$. These nuclear empirical parameters could be extracted from the analysis of the isoscalar giant monopole resonance (ISGMR), excited by the scattering of alpha particles, see for instance Ref. [5] and references therein. The relation between the energy of the ISGMR, E_{ISGMR}, and the incompressibility in finite nuclei K_A is [6],

$$E_{\text{ISGMR}} = \hbar \sqrt{\frac{K_A}{m_N \langle r^2 \rangle}} \approx \hbar \sqrt{\frac{5K_A}{3m_N R_A^3}},$$

(1)

where m_N is the nucleon mass and $\langle r^2 \rangle$ is the mean square radius of the density distribution in finite nuclei. The last expression is obtained assuming a flat density distribution up to R_A, as in the compressible liquid-drop model (CLDM). Considering a leptodermous expansion as in the liquid-drop model, the incompressibility modulus in finite nuclei K_A can be expressed as [4]

$$K_A = K_{\text{sat}} + K_\tau \delta^2 + K_{\text{Coul}} \frac{Z^2}{A^{1/3}} + K_{\text{surf}} A^{-1/3} + \ldots$$

(2)

where K_{sat} and K_τ are the bulk contributions which we aim to extract from experimental data, K_{Coul} is the Coulomb repulsive contribution and K_{surf} the surface attractive contribution. This leptodermous expansion is however difficult to employ for the determination of K_{sat} and K_τ from experimental measurements of E_{ISGMR}, as Eqs. [1] and [2] may suggest, especially since the term K_{surf} is difficult to fix from the few existing experimental data. The situation is different in the case of the leptodermous expansion of the nuclear mass, since more than 2000 nuclei have been measured [6]. In a recent analysis [7], precise values for K_{sat} and K_τ have been obtained...
from Eq. (2), fixing $K_{\text{surf}} = c K_{\text{sat}}$ (with $c \approx -1.2 \pm 0.12$ \cite{8}) and $K_{\text{Conl}} \approx -5.2 \pm 0.7$ MeV \cite{9}. This indicates that the key quantity which would allow the use of such an empirical relation is the surface term. In this paper, we investigate the impact of the surface term in the CLDM framework and its role to reproduce experimental data.

By using the energy density functional approach, the first precise extraction of K_{sat} gave $K_{\text{sat}} = 210 \pm 30$ MeV \cite{4}, corrected to 240 ± 20 MeV later on as a good compromise between data in ^{208}Pb and ^{90}Zr \cite{5}. The isospin dependence of the incompressibility K_{τ} is more difficult to determine from experimental data. It has recently been extracted from systematical exploration of Sn isotopic chain, giving $K_{\tau} \approx -550 \pm 100$ MeV \cite{3}. However, there are several unsettled questions: by using non-magic nuclei, the analysis of the data requires the understanding of many-body correlations (pairing, deformation, etc.) on the incompressibility of finite nuclei. The question of the isoscalar and isovector properties of the incompressibility is also important since the density and the isospin asymmetry distributions in finite nuclei are different from one to another. In addition, a systematic difference between the incompressibility extracted from ^{208}Pb and from ^{120}Sn (which tends toward $K_{\text{sat}} \approx 205$ MeV \cite{10}) remains which origin is still not well understood. This issue could be of similar origin as the systematical dispersion for K_{sat} obtained by using different models, where $K_{\text{sat}} \approx 220$ MeV is preferred by Gogny forces \cite{11} while non-linear relativistic mean field models favor $K_{\text{sat}} \approx 250$ MeV \cite{12}. It was suggested that these systematical differences could be related to the different density dependence of the models, encoded in the nuclear empirical parameter (NEP) Q_{sat} \cite{13,14}. It is indeed a general result that a large uncertainty on a high order NEP impacts the precise determination of lower order ones \cite{15}.

In uniform matter (UM), the incompressibility K_{UM} is defined as the second derivative of the energy density $\epsilon_{\text{UM}} = E_{\text{UM}}/V$ as

$$K_{\text{UM}}(n, \delta) = 9n \frac{\partial^2 \epsilon_{\text{UM}}(n, \delta)}{\partial n^2}, \quad (3)$$

$$= \frac{18}{n} P_{\text{UM}}(n, \delta) + 9n^2 \frac{\partial^2 \epsilon_{\text{UM}}(n, \delta)}{\partial n^2}, \quad (4)$$

where n is the isoscalar density $n = n_n + n_p$ and δ the isovector parameter $\delta = (n_n - n_p)/n$, the energy per particle is $\epsilon_{\text{UM}} = \epsilon_{\text{UM}}/n$, and the pressure P_{UM} is defined as

$$P_{\text{UM}} = n^2 \frac{\partial \epsilon_{\text{UM}}}{\partial n}.$$

Note that $K_{\text{UM}} = K_{\text{sat}}$ if $n = n_{\text{sat}}$ and $\delta = 0$. In finite nuclei, the isovector parameter is noted $\delta_A = (N - Z)/A$.

In the absence of external forces, such as gravity for instance, matter minimizes its energy (mechanical equilibrium) by imposing $P_{\text{UM}} = 0$. We note $n_{\text{eq}}^{\text{UM}}$ the equilibrium density in symmetric (SM) and isospin asymmetric (AM) matter. The latter always deals with small isospin asymmetries $|\delta_A| \lesssim 0.3$ as expected in finite nuclei. In nuclear matter and at equilibrium, the first term in Eq. (4) vanishes but in finite nuclei however the equilibrium density n_{eq}^A is slightly different from the one in uniform matter $n_{\text{eq}}^{\text{UM}}$, due to the presence of finite size terms which contribute to the pressure. This effect shifts $n_{\text{eq}}^{\text{UM}}$ by about 10\% at maximum and impacts the value of the bulk incompressibility in finite nuclei. One could then view the finite size terms as an "external" force probing the response of the bulk. Consequently, there is a contribution of the finite size terms to the incompressibility in finite nuclei, in addition to the density and isospin asymmetry dependence of the bulk term \cite{4}. In addition, the equilibrium density n_{eq}^A in finite nuclei varies around $n_{\text{eq}}^{\text{UM}}$ through the nuclear chart, modifying the value of the energy in the bulk. Since this value is controlled at first order by the incompressibility modulus, the energy of finite nuclei in their ground state also contains a contribution originating from the incompressibility of nuclear matter, in addition to the symmetry energy and to the finite size terms. This contribution is difficult to extract from microscopic approaches, e.g., energy density functional, shell model approaches, as well as ab-initio ones, but it could be more visible in macroscopic models such the CLDM that we employ in this study. The fact that the fluctuations in n_{eq}^A impact both the energy e_A and the incompressibility K_A requires to employ a model which could describe these two quantities in a unique framework. This is the motivation for the development of the eCLDM that we present in this paper.

The CLDM has been shown relevant to describe nuclear masses \cite{10,17} and was also employed to study the clusterized matter present on neutron star crusts \cite{18,22}. Many variations of the model can be found in the literature, however, it has been argued by Blaizot \cite{14} that the CLDM is not appropriate to accurately extract the incompressibility modulus K_{sat} from finite nuclei. The reason lies in the contribution of the density dependent surface term to the incompressibility, which is absent in most of the macroscopic models. In the present work, we however construct an extended CLDM (eCLDM) with a density-dependent surface tension allowing to describe both nuclear masses and incompressibilities. Furthermore, the bulk term of the present model is described with the meta-model \cite{5}, an energy density functional in which the parameters of the model are the empirical parameters of nuclear matter. The meta-model has the advantage of being flexible enough to allow an independent variation of the NEP and can thus be used to easily perform a sensitivity analysis of the individual impact of the NEP on the incompressibility K_A, as well as extensive searches of the best parameter sets reproducing experimental data.

The paper is organized as follow: In Sec. II we explore the incompressibility modulus in nuclear matter in terms of the NEP, or equivalently as a function of the density and the isospin asymmetry. A new constraint on K_{sym} is derived and compared to other existing ones.
Following the line suggested by Blaizot [4], we then address finite nuclei in Sec. III as described by our eCLDM model (with a density dependent surface tension), which allows to reproduce both finite nuclei and incompressibility modulus from the same approach. In Sect. IV we compare the predictions of the eCLDM to experimental data and analyse the role of the NEP K_{sat}, Q_{sat}, L_{sym} and K_{sym} in a Bayesian framework. Finally, in Sec. V we discuss the sound speed in both uniform matter and finite nuclei.

II. UNIFORM MATTER

In this section, we briefly summarize the present understanding of uniform matter and show how the knowledge of the NEP could be used to explore its properties around saturation density. We also present an alternative representation where the reference density is taken to be $n_{\text{UM}}^{\text{eq}}$, the equilibrium density which is a function of δ, instead of the saturation density n_{sat} in the usual approach.

A. Representation of the nuclear matter properties in terms of the nuclear empirical parameters

The NEP, e.g., E_{sat}, E_{sym}, are defined as the coefficients of the series expansion of the energy per particle in SM (e_{SM}) and of the symmetry energy (e_{sym}) as,

$$e_{\text{SM}}(n) = E_{\text{sat}} + \frac{1}{2} K_{\text{sat}} x^2 + \frac{1}{6} Q_{\text{sat}} x^3 + \frac{1}{24} Z_{\text{sat}} x^4 + \ldots ,$$

$$e_{\text{sym}}(n) = E_{\text{sym}} + L_{\text{sym}} x + \frac{1}{2} K_{\text{sym}} x^2 + \frac{1}{6} Q_{\text{sym}} x^3 + \frac{1}{24} Z_{\text{sym}} x^4 + \ldots ,$$

where $x = (n - n_{\text{sat}})/3n_{\text{sat}}$, with n_{sat} being the saturation density of nuclear matter ($n_{\text{sat}} = 0.155 \pm 0.005$ fm$^{-3}$, see for instance Ref. [3]). Note that choosing n_{sat} as the reference density for the parameter x, is arbitrary: in Sec. III B for instance, we explore another reference density. It should also be noted that in Eq. (7), the symmetry energy is defined as the difference between neutron matter (NM) and SM energies, as $e_{\text{sym}}(n) = e_{\text{NM}}(n) - e_{\text{SM}}(n)$. It can be expanded in terms of δ^2 as $e_{\text{sym}}(n) = e_{\text{sym,2}}(n) \delta^2 + e_{\text{NQ}}$, where $e_{\text{sym,2}}$ and e_{NQ} subsume the quadratic and non-quadratic (NQ) contributions respectively.

It was suggested in Ref. [3] to consider the series expansion up to order 4 in the density parameter x in order to represent accurately the energy per particle, the pressure and the sound speed of existing models up to about $4n_{\text{sat}}$. We adopt this prescription here as well, even if we do not explore such high densities.

Note that since asymmetric matter is mostly quadratic in δ, as it is expected to be [23], Eqs. (6) - (7) could also be written in a more compact way,

$$e_{\text{UM}}(x, \delta) \approx e_{\text{SM}}(n) + e_{\text{sym}}(n) \delta^2,$$

$$\approx E(\delta) + L_{\text{sym}} x \delta^2 + \frac{1}{2} K(\delta) x^2 + \frac{1}{6} Q(\delta) x^3 + \frac{1}{24} Z(\delta) x^4 + \ldots ,$$

where

$$E(\delta) \equiv E_{\text{sat}} + E_{\text{sym}} \delta^2, \quad K(\delta) \equiv K_{\text{sat}} + K_{\text{sym}} \delta^2, \quad Q(\delta) \equiv Q_{\text{sat}} + Q_{\text{sym}} \delta^2, \quad Z(\delta) \equiv Z_{\text{sat}} + Z_{\text{sym}} \delta^2.$$

It should be noted that the above expression of $K(\delta)$ is by no means the true isospin dependence of the incompressibility, as it will be discussed below. In particular, it neglects the contribution of the pressure which is different from zero as one gets farther from saturation. It solely represents the second order term in the density expansion of the energy per particle.

From Eq. (9), one could deduce a similar expression for the energy density $\epsilon_{\text{UM}} = (1 + 3x) e_{\text{UM}} n_{\text{sat}}$ as,

$$\epsilon_{\text{UM}}(x, \delta)/n_{\text{sat}} = E(\delta) + L'(\delta) x + \frac{1}{2} K'(\delta) x^2 + \ldots ,$$

where

$$L'(\delta) \equiv 3E_{\text{sat}} + (3E_{\text{sym}} + L_{\text{sym}}) \delta^2,$$

$$K'(\delta) \equiv K_{\text{sat}} + K_{\text{sym}} \delta^2,$$

with

$$K'(\delta) \equiv K_{\text{sym}} + 6L_{\text{sym}} .$$

The δ-dependence of the energy density curvature $K'(\delta)$ is different from that of the energy per particle curvature $K(\delta)$. Consequences will be discussed in the following, especially for the incompressibility modulus in asymmetric matter. It will be shown that $K'(\delta)$ do correspond to the isospin dependence of the incompressibility around saturation density, contrarily to K_{sym}, which is only a parameter useful in the expansion (9).

The general expressions for the pressure (5) and the incompressibility modulus (6) in AM could be expressed in terms of the parameter x as,

$$P_{\text{UM}}(x, \delta) = \frac{n_{\text{sat}}}{3} (1 + 3x)^2 \frac{\partial e_{\text{UM}}(x, \delta)}{\partial x},$$

$$K_{\text{UM}}(x, \delta) = 6(1 + 3x) \frac{\partial e_{\text{UM}}(x, \delta)}{\partial x} + (1 + 3x)^2 \frac{\partial^2 e_{\text{UM}}(x, \delta)}{\partial x^2} .$$

Injecting Eq. (9) into the expression for the pressure (16), we obtain

$$P_{\text{UM}}(x, \delta) = \frac{n_{\text{sat}}}{3} \left[L_{\text{sym}} \delta^2 + K'(\delta) x + \frac{1}{2} Q'(\delta) x^2 \right] + o(x^3) ,$$

$$K_{\text{UM}}(x, \delta) = 6(1 + 3x) \frac{\partial e_{\text{UM}}(x, \delta)}{\partial x} + (1 + 3x)^2 \frac{\partial^2 e_{\text{UM}}(x, \delta)}{\partial x^2} .$$
where $K^p = K^e$ and Q^p reads
\[Q^p(\delta) = Q^p_{\text{sym}} + Q^p_{\text{sym}} \delta^2, \tag{19} \]
with
\[Q^p_{\text{sat}} = Q_{\text{sat}} + 12K_{\text{sat}} \tag{20} \]
\[Q^p_{\text{sym}} = Q_{\text{sym}} + 18L_{\text{sym}} + 12K_{\text{sat}}. \tag{21} \]

Note that in finite nuclei, $|\delta| < 0.3$ and densities are explored from about 2/3n_{sat} up to n_{sat}, which implies $|x| \lesssim 0.1$. In finite nuclei, we could therefore perform an expansion at the same level in δ^2 and in x.

The equilibrium density in AM is given by the density for which the mechanical stability is satisfied: $\partial P_{\text{UM}}(x, \delta)/\partial x = 0$. From the expression of the pressure \[\partial x^{\text{UM}}_\text{eq} \] truncated at order x, one can deduce in AM
\[x^{\text{UM}}_\text{eq} \approx -\frac{L_{\text{sym}}}{K(\delta)} \delta^2 \approx -\frac{L_{\text{sym}}}{K_{\text{sat}}} \delta^2. \tag{22} \]

The equilibrium density is a function of the isospin asymmetry parameter δ, and it satisfies the limit $n^{\text{UM}}_{\text{eq}} \rightarrow n_{\text{sat}}$ for $\delta \rightarrow 0$. At order δ^2 and x, one obtains for the equilibrium density $n^{\text{UM}}_{\text{eq}}$ in asymmetric matter, $n^{\text{UM}}_{\text{eq}} = n^{\text{UM}}_{\text{sat}}[1 - 3(L_{\text{sym}}/K_{\text{sat}})\delta^2]$. In finite nuclei, the situation is more complex than previously described since: i) the equilibrium density is different from n_{sat}, due to the finite size terms and ii) the density is not uniform allowing for surface contributions to be sizeable. In uniform matter however, only isospin asymmetry contributes to the shift of the equilibrium density from n_{sat}, as shown in Eq. (22). While neglecting the contribution of the finite-size (FS) terms, expression (22) provides a good estimation of the average densities in finite nuclei [34]. In the next section, this density is named n_{cl} in the CLDM and we have $n_{\text{cl}} \approx n^{\text{UM}}_{\text{eq}}$ for large A.

The pressure could be decomposed into a SM and an isospin asymmetry terms:
\[P_{\text{UM}} = P_{\text{SM}} + P_{\text{sym}} \delta^2, \tag{23} \]
with
\[P_{\text{SM}}(n) = \frac{n_{\text{sat}}}{3} \left[K_{\text{sat}} x + \frac{1}{2}Q_{\text{sat}} x^2 + \ldots\right], \tag{24} \]
\[P_{\text{sym}}(n) = \frac{n_{\text{sat}}}{3} \left[L_{\text{sym}} + K^p_{\text{sym}} x + \frac{1}{2}Q^p_{\text{sym}} x^2 + \ldots\right]. \tag{25} \]
We have for instance $P_{\text{sym}}(n_{\text{sat}}) = n_{\text{sat}}L_{\text{sym}}/3$, as expected.

Similarly, injecting Eq. (9) into (17), one obtains the following expression for the incompressibility modulus
\[K_{\text{UM}}(x, \delta) = K^k(\delta) + Q^k(\delta) x + \frac{1}{2}Z^k(\delta) x^2 + o(x^3) \tag{26} \]
with $K^k = K^p = K^e$ and $Q^k = Q^p$, and where the additional coefficient in asymmetric matter reads
\[Z^k(\delta) = Z_{\text{sym}}^k + Z_{\text{sym}}^k \delta^2, \tag{27} \]
with
\[Z_{\text{sat}}^k = Z_{\text{sat}} + 54K_{\text{sym}} + 18Q_{\text{sym}} \tag{28} \]
\[Z_{\text{sym}}^k \equiv Z_{\text{sym}} + 54K_{\text{sym}} + 18Q_{\text{sym}}. \tag{29} \]

Remark that while $K(\delta)$ controls the isoscalar and isovector dependence of the curvature of the energy per particle in uniform matter [9], the incompressibility [17] itself is driven by the parameter $K^k(\delta)$ for $x = 0$. The difference between $K^k(\delta)$ and $K^k(\delta)$ reflects the contribution of the pressure, which is non-zero as soon as the density departs from the equilibrium density $n^{\text{UM}}_{\text{eq}}$, see Eq. (4). This contribution is unavoidable, making $K^k(\delta)$ the true isospin dependence of the incompressibility [33]. Fixing $n = n_{\text{sat}}$ for instance, the parameter which controls the isospin dependence of the incompressibility is $K^k_{\text{sym}} = K_{\text{sym}} + 6L_{\text{sym}}$, and not K_{sym} alone. Considering $L_{\text{sym}} \approx 50$ MeV and $K_{\text{sym}} \approx -100$ MeV [35, 36], with a lower limit provided by the unitary limit [37], the parameter K^k_{sym} is even mostly controlled by L_{sym}, and only moderately by K_{sym}.

In SM the incompressibility modulus can be expressed as a series expansion in x as
\[K_{\text{SM}}(x) = K_{\text{sat}} + (12K_{\text{sat}} + Q_{\text{sat}})x + (27K_{\text{sat}} + 9Q_{\text{sat}})x^2 + o(x^3), \tag{30} \]
and we introduce a new quantity,

\[
K_{\text{sat,eq}} = K_{\text{SM}}(x = x_{\text{eq}}^{\text{UM}}) = K_{\text{sat}} + (12K_{\text{sat}} + Q_{\text{sat}})x_{\text{eq}}^{\text{UM}} + o(x^2),
\]

which represents the incompressibility modulus of SM for the equilibrium density \(n_{\text{UM}}^{\text{eq}} \).

One can show that in AM the incompressibility modulus at the equilibrium density \(n_{\text{UM}}^{\text{eq}} \) can be expressed as,

\[
K_{\text{eq}} = K_{\text{UM}}(x_{\text{eq}}^{\text{UM}}, \delta) = K_{\text{sat}} + x_{\text{eq}}^{\text{UM}}K_{\text{sym}}^\delta + o(x^2, \delta^4).
\]

In Eq. (32), the isovector term \(K_{\text{sym}}^\delta = K_{\text{sym}}^\delta \) depends only on isovector empirical parameters \(L_{\text{sym}} \) and \(K_{\text{sym}} \), while the isoscalar term only depends on isoscalar NEPs \(K_{\text{sat}} \) and \(Q_{\text{sat}} \), provided \(x_{\text{eq}}^{\text{UM}} \) is known (experimentally for instance). In order to perform comparisons with incompressibilities in nuclei \(K_{\text{A}} \), it could be relevant to express the incompressibility modulus in AM at equilibrium density \(x = x_{\text{eq}}^{\text{UM}} \) as,

\[
K_{\text{eq}} = K_{\text{sat}} + K_{\text{sym}}^\delta + o(x^2, \delta^4),
\]

where

\[
K_{\text{sym}} = K_{\text{sym}} - (6 + Q_{\text{sat}}/K_{\text{sat}})L_{\text{sym}}.
\]

We choose nine Skyrme models, BSK1430, BSK1630, F026, LNS527, RATP28, SGII29, SKI230, SKO31, SLy532, which NEP are given in Table IV. For these nine interactions, while the parameter \(K_{\text{sym}} \) is positive for actual values of the NEPs, the parameter \(K_{\text{sym}} \) controlling the isovector dependence of \(K_{\text{eq}} \) is negative since \(Q_{\text{sat}}/K_{\text{sat}} \approx -1.5 \) from Table I. Note however that the value of \(Q_{\text{sat}} \) has never been measured and its actual value is not necessarily in the range given in Table I. Aside from the finite size contribution, the ISGMR in finite nuclei is mostly correlated with \(K_{\text{eq}} \), whose isospin dependence is given by \(K_{\text{sym}} \). This is the reason why the isovector dependence of the ISGMR across isotopic chains has been correlated with the parameter \(K_{\text{sym}} \).

It is clear from the definition of \(K_{\text{sym}} \) that here also, a precise experimental determination of \(K_{\text{sym}} \), does not necessarily lead to a better value for the NEP \(K_{\text{sym}} \), since \(K_{\text{sym}} \) is mostly correlated with \(L_{\text{sym}} \), which is not precisely known. In order to extract \(K_{\text{sym}} \) from experimental investigations, one has to precisely know the values of \(L_{\text{sym}} \) and \(Q_{\text{sat}} \). Note that with about 10% accuracy \[13\[14\[39\], the NEP \(K_{\text{sat}} \) is sufficiently well known in the present case.

An illustration of the different points where the incompressibility has been introduced is shown in Fig. 1. It displays the behavior of the equilibrium density as a function of \(\delta \), on the example of the BSk12 functional. The role of the incompressibility at various densities and isospin is also displayed on the figure. It shows that several incompressibilities at various densities are probed when the GMR is measured in a given nuclei. For instance, in addition to the saturation density, their typical mean density is around 0.11 fm\(^{-3}\) \[13\[14\]. It should be noted that \(K_{\text{sym}}^\delta \) drives the isospin dependence of the incompressibility, independently of the considered density, from \(x = 0 \) (saturation point) to \(x = x_{\text{eq}}^{\text{UM}} \) (equilibrium point).

B. An alternative representation of the nuclear matter energy and incompressibility modulus

In this section, we explore an alternative representation of the uniform matter properties, where the equilibrium density \(n_{\text{eq}} \) is taken, in place of the saturation density \(n_{\text{sat}} \). This alternative representation is equivalent to the existing one up to \(\delta^2 \), but generates non-quadratic terms. In the view of constraining uniform matter parameters from measurements of incompressibilities in nuclei, it may be more relevant to consider such a representation: the equilibrium density in uniform matter shall be closer – than the saturation density – to the average one of the nucleus \[13\[14\].

In this alternative approach, the associated density parameter is set to be \(\tilde{x} = (n - n_{\text{eq}}^{\text{UM}})/(3n_{\text{eq}}^{\text{UM}}) \), from which the density \(n \) is obtained as \(n/n_{\text{UM}}^{\text{eq}} = 1 + 3\tilde{x} \).

The alternative density parameter \(\tilde{x} \) can be expressed in term of \(x \) as,

\[
\tilde{x} = \frac{x + (L_{\text{sym}}/K_{\text{sat}})\delta^2}{1 - 3(L_{\text{sym}}/K_{\text{sat}})\delta^2}.
\]

Similarly to Eq. (35), one can expand the energy per
particle in term of \tilde{x} as
\[
e_{\text{UM}}(\tilde{x}, \delta) = \tilde{E}(\delta) + \frac{1}{2} \tilde{K}(\delta) \tilde{x}^2 + \frac{1}{6} \tilde{Q}(\delta) \tilde{x}^3 + \frac{1}{24} \tilde{Z}(\delta) \tilde{x}^4 + \ldots,
\]
with
\[
\tilde{E}(\delta) = e(\tilde{x} = 0, \delta) = E_{\text{sat}} + E_\tau \delta^2,
\]
\[
\tilde{K}(\delta) = \frac{\partial^2 e(\tilde{x}, \delta)}{\partial \tilde{x}^2} \bigg|_{\tilde{x} = 0} = K_{\text{sat}} + K_\tau \delta^2 = K_{\text{eq}},
\]
\[
\tilde{Q}(\delta) = \frac{\partial^2 e(\tilde{x}, \delta)}{\partial \tilde{x}^3} \bigg|_{\tilde{x} = 0} = Q_{\text{sat}} + Q_\tau \delta^2,
\]
\[
\tilde{Z}(\delta) = \frac{\partial^2 e(\tilde{x}, \delta)}{\partial \tilde{x}^4} \bigg|_{\tilde{x} = 0} = Z_{\text{sat}} + Z_\tau \delta^2.
\]

It should be noted that K_τ in Eq. (38) corresponds to δ_0, because it is the incompressibility at the equilibrium density, namely $K(\delta) = K_{\text{eq}}$.

Imposing the equality between the δ^2 terms in the series expansions (5) and (36) orders by orders in x, one obtains the following relations,
\[
E_\tau = E_{\text{sym}},
\]
\[
K_\tau = K_{\text{sym}} - L_{\text{sym}}(6K_{\text{sat}} + Q_{\text{sat}})/K_{\text{sat}},
\]
\[
Q_\tau = Q_{\text{sym}} - L_{\text{sym}}(9Q_{\text{sat}} + Z_{\text{sat}})/K_{\text{sat}},
\]
\[
Z_\tau = Z_{\text{sym}} - L_{\text{sym}}(12Z_{\text{sat}} + Y_{\text{sat}})/K_{\text{sat}},
\]
where Y_{sat} is the fifth order NEP. Note that these equations are a generalization of Eq. (16) of Ref. [33] up to the 4th order, and hence, the above equation for K_τ is the same than the one of the previous subsection.

Eqs. (9) and (36) are identical up to terms in δ^2. In Eq. (36) there are however non-quadratic terms, which are small even when $\delta \sim 1$. The contribution of these non-quadratic terms (because of the denominator in Eq. (35)) is even more suppressed by the fact that finite nuclei do not explore large values for δ, since $|\delta|_A < 0.3$, as previously discussed. So it is possible to use both Eq. (9) or Eq. (36) to describe the energy in finite nuclei.

Expressing the incompressibility modulus in asymmetric matter (17) as a function of the density parameter \tilde{x}:
\[
K_{UM}(\tilde{x}, \delta) = 6(1+3\tilde{x}) \frac{\partial e(\tilde{x}, \delta)}{\partial \tilde{x}} + (1+3\tilde{x}) \frac{\partial^2 e(\tilde{x}, \delta)}{\partial \tilde{x}^2},
\]
where we have used $(1+3x)\partial/e/x = (1+3\tilde{x})\partial/\partial\tilde{x}$, allows to derive the following expression for the incompressibility:
\[
K_{UM}(\tilde{x}, \delta) = \tilde{K}(\delta) + [12\tilde{K}(\delta) + \tilde{Q}(\delta)]\tilde{x} + 27\tilde{K}(\delta) + 9\tilde{Q}(\delta) + \frac{1}{2} \tilde{Z}(\delta) \tilde{x}^2 + o(\tilde{x}^3).
\]

Eq. (46) provides a series expansion of the incompressibility modulus in asymmetric matter up to \tilde{x}^2 and δ^2, which is convenient to use when constraining the uniform matter incompressibility from measurements in nuclei.

We will use the alternate representation developed in this section and confront it with the standard expansion of the nuclear matter energy in Sec. V where we present our analysis of the speed of sound.

C. Constraints on K_{sym}

From the existence of a lower bound on the energy of NM, on the basis of unitary-gas considerations, the following constraint on K_{sym} was obtained [37]:
\[
K_{\text{sym}} \approx -306.0 + 3.41 L_{\text{sym}} \pm 28.3 \text{ MeV},
\]
when models with $K_{\text{sat}} > 275$ MeV are excluded. Considering $L_{\text{sym}} \approx 50$ MeV for instance, this constraint imposes $K_{\text{sym}} \geq -150$ MeV (see Table 1).

In Eq. (47), the coefficients of the correlation are obtained from a fit to a given set of model realizations. In the following, we will demonstrate the existence of a lower limit from purely theoretical considerations.

It is possible to express the equilibrium density from K_{sym}, by solving the mechanical stability condition $\partial e_{\text{UM}}(x, \delta)/\partial x = 0$, with an expansion of the energy to x^3 and beyond δ^2 approximation. The physical solution of this second order equation is
\[
x_{\text{UM}}(\delta) = \frac{K(\delta)}{Q(\delta)} \left[1 - \sqrt{1 - 2 L_{\text{sym}} Q(\delta) / K(\delta)^2} \right].
\]
satisfying the limit $n_{\text{UM}} \to n_{\text{sat}}$ as $\delta \to 0$. Eq. (48) is well defined if $K(\delta)^2 \geq 2 L_{\text{sym}} Q(\delta) \delta^2$ for all values of δ for which equilibrium density is defined, which is ranging from SM to very asymmetric matter. There is no equilibrium density in NM, but there is still an equilibrium very close to NM. Since Eq. (48) weakly depends on δ for isospin asymmetries close to NM, we fix $\delta = 1$ in Eq. (48) for simplicity. We then obtain: $K_{\text{sym}} \geq -K_{\text{sat}} + \sqrt{2 L_{\text{sym}} Q(\delta) / K(\delta)^2}$ for all values of δ.

Considering typical values for the NEPs extracted from Table 1, $\sqrt{2 L_{\text{sym}} Q(\delta) / K(\delta)^2} \sim 70 - 100$ MeV, so the previous condition gives $K_{\text{sym}} \geq -150$ MeV or $K_{\text{sym}} \lesssim -350$ MeV. Since the second case is excluded by the constraint on K_{sym} given by considerations based on the unitary-gas [37], we are then left with the first condition alone:
\[
K_{\text{sym}} \geq -K_{\text{sat}} + \sqrt{2 L_{\text{sym}} Q(\delta) / K(\delta)^2} \sim -150 \text{ MeV.}
\]

Note that using the model averaged values of Q_{sat} and Q_{sym} [3], we have the following condition: $Q(\delta) > 0$ for all δ, constraining Q_{sat} and Q_{sym}, as $Q_{\text{sym}} > -Q_{\text{sat}}$. However, this relation is not always satisfied, as shown in table 1.

Other estimates of K_{sym} from neutron stars observations have been suggested: from X-ray thermal emission on seven LMXBs, it was found $K_{\text{sym}} = -85^{+82}_{-70}$ MeV [35]; from the analysis of GW170817 it was determined that $-259 < K_{\text{sym}} < 32$ MeV [40].

Using recent FRDM mass model [31] and the neutron skin of 48Ca extracted from (p, p') experiments and fixing the nuclear incompressibility $K_{\text{sat}} = 225 \pm 20$ MeV from up-to-date experimental data of ISGMR of 208Pb, it was found that $K_{\text{sym}} = -120 \pm 40$ MeV [36]. The constraint
obtained from FRDM mass model leads to fix $E_{\text{sym}} = 32.3 \pm 0.5$ MeV and $L_{\text{sym}} = 53.5 \pm 15$ MeV. The neutron skin experiment gives $L_{\text{sym}} = 42 \pm 15$ MeV.

A compilation of 16 results from independent analyses of neutron star observational data since GW170817 lead to the following expectation $K_{\text{sym}} \approx -107 \pm 88$ MeV [12]. All these data tend to point towards negative values of K_{sym}, with a centroid located around -100 MeV. The uncertainty is difficult to estimate, but a conservative value may be around -100 MeV. Note that these results are compatible with the constraint [49] that we derived.

III. THE COMPRESSIBLE LIQUID DROP MODEL WITH A DENSITY DEPENDENCE OF THE SURFACE TENSION

The CLDM has been originally developed on top of the liquid drop model, where the bulk term is a constant [19]. In the CLDM [16, 17], the bulk term is density-dependent and the density is fixed variationally by the mechanical stability condition. In the present approach, we suggest an extension of the CLDM by introducing a density-dependent surface term. We show that the present eCLDM could describe accurately both the energy of finite nuclei in their ground state as well as the ISGMR energy.

A. Density dependent surface tension

The novelty of the present work is the introduction of a density dependent surface tension, which is expressed as,

$$
\sigma_{\text{surf}}(n_{cl}, I_{cl}) = \sigma_{\text{surf}}(I_{cl}) \left[1 + a_{\text{surf}} f(A_{cl}) x_{cl}^2\right],
$$

where $x_{cl} = (n_{cl} - n_{sat})/3n_{sat}$ and the parameter a_{surf} controls the density dependence of the surface energy. In practice, it encodes the deviation from n_{sat}. It is then larger for nuclei for which n_{cl} is farther from n_{sat}, i.e. for light and intermediate mass nuclei as well as for exotic nuclei. In Sec. A 3 we suggest a way to estimate a_{surf} by using a single microscopic calculation of K_A in ^{100}Sn.

In Eq. (50), the function $f(A_{cl})$ is defined as,

$$
f(A_{cl}) = \frac{1}{1 + \exp[-(A_{cl} - A_0)/A_w]},
$$

where A_{cl} is the mass number of the considered nucleus. This function has been introduced to suppress the density dependence of the surface tension in light nuclei, where it appears to be unrealistically too large. From a qualitative study, we suggest the following values for the parameters of the function f: $A_0 = 70$ and $A_w = 10$.

Figure 2 shows a comparison of the surface tension σ_{surf} from the CLDM and eCLDM as function of the cluster density n_{cl}. The figure shows a bell shape for the eCLDM due to its quadratic dependence on x_{cl}, in contrast with the horizontal line of the CLDM which does not depend on the density. The eCLDM simulates a decrease of the surface tension by about 30% from $n_{cl} \approx 0.16$ fm$^{-3}$ down to $n_{cl} \approx 0.10$ fm$^{-3}$. So for typical values of the cluster density, eCLDM reduces the surface tension to a large amount.

Note that we have also investigated other functionals of the density. For instance, we have studied a correction term similar to Eq. (50), replacing x_{cl} by n_{cl} and fixing a_{surf} as described in Sec. A 3. We found that this correction changes the pressure to a large amount, shifting up the cluster density n_{cl} to unrealistic values (above 0.25 fm$^{-3}$ in some cases).

It should be noted that we have chosen the exponent of the density-dependent term in Eq. (50) to be two. The reason is twofold: first, it approximately satisfies the stationarity of the surface tension w.r.t the density, see Ref. [4] for more details, and second, with such a power, it directly contributes to the incompressibility modulus in finite nuclei. Note that a correction proportional to x_{cl} has been suggested in Ref. [43], and analysed in view of its impact on the neutron skin. However, such a term does not satisfies the requested stationary of the surface tension and does not contribute to the incompressibility in finite nuclei.

B. Incompressibility in finite nuclei: K_A

The incompressibility K_A in finite nuclei is defined as,

$$
K_A \equiv 9n_{cl}\frac{\partial^2 \epsilon_A}{\partial n_{cl}^2} \bigg|_{A},
$$

with the energy density given by $\epsilon_A = \epsilon_A n_{cl}$.

FIG. 2. Surface tension for ^{120}Sn. Continuous gray line show the result without density dependence on σ_{surf}. Dashed line shows the result with density-dependent surface tension given by Eq. (50).
According to Eq. (52) by deriving twice the energy density w.r.t the cluster density, we obtain the incompressibility in a nucleus as,

\[
K_A = K_{\text{sat}} + K_{\tau} \delta^2 + C_{\text{Coul}} \frac{3}{5} \frac{e^2}{\rho_0} \left(8 + \frac{Q_{\text{sat}}}{K_{\text{sat}}} \right) Z^2 A^{-4/3} + C_{\text{surf}} \left[8 \pi r_{cl}^2 \sigma_{\text{surf}} \left(11 + \frac{Q_{\text{sat}}}{K_{\text{sat}}} \right) - 12 \pi r_{cl}^2 \frac{\partial^2 \sigma_{\text{surf}}}{\partial n_{cl}^2} \left(10 + \frac{Q_{\text{sat}}}{K_{\text{sat}}} \right) + 36 \pi r_{cl}^2 \frac{\partial^2 \sigma_{\text{surf}}}{\partial n_{cl}^2} \right] A^{-1/3}. \tag{53}
\]

where \(C_{\text{Coul}} \) and \(C_{\text{surf}} \) are coefficients (close to 1) optimized in order to reproduce nuclear experimental masses. A detailed derivation of \(K_A \) is given in App. A. The values of the parameters used in the present work are given in Table VI. We can identify in the above expression the microscopic predictions (circles) for \(K_A \) and close to \(\sim -20 \), the fit of the eCLDM is fixed to be comparable with Eq. (6.3) of Blaizot [4]. Note that the terms in the surface contribution which are proportional to the derivative of the surface tension, is fixed to reproduce the incompressibility modulus \(K_{\text{sat}} \), the isospin term \(K_{\tau} \), the Coulomb and surface terms respectively. We have arranged this expression to be comparable with Eq. (6.3) of Blaizot [4]. Note that the terms in the surface contribution which are proportional to the derivative of the surface tension w.r.t. the cluster density are absent in usual CLDM while in the eCLDM, these terms become proportional to the constant \(a_{\text{surf}} \) introduced in Eq. (50).

C. Definition of the parameter \(a_{\text{surf}} \) and incompressibility predictions within the eCLDM

The new parameter \(a_{\text{surf}} \) controlling the density dependence of the surface tension, is fixed to reproduce the microscopic prediction for the incompressibility \(K_A \) in the doubly magic \(N = Z \) nucleus \(^{100}\text{Sn} \). The values \(a_{\text{surf}} \) and the microscopic prediction from constrained Hartree-Fock-Bogoliubov \(\text{CHFB} \), \(K_{A,\text{CHFB}}(^{100}\text{Sn}) \), are shown in Table II for the nine Skyrme interactions. The accuracy with which the microscopic prediction is reproduced by the eCLDM is fixed to \(< 1 \text{ MeV} \).

Since the parameter \(a_{\text{surf}} \) is found to be very stable and close to \(\sim -20 \), the fit of the eCLDM is made into two steps: First, the values of the coefficients \(C_{\text{surf,sym}}, C_{\text{surf}} \), and \(C_{\text{Coul}} \) are fitted to better reproduce the experimental nuclear masses, using an initial value \(a_{\text{surf}} = -20 \) (see Table VI), then in a second step, the value of \(a_{\text{surf}} \) is accurately fixed by fitting \(K_{A,\text{CHFB}}(^{100}\text{Sn}) \) for each of the Skyrme model (see Table II). For details about the microscopic CHFB approach, we refer for instance to Ref. [39].

In Fig. 3 we show as function of \(A \), for \(\text{Sn} \) and \(\text{Pb} \) isotopes, the comparison of the CLDM (solid lines) and eCLDM (dashed lines) predictions against the microscopic predictions (circles) for \(K_A \), based on the constrained Hartree-Fock-Bogoliubov (CHFB) approach, for the set of Skyrme interaction listed in Tab. II (see Refs. [13] [14] for more details on the microscopic CHFB approach). We use the microscopic radii calculated by each interaction, to transform \(E_{\text{ISGMR}} \) into \(K_A \) using Eq. (1). For SLy5, our results are identical to the ones given in Ref. [39]. By comparing CHF (red triangles) and CHFB (red circles), we see that pairing contributes to reduce the shell effects around \(A \approx 140 \) in Sn and makes the isotopic evolution of \(K_A \) smoother.

As stated by Blaizot [4], the CLDM predictions are largely overestimating \(K_A \), since the surface energy is not explicitly density-dependent. By adding the new term \(a_{\text{surf}} \) for the surface energy (Eq. (50)), the eCLDM reproduces the isotopic dependence of \(K_A \) as predicted by the microscopic CHFB approach (note that only one nucleus \(\left(^{100}\text{Sn}\right) \) has been used for the calibration of \(a_{\text{surf}} \)).

In Sn isotopes, one can note a marked step for \(A \gtrsim 132 \), in microscopic predictions, which is not present in the eCLDM prediction. The eCLDM predicts instead a continuous decrease of \(K_A \) over the isotopic chain. A similar feature, while not as pronounced, is observed for \(\text{Pb} \) isotopes for \(A \gtrsim 208 \). Microscopically, these steps are understood as originating from shell effects: in \(^{132}\text{Sn} \), they are 12 occupied \(1h_{11/2} \) states below the Fermi level and 10 unoccupied \(1h_{9/2} \) states. For \(^{208}\text{Pb} \), the Fermi level is for \(1i_{13/2} \) and the next orbital is \(1i_{11/2} \). The \(\Delta L = 0 \) isoscalar oscillation is therefore enhanced for neutron-rich systems belonging to these two

\(K_{A,\text{CHFB}}^{\left(^{100}\text{Sn}\right)} \)	\(a_{\text{surf}} \)	
BSK14 [23]	153.6	-19.95
BSK16 [25]	154.4	-20.00
F0 [26]	142.3	-19.90
LNS5 [27]	150.7	-20.95
RATP [25]	147.9	-20.85
SGH1 [29]	133.2	-19.55
SKI2 [30]	155.2	-20.00
SKO [31]	139.3	-19.55
SLy5 [32]	142.8	-20.05

Table II. For a set of Skyrme interactions, microscopic Constrained Hartree-Fock-Bogoliubov predictions for \(K_A \) in \(^{100}\text{Sn} \) used in the calibration of the parameter \(a_{\text{surf}} \).
an agnostic approach. The decrease of eCLDM, such steps could not be described by our macroscopic approach. Since shell effects are not present in the pairing.

SLy5, i.e., microscopic calculations for Sn isotopes without pairing.

FIG. 3. Comparison of K_A for Pb an Sn isotopic chains. Continuous (dashed) lines show results with CLDM (eCLDM). Constrained Hartree-Fock-Bogoliubov (CHFB) calculations are shown in dots. Red triangles shows CHF calculations for SLy5, i.e., microscopic calculations for Sn isotopes without pairing.

isotopic chains. Since shell effects are not present in the eCLDM, such steps could not be described by our macroscopic approach. The decrease of K_A as nuclei get more and more neutron-rich is however well reproduced by the eCLDM approach. Such a dependence on A depends on the choice of the NEP, as illustrated in the appendix section A.5.

As a first application of the eCLDM, we compute the binding energies, the incompressibilities K_A and ISGMR energies for several Sn and Pb isotopes and for the SLy5 Skyrme interaction (see Tab. III). All these quantities are given for both the eCLDM and the CLDM approaches. Experimental data for the binding energies from AME2020 table 6 are also given. We have also calculated the ratio $c_A = K_{A,\text{surf}}/K_{A,\text{sat}}$ for the set of nuclei. Interestingly, we found $c_A \approx -1.3$, which is compatible with the calculations of Ref. 8 deduced from a microscopic approach. Consistently with Fig. 3, the value obtained for K_A with the eCLDM is considerably reduced, compared to the one provided from the CLDM, illustrating the impact of the density-dependent surface energy term. K_{surf} is also given in Tab. III. The contribution of the density-dependent surface energy term is large: it changes the sign of the term K_{surf}, from positive (CLDM) to negative (eCLDM). The A dependence of K_{surf} is also strongly modified with the density-dependent surface energy term. The value for K_{Cont} is not much impacted by the density-dependent surface energy term. In addition, K_{Cont} is compatible with the value extracted from the liquid drop expansion 9 and are rather insensitive to the nuclear interaction. Finally, we show, in the last column, the values for ISGMR energies. Since these values are directly impacted by K_A, see Eq. (1), the eCLDM shows a reduction for the E_{ISGMR} energies. Note that this reduction makes the eCLDM results closer to the experimental values.

Tab. III illustrates one of the main feature of the eCLDM approach: the present density-dependent surface energy term has a small impact on the binding energies, but a large contribution to the incompressibility modulus K_A in finite nuclei. This justifies our fitting protocol previously described. It also shows that the low order NEP could be adjusted to the nuclear mass table quite independently to the higher order NEP which are fitted to K_A.

IV. CONFRONTATION TO THE NUCLEAR EXPERIMENTAL DATA

In this section, we confront the eCLDM to the nuclear data. To do so, we first list the experimental data used for the analysis. By using the Markov chain Monte Carlo (MCMC) approach, we then vary a set of NEP all together in order to extract the best parameters set reproducing the experimental data. A sensitivity analysis is shown in the appendix A.5 where we illustrate, in a complementary way, the individual influence of the NEP to the prediction of K_A.

A. Experimental data for K_A

We aim at reproducing together the values of K_A in $^{90,92}\text{Zr}$, $^{112–124}\text{Sn}$, $^{204–208}\text{Pb}$ from Ref. 5, see Tab. IV for detailed values. We do not consider here the experimental GMR energy measured for ^{94}Zr and reported in Ref. 5, since it is very different from the one measured in ^{90}Zr and ^{92}Zr. It is not possible, for our modeling to reproduce this data, as it is shown hereafter in Fig. 7. In addition, we investigate the role of a fictitious measurement of the GMR energy in ^{132}Sn and explore possible consequences for the determination of NEP.

We first report, in Tab. IV the experimental data listed in Ref. 5. For some nuclei there are different values obtained from different experiments, see for instance ^{90}Zr, ^{92}Zr, ^{112}Sn and ^{124}Sn (the largest differences between different experimental measurements are for ^{112}Sn and ^{124}Sn). In the following, we adopt an agnostic approach w.r.t. these data and we then equally treat the measurements. It should be noted that we have then re-calculated averaged centroids and standard deviations for nuclei were two experimental values are reported, generating a new distribution summing the individual ones. We have then determined the value for K_A using Eq. (1), where the total radius R_A is provided by an CHFB calculation 14 using SLy5 32 Skyrme interaction. The last column in Tab. IV gives the experimental values for K_A which are used in the confrontation of our eCLDM to nuclear data.
TABLE IV. Experimental data for surface and Coulomb terms, and the ISGMR energies for a set of Sn and Pb isotopes, using the meta-model version of the SLy5 nuclear interaction. On the two sides of the bar / are compared the values obtained from the eCLDM and the CLDM approaches. The experimental values for the binding energies and for the E_{ISGMR}, when available, given by the 2020 Atomic Mass Evaluation (AME) table [6] and by Garg et al[5], respectively, are given inside brackets.

A	Z	c_A (MeV)	K_A (MeV)	K_{surf} (MeV)	K_{Coul} (MeV)	E_{ISGMR} (MeV)	
100	50	-8.11 / -8.08 [-8.25]	-1.2 / 1.5	143.2 / 278.3	-276.7 / 347.7	-5.0 / -4.9	19.5 / 26.6
106	50	-8.40 / -8.38 [-8.43]	-1.3 / 1.5	142.7 / 277.3	-289.6 / 345.2	-5.0 / -4.9	19.1 / 26.0
114	50	-8.55 / -8.53 [-8.52]	-1.3 / 1.5	139.5 / 272.2	-305.1 / 336.5	-5.0 / -4.9	18.3 / 25.1 [15.9]
120	50	-8.53 / -8.52 [-8.50]	-1.4 / 1.4	136.1 / 266.6	-315.0 / 327.4	-5.0 / -4.9	17.6 / 24.4 [15.5]
180	82	-7.72 / -7.72 [-7.73]	-1.6 / 1.5	130.0 / 256.8	-366.7 / 348.2	-4.9 / -4.9	14.9 / 20.8
200	82	-7.87 / -7.88 [-7.88]	-1.6 / 1.4	128.6 / 247.9	-367.4 / 329.7	-4.9 / -4.9	14.2 / 19.6
208	82	-7.83 / -7.84 [-7.87]	-1.6 / 1.4	127.1 / 243.1	-367.0 / 320.5	-4.8 / -4.8	13.8 / 19.1 [13.5]

E_{ISGMR} (MeV) from Ref. [3] E_{ISGMR} (MeV) from this work R_A (fm) K_A (MeV) from SLy5 K_A (MeV) from Eq. (1)

^{90}Zr 17.58$^{+9.06}_{-7.22}$ 17.62 ± 0.07 4.256 135.6 ± 1.1
^{92}Zr 17.71$^{+9.09}_{-7.22}$ 17.62 ± 0.12 4.293 138.0 ± 1.9
^{94}Zr 17.55$^{+9.04}_{-7.22}$ 15.80 ± 0.21 4.330 112.9 ± 3.0
^{112}Sn 15.23$^{+8.69}_{-7.22}$ 15.69 ± 0.44 4.556 123.2 ± 6.9
^{114}Sn 15.96$^{+8.10}_{-7.22}$ 15.90 ± 0.10 4.585 128.2 ± 1.6
^{116}Sn 15.70$^{+8.10}_{-7.22}$ 15.70 ± 0.10 4.614 126.5 ± 1.6
^{118}Sn 15.60$^{+8.10}_{-7.22}$ 15.60 ± 0.10 4.641 126.4 ± 1.6
^{120}Sn 15.50$^{+8.10}_{-7.22}$ 15.50 ± 0.10 4.667 126.2 ± 1.6
^{122}Sn 15.20$^{+8.10}_{-7.22}$ 15.20 ± 0.10 4.691 122.6 ± 1.6
^{124}Sn 14.39$^{+8.10}_{-7.22}$ 14.72 ± 0.40 4.715 116.2 ± 6.3

^{132}Sn† 14.80 14.80 4.803 121.8
^{204}Pb 13.70$^{+8.10}_{-7.22}$ 13.70 ± 0.10 5.516 137.7 ± 2.0
^{206}Pb 13.60$^{+8.10}_{-7.22}$ 13.60 ± 0.10 5.532 136.5 ± 2.0
^{208}Pb 13.50$^{+8.10}_{-7.22}$ 13.50 ± 0.10 5.548 135.3 ± 2.0

†Fictitious data.

TABLE IV. Experimental data for E_{ISGMR} and K_A, considered in this work.

B. Best parameter set from Markov-chain Monte Carlo approach

In this subsection, we vary a set of NEP in order to determine the best parameters reproducing the experimental data. We first present the experimental data and then the Markov-chain Monte Carlo (MCMC) approach we adopt.

The confrontation between the experimental data for the incompressibility K_A (see tab. IV), and the model predictions, is based on the loss functions χ_{K_A}, which is defined as

$$
\chi_{K_A} = \frac{1}{N_{K_A}} \sum_i \left(\frac{K_{\text{exp},i} - K_{\text{CLDM},i}}{\delta K_{\text{exp},i}} \right)^2,
$$

where i runs over the following isotopes: $^{90,92}\text{Zr}$, $^{112-124}\text{Sn}$, $^{204-208}\text{Pb}$. We also explore a fictitious data for ^{132}Sn, since and experimental value of the GMR centroid is currently under analysis [33].

The cCLDM is also fine-tuned to experimental nuclear masses. The associated loss function χ_E is defined as

$$
\chi_E = \frac{1}{N_E} \sum_i \left(\frac{E_{\text{exp},i} - E_{\text{CLDM},i}}{\delta E_{\text{exp},i}} \right)^2,
$$

where i runs over a subset of experimental binding energy extracted from the 2020 AME mass table [3]. To speed-up the computing time, we do not consider all nuclei in the mass table, as in Ref. [21] for instance, but instead we confront the mass model to a subset of it. To do so, we picked-up one out of hundred data. We have checked that this selection does not impact our results, as discussed below.

In the following we fix the NEP E_{sat}, E_{sym}, and n_{sat} to their empirical expectations, as reported in Tab. V. We vary the other NEP, K_{sat}, Q_{sat}, L_{sat}, and K_{sym}, considering flat priors inside the boundaries given in Tab. V and defining the prior loss function χ_{prior}. The higher order NEP Q_{sat}, Z_{sat}, and Z_{sym} have no impact on the present analysis. Hence, they are fixed to values determined from analyses of model predictions, see Ref. [40]. Their value is also given in Tab. V. Finally, the effective mass, which is parameterized by M_{sat}^* and ΔM_{sat}^*, is also fixed in the present study.

The total loss function is obtained as the sum of χ_{K_A}, χ_E, and χ_{prior}. We explore three scenarios in the present study:

[10] This reference is used throughout the document to cite specific content or results discussed. The text is handled in a consistent and logical manner, ensuring clarity and coherence. The use of tables, equations, and references is properly integrated to provide a comprehensive understanding of the subject matter.
there are no direct extraction from experimental data. However, it was extracted from an analysis of models predictions, since from an analysis over existing non-relativistic and relativistic mean-field (RMF) models and around 390 MeV for relativistic Hartree-Fock (RHF) ones. There is therefore a large model dependence of the symmetry energy ΔE_{sym}, which plays a major role in the determination of the nuclear masses and is not varied in the present study.

The difference between the cases dist_i and dist_i (for $i = 1, 2, 3$) are that dist_i includes the fine tuning of the eCLDM to the experimental nuclear masses while dist_i does not. In the following results, we observe that there are very little differences between dist_i and dist_i, since the NEPs ($E_{\text{sat}}, E_{\text{sym}}$ and n_{sat}) which play a major role in the determination of the nuclear masses are not varied in the present study.

The marginalized distributions for the NEP parameters are shown in Figs. [4] and [5]. The corner plot representation in Fig. [4] shows the one parameter distributions on the diagonal and the correlation between the parameters off the diagonal, while in Fig. [5] we show a zoom of the one parameter distributions. We compare in the distributions obtained without the fictitious data for 132Sn (dist1f, blue) and with this fictitious data (dist2f, red). We also show the marginalized distribution when the slope of the symmetry energy L_{sym} is taken to be large and around 90 MeV (dist3f, green), as suggested by the analysis of PREX2 experimental data [17]. The Gaussian distributions in dashed lines represent the expected distributions for these parameters from Ref. [16]. They are also given in the first row of Tab. [V]

Let us first remark that the parameter Q_{sat} is very different from the expected values given in Tab. [V]. The distribution for Q_{sat} is very similar for the three cases: it is peaked at around ≈ -950 MeV with an uncertainty of about 150-200 MeV. The value extracted from an analysis of models predictions, since there are no direct extraction from experimental data of this parameter, is expected to be quite different: $\approx 300 \pm 400$ MeV Ref. [40]. These values are extracted from an analysis over existing non-relativistic and relativistic phenomenological approaches. However, it was already noticed that the value of this parameter changes a lot from a type of nuclear interaction to another: about -350 MeV in average for Skyrme models, around 0 for relativistic mean-field (RMF) models and around 390 MeV for relativistic Hartree-Fock (RHF) ones. There is therefore a large model dependence of Q_{sat}, which may be related to its correlation with K_{sat} as suggested in Ref. [14]. The value preferred by the GMR data points toward a relativistic model, as suggested in Ref. [15].

![FIG. 4. Marginalized distributions for the NEP parameters in the three cases which are considered here: dist_1 (considering all experimental data), dist_2 (adding a fictitious measurement for 132Sn) and dist_3 (with a prior for $L_{\text{sym}} = 90 \pm 10$ MeV). Note that for dist_1 and dist_2 the prior is $L_{\text{sym}} = 50 \pm 10$ MeV.](image)

TABLE V. Priors for the NEP from Ref. [3] (first raw), and priors considered in the present analysis to set-up dist_1, dist_2 and dist_3. The values given in interval $[a, b]$ imply that a flat prior is considered in the MCMC approach. Other NEP are fixed to the indicated values. We considered also the following parameters: $M_{\text{sat}} = 0.7$, $\Delta M_{\text{sat}} = -0.1$, $b_{\text{sat}} = 6.9$ and $b_{\text{sym}} = 0$.

	E_{sat}	n_{sat}	K_{sat}	Q_{sat}	Z_{sat}	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
From Ref. [3]	-15.8\pm0.3	0.155\pm0.005	230\pm20	300\pm400	-500\pm1000	32\pm2	60\pm15	-100\pm100	0\pm400	-500\pm1000
dist1f and dist2f	-15.8	0.155	[210,250]	[-1800,600]	-500	32	[40,60]	[-300,100]	0	-500
dist3f	-15.8	0.155	[210,250]	[-1800,600]	-500	32	[80,100]	[-300,100]	0	-500

- $\text{dist1$ & dist1f: all known experimental data are considered for K_A (90,92Zr, $^{112-124}$Sn and $^{204-208}$Pb) and the priors are taken flat, as given in Tab. [V].
- $\text{dist2$ & dist2f: same as $\text{dist1$ & dist1f but considering a fictitious value for K_A in 132Sn, as given in in Tab. [IV].
- $\text{dist3$ & dist3f: same as $\text{dist2$ & dist2f but considering a large prior for L_{sym}, as given in Tab. [V].
Pb isotopes could take its origin in the values of the NEP Q_{sat} in these models. To reproduce better Sn and Pb isotopes, more flexibility shall be given to these models, in particular the breaking of the correlation between K_{sat} and Q_{sat}. For Skyrme models, this could come with an additional density-dependent term, or the 't$_3'$ kind, as suggested in Ref. $[20]$.

The second remark is about the role of a fictitious measurement of the GMR energy in 132Sn. For simplicity, we assumed an accurate measurement as $E_{\text{ISGMR}}(^{132}$Sn) = 14.8 MeV, see dist2f. An uncertainty in $E_{\text{ISGMR}}(^{132}$Sn) will produce a result between the one suggested by dist1f and dist2f, except if the measurement is lower than the value we considered. Let us simplify the discussion of this fictitious data by not considering such a case. The role of this fictitious data for $E_{\text{ISGMR}}(^{132}$Sn) can be seen from the difference between dist1f (blue) and dist2f (red) distributions. While the isoscalar NEP are weakly impacted, the isovector NEP K_{sym} is largely impacted by the fictitious data: such a new measurement would shift the expected value for K_{sym} towards large and negative values.

Note also that the value of L_{sym} is not constrained by the considered experimental values: L_{sym} fully explores the flat prior without specific structure and it is also not correlated to other NEP. There are however correlations between K_{sat} and Q_{sat}, as well as between K_{sat} and K_{sym} and Q_{sat} and K_{sym}. The distribution for K_{sat} is more peaked than the empirical expectation (with a width of \pm20 MeV). One of the reason is that there is correlation between the parameter a_{surf}, controlling the density dependence of the surface energy, and K_{sat}. In the present study we have fixed $a_{\text{surf}} = -20$, as resulting from the typical value we obtained in the previous subsection. This parameter is however not fixed by any experimental data and including its uncertainty may contribute to widen the K_{sat} distribution. Another reason comes from the better agreement of our model with the experimental data, in comparison to other phenomenological approaches, e.g., Skyrme or RMF $[39]$. Since in our model we can fix the value of Q_{sat} independently of K_{sat}, it results in a better description of the experimental K_A values and the parameters K_{sat} and Q_{sat} are better determined, see Figs. 4 and 5. In other words, the uncertainties in Q_{sat} impacts the one in K_{sat}, as suggested in Ref. $[15]$. Since Q_{sat} is better known from the present approach, it results that K_{sat} is also determined with a better accuracy.

We represent in Fig. the marginalised distribution for the parameter K_τ, defined from Eq. $[54]$ for the cases disti (think dotted lines) and distf (think thick solid lines). Without the fictitious GMR energy in 132Sn (dist1 and distf) the K_τ distribution is quite flat, while when the 132Sn fictitious data is considered, the K_τ distribution is better localized. For the value we considered including an accurate experimental data, we obtain $K_\tau \approx -358 \pm 40$ MeV ($K_\tau \approx -356 \pm 50$ MeV) for $L_{\text{sym}} \approx 50 \pm 10$ MeV ($L_{\text{sym}} \approx 90 \pm 10$ MeV). Here also, we note the relative independence of the K_τ distribution in the parameter L_{sym}.

Our results also differ from others if we do not consider the fictitious data in 132Sn. The value $K_\tau \approx -550 \pm 100$ MeV was extracted from the analysis of the Sn isotopic chain only (from 112Sn to 124Sn $[38]$). Note also the value $K_\tau \approx -500 \pm 50$ MeV extracted from the same experimental data, using different Skyrme Hamiltonians and RMF Lagrangians $[9]$. If we apply our analysis to the same data points as in Ref. $[9]$ $[38]$, then we obtain $K_\tau \approx -330 \pm 120$ MeV and $K_\tau \approx -270 \pm 100$ MeV if we impose to reproduce K_A in Pb as well. Note however that when we consider the fictitious data in 132Sn, the value for K_τ become more peaked. This illustrates the role of isotopes with large isospin asymmetry in the determination of K_τ. However, for these data on exotic nuclei to be effective, they need to be as accurate as the
data obtained for stable nuclei.

Finally, we show in Fig. 7 the comparison between the experimental values for K_A and the values obtained with our best parameter set for each cases dist1 (thin lines) and dist1f (thick lines). Our eCLDM model is able to well reproduce the experimental points in Zr, Sn and Pb isotopes with a very good accuracy. Once again, this is possibly due to the large Q$_{\text{sat}}$ value, which points to a hint for solving the so-called Sn softness puzzle. Note that the experimental point in 94Zr is out of reach from our model. The difference between K_A in 92Zr and 94Zr is too large to be reproduced. For this reason, we decided not to include 94Zr in our fit. We also advocate for a new measurement in 94Zr, since the present data is surprising.

In the case dist1 and dist1f, the best parameter sets provide a consistent description of the experimental value in Zr, Sn and Pb isotopes. Note however that the data in 124Sn is not very constraining in our case, since the uncertainty is large. Therefore, the evolution of K_A over the Sn isotopic chain is quite flat in our model. The effect of including the fictitious data in 132Sn with small uncertainty, forces our model to decrease K_A as function of A in Sn isotopes (see dist2 and dist2f). The description of Pb isotopes, while still good, is slightly deteriorated. It is however restored with dist3 and dist3f, where a larger value for $L_{\text{sym}} \approx 90 \pm 10$ MeV is explored. However, these results are still exploratory and no conclusion could be given without an accurate measurement of the GMR energy in 132Sn.

V. SOUND SPEED IN NUCLEI AND UNIFORM MATTER

The sound speed is an important property in transport models [49]. It is interesting to address the effects of the nuclear properties, e.g., NEPs, on the sound speed in uniform matter and in finite nuclei. Moreover, the sound speed is an important ingredient in the calculation of the tidal deformation in binary neutron stars [50–53]. Therefore a connection between the sound speeds in finite nuclei and infinite matter could help in constraining NS observables from nuclear experiments.

The sound speed c_s in a nuclear fluid is largely determined from the nuclear incompressibility in asymmetric matter. It is defined as [3]

$$c_s^2 = \frac{K(n,\delta)}{9h(n,\delta)},$$ \hspace{1cm} (56)

where h is the enthalpy per particle $h = mc^2 + e + P/n$. In uniform matter, we determine the sound speed from the following quantities χ_{UM} [9], P_{UM} [6] and K_{UM} [4], while in finite nuclei, we use e_A [A1], P_A [A9] and K_A [A15]. All these quantities have been defined in previous sections and in the appendix A.

We show in Fig. 8 the correlation between the speed-of-sound in NM at n_{sat} and the NEP K_{sym}. We have used the posterior distributions corresponding to the three cases: dist1f, dist2f and dist3f. The horizontal red band (Drischler 2021) depicts the constraint on the sound speed from χEFT Hamiltonians calculated at n_{sat} [38]. The vertical line at $K_{\text{sym}} = -150$ MeV separates the excluded values obtained from our Eq. (49) (left side) from the authorized ones (right side).

![Graph showing correlation of the sound speed in NM at n_{sat} with the parameter K_{sym} for the three cases: dist1f, dist2f and dist3f. The horizontal red band (Drischler 2021) depicts the constraint on the sound speed from χEFT Hamiltonians calculated at n_{sat} [38]. The vertical line at $K_{\text{sym}} = -150$ MeV separates the excluded values obtained from our Eq. (49) (left side) from the authorized ones (right side).]
It should be noted, from Fig. 8, that the inclusion of a fictitious data in 132Sn (see the contour Dist2f) may contribute to the reduction of the band width for the sound speed in NM, reducing the values for K_{sym} to be $K_{\text{sym}} \lesssim -100$ MeV and $c_{\text{s}}^2 \lesssim 0.055c^2$ (instead of 0.06c^2). The case of dist3f is even more interesting: if only large δ are authorized then the overlap between dist3f and χEFT occurs in the forbidden region for K_{sym}. In other word, there is no overlap between dist3f and χEFT. The sound speed in NM therefore contributes to exclude large values for L_{sym}, as suggested by PREX2.

It is also relevant to explore the correlation between the sound-speed and K_{sym} in cases similar to what exists in heavy ion collisions at the Fermi energy. In Fig. 9 we fix the density to be $n_{\text{sat}}/2$ and isospin asymmetry parameter $\delta = 0.5$. Interestingly we see that, in contrast with the NM case ($\delta = 1$) shown in Fig. 8, the correlation is negative (anti-correlation). This is due to the dominant contribution of the pressure to the enthalpy, for which K_{sym} contributes to a large extent: K_{sym} contributes to the first power in the density parameter x to the pressure, while only to the second power to the energy per particle. The isoscalar contribution to the pressure is small in the vicinity of saturation density. Since the leading order impact of K_{sym} is an odd power in x, it has an opposite correlation below saturation density, as compared to above. As in Fig. 8 we see that the uncertainty in L_{sym} plays a large role, as can be inferred by comparing dist3f with the other cases. The uncertainty induced by L_{sym} is of similar magnitude as the one originating from K_{sym}. We can thus conclude that tighter constraints on both L_{sym} and K_{sym} will reduce the uncertainty in the sound speed.

We now come back to finite nuclei, where FS terms also play a role in sound speed. These FS terms impact the connection between the sound-speed in finite nuclei and the sound-speed in nuclear matter. In Fig. 10 we show the sound-speed in finite nuclei as a function of A for two isotopic chains: Sn and Pb. For this calculation, we have used the SLy5 interaction. In both panels, the sound speed in infinite matter at n_{sat} is shown as black horizontal lines. The solid black line represents SM. The red dashed line represents AM with $\delta = 0.2$ and for $n_{\text{enl}} = 0.157$ fm$^{-3}$. So the effect of asymmetry itself is to slightly increase the sound speed, while shifting down the equilibrium density from SM to AM reduces the sound speed. The main differences between the blue curve and the straight lines, originate from the contribution of the FS terms in finite nuclei. There is a factor approximately 2 between uniform matter and finite nuclei. The same difference has been observed between K_{sat} and K_A, see for instance the middle panel of Fig. 11. Interestingly, we see that the deviation between the black and the blue lines increases with A due to the fact that nuclei get more and more neutron rich, and therefore the cluster density decreases. At much larger A (above the values shown in the figures), the FS terms finally decrease in size and at the limit $A \to \infty$ finite nuclei and uniform matter results do get closer.
VI. CONCLUSIONS

In this work we have explored various ways to encode the density and isospin asymmetry dependence of the incompressibility in nuclear matter. We have discussed the dominant contribution of L_{sym} in the determination of the isospin dependence of the incompressibility modulus. A better knowledge of the incompressibility modulus in AM requires therefore an accurate knowledge of L_{sym}. In finite nuclei, by introducing an extended CLDM (eCLDM) adding a density dependence to the surface tension proportional to x_{Q}^{2}, where $x_{Q} = \frac{n_{Q} - n_{sat}}{3n_{sat}}$, we were able to provide a unified macroscopic model for nuclear masses and incompressibility modulus. We have then rederived K from the eCLDM framework along the lines originally suggested by Blaizot [4]. In this way, the contribution of the new density-dependent term, in the surface tension to K, is explicitly shown in the equations.

We have compared the predictions of the eCLDM for the nucleus incompressibility K with microscopic calculations and experimental data. Thanks to the flexibility of the meta-model, a sensitivity analysis on the impact of individual nuclear empirical parameter is made. As expected, the isoscalar channel influences the absolute values of the energies while the isoscalar one impact the slope of the K as function of the isospin asymmetry. A full exploration in the parameter space formed by K_{sat}, Q_{sat}, L_{sym} and K_{sym} is also performed, showing that the parameter Q_{sat} must be approximately $Q_{sat} \approx 950 \pm 200$ MeV to reconcile the experimental GMR energies measured in Zr, Sn and Pb isotopes. Since this suggested value is different from the ones of phenomenological forces, we then suggest a possible explanation of the origin of the difficulties these forces faces in reproducing the experimental data on K, on both Sn and Pb nuclei.

In addition, we explore the impact of a fictitious accurate measurement for the GMR energy in 132Sn. We show that with such a measurement, the value of K_{sym} and K_{sym} would be much better determined than they are with the present data.

We have also derived two new constraints on K_{sym}:

- From the equilibrium density: $K_{sym} \geq -K_{sat} + \sqrt{2L_{sym}Q(\delta = 1)} \sim -150$ MeV and $Q_{sym} > -Q_{sat}$.
- From the confrontation of our prediction for the sound speed in NM with the χEFT, we found $-200 \leq K_{sym} \leq 50$ MeV. This constraint could be more accurate if a measurement of the GMR energy in 132Sn is known.

Let us remark that the constraint on Q_{sym} combined with the MCMC exploration for Q_{sat} leads to the following consequence: $Q_{sym} \gtrsim 950 \pm 200$ MeV.

In conclusion, the present work suggests a new way to analyze the experimental K and to extract the values of the NEP K_{sat}, Q_{sat}, L_{sym} and K_{sym}, which are the most influential ones. This method is comparable to the microscopic Hartree-Fock one, except that it does not describe shell effects. These shell effects are however reduced by the treatment of the pairing, as shown in the microscopic Hartree-Fock Bogoliubov calculations [5]. The advantage of our method is that we use the flexible nuclear meta-model to simulate the role of the nuclear interaction. At variance with phenomenological forces, the nuclear meta-model is able to freely choose the best NEP which describe the experimental data. We found that the data favors a large and negative value for Q_{sat} which is not possible with phenomenological forces. We then suggest a possible origin for the observed limitations of these forces.

We note that our ability to extract information on Q_{sat} and K_{sym} from finite nuclei, is based on the variation in density and isospin asymmetry explored by the isotopes defining the loss function χ_{E}. For simplicity we have based our analysis on the results of an eCLDM where the densities and isospin asymmetries are taken flat in finite nuclei. This is clearly an important feature which has to be improved in the future. One may think for instance in implementing the meta-model in a modeling of finite nuclei with better density profiles compared to the eCLDM. Further works in this direction are therefore envisioned.

ACKNOWLEDGMENTS

J.M. and R.S. are supported by CNRS grant PICS-08294 VIPER (Nuclear Physics for Violent Phenomena in the Universe) and the CNRS IEA-303083 BEOS project. All authors are grateful to the CNRS/IN2P3 NewMAC master-project, and benefit from PHAROS COST Action MP16214. This work is supported by the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon for its financial support within the program Investissements d’Avenir (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR). GG is supported by Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under the Excellence of Science (EOS) Projects nr O022818F and O000422F.

Appendix A: Derivation of the incompressibility K in finite nuclei

In this appendix we derive K in finite nuclei and obtain an expression similar to the one obtained by Blaizot [3], but for the eCLDM approach and where we have introduced the NEP explicitly. We detail the derivation step by step, starting with the definition for the nuclear binding energy, going to the pressure in the nucleus to have in the end a clear expression for the incompressibility. In the last section of this appendix we take ad-
vantage of the present approach to analyse the impact of the NEP to reproduce K_A.

1. Energy per particle: e_A

We define the binding energy e_A for the nucleus A in the CLDM as,

$$e_A \equiv e_{A,\text{UM}} + e_{A,\text{FS}}$$ \hspace{1cm} (A1)

where the uniform matter energy $e_{A,\text{UM}}$ is defined from the symmetric matter and symmetry energy terms e_{SM} \[6\] and e_{sym}, \[7\] as $e_{A,\text{UM}}(n_{\text{cl}}, \delta_{\text{cl}}) \equiv e_{\text{SM}}(n_{\text{cl}}) + e_{\text{sym}}(n_{\text{cl}})\delta_{\text{cl}}^2$, where n_{cl} and δ_{cl} are the equilibrium density and isospin asymmetry $\delta_{\text{cl}} = (N - Z)/A$ of a given nucleus. The density n_{cl} is obtained assuming that the nucleus is at mechanical equilibrium, i.e., $P_A = 0$, see discussion in the next subsection.

The finite size contribution is defined as,

$$e_{A,\text{FS}} \equiv e_{A,\text{surf}} + e_{A,\text{Coul}}$$ \hspace{1cm} (A2)

where we consider only the surface and Coulomb terms in the present work. The contributions originating from higher order terms in the leptodermous expansion are disregarded in this analysis, where we present an eCLDM with a density-dependent surface energy. However, they shall be studied in a future work. Note also that by considering only the FS terms as given in Eq. \[A2\], our equations are consistent with the seminal paper by Blaizot \[4\] (see for example Eq. (2.17)).

Considering the direct Coulomb contribution only, as well as a uniform charge distribution in the nucleus, the Coulomb energy reads,

$$e_{A,\text{Coul}} = \mathcal{C}_{\text{Coul}} \frac{3}{5} \frac{Z^2 e^2}{R_A} \frac{1}{A},$$ \hspace{1cm} (A3)

where the nucleus radius is $R_A = r_{\text{cl}}A^{1/3}$ and $r_{\text{cl}} = (3/4\pi n_{\text{cl}})^{1/3}$. The parameter $\mathcal{C}_{\text{Coul}}$, which is fitted on experimental nuclear masses (see Ref. \[21\] for details on the fit procedure), represents an effective way to incorporate the effect of exchange as well as of the surface, on the Coulomb energy. In the present fit, the experimental masses are corrected by the odd-even mass staggering as $E_{\text{ex}}^i = E_{\text{ex}}^i - \Delta E_{\text{ex}}^i$, with

$$\Delta E_{\text{ex}}^i = \left[\Delta_{\text{sat}} + \Delta_{\text{sym}} \left(\frac{N_i - Z_i}{A_i} \right)^2 \right] A_i^{-1/3} \delta(N, Z).$$ \hspace{1cm} (A4)

The surface energy is given by,

$$e_{A,\text{surf}} = \mathcal{C}_{\text{surf}} \frac{4\pi \sigma_{\text{surf}} R_A^2}{A}.$$ \hspace{1cm} (A5)

In the CLDM approach the surface tension is usually approximated by the following formula \[56\].

$$\sigma_{\text{surf}}(I_{\text{cl}}) \approx \sigma_{\text{surf},\text{sat}} \frac{2\sigma_{\text{surf}} + 1 + b_{\text{surf}}}{Y_{p,\text{cl}} - p_{\text{surf}} + b_{\text{surf}} + (1 - Y_{p,\text{cl}})^{-p_{\text{surf}}}}$$ \hspace{1cm} (A6)

where $Y_{p,\text{cl}} = Z_{\text{cl}}/A_{\text{cl}} = (1 - I_{\text{cl}})/2$, $I_{\text{cl}} = (N_{\text{cl}} - Z_{\text{cl}})/A_{\text{cl}}$ and $\sigma_{\text{surf},\text{sat}}$ is a parameter that determines the surface tension of symmetric nuclei. The isospin dependence is controlled by the parameters b_{surf} and p_{surf}. Fixing the parameter $\sigma_{\text{surf},\text{sat}}$ to an average value, see Tab. \[VII\] the parameters $\mathcal{C}_{\text{surf}}$ and b_{surf} are fitted from the nuclear chart, while the parameter p_{surf} is usually fixed to a value close to ~ 3 \[56\], since it controls the isospin dependence of the surface energy for large asymmetries, which are not reached in finite nuclei.

For small asymmetries we could expand $\sigma_{\text{surf}}(I_{\text{cl}})$ as,

$$\sigma_{\text{surf}}(I_{\text{cl}}) \approx \sigma_{\text{surf},\text{sat}} - \sigma_{\text{surf},\text{sym}} I_{\text{cl}}^2$$ \hspace{1cm} (A7)

with

$$\sigma_{\text{surf},\text{sym}} = \frac{\sigma_{\text{surf},\text{sat}} 2^p_{\text{surf}} p_{\text{surf}} (p_{\text{surf}} + 1)}{2^{p_{\text{surf}} + 1} + b_{\text{surf}}}.$$ \hspace{1cm} (A8)

Eq. \[A8\] relates the parameter b_{surf} to the surface symmetry energy $\sigma_{\text{surf},\text{sym}}$, see also Ref. \[21\] for more details.

We fit the isoscalar and isovector surface parameters from the experimental nuclear masses. The standard surface parameters in the CLDM approach are given in Table \[VII\]. The optimized parameters $\mathcal{C}_{\text{Coul}}, \mathcal{C}_{\text{surf}}$ and $\mathcal{C}_{\text{surf},\text{sat}}$ are given in Table \[VI\] for the different NEP used in the present work, together with the respective χ^2, where $\chi^2 = \frac{1}{N} \sum_{i=1}^{N} \left(E_{\text{exp}}^i - E_{\text{cl}}^i \right)^2$. E_{exp}^i are the experimental masses, E_{cl}^i are the predictions for the CLDM/eCLDM models for given nucleus i and $N = 3375$ is the number of considered nuclei from the 2020 Atomic Mass Evaluation (AME) \[20\].

The novelty of the present work is the introduction of a density dependent surface tension, see Eq. \[56\]. It should be noted that we have chosen the exponent of the density-dependent term in Eq. \[56\] to be two. The reason is twofold: first, it approximately satisfies the stationarity of the surface tension w.r.t the density, see Ref. \[3\] for more details, and second, with such a power, it directly contributes to the incompressibility modulus in finite nuclei. Note that a correction proportional to x_{cl} has been suggested in Ref. \[43\] and analysed in view of its impact on the neutron skin. However, such a term does not affect the requested stationarity of the surface tension and does not contribute to the incompressibility in finite nuclei.
The pressure P_A in finite nuclei is defined as,

$$P_A = n_{cl}^2 \frac{\partial e_A}{\partial n_{cl}}|_{A}, \quad (A9)$$

which can be decomposed into a bulk term, originating from uniform matter and a finite size contribution: $P_A = P_{A,UM} + P_{A,FS}$. The bulk term is decomposed into SM and isospin asymmetry contributions, as in Eq. (5):

$P_{A,UM} = P_{A,SM} + P_{A,FS} \delta^2$, taking $P_{A,SM} = P_{SM}(n_{cl})$ and $P_{A,FS} = P_{FS}(n_{cl})$.

Note that the functions of R_A in the binding energy also contribute to the pressure as,

$$P_A = -\frac{R_A n_{cl}}{3} \frac{\partial e_A}{\partial R_A} |_{A}, \quad (A10)$$

since the partial derivative w.r.t. n_{cl} at fixed A is equivalent to a partial derivative w.r.t. R_A, with appropriate factor, see appendix D.

The finite size pressure is $P_{A,FS} = P_{A,surf} + P_{A,Coul}$, with the Coulomb pressure term derived as

$$P_{A,Coul} = C_{Coul} \frac{Z^2 e^2 n_{cl}}{5 \pi R_A^2} \frac{1}{A}, \quad (A11)$$

The surface term is decomposed into two contributions

$$P_{A,surf} = P_{A,surf}^{CLDM} + P_{A,surf}^{DD} \quad (A12)$$

where the first term is the usual CLDM contribution, while the second term originates from the new density-dependent (DD) term. They are defined as,

$$P_{A,surf}^{CLDM} = -\frac{C_{surf}}{3} 8\pi \sigma_{surf} R_A^2 n_{cl} \frac{1}{A}, \quad (A13)$$

$$P_{A,surf}^{DD} = C_{surf} 4\pi R_A^2 n_{cl}^2 \frac{\partial \sigma_{surf}}{\partial n_{cl}} \frac{1}{A}. \quad (A14)$$

Note that since $\partial \sigma_{surf}/\partial n_{cl} \propto x_{cl} \approx 0$, the contribution of the new DD term to the pressure is small.

Numerically, the cluster density n_{cl} is obtained from the mechanical stability condition $P_A = 0$, using the Newton-Raphson algorithm with n_{eq} as starting solution.

3. Incompressibility in finite nuclei: K_A

The incompressibility K_A in finite nuclei is defined as,

$$K_A = n_{cl} \frac{\partial^2 \epsilon_A}{\partial n_{cl}^2} |_{A}, \quad (A15)$$

with the energy density given by $\epsilon_A = e_A n_{cl}$. Similarly to the energy and the pressure, the linearity of the derivative operator allows to decompose the incompressibility K_A in finite nuclei as bulk and FS terms,

$$K_A = K_{A,UM} + K_{A,FS}, \quad (A16)$$

where $K_{A,UM} = K_{A,SM} + K_{A,FS} \delta^2$, $K_{A,SM} = K_{SM}(n_{cl})$ and $K_{A,FS} = K_{FS}(n_{cl})$.

The finite size contribution to the incompressibility are given as $K_{A,FS} = K_{A,surf} + K_{A,Coul}$, where the Coulomb term reads,

$$K_{A,Coul} = C_{Coul} 12 \frac{Z^2 e^2}{5 \pi R_A^2} \frac{1}{A}, \quad (A17)$$

and the surface term is expressed as

$$K_{A,surf} = C_{surf} \left[8\pi R_A^2 \sigma_{surf} + 24\pi n_{cl} R_A^2 \frac{\partial \sigma_{surf}}{\partial n_{cl}} + 36\pi n_{cl} R_A^2 \frac{\partial \sigma_{surf}}{\partial n_{cl}} \right] \frac{1}{A}, \quad (A18)$$
4. Re-expression of K_A

The first time a CLDM model was used to compute the incompressibility of nuclei goes back to the seminal work of Blaizot [4]. In order to compare our expression for K_A with his work, we dedicate this section to re-write our equations and obtain the equivalent of Eq. (6.3) of Ref. [4].

In finite nuclei, the density is different from the saturation density due to the contribution of FS and isospin asymmetry terms. If the density parameter x_{cl} remains small, Blaizot suggested to express K_A as [4],

$$K_A = K_{sat} + \delta^2 \tilde{K}_{A,sym} + \tilde{K}_{A,FS}. \quad (A19)$$

The new terms $\tilde{K}_{A,sym}$ and $\tilde{K}_{A,FS}$ incorporate, in addition to the contribution $K_{A,sym}$ and $K_{A,FS}$, the shift in density between n_{cl} and n_{sat}, see Appendix [B] and more specifically Eq. (6.16). To do so, we consider the expression for $K_{A,SM}$ up to the linear order in x_{cl} from Eq. (60), where the expression for x_{cl} in terms of $P_{A,sym}$ and $P_{A,FS}$ from Eq. (60) is injected:

$$K_{A,SM} = K_{sat} - \frac{3P_{A,sym}}{n_{cl}K_{sat}} \delta^2 (12K_{sat} + Q_{sat})$$

Re-ordering the different terms into K_A gives Eq. (A19) where

$$\tilde{K}_{A,sym} = K_{A,sym} - \frac{3P_{A,sym}}{n_{cl}K_{sat}} (12K_{sat} + Q_{sat}) \quad (A21)$$

$$\tilde{K}_{A,FS} = K_{A,FS} - \frac{3P_{A,FS}}{n_{cl}K_{sat}} (12K_{sat} + Q_{sat}) \quad (A22)$$

At order $\sigma(x_{cl})$, the term $\tilde{K}_{A,sym}$ can be expressed as

$$\tilde{K}_{A,sym} \approx K_{sym} - L_{sym} \left(6 + \frac{Q_{sat}}{K_{sat}}\right) = K_\tau. \quad (A23)$$

The FS terms could be decomposed into the Coulomb and surface contributions. The Coulomb term reads,

$$\tilde{K}_{A, Coul} = -\frac{3e^2}{5} \frac{Z^2 e^2}{5} \frac{1}{R_A A} \left(8 + \frac{Q_{sat}}{K_{sat}}\right) = \tilde{K}_{Coul} Z^2 A^{-4/3}, \quad (A24)$$

with

$$\tilde{K}_{Coul} = -\frac{3e^2}{5} \frac{e^2}{r_0} \left(8 + \frac{Q_{sat}}{K_{sat}}\right). \quad (A25)$$

The surface term reads,

$$\tilde{K}_{A, surf} = \left(\tilde{K}_{surf}^{CLDM} + \tilde{K}_{surf}^{DD,\sigma} + \tilde{K}_{surf}^{DD,\sigma}\right) A^{-1/3} \quad (A26)$$

with

$$\tilde{K}_{surf}^{CLDM} = C_{surf} 8\pi n_{cl}^2 c_{surf} \left(11 + \frac{Q_{sat}}{K_{sat}}\right), \quad (A27)$$

$$\tilde{K}_{surf}^{DD,\sigma} = -C_{surf} 12\pi n_{cl}^2 c_{surf} \frac{\partial \sigma_{surf}}{\partial n_{cl}} \left(10 + \frac{Q_{sat}}{K_{sat}}\right), \quad (A28)$$

$$\tilde{K}_{surf}^{DD,\sigma} = C_{surf} 36\pi n_{cl}^2 c_{surf} \frac{\partial^2 \sigma_{surf}}{\partial n_{cl}^2}. \quad (A29)$$

Note that the first derivative term, $\tilde{K}_{surf}^{DD,\sigma}$, is expected to be small since $\frac{\partial \sigma_{surf}}{\partial n_{cl}} \propto x_{cl} \approx 0$. In order to compare the above finite size contributions for Eq. (A19) with Eq. (6.3) of Blaizot [4], we shown in App. [C] how to write $\tilde{K}_{A,FS}$ in Blaizot notation.

5. Sensitivity analysis

We analyse the impact of both the isoscalar NEPs ($E_{sat}, n_{sat}, K_{sat}$ and Q_{sat}) in Fig. 11 and the isovector NEPs (E_{sym}, L_{sym} and K_{sym}), in Fig. 12. The results obtained from the microscopic CHFB calculation based on the Skyrme SLy5 Hamiltonian [32] are shown in red square for the two figures. The experimental data of Tab. IV, are shown in black with their error-bars.

In Fig. 11 we show the impact of the isoscalar parameters E_{sat} and n_{sat} (top), K_{sat} and Q_{sat} (bottom). The effects of E_{sat} and n_{sat} are very small and almost unnoticeable. However, the incompressibility modulus K_{sat} largely impacts K_A with a positive correlation: the larger K_{sat} the larger K_A. The impact of Q_{sat} is also large but less linear: there is a crossing value for A for which the impact of Q_{sat} is negligible. On the left of this crossing A, Q_{sat} is correlated with K_A and on the right of it, it is anti-correlated. The red dashed line represents the eCLDM results using SLy5 Skyrme force. The value for K_{sat} which predict K_A above the experimental data in Sn, predict K_A below them in Pb. It is then difficult to fix accurately K_{sat} to reproduce experimental data in both Sn and Pb isotopes. The difficulty to reproduce Sn and Pb isotopes within the same nuclear force is indeed well known in the literature [57]-[59]. However, it is possible to use the NEP Q_{sat} which impact K_A, in a different way compared to K_{sat}, as previously commented. To reconcile eCLDM with nuclear data, a low value for Q_{sat} is preferred.

We now analyse the impact of the isovector NEPs. In Fig. 12 we plot eCLDM predictions assuming the Skyrme SLy5 Hamiltonian (red dashed lines), and then as for the isoscalar NEPs, we vary the NEPs one after another. As expected, these parameters do not impact K_A in symmetric nuclei, and have an impact which increases as the isospin asymmetries increase. The impact of E_{sym} (top panel) is however invisible at the scale of the figure, while L_{sym} (middle panel) and K_{sym} (bottom panel) have larger impacts: L_{sym} is anti-correlated with K_A, while K_{sym} is correlated with K_A. As the isospin asymmetry of the isotopes increases, the impact of these isovector NEPs gets larger and larger. The larger decrease of K_A, as function of A in Sn isotopes, is obtained for large values of L_{sym}, but a low value of K_{sym} could also simulate the same effect.

None of the variations around the SLy5 Skyrme force seems to be preferred by the data. It is then difficult, from this sensitivity analysis, to detect which parameter set best reproduces the experimental nuclear data: the role of the different NEP is complex and the values which
FIG. 11. Incompressibility for Sn and Pb isotopes. Black dots with error bars show the results of experimental data of Garg et al. [5]. Red dashed lines (squares) shows the predictions from eCLDM (CHFB) with SLy5 interaction. Different line colors (light grey to black) show variation on isoscalar empirical parameters E_{sat} (top left), n_{sat} (top right), K_{sat} (bottom left) and Q_{sat} (bottom right).

suggest a better description of the data, seem far from the SLy5 ones. In order to search for the best parameter set, it is then necessary to have a more global approach, where all the NEPS could be varied together, which is what we present in Sec. IV B.

Appendix B: Expression for x_{cl} in finite nuclei

We follow the approach of Blaizot [4] and rewrite x_{cl} as follows. From the definition of the compressibility $\chi(n)$,

$$\chi = \frac{1}{n} \left(\frac{dP}{dn} \right)^{-1},$$

we have

$$\frac{dP}{dn} = \frac{1}{n\chi}. \tag{B1}$$

In $N = Z$ nuclei, $P = P_{A,SM}$, and by integrating (B1) from saturation (n_{sat}) to equilibrium (n_{cl}),

$$P_{A,SM}(n_{cl}) - P_{A,SM}(n_{\text{sat}}) = \int_{n_{\text{sat}}}^{n_{cl}} \frac{1}{n\chi} dn. \tag{B2}$$

By definition $P_{A,SM}(n_{\text{sat}}) = 0$, and for x_{cl} is close to n_{sat} we approximate $\chi(n) \approx \chi(n_0)$ with $n_0 \in [n_{\text{sat}}, n_{cl}]$, leading to

$$P_{A,SM}(n_{cl}) \approx \frac{1}{\chi(n_0)} \log \frac{n_{cl}}{n_{\text{sat}}} \approx \frac{1}{\chi(n_0)} \frac{n_{cl} - n_{\text{sat}}}{n_{\text{sat}}}. \tag{B3}$$

Since $K = 9/(n\chi)$, we have

$$\frac{1}{\chi(n_0)} = \frac{n_0 K_{A,SM}(n_0)}{9} \approx \frac{n_{cl} K_{\text{sat}}}{9}, \tag{B4}$$

since $K_{A,SM}$ is an increasing function of the density. Finally, we obtain

$$x_{cl} = \frac{n_{cl} - n_{\text{sat}}}{3n_{\text{sat}}} = \frac{3}{n_{cl} K_{\text{sat}}} P_{A,SM}(n_{cl}). \tag{B5}$$

Eq. (B5) could be interpreted as the following: there is an equivalence between the density shift x_{cl} which is different from zero for densities different from n_{sat}, as an effect of an external pressure $P_{A,SM}$, shifting the equilibrium density to a slightly different one. In finite nuclei, this extra-pressure is originating from the FS and isospin asymmetry terms, since $P_A(n_{cl}) = 0$. We therefore deduce $P_{A,SM}(n_{cl}) = -P_{A,FS}(n_{cl}) - \delta^2 P_{A,\text{sym}}(n_{cl})$, and we
can rewrite Eq. (B5) as

\[x_{cl} = -\frac{3}{n_{cl}K_{sat}} \left(P_{A,FS}(n_{cl}) + \delta^2 P_{A,sym}(n_{cl}) \right). \]

Appendix C: Contributions to the incompressibility modulus within the Blaizot notations

In the original notations of Blaizot [4], the NEP where not used, but instead the third derivative of the energy density \(\epsilon \). Using the original notations, we obtain for the Coulomb contribution,

\[\tilde{K}_{A,Coul} = \frac{3 Z^2 e^2}{5 A R_A} \left(1 - \frac{27 n_{sat}^2}{K_{sat}^3} \frac{d^3 \epsilon}{dn^3} \right), \quad (C1) \]

and for the surface contribution

\[\tilde{K}_{surf}^{CLDM} = 16 \pi r_{cl}^2 \sigma_{surf} \left(1 + \frac{27}{2} n_{sat}^2 \frac{d^3 \epsilon}{dn^3} \right), \quad (C2) \]

\[\tilde{K}_{surf}^{DD,\sigma} = -12 \pi n_{cl} r_{cl}^2 \frac{\partial \sigma_{surf}}{\partial n_{cl}} \left(1 + \frac{27}{2} n_{sat}^2 \frac{d^3 \epsilon}{dn^3} \right), \quad (C3) \]

\[\tilde{K}_{surf}^{DD,\sigma'} = 36 \pi n_{cl}^2 r_{cl}^2 \frac{\partial^2 \sigma_{surf}}{\partial n_{cl}^2}. \quad (C4) \]

Where the relation between the NEP and the third derivative of the energy density can be obtained using,

\[27 n_{sat}^2 \frac{d^3 \epsilon}{dn^3} |_{n_{sat}} = 9 K_{sat} + Q_{sat}. \quad (C5) \]

Appendix D: relation between the derivatives in \(n_{cl} \) and the ones in \(R_A \) in the eCLDM

In this section, we provide the relations between derivative as function of \(n_{cl} \) and as function of \(R_A \), considering the conservation of the mass number \(A = \frac{4}{3} \pi R_A^3 n_{cl} \). These relations are employed in finite nuclei, since the FS terms have an explicit dependence on \(R_A \) while the bulk terms depend on \(n_{cl} \).

We have the following relations for the first order derivatives:

\[\frac{\partial}{\partial n_{cl}} \bigg|_A = -\frac{R_A}{3n_{cl}} \frac{\partial}{\partial R_A} \bigg|_A, \quad \frac{\partial}{\partial R_A} \bigg|_A = -\frac{3n_{cl}}{R_A} \frac{\partial}{\partial n_{cl}} \bigg|_A, \quad (D1) \]

and for the second derivative:

\[\frac{\partial^2}{\partial R_A^2} \bigg|_A = 12 \frac{n_{cl}}{R_A^2} \frac{\partial}{\partial n_{cl}} \bigg|_A + 9 \frac{n_{cl}^2}{R_A^2} \frac{\partial^2}{\partial n_{cl}^2} \bigg|_A. \quad (D2) \]
