Modelado de las solicitudes de los elementos estructurales de hormigón en edificios de gran altura en incendios reales

Citation for published version:
Abreu, JAC, Alvear, D, Lazaro, M, Crespo, J, Fletcher, I, Welch, S & Torero, J 2011, 'Modelado de las solicitudes de los elementos estructurales de hormigón en edificios de gran altura en incendios reales', Informes de la construccion, vol. 63, no. 522, pp. 83-91. https://doi.org/10.3989/ic.09.005

Digital Object Identifier (DOI):
10.3989/ic.09.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Informes de la construccion

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Modelling of the thermal stresses of concrete structural elements in tall buildings under natural fires

Modelado de las solicitudes de los elementos estructurales de hormigón en edificios de gran altura en incendios reales

J. A. Capote Abreu(*) , D. Alvear(**), M. Lazaro(**), J. Crespo(**), I. Fletcher(**), S. Welch(**), J. Torero(**)

SUMMARY

The fire of the Windsor Building in Madrid represents a paradigm in High Rise Building Fires. The present Work analyzes the origin, growth and propagation conditions of natural fires in tall buildings. The Study has been focused on the determination of the thermal exposure conditions (temperatures T, heat fluxes \(q'' \), etc.) on the structural members of high rise buildings, at end use conditions, under natural fires using fire computer modelling techniques.

Work allowed: 1) validate the predictive capacity of the fluid-dynamics computer models used, 2) apply these models to a specific fire scenario to assess the thermal and the mechanical response of the structural members of a high rise building.

Keywords: CFD modelling, room fires, fire spread, thermal loads, structural behaviour.

RESUMEN

El incendio de la Torre Windsor de Madrid constituye un suceso paradigmatico de incendios en edificios de gran altura. En el presente Estudio se analizan las condiciones de origen, desarrollo y propagacion de incendios reales en este tipo de edificaciones, asi como la determinacion de las condiciones de exposicion (temperaturas T,, flujos de calor \(q'' \), etc.) a las que se encuentran sometidos los elementos estructurales, en condiciones de uso final en este tipo de estructuras, mediante la utilizacion de tecnicas de modelado y simulacion computacional de incendios.

Los trabajos realizados, se centraron en aquellas actuaciones que: 1) permitieran validar la capacidad predictiva de los modelos de fluido-dinamica empleados, 2) la aplicacion de los modelos ajustados y validados a un escenario de incendio en condiciones de uso final en un edificio de gran altura, para la prediccion de la respuesta mecanica de la trama estructural.

Palabras Clave: modelado CFD, incendios en recintos cerrados, propagación interior, solicitudes térmicas, respuesta estructural.
1. INTRODUCTION

When the effects of fires in a building are examined by utilizing of modelling tools and computational simulation, it should be recognised, firstly, that the behaviour of a structure in case of fire is very connected with the effect that the fire can have on the structural elements that compose it and second, that the redundancy inside the structure can permit that the loads be distributed even when individual structural members fail.

In the present work, the fire in the Windsor Tower is taken as a basis to carry out different types of analysis: 1) determination of the start and development of the first phases of the fire considering as reference the fire in the office of origin (2109), and 2) the propagation on the floor of the fire, selecting the 21st floor. This permits determination of the severity reached as a result of the completely developed fire, due to the combustion of the present materials.

Subsequently calculations were carried out by means of an FEM (Finite Element Method) model, using the thermal loads calculated to provide of the gas-phase boundary conditions to the structural members. The use of this type of study permits calculation of the global impact of the temperature inside the structure, focusing on, by means of detailed analysis, the behaviour of the elements inside the structural frame.

2. DESCRIPTION OF THE BUILDING

On 12-13 February 2005, the Windsor Tower was involved in a major fire, of duration 18-20 hours. This broke out in an office on the 21st floor of the building, causing extensive structural damage to the upper floors of the building. The Windsor Tower was built in 1978 and was at one time the tallest building in Madrid.

The upper section of the building, above floor three, was a tower block containing offices and consisted of a concrete core, several interior concrete columns, exterior steel columns and a concrete waffle slab floor with permanent clay formwork (see Figure 1).

At the time of the fire a programme of fire protection upgrading was being undertaken, and the steel columns up to the second transfer floor had been protected, except on the 9th floor where two adjacent sides of the building remained unprotected due to the sequential nature of the upgrades to the building. An additional fire escape was also added to the west side of the building.

3. MODELLING AND COMPUTATIONAL SIMULATION OF THE FIRE

The modelling of the fire is a very complex discipline due to the large number of variables involved. When applying fire exposures to a structure, a number of methods are available [4], as described below.

The simplest approach is to specify a uniform temperature for the surface of the structural elements. This temperature can either be estimated from observational or experimental data, taking into account for example the colour of the flames or the post-fire condition of the exposed materials. In the case of the Windsor Tower, video evidence is consistent with gas-phase temperatures reaching around 800-1000°C after flashover.

In the absence of measurements, it is possible to represent the approximate conditions of fire development by means of modelling tools and computational simulation of the fires. Within these are different approaches based on steady-state and transient simulations.

In the present study, the main tool used for this study was the Computational Fire Model ‘Fire Dynamics Simulator (FDS)’, version 4 [1]. This model has been developed by the Building and Fire Research Laboratory of the National Institute of Standards and Technology - NIST (USA) in cooperation with VTT Building and
Transport, Finland. The Smokeview software [2] was used to display the result of the FDS simulations and create images and animations of these results.

‘Fire Dynamics Simulator (FDS)’ is a Computational Fluid Dynamics (CFD) model that was designed specifically for fire simulations. FDS solves numerically a form of the Navier-Stokes equations appropriate for low-speed, thermally-driven flow with an emphasis on smoke and heat transport from fires.

\[
\frac{\partial p}{\partial t} + \nabla \cdot \rho \vec{u} = 0 \quad [1]
\]

\[
\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \vec{u} Y_i) = -\rho Y_i \nabla \cdot \vec{u} + \nabla \cdot (\rho D_i \nabla Y_i) + \dot{m}_i \quad [2]
\]

\[
\frac{\partial}{\partial t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}) = -\nabla p + \rho \nabla \tau_{ij} + \nabla \cdot \tau_{ij} \quad [3]
\]

\[
\frac{\partial}{\partial t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}) = \frac{D_p}{D} \dot{q} - \nabla \cdot \vec{q} + \nabla \cdot \kappa \nabla T +
\nabla \cdot \sum h_i (\rho D_i) \nabla Y_i \quad [4]
\]

\[
p_s = \frac{R \rho T \sum Y_i}{M} \quad [5]
\]

Where: [1] Equation of conservation of mass, [2] Equation of conservation of species, [3] Equation of conservation of momentum (Navier-Stokes), [4] Equation of conservation of energy, [5] Equation of state.

The core algorithm is an explicit predictor-corrector scheme, second-order accurate in space and time. Turbulence is treated by means of the Smagorinsky form of Large Eddy Simulation (LES).

1. Computational model of the room of fire origin.

3.1 Analysis of the validation of the predictive capability of the model

Before commencing the analysis of the scenario of the floor fire, the processes of validation of the predictive capability of the computational simulation model was developed, taking for a reference the full-scale fire tests carried out in a tall building at Dalmarnock (Glasgow, UK), a study lead by the University of Edinburgh (UK) (4).

The results produced by the simulations showed a great disparity between the prediction of the simulation models of simulation and the experimental measurements, nevertheless, the results obtained in the simulations of the general behavior of the fire are deemed sufficiently reliable to be utilized in a simplified engineering analysis.

In order to improve the predictive capability of the model, the sensitivities exit choice have been previously analysed with FDS and have improved the parameters introduced to the model to advance to the maximum the calculations of the dynamics of the fire (5). Likewise, the influence of the turbulence was studied and the spatial refinement in the accuracy of the results (6, 7). This analysis have permitted to determine a consensus on the importance of the correct selection of the input parameters of in the model and the spatial refinement of the grid, in the accuracy of the results of the calculations of the dynamics of the fire.

3.2 Study of fire in the room of origin

Before trying to establish a study to understand the development of the fire through the interior of the building, it was decided to focus attention on the fire development in the room of origin of the fire, with the purpose of understanding the fire development in terms of heat release rate.

The resulting technical elements of this analysis, besides obtaining useful results for the analysis in all the plant and between plants, facilitate verification of the hypothesis of the fire origin, and assist in determining the importance of the different factors that influence in the growth in an enclosure: dimensions of the enclosure, power of the ignition source, characteristics, distribution and types of flammable materials, conditions of ventilation, etc.

In the model the conditions of the room before the fire have been represented with two desks with its respective auxiliary desks in the position of the figure, three filing cabinets in front of the window and another two filing cabinets in the lateral walls. In addition each workstation had a computer and a papers tray, along with a wastebasket. Figure 2 shows a representation of the room model develop with FDS.
The initial focus of the study was on the fire development in room 2109, the origin of the fire, making it possible to use refined grids for the CFD simulation. In this model the conditions of the room before the fire have been represented with a computational grid having a uniform cell size of 5 cm side, with 512,000 cells in the domain.

Once the computational domain was established, the characteristics of the materials of the interior finish were defined, with the heat release rate taken from the NIST cone calorimeter test in the research work 'Cook County Administration Building Fire, 69 West Washington, Chicago, Illinois, October 17, 2003: Heat Release Rate Experiments and FDS Simulations' [8]. Table 1 summarises the characteristics of the materials of the linings of the office.

Ref.	Thickness (mm)	Density (Kg/m³)	Specific heat (KJ/KgºK)	Tig (ºC)	HRR (kW/m²)
Walls(5)	9.5	440	1.47	326	243.36
Floor	6	750	---	290	374
Ceiling tile	13	1440	---	325	38.92

To define the total heat release rate of these elements, the tests of National Institute of Standard and Technology NIST (USA) on ‘Two Panel Workstation Fire Test’ [9] were studied. Figure 4 shows this heat release rate curve. To characterize this element there was added also, between other parameters, an ignition temperature of 200 ºC.

Due to the importance of the definition of the window breaking times and for lack of more information, in this initial stage of the study two situations of ventilation were analyzed: (1) heat detectors were placed upon the glass which broke on having reached 150 ºC, and (2) the glasses partition were eliminated from the start.

Once all the input parameters were implemented in the model, the study proceeded to the calculation of the development of the fire dynamics of the fire in the floor. The Figure 3 is an example of the values of registered for temperature by the low thermocouples under the most unfavourable conditions during the first 1,800 seconds of the development of the fire simulation.

The results of the initial analysis demonstrated that it was possible to reach the status of a fully developed fire in this office from small sources of ignition, such as the wastebasket.

During the fire development there was verified the generalized ignition in the auxiliary desk close to the wastebasket before the first 30 minutes, and the breaking of the top windows in this interval of time, as well as the spread to the adjacent enclosures to the office 2109 across the nearest wall to the wastebasket.

3.3 Fire development on floor 21

The floor of the building was built around a central core of reinforced concrete, and steel columns were utilised around the perimeter. The reinforced concrete core was centred on the longer north-south facing axis but was slightly off-centred with regards to the east-west axis. The core housed the stairwells, lift shafts and service ducts.

With the object of the present paper, the preliminary studies in the 21st floor were centred in two specific targets, on the one hand (1) to study and to analyze the fire development in this floor and for other (2) to allow the calculation of the total heat release rate parametric curves representative of the real fires completely developed in the floor.
In the Figure 4, a representation of the floor that will be object of this study with its initial layout can be observed. For the model a uniform grid size of 20 cm was adopted over the whole computational domain, with 729,000 cells in total. The office containing the ignition source, which was analyzed in the initial study, above, is marked in the figure.

In this sense, it is apparent that attention must be paid to the conditions of oxygen depletion due to the fast growth of the fire, first in the room and later in the rest of the floor. This problem was solved by more detailed analyses by means of the introduction of the building ventilation system; however, these are not presented here due to reasons of space.

From the results obtained in the simulations, the total heat release rate curves were calculated in the floor for the conditions analyzed. This data provided an indicator of the magnitude and severity of the fire and of great importance to the analysis of the thermal stresses in the structural elements.

An analysis was realized to examine the results provided by parametric curves of heat release rate, in relation to the conditions of thermal attack (temperature, heat flux, etc.) necessary for collapsing the structure.

For the calculation process, the conditions of final use of the 21st floor were simplified, considering only the structural elements together with the heat release rate curves previously calculated, taking these to be representative of the natural fire development. In the model, the characteristics curves of heat release rate were provided as an effective “design fire“, placed over the whole surface of the floor.

Different characteristics curves were studied; in this paper two extreme options of them will be described. The first one was mentioned in the previous paragraph, with a growth t-squared of approximately 225MW.

The second curve selected was approximately the double of the previous one in the value of peak (500 MW) with the purpose of considering an extremely severe situation (due, for example, to uncertainties in the modeling process). (see Figure 13). It should be noted that the size of this latter fire deliberately exceeds the approximate upper limit on a whole-floor ventilation-controlled fire, obtained from the expression $n = 5.5A, \sqrt{t}$ (kg/min), which is of the order of 350MW.

Subsequently, parametric curves were fit to the predictions of the FDS model matching the expected magnitude of fully developed fires, with considerable temperatures achieved reaching up to 1160°C, when the heat release rate curve is of value 500 MW.

Figure 6 provides a selection of the results of the temperatures registered by the thermocouples in the simulations of the central nucleus zone of the building. The maximum values reached by the internal temperatures are found to be in agreement with the values estimated after the evaluation of the structural condition after the fire. Figure 7 presents an overview of the thermal response in the structural elements after applying the parameter curve of heat release rate 500 MW.

5. Parametric curves for the adopted heat release rates.

6. Thermocouple temperatures from simulations of central nucleus zone of building.
These results inform the consideration of the required input values for the finite element analysis, to determine the response of the structure, a process that is typically complex and that is explained more to the detail subsequently.

4. MODELLING AND SIMULATION OF THE STRUCTURAL RESPONSE

En muchos casos, no es necesario ni deseable basar la geometría del modelo en la totalidad de la estructura. Un dominio más simplificado, consistente en una o varias plantas, proporciona una gran cantidad de información que puede ser extrapolada al resto de la edificación (10).

En algunos casos, al examinamos modelos de propagación de incendios, incluyendo aquellos de propagación vertical de las llamas, el principal foco de interés recae en la magnitud y el tiempo en que los elementos individuales están sujetos a la exposición térmica. Aunque un modelo de una planta completa puede proporcionar esta información, si se conoce que los efectos direccionales del viento no fueron relevantes, como en el presente caso de estudio, es posible emplear planos simétricos para reducir el tamaño del dominio. Es razonable asumir que si la planta se divide en cuartos a través de ejes de simetría entonces cada cuarto de la planta va a estar afectado de manera similar (tiempos de flashover y extinción, por ejemplo), por lo que estas técnicas serán empleadas en análisis posteriores de propagación vertical en siguientes estudios.

De la misma forma, al crear un modelo de elementos finitos de la estructura de nuevo, se puede desear para reducir el número de elementos necesario, donde sea posible, en vez de utilizar elementos de sólido, se pueden utilizar elementos simplificados, como “beam” o “membrane”. Además, el modelo puede ser simplificado tomando un plano de corte de la sección de la planta y analizando como una viga, como es práctica común en ingeniería estructural.

Mientras esta aproximación puede excluir contabilizar muchas de las redistribuciones decarga que comúnmente tienen lugar en una estructura tridimensional, puede ser utilizada para, en modelos simplificados, examinar factores como el fallo de un elemento individual dentro de la estructura. Por ejemplo, el efecto del fallo de los pilares de acero sin protección contra el fuego sobre el forjado de entrepisos puede ser examinado simplificando el forjado como una viga extendida entre el núcleo de hormigón y la columna de acero.

4.1. Modelling the concrete response during the fire

En el modelado por elementos finitos del hormigón armado como miembro estructural existen ciertas propiedades inherentes al material que requieren una cuidadosa atención. En primer lugar, el hormigón es un buen aislante, por tanto la penetración térmica en el miembro es baja. Asimismo, el hormigón armado es un material compuesto consistente tanto en hormigón como en el acero de refuerzo. Las propiedades tanto del hormigón como del acero de refuerzo son dependientes de la temperatura, y aunque se dispone de una viga de hormigón armado se comportaríamos primero elásticamente y luego de forma irreversible.

4.2. Modes of failure of the Windsor Tower

Existen un gran número posible de modos de fallo para la Torre Windsor, y es probable que una variedad de estos ocurrieran en la práctica. Algunos de estos son:

1. Colapso del entrepisos a causa del fallo previo de las columnas de acero de perimetro. Esta hipótesis supone que el entrepisos se vio forzado a trabajar como un voladizo partiendo del núcleo.

2. Colapso del forjado entre el núcleo y los pilares exteriores al núcleo. Esta hipótesis supone que producto de los grandes espacios vacíos existentes en esta zona, los patinillos, el entrepisos se desplomaría por las grandes fuerzas de tracción que se originaron poret el fallo del entrepisos exterior a los pilares y lo imposibilitaría.

La naturaleza multi-pisos del incendio es indudablemente importante, uno de los incendios más grandes, y es probable que si el incendio sólo se hubiese concentraado en una planta, la mayoría del edificio hubiese sobrevivido intacto. Una evidencia de este planteamiento se encuentra en el robusto comportamiento de la novena planta, donde el fallo local de los pilares perimetrales de acero fue reacomodado mediante redistribución local.

4.3. Structural model of the Windsor Tower

El modelado del comportamiento de una estructura completa es una tarea muy compleja, y es a menudo deseable empezar con elementos individuales de la estructura y después incrementar el nivel de complejidad...
del modelo. En el caso de la Torre Windsor, el primer elemento estructural a modelar fue el forjado dado que la naturaleza de la construcción del entresuelo, hace que este no pueda ser simplemente modelado como unamembrana soportada por vigas.

Examinando los planes, resulta evidente que el forjado actúa como una red de vigas. Esto puede ser modelado como vigas primarias que soportan vigas secundarias. Sin embargo, las vigas primarias y secundarias no necesariamente extienden en la misma dirección, esto quiere decir que, mientras en una sección del edificio las vigas principales corren de norte a sur, en otra sección corren de este a oeste.

Es también necesario hacer suposiciones acerca de las condiciones de frontera en el modelo de la viga. Donde la viga se une con el nexo de hormigón del edificio se puede suponer que existe empotramiento de la viga mientras que en la unión con el pilar podemos asumir que la conexión es una articulación. A pesar de que la columna está embetida en el forjado, el tamaño relativamente pequeño de la sección (140 x 120 mm) da a entender que es improbable que resista cualquier momento trasmitido del forjado (Figura 8).

Una vez que ha sido definida la estructura, es necesario examinar el efecto del calentamiento sobre ella, específicamente el calentamiento dentro del material, es decir, el grado de penetración del fluido tóxico en el elemento de hormigón estructural y las temperaturas a las cuales ha sido expuesto el acero de refuerzo. Esto hace necesario examinar el perfil de temperaturas dentro de la sección de la viga.

La herramientas utilizadas para el cálculo estructural mediante FEM fueron los modelos ABAQUS, SAP2000 y SAFE. Aunque pudieses pensarse que un elemento tipo beam se podría utilizar para modelar las vigas primarias, las limitaciones para representar los efectos tóxicos en el elemento de hormigón estructural y las temperaturas a las cuales ha sido expuesto el acero de refuerzo. Esto hace necesario examinar el perfil de temperaturas dentro de la sección de la viga.

4.4. Analysis

Los modelos de desarrollo del incendio en la planta donde se originó el mismo han sido descritos anteriormente por (11), focalizándose estas simulaciones en la atención al espectro de ventilación con los dos casos expresados.

También se han considerado las incertidumbres en las características de la distribución de los materiales combustibles, por lo que los cálculos fueron procesados con velocidades de suministro de combustible que se corresponden aproximadamente a dos veces que se podría esperar para tener una ventilación controlada [m^3 = 5.5Aw h], con una velocidad de cesión de calor por piso de 350MW, basado en la suposición de una altura ventana de la mitad de la distancia del suelo al techo de 3 m.

Mientras transcurría el incendio, pasado algún tiempo, algunos de los paneles de aluminio localizados en la base de las aperturas se perdieron, dando acceso a un mayor flujo de combustible, pero en esta etapa la carga de combustible del incendio puede haber sido sustancialmente disminuida debido al consumo.

Basados en estas suposiciones de ventilación, las temperaturas máximas calculadas de la fase-gas exceden los 1.100 ºC y las temperaturas correspondientes en la superficie de las columnas de hormigón fueron aproximadamente 200 ºC menores.

Aquí existen pequeñas variaciones de esta predicción respecto al tamaño del incendio previsible, lo cual estuvo condicionado a que el límite de ventilación controlada fue excedido y la velocidad de cesión de calor fue ardió principalmente fuera del compartimiento.

Estas estimaciones están además soportadas por el análisis post-incendio de las resistencias del hormigón (12), que confirmaron que la temperatura en la superficie de las columnas y forjados había excedido los 800ºC. Es también posible hacer un estimado de las temperaturas en la superficie del hormigón basado en la metodología de examinar los cambios de coloración en el hormigón y los cambios en la microestructura interna.
Examinando el comportamiento de la estructura usando los códigos del FEM, un dato muy importante es la entrada de las condiciones de temperatura en la estructura. Los programas de elementos finitos como ABAQUS pueden, por supuesto, calcular la respuesta térmica basada en la exposición para las condiciones de borde conocidas, tanto temperaturas como flujos, pero normalmente se necesita el uso de elementos tipo bloque, los cuales son ineficientes en la modelación estructural. Por tanto, la respuesta térmica ha sido examinada usando modelos térmicos independientes anteriormente descritos. Usando elementos tipo shell, se especifican distintas temperaturas en cada capa, y por lo tanto las barras de fuerza. Una consideración importante aquí es la profundidad del elemento en relación a la profundidad del flujo térmico que se propaga dentro del material.

Si este último es muy superficial, entonces la distribución de la temperatura dentro del elemento no podrá ser adecuadamente representada a menos de que existan suficientes nodos para resolverlo. Si la cantidad de nodos son insuficientes, el efecto del calentamiento tenderá a ser exagerado y esto podría tener un efecto que repercutirá en el modelo mecánico.

Por tanto, con el fin de mostrar esta modelación se ha realizado un cálculo sencillo de la evolución de la penetración térmica frente al tiempo. La resistencia especificada para la estructura fue 24.5 MPa en los pilares y paredes, 29.4 MPa en las vigas y 17.2 MPa en el forjado, aunque hubo algunas variantes respecto a la práctica (13). Considerando hormigón normal de agregados silicios, la densidad fue tomada como 2400 kg/m3, la conductividad térmica como 1.2 W/m/K y el calor específico como 880 J/kg/K, dando una difusión térmica de 0.57x10$^{-6}$.

La Figura 9 muestra los resultados del patrón de deflexiones del modelo para una de las condiciones de ataque térmico estudiadas. Los resultados obtenidos concuerdan con el modo de fallo 1 comentado anteriormente. La Figura 10 muestra la evolución de la penetración térmica en la profundidad a lo largo del tiempo. Los datos de la duración del incendio fueron completamente precisados, pero existen evidencias que las fases principales del incendio duraron alrededor de una hora (14). Arrojando unos resultados de penetración de 50 mm.

Comparando con estudios realizados a la resistencia del hormigón después del fuego, sugieren que en pequeñas regiones del techo, basado en el criterio de la isoterma 500 °C, había excedido una profundidad de 200 mm (15). En este caso puede haber porsupuesto efectos transversales incluyendo calentamiento proveniente de las caras delas vigas que conforman el forjado reticular (dimensiones de 100x200 mm, excluyendo la losa superior).

Usando por defecto un elemento tipo shell de 5 nodos, el espaciamiento en el modelo de las vigas de 230 mm de altura y el acoplamiento con la losa de 58 mm, la onda térmica ha recorrido el forjado en aproximadamente 1.400 s. La Figura 10 sugiere que al menos en los 100 primeros segundos sea usada una resolución de 10 mm para poder describir adecuadamente la respuesta térmica del forjado en lasimulación.

5. CONCLUSIONS

The initial phase of the investigative work has demonstrated the capacity of the computational fire models to undertake the analysis of the development of a fire inside small enclosures, such as the room of origin, as part of the larger zone of the complete floorplan.
It has been shown, in qualitative terms, how the fire could grow and spread from the room of origin, and this then provided a basis for establishing a representation of a possible full-floor fire. Besides analyzing the development of the fire, these models permitted comparison of the computed thermal exposures with those that it was assessed the structure had been submitted to. These thermal loads were employed in the subsequent phases to analyze the mechanical response (stresses and deformations) of the structure via finite elements models (FEM).

A global study has been carried out to assess the behavior of the main concrete structure of the Windsor Tower. This has permitted an appraisal of the impact of representative thermal exposures, referencing data obtained from the assessment of the structure after the fire and various methods based on computational simulation models of the fire. The thermal response of the structure was subsequently evaluated, in order to define the boundary conditions for the structural models, encompassing FEM. Based on this, a strategy has been developed to determine the mechanical response of the structure, with a view to analyzing the possible mechanisms of failure in relation to the effects of the fire.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the Department of Education and Science (ref. BIA 2006-00388). Likewise, they express gratitude to Dr. Guillermo Rein for his contribution and support.

REFERENCES

1. Jowsey, A.: “Fire Imposed Heat Fluxes for Structural Analysis”, PhD thesis, University of Edinburgh, UK, 2006.

2. McGrattan, K.: “Fire Dynamics Simulator (Version 4) – Technical Reference Guide Volume 1: Mathematical Model”, National Institute of Standards and Technology (NIST). 2005.

3. McGrattan, K.: “Fire Dynamics Simulator (Version 4) – Technical Reference Guide Volume 3: Validation”, National Institute of Standards and Technology (NIST). 2005.

4. (4) Rein, G.; Torero, J.L.; Jahn, W.; Stern-Gottfried, J.; Ryder, N.L.; Desanghera, S.; Lazaro, M.; Mower, F.; Coles, A.; Joyeux, D.; Alvear, D.; Capote, J.A.; Jowsey, A.; Abecasis-Empis, C.; Reszka, P.;: "Round-Robin Study of a priori Modelling Predictions of The Dalmarnock Fire Test One" Fire Safety Journal, Vol. 44, Issue 4, 590-602. 2009. doi: 10.1016/j.firesaf.2008.12.008.

5. Lazaro, M.; Bohmer, H.; Alvear, D.; Capote, J.A.; Trouve, A.;: “Numerical Simulation of Fire Growth, Transition to Flashover, and Post-Flashover Dynamics in the Dalmarnock Fire Test”. Fire Safety Science 9: 1377-1388. 2008.

6. Lazaro, M.: “Influencia de la Discretización Espacial en la Exactitud del Modelado de Fluidodinámica Computacional de Incendios”, Tesis Doctoral, Universidad de Cantabria, 2008.

7. Capote, J.A.; Abreu, O.V.; Alvear, D.; Lazaro, M.; Espina, P.: “Influencia del Modelo de Turbulencia y del Refinamiento de la Discretización Espacial en la Exactitud de las Simulaciones Computacionales de Incendios” Revista Internacional de Métodos Numéricos para el Cálculo y Diseño en Ingeniería, Vol. 24, N° 3, 227-245. 2008.

8. Madryzkowski, D.; Walton, W.D.: “Cook County Administration Building Fire, 69 West Washington, Chicago, Illinois, October 17, 2003: Heat Release Rate Experiments and FDS Simulations”. Building and Fire Research Laboratory, National Institute of Standards and Technology, NIST Special Publication SP-1021, July 2004.

9. NIST Standard Reference Database Number 75, January 1999 Release.

10. FIRESTARR Final Report. CEN TC256 / CENELEC TC9x JWG Fire protection. 2001.

11. Flint, G.: “Fire induced collapse of tall buildings.”, PhD thesis, University of Edinburgh, UK. 2005.

12. Kono, M.; et ál.: “The Madrid city Windsor building fire inspection report.”, p. 133, The Madrid city Windsor building fire investigation committee (BCS, JSCA et ál.) (In Japanese), 2005.

13. Capote, J.A.; Alvear, D.; Lazaro, M.; Espina, P.; Fletcher, I.A.; Welch, S.; Torero, J.L.: “Analysis of thermal fields generated by natural fires on the structural elements of tall buildings”, Proc. Int. Cong. Fire Safety in Tall Buildings. Santander, Spain. 2006.

14. Fletcher, I.A.; Welch, S.; Capote, J.A.; Alvear, D.; Lazaro, M.; Espina, P.;: “Model-based analysis of a concrete building subjected to fire”, Proc. Advanced Research Workshop Fire Computer Modeling. Santander, Spain. 2007.

15. Calavera, J.; Gonzalez-Valle, E.; D. z-Lozano, J.; Fernandez-Gomez, J.; Ley, J.; Izquierdo, J.M.;: “Fire in the Windsor building, Madrid. Survey of the fire resistance and residual bearing capacity of the structure after the fire”. Instituto Tecnico de Materiales y Construcciones (INTEMAC), 2005.

* * *