Age Stratification and Impact of Eicosapentaenoic Acid and Docosahexaenoic Acid to Arachidonic Acid Ratios in Ischemic Stroke Patients

Yuji Ueno¹, Ryota Tanaka³, Kazuo Yamashiro¹, Nobukazu Miyamoto¹, Kenichiro Hira¹, Naohide Kurita¹, Mayu Sakurai¹, Takao Urabe², Kazunori Shimada³, Tetsuro Miyazaki³, Hiroyuki Daida³ and Nobutaka Hattori¹

¹Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
²Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
³Department of Cardiovascular Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan

Aim: We focused on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to arachidonic acid (AA) and explored the significance of these ratios relative to clinical characteristics by age in ischemic stroke patients.

Methods: We enrolled patients with acute ischemic stroke who underwent radiological investigations and laboratory examinations, including measurement of serum EPA, DHA, and AA levels, and controls. Patients were classified according to age (<65, 65–74, and ≥75 years) and the tertile of EPA/AA and DHA/AA ratios, and clinical aspects were compared with these factors.

Results: We analyzed 373 patients (age 70.2±13.4 years; 245 males) and 105 controls. Among stroke patients, patients aged <65 years had the lowest EPA/AA (0.35±0.23, p=0.006) and DHA/AA (0.73±0.27, p<0.001) ratios. Compared with controls, patients aged <65 years showed lower EPA/AA (vs. 0.49±0.25, p<0.001) and DHA/AA (vs. 0.82±0.26, p=0.009) ratios. From logistic regression analysis, the EPA/AA (odds ratio 0.18, 95% confidence interval 0.04–0.81, p=0.026) and DHA/AA (odds ratio 0.09, 95% confidence interval 0.02–0.33, p<0.001) ratios were inversely related to patients aged <65 years. According to age-stratified analyses, we found an association of aortic arch calcification with a lower EPA/AA ratio for patients aged ≥75 years and an association of multiple infarctions and cerebral white matter lesions with a lower EPA/AA ratio for patients aged 65–74 years (p<0.05).

Conclusions: The ratios of EPA/AA and DHA/AA could be specific markers for younger stroke patients. The EPA/AA ratio may be related to aortic arch calcification for elderly stroke patients and to multiple infarctions and cerebral white matter disease for middle-aged stroke patients.

Key words: Ischemic stroke, Eicosapentaenoic acid, Docosahexaenoic acid, White matter lesions, Aortic arch calcification

Introduction

Stroke is a leading cause of death and disability worldwide⁵. Not only elderly patients but also younger adults are affected by ischemic stroke², ³. Ischemic stroke in elderly patients is related to the progression of atherosclerosis and the high prevalence of atrial fibrillation (AF), whereas non-atherosclerotic mechanisms including patent foramen ovale and mitral valve prolapse could contribute to stroke pathogenesis in young stroke patients⁴. However, emerging insights have shown that the contributions of atherosclerotic risk factors (e.g., hypertension, diabetes, and dyslipidemia) as well as lifestyle factors (e.g., smoking, alcohol consumption, and obesity) for ischemic stroke are critical for young patients⁵–⁶. For middle-aged...
patients, metabolic syndrome increases the prevalence of ischemic stroke). Thus, the risk factors for ischemic stroke are diverse for young, middle-aged, and elderly patients. Currently, no evidence is available regarding specific biomarkers for determining ischemic stroke risk for patients according to age.

Aortic arch calcification upon chest radiography and white matter lesions upon magnetic resonance imaging (MRI) are related to the development of ischemic stroke. We previously showed a close relationship between aortic arch calcification and cerebral white matter lesions for patients with acute ischemic stroke, and the association of age and atherosclerotic vascular risk factors with those pathological lesions has been reported. However, we could not detect any potential biomarkers for such lesions.

The n-3 and n-6 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA), are poorly synthesized in the human body. Large-scale epidemiological and clinical trials demonstrated that foods enriched with EPA, DHA, and fish oil reduce the incidence of cardiovascular diseases and stroke. In the Japan Lipid Intervention Study, treatment with EPA and low-dose statins significantly reduced coronary artery diseases as well as stroke compared with statin therapy alone. Some authors have suggested that the ratios of serum n-3 to n-6 PUFAs, such as the EPA/AA and DHA/AA ratios, could be useful markers to determine the incidence of major coronary events, peripheral artery diseases, and early neurological deterioration after acute ischemic stroke.

Aim

We focused on the significance of the ratios of EPA/AA and DHA/AA serum levels by age and the association of these ratios with clinical characteristics including aortic arch calcification and cerebral white matter lesions by age for ischemic stroke patients. In the current study, we aimed to explore the hypothesis that the ratios of EPA/AA and DHA/AA may be linked to younger patients with ischemic stroke, in association with lifestyle risk factors, and may serve as putative biomarkers for aortic arch calcification and cerebral white matter lesions.

Methods

Selection of Subjects

This case series was based on the analysis of data acquired from the prospective registry of 478 patients with acute ischemic stroke who were admitted to the Department of Neurology at Juntendo University Hospital, a secondary referral center, for cerebral ischemic stroke between January 2014 and February 2016. Patients with post-surgical stroke onset including stroke after cardiac surgery, those who were already hospitalized and had received hospital meals for ≥ 7 days, those who were receiving intravenous hyperalimentation, or those taking EPA or DHA agents, which could influence the serum PUFA levels, were excluded. Age, sex, atherosclerotic risk factors, radiological findings, and laboratory findings including the ratios of EPA/AA and DHA/AA serum levels were assessed. To elucidate the contribution of age stratification and the EPA/AA and DHA/AA ratios to clinical characteristics of ischemic stroke patients, patients were classified according to age (<65, 65–74, and ≥ 75 years) and the tertile of EPA/AA and DHA/AA ratios, and clinical aspects were compared with these factors. We also recruited apparently healthy Japanese subjects who were undergoing a medical check-up at a medical center from December 2004 to January 2005, for whom the data were previously published by Yanagisawa et al. Control subjects who were age-and gender-matched to stroke patients aged <65 years were enrolled in the study. This study was conducted in accordance with the Declaration of Helsinki. The independent ethics committee of Juntendo University Hospital approved this study with an opt-out consent method. For the control group, the ethics committee of the constitution approved this study, and written informed consent was obtained.

Risk Factors

At baseline, atherosclerotic vascular risk factors were defined according to the description from previous literature. Vascular risk factors were assessed as follows: 1) hypertension: history of using antihypertensive agents, systolic blood pressure >140 mmHg, or diastolic blood pressure >90 mmHg at 14 days after stroke onset, or at rest for more than 5 minutes after arrival for control subjects; 2) diabetes mellitus: use of oral hypoglycemic agents or insulin, or glycosylated hemoglobin (National Glycohemoglobin Standardization Program) ≥ 6.5%; 3) dyslipidemia: use of antihyperlipidemic agents, serum low-density lipoprotein cholesterol (LDL-C) ≥ 140 mg/dL, high-density lipoprotein cholesterol (HDL-C) < 40 mg/dL, or triglyceride ≥ 150 mg/dL; 4) current smoker or history of smoking; 5) AF: a history of AF, or identification of AF upon 12-lead electrocardiography, electrocardiographic monitoring, or Holter electrocardiography; 6) a history of ischemic heart disease; and 7) a history of peripheral artery disease.
Chest Radiograph Study
On chest radiograph, the extent of aortic arch calcification was evaluated and classified into the following four grades according to the method of a previous study: no visible calcification (grade 0); small spots or a single thin area of calcification (grade 1); one or more areas of thick calcification (grade 2); and circumferential calcification (grade 3).23

MRI Protocol
Diffusion-weighted images, T2-weighted images, fluid-attenuation inversion recovery, and MR angiography (MRA) using a 1.5-Tesla MR scanner equipped with single-shot echo-planar imaging (Visart/EX; Toshiba, Tokyo, Japan) were included in the MRI study. Diagnosis of acute brain infarction was based on the finding of focal hyperintensity that was judged not to be due to normal anisotropic diffusion or magnetic susceptibility artifacts on diffusion-weighted images. The number of infarcts on diffusion-weighted imaging was assessed. Periventricular hyperintensity (PVH) and deep and subcortical white matter hyperintensity (DSWMH) were analyzed to determine the degree of cerebral white matter lesions.11 Severe intracranial artery stenosis upon MRA was defined as >50% or focal signal loss with the presence of signal reduction in the distal artery. Stenoses of bilateral intracranial carotid, anterior cerebral, middle cerebral, and posterior cerebral arteries upon MRA were examined. MRI findings were assessed by two experienced neuroradiologists who were blinded to the patients’ status.

Laboratory Findings
Serum fatty acid levels including those of EPA, DHA, and AA were assayed by gas chromatography at an external laboratory (SRL Inc., Tokyo, Japan). We also analyzed serum levels of LDL-C, HDL-C, triglyceride, glucose, and HbA1c. Blood examinations were carried out within 24 hours of admission, or referral to the Department of Neurology for patients who developed ischemic stroke during hospitalization. For control subjects, blood samples were collected after overnight fasting.

Statistical Analysis
Numerical values are reported as means ± standard deviations. Baseline characteristics, vascular risk factors, chest radiography findings, brain MRI findings, and laboratory data were compared among groups. Data were statistically analyzed using the chi-square test for categorical variables and the Mann–Whitney and Kruskal–Wallis tests for nonparametric analyses. All variables with a value of p<0.01 on univariate analyses were entered into the multinomial logistic regression analysis. A two-sided p value of < 0.05 was considered significant. All data were analyzed using SPSS version 15.0 for Windows software (SPSS, Chicago, IL, USA).

Results
Study Population
During the study period, 73 patients were excluded due to post-surgical stroke onset after cardiac surgery, hospitalization and receiving hospital meals for ≥ 7 days, administration of intravenous hyperalimentation, or taking EPA and DHA agents, and 405 patients were eligible to participate in the study. Thirty-two patients also were excluded because of missing data including MRI and serum PUFA levels. Thus, 373 patients (age 70.2 ± 13.4 years; 245 males; median National Institute of Health Stroke Scale [NIHSS] score 3 [0–29]) were enrolled. Regarding stroke subtype based on the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification,24 42 patients (11%) had small artery occlusion, 54 (14%) had large artery atherosclerosis, 97 (26%) had cardioembolism, 103 (28%) had stroke with determined etiology, 40 (11%) had stroke with undetermined etiology, and 37 (10%) had a transient ischemic attack. For the controls, 105 subjects whose age and gender were matched to the younger stroke patients aged < 65 years were enrolled in the study.

Clinical Characteristics and Radiological and Laboratory Findings by Age Group for Stroke Patients
Baseline characteristics and radiological and laboratory findings were compared among 113 patients aged < 65 years, 104 patients aged 65 to 74 years, and 156 patients aged ≥ 75 years (Table 1). The frequency of male gender was significantly lower for patients aged ≥ 75 years (p=0.005 and p<0.001, respectively). Among atherosclerotic risk factors, the frequencies of hypertension, current cigarette smoking, AF, and coronary artery disease were higher for patients aged 65 to 74, < 65, ≥ 75, and 65 to 74 years, respectively (p=0.024, p<0.001, p=0.011, and p<0.001, respectively). NIHSS scores on admission were highest for patients aged ≥ 75 years (p=0.006). On chest X radiograph, older patients aged ≥ 75 years had the highest degree of aortic arch calcification (1.7 ± 0.9, p<0.001). On MRI, the degree of PVH and DSWMH and the frequency of intracranial large artery stenosis upon MRA were significantly higher for elderly patients aged ≥ 75 years.
Table 1. Baseline characteristics and MRI and laboratory findings of study subjects by age

Characteristics	Ischemic stroke patients	Control	p				
	Total n=373	n=113	n=104	n=156	n=105	Age <65 vs. 65-74 vs. ≥75 years Age <65 vs. control	
Name	Age <65 years	Age 65-74 years	Age ≥75 years				
Age, years, mean ± SD	70.2±13.4	54.0±9.3	69.9±3.0	82.2±5.0	54.1±5.5	<0.001	0.171
Gender, male, no. (%)	245 (66)	82 (73)	77 (74)	86 (55)	76 (72)	0.005	0.976
Body mass index	23.2±3.9	24.5±4.3	23.3±3.5	22.3±3.6	23.8±3.2	<0.001	0.750
Risk factors, no. (%)							
Hypertension	264 (71)	69 (61)	79 (76)	116 (74)	55 (52)	0.024	0.196
Diabetes mellitus	111 (30)	26 (23)	37 (36)	48 (31)	30 (29)	0.121	0.348
Dyslipidemia	242 (65)	70 (62)	76 (73)	96 (62)	54 (51)	0.119	0.117
Current cigarette smoking	74 (20)	39 (35)	25 (24)	10 (6)	37 (35)	<0.001	0.911
Atrial fibrillation	79 (21)	14 (12)	22 (21)	43 (28)	0 (0)	0.011	<0.001
Coronary artery disease	46 (12)	2 (2)	21 (20)	23 (15)	3 (3)	<0.001	0.934
Peripheral artery disease	10 (3)	0 (0)	5 (5)	5 (3)	NA	0.079	NA
NIHSS score on admission, mean ± SD	4.4±5.6	3.2±4.6	4.7±5.9	5.2±6.0	NA	0.006	NA
Sociodemographic							
Age	0.007						
Gender	0.005						
Body mass index	0.119						
Risk factors	0.001						

Chi-square test, the Mann–Whitney U, and Kruskal-Wallis test were used for comparison. MRI=Magnetic resonance imaging; NA=not available; NIHSS=NIH Stroke scale; PVH=Periventricular hyperintensity; DSWMH=deep and subcortical white matter hyperintensity; MRA=Magnetic resonance angiography; LDL-C=Low-density lipoprotein cholesterol; HDL-C=High-density lipoprotein cholesterol; AA=Arachidonic acid; EPA=Eicosapentaenoic acid; DHA=Docosahexaenoic acid. §Hemoglobin A1c was measured in 86 patients.

(p<0.001, p<0.001, and p=0.011, respectively). Laboratory data showed that the triglyceride level was highest in younger patients (147.6±100.4 mg/dL, p <0.001), whereas HbA1c was highest in middle-aged patients (6.2±1.1%, p=0.003). Regarding the levels of PUFAs, we found no significant differences in EPA level by age group. However, patients aged <65 years had the highest levels of AA (201.2±61.1 μg/mL, p=0.005) and the lowest levels of DHA (140.4±55.1 μg/mL, p=0.007).

Comparison of clinical characteristics and laboratory data between younger stroke patients and control subjects aged <65 years

Table 1 also shows the comparison of clinical characteristics of younger stroke patients aged <65 years and the control subjects that were age- and gender-matched to the younger stroke patients. AF was
more common in younger stroke patients ($p<0.001$). From laboratory data, HDL-C level was significantly higher in the controls ($p<0.001$), whereas glucose level was higher in the younger stroke patients ($p=0.036$). Regarding PUFAs, AA and DHA levels were significantly higher in younger stroke patients (both $p<0.001$), whereas EPA was not different between these groups.

The Ratios of EPA/AA and DHA/AA Serum Levels among Stroke Patients by Age and for Control Subjects

Fig. 1 shows the EPA/AA and DHA/AA ratios for stroke patients aged <65, 65–74, and ≥75 years and for control subjects aged <65 years. The ratios of EPA/AA and DHA/AA serum levels were significantly lower for younger patients (0.35 ± 0.23, $p=0.006$; 0.73 ± 0.27, $p<0.001$) compared with the ratios of patients aged 65–74 and ≥ 75 years, as well as with controls aged <65 years (vs. 0.49 ± 0.25, $p<0.001$; vs. 0.82 ± 0.26, $p=0.009$). On the other hand, no significant differences in the EPA/AA and DHA/AA ratios were found between brain infarction and transient ischemic attack, or among stroke subtypes.

Independent Factors among Age Groups in Multinomial Logistic Regression Analysis

Age, male gender, BMI, current smoking, coronary artery disease, NIHSS score, aortic arch calcification, PVH, DSWMH, triglyceride level, HbA1c level, EPA/AA ratio, and DHA/AA ratio were selected for multinomial logistic regression analyses. We excluded...
DSWMH from the covariates, because PVH and DSWMH could cause coincidental or interfering effects. Age was considered a confounding factor and was also excluded from the covariates. In Models 1 and 2, lower ratios of EPA/AA (odds ratio [OR] 0.18, 95% confidence interval [CI] 0.04–0.81, p = 0.026) and DHA/AA (OR 0.09, 95% CI 0.02–0.33, p < 0.001) were significantly associated with patients aged <65 years compared with those of elderly patients (Table 2). In Models 1 and 2, BMI, current smoking, and triglyceride levels were significantly related to younger patients (p < 0.05), whereas aortic arch calcification and PVH were inversely related to younger patients (p < 0.001) (Table 2).

Relationship between age Stratification and the Tertiles of EPA/AA and DHA/AA Ratios

Patients were classified into three tertiles of the EPA/AA ratio (Tertile I, <0.2444; Tertile II, 0.2444 to 0.444; Tertile III, >0.444). The comparisons of baseline characteristics and radiological and laboratory data according to the EPA/AA (Table 3) and DHA/AA (Table 4) tertiles of different ages are shown. Among patients aged <65 years, patients in EPA/AA Tertile I were the youngest (51.5 ± 9.5 years, p = 0.010) and had the highest frequency of dyslipidemia (71%, p = 0.030) (Table 3). Among patients aged 65 to 74 years, patients in EPA/AA Tertile II were the youngest (68.9 ± 2.9 years, p = 0.040). We found significant differences in the degree of PVH and DSWMH among tertiles in the middle-aged group (1.3 ± 0.8, p = 0.042; 1.1 ± 0.8, p = 0.025, respectively). Multiple infarctions were most common in Tertile I in the middle-aged group (54%, p = 0.008). In the elderly age group, patients in EPA/AA Tertile I had the highest grade of aortic arch calcification upon chest radiograph (2.0 ± 0.9, p = 0.012).

Patients were also divided into three DHA/AA tertiles (Tertile I, <0.666; Tertile II, 0.666 to 0.87; Tertile III, >0.87). Table 4 shows that patients in Tertile I were youngest (52.1 ± 9.0, p = 0.024) among those aged <65 years. Multiple infarctions were most
Table 3. Baseline characteristics and radiological and laboratory findings of study subjects according to the tertile of EPA/AA ratio in patients aged >65, 65-74, and ≥75 years

Characteristics	Age <65 years	Age 65-74 years	Age ≥75 years		
	All n=113	Tertile I n=51, 45%	Tertile II n=35, 31%	Tertile III n=27, 24%	p
	All n=104	Tertile I n=28, 27%	Tertile II n=35, 34%	Tertile III n=41, 39%	p
Sociodemographic					
Age, years, mean±SD	54.0±9.3	51.5±9.5	55.8±8.1	56.4±9.4	0.01
Gender, male, no. (%)	82 (73)	35 (68)	26 (74)	21 (78)	0.664
Body mass index	24.5±4.3	25.0±4.9	24.4±3.8	23.7±3.7	0.582
Risk factors, no. (%)					
Hypertension	69 (61)	31 (61)	24 (69)	14 (52)	0.408
Diabetes mellitus	26 (23)	9 (18)	10 (29)	7 (26)	0.456
Dyslipidemia	70 (62)	36 (71)	23 (66)	11 (41)	0.03
Cigarette smoking	39 (35)	20 (39)	12 (34)	7 (26)	0.501
Atrial fibrillation	14 (12)	3 (6)	5 (14)	6 (22)	0.105
Coronary artery disease	2 (2)	1 (2)	0 (0)	1 (4)	0.535
Peripheral artery disease	0 (0)	0 (0)	0 (0)	NA	
NIHSS score on admission, mean±SD	3.2±4.6	3.7±5.1	2.1±2.1	3.7±5.8	0.279
Radiological findings, no. (%)					
Aortic arch calcification	0.5±0.7	0.5±0.8	0.4±0.7	0.4±0.6	0.641
MRI					
Multiple lesions, no. (%)	29 (26)	11 (22)	11 (31)	7 (26)	0.589
PVH, grade 0-3	0.5±0.7	0.5±0.8	0.6±0.6	0.2±0.5	0.028
DSWMH, grade 0-3	0.4±0.7	0.3±0.6	0.6±0.8	0.3±0.5	0.133
Intracranial arterial stenosis on MRA	17 (15)	4 (8)	8 (23)	5 (19)	0.136
Laboratory findings, mean±SD					
LDL-C	117.0±38.3	121.7±42.1	115.7±36.2	109.9±33.1	0.383
HDL-C	51.8±16.2	48.4±14.3	53.7±18.4	55.8±15.6	0.083
Triglycerides	147.6±100.4	149.4±82.1	171.5±139.9	113.1±53.3	0.157
Hemoglobin A1c	6.0±1.5	6.0±1.5	6.2±1.8	5.9±1.3	0.38
Glucose	124.7±62.2	127.5±57.2	125.7±75.8	117.8±52.5	0.608

frequently found in Tertile II of younger stroke patients (49%, p<0.001). For patients aged 65 to 74 years, LDL-C and HDL-C levels were lowest in Tertile I (102.6±32.1, p=0.034; 44.6±11.2, p=0.036, respectively). However, we did not observe significant increases in advanced aortic arch calcification or white matter lesions for patients of any age, which was not consistent with the classification according to EPA/AA tertiles.

Discussion

In the present study, patients’ characteristics and radiological and laboratory findings including the ratios of EPA/AA and DHA/AA serum levels were explored. Current data showed that the ratios of EPA/AA and DHA/AA were substantially lower for stroke patients aged <65 years than those for patients aged 65-74 and ≥75 years, as well as those for controls. Further, a lower ratio of EPA/AA but not DHA/AA was related to aortic arch calcification for patients aged ≥75 years. Cerebral white matter lesions and multiple infarctions were associated with a lower EPA/AA ratio for patients aged 65–74 years.

From the current investigations, our data showed that the ratios of EPA/AA and DHA/AA serum levels for ischemic stroke patients aged <65, 65–74, and ≥75 years were 0.35±0.23, 0.43±0.25, and 0.40±0.22, and 0.73±0.27, 0.83±0.27, and 0.83±0.25, respectively, and, for control subjects aged <65 years, the ratios were 0.49±0.25 and 0.82±0.26, respectively, indicating that younger stroke patients aged <
65 years displayed a substantial reduction in EPA/AA and DHA/AA ratios compared with the ratios of older stroke patients as well as healthy subjects of the same age. A previous study showed that the EPA/AA ratio in healthy Japanese subjects aged <35 years is 0.26 but significantly increases with age and reaches 0.68 by ages of ≥65 years. Another study explored the PUFA levels of White, Japanese, and Japanese American men aged 40–49 years, and the estimation of EPA/AA and DHA/AA ratios were about 0.09, 0.39, and 0.12, and 0.27, 0.91, and 0.37, respectively. Because PUFA is poorly synthesized in the human body and must be obtained through dietary sources, research has suggested that Westernized dietary habits of young Japanese, Whites, and Japanese Americans, as well as of young stroke patients in the current study, may be related to a reduction in the EPA/AA and DHA/AA ratios. Moreover, EPA levels were higher in older subjects than in young subjects in the setting of n-3 PUFA supplementation, indicating that the ability to incorporate dietary EPA into plasma phospholipids is greater in older than in younger subjects. On the other hand, BMI, current smoking, and triglyceride levels were associated with young stroke patients, while those lifestyle risk factors were not different from those of the controls. Although

Table 3

Characteristics	All n=156	Tertile I n=46, 29%	Tertile II n=54,35%	Tertile III n=56,36%	p
Sociodemographic					
Age, years, mean±SD	82.2±5.0	83.2±4.9	81.4±4.9	82.1±5.0	0.181
Gender, male, no. (%)	86 (55)	22 (48)	25 (46)	39 (70)	0.024
Body mass index	22.3±3.6	22.3±4.5	22.1±3.2	22.6±3.0	0.05
Risk factors, no. (%)					
Hypertension	116 (74)	35 (76)	41 (76)	40 (71)	0.821
Diabetes mellitus	48 (31)	11 (24)	18 (33)	19 (34)	0.486
Dyslipidemia	96 (62)	32 (70)	30 (56)	34 (61)	0.352
Cigarette smoking	10 (6)	4 (9)	3 (6)	3 (5)	0.776
Atrial fibrillation	43 (28)	8 (17)	14 (26)	21 (38)	0.073
Coronary artery disease	23 (15)	6 (13)	9 (17)	8 (14)	0.872
Peripheral artery disease	5 (3)	1 (2)	2 (4)	2 (4)	0.899
NIHSS score on admission, mean±SD	5.2±6.0	6.0±6.0	5.1±5.9	4.5±6.1	0.06
Radiological findings, no. (%)					
Chest X-ray					
Aortic arch calcification	1.7±0.9	2.0±0.9	1.7±0.9	1.5±1.0	0.012
MRI					
Multiple lesions, no. (%)	49 (31)	13 (28)	20 (37)	16 (29)	0.545
PVH, grade 0-3	1.2±1.2	1.3±0.8	1.2±0.8	1.2±0.7	0.851
DSWMH, grade 0-3	1.1±1.2	1.3±0.8	1.1±0.8	1.0±0.7	0.245
Intracranial arterial stenosis on MRA	48 (31)	17 (37)	13 (24)	18 (32)	0.366
Laboratory findings, mean±SD					
LDL-C	108.5±34.8	113.8±44.8	108.1±29.7	104.6±29.6	0.625
HDL-C	50.9±16.5	49.2±18.2	51.6±15.5	51.7±16.1	0.501
Triglycerides	104.3±55.0	105.3±53.1	105.4±58.5	102.4±53.9	0.959
Hemoglobin A1c	6.1±1.1	6.0±1.1	6.2±1.4	6.1±0.6	0.11
Glucose	124.3±46.5	119.8±44.7	129.2±61.3	123.4±31.5	0.279

The Chi-square test and the Kruskal-Wallis test were used for comparison. 1 mean±SD. MRI=Magnetic resonance imaging; NIHSS=NIH Stroke scale; PVH=Periventricular hyperintensity; DSWMH=deep and subcortical white matter hyperintensity; MRA=Magnetic resonance angiography; NA=Not available; LDL-C=low-density lipoprotein cholesterol; HDL-C=high-density lipoprotein cholesterol; AA=Arachidonic acid; EPA=Eicosapentaenoic acid; Tertile I, <0.2444; Tertile II, 0.2444 to 0.444; Tertile III, >0.444.
BMI and serum levels of triglycerides may also be affected by diet, our data did not suggest a link between PUFAs and lifestyle risk factors. As stated above, the ratios of EPA/AA and DHA/AA could be related to younger patients, for the first time indicating that the EPA/AA and DHA/AA ratios might be possible additional risk factors for ischemic stroke for younger patients. However, precise dietary data from enrolled subjects, including other lifestyle-related factors (e.g., physical activity and abdominal circumference), were not investigated in the current study, and, thus, further studies are warranted.

According to TOAST criteria, ischemic stroke subtypes include small artery occlusion, large artery atherosclerosis, cardioembolism, stroke with determined etiology, and stroke with undetermined etiology. Pathologically, a variety of mechanisms for ischemic stroke such as thrombosis related to the burden of atherosclerotic plaques, blood stagnation, small artery disorders, and coagulation abnormalities exist. n-3 PUFAs have potent anti-inflammatory effects and inhibitory effects on platelet aggregation, and they may be related factors (e.g., physical activity and abdominal circumference), were not investigated in the current study, and, thus, further studies are warranted.

According to TOAST criteria, ischemic stroke subtypes include small artery occlusion, large artery atherosclerosis, cardioembolism, stroke with determined etiology, and stroke with undetermined etiology. Pathologically, a variety of mechanisms for ischemic stroke such as thrombosis related to the burden of atherosclerotic plaques, blood stagnation, small artery disorders, and coagulation abnormalities exist. n-3 PUFAs have potent anti-inflammatory effects and inhibitory effects on platelet aggregation, and they may be related factors (e.g., physical activity and abdominal circumference), were not investigated in the current study, and, thus, further studies are warranted.

Table 4. Baseline characteristics and radiological and laboratory findings of study subjects according to the tertile of DHA/AA ratio in patients aged >65, 65-74, and ≥75 years

Characteristics	Age <65 years	DHA/AA ratio	Age 65-74 years	DHA/AA ratio	Age ≥75 years	DHA/AA ratio
	All n=113	Tertile I n=49, 43%	Tertile II n=39, 35%	Tertile III n=25, 22%		p
Sociodemographic						
Age, years, mean±SD	54.0±9.3	52.1±9.0	54.1±10.1	57.6±7.5	0.024	
Gender, male, no. (%)	82 (73)	35 (71)	29 (74)	18 (72)	0.952	
Body height, cm	165.2±8.4	165.1±7.8	165.9±8.4	164.2±9.8	0.731	
Body weight, kg	67.2±14.6	67.2±15.0	70.0±16.2	62.9±10.2	0.302	
Body mass index, kg	24.5±4.3	24.6±5.0	25.1±4.1	23.3±3.3	0.236	
Risk factors, no. (%)						
Hypertension	69 (61)	32 (65)	22 (56)	15 (60)	0.691	
Diabetes mellitus	26 (23)	10 (20)	8 (21)	8 (32)	0.481	
Dyslipidemia	70 (62)	32 (65)	23 (59)	15 (60)	0.81	
Cigarette smoking	39 (35)	22 (45)	9 (23)	8 (32)	0.097	
Atrial fibrillation	14 (12)	3 (6)	6 (15)	5 (20)	0.180	
Coronary artery disease	2 (2)	1 (2)	0 (0)	1 (4)	0.491	
Peripheral artery disease	0 (0)	0 (0)	0 (0)	NA		
NIHSS score on admission, mean±SD	3.2±4.6	2.4±2.9	4.0±5.9	3.5±5.0	0.713	
Radiological findings, no. (%)						
Intracranial arterial stenosis on MRA	17 (15)	7 (14)	7 (18)	3 (12)	0.794	
Laboratory findings, mean±SD						
LDL-C	117.0±38.3	121.0±41.2	121.5±35.3	102.4±34.4	0.078	
HDL-C	51.8±16.2	52.6±18.4	49.8±13.1	53.4±16.2	0.567	
TG	147.6±100.4	142.9±100.6	104.2±63.3	164.1±141.7	0.552	
HbA1c	6.0±1.5	6.2±1.9	5.9±1.1	5.8±1.0	0.68	
Glucose	124.7±62.2	134.3±77.9	117.2±52.5	116.5±32.6	0.489	

According to TOAST criteria, ischemic stroke subtypes include small artery occlusion, large artery atherosclerosis, cardioembolism, stroke with determined etiology, and stroke with undetermined etiology. Pathologically, a variety of mechanisms for ischemic stroke such as thrombosis related to the burden of atherosclerotic plaques, blood stagnation, small artery disorders, and coagulation abnormalities exist. n-3 PUFAs have potent anti-inflammatory effects and inhibitory effects on platelet aggregation, and they may be related factors (e.g., physical activity and abdominal circumference), were not investigated in the current study, and, thus, further studies are warranted.

In the current study, a low EPA/AA ratio was sig-

Advance Publication
Journal of Atherosclerosis and Thrombosis
Accepted for publication: November 6, 2017
Published online: December 2, 2017
Radiological findings, no. (%)

Age ≥ 75 years

Characteristics	Age ≥ 75 years				
	All	Tertile I	Tertile II	Tertile III	p
	n = 156	n = 42, 27%	n = 54, 35%	n = 60, 38%	
Sociodemographic					
Age, years, mean ± SD	82.2 ± 5.0	82.6 ± 5.6	82.4 ± 4.4	81.7 ± 5.0	0.534
Gender, male, no. (%)	86 (55)	18 (43)	32 (59)	36 (60)	0.173
Body height	156.6 ± 10.1	153.8 ± 10.4	158.4 ± 10.3	157.1 ± 9.3	0.119
Body weight	55.1 ± 11.3	53.7 ± 10.4	55.8 ± 11.3	55.3 ± 10.9	0.647
Body mass index	22.3 ± 3.6	22.7 ± 4.7	22.0 ± 2.7	22.3 ± 3.3	0.719
Risk factors, no. (%)					
Hypertension	116 (74)	33 (79)	43 (80)	40 (67)	0.219
Diabetes mellitus	48 (31)	13 (31)	16 (30)	19 (32)	0.972
Dyslipidemia	96 (62)	27 (64)	34 (63)	35 (58)	0.802
Cigarette smoking	10 (6)	4 (10)	3 (6)	3 (5)	0.663
Artrial fibrillation	43 (28)	8 (19)	18 (33)	17 (28)	0.295
Coronary artery disease	23 (15)	5 (12)	11 (20)	7 (12)	0.353
Peripheral artery disease	5 (3)	0 (0)	3 (6)	2 (3)	0.211
NIHSS score on admission, mean ± SD	5.2 ± 6.0	5.8 ± 5.9	4.8 ± 5.9	5.0 ± 6.2	0.379
Radiological findings, no. (%)					
Chest X-ray					
Aortic arch calcification	1.7 ± 0.9	1.9 ± 0.9	1.8 ± 0.8	1.6 ± 1.0	0.211
MRI					
Multiple lesions, no. (%)	49 (31)	12 (29)	17 (32)	20 (33)	0.878
PVH	1.2 ± 0.1	1.3 ± 0.9	1.2 ± 0.7	1.3 ± 0.8	0.935
DSWMH	1.1 ± 1.2	1.1 ± 0.9	1.1 ± 0.8	1.0 ± 0.7	0.665
Intracranial arterial stenosis on MRA	48 (31)	17 (40)	13 (24)	18 (30)	0.222

Laboratory findings, mean ± SD

Characteristics	Age ≥ 75 years				
	All	Tertile I	Tertile II	Tertile III	
	n = 156	n = 42, 27%	n = 54, 35%	n = 60, 38%	
LDL-C	108.5 ± 34.8	111.2 ± 42.0	109.8 ± 35.6	105.4 ± 28.3	0.774
HDL-C	50.9 ± 16.5	53.2 ± 17.0	52.5 ± 17.6	47.9 ± 14.8	0.228
TG	104.3 ± 55.0	102.1 ± 60.1	105.2 ± 49.4	105.0 ± 56.9	0.733
HbAlc	6.1 ± 1.1	5.9 ± 0.8	6.2 ± 1.2	6.1 ± 1.2	0.5
Glucose	124.3 ± 46.5	119.3 ± 44.0	127.7 ± 57.7	124.9 ± 36.2	0.249

The Chi-square test and the Kruskal-Wallis test were used for comparison. MRI = Magnetic resonance imaging; NIHSS = NIH Stroke scale; PVH = Periventricular hyperintensity; DSWMH = deep and subcortical white matter hyperintensity; MRA = Magnetic resonance angiography; LDL-C = low-density lipoprotein cholesterol; HDL-C = high-density lipoprotein cholesterol; TG = triglyceride; AA = Arachidonic acid; EPA = Eicosapentaenoic acid. Tertile I, < 0.666; Tertile II, 0.666 to 0.87; Tertile III, > 0.87.

- significantly associated with aortic arch calcifications upon chest radiograph for elderly stroke patients aged ≥ 75 years and with the degree of cerebral white matter lesions and multiple infarctions for middle-aged patients aged 65-74 years. Aortic arch calcification and cerebral white matter lesions are commonly correlated with age and atherosclerotic risk factors.

- More importantly, aortic arch calcification and cerebral white matter lesions may share common pathophysiological mechanisms including inflammation, oxidative stress, apoptosis of vascular smooth muscle cells, and endothelial injury.

In experimental studies, EPA reduces aneurysm formation as well as vascular calcification in the mouse abdominal aorta via inhibition of matrix metalloproteinase 2 and 9 expression. Moreover, n-3 PUFAs have potent anti-inflammatory effects, and proatherogenic and proinflammatory effects on endothelial cells. Thus, n-3 PUFAs may suppress those pathologic processes and thereby inhibit aortic arch calcification and cerebral white matter lesions. On the other hand, multiple infarctions could indicate the presence of atherosclerotic embolic sources in the carotid artery or aortic arch. n-3 PUFAs also decrease the accumu-
loration of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and matrix metalloproteinase 1/2 in carotid atherosclerotic plaques, and, thus, low EPA levels may lead to the development of embolic stroke owing to atherosclerotic plaques. To date, several studies have documented that cerebral white matter lesions are related to PUFAs for patients with atherosclerotic risk factors and for stroke patients, whereas no clinical studies have explored the association of aortic arch calcification and multiple infarctions with PUFAs. Our data showed that these findings did not correspond to the DHA/AA ratio, which was consistent with previous studies. Thus, a low EPA/AA ratio might be linked to aortic arch calcification for elderly stroke patients as well as to cerebral white matter disease and multiple infarctions for middle-aged stroke patients.

Some potential limitations must be considered when interpreting the results of this study. First, the data from the current study were derived from a single center, and the number of patients in each tertile in the different age groups was quite small. Additionally, we excluded 73 patients owing to post-surgical stroke onset after cardiac surgery, hospitalization and receiving hospital meals for ≥7 days, administration of intravenous hyperalimentation, or taking EPA and DHA agents, as well as 32 patients because of missing data including MRI findings and serum PUFA levels, thus raising the issue of the generalizability of the results. Second, the blood examinations were done within 24 hours of admission, or referral to the Department of Neurology for patients who developed ischemic stroke during hospitalization. Therefore, an additional issue is that the EPA/AA and DHA/AA ratios could have been affected by the stroke itself, diet, or infusion therapy after admission. These ratios were analyzed only once after admission. Third, the cross-sectional nature of the present study limits the interpretation of the potential importance of the duration of hypertension, diabetes mellitus, and dyslipidemia, as well as the history of receiving treatments such as statins, anti-thrombotic agents, and angiotensin-converting enzyme inhibitors, before the onset of ischemic stroke. These factors may have affected the patients’ characteristics. Accordingly, the current data need to be interpreted with caution.

Conclusions

The ratios of EPA/AA and DHA/AA serum levels could be specifically associated with younger stroke patients, and it is suggested that the EPA/AA and DHA/AA ratios might be possible additional risk factors for ischemic stroke for younger patients. Additionally, the EPA/AA ratio may be related to aortic arch calcification for elderly stroke patients and to cerebral white matter disease and multiple infarctions for middle-aged stroke patients. The current results could be promising but have some limitations and, therefore, should be validated in large-scale clinical trials.

Acknowledgements

None.

Funding

None.

Conflicts of Interest/Disclosures

R.T. received research funds from Bayer Pharmaceutical Co., Ltd., Pfizer Japan Inc., Takeda Pharmaceutical Co., Ltd.

T.U. received lecture fees from Boehringer Ingelheim, Bristol-Myers Squibb, AstraZeneca K.K., Bayer Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Co., Ltd., Sanofi K.K., Shionogi & Co., Ltd., Novartis Pharmaceuticals, UCB Japan Co., Ltd., Kowa Shinyaku Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., ONO Pharmaceutical Co., Ltd., Pfizer Japan Inc., Merck Sharp and Dohme (MSD) K.K., Astellas Pharma Inc., GlaxoSmithKline K.K., and research funds from Pfizer Japan Inc., Boehringer Ingelheim, AstraZeneca K.K., Otsuka Pharmaceutical Co., Ltd., Astellas Pharma Inc., Eisai Co., Ltd.

K.S. received lecture fees from Mochida Pharmaceutical Company Ltd. and Takeda Pharmaceutical Company Ltd.

H.D. received scholarship funds and lecture fees from Mochida Pharmaceutical Company Ltd. and Takeda Pharmaceutical Company Ltd.

N.H. was an advisory member of Hisamitsu Pharmaceutical, Dai-Nippon Sumitomo Pharma, Otsuka Pharmaceutical, Novartis Pharma, Takeda Pharmaceutical, Abbie, received lecture fees from GSK, Nippon Boehringer Ingelheim, FP Pharmaceutical, Dai-Nippon Sumitomo Pharma, Eisai, Kissei Pharmaceutical, Nihon Medi-physics, Kyowa Hakko Kirin, Novartis Pharma, Biogen, Otsuka Pharmaceutical, Medtronic, Abbie, research funds from Kyowa Hakko Kirin, Nihon Medi-physics, FP Pharmaceutical, Takeda Pharmaceutical, and scholarship funds from Astellas Pharma, Daiichi-Sankyo, Pfizer Japan Inc.

The remaining authors report no conflicts of interest.

The remaining authors report no conflicts of interest.
References

1) Donnan GA, Fisher M, Macleod M, Davis SM: Stroke. Lancet, 2008; 371: 1612-1623
2) Bevan H, Sharma K, Bradley W: Stroke in young adults. Stroke, 1990; 21: 382-386
3) Ji R, Schwamm LH, Pervez MA, Singhal AB: Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA Neurol, 2013; 70: 51-57
4) Park TH, Ko Y, Lee SJ, Lee KB, Lee J, Han MK, Park J, Kim DE, Cho YJ, Hong KS, Kim JT, Cho KH, Kim DH, Cha JK, Yu KH, Lee BC, Yoon BW, Lee JS, Lee J, Gorelick PB, Bae HJ: Gender differences in the age-stratified prevalence of risk factors in Korean ischemic stroke patients: a nationwide stroke registry-based cross-sectional study. Int J Stroke, 2014; 9: 759-765
5) Zeiler K, Siostrzonek P, Lang W, Gossinger H, Oder W, Ciciyasvili H, Kollegger H, Mosslacher H, Deecke L: Different risk factor profiles in young and elderly stroke patients with special reference to cardiovascular disorders. J Clin Epidemiol, 1992; 45: 1383-1389
6) Andersen KK, Andersen ZJ, Olsen TS: Age- and gender-specific prevalence of cardiovascular risk factors in 40,102 patients with first-ever ischemic stroke: a Nationwide Danish Study. Stroke, 2010; 41: 2768-2774
7) Kurf S, Laukkana JA, Niskanen L, Laaksonen D, Sivenius J, Nyyssonen K, Salonen JT: Metabolic syndrome and the risk of stroke in middle-aged men. Stroke, 2006; 37: 806-811
8) Iribarren C, Sidney S, Sternfeld B, Browner WS: Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA, 2000; 283: 2810-2815
9) Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breter MM, Rotterdam Scan Study: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke, 2003; 34: 1126-1129
10) Ueno Y, Okuzumi A, Watanabe M, Tanaka Y, Shimada Y, Yamashiro K, Tanaka R, Hattori N, Urabe T: Cerebral small artery diseases may be associated with aortic arch calcification in stroke patients. J Atheroscler Thromb, 2014; 21: 1011-1021
11) Fazekas F, Chawljuk JB, Alavi A, Hurtig HI, Zimmerman RA: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol, 1987; 149: 351-356
12) Dao HH, Essalihi R, Bouvet C, Moreau P: Evolution and modulation of age-related medial elastocalcinosis: impact on large artery stiffness and isolated systolic hypertension. Cardiovasc Res, 2005; 66: 307-317
13) Chen NX, Moe SM: Arterial calcification in diabetes. Curr Diab Rep, 2003; 3: 28-32
14) de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breter MM: Hypertension and cerebral white matter lesions in a prospective cohort study. Brain, 2002; 125: 765-772
15) He K, Song Y, Daviglus ML, Liu K, Van Horn L, Dyer AR, Goldbourt U, Greenland P: Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke, 2004; 35: 1538-1542
16) Kromhout D, Bosschieter EB, de Lezenne Coulander C: The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med, 1985; 312: 1205-1209
17) Tanaka K, Ishikawa Y, Yokoyama M, Origasa H, Matsu- zaki M, Saito Y, Matsuzaa Y, Sasaki J, Oikawa S, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, JELIS Investigators: Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke, 2008; 39: 2052-2058
18) Nishizaki Y, Shimada K, Tani S, Ogawa T, Ando J, Taka- hashi M, Yamamoto M, Shiozaki T, Miyatachi K, Nagao K, Hirayama A, Yoshimura M, Komuro I, Nagai R, Daida H: Significance of imbalance in the ratio of serum n-3 to n-6 polyunsaturated fatty acids in patients with acute coronary syndrome. Am J Cardiol, 2014; 113: 441-445
19) Domei T, Yokoi H, Kuramitsu S, Soga Y, Arita T, Ando K, Shirai S, Kondo K, Sakai K, Goya M, Iwabuchi M, Ueda M, Nobuyoshi M: Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ J, 2012; 76: 423-429
20) Hishikari K, Kimura S, Yamakami Y, Kojima K, Sagawa Y, Otani H, Sugiyama T, Kuwahara T, Hikita H, Takahashi A, Isobe M: The prognostic value of the serum eicosapentaenoic acid to arachidonic acid ratio in relation to clinical outcomes after endovascular therapy in patients with peripheral artery disease caused by femoropopliteal artery lesions. Atherosclerosis, 2015; 239: 583-588
21) Suda S, Katsumata T, Okubo S, Kanamaru T, Suzuki K, Watanabe Y, Katsura K, Katayama Y: Low serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke. Cerebrovasc Dis, 2013; 36: 388-393
22) Yanagisawa N, Shimada K, Miyazaki T, Kume A, Kita- mura Y, Ichikawa R, Hashimoto H, Fujii K, Mokuno H, Inoue N, Daida H: Ratio of serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke. J Atheroscler Thromb, 2010; 17: 285-294
23) Iijima K, Hashimoto H, Hashimoto M, Son BK, Ota H, Kidozumi A, Kadowaki S, Kuller LJ, Chen YK, Brown WJ, Kuller LH: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol, 1987; 149: 351-356
24) Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE, 3rd: Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke, 1993; 24: 35-41
25) Motoyama KR, Curb JD, Kadowaki T, El-Saed A, Abbott RD, Okamura T, Evans RW, Nakamura Y, Sutton-Tyrrell K, Rodriguez BL, Kadota A, Edmundowicz D, Willcox BJ, Choo J, Katsumi N, Otake T, Kadowaki S, Kuller LJ, Chen YK, Brown WJ, Kuller LH: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol, 1987; 149: 351-356
LH, Ueshima H, Sekikawa A: Association of serum n-6 and n-3 polyunsaturated fatty acids with lipids in 3 populations of middle-aged men. Am J Clin Nutr, 2009; 90: 49-55

26) Rees D, Miles EA, Banerjee T, Wells SJ, Roynette CE, Wahle KW, Calder PC: Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr, 2006; 83: 331-342

27) Meydani M, Natiello F, Goldin B, Free N, Woods M, Schaefer E, Blumberg JB, Gorbach SL: Effect of long-term fish oil supplementation on vitamin E status and lipid peroxidation in women. J Nutr, 1991; 121: 484-491

28) Pieke B, von Eckardstein A, Gehrke M, Schirra U, Schulte H, Assmann G, Wahrburg U: Treatment of hypertriglyceridaemia by two diets rich either in unsaturated fatty acids or in carbohydrates: effects on lipoprotein subclasses, lipolytic enzymes, lipid transfer proteins, insulin and leptin. Int J Obes Relat Metab Disord, 2000; 24: 1286-1296

29) Jacobs B, De Angelis-Schierbaum G, Egert S, Assmann G, Kratz M: Individual serum triglyceride responses to high-fat and low-fat diets differ in men with modest and severe hypertriglyceridaemia. J Nutr, 2004; 134: 1400-1405

30) Tagawa H, Shimokawa H, Tagawa T, Kuroiwa-Matsumoto M, Hirooka Y, Takeshita A: Long-term treatment with eicosapentaenoic acid augments both nitric oxide-mediated and non-nitric oxide-mediated endothelium-dependent forearm vasodilatation in patients with coronary artery disease. J Cardiovasc Pharmacol, 1999; 33: 633-640

31) De Caterina R, Cybulsky MI, Clinton SK, Gimbrone MA, Jr., Libby P: The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb, 1994; 14: 1829-1836

32) Kramer HJ, Stevens J, Grimminger F, Seeger W: Fish oil fatty acids and human platelets: dose-dependent decrease in dienoyl and increase in trienoyl thromboxane generation. Biochem Pharmacol, 1996; 52: 1211-1217

33) Cawood AL, Ding R, Napper FL, Young RH, Williams JA, Ward MJ, Gudmundsen O, Vige R, Payne SP, Ye S, Shearman CP, Gallagher PJ, Grimble RF, Calder PC: Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis, 2010; 212: 252-259

34) Song TJ, Cho HJ, Chang Y, Choi K, Jung AR, Youn M, Shin MJ, Kim YJ: Low Plasma Proportion of Omega 3-Polyunsaturated Fatty Acids Predicts Poor Outcome in Acute Non-Cardiogenic Ischemic Stroke Patients. J Stroke, 2015; 17: 168-176

35) Ikeya Y, Fukuyama N, Kitajima W, Ogushi Y, Mori H: Comparison of eicosapentanoic acid concentrations in plasma between patients with ischemic stroke and control subjects. Nutrition, 2013; 29: 127-131

36) Wang JH, Eguchi K, Matsumoto S, Fujii K, Komuro I, Nagai R, Manabe I: The omega-3 polyunsaturated fatty acid, eicosapentanoic acid, attenuates abdominal aortic aneurysm development via suppression of tissue remodeling. PLoS One, 2014; 9: e96286

37) Shao JS, Cai J, Towler DA: Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol, 2006; 26: 1423-1430

38) Demer LL, Tintut Y: Vascular calcification: pathobiology of a multifaced disease. Circulation, 2008; 117: 2938-2948

39) Ueno Y, Zhang N, Miyamoto N, Tanaka R, Hattori N, Urabe T: Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model. Neuroscience, 2009; 162: 317-327

40) Ueno Y, Koike M, Shimada Y, Shimura H, Hira K, Tanaka R, Uchiyama Y, Hattori N, Urabe T: L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain. J Cereb Blood Flow Metab, 2015; 35: 382-391

41) Kanai S, Uto K, Honda K, Hagiwara N, Oda H: Eicosapentanoic acid reduces warfarin-induced arterial calcification in rats. Atherosclerosis, 2011; 215: 43-51

42) Szabo K, Kern R, Gass A, Hirsch J, Hennerici M: Acute stroke patterns in patients with internal carotid artery disease: a diffusion-weighted magnetic resonance imaging study. Stroke, 2001; 32: 1323-1329

43) Ueno Y, Kimura K, Iguchi Y, Shibazaki K, Inoue T, Hattori N, Urabe T: Mobile aortic plaques are a cause of multiple brain infarcts seen on diffusion-weighted imaging. Stroke, 2007; 38: 2470-2476

44) Nagai K, Koshiba H, Shibata S, Matsui T, Kozaki K: Correlation between the serum eicosapentanoic acid-to-arachidonic acid ratio and the severity of cerebral white matter hyperintensities in older adults with memory disorder. Geriatr Gerontol Int, 2015; 15 Suppl 1: 48-52

45) Song TJ, Chang Y, Shin MJ, Heo JH, Kim YJ: Low levels of plasma omega 3-polyunsaturated fatty acids are associated with cerebral small vessel diseases in acute ischemic stroke patients. Nutr Res, 2015; 35: 368-374