Tonic immobility induction and duration on halmahera walking shark (*Hemiscyllium halmahera*)

D A Mukharror*, D Susiloningtyas¹ and M Ichsan²

¹Department of Marine Science, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
²Shark Diving Indonesia, Morotai, Indonesia

*E-mail: darmawan_ahmad_m@yahoo.com

Abstract. Tonic immobility is an induce method to achieve a temporary condition of cataleptic-like, which is a sudden loss of muscle tone, as a result of various procedures such as situate the object in an “unnatural” position or situation. This method has been widely applied on elasmobranch species, except for species of *Hemiscyllidae*. This study was intended to assess the application of tonic immobility on *Hemiscyllium halmahera* - an endemic shark to Halmahera Islands, Indonesia. Our study has shown that the average induction time ranged from 11.49 to 40.12 seconds, while the hypnosis duration ranged from 6.51 to 28.36 seconds. Based on our results, tonic immobility can be applied as non-lethal method to *Hemiscyllium halmahera* during capture and physical examination such as morphometric and weight measurement. However, we suggested to investigate further physiology examination such as heart rate, and breathing frequency during tonic immobility phase on Halmahera walking shark or other reef shark species.

Keywords: physical examination, tonic immobility, walking shark

1. Introduction

Tonic immobility (TI) or animal hypnosis is an induce method to achieve a temporary cataleptic-like condition that can occur from less than one minute to several hours (Gallup 1974). This technique has been applied to handle elasmobranch shark in the field for various purpose, for example research, medical and tourism (Henningsen 1994, Kessel *et al* 2015). This method offers benefits as an anesthetic technique during live fish transport, and recovery (Wells *et al* 2005), as a method in capturing shark (Williamson 2018), and handling stress of shark (Hoffmayer 2001). In terms of animal warfare, this method provides lower risk compare to chemical anesthetic, include risk of overdose, minimalize negative impacts that influence post release behavior and fast recovery on the specimen. Despite it has been widely applied on elasmobranchs species, but none of these were applied for *Hemiscyllidae* family in Indonesia (Henningsen 1994).

TI can be initiated by various methods which includes placing the subject in a rapid dorso-ventral inversion (Watsky and Gruber 1990), pumping water into branchial chamber (Wells *et al* 2005), interfere their Lorenzini Ampullae (Fisher *et al* 2006), or applying pressure to tail’s distal end
Indonesia has recorded 116 species of sharks (Dharmadi 2013), including five walking shark species (Family Hemiscylliidae), that are *Hemiscyllium freycineti*, *H. galei*, *H. henryi*, *H. halmahera*, and *H. trispeculare* (Allen et al. 2016).

Indonesia is famous marine tourism and shark tourism is a growing industry. The recently described species Halmahera walking shark (*H. halmahera*), is an endemic to Halmahera islands. This species has maximum total length (TL) of 79.0 cm (Jutan 2018) and usually live in shallow waters near coral reef, seagrass beds or sand substrate and have small range and the habitat do not overlap between similar species (Allen et al. 2013). Its endemicity makes this species highly prone to habitat degradation and unsustainable fisheries (Allen and Dudgeon 2010, Compagno 1984). Further, this species has a very unique coloration that makes it a favourable target for aquarium display (Bennett et al. 2015).

North Maluku Province, Indonesia became famous for marine research and tourism in the last few years. Shark-watching is the main tourist underwater attraction in this region, such as Morotai, Ternate and Tidore (Ichsan 2016). The black-tip reef shark (*Carcharhinus melanopterus*), white-tip reef shark (*Triaenodon obesus*), and grey reef shark (*Carcharhinus amblyrhynchos*) were the three species from the North Maluku Province that have been regularly studied (Ichsan et al. 2016, Pridina 2015, Mukharror et al 2018b). However, no studies on Halmahera walking shark and mobula ray have been available to date (Mukharror et al 2018a). This study aims to assess TI induction and duration as a non-lethal method using halmahera walking shark as an object study during physical examination such as morphometric. The results of this study would be beneficial to support animal handling for research.

2. Materials and methods

This study was conducted between June, 8th to 10th, 2019 at the Tidore Island, North Maluku Province, Indonesia. The specimen was caught using small nets (40 cm height, 40 cm width, and 100 cm length) from the coastal area of the island. In this study, we used only one specimen to test the TI approach, therefore we cannot compare the TI response between male and female individual, although it was hypothesized that female is more susceptible and induction time will increase in size and age in sandbar shark and smooth dogfish (Whitman 1984, Whitman et al 1986). Each TI trial was conducted by restraining the subject as quickly and as gently as possible. The investigator gently rubbed and massaged both side of the snout, where Lorenzini Ampullae pores of the *H. halmahera* were densely located. In the specimen where TI was induced, a deep rhythmic respiration was observed, as a deeper and more constant ventilation of the gills and decreased respiration rate (figure 1).

![Figure 1. Inverting the walking shark (H. halmahera) for tonic immobility.](image-url)
The individual was weighted in kilogram and measured total length (TL) in centimeters. The shark was held inverted until the onset of the TI response. Each response was timing in second with the accuracy of two decimals, using handheld stopwatch (Casio HS-3). A change in muscle tone was used as the criterion for the onset of TI that correspondence to the limb response. Once the response was induced, the subject was not restrained until it regained the mobility.

A series of morphometric analysis were then conducted on each of the TI phase of halmahera walking shark, following the induction phase. These induction and hypnosis phase were continued until all morphometric parameters completely taken place. Whitman (1986) suggested an interval in between of each trial of TI, therefore the TI induction were conducted after 10-15 minutes interval between each trial. In order to prevent habituation (Watsky and Gruber 1990), the assessment was conducted only for 8 trials. Once the response was induced, the subject was not restrained until it regained mobility. Morphometric parameters to be assessed was following the Compagno (1984) methodology. This method includes measurement of total length, head width, snout length, sub-caudal length, etc using Sellery™ Plastic Steel Caliper. After the trials, halmahera walking shark was safely brought back to the Tidore sea at 10th June 2019.

3. Results and discussion

This shark was identified as a young female with 495 mm length (maximum total length 790 mm, Jutan 2018) and 290 g weight. Complete result of morphometric measurement was shown in table 1.

Measurement	Size (mm)	Measurement	Size (mm)
Total length	495	Mouth width	38
Pre-caudal length	380	Barbel length	9
Head width	80	Snout-1st dorsal origin	377
Head depth	46	Snout-pelvic origin	283
Pre-anal body depth	38	Snout-anal opening	300
Snout-pectoral fin origin (HL)	88	Anal opening-anal fin origin	361
Snout-1st gill slit	68	Anal opening-tail tip	328
1st to 5th gill slit	34	Interdorsal distance	75
First gill slit height	13	Pectoral fin length	51
Fifth gill slit height	18	Pelvic fin length	53
Eye diameter (horizontal)	15	1WAM dorsal fin base	44
Eye diameter (vertical)	7	1st dorsal fin height	34
Bony interorbital width	30	1st dorsal fin free margin	23
Fleshy interorbital width	36	2nd dorsal fin base	45
Snout to eye (snout length)	40	2nd dorsal fin height	42
Snout to spiracle	49	2nd dorsal fin free margin	22
Snout to mouth	16	Anal fin base	71
Lower labia furrow length	8	Anal fin height	19
Maximum width lower labial flap	8	Anal fin free margin	12
Postoral fold	11	Sub-caudal length	114
The results of Halmahera walking shark’s TI induction and duration time can be seen in table 2. The result showed that average duration of TI (17 s) can be used as the window opportunity to assess the morphometric of the halmahera walking shark, without causing fatality. The morphometric measurement result on table 1 shows that all parameter of morphometric can be completely measured within the TI phase of Halmahera walking shark (which in average three measurement in each TI).

Trial no.	Induction time (s)	TI Duration time (s)
Trial 1	20.81	25.37
Trial 2	32.28	25.72
Trial 3	40.12	9.88
Trial 4	30.26	13.67
Trial 5	11.49	6.51
Trial 6	25.64	28.36
Trial 7	34.45	6.76
Trial 8	31.32	20.22
Time Range	11.49-40.12	6.51-28.36
Time Average	28.30	17.06

The results showed that induction time of the Halmahera walking shark (28.3 s) was relatively faster than swellshark (36 s), Carribean reef shark (30 s), but longer than blacktip reef shark (25 s), whitetip reef shark (21 s), and almost as long as leopard shark (28 s) (Heningsen 1994). For the duration of TI, Halmahera walking shark (17 s) was faster than leopard shark (37 s, Heningsen 1994), swellshark (85 s, Heningsen 1994), blacktip reef shark (92 s, Davie 1993), whitetip reef shark (177 s, Heningsen 1994), and Carribean reef shark (274 s, Heningsen 1994) (figure 2).

![Figure 2. Comparison of induction time (blue) and TI duration (orange) between several species of sharks (Heningsen 1994).](image_url)

Based on these studies, we can conclude that in general, the smaller the shark, the shorter duration of the shark was in TI condition. Thus, the size of shark might influence the duration of TI. Further
studies are needed to investigate the correlation between duration of TI and the size of the shark, and assesses whether examination within the same species and between species shown different results.

Reduced duration of anthropogenic intervention and shorter physical struggle are related with the shark capture, and restraint effort is expected to reduce physiological signs of distress (Hoffmayer 2001). Induction of TI and other nonlethal capture methods warrant further research (Williamson 2018).

4. Conclusion

Based upon number of trials of induction, TI responses were shown in H. halmahera. This TI duration can be used as the window opportunity to conduct morphometric assessment on Halmahera walking shark. The duration of TI for Hemiscyllium halmahera was the shortest compared to other sharks that has been examined. The size of sharks might influence the duration of the TI. Therefore, further studies are needed to support this hypothesis.

Acknowledgments

Authors thank the hibah PITTA 2019 for the chances, moral supports, and materials offered for this examination as well as to Tidore Island’s research team for their supports and assistances during TI inductions. We also thank the Universitas Indonesia’s Marine Science Master Program students, staffs, and lectures for assistances and encouragement during the research.

References

Allen G R and Dudgeon C L 2010 Hemiscyllium michaeli a new species of bamboo shark (Hemiscyllidae) from Papua New Guinea Aqua International Journal of Ichthyology 16 19-30
Allen G R, Erdmann M V and Dudgeon C L 2013 Hemiscyllium halmahera, a new species of bamboo shark (Hemiscylliidae) from Indonesia Aqua International Journal 19 123-136
Allen G R, Erdmann M V, White W T, Fahmi and Dudgeon C L 2016 Review of the bamboo shark genus Hemiscyllium (Orectolobiformes: Hemiscyllidae) J. Ocean Sci. Found. 23 51-97
Bennett M B, Kyne P M and Heupel M R 2015 Hemiscyllium ocellatum (UK: The IUCN Red List of Threatened Species)
Compagno L J V 1984 FAO Species Catalogue Vol 4: Sharks of The World Part 2 Carcharhiniformes (Rome: FAO) pp 251-633
Davie P S, Franklin C E and Grigg G C 1993 Blood pressure and heart rate during tonic immobility in the black tipped reef shark Cararchinus melanoptera Fish Physiol. Biochem. 12 95-100
Dudgeon C L, Lanyons J M and Semmens J M 2013 Seasonality and site fidelity of the zebra shark, Stegostoma fasciatum, in southeast Queensland, Australia Anim. Behav. 85 471-481
Gallup G G 1974 Animal hypnosis: factual status of a fictional concept Psychol. Bull. 81 836-853
Henningsen A D 1994 Tonic immobility in 12 elasmobranchs: use as an aid in captive husbandry Zoo Biol. 13 325-332
Hoffmayer E R and Parsons G R 2001 The physiological response to capture and handling stress in the Atlantic sharpnose shark, Rhizoprionodon terraenovae Fish Physiol. Biochem. 25 277-285
Ichsan M, Pridina N and Mukharror D A 2016 Pariwisata Penyelaman Ikan Hiu Di Pari rair Morotai, Maluku Utara, Indonesia Prosiding Simposium Hiu dan Pari di Indonesia: 183-188. Kerjasama Kementerian Kelautan dan Perikanan, Lembaga Ilmu Pengetahuan Indonesia dan WWF Indonesia ed Dharmati and Fahmi (Jakarta: Ministry of Marine Affairs and Fisheries)
Jutan Y, Retraubun A S W, Khouw A S, Nikijuluw V P H and Pattikawa J A 2018 Study on the population of Halmahera walking shark (Hemiscyllium halmahera) in kao bay, north maluku, Indonesia Int. J. Fish. Aquat. Stud. 6 36-41
Kessel S T and Nigel E H 2015 Tonic immobility as an anaesthetic for elasmobranchs during surgical
implantation procedures *Can. J. Fish. Aquat. Sci.* 72 1287-1291

Mukharror D A, Baiti I T, Harahap S A, Prihadi D J, Ichsan M and Pridina N 2018a First records of bentfin devil ray (*Mobula thurstoni*) and the examination in physical factors of its habitat in the western waters of Morotai Island (North Moluccas) *IOP Conf. Ser. Earth Environ. Sci.* 137 012048

Mukharror D A, Triutami S, Sriati, Yuliadi L P and Ichsan M 2018b Correlation between existence of reef sharks with abundance of reef fishes: carnivore and herbivore type in South Waters of Morotai Island (North Moluccas) *International Conference in Marine Biology, Denpasar, Bali*

Pridina N 2015 *Distribution of Reef sharks Based On The Characteristic of Habitat in Morotai Waters, North Maluku* [Thesis] (Bandung: Padjadjaran University)

Watsky M A and Gruber S H 1990 Induction and duration of tonic immobility in the lemon shark, *Negaprion brevirostris* *Fish Physiol. Biochem.* 8 207-210

Wells R M G, McMeil H and MacDonald J A 2005 Fish hypnosis: induction of an atonic immobility reflex *Mar. Freshw. Behav. Phy.* 38 71-78

Whitman P 1984 *Tonic Immobility in Juvenile Sandbar Shark Carcharhinus plumbeus* (Nardo 1827) (*Pisces, Carcharinidae*) [Thesis] (USA: University of West Virginia)

Whitman P, Marshall J and Keller E 1986 Tonic immobility in the smooth dogfish shark, *Mustelus canis* (*Pisces, Carcharinidae*) *Copeia* 1986 829-832

Williamson M J, Dudgeon C and Sladge R 2018 Tonic immobility in zebra shark, *Stegostoma fasciatum*, and its use for capture methodology *Environ. Biol. Fish.* 101 741-748