ORIGINAL RESEARCH

Who maintains good health functioning? The contribution of social, work-related and behavioural factors to mental and physical health functioning trajectories in ageing employees

Tea Lallukka,1,2 Aapo Hiilamo,2 Olli Pietiläinen,1 Minna Mänty,3 Anne Kouvonen,4,5 Ossi Rahkonen1

ABSTRACT

Objectives The determinants of poor functioning and subsequent early exit from work are well established but very little is known about the positive determinants of maintaining good functioning among the ageing workforce. We investigated modifiable determinants of maintaining good mental and physical health functioning.

Methods We used prospective survey data collected across four waves among the midlife employees of the City of Helsinki, Finland, 2000–2017 (n=3342). Health functioning was repeatedly measured using the Short Form 36 (SF-36) inventory. Trajectories of mental and physical health functioning were separately examined using group-based trajectory analysis. Multinomial logistic regression models were fitted to examine determinants of each trajectory.

Results Four trajectory solutions for the developmental patterns in health functioning during the follow-up period were selected, with a slightly different shape of the first trajectory for mental and physical functioning: (1) continuously low (mental), low and decreasing (physical), (2) increasing, (3) decreasing and (4) continuously high functioning. After adjustments, the employees in the continuously high mental health functioning group were more likely to have optimal job demands, high job control, no sleep problems and no binge drinking behaviour. Employees in the continuously high physical functioning group had more likely low levels of physically strenuous work and hazardous working environment and no sleep problems and normal weight.

Conclusion High job control, good sleep and avoiding binge drinking may help maintain good mental health functioning. Low levels of physical or environmental work exposures, good sleep and recommended healthy weight may support maintenance of good physical health functioning among ageing employees.

INTRODUCTION

In ageing populations, such as in Finland, the proportion of working-age people is rapidly decreasing. In this context, extending working careers, promoting good health functioning at work and avoiding early exit from paid employment are key challenges.1-3 Health functioning reflects health status in general, and the ability to perform everyday tasks.4-7 It is important to increase our understanding about the determinants of different domains of health functioning as they predict sickness absence,8,9 while sickness absence in turn is a marker of future disability pension.10 In particular, understanding who maintains good health functioning at work and examining the role of the potentially modifiable determinants of health functioning may help us intervene appropriately and thereby improve workplace.
Table 1	Descriptive statistics of the study population by mental health functioning (MCS) trajectory group assignment*. The Helsinki Health Study					
MCS trajectory group	**Continuous low**	**Increasing**	**Decreasing**	**Stable high**	**Total**	**P value**
%	Col %	Col %	Col %	Col %	Col %	
n	130	254	455	2503	3342	
Age	Mean	44	45	44	45	45
PCS trajectory group						
Low and decreasing	13	7	9	6	7	
Increasing	6	5	6	4	4	
Decreasing	35	28	30	23	25	
Stable high	46	61	55	67	64	
Gender						
Men	22	22	17	16	17	
Women	78	78	83	84	83	
Marital status						
Co-habiting/married	53	67	68	73	71	
Never married/divorced/widowed	46	32	32	27	28	
Missing	1	1	0	1	0	
Occupational class						
Managers and professionals	37	36	31	29	30	
Semi-professionals	16	23	22	24	23	
Routine non-manual workers	29	28	32	33	33	
Manual workers	15	11	14	12	12	
Missing	2	2	1	1	1	
Shift or night work						
No	78	84	80	81	81	
Shift or night work	22	15	19	18	18	
Missing	1	1	0	1	1	
Long working hours (more than 40 h/w)						
No	85	82	87	84	84	
Long working hours (more than 40 h/w)	14	17	11	14	14	
Missing	1	1	2	1	1	
Work demand						
High	81	83	82	71	73	
Optimal work demand	19	17	18	29	26	
Missing	0	0	0	1	1	
Work control						
Low	83	81	79	76	77	
High work control	17	19	21	24	23	
Missing	0	0	0	0	0	
Physically strenuous work						
No	80	78	81	73	74	
Low level of physically strenuous work	18	21	18	27	25	
Missing	2	0	1	1	1	
Hazardous working environment						
No	80	80	77	73	74	
Low level of hazardous working environment	18	20	22	26	25	
Missing	2	0	1	1	1	
Sleep problems						
No	43	66	79	87	82	
Sleep problems	55	32	18	11	15	
Missing	2	2	3	2	3	
Smoking						
No	48	52	43	55	53	
Past smoking	20	22	29	23	24	

continued
good health functioning and work participation among ageing employees.

Previous studies have extensively focused on the risk factors of poor functioning and related sickness absence, as well as early exit from paid employment,11–13 while the evidence about the positive determinants of maintaining good functioning among the ageing workforce is much more limited. In addition, most of the evidence comes from studies which have used variable oriented methods, that is, have assessed associations between a pre-defined predictor and a dichotomous (such as disability pension) or count outcomes (such as sickness absence).14–15

However, identifying groups of employees who follow similar developmental patterns in their functioning over time may reveal additional insights for efforts to identify factors supporting maintenance of the good functioning in later working life. For example, using group-based trajectory analysis (GBTA) enables to identify trajectories from the data,16–18 and possibly reveal a group that is able to maintain good health functioning.

Socioeconomic factors are important determinants of health functioning17,18; people with low education and low occupational class experience the greatest decline in their health and functioning as they age.19,20 Moreover, as the social patterning of physical and mental health appears to vary,21 physical and mental health functioning should be examined separately. This helps confirm if trajectories in physical and mental health functioning, and their determinants, also vary. Additionally, behavioural factors such as binge drinking, smoking, obesity and poor sleep have been shown to contribute to health functioning,11,22,23 and could be assumed to contribute to memberships to the distinct trajectory groups.

Table 1

	Continuously low	Increasing	Decreasing	Stable high	Total
	Col %	Col %	Col %	Col %	Col %
Current smoking	32	26	28	21	23
Missing	0	1	0	0	0
Binge drinking					
No	75	81	87	90	89
Missing	2	2	2	1	2
Binge drinking (once a week or more)	22	16	11	8	10 <0.001
Missing	2	2	2	1	2

	Col %	Col %	Col %	Col %	Col %
Obesity					
Normal weight	55	60	60	61	60
Overweight	33	28	30	29	29
Obesity	11	10	9	10	10
Missing	2	1	1	0	1

*All predictors measured at baseline. Missing category omitted from the χ^2 test.

h/w, hours/week; MCS, Mental Component Summary; PCS, Physical Component Summary.

Figure 1 Upper part: estimated mental health functioning trajectory shapes and the mean scores (left figure) and interquartilerange (IQR) at baseline and follow-ups of each trajectory group (right figure). Lower part: estimated physical health functioning trajectory shapes and the mean scores (left figure) and IQR at baseline and follow-ups of each trajectory group (right figure).
Table 2 Results from multinomial regression model for mental health functioning (Mental Component Summary, MCS) trajectory assignment

MCS trajectory group	Continuously low	Increasing	Decreasing	Stable high	
AME (95% CI)	AME (95% CI)	AME (95% CI)	AME (95% CI)	AME (95% CI)	
Gender					
Men	Ref.	Ref.	Ref.	Ref.	
Women	−0.00 (−0.02 to 0.01)	−0.02 (−0.05 to 0.00)	−0.01 (−0.04 to 0.03)	0.03 (−0.01 to 0.08)	
Marital status					
Co-habiting/married	Ref.	Ref.	Ref.	Ref.	
Never married/divorced/widowed	0.03*** (0.01 to 0.05)	0.01 (−0.01 to 0.03)	0.02 (−0.00 to 0.05)	−0.07*** (−0.10 to −0.03)	
Occupational class					
Managers and profesionals	Ref.	Ref.	Ref.	Ref.	
Semi-professionals	−0.03** (−0.05 to −0.01)	−0.01 (−0.04 to 0.01)	−0.03 (−0.06 to 0.01)	0.07*** (0.03 to 0.11)	
Routine non-manual workers	−0.02 (−0.05 to −0.00)	−0.03 (−0.05 to 0.00)	−0.03 (−0.07 to 0.00)	0.08*** (0.04 to 0.12)	
Manual workers	−0.02 (−0.05 to 0.00)	−0.03* (−0.06 to −0.00)	−0.03 (−0.07 to 0.01)	0.09*** (0.04 to 0.14)	
Shift or night work					
No	Ref.	Ref.	Ref.	Ref.	
Shift or night work	0.01 (−0.01 to 0.03)	−0.02 (−0.04 to 0.01)	0.00 (−0.03 to 0.03)	0.01 (−0.03 to 0.04)	
Long working hours (more than 40 h/w)	No	Ref.	Ref.	Ref.	Ref.
Long working hours	0.00 (−0.02 to 0.01)	0.01 (−0.02 to 0.03)	−0.04* (−0.07 to −0.00)	0.03 (−0.01 to 0.07)	
Work demand (lowest 25%)	No	Ref.	Ref.	Ref.	Ref.
Optimal work demand	−0.01 (−0.02 to 0.01)	−0.03** (−0.05 to −0.01)	−0.06*** (−0.08 to −0.03)	0.09*** (0.06 to 0.12)	
Work control (highest 25%)	No	Ref.	Ref.	Ref.	Ref.
High work control	−0.01 (−0.03 to 0.00)	−0.02* (−0.04 to −0.00)	−0.02 (−0.04 to 0.01)	0.05** (0.02 to 0.08)	
Physically strenuous work (lowest 25%)	No	Ref.	Ref.	Ref.	Ref.
Low level of physically strenuous work	−0.01 (−0.03 to 0.00)	−0.02* (−0.04 to −0.00)	−0.04** (−0.07 to −0.02)	0.08*** (0.04 to 0.11)	
Hazardous working environment (lowest 25%)	No	Ref.	Ref.	Ref.	Ref.
Low level of hazardous working environment	−0.00 (−0.02 to 0.01)	−0.01 (−0.03 to 0.01)	−0.01 (−0.04 to 0.02)	0.03 (−0.01 to 0.06)	
Sleep problems					
No	Ref.	Ref.	Ref.	Ref.	
Sleep problems	0.11*** (0.08 to 0.14)	0.09*** (0.06 to 0.12)	0.03 (−0.00 to 0.07)	−0.23*** (−0.28 to −0.19)	
Smoking					
Never	Ref.	Ref.	Ref.	Ref.	
Past smoking	−0.01 (−0.02 to 0.01)	−0.01 (−0.03 to 0.01)	0.06*** (0.03 to 0.09)	−0.04* (−0.08 to −0.01)	
Smoking	0.01 (−0.01 to 0.02)	0.01 (−0.02 to 0.03)	0.06*** (0.02 to 0.09)	−0.07*** (−0.11 to −0.03)	
Binge drinking					
No	Ref.	Ref.	Ref.	Ref.	
Binge drinking (once a week or more)	0.04** (0.01 to 0.07)	0.04* (0.01 to 0.08)	0.01 (−0.03 to 0.05)	−0.10*** (−0.15 to −0.05)	
Obesity					
Normal weight	Ref.	Ref.	Ref.	Ref.	
Overweight	0.01 (−0.01 to 0.02)	−0.01 (−0.03 to 0.01)	0.01 (−0.02 to 0.03)	−0.00 (−0.04 to 0.03)	
Obesity	−0.00 (−0.02 to 0.02)	−0.01 (−0.04 to 0.02)	−0.01 (−0.05 to 0.03)	0.02 (−0.03 to 0.07)	

AMEs and their 95% CI for each group.

*P<0.05, **P<0.01, ***P<0.001 for the difference compared to reference category. Additionally adjusted for age.

AME, average marginal effect; h/w, hours/week.

Therefore, the present study aims to identify trajectories of mental and physical health functioning among midlife and ageing employees and then to investigate their social (age, gender, marital status, occupational class), work-related (physical and psychosocial working conditions) and behavioural (smoking, drinking, obesity, sleep) determinants. A special focus is to recognise potential modifiable predictors (such as working conditions and behavioural factors) of maintenance of good mental and physical health functioning.

METHODS

Data

We used prospective survey data of public sector employees of the City of Helsinki, Finland, followed up in three to four years. The data included three survey waves, with the last wave performed approximately 4 years after the first. We used the data from the last survey wave to analyse workplace health trajectories.

METHOdS

data

We used prospective survey data of public sector employees of the City of Helsinki, Finland, followed up in three to four years. The data included three survey waves, with the last wave performed approximately 4 years after the first. We used the data from the last survey wave to analyse workplace health trajectories.

Lallukka T, et al. Occup Environ Med 2020;77:478–487. doi:10.1136/oemed-2019-106324
Table 3 Descriptive statistics of the study population by physical health functioning* (Physical Component Summary, PCS) trajectory group assignment*. The Helsinki Health Study

PCS trajectory group	Low and decreasing	Increasing	Decreasing	Stable high	P value
%	7	4	25	64	
n	226	148	840	2128	
Age					
Mean	45	45	44	45	
Mental Component Summary (MCS) trajectory group					
Continuously low	8	5	5	3	<0.001
Increasing	8	8	8	7	<0.001
Decreasing	19	19	16	12	
Stable high	66	68	70	78	
Gender					
Men	12	19	13	19	<0.001
Women	88	81	87	81	<0.001
Marital status					
Co-habiting/married	57	67	68	74	
Never married/divorced/widowed	42	33	31	26	<0.001
Missing	0	0	1	0	
Occupational class					
Managers and professionals	21	28	22	35	
Semi-professionals	14	22	21	25	<0.001
Routine non-manual workers	44	36	38	29	
Manual workers	20	14	17	10	
Missing	1	1	1	1	
Shift or night work					
No	79	81	77	83	
Shift or night work	20	19	22	16	0.001
Missing	1	0	1	1	
Long working hours					
No	86	82	87	84	
Long working hours (more than 40 h/w)	13	16	12	15	0.165
Missing	1	0	1	2	
Work demand					
High	75	83	76	72	
Optimal work demand	24	16	23	28	0.001
Missing	0	1	1	0	
Work control					
Low	81	81	82	74	
High work control	18	19	18	26	<0.001
Missing	1	0	1	0	
Physically strenuous work	89	83	83	69	
Low level of physically strenuous work	10	16	16	31	<0.001
Missing	1	1	1	1	
Hazardous working environment	83	79	79	71	
Low level of hazardous working environment	16	20	21	28	<0.001
Missing	1	1	1	1	
Sleep problems					
No	68	65	77	87	
Sleep problems	29	32	20	10	<0.001
Missing	3	3	2	2	
Smoking					

continued
surveys through 2000 to 2017 (the Helsinki Health Study, HHS). At baseline in 2000–2002, the participants of the original HHS cohort were aged 40–60 years, and they were all employed by the City of Helsinki (n=8960). The City of Helsinki is the largest employer in Finland, and there are hundreds of different occupational titles from routine manual work to administrative and professional positions. The largest branches include, for example, social and healthcare, and physical work is prevalent, for example, in many manual jobs and in care work. The target population was all employees reaching 40, 45, 50, 55 or 60 years of age at baseline in 2000, 2001 or 2002. Inclusion and exclusion criteria and details about recruitment, non-response and attrition and have been described earlier. For the current study, we included only participants aged 40–55 at baseline who were continuously employed and had no missing data on their health functioning (component summary scores) in at least three of the four surveys (conducted in 2000–2002, 2007, 2012 and 2017, response rates 67%, 83%, 79% and 82%, respectively) (see the inclusion criteria in online supplementary figure S1, displayed as a flow chart). The age restriction was done to have an adequate number (ie, three) of measurement points while still employed. The final analytic sample consisted of 3342 employees.

Measures

Health functioning
Mental and physical health functioning were measured at baseline and follow-up waves using the Short Form 36 (SF-36) inventory. We used a validated Finnish translation of this inventory. The inventory includes altogether 36 items that form eight subscales, although some concern about the summary scores also exist. Nonetheless, the inventory has good psychometric properties, high internal consistency and construct validity, and high test-retest reliability. For the purposes of this study, we decided to model the development trajectories using the component scores. The scores were constructed to have a mean of 50 and SD of 10 in the general population. Higher scores indicate better functioning.

Social determinants
All predictors of the trajectories were measured at baseline in 2000–2002. We included gender (1=man, 2=woman), age (continuous) and marital status (married/cohabiting vs others) as sociodemographic factors. Occupational class as an indicator of socioeconomic position was derived from the employer’s personnel register for those with a consent for such linkage (78%), and completed from the questionnaire survey responses for the rest. Self-reported occupational titles were classified according to the register data. Occupational class was then divided into managers and professionals, semi-professionals, routine non-manual workers and manual workers.

Work-related factors
Working conditions were measured as supporting positive factors and dummy variables were coded to represent the most optimal approximate quartile in each scale. Job demands and job control were measured by the Framingham version of Karasek’s Job Content Questionnaire. The weighted mean of demands and control scales were calculated for those responding over half of the corresponding questions (3 or more/5 for job demands and 5 or more/9 for job control). Then those scoring approximately in the highest quartile in the job control scale were defined as having high job control, and those scoring approximately in the lowest quartile in the job demands scale were defined having optimal job demands.

Good physical working conditions included low level of physically strenuous work and low level of hazardous working environment. The employees were asked about the presence of 18 physical working conditions (an 18-item questionnaire developed at the Finnish Institute of Occupational Health, FIOH)
with four response options: (1) not present; (2) present, but does
not bother at all; (3) present and somewhat bothers; (4) present
and bothers a lot. For those with four or less missing items, any
missing items were replaced by the sample mode of that item.
Then, following our previous studies, a factor analysis
was conducted, and a three-factor solution was selected: physical
workload factors (loading the following items: awkward
working positions, rotation of the back, repetitive movements,
standing, walking and heavy physical effort or lifting and
carrying) and hazardous working environment (noise, vibration,
weak or disruptive lighting, solvents, gasses or irritants, warmth,
coldness or changes in temperature, dryness of air, dirt, damp-
ness or wetness, mould). The third factor comprised sedentary
work/working with computer (working at monitor and using
a computer mouse), but it was omitted because we focused
on physical working conditions, and the third factor mainly
concerns non-physical work. The factor scores were dichoto-
mised and employees in the lowest quartile (25%) in each scale
were defined as having no physically strenuous work and no
hazardous working environment.

Working time pattern was measured by adverse working times
(night/shift work weekdays or weekends vs others) and overtime
(reporting average working time more than 40 hours per week
vs others).

Behavioural factors

Behavioural determinants were self-reported and included base-
line smoking, drinking, obesity and poor sleep. Smoking was
divided into never smoking, past smoking and current smoking.
Binge drinking was indicated by drinking six or more units of
alcohol on a single occasion once a week or more often. Body
mass index (BMI) was defined based on height and weight and
then divided into three groups: normal weight (BMI <25), over-
weight (25≤BMI< 30) and obese (BMI≥30). Sleep problems were
measured by a 4-item version of the Jenkins question-
naire and those respondents reporting at least one of the four
symptoms occurring more than 14 days in the past 4 weeks were
classified as having a sleep problems. Those with more than
one item missing from the four questions were set to missing.

Statistical analyses

Trajectories of health functioning were examined using a GBTA.
GBTA is used to identify distinct groups of the study population,
who have similar trajectories over the study period. Health
functioning component scores were used as repeated outcomes
with a normal distribution. The method uses maximum likely-
hood and participant with maximum of one missing outcome
score (ie, those with three valid survey responses) are included
with missing at random assumption. Next, shapes of the trajecto-
ries were defined. As health functioning may not develop linearly
with time, we tested the fit also with second degree polynomial
curves. The optimal number of trajectory groups was chosen
based on the Bayesian information criteria and distinct inter-
pretation and reasonable sizes of trajectory groups were also
required (online supplementary tables S1 and S2). Participants
were assigned to the trajectory group for which their probability
of group membership was highest. The average group member-
ship probabilities for each group in comparison to the assigned
group membership are shown in online supplementary tables S3
and S4. For both trajectory analyses, the model indicated good
fit with distinct trajectories with high average group membership
probabilities (0.93 for the selected group for mental functioning
trajectories and 0.90 for physical functioning trajectories). The
trajectory analyses thus produced clearly distinct groups, and
particularly the trajectory describing continuously high func-
tioning is distinct from the other groups, with higher group
membership probabilities.

The composition of the trajectory groups was first descrip-
tively examined using cross-tabulations and χ² tests. Then,
multinomial logistic regression models were used to examine the
determinants of the trajectory group membership. A single model
was fitted adjusting for all covariates. To illustrate differences in
predicted probabilities for each trajectory group membership,
we report average marginal effects (AMEs) and their 95% CI.
Reporting marginal effects was chosen over showing odds ratios
(ORs), as the proportions are concrete and more clearly show
the actual difference between groups, compared to less tangible
ORs.

There were no systematic differences by sex, and thus all anal-
yses were run in pooled data.

Missing values

Around 9% of the sample had some missing values in the predic-
tors. First, we explored patterns of missingness, and then the
missingness was imputed using multiple imputations by chained
equations and created 20 datasets. This method was selected, as
by using multiple imputations by chained equations, we can take
into account missing values that are related to other predictors.
We considered this as a better option than omitting all those with
missing values. We used all predictors and trajectory groups in
the imputation process and multinomial and logistic regression
were used when appropriate. The results from complete case
analysis, however, provided consistent and fairly similar results.

RESULTS

Mental health functioning

Figure 1 presents the estimated trajectory groups and their
means and interquartilerange (IQR) of mental health func-
tioning scores. We identified four mental health functioning
trajectories within the 17 year follow-up period: continuously
low (4%), increasing (8%), decreasing (14%) and a stable high
trajectory which represents maintaining good mental health
functioning (75%) (figure 1 and table 1). Employees in the
stable high group were more likely to report optimal job
requirements (table 1). There were no differences in mental health
functioning trajectories between BMI groups. Finally, those
who were able to maintain good mental health functioning
were also more likely to maintain good physical health func-
tioning (table 1).

After mutual adjustments, those with optimal job demands
(AME for optimal job demands 0.09 (95% CI 0.06 to 0.12)),
high job control (0.05 (0.02 to 0.08)), no sleeping problems
(−0.23 (−0.28 to −0.19)) and no binge drinking (−0.10 (−0.15
to 0.05)) at baseline were more likely to maintain good mental
health functioning during their later working years. Further-
more, having low level of physical work (0.08 (0.04 to 0.11))
and not smoking (AME for current smoking −0.07 (−0.11 to
−0.03)) were linked to a slightly higher likelihood to maintain
good mental health functioning (table 2).
Physical health functioning
In terms of physical health functioning, an almost similar four trajectory solution was identified and selected as the best model: low and decreasing (7%), increasing (4%), decreasing (25%) and a stable high trajectory reflecting maintenance of good mental health functioning (64%) (figure 1 and table 3). Individuals maintaining good physical health functioning were more likely to report no shift/night work; good psychosocial and low levels of adverse physical working conditions were also more common in this group. Behavioural factors, that is, smoking, sleep problems, overweight and obesity were less common among those assigned to the stable high physical health functioning trajectory, compared to those assigned to the other trajectory groups (table 3). Finally, it is of note that male employees were more likely to maintain good physical health functioning.

Table 4	Results from multinomial regression model for physical health functioning (Physical Component Summary, PCS) trajectory assignment			
PCS trajectory group	Low and decreasing	Increasing	Decreasing	Stable high
AME (95% CI)	AME (95% CI)	AME (95% CI)	AME (95% CI)	
Gender				
Men	Ref.	Ref.	Ref.	Ref.
Women	0.03** (0.01 to 0.05)	−0.01 (-0.03 to 0.01)	0.06** (0.02 to 0.10)	−0.08*** (-0.12 to −0.04)
Marital status				
Co-habiting/married	Ref.	Ref.	Ref.	Ref.
Never married/divorced/widowed	0.03** (0.01 to 0.05)	0.01 (-0.01 to 0.02)	0.01 (-0.02 to 0.04)	−0.04 (-0.08 to −0.01)
Occupational class				
Managers and professionals	Ref.	Ref.	Ref.	Ref.
Semi-professionals	−0.02 (-0.04 to 0.00)	−0.00 (-0.02 to 0.02)	0.01 (-0.03 to 0.05)	0.01 (-0.03 to 0.06)
Routine non-manual workers	0.01 (-0.01 to 0.04)	0.01 (-0.01 to 0.03)	0.04 (0.00 to 0.09)	−0.07 (-0.11 to −0.02)
Manual workers	0.02 (-0.01 to 0.05)	−0.00 (-0.03 to 0.02)	0.08** (0.02 to 0.13)	−0.10*** (-0.15 to −0.04)
Shift or night work				
No	Ref.	Ref.	Ref.	Ref.
Shift or night work	−0.00 (-0.02 to 0.02)	−0.00 (-0.02 to 0.01)	0.03 (-0.01 to 0.07)	−0.03 (-0.07 to 0.01)
Long working hours (more than 40 h/w)				
No	Ref.	Ref.	Ref.	Ref.
Long working hours	−0.00 (-0.03 to 0.02)	0.00 (-0.02 to 0.02)	−0.03 (-0.07 to 0.01)	0.03 (-0.02 to 0.07)
Work demand (−lowest 25%)				
No	Ref.	Ref.	Ref.	Ref.
Optimal work demand	−0.00 (-0.02 to 0.01)	−0.02** (-0.04 to −0.01)	−0.04** (-0.07 to −0.01)	0.07*** (0.03 to 0.10)
Work control (−highest 25%)				
No	Ref.	Ref.	Ref.	Ref.
High work control	−0.00 (-0.02 to 0.02)	−0.01 (-0.02 to 0.01)	−0.04 (-0.08 to −0.00)	0.05** (0.01 to 0.08)
Physically strenuous work (lowest 25%)				
No	Ref.	Ref.	Ref.	Ref.
Low level of physically strenuous work	−0.04*** (-0.06 to −0.03)	−0.02* (-0.03 to −0.00)	−0.07*** (-0.11 to −0.04)	0.13*** (0.09 to 0.17)
Hazardous working environment (lowest 25%)				
No	Ref.	Ref.	Ref.	Ref.
Low level of hazardous working environment	−0.02*** (-0.04 to −0.01)	−0.01 (-0.02 to 0.01)	−0.04 (-0.07 to −0.00)	0.07*** (0.03 to 0.10)
Sleep problems				
No	Ref.	Ref.	Ref.	Ref.
Sleep problems	0.06*** (0.03 to 0.09)	0.05** (0.03 to 0.08)	0.09*** (0.04 to 0.13)	−0.20*** (-0.24 to −0.15)
Smoking				
Never	Ref.	Ref.	Ref.	Ref.
Past smoking	0.02 (-0.00 to 0.04)	0.01 (-0.01 to 0.02)	0.01 (-0.02 to 0.05)	−0.04 (-0.08 to 0.00)
Smoking	0.02 (-0.00 to 0.04)	0.00 (-0.02 to 0.02)	0.05 (-0.01 to 0.09)	−0.07*** (-0.11 to −0.03)
Binge drinking				
No	Ref.	Ref.	Ref.	Ref.
Binge drinking (once a week or more)	0.02 (-0.01 to 0.05)	−0.01 (-0.03 to 0.02)	0.01 (-0.04 to 0.06)	−0.02 (-0.08 to 0.03)
Obesity				
Normal weight	Ref.	Ref.	Ref.	Ref.
Overweight	0.02** (0.01 to 0.04)	0.02** (0.01 to 0.04)	0.07*** (0.03 to 0.10)	−0.12*** (-0.15 to −0.08)
Obesity	0.12*** (0.08 to 0.16)	0.03 (-0.00 to 0.05)	0.13*** (0.07 to 0.18)	−0.27*** (-0.33 to −0.22)

AMEs and their 95% CI for each group.
*P<0.05, **P<0.01, ***P<0.001 for the difference compared to reference category. Additionally adjusted for age. AME, average marginal effect.
After adjustments (table 4), particularly those with low levels of physically strenuous work (0.13 (0.09 to 0.17)), low levels of hazardous working environment (0.07 (0.03 to 0.10)), good sleep (−0.20 (−0.24 to −0.15)), non-smoking (−0.07 (−0.11 to −0.03)) and normal weight (−0.27 (−0.33 to −0.22) compared to obesity and −0.12 (−0.15 to −0.08) overweight) at baseline were significantly more likely to maintain good physical health functioning during their later working life span.

DISCUSSION

This study was set to identify mental and physical health functioning trajectories among midlife employees. More specifically, the aim was to examine who maintains good health functioning during later working life span, and what are the determinants of the different developmental patterns in health functioning from midlife towards the end of working careers. We focused on the potentially modifiable determinants of the trajectory memberships, that is, working conditions and behavioural factors, which could be targeted to help employees maintain good physical and mental functioning and continue working until the statutory retirement age and even beyond.

For both mental and physical health functioning, a four trajectory model was chosen. Thus, we identified groups of employees who follow similar developmental trajectories in their functioning over the period of up to 17 years, with a slight difference only regarding the first distinct group: (1) continuously low functioning (for mental functioning), low and decreasing (for physical functioning); (2) decreasing; (3) increasing and (4) stable high functioning which reflects maintenance of health functioning throughout the follow-up. There are some differences in the prevalence and shapes of the trajectories regarding physical and mental functioning, but for both outcomes, there was a distinct group of stable high functioning. Good sleep and non-smoking were the key determinants for maintaining both mental and physical health functioning. For maintaining a good mental health functioning, particularly good psychosocial working conditions and avoiding binge drinking emerged as key determinants, whereas having low physical and environmental exposures and normal weight supported maintenance of good physical functioning.

Although modifiable determinants of the development trajectories of health functioning are poorly understood among older employees, these results confirm the significance of good working conditions, good sleep and healthy lifestyle to good functioning, and thereby a lower risk of work disability. However, previous evidence is from studies where the focus has been on the associations between variables, while determinants of developmental trajectories of health functioning among midlife employees have not been studied. As all participants continued working throughout the follow-up, we could identify groups of employees, who are likely to follow similar development in their health functioning over time, and investigate the determinants of trajectory group memberships. As poor functioning is linked to sickness absence and early exit from paid employment, people in different trajectory groups subsequently differ in their abilities to be able to continue working until the statutory retirement age. By focusing on potentially modifiable determinants of trajectory memberships, the results can be used in efforts to support maintenance of work ability, and in interventions to modify demanding or hazardous working conditions, for example.

Further elaboration on the mechanisms through which the examined determinants are linked to physical or mental health functioning trajectories is a crucial point for the future. As this is an observational study, we are careful not to provide causal interpretation of our results (including speculating potential mechanisms). Nonetheless, we have shown associations and identified and highlighted groups at risk which might be targeted, for example, in intervention studies. We are not aware of previous studies that had focused on maintenance of functioning using person-oriented methods, and the determinants of the trajectory memberships.

A limitation of this observational and descriptive study is that only survey data were available, and thus there could be reporting bias in both determinants and outcome measures. Another limitation is that all employees worked in the public sector and for one employer, and the sample is not representative of the national working population of the same age range. Thus, generalisability to other sectors could be limited. It is also of note that although the identified trajectories were found to be reliable (online supplementary table), misclassification cannot be ruled out and trajectory memberships are only approximations. The true development may be different for any member of any of the trajectories. Many factors could also contribute to either an increase or a decrease in physical and mental health functioning during the 15-year to 17-year follow-up, from midlife towards the end of the working life span but detailed investigations of such factors go beyond those included in this study. Additionally, health of the participants likely varies within and between trajectories, but this was not considered. Our outcome is health functioning, and the focus is on the modifiable predictors of developmental patterns in health functioning. These are likely intertwined with health in complex ways, but partly measure the same thing, that is, health functioning is a general health measure. Health status was therefore not included in the models to avoid overadjustment.

A strength of this study is its follow-up design with up to four time points for each individual, which enabled us to reliably examine developmental trajectories in health functioning during a long period of time, from midlife towards statutory retirement age. Furthermore, response rates at baseline were high, and attrition was low over the entire follow-up (response rates at follow-up surveys ranged from 67% to 82%). Thus, the sample likely was, and has remained representative of the target population. We had the validated SF-36 measure repeated at each time point, as well as work and behavioural related determinants of the trajectory memberships, using widely used and validated measures. A further strength is the use of a person-oriented method, helping to identify somewhat homogenous groups of employees, who are likely to follow a similar developmental trajectory in their functioning. The advantage is that then we could further identify factors that help explain maintenance of good functioning in particular. In variable oriented approaches commonly applied in previous studies, potential heterogeneity in the development patterns could be missed.

In conclusion, these results suggest that favourable psychosocial and physical working conditions are important determinants of maintaining good health functioning, as are keeping recommended healthy weight, avoiding binge drinking and smoking, as well as sleeping well. This is further likely to help people continue working until their normal retirement age or even longer, in line with the current efforts to extend working lives. Subsequent intervention studies could, for example, consider providing health promotion programmes that target health behaviours, and help maintain better sleep and recommended healthy weight. Moreover, interventions to modify work environment, paying particular attention to physical workload and
overall changes in workplace accommodations could be encouraged to maintain employees’ good health functioning.

Twitter Tea Lallukka @TeaLallukka

Contributors TL and AH conceived and designed the study, and AH analysed the data. TL prepared the first version of the manuscript. AH helped draft the manuscript. All authors (TL, AH, OP, MM, AK and OR) discussed the results and commented on the manuscript, and approved the submission of the final version.

Funding This work was supported by the Finnish Work Environment Fund (Grant #117308) and by the Academy of Finland (Grants #287488, #319200 for TL and AH, grant #1294514 for OR). AK is supported by the Economic and Social Research Council (ESRC) (Grant ES/S00744X/1).

Competing interests TL has received a lecture fee from an Insurance Company Lähitapiola, regarding an invited talk in a seminar (in Finnish) they funded with another company Elo. The talk was about pain and work ability, and an overall talk, i.e., not related to this particular study.

Patient consent for publication Not required.

Ethics approval The Helsinki Health Study has been ethically approved by the City of Helsinki health authorities, and the Department of Public Health, University of Helsinki, Finland, ethical committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. Data cannot be made publicly available due to strict data protection laws, but access to data can be applied from the Helsinki Health Study group, following current data sharing policies.

ORCID iDs
Tea Lallukka http://orcid.org/0000-0003-3841-3129
Anne Kouvonen http://orcid.org/0000-0001-6997-8312

REFERENCES

1 World Health Organization. World health statistics 2012. World Health Organization, 2012: 1–176.
2 Nurminen M. Working-life expectancy in Finland: development in 2000-2009 and forecast for 2010-2015. A multistate life table approach. Helsinki Finnish centre for pensions, Edita PrimA Oy, 2011: 1–55.
3 sickness O, Disability. Sickness, disability and work: breaking the barriers. A synthesis of findings across OECDcountries. ParisOECD, 2010: 1–169.
4 Ware JE. SF-36 health survey update. Spine 2000; 25:3130–9.
5 Ware J, Kosinski M, Keller SD. SF-36 physical and mental component summary measures: a user's manual. Boston, MA: The Health Institute, New England Medical Center, 1994.
6 Ware J, Snow KK, Kosinski M, et al. SF-36 health survey: manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center, 1993.
7 Ware J, Kosinski M. SF-36 physical and mental health summary scales: a manual for users of version 1. 2nd edn. Quality-Metric, Lincoln, 2001.
8 Roelen C, Heymans MW, Thun E, et al. Different domains of health functioning as predictors of sickness absence--a prospective cohort study. Scand J Work Environ Health 2010;37:113–8.
9 Laaksonen M, Kääriä S-M, Leino-Arjas P, et al. Different domains of health functioning as predictors of sickness absence--a prospective cohort study. Scand J Work Environ Health 2011;37:213–8.
10 Kivimäki M, Forma P, Wikström J, et al. Sickness absence as a risk marker of future disability pension: the 10-town study. J Epidemiol Community Health 2004;58:710–1.
11 Siivari A, Lahti J, Ross E, et al. Correction to: obesity, change of body mass index and subsequent physical and mental health functioning: a 12-year follow-up study among ageing employees. BMC Public Health 2017;17:916.
12 Lahti J, Laaksonen M, Lahelma E, et al. The impact of physical activity on physical health functioning--a prospective study among middle-aged employees. Prev Med 2010;50:246–50.
13 Saastamoinen P, Leino-Arjas P, Laaksonen M, et al. Pain and health related functioning among employees. J Epidemiol Community Health 2006;60:793–8.