UNBRANCHED RIEMANN DOMAINS OVER STEIN SPACES

YOUSSEF ALAOUI

Abstract. In this article, we show that if $\Pi : X \to \Omega$ is an unbranched Riemann domain with Ω Stein and Π a locally 1-complete morphism, then X is Stein. This gives in particular a positive answer to the local Steinness problem, namely if X is a Stein space and, if Ω is a locally Stein open set in X, then Ω is Stein.

1. Introduction

A holomorphic map $\Pi : X \to Y$ of complex spaces is said to be a locally r-complete morphism if for every $x \in Y$, there exists an open neighborhood U of x such that $\Pi^{-1}(U)$ is r-complete. When $r = 1$, Π is called locally 1-complete or locally Stein morphism.

In [3] Coltoiu and Diederich proved the following

Theorem 1. Let X and Y be complex spaces with isolated singularities and $\Pi : X \to Y$ an unbranched Riemann domain such that Y is Stein and Π is a locally Stein morphism. Then X is Stein.

In this article, we prove that the same result follows if we assume only that Y is an arbitrary Stein space.

An immediate consequence of this result is the

Corollary 1. Let X be a Stein space, and let $\Omega \subset X$ be an open subset which is locally Stein in the sense that every point $x \in \partial \Omega$ has an open neighborhood U in X such that $U \cap \Omega$ is Stein. Then Ω is itself Stein.

2. Preliminaries

We start by recalling some definitions which are important for our purposes.

Let Ω be an open set in \mathbb{C}^n with complex coordinates z_1, \ldots, z_n. Then it is known that a function $\phi \in C^\infty(\Omega)$ is q-convex if for every point $z \in \Omega$, there exists a complex vector subspace $E(z)$ of \mathbb{C}^n of dimension at least $n - q + 1$ such that the

1991 Mathematics Subject Classification. 32E10, 32E40.

Key words and phrases. Stein spaces; q-convex functions; q-complete and q-Runge spaces.
levi form \(L_z(\phi, \xi) = \sum_{i,j} \frac{\partial^2 \phi(z)}{\partial z_i \partial z_j} \xi_i \xi_j \) is positive definite at each point \(\xi \in E(z) \).

A smooth real valued function \(\phi \) on a complex space \(X \) is called \(q \)-convex if every point \(x \in X \) has an open neighborhood \(U \) isomorphic to a closed analytic set in a domain \(D \subset \mathbb{C}^n \) such that the restriction \(\phi|_U \) has an extension \(\tilde{\phi} \in C^\infty(D) \) which is \(q \)-convex on \(D \).

We say that \(X \) is \(q \)-complete if there exists a \(q \)-convex function \(\phi \in C^\infty(X, \mathbb{R}) \) which is exhaustive on \(X \) i.e. \(\{ x \in X : \phi(x) < c \} \) is relatively compact for any \(c \in \mathbb{R} \).

The space \(X \) is said to be cohomologically \(q \)-complete if for every coherent analytic sheaf \(\mathcal{F} \) on \(X \) the cohomology groups \(H^p(X, \mathcal{F}) \) vanish for all \(p \geq q \).

An open subset \(D \) of \(\Omega \) is called \(q \)-Runge if for every compact set \(K \subset D \), there is a \(q \)-convex exhaustion function \(\phi \in C^\infty(\Omega) \) such that

\[
K \subset \{ x \in \Omega : \phi(x) < 0 \} \subset \subset D
\]

It is shown in [2] that if \(D \) is \(q \)-Runge in \(\Omega \), then for every \(\mathcal{F} \in \text{coh}(\Omega) \) the cohomology groups \(H^p(D, \mathcal{F}) \) vanish for \(p \geq q \) and, the restriction map

\[
H^p(\Omega, \mathcal{F}) \rightarrow H^p(D, \mathcal{F})
\]

has dense image for all \(p \geq q - 1 \).

3. Main result

Lemma 1. Let \(X \) and \(Y \) be complex spaces and \(\Pi : X \rightarrow Y \) an unbranched Riemann domain. Assume that there exists a smooth \(q \)-convex function \(\phi \) on \(Y \). Then, for any real number \(c \) and every coherent analytic sheaf \(\mathcal{F} \) on \(X \) if \(\text{dih}(\mathcal{F}) > q \) and \(X'_c = \{ x \in X : \phi \Pi(x) > c \} \), the restriction map \(H^p(X, \mathcal{F}) \rightarrow H^p(X'_c, \mathcal{F}) \) is an isomorphism for \(p \leq \text{dih}(\mathcal{F}) - q - 1 \).

Here \(\text{dih}(\mathcal{F}) \) denotes the homological dimension of \(\mathcal{F} \).

Let \(V \) be a closed analytic set in a domain \(D \subset \mathbb{C}^n \) and \(\phi \in C^\infty(V) \) a \(q \)-convex function. Let \(\xi \in V \) and suppose we can find a \(q \)-convex function \(\tilde{\phi} \in C^\infty(D) \) with \(\tilde{\phi}|_V = \phi \) and that \(n \) is equal to the dimension of the Zariski tangent space at \(\xi \).

Then in order to prove lemma 1 we shall need the following result due to Andreotti-Grauert [2].
Theorem 2. For any coherent analytic sheaf \(F \) on \(V \) with \(\text{dih}(F) > q \), there exists a fundamental system of Stein neighborhoods \(U \subset D \) of \(\xi \) such that if \(Y = \{ z \in V : \phi(z) > 0 \} \), then \(H^p(Y \cap U, F) = 0 \) for \(0 < p < \text{dih}(F) - q \) and \(H^0(U \cap V, F) \to H^0(U \cap Y, F) \) is an isomorphism.

Proof. Let \(\xi \in X \) such that \(\phi|\pi(\xi) = c \), and let \(V \subset X \) be a hyperconvex open neighborhood of \(\xi \), biholomorphic by \(\Pi \) to the open subset \(W = \Pi(V) \subset Y \). We may take \(V \) so that \(W \) is biholomorphic to a closed analytic subset of a domain \(D \) in \(\mathbb{C}^n \) of minimal dimension and \(\phi|W \) extends to a smooth \(q \)-convex function in a neighborhood \(W_1 \subset D \) of \(W \). Let \(\psi : V \to]-\infty, 0[\) be a continuous strictly plurisubharmonic function. Then it is clear that \(\psi_k = \frac{k}{k^2} \psi + \phi \| \Pi \) \(k \geq 1 \), is an increasing sequence of \(q \)-convex functions on \(V \). If we put \(V_k = \{ x \in V : \psi_k(x) > c \} \), then \(\bigcup_{k \geq 1} V_k = V \cap X' \). Moreover, for any \(x \in V \), there exists, by theorem 2, a fundamental system of connected Stein neighborhoods \(U \subset V \) such that \(H^r(U \cap V_k, F) = 0 \) for \(1 \leq r < \text{dih}(F) - q \) and \(H^r(U \cap V_k, F) \to H^r(U \cap V_k, F) \) is an isomorphism, or equivalently (see [4] or [1]) \(H^r_{S_k} (F) = 0 \) for \(r \leq \text{dih}(F) - q \), where \(H^r_{S_k} (F) \) is the cohomology sheaf with support in \(S_k = \{ x \in V : \psi_k(x) \leq c \} \) and coefficients in \(F \). Furthermore, there exists a spectral sequence

\[
H^p_{S_k} (V, F) \leftrightarrow E^p,q_2 = H^p (V, H^q_{S_k} (F))
\]

Since \(H^p_{S_k} (F) = 0 \) for \(p \leq \text{dih}(F) - q \), then for any \(p \leq \text{dih}(F) - q \) the cohomology groups \(H^p_{S_k} (V, F) \) vanish and, the exact sequence of local cohomology

\[
\cdots \to H^p_{S_k} (V, F) \to H^p (V, F) \to H^p (V_k, F) \to H^{p+1}_{S_k} (V, F) \to \cdots
\]

implies that \(H^p (V_k, F) \cong \tilde{H}^0 (V, F) \) for all \(p \leq \text{dih}(F) - q - 1 \). Hence

\[
H^p (V_k, F) = 0 \text{ for } 1 \leq p \leq \text{dih}(F) - q - 1 \text{ and } H^p (V_k, F) \cong H^p (V, F) \text{ for every integer } k.
\]

Since \(V \cap X'_c \) is an increasing union of \(V_k \), \(k \in \mathbb{N} \), then, by (2), lemma, p.250), we deduce that \(H^p (V \cap X'_c, F) = 0 \) for \(1 \leq p \leq n - q - 1 \) and \(H^p (V, F) \to H^p (V \cap X'_c, F) \) is an isomorphism. Since each point of \(X \) has a fundamental system of hyperconvex neighborhoods, then, if \(S = \{ x \in X : \phi \Pi (x) \leq c \} \), the cohomology sheaf \(H^p_S (F) \) vanishes for all \(p \leq \text{dih}(F) - q \). Therefore the spectral sequence

\[
H^p_S (X, F) \leftrightarrow E^p,q_2 = H^p (X, H^q_S (F))
\]

shows that \(H^p_S (X, F) = 0 \) for any \(p \leq \text{dih}(F) - q \), and from the exact sequence

\[
\cdots \to H^p_S (X, F) \to H^p (X, F) \to H^p (X'_c, F) \to H^{p+1}_S (X, F) \cdots
\]

we see that \(H^r (X, F) \cong H^r (X'_c, F) \) for any \(c \in \mathbb{R} \) and all \(r \leq n - q - 1 \). \(\square \)
Lemma 2. Let Y be a Stein space and $\Pi : X \to Y$ an unbranched Riemann domain and locally r-complete morphism. Then for any coherent analytic sheaf \mathcal{F} on X with $\text{dih}(\mathcal{F}) \geq r + 2$, the cohomology group $H^p(X, \mathcal{F}) = 0$ for all $p \geq r$.

Proof. Since $\Pi : X \to Y$ is locally r-complete, it follows from [7] that $H^p(X, \mathcal{F}) = 0$ for all $p \geq r + 1$. It is therefore enough to prove that $H^r(X, \mathcal{F}) = 0$.

We consider a covering $\mathcal{V} = (V_i)_{i \in \mathbb{N}}$ of Y by open sets $V_i \subset \Omega$ such that $\Pi^{-1}(V_i)$ is r-complete for all $i \in \mathbb{N}$. By the Stein covering lemma of Stshelé [6], there exists a locally finite covering $\mathcal{U} = (U_i)_{i \in \mathbb{N}}$ of Y by Stein open subsets $U_i \subset \subset Y$ such that \mathcal{U} is a refinement of \mathcal{V}, $\bigcup_{i \leq j} U_i$ is Stein for all i and Stein for all j. Moreover, there exists for all $j \in \mathbb{N}$ a continuous strictly plurisubharmonic function ϕ_{j+1} on $\bigcup_{i \leq j} U_i$ such that

$$\bigcup_{i \leq j} U_i \cap U_{j+1} = \{x \in U_{j+1} : \phi_{j+1}(x) < 0\}$$

Note also that $\Pi^{-1}(U_i)$ is r-complete for all $i \in \mathbb{N}$ and, if $X_j = \Pi^{-1}(\bigcup_{i \leq j} U_i)$ and $X_j' = \Pi^{-1}(U_{j+1})$, then $X_j \cap X_j' = \{x \in X_{j+1} : \phi_{j+1} \circ \Pi(x) < 0\}$ is clearly r-Runge in X'_j.

We shall first prove by induction on j that $H^r(X_j, \mathcal{F}) = 0$. For $j = 0$, this is clear, since $\Pi^{-1}(U_0)$ is r-complete. Assume that $j \geq 1$, $H^r(X_j, \mathcal{F}) = 0$ and put $Y_j = \{x \in X_j : \phi_{j+1} \circ \Pi(x) > 0\}$ and $Y_j' = \{x \in X_j' : \phi_{j+1} \circ \Pi(x) > 0\}$. Then, by lemma 1, $H^p(Y_j, \mathcal{F}) \cong H^p(X_j, \mathcal{F})$ and $H^p(Y_j', \mathcal{F}) \cong H^p(X_j', \mathcal{F})$ for $p \leq r$.

Since $Y_{j+1} = \{x \in X_{j+1} : \phi_{j+1} \circ \Pi(x) > 0\} = Y_j \cup Y_j'$ and $Y_j \cap Y_j' = \emptyset$, then we have

$$H^p(X_{j+1}, \mathcal{F}) \cong H^p(Y_{j+1}, \mathcal{F}) \cong H^p(Y_j, \mathcal{F}) \oplus H^p(Y_j', \mathcal{F}) \text{ for all } p \leq r$$

This proves in particular that $H^r(X_j, \mathcal{F}) = 0$ for all $j \in \mathbb{N}$.

Moreover, since X is an increasing union of $(X_j)_{j \geq 0}$ and $H^{r-1}(X_{j+1}, \mathcal{F}) \cong H^{r-1}(X_j, \mathcal{F}) \oplus H^{r-1}(X_j', \mathcal{F})$, then, by [2, lemma, p. 250], the restriction map $H^r(X, \mathcal{F}) \to H^r(X_0, \mathcal{F})$ is an isomorphism, which implies that $H^r(X, \mathcal{F}) = 0$.

Theorem 3. Let $\Pi : X \to Y$ be an unbranched Riemann domain with Y a Stein space of dimension n and Π a locally Stein morphism. Then X is Stein.

Proof. The proof is by induction on the dimension of Y.

In order to prove theorem 3 we have only to verify that $H^1(X, \mathcal{O}_X) = 0$. (See [5].)

Suppose that $n = 2$, and let $\xi : \tilde{Y} \to Y$ be a normalization of Y. If \tilde{X} denotes the fiber product of $\Pi : X \to Y$ and the normalization $\xi : \tilde{Y} \to Y$, then $\tilde{X} = \text{fiber product of } \Pi \text{ and } \xi$.

\{(x, \tilde{y}) \in X \times \tilde{Y} : \Pi(x) = \xi(\tilde{y})\} \) and, it is clear that the projection \(\Pi_2 : \tilde{X} \to \tilde{Y} \) is an unbranched Riemann domain over the 2-dimensional Stein normal space \(\tilde{Y} \).
Moreover, since \(\Pi_2 \) is obviously a locally Stein morphism, it follows from [3] that \(\tilde{X} \) is Stein. On the other hand, it is easy to verify that the projection \(\Pi_1 : \tilde{X} \to X \) is a finite holomorphic surjection, which implies that \(X \) is Stein. (See e.g. [8]).
We now suppose that \(n \geq 3 \) and that the theorem has already proved if \(\text{dim}(Y) \leq n - 1 \).
Since a complex space \(X \) is Stein if and only if each irreducible component \(X_i \) of \(X \) is Stein, then we may assume that \(Y \) is irreducible.
Let \(f \) be a holomorphic function on \(Y \), \(f \neq 0 \), but \(Z = \{f = 0\} \neq \emptyset \). Then \(\Pi|_{Z'} : Z' = \Pi^{-1}(Z) \to Z \) is an unbranched Riemann domain and locally Stein. Therefore \(Z' \) is Stein by the induction hypothesis. Furthermore, if \(\mathcal{I}(Z') \) denotes the ideal sheaf of \(Z' \), it follows from [2] that \(\text{dih}(\mathcal{I}(Z')) = \text{dih}(\mathcal{O}_{Z'}) + 1 \geq 3 \) and, by lemma 2, we obtain \(H^1(X, \mathcal{I}(Z')) = 0 \). Consider now the exact sequence of sheaves

\[0 \to \mathcal{I}(Z') \to \mathcal{O}_X \to \mathcal{O}_{Z'} \to 0 \]

Since \(H^1(X, \mathcal{I}(Z')) = 0 \) and \(Z' \) is Stein, we deduce from the long exact sequence of cohomology that \(H^1(X, \mathcal{O}_X) = 0 \).

References

[1] Y. Alaoui, Cohomology of locally q-complete sets in Stein manifolds. Complex Variables and Elliptic Equations. Vol. 51, No. 2, February 2006, 137 – 141

[2] A. Andreotti and H. Grauert, Théorèmes de finitude de la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 193 – 259

[3] M. Coltoiu and K. Diederich, The levi problem for Riemann domains over Stein spaces with isolated singularities. Math. Ann. (2007) 338 : 283 – 289

[4] A. Grothendieck, 1957, Sur quelques points d’Algèbre homologique. Tohoku Mathematical Journal, IX, 119 – 221.

[5] B. Jennane, Problème de Levi et morphisme localement de Stein. Math. Ann. 256, 37-42 (1981)
Youssef Alaoui
Département de mathématiques,
Institut Agronomique et Vétérinaire Hassan II.
B.P.6202, Rabat-Instituts, 10101. Morocco.
Email : y.alaoui@iav.ac.ma or comp5123ster@gmail.com