A DIMENSION DROP PHENOMENON OF FRACTAL CUBES

LIANG-YI HUANG AND HUI RAO*

ABSTRACT. Let E be a metric space. We introduce a notion of connectedness index of E, which is the Hausdorff dimension of the union of non-trivial connected components of E. We show that the connectedness index of a fractal cube E is strictly less than the Hausdorff dimension of E provided that E possesses a trivial connected component. Hence the connectedness index is a new Lipschitz invariant. Moreover, we investigate the relation between the connectedness index and topological Hausdorff dimension.

1. Introduction

An iterated function system (IFS) is a family of contractions $\{\varphi_j\}_{j=1}^N$ on \mathbb{R}^d, and the attractor of the IFS is the unique nonempty compact set K satisfying $K = \bigcup_{j=1}^N \varphi_j(K)$, and it is called a self-similar set [5]. Let $n \geq 2$ and let $\mathcal{D} = \{d_1, \ldots, d_N\} \subseteq \{0,1,\ldots,n-1\}^d$, which we call a digit set. Denote by $\#\mathcal{D} := N$ the cardinality of \mathcal{D}. Then n and \mathcal{D} determine an IFS $\{\varphi_j(z) = \frac{1}{n}(z + d_j)\}_{j=1}^N$, whose attractor $E = E(n, \mathcal{D})$ satisfies the set equation

$$E = \frac{1}{n}(E + \mathcal{D}).$$

We call E a fractal cube [12], especially, when $d = 2$, we call E a fractal square [6].

There are some works on topological and metric properties of fractal cubes. Whyburn [11] studied the homeomorphism classification, Bonk and Merenkov [2] studied the quasi-symmetric classification. Lau, Luo and Rao [6] studied when a fractal square is totally disconnected. Xi and Xiong [12] gave a complete classification of Lipschitz equivalence of fractal cubes which are totally disconnected. Recently, the studies of [10,13] focus on the the Lipschitz equivalence of fractal squares which are not totally disconnected.

Topological Hausdorff dimension is a new fractal dimension introduced by Buczolich and Elekes [1]. It is shown in [1] that for any set K we always have $\dim_t H K \leq \dim_H K$, where $\dim_t H$ and \dim_H denote the topological Hausdorff dimension and Hausdorff dimension respectively. Ma and Zhang [8] calculated topological Hausdorff dimensions of a class of fractal squares.

Date: October 12, 2020.
The work is supported by NSFS Nos. 11971195 and 11601172.
2000 Mathematics Subject Classification: 28A80,26A16
Key words and phrases: fractal cube, connected component, topological Hausdorff dimension

* The correspondence author.
Let K be a metric space. A point $x \in K$ is called a trivial point of K if $\{x\}$ is a connected component of K. Let $\Lambda(K)$ be the collection of trivial points in K. Denote

\[\mathcal{I}_c(K) := \dim_H K \setminus \Lambda(K), \]

and we call it the connectedness index of K. It is obvious that $\mathcal{I}_c(K) \leq \dim_H K$. Clearly, the connectedness index is a Lipschitz invariant. The main results of the present paper are as follows.

Theorem 1.1. Let $E = E(n, \mathcal{D})$ be a d-dimensional fractal cube. If E has a trivial point, then $\mathcal{I}_c(E) < \dim_H E$.

However, Theorem 1.1 is not valid for general self-similar sets, even if the self-similar sets satisfy the open set condition.

Example 1.1. Let $Q = \{0\} \cup \left(\bigcup_{k=0}^{\infty} \left[\frac{1}{2^{k+2}}, \frac{1}{2^{k}} \right] \right)$. Observe that $Q = \frac{Q}{4} \cup \left[\frac{1}{2}, 1 \right]$ and $\frac{Q}{2} \cup Q = [0, 1]$. Then Q is a self-similar set satisfying the equation

\[Q = \frac{Q}{4} \cup \left(\frac{Q}{4} + \frac{1}{2} \right) \cup \left(\frac{Q}{2} + \frac{1}{2} \right). \]

The set Q has only one trivial point, that is 0. Therefore, $\mathcal{I}_c(Q) = \dim_H Q = 1$. Figure 1 illustrates Q', a two dimensional generalization of Q. Similarly, Q' is a self-similar set, and the unique trivial point of Q' is 0.

![Figure 1. The self-similar set Q'.](image)

Using Theorem 3.7 of [1] we show the following.

Theorem 1.2. For a non-empty σ-compact metric space K, we have $\dim_{tH} K \leq \mathcal{I}_c(K)$.

Zhang [14] asked when $\dim_{tH} E = \dim_H E$, where E is a fractal square. According to [14], a digit set \mathcal{D} is called a Latin digit set, if every row and every column has the same number of elements (see Figure 2). For a fractal square $E = E(n, \mathcal{D})$, Zhang showed that if $\dim_{tH} E = \dim_H E$, then either $E = [0, 1] \times C$, or $E = C \times [0, 1]$ for some $C \subset [0, 1]$, or \mathcal{D} is a Latin digit set.

As a corollary of Theorem 1.1 and Theorem 1.2, we obtain a new necessary condition for $\dim_H E = \dim_{tH} E$.

\[\]
It is shown in [14] that \(\log 12/\log 6 = \dim H L < \dim tH L = \log 24/\log 6 \). While by Theorem 1.1 and Theorem 1.2, we directly have \(\dim tH L < \dim H L \).

Corollary 1.1. Let \(E \) be a \(d \)-dimensional fractal cube. If \(\dim H E = \dim tH E \), then \(E \) has no trivial point.

Remark 1.1. Another application of Theorem 1.1 is on the gap sequences of fractal cubes, a Lipschitz equivalent invariant introduced by Rao, Ruan and Yang [9]. For a fractal cube \(K \), let \(\{g_m(K)\}_{m\geq 1} \) be the gap sequence. Using Theorem 3.1 of the present paper, it is proved in [4] that if \(K \) has trivial point, then \(\{g_m(K)\}_{m\geq 1} \) is equivalent to \(\{m^{-1/\gamma}\}_{m\geq 1} \), where \(\gamma = \dim H K \).

Finally, we calculate the connectedness indexes of two fractal squares in Figure 3, and illustrate the application to Lipschitz classification.

Example 1.2. Let \(K \) and \(K' \) be two fractal squares indicated by Figure 3. It is seen that \(\dim H K = \dim H K' = \frac{\log 14}{\log 5} \). By Theorem 1.3 of [8], one can obtain that \(\dim tH K = \dim tH K' = 1 + \frac{\log 2}{\log 5} \). We will show in section 5 that

\[
\mathcal{I}_c(K) = \frac{\log(8 + \sqrt{132}/2)}{\log 5} \quad \text{and} \quad \mathcal{I}_c(K') = \frac{\log 13}{\log 5}.
\]

So \(K \) and \(K' \) are not Lipschitz equivalent.

![Figure 2](image1.png)

Figure 2.

![Figure 3](image2.png)

Figure 3.

This article is organized as follows. In section 2, we recall some basic facts of \(r \)-face of the polytope \([0, 1]^d\). In section 3, we prove Theorem 1.1. In section 4, we prove Theorem 1.2. In section 5, we give the details of Example 1.2.

2. Preliminaries on \(r \)-faces of \([0, 1]^d\)

We recall some notions about convex polytopes, see [15]. Let \(C \subset \mathbb{R}^d \) be a convex polytope, let \(F \) be a convex subset of \(C \). The affine hull of \(F \), denoted by \(\text{aff}(F) \), is the smallest affine subspace containing \(F \). We say \(F \) is a face of \(C \), if any closed line segment in \(C \) with a relative interior in \(F \) has both endpoints in \(F \).

The dimension of an affine subspace is defined to be the dimension of the corresponding linear vector space. The dimension of a face \(F \), denoted by \(\dim F \), is the dimension of its affine hull. Moreover, \(F \) is called an \(r \)-face of \(C \), if \(F \) is a face of \(C \) with dimension \(r \). We take it by convention that \(C \) is a \(d \)-face of itself if \(\dim C = d \).

For \(z \in C \), a face \(F \) of \(C \) is called the containing face of \(z \) if \(z \) is a relative interior point of \(F \).

Let \(e_1, \ldots, e_d \) be the canonical basis of \(\mathbb{R}^d \). The following facts about the \(r \)-faces of \([0, 1]^d\) are obvious, see Chapter 2 of [15].

Lemma 2.1. (i) Let \(A \cup B = \{1, \ldots, d\} \) be a partition with \(\#A = r \). Then the set

\[
F = \left\{ \sum_{j \in A} c_j e_j; \ c_j \in [0, 1] \right\} + b
\]

is an \(r \)-face of \([0, 1]^d\) if and only if \(b \in T \), where

\[
T := \left\{ \sum_{j \in B} \epsilon_j e_j; \ \epsilon_j \in \{0, 1\} \right\};
\]

(ii) For any \(r \)-face \(F \) of \([0, 1]^d\), there exists a partition \(A \cup B = \{1, \ldots, d\} \) with \(\#A = r \) such that \(F \) can be written as (2.1).

We will call \(F_0 = \{ \sum_{j \in A} c_j e_j; \ c_j \in [0, 1] \} \) a basic \(r \)-face related to the partition \(A \cup B \). We give a partition \(B = B_0 \cup B_1 \) according to \(b \) by setting

\[
B_0 = \{ j \in B; \ \text{the } j\text{-th coordinate of } b \text{ is 0} \},
B_1 = \{ j \in B; \ \text{the } j\text{-th coordinate of } b \text{ is 1} \}.
\]

Let \(x = \sum_{j \in A} \alpha_j e_j + \sum_{i \in B} \beta_i e_i \in [0, 1]^d \), we define two projection maps as follows:

\[
\pi_A(x) = \sum_{j \in A} \alpha_j e_j, \quad \pi_B(x) = \sum_{i \in B} \beta_i e_i.
\]

If \(F \) is an \(r \)-face of \([0, 1]^d\), we denote by \(\hat{F} \) the relative interior of \(F \).

Lemma 2.2 (Chapter 2 of [15]). Let \(C \subset \mathbb{R}^d \) be a polytope.

(i) If \(G \) and \(F \) are faces of \(C \) and \(F \subset G \), then \(\hat{F} \) is a face of \(G \).

(ii) If \(G \) is a face of \(C \), then any face of \(G \) is also a face of \(C \).
The following lemma will be needed in section 3.

Lemma 2.3. Let \(F = F_0 + b \) be an \(r \)-face of \([0, 1]^d\) given by (2.1). Let \(u \in \mathbb{Z}^d \). Then \(F \cap (u + [0, 1]^d) \neq \emptyset \) if and only if \(u = b - b' \) for some \(b' \in T \), where \(T \) is defined in (2.2).

Proof.

\(\Rightarrow \) Suppose \(b' \in T \), then \(F - (b - b') = F_0 + b' \), and it is an \(r \)-face of \([0, 1]^d\) by Lemma 2.1 (i). Applying a translation \(b - b' \) we see that \(F \subset (b - b') + [0, 1]^d \), which completes the proof of the sufficiency.

\(\Leftarrow \) Suppose \(F \cap (u + [0, 1]^d) \neq \emptyset \). Let \(z_0 \) be a point in the intersection and let \(F' = [0, 1]^d \cap (u + [0, 1]^d) \). Then \(F' \) is a face of both \([0, 1]^d\) and \(u + [0, 1]^d \). So we have \(F \subset F' \) since \(F' \) contains \(z_0 \), a relative interior point of \(F \). Hence \(F \) is an \(r \)-face of \(F' \) by Lemma 2.2 (i). It follows that \(F - u \) is an \(r \)-face of \(F' - u \).

Notice that \(F' \) is a face of \(u + [0, 1]^d \), then \(F' - u \) is a face of \([0, 1]^d\). By Lemma 2.2 (ii), \(F - u = F_0 + (b - u) \) is an \(r \)-face of \([0, 1]^d\). By Lemma 2.1 (i) we have \(b - u \in T \).

\[\square \]

3. Trivial points of fractal cubes

Let \(\Sigma = \{1, 2, \ldots, N\} \). Denote by \(\Sigma^\infty \) and \(\Sigma^k \) the sets of infinite words and words of length \(k \) over \(\Sigma \) respectively. Let \(\Sigma^* = \bigcup_{k \geq 0} \Sigma^k \) be the set of all finite words. For any \(\sigma = \sigma_1 \ldots \sigma_k \in \Sigma^k \), let \(\varphi_\sigma = \varphi_{\sigma_1} \circ \cdots \circ \varphi_{\sigma_k} \).

In this section, we always assume that \(E = E(n, D) \) is a \(d \)-dimensional fractal cube defined in (1.1) with IFS \(\{\varphi_j\}_{j \in \Sigma} \). In the following, we always assume that

For a point \(z \in E \), we say \(F \) is the containing face of \(z \) means that \(F \) is a face of the polytope \([0, 1]^d\) and it is the containing face of \(z \).

Lemma 3.1. Let \(z_0 \in E \) and \(\sigma \in \Sigma^k \) for some \(k > 0 \). Let \(F \) be the containing face of \(z_0 \), let \(F' \) be the containing face of \(\varphi_\sigma(z_0) \). Then either \(\varphi_\sigma(z_0) \in F \) or \(\dim F' \geq \dim F + 1 \).

Proof. Let \(A \cup B \) be the partition in Lemma 2.1 (i) which defines \(F \). By the definition of containing face, we have \(z_0 \in \hat{F} \). Suppose that \(\varphi_\sigma(z_0) \notin F \).

Take any point \(x \in F \setminus \{z_0\} \) and let \(I \) be the closed line segment in \(F \) such that \(x \) is an endpoint of \(I \) and \(z_0 \) is a relative interior point of \(I \). It is clear that \(\varphi_\sigma(I) \subset \varphi_\sigma([0, 1]^d) \subset [0, 1]^d \). Since \(\varphi_\sigma(z_0) \in F' \), we have \(\varphi_\sigma(I) \subset F' \). By the arbitrary of \(x \) we deduce that \(\varphi_\sigma(F) \subset F' \), hence

\[\dim F' \geq \dim \varphi_\sigma(F) = \dim F. \]

We claim that \(F' \) is not an \(r \)-face of \([0, 1]^d\). This claim together with (3.1) imply \(\dim F' \geq \dim F + 1 \).

Suppose on the contrary that \(F' \) is an \(r \)-face of \([0, 1]^d\). Then there exists a partition \(A' \cup B' = \{1, \ldots, d\} \) such that \(F' = F_0' + b' \), where \(F_0' = \bigcup_{j \in A'} c_j e_j; \ c_j \in [0, 1] \) and \(b' \in \{ \sum_{j \in B'} \varepsilon_j e_j; \ \varepsilon_j \in \{0, 1\} \} \). Since

\[\frac{F_0}{n^k} + \frac{b}{n^k} + \varphi_\sigma(0) = \varphi_\sigma(F) \subset F' = F_0' + b', \]
we have $F'_0 = F_0$. Hence $A' = A$ and $B' = B$. It follows that
\[(3.2) \quad b' = \pi_B(\varphi_\sigma(z_0)) = \frac{b}{n^k} + \pi_B(\varphi_\sigma(0)) \in T.\]

Notice that
\[(3.3) \quad \pi_B(\varphi_\omega(0)) \in \left\{ \sum_{j \in B} c_j e_j; \ c_j \in [0, \frac{n^k - 1}{n^k}] \right\}\]
for any $\omega \in \Sigma^k$, which together with (3.2) imply that $\pi_B(\varphi_\sigma(0)) = \frac{(n^k - 1)}{n^k} b$. Hence $b' = b$ and it follows that $\varphi_\sigma(z_0) \in F$, a contradiction. The claim is confirmed and the lemma is proven. \square

For each $\sigma = \sigma_1 \ldots \sigma_k \in \Sigma^k$, we call $\varphi_\sigma([0,1]^d) \subset E_k$ a k-th cell of E_k. Denote
\[(3.4) \quad \Sigma_\sigma = \{ \omega \in \Sigma^k; \pi_A(\varphi_\omega(0)) = \pi_A(\varphi_\sigma(0)) \}\]
and set
\[(3.5) \quad H_\sigma = \bigcup_{\omega \in \Sigma_\sigma} \varphi_\omega([0,1]^d).\]

Indeed, H_σ is the union of all k-th cells having the same projection with $\varphi_\sigma([0,1]^d)$ under π_A. From now on, we always assume that
\[(3.6) \quad z_0 \text{ is a trivial point of } E \text{ and } F \text{ is the containing face of } z_0.\]

Lemma 3.2. Let $k > 0$, fix $\sigma \in \Sigma^k$. If H_σ is not connected or $H_\sigma \cap F = \emptyset$, then there exists $\omega^* \in \Sigma_\sigma$ such that $\varphi_{\omega^*}(z_0) \notin F$ and it is a trivial point of E.

Proof. Let $\dim F = r$ and let $A \cup B$ be the partition in Lemma 2.1 (i) which defines F.

We claim that if $H_\sigma \cap F \neq \emptyset$, then there is only one k-th cell in H_σ which intersects F. Actually, since $\varphi_\omega(0) \in [0, \frac{n^k - 1}{n^k}]^d$ for any $\omega \in \Sigma^k$, if $\varphi_\omega([0,1]^d) \cap F \neq \emptyset$ for some $\omega \in \Sigma_\sigma$, then similar to the proof of Lemma 3.1 we must have $\pi_B(\varphi_\omega(0)) = \frac{(n^k - 1)}{n^k} b$. On the other hand, $\pi_A(\varphi_\omega(0)) = \pi_A(\varphi_\sigma(0))$, so ω is unique in Σ_σ. Furthermore, $\varphi_\omega(z_0) \in F$ in this scenario.

By the assumption of the lemma and the claim above, there is a connected component U of H_σ such that $U \cap F = \emptyset$. Let $W = \{ \omega \in \Sigma_\sigma; \varphi_\omega([0,1]^d) \subset U \}$. For each $\omega \in W$, write
\[
\pi_B(\varphi_\omega(0)) = \sum_{j \in B_0} \alpha_j(\omega)e_j + \sum_{j \in B_1} \beta_j(\omega)e_j
\]
First, we take the subset $W' \subset W$ by
\[
W' = \left\{ \omega \in W; \sum_{j \in B_0} \alpha_j(\omega) \text{ attains the minimum} \right\}.
\]
Then we take $\omega^* \in W'$ such that
\[
\sum_{j \in B_1} \beta_j(\omega^*) = \max_{\omega \in W'} \left\{ \sum_{j \in B_1} \beta_j(\omega); \ \omega \in W' \right\}.
\]
Since $U \cap F = \emptyset$, we have $\varphi_\sigma(z_0) \notin F$.

Let us check that $\varphi_\sigma(z_0)$ is a trivial point of E. To this end, we only need to show that

\begin{equation}
\varphi_\sigma(z_0) \notin \varphi_\sigma([0,1]^d),
\end{equation}

where $\omega \in \Sigma^k \setminus \{\omega^*\}$. Notice that $\varphi_\sigma(z_0) \in \varphi_\sigma(\bar{F})$, it is clear that (3.7) holds for any $\omega \notin \Sigma_\sigma$. Since U is a connected component of H_σ, we see that (3.7) holds for any $\omega \notin W$.

Now suppose $\varphi_\sigma(z_0) \in \varphi_\sigma([0,1]^d)$ for some $\omega \in W$, then $\varphi_\sigma(z_0) \in \varphi_\sigma([0,1]^d) \cap \varphi_\sigma([0,1]^d)$. By Lemma 2.3 we have

\[\pi_B(\varphi_\sigma(z_0)) - \pi_B(\varphi_\sigma(z_0)) = \pi_B(\varphi_\sigma(0)) - \pi_B(\varphi_\sigma(0)) \leq \frac{b - b'}{n^k}, \]

where $b' \in T$. By the definition of B_0 and B_1 in (2.3), we know that the j-th coordinate of $b - b'$ is 0 or -1 if $j \in B_0$ and is 0 or 1 if $j \in B_1$. According to the choosing process of ω^*, on one hand, we have $\sum_{j \in B_0} (\alpha_j(\omega) - \alpha_j(\omega^*)) \geq 0$. So $\alpha_j(\omega) = \alpha_j(\omega^*)$ for $j \in B_0$, that is to say, $\omega \in W'$. On the other hand, since $\omega \in W'$, we have $\sum_{j \in B_1} (\beta_j(\omega) - \beta_j(\omega^*)) \leq 0$, which forces that $\beta_j(\omega) = \beta_j(\omega^*)$ for $j \in B_1$. Therefore, $b = b'$ and hence $\omega = \omega^*$. This finishes the proof. \hfill \Box

For $k > 0$, denote $D_k = D + nD + \cdots + n^{k-1}D$. We call $E_k = ([0,1]^d + D_k)/n^k$ the k-th approximation of E. Clearly, $E_k \subset E_{k-1}$ for all $k \geq 1$ and $E = \bigcap_{k=0}^{\infty} E_k$. For $\sigma = (\sigma_i)_{i \geq 1} \in \Sigma^\infty$, we denote $\sigma|_k = \sigma_1 \cdots \sigma_k$ for $k > 0$. We say σ is a coding of a point $x \in E$ if $\{x\} = \bigcap_{k \geq 1} \varphi_{\sigma_1 \cdots \sigma_k}(E)$.

Definition 3.1. Let U be a connected component of E_k, we call U a k-th island if $U \cap \partial[0,1]^d = \emptyset$.

Lemma 3.3. If E_k contains a k-th island for some $k > 0$, then E has a trivial point.

Proof. Since we can regard $E(n,D)$ as $E(n^k,D_k)$, without loss of generality, we assume that E_1 has an island and denote it by U. Write $U = \bigcup_{j \in J} \varphi_j([0,1]^d)$, where $J \subset \Sigma$. We call a letter $j \in J$ a special letter. A sequence $\sigma = (\sigma_i)_{i \geq 1} \in \Sigma^\infty$ is called a special sequence, if special letters occur infinitely many times in σ.

Let

\begin{equation}
P = \{x \in E; \text{ at least one coding of } x \text{ is a special sequence}\}.
\end{equation}

We claim that every point in P is a trivial point. Let $z \in P$ and let $\sigma = (\sigma_i)_{i \geq 1}$ be a coding of z such that σ is a special sequence. Suppose σ_k is a special letter, it is easy to see that $z \in \varphi_{\sigma_1 \cdots \sigma_k}([0,1]^d) \subset \varphi_{\sigma_1 \cdots \sigma_{k-1}}(U)$ and $\varphi_{\sigma_1 \cdots \sigma_{k-1}}(U)$ is a connected component of E_k with $\text{diam}(\varphi_{\sigma_1 \cdots \sigma_{k-1}}(U)) \leq \sqrt{d}/n^{k-2}$. Notice that special letters occur infinitely often in σ, we conclude that z is a trivial point. \hfill \Box

Theorem 3.1. Let E be a fractal cube with $\text{dim aff}(E) = d$. Then E has a trivial point if and only if E_k contains a k-th island for some $k \geq 1$.

Proof. Let $z_0 \in E$ be a trivial point. We claim that there exists another trivial point $z^* \in E \cap (0,1)^d$, that is, the dimension of the containing face of z^* is d.

Suppose F is the containing face of z_0 with $\dim F = r$, where $0 \leq r \leq d - 1$. Let $A \cup B$ be the partition in Lemma 2.1 (i) which defines F. Let $\sigma = (\sigma_k)_{k \geq 1} \in \Sigma^\infty$ be a coding of z_0. Then for each $k > 0$, $z_0 \in H_{\sigma_k} \cap F$, where H_{σ_k} is defined in (3.5). We will show by two cases that E contains another trivial point of the form $\varphi_\omega(z_0), \omega \in \Sigma^*$, and it is not in F.

Case 1. H_{σ_k} is not connected for some $k > 0$.

By Lemma 3.2, there exists $\omega^* \in \Sigma_{\sigma_k}$ such that $z_1 = \varphi_{\omega^*}(z_0) \notin F$ is a trivial point of E.

Case 2. H_{σ_k} is connected for all $k > 0$.

Let $p > 0$ be an integer such that C_p is the connected component of E_p containing z_0 and $\text{diam}(C_p) < \frac{1}{3}$. It is clear that $H_{\sigma_k} \subset C_p$, so we have $\text{diam}(H_{\sigma_k}) < \frac{1}{3}$. Since $\dim \text{aff}(E) = d$, there exist $j \in \Sigma$ such that

$$\varphi_j([0,1]^d) \cap F = \emptyset. \quad (3.9)$$

We consider the set $H_{j_{\sigma_1 \ldots \sigma_p}}$. Let $\Sigma_j = \{i \in \Sigma; \pi_A(\varphi_i(0)) = \pi_A(\varphi_j(0))\}$. It is easy to see that $H_{j_{\sigma_1 \ldots \sigma_p}} = \bigcup_{i \in \Sigma_j} \varphi_i(H_{\sigma_i})$.

If $\#\Sigma_j = 1$, then $H_{j_{\sigma_1 \ldots \sigma_p}} \cap F = \varphi_j(H_{\sigma_1}) \cap F = \emptyset$. If $\#\Sigma_j > 1$, we have $\varphi_i(H_{\sigma_1}) \cap \varphi_i'(H_{\sigma_1}) = \emptyset$ for any $i, i' \in \Sigma_j$ since $\text{diam}(H_{\sigma_1}) < \frac{1}{3}$. Hence $H_{j_{\sigma_1 \ldots \sigma_p}}$ is not connected. So by Lemma 3.2, there exists $\omega^* \in \Sigma_{j_{\sigma_1 \ldots \sigma_p}}$ such that $\varphi_{\omega^*}(z_0) \notin F$ and it is a trivial point of E.

Then by Lemma 3.1, the containing face of this trivial point has dimension no less than $r + 1$. Inductively, we can finally obtain a trivial point z^* whose containing face is $[0,1]^d$. The claim is proved.

Now suppose on the contrary that E_k contains no k-th island for all $k \geq 1$. We will derive a contradiction. Let $z^* \in E \cap (0,1)^d$ be a trivial point. Let U_k be the connected component of E_k containing z^*, then we have $U_k \cap \partial[z,0,1]^d \neq \emptyset$. By the Weierstrass-Balzano property of the Hausdorff metric, there exists a subsequence k_j such that U_{k_j} converge. We denote U^* to be the limit. On one hand, U^* is connected since U_{k_j} is connected for each k_j. On the other hand, $z^* \in U^*$ and $U^* \cap \partial[z,0,1]^d \neq \emptyset$. So U^* is a non-trivial connected component of E containing z^*, a contradiction. This together with Lemma 3.3 finish the proof of the theorem. \hfill \Box

Proof of Theorem 1.1. First, let us assume $\dim \text{aff}(E) = d$. Since E contains a trivial point, by Theorem 3.1, there exists $k > 0$ such that E_k contains a k-th island. Without lose of generality, suppose E_1 has an island C. Write $C = \bigcup_{j \in J} \varphi_j([0,1]^d)$, where $J \subset \Sigma$. Let P be defined as (3.8). It has been proved in Lemma 3.3 that every point in P is a trivial point.

We denote $P^c = E \setminus P$. Let $\mathcal{D}' = \mathcal{D} \setminus \{d_j; j \in J\}$ and let E' be the fractal cube determined by n and \mathcal{D}'. It is easy to see that

$$P^c = \bigcup_{k=0}^{\infty} \bigcup_{\sigma_1 \ldots \sigma_k \in \Sigma^k, \sigma_k \in J} \varphi_{\sigma_1 \ldots \sigma_k}(E') \subset \bigcup_{\sigma \in \Sigma^*} \varphi_\sigma(E').$$
Consequently, $\dim H P^c \leq \dim H E^\prime = \frac{\log \# D'}{\log n} < \dim H E$. Notice that $E \setminus \Lambda(E) \subset P^c$, we have $\mathcal{I}_c(E) = \dim H E \setminus \Lambda(E) < \dim H E$.

Next, assume that $\dim \text{aff}(E) < d$. Then there exist $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d \setminus \{0\}$ and $c \in \mathbb{R}$ such that
\begin{equation}
(3.10) \quad \langle x, \alpha \rangle = c, \quad \forall x \in E.
\end{equation}
Without loss of generality, we may assume that $\alpha_1 \neq 0$. Since $x + h n \in E$ for any $x \in E$ and any $h \in D$, we deduce that
\begin{equation}
(3.11) \quad \langle h, \alpha \rangle = (n - 1)c.
\end{equation}
Let $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, we define a map by $\pi(x) = (x_2, \ldots, x_d)$. Denote $\tilde{D} = \{\pi(h); h \in D\}$ and let \tilde{E} be the fractal cube determined by n and \tilde{D}. Define $g : \mathbb{R}^{d-1} \to \mathbb{R}^d$ by
$$g(x_2, \ldots, x_d) = (c - \langle \pi(x), \pi(\alpha) \rangle, \pi(x)).$$
According to (3.10) and (3.11), one can show that $E = g(\tilde{E})$. So we have $\mathcal{I}_c(E) = \mathcal{I}_c(\tilde{E})$ and $\dim H E = \dim H \tilde{E}$.

Therefore, by the first part of the proof and induction we have $\mathcal{I}_c(E) < \dim H E$. This finish the proof. □

4. Application to topological Hausdorff dimension

The topological Hausdorff dimension is defined as follows:

Definition 4.1 ([1]). Let X be a metric space. The topological Hausdorff dimension of X is defined as
\begin{equation}
(4.1) \quad \dim_{tH} X = \inf_{\mathcal{U} \text{ is a basis of } X} \left(1 + \sup_{U \in \mathcal{U}} \dim H \partial U \right),
\end{equation}
where $\dim H \partial U$ denotes the Hausdorff dimension of the boundary of U and we adopt the convention that $\dim H \emptyset = \dim H \emptyset = -1$.

The following theorem gives an alternative definition of the topological Hausdorff dimension.

Theorem 4.1 (Theorem 3.7 of [1]). For a non-empty σ-compact metric space X, it holds that
$$\dim_{tH} X = \min\{h; \exists S \subset X \text{ such that } \dim H S \leq h - 1 \text{ and } X \setminus S \text{ is totally disconnected}\}.$$

Proof of Theorem 1.2. Let $G = X \setminus \Lambda(X)$. Clearly $X \setminus G = \Lambda(X)$ is totally disconnected. Let $t = \dim_{tH} G$. By Theorem 4.1, for any $\delta > 0$, there exists $S \subset G$ such that $G \setminus S$ is totally disconnected, and
$$\dim H S + 1 < t + \delta.$$
We can see that $X \setminus S = \Lambda(X) \cup (G \setminus S)$ is also totally disconnected; for otherwise there is a connected component of E connecting a point $x \in \Lambda(X)$ and a point

\begin{equation}
(3.10) \quad \langle x, \alpha \rangle = c, \quad \forall x \in E.
\end{equation}
Without loss of generality, we may assume that $\alpha_1 \neq 0$. Since $x + h n \in E$ for any $x \in E$ and any $h \in D$, we deduce that
\begin{equation}
(3.11) \quad \langle h, \alpha \rangle = (n - 1)c.
\end{equation}
Let $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, we define a map by $\pi(x) = (x_2, \ldots, x_d)$. Denote $\tilde{D} = \{\pi(h); h \in D\}$ and let \tilde{E} be the fractal cube determined by n and \tilde{D}. Define $g : \mathbb{R}^{d-1} \to \mathbb{R}^d$ by
$$g(x_2, \ldots, x_d) = (c - \langle \pi(x), \pi(\alpha) \rangle, \pi(x)).$$
According to (3.10) and (3.11), one can show that $E = g(\tilde{E})$. So we have $\mathcal{I}_c(E) = \mathcal{I}_c(\tilde{E})$ and $\dim H E = \dim H \tilde{E}$.

Therefore, by the first part of the proof and induction we have $\mathcal{I}_c(E) < \dim H E$. This finish the proof. □

4. Application to topological Hausdorff dimension

The topological Hausdorff dimension is defined as follows:

Definition 4.1 ([1]). Let X be a metric space. The topological Hausdorff dimension of X is defined as
\begin{equation}
(4.1) \quad \dim_{tH} X = \inf_{\mathcal{U} \text{ is a basis of } X} \left(1 + \sup_{U \in \mathcal{U}} \dim H \partial U \right),
\end{equation}
where $\dim H \partial U$ denotes the Hausdorff dimension of the boundary of U and we adopt the convention that $\dim H \emptyset = \dim H \emptyset = -1$.

The following theorem gives an alternative definition of the topological Hausdorff dimension.

Theorem 4.1 (Theorem 3.7 of [1]). For a non-empty σ-compact metric space X, it holds that
$$\dim_{tH} X = \min\{h; \exists S \subset X \text{ such that } \dim H S \leq h - 1 \text{ and } X \setminus S \text{ is totally disconnected}\}.$$

Proof of Theorem 1.2. Let $G = X \setminus \Lambda(X)$. Clearly $X \setminus G = \Lambda(X)$ is totally disconnected. Let $t = \dim_{tH} G$. By Theorem 4.1, for any $\delta > 0$, there exists $S \subset G$ such that $G \setminus S$ is totally disconnected, and
$$\dim H S + 1 < t + \delta.$$
We can see that $X \setminus S = \Lambda(X) \cup (G \setminus S)$ is also totally disconnected; for otherwise there is a connected component of E connecting a point $x \in \Lambda(X)$ and a point
Again by Theorem 4.1, \(\dim_{tH} X \leq \dim_{tH} S + 1 < t + \delta \). Since \(\delta \) is arbitrary, we have \(\dim_{tH} X \leq \dim_{tH} G \). Therefore,
\[
\dim_{tH} X \leq \dim_{tH} G \leq \dim H G = \Ic(X).
\]

5. Calculation of \(\Ic(K) \) in Example 1.2

We identify \(\mathbb{R}^2 \) with \(\mathbb{C} \). Let \(n = 5 \). Let \(\mathcal{D} = \{d_1, \ldots, d_{14}\} \) be the digit set illustrated in Figure 3 (a), denote \(\Sigma = \{1, \ldots, 14\} \). Let \(K \) be the fractal square determined by \(n \) and \(\mathcal{D} \), and let \(\{\varphi_j = \frac{z + d_j}{5}\}_{j \in \Sigma} \) be the IFS of \(K \). Denote

\[
\begin{align*}
J_{XX} &= \{j \in \Sigma; \ d_j \in \mathcal{D} \setminus \{i, 2i, 3i\}\}; \\
J_{XY} &= \{j \in \Sigma; \ d_j \in \{i, 2i, 3i\}\}; \\
J_{YX} &= \{j \in \Sigma; \ d_j \in \mathcal{D} \setminus \{i, 2i, 3i, 4i + 4i\}\}; \\
J_{YY} &= \{j \in \Sigma; \ d_j \in \{i, 2i, 3i, 4i + 4i\}\},
\end{align*}
\]

(5.1)

see Figure 4. Let
\[
X = \left(\bigcup_{j \in J_{XX}} \varphi_j(X) \right) \cup \left(\bigcup_{j \in J_{XY}} \varphi_j(Y) \right), \quad Y = \left(\bigcup_{j \in J_{YX}} \varphi_j(X) \right) \cup \left(\bigcup_{j \in J_{YY}} \varphi_j(Y) \right).
\]

Then \(X \) and \(Y \) are graph-directed sets (see [7]). The directed graph \(G \) is given in Figure 5.

\(\begin{aligned}
\text{(a) The first iteration of } &X. \\
\text{(b) The first iteration of } &Y.
\end{aligned} \)

Figure 4.

\(\begin{aligned}
\text{Figure 5.} \\
&\text{The directed graph } G. \text{ Each } d \in J_{XY} \text{ defined an edge from } X \text{ to } Y, \text{ and the corresponding map of this edge is } (z + d)/5. \text{ The same hold for } J_{XX}, J_{YX} \text{ and } J_{YY}.
\end{aligned} \)
For each $\ell > 0$, let $J_{Y_X}^{(\ell)}$ be the collection of paths with length ℓ which start from Y and end at X in the graph G. Similarly, we can define $J_{XX}^{(\ell)}$, $J_{XY}^{(\ell)}$ and $J_{YY}^{(\ell)}$. Let $K_\ell = \bigcup_{\sigma \in \Sigma'} \varphi_\sigma([0,1]^2)$ and $Y_\ell = \bigcup_{\sigma \in J_{Y_X}^{(\ell)} \cup J_{YY}^{(\ell)}} \varphi_\sigma([0,1]^2)$ be the ℓ-th approximations of K and Y respectively. Then $K = \bigcap_{\ell > 0} K_\ell$ and $Y = \bigcap_{\ell > 0} Y_\ell$.

Lemma 5.1. Let C be the connected component of K containing 0. Then

(i) $C = Y$;
(ii) for any non-trivial connected component $C'' \neq C$ of K, there exists $\omega \in \Sigma^*$ such that $C'' = \varphi_\omega(C)$.

Proof. (i) Let C_ℓ be the connected component of K_ℓ containing 0. We only need to show that $C_\ell = Y_\ell$ for all $\ell > 0$. Now we define a label map h on the cells in C_ℓ as follows. We set $h(\sigma_1 \ldots \sigma_\ell) = X$ if there exists $\omega_1 \ldots \omega_\ell \in \Sigma^*$ such that

$$
\varphi_{\omega_1 \ldots \omega_\ell}([0,1]^2) = \varphi_{\sigma_1 \ldots \sigma_\ell}([0,1]^2) + \frac{1}{n_\ell} \in C_\ell,
$$

otherwise set $h(\sigma_1 \ldots \sigma_\ell) = Y$. We will prove by induction that

$$
\sigma_1 \ldots \sigma_\ell \in \begin{cases} J_{Y_X}^{(\ell)}, & \text{if } h(\sigma_1 \ldots \sigma_\ell) = X, \\ J_{YY}^{(\ell)}, & \text{if } h(\sigma_1 \ldots \sigma_\ell) = Y. \end{cases}
$$

For $\ell = 1$, (5.3) holds by (5.1). Assume that (5.3) holds for ℓ.

Case 1. $h(\sigma_1 \ldots \sigma_\ell) = X$.

In this case, (5.2) holds, which means that the right neighbor of $\varphi_{\sigma_1 \ldots \sigma_\ell}([0,1]^2)$ belongs to C_ℓ. If $h(\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1}) = X$, then the right neighbor of $\varphi_{\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1}}([0,1]^2)$ belongs to $C_{\ell+1}$ and we have $\sigma_{\ell+1} \in J_{XX}$. Hence $\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1} \in J_{Y_X}^{(\ell+1)}$. Similarly, if $h(\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1}) = Y$, then $\sigma_{\ell+1} \in J_{XY}$ and $\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1} \in J_{YY}^{(\ell+1)}$.

Case 2. $h(\sigma_1 \ldots \sigma_\ell) = Y$.

In this case, the right neighbor of $\varphi_{\sigma_1 \ldots \sigma_\ell}([0,1]^2)$ is not contained in C_ℓ. By a similar argument as Case 1, we have $\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1} \in J_{Y_X}^{(\ell+1)}$ if $h(\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1}) = X$, and $\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1} \in J_{YY}^{(\ell+1)}$ if $h(\sigma_1 \ldots \sigma_\ell \sigma_{\ell+1}) = Y$.

Therefore, (5.3) holds for $\ell+1$. Clearly, (5.3) implies that $C_\ell = Y_\ell$. Statement (i) is proved.

(ii) Notice that $\varphi_i(K) \cap \varphi_j(K) \subset C$ for each $i, j \in \Sigma$ with $i \neq j$. Let C' be a non-trivial connected component of K. Let ω be the longest word in Σ^* such that $C' \subset \varphi_\omega(K)$. Then $\varphi_\omega^{-1}(C') \subset K$ and there exists $i, j \in \Sigma$ such that $\varphi_\omega^{-1}(C') \cap \varphi_i(K) \cap \varphi_j(K) \neq \emptyset$. It follows that $\varphi_\omega^{-1}(C') \subset C$, hence $C' \subset \varphi_\omega(C)$. Since C' is a connected component, we have $C' = \varphi_\omega(C)$. Statement (ii) is proved. \(\square\)

By Lemma 5.1 we have $\mathcal{I}(K) = \dim H C = \dim H Y = \frac{\log \lambda}{\log 5}$, where $\lambda = \frac{16+\sqrt{132}}{2}$ is the maximal eigenvalue of the matrix $\begin{bmatrix} 11 & 8 \\ 3 & 5 \end{bmatrix}$. Let K' be the fractal square in Example 1.2. It is obvious that $\mathcal{I}(K') = \frac{\log 13}{\log 5}$.

References

[1] R. Balka, Z. Buczolich and M. Elekes, A new fractal dimension: the topological Hausdorff dimension, Adv. Math., 274 (2015), 881-927.

[2] M. Bonk and S. Merenkov. Quasisymmetric rigidity of square Sierpinski carpets, Anal. Math., 177.2 (2013), 591-643.

[3] K.J. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, (1990).

[4] L.Y. Huang, Y. Zhang, Gap sequence of high dimensional self-similar sets and self-affine sets, Preprint.

[5] J.E. Hutchinson, Fractals and self-similarity, Indiana, Univ. Math. J. 30 (1981), 713-747.

[6] K.S. Lau, J.J. Luo and H. Rao., Topological structure of fractal squares. Math. Proc. Camb. Phil. Soc, 155 (2013), 73-86.

[7] R.D. Mauldin, S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988) 811-829.

[8] J.H. Ma and Y.F. Zhang, Topological Hausdorff dimension of fractal squares and its application to Lipschitz classification, To appear in Nonlinearity.

[9] H. Rao, H.J. Ruan, Y. M. Yang, Gap sequence, Lipschitz equivalence and box dimension of fractal sets, Nonlinearity, 21 (2008), no. 6, 1339-1347.

[10] H. J. Ruan and Y. Wang. Topological invariants and Lipschitz equivalence of fractal squares. J. Math. Anal. Appl., 451.1 (2017), 327-344.

[11] G.T. Whyburn. Topological characterization of the Sierpinski curve, Fund. Math. 45 (1958), 320–324.

[12] L.F. Xi and Y. Xiong; Self-similar sets with initial cubic patterns, CR Acad. Sci. Paris, Ser.I, 348 (2010), 15-20.

[13] Y.M. Yang and Y.J. Zhu: Lipschitz equivalence of self-similar sets with two-state automation, J. Math. Anal. Appl., 458.1 (2018), 379-392.

[14] Y.F. Zhang, A lower bound of topological Hausdorff dimension of fractal squares, To appear in Fractals, (2020).

[15] Ziegler, Günter M., Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer, Definition 2.1, p. 51 (1995).

College of Computer, Beijing Institute of Technology, Beijing, 100080, China
Email address: liangyihuang@bit.edu.cn

Department of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China
Email address: hrao@mail.ccnu.edu.cn