Umbral Calculus and Frobenius-Euler Polynomials

by
Dae San Kim and Taekyun Kim

Abstract
In this paper, we study some properties of umbral calculus related to Appell sequence. From those properties, we derive new and interesting identities of Frobenius-Euler polynomials.

1 Introduction
Let \mathbb{C} be the complex number field. For $\lambda \in \mathbb{C}$ with $\lambda \neq 1$, the Frobenius-Euler polynomials are defined by the generating function to be

$$
\frac{1 - \lambda}{e^t - \lambda} e^{xt} = e^{H(x|\lambda)t} = \sum_{n=0}^{\infty} H_n(x|\lambda) \frac{t^n}{n!}, \quad \text{(see [7–11])},
$$

with the usual convention about replacing $H_n(x|\lambda)$ by $H_n(\lambda)$.

In the special case, $x = 0$, $H_n(0|\lambda) = H_n(\lambda)$ are called the n-th Frobenius-Euler numbers. By (1), we get

$$
H_n(x|\lambda) = \sum_{l=0}^{n} \binom{n}{l} H_{n-l}(\lambda) x^l = (H(\lambda) + x)^n, \quad \text{(see [1, 2, 3, 4])},
$$

with the usual convention about replacing $H^n(\lambda)$ by $H_n(\lambda)$.

Thus, from (1) and (2), we note that

$$(H(\lambda) + 1)^n - \lambda H_n(\lambda) = (1 - \lambda)\delta_{0,n},$$

where $\delta_{n,k}$ is the kronecker symbol (see [6,7]).

For $r \in \mathbb{Z}_+$, the Frobenius-Euler polynomials of order r are defined by the
generating function to be
\[
\left(\frac{1 - \lambda}{e^t - \lambda} \right) e^{xt} = \left(\frac{1 - \lambda}{e^t - \lambda} \right) \times \cdots \times \left(\frac{1 - \lambda}{e^t - \lambda} \right) e^{xt}
\]
\(r\)-times
\(= \sum_{n=0}^{\infty} H_n^{(r)}(x|\lambda) \frac{t^n}{n!}.
\]

In the special case, \(x = 0\), \(H_n^{(r)}(0|\lambda) = H_n^{(r)}(\lambda)\) are called the \(n\)-th Frobenius-Euler numbers of order \(r\) (see [6,7]).

From (3), we can derive the following equation:
\[
H_n^{(r)}(x|\lambda) = \sum_{l=0}^{n} \binom{n}{l} H_{n-l}^{(r)}(\lambda) x^l,
\]
(4)

and
\[
H_n^{(r)}(\lambda) = \sum_{l_1+\cdots+l_r=n} \binom{n}{l_1, \ldots, l_r} H_{l_1}(\lambda) \cdots H_{l_r}(\lambda).
\]
(5)

By (4) and (5), we see that \(H_n^{(r)}(x|\lambda)\) is a monic polynomial of degree \(n\) with coefficients in \(\mathbb{Q}(\lambda)\).

Let \(\mathbb{P}\) be the algebra of polynomials in the single variable \(x\) over \(\mathbb{C}\) and let \(\mathbb{P}^*\) be the vector space of all linear functionals on \(\mathbb{P}\). As is known, \(\langle L|p(x) \rangle\) denotes the action of the linear functional \(L\) on a polynomial \(p(x)\) and we remind that the addition and scalar multiplication on \(\mathbb{P}^*\) are respectively defined by
\[
\langle L + M|p(x) \rangle = \langle L|p(x) \rangle + \langle M|p(x) \rangle, \langle cL|p(x) \rangle = c\langle L|p(x) \rangle,
\]
where \(c\) is a complex constant (see [5, 8]).

Let \(\mathbf{F}\) denote the algebra of formal power series:
\[
\mathbf{F} = \{ f(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k | a_k \in \mathbb{C} \}, \quad (\text{see } [5, 8]).
\]
(6)

The formal power series define a linear functional on \(\mathbb{P}\) by setting
\[
\langle f(t)|x^n \rangle = a_n, \text{ for all } n \geq 0.
\]
(7)

Indeed, by (6) and (7), we get
\[
\langle t^k|x^n \rangle = n! \delta_{n,k} \quad (n, k \geq 0), \quad (\text{see } [5, 8]).
\]
(8)
This kind of algebra is called an umbral algebra. The order $O(f(t))$ of a nonzero power series $f(t)$ is the smallest integer k for which the coefficient of t^k does not vanish. A series $f(t)$ for which $O(f(t)) = 1$ is said to be an invertible series (see [5, 8]). For $f(t), g(t) \in \mathbf{F}$ and $p(x) \in \mathbb{P}$, we have

$$
\langle f(t)g(t)|p(x) \rangle = \langle f(t)|g(t)p(x) \rangle = \langle g(t)|f(t)p(x) \rangle, \quad (\text{see} \ [5]).
$$

(9)

One should keep in mind that each $f(t) \in \mathbf{F}$ plays three roles in the umbral calculus: a formal power series, a linear functional and a linear operator. To illustrate this, let $p(x) \in \mathbb{P}$ and $f(t) = e^{yt} \in \mathbf{F}$. As a linear functional, e^{yt} satisfies $\langle e^{yt}|p(x) \rangle = p(y)$. As a linear operator, e^{yt} satisfies $e^{yt}p(x) = p(x + y)$ (see [5]). Let $s_n(x)$ denote a polynomial in x with degree n. Let us assume that $f(t)$ is a delta series and $g(t)$ is an invertible series. Then there exists a unique sequence $s_n(x)$ of polynomials such that $\langle g(t)f(t)^k|s_n(x) \rangle = n!\delta_{n,k}$ for all $n, k \geq 0$ (see [3, 8]). This sequence $s_n(x)$ is called the Sheffer sequence for $(g(t), f(t))$ which is denoted by $s_n(x) \sim (g(t), f(t))$. If $s_n(x) \sim (1, f(t))$, then $s_n(x)$ is called the associated sequence for $f(t)$. If $s_n(x) \sim (g(t), t)$, then $s_n(x)$ is called the Appell sequence.

Let $s_n(x) \sim (g(t), f(t))$. Then we see that

$$
h(t) = \sum_{k=0}^{\infty} \frac{< h(t)|s_k(x) >}{k!}g(t)^k, \quad h(t) \in \mathbf{F},
$$

(10)

$$
p(x) = \sum_{k=0}^{\infty} \frac{< g(t)f(t)^k|p(x) >}{k!}s_k(x), \quad p(x) \in \mathbb{P},
$$

(11)

$$
f(t)s_n(x) = ns_{n-1}(x), \quad < f(t)|p(\alpha x) >= < f(\alpha t)|p(x)>,
$$

(12)

and

$$
\frac{1}{g(f(t))}e^{yt} = \sum_{k=0}^{\infty} \frac{s_k(y)}{k!}t^k, \quad \text{for all } y \in \mathbf{C},
$$

(13)

where $\tilde{f}(t)$ is the compositional inverse of $f(t)$ (see [8]). In this paper, we study some properties of umbral calculus related to Appell sequence. For those properties, we derive new and interesting of Frobenius-Euler polynomials.
2 Frobenius-Euler polynomials and Umbral Calculus.

By (3) and (13), we see that
\[
H_n^{(r)}(x|\lambda) \sim \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r. \tag{14}
\]
Thus, by (14), we get
\[
\left< \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \Big| H_n^{(r)}(x|\lambda) \right> = n! \delta_{n,k}. \tag{15}
\]
Let
\[
\mathbb{P}_n(\lambda) = \{ p(x) \in \mathbb{Q}(\lambda)[x] \mid \deg p(x) \leq n \}.
\]
Then it is an \((n + 1)\)-dimensional vector space over \(\mathbb{Q}(\lambda)\).

So we see that \(\{ H_0^{(r)}(x|\lambda), H_1^{(r)}(x|\lambda), \ldots, H_n^{(r)}(x|\lambda) \} \) is a basis for \(\mathbb{P}_n(\lambda)\). For \(p(x) \in \mathbb{P}_n(\lambda)\), let
\[
p(x) = \sum_{k=0}^{n} C_k H_k^{(r)}(x|\lambda), \quad (n \geq 0). \tag{16}
\]
Then, by (14), (15) and (16), we get
\[
\left< \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \Big| p(x) \right> = \sum_{l=0}^{n} C_l \left< \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \Big| H_l^{(r)}(x|\lambda) \right> \tag{17} = \sum_{l=0}^{n} C_l l! \delta_{l,k} = k! C_k.
\]
From (17), we have
\[
C_k = \frac{1}{k!} \left< \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \Big| p(x) \right> = \frac{1}{k!} \left< \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r D^k p(x) \right> \tag{18} = \frac{1}{k!(1 - \lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} < e^{jt} | D^j p(x) > = \frac{1}{k!(1 - \lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} < e^{jt} D^j p(x) > \]
\[
= \frac{1}{k!(1 - \lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} < t^j | D^j p(x + j) >.
\]
Therefore, by (16) and (18), we obtain the following theorem.
Theorem 1. For $p(x) \in \mathbb{P}_n(\lambda)$, let

$$p(x) = \sum_{k=0}^{n} C_k H^{(r)}_k(x).$$

Then we have

$$C_k = \frac{1}{k!(1-\lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} D^k p(j),$$

where $Dp(x) = \frac{dp(x)}{dx}$.

From Theorem 1, we note that

$$p(x) = \frac{1}{1-\lambda} \sum_{k=0}^{n} \binom{r}{j} (-\lambda)^{r-j} D^k p(j) H^{(r)}(x|\lambda).$$

Let us consider the operator $\tilde{\triangle}_\lambda$ with $\tilde{\triangle}_\lambda f(x) = f(x+1) - \lambda f(x)$ and let $J_\lambda = \frac{1}{1-\lambda} \tilde{\triangle}_\lambda$. Then we have

$$J_\lambda(f)(x) = \frac{1}{1-\lambda} \{ f(x+1) - \lambda f(x) \}. \quad (19)$$

Thus, by (19), we get

$$J_\lambda(H^{(r)}_n(x|\lambda)) = \frac{1}{1-\lambda} \{ H^{(r)}_n(x+1|\lambda) - \lambda H^{(r)}_n(x|\lambda) \}. \quad (20)$$

From (20), we can derive

$$\sum_{n=0}^{\infty} \{ H^{(r)}_n(x+1|\lambda) - \lambda H^{(r)}_n(x|\lambda) \} \frac{t^n}{n!} = \left(\frac{1-\lambda}{e^t-\lambda} \right)^{r-1} e^{(x+1)t} - \lambda \left(\frac{1-\lambda}{e^t-\lambda} \right)^{r-1} e^{xt} \quad (21)$$

By (20) and (21), we get

$$J_\lambda(H^{(r)}_n(x|\lambda)) = H^{(r-1)}_n(x|\lambda). \quad (22)$$

From (22), we have

$$J_\lambda^{(r)}(H^{(r)}_n(x|\lambda)) = J_\lambda^{(r-1)}(H^{(r-1)}_n(x|\lambda)) = \cdots = H^{(0)}_n(x|\lambda) = x^n,$$
and
\[J_{x}(x^n) = J_{x}^{r} H_n^{(0)}(x|\lambda) = H_n^{(-r)}(x|\lambda) = J_{x}^{2r} H_n^{(r)}(x|\lambda). \tag{23} \]

For \(s \in \mathbb{Z}_+ \), from (22), we have
\[J_{s}(H_n^{(r)}(x|\lambda)) = H_n^{(-r-s)}(x|\lambda). \tag{24} \]

On the other hand, by (13), (14) and (22),
\[J_{s}(H_n^{(r)}(x|\lambda)) = \left(e^{\lambda} - \frac{1}{1 - \lambda} \right)^{s} (H_n^{(r)}(x|\lambda)) \tag{25} \]
\[= \frac{1}{(1 - \lambda)^s} ((1 - \lambda) + \sum_{k=1}^{\infty} \frac{t^k}{k!})^s (H_n^{(r)}(x|\lambda)). \]

Thus, by (25), we get
\[J_{s}(H_n^{(r)}(x|\lambda)) = \sum_{m=0}^{s} \binom{s}{m} \frac{1}{(1 - \lambda)^m} \sum_{l=m}^{\infty} \sum_{k_1 + \cdots + k_m = l}^{\infty} \frac{1}{k_1! \cdots k_m!} D^l(H_n^{(r)}(x|\lambda)) \tag{26} \]
\[= \sum_{m=0}^{\min\{s, n\}} \frac{s}{m} \sum_{l=m}^{\infty} \frac{1}{l!} \sum_{k_1 + \cdots + k_m = l}^{\infty} \binom{l}{k_1, \ldots, k_m} H_{n-1}^{(r)}(x|\lambda) \]
\[= \sum_{l=0}^{\min\{s, n\}} \binom{n}{l} \sum_{m=0}^{\min\{s, n\}} \frac{s}{m} \sum_{k_1 + \cdots + k_m = l}^{\min\{s, n\}} \binom{l}{k_1, \ldots, k_m} H_{n-1}^{(r)}(x|\lambda) \]
\[+ \sum_{l=\min\{s, n\}+1}^{n} \binom{n}{l} \sum_{m=0}^{\min\{s, n\}} \frac{s}{m} \sum_{k_1 + \cdots + k_m = l}^{\min\{s, n\}} \binom{l}{k_1, \ldots, k_m} H_{n-1}^{(r)}(x|\lambda) \]

Therefore, by (24) and (26), we obtain the following theorem.
Theorem 2. For any \(r, s \geq 0 \), we have

\[
H_n^{(r-s)}(x|\lambda) = \sum_{l=0}^{\min\{s,n\}} \binom{n}{l} \sum_{m=0}^{l} \binom{s}{m} \sum_{k_1+\cdots+k_m=l} \binom{l}{k_1, \ldots, k_m} H_{n-l}^{(r)}(x|\lambda)
\]

\[
+ \sum_{l=\min\{s,n\}+1}^{n} \binom{n}{l} \min\{s,n\} \binom{s}{m} \sum_{k_1+\cdots+k_m=l} \binom{l}{k_1, \ldots, k_m} H_{n-l}^{(r)}(x|\lambda).
\]

Let us take \(s = r - 1 (r \geq 1) \) in Theorem 2. Then we obtain the following corollary.

Corollary 3. For \(n \geq 0, r \geq 1 \), we have

\[
x^n = \sum_{l=0}^{\min\{r-1,n\}} \binom{n}{l} \sum_{m=0}^{l} \binom{r-1}{m} \sum_{k_1+\cdots+k_m=l} \binom{l}{k_1, \ldots, k_m} H_{n-l}^{(r)}(x|\lambda)
\]

\[
+ \sum_{l=\min\{r-1,n\}+1}^{n} \binom{n}{l} \min\{r-1,n\} \binom{r-1}{m} \sum_{k_1+\cdots+k_m=l} \binom{l}{k_1, \ldots, k_m} H_{n-l}^{(r)}(x|\lambda).
\]

Let us take \(s = r (r \geq 1) \) in Theorem 2. Then we obtain the following corollary.

Corollary 4. For \(n \geq 0, r \geq 1 \), we have

\[
x^n = \sum_{l=0}^{\min\{r,n\}} \binom{n}{l} \sum_{m=0}^{l} \binom{r}{m} \sum_{k_1+\cdots+k_m=l} \binom{l}{k_1, \ldots, k_m} H_{n-l}^{(r)}(x|\lambda)
\]

\[
+ \sum_{l=\min\{r,n\}+1}^{n} \binom{n}{l} \min\{r,n\} \binom{r}{m} \sum_{k_1+\cdots+k_m=l} \binom{l}{k_1, \ldots, k_m} H_{n-l}^{(r)}(x|\lambda).
\]
Now, we define the analogue of Stirling numbers of the second kind as follows:

\[
S_\lambda(n, k) = \frac{1}{k!} \sum_{j=0}^{k} \binom{k}{j} (-\lambda)^{k-j} n^j, \quad (n, k \geq 0).
\]

(27)

Note that \(S_1(n, k) = S(n, k) \) is the stirling number of the second kind.

From the definition of \(\tilde{\triangle}_\lambda \), we have

\[
\tilde{\triangle}_\lambda^n f(0) = \sum_{k=0}^{n} \binom{n}{k} (-\lambda)^{n-k} f(k) \]

(28)

By (27) and (28), we get

\[
S_\lambda(n, k) = \frac{1}{k!} \tilde{\triangle}_\lambda^k 0^n, \quad (n, k \geq 0). \]

(29)

Let us take \(s = 2r \). Then we have

\[
J_x^n = H_n^{(-r)}(x|\lambda)
\]

\[
= \sum_{l=0}^{\min\{2r,n\}} \binom{n}{l} \sum_{m=0}^{l} \frac{2r}{(1-\lambda)^m} \sum_{k_1 \geq 1} \ldots \sum_{k_m \geq 1} \binom{l}{k_1, \ldots, k_m} H_{n-1}^{(r)}(x|\lambda),
\]

and

\[
J_x^n = \left(\frac{1}{1-\lambda} \right)^r \left(\frac{\tilde{\triangle}_\lambda}{1-\lambda} \right)^r (x^n) = \frac{1}{(1-\lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} (x+j)^n.
\]

(31)
By (30) and (31), we get

\[
\frac{1}{(1-\lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} (x+j)^n = \frac{1}{(1-\lambda)^r} \hat{\Delta}^r x^n
\]

(32)

\[
= \sum_{l=0}^{\min\{2r,n\}} \left\{ \binom{n}{l} \sum_{m=0}^{l} \binom{2r}{m} \sum_{k_1+\ldots+k_m=l \atop k_j \geq 1} \binom{l}{k_1,\ldots,k_m} \right\} H_{n-l}^{(r)}(x|\lambda)
\]

\[
+ \sum_{l=\min\{2r,n\}+1}^{n} \left\{ \binom{n}{l} \sum_{m=0}^{l} \binom{2r}{m} \sum_{k_1+\ldots+k_m=l \atop k_j \geq 1} \binom{l}{k_1,\ldots,k_m} \right\} H_{n-l}^{(r)}(x|\lambda).
\]

Let us take \(x = 0\) in (32). Then we obtain the following theorem.

Theorem 5.

\[
\frac{r!}{(1-\lambda)^r} S_\lambda(n,r) = \frac{r!}{(1-\lambda)^r} \frac{\hat{\Delta}^0 0^n}{r!}
\]

\[
= \sum_{l=0}^{\min\{2r,n\}} \left\{ \binom{n}{l} \sum_{m=0}^{l} \binom{2r}{m} \sum_{k_1+\ldots+k_m=l \atop k_j \geq 1} \binom{l}{k_1,\ldots,k_m} \right\} H_{n-l}^{(r)}(\lambda)
\]

\[
+ \sum_{l=\min\{2r,n\}+1}^{n} \left\{ \binom{n}{l} \sum_{m=0}^{l} \binom{2r}{m} \sum_{k_1+\ldots+k_m=l \atop k_j \geq 1} \binom{l}{k_1,\ldots,k_m} \right\} H_{n-l}^{(r)}(\lambda)
\]

\[
= \sum_{m=0}^{\min\{r,n\}} \binom{r}{m} \sum_{k_1+\ldots+k_m=n \atop k_j \geq 1} \binom{n}{k_1,\ldots,k_m}.
\]
Let us consider $s = 2r - 1$ in the identity of Theorem 2. Then we have

$$J_{\lambda}^{r-1} x^n = H_n^{(r-1)}(x|\lambda)$$

(33)

$$= \sum_{l=0}^{\min\{2r-1, n\}} \left\{ \binom{n}{l} \sum_{m=0}^{l} \frac{2r-1}{(1-\lambda)^m} \sum_{k_1+\cdots+k_m=t} \left(k_1, \cdots, k_m \right) \right\} H_{n-l}^{(r)}(x|\lambda)$$

$$+ \sum_{l=\min\{2r-1, n\}+1}^{n} \left\{ \binom{n}{l} \sum_{m=0}^{\min\{2r-1, n\}} \frac{2r-1}{(1-\lambda)^m} \sum_{k_1+\cdots+k_m=t} \left(k_1, \cdots, k_m \right) \right\} H_{n-l}^{(r)}(x|\lambda)$$

$$= \frac{1}{(1-\lambda)^{r-1-j}} \sum_{j=0}^{r-1} \binom{r-1}{j} (-\lambda)^{r-1-j} (x+j)^n = \frac{1}{(1-\lambda)^{r-1-j}} \Delta_{\lambda}^{r-1} x^n.$$

Let us take $x = 0$ in (33). Then we obtain the following theorem.

Theorem 6. For $n \geq 0$ and $r \geq 1$, we have

$$\frac{(r-1)!}{(1-\lambda)^{r-1}} S_\lambda(n, r-1) = \frac{(r-1)!}{(1-\lambda)^{r-1}} \Delta_{\lambda}^{r-1} 0^n$$

$$= \sum_{l=0}^{\min\{2r-1, n\}} \left\{ \binom{n}{l} \sum_{m=0}^{l} \frac{2r-1}{(1-\lambda)^m} \sum_{k_1+\cdots+k_m=t} \left(k_1, \cdots, k_m \right) \right\} H_{n-l}^{(r)}(\lambda)$$

$$+ \sum_{l=\min\{2r-1, n\}+1}^{n} \left\{ \binom{n}{l} \sum_{m=0}^{\min\{2r-1, n\}} \frac{2r-1}{(1-\lambda)^m} \sum_{k_1+\cdots+k_m=t} \left(k_1, \cdots, k_m \right) \right\} H_{n-l}^{(r)}(\lambda)$$
Remark. Note that

\[
\frac{(r-1)!}{(1-\lambda)^{r-1}} S_\lambda(n, r-1)
\]

\[
= \sum_{l=0}^{\min\{r,n\}} \left\{ \binom{n}{l} \sum_{m=0}^{l} \frac{r^m}{(1-\lambda)^m} \sum_{k_1+\cdots+k_m=l \atop k_j \geq 1} \binom{l}{k_1, \ldots, k_m} \right\} H_{n-l}(\lambda)
\]

\[
+ \sum_{l=\min\{r,n\}+1}^{n} \left(\binom{n}{l} \min\{r,n\} \frac{r^m}{(1-\lambda)^m} \sum_{k_1+\cdots+k_m=l \atop k_j \geq 1} \binom{l}{k_1, \ldots, k_m} \right) H_{n-l}(\lambda)
\]

References

[1] S. Araci, M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22(2012), no. 3, 399-406.

[2] L. Carliz, Some polynomials related to the Bernoulli and Euler polynomials, Utilitas Math. 19 (1981), 81–127.

[3] M. Can, M. Cenkci, V. Kurt, Y. Simsek, Twisted Dedekind type sums associated with Barnes’ type multiple Frobenius-Euler l-functions, Adv. Stud. Contemp. Math. 18 (2009), no. 2, 135–160.

[4] I. N. Cangul, V. Kurt, H. Ozden, Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math. 19 (2009), no. 1, 39–57.

[5] R. Dere, Y. Simsek, Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 433-438.

[6] T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132(2012), no. 12, 2854-2865.

[7] T. Kim, J. Choi, A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on \(\mathbb{Z}_p \), Adv. Stud. Contemp. Math. 22(2012), no. 2, 215–223.

[8] S. Roman, The umbral calculus, Dover Publ. Inc. New York. 2005.
[9] Y. Simsek, O. Yurekli, V. Kurt, *On interpolation functions of the twisted
generalized Frobenius-Euler numbers*, Adv. Stud. Contemp. Math., 15, No. 2, 187-194 (2007).

[10] K. Shiratani, *On Euler numbers*, Mem. Fac. Sci. Kyushu Univ. Ser. A 27, 1-5(1973).

[11] K. Shiratani, S. Yamamoto *On a p-adic interpolation function for the Euler
numbers and its derivatives*, Mem. Fac. Sci. Kyushu Univ. Ser. A 39(1985),
no. 1, 113-125.

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
e-mail: dskim@sogang.ac.kr

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
e-mail: tkkim@kw.ac.kr