Synthesis and antibacterial activity of novel myricetin derivatives containing sulfonylpiperazine

Jun He1 · Xue-Mei Tang1 · Ting-Ting Liu1 · Feng Peng1 · Qing Zhou1 · Li-Wei Liu1 · Ming He1 · Wei Xue1

Received: 10 June 2020 / Accepted: 15 September 2020 / Published online: 23 September 2020
© The Author(s) 2020

Abstract
Myricetin derivatives containing sulfonylpiperazine were synthesized and their structures were confirmed by NMR and HRMS. The antibacterial activity results indicated that some compounds showed good antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Ralstonia solanacearum (Rs). Among them, compounds 4m and 4p revealed excellent antibacterial activities against Rs with a concentration for 50% of maximal effect (EC50) value of 4 and 4 μg/mL, which were better than the control drugs bismuthiazol (13 μg/mL) and thiodiazole-copper (185 μg/mL). As observed using scanning electron microscope (SEM), these compounds act by causing folding and deformation of the bacterial surface, resulting in incomplete bacterial structure, so as to achieve the goal of bacteriostasis. The myricetin derivatives synthesized are expected to guide the research direction of new antibacterial agents.

Keywords Myricetin derivative · Sulfonylpiperazine · Antibacterial activity · Concentration for 50% of maximal effect · Scanning electron microscope

Introduction
Plant diseases have always been a headache in agricultural production. The plant bacterial diseases are extremely difficult to control in agricultural production, such as rice bacterial blight, tobacco bacterial wilt, citrus canker and so on (Zou et al. 2011; Li et al. 2017). Since the earliest fungicide bordeaux liquid, a lot of agricultural fungicides have been developed successively. With the development of chemistry, new types of nano-antibacterial agents have also come into the sight of chemists (Khatoon et al. 2017, 2018). Until today, there have been many commercial antibacterial agents with good activity, such as bismuthiazol and thiodiazole-copper etc. However, with the increase in the use of traditional fungicides, the resistance of plant bacteria to them has gradually increases (Yan et al. 2016; Jiang et al. 2020a, b). Therefore, the development of new antibacterial agents is of great significance.

Flavonoids are widely existed in plants in nature, and belong to the secondary metabolites of plants (Manthey and Guthrie 2002). It plays an important role in plant growth, development, flowering, fruiting, antibacterial and disease prevention. Moreover, many studies in recent years have shown that flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) have shown an important role in the treatment of Alzheimer’s disease (Jalili-Baleh et al. 2018). Therefore flavonoids have become a research hotspot in the pharmaceutical and pesticide industries due to their extensive biological activities. Myricetin is a common plant-derived flavonol derived from fruits, vegetables, berries, nuts, tea, etc. (Zhang et al. 2020). Studies have found that myricetin has a wide range of biological activities. Such as antibacterial (Mo et al. 2020), anticancer (Sun et al. 2012), anti-inflammatory (Wang et al. 2010), antiviral (Yu et al. 2012) and antioxidant activities (Guitard et al. 2016). Studies have found that myricetin has the least cytotoxicity to TZM-bl, HeLa, PBMC and H9 cells at a concentration of 100 μM, with cell viability above 85%, which is better than quercetin and pinocembrin (Pasetto et al. 2010).
Piperazine is an important intermediate in medicine, pesticide and dye. Due to the special chemical structure of piperazine, it is widely used in medicine, pesticides, and dyes. As a kind of pharmacophore group with extensive biological activities in antibacterial, weeding, anticancer, antioxidant, etc., the sulfonamide group has shown excellent activity and great value in the field of medicine and pesticides. Therefore, the structure of sulfonlpiperazine is often used in new drug design and development (Xu et al. 2015).

As a flavonoid with good biological activity, the application of myricetin derivatives has become more and more extensively. For example, some of the myricetin derivatives containing acylhydrazone showed excellent anticancer activity (Xue et al. 2015). Meanwhile, some myricetin derivatives containing piperazine amide also showed good anticancer activity (Ruan et al. 2018a, b). At the cellular level, chalcone containing myricetin can be influenced by inhibiting the differentiation of Gaoyou duck embryonic osteoclasts in vitro (Fu et al. 2019). Tobacco mosaic virus has a great harm to plant growth and development. Some of the myricetin derivatives containing oxadiazole (Zhang et al. 2019) or ferulic acid (Tang et al. 2020) showed good anti-TMV activity.

In summary, we hope to develop a fast and efficient method for constructing the partial skeleton of piperazine and sulfonamides structure with the lead of myricetin by consulting a large number of literatures and combining our previous work. A Bruker Ascend 400 NMR spectrometer (Bruker Optics, Switzerland) was used to record the 1H, 13C and 19F nuclear magnetic resonance (NMR), with tetramethylsilane (TMS) as the internal standard, and CDCl$_3$ as solvent. The melting point tests were conducted in an XT-4 binocular microscope (Beijing Tech Instrument Co., Ltd.). A WFH-203B with three UV analyzer (Shanghai Jingke Industrial Co., Ltd.) was used for thin-layer chromatography (TLC). Deionizing water purifier (Hokee). Vertical High-Pressure Steam Sterilization Pot (Shanghai ShenAn Medical instrument Factory). Multiskan FC (Thermo Fisher Scientific (Shanghai) Co., Ltd.).

Experimental

Materials

Piperazine and arylsulfonyl chloride were obtained from Shanghai Titanchem Co., Ltd., and all other reagents were analytical grade. A Bruker Ascend 400 NMR spectrometer (Bruker Optics, Switzerland) was used to record the 1H, 13C and 19F nuclear magnetic resonance (NMR), with tetramethylsilane (TMS) as the internal standard, and CDCl$_3$ as solvent. The melting point tests were conducted in an XT-4 binocular microscope (Beijing Tech Instrument Co., Ltd.). A WFH-203B with three UV analyzer (Shanghai Jingke Industrial Co., Ltd.) was used for thin-layer chromatography (TLC). Deionizing water purifier (Hokee). Vertical High-Pressure Steam Sterilization Pot (Shanghai ShenAn Medical instrument Factory). Multiskan FC (Thermo Fisher Scientific (Shanghai) Co., Ltd.).

Chemicals

General procedure for preparing the intermediates 1, 2 and 3

As shown in Scheme 1, intermediate 1 and 2 were prepared via the reported methods (Chen et al. 2019). Myricetin (1 mmol) and methyl iodide (15 mmol) were stirred at 43 °C for 48 h, and then suction filtration and the filter was washed with CH$_2$Cl$_2$, most of the solvent in the filtrate was removed by spin evaporation and hydrochloric acid.
(10 mL) was added under reflux in the ethanol to obtain the intermediate 1. Finally, the intermediate 1 (10 mmol) was stirred in DMF at room temperature for 1 h and dibromoalkane (30 mmol) was added; this reaction was allowed to continue for 12 h and pour into water to obtain the intermediate 2. And the intermediate 3 was prepared by known methods (Henderson et al. 2011). Arylsulfonyl chloride (10 mmol) was added in one portion to a solution of piperazine (60 mmol) in CH₂Cl₂ at 0 °C. The reaction mixture was stirred at 0 °C for 30 min, diluted with CH₂Cl₂, quenched by the addition of saturated NaHCO₃ (aq), washed with brine, and concentrated in vacuo to obtain the intermediate 3.

Synthesis of the target compounds 4a–4y

The synthetic route to the title compounds, the myricetin derivatives containing sulfonylpiperazine (4a–4y) are shown in Scheme 1. The intermediate 3 (2.4 mmol) and potassium carbonate (3.0 mmol) were stirred in 30 mL acetonitrile for 30 min, then the intermediate 2 (2.0 mmol) was added, the temperature was increased to 90 °C for 5 h, the potassium carbonate was removed by filtration, and the acetonitrile was removed by spin evaporation. The target compounds 4a–4y were obtained by column chromatography (ethyl acetate:petroleum ether = 1:2–2:1), with different yields. Their physical properties and spectral data are listed in the Supporting Information, and the ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS spectra attached in the Supporting Information.

Results and discussion

Chemistry

Twenty-five myricetin derivative containing sulfonylpiperazine were obtained in this study, all their structures were identified via ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS. The data of 4a was shown and discussed below. In the ¹H NMR spectrum, multiplet signals at δ 7.68–6.28 ppm revealed the presence of aromatic nuclei, and a triplet peak at δ 3.91–3.94 ppm indicated the presence of O–CH₂–C group. In addition, the high-frequency single peaks at δ 3.89–3.83 ppm revealed the presence of five –OCH₃. The nuclear magnetic signal at δ 2.93–2.38 ppm revealed the presence of nuclear magnetic signal peak of piperazine’s hydrogen proton. Finally, and three absorption signals at δ 2.28–1.40 ppm indicated the presence of C–CH₂CH₂CH₂–N group. The absorption signals at δ 174.02 and 72.12 ppm in ¹³C NMR spectra confirmed the presence of –C=O and –OCH₂– groups, respectively. When fluorine is substituted on the benzene ring, carbon atoms attached to fluorine will migrate to the low field and the fluorine atom will split the two adjacent carbon atoms in ¹³C NMR spectra. For example, compound 4b had an absorption peak at δ 163.99 ppm, which represented the nuclear magnetic peak of C–F. The absorption peak of the carbon atom at the same position in 4a was shown at δ 132.83 ppm. In addition, two adjacent carbon atoms of a carbon atom substituted by fluorine split into two adjacent absorption peaks at δ 116.42 and 116.19 ppm. The
two carbons at the same position in 4a showed a single absorption peak at δ 132.83 ppm. The high resolution mass spectrometry (HRMS) spectra of title compounds show characteristic absorption signals of [M + H]+ ions, which are consistent with their molecular weight.

Antibacterial activity examination of the title compounds against Xoo, Xac and Rs in vitro

The bacteriostatic activity of the compounds were measured by turbidimetric method (Zhong et al. 2017; Li et al. 2013), using Xac, Xoo and Rs as test strains, while using the commercial antibacterial agents bismertiazol and thiodiazole-copper as control drugs. Some of the target compounds exhibited better antibacterial activities against Xac, Xoo and Rs in vitro at 100 and 50 μg/mL, and the observed results would be shown in Table 1. For example, the myricetin has no obvious antibacterial activity, but most of the target compounds showed better antimicrobial activity than the lead compound myricetin. Compounds 4a, 4c and 4d were exhibited favorable antibacterial activity against Xoo at 100 μg/mL, with the inhibition rates of 72, 77 and 75%, which gained an advantage over that of bismertiazol (55%) and thiodiazole-copper (62%). The inhibition rates of compounds 4a, 4c and 4d against Xoo at 50 μg/mL were 52, 53 and 43%, which were better than that of bismertiazol (39%) and thiodiazole-copper (36%). Similarly, compounds 4h and 4p showed higher antibacterial activity against Xac at 100 μg/mL, the calculated inhibition of 74 and 87%, which exceeded that of bismertiazol (63%) and thiodiazole-copper (51%). Compounds 4h and 4p revealed superior antibacterial activities against Xac at 50 μg/mL with the inhibition rates of 42 and 41%, respectively, which were also higher compared to bismertiazol (19%) and thiodiazole-copper.

![Table 1](image)

Table 1 Antibacterial activities of compounds 4a–4y

Compounds	Xoo	Xac	Rs			
	100 μg/mL	50 μg/mL	100 μg/mL	50 μg/mL	100 μg/mL	50 μg/mL
4a	74 ± 4	52 ± 4	55 ± 3	31 ± 2	27 ± 3	25 ± 2
4b	25 ± 4	24 ± 1	55 ± 6	27 ± 1	93 ± 4	66 ± 3
4c	77 ± 7	53 ± 2	47 ± 2	33 ± 0	34 ± 4	104 ± 0
4d	75 ± 6	43 ± 5	53 ± 1	36 ± 2	63 ± 2	51 ± 5
4e	41 ± 1	26 ± 1	57 ± 2	31 ± 3	38 ± 5	28 ± 2
4f	26 ± 3	20 ± 2	42 ± 2	33 ± 2	–	–
4g	46 ± 5	33 ± 3	40 ± 3	39 ± 2	80 ± 5	39 ± 3
4h	41 ± 1	33 ± 5	74 ± 2	42 ± 1	–	–
4i	38 ± 5	33 ± 5	33 ± 3	11 ± 5	69 ± 4	51 ± 3
4j	40 ± 2	36 ± 2	54 ± 2	40 ± 3	73 ± 6	39 ± 1
4k	57 ± 3	25 ± 6	46 ± 6	23 ± 4	100 ± 2	96 ± 5
4l	24 ± 2	21 ± 3	55 ± 3	29 ± 3	68 ± 1	37 ± 5
4m	28 ± 5	25 ± 3	26 ± 3	25 ± 1	100 ± 3	86 ± 5
4n	22 ± 2	21 ± 5	48 ± 1	37 ± 3	48 ± 2	17 ± 2
4o	22 ± 4	13 ± 2	38 ± 4	23 ± 2	98 ± 1	90 ± 3
4p	57 ± 1	29 ± 6	87 ± 2	41 ± 1	100 ± 4	90 ± 2
4q	12 ± 5	7 ± 1	33 ± 4	28 ± 1	51 ± 4	19 ± 2
4r	42 ± 1	19 ± 7	36 ± 2	33 ± 3	57 ± 3	55 ± 1
4s	28 ± 9	3 ± 3	36 ± 3	26 ± 2	16 ± 2	10 ± 1
4t	60 ± 1	70 ± 0	37 ± 7	16 ± 4	36 ± 3	29 ± 3
4u	29 ± 6	17 ± 5	32 ± 3	26 ± 3	86 ± 0	80 ± 3
4v	35 ± 5	5 ± 2	25 ± 1	26 ± 3	69 ± 3	30 ± 5
4w	19 ± 6	8 ± 6	22 ± 0	11 ± 4	75 ± 1	73 ± 3
4x	14 ± 2	9 ± 4	32 ± 6	17 ± 2	41 ± 1	22 ± 6
4y	33 ± 2	15 ± 2	37 ± 6	26 ± 7	82 ± 3	77 ± 3
Myricetin	11 ± 4	9 ± 5	–	–	21 ± 2	8 ± 5
BT	55 ± 2	39 ± 2	63 ± 1	19 ± 6	60 ± 6	52 ± 0
TC	62 ± 5	36 ± 4	51 ± 2	19 ± 2	38 ± 4	21 ± 2

Average of three replicates

BT bismertiazol, *TC* thiodiazole-copper

bThe commercial antibacterial agents bismertiazol and thiodiazole-copper was used as positive control
In addition, compounds 4b, 4k, 4m, 4o, 4p and 4y exhibited better antibacterial activities against Rs at 100 and 50 µg/mL, with the inhibition rates of 93 and 66%, 100 and 96%, 100 and 86, 98 and 90%, 100 and 90%, and 86 and 80%, 82 and 77%, respectively, which were over the control agents bismertiazol (60 and 52%) and thidiazole-copper (38 and 20%).

According to the preliminary screening results of antibacterial activity, EC$_{50}$ values of some of the compounds showed excellent antibacterial activities against Xoo, Xac and Rs, as shown in Table 2. We can know from Table 2, the compounds 4a, 4c and 4d exerted distinct activity against Xoo with the EC$_{50}$ values were 36, 38 and 40 µg/mL, respectively, which preceded that of bismerthiazol (89 µg/mL) and thiodiazole-copper (68 µg/mL). Compound 4p revealed preferable antibacterial activity against Xac with EC$_{50}$ values of 41 µg/mL, which was superior to bismerthiazol (93 µg/mL) and thiodiazole-copper (70 µg/mL). Compounds 4k, 4m, 4o, 4p, 4u and 4y against Rs with EC$_{50}$ values of 6, 4, 10, 4, 5 and 5 µg/mL, respectively, which prevailed over that of bismertiazol (13 µg/mL) and thiodiazole-copper (185 µg/mL) signal.

Table 2 EC$_{50}$ values of some compounds against Xoo, Xac and Rs

Tested Compounds	Regression equation	r	EC$_{50}$ (µg/mL)
Xoo 4a	y = 1.0037x + 3.4383	0.9627	36
4c	y = 1.3975x + 2.7873	0.9754	38
4d	y = 1.2546x + 2.9887	0.9715	40
TC	y = 1.8570x + 1.5964	0.9910	68
BT	y = 1.2079x + 2.6426	0.9844	89
Xac 4h	y = 1.2056x + 2.7741	0.9589	70
4p	y = 2.0575x + 1.6741	0.9550	41
TC	y = 1.2141x + 2.7624	0.9752	70
BT	y = 1.1147x + 2.8064	0.9878	93
Rs 4b	y = 2.3189x + 1.6664	0.9921	27
4d	y = 0.8746x + 3.9683	0.9632	15
4i	y = 0.6887x + 3.9954	0.9585	29
4j	y = 1.5022x + 2.8776	0.9636	26
4k	y = 1.8641x + 3.5488	0.9507	6
4m	y = 1.3204x + 4.2077	0.9633	4
4o	y = 1.9801x + 3.0192	0.9934	10
4p	y = 1.3149x + 4.2120	0.9617	4
4r	y = 0.6145x + 4.1342	0.9938	26
4u	y = 0.8169x + 4.2210	0.9904	5
4w	y = 1.3517x + 3.1764	0.9582	22
4y	y = 1.0833x + 4.2902	0.9604	5
TC	y = 0.6931x + 3.4289	0.9773	185
BT	y = 0.8701x + 4.0372	0.9747	13

Average of three replicates

BT bismertiazol, TC thidiazole-copper

The commercial antibacterial agents bismertiazol and thidiazole-copper was used as positive control

Fig. 2 Antibacterial activities of compound 4p (a), myricetin (b), thidiazole-copper (c) and bismertiazol (d) against Rs test in vitro at 100, 50, 25, 12.5 and 6.25 µg/mL.
inhibition rates of 48 and 41%. When R was substituted with 4–NO₂–Ph, compounds 4d and 4p showed certain inhibitory activity against Xoo, Xac and Rs at 100 µg/mL. The inhibitory activity of compound 4d against Xoo is better when n = 4. Similarly, the inhibitory activity of compound 4p against Xac and Rs is best when n = 3. Compared with the previous work of research group, this article introduced sulfonylpiperazine to the structure of myricetin, and some compounds show better inhibitory activity against Rs with EC₅₀ values between 4 and 10 µg/mL, which is superior to the myricetin derivatives containing thiodiazole sulfide with EC₅₀ values between 28 and 185 µg/mL (Ruan et al. 2018a, b). And the antibacterial activity of these compounds were verified by SEM.

Scanning electron microscopy (SEM) studies

To further explore the mechanism of antibacterial action against Rs, scanning electron microscopy (SEM) studies were carried out using the designated compound 4p and the observed SEM micrographs are shown in Fig. 3. Obviously, when there is no drug action, the form of the strain is plump and short and thick. However, the surface of the bacteria began to appear wrinkle at 50 µg/mL, which became more pronounced as the concentration of the drug increased to 100 µg/mL. It was obtained by SEM, the bacteriostatic mechanism of compound 4p is to act on the surface of bacteria by drugs, thus causing the bacteria to fold and shrink, resulting in incomplete bacterial structure, so as to achieve the goal of bacteriostasis.

Conclusion

In summary, 25 myricetin derivatives containing sulfonylpiperazine were designed and synthesized. And test their in vitro activity on the three strains Xoo, Xac and Rs. Some compounds showed excellent inhibitory activity against Rs with EC₅₀ values between 4 and 10 µg/mL. Among them, compound 4p against Xac and Rs with EC₅₀ value of 41 and 4 µg/mL, which far exceeded that of bismertiazol (93 and 13 µg/mL, respectively) and thiodiazole-copper (67 and 185 µg/mL), respectively. Meanwhile, the inhibitory rate of compound 4p on Xoo is 57% at 100 µg/mL, which was slightly better than the control drug bismertiazol (55 µg/mL). Meanwhile, compound 4m against Rs with EC₅₀ value of 4 µg/mL, which better than the control drug bismertiazol (13 µg/mL) and thiodiazole-copper (185 µg/mL). Scanning electron microscopy analysis further confirmed that the title compounds caused the bacteria to shrink by acting on the surface of the bacteria, so as to achieve antibacterial effect. Therefore, the designed compounds can be used as potential antibacterial drugs for further research to find new antibacterial drugs.

Acknowledgements The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (No. 2017YFD0200506), the National Science Foundation of China (No. 21867003) and Science Fund of Guizhou, China (Nos. 20191105, 20192452).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alina C, Federica F, Andreina B et al (2020) Optimization of 2-(1H-imidazo-2-yl)piperazines series of trypanosoma brucei growth inhibitors as potential treatment for the second stage of HAT. Bioorg Med Chem Lett. https://doi.org/10.1016/j. bmcl.2020.127207
Chen W, Li YX, Li YH et al (2018) Design, synthesis and biological activity of 2-cyanophenylsulfonylurea derivatives. Chin J Org Chem 38:2747–2775. https://doi.org/10.6023/cjoc201804019

Chen Y, Li P, Su SJ et al (2019) Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Adv 9:23045–23052. https://doi.org/10.1039/c9ra05139b

Fu YX, Wang YH, Tong XS et al (2019) EDA CO, a derivative of myricetin, inhibits the differentiation of Gaoyou duck embryonic osteoclasts in vitro. Br Poult Sci 60:169–175. https://doi.org/10.1080/00071668.2018.1564239

Guitard R, Paul JF, Nardello-Rataj Y et al (2016) Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to alpha-tocopherol for the preservation of omega-3 oils. Food Chem 213:284–295. https://doi.org/10.1016/j.foodchem.2016.06.038

Henderson BJ, Carper DJ, Gonzalez C et al (2011) Structure–activity relationship studies of sulfonilpyrangelazine analogues as novel negative allosteric modulators of human neuronal nicotinic receptors. J Med Chem 54:8681–8692. https://doi.org/10.1021/jm201294r

Jalili-Baleh L, Babaei E, Abdpour S et al (2018) A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur J Med Chem 152:570–589. https://doi.org/10.1016/j.ejmech.2018.05.004

Jiang SC, Su SJ, Chen M et al (2020a) Antibacterial activities of novel dithiocarbamate-containing 4H-chromen-4-one derivatives. J Agric Food Chem 68:5641–5647. https://doi.org/10.1021/acs.jafc.0c01652

Jiang SC, Tang X, Chen M et al (2020b) Design, synthesis and antibacterial activities against Xanthomonas axonopodis pv. citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonylmoieties. Pest Manag Sci 76:853–860. https://doi.org/10.1002/ps.5587

Khaatoon UT, Rao GVS N, Mohan KM et al (2017) Antibacterial and antifungal activity of silver nanoparticles synthesized by tri-sodium citrate assisted chemical approach. Vacuum 146:259–265. https://doi.org/10.1016/j.vacuum.2017.10.003

Khaatoon UT, Rao GVS N, Mohan MK et al (2018) Comparative study of antifungal activity of silver and gold nanoparticles synthesized by facile chemical approach. J Environ Chem Eng 6:5837–5844. https://doi.org/10.1016/j.jece.2018.08.009

Li P, Yin J, Xu W et al (2013) Synthesis, antibacterial activities and 3D-QSAR of sulfone derivatives containing 1, 3, 4-oxadiazole moiety. Chem Biol Drug Des 82:546–556. https://doi.org/10.1111/cbdd.12181

Li P, Tian P, Chen Y et al (2017) Novel bisthioether derivatives containing a 1,3,4-thiadiazole moiety: design, synthesis, antibacterial and nematocidal activities. Pest Manag Sci 74:844–852. https://doi.org/10.1002/ps.4762

Li P, Chen Y, Xia RJ et al (2019) Synthesis and biological activities of myricetin derivatives containing quinoxaline. Chem J Chin Univ 40:909–917. https://doi.org/10.7503/cjcu20180828

Manthey JA, Guthrie N (2002) Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem 50:5837–5843. https://doi.org/10.1021/jf020121d

Mo F, Ma J, Yang X (2020) In vitro and in vivo effects of the combination of myricetin and micanine nitrate incorporated to thermo-sensitive hydrogels, on C. albicans biofilms. Phytomedicine. https://doi.org/10.1016/j.phymed.2020.153223

Nadia HM, Mona SM (2020) New imidazolone derivatives comprising a benzoate or sulfonamide moiety as anti-inflammatory and antibacterial inhibitors: design, synthesis, selective COX-2, DHFR and molecular-modeling study. Bioorg Chem. https://doi.org/10.1016/j.biochem.2019.103438

Pasetto S, Pardi V, Murata RM (2014) Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS ONE 9:e115323. https://doi.org/10.1371/journal.pone.0115323

Peng Z, Wang MH (2018) Design, synthesis and biological activity of novel fluorinated pyridine piperazine derivatives. Pesticide 57:641–644

Ruan XH, Zhang C, Jiang SC et al (2018a) Design, synthesis, and biological activity of novel myricetin derivatives containing amide, thioether, and 1,3,4-thiadiazole moieties. Molecules 23:3132. https://doi.org/10.3390/molecules23123132

Ruan XH, Zhao HJ, Zhang C et al (2018b) Syntheses and bioactivities of myricetin derivatives containing piperazine acidamide moiety. Chem J Chin Univ 39:1197–1204. https://doi.org/10.7503/cjcu2017070740

Soliman AM, Karam HM, Meekawy MH et al (2020) Antioxidant activity of novel quinazolinones bearing sulfonamide: potential radiomodulatory effects on liver tissues via NF-κB/PON1 pathway. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2020.112333

Štěpánková J, Kugler M, Holub J et al (2020) Sulfonamido carbazoles as highly selective inhibitors of cancer-specific carbonic anhydrase IX. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2020.112460

Suleman H, Maulud AS, Syalsabila A et al (2020) High-pressure experimental and theoretical study of CO2 solubility in aqueous blends of lysine salts with piperazine as new absorbents. Fluid Phase Equilib 507:112429. https://doi.org/10.1016/j.fluid.2019.112429

Sun F, Zheng XY, Ye J et al (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64:599–606. https://doi.org/10.1080/01655512.2011.665564

Tang X, Zhang C, Chen M et al (2020) Synthesis and antiviral activity of novel myricetin derivatives containing a ferulic acid amide scaffolds. New J Chem 44:2374–2379. https://doi.org/10.1039/c9nj05867b

Wang S, Tong Y, Lu S et al (2010) Anti-inflammatory activity of myricetin isolated from myrica rubraSieb. et Zucc. Leaves Planta Med 76:1492–1496. https://doi.org/10.1055/s-0030-1249780

Xu J, Wei MX, Li MG et al (2015) Synthesis and anti-cancer activity of new artemisinone sulfone-piperazine-sulfonamide derivatives. Chem J Chin Univ 36:919–926. https://doi.org/10.7503/cjcu20140906

Xue W, Song BA, Zhao HJ et al (2015) Novel myricetin derivatives: design, synthesis and anticancer activity. Eur J Med Chem 97:155–163. https://doi.org/10.1016/j.ejmech.2015.04.063

Yan BR, Lv XY, Du H et al (2016) Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolothioether moiety. Chem Pap 70:983–993. https://doi.org/10.1515/chempap-2016-0034

Yu MS, Lee J, Lee JM et al (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nSPl3. Bioorg Med Chem Lett 22:4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

Zhang C, Jiang SC, Chen Y et al (2019) Synthesis and biological of novel myricetin derivatives containing 1,3,4-oxadiazoles. Chin J Org Chem 39:1160–1168. https://doi.org/10.6023/cjoc201809040

Zhang D, Jiang X, Xiao L et al (2020) Mechanistic studies of inhibition on acrolein by myricetin. Food Chem. https://doi.org/10.1016/j.foodchem.2020.126788

Zhong XM, Wang XB, Chen LJ et al (2017) Synthesis and biological activity of myricetin derivatives containing 1,3,4-thiadiazole scaffold. Chem Cent J 11:106. https://doi.org/10.1186/s12977-017-0336-7

Zou LF, Li YR, Chen GY (2011) A non-marker mutagenesis strategy to suppress oryzicola. Agric Sci China 10:1139–1150

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.