On the boundary behavior of the holomorphic sectional curvature of the Bergman metric

Elisabetta Barletta

Abstract. We obtain a conceptually new differential geometric proof of P.F. Klembeck’s result (cf. [9]) that the holomorphic sectional curvature $k_g(z)$ of the Bergman metric of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ approaches $-4/(n+1)$ (the constant sectional curvature of the Bergman metric of the unit ball) as $z \to \partial \Omega$.

1. Introduction

Given a smoothly bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ C.R. Graham & J.M. Lee studied (cf. [7]) the C^∞ regularity up to the boundary for the solution to the Dirichlet problem $\Delta_g u = 0$ in Ω and $u = f$ on $\partial \Omega$, where Δ_g is the Laplace-Beltrami operator of the Bergman metric g of Ω. If $\varphi \in C^\infty(U)$ is a defining function ($\Omega = \{ z \in U : \varphi(z) < 0 \}$) their approach is to consider the foliation \mathcal{F} of a one-sided neighborhood V of the boundary $\partial \Omega$ by level sets $M_\epsilon = \{ z \in V : \varphi(z) = -\epsilon \}$ ($\epsilon > 0$). Then \mathcal{F} is a tangential CR foliation (cf. S. Dragomir & S. Nishikawa, [11]) each of whose leaves is strictly pseudoconvex and one may express $\Delta_g u = 0$ in terms of pseudohermitian invariants of the leaves and the transverse curvature $r = 2 \partial \overline{\partial} \varphi(\xi, \overline{\xi})$ and its derivatives (the meaning of ξ is explained in the next section). The main technical ingredient is an ambient linear connection ∇ on V whose pointwise restriction to each leaf of \mathcal{F} is the Tanaka-Webster connection (cf. S. Webster, [14], and N. Tanaka, [13]) of the leaf. An axiomatic description (and index free proof) of the existence and uniqueness of ∇ (referred to as the Graham-Lee connection of (V, φ)) was provided in [11]. As a natural continuation of the ideas in [11] one may relate the Levi-Civita connection ∇^g of (V, g) to the Graham-Lee connection ∇ and compute the curvature R^g of ∇^g in terms of the curvature of ∇. Together with an elementary asymptotic

1

Universit`a degli Studi della Basilicata, Dipartimento di Matematica, Contrada Macchia Romana, 85100 Potenza, Italy, e-mail: barletta@unibas.it
analysis (as $\epsilon \to 0$) this leads to a purely differential geometric proof of the result of P.F. Klembeck, [9], that the sectional curvature of (Ω, g) tends to $-\frac{4}{n+1}$ near the boundary $\partial \Omega$. The Author believes that one cannot overestimate the importance of the Graham-Lee connection (and that the identities (27) and (36) in Section 3 admit other applications as well, e.g. in the study of the geometry of the second fundamental form of a submanifold in (Ω, g)).

2. The Levi-Civita versus the Graham-Lee connection

Let Ω be a smoothly bounded strictly pseudoconvex domain in \mathbb{C}^n and $K(z, \zeta)$ its Bergman kernel (cf. e.g. [8], p. 364-371). As a simple application of C. Fefferman’s asymptotic development (cf. [6]) of the Bergman kernel $\varphi(z) = -K(z, z)^{-1/(n+1)}$ is a defining function for Ω (and $\Omega = \{ \varphi < 0 \}$). Cf. A. Korányi & H.M. Reimann, [11], for a proof. Let us set $\theta = \frac{i}{2}(\overline{\partial} - \partial)\varphi$. Then $d\theta = i \partial \overline{\varphi}$. Let us differentiate $\log |\varphi| = -(1/(n+1)) \log K$ (where K is short for $K(z, z)$) so that to obtain

$$\frac{1}{\varphi} \overline{\partial} \varphi = -\frac{1}{n+1} \overline{\partial} \log K.$$

Applying the operator $i \partial$ leads to

$$\frac{1}{\varphi} d\theta - \frac{i}{\varphi^2} \partial \varphi \wedge \overline{\partial} \varphi = -\frac{i}{n+1} \partial \overline{\partial} \log K.$$

We shall need the Bergman metric $g_{\bar{z}k} = \partial^2 \log K/\partial z^i \partial \bar{z}^k$. This is well known to be a Kähler metric on Ω.

Proposition 1. For any smoothly bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ the Bergman metric g is given by

$$g(X, Y) = \frac{n+1}{\varphi} \left\{ \frac{i}{\varphi} (\partial \varphi \wedge \overline{\partial} \varphi)(X, JY) - d\theta(X, JY) \right\},$$

for any $X, Y \in \mathcal{X}(\Omega)$.

Proof. Let $\omega(X, Y) = g(X, JY)$ be the Kähler 2-form of (Ω, J, g), where J is the underlying complex structure. Then $\omega = -i \partial \overline{\partial} \log K$ and [12] may be written in the form (2). Q.e.d.

We denote by $M_{\epsilon} = \{ z \in \Omega : \varphi(z) = -\epsilon \}$ the level sets of φ. For $\epsilon > 0$ sufficiently small M_{ϵ} is a strictly pseudoconvex CR manifold (of CR dimension $n-1$). Therefore, there is a one-sided neighborhood V of $\partial \Omega$ which is foliated by the level sets of φ. Let \mathcal{F} be the relevant foliation and let us denote by $H(\mathcal{F}) \to V$ (respectively by $T_{1,0}(\mathcal{F}) \to$
V) the bundle whose portion over M_ϵ is the Levi distribution $H(M_\epsilon)$ (respectively the CR structure $T_{1,0}(M_\epsilon)$) of M_ϵ. Note that
\[T_{1,0}(\mathcal{F}) \cap T_{0,1}(\mathcal{F}) = (0), \]
\[[\Gamma^\infty(T_{1,0}(\mathcal{F})), \Gamma^\infty(T_{1,0}(\mathcal{F}))] \subseteq \Gamma^\infty(T_{1,0}(\mathcal{F})). \]
Here $T_{0,1}(\mathcal{F}) = \overline{T_{1,0}(\mathcal{F})}$. For a review of the basic notions of CR and pseudohermitian geometry needed through this paper one may see S. Dragomir & G. Tomassini, [5]. Cf. also S. Dragomir, [3]. By a result of J.M. Lee & R. Melrose, [12], there is a unique complex vector field ξ on V, of type $(1,0)$, such that $\partial \varphi(\xi) = 1$ and ξ is orthogonal to $T_{1,0}(\mathcal{F})$ with respect to $\partial \varphi$ i.e. $\partial \varphi(\xi, Z) = 0$ for any $Z \in T_{1,0}(\mathcal{F})$. Let $r = 2 \partial \varphi(\xi, \bar{\xi})$ be the transverse curvature of φ. Moreover let $\xi = \frac{1}{2}(N - iT)$ be the real and imaginary parts of ξ. Then
\[(d\varphi)(N) = 2, \quad (d\varphi)(T) = 0, \]
\[\theta(N) = 0, \quad \theta(T) = 1, \]
\[\partial \varphi(N) = 1, \quad \partial \varphi(T) = i. \]
In particular T is tangent to (the leaves of) \mathcal{F}. Let g_θ be the tensor field given by
\[g_\theta(X, Y) = (d\theta)(X, JY), \quad g_\theta(X, T) = 0, \quad g_\theta(T, T) = 1, \]
for any $X, Y \in H(\mathcal{F})$. Then g_θ is a tangential Riemannian metric for \mathcal{F} i.e. a Riemannian metric in $T(\mathcal{F}) \to V$. Note that the pullback of g_θ to each leaf M_ϵ of \mathcal{F} is the Webster metric of M_ϵ (associated to the contact form $j_\epsilon^* \theta$, where $j_\epsilon : M_\epsilon \subset V$). As a consequence of (2), $JT = -N$ and $i_N d\theta = r \theta$ (see also [2] below)

Corollary 1. The Bergman metric g of $\Omega \subset \mathbb{C}^n$ is given by
\[g(X, Y) = -\frac{n + 1}{\varphi} g_\theta(X, Y), \quad X, Y \in H(\mathcal{F}). \]
\[g(X, T) = 0, \quad g(X, N) = 0, \quad X \in H(\mathcal{F}), \]
\[g(T, N) = 0, \quad g(T, T) = g(N, N) = \frac{n + 1}{\varphi} \left(\frac{1}{\varphi} - r \right). \]
In particular $1 - r \varphi > 0$ everywhere in Ω.

Using (4)-(6) we may relate the Levi-Civita connection ∇^g of (V, g) to another canonical linear connection on V, namely the Graham-Lee connection of Ω. The latter has the advantage of staying finite at the boundary (it gives the Tanaka-Webster connection of $\partial \Omega$ as $z \to \partial \Omega$).
We proceed to recalling the Graham-Lee connection. Let \(\{W_\alpha : 1 \leq \alpha \leq n-1\} \) be a local frame of \(T_{1,0}(\mathcal{F}) \), so that \(\{W_\alpha, \xi\} \) is a local frame of \(T^{1,0}(V) \). We consider as well \(L_\theta(Z, W) \equiv -i(d\theta)(Z, W) \), \(Z, W \in T_{1,0}(\mathcal{F}) \). Note that \(L_\theta \) and (the \(\mathbb{C} \)-linear extension of) \(g_\theta \) coincide on \(T_{1,0}(\mathcal{F}) \otimes T_{0,1}(\mathcal{F}) \). We set \(g_\alpha = g_\theta(W_\alpha, W_\beta) \). Let \(\{\theta_\alpha : 1 \leq \alpha \leq n-1\} \) be the (locally defined) complex 1-forms on \(V \) determined by \(\theta_\alpha(W_\beta) = \delta_\alpha^\beta \), \(\theta_\alpha(W_\beta) = 0 \), \(\theta_\alpha(T) = 0 \), \(\theta_\alpha(N) = 0 \).

Then \(\{\theta_\alpha, \theta_\beta, \theta, d\varphi\} \) is a local frame of \(T(V) \otimes \mathbb{C} \) and one may easily show that
\[
d\theta = 2ig_\alpha \theta_\alpha \wedge \bar{\theta}_\beta + r d\varphi \wedge \theta.
\]

As an immediate consequence
\[
i_Td\theta = -\frac{r}{2}d\varphi, \quad i_Nd\theta = r\theta.
\]

As an application of (7) we decompose \([T, N]\) (according to \(T(V) \otimes \mathbb{C} = T_{1,0}(\mathcal{F}) \oplus T_{0,1}(\mathcal{F}) \oplus \mathbb{C}T \oplus \mathbb{C}N) \) and obtain
\[
[T, N] = iW^\alpha(r)W_\alpha - iW^\alpha(r)W_\alpha + 2rT,
\]
where \(W^\alpha(r) = g_\alpha \bar{W}_\beta(r) \) and \(W^\alpha(r) = \bar{W}^\alpha(r) \).

Let \(\nabla \) be a linear connection on \(V \). Let us consider the \(T(V) \)-valued 1-form \(\tau \) on \(V \) defined by
\[
\tau(X) = T_\nabla(T, X), \quad X \in T(V),
\]
where \(T_\nabla \) is the torsion tensor field of \(\nabla \). We say \(T_\nabla \) is pure if
\[
T_\nabla(Z, W) = 0, \quad T_\nabla(Z, W) = 2iL_\theta(Z, W)T,
\]
\[
T_\nabla(N, W) = rW + i\tau(W),
\]
for any \(Z, W \in T_{1,0}(\mathcal{F}) \), and
\[
\tau(T_{1,0}(\mathcal{F})) \subseteq T_{0,1}(\mathcal{F}),
\]
\[
\tau(N) = -J\nabla^H - 2rT.
\]
Here \(\nabla^H \) is defined by \(\nabla^H = \pi_H \nabla \) and \(g_\theta(\nabla, X) = X(r), \quad X \in T(\mathcal{F}) \). Also \(\pi_H : T(\mathcal{F}) \to H(\mathcal{F}) \) is the projection associated to the direct sum decomposition \(T(\mathcal{F}) = H(\mathcal{F}) \oplus \mathbb{R}T \). We recall the following
Theorem 1. There is a unique linear connection ∇ on V such that i) $T_{1,0}(\mathcal{F})$ is parallel with respect to ∇, ii) $\nabla L_\theta = 0$, $\nabla T = 0$, $\nabla N = 0$, and iii) $T \nabla$ is pure.

∇ given by Theorem 1 is the *Graham-Lee connection*. Theorem 1 is essentially Proposition 1.1 in [7], p. 701-702. The axiomatic description in Theorem 1 is due to [4] (cf. Theorem 2 there). An index-free proof of Theorem 1 was given in [1] relying on the following

Lemma 1. Let $\phi : T(\mathcal{F}) \to T(\mathcal{F})$ be the bundle morphism given by $\phi(X) = JX$, for any $X \in H(\mathcal{F})$, and $\phi(T) = 0$. Then

\[
\phi^2 = -I + \theta \otimes T,
\]

\[
g_\theta(X, T) = \theta(X),
\]

\[
g_\theta(\phi X, \phi Y) = g_\theta(X, Y) - \theta(X)\theta(Y),
\]

for any $X, Y \in T(\mathcal{F})$. Moreover, if ∇ is a linear connection on V satisfying the axioms (i)-(iii) in Theorem 1 then

\[
(14) \quad \phi \circ \tau + \tau \circ \phi = 0
\]

along $T(\mathcal{F})$. Consequently τ may be computed as

\[
(15) \quad \tau(X) = -\frac{1}{2} \phi(L_T \phi) X,
\]

for any $X \in H(\mathcal{F})$.

A rather lengthy but straightforward calculation (based on Corollary 1) leads to

Theorem 2. Let $\Omega \subset \mathbb{C}^n$ be a smoothly bounded strictly pseudoconvex domain, $K(z, \zeta)$ its Bergman kernel, and $\varphi(z) = -K(z, z)^{-1/(n+1)}$. Then the Levi-Civita connection ∇^g of the Bergman metric and the Graham-Lee connection of (Ω, φ) are related by

\[
(16) \quad \nabla^g_X Y = \nabla_X Y +
\]

\[
+ \left\{ \frac{\varphi}{1 - r \varphi} g_\theta(\tau X, Y) + g_\theta(X, \phi Y) \right\} T -
\]

\[
- \left\{ g_\theta(X, Y) + \frac{\varphi}{1 - r \varphi} g_\theta(X, \phi \tau Y) \right\} N,
\]

\[
(17) \quad \nabla^g_X T = \tau X - \left(\frac{1}{\varphi} - r \right) \phi X -
\]

\[
- \frac{\varphi}{2(1 - r \varphi)} \left\{ X(r)T + (\phi X)(r)N \right\},
\]
\begin{align*}
(18) \quad \nabla^g_X N &= - \left(\frac{1}{\varphi} - r \right) X + \tau \phi X + \\
&\quad + \frac{\varphi}{2(1 - r\varphi)} \{(\phi X)(r)T - X(r)N\}, \\
(19) \quad \nabla^g_T X &= \nabla_T X - \left(\frac{1}{\varphi} - r \right) \phi X - \\
&\quad - \frac{\varphi}{2(1 - r\varphi)} \{X(r)T + (\phi X)(r)N\}, \\
(20) \quad \nabla^g_N X &= \nabla_N X - \frac{1}{\varphi} X + \\
&\quad + \frac{\varphi}{2(1 - r\varphi)} \{(\phi X)(r)T - X(r)N\}, \\
(21) \quad \nabla^g_N T &= - \frac{1}{2} \phi \nabla^H r - \\
&\quad - \frac{\varphi}{2(1 - r\varphi)} \left\{ \left(N(r) + \frac{4}{\varphi^2} - \frac{2r}{\varphi} \right) T + T(r)N \right\}, \\
(22) \quad \nabla^g_T N &= \frac{1}{2} \phi \nabla^H r - \\
&\quad - \frac{\varphi}{2(1 - r\varphi)} \left\{ \left(N(r) + \frac{4}{\varphi^2} - \frac{6r}{\varphi} + 4r^2 \right) T + T(r)N \right\}, \\
(23) \quad \nabla^g_T T &= - \frac{1}{2} \nabla^H r - \\
&\quad - \frac{\varphi}{2(1 - r\varphi)} \left\{ T(r)T - \left(N(r) + \frac{4}{\varphi^2} - \frac{6r}{\varphi} + 4r^2 \right) N \right\}, \\
(24) \quad \nabla^g_N T &= - \frac{1}{2} \nabla^H r + \\
&\quad + \frac{\varphi}{2(1 - r\varphi)} \left\{ T(r)T - \left(N(r) + \frac{4}{\varphi^2} - \frac{2r}{\varphi} \right) N \right\},
\end{align*}

for any $X, Y \in H(\mathcal{F})$.
3. Klembeck’s theorem

The original proof of the result by P.F. Klembeck (cf. Theorem 1 in [9], p. 276) employs a formula of S. Kobayashi, [10], expressing the components $R_{jkr\pi}$ of the Riemann-Christoffel 4-tensor of (Ω, g) as

$$-\frac{1}{2}R_{jkr\pi} = g_{j\pi}g_{r\pi} + g_{j\pi}g_{r\pi} - \frac{1}{K^2} \{ K_{jkr\pi} - K_{jr}K_{k\pi} \} +$$

$$+ \frac{1}{K^4} \sum_{\ell, m} g_{\ell m} \{ K_{jkr\ell} - K_{jr}K_{k\ell} \} \{ K_{k\pi m} - K_{k\pi}K_{m} \}$$

where $K = K(z, z)$ and its indices denote derivatives. However the calculation of the inverse matrix $[g_{j\pi}] = [g_{j\pi}]^{-1}$ turns out to be a difficult problem and [9] only provides an asymptotic formula as $z \to \partial \Omega$. Our approach is to compute the holomorphic sectional curvature of (Ω, g) by deriving an explicit relation among the curvature tensor fields R^g and R of the Levi-Civita and Graham-Lee connections respectively. We start by recalling a pseudohermitian analog to holomorphic curvature (built by S.M. Webster, [14]).

Let M be a nondegenerate CR manifold of type $(n - 1, 1)$ and θ a contact form on M. Let $G_1(H(M))_x$ consist of all 2-planes $\sigma \subset T_x(M)$ such that i) $\sigma \subset H(M)_x$ and ii) $J_x(\sigma) = \sigma$. Then $G_1(H(M))$ (the disjoint union of all $G_1(H(M))_x$) is a fibre bundle over M with standard fibre \mathbb{CP}^{n-2}. Let R^∇ be the curvature of the Tanaka-Webster connection ∇ of (M, θ). We define a function $k_\theta : G_1(H(M)) \to \mathbb{R}$ by setting

$$k_\theta(\sigma) = -\frac{1}{4} R^\nabla_x(X, J_xX, X, J_xX)$$

for any $\sigma \in G_1(H(M))$ and any linear basis $\{X, J_xX\}$ in σ satisfying $G_\theta(X, X) = 1$. It is a simple matter that the definition of $k_\theta(\sigma)$ does not depend upon the choice of orthonormal basis $\{X, J_xX\}$, as a consequence of the following properties

$$R^\nabla(Z, W, X, Y) + R^\nabla(Z, W, Y, X) = 0,$$

$$R^\nabla(Z, W, X, Y) + R^\nabla(W, Z, X, Y) = 0.$$
of the 2-plane \(\sigma \) the sectional curvature \(k_\theta(\sigma) \) is also expressed by

\[
k_\theta(\sigma) = -\frac{1}{4} \frac{R^\nabla_x(X, J_x X, X, J_x X)}{G_\theta(X, X)^2}.
\]

To prove this statement one merely applies the definition of \(k_\theta(\sigma) \) for the orthonormal basis \(\{ U, J_x U \} \), with \(U = G_\theta(X, X)^{-1/2} X \). As \(X \in H(M)_x \) there is \(Z \in T_{1,0}(M)_x \) such that \(X = Z + \bar{Z} \). Thus

\[
k_\theta(\sigma) = \frac{1}{4} \frac{R_x(Z, \bar{Z}, Z, \bar{Z})}{g_\theta(Z, Z)^2}.
\]

The coefficient 1/4 is chosen such that the sphere \(S^{2n-1} \subset \mathbb{C}^n \) has constant curvature +1. Cf. [5], Chapter 1. With the notations in Section 2 let us set \(f = \varphi/(1 - \varphi^2) \). Then

\[
X(f) = f^2 X(r), \quad X \in T(\mathcal{F}).
\]

Let \(R^g \) and \(R \) be respectively the curvature tensor fields of the linear connections \(\nabla^g \) and \(\nabla \) (the Graham-Lee connection). For any \(X, Y, Z \in H(\mathcal{F}) \) (by (16))

\[
\nabla_X^g \nabla^g_Y Z = \nabla_X^g (\nabla_Y Z + \{ f g_\theta(\tau(Y), Z) + g_\theta(Y, \phi Z) \} T - \{ g_\theta(Y, Z) + f g_\theta(Y, \phi \tau(Z)) \} N) = \nabla_Y Z \in H(\mathcal{F}) \text{ together with (16)}
\]

\[
= \nabla_X \nabla_Y Z + \{ f g_\theta(\tau(X), \nabla_Y Z) + g_\theta(X, \phi \nabla_Y Z) \} T - \{ g_\theta(X, \nabla_Y Z) + f g_\theta(X, \phi \tau(\nabla_Y Z)) \} N + \{ f g_\theta(\tau(Y), Z) + g_\theta(Y, \phi Z) \} \nabla_X^g T + \{ X(f) g_\theta(\tau(Y), Z) + f X(g_\theta(\tau(Y), Z)) + X(g_\theta(Y, \phi Z)) \} T - \{ g_\theta(Y, Z) + f g_\theta(Y, \phi \tau(Z)) \} \nabla_X^g N + \{ X(g_\theta(Y, Z)) + X(f) g_\theta(Y, \phi \tau(Z)) + f X(g_\theta(Y, \phi \tau(Z))) \} N = \text{by (17), (18)}
\]

\[
= \nabla_X \nabla_Y Z + \{ X(\Omega(Y, Z)) + \Omega(X, \nabla_Y Z) + X(f) A(Y, Z) + f [X(A(Y, Z)) + A(X \nabla_Y Z)] \} T - \{ X(g_\theta(Y, Z)) + g_\theta(X, \nabla_Y Z) + X(f) \Omega(Y, \tau(Z)) + f [X(\Omega(Y, \tau(Z))) + \Omega(X, \tau(\nabla_Y Z))] \} N + \{ f A(Y, Z) + \Omega(Y, Z) \} \times \left\{ \tau(X) - \frac{1}{f} \phi X - \frac{f}{2} (X(r) T + (\phi X)(r) N) \right\} - \{ g_\theta(Y, Z) + f \Omega(Y, \tau(Z)) \} \times \left\{ -\frac{1}{f} X + \tau(\phi X) + \frac{f}{2} ((\phi X)(r) T - X(r) N) \right\}
\]
where we have set as usual \(A(X, Y) = g_\theta(\tau(X), Y) \) and \(\Omega(X, Y) = g_\theta(X, \phi Y) \). We may conclude that

\[
(25) \quad \nabla^g_X \nabla^g_Y Z = \nabla_X \nabla_Y Z + [f A(Y, Z) + \Omega(Y, Z)] \left(\tau(X) - \frac{1}{f} \phi X \right) + \\
+ [g_\theta(Y, Z) + f \Omega(Y, \tau(Z))] \left(\frac{1}{f} X - \tau(\phi X) \right) + \\
+ \{X(\Omega(Y, Z)) + \Omega(X, \nabla_Y Z) + f [X(A(Y, Z)) + A(X, \nabla_Y Z)] + \\
+ \frac{1}{2} [X(r)(f A(Y, Z) - \Omega(Y, Z)) - \\
- (\phi X)(r)(g_\theta(Y, Z) + f \Omega(Y, \tau(Z))))] \right] T - \\
- \{X(g_\theta(Y, Z)) + g_\theta(X, \nabla_Y Z) + f [X(\Omega(Y, \tau(Z))) + \Omega(X, \tau(\nabla_Y Z))] - \\
- \frac{1}{2} [X(r)(g_\theta(Y, Z) - f \Omega(Y, \tau(Z))] - \\
- (\phi X)(r)(f A(Y, Z) + \Omega(Y, Z))] \right] N + \\
+ \theta([X, Y]) \right\} \left\{ \nabla_T Z - \frac{1}{f} \phi Z - \frac{f}{2} (Z(r)T + (\phi Z)(r)N) \right\}
\]

for any \(X, Y, Z \in H(\mathcal{F}) \). Next we use the decomposition \([X, Y] = \pi_H[X, Y] + \theta([X, Y])T \) and (16), (19) to calculate

\[
\nabla^g_{[X,Y]} Z = \nabla^g_{\pi_H[X,Y]} Z + \theta([X, Y])\nabla^g_T Z = \\
\nabla_{\pi_H[X,Y]} Z + \{f g_\theta(\tau(\pi_H[X, Y]), Z) + g_\theta(\pi_H[X, Y], \phi Z)\} T - \\
- \{f g_\theta(\pi_H[X, Y], Z) + f g_\theta(\pi_H[X, Y], \phi \tau(Z))\} N + \\
+ \theta([X, Y]) \right\} \left\{ \nabla_T Z - \frac{1}{f} \phi Z - \frac{f}{2} (Z(r)T + (\phi Z)(r)N) \right\}
\]

so that (by \(\tau(T) = 0 \))

\[
(26) \quad \nabla^g_{[X,Y]} Z = \nabla_{[X,Y]} Z - \frac{1}{f} \theta([X, Y]) \phi Z + \\
+ \left\{ f A([X, Y], Z) + \Omega([X, Y], Z) - \frac{1}{2} \theta([X, Y])Z(r) \right\} T - \\
- \left\{ f g_\theta([X, Y], Z) + f \Omega([X, Y], \tau(Z)) + \frac{1}{2} \theta([X, Y])(\phi Z)(r) \right\} N
\]

for any \(X, Y, Z \in H(\mathcal{F}) \). Consequently by (25)- (26) (and by \(\nabla g_\theta = 0 \), \(\nabla \Omega = 0 \)) we may compute

\[
R^g(X, Y)Z = \nabla^g_X \nabla^g_Y Z - \nabla^g_Y \nabla^g_X Z - \nabla^g_{[X,Y]} Z
\]

so that to obtain

\[
(27) \quad R^g(X, Y)Z = R(X, Y)Z + \frac{1}{f} \theta([X, Y]) \phi Z + \\
+ (f A(Y, Z) + \Omega(Y, Z)) \left(\tau(X) - \frac{1}{f} \phi X \right) - \\
- \left\{ f g_\theta([X, Y], Z) + f \Omega([X, Y], \tau(Z)) + \frac{1}{2} \theta([X, Y])(\phi Z)(r) \right\} N
\]
\[-(f A(X, Z) + \Omega(X, Z)) \left(\tau(Y) - \frac{1}{f} \phi Y \right) + \\
+ (g_\theta(Y, Z) + f \Omega(Y, \tau(Z))) \left(\frac{1}{f} X - \tau(\phi X) \right) - \\
-(g_\theta(X, Z) + f \Omega(X, \tau(Z))) \left(\frac{1}{f} Y - \tau(\phi Y) \right) + \\
+ \{ f \left([\nabla_X A](Y, Z) - \nabla Y A(X, Z) \right) \\
+ \frac{f}{2} [X(r)(f A(Y, Z) - \Omega(Y, Z)) - Y(r)(f A(X, Z) - \Omega(X, Z)) - \\
-(\phi X)(r)(g_\theta(Y, Z) + f \Omega(Y, \tau(Z))) + (\phi Y)(r)(g_\theta(X, Z) + f \Omega(X, \tau(Z))) + \\
+ Z(r) \theta([X, Y]) \} T - \\
- \{ f \left([\Omega(Y, (\nabla_X \tau) Z) - \Omega(X, (\nabla_Y \tau) Z) \right) - \\
- \frac{f}{2} [X(r)(g_\theta(Y, Z) - f \Omega(Y, \tau(Z))) - Y(r)(g_\theta(X, Z) - f \Omega(X, \tau(Z))) - \\
-(\phi X)(r)(f A(Y, Z) + \Omega(Y, Z)) + (\phi Y)(r)(f A(X, Z) + \Omega(X, Z)) + \\
+ (\phi Z)(r) \theta([X, Y]) \} N \}
\]

for any $X, Y, Z \in H(F)$. Let us take the inner product of (27) with $W \in H(F)$ and use (4)-(5). We obtain

\[g(R^\theta(X, Y)Z, W) = -\frac{n + 1}{\varphi} \{ g_\theta(R(X, Y)Z, W) - \frac{1}{f} \theta([X, Y]) \Omega(Z, W) + \\
+ [f A(Y, Z) + \Omega(Y, Z)][A(X, W) + \frac{1}{f} \Omega(X, W)] - \\
- [f A(X, Z) + \Omega(X, Z)][A(Y, W) + \frac{1}{f} \Omega(Y, W)] + \\
+ [g_\theta(Y, Z) + f \Omega(Y, \tau(Z))][\frac{1}{f} g_\theta(X, W) + \Omega(X, \tau(W))] - \\
- [g_\theta(X, Z) + f \Omega(X, \tau(Z))][\frac{1}{f} g_\theta(Y, W) + \Omega(Y, \tau(W))]. \]

In particular for $Z = Y$ and $W = X$ (as $\Omega = -d\theta$)

\[g(R^\theta(X, Y)Y, X) = -\frac{n + 1}{\varphi} \{ g_\theta(R(X, Y)Y, X) + \\
+ \frac{2}{f} [\Omega(X, Y)^2 + f A(X, X) A(Y, Y) - \\
- \frac{1}{f} [f^2 A(X, Y)^2 - \Omega(X, Y)^2] + \\
+ \frac{1}{f} [g_\theta(X, X) + f \Omega(X, \tau(X))][g_\theta(Y, Y) + f \Omega(Y, \tau(Y))] \}. \]
\[-\frac{1}{f} [g_{\theta}(X, Y) + f \Omega(X, \tau(Y))]^2 \].

Note that
\[A(\phi X, \phi X) = g_{\theta}(\tau(\phi X), \phi X) = -g_{\theta}(\phi \tau X, \phi X) = -A(X, X), \]
\[\Omega(\phi X, \tau(\phi X)) = g_{\theta}(\phi X, \phi \tau(\phi X)) = g_{\theta}(X, \tau(\phi X)) = -g_{\theta}(X, \phi \tau(X)) = -\Omega(X, \tau(X)), \]
\[\Omega(X, \tau(\phi X)) = g_{\theta}(X, \phi \tau(\phi X)) = -g_{\theta}(X, \tau(\phi^2 X)) = g_{\theta}(X, \tau(X)) = A(X, X). \]

Hence
\[(28) \quad g(R^{\theta}(X, \phi X)\phi X, X) = -\frac{n+1}{\varphi} \{ g_{\theta}(R(X, \phi X)\phi X, X) + \frac{4}{f} g_{\theta}(X, X)^2 - 2f[A(X, X)^2 + A(X, \phi X)^2] \}. \]

Let \(\sigma \subset T(F)_z \) be the 2-plane spanned by \(\{X, \phi z X\} \) for \(X \in H(F)_z \), \(X \neq 0 \). By \[28\] if \(Y = \phi z X \) then
\[g_z(X, Y)g_z(Y, Y) - g_z(X, Y)^2 = \]
\[= \left(\frac{n+1}{\varphi(z)} \right)^2 \{ g_{\theta z}(X, X)g_{\theta z}(Y, Y) - g_{\theta z}(X, Y) \} = \]
\[= \left(\frac{n+1}{\varphi(z)} \right)^2 g_{\theta z}(X, X)^2 \]
so that (by \[28\]) the sectional curvature \(k_g(\sigma) \) of the 2-plane \(\sigma \) is expressed by (for \(Y = \phi z X \))
\[k_g(\sigma) = \frac{g_z(R^g_z(X, Y)Y, X)}{g_z(X, X)g_z(Y, Y) - g_z(X, Y)^2} = \]
\[= -\frac{\varphi(z)}{n+1} \left\{ -4k_\theta(\sigma) + \frac{4}{f(z)} - 2f(z) \frac{A_z(X, X)^2 + A_z(X, \phi z X)^2}{g_{\theta z}(X, X)^2} \right\} \]
where \(k_\theta \) restricted to a leaf of \(F \) is the pseudohermitian sectional curvature of the leaf. Note that \(k_\theta \) and \(A \) stay finite at the boundary (and give respectively the pseudohermitian sectional curvature and the pseudohermitian torsion of \((\partial \Omega, \theta) \), in the limit as \(z \to \partial \Omega \)). On the other hand \(f(z) \to 0 \) and \(\varphi(z)/f(z) \to 1 \) as \(z \to \partial \Omega \). We may conclude that \(k_g(\sigma) \to -4/(n+1) \) as \(z \to \partial \Omega \). To complete the proof of Klembeck’s result we must compute the sectional curvature of the 2-plane \(\sigma_0 \subset T_z(\Omega) \) spanned by \(\{N_z, T_z\} \) (remember that \(JN = T \)). Note first that
\[N(f) = f^2 \left(\frac{2}{\varphi^2} + N(r) \right). \]
Let us set for simplicity
\[g = N(r) + \frac{4}{\varphi^2} - \frac{2r}{\varphi}, \quad h = N(r) + \frac{4}{\varphi^2} - \frac{6r}{\varphi} + 4r^2. \]

We these notations let us recall that (by (23))
\[(29) \quad \nabla g^T = -\frac{1}{2} X_r - \frac{f}{2} \{ T(r)T - hN \} \]
where \(X_r = \nabla H r \). Using also (20) for \(X = X_r \) we obtain
\[-2\nabla^g g \nabla^g T = \nabla N X_r - \frac{1}{\varphi} X_r + \frac{f}{2} \{ (\phi X_r)(r)T - X_r(r)N \} + \]
\[+ N(f)\{ T(r)T - hN \} + f \{ N(T(r))T + T(r)\nabla^g N - N(h)N - h\nabla^g_N N \} . \]
Let us recall that (by (21) and (24))
\[(30) \quad \nabla^g N = -\frac{1}{2} X_r + \frac{f}{2} \{ T(r)T - gN \} . \]

Using these identities and the expression of \(N(f) \) gives (after some simplifications)
\[(32) \quad -2\nabla^g g \nabla^g T = \nabla N X_r + \left(\frac{fh}{2} - \frac{1}{\varphi} \right) X_r - \frac{f}{2} T(r) \phi X_r + \]
\[+ \frac{f}{2} \left\{ 2f \left(\frac{2}{\varphi^2} + N(r) \right) T(r) + 2N(T(r)) - f(g + h)T(r) \right\} T - \]
\[- \frac{f}{2} \left\{ g_\theta(X_r, X_r) + 2fh \left(\frac{2}{\varphi^2} + N(r) \right) + 2N(h) + f[T(r)^2 - gh] \right\} N. \]
because of
\[(\phi X_r)(r) = g_\theta(\nabla r, \phi X_r) = g_\theta(X_r, \phi X_r) = 0, \]
\[X_r(r) = g_\theta(\nabla^H r, X_r) = g_\theta(X_r, X_r). \]

Similarly
\[(33) \quad -2\nabla^g T \nabla^g N = \nabla T \phi X_r + \left(\frac{1}{f} - \frac{fg}{2} \right) X_r + \frac{f}{2} T(r) \phi X_r + \]
\[+ \frac{f}{2} \left\{ 2T(g) + f(g - h)T(r) \right\} T + \]
\[+ \frac{f}{2} \left\{ g_\theta(X_r, X_r) + 2T^2(r) + f[T(r)^2 + gh] \right\} N. \]
Here $T^2(r) = T(T(r))$. Let us set $\tau(W_\alpha) = A_{\alpha}^\beta W_\beta$. To compute the last term in the right hand member of

$$R^g(N, T)T = \nabla^g_N \nabla^g_r T - \nabla^g_T \nabla^g_r T - \nabla^g_{[N,T]} T$$

note first that $T(f) = f^2 T(r)$. On the other hand we may use the decomposition (35) so that

$$\nabla^g_{[N,T]} T = rX_r + frT(r)T - \frac{f}{2} \{ g_\theta(X_r, X_r) + 2rh \} N +$$

$$+ \left(ir\sigma A_{\alpha}^\beta - \frac{1}{f} r^\beta \right) W_\beta - \left(ir^\alpha A_{\alpha}^\beta + \frac{1}{f} r^\beta \right) W_\beta$$

(where $A_{\alpha}^\beta = \overline{A_{\alpha}^\beta}$) and by taking into account that

$$\left(ir\sigma A_{\alpha}^\beta - \frac{1}{f} r^\beta \right) W_\beta - \left(ir^\alpha A_{\alpha}^\beta + \frac{1}{f} r^\beta \right) W_\beta = - \frac{1}{f} X_r - \tau(\phi X_r)$$

we may conclude that

$$\nabla^g_{[N,T]} T = \left(r - \frac{1}{f} \right) X_r - \tau(\phi X_r) +$$

$$+ frT(r)T - \frac{f}{2} \{ g_\theta(X_r, X_r) + 2rh \} N.$$

Finally (by plugging into (34) from (32)-(33) and (35))

$$-2R^g(N, T)T = \nabla N X_r - \nabla_T \phi X_r - fT(r)\phi X_r - 2\tau(\phi X_r) +$$

$$+ \left(2r + \frac{f}{2} (g + h) - \frac{1}{\varphi} - \frac{3}{f} \right) X_r +$$

$$+ f \left\{ f \left(\frac{2}{\varphi^2} + N(r) \right) T(r) + N(T(r)) - T(g) + (2r - fg)T(r) \right\} T -$$

$$- f \left\{ 2\|X_r\|^2 + fh \left(\frac{2}{\varphi^2} + N(r) \right) + N(h) + fT(r)^2 + T^2(r) + 2rh \right\} N.$$

Here $\|X_r\|^2 = g_\theta(X_r, X_r)$. Let us take the inner product of (36) with N and use (4)-(6). We obtain

$$2g(R^g(N, T)T, N) =$$

$$= \frac{n+1}{\varphi} \left\{ 2\|X_r\|^2 + fh \left(\frac{2}{\varphi^2} + N(r) \right) +$$

$$+ N(h) + fT(r)^2 + T^2(r) + 2rh \right\}$$

and dividing by

$$g(N, N)g(T, T) - g(N, T)^2 = \frac{1}{f^2} \left(\frac{n+1}{\varphi} \right)^2$$
leads to
\[
\frac{2g(R^g(N, T)T, N)}{g(N, N)g(T, T) - g(N, T)^2} = \frac{f^2\varphi}{n+1} \left\{ 2\|X_r\|^2 + T^2(r) + fT(r)^2 + 2hr + N(h) + fhN(r) + 2\frac{fh}{\varphi} \right\}.
\]

It remains that we perform an elementary asymptotic analysis of the right hand member of the previous identity when \(z \to \partial\Omega\) (equivalently when \(\varphi \to 0\)). As \(r \in C^\infty(\overline{\Omega})\) (cf. [12]) the terms \(\|X_r\|^2, T^2(r), T(r)^2\) and \(N(r)\) stay finite at the boundary. Also (by recalling the expression of \(h\)) \(f^2\varphi h \to 0\) as \(\varphi \to 0\). Moreover
\[
2\frac{f^2\varphi}{n+1} \frac{fh}{\varphi^2} = \frac{2}{n+1} f \left[f^2N(r) + \frac{4}{(1-r\varphi)^2} - \frac{6f^2r}{\varphi^2} + 4f^2r^2 \right] \to \frac{8}{n+1},
\]
\[
N(h) = N^2(r) + 4N(r^2) - \frac{16r}{\varphi^2} + \frac{12r}{\varphi^3} - \frac{6}{\varphi} N(r),
\]
as \(\varphi \to 0\) hence
\[
\frac{f^2\varphi}{n+1} N(h) \to -\frac{16}{n+1},
\]
as \(\varphi \to 0\) hence
\[
k_g(\sigma_0) \to -\frac{4}{n+1}, \quad z \to \partial\Omega.
\]
Klembeck’s theorem is proved.

References

[1] E. Barletta & S. Dragomir & H. Urakawa, Yang-Mills fields on CR manifolds, preprint, 2004.
[2] E. Barletta & S. Dragomir, Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds, preprint, 2005.
[3] S. Dragomir, A survey of pseudohermitian geometry, The Proceedings of the Workshop on Differential Geometry and Topology, Palermo (Italy), June 3-9, 1996, in Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 49(1997), 101-112.
[4] S. Dragomir & S. Nishikawa, Foliated CR manifolds, J. Math. Soc. Japan, (4)56(2004), 1031-1068.
[5] S. Dragomir & G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, Birkhäuser, Boston, 2005, to appear.
[6] C. Fefferman, The Bergman kernel and biholomorphic equivalence of pseudoconvex domains, Invent. Math., 26(1974), 1-65.
[7] C.R. Graham & J.M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., (3)57(1988), 697-720.
[8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[9] P.F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana University Math. J., (2)27(1978), 275-282.
10	S. Kobayashi, *Geometry of bounded domains*, Trans. Amer. Math. Soc., 92(1959), 267-290.
11	A. Korányi & H.M. Reimann, *Contact transformations as limits of symplectomorphisms*, C.R.
	Acad. Sci. Paris, 318(1994), 1119-1124.
12	J.M. Lee & R. Melrose, *Boundary behaviour of the complex Monge-Ampère equation*, Acta
	Mathematica, 148(1982), 159-192.
13	N. Tanaka, *A differential geometric study on strongly pseudo-convex manifolds*, Kinokuniya
	Book Store Co., Ltd., Kyoto, 1975.
14	S.M. Webster, *Pseudohermitian structures on a real hypersurface*, J. Diff. Geometry, 13(1978), 25-41.