Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity

Jianbin Su1,2, Liuyi Yang1, Qiankun Zhu1, Hongjiao Wu1, Yi He1, Yidong Liu2, Juan Xu1, Dean Jiang1, Shuqun Zhang2*

1 Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China, 2 Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America

* zhangsh@missouri.edu

Abstract

Extensive research revealed tremendous details about how plants sense pathogen effectors during effector-triggered immunity (ETI). However, less is known about downstream signaling events. In this report, we demonstrate that prolonged activation of MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MPKs), is essential to ETI mediated by both coiled coil-nucleotide binding site-leucine rich repeats (CNLs) and toll/interleukin-1 receptor nucleotide binding site-leucine rich repeats (TNLs) types of R proteins. MPK3/MPK6 activation rapidly alters the expression of photosynthesis-related genes and inhibits photosynthesis, which promotes the accumulation of superoxide (O$_{2}^-$) and hydrogen peroxide (H$_2$O$_2$), two major reactive oxygen species (ROS), in chloroplasts under light. In the chemical-genetically rescued mpk3 mpk6 double mutants, ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation are compromised, which correlates with delayed hypersensitive response (HR) cell death and compromised resistance. Furthermore, protection of chloroplasts by expressing a plastid-targeted cyanobacterial flavodoxin (pFLD) delays photosynthetic inhibition and compromises ETI. Collectively, this study highlights a critical role of MPK3/MPK6 in manipulating plant photosynthetic activities to promote ROS accumulation in chloroplasts and HR cell death, which contributes to the robustness of ETI. Furthermore, the dual functionality of MPK3/MPK6 cascade in promoting defense and inhibiting photosynthesis potentially allow it to orchestrate the trade-off between plant growth and defense in plant immunity.

Author summary

Plants follow different strategies to defend themselves against pathogens and activate their immune systems once the pathogens have been detected. One of the responses observed is the inhibition of photosynthesis and the global down-regulation of genes that regulate this process, similar to what is frequently observed in plants under various biotic stress conditions. However, the mechanisms underlying the turning off of the photosynthetic activity...
Photosynthesis inhibition in plant immunity

Introduction

Plant defense against invading pathogens relies on a two-layered innate immune system. The first is the sensing of pathogen/microbe-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs), which induces a basal level resistance known as PAMP-triggered immunity (PTI) [1–5]. The second line of plant defense is activated by plant resistance (R) protein-mediated detection of pathogenic effectors, also known as effector-triggered immunity (ETI). The major feature of ETI is its robustness against pathogen infection, which is frequently associated with hypersensitive response (HR) cell death [1,3,6–10].

All identified PRRs are membrane-localized receptor-like protein kinases (RLKs) or receptor-like proteins (RLPs) that detect conserved PAMPs such as bacterial flagellin and lipopolysaccharide or chitin from fungal cell walls [11,12]. Pathogen effectors are sensed by plant R proteins with diverse subcellular locations [13,14]. The majority of plant R proteins are nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins (NLRs) that recognize their cognate effectors by direct protein–protein interactions, while the indirect recognize their cognate effectors by direct protein–protein interactions, while the indirect recognition mechanisms involving the activity of NLRs and their downstream signaling pathways are still poorly understood [14–17]. Current findings suggest that the activity of NLRs undergoes multilayered regulation, including self-inhibition, dimerization or oligomerization, epigenetic and transcriptional regulation, alternative splicing, and proteasome-mediated degradation [14–17]. Despite of the different recognition and activation mechanisms of NLRs and PRRs, ETI and PTI involve a similar set of downstream defense responses, including calcium-mediated signaling, activation of mitogen-activated protein kinases (MAPKs), production of reactive oxygen species (ROS), transcriptional reprogramming, and biosynthesis of antimicrobial compounds [3,4,7,21–28]. However, the responses during ETI have a longer duration and higher magnitude. As a result, ETI was proposed to be an amplified PTI [7]. Recently, it was proposed that plasma membrane–localized CNLs such as Resistance to Pseudomonas syringae pv maculicola and whether this process contributes to plants’ defense against pathogens remain to be determined. In this study, we analyze these mechanisms in Arabidopsis plants and show that prolonged activation of MPK3 and MPK6, two kinases critical for pathogen resistance, results in the inhibition of photosynthesis and accumulation of reactive oxygen species (ROS) in the chloroplasts. We find that this response is similar to that observed during pathogen effector-triggered immunity (ETI). Correspondingly, plants that carry mutant versions of MPK3 and MPK6 result in compromised ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation; thus, these two kinases seem to be essential for ETI. Our results suggest that MPK3/MPK6 activation induces a global down-regulation of photosynthesis along with an up-regulation of defense-related genes, and coordinates the growth and defense trade-off in plants.

Abbreviations: AvrB, avirulence protein B; AvrRpm1, avirulence effector recognized by RPM1; AvrRps4, avirulence effector recognized by RPS4; AvrRpt2, avirulence effector recognized by RPS2; BN-PAGE, blue native-polyacrylamide gel electrophoresis; BR, brassinosteroid; CBB, Coomassie brilliant blue; CC, coiled-coil; CKI, plastid-targeted cyanobacterial flavodoxin; pMPK, phosphorylated MPK; pFD, plastid-targeted cyanobacterial flavodoxin; pMPK, phosphorylated MPK; PG, plastocyanin; PRR, pattern recognition receptor; PSI, photosystem I;
PSII, photosystem II; Pst. *Pseudomonas syringae pv. tomato* DC3000 carrying empty vector; pTEpY, dually phosphorylated Thr/Glu/Tyr peptide; PTI, PAMP-triggered immunity; PVDF, polyvinylidene fluoride; qPCR, quantitative PCR; RLCK, receptor-like cytoplasmic kinase; RLK, receptor-like protein kinase; RLP, receptor-like protein; RNA-seq, RNA sequencing; ROS, reactive oxygen species; RPM1, kinase; RLP, receptor-like protein; SIPK, wound-induced protein kinase; Y(II), PSII leucine rich repeat; TTSS, type III secretion system; WIPK, wound-induced protein kinase; Y(II), PSI operating efficiency.

1 (RPM1), Resistance to *Pseudomonas syringae* 2 (RPS2), and Resistance to *Pseudomonas syringae* 5 (RPS5) trigger downstream defense responses similar to that activated by PRRs during PTI, with the exception of different magnitude and duration [12]. In contrast, ETI mediated by nucleus-localized TNLs, including Resistance to *Pseudomonas syringae* 4/Resistance to *Ralstonia solanacearum* 1 (RPS4/RRS1) and Resistance to *Pseudomonas syringae* 6 (RPS6), which is dependent on Enhanced Disease Susceptibility 1 (EDS1), seems to be more associated with transcriptional reprogramming [12]. This notion was supported by the findings that both plasma membrane–localized PRRs and CNL-type RPS2 can activate MPK3/MPK6 [24]. However, whether TNLs can activate MAPK signaling remains to be determined. Interestingly, EDS1 also contributes to RPS2-conditioned resistance when salicylic acid (SA) biosynthesis is blocked [29], indicating a complicated cross talk between CNL- and TNL-mediated resistance.

Recently, two new immune responses were identified, cell cycle repression and chloroplast stromule formation [30,31]. During ETI, the canonical function of cyclin-dependent kinase inhibitor (CKI)-retinoblastoma (RB)-E2F transcription factor in cell cycle progression is repressed and shifted to promote programmed cell death and transcriptional reprogramming [30]. Chloroplast stromules, dynamic tubular projections of chloroplasts, are strongly induced during plant immunity [31]. Some of the stromules were observed to connect chloroplasts with the nucleus, which was proposed to transport pro-defense signals, e.g., chloroplast-generated ROS, into the nucleus to promote transcriptional reprogramming [31]. At present, the mechanism underlying the generation of ROS in chloroplasts is still unclear. We have previously shown that prolonged activation of SA-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), the orthologs of *Arabidopsis* MPK6 and MPK3 in tobacco, respectively, inhibits photosynthesis and induces the accumulation of ROS in chloroplasts, which accelerates HR-like cell death in plants under light [32]. Later, chloroplast-originated ROS was implicated in promoting localized cell death in tobacco during nonhost interaction [33]. Because HR cell death can be uncoupled from ETI [34], i.e., host cell death is not the cause for resistance [7], it remains to be determined whether MAPK signaling and chloroplast-originated ROS accumulation contribute to ETI.

In *Arabidopsis*, MPK3, MPK6, MPK4, and MPK11 are rapidly activated during PTI and ETI [24,28,35]. They play critical roles in multiple plant defense responses, including activation of defense gene expression, induction of phytoalexin biosynthesis, and stomatal immunity [28,36–40]. Light is known to be critical to plant defense [41–43]. It has been known for decades that photosynthetic inhibition, including inhibition of photosystem II (PSII) activity, reduction of CO₂ fixation, and global down-regulation of photosynthetic genes, occurs after pathogen infection [44–50]. However, it is unclear whether the photosynthetic inhibition is a passive response due to pathogen infection or an active response regulated by host signaling pathways, i.e., whether photosynthetic inhibition is a part of plant immunity and contributes to plant disease resistance.

In this study, we demonstrate that both CNL and TNL NLR-mediated ETI induce prolonged activation of MPK3/MPK6, which contributes to the rapid and global inhibition of photosynthesis at multiple levels and the generation of ROS in chloroplasts. Loss-of-function of MPK3/MPK6 signaling compromises effector-triggered inhibition of photosynthetic activities, accumulation of ROS in chloroplasts, HR cell death, and pathogen resistance. Furthermore, it was discovered that inhibition of photosynthetic activities and chloroplastic ROS accumulation can mutually enhance each other. Based on these findings, we conclude that MPK3/MPK6-mediated active photosynthetic inhibition is a part of *Arabidopsis* immune response and plays a positive role during ETI.
Results

MPK3/MPK6 activation induces global down-regulation of genes related to photosynthesis

Inhibition of photosynthesis occurs in plants under a variety of abiotic and biotic stresses [44,51]. At present, it is unclear whether the inhibition is a passive response caused by stresses/pathogens or a response actively regulated by host signaling pathways, and if so, what the outcomes/functions are of such active inhibition. In our previous study, we found that activation of SIPK and WIPK, two stress-responsive MPKs in tobacco, causes rapid and strong inhibition of CO\textsubscript{2} fixation [32]. To elucidate the underlying mechanism, we utilized the *Arabidopsis* system and profiled the gene expression in the conditional gain-of-function *Arabidopsis GVG-NtMEK2DD (abbreviated as DD) transgenic plants. In this system, dexamethasone (DEX) treatment induces the expression of NtMEK2DD, a constitutively active variant of *Nicotiana tabacum* MAP kinase kinase 2 (NtMEK2), which in turn activates specifically the endogenous MPK3 and MPK6 in *Arabidopsis* [52,53]. RNA sequencing (RNA-seq) profiling revealed a total of 2,984 genes that were down-regulated (log\textsubscript{2} < −3) and 1,042 genes up-regulated (log\textsubscript{2} > 3) at 6 h after DEX treatment (S1 Table). Genes involved in photosynthesis, including photosynthetic light harvesting, light reaction, electron transport, and dark reaction, were highly enriched in the down-regulated genes (Fig 1A and 1B). The up-regulated genes were mainly enriched in genes involved in plant–pathogen and plant–environment interactions and secondary metabolism (Fig 1C). Up-regulation of defense genes, including those involved in phytoalexin biosynthesis, is consistent with our previous reports [28,53–56]. Down-regulation of selected photosynthetic genes was further confirmed by quantitative reverse transcription-polymerase chain reaction (RT-PCR). As shown in Fig 1D, expression of genes involved in PSII repair (*LQY1* and *LTO1*), PSII assembly (*PAM68*), PSII stabilization (*PSB32*), and transcription in chloroplasts (e.g., *SIG1–SIG6*) were all decreased drastically after MPK3/MPK6 activation.

MPK3/MPK6 activation causes photosynthetic inhibition and ROS accumulation in chloroplasts

To determine the physiological consequences of the inhibition of photosynthetic genes, we measured PSII activity using chlorophyll fluorescence techniques [59]. As shown in Fig 2A and 2B, the maximal PSII activity parameter Fv/Fm and effective PSII operating efficiency parameter Y(II) both decreased upon MPK3/MPK6 activation. We next measured the fast chlorophyll fluorescence kinetics, also known as O-J-I-P curve [60]. The J-I rise was lower in DEX-treated DD plants than in ethanol solvent control (Fig 2C), indicating a reduced plastoquinol (PQ) reduction after MPK3/MPK6 activation. We next measured PQ redox status parameter 1-qL. Consistent with a decrease in PSII activity, a more oxidized PQ pool, reflected by the decrease of 1-qL, was detected (Fig 2D).

NPQ dissipates light energy as heat to protect PSII from photodamage [61,62]. We found that NPQ induction by high light (610 μmol m-2 s-1) was not affected at the early stage of MPK3/MPK6 activation but decreased significantly at 18 h and 24 h after DEX treatment (Fig 2E). The decreased NPQ at 18 h and 24 h is likely to be a consequence of PSII inhibition rather than an active down-regulation of NPQ. The decreased NPQ may accelerate PSII inhibition due to impaired dissipation of light energy.

We next examined PSII inhibition using blue native polyacrylamide gel electrophoresis (BN-PAGE), by which changes of thylakoid membrane photosynthetic complexes can be visualized. There was a decrease in PSII-LHCII super-complexes and an increase in CP43-less PSII
core complex in both BN-PAGE (Fig 2F) and two-dimensional sodium dodecyl sulfate (SDS)-PAGE analyses (S1 Fig), which correlates well with PSII inhibition. Collectively, the changes in photosynthetic parameters and complexes were found to be associated with the down-regulation in mRNA levels of photosynthetic genes after MPK3/MPK6 activation in *Arabidopsis* (Fig 1A). Together with our previous report that SIPK/WIPK activation inhibits photosynthetic activities in tobacco [32], we can conclude that inhibition of photosynthesis after the activation of pathogen-responsive MPK3/MPK6 in *Arabidopsis* or their orthologs in other plant species is a common response in plants.

Photosynthesis inhibition in plants frequently leads to the accumulation of ROS [63,64]. As shown in Fig 2G and S2 Fig, nitroblue tetrazolium (NBT) staining revealed an accumulation of superoxide (\(O_{2}^{-}\)) in the chloroplasts of *DD* plants after MPK3/MPK6 activation. This only occurred in plants kept under light. In the dark, no \(O_{2}^{-}\) accumulation was observed. In chloroplasts, superoxide can be quickly converted to \(H_{2}O_{2}\) under the action of superoxide dismutase.

Fig 1. Activation of MPK3/MPK6 globally down-regulates photosynthetic genes. (A) GO enrichment of 2,977 down-regulated genes (log₂ ratio ≤ −3) after MPK3/MPK6 activation. RNA-seq analysis was performed using 12-d-old *DD* seedlings treated with 5 μM DEX for 0 and 6 h under light. Transcript levels were fold changes relative to the 0 h sample. GO analysis was carried out by using DAVID online tool [57,58]. Enrichment scores are shown as −log₁₀ (p-value). (B) Schematic diagram of photosynthetic linear electron flow. Expression levels of genes involved in photosystem assembly and repair are shown as a heat map. (C) GO enrichment of 1,039 up-regulated genes (log₂ ratio ≥ −3) after MPK3/MPK6 activation. Enrichment scores are shown as −log₁₀ (p-value). (D) Activation of MPK3/MPK6 induces drastic down-regulation of photosynthesis-related genes. Twelve-d-old *DD* plants grown in liquid medium were treated with EtOH or 5 μM DEX for 8 h under light. Transcript levels were quantified by real-time PCR and presented as fold changes relative to 0 h samples. Values are means ± SD, n = 3. EF1a was used as internal control, n = 3. The numerical values used to construct panels A–D can be found in S1 Data. See also S1 Table. Crytb6f, cytochrome b6f; DAVID, Database for Annotation, Visualization and Integrated Discovery; *DD*, GVG-NtMEK2*DD*; DEX, dexamethasone; EF1a, elongation factor 1a; EtOH, ethanol; Fd, ferredoxin; FNR, ferredoxin-NADP⁺ reductase; GO, gene ontology; LHCI, light-harvesting complex I; LHCII, light-harvesting complex II; MPK, mitogen-activated protein kinase; OEC, oxygen-evolving complex; PSI, photosystem I; PSII, photosystem II; RNA-seq, RNA sequencing.

https://doi.org/10.1371/journal.pbio.2004122.g001
Fig 2. Activation of MPK3/MPK6 induces multilayered photosynthetic inhibition ROS accumulation in chloroplasts. (A and B) Activation of MPK3/MPK6 induces PSII inhibition. Fv/Fm (A) and Y(II) (B) were measured using soil-grown DD plants spray treated with EtOH (solvent control) or 15 μM DEX for indicated periods of time. Values are means ± SD, n = 8. (C) Changes of O-J-I-P curve induced by MPK3/MPK6 activation. Normalized fluorescence units were shown. Soil-grown DD plants were spray treated with EtOH or 15 μM DEX and kept in dark or light for 12 h. Representative measurements for each treatment were shown. (D) MPK3/MPK6 activation affects PQ pool redox status. Values are means ± SD, n = 8. (E) Activation of MPK3/MPK6 causes decreased NPQ at late stage. After treatment with EtOH or 15 μM DEX for indicated times under light, NPQ induction was carried out by using a light intensity of 610 μmol m−2 s−1 for 7 min and followed by an 8-min relaxation period in dark. Values are means ± SD, n = 6. (F) MPK3/MPK6 induction was carried out by using a light intensity of 610 μmol m−2 s−1 for 7 min and followed by an 8-min relaxation period in dark. Values are means ± SD, n = 6. (G) and (H) Activation of MPK3/MPK6 induces light-dependent accumulation of ROS in chloroplasts. DD plants grown in liquid medium were treated with EtOH solvent control or 5 μM DEX and kept in
Using 3,3'-diaminobenzidine (DAB) staining, we indeed detected the accumulation of H$_2$O$_2$ in chloroplasts after MPK3/MPK6 activation in a light-dependent manner (Fig 2H and S2 Fig). Consistent with our previous report using tobacco, MPK3/MPK6 activation-induced HR-like cell death in Arabidopsis was also light dependent (Fig 2I). It is worth noting that MPK3/MPK6 activation–induced PSII inhibition is independent of light, although it is delayed in the absence of light (Fig 2A and 2C), suggesting that ROS accumulation in chloroplasts may accelerate PSII inhibition and HR-like cell death in DD plants.

Long-lasting MPK3/MPK6 activation is needed to induce photosynthetic inhibition

Previous studies showed that MPK3/MPK6 activation is transient during PTI and is prolonged during CNL-type RPS2-mediated ETI [24]. To examine the amplitude of MPK3/MPK6 activation in regulating photosynthetic inhibition, DD plants were treated with increasing concentrations of DEX. As shown in Fig 3A, there was a correlation between the level of PSII inhibition and the amplitude of MPK3/MPK6 activation. Prolonged MPK3/MPK6 activation in DD caused a drastic photosynthetic inhibition, as demonstrated by western blot detection of PSII core proteins D1 (Fig 3B), while no photosynthetic inhibition was observed in Columbia-0 (Col-0) plants treated with a 22 amino acids flagellin fragment (flg22), which induced a transient MPK3/MPK6 activation (Fig 3B and S3 Fig). Moreover, MPK3/MPK6 activation-induced decrease of D1 protein is also independent of light (Fig 3C), which correlates well with the measured chlorophyll fluorescence in dark (Fig 2A–2C). To further test the duration of MAPK activation in regulating photosynthetic inhibition, we crossed DD transgene into MPK6SR, a chemical-genetically rescued mpk3 mpk6 double mutant system [38,65], to generate DD MPK6SR (genotype: GVGNtMEK2DD mpk3 mpk6 PMPK6:MPK6YG). In DD MPK6SR plants, MPK6 can be activated by DEX and inhibited by 4-amino-1-tert-butyl-3-(1'-naphthyl) pyrazolo[3,4-d]pyrimidine (NA-PP1), a specific inhibitor of the sensitized MPK6$_{YG}$. As revealed by BN-PAGE analysis, short-term MPK6 activation failed to induce photosynthetic inhibition (Fig 3D), demonstrating that prolonged, but not transient, MAPK activation is required for photosynthetic inhibition. It was noted that photosynthetic inhibition in DD MPK6SR plants was slower in comparison to DD plants after DEX treatment, which may be due to the lack of MPK3, or reduced expression of NtMEK2$_{DD}$ as a result of gene silencing, or both. Nonetheless, it clearly demonstrates that long-lasting, but not transient, MPK3/MPK6 activation induces photosynthetic inhibition.

ETI, but not PTI, induces prolonged MAPK activation, photosynthetic inhibition, and ROS accumulation in chloroplasts

To determine the involvement of MPK3/MPK6 in photosynthetic inhibition during plant immunity, we first measured the kinetics of photosynthetic parameters in wild-type plants infiltrated with Pseudomonas syringae pv. tomato DC3000 carrying empty vector (Pst-EV), Pst-AvrRpt2, a Pst strain carrying the avirulence effector recognized by RPS2 (AvrRpt2) effector...
Fig 3. The amplitude and duration of MAPK activation regulate photosynthetic inhibition. (A) Controlling the amplitude of MPK3/MPK6 activation in DD plants by spraying different concentrations of DEX. Soil-grown DD plants were spray treated with different concentrations of DEX. At 9 h after DEX spray, NtMEK2DD expression and MPK3/MPK6 activation were detected by immunoblot analysis using anti-FLAG and anti-pTEpY, respectively. Fv/Fm was measured at 18 h after DEX treatment. Values are means ± SD, n = 6, ** P ≤ 0.001. The numerical values used to construct panel A can be found in S1 Data. (B) Transient activation of MPK3/MPK6 after flg22 treatment does not induce a decrease in PSII core D1 protein. Twelve-d-old DD and Col-0 plants grown in liquid medium were treated with 5 μM DEX and 200 nM flg22 for indicated times, respectively. Thylakoid membranes were isolated and solubilized with 1% dodecyl maltoside. Samples equivalent to 2 μg of chlorophyll were loaded to a 12% SDS-PAGE with 6 M urea. Anti-D1 was used to detect D1 abundance. MAPK activation was detected by immunoblot analysis using anti-pTEpY antibody. Ponceau S staining was used to show equal loading. (C) Twelve-d-old DD and Col-0 plants grown in ½ MS agar plates were treated with 5 μM DEX or EtOH (solvent control) and then kept in dark or under light for 12 h. D1 protein abundance in thylakoid membrane preparations was detected by immunoblot analysis using anti-D1 antibody. Ponceau S staining was used to show equal loading. (D) Prolonged, but not transient, MAPK activation induces photosynthetic inhibition. Twelve-d-old DD MPK6SR plants grown in liquid medium were first treated with 5 μM DEX. Seedlings were washed three times with ½ MS medium to remove DEX before the addition of 10 μM NA-PP1. Black bars indicate the durations of DEX or NA-PP1 treatment. Thylakoid membranes were isolated and solubilized with 1% dodecyl maltoside. Samples equivalent to 8 μg of chlorophyll were loaded to a BN-PAGE. See also S3 Fig. BN-PAGE, blue native polyacrylamide gel electrophoresis; CBB, Coomassie brilliant blue; Col-0, Columbia-0; CP43, photosystem II chlorophyll protein at 43 kDa; DD, GVG-NtMEK2DD; DEX, dexamethasone; DNH, NADH dehydrogenase-like; EtOH, ethanol; FLAG, an octapeptide; flg22, a 22 amino acids flagellin fragment; LHCII, light-harvesting complex II; mc, mega-complex; MPK, mitogen-activated protein kinase; MS, Murashige and Skoog medium; NA-PP1, 4-amino-1-tet-butyl-3-(1’-napthyl)pyrazolo[3,4-d]pyrimidine; pMPK, phosphorylated MPK; PSI, photosystem I; PSII, photosystem II; pTEpY, dually phosphorylated Thr/Glu/Tyr peptide; sc, super-complex; SDS-PAGE, sodium dodecyl sulfate-PAGE.
gene, or Pst–hrcC−, a Pst strain carrying a mutation in hrcC gene. Pst–AvrRpt2 triggers both PTI and CNL-type RPS2-dependent ETI in Arabidopsis. Due to the lack of functional type-III secretion system, Pst–hrcC− cannot deliver effectors into plant cells and only induces PTI.

Similar to the gain-of-function activation of MPK3/MPK6 in DD plants, Pst–AvrRpt2 induced drastic reductions in Fv/Fm (Fig 4A and S4 Fig), Y(II) (Fig 4B and S4 Fig), and 1-qL (Fig 4C). The decreases in Fv/Fm and Y(II) after Pst–EV inoculation were much slower and delayed in comparison to after Pst–AvrRpt2 inoculation (Fig 4A and 4B and S4 Fig). Interestingly, Pst–hrcC−, which only induces PTI, had no effect on any measured chlorophyll fluorescence parameters (Fig 4A–4C and S4 Fig), indicating that PTI is not sufficient to induce photosynthetic inhibition. Consistent with this conclusion, flg22 infiltration failed to induce change in photosynthetic parameters and decrease of D1 protein (Fig 3B and S4 Fig). In addition, no photosynthetic changes were detected after infiltration of a nonpathogenic strain, P. fluorescens, carrying empty vector [66], while P. fluorescens carrying AvrRpm1, which triggers CNL-type RPM1-mediated ETI, induced strong photosynthetic inhibition (S4 Fig). These results further support that ETI, but not PTI, induces photosynthetic inhibition.

The interaction between Pst–AvrRpt2 and Arabidopsis is complex, involving both virulent and avirulent effectors that can induce effector-triggered susceptibility (ETS) and ETI, respectively, besides PTI. To determine whether ETI is sufficient to induce PSII inhibition, we utilized the DEX-inducible promoter-driven AvrRpt2 (GVG-AvrRpt2) transgenic plants [67]. DEX treatment of GVG-AvrRpt2 plants is sufficient to activate MPK3/MPK6 in a RPS2-dependent manner [25]. Similar to MPK3/MPK6 activation and Pst–AvrRpt2 inoculation, DEX treatment of GVG-AvrRpt2 plants was sufficient to induce drastic PSII inhibition (Fig 4D and 4E) and PQ pool oxidation (Fig 4F). Similarly (Fig 2G and 2H), induction of AvrRpt2 expression also led to the accumulation of O₂·⁻ and H₂O₂ in chloroplasts (S5 Fig). In rps2 mutant background, AvrRpt2-induced photosynthetic inhibition and accumulation of ROS in chloroplasts were abolished (Fig 4D–4F and S5 Fig), demonstrating that AvrRpt2 effector is sufficient to induce photosynthetic inhibition and ROS generation in an RPS2-dependent fashion.

We also tested MAPK activation and chlorophyll fluorescence parameters after infiltrating with Pst–AvrRpm1, Pst–AvrB and Pst–AvrRps4. Among the four tested effectors, AvrRpt2 and AvrRpm1 induce CNL NLR-dependent ETI [68–72], AvrB induces both CNL and TNL NLR-dependent ETI [70,72,73], and AvrRps4 induces TNL NLR-dependent ETI [74,75]. Interestingly, we found TNL ETI also induces prolonged MAPK activation and PSII inhibition (Fig 4G and S6 Fig), indicating that MAPK signaling and its activation-mediated photosynthetic inhibition and chloroplastic ROS accumulation are essential for both CNL and TNL NLR-conditioned ETI.

MPK3 and MPK6 are required for both CNL- and TNL-mediated ETI

To determine whether MPK3/MPK6 are required for ETI-induced photosynthetic inhibition and ROS accumulation in chloroplasts, we utilized the newly generated chemical-genetically rescued mpk3 mpk6 double mutant systems [38,65]. Both MPK6SR (genotype: mpk3 mpk6 P_{MPK6}:MPK6^{TG}) and MPK3SR (genotype: mpk3 mpk6 P_{MPK3}:MPK3^{TG}) were tested. As is shown in Fig 5A, Pst–AvrRpt2–induced PSII inhibition was partially impaired in MPK6SR and MPK3SR plants after pretreatment with NA-PP1, a specific inhibitor of the sensitized MPK6^{TG} and MPK3^{TG}, demonstrating that MPK3 and MPK6 are required for the fast and drastic PSII inhibition triggered by ETI activation. No differences were observed in MPK6SR and MPK3SR plants pretreated with DMSO (Fig 5B), or mpk3 and mpk6 single mutants (Fig 5C), demonstrating that MPK3 and MPK6 function redundantly in mediating ETI-induced PSII inhibition.
Fig 4. ETI induces strong PSII inhibition and prolonged MAPK activation. (A–C) Photosynthetic parameters are differentially affected by different Pst strains. Four-wk-old Col-0 plants were infiltrated with 10 mM MgCl₂ (mock), Pst-EV, Pst-AvrRpt2, or Pst-hrcC⁻ (OD₆₀₀ = 0.2) and then were kept under light with a transparent lid. Photosynthetic parameters, including Fv/Fm (A), Y(II) (B), and 1-qL (C), were measured at 9 and 18 hpi. Values are means ± SD, n = 5–8, **P ≤ 0.001. (D–F) AvrRpt2-triggered immunity induces drastic PSII inhibition. Four-wk-old soil-grown GVG-AvrRpt2 transgenic plants in Col-0 (AvrRpt2/RPS2) or rps2 mutant background (AvrRpt2/rps2) were spray treated with 15 μM DEX. Photosynthetic parameters, including Fv/Fm (D), Y(II) (E), and 1-qL (F), were measured at indicated times. Values are means ± SD, n = 4–8. The numerical values used to construct panels A–F can be found in S1 Data. (G) ETI mediated by both CNL- and TNL-type NLRs induces prolonged MAPK activation. Four-wk-old Col-0 plants were infiltrated with Pst carrying EV, AvrRpm1, AvrB, AvrRpt2, or AvrRps4 (OD₆₀₀ = 0.02) for indicated time points. MPK3/MPK6 activation was detected by anti-pTEpY antibody. See also S4 and S5 Figs.

AvrB, avirulence protein B; AvrRpm1, avirulence effector recognized by RPM1; AvrRpt2, avirulence effector recognized by RPS2; AvrRps4, avirulence effector recognized by RPS4; CNL, coiled coil-nucleotide binding site-leucine rich repeat; Col-0, Columbia-0; DEX, dexamethasone; ETI, effector-triggered immunity; EV, empty vector; GVG-AvrRpt2, DEX-inducible promoter-driven AvrRpt2; hpi, hours post inoculation; hrcC⁻, outer membrane type III secretion protein HrcC mutant; MPK, mitogen-activated protein kinase; NLR, nucleotide-binding leucine-rich repeat; OD, optical density; pMPK, phosphorylated MPK; PSII, photosystem II; Pst, Pseudomonas syringae pv tomato; pTEpY, dually phosphorylated Thr/Glu/Tyr peptide; RPS2, Resistance to Pseudomonas syringae 2; TNL, Toll/interleukin-1 receptor-nucleotide binding site-leucine rich repeat.

https://doi.org/10.1371/journal.pbio.2004122.g004
Fig 5. MPK3 and MPK6 are required for ETI-induced PSII inhibition and ROS accumulation in chloroplasts. (A and B) Pst-AvrRpt2–induced PSII inactivation is partially compromised in mpk3 mpk6 double mutant. Four-wk-old soil-grown Col-0, MPK6SR, and MPK3SR plants were first spray treated with NA-PP1 (10 μM) or DMSO solvent control for 2 h and then infiltrated with Pst-AvrRpt2 (OD = 0.2). Values are means ± SD, n = 4, 0.01 ≤ *P ≤ 0.001 and **P ≤ 0.001. (C) Normal Pst-AvrRpt2–induced PSII inactivation in mpk3 and mpk6 single mutants. Four-wk-old soil-grown Col-0, mpk3, and mpk6 plants were directly infiltrated with Pst-AvrRpt2 (OD = 0.2). Fv/Fm and Y(II) were measured at indicated time points. Values are means ± SD, n = 4. The numerical values used to construct panels A–C can be found in S1 Data. (D–F) MPK3 and MPK6 are required for Pst-AvrRpt2–induced O$_2^-$, but not H$_2$O$_2$ accumulation. Twelve-d-old Col-0, MPK6SR, and MPK3SR plants grown in liquid medium were first treated with 2 μM NA-PP1 or DMSO (mock) for 1 h. They were then treated with Pst-AvrRpt2 (OD$_{600}$ = 0.02) for indicated periods of time. O$_2^-$ and H$_2$O$_2$ accumulation were detected by NBT and DAB staining, respectively. AvrRpt2, avirulence effector recognized by RPS2; Col-0, Columbia-0; DAB, 3,3′-
We next examined MPK6SR and MPK3SR plants inoculated with Pst-AvrRpt2 to determine whether MPK3 and MPK6 are required for the ETI-mediated increase in \(O_2^- / H_2O_2 \). As shown in Fig 5D and 5F, Pst-AvrRpt2–induced \(O_2^- \) accumulation in chloroplasts was delayed in NA-PP1–treated MPK6SR and MPK3SR, which correlates well with the reduced PSII inhibition in NA-PP1–treated MPK6SR and MPK3SR plants (Fig 5A). These results suggest that MPK3/MPK6 are involved in ETI-induced ROS accumulation in chloroplasts. However, although MPK3/MPK6 activation can induce both accumulation of \(H_2O_2 \) and \(O_2^- \) (Fig 2G and 2H and S2 Fig), Pst-AvrRpt2–induced \(H_2O_2 \) accumulation was not affected in MPK6SR and MPK3SR (Fig 5E), possibly due to the complicated enzymatic and nonenzymatic conversion of \(O_2^- \) to \(H_2O_2 \) and/or \(H_2O_2 \) decomposition.

Although HR-like cell death after the activation of MPK3/MPK6 or their orthologs in tobacco was detailed more than a decade ago [52,76,77], it is still unknown whether pathogen-induced HR cell death requires this MAPK cascade. As a result, we examined HR cell death in MPK3SR and MPK6SR during ETI after Pst-AvrRpt2 inoculation. As shown in Fig 6A and 6B, HR cell death and ion leakage were impaired in NA-PP1–, but not DMSO–, treated MPK6SR and MPK3SR plants. Associated with this, we also observed compromised resistance to Pst-AvrRpt2 in NA-PP1–treated MPK6SR and MPK3SR plants (Fig 6C). Associated with the high titer of Pst-AvrRpt2 growth in Arabidopsis, leaf chlorosis was observed (Fig 6C), consistent with the breach of plant ETI in the loss-of-function mpk3 mpk6 double mutant system. In solvent DMSO-treated controls, the growth of Pst-AvrRpt2 was suppressed, demonstrating an effective ETI (Fig 6C). These results demonstrate that MPK3 and MPK6 function redundantly and are required for ETI.

We also measured PSII inhibition, ion leakage, and bacterial growth in the loss-of-function mpk3 mpk6 double mutant system after inoculation with Pst carrying AvrRpm1, AvrB, and AvrRps4. As shown in S6 Fig, PSII inhibition and ETI were all compromised in NA-PP1–, but not DMSO–, treated MPK6SR and MPK3SR plants. These results suggest that MPK3/MPK6 are essential for both CNL- and TNL-type NLR-mediated PSII inhibition and ETI.

Prolonged, but not transient, MAPK activation induces photosynthetic inhibition (Fig 3B). As a result, we examined whether long-lasting MAPK activation is essential for ETI. Wild-type MPK6SR and MPK3SR plants infiltrated with Pst-AvrRpt2 were treated with NA-PP1 to inhibit MAPK activity at different times after inoculation. As shown in Fig 6D, NA-PP1 treatment at 12 hpi could still compromise RPS2-mediated ETI, demonstrating that short-term MAPK activation was not sufficient to confer efficient ETI.

Photosynthetic inhibition is essential to ETI

To provide genetic evidence to support the importance of photosynthetic inhibition in ETI, we expressed a plastid-targeted cyanobacterial flavodoxin (pFld) in DD and GVG-AvrRpt2 plants. Flowering plants do not have flavodoxin [78], and ectopically expressing a cyanobacterial flavodoxin in tobacco confers broad stress tolerance [79,80]. We found that overexpression of pFld in DD and GVG-AvrRpt2 background caused growth retardation (Fig 7A and 7B, and S7 Fig). This is likely a result of the lower efficiency of flavodoxin as an electron carrier in comparison to ferredoxin [78,81]. Nonetheless, we observed that PSII inhibition induced by MPK3/MPK6 activation was impaired in pFld-overexpressing plants. Two independent pFld expression lines were used. Neither line, the induction of DD protein nor the activation of...
Fig 6. Prolonged MPK3/MPK6 activation is essential to ETI. (A) MPK3 and MPK6 are required for \textit{Pst-AvrRpt2}-induced HR cell death. Soil-grown Col-0, MPK6SR, and MPK3SR plants were first spray treated with 10 μM NA-PP1 for 2 h and then infiltrated with \textit{Pst-AvrRpt2} (OD = 0.02). Photos were taken at 18 hpi. Numbers are ratios of leaves with HR phenotype. (B) MPK3 and MPK6 are required for \textit{Pst-AvrRpt2}-induced ion leakage. Soil-grown Col-0, MPK6SR, and MPK3SR plants were first spray treated with 10 μM NA-PP1 for 2 h; leaf discs were punched and then infiltrated with \textit{Pst-AvrRpt2} (OD = 0.02) by vacuum. Leaf discs were then transferred to GC vials containing 2 μM NA-PP1 or DMSO. Ion leakage was measured as increase in conductivity. Values are means ± SD, \(n = 4 \). (C) MPK3 and MPK6 are required for disease resistance against \textit{Pst-AvrRpt2}. Col-0, MPK6SR, and MPK3SR plants grown in soil were first spray treated with 10 μM NA-PP1 or DMSO and then infiltrated with \textit{Pst-AvrRpt2} (OD\textsubscript{600} = 0.0005). \textit{NA-PP1} or DMSO was sprayed again at 1.5 dpi. \textit{Pst-AvrRpt2} growth was quantified at 3 dpi. Values are means ± SD, \(n = 3 \), \(P < 0.001 \). (D) Prolonged activation of MPK3/MPK6 is required for ETI-mediated resistance. Col-0, MPK6SR, and MPK3SR plants grown in soil were infiltrated with \textit{Pst-AvrRpt2} (OD\textsubscript{600} = 0.0005). NA-PP1 was sprayed at indicated time points. \textit{Pst-AvrRpt2} growth was quantified at 3 dpi. Values are means ± SD, \(n = 3 \), \(P < 0.001 \).
MPK3/MPK6 after DEX treatment, was affected by the overexpression of pFld (Fig 7C). As shown in Fig 7D, expression of pFld impaired MPK3/MPK6 activation-mediated ROS accumulation. Concomitantly, PSII inhibition, disassembly of photosynthetic complexes and HR-like cell death were all delayed (Fig 7E–7G). Expression of pFld also alleviated the photosynthetic inhibition triggered by conditional expression of AvrRpt2 (S7 Fig).

To test whether the inhibition of photosynthetic activities in chloroplasts is required for the robustness of ETI, we infiltrated DD, DD/pFld-7, and DD/pFld-8 with Pst-AvrRpt2. In the absence of DEX, DD transgene is not expressed, and these plants can be treated as wild-type control and pFId transgenic plants, respectively. PSII inhibition induced by Pst-AvrRpt2 was greatly delayed in DD/pFld-7 and DD/pFld-8 plants, which was associated with the inhibition of HR cell death (Fig 8A), a compromised resistance (Fig 8B), impaired ROS accumulation (Fig 8C), and delayed disassembly of photosynthetic complexes (S8 Fig). The elevated Pst-AvrRpt2 growth led to chlorosis, a susceptible phenotype (Fig 8B). These results strongly suggest that inhibition of photosynthetic activity is essential to ETI. This notion is further supported by the observation that HR cell death and PSII inactivation is delayed in dark (Fig 7D), in which no ROS accumulation in chloroplasts was observed (Fig 2G and 2H and S5 Fig). In addition, disease resistance to Pst-AvrRpt2 was also greatly compromised in dark or under low light, and Pst-AvrRpt2 grew to higher titers and caused chlorosis, symptoms of susceptibility (Fig 8E and 8F). Altogether, these results suggest that light-dependent ROS accumulation in chloroplasts is an important part of ETI.

Discussion

Decrease in plant photosynthetic activity and global down-regulation of photosynthetic genes have long been associated with plants under biotic stresses [44–50]. However, it is unclear whether this is a reflection of deterioration of plant health or an active part of plant immunity. Recently, we reported the essential role of MPK3/MPK6 in plant PTI [38]. MPK3 and MPK6 are also activated during ETI [24,25]. However, genetic evidence demonstrating the requirement of MPK3/MPK6 in ETI is still lacking. In this report, we demonstrate that gain-of-function activation of MPK3/MPK6 in Arabidopsis is sufficient to induce active inhibition of photosynthesis and light-dependent ROS accumulation in chloroplasts, two processes that mutually enhance each other under light. Loss-of-function data revealed that MPK3 and MPK6 are essential to effector-triggered photosynthetic inhibition and ROS accumulation in chloroplasts, and eventually ETI. This study highlights the important role of MPK3/MPK6-mediated photosynthetic inhibition and ROS accumulation in chloroplasts during ETI, which can explain why plants are more resistant under light than in dark. We propose that active photosynthetic inhibition mediated by the MPK3/MPK6 pathway is one of the key immune responses downstream of NLR activation and contributes to a robust ETI (Fig 8G).

MPK3/MPK6 activation induces light-independent photosynthetic inhibition and light-dependent ROS accumulation in chloroplasts

MPK3/MPK6 activation-induced HR-like cell death and ROS accumulation in chloroplasts are light dependent (Fig 2G–2I). This is also true in a tobacco system [32]. However, MPK3/MPK6 activation-induced PSII inhibition can be independent of light (Figs 2A–2C and 3C).
Fig 7. Expression of pFld impairs MPK3/MPK6 activation-induced ROS accumulation, PSII inhibition, and HR-like cell death. (A) Phenotype of 4-wk-old pFld transgenic plants in DD background. (B) Immunoblot analysis of pFld expression using anti-Fld antibody. (C) Normal activation of MPK3/MPK6 in pFld transgenic plants. Soil-grown plants were spray treated with 15 μM DEX for indicated periods of time. DD expression and activation of MPK3/MPK6 activation were detected by using anti-FLAG and anti-pTEpY, respectively. (D) Overexpression of pFld suppresses MPK3/MPK6 activation-induced ROS accumulation. Soil-grown DD and DD/pFld plants were infiltrated with EtOH or 5 μM DEX. O$_2^-$ was visualized by NBT staining. (E–G) Overexpression of pFld suppresses MPK3/MPK6 activation-induced photosynthetic inhibition. Fv/Fm was measured at 24 h (E), HR-like phenotype was recorded at 30 h (F), and disassembly of photosynthetic complexes at 24 h was visualized by BN-PAGE (G). Samples equivalent to 8 μg of chlorophyll were loaded. Values are means ± SD, n = 6, * P ≤ 0.001. The numerical values used to construct panel E can be found in S1 Data. See also S7 Fig. BN-PAGE, blue native polyacrylamide gel electrophoresis; CBB, Coomassie brilliant blue; CP43, photosystem II chlorophyll protein of 43 kDa; DD, GVG-NtMEK2DD; DEX, dexamethasone; EtOH, ethanol; FLAG, an octapeptide; Fld, flavodoxin; HR, hypersensitive response; LHCII, light-harvesting complex II; MPK, mitogen-activated protein kinase; NtMEK2DD, constitutively activated NtMEK2; NBT, nitroblue tetrazolium; NDH, NADH dehydrogenase-like; O$_2^-$, superoxide; pFld, plastid-targeted cyanobacterial flavodoxin; pMPK, phosphorylated MPK; PSI, photosystem I; PSII, photosystem II; pTEpY, dually phosphorylated Thr/Glu/Tyr peptide; ROS, reactive oxygen species.

https://doi.org/10.1371/journal.pbio.2004122.g007
Fig 8. Photosynthetic inhibition and light are essential to a robust ETI. (A) Expression of pFld suppresses Pst-AvrRpt2–induced HR phenotype and PSII inhibition. Soil-grown DD and DD/pFld plants were infiltrated with Pst-AvrRpt2 (OD = 0.02). Photos were taken at 24 hpi. Fv/Fm was measured at 18 hpi. Values are means ± SD, n = 6, **P ≤ 0.001. (B) Expression of pFld compromises disease resistance against Pst-AvrRpt2. Four-wk-old soil-grown DD and DD/pFld plants were infiltrated with Pst-AvrRpt2 (OD$_{600}$ = 0.0005). Photos were taken at 3 dpi and Pst-AvrRpt2 growth was quantified at 2.5 dpi. Values are means ± SD, n = 3, ***P ≤ 0.001. (C) Expression of pFld impairs Pst-AvrRpt2–induced ROS accumulation. Soil-grown DD and DD pFld plants were infiltrated with mock (10 mM MgCl$_2$) or Pst-AvrRpt2 (OD = 0.02). O$_2^-$ was visualized by NBT staining at 6 hpi. (D) Light accelerates Pst-AvrRpt2–induced PSII inhibition and HR cell death. Four-wk-old Col-0 plants were infiltrated with Pst-AvrRpt2 (OD = 0.02). Plants were kept in dark or under light. Photos were taken at 18 hpi and numbers are ratios of leaves with HR phenotype. Fv/Fm was measured at 12 hpi. Values are means ± SD, n = 7, **P ≤ 0.001. (E and F) Light is essential to plant resistance against Pst-AvrRpt2. Four-wk-old Col-0 plants were infiltrated with Pst-AvrRpt2 (OD = 0.0005). After infiltration, plants were kept under light for 2 h to allow the evaporation of liquid, and then kept in dark or under different light intensities, as indicated. Photos were taken and Pst-AvrRpt2 growth was determined at 3 dpi. Values are means ± SD, n = 3, **P ≤ 0.001. The numerical values used to construct panels A, B, D, and F can be found in S1 Data. (G) Schematic model of MPK3/MPK6 activation–induced PSII inhibition, ROS accumulation in chloroplasts, and the robustness of ETI. AvrRpt2, avirulence effector recognized by RPS2; Col-0, Columbia-0; DD, GVGNtMEK2DD; dpi, days post inoculation; ETI, effector-triggered immunity; flg22, a 22 amino acids flagellin fragment; FLS2, flagellin-sensitive 2; hpi, hours post inoculation; HR, hypersensitive response; MPK, mitogen-activated protein kinase; NBT, nitroblue tetrazolium; OD, optical density; O$_2^-$, superoxide; PAMP, pathogen/microbe-associated molecular pattern; pFld, plastid-targeted cyanobacterial flavodoxin; PRR, pattern recognition receptor; Pst, Pseudomonas syringae pv tomato; PSII, photosystem II; ROS, reactive oxygen species; RPS2, Resistance to Pseudomonas syringae 2; TTSS, type III secretion system.

https://doi.org/10.1371/journal.pbio.2004122.g008
We also noticed that PSII inhibition was slower in the absence of light, which could be a result of the lack of ROS generation (Fig 2G and 2H). ROS are known to play an important role in accelerating PSII inhibition by oxidative damage of PSII proteins [82–84]. Under light, MPK3/MPK6 activation-induced PSII inactivation and ROS accumulation in chloroplasts can form a positive feed-forward loop to accelerate the PSII inhibition. Nonetheless, MPK3/MPK6 activation-induced photosynthetic inhibition can occur in the absence of light and be independent of chloroplastic ROS accumulation.

MPK3/MPK6-mediated inhibition of photosynthesis is an important part of both CNL- and TNL-type NLR-mediated ETI

Photosynthetic inhibition is a well-documented phenomenon in plants challenged by pathogens [46–50,85–88]. However, it was not clear whether photosynthetic inhibition is a programmed part of immune response or merely a side effect caused by pathogen infection. In this study, we provided several lines of evidence suggesting that photosynthetic inhibition is an active defense response and an important part of ETI. First of all, AvrRpt2-induced photosynthetic inhibition requires its immune receptor, RPS2, demonstrating that photosynthetic inhibition is an event downstream of NLR activation. Secondly, prolonged activation of MPK3/MPK6, an event downstream of NLR activation in ETI [24], induces photosynthetic inhibition. Thirdly, ETI and MAPK signaling–mediated photosynthetic inhibition facilitate ROS accumulation in chloroplasts, which is essential to ETI. Previous studies demonstrate that light is essential for virus-induced HR [32,89]. In this study, we also found an essential role of light in *Pst-AvrRpt2*–induced HR and plant resistance against *Pst-AvrRpt2* (Fig 8D–8F). Thus, photosynthetic inhibition during ETI is actively regulated and is part of the immune response that enhances resistance.

We found that *Pst-AvrRps4* also induces prolonged MAPK activation (Fig 4G), although AvrRps4 is sensed by RPS4/RRS1, a TNL-type NLR, which was thought to function in nuclei mainly through transcriptional reprogramming [12]. The requirement of MPK3/MPK6 in both CNL- and TNL-mediated ETI raises a question of how NLR activation leads to prolonged MPK3/MPK6 activation. MPK4 is guarded by CNL-type R protein, suppressor of mkk1 mkk2 (SUMM2), which monitors the phosphorylation status of MPK4 substrates, including MAP kinase kinase kinase 2 (MEKK2), mRNA de-capping protein PAT1, and calmodulin binding receptor-like cytoplasmic kinase 3 (CRCK3) [90–93]. It remains to be determined whether MPK3 and MPK6 are also protected by CNL- or TNL-type R proteins. In PTI, MPK3/MPK6 activation after PAMP perception by PRRs can be mediated by receptor-like cytoplasmic kinases (RLCKs), which are similar to RLKs but lack an extracellular domain. *Arabidopsis* RLCK PBS1-like 27 (PBL27) and rice (*Oryza sativa*) OsRLCK85 were demonstrated to connect chitin perception to MPK3/MPK6 activation [94,95]. It will be interesting to identify the proteins that connect NLRs to MPK3/MPK6, which may reveal the mechanism(s) underlying the prolonged activation of MPK3/MPK6 during ETI.

MPK3/MPK6 cascade regulates the trade-off between growth and defense in plant immunity

The concept of a trade-off between growth and defense has been proposed for many decades [96]. Our current knowledge on the growth–defense trade-off mainly stems from antagonistic cross talk among hormones that promote defense and that promote growth, such as SA-auxin, SA-brassinosteroid (BR), SA-gibberelllic acid (GA), jasmonic acid (JA)-Auxin, JA-BR, and JA-GA [97–99]. However, how a plant integrates multiple internal and external stimuli to shift the balance between growth and defense remains poorly understood. It is also unclear why
these two events are coupled together most of the time. We showed in this report that both events are regulated by the same MAPK signaling pathway. MPK3/MPK6 activation globally down-regulates photosynthetic genes and, in the meantime, up-regulates numerous defense-related genes (Fig 1A–1C), suggesting that MAPK signaling plays important roles in orchestrating growth and defense in plant immunity. Consistent with the down-regulation of photosynthetic genes, we did observe decreases in CO$_2$ fixation [32] and photosynthetic inhibition (Fig 2A–2C). Both would have negative impacts on normal plant growth and development. In the meantime, up-regulation of defense genes by the MPK3/MPK6 cascade leads to an increased biosynthesis of defense-related secondary metabolites such as camalexin [53] and indole glucosinolate derivatives [56]. Considering that multiple developmental and environmental signals converge at the MPK3/MPK6 cascade [28,100], we propose that the MPK3/MPK6 cascade is a key hub in orchestrating the trade-off between growth and defense.

MPK3/MPK6 activation-induced photosynthetic inhibition, as well as its associated ROS accumulation and HR cell death, contribute positively to the robust ETI. Regulation of photosynthetic inhibition by an active signaling cascade demonstrates that the inhibition of photosynthesis is an active defense response in plant immunity triggered by effectors, not a passive consequence of the deterioration of plant fitness caused by pathogen infection. It also reveals a potential mechanism underlying the growth–defense trade-off during plant immunity. Plant ETI is a stronger and more robust form of immune response in comparison to PTI [3,7,8]. In such a case, a robust defense, but not growth, is of high priority. Long-lasting activation of MPK3/MPK6 triggered by pathogen effectors contributes to the robustness of ETI (Fig 8G). It is worth noting that PTI, a weaker form of plant immunity, induces only transient MAPK activation and does not cause photosynthetic inhibition (Fig 3B and S4 Fig), indicating that photosynthetic activities are differently regulated during different forms of immune responses by the same MAPK signaling pathway, depending on its activation kinetics.

Materials and methods

Plant growth

Soil-grown Arabidopsis plants were maintained at 22 °C and about 70% relative humidity in a growth chamber with a 10 h day/14 h night cycle (100 μmol m$^{-2}$ s$^{-1}$). For plants grown in liquid medium, seeds were surface sterilized. After stratification at 4 °C for 3–5 d, seeds were sown in petri dishes with liquid half-strength Murashige and Skoog medium and grown in a growth chamber at 22 °C with continuous light (70 μmol m$^{-2}$ s$^{-1}$). Six-d-old seedlings were transferred to 20-mL GC vials with 6 mL of liquid half-strength MS medium (10 seedlings per vial) and maintained under the same growth conditions [25]. Col-0 ecotype was used as the wild type. Mutant alleles and transgenic lines of mpk3-1 (Salk_151594), mpk6-2 (Salk_073907), DD (GVG-NIMEK2DD), AvrRpt2/RPS2 (GVG-AvrRpt2 in Col-0 background), AvrRps2/rps2 (GVG-AvrRpt2 in rps2-101C background), MPK6SR (mpk3 mpk6 P$_{MPK6}$-MPK6$, Line #58$), and MPK3SR (mpk3 mpk6 P$_{MPK3}$-MPK3$, Line #64$) were reported previously [52,65,101].

Generation of transgenic lines

For generation of DD/pFld and GVG-AvrRpt2/pFld plants, the coding sequence of Fld from cyanobacterium Anabaena sp. PCC 7119 [102] was first optimized to codons preferred in Arabidopsis using OptimumGene algorithm (Genscript) (S9 Fig). After introducing Nde I and Spe I enzyme digestion sites, the Nde I-Fld-Spe I fragment was directly synthesized into pUC57 vector, and then the Nde I-Fld-Spe I fragment was subcloned into pBluescript (pBS) vectors with RbcS signal peptide sequence to generate pBS-RbcS-Fld. The pBS-RbcS-Fld was cut with Xho I and Spe I and subcloned into pBID vector to generate pBID-RbcS-Fld constructs. The
pBID-RbcS-Fld construct was then transformed to *Agrobacterium tumefaciens* GV3101. Finally, the *A. tumefaciens* GV3101 containing pBID-RbcS-Fld was used to transform DD and GVG-AvrRpt2/RPS2 plants, respectively. Single insertion lines were selected and the expression of Fld was confirmed by immunoblot. F3 homozygous DD/pFld and GVG-AvrRpt2/pFld plants were used for experiments.

Chlorophyll fluorescence measurement

The O-J-I-P curve was measured by using Dual-PAM chlorophyll fluorometer (Walz, Germany) with a built-in fast kinetic protocol. Other chlorophyll fluorescence parameters were measured with the Maxi-version of Imaging-PAM chlorophyll fluorometer (Walz, Germany) or FMS2 (Hansatech, United Kingdom). \(F_o \) (minimum fluorescence of dark adapted leaves) was measured using weak light (\(<1 \mu\text{mol m}^{-2} \text{s}^{-1}\)) at a low frequency (2 Hz). For measuring \(F_m \) (maximum fluorescence yield of dark-adapted leaves), dark-adapted leaves were exposed to a PPFD of approximately 2,700 \(\mu\text{mol m}^{-2} \text{s}^{-1}\). When performing induction kinetics measurements, the intensity of actinic light was set to 110 \(\mu\text{mol m}^{-2} \text{s}^{-1}\). For measuring \(F_m' \) (maximum fluorescence yield of light adapted leaves), dark-adapted leaves were exposed to a PPFD of approximately 2,700 \(\mu\text{mol m}^{-2} \text{s}^{-1}\). For measuring \(F_m' \), the intensity of actinic light was set to 610 \(\mu\text{mol m}^{-2} \text{s}^{-1}\). The interval for measuring \(F_m' \) was 20 s. Maximal PSII quantum yield (\(F_v/F_m \)) was calculated with \((F_m-F_o)/F_m\); effective quantum yield of PSII (\(Y(II) \)) with \((F_m'-F)/F_m'\); \(q_L \), the parameter estimating the open PSII centers based on a lake model, with \((F_m/F_m'-F_m)/F_m\); and NPQ, the nonphotochemical quenching parameter describing the regulated quenching of excessive energy, with \((F_m-F_m')/F_m'\).

ROS staining

In vivo \(\text{H}_2\text{O}_2 \) generation in plants was detected by using DAB as described previously [32]. Twelve-d-old *Arabidopsis* seedlings after treatment were submerged into a solution containing 1 mg/mL DAB (pH 5.5) for 2 h under growth light. Oxidation of DAB leads to its polymerization and deposition at the site of ROS generation. The seedlings were then boiled in ethanol for 10 min to remove chlorophyll. \(\text{H}_2\text{O}_2 \) production was visualized as a reddish-brown coloration. In vivo \(\text{O}_2^\cdot \) production was monitored by NBT staining as described previously [32]. Twelve-d-old *Arabidopsis* seedlings after treatment were submerged into 10 mM potassium phosphate buffer (pH 7.8) containing 1 mg/mL NBT and 10 mM NaN_3. To avoid overstaining, the seedlings were stained in dark for 30 min. The seedlings were then boiled in ethanol for 10 min to remove chlorophyll. Reduced NBT was visualized as a dark blue-colored formazan deposit. Single layer mesophyll cells were prepared according to [103] for visualization of \(\text{H}_2\text{O}_2 \) and \(\text{O}_2^\cdot \) accumulation in mesophyll cells. Seedlings stained with DAB and NBT were fixed in 3.5% glutaraldehyde for 1 h and then softened with 0.1 M EDTA, pH 9.0, for 2 h at 55 °C. A leaf sample (about 1 mm²) was placed on a glass slide and covered with a cover slide. The leaf sample was stretched into a single cell layer by lightly tapping with the eraser of a pencil. \(\text{H}_2\text{O}_2 \) and \(\text{O}_2^\cdot \) accumulation in chloroplasts were imaged with a microscope equipped with a digital camera.

Pathogen and ion leakage assay

HR assay was performed as described previously [104]. For HR assay in Col-0, DD, and DD/pFld plants, 4-wk-old plants were infiltrated with *Pst-AvrRpt2* (OD_600 = 0.02). For Col-0, MPK6SR, and MPK3SR, 4-wk-old plants were first sprayed with 10 \(\mu\text{M} \) NA-PP1 or DMSO (mock) 2 h before *Pst-AvrRpt2* (OD_600 = 0.02) infiltration. After infiltration, plants were kept under a growth light and HR phenotype was detected at 18 hpi. The disease resistance assay was carried out as previously described [25]. For the resistance assay in DD and DD/pFld,
4-wk-old plants were infiltrated with *Pst-AvrRpt2* (OD$_{600}$ = 0.0005). For Col-0, MPK6SR, and MPK3SR, 4-wk-old plants were first sprayed with 10 μM NA-PP1 or DMSO (mock) 2 h before or at indicated times for *Pst-AvrRpt2* (OD$_{600}$ = 0.0005), *Pst-AvrRpm1* (OD$_{600}$ = 0.0005), *Pst-AvrB* (OD$_{600}$ = 0.0005), and *Pst-AvrRps4* (OD$_{600}$ = 0.0005) infiltration. Plants were maintained at 22 °C in a growth chamber with a 10 h day/14 h night cycle (100 μmol m$^{-2}$ s$^{-1}$). Normally, for Col-0, MPK6SR, and MPK3SR were sprayed with 10 μM NA-PP1 or DMSO (mock) again at 1.5 dpi if not specified. Bacterial growth was quantified with 12 leaves (usually the fifth and sixth leaves) from 6 independent plants at 2.5 or 3 dpi.

Ion leakage assay was performed as previously described [105]. Plants were first sprayed with 10 μM NA-PP1 or DMSO (mock). Leaf discs (7 mm in diameter) were punched out and then vacuum infiltrated with *Pst-AvrRpt2* (OD$_{600}$ = 0.02), *Pst-AvrRpm1* (OD$_{600}$ = 0.02), *Pst-AvrB* (OD$_{600}$ = 0.02), or *Pst-AvrRps4* (OD$_{600}$ = 0.02). Leaf discs were then transferred to a 20-mL GC vial containing 10 mL ddH$_2$O with 2 μM NA-PP1 or DMSO (mock). Conductivity was measured by using a conductivity meter.

BN-PAGE and two-dimensional SDS-PAGE

Photosynthetic complexes were separated by BN-PAGE according to the modified protocol [106]. Twelve-d-old *Arabidopsis* seedlings grown in liquid medium were treated with 5 μM DEX for indicated time points. Seedlings (about 1.5 g) were ground in 10 mL thylakoid extraction buffer (50 mM HEPES/KOH, pH 7.5, 330 mM sorbitol, 2 mM EDTA, 1 mM MgCl$_2$, 5 mM ascorbate, 0.05% [w/v] BSA, and 10 mM NaF) and filtered through 4 layers of KimWipes. After centrifugation for 5 min at 4 °C, 2,500 g, the pellet was successively washed with washing buffer I (50 mM HEPES/KOH, pH 7.5, 5 mM sorbitol, and 10 mM NaF) and washing buffer II (50 mM HEPES/KOH, pH 7.5, 100 mM sorbitol, 10 mM MgCl$_2$, and 10 mM NaF) at 2,500 g for 5 min at 4 °C. Chlorophyll was extracted in 80% (v/v) buffered acetone (2.5 mM HEPES/NaOH, pH 7.5) and the content of chlorophyll was determined according to the equation:

\[
\text{Chlorophyll (μg/mL)} = 20.2A_{645} + 8A_{663}
\]

Chlorophyll (μg/mL) = 20.2A645 + 8A663. The thylakoid membrane was washed twice with a buffer (25 mM Bis Tris·HCl, pH 7.0, 20% [v/v] glycerol) at 12,000g for 5 min at 4 °C. Then, the thylakoids were solubilized in solubilization buffer (25 mM Bis Tris·HCl, pH 7.0, 20% [v/v] glycerol and 1% n-dodecyl-b-maltoside) for 10 min on ice. After solubilization, the samples were centrifuged at 12,000g for 10 min at 4 °C to remove insoluble ingredients. The supernatant was transferred to a new tube, and 1/10 volume of 10× native sample buffer (100 mM Bis Tris·HCl, pH 7.0, 0.5 M 6-amino-caproic acid, 30% [v/v] glycerol, and 0.5% [v/v] brilliant blue G-250) were added. Thylakoid membranes equivalent to 8 μg chlorophyll content were loaded to a 5%–13.5% gradient native PAGE gel and run at voltages of 50, 75, 100, 125, 150, 175, 200, 225, and 250 V, each for 0.5 h. After the first dimensional separation, strips were excised and incubated with 138 mM Tris/HCl, pH 6.8, 6 M urea, 22.2% (v/v) glycerol, 4.3% (w/v) SDS, and 5% (w/v) 2-mercaptoethanol for 1 h at room temperature. Then, the strips were loaded to a 15% (w/v) SDS-PAGE gel containing 6 M urea. Proteins on the 2D gels were visualized by staining with brilliant blue G-250.

Protein extraction and immunoblot analysis

Protein extraction and immunoblot were carried out as previously described [32]. Total protein was extracted from leaf tissue by grinding with small plastic pestles in extraction buffer (100 mM HEPES, pH 7.5, 5 mM EDTA, 5 mM EGTA, 10 mM DTT, 10 mM Na$_3$VO$_4$, 10 mM NaF, 50 mM b-glycerophosphate, 1 mM phenylmethylsulfonyl fluoride, 5 μg/mL antipain, 5 μg/mL aprotinin, 5 μg/mL leupeptin, and 10% [v/v] glycerol). Thylakoid proteins for immunoblot were prepared by adding 1/4 volume of 4× SDS sample buffer (250 mM Tris/HCl, pH
6.8, 40% [v/v] glycerol, 4% [w/v] SDS, and 0.1% [w/v] bromophenol blue) to solubilized thylakoid preparations and boiled for 2 min. NtMEK2DD expression was detected by using anti-FLAG (Sigma, F1804, dilution 1:10,000). Activation of MPK3 and MPK6 was detected by using anti-pTExPY (Cell signaling, dilution 1:4,000). Expression of Fld was detected by anti-Fld (a gift from Dr. Donald A. Bryant, Pennsylvania State University, dilution 1:3,000). Anti-D1 antibody (Agrisera, AS10704, dilution 1:10,000) was used for the detection of PSII core D1 protein. The blots were incubated with horseradish peroxidase-conjugated goat-anti-mouse or goat-anti-rabbit secondary antibodies (dilution 1:10,000), and the bands were visualized using an enhanced chemiluminescence kit (Perkin Elmer) according to the manufacturer’s instructions.

Quantitative RT-PCR analysis

Real-time quantitative PCR (qPCR) was performed as previously described [54]. Total RNA was extracted using TRIzol reagent (Invitrogen). After DNase treatment, 1 μg of total RNA was used for reverse transcription. Real-time qPCR analysis was performed using an ABI 7500 real-time PCR machine (Life Technologies). EF-1α was used as an internal control. The primer pairs used for qPCR are listed in S2 Table.

Illumina RNA-seq gene expression profiling

Total RNA was extracted with TRIzol reagent (Invitrogen) from 12-d-old DD seedlings treated with 2 μM DEX for 0 and 6 h, respectively. After DNase treatment, total RNA was purified using RNA clean and concentrator Kit. RNA sequencing libraries were constructed using TruSeq RNA library preparation Kit and sequenced using the HiSeq X Ten according to the manufacturer’s instructions. Dirty raw reads were filtered out using SONPnuke software. Clean reads were mapped to the *Arabidopsis* reference genome with BWA and to reference gene sequences with Bowtie. Gene expression levels were calculated using the RPKM method (reads per kb per million reads). The raw Illumina reads generated from RNA-seq experiments were deposited at NCBI Sequence Read Archive (SRP111959).

Quantification and statistical analysis

Statistical details of experiments are reported in figure legends. Statistical significance between groups was determined by one-way ANOVA comparison; *p*-values were indicated in figure legends. Each experiment was performed at least twice, with similar results.

Supporting information

S1 Fig. Activation of MPK3/MPK6 causes disassembly of photosynthetic complexes, related to Fig 2. Activation of MPK3/MPK6 causes disassembly of PSII-LHCII super-complexes and accumulation of the intermediate CP43-less PSII core complex. Twelve-d-old DD plants grown in liquid medium were treated with 5 μM DEX for indicated periods of time. Thylakoid membrane samples equivalent to 8 μg of chlorophyll content were subjected to first dimension BN-PAGE. The BN-PAGE strips were cut out. After denaturation, the samples were subjected to second dimension SDS-PAGE. Protein spots were visualized by brilliant blue G250 staining. Bands and protein spots were labeled as described previously. BN-PAGE, blue native polyacrylamide gel electrophoresis; CP43, photosystem II chlorophyll protein at 43 kDa; DD, GVGGNtMEK2DD; DEX, dexamethasone; LHCII, light-harvesting complex II; mc, mega-complex; MPK, mitogen-activated protein kinase; PSII, photosystem II; sc, super-
complex; SDS-PAGE, sodium dodecyl sulfate-PAGE.

(TIF)

S2 Fig. Activation of MPK3/MPK6 causes ROS accumulation, related to Fig 2. Activation of MPK3/MPK6 leads to increases in H$_2$O$_2$ (A) and O$_2^-$ (B) levels in whole seedlings. DD plants grown in liquid medium were treated with EtOH or 5 μM DEX and were kept under light for indicated periods of time. H$_2$O$_2$ and O$_2^-$ were visualized by DAB and NBT staining, respectively. DAB, 3,3’-diaminobenzidine; DD, GVG-NtMEK2DD; DEX, dexamethasone; EtOH, ethanol; MPK, mitogen-activated protein kinase; NBT, nitroblue tetrazolium; ROS, reactive oxygen species.

(TIF)

S3 Fig. Transient activation of MPK3/MPK6 after flg22 treatment does not induce a decrease in PSII core D1 protein, related to Fig 3. Twelve-d-old DD and Col-0 plants grown in liquid medium were treated with 5 μM DEX and 200 nM flg22 for indicated times, respectively. Thylakoid membranes were isolated and solubilized with 1% dodecyl maltoside. Samples equivalent to 8 μg of chlorophyll were loaded to a BN-PAGE. For detection of D1 abundance in different complexes, samples equivalent to 2 μg of chlorophyll were loaded to a BN-PAGE. After transferring to a PVDF membrane, anti-D1 was used to detect D1 abundance. BN-PAGE, blue native polyacrylamide gel electrophoresis; Col-0, Columbia-0; DEX, dexamethasone; flg22, a 22 amino acids flagellin fragment; MPK, mitogen-activated protein kinase; PSII, photosystem II; PVDF, polyvinylidene fluoride.

(TIF)

S4 Fig. ETI is associated with photosynthetic inhibition, related to Fig 4. (A and B) Photosynthetic parameters are differentially affected by different Pst strains. Four-wk-old Col-0 plants were infiltrated with 10 mM MgCl$_2$ (mock), Pst-EV, Pst-AvrRpt2, or Pst-hrcC$^-$ (OD$_{600}$ = 0.2). The plants were covered with a transparent lid (100% relative humidity) and kept under light. Fv/Fm and Y(II) were measured at the indicated time. Values are means ± SD, n = 8. (C) Flg22-triggered PTI does not induce photosynthetic inhibition. Four-wk-old Col-0 plants were infiltrated with 10 mM MgCl$_2$ (mock) or 50 nM flg22. Photosynthetic parameters were measured at 24 hpi. Values are means ± SD, n = 8. (D and E) AvrRpm1-triggered ETI also induces photosynthetic inhibition. Four-wk-old Col-0 plants were infiltrated with 10 mM MgCl$_2$ (mock), P. fluorescens-EV (Pf0-1-EV), or P. fluorescens-AvrRpm1 (Pf0-1-AvrRpm1) (OD$_{600}$ = 0.02). Fv/Fm and Y(II) were measured at indicated time points. Values are means ± SD, n = 8. The numerical values used to construct panels A–E can be found in S1 Data. AvrRpm1, avirulence effector recognized by RPM1; AvrRpt2, avirulence effector recognized by RPS2; Col-0, Columbia-0; ETI, effector-triggered immunity; EV, empty vector; flg22, a 22 amino acids flagellin fragment; hpi, hours post inoculation; hrcC$^-$, outer membrane type III secretion protein HrcC mutant; OD, optical density; Pf0-1-AvrRpm1, P. fluorescens-AvrRpm1; Pf0-1-EV, P. fluorescens-EV; Pst, Pseudomonas syringae pv tomato; PTI, PAMP-triggered immunity.

(TIF)

S5 Fig. ETI causes ROS accumulation in chloroplast, related to Fig 4. AvrRpt2-mediated ETI results in light-dependent increases in O$_2^-$ and H$_2$O$_2$ production in chloroplasts. Twelve-d-old GVG-AvrRpt2/RPS2 and GVG-AvrRpt2/rps2 plants were treated with DEX (5 μM) or EtOH solvent control for 8 h. O$_2^-$ and H$_2$O$_2$ accumulation was detected by NBT (A) and DAB (B) staining, respectively. Images of ROS accumulation at whole leaf level and subcellular level were shown. AvrRpt2, avirulence effector recognized by RPS2; DAB, 3,3’-diaminobenzidine; DEX, dexamethasone; ETI, effector-triggered immunity; EtOH, ethanol; GVG-AvrRpt2, DEX-
inducible promoter-driven AvrRpt2; NBT, nitroblue tetrazolium; \(\text{O}_2^- \), superoxide; ROS, reactive oxygen species; RPS2, Resistance to Pseudomonas syringae 2.

TIF

S6 Fig. MPK3 and MPK6 are required for both CNL and TNL NLR-mediated ETI, related to Fig 5. (A) Four-wk-old plants were first sprayed with DMSO or 10 \(\mu \text{M} \) NA-PP1 for 2 h before infiltration with Pst-AvrRpm1 (OD\(_{600} = 0.0005 \)), Pst-AvrB (OD\(_{600} = 0.0005 \)), or Pst-AvrRps4 (OD\(_{600} = 0.0005 \)). NA-PP1 or DMSO was sprayed again at 1.5 dpi. Pst-AvrRpt2 growth was quantified at 3 dpi. Values are means ± SD, \(n = 3 \), \(^* P \leq 0.001 \). (B) Plants pretreated with DMSO or 10 \(\mu \text{M} \) NA-PP1 were infiltrated with Pst-AvrRpm1 (OD\(_{600} = 0.02 \)), Pst-AvrB (OD\(_{600} = 0.02 \)), or Pst-AvrRps4 (OD\(_{600} = 0.02 \)). Soil-grown Col-0, MPK6SR, and MPK3SR plants were first spray treated with 10 \(\mu \text{M} \) NA-PP1 for 2 h, and leaf discs were punched and then infiltrated with Pst-AvrRpt2 (OD = 0.02) by vacuum. Leaf discs were then transferred to GC vials containing 2 \(\mu \text{M} \) NA-PP1 or DMSO. Ion leakage was measured as increase in conductivity. Values are means ± SD, \(n = 3 \). (C) Four-wk-old soil-grown Col-0, MPK6SR, and MPK3SR plants were first spray treated with NA-PP1 (10 \(\mu \text{M} \)) or DMSO solvent control for 2 h and then infiltrated with Pst-AvrRpm1 (OD = 0.02), Pst-AvrB (OD = 0.02), and Pst-AvrRps4 (OD = 0.02). Values are means ± SD, \(n = 8 \). The numerical values used to construct panels A–C can be found in S1 Data. AvrB, avirulence protein B; AvrRpm1, avirulence effector recognized by RPM1; AvrRps4, avirulence effector recognized by RPS4; CNL, coiled coil-nucleotide binding site-leucine rich repeat; Col-0, Columbia-0; ETI, effector-triggered immunity; GC, gas chromatography; MPK, mitogen-activated protein kinase; NA-PP1, 4-amino-1-tert-butyl-3-(1’-naphthyl)pyrazolo[3,4-d]pyrimidine; NLR, nucleotide-binding leucine-rich repeat; OD, optical density; Pst, Pseudomonas syringae pv tomato; TNL, toll/interleukin-1 receptor-nucleotide binding site-leucine rich repeat.

TIF

S7 Fig. Expression of pFld impairs AvrRpt2-induced PSII inhibition, related to Fig 7. (A) Expression of pFld causes growth retardation. Four-wk-old soil-grown pFld transgenic plants in GVG-AvrRpt2 background were shown. (B) Immunoblot analysis of Fld expression in pFld transgenic plants using anti-Fld antibody. (C) AvrRpt2-induced PSII inactivation is delayed in pFld transgenic lines. Twelve-d-old GVG-AvrRpt2, GVG-AvrRpt2/pFld-4, and GVG-AvrRpt2/pFld-34 plants grown in liquid medium were treated with EtOH or 5 \(\mu \text{M} \) DEX. Fv/Fm was measured at 18 hpi. Values are means ± SD, \(n = 6 \), \(^* * P \leq 0.001 \). The numerical values used to construct panel C can be found in S1 Data. AvrRpt2, avirulence effector recognized by RPS2; DEX, dexamethasone; EtOH, ethanol; Fld, flavodoxin; GVG-AvrRpt2, DEX-inducible promoter-driven AvrRpt2; hpi, hours post inoculation; pFld, plastid-targeted cyanobacterial flavodoxin; PSII, photosystem II.

TIF

S8 Fig. Expression of pFld impairs AvrRpt2-induced PSII inhibition, related to Fig 8. Twelve-d-old DD and DD pFld plants grown in liquid medium were treated with Pst-AvrRpt2 (OD = 0.02); disassembly of photosynthetic complexes at 24 hpi was visualized with BN-PAGE. Thylakoid membranes were isolated and solubilized with 1% dodecyl maltoside. Samples equivalent to 8 \(\mu \text{g} \) of chlorophyll were loaded to a blue native polyacrylamide gel (BN-PAGE). AvrRpt2, avirulence effector recognized by RPS2; BN-PAGE, blue native polyacrylamide gel electrophoresis; DD, GVG-NtMEK2\(_{DD} \); hpi, hours post inoculation; OD, optical density; pFld; plastid-targeted cyanobacterial flavodoxin; PSII, photosystem II; Pst, Pseudomonas syringae pv tomato.

TIF
S9 Fig. Original and optimized sequence for Fld. The coding sequence of Fld from cyanobacterium *Anabaena sp.* PCC 7119 was optimized using OptimumGene algorithm (Genscript, http://www.genscript.com). Fld, flavodoxin.

S1 Table. List of MPK3/MPK6 activation-regulated genes. MPK, mitogen-activated protein kinase.

S2 Table. Primers used in this study.

S1 Data. Numerical values for bar and line charts in this study.

Acknowledgments

We thank Dr. Donald A. Bryant (Pennsylvania State University) for providing antiserum against flavodoxin and Dr. Brian Staskawicz for providing DEX-inducible promoter-driven *AvrRpt2* transgenic plants (*GVG-AvrRpt2/RPS2* and *GVG-AvrRpt2/rps2*).

Author Contributions

Conceptualization: Jianbin Su, Shuqun Zhang.

Data curation: Jianbin Su, Liuyi Yang, Qiankun Zhu, Hongjiao Wu, Yi He, Yidong Liu, Juan Xu.

Formal analysis: Jianbin Su.

Investigation: Jianbin Su, Liuyi Yang, Qiankun Zhu, Hongjiao Wu, Yi He, Yidong Liu.

Methodology: Jianbin Su, Liuyi Yang.

Project administration: Shuqun Zhang.

Resources: Dean Jiang, Shuqun Zhang.

Supervision: Shuqun Zhang.

Validation: Jianbin Su, Juan Xu.

Writing – original draft: Jianbin Su, Shuqun Zhang.

Writing – review & editing: Shuqun Zhang.

References

1. Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol. 2005; 6: 973–979. https://doi.org/10.1038/ni1253 PMID: 16177805

2. Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. 2009; 324: 742–744. https://doi.org/10.1126/science.1171647 PMID: 19423812

3. Jones JD, Dangl JL. The plant immune system. Nature. 2006; 444: 323–329. https://doi.org/10.1038/nature05286 PMID: 1710957

4. Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol. 2012; 12: 89–100. https://doi.org/10.1038/nri3141 PMID: 22273771

5. Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014; 35: 345–351. https://doi.org/10.1016/j.it.2014.05.004 PMID: 24946686
6. Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 2006; 124: 803–814. https://doi.org/10.1016/j.cell.2006.02.008 PMID: 16497589

7. Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol. 2015; 66: 487–511. https://doi.org/10.1146/annurev-arplant-050213-040012 PMID: 25494461

8. Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010; 11: 539–548. https://doi.org/10.1038/nrg2812 PMID: 20585331

9. Gassmann W, Bhattacharjee S. Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. Mol Plant Microbe Interact. 2012; 25: 862–868. https://doi.org/10.1094/MPMI-01-12-0024-IA PMID: 22414439

10. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005; 43: 205–227. https://doi.org/10.1146/annurev.phyto.43 .040204.135923 PMID: 16078883

11. Yu X, Feng B, He P, Shan L. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol. 2017; 55: 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649 PMID: 28525309

12. Peng Y, Wersch RV, Zhang Y. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol Plant Microbe Interact. 2017.

13. Su J, Spears BJ, Kim SH, Gassmann W. Constant vigilance: plant functions guarded by resistance proteins. Plant J. 2017.

14. Qi D, Innes RW. Recent advances in plant NLR structure, function, localization, and signaling. Front Immunol. 2013; 4: 348. https://doi.org/10.3389/fimmu.2013.00348 PMID: 24155748

15. Jones JD, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science. 2016; 354: afw171 PMID: 27562749

16. Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant. 2015; 8: 521–539. https://doi.org/10.1016/j.molp.2014.12.022 PMID: 25744358

17. Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ. 2011; 18: 1247–1256. https://doi.org/10.1038/cdd.2011.37 PMID: 21475301

18. van der Hoorn RA, Kamoun S. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell. 2008; 20: 2009–2017. https://doi.org/10.1105/tpc.108.060194 PMID: 18723576

19. Tsuda K, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, et al. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet. 2013; 9: e1003127. https://doi.org/10.1371/journal.pgen.1003127 PMID: 23382673

20. Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 2016; 16: 537–552. https://doi.org/10.1038/nri.2016.77 PMID: 27477127
28. Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013; 51: 245–266. https://doi.org/10.1146/annurev-phyto-082712-102314 PMID: 23663002
29. Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 2017; 213: 1802–1817. https://doi.org/10.1111/nph.14302 PMID: 27861989
30. Wang S, Gu Y, Zebell SG, Anderson LK, Wang W, Mohan R, et al. A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host Microbe. 2014; 16: 787–794. https://doi.org/10.1016/j.chom.2014.10.005 PMID: 25455564
31. Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, et al. Chloroplast stromules function during innate immunity. Dev Cell. 2015; 34: 45–57. https://doi.org/10.1016/j.devcel.2015.05.011 PMID: 26120031
32. Liu Y, Ren D, Pike S, Pallardy SG, Anderson LK, Wang W, Mohan R, et al. A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host Microbe. 2014; 16: 787–794. https://doi.org/10.1016/j.chom.2014.10.005 PMID: 25455564
33. Zurbriggen MD, Carrillo N, Tognetti VB, Melzer M, Peisker M, Hause B, et al. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J. 2009; 60: 962–973. https://doi.org/10.1111/j.1365-313X.2009.04010.x PMID: 19719480
34. Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science. 2011; 334: 1401–1404. https://doi.org/10.1126/science.1211641 PMID: 22158818
35. Bethke G, Pecher P, Eschen-Lippold L, Tsuda K, Katagiri F, Glazebrook J, et al. Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. Mol Plant Microbe Interact. 2012; 25: 471–480. https://doi.org/10.1094/MPMI-11-11-0281 PMID: 22204645
36. Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol. 2009; 12: 421–426. https://doi.org/10.1016/j.pbi.2009.06.008 PMID: 19608449
37. Rasmussen MW, Roux M, Petersen M, Mundy J. MAP Kinase Cascades in Arabidopsis Innate Immunity. Front Plant Sci. 2012; 3: 169. https://doi.org/10.3389/fpls.2012.00169 PMID: 22837762
38. Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, et al. Regulation of stomatal immunity by independent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell. 2017; 29: 526–542. https://doi.org/10.1105/tpc.16.00577 PMID: 28254778
39. Tena G, Asai T, Chiu WL, Sheen J. Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol. 2001; 4: 392–400. PMID: 11597496
40. Pedley KF, Martin GB. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol. 2005; 8: 541–547. https://doi.org/10.1016/j.pbi.2005.07.006 PMID: 16043387
41. Ballare CL. Light regulation of plant defense. Annu Rev Plant Biol. 2014; 65: 335–363. https://doi.org/10.1146/annurev-plant.050213-040145 PMID: 24471835
42. Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, et al. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot. 2007; 58: 797–806. https://doi.org/10.1093/jxb/erl208 PMID: 17138624
43. de Torres Zabala M, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nat Plants. 2015; 1: 15074. https://doi.org/10.1038/nplants.2015.74 PMID: 27250009
48. Yang C, Zhang Z, Gao H, Liu M, Fan X. Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biol. 2014; 14: 240. https://doi.org/10.1186/12870-014-0240-4 PMID: 25246003

49. Hodgson RA, Beachy RN, Pakrasi HB. Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett. 1989; 245: 267–270. PMID: 2924924

50. Lehto K, Tikkanen M, Hiriant J-B, Paakkari V, Aro EM. Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Mol Plant Microbe Interact. 2003; 16: 1135–1144. https://doi.org/10.1094/MPMI.2003.16.12.1135 PMID: 14651347

51. Gururani MA, Venkatesh J, Tran LP. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant. 2015; 8: 1304–1320. https://doi.org/10.1016/j.molp.2015.05.005 PMID: 25997389

52. Ren D, Yang H, Zhang S. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem. 2002; 277: 559–565. https://doi.org/10.1074/jbc.M109495200 PMID: 11687590

53. Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA. 2008; 105: 5638–5643. https://doi.org/10.1073/pnas.0711301105 PMID: 18378893

54. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell. 2011; 23: 1639–1653. https://doi.org/10.1105/tocr.111.084966 PMID: 2148677

55. Meng X, Xu J, He Y, Yang KY, Mordsorki B, Liu Y, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell. 2013; 25: 1126–1142. https://doi.org/10.1105/tpc.112.109074 PMID: 23524660

56. Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, et al. Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. Plant Cell. 2016; 28: 1144–1162. https://doi.org/10.1105/tpc.15.00871 PMID: 27081184

57. Huang da W, Sherman BT, Lemppini RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37: 1–13. https://doi.org/10.1093/nar/gkn923 PMID: 19033363

58. Huang da W, Sherman BT, Lemppini RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4: 44–57. https://doi.org/10.1038/nprot.2008.211 PMID: 19131956

59. Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008; 59: 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 PMID: 18444897

60. Stirbet A, Riznichenko GY, Rubin AB, Govindjee. Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry. 2014; 79: 291–323. https://doi.org/10.1134/S0006297914040014 PMID: 24910205

61. Muller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001; 125: 1558–1566. PMID: 11299337

62. Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim Biophys Acta. 2012; 1817: 760–769.

63. Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W. The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 2009; 151: 1790–1801. https://doi.org/10.1104/pp.109.146589 PMID: 19767385

64. Lu Y, Hall DA, Last RL. A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell. 2011; 23: 1861–1875. https://doi.org/10.1105/tocr.111.085456 PMID: 21586683

65. Xu J, Xie J, Yan C, Zou X, Ren D, Zhang S. A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. Plant J. 2014; 77: 222–234. https://doi.org/10.1111/tj.12382 PMID: 24245741

66. Thomas WJ, Thireault CA, Kimbrel JA, Chang JH. Recombining and stable integration of the Pseudomonas syringae pv. syringae 61 hpr/hrC cluster into the genome of the soil bacterium Pseudomonas fluorescens P10-1. Plant J. 2009; 60: 919–928. https://doi.org/10.1111/j.1365-313X.2009.03998.x PMID: 19682294

67. McNellis TW, Mudgett MB, Li K, Aoyama T, Horvath D, Chua NH, et al. Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J. 1998; 14: 247–257. PMID: 9628020
68. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell. 2003; 112: 379–389. PMID: 12581527

69. Axtell MJ, Staskawicz BJ. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell. 2003; 112: 369–377. PMID: 12581526

70. Mackey D, Holt BF 3rd, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 2002; 108: 743–754. PMID: 11955429

71. Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994; 265: 1856–1860. PMID: 8091210

72. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science. 1995; 269: 843–846. PMID: 7638602

73. Eitas TK, Nimchuk ZL, Dangl JL. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA. 2008; 105: 6475–6480. https://doi.org/10.1073/pnas.0802157105 PMID: 18424557

74. Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA. 2001; 98: 741–746. https://doi.org/10.1073/pnas.98.2.741 PMID: 11209069

75. del Pozo O, Pedley KF, Martin GB. MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 2004; 23: 3072–3082. https://doi.org/10.1038/sj.emboj.7602083 PMID: 15272302

76. Ploegh HL, Vierling E. Viral mimicry of the cell death machinery: an emerging theme in cell biology. Annu Rev Cell Dev Biol. 2007; 23: 507–530. https://doi.org/10.1146/annurev.cellbio.23.090506.123023 PMID: 17868200

77. Krieger-Liszkay A, Kos PB, Hideg E. Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. J Biol Chem. 2005; 280: 19957–19963. https://doi.org/10.1074/jbc.M501052200 PMID: 15830685

78. Song YG, Liu B, Wang LF, Li MH, Liu Y. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photosynthesis. Photosynth Res. 2006; 90: 67–78. https://doi.org/10.1007/s11120-006-9111-7 PMID: 17130943

79. Yamashita A, Nijo N, Posposil P, Morita N, Takenaka D, Aminaka R, et al. Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem. 2008; 283: 28380–28391. https://doi.org/10.1074/jbc.M710455200 PMID: 18664569

80. Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, et al. A gemini-virus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot. 2015; 66: 5861–5895. https://doi.org/10.1093/jxb/erv299 PMID: 26113193

81. Wang L-F, Wang M, Zhang Y. Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Tropical Plant Pathol. 2014; 39: 242–250.
87. Rodriguez-Moreno L, Pineda M, Soukupova J, Macho AP, Beuzon CR, Baron M, et al. Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynth Res. 2008; 96: 27–35. https://doi.org/10.1007/s11120-007-9278-6 PMID: 18000760

88. Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Frank TD, et al. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia. 2006; 149: 221–232. https://doi.org/10.1007/s00442-006-0444-x PMID: 16758220

89. Griebel T, Zeier J. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 2008; 147: 790–801. https://doi.org/10.1104/pp.108.119503 PMID: 18434604

90. Kong Q, Qu N, Gao M, Zhang Z, Ding X, Yang F, et al. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase in Arabidopsis. Plant Cell. 2012; 24: 2225–2236. https://doi.org/10.1105/tpc.112.097253 PMID: 22643122

91. Su SH, Bush SM, Zaman N, Stecker K, Sussman MR, Krysan P. Deletion of a tandem gene family in Arabidopsis: increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted. Plant Cell. 2013; 25: 1895–1910. https://doi.org/10.1105/tpc.113.112102 PMID: 23695980

92. Roux ME, Rasmussen MW, Palma K, Lolle S, Regue AM, Bethke G, et al. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J. 2015; 34: 593–608. https://doi.org/10.15252/embj.20148645 PMID: 25603932

93. Zhang Z, Liu Y, Huang H, Gao M, Wu D, Kong Q, et al. The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep. 2017; 18: 292–302. https://doi.org/10.15252/embr.201642704 PMID: 27986791

94. Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A, Ishikawa K, et al. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J. 2016; 35: 2468–2483. https://doi.org/10.15252/embj.201694248 PMID: 27679633

95. Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, et al. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol Plant. 2017; 10: 819–833. https://doi.org/10.1016/j.molp.2017.01.006 PMID: 28111288

96. Coley PD, Bryant JP, Chapin FS 3rd. Resource availability and plant antiherbivore defense. Science. 1985; 230: 895–899. https://doi.org/10.1126/science.230.4728.895 PMID: 17739203

97. Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014; 7: 1267–1287. https://doi.org/10.1093/mp/ssu049 PMID: 24777899

98. Smakowska E, Kong J, Busch W, Belkhadir Y. Organ-specific regulation of growth-defense tradeoffs by plants. Curr Opin Plant Biol. 2016; 29: 129–137. https://doi.org/10.1016/j.pbi.2015.12.005 PMID: 26802804

99. Karasov T, Chae E, Herman J, Bergelson J. Mechanisms to mitigate the tradeoff between growth and defense. Plant Cell. 2017; 29: 666–680. https://doi.org/10.1105/tpc.16.00931 PMID: 28320784

100. Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 2015; 20: 56–64. https://doi.org/10.1016/j.tplants.2014.10.001 PMID: 25457109

101. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell. 2007; 19: 63–73. https://doi.org/10.1105/tpc.106.048298 PMID: 17259259

102. Fillat MF, Borrias WE, Weisbeek PJ. Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Biochem J. 1991; 280 (Pt 1): 187–191.

103. Okazaki K, Kabeya Y, Suzuki K, Mori T, Ichikawa T, Matsui M, et al. The PLASTID DIVISION1 and 2 components of the chloroplast division machine determine the rate of chloroplast division in land plant cell differentiation. Plant Cell. 2009; 21: 1769–1780. https://doi.org/10.1105/tpc.109.067785 PMID: 19567705

104. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 2012; 486: 228–232. https://doi.org/10.1038/nature11162 PMID: 22696612

105. Johansson ON, Nilsson AK, Gustavsson MB, Backhaus T, Andersson MX, Ellerstrom M. A quick and robust method for quantification of the hypersensitive response in plants. Peer J. 2015; 3: e1469. https://doi.org/10.7717/peerj.1469 PMID: 26734506

106. Jarvi S, Suorsa M, Paakkarinen V, Aro EM. Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem J. 2011; 439: 207–214. https://doi.org/10.1042/B2010215 PMID: 21707535