Title
Endogenous cannabinoid signaling and psychomotor disorders.

Permalink
https://escholarship.org/uc/item/2k369798

Journal
Prostaglandins & other lipid mediators, 61(1-2)

ISSN
1098-8823

Authors
Giuffrida, A
Désarnaud, F
Piomelli, D

Publication Date
2000-04-01

DOI
10.1016/s0090-6980(00)00055-1

License
https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Endogenous cannabinoid signaling and psychomotor disorders

A. Giuffrida*, F. Désarnaud, D. Piomelli

*Corresponding author. Tel.: +1-949-824-4377; fax: +1-949-824-6305.
E-mail address: agiuffri@uci.edu (A. Giuffrida)

Abstract

The effects of cannabinoids on motor behaviors and cognitive functions are well documented. The discovery of the CB1 cannabinoid receptor and the mapping of its distribution in the central nervous system have provided a rationale to elucidate the molecular and cellular mechanisms of cannabinoid actions. The identification of naturally occurring ligands for these receptors, anandamide and 2-arachidonylglycerol, has prompted a large research effort aimed at investigating the physiological role of the endogenous cannabinoid system, as well as its potential use as a target for novel therapeutic interventions. This mini-review discusses the participation of the endogenous cannabinoid system in the regulation of motor behaviors, pointing out its possible involvement in the pathophysiology of psychomotor disorders. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Anandamide; 2-Arachidonylglycerol; Cannabinoid receptors; Basal ganglia; Motor disorders

1. Introduction

Diseases affecting the control of movement have analog patterns in cognitive disorders. Motor impairment and/or execution of complex behavioral sequences often accompany psychotic symptoms, as in the case of obsessive-compulsive disorders. Such an occurrence likely reflects the anatomical overlapping of brain areas serving both motor and cognitive functions [1].
Cannabimimetic drugs represent an interesting tool to investigate psychomotor behaviors, because of their documented ability to influence both motor and cognitive performances (for review see [2]). Indeed, cannabinoid administration is accompanied by profound effects on motor behaviors [3,4], as well as by attenuation of d-amphetamine-induced hyperactivity and stereotypy [5,6]. In addition, cannabinoid substances produce a large spectrum of psychotropic effects in humans, ranging from euphoria, short-term memory impairment, altered perception of space and time, and dream states [4]. Similarities between certain cognitive impairments occurring in psychoses and the pharmacological effects of Δ⁹-tetrahydrocannabinol, the active principle in marijuana and hashish, have also been documented [7,8].

The discovery of the brain cannabinoid receptor, CB1, and the mapping of its neuroanatomical distribution, have greatly improved our understanding of the effects of cannabimimetic drugs on psychomotor functions. CB1 receptors are most concentrated in areas of the central nervous system (CNS) that are critical for the regulation and processing of motor functions, cognition, and motivation [9–11]. In keeping with this distribution, disruption of the CB1 receptor gene has been shown to severely impair movement control and to result in a functional reorganization of the basal ganglia [12,13].

The pharmacological properties of cannabis-derived drugs have prompted clinical evaluations of marijuana use in motor disturbances, such as spasticity, tremor, and dystonias (for review see [14]). At the same time, the discovery of naturally occurring ligands of cannabinoid receptors, and the identification of their pathways of biosynthesis and inactivation, have opened a new research field aimed at investigating the physiological role of these molecules in health and disease, as well as their possible use as a new target for therapeutic interventions.

The purpose of this mini-review is to draw together these studies, pointing out to the potential involvement of the endogenous cannabinoid system in psychomotor disorders.

2. The endogenous cannabinoid system

The cloning of the CB1 cannabinoid receptor [15] and the mapping of its distribution in the brain (see for review [16]) has impelled the search for the corresponding naturally occurring ligands within the brain. Two endogenous cannabimimetic substances have been identified so far, arachidonylethanolamide (anandamide) [17,18] and 2-arachidonylglycerol (2-AG) [19–21]. Unlike neurotransmitters that are released from synaptic terminals via vesicle secretion, both anandamide and 2-AG are thought to be produced upon demand through stimulus-dependent cleavage of two distinct phospholipid precursors present in neuronal membranes (for review see [22]). Anandamide, but not 2-AG, is released extracellularly by neural activity evoked by localized pulses of high K⁺ [23], and it is thought to act near its sites of production as a local neuromodulator. Whether 2-AG is produced in vivo under physiological circumstances and/or it exits neurons in other regions of the CNS, has not been determined yet.

The biological actions of anandamide are terminated by two subsequent reactions consisting of high-affinity transport into cells [24–26], followed by hydrolysis catalyzed by an amidohydrolase enzyme [27–30]. 2-AG is thought to be inactivated by cleavage into glycerol
and arachidonic acid. The enzyme activity involved in this reaction has not been clearly identified, though anandamide amidohydrolase and monoacylglycerol lipase have been suggested to play a role [21,31,32].

Other saturated and monounsaturated fatty acylethanolamides (AEs) are produced by activated neurons together with anandamide [18] (Stella and Piomelli, submitted). Although these lipids share a common biosynthetic mechanism with anandamide [33], they do not bind to cannabinoid receptors and they are not released extracellulary in vivo [23]. The possible physiological roles of these compounds are still largely unexplored. One exception is represented by palmitylethanolamide (PEA) which was shown to exert peripheral anti-inflammatory and antinociceptive effects, mediated through a putative CB2-like cannabinoid receptor [34,35].

3. Cannabinoid signaling in basal ganglia

The basal ganglia are a forebrain region playing a key role in sensorimotor and motivational aspects of behavior [1,36]. The high density of CB1 receptors in this area [37,38] indicates that cannabinoid substances may modulate essential aspects of basal ganglia physiology. The existence of an endogenous cannabinergic tone in the basal ganglia has been suggested by the finding that the CB1 receptor antagonist SR141716 was able to produce increased locomotion in mice and stereotypies in rats [39,40]. These findings have been recently confirmed by in vivo microdialysis studies, showing that membrane depolarization stimulates the outflow of anandamide from striatal neurons [23].

Functional interactions between endogenous cannabinoids and distinct neurotransmitter systems modulating basal ganglia functions have been also postulated. Neuroanatomical studies have shown that CB1 receptors are mainly located in the terminals of GABA-ergic medium-spiny neurons projecting from the striatum to the globus pallidum and substantia nigra [38,41]. Although direct evidence for an interaction between endogenous cannabinoids and GABA-ergic system is still lacking, it is known that exogenously administered cannabinoids can modulate GABA transmission, as suggested by their ability to inhibit GABA release from striatal and hippocampal nerve terminals [42,43] and potentiate GABA-induced catalepsy [44,45]. Coexpression of μ-opioid and CB1 receptors in striatal cells [46] indicates that opioids and endocannabinoids can also interact within the striatum. In keeping with this, chronic cannabinoid exposure regulates proenkephalin mRNA levels in the rat striatum [47].

Finally, a role for the cannabinoid system as a modulator of dopaminergic activity in basal ganglia is emerging. Activation of cannabinoid receptors was shown to cause significant reductions of the electrically evoked dopamine release from rat striatal slices [48], and to potentiate neuroleptic-induced catalepsy [49]. Moreover, injection of cannabinoid receptor agonists into the basal ganglia counteracts the motor responses of locally administered D2-receptor agonists [50–52]. Conversely, cannabinoid-mediated motor behaviors can be affected by dopamine manipulations. For example, chronic administration of dopamine D1 and D2 receptor agonists results in differential modulation of the locomotor effects of the cannabinoid agonist HU-210 [2], suggesting a possible cross-talk between dopaminergic and cannabinergic systems within the striatum. In this regard, the observation that anandamide
release can be induced by pharmacological activation of the D2 class of dopamine receptors in freely moving animals [23] suggests that endogenous cannabinoids may represent a primary component of the network of neurochemicals modulating striatal function. Further support to this hypothesis is provided by behavioral studies showing that the hyperactivity associated with post-synaptic D2 receptor activation [53,54] is markedly potentiated by the CB1 antagonist SR141716A [23]. Taken together, these data suggest that pharmacological blockade of cannabinoid receptors enhances quinpirole-induced motor activation by removing the inhibitory control exerted by the endogenously released anandamide. Furthermore, the lack of effect of SR141716A when given alone at the same dose used to potentiate quinpirole-induced motor activation [39,40], indicate that anandamide can reach a sufficient concentration to induce its behavioral effects only after stimulation of D2 receptors. Thus, the released anandamide may offset dopamine D2-induced facilitation of psychomotor activity (Fig. 1).

4. Cannabinoids and psychomotor disorders

Functional interactions between endogenous cannabinoids and dopaminergic system may have important therapeutic implications in pathologies that involve disregulated dopamine neurotransmission, such as Parkinson’s disease [55,56], Tourette syndrome [57,58], and schizophrenia [59,60]. On a speculative basis, the blockade of anandamide inactivation [24] and the consequent increase of endogenous levels of this lipid, may be beneficial in reducing hyperactivity and hyperkinesia associated with Huntington’s disease, a pathology where a massive loss of CB1 receptor binding has been reported in the basal ganglia of postmortem
patients [61,62]. However, the potential therapeutic use of cannabinoids for the treatment of psychomotor disorders is not only matter of speculation. It has been shown that blockade of CB1 receptors may potentiate or prolong the effects of dopamine-based therapies currently used in Parkinson’s disease [63,64] and use of Δ⁹-THC for the treatment of Tourette syndrome has been reported [65,66].

Increasing evidence suggests that schizophrenia may be associated with abnormalities in the function of the endogenous cannabinoid system. Clinical evidence indicates that cannabis consumption is significantly higher in schizophrenic patients than normal individuals [67] and chronic use of high doses of cannabinergic substances may precipitate schizophrenic symptoms in vulnerable patients [68,69]. Additional support for a role of cannabinoid signaling in schizophrenia comes from the observation that anandamide is markedly elevated in the cerebrospinal fluid (CSF) of schizophrenic individuals [8]. The non-cannabinoid acylethanolamide PEA is also increased in these patients. Although PEA is produced in the CNS through a biosynthetic mechanism similar to anandamide’s [18], this lipid is not released in vivo as a consequence of D2-receptor stimulation. Therefore, further investigations are needed to clarify the physiological role of PEA in the CNS as well as its possible link to schizophrenia.

Drugs that block D2-like dopamine receptors have been extensively used to mitigate symptoms of psychoses and motor disorders. Given the linkage between D2-receptor activation and anandamide release, it is likely that the high CSF levels of this lipid may reflect homeostatic adaptations of the endogenous cannabinoid system to disturbances in dopamine neurotransmission occurring in schizophrenia [70–72]. Additional support for this possibility comes from the observation that chronic treatment with D2-family antagonists results in upregulated expression of CB1 receptor mRNA in striatum [73]. On the other hand, alterations in cannabinoid signaling may directly contribute to the manifestation of subgroups of symptoms in schizophrenic syndromes [7,8]. Further investigations in larger populations of patients and studies aimed at determining the neuronal origin of the AEs in CSF may help elucidate the possible participation of these lipids in the pathogenesis of schizophrenia.

5. Concluding remarks

The studies discussed in this review highlight the potential usefulness of the endogenous cannabinoid system as a target for novel therapeutic agents for the treatment of psychomotor disorders. Pathologies associated with dysfunction in dopamine transmission such as Parkinson’s disease, Tourette syndrome, and schizophrenia are potential candidates to benefit from cannabinoid-based therapies. Yet, further basic research is necessary to improve our understanding of the role played by the endogenous cannabinoid system in these pathologies. Future efforts aimed at developing new drugs able to change the levels of endogenous cannabinoid ligands may result in more specific therapeutic interventions than those provided by direct-acting cannabinimetics.
References

[1] Graybiel AM. The basal ganglia. TINS 1995;18:60–2.
[2] Rodríguez de Fonseca F, Del Arco I, Martín–Calderón JL, Gorriti MA, Navarro M. Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol Dis 1998;5:483–501.
[3] Hollister LE. Health aspects of cannabis. Pharmacological Rev 1986;38:1–19.
[4] Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997;74:129–80.
[5] Pryor GT, Larsen FF, Husain S, Braude MC. Interactions of delta9-tetrahydrocannabinol with d-amphetamine, cocaine, and nicotine in rats. Pharmacol Biochem Behav 1978;8:295–318.
[6] Gorriti MA, Rodríguez de Fonseca F, Navarro M, Palomo T. Chronic (−)-Δ9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol 1999;365:133–42.
[7] Emrich HM, Leweke FM, Schneider U. Towards a cannabinoid hypothesis of schizophrenia: cognitive impairments due to dysregulation of the endogenous cannabinoid system. Pharmacol Biochem Behav 1997;56:803–7.
[8] Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D. Elevated endogenous cannabinoids in schizophrenia. NeuroReport 1999;10:1665–9.
[9] Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991;11:563–83.
[10] Matsuda LA, Bonner TI, Lollait SJ. Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 1993;327:535–50.
[11] Tsou K, Brown S, Sañudo–Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998;83:393–411.
[12] Lledent C, Valverde O, Cossu G, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999;283:401–4.
[13] Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 1999;96:5780–5.
[14] Consroe P. Brain cannabinoid systems as target for the therapy of neurological disorders. Neurobiol Dis 1998;5:534–51.
[15] Matsuda LA, Lollait SJ, Brownstein M, Young A, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561–4.
[16] Breivogel CS, Childers SR. The functional neuroanatomy of brain cannabinoid receptors. Neurobiol Dis 1998;5:417–31.
[17] Devane W, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258:1946–9.
[18] Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994;372:686–91.
[19] Mechoulam R, Ben–Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50:83–90.
[20] Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995;215:89–97.
[21] Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 1997;388:773–8.
[22] Piomelli D, Beltramo M, Giuffrida A, Stella N. Endogenous cannabinoid signaling. Neurobiol Dis 1998;5:462–73.
[23] Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci 1999;2:358–63.
[24] Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 1997;277:1094–7.
Hillard CJ, Edgemond WS, Jarrahian A, Campbell WB. Accumulation of N-arachidonoylethanolamide (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J Neurochem 1997;69:631–8.

Piomelli D, Beltramo M, Glasnapp S, et al. Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci USA 1999;96:5802–7.

Deutsch DG, Chiu SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 1993;46:791–6.

Désarnaud F, Cadas H, Piomelli D. Anandamide amidohydrolase activity in rat brain microsomes: identification and partial characterization. J Biol Chem 1995;270:6030–5.

Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem 1995;270:23823–7.

Dechtar N, di Tomaso E, Piomelli D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J Neurosci 1997;17:1226–42.

Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A. Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 1995;92:69–73.

Cadas H, di Tomaso E, Piomelli D. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 1990;87:1932–6.

Herkenham M, Lynn AB, Little MD, et al. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res 1991;547:267–74.

Compton DR, Aceto MD, Lowe J, Martin BR. In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of Δ9-tetrahydrocannabinol-induced responses and apparent agonist activity. J Pharmacol Exp Ther 1996;277:586–94.
Anderson JJ, Kask AM, Chase TN. Effects of cannabinoid receptor stimulation and blockade on catalepsy produced by dopamine receptor antagonists. Eur J Pharmacol 1996;295:163–8.

Sañudo–Peña MC, Patrick SL, Patrick RL, Walker JM. Effects of intranigral cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Neurosci Lett 1996;206:21–4.

Sañudo–Peña MC, Force M, Tsou K, Miller AS, Walker JM. Effects of intrastriatal cannabinoid on rotational behavior in rats: interactions with the dopaminergic system. Synapse 1998:30:221–6.

Sañudo-Peña MC, Walker JM. Effects of intrapallidal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Synapse 1998;28:27–32.

Eilam D, Szechtman H. Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 1989;161:151–7.

Sanchez MC, Patrick SL, Patrick RL, Walker JM. Effects of intranigral cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Neurosci Lett 1996;206:21–4.

Sanchez MC, Force M, Tsou K, Miller AS, Walker JM. Effects of intrastriatal cannabinoid on rotational behavior in rats: interactions with the dopaminergic system. Synapse 1998:30:221–6.

Sanchez MC, Walker JM. Effects of intrapallidal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Synapse 1998;28:27–32.

Thorn L, Ashmeade TE, Storey VJ, Routledge C, Reavill C. Evidence to suggest that agonist modulation of hyperlocomotion is via post-synaptic dopamine D2 or D3 receptors. Neuropharmacology 1997;36:787–92.

Eilam D, Szechtman H. Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 1989;161:151–7.

Chase TN, Engber TM, Mouradian MM. Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson’s disease. Adv Neurol 1996;69:497–501.

DeLong MR. Primate models of movement disorders of basal ganglia origin. TINS 1990;13:281–5.

Wolf SS, Jones DW, Knable MB, et al. Tourette syndrome: prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Science 1996;273:1225–7.

Eidelberg D, Moeller JR, Antonini A, et al. The metabolic anatomy of Tourette’s syndrome. Neurology 1997;48:927–34.

Dolan RJ, Fletcher P, Frith CD, Friston KJ, Frackowiak RS, Grasby PM. Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 1995;378:180–2.

Okubo Y, Suhara T, Suzuki K, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997;385:634–6.

Glass M, Faull RLM, Draganow M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 1993;56:523–7.

Richfield EK, Herkenham M. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidum. Ann Neurol 1994;36:577–84.

Maneuf YP, Crossman AR, Brotchie JM. The cannabinoid receptor agonist WIN 55,212-2 reduces D2, but not D1, dopamine receptor-mediated alleviation of akinesia in the reserpine-treated rat model of Parkinson’s. Exp Neurol 1997;148:265–70.

Brotchie JM. Adjuncts to dopamine replacement: a pragmatic approach to reducing the problem of dyskinesia in Parkinson’s disease. Mov Disord 1998:13:871–6.

Müller–Vahl KR, Schneider U, Kolbe H, Emrich HM. Treatment of Tourette-syndrome with Δ9-tetrahydrocannabinol. Am J Psychiatr 1999;156:495.

Müller–Vahl KR, Kolbe H, Schneider U, Emrich HM. Cannabinoids: possible role in patho-physiology and therapy of Gilles de la Tourette syndrome. Acta Psychiatr Scand 1998;98:502–6.

Kovasznay B, Fleischer J, Tanenberg–Karant M, Jandorf L, Miller AD, Bromet E. Substance use disorder and the early course of illness in schizophrenia and affective psychosis. Schizophr Bull 1997;23:195–201.

Andréasson S, Allebeck P, Engström A, Rydberg U. Cannabis and schizophrenia. Lancet 1987;2:1483–6.

Linszen DH, Dingemans PM, Lenior ME. Cannabis abuse and the course of recent-onset schizophrenic disorders. Arch Gen Psychiatr 1994;51:273–9.

Sedvall G, Farde L. Chemical brain anatomy in schizophrenia. Lancet 1995;346:743–9.

Kune JM. Schizophrenia. New Engl J Med 1996;334:34–41.

Egan MF, D. R. W. Neurobiology of schizophrenia. Curr Op Neurobiol 1997;7:701–7.

Mailleux P, Vanderhaeghen JJ. Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem 1993;61:1705–12.