Improved Detection and Characterization of Copy Number Variations Among Diverse Pig Breeds by Array CGH

Jiying Wang,*1,1 Jicai Jiang,*1,2 Haifei Wang,* Huimin Kang,* Qin Zhang,* and Jian-Feng Liu*,3

*Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China and 1Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China

ABSTRACT

As a major component of genomic variation, copy number variations (CNVs) are considered as promising markers for some phenotypic and economically important traits in domestic animals. Using a custom-designed 1M array CGH (aCGH), we performed CNV discovery in 12 pig samples from one Asian wild boar population, six Chinese indigenous breeds, and two European commercial breeds. In total, we identified 758 CNV regions (CNVRs), covering 47.43 Mb of the pig genome sequence. Of the total porcine genes, 1295 genes were completely or partially overlapped with the identified CNVRs, which enriched in the terms related to sensory perception of the environment, neurodevelopmental processes, response to external stimuli, and immunity. Further probing the potential functions of these genes, we also found a suite of genes related important traits, which make them a promising resource for exploring the genetic basis of phenotype differences among diverse pig breeds. Compared with previous relevant studies, the current study highlights that different platforms can complement each other, and the combined implementation of different platforms is beneficial to achieve the most comprehensive CNV calls. CNVs detected in diverse populations herein are essentially complementary to the CNV map in the pig genome, which would be helpful for understanding the pig genome variants and investigating the associations between various phenotypes and CNVs.

Copy number variations (CNVs), defined as gains and losses of genomic sequence greater than 50 bp between two individuals of a species (Mills et al. 2011) have been considered as a major source of genomic variation. Since the milestone works by Iafrate et al. (2004) and Sebat et al. (2004), CNVs have attracted extensive attention in genomic studies of human and other species (Tuzun et al. 2005; Redon et al. 2006; Alkan et al. 2009; Sudmant et al. 2010). In domestic animals, a suite of genes with copy number alteration were found contributing to variation of either phenotypic variability or disease susceptibility, such as the KIT gene for white coat phenotype in pigs (Giuffra et al. 2002), SOX5 gene for the pea-comb phenotype in chickens (Wright et al. 2009), and STX17 gene for hair greying and susceptibility to melanoma in horses (Rosengren Pielberg et al. 2008). Additionally, the study by Seroussi et al. (2010) indicated there were close associations between CNVR#456, located on BTA18, and index of total merit and genetic evaluations for protein production, fat production, and herd life in Holstein cattle. These demonstrated that CNVs can be considered as promising markers for some phenotypic and economically important traits or diseases in domestic animals. Pig is not only one of the most economically important livestock worldwide, but it represents one of the most important research models for various human diseases (Meurens et al. 2012). In the past...
few years, many efforts have been made to detect CNVs in pig genome based on three types of technologies, i.e., array comparative genomic hybridization (aCGH) (Fadista et al. 2008; Li et al. 2012; Wang et al. 2014), SNP genotyping array (Ramayo-Caldas et al. 2010; Chen et al. 2012; Wang et al. 2012; Wang et al. 2013), and genome re-sequencing (Rubin et al. 2012; Paudel et al. 2013; Jiang et al. 2014). Among these technologies, because of their accuracy and cost-effectiveness, aCGHs have remained the most frequently used methods for CNVs identification and genotyping of personal CNVs (Pinkel et al. 1998; Feuk et al. 2006; Carter 2007). Currently, Roche NimbleGen and Agilent Technologies are the major manufacturers of whole-genome aCGH. Because of their different probe distributions, probe numbers, and workflow, it was found that sensitivity, total number, size range, and breakpoint resolution of CNV calls were different among aCGH platforms (Haraksingh et al. 2011).

In our previous studies, we have conducted relevant studies using a custom-designed 2.1M aCGH (Wang et al. 2014) and read depth (RD) based on genome re-sequencing (Jiang et al. 2014) with samples from diverse pig breeds. To enrich the CNV calling and compare the detection performance between different platforms, we performed an alternative aCGH-based CNV identification by a custom-designed 1M aCGH produced by Agilent Technologies. Identified CNVs herein are essentially complementary to the CNV map in the pig genome, which would be helpful for understanding the pig genome variants and investigating the associations between various phenotypes and CNVs.

MATERIALS AND METHODS

Ethics statements

The whole procedure for collection of the ear tissue samples of all animals was performed in strict accordance with the protocol approved by the Institutional Animal Care and Use Committee (IACUC) of China Agricultural University.

Selection of pig breeds and animals

In the present study, one Duroc individual was used as the reference, whereas the other 12 individuals selected from diverse populations were used as the test samples. These 12 individuals included one Asian wild pig, two pigs from Yorkshire and Landrace as the representatives of European commercial breeds, and nine unrelated individuals selected from six Chinese indigenous breeds (two Tibetan pigs, two Diannan small-ear pigs, two Meishan pigs, one Min pig, one Daweizi pig, and one Rongchang pig). The illustration of the features of six Chinese indigenous breeds is detailed elsewhere (Zhang et al. 1986). Genomic DNA for each of 13 individuals was extracted from the ear tissue using Qiagen DNeasy Tissue kit (Qiagen, Germany).

Array CGH design, hybridization, and CNV calling

The 1M aCGH was designed and produced by Agilent (Agilent Technologies, Santa Clara, CA, USA) based on the newest build of porcine genome (Suscrofa 10.2) (http://www.animalgenome.org/repository/pig/). It covered 18 autosomes and two sex chromosomes containing 965,080 oligonucleotide probes (60 mers) with a median and average intervals of 2191 bp and 2632 bp, respectively. Genomic DNA labeling, hybridization, and array scanning were performed according to the manufacturer’s instructions.

Raw data were first normalized (algorithm: LOWESS) using Feature Extraction software 10.7 (Agilent technologies). Then, Agilent Genomic Workbench Standard Edition 6.5 software (Agilent Technologies) was used to perform CNV interval detection. The QC metrics motif of Workbench 6.5 ensured adequate quality control of the hybridization data. In present study, an array signal, which met the requirements of intensity value >50 and signal-to-noise ratio >2.5, was included in the analysis. The Aberration Detection Method 2 algorithm (ADM2), with threshold of 6, bin of 10, and a centralization threshold of 6, was used to identify genomic variation given the log2 ratio of fluorescent signals between test and reference DNA samples. Fuzzy zero correction was carried to prevent inclusion of aberrant segments with low average log2 ratios. Additionally, we applied a relatively stringent postanalysis filter—5 probes, 0.5 log ratio—to ignore small, spurious, or low-quality aberrations. Finally, CNV regions (CNVRs) were determined by aggregating overlapping CNVs identified across all samples according to the criteria previously described (Redon et al. 2006).

The raw data generated from aCGH and the sequence information of probes involved in the aCGH designed in our study have been deposited into the GenBank GEO database (GSE49299) (http://www.ncbi.nlm.nih.gov/geo/).

Quantitative real-time PCR confirmation

Quantitative real-time PCR (qPCR) was used to validate 19 CNVRs identified herein. Primers were designed with the Primer3 web tool (http://frodo.wi.mit.edu/primers3/). The glucagon gene (GCG) is highly conserved between species and has been approved to have a single copy in animals (Ballester et al. 2004), and one segment of it was chosen as the control region. To keep the same amplification

Table 1 Pig sample information and CNVs detected in every individual

Types	Breed	Sample ID	Sex	CNV No.	Total Length (Mb)
Reference	European commercial	D4	Female	—	—
Test samples	Asian wild boar	A1	Female	180	13.52
South China type	American Duroc	DN1	Male	144	11.90
North China type	Diannan small-ear pig	DN5	Female	229	12.64
Lower Changjiang River Basin	Min pig	M2	Female	153	12.14
Southwest type	Meishan pig	MS7	Female	211	9.92
Central China type	Rongchang pig	MS8	Female	224	9.98
Plateau type	Daweizi pig	W1	Female	118	8.30
European commercial breed	Tibetan pig	Z2	Female	291	14.26
European commercial breed	Landrace	Z5	Female	260	12.05
Mean	Yorkshire	C3	Female	139	9.78
	European commercial	Y2	Female	65	10.23
	breed Yorkshire			189.67	11.29
efficiencies between target and control primers, the PCR efficiencies for all primers used in the study were required to be 1.95–2.10. All qPCR were performed using LightCycler 480 SYBR Green I Master on Roche LightCycler 480 instrument following the manufacturer’s guidelines and cycling conditions. For each sample, we performed validation in duplicate to improve the accuracy of PCR. The second derivative maximum algorithm included within the instrument software was used to determine cycle threshold (Ct) values for each region. The copy number for each test region was calculated using the 2−ΔΔCt method (Livak and Schmittgen 2001), which compares the ΔCt (Ct of the target region minus Ct of the control region) value of samples with CNV to the ΔCt of the reference sample.

Gene content and functional analyses
Pig CNVRs were annotated using NCBI gene information (ftp://ftp.ncbi.nih.gov/genomes/Sus_scrofa/mapview/seq_gene.md.gz; ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Sus_scrofa.gene_info.gz). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed with the DAVID bioinformatics resources 6.7 (http://david.abcc.ncifcrf.gov/). Because the number of annotated genes in the pig genome is limited so far, we first converted the pig Ensembl IDs to orthologous human Ensembl IDs by BioMart (http://www.biomart.org/) ahead of GO and pathway analyses. Statistical significance was assessed by using the P value of a modified Fisher’s exact test and Benjamini correction for multiple testing. Additionally, to test whether genes exhibited a different selective constraint among CNV and non-CNV regions, the dN/dS ratio compared with those human species was computed for each gene, and Wilcoxon rank-sum test was used to test the difference of dN/dS ratios between copy numbers’ varied genes and monomorphic ones.

A clustering analysis for all test samples was performed considering the identified CNVR as genetic makers based on the method reported previously (Gazave et al. 2011; Tian et al. 2013). Specifically, we first built a scoring matrix of the CNVR data for each individual by encoding a value of “0” or “1” according to the absence or presence of any given CNVR. A hierarchical agglomerative clustering was applied on this matrix of individual vectors using the pvclust function from the pvclust R package (Suzuki and Shimodaira 2006). The agglomerative method chosen was unweighted pair-group method with arithmetic mean (UPGMA). Additionally, 10,000 bootstraps were used to assess the robustness of branches.

RESULTS
Genome-wide CNVs identified among diverse pig breeds
In total, we identified 2276 CNVs, with 189.67 CNVs per individual. After merging the overlapping CNVs across different samples, a total of 2276 CNVs were identified.
of 758 CNVRs (Supporting Information, Table S1) were finally determined, covering 47.43 Mb of the pig genome and corresponding to 1.69% of the genome sequence. The length of these CNVRs ranged from 7.02 kb to 2635.29 kb, with a mean or a median of 62.58 kb or 20.93 kb, respectively.

The results in Table 1 show that the numbers of CNVR are uneven distributed across the genome of individuals surveyed. The average of CNVs per individual was 189.67, ranging from 65 (Y2) to 291 (Z2). Additionally, out of the 758 CNVRs identified in the study, 55% of them were identified in only one sample, confirming that segregating CNVs exist among these individuals tested. However, there was also a considerable proportion of CNVR (12.01%) with frequency ≥50%. In particular, 11 CNVRs harboring 46 CNVs were found among all test samples (Table S2). Compared with our previous CNV study using the read depth (RD) method based on sequencing (Jiang et al. 2014), these CNVRs with 100% frequency in the test samples were reflected by the inherent copy number alteration in the genome of the reference pig per se.

In our study, stringent criteria with mean $|\log_2 \text{ratio}| > 0.5$ and five consecutive probes were used to call high-confidence CNVs according to the previous studies (Liu et al. 2010; Li et al. 2012). Among 12 test samples, two of them (DN1 and R2) were male and the reference (D4) was female. Based on the two sex-mismatched arrays, we assessed the false-positive rate produced under the criteria using a similar method as reported previously (Fadista et al. 2010). Theoretically, all segments on chrY should be gains, and all segments on chrX should be loss in the male individuals. Consistent with this theoretic inference, all segments on chrY were actually detected as gains in our analyses. As for chrX, 17 segments (1.05 Mb) were identified with the log-intensity ratio >0, resulting in a false-positive rate of 0.36% $[1,045,770/(144,288,218/\text{C3})]$. This indicates very few false-positive CNVs produced under the current criteria.

Pattern and size distribution of CNV regions

Figure 1 illustrates the location and characteristics of all CNVRs identified on the 18 autosomes and chromosome X. Figure 2 further demonstrates that the proportions of CNVR differ greatly across the chromosomes ranging from 0.84% (Chr.4) to 3.49% (Chr.16), with the average of 1.94%. In particular, the proportion of CNVRs in chrX was 1.81%, similar to those in autosomes. Among all 758 CNVRs, the number of loss, gain, and both events (loss and gain within the same region) were 529 (69.79%), 200 (26.39%), and 29 (3.83%), respectively. Loss events were approximately 2.65-fold more common than gain events, but slightly smaller than the size of gain regions on average (45.48 kb vs. 80.00 kb). The size distribution of CNVRs (Figure 3) clearly demonstrated that most CNVRs fell into the length interval between 10 kb and 20 kb, and the frequency of CNVRs tends to decrease with the increase of the length.

Gene content and functional analyses

We sifted out a total number of 1295 porcine genes (Table S3) that were completely or partially overlapped with CNVRs, including 921
Table 2 Results of quantitative real-time PCR analyses of the 17 confirmed CNVRs

CNVR	Chromosome	Start^a	End^a	Type	Frequency	Primer	Positive Samples	Negative Samples				
							Sample No.	Sample No.				
							Confirmed	Confirmed				
							Positive	Samples	Predictive Rate			
								Confirmed	Predictive Rate			
43	1	284433601	284517960	Loss	91.67	CGH1-1	11	11	1.0000	1	1	1.0000
							Gene2-2		1.0000			
47	1	296124751	296565810	Loss	75	E1-2	9	3	0.3333	2	0	0.0000
							LD1-2	11	1.0000	5	3	0.6000
72	10	22215991	23388810	Loss	58.33	LD1-3	7	7	1.0000	5	3	0.6000
105	11	62691810	62798160	Gain	100	F1-2	12	12	1.0000	0	0	0.0000
							F1-3	12	1.0000	0	0	0.0000
108	11	62977560	62993310	Loss	16.67	RD2B-4	2	2	1.0000	10	2	0.2000
114	11	70562251	71910060	Both	66.67	J1-3	8	8	1.0000	4	1	0.2500
152	13	34207351	34233930	Loss	91.67	CGH3-1	11	11	1.0000	1	1	1.0000
							Gene9-4	11	1.0000	1	1	1.0000
339	2	61350751	61455330	Loss	16.67	R1-3	2	2	1.0000	10	7	0.7000
418	3	95980501	95990220	Gain	100	CGH7-1	12	12	1.0000	0	0	0.0000
							CGH7-3	12	1.0000	0	0	0.0000
441	4	5501251	5544300	Loss	16.67	D1	2	2	1.0000	10	6	0.6000
							D5	2	0.5000	10	0	0.0000
464	7	99461791	99708810	Loss	58.33	F2	7	6	0.8571	5	2	0.4000
							F4	7	0.8571	5	1	0.2000
579	7	24621751	24759180	Gain	58.33	RD14A-2	7	7	1.0000	5	3	0.6000
							RD14B-2	7	0.5714	5	0	0.0000
588	7	50301961	50677050	Loss	16.67	D1-1	2	1	0.5000	11	0	0.0000
							D2-1	2	0.5000	11	0	0.0000
620	8	43301791	43891650	Gain	16.67	CGH2-1	2	2	1.0000	10	0	0.0000
							kat6	2	1.0000	10	0	0.0000
659	9	29231131	29275230	Gain	8.33	K5	1	1	1.0000	10	0	0.0000
734	X	91336681	91353210	Loss	66.67	CGH6A-2	8	8	1.0000	4	2	0.5000
							CGH5B-1	8	1.0000	4	2	0.5000
736	X	92583421	92609190	Loss	25	R2-2	3	3	1.0000	8	6	0.7500
Average									0.8971		0.4125	

^a The Sus scrofa assembly (10.2) (http://www.ensembl.org/Sus_scrofa/Info/Index) was used to indicate the position of the CNVRs.
protein-coding genes, 343 pseudo genes, 5 miscRNA genes, and 26 genes with other types. These genes overlapped with 355 out of the 758 total identified CNVRs. We further tested the dN/dS ratios for orthologous genes of pig with those of human (Table S4). The results showed that CNVR-related genes have dN/dS ratios significantly higher than those with normal copy numbers by Wilcoxon rank-sum tests (P < 6.2E-18).

We further explored if CNVRs identified herein were within duplicated sequence regions or single copy sequence regions with high evolutionary conservation. It is more likely that a CNV of a single copy sequence maintained among other mammals have a phenotypic effect than a CNV at a duplicated sequence. Specifically, we determined those possible single-copy genes in pigs that were also maintained among other mammals based on the resources of one-to-one orthologs in Ensembl (Vilella et al. 2009). We sifted out those genes with high orthology confidence and >80% identity in pigs and other mammals, including cow, horse, human, mouse, and sheep. Using these criteria, we finally extracted 1454 of such genes in the pig genome and found that 20 of them were involved in or overlapped with 19 CNVRs (Table S5).

We further performed GO and KEGG pathway analyses for the genes in CNVRs. The GO analyses revealed 53 GO terms (Table S6), of which 12 were statistically significant after Benjamini correction, whereas the KEGG pathway analyses revealed 12 terms (Table S7), of which only one reached statistical significance (olfactory transduction) after Benjamini correction. The significant GO terms were mainly involved in sensory perception of smell or chemical stimulus, olfactory receptor activity, cognition, G-protein-coupled receptor protein signaling pathway, cell surface receptor-linked signal transduction, antigen processing and presentation, and other basic metabolic processes.

We also performed the clustering analysis based on the status of CNVRs carried by each test individual. The resulting dendrogram, together with the bootstrap values of every branch (most of them ≥50), is given in Figure 4. The two pigs of European breeds and all other Chinese-originated pigs were clearly divided into two distinct clusters. Within the cluster of Chinese pigs, the genetic relationships of nine individuals tested were basically consistent with that geographical distribution, and two of the three pairs of samples of the same breeds (MS7 and MS8, Z2 and Z5) grouped together. This cluster analysis implies that CNVs may provide information as useful markers in the cluster analysis.

Quantitative real-time PCR confirmation
From the total 758 CNVRs identified in the study, 19 CNVRs, representing different predicted status of copy numbers (i.e., loss, gain, and both) and different CNVR frequencies (varying from 8.33 to 100%), were chosen to be validated by qPCR. One or two pairs of primers (Table S8) were designed for each CNVR and a total of 31 qPCR assays were performed. Of the 31 qPCR assays, 28 (90.32%) were in agreement with prediction by aCGH. When counting the CNVRs, 17 (89.47%) out of the 19 CNVRs (Table 2) had positive qPCR confirmations by at least one PCR assay. The detailed information of the confirmed 17 CNVRs is listed in Table 2. Our confirmed rate was higher than or similar to those of previous studies (Fadista et al. 2008; Ramayo-Caldas et al. 2010; Hou et al. 2011; Chen et al. 2012; Wang et al. 2012).

All 12 test samples and one reference sample in the study were tested in the qPCR assays. Consequently, we also calculated the positive predictive rates and negative predictive rates for the 17 CNVRs confirmed by qPCR analysis. As showed in Table 2, the

| Table 3 Comparison between CNVRs detected in the previous studies and those in this study | Study | Methods | Sample | CNVR Detected in the Previous Studies | CNVR Detected in This Study | Length (Mb) | Mean (kb) | Median (kb) | Count | Percentage | Mean (kb) | Median (kb) | Count | Percentage |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fadista et al. 2008 | aCGH (385k) | 12 | 37 | 1.74–61.92 | 4.69 | 9.32 | 36.97 | 0.40 | 0.63 | 256.7 | 0.02 | 0.54 |
| Ramayo-Caldas et al. 2010 | SNP chip (60k) | 55 | 49 | 44.65–107.15 | 28.69 | 95.76 | 10 | 1.32 | 172.11 | 21.83 |
| Wang et al. 2012 | aCGH (720k) | 12 | 259 | 2.30–150.94 | 68.71 | 173.86 | 10 | 1.32 | 252.53 | 21.83 |
| Li et al. 2012 | SNP chip (60k) | 1693 | 565 | 50.39–910.06 | 25.71 | 139.87 | 100 | 1.08 | 217.77 | 11.00 |
| Rubin et al. 2012 | Genome sequencing | 117 | 56 | 59.32–175.06 | 52.55 | 52.55 | 10 | 1.08 | 217.77 | 11.00 |
| Wang et al. 2013 | SNP chip (60k) | 14 | 63 | 5.00–270.25 | 143.90 | 198.74 | 10 | 1.32 | 172.11 | 21.83 |
| Wang et al. 2014 | SNP chip (60k) | 16 | 63 | 5.00–270.25 | 143.90 | 198.74 | 10 | 1.32 | 172.11 | 21.83 |
| Chu et al. 2014 | Genome sequencing | 12 | 63 | 5.00–270.25 | 143.90 | 198.74 | 10 | 1.32 | 172.11 | 21.83 |
| Jhang et al. 2015 | aCGH (1M) | 12 | 63 | 5.00–270.25 | 143.90 | 198.74 | 10 | 1.32 | 172.11 | 21.83 |
| Note: The comparison was based on Sus scrofa assembly (10.2). For CNVRs based on the other porcine assemblies, we first converted the data to current genome coordinates using the UCSC Genome Browser (Liftover). |
average positive predictive rate is 86.54%, demonstrating that, for the positive samples, qPCR assays are highly consistent with the aCGH predictions. Contrary to the positive samples, for some of the negative samples qPCR assays do not agree with the aCGH prediction, i.e., high negative predictive rate (average 42.08%) observed. False-negative identification can be explained by the stringent criteria of CNV calling that minimizes the false-positive but inevitably leads to a high false-negative rate.

Comparison of CNVRs with those of previous studies

CNVRs identified herein were compared with those previously reported in other studies (Fadista et al. 2008; Ramayo-Caldas et al. 2010; Chen et al. 2012; Li et al. 2012; Rubin et al. 2012; Wang et al. 2012; Paudel Y et al. 2013; Wang et al. 2013; Wang et al. 2014; Jiang et al. 2014). As shown in Table 3 and Table S9, the CNVR number and length overlapped with the 10 previous studies vary greatly, ranging from 0.13% to 61.61% in count percentage (0.02%–63.06% in length). After merging the comparison results, a total of 526 CNVRs overlap with previously reported ones, indicating 69.39% of CNVRs identified in the study can be validated by previous studies and the other ones were first detected in our study. Furthermore, we performed an exhaustive comparison with our previous studies using 2.1M NimbleGen (Wang et al. 2014) and read depth (RD) method (Jiang et al. 2014), whereby the same samples were collected in CNV detection. As shown in Figure 5, among the three types of platforms, RD detects the most CNVRs in number or the largest polymorphic sequence in total length, whereas NimbleGen detects more CNVRs in number than Agilent but nearly equal total length. There were 253 CNVRs (length of 17.31 Mb) detected by all three platforms, whereas 261 CNVRs (length of 13.65 Mb) were identified only in the present study.

DISCUSSION

Using a custom-designed 1M CGH array, we identified 758 CNVRs among the 12 pig samples from diverse breeds. We found the number of identified CNVR differed among the 12 individuals, and more CNVs per individual were identified in the pigs of Chinese indigenous breeds and wild population (207.2) than in those of modern commercial breeds (100.2). These results are consistent with the previous studies indicating that Chinese indigenous breeds have larger genetic diversity and higher average heterozygosity in comparison with European breeds (Zhang and Plastow 2011), which highlights the importance of using Chinese indigenous breeds in research of porcine genetic architecture.

Concerning copy number status, loss events were approximately 2.65-fold more common than gain events in CNVRs. However, previous studies involving humans have suggested that deletions were more deleterious than duplications, and losses tended to be under stronger purifying selection than gains (Emerson et al. 2008; Schröder and Hahn 2010). This observation of more loss than gain events is at least partially related to the technical bias. As also noted by others (Redon et al. 2006; Fadista et al. 2010), due to the CNV detection pipeline used, the aCGH approach has more power to detect a loss than a gain.

A large amount of annotated genes (1295 genes) are located in the identified CNVRs. CNVR-related genes have dN/dS ratios significantly higher than those with normal copy numbers by Wilcoxon rank-sum tests (P < 6.2E-18), which is consistent with the previous results involving pigs and other species (Fadista et al. 2010; Li et al. 2012). This result indicated that, compared to genes in non-CNV regions, these genes in CNVRs might undertake a different selective constraint and be subjected to a relaxation of constraint due to the redundancy expected from the variable number of gene copies. In accordance with previous studies, GO and KEGG analyses have evidenced that CNVRs are particularly enriched in genes related to sensory perception of the environment (e.g., smell, sight, taste), neuro-developmental processes, response to external stimuli, and immunity (De Smith et al. 2008; Clop et al. 2012; Paudel Y et al. 2013), suggesting their contribution to adaptation in the wild and behavioral changes during domestication.

Further probing the potential functions of these genes completely or partially overlapped with CNVRs, we also found a suite of promising genes that make them a valuable resource for exploring the genetic basis of phenotype differences among diverse pig breeds. For instance, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) has confirmed that gene duplication and a splice mutation leading the skipping of exon 17 is responsible for the dominant white phenotype (Johansson et al. 2005; Pielberg et al. 2002). Consistent with the previous studies, in the present study, KIT genes were detected to be duplication only in individuals of Landrace and Yorkshire with solid white coat color. Additionally, we sifted 20 single-copy genes, which also maintained one copy among other mammals. These genes with copy number variations are more likely to have a phenotypic effect due to the natural feature of conservation and single-copy status.

The genetic relationships of nine individuals tested using CNVR-based clustering analysis were basically consistent with their geographic distribution, as well as dendrograms generated using microsatellite markers (Fang et al. 2005) and high-density SNP data (Jiang et al. 2014) in previous studies. Therefore, CNVs may reflect demographic history as Paudel et al. (2013) observed in their study, which could be used as genomic markers to investigate pig genetic diversity and evolution. This can be largely reflected by the statistic supports of AU/BP values of resulting branches. It is notable that some branches, e.g., branch 8, obtained values of au/bp less than 50, representing low reliability in the resulting dendrogram. This demonstrates that CNVRs identified in the study are not sufficiently informative in dendrogram construction in contrast to SNPs and other genetic markers. A potential reason lies in that it is not easy to accurately
determine the genotype of CNVRs identified by the aCGH platform compared to other genomic variants.

We compared the CNVRs identified in the present study with those in previously studies. As pointed out by Pinto et al. (2011), the reproducibility among different platforms varied greatly, and the overlapped rates were affected not only by detecting platforms but also by different samples tested. It is notable herein that both 1M aCGH in the present study and 2.1M aCGH in our previous study (Wang et al. 2014) were used for CNV detection with the same samples. These two aCGH have the same coverage on the pig genome but have different densities and positions in probes across the pig genome. The reason we used the same samples in different studies is that we could systematically compare performance of various technique platforms with the same experimental conditions. That comparison of findings by various methods can mostly reflect inherent characteristics of them. Although the density of the 1M aCGH used in the current study is less than that of 2.1M aCGH in our previous study (Wang et al. 2014), the novel 1M probes successfully detected an extra 60 short CNVRs of <10 kb in length (Table S1) that have been previously missed by the 2.1M aCGH as well as RD methods.

Although the present study detected a limited number of novel CNVs compared to our previous studies, the goal of the present study is not only to explore novel CNVs besides our previous findings but also to establish a framework for CNV identification with both high detection power and cost efficiency. Our comparative results between aCGH and RD showed that 1M aCGH by Agilent and 2.1M aCGH by NimbleGen can generate CNV findings complementary to each other, especially in the detection of short CNVs <10 kb. Incorporating findings of present 1M aCGH-based studies and our previous 2.1M aCGH-based studies first proved that ultrahigh-density aCGH can achieve improved performance in CNV calling even more powerful than the sequence-based method in short CNV detection. Our findings herein not only were helpful for constructing a more comprehensive CNV map but also offered a feasible way to design a high-density aCGH with high cost efficiency in CNV studies in contrast to traditional sequence-based methods.

In summary, the present study clearly highlights that different platforms can complement each other, and combined implementation of different platforms is beneficial to achieve the most comprehensive CNV calls. CNVs detected in diverse populations herein are essentially complementary to the CNV map in the pig genome, which would be helpful for understanding the pig genome variants and investigating the associations between various phenotypes and CNVs.

ACKNOWLEDGMENTS

The authors thank the editor and the two anonymous reviewers for their constructive comments and suggestions that greatly improved this manuscript. This work was financially supported by the Program for the National High Technology Research and Development Program of China (863 Program 2011AA100302, 2013AA102503), Changjiang Scholar and Innovation Research Team in University (IRT1191), the National Natural Science Foundations of China (31272419), and the New-Century Training Program Foundation for the Talents by the State Education Commission of China (NETC-10-0783).

LITERATURE CITED

Alkan, C., J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci et al., 2009 Personalized copy number and segmental duplication maps using next-generation sequencing. Nat. Genet. 41: 1061–1067.

Ballester, M. A., Castelló, E. Ísabéz, A. Sánchez, and J. M. Folch, 2004 Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. Biotechniques 37: 610–613.

Carter, N. P., 2007 Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39: S16–S21.

Chen, C., R. Qiao, R. Wei, Y. Guo, H. Ai et al., 2012 A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics 13: 733.

Clop, A., O. Vidal, and M. Amills, 2012 Copy number variation in the genomes of domestic animals. Anim. Genet. 43: 503–517.

De Smith, A., R. Walters, P. Froogel, and A. I. Blakemore, 2008 Human genes involved in copy number variation: Mechanisms of origin, functional effects and implications for disease. Cytogenet. Genome Res. 123: 17–26.

Emerson, J. J., M. Cardoso-Moreira, J. O. Borevitz, and M. Long, 2008 Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320: 1629–1631.

Fadista, J., M. Nygaard, L. E. Holm, B. Thomsen, and C. Bendixen, 2008 A snapshot of CNVs in the pig genome. PLoS ONE 3: e3916.

Fadista, J., B. Thomsen, L. E. Holm, and C. Bendixen, 2010 Copy number variation in the bovine genome. BMC Genomics 11: 284.

Fang, M., X. Hu, T. Jiang, M. Braunschweig, L. Hu et al., 2005 The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers. Anim. Genet. 36: 7–13.

Feuk, L., A. R. Carson, and S. W. Scherer, 2006 Structural variation in the human genome. Nat. Rev. Genet. 7: 85–97.

Gazave, E., F. Darré, C. Morcillo-Suarez, N. Petit-Marty, A. Carreño et al., 2011 Copy number variation analysis in the great apes reveals species-specific patterns of structural variation. Genome Res. 21: 1626–1639.

Giuffra, E., A. Törnsten, S. Marklund, E. Bongcam-Rudloff, and P. Chardon, 2002 A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm. Genome 13: 569–577.

Harakasingh, R. R., A. Abyzov, M. Gerstein, and A. E. Urban, 2011 Genomewide mapping of copy number variation in humans: Comparative analysis of high resolution array platforms. PLoS ONE 6: e27859.

Hou, Y., G. E. Liu, D. M. Bickhart, M. F. Cardone, K. Wang et al., 2011 Genomic characteristics of cattle copy number variations. BMC Genomics 12: 127.

Iafrate, A. J., L. Feuk, M. N. Rivera, M. L. Listewnik, P. K. Donahoe et al., 2004 Detection of large-scale variation in the human genome. Nat. Genet. 36: 949–951.

Jiang, J., J. Wang, H. Wang, Y. Zhang, H. Kang et al., 2014 Global copy number analyses by next generation sequencing provide insight into pig genome. BMC Genomics 15: 593.

Johansson, A., G. Pielberg, L. Anderson, I. Edfors-lilja et al., 2005 Polymorphism at the porcine dominant white/KIT locus influence coat colour and peripheral blood cell measures. Anim. Genet. 36: 288–296.

Li, Y., S. Mei, X. Zhang, X. Peng, G. Liu et al., 2012 Identification of genome-wide copy number variations among diverse pig breeds by array CGH. BMC Genomics 13: 725.

Liu, G. E., Y. Hou, B. Zhu, M. F. Cardone, and L. Jiang, 2010 Analysis of copy number variations among diverse cattle breeds. Genome Res. 20: 693–703.

Livas, K. J., and T. D. Schmittgen, 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25: 402–408.

Meuren, F., A. Summerfield, H. Nauwynck, L. Saif, and V. Gerds, 2012 The pig: a model for human infectious diseases. Trends Microbiol. 20: 50–57.

Mills, R. E., K. Walter, C. Stewart, R. E. Handsaker, K. Chen et al., 2011 Mapping copy number variation by population-scale genome sequencing. Nature 470: 59–65.

Paudel, Y., O. Madsen, H. Megens, L. A. Frantz, M. Bosse et al., 2013 Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics 14: 449.
Pielberg, G., C. Olsson, A. C. Syvänen, and L. Andersson, 2002 Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig. Genetics 160: 305–311.

Pinkel, D., R. Segraves, D. Sudar, S. Clark, I. Poole et al., 1998 High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20: 207–211.

Pinto, D., K. Darvishi, X. Shi, D. Rajan, D. Rigler et al., 2011 Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 29: 512–520.

Ramayo-Caldas, Y., A. Castelló, R. N. Pena, E. Alves, A. Mercadé et al., 2010 Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics 11: 593.

Redon, R., S. Ishikawa, K. R. Fitch, L. Feuk, G. H. Perry et al., 2006 Global variation in copy number in the human genome. Nature 444: 444–454.

Rosengren Pielberg, G., A. Golovko, E. Sundström, I. Curik, J. Lennartsson et al., 2008 A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat. Genet. 40: 1004–1009.

Rubin, C. J., H. J. Megens, A. M. Barrio, K. Maqbool, S. Sayyab et al., 2012 Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 109: 19529–19536.

Schrider, D. R., and M. W. Hahn, 2010 Gene copy-number polymorphism in nature. Proc. Biol. Sci. 277: 3213–3221.

Sebat, J., B. Lakshmi, I. Troge, J. Alexander, J. Young et al., 2004 Large-scale copy number polymorphism in the human genome. Science 305: 525–528.

Seroussi, E., G. Glick, A. Shirak, E. Yakobson, J. I. Weller et al., 2010 Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC Genomics 11: 673.

Sudmant, P. H., J. O. Kitzman, F. Antonacci, C. Alkan, M. Malig et al., 2010 Diversity of human copy number variation and multicyclic genes. Science 330: 641–646.

Suzuki, R., and H. Shimodaira, 2006 Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540–1542.

Tian, M., Y. Wang, X. Gu, C. Feng, S. Fang et al., 2013 Copy number variants in locally raised Chinese chicken genomes determined using array comparative genomic hybridization. BMC Genomics 14: 262.

Tuzun, E., A. J. Sharp, J. A. Bailey, R. Kaul, V. A. Morrison et al., 2005 Fine-scale structural variation of the human genome. Nat. Genet. 37: 727–732.

Vilella, A. J., J. Severin, A. Ureta-Vidal, L. Heng, R. Durbin et al., 2009 Ensembl Compara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19: 327–335.

Wang, J., J. Jiang, W. Fu, L. Jiang, X. Ding et al., 2012 A genome-wide detection of copy number variations using SNP genotyping arrays in swine. BMC Genomics 13: 273.

Wang, J., H. Wang, J. Jiang, H. Kang, X. Feng et al., 2013 Identification of Genome-Wide Copy Number Variations among Diverse Pig Breeds Using SNP Genotyping Arrays. PLoS ONE 8: e68683.

Wang, J., J. Jiang, H. Wang, H. Kang, Q. Zhang et al., 2014 Enhancing Genome-Wide Copy Number Variation Identification by High Density Array CGH Using Diverse Resources of Pig Breeds. PLoS ONE 9: e87571.

Wright, D., H. Boije, J. R. S. Meadows, B. Bed’hom, D. Gourichon et al., 2009 Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet. 5: e1000512.

Zhang, C., and G. Plastow, 2011 Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock. Curr. Genomics 12: 138–146.

Zhang, Z. G., B. Li, and X. Chen, 1986 Pig Breeds in China, Shanghai Scientific and Technical Publisher, Shanghai.