A Fast Hardware Pseudorandom Number Generator Based on xoroshiro128

James Hanlon and Stephen Felix

Abstract—The Graphcore Intelligent Processing Unit contains an original pseudorandom number generator (PRNG) called xoroshiro128aox, based on the PJK linear generator xoroshiro128. It is designed to be cheap to implement in hardware and provide high-quality statistical randomness. In this paper, we present a rigorous assessment of the generator’s quality using standard statistical test suites and compare the results with the fast contemporary PRNGs xoroshiro128+, pcg64 and philox4x32-10. We show that xoroshiro128aox mitigates the known weakness in the lower order bits of xoroshiro128+ with a new ‘AOX’ output function by passing the BigCrush and PractRand suites, but we note that the function has some minor non uniformities. We focus our testing with specific tests for linear artefacts to highlight the weaknesses of both xoroshiro128 PRNGs, but conclude that they are hard to detect, and xoroshiro128aox otherwise provides a good trade off between statistical quality and hardware implementation cost.

Index Terms—Pseudorandom number generator, PRNG, Hardware circuits, statistical tests

1 INTRODUCTION

RANDOMNESS is widely used in machine intelligence (MI) algorithms. Examples include shuffling of data prior to each training epoch for stochastic gradient descent [1], sub sampling of training images, weight initialisation, adding noise to activations or weights, regularisation techniques like Dropout [2] and Stochastic Pooling [3], Monte Carlo sampling in generative models or choosing random actions in reinforcement-learning models.

The use of pseudorandom number generators (PRNGs), deterministic algorithms for generating sequences of numbers that appear to be random, are ubiquitous in computing. When compared with true random number generators (TRNGs) that are typically based on sampling of some physical phenomena such as ring oscillators [4], PRNGs offer a higher rate of output, no requirement for special hardware structures, and unlike TRNGs, have the ability to be seeded to replay a sequence deterministically.

In application domains such as AI, there is no need for a PRNG to be cryptographically secure, meaning that it does not need to be difficult for an adversary to predict future outputs based on past ones.

It is not clear to what degree the statistical quality of a PRNG affects the performance of MI applications. For example, a minor correlation between the initial values of weights in a neural network may have a negligible impact since backpropogation tunes weight values and should lead to locally optimum solutions regardless of whether the weights were perfectly randomly distributed initially. On the other hand, applications such as Monte-Carlo approximation can produce inaccurate solutions when based on correlated PRNG output [5]. It is interesting to note that Python’s default PRNG is the 32-bit Mersenne Twister algorithm, which fails standard statistical tests for linearity [6].

Failures for specific statistical correlations can be important or anecdotal. Linear correlations, which are a main focus of this paper, do not matter if their effects are diluted by way in which they are used, such as to create uniform floating point values manipulated by non-linear arithmetic operations. Other beneficial aspects of a PRNG, such as performance, memory requirements or hardware implementation cost, must be weighed against particular statistical weaknesses.

Software PRNGs can be implemented with a low overhead of just a few instructions per output. However, when randomness is required more frequently, generation in hardware can provide performance that is orders of magnitude better than compatible generation in software. In the Graphcore Intelligent Processing Unit (IPU) [7], each of its 1,216 tile processors contains a novel PRNG called xoroshiro128aox that is capable of producing 64 bits of random data every cycle. This randomness is used either to automatically round floating-point numbers stochastically [8] or is made available to the programmer through instructions to generate random values in uniform and Gaussian distributions.

This paper presents xoroshiro128aox and a rigorous assessment of its quality using standard statistical tests. Our results indicate that the PRNG is comparable to contemporary fast non-cryptographic PRNGs with similar state size, whilst being cheaper to implement in hardware. The remainder of this paper is structured as follows. Section 2 describes standard PRNG statistical testing, and the specific test sets that are used in our investigation. Section 3 introduces the IPU’s PRNG and the xoroshiro128 family that it is derived from. Section 5 describes the methodology used to perform the statistical testing, as well as the other generators included for comparison. Section 6 presents the results of the empirical statistical analysis. Section 7 analyses the hardware implementation cost of the generators considered by synthesising them in hardware. Section 8 identifies several other aspects of PRNG quality and analyses these for xoroshiro128aox. Section 9 concludes the investigation.

2 STATISTICAL TESTING

Theoretical analysis of a PRNG can be used to establish some properties, such as values being produced uniformly and over their entire period length, however only empirical testing can be used to establish the statistical properties of a PRNG, and is the standard approach for judging quality. An empirical statistical test involves sampling the output of a generator, calculating a summary statistic such as mean or standard deviation, then comparing this to the same statistic for a truly random source. This approach is only applicable when the number of samples is less than the sequence length, since it would otherwise be easy to detect a repeating sequence.

Empirical testing of PRNGs is formalised by comparing against a null hypothesis, where we assume the output of a generator follows a uniform distribution as would be the case for a true random generator. A particular test calculates a statistic that has a known distribution under the null hypothesis using on a finite portion of the generator’s output. Probabilities called p-values are calculated based on how likely it is that the generator’s output is consistent with the test statistic’s distribution. Extreme p-values that are very close to 0 or 1 indicate that the sampled output is unlikely to be random. In statistical testing of PRNGs, results are categorised such that extreme p-values will be flagged as ‘suspicious’ or ‘anomalous’, but to determine a pass or fail result, an arbitrary threshold can be applied. The exact bounds may depend on the methodology.

Because an unlimited number of statistical tests can be devised and each test will explore different aspects of the PRNG, it is not

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
possible for any set of tests to determine whether a generator is perfectly random. Indeed, since we are interested in designing a generator that is fast and cheap to implement, we are concerned only that the generator is good: that it passes all simple tests and fails complex tests infrequently [9]. For our empirical analysis, we use the statistical test suites for RNGs provided by the TestU01 [10], PractRand [11] and Gjrand [12] libraries. These are all well regarded by the community for their ability to distinguish good from bad PRNGs. Notable other test suites are DieHarder, RaBiGeTe and NIST STS, but are less comprehensive, less well regarded by the community and less well maintained.

TestU01 provides implementations of standard statistical tests such as Birthday Spacings that measures the distribution of distances between outputs and Collision that measures the probability of outputs occurring in the same interval of bits multiple times. Sets of statistical tests are instanced in test batteries that can be used for exercising RNGs. The most stringent battery BigCrush contains 106 test parameterisations of 30 individual tests, and consumes close to 1 TB of random data. Each test can produce one or more p-values, and in total a single run of BigCrush produces 160 p-values. In total, 254 p-values are reported in the output of BigCrush, however, only independent p-values are reported in the summary, which we count towards failures in our analysis.

PractRand (Practically Random) provides statistical testing of RNGs using six tests, deployed in many different parameterisations. Several of these tests are original and developed by the software’s author Chris Doty-Humphrey, making it a complement to BigCrush. PractRand provides the ability for generators to be tested with effectively unlimited sequence lengths, although the default sequence length is 32 TB (requiring approximately a week of run time), which we use in our analysis. For this test length, PractRand runs 455 test parameterisations of the six individual tests.

Gjrand is another library of PRNGs and statistical tests, created by David Blackman, a co-creator of the xoroshiro128 family of generators. Its test suite for uniform random bits performs 13 tests and is limited to a maximum of 10 TB of output, which we use for our analysis.

3 XOROSHIRO128AOX

The IPU’s PRNG is based on xoroshiro128, an F_2-linear engine developed by Blackman and Vigna in 2017 [13]. It operates by performing the operations exclusive or (XOR), rotate, shift and rotate consecutively on 128 bits of state. Any generator based on an F_2-linear map will fail tests such as binary rank and linear complexity, which are designed to detect linear artefacts. A family of more robust xoroshiro128 PRNGs is obtained by adding a non-linear function of the state vector to ‘scramble’ the output. Use of such an output function reduces or eliminates linear artefacts, improving the statistical properties of the generator. Blackman and Vigna suggest the scrambling functions: $+$ (addition), \times (multiplication), $+$ (sum, rotation, sum) and \times (multiplication, rotation, multiplication), which are cheap to execute in modern processors.

xoroshiro128+ has received particular attention because it is the fastest variant of this family and its predecessor xorishift128+ is used in the JavaScript engines of Chrome, Firefox and Safari web browsers. However, the use of addition as a non-linearity leaves the least significant bits as a weak linear combination of the state vectors, and in particular that bit 0 is just the XOR of the two input bits. Blackman and Vigna acknowledge this weakness by showing that the linearities are detectable by the MatrixRank and LinearComp tests of TestU01 only when the least significant bits of the output are placed in the most significant positions. This is because TestU01’s Crush batteries are designed to test random floating-point numbers in the range $[0,1]$, conversion of random bits biases the higher bits since the lowest bits will be most affected by numerical errors.

In our own testing, which is detailed in later sections, we observe the weakness of the lower bits when providing the bit-reversed 32-bit output to TestU01, as well as in other tests. Similar results have been reported by Lemire and O’Neill across various PRNGs using addition as an output non linearity [14].

The Graphcore IPU’s xoroshiro128aox generator uses the xoroshiro128 PRNG with a non-linear operation based on a sequence of AND, OR and XOR operations. This new output function has been designed to hide linearities and to be cheap to implement in hardware, particularly compared with 64-bit addition.

Every output bit of AOX is dependent on the same number of input bits according to a similar pattern, with dependencies on bits to the left and right (more and less significant), compared with addition where dependencies are only on less significant right-hand bits.

A disadvantage of this feature of AOX is that it is not possible to prove the output is uniform, which we analyse in Section 8.2, whereas addition is provably uniform.

From two 64-bit state vectors $s_0 = \{s_0^0, s_0^1, \ldots, s_0^{63}\}$ and $s_1 = \{s_1^0, s_1^1, \ldots, s_1^{63}\}$, result bit i of the output r is defined as:

$$r_i = s_0^i \oplus s_1^i \oplus ((s_0^{(i-1)\mod64} \land s_1^{(i-1)\mod64}) \lor (s_0^{(i-2)\mod64} \land s_1^{(i-2)\mod64}))$$

(1)

![Fig. 1](https://example.com/f1.png)

Fig. 1 lists a C implementation of the xoroshiro128aox generator, with a function next that advances the 128-bit state and returns 64 random bits.

The shift constants 55, 14 and 36 are from the 2016 version of xoroshiro128+, which we used in our 2017 IPU silicon implementation. Blackman and Vigna later proposed 24, 16 and 37 as producing superior output. We include results in this investigation for both variants of the constants to show there are no significant statistical differences.

2. The tests conducted and the parameters used are explained in detail in the TestU01 User Guide [9].
3. See the PractRand documentation for details of these tests http://pracrand.sourceforge.net/Tests_engines.txt
4. See this 2015 blog post from the Google V8 project: https://v8.dev/blog/math-random
5. This is noted in the xoroshiro128+ source code https://prng.di.unimi.it/xoroshiro128plus.c
4 GENERATORS FOR COMPARISON

To provide a baseline result, tests are performed against xoroshiro128+ and with two fast contemporary and comparable PRNGs, both with 128 bits of state and 64 bits of output: philox4x32-10 and pcg64.

Philox [15] is a counter-based family of PRNGs that have a simple state transition function of an increment by one, but a complex output function to map state and key values to pseudorandom outputs. The state transition makes it easy to jump to arbitrary points in the sequence by just setting the counter, which is useful for initialising parallel generators. We choose the philox4x32-10 variant of this family which has a 128-bit integer counter and two 32-bit keys as its internal state. Although this makes the complete state size 192 bits, this is the most closely comparable version of Philox to xoroshiro128+. The output of philox4x32-10 is calculated by performing ten rounds of a scrambling function composed of 32-bit multiplications and 32-bit XORs. The key values, which are used as inputs to this are incremented each round by a constant value. The philox4x32-10 generator has established itself as a standard, and consequently is available as part of Python scientific computing library NumPy and Nvidia’s GPU cuRAND library.6

pcg64 is a linear congruential generator (LCG), which uses multiplication and addition by constants for the state transition function [16]. To produce outputs, it uses XOR and rotation operations, in particular using part of the state vector to set a variable rotation distance. The generator is specifically characterised by an ‘XSL RR’ output function, meaning ‘fixed XOR shift to low bits and rotation’, and is part of the PCG family of PRNGs that are claimed to be fast and high quality compared with contemporary generators.

Finally, the 32-bit Mersenne Twister [17] (referred to as mt32) is included in our analysis since it is the most widely used PRNG in software, and included as the default generator in many software systems including Microsoft Excel, Python and MATLAB. This generator has a state size of 2.5 KB (624 32-bit words, or 19,937 bits) and a huge period of $(2^{19937} - 1)$.

The PRNGs used for comparison are tested using reference C/C++ implementations provided by their authors, or as part of standard libraries. Additional standard PRNGs are not included in our analysis due to the computational cost of performing the statistical tests and because results for their quality may readily be found in the literature.

5 METHODOLOGY

We adopt Vigna’s methodology of sampling generators for conducting our tests with BigCrush, PractRand and Gjrand [18], as originally suggested in [10]. A generator is tested against a particular test or test suite by choosing 100 seeds spaced equidistantly in the n-bit natural number sequence, that is at intervals $1 + i[2^n/100]$ for $0 \leq i < 100$, and obtaining results for all 100 seeds. In effect, the seeds are chosen randomly with respect to the sequence produced by a particular generator. It would be preferable to choose seeds spaced equidistantly in a generator’s sequence, but it is not always possible for a generator to jump to arbitrary points, so this method takes the simplest and most general approach.

For each seed, a generator fails that seed if an extreme p-value is reported. We choose the range of extreme p-values to be outside of [0.001, 0.999] across all tests run, which is the default used by TestU01 for reporting failures. At a particular threshold, a certain number of failures are always expected: assuming all tests contributing to the score are independent, the probability that a true random number generator produces a p-value outside of this range is 0.2%. This probability reduces as the acceptable p-value range increases, as does the required generator output to establish a failing p-value. The criteria for distinguishing a failure is more stringent: a generator fails a test systematically if it fails all seeds on the same test. Where systematic failures occur, we report the test that caused the failure. Only the generators that have a systematic failure are considered to fail the particular test set.

Since AOX is designed to hide the lineairies of xoroshiro128+, we apply a more stringent analysis using specific tests that are sensitive to lineairities. These are the Binary Rank and Linear Complexity tests from TestU01, and a Hamming-Weight Dependency (HWD) test that is a development of the z9 test included in Gjrand.7 [19] The Matrix Rank test fills a matrix with random values and then computes the rank (the number of linearly-independent rows), comparing this against the expected distribution for a random matrix.8 The Linear Complexity test is based on output from the Berlekamp-Massey algorithm that can determine a minimal polynomial for a sequence that is linearly recurrent, as is the case for an F_2-linear map. The HWD test counts bit sets and analyses dependencies between the numbers of ones and zeros in consecutive outputs, which are correlations indicative of the sparse matrix representations of the F_2-linear map.9

6 RESULTS

6.1 TestU01’s BigCrush

In total, we use six different permutations of the 64-bit PRNG output as input to the BigCrush test suite to avoid biasing certain bits and to expose known failures. Following standard methodology to avoid biasing of the higher-order bits on conversion to floating-point values in the range [0,1], the standard output of the generator as well as the bit reverse is taken (referred to as std32 and rev32 respectively). To demonstrate the systematic failures exhibited by xoroshiro128+ and that this same weakness does not exist in other generators, the bit reversal of the lowest 32 bits are taken as output (referred to as rev32lo). We remark that this particular manipulation of the output of the generator is not the only way to expose the weak lower bits to cause a systematic failure. Experimentally, we have found that it is possible to do so by permuting the complete 64-bit output firstly by swapping the high and low 16 bits of each 32-bit output and by a particular interleaving of low and high bits over the full 64-bit output. For completeness, std32lo, std32hi and rev32hi output bit permutations are also included, and are summarised in Table 1.

Table 2 provides a summary of BigCrush test failures for each generator. The number of test failures for a particular generator and output is the total number of test failures across all 100 seeds. The mt32 generator exhibits a systematic failure for the LinearComp test across all output permutations. As expected, xoroshiro128+ exhibits a systematic failure for the LinearComp and

6. See details in https://developer.nvidia.com/cuRAND

7. This relationship is mentioned in the source code for the HWD test: “the Hamming-weight dependency test based on z9 from gjrand 4.2.0.8”, http://xoshiro.d.unipi.it/hwd.c

8. Matrix Rank also appears in PractRand as BRank and Gjrand as binr.

9. TestU01 provides similar tests that count the frequency of set bits: HammingWeigths2, HammingIndep and HammingCorr and PractRand with DC6, and BCPFN.

Output	Bits output	Comment
std32	[31:0], [63:32]	All 64 bits used
rev32	[0:31], [32:63]	All 64 bits used
std32lo	[31:0]	Upper 32 bits discarded
rev32lo	[0:31]	Upper 32 bits discarded
std32hi	[63:32]	Lower 32 bits discarded
rev32hi	[32:63]	Lower 32 bits discarded

TABLE 1

Summary of the Bits Provided to TestU01’s BigCrush for Each Generator

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
MatrixRank tests when run with the rev32lo output. The remaining generators do not exhibit any systematic failures and all can be considered to pass BigCrush. Note that the number of failures for generators that do not fail systematically, fall within three standard deviations of the expected value, 32.

6.2 PractRand

Table 3 lists results for the PractRand test set. Both variants of xoroshiro128+ fail quickly as expected, with systematic failures on three instances of the Binary Rank test. The Mersenne Twister lasts longer on the Binary Rank tests, but also fails eventually at 256 GB output. The AOX variants show similar results to pcg64 and philox4x32-10, running to completion of the test.

Note that unlike BigCrush, the number of test failures does not follow a Poisson distribution given because there are high degrees of correlation between tests and therefore the calculated p-values are not entirely independent, given that there are only six basic tests and thousands of permutations of their parameters.

6.3 Gjrand

Table 4 lists the results for the Gjrand test set. The number of test failures is the total number of tests across all 100 seeds that exhibit failures up to 100 TB of output, but neither are based on systematic failures. The remaining generators do not exhibit any systematic failures and all can be considered to pass BigCrush. Note that the number of failures for generators that do not fail systematically, fall within three standard deviations of the expected value, 32.

6.4 Hamming Weight Dependency Test

Table 5 lists the results for the HWD tests. Each generator is run until it generates a p-value smaller than 10^-20 or outputs 100 TB of data. Due to the long test runtime, results are given for a single 128-bit seed (s0 = 1, s1 = −1). We choose this more extreme p-value bound to be consistent with the results published for other generators, e.g. [13], but also list the data output for p = 10^-3 for comparison with similar tests using our [0.001, 0.999] p-value failure range.

In both shift variants of AOX, biases in the output take substantially more output to detect. The p = 10^-20 results are comparable to the xoroshiro256 (54 TB) and xoroshiro128+ (36 TB) generators with twice and eight times more state than xoroshiro128aox respectively. The results for p = 10^-3 are comparable with the Gjrand z9 test failures for xoroshiro128 generators within 10 TB.

Although the Mersenne Twister is an F2-linear generator, it is unsurprising that the HWD test does not detect anomalies because it has a significantly larger state and would require a correspondingly huge amount of memory to do so. When reduced to 607 bits of state, the Mersenne Twister fails HWD at 37 GB of output [13].

pcg64 and philox4x32-10 do not exhibit any bias up to 100 TB of output, but neither are based on F2-linear maps.

6.5 Bitwise Linear Complexity

Each bit of the output of the xoroshiro128aox (55-14-36) is tested for linear artefacts with TestU01’s smarsa_MatrixRank
with a binary matrix of size $10,000 \times 10,000$, four times the size of the largest matrix used in BigCrush and scomp_LinearComp test with a sequence length of 800,000, double that of the longest used by BigCrush. Each bit is tested over 100 seeds as per the methodology described in Section 5. No systematic failures were found for any of the 64 output bits in either test.

7 Hardware Implementation Cost

To assess the cost of the xoroshiro128a0x generator in hardware, we compare it against the contemporary generators included in the statistical testing. To do this, we have produced Verilog RTL (register transfer level) implementations of the generators and performed synthesis and physical place and routing using Synopsys ASIC tooling. We use Graphcore’s 7 nm cell library and a target clock period of 1 GHz. In each implementation, a generator computes its state update and output function in a single cycle, reading and writing to and from registers within the block. Reported gate counts only include combinatorial logic associated with these functions. We omit mt32 from this implementation analysis since the hardware cost of its state alone (19,937 bits) is prohibitively expensive.

The hardware implementation costs of the generators is measured by the number of gates required and the logical depth, which is the maximum number of gates of any path through the logic function. The results of the analysis are summarised in Table 6 and are presented for the state update state update and the output function. Fig. 2 shows the scaled floorplans of each generator for comparison, including the state-transition logic, output function and state. The xoroshiro128 function can be implemented with three 64-bit XORs. The shift and rotate operations are by constant values and require no logic. The cost of the AOX output function is similar to the state update, and the full variable 64-bit addition is approximately three times as expensive as AOX.

For pcg64, the main hardware components are a 128-bit constant multiplier and a 128-bit constant adder for the state update, which dominates the hardware cost with ~10,000 gates and 27 levels of logic. Note that there is significant scope for optimising the implementation of constant multipliers since partial products will be generated for each set bit in the constant. Assuming approximately 50% set bits in the constant, only $n/2$ partial products need to be accumulated. The output function requires a 64-bit XOR of the state vector and 64-bit full barrel rotator, which is cheap to implement compared with a full 64-bit adder.

philox4x32-10 is the most expensive generator to implement due to its complex output function consisting of 10 stages of four 32-bit constant multipliers, two 32-bit constant adders and four 32-bit XORs of the k and 1 values. The implementation cost is ~30,000 cells and 89 stages of logic. In any practical implementation, the output function would need to be heavily pipelined to meet an acceptable clock speed. Fewer rounds could also be implemented if the quality of the output were satisfactory, however we have not investigated that trade off. The state transition as expected is relatively cheaper, requiring a 128-bit increment by one.

8 Other Aspects of Quality

Apart from statistical quality of the output of a PRNG, several other issues affect the suitability for use in artificial intelligence applications. This section discusses these: period, output uniformity, seeding and overlapping parallel sequences.

8.1 Period

The period of a PRNG is the number of states that are visited before the sequence of states repeats. Since xoroshiro128 has a period of $2^{128} - 1$ (excluding the all-zeros state from which it cannot transition) xoroshiro128a0x has the same period. This period is sufficient to accommodate many parallel generators, as is discussed in Section 8.4. To give an indication of how large this period is: if a single generator were to output a value every nanosecond (1 billion times a second), it would take 10^{10^3} years to traverse the whole sequence.

8.2 Uniformity

Uniformity of a PRNG is a measure of how evenly distributed the different output values are. A perfectly uniform generator will output all distinct values an equal number of times after completing a full period, whereas a non-uniform generator biases particular values. Since the xoroshiro128 PRNG is full period (notwithstanding the all-zeros state), an analysis of uniformity can be focused on the AOX output function.
A small non-uniformity is evident when directly calculating the distribution of output values for outputs for small AOX output sizes. To measure this non-uniformity, we use the \(\chi^2 \) test for a discrete uniform distribution as a goodness-of-fit test when compared with the \(\chi^2 \) distribution. Since it is intractable to measure all or even a large part of the full 128-bit state space, the \(\chi^2 \) statistic is calculated for smaller states up to 40 bits and all possible output values, and extrapolate the result to a 128-bit state size. AOX is a function that maps 2n-bit state values to n-bit outputs. If we take \(m \) samples of AOX, then the expected number of occurrences for any output value is \(\frac{m}{2^n} \), according to the null hypothesis. This test for uniformity is similar to running TestU01’s `smultin_MultimonialBits` as a collision test.

Calculating the test statistics up to 40 state bits and 20 output bits and comparing them to the critical values at a 95% significance level (for 20 state bits \(\chi^2 = 373,621 \) and the critical value is 1,050,430) shows that there is no statistically significant difference between the output of AOX and the uniform distribution for any sample sizes. This strongly suggests that the non-uniformity cannot be detected through sampling of the 128-bit state space.

8.3 Escaping Zero Land

A desirable property of a PRNG is that given a ‘bad’ state where only a minority of bits are set to one, it can rapidly transition to a ‘good’ state where approximately half the bits are set, such as from a poor initial seed, or a bad state it encountered in its sequence. This capability is often referred to as escaping zero land, and for linear generators is equivalent to the ability for correlated states to decorrelate quickly. In general, zero escape and decorrelation is a problem for generators with a large state space, where the transition function must spend more time perturbing the state, at the cost of performance/implementation cost.

This issue is relevant to PRNG initialisation since seed values are typically not uniform random bits. In intelligence applications, deterministic execution is important for debuggability and so fixed seed values are required. Efficient generation of fixed seeds is important to avoid memory use and to minimise initialisation overheads, but this makes it difficult to ensure they are good values. A similar issue arises when a generator encounters a bad state in its sequence of transitions. In this case, it should recover quickly back to well-balanced states.

To characterise the rate at which a generator escapes from zero land, we use the method of Panneton, L’Ecuyer and Matsumoto [20]. A generator is initialised with a one-hot seed, and the proportion of set bits in the output is recorded over a fixed number of generated values, averaged over the last four outputs. The escape time is calculated by averaging the proportion at each output over all one-hot seeds. The results of this analysis are shown in Fig. 3 (1,000 iterations) and Fig. 4 (1 million iterations, sampled at intervals of 1,000).

`pcg64` and `philox4x32-10` produce balanced outputs immediately. For `philox4x32-10` it is necessary for the output to be balanced regardless of the state since it is advanced as a counter. The AOX output scrambler has a very similar behaviour to addition, with escape time being approximately 12 iterations, relating mainly to the ability of the `xoroshiro128` PRNG transition function to decorrelate. The `mt32` generator takes over a million cycles to reach an approximately balanced output state, due to it having a much larger state.

8.4 Parallel Generators

Since the IPU’s `xoroshiro128aox` generator is used in the context of large amounts of parallelism, with each chip containing more than a thousand processing tiles and a system deployment containing many IPUs, it is pertinent to ask whether 128 bits of state is sufficient, particularly since the authors of `xoroshiro128` + recommend its state space is large enough only for mild parallelism [11]. When producing parallel outputs from a generator, two issues of concern are whether sequences will overlap and consequently be correlated, and whether non-overlapping sequences are correlated.

To address the first question, since a jump function [21] can be used to initialise `xoroshiro128` seeds at specific offsets in the sequence and therefore guarantee they are non-overlapping. For example, a jump function can be used to produce \(2^n \) unique sequences of length \(2^n \) (or 128 exabytes of data). Even if seeds were to be chosen randomly within the sequence, the probability of overlap is very small. Using an upper bound on this probability [22], if \(n \) is the number of generators, \(L \) is the sequence length and \(P \) is the period length, then the probability of overlap is at most \(\frac{n^2 L}{P} \). This bound assumes the generator is full period in that there is a single cyclic sequence of transitions between states, which is true for the `xoroshiro128` PRNG when excluding the zero state. In an extreme scenario, with a Graphcore machine containing 65,536 IPU processors and approximately 0.5 billion parallel generators, performing two state updates every cycle and running for 32 days, the probability of two sequences overlapping is negligible at 0.00006%.

To address the second question of correlated non-overlapping sequences, we perform a set of additional tests on interleaved generators, which produce output in a round-robin manner from \(N \) independent generators. We take a straightforward approach by choosing interleave factor of 1 and \(N = 10, 100 \) and 1000. Each generator is tested using PractRand up to 32 TB of output, or 4 billion outputs when \(N = 1000 \) (much more than TestU01’s BigCrush can
consume). The above two seeding schemes are used: unique sequences of length 2^n and randomised start points. All six tests run to completion without any failures being flagged.

9 Conclusion

In this paper we have presented the IPU’s PRNG algorithm, the AOX variant of xoroshiro128, and provided a rigorous assessment of its statistical quality. Our analysis goes well beyond the typical testing of PRNGs found in the literature, which often only present results for a particular test suite and sometimes only for a single seed. We provide results for all well-regarded test suites that we are aware of, as well as adopting the approach of sampling generators to test over 100 different seeds. For Test U01’s BigCrush, which is widely regarded as the standard for PRNG testing, we take the additional step of testing each generator with various permutations of the output bits to mitigate biasing particular bits and to expose weaknesses in the xoroshiro family of generators, particularly with addition as an output function.

Our results show that the AOX variant of xoroshiro128 passes BigCrush under all output types and passes PractRand’s standard tests up to 32 TB of output, where in both cases xoroshiro128+ demonstrated systematic failures. These results indicate that the weakness of the addition output function have largely been mitigated by AOX. However, PRNGs based on \mathbb{F}_2-linear maps are known to exhibit linear artefacts that can always be detected given analysis of enough output, or by a particular test. A scrambling of the PRNG’s output can only serve to hide the linearities to an extent. As such, the z^9 test of Gjrand and the related HWD test both detect dependencies in the populations of set bits between consecutive outputs for addition and AOX xoroshiro128 variants. No such dependencies are detected by similar tests in BigCrush or PractRand, or by focused testing of each bit.

Although AOX is not perfectly uniform, and were it to be implemented in software, less performant than integer addition, the xoroshiro128aox PRNG represents a significant improvement in statistical quality over xoroshiro128+ passing both major test suites BigCrush and PractRand, while being cheaper to implement in hardware and suitable for inclusion in a processor that is instanced thousands of times on a single chip. Contemporary fast PRNGs with the same state size, pcg64 and philox4x32-10, are more robust to tests for linear artefacts, but are orders of magnitude more expensive to implement in hardware and thus prohibitively expensive for use in the IPU’s tile processors. xoroshiro128aox therefore provides a good trade off between implementation cost and statistical quality.

References

[1] D. Saad, “Online algorithms and stochastic approximations,” Online Learn., vol. 5, pp. 6–3, 1996.
[2] N. Smirnova, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958, 2014.
[3] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolutional neural networks,” in Proc. 1st Int. Conf. Learn. Representations, 2013.
[4] M. Varchola and M. Drutarovsky, “New high entropy element for FPGA based true random number generators,” in Proc. Int. Workshop Cryptographic Hardware Embedded Syst., 2010, pp. 351–365.
[5] A. M. Ferenberg, D. F. Landau, and J. Y. Wong, “Monte Carlo simulations: Hidden errors from ‘seeded’ random number generators,” Phys. Rev. Lett., vol. 69, pp. 3382–3384, Dec. 1992.
[6] S. Vigna, “It is high time we let go of the Mersenne Twister,” 2019, arXiv: 1910.06437.
[7] S. P. O’Neill, “Graphcore,” in Proc. IEEE Hot Chips 33 Symp., 2021, pp. 1–25.
[8] “At-Float7T4I,” Mixed precision arithmetic for AI: A hardware perspective,” Graphcore Ltd, Tech. Rep., 2021. [Online]. Available: https://docs.graphcore.ai/projects/at-float-white-paper/en/latest/index.html
[9] P. L’Ecuyer and R. Simard, “TestU01: A software library in ANSI C for empirical testing of random number generators,” 2013. Accessed: May 12, 2022. [Online]. Available: http://simul.iro.umontreal.ca/testu01/guideshortestestu01.pdf
[10] P. L’Ecuyer and R. Simard, “TestU01: A C library for empirical testing of random number generators,” ACM Trans. Math. Softw., vol. 33, no. 4, pp. 1–40, 2007.
[11] C. Doty-Humphrey, “Practrand (practically random), a library of pseudo-random number generators and statistical tests,” 2022. Accessed: May 12, 2022. [Online]. Available: http://practrand.sourceforge.net
[12] D. Blackman, “Gjrand, a library of pseudo-random number generators and statistical testing programs,” 2022. Accessed: May 12, 2022. [Online]. Available: http://gjrand.sourceforge.net
[13] D. Blackman and S. Vigna, “Scrambled linear pseudorandom number generators,” ACM Trans. Math. Softw., vol. 47, no. 4, pp. 1–32, 2021.
[14] D. Lemire and M. E. O’Neill, “Xorshift1024*, xorshift1024+, xorshift128* + and xoroshiro128+ fail statistical tests for linearity,” J. Comput. Appl. Math., vol. 380, pp. 1–16, 2021.
[15] J. K. Salmon, M. A. Moraes, R. O. Dorr, and D. E. Shaw, “Parallel random numbers: As easy as 1, 2, 3,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2011, pp. 1–12.
[16] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.
[17] S. Vigna, “An experimental exploration of Marsaglia’s xorshift generators, scrambled,” ACM Trans. Math. Softw., vol. 42, no. 4, pp. 1–23, 2016.
[18] D. Blackman and S. Vigna, “A new test for Hamming-Weight dependencies,” ACM Trans. Model. Comput. Simul., vol. 32, no. 3, pp. 1–13, Jul. 2022.
[19] P. Panneton, P. L’Ecuyer, and M. Matsumoto, “Improved long-period generators based on linear recurrences mod 2,” ACM Trans. Math. Softw., vol. 32, no. 1, pp. 1–16, 2006.
[20] H. Haramoto, M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer, “Efficient jump ahead for F2-linear random number generators,” INFORMS J. Comput., vol. 20, no. 3, pp. 385–390, 2008.
[21] S. Vigna, “On the probability of overlap of random subsequences of pseudorandom number generators,” Informat. Process. Lett., vol. 158, 2020, Art. no. 105939.