Targeted diversity generation by intraterrestrial archaea and archaeal viruses

Blair G. Paul¹, Sarah C. Bagby¹, Elizabeth Czornyj², Diego Arambula², Sumit Handa³, Alexander Sczyrba⁴,⁵, Partho Ghosh³, Jeff F. Miller²,⁶,⁷ & David L. Valentine¹,⁸

In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating $>10^{18}$ protein variants. The two single-cell nanoarchaeal genomes each possess $≥4$ distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses.
Energy-limited marine and terrestrial subsurface environments harbour a microbial reservoir of exceptional magnitude. Archaea are both numerically dominant and well adapted to energy limitations faced in various intraterrestrial environments. Although little is understood about their physiology, metabolism, evolution, or mortality in these environments, current research predicts that they will be characterized by slow growth and low genome-wide mutation rates.

Independent of the sporadic mutation rate, microbial genetic variation can be increased by processes such as gene conversion and horizontal gene transfer. The single most powerful such mechanism known in nature is the diversity-generating retro-element (DGR). DGRs use a process called mutagenic retrohoming for the targeted replacement of a variable repeat (VR) coding region with a sequence derived from reverse transcription of a cognate non-coding template repeat (TR) RNA. Crucially, the reverse transcriptase (RT) used is error-prone at template adenine bases, but has high fidelity at other template bases, modulating the rate of diversification to permit rapid exploration of target protein (TP) variants within a recognizable structural framework. Over successive waves of replication, DGR activity leads to rapid evolution of TPs, typically altering ligand-binding specificity and even permitting phage recognition of novel host ligands. To date, DGRs have been found widely in bacteria and their viruses, but never in an archaeal system.

Because parasitism is expected to be an important driver of evolution and mortality in intraterrestrial archaea, we set out to identify and characterize viruses of anaerobic archaea from one system in the marine subsurface, a methane seep in a California borderlands basin. Our survey uncovers the complete genome of a virus that appears to infect archaea. Remarkably, this genome encodes a complete and apparently active DGR, an essential component of the transcriptional machinery in archaea and eukarya that is absent from bacteria. Second, the ANMV-1 genome contains six genes that show sequence similarity to ANME-1 and ANME-2D and none with comparable similarity to eukaryotic proteins. We further hypothesize that ANMV-1’s archaeal host is anaerobic; ribonucleotide reductase activity is essential for phage genome replication, and ANMV-1 encodes an oxygen-sensitive ribonucleotide reductase. In light of the active anaerobic oxidation of methane metabolism observed in the sample from which ANMV-1 was sequenced, the anaerobic archaeal host may belong to an anaerobic methane-oxidizing (ANME) clade.

Analysis of ANMV-1 identified a cassette bearing a RT gene, two 114-bp proximal repeats that vary from each other at positions corresponding to adenines, and a short inverted repeat with potential for hairpin formation. Together, these features are hallmarks of a DGR. Since the discovery of these remarkable elements, >300 DGRs have been identified, all within the bacteria and their viruses. ANMV-1 represents the first identification of a DGR that appears to operate in an archaeal system.

Although the ANMV-1 VR lies within a gene of unknown function, the predicted secondary structure of the gene product protein hypervariability within targeted genes, bringing the capacity for massive diversification to the archaea-dominated deep biosphere.

Results

A putative archaeal virus encodes a DGR. We collected subsurface sediments from a methane seep at 820 m water depth in Santa Monica Basin. After confirming that these sediments exhibited anaerobic oxidation of methane, we prepared and sequenced a viral metagenome, uncovering a novel and apparently complete viral genome (termed ANMV-1). Examination of ANMV-1 coding sequences offered two key lines of evidence that this virus infects an archaeal host. First, the ANMV-1 genome encodes a TATA-box binding protein, an essential component of the transcriptional machinery in archaea and eukarya that is absent from bacteria. Second, the ANMV-1 genome contains six genes that show sequence similarity to ANME proteins (ANME-1 and ANME-2D) and none with comparable similarity to eukaryotic proteins. We further hypothesize that ANMV-1’s archaeal host is anaerobic; ribonucleotide reductase activity is essential for phage genome replication, and ANMV-1 encodes an oxygen-sensitive ribonucleotide reductase. In light of the active anaerobic oxidation of methane metabolism observed in the sample from which ANMV-1 was sequenced, the anaerobic archaeal host may belong to an anaerobic methane-oxidizing (ANME) clade.

Analysis of ANMV-1 identified a cassette bearing a RT gene, two 114-bp proximal repeats that vary from each other at positions corresponding to adenines, and a short inverted repeat with potential for hairpin formation (Fig. 1b). Together, these features are hallmarks of a DGR. Since the discovery of these remarkable elements, >300 DGRs have been identified, all within the bacteria and their viruses. ANMV-1 represents the first identification of a DGR that appears to operate in an archaeal system.

Although the ANMV-1 VR lies within a gene of unknown function (best BLASTp e-value >10^-3, to uncharacterized proteins), the predicted secondary structure of the gene product...
offered important functional insights. The ANMV-1 DGR target (termed AdtA) shares greatest structural homology (37% of residues modelled with 99% Phyre confidence; r.m.s.d. 1.6 Å; \(Z = 13.6\)) with the major tropism determinant (Mtd) of Bordetella phage BPP-1, a DGR-targeted tail fibre protein responsible for binding host ligands. AdtA contains 21 codons with potential for adenine-specific amino-acid substitutions (versus 12 in Mtd), including nine AAY codons, with potential for \(4 \times 10^{18}\) variants. Thus, ANMV-1 demonstrates a degree of coding variability that is comparable to bacterial DGR systems 11 and outpaces the vertebrate immune system's capacity to generate variants of antibodies or T-cell receptor proteins 17,18. Predicted AdtA structural homology to Mtd is greatest in its C terminus, which corresponds to the C-type lectin (CLec)-fold common to many known bacterial DGR targets11,15. As in Mtd, the targeted AdtA residues map to partially solvent-exposed sites in the CLec domain (Supplementary Fig. 2). Together, these findings point to a binding-related role for AdtA, and the genomic proximity of the adtA gene to phage tail fibre genes (Fig. 1a) suggests host attachment as a possible function.

The discovery of a mechanism for rapid genetic diversification in ANMV-1 raises questions about the distribution and evolution of this virus. We conducted a search for close relatives of the ANMV-1 genome in environmental metagenomic databases, identifying a group of highly similar sequences (Supplementary Fig. 3) found in seafloor sediments of the Nyegga methane seeps, offshore Norway19, and in Coal Oil Point hydrocarbon seeps, offshore Santa Barbara, California. Metagenomes from both seeps cover portions of the ANMV-1 DGR cassette, including a closely related and intact RT open reading frame (ORF) from Nyegga seep sediments. These results indicate that ANMV-1 relatives are widespread in methane seeps. Furthermore, the persistence of

Figure 2 | Grouping of DGRs from Nanoarchaeota. (a) Positions of four DGR cassettes in each OTU, coloured by homology-based groups (note ungrouped OTU1 DGR in grey). Contigs are shown with DGRs on the forward strand (rev., reverse complement). (b) DGR groups, ordered by RT and TP homologies. A PhyML tree (left) was constructed with 100 bootstrap replicates (support indicated on branches) from concatenated alignments of TP and RT amino-acid sequences for each complete DGR cassette. Group 4 includes an incomplete DGR for OTU1 contig 26 (missing RT ORF). A schematic for nanoarchaeal DGRs shows the direction of information transfer during targeted mutagenesis. TP and RT genes are shown as green and blue arrows, respectively, while purple boxes indicate variable and template regions (VR and TR). Bar graphs show pairwise similarity between aligned OTU1 and OTU2 sequences for major DGR features, TP, VR, TR and RT. NA (not applicable) indicates that a feature is not found in the DGR.
DGR sequences in related viruses from widely separated ocean basins suggests a selective pressure to maintain the mechanism for targeted protein diversification.

Two Nanoarchaeota maintain multiple DGRs. Having identified the first DGR-containing archaeal system, an apparently widespread virus from the marine subsurface, we asked whether distinct DGRs might occur in intraterrestrial archaea themselves. We searched genomic databases for archaeal RT genes and nearby repeats with adenine variability, finding multiple putative DGRs in the two operational taxonomic units (OTU1 and OTU2) of DUSEL4, a clade of uncultivated subterranean Nanoarchaeota established from four sequenced cells20. Whereas the sequenced genomes of the other known nanoarchaea, *Nanoarchaeum equitans*21 (completely sequenced) and *Nanoarchaeote Nst-1* (ref. 22) (B91% sequenced), so far appear to contain neither DGRs nor RT genes, the DUSEL4 genomes have an abundance, with four distinct (non-redundant) DGR cassettes in a single genome (Fig. 2a). Examination of DUSEL4 RT and TP sequences revealed four distinct groups of DGRs with conserved cis- and trans-acting features, each with a single representative in both OTU1 and OTU2 (Figs 2b and 3). Intriguingly, a further search within these genomes for VR-containing genes revealed two partial DGRs—consisting only of a target gene, VR, and cis-acting elements—in OTU1, the representative with higher estimated genome coverage20. Evidence of adenine-directed mutagenesis in these VRs (Supplementary Fig. 4) suggests a history of DGR activity in these sites that do not contain an RT gene, indicating either that the fragments are fossils, left behind when the RT was recruited to a different genomic location or simply lost, or that they are diversified remotely by DGRs elsewhere in the genome.

Archaeal DGR components have distinct evolutionary histories. The possibility that DGRs might not move as a unit led us to examine the evolutionary histories of key DGR cassette components. First, we analysed the phylogeny of the newly identified archaeal DGR RTs. Canonical DGR-type RTs have been shown to form a distinct clade most closely related to bacterial group-II introns7,23,24; while known archaeal RTs are most similar to bacterial group-II and group-II-like introns, they fall outside the DGR clade24. We find that the RTs from ANMV-1 and DUSEL4 DGRs lie in a monophyletic group within the DGR clade (Fig. 4a), branching separately from bacterial sequences (97% bootstrap support; Fig. 4b). Underscoring the likelihood that ANMV-1 has an archaeal host, this pattern suggests that ANMV-1 and DUSEL4 DGR RTs share a common archaeal ancestry.

We next compared the tetranucleotide composition of DUSEL4 DGRs to that of their host genomes (for individual genome signatures, see Supplementary Fig. 5) at two levels: the concatenated DGRs, and separately concatenated DGR TP genes and RT genes. While TP fragments lie well within the core genomic pattern, RT fragments present as outliers, pulling the overall DGR signature away from the genome core (Fig. 5a,b). Together with the RTs’ phylogenetic relationships, this pattern suggests that DUSEL4 may have acquired its DGR RTs via horizontal transfer, perhaps from another archaeal host. The sequence conservation
Figure 4 | RT phylogeny for archaean DGRs. (a) Maximum-likelihood phylogenetic tree of RT representatives aligned with ANMV-1 and DUSEL4 Nanoarchaeota sequences. Green branches correspond to bacterial and bacteria-derived RTs (from chromosomes, plasmids, mitochondria, chloroplasts and bacteriophage), red branches indicate archaean and archaean virus RTs, and black branches represent RTs from eukaryotes and their viruses. Retroelement clades and key representatives are labelled as follows: DGRs, diversity-generating retroelements; DIRS, Dictyostelium retrotransposons; GemV, geminiviridae; G2L, group-II intron-like (G2L are numbered according to Simon and Zimmerly (24)); Hdpn, hepaviruses; LTR, long terminal repeat retroelements; NPV, nucleopolyhedralviruses; non-LTR, non-long terminal repeat retroelements; Riv, retrovirdiae; unk, unknown or unclassified. The scale shows substitutions per site. For clarity, bootstrap values are not shown for the full RT tree. (b) Expanded subtree view of RT DGR representatives. A red box highlights the archaean DGR clade. NCBI accession codes are given for representatives in the subtree, but previously described bacterial DGRs are explicitly named. The representative for Bordetella phage BPP is labelled ‘BPP’. Coloured circles at internal nodes indicate branch support.

Discussion

Comparison of the putative archaean DGRs with the canonical bacterial and viral DGRs reveals both similarities and distinctive features that may influence DGR function. In Bordetella phage BPP-1, certain cis-acting elements appear critical for efficient retrohoming, including (1) an initiation of mutagenic homing (IMH) motif that lies at the 3′ end of VR and an IMH* homologue at the 3′ end of TR; and (2) a short inverted repeat downstream of VR, capable of forming a hairpin/cruciform structure, typically with a GRNA tetraloop. DUSEL4 DGRs appear to maintain versions of these canonical cis-acting elements under additional constraints. First, IMH sites in DUSEL4 include a TGGGGT motif, while DUSEL4 IMH* sites carry a corresponding TGGAAT. Second, all DUSEL4 DGR hairpins have highly constrained GRA trinucleotide loops, and each hairpin lies within its DGR’s TP gene, placing this region under selection at the level of both protein structure and DNA sequence. Investigation into the influence of these features on archaean DGR activity may shed light on differences in the molecular mechanism of DGR retrohoming in bacterial and archaean systems.

Examination of nanoarcheal TRs suggests the capacity for individual DGRs to generate 7×10^{10} to 9×10^{10} variants of their TPs, with no risk of nonsense mutations (Supplementary Fig. 4). Although this range is low by comparison with typical bacterial and viral DGRs, the potential evolutionary impact must be
considered in light of the multiplicity of DGRs in DUSEL4
subsurface environment.

We accessed active methane seeps at the pingo to
collect sediment cores using deep submergence vehicle
Alvin, during R/V Atlantis
Leg AT15-53 (September 2009). Sediment core processing
was conducted shipboard in an anaerobic chamber, flushed with a nitrogen headspace. One
sediment core was subsectioned and index worked between 5 and 15 cm (relative to the seafloor) and
dedicated to methane-amended incubations. Two subsamples of 60 ml sediment were
homogenized with 20 ml of sterile, anoxic artificial seawater medium
Incubations with the homogenized sediments were prepared in 120-ml serum vials, using a 40-ml headspace of 3% CO₂ and 97% N₂. Incubations were amended with
13C-labelled methane (99 atom% 13C) as an exogenous tracer to track
methane oxidation (Supplementary Fig. 1). Stable isotope ratios (δ13C) for CO₂ were
measured by isotope ratio mass spectrometry (Thermo Finnigan Delta XP
Plus in continuous flow mode). After 1 month of incubation, the incubation was
terminated and viruses were purified for DNA sequencing.

Virion purification and DNA sequencing. Incubation slurry samples (1:2
sediment/aquous phase) were used for virus particle purifications. Samples were
vigourously homogenized by vortexing for 15 min, followed by centrifugation (10 min, 500g).
Supernatant was filtered (0.22 μm) to separate viruses from cells. Viruses
were concentrated and viral DNA was extracted as previously described29.
Briefly, virus particles were concentrated via cesium chloride density gradient
ultracentrifugation (2h, 22,000 g, 4 °C) and treated with DNase-I. DNA was
extracted by cetrimonium bromide (CTAB)-chloroform and phenol-chloroform
separation. Before viral DNA amplification, a 16S PCR assay to screen for cellular
dNA contamination was performed with universal bacterial primers Bac27F
(5′-AGAGTTTGATCTGGCTCAG-3′) and Bac1492R (5′-GTTCACCTT
GTACACGACT-3′). Following this, we performed Phi29 polymerase
multiple displacement amplification (MDA) using the Illustra GenomiPhore
DNA Amplification Kit (GE Healthcare). Thermal cycling steps for denaturing
template DNA, polymerase amplification, and post-amplification enzyme
inactivation were performed according to the manufacturer’s specifications, except
that the MDA amplification reaction was incubated for 2 h instead of 4 h (2 h,
30 °C). Amplified product was purified on an 454-titanium plate at the
Broad Institute, as part of the Moore Marine Phage Metagenome Initiative30.
Metagenomic reads can be obtained under the NCBI BioSample accession code
PRJNA47435.DV-ANM1.

Read preprocessing, binning, and assembly. Raw sequencing reads were first
scanned for sequencing primers, which were identified and removed using
TagCleaner31. The reads were then preprocessed to remove low-quality sequence
following the method of Hurwit et al.19, using a custom script. Reads were included,
first, removal of any reads with ambiguous (N) bases; second, removal of
the shortest 2.5% and longest 2.5% of reads; third, removal of reads with mean
quality score > 2 s.d. below the mean; and finally, de-replication with CD-Hit-454
(ref. 33). Reads that passed preprocessing and quality control (QC) steps were subjected to
de novo assembly using CAMERA’s meta-assembler34. As this assembler does
not permit user manipulation of read overlap parameters, we compared the meta-
assembler output with a custom reassembly approach using Geneious v7.0
(Biomatters Ltd) with the following parameters: minimum overlap 35 bases,
overlap pairwise identity 90% and index word length 12 nt. The ANMV-1 contig
described in this study was generated from the meta-assembler and aligned globally
with 97.7% pairwise nucleotide similarity to a contig obtained by the second
custom de novo assembly. PCR screening confirmed the authenticity of the
ANMV-1 DGR cassette in both template and MDA amplified viral DNA.

Metagenome annotations. Prediction of open reading frames was performed
using Glimmer3 (ref. 35) with default parameters. Translated ORF sequences were
annotated via CAMERA-HMM and BLASTp36 searches against the following
databases: TIGRfam, Pfam, COG and NCBI-nr (e-value < 10−6). To determine
which ORFs from ANMV-1 genome share similarity to viral and prophage
sequences, we compared our contig’s translated ORFs with the ALCAME
prophage-specific database37. To assess similarity to proteins from anaerobic
methylene-oxidizing archaea, we inspected NCBI-nr BLASTp results for ANME
protein hits (uncultured archaeon, ANME-1; ’Candidatus Methanoperedens
Rodericus’, ANME-2D; and uncultured archaeon, Gfoz37D1). A BLASTn
sequence was conducted against environmental metagenomic databases, including
NCBI metagenomic sequences (env_nt), Moore Marine Virus Metagenomes30 and
survey was conducted against environmental metagenomic databases, including
NCBI metagenomic sequences (env_nt), Moore Marine Virus Metagenomes30 and
Pacific Ocean Virome sequences38, to find representatives sharing high nucleotide
similarity (e-value < 10−50; 28-rf word size) with ANMV-1.

The putative DGR TP of ANMV-1, AdlA, was analysed using Phyre2 (ref. 40)
to find functional representatives based on secondary structural homology.
Residues of TP that aligned with high confidence to the CLec fold region of the
Mtd protein Bordetella phage P1 (Phyre confidence >90%) were used to predict a three-dimensional model. Residue positioning was assessed by
ab initio and C-terminal variable residues were mapped from the primary sequence onto the predicted structure using Geneious v7.0
(Biomatters Ltd).

Methods

Study site and sampling. Pauld’s Pingo is a seafloor mound feature (latitude
33°39′N and longitude 118.646° W, depth ~ 820 m) formed by the expansion
of subsurface methane hydrate27. We accessed active methane seeps at the pingo
to collect sediment cores using deep submergence vehicle Alvin, during R/V Atlantis
Comparative analysis of Nanoarchaeota genomes. We identified DGR-like RTs via BLASTp searches against the NCBI-WGS database. For an initial proxy of DGR repeat regions, we used the EMBOSS tool Dotmatcher to perform a dotplot analysis of homologous regions with moderate proximity (± 5 kb) to RT. TR/VR regions were confirmed from candidates that comprised mostly adenine-specific variability, with at least 10 adenine-specific mismatches, with respect to one strand, and no more than 2 non-adenine mismatches in 100 bp of aligned sequence.

DGR repeats were confirmed by DNA sequencing. TPs were expressed in BL21-Gold (DE3) cells. Bacteria were grown with shaking at 37 °C with 0.5 mM isopropyl b-D-1-thiogalactopyranoside. Bacteria were lysed by cleavage (1:50 TP: protease mass ratio) overnight at 4 °C. The supernatant was applied to a column containing 1 mM dithiothreitol. Purified protein was concentrated to 2 mg ml−1.

CD spectroscopy. CD spectra were collected for the purified nanoarchaeal TP at 10 μM in 300 mM NaCl, 20 mM sodium phosphate buffer, pH 8.1, 1 mM dithiothreitol on an Aviv 202 CD spectrometer using a 1-mm pathlength cuvette. Spectra were recorded from 195 to 260 nm at 25 °C, with 1 nm wavelength steps and the measurement at each wavelength being averaged for 30 s. A temperature melt study was carried out by increasing the temperature of the sample from 4 to 90 °C in 1 °C increments with the ellipticity being monitored at 216 nm. The sample was then equilibrated with buffer A containing 1 mM dithiothreitol. Purified protein was concentrated to 2 mg ml−1 using ultracentrifugation (10 kDa MWCO Amicon, Millipore); the concentration of TP was determined using a calculated molar extinction coefficient at 280 nm of 28,880 M−1 cm−1.

Tetranucleotide composition analysis. Tetranucleotide composition analysis can be used to identify core genome signatures to aid in taxonomic assignment, or to differentiate conserved protein-coding regions from those that were horizontally acquired. Tetranucleotide distributions of Nanoarchaeota genomes were determined as previously described, using a custom Python script. Briefly, sequences were fragmented with a 5 kb sliding window (500 bp overlapping step). Tetranucleotide frequencies were calculated by a zero-order Markov method, which applies odds ratios of observed counts for the 256 unique 4-mers, normalized to their respective mononucleotide frequencies. In order to assess tetranucleotide signatures for DGR regions (± 2 kb on each), while accounting for a compositional bias of flanking sequence, we concatenated DGR cassettes from both OTU1 and OTU2 and fragmented this DGR-specific sequence (± 2 kb) with a sliding window as above. Additionally, sequences from RT genes and TP genes were separately concatenated and fragmented with a sliding window as above to compare tetranucleotide compositions for the two DGR components. Dimensionality reduction was performed via non-metric multidimensional scaling on Euclidean distances, using the vegan package in R7, and ordination ellipses representing the 95% confidence region were drawn with the ‘ordifile()’ function.

References
1. Kalimeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & DHomdt, S. Global distribution of microbial abundance and biomass in subsurface sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).
2. Lipp, J., Morono, Y., Inagaki, F. & Hinrichs, K.-U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454, 991–994 (2008).
3. Valentine, D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 5, 316–323 (2007).
4. Hessler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).
5. Lewin, A. et al. The microbial communities in two apparently physically separated deep subsurface oil reservoirs show extensive DNA sequence similarities. Environ. Microbiol. 16, 545–558 (2014).
6. Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).
7. Doulavot, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).
8. Medhekar, B. & Miller, J. F. Diversity-generating retroelements. Curr. Opin. Microbiol. 10, 388–395 (2007).
9. McMahon, S. A. et al. The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat. Struct. Mol. Biol. 12, 886–892 (2005).
10. Guo, H. et al. Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification. Mol. Cell 31, 813–823 (2008).
11. Le Coq, J. & Ghosh, P. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc. Natl Acad. Sci. USA 108, 14649–14653 (2011).
12. Rohwer, F. & Vega Thurber, R. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).
13. Rowlands, T., Baumann, P. & Jackson, S. P. The TATA-binding protein: a general transcription factor in eukaryotes and archaeabacteria. Science 264, 1326–1329 (1994).
14. Diwedi, B., Xue, B., Lundin, D., Edwards, R. A. & Breitbart, M. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol. Biol. 13, 33 (2013).
15. Arambula, D. et al. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc. Natl Acad. Sci. USA 110, 8212–8217 (2013).
16. Schillinger, T., Lisfi, M., Chi, J., Cullum, J. & Zingler, N. Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGREF. BMC Genomics 13, 430 (2012).
17. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 252–257 (1999).
18. Alder, M. N. et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310, 1970–1973 (2005).
19. Stokke, R., Roalvkm, I., Lanzen, A., Haflidason, H. & Steen, I. H. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 14, 1333–1346 (2012).
20. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).
21. Huber, H. et al. A new phylum of Archaea represented by a nanohyphomycete bacteriophage. Nature 417, 63–67 (2002).
22. Podar, M. et al. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its hyperthermophilic symbiont host from Ogdobian Pool, Yellowstone National Park. Biol. Direct 8, 9 (2013).
23. Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable loci in the human gut virome. Proc. Natl Acad. Sci. USA 109, 3962–3966 (2012).
24. Simon, D. M. & Zimmerly, S. A diversity of uncharacterized reverse transcriptases in bacteria. Nucleic Acids Res. 36, 7219–7229 (2008).
25. Ye, Y. Identification of diversity-generating retroelements in human microbiomes. Int. J. Mol. Sci. 15, 14234–14246 (2014).
26. Louis-Jeanne, C., Andrade-Navarro, M. A. & Perez-Irarreta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80, 574–581 (2012).
27. Paull, C. K., Normark, W. R., Usleri, W., Caress, D. W. & Keaten, R. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Mar. Geol. 258, 255–278 (2008).
28. Widdel, F. & Bak, F. in: The Prokaryotes 2nd edn (eds Balows, A., Trüper, H.-G., Dworkin, M., Harder, W. & Schleifer, K.-H.) (Springer, 1992).
29. Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory procedures to generate viral metagenomes. *Nat. Protoc.* 4, 470–483 (2009).
30. Henn, M. R. et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. *PLoS ONE* 5, e9083 (2010).
31. Schmieler, R., Lim, Y., Rohwer, F. & Edwards, R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. *BMC Bioinformatics* 11, 341 (2010).
32. Hurwitz, B., Deng, L., Poulos, B. & Sullivan, M. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. *Environ. Microbiol.* 15, 673–679 (2013).
33. Niu, B., Fu, L., Sun, S. & Li, W. Artificial and natural duplicates in pyrosequencing reads of metagenomic data. *BMC Bioinformatics*. 11, 187 (2010).
34. Sun, S. et al. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. *Nucleic Acids Res.* 39, D546–D551 (2011).
35. Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23, 673–679 (2007).
36. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410 (1990).
37. Leplae, R., Hebrant, A., Wodak, S. J. & Toussaint, A. ACLAME: a CLAssification of Mobile genetic Elements. *Nucleic Acids Res.* 32, D45–D49 (2004).
38. Hurwitz, B. L. & Sullivan, M. B. The Pacific Ocean Virome (POV): a marine viral metagenomic database and associated protein clusters for quantitative viral ecology. *PLoS ONE* 8, e57355 (2013).
39. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. *Nat. Protoc.* 4, 363–371 (2009).
40. Rice, P., Longden, I. & Bleasby, A. EMBOSs: the European molecular biology open software suite. *Trends Genet.* 16, 276–277 (2000).
41. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. *Bioinformatics* 23, 2947–2948 (2007).
42. Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. *Brief Bioinform.* 9, 299–306 (2008).
43. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* 59, 307–321 (2010).
44. Pride, D. T., Meinersmann, R. J., Wassenberg, T. M. & Blaser, M. J. Evolutionary implications of microbial genome tetranucleotide frequency biases. *Genome Res.* 13, 145–158 (2003).
45. Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glöckner, F. O. Application of tetranucleotide frequencies for the assignment of genomic fragments. *Environ. Microbiol.* 6, 938–947 (2004).
46. Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. *Genome Biol.* 10, R85 (2009).
47. Oksanen, J. et al. Vegan: Community Ecology Package. R package version 1.13-1 http://vegan.r-forge.r-project.org/ (2008).

Acknowledgements

This research was funded by National Science Foundation grant OCE-1046144 to D.L.V. and National Institutes of Health grant R01 AI069838 to P.G. and J.F.M.; sequencing was provided through a Gordon and Betty Moore Foundation grant to the Broad Institute. We thank Tanja Woyke for assistance in examining *Nanoarchaeota* sequences from the Microbial Dark Matter project. For assistance with viral metagenome preparation and advice on bioinformatic analyses, we thank Steven Quistad and Rob Edwards. Yanling Wang provided helpful comments on an earlier draft of the manuscript.

Author contributions

B.G.P. performed the sediment incubations and purified viral DNA. B.G.P. and S.C.B. performed preprocessing and annotation of the metagenomic data set. B.G.P., S.C.B., E.C., D.A., S.H., A.S., P.G., J.F.M. and D.L.V. conducted bioinformatic analyses of DGR sequences. S.H. and P.G. expressed and assayed nanoarchaeal target proteins and analysed the resulting data. B.G.P., S.C.B. and D.L.V. wrote the manuscript.

Additional information

Accession codes: Metagenomic sequence reads have been deposited in the NCBI BioSample database with accession code PRJNA7435.DV-ANM1. The ANMV-1 assembled genome sequence has been deposited in the NCBI nucleotide database with the accession code KP703175.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: J.F.M. is a cofounder, equity holder and chair of the scientific advisory board of AviDiagnostics Inc., a biotherapeutics company in San Francisco. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. *Nat. Commun.* 6:6585 doi: 10.1038/ncomms7585 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/