OPTIMIZATION PROBLEM FOR EXTREMALS OF THE TRACE INEQUALITY IN DOMAINS WITH HOLES

LEANDRO M. DEL PEZZO

Abstract. We study the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. We find a formula for the first variation of the Sobolev trace with respect to hole. As a consequence of this formula, we prove that when Ω is a centered ball, the symmetric hole is critical when we consider deformation that preserve volume but is not optimal for some case.

1. Introduction and Main Results.

Let Ω be a bounded smooth domain in \mathbb{R}^N with $N \geq 2$ and $1 < p < \infty$. We denote by p^* the critical exponent for the Sobolev trace immersion given by $p^* = p(N - 1)/(N - p)$ if $p < N$ and $p^* = \infty$ if $p \geq N$.

For any $A \subset \Omega$, which is a smooth open subset, we define the space $W_{1,p}^1(\Omega) = C_\infty^0(\Omega \setminus A)$, where the closure is taken in $W_{1,p}^{-}$-norm. By the Sobolev Trace Theorem, there is a compact embedding

$$W_{1,p}^1(\Omega) \hookrightarrow L^q(\partial \Omega),$$

for all $1 < q < p^*$. Thus, given $1 < q < p^*$, there exist a constant $C = C(q,p)$ such that

$$C \left\{ \int_{\partial \Omega} |u|^q \, dS \right\}^{\frac{p}{q}} \leq \int_{\Omega} |\nabla u|^p + |u|^p \, dx.$$

The best (largest) constant in the above inequality is given by

$$S_q(A) := \inf_{u \in W_{1,p}^1(\Omega) \setminus W_{0,1}^1(\Omega)} \left\{ \int_{\Omega} |\nabla u|^p + |u|^p \, dx \right\} \left\{ \int_{\partial \Omega} |u|^q \, dS \right\}^{\frac{p}{q}}.$$

By (1.1), there exist an extremal for $S_q(A)$. Moreover, an extremal for $S_q(A)$ is a weak solution to

$$\begin{cases} -\Delta_p u + |u|^{p-2}u = 0 & \text{in } \Omega \setminus A, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2}u & \text{on } \partial \Omega, \\ u = 0 & \text{on } \partial A, \end{cases}$$

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$ is the usual p-laplacian, $\frac{\partial}{\partial \nu}$ is the outer unit normal derivative and λ depends on the normalization of u. When $\|u\|_{L^q(\partial \Omega)} = 1$ we have that $\lambda = S_q(A)$. Moreover, when $p = q$ problem (1.3) becomes homogeneous and therefore is a nonlinear eigenvalue problem. In this case, the first eigenvalue of (1.3) coincides with the best Sobolev trace constant $S_q(A) = \lambda_1(A)$ and it is shown...
in [9] that it is simple (see also [3]). Therefore, if \(p = q \), the extremal for \(S_p(A) \) is unique up to constant factor. In the linear setting, i.e. when \(p = q = 2 \), this eigenvalue problem is known as the Steklov eigenvalue problem, see [10].

It is the purpose of this article to analyze the dependance of the Sobolev trace constant \(S_q(A) \) with respect to variations on the set \(A \). To this end, we compute the so-called shape derivative of \(S_q(A) \) with respect to regular perturbations of the hole \(A \).

Let \(V : \mathbb{R}^N \to \mathbb{R}^N \) be a regular (smooth) vector field, globally Lipschitz, with support in \(\Omega \) and let \(\psi_t : \mathbb{R}^N \to \mathbb{R}^N \) be defined as the unique solution to

\[
\left\{ \begin{array}{ll}
\frac{d}{dt} \psi_t(x) = V(\psi_t(x)) & t > 0 \\
\psi_0(x) = x & x \in \mathbb{R}^N.
\end{array} \right.
\]

We have

\[
\psi_t(x) = x + tV(x) + o(t) \quad \forall x \in \mathbb{R}^N.
\]

Now, we define \(A_t := \psi_t(A) \subset \Omega \) for all \(t > 0 \) and

\[
S_q(t) = \inf_{u \in W^{1,p}_0(\Omega) \setminus W^{1,p}_0(\Omega)} \frac{\int_\Omega |\nabla u|^p + |u|^p \, dx}{\left(\int_{\partial \Omega} |u|^q \, dS \right)^{\frac{p}{q}}}.
\]

Observe that \(A_0 = A \) and therefore \(S_q(0) = S_q(A) \).

In [2] Fernández Bonder, Groisman and Rossi analyze this problem in the linear case \(p = q = 2 \) and prove that \(S_2(t) \) is differentiable with respect to \(t \) at \(t = 0 \) and it holds

\[
\left. \frac{d}{dt} S_2(t) \right|_{t=0} = -\int_{\partial A} \left(\frac{\partial u}{\partial \nu} \right)^2 \langle V, \nu \rangle \, dS,
\]

where \(u \) is a normalized eigenfunction for \(S_2(A) \) and \(\nu \) is the exterior normal vector to \(\Omega \setminus \overline{A} \).

Furthermore, in the case that \(\Omega \) is the ball \(B_R \) with center 0 and radius \(R > 0 \) the authors show that a centered ball \(A = B_r, r < R \), is critical in the sense that \(S_2(A) = 0 \) when considering deformations that preserves volume and that this configuration is not optimal.

We say that hole \(A^* \) is optimal for the parameter \(\alpha, 0 < \alpha < |\Omega| \), if \(|A^*| = \alpha \) and

\[
S_q(A^*) = \inf_{A \subset \Omega, |A| = \alpha} S_q(A).
\]

Therefore there is a lack of symmetry in the optimal configuration.

Here we extend these results to the more general case \(1 < p < \infty \) and \(1 < q < p^* \).

Our method differs from the one in [2] in order to deal with the nonlinear character of the problem.

Our first result states

Theorem 1.1. Suppose \(A \subset \overline{\Omega} \) is a smooth open subset and let \(1 < q < p^* \). Then, with the previous notation, we have that \(S_q(t) \) is differentiable at \(t = 0 \) and there exists \(u \) a normalized extremal for \(S_q(A) \) such that

\[
S_q'(0) = -\int_{\partial A} \left(\frac{\partial u}{\partial \nu} \right)^p \langle V, \nu \rangle \, dS,
\]

where \(S_q'(0) = \left. \frac{d}{dt} S_q(t) \right|_{t=0} \) and \(\nu \) is the exterior normal vector to \(\Omega \setminus \overline{A} \).
Remark 1.2. If u is an extremal for $S_q(A)$ we have that $|v|$ is also an extremal associated to $S_q(A)$. Then in the previous theorem we can suppose that $u \geq 0$ in Ω. Moreover, by [8], we have that $u \in C^{1,\alpha}(\overline{\Omega})$ and if Ω satisfies the interior ball condition for all $x \in \partial \Omega$ then $u > 0$ on $\partial \Omega$, see [11].

In the case that $\Omega = B_R$, we have the next result

Theorem 1.3. Let $\Omega = B_R$ and let the hole be a centered ball $A = B_r$. Then, if $1 < q \leq p$, this configuration is critical in the sense that $S_q'(B_r) = 0$ for all deformations V that preserve the volume of B_r.

But, if q is sufficiently large, the symmetric hole with a radial extremal is not an optimal configuration. In fact, we prove

Theorem 1.4. Let $r > 0$ and $1 < p < \infty$ be fixed. Let $R > r$ and

$$Q(R) = \frac{1}{S_p(B_r)^{\frac{r}{R}}} \left(1 - \frac{N - 1}{R} S_p(B_r) \right) + 1.$$

If $q > Q(R)$ then the centered hole B_r is not optimal.

Finally, to study the asymptotic behavior of $Q(R)$

Proposition 1.5. The function $Q(R)$ has the following asymptotic behavior

$$\lim_{R \to r} Q(R) = 1^- \quad \text{and} \quad \lim_{R \to +\infty} Q(R) = p$$

Observe that $Q(R) < 1$ for R close to r and therefore the symmetric hole with a radial extremal is not an optimal configuration for R close to r.

2. Proof of Theorem 1.1

2.1. Preliminary Results. The proof of Theorem 1.1 require some technical results. In this subsection we use some ideas from [4].

Given $u \in W^{1,p}_A(\Omega) \setminus W^{1,p}_0(\Omega)$ we consider $v = u \circ \psi_t$, so $v \in W^{1,p}_A(\Omega) \setminus W^{1,p}_0(\Omega)$ and $\nabla v^T = T \psi_t' \nabla (u \circ \psi_t)^T$, where ψ_t' denotes the differential matrix of ψ_t and $T A$ is the transpose of matrix A. Thus, by the change of variables formula, we have that

$$\int_{\Omega} |\nabla u|^p + |u|^p \, dx = \int_{\Omega} \{ |T \psi_t'|^{-1} \nabla v^T|^p + |v|^p \} J(\psi_t) \, dx,$$

here $J(\psi_t)$ is the usual Jacobian of ψ_t. Moreover, since $\text{supp}(V) \subset \Omega$, we have that

$$\int_{\partial \Omega} |u|^q \, dS = \int_{\partial \Omega} |v|^q \, dS.$$

In [5] are proved the following asymptotic formulas

$$[\psi_t']^{-1} = I d - t V'(x) + o(t),$$

$$J(\psi_t)(x) = 1 + t \text{div} V(x) + o(t).$$

Then, by (2.7) and (2.8), we have

$$\int_{\Omega} |v|^p J(\psi_t) \, dx = \int_{\Omega} |v|^p \{ 1 + t \text{div} V + o(t) \} \, dx$$

$$= \int_{\Omega} |v|^p \, dx + t \int_{\Omega} |v|^p \text{div} V \, dx + o(t)$$
Therefore, we can rewrite (1.5) as

\[\int_{\Omega} |T[\psi']^{-1}\nabla v^p J(\psi_t) \, dx = \int_{\Omega} |[I - t T V' + o(t)]\nabla v^p \{1 + t \text{div} V + o(t)\} \, dx \]

\[= \int_{\Omega} |\nabla v - t T V' \nabla v^p + o(t)|^p \{1 + t \text{div} V + o(t)\} \, dx, \]

since

\[|\nabla v - t T V' \nabla v^p + o(t)|^p = |\nabla v|^p - pt|\nabla v|^{p-2} \langle \nabla v, T V' \nabla v^p \rangle + o(t) \]

we obtain that

\[\int_{\Omega} |T[\psi']^{-1}\nabla v^p J(\psi_t) \, dx = \int_{\Omega} |\nabla v|^p \, dx + t \int_{\Omega} |\nabla v|^p \text{div} V \, dx \]

\[- pt \int_{\Omega} |\nabla v|^{p-2} \langle \nabla v, T V' \nabla v^p \rangle \, dx + o(t). \]

Thus, we conclude

\[\int_{\Omega} |\nabla v|^p + |u|^p \, dx = \int_{\Omega} \{ |T[\psi']^{-1}\nabla v^p |^p + |v|^p \} J(\psi_t) \, dx \]

\[= \int_{\Omega} |v|^p \, dx + t \int_{\Omega} |\nabla v|^p \, dx + t \int_{\Omega} \{ |\nabla v|^p + |v|^p \} \text{div} V \, dx \]

\[- pt \int_{\Omega} |\nabla v|^{p-2} \langle \nabla v, T V' \nabla v^p \rangle \, dx + o(t). \]

Therefore, we can rewrite (1.5) as

\[(2.9) \quad S_q(t) = \inf_{v \in W_A^1, \Omega \cap W_0^{1,p} (\Omega)} \{ \rho(v) + t \gamma(v) \} \]

where

\[\rho(v) = \frac{\int_{\Omega} |\nabla v|^p + |v|^p \, dx}{\left(\int_{\partial \Omega} |v|^q \, dS \right)^{p/q}}, \]

and

\[\gamma(v) = \frac{\int_{\Omega} |\nabla v|^p + |v|^p \} \text{div} V \, dx - p \int_{\partial \Omega} |\nabla v|^{p-2} \langle \nabla v, T V' \nabla v^p \rangle \, dx}{\left(\int_{\partial \Omega} |v|^q \, dS \right)^{p/q}} + O(t). \]

Given \(t \geq 0 \), let \(v_t \in W_A^{1,p} (\Omega) \setminus W_0^{1,p} (\Omega) \) such that \(\|v_t\|_{L^q(\partial \Omega)} = 1 \) and

\[S_q(t) = \varphi(t) + t \phi(t), \]

where

\[\varphi(t) = \rho(v_t) \quad \text{and} \quad \phi(t) = \gamma(v_t) \quad \forall t \geq 0. \]

We observe that \(\varphi, \phi : \mathbb{R}_{\geq 0} \to \mathbb{R} \)

Lemma 2.1. The function \(\phi \) is nonincreasing.

Proof. Let \(0 \leq t_1 \leq t_2 \). By (2.9), we have that

\[(2.10) \quad \varphi(t_2) + t_1 \phi(t_2) \geq S_q(t_1) = \varphi(t_1) + t_1 \phi(t_1) \]

\[(2.11) \quad \varphi(t_1) + t_2 \phi(t_1) \geq S_q(t_2) = \varphi(t_2) + t_2 \phi(t_2). \]

Subtracting (2.10) from (2.11), we get

\[(t_2 - t_1) \phi(t_1) \geq (t_2 - t_1) \phi(t_2). \]
Since $t_2 - t_1 \geq 0$, we obtain
\[
\phi(t_1) \leq \phi(t_2).
\]
This ends the proof. \hfill \Box

Remark 2.2. Since ϕ is nonincreasing, we have
\[
\phi(t) \leq \phi(0) \quad \forall t \geq 0,
\]
and there exists
\[
\phi(0^+) = \lim_{t \to 0^+} \phi(t).
\]

Corollary 2.3. The function φ is nondecreasing.

Proof. Let $0 \leq t_1 \leq t_2$. Again, by (2.9), we have that
\[
\varphi(t_2) + t_1 \phi(t_2) \geq S_q(t_1) = \varphi(t_1) + t_1 \phi(t_1)
\]
so
\[
\varphi(t_2) - \varphi(t_1) \geq t_1 (\phi(t_1) - \phi(t_2)).
\]
Since $0 \leq t_1 \leq t_2$, by Lemma 2.1, we have that $\phi(t_1) - \phi(t_2) \geq 0$. Then
\[
\varphi(t_2) - \varphi(t_1) \geq 0
\]
that is what we wished to prove. \hfill \Box

Now we can prove that $S_q(t)$ is continuous at $t = 0$.

Theorem 2.4. The function $S_q(t)$ is continuous at $t = 0$, i.e.,
\[
\lim_{t \to 0^+} S_q(t) = S_q(0).
\]

Proof. Given $t \geq 0$ so, by Corollary 2.3,
\[
S_q(t) - S_q(0) = \varphi(t) + t\phi(t) - \varphi(0) \geq t\phi(t).
\]
On the other hand, by (2.9), we have that
\[
S_q(t) \leq \varphi(0) + t\phi(0) = S_q(0) + t\phi(0).
\]
Then
\[
t\phi(t) \leq S_q(t) - S_q(0) \leq t\phi(0).
\]
Thus, by Remark 2.2,
\[
\lim_{t \to 0^+} S_q(t) - S_q(0) = 0.
\]
This finishes the proof. \hfill \Box

Thus, from Remark 2.2 and Theorem 2.4, we obtain the following corollary:

Corollary 2.5. The function φ is continuous at $t = 0$, i.e.,
\[
\lim_{t \to 0^+} \varphi(t) = \varphi(0).
\]

Proof. We observe that
\[
\varphi(t) - \varphi(0) = S_q(t) - S_q(0) - t\phi(t)
\]
then, by Remark 2.2 and Theorem 2.4,
\[
\lim_{t \to 0^+} \varphi(t) - \varphi(0) = 0.
\]
That proves the result. \hfill \Box
Finally, we prove the following:

Theorem 2.6. The function \(\varphi \) is differentiable at \(t = 0 \) and

\[
\frac{d \varphi}{dt}(0) = 0.
\]

Proof. Let \(0 < r < t \). By (2.9), we get

\[
S_q(r) = \varphi(r) + r\phi(r) \leq \varphi(t) + r\phi(t),
\]

and

\[
S_q(t) = \varphi(t) + t\phi(t) \leq \varphi(r) + t\phi(r).
\]

So

\[
\frac{r}{t}(\phi(r) - \phi(t)) \leq \frac{\varphi(t) - \varphi(r)}{t} \leq \phi(r) - \phi(t)
\]

hence, taking limits when \(r \to 0^+ \), by Remark 2.2 and Corollary 2.1, we have that

\[
0 \leq \frac{\varphi(t) - \varphi(0)}{t} \leq \phi(0^+) - \phi(t).
\]

Now, taking limits when \(t \to 0^+ \), and again by Remark 2.2, we get

\[
\lim_{t \to 0^+} \frac{\varphi(t) - \varphi(0)}{t} = 0
\]

as we wanted to show. \(\square \)

2.2. **Proof of Theorem 1.1.** We proceed in three steps.

Step 1. We show that \(S_q(t) \) is differentiable at \(t = 0 \) and

\[
S_q'(0) = \phi(0^+).
\]

We have that

\[
\frac{S_q(t) - S_q(0)}{t} = \frac{\varphi(t) - \varphi(0)}{t} - \phi(t).
\]

Then, by Remark 2.2 and Theorem 2.6,

\[
S_q'(0) = \lim_{t \to 0^+} \frac{S_q(t) - S_q(0)}{t} = \phi(0^+).
\]

Step 2. We show that there exists \(u \) extremal for \(S_q(A) \) such that \(\|u\|_{L^q(\partial \Omega)} = 1 \) and

\[
\phi(0^+) = \int_\Omega (|\nabla u|^p + |u|^p) \text{div} V \, dx - p \int_\Omega |\nabla u|^{p-2} \langle \nabla u, TV' \nabla u \rangle \, dx.
\]

By Theorem 2.1

(2.13) \(\|v_t\|_{W^{1,p}(\Omega)}^p = \varphi(t) - \varphi(0) = S_q(0) \) when \(t \to 0^+ \).

Then there exists \(u \in W^{1,p}(\Omega) \) and \(t_n \to 0^+ \) when \(n \to \infty \) such that

(2.14) \(v_{t_n} \to u \) weakly in \(W^{1,p}(\Omega) \),

(2.15) \(v_{t_n} \to u \) strongly in \(L^p(\partial \Omega) \),

(2.16) \(v_{t_n} \to u \) a.e. in \(\Omega \).

By (2.15) and (2.16), \(u \in W^{1,p}_A(\Omega) \) and \(\|u\|_{L^q(\partial \Omega)} = 1 \) and by (2.14)

\[
S_q(0) = \lim_{n \to \infty} \|v_{t_n}\|_{W^{1,p}(\Omega)}^p \geq \|u\|_{W^{1,p}(\Omega)}^p \geq S_q(0),
\]
then
\begin{equation}
S_q(0) = \| u \|^p_{W^{1,p}(\Omega)}.
\end{equation}
Moreover, by (2.13), (2.14) and (2.17), we have that
\[v_{t_n} \to u \text{ strongly in } W^{1,p}(\Omega). \]

Therefore
\[
\phi(0^+) = \lim_{n \to \infty} \phi(v_{t_n}) = \int_\Omega (|\nabla u|^p + |u|^p) \text{div} V \, dx - p \int_\Omega |\nabla u|^{p-2} \langle \nabla u, T V' \nabla u^T \rangle \, dx.
\]

Step 3. Finally, we show that
\[
S_q'(0) = \int_\Omega (|\nabla u|^p + |u|^p) \text{div} V \, dx - p \int_\Omega |\nabla u|^{p-2} \langle \nabla u, T V' \nabla u^T \rangle \, dx
= - \int_{\partial A} \frac{\partial u}{\partial \nu}^p \langle V, \nu \rangle \, dS.
\]

To show this we require that \(u \in C^2 \). However, this is not true. Since \(u \) is an extremal for \(S_q(A) \) and \(\| u \|_{L^q(\Omega)} = 1 \), we known that \(u \) is weak solution to
\[
\begin{cases}
-\Delta_p u + |u|^{p-2} u = 0 & \text{in } \Omega \setminus \overline{A}, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = S_q(A) |u|^{q-2} u & \text{on } \partial \Omega, \\
u = 0 & \text{on } \partial A,
\end{cases}
\]
and by [8] we get that \(u \) belongs to the class \(C^{1,\delta} \) for some \(0 < \delta < 1 \).

In order to overcome this difficulty, we proceed as follows. We consider the regularized problem
\begin{equation}
\begin{cases}
div((|\nabla u|^2 + \varepsilon^2)^{(p-2)/2}) + |u|^p - 2 u \varepsilon = 0 & \text{in } \Omega \setminus \overline{A}, \\
|\nabla u|^2 + \varepsilon^2 (p-2) \frac{\partial u}{\partial \nu} = S_q(A) |u|^{q-2} u & \text{on } \partial (\Omega \setminus \overline{A}),
\end{cases}
\end{equation}
It is well known that the solution \(u^\varepsilon \) to (2.18) is of class \(C^2,\rho \) for some \(0 < \rho < 1 \) (see [6]).

Then, we can perform all of our computations with the functions \(u^\varepsilon \) and pass to the limit as \(\varepsilon \to 0 \) at the end.

We have chosen to work formally with the function \(u \) in order to make our arguments more transparent and leave the details to the reader. For a similar approach, see [4].

Since
\[
\begin{align*}
div(|u|^p V) &= |u|^p \text{div} V + p|u|^{p-2} u \langle \nabla u, V \rangle, \\
div(|\nabla u|^p V) &= |\nabla u|^p \text{div} V + p|u|^{p-2} \langle \nabla u \nabla^2 u, V \rangle,
\end{align*}
\]
we have that
\[
\int_\Omega (|\nabla u|^p + |u|^p) \text{div} V \, dx = \int_\Omega \text{div}(|u|^p V + |\nabla u|^p V) \, dx
- p \int_\Omega \{ |u|^{p-2} u_0 \langle \nabla u, V \rangle + |\nabla u|^{p-2} \langle \nabla u \nabla^2 u, u V \rangle \} \, dx.
\]
Integrating by parts, we obtain
\[
\int_{\Omega} \text{div}(|u|^p V + |\nabla u|^p V) \, dx = \int_{\partial \Omega} (|u|^p + |\nabla u|^p) \langle V, \nu \rangle \, dS - \int_{\partial A} (|u|^p + |\nabla u|^p) \langle V, \nu \rangle \, dS
\]
\[
= - \int_{\partial A} |\nabla u|^p \langle V, \nu \rangle \, dS.
\]
where the last equality follows from the fact that supp(V) \subset \Omega and u = 0 on \partial A.

Thus
\[
S_q'(0) = - \int_{\partial A} |\nabla u|^p \langle V, \nu \rangle \, dS - p \int_{\Omega} |u|^{p-2} u \langle \nabla u_0, V \rangle \, dx
\]
\[
- p \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, T V' \nabla u + T D^2 u V^T \rangle \, dx
\]
\[
= - \int_{\partial A} |\nabla u|^p \langle V, \nu \rangle \, dS - p \int_{\Omega} |u_0|^{p-2} u \langle \nabla u, V \rangle \, dx
\]
\[
- p \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla (\langle \nabla u, V \rangle) \rangle \, dx.
\]
Since u is a weak solution of (1.3) as \(\lambda = S_q(0) \) and supp(V) \subset \Omega we have
\[
S_q'(0) = - \int_{\partial A} |\nabla u|^p \langle V, \nu \rangle \, dS.
\]
Then, noticing that \(\nabla u = \frac{\partial u}{\partial \nu} \nu \), the proof is complete. \(\Box \)

3. LACK OF SYMMETRY IN THE BALL

In this section we consider the case where \(\Omega = B_R \) and \(A = B_r \) with \(r < R \) and show Theorem 1.3, Theorem 1.4 and Proposition 1.5. The proofs are based on the argument of [2] and [7] adapted to our problem. In order to simplify notations, we write \(S_q(r) \) instead of \(S_q(B_r) \).

First we prove Theorem 1.3, for this we need the following proposition

Proposition 3.1. Let \(1 < q < p \). The nonnegative solution of (1.3) is unique.

Proof. Suppose that there exist two nonnegative solutions \(u \) and \(v \) of (1.3). By Remark 1.2 it follows that \(u, v > 0 \) on \(\partial \Omega \). Let \(v_n = v + \frac{1}{n} \) with \(n \in \mathbb{N} \), using first Picone’s identity (see [1]) and the weak formulation of (1.3) we have
\[
0 \leq \int_{B_R} |\nabla u|^p \, dx - \int_{B_R} |\nabla v_n|^{p-2} \nabla v_n \nabla \left(\frac{u^p}{v_n^{p-1}} \right) \, dx
\]
\[
= \int_{B_R} |\nabla u|^p \, dx - \int_{B_R} |\nabla u|^{p-2} \nabla u \nabla \left(\frac{u^p}{v_n^{p-1}} \right) \, dx
\]
\[
= - \int_{B_R} u^p \, dx + \lambda \int_{\partial B_R} u^q \, dS + \int_{B_R} v^{p-1} \frac{u^p}{v_n^{p-1}} \, dx - \lambda \int_{\partial B_R} v^q \frac{u^p}{v_n^{p-1}} \, dS
\]
\[
\leq \lambda \int_{\partial B_R} u^q \, dS - \lambda \int_{\partial B_R} v^{q-1} \frac{u^p}{v_n^{p-1}} \, dS.
\]
Thus, by the Monotone Convergence Theorem,

\[
0 \leq \int_{\partial B_R} u^q \, dS - \int_{\partial B_R} v^q \frac{u^{p-1}}{v^{p-1}} \, dS = \int_{\partial B_R} u^q (u^{q-1} - v^{q-1}) \, dS.
\]

Note that the role of \(u\) and \(v\) in the above equation are exchangeable. Therefore, subtracting we get

\[
0 \leq \int_{\partial B_R} (u^q - v^q) (u^{q-1} - v^{q-1}) \, dS.
\]

Since \(q < p\) we have that \(u \equiv v\) on \(\partial B_R\). Then, by uniqueness of solution to the Dirichlet problem, we get \(u \equiv v\) in \(B_R\).

\[\Box\]

Remark 3.2. As the problem (1.3) is rotationally invariant, by uniqueness we obtain that the nonnegative solution of (1.3) must be radial. Therefore, if \(\Omega = B_R\), \(A = B_r\) and \(1 < q \leq p\) we can suppose that the extremal for \(S_q(r)\) found in the Theorem 1.1 is nonnegative and radial.

Now we can prove the Theorem 1.3,

Proof of Theorem 1.3. We consider \(\Omega = B_R\), \(A = B_r\) and \(1 < q \leq p\). By Theorem 1.3 and Remark 3.2 there exist a nonnegative and radial normalized extremal for \(S_q(r)\) such that

\[
S_q'(0) = - \int_{\partial B_r} \frac{\partial u}{\partial \nu} \langle V, \nu \rangle \, dS.
\]

Since \(u\) is radial

\[
\frac{\partial u}{\partial \nu} \equiv c \text{ on } \partial B_r,
\]

where \(c\) is a constant.

Thus, using that we are dealing with deformations \(V\) that preserves the volume of the \(B_r\), we have that

\[
S_q'(0) = -c^p \int_{\partial B_r} \langle V, \nu \rangle \, dS = c^p \int_{B_r} \text{div}(V) \, dx = 0.
\]

\[\Box\]

To prove Theorem 1.4, we need two previous results.

Proposition 3.3. Let \(r > 0\) fixed. Then, there exists a positive radial function \(u_0\) such that

\[
\begin{aligned}
-\Delta_p u + |u|^{p-2} u &= 0 \quad \text{in } \mathbb{R}^N \setminus B_r, \\
u &= 0 \quad \text{on } \partial B_r.
\end{aligned}
\]

This \(u_0\) is unique up to a constant factor and for any \(R > r\) the restriction of \(u_0\) to \(B_R\) is the first eigenfunction of (1.3) with \(q = p\).

Proof. For \(R > r\), let \(u_R\) be the unique solution of the Dirichlet problem

\[
\begin{aligned}
\Delta_p u_R = |u_R|^{p-2} u_R \quad \text{in } B_R \setminus \overline{B_r}, \\
u(R) &= 1, \\
u(r) &= 0.
\end{aligned}
\]

...
Then, by uniqueness, \(u_R \) is a nonnegative and radial function. Moreover, by the regularity theory and maximum principle we have \(\frac{\partial u_R}{\partial \nu}(r) \neq 0 \) (see [8, 11]). Thus, for any \(R > r \), we define the restriction of \(u_0 \) by

\[
u_0 = \frac{u_R}{\nu R} \frac{\partial u_R}{\partial \nu}(r).
\]

By uniqueness of the Dirichlet problem, it is easy to check that \(u_0 \) is well defined and is a nonnegative radial solution of (3.19). Furthermore, by the simplicity of \(S_p(r) \), \(u_0 \) is the eigenfunction associated to \(S_p(r) \) for every \(R > r \).

Proposition 3.4. Let \(v \) be a radial solution of (1.3). Then \(v \) is a multiple of \(u_0 \). In particular any radial minimizer of (1.2) is a multiple of \(u_0 \).

Proof. Let \(a > 0 \) be such that \(v = au_0 \) on \(\partial B(0,R) \). Then \(v \) and \(au_0 \) are two solutions to the Dirichlet problem \(\Delta_p w = w^{p-1} \) and \(w = v \) on \(\partial (B_R \setminus B_r) \). Hence, by uniqueness, we have that \(v = au_0 \) in \(B_R \).

Remark 3.5. If \(1 < q < p \) then the solution of (1.3), by Remark 3.2 and Proposition 3.4, is a multiple of \(u_0 \).

Now we can deal with the proof of Theorem 1.4.

Proof of Theorem 1.4. Let \(R > r \) be fixed and consider \(u_0 \) to be the nonnegative radial function given by Proposition 3.3 such that \(u_0 = 1 \) on \(\partial B_R \). Then, by Proposition 3.4, it is enough to prove that \(u_0 \) is not a minimizer for \(S_p(r) \) when \(q > Q(R) \).

First let us move this symmetric configuration in the \(x_1 \) direction. For any \(t \in \mathbb{R} \) and \(x \in \mathbb{R}^N \) we denote \(x_t = (x_1 - t, x_2, \ldots, x_N) \) and define

\[
U(t)(x) = u_0(x_t)
\]

Observe that \(U \) vanishes in \(A_t := B_r(te_1) \) (the ball with center \(te_1 \) and radius \(r \)) a subset of \(B_R \) of the same measure of \(B_r \) for all \(t \) small.

Consider the function

\[
h(t) = \frac{f(t)}{g(t)}
\]

where

\[
f(t) = \int_{B_R} |\nabla U|^p + Up^p \, dx \quad \text{and} \quad g(t) = \left(\int_{\partial B_R} U^q \, dS \right)^{\frac{p}{q}}.
\]

We observe that \(h(0) = 0 \) and since \(h \) is an even function, we have \(h'(0) = 0 \). Now,

\[
h''(0) = \left. \frac{f''g^2 - f'g'g'' - 2f'gg' - 2fgg''}{g^3} \right|_{t=0}.
\]

Next we compute these terms. First, since \(u_0 \) is the first eigenfunction of (1.3) with \(q = p \) and \(u_0 = 1 \) on \(\partial B_R \) we get

\[
f(0) = S_p(r)|\partial B_R| \quad \text{and} \quad g(0) = |\partial B_R|^{\frac{p}{q}}.
\]

Thus, by Gauss–Green’s Theorem and using the fact that \(u_0 \) is radial, we get

\[
f'(0) = -\int_{B_R} \frac{\partial}{\partial x_1} (|\nabla u_0|^p + u_0^p) \, dx = \int_{\partial B_R} (|\nabla u_0|^p + u_0^p) \nu_1 \, dS = 0.
\]
Again, since u_0 is radial,

$$g'(0) = \frac{p}{q} \left(\int_{\partial B_R} u^q \, dS \right)^{\frac{q}{q-1}} \left(\int_{\partial B_R} \frac{\partial u^q}{\partial x_1} \, dS \right) = 0.$$

Finally, using that $u_0 = 1$ on ∂B_R, we obtain

$$g''(0) = p |\partial B_R|^{\frac{q}{q-1}} \int_{\partial B_R} (q - 1) \left(\frac{\partial u_0}{\partial x_1} \right)^2 \, dS$$

and, by the Gauss–Green’s Theorem

$$f''(0) = p \int_{\partial B_R} \left(\frac{1}{2} |\nabla u_0|^{p-2} \frac{\partial |\nabla u_0|^2}{\partial x_1} + \frac{1}{p} \frac{\partial u_0^p}{\partial x_1} \right) \, dS$$

$$= p \int_{\partial B_R} \left(\frac{1}{2} |\nabla u_0|^{p-2} \frac{\partial |\nabla u_0|^2}{\partial x_1} + \frac{1}{p} \frac{\partial u_0^p}{\partial x_1} \right) \nu_1 \, dS.$$

Then

$$h''(0) = \frac{p}{N |\partial B_R(0)|^{p/q}} \left[\int_{\partial B_R} \left(\frac{1}{2} |\nabla u_0|^{p-2} \frac{\partial |\nabla u_0|^2}{\partial \nu} + \frac{1}{p} \frac{\partial u_0^p}{\partial \nu} \right) \, dS \right]$$

$$- S_p(r) \int_{\partial B_R} (q - 1) \left| \nabla u_0 \right|^2 + \Delta u_0 \, dS.$$

Thus, since u_0 is radial, we get

$$h''(0) = \frac{p}{N |\partial B_R(0)|^{p/q}} \left[\int_{\partial B_R} \left(\frac{1}{2} |\nabla u_0|^{p-2} \frac{\partial |\nabla u_0|^2}{\partial \nu} + \frac{1}{p} \frac{\partial u_0^p}{\partial \nu} \right) \, dS \right]$$

$$- S_p(r) \int_{\partial B_R} (q - 1) |\nabla u_0|^2 + \Delta u_0 \, dS.$$

Now, by definition, $u_0(x) = u_0(|x|)$ and α satisfies

$$\left(s^{N-1} |u'_0|^{p-1} u_0'\right)' = s^{N-1} u_0'^{p-1} \quad \forall s > r$$

with $u_0(R) = 0$ and $u_0(r) = 0$, moreover, by Proposition 3.3, we have

$$u_0'(s)^{p-1} = S_p(r) u_0(s)^{p-1} \quad \forall s > r.$$

Then

$$\frac{1}{2} |\nabla u_0|^{p-2} \frac{\partial |\nabla u_0|^2}{\partial \nu} + \frac{1}{p} \frac{\partial u_0^p}{\partial \nu} = S_p(r) \frac{\frac{p^+}{p-1}}{p-1} \left(1 - \frac{N - 1}{R} S_p(r) \right) + S_p(r) \frac{p^-}{p-1}$$

and

$$S_p(r) \left[(q - 1) |\nabla u_0|^2 + \Delta u_0 \right] = (q - 1) S_p(r) \frac{p^+}{p-1} + S_p(r) \frac{\frac{p^+}{p-1}}{p-1} \left(1 - \frac{N - 1}{R} S_p(r) \right)$$

$$+ \frac{N - 1}{R} S_p(r) \frac{p^+}{p-1}.$$

Therefore

$$h''(0) = \frac{p S_p(r)^{\frac{1}{q-1}}}{N |\partial B_R|^{\frac{q}{q-1}}} \left[1 - (q - 1) S_p(r) \frac{p^+}{p-1} - \frac{N - 1}{R} S_p(r) \right].$$
Thus, if \(q > Q(R) \) we get that \(h''(0) < 0 \) and so 0 is a strict local maxima of \(\psi \). So we have proved that
\[
S_q(r) = h(0) > h(t) \geq S_q(B_r(\epsilon_1))
\]
for all \(t \) small. Therefore a symmetric configuration is not optimal.

To finish the paper we prove Proposition 1.5.

Proof of Proposition 1.5. We proceed in two step.

Step 1. First we show that, for \(R > r \), \(S_p(R,r) = S_p(r) \) verifies the differential equation
\[
\frac{\partial S_p}{\partial R} = -\frac{N - 1}{R} S_p + 1 - (p - 1) S_p^\frac{p-1}{p}
\]
with the condition
\[
S_p|_{R=r} = +\infty.
\]

Again we consider \(u_0(x) = u_0(|x|) \) the nonnegative radial function given by Proposition 3.3. Thus, for all \(R > r \), we get
\[
\begin{align*}
(p - 1) (u_0')^{p-2} u_0'' + \frac{N - 1}{R} (u_0')^{p-1} &= u_0^{-1}, \\
u_0'(R)^{p-1} &= S_p u_0(R)^{p-1}, \\
u_0(r) &= 0.
\end{align*}
\]
Then
\[
S_p = \left(\frac{u_0'(R)}{u_0(R)} \right)^{p-1}.
\]

Thus
\[
\begin{align*}
\frac{\partial S_p}{\partial R} &= (p - 1) \left(\frac{u_0'(R)}{u_0(R)} \right)^{p-2} \frac{u_0''(R) u_0(R) - u_0'(R)^2}{u_0(R)^2} \\
&= (p - 1) \left(\frac{u_0'(R)}{u_0(R)} \right)^{p-2} \frac{u_0''(R)}{u_0(R)} - (p - 1) S_p^\frac{p-1}{p} \\
&= (p - 1) \left(\frac{u_0'(R)}{u_0(R)} \right)^{p-2} \frac{u_0''(R)}{u_0(R)^{p-1}} - (p - 1) S_p^\frac{p-1}{p} \\
&= 1 - \frac{N - 1}{R} S_p - (p - 1) S_p^\frac{p-1}{p}.
\end{align*}
\]

On the other hand, since (by definition) \(\frac{\partial u_0}{\partial \nu} \equiv 1 \) on \(\partial B_r \), we get that \(u'(r) = 1 \). Then
\[
\lim_{R \to r} S_p = \lim_{r \to r} \left(\frac{u_0'(R)}{u_0(R)} \right)^{p-1} = +\infty.
\]

Now, it is easy to check that \(\lim_{R \to r} Q(R) = 1^- \).

Step 2. Finally, we prove that
\[
\lim_{R \to +\infty} Q(R) = p.
\]

We begin differentiating (3.20) to obtain
\[
\frac{\partial^2 S_p}{\partial R^2} = \frac{N - 1}{R^2} S_p - \frac{N - 1}{R} \frac{\partial S_p}{\partial R} - p S_p^\frac{p-1}{p} \frac{\partial S_p}{\partial R}.
\]
Then, since $S_p > 0$, at any critical point ($S_p' = 0$) we have that $S_p'' > 0$. Thus, S_p has at most one critical point, which is a minimum. If S_p has a minimum, then there exist $R_0 > r$ such that $S_p'(R_0) = 0$. Moreover, since $S_p''(R) \neq 0$ for any $R \neq R_0$ and $S_p \rightarrow +\infty$ as $R \rightarrow r$ and by (3.20), we get that $S_p' < 0$ for all $r < R < R_0$ and $S_p' > 0$ for all $R > R_0$. Thus, using again (3.20) we have that $S_p^{p-1} < \frac{1}{p-1}$ for all $R > R_0$. Then S_p is strictly increasing as a function of R and bonded for all $R > R_0$. Consequently $S_p' \rightarrow 0$ as $R \rightarrow +\infty$. It follows, by (3.20), that $S_p^{\frac{p}{p-1}} \rightarrow \frac{1}{p-1}$ as $R \rightarrow +\infty$. On the other hand using (1.6) and (3.20) we see that

$$S_p = (Q(R) - p)S_p^{\frac{p}{p-1}}.$$

So, if S_p has a minimum, we get that $Q(R) > p$ for all $R > R_0$ and $Q(R) \rightarrow p^+$ as $R \rightarrow +\infty$. Now, if S_p has not critical points so $S_p' \neq 0$ for all $R > r$ and using that $S_p \rightarrow +\infty$ as $R \rightarrow r$ and (3.20) we get that $S_p' < 0$ for all $R > r$. Consequently, in this case, S_p is strictly decreasing and therefore $S_p' \rightarrow 0$ as $R \rightarrow +\infty$ and by (3.20) we have that $S_p \rightarrow \frac{1}{p-1}$ as $R \rightarrow +\infty$. Then, if S_p has not critical points, we get $Q(R) < p$ and $Q(R) \rightarrow p^-$ as $R \rightarrow +\infty$. \hfill \square

Acknowledgements. I want to thank J. Fernández Bender for his throughout reading of the manuscript that help us to improve the presentation of paper.

References

1. Walter Allegretto and Yin Xi Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998), no. 7, 819–830.

2. Julián Fernández Bonder, Pablo Groisman, and Julio D. Rossi, Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach, Ann. Mat. Pura Appl. (4) 186 (2007), no. 2, 341–358.

3. Julián Fernández Bonder and Julio D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (2002), no. 1, 221–235.

4. Jorge García Melián and José Sabina de Lis, On the perturbation of eigenvalues for the p-Laplacian, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 10, 893–898.

5. A. Henrot and M. Pierre, Optimization de forme: un analyse géométric. mathematics and applications, vol. 48, Springer-Verlag, 2005.

6. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967.

7. Enrique J. Lami Dozo and Olaf Torné, Symmetry and symmetry breaking for minimizers in the trace inequality, Commun. Contemp. Math. 7 (2005), no. 6, 727–746.

8. Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203–1219.

9. Sandra Martínez and Julio D. Rossi, Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal. 7 (2002), no. 5, 287–293.

10. M. W. Steklov, Sur les problèmes fondamentaux en physique mathématique, Ann. Sci. École Norm. Sup. 19 (1902), 445–490.

11. J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202.

Leandro M. Del Pezzo
DEPARTAMENTO DE MATEMÁTICA, FCEyN, UNIVERSIDAD DE BUENOS AIRES,
Pabellón I, Ciudad Universitaria (1428), BUENOS AIRES, ARGENTINA.
E-mail address: ldpezzo@dm.uba.ar