Spiders (Araneae) of Chernivtsi City (Ukraine)

Mariia Fedoriak, Svitlana Rudenko, Olena Iaroshynska & Evgeni Zhukovets

Abstract: The spider fauna of buildings and other urban habitats (city parks, green areas of industrial enterprises, and housing estates) of Chernivtsi city was surveyed. In the period 2002-2011, 212 species belonging to 26 families were recorded. Previous studies found a total of 173 species of spiders belonging to 26 families from the territories which are now included in the city limits of Chernivtsi. Currently, the total spider species list for Chernivtsi includes 260 species of 30 families, of which 125 species (21 families) were recorded both by earlier researchers and by ourselves. The most important reasons for changes in urban spider assemblages are as follows: species habitat change, introduction of alien species, and description of new species unknown in the late 19th – early 20th centuries.

Key words: retrospective analysis, species composition, urban ecosystems

Urban habitats are becoming increasingly dominated by human-related factors and processes (GRIMM et al. 2000); yet most ecological studies focus on more natural and less human-altered ecosystems (SHOCHAT et al. 2004). Recent studies of the effect of urbanization on species composition show that urbanization can increase or decrease species richness, depending on the taxonomic group, the spatial scale of analysis, and the intensity of urbanization (MCKINNEY 2008). Certain studies focusing on changes in spider assemblages in urban habitats were undertaken during the last decades (KRZYŻANOWSKA et al. 1981, ANTOV et al. 2004, SHOCHAT et al. 2004, HORVÁTH et al. 2010, VARET et al. 2010). Yet, we do not know enough about the causes of changes in spider assemblages in urban environments. Some of them are due to alien spider species introduced to Europe (KOBELT & NENTWIG 2008). Habitat structure and productivity were shown to influence spider diversity and abundance in urban environments (SHOCHAT et al. 2004), as well as fragmentation of natural habitats due to urbanization (GIBBS & STANTON 2001, GIBB & HOCHULI 2002). However, changes in spider assemblages over time and under increasing urbanization are still poorly understood.

The aim of the present study is to conduct a retrospective analysis of the changes in spider assemblages in Chernivtsi by a comparison of the results of our 10-year research (2002-2011) with the literature-derived data for the period 1874-1986.

Material and methods

The material treated in this paper was collected in 2002-2011 within Chernivtsi city. Chernivtsi is the administrative centre of the Chernivtsi Region in western Ukraine; its population is 240,000 people. The city's area is 153 km² (the range of longitude is N 48°14'44.56"-48°23'53.55"; the range of latitude is E 25°49'59.96"-26°2'25.46"; the range of altitude is 151-510 m a.s.l.). The city is situated on the river Prut. According the physiographic subdivision by MARYNYCH et al. (2003), this area belongs to the Ukrainian Carpathians Mountain Region. We collected the material using different methods (hand collecting, pitfall traps, sweeping with a net, and beating) in various urban habitats such as forests and open patches at the city’s edge, city parks, green areas of industrial enterprises and housing estates, and buildings. The largest fraction of spider specimens from semi-natural habitats in Chernivtsi was collected by pitfall traps. The traps, with a diameter of 7 cm, were placed in a line, about 6 meters apart from each other and contained ethylene glycol as a preservative; traps were opened during the schedules shown below, and were emptied twice a month.

The study localities were as follows:

Tsetsyno Landscape Conservation Area, located at the city's edge: This is a forest dominated by Fagus sylvatica L. partly mixed with Quercus petraea Liebl. and Quercus robur L. and open patches dominated by Poaceae. The trapping periods were, in both habitats,
Four city parks: Zhovtneviy Park, Shevchenko Park, Fedkovych Park and Schiller Park are characterized mostly by artificially planted trees: *Acer*, *Carpinus*, *Tilia*, *Fraxinus*, *Picea*, *Betula*, *Robinia pseudoacacia* L., *Aesculus hippocastanum* L. The trapping periods were 04.-10.07.2006 (15 traps in Schiller Park) and 02.05.-02.12.2007 (15 traps in each of the four aforementioned parks).

Green areas of seven industrial enterprises: Chemical Plant, Mechanical Repair Plant, Brickyard # 1, Industria Factory, Bus-trolley Company, Electron-mash Plant, Quartz Plant. The trapping periods were 28.04.-28.05.2008 (15 traps in the area of each enterprise).

Other urban habitats such as public gardens in Cathedral Square, Korduby str., Toliati str., Pidkovy str.; green areas on the grounds of the Biological Faculty of Chernivtsi University and College # 15; the Botanic Garden of Chernivtsi University: The trapping periods were 09.07.-27.07.2007 and 07.05.-05.06.2008 (15 traps in each locality).

Orchards containing fruit trees and beds of strawberries: The trapping periods were 08.04.-10.06.2002 (30 traps).

A description of the city parks was given by FEDORIAK et al. (2010a); the green areas of industrial enterprises and other urban habitats were analyzed by FEDORIAK et al. (2010b). A total of 2496 adults and 499 juveniles (of which 155 were identifiable to species level) were captured by pitfall traps from the 21 localities.

We also collected 499 adults and 1191 juveniles (231 identifiable to species level) inhabiting the trees *Aesculus hippocastanum* L., *Tilia cordata* Mill., *Picea abies* (L.) Karst, *Thuja occidentalis* L., and *Acer negundo* L. during the periods May to October 2006-2008 from the aforementioned city parks and from planted trees on both sides of the streets J. Hlavka, Golovna, Chervonoarmiyska, Kyivska, Komarova, Korduby, L. Ukrainka, and Y. Fedkovych. Spiders from tree trunks included 197 adults and 576 juveniles (100 identifiable to species level) captured by hand collecting. A total of 302 adults and 615 juveniles (131 identifiable to species level) were collected from lower branches of trees by beating. Other spider specimens from different trees – 171 adults and 534 juveniles (79 identifiable to species level) – were collected in localities such as Tsetsyno Landscape Conservation Area, the Botanic Garden of Chernivtsi University, and public gardens in Cathedral Square and Chervonoarmiyska str.

A total of 43 adults and 647 juveniles (159 identifiable to species level) were obtained from birds’ nests collected from trees in different parts of the city. Additionally we used collecting methods such as hand-sorting litter samples and sweeping from nearly all the mentioned localities at different time periods as well as from the bank sediments of the river Prut, using these methods we caught a total of 476 adult specimens.

In this paper, we also include material collected from different indoor habitats such as the aforementioned industrial enterprises, multi-storey apartment buildings, and greenhouses. The characteristics of buildings and study methods have been already published by FEDORIAK et al. (2010c). A total of 7959 specimens of spiders from buildings were collected: 2995 adults and 4964 juveniles (4464 identifiable to species level).

We also assembled data on urban spiders inhabiting Chernivtsi on the basis of all available literature records for the period of 1874-1986 (NOWICKI 1874, ROȘCA 1930, 1935, 1936a, 1936b, 1937, 1938, LEGOTAI 1964, CHUMAK & PICHKA 1982, CHUMAK 1986). We included the species recorded by earlier researchers both from Chernivtsi and from settlements such as Tsetsyno, Hot Urban, Klokuchka, Rosha, and Zhuchka, which later became parts of Chernivtsi.

NOWICKI (1874) recorded 26 species without mentioning details of collecting methods and habitats. ROȘCA (1930-1938) recorded 159 species from Chernivtsi, as the area of the city is currently defined. A description of habitats and collecting methods was not provided, but the author mentioned such habitats as the beech forest on Mt. Tsetsyno, banks of the river Prut, the Botanical Garden, and buildings. ROȘCA (1936) provided each species with information on the ecological group to which it belonged, depending on its habitat preferences and other peculiarities: terrestrial forms, plant forms, domestic forms, and hydrophilic forms. Recently, we discussed the distribution of spiders in Chernivtsi according to Roșca’s publications (FEDORIAK & ZHUHOVETS 2011). LEGOTAI (1964) mentioned two species from Chernivtsi without any details of collecting methods and habitats. CHUMAK & PICHKA (1982) and CHUMAK (1986) recorded three spider species collected in greenhouses of the Botanic Garden of Chernivtsi.
from plants, walls, and the soil surface.

The scientific nomenclature follows PLATNICK (2012). Invalid species names in the literature-derived data are omitted from the analysis (appendix 1). Lepthyphantes collinus (L. Koch, 1872) (ROSCA 1936) is considered to be Megaleptyphantes pseudocollinus Saaristo, 1997 (see SAARISTO 1997). According to the division by KLAUSNITZER (1987), all urban habitats are subdivided into two large groups (buildings and other terrestrial habitats). Thus we analyzed spiders inhabiting buildings (indoor habitats) separately from those inhabiting other (outdoor) habitats.

No publications of earlier researchers contained precise numerical data on abundances of the recorded species. ROSCA (1936, 1937) provided almost every species with information on how often it was observed in Bukovyna: 'very often', 'often', 'not often' or 'rarely'. Therefore we applied only a presence/absence comparison. When discussing our own material, in order to separate the most abundant species in each of the treated spider assemblages, we followed STÖCKER & BERGMANN (1977) with dominance classes such as: 31.7–100 % – eudominant; 10.1–31.6 % – dominant; 3.2–10.0 % – subdominant; 1.1–3.1 % – recedent; less than 1 % – subrecedent. All calculations in this paper relate to adult specimens.

Results
During the period 2002–2011, we collected a total of 14878 specimens representing 212 species belonging to 114 genera and 26 families. The commonest families were: Linyphiidae (25.9 %), Theridiidae (11.3 %), Lycosidae (10.4 %), Thomisidae (6.1 %), Araneidae (6.1 %), Agelenidae (6.1 %), and Salticidae (5.7 %). In Table 1 the most abundant spider species from the soil surface (epigeal fauna), trees, and buildings of Chernivtsi are sorted in descending abundance according to their localities.

In total, 107 epigeal species were captured using pitfall traps from different green areas of Chernivtsi. Pardosa lugubris sensu stricto is the most abundant species of the epigeal spider fauna (19.6 % of adults) dominating in city parks, public gardens and other green territories; yet, it is the eudominant species in the industrial enterprises areas sampled. PROKOPENKO (2000) mentioned P. lugubris as a dominant species in five parks of Donetsk (Ukraine). However, it was not abundant in other localities we surveyed – only three specimens were trapped from the Tsetsyno Landscape Conservation Area and from the orchards. The cumulative percentage of Pachygnatha degeeri (Tetragnathidae) was nearly the same as for P. lugubris (19.5 %). P. degeeri is the only species that dominates the epigeal spider faunas of all the sampled localities, apart from the orchards. Alopecosa pulverulenta (5.1 %) is the subdominant species of the Tsetsyno Landscape Conservation Area (5.7 %), green areas of industrial enterprises (7.2 %), and the orchards (6.0 %). Pardosa agrestis (4.6 %) is distributed very unevenly in the investigated sites: 42.2 % of the adults were trapped from the orchards, 28 % – from the Tsetsyno Landscape Conservation Area, and 0.3 % – from the city parks. Some other Lycosidae species were also abundant in the epigeal fauna of Chernivtsi (city in descending cumulative percentage): Pardosa prativaga (4.7 %), P. paludicola (3.7 %), Tegenaria domestica (3.5 %), T. ruricola (3.3 %). The cumulative percentages of the other species did not reach 3 % of the adult spider specimens captured by pitfall traps in the sampled localities. Of the representatives of other families some linyphiids, such as Diplodysta concolor (2.6 %) and Diplocephalus picinus (1.8 %), and Thomisids, Xysticus cristatus (2.2 %), were also abundant in the epigeal spider fauna of Chernivtsi.

Enoplognatha ovata (42.5 %) is the most abundant species inhabiting trees of Chernivtsi, followed by Steatoda bipunctata (5.8 %), Lepthyphantes minutus (4.6 %), Platnickina tincta (3.6 %), and Entelecara acuminata (3.1 %). We collected these species both from tree crowns and trunks. Enoplognatha ovata prefers crowns, while S. bipunctata, L. minutus, P. tincta, and E. acuminata were found mainly on tree trunks. Some other species were abundant (>3 %) on tree trunks: Moebelia penicillata, Clubiona lutescens, Erigone dentipalpis, Hylyphantes graminicola, and Hypomma cornutum – in the city parks, while Micaria subopaca, Clubiona brevipes, Linyphia triangularis, Parasteatoda tepidariorum, Salticus zebranus, Neottiura bimaculata, and Dictyna uncinata – in the trees planted on the street margins.

During our research we collected a total of 83 species (7959 spiders) from indoor habitats of Chernivtsi, of which Pholcus phalangioides (50.2 %) was the most abundant species in buildings of different types. Cumulative percentages of Parasteatoda tepidariorum (11.7 %), Steatoda castanea (5.9 %), Tegenaria domestica (2.9 %), Steatoda triangulosa (2.8 %), Pholcus aliticeps (2.8 %), Ph. ponticus (2.6 %), Steatoda grossa (2.5 %), Ph. opilionoides (2.4 %), Spermophora senoculata (2.3 %), and Lepthyphantes lopesus (2.1 %) were higher than those of the other species in the buildings of Chernivtsi.
Tab. 1: The most abundant spider species from Chernivtsi. Numbers in brackets show relative abundance (% of adults).

Locality	Eudominant	Dominant	Subdominant
Locality	Dominance classes		
Tsetsyno		Epigeal fauna	
Landscape		Pachygnatha degeneri (25.2)	Pardosa paludicola (9.1)
Conservation			Trochosa terricola (8.5)
Area			Alopecosa pulvurienta (5.7)
City parks		Pardosa lugubris (19.2)	Pardosa alacris (5.3)
		Pardosa palustris (5.0)	Trochosa ruricola (4.9)
		Diplostyla concolor (16.0)	Xysticus cristatus (4.1)
			Inermacoelotes inermis (3.8)
			Inermacoelotes faleiger (3.4)
Green areas		Pardosa lugubris (49.1)	Alopecosa pulvurienta (7.2)
of industrial		Pardosa lugubris (18.0)	Pardosa amentata (5.0)
enterprises		Pardosa pratovaga (13.5)	
Other urban		Pachygnatha degeneri (22.4)	Trochosa ruricola (4.0)
habitats		Pardosa lugubris (16.8)	Tenatiiphanes flavipes (3.2)
Orchards		Xerolyssus miniata (14.6)	Pardosa palustris (9.5)
			Alopecosa pulvurienta (6.0)
			Trochosa ruricola (6.5)
			Xysticus cristatus (6.0)
Trees			
City parks	Enoplognatha ovata (41.1)	Platnickina tinca (4.9)	
		Steatoda bipunctata (4.9)	
		Entelecra acuminata (4.6)	
Sides of streets	Enoplognatha ovata (39.9)	Micaria subopaca (7.5)	
		Steatoda bipunctata (6.4)	
		Platnickina tinca (4.6)	
		Entelecra acuminata (3.5)	
Buildings			
Greenhouses	Pholcus phalangioides (34.1)	Parasteatoda tepidarium (5.0)	
	Pholcus opilionoides (16.3)		
	Pholcus ponticus (7.8)		
	Tegenaria domestica (7.2)		
	Steatoda triangulosa (4.0)		
	Pholcus aliepus (3.8)		
	Megalephylphantes nebulosus (3.4)		
	Steatoda castanea (3.2)		
Buildings of the Industrial	Pholcus phalangioides (46.9)	Parasteatoda tepidarium (12.9)	
enterprises			
	Pholcus ponticus (7.8)		
	Tegenaria domestica (7.2)		
	Steatoda triangulosa (4.0)		
	Pholcus aliepus (3.8)		
	Megalephylphantes nebulosus (3.4)		
	Steatoda castanea (3.2)		
Apartment buildings	Pholcus phalangioides (55.4)	Steatoda castanea (8.7)	
		Parasteatoda tepidarium (6.6)	
		Steatoda grossa (4.3)	
		Spermophsora sensculata (4.0)	
Spiders recorded from Chernivtsi during 1874-1986 were represented by 173 species, belonging to 96 genera and 26 families (Tab. 2, appendix 2). The commonest families were as follows: Linyphiidae (24.3%), Lycosidae (13.9%), Thomisidae (9.8%), Theridiidae (9.2%), Araneidae (6.9%), and Salticidae (6.6%). Nine species were recorded from buildings and 166 from other urban habitats.

Taking into account the information provided by earlier researchers and that resulting from our own work, the total spider fauna of Chernivtsi city consists of 260 species from 131 genera and 30 families (appendix 2). Of these, 125 species were mentioned in the literature and occurred in our data. We found 87 species that were not previously reported from Chernivtsi, whereas 48 species of those reported earlier were not found during our survey. Obviously, there were ‘exclusive species’ that were mentioned only in the literature or occurred only in our data. The share of ‘exclusive species’ is higher at present (Tab. 2); the majority of them belong to Linyphiidae, Lycosidae, Theridiidae, Thomisidae, Gnaphosidae, and Agelenidae.

Differences between the historical records and our data were found in species numbers of various families (Tab. 2). In 15 families the number of species increased by 50%. We noticed the greatest increase in species numbers for Gnaphosidae (4.5-fold), Dictynidae (2-fold), Ageilenidae (1.6-fold), and Theridiidae (1.5-fold). Species numbers remained the same in eight families. In comparison with the historical data, we found a smaller number of species of the following three families: Thomisidae, Lycosidae, and Miturgidae. We found no species of Cybaeidae, Sparassidae, Uloboridae, and Zoridae in the area of Chernivtsi, whereas earlier researchers recorded one species from each of these families.

Discussion

R0ŠCA (1936) singled out synanthropic species (‘domicole’) as a separate ecological group of spiders. Overall, he mentioned seven species as synanthropic. Of these, following Rosca’s terminology, four species were collected ‘very often’: viz., Pholcus opilionoides, Ph. phalangioides, Steatoda bipunctata, and S. castanea; three were collected ‘often’: viz., Tegenaria atrica, T. domestica, and Steatoda grossa. We collected all these species in buildings in Chernivtsi. Percentages of all of them, except S. bipunctata, are higher indoors than in any of the semi-natural habitats such as city parks, lawns. At the same time, R0ŠCA (1936) regarded Parasteatoda tepidariorum as a species living in trees (his ecological group – ‘arboricole’) and noted that it was very common in bushes and trees. In our samples, only 0.5% of the specimens collected from parks and other semi-natural habitats of Chernivtsi belong to P. tepidariorum, with the species being much more

Family	Our data	Historical data	Exclusive species	
Agelenidae	13	8	6	
Amaurobiidae	2	2	0	
Anyphaenidae	1	1	0	
Araneidae	13	12	3	
Clubionidae	7	6	2	
Corinnidae	1	1	0	
Cybaeidae	0	1	0	
Dictynidae	6	3	3	
Dysderidae	3	1	2	
Gnaphosidae	9	2	7	
Hahniidae	1	0	1	
Linyphiidae	55	42	28	
Liocranidae	1	1	0	
Lycosidae	22	24	7	
Mimetidae	2	2	0	
Miturgidae	1	2	1	
Nesticidae	1	0	1	
Philodromidae	6	6	2	
Pholcididae	5	2	3	
Pissauridae	1	1	0	
Salticidae	12	11	3	
Sicytidae	1	0	1	
Segestriidae	1	1	0	
Sparassidae	0	1	0	
Tetragnathidae	10	8	3	
Theridiidae	24	16	10	
Thomisidae	13	17	3	
Uloboridae	0	1	0	
Zodariidae	1	0	1	
Zoridae	0	1	0	
Totals	**212**	**173**	**87**	**48**
abundant in synanthropic habitats (inside buildings; see Tab. 1). Regarding other synanthropic species that are now abundant indoors, ROŠCA (1936) considered Leptothyphantes lepraus to occur under stones (‘lapidicole’); Pholcus aliceps, Ph. ponticus, and Steatoda triangulosa were not reported by earlier researchers.

Among ‘arboricole’ species, seven were collected ‘very often’ (ROŠCA 1936): viz., Metellina segmentata, Parasteatoda simulans, Parasteatoda tepidariorum, Philodromus dispers, Tetragnatha obtusa, Theridion pictum, and Theridion pinastri. We collected all of them except P. tepidariorum (see above) and Metellina segmentata more often from trees than from other habitats in Chernivtsi. Thirteen ‘arboricole’ species were collected ‘often’ (ROŠCA 1936): viz., Ero aphana, Ero furcata, Cryptachaea riparia, Neottiura bimaculata, Paidiscura pallens, Parasteatoda lunata, Philodromus poecilus, Platnickina tincta, Sitticus scenicus, Sitticus pubescens, Tetragnatha nigrita, Thanatus arenarius, Theridion varians. Of these, four species (P. poecilus, T. arenarius, T. nigrita, and P. lunata) were not found during our survey; the others with two exceptions (S. scenicus and P. pallens) were found mainly in trees.

BLICK (2011) recently published a list of the 20 most abundant spider species on tree trunks in German forests; we captured ten of the mentioned species from trees in Chernivtsi: Anyphaena accentuata, Diplocephalus cristatus, Drapetisca socialis, Enoplognatha ovata, Latbys humilis, Leptothyphantes poecilus, Platnickina tincta, Salticus scenicus, Sitticus pubescens, Tetragnatha nigrita, Thanatus arenarius, Theridion varians. Of these, four species (P. poecilus, T. arenarius, T. nigrita, and P. lunata) were not found during our survey; the others with two exceptions (S. scenicus and P. pallens) were found mainly in trees.

In general, ROŠCA (1936, 1937) recorded 152 species from outdoor habitats in the present area of Chernivtsi. Of these, he specified that 22 species were collected ‘very often’, 112 – ‘often’, 12 – ‘not often’, and two – ‘rarely’; for four species such information was not provided. According to our data, 183 species inhabit semi-natural habitats in Chernivtsi. However, of the species mentioned by ROŠCA (1936) from the ‘very often’ and ‘often’ categories we failed to locate 15 species: Coelotes atropos, Clubiona caerulescens, Centrocerus ludoavi, Hypomna bitubercolatum, Erigone atra, Mansuphantes mansuetus, Frontinellina frutetorum, Neriena peltata, Alopecosa trabalis, Pirata piraticus, Thanatus arenarius, Évarcha laetabunda, Zora pardalis, Xysticus lactuusus and, Xysticus lanio.

Thus, it seems fair to conclude that the spider assemblages of these areas have undergone some changes. Several reasons are likely to be responsible for such changes:

1. **Species habitat change.** The spider fauna of urban green areas differs from that of natural and even suburban habitats (KRZYŻANOWSKA et al. 1981, SHOCHAT et al. 2004). Regarding our study area, some species were recorded by earlier researchers from the city, whereas we found them only outside the city. For example, we collected Araneus hami-
lis, Erigone atra, and Arctosa stigmata only on the banks of mountain rivers in the Chernivtsi Region (EVTUSHENKO & FEDORIAK 2003) and never from Chernivtsi itself. On the other hand, we collected certain species (e.g., Inermocoelotes faileiger, Histoposa torpida, Drassyllus pusillus) from Chernivtsi, whereas earlier researchers recorded them from a number of localities outside the city (ROŠCA 1930, 1936).

2. **Introduction of alien species.** Europe received at least 2000 small alien invertebrate species, including spiders, and most of them were introduced within the last 100 years (KOBElt & NENTWIG 2008). We collected five adults of Agelenopsis potteri in buildings within Chernivtsi and seven more in other habitats of the city. A. potteri is a Nearctic species (CHAMBERLIN & IVIE 1941) which was recorded from Kyrgyzstan, Russia, and Ukraine (MARUSIK & KOPPONEN 2000, MARUSIK et al. 2007, PROKOPENKO & HOYDYK 2006). We also trapped five adults of Zodarion rubidum on the grounds of Chernivtsi enterprises and one more in the city park (FEDORIAK et al. 2010b, 2010c). Z. rubidum is spreading throughout Europe along railroads (PEKÁR 2002).

3. **Descriptions of new species unknown in the late 19th – early 20th centuries.** Of the 212 species we collected from Chernivtsi, five were described after 1930: Pholcus aliceps Spassky, 1932; Saloca kuleczynski Miller & Katochvil, 1939; Parasteatoda tabulata (Levi, 1980); Enoplognatha latimana Hippa & Oksala, 1997. Obviously, these species could be recognised neither by Nowicki nor by Rošca, the researchers who undertook the most profound earlier inventories of the spider fauna.

Other reasons for the changes in the species assemblages of Chernivtsi spider fauna cannot be excluded: e.g., possible differences in the collection methods used by earlier researchers and by ourselves, or collections that were not taken from comparable sites.
Spiders of Chernivtsi City

Conclusions
Spiders are shown to be a species-rich group in urban habitats of Chernivtsi city (212 spider species belonging to 114 genera and 26 families were found during 2002-2011). This suggests the necessity of surveying urban habitats while estimating spider biodiversity of different regions.

Pardosa lugubris and Pachygnatha degeeri were the most abundant species of the epigean spider fauna, Enoplognatha ovata of trees, and Pholcus phalangioides of the synanthropic spider fauna.

Differences in spider species composition between the data recorded in 1874-1986 and our own (2002-2011) may reflect changes in the spider fauna of Chernivtsi city as a result of the combination of several processes, namely: species habitat change, introduction of alien species and description of new species unknown in the late 19th – early 20th centuries.

Acknowledgements
We are grateful to Dr. Stefan Purici, Dean of the faculty of History and Geography of “Stefan cel Mare” University of Suceava (Romania), Dr. Raoul Constantineanu from the Biological Research Institute of Iasi (Romania), and to Olivia Nicoleta Toderas – the daughter of Alexandru Roșca – for providing us with information. Many thanks to Dr. Wolfgang Nentwig, Dr. Yuri Marusik and Theo Blick for improving the manuscript, and to Dr. Valery Gnelitsa for consultations on some Linyphiidae species. Finally, Prof. Yael Lubin and the reviewers are thanked for their valuable comments.

References
ANTOV A., S. LAZAROV, C. DELTSHEV & G. BLAGOEV (2004): Spiders from the Sofia Region. A faunistic and zoogeographical analysis. In: PENEV L., J. NIEMELA, D.J. KOTZE & N. CHIPEV (Eds.): Ecology of the City of Sofia. Species and communities in an urban environment. Pensoft Publishers, Sofia–Moscow. pp. 355-363
BICK T. (2011): Abundant and rare spiders on tree trunks in German forests (Arachnida, Araneae). – Arachnologische Mitteilungen 40; 5-14 – doi: 10.5431/armit4002
CHAMBERLIN R.V. & W. IVIE (1941): North American Agelenidae of the Genera Agelenopsis, Galilena & Ritalena. – Annals of the entomological society of America 34: 585-628
CHUMAK P.Y. & V.E. PICHKA (1982): Species composition and trophic relations of representatives of the order Aranei in the greenhouses of Ukraine. – Ochrana, izuchenie i obogashchenie rastitelnogo mira 9: 112-114 [in Russian]
CHUMAK P.Y. (1986): Species composition and trophic relations of arthropods that live in greenhouses of Chernivtsi. – Ochrana, izuchenie i obogashchenie rastitelnogo mira 13: 108-112 [in Russian]

EVTSUHENKO K.V. & M.M. FEDORIAK (2003): Species composition and distribution of spiders (Aranei), living in the stone deposits on the banks of six mountain streams in Chernivtsi Region. – Vestnik Zoologii 16: 25-28 [in Russian]
FEDORIAK M.M., S.S. RUDENKO, Y.M. MARUSIK & L.V. BRUSHIVSKVA (2010a): Spiders-herpetobiontes of Chernivtsi city parks. – Zapovidna sprava v Ukraini 16 (1): 64-71 [in Ukrainian]
FEDORIAK M.M., L.V. BRUSHIVSKVA & S.S. RUDENKO (2010b): Transformation of spiders-herpetobionts communities as an indicator of technogenic pollution of urboccosystems (on the example of Chernivtsi city). – Dopovidi Natsionalnoyi akademiyi nauk Ukraïny 4: 198-204 [in Ukrainian]
FEDORIAK M.M., L.V. BRUSHIVSKVA & S.S. RUDENKO (2010c): Spider assemblages of premises of industrial enterprises in the biomonitoring researchers of urbocoeosystems state (on the example of Chernivtsi city). – Ekologiya ta noosferologiya 21: 27-37 [in Ukrainian]
FEDORIAK M. & E. ZHU VO VETS (2011): Spiders of Chernivtsi city (Ukraine): a comparison actual species composition and species recorded by A. Roșca (1930-1938). – Volumul de lucrări al simpozionului „Biodiversitatea șii și restructurarea insectelor din România”, Suceava, 2010: 157-169
GIBB H. & D.F. HOCHULI (2002): Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. – Biological Conservation 106: 91-100 – doi: 10.1016/S0006-3207(01)00232-4
GIBBS J.P. & E.J. STANTON (2001): Habitat fragmentation and arthropod community change: carrion beetles, phoretic mites, and flies. – Ecological Applications 11: 79-85 – doi: 10.1890/1051-0761(2001)011(0079:HF AACC)2.0.CO;2
GRIMM N.B., M. GROVE, S.T.A. PICKETT & C. REDMAN (2000): Integrated approaches to long-term studies of urban ecological systems. – BioScience 50: 571-584
HORVÁTH R., C. SZINETÁR, T. MAGURA & B. TÓTH-MÉRESZ (2010): Effects of urbanization on ground-dwelling spiders along a rural-suburban-urban lowland forest gradient in Hungary. – Book of Abstracts, 18th International Congress of Arachnology, Siedlce, Poland: 193
KL AUSNITZER B. (1987): Ökologie der Großstadtauna. Gustav Fischer Verlag, Stuttgart, New York. 225 pp.
KOBE LT M. & W. NENTWIG (2008): Alien spider introductions to Europe supported by global trade. – Diversity and Distributions 14: 273-280 – doi: 10.1111/j.1472-4642.2007.00426.x
KRZYŻAŃOWSKA E., A. DZIABASZEWSKI, B. JACKOWSKA & W. STARĘGA (1981): Spiders (Arachnoidea, Aranei) of Warsaw and Mazovia. – Memorabilia Zoologica 34: 165-180
LEGOTAI M.V. (1964): Spiders in cultural biocenoses of Transcarpathia. – Ekologia nasekomyh i drugih bespozvonochnyh Sovetskikh Karpat: materialy mezhvuzovskoi konferenci, Uzhgorod 1964: 52-59 [in Russian]

MARUSIK Y.M. & S. KOPONEN (2000): New data on spiders (Aranei) from the Maritime Province, Russian Far East. – Arthropoda Selecta 9: 55-68

MARUSIK Y.M., A.V. TANASEVITCH, D.K. KURENCHIKOV & D.V. LOGUNOV (2007): A check-list of the spiders (Araneae) of the Bolshekehkhtsyrski Nature Reserve, Khabarovsk Province, the Russian Far East. – Acta Arachnologica Sinica 16: 37-64

MARYNYCH O.M., G.O. PARKHOMENKO, O.M. PETRENKO & P.G. SHYSHCHENKO (2003): Improved scheme of physical and geographical zoning of Ukraine. – Ukrainskiyi heohrafichnyi Zhurnal 1: 16-20 [in Ukrainian]

McKINNEY M.L. (2008): Effects of urbanization on species richness: a review of plants and animals. – Urban ecosystems 11: 161-176 – doi: 10.1007/s11252-007-0045-4

NOWICKI M. (1874): Dodatek do fauny paj^cz^kow Galicyi. Sprawozdanie komisyi fizyjograficznej, Krakow 8: 1-11

PEKÅ R.S. (2002): Zodarion rubidum Simon, 1914: Railroad Riders? – Newsletter of the British Arachnological Society 95: 11-12

PLATNICK N.I. (2012): The world spider catalog, version 12.5. American Museum of Natural History. – Internet: http://research.amnh.org/iz/spiders/catalog/ [accessed 18.III.2012]

PROKOPENKO E.V. (2000): Peculiarities of araneofauna (Aranei) distribution in urban landscapes. – Izvestia Har’kovskogo entomologicheskogo obschestva 7: 191-193 [in Russian]

PROKOPENKO E.V. & I.A. HOIDYK (2006): The spread of Agelenopsis potteri (Blackwall, 1846) - alien Northamerican species in Left-bank Ukraine. – Visnyk Donetskoho Universytetu. Ser. A: Pryrodnych nauk 2: 257-260 [in Russian]

ROÅÇCA A. (1930): ContribuÅþiunî la cunoaÅþterea Arachnoidelor din Bucovina. – Buletinul Facultăţii de Ştiinţe din Cernăuţi 4: 201-219

ROÅÇCA A. (1935): Neue Spinnenarten aus der Bukowina (Rumänien). – Zoologerischer Anzeiger 111: 241-254

ROÅÇCA A. (1936a): Eine neue Spinnenart der Gattung Tarentula Sund. 1833 aus der Bukowina (Rumänien). – Festschrift Strand 1: 261-263

ROÅÇCA A. (1936b): Fauna Araneelor din Bucovina (Sistemática, ecología y ràspandirea geografica). – Buletinul Facultăţii de Ştiinţe din Cernăuţi 10: 123-216

ROÅÇCA A. (1937): Eine weitere neue Spinnenart der Gattung Tarentula Sund. 1833 aus der Bukowina (Rumänien). – Zoologerischer Anzeiger 117: 329-331

ROÅÇCA A. (1938): Supplement la fauna Araneelor din Bucovina. – Buletinul Facultăţii de Ştiinţe din Cernăuţi 11 (1937): 225-236

SAARISTO M.I. (1997): Description of Megalepythaphantes pseudocollinus n. sp. (Araneae: Linyphiidae: Micronetinae). – Bulletin of the British arachnological Society 10: 257-259

SHOCHAT E., W.L. STEFANOW, M.E.A. WHITEHOUSE & S.H. FAETH (2004): Urbanization and spider diversity: influences of human modification of habitat structure and productivity. – Ecological Applications 14: 268-280 – doi: 10.1890/02-5341

STÖCKER G. & A. BERGMANN (1977): Ein Modell der Dominanzstruktur und seine Anwendung. – Archiv für Naturschutz und Landschaftsforschung 17: 1-26

VARET M., J. PETILLON & F. BUREL (2010): Spider assemblages in urban habitats from Rennes (Brittany, France). Book of Abstracts, 18th International Congress of Arachnology. Siedlce, Poland. pp. 459-461

Appendix 1: List of invalid species names recorded during 1874-1986 from Chernivtsi.

Species	Citation	Notes
Porrhomma calypso (Bertkau, in Förster & Bertkau, 1883)	(RoÅÇca 1930), (RoÅÇca 1936)	Nomen dubium (PLATNICK 2012), we omitted it from the analysis
Aranea rayi var. betulae Sulz., Aranea Rayi Scop.	(RoÅÇca 1936)	Both species are considered to be Araneus marmoreus Clerck, 1757
Aranea rayi var. betulae Sulz., Aranea Rayi Scop.	(RoÅÇca 1936)	Both species are considered to be Araneus marmoreus Clerck, 1757
Lycosa chelata O. F. Muller.	(RoÅÇca 1930)	Both species are considered to be Lycosa chelata O. F. Muller.
Lycosa chelata O. F. Muller.	(RoÅÇca 1930)	Both species are considered to be Lycosa chelata O. F. Muller.
Tarentula andrenivora Walck.	(RoÅÇca 1930)	Both species are considered to be Tarentula andrenivora Walck.
Tarentula andrenivora Walck.	(RoÅÇca 1930)	Both species are considered to be Tarentula andrenivora Walck.
Xysticus cristatus L. Koch.	(RoÅÇca 1930)	Both species are considered to be Xysticus cristatus L. Koch.
Xysticus viaticus Linne.	(RoÅÇca 1930)	Both species are considered to be Xysticus viaticus Linne.
Appendix 2: List of spider species collected during 2002-2011 (our data) and recorded during 1874-1986 (historical, literature-derived data) from Chernivtsi. Names of the earlier researchers: N – Nowicki, R – Roșca, L – Legotai, Ch & P – Chumak & Pichka, Ch – Chumak.

Taxa	Our data, adults (ind.)	Historical data		
	Buildings	Other habitats	Buildings	Other habitats
Agelenidae				
Agelenia labyrintha (Clerck, 1757)	2	4	R	1936
Agelenopsis potteri (Blackwall, 1846)	5	7	R	1936
Allageleina gracilens (C.L. Koch, 1841)	1		R	
Coelotes atropos (Walckenaer, 1830)			R	1936
Histopona torpida (C.L. Koch, 1837)	10			
Inermocelotes falciger (Kulczyński, 1897)	34			
Inermocelotes inermis (L. Koch, 1855)	43		R	1936
Malthonica ferruginea (Panzer, 1804)	10	3	R	1936
Malthonica pagana (C.L. Koch, 1840)	1		R	
Malthonica picta (Simon, 1870)	1		R	
Tegenaria agrestis (Walckenaer, 1802)	4	3	R	1936
Tegenaria atria C.L. Koch, 1843	7		R	1936
Tegenaria domestica (Clerck, 1757)	88	1		R 1936
Tegenaria partitana (Fourcroy, 1785)	1	1		R 1936
Amaurobiidae				
Amaurobius ferox (Walckenaer, 1830)	8		R	1936
Callobius clausuarius (Hahn, 1833)	1		R	1936
Anyphaenidae				
Anyphaena accentuata (Walckenaer, 1802)	1	2	R	1936
Araneidae				
Araneus diadematus Clerck, 1757	8	4	R	1936
Araneus marmoreus Clerck, 1757	1	1	N	1874
Araneus quadratus Clerck, 1757	1		N	1874
Araneus saevus (L. Koch, 1872)		1		
Araneus sturti (Hahn, 1831)			N	1874
Araneus triguttatus (Fabricius, 1793)		1		
Araniella cucurbitina (Clerck, 1757)		7	R	1936, L 1964
Araniella opisthographa (Kulczyński, 1905)	1		R	1936
Argiope bruennichi (Scopoli, 1772)		1	R	1936
Gibbaranea bituberculata (Walckenaer, 1802)	1		N	1874
Gibbaranea gibbosa (Walckenaer, 1802)		1	R	1937
Larinioides ixobolus (Thorell, 1873)	4	1		
Larinioides scleropetarius (Clerck, 1757)	1		N	1874
Mangora acalypha (Walckenaer, 1802)		4	R	1936
Singa nitidula C.L. Koch, 1844		3	R	1936
Clubionidae				
Clubiona breviceps Blackwall, 1841		6		
Clubiona caeruleascens L. Koch, 1867			N	1874, R 1936
Clubiona carnea C.L. Koch, 1839		14		
Clubiona germanica Thorell, 1871		1	R	1936
Clubiona lutescens Westring, 1851		14	R	1936
Clubiona marmorata L. Koch, 1866		1	N	1874
Clubiona neglecta O. P.-Cambridge, 1862		1	R	1936
Clubiona pallidula (Clerck, 1757)	1	4	R	1936
Corinnidae				
Pherolitibus festivus (C.L. Koch, 1835)		5	R	1936
Taxa	Our data, adults (ind.)	Historical data		
---	-------------------------	-----------------		
	Buildings	Other habitats	Buildings	Other habitats
Cybaecidae				
Cybaecus angustiarum L. Koch, 1868				
Dictynidae				
Cicarina eicur (Fabricius, 1793)	3			R 1936
Dictyna arundinacea (Linnaeus, 1758)	6			R 1936
Dictyna civica (Lucas, 1850)	1			R 1936
Dictyna uncinata Thorell, 1856	10			R 1936
Laibis humilis (Blackwall, 1855)	4			R 1936
Nigmi walchenaei (Roever, 1951)	1			R 1936
Dysderidae				
Dysdera crocata C.L. Koch, 1838	1			R 1936
Harpactea rubicunda (C.L. Koch, 1838)	6			R 1936
Harpactea sace (Herman, 1879)	4			
** Gnaphosidae**				
Drasodes pubescens (Thorell, 1856)	1			R 1936
Drasysyllus pusillus (C.L. Koch, 1833)	10			R 1936
Haplodrassus signifer (C.L. Koch, 1839)	2			R 1936
Haplodrassus silvestris (Blackwall, 1833)	1			R 1936
Micaria formicaria (Sundevall, 1831)	1			R 1936
Micaria nivosum L. Koch, 1866	1			R 1936
Micaria pulicaria (Sundevall, 1831)	4			R 1936
Micaria subpaca Westring, 1861	13			R 1936
Scotophaeus scutulatus (L. Koch, 1866)	3			R 1936
Hahnidae				
Habnia nova (Blackwall, 1841)	4			
Linyphiidae				
Agyneta decora (O. P.-Cambridge, 1871)	3			R 1936
Araonous humilis (Blackwall, 1841)				R 1936
Bathyphantes gracilis (Blackwall, 1841)	3			R 1936
Bathyphantes nigrosum (Westring, 1851)	4			R 1936
Centromerita bicolor (Blackwall, 1833)	2			R 1936
Centromerus ludovici Bosenberg, 1899				R 1936
Centromerus cylindricalis (Blackwall, 1841)	13			R 1936
Ceratinella major Kulzyfski, 1894	1			R 1936
Dicymbium nigrosum (Blackwall, 1834)	10			R 1936
Dicymbium tibiale (Blackwall, 1836)	2			R 1936
Diploecephalus cristatus (Blackwall, 1833)	24			R 1936
Diploecephalus laterifrons (O. P.-Cambridge, 1863)	4			R 1936
Diploecephalus picinus (Blackwall, 1841)	45			R 1936
Diptolyta concolor (Wider, 1834)	2	70		R 1936
Dismodicus bifrons (Blackwall, 1841)	1			R 1936
Draperisca socialis (Sundevall, 1833)	1			R 1936
Entelecara acuminata (Wider, 1834)	1	23		R 1936
			Ch & P 1982, Ch 1986	R 1936
Erigone atra Blackwall, 1833				R 1936
Erigone dentipalpis (Wider, 1834)	5	35		R 1930, R 1937
E. remota L. Koch, 1869				R 1936
E. tirodennis L. Koch, 1872				R 1936
Frontinellia frutetorum (C.L. Koch, 1834)	1			N 1874, R 1936
Helophora insignis (Blackwall, 1841)	6			R 1936
Hylyphantes graminicola (Sundevall, 1830)	5			R 1937
Hypocoma bituberculatum (Wider, 1834)				R 1936
Taxa	Our data, adults (ind.)	Historical data		
---	-------------------------	-----------------		
	Buildings	Other habitats	Buildings	Other habitats
Hypomma cornutum (Blackwall, 1833)	5		R 1936	
Leptophantes leptopus (O. P.-Cambridge, 1865)	64	1		
Leptophantes minutus (Sundevall, 1830)	1	36	R 1936	
Linyphia bortensis Sundevall, 1830			R 1936	
Linyphia triangularis (Clerck, 1757)	4	13	R 1936	
Macargus rufus (Wider, 1834)			R 1936	
Mansuphanthes mansuetus (Thorell, 1875)			R 1936	
Megaleptophantes nebulosus (Sundevall, 1830)	44	2		
Megaleptophantes pseudocollinus Saaristo, 1997	2		R 1936	
Meioneta fascipalpa (C.L. Koch, 1836)				
Meioneta innotabilis (O. P.-Cambridge, 1863)				
Meioneta mollis (O. P.-Cambridge, 1871)	3			
Meioneta rarestris (C.L. Koch, 1836)	5	11		
Micargus berbigraudus (Blackwall, 1854)				
Micargus subaequalis (Westring, 1851)				
Microlynphia pusilla (Sundevall, 1830)	1		R 1936	
Microneta viaria (Blackwall, 1841)			R 1936	
Moebelia penicillata (Westring, 1851)	1	11		
Nematognus sanguinolentus (Walckenaer, 1841)				
Neriene clathrata (Sundevall, 1830)	4	10		
Neriene emphana (Walckenaer, 1841)			R 1936	
Neriene montana (Clerck, 1757)	7	9	R 1936	
Neriene peltata (Wider, 1834)			R 1936	
Neriene radiata (Walckenaer, 1841)			R 1936	
Oedothorax apicatus (Blackwall, 1850)	1	1	R 1936	
Oedothorax fuscus (Blackwall, 1834)			R 1936	
Oedothorax insignis (Bösenberg, 1902)			R 1936	
Oedothorax retusus (Westring, 1851)			R 1936	
Pityohyphantes pfyrgianus (C.L. Koch, 1836)			N 1874	
Porroboma pygmaeaum (Blackwall, 1834)	2			
Salaca krauzjynski Miller & Kratochvil, 1939				
Stenonyphantes lineatus (Linnaeus, 1758)	2			
Tapinocyba pallens (O. P.-Cambridge, 1872)	2			
Tenuiphantes cristatus (Menge, 1866)	1		R 1936	
Tenuiphantes flavipes (Blackwall, 1854)	15		R 1936	
Tenuiphantes mengei (Kulczyński, 1887)	1	7	R 1936	
Tenuiphantes tenebrosa (Wider, 1834)			R 1936	
Tenuiphantes tenuis (Blackwall, 1852)	1	3	R 1936	
Tenuiphantes zimmermanni (Bertkau, 1890)	3	1	R 1936	
Thyrostenius parasiticus (Westring, 1851)	1	5	R 1936	
Tymatocephalus cristatus (Wider, 1834)	7		R 1936	
Walckenaeria cucullata (C.L. Koch, 1836)			R 1936	
Walckenaeria fusca Rosca, 1935			R 1936	
Walckenaeria mitrata (Menge, 1868)	2		R 1936	
Walckenaeria obtusa Blackwall, 1836	2		R 1936	
Liocranidae				
Agroeca brunnea (Blackwall, 1833)	1		R 1936	
Lycosidae				
Alopecosa accentuata (Latreille, 1817)	4		N 1874, R 1930	
Alopecosa barbipes (Sundevall, 1833)			R 1936	
Alopecosa cuneata (Clerck, 1757)			R 1936	
Taxa	Our data, adults (incl.)	Historical data		
---	--------------------------	-----------------		
Alopeosa pulverulenta (Clerck, 1757)	132	R 1936		
Alopeosa roeweri (Roësca, 1937)		R 1937		
Alopeosa trabalis (Clerck, 1757)		N 1874, R 1936		
Arctosa cinerea (Fabricius, 1777)	2	R 1936		
Arctosa figurata (Simon, 1876)		R 1936		
Arctosa lutetiana (Simon, 1876)		R 1936		
Arctosa stigmosa (Thorell, 1875)		R 1936		
Autopia albimana (Walckenaer, 1805)	4	N 1874, R 1936		
Lycosa singoriensis (Laxmann, 1770)				
Pardosa agrestis (Westring, 1861)	1 115	R 1936		
Pardosa agricola (Thorell 1856)	1	R 1936		
Pardosa alacris (C.L. Koch, 1833)	53	N 1874		
Pardosa amentata (Clerck, 1757)	1 78	R 1936		
Pardosa fulvipes (Collett, 1876)	8			
Pardosa lugubris (Walckenaer, 1802)	503	R 1936		
Pardosa monticola (Clerck, 1757)	1	R 1936		
Pardosa nigriceps (Thorell, 1856)	1	R 1936		
Pardosa paludicola (Clerck, 1757)	93	R 1936		
Pardosa palustris (Linnaeus, 1758)	1 74	R 1936		
Pardosa pratiroga (L. Koch, 1870)	1 122	R 1930		
Pardosa pullata (Clerck, 1757)	32	R 1936		
Pardosa sphagnicola (Dahl, 1908)	1	R 1936		
Pirata piratica (Clerck, 1757)	6	R 1936		
Piratula hygrophila (Thorell, 1872)		R 1936		
Trochosa robusta (Simon, 1876)		R 1936		
Trochosa ruricola (De Geer, 1778)	3 88	R 1936		
Trochosa terricola (Thorell, 1856)	89	R 1936		
Xerolyosa miniata (C.L. Koch, 1834)	32			

Mimetidae

Taxa	Our data, adults (incl.)	Historical data
Ero aphana (Walckenaer, 1802)	5	R 1936
Ero furcata (Villers, 1789)	1	R 1936

Miturgidae

Taxa	Our data, adults (incl.)	Historical data
Cheiracanthium erraticum (Walckenaer, 1802)		R 1936
Cheiracanthium mildii L. Koch, 1864	12	
Cheiracanthium onognathum Thorell, 1871		R 1936

Nesticidae

Taxa	Our data, adults (incl.)	Historical data
Nesticus cellulans (Clerck, 1757)	13	

Philodromidae

Taxa	Our data, adults (incl.)	Historical data
Philodromus albicus Kulczyński, 1911	1 5	R 1936
Philodromus aureolus (Clerck, 1757)	1 1	R 1936
Philodromus cespitum (Walckenaer, 1802)	2 3	R 1936
Philodromus collinus C.L. Koch, 1835	2	
Philodromus dispar Walckenaer, 1826	3	R 1936
Philodromus poecilus (Thorell, 1872)		N 1874, R 1936
Thunatus arenarius L. Koch, 1872		R 1936
Tibellus oblongus (Walckenaer, 1802)	1	R 1936

Pholcidae

Taxa	Our data, adults (incl.)	Historical data		
Pholcus alliceps Spassky, 1932	85			
Pholcus opilionoides (Schräfl, 1781)	72 3	R 1936		
Pholcus phalangioides (Fuesslin, 1775)	1503 1	R 1936, Ch & P 1982		
Taxa	Our data, adults (ind.)	Historical data		
---	-------------------------	-----------------		
	Buildings	Other habitats	Buildings	Other habitats
Pholcus ponticus Thorell, 1875	77			
Spermophora senoculata (Duges, 1836)	69			
Pisauridae				
Pisaura mirabilis (Clerck, 1757)	1	10		R 1936
Salticidae				
Asianellus festivus (C.L. Koch, 1834)	5		N 1874, R 1937	
Balliochalybeius (Walckenaer, 1802)	1		N 1874, R 1936	
Evarcha arcuata (Clerck, 1757)	1		R 1936	
Evarcha falcata (Clerck, 1757)	1		R 1936	
Evarcha laetabunda (C.L. Koch, 1846)	1		R 1936	
Heliophanus auratus C.L. Koch, 1835	2		R 1937	
Heliophanus cupreus (Walckenaer, 1802)	2		R 1936	
Heliophanus flavipes (Hahn, 1832)	2		R 1936	
Heliophanus tribulosus Simon, 1868			R 1936	
Myrmarchne formicaria (De Geer, 1778)	1		R 1936	
Salticus scenicus (Clerck, 1757)	1	2	R 1936	
Salticus zebranue (C.L. Koch, 1837)	7		R 1936	
Sibianor aurocininctus (Ohlert, 1865)	2		R 1936	
Sitticus pubeus (Fabricius, 1775)	3	1	R 1936	
Scytodidae				
Scytothrix thoracica (Latreille, 1802)	18			
Segestriidae				
Segestria senoculata (Linnaeus, 1758)	1	1	R 1936	
Sparassidae				
Micrommata virescens ornata (Walckenaer, 1802)			N 1874	
Tetragnathidae				
Metellina mengi (Blackwall, 1870)	4	1	R 1936	
Metellina segmentata (Clerck, 1757)	5	2	R 1936	
Pachygnatha clerki Sundevall, 1823	1	3	R 1936	
Pachygnatha degener Sundevall, 1830	3	517	R 1936	
Pachygnatha listeri Sundevall, 1830	12		R 1936	
Tetragnatha dearmata Thorell, 1873	2		R 1936	
Tetragnatha extensa (Linnaeus, 1758)	1		R 1936	
Tetragnatha montana Simon, 1874	6		R 1936	
Tetragnatha nigrata Lendl, 1886			R 1936	
Tetragnatha obtusa C.L. Koch, 1837	1	4	R 1936	
Tetragnatha pinicola L. Koch, 1870			R 1936	
Theridiidae				
Asagena phalerata (Panzer, 1801)	5		R 1936	
Cryptachaea riparia (Blackwall, 1834)	1		R 1936	
Dipoena melanogaster (C.L. Koch, 1837)	3		R 1936	
Enoplognatha latimana Hippa & Oksala, 1982	5		R 1936, L 1958	
Enoplognatha oculata (Clerck, 1757)	2	590	R 1936	
Enoplognatha thoracica (Hahn, 1833)	1		R 1936	
Episinus angulatus (Blackwall, 1836)	1		R 1936	
Neottiura bimaculata (Linnaeus, 1767)	9		R 1936	
Oblertidion obterri (Thorell, 1870)			R 1936	
Paidiscera pallens (Blackwall, 1834)	1		R 1936	
Parasteatoda funata (Clerck, 1757)			R 1936	
Parasteatoda simulans (Thorell, 1875)	28	10	R 1936	
Parasteatoda tabulata (Levi, 1980)	60	1	R 1936	
Taxa	Our data, adults (ind.)	Historical data		
---	-------------------------	-----------------		
Parasteatoda tepidariorum (C.L. Koch, 1841)	349 buildings, 18 other habitats	Buildings: Ch & P 1982, Other habitats: R 1936		
Phylloneta impressa (L. Koch, 1881)	3 buildings, 1 other habitat	R 1936		
Plistnickina spinata (Walckenaer, 1802)	3 buildings, 28 other habitats	N 1874, R 1936		
Robertus arundinieti (O. P. Cambridge, 1871)	2 buildings			
Steatoda albomaculata (De Geer, 1778)	1 building			
Steatoda bipunctata (Linnaeus, 1758)	14 buildings, 43 other habitats	R 1936		
Steatoda castanea (Clerck, 1757)	178 buildings, 1 other habitat	R 1936		
Steatoda grossa (C.L. Koch, 1838)	76 buildings, 1 other habitat	R 1936		
Steatoda triangulosa (Walckenaer, 1802)	85 buildings, 1 other habitat			
Theridion mystaceum L. Koch, 1870	2 buildings			
Theridion pictum (Walckenaer, 1802)	1 building	R 1936		
Theridion pinastri L. Koch, 1872	1 buildings, 2 other habitats	R 1936		
Theridion varians Hahn, 1833	2 buildings, 13 other habitats	N 1874, R 1936		

Thomisidae

Taxa	Our data, adults (ind.)	Historical data
Diaea dorsata (Fabricius, 1777)	1 building	R 1936
Ebrechtella tricuspidata (Fabricius, 1775)	4 buildings, 2 other habitats	R 1936
Misumenia vatia (Clerck, 1757)	2 buildings, 3 other habitats	R 1936
Ozyptila atomaria (Panzer, 1801)		
Ozyptila praticola (C.L. Koch, 1837)	1 building, 36 other habitats	R 1930
Ozyptila pullata (Thorell, 1875)		R 1936
Ozyptila rauda Simon, 1875	3 buildings	
Pittius truncatus (Pallas, 1772)		
Runcinia grammica (C.L. Koch, 1837)		R 1936
Synema globum (Fabricius, 1775)		N 1874
Tmarus piger (Walckenaer, 1802)		N 1874
Xysticus acerbus Thorell, 1872	24 buildings, 1 other habitat	R 1936
Xysticus audax (Schrank, 1803)	6 buildings, 1 other habitat	R 1936
Xysticus bifasciatus C.L. Koch, 1837	7 buildings, 1 other habitat	R 1936
Xysticus cristatus (Clerck, 1757)	57 buildings, 1 other habitat	R 1936
Xysticus erraticus (Blackwall, 1834)	1 building	
Xysticus kochi Thorell, 1872	45 buildings, 1 other habitat	R 1936
Xysticus lanio C.L. Koch, 1835		N 1874, R 1936
Xysticus lucuosus (Blackwall, 1836)		R 1936
Xysticus ulmi Hahn, 1831	5 buildings, 1 other habitat	R 1936

Uloboridae

Hyptiotes paradoxus (C.L. Koch, 1834) N 1874

Zodariidae

Zodarion rubidum Simon, 1914 6

Zoridae

Zora pardalis Simon, 1878 R 1936

Number of species in each category 83 192 9 166

Totals (our data and historical data) 212 173

Total 260

1 *Erigone remota* and 2 *Erigone tirolensis* are recorded from Chernivtsi (Roșca 1936) with a note that they were found on the bank of the Prut river in a pile of rubbish and were probably transported from somewhere else.
