To discover the causes of social, economic and technological change

MEASUREMENT OF ECONOMIC GROWTH, DEVELOPMENT AND UNDER DEVELOPMENT: NEW MODEL AND APPLICATION

Mario COCCIA
ARIZONA STATE UNIVERSITY
Center for Social Dynamics and Complexity
Interdisciplinary Science and Technology Building 1 (ISBT1)
550 E. Orange Street, Tempe- AZ 85287-4804 USA

and

CNR -- NATIONAL RESEARCH COUNCIL OF ITALY
Via Real Collegio, 30-10024, Moncalieri (TO), Italy

E-mail: mario.coccia@cnr.it
Abstract. This paper presents a simple model to measure the relative economic growth of economic systems. The model considers S-Shaped patterns of economic growth that, represented with a linear model, measure how an economic system grows in comparison with another one. In particular, this model introduces an approach which indicates if the economic system has a process of economic growth, development or under development. The application of the model is provided for regions and macro regions of the Italian economic system.

KEYWORDS: Economic Growth; Convergence; Economic Development; Relative Growth; S-Shaped Pattern

JEL Codes: C02, F43, O40, O47.

Acknowledgements. I am grateful to Michele Mininni (University of Bari, Italy), Luigi Montrucchio (University of Torino, Italy), Alessandro Flamini (Graduate Institute of International Studies-Geneva, Switzerland), David Audretsch (Max Planck Institutes, Jena Germany), Jagannadha Pawan Tamvada (Max Planck Institutes, Jena Germany), and Angelo Reati (European Commission, Brussels) for valuable suggestions and discussion. I add that the responsibility for all views expressed is entirely mine.
MODEL

Let \( Y(t) \) be the total output at time \( t \) of the economic system \( Y' \) and \( X(t) \) be the total output at the same time of the economic system \( X' \);

let \( Y' \geq X' \), \( b_1 \) and \( b_2 \) be the rates of growth of total outputs \( Y \) and \( X \), respectively, such that \( B_1 = \frac{b_2}{b_1} \);

if \( Y \) and \( X \) increase, in the long run, according to some \( S \)-shaped pattern of growth, then \( B_1 = \frac{b_2}{b_1} \) measures the relative economic growth of the economic system \( X' \) in relation to the economic growth \( Y' \).

In fact, if both \( Y \) and \( X \) increase in the long run according to some \( S \)-shaped pattern of growth (Lewis, 1955; Jarne \textit{et al.}, 2005), one way to represent such a pattern formally is in terms of the differential equation of the well-known logistic function. In the case of \( Y(t) \) we have:

\[
\frac{1}{Y} \frac{dY}{dt} = \frac{b_1}{K_1} (K_1 - Y)
\]

This equation can be rewritten as

\[
\frac{K_1}{Y (K_1 - Y)} dY = b_1 dt \quad \frac{dY}{Y} - \frac{dY}{(K_1 - Y)} = b_1 dt
\]

Upon integrating we obtain

\[
\log Y - \log (K_1 - Y) = A_i + b_1 t
\]

\[
\log \frac{K_1 - Y}{Y} = a_i - b_1 dt
\]

\[
Y = \frac{K_1}{1 + \exp (a_i - b_1 t)}
\]

where \( a_i = b_1 dt \), and \( t_i \) is the abscissa of the point of inflection.

Thus the growth of \( Y \) and \( X \) can be described as:
\[
\log \frac{K_1 - Y}{Y} = a_1 - b_1 t
\]  \[1\]

for \(X(t)\) we proceed in similar way of \(Y(t)\) and we have:

\[
\log \frac{K_2 - X}{X} = a_2 - b_2 t
\]  \[2\]

respectively.

It can be readily verified that the logistic curve is a symmetrical \(S\)-shaped curve with a point of inflection at \(0.5K^2\)

Solving the equations [1] and [2] for \(t\),

\[
t = \frac{a_1}{b_1} - \frac{1}{b_1} \log \frac{K_1 - Y}{Y} = \frac{a_2}{b_2} - \frac{1}{b_2} \log \frac{K_2 - X}{X}
\]

which immediately yields the expression

\[
\frac{Y}{K_1 - Y} = C_1 \left( \frac{X}{K_2 - X} \right)^{b_2/b_1}
\]  \[3\]

Clearly:

\[
C_1 = \exp \left( \frac{a_2b_1 - a_1b_2}{b_2} \right), \text{ which can be written in a simplified form as}
\]

\[
C_1 = \exp \left[ b_1(t_2 - t_1) \right] \text{ since, as noted earlier, } a_1 = b_1 t_1 \text{ and } a_2 = b_2 t_2 \text{ (cf. Eqs. [1] and [2]).}
\]

When \(X\) and \(Y\) are small in comparison with their final value, Eq. [3] reduces to

\[
\frac{Y}{K_1} = C_1 \left( \frac{X}{K_2} \right)^{b_2/b_1}
\]

Hence the following simple model of economic growth is obtained \(X = A_1(Y)^{b_1}\)  \[4\]

where \(A_1 = \frac{K_2}{b_2} C_1\) and \(B_1 = \frac{b_2}{b_1}\)

The Eq. [4] was used by Huxley (1932) to describe the shape changes which animals and plants undergo during

\[2\] Briefly, \(a_1\) is a constant depending on the initial conditions, \(K_1\) is the equilibrium level of growth, and \(b_1\) is the rate-of-growth parameter.
growth. In similar way this allometry equation [4] can be used to describe the changes of economic systems undergo during economic growth. The standard approach is to submit relative growth data to a logarithmic transformation before carrying out calculations. In fact, the logarithmic form of the equation \( X = A_i (Y)^{B_i} \) is a simple linear relationship,
\[
\log X = \log A_i + B_i \log Y
\]
\( B_i \) is the allometry exponent of the \( X \) relatively to the \( Y \).
If the relative growth of the two dimensions were isometric (i.e. it produces economic growth), the allometry exponent \( B_i \) should have a unit value. This hypothesis is expressed as:
\[
B_i = 1
\]
On the other hand, the hypothesis that \( X \) increases at greater relative rate that \( Y \), the hypothesis of positive allometric growth or economic development, could be expressed as:
\[
B_i > 1
\]
the hypothesis that \( X \) a negative allometric growth (under development) relatively to \( Y \) would be expressed as:
\[
B_i < 1
\]

**Remark:** Gompertz function
It is not necessary that the growth curves of economic system be of the logistic form. For instance, suppose that the pattern of economic growth is described as a Gompertz function:
\[
\frac{1}{Y} \frac{dY}{dt} = J_1 \exp(I_1 - J_1 t)
\]
The integral form of this equation is:
\[
\log Y = -\exp(I_1) \exp(-J_1 t) + \log K_1
\]
or
\[
Y = K_1 \exp[-\exp(I_1 - J_1 t)]
\]
Thus the growth of \( Y \) and \( X \) can be described as:
\[
\log \log \left( \frac{K_1}{Y} \right) = I_1 - J_1 t
\]
and
\[ \log \log \frac{K_2}{X} = I_2 - J_2 t \]  \[ \text{[6]} \]

This equation represents the Gompertz type of economic growth process and unlike the logistic, the Gompertz curve\(^3\) is an asymmetrical S-shaped curve with a point of inflection at \( Y = K / e \) of the limit to growth.

Solving the equations [5] and [6] for \( t \), we have

\[ t = -\frac{1}{J_1} \left( \log \log \frac{K_1}{Y} - I_1 \right) = -\frac{1}{J_2} \left( \log \log \frac{K_2}{X} - I_2 \right) \]

or

\[ \log \log \frac{K_1}{Y} = \log M + \log \left( \log \frac{K_2}{X} \right)^v \]

\[ \text{[7]} \]

where:

\[ v = \frac{J_1}{J_2}, \quad M = \frac{G_1}{G_2}, \quad G_1 = e^{I_1}, \quad G_2 = e^{I_2}; \] solving for \( Y \), we have

\[ Y = K_1 \exp \left[ -M \left( \log \frac{K_2}{X} \right)^v \right] \]

If both variables under consideration grow at the same rate, that is, \( v=1 \), then

\[ Y = \left( \frac{K_1}{K_2} \right)^M X^M \]

\[ \text{[8]} \]

Further, \( M = \frac{e^{I_1}}{e^{I_2}} \), since \( v=1 \). Thus the value of \( M \) depends only on two constants; it does not involve the rates of growth of the variables under consideration. Eq. [8] is, of course, identical with the earlier model given by Eq. [4] since it can be rewritten as

\[ X = A_2(Y)^{B_2} \]

\[ \text{[9]} \]

where \( A_2 = \frac{K_2}{K_1^M} \), \( B_2 = \frac{1}{M} \).

---

\(^3\) Briefly, \( I_1 \) is a constant, \( K_1 \) is the equilibrium level of growth, and \( J_1 \) is the rate-of-growth parameter.
Remark: generalization

Suppose that $X$ and $Y$ increase according to different forms of $S$-shaped curves, let

$$\frac{1}{Y} \frac{dY}{dt} = u_1(K_1 - Y) \quad \frac{1}{X} \frac{dX}{dt} = u_2(K_2 - X^m)$$

where $u_1 = \frac{b_1}{K_1}$ and $u_2 = \frac{b_2}{K_2}$. The solution of this system of equations is given by

$$\frac{1}{Y} \frac{dY}{dt} = B_3 \left( \frac{1}{X} \frac{dX}{dt} \right)$$

or

$$X = A_3(Y)^{b_1} \tag{10}$$

where $\log A_3$ is a constant of integration and

$$B_3 = \frac{1}{m} \quad m = \frac{K_1 u_1}{K_2 u_2} \quad A_3 = \left( \frac{K_2}{K_1} \right)^{\frac{1}{m}}.$$ 

Clearly, the form of the Eq. [10] is identical with that of Eq. [4] and [9].
APPLICATION

Measuring the morphological change of economic growth
The application of the model above is based on Italy. This study uses the variable: region’s i annualized grow rate of per capita Gross Domestic Product (GDP), measured in Euros (value in 2003; cf., table 1A). The source data are from ISTAT (Italian National Institute for Statistics) for the 1980-2003 period, divided into 20 regions and three macro regions (Table 1).

Table 1 - Italian regions and macro regions

| Abbreviations | Macro-Region                     | Regions                                                                 |
|---------------|----------------------------------|-------------------------------------------------------------------------|
| N Italy       | North of Italy                   | Liguria, Lombardia, Piemonte and Valle d’Aosta; Emilia-Romagna, Friuli-Venezia Giulia, Trentino-Alto Adige, Veneto |
| C Italy       | Central part of Italy            | Abruzzo, Lazio, Marche, Toscana, Umbria                                 |
| S Italy       | South of Italy and Islands       | Basilicata, Calabria, Campania, Molise, Puglia, Sardegna, and Sicilia   |

The study here measures and analyzes the patterns of economic growth of some Italian regions (which are not included in the North of Italy), in relation to (rich) Northern Italy. Moreover, the paper investigates the economic growth of Italian macro-regions, Centre and South of Italy, in relation to the North of Italy.

Although differences in technology, preferences, and institutions do exist across regions, these differences are likely to be smaller than those across countries. Firms and households of different regions within a single country tend to have access to similar technologies and have roughly similar tastes and cultures. Furthermore, the regions share a common central government and therefore have similar institutional setups and legal systems. This relative homogeneity means that absolute convergence is more likely to occur across regions within countries than across countries. Another consideration is that inputs tend to be more mobile across regions than across countries. Legal, cultural, linguistic, and institutional barriers to factor movements tend to be smaller across regions within a country than across countries.
The following assumptions are the basis of the model:

1. Let $S_1=$ regional system 1; $S_2=$ regional system 2, $MR=$Macro region*, I assume that $S_1$, $S_2$, $MR \subseteq A$ (country system), $S_1 \cap MR = \emptyset$ and $S_2 \cap MR = \emptyset$.

2. Patterns of per capita GDP grow in the short-medium run with an $S$-Shaped pattern (Jarne et al., 2005; see figure 1A).

3. Adjacent regions within a country (e.g., Italy) are homogenous in terms of groups of people, institutions and firms, investment habits, savings, consumption, social status, cultures, tastes, financial positions, open-mindedness, laws, industries, etc.

4. The North of Italy is a richer economic system than other Italian regions and macro-regions and it is able to promote economic growth in other regions.

*Remark:* Although the North of Italy is formed by the North East and North West, which have different characteristics, I assume Northern Italy to be a homogeneous system (on the whole) richer than other Italian regions.

*Remark:* This analysis performs comparison among homogenous elements which are sub-sets of a system; in other words, given the $C_1$ and $C_2$ country systems and the $R_1$ region such that $R_1 \subseteq C_1$, we cannot measure the economic growth of $R_1$ in relation to $C_2$ because $R_1 \not\subseteq C_2$. (i.e., the economic growth of Italian regions cannot be compared with a German region because of differences in habits, institutions, laws, national system of innovation, etc.; therefore, we draw a comparison “within” the country).

The analysis is carried out on the matrix $R=24$ (years) $\times$ 13 (regions: 12 regions + 1 macro-region* of North Italy) of the Italian economic system:
and the matrix MR= 24 (years) ×3 (Macro Regions):

\[
R = \begin{bmatrix}
\text{GDP 1980region}_1 & \ldots & \text{GDP 1980region}_n & \ldots & \text{GDP 1980region}_2 & \text{GDP 1980Macro – region*} \\
\vdots & \ddots & \vdots & & \vdots & \vdots \\
\text{GDP year i / region}_1 & \ldots & \text{GDP year i / region}_n & \ldots & \text{GDP year i / Macro – region*} \\
\vdots & \ddots & \vdots & & \vdots & \vdots \\
\text{GDP2003region}_1 & \ldots & \text{GDP 2003region}_n & \ldots & \text{GDP 2003Macro – region*} \\
\end{bmatrix}
\]

Remark: Macro region* is the North of Italy, which I assume to be the engine of overall Italian economic growth; regioni and other macro-regions are not included in the Macro region*, i.e. the North of Italy.

Our function of economic growth is given by:

\[
y_t = a \cdot (x_t)^b
\]

where:

- \(a\) is a constant
- \(y_t\) is region \(i\)’s annualized growth rate of GDP per capita at time \(t\)
- \(x_t\) is Northern Italy’s annualized growth rate of GDP per capita at time \(t\), such that \(t \in \{1980, \ldots, 2003\}\), measured in Euros (2003 value).

The North of Italy is a driving force (similar to a locomotive) of the economic growth of other Italian regions (wagons) and of the overall Italian economic system.

Remark: I assume, as already said, that growth in a leading region is capable of promoting growth in other regions to a lower, similar, or higher extent.
Remark: Let $b_1$ and $b_2$ be the growth rates of the total outputs of economic systems, $Y$ (region) and $X$ (North of Italy) respectively, so that

$$B_1 = \frac{b_1}{b_2}$$

measures the relative economic growth of economic system $Y$ in relation to the economic growth of $X$.

The Moving Average is applied to data to smooth out the fluctuations underlying the GDP growth rate in order to eliminate the serial correlations. In particular, the moving averages are calculated over three years, instead of five years, to avoid having shorter time series for the regression analyses. These data are then transformed into natural logarithmic data before calculations are carried out to have normal distribution.

In fact, the logarithmic form of equation \( y_t = a \cdot x_t^B \) is a simple linear relationship:

$$\ln y_t = \ln a + B \ln x_t + \varepsilon_t$$ \[11\]

I consider the following hypotheses:

- if the GDP per capita growth of the region represented on the $y$-axis is lower than the GDP per capita growth of the macro region* represented on the $x$-axis and $B = 1$, both total outputs (regions and North of Italy) are growing at the same rate (*economic isometric growth of regional systems); in this case regional economic growth follows steady-state growth ($s^*$). This is similar to a balanced-growth path.

- if the GDP per capita growth of the region represented on the $y$-axis is lower than the GDP per capita growth of the macro region* represented on the $x$-axis and $B < 1$, the component represented on the $y$ axis (growth rate of regional GDP per capita) is growing more slowly than the component on the $x$ axis (which represents the North of Italy); this hypothesis (Hp) presents a negative disproportionate (allometric) growth of the regions.
in relation to the Macro region* (or under development). In other words, this generates a particular kind of unbalanced growth.

- If the GDP per capita growth of the region represented on the $y$-axis is lower than the GDP per capita growth of the Macro region* represented on the $x$-axis and $B > I$, the $y$ axis component is growing faster than the $x$ axis component; there is a positive disproportionate (allometric) growth or economic development of the regional systems in relation to the Macro region*.

**Remark.** The concepts of isometric, negative, and positive disproportionate (allometric) economic growth are based on an unconditional approach, which does not consider additional variables.

**Remark.** If there are economic systems $\Omega$ and $\Theta$ (e.g. regions), with $\Omega, \Theta \subseteq A$ (country system: e.g. Italy), represented on the $y$-axis, where $\Omega$ is a poor region and $\Theta$ a rich one (i.e., with high GDP per capita), and $X \subseteq A$, an economic system richer than $\Omega$ and $\Theta$; if $X$ is represented on the $x$-axis, the patterns of economic growth of $\Omega$ towards $\Theta$ depend on parameter $B$ of $\Omega$ and $\Theta$ respectively.

**Remark.** If there are several economic systems $\Omega_1, \Omega_2, ..., \Omega_i, ..., \Omega_n \subseteq A$ represented on the $y$-axis, with different starting situations represented by GDP per capita, and $X \subseteq A$, a rich economic system, if $X$ (represented on $x$-axis) is the engine of the economic growth of the overall system $A$, this model shows the patterns of economic growth of these economic systems $\Omega_i$ ($i=1, ..., n$) in relation to each other regions and to the rich economic region $X$.

To sum up, the cases analyzed in this study are the Italian regions and two macro-regions over 24-year time series. As the patterns of economic growth of Italian regions and macro regions in the period 1980-2003 are $S$-shaped functions (see figure 1A in the Appendix), I apply model [11].
The model [11] has linear parameters that are estimated by the Ordinary Least-Squares Method. The calculation is carried out using the SPSS statistics software. Table 2 presents the typology of economic growth of regions and macro-regions in relation to the North of Italy.
| Regions      | $\hat{B}_i$ (Std. Err.) | Typology of economic growth with sig. 5% | $R^2$ adj |
|-------------|-------------------------|-----------------------------------------|---------|
| Sardegna    | 0.582* (0.230)          | ALLOMETRY –                              | 0.213   |
| Marche      | 0.697** (0.102)         | ALLOMETRY –                              | 0.684   |
| Campania    | 0.798# (0.340)          | suspect Alometry –                       | 0.184   |
| Basilicata  | 0.294** (0.224)         | ALLOMETRY –                              | 0.036   |
| Puglia      | 1.027# (0.156)          | suspect Alometry +                       | 0.689   |
| Molise      | 0.793* (0.069)          | ALLOMETRY –                              | 0.855   |
| Lazio       | 0.755# (0.170)          | suspect isometry                         | 0.472   |
| Calabria    | 0.357** (0.108)         | ALLOMETRY –                              | 0.321   |
| Abruzzo     | 0.628** (0.110)         | ALLOMETRY –                              | 0.622   |
| Umbria      | 0.618# (0.122)          | suspect isometry                         | 0.533   |
| Toscana     | 0.651** (0.083)         | ALLOMETRY –                              | 0.744   |
| Sicilia     | 0.261** (0.100)         | ALLOMETRY –                              | 0.234   |
| **Macro-Regions**                                   |
| Italy       | 0.630** (0.056)         | ALLOMETRY –                              | 0.857   |
| South Italy | 0.927# (0.105)          | suspect isometry                         | 0.778   |

Note: *Level of significance 5%  ** Level of significance 1‰  # A non-significant B means that there is no (significant) relationship between the growth rate of the region under investigation and Northern Italy. Statistical inference on regression coefficients indicates suspect isometry or negative/positive disproportionate (allometric) growth: the Null Hypothesis is $H_0: \hat{B} = 1$.
The parametric estimates are presented in Tables 2A-3A (in the Appendix).\(^4\) Firstly, in a few cases the results from the Durbin-Watson (DW) test indicate the presence of serial correlation in the residuals of the equations. In the other cases, however, the DW’s d statistic is in the zone of indeterminacy and of acceptance of the null hypothesis. The parametric estimates of the models are unbiased, the t-test presents significance of the coefficients at 1‰ and 5%, and the R\(^2\) values are high, except for a few cases. Thus, in the majority of cases the models explain more than 50% of variance in the data. The results reveal (with 5% level of significance) that eight regions have negative disproportionate (allometric) economic growth; moreover, there is one suspect negative allometry (Campania), two suspect isometric growth (Lazio and Umbria) and one suspect positive allometry or economic development (Puglia). These results are due to a non-significant B in the regression analysis, even if the t-test B=1 provides for acceptance or rejection of the null hypothesis.

The relative changes in the economic growth of two macro-regions in relation to the growth rate of the North of Italy suggest that there is a (suspect) isometric economic growth of the South of Italy (coefficient 0.93) and a negative economic allometry for the central part of Italy in relation to the North of Italy over the 1980-2003 period. The functions of economic growth of these two Italian macro-regions are:

\[
CITALY_y_t = 0.603 \cdot NITALY \cdot x_t^{0.63} \\
SITALY_y_t = 1.135 \cdot NITALY \cdot x_t^{0.93}
\]

(C Italy with negative disproportionate – allometric –economic growth)

(S Italy with suspect “isometric” economic growth)

\(^4\) To reduce the autocorrelation of Calabria, Lazio, Toscana and the central part of Italy, these areas are standardized to the 1981 value, while Sardegna and Umbria to the 2003 value.
Therefore, this model suggests three behaviors (Figure 1):

- **Economic isometric growth** (suspect) of the regional system if both growth rates of GDP per capita (regions and North of Italy) are growing at the same rate.

- **Economic development of the regional system** if the regional growth rate of GDP per capita is growing faster than the growth rate of GDP per capita in the North of Italy.

- **Negative economic disproportionate (allometric) growth of the regional system** if the growth rate of the GDP per capita is growing more slowly than the growth rate of GDP per capita in the North of Italy.

Figure 1 – Patterns of spatial economic growth

The results are summarized in table 2 above, whereas figure 2 shows the magnitude (speed) of regional economic growth; Figures 3 and 4 reveal the spatial morphology of Italian regional economic growth.
Figure 2 – Magnitude (speed) of the economic growth rate of Italian regions in comparison with the North of Italy, using allometric coefficients
Figure 3 – Patterns of spatial economic growth within Italian regions (1980-2003 period) in comparison with the North of Italy, considering the 5% significance

*Note:* Some regions have a non-significant $B_1$, i.e. there is no (significant) relationship between the growth rate of the region under investigation and Northern Italy. However, statistical inference on regression coefficients indicates suspect patterns of regional economic growth: # Suspect isometric growth in Lazio, Umbria; §suspect negative *disproportionate (allometric)* growth in Campania, and $suspect positive *disproportionate (allometric)* growth in Puglia.
Figure 4 – Patterns of spatial economic growth of Italian macro-regions (1980-2003 period) in comparison with the North of Italy, considering the 1% significance

*Note:* The # macro-region has a non-significant $B_1$, i.e. there is no (significant) relationship between the growth rate of the region under investigation and Northern Italy. Statistical inference on regression coefficients indicates suspect isometry in the South of Italy.

Finally, relative changes in economic growth of some regions are represented by the following functions:

- **Puglia**<sub>i</sub> = 0.975 $\cdot$ NITALY<sub>i</sub>\(^{1.028}\)
  
  (suspect positive disproportionate – allometric – economic growth)

- **Campania**<sub>i</sub> = 1.185 $\cdot$ NITALY<sub>i</sub>\(^{0.798}\)
  
  (suspect isometric economic growth)

- **Toscani**<sub>i</sub> = 0.075 $\cdot$ NITALY<sub>i</sub>\(^{0.651}\)

  (negative disproportionate – allometric –economic growth; i.e., under development)
Appendix

Figure 1A - S-shaped economic growth pattern of Central Italy

Note: This pattern of economic growth is similar in the North Italy, South Italy and other regions.
Table 1A - GDP per capita of Italian regions and macro regions in 1981, 1991 and 2001; GDP in millions of Euros, measured in 2003 value

| Regions                        | 1981    | 1991    | 2001    |
|-------------------------------|---------|---------|---------|
| **North of Italy**             |         |         |         |
| Piemonte                      | 16,439  | 21,645  | 25,871  |
| Valle d'Aosta                  | 19,826  | 27,509  | 28,564  |
| Lombardia                      | 17,925  | 25,136  | 28,724  |
| Liguria                        | 14,070  | 20,272  | 24,818  |
| Trentino-Alto Adige            | 17,861  | 25,942  | 29,120  |
| Veneto                         | 15,364  | 21,509  | 25,503  |
| Friuli-Venezia Giulia          | 13,933  | 20,213  | 25,117  |
| Emilia-Romagna                 | 18,032  | 23,491  | 28,084  |
| **Central part of Italy**      |         |         |         |
| Toscana                        | 15,604  | 20,400  | 24,852  |
| Umbria                         | 13,881  | 18,357  | 21,736  |
| Marche                         | 13,974  | 18,331  | 22,381  |
| Lazio                          | 14,371  | 21,379  | 25,411  |
| Abruzzo                        | 11,507  | 17,190  | 19,110  |
| Molise                         | 9,895   | 14,337  | 17,372  |
| **South of Italy**             |         |         |         |
| Campania                       | 8,958   | 12,536  | 14,873  |
| Puglia                         | 9,101   | 12,746  | 14,950  |
| Basilicata                     | 8,917   | 11,971  | 15,514  |
| Calabria                       | 8,131   | 11,437  | 13,955  |
| Sicilia                        | 9,859   | 13,682  | 15,040  |
| Sardegna                       | 10,304  | 14,630  | 17,053  |
| Italy                          | 13,782  | 19,039  | 22,438  |
| **Macro regions**              |         |         |         |
| Italy North West               | 17,048  | 23,604  | 27,509  |
| Italy North East               | 16,418  | 22,488  | 26,746  |
| **Italy Central part**         | 14,691  | 20,438  | 24,544  |
| **Italy South**                | 9,123   | 12,869  | 15,232  |
| **Islands**                    | 9,968   | 13,916  | 15,538  |
Table 2A - Parametric estimates of allometric economic growth model, regions in the 1980-2004 period

| Regions          | Estimated relationship                                                                 |  |  |  |
|------------------|----------------------------------------------------------------------------------------|---|---|---|
| lnAbruzzoy       | 0.406 + 0.628 lnNItaly x<sub>t</sub>                                                  | R² adj =0.622 | F=32.25 (sig.0.00) | DW=0.978 |
| N=20             | (0.131)                                                                               | S=0.525                |               |             |
| lnBasilicatay    | 0.669 + 0.294 lnNItaly x<sub>t</sub>                                                  | R² adj =0.036 | F=1.716 (sig. 0.21) | DW=0.994 |
| N=20             | (0.231)                                                                               | S=0.789                |               |             |
| lnCalabriay      | −2.027 + 0.357 lnNItaly x<sub>t</sub>                                                 | R² adj =0.321 | F=10.927(sig. 0.04) | DW=2.207 |
| N=22             | (0.386)                                                                               | S=0.419                |               |             |
| lnCampaniay      | 0.170 +0.798 lnNItaly x<sub>t</sub>                                                   | R² adj =0.184 | F=5.518 (sig.0.03) | DW=1.436 |
| N=21             | (0.395)                                                                               | S=1.643                |               |             |
| lnLazioy         | −2.742 + 0.755 lnNItaly x<sub>t</sub>                                                 | R² adj =0.472 | F=19.773(sig. 0.00) | DW=0.867 |
| N=22             | (0.606)                                                                               | S=0.658                |               |             |
| lnLazioy         | 0.215 + 0.697 lnNItaly x<sub>t</sub>                                                  | R² adj =0.684 | F=46.510 (sig. 0.00) | DW=0.392 |
| N=22             | (0.102)                                                                               | S=0.396                |               |             |
| lnLazioy         | 0.353 + 0.793 lnNItaly x<sub>t</sub>                                                  | R² adj =0.855 | F=130.471 (sig. 0.00) | DW=1.331 |
| N=23             | (0.080)                                                                               | S=0.358                |               |             |
| lnMarcheyy       | −0.025 + 1.028 lnNItaly x<sub>t</sub>                                                 | R² adj =0.689 | F=43.124 (sig. 0.00) | DW=1.805 |
| N=22             | (0.156)                                                                               | S=0.498                |               |             |
| lnMarcheyy       | −0.295 + 0.582 lnNItaly x<sub>t</sub>                                                 | R² adj =0.213 | F=6.407 (sig. 0.02) | DW=0.932 |
| N=21             | (0.298)                                                                               | S=0.862                |               |             |
| lnMarcheyy       | 0.735 + 0.261 lnNItaly x<sub>t</sub>                                                  | R² adj =0.234 | F=6.780 (sig. 0.02) | DW=1.289 |
| N=20             | (0.118)                                                                               | S=0.482                |               |             |
| lnToscanayy      | −2.590 + 0.651 lnNItaly x<sub>t</sub>                                                 | R² adj =0.744 | F=62.017(sig. 0.00) | DW=1.973 |
| N=22             | (0.295)                                                                               | S=0.320                |               |             |
| lnToscanayy      | 0.534 + 0.618 lnNItaly x<sub>t</sub>                                                  | R² adj =0.553 | F=25.786 (sig. 0.00) | DW=1.019 |
| N=21             | (0.158)                                                                               | S=0.456                |               |             |
Table 3A - Parametric estimates of the economic model of allometry, macro regions in the 1980-2004 period

| Macro regions | Estimated relationship |
|---------------|------------------------|
| $\ln C_{Italy}(y_t)$ $\sim N=23$ | $-0.505$ + $0.630 \ln N_{Italy} x_t$ $R^2_{adj}=0.857$ $F=126.990$ (sig. 0.00) $DW=1.170$ |
| $\ln S_{Italy}(y_t)$ $\sim N=23$ | $0.127$ + $0.927 \ln N_{Italy} x_t$ $R^2_{adj}=0.778$ $F=77.612$ (sig. 0.00) $DW=1.545$ |

Note 1: The second column is the estimate of the constant. Given below it, in parentheses, is its standard error. The third column is the estimate of $\beta$, with below it, in parentheses, its standard error. The fourth column shows the adjusted $R^2$ of the regression and, below the $R^2$ the standard error of the regression. The fifth column displays the results of the Fisher test, to its right the significance. In the last column is the Durbin-Watson test, which is an indicator of autocorrelation of the time series.

Note 2. N=shorter time series in some regions are due to the moving average that reduces the time series by one and also to the impossibility of calculating the logarithm for some values.

REFERENCES

Coccia M. 2009. A new approach for measuring and analyzing patterns of regional economic growth: empirical analysis in Italy, _Italian Journal of Regional Science- Scienze Regionali_, vol. 8, n. 2, pp. 71-95.

Huxley J. S. 1932. _Problems of relative growth_, Metheuen & Co., Ltd., London.

Lewis W. A. 1955. _The theory of economic growth_, Allen & Unwin, London.

Jarne G., Sánchez-Chóliz J, Fatás-Villafraanca F. 2005. S-Shaped economic dynamics. The logistic and Gompertz curves generalized, _The electronic journal of evolutionary modeling and economic dynamics_, n. 1048.
FURTHER READINGS FOR THE SOURCES OF ECONOMIC GROWTH BY THE AUTHOR

1. Calabrese G., Coccia M., Rolfo S. 2005. Strategy and market management of new product development: evidence from Italian SMEs, *International Journal of Product Development*, vol. 2, n. 1-2, pp. 170-189.

2. Cariola M., Coccia M. 2004. Technology transfer virtual network: analysis within the National System of Innovation, *International Journal of Networking and Virtual Organisation*, vol. 2, n. 2, pp. 162-172.

3. Cavallo, E., Ferrari E., Bollani, L., Coccia M. 2014. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system, *Agricultural Systems*, Vol. 130, pp. 44-54.

4. Cavallo, E., Ferrari E., Bollani, L., Coccia M. 2014a. Strategic management implications for the adoption of technological innovations in agricultural tractor: the role of scale factors and environmental attitude, *Technology Analysis & Strategic Management*, vol. 26, n. 7, pp. 765-779.

5. Cavallo, E., Ferrari E., Coccia M. 2015. Likely technological trajectories in agricultural tractors by analysing innovative attitudes of farmers, *International Journal of Technology, Policy and Management*, vol. 15, n. 2, pp. 158–177.

6. Coccia M. 2001. Satisfaction, work involvement and R&D performance, *International Journal of Human Resources Development and Management*, vol. 1, no. 2/3/4, pp. 268-282.

7. Coccia M. 2003. Metrics of R&D performance and management of public research institute, *Proceedings of IEEE- IEMC 03*, Piscataway, pp. 231-236 – ISBN: 0-7803-8150-5

8. Coccia M. 2004. Spatial metrics of the technological transfer: analysis and strategic management, *Technology Analysis & Strategic Management*, vol. 16, n. 1, pp. 31-51.

9. Coccia M. 2005. Countrymetrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, *Rivista Internazionale di Scienze Sociali*, vol. CXIII, n. 3, pp. 377-412.

10. Coccia M. 2005a. Measuring intensity of technological change: the seismic approach, *Technological Forecasting and Social Change*, vol. 72, No. 2, pp.117–144.

11. Coccia M. 2005b. Technometrics: Origins, historical evolution and new direction in *Technological Forecasting & Social Change*, vol. 72, n. 8, pp. 944-979.

12. Coccia M. 2005c. Economics of scientific research: origins, nature and structure, *Proceedings of Economic Society of Australia*, ISBN: 07340 26080.

13. Coccia M. 2006. Classifications of innovations: survey and future directions, *Working Paper Ceris del Consiglio Nazionale delle Ricerche*, vol. 8, n. 2 – pp. 1-19, ISSN: 1591-0709

14. Coccia M. 2006a. Economic and social studies of scientific research: nature and origins, *Working Paper Ceris del Consiglio Nazionale delle Ricerche*, vol. 8, n. 7 – pp. 1-17, ISSN: 1591-0709

15. Coccia M. 2007. A new taxonomy of country performance and risk based on economic and technological indicators, *Journal of Applied Economics*, vol. 10, n. 1, pp. 29-42.

16. Coccia M. 2008 New organizational behaviour of public research institutions: Lessons learned from Italian case study, *International Journal of Business Innovation and Research*, vol. 2, n. 4, pp.402–419.

17. Coccia M. 2008a. Investimento pubblico e privato in R&S: complementarietà ed interazione con la crescita della produttività, *Economia e Politica Industriale*, vol. 34, n. 3, pp. 127-154.
18. Coccia M. 2008b. Science, funding and economic growth: analysis and science policy implications, *World Review of Science, Technology and Sustainable Development*, vol. 5, n. 1, pp.1-27.
19. Coccia M. 2008c. Spatial mobility of knowledge transfer and absorptive capacity: analysis and measurement of the impact within the geoeconomic space, *The Journal of Technology Transfer*, vol. 33, n. 1, pp. 105-122.
20. Coccia M. 2009. What is the optimal rate of R&D investment to maximize productivity growth?, *Technological Forecasting & Social Change*, vol. 76, n. 3, pp. 433-446.
21. Coccia M. 2009a. Bureaucratization in public research institutions, *Minerva, A Review of Science, Learning and Policy*, vol.47, n. 1, pp. 31-50.
22. Coccia M. 2009b. Research performance and bureaucracy within public research labs, *Scientometrics*, vol. 79, n. 1, pp. 93-107.
23. Coccia M. 2009c. Measuring the impact of sustainable technological innovation, *International Journal of Technology Intelligence and Planning*, vol. 5, n. 3, pp. 276-288.
24. Coccia M. 2009d. A new approach for measuring and analyzing patterns of regional economic growth: empirical analysis in Italy, *Italian Journal of Regional Science- Scienze Regionali*, Vol. 8, n. 2, pp. 71-95.
25. Coccia M. 2010. Democratization is the driving force for technological and economic change, *Technological Forecasting & Social Change*, Vol. 77, n. 2, February, pp. 248-264.
26. Coccia M. 2010a. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita, *Energy Policy*, vol. 38, n. 3, pp. 1330-1339.
27. Coccia M. 2010b. Foresight of technological determinants and primary energy resources of future economic long waves, *International Journal of Foresight and Innovation Policy*, vol. 6, n. 4, pp. 225–232.
28. Coccia M. 2010c. Public and private R&D investments as complementary inputs for productivity growth, *International Journal of Technology, Policy and Management*, vol. 10, n. 1/2, pp. 73-91.
29. Coccia M. 2010d. Spatial patterns of technology transfer and measurement of its friction in the geo-economic space, *International Journal of Technology Transfer and Commercialisation*, vol. 9, n. 3, pp. 255-267.
30. Coccia M. 2011. The interaction between public and private R&D expenditure and national productivity, *Prometheus-Critical Studies in Innovation*, vol.29, n.2, pp.121-130.
31. Coccia M. 2012. Driving forces of technological change in medicine: Radical innovations induced by side effects and their impact on society and healthcare. *Technology in Society*, vol. 34, n.4, pp. 271-283.
32. Coccia M. 2012a. Evolutionary growth of knowledge in path-breaking targeted therapies for lung cancer: radical innovations and structure of the new technological paradigm. *International Journal of Behavioural and Healthcare Research*, vol. 3, ns. 3-4, pp. 273-290.
33. Coccia M. 2012b. Evolutionary trajectories of the nanotechnology research across worldwide economic players, *Technology Analysis & Strategic Management*, vol. 24, n.10, pp. 1029-1050.
34. Coccia M. 2012c. Converging genetics, genomics and nanotechnologies for groundbreaking pathways in biomedicine and nanomedicine, *Int. J. Healthcare Technology and Management*, vol. 13, n. 4, pp. 184-197.
35. Coccia M. 2012d. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia, *Technovation*, vol. 32, n. 6, pp. 370–379.
36. Coccia M. 2013. The effect of country wealth on incidence of breast cancer. *Breast Cancer Research and Treatment*, vol. 141, n. 2, pp. 225-229.
37. Coccia M. 2013a. What are the likely interactions among innovation, government debt, and employment? *Innovation: The European Journal of Social Science Research*, vol. 26, n. 4, pp. 456-471.

38. Coccia M. 2014. Path-breaking target therapies for lung cancer and a far-sighted health policy to support clinical and cost effectiveness. *Health Policy and Technology*, vol. 1, n. 3, pp. 74-82.

39. Coccia M. 2014a. Emerging technological trajectories of tissue engineering and the critical directions in cartilage regenerative medicine. *Int. J. Healthcare Technology and Management*, vol. 14, n. 3, pp. 194-208.

40. Coccia M. 2014b. Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: the effects on strategic management of the R&D corporate change. *Technology Analysis & Strategic Management*, vol. 26, n. 7, pp. 733-749.

41. Coccia M. 2014c. Driving forces of technological change: The relation between population growth and technological innovation—Analysis of the optimal interaction across countries, *Technological Forecasting & Social Change*, vol. 82, n. 2, pp. 52-65.

42. Coccia M. 2014d. Socio-cultural origins of the patterns of technological innovation: What is the likely interaction among religious culture, religious plurality and innovation? Towards a theory of socio-cultural drivers of the patterns of technological innovation, *Technology in Society*, vol. 36, n. 1, pp. 13-25.

43. Coccia M. 2014e. Religious culture, democratisation and patterns of technological innovation, *International Journal of sustainable society*, vol. 6, n.4, pp. 397-418.

44. Coccia M. 2014f. Structure and organisational behaviour of public research institutions under unstable growth of human resources, *Int. J. Services Technology and Management*, vol. 20, nos. 4/5/6, pp. 251–266.

45. Coccia M. 2015. The Nexus between technological performances of countries and incidence of cancers in society. *Technology in Society*, vol. 42, August, pp. 61-70.

46. Coccia M. 2015a. Patterns of technological outputs across climate zones: the geography of innovation, *Prometheus. Critical Studies in Innovation*, vol. 33, n. 2, pp. 165-186.

47. Coccia M. 2015b. General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development, *Technology in Society*, Volume 42, August 2015, Pages 199–226.

48. Coccia M. 2016. Radical and incremental innovation problem-driven to support competitive advantage of firms, *Technology Analysis & Strategic Management*, DOI: 10.1080/09537325.2016.1268682.

49. Coccia M. 2016a. Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organizational performance in the discovery process of R&D labs, *Technology Analysis & Strategic Management*, vol. 28, n. 4, pp. 381-395.

50. Coccia M. 2016b. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms, *Technology Analysis & Strategic Management*, DOI: 10.1080/09537325.2016.1268682.

51. Coccia M. 2016c. Patterns of innovative outputs across climate zones: the geography of innovation, *Prometheus. Critical Studies in Innovation*, vol. 33, n. 2, pp. 165-186.

52. Coccia M. 2017. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System, *Technological Forecasting and Social Change*, vol. 116, pp. 331-339, DOI: 10.1016/j.techfore.2016.05.019
53. Coccia M. 2017a. Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations, *The Journal of Technology Transfer*, DOI: 10.1007/s10961-017-9572-1

54. Coccia M., Bozeman B. 2016. Allometric models to measure and analyze the evolution of international research collaboration, *Scientometrics*, vol. 108, n. 3, pp. 1065-1084.

55. Coccia M., Cadario E. 2014 Organisational (un)learning of public research labs in turbulent context, *International Journal of Innovation and Learning*, vol. 15, n. 2, pp.115-129.

56. Coccia M., Falavigna G., Manello A. 2015. The impact of hybrid public and market-oriented financing mechanisms on scientific portfolio and performances of public research labs: a scientometric analysis, *Scientometrics*, vol. 102, n. 1, pp. 151-168.

57. Coccia M., Finardi U., Margon D. 2012. Current trends in nanotechnology research across worldwide geo-economic players, *The Journal of Technology Transfer*, vol. 37, n. 5, pp. 777-787, DOI: 10.1007/s10961-011-9219-6

58. Coccia M., Rolfo S. 2000. Ricerca pubblica e trasferimento tecnologico: il caso della regione Piemonte. In Rolfo S. (eds) *Innovazione e piccole imprese in Piemonte*, Franco Angeli Editore, Milano (Italy), ISBN: 9788846418784

59. Coccia M., Rolfo S. 2002. Technology transfer analysis in the Italian national research council, *Technovation: The international journal of technological innovation and entrepreneurship*, vol. 22, n. 5, pp. 291-299.

60. Coccia M., Rolfo S. 2007. How research policy changes can affect the organization and productivity of public research institutes, *Journal of Comparative Policy Analysis, Research and Practice*, vol. 9, n. 3, pp. 215-233.

61. Coccia M., Rolfo S. 2009. Project management in public research organization: Strategic change in complex scenarios. *International Journal of Project Organisation and Management*, vol. 1, n. 3, pp. 235–252.

62. Coccia M., Rolfo S. 2010. New entrepreneurial behaviour of public research organizations: opportunities and threats of technological services supply, *International Journal of Services Technology and Management*, vol. 13, n. 1/2, pp. 134-151.

63. Coccia M., Rolfo S. 2013. Human Resource Management and Organizational Behavior of Public Research Institutions, *International Journal of Public Administration*, vol. 36, n. 4, pp. 256-268.

64. Coccia M., Wang L. 2015. Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, *Technological Forecasting and Social Change*, Vol. 94, May, pp. 155–169.

65. Coccia M., Wang L. 2016. Evolution and convergence of the patterns of international scientific collaboration, *Proceedings of the National Academy of Sciences of the United States of America*, vol. 113, n. 8, pp. 2057-2061.

66. Rolfo S., Coccia M. 2005. L’interazione tra ricerca pubblica e industria in Italia, *l’Industria Rivista di Economia e Politica Industriale*, vol. 26, n. 4, pp. 657-674.