Assessing the methodological and reporting quality of network meta-analyses in Chinese medicine

Fengwen Yang, MD, PhD, Huchang Wang, MM, Jiahan Zou, MM, Xuemei Li, MD, PhD, Xinyao Jin, MM, Yawen Cao, MM, Jinhui Tian, PhD, Long Ge, PhD, Myeong Soo Lee, PhD, Junhua Zhang, MD, PhD.

Abstract
Background: An increasing number of network meta-analyses (NMAs) in traditional Chinese medicine (TCM) have been published recently, but the quality of them was lack of assessment. This study aims to evaluate the methodological and reporting quality of NMAs in TCM.

Methods: Six electronic databases, including PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), Embase, China National Knowledge Infrastructure (CNKI), Wanfang and Chinese Biomedical Literature Database (CBM) from inception to January 2018, were searched. NMAs of TCM were included. A measurement tool to assess the methodological quality of systematic reviews (AMSTAR) and the PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions (PRISMA-NMA) were used to assess the methodological and reporting quality of the included NMAs.

Results: A total of 40 NMAs, including 2535 randomized controlled trials (RCTs), were included. They were published between December 2012 and November 2017. The median score and interquartile range of methodological and reporting quality was 7 (6–8) and 22 (19.1–27.1). Serious methodological flaws existed in the following aspects: the status of publication (22.5%), a list of studies provided (0%), assessment of publication bias (37.5%), and conflicts of interest (12.5%). Several items need to be improved in reporting, especially for Protocol and registration (2.5%), Data items (22.5%), Risk of bias across studies (Methods section) (37.5%). Results of individual studies (27.5%), Risk of bias across studies (Results section) (40%), Results of additional analyses (35%), and Funding (15%).

Conclusions: The methodological and reporting quality of NMAs in TCM is moderate. Identified shortcomings of published NMAs should be taken into consideration in further trainings of authors and editors of NMAs in TCM. Future researchers should be encouraged to apply PRISMA-NMA, and a recognized tool for the assessment of NMA methodology was wanted.

Abbreviations: AMSTAR = a measurement tool to assess the methodological quality of systematic reviews, CBM = Chinese Biomedical Literature Database, CENTRAL = Cochrane Central Register of Controlled Trials, CNKI = China National Knowledge Infrastructure, NMA = network meta-analysis, PRISMA-NMA = the PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions, RCT = randomized controlled trial, TCM = traditional Chinese medicine.

Keywords: AMSTAR, Chinese medicine, network meta-analyses, PRISMA-NMA, quality

1. Introduction

Traditional Chinese Medicine (TCM) has a history of over 2000 years, and plays an important role in the healthcare system of China. Chinese medicine has several advantages over Western medicine, such as multitargets, multi-ingredients, and low cost. A group of network pharmacology methods appeared to predict the target profiles and pharmacological effects of Chinese medicine, to screen synergistic multicomponents from Chinese herbal formulae, and to illuminate the combinatorial rules and network regulation effects of Chinese medicine.[1]

A number of TCM treatments have been proved to be of significant efficacy,[2] yet those studies are still lack of hard evidence. Well-conducted systematic reviews and meta-analyses of randomized controlled trials (RCTs) are considered the most valid research evidence to formulate policy and practice.[3] However, meta-analyses can only compare the effect of head-to-head comparison interventions, and sometimes this high-quality evidence may not exist since direct evidence is often lacking.[4] Network meta-analyses (NMAs), which were also called multiple treatment or mixed treatment comparison meta-analyses, can summarize a coherent and comprehensive set of comparisons based on all of the available evidence.[7–9] NMAs could estimate the effectiveness of all the relevant interventions and rank them in order even though direct comparisons are lacking.[10] NMAs are becoming increasingly popular as a new generalization of evidence synthesis toolkit which could make decisions or choices...
better than pairwise meta-analyses.11–15 NMAs are subject to similar methodological risks as traditional meta-analyses; however, it is recognized that NMAs may be affected by more risks due to its complexity of methodology.16 Several researches on the quality of NMAs have been conducted and showed that significant limitations exist in both the conduct and reporting of NMA, especially for statistical methodology and analytical process.17–19

About 30 tools have been used for the assessment of methodological quality of systematic reviews or meta-analyses recently.20 However, no recognized tool has been developed especially to assess the methodological quality of NMAs currently. AMSTAR (a measurement tool to assess the methodological quality of systematic reviews) may be the most commonly used tool for the methodology assessment of systematic reviews due to its good validity, reliability, and responsibility.21–23

Recently, there is an increasing number of NMAs in TCM published, but their quality was lack of evaluation. This study aimed to assess the methodological and reporting quality of NMAs in TCM.

2. Method

2.1. Ethics approval

Ethical approval and patient consent are not required since this study is an overview completely based on the published NMAs.

2.2. Literature search

Six electronic literature databases, including PubMed, the Cochrane Central Register of Controlled Trials, Embase, China National Knowledge Infrastructure (CNKI), Wanfang and Chinese Biomedical Literature Database (CBM), were searched from inception to January 2018. Searching terms were used as MeSH terms and free-text. The search strategy in PubMed was:

\begin{itemize}
 \item \#1 (((((((“Medicine, Chinese Traditional”[MeSH Terms]) OR “Chinese Medicine” [Title/Abstract]) OR “Traditional Chinese Medicine” [Title/Abstract]) OR “Chinese Traditional Medicine” [Title/Abstract]) OR “herb”[Title/Abstract]) OR zhongyi[Title/Abstract]) OR zhongya[Title/Abstract]))
 \item \#2 (((((“Network Meta-Analysis” [MeSH Terms]) OR “Network Meta-Analys**” [Title/Abstract]) OR “Network Meta Anayls**”[Title/Abstract]) OR “Mixed Treatment Meta-Analys**”[Title/Abstract]) OR “Mixed Treatment Meta Analys**” [Title/Abstract]) OR “Multiple Treatment Comparison Meta-Analys**”[Title/Abstract]) OR “Multiple Treatment Comparison Meta Analys**” [Title/Abstract])
 \item \#3 \#1 AND \#2
\end{itemize}

2.3. Eligible criteria

NMAs based on RCTs with the treatments of TCM, which included Chinese herbal medicine and patent medicine, were eligible in this review; other treatments like Western medicine could be included but there must be at least 1 TCM treatment in each NMA. Nonpharmaceutical treatments, like acupuncture, moxibustion, cupping, massage, and others, were excluded. NMAs including observational studies or diagnostic test, studies on the theory of NMA, methodological articles, protocols, editorials, letters, commentaries, and conference paper were also excluded.

2.4. Study selection and data extraction

The titles and abstracts of each record retrieved were checked by 2 independent authors (HW and XJ) to determine whether they met the eligible criteria. The full texts of potentially relevant articles were retrieved for further assessment. Disagreements were resolved by discussion or the involvement of a third researcher. The information, including author, year of publication, disease, number of participants, number of interventions, description of interventions, number of original study, and outcome, was extracted from each study and entered into a preformulated spreadsheet.

2.5. Methodological and reporting quality assessment tools

Two independent reviewers (JZ and YC) assessed the methodological quality using AMSTAR checklist, of which 11 items were included. For each item, it was scored “1” if the answer was “Yes,” and “0” if the answer was “No,” “Can’t answer” or “not applicable.”24 The summary score for an NMA was calculated by counting the number of “Yes,” with a possible maximum of 11. Score of 9 to 11 was identified as “high quality,” 5 to 8 as “moderate quality” and 4 or lower as “low quality.” “The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations” (PRISMA-NMA),25 which consists of 32 items, was used to evaluate the reporting quality by 2 independent authors (HW and XJ). Each of the items was scored “1” for full compliance, “0.5” for partial compliance, and “0” for noncompliance.24,26 The summary PRISMA-NMA score for a NMA was calculated by accumulating scores of each item, with a possible maximum of 32. Score of 26 to 32 was identified as “high quality,” 20 to 25.5 as “moderate quality” and 19.5 or lower as “low quality.” Any disagreement between reviewers was resolved by discussion or the involvement of a third reviewer (JZ).

3. Results

3.1. General information of included studies

The literature searches identified 219 records. After screening, a total of 40 were included27–66 among which 32 were in Chinese (including 7 master’s or doctor’s degree theses) and the other 8 were in English. These NMAs were published in 17 Chinese journals and 6 English journals from December 2012 to November 2017. The reviews included 2 to 29 types of interventions and 5 to 371 RCTs, with a total of 2535 RCTs.

As many as 24 types of diseases were involved in the included NMAs, and 24 NMAs were covered with different types of cancers, others focusing on stroke, diabetic, atrial fibrillation, and so on. Characteristics of the included NMAs were shown in Table 1.

3.2. Methodological quality assessment

Compliance with the AMSTAR checklist, the median score and interquartile range (IQR) of included NMAs was 7 (6–8), detailed methodological quality assessment was shown in Tables 2 and 3.

The optimum item was “Comprehensive literature search”(100%), Items of “Provide a priori design” (97.5%), “duplicate study selection and data extraction” (97.5%), “quality of included studies assessment” (97.5%), “formulated
Table 1
Characteristics of the included NMAs.

First author	Year	Disease	Number of patients	Number of interventions	Description of interventions	Number of RCT	Outcome
Yang XJ[97]	2017	Malignant pleural effusion	3404	5	Danshen, Fufangkushen, Yadanziyouru, Aidi, Betahistine	54	Effective rate, Karnofsky score
Ding LL[98]	2017	Angina pectoris	20,579	15	Danshen, Fufangkushen, Kanglaite, Aidi, Fufangkushen, Yadanziyouru, Ginseng extract, Disodium cantharidinate and vitamin B6, Betahistine, Edaravone, Routine treatment	152	Cardiovascular events, symptoms, adverse reaction rate
Liu SS[99]	2017	Acute cerebral infarction	15,570	8	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Hydrocolloid dressings, Qingfugao, Potato, honey, Xiliaotuogao	157	Effective rate, neurological deficit score, activities of daily living, blood viscosity, fibrinogen, adverse reaction rate
Xiang Y[100]	2017	Stroke	9134	29	Danshen, Fufangkushen, Yadanziyouru, Aidi, Betahistine, Disodium cantharidinate and vitamin B6, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	85	Effective rate, neurological deficit score, activities of daily living
Feng JS[101]	2017	Ulcerative colitis	511	5	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine	5	Disease activity index score, symptom, complication
Han Q[102]	2017	Diabetic nephropathy	3211	5	Danshen, Fufangkushen, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	45	UAF, BUN, Scr, HbA1c, TC, TG
Liang FT[103]	2017	Pregnancy-induced hypertension	1946	6	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	19	Effective rate
Wang HB[104]	2017	Depressive disorder	5	5	Chuanxiongqin, hydrocolloid, paroxetine, Betahistine, Betahistine	154	Effective rate, cure rate, adverse reaction rate
Wu ZL[105]	2017	Colon cancer	5081	14	Chuanxiongqin, hydrocolloid, paroxetine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	64	Effective rate, Karnofsky score, adverse reaction rate
Zhang YF[106]	2017	Stroke	4180	2	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	39	Effective rate, neurological deficit score
Han SY[107]	2017	Post-stroke recovery	2780	20	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	28	Effective rate, neurological function, activities of daily life
Zhang DP[108]	2017	Gastric cancer	5978	16	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	81	Effective rate, Performance status, ADRs (Leucopenia, Gastrointestinal reaction, Hepatic dysfunction)
Zhang DP[109]	2017	Pancreatic cancer	1329	9	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	22	Clinical effectiveness rate, Performance status, ADRs (Leucopenia, Gastrointestinal reaction, Hepatic dysfunction)
Wei X[110]	2017	Oxaliplatin-induced Peripheral neurotoxicity in cancer patients	1572	5	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	25	Overdose incidence, severe CPR incidence
Jin WH[111]	2016	Chemotherapeutic phlebitis	2555	12	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	32	Cure rate
Li G[112]	2016	Liver cancer	6379	19	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	93	Effective rate, clinical benefit rate
Lou LL[113]	2016	Esophageal cancer	1739	9	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	26	Effective rate, quality of life
Shi PW[114]	2016	Liver cancer	6493	7	Danshen, Fufangkushen, Kanglaite, Aidi, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine, Betahistine	91	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia, incidence of abnormal liver function
First author	Year	Disease	Number of patients	Number of interventions	Description of interventions	Number of RCT	Outcome
--------------	------	---------	--------------------	------------------------	-----------------------------	---------------	---------
Su YY	2016	Liver cancer	5791	9	Barmassou, Kanglai, Lanixiang, Fufangkushen, Yadexiyounyu, Huaxichuan, Delisheng, Adi, Kangai	86	Effective rate, quality of life
Tian JH	2016	Breast cancer	1884	6	Fufangkushen, Kangai, Kanglai, Adi, Huaxichuan, Shengfusheng	26	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Wang NM	2016	Endometriosis	2912	6	Ganodendrion releasing hormone agonist, Fustenhuose Chinese herbal medicine, Huoxuehuaye Chinese herbal medicine, Liqihouse Chinese herbal medicine, Qinghese Chinese herbal medicine, surgery	33	Recurrence rate
Wei XC	2016	OPN	646	2	Huangqi, Shenmai, Shentu	12	Incidence of OPN
Wei XC	2016	OPN	926	3	Huaxichuan + FOLFOX, Adi + FOLFOX, Delisheng + FOLFOX, Kangai + FOLFOX, Kangai + FOLFOX, Fufangkushen + FOLFOX, Yadexiyounyu + FOLFOX	13	Incidence of OPN
Ge L	2016	Advanced colorectal cancer	4837	9	Fufangkushen, Kangai, Fufangkushen, Kangai, Yadexiyounyu, Shengfusheng	63	Overall response rate, quality of life, incidence of nausea and vomiting, diarrhea, thrombocytopenia, leukopenia, peripheral neuropathy
Chung VC	2016	Chronic obstructive pulmonary disease	925	12	Chinese herbal medicines (11 types), salmeterol and fluticasone propionate	11	FEVI, St. George's Respiratory Questionnaire, 6 Minute Walk Test
Wang HL	2016	Rheumatoid arthritis	5255	8	Tripterygium welfordii Hook F, Methotrexate, Lefunomide, Sulphasalazine, Cytosporine, Tacrolimus, Minocycline, Placeto	22	ACR 20%, ACR 50%, ACR 70%
Yang QT	2016	Esophageal cancer	2130	9	Adi, Huaxichuan, Kanglai, Fufangkushen, Renshenduotang, Delisheng, Kangai, Yadexiyounyu, Shengfusheng	23	Effective rate, incidence of oral mucosa
Xiong WJ	2016	Hepatitis B	6206	20	Fuzhenghuayujiaonang, Fushenghuayujiaonang, Huganpian, Dahuangzhechongwan, Fufangyiganlingpian, Huangfangyiganlingpian, Yanglingpian	58	Liver function, hepatic fibrosis test, Hepatitis B virus, ADR
Li JK	2016	Ventricular premature beat	2254	3	Biaihengyongyu, Biaihengyongyu, Biaihengyongyu, Biaihengyongyu	21	Holter, Effective rate, ADR
Dong AA	2016	Atrial fibrillation	2726	8	Shensongyangyin, Shensongyangyin + propafenone, Shensongyangyin + amiodarone, Shensongyangyin + β-blocker, Routine treatment, propafenone, amiodarone, β-blocker	29	Effective rate, ADR
Xu YC	2016	Non-small cell lung cancer	2866	5	Fufangkushen, Shengfusheng, Kangai, Adi, Yadexiyounyu	43	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Ge L	2016	Esophageal cancer	3289	9	Kanglai, Xiaoqingping, Adi, Fufangkushen, Yadexiyounyu, Shengfusheng, Huaxichuan, Huaxichuan	43	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Liu C	2015	Radiation pneumonitis	1592	3	Taneqing, Taneqing + antibiotic, Taneqing + antibiotic + glucocorticoid	22	Effective rate, ADR
Tian JF	2015	Non-small cell lung cancer	4480	10	Chansu + NP, Xiaoqingping + NP, Delisheng + NP, Huaxichuan + NP, Yadexiyounyu + NP, Kangai + NP, Shengfusheng + NP, Fufangkushen + NP, Kangai + NP, Adi + NP	167	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Wu Z	2015	Non-small cell lung cancer	1118	4	Kanglai + NP, Shengfusheng + NP, Adi + NP, NP	14	Effective rate, quality of life, cost-effectiveness rate
Tian JF	2014	Non-small cell lung cancer	4480	12	Renshenduotang, Huganpian, Xiaoqingping, Huaxichuan, Chansu, Shengfusheng, Yadexiyounyu, Delisheng, Kangai, Kanglai, Fufangkushen, Adi, Xiaoqingping, Delisheng, Huaxichuan, Yadexiyounyu, Shengfusheng, Kangai, Fufangkushen, Kanglai, Adi	61	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Zhao YP	2014	Non-small cell lung cancer	5588	9	Xiaoqingping, Delisheng, Huaxichuan, Yadexiyounyu, Shengfusheng, Kangai, Fufangkushen, Kanglai, Adi	78	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Wang JC	2014	Gastric cancer	10,603	11	Adi, Fufangkushen, Shengfusheng, Chansu, Delisheng, Huaxichuan, Huaxichuan, Huaxichuan, Kangai, Kanglai, Renshenduotang, Yadexiyounyu	129	Effective rate, quality of life, incidence of nausea and vomiting, incidence of leukopenia
Wang JC	2014	Gastric cancer	2761	11	Kanglai, Huangpiguduang, Yadexiyounyu, Shengfusheng, Huaxichuan, Fufangkushen, Kangai, Adi, FOLFOX, Renshenduotang, Delisheng	38	Quality of life, Overall response rate, Nausea and vomiting, Leukopenia
Tian JF	2012	Non-small cell lung cancer	27,370	12	Adi, Fufangkushen, Shengfusheng, Chansu, Delisheng, Huaxichuan, Huangpiguduang, Kangai, Kanglai, Renshenduotang, Yadexiyounyu, Xiaoqingping	371	Quality of life, Overall response rate, Nausea and vomiting, Leukopenia

ACR = American College of Rheumatology Criterion, ADR = adverse reaction, BUN = blood urea nitrogen, FOLFOX = oxaliplatin + 5-fluorouracil + leucovorin, NP = nabulvin + cisplatin, OIPN = oxaliplatin-induced peripheral neurotoxicity, SASP = Salazosulfapyridine, Sor = Serum creatinine, TACE = transarterial chemoembolization, TC = total cholesterol, TG = total triglyceride, UAER = urinary albumin excretion rate.
conclusions concerning the quality of the included studies” (97.5%), “Provide characteristics of the included studies” (82.5%) and “methods used to combine the findings” (70%) were acceptable. However, severe flaws existed in 4 items: “Publication bias assessment” (37.5%), “status of publication used as an inclusion criterion” (22.5%), “interest conflict” (12.5%), and the worst compliant item “list of studies (included and excluded) provided” (0%).

3.3. Reporting quality assessment

After assessing the compliance of the NMAs using the 32-item PRISMA-NMA checklist, we got a median and IQR score of 22 (19.1–27.1), but none of the NMAs met all the 32 items, with the full details given in Tables 4 and 5. As many as 12 NMAs (30%) got the score of lower than 20, with the lowest of 14.

For 12 items, over 80% articles are in compliance with the criteria, but for the item of “structured summary,” “study selection,” “summary of evidence,” and “conclusions,” all articles have met the criteria. However, there were still 11 items whose compliance rates were below 50% (20/40), which were “Objectives,” “Protocol and registration,” “Search,” “Data items,” “Assessment of inconsistency,” “Risk of bias across studies,” “Results of individual studies,” “Exploration for inconsistency,” “Risk of bias across studies,” “Results of additional analyses” and “Funding.” Then, the quality of the remaining 9 items was moderate between 50% and 80% accordance with PRISMA-NMA checklist.

Throughout the reporting of Methods and Results sections, issues of inadequate or selective reporting also existed. Two NMAs[26,77] (5%) reported to assess risk of bias within individual studies in Methods part (item 12) but not really did in Results.
Table 3

Summary of methodological quality assessment.

Item	Yes Frequency	Proportion (%)	No/can’t answer/not applicable Frequency	Proportion (%)
Was an “a priori” design provided?	39	97.5%	1	2.5%
Was there duplicate study selection and data extraction?	39	97.5%	1	2.5%
Was a comprehensive literature search performed?	40	100.0%	0	0.0%
Was the status of publication (i.e., gray literature) used as an inclusion criterion?	9	22.5%	31	77.5%
Was a list of studies (included and excluded) provided?	0	0.0%	40	100.0%
Were the characteristics of the included studies provided?	33	82.5%	7	17.5%
Was the scientific quality of the included studies assessed and documented?	39	97.5%	1	2.5%
Were the methods used to combine the findings of studies appropriate?	28	70.0%	12	30.0%
Was the likelihood of publication bias assessed?	15	37.5%	25	62.5%
Were potential conflicts of interest included?	5	12.5%	35	87.5%

Table 4

Reporting quality assessment of the included NMAs.

Item	Yang XJ 2017(27)	Ding LL 2017(28)	Liu S 2017(29)	Xiang Y 2017(30)	Feng JS 2013(32)	Han Q 2017(33)	Liang FT 2017(34)	Wang HB 2017(35)	Wu ZL 2017(36)	Zhang YF 2017(37)	Han SY 2017(38)	Zhang D 2017(39)	Zhang D 2017(39)
1 Title	0	1	0	0	0	0	0	0	1	1	1	1	1
2 Structured summary	1	1	1	1	1	1	1	1	1	1	1	1	1
3 Rationale	1	1	1	1	1	1	1	1	1	1	1	1	1
4 Objectives	1	1	1	1	1	1	1	1	1	1	1	1	1
5 Protocol and registration	0	0	0	0	0	0	0	0	0	0	0	0	0
6 Eligibility criteria	1	1	1	1	1	1	1	1	1	1	1	1	1
7 Information sources	1	1	1	1	1	1	1	1	1	1	1	1	1
8 Search	0.5	1	1	1	1	1	0.5	1	1	1	1	1	1
9 Study selection	1	1	1	1	1	1	1	1	1	1	1	1	1
10 Data collection process	0.5	1	1	1	1	1	0.5	1	1	1	1	1	1
11 Data items	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
12 Geometry of the network	0	0	0	0	0	0	0	0	0	0	0	0	0
13 Risk of bias within individual studies	1	1	1	1	1	1	1	1	1	1	1	1	1
14 Summary measures	0	0	0	0	0	0	0	0	0	0	0	0	0
15 Assessment of inconsistency	0	0	0	0	0	0	0	0	0	0	0	0	0
16 Risk of bias across studies	0	0	0	0	0	0	0	0	0	0	0	0	0
17 Additional analyses	0	0	0	0	0	0	0	0	0	0	0	0	0
18 Study selection	1	1	1	1	1	1	1	1	1	1	1	1	1
19 Presentation of network structure	1	1	1	1	1	1	1	1	1	1	1	1	1
20 Study characteristics	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
21 Summary of network geometry	1	1	1	1	1	1	1	1	1	1	1	1	1
22 Results of individual studies	0	0	0	0	0	0	0	0	0	0	0	0	0
23 Summary of evidence	1	1	1	1	1	1	1	1	1	1	1	1	1
24 Limitations	1	1	1	1	1	1	1	1	1	1	1	1	1
25 Additional analyses	1	1	1	1	1	1	1	1	1	1	1	1	1
26 Summary of evidence	1	1	1	1	1	1	1	1	1	1	1	1	1
27 Funding	0	0	0	0	0	0	0	0	0	0	0	0	0

(continued)
The same flaw showed in reporting of inconsistency assessment (items S2 and S5) in 4 NMA\(37,46,51,55\) (10%) and risk of bias across studies (items 15 and 22) in 1 NMA\(35\) (2.5%).

4. Discussion

TCM is well known as a complementary and alternative therapy for its use of Chinese herbal combinations to treat the functional disorders. However, few studies directly revealed the relationship between multitargets and multi-ingredients in Chinese herbal formula by utilizing the network pharmacology methodologies due to the complexity of Chinese medicine in chemical composition and molecular mechanisms. The network pharmacology may contribute to generate the hypothesis, and further experimental validation was still needed.\(67\)

NMA\(s\) could provide useful evidence on relative effectiveness of different treatments for decision-making when head-to-head comparison trials are insufficient.\(13\) To the best of our knowledge, this is the first study to comprehensively assess the methodological and reporting quality of NMA\(s\) in TCM.

Table 4 (continued).

Wei XC 2017\(40\)	Jin YH 2016\(41\)	LJ G 2016\(42\)	Lou LL 2016\(43\)	Shi FY 2016\(44\)	Su YY 2016\(45\)	Tian JH 2016\(46\)	Wang MN 2016\(47\)	Weil XC 2016\(48\)	Wei XC 2016\(49\)	Ge L 2016\(50\)	Chung VC 2016\(51\)	Wang HL 2016\(52\)	Yang OT 2016\(53\)	Xiong WJ 2016\(54\)	LI JK 2016\(55\)
Completely reported	Partially reported	Not reported													
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0	38	0	2												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	40	0	0												
1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 0	39	1	0												
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 0	16	24	0												
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0	39												
1 0.5 0.5 1 0.5 1 0.5 0.5 1 1 1 1 1 1 1 0	25	15	0												
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 0	16	24	0												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	40	0	0												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	33	7	0												
0.5 0.5 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0	9	30	1												
0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0	29	0	11												
1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 0	37	3	0												
1 0.5 1 0.5 0.5 0 0.5 0.5 0.5 1 1 1 1 1 1 0	27	11	2												
1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0	29	0	11												
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	19	0	21												
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	15	0	25												
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	21	0	19												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	38	2	0												
1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0	27	0	13												
1 0.5 1 1 1 1 0 1 0 1 1 1 1 1 1 0	20	2	18												
0.5 0.5 1 1 1 1 0 1 0 1 1 1 1 1 1 0	28	10	2												
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0	11	0	29												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	39	0	1												
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0	18	0	22												
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0	16	0	24												
0 0 0.5 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0	14	7	19												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	40	0	0												
1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0	37	0	3												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	40	0	0												
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	0	34												

20 14 25 19 16.5 16.5 17 16 30 19 30
although several reviews that focused on the methodological or reporting problems of NMAs in other fields have been conducted.[17–19,68,69] Methodological quality of NMAs is one of the key points for researchers and health care decision-makers. We assessed the methodological quality of NMAs in TCM based on AMSTAR checklist. Several methodological flaws were identified, especially regarding the status of publication (item 4), a list of studies provided (item 5), assessment of publication bias (item 10), and conflicts of interest (item 11). For each NMA, the highest score was 9 and the lowest was 4, with a median and IQRo f7(6–8), which showed that the general methodological quality is moderate. Zarin et al[18] did a research and analyzed 456 network meta-analyses, and it got the result that the overall median AMSTAR score and IQR was 6 (4–7), which was similar to this study. Reporting quality of NMAs is also vital, thus we evaluated the reporting quality of NMAs in TCM using PRISMA-NMA guideline. Several items need to be improved in reporting, especially for Protocol and registration (item 5), Data items (item 11), Risk of bias across studies (Methods section) (item 15), results of individual studies (item 20), risk of bias across studies (Results section) (item 22), Results of additional analyses (item 23), and Funding (item 27). From the angle of individual NMA, the highest score was 31 and the lowest was only 14, with a median and IQR of 22 (19.1–27.1), which indicated that the reporting quality of the included NMAs was also moderate.

Among the 40 NMAs, 10 were published between 2012 and 2015, with a median and PRISMA-NMA score and IQR of 18 (16.4–26.3). These studies may be conducted before the PRISMA-NMA published. While the other 30 NMAs published in 2016 and 2017 were 22.3 (20.4–27.5), which was higher than that of the former 10. To some degree, it showed that the PRISMA-NMA may have already helped improve the reporting quality of NMAs in TCM. Therefore, we suggest that the NMA authors of TCM follow the PRISMA-NMA checklist when reporting NMAs, further, Chinese journals should endorse PRISMA-NMA in manuscript requirement and it is necessary to check the manuscript submitted with this guideline. In addition, NMAs were reviews mainly based on clinical trials like RCTs, so the results of NMAs may be affected by the quality of included trials, so it is vital to improve the quality of clinical studies of TCM.

This study has several limitations. First, there has been no standard tool to assess the methodological robustness of NMAs recently, although AMSTAR was widely used in the quality assessment of systematic review and meta-analysis. Second, though the use of the summary AMSTAR and PRISMA scores was validated in the previous studies,[22,24] these checklist was not originally designed as a scored instrument.[70] Third, even though thorough search strategy was employed, we cannot guarantee that all relevant articles were identified.

Table 5	Summary of reporting quality assessment.						
Section	Item						
	Completely reported	Partially reported	Not reported				
	Frequency	Proportion (%)	Frequency	Proportion (%)	Frequency	Proportion (%)	
Title	1 Title	38	95.0%	0	0.0%	2	5.0%
Abstract	2 Structured summary	40	100.0%	0	0.0%	0	0.0%
Introduction	3 Rationale	39	97.5%	1	2.5%	0	0.0%
	4 Objectives	16	40.0%	24	60.0%	0	0.0%
Methods	5 Protocol and registration	1	2.5%	0	0.0%	39	97.5%
	6 Eligibility criteria	25	62.5%	15	37.5%	0	0.0%
	7 Information sources	39	97.5%	1	2.5%	0	0.0%
	8 Search	16	40.0%	24	60.0%	0	0.0%
	9 Study selection	40	100.0%	0	0.0%	0	0.0%
	10 Data collection process	33	82.5%	7	17.5%	0	0.0%
	11 Data items	9	22.5%	30	75.0%	1	2.5%
	S1 Geometry of the network	29	72.5%	0	0.0%	11	27.5%
	12 Risk of bias within individual studies	37	92.5%	3	7.5%	0	0.0%
	13 Summary measures	27	67.5%	11	27.5%	2	5.0%
	14 Planned methods of analysis	29	72.5%	0	0.0%	11	27.5%
	S2 Assessment of inconsistency	19	47.5%	0	0.0%	21	52.5%
	15 Risk of bias across studies	15	37.5%	0	0.0%	25	62.5%
	16 Additional analyses	21	52.5%	0	0.0%	19	47.5%
Results	17 Study selection	38	95.0%	2	5.0%	0	0.0%
	S3 Presentation of network structure	27	67.5%	0	0.0%	13	32.5%
	S4 Summary of network geometry	20	50.0%	2	5.0%	18	45.0%
	18 Study characteristics	28	70.0%	5	12.5%	7	17.5%
	19 Risk of bias within studies	26	70.0%	10	25.0%	2	5.0%
	20 Results of individual studies	11	27.5%	0	0.0%	29	72.5%
	21 Synthesis of results	39	97.5%	0	0.0%	1	2.5%
	S5 Exploration for inconsistency	18	45.0%	0	0.0%	22	55.0%
	22 Risk of bias across studies	16	40.0%	0	0.0%	24	60.0%
	23 Results of additional analyses	14	35.0%	7	17.5%	19	47.5%
Discussion	24 Summary of evidence	40	100.0%	0	0.0%	0	0.0%
	25 Limitations	37	92.5%	0	0.0%	3	7.5%
	26 Conclusions	40	100.0%	0	0.0%	0	0.0%
Funding	27 Funding	6	15.0%	0	0.0%	34	85.0%
5. Conclusion
The methodological and reporting quality of NMA's in TCM is moderate. Some methodological and reporting flaws have been identified in the published NMA's, especially for the status of publication, a list of studies provided, assessment of publication bias, protocol and registration, conflicts of interest and funding.

Identified shortcomings of published NMA's should be taken into consideration in further trainings of authors and editors of NMA's in TCM. Moreover, future researchers should be encouraged to apply PRISMA-NMA, and a recognized tool for the assessment of NMA methodology was wanted.

Author contributions
Authorship: FY and JZ conceived the study, developed the criteria, and wrote the paper. JT and LG searched the literature. HW and XJ extracted the data. JZ and YC assessed the methodological quality. HW and XJ assessed the reporting quality. Xl and MSL revised the manuscript. All authors read and approved the final manuscript.

Conceptualization: Fengwen Yang, Junhua Zhang.

Data curation: Hucheng Wang.

Funding acquisition: Junhua Zhang.

Investigation: Jinhui Tian, Long Ge.

Methodology: Jiahuan Zou, Xinyao Jin, Yawen Cao.

Writing – review & editing: Xuemei Li, Myeong Soo Lee.

References
[1] Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013;11:110–20.
[2] Zhang JH, Zhu Y, Fan XH, et al. Efficacy-oriented compatibility for component-based Chinese medicine. Acta Pharmacol Sin 2015;36:654–8.
[3] Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med 1997;126:676–80.
[4] Estellier C, Ravault P. Lack of head-to-head trials and fair control arms: randomized controlled trials of biologic treatment for rheumatoid arthritis. Arch Intern Med 2012;172:237–44.
[5] Volpp KG, Das A. Comparative effectiveness-thinking beyond medicalization A versus medication B. N Engl J Med 2009;361:331–3.
[6] Hochman M, McCormick D. Characteristics of published comparative effectiveness studies of medications. JAMA 2010;303:951–8.
[7] Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 2004;20:3105–24.
[8] Ioannidis JP. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ 2009;180:488–93.
[9] Lee AW. Review of mixed treatment comparisons in published systematic reviews shows marked increase since 2009. J Clin Epidemiol 2014;67:138–43.
[10] Raftera A, Trinquart L, Seror R, et al. Reporting of results from network meta-analyses: methodological systematic review. BMJ 2014;348:g1741.
[11] Ciprani A, Higgins JP, Geddes JR, et al. Conceptual and technical challenges in network meta-analysis. Ann Intern Med 2013;159:130–7.
[12] Salanti G, Higgins JPT, Ades AE, et al. Evaluation of networks of randomized trials. Stat Methods Med Res 2008;17:279–301.
[13] Lee AW. Review of mixed treatment comparisons in published systematic reviews shows marked increase since 2009. J Clin Epidemiol 2014;67:138–43.
[14] Li L, Tian JH, Moher D, et al. Network meta-analyses could be improved by searching more sources and by involving a librarian. J Clin Epidemiol 2014;67:1001–7.
[15] Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods 2012;3:88–97.
[16] Bafeta A, Trinquart L, Seror R, et al. Analysis of the systematic reviews process in reports of network meta-analyses: methodological systematic review. BMJ 2013;347:f6755.
[17] Petropoulou M, Nikolakopoulou A, Veroniki AA, et al. Bibliographic study showed improving statistical methodology of network meta-analyses published between 1999 and 2015. J Clin Epidemiol 2016;82:20–8.
[18] Zarin W, Veroniki AA, Nincic V, et al. Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review. BMC Med 2017;15:3.
[19] Nikolakopoulou A, Chaimani A, Veroniki AA, et al. Characteristics of networks of interventions: a description of a database of 186 published networks. PLoS One 2014;9:e86754.
[20] Yang ZN, Li X, Wang L, et al. Background research for the decision support tool of evidence-based evaluation for essential medicines: I. Overview of quality assessment tools for systematic review of randomized controlled trials. Chin J Evid-based Med 2015;15:723–9.
[21] Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007;7:10.
[22] Shea BJ, Hamel C, Wells GA, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol 2009;62:1013–20.
[23] Shea BJ, Boutron LM, Peterson J, et al. External validation of a measurement tool to assess systematic reviews (AMSTAR). PLoS One 2007;2:e1350.
[24] Tian JH, Zhang JH, Ge L, et al. The methodological and reporting quality of systematic reviews from China and the USA are similar. J Clin Epidemiol 2017;85:50–8.
[25] Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;11:777–84.
[26] Li JL, Ge L, Ma JC, et al. Quality of reporting of systematic reviews published in “evidence-based” Chinese journals. Syst Rev 2014;3:58.
[27] Yang XJ, Wei XC, Jiang L. Network meta-analysis of 5 kinds of TCM injections in the treatment of malignant pleural effusion. China Pharmacy 2017;28:4686–90.
[28] Ding LL. Chinese patent medicine injection as adjunctive therapy for angina pectoris: a network meta-analysis and overview. Kunming Medical University, Master’s Thesis 2017.
[29] Liu S. Assessing the clinical effectiveness of SMICs for ACI and UAP by network meta-analysis. Beijing University of Chinese Medicine, Master’s Thesis 2017.
[30] Xiang Y. Comparative effectiveness research of Chinese herb injections for activating blood circulation for stroke. Guangzhou University of Chinese Medicine, Master’s Thesis 2017.
[31] Feng JS, Li JY, Yang YE, et al. Network meta-analysis on the comparison of the efficacy of five traditional Chinese medicine injections combined with sulfasalazine in the treatment of mild to moderate ulcerative colitis in active phase. J Guangdong Med Univ 2017;35:496–9.
[32] Han Q. Network Meta-analysis of 5 Chinese Herb Injections Combined with ARB or ACEI for Early Diabetes Nephropathy. Dalian Medical University, Master’s Thesis 2017.
[33] Liang FT, Fang JY. Network meta-analysis of the effect of traditional Chinese medicine for the treatment of pregnancy-induced hypertension syndrome. Shenzhen J Integra Tradit Chin Wes Med 2017;2:190–3.
[34] Wang HB, Gu YJ, Liu XY, et al. Cost-effectiveness analysis of Shugan Jieyu capsule in treating depressive disorder based on network meta-analysis. China J Pharmaceutical Econ 2017;12:19–24.
[35] Wu ZL, Tan WJ, Pan SS, et al. Network meta-analysis of Chinese medicine injections combined with L-OHP-based chemotherapy regimen in treating colorectal neoplasms. Chin J Experi Tradit Chin Wes Med 2017;23:203–11.
[36] Wang HB, Gu YJ, Liu XY, et al. Cost-effectiveness analysis of shugan Jieyu capsule in treating depressive disorder based on network meta-analysis. China J Pharmaceutical Econ 2017;12:19–24.
[37] Wu ZL, Tan WJ, Pan SS, et al. Network meta-analysis of Chinese medicine injections combined with L-OHP-based chemotherapy regimen in treating colorectal neoplasms. Chin J Experi Tradit Chin Wes Med 2017;23:203–11.
[38] Zhang YP, Ke XT, Li BC, et al. Meta-analysis on indirect comparison of Erigeron breviscapusus injection and Breviscapus injection in treatment of acute ischemic stroke. China J Mater Medica 2017;42:1194–201.
[39] Han SY, Hong ZY, Xie YH, et al. Therapeutic effect of Chinese herbal medicines for post stroke recovery: a traditional and network meta-analysis. Medicine (Baltimore) 2017;96:e8830.
[40] Zhang D, Zheng JW, Ni MW, et al. Comparative efficacy and safety of Chinese herbal injections combined with the FOLFOX regimen for treating gastric cancer in China: a network meta-analysis. Oncotarget 2017;8:68873–89.
[41] Zhang D, Wu JR, Liu S, et al. Network meta-analysis of Chinese herbal injections combined with the chemotherapy for the treatment of pancreatic cancer. Medicine (Baltimore) 2017;96:e7005.
[42] Wei XC, Zhu LQ, Wang H, et al. Efficacy of traditional Chinese medicines in preventing ocalipatin-induced peripheral neurotoxicity in cancer patients: a network meta-analysis. Chin Herbal Med 2017;9:161–8.
[41] Jin YH, Zhao C, Gan H, et al. Effect of nursing interventions on chemotherapy phlebitis: a network meta-analysis. J Nursing Sci 2016;31:85–90.
[42] Li G, Zhao C, Si JH, et al. Network meta-analysis on clinical effect of 19 Chinese herb injections combined with TACE in treatment of advanced hepatocellular carcinoma. J Lanzhou Univ (Med Sci) 2016;42: 57–63+72.

[44] Shi FY, Lou LL, Xie W, et al. Network meta-analysis of Chinese medicine plus chemotherapy in treatment of esophageal cancer: a network Meta-analysis. J Lanzhou Univ (Med Sci) 2016;42:55–60.
[45] Su YY, Liu YY, Zhang YY, et al. Network meta-analysis of 9 kinds of Chinese herb injections combined with transcatheter arterial chemoembolization in treatment of hepatocellular carcinoma. J Jilin Univ (Med Edit) 2016;42:1126–31.

[46] Tian JH, Ge L, Lou LL, et al. Effectiveness and safety of traditional Chinese medicine injection combined with CF chemotherapy regimen in the treatment of breast cancer: network meta-analysis and trial sequential analysis. Chin Gen Pract 2016;19:3326–35.

[47] Wang NN, Zhao RH, Liu Y, et al. Network meta-analysis of Chinese herbal treatment and GnrHa-a to prevent the post-operative recurrence of pelvic endometriosis. Int J Trad Chin Med 2016;38:1120–7.
[48] Wei XC, Wang H, Zhu LQ, et al. Network meta-analysis of efficacy of 2 kinds of Chinese medicine formulas in preventing oxali-platin-induced peripheral neurotoxicity in cancer patients. Liaoning J Chin Med 2016;43:1948–50.

[49] Wei XC, Zha LQ, Wang CG, et al. Network meta-analysis of efficacy of 3 kinds of Chinese medicine injections in preventing oxali-platin-induced peripheral neurotoxicity in cancer patients. Chin Hosp Pharm J 2016;36:1567–71.

[50] Ge L, Wang YF, Tian JH, et al. Network meta-analysis of Chinese herb injections combined with FOLFOX chemotherapy in the treatment of advanced colorectal cancer. J Clin Ther Sci 2016;41:833–91.

[51] Chung VC, Wu X, Ma PH, et al. Chinese herbal medicine and salemeterol and fluticasone propionate for chronic obstructive pulmonary disease. Medicine (Baltimore) 2016;95:e3702.
[52] Wang HL, Jiang Q, Feng XH, et al. Tripterygium wilfordii Hook F versus conventional synthetic disease-modifying anti-rheumatic drugs as monotherapy for rheumatoid arthritis: a systematic review and network meta-analysis. BMC Complement Altern Med 2016;16:215.

[53] Yang QT, Xiong WJ, Kuang MH, et al. Effectiveness and safety of Chinese medical injections in combination with radiotherapy for esophageal carcinoma: a network meta-analysis. Prac Prev Med 2016;23:663–7.

[54] Xiong WJ. Network Meta-analysis of Chinese patent medicine from National Medicare list for the treatment of Chronic Hepatitis B. Beijing University of Chinese Medicine. Master’s Thesis 2016.

[55] Li JK. To evaluated the curative effect and security of ventricular premature beat treated by wensan granule in different therapeutic ways of differentiation syndromes and differentiation of diseases: a network meta-analysis. Henan University of Chinese Medicine. Master’s Thesis 2016.

[56] Dong AA, Yu HZ, Qiu DD, et al. Network meta-analysis of Shengyongyangu capsules combined with amodarone for paroxysmal atrial fibrillation. Chin J Mod Appl Pharm 2016;33:1373–80.

[57] Xu YC. Network meta-analysis of Chinese herb injections for non-small cell lung cancer. World Latest Med Information 2015;15:152.

[58] Ge L, Mao L, Tian JH, et al. Network meta-analysis on selecting Chinese medical injections in radiotherapy for esophageal cancer. China J Mater Medica 2015;40:3674–81.

[59] Liu C, Fan Y, Li MM, et al. A network meta-analysis of Tanreqing injection for radiation pneumonitis. Chin J Drug Eval 2015;32:228–32.

[60] Tian JH, Zhao Y, Li JL, et al. Network meta-analysis of 10 Chinese herb injections combined with vincristine and cisplatin for non-small cell lung cancer. Chin J Drug Eval 2015;32:45–9.

[61] Wu ZS, Lin SL, Luo QH, et al. Pharmacoeconomics analysis of Chinese herb injection combined with NP chemotherapy in treatment of non-small cell lung cancer. Chin J Expert Tradit Med Formu 2015;21:199–202.

[62] Tian JH, Zhao Y, Li JL, et al. Network meta-analysis of 12 Chinese herb injections combined with gemcitabine and cisplatin for non-small cell lung cancer. Chin J Drug Eval 2014;32:350–5.

[63] Zhao Y, Liu DL, Li JL, et al. Chinese herb injections combined with paclitaxel plus cisplatin/carboplatin for non-small cell lung cancer: a network meta-analysis. Chin J Drug Eval 2014;31:295–9.

[64] Wang JC. Network meta-analysis of Chinese herb injection combined with chemotherapy for gastric cancer. Lanzhou University. Doctor’s Thesis 2014.

[65] Wang JC, Tian JH, Ge L, et al. Which is the best Chinese herb injection based on the FOLFOX regimen for gastric cancer? A network meta-analysis of randomized controlled trials. Asian Pac J Cancer Prev 2014;15:4795.

[66] Tian JH. Network meta-analyses of chinese herb injection combined with chemotherapy for non-small cell lung cancer. Lanzhou University. Doctor’s Thesis 2012.

[67] Liu YF, Ai N, Keys A, et al. Network pharmacology for traditional Chinese medicine research: methodologies and applications. Chin Herbal Med 2015;7:18–26.

[68] Chambers JD, Naci H, Wouters OJ, et al. An assessment of the methodological quality of published network meta-analyses: a systematic review. PLoS One 2015;10:e0121715.

[69] Ge L, Tian JH, Li XX, et al. Epidemiology characteristics, methodological quality of published network meta-analyses: a systematic review. Sci Rep 2016;6:37208.

[70] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009;62:e1–34.