A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos

Kate Woods, Caoimhe Nic-Fhogartaigh, Catherine Arnold, Latsaniphone Boutthasavong, Weerawat Phuklia, Cherry Lim, Anisone Chanthongthip, Suhella M. Tulsiani, Scott B. Craig, Mary-Anne Burns, Steven L. Weier, Viengmon Davong, Somsavanh Sihalath, Direk Limmathurotsakul, David AB. Dance, Nandini Shetty, Maria Zambon, Paul N. Newton, Sabine Dittrich

PII: S1198-743X(17)30579-7
DOI: 10.1016/j.cmi.2017.10.017
Reference: CMI 1101

To appear in: Clinical Microbiology and Infection

Received Date: 16 June 2017
Revised Date: 16 October 2017
Accepted Date: 18 October 2017

Please cite this article as: Woods K, Nic-Fhogartaigh C, Arnold C, Boutthasavong L, Phuklia W, Lim C, Chanthongthip A, Tulsiani SM, Craig SB, Burns M-A, Weier SL, Davong V, Sihalath S, Limmathurotsakul D, Dance DA, Shetty N, Zambon M, Newton PN, Dittrich S, A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos, Clinical Microbiology and Infection (2017), doi: 10.1016/j.cmi.2017.10.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Original article

A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos

Short title: Molecular methods to detect *Leptospira* infections

Authors: Kate Woods¹,²*, Caoimhe Nic-Fhogartaigh²,³, Catherine Arnold¹, Latsaniphone Boutthasavong², Weerawat Phuklia², Cherry Lim⁴, Anisone Chanthongthip², Suhella M Tulsiani⁵, Scott B. Craig⁵,⁶,⁷, Mary-Anne Burns⁵, Steven L Weier⁷, Viengmon Davong², Somsavanh Sihalath², Direk Limmathurotsakul⁴,⁸, David AB Dance²,⁸,⁹, Nandini Shetty¹, Maria Zambon¹, Paul N Newton²,⁸, Sabine Dittrich²,⁸,¹⁰.

1. National Infection Service (NIS), Public Health England (PHE), London, UK
2. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
3. Bart's Health Division of Infection, Pathology and Pharmacy Department, Royal London Hospital, Newark St, London, E1 1BZ
4. Mahidol-Oxford-Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
5. Queensland Health Forensic and Scientific Service, WHO Collaborating Centre for Reference and Research on Leptospirosis, Brisbane, Australia
6. University of the Sunshine Coast, Faculty of Science Health, Education and Engineering, Sippy Downs, Australia
7. Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia

8. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, England, UK

9. Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK

10. Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland

*Corresponding author: Kate Woods, National Infection Service, Public Health England, London, UK. Email: Kate.woods2@nhs.net. Fax: +44 203 4479211. Tel. +44 7459 226075.

Supplementary material:

1. Diagnoses of control patients in retrospective study
2. 16SrRNA/LipL32 qPCR interpretation
3. MAT Serovar panel
4. Retrospective study conventional analysis of diagnostic accuracy.
5. Bayesian Latent Class Models dataset (n=787)
6. Bayesian Latent Class Models WinBUGS code
7. Bayesian Latent Class Model outputs for patients with all three of serum, buffy coat and urine sample types available for qPCR (n=597).
ABSTRACT

Objectives
To compare two molecular assays (rrs qPCR vs. a combined 16SrRNA and LipL32 qPCR) on different sample types for diagnosing leptospirosis in febrile patients presenting to Mahosot Hospital, Vientiane, Laos.

Key words: Leptospirosis, Leptospira, molecular diagnosis, qPCR, Bayesian, Latent class model, serum, buffy coat, urine, Laos.
Methods

Serum, buffy coat and urine samples were collected on admission, and follow-up serum ~10 days later. *Leptospira* spp. culture and microscopic agglutination tests (MAT) were performed as reference standards. Bayesian latent class modeling was performed to estimate sensitivity and specificity of each diagnostic test.

Results

787 patients were included in the analysis: 4/787 (0.5%) were *Leptospira* culture positive, 30/787 (3.8%) MAT positive, 76/787 (9.7%) *rrs* qPCR positive and 20/787 (2.5%) *16SrRNA/LipL32* qPCR positive for pathogenic *Leptospira* spp. in ≥1 sample. Estimated sensitivity and specificity (with 95% confidence intervals [CI]) of *16SrRNA/LipL32* qPCR on serum (53.9% (33.3-81.8%); 99.6%(99.2-100%)), buffy coat (58.8% (34.4-90.9%); 99.9%(99.6-100%)) and urine samples (45.0% (27.0-66.7%); 99.6% (99.3-100%)) were comparable with those of *rrs* qPCR, except specificity of *16SrRNA/LipL32* qPCR on urine samples was significantly higher (99.6% (99.3-100%) vs. 92.5% (92.3-92.8%), p<0.001). Sensitivity of MAT (16% (95%CI: 6.3-29.4%)) and culture (25% (95%CI: 13.3-44.4%)) were low. Mean positive Cq values showed that buffy coat samples were more frequently inhibitory to qPCR than either serum or urine (p<0.001).

Conclusions
Serum and urine are better samples for qPCR than buffy coat, and 16SrRNA/LipL32 qPCR performs better than *rrs* qPCR on urine. qPCR on admission is a reliable rapid diagnostic tool, performing better than MAT or culture, with significant implications for clinical and epidemiological investigations of this global neglected disease.
INTRODUCTION

Leptospirosis is a leading cause of morbidity and mortality globally with an estimated 1 million cases and 60,000 deaths annually [1]. In South East Asia there are an estimated 55.5 cases per 100,000 annually, with an estimated mortality of 2.96/100,000 [1]. In temperate regions leptospirosis is the third commonest infectious cause of life-threatening disease in returning travellers [2].

Leptospirosis presents as a non-specific febrile illness that can progress to serious complications [3, 4, 5] with up to 40% mortality if untreated [6]. Diagnosis is often delayed as Leptospira species grow slowly in culture, and the “gold standard” Microscopic Agglutination Test (MAT) requires acute and convalescent sera making diagnosis retrospective by nature. Culture and MAT are therefore poor clinical diagnostic tools for leptospirosis. Furthermore they are imperfect reference standards, necessitating the use of statistical models such as the Bayesian latent class model to determine the true accuracy of alternative Leptospira diagnostics [7, 8, 9].

Several molecular assays for Leptospira spp. have been developed, targeting housekeeping genes such as gyrB [10], rrs (16SrRNA) [11], and secY [12], or pathogen specific LipL32 [13], ligA and ligB [14] which avoid amplification of non-pathogenic Leptospira species. Large-scale prospective evaluations in endemic tropical settings are lacking and uncertainty remains regarding the optimum sample for molecular detection of Leptospira spp. with buffy coat [13, 15], serum [16] and urine [13, 17] all recommended.
We prospectively evaluated the *rrs* qPCR [18] alongside an assay for 16SrRNA and *LipL32* developed by Public Health England (henceforth 16SrRNA/*LipL32* qPCR) using admission serum, buffy coat [BC] and urine samples from febrile patients presenting to Mahosot Hospital, Vientiane, Laos.

METHODS

Retrospective study

The 16SrRNA/*LipL32* qPCR was evaluated using stored (-80°C) admission serum and BC samples from 59 cases of leptospirosis (positive by: culture n=19; MAT n=20 (admission titre ≥ 1:400 or 4-fold convalescent rise); or *rrs* qPCR on BC n=20) and 83 controls (diagnoses identified in a published study [19], web-only Supplementary Table 1). Frozen DNA previously extracted from BC was used in 43/59 cases and all 83 controls, as stored samples were not available for fresh extraction.

Prospective study

Study population:

1471 consecutive patients presented with a febrile illness to Mahosot Hospital between 30th May and 30th November 2014, 811 were included. Inclusion criteria were: fever (history of fever or documented temperature ≥38°C), plus at least one of: headache, rash, myalgia, arthralgia, lymphadenopathy, meningitis, encephalitis, respiratory symptoms, jaundice, or acute renal failure. Exclusion criteria were: age <6 months; fever duration >1 month; admission diagnosis of: wound infection; diabetic foot infection; post-operative
infection; abscess; parotitis; urine infection or diarrhea. All participants (or their parents/guardians) provided written informed consent prior to sample collection. Ethical approval for all investigations was granted by Oxford Tropical Research Ethics Committee (University of Oxford, United Kingdom) and the National Ethics Committee for Health Research, Lao PDR.

Sample processing:

Samples were collected at presentation from the 811 patients: serum (n=785), EDTA buffy coat (n=774), blood clot (n=811) and urine (n=644). BC was obtained by centrifuging EDTA blood at 3200g for 8 minutes. Convalescent serum was collected 10-14 days later when possible (n=248). Samples were stored at +4°C until DNA preparation.

DNA preparation. 1.5ml urine aliquots were centrifuged at 20,000g, retaining the pellet with 200μl urine for DNA extraction. Manual DNA extraction was performed on BC, serum, and urine using the QIAamp DNA Minikit (Qiagen, Germany) within 7 days of sampling [19]. 10μl of GFP-plasmid E. coli control [10^8/ml] was added to each sample prior to extraction as a process and inhibition control.

Molecular detection. The 16SrRNA/LipL32 qPCR includes two reaction mixes per sample: a duplex assay targeting LipL32 and an internal control (GFP E. coli plasmid), and a triplex assay targeting the 16SrRNA gene. The triplex assay probes correlate with genomic variants of pathogenic, intermediate and environmental Leptospira strains (web-only Supplementary Figure 1). Comparison of cycle threshold (Cq) values for these probes distinguishes pathogenic from non-pathogenic Leptospira spp. (Public Health
England, unpublished data; web-only Supplementary Table S2). qPCRs were performed with 5µL DNA. The rrs qPCR was performed as described [18]. Each of the 20µL 16SrRNA and LipL32 qPCR reaction mixes contained: 12.5µL Fast Bluex2 Master Mix (Eurogentec, UK), 0.5µM of each primer and 0.125µM of each probe. Cycling conditions were: 95°C for 5 mins, then 50 cycles of: 95°C for 3 secs, 60°C for 30 secs, 72°C for 10 secs. Each qPCR run included standard curves (~1 genome equivalent (GE)/µL-10³ GE/µL; Lao clinical isolate, assumed genome size ~4.7Mb) and non-template controls (which were always negative). qPCRs were performed in weekly batches using a Rotorgene 6000 (Qiagen, Germany) or CFX96 Touch (Bio-Rad Laboratories Ltd.). Separate investigators (blinded to clinical data and other results) performed the 16SrRNA/LipL32 qPCR (KW) and the rrs qPCR (WP). Culture. Blood clots were cultured for Leptospira spp. (as previously described [20]) by investigators blinded to qPCR results. Serology. MAT was performed at the WHO/FAO/OIE Collaborating Centre for Leptospirosis Reference and Research, Queensland, Australia (web-only Supplementary Table S3). Criteria for a confirmed leptospirosis diagnosis were a single MAT titre of ≥1:400 or a 4-fold convalescent rise in titre [21]. Data analysis:

Result interpretation. The rrs qPCR was considered positive with a Cq≤40 [22]. The 16SrRNA/LipL32 qPCR was considered positive with a Cq≤45 and GFP internal control Cq≤35 (web only Supplementary Table S2). If interpretation of the 16SrRNA/LipL32 qPCR was equivocal despite a GFP Cq within the normal range, then the 16SrRNA/LipL32 qPCR was repeated in
triplicate to obtain the final result. Only 16SrRNA/LipL32 qPCR results indicating the detection of pathogenic *Leptospira* DNA were considered positive for the comparative analysis with the *rrs* qPCR.

Diagnostic characteristics. Sensitivity and specificity of the *rrs* and 16SrRNA/LipL32 qPCR for diagnosing leptospirosis were calculated using MAT or culture positive as the combined reference standard. McNemar's exact test was used for statistical comparisons. Bayesian Latent Class Modelling (LCM) was performed using WinBUGS 1.4 software [23] to estimate the true accuracy of each diagnostic test as described [7, 8, 9] (Table 3). Mean positive Cq values were also compared for *rrs* and 16SrRNA/LipL32 qPCR when pathogenic *Leptospira* DNA was detected and for sample type. Mean GFP Cq was calculated with Cq=50 for samples with no GFP Cq. Basic statistical assessments were done using STATA (Stata/MP 14.1 for Mac, College Station, USA).

RESULTS

Retrospective study

There was no significant difference in performance between *rrs* and 16SrRNA/LipL32 qPCR for diagnosing cases or controls or between sample types (web-only Supplementary table S4); nor in Cq values between serum and BC for *rrs* (p=0.86) or 16SrRNA/LipL32 (p=0.44) qPCR.

Prospective study
227 24 of 811 patients did not have serum available for reference testing (MAT) and were excluded from analysis (Figure 1). Sample types available for qPCR varied (web-only Supplementary Figure 2). Only 238 (30.2%) patients had paired sera available for MAT testing, of whom 221 were negative by the combined reference standard of MAT and culture. Convalescent serum samples were taken a median of 10 days after admission (IQR 7-14 days). Median patient age was 39 years (range 0.5–97 years), 58% were male. Median duration of fever at presentation was 5 days (IQR 3–7 days; range 1-30 days).

236 Seventy-six patients (9.7%) were \textit{rrs} qPCR positive, 58 in urine only (7.4%). 16SrRNA/\textit{LipL32} qPCR detected pathogenic \textit{Leptospira} DNA in 20 patients (2.5%; Figure 1) with no sample positive by \textit{LipL32} qPCR alone, and intermediate \textit{Leptospira} DNA detected in an additional 30 patients (3.8%; serum=12, BC=4, urine=14). The combination of sample types that were qPCR positive in each patient varied (web-only Supplementary Figure 3). In addition, concordance of \textit{rrs} and 16SrRNA/\textit{LipL32} qPCRs in patients positive for pathogenic \textit{Leptospira} DNA was low: serum 52.9% (9/17), BC 46.1% (6/13), and in urine only 8.8% (6/68) were positive by both qPCRs.

247 Clinical characteristics of pathogenic \textit{Leptospira} spp. positive patients:

The median age of 33 patients positive by MAT (n=30) or culture (n=4) was 35 (range 8 – 75) years, 76% were male (25/33) and 4 died (12%) in hospital. Of 74 patients who were leptospirosis positive only by qPCR, 3 died (4%). Median fever duration at admission was significantly shorter for patients
positive for pathogenic *Leptospira* spp. by any qPCR in blood than by MAT (3.5 vs 7 days, *p*<0.001) (Table 1). Mortality analysis was limited by incomplete data, but was not significantly higher in patients qPCR positive in blood on admission than MAT positive patients (*p*=0.43).

Table 1. Median fever duration and mortality for patients positive for *leptospirosis* by the different tests.

	MAT
n = 30	Culture
n = 4	
Leptospirosis positive by:	
	Blood only
	Urine only
	Blood AND urine
	rrs (n = 12*)
Median fever days on admission (IQR)	7 (5 - 14)
Mortality	12.5% (2/16***)

PHE = 16SrRNA/LipL32. *3 patients had no urine sample for testing. **4 patients had no urine sample for testing. ***Mortality data for 14 MAT positive patients and 53 patients who were only positive by *rrs* qPCR on urine was not available.

There was no significant difference between median fever duration at admission across sample types for *rrs* (*p*=0.2) or 16SrRNA/LipL32 (*p*=0.08) qPCR (Figure 2). Most qPCR positive urine samples were within 7 days of fever onset.
Diagnostic accuracy:

Compared with the reference standard, sensitivities of both qPCRs were <20% for all sample types, with no significant difference between rrs and 16SrRNA/LipL32 assays (serum p>0.99, BC p=0.08, urine p=0.65; Table 2). Specificities were ≥98.5% for all samples, except that rrs qPCR was significantly less specific on urine compared to 16SrRNA/LipL32 qPCR (90% vs 99%, p<0.001).

Table 2. Conventional analysis of diagnostic accuracy using positivity of MAT or culture (n=33) as the reference standard.

Sample Type	PCR	Reference standard	Sensitivity % (95% Confidence Interval)	Specificity % (95% Confidence Interval)
Serum (n=766)	rrs	3 Positive (n=33) 11*	9.38 (1.98 – 25.0)	98.5 (97.3 – 99.3)
	PHE	3 Negative (n=754)	9.38 (1.98 – 25.0)	98.8 (97.7 – 99.4)
Buffy Coat (n=750)	rrs	1 Positive (n=33) 7*	3.03 (0.08 – 15.8)	99.0 (98.0 – 99.6)
	PHE	4 Negative (n=754)	12.1 (3.4 – 28.2)	99.0 (98.0 – 99.6)
Urine (n=626)	rrs	5 Positive (n=33) 59*	17.2 (5.85 – 35.8)	90.1 (87.4 – 92.4)
	PHE	4 Negative (n=620)	13.8 (3.89 – 31.7)	99.0 (97.8 – 99.6)

*Number of samples negative by the reference standard but positive by PCR that had paired MAT samples: serum – rrs (n=6), PHE (n=5); buffy coat – rrs (n=5), PHE (3); urine – rrs (n=23), PHE (n=1)

Bayesian LCM estimates of unbiased sensitivities of all qPCRs were higher than those estimated by conventional analysis in all sample types, and higher than MAT or culture (Table 3). Estimated unbiased specificities of all qPCRs
were similar to those derived from conventional analyses. There was no significant difference in sensitivity between the qPCR assays on serum (Bayesian $p=0.082$) or urine samples (Bayesian $p=0.092$). On BC samples, 16SrRNA/LipL32 qPCR sensitivity was higher than rrs qPCR (Bayesian $p<0.001$).
Table 3. Bayesian LCM estimates of diagnostic accuracy for each test

Parameters	Bayesian LCM % (95% Credibility Interval)
Prevalence	2.0 (1.1-3.8)
MAT	
Sensitivity	15.8 (6.3-29.4)
Specificity	96.5 (96.2-96.9)
PPV	10.0 (3.3-20.0)
NPV	98.3 (96.7-98.9)
Culture for *Leptospira* spp.	
Sensitivity	25.0 (13.3-44.4)
Specificity	100
PPV	100
NPV	98.5 (96.7-99.4)
16S rRNA/LipL32 qPCR on serum	
Sensitivity	53.9 (33.3-81.8)
Specificity	99.6 (99.2-100)
PPV	75.0 (50.0-100)
NPV	99.1 (97.6-99.7)
16S rRNA/LipL32 qPCR on buffy coat	
Sensitivity	58.8 (34.4-90.9)
Specificity	99.9 (99.6-100)
PPV	90.9 (72.7-100)
NPV	99.1 (97.4-99.9)
16S rRNA/LipL32 qPCR on urine	
Sensitivity	45.0 (27.0-66.7)
Specificity	99.6 (99.3-100)
PPV	70.0 (50.0-100)
NPV	98.8 (97.3-99.5)
rrs qPCR on serum	
Sensitivity	50.0 (29.6-77.8)
Specificity	99.2 (99.0-99.5)
PPV	57.1 (42.9-71.4)
NPV	99.0 (97.3-99.7)
rrs qPCR on buffy coat	
Sensitivity	35.7 (20.7-55.6)
Specificity	99.7 (99.5-100)
PPV	75.0 (50.0-100)
NPV	98.7 (97.1-99.5)
rrs qPCR on urine	
Sensitivity	39.1 (25.0-57.1)
Specificity	92.5 (92.3-92.8)
PPV	9.4 (6.3-14.1)
NPV	98.6 (97.0-99.5)

Note: Culture specificity was fixed at 100%. The Akaike Information Criterion was used to evaluate goodness of fit and select the final model. The final Bayesian LCM included culture,
MAT, 16SrRNA/LipL32 qPCR on serum and urine samples, and rrs qPCR on buffy coat samples with conditional dependence between culture and qPCR assays on blood samples (web-only Supplementary Table S5). Sensitivity and specificity of all tests and Bayesian p-values were estimated (web-only Supplementary Table S6).

Sensitivity analysis including only patients with all three sample types available for qPCR testing (n=597) obtained similar results (web-only Supplementary Tables S7 and S8).

Sample type comparison:
Mean Cq value did not differ significantly between the three sample types for detection of pathogenic *Leptospira* spp. with rrs (p=0.69) or 16SrRNA/LipL32 (16S p=0.19; LipL32: p=0.46) qPCRs. However, BC samples were significantly more frequently inhibitory (48/750, 6.4%) than serum (6/766, 0.78%) or urine (8/626, 1.3%) (p<0.001).

Five patients had pathogenic *Leptospira* DNA detected by 16SrRNA/LipL32 qPCR in urine but not in blood (web-only Supplementary Figure 3); two of these had paired sera available for MAT which confirmed leptospirosis by a four-fold titre rise. Of the 58 patients rrs qPCR positive in urine but not blood, only 3 were confirmed by MAT (23/58 had paired sera available). 13 of the 55 patients not MAT confirmed were also positive by 16SrRNA/LipL32 qPCR in urine (1 pathogenic, 1 intermediate and 11 non-pathogenic *Leptospira* DNA).
DISCUSSION

We compared two molecular assays and three different sample types for diagnosing acute leptospirosis in Laos. Performance of the qPCRs was similar and consistent with previous reports [7, 18, 24] with high specificity but only 40-60% sensitivity when Bayesian LCM was used to estimate unbiased accuracy of each test. Pre-hospital antibiotic use may contribute to low qPCR sensitivity in our population, with detectable antibiotic activity found in urine of 57% of febrile patients presenting to Mahosot Hospital [25]. Duration of leptospiromaemia also affects qPCR sensitivity and as expected samples collected after the first week of illness were rarely qPCR positive in this study. Nevertheless, molecular detection from admission blood identified 17 additional Leptospira infections compared with the conventional “gold standard” MAT. Our findings are consistent with the previous meta-analysis showing that culture and MAT have low sensitivities [7]. Low sensitivity of MAT and culture were also supported by post-hoc estimation of sensitivities among patients with pathogenic Leptospira DNA positive qPCR in blood and paired sera available for MAT (web-only Supplementary Table S9). In addition, our study suggests that MAT has imperfect specificity in our setting (96.5%), possibly related to frequent Leptospira spp. exposure confounding interpretation of this serological test in acutely febrile patients in Laos.

The stated limit of detection for both rrs and 16SrRNA/LipL32 qPCR is 1 genome copy per reaction [18] (PHE, unpublished data) and similar performance of the two assays was therefore expected. However, the rrs and 16SrRNA/LipL32 assays target different sections of the 16SrRNA gene, which
may explain some of the observed assay discordance. Prior to this study BC was routinely used for molecular detection of *Leptospira* spp. in Laos [3, 19], in line with the hypothesis that phagocytosed *Leptospira* spp. are concentrated in BC. However, this study found no difference in sensitivity between serum and BC for qPCR diagnosis of leptospirosis and identified serum as a better blood matrix than BC due to the significantly lower inhibition rate with serum samples. This is consistent with previous reports of qPCR inhibition with BC [26], and use of BC for qPCR may have resulted in underestimation of leptospirosis frequency in previous studies [19].

In line with previous findings [27] qPCR inhibition was rare with urine samples in our study and, with no difference in sensitivity to blood, urine is a useful sample for the molecular diagnosis of leptospirosis, particularly when using the more specific 16SrRNA/\textit{LipL32} qPCR. Detection of intermediate or non-pathogenic *Leptospira* strains in urine by *rrs* qPCR, although previously reported [18], does not fully explain the lower specificity of *rrs* qPCR on urine as only 22% of urine samples positive by *rrs* qPCR alone had intermediate or non-pathogenic *Leptospira* DNA detected by 16SrRNA/\textit{LipL32} qPCR. Although *rrs* qPCR analytical specificity has been shown to be high [11, 18], a recent prospective study [28] identified false positive results of *rrs* qPCR on blood culture fluid containing non-leptospiral bacteria. Urine is more likely than blood to contain contaminating bacteria and it is possible that this accounts for the apparent high false positive rate of *rrs* qPCR on urine in our study. Environmental contamination of urine samples was minimised in our study by the use of sterile containers and clear instructions for sample collection.
Although the timing of *Leptospira* excretion in urine in humans is not clearly defined, our data support Iwasaki and colleagues findings [29] that *Leptospira* DNA detection by qPCR in urine occurs both early and late in the acute phase of leptospirosis.

A recent study in Ecuador found that intermediate *Leptospira* strains might contribute more to human leptospirosis than previously believed [30], a finding our data seems to support with 1.5 times more patients positive for intermediate *Leptospira* spp. than pathogenic *Leptospira* spp. by 16SrRNA/LipL32 qPCR. Distinguishing pathogenic from intermediate and non-pathogenic strains of *Leptospira* species is an advantage of the 16SrRNA/LipL32 qPCR for furthering our understanding of the role of these species in human leptospirosis. However the complexity of the assay is a significant limitation for deployment to resource-limited settings where leptospirosis is most prevalent. The simpler *rrs* assay used with the optimum sample type (serum) represents a workable alternative.

A limitation of our study was the unexpectedly low prevalence of leptospirosis, resulting in low positivity rates across all tests and wide 95% credible intervals for the diagnostic accuracy values. However, only such prospective studies can determine the true utility of diagnostic tests and optimum samples in routine practice. Additional limitations include the low proportion of patients with paired sera available for MATs, use of blood clot for *Leptospira* culture [20], that only three-quarters of patients had all sample types available for
qPCR, and limited outcome data. These reflect the difficulty of specimen collection in clinical settings, particularly in low and middle-income countries.

In conclusion, molecular diagnostics are important for accurate and timely diagnosis of leptospirosis with qPCR performing consistently better than culture or MAT and our data demonstrate the importance of Bayesian LCM for assessing diagnostic tests when reference standards are imperfect [7, 9]. We identified serum as the most suitable sample overall for qPCR. Our data highlight the challenges associated with Leptospira diagnostics and the need for product development and evaluation to ensure rapid, reliable diagnostics are available to guide patient management and reduce leptospirosis morbidity and mortality globally.
Transparency declaration

None of the authors have any conflicts of interest to declare.

Funding

This study was funded by the Wellcome Trust of Great Britain. The secondment of authors KW and CNF to Laos was funded by Public Health England.

Acknowledgements

We would like to acknowledge: Rattanaphone Phetsouvanh, Soulignasak Thongpaseuth, Phouthasen Hyongvongsithy, William Rudgard, Sayaphet Rattanavong, Koukeo Phommasone, Anousone Douangnouvong, and Khansoudaphone Phakhounthong, for their support with the laboratory and clinical investigations. We are also very grateful to the Directors of Mahosot Hospital, the Minister of Health, and the Director of the Curative Department, Ministry of Health, for their support in this study.

Authors contributions

SD, PN, MZ, NS, DD, CA and CNF conceived of and designed the study. LB, AC, VD, SS, CNF, WP, KW performed sample preparation and molecular testing. ST, SC, MB, SW performed MAT serology. KW, SD and CNF collated and analysed the data. CL and DL performed the Bayesian Latent Class Modelling. KW drafted the manuscript and all authors revised and reviewed the final manuscript.
References

[1] Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl Trop Dis. 2015;9(9):e0003898.

[2] Jensenius M, Han PV, Schlagenhauf P, Schwartz E, Parola P, Castelli F, et al. Acute and potentially life-threatening tropical diseases in western travelers--a GeoSentinel multicenter study, 1996-2011. Am J Trop Med Hyg. 2013;88(2):397-404.

[3] Dittrich S, Rattanavong S, Lee SJ, Panyanivong P, Craig SB, Tulsiani SM, et al. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study. The Lancet Global Health. 2015;3(2):e104-e12.

[4] Gouveia EL, Metcalfe J, de Carvalho AL, Aires TS, Villasboas-Bisneto JC, Queirroz A, et al. Leptospirosis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis. 2008;14(3):505-8.

[5] Hery G, Letheulle J, Flecher E, Quentin C, Piau C, Le Tulzo Y, et al. Massive intra-alveolar hemorrhage caused by *Leptospira* serovar Djasiman in a traveler returning from Laos. J Travel Med. 2015;22(3):212-4.

[6] Taylor AJ, Paris DH, Newton PN. A Systematic Review of the Mortality from Untreated Leptospirosis. PLoS Negl Trop Dis. 2015;9(6):e0003866.

[7] Limmathurotsakul D, Turner EL, Wuthiekanun V, Thaipadungpanit J, Suputtamongkol Y, Chierakul W, et al. Fool's gold: Why imperfect reference tests are undermining the evaluation of novel diagnostics: a reevaluation of 5 diagnostic tests for Leptospirosis. Clin Infect Dis. 2012;55(3):322-31.
[8] Lim C, Wannapinij P, White L, Day NP, Cooper BS, Peacock SJ, et al. Using a web-based application to define the accuracy of diagnostic tests when the gold standard is imperfect. PLoS One. 2013;8(11):e79489.

[9] Lim C, Paris DH, Blacksell SD, Laongnualpanich A, Kantipong P, Chierakul W, et al. How to Determine the Accuracy of an Alternative Diagnostic Test when It Is Actually Better than the Reference Tests: A Re-Evaluation of Diagnostic Tests for Scrub Typhus Using Bayesian LCMs. PLoS One. 2015;10(5):e0114930.

[10] Slack AT, Symonds ML, Dohnt MF, Smythe LD. Identification of pathogenic *Leptospira* species by conventional or real-time PCR and sequencing of the DNA gyrase subunit B encoding gene. BMC Microbiol. 2006;6:95.

[11] Smythe LD, Smith IL, Smith GA, Dohnt MF, Symonds ML, Barnett LJ, et al. A quantitative PCR (TaqMan) assay for pathogenic *Leptospira* spp. BMC Infect Dis. 2002;2:13.

[12] Ahmed A, Engelberts MF, Boer KR, Ahmed N, Hartskeerl RA. Development and validation of a real-time PCR for detection of pathogenic *Leptospira* species in clinical materials. PLoS One. 2009;4(9):e7093.

[13] Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR. Detection of pathogenic *Leptospira* spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis. 2009;64(3):247-55.

[14] Palaniappan RU, Chang YF, Chang CF, Pan MJ, Yang CW, Harpending P, et al. Evaluation of lig-based conventional and real time PCR...
for the detection of pathogenic leptospires. Mol Cell Probes. 2005;19(2):111-7.

[15] Kositanont U, Rugsasuk S, Leelaporn A, Phulsuksombati D, Tantitanawat S, Naigowit P. Detection and differentiation between pathogenic and saprophytic *Leptospira* spp. by multiplex polymerase chain reaction. Diagn Microbiol Infect Dis. 2007;57(2):117-22.

[16] Agampodi SB, Matthias MA, Moreno AC, Vinetz JM. Utility of quantitative polymerase chain reaction in leptospirosis diagnosis: association of level of leptospiremia and clinical manifestations in Sri Lanka. Clin Infect Dis. 2012;54(9):1249-55.

[17] Levett PN. Leptospirosis. Clin Microbiol Rev. 2001;14(2):296-326.

[18] Thaipadungpanit J, Chierakul W, Wuthiekanun V, Limmathurotsakul D, Amornchai P, Boonslip S, et al. Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and lipL32 genes for human leptospirosis in Thailand: a case-control study. PLoS One. 2011;6(1):e16236.

[19] Mayxay M, Castonguay-Vanier J, Chansamouth V, Dubot-Peres A, Paris DH, Phetsouvanh R, et al. Causes of non-malarial fever in Laos: a prospective study. The Lancet. 2013;1(1):e46-e54.

[20] Wuthiekanun V, Chierakul W, Limmathurotsakul D, Smythe LD, Symonds ML, Dohnt MF, et al. Optimization of culture of *Leptospira* from humans with leptospirosis. J Clin Microbiol. 2007;45(4):1363-5.

[21] World Health Organization (WHO). Report of the second meeting of the Leptospirosis Burden Epidemiology Reference Group. Geneva: WHO 2011.
[22] Bustin SA, Benes V, Garson JA, Hellemans J, Hugget J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22.

[23] Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS- A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 2000;10: 325–337.

[24] Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Chierakul W, Limmathurotsakul D, et al. Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-negative leptospirosis. BMC Infect Dis. 2011;11:338.

[25] Khennavong M, Davone V, Vongsouvath M, Phetsouvanh R, Silisouk J, Rattana O, et al. Urine antibiotic activity in patients presenting to hospitals in Laos: implications for worsening antibiotic resistance. Am J Trop Med Hyg. 2011;85(2):295-302.

[26] Ninove L, Nougairede A, Gazin C, Thirion L, Delogu I, Zandotti C, et al. RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests. PLoS One. 2011;6(2):e16142.

[27] Richardson LJ, Kaestli M, Mayo M, Bowers JR, Tuanyok A, Schupp J, et al. Towards a rapid molecular diagnostic for melioidosis: Comparison of DNA extraction methods from clinical specimens. J Microbiol Methods. 2012;88(1):179-81.

[28] Dittrich S, Rudgard WE, Woods KL, Silisouk J, Phuklia W, Davong V, et al. The Utility of Blood Culture Fluid for the Molecular Diagnosis of
Leptospira: A Prospective Evaluation. Am J Trop Med Hyg. 2016;94(4):736-40.

[29] Iwasaki H, Chagan-Yasutan H, Leano PS, Koizumi N, Nakajima C, Taurustiati D, et al. Combined antibody and DNA detection for early diagnosis of leptospirosis after a disaster. Diagn Microbiol Infect Dis. 2016;84(4):287-91.

[30] Chiriboga J, Barragan V, Arroyo G, Sosa A, Birdsell DN, Espana K, et al. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerg Infect Dis. 2015;21(12):2141-7.
‘PHE’ is an abbreviation for the Public Health England developed 16SrRNA/LipL32 assay.

*2 patients had only convalescent serum available for MAT (both were negative).

17/33 had paired sera available for MAT. *221/754 had paired sera available for MAT.
