Page	Title	Authors
103	Role of gastroesophageal reflux disease in lung transplantation	Hathorn KE, Chan WW, Lo WK
117	Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation	Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN
129	Smoking in Renal Transplantation; Facts Beyond Myth	Aref A, Sharma A, Halawa A
134	Past, present and future of kidney paired donation transplantation in India	Kate VB, Patel HV, Shah PR, Modi PR, Shah VR, Rizvi SJ, Pal BC, Modi MP, Shah PS, Varyani UT, Wakhare PS, Shinde SG, Ghodela VA, Patel MH, Trivedi VB, Trivedi HL
144	Systemic meta-analysis assessing the short term applicability of early conversion to mammalian target of rapamycin inhibitors in kidney transplant	Kumar J, Reccia I, Kusano T, Julie BM, Sharma A, Halawa A
152	Living related and living unrelated kidney transplantations: A systematic review and meta-analysis	Simforoosh N, Shemshaki H, Nadjafi-Semnani M, Sotoodeh M
World Journal of Transplantation

Volume 7 Number 2 April 24, 2017

EDITORS FOR
THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Fang-Fang Ji
Responsible Electronic Editor: Huan-Liang Wu
Proofing Editorial Office Director: Xiu-Xia Song

Wo
rld Journal of Transplantation

Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/gerinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Systemic meta-analysis assessing the short term applicability of early conversion to mammalian target of rapamycin inhibitors in kidney transplant

Jayant Kumar, Isabella Reccia, Tomokazu Kusano, Bridson M Julie, Ajay Sharma, Ahmed Halawa

Jayant Kumar, Isabella Reccia, Tomokazu Kusano, Department of Cancer and Surgery, Imperial College, London W120HS, United Kingdom

Bridson M Julie, Ajay Sharma, Ahmed Halawa, Faculty of Health and Sciences, Institute of Learning and Teaching, University of Liverpool, Liverpool L693BX, United Kingdom

Ajay Sharma, Department of Surgery, Royal Liverpool University Hospital, Liverpool L78XP, United Kingdom

Ahmed Halawa, Department of Surgery, Sheffield Teaching Hospitals, Sheffield S102F, United Kingdom

Author contributions: Kumar J and Halawa A designed study; Kumar J and Reccia I collected data; Kumar J, Reccia I, Kusano T and Julie BM analyzed data; Kumar J, Sharma A and Halawa A wrote paper.

Conflict-of-interest statement: None of the contributing authors have any conflict of interest, including specific financial interests or relationships and affiliations relevant to the subject matter or materials discussed in the manuscript.

Data sharing statement: The manuscript summarizes data as have been reported in published literature to date. There were no new patients studied, and no new data compiled. No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Jayant Kumar, MD, MS, Department of Cancer and Surgery, Imperial College, Du Cane Road, London W120HS, United Kingdom. jkumar@ic.ac.uk

Telephone: +44-74-59934454

Received: November 22, 2016
Peer-review started: November 24, 2016
First decision: January 16, 2017
Revised: February 6, 2017
Accepted: February 28, 2017
Article in press: March 2, 2017
Published online: April 24, 2017

Abstract

AIM

To consolidate the present evidence of effectiveness in renal functioning and graft survival following early introduction of mammalian target of rapamycin (mTOR) inhibitors with or without calcineurin inhibitors (CNIs) in renal transplant recipients.

METHODS

We analysed the current literature following PROSPERO approval describing the role of immunosuppressive agent, mTOR inhibitors as an alternative to CNI within six months of renal transplant by searching the PubMed, EMBASE, Cochrane, Crossref, and Scopus using MeSH terms.

RESULTS

Six articles of early withdrawal of CNI and introduction of mTOR-inhibitors within six months of renal transplantation were sought. Glomerular filtration rate (GFR) and serum creatinine were significantly better in mTOR inhibitor group with equivalent survival at 12 mo, even though Biopsy Proven Acute rejection was significantly higher in mTOR-inhibitor group.

CONCLUSION

The evidence reviewed in this meta-analysis suggests...
that early introduction mTOR-inhibitors substantial CNI minimization. The mTOR inhibitors such as everolimus and sirolimus, due to their complementary mechanism of action and favourable nephrotoxicity profile; better glomerular filtration, lower serum creatinine with equivalent survival. Having said that, due to the higher rejection rate, may influence the use of these regimens to patients with moderate to high immunological risk patients.

Key words: Adverse events; Calcineurin inhibitors; Graft failure; Kidney transplantation; Mammalian target of rapamycin inhibitors

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Early calcineurin inhibitor withdrawal seems to be more pragmatic approach as it bestows better renal functioning in the low immunological risk renal transplant recipients.

Kumar J, Reccia I, Kusano T, Julie BM, Sharma A, Halawa A. Systemic meta-analysis assessing the short term applicability of early conversion to mammalian target of rapamycin inhibitors in kidney transplant. World J Transplant 2017; 7(2): 144-151 Available from: URL: http://www.wjgnet.com/2220-3230/full/v7/i2/144.htm DOI: http://dx.doi.org/10.5500/wjt.v7.i2.144

INTRODUCTION

Inventions in medical science enhance life which has been realized in the concept of kidney transplantation and add significant amount of productive years to the patients of chronic kidney disease[1]. The calcineurin inhibitors (CNIs), cyclosporine A (CsA) and tacrolimus (Tac) were instituted in clinical practice in 1980’s. and established themselves as an effective immunosuppressive agent with more than 90% one-year graft survival whilst maintaining a rejection rate of less than 20%[2]. Anyhow, the superlative results of short-term allograft survival have not been maintained for long that could be because of slow, steady decline in renal functioning as, eGFR reduced to below 50% in a span of ten years[3]. Studies have reported chronic allograft nephropathy as the most common cause of late graft loss in 40% kidney transplant patients, whilst the mortality incidence with delayed functioning graft (DFG) was reported in 43% cases. The cardiovascular diseases and malignancies are considered as the most important causes of DFG in transplant patients[4].

The CNI induced nephrotoxicity is considered as an important cause of long-term graft failure in 96.8% of allograft biopsies by virtue of increased production of vasoconstrictors, such as thromboxane and endothelin, together with decreasing the turn-out of vasodilators, such as nitric oxide, prostaglandin E2, and prostacyclin[5,6]. Nankivell et al[7] (2004) outlined that more than 50% of kidney allograft biopsies unveiled attestation of chronic CNI toxicity following ten years transplant as 79.2%-100% exhibit histological alterations as tubular atrophy, nodular arteriolar hyalinosis, tubular vacuolization, luminal narrowing, interstitial fibrosis, focal or global segmental sclerosis and micro-calciﬁcations. Surprisingly, the reward of minimal early acute rejection has not been translated into any long term beneﬁts. In addition, CNIs have been associated with development of various cardiovascular risk factors such as hyperlipidemia, hypertension, and new onset diabetes mellitus after transplantation[8,9].

However, the biggest challenge with immunosuppression therapy is to maintain the balance of immunosuppression need in order to avert any rejection episode whilst keeping the check on the toxicities. The recent introduction of better and more efficient non-nephrotoxic immunosuppressive agents such as the mammalian target of rapamycin (mTOR) inhibitors, sirolimus (SRL) and everolimus (EVR), with mechanism of action similar to that of CNIs, forms the basis of use of these drugs[10,11].

CNIs as Tacrolimus (Tac) and Cyclosporin A (CsA) attach with the intracellular proteins called FKBP and immunophilins to form complex which blocks the effect of calcineurin which normally potentiates the intracellular processes associated with the activation of T-lymphocytes. This causes decreased production of interleukin-2 and inhibit the proliferation of T-cells[12,13].

In the similar manner mTOR inhibitors as SRL and EVR form a complex with FKBP to reduces T-cell activation by blocking growth-factor-mediated cell proliferation in the response to an alloantigen[14-17]. The distinct immunological properties with and limited nephrotoxic potential of mTOR-inhibitors have prevailed clinicians to use them as a surrogate to CNIs in renal transplantation[18-21].

The main aim of this review is to focus on the short term benefit early conversion to mTOR-inhibitors with or without CNI in renal transplant recipients in terms of graft functioning and graft survival.

MATERIALS AND METHODS

This meta-analysis was performed following registration in PROSPERO an international database of prospectively registered systematic reviews (CRD42017054458). An extensive search of all the published literature on the role of early conversion to mTOR inhibitors as an alternative to CNI has been made on National Library of Medicine Database (PubMed), EMBASE, Cochrane, Crossref, and Scopus databases on 30th August 2016. The search covered the period 2001 (the year of the first reported early CsA withdrawal with sirolimus in the literature) to September 30th, 2016[22]. The following medical subject headings (MeSH) terms: “Adverse events”, “calcineurin inhibitors”, “cyclosporin”, “mTOR inhibitors”, “sirolimus”, “everolimus”, “cyclosporine A” and others were used.
“everolimus”, “graft rejection”, “graft survival”, “kidney transplantation”, “mTOR inhibitors”, “sirolimus”, “tacrolimus” were searched.

Study selection methodology
The original English literature articles published between 2001-September 2016 were included. Only studies which systematically and quantitatively assessed the graft functioning and graft survival of more than or equal to 12 mo following early conversion to mTORi with or without CNI in different randomised clinical studies were analysed. All kind of comparative studies, retrospective and prospective were included. We have excluded publications as editorials, reviews and letters (Table 1).

Data extraction
Two separate physician reviewers Kumar J, Reccia I reviewed all the articles. Disagreements were resolved through discussion, whilst in scenarios where consensus could not be achieved were resolved by a third author (Ahmed Halawa). We have analysed all papers with empirical studies using a standardised quality assessment tool and pre-specified inclusion and exclusion criteria. The present meta-analysis was performed using the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and registered in PROSPERO an international database of prospectively registered systematic reviews (Figure 1).

Statistical analysis
The QUADAS-II (quality assessment of diagnostic accuracy studies-II) based analysis was done to assess the internal validity of pre-specified inclusion and exclusion criteria of the various studies. QUADAS-2 is an evidence-based bias assessment tool to evaluate the quality of diagnostic accuracy studies in a systematic review.

A total of six peer-reviewed multi-institutional studies were included in the present meta-analysis. We reviewed each study comprehensively, and data were extracted for the outcomes such as patient safety, exposure-response relationships, adverse events, and various shortcomings or weaknesses to improve the graft functioning and long-term survival (Table 2).

Review Manager (RevMan) Version 5.3 was used to analyse continuous and dichotomous trial data when at least two trials reported. Odds ratios (OR) for dichotomous outcomes, mean difference (MD) for continuous outcomes including a 95%CI, heterogeneity between the trials was measured using the statistic with > 30% considered as significant. The random effects model was used in cases of significant heterogeneity by visualizing the forest plot of involved trials.

RESULTS
The initial search yielded a total of 112 manuscripts. After careful evaluation, 98 articles were excluded on basis period of introduction was not within six months of transplantation. Eventually, a total of six articles matched the previously described inclusion criteria, i.e., ZEUS trial (2011), CENTRAL trial (2012), CONCEPT trial (2009), SMART trial (2010), Spare the Nephron trial (2010)[23–27] and Heilman et al.[28] (Table 2). The comprehensive data of all these studies summarizing the renal functioning, Biopsy Proven Acute rejection (BPAR), survival and adverse events were included in Table 3, below we have further analyzed these studies in the time frame of 12 mo following transplantation.

Renal function
The 12 mo estimated renal function (eGFR) was significantly better in the mTOR inhibitor group compared to CNI group (six trials, 1257 patients, mean difference 5.24 mL/min per 1.73 m², 95%CI: 2.18 to 8.29, \(P = 0.00, I^2 = 70\%\) (Figure 2). Similarly, the measured serum creatinine was significantly lower in the mTOR inhibitors groups at 12 mo (six trials, 1256 patients, mean difference = -11.59 μmol/L, 95%CI: -20.08 to -3.09, \(P < 0.00, I^2 = 73\%\) (Figure 3).

BPAR
The incidence of BPAR was significantly higher in mTORs groups compared to CNIs groups (six trials, 1265 patients, OR = 2.11, 95%CI: 1.43 to 3.11, \(P = 0.00, I^2 = 3\%\) at 12 mo (Figure 4).

Graft survival and adverse events
At 12 mo, the rates of graft survival were comparable for mTOR inhibitor group and the CNI groups (Table 3). There was no significant difference in the incidence of serious adverse events/infection between the mTOR inhibitors and CNI groups in majority of studies.

DISCUSSION
The initiation of mTOR-inhibitors in early post-transplant period is one of the arduous decision taken by clinicians as it should be done following the period of the heightened immunological risk is over, but no evidence of CNI related toxicity evolved[29,30]. Various
Table 2 Summary of Different Early Conversion Clinical Trials

Ref.	Study design	Time of conversion	Group 1	Group 2
Everolimus				
Budde et al. (ZEUS Study), 2011	Multicentre, Prospective, Randomized Study ($n = 300$), 12 mo	4.5th month	EVR (C0, 6-10 ng/mL) Induction: Basiliximab ($n = 155$)	CsA (C0, 120-180 ng/mL till 4.5-6 mo then decreased to 100-150 ng/mL) Induction: Basiliximab ($n = 145$)
Mjörnstedt et al. (CENTRAL trial), 2012	Multicentre, Prospective, Randomized Study ($n = 269$), 12 mo	7th week	EVR (C0, 6-10 ng/mL) + MMF (1.4 g/d) + S ($n = 92$)	Low CsA (C0, 75-200 ng/mL till 2 wk then decreased to 50-150 ng/mL) + MMF (1.4 g/d) + S ($n = 90$)
Sirolimus				
Lebranchu et al. (CONCEPT Study), 2009	Multicentre Prospective, Randomized Study, ($n = 193$), 12 mo	3rd month	SRL (C0, 8-15 ng/mL till 59 wk then decreased to 5-10 ng/mL) + MMF + S (Induction: Daclizumab) ($n = 95$)	CsA (C0, 500-800 ng/mL) + MMF + S (Induction: Daclizumab) ($n = 97$)
Guba et al. (SMART Trial), 2010	Multicentre Prospective, Randomized Study, ($n = 140$), 12 mo	10-24th day	SRL (C0, 8-12 ng/mL then decreased to 5-10 ng/mL) + MMF (1.5 g/d) + S (Induction: ATG) ($n = 69$)	CsA (C0, 150-200 ng/mL then decreased to 100-150 ng/mL) + MMF (2 g/d) + S (Induction: ATG) ($n = 71$)
Weir et al. (Spare the Nephron Trial), 2010	Multicentre, Prospective, Randomized Study, ($n = 299$), 12 mo	Within 115 d	MMF + SRL ($n = 148$)	MMF + CNI ($n = 151$)
Heilman et al. (SMART Trial), 2011	Multicentre Prospective, Randomized Study, ($n = 122$), 12 mo	1 mo	SRL (C0, 9.8 ± 3.6 ng/mL) + MMF + S (Induction: Basiliximab) ($n = 62$)	TAC (C0, 6.9 ± 4.6 ng/mL) + MMF + S (Induction: Basiliximab) ($n = 60$)

Database searching: PubMed, Cochrane, Embase, Crossref, Scopus

Search term: Mesh "Calcineurin Inhibitors", "Tacrolimus", "Cyclosporine", "mTOR inhibitors", "Sirolimus", "Everolimus", "Kidney transplantation", "Adverse events", "Graft rejection", and "Graft survival"

Figure 1 Search strategy and study selection used in this systematic review as per PRISMA protocol.
CNI free or reduced dosing regimens have been tried to minimize nephrotoxic adverse effect. The peril of increased risk of rejection with the denovo use of CNI free protocols, has been pared down with the early introduction mTOR inhibitors. Howbeit, data regarding optimal transmutation time to mTOR inhibitor based immunosuppression is not clear. Though, the present literatures support the notion of early conversion to mTOR inhibitors within the six months of transplant whereas the reward of conversion after month 6 is not that encouraging. The major hindrance in the expected outcome following late conversion might be because the CNI related nephrotoxicity has already settled in.\(^{(23,25)}\)

In the present rationale, mTOR inhibitors should be introduced within a period of 2 wk to 6 mo, \(i.e.,\) following the period of increased risk for rejection and wound infection has been over.

In a ZEUS study, which was multicenter randomised trial done by Budde et al.\(^{(23)}\) (2011) considered early conversion from CsA to everolimus at 4.5 mo after renal transplantation. Two hundred and sixty-nine patients were randomised into two groups the first group received everolimus with MMF, while another group was maintained on gradually tapered lower dose of CsA with MMF. The group has reported a statistically significant improvement in renal functioning, \(i.e.,\) eGFR for the everolimus group (71.8 ± 18 mL/min vs 61.2 ± 16 mL/min; \(P = 0.000\)) at 12 mo while, BPAR was a higher in the everolimus group (13.9% vs 7.5%, \(P = 0.09\)). Nevertheless, they heralded no difference in terms of graft and patient survival.\(^{(23)}\)

In a CENTRAL trial by Mjörnstedt et al.\(^{(24)}\) (2012)
they studied the effect of early conversion from CsA to everolimus in the seventh week of the post-transplant. About two hundred and two patients who were randomised to receive intervention group everolimus (C0, 3-8 ng/mL) and were compared with CsA (C0, 75-200 ng/mL for two weeks then reduced, further maintained at 50-150 ng/mL) with oral steroids and MMF. They didn’t report significant improvement in GFR in everolimus group (68.1 ± 21.5 mL/min vs 69.4 ± 22.9 mL/min, \(P = NS \)) at 12 mo, although serum creatinine was lower in mTOR inhibitor group (122.0 ± 35 \(\mu \)mol/L vs 132.0 ± 45 \(\mu \)mol/L, \(P = NS \)).

Though the reported incidence of BPAR was significantly higher in EVR group than in CsA group (27.5% vs 11.0%, \(P = 0.004 \)), the survival outcomes were similar at 12 mo. The reported side effects as proteinuria, anaemia, hyperlipidaemia, acne and mouth ulceration were significantly more frequent in the everolimus group[24].

In the CONCEPT study 2009 by Lebranchu et al[25], instituted Sirolimus by replacing CsA in the third month of the post-transplantation. Their literature listed significantly better eGFR (68.9 mL/min vs 64.4 mL/min) and significantly lower serum creatinine (117.4 \(\mu \)mol/L vs 132.3 \(\mu \)mol/L, \(P < 0.001 \)) in the sirolimus group at 12 mo. The detailed BPAR was similar for entire period of observation. The side effects such as diarrhoea, SAE, aphthous stomatitis, proteinuria and new onset diabetes mellitus were either significantly higher or higher in the sirolimus group[26].

Guba et al[26] (2010) carried out a multicenter randomised SMART trial, to explore the effects of very early conversion to sirolimus from CsA only 10 to 24 d after the renal transplantation. They randomised one hundred and forty-one patients were into two groups to confer sirolimus with MMF and steroid, on the other hand the second group was maintained on gradually tapered lower dose of CsA with MMF and steroid. They

Table 3 Summary of outcomes in Different Early Conversion Clinical Trials

Ref.	Renal function (Gp1 vs Gp 2)	BPAR (Gp1 vs Gp 2)	Adverse event (Gp1 vs Gp 2)	Remarks
Everolimus				
Buddle et al[23], 2011, (ZEUS Study)	12 mo Sr. Cr: 141.7 ± 44 \(\mu \)mol/L vs 137.0 ± 43 \(\mu \)mol/L, \(P = NS \) eGFR: 71.8 ± 18 mL/min vs 61.2 ± 16 mL/min, \(P = 0.000 \)	9.7% vs 3.4% (\(P = 0.03 \))	SAE/Infection: 61% vs 59% (\(P = NS \)) UTI: 57.0% vs 53% (\(P = NS \)) Diarrhoea: 36% vs 27% (\(P = NS \)) HPL: 14% vs 10% (\(P = NS \)) Patient survival 100% vs 99% Graft survival: 100% vs 100%	
Mjornstedt et al[24], 2012 (CENTRAL trial)	12 mo Sr. Cr: 122.0 ± 35 \(\mu \)mol/L vs 132.0 ± 45 \(\mu \)mol/L, \(P = NS \) eGFR: 68.1 ± 21.5 mL/min vs 69.4 ± 22.9 mL/min, \(P = NS \)	27.5% vs 11.0% (\(P = 0.004 \))	SAE/Infection: 53.9% vs 38.0% (\(P = 0.025 \)) CMV infection: 8.8% vs 13.0% (\(P = NS \)) Edema: 29.4% vs 21.0% (\(P = NS \)) Anaemia: 16.7% vs 6.0% (\(P = 0.02 \)) HPL: 12.7% vs 9.0% (\(P = NS \)) Proteinuria: 4.9% vs 0% (\(P = 0.06 \)) Acne: 12.7% vs 2.0% (\(P = 0.006 \)) Mouth Ulceration: 12.7% vs 2.0% (\(P = 0.001 \))	
Sirolimus				
Lebranchu et al[25], 2009 (CONCEPT Study)	12 mo Sr. Cr: 117.4 \(\mu \)mol/L vs 132.3 \(\mu \)mol/L, \(P < 0.001 \) eGFR: 68.9 mL/min vs 64.4 mL/min, \(P = 0.017 \)	16.8% vs 8.2% (\(P = NS \))	Peripherial Edema: 28.1% vs 22.6% (\(P = NS \)) SAE/infection: 60% vs 44% (\(P = 0.025 \)) Diarrhoea: 30.2% vs 9.2% (\(P = 0.001 \)) Dyslipidemia: 5.20% vs 4.12% (\(P = NS \)) Proteinuria: 9.3% vs 3.0% (\(P = NS \)) NODAT: 3.1% vs 2.0% (\(P = NS \))	
Guba et al[26], 2010, (SMART Trial)	12 mo Sr Cr: 111.5 ± 45 mg/dl vs 142.6 ± 74 mg/dl, \(P = 0.004 \) eGFR: 64.5 ± 25.2 mL/min vs 53.4 ± 18.0 mL/min, \(P = 0.001 \)	17.4% vs 15.5% (\(P = NS \))	Wound Healing Disorder: 10.1% vs 11.3%, (\(P = NS \))	
Weir et al[27], 2010 (Spare the Nephron Trial)	12 mo Sr. Cr: 126.2 ± 82.8 \(\mu \)mol/L vs 145.0 ± 96.5 \(\mu \)mol/L, \(P = NS \) eGFR: 74.6 ± 17.9 mL/min vs 71.5 ± 21.2 mL/min, \(P = 0.06 \)	7.4% vs 6.0% (\(P = NS \))	Infection: 52.2% vs 60.6% (\(P = NS \)) CMV: 7.3% vs 28.2% (\(P < 0.001 \)) HPL: 20.3% vs 7.0% (\(P = 0.02 \)) Diarrhoea: 13.0% vs 9.9% (\(P = NS \)) Lymphocele: 27.5% vs 23.9% (\(P = NS \)) Infection: 16.2% vs 18.3% (\(P = NS \))	
Heilman et al[28], 2011	12 mo Sr. Cr: 96.1 ± 28 \(\mu \)mol/L vs 106.1 ± 61 \(\mu \)mol/L, \(P = NS \) eGFR: 63.0 ± 19.1 mL/min vs 59.8 ± 18.9 mL/min, \(P = NS \)	13% vs 5% (\(P = NS \))	Polyoma virus: 2% vs 4% (\(P = NS \))	

eGFR: Estimated renal function; NA: Not Available; Not Significant; NODAT: New-onset diabetes after transplantation; CMV: Acute cytomegalovirus.
reported statistically significant improvement in renal functioning, eGFR (64.5 ± 25.2 mL/min vs 53.4 ± 18 mL/min; \(P = 0.001 \)) with significantly reduced serum creatinine (111.5 ± 45 μmol/L vs 142.6 ± 74 μmol/L; \(P = 0.004 \)) for the sirolimus group at 12 mo. The detailed incidence of BPAR (17.4% vs 15.5%, \(P = \text{NS} \)) was similar in both groups, likewise, the graft and patient survival were quite similar. In addition, the recipients in the sirolimus group reported a significantly higher number of adverse effects such as acne, hyperlipidemia and lower number CMV viremia with the incidence of BPAR was similar in both groups (20.2% vs 19.7%, \(P = \text{NS} \))

In the 2011 study by Heilman et al.\(^{28}\), sirolimus introduced in the first month of the renal transplant. They have given the account of significant improvement in eGFR (63.0 ± 19.1 mL/min vs 59.8 ± 18.9 mL/min; \(P = \text{NS} \)) and set out lower serum creatinine in the sirolimus group at 12 mo while the reported BPAR was likewise in both groups\(^{28}\).

Publication bias is an important point to consider in a meta-analysis because all the researches which take place are not published. Studies with a significant result are more likely to be published. Studies with a significant result are more likely to be placed in a higher impact journal compared to the studies with null results. Moreover, well controlled and properly carried out studies are less likely to achieve significance.

In general, early CNI withdrawal seems to be a more empirical and constructive approach as it provides better renal functioning in the low immunological risk transplant recipients.

Innovations and breakthroughs

The major advantages were observed regarding better renal functioning, GFR and serum creatinine were better in mTOR inhibitor group at 12 mo. BPAR was significantly higher in the mTOR-inhibitor group though survival was comparable.

Application

In general, early CNI withdrawal seems to be a more empirical and constructive approach as it provides better renal functioning in the low immunological risk transplant recipients.

Peer-review

This study is a systemic review and meta-analysis of the effect on renal function and graft survival following early conversion of CNI to mTOR inhibitors with or without CNI after kidney transplantation. The authors initially selected 112 manuscripts, and of them, only 6 papers were useful for meta-analysis. They conclude that introduction of mTOR-inhibitors allows early and substantial CNI minimization.

REFERENCES

1. Salvadori M, Bertoni E. Is it time to give up with calcineurin inhibitors in kidney transplantation? *World J Transplant* 2013; 3: 7-25 [PMID: 24175203 DOI: 10.5900/wjt.v3i2.7]

2. Knops N, Levetchenko E, van den Heuvel B, Kuypers D. From gut to kidney: transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. *Int J Pharm* 2013; 452: 14-35 [PMID: 2371732 DOi: 10.1016/j.ijpharm.2013.05.033]

3. Dickmann F, Andréas A, Oppenheim F. mTOR inhibitor-associated proteinuria in kidney transplant recipients. *Transplant Rev* (Orlando) 2012; 26: 27-29 [PMID: 22137729 DOI:10.1016/j.trre.2011.10.003]

4. Krieger NR, Becker BN, Heisey DM, Voss BJ, D’Alessandro AM, Becker YT, Odorico JS, Kalayoglu M, Pirsch JD, Sollinger HW, Knechtle SJ. Chronic allograft nephropathy uniformly affects recipients of cadaveric, nonidentical living-related, and living-unrelated grafts. *Transplantation 2003; 75: 1677-1682 [PMID: 12777855 DOI: 10.1097/01.TP.0000063830.60937.06]

5. Cornell LD, Colvin RB. Chronic allograft nephropathy. *Curr Opin Nephrol Hypertens* 2005; 14: 229-234 [PMID: 15821415]

6. Li C, Yang CW. The pathogenesis and treatment of chronic allograft nephropathy. *Nat Rev Nephrol* 2009; 5: 513-519 [PMID: 19636333 DOI: 10.1038/nrneph.2009.113]

7. Nankivel BJ, Borrows RJ, Fung CL, O’Connell PJ, Chapman JR, Allen RD. Delta analysis of posttransplantation tubulointerstitial damage. *Transplantation 2004; 78: 434-441 [PMID: 15136373]

8. Flechner S, Goldfarb D, Slezek C, Modlin CS, Mastroianni B, Savas K, Babineau D, Kurian S, Salomon D, Novick AC, Cook DJ. Kidney transplantation with sirolimus and mycophenolate mofetil-based immunosuppression: 5-year results of a randomized
Kumar J et al. Immunosuppressive role of mTOR inhibitors

prospective trial compared to calcineurin inhibitor drugs. *Transplantation* 2007; 83: 883-892 [PMID: 17460558 DOI: 10.1097/01.tp.0000258386.52777.4c]

9 Fletcher SM. Sirolimus in kidney transplantation indications and practical guidelines: de novo sirolimus-based therapy without calcineurin inhibitors. *Transplantation* 2009; 87: S1-S6 [PMID: 19384179 DOI: 10.1097/TP.0b013e3181a059a1]

10 Augustin JJ, Knauß TC, Schulak JA, Bodziak KA, Siegel C, Hricik DE. Comparative effects of sirolimus and mycophenolate mofetil on erythropoiesis in kidney transplant patients. *Am J Transplant* 2004; 4: 2001-2006 [PMID: 15575902 DOI: 10.1111/j.1600-6143.2004.00612.x]

11 Hernández D, Martínez D, Gutiérrez E, López V, Gutiérrez C, García P, Cobelo C, Caballo M, Burgos D, Sola E, González-Molina M. Clinical evidence on the use of anti-mTOR drugs in renal transplantation. *Nefrologia* 2011; 31: 27-34 [PMID: 21270910 DOI: 10.3265/Nefrologia.pre2010.Jul.10512]

12 Gullstad L, Iversen M, Mortensen SA, Eikjær H, Riise GC, Mared L, Bjornot O, Eknehaug B, Janson S, Simonsen G, Gade E, Randkvist B, Fagertun HE, Solbu D, Bergh CH. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. *Transplantation* 2010; 89: 864-872 [PMID: 20061999 DOI: 10.1097/TP.0b013e3181c8ba2d]

13 Serre JE, Michonneau D, Bache Y, Noël LH, Dubois V, Suberbielle C, Kreis H, Legendre C, Manzer-Brunnel MF, Morelon E, Thaunat O. Maintaining calcineurin inhibition after the diagnosis of post-transplant lymphoproliferative disorder improves renal graft survival. *Kidney Int* 2014; 85: 182-190 [PMID: 23802193 DOI: 10.1038/ki.2013.253]

14 Zaza G, Tomei P, Ria P, Granata S, Boschiero L, Lupo A. Systemic and nonrenal adverse effects occurring in renal transplant patients treated with mTOR inhibitors. *Clin Dev Immunol* 2013; 2013: 403280 [PMID: 24151517 DOI: 10.1155/2013/403280]

15 Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. *Biochim Biophys Acta* 2010; 1804: 433-439 [PMID: 20005306 DOI: 10.1016/j.jbba.2009.12.001]

16 Nashan B. Induction therapy and mTOR inhibition: minimizing calcineurin inhibitor exposure in de novo renal transplant patients. *Clin Transplant* 2013; 27 Suppl 25: 16-29 [PMID: 23909498 DOI: 10.1111/citr.12156]

17 González-Vilchez F, Vazquez de Prada JA, Paniagua MJ, Gomeznuevo M, Arizon JM, Almenar L, Roig E, Delgado J, Lambert JL, Vázquez de Prada JA, Paniagua MJ, Gomez-nuevo M, Arizon JM, Almenar L, Roig E, Delgado J, Lambert JL, Perez-Villa F, Sanju-Mule JL, Crespo-Leiro M, Segovia J, Mohamed-Lazaro A, Martinez-Dolz L, Mirabet E, Escribano P, Diaz-Molina B, Farrero M, Blasco T. Use of mTOR inhibitors in chronic heart transplant recipients with renal failure: calcineurin-inhibitors conversion or minimization? *Int J Cardiol* 2014; 171: 15-23 [PMID: 24300860 DOI: 10.1016/j.ijcard.2013.11.036]

18 Filler G. Calcineurin inhibitors in pediatric renal transplant recipients. *Paediatric Drugs* 2007; 9: 165-174 [PMID: 17523697 DOI: 10.2165/00148581-200709030-00005]

19 Rostaing L, Vandermeersch P, Ehrlicher S, Stegemann E, Kaiser K, Wittwer T, Schirmer J, Voss M, Strauch J, Wahlers T, Mjörnstedt L, Bjørtuft O, Ekmehag B, Jansson K, Simonsen S, Tönshoff B. Growing experience with mTOR inhibitors in pediatric heart transplant recipients: calcineurin inhibitors. *Transplantation* 2010; 4: 182-190 [PMID: 21775930 DOI: 10.1097/TP.0b013e31822805d7]

20 Silva HT, Felipe CR, Garcia VA, Neto MA, Contieri FL, de Carvalho DD, Pestana JO. Planned randomized conversion from tacrolimus to sirolimus-based immunosuppressive regimen in de novo kidney transplant recipients. *Am J Transplant* 2013; 13: 3155-3163 [PMID: 24269699 DOI: 10.1111/ajt.12481]

21 Groetzel J, Kaczmarek I, Schulz U, Stegemann E, Kaiser K, Wittwer T, Schirmer J, Voss M, Strauch J, Wahlers T, Sohn HY, Wagner F, Tenderich G, Stemfelp HJ, Mueller-Ehens J, Schmid C, Vogeser M, Koch KC, Reichenspurner H, Daebritz S, Meiser B, Reichart B. Mycophenolate and sirolimus as calcineurin-inhibitor-free immunosuppression improves renal function better than calcineurin-inhibitor-reduction in late cardiac transplant recipients with chronic renal failure. *Transplantation* 2009; 87: 726-733 [PMID: 19295318 DOI: 10.1097/TP.0b013e3181963371]

22 Höcker B, Tönshoff B. Calcineurin inhibitor-free immunosuppression in pediatric renal transplantation: a viable option? *Paediatric Drugs* 2011; 13: 49-69 [PMID: 21162600 DOI: 10.2165/11538530-0000000000000000]

23 Kaczmarek I, Zaruba MM, Beiras-Fernandez A, Reinmann R, Nickel T, Grinnering C, Sadoni S, Hagar C, Meiser B. Tacrolimus with mycophenolate mofetil or sirolimus compared with calcineurin inhibitor-reduction in late cardiac transplant recipients: one-year analysis of a randomized multicenter trial. *Transplantation* 2010; 90: 175-183 [PMID: 20463641]

24 Weir MR, Mulgaonkar S, Chan L, Shidban H, Waid TH, Preston D, Kilby RN, Pearson TC. Mycophenolate mofetil-based immunosuppression with sirolimus in renal transplantation: a randomized, controlled, Spare-the-Nephron trial. *Kidney Int* 2011; 79: 897-907 [PMID: 21191361 DOI: 10.1038/ki.2010.492]

25 Heiman RL, Younan K, Wadike HM, Mai ML, Reddy KS, Chakker HA, Conwa TA. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. *Transplantation* 2011; 92: 767-773 [PMID: 21775930 DOI: 10.1097/TP.0b013e31822805d7]

26 Guba M, Pratschke J, Hugo C, Krämer BK, Nohrt-Westphal C, Brockmann J, Andrassy J, Reipke P, Pressmar K, Hakenberg O, Fischereder M, Pascher A, Illner WD, Banas B, Jauch WK. Renal function, efficacy, and safety of sirolimus and mycophenolate mofetil after short-term calcineurin inhibitor-based quadruple therapy in de novo renal transplant patients: one-year analysis of a randomized multicenter trial. *Transplantation* 2010, 90: 175-183 [PMID: 20463641]
