Opuntia ficus-indica as a Source of Bioactive and Nutritional Phytochemicals

Imen Belhadj Slimen¹, ², * Taha Najar¹, ², Manef Abderrabba²

¹Department of Animal, Food and Halieutic Resources, National Agronomic Institute of Tunisia, Mahragen City, Tunisia
²Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, La Marsa, Tunisia

Email address:
belhadj_slimen_imen@yahoo.fr (I. B. Slimen)
*Corresponding author

To cite this article:
Imen Belhadj Slimen, Taha Najar, Manef Abderrabba. Opuntia ficus-indica as a Source of Bioactive and Nutritional Phytochemicals. Journal of Food and Nutrition Sciences. Vol. 4, No. 6, 2016, pp. 162-169. doi: 10.11648/j.jfns.20160406.14

Received: November 19, 2016; Accepted: November 30, 2016; Published: December 23, 2016

Abstract: Cacti are known for their minimum water requirement. They grow extensively in arid lands, where they were traditionally used for both human and animal food. Opuntia ficus-indica, commonly referred to as prickly pear or nopal cactus, was known as a medicinal plant, owing to its rich composition in polyphenols, vitamins, polyunsaturated fatty acids and amino acids. This makes cactus pear a promising crop for commercial food applications. Recent scientific investigations showed that cactus products may be efficiently used as a source of foods additives, mainly fibre, colorants and antioxidants. Tablets, cookies and other forms of fibre derived from cactus cladodes are currently marketed in several American countries. This review details the main functional phytochemicals characterizing different tissues of Opuntia ficus-indica.

Keywords: Opuntia ficus-indica, Cladodes, Antioxidants, Polyphenols, Betalains

1. Introduction

Cacti are the most conspicuous and characteristic plants of arid and semi-arid regions. Opuntia ficus-indica (L.) Mill., commonly called prickly pear or nopal cactus, belongs to the dicotyledonous angiosperm Cactaceae family which includes about 1500 species of cactus. Cacti are known for their ability to thrive under environments recognized as stressful for most plant species, and are widely used to prevent soil erosion and to combat desertification [1, 2].

Opuntias have been exploited as a cheap and alternate source of food suitable not only for humans but also for animals. In addition, they have been cultivated as ornamental crops [3]. Two parts of the plant have been used for food: the “nopal” or cladodes and the fruits or the prickly pears. Cladodes are consumed in Mexico as salads [4] whereas fruits are widely eaten fresh, dried or preserved in jams, syrups or processed into candy-like products [4, 5]. Opuntia fruits are fleshy and elongated berries, varying in shape, size and color (orange, yellow, red, purple, green, white) and have a consistent number of hard seeds [6].

Opuntia ficus-indica was known to contain several pigments and bioactive molecules having nutritional and medicinal desirable properties [7-17]. Based on the chemical structure of their chromophore, pigments can be classified into (a) Chromophores with conjugated systems, such as carotenoids, anthocyanins, betalains, caramel, synthetic pigments, lakes; and (b) Metal-coordinated porphyrins including myoglobin, chlorophyll, and their derivatives.

Based on this backdrop, the main objective of the present review is to focus on the bioactive molecules from Opuntia ficus-indica, their structure-activity relationship, as well as the nutritional value of this plant.

2. Bioactive Phytochemicals and Their Antioxidant Activity

Opuntia ficus-indica was known to be a valuable source of vitamin E, fibers, amino acids, minerals, and antioxidant
molecules (ascorbic acid, flavonoids, carotenoids, betacyanins and betaxanthins) [18-21]. Cactus peel and seeds can be used to prepare cactus oil, peel lipids being enriched in essential fatty acids and liposoluble antioxidants [22]. Cladodes contain vitamins, antioxidants and various flavonoids [23, 24]. Fruits and skin are enriched in betacyanins and betaxanthins [25, 26].

2.1. Polyphenols

“Polyphenols” (or phenolic compounds) is a generic term that refers to more than 8000 compounds widely dispersed throughout the plant kingdom [27]. Polyphenols can be devided into four main classes: flavonoids, phenolic acids, stilbenes, and finally lignan and suberin. The basic structure of some Opuntia polyphenols is presented in Figure 1.

![Figure 1. Basic structures of some polyphenols from Opuntia (a) Basic structure of flavonoids, (b) Basic structure of flavonols, (c) Basic structure of flavones, (d) Basic structure of hydroxycinnamic acids.](image)

Polyphenols are present in different Opuntia tissues at various concentrations, as detailed in Table 1.

Plant part	Molecule	Content (mg/100g)	References
Flowers	Gallic acid	1630–4900	[28-30]
	Quercetin 3-O-Rutinoside	709	
	Kaempferol 3-O-Rutinoside	400	
	Quercetin 3-O-Glucoside	447	
	Isorhamnetin 3-O-Robinobioside	4269	
	Isorhamnetin 3-O-Galactoside	979	
	Isorhamnetin 3-O-Glucoside	724	
	Kaempferol 3-O-Arabinoside	324	
	Total phenolic acid	48–89	
	Feruloyl-sucrose isomer 1	7.36–17.62	
	Feruloyl-sucrose isomer 2	2.9–17.1	[31]
	Sinapoyl-diglucoside	12.6–23.4	
	Total Flavonoids	1.5–2.6	
	Total Tannins	4.1–6.6	
	Total phenolic acid	45,700	
	Total Flavonoid	6.95	
	Kaempferol	0.22	[32-34]
	Quercetin	4.32	
	Isorhamnetin	2.41–91	
Seeds	Gallic acid	0.64–2.37	
	Coumaric	14.08–16.18	
	3,4-dihydroxybenzoic	0.06–5.02	
	4-hydroxybenzoic	0.5–4.72	
	Ferulicacid	0.56–34.77	
	Salicylicacid	0.58–3.54	[35-38]
	Isoquercetin	2.29–39.67	
	Isorhamnetin-3-O-glucoside	4.59–32.21	
	Nicotiflorin	2.89–146.5	
	Rutin	2.36–26.17	
Peel	Narcissin	14.69–157.1	
	Total phenolic acid	218.8	
	Quercetin	9	
	Isorhamnetin	4.94	[5, 36, 39, 40]
Cladodes	Gallic acid	0.78	
	Coumaric	0.84	
	3,4-dihydroxybenzoic	50.6	
	4-hydroxybenzoic	2.7	
Flavonoids and phenolic acids are the main polyphenols of *Opuntia ficus-indica*. Flavonoids are known for their antioxidant activity. They are able to interact with lipids, proteins and carbohydrates to inhibit their oxidation [41]. Flavonoids can protect from injury caused by free radicals in various ways. One way is the direct scavenging of free radicals according to the following equation (1):

\[
\text{Flavonoid(OH)} + \text{R}\cdot \rightarrow \text{flavonoid(O•)} + \text{RH}
\]

Quercetin and silibin inhibit xanthine oxidase and cytochrome activity, thereby resulting in decreased oxidative injury [42, 43]. Another possible mechanism by which flavonoids act is through interaction with various enzyme systems. When reactive oxygen species are in the presence of iron, lipid peroxidation results. Specific flavonoids, such as quercetin, are known for their iron-chelating and iron-stabilizing properties [44]. Direct inhibition of lipid peroxidation is another protective measure [45]. Another interesting effect of flavonoids on enzyme systems is the inhibition of the metabolism of arachidonic acid [46]. This feature gives flavonoids anti-inflammatory and anti-thrombogenic properties.

2.2. Carotenoids

Carotenoids are lipid-soluble C40 tetraterpenoids synthesized by plants, algae, fungi, yeasts and bacteria. The majority carotenoids are derived from a 40- carbon polycene chain, which could be considered the backbone of the molecule. *Opuntia* carotenoids are generally formed from eight C5 isoprenoid units joined head to tail, except at the center, where a tail-to-tail linkage reverses the order and results in a symmetrical molecule [47]. According to their structure, carotenoids can be classified into (a) carotenes or hydrocarbon carotenoids (such as β-carotene) which contain only carbon and hydrogen atoms (Figure 2), and (b) oxygenated carotenoids which are derivatives of these hydrocarbons or xanthophylls which carry at least one oxygen atom (such as zeaxanthin, lutein, spirilloxanthin, echinenone, and antheraxanthin) [48].

In cladodes, three carotenoids were identified: lutein, β-carotene and α-cryptoxanthin [49]. In young cladodes, concentrations vary between 0.047 and 0.077 mg/100 g [50]. In fruits, carotenoid content ranges from 1.77 to 2.65 mg eq. β-carotene/100 g. The highest values were recorded in the peel, total carotenoid concentrations vary according to the color of the fruit. In *Opuntia ficus-indica* contains considerable amounts of vitamins, mainly ascorbic acid, vitamin B, and α-tocopherol (Table 2). Their concentrations vary among the different plant tissues.
Table 2. Vitamins content in different parts of O. ficus-indica (mg/100 g).

Vitamin	Pulp	Peels	Cladodes	References
Ascorbic acid	1.48	59.82	7:22	[6, 71, 53]
α-Tocopherol	84.9	1760	1.76	[71, 72, 73]
β-Tocopherol	12.6	222	NA	[71]
γ-Tocopherol	7.9	174	NA	[71]
δ-Tocopherol	422	26	NA	[71]
Total tocopherols	527.4	2182	2.18	[72, 73]
Thiamine	NA	NA	0.14	[71]
Riboflavin	NA	NA	0.60	[71]
Niacine	NA	NA	0.46	[71]
Vitamin K1	53.2	109	NA	[71]

NA: Not available

4. Sterols and Fatty Acids

β-sitosterol is the major sterol extracted from Opuntia fruits, peel and seeds. Its concentration vary between 6.75 and 21.1 g/kg [22, 73]. Other sterols such as stigmasterol and lanosterol are present in small quantities (Table 3). Chromatographic analyses of total lipids extracted from cactus peels show that palmitic acid (C16:0) and linoleic acid (C18:2) are the major fatty acids (Table 2). In cladodes, palmitic acid, oleic acid (C18:1), linoleic acid and linolenic acid (C18:3) contribute 13.87, 11.16, 34.87 and 32.83% of the total fatty acid content, respectively (Table 3).

Table 3. Sterols and fatty acids from O. ficus-indica (g/Kg).

Sterol	Pulp	Peels	Cladodes	References
Campesterol	8.74	8.76	NA	
Stigmasterol	0.73	2.12	NA	
Lanosterol	0.76	1.66	NA	[22, 73]
β-Sitosterol	11.2	21.1	NA	
δ-Sitosterol	1.43	2.71	NA	
Ergosterol	--	0.68	NA	
Fatty acids				
C12:0	NA	7.1	13.3	
C14:0	NA	19.5	9.6	
C16:0	NA	231	138.7	
C16:1	NA	24.8	2.4	[22, 74]
C18:0	NA	26.7	33.3	
C18:1	NA	241	111.6	
C18:2	NA	323	348.7	
C18:3	NA	92.7	332.3	
C20:0	NA	nd	--	
C22:0	NA	5	--	
C22:1	NA	--	--	
C24:0	NA	4.1	--	

NA: Not available

5. Sugars

The main carbohydrates reported in Opuntia fruits are fructose and glucose in a ratio at about 1:1 [75]. The polysaccharides from cactus pear peel are characterized by sugar constituents typical of pectin with high and medium degrees of esterification of galacturonic acid residues. Cactus pear peels contain a slightly higher content of sucrose (2.85%) and galacturonic acid (2.23%), followed by stachyose (1.81%), mannitol (1.48%), sorbitol (0.71%) and arabinose (0.05%) [53]. Glucose and galacturonic acid were the main sugars of Opuntia cladodes. HPLC analysis revealed the presence of rhamnose, fucose, arabinose, xylose, mannose and galactose at different concentrations [76].

6. Amino Acids

Total proteins in cladodes vary from 4 to 10%. They are represented mainly by glutamine, leucine and lysine. Phytochemical investigation of Opuntia fruits revealed a great number of amino acids. The two predominant amino acids are proline and taurine, which represent 46% and 15.78% of the total amino acid content, respectively. Interestingly, the presence of eight essential amino acids was reported (Table 4). Proteins and amino acid contents of cactus pear peels need to be elucidated.

Table 4. Amino acids contents in both cladodes and fruit pulps from O. ficus-indica (g/100 g).

Amino Acid	Cladodes	Fruits	References
Alanine	0.6	3.17	[77, 78]
Arginine	2.4	1.11	
Asparagine	1.5	1.51	[77, 78]
Asparaginic acid	2.1	Trace	[71]
Glutamic acid	2.6	2.40	
Glutamine	17.3	12.59	[72, 73]
Glycine	0.5	Trace	[77, 78]
Cystine	1.04	0.41	
Histidine	2.0	1.64	[71]
Isoleucine	1.9	1.13	
Leucine	1.3	0.75	[77, 78]
Lysine	2.5	0.63	[77, 78]
Methionine	1.4	2.01	[77, 78]
Phenylalanine	1.7	0.85	[77, 78]
Serine	3.2	6.34	
Threonine	2.0	0.48	[77, 78]
Tyrosine	1.46	0.45	[77, 78]
Tryptophane	1.04	0.46	
Valine	7.78	1.43	
α-Aminobutyric acid	Trace	0.04	[77, 78]
Carnosine	Trace	0.21	[77, 78]
Citrulline	Trace	0.59	[77, 78]
Ornithine	Trace	Trace	[77, 78]
Proline	Trace	46.0	
Taurine	Trace	15.79	[77, 78]

7. Minerals

Cactus fruits and peels are rich in magnesium (up to 59 and 195.76 mg/100 g respectively) and calcium (up to 98.4 and 188.58mg/100 g), which makes prickly pears useful in the prevention of osteoporosis and cramps, respectively. In addition, low levels of sodium, potassium, iron and phosphorus were reported [79, 80]. Whilst high levels of calcium, magnesium and potassium are used for energy and to uphold the mineral pool during periods of physical exhaustion, low levels of sodium and chloride are preferred for preventing high blood pressure [81]. Consequently, cactus pear may be used to ensure mineral fortification of diets. Similarly, cladodes contain high levels of calcium, calcium oxalate and magnesium, but at lower concentrations than those registered for fruits (Table 5).
blood glucose and cholesterol, as well as the stabilization of phytochemicals from cactus peels, and to describe their polysaccharids. Research on cactus pear has been focused on its bio-functional phytochemicals and cladodes. O. ficus-indica, the prickly pear cactus Opuntia lanigera Salm-Dyck and effects of sprayed GA3 after transplantation to ex vitro conditions. Scientia Horticulurae 2008; 117: 378–385.

Table 5. Minerals content in various parts of O. ficus-indica. (mg /100 g).

Minerals	Fruits	Cladodes	Peels	References
Mg	16.1-9.8	8.8	195.76	
Ca	12.8-59	5.64-17.95	188.58	
Na	0.6-1.1	0.3-0.4	183.42	
K	90-220	2.35-55.20	63.45	[4, 53, 77, 78, 82, 83]
Fe	0.4-1.5	0.09	25.58	
Cu	---	0.19-0.29	18.00	
Zn	---	0.08	17.84	
P	15–32.8	---	9.47	

8. Fibers

Saenz [84] reported the potential use of cactus cladodes as a new source of fiber in human diet. Cactus pear cladodes were shown to have high fiber content and potential health benefits. The moisture content of tender young O. ficus-indica pads is about 92%, along with 1–2% protein, and 0.8–3.3% pectin, a soluble fiber included in the 4–6% total fiber [85]. Dried cladodes powder contains about 43% fibre, 28.5% of which are insoluble [86]. Interestingly, it is important to report that fibers are classified into two groups: hydrosoluble and insoluble ones. Soluble fibres include mucilage, gums, pectin, in addition to hemicelluloses. They ensure the reduction of intestinal food transit. Insoluble fibres are composed mainly of cellulose, lignin, and a large portion of hemicelluloses. They are known for their capacity to retain water, favor ionic exchange, absorption of bile acids, minerals, vitamins and other interaction with microbes [87-89].

9. Conclusions

The therapeutic properties of Opuntia ficus-indicae are due to its bio-functional phytochemicals and cladodes polysaccharids. Research on cactus pear has been focused mainly on cladodes and fruits. Although they are a scarce scientific works dealing with cactus pear peels, this latter contains higher bioactive molecules and minerals contents than fruits and cladodes. Indeed, cactus fruit peels could be very suitable as a natural food additive, natural colorant and natural antioxidant. However, further investigations are required to optimize the extraction of bioactive phytochemicals from cactus peels, and to describe their application in food industries.

References

[1] Scheinivar L. Taxonomy of utilized Opuntias, in: Barbera G, P Inglese, E Pimienta-Barrios, (editors), Agroecology, cultivation and uses of cactus pear. FAO Plant Production and Protection Paper, Rome, 1995; 20–27.

[2] Le Houerou HN. Utilization of fodder trees and shrubs in the arid and semi-arid zones of West Asia and North Africa. Arid Soil Research and Rehabilitation 2000; 14: 101–135.

[3] Estrada-Luna AA, JDJ Martinez-Hernández, ME Torres-Torres, F Chablé-Moreno. In vitro micropropagation of the ornamental prickly pear cactus Opuntia tamigera Salm-Dyck and effects of sprayed GA3 after transplantation to ex vitro conditions. Scientia Horticulurae 2008; 117: 378–385.

[4] Medina EMD, Rodriguez EM, Romero CD. Chemical characterization of Opuntiadillenii and Opuntia ficus-indica fruits. Food Chemistry 2007; 103: 38–45.

[5] Galati EM, MR Mondello, D Giuffrida, G Dugo, N Miceli, S Pergolizzi, MF Taviano. Chemical characterization and biological effects of sicilian Opuntia ficus-indica (L.) Mill. Fruit Juice: Antioxidant and Antulcerogenic Activity. Journal of Agricultural and Food Chemistry 2003; 51: 4903–4908.

[6] Piga A. Cactus Pear: A Fruit of Nutraceutical and Functional Importance. Journal of the Professional Association for Cactus Development 2004; 9-22.

[7] Agurrell S. Cactaceae alkaloids. VIII. N-Methyl-4-methoxyphenethylamine from Lepidocoryphaphyrunyonii (Br. & R.). Experientia 1969; 25:1111–1132.

[8] Knishinsky R. Prickly pear cactus medicine. Healing Arts Press, Rochester, 1971.

[9] Rosemberg H, Paul AG. Biosynthetic production of aberrant alkaloids in Dolichothele sphaerica (Cactaceae). Journal of Pharmaceutical Sciences 1973; 62:403–407.

[10] Sahelian R. An anti-inflammatory principle from prickly pear cactus. Fitoterapia 2001; 72(3): 288–290.

[11] Fernández-López JA, Castellar R, Obón JM, Almela L. Screening and mass-spectral confirmation of betalains in cactus pears. Chromatographia 2002; 56:591–595.

[12] Alarcon-Aguilar FJ, Valdes-Arzate A, Xolalpa-Molina S, Banderas-Dorantes T, Jimenez-Estrada M, Hernandez-Galicia E, Roman-Ramos R. Hypoglycemic activity of two polysaccharides isolated from Opuntia ficus-indica (prickly pear cactus) and O. streptacantha. Proceedings of the Western Pharmacology Society 2003; 46:139–142.

[13] Galati EM, Mondello MR, Monforte MT, Galluzzo M, Miceli N, Tripodo MM. Effect of Opuntia ficus-indica (L.) Mill. cladodes in the wound-healing process. Journal of the Professional Association for Cactus Development 2003; 5:1–16.

[14] Oliveira AJB, Da Machado MEPS. Alkaloid production by callous tissue cultures of Cereus peruvianus (Cactaceae). Applied Biochemistry and Biotechnology 2003; 104:149–155.

[15] Tesoriere L, Butera D, Am P, Allerga M, Livere MA. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C. American Journal of Clinical Nutrition 2004; 80(2):391–395.

[16] Zou D, Brewer M, Garcia F, Feugang JM, Wang J, Zang R, Liu H, Zou C. Cactus pear: a natural product in cancer chemoprevention. Nutrition Journal2005; 4:25–36.

[17] Saleem M, Kim HJ, Han CK, Jin C, Lee YS. Secondary metabolites from Opuntia ficus-indica var. Saboten. Phytochemistry 2006; 67(13):1390–1394.

[18] Osorio-Esquivel O, Alicia-Ortiz M, Álvarez VB, Dorantes-Alvarez L, Giusti MM. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International 2011, 44: 2160–2168.
[19] Paiz RC, Juárez-Flores BI, Aguirre RJR, Cárdenas OC, Reyes AJA, García CE, Álvarez FG. Glucose-lowering effect of xononosile (Opuntia jocoamistle A. Web. Cactaceae) in diabetic rats. Journal of Medicinal Plants Research 2010, 4: 2326–2333.

[20] Schaffer S, Schmitt-Schillig S, Müller WE, Eckert GP. Antioxidant properties of Mediterranean food plant extracts: Geographical differences. Journal of physiology and pharmacology 2005, 56 (Suppl. S1): 115–124.

[21] Stintzing FC, Schieber A, Carle R. Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research Technology 2003, 216: 303–311.

[22] Ramadan MF, Mörsel J-T. Oil cactus pear (Opuntia ficus-indica). L. Food Chemistry 2003, 82: 339–345.

[23] Lee JC, Kim HR, Kim J, Jang Y-S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. Journal of Agricultural and Food Chemistry 2002, 50: 6490–6496.

[24] Stintzing FC, Carle R. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Molecular Nutrition & Food Research 2005, 49: 175–194.

[25] Stintzing FC, Schieber A, Carle R. Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear (Opuntia ficus-indica (L.) Mill.] by high performance liquid chromatography-electrospray ionization mass spectroscopy. Journal of Agricultural and Food Chemistry 2002, 50: 2302-2307.

[26] Impillizzeri G, Piattelli M. Biosynthesis of indicaxanthin in Opuntia ficus-indica fruits. Phytochemistry 1972, 11: 2499-2502.

[27] Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic Compounds in Brassica Vegetables. Molecules 2011, 16(1): 251-80.

[28] De Leo M, Abreu MBD, Pawlowska AM, Cioni PL, Braca A. Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochemistry Letters 2010, 3: 48–52.

[29] Ahmed MS, Tanbouly NDE, Islam WT, Sleen AA, Senousy ASE. Antinflammatory flavonoids from Opuntia dillenii (Ker-Gawl) Haw. flowers growing in Egypt. Phytotherapy Research 2005, 19: 807–809.

[30] Clark WD, Brown GK, Mays RL. Flower flavonoids of Opuntia subgenus Cylindropuntia. Phytochemistry 1980, 19: 2042-2043.

[31] Chouguı N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, Larbat R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chemistry 2013, 139: 796–803.

[32] Kuti JO. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chemistry 2004, 85: 527–533.

[33] Moussa-Ayoub TE, El-Samahy SK, Kroh LW, Rohn S. Identification and quantification offlavanol aglycons in cactus pear (Opuntia ficus indica) fruit using a commercial pectinase and cellulase preparation. Food Chemistry 2011, 124: 1177–1184.

[34] Jorge AJ, de La Garza TH, Alejandro ZC, Ruth BC, Noé AC. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux systemsuing response surface methodology. Asian Pacific Journal of Tropical Biomedicine 2013, 3: 436–442.

[35] Valente LMM, da Paixão D, do Nascimento AC, dos Santos PFP, Scheinvar LA, Moura MRL, Tinoco LW, Gomes LNF, da Silva JFM. Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chemistry 2010, 123: 1127–1131.

[36] Bensadón S, Hervert-Hernández D, Sáyago-Ayerdı SG, Goñi I. By-Products of Opuntia ficus-indica as a Source of Antioxidant Dietary Fiber. Plant Foods for Human Nutrition 2010, 65: 210–216.

[37] Gallegos-Infante J-A, Rocha-Guzman N-E, González-Laredo R-F, Reynoso-Camacho R, Medina-Torres L, Cervantes-Cardozo V. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica). International Journal of Food Sciences and Nutrition 2009, 60: 80–87.

[38] Ginestra G, Parker ML, Bennett RN, Robertson J, Mandalari G, Narbad A, Lo Curto RB, Bisignano G, Faulds CB, Waldron KW. Anatomical, Chemical, and Biochemical Characterization of Cladodes from Prickly Pear (Opuntia ficus-indica (L.) Mill.). Journal of Agricultural and Food Chemistry 2009, 57: 10323–10330.

[39] Fernández-López JA, Almela L, Obón JM, Castellar R. Determination of Antioxidant Constituents in Cactus Pear Fruits. Plant Foods for Human Nutrition 2010, 65: 253–259.

[40] Khatabi O, Hanine H, Elothmani D, Hasib A. Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica). Arabian Journal of Chemistry 2013, doi:10.1016/j.arabjc.2011.04.001.

[41] Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 2015, 175:556–567.

[42] Chang WS, Lee YJ, Lu FJ, Chiang HC. Inhibitory effects of flavonoids on xanthine oxidase. Antanceric Research 1993, 13:2165–70.

[43] Iio M, Ono Y, Kai S, Fukushima M. Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase. Journal of Nutritional Science and Vitaminology (Tokyo) 1986, 32:635–42.

[44] Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, Comporti M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters 1997, 416:123–129.

[45] Sorata Y, Takahama U, Kimura M. Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochimica et Biophysica Acta 1984, 799:313–7.

[46] Ferrandiz ML, Alcaraz MJ. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 1991, 32:283–8.

[47] Eldashshan AO, Singab ANB. Carotenoids. Journal of Vitaminology (Tokyo) 1986, 32:635–42.

[48] Goodwin TW. The Biochemistry of the Carotenoids. Vol. 1: “Plants.” New York: Chapman and Hall, p 203, 1980.
[49] Jaramillo-Flores ME, Gonzalza-Cruz L, Dorantes-Álvarez L., Gutiérrez-Lopez G.F., Hernandez-Sánchez H. Effect to the thermal treatment on the antioxidant activity and content of carotenoids and phenolic compounds of cactus pear clades (Opuntia ficus-indica). Food Science and Technology International 2003, 9: 271–278.

[50] Hadj Sadok T, Aid F, Bellal M, Abdul Hussain MS. Composition chimique des jeunes cladodes d’Opuntia ficus-indica et possibilités de valorisation alimentaire. Agricultura-Stiintia si practica 2008, 1: 65-66.

[51] Chougui N, Louaileche H, Mohedeb S, Mouloudj Y, Hammoui Y, Tamendjari A. Physico-chemical characterisation and antioxidant activity of some Opuntia ficus-indica varieties grown in North Algeria. African Journal of Biotechnology 2013, 12: 299-307.

[52] Kuti JO. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chemistry 2004, 85:527-533.

[53] El-Said NM, Nagib AI, Rahman ZA, Deraz SF. Prickly pear [Opuntia ficus-indica (L.) Mill] peels: Chemical composition, nutritional value, and protective effects on liver and kidney functions and cholesterol in rats. Functional Plant Science and Biotechnology 2010, 5: 30-35.

[54] Young AJ, Lowe GM. Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and Biophysics 2001, 385: 20–27.

[55] Baltschun D, Beutner S, Brivika K, Martin HD, Paust J, Peters M, Röver S, Sies H, Steigel A, Stahl W, Steigel A, Stenhorst F. Single oxygen quenching abilities of carotenoids. Liebigs Annals 1997, 1887–1893.

[56] di Mascio P, Kaiser S, Brivika K, Martin HD, Paust J, Peters M, Röver S, Sies H, Steigel A, Stahl W, Steigel A, Stenhorst F. Antioxidant activity of carotenoids. Lipids 1997, 32: 1455–1461.

[57] Stahl W, Sies H. Antioxidant activity of carotenoids. Molecular Aspects of Medicine 2003, 24: 345–351.

[58] Sies H, Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. American Journal of Clinical Nutrition 1995, 62: 1315S–1321S.

[59] Minale L, Piattelli M, Nicolaus RA. Pigments of centrospermae – IV. On the biogenesis of indicaxanthin and betanin in Opuntia ficus-indica. Phytochemistry 1965, 4: 593–597.

[60] Piattelli M, Minale L. Pigments of centrospermae – I. Betacyanins from Phyllocctus hybridus Hert. and Opuntia ficus-indica Mill. Phytochemistry 1964, 3: 307-311.

[61] Yeddes N, Chérif JF, Guyot S, Sotin H, Ayadi MT. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2013, 2: 37-51.

[62] Stintzing FC, Schieber A, Carle R. Phytochemical and nutritional significance of cactus pear. European Food Research and Technology 2001, 212: 396–407.

[63] Castellanos-Santiago E, Yahia EM. Identification and Quantification of Betalains from the Fruits of 10 Mexican Prickly Pear Cultivars by High-Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry. Journal Agricultural Food Chemistry 2008, 56: 5758–5764.

[64] Strack D, Vogt T, Schliemann W. Recent advances in betain research. Phytochemistry 2003, 62: 247–269.

[65] Stintzing, F. C.; Herbach, K. M.; Mosshammer, M. R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C. C.; Bunch, R.; Felker, P. Color, betain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal Agricultural Food Chemistry 2005, 53: 442–451.

[66] Buettner, G. The pecking order of free and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Archives of Biochemistry and Biophysics 1993, 300: 535-543.

[67] Taira J, Tsuchida E, Katoh MC, Uehara M, Ogi T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chemistry 2015, 166: 531–536.

[68] Gandía-Herrero F, Escribano J, García-Carmona F. Purification and antiradical properties of the structural unit of betalains. Journal of Natural Products 2012, 75: 1030–1036.

[69] Tosieriore L, Allegra M, Gentile C, Livrea MA. Betacyanins as phenol antioxidants. Chemistry and mechanistic aspects of the lipoperoxyl radical-scavenging activity in solution and liposomes. Free Radical Research 2009, 43(8): 706-717.

[70] Tosieriore L, Allegra M, Butera D, Gentile C, Livrea MA. Kinetics of the lipoperoxyl radical scavenging activity of indicaxanthin in solution and in unilamellar liposomes. Free Radical Research 2007, 41, 226-233.

[71] El-Mostafa K, El Kharrassi Y, Badreddine A, Andreoletti P, Vamecq J, Said El Kebbab M, Ltruffe N, Lizard G, Nasser B, Cheraaoui-Malki M. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19: 14879-14901.

[72] Hassanien MFR, Mörsel JT. Agro-waste products from prickly pear fruit processing as a source of oil. Fruit Processing 2003, 13: 242-248.

[73] Ramadan MF, J-T Mörsel. Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: a good source of polysaturated fatty acids, natural antioxidant vitamins and sterols. Food Chemistry 2003, 83: 447-456.

[74] Abidi S, Ben Salem H, Vasta V, Priolo A. Supplementation with barley or spineless cactus (Opuntia ficus indica f. inermis) cladodes on digestion, growth and intramuscular fatty acidcomposition in sheep and goats receiving oaten hay. Small Ruminant Research 2009, 87: 9–16.

[75] Kuti JO, Galloway-C. Sugar composition and invertase activity in prickly pear fruit. Journal of Food Science 1994, 59: 387-393.

[76] Ginestra G, Parker ML, Bennett RN, Robertson J, Mandalari G, Narbad A, Lo Curto RB, Bisignano G, Faulds CB, Waldron RW. Anti-inflammatory and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Frontiers in Bioscience 2006, 11: 2574-2589.

[77] Sawaya WN, Khalil JK, Al-Mohammad MM. Nutritive value of prickly pear seeds, Opuntia ficus-indica. Plant Food For Human Nutrition 1983, 33: 91–97.
[79] Wills RBH, Lim JSK, Greenfield H. Composition of Australian Foods. Tropical and sub-tropical fruit. Food Technology in Australia 1986, 38:118–123.

[80] Askar A, El-Samahy SK. Chemical composition of prickly pear fruits. Dtsch Lebensm Rundsch 1981, 77:279–281.

[81] Pszczoła DE. Natural colors: Pigments of imagination. Food Technology 1998, 52:70–82.

[82] Contreras-Padilla M, Pérez-Torrero E, Hernández-Urbiola MI, Hernández-Quevedo G, del Real A, Rivera-Muñoz EM, Rodríguez-Garcia ME. Evaluation of oxalates and calcium in nopal pads (Opuntia ficus-indica var. redonda) at different maturity stages. Journal of Food Composition Analysis 2011, 24: 38–43.

[83] Ayadi MA, Abdelmaksoud W, Ennouri M, Attia H. Cladodes from Opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Industrial Crops and Products 2009, 30: 40–47.

[84] Saenz CH. Cladodes: a source of dietary fiber. Journal of the Professional Association for Cactus Development 1997, 2:117–123.

[85] Brinker FND. Prickly Pear as Food and Medicine. Journal of Dietary Supplements 2009, 6: 362-376.

[86] Nefzaoui A, Nazareno M, El Mourid M. Review Of Medicinal Uses Of Cactus. CACTUSNET 2007, 11: 3-17.

[87] Hollingsworth P. Food trends: diversity and choice dominate. Food Technology 1996, 5:40.

[88] Grijspaardt-Vink C. Ingredients for healthy foods featured at European Expo. Food Technology 1996, 2:30.

[89] Saenz C. Utilizacion agroindustrial del nopal. Boletin de servicios agricolas de la FAO 2006, 162: 164.