Inhibition of HDAC4 Attenuated JNK/c-Jun-Dependent Neuronal Apoptosis and Early Brain Injury Following Subarachnoid Hemorrhage by Transcriptionally Suppressing MKK7

Liqiang Wu, Shulian Zeng, Yali Cao, Ziyan Huang, Sisi Liu, Huaidong Peng, Cheng Zhi, Shanshan Ma, Kunhua Hu, and Zhongmin Yuan

The c-Jun N-terminal kinase (JNK)/c-Jun cascade-dependent neuronal apoptosis has been identified as a central element for early brain injury (EBI) following subarachnoid hemorrhage (SAH), but the molecular mechanisms underlying this process are still thoroughly undefined to date. In this study, we found that pan-histone deacetylase (HDAC) inhibition by TSA, SAHA, VPA, and M344 led to a remarkable decrease in the phosphorylation of JNK and c-Jun, concomitant with a significant abrogation of apoptosis caused by potassium deprivation in cultured cerebellar granule neurons (CGNs). Further investigation showed that these effects resulted from HDAC inhibition-induced transcriptional suppression of MKK7, a well-known upstream kinase of JNK. Using small interference RNAs (siRNAs) to silence the respective HDAC members, HDAC4 was screened to be required for MKK7 transcription and JNK/c-Jun activation. LMK235, a specific HDAC4 inhibitor, dose-dependently suppressed MKK7 transcription and JNK/c-Jun activity. Functionally, HDAC4 inhibition via knockdown or LMK235 significantly rescued CGN apoptosis induced by potassium deprivation. Moreover, administration of LMK235 remarkably ameliorated the EBI process in SAH rats, associated with an obvious reduction in MKK7 transcription, JNK/c-Jun activity, and neuronal apoptosis. Collectively, the findings provide new insights into the molecular mechanism of neuronal apoptosis regarding HDAC4 in the selective regulation of MKK7 transcription and JNK/c-Jun activity. HDAC4 inhibition could be a potential alternative to prevent MKK7/JNK/c-Jun axis-mediated nervous disorders, including SAH-caused EBI.

Keywords: MKK7, JNK, c-Jun, HDAC4, neuronal apoptosis, subarachnoid hemorrhage, early brain injury
INTRODUCTION

Subarachnoid hemorrhage (SAH) is a severe and devastating cerebrovascular disease with high mortality and disability rates greater than 50% (Sekerdag et al., 2018). Recently, early brain injury (EBI), defined as the harmful events that occur within the first 72 h after SAH onset, has been regarded as the primary cause of a poor outcome for patients (Topkoru et al., 2017). Among different pathological causes, the prevalence of neuronal apoptosis after SAH has been confirmed to be an important contributor to the EBI process (Serrone et al., 2015).

The c-Jun N-terminal kinase (JNK; also referred to as the stress-activated protein kinase) cascade is one apoptotic pathway that appears to be particularly important in neurons (Coffey, 2014). JNKs are phosphorylated and activated in neurons in response to various apoptotic stimuli, including oxidative stress (Espinet et al., 2015), DNA damage (Besirli and Johnson, 2003), ischemia–reperfusion (Chen et al., 2018), and the loss of trophic support (Nayak et al., 2016), wherein c-Jun, a well-defined downstream target of JNK, plays an obligatory role in the death process (Yuan et al., 2009; Gupta and Ghosh, 2017). Recently, JNK/c-Jun-dependent neuronal apoptosis has been implicated in EBI after SAH, and the upstream kinases mixed lineage kinase 3 (MLK3)-MKK7 were evidenced to be required for JNK activation (Yin et al., 2016; Okada et al., 2019). Thus, the identification of new ways to target the MLK3-MKK7-JNK-c-Jun cascade would be a promising strategy for the treatment of SAH.

The loss of acetylation homeostasis was found to be closely associated with neuronal apoptosis and nervous system diseases (Saha and Pahan, 2006; Wu Y. et al., 2017). The inhibition of histone deacetylase (HDAC) has been demonstrated independently to prevent neuronal apoptosis induced by oxidative stress or DNA damage. Furthermore, several nervous diseases, including SAH, Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and ischemia, were ameliorated with obvious decreases in apoptosis after the administration of HDAC inhibitors (Kukucka et al., 2013; Didonna and Opal, 2015; Shao et al., 2016), which suggests that HDACs play crucial roles in the apoptotic neurons suffering from extreme stimuli. However, the related mechanisms remain largely elusive.

In this study, we found that the inactivation of HDACs resulted in a transcriptional suppression of MKK7, concomitant with a reduction in JNK/c-Jun activity and neuronal apoptosis. Further investigation showed that MKK7 transcription critically depended on HDAC4 activity, and the inhibition of HDAC4 effectively suppressed MKK7 expression and JNK/c-Jun-dependent cell death. Moreover, SAH-induced EBI was ameliorated with obvious decreases in MKK7 transcription, JNK/c-Jun activity, and neuronal apoptosis after the administration of the HDAC4 inhibitor LMK235. Our findings highlight that HDAC4 plays a crucial role in sustaining MKK7 transcription and JNK/c-Jun activation in neurons and the inhibition of HDAC4 might be a new strategy to target the cascade for the treatment of SAH.

MATERIALS AND METHODS

Neuronal Culture and Potassium Deprivation

Cerebellar granule neurons (CGNs) were prepared from 7- to 8-day-old Sprague-Dawley rat pups as previously described (Yuan et al., 2009; Wu Y. et al., 2017). Briefly, neurons were dissociated from freshly dissected cerebella and digested into single cells by trypsin in Krebs buffer. Then, 1.0 × 10^6 cells/ml were seeded in basal medium eagle (BME) that contained 25 mM KCl and 10% fetal bovine serum. Twenty-four hours after seeding, cytosine arabinoside (10 μM) was added.

Potassium deprivation was performed as previously described (Yuan et al., 2009; Wu Y. et al., 2017). Briefly, cells cultured in vitro for 7 days (DIV 7) were switched into serum-free BME medium that contained 25 mM KCl (25K) or 5 mM KCl (5K). The HDAC inhibitors SAHA, M344, VPA, and TSA and the HDAC4 inhibitor LMK235 were purchased from Selleck Chemicals (Shanghai, China).

Apoptosis rate was determined by performing nuclear staining with Hoechst 33342 (5 μM) or propidium iodide (or PI, 5 μM) as previously described (Song et al., 2006; Yuan et al., 2009; Wu Y. et al., 2017).

Western Blotting (WB)

WB analysis was performed to analyze the cell lysis or tissue lysis as previously described in detail (Wu Y. et al., 2017). The supernatants were collected, and the protein concentrations were determined with a BCA kit (Thermo Fisher Scientific, USA). The antibodies used included the following: H3 (CST, #9715), Ac-H3K9 (CST, #9761), Ac-H3K27 (CST, #4353), Caspase 3 (CST, #9662), c-Jun (BD, 610327), p-c-Jun (CST, #9164), MKK7 (EPITMICS, #1949-1), p-SAPK/JNK (CST, #9251), JNK (SCB, #sc-7345), GAPDH (CST, #2118), p-MKK7 (CST, #4171), Tubulin (Sigma, T4026), CST: Cell Signaling Technology (USA), and SCB: Santa Cruz Biotechnology (USA). Horseradish peroxidase-conjugated secondary antibodies were used (Jackson ImmunoRes), and signals were visualized via an ECL chemiluminescence system. Representative images from at least three independent experiments are shown, and the relative density analysis for the WB results was analyzed as previously described (Wu Y. et al., 2017).

Quantitative PCR (Q-PCR)

The TRIzol reagent (Invitrogen) was used to extract total RNA from CGNs or brain tissue as previously described (Wu Y. et al., 2017). Quantitative PCR (Q-PCR) was performed in triplicate on an ABI Prism 7700 sequence detection system using ABI Sybr Green PCR mixture as described by the manufacturer. Actin was used as control and for normalization. Standard procedure for two-step PCR amplification: Stage 1: 95°C 30 s; Stage 2: 95°C 5 s, 60°C 31 s, 40 cycles. Relative RNA expression was calculated using the formula ratio 2^−ΔΔCt. Data shown represent the mean and S.D. of three separate experiments. The following specific primers were used to amplify mkk7 (forward, 5′-CAGCGTTATCAGGCAGAA-3′, and reverse, 5′-CAGGATGTGGAGGGTTT-3′); actin
frozen brain samples were cut into 20-µm sections. One slice was selected from every six serial cuttings in each segment, and four to six slices were collected for immunofluorescence. The slices were subsequently subjected to blocking, primary and secondary antibody incubation, and nuclear staining with Hoechst 33258. Photos were then obtained using a Confocal (ZEISS, LSM 880) or fluorescence-inverted microscope (IX-71, Olympus). The antibodies against Mkk7 (EPITMICS, #1949-1), p-c-Jun (CST, #9164), and Cleaved Caspase-3 (CST, #9661) and monoclonal antibody against NeuN (Merck, #MAB377) were used at a dilution of 1:400, 1:400, 1:100, and 1:1,000, respectively.

RNA Interference
Two HDAC4 small interference RNAs (siRNAs), including siHDAC4-a 5'-GGUCAUGCCAAUCGGAUUTT-3' and siHDAC4-b 5'-UUCCUAAGGCAUGGUUUCUTT-3', and the nonsense control (NC) 5'-UUCCUGAAGCGUCAGCUU-3' were used. The interference efficiency of the HDAC4 siRNAs was determined by RNaiMAX (Invitrogen) according to the manufacturer's protocol in rat C6 glioma cells, which were obtained from the Type Culture Collection of the Chinese Academy of Sciences (Shanghai).

DIV5 CGNs were transfected with NC and the siRNAs, together with pEGFP to mark the transfected cells using the calcium phosphate coprecipitation method, and the determination of the interference efficiency of the siRNAs in CGNs has previously been described (Yuan et al., 2009; Kristiansen et al., 2010; Bardai et al., 2012). The apoptotic rate was determined by scoring the percentage of the GFP-positive neuron population with pyknotic nuclei. More than 500 cells for each group were scored blindly without knowledge of their previous treatment.

SAH Animal Model
Adult female Sprague–Dawley rats (250–280 g, RRID: RGD_70508) were obtained from the Experimental Animal Center of Sun Yat-sen University (Guangzhou, China). The rats were housed at a constant temperature (25 ± 2°C) and air humidity (50 ± 10%), with a 12-h light/dark cycle and free access to water and food. All experimental procedures were conducted under the guidelines of the Institutional Animal Care and Use Committee of Guangzhou Medical University (2015-070). The SAH model was induced via the endovascular perforation method as previously described (Wu Y. et al., 2017). For the sample size estimation, the preliminary data showed that there was at least a 10% difference in neuronal apoptosis between the groups, with a standard deviation of 0.07. Therefore, a minimum of six animals per group were required to detect such a difference at 95% confidence (α = 0.05) and 0.8 power. The study was not preregistered prior to observing the outcomes or analyzing the data.

Drug Administration
Drug administration was performed as previously described (Wu Y. et al., 2017). Briefly, the optimum concentration of HDAC4 inhibitor LKM235 (Selleck Chemicals, China) was determined by injecting the inhibitor into the right lateral ventricle of normal mice at 5, 10, 20, and 30 mg/kg, respectively, three mice per dose, and vehicle as a control. LMK235 at 20 mg/kg was chosen for a further test based on the effect of increasing Ac-H3K9 but without affecting behavior and neurological score compared to the control. The LMK235 (20 mg/kg; 100 µl/kg) or vehicle (100 µl/kg) was injected into the right lateral ventricle 24 h prior to SAH induction using the following parameters: 1.5 mm posterior and 1.0 mm right lateral to bregma; 3.7 mm below the horizontal plane of bregma.

Experimental Designs
Experimental Design 1
To assess the expression of Mkk7, JNK, p-JNK, c-Jun, and p-c-Jun and evaluate the neuronal apoptosis and neurological score, 55 rats were used, including sham: 24 rats and SAH: 31 rats (seven rats died). The animals that died were excluded from further analysis. Both the sham rats and SAH rats were randomly divided into four subgroups according to the required assessments (1, brain water content; 2, IF, TUNEL staining; 3, WB; 4, Extraction of mRNA; n = 6 for each subgroup) by running the “RAND” command in Excel software. The clinical scores were recorded prior to anesthesia, and the animals were sacrificed by ventricle perfusion at 24 h post SAH.

Experimental Design 2
Sixty-seven SAH rats were randomly divided into two groups: the SAH + vehicle group (35 rats, 11 rats died) and the SAH + LMK235 group (32 rats, eight rats died). The two groups were further randomly divided into four subgroups according to the required assessments (1, brain water content; 2, IF, TUNEL staining; 3, WB; 4, extraction of mRNA; n = 6 for each subgroup).

Animal experiments were performed based on the timeline diagram shown in Supplementary Data, Supplementary Figure S2.

Measurement of Brain Water Content
Brain edema was measured using the wet-weight/dry-weight method as previously described (Wu Y. et al., 2017). The brains were removed at 24 h after surgery and separated into the left hemisphere and right hemisphere. The brain samples were subsequently weighed before (wet weight) and after (dry weight) drying in an oven at 105°C for 72 h. The brain water content was calculated as (wet weight − dry weight)/wet weight × 100%.

Clinical Evaluation
Clinical scores were evaluated by experienced experimenters who were blinded to the experimental grouping as previously described (Wu Y. et al., 2017). Three behavioral activity examinations (Table 1), including appetite, activity, and neurological deficits, were used in the scoring methodology (Zhang et al., 2016).
The Effects of Inhibition of HDACs by pan-HDAC Inhibitors on Neuronal Survival and Apoptosis

To observe the effects of inhibition of HDACs on neuronal survival and apoptosis, cultured CGNs were treated with three types of broad-spectrum HDAC inhibitors (pan-HDAC inhibitors, pan-HDACIs), including hydroxamic acids (TSA and SAHA), synthetic benzamide derivatives (M344), and short-chain fatty acids (VPA). We found that exposure cells to pan-HDACIs for 1 h results in an increase in the levels of nuclear pyknosis rates and Caspase 3 activation between the control and the respective HDACI used (Figures 1B,D). In contrast, the administration of the HDACIs remarkably decreased the apoptotic rates evoked by 5K media (apoptotic stimuli) compared with the control (Figure 1C, P < 0.05), paralleling with the reduced Caspase 3 activity (Figure 1E).

The results suggest that the inhibition of HDACs did not induce obvious cell death, while it prevented neurons from 5K-induced apoptosis.

Inhibition of HDACs Led to a Suppression of MKK7 Transcription and JNK/c-Jun Activity

Evidences from different groups and ours have demonstrated that the activated JNK/c-Jun cascade is critical for 5K-induced CGN apoptosis, and MKK7 is the direct upstream kinase for JNK activation (Watson et al., 1998; Reddy et al., 2013; Wu Y. et al., 2017). Indeed, the time course of analysis indicated that MKK7, JNK, and c-Jun are robustly phosphorylated (activated form) following 5K treatment, starting at 1 h and lasting to 4 h posttreatment (Figure 2A), which suggests that MKK7/JNK/c-Jun signal plays an important role in initiation of apoptosis. Interestingly, we found 5K led to a marked increase in the MKK7 mRNA levels at each time point analyzed, as well as MKK7 protein at 2 h and 4 h post 5K (Figures 2B,C). The data suggested that potassium deprivation caused an acute activation of MKK7 by elevating its phosphorylation and transcription levels.

It has been reported that MKK7 transcription closely depends on HDAC activity in neuroblastoma cells (He et al., 2016). Consistently, the inhibition of HDAC activity by the pan-HDACIs employed substantially suppressed the MKK7 protein and mRNA levels in 5K-treated neurons and consequently reduced the evoked JNK and c-Jun phosphorylation levels (Figures 2D–F). These results suggested that HDAC activity is also required for MKK7 expression in neurons, and HDAC-dependent MKK7 transcription is most likely a common mechanism.

Inhibition of HDAC4 Transcriptionally Downregulated MKK7 and Lowered the JNK/c-Jun Activities

To identify the specific HDAC member that is involved in the regulation of MKK7 transcription, the MKK7 mRNA levels were determined following the utility of specific siRNAs to silence the respective member of Class I HDAC (HDAC1, 2, 3, and 8) and Class II HDAC (HDAC4, 5, 6, 7, and 9). Interestingly, we observed that knocking down HDAC4 can remarkably reduce the MKK7 mRNA levels in both the human neuroblastoma cell line SK-N-SH and the glioma cell line U251, while knocking down other members had no such effects (Figure 3A, Supplementary Figure S1). Consistently, in the rat C6 cell line, HDAC4 knockdown also caused a marked reduction of MKK7 mRNA and protein (Figure 3B). Furthermore, HDAC4 knockdown in the transfected neurons led to an obvious decrease in the MKK7 staining rates (Figure 3C). These results strongly suggest that HDAC4 knockdown downregulated MKK7 and lowered the JNK/c-Jun activities (Figures 3D–F). The results suggest that HDAC4 activity is required for MKK7 transcription.

TABLE 1 | Behavior scores.

Category	Behavior	Score
Appetite	Finished meal	0
	Left meal unfinished	1
	Scarce to eat	2
Activity	Walk and reach at least three corners of the cage	0
	Walk with some stimulation	1
	Almost always lying down	2
Deficits	No deficits	0
	Unstable walk	1
	Impossible to walk	2
Wu et al. HDAC4 Regulates MKK7 in Neuron

FIGURE 1 | Inhibition of histone deacetylase (HDAC) activity rescued 5K-induced apoptosis. (A) DIV 7 cerebellar granule neurons (CGNs) treated with the HDAC inhibitors TSA (500 nM), SAHA (1 µM), M344 (1 µM), or VPA (6 mM) for 1 h were subjected to Western blotting (WB) to detect the levels of Ac-H3K9, Ac-H3K27, and H3. (B,C) CGNs treated with these HDAC inhibitors in 25K media for 24 h (B) or 5K for 12 h (C) were subjected to nucleic staining and apoptotic analysis. (D) CGNs were treated with the HDAC inhibitors in 25K media for 24 h and Caspase 3 activity was assessed via WB, 5K treatment for 24 h as a control. (E) CGNs were treated with the HDAC inhibitors in 5K media for 12 h and the Caspase 3 activity was assessed via WB, 25K treatment for 12 h as a control. Tubulin was reprobed to verify equal loadings.

Inhibition of HDAC4 Suppressed Neuronal Apoptosis
To examine the effects of HDAC4 inhibition on neuronal apoptosis, the rates of the transfected cells with nuclear pyknosis between the control siNC group and siHDAC4 groups were compared. The knockdown of HDAC4 did not induce an obvious increase in nuclear pyknosis in the 25K-treated neurons compared to the control (Figures 4A,B, P > 0.05). In contrast, HDAC4 knockdown remarkably abrogated the apoptotic rates evoked by 5K treatment (Figures 4A,B, P < 0.05). Furthermore, the inhibition of HDAC4 by LMK235 dose-dependently prevented 5K-induced apoptosis compared with the control (Figures 4C–F, P < 0.05). These results indicated that HDAC4 inhibition induces a substantial suppression of neuronal apoptosis.

SAH Results in an Increase in Neuronal Apoptosis, Concomitant With an Activation of JNK/c-Jun
To examine whether JNK/c-Jun activation and neuronal apoptosis occur in the EBI following SAH, the rat SAH model was established by using the endovascular perforation method. Throughout the surgery, none of the sham group rats died, while the mortality in the SAH group was 22.5%. The same part of basal cortical brain tissue was obtained for further biochemical tests (Figure 5A). The animals in the SAH group displayed severe neurobehavioral dysfunction at 24 h post-SAH (Figure 5B, P < 0.05). The rate of TUNEL-positive cells in the SAH group was higher than that in the sham group (Figure 5C, P < 0.05). The active Caspase 3 was mainly stained in cells co-stained with NeuN in the SAH group but with minimal staining in the sham group.
MKK7/c-Jun N-terminal kinase(JNK)/c-Jun cascade was activated under 5K condition, and inhibition of HDACs transcriptionally suppressed MKK7 expression and lowered 5K-evoked JNK/c-Jun activity. (A–C) CGNs in 25K and 5K media for the indicated time course were subjected to WB or reverse transcription (RT)-PCR to detect the levels of phosphorylated-MKK7 (p-MKK7), total MKK7, p-c-Jun (ser73), c-Jun by WB, or mmk7 mRNA by Quantitative PCR (Q-PCR). GAPDH or actin was detected to verify equal loadings. (B, C) The gray densities of MKK7 were analyzed after normalization to GAPDH in ImageJ software. Mean ± SD, ∗P < 0.05 vs. 25K. (D–F) CGNs in 25K that contained DMSO or 5K media that contained TSA, SAHA, VPA, or M344 for 12 h were subjected to WB to detect the levels of MKK7, p-JNK, p-c-Jun, or c-Jun by WB or Q-PCR to detect the mmk7 mRNA level. (E, F) The gray densities of MKK7 were analyzed as in (B, C). Mean ± SD, ∗P < 0.05 vs. 25K, #P < 0.05 vs. TSA, SAHA, VPA, or M344, respectively.

Inhibition of HDAC4 Rescues SAH-Induced JNK/c-Jun Activation and EBI Through Downregulation of MKK7

We subsequently examined whether HDAC4 inhibition could cause a suppression of MKK7 transcription and thereby rescue JNK/c-Jun activation and ameliorate EBI.

There was no obvious difference in the SAH severity among the SAH group, SAH + vehicle group, and SAH + LMK235 group after assessing the blood distributed mainly around the Willis circle, and no significant difference was identified in the neurological score severity between the SAH and SAH + vehicle groups (data not shown). As shown in Figure 6A, the administration of LMK235 caused a marked increase in Ac-H3K9, suggesting that the activity of HDAC4 was efficiently blocked. LMK235 caused an apparent decrease in MKK7 expression, as well as its mRNA levels compared with the vehicle (Figure 6B). Consistent with these changes, SAH-induced JNK and c-Jun phosphorylation was significantly alleviated after LMK235 administration (Figures 6A,C, P < 0.05). As a result, the rate of TUNEL-positive neurons in the SAH + LMK235 group markedly decreased compared with those in the SAH + vehicle group (Figure 6D, P < 0.05). The administration of LMK235 results in a substantial improvement in the neurological score, as well as brain edema at 24 h following SAH compared to the SAH + vehicle group (Figures 6E,F, P < 0.05). Taken together, the inhibition of HDAC4 significantly rescues SAH-induced JNK/c-Jun activation and neuronal apoptosis through the downregulation of MKK7.

DISCUSSION

In this study, we found that the inhibition of HDACs by pan-HDAC inhibitors could remarkably suppress MKK7 transcription and subsequently caused a decrease in JNK/c-Jun signals in neurons. Furthermore, we identified that HDAC4 activity is required for MKK7 transcription and JNK/c-Jun activation. The inactivation of HDAC4 by specific siRNAs or the pharmacological inhibitor LMK235 resulted in a decrease in the MKK7 expression and JNK/c-Jun activity, which thereby prevented neuronal apoptosis and significantly ameliorated EBI following SAH. Our in vitro and in vivo data suggest a tight correlation between the HDAC4 activity and MKK7/JNK/c-Jun cascade-dependent neuronal cell death.

Studies from different groups have highlighted that treatments using various HDAC inhibitors can ameliorate neurodegenerative disorders, as well as acute brain injuries, typically associated with an obvious reduction in neuronal apoptosis (Naftelberg et al., 2017; Thomas and D’Mello, 2018). However, among the identified 18 HDAC members, some members (such as HDAC1, HDAC4, and HDAC6) contribute to neuronal apoptosis, while other members (such as HDAC2)
promote neuronal survival. This finding indicates that the anti-apoptotic effects of pan-HDACIs are largely derived from the suppression of an (more) overwhelming death signal(s) in neurons in response to extreme stimuli. If so, it would be interesting to find out the predominant death signal pathway with functions that closely depend on HDAC activity.

In the nervous system, the aberrant activation of JNK/c-Jun pathway has been closely associated with excessive neuron apoptosis, which is considered one of the important pathological causes that contribute to neurodegenerative diseases, including AD, PD, and HD, as well as acute brain injury conditions following stroke, ischemia, or bleeding (Sabapathy, 2012; Kumar et al., 2015; Guo et al., 2018). In this regard, many selective inhibitors that interfere with the JNK cascade have been characterized and are under trials to treat various nervous disorders. Some of these inhibitors display greater protection against neuronal death, and several chemical entities that target the signals, such as XG-102 peptide or the SP600125 derivative CC359, have been independently investigated in Phase 1/2/3 clinical trials for stroke, transient ischemic attack, or AD (LeWitt and Taylor, 2008; Kumar et al., 2015). Thus, the current findings suggest that the JNK cascade is an attractive target for CNS disease.

In the process of EBI following SAH or ischemia, multiple MAPK kinase kinase (MAP3K) members such as TAK1 (TGFβ-activated Kinase 1), MLK3, Activation of apoptosis signal-regulating kinase 1 (ASK1), and DLK dual leucine zipper-bearing...
kinase (DLK) are activated, which actually contribute to JNK activation and neuronal apoptosis (Hu et al., 2012; Zhang et al., 2015; Yin et al., 2016; Cheon et al., 2018; Zhou et al., 2018). This means that functional compensation among the MAP3Ks may occur when targeting one member for treating EBI. MKK7 has been clarified to be the critical kinase in the transfer of signals...
FIGURE 5 | Subarachnoid hemorrhage (SAH) results in typical neuronal apoptosis, concomitant with JNK/c-Jun cascade activation. (A) Representative pictures of brains are shown after surgery. The same part of basal cortical brain tissue was obtained for tests (circled areas). (B) At 24 h post SAH, neurobehavioral performance was assessed. (C) TUNEL assay was performed to determine the apoptosis rate at 24 h after SAH (scale bar = 50 µm). Mean ± SD, *P < 0.05 vs. sham. (D,F) Active Caspase 3 and p-c-Jun (ser 73) were detected by IF at 24 h post SAH, and the positive rates of all NeuN-stained cells were calculated; scale bar = 20 µm in (D) and 50 µm in (F). Mean ± SD, *P < 0.05 vs. sham. (E) The levels of p-JNK, JNK, p-c-Jun, and active Caspase 3 were determined by WB at 24 h post SAH. Mean ± SD, *P < 0.05.

from the upstream MAP3Ks to intrinsic JNK/Jun cascades (Whitmarsh et al., 1998; Mooney and Whitmarsh, 2004). However, whether MKK7 is a promising target for preventing JNK/c-Jun cascade-mediated nervous disorders remains elusive.

In this study, we demonstrated the following: (1) MKK7 is rapidly phosphorylated and transcriptionally upregulated following 5K treatment, which results in an acute activation of JNK; (2) inhibition of HDACs suppressed

...
MKK7 transcription and JNK/c-Jun activity in the culture neurons and SAH rats; and (3) inhibition of HDACs rescues neuronal apoptosis in vitro and in vivo. The presented evidence strongly suggests that the suppression of the MKK7/JNK/c-Jun axis by pan-HDACi accounts for the HDAC inhibition-induced prevention of neuronal apoptosis.
HDACI-mediated suppression of MKK7 may represent an alternative for preventing JNK/c-Jun cascade-mediated nervous disorders.

The MKK7 transcription identified here is regulated by HDAC4. As a Class IIa HDAC member, HDAC4 is highly expressed in brain cells and its function is closely linked to its subcellular localization (Fitzsimons, 2015; Mathias et al., 2015). In general, CaMK directly phosphorylates HDAC4, inducing 14–3–3 binding and HDAC4 nuclear export (McKinsey et al., 2000a,b), thereby contributing to neuronal survival (Bolger and Yao, 2005; Chen and Cepko, 2009; Chen et al., 2014; Guo et al., 2015). HDAC4 undergoing nuclear accumulation induces neuronal death by repressing the pro-survival factors MEF2, CREB and PPAR (peroxisome proliferator-activated receptor y; Bolger and Yao, 2005; Yang et al., 2011; Li et al., 2012), which have become known as the pathological causes for several disease models, such as PD, stroke, and ataxia telangiectasia (Li et al., 2012; Kassis et al., 2016; Wu Q. et al., 2017). However, although our in vitro and in vivo data clearly indicated that HDAC4 is required for MKK7 transcription and JNK/c-Jun activation, we did not identify a significant increase in HDAC4 nuclear accumulation in 5K-treated CGNs (at 4 h) or SAH rats (at 24 h) compared to 25K or sham ones, respectively (data not shown), probably because the experimental procedures, such as the time window of detection for them, should be optimized or other unknown reasons. Nevertheless, the identification of specific HDAC modules and downstream substrates for cell types or a specific disease would be of paramount importance in overcoming the nonspecificity of pan-HDAC targeting.

In conclusion, we demonstrated that HDAC is a novel regulatory element important for regulating MKK7 expression, the JNK/c-Jun signal, and neuronal cell death. Furthermore, we identified that the activity of HDAC4 is required for MKK7 transcription, and the HDAC4/MKK7/JNK/c-Jun axis is implicated in neuronal apoptosis and EBI following SAH (Figure 6G). Our data suggest that the inhibition of HDAC4 may present a potential alteration for suppressing the proapoptotic roles of MKK7/JNK/c-Jun signaling in neurons.

ETHICS STATEMENT

All experimental procedures were conducted under the guidelines of the Institutional Animal Care and Use Committee of Guangzhou Medical University (2015-070).

AUTHOR CONTRIBUTIONS

ZY, LW, SZ and YC designed the research. LW, SZ, YC, ZH, SL, HP, CZ, SM and KH performed research and analyzed data. ZY supervised the study. ZY, LW, SZ and KH wrote the article.

FUNDING

This work was supported by the National Natural Science Foundation of China (grant number 81671232), the Natural Science Foundation of Guangdong province (grant number 2015A030313475), and the Foundation of Guangdong Science and Technology Department (grant number 201604020141).

ACKNOWLEDGMENTS

We thank Drs. Miaoling Lai and Yezhong Wang for the technological assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fncel.2019.00468/full#supplementary-material.

REFERENCES

Bardai, F., Price, V., Zaayman, M., Wang, L., and D’Mello, S. R. (2012). Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J. Biol. Chem. 287, 35444–35453. doi: 10.1074/jbc.M112.394544
Besirli, C. G., and Johnson, E. M. Jr. (2003). JNK-independent activation of c-Jun during neuronal apoptosis induced by multiple DNA-damaging agents. J. Biol. Chem. 278, 22357–22366. doi: 10.1074/jbc.M30742200
Bolger, T. A., and Yao, T. P. (2005). Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci. 25, 9544–9553. doi: 10.1523/JNEUROSCI.1826-05.2005
Chen, B., and Cepko, C. L. (2009). HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323, 256–259. doi: 10.1126/science.1166226
Chen, Y., Wang, Y., Modrusan, Z., Sheng, M., and Kaminker, J. S. (2014). Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4. J. Neurosci. 34, 15327–15339. doi: 10.1523/JNEUROSCI.0569-14.2014
Chen, J., Wang, Q., Zhou, W., Zhou, Z., Tang, P. Y., Xu, T., et al. (2018). GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling. FASEB J. 32, 6833–6847. doi: 10.1096/fj.201800548
Cheon, S. Y., Kim, E. J., Kim, S. Y., Kim, J. M., Kam, E. H., Park, J. K., et al. (2018). Apoptosis signal-regulating kinase 1 silencing on astroglial inflammasomes in an experimental model of ischemic stroke. Neuroscience 390, 218–230. doi: 10.1016/j.neuroscience.2018.08.020
Coffey, E. T. (2014). Nuclear and cytosolic JNK signalling in neurons. Nat. Rev. Neurosci. 15, 285–299. doi: 10.1038/nrn3729
Didonna, A., and Opal, P. (2015). The promise and perils of HDAC inhibitors in neurodegeneration. Ann. Clin. Transl. Neurol. 2, 79–101. doi: 10.1002/acn.5147
Espinet, C., Gonzalez, H., Fleitas, C., Menal, M. J., and Egea, J. (2015). Oxidative stress and neurodegenerative diseases: a neurotrophic approach. Curr. Drug Targets 16, 20–30. doi: 10.2174/1389450166666150107153233
Fitzsimons, H. L. (2015). The Class IIa histone deacetylase HDAC4 and neuronal function: nuclear nuisance and cytoplasmic stalwart? Neurobiol. Learn. Mem. 123, 149–158. doi: 10.1016/j.nlm.2015.06.006
Guo, X. X., An, S., Yang, Y., Liu, Y., Hao, Q., Tang, T., et al. (2018). Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol. Int. 42, 756–768. doi: 10.1002/cib.10948
Guo, X., Wang, S. B., Xu, H., Ribic, A., Mohns, E. J., Zhou, Y., et al. (2015). A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat. Commun. 6:8005. doi: 10.1038/ncomms9005
Gupta, R., and Ghosh, S. (2017). Putative roles of mitochondrial Voltage-Dependent Anion Channel, Bcl-2 family proteins and c-Jun N-terminal Kinases in ischemic stroke associated apoptosis. Biochem. Open 4, 47–55. doi: 10.1016/biopen.2017.02.002

He, W., Wu, Y., Tang, X., Xia, Y., He, G., Min, Z., et al. (2016). HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells. Oncotarget 7, 6727–6747. doi: 10.18632/oncotarget.6797

Hu, S. Q., Ye, J. S., Zong, Y. Y., Sun, C. C., Liu, D. H., Wu, Y. P., et al. (2012). S-nitrosylation of mixed lineage kinase 3 contributes to its activation after cerebral ischemia. J. Biol. Chem. 287, 2364–2377. doi: 10.1074/jbc.m111.227124

Kassis, H., Shehadah, A., Li, C., Zhang, Y., Cui, Y., Roberts, C., et al. (2016). Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke. Neurochem. Int. 96, 24–31. doi: 10.1016/j.neuint.2016.04.006

Kristiansen, M., Hughes, R., Patel, P., Jacques, T. S., Clark, A. R., and Ham, J. (2010). Mkp1 is a c-Jun target gene that antagonizes JNK-dependent apoptosis in sympathetic neurons. J. Neurosci. 30, 10802–10832. doi: 10.1523/JNEUROSCI.2824-2010.2010

Kukucka, J., Wylle, T., Read, J., Mahoney, L. and Suphioglu, C. (2013). MAC-1 inhibits neurodegeneration in models of Parkinson’s disease progression: clinical experience. Neurotherapeutics 5, 210–225. doi: 10.1016/j.nurt.2008.01.007

Li, J., Chen, J., Ricupero, C. L., Hart, R. P., Schwartz, M. S., Kusneov, A., et al. (2012). Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat. Med. 18, 783–790. doi: 10.1038/nm.2709

Mathias, R. A., Guise, A. J. and Cristea, I. M. (2015). Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol. Cell. Proteomics 14, 456–470. doi: 10.1074/mcp.O114.046565

McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000a). Signal-dependent N-terminal kinase pathway. J. Biol. Chem. 275, 14400–14405. doi: 10.1074/jbc.M115.636795

Nafdelberg, S., Ast, G., and Perlson, E. (2017). Phosphatidylserine improves neuroprotection in cerebral stroke and novel molecular and cellular treatment options. Curr. Neuropharmacol. 15, 1396–1415. doi: 10.2174/1570159x1666618030211554

Serrone, J. C., Maekawa, H., Tjahjadi, M., and Hernesniemi, J. (2015). Aneuversal subarachnoid hemorrhage: pathobiology, current treatment and future directions. Expert Rev. Neurother. 15, 367–380. doi: 10.1586/14737175.2015.1018892

Shao, A., Wang, Z., Wu, H., Dong, X., Li, Y., Tu, S., et al. (2016). Enhancement of autophagy by histone deacetylase inhibitor trichostatin a ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Mol. Neurobiol. 53, 18–27. doi: 10.1007/s12035-014-9896-0

Song, B., Ma, C., Gong, S., Yuan, Z., Li, D., Liu, W., et al. (2006). Extracellular signal-regulated kinases are not involved in activity-dependent survival or apoptosis in cerebellar granule neurons. Neurosci. Lett. 407, 214–218. doi: 10.1016/j.neulet.2006.08.040

Thomas, E. A., and D’Mello, S. R. (2018). Complex neuroprotective and neurotoxic effects of histone deacetylases. J. Neurochem. 145, 96–110. doi: 10.1111/jnc.14309

Topkaru, B., Egemen, E., Salaroglu, I., and Zhang, J. H. (2017). Early brain injury or vasospasm? An overview of common mechanisms. Curr. Drug Targets 18, 1424–1429. doi: 10.2174/138945011766616095112923

Watson, A., Eilers, A., Lallemend, D., Kyriakis, J., Rubin, L. I., and Ham, J. (1998). Phosphorylation of c-Jun is necessary for apoptosis induced by signal withdrawal in cerebellar granule neurons. J. Neurosci. 18, 751–762. doi: 10.1523/JNEUROSCI.18-02-00751.1998

Whitmarch, A. J., Cavanagh, J., Tourrier, C., Yasuda, J., and Davis, R. J. (1999). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281, 1671–1674. doi: 10.1126/science.281.5383.1671

Wu, Y., Ma, S., Xia, Y., Lu, Y., Xiao, S., Cao, Y., et al. (2017). Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim. Cell Death Dis. 8:e2570. doi: 10.1038/cddis.2016.465

Wu, Q., Yang, X., Zhang, L., Zhang, Y., and Feng, L. (2017). Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol. Neurobiol. 54, 6970–6983. doi: 10.1007/s12051-016-0199-2

Yang, Y., Qin, X., Liu, S., Li, J., Zhu, X., Gao, T., et al. (2011). Peroxisome proliferator-activated receptor γ is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J. Neurochem. 118, 429–439. doi: 10.1111/j.1326-4959.2011.09731.x

Yin, C., Huang, G. F., Sun, X. C., Guo, Z., and Zhang, J. H. (2016). Tozasertib attenuates neuronal apoptosis via DLK/IP3/M2AK7/JNK pathway in early brain injury after SAH in rats. Neuropharmacology 108, 316–323. doi: 10.1016/j.neuropharm.2016.04.013

Yuan, Z., Gong, S., Luo, J., Zheng, Z., Song, B., Ma, S., et al. (2009). Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol. Cell. Biol. 29, 2431–2442. doi: 10.1128/mcb.01344-08

Zhang, X. S., Wu, Q., Wu, L. Y., Ye, Z. N., Jiang, T. W., Li, W., et al. (2016). Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 7:2416. doi: 10.1038/cddis.2016.292

Zhang, D., Yan, H., Li, H., Hao, S., Zhaung, Z., Liu, M., et al. (2015). TGF-β-activated kinase 1 (TAK1) inhibition by 5z-7-oxozeaenol attenuates brain injury after experimental subarachnoid hemorrhage. J. Biol. Chem. 290, 19990–19999. doi: 10.1074/jbc.M115.636795

Zhou, K., Enkhjargal, B., Xie, Z., Sun, C., Wu, L., Malaguti, J., et al. (2018). Dihydropicolic acid inhibits lysosomal rupture and NLRP3 through lysosome-associated membrane protein-1/calcium/calmodulin-dependent protein kinase II/TAK1 pathways after subarachnoid hemorrhage in rat. Stroke 49, 175–183. doi: 10.1161/strokea117.018593

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.