SIX-POINT CONFIGURATIONS IN THE HYPERBOLIC PLANE AND ERGODICITY OF THE MAPPING CLASS GROUP

JULIEN MARCHÉ AND MAXIME WOLFF

Abstract. Let X be the space of isometry classes of ordered sextuples of points in the hyperbolic plane such that the product of the six corresponding rotations of angle π is the identity. This space X is closely related to the $\text{PSL}_2(\mathbb{R})$-character variety of the genus 2 surface Σ. In this article we study the topology and the natural symplectic structure on X, and we describe the action of the mapping class group of Σ on X. This completes the classification of the ergodic components of the character variety in genus 2 initiated in [13]. MSC Classification: 58D29, 57M05, 20H10, 30F60.

1. Introduction and statements

1.1. A simple dynamical system. The hyperbolic plane \mathbb{H}^2 is naturally identified to the subspace of $\text{PSL}_2(\mathbb{R})$ consisting of matrices (up to sign) of trace 0, via the map which associates to a point $x \in \mathbb{H}^2$ the rotation s_x of angle π.

In this article we will be studying the following space of configurations of sextuples,$$
\text{Sex} = \left\{ (x_1, \ldots, x_6) \in (\mathbb{H}^2)^6 \mid s_{x_6} \cdots s_{x_1} = 1 \right\},$

and its quotient $X = \text{Sex}/\text{PSL}_2(\mathbb{R})$ by the natural diagonal action.

Given a configuration $(x_1, \ldots, x_6) \in \text{Sex}$, and $i \in \{1, \ldots, 6\}$, we may perform a leapfrog move L_i, which consists in replacing x_i with x_{i+1} (in cyclic notation) and x_{i+1} with $s_{x_{i+1}}(x_i)$. In this move, x_i “comes to x_{i+1} and pushes it by the same motion”: this evokes the leapfrog game played by children, although it may be more accurate to think of a move in Chinese checkers. This move leaves invariant the four other points, as well as the product $s_{x_{i+1}}s_{x_i}$, hence preserves Sex. We will denote by $\text{Mod}(S_o)$ the group generated by these leapfrog moves; this notation will become clear later.

As a simple example of configuration $(x_1, \ldots, x_6) \in \text{Sex}$ we may choose x_1, x_3 and x_5 arbitrarily and set $x_2 = x_1$, $x_4 = x_3$ and $x_6 = x_5$. Such a configuration, as well as all the elements of their $\text{Mod}(S_o)$-orbits, will be called pinched configurations. If moreover $x_1 = x_3 = x_5$ we call it a singular configuration: these configurations yield the only singular point of X. We will denote by X^* the space of isometry classes of non-singular configurations, and by X^\times the space of isometry classes of configurations of six points which do not lie in the same geodesic line in \mathbb{H}^2.

It will be a simple observation that X has three connected components; we will denote by X_0 the one containing the isometry class of singular configurations. We will prove the following statements:

Theorem 1.1. Let $x \in X_0$ be an isometry class of non-pinched configurations. There is a sequence $(\gamma_n)_{n \geq 0}$ in $\text{Mod}(S_o)$ such that the sequence $((\gamma_n \cdot x))_{n \geq 0}$ converges to the isometry class of the singular configurations. The sequence is provided by a geometric algorithm.

Theorem 1.2. The group $\text{Mod}(S_o)$ acts on X_0 ergodically.
Along the way, we will show that X_0 is homeomorphic to a conical neighbourhood of its singularity and derive its homeomorphic type.

The space X_0, being a real algebraic variety, has a natural (Lebesgue) class of measures for which it makes sense, as in Theorem 1.2, to say that the action of $\text{Mod}(S_o)$ is ergodic. Moreover, X_0^* also has a natural symplectic structure, related to its interpretation as a character variety.

1.2. Sextuples and representation spaces. Let Σ be a genus two surface, let Γ denote the fundamental group of Σ, and let $X(\Gamma) = \text{Hom}(\Gamma, \text{PSL}_2(\mathbb{R}))/\text{PSL}_2(\mathbb{R})$ be the space of morphisms of Γ in $\text{PSL}_2(\mathbb{R})$ up to conjugacy. A representation $\rho: \Gamma \to \text{PSL}_2(\mathbb{R})$ is called elementary if it has a finite orbit in \mathbb{H}^2. Equivalently, ρ is non-elementary if its image is Zariski-dense in $\text{PSL}_2(\mathbb{R})$.

We denote by $X^\times(\Gamma)$ the space of conjugacy classes of non-elementary representations. By work of W. Goldman [7] this is a smooth 6-dimensional symplectic manifold.

Let $\text{Mod}(\Sigma)$ be the mapping class group of Σ. By the Dehn-Nielsen-Baer theorem, this group may be viewed as the quotient $\text{Out}^+(\Gamma) = \text{Aut}^+(\Gamma)/\text{Inn}(\Gamma)$ of orientation-preserving automorphisms of Γ up to inner automorphisms. A class $[\varphi] \in \text{Out}^+(\Gamma)$ acts on a conjugacy class $[\rho] \in X(\Gamma)$ by the formula $[\varphi]\cdot [\rho] = [\rho \circ \varphi^{-1}]$. In genus two, $\text{Mod}(\Sigma)$ has a special element, the hyperelliptic involution, which generates its center.

The Euler class $\text{eu}: X(\Gamma) \to \{-2, -1, 0, 1, 2\}$ measures the obstruction of lifting the representations $\Gamma \to \text{PSL}_2(\mathbb{R})$ to the universal cover $\text{PSL}_2(\mathbb{R})$. By work of W. Goldman [8], for each $k \in \{-2, -1, 1, 2\}$, the set $X_k^\times(\Gamma)$ of classes of representations of Euler class k is connected, and we proved in [13] that the set $X_0^\times(\Gamma)$ splits into two disjoint open sets $X_0^+(\Gamma)$ and $X_0^-(\Gamma)$, that we denoted by \mathcal{M}_+ and \mathcal{M}_-. The hyperelliptic involution fixes $X_0^+(\Gamma)$ pointwise, whereas it acts on $X_0^-(\Gamma)$ as the conjugation by orientation-reversing isometries of the plane. A consequence of [13], Proposition 1.2, is that both $X_0^+(\Gamma)$ and $X_0^-(\Gamma)$ are connected. We will discuss briefly this connectedness in Section 3.3.

If $\varphi \in \text{Diff}_+(\Sigma)$ represents the hyperelliptic involution, the quotient S_o of Σ by the action of φ has the structure of a spherical orbifold with six points of order 2. Let Γ_o denote its orbifold fundamental group. As Γ_o has the natural following presentation

$$\Gamma_o = \langle c_1, c_2, c_3, c_4, c_5, c_6 | c_i^2 = 1, c_1 \cdots c_6 = 1 \rangle,$$

there is an obvious identification between Sex and the space $\text{Hom}(\Gamma_o, \text{PSL}_2(\mathbb{R}))$ of morphisms which do not kill any of the c_i’s, hence the space X is in bijection with the character variety $X(\Gamma_o) = \text{Hom}(\Gamma_o, \text{PSL}_2(\mathbb{R}))/\text{PSL}_2(\mathbb{R})$.

Now if $\pi: \Sigma \to S_o$ is the quotient by the action of φ, the natural map $\pi^*: \Gamma \to \Gamma_o$ induces a map $\pi^*: X(\Gamma_o) \to X(\Gamma)$, which restricts to a canonical identification between $X_0^\times(\Gamma)$ and $X_0^+(\Gamma)$. Furthermore, this identification is equivariant for the action of the group $\text{Mod}(\Gamma_o)$ on $X_0^\times(\Gamma)$, and the action of $\text{Mod}(\Gamma)$ on $X_0^+(\Gamma)$.

1.3. Dynamics of the mapping class group on $\text{PSL}_2(\mathbb{R})$-characters in genus two. In [13] we studied the dynamics of $\text{Mod}(\Sigma)$ on $X^\times(\Gamma)$, leaving behind the component $X_0^+(\Gamma)$. Namely, we proved that $\text{Mod}(\Sigma)$ acts ergodically on each of the components $X_i^\times(\Gamma)$, $X_i^+(\Gamma)$ and $X_i^-(\Gamma)$, and proved the related result that every representation in these connected components sends some simple closed curve to a non-hyperbolic element of $\text{PSL}_2(\mathbb{R})$. The proof of the ergodicity in [13] is strongly related to the existence of non-separating simple closed curves mapped to non-hyperbolic elements, which we proved for almost every representation in these components. By Proposition 1.2 of [13], the same technique cannot be applied to representations in $X_0^+(\Gamma)$.

An easy consequence of Theorem 1.1 is that every representation in $X_0^+(\Gamma)$ sends some separating simple closed curve either to the identity or to an elliptic element of $\text{PSL}_2(\mathbb{R})$. Then the
HOURGLASS REPRESENTATIONS

Techniques for proving the ergodicity of \(\text{Mod}(\Sigma) \) are more involved than in [13]. Together with the results of [13], Theorems 1.1 and 1.2 yield the following statements:

Theorem 1.3. Let \(\rho: \Gamma \to \text{PSL}_2(\mathbb{R}) \) be a representation mapping every simple closed curve to a hyperbolic element. Then \(\rho \) is faithful and discrete.

Theorem 1.4. The mapping class group \(\text{Mod}(\Sigma) \) acts ergodically on each connected component of non-extremal Euler class of \(X^\times(\Gamma) \).

Theorem 1.3 gives an affirmative answer to a question of B. Bowditch (see [1], question C) in the genus two case, while Theorem 1.4 proves a conjecture of W. Goldman in the genus two case.

If a representation \(\rho: \Gamma \to \text{PSL}_2(\mathbb{R}) \) sends a separating simple curve to an elliptic element, we may think of the restriction of \(\rho \) on the fundamental group of each of the two one-holed tori as the holonomy of a conic hyperbolic structure on a torus with one cone point. Thus we may think geometrically of a generic representation in \(X^+_0(\Gamma) \) as two such tori glued along their cone points. For this reason, we like to call *hourglass* these representations.

1.4. Brief outline of the proofs. The dynamical system of sextuples of points in \(\mathbb{H}^2 \) acted on by leapfrog moves is simple enough to find, for every possible non-pinched configuration, an explicit sequence of leapfrog moves which decreases the sum \(\sum_{i=1}^6 d(x_i, x_{i+1}) \). This is done case by case, and leads to the proof of Theorem 1.1. This also yields a geometric algorithm which, given any non-elementary representation of \(\Gamma_o \) in \(\text{PSL}_2(\mathbb{R}) \), decides whether it is discrete; thus extending the results of [6] and [5] to the group \(\Gamma_o \).

Theorem 1.1 enables to reduce the proof of Theorem 1.2 to a neighbourhood of the singular representation as in [8]. This neighbourhood has several natural, simple and useful interpretations. First, as a set of limits of sextuple configurations in \(\mathbb{H}^2 \), it may be thought of as a set of configurations of six points in the Euclidean plane, satisfying extra conditions. Second, following [16] or [7], it can be interpreted in terms of the first cohomology group of \(\Gamma_o \) in \(\text{sl}_2(\mathbb{R}) \) with coefficients twisted by the adjoint action of the singular representation. This leads to a third interpretation as an open set in the cotangent bundle of the Grassmannian of Lagrangians in the symplectic vector space \(H_1(\Sigma, \mathbb{R}) \). Each of these three models bears a natural symplectic structure, and we prove that the natural symplectic structure on \(X^+_0(\Gamma) \) converges to the relevant natural symplectic form on each model, at the singular representation.

The idea is then to use the Dehn twists along the separating curves which are mapped to elliptic elements. The strategy of the proof, as in [9], is to prove that if \([\rho]\) is sufficiently close to the singular class of representations, the corresponding twist flows are transitive on a neighbourhood of \([\rho]\). In the situation at hand, we do not show whether these twist flows generate the space of all directions around our representations (contrarily to [9] or [13]), but by using the third model we prove that their directions generate a completely non-integrable distribution of directions, hence these flows are indeed transitive; this leads to the proof of Theorem 1.2.

1.5. Organisation of the article. We introduce some notation in Section 2 and relate our simple dynamical system to the dynamics of the mapping class group in genus 2. In Section 3, we prove Theorem 1.3. Section 4 is devoted to the neighborhood of the singular configuration whereas Section 5 contains the proof of Theorem 1.4.

1.6. Acknowledgements. This work was partially supported by the French ANR ModGroup ANR-11-BS01-0020 and SGT ANR-11-BS01-0018. The second author acknowledges support...
from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric Structures and Representation Varieties” (the GEAR Network). We would like to thank Tian Yang and Dick Canary for their kind interest.

2. Configurations of sextuples

The aim of this section is to expand on the relation, mentioned in the introduction, between the space of sextuple configurations and the $\text{PSL}_2(\mathbb{R})$-character variety of the surface of genus two. We will first elaborate on the presentation of the marked groups Γ and Γ_o, in order to see the group of leapfrog moves as a mapping class group. It is actually isomorphic to the 6-strands braid group of the sphere. We will then recall some elementary drawings relating products of half-turns; these reminders will be useful later on. We will then expand on the natural map between $X(\Gamma_o)$ and $X(\Gamma)$, and finally exhibit a complete list of types of sextuple configurations, which will be used in the following section.

2.1. Markings of the groups Γ and Γ_o.

With suitable markings, the groups Γ and Γ_o admit the following presentations,

$$\Gamma_o = \langle c_1, c_2, c_3, c_4, c_5, c_6 \mid c_2^i = 1, c_1 \cdots c_6 = 1 \rangle,$$

$$\Gamma = \langle a_1, b_1, a_2, b_2 \mid [a_1, b_1][a_2, b_2] = 1 \rangle,$$

and the morphism π_* associated to the quotient by the hyperelliptic involution is defined as follows:

$$\pi_*(a_1) = c_1c_2, \quad \pi_*(b_1) = c_3c_2, \quad \pi_*(a_2) = c_4c_5, \quad \pi_*(b_2) = c_6c_5.$$

Figure 1 is meant to help the reader with the above conventions for presenting the groups Γ and Γ_o. It should be noted here that, since the product in a fundamental group uses concatenation of paths, words in these groups are to be read from left to right, and our convention for the commutator here is: $[a, b] = aba^{-1}b^{-1}$. On the other hand, we prefer to think of $\text{PSL}_2(\mathbb{R})$ as

acting on \mathbb{H}^2 on the left, hence we prefer to read words in $\text{PSL}_2(\mathbb{R})$ from right to left. For this reason, we will take the convention that morphisms $\rho: \Gamma \to \text{PSL}_2(\mathbb{R})$ should be defined as satisfying the relation $\rho(\alpha\beta) = \rho(\beta)\rho(\alpha)$ for all $\alpha, \beta \in \Gamma$. We will also denote, for $A, B \in \text{PSL}_2(\mathbb{R})$, $[A, B] = B^{-1}A^{-1}BA$. This convention is reminiscent of [13] or [4].

Every positive self-diffeomorphism ψ of Σ commutes, up to isotopy, with the hyperelliptic involution φ, hence descends to a diffeomorphism of the sphere with six marked points. This defines an isomorphism between the quotient $\text{Mod}(\Sigma)/[\varphi]$ and the group $B_6(S^2)$, the 6-strands braid group of the sphere. This group is generated by the “standard” generators, often denoted by σ_i, as schematised in Figure 2. As they are depicted in Figure 2 the diffeomorphisms σ_i fix the base point of S_o hence act as automorphisms of Γ_o; we can read: $\sigma_{i+1}(c_i) = c_{i+1}$ and

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{Markings of the groups Γ and Γ_o.}
\end{figure}
The action of \(\sigma_1 \) on representations \(\Gamma_o \to \text{PSL}_2(\mathbb{R}) \) coincides with the action of the leapfrog move \(L_i \).

In addition to the leapfrog moves corresponding to the \(\sigma_i \), we will often use the cyclic permutation \(\sigma_5\sigma_1\cdots\sigma_1 \), which acts on sextuples by permutation, \((x_1, \ldots, x_6) \mapsto (x_2, \ldots, x_1)\), as well as the "half-twist" \((\sigma_1\sigma_2\sigma_1)^2 \), which replaces \(c_1 \), \(c_2 \) and \(c_3 \) by their conjugates by \(c_1c_2c_3 \), thus which acts on sextuples by the formula \((x_1, \ldots, x_6) \mapsto (f(x_1), f(x_2), f(x_3), x_4, x_5, x_6) \) where \(f = s_{x_3}s_{x_2}s_{x_1} \). We call it this way because it is the image, in \(\text{Mod}(S_o) \), of the half-Dehn twist along the separating curve \([a_1, b_1] \).

Let us insist, finally, that the map \(\text{Mod}(\Sigma)/[\varphi] \to \text{B}_6(S^2) = \text{Mod}(S_o) \) is explicit, and it is easy to translate an explicit sequence of leapfrog moves into an explicit sequence of Dehn twists on \(\Sigma \). Namely, in the left part of Figure 4 consider the three blue closed curves, and the two black curves making the two handles of \(\Sigma \). It is well-known that the five corresponding Dehn twists generate \(\text{Mod}(\Sigma) \). The five Dehn twists along these five curves, ordered from left to right, descend respectively to \(\sigma_1, \ldots, \sigma_5 \) in \(\text{Mod}(S_o) \).

2.2. Products of three half-turns and commutators. Let \(x_1, x_2, x_3 \in \mathbb{H}^2 \) and let \(s_i, i = 1, 2, 3, \) be the half-turn around \(x_i \). If \(x_1, x_2, x_3 \) are on a same line, then \(s_1, s_2, s_3 \) can be thought of as isometries of the real line, and the product \(s_3s_2s_1 \) is a half-turn around a point easy to spot on this line (see Figure 3 left). If \(x_1, x_2, x_3 \) are not on a same line, then \(x_3 \) is at some distance \(h \) from the line \((x_1, x_2)\). Then \(s_3s_2s_1 = s_3s'_2s'_1 \), where \(s'_2 \) is the half-turn around the closest point, \(x'_2 \), \(s'_3 \) is a half-turn around the point \(x'_3 \), and \(s'_1 \) is a half-turn around the point \(x'_1 \in (x_1, x_2) \) chosen so that \(s_2s_1 = s'_2s'_1 \). Now \(s_3s_2s_1 \) is the composition of two explicit reflections, \(r_2r_1 \) (see Figure 3 right). Depending on whether \(\sinh(h)\sinh(d(x_1, x_2)) \) is less, equal or greater than 1, the hyperbolic motion \(s_3s_2s_1 \) is elliptic, parabolic or hyperbolic (this follows from the classical formulas in hyperbolic geometry, see eg [2], page 454, formulas 2.3.1 and 2.3.4). It is noteworthy that this quantity \(\sinh(h)\sinh(d(x_1, x_2)) \) is equal to \(\frac{1}{2} \text{Tr}(s_3s_2s_1) \) and is invariant under permutations of the \(x'_i \)'s. It is often called the \(\Delta \)-invariant of the triangle \(x_1, x_2, x_3 \).
This can be applied to describe the geometry of commutators of hyperbolic elements of $\text{PSL}_2(\mathbb{R})$ whose axes intersect in \mathbb{H}^2. If A, B are two such isometries, let x_2 be the intersection point of these axes (take x_2 to be any point on this line, if A and B have the same axis). There exists a unique point x_1 on the axis of A such that, if s_1, s_2 are the half-turns around x_1, x_2 we have $A = s_2s_1$. Similarly, there exists a unique point x_3, on the axis of B, such that $B = s_2s_3$, where s_3 is the half-turn around x_3. Now,

$$[A, B] = B^{-1}A^{-1}BA = (s_3s_2s_1)^2.$$

With this in head, Figure 3 gives a geometric picture of commutators of hyperbolic elements with crossing axes.

2.3. Sextuple configurations as representations of Γ. The aim of this paragraph is to prove the following correspondence:

Proposition 2.1. The $\text{PSL}_2(\mathbb{R})$-equivariant map $\pi^*: \text{Sex} \to \text{Hom}(\Gamma, \text{PSL}_2(\mathbb{R}))$ descends, by restriction, to a homeomorphism $\pi^*: X^\times(\Gamma_o) \to X_{-2}(\Gamma) \cup X^+_0(\Gamma) \cup X_2(\Gamma)$.

In the above statement we write “homeomorphism” because we are not yet concerned with the rich structure of these spaces, but of course π^* carries their structures.

For completeness let us recall the following statement from [13]:

Proposition 2.2 (Part of Proposition 1.2 of [13]). Let $[\rho] \in X^+_0(\Gamma)$. For every non-separating curve a, $\rho(a)$ is hyperbolic or the identity. For every simple curves a, b such that $i(a, b) = 1$, the trace of the commutator $[\rho(a), \rho(b)]$ is in $(-\infty, 2]$. It is 2 if and only if $[\rho(a), \rho(b)] = 1$.

Proof of Proposition 2.2. Let $z = (x_1, \ldots, x_6) \in \text{Sex}$, and let $\rho = \pi^*(z)$. From Equation (1) and the equality $s_{x_6}\cdots s_{x_1} = 1$ we compute, formally,

$$\rho([a_1, b_1][a_2, b_2]) = (s_{x_6}s_{x_5}s_{x_4})^2(s_{x_3}s_{x_2}s_{x_1})^2 = (s_{x_6}\cdots s_{x_1})^2.$$

Moreover, the square enables to lift ρ to a representation in $\text{SL}_2(\mathbb{R})$; this means that ρ has even Euler class. Now the representation of Γ_o defined by z is elementary if and only if x_1, \ldots, x_6 are on the same line, and restricting a representation to an index two subgroup does not change elementarity. This implies that the image of $X^\times(\Gamma_o)$ is contained in $X_{-2}(\Gamma) \cup X^+_0(\Gamma) \cup X_2(\Gamma)$, because, by its construction, the conjugacy class of ρ is invariant under the hyperelliptic involution.

Conversely, let $[\rho] \in X_{-2}(\Gamma) \cup X^+_0(\Gamma) \cup X_2(\Gamma)$. Suppose for simplicity that $[\rho(a_1), \rho(b_1)] \neq 1$. Recall that for $A, B \in \text{PSL}_2(\mathbb{R})$, the trace of $[A, B]$ is well defined, and it is in $(-\infty, 2]$ if and only if A, B are hyperbolic and their axes cross each other. Then $\rho(a_1)$ and $\rho(b_1)$ are hyperbolic with crossing axes; they define three points x_1, x_2 and x_3 exactly as in the last paragraph of Section 2.2. Similarly, define x_4, x_5 and x_6 corresponding to $\rho(a_2)$ and $\rho(b_2)$. Then we readily check that $\pi^*(x_1, \ldots, x_6) = \rho$.

Now if $[\rho(a_1), \rho(b_1)] = 1$, we may (for example) first apply an explicit automorphism ψ of Γ to change (a_1, b_1) into (a, b) with $a, b \in \{a_1, b_1, a_2, b_2\}$ and $i(a, b) = 1$, so that $[\rho(a), \rho(b)] \neq 1$ (otherwise ρ would be elementary), make the above construction, and come back to the original marking by applying ψ^{-1}. Thus, we have constructed a map $X_{-2}(\Gamma) \cup X^+_0(\Gamma) \cup X_2(\Gamma) \to X^\times(\Gamma_o)$, and we easily check that this map, and π^*, are the inverse to each other. □

2.4. Different types of sextuple configurations. The aim of this paragraph is to have in head a picture of every possible configuration of sextuples $z = (x_1, \ldots, x_6) \in \text{Sex}$, and to set up some notation for the use of the following section.

In the defining equality we may group the terms two by two, $(s_{x_6}s_{x_5})(s_{x_4}s_{x_3})(s_{x_2}s_{x_1}) = 1$. For all $i \in \{1, \ldots, 6\}$ we will write $a_{i, i+1} = d(x_i, x_{i+1})$, with cyclic notation. If, say, $x_1 = x_2$
then the above relation implies that \(x_3, x_4, x_5, x_6\) are on the same line. In this case, it is easy to
deform \(z\) among sextuple configurations into a singular configuration. Now we want to describe
the generic configurations, in which \(a_{i,i+1} \neq 0\) for all \(i\). We then denote by \(D_{i,i+1}\) the line joining
\(x_i\) and \(x_{i+1}\). Note that \(s_{i,i+1} s_i\) is a hyperbolic translation along that line.

It is elementary and classical to picture the product of two given hyperbolic motions, say
\(s_{x_2} s_{x_1}\) and \(s_{x_4} s_{x_3}\). If their axes \(D_{12}\) and \(D_{34}\) cross each other in \(\mathbb{H}^2\), we decompose each of these
two motions into two rotations of angle \(\pi\), one of them being around their intersection point (as
in Paragraph 2.2). The resulting product is the product of the two other half-turns. If \(D_{12}\) and \(D_{34}\) are disjoint in \(\mathbb{H}^2 \cup \partial \mathbb{H}^2\) we decompose each of the two motions into two reflections along
lines, one of them being the common perpendicular \(H_{23}\) of \(D_{12}\) and \(D_{34}\). Then \(s_{x_6} s_{x_3}\) is the
product of the reflections along the two other lines, which, therefore, cannot intersect each other in \(\mathbb{H}^2 \cup \partial \mathbb{H}^2\). It follows that the lines \(D_{12}, D_{34}\) and \(D_{56}\), together with the respective common
perpendiculars \(H_{23}, H_{45}\) and \(H_{61}\), form a right-angled hexagon, which may be regular or skew,
depending on whether the directions of the motions \(s_{x_2} s_{x_1}\) and \(s_{x_4} s_{x_3}\) agree or disagree (this
makes sense for instance by parallel transport along \(H_{23}\)). The only remaining case is when
\(D_{12}\) and \(D_{34}\) meet at \(\partial \mathbb{H}^2\); the motions \(s_{x_2} s_{x_1}\) and \(s_{x_4} s_{x_3}\) are then contained in a parabolic subgroup
of \(\text{PSL}_2(\mathbb{R})\). The following lemma summarizes the above discussion.

Lemma 2.3. Let \(z = (x_1, \ldots, x_6) \in \text{Sex}^x\) be a non-aligned configuration with \(x_1 \neq x_2, x_3 \neq x_4\)
and \(x_5 \neq x_6\). Then one of the following holds.

(TRI) The lines \(D_{12}, D_{34}\) and \(D_{56}\) form a triangle with lengths \(a_{12}, a_{34}\) and \(a_{56}\).
(PAR) The lines \(D_{12}, D_{34}\) and \(D_{56}\) meet at (at least) one common point in \(\partial \mathbb{H}^2\). In this case,
one of the lengths \(a_{12}, a_{34}\) and \(a_{56}\) is the sum of the two others.
(SKH) The lines \(D_{12}, D_{34}\) and \(D_{56}\) are pairwise disjoint in \(\mathbb{H}^2\) and together with their respective
common perpendiculars they form a skewed right-angled hexagon. In this case, one of
the lengths \(a_{12}, a_{34}\) and \(a_{56}\) is greater than the sum of the two others.
(HEX) The lines \(D_{12}, D_{34}\) and \(D_{56}\) are pairwise disjoint in \(\mathbb{H}^2\) and with their respective common
perpendiculars they form a right-angled hexagon.

In each of the three situations (TRI), (PAR) and (SKH) it is easy to deform \(z\) among sextuple
configurations into a singular configuration; these cases, together with the degenerate cases above
and the aligned configurations, form the connected component \(X_0\). Of course, we will denote
by \(\text{Sex}_0\) the set of corresponding sextuple configurations. Each case comes with two possible
orientations (and a choice of repelling or attracting point in case (PAR)). In case (HEX), these
two orientations correspond to the two components of \(X_{\pm 2}(\Gamma)\) via Proposition 2.1.

Figures 4 and 5 illustrate the cases (TRI), (PAR) and (SKH) with some extra notation that
will be used in the next section. In particular, in every case we will consider the relevant
intersection points \(y_1, \ldots, y_6\); they satisfy the relation \(s_{x_{i+1}} s_{x_i} = s_{y_{i+1}} s_{y_i}\) for \(i = 1, 3, 5\).

Remark 2.1. In Figure 4 we have drawn the triangular case as a Euclidean one for convenience.
It is noteworthy however that if \(\mathbb{H}^2\) was replaced by \(\mathbb{R}^2\) we would have an extra degree of freedom:
the side lengths of the triangle formed by \(D_{12}, D_{34}\) and \(D_{56}\) would only be proportional to \(a_{12}, a_{34}\) and \(a_{56}\) by a free positive constant. This phenomenon will have a significant role in Section 4.

3. Reduction of size

In this section we will first prove that the space \(X_0\) is contractible, then we will prove Theorem 4.1
we will end this section with miscellaneous considerations. The strategy of both proofs
consists in decreasing the relative distances between the points \(x_i\), but as the considerations of
the first proof are more differential and the second more discrete in nature, we will use different
functions to measure this size. If \(z = (x_1, \ldots, x_6) \in \text{Sex} \), as in Section 2.4 let \(a_{i,i+1} = d(x_i, x_{i+1}) \) for all \(i \) with cyclic notation, and put
\[
F(z) = \prod_{i=1}^{6} \cosh(a_{i,i+1}), \quad A(z) = a_{12} + a_{34} + a_{56} \quad \text{and} \quad B(z) = a_{23} + a_{45} + a_{61}.
\]

3.1. **The space \(X_0 \) is contractible.** An elementary computation shows that the differentiable map \((\mathbb{H}^2)^6 \to \text{PSL}_2(\mathbb{R})\) defined by \((x_1, \ldots, x_6) \mapsto s_{x_6} \cdots s_{x_1}\) has surjective differential at every point such that \(x_i \neq x_j \) for some \(i, j \). Thus, the subspace \(\text{Sex}^* \) of non-singular sextuple configurations is a smooth submanifold of \((\mathbb{H}^2)^6\), and the map \(F: \text{Sex}^* \to \mathbb{R} \) is differentiable.
Lemma 3.1. The map F has no critical points on Sex_0^*.

Proof. By contradiction, suppose $z = (x_1, \ldots, x_6) \in \text{Sex}_0^*$ is a critical point for F.

If z is an aligned configuration, we can push the points together by rescaling simultaneously $a_{i,i+1}$ for all i by the same factor, thus decreasing F at first order, a contradiction.

Suppose now that $x_i \neq x_{i+1}$ for all i. Consider the line D_{12}, oriented from x_1 to x_2 and consider a flow ϕ_{12}^t on a neighbourhood of z in Sex_0 replacing x_1 and x_2 by their image by the translation of length t along D_{12}. Let x_6' and x_3' be the orthogonal projections of x_6 and x_3 on D_{12}. By the hyperbolic Pythagorean theorem, we have $\cosh(a_{61}) = \cosh(d(x_6, x_6')) \cosh(d(x_6', x_1))$ and $\cosh(a_{23}) = \cosh(d(x_3, x_3')) \cosh(d(x_3', x_2))$, hence

$$F(\phi_{12}^t(z)) = C \cosh(d(x_6', x_1) \pm t) \cosh(d(x_2, x_3') \pm t),$$

where $C = \cosh(a_{12}) \cosh(a_{34}) \cosh(a_{45}) \cosh(a_{56}) \cosh(d(x_6, x_6')) \cosh(x_3, x_3')$ does not depend on t, and where the signs before t depend on the order of the points x_1, x_2, x_6' and x_3' on the line D_{12}. In either case, by deriving the above expression, we check that the criticality of F at z implies that the midpoints of the segments $[x_1, x_2]$ and $[x_3', x_6']$ coincide; similar conclusions hold if we cyclically permute the x_i's.

Put $x = d(x_1, y_1)$, $y = d(x_3, y_3)$ and $z = d(x_5, y_5)$. Note that we also have $x = d(x_2, y_2)$, $y = d(x_4, y_4)$ and $z = d(x_6, y_6)$. So the midpoint of $[x_1, x_2]$ is at distance x from m_{12}, the midpoint of $[y_1, y_2]$.

If we are in case (TRI) or (SKH), the projections of y_3 and y_6 on D_{12} are y_2 and y_1. Since orthogonal projections decrease distances, the midpoint of $[x_3', x_6']$ is at distance less than $\frac{y_2 + z}{2}$ of m_{12}, with equality if and only if $y = z = 0$. Thus we have the inequality $2x \leq y + z$, and its three cyclic companions. It follows that $x = y = z = 0$. In case (TRI) this contradicts that $x_2 \neq x_3$. In case (SKH) we can shorten a_{34} while fixing a_{12} and a_{56}, by classical hyperbolic formulas (see eg [2], page 454) this shortens a_{23}, a_{45} and a_{61}, contradicting that z is a critical point of F.

If we are in case (PAR), we again contradict that z is a critical point of F by pushing simultaneously all the points x_i towards the common point at infinity of D_{12}, D_{34} and D_{56}: this leaves a_{12}, a_{34} and a_{56} invariant while decreasing the other three distances.

Finally, suppose, say, that $x_1 = x_2$. Then x_3, \ldots, x_6 lie in a same line D, well-defined since the configuration is not aligned. Let x be the orthogonal projection of x_1 on D. Then we may push simultaneously the points x_3, \ldots, x_6 towards x along D, reducing all the distances $a_{i,i+1}$ at the first order, thus z cannot be a critical point of F. \qed

Every element of Sex_0^* has a closed $\text{PSL}_2(\mathbb{R})$-orbit; it follows that X^* is smooth: the only singularity of X is the singular configuration. It is noteworthy that although the aligned, non-singular configurations are smooth points of X^*, their images in $X_0(\Gamma)$ are non-smooth points of the character variety of the genus two surface group.

Now, the map F: $\text{Sex}_0^* \to (1, +\infty)$ is $\text{PSL}_2(\mathbb{R})$-invariant, hence it descends to a map f: $X_0^* \to (1, +\infty)$ which still has surjective differential at every point. Obviously f is onto; it is also proper. Therefore, X_0^* is diffeomorphic to $(1, +\infty) \times f^{-1}(\{r\})$ for any $r > 1$, and X_0 is homeomorphic to a cone over $f^{-1}(\{r\})$. This proves that X_0 is contractible, and homeomorphic to a neighbourhood of the singular configuration. This neighbourhood will be described precisely in Section 4.

3.2. An effective method.

3.2.1. The set U. In this section we consider the subset U of non-pinched isometry classes of sextuple configurations. Before proving Theorem 1.1, let us prove the following statement, which will be needed in Section 5.
Observation 3.2. *The set U is connected, is dense and has full measure in X₀.

Proof. Consider the following set $P = \{(x₁, \ldots, x₆) ∈ \text{Sex} \mid x₁ = x₂, x₃ = x₄, x₅ = x₆, x₂ \neq x₃\}$ of pinched, non-singular configurations. It is a submanifold of dimension 6 of Sex^*, and it descends to a submanifold of dimension 3, hence of codimension 3, of $X₀$. Now U is the complement of the orbit of this codimension 3 submanifold, under the countable group $\text{Mod}(S₀)$; the statement of the observation follows.

Now we turn to the proof of Theorem 1.1, restated as follows.

Theorem 3.3. *For all $[z] ∈ U$, the adherence $\text{Mod}(S₀) · [z]$ contains the isometry class of singular configurations.*

3.2.2. The operations. To prove this statement we show how to construct an effective “geometric algorithm” (we will comment later on this terminology) which reduces the size, measured by the functions A and B introduced above, of sextuple configurations. Suppose $z = (x₁, \ldots, x₆)$ is a non-aligned sextuple satisfying $x_i \neq x_{i+1}$ for $i = 1, 3, 5$. Consider the following operations on z, depending on the trichotomy of Lemma 2.3.

(Rot) Make a cyclic permutation, to obtain a sextuple z' with $A(z') = B(z)$ and $B(z') = A(z)$.

(Tri) If we are in case (TRI), apply (Rot) an even number of times, so that $a_{12} ≥ a_{34}$ and $a_{12} ≥ a_{56}$. Then perform the leapfrog moves $L₁$ to a power minimizing the distance $d(x₁, y₁)$; apply similarly the moves $L₃$ and $L₅$. Then, if this further decreases B, apply again $L₁$ or its inverse, once. Then apply (Rot).

(PAR) If we are in case (PAR), apply leapfrog moves $L₃$ to push $x₃$ and $x₄$ towards the common point at $ΩH²$ of $D₁₂, D₃₄$ and $D₅₆$, until the distances along horocycles, from $x₃$ or $x₄$, to $D₁₂$ and $D₅₆$, become less than $\frac{A(z)}{12}$. Then consider the points $y₁, y₂, y₅$ and $y₆$ as in Figure 4 and apply powers of $L₁$ and $L₅$ to minimize the distances $d(x₁, y₁)$ and $d(x₅, y₅)$. Then apply (Rot).

(SKH0) If we are in case (SKH), first apply (Rot) an even number of times so that $a_{34} > a_{12} + a_{56}$, as in Figure 5. Apply powers of $L₁$ and $L₅$ to minimize $d(x₁, y₁)$ and $d(x₅, y₅)$. Then apply (Rot).

(SKH1) If in case (SKH), apply (SKH₀), and then apply the “half-twist move” $(L₁L₂L₁)^2$.

The effect of these operations is precised in the following lemmas.

Lemma 3.4. *Suppose z is in case (TRI) or (PAR), and let z' be the sextuple resulting from applying the relevant operation, (Tri) or (Par), to z. Then $\frac{24}{53} A(z') ≤ B(z') = A(z)$.*

In the next lemmas, we write $b_{i,i+1} = d(y_i, y_{i+1})$ for $i = 2, 4, 6$, in the case (SKH), so that the right-angled skew hexagon has edge lengths $a_{i,i+1}$ with $i = 1, 3, 5$, and $b_{i,i+1}$ with $i = 2, 4, 6$.

Lemma 3.5. *Suppose z is in case (SKH), and let z' be the sextuple resulting from applying the operation (SKH1) to z. Then $A(z') < A(z)$. More precisely, if $a_{34} > a_{12} + a_{56}$, then the operation (SKH1) leaves a_{12} and a_{56} invariant and decreases $\cosh(a_{34})$ by a quantity larger than $\frac{2\sinh²(\min(a_{12}, a_{56}))}{\cosh²(a_{34})}$. Moreover, provided $A(z)$ is small enough, we also have $B(z') ≤ B(z) + 4A(z) − \min(1, b₂₃, b₄₅)$.*

The operations described above do not suffice yet to prove Theorem 1.1; the next lemma introduces an additional operation.

Lemma 3.6 (Operation (SKH2)). *Provided $A(z)$ and $\min_{i=2,4,6}(b_{i,i+1})$ are small enough, after applying (SKH0) the isometry $sₓ₃sₓ₂sₓ₁$ is a rotation of angle close (but not equal) to $π$. Then there exists $N ≥ 0$ such that $(sₓ₃sₓ₂sₓ₁)^N$ is a rotation of angle close to $±\frac{π}{2}$ and such that the
move $(L_1L_2L_1)^{2N}$ results in decreasing A, and such that, if the resulting configuration z' is still in case (SKH), then after applying again (Skh0) we have $B(z') \leq B(z) - 1$.

3.2.3. Proof of Theorem 1.1. Let $z = (x_1, \ldots, x_6) \in S$ such that $[z] \in U$, and let $\varepsilon > 0$, small enough to apply Lemmas 3.5 and 3.6. We want to prove that there exists $z' \in B_6(S^2 \cdot z)$ such that $A(z') + B(z') \leq 2\varepsilon$.

Let us suppose that the configuration is not aligned; we postpone the aligned case to the end. Thus, let us suppose now that our configuration z, as well as all the configurations we deal with in the following process, satisfy the condition $x_i \neq x_{i+1}$ for all i.

As a first step, let us apply the operations (Tri) or (Par) or (Skh1), depending on whether z is in case (TRI), (PAR) or (SKH) of Lemma 2.3, and iterate this procedure, until $A \leq \varepsilon$. This first process stops in finite time. Indeed, in cases (TRI) and (PAR), A drops by a factor of at least $\frac{1}{2}$. The worst thing that could happen is to encounter only the case (SKH) after some iteration. Suppose it is the case. By Lemma 3.5, at each iteration, the three quantities α_1, α_3 and α_5 decrease, hence the biggest of them stays smaller than the starting quantity $A(z)$. Hence, by Lemma 3.5, at each iteration the biggest of $\cosh(\alpha_1), \cosh(\alpha_3)$ and $\cosh(\alpha_5)$ decreases, by an additive amount depending only on the smallest. Hence, should the process not stop in finite time, the smallest of α_1, α_3 and α_5 would have to converge to 0. But each iteration changes only the biggest of α_1, α_3 and α_5. Hence, these three quantities converge to 0, and this first stage of iterations does stop in finite time.

Now we have $A(z') \leq \varepsilon$. Of course, under this condition, if we encounter again the case (TRI) or (PAR) then we are done, by Lemma 3.4. Suppose we do not. Proceed as in the first step until we have $\min(b_23, b_45, b_61) \leq \varepsilon$ in case (SKH). This will happen in finite time, by the second assertion of Lemma 3.5. Note that the operation (Skh0) leaves A invariant, and after this operation we have $B \leq b_23 + b_45 + b_61 + 2A$. So as a last step, we proceed by iterating the operation (Skh1), or ((Skh2) followed by (Skh0)), depending on which decreases B the most. The conclusions of Lemmas 3.5 and 3.6 now imply that B converges to 0, hence is lower than ε after finitely many iterations.

Let us deal now with the case when $x_i = x_{i+1}$ for some i. Up to applying (Rot), suppose that $x_5 = x_6$. Now $s_{x_1}s_{x_2}s_{x_3}s_{x_4} = 1$, so x_1, x_2, x_3 and x_4 have to lie on a same line. Since $[z] \in U$, these four points need to be pairwise distinct, otherwise we could easily produce leapfrog moves leading to a configuration where $x_i = x_{i+1}$ for $i = 1, 3, 5$. Denote by Δ be the line containing x_1, \ldots, x_4 and orient this line. Up to applying powers of L_3 we may suppose that x_1 is to the left of x_2, x_3 and x_4 on Δ; this implies that x_3 is at the right side of x_1, x_2, x_4. Now put $\delta_1 = d(x_1, x_2)$ and $\delta_2 = d(x_1, x_4)$. If $\delta_2 > \delta_1$ apply the move L_3, this changes $[\delta_1, \delta_2]$ into $(\delta_1, \delta_2 - \delta_1)$. If $\delta_1 < \delta_2$ apply the move L_2^{-1}; this changes (δ_1, δ_2) into $(\delta_1 - \delta_2, \delta_2)$. We recognise Euclid’s algorithm. It follows from the condition $[z] \in U$ that δ_1 and δ_2 have an irrational ratio, so this process pushes the points x_1, x_2, x_3 and x_4 close together. By applying then powers of L_1 and L_3 we may now push these four points as close as we want to the projection of $x_5 = x_6$ on Δ. If $x_5 = x_6$, we are done. Otherwise, according to the construction of Section 2.2, the isometry $s_{x_5}s_{x_1}s_{x_2}$ is a rotation, of center as close as we want from x_5, and of angle close (but distinct) to π, hence it has an N-th power with angle close to $\frac{\pi}{2}$. Then apply the iterated half-twist, $(L_6L_1L_6)^{2N}$. This results in a configuration with A as small as we want (hence $A \leq \varepsilon$), furthermore in this new configuration the lines (x_1, x_2) and (x_3, x_4) now cross each other, hence this configuration is in case (TRI). Thus, it remains to apply the operation (Tri) in order to get $A \leq \varepsilon$ and $B \leq \varepsilon$.
The case of aligned configurations, finally, can be treated by mixing the strategy of case (PAR) and that of the degenerate case above, depending on whether \(x_i = x_{i+1} \) for some \(i \).

3.2.4. Proofs of the lemmas.

Proof of Lemma 3.3 The leapfrog moves \(L_1, L_3 \) and \(L_5 \) obviously do not change the distances \(a_{12}, a_{34} \) and \(a_{56} \) summing up to \(A(z) \). We need to prove that the moves as in Operations (Tri) and (Par), except the last rotation, lead to a configuration \(z' \) with \(B(z') < \frac{24}{21} A(z) \). Here we use the notation \(z' \) even though we may not have reached yet the configuration as in the statement of the lemma; the notation \(z' \) is subject to change in the course of the proof, accordingly to the appropriate moves. We make this abuse of notation here, and in the two subsequent proofs.

Suppose first that \(z \) is in the case (TRI). After applying the leapfrog moves minimizing the distances \(d(x'_i, y_i) \), we have \(x'_i \in [u_{i,i+1}, m_{i,i+1}] \) for \(i = 1, 3, 5 \) and \(x'_i \in [m_{i-1,i}, v_{i-1,i}] \) for \(i = 2, 4, 6 \), where the points \(m_{i,i+1}, u_{i,i+1} \) and \(v_{i,i+1}, i = 1, 3, 5 \) are as in Figure 4. Thus,

\[
\begin{align*}
d(x'_1, y_1) &\leq \frac{a_{12}}{2}, & d(x'_2, y_2) &\leq \frac{a_{12}}{2}, & d(x'_3, y_3) &\leq \frac{a_{34}}{2}, \\
d(x'_4, y_4) &\leq \frac{a_{34}}{2}, & d(x'_5, y_5) &\leq \frac{a_{56}}{2}, & d(x'_6, y_6) &\leq \frac{a_{56}}{2}.
\end{align*}
\]

As \(y_1 = y_6, y_2 = y_3 \) and \(y_4 = y_5 \) this already gives \(B(z') \leq A(z) \), by triangular inequalities.

If \(B(z') \geq \frac{24}{21} A(z) \), then the distances of each \(x'_i \) to the closest end of its segment sum up to less than \(\frac{A(z)}{21} \). Suppose (without loss of generality) that \(a_{56} \leq a_{34} \leq a_{12} \), so that \(a_{56} \leq \frac{A(z)}{3} \). The symmetry around \(y_2 \) and the CAT(0) inequality (and the intercept theorem) imply \(d(v_{12}, u_{34}) = d(m_{12}, m_{34}) \leq \frac{a_{56}}{2} \). If \(d(x'_2, m_{12}) + d(x'_3, m_{34}) \leq \frac{A(z)}{21} \), or \(d(x'_2, v_{12}) + d(x'_3, u_{34}) \leq \frac{A(z)}{21} \), then by triangle inequalities we get \(B(z') \leq \frac{21}{24} A(z) \), a contradiction. Thus \(d(x'_2, v_{12}) + d(x'_3, m_{34}) \leq \frac{A(z)}{24} \) or \(d(x'_2, m_{12}) + d(x'_3, u_{34}) \leq \frac{A(z)}{24} \). After an extra leapfrog move \(L_1^{+1} \) we have again \(d(x'_2, x'_3) \leq \frac{a_{56}}{2} + \frac{A(z)}{24} \), and now we only have \(d(x'_1, y_1) \leq \frac{a_{12}}{2} + \frac{A(z)}{24} \). Triangle inequalities this time give \(B(z') \leq \frac{24}{21} A(z) \); this settles the triangle case.

The parabolic case is much simpler: the inequalities \(d(y_2, x'_3) \leq \frac{A(z)}{12} \), \(d(x'_4, y_5) \leq \frac{A(z)}{12} \), \(d(y_1, y_6) \leq \frac{A(z)}{6} \), \(d(x'_i, y_i) \leq \frac{a_{34}}{2} \) for \(i = 1, 2 \) and \(d(x'_i, y_i) \leq \frac{a_{56}}{2} \) for \(i = 5, 6 \) directly yield, by triangle inequalities, \(B(z') \leq \frac{6}{9} A(z) \).

Proof of Lemma 3.7 Let \(z = (x_1, \ldots, x_5) \in \text{Sex} \) be in the (SKH) configuration. Perform the moves according to the operation (Skh1), except the last “half-twist”. Without loss of generality, suppose that now \(x'_3 \in [y_3, m] \). The moves we made so far do not change the value of \(A \), and clearly, the half-twist then does not change the value of \(a_{12} \) or \(a_{56} \). In order to prove the first statement of Lemma 3.5 we study the effect of this half-twist on \(a_{34} \).

This half-twist amounts to replace \(x'_1, x'_2 \) and \(x'_3 \) by their image by the isometry \(s_{x'_3} s_{x'_2} s_{x'_1} \). Recall from Section 2.2 that this isometry is the product \(r_{\ell_2} r_{\ell_1} \) of the reflections by the lines \(\ell_1 \) and \(\ell_2 \), as constructed in Figure 6. Construct, similarly, the lines \(\ell_3 \) and \(\ell_4 \) such that \(s_{x'_3} s_{x'_2} s_{x'_1} = r_{\ell_3} r_{\ell_4} \). As \(z \in \text{Sex} \), we have \(r_{\ell_1} r_{\ell_2} = r_{\ell_3} r_{\ell_4} \). In particular these four lines either intersect in \(\mathbb{H}^2 \), or in \(\partial \mathbb{H}^2 \), or are all perpendicular to a common line, depending on whether \(s_{x'_3} s_{x'_2} s_{x'_1} \) is elliptic, parabolic or hyperbolic: this is what we observe in Figure 6 but our reasoning will not depend on this trichotomy.

We want to compare \(a_{34} \) with the new distance, \(d(r_{\ell_3} r_{\ell_1} x'_3, x'_4) \). This last distance is equal to \(d(x'_3, r_{\ell_3} r_{\ell_4} x'_4) = d(x'_3, r_{\ell_3} x'_4) \). Let \(p_3 \in \mathbb{H}^2 \) and \(\theta_3 \in \mathbb{R} \) be as in Figure 6 the intersection point of \(\ell_3 \) and \(D_{34} \) and their angle. Set \(u = d(x'_3, p_3) \) and \(v = d(p_3, x'_4) \). Then \(\cosh(a_{34}) = \cosh u \cosh v + \)
The operation (Skh1) is given by $\sinh u \sinh v$, whereas $\cosh(d(x'_3, r_{\ell_3} x'_4)) = \cosh u \cosh v + \cos(2\theta_3) \sinh u \sinh v$, hence the decrement in $\cosh(a_{34})$ is equal to $2\sin^2\theta_3 \sinh u \sinh v$. We claim that $u \geq \min(a_{12}, a_{56})$, $v \geq a_{56}$, and $\sin \theta_3 \geq 1 \cosh(a_{34})$; these claims imply the first part of Lemma 3.5.

The inequality $v \geq a_{56}$ is obvious. Also, we have $d(p_3, y_4) \leq a_{34}$. Thus, the lines ℓ_3, D_{34} and (y_4, y_5) form the same picture as in Figure 7, where the angle and the distance involved are θ_3 and $d(p_3, y_4)$. Indeed, ℓ_3 and (y_4, y_5) being both perpendicular to the same line D_{56}, do not cross each other. The claimed inequality follows. The remaining inequality, $u = d(x_3, p_3) \geq \min(a_{12}, a_{56})$.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure6}
\caption{The operation (Skh1)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{figure7}
\caption{A classical inequality}
\end{figure}

is obtained by a variation argument. If $x_3 = y_3$ then $p_3 = m$, so $u \geq a_{12}$. Starting there, as x_3 moves down, x_4 moves down at the same speed, and v decreases until it reaches a minimum when y_4 is the middle of the segment $[p_3, x_4]$. It then increases in a symmetric way as x_3 moves further down, until it reaches its initial value as $p_3 = y_4$. Along the way we always have $u \geq a_{12}$.
If, in this process, x'_3 has already reached m, then we are done. Otherwise, after $p_3 = y_4$ we have $d(x_3, p_3) \geq d(m, y_4) \geq a_{56}$. This proves the first part of Lemma 3.5.

Before applying (Skh0) we had $B(z) \geq b_{23} + b_{45} + b_{61}$. Indeed, y_2 and y_3 realize the smallest distance between a point in D_{12} and a point in D_{34}, and so on. Let us write (x_1, \ldots, x_6) the points after applying (Skh0), and (x'_1, \ldots, x'_6) the points after applying $(L_1 L_2 L_1)^2$. Concerning B, this last move does not affect $d(x_2, x_3)$ or $d(x_4, x_5)$; it changes only $d(x_6, x_1)$, by applying $r_{c_2} r_{c_1}$ to x_1. We have $d(x_6, y_6) \leq \frac{4a_{2}}{4}$, and $d(r_{c_1} r_{c_2}, y_2) \leq 4a_{12}$. So $d(x'_6, x'_1) \leq \frac{4a_{2}}{4} + 4a_{12} + d(r_{c_2} r_{c_1}, y_6)$. Also, $d(x'_2, x'_3) \leq b_{23} + \frac{a_{2}}{2} + a_{34}$ and $d(x'_4, x'_5) \leq b_{45} + a_{34} + \frac{a_{2}}{2}$, so $B(z') \leq d(r_{c_2} y_2, y_6) + 4A(z) + b_{23} + b_{45}$. Now, we obviously have $d(y_2, p_2) \geq b_{23}$, $d(p_2, y_6) \geq b_{45}$ and $\frac{\pi}{2} \geq \theta_2 \geq \theta_m$, with the notation of Figure 6 and θ_m can be forced to be as close to $\frac{\pi}{2}$ as we want provided $A(z)$ is small; this is made precise by Figure 7. For $i = 2, 6$ let $q_i \in [p_2, y_i]$ the point at distance $\delta = \min(1, b_{23}, b_{45})$ of p_2. Provided $\pi - 2\theta_2$ is smaller than the angle of an equilateral triangle of side 1 in \mathbb{H}^2, we have (eg, by CAT(0) inequality) $d(r_{c_2} q_2, y_6) \leq \delta$, hence $d(r_{c_2} y_2, y_6) \leq b_{61} - \delta$ by triangle inequalities; thus finally $B(z') \leq b_{23} + b_{45} + b_{61} + 4A(z) - \min(1, b_{23}, b_{45})$.

Proof of Lemma 3.7. If $A(z)$ is small, and, say, b_{23} is small, then after doing (Skh0), as of the construction of Section 2.2 $s_{x_3} s_{x_4} s_{x_5} s_{x_1}$ is a rotation of angle close to π, with center very close to the segment $[x_3, x_4]$. For some N, its Nth power has angle close to $\frac{\pi}{2}$ and $d((x_{x_3}, s_{x_3} s_{x_1}, x_{x_3}, x_4) \leq d(x_{3, x_4})$. Thus the operation (Skh2) does not increase A. Also, the lines (x'_1, x'_2) and (x'_5, x'_6) now cross each other (hence we end in case (TR1)), unless the distance $d(y_2, y_6)$ was very big. In that case, the distance between D_{12} and D_{34} decreases significantly by the operation (Skh2), and we see easily that $B(z') \leq B(z) - 1$ after doing (Skh0) once again; this inequality is actually extremely far from sharp.

3.3. Side remarks. We end this section with some remarks on which we chose not to expand too much the exposition in this article.

First, as we said in Paragraph 3.2.3 Theorem 1.1 is proved by iterating an explicit geometric procedure, by compass and straightedge construction. We cannot properly speak of an algorithm only because the data of six points in the plane is not a finite information in terms of a finite alphabet: it seems preferable to speak of a “geometric algorithm”, or “real number algorithm”. In [5] and [6], J. Gilman and B. Maskit gave such an algorithm to decide whether a given non-elementary representation of the free group of rank 2 in $PSL_2(\mathbb{R})$ is discrete. Using this, the “algorithm” given in the paragraph above decides whether a non-elementary representation of the group Γ_o is discrete. Indeed, it follows from Margulis’ lemma, and Theorem 1.1 that a representation in $\text{Hom}(\Gamma_o, PSL_2(\mathbb{R}))$ can be discrete only if it is pinched, in which case we can run the Gilman-Maskit algorithm on the two generators $s_{x_3} s_{x_1}$ and $s_{x_3} s_{x_1}$, which generate an index-two (or index-one, accidentally) subgroup of the image of our representation (the case of non-elementary representations of Γ_o which kill no c_i is easier: all of these representations are discrete). In this regard, we can certainly replace U by the set of non-discrete, non-elementary representations in the statement of Theorem 1.1. The following statement, more general and in the spirit of [15] seems reasonable:

Conjecture 3.7. For every non-elementary, non-discrete representation $\rho: \Gamma_o \to PSL_2(\mathbb{R})$, the orbit $B_o(S^2) \cdot [\rho]$ is dense in X_o.

If we replace $PSL_2(\mathbb{R})$ by $PSL_2(\mathbb{C})$, we have a natural identification between the space of non-elementary morphisms of Γ_o in $PSL_2(\mathbb{C})$ which kill no c_i, and all the non-elementary morphisms of Γ in $PSL_2(\mathbb{C})$ of Stiefel-Whitney class 0; this follows for instance from the arguments of [13], Section 3. These representations of Γ_o send each generator c_i to a rotation of angle π around some line in \mathbb{H}^3. The representations treated in this article correspond to six lines orthogonal
to a common plane. The representations in $X_0^-(\Gamma)$ correspond to configurations of six lines in a plane; the remaining real characters of representations in $SO(3)$ correspond to six lines through a common point. The quickest proof of the connectedness of $X_0^-\text{(}\Gamma\text{)}$, to our mind, is through this correspondence, by writing, in that setting, the analog of Lemma 2.3; this is all elementary and we leave the details to the reader. We can extend the methods of Theorem 1.1 to these representations in $X_0^-\text{(}\Gamma\text{)}$, leading to a much nicer proof of Theorem 1.4 of [13] in the case of Euler class 0; we chose not to elaborate on this point in this article. It seems more interesting, but also quite challenging, to find a subset of representations in $\text{PSL}_2(\mathbb{C})$, of positive measure, on which Theorem 1.1 could extend.

4. NEIGHBOURHOOD OF THE SINGULAR REPRESENTATION

We saw in Theorem 1.1 that the orbit of almost every representation in $X_0(\Gamma_o)$ accumulates to the singular representation. The classification of ergodic components of the character varieties therefore reduces to a careful study of a neighbourhood of the singular representation in $X_0(\Gamma_o)$. This neighbourhood turns out to have a very rich structure; we devote this section to studying it. This will provide all the material needed to prove the ergodicity statements in Section 5.

4.1. A Euclidean model. Suppose that $z^n = (x_1^n, \ldots, x_6^n)$ is a sequence of sextuples converging to the singular configuration. Then, up to extraction and renormalization by a scalar, one can suppose that the family z^n converges in Gromov-Hausdorff sense to a configuration (p_1, \ldots, p_6) in the Euclidean plane \mathcal{E}. Consider the set of all limiting configurations up to affine isometry respecting the orientation: the condition $s^n_1 \cdots s^n_6 = 1$ implies the same condition for the Euclidean π-rotations over the p_i's. This is equivalent to the condition $\sum (-1)^i p_i = 0$. Almost every Euclidean configuration is triangular, and these limits of hyperbolic configurations also have to satisfy an extra condition reminiscent from Remark 2.1. We leave it to the reader as a pleasant exercise in plane Euclidean geometry that this condition is equivalent to the equality between signed areas as appearing in the following definition:

$$X_\mathcal{E} = \{(p_1, \ldots, p_6) \in \mathcal{E}^6 / \sum (-1)^i p_i = 0, \text{Area}(p_1, p_2, p_3) + \text{Area}(p_4, p_5, p_6) = 0\} / \text{Isom}^+(\mathcal{E}).$$

This space is the quotient of a circle action inside some vector space V. More precisely, consider the space $V = \{v = (z_1, \ldots, z_6) \in \mathbb{C}^6 / \sum (-1)^i z_i = 0\} / \mathbb{C}$ where \mathbb{C} acts on \mathbb{C}^6 by diagonal translation, and define on V a Hermitian form h as follows:

$$h(v, v) = \text{Area}(z_1, z_2, z_3) + \text{Area}(z_4, z_5, z_6)$$

$$= \frac{1}{2} \det(z_2 - z_1, z_3 - z_1) + \frac{1}{2} \det(z_5 - z_4, z_6 - z_4)$$

$$= \frac{1}{2} \sum_{1 \leq i < j \leq 6} (-1)^{i+j+1} \det(z_i, z_j) = \frac{1}{2} \sum_{1 \leq i < j \leq 6} (-1)^{i+j} \text{Im}(z_i \overline{z_j})$$

$$= \frac{1}{4i} \sum_{i < j} (-1)^{i+j} (z_i \overline{z_j} - z_i z_j).$$

Also, put $q(v) = h(v, v)$ the underlying real quadratic form and set $C = q^{-1}(0)$. The subset of non-aligned sextuples in C will be denoted by C^\times. With this notation, $X_\mathcal{E} = C / S^1$ where S^1 acts diagonally on V. A simple computation shows that h has signature (2, 2) on V; in particular it is non-degenerate and its imaginary part gives a symplectic form on the real vector space V, such that q is a moment map for the diagonal action of S^1. This implies that $X_\mathcal{E}$ has a natural symplectic form, being a symplectic quotient; see [14], Section 5.1 for a reminder.
This symplectic structure has the property that the Hamiltonian flow of the length function
\(d(z_1, z_2) \) (for instance) is the transformation fixing \(z_3, z_4, z_5, z_6 \) and translating \(z_1 \) and \(z_2 \) along the line joining them. Moreover, the Hamiltonian flow of the function \(\text{Area}(z_1, z_2, z_3) \) is given by

\[
\Psi_t^{123}(z_1, \ldots, z_6) = (R_t z_1, R_t z_2, R_t z_3, R_t z_4, R_t z_5, R_t z_6)
\]

where \(R_t \) is the rotation around the point \(z_1 - z_2 + z_3 \) (see Section 2.2).

4.2. The Zariski tangent space.

From now on in this section, it will be more convenient to replace \(\text{PSL}_2(\mathbb{R}) \) by its isomorphic group \(\text{PU}(1, 1) = \left\{ \pm \begin{pmatrix} a & b \\ b & \bar{a} \end{pmatrix}, a, b \in \mathbb{C}, |a|^2 - |b|^2 = 1 \right\} \) acting by homographies on the unit disc. At a representation \(\rho \), the Zariski tangent space to \(\text{Hom}(\Gamma_o, \text{PU}(1, 1)) \) may be described as the space of paths \(\rho_t: \gamma \mapsto \exp(tu(\gamma))\rho(\gamma) \) which, at first order, keep being representations of \(\Gamma_o \). This condition amounts to the relation \(u(\gamma_1\gamma_2) = u(\gamma_1) + \text{Ad}_u(\gamma_1) \cdot u(\gamma_2) \) for all \(\gamma_1, \gamma_2 \) where we have set \(\text{Ad}_u(\gamma) \cdot \xi = \rho(\gamma)\xi\rho(\gamma)^{-1} \); the set of such maps \(u \) is the space \(Z^1(\Gamma_o, \text{Ad}_u) \) of cocycles in group cohomology with coefficients in \(\text{pu}(1, 1) \) twisted by the adjoint action of \(\rho \). Coboundaries, of the form \(\gamma \mapsto u_0 - \text{Ad}_u(\gamma)u_0 \), correspond to (actual) deformations of \(\rho \) by conjugation, and the Zariski tangent space to \(X(\Gamma_o) \) at a class \([\rho] \) is expected to be isomorphic to \(H^1(\Gamma_o, \text{Ad}_u) \), see eg [14]. This isomorphism holds at non-elementary representations, by Proposition 5.2 of [10]. In particular, if we denote by the same letter \(\rho \) a representation of \(\Gamma_o \) and the corresponding representation of \(\Gamma \), then Proposition 2.1 implies that \(H^1(\Gamma_o, \text{Ad}_u) \simeq H^1(\Gamma, \text{Ad}_u) \) at every non-elementary representation.

At singular representations it may happen however that the Zariski tangent is not isomorphic to this cohomology group. We do not investigate this question here, as we are not concerned with the algebraic structure of \(X(\Gamma_o) \).

At the singular representation, this cohomology group has a simpler description as we explain here. Define \(\rho_0: \Gamma_o \to \text{PU}(1, 1) \) by \(\rho(c_i) = s_0 = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \), the half-turn around 0, for

\[
i = 1, \ldots, 6.
\]

In the natural decomposition \(\text{pu}(1, 1) = \left\{ \begin{pmatrix} i & \ast \\ \ast & -i \end{pmatrix}, x \in \mathbb{R}, z \in \mathbb{C} \right\} \simeq \mathbb{R} \oplus \mathbb{C}, \) the element \(\text{Ad}(s_0) \) acts trivially on \(\mathbb{R} \) and by multiplication by \(-1 \) on \(\mathbb{C} \), so the cocycle condition implies (with \(\gamma_1 = \gamma_2 = c_i \) for all \(i \)) that every cocycle has a trivial \(\mathbb{R} \)-part, and (with six terms) that \(\sum_i (-1)^i u(c_i) = 0 \), whereas a coboundary sends each \(c_i \) to the same complex number \(2u_0 \); this gives the natural identification \(V \simeq H^1(\Gamma_o, \text{Ad}_u) \simeq H^1(\Gamma_o, \epsilon) \) where by \(\epsilon \) we mean \(\mathbb{C} \)-coefficients twisted by the action \(\epsilon(c_i)z = -z \) for \(i = 1, \ldots, 6 \). This is consistent in idea with the beginning of Paragraph [4.1]. Indeed, the matrix

\[
\begin{pmatrix} 0 & z \\ z & 0 \end{pmatrix}
\]

acts on the disc by a half-turn around the point \(\tanh(\frac{z}{2})e^{i\theta} \). Thus, if \(u \) is an element of \(H^1(\Gamma_o, \epsilon) \), the associated deformation \(\rho_t \) maps, at first order, \(c_i \) to the half-turn around \(\frac{i}{2}u(c_i) \).

Now the inclusion map \(\Gamma \to \Gamma_o \) yields a map \(Z^1(\Gamma_o, \epsilon) \to Z^1(\Gamma, \mathbb{C}) \) where the \(\mathbb{C} \)-coefficients are not twisted any more since \(\Gamma = \ker(\epsilon) \). By checking on a basis, we will prove that this map induces an isomorphism as follows.

Proposition 4.1. There is a natural isomorphism between \(V \) and the cohomology space \(H^1(\Sigma, \mathbb{C}) \) such that the Hermitian form \(h \) corresponds to the form \(\frac{1}{i0} \cdot \overline{\cdot} \) where \(\cdot \) denotes the cup product evaluated at the fundamental class.

Proof. Let \(\gamma_1, \ldots, \gamma_6 \) be as in Figure 8 and let \(\gamma_i^2 \in H^1(\Sigma, \mathbb{C}) \) be the Poincaré duals of the corresponding cycles. From the signed intersections of the \(\gamma_i \), we can read \(\gamma_i^2 \cdot \gamma_{i+1}^2 = -1, \gamma_i^2 \cdot \gamma_{i-1}^2 = 1 \) for all \(i \) (with cyclic notation), and \(\gamma_i^2 \cdot \gamma_j^2 = 0 \) if \(j \notin \{i - 1, i + 1\} \mod 6 \). By
definition γ^i_j is the morphism mapping γ_j to $\gamma^5_j \cdot \gamma^i_j$; it is the image of the cocycle in $Z^1(\Gamma_0, \epsilon)$ mapping c_i and c_{i+1} to 1 and c_j to 0 for $j \neq i, i+1$. As the oriented curves γ_1, γ_3 and γ_5 (resp. γ_2, γ_4 and γ_6) bound a subsurface, we have $\gamma^2_1 + \gamma^3_1 + \gamma^5_1 = 0$ and $\gamma^2_2 + \gamma^3_2 + \gamma^5_2 = 0$; these identities yield the kernel of the surjective morphism $f_1: \mathbb{C}^6 \to H^1(\Sigma, \mathbb{C})$ defined by $f_1(\lambda_1, \ldots, \lambda_6) = \sum_i \lambda_i \gamma^i_j$. The map $f_2: \mathbb{C}^6 \to V$ defined by $f_2(\lambda_1, \ldots, \lambda_6) = [(\lambda_1 + \lambda_2, \lambda_2 + \lambda_3, \ldots, \lambda_6 + \lambda_1)]$ obviously vanishes on ker f_1, hence ker $f_1 = \ker f_2$, so f_1 and f_2 induce an isomorphism $V \simeq H^1(\Sigma, \mathbb{C})$.

Straightforward computation gives, for $\lambda = (\lambda_1, \ldots, \lambda_6)$, that $f_1(\lambda) \cdot f_1(\overline{\lambda}) = -2i \sum \text{Im} \lambda_i \overline{\lambda}_{i+1}$ and $q(f_2(\lambda)) = -\frac{1}{2} \sum \text{Im} \lambda_i \overline{\lambda}_{i+1}$, so the two Hermitian forms coincide. \hfill \square

Remark 4.1. - Viewed as a subgroup of Aut(Γ_0) as we presented it in Section 2.1, our leapfrog group has an obvious action on V. However, viewed as $B_6(S^2) \simeq \text{Mod}(\Sigma)/[\varphi]$, it acts on $X_0(\Gamma_0)$ but not on the Zariski tangent space at $[\rho_0]$, as the hyperelliptic involution acts by -1; this is an interesting subtlety.

- Let $\xi \in H^1(\Gamma_0, \text{Ad}_{\rho_0})$ represent a tangent vector in V. The cup-bracket $[\xi \wedge \xi] \in H^2(\Gamma_0, \text{Ad}_{\rho_0}) = H^0(\Gamma_0, \text{Ad}_{\rho_0})^* = H^0(\Gamma_0, \mathbb{R})^* = \mathbb{R}$ is an obstruction to ξ being the tangent vector of a deformation of the singular representation. This is a very natural description of the quadratic form q which will not be used in this article.

For the simplicity of the exposition, let us explicit the symplectic form mentioned above. At a point $v \neq 0$ in C, the tangent space to C is $\{w \in V \mid \text{Re} h(v, w) = 0\}$, so in X_E, the tangent space at $[v] = S^1v$ is the quotient $T_{[v]}X_E = \{w \in V \mid \text{Re} h(v, w) = 0\}/\mathbb{R}iv$; now if $[w_1], [w_2] \in T_{[v]}X_E$ the formula $\text{Im} h(w_1, w_2)$ is well-defined. In terms of the identification above with $H^1(\Gamma_0, \text{Ad}_{\rho_0})$, the vector $w_i = (\lambda^i_1, \ldots, \lambda^i_6)$ corresponds to the map $\zeta_i: \Gamma \to \text{pu}(1, 1)$, $\gamma_j \mapsto \left(\begin{array}{cc} \lambda^i_j & 0 \\ \overline{\lambda^i_j} & 0 \end{array} \right)$. Now the cup-product of ζ_1 and ζ_2 composed with the Killing form can be computed with the formula $\text{Tr} \left(\begin{array}{cc} 0 & z \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & w \\ \overline{w} & 0 \end{array} \right) = 2 \text{Re} zw$, giving $\text{Tr}(\zeta_1 \cdot \zeta_2) = -8 \text{Im} h(w_1, w_2)$.

4.3. The Morse Lemma. In this section, we prove that there is a neighbourhood of $[z_0]$ in X_0 which is homeomorphic to X_E and diffeomorphic out of the singular configuration. In the identification $V = H^1(\Sigma, \mathbb{C}) = \text{Hom}(H^1(\Sigma, \mathbb{R}), \mathbb{C})$, the subspace C^∞ corresponds to surjective maps $u : H^1(\Sigma, \mathbb{R}) \to \mathbb{C}$. We have the following proposition.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{hourglass_representations}
\caption{Cycles on the sphere and their lifts}
\end{figure}
Proposition 4.2. There exist neighbourhoods U of 0 in C, and W of ρ_0 in Hom$(\Gamma_o, PU(1, 1))$ which are S^1-invariant, and an S^1-equivariant homeomorphism $f : U \to W$ which

1. is a diffeomorphism on $U \setminus \{0\}$ to $W \setminus \{\rho_0\}$,
2. induces a diffeomorphism between $(U \setminus \{0\})/S^1$ and $(W \setminus \{\rho_0\})/S^1$,
3. maps bijectively $C^\times \cup U$ to Hom$(\Gamma_o, PU(1, 1)) \cap W$.

Proof. In this proof, we denote $s_0 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ and for any $z_1, \ldots, z_6 \in \mathbb{C}$ we set $\xi_j = \begin{pmatrix} 0 & z_j \\ z_j & 0 \end{pmatrix}$.

We will look for a representation $\rho \in$ Hom$(\Gamma_o, PU(1, 1))$ such that $\rho(e_j) \neq \pm \exp(\xi_j)s_0$. For that reason, we define in a neighbourhood of 0 a map $F : \mathbb{C}^6 \to \mathbb{C}$ and a map $\varphi : \mathbb{C}^6 \to \mathbb{R}$ by the formula

$$\exp(\xi_6)s_0 \cdots \exp(\xi_1)s_0 = -\exp\begin{pmatrix} i\varphi & F \\ T & -i\varphi \end{pmatrix}.$$

We observe that conjugating the equation by the matrix $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ changes z_j to $e^{2i\theta}z_j$, F to $e^{2i\theta}F$ and does not change φ. Hence the map φ is S^1-invariant and the map F is S^1-equivariant.

We have $-\exp(\xi_6) \cdots s_0 \exp(\xi_1)s_0 = \exp(\xi_6) \exp(-\xi_5) \exp(\xi_4) \exp(-\xi_3) \exp(\xi_2) \exp(-\xi_1)$ and its logarithm is $\sum_i(-1)^i\xi_i + \frac{1}{2}\sum_{j>i}(-1)^j\xi_j, (-1)^i\xi_i$ up to order 2 terms thanks to the Baker-Campbell-Hausdorff formula. Hence, the Taylor expansion gives $F(z_1, \ldots, z_6) = \sum_{i=1}^6(-1)^i z_i + o(|z|)$ and $\varphi(z_1, \ldots, z_6) = -2q(z) + o(|z|^2)$.

Consider the map $H : \mathbb{C}^6 \to \mathbb{C}^6$ given by $H(z_1, \ldots, z_6) = (z_1, \ldots, z_5, F(z_1, \ldots, z_6))$. By the inverse function theorem, this is a local diffeomorphism. We observe that by construction, the map F is S^1-equivariant, hence the map H and its inverse are also S^1-equivariant. For small enough w's, write $\psi(w_2, \ldots, w_5) = \varphi(H^{-1}(0, w_2, w_3, w_4, w_5, 0))$. The S^1-invariant function $\psi : \mathbb{C}^4 \to \mathbb{R}$ has a non-degenerate Hessian at 0 and vanish identically if the w_j's are real. We conclude by applying the Morse Lemma [13]. Indeed, if we denote by Φ the diffeomorphism provided by the lemma, we simply set $f(w_2, w_3, w_4, w_5) = H^{-1}(0, x_2, x_3, x_4, x_5, 0)$ where $(x_2, x_3, x_4, x_5) = \Phi(w_2, w_3, w_4, w_5)$.

The sextuples $(z_1, \ldots, z_6) \in \mathbb{R}^6$ correspond to linear maps $v : H_1(\Sigma, \mathbb{R}) \to \mathbb{C}$ with values in \mathbb{R}. Hence, the S^1-orbit of real configurations correspond precisely to linear maps of rank 0 or 1 and the diffeomorphism f preserve aligned configurations as expected. \square

Observe that in the above computation, q appears as a second order obstruction for a cocycle from being realized by deformations of representations; this is yet another language for understanding this quadratic form.

Lemma 4.3 (Equivariant Morse Lemma). Let $\varphi : \mathbb{C}^n \to \mathbb{R}$ be a smooth S^1-invariant function, vanishing on \mathbb{R}^n and such that $\varphi(z) = Q(z) + o(|z|^2)$ for a non-degenerate Hermitian form Q. Then there exist S^1-invariant neighbourhoods U and V of 0 in \mathbb{C}^n and an S^1-equivariant diffeomorphism $\Phi : U \to V$ such that

- $D_0\Phi$ is the identity,
- Φ preserves \mathbb{R}^n,
- $\varphi \circ \Phi(z) = Q(z)$ for $z \in U$.

Proof. This is a variation of the standard Morse Lemma with the same proof, using Moser’s trick, see [12], Theorem 3.44. It is sufficient to check that the solution provided by the proof has the properties required by the lemma. \square

We observe that the space $X^\times(\Gamma_o)$ as a subspace of $X(\Sigma)$ is endowed with the Atiyah-Bott symplectic structure denoted by ω_{AB}. On the other hand, we explained that X_ξ is also symplectic
with a symplectic structure denoted by ω. We do not know whether one can make the local diffeomorphism f symplectic but we will at least need the following weaker statement:

Lemma 4.4. The map f constructed in Proposition [4.2] is a symplectomorphism at first order by which we mean that the following holds:

$$(f^*\omega_{AB})_v = -8\omega + o(v).$$

Proof. Following Goldman (see [7]), the Atiyah-Bott structure at $[\rho] \in X^*(\Sigma)$ is induced by the cup-product on $H^1(\Sigma, \text{Ad}_\rho)$ followed by the trace. The claimed approximation follows from Proposition 4.2 and the computation ending Subsection 4.2. □

4.4. The Grassmannian of Lagrangians. There is yet another description of the space X^*_L of non-aligned Euclidean configurations which will be crucial in the last step of the proof of Theorem 1.2. It uses the Grassmannian of Lagrangians in $H_1(\Sigma, \mathbb{R})$ denoted by \mathcal{L}. It is a 3-dimensional manifold and the tangent space at $L \subset H_1(\Sigma, \mathbb{R})$ is canonically isomorphic to the space of quadratic forms on L. Indeed, the tangent space at L to the Grassmannian of 2-planes is canonically isomorphic to the space $\text{Hom}(L, H_1(\Sigma, \mathbb{R})/L) \simeq \text{Hom}(L, L^*)$, where we identify $H_1(\Sigma, \mathbb{R})/L$ with L^* by the symplectic pairing, and the Lagrangian condition amounts to the symmetry of the corresponding bilinear maps. Dually, the cotangent space of \mathcal{L} at L is isomorphic to the space of quadratic forms on the dual space L^*. We denote by $T^*_L \mathcal{L} \subset T^* \mathcal{L}$ the set of pairs (L, α) where α is a positive definite quadratic form on L^*.

Proposition 4.5. There is a diffeomorphism $\Lambda : X^*_L \to T^*_L \mathcal{L}$ which is equivariant with respect to the action of $\text{Sp}(H_1(\Sigma, \mathbb{R}))$.

Proof. Recall that an element of X^*_L is the S^1-orbit of a surjective linear map $u : H_1(\Sigma, \mathbb{R}) \to \mathbb{C}$ satisfying $q(u) = 0$. Set $L = \ker u$ and show that $q(u) = 0$ if and only if L is Lagrangian.

The quantity $q(u)$ is computed from any symplectic basis a_1, b_1, a_2, b_2 of $H_1(\Sigma, \mathbb{R})$ by the formula $q(u) = \frac{1}{2} \text{Im}(u(a_1)u(b_1) + u(a_2)u(b_2))$. If L is Lagrangian, we can ensure that a_1, a_2 form a basis of L and hence $u(a_1) = u(a_2) = 0$ and $q(u) = 0$. If L is not Lagrangian, it is symplectic and we can form a basis of L with a_1 and b_1, which implies that $u(a_2)$ and $u(b_2)$ are linearly independent and hence $q(u) \neq 0$.

Hence, given $u : H_1(\Sigma, \mathbb{R}) \to \mathbb{C}$ with $q(u) = 0$ and L its (Lagrangian) kernel, the expression $\alpha(x) = |u(x)|^2$ is a positive definite quadratic form on $H_1(\Sigma, \mathbb{R})/L \simeq L^*$, hence α belongs to $T^*_L \mathcal{L}$ and does not change if we multiply u by a phase. This construction can be easily reversed and is symplectically invariant hence the map $\Lambda : u \mapsto (L, \alpha)$ has the required properties. □

Lemma 4.6. The map Λ is a symplectomorphism up to a constant.

Proof. Let (L, g) be any point in $T^*_L \mathcal{L}$, one can find a symplectic basis such that $L = \text{Span}(a_1, a_2)$ and a_1^*, a_2^* is an orthonormal basis of L^* with respect to g. The map $u = \Lambda^{-1}(L, g)$ is given by $u(a_1) = u(a_2) = 0, u(b_1) = 1, u(b_2) = i$. There is a local coordinate system $(p_i, q_i)_{i=1,2,3}$ on $T^* \mathcal{L}$ given by setting $L_p = \mathbb{R}e_1 \oplus \mathbb{R}e_2$ where $e_1 = (1, 0, p_1, p_2), e_2 = (0, 1, p_2, p_3)$ and g_q has the matrix \begin{pmatrix} q_1 & q_2 \\ q_2 & q_3 \end{pmatrix} in the basis e_1^*, e_2^*. In that coordinate system, the symplectic form reads

$$\omega_{\mathcal{L}} = \text{Tr} dg_{p} \wedge dg_{q} = dp_1 \wedge dq_1 + 2dp_2 \wedge dq_2 + dp_3 \wedge dq_3.$$

The map $u_{p,q} = \Lambda^{-1}(L_p, g_q)$ is defined by sending e_1 and e_2 to 0 and e_3, e_4 to any basis v_1^q, v_2^q of \mathbb{R}^2 whose Gram matrix is g_q. Explicitly one has

$$u_{p,q}(a_1) = -p_1 v_1^q - p_2 v_2^q, u_{p,q}(a_2) = -p_2 v_1^q - p_3 v_2^q, u_{p,q}(b_1) = v_1^q, u_{p,q}(b_2) = v_2^q.$$
Writing as a vector the values taken on the symplectic basis we get at \((0,0,1,0,1)\) the following derivatives:

\[
\frac{\partial \Lambda^{-1}}{\partial p_1} = (-1, 0, 0, 0), \quad \frac{\partial \Lambda^{-1}}{\partial p_2} = (-i, -1, 0, 0), \quad \frac{\partial \Lambda^{-1}}{\partial p_3} = (0, -i, 0, 0).
\]

Using the formulas \(\frac{\partial v}{\partial q_1} = \frac{1}{2}, \frac{\partial v}{\partial q_2} = \frac{1}{2}, \frac{\partial v}{\partial q_3} = 0\) and \(\frac{\partial w}{\partial q_1} = 0, \frac{\partial w}{\partial q_2} = 1, \frac{\partial w}{\partial q_3} = \frac{i}{2}\) we get

\[
\frac{\partial \Lambda^{-1}}{\partial q_1} = (0, 0, 0, 1), \quad \frac{\partial \Lambda^{-1}}{\partial q_2} = (0, 0, 0, -1), \quad \frac{\partial \Lambda^{-1}}{\partial q_3} = (0, 0, 0, i/2).
\]

On the other hand, the symplectic structure on \(V\) reads

\[
\omega_V(v, w) = -(v(a_1), w(b_1)) + (w(a_1), v(b_1)) - (v(a_2), w(b_2)) + (w(a_2), v(b_2)).
\]

By checking in the basis, we find \(\Lambda^* \omega_V = \frac{1}{2} \omega_L\) as asserted. \(\square\)

4.5. Topology of hourglasses.

Proposition 4.7. The space \(X_0^*\) is homeomorphic to \(X_E\). The homeomorphism maps the configuration \([\rho_0]\) to 0, and \(C^\times/S^1\) to \(X_0^\times\). In particular we have:

- \(X_0^*\) is connected, simply connected and satisfies \(\pi_2(X_0^*) = \mathbb{Z}\).
- \(X_0^\times\) is homotopically equivalent to \(L\). Hence it is connected and satisfies \(\pi_1(X_0^\times) = \pi_2(X_0^\times) = \mathbb{Z}\).

Proof. By Proposition 4.2 a punctured neighbourhood of \(\rho_0\) is diffeomorphic to \(X_E^*\). As we saw in Section 3.1 \(X_0^*\) is diffeomorphic to the set \(f^{-1}(1, 1 + \varepsilon)\) for any \(\varepsilon\) and the result follows.

The Hermitian form \(h\) has signature \((2,2)\) hence in some coordinates one has \(q(z_1, w_1, z_2, w_2) = |z_1|^2 + |z_2|^2 - |w_1|^2 - |w_2|^2\). Normalizing the non-zero vectors \((z_1, z_2)\) and \((w_1, w_2)\) we get the homeomorphism \(C^* \cong S^3 \times S^3 \times \mathbb{R}\) and hence the homotopy equivalence \(X_0^* \cong S^3 \times S^3 / S^1\). The long exact sequence of the fibration \(S^3 \times S^3 \to (S^3 \times S^3) / S^1\) gives the fundamental groups of \(X_0^*\) claimed in the proposition.

Using the canonical Riemannian metric on \(X_0^*\), the gradient flow of \(f\) preserves the set of sextuples which are on the same line. Hence the same argument as above works for the space \(X_0^\times\) which is homeomorphic to \(C^\times / S^1\). This latter space is homeomorphic to \(T^4_L\) which is a fiber bundle over \(L\) with convex fiber. Finally we have the homotopy equivalence \(X_0^\times \simeq \mathcal{L}\).

Considering the two-fold covering of \(\mathcal{L}\) consisting of oriented Lagrangians in \(H_1(\Sigma, \mathbb{R})\), we get a space \(\hat{\mathcal{L}} = U(2) / SO_2\), see [14], Section 2.3. The exact sequence of this fibration gives \(\pi_1(\hat{\mathcal{L}}) \simeq \pi_2(\hat{\mathcal{L}}) \simeq \mathbb{Z}\) and the same is true for \(\mathcal{L}\). \(\square\)

5. Dynamics

5.1. The strategy. As in all proofs of ergodicity of mapping group actions on representation spaces, we will use the periodicity properties of Goldman twist flows. These flows are particularly simple to describe in the framework of sextuples. Let \(z = (x_1, \ldots, x_6) \in Sx_0\) be a sextuple and suppose that \(s_3s_2s_1\) is an elliptic element, that is a rotation over a point \(y\). Denote by \(R_t\) the rotation of angle \(t\) over \(y\) and pick \(\theta\) such that \(s_3s_2s_1 = R_\theta\). Then the formula

\[
\Phi_{123}^t z = (R_t x_1, R_t x_2, R_t x_3, x_4, x_5, x_6)
\]

defines a \(2\pi\)-periodic flow on \(X_0\) such that \(\Phi_{123}^t\) is the half-twist around the first three points. A \(\text{Mod}(S_b)\)-invariant function on \(X_0\) is almost everywhere constant along the flow as the angle \(\theta\) is almost everywhere irrational. However this argument works only when \(s_3s_2s_1\) is elliptic.

All such flows are indexed by partition curves, that is simple curves \(\gamma\) in \(S_b\), the sphere minus the six marked points, which divide the set of points into two subsets of cardinality 3. Indeed,
for any $[\rho] \in X_0(\Gamma_o)$ we set $\Theta_\gamma([\rho]) \in \mathbb{R}/2\pi\mathbb{Z}$ to be the rotation number of $\rho(\gamma)$ (that is its angle if it is a rotation and 0 otherwise). Where Θ_γ is smooth, we define X_γ to be the symplectic gradient of Θ_γ and extend it by 0 where it is not defined. We denote by Φ^t_γ the flow of X_γ. This definition is coherent in the sense that $\Phi_{123} = \Phi_t$ for a standard partition curve enclosing the 3 first points.

Remark 5.1. Let $\tilde{\gamma}$ be the preimage of γ in the surface Σ: then Φ^t_γ is the Goldman flow on $X(\Sigma)$ associated to the separating curve $\tilde{\gamma}$ provided that $\rho(\tilde{\gamma})$ is elliptic.

Definition 5.1. For any $z \in X_0$ we set

$$D_z = \text{Span}\{X_\gamma(z), \gamma \text{ partition curve}\} \subset T_zX_0.$$

The aim of this section is to prove the following proposition:

Proposition 5.1. The distribution D is completely non-integrable on the subset $U \subset X_0$ of non-pinched configurations.

By construction, the distribution is $\text{Mod}(\Gamma_o)$-invariant, and by Theorem 1.1 the $\text{Mod}(\Gamma_o)$-orbit of any point in U is adherent to the singular representation $[\rho_0]$. Hence it is sufficient to prove Proposition 5.1 by replacing U with any neighbourhood of $[\rho_0]$. This will be a significant simplification for two reasons:

1. For any partition curve γ, $\rho(\gamma)$ is elliptic for ρ close enough to ρ_0, hence the vector fields X_γ will not vanish close to the singular representation.

2. Being completely non-integrable is an open condition, hence, we can replace the functions Θ_γ by their Taylor expansion around $[\rho_0]$ and reduce the problem to (symplectic) linear algebra.

The proof of Proposition 5.1 is decomposed into two subsections: in Subsection 5.2 we compute the Taylor expansion of the trace function associated to a partition curve and in Subsection 5.3 we show that the derivatives of these trace functions generate the cotangent space around $[\rho_0]$.

To conclude this subsection, we recall the argument showing that Proposition 5.1 implies the ergodicity of $\text{Mod}(\Gamma_o)$ on X_0. Let $f: X_0 \to \mathbb{R}$ be a measurable invariant function. Using standard ergodicity arguments (see Proposition 5.4 in [9]), for any partition curve γ, there is a measure 0 subset $N_\gamma \subset X_0 \times \mathbb{R}$ such that $f(\Phi^t_\gamma(z)) = f(z)$ for all $(z, t) \notin N_\gamma$. Using Fubini theorem and the fact that the flows preserve nullsets, for any partition curves $\gamma_1, \ldots, \gamma_n$, we will have $f \circ \Phi^t_{\gamma_1} \circ \cdots \circ \Phi^t_{\gamma_n}(z) = f(z)$ for almost all $(z, t_1, \ldots, t_n) \in X_0 \times \mathbb{R}^n$.

Using cutoff functions one can smoothen the vector fields X_γ without changing the distribution D - hence we suppose that the vector fields are smooth from now. Let $z \in X_0$ be a point in U. By the orbit theorem (see [11], Theorem 1 p.33), the orbit N of z through the action of the flows of X_γ is a submanifold. By Proposition 5.1 the vector fields X_γ and their brackets evaluated at z generate T_zX_0. Hence N is an open subset of X_0. Moreover the proof of the orbit theorem in [11] shows that for any $z' \in N$ there exist $n \in \mathbb{N}$, curves $\gamma_1, \ldots, \gamma_n$ and $(t^0_1, \ldots, t^0_n) \in \mathbb{R}^n$ such that the map $F: \mathbb{R}^n \to N$ defined by

$$F(t_1, \ldots, t_n) = \Phi^1_{\gamma_1} \circ \cdots \circ \Phi^t_{\gamma_n}(z)$$

satisfies $F(t^0_1, \ldots, t^0_n) = z'$ and rank $DF(t^0_1, \ldots, t^0_n) = \dim N = 6$. From the fact that f is almost constant in the image of F, we get that f is almost everywhere constant in a neighborhood of z', hence in N, a neighborhood of z.

By Proposition 5.1 this argument works for any point in the connected set U which has full measure, showing that f is almost everywhere constant.
Remark 5.2. In the spirit of Section 3 we can imagine a proof by hand of the transitivity of the flows Φ_{γ}. This proof of Theorem 4.2 would be slightly more direct but less informative about the structure of these hourglass representations, and we chose not to develop it here.

5.2. Taylor expansion of trace functions. The set
\[\text{Sex} = \{ \rho : \pi_1(S_p) \rightarrow \SL_2(\mathbb{R}) \text{ such that } \Tr \rho(c_i) = 0 \text{ for } i = 1, \ldots, 6 \} \]
yields a regular covering of X_0, which is contractible as we proved in Section 3.1. Thus, we may choose once for all a lift $\tilde{\rho}_0$ of the singular representation, and lift every representation ρ accordingly. With this setting, for any partition curve γ, we set $F_\gamma(\rho) = \Tr \tilde{\rho}(\gamma)$. This is a continuous function on X_0, smooth on X_0^\times and which vanishes at $[\rho_0]$. Our purpose is to compute its Taylor expansion at $[\rho_0]$.

Proposition 5.2. For any partition curve $\gamma \subset S_p$, let $\tilde{\gamma} \subset \Sigma$ be its (separating) pre-image in Σ. Then Σ can be written as $\Sigma' \cup \Sigma''$. Write $\xi \in C$ as $\xi = \xi' + \xi''$ using the decomposition $H^1(\Sigma, \mathbb{C}) = H^1(\Sigma', \mathbb{C}) \oplus H^1(\Sigma'', \mathbb{C})$ and set $q_\gamma(\xi) = q(\xi')$, then in the chart given by Proposition 4.2 we have
\[F_\gamma(\xi) = \pm 8q_\gamma(\xi) + o(|\xi|^2). \]

Proof. Remark that as ξ is in C, we have $q(\xi) = q(\xi'') + q(\xi'') = 0$, hence we can replace ξ' with ξ'' in this formula. Up to the action of $\text{Mod}(\Sigma)$ we can suppose that $\gamma = c_1c_2c_3$. The same direct computation as in the proof of Proposition 4.2 then gives
\[
\Tr \tilde{\rho}(c_1)\tilde{\rho}(c_2)\tilde{\rho}(c_3) = \pm \Tr(e^{\xi_1}e^{-\xi_2}e^{\xi_3}s_0) = \pm \frac{1}{2} \Tr s_0([\xi_1, \xi_3] - [\xi_1, \xi_2] - [\xi_2, \xi_3]) + o(|\xi|^2)
\]
\[
= \pm \sum_{1 \leq j < k \leq 3} (-1)^{j+k}(z_jz_k - z_kz_j) + o(|\xi|^2) = \pm 8q(z_1, z_2, z_3, 0, 0, 0) + o(|\xi|^2),
\]
with the same notation. \qed

The computation here relates the splitting of q into two terms with the orthogonal decomposition of the cohomology space. We already saw this splitting in the first definition of X_ξ where the quadratic constraint appeared as a sum of two areas.

5.3. Generating the cotangent space. Let us go back to the proof of Proposition 5.1. We recall that it amounts to proving that the Hamiltonian vector fields X_γ of the functions F_γ generate a completely non-integrable distribution close enough to the singular configuration. Using Proposition 5.2 and the fact that being completely non-integrable is an open condition, it reduces to proving the following proposition:

Proposition 5.3. For any partition curve γ, let Y_γ be the Hamiltonian vector field of the function q_γ. For any $z \in X_\xi^\times$, set
\[E_z = \text{Span}\{Y_\gamma(z), \gamma \text{ partition curve}\} \subset T_zX_\xi^\times. \]
Then, E is a completely non-integrable distribution on X_ξ^\times.

Proof. First, we recall that through the symplectic isomorphism $TX_\xi^\times \simeq T^*X_\xi^\times$, the vector field Y_γ corresponds to the covector dq_γ. Hence, the symplectic orthogonal E^ω to the distribution E has the following description:
\[E^\omega_z = \{ w \in T_zX_\xi^\times, D_zq_\gamma(w) = 0, \forall \gamma \text{ partition curve in } S_p \}. \]

We will use the model $X_\xi = C^\times/S^1$ where C^\times is the set of surjective maps $v : H_1(\Sigma, \mathbb{R}) \rightarrow \mathbb{C}$ such that $q(v) = h(v, v) = 0$, with $h(v, w) = -\frac{1}{4}v \cdot \overline{w}$. Recall that a vector w is tangent to C at $v \neq 0$ if $\text{Re} h(v, w) = 0$.
Lemma 5.4. Let \(v \in C^x \) and let \(w \in V \) be tangent to \(C \) at \(v \) and satisfy \(Dq_\gamma(v)(w) = 0 \) for any partition curve \(\gamma \). Then \(v \) and \(w \), as linear maps from \(H_1(\Sigma, \mathbb{R}) \) to \(\mathbb{R}^2 \), satisfy the following equation:

\[
\forall x, y \in H_1(\Sigma, \mathbb{R}), \quad \det (v(x), w(y)) = \det (v(y), w(x)).
\]

Proof. First, observe that for any symplectic basis \(a_1, b_1, a_2, b_2 \) of \(H_1(\Sigma, \mathbb{R}) \) we have

\[
-4 \Re h(v, w) = \det (v(a_1), w(b_1)) - \det (v(b_1), w(a_1)) + \det (v(a_2), w(b_2)) - \det (v(b_2), w(a_2)).
\]

Now, for any partition curve \(\gamma \), let \(p_\gamma \in \text{End}(H^1(\Sigma, \mathbb{C})) \) be the \((h\text{-orthogonal}) \) projection on \(H^1(\Sigma', \mathbb{C}) \) parallel to \(H^1(\Sigma'', \mathbb{C}) \); note that \(\Re h(p_\gamma(\cdot), \cdot) \) is a symmetric bilinear form, associated to \(q_\gamma \). Hence the condition \(Dq_\gamma(v)(w) \) is equivalent to \(\Re h(p_\gamma(v), w) = 0 \). If we choose \(x = a_1 \) and \(y = b_1 \) this condition is equivalent to Equation (4).

The same holds if we replace \((x, y)\) with its image by any transformation in \(\text{Sp}(4, \mathbb{Z}) \). So the map \(\text{Sp}(4, \mathbb{R}) \to \mathbb{R} \) sending \(g \) to \(\det(v(gx), w(gy)) - \det(v(gy), w(gx)) \) vanishes on \(\text{Sp}(4, \mathbb{Z}) \). By the Zariski-density of \(\text{Sp}(4, \mathbb{Z}) \) in \(\text{Sp}(4, \mathbb{R}) \), this forces Equation (4) to hold for any \(x, y \in H_1(\Sigma, \mathbb{R}) \) such that \(x \cdot y = 1 \). By scaling \(x \) or \(y \), this holds finally for any \(x \) and \(y \) and the lemma is proved. \(\square \)

Fix \(v : H_1(\Sigma, \mathbb{R}) \to \mathbb{C} \) surjective and satisfying \(q(v) = 0 \). Recall from Subsection 4.4 that its kernel \(L \) has to be Lagrangian. Let \(w \) be in \(E_v^\omega \): Lemma 5.4 implies that \(w \) vanishes on \(L \). Hence, \(f = w \circ v^{-1} \) is a well defined endomorphism of \(\mathbb{R}^2 \) and writing \(x = v^{-1}(x') \) and \(y = v^{-1}(y') \) we get

\[
\det(f(x'), y') + \det(x', f(y')) = 0.
\]

Hence, \(f \) preserves infinitesimally the form \(\det \), or equivalently has vanishing trace. On the other hand, the equation \(\Re h(v, w) = 0 \) is automatically satisfied in the preceding conditions. To sum up we have shown that the orthogonal distribution \(E_v^\omega \) is the following 2-dimensional space:

\[
E_v^\omega = \{ w \in \text{Hom}(H_1(\Sigma, \mathbb{R}), \mathbb{C}), w|_{\ker v} = 0, \text{Tr}(w \circ v^{-1}) = 0 \}/\mathbb{R}i v.
\]

If \(u \in \text{Hom}(H_1(\Sigma, \mathbb{R}), \mathbb{C}) \) satisfies \(u|_L = 0 \) then \(\Re h(u, v) = 0 \). All such maps form a Lagrangian containing \(E_v^\omega \). It follows that \(E_v \) contains this 3-dimensional space. This implies that one can express that \(u \) belongs to \(E_v \) by looking at the restriction of \(u \) to \(L \).

Let us show that one has the following description:

\[
E_v = \{ u \in \text{Hom}(H_1(\Sigma, \mathbb{R}), \mathbb{C}) \text{ s.t. } \exists \lambda \in \mathbb{R}, u|_L = \lambda (v^*)^{-1} \}.
\]

In this formula, we see \(v \) as a map \(H_1(\Sigma, \mathbb{R})/L \to \mathbb{C} \) and identify \(H_1(\Sigma, \mathbb{R})/L \) with \(L^* \) via the intersection form. Consider an adapted symplectic basis \(a_1, b_1, a_2, b_2 \) of \(H_1(\Sigma, \mathbb{R}) \). An element \(w \) in \(E_v^\omega \) vanishes on \(a_1, a_2 \) and its matrix \(M = (w(b_1), w(b_2)) \) has trace 0. Let \(u \) be in \(E_v \) and set \(N = (u(a_1), u(a_2)) \). From the expression of symplectic structure given by equation (3), we derive that the equation \(\text{Tr} MN = 0 \) should be satisfied for all \(M \) with 0 trace. Hence \(N \) is a scalar matrix and the formula is proved.

This defines a 4-dimensional distribution on \(C^x/S^1 \). It remains to show that it is completely non-integrable which is the content of the last lemma. \(\square \)

Lemma 5.5. Let \(\mathcal{L} \) be the Grassmanian of all Lagrangian subspaces of \(H_1(\Sigma, \mathbb{R}) \). Recall the identification \(X_\mathcal{L}^* : C^x/S^1 = T_*^\mathcal{L} \) and denote by \(\pi : T^*\mathcal{L} \to \mathcal{L} \) the standard projection.

Consider the exact sequence

\[
0 \to T_+^*\mathcal{L} \to T_{(L,g^{-1})}T^*\mathcal{L} \xrightarrow{df} T_L\mathcal{L} \to 0.
\]

The distribution \(E \) corresponds to the distribution \(F_{(L,g^{-1})} = d\pi^{-1}(\mathbb{R}g) \) and is completely non-integrable.
Proof. We will show that the flows of the vector fields generated by elements of E act transitively on T^*_+L. By Frobenius theorem (see Theorem 4 p. 45 in [11]) and using the fact that T^*_+L is an homogeneous space, this is equivalent to the complete non-integrability of E.

The identification between E and F is a simple transcription of Equation (5): it remains to show that F is completely non-integrable. Let $T^*_+L \subset T^*L$ be the cone of positive directions. As F contains all the directions of the fiber of π one can move from (L, g^{-1}) to all elements of the form $(L, (g')^{-1})$ for g' close to g. Following the corresponding direction g' in L, one can move from L in L towards the direction of positive quadratic forms, moving again along the fiber of π, the problem reduces to show that the conical distribution T^*_+L is completely non-integrable in L which is clear from the fact that definite (i.e. positive or negative) quadratic forms linearly generate the space of all quadratic forms. □

References

[1] B. H. Bowditch. Markoff triples and quasi-Fuchsian groups. Proc. London Math. Soc. (3), 77(3):697–736, 1998.
[2] Peter Buser. Geometry and spectra of compact Riemann surfaces. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2010. Reprint of the 1992 edition.
[3] Louis Funar and Julien Marché. The first Johnson subgroups act ergodically on SU_2-character varieties. J. Differential Geom., 95(3):407–418, 2013.
[4] Daniel Gallo, Michael Kapovich, and Albert Marden. The monodromy groups of Schwarzian equations on closed Riemann surfaces. Ann. of Math. (2), 151(2):625–704, 2000.
[5] J. Gilman and B. Maskit. An algorithm for 2-generator Fuchsian groups. Michigan Math. J., 38(1):13–32, 1991.
[6] Jane Gilman. Two-generator discrete subgroups of $PSL(2, \mathbb{R})$. Mem. Amer. Math. Soc., 117(561):x+204, 1995.
[7] William M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. in Math., 54(2):200–225, 1984.
[8] William M. Goldman. Topological components of spaces of representations. Invent. Math., 93(3):557–607, 1988.
[9] William M. Goldman and Eugene Z. Xia. Ergodicity of mapping class group actions on $SU(2)$-character varieties. In Geometry, rigidity, and group actions, Chicago Lectures in Math., pages 591–608. Univ. Chicago Press, Chicago, IL, 2011.
[10] Michael Heusener and Joan Porti. The variety of characters in $PSL_2(\mathbb{C})$. Bol. Soc. Mat. Mexicana (3), 10(Special Issue):221–237, 2004.
[11] Velimir Jurdjevic. Geometric control theory, volume 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
[12] Jacques Lafontaine. An Introduction to Differentiable Manifolds. Springer, second edition, 2010.
[13] Julien Marché and Maxime Wolff. The modular action on $PSL(2, \mathbb{R})$-characters in genus two. Duke Math. Journal, to appear.
[14] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1998.
[15] Joseph P. Previte and Eugene Z. Xia. Topological dynamics on moduli spaces. II. Trans. Amer. Math. Soc., 354(6):2475–2494 (electronic), 2002.
[16] André Weil. Remarks on the cohomology of groups. Ann. of Math. (2), 80:149–157, 1964.

Sorbonne Universités, UPMC Univ. Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
E-mail address: julien.marche@imj-prg.fr

Sorbonne Universités, UPMC Univ. Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
E-mail address: maxime.wolff@imj-prg.fr