Immune Regulation during Helminth Infections

Natasha M. Girgis, Uma Mahesh Gundra, P’ng Loke*

Department of Microbiology, New York University, New York, New York, United States of America

The Co-Evolution of Helminths and the Mammalian Immune System

Helminth is a nonphylogenetic term that refers to multicellular animals (or metazoa) that have adopted a parasitic lifestyle in mammalian hosts. They are more commonly referred to as parasitic worms. These worms generally (with the exception of Strongyloides stercoralis) cannot replicate within the host, and they have evolved distinct methods to co-exist with their host through the activation of an immune regulatory network. Until quite recently in human history, the majority of Homo sapiens were likely colonized by one type of worm or another, just like many mammals are in the wild. This close relationship has led to the evolution of “disease tolerance” by the host [1,2], in the presence of these parasites [3]. In other words, the mammalian host has evolved mechanisms to minimize the virulence of helminths, even without necessarily reducing worm burden. While helminths cause disease in hundreds of millions of people [4], nonetheless a large proportion of infected individuals are relatively tolerant to colonization with helminths.

Heterogeneity in Susceptibility to Infection and Pathology

Maintaining variation in immunity to any parasite is critical toward the survival of a host population. In an endemic population, a large proportion of helminth-infected individuals are relatively asymptomatic. Pathology often occurs in individuals that have a reduced immunity and are therefore highly susceptible to infection with very high worm burdens. Seventy percent of the worm burden in a population may occur in only 15% of the infected individuals [4]. Pathology can also occur in individuals that are very immunologically reactive, despite having low worm burdens [5,6]. In this case, a breakdown of the immune-regulatory environment established by the host and the parasite may have occurred. Maintaining a disease-tolerant or asymptomatic state requires an appropriate immune regulatory relationship between each host and helminth, which is unlikely to occur for every individual host. Hence, there is a strong need to understand the natural variation in immune responses against helminths [7]. There is evidence that resistance to helminth infection could improve survivability during harsh conditions, but brings with it the cost of autoimmune susceptibility and reduced reproduction [8]. As clinical trials reintroducing helminths as treatment for autoimmunity are ongoing [9,10], there is an urgency to understand heterogeneity in immune responses against helminths in order to personalize treatment regimens to maximize clinical benefit.

Type 2 Responses Minimize the Virulence of Helminth Infections

A key component of the immune system that has evolved to minimize the virulence of helminths is the type 2 (or T_{H2}) response [11]. Instead of giving us allergies and asthma, the type 2 response likely evolved both to provide resistance by limiting the number helminths that can live in our intestinal tract [12] and to repair the tissue damage that is caused by the helminths that have colonized our tissues [3]. This response is characterized by the production of cytokines such as interleukin-4 (IL-4), IL-5, IL-9, and IL-13. While it is still unclear how this response is initiated during helminth infection, a broad range of effector mechanisms are activated by these cytokines [11,13].

Signaling through IL-4Ra and STAT6 in intestinal epithelial cells (IECs) promotes goblet cell differentiation and increases mucus production, as well as increases proliferation and turnover of the IECs [12]. This may help maintain the mucosal barrier and limit aberrant responses triggered by the gut bacteria [10]. Increased contraction of intestinal muscles and the activation and release of mast cell proteases that can increase fluid flow into the lumen may also help flush the worms out of the gut [12]. Macrophages are alternatively activated by IL-4Ra/STAT6 signaling to adopt an anti-inflammatory tissue repair function [3]. The type 2 response will also increase secretion of Immunoglobulin E (IgE) by B cells that can in turn activate cells that express Fc receptors (FcRs), such as basophils, eosinophils, and mast cells to amplify the type 2 response by producing more IL-4. The absence of this type 2 response during helminth infections in mice is often associated with lethal sepsis from compromised gut integrity and leakage of gut bacteria [3].

Host Mechanisms of Immune Regulation during Helminth Infection

During chronic helminth infection, peripheral T cells from infected patients are unresponsive to stimulation with parasite antigens, and responses to other antigens are also reduced [6]. This observation led to studies to define the immune regulatory mechanisms at play during helminth infection. In addition to the T_{H2} response described above, regulatory T cells [14], regulatory B cells [15], and alternatively activated (or M2) macrophages [16] were identified as key components of the immune regulatory network functioning during helminth infections [13].
Foxp3+ Treg cells expand during helminth infections and may promote the survival of helminths as well as limit immune-driven pathology [14]. Depletion of these Treg cells can increase resistance to the parasites and reduce worm burden, but can also lead to increased immune-driven pathology [14]. IL-10 producing regulatory B cells was first identified to play an important role in limiting disease severity during autoimmune diseases and then later found to be induced by helminths [15]. In several mouse studies whereby helminths could suppress allergic inflammation, suppression could be reversed by depleting these B cells or transferred to a recipient animal by transferring B cells [15]. Alternatively activated macrophages that are expanded during helminth infections have been shown to promote Foxp3+ Treg differentiation [17] and, by up-regulating arginase 1, play an important immune regulation and tissue repair role, respectively, by competing for L-arginine and generating proline [13,16]. The expansion and increased functionality of these regulatory cells during helminth infection may be responsible for the bystander suppression of autoimmune diseases, which has been noted in several study cohorts [5,18]. Additionally, activation of this immune regulatory network likely contributes toward the deficiency in generating protective immunity when exposed to natural helminth infection [6].

Helminth Products That Enhance Immune Regulation

In order to promote the host immune regulatory network described above, helminths have evolved the production of immuno-modulating molecules that are just being elucidated [19,20]. A few examples include a TGF-β-like ligand identified from the secreted products of the intestinal nematode parasite *Heligmosomoides polygyrus bakeri* can induce the differentiation of regulatory T cells [20]. A glycoprotein secreted by *Schistosoma mansoni* eggs called omega-1 has been shown to condition dendritic by *Schistosoma mansoni* through Toll-like receptors (TLRs) and can in turn suppress pro-inflammatory responses [19]. While the mechanisms of action are described above, helminth exposure may also restore the gut immune regulatory network of the mammalian host [24].

References

1. Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335: 936–941.
2. Little TJ, Shaker DM, Colegrave N, Day T, Graham AL (2010) The coevolution of virulence: tolerance in perspective. PLoS Pathog 6: e1000086. doi:10.1371/journal.ppat.1001006
3. Allen JE, Wynne TA (2011) Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog 7: e1002003. doi:10.1371/journal.ppat.1002003
4. Hotze PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118: 1311–1321.
5. Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M, et al. (2012) Helminth infections in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 34: 809–801.
6. McSorley HJ, Maizels RM (2012) Helminth infections and host immune regulation. Clin Microbiol Rev 25: 585–608.
7. Babayan SA, Allen JE, Bradley JE, Guekling MB, Graham AL, et al. (2011) Wild reimmunology: converging on the real world. Ann N Y Acad Sci 1296: 17–29.
8. Graham AL, Hayward AD, Watt KA, Pilkington JB, Pemstrong JM, et al. (2010) Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330: 662–666.
9. Jouvin MH, Kinet JP (2012) Trichuris suis ova: Testing a helminth-based therapy as an extension of the hygiene hypothesis. J Allergy Clin Immunol 130: 3–10.
10. Wolff MJ, Broadhurst MJ, Loke P (2012) Helminthic therapy: improving mucosal barrier function. Trends Parasitol 28: 187–194.
11. Pendram B, Aris D (2012) New paradigms in type 2 immunity. Science 337: 431–435.
12. Aris D, Grencis RK (2000) The intestinal epithelium: sensors to effectors in nematode infection. Mucosal Immunol 1: 252–264.
13. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11: 375–381.
14. Taylor MD, van der Werf N, Maizels RM (2012) T cells in helminth infection: the regulators and the regulated. Trends Immunol 33: 181–189.
15. Hussaarts I, van der Vlugt LE, Yazdanbakhsh M, Smits HH (2011) Regulatory B-cell induction by helminths: implications for allergic disease. J Allergy Clin Immunol 128: 733–739.
16. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.
17. Broadhurst MJ, Leung JM, Lin KC, Giegs NM, Gundra UM, et al. (2012) Upregulation of retinal dehydrogenase 2 in alternatively activated macrophages during retinoid-dependent Type-2 immunity to helminth infection in mice. PLoS Pathog 8: e1002883. doi:10.1371/journal.ppat.1002883
18. Corradell J, Farex MF (2013) The impact of environmental infections (parasites) on MS activity. Mult Scler 17: 1162–1169.
19. Harnett W, Harnett MM (2010) Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat Rev Immunol 10: 278–284.
20. Hewinson RP, Grainger JR, Maizels RM (2009) Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 167: 1–11.
21. Elliott DE, Weinstock JV (2011) Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci 1247: 83–96.
22. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13: 260–270.
23. Broadhurst MJ, Ardeshir A, Kanwar B, Mirpur J, Giandra UM, et al. (2012) Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog 8: e1003000. doi:10.1371/journal.ppat.1003000
24. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336: 1268–1273.