The complete chloroplast genome sequence of *Quercus chungii* (Fagaceae)

Xiao-Long Jiang*, Hong-Lin Mou*, Chang-Sha Luo and Gang-Biao Xu

The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China

ABSTRACT

Quercus chungii F.P. Metcalf, a rare oak with endemic to southern China, belongs to the compound trichome base (CTB) lineage in the *Cyclobalanopsis* section. The complete chloroplast genome of the species was assembled and annotated in this study. The circular genome was 160,731 bp in size, presenting a typical quadripartite structure including one large single-copy region (LSC, 90,140 bp), one small single-copy region (SSC, 18,911 bp), and two copies of inverted repeat regions (IRs, 25,840 bp). It encoded a total of 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The maximum-likelihood (ML) phylogenetic tree reconstructed by IQ-TREE indicated that *Q. chungii* was more closely related to *Q. myrsinifolia* and *Q. sichourensis*.

Quercus chungii is a rare and precious tree that is distributed in southern China at elevations ranging from 200 to 800 m. The species belongs to compound trichome base (CTB) lineage in the *Quercus* section *Cyclobalanopsis* (Deng et al. 2018). With the rapid changes in climate and intensification of human activities, the distribution of *Q. chungii* is rapidly reduced in recent decades. Understanding the spatial genetic pattern and demographic dynamics of the species can provide important guidelines for the protection and utilization of the species. Two species, *Trigonobalanus doichangensis* and *Fagus crenata*, were selected as outgroups. The sequences were aligned by MAFFT 7.475 (Rozewicki et al. 2019). The ML analyses were performed with IQ-TREE 1.6.12 (Chernomor et al. 2016). Node support was assessed by 1000 fast bootstrap replicates. Our result indicated that *Q. chungii* was more closely related to *Q. myrsinifolia* and *Q. sichourensis* with 83% bootstrap support (Figure 1).

CONTACT Gang-Biao Xu gangbiaoxu@163.com

The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China

* Both authors contributed equally to this work.
Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Key Research and Development Program of Hunan Province under Grant Number [2020NK2017].

ORCID

Xiao-Long Jiang http://orcid.org/0000-0003-3861-1109

Data availability statement

The complete chloroplast genome sequence of *Quercus chungii* is deposited in the GenBank database under the accession number MW401633 (https://www.ncbi.nlm.nih.gov/nuccore/MW401633). Raw sequencing reads used in this study were deposited in the public repository BioSample with accession number SAMN18499615 (https://www.ncbi.nlm.nih.gov/biosample/SAMN18499615).

References

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 65(6):997–1008.

Deng M, Jiang XL, Hipp AL, Manos PS, Hahn M. 2018. Phylogeny and biogeography of East Asian evergreen oaks (*Quercus* section Cyclobalanopsis; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol. 119:170–181.

Jiang XL, Xu GB, Deng M. 2019. Spatial genetic patterns and distribution dynamics of the Rare Oak *Quercus chungii*: implications for biodiversity conservation in Southeast China. Forests. 10(9):821.

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible bath annotation of plastomes. Plant Methods. 15(1):50.

Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47(W1):W5–W10.

Figure 1. The maximum-likelihood (ML) phylogenetic tree of *Quercus chungii* and 19 relative species were reconstructed by IQ-TREE based on complete chloroplast genome sequences. The bootstrap support value is labeled for each node.