Effects of polyisoprenoids from *Avicennia lanata* and *Avicennia alba* leaves on the gene expression of PI3K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR [version 1; peer review: 1 approved with reservations]

Taufiq Qurrohman¹, Poppy Anjelisa Zaitun Hasibuan¹, Arif Nuryawan²,³, Sumaiyah Sumaiyah¹, Etti Sartina Siregar⁴, Mohammad Basyuni²,³

¹Faculty of Pharmacy, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
²Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
³Center of Excellence for Mangrove, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
⁴Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia

Abstract

Background: Mangrove plants produce a polyisoprenoid compound. Polyisoprenoids have been proven to have anticancer properties. This study investigated the inhibitory activity of polyisoprenoids derived from the leaves of mangrove plants *Avicennia alba* and *Avicennia lanata* regarding the expression of PI3K, Akt1, mTOR, P53, and EGFR genes against human colorectal adenocarcinoma WiDr cells.

Methods: Anticancer activity was tested through the MTT assay method performed on WiDr cells. The inhibited cell cycle and apoptosis were analysed by flow cytometry and double staining. Gene expression of PI3K, Akt1, mTOR, P53, and EGFR was observed using the RT-PCR method.

Results: Cytotoxic activity against WiDr cells showed that the IC50 for *A. alba* and *A. lanata* was 258.14 ug/mL and 243.32 ug/mL, respectively. This indicated that their classification as anticancer agents was moderate. The cell cycle showed that inhibition of *A. alba* and *A. lanata* occurred in the late phase of apoptosis S (10.60 and 10.51%) and G2-M1 (22.05 and 23.84%), which was higher than negative and positive control cells. Furthermore, the polyisoprenoids derived from *A. alba* and *A. lanata* leaves exhibited anticancer activity...
in WiDr cells through the downregulated gene expression of PI3K, Akt1, mTOR, and EGFR as well as the upregulated gene expression of P53.

Conclusion: This study demonstrated that polyisoprenoids obtained from *A. alba* and *A. lanata* leaves are promising chemopreventive agents for colon cancer.

Keywords
Avicennia, cytotoxic, polyisoprenoids, colon cancer, mangrove
Introduction
Cancer is a disease characterised by uncontrolled cell growth. Cancer cells can evade apoptosis and avoid signals that suppress its growth, impede the ability to form new blood vessels (angiogenesis), and halt its invasion and metastasis. According to the Global Cancer Observatory, in 2018, Asia had the highest incidence of colon cancer with 51.8% of the global cases. Colon cancer is one of the top three causes of death in the world. The use of chemotherapeutic agents constitutes a treatment for colon cancer, in addition to surgery and radiation therapy. Chemotherapeutic agents generally suppress the growth or proliferation of cancer cells, simultaneously causing toxicity in the body.

Natural ingredients developed as potential chemotherapeutic agents include mangrove leaves. Mangroves are vegetation formations found in littoral areas in tropics and subtropics. Polyisoprenoids are secondary metabolites found in several mangroves, distributed as dolichol and polyprenol on the leaves and roots of mangrove plants. So far, few studies have reported the pharmacological activity of polyisoprenoids obtained from mangrove species. Thus, it is essential to study the potential and mechanisms of polyisoprenoids in mangroves as a natural ingredient for anticancer pharmaceuticals and medication. For instance, methanol extracts of Avicennia alba (bark and leaves) present anti-proliferative activity in MCF-7 and T47D. Additionally, this extract has cytotoxic effects on a variety of cancer cells, including colon cancer cells – HT-29. Previous research suggests that polyisoprenoids induce cancer cell cycle inhibition in adenocarcinoma of the colon (COLO 320 HSR, WiDr, and LS174 cells) in the G2/M phase and reduce the percentage of Bcl-2 and Bcl-xL. Polyisoprenoids have been previously reported as chemopreventive agents for colon cancer, given that polyisoprenoids in A. lanata leaves have displayed anticancer activity for the same. On the other hand, A. alba contains polyisoprenoids that induce cell cycle, apoptosis, and gene expression of COX-2 in colon cancer cells WiDr. This extract has a mechanism for inhibiting the cell cycle at the G0-G1 phase, and apoptotic analysis occurs in the early phase of apoptosis in WiDr cells.

The present study analysed the effect of immune-related genes’ expression on WiDr cells in vitro using reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR was developed as an in vitro test to measure the biological activity of plasmid DNA-based products (pDNA). The said test measures RNA-specific transgenic messengers (mRNA) derived from transfected cultured cells. Forward and reverse primers have been designed to trigger selective RT-PCR reactions for plasmid mRNAs and differentiate between the level of individual plasmid expression in multivalent pDNA. Therefore, the present study aims to investigate the inhibitory activity of polyisoprenoids obtained from the leaves of mangrove plants A. alba and A. lanata concerning the expression of PI3K, Akt1, mTOR, P53, and EGFR genes in human colorectal adenocarcinoma WiDr cells.

Methods
Plant material
The leaves of two mangrove species – A. alba and A. lanata – were collected from the village of Lubuk Kertang, Brandan Barat, Langkat, North Sumatra, Indonesia. The sample site is situated at 04° 07’ 39.71” North latitude and at 98° 30’97.87” East longitude.

Preparation of isolation polyisoprenoid alcohols
Every 500 g of powdered simplicia mangrove leaves of A. alba and A. lanata was macerated with a mixture of chloroform/methanol (2:1, v/v) (CM21) for 48 h. The cell wall debris insoluble in CM21 was removed by filtration paper (Advantec, Japan) and the extract was partially purified as lipid extract. The simplicia procedure is described briefly; the wet mangrove leaves were sorted to remove dirt; the leaf bones were removed and cleaned from attached leaf spines; the leaves were cut into 3 cm long pieces, after which they were washed under running water, drained, and weighed. Subsequently, the mangrove leaves were dried in a drying cabinet, dry sorted to separate unwanted plant parts and other impurities that were still present, remain in dry simplicia, and weighed and stored in tightly closed plastic containers. The lipid extracts of leaves were refluxed at a temperature of 65°C for 24 h in 86% ethanol containing KOH 2 M. The portions were further saponified and diluted with 2 mg/mL n-hexane. The extract in n-hexane was concentrated using rotary evaporator at 40°C. Subsequently, a thick extract was obtained and the concentration was adjusted to 1 mg/mL n-hexane.

Leaf (50–100 mg) extracts were applied to thin layer chromatography (TLC) plates to identify the polyisoprenoid composition. The polyisoprenoid standards were generously provided by Dr Ewa Swieczewska (Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland). The polyisoprenoid compounds in the A. alba (PAA) and A. lanata (PAL) leaves were confirmed to belong to the dolichol family 100% (C60–C100) and (C70–C100), respectively.

WiDr and Vero cell culture
WiDr cells (isolated human colon cancer cells) and normal cells (Vero) were kindly provided by the Laboratory of Parasitology Collection, Faculty of Medicine, Gadjah Mada University (Yogyakarta, Indonesia). The WiDr cell lines were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma Aldrich, Singapore) and the Vero cell lines were nurtured in M199 (Gibco, USA). Both cells were supplemented with 10% (v/v) foetal bovine serum (FBS) (Gibco), 1% penicillin and streptomycin (Gibco), and 0.5% fungizone (Amphoterin B) in a 37°C incubator with 5% CO₂.

Cytotoxicity analysis
Cytotoxicity tests were conducted on the WiDr and Vero cells using the MTT method. Cells were grown in 96 well microplates.
to obtain a density of 1 × 10⁴ cells/well and incubated in a 5% CO₂ incubator at a temperature of 37°C for 48 h to ensure good growth. Once the new medium had been replaced, the cells were treated with varying concentrations of PAA and PAL (1000, 500, 250, 125, and 62.5 µg/mL) as previously reported\(^\text{10}\). 5-Fu (Sigma Aldrich) was used as a positive control with the same concentration of PAA and PAL and incubated in 5% CO₂ at 37°C for 48 h. At the end of the incubation, the culture media was removed, and the cells were washed with PBS. In each of the wells, 100 µL of culture medium (RPMI) and 10 mL MTT (Sigma Aldrich) were added. The cells were incubated again for 3-6 h in 5% CO₂ at 37°C. The reaction was stopped with 10% SDS reagent (Sigma Aldrich) in 0.01 N HCl (Merck). The plate was wrapped to protect it from the light so that the wells were opaque, and it was left overnight at room temperature\(^\text{14}\). Absorption was measured by the ELISA reader (Benchmark 10431, BioRad) at a wavelength of 595 nm.

Selectivity index (SI) was determined from the IC\(_{50}\) of the polyisoprenoid extract from PAA and PAL leaves in Vero cells versus WiDr cells to exhibit the cytotoxic selectivity of the polyisoprenoid extract, as previously reported\(^\text{4}\). IC\(_{50}\) was calculated from concentrations that caused death among 50% of the cell population analysed using probit analysis in SPSS version 23 with a significance of 0.05\(^\text{6}\).

Cell cycle analysis

The WiDr cells (5 × 10⁴ cells/well) were added to a 6-well plate which was incubated for 24 h for optimal growth. Subsequently, the cells were exposed to selected concentrations of PAL and PAA (1/5 IC\(_{50}\)) and incubated again\(^\text{2}\). Floating as well as attached cells were collected by adding 0.025% trypsin. The cells from each well were transferred to a separate eppendorf tube. 1 mL PBS was added and the PBS was removed with a Pasteur pipette. Cells in the wells were washed with PBS. The coverslip was removed using tweezers, placed on a glass slide, and labelled. 10 µl of the reagent mixture of ethidium bromide acridine orange (Sigma Aldrich) was added over the slipcover. The mixture was flattened and gently rocked. Apoptosis was observed under a fluorescence microscope (Olympus CKX41)\(^\text{3}\). The fluorescent green cells were alive and the fluorescent red cells were dead\(^\text{3}\).

Apoptosis analysis

The double staining method was used to determine the level of apoptosis. WiDr cells were grown in a 6-well microplate at density of 5 × 10⁴ cells/well and incubated for 24 h. The following day, the cells were treated with concentrations of PAA and PAL (1/5 IC\(_{50}\)) and incubated for 24 h. The procedure for apoptosis with double staining was conducted by taking cells from the CO₂ incubator and observing the conditions. Then, the calculated cells were used to prepare 24-well plates and slipcovers. 200 µl of cell suspension was evenly and slowly transferred just above the coverslip. The cell culture was slowly disposed, and the cells were washed with PBS (500 µl). The sample and media were added into the well for control cells and then incubated. All media from the well was slowly removed using a Pasteur pipette. Cells in the wells were washed with PBS. The coverslip was removed using tweezers, placed on a glass slide, and labelled. 10 µl of the reagent mixture of ethidium bromide acridine orange (Sigma Aldrich) was added over the slipcover. The mixture was flattened and gently rocked. Apoptosis was observed under a fluorescence microscope (Olympus CKX41)\(^\text{3}\). The fluorescent green cells were alive and the fluorescent red cells were dead\(^\text{3}\).

Gene expression analysis

Total RNA was extracted from the WiDr cells treated with PAA and PAL (7.5 × 10⁴ cells/well) using the Total RNA Mini Kit (Geneaid), according to the manufacturer’s protocol. The total RNA (3 mg each) was reverse-transcribed with 1 µg random primer to produce cDNA in a total volume of 20 µl using ReverTra Ace kit (Toyobo) with 10 mM dNTP to incubate for 10 min at 30°C, for 60 min at 42°C, and for 5 min at 99°C according to manufacturer’s procedure. The resulting cDNA mixture was diluted using 100 µl TE buffer (10 mM Tris/ HCl, 1 mM EDTA, pH 8.0) and directly used for the subsequent PCR.

Semi-quantitative RT-PCR for genes p53, EGFR, PI3K, Akt1, and mTOR\(^\text{16-20}\) were assessed using 1 µl cDNA added to 25 µl PCR Master Mix which contained 12.5 µl GoTaq-Green, 1 µl primer forward, and 1 µl primer reverse (as listed in Table 1), and 9.5 µl DNase/RNase free water. 35–40 cycles of semi-quantitative RT-PCR (ProFlex PCR system, Thermo Fisher Scientific) were conducted under the following cycling conditions: 15–30 sec at 94°C, 45 sec at 94°C, and 10 sec at 55–60°C, with the final extension phase at 72°C for 5 min and then storage at -20°C\(^\text{2}\). Semi-quantitative RT-PCR products were observed using 2% agarose gel and stained with ethidium bromide. The bands were documented using the image scanner Doc XR Gel (Bio-Rad)\(^\text{15}\).

Statistical analysis

All the data were analysed using SPSS version 23. The data are presented as mean ± standard error of the mean (SEM). One-way variance analysis (ANOVA) was used to compare the results for different conditions. P < 0.05 was considered significantly different.

Results and discussion

Cell cytotoxicity of PAA and PAL

The cytotoxicity test is a preliminary parameter to determine the potential toxicity of a test substance, particularly cancer cells. The toxicity is expressed by IC\(_{50}\) parameters. However, the cytotoxic test can also be performed to assess the toxicity of a test substance on normal cells. So, it can be used to demonstrate selective cytotoxic effects against a cancer line. In this study, the test material is cytotoxic for the polyisoprenoids of leaves derived from two mangrove species (PAA and PAL) against colon cancer cells (WiDr) with a concentration series of 1000, 500, 250, 125, and 62.5 µg/mL. The purpose of testing the extract was obtaining the smallest IC\(_{50}\) value for subsequent use as an advanced test for anticancer activity. The results showed that the smallest IC\(_{50}\) value obtained...
from the polyisoprenoids of leaves from PAL was 243.32 µg/mL and from PAA was 258.14 µg/mL. Therefore, these concentrations were used in the remaining experiments of the study. The cytotoxic effects were indicated by absorbance values and analysed using a probit analysis to obtain IC₅₀, as shown in Table 2.

The greatest cytotoxic activity against WiDr cells, shown by the smallest IC₅₀ value, was obtained from PAL. Therefore, PAL has the most active anticancer activity because the IC₅₀ value showed that PAL could block 50% of the WiDr cell growth. Some extracts are only considered active if they have IC₅₀ values ≤100 µg/mL. However, it has been demonstrated that an extract value of IC₅₀ of 100–500 µg/mL can be classified as moderate and, therefore, can potentially be developed as an anticancer agent. Even though a study has reported that an extract is considered active if IC₅₀ > 500 µg/mL. The SI of PAL and PAA were lower than that of the positive control. The cytotoxicity of PAL and PAA in the present study included an interesting SI against WiDr cells in a dose-dependent manner.

Cell cycle analysis with PAA and PAL
A previous study showed that methanol and water extracts of A. alba leaves have distinctive properties in regulators and mediators of cancer. This study tested the cell cycle using flow cytometry to determine the distribution of cells in each phase of the cell cycle at sub G1, S, and G2/M after treatment and obtained predictable pathway inhibition using PAA and PAL to inhibit the cycle cell.

The inhibition of the cell cycle in this study is shown in Figure 1 and Table 3. Table 3 shows the control group’s WiDr cell accumulation in the G0/G1, S, and G2/M phase as 76.63%, 7.22%, and 17.93%, respectively. The accumulation of cells in the S phase and G2-M cells increased by 10.60%, 10.51% and 23.84%, and 22.05%, respectively after being administered with a concentration of PAL 1/5 IC₅₀ and PAA with the concentration of 1/5 IC₅₀. The phase change is considered related to the concentration. However, the overall mechanism of inhibition of the cell cycle for PAA and PAL occurred at S and G2-M phases.

As Table 3 illustrates, the administration of 5-Fu with 1/5 concentration IC₅₀ decreases the accumulation of WiDr cells in the G2-M phase at 6.42%. The increase in cell accumulation occurred in the G0-G1 phase – S was 88.12 and 9.52%. However, it can be confirmed that the overall mechanisms of cell cycle inhibition of 5-Fu (in the G0-G1 and S phases) had a different mechanism compared with PAL and PAA.

Table 1. Primer sequences used in the present study.

Gene	Sequences	Amplicon (bp)
Akt1	R 5’-GAG GCC AGC CAC GTC AGT CTG GAT G-3’	240
	F 5’-ATG ATT GCT AGC GTG GTG GAC AAT-3’	
PI3K	R 5’-TGC TGG TGG TTT CTG GAT-3’	349
	F 5’-CCA GGA ATT TCG CAG CAA-3’	
mTOR	R 5’-AAC AAA CTC GTC GTC TGG AAA ATG G-3’	110
	F 5’-CCA ATT CAG ATC CGC ATT TCC-3’	
P53	R 5’-GCT TTG CTG CTG AGG CCA CCA GTG ATC ACT-3’	360
	F 5’-ATT CAG TCC TCT TCC CAT GAA GAA TCC GCG-3’	
EGFR	R 5’-CGC CGA AAC TTT CTA GGG T-3’	320
	F 5’-CGA CAA CAT AAG CTC CCA-3’	
β-actin	R 5’-TCA TAC TCG TGG CCA ATG T-3’	100
	F 5’- GCT CCT CCT AAG CGC GAG T-3’	

Table 2. IC₅₀ values of WiDr cells treated with two n-hexane extracts of mangrove leaves for 48 h. SI: selectivity index.

Mangrove species	WiDr cells (µg /mL)	Vero cells (µg /mL)	SI	
IC₅₀ (µg/mL)	A. lanata	243.32	147.36	0.61
	A. alba	258.14	176.24	0.68
	5-Fu (positive control)	17.43	45.15	2.59
Table 3. Accumulated values in each phase of the cell cycle of WiDr cells treated with of mangrove leaves *Avicennia alba* (PAA) and *Avicennia lanata* (PAL).

Treatment	Concentrations (μg/mL)	Phase of the cell cycle (%)		
		G0-G1	S	G2-M
Control cell	-	76.63	7.22	17.93
PAL 1/5 IC₅₀	50	68.70	10.60	23.84
PAA 1/5 IC₅₀	52	70.39	10.51	22.05
5-Fu 1/5 IC₅₀	3.6	88.12	9.52	6.42

Treatment of cancer cells with 5-Fu can accumulate cells at the G1 phase and at the beginning of the synthesis phase (G1/S arrest). However, the cell cycle’s inhibitory activity using 5-Fu depends on the type of cancer cell. In colon cancer cells HCT-15 and HT-29, 5-Fu inhibited at the G2/M phase. 5-Fu increases the expression of cyclin A, cyclin B, and CDC2, which is a regulatory protein in the G2/M phase. The mechanism that mediates the activity in this phase needs to be explored further. In Lovo and WiDr cells, 5-Fu inhibits the cell cycle in the S phase. This suggests that the activity of 5-Fu is not always associated with thymidylate synthase inhibitory activity, and the activity of 5-Fu in the cell cycle if used in a different cell needs to be researched further. The antineoplastic activity of PAL and PAA occur in the S phase of the cell cycle, which involves the possibility of bonding with the DNA through intercalation between the base pairs as well as the inhibition of the DNA and RNA synthesis.

Apoptosis analysis with PAA and PAL

In the present study, increased apoptosis (seen using the reagent acridine orange-ethidium bromide through the fluorescence microscope) was obtained by a percentage increase in each of the phases. Apoptosis is generally characterised by different morphological characteristics and biochemical mechanisms that depend on energy. Apoptosis usually occurs during development and aging and as a homeostatic mechanism to maintain the population of cells in the network. It also is a defense mechanism when cells are damaged by disease or harmful agents or during immune reaction. Cytotoxic data test samples indicate the presence of a cytotoxic effect as shown in Figure 2. The green cells are the live ones while the red ones are dead. The range of red fluorescent cells represents the necrotic cells.
The present analysis used raster imaging to count the dead cells and control cells after observing them under a fluorescence microscope. In total, 95.15% green colour (living cells) and 4.84% red colour (dead cells) were observed in control cells. With the PAL 1/5 IC\textsubscript{50} treatment, the cells produce 41.09% green colour (living cells) and 58.91% red (dead cells). With PAA 1/5 IC\textsubscript{50} treatment, cells produce 90.14% green colour (living cells) and nearly 9.86% red colour (dead cell). With the extract of PAL, the 1/5 IC\textsubscript{50} treatment cells produce 78.11% green and as much as 21.88% red colour. With 5-Fu 1/5 IC\textsubscript{50} treatment, the cells produce 77.48% green (live cells) and 22.51% red colour (dead cells) (Figure 2).

The results of the control cells were observed to be green/alive cells. The green colour comes from the orange acridine penetrating the entire living cell with intact membranes and nuclei. In cells treated with PAL and PAA, there was a predominantly red colour which illustrates that the WiDr cells were dead. The orange colour is produced by ethidium bromide interacting with damaged cell membranes and nuclei25. The test results showed that the extract can inhibit the growth of cancer cells, especially in WiDr cancer cells. The inhibition capability through the mechanism of apoptosis can also be evidenced through testing and analysis of double staining flow cytometry. The results of both analyses can illustrate the mechanism of cell death caused by apoptosis both quantitatively and qualitatively. Thus, the induction of apoptosis shows that these treatments are a promising treatment for cancer. The cancer cells undergo apoptosis and lose their ability to proliferate rapidly. This way of treatment may induce usual apoptotic signalling, thereby, potentially eliminating the cancer cells26.

The potential working mechanism of PAL and PAA are in the late phase of apoptosis. The potency of PAL and PAA in triggering apoptosis may be caused by compound isoprenoids (based on the results of phytochemical screening of PAL and PAA). Steroids/triterpenoids are compounds that have high anticancer activity, by blocking nuclear factor-kappa B, inducing apoptosis, and activating transcription and angiogenesis, which can be useful in the treatment of various types of cancer27.

Expression of PI3K, Akt1, mTOR, P53, and EGFR genes

The measurement of the expression of PI3K, Akt1, mTOR, P53, and EGFR genes using RT-PCR produces the band illustrated in Figure 3. Gene expression density was quantified using a computerised system (Table 4). Table 4 shows significant differences between the treatment groups. Gene expression results on PI3K, Akt1, mTOR, P53, and EGFR differed significantly (p < 0.05).

In this study, RT-PCR showed that the anti-apoptotic gene expression of P53 increases compared to control, whereas the expression of pro-apoptotic genes (PI3K, Akt1, mTOR, and EGFR) tend to decrease. P53 is a tumour-suppressing protein that can affect the permeability of the mitochondrial membrane.
and directly induce apoptosis without inducing the transcription of the target gene associated with apoptosis in advance. This condition causes apoptosis when the gene Bax mRNA expression does not increase and, thus, the pathway of apoptosis by P53 has two paths to the mitochondria — directly and indirectly through the activation of the transcription of genes under it. P53 molecule is a tumour-suppressing protein found at a low level under normal conditions and has a short life span. P53 is activated when the cells are exposed to stimuli such as agents that cause DNA damage, hypoxia, lack of nucleotide, or tumour cell activation. As a tumour suppressor, P53 protects the genome and regulates the growth and proliferation of the critical points in response to stress. The P53 molecule is an upstream regulator of the cell cycle as well as the intrinsic apoptotic pathway mediated by the Bcl-2 protein.

Besides from being a tumour suppressor protein, P53 also acts as a transcription factor for the activation of the expression of multiple target genes involved in various biological functions, such as apoptosis and cell cycle arrest. The results of the present study show that PAL and PAA significantly increase the gene expression of P53 at high concentrations, and the increase in P53 gene expression is concentration dependant; the higher the concentration, the higher the level of gene expression. These results are consistent with previous studies stating that the expression of P53 protein increases apoptosis.

The density of PI3K, Akt1, EGFR and mTOR gene expression was been significantly downregulated in treatment cells compared to the control cell in the present study. PAL administration demonstrated a more significant reduction in PI3K, Akt1 and EGFR gene expression than PAA and 5-Fu, while mTOR was downregulated more with 5-Fu than PAL and PAA. The density of the P53 gene expression was significantly upregulated in the treatment cells compared to the control cell, and this was more significant with PAL than PAA and 5-Fu.

Conclusion

Overall, the present study confirmed that PAL and PAA can affect anti-apoptotic P53 gene expression by upregulating this gene than the controls, while the expression of pro-apoptotic genes PI3K, Akt1, mTOR, and EGFR were downregulated compared to the controls. In addition, PAL and PAA inhibited the WiDr cell cycle in later apoptosis (S and G2-M1). Therefore, this study confirms that the polyisoprenoids derived from A. alba and A. lanata leaves are promising chemopreventive agents for colon cancer.

Data availability

Underlying data

Figshare: Dataset for manuscript: Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of P13K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR, https://doi.org/10.6084/m9.figshare.11839350.v1.

This project contains the following data:
- Underlying data for Table 2–Table 4.

Figshare: Dataset for manuscript: Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of P13K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR, https://doi.org/10.6084/m9.figshare.11856039.v1.

- Uncropped, unedited images for Figure 2 and Figure 3.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
References

1. Gupta SC, Kim JH, Prasad S, et al.: Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010; 29(3): 405–434. PubMed Abstract | Publisher Full Text | Free Full Text

2. Mitchison TJ: The proliferation rate paradox in antimitic chemotherapy. Mol Biol Cell. 2012; 23(1): 1–6. PubMed Abstract | Publisher Full Text | Free Full Text

3. Giri C, Ohting E, Tieszen LL, et al.: Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr. 2011; 20(1): 154–159. Publisher Full Text

4. Basyuni M, Sagami H, Baba S, et al.: Distribution and occurrence of new polyprenyl acetone and other polyisoprenoids in Indonesian mangroves. Dendrobiology. 2017; 78: 18–31. Publisher Full Text

5. Nurhanan MY, Asiah O, Ilham MAM, et al.: Antiproliferative activities of 32 Malaysian plant species in breast cancer cell lines. J Tropical Forest Sci. 2008b; 20(2): 77–81. Reference Source

6. Akter R, Uddin SJ, Grice ID, et al.: Cytotoxic activity screening of Bangladeshi medicinal plant extracts. J Nat Med. 2013; 2013(1): 1–7. PubMed Abstract | Publisher Full Text

7. Niranjana R, Gayathri R, Mol SN, et al.: Carotenoids modulate the hallmarks of cancer cells. J Funct Foods. 2015; 18(Part B): 968–985. Publisher Full Text

8. Sari DP, Basyuni M, Hasibuan PA, et al.: Cytotoxic and Antiproliferative Activity of Polyisoprenoids in Seventeen Mangroves Species Against WiDr Colon Cancer Cells. Asian Pac J Cancer Prev. 2018; 19(12): 3393–3400. PubMed Abstract | Publisher Full Text | Free Full Text

9. Iliaen ND, Basyuni M, Wati R, et al.: Polyisoprenoids from Avicennia marina and Avicennia lanata inhibit WiDR cells proliferation. Pharmacoeng Mag. 2018; 14(58): 513–518. Publisher Full Text

10. Iliaen ND, Hasibuan PAZ, Sumardi S, et al.: Anticancer activity of polyisoprenoids from Avicennia alba Blume. in WiDR Cells. Iran J Pharm Res. 2019; 18(3): 1477–1487. Publisher Full Text

11. Troppberger P, Potz S, Keller C, et al.: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell. 2013; 152(4): 859–872. PubMed Abstract | Publisher Full Text

12. Kurisaki A, Sagami H, Ogura K: Distribution of polyrenols and dolichols in soybean plant. Phytochemistry. 1997; 44(1): 45–50. Publisher Full Text

13. Sagami H, Kurisaki A, Ogura K, et al.: Separation of dolichol from dehydorodolichol by a simple two-plate thin-layer chromatography. J Lipid Res. 1892; 33(12): 1857–1862. Publisher Full Text

14. Sari DP, Basyuni M, Hasibuan PA, et al.: Cytotoxic effect of polyisoprenoids from Rhizophora mucronata and Ceriops tagal leaves against WiDr colon cancer cells lines. Sains Malaysiana. 2018; 47(9): 1953–1959. Publisher Full Text

15. Kucso G, Maurer PC, Yao NY, et al.: Nanometre-scale thermometry in a living cell. Nature. 2012; 500(7460): 54–58. PubMed Abstract | Publisher Full Text | Free Full Text

16. Liu HC, Chen GG, Vlantis AC, et al.: S-fluorouracil mediates apoptosis and G2/S arrest in laryngeal squamous cell carcinoma via a p53-independent pathway. Cancer J. 2006; 12(6): 482–493. PubMed Abstract | Publisher Full Text | Free Full Text

17. Lim YJ, Rhee JC, Bae YM, et al.: Celecoxib attenuates S-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells. World J Gastroenterol. 2007; 13(13): 1947–1952. PubMed Abstract | Publisher Full Text | Free Full Text

18. Backus HH, Pineda HM, Wustans D, et al.: Differences in the induction of DNA damage, cell cycle arrest, and cell death by S-fluorouracil and araftolates. Oncol Res. 2000; 12(5): 231–239. PubMed Abstract | Publisher Full Text

19. Tyagi AK, Agarwal C, Chan DC, et al.: Synergistic anti-cancer effects of Silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncol Rep. 2004; 11(2): 493–499. PubMed Abstract | Publisher Full Text | Free Full Text

20. Weerapreeyakul N, Nompunya A, Barusux S, et al.: Evaluation of the anticancer potential of six herbs against a hepatitis cell line. Chin Med. 2012; 7(1): 15. PubMed Abstract | Publisher Full Text | Free Full Text

21. Maehara S, Weerapreeyakul N, Barusux S, et al.: Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chin Med. 2011; 6(1): 39. PubMed Abstract | Publisher Full Text | Free Full Text

22. Satapathy S, Jena BK: Antitumor and growth effector screen of leaf extracts of selected mangroves of Bhitarankanita, Odisha, Int J Technol Enhance Emerg Eng Res. 2013; 1(4): 25–30. Reference Source

23. Ross JJ, Kennedy GA, Macnab F, et al.: The effectiveness of spiritual/religious interventions in psychotherapy and counselling: a review of the recent literature. Psychotherapy and Counselling Federation of Australia. 2015; 1–23. Reference Source

24. Norbury CJ, Hickson ID: Cellular responses to DNA damage, Annu Rev Pharmacol Toxicol. 2001; 41: 367–401. PubMed Abstract | Publisher Full Text

25. Fink SL, Cookson BT: Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005; 73(4): 1907–1916. PubMed Abstract | Publisher Full Text | Free Full Text

26. Wong RS: Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011; 30: 87. PubMed Abstract | Publisher Full Text | Free Full Text

27. Rios JL, Andujar I, Escandell JM, et al.: Cucurbitacin as inducers of cell death and a rich source of potential anticancer compounds. J Pharm Pharmacol. 2012; 12(18): 1663–1676. PubMed Abstract | Publisher Full Text

28. Chipuk JE, Maurer U, Green DR, et al.: Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell. 2003; 4(5): 371–381. PubMed Abstract | Publisher Full Text

29. El-Deiry WS: Regulation of p53 downstream genes. Semin Cancer Biol. 1998; 8: 345–357. PubMed Abstract | Publisher Full Text

30. Zhang X, Mukerji R, Samadd AK, et al.: Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med. 2011; 11(1): 94. PubMed Abstract | Publisher Full Text | Free Full Text

31. Yeap S, Akhtar MN, Lim KL, et al.: Synthesis of an anthraquinone derivative (DNAQ) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line. Drug Des Delivel. 2015; 9: 983–992. PubMed Abstract | Publisher Full Text | Free Full Text

32. Quoormah T, Hasibuan PAZ, Nuryawan A, et al.: Dataset for manuscript: Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of P13K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR. figshare. 2020. Dataset. https://www.doij.org/10.6084/m9.figshare.11839350.v1

33. Quoormah T, Hasibuan PAZ, Nuryawan A, et al.: Dataset for manuscript: Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of P13K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCRDataset for manuscript: Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of P13K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR. figshare. 2020. Dataset. https://www.doij.org/10.6084/m9.figshare.11856039.v2

Page 9 of 23
Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 25 March 2020

https://doi.org/10.5256/f1000research.24284.r61218

© 2020 Swiezewska E et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ewa Swiezewska
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

Liliana Surmacz
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

We, Liliana Surmacz and Ewa Swiezewska, found the manuscript entitled ‘Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of PI3K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR’ prepared by Dr T. Qurrohman and coworkers not acceptable for publication in the journal F1000Research in its current form.

This manuscript describes elucidation of the biological activity of two polyisoprenoid-containing extracts isolated from leaves of two mangrove plant species Avicennia lanata and Avicennia alba. To meet the generally acceptable standard of the manuscript quality this preliminary study requires extremely extensive revision.

Firstly, all the biological data were obtained using crude and poorly characterized extracts and consequently all these experiments should be performed once again with highly purified polyisoprenoid mixture (polyisoprenoid content at least 90%). Such purification procedure is doable within a reasonable time period and is not very difficult.

Secondly, several methodological issues require clarification, e.g. selection of the drug concentration points, appropriate control experiments (composition of the cell growth media), number of replicates, methods of quantification of PCR results and statistical analysis of the data.

Thirdly, interpretation of the obtained results seems not really clear, in particular results of the analysis of the toxicity should be reconsidered (see below).

Finally, the Authors should carefully discuss the available literature data to document the novelty of their study.

A detailed list of comments follows.

This manuscript describes study on the biological effects of the polyisoprenoid-containing extracts isolated from leaves Avicennia lanata and Avicennia alba. All tests were performed for two cell lines, WiDr and Vero. Shown are data on the effect of PAA and PAL on the cytotoxic activity, cell-cycle
General comments:
All the biological tests described in this study were performed using the crude mixture of lipids obtained after alkaline hydrolysis of the leaf extracts. The Authors did not provide the approximate polyisoprenoid content in the mixtures used. Such complex mixture of natural compounds could be used just for preliminary tests of their potential biological activity. What is more, data presented in this study in fact confirm the weakness of the strategy used – e.g. different effects of pro-apoptotic activity of PAA and PAL on the level of expression of analyzed genes might suggest that this is NOT the effect of polyisoprenoids (very similar profile for both extracts) but rather some other components of these mixtures.
In order to present any reasonable conclusion on the biological effect of polyisoprenoids highly purified polyisoprenoid samples (purity higher than 90% based on the HPLC/UV assay) should be used. For this reason the experiments have to be reproduced with purified polyisoprenoid samples.
In this context the title of the manuscript does not describe the real content of the work.

Data presented in Table 2 suggest that analyzed extracts exert higher toxicity against Vero than WiDr cells. Consequently the Selectivity Index is below 1. It raises the question whether analyzed extracts could be considered as candidates for anticancer drugs since they possess higher cytotoxic activity against normal than cancer cells. Authors should carefully comment on this observation. Keeping in mind that analyzed extracts were not pure these data do not preclude the potential usefulness of polyisoprenoids as drugs although this conclusion cannot be made on the basis of results shown in Table 2.
Furthermore, interpretation of the quantitative results of cytotoxicity against WiDr cells is questionable – the difference between both IC50 values obtained for PAA and PAL is approx. 6% (Table 2); thus the conclusion presented by Authors seems highly exaggerated. Finally, why are no SD values are presented here? Have these experiments been performed only once?

Experiments on the effect of plant extracts on the cell-cycle progression are summarized as follows: ‘The antineoplastic activity of PAL and PAA occur in the S phase of the cell cycle, which involves the possibility of bonding with the DNA through intercalation between the base pairs as well as the inhibition of the DNA and RNA synthesis.’ Such conclusion definitely requires additional data supporting the suggested mechanism(s).
Moreover, presented data were not analyzed using statistical method. Fig.2 presents representative data but how many biological replica were performed? How many microscopic snapshots were used for quantitative analysis?

Expression of selected genes - Authors should add a general comment on the biological relevance of the transcriptional data in the context of transcript – translated protein – its function in the cell, e.g. is the level of transcript directly related to the level and/or activity of the appropriate protein? What concentration of PAL or PAA was used to obtain data presented in Fig.3 and Table 4? Since Fig.3 and Table 4 present data for just one concentration point thus the statement is not justified: ‘The results of the present study show that PAL and PAA significantly increase the gene expression of P53 at high concentrations, and the increase in P53 gene expression is concentration dependent; the higher the concentration, the higher the level of gene expression.’ Furthermore, how quantification of the PCR product, i.e. bands intensity was performed? What
software was used for this analysis? Why no reference gene was used as a control for reaction efficiency? How many RT-PCR repetitions were used for quantitative analysis? The term ‘Gene expression density’ should be replaced with ‘Gene expression level’ or ‘Transcript expression level’.

Finally, a general comment concerning the RT-PCR technique - currently a qPCR method is considered an acceptable standard for transcriptomic analysis. It is recommended by these reviewers to repeat analyses using this approach.

In the Introduction the rationale behind the choice of the particular genes to be analyzed (PI3K, Akt1, mTOR, P53, and EGFR) has to be presented together with a brief (one sentence) description of their function in the cancer cell. Additionally, rewrite the sentence and explain the meaning of the expression ‘and differentiate between the level of individual plasmid expression in multivalent pDNA’. How this expression is relevant to the method used in this study?

Methodology requires clarification:
1. Delete the description of the cleaning of the leaves from ‘The simplicia procedure …’ to ‘...stored in tightly closed plastic containers.’ Instead, describe the date of the collection of the leaves, for how long the plant material was stored prior to extraction, the temperature of the extraction procedure.

2. What is meant in the sentence: ‘The portions were further saponified and’ All the ester have already been saponified upon KOH treatment.

3. Was a crude unsaponifiable lipid fraction used for further tests? It has to be clearly mentioned in the text.

4. If so what was the approximate polyisoprenoid content in this fraction?

5. Data obtained in the biological test are not fully justified keeping in mind the complexity of the lipid fraction used.

6. A type of the TLC plates should be mentioned in the text, moreover what is the meaning of the expression: ‘... were confirmed to belong to the dolichol family 100%...’.

7. What type of cell line are Vero cells? Which organ is it derived from? Is it an immortalized cell line?

8. Concentration of 5-Fu used in this study – please provide literature data on the concentration of 5-FU used. Were the values used in this study within the range of those used in similar type of assays?

9. The method of administration of the leaf extracts to the cells is not described at all. Polyisoprenoids are not soluble in water so what type of solvent was used to prepare PAA and PAL solutions for all biological tests? And how the control cells were treated – there is no information, neither in the Methods nor in the Figure legends, on the supplementation of the growth media of the control cell cultures with the appropriate amount of the same solvent.
10. For how long the cells were exposed to PAL in the cell cycle analysis? What concentrations of PAL and PAA were used?

11. The description of the apoptosis analysis is unclear and requires rewriting. What type of software was used to count green and red fluorescence signals?

12. The amount of total RNA used in this study in the reverse transcription reaction (according to the manuscript 3 mg in the 20 µl reaction mixture) seems unrealistic. Manufacturer's protocols usually recommend to use ≤1 µg RNA. Please correct.

The novelty of the data presented in this study has to be indicated by Authors in the section Discussion or Conclusions - novel data presented in the current manuscript in comparison to the previous already published ones should be clearly depicted.

The manuscript requires an English language edit. Some sentences are misleading, some are just awkward, e.g.

‘Cytotoxic activity against WiDr cells showed that the IC50 for A. alba and A. lanata was 258.14 ug/mL and 243.32 ug/mL, respectively. This indicated that their classification as anticancer agents was moderate.’

‘Natural ingredients developed as potential chemotherapeutic agents include mangrove leaves.’ should rather read as follows: ‘Natural substances developed as potential chemotherapeutic agents include components of mangrove leaves.’

‘This extract has a mechanism for inhibiting the cell cycle at the G0-G1 phase...’

‘In this study, the test material is cytotoxic for the polyisoprenoids of leaves derived from...’

The word ‘simplicia’ is used in the text several times– please replace with any typical expression.

Minor remarks:

- Title – ‘using reverse transcription-PCR’ - in my opinion these last four words are not necessary and should be deleted; it is nothing special in this RT-PCR technique.

- p.1 – ‘Mangrove plants produce a polyisoprenoid compound. Polyisoprenoids have been proven to have anticancer properties.’ – these two sentences have to be rewritten. As it is now they do not provide enough information about the subject of study. Moreover, why the term ‘polyisoprenoid compound’ is used here in a singular form? It is not consistent either with the natural composition of the leaf extract or with the text below.

- p.1 – delete ‘inhibited’ in the sentence ‘The inhibited cell cycle and apoptosis...’.

- p.3 – rewrite the second sentence of Introduction – what is meant by the expression ‘halt its invasion and metastasis’ in the context of this sentence?

- p.3 – replace ‘...dolichol and polyprenol on the leaves...’ with ‘...dolichol and polyprenol in the leaves...’.

- p.3 – ‘MCF-7 and T47D’ – a brief description of the cell line type is missing.

- p.3 – ‘gene expression of COX-2 in colon cancer cells’ spell out the name of the enzyme
when first used here and throughout the entire manuscript.

- p.3 – delete the word ‘Every’ in the sentence ‘Every 500 g of powdered simplicia mangrove leaves...’. Explain the word ‘simplicia’ in the text or delete.

- p.3 – ‘The cell wall debris insoluble in CM21...’ – how about other cellular components, e.g. proteins? – replace ‘cell wall debris’ with ‘Precipitate’.

- p.3 – delete the description of the cleaning of the leaves from ‘The simplicia procedure ...’ to ‘...stored in tightly closed plastic containers.’ Instead, describe the date of the collection of the leaves, for how long the plant material was stored prior to extraction, the temperature of the extraction procedure.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Author Response 19 Apr 2020

Mohammad Basyuni

We, Liliana Surmacz and Ewa Swiezewska, found the manuscript entitled ‘Effects of polyisoprenoids from Avicennia lanata and Avicennia alba leaves on the gene expression of PI3K, Akt1, mTOR, P53, and EGFR in human colorectal adenocarcinoma WiDr cells using reverse transcription-PCR’ prepared by Dr T. Qurrohman and coworkers not acceptable for publication in the journal F1000Research in its current form.
This manuscript describes elucidation of the biological activity of two polyisoprenoid-containing extracts isolated from leaves of two mangrove plant species Avicennia lanata and Avicennia alba. To meet the generally acceptable standard of the manuscript quality this preliminary study requires extremely extensive revision.

Response: We would like to thank the Reviewers’ comments and suggestions which significantly improve the manuscript and enrich the content.

Firstly, all the biological data were obtained using crude and poorly characterized extracts and consequently all these experiments should be performed once again with highly purified polyisoprenoid mixture (polyisoprenoid content at least 90%). Such purification procedure is doable within a reasonable time period and is not very difficult.

Response: We agreed with Reviewers’ suggestions to revise the procedures. The polyisoprenoid extraction was performed using the established procedures. The lipid extracts of *Avicennia alba* and *A. lanata* was concentrated to dryness and saponified at 65°C for 24 h in 86% ethanol containing KOH 2 M. The unsaponifiable lipid partitioned into hexane by vigorous mixing was analyzed by silica gel 60 TLC and RP-18 high performance thin layer chromatography (HPTLC) plates. The unsanifiable lipid basically denotes simple lipid fractions except for fatty acids (saponifiable lipid). The leaf extracts (50-100 mg) were applied to TLC plate. The quantity of polysioprenoids in *A. alba* leaves was 5.5±0.8 mg/g dry weight and *A. lanata* leaves was 14.9±1.2 mg/g dry weight. Data are represented as the means ± SEM (n=3). We enclose two-dimensional TLC (2D TLC) chromatograms. Figure 1 shows 2D TLC chromatograms of polyisoprenoids from leaves of *A. alba* and *A. lanata*. Dolichols with the chain length of C60-C100 and C70-C100 were detected as major polyisoprenoids alcohols in *A. alba* leaves (A) and *A. lanata* leaves (B), respectively. No polyprenol was found in both mangrove leaves. The 2D TLC has been performed triplicates and showed an identical pattern. We confirmed that leaves extracts contained 100% dolichols as highly purified polyisoprenoid mixture to meet Reviewers’ requirement. Therefore it is not needed to purify the polyisoprenoid samples and used for further investigation.

New and revised sentences have added to the revised manuscript to incorporate Reviewers’ suggestions. Please refer to the revised version of Preparation of isolation polyisoprenoid alcohols.

Figure 1. Two-dimensional TLC chromatograms of polyisoprenoids from *Avicennia alba* leaves (PAA) (A) and *A. lanata* leaves (PAL) (B)

Secondly, several methodological issues require clarification, e.g. selection of the drug concentration points, appropriate control experiments (composition of the cell growth media), number of replicates, methods of quantification of PCR results and statistical
analysis of the data.

Response: To meet Reviewers' suggestions, methodological issues, e.g. selection of the drug concentration points, appropriate control experiments (composition of the cell growth media), number of replicates, methods of quantification of PCR results and statistical analysis of the data have been revised. The raw data of experiments with three independent repetitions has been deposited in https://doi.org/10.6084/m9.figshare.11839350.v4 and https://doi.org/10.6084/m9.figshare.11856039.v4. Please refer to revised Methods.

Thirdly, interpretation of the obtained results seems not really clear, in particular results of the analysis of the toxicity should be reconsidered (see below).
Response: To incorporate Reviewers' suggestions, the results of the analysis of the toxicity has been revised by adding the standard errors of the means and statistical analysis. Please refer to revised Table 2.

Finally, the Authors should carefully discuss the available literature data to document the novelty of their study.
Response: We agreed with Reviewers' suggestions, new sentences have been added to meet Reviewers' comments, please refer to revised Discussion.

A detailed list of comments follows.

This manuscript describes study on the biological effects of the polyisoprenoid-containing extracts isolated from leaves Avicennia lanata and Avicennia alba. All tests were performed for two cell lines, WiDr and Vero. Shown are data on the effect of PAA and PAL on the cytotoxic activity, cell-cycle progression and expression of the selected genes: PI3K, Akt1, mTOR, and EGFR.

General comments:
All the biological tests described in this study were performed using the crude mixture of lipids obtained after alkaline hydrolysis of the leaf extracts. The Authors did not provide the approximate polyisoprenoid content in the mixtures used. Such complex mixture of natural compounds could be used just for preliminary tests of their potential biological activity.

Response: Unsaponifiable lipid was analysed using TLC and 2D-TLC plates to identify polyisoprenoids that contained 100% dolichols with the chain length of C60-C100 and C70-C100 detected as main polyisoprenoids alcohols in A. alba leaves and A. lanata leaves. New sentences have been added to the revised manuscript. Please refer to revised Preparation of isolation polyisoprenoid alcohols.

What is more, data presented in this study in fact confirm the weakness of the strategy used – e.g. different effects of pro-apoptocic activity of PAA and PAL on the level of expression of analyzed genes might suggest that this is NOT the effect of polyisoprenoids (very similar profile for both extracts) but rather some other components of these mixtures.

Response: We clarified that leaves extracts of PAA and PAL contained 100% dolichols based on the HPTLC chromatograms (Figure 1), we believe that different effects of pro-apoptotic activity of PAL and PAL on the level of expression of analysed from the effect of
polyisoprenoids (dolichols). We examined several pro-apoptotic genes as questioned by Reviewers as the weakness of the strategy used, we agreed to this point, however, we also examined an anti-apoptotic gene, p53 to prevent the cancer formation involving a mechanism on the tumour suppressor protein p53.

In order to present any reasonable conclusion on the biological effect of polyisoprenoids highly purified polyisoprenoid samples (purity higher than 90% based on the HPLC/UV assay) should be used. For this reason the experiments have to be reproduced with purified polyisoprenoid samples.

Response: We clarified that leaves extracts of both mangrove contained 100% dolichols based on 2D-TLC chromatograms, no other compounds found. These samples met the criteria as Reviewers’ suggestion for purity samples was higher than 90%. Therefore it is not required to purify the polyisoprenoid samples.

In this context the title of the manuscript does not describe the real content of the work. Response: To incorporate Reviewers’s suggestion, the title has been revised to be “Effects of polyisoprenoids from *Avicennia lanata* and *Avicennia alba* leaves on the gene expression of PI3K, Akt1, MTOR, P53 and EGFR in human colorectal adenocarcinoma WiDr cells”

Data presented in Table 2 suggest that analyzed extracts exert higher toxicity against Vero than WiDr cells. Consequently the Selectivity Index is below 1. It raises the question whether analyzed extracts could be considered as candidates for anticancer drugs since they possess higher cytotoxic activity against normal than cancer cells. Authors should carefully comment on this observation. Keeping in mind that analyzed extracts were not pure these data do not preclude the potential usefulness of polyisoprenoids as drugs although this conclusion cannot be made on the basis of results shown in Table 2.

Response: We agreed with Reviewers’ comments on the results of Selectivity Index of PAA and PAL is below 1, showing higher cytotoxic selectivity. We also clarified that the analysed extracts of both samples were pure, contained 100% dolichols. However, as Reviewers also mentioned that PAA and PAL have potential usefulness as drugs.

Furthermore, interpretation of the quantitative results of cytotoxicity against WiDr cells is questionable – the difference between both IC50 values obtained for PAA and PAL is approx. 6% (Table 2); thus the conclusion presented by Authors seems highly exaggerated.

Response: We agreed with Reviewers’ suggestion on small difference between both IC50 values obtained for PAA and PAL, we revised Table 2 and the conclusion to incorporate Reviewers’ comments.

Finally, why are no SD values are presented here? Have these experiments been performed only once?

Response: SEM values have been added to revised Table 2 to incorporate Reviewers’ suggestion. These experiments have been performed triplicate analyses. The raw data on Table 2 has been deposited on this link: https://doi.org/10.6084/m9.figshare.11839350.v4

Experiments on the effect of plant extracts on the cell-cycle progression are summarized as follows: *The antineoplastic activity of PAL and PAA occur in the S phase of the cell cycle, which involves the possibility of bonding with the DNA through intercalation between the*
base pairs as well as the inhibition of the DNA and RNA synthesis.' Such conclusion definitely requires additional data supporting the suggested mechanism(s).

Response: We do not have additional data supporting the suggested mechanism, to incorporate Reviewers’ suggestion the sentence ‘The antineoplastic activity of PAL and PAA occur in the S phase of the cell cycle, which involves the possibility of bonding with the DNA through intercalation between the base pairs as well as the inhibition of the DNA and RNA synthesis,’ has been deleted from the revised manuscript.

Moreover, presented data were not analyzed using statistical method. Fig.2 presents representative data but how many biological replica were performed? How many microscopic snapshots were used for quantitative analysis?

Response: Observation of apoptotic cells in a fluorescence microscope with a magnification of 40x and 3x in cell control, PAA, PAL, and 5-Fu treatments was analysed using SPSS version 23, followed by Duncan's multiple range test for treatment comparisons. ImageRaster 4.0.5 was used to count green and red fluorescence signals of three microscopic snapshots of individual experiments. Please refer to revised raw data of Fig. 2 and revised Apoptosis analysis.

Expression of selected genes - Authors should add a general comment on the biological relevance of the transcriptional data in the context of transcript – translated protein – its function in the cell, e.g. is the level of transcript directly related to the level and/or activity of the appropriate protein?

Response: New sentence has been added to revised Discussion to incorporate Reviewers’ suggestions.

What concentration of PAL or PAA was used to obtain data presented in Fig.3 and Table 4? Since Fig.3 and Table 4 present data for just one concentration point thus the statement is not justified: ‘The results of the present study show that PAL and PAA significantly increase the gene expression of P53 at high concentrations, and the increase in P53 gene expression is concentration dependent; the higher the concentration, the higher the level of gene expression.’

Response: We used 5μL PCR product to obtain data presented in Fig. 3 and Table 4. We agreed with Reviewers’ comments to correct the sentence to read ‘The results of the present study show that PAL and PAA significantly increase the gene expression of P53 comparing to control cell and 5-Fu’.

Furthermore, how quantification of the PCR product, i.e. bands intensity was performed? What software was used for this analysis? Why no reference gene was used as a control for reaction efficiency? How many RT-PCR repetitions were used for quantitative analysis?

Response: New sentences and revised Figure 3 have been included to incorporate Reviewers’ comments. Each data represents the average of three independents RT-PCR measurements with standard errors of individual experiments. To quantify the PCR product, Quantity One® 1-D analysis software (Bio-Rad) used to assess bands intensity of genes analysed. b-actin was reference gene to normalize the PCR efficiency.

The term ‘Gene expression density’ should be replaced with ‘Gene expression level’ or ‘Transcript expression level’

Response: ‘Gene expression density’ has been replaced with ‘Gene expression level’. Please
refer to revised part Results of Discussion of Expression of PI3K, Akt1, mTOR, P53, and EGFR genes

Finally, a general comment concerning the RT-PCR technique - currently a qPCR method is considered an acceptable standard for trascriptomic analysis. It is recommended by these Reviewers to repeat analyses using this approach.
Response: We agreed with Reviewers' suggestion, however, in the present situation, the authors are unable to repeat analysis using transcriptomic approach.

In the Introduction the rationale behind the choice of the particular genes to be analyzed (PI3K, Akt1, mTOR, P53, and EGFR) has to be presented together with a brief (one sentence) description of their function in the cancer cell.
Response: To incorporate Reviewers' suggestion, a new sentences relating to description function of PI3K, Akt1, mTOR, p53, and EGFR in the cancer cell has been added to Introduction. Please refer to last sentence of Introduction.

Additionally, rewrite the sentence and explain the meaning of the expression 'and differentiate between the level of individual plasmid expression in multivalent pDNA'. How this expression is relevant to the method used in this study?
Response: The sentence 'and differentiate between the level of individual plasmid expression in multivalent pDNA' has been deleted from revised manuscript.

Methodology requires clarification:
1. Delete the description of the cleaning of the leaves from 'The simplicia procedure …' to ‘…stored in tightly closed plastic containers.’ Instead, describe the date of the collection of the leaves, for how long the plant material was stored prior to extraction, the temperature of the extraction procedure.
Response: The description of the cleaning of the leaves from ‘The simplicia procedure …’ to ‘…stored in tightly closed plastic containers.’ has been deleted from revised manuscript.
1. What is meant in the sentence: ‘The portions were further saponified and ……..’ All the ester have already been saponified upon KOH treatment.
Response: The sentence: ‘The portions were further saponified and ……..’ has been deleted and changed to new sentence to read ‘The unsaponifiable lipid partitioned into 2 mg/mL n-hexane’.
1. Was a crude unsaponifiable lipid fraction used for further tests? It has to be clearly mentioned in the text.
Response: A crude unsaponifiable lipid used for further test and has been clearly mentioned in the text of revised manuscript.
1. If so what was the approximate polyisoprenoid content in this fraction?
The quantity of polyisoprenoids in A. alba leaves was 5.5±0.8 mg/g dry weight and A. lanata leaves was 14.9±1.2 mg/g dry weight. Data are represented as the means ± SEM (n=3).
1. Data obtained in the biological test are not fully justified keeping in mind the complexity of the lipid fraction used.
Response: We agreed with Reviewers' comments on the complexity of the lipid fraction, however, the biological tests have been clarified to be 100% dolichols.
1. A type of the TLC plates should be mentioned in the text, moreover what is the meaning of the expression: ‘… were confirmed to belong to the dolichol family 100%...’.
Response: Types of TLC plates were Silica gel 60 thin layer chromatography (TLC) and RP-18 HPTLC plates have been added to revised Methods, the expression: ‘...were confirmed to belong to the dolichol family 100%...’ has been revised to read, ‘...were detected to be 100% dolichol family...’

1. What type of cell line are Vero cells? Which organ is it derived from? Is it an immortalized cell line?
Response: Vero ATCC® CCL-81™, an immortalized cell line, derived from the kidney of an African green monkey

1. Concentration of 5-Fu used in this study – please provide literature data on the concentration of 5-FU used. Were the values used in this study within the range of those used in similar type of assays?
Response: New sentence has been added to meet Reviewers' comment. 50 μM of 5-fluorouracil (5-Fu) were dissolved in a 100 μL dimethyl sulfoxide (DMSO) co-solvent. The concentration used in this study within the rage of those used in colon cancer cells.

1. The method of administration of the leaf extracts to the cells is not described at all. Polyisoprenoids are not soluble in water so what type of solvent was used to prepare PAA and PAL solutions for all biological tests? And how the control cells were treated – there is no information, neither in the Methods nor in the Figure legends, on the supplementation of the growth media of the control cell cultures with the appropriate amount of the same solvent.
Response: To incorporate Reviewers' comments, new sub title in the Methods have been added. Please refer to Administration of the leaf extracts to the cells of Methods.

1. For how long the cells were exposed to PAL in the cell cycle analysis? What concentrations of PAL and PAA were used?
Response: The cell was exposed to serially diluted concentrations of PAA and PAL (1000, 500, 250, 125, and 62.5 µg/mL) in the cell cycle analysis for 48 h. Please refer to revised sentence in the Cytotoxicity analysis of Methods.

1. The description of the apoptosis analysis is unclear and requires rewriting. What type of software was used to count green and red fluorescence signals?
Response: New sentence has been added to meet Reviewers' comments. ImageRaster 4.05. (Micronos, Yogyakarta, Indonesia) was used to count green and red fluorescence signals. Please refer to revised Apoptosis analysis method.

1. The amount of total RNA used in this study in the reverse transcription reaction (according to the manuscript 3 mg in the 20 µl reaction mixture) seems unrealistic. Manufacturer's protocols usually recommend to use ≤1 µg RNA. Please correct.
Response: The total RNA (0.3 µg each) has been corrected.

The novelty of the data presented in this study has to be indicated by Authors in the section Discussion or Conclusions – novel data presented in the current manuscript in comparison to the previous already published ones should be clearly depicted.

Response: We agreed with Reviewers' suggestion, new and revised sentences have added to revised Conclusion.

The manuscript requires an English language edit. Some sentences are misleading, some are just awkward, e.g.
‘Cytotoxic activity against WiDr cells showed that the IC50 for A. alba and A. lanata was 258.14 ug/mL and 243.32 ug/mL, respectively. This indicated that their classification as anticancer agents was moderate.’
Response: To incorporate Reviewers' comments, the sentences have been revised to read
‘Cytotoxic activity against WiDr cells showed that the IC50 for A. alba and A. lanata was 258.14 ug/mL and 243.32 ug/mL, respectively. This observation indicated the possibility to develop moderate anticancer agents.’

‘Natural ingredients developed as potential chemotherapeutic agents include mangrove leaves.’ should rather read as follows: ‘Natural substances developed as potential chemotherapeutic agents include components of mangrove leaves.’

‘This extract has a mechanism for inhibiting the cell cycle at the G0-G1 phase...’

Response: ‘This extract has a mechanism for inhibiting the cell cycle at the G0-G1 phase...’ has been revised to ‘Polyisoprenoids have a mechanism to inhibit the cell cycle at the G0-G1 phase...’

‘In this study, the test material is cytotoxic for the polyisoprenoids of leaves derived from...’

Response: ‘In this study, the test material is cytotoxic for the polyisoprenoids of leaves derived from...’ has been corrected to ‘In this study, the cytotoxic test material was derived from polyisoprenoids of mangrove leaves (PAA and PAL).’

The word ‘simplicia’ has been deleted to incorporate Reviewers’ suggestion throughout the revised manuscript.

Minor remarks:

- Title – ‘using reverse transcription-PCR’ - in my opinion these last four words are not necessary and should be deleted; it is nothing special in this RT-PCR technique.
- p.1 – ‘Mangrove plants produce a polyisoprenoid compound. Polyisoprenoids have been proven to have anticancer properties.’ - these two sentences have to be rewritten. As it is now they do not provide enough information about the subject of study. Moreover, why the term ‘polyisoprenoid compound’ is used here in a singular form? It is not consistent either with the natural composition of the leaf extract or with the text below.
- ‘Mangrove plants produce polyisoprenoid compounds. Polyisoprenoids have been proven to have anticancer properties.’
- p.1 – delete ‘inhibited’ in the sentence ‘The inhibited cell cycle and apoptosis...’.
- p.3 – rewrite the second sentence of Introduction – what is meant by the expression ‘halt its invasion and metastasis’ in the context of this sentence?
- p.3 – replace “…dolichol and polyprenol on the leaves...’ with ‘…dolichol and polyprenol in the leaves...’.
- Response: ‘…dolichol and polyprenol on the leaves...’ has been replaced with ‘…dolichol and polyprenol in the leaves...’.
- p.3 - 'MCF-7 and T47D' – a brief description of the cell line type is missing.
 Response: human breast cancer cell lines has been added before MCF-7 and T47D.

- p.3 - 'gene expression of COX-2 in colon cancer cells' spell out the name of the enzyme when first used here and throughout the entire manuscript.
 Response: ‘gene expression of COX-2 in colon cancer cells' has been corrected to ‘gene expression of cyclooxygenase-2 (COX-2) in colon cancer cells’.

- p.3 - delete the word ‘Every' in the sentence 'Every 500 g of powdered simplicia mangrove leaves...'. Explain the word ‘simplicia’ in the text or delete.
 Response: The words ‘Every’ and ‘simplicia’ in the sentence ‘Every 500 g of powdered simplicia mangrove leaves...’ has been deleted to read ‘Five hundreds g of powdered mangrove leaves...’.

- p.3 - 'The cell wall debris insoluble in CM21...' – how about other cellular components, e.g. proteins? - replace ‘cell wall debris’ with 'Precipitate'.
 Response: 'The cell wall debris insoluble in CM21...' has been corrected to 'Precipitate insoluble in CM21...'

- p.3 - delete the description of the cleaning of the leaves from 'The simplicia procedure ...' to ‘...stored in tightly closed plastic containers.’ Instead, describe the date of the collection of the leaves, how long the plant material was stored prior to extraction, the temperature of the extraction procedure.
 Response: 'The simplicia procedure ...' to ‘...stored in tightly closed plastic containers.’ Has been deleted from the revised manuscript.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests
No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.