ARTICLE TITLE: Missed Therapeutic and Prevention Opportunities in Women With BRCA-Mutated Epithelial Ovarian Cancer and Their Families Due to Low Referral Rates for Genetic Counseling and BRCA Testing: A Review of the Literature

CONTINUING MEDICAL EDUCATION ACCREDITATION AND DESIGNATION STATEMENT:
John Wiley & Sons, Inc. is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education (CME) for physicians.

CONTINUING NURSING EDUCATION ACCREDITATION AND DESIGNATION STATEMENT:
The American Cancer Society (ACS) is accredited as a provider of continuing nursing education (CNE) by the American Nurses Credentialing Center’s Commission on Accreditation. Accredited status does not imply endorsement by the ACS or the American Nurses Credentialing Center of any commercial products displayed or discussed in conjunction with an educational activity. The ACS gratefully acknowledges the sponsorship provided by Wiley for hosting these CNE activities.

EDUCATIONAL OBJECTIVES:
After reading the article “Missed Therapeutic and Prevention Opportunities in BRCA-Mutated Epithelial Ovarian Cancer Due to Low Referral Rates for Genetic Counseling and BRCA Testing: A Review of the Literature,” the learner should be able to:
1. Describe the therapeutic and prevention opportunities of genetic counseling and subsequent testing for BRCA breast cancer-susceptibility genes for women with epithelial ovarian cancer (EOC).
2. Highlight medical and surgical strategies, and their advantages and disadvantages, for preventing EOC among women with BRCA mutations.
3. Explain the relevance of BRCA mutations to the efficacy of poly ADP-ribose polymerase (PARP) inhibitors as treatment for EOC.

ACTIVITY DISCLOSURES:
No commercial support has been accepted related to the development or publication of this activity.

ACS CONTINUING PROFESSIONAL EDUCATION COMMITTEE DISCLOSURES:
Editor: Ted Gansler, MD, MBA, MPH, has no financial relationships or interests to disclose.

Lead Nurse Planner: Cathy Meade, PhD, RN, FAAN, has no financial relationships or interests to disclose.

NURSING ADVISORY BOARD DISCLOSURES:
Maureen Berg, RN, has no financial relationships or interests to disclose.

Susan Jackson, RN, MPH, has no financial relationships or interests to disclose.

Barbara Lesser, BSN, MSN, has no financial relationships or interests to disclose.

AUTHOR DISCLOSURES:
Paul Hoskins, MA, MRCP(UK), FRCPC, reports service on the Pfizer and AstraZeneca advisory boards and grants from AstraZeneca outside the submitted work.

Walter Gotlieb, MD, reports advisory board participation and consulting fees for AstraZeneca outside the submitted work.

The peer reviewers disclose no conflicts of interest. Identities of the reviewers are not disclosed in line with the standard accepted practices of medical journal peer review.

SCORING:
A score of 70% or better is needed to pass a quiz containing 10 questions (7 correct answers), or 80% or better for 5 questions (4 correct answers).

INSTRUCTIONS ON RECEIVING CME CREDIT:
This activity is intended for physicians. For information concerning the applicability and acceptance of CME credit for this activity, please consult your professional licensing board.

This activity is designed to be completed within 1.5 hours; physicians should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity during the valid credit period, which is up to 2 years from the time of initial publication.

INSTRUCTIONS ON RECEIVING CNE CREDIT:
This activity is intended for nurses. For information concerning the applicability and acceptance of CNE credit for this activity, please consult your professional licensing board.

This activity is designed to be completed within 1.5 hours; nurses should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity during the valid credit period, which is up to 2 years from the time of initial publication.

FOLLOW THESE STEPS TO EARN CREDIT:
• Log on to acsjournals.com/ce.
• Read the target audience, educational objectives, and activity disclosures.
• Read the activity contents in print or online format.
• Reflect on the activity contents.
• Access the examination, and choose the best answer to each question.
• Complete the required evaluation component of the activity.
• Claim your certificate.

This activity will be available for CME/CNE credit for 1 year following its launch date. At that time, it will be reviewed and potentially updated and extended for an additional 12 months.

All CME/CNE quizzes are offered online FREE OF CHARGE. Please log in at acsjournals.com/ce. New users can register for a FREE account. Registration will allow you to track your past and ongoing activities. After successfully completing each quiz, you may instantly print a certificate, and your online record of completed courses will be updated automatically.

SPONSORED BY THE AMERICAN CANCER SOCIETY, INC.
Missed Therapeutic and Prevention Opportunities in Women With BRCA-Mutated Epithelial Ovarian Cancer and Their Families Due to Low Referral Rates for Genetic Counseling and BRCA Testing: A Review of the Literature

Paul J. Hoskins, MA, MRCP(UK), FRCP(C) 1; Walter H. Gotlieb, MD, PhD 2

Abstract: Fifteen percent of women with epithelial ovarian cancer have inherited mutations in the BRCA breast cancer susceptibility genes. Knowledge of her BRCA status has value both for the woman and for her family. A therapeutic benefit exists for the woman with cancer, because a new family of oral drugs, the poly ADP-ribose polymerase (PARP) inhibitors, has recently been approved, and these drugs have the greatest efficacy in women who carry the mutation. For her family, there is the potential to prevent ovarian cancer in those carrying the mutation by using risk-reducing surgery. Such surgery significantly reduces the chance of developing this, for the most part, incurable cancer. Despite these potential benefits, referral rates for genetic counseling and subsequent BRCA testing are low, ranging from 10% to 30%, indicating that these therapeutic and prevention opportunities are being missed. The authors have reviewed the relevant available literature. Topics discussed are BRCA and its relation to ovarian cancer, the rates of referral for genetic counseling/BRCA testing, reasons for these low rates, potential strategies to improve on those rates, lack of effectiveness of current screening strategies, the pros and cons of risk-reducing surgery, other prevention options, and the role and value of PARP inhibitors. CA Cancer J Clin 2017;67:493-506. © 2017 American Cancer Society.

Keywords: BRCA testing, poly ADP-ribose polymerase (PARP) inhibitors. prevention, therapy

Practical Implications for Continuing Education

> The failure to routinely test for the presence of a germline BRCA mutation in women with epithelial ovarian cancer results in a missed therapeutic opportunity because of the nonavailability of poly ADP-ribose polymerase (PARP) inhibitors under the current labelling indications.

> This same failure to test will cause family members to miss out on the all-important chance of prevention in a cancer that otherwise is ultimately fatal for most women and for which screening is ineffective.

> This failure to test is predominantly due to a lack of physician awareness about its value and problems with the genetic counselling/testing process. These problems will be relatively simple to fix with sufficient education and the will to change inefficient processes.

Introduction

Epithelial ovarian cancer (EOC) can result from inherited mutations in the genes involved in DNA repair, most commonly the BRCA1 and BRCA2 breast cancer susceptibility genes. Such germline BRCA mutations occur in up to 18% of women with high-grade EOC.1 Knowledge of the index patient’s BRCA status has 3 important downstream benefits: 1) therapeutic, because of the recent introduction of poly ADP-ribose polymerase (PARP) inhibitors; 2) prevention, because risk-reduction strategies...
can be offered previously unaffected family members who have the mutation; and 3) financial, because cost savings for the patient/family and the health care system from the prevention of EOC are more cost effective than treatment. Despite these potential benefits, less than 20% of women with EOC (on a population basis) in Ontario, Canada, are referred for counseling and BRCA1 mutation testing.

Novelty does not explain the low rates—the ability to test for mutated BRCA is about 20 years old. In state-funded systems like Canada, cost is not a major factor. BRCA testing is free and universally accessible, yet the rates are low, similar to those in user pay systems. Instead, the reasons for low rates fall into 4 major categories: 1) process issues (eg, availability of, access to, and timeliness of counseling/testing); 2) physician issues (eg, lack of knowledge, poor access to counseling/testing, and work load issues); 3) patient lack of knowledge/awareness; and 4) specific patient issues (eg, cost, fear of genetic discrimination, anxiety/psychosocial issues, impact on family dynamics, and patient lack of knowledge about the value of testing).

This literature review describes BRCA1 testing rates in detail and why they are important with regard to the use of subsequent downstream actions. It is from an EOC perspective alone, except when prevention strategies overlap with those for breast cancer.

Background

An estimated 22,440 women will be diagnosed with EOC and 14,080 will die of it in the United States in 2017. Extraovarian spread is the norm at diagnosis, and a cure is unlikely in these women. Survival rates have improved modestly over the last 30 years, but these gains result from prolonged survival, not improved cure rates. Ten-year survival rates fall as stage increases and range from 75% to 84%, 50% to 60%, and 25% to < 10% for stages I through IV, respectively.

Approximately 24% of all women who develop EOC do so in the setting of an inherited syndrome. The most common mutations, which occur in 15% of all patients, are in the breast cancer susceptibility genes BRCA1 and BRCA2. The normal function of these genes is in the high-fidelity repair of double-stranded DNA breaks. If BRCA is mutated, then double-stranded DNA repair instead occurs using more error-prone pathways. The result is genomic instability, one consequence of which is cancer development. Women with BRCA mutations have an increased risk of EOC (the background population risk is 1.6%). The lifetime risk is from 35% to 60% for those with mutated BRCA1 and from 12% to 25% for those with mutated BRCA2. EOC is a conglomerate of biologically and genotypically different cancers, including high-grade serous (HGS) (70%), endometrioid (10%), clear cell (10%), mucinous (3%), and low-grade serous (5%). Mutated germline BRCA is most common in the high-grade cancers, rare in the low-grade mucinous or low-grade serous cancers, and has the highest prevalence (23%) in the HGS cancers. Mutation may truly occur only in HGS, because expert pathologic review coupled with immunohistochemistry often results in the reclassification of most high-grade cancers as HGS. Even the term EOC is somewhat of a misnomer, because evolving evidence indicates a fallopian tube origin for the majority of HGS cancers.

EOC in the setting of a BRCA mutation is often diagnosed at a younger age, is associated with a positive family or personal history of breast/ovarian cancer, and has a better prognosis. However, a family or personal history is often absent, and there is no definable older age limit. As a result, screening criteria based on age, personal/family history, and ethnicity (eg, Ashkenazi Jewish or French Canadian) will result in some affected kindreds being missed. More inclusive screening criteria, as reflected in current guidelines (ie, no histologic limitations [except mucinous] and irrespective of family history, personal cancer history or age), will lead to the highest pick-up rate.

The testing guidelines from the Society of Gynecologic Oncology include any woman with high-grade EOC. Guidelines from the National Comprehensive Cancer Network are slightly broader in scope and call for testing any woman with invasive EOC (in a footnote, they state that BRCA-related cancers are associated with the nonmucinous types, but they do not specifically exclude the mucinous types).

Genetics Referral/BRCA Testing Rates and Barriers

The current paradigm is that testing is only performed subsequent to genetics referral. The referral rates in the older reports were in the 10% to 32% range (Table 1). The more restrictive testing guidelines used, which limited testing to those at “high risk,” as defined by a personal history of breast cancer or family history of breast and/or ovarian cancer, contributed somewhat to the under testing. Such restrictions will lead to 40% of inherited mutations being missed. However, even in the current era of more inclusive testing criteria, the majority of women are still not referred for genetic counseling/testing. Additional reasons for the failure to get to the genetics team and thus not be tested include: 1) process issues with genetic counseling/testing; 2) physician lack of knowledge; 3) patient unawareness of testing; and 4) patient refusal. Patients for the most part are not the problem. Understanding who gets tested identifies some of the barriers. Population-based referral rates in Ontario were low despite a publically funded system and universal access. Rates were higher at academic centers compared with those in the community and in the presence of a family history (47%–55% vs 13%–16%) or a personal history (62% vs 16%) of breast cancer. This impact of a positive family history
was similar at the Princess Margaret Hospital, an academic oncology center. Rates fell with increasing patient age. 5,53 Rates increased slightly in the years 2009 to 2011 but were still low at 29% to 48% (despite the guidelines now being more inclusive) at academic centers. 5,52,53,55 These latter findings implicate physicians as part of the problem, with possible reasons including nonawareness of guidelines, nonadherence to them, or lack of belief in them. System access issues will also impact testing. Rates are lower in non-Caucasians, those with lower educational levels, and those living farther away from the genetic counseling center. 4,52,55 Up to 55% of patients seen at academic centers are unaware of testing, and the percentage is greater among African Americans and those who are less well educated. 53,62 When informed about the value of testing, greater than 85% reported they would be tested if it had a therapeutic implication for them or a benefit to their family.5,53,56 In a small Australian study of 22 women, all reported that they would be tested if there was a therapeutic implication and all believed the advantages outweighed the disadvantages they cited were 1) fear of a second cancer; 2) cancer fear in their daughters; 3) insurance discrimination for their children; and 4) additive stress at an already difficult time. 52

Current guidelines only recommend who should be referred and tested but do not describe how to make that happen. 50,51 Process improvements (eg, having referral forms embedded in the electronic chart, having counselors in the oncology clinics, getting the oncology team to order the testing ahead of genetics referral [mainstreaming], and routine electronic notification of the treating physician that testing is available) potentially can improve testing. Data from 2 newer approaches have been reported. A 100% rate was achieved at the Royal Marsden Hospital in the United Kingdom, with motivated staff using mainstreaming. 57,63 The ENGAGE study (Evaluating a Novel Onco-Geriatric BRCA Testing Counseling Model Among Patients With Ovarian Cancer), which has now finished accruing, is a prospective observational cohort study that replicates this mainstreaming model whereby oncologists or nurses inform the patients about BRCA testing and its values/drawbacks and obtain their consent before BRCA testing. The genetics team then only routinely sees in consult those with a mutation or a variant requiring evaluation. Another interesting and relatively effective way to improve upon BRCA testing rates has been tested in London, Ontario. 5 A diagnosis of EOC automatically triggers referral to genetics with a confirmed subsequent appointment. Patients then can choose to “opt out.” In a preliminary analysis, 77% went for the appointment.

The goal should be 100% rates of BRCA testing in women with EOC. Improving test rates using the current germline testing model can only come about by improved physician/patient awareness in conjunction with improved processes. In addition, patients need an affordable and geographically accessible process. This can be achieved, as discussed above, by highly motivated groups but, because of the human element, cost constraints, and geographic issues, this is unlikely to happen outside such well-resourced centers of excellence. One way to guarantee 100% test rates for all patients with EOC would be to eliminate physician/patient awareness and geographic/system barriers by instead using “reflex” (ie, guaranteed) tumor BRCA testing as part of the pathologic pathway, akin to estrogen receptor status reporting in breast cancer, with subsequent germline testing in those patients in whose tumors a BRCA mutation was found. An analogous process is used in testing for Lynch syndrome in colonic and uterine cancers whereby initial abnormal mismatch-repair immunohistochemistry triggers genetic testing.

The momentum for tumor testing has come because of the availability of the PARP inhibitors. 64-67 Tumor testing will identify germline BRCA mutations, somatic BRCA
mutations, and also homologous repair deficiency (HRD) (see the section below on PARP inhibitors), from either phenotypic DNA patterns or specific gene profiles, all of which predict for a greater PARP inhibitor effect. As an additional benefit, this tumor testing could be used as a preliminary step in identifying those women with EOC who potentially carry an inherited BRCA mutation. Only those women with mutations in the tumor, of which 75% are germline and 25% are somatic, would then need formal germline testing.

Tumor testing, as the initial step, could reduce the workload for the genetic counseling team. The current paradigm is for all women with EOC to be seen and fully consented before testing. Switching to tumor testing, provided that it accurately identifies those women with germline BRCA mutations (ie, with minimal false-negative results), will reduce the workload significantly, because only the 20% or so who have mutations in the tumor will need to be referred for full counseling and subsequent germline testing. It is a little more complicated now, in that multigene panels designed to detect other possible inherited mutations have become the norm despite our as yet limited knowledge as to what to do with these results in practice. If these can be accurately identified in the tumor, then this is not an issue; if not, then continued germline testing for all will still be needed (ie, it does not solve the workload issue). Germline testing is simpler from a technical standpoint, in that large amounts of high-quality DNA with no fixation artifacts are generated. In contrast, with formalin-fixed, paraffin-embedded specimens, the quality and quantity of DNA is variable. Next-generation sequencing is needed to be able to detect mutations in a rapid, accurate, effective, and cost-effective manner in this setting of low amounts of poor-quality DNA. The problem is that tumors contain a mixture of cancerous and normal cells, cellularity can be low, and necrosis may be present. Expert pathologic help (ie, access to pathologists) is needed to identify the best areas for sampling. In addition, the fixation process can lead to denaturing, and these degraded DNA products can lead to false-positive reporting as mutations in the absence of the correct sequencing technology. Validated testing panels are needed to minimize the chance of false-negative results, and updated bioinformatics are needed for variant calling.

BRCA mutation testing is more complex per se, whether it is germline or somatic, because the gene is very large, and there are thousands of different potential mutations spread throughout the coding regions (ie, no mutation hotspots). The mutations vary from single nucleotide mutations, to insertions/deletions, to copy number variations. The sequencing approach adopted is all important, because false-negatives need to be kept at an absolute minimum. Copy number variations are a major issue in this regard. Weren et al used a combined technique of single molecular inversion probe-based next-generation sequencing combined with multiplex ligation-dependent probe amplification. Those authors achieved a 99.998% accuracy rate, with a false-negative reading of nucleotides of only 1 in 1 million. Finally, a stringent validation process is needed for laboratory accreditation, ie, use of next-generation sequencing, use of proven gene testing panels, and the availability and ability to use the bioinformatics needed for variant calling.

Currently, tumor testing is still not ready for routine, day-to-day use, but the technology is available as is the underlying laboratory expertise to allow its introduction in the near future. Until then, maximizing germline testing is paramount.

The Differential Effectiveness of Screening and Prevention

Advanced-stage, high-grade EOC is rarely cured by the combination of chemotherapy and surgery. Other approaches (eg, screening and prevention) are needed to reduce mortality. Unfortunately, early detection via screening has not yet been shown to be effective. Prevention is currently the only viable, efficacious strategy.

Screening

Successful screening detects cancer earlier, when it is more likely curable, reducing mortality. Studies evaluating the currently available tools for early detection have not shown benefit. The original pilot trial of 22,000 women used initial cancer antigen 125 (CA 125) levels followed by pelvic ultrasound if elevated. Median ovarian cancer-specific survival was improved, but this could reflect lead-time bias from earlier detection and not a real effect. There were slightly less EOC-related deaths: 9 in the screened cohort and 18 in the controls (not statistically significant; P = .83). Of note, more of the cancers were low grade in the screened cohort (69% vs 25%). Subsequently, 3 large, randomized studies have been reported. The Japanese study reported more stage I cancers (63% vs 38%) in the screened group, which was a prerequisite for screening effectiveness; however, this on its own was not proof of benefit, which would have required a reduction in mortality. However, only 62 cancers occurred in the 82,487 participants, and greater than one-half were low grade, with a greater incidence in the screened cohort. No mortality data have been reported. The Prostate, Lung, Colorectal, and Ovarian study (n = 78,216) reported neither down staging (only 15% were stage I) nor a mortality reduction. In contrast, the UK study, which excluded women thought to be at a higher risk of EOC based on a personal or familial cancer history, using a more nuanced analysis of CA 125 (including an increase within the normal
range over time as abnormal) demonstrated 11% and 15% mortality reductions in the 2 annual “screening” arms: ultrasound alone or combined CA 125 measurement and ultrasound, respectively. There were 649 deaths from EOC, in 0.34% and 0.29% of the nonscreened and screened populations, respectively. In total, 345,570 screens were carried out in 50,640 women, potentially saving 20 lives: a huge time commitment for the women and at great cost to the system, about £17 million, for little real benefit. Unfortunately, these “positive” mortality results may have been due to flaws that were unforeseeable during the design phase and to interpretation issues. Screening will detect them when smaller, but this does not increase curability. Benefit was only seen after an individual woman had been screened for 10 years or longer, raising the possibility that only biologically indolent cancers were those detected by screening. The second confounder is the removal of ovaries and fallopian tubes secondary to false-positive screening. Like “opportunistic salpingectomy,” this unintended consequence of screening, and not screening itself, prevents cancer and lowers mortality.

There are no high-level data on screening in a BRCA-mutated population. The available data do not indicate that screening is useful. The National Ovarian Cancer Early Detection program evaluated gynecologic examination every 6 months plus ultrasound in 4526 high-risk women (with a personal history of breast cancer, a family history of breast or ovarian cancer, or the presence of a BRCA mutation). In those women, 12,709 scans identified 98 adnexal masses, leading to 49 operations. Twelve cancers were present, and all were stage III, ie, they did not result in the prerequisite for screening success, which was down staging to stage I. In the UK Familial Ovarian Cancer Screening Study of women with a predicted risk of EOC of 10% or greater (essentially a family history or predisposing mutations), CA 125 was measured every 4 months and, if levels were normal, then ultrasound was carried out yearly, whereas, if levels were abnormal, then ultrasound occurred within 2 months. Thirteen screen-detected cancers were identified in 4348 women. The one diagnosed at the initial screen was stage III, and only 2 of the 12 discovered within a year of the prior screen were stage I.

In contrast, prevention in BRCA carriers is effective. Prophylactic/risk-reducing surgery is highly effective, more so than chemoprevention. Knowledge of risk factors for EOC and the likely sites of origin of the different histologies provide an underlying biologic rationale for prevention.

Surgical Prevention/Risk-Reducing Surgery
EOC rates increased with increasing age, early menarche, late menopause, infertility, and nulliparity and decreased with oral contraceptive use and multiparity. Endometriosis increased the risk of clear cell and endometrioid cancers but not HGS cancers. “Incessant ovulation” was the original unifying hypothesis used to explain these associations. Ovulation traumatizes the ovarian epithelium. More ovulations mean more damage and a greater risk of resulting malignant transformation. This hypothesis has since been revised, because the fallopian tube, not the ovary, is thought to be the usual site of origin for most HGS EOCs. Previously, fallopian tube cancer had been regarded as rare and, when diagnosed, its histology was HGS, often with adjacent precursor lesions (suggesting that it was the true primary site), and the fimbria was the usual location. Evolving evidence for a fallopian tube origin for most HGS is as follows: 1) The risk reduction with tubal ligation is from 40% to 60% for clear cell and endometrioid histologies but only 20% for HGS. Techniques that instead involve fimbrial excision hint at a greater risk reduction for HGS. The best data on absolute risk reduction come from the population-based Danish study. With tubal ligation, the risk reduction was 13% versus 42% with salpingectomy. The explanation is that clear cell and endometrioid cancers are ovarian in origin, arising from foci of endometriosis exfoliated from the endometrium that then transit the fallopian tube to reach the ovary. Tubal ligation prevents this. In contrast, ligation does not remove the fimbrial end of the fallopian tube, where HGS develops with subsequent seeding to the ovary. 2) Further evidence came from risk-reducing bilateral salpingo-oophorectomy (BSO) in BRCA mutation carriers. There was a 2.7% rate of cancer in the 3030 prophylactic surgeries, of which 70% were tubal in origin. Premalignant changes in the tubal epithelium were identified in another 3%. Removing only the ovaries and leaving the fallopian tubes behind resulted in an increased risk of subsequent cancers (11% vs 5%).

In view of these discoveries, pathologic techniques have changed to include extensive fimbrial sectioning. Serous tubal intraepithelial neoplasia is now recognized in up to 40% of women who would otherwise be regarded as having ovarian or primary peritoneal cancers. These serous tubal intraepithelial neoplasia is fimbrial in location with the same p53 mutations as the invasive cancers. The current explanatory hypothesis that links an increased number of menstrual cycles to a fallopian tube origin for HGS is that both ovulation and retrograde menstruation lead to an inflammatory environment in the distal fallopian tube that is cancer-promoting.

Targeting BRCA mutation-carrying members of ovarian cancer kindreds for surgical prevention is not a new concept and is guideline recommended. The lifetime risk of developing EOC for those with BRCA1 and BRCA2 mutations is 35% to 60% and 12% to 25%, respectively.
Risk-reducing surgery potentially could prevent 90% of these EOCs, although the actual reported rates, from short follow-up, are from 72% to 80%. Three more pieces of information help in understanding the current recommendation for surgical prevention, which is BSO: 1) the low-grade histotypes, likely not \(\text{BRCA1} \) related (ie, endometrioid, clear cell, and mucinous), are ovarian in origin; 2) \(\text{BRCA} \) mutations increase the risk of breast cancer, and oophorectomy diminishes the risk of breast cancer; and 3) the adverse effects of premature menopause. Relying on the fallopian tube theory of origin of HGSs, some have suggested that salpingectomy alone would be sufficient. This would avoid oophorectomy-induced premature menopause with, all of its negative consequences, but would lose the positive benefit of breast cancer prevention. Current guidelines recommend BSO, the reasons for this are: 1) not all HGS cancers originate in the fallopian tube; 2) salpingectomy will not prevent those histologies that are ovarian in origin (ie, clear cell, endometrioid, and mucinous); 3) salpingectomy has no impact on breast cancer prevention; and 4) lack of estrogen can be treated with topical or systemic estrogen replacement. There is a concern that such replacement therapy could increase breast cancer risk, similar to oral contraceptives, which conferred a 20% increased risk in a meta-analysis, with a similar effect size in a \(\text{BRCA} \) mutation carrier population. However, no study has demonstrated an increased breast cancer risk with “replacement” therapy in \(\text{BRCA} \) carriers after BSO. Risk-reducing BSO in those carrying \(\text{BRCA} \) mutations is recommended after child bearing by age 35 to 40 years, because breast cancer and EOC can occur in the late 30s. Some reports have shown that oophorectomy has an additive advantage by reducing the risk of breast cancer by 40% and 60% in women with \(\text{BRCA1} \) and \(\text{BRCA2} \) mutations. However, bilateral mastectomy provides greater risk reduction, up to 90%. An alternative to up front salpingo-oophorectomy for EOC prevention would be initial salpingectomy followed by delayed oophorectomy at age 50 years. Because \(\text{BRCA2} \)-related EOC occurs later, it may also be reasonable to delay risk-reducing surgery until ages 45 to 50 years in this group.

Chemoprevention

Chemoprevention with oral contraceptives, metformin, or aspirin is being investigated. Phase 3 data are unavailable. The combined contraceptive pill decreased the risk of EOC, in contrast to the increased risk for breast cancer, in the general population. The average risk reduction was 5% to 8% per year, with 10 years of use reducing the risk by 50%. Progestin-only products were not protective. A multistudy analysis of histology-specific outcomes reported protection against serous, clear, and endometrioid tumors, but not against mucinous tumors. In those with \(\text{BRCA} \) mutations, there was a 50% reduction in the rate of subsequent EOC with any prior use of the combined contraceptive pill, and the reduction increased to 60% if used for 6 or more years. In a recent meta-analysis, the risk reduction with use for at least one year was from 33% to 80% for \(\text{BRCA1} \) and from 58% to 63% for \(\text{BRCA2} \). Data on metformin are scant. Metformin use has been shown to decrease the risk of EOC by 43% to 50%. In a meta-analysis of 12 case-control studies, aspirin reduced the risk of EOC by 10%, which increased to 20% in daily users. Three of those studies looked at daily, low-dose usage, and the risk reduction was 34%. Risk reduction was seen for serous, endometrioid, and mucinous subtypes. No data specific to \(\text{BRCA} \) carriers are available.

Cost of Surgical Prevention Compared With Treating Ovarian Cancer

Preventing EOC, as opposed to treating it with surgery and chemotherapy, likely represents better “value for money.” This “value” can be reported in 2 ways: 1) budget impact (ie, the actual cost); or 2) cost effectiveness (ie, putting a dollar figure to each life-year saved, which allows for a comparison with other therapies [eg, renal dialysis]). There are 2 published cost-effectiveness analyses. The UK study assumed that all women with EOC would have germline \(\text{BRCA} \) testing and that 88% and 30% of affected carriers would undergo risk-reducing salpingo-oophorectomy and mastectomy, respectively. All costs were included, ie, testing, risk-reducing or therapeutic surgeries, chemotherapy, and palliative care. The incremental cost-effectiveness ratio (ICER) was £4339 per quality-adjusted life-year gained, which was well below the UK willingness-to-pay threshold of £20,000. The results were predominantly driven by reductions in the number of cases of ovarian and breast cancers and the resulting reduced mortality. In the other report, US costs were used. The cost of 3 different \(\text{BRCA} \) testing strategies, based on different criteria for testing the index case, followed by testing of family members with risk-reducing mastectomy/salpingo-oophorectomy in carriers, was compared with treating the cancers surgically (no chemotherapy) once they developed. ICER values ranged from US $32,000 to $149,000 per year of life gained. The most cost-effective strategy was if \(\text{BRCA} \) screening was limited to those of Ashkenazi Jewish ancestry or if there was a personal or family history of breast cancer/EOC. The highest ICER was for testing any invasive, non-mucinous EOC. There is no generally accepted ICER that represents value for money, but $100,000 is commonly used in North America. The estimates were potentially “worst-case,” because 1) they assumed low rates of \(\text{BRCA} \) testing and poor compliance with risk-reducing surgery, and 2) the

"CA CANCER J CLIN 2017;67:493–506"

VOLUME 67 | NUMBER 6 | NOVEMBER/DECEMBER 2017

499
cost of subsequent chemotherapy and palliative care was not included.

Budget impact, ie, what it actually costs, is more relevant to the payer. Costs will only increase as the population both increases and ages and therapy gets more expensive. US estimates of the direct costs for all cancers are for a 27% increase to $158 billion in 2020. Factoring in increased drug costs resulted in a 39% increase. Such costs are not sustainable in any healthcare system. Cost estimates also ignore the indirect costs, similar to the direct costs, to the patient/family and society because of lost productivity. There are only a few published reports of the costs of treating EOC. US population-based data indicate that these costs are from $82,000 to $99,000 in the first year (surgery and chemotherapy driving the cost), $8000 per subsequent year, and from $100,000 to $150,000 in the last year of life. In a similar analysis, Canadian costs were about 50% less. Patient-specific data from Australia in 2008 estimated that the total treatment cost over 2.5 years in 85 women would be 4 million Australian dollars. Canadian data from 40 women treated between 1989 and 1992 had median costs from commencing second-line or third-line treatment to death or last follow up of C$37,000 (range, C$5000–C$163,000). The US costs of prevention for both EOC and breast cancer are more precise. Prophylactic mastectomy with reconstruction, BSO, and hospitalization costs $28,000, with ancillary costs, including BRCA testing, of $2000, for a total of $30,000 per individual. Our own very preliminary calculation of the cost savings arising from preventing EOC in Canada, using US prices, is for a potential cost saving of $11 million per year (unpublished observations). Figure 1 is a flow diagram of the numbers of women involved. It assumes 100% testing of women with EOC for BRCA and 2 female first-degree relatives (each of whom has a 50:50 risk of inheriting the gene), then 100% testing rates in their first-degree relatives, followed by 100% rates of risk-reducing salpingo-oophorectomy in all carriers. This optimistic goal would prevent 124 new cases of EOC per year. A total of 306 risk-reducing operations would be carried out to try to prevent 138 cancers at a cost per person of $30,000, for a total of $9 million. These 306 operations would prevent 90% of EOCs from occurring. In contrast, treating these 124 cancers (90% of 138) would cost conservatively $150,000 each, for a total of $20 million, for a potential cost saving of $11 million.

Therapeutic Benefit Resulting From BRCA Testing in Women With EOC

In this review, it is not possible to discuss in detail all aspects relating to the use of PARP inhibitors. Instead, the important components are summarized below. For the reader who wishes more detailed information, reviews discussing their mechanism of action, the concept of “synthetic lethality,” resistance mechanisms, activity, and toxicity are referenced. High-grade EOC is often associated with deficient double-stranded DNA repair, and multiple defective genes have been identified. The most common is mutated BRCA. Both copies of the BRCA gene need to be mutated for loss of function. In the inherited (ie, germline scenario), one mutation is inherited, and the other is acquired. Approximately 20% of high-grade EOCs are BRCA-related, 15% are germline, and 5% are somatic (both mutations acquired). Another 30% of those with high-grade EOC have other causes of DNA repair deficiency, so-called BRCAness or HRD. This will likely provide an additional therapeutic target. Single-stranded DNA breaks (SSBs) are estimated to occur up to 20,000 times per day in any individual. PARP is a nuclear protein that binds to SSBs and acts as a positive signal to initiate base and nucleotide excision repair. PARP inhibitors interfere with this process. These SSBs as a result cannot then be repaired and are converted during replication to double-strand breaks (DSBs). Such DSBs are lethal unless accurately repaired via homologous repair. If there is defective homologous repair, far less accurate mechanisms predominate, with a greater chance of apoptotic cell death. BRCA/BRCAness-driven, high-grade
EOC has normal SSB repair but deficient homologous repair. On its own, deficient homologous repair matters less, because it is a "back up" pathway for the SSB repair process. However if PARP is also inhibited, then homologous repair becomes all important. This is an example of "synthetic lethality," wherein an abnormality in one pathway alone is nonlethal, but when a second, interlinked pathway (eg, PARP) is targeted, it results in cancer cell death. Normal cells are unaffected, because they only have one mutated copy of the gene.

The single-agent activity of PARP inhibitors ranges from 26% to 67% in BRCA1-mutated individuals and up to 76% if CA 125 responses are included. Combining the results from these studies, the response rate was 36%, and it decreased as lines of prior therapy increased and as the patient’s sensitivity to platinum decreased. The side effects of these oral drugs are generally mild and easily managed by dose delays or reductions. Common side effects include nausea, diarrhea, anemia, and thrombocytopenia. Myelodysplasia is a rare but usually fatal complication and occurred in 1.4% and 1.1% of patients receiving niraparib or placebo, respectively, in the NOVA study (niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer). Olaparib and rucaparib have US regulatory approval in those with known BRCA mutations as monotherapy in third or greater relapse (ie, knowledge of BRCA mutation status is required to ensure access to these drugs). Ongoing studies are seeking evidence that the larger “BRCAness” group can also benefit.

Approval on a worldwide basis is more common as maintenance therapy after successful retreatment with platinum-based therapy in those with sensitive disease (defined as EOC relapsing ≥ 6 months after completing prior treatment). Three randomized studies of maintenance PARP inhibitor therapy have been published, and a fourth has just been presented at a conference. Study 19 was a randomized phase 2 study comparing maintenance olaparib versus placebo after successful second-line chemotherapy for platinum-sensitive, HGS EOC. It was not powered for overall survival (OS), and there was a 20% rate of crossover to olaparib, which will confound OS analysis. BRCA1 mutation status did not need to be known for entry into the study. The median progression-free survival (PFS) was superior with olaparib at 8.4 versus 4.8 months (hazard ratio [HR], 0.55) in all patients and 11.2 versus 4.3 months (HR, 0.18) in the BRCA1-mutated subset. OS was 29.8 versus 27.8 months (HR, 0.72) in all patients and 34.9 versus 30.2 months (HR, 0.62) in the BRCA1-mutated subset. Study 41 confirmed these results in a similar population, but the comparison was between chemotherapy with olaparib followed by maintenance olaparib versus chemotherapy alone. PFS was 12.2 versus 9.6 months (HR, 0.51) in all patients and was not reached versus 9.7 months (HR, 0.21) in the BRCA1-mutated subset. The OS curves were overlapping. These data led to regulatory approval in those with a BRCA1 mutation. SOLO2, an appropriately powered, phase 3 study, reiterated the Study 19 design but are now using a tablet formulation at a dose of 300 mg twice daily instead of capsules at 400 mg twice daily. PFS increased from 5.5 to 19.1 months (HR, 0.3; P < .0001). The NOVA study compared niraparib versus placebo in a platinum-sensitive, relapsed population. The presence of a BRCA1 mutation was not required for study entry. PFS results were similar to Study 19 results in those with a germline BRCA1 mutation (PFS, 21 vs 5.5 months; HR, 0.27). Benefit was also seen in patients with an HRD profile (PFS, 13 vs 4 months; HR, 0.38) and in those without HRD (PFS, 7 vs 4 months; HR, 0.56). The current data are too immature for an OS analysis. US Food and Drug Administration approval was granted in March 2017 and did not require a BRCA1 mutation to be present. However, because these drugs are still very expensive, it is likely that many jurisdictions will limit their use to those with a BRCA1 mutation, because this is where the absolute benefit is the greatest. Knowledge of the patient’s BRCA1 status will still be needed. PARP inhibitors improve short-term and median-term outcomes but are not a cure. Almost inevitably, resistance develops.

Knowledge of BRCA1 status may also impact routine chemotherapy decisions. A retrospective analysis using immunohistochemistry as a surrogate for BRCA1 mutation demonstrated that it predicted for a markedly greater OS benefit with intraperitoneal-containing therapy. Because intraperitoneal chemotherapy is used as first-line treatment, knowledge of BRCA1 status is needed as early as possible, preferably in the tumor so that both germline and somatic mutation status is known.

Conclusions

Referral rates for genetic counseling and subsequent BRCA1 mutation testing are low. Failure to test for BRCA1 mutation leads to: 1) missed therapeutic opportunities for women with EOC to receive PARP inhibitors, which can be used as either maintenance therapy earlier in the disease course after successful retreatment with chemotherapy or as stand-alone treatment later on; and 2) missed prevention opportunities for their families. Lack of knowledge on the part of physicians and patients and process issues represent the major barriers. In institutions with motivated individuals, these barriers have been fixed with simple process modifications. To ensure testing for the wider population (ie, the geographically dispersed or those not attending centers of expertise), a switch to “reflex” tumor BRCA1 testing of the initial pathologic specimen, akin to estrogen receptor or Lynch syndrome testing, would be a possible solution to ensure that all women are tested without exception and in a timely fashion.
References

1. Walsh T, Casadel S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. *Proc Natl Acad Sci U S A*. 2011;108:18032-18037.

2. Eccleston A, Bentley A, Dyer M, et al. A discrete event simulation to evaluate the cost effectiveness of germline BRCA1 and BRCA2 testing in UK women with ovarian cancer. bioRxiv preprint doi: biorxiv.org/content/early/2016/06/24/060418. Accessed August 3, 2017.

3. Kwon JS, Daniels MS, Sun CC, Lu KH. Preventing future cancers by testing women with ovarian cancer for BRCA mutations. *J Clin Oncol*. 2010;28:675-682.

4. Metcalfe KA, Fan I, McLaughlin J, et al. Uptake of genetic testing for ovarian cancer in Ontario: a population-based study. *Gynecol Oncol*. 2009;112:68-72.

5. McGee J, Panabaker K, Leonard S, Armstrong A, Pettit L, Sharrif S. Genetic counseling consult rates following a diagnosis of high grade serous ovarian carcinoma in the Canadian Province of Ontario. *Int J Gynecol Cancer*. 2017;27:437-443.

6. Bellcross CA, Peipins LA, McCarty FA, et al. Characteristics associated with genetic counseling referral and BRCA1/2 testing among women in a large integrated health care system. *Genet Med*. 2015;17:43-50.

7. Nelson HD, Pappas M, Zakher B, Mitchell JP, Okinaka-Hu L, Fu R. Risk assessment, genetic counseling, and testing for BRCA-related cancer in women: a systematic review to update the US Preventive Services Task Force recommendation. *Ann Intern Med*. 2014;160:255-266.

8. Hoskins P, Schrader I, Berkeopeuc L. Pan-Canadian survey of providers of BRCA testing in women with ovarian cancer: beliefs, practices and process issues [abstract]. *Int J Gynecol Cancer*. 2016; 26(suppl 3). Abstract IGCS-0391.

9. Siegel R, Naishadham D, Jemal A. Cancer statistics 2012. *CA Cancer J Clin*. 2012;62:10-29.

10. Wright JD, Chen L, Tergas AI, et al. Trends in relative survival for ovarian cancer from 1973 to 2011. *Obstet Gynecol*. 2015;125:1345-1352.

11. Akhtar-Danesh N, Elit L, Lytwyn A. Testing future cancers by testing women with ovarian cancer for BRCA mutations. *J Clin Oncol*. 2010;28:675-682.

12. van Altena AM, Karim-Kos HE, de Vries E. Pathogenetic predisposition for advanced stage epithelial ovarian cancer patients in the Netherlands. *Gynecol Oncol*. 2012;125:649-654.

13. Baldwin LA, Huang B, Miller RW, et al. Twelve-year survival for epithelial ovarian cancer. *Obstet Gynecol*. 2012;120:612-618.

14. Akeson M, Jakobsen AM, Zetterqvist BM, Holmberg E, Brännstrom M, Horvath G. A population-based 5-year cohort study including all cases of epithelial ovarian cancer in western Sweden: 10-year survival and prognostic factors. *Int J Gynecol Cancer*. 2009;19:116-123.

15. Huang L, Cronin KA, Johnson KA, Marriot AO, Feuer EJ. Improved survival time: what can survival cure models tell us about population-based survival improvements in languages colorectal, ovarian, and testicular cancer? *Cancer*. 2008;112:2289-2300.

16. Coleman MP, Forman D, Bryant H, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007. (The International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. *Lancet*. 2011;377:127-138.

17. Zhang S, Royer R, Li S, et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. *Gynecol Oncol*. 2011;121:353-357.

18. Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. *Cancer*. 2005;104:2807-2816.

19. Risch HA, McLaughlin JR, Cole DE, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin cohort study in Ontario, Canada. *J Natl Cancer Inst*. 2006;98:1094-1106.

20. Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. *Am J Hum Genet*. 2001;68:700-710.

21. Patel KJ, Yu VP, Lee H, et al. Involvement of Brca2 in DNA repair. *Mol Cell*. 1998;1:347-357.

22. Tutt A, Bertwistle D, Valentine J, et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. *EMBO J*. 2001;3:4704-4716.

23. Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. *Mol Cell*. 1999;4:511-518.

24. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. *Mol Cell*. 2001;7:263-272.

25. Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. *Proc Natl Acad Sci U S A*. 2011;108:3406-3411.

26. King MC, Marks JH, Mandell JB; New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. *Science*. 2003;302:643-646.

27. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. *Am J Hum Genet*. 2003;72:1117-1130.

28. Finch A, Metcalfe KA, Chiang JK, et al. The impact of prophylactic salpingo-oophorectomy on menopausal symptoms and sexual function in women who carry a BRCA mutation. *Gynecol Oncol*. 2011;121:163-168.

29. Levy-Lahad E, Catane R, Eisenberg S, et al. Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families. *Am J Hum Genet*. 1997;60:1059-1067.

30. Bodeo MS, Rebeck TR, Calzone KA, Stopfer JE, Nathanson KL, Weber BL. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. *J Natl Cancer Inst*. 2002;94:1365-1372.

31. Thompson D, Easton DF; Breast Cancer Linkage Consortium. Cancer incidence in BRCA1 mutation carriers. *J Natl Cancer Inst*. 2002;94:1358-1365.

32. Wooster R, Weber BL. Breast and ovarian cancer. *N Engl J Med*. 2003;348:2339-2347.

33. Gils K, Koomoss F. Ovarian carcinoma histotypes: their emergence as important prognostic and predictive markers. *Can J Biochem. Pathol. Histol. Oncology (Williston Park)*. 2016;30:178-179.

34. Ramalingam P. Morphologic, immuno-phenotypic, and molecular features of epithelial ovarian cancer. *Oncology (Williston Park)*. 2016;30:166-176.

35. Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. *J Clin Oncol*. 2012;30:2654-2663.

36. Lakhanie SR, Manek S, Penault-Llorca F, et al. Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. *Clin Cancer Res*. 2004;10:2473-2481.

37. Cunningham JM, Cicek MS, Larson NB, et al. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status [online article]. *Sci Rep*. 2014;4:4026.

38. Kobel M, Kallogger SE, Lee S, et al. Biomarker-based ovarian carcinoma typing: a histologic investigation in the Ovarian Tumor Tissue Analysis Consortium. *Cancer Epidemiol Biomarkers Prev*. 2013;22:1677-1686.

39. Madore J, Ren F, Filali-Mouhim A, et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. *J Pathol*. 2010;220:392-400.

40. Han G, Gilks CB, Leung S, et al. Mixed ovarian epithelial carcinomas with clear cell and serous components are variants of high-grade serous carcinoma: an interobserver correlated p and immunohistochemical study of 32 cases. *Am J Surg Pathol*. 2008;32:955-964.

41. Gils KB, Ionescu DN, Kallogger SE, et al. Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma. *Hum Pathol*. 2008;39:1239-1251.

42. Kobel M, Bak J, Bertelsen BI, et al. Ovarian carcinoma histotype determination is highly reproducible, and is improved through the use of immunohistochemistry. *Histopathology*. 2014;64:1004-1013.

43. Kobel M, Kallogger SE, Baker PM, et al. Diagnosis of ovarian carcinoma cell type is highly reproducible: a trans-Canadian study. *Am J Surg Pathol*. 2010;34:984-993.
44. Singh N, Gilks CB, Wilkinson N, McCullagh WG. The secondary Mullerian system, field effect, BRCA, and tubal fimbria: our evolving understanding of the origin of ovarian high-grade serious serous carcinoma and why assignment of primary site matters. *Pathology*. 2015;47: 423-431.

45. Boyd J, Sonoda Y, Federici MG, et al. Clinico-pathologic features of BRCA-linked and sporadic ovarian cancer. *JAMA*. 2000;283: 2260-2265.

46. Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. *J Clin Oncol*. 2008;26:20-25.

47. Tan DS, Rothermundt C, Thomas K, et al. “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. *J Clin Oncol*. 2008;26:5330-5336.

48. Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY. Improved survival in women with epithelial ovarian carcinoma. *Cancer*. 2003;97:2187-2195.

49. Norquist BM, Pennington KP, Agnew KJ, et al. Characteristics of women with ovarian carcinoma who have BRCA1 and BRCA2 mutations not identified by clinical testing. *Gynecol Oncol*. 2013;128:485-487.

50. Lancaster JM, Powell CB, Chen LM, et al. SGO Clinical Practice Committee. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. *Gynecol Oncol*. 2015;136:5-7.

51. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology. Genetic/Familial High Risk Assessment: Breast and Ovarian version 2. Fort Washington, PA: National Comprehensive Cancer Network; 2016. nccn.org/professionals/physician_gls/f_guidelines.asp.

52. Meyer LA, Anderson ME, Lacour RA, et al. Referral of ovarian cancer patients for genetic counselling by oncologists: need for improvement. *Public Health Genomics*. 2015;18:225-232.

53. Petzel SV, Vogel RJ, McNiel J, Leininger A, Argenta PA, Geller MA. Improving referral for genetic risk assessment in ovarian cancer using an electronic medical record system. *Int J Gynecol Cancer*. 2014; 24:1003-1009.

54. Bell K, Scott M, Pond G, et al. Genetic counselling referral rates and uptake of BRCA1 and BRCA2 testing among women diagnosed with serous ovarian cancer in a tertiary care cancer centre [serial online]. *J Genet Syndr Gene Ther*. 2013;4:156.

55. George A, Riddell D, Seal S, et al. Implementing rapid, robust, cost-effective, patient-centered, routine genetic testing in ovarian cancer patients [serial online]. *Sci Rep*. 2016;6:29506.

56. Fox E, McCuaig J, Demskey R, et al. The sooner the better: genetic testing following ovarian cancer diagnosis. *Gynecol Oncol*. 2015;137:423-429.

57. Powell CB, Littell R, Hoodfar E, Sinclair F, Pressman A. Does the diagnosis of breast or ovarian cancer trigger referral to genetic counseling? *Int J Gynecol Cancer*. 2013;23:431-436.

58. Eccles DM, Balmana J, Clune J, et al. Selecting patients with ovarian cancer for germline BRCA mutation testing: findings from guidelines and a systematic literature review. *Adv Ther*. 2016;33:129-150.

59. Lacour RA, Daniels MS, Westin SN, et al. What women with ovarian cancer think and know about genetic testing. *Gynecol Oncol*. 2008;111:132-136.

60. Meiser B, Gleeson M, Kasparian N, et al. There is no decision to make: experiences and attitudes toward treatment-focused genetic testing among women diagnosed with ovarian cancer. *Gynecol Oncol*. 2012; 124:153-157.

61. Percival N, George A, Gyvertson J, et al. The integration of BRCA testing into oncology clinics. *Br J Nurs*. 2016;25:690-694.

62. Weren RD, Mensenkamp AR, Simons M, et al. Novel BRCA1 and BRCA2 tumor test as basis for treatment decisions and referral for genetic counselling of patients with ovarian carcinomas. *Hum Mutat*. 2017;38:226-235.

63. Koczowska M, Zuk M, Gorczynski A, et al. Detection of somatic BRCA1/2 mutations in ovarian cancers by next-generation sequencing: findings from guidelines and a systematic literature review. *Adv Ther*. 2016;33:129-150.

64. Hennessy BT, Timms KM, Carey MS, et al. BRCA somatic and germline mutation detection in paraffin embedded ovarian carcinomas. *Genet Med*. 2016;18(10):1060-1064.

65. Mafficini A, Simbolo M, Parisi A, et al. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing. Oncotarget. 2016;7:1076-1083.

66. Hennessy BT, Timms KM, Carey MS, et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibition in ovarian cancer. *J Clin Oncol*. 2010;28:3570-3576.

67. Minz MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. *N Engl J Med*. 2016;375:2154-2164.

68. Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations and epigenetic BRCA modifications in serious ovarian cancer. *Ann Oncol*. 2016;27:1449-1455.

69. Crawford B, Adams SB, Sittler T, et al. Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. *Breast Cancer Res Treat*. 2017;163:383-390.

70. Li J, Meeks H, Feng BJ, et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. *J Med Genet*. 2016;53:34-42.

71. Luthra R, Chen H, Roy-Chowdhuri S, Singh RR. Next-generation sequencing in clinical molecular diagnostics of cancer: advantages and challenges. *Cancers (Basel)*. 2015;7:2023-2036.

72. Ellison G, Huang S, Carr H, et al. A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilizing multiplexed PCR-based targeted next generation sequencing [serial online]. *JBM Clin Pathol*. 2015;15:1-14.

73. Endris V, Stenzerig A, Pfarr N, et al. NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: results and conclusions of the First International National Round Robin Trial. *Virchows Arch*. 2016;468:697-705.

74. Casey G. The BRCA1 and BRCA2 breast cancer genes. *Curr Opin Oncol*. 1997;9:88-93.

75. Mackay HJ, Brady MF, Oza AM, et al. Prognostic relevance of uncommon ovarian histology in women with stage III/IV epithelial ovarian cancer. *Int J Gynecol Cancer*. 2010;20:945-952.

76. Jacobs J, Skates SJ, MacDonald N, et al. Screening for ovarian cancer: a pilot randomised controlled trial. *Lancet*. 1999;355:1207-1210.

77. Kobayashi H, Yamada Y, Sado T, et al. A randomized study of screening for ovarian cancer: a multicenter study in Japan. *Int J Gynecol Cancer*. 2008;18:414-420.

78. Buyss BS, Partridge E, Black A, et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening randomized controlled trial. *JAMA*. 2011;305:2295-2303.

79. Jacobs J, Menon U, Ryan A, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. *Lancet*. 2016;387:945-956.

80. Hoskins PJ, Gottlieb W. Ovarian cancer screening: UKCTOCS trial [letter]. *Lancet*. 2016;387:2603-2603.

81. Narod SA, Sopik V, Ginnanakae V. Should we screen for ovarian cancer? *BMC Med*. 2016;14:191-194.

82. Sasiendi PD, Duffy SW, Cuzzick J. Ovarian cancer screening: UKCTOCS trial [letter]. *Lancet*. 2016;387:2602.

83. Thornton JG, Bewley S. Ovarian cancer screening: UKCTOCS trial [letter]. *Lancet*. 2016;387:2601-2602.

84. Hoskins PJ, Le N, Gilks B, et al. Low-stage ovarian clear cell carcinoma: population-based outcomes in British Columbia, Canada, with evidence for a survival benefit as a result of a irradiation. *J Clin Oncol*. 2012;30:1656-1662.

85. Kumar A, Le N, Tinker AV, Santos JL, Parsons C, Hoskins PJ. Early-stage endometrioid ovarian carcinoma: population-based outcomes in British Columbia. *Int J Gynecol Cancer*. 2014;24:1401-1405.

86. McAlpine JN, Hanley GE, Woo MM, et al. Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention [serial online]. *Am J Obstet Gynecol*. 2014; 210:471.e1-e11.

87. Fishman DA, Cohen L, Blank SV, Shulman L, Singh D, Bozorgi K. The role of
ultrasound evaluation in the detection of early-stage epithelial ovarian cancer. Am J Obstet Gynecol. 2005;192:1214-1221.

89. Rosenthal AN, Fraser LSM, Philpott S, et al. Evidence of stage shift in women diagnosed with ovarian cancer during the past 30 years: United Kingdom familial ovarian cancer screening study. J Clin Oncol. 2017;35:1411-1420.

90. Gates MA, Rosner BA, Hecht JL, Tworoger SS. Risk factors for epithelial ovarian cancer by histologic subtype. Am J Epidemiol. 2010;171:45-53.

91. Tsilidis KK, Allen NE, Key TJ, et al. Oral contraceptive use and reproductive factors and risk of ovarian cancer in the European Prospective Investigation into Cancer and Nutrition. Br J Cancer. 2011;105:1436-1442.

92. Stewart LM, Holman CD, Aboagye-Sarfo P, Jupiter JC, Hart RJ. In Vitro fertilization, endometriosis, nulliparity and ovarian cancer risk. Gynecol Oncol. 2013;128:260-264.

93. Suelblinvong T, Carney ME. Current understanding of risk factors for ovarian cancer. Curr Treat Options Oncol. 2009;10:67-81.

94. Havrilesky LJ, Moorman PG, Lowery WJ, et al. Oral contraceptive pills as primary prevention for ovarian cancer: a systematic review and meta-analysis. Obstet Gynecol. 2012;120:139-147.

95. Collaborative Group on Epidemiological Studies of Ovarian Cancer. Beral V, Doll R, Hermon C, Petro R, Reeves G. Ovarian cancer and oral contraceptives: a collaborative reanalysis of data from 15 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet. 2008;371:303-314.

96. Ness RB, Schildkraut JM, Rose D, et al. Association between endometriosis, nulliparity and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2010;102:192-198.e3.

97. Sieh W, Salvador S, McGuire V, et al. Tubal ligation and risk of ovarian cancer subtypes: a pooled analysis of case-control studies. Int J Epidemiol. 2013;42:579-589.

98. Powell CB. Risk reducing salpingo-oophorectomy for BRCA mutation carriers: twenty years later. Gynecol Oncol. 2014;132:261-263.

99. Tobacman JK, Greene MH, Tucker MA, Costa J, Kase R, Fraumeni JF Jr. Intra-abdominal carcinomatosis after prophylactic oophorectomy in ovarian-cancer-prone families. Lancet. 1982;2:795-797.

100. Struewing JP, Watson P, Easton DF, Poeder BA, Lynch HT, Tucker MA. Prophylactic oophorectomy in inherited breast/ovarian cancer families. J Natl Cancer Inst Monogr. 1995;17:33-35.

101. Piver MS, Jishi MF, Tsukada Y, Nava G, Primack S. Peritoneal cancer in women with genetic susceptibility: implications for Jewish populations. Pain. 2004;3:265-281.

102. Kindelberger DW, Lee Y, Miron A, et al. Intraperitoneal carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31:161-169.

103. Salvador S, Rempel A, Soslowska RA, Gills B, Huntsman D, Miller D. Chromosomal instability in fallopian tube precursor lesions of ovarian cancer and frequent monoclonality of synchronous ovarian and fallopian tube mucosal serous carcinoma. Gynecol Oncol. 2008;110:408-417.

104. Seidman JD, Zhao P, Yemelyanova A. “Primary peritoneal” high-grade serous carcinoma is very likely metastatic from serous tubal intraepithelial carcinoma: assessing the new paradigm of ovarian and pelvic serous carcinogenesis and its implications for screening for ovarian cancer. Gynecol Oncol. 2011;120:470-473.

105. Seidman JD. Serous tubal intraepithelial carcinoma localizes to the tubal-peritoneal junction: a pivotal clue to the site of origin of extratubal high-grade serous carcinoma (ovarian cancer). Int J Gynecol Pathol. 2015;34:112-120.

106. Carlson JW, Miron A, Jarboe EA, et al. Serous tubal intraepithelial carcinoma: its potential role in primary peritoneal serous carcinoma and serous cancer prevention. J Clin Oncol. 2008;26:4160-4165.

107. Kobayashi H, Kajiwara H, Kanayama S, et al. Molecular pathogenesis of endometriosis-associated clear cell carcinoma (endometrioid carcinoma) of the ovary (review). Oncol Rep. 2009;22:233-240.

108. Bahar-Shany K, Brand H, Sapoznik S, et al. Exposure of fallopian tube epithelium to follicular fluid mimics carcinogenic changes in precursor lesions of serous and endometrioid carcinoma. Gynecol Oncol. 2014;132:322-327.

109. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999;91:1459-1467.

110. Fleming JS, Beaugie CR, Haviv I, Chenexis-Trench G, Tan D. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol. 2006;247:4-21.

111. Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101:80-87.

112. Friebel TM, Domchek SM, Neuhausen SL, et al. Bilateral prophylactic oophorectomy and bilateral prophylactic mastectomy in a prospective cohort of unaffected BRCA1 and BRCA2 mutation carriers. Clin Breast Cancer. 2007;7:875-882.

113. Marchetti C, De Felice F, Palia I, et al. Risk-reducing salpingo-oophorectomy: a meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA1 and BRCA2 mutation carriers [serial online]. BMC Womens Health. 2014;14:150.

114. Kauff ND, Satagopan JM, Robson ME, et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med. 2002;346:1609-1615.

115. Walker JL, Powell CB, Chen LM, et al. Society of Gynecologic Oncology recommendations and BRCA1/2 mutation carriers. Familial Ovarian Cancer Registry. Cancer. 2015;121:2108-2120.

116. The American Congress of Obstetricians and Gynecologists (ACOG). ACOG Practice Bulletin No. 89. Elective and risk-reducing salpingo-oophorectomy. Obstet Gynecol. 2008;111:231-241.

117. Society of Gynecologic Oncologists. Society of Gynecologic Oncologists Clinical Practice Statement: Salpingectomy for Ovarian Cancer Prevention. Chicago, IL: Society of Gynecologic Oncologists; 2013. sgo.org/practice-statement-salpingectomy-for-ovarian-cancer-prevention/. Accessed August 3, 2017.

118. Atsma F, Bartelink ML, Grobbeek DE, van der Schouw YT. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: a meta-analysis. Menopause. 2006;13:265-279.

119. Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812-822.

120. Parker WH, Broder MS, Chang E, et al. Ovarian conservation at the time of hysterec- tomy and long-term health outcomes in the Nurses’ Health Study. Obstet Gynecol. 2009;113:1027-1037.

121. Domchek SM, Friebel TM, Singer CF, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304:967-975.

122. Heemskerk-Gerritsen BA, Seynaeve C, van Asperen CJ, et al. Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction. J Natl Cancer Inst. 2015;107:1-9.

123. Brohet RM, Goldgar DE, Easton DF, et al. Oral contraceptives and breast cancer risk in the international BRCA1/2 carrier cohort study: a report from EMBRACE, GENEPSO, GEO-HEBON, and the IBCCS.
142. Narod SA, Risch H, Moslehi R, et al. Oral contraceptive use and risk of colorectal cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2012;21:280-286.

146. Home PD, Kahn SE, Jones NP, et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADAPT (A Diabetes Outcome Progression Trial) and RECORD (rosiglitazone Evaluation for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) clinical trials. Diabetologia. 2010;53:1838-1845.

148. Tsoref D, Panzarella T, Oza A. Aspirin in prevention of ovarian cancer: are we at the tipping point [serial online]? J Natl Cancer Inst. 2014;106: djt431.

149. Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML, Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst. 2011;103:117-128.

150. Smith TJ, Hillner BE. Bending the cost curve in cancer care. N Engl J Med. 2011;364:2060-2061.

154. Gordon LG, Scuffham PA, Beesley VL, et al. Breast cancer after prophylactic bilateral oophorectomy in BRCA1 and BRCA2 mutation carriers: a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2015;24(suppl). Abstract 5508.

155. Hafner MJ, Amman P, Schindler O, et al. New treatment options for ovarian cancer: PARP inhibitors—anefficacy of poly(ADP-ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol. 2015;33(suppl). Abstract 5508.

156. Meier CR. Use of metformin is not associated with a decreased risk of colorectal cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2012;21:280-286.

157. Meier CR. Use of metformin is not associated with a decreased risk of colorectal cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2012;21:280-286.

158. Meehan RS, Chen AP. New treatment option for ovarian cancer: PARP inhibitors—anefficacy of poly(ADP-ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol. 2012;30:372-379.

159. McNeish IA, Oza AM, Coleman RL, et al. Results of ARIEL2: a phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis [abstract]. J Clin Oncol. 2015;33(suppl). Abstract 5508.

160. De Lorenzo SB, Patel AG, Hurley RM, Kaufman SH. The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells [serial online]. Front Oncol. 2013;3:228.

161. Underhill C, Toutoumonde M, Bonnefoi H. A review of PARP inhibitors: from bench to bedside. Ann Oncol. 2011;22:268-279.

162. Mehan RS, Chen AP. New treatment option for ovarian cancer: PARP inhibitors [serial online]. Gyncol Oncol Res Pract. 2016;3:3.

163. Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma: or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12:852-861.

164. Oza AM, Coleman RL, et al. Phase II, open-label, randomized, multi-center study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol. 2012;30:372-379.

165. Coleman RL, Bell-McGuinn K, et al. A phase II evaluation of the potency, highly selective PARP1 inhibitor veliparib in the treatment of persistent or recurrent epithelial fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation—an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2015;137:386-391.

166. McNeish IA, Oza AM, Coleman RL, et al. Results of ARIEL2: a phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis [abstract]. J Clin Oncol. 2015;33(suppl). Abstract 5508.

167. Shapira-Frommer R, Oza AM, Domchek SM, et al. A phase 2 open-label multi-center study of single agent rucaparib in the treatment of patients with relapsed ovarian cancer and a deleterious BRCA mutation [abstract]. Ann Oncol. 2015;26(suppl). Abstract S508.

168. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic ovarian cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14:882-892.

169. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244-250.

170. Audeh MW, Carmichael J, Penson RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376:245-251.

171. Feng PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123-134.
173. Brown JS, Kaye SB, Yap TA. PARP inhibitors: the race is on. *Br J Cancer*. 2016;114:713-715.

174. Crafton SM, Bixel K, Hays JL. PARP inhibition and gynecologic malignancies: a review of current literature and on-going trials. *Gynecol Oncol*. 2016;142:586-596.

175. Matulonis UA, Penson RT, Domchek SM, et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multi-study analysis of response rates and safety. *Ann Oncol*. 2016;27:1013-1019.

176. Deeks ED. Olaparib: first global approval. *Drugs*. 2015;75:231-240.

177. Liu JF, Konstantinopoulos PA, Matulonis UA. PARP inhibitors in ovarian cancer: current status and future promise. *Gynecol Oncol*. 2013;133:362-369.

178. Oza AM, Cibula D, Benzaquen AO, et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. *Lancet Oncol*. 2015;16:87-97.

179. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. *N Engl J Med*. 2012;366:1382-1392.

180. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. *Lancet Oncol*. 2014;15:852-861.

181. Ledermann JA, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. *Lancet Oncol*. 2014;15:852-861.

182. Pujade-Lauraine E, Ledermann JA, Penson RT, et al. Treatment with olaparib monotherapy in the maintenance setting significantly improves progression-free survival in patients with platinum-sensitive relapsed ovarian cancer: results from the phase III SOLO2 study. Paper presented at: Society of Gynecologic Oncology (SGO) Annual Meeting on Women’s Cancer 2017; March 12-15, 2017; National Harbor, MD. Late Breaking Abstract 2.

183. Mortoni A. Mechanisms of resistance to PARP inhibitors [serial online]. *Front Pharmacol*. 2013;4:8.

184. Bouwman P, Jonkers J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? *Clin Cancer Res*. 2014;20:540-547.

185. Lesnock JL, Darcy KM, Tian C, et al. BRCA1 expression and improved survival in ovarian cancer patients treated with intraperitoneal cisplatin and paclitaxel: a Gynecologic Oncology Group Study. *Br J Cancer*. 2013;108:1231-1237.