Early benthic life stages of many crab species are rarely seen due to their small size and cryptic behaviour. Hence, little is generally known about their habitat and ecology (WOLCOTT 1988). This also holds true for the mangrove crab *Ucides cordatus* (Linnaeus, 1763): while larger juveniles and adults are frequently encountered in the mangrove forest, where they inhabit conspicuous burrows excavated in the mud, small juveniles with a carapace width (CW) < 1 cm had hardly ever been found in former population samplings. Therefore, there is a gap in knowledge concerning the early juvenile stage in the life history of this ecologically and economically important mangrove crab species. Follow-up studies are however needed to fully determine the role of conspecific burrows for juvenile habitat choice and survivorship in *U. cordatus*.

KEY WORDS. Caranguejo-uçá; juvenile; recruitment; settlement; size-frequency.
of the hosting owner crab or inside the sediment of the plugs of these burrows. Mean diameter of the burrow openings of the hosting owners was 3.6 ± 0.08 cm (Fig. 1, minimum 1.4 cm, maximum 5.7 cm).

All hosting burrows showed fresh tracks of larger crabs, indicating that they were inhabited. In 27 cases, the crab gatherer was successful in capturing the hosting owner crabs from these burrows. A total of 63% of the latter were males and 37% were females. The smallest and largest crabs had a CW of 2.1 cm and 5.7 cm, respectively, and average size was 3.8 ± 0.20 cm (Fig. 2). From the non-hosting burrows (without co-inhabitants, n = 1187) 414 crabs were captured. Their minimum and maximum sizes were 1.1 and 7.0 cm and average CW was 3.6 ± 1.03. Figure 3 compares the size-frequency of burrow owners (n = 441; 27 hosts and 414 non hosts) versus co-inhabiting crabs. While the mode of the former was in the class of 3.5-4.0 cm CW, the co-inhabiting crabs (N = 160) showed a mode in the 0.5-1.0 cm CW size class (Fig. 3). The distribution of the co-inhabitants overlapped with the one of owner crabs in the size classes of 1.0-1.5, 1.5-2.0 and 2.0-2.5 cm CW (Fig. 1).

The cryptic life-style and small size of the co-inhabiting conspecific burrows for juvenile survival. Recent laboratory experiments showed that chemical cues emitted by conspecific crabs, regardless of gender, enhance the survivorship and induce the settlement of U. cordatus megalopae (Diele & Smith 2007, Smith & Diele 2008). As U. cordatus odour concentrations are likely to be higher inside conspecific burrows than outside, settlement may indeed occur more frequently (or exclusively?) inside these burrows and explain our findings in the field. However, our sampling did not include the sediment outside the burrows. Consequently, we cannot rule out the possibility that recruitment also takes place elsewhere, irrespective of the presence of conspecific burrows. We will conduct further studies in this context to fully understand habitat choice of the settlers and the significance of co-inhabiting conspecific burrows for juvenile survival.
ACKNOWLEDGMENTS

Co-inhabitant juvenile recruits were discovered by crab gatherer Ivan Santos. We thank Cremildo Cruz, Elder Pedreira, Guto Merkle, Marion May, Maurício Oliveira and Sara Brito for the help in field. Thanks to Esther Borell and also two anonymous reviewers of Zoologia for helpful comments on the manuscript. The results are part of A.J. Schmidt (2006) Master Thesis, from IOUSP, with fellowship provided by CNPq. The work was supported by Instituto Ecotuba, CEPE, IESB and Hotel Transamérica. Present fellowship is provided by CAPES and DAAD.

LITERATURE CITED

DIELE, K. & D.J.B. SMITH. 2007. Effects of substrata and conspecific odour on the metamorphosis of mangrove crab megalopae, Ucides cordatus (Ocypodidae). Journal of Experimental Marine Biology and Ecology 348 (1-2): 174-182. [doi: 10.1016/j.jembe.2007.04.008]

EMMERSON, W.D. 2001. Aspects of the population dynamics of Neosarmatium meinerti at Mgazana, a warm temperate mangrove swamp in the East Cape, South Africa, investigated using an indirect method. Hydrobiologia 449 (1-3): 221-229. [doi: 10.1017506917996]

LUCCI, T.A.; E.D. SIVAK; K. ANGER & J.D. VALERO. 2002. Patterns and Processes of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura:Grapsidae) Recruitment in Mar Chiquita Coastal Lagoon, Argentina. Estuarine, Coastal and Shelf Science 55 (2): 287-297. [doi: 10.1006/ecss.2001.0904]

SIMITH, D.J.B. & K. DIELE. 2008. Metamorphosis of mangrove crab megalopae, Ucides cordatus (Ocypodidae): Effects of interspecific versus intraspecific settlement cues. Journal of Experimental Marine Biology and Ecology 362 (2): 101-107. [doi: 10.1016/j.jembe.2008.06.005]

VANNINI, M.; S. CANNICCI; R. BERTI & G. INNOCENTI. 2003. Cardisoma carnifex (Brachyura): where have all the babies gone? Journal of Crustacean Biology 23 (1): 55-59.

WOLCOTT, T.G. 1988. Ecology, p. 55-96. In: W.W. BURGGREN & B.R. McMAHON (Eds). Biology of the Land Crabs. Cambridge, Cambridge University Press, 479p.