The prevalence of anxiety symptoms and disorders among ophthalmic disease patients

Zulvikar Syambani Ulhaq, Gita Vita Soraya, Nadia Artha Dewi and Lely Retno Wulandari

Abstract

Background: Progressive and irreversible vision loss has been shown to place a patient at risk of mental health problems such as anxiety. However, the reported prevalence of anxiety symptoms and disorders among eye disease patients vary across studies. Thus, this study aims to clarify the estimated prevalence of anxiety symptoms and disorders among ophthalmic disease patients.

Methods: Relevant studies on the prevalence of anxiety symptoms and disorders among eye disease patients were collected through international databases, PubMed, Scopus, and Web of Science. A random-effects model was used to determine the pooled prevalence of anxiety symptoms and disorders among ophthalmic disease patients.

Results: The 95 included studies yielded a pooled prevalence of 31.2% patients with anxiety symptoms and 19.0% with anxiety disorders among subjects with ophthalmic disease. Pediatric patients were more anxious (58.6%) than adults (29%). Anxiety symptoms were most prevalent in uveitis (53.5%), followed by dry eye disease (DED, 37.2%), retinitis pigmentosa (RP, 36.5%), diabetic retinopathy (DR, 31.3%), glaucoma (30.7%), myopia (24.7%), age-related macular degeneration (AMD, 21.6%), and cataract (21.2%) patients. Anxiety disorders were most prevalent in thyroid eye disease (TED, 28.9%), followed by glaucoma (22.2%) and DED (11.4%). When compared with healthy controls, there was a twofold increase on the prevalence of anxiety symptoms (OR = 1.912, 95% CI 1.463–2.5, \(p < 0.001 \)) and anxiety disorders (OR = 2.281, 95% CI 1.168–4.454, \(p = 0.016 \)).

Conclusion: Anxiety symptoms and disorders are common problems associated with ophthalmic disease patients. Thus, comprehensive and appropriate treatments are necessary for treating anxiety symptoms and disorders among ophthalmic disease patients.

Keywords: anxiety symptoms and disorders, ophthalmic disease, prevalence

Received: 4 January 2021; revised manuscript accepted: 9 March 2022.
deterioration or limitations. As an example, vision loss is considered to be progressive and irreversible, placing the patient at increased risk of mental health problems which may negatively influence the individual’s quality of life. Several studies have shown the association between anxiety symptoms and ocular diseases. However, the reported prevalence of anxiety symptoms and disorders in patients with ocular diseases remains highly varied, ranging from 2.4% to 78% and 6.3% to 73%, respectively.

Meanwhile, early identification and management of anxiety is crucial in eye disease cases, as acute emotional stress can result in sudden intraocular pressure (IOP) elevation in the glaucomatous eye and has been associated with severe ocular hypertension. Due to the potential negative impact of poor mental health status on both the ophthalmic condition and general well-being of the patient, prompt identification and management of emotional and social factors correlated with anxiety should be taken into account in order to achieve optimal treatment. Indeed, patients with anxiety symptoms and disorders often experience significant impairment in functioning in global, social, occupational, and physical domains. Thus, identification of the impairment profile for those suffering from anxiety is essential to understand the hurdles that treatment may need to overcome. Altogether, in order to quickly identify and manage anxiety issues in ophthalmic disease subjects, decision-makers require a representative estimate on the prevalence of said condition. Hence, this study aims to systematically review the reported prevalence of both anxiety disorders and symptoms in ophthalmic disease patients, and to provide a pooled prevalence of anxiety among the eye disease patients.

Methods

Study criteria and search strategy

This study was performed according to the instructions of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Criteria of studies included in this meta-analysis were: (1) observational studies that reported either anxiety symptoms or disorders among patients with eye disease; (2) anxiety symptoms/states and disorders examined based on a validated methods/tools and clinical diagnosis, respectively; (3) ophthalmic diseases diagnosed based on the judgment of qualified ophthalmologists or medical records according to the International Classification of Disease and Codes (ICD-11); and (4) both adult and pediatric age were included. Relevant studies were searched from electronic databases such as PubMed, Scopus, and Web of Science, utilizing the following keywords: anxiety, prevalence/incidence, and eye/ocular disease/opthalmology until January 2022.

Data extraction and quality assessment

Data were extracted as follows: author, year of publication, study design, country, sample size, mean age of participants or otherwise indicated, type of disease, diagnostic method with its corresponding cutoff value, and the prevalence of anxiety disorders or symptoms. To assess the quality of the observational study, the Newcastle-Ottawa Scale (NOS) was applied. The maximum score for each study is 9. Studies scoring less than 5 were judged to be at a high risk of bias.

Statistical analysis

Prevalence estimates of anxiety symptoms and disorders were calculated from 95 studies. Heterogeneity was evaluated with the I^2 statistic, wherein I^2 values more than 50% indicated substantial heterogeneity. If heterogeneity existed, the random-effects model was then used; otherwise, the fixed-effects model was applied. Secondary analysis was used to evaluate the prevalence of anxiety symptoms and disorders among patients with ophthalmic disease relative to healthy subjects. A funnel plot and Begg’s test were used to investigate the publication bias if the pooled effect size consisted of 10 or more studies. Meta-analysis was performed utilizing Open Meta-Analyst software package. The value of 0.05 was indicative of statistical significance.

Results

Ninety-five studies were included in this meta-analysis, among which 81 evaluated anxiety symptoms while 14 evaluated anxiety disorders among patients with ophthalmic disease (Figure 1). The characteristics of the included studies are shown in Table 1. The prevalence of anxiety symptoms and disorders among ophthalmic disease patients ranged from 2.4% to 95.87% and 6.3% to 77.5%, respectively. The random-effect model was used because heterogeneity existed ($I^2 > 50$%). The overall pooled prevalences of
anxiety symptoms and disorders among patients with ophthalmic disease were 31.2% (6507/23,415 subjects, 95% CI 25.8%–36.7%, \(p < 0.001 \), Figure 2) and 19.0% (6502/60,174 subjects, 95% CI 16.1%–22%, \(p < 0.001 \), Figure 3), respectively. When the study was classified based on age, the pooled prevalence of anxiety symptoms in adult and pediatric patients were 29% (7726/33,981 subjects, 95% CI 25.8%–32.3%, \(p < 0.001 \)) and 58.6% (649/945 subjects, 95% CI 18.6%–98.5%, \(p = 0.004 \)), respectively (Figure 2).

Subgroup analysis was performed for studies evaluating anxiety symptoms and disorders among patients with the ophthalmic disease yielded similar findings. The highest prevalence of anxiety symptoms was observed in patients with uveitis [53.5%, 95% CI, 27.4%–79.6%, \(p < 0.001 \)]; patients with Behçet uveitis had a higher prevalence of anxiety symptoms (69.3%, 95% CI, 49%–89.6%, \(p < 0.001 \)) than those with any type of uveitis (43.3%, 95% CI, 9.9%–76.6%, \(p = 0.011 \), Figure 4(a)), followed by patients with dry eye disease (DED) (37.2%, 95% CI, 17.4%–40.5%, \(p < 0.001 \), Figure 4(b)), retinitis pigmentosa (RP) (36.5%, 95% CI, 19.8%–54.6%, \(p < 0.001 \), Figure 4(c)), diabetic retinopathy (DR) (31.3%, 95% CI, 13.5%–49.1%, \(p < 0.001 \), Figure 4(d)), glaucoma [30.7%, 95% CI, 22.3%–39%, \(p < 0.001 \); patients with primary-angle closure glaucoma (PACG) had a higher prevalence of anxiety symptoms (52.5%, 95% CI, 49.9%–80%, \(p < 0.001 \)) than those with primary-open angle glaucoma (POAG, 33.1%, 95% CI, 21%–45.2%, \(p < 0.001 \)) or any type of glaucoma (25.6%, 95% CI, 14.3%–36.9%, \(p < 0.001 \), Figure 5(a)), myopia (24.7%, 95% CI, 20%–29.4%, \(p < 0.001 \), Figure 5(b)), age-related macular degeneration [AMD, 21.6%, 95% CI, 12.5%–30.7%, \(p < 0.001 \), Figure 5(c);
Table 1. Characteristics of the included studies.

No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence [case/participants]	NOS
1	Agorastos et al.	2013	Germany	Glaucoma	70.8 [8.4]	Cross-sectional study	STAI	>44	21% [18/86]	6
2	Ayaki et al. [a]	2015	Japan	Glaucoma	59.5 [19.9]	Cross-sectional study	HADS	≥10	38.8% [42/109]	6
3	Cumurcu et al.	2006	Turkey	Glaucoma [PXG + POAG]	53.26 [13.22] 49.65 [11.11]	Case-control, Cross-sectional study	HARS	>17	9.6% [7/73]	7
4	Eramudugolla et al. [a]	2013	Australia	Glaucoma	76.22 [2.89]	Population-based cross-sectional study	GADS	≥4	8.7% [2/23]	7
5	Fasih et al.	2010	Pakistan	Glaucoma [POAG]	56.21 [13.37]	Cross-sectional study	HADS-A	≥11	33% [33/100]	6
6	Hwang and Kim	2015	Korea	Glaucoma	49.2 [10.6]	Cross-sectional study	HADS-A	≥10	51.4% [37/72]	6
7	Kong et al.	2015	China	Glaucoma [POAG + POAG]	58.16 [14.42] 52.86 [12.64]	Cross-sectional study	SAS	≥45	55% [55/100]	7
8	Lim et al.	2016	Singapore	Glaucoma [POAG + POAG]	67.1 [12.0]	Cross-sectional study	HAM-A	>17	63% [61/97]	6
9	Mabuchi et al.	2008	Japan	Glaucoma [POAG]	66.9 [11.9]	Case-control study	HADS-A	≥10	13% [30/230]	7
10	Otori et al.	2017	Japan	Glaucoma	62.4 [13.1]	Cross-sectional study	STAI	≥45	78.0% [351/450]	6
11	Pei et al.	2012	China	Glaucoma [POAG]	NA	Cross-sectional study	HADS-A	≥10	26.7% [116/40]	6
12	Rezapour et al. [a]	2018	Germany	Glaucoma	55	Population-based cohort study	GAD-7	≥3	5.3% [18/333]	7
13	Siguan-Bell and Florcruz	2019	Philippine	Glaucoma	61.6 [13.9]	Cross-sectional study	HADS-P	≥11	15% [12/82]	6
14	Tastan et al.	2010	Turkey	Glaucoma	64.23 [13.15]	Case-control study	HADS	≥8	40% [49/121]	7
15	Wu et al. [a]	2019	China	Glaucoma	57.59 [15.89]	Cross-sectional study	HADS-A	≥10	12.2% [52/428]	6
16	Yochim et al.	2012	USA	Glaucoma	70 [9.2]	Cross-sectional study	GAI	≥11	2.4% [1/41]	6
17	Zhang et al. [a]	2018	China	Glaucoma	57.20 [13.94]	Cross-sectional study	HADS-A	≥8	29.6% [78/263]	6
18	Zhan and Zhilan	2013	China	Glaucoma [POAG]	NA	Cross-sectional study	HAM-A	>17	59% [49/83]	6
19	Zhou et al.	2013	China	Glaucoma	55.40 [15.26]	Cross-sectional study	HADS-A	≥10	22.92% [116/506]	6

(Continued)
No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence (case/participants)	NOS
20	Dayal et al.	2022	India	Glaucoma	59.2 [12.6]	Cross-sectional study	HADS-A	≥8	6.5% [13/200]	6
21	Abe et al.	2021	Brazil	Glaucoma	70.14 [15.8]	Cross-sectional study	HADS	>12	4.65% [6/129]	6
22	Onwubiko et al.	2020	Nigeria	Glaucoma	18–72a	Cross-sectional study	HADS	≥11	44% [80/182]	6
23	Shin et al.	2021	China	Glaucoma [POAG]	54.14 [16.87]	Cross-sectional study	BAI	>10	16.7% [44/251]	6
24	Zhang et al.	2021	China	Glaucoma [POAG]	56.6 [15.7]	Cross-sectional study	HADS	≥8	28.1% [18/64]	6
25	Au Eong et al.	2012	Singapore	AMD	68.1 [9.4]	Cross-sectional study	EQ-5D [EQ_5]	>1	20.7% [70/338]	6
26	Augustin et al.	2007	France/Germany/Italy	Wet AMD	NA	Cross-sectional study	HADS	≥8	50% [168/336]	6
27	Rezapour et al.	2020	Germany	AMD	54.4 [11.0]	Cross-sectional study	GAD-7	≥3	4.2% [46/1089]	6
28	Fernández-Vigo et al.	2021	Spain	Wet AMD	80.9 [6.6]	Cross-sectional study	HADS	≥10	25.5% [14/55]	6
29	Senra et al.	2017	UK	Wet AMD	80 [7.4]	Cross-sectional study	HADS	≥8	17.3% [52/300]	6
30	Eramudugolla et al.	2013	Australia	AMD	75.63 [4.25]	Population-based cross-sectional study	GADS	≥4	10.5% [2/19]	7
31	Evans et al.	2007	UK	AMD	85.7 [5.2]	Population-based cross-sectional study	GHQ-28	NA	9.6% [50/516]	7
32	Mathew et al.	2011	Australia	AMD	78.0 [7.7]	Cross-sectional study	GADS	≥2	29.4% [43/145]	8
33	Ryu et al.	2017	Korea	AMD	69.41 [7.74]	Population-based cross-sectional study	EQ-5D [EQ_5]	>1	17.6% [58/326]	7
34	Hernández-Moreno et al.	2021	Portugal	AMD + DR	68.8 [11.96]	Cross-sectional study	HADS-A	NA	18% [13/71]	6
35	Ayaki et al.	2019	Japan	DED	59.5 [19.9]	Cross-sectional study	HADS	≥10	43.5% [107/247]	6
36	Li et al. (a)	2011	China	DED	42	Descriptive study	SAS	≥45	30.3% [27/89]	7
37	Li et al. (b)	2018	China	DED	19.7 [2.7]	Cross-sectional study	SAS	≥35	92.6% [87/94]	7
38	Liyue et al.	2015	Singapore	DED	54.49 [10.76]	Cross-sectional study	HADS	≥8	26.1% [24/94]	6
No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence (case/participants)	
----	-------	------	---------	---------	-----------------	-------------	----------------	--------	------------------------------	
39	Na et al.	2015	Korea	DED	44.9 (0.8)	Population-based cross-sectional study	EQ-5D (EQ_5)	> 0.5	17.5% (142/816)	
40	Wen et al.	2012	China	DED	41 (15)	Cross-sectional study	SAS	> 1	61.8% (177/283)	
41	Yilmaz et al.	2015	Turkey	DED	41*	Case-control study	DASS	> 7	63.3% (77/121)	
42	Wi et al.	2019	China	Anxiety states	45.52 (12.8)	Case-control study	GAD-7	> 7	39% (41/106)	
43	Kizawa et al.	2018	Japan	Cataract	61.3 (18.1)	Population-based cross-sectional study	HAM-A	> 14	17% (10/60)	
44	Bilal et al.	2019	USA	DED	65.5 (13.3)	Prospective study	SAS	> 10	0.2% (2/194)	
45	Zhang et al.	2016	China	DED	46.8 (11.1)	Case-control study	GAD-7	> 0.5	22.2% (22/100)	
46	Yilmaz et al.	2018	Turkey	Cataract	84.7 (15.3)	Population-based cross-sectional study	STAI-I	> 40	58.6% (34/58)	
47	Eramudugolla et al.	2013	Australia	Cataract	70.23 (9.7)	Population-based cross-sectional study	STAI-II	> 40	28.4% (28/100)	
48	Evans et al.	2007	UK	Cataract	67.3 (15.3)	Descriptive study	GAD-28	> 0.5	63.3% (67/100)	
49	Zhang et al.	2018	China	Cataract	70.23 (9.7)	Cross-sectional study	HADS-A	> 8	17.8% (17/100)	
50	Onal et al.	2017	Turkey	Cataract	67.3 (15.3)	Cross-sectional study	STAI-I	> 8	17.8% (17/100)	
51	Sittivarakul and Wongkot	2018	Thailand	Uveitis	43.9	Cross-sectional study	STAI-II	> 8	17.8% (17/100)	
52	Eser-Öztürk et al.	2021	Turkey	Behçet Uveitis	34.76 (11.1)	Cross-sectional study	STAI-I	> 8	17.8% (17/100)	
53	Silva et al.	2017	Brazil	Uveitis	42.8 (14.8)	Cross-sectional study	HADS	> 5	65.1% (52/80)	
54	Heindl et al.	2021	Germany	Unilateral anophthalmic	62.54 (16.7)	Cross-sectional study	GAD-7	> 5	44.7% (21/29)	
55	Ayaki et al.	2018	Japan	Retinal disease	59.5 (19.9)	Cross-sectional study	HADS	> 10	42.3% (12/29)	
56	Ayaki et al.	2016	Japan	IOL	59.5 (19.9)	Cross-sectional study	HADS	> 10	28.4% (8/29)	
No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence [case/participants]	NOS
----	--	------	-----------	--------------------------	-----------------	-----------------------------	------------------	-------	-------------------------------	-----
58	Ayaki et al. [f]	2019	Japan	Lid/Conjungtiva	59.5 [19.9]	Cross-sectional study	HADS	⩾10	41.8% [121/289]	6
59	Chaumet-Riffaud et al.	2017	France	RP	38.2 [7.1]	Cross-sectional study	HADS	⩾8	36.5% [54/148]	6
60	Eramudugolla et al. [d]	2014	Australia	Co-morbid eye diseases	79.94 [4.91]	Population-based cross-sectional study	GADS	⩾4	11.8% [6/51]	7
61	Evans et al.	2007	UK	Eye disease [a]	83.4 [5.1]	Population-based cross-sectional study	GHQ-28	NA	9.7% [25/259]	7
62	Evans et al.	2007	UK	Refractive Error	83.1 [5.0]	Population-based cross-sectional study	GHQ-28	NA	9.8% [44/450]	7

Anxiety states

No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence [case/participants]	NOS
63	Evans et al.	2007	UK	Eye disease [b]	85.5 [5.9]	Population-based cross-sectional study	GHQ-28	NA	9.4% [30/316]	7
64	Kempen and Zijlstra	2014	The Netherlands	Low vision	77.4 [8.8]	Cross-sectional study	HADS	⩾8	14.9% [22/148]	7
65	Kleinenschmidt et al.	1995	USA	Visual impairment	76.85	Cross-sectional study	STAI	⩾45	25% [20/80]	6
66	Łazarczyk et al.	2016	Poland	Myopia	13-17	Cross-sectional study	STAIC	⩾7	22.8% [26/114]	7
67	Rees et al.	2016	Australia	DR, DME	64.9 [11.6]	Cross-sectional study	HADS	⩾8	22.7% [118/519]	6
68	Zhang et al.	2021	China	DR	56.7 [11.6]	Cross-sectional study	HADS-A	⩾9	41.1% [43/105]	7
69	Richards et al.	2014	UK	Ptosis	61.6 [15.3]	Cross-sectional study	HADS	⩾11	27.9% [17/61]	7
70	Sianohara et al.	2017	Japan	RP	60.7 [15.4]	Cross-sectional study	HADS-A	⩾8	37% [41/112]	6
71	van der Aa et al. [a]	2015	The Netherlands	Eye disease	73.7 [12.3]	Cross-sectional study	HADS-A	⩾8	18% [45/246]	6
72	van der Aa et al. [b]	2015	The Netherlands	Eye disease	77.6 [9.27]	Cross-sectional study	HADS-A	⩾8	7.48% [46/615]	7
73	Wong and Yu	2013	China	GO	54	Cross-sectional study	HADS	⩾8	19% [23/122]	7
74	Ye et al.	2015	China	Eye enucleation	36.3 [12.6]	Cross-sectional study	HADS	⩾8	40% [78/195]	6
75	Yokoi et al.	2013	Japan	Myopia	60	Cross-sectional study	HADS-A	⩾8	25.9% [53/205]	7
76	Mao et al.	2021	China	Intermittent Exotropia	8.17 [2.81]	Cross-sectional study	HADS-A	⩾8	95.87% [373/389]	7

(Continued)
No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence (case/participants)	NOS
77	Magdalene et al.	2021	India	Severe visual impairment and blindness	<18+	Cross-sectional study	DASS	>7	56.56% [250/442]	7
78	Canamary et al.	2019	Brazil	Ocular toxoplasmosis	41.5 [14.5]	Cross-sectional study	HADS-A	≥8	38.3% [31/81]	6
79	Gollrad et al.	2021	Germany	Uveal melanoma	59.12 [13.6]	Prospective study	GAD-7	≥5	57.2% [75/131]	6
80	Kagedi et al.	2020	Congo	PCV	66.1 [6.9]	Prospective case-control study	HADS-A	≥8	73.3% [11/15]	6
81	Frank et al.	2019	USA	Visual impairment	≥65+	Cohort	PHQ-4-A	>3	27.2% [2063/7584]	7

Anxiety disorders

No	Study	Year	Country	Disease	Age [Mean (SD)]	Study design	Assessment tools	Cutoff	Prevalence (case/participants)	NOS
1	Bernabei et al.	2011	Italy	Visual impairment	71.9 [7.7]	Cross-sectional study	Clinical diagnosis	NA	10.6% [11/104]	7
2	Bunevicius et al.	2005	Lithuania	GO	45 [14]	Cross-sectional study	MINI	NA	73% [22/30]	7
3	Chiang et al.	2013	Taiwan	Blepharitis	54.8 [18]	Cross-sectional study	Clinical diagnosis	NA	9.5% [932/9764]	7
4	Hassan et al.	2015	USA	Strabismus	NA	Cross-sectional study	Clinical diagnosis	NA	21.9% [65/297]	6
5	Jacob et al.	2017	Germany	AMD	75.7 [10.1]	Retrospective cohort study	Clinical diagnosis	NA	11.7% [887/7580]	6
6	Li et al. [c]	2011	USA	Eye disease	75.8 [0.1]	Cross-sectional study	Clinical diagnosis	NA	6.5% [1461/22482]	7
7	van der Vaart et al.	2015	The Netherlands	DED	NA	Cross-sectional study	Clinical diagnosis	NA	11.4% [823/7207]	7
8	Zhang et al. [f]	2017	USA	Glaucoma	NA	Retrospective case-control study	Clinical diagnosis	NA	17% [1916/11234]	8
9	Berchuck et al.	2020	USA	Glaucoma	60.0 [14.2]	Cohort	Clinical diagnosis	NA	28% [113/408]	8
10	Steven et al.	2016	Germany	DED	NA	Retrospective cohort study	Clinical diagnosis	NA	7.7% [4/52]	6
11	Abdel-aty and Kombo	2021	USA	Non-Infectious Scleritis	NA	Cross-sectional study	Clinical diagnosis	NA	9.3% [15/162]	6
12	Cockerham et al.	2021	USA	TED	45.2 [7.6]	Cross-sectional study	Clinical diagnosis	NA	34% [34/100]	7

(Continued)
Table 1. (Continued)

No	Study design	Assessment tools	Cutoff	Prevalence (case/participants)
13	Retrospective cohort study	Clinical diagnosis	NA	26% (188/714)
14	Prospective study	Clinical diagnosis	NA	77.5% (31/40)

For the secondary analysis, 22 and 8 studies evaluating anxiety symptoms and disorders among patients with the ophthalmic disease were analyzed. The overall results indicated that relative to healthy controls, patients with ocular disease exhibit nearly a twofold increase of experiencing anxiety symptoms (OR = 1.912, 95% CI 1.463–2.5, p < 0.001, Figure 7(a)), of which patients with DED had slightly higher anxiety symptoms (OR = 2.19, 95% CI 1.411–3.399, p < 0.001, Figure 7(b)) than those with glaucoma (OR = 1.822, 95% CI 1.058–3.135, p = 0.03, Figure 7(c)), but these findings were not observed in patients with myopia nor AMD (Supplemental Figure 1A and B). In line, the risk of developing anxiety disorders among ophthalmic disease patients was two times higher than in control subjects (OR = 2.281, 95% CI 1.168–4.454, p = 0.016, Figure 8). The funnel plot generated from 22 studies was symmetrical (Supplemental Figure 1 C) with the Begg’s test (p = 0.108), indicating no evidence of publication bias.

Discussion
This study showed that the prevalence of anxiety symptoms and disorders among patients with ophthalmic disease were relatively higher than that reported in the general population. We also found that anxiety symptoms and disorders were two times more prevalent among patients with ophthalmic disease than control subjects. Based on the type of eye disease, the highest prevalence of anxiety symptoms was found in patients with uveitis, followed by DED, RP, glaucoma, myopia, AMD, and cataract. Similarly, anxiety disorders were also commonly occurred in patients with glaucoma and DED in addition to TED. It is interesting to note that pediatric patients with ocular disease tended to have a higher prevalence of anxiety symptoms than adults. This is because children may have low coping strategies against potentially

patients with wet AMD had a higher prevalence of anxiety symptoms (34.3%, 95% CI, 16.6%–52%, p < 0.001) than those with any type of AMD (15.3%, 95% CI, 8.3%–22.3%, p < 0.001, Figure 5(c)), and cataract (21.2%, 95% CI, 7.8–34.6%, p = 0.002, Figure 5(d)). For anxiety disorders, the highest prevalence was detected in patients with thyroid eye disease (TED) (28.9%, 95% CI, 21.8%–36%, p < 0.001, Figure 6(a)), followed by patients with glaucoma (22.2%, 95% CI, 11.7%–32.6%, p < 0.001, Figure 6(b)) and DED (11.4%, 95% CI, 10.5%–12.2%, p < 0.001, Figure 6(b)).

For the secondary analysis, 22 and 8 studies evaluating anxiety symptoms and disorders among patients with the ophthalmic disease were analyzed. The overall results indicated that relative to healthy controls, patients with ocular disease exhibit nearly a twofold increase of experiencing anxiety symptoms (OR = 1.912, 95% CI 1.463–2.5, p < 0.001, Figure 7(a)), of which patients with DED had slightly higher anxiety symptoms (OR = 2.19, 95% CI 1.411–3.399, p < 0.001, Figure 7(b)) than those with glaucoma (OR = 1.822, 95% CI 1.058–3.135, p = 0.03, Figure 7(c)), but these findings were not observed in patients with myopia nor AMD (Supplemental Figure 1A and B). In line, the risk of developing anxiety disorders among ophthalmic disease patients was two times higher than in control subjects (OR = 2.281, 95% CI 1.168–4.454, p = 0.016, Figure 8). The funnel plot generated from 22 studies was symmetrical (Supplemental Figure 1 C) with the Begg’s test (p = 0.108), indicating no evidence of publication bias.
Figure 2. Forest plot of the 81 studies estimating the pooled prevalence of anxiety symptoms among patients with ophthalmic disease, of which 3 studies were conducted in pediatric patients.
stressful situations or alternatively, both primary and secondary control coping may not fully develop in early childhood due to a lack of concrete operational cognitive capacities. Although most of the studies showed low-risk of bias, heterogeneity was observed across the studies. This is possibly due to a variety of detection methods/assessment tools and its cutoff value.

Our study suggests that a higher prevalence of anxiety symptoms was frequently occurred in patients with chronic eye disease (in our study, we reported such as Behçet uveitis, TED, glaucoma, RP, DR, macular degeneration, uncorrected refractive error, and cataract). More than 50% of patients with Behçet uveitis had experience anxiety symptoms. Indeed, depression and anxiety are consistently observed disorders in Behçet’s disease (BD) individuals across studies. It is notable that in 2017, a meta-analysis performed by Wan et al. indicates that DED is associated with nearly a three times increase in the prevalence of anxiety. Recently, Basilious et al. indicated possible interrelationships between DED severity with anxiety symptoms. In agreement with this finding, Zhang et al. demonstrated that glaucoma patients exhibit a 10-fold increase in the risk of developing anxiety disorders. In addition, for the first time, we have shown a higher prevalence of anxiety symptoms in PACG than POAG subjects. This is possibly because relative to POAG, PACG carries a three-fold increased risk of severe bilateral visual impairment. In parallel, Dawson et al. showed that the prevalence estimate of anxiety symptoms in people with AMD ranges from 9.6% to 30.1%, and interestingly, we found that patients with wet AMD had slightly higher anxiety symptoms than previously reported. Although both glaucoma and AMD are considered slow-progressing eye diseases, acute onset of vision loss often occurs in wet AMD. Therefore, patients usually seek a rapid referral and treatment. On the other hand, the lives of people with glaucoma are largely unaffected while the disease progresses silently, which may have a long-term negative impact on their quality of life. Thus, according to our findings, it is possible to hypothesize that the chronicity of glaucoma may be closely associated with the development of anxiety symptoms and disorders.

Patients with TED often have a problem with the disfigurement of the eye. This can change the appearance of the eyes and lead to affected individuals looking tired all the time. These cosmetic issues can have a significant impact on emotional well-being and may be correlated with the development of anxiety disorders, because patients may face exclusion more often due to their facial appearance. Together, our study suggests that anxiety symptoms and disorders are common problems associated in patients with ophthalmic disease.

Anxiety symptoms and disorders that occur in ophthalmic disease patients may be due to several factors, such as a feeling of hopelessness and failing to cope, as a consequence of the untreatable and unpredictable losses of the visual field and losing of the driving license. The anxiety may
also be elicited by socioeconomic aspects, including increased costs from doctor and hospital visits, medications, and health care. From a biochemical standpoint, low serotonin levels (5-HT) have been associated with anxious behavior. Indeed, the reduction of serum 5-HT levels is observed in patients with glaucoma and chronic central serous chorioretinopathy. Interestingly, the administration of selective serotonin reuptake inhibitors (SSRIs) as well as anti-anxiety has been shown to not only improve anxiety symptoms but also suppressed the intraocular pressure (IOP) in glaucomatous patients, thereby implying that 5-HT may involve in glaucoma pathogenesis. Nevertheless, comprehensive and appropriate treatments are necessary for treating anxiety disorders among ophthalmic disease patients, which may help to

Figure 4. Forest plot of the pooled prevalence of anxiety symptoms in the different types of patients with ophthalmic disease: (a) uveitis; (b) dry eye disease (DED); (c) retinitis pigmentosa (RP); (d) Diabetic retinopathy (DR).
Figure 5. Forest plot of the pooled prevalence of anxiety symptoms in the different types of patients with ophthalmic disease: (a) glaucoma; (b) myopia; (c) age-related macular degeneration (AMD); (d) cataract.
reduce the cost of treatment. Moreover, cooperation between ophthalmologists and psychiatrists is essential to support complete eye treatment and to improve mental health conditions.

One of the strengths of this study is that it represents a comprehensive and updated evaluation on the prevalence of anxiety symptoms and disorders in all patients with ocular disease, while a previous study by Zheng et al.115 only specifically evaluated depression and depressive symptoms. Moreover, in the previous studies,68,115 they combine both symptoms and disorders as a single entity, but in fact, anxiety symptoms and disorders are two different entities. In addition, the strengths of the study included the in-depth analysis of anxiety symptoms in the pediatric group, which was not previously examined.

Some limitations should be noted when interpreting these findings. (1) Because anxiety is often comorbid with depression, the inclusion of studies that report a mixed prevalence of anxiety and depression may have influenced the prevalence estimate in this study. (2) Because the instruments for examining the anxiety symptoms or states are not uniform, this possibly contributes to the observed heterogeneity in this meta-analysis. (3) The uneven number of studies on glaucoma, DED, and AMD could be the other possible source of bias. (4) Because most of the included studies were designed as cross-sectional studies, the causal relationship between anxiety symptoms/disorders and ocular diseases can not be determined. (5) Included studies in the pediatric population are limited, thus the current finding may not be precise and further studies are still required.

In conclusion, our study implies that anxiety symptoms and disorders are common among ophthalmic disease patients. Therefore, a comprehensive and collaborative approach is essential116,117 to quickly identify and effectively care for ophthalmic

\textbf{Figure 6.} Forest plot of the pooled prevalence of anxiety disorders in the different types of patients with ophthalmic disease: (a) thyroid eye disease (TED); (b) glaucoma; (c) dry eye disease (DED).
Figure 7. Forest plot of the pooled prevalence of anxiety symptoms in patients with ophthalmic disease and control subjects: (a) overall; (b) dry eye disease (DED) group; (c) glaucoma.
disease patients with anxiety symptoms or disorders. Since more studies are expected to be available, additional accurate estimations can be performed to verify this conclusion.

Author contributions
Zulvikar Syambani Ulhaq: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Resources; Validation; Writing – original draft; Writing – review & editing.

Gita Vita Soraya: Data curation; Formal analysis; Investigation; Writing – original draft.

Nadia Artha Dewi: Supervision.

Lely Retno Wulandari: Supervision.

Conflict of interest statement
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Ethical approval
For this type of study (meta-analysis), ethical committee approval is not required.

ORCID iD
Zulvikar Syambani Ulhaq https://orcid.org/0000-0002-2659-1940

Supplemental material
Supplemental material for this article is available online.

References
1. Baxter AJ, Scott KM, Vos T, et al. Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychol Med 2013; 43: 897–910.

2. Thibaut F. Anxiety disorders: a review of current literature. Dialogues Clin Neurosci 2017; 19: 87–88.

3. Bandelow B, Michaelis S and Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci 2017; 19: 93–107.

4. Bandelow B and Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 2015; 17: 327–335.

5. Sabel BA, Wang J, Cárdenas-Morales L, et al. Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J 2018; 9: 133–160.

6. Yochim BP, Mueller AE, Kane KD, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma 2012; 21: 250–254.

7. Ryu SJ, Lee WJ, Tarver LB, et al. Depressive symptoms and quality of life in age-related macular degeneration based on Korea National Health and Nutrition Examination Survey (KNHANES). Korean J Ophthalmol 2017; 31: 412–423.

8. Rees G, Xie J, Fenwick EK, et al. Association between diabetes-related eye complications and symptoms of anxiety and depression. JAMA Ophthalmol 2016; 134: 1007–1014.

9. Otori Y, Takahashi G, Urashima M, et al. Evaluating the quality of life of glaucoma patients using the State-Trait Anxiety Inventory. J Glaucoma 2017; 26: 1025–1029.
10. Li Y, Crews JE, Elam-Evans LD, et al. Visual impairment and health-related quality of life among elderly adults with age-related eye diseases. *Qual Life Res* 2011; 20: 845–852.

11. Bunevicius R, Velickiene D and Prange AJ Jr. Mood and anxiety disorders in women with treated hyperthyroidism and ophthalmopathy caused by Graves’ disease. *Gen Hosp Psychiatry* 2005; 27: 133–139.

12. Gillmann K, Hoskens K and Mansouri K. Acute emotional stress as a trigger for intraocular pressure elevation in Glaucoma. *BMC Ophthalmol* 2019; 19: 1–6.

13. McKnight PE, Monfort SS, Kashdan TB, et al. Anxiety symptoms and functional impairment: a systematic review of the correlation between the two measures. *Clin Psychol Rev* 2016; 45: 115–130.

14. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097.

15. Patra J, Bhatia M, Suraweera W, et al. Exposure to second-hand smoke and the risk of tuberculosis in children and adults: a systematic review and meta-analysis of 18 observational studies. *PLoS Med* 2015; 12: e1001835.

16. McPheeters ML, Kripalani S, Peterson NB, et al. Closing the quality gap: revisiting the state of the science (vol. 3: quality improvement interventions to address health disparities). *Evid Rep Technol Assess* 2012; 208: 1–475.

17. Ulhaq ZS and Garcia CP. Estrogen receptor beta (ESR2) gene polymorphism and susceptibility to dementia. *Acta Neurol Belg* 2021; 121: 1281–1293.

18. Ulhaq ZS and Garcia CP. Inflammation-related gene polymorphisms associated with Parkinson’s disease: an updated meta-analysis. *Egypt J Med Hum Genet* 2020; 21: 14.

19. Ulhaq ZS, Soraya GV and Fauziah FA. Recurrent positive SARS-CoV-2 RNA tests in recovered and discharged patients. *Rev Clin Esp* 2020; 220: 524–526.

20. Ulhaq ZS. The association between genetic polymorphisms in estrogen receptor genes and the risk of ocular disease: a meta-analysis. *Turk J Ophthalmol* 2020; 50: 216–220.

21. Ulhaq ZS. The association of estrogen-signaling pathways and susceptibility to open-angle glaucoma. *Beni-Suef Univ J Basic Appl Sci* 2020; 9: 7.

22. Ulhaq ZS and Soraya GV. The prevalence of ophthalmic manifestations in COVID-19 and the diagnostic value of ocular tissue/liquid. *Graefes Arch Clin Exp Ophthalmol* 2020; 258: 1351–1352.

23. Wallace BC, Schmid CH, Lau J, et al. Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data. *BMC Med Res Methodol* 2009; 9: 80.

24. Tastan S, Iyigun E, Bayer A, et al. Anxiety, depression, and quality of life in Turkish patients with glaucoma. *Psychol Rep* 2010; 106: 343–357.

25. Kempen Zijlstra GA. Clinically relevant symptoms of anxiety and depression in low-vision community-living older adults. *Am J Geriatr Psychiatry* 2014; 22: 309–313.

26. Jacob L, Spiess A and Kostev K. Prevalence of depression, anxiety, adjustment disorders, and somatoform disorders in patients with age-related macular degeneration in Germany. *Ger Med Sci* 2017; 15: Doc04.

27. Chaumet-Riffaud AE, Chaumet-Riffaud P, Cariou A, et al. Impact of retinitis pigmentosa on quality of life, mental health, and employment among young adults. *Am J Ophthalmol* 2017; 177: 169–174.

28. Bernabei V, Morini V, Moretti F, et al. Vision and hearing impairments are associated with depressive–anxiety syndrome in Italian elderly. *Aging Ment Health* 2011; 15: 467–474.

29. Li S, He J, Chen Q, et al. Ocular surface health in Shanghai University students: a cross-sectional study. *BMC Ophthalmol* 2018; 18: 245.

30. Wong VTC and Yu DKH. Usefulness of the Hospital Anxiety and Depression Scale for screening for psychiatric morbidity in Chinese patients with Graves’ ophthalmopathy. *East Asian Arch Psychiatry* 2013; 23: 6–12.

31. Bell CS and Florcruz NVDG. Risk factors for anxiety and depression in patients diagnosed with glaucoma at the Philippine General Hospital. *Asian J Ophthalmol* 2019; 8: 11671.

32. Zhang D, Fan Z, Gao X, et al. Illness uncertainty, anxiety and depression in Chinese patients with glaucoma or cataract. *Sci Rep* 2018; 8: 11671.

33. Au Eong KG, Chan EW, Luo N, et al. Validity of EuroQOL-5D, time trade-off, and standard gamble for age-related macular degeneration in the Singapore population. *Eye (Lond)* 2012; 26: 379–388.

34. Hwang M and Kim J. Depression and anxiety in patients with glaucoma or glaucoma suspect. *J Korean Ophthalmol Soc* 2015; 56: 1089.
35. Sainohira M, Yamashita T, Terasaki H, et al. Quantitative analyses of factors related to anxiety and depression in patients with retinitis pigmentosa. *PLoS ONE* 2018; 13: e0195983.

36. Kleinschmidt JJ, Trunnell EP, Reading JC, et al. The role of control in depression, anxiety, and life satisfaction among visually impaired older adults. *J Health Educ* 1995; 26: 26–36.

37. Mathew RS, Delbaere K, Lord SR, et al. Depressive symptoms and quality of life in people with age-related macular degeneration. *Ophthalmic Physiol Opt* 2011; 31: 375–380.

38. Onal S, Oray M, Yasa C, et al. Screening for depression and anxiety in patients with active uveitis. *Ocul Immunol Inflamm* 2018; 26: 1078–1093.

39. Yilmaz U, Gokler ME and Unsal A. Dry eye disease and depression-anxiety-stress: a hospital-based case control study in Turkey. *Pak J Med Sci* 2015; 31: 626–631.

40. Fasih U, Hamirani M, Asad R, et al. Assessment of anxiety and depression in primary open angle glaucoma patients (a study of 100 cases). *Pak J Ophthalmol* 2010; 26: 143–147.

41. Wen W, Wu Y, Chen Y, et al. Dry eye disease in patients with depressive and anxiety disorders in Shanghai. *Cornea* 2012; 31: 686–692.

42. Zhang X, Olson DJ, Le P, et al. The association between glaucoma, anxiety, and depression in a large population. *Am J Ophthalmol* 2017; 183: 37–41.

43. Augustin A, Sahel J-A, Bandello F, et al. Anxiety and depression prevalence rates in age-related macular degeneration. *Invest Ophthalmol Vis Sci* 2007; 48: 1498–1503.

44. Lazarczyk JB, Urban B, Konarzewska B, et al. The differences in level of trait anxiety among girls and boys aged 13–17 years with myopia and emmetropia. *BMC Ophthalmol* 2016; 16: 201.

45. van der Aa HP, Krijnen-de Bruin E, van Rens GH, et al. Watchful waiting for subthreshold depression and anxiety in visually impaired older adults. *Qual Life Res* 2015; 24: 2885–2893.

46. Rezapour J, Nichols S, Schuster AK, et al. Prevalence of depression and anxiety among participants with glaucoma in a population-based cohort study: the Gutenberg Health Study. *BMC Ophthalmol* 2018; 18: 157.

47. Zhang Y, Lin T, Jiang A, et al. Vision-related quality of life and psychological status in Chinese women with Sjogren’s syndrome dry eye: a case-control study. *BMC Womens Health* 2016; 16: 75.

48. Agorastos A, Skevas C, Matthaei M, et al. Depression, anxiety, and disturbed sleep in glaucoma. *J Neuropsychiatry Clin Neurosci* 2013; 25: 205–213.

49. Cumurcu T, Cumurcu BE, Celikel FC, et al. Depression and anxiety in patients with pseudoxfoliative glaucoma. *Gen Hosp Psychiatry* 2006; 28: 509–515.

50. Evans JR, Fletcher AE and Wormald RPL. Depression and anxiety in visually impaired older people. *Ophthalmology* 2007; 114: 283–288.

51. Richards HS, Jenkinson E, Rumsey N, et al. The psychological well-being and appearance concerns of patients presenting with ptosis. *Eye (Lond)* 2014; 28: 296–302.

52. Eramugdugolla R, Wood J and Anstey KJ. Co-morbidity of depression and anxiety in common age-related eye diseases: a population-based study of 662 adults. *Front Aging Neurosci* 2013; 5: 56.

53. Kong X, Yan M, Sun X, et al. Anxiety and depression are more prevalent in primary angle closure glaucoma than in primary open-angle glaucoma. *J Glaucoma* 2015; 24: e57–63.

54. Li M, Gong L, Sun X, et al. Anxiety and depression in patients with dry eye syndrome. *Curr Eye Res* 2011; 36: 1–7.

55. Lim NCS, Fan CHJ, Yong MKH, et al. Assessment of depression, anxiety, and quality of life in Singaporean patients with glaucoma. *J Glaucoma* 2016; 25: 605–612.

56. Liyue H, Chiang Sung SC and Tong L. Dry eye-related visual blurring and irritative symptoms and their association with depression and anxiety in eye clinic patients. *Curr Eye Res* 2016; 41: 590–599.

57. Mabuchi F, Yoshimura K, Kashiwagi K, et al. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. *J Glaucoma* 2008; 17: 552–557.

58. Na K-S, Han K, Park Y-G, et al. Depression, stress, quality of life, and dry eye disease in Korean women: a population-based study. *Cornea* 2015; 34: 733–738.

59. Ayaki M, Kawashima M, Negishi K, et al. High prevalence of sleep and mood disorders in dry eye patients: survey of 1,000 eye clinic visitors. *Neuropsychiatr Dis Treat* 2015; 11: 889–894.

60. Hassan MB, Hodge DO and Mohney BG. Prevalence of mental health illness among patients with adult-onset strabismus. *Strabismus* 2015; 23: 105–110.
61. Chiang C-C, Lin C-L, Tsai Y-Y, et al. Patients with blepharitis are at elevated risk of anxiety and depression. *PLoS ONE* 2013; 8: e83335.

62. Ye J, Lou L, Jin K, et al. Vision-related quality of life and appearance concerns are associated with anxiety and depression after eye enucleation: a cross-sectional study. *PLoS ONE* 2015; 10: e0136460.

63. Sittivarakul W and Wongkot P. Anxiety and depression among patients with uveitis and ocular inflammatory disease at a tertiary center in southern Thailand: vision-related quality of life, sociodemographics, and clinical characteristics associated. *Ocul Immunol Inflamm* 2019; 27: 731–742.

64. van der Aa HPA, Comijs HC, Penninx BWJH, et al. Major depressive and anxiety disorders in visually impaired older adults. *Invest Ophthalmol Vis Sci* 2015; 56: 849–854.

65. van der Vaart R, Weaver MA, Lefebvre C, et al. The association between dry eye disease and depression and anxiety in a large population-based study. *Am J Ophthalmol* 2015; 159: 470–474.

66. Wu N, Kong X, Gao J, et al. Vision-related quality of life in glaucoma patients and its correlations with psychological disturbances and visual function indices. *J Glaucoma* 2019; 28: 207–215.

67. Zhou C, Qian S, Wu P, et al. Anxiety and depression in Chinese patients with glaucoma: sociodemographic, clinical, and self-reported correlates. *J Psychosom Res* 2013; 75: 75–82.

68. Wan KH, Chen LJ and Young AL. Depression and anxiety in dry eye disease: a systematic review and meta-analysis. *Eye (Lond)* 2016; 30: 1558–1567.

69. Pei C, Shao Y and Li J. Anxiety and depression of glaucoma patients and the influencing factor. *Chin Gen Pract* 2013; 10: 75–82.

70. Zhan X and Zhilan Y. Influencing factors of anxiety and depression among patients with primary open-angle glaucoma before and after surgical interventions. *Acta Univ Med Nanjing Nat Sci* 4; http://en.cnki.com.cn/Article_en/CJFDTotal-NJYK201304022.htm

71. Mao D, Lin J, Chen L, et al. Health-related quality of life and anxiety associated with childhood intermittent exotropia before and after surgical correction. *BMC Ophthalmol* 2021; 21: 270.

72. Magdalene D, Bhattacharjee H, Deshmukh S, et al. Assessment of quality of life, mental health and ocular morbidity in children from schools for the blind in North-East India. *Indian J Ophthalmol* 2021; 69: 2040–2044.

73. Dayal A, Sodimalla KVK, Chelkerkar V, et al. Prevalence of anxiety and depression in patients with primary glaucoma in Western India. *J Glaucoma* 2022; 31: 37–40.

74. Abe RY, Silva LNP, Silva DM, et al. Prevalence of depressive and anxiety disorders in patients with glaucoma: a cross-sectional study. *Arq Bras Oftalmol* 2021; 84: 31–36.

75. Onwubiko SN, Nwachukwu NZ, Muomah RC, et al. Factors associated with depression and anxiety among glaucoma patients in a tertiary hospital South-East Nigeria. *Niger J Clin Pract* 2020; 23: 315–321.

76. Shin DY, Jung KI, Park HYL, et al. The effect of anxiety and depression on progression of glaucoma. *Sci Rep* 2021; 11: 1769.

77. Zhang Y, Bian A, Hang Q, et al. Optical quality assessed by optical quality analysis system in Chinese primary open-angle glaucoma patients and its correlations with psychological disturbances and vision-related quality of life. *Ophthalmic Res* 2021; 64: 15–21.

78. Rezapour J, Schuster AK, Nickels S, et al. Prevalence and new onset of depression and anxiety among participants with AMD in a European cohort. *Sci Rep* 2020; 10: 4816.

79. Fernández-Vigo JJ, Burgos-Blasco B, Calvo-González C, et al. Assessment of vision-related quality of life and depression and anxiety rates in patients with neovascular age-related macular degeneration. *Arch Soc Esp Oftalmol (Engl Ed)* 2021; 96: 470–475.

80. Senra H, Balaskas K, Mahmoodi N, et al. Experience of anti-VEGF treatment and clinical levels of depression and anxiety in patients with wet age-related macular degeneration. *Am J Ophthalmol* 2017; 177: 213–224.

81. Hernández-Moreno L, Senra H, Moreno N, et al. Is perceived social support more important than visual acuity for clinical depression and anxiety in patients with age-related macular degeneration and diabetic retinopathy. *Clin Rehabil* 2021; 35: 1341–1347.

82. Wu M, Liu X, Han J, et al. Association between sleep quality, mood status, and ocular surface characteristics in patients with dry eye disease. *Cornea* 2019; 38: 311–317.

83. Kitazawa M, Sakamoto C, Yoshimura M, et al. The relationship of dry eye disease with depression and anxiety: a naturalistic observational study. *Transl Vis Sci Technol* 2018; 7: 35.
84. Bitar MS, Olson DJ, Li M, et al. The correlation between dry eyes, anxiety and depression: the sicca, anxiety and depression study. Cornea 2019; 38: 684–689.

85. Eser-Öztürk H, Yeter V, Karabekiroğlu A, et al. The effect of vision-related quality of life on depression and anxiety in patients with behçet uveitis. Turk J Ophthalmol 2021; 51: 358–364.

86. Silva LMP, Arantes TE, Casaroli-Marano R, et al. Quality of life and psychological aspects in patients with visual impairment secondary to uveitis: a clinical study in a tertiary care hospital in Brazil. Ocul Immunol Inflamm 2019; 27: 99–107.

87. Heindl LM, Trester M, Guo Y, et al. Anxiety and depression in patients wearing prosthetic eyes. Graefes Arch Clin Exp Ophthalmol 2021; 259: 495–503.

88. Zhang B, Wang Q, Zhang X, et al. Association between self-care agency and depression and anxiety in patients with diabetic retinopathy. BMC Ophthalmol 2021; 21: 123.

89. Canamary AM, Monteiro IR, Machado Silva MKM, et al. Quality-of-life and psychosocial aspects in patients with ocular toxoplasmosis: a clinical study in a tertiary care hospital in Brazil. Ocul Immunol Inflamm 2020; 28: 679–687.

90. Gollrad J, Rabsahl C, Riechardt A-I, et al. Quality of life and treatment-related burden during ocular proton therapy: a prospective trial of 131 patients with uveal melanoma. Radiat Oncol Lond Engl 2021; 21: 123.

91. Kabedi NN, Kayembe DL and Mwanza J-C. Vision-related quality of life, anxiety and depression in congolese patients with polyoidal choroidal vasculopathy. Semin Ophthalmol 2020; 35: 156–163.

92. Frank CR, Xiang X, Stagg BC, et al. Longitudinal associations of self-reported vision impairment with symptoms of anxiety and depression among older adults in the United States. JAMA Ophthalmol 2019; 137: 793–800.

93. Berchuck S, Jammal A, Mukherjee S, et al. Impact of anxiety and depression on progression to glaucoma among glaucoma suspects. Br J Ophthalmol 2021; 105: 1244–1249.

94. Steven P, Schneider T, Ramesh I, et al. Pain in dry-eye patients without corresponding clinical signs – a retrospective analysis. Invest Ophthalmol Vis Sci 2016; 57: 2848.

95. Abdel-Aty A and Kombo N. The association between mental health disorders and non-infectious scleritis: a prevalence study and review of the literature. Eur J Ophthalmol. Epub ahead of print 16 December 2021. DOI: 10.1177/11206721211067652.

96. Cockerham KP, Padnick-Silver L, Stuertz N, et al. Quality of life in patients with chronic thyroid eye disease in the United States. Ophthalmol Ther 2021; 10: 975–987.

97. Wang Y, Sharma A, Padnick-Silver L, et al. Physician-perceived impact of thyroid eye disease on patient quality of life in the United States. Ophthalmol Ther 2021; 10: 75–87.

98. Dudani AI, Hussain N, Ramakrishnan M, et al. Psychiatric evaluation in patients with central serous chorioretinopathy in Asian Indians. Indian J Ophthalmol 2021; 69: 1204–1207.

99. Bosman RC, Ten Have M, de Graaf R, et al. Prevalence and course of subthreshold anxiety disorder in the general population: a three-year follow-up study. J Affect Disord 2019; 247: 105–113.

100. Yeo K, Frydenberg E, Northam E, et al. Coping with stress among preschool children and associations with anxiety level and controllability of situations. Aust J Psychol 2014; 66: 93–101.

101. Taner E, CoÅŸar B, BurhanoÄŸlu S, et al. Depression and anxiety in patients with Behçet’s disease compared with that in patients with psoriasis. Int J Dermatol 2007; 46: 1118–1124.

102. Basilious A, Xu CY and Malvankar-Mehta MS. Dry eye disease and psychiatric disorders: a systematic review and meta-analysis. Eur J Ophthalmol. Epub ahead of print 22 December 2021. DOI: 10.1177/11206721211060963.

103. Sun X, Dai Y, Chen Y, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res 2017; 57: 26–45.

104. Dawson SR, Mallen CD, Gouldstone MB, et al. The prevalence of anxiety and depression in people with age-related macular degeneration: a systematic review of observational study data. BMC Ophthalmol 2014; 14: 78.

105. Mills T, Law SK, Walt J, et al. Quality of life in glaucoma and three other chronic diseases: a systematic literature review. Drugs Aging 2009; 26: 933–950.

106. Naik MN, Nair AG, Gupta A, et al. Minimally invasive surgery for thyroid eye disease. Indian J Ophthalmol 2015; 63: 847–853.

107. Cimarolli VR, Casten RJ, Rosner BW, et al. Anxiety and depression in patients with advanced macular degeneration: current perspectives. Clin Ophthalmol Austkl NZ 2015; 10: 55–63.

108. Burton BJL and Joseph J. Changing visual standards in driving: but a high proportion of eye patients still drive illegally. Br J Ophthalmol 2002; 86: 1454–1455.
109. Simon G, Ormel J, Von Korff M, et al. Health care costs associated with depressive and anxiety disorders in primary care. *Am J Psychiatry* 1995; 152: 352–357.

110. Arikian SR and Gorman JM. A review of the diagnosis, pharmacologic treatment, and economic aspects of anxiety disorders. *Prim Care Companion J Clin Psychiatry* 2001; 3: 110–117.

111. Ulhaq ZS and Kishida M. Brain aromatase modulates serotonergic neuron by regulating serotonin levels in zebrafish embryos and larvae. *Front Endocrinol (Lausanne)* 2018; 9: 230.

112. Sakai T and Tsuneoka H. Reduced blood serotonin levels in chronic central serous chorioretinopathy. *Ophthalmol Retina* 2017; 1: 145–148.

113. Zanon-Moreno V, Melo P, Mendes-Pinto MM, et al. Serotonin levels in aqueous humor of patients with primary open-angle glaucoma. *Mol Vis* 2008; 14: 2143–2147.

114. Wang H-Y, Tseng P-T, Stubbs B, et al. The risk of glaucoma and serotonergic antidepressants: a systematic review and meta-analysis. *J Affect Disord* 2018; 241: 63–70.

115. Zheng Y, Wu X, Lin X, et al. The prevalence of depression and depressive symptoms among eye disease patients: a systematic review and meta-analysis. *Sci Rep* 2017; 7: 46453.

116. Ashena Z, Dashputra R and Nanavaty MA. Autoimmune dry eye without significant ocular surface co-morbidities and mental health. *Vis Basel Switz* 2020; 4: e000649.

117. Vakros G, Scolo P, Hodson J, et al. Anxiety and depression in inflammatory eye disease: exploring the potential impact of topical treatment frequency as a putative psychometric item. *BMJ Open Ophthalmol* 2021; 6: e000649.