A NEW FOURIER TRANSFORM

JONATHAN WANG

1. Introduction

In order to define a geometric Fourier transform, one usually works with either ℓ-adic sheaves in characteristic $p > 0$ or with \mathcal{D}-modules in characteristic 0 (under these conditions one has a rank 1 local system on \mathbb{A}^1 which plays the role of the function e^{ix} in classical Fourier analysis). If one only needs to consider homogeneous sheaves, however, Laumon [Lau03] provides a uniform geometric construction of the Fourier transform for ℓ-adic sheaves in any characteristic. Laumon considers homogeneous sheaves as sheaves on the stack quotient of a vector bundle V by the homothety \mathbb{G}_m action. This category is closely related to the category of (unipotently) monodromic sheaves on V (cf. [BY]). While it has been well known to experts that a similar uniform construction of the Fourier transform exists for monodromic sheaves (Beilinson suggests a definition in [Bei12, footnote 2]), the details have not been exposted in the literature. In this note, we fill in this gap. We also introduce a new functor, which is defined on all sheaves in any characteristic, and show that it agrees with the usual Fourier transform on monodromic sheaves.

We define the new Fourier transform Four_B in §2 and show that the “square” Four_B^2 has a simple formula. In §3 we use this formula to prove the main result that Four_B induces an equivalence of bounded derived categories of monodromic (étale) sheaves. We also discuss the relation between Four_B and Laumon’s homogeneous Fourier transform. In §4 we compare Four_B and the Fourier-Deligne transform in characteristic $p > 0$. Our study of Four_B reveals several surprising facts about a certain object j^*B of the monoidal category $D^b_c(\mathbb{G}_m)$. In §5 we prove the analogous facts about j^*B in the \mathcal{D}-module setting by considering the Mellin transform. We use this to show that Four_B agrees with the Fourier transform on monodromic \mathcal{D}-modules.

1.1. Acknowledgements. The author is very thankful to Sasha Beilinson and Vladimir Drinfeld for many helpful discussions. The definition of Four_B was first suggested by Drinfeld.

1.2. Notation and terminology. Let k be an arbitrary base field. Choose a prime ℓ not equal to the characteristic of k. Let R be a finite commutative \mathbb{Z}/ℓ^r-algebra for a positive integer r. We will work with bounded derived categories of constructible étale sheaves of R-modules. By the usual limit arguments, our results easily extend to $\overline{\mathbb{Q}}_\ell$-sheaves. All functors will be assumed to be derived.

Fix a base scheme S of finite type over k. Let $\pi : V \to S$ be a vector bundle of rank d and $\pi^\vee : V^\vee \to S$ the dual vector bundle. We say a complex $M \in D^b_c(V)$ is monodromic if M is monodromic in the sense of Verdier [Ver83] after base change to the algebraic closure \overline{k}. This is equivalent to the existence of an integer n coprime to p and an isomorphism $\theta(n)^*M \cong \text{pr}_2^*M$ where $\theta(n) : \mathbb{G}_m \times V \to V$ sends (λ, v) to $\lambda^n v$, and $\text{pr}_2 : \mathbb{G}_m \times V \to V$ is projection [Ver83 Proposition 5.1]. We denote the monodromic subcategory by $D^b_{\text{mon}}(V)$. We recall the fact that $\pi_! \cong 0^!$ on monodromic complexes (cf. [Ver83, Lemme 6.1] or [Spr84, Proposition 1] for two different methods of proof).
where J. Lemma 2.3. There is a canonical isomorphism $L \ast K = m_!(L \boxtimes K)$ where $m : \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m$ is multiplication, and $L, K \in D^b_c(\mathbb{G}_m)$. This monoidal category acts on $D^b_c(V)$ by $L \ast M = \theta(1)_!(L \boxtimes M)$ where $\theta(1) : \mathbb{G}_m \times V \to V$ is the action map, $L \in D^b_c(\mathbb{G}_m)$, and $M \in D^b_c(V)$.

2. The functor Four_B and its square

Let $u : \mathbb{A}^1 - \{1\} \hookrightarrow \mathbb{A}^1$ be the open embedding removing $1 \in \mathbb{A}^1(k)$, and let $j : \mathbb{A}^1 - \{0\} \hookrightarrow \mathbb{A}^1$ be the open embedding removing zero. Define $B = u_* R \in D^b_c(\mathbb{A}^1)$.

One observes that $h_! B = 0$ where $h : \mathbb{A}^1 \to \text{Spec} k$ is the structure map, and $0^* B \cong R$ where $0 : \text{Spec} k \hookrightarrow \mathbb{A}^1$.

Define $\text{Four}_{V/S,B} : D^b_c(V) \to D^b_c(V^\vee)$ by

$$\text{Four}_{V/S,B}(M) = \text{pr}^!_1(\text{pr}^* M \otimes \mu^* B)[d]$$

where $\text{pr}^! : V^\vee \times_S V \to V^\vee$ and $\text{pr} : V^\vee \times_S V \to V$ are the projections and $\mu : V^\vee \times_S V \to \mathbb{A}^1$ is the natural pairing $(\xi, v) \mapsto \langle v, \xi \rangle$. This is the new Fourier transform that we will consider. Our goal in this section is to prove the following theorem.

Theorem 2.1. There is a canonical isomorphism $\text{Four}_{V/S,B} \circ \text{Four}_{V/S,B}(M) \cong j^* B \ast M(-d)[1]$. for $M \in D^b_c(V)$.

Let $\text{pr}', \text{pr}'' : V \times_S V \to V$ be the first and second projections, respectively, and $\text{pr}_{m\bullet}$ the projections from $V \times_S V^\vee \times_S V$. The usual formal argument shows that $\text{Four}_{V/S,B} \circ \text{Four}_{V/S,B}$ is isomorphic to the functor $M \mapsto \text{pr}_1^!(\text{pr}_{m\bullet}^! B \otimes K)$ where

$$K = \text{pr}_{13}!(\text{pr}_{12}^* \mu^* B \otimes \text{pr}_{23}^* \mu^* B)[2d].$$

We claim there exists a canonical isomorphism

$$(2.1.1) \quad K \cong \rho \text{pr}_1^! B(-d)[1]$$

where $\rho : \mathbb{G}_m \times V \to V \times_S V$ is defined by $(\lambda, v) \mapsto (\lambda v, v)$, and $\text{pr}_1 : \mathbb{G}_m \times V \to \mathbb{A}^1_k$ is the natural projection. This claim implies the theorem.

We first establish two lemmas which will help us prove the claim.

Lemma 2.2. If $v, w \in V(\bar{k})$ are not in the same \mathbb{G}_m-orbit, then $K_{(v,w)} = 0$.

Proof. We can assume $S = \text{Spec} \bar{k}$. Clearly v and w cannot both be zero; we will assume $v \neq 0$. Since v, w are not in the same \mathbb{G}_m-orbit, there exists $\xi \in V^\vee(\bar{k})$ such that $\langle w, \xi \rangle = 0$ and $\langle v, \xi \rangle \neq 0$. Split V^\vee as $\bar{k} \xi \oplus H_v$ where $H_v = (kv)^\perp$. Then by Kunneth formula,

$$\text{pr}_1^!(\langle v \rangle^* B \otimes \langle w \rangle^* B) \cong h_! B \otimes (\text{pr}^\vee|_{H_v})(\langle w \rangle|_{H_v})^* B = 0$$

where $\langle v \rangle : V^\vee \to \mathbb{A}^1_k$ is the evaluation by v map. Therefore $K_{(v,w)} = 0$. \hfill \Box

Lemma 2.3. There is a canonical isomorphism $J^* K \cong J^* \rho \text{pr}_1^! B(-d)[1]$ where $J : V \times_S V - 0(S) \hookrightarrow V \times_S V$ is the open embedding removing zero.
Proof. We use V° to denote $V - 0(S)$. In this proof we will use ρ to denote the restricted morphism $G_m \times V^\circ \to V \times S V$, which is an immersion, and $pr_1 : G_m \times V^\circ \to A^1_S$ to denote the projection. From Lemma (2.2) we know that J^*K is supported on the image of ρ. Thus it suffices to consider $\rho^* J^* K$. Define

$$\omega : G_m \times V^\circ \times V^\circ \to G_m \times A^1 \times V^\circ$$

by sending (λ, ξ, v) to $(\lambda, (v, \xi), v)$. Then

$$\rho^* J^* K \cong pr_{13!} \omega^* pr_{12!} (m^* B \otimes p_2^* B)[2d]$$

where pr_{13}, pr_{12} are projections from $G_m \times A^1 \times V^\circ$ and $m, p_2 : G_m \times A^1 \to A^1$ are the multiplication and projection maps. Since ω is in fact a vector bundle of rank $r - 1$, we see that $\omega^! R$ is isomorphic to $R(1 - d)[2 - 2d]$. Therefore projection formula implies that

$$\rho^* J^* K \cong pr_{13!} pr_{12}^* (m^* B \otimes p_2^* B)(1 - d)[2].$$

We have a Cartesian square

$$\begin{array}{ccc}
G_m \times A^1 \times V^\circ & \xrightarrow{pr_{12}} & G_m \times A^1 \\
pr_{13} & & \downarrow{id \times h} \\
G_m \times V^\circ & \xrightarrow{pr_1} & G_m
\end{array}$$

so proper base change gives $pr_{13!} pr_{12}^* \cong pr_1^* (id \times h)_!$. We have an exact triangle

$$R \to p_2^* B \to (id \times 1)_* R(-1)[-1]$$

where $1 : Spec k \hookrightarrow A^1$ is the complement of u. Since $(id \times h)_! (m^* B) = 0$ by a change of variables, we deduce that

$$(id \times h)_! (m^* B \otimes p_2^* B) \cong (id \times h)_! (m^* B \otimes (id \times 1)_* R)(-1)[-1] \cong j^* B(-1)[-1].$$

Now it follows that $\rho^* J^* K \cong pr_1^* B(-d)[1]$.

Proof of Theorem (2.1). The case $d = 0$ is obvious since $h_! B = 0$ and $0^* B \cong R$. From now on we will assume that $d > 0$. We will show that both sides of (2.1.1) are in the essential image of the functor $\tau_{\leq 0} J_*, J^*$, i.e., there are isomorphisms

$$K \cong \tau_{\leq 0} J_* J^* (K)$$

and $\rho pr_1^* B(-d)[1] \cong \tau_{\leq 0} J_* J^* (\rho pr_1^* B(-d)[1])$.

The claimed existence of an isomorphism (2.1.1) will then follow from Lemma (2.8).

A stalk computation shows that $\rho pr_1^* B(-d)[1]$ lives in non-positive degrees. We claim that the natural morphism

(2.3.1) $$\rho pr_1^* B(-d)[1] \to \tau_{\leq 0} (J_* J^* \rho pr_1^* B(-d)[1])$$

is an isomorphism. Let $0 : S \to V \times S V$ denote the zero section. From the exact triangle $0_0 \sigma \to id \to J_* J^*$, it suffices to show that $0_0 \rho pr_1^* B \in D^{>2d}_c(S)$. Observe that ρ is G_m-equivariant with respect to the G_m-action on the second coordinate of $G_m \times V$ and the diagonal action of G_m on $V \times S V$. This implies that $\rho pr_1^* B$ is monodromic. Thus

$$0_0 \rho pr_1^* B \cong h_! j_* j^* B(-d)[-2d] \cong R(-d)[-2d - 1].$$

Therefore $0_0 \rho pr_1^* B \in D^{>2d}_c(S)$.

One easily sees that $K_{(0,0)} \cong R(-d)$. Thus K lives in non-positive cohomological degrees. To show that the natural morphism $K \to \tau_{\leq 0} J_* J^* K$ is an isomorphism, it suffices by the same
argument as above to prove $0^!K \in \mathcal{D}^\ge_{\mathcal{E}}(S)$. One observes from the definition of K that K is monodromic with respect to the diagonal \mathbb{G}_m-action on $V \times_S V$. Therefore

$$0^!K \cong \tilde{\pi}(\text{pr}_{12}^*\mu^*B \oplus \text{pr}_{23}^*\mu^*B)[2d]$$

where $\tilde{\pi} : V \times_S V^V \times_S V \to S$ is the structure map. By projection formula and proper base change, the right hand side is isomorphic to

$$\pi'(\mu^*B \oplus \text{pr}^V, \text{pr}^Y, \mu^*B)[2d]$$

for $\pi' : V \times_S V^V \to S$ the structure map. The fact that $h_B = 0$ implies that pr^Y, μ^*B is supported at $0 \in V^V(k)$, and $0^*\text{pr}^Y, \mu^*B \cong R(-d)[-2d]$. We deduce that

$$0^!K \cong \pi(R(-d)) \cong R(-2d)[-2d],$$

which proves the claim, and hence the theorem. \square

3. Properties of Four$_B$

Remark 3.1. The functor Four$_{V/S,B}$ is not an equivalence on $D^b_c(V) \to D^b_c(V^V)$. Consider the one-dimensional case $V = \mathbb{A}^1_k$. Then $\text{Four}_{V/S,B}(0R) = R[1]$ and $\text{Four}_{V/S,B}(1R) = B[1]$. We have $\text{Hom}(R, B) \neq 0$ but $\text{Hom}(0R, 1R) = 0$. So Four$_{V/S,B}$ is not fully faithful.

3.2. Relation to quotient stacks. Let $p : V \to V = [V/\mathbb{G}_m]$ and $p^V : V^V \to V^V = [V^V/\mathbb{G}_m]$ denote the canonical projections to the quotient stacks. By Laumon’s homogeneous transform $\text{Four}_{V/S} : D^b_c(V) \to D^b_c(V^V)$ is canonically isomorphic to the functor

$$(3.2.1) \quad K \mapsto \text{pr}^V_!(\mu^*K \otimes s_1B)[d]$$

where $f : \mathbb{A}^1_k \to \mathcal{A}_S$ is the quotient morphism and B_S denotes the base change of B from \mathbb{A}^1_k to \mathcal{A}_S. We abuse notation and use $\text{pr}^V_! : V^V \times_S V \to V^V$, $\text{pr} : V^V \times_S V \to V$, and $\mu : V^V \times_S V \to \mathcal{A}_S$ to also denote the induced maps on stacks.

Proposition 3.3. The composed functors

$$(p^V)^* \circ \text{Four}_{V/S} \text{ and } \text{Four}_{V/S,B} \circ p^* : D^b_c(V) \to D^b_c(V^V)$$

are canonically isomorphic.

Proof. The proposition follows from (3.2.1) by applying proper base change to the Cartesian squares

$$
\begin{array}{ccc}
[V^V \times_S V/\mathbb{G}_m] & \xrightarrow{A^1} & V^V \times_S V \\
\downarrow & & \downarrow \\
V^V \times_S V & \xrightarrow{f} & \mathcal{A}_S
\end{array}
$$

where \mathbb{G}_m acts on $V^V \times_S V$ anti-diagonally. \square

Proposition 3.4. Let $V' = V \times A^1$ and let \mathbb{G}_m act on both V and A^1. We have a canonical open embedding $\nu : V \hookrightarrow [V'/\mathbb{G}_m] : v \mapsto (v, 1)$. Similarly, we have $\nu^V : V^V \hookrightarrow [(V^V)/\mathbb{G}_m]$ defined by $\nu^V(\xi) = (\xi, -1)$. The composed functor

$$D^b_c(V) \xrightarrow{\nu^*} D^b_c([V'/\mathbb{G}_m]) \xrightarrow{\text{Four}_{V'/\mathbb{G}_m}/S} D^b_c([(V^V)/\mathbb{G}_m]) \xrightarrow{(\nu^V)^*} D^b_c(V^V)$$

is isomorphic to Four$_{V/S,B}$.

Proof. Observe that \(\nu \) factors into the composition of an open affine chart \(V \hookrightarrow \mathbb{P}(V') \) and the open embedding \(\mathbb{P}(V') = [(V' - 0(S))/\mathbb{G}_m] \hookrightarrow [V'/\mathbb{G}_m] \). Similarly, we have a factorization of \(\nu^* \). The proposition now follows from \cite[Proposition 1.6]{Lau03}, since the restriction of the incidence hyperplane in \(\mathbb{P}((V')^\times) \times_S \mathbb{P}(V') \) to \(V^\times \times_S V \) is \(\mu^{-1}(\{1\}) \). \(\square \)

3.5. An equivalence induced by \(\text{Four}_{V/S,B} \). Let \(p: V \to \mathbb{V} \) be as in the previous subsection.

Proposition 3.6. Let \(\mathcal{C}_V \) denote the full subcategory of \(D^b_c(V) \) consisting of complexes \(M \) such that \(p_!M = 0 \). The functor \(\text{Four}_{V/S,B} \) induces an equivalence \(\mathcal{C}_V \to \mathcal{C}_{V^\vee} \).

Proof. Proper base change and projection formula imply that \(\text{Four}_{V/S,B} \) sends \(\mathcal{C}_V \) to \(\mathcal{C}_{V^\vee} \) and vice versa. We also see by proper base change that \(p^*p_M \cong R \ast M \) for \(M \in D^b_c(V) \), where \(R \) is the constant sheaf on \(\mathbb{G}_m \). From the exact triangle \(1_R \to R \to B \) we deduce that \(j^*B \ast M \cong M(1)[-1] \) for \(M \in \mathcal{C}_V \). Therefore Theorem 2.1 implies that

\[
\text{Four}_{V^\vee/S,B} \circ \text{Four}_{V/S,B}(M) \cong M(-d-1)
\]

for \(M \in \mathcal{C}_V \), and we deduce the proposition. \(\square \)

3.7. Monodromic complexes. We will show that \(\text{Four}_{V/S,B} \) also induces an equivalence on the subcategories of monodromic complexes. We use the notation and results of Appendix A.

Theorem 3.8. (i) The functor \(\text{Four}_{V/S,B} \) preserves monodromicity, and the restriction defines an equivalence \(D^b_{\text{mon}}(V) \to D^b_{\text{mon}}(V^\vee) \).

(ii) For \(N \in D^b_{\text{mon}}(V^\vee) \), the pro-object

\[
\text{pr}_1(\text{pr}^\vee_\ast N \otimes \mu^*j_!0)(d+1)[d+1]
\]

is essentially constant.

(iii) The functor \(D^b_{\text{mon}}(V^\vee) \to D^b_{\text{mon}}(V) \) defined by \(\text{pr}^\vee_\ast \text{pr}_1 \) is quasi-inverse to \(\text{Four}_{V/S,B} \).

Since \(B \) is not monodromic, our first step is to compute the "monodromization" of \(B \).

Lemma 3.9. There is an isomorphism of pro-objects

\[
I^0 \ast B \cong j_!I^1(-1)[-1].
\]

Proof. First we show that the restriction \(I^0 \ast j^*B \) is isomorphic to \(I^1(-1)[-1] \). The exact triangle \(1_R \to R \to B \) induces by convolution exact triangles

\[
I^0_n(-1)[-2] \to I^0_n \ast R \to I^0_n \ast j^*B
\]

for \(p \nmid n \). Taking \(\text{"lim"} \) and using Lemma A.4, the first arrow is isomorphic to the augmentation map \(I^0(-1)[-2] \to R(-1)[-2] \). Therefore we deduce that the pro-object \(I^0 \ast j^*B \) is isomorphic to \(I^1(-1)[-1] \).

To complete the proof, it suffices to show that the canonical morphism

\[
I^0 \ast B \to j_!j^*(I^0 \ast B)
\]

is an isomorphism. This is equivalent to proving that \(\theta^1(I^0 \ast B) = 0 \). Since \(I^0 \ast B \) is monodromic, \(\theta^1(I^0 \ast B) \cong h_1(I^0 \ast B) \). By the Kunneth formula, \(h_1(I^0 \ast B) \cong h_1j_!I^0 \otimes h_1B = 0 \). \(\square \)

\[\text{A pro-object is essentially constant if it is isomorphic to an object of } D^b_{\text{mon}}(V), \text{ which is considered as a pro-object via the constant embedding.}\]
Proof of Theorem 3.8. One easily sees that \(\text{Four}_{V/S,B} \) preserves monodromicity. Theorem 2.1 and Lemma A.4 together imply that for \(M \in D^b_{\text{mon}}(V) \), we have

\[
\text{Four}_{V/S,B} \circ \text{Four}_{V/S,B}(M) \cong I^1 \ast M(-d)[2].
\]

Since \(I^{-1} \ast I^1 \cong I^0(-1)[-2] \) by Corollary A.9, we deduce that \(\text{Four}_{V/S,B} \) is an equivalence, with inverse functor \(I^{-1} \ast \text{Four}_{V/S,B}(d+2)[2] \). Lemmas 3.9 and A.4 imply that for \(N \in D^b_{\text{mon}}(V^\vee) \), we have isomorphisms

\[
I^{-1} \ast \text{Four}_{V^\vee/S,B}(N) \cong I^1 \ast \text{pr}_1(\text{pr}_{V^\vee}^*N \otimes \mu^*j_1^1)[d+1].
\]

Applying Corollary A.9, again, we get (iii). \(\square \)

Remark 3.10. Observe that the formula (3.8.1) is very similar to Beilinson’s suggested definition of the monodromic Fourier transform in [Bei12].

Proposition 3.11. The object \(j^*B \in D^b_c(\mathbb{G}_m) \) satisfies the following properties:

1. \(j^*B \) is not invertible in the monoidal category \(D^b_c(\mathbb{G}_m) \).
2. \(j^*B \) is invertible in the quotient of \(D^b_c(\mathbb{G}_m) \) by the ideal generated by the constant sheaf \(R \).
3. There are canonical isomorphisms \(I^0_n \ast j^*B \cong I^1_n(-1)[-2] \) for \(p \nmid n \).

Proof. We showed in Remark 3.1 that \(\text{Four}_{\mathbb{A}^1,B} \) is not an equivalence on \(D^b_c(\mathbb{A}^1) \). Since \(\text{Four}^2_{\mathbb{A}^1,B}(M) \) is isomorphic to \(j^*B \ast M(-1)[1] \), we deduce that \(j^*B \) is not invertible in the monoidal category \(D^b_c(\mathbb{G}_m) \).

From the exact triangle \(1:R(-1)[-2] \to R \to j^*B \) on \(\mathbb{G}_m \), we see that in the quotient of \(D^b_c(\mathbb{G}_m) \) by the ideal generated by \(R \), the object \(j^*B \) is isomorphic to \(1:R(-1)[-1] \), which is invertible.

Lemma 3.9 gives an isomorphism \(I^0_n \ast j^*B \cong I^1_n(-1)[-2] \). Convolving with \(I^0_n \), we get an isomorphism \(I^0_n \ast j^*B \cong I^0_n \ast I^1 \). One observes that \(I^0_n \ast I^1 \cong I^1_n(-1)[-2] \) by Corollary A.9. \(\square \)

4. Relation to Fourier-Deligne transform

Suppose that \(k \) has characteristic \(p > 0 \). Assume that \(R \) contains a primitive \(p \)-th root of unity \(\zeta \) (where “primitive” means that \(\zeta^p = 1 \) is invertible). Let \(\psi : \mathbb{F}_p \to R^\times \) be the corresponding additive character with \(\psi(1) = \zeta \), and let \(L_\psi \) denote the Artin-Schreier sheaf. The usual Fourier-Deligne transform \(\text{Four}_{V^\vee,S,L_\psi} : D^b_c(V) \to D^b_c(V^\vee) \) is defined by

\[
\text{Four}_{V^\vee/S,L_\psi}(M) = \text{pr}_1^\vee(\text{pr}_1^\vee M \otimes \mu^*L_\psi)[d].
\]

Lemma 4.1. There is a canonical isomorphism

\[
i^*j^*L_\psi \ast L_\psi \cong B[-1]
\]

where \(i : \mathbb{G}_m \to \mathbb{G}_m \) is the multiplicative inverse map.

Proof. By a change of variables, \(i^*j^*L_\psi \ast L_\psi \) is isomorphic to \(\text{Four}_{\mathbb{A}^1,L_\psi}(j_1j^*L_\psi)[-1] \). We have an exact triangle

\[
j_1j^*L_\psi \to L_\psi \cong \text{Four}_{\mathbb{A}^1,L_\psi}(1:R[-1]) \to 0;R.
\]

Applying \(\text{Four}_{\mathbb{A}^1,L_\psi} \) and using the Fourier-Deligne inversion formula on the middle term, we have an exact triangle

\[
\text{Four}_{\mathbb{A}^1,L_\psi}(j_1j^*L_\psi) \to 1:R(-1)[-1] \to R[1].
\]

This induces an isomorphism \(\text{Four}_{\mathbb{A}^1,L_\psi}(j_1j^*L_\psi) \to u_*R = B \). Since \(\text{Hom}(1:R(-1)[-1], R) = 0 \), this isomorphism is unique. \(\square \)
Corollary 4.2. In characteristic \(p > 0 \), we have canonical isomorphisms

\[
\text{Four}_{V/S,B}(M) \cong i^*j^*\mathcal{L}_\psi \ast \text{Four}_{V/S,L_{\psi}}(M) \cong \text{Four}_{V/S,L_{\psi}}(j^*\mathcal{L}_\psi \ast M).
\]

4.3. Monodromization of \(\mathcal{L}_\psi \) over \(\bar{k} \). Suppose that \(k \) is algebraically closed, so \(A^0 \) is simply a ring instead of a sheaf of rings (i.e., there is no Galois action).

Lemma 4.4. There exists a (non-canonical) isomorphism of pro-objects

\[
I^0 \ast \mathcal{L}_\psi \cong j_*I^0[-1].
\]

Proof. As in the proof of Lemma 3.9, it suffices to prove the isomorphism after restriction to \(G_m \). Let \(n \) be coprime to \(p \). By proper base change,

\[
1^*(I^0_n \ast j^*\mathcal{L}_\psi) \cong \Gamma_c(G_m, I^0_n \otimes j^*\mathcal{L}_\psi)
\]

where we observe that the pullback of \(I^0_n \) under the multiplicative inverse map \(G_m \to G_m \) is isomorphic to \(I^0_n \). Since \(I^0_n \) is tamely ramified at \(\infty \in \mathbb{P}^1(k) \), the canonical map

\[
\Gamma_c(A^1, j^*I^0_n \otimes \mathcal{L}_\psi) \to \Gamma(A^1, j^*I^0_n \otimes \mathcal{L}_\psi)
\]

is an isomorphism (cf. proof of [KW01 Lemma 7.1(1)]). In particular \(\Gamma_c(G_m, I^0_n \otimes j^*\mathcal{L}_\psi) \) lives in cohomological degrees 0 and 1. Since \(I^0_n \otimes j^*\mathcal{L}_\psi \) is locally constant and \(G_m \) is not complete, \(H^0_c(G_m, I^0_n \otimes j^*\mathcal{L}_\psi) = 0 \). Thus \(\Gamma_c(G_m, I^0_n \otimes j^*\mathcal{L}_\psi) \) lives only in cohomological degree 1.

We now consider \(I^0_n \) as a locally free sheaf of \(A^0_n \)-modules of rank 1. If we let \(\psi' \) denote the composition \(\mathbb{F}_p \to R^\times \to (A^0_n)^\times \), then \(\mathcal{L}_\psi \otimes_R A^0_n \cong \mathcal{L}_{\psi'} \), where the latter is the Artin-Schreier sheaf with respect to \(\psi' \) as a locally free sheaf of \(A^0_n \)-modules of rank 1. Hence \(\mathcal{T} := I^0_n \otimes A^0_n j^*\mathcal{L}_{\psi'} \), which is isomorphic to \(I^0_n \otimes_R j^*\mathcal{L}_\psi \), is a locally free sheaf of \(A^0_n \)-modules of rank 1. In particular, \(\mathcal{T} \in D^{b}_{ct}(G_m, A^0_n) \) and \(\Gamma_c(G_m, \mathcal{T})[1] \) is quasi-isomorphic to a finite projective \(A^0_n \) module \(P \). Applying the Grothendieck-Ogg-Shafarevich formula [SGA72 Exposé X, Corollaire 7.2], one checks that the fiber of \(P \) over any point of \(\text{Spec} A^0_n \) has dimension 1. So there exists an isomorphism \(P \cong A^0_n \) of \(A^0_n \)-modules. Observe from the Cartesian square

\[
\begin{array}{ccc}
G_m \times G_m \times G_m & \overset{\theta(n) \times \text{id}_{G_m}}{\longrightarrow} & G_m \times G_m \\
\text{id}_{G_m} \times m & \downarrow & m \\
G_m \times G_m & \overset{\theta(n)}{\longrightarrow} & G_m
\end{array}
\]

that \(I^0_n \ast j^*\mathcal{L}_\psi \) is monodromic, and the monodromy action is induced by the monodromy action on \(I^0_n \). Therefore using the equivalence of abelian categories \(\text{Mod}_f(A^0) \cong \text{Sh}_{\text{mon}}(G_m) \) introduced in [A.3] we have shown that there exists an isomorphism \(I^0_n \ast j^*\mathcal{L}_\psi[1] \cong I^0_n \).

Suppose \(n' \) is a multiple of \(n \) and \(p \nmid n' \). The kernel \(\mathcal{K} \) of the surjection \(I^0_n \to I^0_n \) is tamely ramified, so \(H^2_c(G_m, \mathcal{K} \otimes j^*\mathcal{L}_\psi) = 0 \) by the same argument as above. We deduce that

\[
I^0_n \ast j^*\mathcal{L}_\psi[1] \to I^0_n \ast j^*\mathcal{L}_\psi[1]
\]

is a surjection of sheaves. Since \((A^0_n)^\times \to (A^0_n)^\times \) is also surjective, we can find a projective system of isomorphisms \(I^0_n \ast j^*\mathcal{L}_\psi[1] \cong I^0_n \) inducing an isomorphism of pro-sheaves. □

Corollary 4.5. When \(k \) is algebraically closed, there exists a (non-canonical) isomorphism between the functors \(\text{Four}_{V/S,B} \) and \(\text{Four}_{V/S,L_{\psi}} \) restricted to \(D^{b}_{\text{mon}}(V) \to D^{b}_{\text{mon}}(V^V) \).
Proof. Lemma 3.9 and Remark A.3 imply that there exists an isomorphism $I^0 * B \cong j_* I^0[-1]$. The latter is also isomorphic to $I^0 * \mathcal{L}_\psi$ by Lemma 4.1. One easily sees that the Fourier-Deligne transform preserves monodromicity, and the isomorphism of restricted functors follows from Lemma A.4. □

4.6. The universal Gauss sum. Let k once again be arbitrary. Define the pro-object

$$\mathcal{G} = I^0 * j^* \mathcal{L}_\psi(1)[1].$$

Lemma 4.4 implies that \mathcal{G} is a monodromic pro-sheaf, and there exists a trivialization $\mathcal{G} \cong I^0$ after base changing from k to \bar{k}. Under the equivalence \mathcal{M} of §A.5, we see that \mathcal{G} corresponds to an invertible (locally free of rank 1) A^0-module on $\text{Spec } k$. We are motivated by [Del77, Exposé VI, §4] to think of \mathcal{G} as a “universal Gauss sum”.

Let $\iota : G_m \to G_m$ denote the multiplicative inverse map. Then Lemmas 3.9 and 4.1 give a canonical isomorphism

$$\iota^* \mathcal{G} * \mathcal{G} \cong I^1[-2].$$

We also see that the Fourier-Deligne transform on monodromic complexes is isomorphic to the functor $M \mapsto \text{pr}_V^*(\text{pr}^* M \otimes \mu^* j_* \mathcal{G})(d + 1)$ on $D^b_{\text{mon}}(V) \to D^b_{\text{mon}}(V^\vee)$. By Theorem 2.1, we have

$$\text{Four}_{V/S, L_\psi} \circ \text{Four}_{V/S} (M) \cong \mathcal{G} * M(−d)[2]$$

for M monodromic.

5. Relation to Fourier transform on \mathcal{D}-modules

Let k be algebraically closed of characteristic 0. We use $\mathcal{M}(V)$ to denote the abelian category of quasicoherent right \mathcal{D}-modules on V. Let $\mathcal{L} = \mathcal{D}_{A^1}/(1-\partial_x) \mathcal{D}_{A^1}$ be the exponential \mathcal{D}-module on $A^1 = \text{Spec } k[x]$. The Fourier transform is the functor $DM(V) \to DM(V^\vee)$ defined by

$$\text{Four}_{V/S, \mathcal{L}}(M) = \text{pr}_V^*(\text{pr}^* M \otimes \mu^1 \mathcal{L})[d].$$

It is well known that this functor can also be described using the isomorphism between the algebras of polynomial differential operators $\mathcal{D}_V \to \mathcal{D}_{V^\vee}$ defined in local coordinates by

$$k[\xi_1, \ldots, \xi_d, \partial_1, \ldots, \partial_d] \to k[v_1, \ldots, v_d, \partial_1, \ldots, \partial_d] : \xi_i \mapsto \partial v_i, \partial_\xi \mapsto -v_i.$$

In the \mathcal{D}-module situation, the analog of B is $w u' (\omega_{\mathcal{L}})$, where $\omega_{\mathcal{L}}$ is the sheaf of differentials on A^1 viewed as a right \mathcal{D}-module. We will also call this \mathcal{D}-module B. A simple calculation shows that $\text{pr}_x^*(\mu^1 B)[d]$. We define $\text{Four}_{V/S, B} : DM(V) \to DM(V^\vee)$ by

$$\text{Four}_{V/S, B}(M) = \text{pr}_x^*(\mu^1 B)[d].$$

One of the goals of this section is to establish a relation between $\text{Four}_{V/S, \mathcal{L}}$ and $\text{Four}_{V/S, B}$ (see Corollary 5.4).

\footnote{Beilinson observed that B essentially describes the differential equation for a shift of the Heaviside step function.}
5.1. Mellin transform of $j^* B$. Let \mathcal{B} denote the Mellin transform of $j^* B$, viewed as a \mathbb{Z}-equivariant quasicoherent \mathcal{O}-module on $\mathbb{A}^1 = \text{Spec } k[s]$. The Mellin transform functor

$$\mathcal{M} : \mathcal{M}(\mathbb{G}_m) \to \text{QCoh}(\mathbb{A}^1)^{\mathbb{Z}}$$

is defined by considering $\mathcal{D}(\mathbb{G}_m)$ as the algebra of difference operators $\mathcal{D} = k[s](T, T^{-1})/(sT - T(s + 1))$ under the identifications $s = x\partial_x$ and $T = x$. We consider the bounded derived category of \mathbb{Z}-equivariant $\mathcal{O}_{\mathbb{A}^1}$-modules $\mathcal{D}(\text{QCoh}(\mathbb{A}^1)^{\mathbb{Z}})$ with monoidal structure induced by the usual derived tensor product over $k[s]$. This monoidal structure corresponds to the convolution product (without compact support)

$$L \ast K := m_*(L \boxtimes K)$$

on the derived category of \mathcal{D}-modules on \mathbb{G}_m. More precisely, $\mathcal{M}(L \ast K) \cong \mathcal{M}(L) \otimes_{k[s]} \mathcal{M}(K)$.

We start by proving the following proposition, which is an analog of Proposition 5.1 in the \mathcal{D}-module setting.

Proposition 5.2. The module \mathcal{B} satisfies the following properties:

1. \mathcal{B} is not invertible in $\mathcal{D}(\text{QCoh}(\mathbb{A}^1)^{\mathbb{Z}})$.
2. The restriction of \mathcal{B} to $k^1 - \mathbb{Z} := \text{Spec } k[s]/(s - 1, (s + 1)^{-1}, \ldots)$ is invertible.
3. For any $\chi \in k$ and $n \in \mathbb{N}$, there exists an isomorphism

$$\bigoplus_{i \in \mathbb{Z}} k[s]/(s - \chi - i)^n \cong \bigoplus_{i \in \mathbb{Z}} \mathcal{B} \otimes k[s]/(s - \chi)^n$$

of \mathcal{D}-modules, where T acts on $k[s]$ by translation.

In order to prove the proposition, we will need an explicit description of \mathcal{B}. Consider $k(s)$ as a right \mathcal{D}-module where T acts by translation. Let \mathcal{B}' denote the \mathcal{D}-submodule of $k(s)$ generated by $\frac{1}{s}$, or equivalently, the $k[s]$-submodule generated by $\frac{1}{s + 1}$ for all $i \in \mathbb{Z}$.

Lemma 5.3. There exists an isomorphism of \mathcal{D}-modules $\mathcal{B} \cong \mathcal{B}'$.

Proof. We have $\partial_x x = x\partial_x + 1$ so $\partial_x(x - 1) = (s + 1) - T^{-1}s$ in \mathcal{D}. Therefore

$$\mathcal{B} = \mathcal{D}/((s + 1) - T^{-1}s)\mathcal{D}.$$

Let 1 denote the generator of \mathcal{B}. Conjugating $sT = T(s + 1)$ in \mathcal{D} by T^{-1} gives $T^{-1}s = (s + 1)T^{-1}$ in \mathcal{D}. Using this equality, $1(s + 1) = 1T^{-1}s = 1(s + 1)T^{-1}$ in \mathcal{B}, and acting on the right by T gives $1(s + 1)T = 1(s + 1)$. Using these relations, we deduce that \mathcal{B} is generated over k by $1T^i$ for $i \in \mathbb{Z}$ and $1s^j$ for $j > 0$. Then $1 \mapsto \frac{1}{s + 1}$ defines a morphism of \mathcal{D}-modules $\mathcal{B} \to k(s)$. Since $\frac{1}{s + 1}$ for $i \in \mathbb{Z}$ and s^j for $j \geq 0$ are k-linearly independent in $k(s)$, we see that this morphism is an injection $\mathcal{B} \hookrightarrow k(s)$. The image is \mathcal{B}'. \qed

Proof of Proposition 5.2. Suppose that \mathcal{B} is invertible in $\mathcal{D}(\text{QCoh}(\mathbb{A}^1)^{\mathbb{Z}})$, i.e., there exists an object N of this monoidal category such that $\mathcal{B} \otimes_{k[s]} N \cong k[s]$. Then $N \cong \text{Hom}_{k[s]}(k[s], N) \cong \text{Hom}_{k[s]}(\mathcal{B}, k[s])$. There are no nonzero morphisms from \mathcal{B}' to $k[s]$, so $H^0N = 0$. On the other hand, since $k(s) \otimes_{k[s]} \mathcal{B}' \cong k(s)$, we have $k(s) \otimes_{k[s]} N \cong k(s)$, which implies that $H^0N \neq 0$. We thus get a contradiction, so \mathcal{B} is not invertible.

Since $\mathcal{O}(\mathbb{A}^1 - \mathbb{Z}) = k[s]/(s - 1, (s + 1)^{-1}, \ldots) \subset k(s)$, we see that

$$\mathcal{O}(\mathbb{A}^1 - \mathbb{Z}) \otimes_{k[s]} \mathcal{B}' = \mathcal{O}(\mathbb{A}^1 - \mathbb{Z}) \subset k(s)$$

is the identity object, proving (2).

The direct sums in (3) only depend on the class χ of χ in k/\mathbb{Z}. If $\chi = 0 + \mathbb{Z}$ we will assume that $\chi = 0$. Let $\mathcal{B}_i \subset \mathcal{B}'$ denote the $k[s]$-submodule generated by $\frac{1}{s + 1}$. Then $\mathcal{B}'/\mathcal{B}_i$
is isomorphic to the direct sum of skyscraper modules $k[s]/(s - j)$ for integers $j \neq i$. Thus $(\mathcal{B}_i/\mathcal{B}_i) \otimes k[s]/(s - \chi - i)^n = 0$. On the other hand \mathcal{B}_i is free, so $\mathcal{B}_i \otimes k[s]/(s - \chi - i)^n$ is free with generator $\frac{1}{s - \chi - i} \otimes 1$. These basis elements give our desired isomorphism, which evidently commutes with the action of T. \qed

5.4. Monodromization. The \mathbb{G}_m-action on V induces an algebra map $k[s] \to \mathcal{D}_V$, where $s = x\partial_x$ is the invariant vector field on \mathbb{G}_m. We say that $M \in \mathcal{M}(V)$ is monodromic if every local section $m \in M$ is killed by some nonzero polynomial in $s = x\partial_x$. In other words, M is monodromic if it is a torsion module over $k[s]$. This definition of monodromic was introduced by Verdier \cite{Ver}. Define an object of $DM(V)$ to be monodromic if each of its cohomology \mathcal{D}-modules is monodromic. We denote this full subcategory by $D_{\text{mon}}\mathcal{M}(V) \subset DM(V).

For any $\chi \in k$ and $n \in \mathbb{N}$, let $A_{\chi,n} \subset k(s)$ consist of those rational functions with poles of order $\leq n$ at $\chi + \mathbb{Z}$ and no other poles. Define $I_{\chi,n}^0 \in \mathcal{M}(\mathbb{G}_m)$ to be the inverse Mellin transform $\mathcal{M}^{-1}(A_{\chi,n}/k[s])$. The inclusions $A_{\chi,n} \to A_{\chi,n+1}$ induce morphisms $I_{\chi,n}^0 \to I_{\chi,n+1}^0$, which form an inductive system of \mathcal{D}-modules. Define

$I^0 = \bigoplus_{\chi \in k/\mathbb{Z}} \lim_{n \to \infty} I_{\chi,n}^0 \in \mathcal{M}(\mathbb{G}_m)$

where $\chi \in k$ is any lift of $\bar{\chi}$. It follows that $\mathcal{M}(I^0) = k(s)/k[s]$.

Let $\underline{1}$ be the unit object in the monoidal category $D\mathcal{M}(\mathbb{G}_m)$, so $\mathcal{M}(\underline{1}) = k[s]$. The canonical extension of $k(s)/k[s]$ by $k[s]$ defines an extension of I^0 by $\underline{1}$ and therefore a morphism

$\varepsilon : I^0 \to \underline{1}[1]$.

The monoidal category $D\mathcal{M}(\mathbb{G}_m)$ acts on $D\mathcal{M}(V)$ by convolution (without compact support).

Lemma 5.5. An object $M \in D\mathcal{M}(V)$ is monodromic if and only if the morphism $I^0 \ast M \to M[1]$ induced by ε is an isomorphism.

Proof. A calculation using the relative de Rham complex with respect to the action map $\mathbb{G}_m \times V \to V$ shows that for any $M \in D\mathcal{M}(V)$ and $N \in D\mathcal{M}(\mathbb{G}_m)$, there is a canonical isomorphism $N \ast M \cong \mathcal{M}(N) \otimes k[s] M$ in the derived category of (sheaves of) $k[s]$-modules. This implies that the cocone of the morphism $I^0 \ast M \to M[1]$ is isomorphic (in the derived category of $k[s]$-modules) to $k(s) \otimes k[s] M$. But $k(s)$ is flat over $k[s]$, so the vanishing of the cohomologies of $k(s) \otimes k[s] M$ is equivalent to the cohomologies of M being torsion modules over $k[s]$. \qed

See \cite{Bei87}, \cite{Lic}, and \cite{DG} C.2 for further details in the unipotently monodromic case (when $\chi = 1$).

Lemma 5.6. There exists an inductive system of isomorphisms

$I_{\chi,n}^0 \ast B \cong j I_{\chi,n}^0 \cong I_{\chi,n}^0 \ast \mathcal{L}$.

Proof. Since $h_*B = h_*\mathcal{L} = 0$, it suffices as in Lemma 3.9 to give isomorphisms of the above objects after restriction to \mathbb{G}_m. In fact, it suffices to construct isomorphisms between the Mellin transforms of these restrictions, i.e., isomorphisms $\mathcal{M}(I_{\chi,n}^0 \ast j^*B) \cong \mathcal{M}(I_{\chi,n}^0) \cong \mathcal{M}(I_{\chi,n}^0 \ast j^*\mathcal{L})$. This is equivalent to constructing isomorphisms

(5.6.1) $\mathcal{M}(I_{\chi,n}^0) \otimes \mathcal{B} \cong \mathcal{M}(I_{\chi,n}^0)$, \quad $\mathcal{B} := \mathcal{M}(j^*B)$,

(5.6.2) $\mathcal{M}(I_{\chi,n}^0) \otimes E \cong \mathcal{M}(I_{\chi,n}^0)$, \quad $E := \mathcal{M}(j^*\mathcal{L})$.

Note that we have isomorphisms
\[(5.6.3) \quad \mathfrak{M}(I_{\chi}^{n}) = A_{\chi,n}/k[s] \cong \bigoplus_{i \in \mathbb{Z}} k[s]/(s - \chi - i)^n.\]

Combining (5.6.3) and Proposition 5.2(3), one gets (5.6.1). Let us construct (5.6.2). We have
\[E = \mathcal{D}/(1 - T^{-1}s)\mathcal{D}.\]

Let 1 be the generator of E. Let \(E_i \subset E\) denote the free \(k[s]\)-submodule generated by \(1T^{-i-1}\) for \(i \in \mathbb{Z}\). If \(\chi \in \mathbb{Z}, \text{ set } \chi = 0.\) From the relation \(1T^{-i} = 1T^{-i-1}(s - i)\), we deduce that \(E/E_i\) is supported away from \(\chi + i\), so \((E/E_i) \otimes k[s]/(s - \chi - i)^n = 0\). Hence \(E \otimes k[s]/(s - \chi - i)^n\) is freely generated by \(1T^{-i-1} \otimes 1\), and this gives us (5.6.2).

Lemma 5.6 implies in particular that \(I^0 \ast B \cong I^0 \ast \mathcal{L}\). We deduce from Lemma 5.5 that \(\text{Four}_V/S,\mathcal{B}\) agrees with \(\text{Four}_V/S,\mathcal{L}\) on \(D_{\text{mon}}\mathcal{M}(V)\).

Corollary 5.7. There is an isomorphism
\[\text{Four}_V/S,\mathcal{B} \cong \text{Four}_V/S,\mathcal{L}\]
of functors \(D_{\text{mon}}\mathcal{M}(V) \to D_{\text{mon}}\mathcal{M}(V^\vee)\).

APPENDIX A. THE MONODROMIC SUBCATEGORY

In this appendix we prove the facts we need about (non-unipotently) monodromic complexes. For a more complete account of the unipotently monodromic story, see [BY, Be87].

A.1. Free monodromic objects. Let \(p\) be the characteristic of \(k\), which may be 0. For \(p \nmid n\), let \(A^0_n\) be the group algebra \(R[\mu_n]\) considered as a sheaf on \(\text{Spec} \ k\), i.e., a Gal(\(k/k\))-module. Put
\[A^0 = \lim_{\leftarrow p \mid n} A^0_n.\]

Consider \(\mathbb{T} := \lim_{\leftarrow p \mid n} \mu_n(\bar{k})\) the tame fundamental group of \(\mathbb{G}_{m,\bar{k}}\). For any \(\gamma \in \mathbb{T}\), let \(\bar{\gamma}\) denote the corresponding invertible element in \(A^0(\bar{k})\). Pick a topological generator \(t \in \mathbb{T}\). Note that \(\bar{t} - 1\) is not a zero divisor in \(A^0\), so \(A^0\) injects to the localization \(A = (A^0)_{\bar{t} - 1}\). Define
\[A^i = (\bar{t} - 1)^i A^0 \subset A\]
for \(i \in \mathbb{Z}\) and set \(A^i_n = A^i \otimes_{A^0} A^0_n\) for \(p \nmid n\). Note that \(A^1\) is the augmentation ideal.

Remark A.2. The ring \(A^0(\bar{k})\) is isomorphic to the product of the completions of \(R[t, t^{-1}]\) at all maximal ideals \(m\) such that \(t^n \equiv 1 \mod m\) for some \(p \nmid n\). The maximal ideals \(m\) correspond to the eigenvalues of the monodromy action.

For \(i \in \mathbb{Z}\) and \(p \nmid n\), let \(I^i_n\) be the local system on \(\mathbb{G}_{m,\bar{k}}\) such that the fiber at \(1 \in \mathbb{G}_{m,\bar{k}}(k)\) is \(A^i_n\) and the monodromy action of \(\gamma \in \mathbb{T}\) is multiplication by \(\bar{\gamma}\). We define \(I^i\) to be the pro-sheaf
\[\varprojlim_{p \mid n} I^i_n.\]

Remark A.3. After base change from \(\text{Spec} \ k\) to \(\text{Spec} \bar{k}\), the local systems \(I^0_n\) and \(I^i_n\) are non-canonically isomorphic via multiplication by \((\bar{t} - 1)^i\), and this induces an isomorphism \(I^0 \cong I^i(\bar{t} - 1)^i\).

Lemma A.4. There is a canonical isomorphism of pro-objects
\[I^0 \ast M \cong M(-1)[-2]\]
for \(M \in D_{\text{mon}}^b(V)\) considered as a constant pro-object.
Proof. Let \(e_n : \mathbb{G}_m \rightarrow \mathbb{G}_m \) denote the \(n \)th power map. Note that \(e_n^* R \cong I^0_p \) for \(p \nmid n \). Since \(M \) is monodromic, there exists \(n_0 \) coprime to \(p \) such that \(\theta(n_0)^* M \cong pr^*_n M \). Then

\[
\text{``lim''}(e_n^* R) \cdot M \cong \text{``lim''}(\theta(n_0)^* pr^*_n M \cong M(-1)[-2]),
\]

where we use the fact that the pro-object \(\text{``lim''} \Gamma_c(\mathbb{G}_m, R) \) is essentially constant and isomorphic to \(R(-1)[-2] \) (cf. [Ver83, Lemme 5.2]). \(\square \)

A.5. **Monodromic sheaves as \(A^0 \)-modules.** Let \(\text{Mod}_r(A^0) \) denote the abelian category of sheaves of discrete \(A^0 \)-modules on \(\text{Spec} \ k \), and let \(\text{Sh}(\mathbb{G}_m) \) denote the abelian category of sheaves of \(R \)-modules on \(\mathbb{G}_m \). We have a canonical exact functor

\[
\text{Loc} : \text{Mod}_r(A^0) \rightarrow \text{Sh}(\mathbb{G}_m).
\]

Define another functor \(\mathfrak{M} : \text{Sh}(\mathbb{G}_m) \rightarrow \text{Mod}_r(A^0) \) by

\[
\mathfrak{M}(\mathcal{F}) = \lim h'_n \cdot e_n \cdot e_n^* \mathcal{F}
\]

where \(h' : \mathbb{G}_m \rightarrow \text{Spec} \ k \) is the structure map and \(A^0 \) acts on \(e_n \cdot e_n^* \mathcal{F} \) by transport of structure. We deduce from étale descent that \(\text{Loc} \) is left adjoint to \(\mathfrak{M} \). Passing to derived categories, the derived functors are still adjoint, and we also denote them by

\[
\text{Loc} : D^b\text{Mod}_r(A^0) \rightleftarrows D^b(\mathbb{G}_m) : \mathfrak{M}.
\]

Note that \(\mathfrak{M} : D^b(\mathbb{G}_m) \rightarrow D^b\text{Mod}_r(A^0) \) is equal to the composition of the exact functor \(\lim \) \(e_n \cdot e_n^* \mathcal{F} \) with the derived functor \(h'_n \).

Proposition A.6. The derived functor \(\text{Loc} : D^b\text{Mod}_r(A^0) \rightarrow D^b(\mathbb{G}_m) \) is fully faithful.

Proof. We need to show that the unit of adjunction \(L \rightarrow \mathfrak{M} \circ \text{Loc}(L) \) is an isomorphism for \(L \in D^b\text{Mod}_r(A^0) \). We can assume that \(k \) is algebraically closed and \(L \) is concentrated in degree 0. Since \(\text{Loc} \) and \(\mathfrak{M} \) both commute with filtered colimits, we may further suppose that \(L \) is finite. Then there exists \(n_0 \) not divisible by \(p \) such that the action of \(A^0 \) on \(L \) factors through \(R[\mu_{n_0}] \). If \(n \) is a multiple of \(n_0 \) then \(e_n^* \text{Loc}(L) \cong L \), where \(L \) is the constant sheaf on \(\mathbb{G}_m \) with stalk \(L \). The proposition now follows from the fact that for any finite group \(L \) of order prime to \(p \), one has \(\lim \text{H}^0 \Gamma(\mathbb{G}_m, e_n \cdot e_n^* L) \cong L \) and \(\lim \text{H}^i \Gamma(\mathbb{G}_m, e_n \cdot e_n^* L) = 0 \) for \(i \neq 0 \). \(\square \)

Corollary A.7. The restriction of \(\text{Loc} \) induces an equivalence \(D^b\text{Mod}_r(A^0) \rightarrow D^b\text{mod}(\mathbb{G}_m) \), where \(\text{Mod}_r(A^0) \) is the abelian category of sheaves of \(A^0 \)-modules on \(\text{Spec} \ k \) with finite stalk.

The monoidal structure on \(D^b\text{Mod}_r(A^0) \) with respect to (derived) tensor product over \(A^0 \) corresponds under \(\text{Loc} \) to convolution on \(D^b(\mathbb{G}_m) \).

Lemma A.8. For \(L, K \in D^b\text{Mod}_r(A^0) \) there exists a canonical isomorphism

\[
\text{Loc}(L) \ast \text{Loc}(K) \cong \text{Loc}(L \otimes_{A^0} K)(-1)[-2].
\]

Proof. Consider the functor \(\text{Loc}_{G_m \times G_m} : D^b\text{Mod}_r(A^0 \otimes R A^0) \rightarrow D^b(\mathbb{G}_m \times \mathbb{G}_m) \), which is defined similarly to the above functor \(\text{Loc} = \text{Loc}_{G_m} \). Applying \(\text{Loc}_{G_m \times G_m} \) to the natural map \(L \otimes_{A^0} K \rightarrow L \otimes_{A^0} K \), we get a map \(\text{Loc}(L) \otimes \text{Loc}(K) \rightarrow m^* \text{Loc}(L \otimes_{A^0} K) \) in \(D^b(\mathbb{G}_m \times \mathbb{G}_m) \). Recall that since \(m \) is smooth, \(m^* \text{Loc}(L \otimes_{A^0} K) \cong m^! \text{Loc}(L \otimes_{A^0} K)(-1)[-2] \). Therefore the \((m_1, m^!) \)-adjunction induces a morphism

\[
\text{Loc}(L) \ast \text{Loc}(K) \rightarrow \text{Loc}(L \otimes_{A^0} K)(-1)[-2].
\]

To check this is an isomorphism, we can assume \(k \) is algebraically closed and take \(L = K = A^0 \) for \(p \nmid n \) since the functors on both sides are of finite cohomological amplitude. Under these assumptions, the isomorphism is an easy computation. \(\square \)
Corollary A.9. There is a canonical projective system of isomorphisms

\[I^i \ast I^j_n \cong I_n^{i+j}(-1)[-2] \]

for \(p \nmid n \) and any integers \(i \) and \(j \). Consequently there is an isomorphism of pro-objects

\[I^i \ast I^j \cong I^{i+j}(-1)[-2]. \]

Proof. Fix \(p \nmid n \). By Lemma A.8, the first isomorphism is equivalent to an isomorphism

\[\text{lim}_{p \nmid m} A^i_m \otimes A^j_n \cong A_n^{i+j} \]

as pro-objects in \(D^b_{\text{Mod}}(A^0) \). Remark 3 and Lemma 4 imply that it suffices to consider the cohomology in degree 0, i.e., we consider the non-derived tensor product on the LHS. Then \(H^0(A^i_m \otimes A^j_n) \cong A_n^{i+j} \) for \(n \mid m \) by definition. These isomorphisms are evidently compatible with changes in \(n \), so the rest of the corollary follows. \(\square \)

References

[Bei87] A. Beilinson. How to glue perverse sheaves. In K-theory, arithmetic and geometry (Moscow, 1984–1986), volume 1289 of Lecture Notes in Math., pages 42–51. Springer, Berlin, 1987.

[Bei12] A. Beilinson. A remark on primitive cycles and Fourier-Radon transform. In Regulators, volume 571 of Contemp. Math., pages 19–23. Amer. Math. Soc., Providence, RI, 2012.

[BY] R. Bezrukavnikov and Z. Yun. On Koszul duality for Kac-Moody groups.

[Del77] P. Deligne. Cohomology étale. Lecture Notes in Mathematics, Vol. 569. Springer-Verlag, Berlin, 1977. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.

[DG] V. Drinfeld and D. Gaitsgory. Compact generation of the category of D-modules on the stack of G-bundles on a curve. arXiv:1112.2402v6.

[KW01] R. Kiehl and R. Weissauer. Weil conjectures, perverse sheaves and l’adic Fourier transform, volume 42 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, 2001.

[Lau03] G. Laumon. Transformation de Fourier homogène. Bull. Soc. Math. France, 131(4):527–551, 2003.

[Lic] S. Lichtenstein. Vanishing cycles for algebraic D-modules. Harvard senior thesis, March 2009.

[SGA77] Cohomologie l-adique et fonctions L. Lecture Notes in Mathematics, Vol. 589. Springer-Verlag, Berlin, 1977. Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie.

[Spr84] T. A. Springer. A purity result for fixed point varieties in flag manifolds. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31(2):271–282, 1984.

[Ver83] J.-L. Verdier. Spécialisation de faisceaux et monodromie modérée. In Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101 of Astérisque, pages 332–364. Soc. Math. France, Paris, 1983.

[Ver85] J.-L. Verdier. Prolongement des faisceaux pervers monodromiques. Astérisque, (130):218–236, 1985. Differential systems and singularities (Luminy, 1983).