Mathematical Study for laser and its Clinical Applications in dentistry: Review and Outlook

Ilham M. Yacoob¹, Sarah G. Mahmood², Muna Y. Slewa³, Najeeb M. Nooh⁴¹²Ass. Lecturer / Department of Mathematics / College of Education / University of Al-Hamdaniya, Iraq. ³Ass. Prof. / Department of Physics / College of Education / University of Al-Hamdaniya, Iraq. ⁴Lecturer / Department of Physics / College of Education / University of Al-Hamdaniya, Iraq.

¹Ilhammatta@uohamdaniya.edu.iq ²sarahghanim@uohamdaniya.edu.iq ³muna_ya@yahoo.com

Abstract. The paper for the survey is to recapitulate applications of laser, mathematically and also discusses whether the laser can furnish a similar or ameliorate treatment for traditional care. Studies have shown that the use of lasers in the different fields is an efficacious device to increase efficiency, quality, easiness, cost and convenience in dental therapy. The laser is an influential dental auxiliary to control pollution, wound reparations, the discharge and control of tremolo in the expulsion of hard tissues. Lasers designed specifically for this region are surgical and medical devices at the forefront of technology and are used by a large number of doctors in everyday use. Dental laser uses wavelengths that are absorbed in soft or solid tissues and given exceptional privacy in tissue. Its clinical capabilities are extremely complex, providing very good comfort for the patient. Clinical conditions will characterize the various and diverse applications of dental lasers depending on the power used during exposure and absorption of wavelengths in soft or hard tissues, emphasizing the benefits for each case.

Keywords: Laser, different specialties, dentistry, wavelength, dental.

1. Introduction
Laser is a type of electromagnetic radiance exported, has its own special characteristics. The LASER is shortened form for amplifying light by stimulated emission. A laser is an appliance make coherent electromagnetic radiance. Laser radiance is differentiated by a low ramification of the radiance ray and, with few exceptions a well-defined wavelength [1, 2, 3]. Wavelength is the extremely significant determinant in how light influence tissue. This is the distance between two consecutive wave peaks. Each type of laser has specific wavelengths depending on the nature of the active medium. Laser wavelength is usually measured in units of length: nanometers (nm) or micrometers (microns), depending on whether they are in the ultraviolet, visible or infrared range of the electromagnetic spectrum. Simply put, the wavelength determines the quality or type of interaction between the laser and the tissue [4]. Through past decennium there has been tremendous activity in domain of laser semiconductors. Long-range wavelength lasers be yet arrived the evolution juncture and used in fiber
optic communication worldwide. The number for researchers in dentistry increased over the past years. The laser was introduced in the field of medicine and dentistry in 1960 [5]. Since then, this field has progressed speedily. Because of its many advantages, the laser refers to a widespread field for procedures. Traditional methods of Prepare cavity for low, high-speed hand pieces include uncomfortable noise and vibration and stress for patients. While pain, perhaps relieved by local anesthesia, fear of the needle, noise, and mechanical vibration remain a cause of discomfort. These defects led to search for new techniques as possible alternatives to removal of hard tissues. A laser is used to handle different states in dentistry [6]. Laser use, requires minimal anesthesia and saves time for patients. It is utilized as an adjunct to another treating (with drugs, surgery, physical therapy) and sometimes as a major therapy. The effects of laser renewal are anti-inflammatory, analgesic and biological that causes the re-establishment of the physiological state of the natural tissues [7].

This search reviews a mathematical study on laser applications in dentistry and its outlook.

2. Classification of lasers

The laser can be categorized in many ways [8 - 18]:

1. According to wavelength (nanometers)
 A. Radiation of invisible ionizing
 B. Visible
 C. Radiation of invisible thermal

2. According to position of laser wavelength on the electromagnetic range for light
 A. ultraviolet spectrum
 B. visible spectrum
 C. near-infrared spectrum
 D. far-infrared spectrum

3. According to the type of activity (Lansing) Medium Used
 A. Gas lasers
 B. Solid State lasers
 C. semi-conductor lasers
 D. Dye or Liquid laser
 E. Excimer laser
 F. Chemical laser

4. According to Oscillation mode
 A. Continuous wave lasers
 B. Pulsed lasers

5. According to power supply
 A. Low power lasers
 B. Mid power lasers

6. According to pumping scheme
 A. Optically pumped laser
 B. Electrically pumped laser
7. According to the delivery system
A. Articulated arm (mirror type)
B. Hollow waveguide
C. Fiber optic cable

8. According to surgical therapy
A. Hard laser (for surgical work)
 - CO₂ lasers (CO₂ gas)
 - Nd:YAG lasers (Yttrium-aluminum-garnet)
 - Argon laser (Argon ions)
B. Soft laser (for bio stimulation and analgesia)
 - He-Ne lasers
 - Diode lasers

2.1 Dental Departments [13, 14].
There are six dental departments that we may see during the period of oral care included in the list of specialties (Tab.1):

Specialty	Specialist titles	Definition
Oral surgery	Oral surgeon	The Department of Dentistry is interested in the diagnosis and surgical introduction of conditions that affect the tissues of the oral cavity and teeth.
Endodontics	Endodontist	The Department of Dentistry is interested in the morphology and pathology of the pulp-dentin compound and periarticular tissues. Its study and application cover the basic clinical sciences, including the biology of ordinary pulp, as well as the etiology, diagnosis, prevention and treatment of diseases and injuries of the pulp and related periarticular tissues.
Periodontics	Periodontist	Department of Dentistry, which is interested in the prevention, diagnosis and treatment of diseases or pathologies of the supporting tissues of the tooth and its substitutes.
Pediatric dentistry	Paedodontist	Department of dentistry which interested with the preventive and oral health care for children from birth through to adolescence and with particular needs. It has managed, by oral-facial problem about medical, behavioral and physical.
Prosthodontics	Prosthodontist	The Department of Dentistry is engaged in the restoration and maintenance of oral health, the function and appearance of coronary changes, the natural replacement of teeth or missing teeth and adjacent tissues of the mouth, face and jaw.
Orthodontics	Orthodontist	Department of Dentistry, which is interested in the supervision, management and correction of dents and mature facial structures; include diagnosis, prophylaxis, obstruction and treatment of all forms of teeth and related changes in their surrounding structures.

2.1.1 Lasers applied in dentistry
Laser applied in dentistry (Tab.2) change from the ultraviolet radiance, (100-400 nm) to the infrared spectrum from 0.5 to 10.6 microns (from 405 mm to 10600 mm). Visible place of the spectrum between two wavelengths (400-750 nm and infrared radiation). The laser used in dentistry includes a wide range of procedures, from the diagnosis of caries or cancer to soft tissues and factors of hard tissue procedures that affect the laser's effect on tissues, including various lasers. by wavelength, output power (pulse or continuous), time of exposure, spot size and tissue variables with physical and chemical composition [15, 16, 17]. Lasers used in dentistry may be marked depending on the wavelength of the physical structure of the type of active medium, the tissues on which it is applied, and depending on the degree of subsequent accidental exposure. Laser components, including the laser medium, optical cavity, energy source, are shown in [18-20].

Specialty	Specialist titles	Definition
Oral surgery	Oral surgeon	The Department of Dentistry is interested in the diagnosis and surgical introduction of conditions that affect the tissues of the oral cavity and teeth.
Endodontics	Endodontist	The Department of Dentistry is interested in the morphology and pathology of the pulp-dentin compound and periarticular tissues. Its study and application cover the basic clinical sciences, including the biology of ordinary pulp, as well as the etiology, diagnosis, prevention and treatment of diseases and injuries of the pulp and related periarticular tissues.
Periodontics	Periodontist	Department of Dentistry, which is interested in the prevention, diagnosis and treatment of diseases or pathologies of the supporting tissues of the tooth and its substitutes.
Pediatric dentistry	Paedodontist	Department of dentistry which interested with the preventive and oral health care for children from birth through to adolescence and with particular needs. It has managed, by oral-facial problem about medical, behavioral and physical.
Prosthodontics	Prosthodontist	The Department of Dentistry is engaged in the restoration and maintenance of oral health, the function and appearance of coronary changes, the natural replacement of teeth or missing teeth and adjacent tissues of the mouth, face and jaw.
Orthodontics	Orthodontist	Department of Dentistry, which is interested in the supervision, management and correction of dents and mature facial structures; include diagnosis, prophylaxis, obstruction and treatment of all forms of teeth and related changes in their surrounding structures.
2.1.2 Applications of lasers in dentistry

The laser is widely used in dentistry for cavity preparations, root canal, expansion, root planning, gums and periodontal surgeries, coagulation and hemostasis, biopsies, excision of tongue lesions, TMJ disorders, exposure of implants and pre-prosthetic surgery can be classified as follows (Tab. 3, 4, 5, 6, 7, 8).

Table 3. Use for laser in prosthodontics [21-48]

Laser type	Wavelength(nm)	Clinical applications
Er:YAG	2940	Implantology, Fixed Prosthetics, Removable prosthetics
Er,Cr:YSGG	2780	Implantology, Fixed Prosthetics, Removable prosthetics
CO2	10600	Fixed Partial, Complete and Removable Partial denture
Ho:YAG	2100	Implantology
Nd:YAG	1064	Fixed partial and Prosthetics
Argon (Ar)	488 and 514	enhancing aesthetics, Complete and removable Partial denture
InGaAsP	488	enhancing aesthetics, oral hygiene and analgesic
GaAlAs	655-1064	
GaAs	670-830	
InGaAs	840	

Table 4. Use for laser in periodontics [49-56]

Laser type	Wavelength(nm)	Clinical applications
Er:YAG	2940	Incision and ablation of soft tissues, curettage of the pancreas, scaling, root conditioning, osteoplasty and osteotomy, degranulation and deactivation of implants.
Er,Cr:YSGG	2780	Soft tissue incision and ablation, subgingival curettage, scaling of root surfaces, osteoplastic and osteotomy.
CO2	10600	
Nd:YAG	1064	
Argon (Ar) 488 - 514 Soft tissue incision and ablation.
InGaAsP 488 Soft tissue incision and ablation, subgingival curettage, bacterial elimination.
GaAlAs 655-1064
GaAs 670-830
InGaAs 840
He-Ne 637 Intraoral soft tissue surgery, removal of the mucous membrane and gum depigmentation.

Table 5. Use for laser in orthodontics [57-71]

Laser type	Wave length (nm)	Clinical applications
Er:YAG	2940	Welding, de-bonding procedure, analgesic effects and etching
CO2	10600	
Ho:YAG and Nd:YAG	2100	
Argon (Ar)	488 and 514	Curing, Enhancing aesthetics,
InGaAsP	488	Curing, Oral hygiene, analgesic effects,
GaAlAs	655-1064	
GaAs	670-830	
InGaAs	840	
He-Ne	637	analgesic effects

Table 6. Uses of laser in endodontic [72-93]

Laser type	Wave length (nm)	Clinical applications
Er	2940	root canal, endodontic Surgery, Hypersensitivity, Pulp capping
Er-Cr	2780	apicoectomy or Periapical curettage, Pulp
CO2	10600	Apicoectomy or Periapical curettage
Ho	2100	Pulp vitality, tooth bleaching and periapical curettage
Nd:Yag	1064	
Argon (Ar)	488 and 514	root canal
InGaAsP	488	root canal
GaAs and InGaAs	655-1064	Hypersensitivity, Pulp capping
	670-830	
	840	
He-Ne	637	Hypersensitivity, Pulp capping
Excimer laser	380	root canal
KTP	532	tooth bleaching
Table 7. Uses of laser in pediatric [94-96]

Laser type	Wave length (nm)	Clinical applications
Er	2940	caries removal, light curing, traumatology, frenectomy, ankyloglossia, gingival remodeling and gingivectomy
Er-Cr	2780	gingival hypertrophy, tooth retention and Hypertrophic fibroma
CO2	10600	gingival hypertrophy, tooth retention and Hypertrophic fibroma
Nd:Yag	1064	gingival hypertrophy, tooth retention and Hypertrophic fibroma
Argon (Ar)	488 and 514	gingival hypertrophy, tooth retention and Hypertrophic fibroma
GaAlAs	488, 655-1064	gingival hypertrophy, tooth retention and Hypertrophic fibroma
GaAs	670-830	gingival hypertrophy, tooth retention and Hypertrophic fibroma
InGaAs	840	gingival hypertrophy, tooth retention and Hypertrophic fibroma

Table 8. Uses of laser in oral [97-111]

Laser type	Wave length (nm)	Clinical applications
Er:YAG	2940	oral leukoplakia, gingival melanin pigmentation, lichen planus, oral melanoma and benign lesions, epulis fissuratum, lymphangioma, cancer of oral cavity, excisional biopsy, treatment of oral cavity malformations and Frenectomy
Er,Cr:YSGG	2780	oral leukoplakia, gingival melanin pigmentation, lichen planus, oral melanoma and benign lesions, epulis fissuratum, lymphangioma, cancer of oral cavity, excisional biopsy, treatment of oral cavity malformations and Frenectomy
CO2	10600	oral leukoplakia, gingival melanin pigmentation, lichen planus, oral melanoma and benign lesions, epulis fissuratum, lymphangioma, cancer of oral cavity, excisional biopsy, treatment of oral cavity malformations and Frenectomy
Ho:YAG	2100	oral leukoplakia, gingival melanin pigmentation, lichen planus, oral melanoma and benign lesions, epulis fissuratum, lymphangioma, cancer of oral cavity, excisional biopsy, treatment of oral cavity malformations and Frenectomy
Nd:YAG	1064	oral leukoplakia, gingival melanin pigmentation, lichen planus, oral melanoma and benign lesions, epulis fissuratum, lymphangioma, cancer of oral cavity, excisional biopsy, treatment of oral cavity malformations and Frenectomy
Argon (Ar)	488 and 514	oral leukoplakia, gingival melanin pigmentation, lichen planus, oral melanoma and benign lesions, epulis fissuratum, lymphangioma, cancer of oral cavity, excisional biopsy, treatment of oral cavity malformations and Frenectomy
InGaAsP	488	gingival hyperplastic lesions removal, cancer of Oral cavity and hemangioma
GaAlAs	655-1064	gingival hyperplastic lesions removal, cancer of Oral cavity and hemangioma
GaAs	670-830	gingival hyperplastic lesions removal, cancer of Oral cavity and hemangioma
InGaAs	840	gingival hyperplastic lesions removal, cancer of Oral cavity and hemangioma
KTP	532	removal of oral lesions

3. Result and Discussion
A laser application in periodontics are shown in Figure 1. The most commonly used lasers in periodontics are Er: YAG and He-Ne laser.
Figure 1. The laser applications in periodontics

The laser applications in endodontics are shown in Fig. 2. The most commonly used laser in endodontics is Co2 laser.

Figure 2. The laser applications in endodontics

The laser applications in Prosthodontics are shown in Fig. 3. The most commonly used lasers in Prosthodontics are diode laser.

Figure 3. The laser applications in prosthodontics

The laser applications in orthodontics are shown in Fig. 4. The most commonly used laser in orthodontics is Er: YAG laser.

Figure 4. The laser applications in orthodontics
The laser applications in oral are shown in Fig. 5. The most commonly used laser in oral is Co\textsubscript{2} laser.

![Lasers in oral](image1)

Figure 5. The laser applications in oral

The laser applications in pediatric are shown in Fig. 6. The most commonly used laser in pediatric is Er: YAG laser.

![Lasers in pediatric](image2)

Figure 6. The laser applications in pediatric

This study showed that Erbium: YAG (2940 nm) has an active medium of a solid crystal of yttrium-aluminum garnet doped with erbium. This device has wide uses in most dental treatments which produces sharp and clean margins during treatment. Because the penetration depth of a wavelength of the laser is less, so the damage is minimal. Because the laser has an anesthetic effect, pain relief is not routinely referred to in most patients. The laser also helps remove internal toxins from the root surfaces of the tooth, providing a counter-effect to microbes. This laser is convenient for patients as the vibration of the laser is less severe than the traditional high-speed hole. Thus, this is less likely to cause discomfort during exercise or pain [82, 100].

4. Conclusion

Great efforts have been made in the search for new laser applications in dentistry. In the past few years, many studies have been developed to study the laser mechanism. However, the evidence produced by this research cannot prove that laser therapy was much better than conventional therapies. He suggests that more clinical trials should be conducted, focusing on standardization, improvement and long-term follow-up of many laser techniques. There are other problems for future research. Improved lasers to provide better access to dentistry. In addition, laser therapy deserves full attention, because it has greater efficiency and less harmful effects. The laser is relatively new and used as an adjunct or alternative to conventional mechanical processing. Improvements in the design of laser equipment are necessary to enable the realization of these diverse technologies in an appropriate time frame, the low-cost laser
properties make the future of laser applications augur well [5-9].

References
[1] M. Solanki, B. S. Kundu, and K. Nehra, “Molecular diversity of phosphate solubilizing bacteria isolated from the rhizosphere of chickpea, mustard and wheat,” *Ann. Agrar. Sci.*, vol. 16, no. 4, pp. 458–463, 2018.
[2] Y. Zhang et al., “Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments,” *PLoS One*, vol. 13, no. 7, pp. 1–14, 2018.
[3] B. Gizaw, Z. Tsegay, T. Genene, E. Aynalem, M. Wassie, and E. Abatneh, “Phosphate Solubilizing Fungi Isolated and Characterized from Tef,” *J. Fertil. Pestic.*, vol. 8, no. 2, 2017.
[4] A. Kumar and L. C. Rai, “Soil Organic Carbon and Availability of Soil Phosphorus Regulate Abundance of Culturable Phosphate Solubilizing Bacteria in Paddy Fields of the Indo-Gangetic Plain,” *Pedosphere*, vol. 8, 2017.
[5] F. Elias, D. Woyessa, and D. Muleta, “Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia,” *Int. J. Microbiol.*, vol. 2016, no. 1, 2016.
[6] R. Jamshidi, B. Jalili, M. A. Bahmanyar, and S. Salek-Gilani, “Isolation and identification of a phosphate solubilizing fungus from soil of a phosphate mine in Chaluse, Iran,” *Mycology*, vol. 7, no. 3, pp. 134–142, 2016.
[7] M. S. Khan, A. Zaidi, M. Ahemad, M. Oves, and P. A. Wani, “Plant growth promotion by phosphate solubilizing fungi - Current perspective,” *Arch. Agron. Soil Sci.*, vol. 56, no. 1, pp. 73–98, 2010.
[8] R. Jain, J. Saxena, and V. Sharma, “The ability of two fungi to dissolve hardly soluble phosphates in solution,” *Mycology*, vol. 8, no. 2, pp. 104–110, 2017.
[9] H. R. Sahoo and N. Gupta, “Evaluation of Phosphate Solubilising Potential of Some Endophytic Fungi under Solid and Liquid State,” pp. 1–6, 2014.
[10] L. M. Marra, S. M. de Oliveira, C. R. F. S. Soares, and F. M. de Souza Moreira, “Solubilisation of inorganic phosphates by inoculant strains from tropical legumes,” *Sci. Agric.*, vol. 68, no. 5, pp. 603–609, 2011.
[11] Verma SK, Maheshwari S, Singh RK, Chaudhari PK. Laser in dentistry: An innovative tool in modern dental practice. National journal of maxillofacial surgery. 2012 Jul;3(2):124.
[12] Thomas GM, Ashima V, George AI, Denny JP. Current science. 1993;64:221-223.
[13] Gupta, Sandeep Kumar. Lasers in Dentistry - An Overview. Trends Biomater. Artif. Organs 2011; 25(3):119-123 .
[14] Dederich, D.N., 1993. Laser/tissue interaction: What happens to laser light when it strikes tissue? J. Am. Dent. Assoc., 124: 57-61.
[15] Husein A. Applications of lasers in dentistry: a review. Archives of orofacial sciences. 2006;1:1-4.
[16] Parihar AS. Contemporary Laser Dentistry. Notion Press; 2018 Aug 10.
[17] Midda M, Renton-Harper P. Lasers in dentistry. Br Dent J 1991;170:343-6.
[18] Parker S. Low-level laser use in dentistry. Br Dent J 2007;202:131-8
[19] Coluzzi DJ. An overview of laser wavelengths used in dentistry. DCNA 2000;44: 751-765.3.
[20] Mortiz A. Oral Laser Applications. Berlin: Quint Inter; 2006.
[21] Shanthi M. Laser Prescience in Pediatric Dentistry. International Journal of Scientific Study. 2015;3(2):197-203.
[22] Oliviti G and Oloviti M. “Lasers in Restorative Dentistry: A Practical Guide”. Springer-Verlag Berlin Heidelberg (2015): 46.
[23] Scope of Practice General Dentist and Dental Specialist(2016) V: 2
[24] Türp JC, Kowalski CJ, Stohler CS. Treatment-seeking patterns of facial pain patients: many possibilities, limited satisfaction. Journal of orofacial pain. 1998 Jan 1;12(1):61-6.
[25] Gpv S. Lasers and its application in conservative dentistry: A review. Annals & Essences of Dentistry. 2017 Jan 1;9(1).

[26] Harender Singh, D. J. Bhaskar, Chandan Agali R. Lasers: An Emerging Trend in Dentistry. International Journal of Advanced Health Sciences; August 2014:1:4:5-13.

[27] Susan Bard. Laser History, Physics, and Safety. J. Aesthet Dermatology; 2014: 1:1−17.

[28] Tanushri, Mishra Neeta, Ahmad Naem et al. Lasers power in dentistry - A boon. International Journal of Multidisciplinary Research and Development. June 2015:2:6:36-40.

[29] Frentzen M, Koort HJ. Lasers in dentistry: New possibilities with advancing laser technology. Int Dent J. 1990;40(6):323–332.

[30] Walsh LJ. The current status of laser applications in dentistry. Aust Dent J. 2003;48(3):146–155.

[31] Vikas Punia, Vivek Lath, Meenakshi Khandelwal, Sandhya Kapoor Punia, Rohit Lakhyan. The current status of laser application in Prosthodontics. NJIRM 2012;3(3): 170-175.

[32] K. R. Nagaraj. Use of lasers in prosthodontics: A review. International Journal of Clinical Dentistry 2012;5(1):91-112.

[33] J. Ramya Jyothy, Sukanta Kumar Satapathy, P.D Annapurra. Lasers in Prosthetic dentistry. Indian Journal of applied Research 2013; 3(4):369-370

[34] Kreisler M, Götz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAlAs laser irradiation on surface properties of endosseous dental implants. Int. J. Oral Maxillofac Implants 2002; 17:202-11

[35] Gosawi S, Kumar S, Lakhyani R, Bacha S, Wangadargi S. Lasers in prosthodontics-a review. Journal of Evolution of Medical and Dental Sciences. 2012 Oct;1(4):624-34.

[36] Miller M, Truhe T. Lasers in dentistry. An overview. J Am Dent Assoc1993; 124:32–36.

[37] Coluzzi DJ. An overview of laser wavelengths in dentistry. Dent Clin N Am 2000; 44(4) 753-65.

[38] David CM, Gupta P. Lasers in dentistry: a review. International Journal of Advanced Health Sciences. 2015;2(8):7–13.

[39] Suleiman M. An overview of the use of lasers in general dental practice: 1. Laser physics and tissue interactions. Dental update 2005; 32(4): 228-236.

[40] Kutsch VK, Blankenau RJ. Surgical application of argon laser. Ch 9 in: Miserendino LJ, Pick RM, editors. Lasers in dentistry. Chicago: Quintessence; 1995: p 127-44.

[41] Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2 and GaAlAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 2002;17: 202-211.

[42] Pick RM, Podrel MA, LoIHS. Clinical applications of CO2 lasers. Ch 10 in: Miserendino LJ, Pick RM, editors. Lasers in dentistry. Chicago: Quintessence; 1995: p 145-160.

[43] Pogrel MA. The carbon dioxide laser in Preprosthetic surgery. J Prosthet Dent 1989; 61: 203-08.

[44] Pick RM, Colvard MD. Current status in soft tissue dental surgery. J periodontal 1993; 64: 589-602.

[45] Haylac MC, Ozcelik O. Evaluation of patient perception after frenectomy operations: A comparison of CO2 lasers and scalpels technique. J periodontal 2006; 77: 1815-19.

[46] Rice JH. Laser use in fixed, removable and implant dentistry. Dent Clin N Am 2000; 44(4): 767-77.

[47] Marei MK, Maguid SHA, Mokhtar SA, Rizk SA. Effect of low energy laser application in the treatment of denture induced mucosal lesions. J Prosthet Dent 1997; 77: 256-64.

[48] Busch M, Korda B. Concept and development of a computerized positioning of prosthetic teeth for complete dentures. International Journal of Computerized Dentistry 2006; 9: 113-20.

[49] Parker S. The use of lasers in fixed prosthodontics. Dent Clin N Am 2000; 48: 971-98.
[50] Gherlone EF, Maiorana C, Grassi RF, Ciancaglini R, Cattoni F. The use of 980nm diode and 1064nm Nd:YAG laser for gingival retraction in fixed prosthesis. J Oral Laser Applications 2004;4:183-90.

[51] Eduardo CP, Freitas PM, Gaspar L. The state of art of lasers in esthetics and prosthodontics. J Oral Laser Applications 2005;4:135-43.

[52] Sweeny S, Romanos GE. Laser assisted soft tissue management in esthetic dentistry. J Oral Laser Applications 2006;6:133-39.

[53] Bader HI. Use of lasers in periodontics. Dent Clin N Am 2000;44(4):779-91.

[54] Martin E. Lasers in dental implantology. Dent Clin N Am 2004;48:999-1015.

[55] Strauss RA, Fallon SD. Dental implants. Dent Clin N Am 2004;48:861-88.

[56] Kesler G, Romanos GE. Laser assisted soft tissue management in esthetic dentistry. J Oral Laser Applications 2006;6:133-39.

[57] Romanos G, Dent M, Crespi R, Barone A, Covani U. Osteoblast attachment on titanium disks after laser irradiation. Int J Oral Maxillofac Implants 2006;21:375-79.

[58] Bertrand C, Petitcorps Y, Albingre L, Dupuis V. The laser welding technique applied to the non-precious dental alloys procedure and results. Br Dent J 2001;190(5):255-57.

[59] Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol 2004;36:133-39.

[60] Coluzzi DJ. Fundamentals of dental lasers: science and instruments. Dent Clin N Am 2008;48:751-770.

[61] Aando A, Aoki A. Bacterial effect of erbium YAG laser on periopathic bacteria. Lasers Surg Med 1996;19:190-200.

[62] Schwarz F, Putz N, Georg T, Reich E. Effect of an Er:YAG laser on periodontally involved root surfaces: an in vivo and in vitro SEM comparison. Laser Surg Med 2001;29:328-335.

[63] Rechmann P. Dental laser research: selective ablation of caries, calculus, and microbial plaque: from idea to the first in vivo investigation. Dent Clin North Am 2004;48:1077-1104.

[64] Ishikawa I, Aoki A, Takasaki AA, Mizutani K, Sasaki KM, Izumi Y. Application of lasers in periodontics: true innovation or myth? Periodontol2009;50:90-126.

[65] Cobb CM. Lasers in periodontics: a review of literature. J Periodontol 2006;77:545-564.

[66] de Paula Eduardo C, de Freitas PM, Esteves-Oliveira M, Aranha AC, Ramalho KM, Simões A, Bello-Silva MS, Tunér J. Laser phototherapy in the treatment of periodontal disease. A review. Lasers in Medical Science. 2010 Nov 1;25(6):781-92.

[67] Strobk K, Bahns TL, Willham L, Bishara SE, Stwalley WC. Laseraided debonding of orthodontic ceramic brackets. Am J Orthod Dentofacial Orthop 1992;101:152-8.

[68] Talbot TQ, Blankenau RJ, Zobitz ME, Weaver AL, Lohse CM, Rebellato J. Effect of argon laser irradiation on shear bond strength of orthodontic brackets: An in vitro study. Am J Orthod Dentofacial Orthop 2000;118:274-9.

[69] Graber TM, Vanarsdall RL. Current Principles and Techniques in Orthodontics. St. Louis: Mosby-Year Book; 1994.

[70] Smith TA, Thompson JA, Lee WE. Assessing patient pain during dental laser treatment. J Am Dent Assoc 1993;124:90-5.

[71] Lim HM, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop 1995;108:614-22.

[72] Cortes-Pastor L, Villalba Moreno J, de Dios Lopez-Gonzalez Garrido J, Pedraza Muriel V, Moore K, Elias A. Comparing the tensile strength of brackets adhered to laser-etched enamel vs. acid-etched enamel. J Am Dent Assoc 1997;128:732-7.
[73] Rickabaugh JL, Marangoni RD, McCaffrey KK. Ceramic bracket debonding with the carbon dioxide laser. Am J Orthod Dentofacial Orthop 1996;110:388-93.
[74] Kurchak M, DeSantos B, Powers J, Turner D. Argon laser for light-curing adhesives. J Clin Orthod 1997;31:371-4.
[75] Lee BS, Hsieh TT, Lee YL, Lan WH, Hsu YJ, Wen PH, et al. Bond strengths of orthodontic bracket after acid-etched, Er: YAG laser-irradiated and combined treatment on enamel surface. Angle Orthod 2003;73:565-70.
[76] Weinberger SJ, Foley TF, McConnell RJ, Wright GZ. Bond strengths of two ceramic brackets using argon laser, light, and chemically cured resin systems. Angle Orthod 1997;67:173-8.
[77] Tocchio RM, Williams PT, Mayer FJ, Standing KG. Laser debonding of ceramic orthodontic brackets. Am J Orthod Dentofacial Orthop 1993;103:155-62.
[78] Wgdor H, Abt E, Ashraf S, Walsh JT Jr. The effect of lasers on dental hard tissues. J Am Dent Assoc 1993;124:65-70.
[79] Usümez S, Orhan M, Usümez A. Laser etching of enamel for direct bonding with an Er,Cr: YSGG hydrokinetic laser system. Am J Orthod Dentofacial Orthop 2002;122:649-56.
[80] Fornaini C, Rocca JP, Bertrand MF, Merigo E, Nammour S, Vescovi P. Nd: YAG and diode laser in the surgical management of soft tissues related to orthodontic treatment. Photomedicine and laser surgery. 2007 Oct 1;25(5):381-92.
[81] Poosti M, Jahanbin A, Mahdavi P, Mehrnoush S. Porcelain conditioning with Nd: YAG and Er: YAG laser for bracket bonding in orthodontics. Lasers in medical science. 2012 Mar 1;27(2):321-4.
[82] Camargo AC. The antibacterial effects of lasers in endodontics. Infection. 2012;2:3.
[83] Kimura Y, Wilder-Smith P, Yonaka K, Matsumoto K. Treatment of dentine hypersensitivity by lasers: a review. Journal of Clinical Periodontology: Review article. 2000 Oct;27(10):715-21.
[84] Matsumoto K, Kimura Y. Laser Therapy of Dentin Hypersensitivity. J Oral Laser Application 2007; 7: 7-25. 16.
[85] Ladalardo TC, Pinheiro A, Campos RA, Brugnera Junior A, Zanin F, Albernaz PL, et al. Laser therapy in the treatment of dentine hypersensitivity. Braz Dent J 2004; 15: 144-50. 17.
[86] Moritz A, Gutknecht N, Schoop U, Goharkhay K, Ebrahim D, Wernisch J, et al. The advantage of CO2- treated dental necks, in comparison with a standard method: Results of an in vivo study. J Clin Laser Med Surg 1996; 14: 27-32. 18.
[87] Lan WH, Liu HC. Sealing of human dentinal tubules by Nd:YAG laser. Journal of Clinical Laser Medicine & Surgery 1995; 13: 32933. 19.
[88] Grag N, Grag A. Text book of endodontics. 1st Edition, 2007: 421. 20.
[89] Sgolastra F, Petrucci A, Gatto R, Monaco A. Effectiveness of laser in dentinal hypersensitivity treatment: a systematic review. J Endod 2011; 37: 297-303.
[90] Orchardson R, Gillam DR. Managing dentin hypersensitivity. J Am Dent Assoc 2006; 137: 990-8; quiz 1028-9. 22.
[91] Orchardson R, Gangarosa LP, Holland GR, Pashley DH, Trowbridge HO, Ashley FP, et al. Dentine hypersensitivity into the 21st century. Arch Oral Biol 1994; 39 (Suppl): 113S-9S.
[92] Jukić S, Vidučić D, Miletić I, Božić Ž, Kalenić S, Anić I. Antibacterial Effect of Er: YAG Laser in the Root Canal. Acta stomatologica Croatica. 2001 Jun 15;35(2):201-4.
[93] Kathari A, Ujariya M. Lasers in endodontics- A review. J Res Adv Dent 2014; 3:1:209-211.
[94] Anić I, Matsumoto K: Comparison of the sealing ability of laser softened, laterally condensed and low temperature thermoplasticized gutta-percha. J Endod 1995;21:464-469.
[95] K Gorkhay et al: Effects of oral soft tissue produced by a diode laser in vitro. Lasers in Surgery and medicine 1999; 25:401-406.
[96] Lee B.S: Ultra structural changes of human dentin after irradiation by Nd:YAG laser. Lasers Surg Med.2002; 30(3): 246-252.

[97] Matsumoto K. Lasers in endodontics: Dent Clin N Am. 2000;44:889-906.

[98] Rooney J, Midda M, Leeming J. A laboratory investigation of the bactericidal effect of a Nd:YAG laser. Br Dent Journal. 1994;22:61-64.

[99] Berkiten M, Berkiten R, Okar I. Comparative evaluation of antibacterial effects of Nd:YAG laser irradiation in root canals and dentinal tubules: Journal of Endodontics. 2000;26:268-270

[100] Koukichi Matsumoto: Lasers in Endodontics:DCNA. 2000; Vol 44(4): 889-906.

[101] Nibert Gutknecht: Lasers in endodontics. Journal of laser and health academy 2008; Vol 4; 1-9.

[102] Chen ML, Ding JF, He YJ, Chen Y, Jiang QZ. Effect of pretreatment on Er:YAG laser-irradiated dentin. Lasers Med Sci 2015;30:753-9.

[103] Jhajharia K. Laser Update in Endodontics. J Orthod Endod 2018, Vol.4 No.1:2

[104] Pirnat S. Versatility of an 810 nm Diode Laser in Dentistry: An Overview. J. Laser Health Acad. 2007; 4: 1-9.

[105] Rossman JA, Cobb CM. Lasers in periodontal therapy. Periodontology 2000 1995; 9: 150-164

[106] Anuv H., Shruti M., Amit A., Sagar M., Saurabh B., Shikhar S. and H. Laser in periodontal Dentistry2017 Vol 6, Issue 10.

[107] Misra N, Chittoria N, Umpathy D, Misra P. Efficacy of diode laser in the management of oral lichen planus. BMJ Case Rep 2013;15(10):2012-007609.

[108] Agha-Hosseini F, Moslemi E, Mirzaei-Dizgah I. Comparative evaluation of low-level laser and CO2 laser in treatment of patients with oral lichen planus. Int J Oral Maxillofac Surg 2012;41(10):1265-9.

[109] Fornaini C, Raybaid H, Augros C, Rocca JP. New clinical approach for use of Er:YAG laser in the surgical treatment of oral lichen planus: a report of two cases. Photomed Laser Surg 2012;30(4):234-9.

[110] Simsek Kaya G, Yapici Yavuz G, Sumbullu MA, Dayi E. A comparison of diode laser and Er:YAG lasers in the treatment of gingival melanin pigmentation. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113(3):293-9.

[111] Baeder FM, Pelino JE, de Almeida ER, Duarte DA, Santos MT. High-power diode laser use on Fordyce granule excision: a case report: J Cosmet Dermatol 2010 Dec;9(4):321-4.

[112] Jerjes W, Upile T, Hamdoon Z, Al-Khawalde M, Morcos M, Mosse CA, et al. CO2 laser of oral dysplasia: clinicopathological features of recurrence and malignant transformation. Lasers Med Sci 2012;27(1):169-79.

[113] Deppe H, Mucke T, Hohlweg-Majert B, Hauck W, Wagenpfeil S, Holzle F. Different CO2 laser vaporization protocols for the therapy of oral precancerous lesions and precancerous conditions: a 10-year follow-up. Lasers Med Sci 2012;27(1):59-63.

[114] Luna-Ortiz K, Campos-Ramos E, Pasche P, MosquedaTaylor A. Oral mucosal melanoma: conservative treatment including laser surgery. Med Oral Patol Oral Cir Bucal 2011; 16(3):e381-5.

[115] Lopez-Jornet P, Camacho-Alonso F. Comparison of pain and swelling after removal of oral leukoplakia with CO2 laser and cold knife: a randomized clinical trial. Med Oral Patol Oral Cir Bucal 2013; 18(1):e38-44.

[116] Fornaini C, Rocca JP, Merigo E, Meletti M, Manfredi M, Nammour S, et al. Low energy KTP laser in oral soft tissue surgery: A 52 patients clinical study. Med Oral Patol Oral Cir Bucal 2012; 17(2):e287-91.
[117] Boj JR, Poirier C, Espasa E, Hernandez M, Espanya A. Lower lip mucocele treated with an erbium laser. Pediatr Dent 2009; 31(3):249-52.

[118] Yague-Garcia J, Espana-Tost AJ, Berini-Aytes L, GayEscoda C. Treatment of oral mucocele-scalpel versus CO2 laser. Med Oral Patol Oral Cir Bucal 2009; 14(9):e469-74.

[119] Lai JB, Poon CY. Treatment of ranula using carbon dioxide laser--case series report. Int J Oral Maxillofac Surg 2009; 38(10):1107-11.

[120] Lindenmuller IH, Noll P, Mameghani T, Walter C. CO2 laser-assisted treatment of a giant pyogenic granuloma of the gingiva. Int J Dent Hyg 2010; 8(3):249-52.

[121] Asnaashari M, Azari-Marhabi S, Alirezaei S, Asnaashari N. Clinical Application of 810nm Diode Laser to Remove Gingival Hyperplasic Lesion. J Lasers Med Sci 2013; 4(2):96-8.

[122] https://doi.org/10.15587/1729-4061.2019.188976.