Spherical collapse in modified gravity with the Birkhoff theorem

Björn Malte Schäfer* and Kazuya Koyama

Institute of Cosmology and Gravitation, University of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth PO12EG

Accepted 2007 December 10. Received December 7; in original form 2007 November 19

ABSTRACT

We study structure formation in a phenomenological model of modified gravity which interpolates between Λ cold dark matter (ΛCDM) and Dvali–Gabadadze–Porrati (DGP) gravity. In our model, the Friedmann equation assumes the form $H^2(a) = (1 - \Omega_m)H^2_0(a) + \Omega_m/a^3$ with the interpolation parameter α. Generalization of spherical collapse by using the Birkhoff theorem along with the modified growth equation shows that the overdensity for spherical collapse δ_c in these models is significantly lowered compared to ΛCDM, leading to enhanced number densities of massive clusters and enhanced cluster merging rates. We find that $\delta_c(z)$ is well fitted by a function of the form $\delta_c(z) = a - b \exp(-cz)$. We examine the sensitivity of Planck’s and SPT’s Sunyaev–Zel’dovich survey to constrain the modified gravity parametrization, and find that these experiments can easily distinguish between models with a cosmological constant and modified gravity by including prior constraints from cosmic microwave background (CMB) temperature and polarization anisotropies. Applying a Fisher matrix formalism yields an expected accuracy of $\Delta\alpha \sim 0.04$ (SPT), \ldots, 0.07 (Planck) for a combined measurement of the cluster redshift distribution and the CMB temperature and polarization power spectrum, assuming ΛCDM as the fiducial cosmology.

Key words: methods: analytical – methods: numerical – cosmological parameters – cosmology: theory.

1 INTRODUCTION

The late-time accelerated expansion of the Universe, observed in the magnitude redshift relation of Type Ia supernovae, can be explained by three very different theories, either by assuming that the expansion is due to the cosmological constant Λ, or due to dark energy as an additional fluid, or due to a modification in the gravitational law. Although, there has been rapid progress in developing modified theories of gravity to explain the late-time accelerated expansion of the universe, none of the models is yet convincing. The Dvali–Gabadadze–Porrati (DGP) model (Dvali, Gabadadze & Porrati 2000), for example, which is based on a five-dimensional brane world set up, offers a simple explanation of the accelerated expansion of the universe from five-dimensional physics without dark energy, but it has been shown that the model suffers from a ghost instability Koyama (2003). Simple modifications of the four-dimensional Einstein–Hilbert action such as $f(R)$ gravity violate Solar System constraints unless $f(R)$ is fine tuned (Chiba 2003). Structure formation with DGP gravity was investigated by Lue, Scocciararo & Starkman (2004a,b), and constraints on DGP gravity have been derived [cosmic microwave background (CMB): Song, Sawicki & Hu 2007, supernovae: Rydbeck, Fairbairn & Goobar 2007, large-scale structure: Maartens & Majerotto 2006; Koyama & Maartens 2006; a review is provided by Koyama 2007b].

However, we have learnt general features of modified gravity from these attempts: first, any modification of general relativity (GR) on cosmological (horizon) scales results in modifications of GR on subhorizon scales as well, which influences the growth of perturbations. Whereas in cosmologies with homogeneous dark energy, the growth function is uniquely determined by the Hubble function, modified gravity models generically alter the growth function and it becomes impossible to reconcile measurements of the expansion and growth rates resulting from a modified gravity model with a dark energy model with standard gravity. This leads to the interesting possibility of distinguishing the modified gravity models from dark energy models using probes of the cosmological large-scale structure such as the CMB or the integrated Sachs–Wolfe effect. Secondly, any successful modified gravity models should satisfy the stringent constraints coming from the local tests of gravity. This effectively means that the theory must approach GR on small scales. The DGP model naturally recovers GR on small scales without introducing any additional phenomena due to the strong coupling. An example of this is $f(R)$ gravity, where a very contrived form of the $f(R)$ function (the so-called Chameleon mechanism) is necessary to recover GR (Hu & Sawicki 2007).

An interesting probe of the growth of structure is provided by weak lensing, but the non-linear transition to GR is important for...
the correct calculation of the weak lensing signal. The common approach in the literature is to parametrize the linear growth rate and to use the non-linear mapping of the linear matter power spectrum developed in GR to calculate non-linear growth and the non-linear lensing signal. This is effectively equivalent to assuming that gravity is modified even on small scales which would contradict the local gravity experiments. Recently, attempts have been made to carry out n-body simulations in modified gravity (Stabenau & Jain 2006; Laszlo & Bean 2007), but the mechanism to recover GR due to non-linear dynamics was not properly implemented. An interesting phenomenological attempt was made to address this non-linear transition to GR using the halo model (Hu & Sawicki 2007), but it is still an open question to calculate the non-linear power spectrum.

In this paper, we investigate constraints on modified gravity as an alternative to dark energy (Dvali & Turner 2003; Koyama 2006) from structure formation and from the abundance of clusters of galaxies by solving the homogeneous growth and the spherical collapse equations. As the model for modified gravity we employ a phenomenological model which is able to interpolate between ΛCDM and DGP gravity, and predict the number density of clusters of galaxies in a Press–Schechter approach. Due to the spherical symmetry, it is possible to address the non-linear dynamics of the gravity in a tractable way. Similarly to the case of dark energy (Lahav et al. 1991; Multamäki, Gaztañaga & Manera 2003), cluster counts are a promising tool for investigating modified gravity as the collapse threshold for objects forming at late times is lowered, which gives rise to an enhanced spatial density of clusters. The influence of dark energy on cluster formation was extensively studied (Wang & Steinhardt 1998; Mota & van de Bruck 2004; Maor & Lahav 2005; Percival 2005; Bartelmann, Doran & Wetterich 2006, to name but a few), and we aim to forecast constraints on modified gravity from cluster count experiments.

This paper is structured as follows. The theory is developed in Section 2, where our model for modification of gravity is outlined. The results are compiled in Section 3 for homogeneous cosmology; in Section 4, concerning the solution of the spherical collapse equations and in Section 5, the impact of modified gravity on cluster formations for full DGP gravity.

2 STRUCTURE FORMATION IN MODIFIED GRAVITY

2.1 Phenomenological DGP gravity

A lack of satisfying theoretical models for modified gravity enforces us to make phenomenological approaches. We assume that the modified Friedmann equation (normalized to H_0) is given by

$$H^2(a) = (1 - \Omega_m)H^2(a) + \frac{\Omega_m}{a^3},$$ \hspace{1cm} (1)

where α smoothly interpolates between ΛCDM ($\alpha = 0$) and DGP gravity ($\alpha = 1$) (Dvali & Turner 2003). We restrict ourselves to linear structure formation as well as on object formation by spherical collapse, where we incorporate modified gravity in the growth equation and use the Birkhoff theorem for describing the spherical collapse dynamics instead of solving the structure formation equations for full DGP gravity.

Koyama (2006) shows that a covariant effective theory that reproduces equation (1) can be constructed for $\alpha = 1/n$ where n is an integer number. Although the Bianchi identity would constrain the structure of the theory, we need to supply additional information in order to derive the equations that govern the evolution of structure. In this paper, we choose the Birkhoff’s theorem as a guidance to study the evolution of structure which ascertains that the metric observed by a test particle outside a spherically symmetric matter distribution is equivalent to that of a point source of the same mass located at the centre of the sphere (Lue et al. 2004b). Recently, it has been argued that the violation of Birkhoff’s theorem poses severe conceptual and computational difficulties (Dai, Maor & Starkman 2007): if the gravitational force in the interior of a spherically symmetric matter distribution is non-zero, one would need to include the details of the host structure, a galaxy is residing in when determining gravitational forces inside a galaxy. We should note that the DGP gravity does not respect Birkhoff’s theorem. Nevertheless, a Birkhoff-like cancellation of the gravitational acceleration inside a spherical mass is enforced from the five-dimensional physics. Thus, the Birkhoff’s theorem is surely not the unique way to avoid the above described conceptual difficulties, but it should give reasonable approximation to the behaviour of gravity in viable modified gravity models. In fact, it was shown that the difference between using Birkhoff’s theorem and the DGP-like gravity is small; in general, cosmologies described by equation (1) concerning linear growth rate of structure (Koyama 2006).

2.2 Birkhoff’s theorem

In this section, we explain how the Birkhoff’s theorem can be used to describe the growth of overdensities. The modified Friedmann equation can be rewritten in the form

$$H^2 = H_0^2 g(\xi_0), \quad \xi_0 = \frac{8\pi G \rho}{3 H_0^2}.$$ \hspace{1cm} (2)

Taking the time derivative of the Friedmann equation, we obtain

$$\frac{\ddot{a}}{a} = H_0^2 \left[g(\xi) - \frac{3}{2} \xi \frac{g'(\xi)}{g}\right],$$ \hspace{1cm} (3)

where $g'(\xi) = \frac{d g(\xi)}{d \xi}$. Let us consider, a spherically symmetric collapsing dust shell with radius $r(t)$. If Birkhoff’s theorem holds the dynamics of $r(t)$ can be determined as

$$\frac{\ddot{r}(t)}{r(t)} = H_0^2 \left[g(\xi) - \frac{3}{2} \xi \frac{g'(\xi)}{g}\right],$$ \hspace{1cm} (4)

where

$$\xi = \frac{8\pi G \rho_{\text{shell}}}{3 H_0^2}, \quad \rho_{\text{shell}} = \frac{3M}{4\pi r(t)^2}.$$ \hspace{1cm} (5)

The overdensity is defined by

$$\delta = \frac{\rho_{\text{shell}} - \rho}{\rho}.$$ \hspace{1cm} (6)

Initially, the shell is expanding due to the expansion of the Universe such that initially $r(t) = a(t) r_0$ and $\rho_{\text{shell}} = \rho$. The conservation of mass in the shell means that $r(t)$ and δ are related by the condition $r^2(t) \rho_{\text{shell}} = a^2(t) \rho$ and it is possible to derive the evolution for δ from the equation for $r(t)$. The linearized evolution equation for $\delta \ll 1$ is then given by

$$\ddot{\delta} + 2H \dot{\delta} = 4\pi G \left[g(\xi_0) + 3\xi_0 \xi g''(\xi_0)\right] \rho \delta.$$ \hspace{1cm} (7)

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 411–422
Equations (4) and (7) are the basic equations that describe the growth of structure in this model.

3 HOMOGENEOUS COSMOLOGY

The Hubble function $H(a)$ follows from the Friedmann equation numerically by solving equation (1) as an algebraic equation with the parameter a. All higher derivatives follow analytically by differentiating both sides of the Friedmann equation and isolating the respective derivative, for equation, for dH/da, one obtains:

$$
\frac{dH}{da} = \frac{3m}{a^3} \left[a(1 - \Omega_m)H_{a-1} - 2H(a) \right].
$$

For visualization of the Hubble function and its derivatives, the respective standard cold dark matter (SCDM) scaling is divided out:

$$
H_0(a) = a^{-3(2n+3)/2} \frac{d^n H}{da^n}.
$$

The results for $H_0(a)$ are depicted in Fig. 1. The effect of modifying gravity according to equation (1) is a more gradual increase of the Hubble function $H(a)$ compared to ΛCDM, which is reflected by smaller values of the derivative $\dot{H}(a)$ and a smaller curvature $\ddot{H}(a)$.

With the Hubble function $H(a)$, the angular diameter distance in units of the Hubble distance cH_0 can be defined:

$$
d_L(a) = a \int_{a}^{\infty} \frac{dH}{H(a)} \label{eq:dl}.
$$

which yields the evolution of comoving volume with redshift, in units of the Hubble distance cubed, cH_0^3.

$$
dV/dz = 4\pi d_L^3(a). \label{eq:dvdz}
$$

The evolution of volume dV/dz of comoving volume as a function of scalefactor a is given in Fig. 2. The models vary most at $a \approx 0.3$, where they exhibit a variation of almost 20 per cent. The ΛCDM model shows the most dramatic increase in comoving volume as a function of redshift, which is due to the rather fast transition between the matter- and Λ-dominated phases.

The evolution of cosmic time with redshift, in units of the Hubble time $1/H_0$, follows directly from the definition of the Hubble function as the logarithmic derivative of scalefactor a with cosmic time t, $H = d\ln a/dt$ and the relation between redshift z and scalefactor a, $a = 1/(1 + z)$:

$$
\frac{dt}{dz}(a) = \frac{a}{H(a)} \label{eq:dtdz}.
$$

The evolution of cosmic time dt/dz as a function of scalefactor a is plotted in Fig. 3. The influence of modified gravity seems to be minor, amounting to a few per cent at $a = 0.6$. Similar to the case of dV/dz, the modified gravity models show a slower evolution dt/dz compared to ΛCDM. Appendix A contains a detailed comparison of modified gravity models with dark energy models with identical expansion histories, focusing on the effective dark energy equation of state $w(a)$.

The last point is the growth equation, which follows from the linearized structure formation equations and describes the linear and homogeneous growth of the cosmic density field with time, $\delta(x, a) = D_1(a)\delta(x, a = 1)$. The growth equation with the scalefactor...
Using the notation introduced by Wang & Steinhardt (1998), Mota & van de Bruck (2004) and Bartelmann et al. (2006), all relevant parameters differ by almost 10 per cent. Appendix B provides a detailed discussion about the magnitude of the terms governing the evolution of the growth function (13).

4 SPHERICAL COLLAPSE

Using the notation introduced by Wang & Steinhardt (1998), Mota & van de Bruck (2004) and Bartelmann et al. (2006), all relevant quantities are normalized by their values at turnaround, i.e., the scalefactor a and the radius r of the density perturbation become

$$x \equiv \frac{a}{a_\tau}, \quad y \equiv \frac{r}{r_\tau}. \quad (16)$$

Generalizing the Friedmann equations for incorporating the modification of gravity on large scales outlined above yields (cf. equations 4 and 3)

$$x = \sqrt{x^2 g \left(\frac{\omega \zeta}{y^3} \right)} \quad \text{and} \quad (17)$$

The modification in the gravitational law is incorporated in the function $G(a)$ (Lue et al. 2004a):

$$G(a) = \frac{2a^4}{3\Omega_m} \left[3H(a) \frac{dH}{da} + a \left(\frac{dH}{da} \right)^2 + aH(a) \frac{d^2H}{da^2} \right]. \quad (14)$$

and is reflected in the epoch dependence of the matter density parameter $\Omega_m(a)$:

$$\Omega_m(a) = \frac{\Omega_m}{a^2 H^2(a)} \quad (15)$$

Fig. 4 shows the growth function $D_s(a)$ resulting from numerical integration with initial conditions $D_s = 0$ and $dD_s/da = 1$ at $a = 0$, with α as a free parameter. The normalization is chosen such that $D_s = 1$ today. Common to modified gravity models is a faster growth of structure at early times, followed by a slower structure growth from the point on where the modification of gravity becomes important. The largest spread between the models with different α can be observed in the vicinity of $a = 0.4$, where the growth functions differ by almost 10 per cent. Appendix B provides a detailed discussion about the magnitude of the terms governing the evolution of the growth function (13).

The solution for $\tau(\alpha)$ can only be found numerically in the general case, but simplifies to the SCDM result at early times $x \ll 1$ or for $\lambda = 0$:

$$\tau = \frac{2 x^{3/2}}{3 \sqrt{\omega}} \quad (21)$$

The integration of \dot{y} involves multiplying both sides with $\dot{y} y$ and noting that

$$\frac{1}{2} \frac{d}{d\tau} \left(y^2 g \left(\frac{\omega \zeta}{y^3} \right) \right) = \dot{y} y g \left(\frac{\omega \zeta}{y^3} \right) - \frac{3}{2} \frac{\omega \zeta}{y^2} y \dot{g} \left(\frac{\omega \zeta}{y^3} \right) \quad (22)$$

which allows the reduction of the second-order differential equation for y to a first-order equation,

$$\frac{d}{d\tau} \dot{y} = \frac{d}{d\tau} \left[y^2 g \left(\frac{\omega \zeta}{y^3} \right) \right] \quad (23)$$

Subsequent integration yields

$$\dot{y}^2 = y^2 g \left(\frac{\omega \zeta}{y^3} \right) + c, \quad (24)$$

where the integration constant is determined by requiring $\dot{y} = 0$ at turnaround $y = 1$:

$$c = -g(\omega \zeta), \quad (25)$$

yielding the final result for the differential equation defining $y(\tau)$:

$$\dot{y} = \sqrt{y^2 g \left(\frac{\omega \zeta}{y^3} \right)} - g(\omega \zeta) \quad (26)$$

For small radii y at early times τ, the differential equation can be approximated by

$$d\tau \simeq \sqrt{\frac{y}{\omega \zeta} \left[1 + \frac{g(\omega \zeta)}{\omega \zeta} \frac{y}{2} \right]} dy \quad (27)$$

due to $g(\xi) \simeq \xi$ at early times, and can be integrated to yield

$$\tau = \frac{1}{\sqrt{\omega \zeta}} \frac{2}{3} y^{3/2} \left[1 + \frac{3}{10} \frac{g(\omega \zeta)}{\omega \zeta} \right] y \quad (28)$$

Comparing equation (28) with equation (21) at early times and eliminating τ yields a solution for $\tau(x)$, which can be used for defining the time evolution $\Delta(x)$ of the density ζ, restricted to early times:

$$\Delta(x) \equiv \xi x^3 \left(\frac{\omega \zeta}{y^3} \right) = 1 + \frac{3}{5} \frac{g(\omega \zeta)}{\omega \zeta} y. \quad (29)$$

1 An exact solution for the ΛCDM case ($\alpha = 0$) can be derived in terms of the hypergeometric function, $\tau(x) = \frac{2}{\sqrt{\omega \zeta} x} F_1 \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{2}{\omega \zeta} x^2 \right)$.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 411–422
The linear density contrast δ_c is related to the overdensity $\Delta - 1$ by computing the density resulting from linear growth,

$$\delta_c = D_*(x_c) \lim_{x \to 0} \left[\frac{\Delta(x) - 1}{D_s(x)} \right].$$ (30)

The overdensity δ_c is shown in Fig. 5 as a function of redshift z, along with the constant value $\delta_c = 1.686$ for spherical collapse in the SCDM cosmology. $\delta_c(z)$ falls significantly below the SCDM value at low redshifts with increasing α, reaching values as low $\delta_c = 1.46$ for modified gravity. Interestingly, the range of δ_c-values corresponds to those obtained in early dark energy models, as proposed by Bartelmann et al. (2006) and Sadah, Rephaeli & Silk (2007), albeit at lower redshifts. Consequently, the observational signature of lowered δ_c in modified gravity would be an increased abundance of clusters at the relevant redshifts, which will be probed especially by future Sunyaev–Zel’dovich surveys.

The dependence of δ_c on redshift can be well fitted with the phenomenological function $\delta_c(z) = a - b \exp(-cz)$, Table 1 summarizes the values of the parameter a, b and c, which result from a fit to numerically obtained values for $\delta_c(z)$ in the redshift range $0 \leq z \leq 5$, for the range of modified gravity models (characterized by α) considered here.

In the numerical solution, the sequence of steps is as follows: from the specified collapse scalefactor a_c, the corresponding cosmic time t_c is computed using $t = \int da/(a H)$ with the Hubble function $H(a)$ obtained numerically from the Friedmann equation (1). Due to the time-reversal symmetry of equation (18), turnaround takes place at $t_a = t_c/2$, from which a_a can be retrieved. The scalefactor at turnaround a_a is used to define ω and λ using equation (15). ξ is adjusted numerically by evolving equation (24) to the time τ' at which $\zeta(\tau') = 0$, and applying a numerical root finding scheme on $\tau' - \tau(x = 1)$, where the dimensionless time $\tau(x = 1)$ at turnaround $x = 1$ results from equation (17) for given density parameters ω and λ.

From these results, $\Delta(x)$ and $\delta_c(z)$ follow directly. In the numerical treatment, we use a very good approximation to the implicitly defined Hubble function $H(a)$, which is described in detail in Appendix C.

Table 1. Fitting values for the empirical model $\delta_c(z) = a - b \exp(-cz)$ for the range of the modified gravity parameter α considered here, which reproduces the numerical values for $\delta_c(z)$ to subpercent accuracy in the redshift range $0 \leq z \leq 5$.

α	a	b	c
$\alpha = 0$	1.6823	0.0129	1.5648
$\alpha = 0.2$	1.6820	0.0314	1.0912
$\alpha = 0.4$	1.6806	0.0582	0.9994
$\alpha = 0.6$	1.6774	0.0942	0.9369
$\alpha = 0.8$	1.6710	0.1397	0.8722
$\alpha = 1$	1.6585	0.1945	0.8020

Figure 5. Overdensity for spherical collapse $\delta_c(z)$, for $\alpha = 0$ (corresponding to CDM, dash–dotted), $\alpha = 1$ (DGP gravity, solid) and intermediate values in steps of $\Delta \alpha = 0.2$ (dashed). Additionally, the constant value of $\delta_c = 1.686$ is plotted for spherical collapse in the SCDM cosmology.

Spherical collapse in modified gravity 415

5 CLUSTER NUMBER COUNTS AND MERGER RATES

Fluctuations in the cosmic density field on the scale k are described by the power spectrum $P(k)$, which results from ensemble averaging of Fourier modes $\delta(k)$, $(\delta(k)\delta(k'))/(2\pi)^3 \delta(\mathbf{k}+\mathbf{k'}) P(k)$. The shape of the power spectrum $P(k) \propto k^n T^2(k)$ is well approximated by the transfer function suggested by Bardeen et al. (1986):

$$T(q) = \frac{\ln(1 + 2.34q)}{2.34q} \times \left[1 + 3.89q + (16.1q)^2 + (5.46q)^3 + (6.71q)^4\right]^{-1/4}.$$ (31)

where the wavevector $k = q\Gamma$ is rescaled with the shape parameter $\Gamma \equiv \Omega_m h$. The fluctuation amplitude is normalized to the value σ_8 on the scale $R = 8$ Mpc/h with a spherical top-hat filter.

The number density of clusters forming by spherical collapse in a fluctuating density field is given by

$$n(M, z) dM = \sqrt{\frac{2}{\pi}} \rho_0 \Delta_c(z, M) \frac{d\ln \sigma(M)}{d\ln M} dM,$$

$$\times \exp \left[-\frac{\Delta^2(z, M)}{2} \right]$$ (32)

(Press & Schechter 1974; Bond et al. 1991) with background density $\rho_0 = \Omega_m \rho_{\text{crit}}$, where

$$\Delta_c(z, M) = \frac{\delta_c(z)}{D_*(z)\sigma(M)},$$ (33)

abbreviates the quotient between the linear overdensity $\delta_c(z)$ needed for collapse at z, the growth function $D_*(z)$ and the variance $\sigma(M)$ of the density field on the mass scale M, which is related to the spatial filtering scale R by $M = 4\pi/3 \rho_{\text{crit}} \Omega_M R^3$. The Press–Schechter mass function is used rather than the extension by Sheth and Tormen because the latter describes ellipsoidal collapse, where the modified gravity collapse equations might not be applicable.

The logarithmic derivative of the fluctuation amplitude with logarithmic mass is reformulated as a derivative with respect to spatial scale R:

$$\frac{d\ln \sigma}{d\ln M} = \frac{1}{3} \frac{d\ln \sigma}{d\ln R} = \frac{R}{3\sigma} \frac{d\sigma}{dR} = \frac{R}{6\sigma^2} \frac{d\sigma^2}{dR}.$$ (34)
where the fluctuation amplitude $\sigma^2(R)$ and its derivative $d\sigma^2/dR$ are given by

$$\sigma^2(R) = \frac{1}{2\pi^2} \int dk \, k^2 P(k) \left[\frac{3}{kR} j_1(kR) \right]^2,$$

$$(35)$$

$$\frac{d\sigma^2}{dR} = \frac{1}{\pi^2} \int dk \, k^3 P(k) \left[\frac{3}{kR} j_1(kR) j_2(kR) \right].$$

$$(36)$$

function $j_\ell(x)$ denotes the spherical Bessel function of the first kind of the order of ℓ (Abramowitz & Stegun 1972).

Multiplication of $n(M, z)$ with the evolution dV/dz of the comoving volume with redshift yields the cluster density per unit redshift,

$$q(M, z) = n(M, z) \frac{dV}{dz}. \quad (37)$$

The quantity $Q(M, z)$, which is defined as the ratio of $q(M, z)$ for a modified gravity model characterized with α relative to ΛCDM,

$$Q(M, z) = \frac{q_\alpha(M, z)}{q_{\alpha=0}(M, z)} \quad (38)$$

is plotted in Fig. 6 for redshifts $z = 0.3$ and 0.7, where the Planck and SPT surveys are expected to yield most of their detections.

Modified gravity significantly enhances the cluster number counts which is mainly caused by the lower values of the linear overdensity for spherical collapse δ_c at low redshifts. At a redshift of $z = 0.3$, corresponding to the peak in the redshift distribution of Planck’s detections, one can expect to detect almost 50 per cent more clusters at masses of $10^{14} M_\odot/h$. This effect is more pronounced at increased redshift: SPT is expected to yield most of the detections at a redshift of $z = 0.7$, where number counts of $10^{14} M_\odot/h$-mass objects would be almost twice as large in modified gravity models compared to ΛCDM. At higher masses of $10^{15} M_\odot/h$, the increase in cluster number density amounts of the factor of 3 (at $z = 0.3$) up to 6 (at $z = 0.7$), but the small spatial density of very massive objects at high redshift will make this difficult to observe. In contrast, the difference between modified gravity cosmologies and ΛCDM vanishes at small masses, because low-mass objects form early in the matter-dominated phase, where δ_c has not deviated significantly from its canonical value of 1.686. The enhancement in cluster number density depends exponentially on the modified gravity parameter α.

The density $n(M, z)$ of merging events as a function of redshift and mass ratio M_2/M_1 can be determined by extending the Press–Schechter formalism outlined above (Bond et al. 1991; Lacey & Cole 1993, 1994) for an expression for the merger probability as a function of mass, mass difference and cosmic time,

$$d^2 p(M, z) \quad (39)$$

$$\frac{d\ln \Delta M}{d\ln \Delta z}$$

For the purpose of this work, the merger density is multiplied with the volume element dV/dz and the evolution dV/dz of cosmic time with redshift in order to yield the merger density per unit redshift,

$$r(M, z) = \left[n(M, z) \frac{dV}{dz} \right] \frac{d^2 p(M, z)}{d\ln \Delta M/dz}. \quad (40)$$

$R(M, z)$ is defined as the ratio of $r(M, z)$ between a modified gravity model and ΛCDM,

$$R(M, z) = \frac{r_\alpha(M, z)}{r_{\alpha=0}(M, z)}. \quad (41)$$

The quantity $R(M, z)$ is plotted in Fig. 7 for redshifts $z = 0.3$ and 0.7 for a fixed merger mass ratio of $M_2/M_1 = 2$. Merger densities exhibit a similar behaviour at high masses of $10^{15} M_\odot/h$ compared to the mass function, where the modified gravity model predicts numbers roughly of the factors of 1.6 (ΛCDM) and 2 (SPT) times higher at the relevant redshifts. Interestingly, the merger density is decreased in modified gravity models relative to ΛCDM at small masses; this decrease is due to the unique weighting of the merger density with the evolution of cosmic time with redshift dV/dz, the evolution of comoving volume dV/dz and the Hubble function $H(z)$, resulting from the conversion of a time derivative of δ_c/D_c in equation (39) to a derivative in scalefactor.

6 Constraints from Future SZ Surveys

In this section, constraints on cosmological parameters including the modified gravity parameter α from future high-yield Sunyaev–Zel’dovich cluster surveys are estimated in a Fisher matrix analysis.
Following Majumdar & Mohr (2004), a measurement of the cluster number density per unit redshift interval, observed in the solid angle $\Delta \Omega$,

$$N(z) = \frac{dn}{dz} = \frac{\Delta \Omega}{4\pi} \frac{dV}{dz} \int_{M_{\text{min}}}^{\infty} dM \; n(M, z),$$ \hspace{1cm} (42)

is considered with a simple flux threshold S_{min}, expressed as a minimal mass M_{min} dependent on redshift. Using the formula given by Majumdar & Mohr (2004), the flux distortion $\Delta S(v)$ caused by the SZ effect (in mJy) at frequency v is related to the angular diameter distance $d_A(z)$ (in Mpc) and the cluster mass M (in M_\odot) by

$$\Delta S(v) = \frac{1}{d_A^2(z)} f_{\text{SZ}}^g S_{\text{SZ}}(v) A_{\text{SZ}} H^{2/3}(z) M^{1+\beta} (1+z),$$ \hspace{1cm} (43)

where $f_{\text{SZ}} = 0.12$ and log $A = -16.71$ (Diego et al. 2001; Finoguenov, Reiprich & Böhringer 2001). For the slope of the temperature–mass relation, $T(M) \propto M^\beta$, the value $\beta = 0.65$ is chosen (Mohr, Mathiesen & Evrard 1999). The frequency dependence of the Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich 1972, 1980) is given by

$$g(x) = \frac{x^4 \exp(x)}{[\exp(x) - 1]^2} \left[\exp(x) + 1 \right] \left[\exp(x) - 1 \right]$$ \hspace{1cm} (44)

with the dimensionless frequency $x = h v l(k_B T_{\text{CMB}})$. In addition to the flux criterion, a lower mass threshold of $10^{14} M_\odot / h$ is imposed, whichever yields the larger limiting mass.

From the cluster number counts N_i in a redshift bin centred at z_i and the derivative $\partial N / \partial p_\mu$ with respect to the parameter p_μ, the Fisher matrix $F^{\mu\nu}_{\mu\nu}$ can be constructed (Holder, Haiman & Mohr 2001):

$$F^{\mu\nu}_{\mu\nu} = \sum_i \left. \frac{\partial N_i}{\partial p_\mu} \right| \left. \frac{\partial N_i}{\partial p_\nu} \right| \Delta N_i,$$ \hspace{1cm} (45)

assuming a Gaussian likelihood and statistically independent number counts N_i in each redshift bin. The summation extends over the redshift range from $z_{\text{min}} = 0.01$ to $z_{\text{max}} = 2.0$ in steps of $\Delta z = 0.02$.

Using the Cramér–Rao inequality, the accuracy on a single parameter p_μ is equal to $\sqrt{(F^{\mu\mu}_{\mu\mu})}$. χ^2 for a pair of parameters (p_μ, p_ν) can be computed from the inverse $(F^{\mu\nu}_{\mu\nu})$ of the Fisher matrix,

$$\chi^2 = \left(\frac{\Delta p_\mu}{\Delta p_\nu} \right)^{\mu\mu} \left(F^{\mu\mu}_{\mu\mu} \right)^{-1} \left(F^{\mu\nu}_{\mu\nu} \right)^{-1} \left(\Delta p_\mu \right) \left(\Delta p_\nu \right),$$ \hspace{1cm} (46)

where $\Delta p_\mu = p_\mu - P_{\mu}^{\text{CMB}}$. For parameter pairs, the isoprobability contour at

$$\Delta \chi^2 = -\ln \text{erf}^2 \left(\frac{n}{\sqrt{2}} \right),$$ \hspace{1cm} (47)

encloses a fraction of erf$(n / \sqrt{2})$ for of the admissible parameter space, corresponding to a confidence level of $n \sigma$. erf(x) is the complementary error function (Abramowitz & Stegun 1972).

For the purpose of this paper, the Planck and SPT Sunyaev–Zel’dovich surveys are considered, which are expected to yield cluster catalogues comprising 10^4 and 3×10^4 entries, respectively (cf. Melin, Bartlett & Delabrouille 2005; Geisbüsch & Hobson 2007; Schäfer & Bartelmann 2007). The principal characteristics of these surveys are summarized in Table 2. As cosmological parameters, Ω_m (assuming spatial flatness), σ_8 and n_s are considered, alongside the modified gravity parameter α and the slope of the temperature–mass relation β. In general, the increased spatial number density of clusters caused by deviations in the gravitational law has to compete against a slower evolution of the comoving volume with redshift dV / dz, since the two terms in equation (42) are affected in opposite ways.

The results from the Fisher matrix analysis are compiled in Fig. 8. The SZ observations alone yield accuracies of a few per cent on the parameters Ω_m and σ_8, and marginally worse constraints on n_s. Planck and SPT would be able to exclude values of $\alpha > 0.4$, which compare favourably to contemporary constraints from Type Ia supernovae observations (e.g. Fairbairn & Goobar 2006, who find the entire range of α consistent with observations). SPT’s smaller power in constraining α is due to the fact that its SZ sample contains more high-redshift clusters, which have formed in an epoch close to matter domination where the influence of modified gravity is smaller. An important consistency check is that the accuracy of measuring α derived from the SZ surveys compares well to the allowed range of values for the dark energy equation of state $w(a)$ (Majumdar & Mohr 2004) of $|w| = 0.1$ [cf. Fig. A1, where the $w(a)$ for a dark energy model with the identical expansion history as the modified gravity model is derived].

The $\alpha - \Omega_m$ degeneracy is readily explained by the fact that clusters form more easily in modified gravity, which has to be compensated by lowering the value of σ_8. Tilting the CMB spectrum and using smaller values for n_s yields more massive clusters if the normalization σ_8 is kept fixed. Whether this is observable is a matter of the redshift distribution of the experiment: at low redshifts of $z \simeq 0.3$, where most of the Planck detections will be situated, the opposite effects of increasing α on the cluster density and on the volume element almost cancel each other, whereas at high redshifts of $z \simeq 0.7$, corresponding to the redshift at which SPT will find most of the objects, the decrease in dV / dz causes by modified gravity dominates.

In the $\alpha - \Omega_m$ degeneracy, both parameters impact on the cluster density and the evolution of the comoving volume element: at low redshifts, the increased number densities of clusters due to modified gravity are balanced by low choices of Ω_m, which affect both the cluster number density as well as the volume element. At higher redshifts, however, the volume element becomes the dominating factor as it is decreased by modified gravity, only balanced by larger comoving densities due to higher choices of Ω_m.

A crucial point is the understanding of flux threshold due to the strong dependence of the observed number of clusters on the particular value of the limiting minimal mass as a function of redshift. The key parameter is the slope of the temperature–mass relation β, which has to be known to the level of a few per cent, and which would be controlled by self-calibration techniques (e.g. Majumdar & Mohr 2004) in a realistic application.

Table 2. Frequency ν, flux threshold S_{min} and the solid angle $\Delta \Omega$ of the Sunyaev–Zel’dovich surveys to be carried out by Planck and SPT, respectively.

Frequency	Planck	SPT
	$\nu = 353$ GHz	$\nu = 150$ GHz
Flux	$S_{\text{min}} = 100$ mJy	$S_{\text{min}} = 10$ mJy
Solid angle	$\Delta \Omega = 4\pi$	$\Delta \Omega = 4\pi/10$

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 411–422

Downloaded from https://academic.oup.com/mnras/article-abstract/385/1/411/1032802 on 29 July 2018 by guest
SPT should be able to yield a constraint on α with independent measurements of Ω_m, n_s and especially σ_8.

The strong degeneracies between the parameters Ω_m, σ_8, n_s and α can be broken by combining the cluster counts with ancillary data sets such as the power spectrum of the CMB anisotropies or the supernova distance-redshift relation. Whereas the latter would provide an independent (and purely geometrical) measurement of modified gravity and its degeneracy with Ω_m (Rydbeck et al. 2007), CMB data would have a stronger constraining power as it is, in addition, sensitive to σ_8 and n_s (Song et al. 2007). Furthermore, the constraint on Ω_m from Planck is expected to be tighter that of current supernova data.

For these reasons, strong prior constraints on Ω_m, σ_8 and n_s from Planck’s observation of CMB temperature and polarization anisotropies are combined with the cluster data: for independent observational channels, the combined likelihood of the parameters is the product of the individual likelihoods, and hence

\[F_{\mu\nu} = F_{\mu\nu}^{\text{SZ}} + F_{\mu\nu}^{\text{CMB}}, \]

(48)

where $F_{\mu\nu}^{\text{CMB}}$ is derived for Planck’s observation of temperature anisotropy spectrum $C_T(\ell)$, the polarization anisotropy spectrum $C_E(\ell)$ and the cross-spectrum $C_C(\ell)$. The construction of the Fisher matrix $F_{\mu\nu}^{\text{CMB}}$ and details such as the assumed noised levels and beam dimensions are given in Appendix D.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 411–422
Table 3. Fisher matrix forecasts for parameter accuracies (1σ confidence intervals) from the Planck and SPT Sunyaev–Zel’dovich surveys (first and second column), and the corresponding accuracies after adding prior constraints on Ω_m, σ_8 and n_s from Planck’s CMB temperature and polarization spectra (third and fourth column). ΛCDM is the fiducial cosmology, with parameters $\Omega_m = 0.25$, $\sigma_8 = 0.8$, $n_s = 1$, and $\alpha = 0$.

	Planck	SPT	Planck + CMB	SPT + CMB
$\Delta \Omega_m$	0.027	0.008	0.002	0.001
$\Delta \sigma_8$	0.082	0.021	0.002	0.002
Δn_s	0.023	0.057	0.002	0.002
$\Delta \alpha$	0.469	0.292	0.063	0.035

Expected errors on individual cosmological parameters with and without CMB priors are given in Table 3. Apart from per cent accuracy on the cosmological parameters Ω_m, σ_8 and n_s, the minimum variance bound on the modification of gravity derived from the Fisher matrices amounts to 0.46 from Planck and to 0.29 from SPT, i.e. from a cluster survey alone one should be able to exclude modified gravity models (corresponding to $\alpha = 1$) with a statistical significance of 3σ. The improved measurement is able to constrain the modified gravity parameter α significantly better to values below $\Delta \alpha = 0.063$ and 0.035, for Planck and SPT, respectively.

These results are quite comparable to the findings of Tang, Weller & Zablocki (2006), who combined supernovae and cluster counts for constraining DGP gravity, which is achievable with a few hundred clusters from an SZ observation, given a prior tight constraint on σ_8. In their analysis, the influence of modified gravity on the Hubble expansion and on the growth equation was considered, and the density threshold by spherical collapse was approximated to be constant. Tang et al. (2006) point out that a pure geometrical measurement can never distinguish between modified gravity and a suitably tuned dark energy model, and that additional information such as a measurement of the growth function is needed.

7 SUMMARY

In this paper, the influence of modified gravity on Friedmann dynamics, the homogeneous growth of the cosmic density field and the formation of galaxy clusters is considered. The alteration of the gravitational law is motivated by DGP gravity, and introduced as an additional term in the Friedmann equations, which are consistently applied to the background dynamics as well as for the formation of individual clusters. A parameter α allows interpolation between the two limiting cases: gravitation with a cosmological constant Λ and DGP gravity.

(i) The Friedmann dynamics of the universe is remarkably little affected by the modification of gravity, as the Hubble function $H(\alpha)$ for our range of models differs by at most 10 per cent at a scalefactor of $\alpha = 0.5$. This translates to comparable variations on the evolution dV/dz of volume with redshift and the evolution $d\delta/dz$ of cosmic time with redshift.

(ii) The growth function shows significant suppression of growth at early times for modified gravity, very similar to dark energy models with evolving equation of state, where the first derivative of the equation-of-state parameter $w(\alpha)$ is positive at zero redshift. The largest spread between the models considered here occurs around $\alpha = 0.3$. The changed behaviour of the growth function is both caused by the decrease in matter density $\Omega_m(\alpha)$ as well as by the scaling of the Hubble function with scalefactor.

(iii) The spherical collapse equations can be solved numerically for the modified gravity models motivated by DGP, resulting in the linear overdensity for spherical collapse δ_c as a function of collapse redshift z. One noted a significant decrease in δ_c by almost 20 per cent compared to SCDM. The range of values for δ_c is quite comparable to those obtained in collapse with early dark energy. An empirical fitting formula of the shape $\delta_c(z) = a - b \exp(-cz)$ was found to yield a good approximation.

(iv) Cluster number counts are significantly enhanced by modified gravity, due to the lower values of the linear overdensity for spherical collapse δ_c at low redshifts. At a redshift of $z = 0.3$, where the majority of Planck SZ clusters will be situated, as much as 50 per cent more clusters with masses of $10^{14} M_{\odot}/h$ have formed, whereas at a redshift of $z = 0.7$, corresponding to the peak in the cluster redshift distribution forecast for SPT, number counts might be 70 per cent larger. At higher masses of $10^{15} M_{\odot}/h$, the increase in cluster number density amounts to the factor of 3 (at $z = 0.3$) up to 6 (at $z = 0.7$), but the sparsity of very massive objects at high redshift will make this difficult to observe. At low masses, on the contrary, there is hardly a difference between DGP-like modified gravity models and ΛCDM, which is due to the fact that these objects form early well in the matter-dominated phase. The enhancement in cluster number density depends exponentially on the modified gravity parameter α.

(v) Merger densities exhibit a similar behaviour at high masses of $10^{15} M_{\odot}/h$, where the model predicts an increase in factors of roughly up to 2 at the redshifts considered. At low masses, however, the merger density fails below the prediction of ΛCDM, which is carried by the unique weighting of the merger density with the evolution of cosmic time with redshift dV/dz, the evolution of comoving volume dV/dz, and the Hubble function $H(\alpha)$.

(vi) The impact of modified gravity on cluster formation is most notable at small redshifts below unity, making it a target for Sunyaev–Zel’dovich cluster surveys. In this paper, the cluster yield of the SZ surveys to be carried out by Planck and SPT was modelled with a simple flux threshold as the detection criterion. The Fisher matrix analysis with ΛCDM as the fiducial cosmological model found that on themselves, the SZ surveys alone are able to constrain the modified gravity parameter α with an accuracy of $\Delta \alpha = 0.47$, albeit with strong degeneracies. Adding in CMB constraints on Ω_m, σ_8 and n_s significantly lowered the uncertainty to $\Delta \alpha = 0.04$, making the combined SZ and CMB observations a powerful observational probe.

As last points, it is worth noting that the above described model for phenomenological DGP gravity has the same number of parameters as ΛCDM and would not be disfavoured on grounds on Bayesian model selection. The feature that cluster formation takes place at higher redshifts compared to ΛCDM might have important implications on the arclet problem in gravitational lensing (Meneghetti et al. 2005) and on the cosmic background imager anomaly (Padin et al. 2001; Bond et al. 2005) as it naturally causes a higher level of Sunyaev–Zel’dovich background due to high-redshift clusters with a low contemporary value of σ_8.

ACKNOWLEDGMENTS

We would like to thank Rob Crittenden for valuable comments and Bob Nichol for motivating research on cluster abundances in modified gravity. BMS acknowledges support from an STFC postdoctoral fellowship, and KK acknowledges support from an STFC advanced fellowship. We thank the anonymous referee for comments on the paper.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 411–422

Downloaded from https://academic.oup.com/mnras/article-abstract/385/1/411/1032802 on 29 July 2018
APPENDIX A: EQUATION OF STATE

The relation between the modified gravity model and the equation of state $w(a)$ of a dark energy model with identical expansion history is derived in this section. A dark energy fluid with equation of state $w(a)$ gives rise to an additional term $\Delta H^2(a)$ in the Friedmann equation, given by

$$\Delta H^2(a) = \exp \left[3 \int_a^1 \frac{1 + w(a)}{a} \, da \right], \quad (A1)$$

which can be solved for $w(a)$ for a given Hubble function $H(a)$. By equating $\Delta H^2(a)$ with the modification in the Friedmann equation $(1 - \Omega_m)H^2(a)$, the equation of state $w_{\text{avg}}(a)$ can be derived for a dark energy model with identical expansion history:

$$w_{\text{avg}}(a) = \left(\frac{1 + \alpha}{3 \ln a} \right). \quad (A2)$$

Another interesting quantity is the equation of state $w_{\text{avg}}(a)$, averaged over all relevant cosmological fluids. In this case, ΔH^2 has to be equal to the complete Friedmann equation $H^2(a) = (1 - \Omega_m)H^2(a) + \Omega_m/a^2$, which results in

$$w_{\text{avg}}(a) = \left(\frac{1 + 2\alpha}{3 \ln a} \right). \quad (A3)$$

Fig. A1 compares the average equation of state $w_{\text{avg}}(a)$ and the effective equation of state $w_{\text{eff}}(a)$ as a function of scalefactor. The effective equation of state $w_{\text{eff}}(a)$ decreases slowly from -0.5 to -0.8 for the DGP-type models, is constant $w = -1$ for ΛCDM and smoothly interpolates between these two limiting cases for choices of $\alpha = 0, \ldots, 1$. On the contrary, the average equation of state $w_{\text{avg}}(a)$ assumes a value of 0 at $a = 0$ for all modified gravity models, and decreases towards values in the interval $-0.6, \ldots, -0.8$, with ΛCDM showing the most abrupt and the DGP-emulating model showing the most gradual transition.

Comparing the results in Fig. A1 to current measurements of the equation of state of dark energy, e.g. using weak gravitational lensing (Jarvis et al. 2006), the cosmic microwave background (Verde et al. 2003), supernovae (Riess 2004), baryon acoustic oscillations (Percival et al. 2007) or combinations of these observational

Figure A1. Average equation-of-state parameter $w_{\text{avg}}(a)$ (equal to 0 at early times) and effective equation-of-state parameter $w_{\text{eff}}(a)$ as a function of scalefactor a, for values of $\alpha = 0$ (corresponding to ΛCDM, dash–dotted), $\alpha = 1$ (DGP gravity, solid) and intermediate values in steps of $\Delta \alpha = 0.2$ (dashed).
channels (Bean, Hansen & Melchiorri 2001; Melchiorri et al. 2003), which are usually stated in terms of the parametrization \(w(a) \simeq w_0 + (1 - a)w_a \) (introduced by Linder & Jenkins 2003) shows that these experiments only marginally exclude DGP gravity and are in agreement with the values of \(w_0 = -0.9, \ldots, -1.0 \) and \(w_a = 0.3, \ldots, 0 \) resulting from more conservative choices of \(\alpha \).

APPENDIX B: GROWTH FUNCTION

The influence of modified gravity on the growth equation is discussed in this section. Generally, the growth equation (13) has the shape

\[
\frac{d^2}{da^2} D_\alpha(a) + Q(a) \frac{d}{da} D_\alpha(a) = \frac{3S(a)}{2a^2} D_\alpha(a),
\]

(B1)

where a source term \(S(a) \) and a dissipation term \(Q(a) \) can be identified:

\[
Q(a) = 3 + \frac{d \ln H(a)}{d \ln a}, \quad S(a) = G(a) \Omega_m(a).
\]

(B2)

A comparison between the source and damping terms in the growth equation is provided by Fig. B1: increasing the value of \(\alpha \) makes the transition of the damping term \(Q(a) \) from \(Q(a) = 0 \) to \(\frac{3}{2} \) in the matter-dominated epoch to the modified gravity-dominated epoch more gradual, due to the influence of modified gravity on the scaling of the Hubble function.

The source term \(S(a) = G(a) \Omega_m(a) \) with contributions both from the evolution \(\Omega_m \) of the matter density, which is proportional to \(H^{-2} \) (as well as from modified gravity as a consequence of Birkhoff’s theorem (Lue et al. 2004a,b), smoothly decreases from \(S(a) = 1 \) at \(a = 0 \) to \(S(a) = \Omega_m \) today, and the choice of larger values of \(\alpha \) makes the source term drop at earlier times. In summary, the suppression of structure formation is caused simultaneously by the decrease in the source term \(S(a) \) and the increase in the damping \(Q(a) \), while larger choices of \(\alpha \) are able to suppress structure formation more effectively at early times.

![Figure B1](image1.png)

Figure B1. Comparison of the damping term \(Q(a) = 3 + \frac{d \ln H(a)}{d \ln a} \) (equal to \(\frac{3}{2} \) at early times) and the source term \(S(a) = G(a) \Omega_m(a) \) (equal to 1 at early times) in the growth equation as a function of scale-factor \(a \), for values of \(\alpha = 0 \) (corresponding to \(\Lambda \)CDM, dash–dotted), \(\alpha = 1 \) (DGP-like gravity, solid) and intermediate values in steps of \(\Delta \alpha = 0.2 \) (dashed).

APPENDIX C: APPROXIMATE SOLUTION FOR THE HUBBLE FUNCTION

As discussed in Section 3, our family of modified Friedmann equations,

\[
H^2(a) = (1 - \Omega_m)H^2(a) + \frac{\Omega_m}{a^3}
\]

(C1)

can only be solved numerically for \(H(a) \). In order to have a much faster analytic approximation for the spherical collapse equations, we use two second-order expansions, yielding quadratic equations, which are analytically solvable. At late times \(a = 1 \), we expand \(H^2(a) \) at \(H = 1 \) to second order,

\[
H^2 \simeq 1 + \alpha(H - 1) + \frac{\alpha(\alpha - 1)}{2}(H - 1)^2,
\]

(C2)

substitute into equation (C1), and solve the resulting quadratic equation for the approximation \(H_+(a) \), which is valid at late times. At early times, where the Hubble function diverges, we expand \(H_+(a) = a^2 H(a) \), which assumes the value \(\sqrt{\Omega_m} \) at \(a = 0 \):

\[
H^2 \simeq \Omega_m^{\frac{1}{2}} + \alpha \Omega_m^{a - 1/2}(H - \sqrt{\Omega_m}) + \frac{\alpha(\alpha - 1)}{2} \Omega_m^{a - 1/2}(H - \sqrt{\Omega_m})^2.
\]

(C3)

This expansion can be converted to a second-order expansion for \(H(a) \), substituted into equation (C1) and the resulting quadratic equation solved for the early time approximation \(H_+(a) \). The relation

\[
H(a) = \gamma_- (a) H_-(a) + \gamma_+(a) H_+(a)
\]

(C4)

interpolates between the two branches by adjusting the weight \(\alpha \) accordingly, and avoids any sharp transition. \(\gamma_\pm (a) \) is a non-linear interpolation,

\[
\gamma_\pm(a) = \frac{1}{2} \left[1 \pm \frac{2}{\pi} \arctan \left(\frac{a - \mu}{\Delta} \right) \right]
\]

(C5)

with the transition scalefactor \(\mu = 0.3 \) and the transition width \(\Delta = 0.05 \). Equation (C5) is normalized in the sense \(\gamma_+(a) + \gamma_-(a) = 1 \). Fig. C1 compares the approximation of the Hubble function to the direct numerical solution, and gives the relative deviation between the two: the approximation reproduces the Hubble function to an

![Figure C1](image2.png)

Figure C1. The scaled Hubble function \(H_+(a) \) from the numerical approximation, as a function scalefactor \(a \), for values of \(\alpha = 0 \) (corresponding to \(\Lambda \)CDM, dash–dotted), \(\alpha = 1 \) (DGP gravity, solid) and intermediate values in steps of \(\Delta \alpha = 0.2 \) (dashed). At the bottom, the relative deviation in percent between the direct numerical solution for \(H(a) \) and the approximation is plotted.
accuracy better than 0.3 per cent, which is accurate enough for the
purpose of spherical collapse computations. It should be noted that
the cases $\alpha = 0$ (CDM) and $\alpha = 1$ (DGP gravity) are reproduced
exactly.

APPENDIX D: ADDITIONAL CONSTRAINTS
FROM CMB TEMPERATURE AND
POLARIZATION SPECTRA

The constraints on modified gravity from cluster number counts can
be significantly improved by adding priors on Ω_m, σ_8 and n_s from
CMB temperature and polarization spectra. The Fisher matrix of
the CMB temperature and polarization power spectra is given by
(Zaldarriaga, Spergel & Seljak 1997; Balbi et al. 2003)

$$ \mathcal{F}_{\mu\nu}^{\text{CMB}} = \sum_{\ell=2}^{\ell_{\text{max}}} \sum_{X,Y} \frac{\partial C_X(\ell)}{\partial p_\mu} \text{Cov}^{-1} [C_X(\ell)C_Y(\ell)] \frac{\partial C_Y(\ell)}{\partial p_\nu}, \quad (D1) $$

where the indices (X, Y) assume values of T for the temperature
spectrum $C_T(\ell)$, E for the E-mode polarization spectrum $C_E(\ell)$ and
C for the temperature-polarization cross-spectrum $C_C(\ell)$.

The entries of the covariance matrix $\text{Cov}[C_X(\ell) C_Y(\ell)]$ are given by

$$ \text{Cov} [C_T(\ell) C_T(\ell)] = \frac{2}{2\ell + 1} \frac{1}{f_{\text{sky}}} C_T^2(\ell), \quad (D2) $$

$$ \text{Cov} [C_T(\ell) C_E(\ell)] = \frac{2}{2\ell + 1} \frac{1}{f_{\text{sky}}} C_T^2(\ell), \quad (D3) $$

$$ \text{Cov} [C_E(\ell) C_E(\ell)] = \frac{2}{2\ell + 1} \frac{1}{f_{\text{sky}}} C_E^2(\ell), \quad (D4) $$

$$ \text{Cov} [C_T(\ell) C_E(\ell)] = \frac{2}{2\ell + 1} \frac{1}{f_{\text{sky}}} \tilde{C}_T^2(\ell), \quad (D5) $$

$$ \text{Cov} [C_E(\ell) C_C(\ell)] = \frac{2}{2\ell + 1} \frac{1}{f_{\text{sky}}} \tilde{C}_E(\ell) \tilde{C}_C(\ell) \quad (D6) $$

$$ \text{Cov} [C_T(\ell) C_C(\ell)] = \frac{2}{2\ell + 1} \frac{1}{f_{\text{sky}}} \tilde{C}_T(\ell) \tilde{C}_C(\ell), \quad (D7) $$

with the observed spectra

$$ \tilde{C}_T(\ell) = C_T(\ell) + w_T^{-1} B^{-2}(\ell), \quad (D8) $$

$$ \tilde{C}_E(\ell) = C_E(\ell) + w_E^{-1} B^{-2}(\ell) \quad (D9) $$

and $\tilde{C}_C(\ell) = C_C(\ell)$. For Planck’s noise levels, the values $w_T^{-1} = (0.02 \mu K)^2$ and $w_E^{-1} = (0.03 \mu K)^2$ have been used, and the beam was
assumed to be Gaussian, $B^{-2}(\ell) = \exp[\Delta \theta^2 (\ell (\ell + 1))]$, with a full
width at half-maximum width of $\Delta \theta = 7.1 \text{arcmin}$, corresponding
to the $v = 143 \text{GHz}$ channel closest to the CMB maximum. The
observation uses a fraction of $f_{\text{sky}} = 0.8$ of the entire sky, corresponding
to a galactic cut excluding $|b| < 11.5$. CMB spectra and their
derivatives were generated with CAMB2 (Code for Anisotropies in
the Microwave Background; Lewis, Challinor & Lasenby 2000).

This paper has been typeset from a \TeX\&\LaTeX\ file prepared by the author.

2 \url{http://camb.info/}